1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/delayacct.h> 51 #include <linux/init.h> 52 #include <linux/writeback.h> 53 54 #include <asm/pgalloc.h> 55 #include <asm/uaccess.h> 56 #include <asm/tlb.h> 57 #include <asm/tlbflush.h> 58 #include <asm/pgtable.h> 59 60 #include <linux/swapops.h> 61 #include <linux/elf.h> 62 63 #ifndef CONFIG_NEED_MULTIPLE_NODES 64 /* use the per-pgdat data instead for discontigmem - mbligh */ 65 unsigned long max_mapnr; 66 struct page *mem_map; 67 68 EXPORT_SYMBOL(max_mapnr); 69 EXPORT_SYMBOL(mem_map); 70 #endif 71 72 unsigned long num_physpages; 73 /* 74 * A number of key systems in x86 including ioremap() rely on the assumption 75 * that high_memory defines the upper bound on direct map memory, then end 76 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 78 * and ZONE_HIGHMEM. 79 */ 80 void * high_memory; 81 82 EXPORT_SYMBOL(num_physpages); 83 EXPORT_SYMBOL(high_memory); 84 85 int randomize_va_space __read_mostly = 1; 86 87 static int __init disable_randmaps(char *s) 88 { 89 randomize_va_space = 0; 90 return 1; 91 } 92 __setup("norandmaps", disable_randmaps); 93 94 95 /* 96 * If a p?d_bad entry is found while walking page tables, report 97 * the error, before resetting entry to p?d_none. Usually (but 98 * very seldom) called out from the p?d_none_or_clear_bad macros. 99 */ 100 101 void pgd_clear_bad(pgd_t *pgd) 102 { 103 pgd_ERROR(*pgd); 104 pgd_clear(pgd); 105 } 106 107 void pud_clear_bad(pud_t *pud) 108 { 109 pud_ERROR(*pud); 110 pud_clear(pud); 111 } 112 113 void pmd_clear_bad(pmd_t *pmd) 114 { 115 pmd_ERROR(*pmd); 116 pmd_clear(pmd); 117 } 118 119 /* 120 * Note: this doesn't free the actual pages themselves. That 121 * has been handled earlier when unmapping all the memory regions. 122 */ 123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 124 { 125 struct page *page = pmd_page(*pmd); 126 pmd_clear(pmd); 127 pte_lock_deinit(page); 128 pte_free_tlb(tlb, page); 129 dec_zone_page_state(page, NR_PAGETABLE); 130 tlb->mm->nr_ptes--; 131 } 132 133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 134 unsigned long addr, unsigned long end, 135 unsigned long floor, unsigned long ceiling) 136 { 137 pmd_t *pmd; 138 unsigned long next; 139 unsigned long start; 140 141 start = addr; 142 pmd = pmd_offset(pud, addr); 143 do { 144 next = pmd_addr_end(addr, end); 145 if (pmd_none_or_clear_bad(pmd)) 146 continue; 147 free_pte_range(tlb, pmd); 148 } while (pmd++, addr = next, addr != end); 149 150 start &= PUD_MASK; 151 if (start < floor) 152 return; 153 if (ceiling) { 154 ceiling &= PUD_MASK; 155 if (!ceiling) 156 return; 157 } 158 if (end - 1 > ceiling - 1) 159 return; 160 161 pmd = pmd_offset(pud, start); 162 pud_clear(pud); 163 pmd_free_tlb(tlb, pmd); 164 } 165 166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 167 unsigned long addr, unsigned long end, 168 unsigned long floor, unsigned long ceiling) 169 { 170 pud_t *pud; 171 unsigned long next; 172 unsigned long start; 173 174 start = addr; 175 pud = pud_offset(pgd, addr); 176 do { 177 next = pud_addr_end(addr, end); 178 if (pud_none_or_clear_bad(pud)) 179 continue; 180 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 181 } while (pud++, addr = next, addr != end); 182 183 start &= PGDIR_MASK; 184 if (start < floor) 185 return; 186 if (ceiling) { 187 ceiling &= PGDIR_MASK; 188 if (!ceiling) 189 return; 190 } 191 if (end - 1 > ceiling - 1) 192 return; 193 194 pud = pud_offset(pgd, start); 195 pgd_clear(pgd); 196 pud_free_tlb(tlb, pud); 197 } 198 199 /* 200 * This function frees user-level page tables of a process. 201 * 202 * Must be called with pagetable lock held. 203 */ 204 void free_pgd_range(struct mmu_gather **tlb, 205 unsigned long addr, unsigned long end, 206 unsigned long floor, unsigned long ceiling) 207 { 208 pgd_t *pgd; 209 unsigned long next; 210 unsigned long start; 211 212 /* 213 * The next few lines have given us lots of grief... 214 * 215 * Why are we testing PMD* at this top level? Because often 216 * there will be no work to do at all, and we'd prefer not to 217 * go all the way down to the bottom just to discover that. 218 * 219 * Why all these "- 1"s? Because 0 represents both the bottom 220 * of the address space and the top of it (using -1 for the 221 * top wouldn't help much: the masks would do the wrong thing). 222 * The rule is that addr 0 and floor 0 refer to the bottom of 223 * the address space, but end 0 and ceiling 0 refer to the top 224 * Comparisons need to use "end - 1" and "ceiling - 1" (though 225 * that end 0 case should be mythical). 226 * 227 * Wherever addr is brought up or ceiling brought down, we must 228 * be careful to reject "the opposite 0" before it confuses the 229 * subsequent tests. But what about where end is brought down 230 * by PMD_SIZE below? no, end can't go down to 0 there. 231 * 232 * Whereas we round start (addr) and ceiling down, by different 233 * masks at different levels, in order to test whether a table 234 * now has no other vmas using it, so can be freed, we don't 235 * bother to round floor or end up - the tests don't need that. 236 */ 237 238 addr &= PMD_MASK; 239 if (addr < floor) { 240 addr += PMD_SIZE; 241 if (!addr) 242 return; 243 } 244 if (ceiling) { 245 ceiling &= PMD_MASK; 246 if (!ceiling) 247 return; 248 } 249 if (end - 1 > ceiling - 1) 250 end -= PMD_SIZE; 251 if (addr > end - 1) 252 return; 253 254 start = addr; 255 pgd = pgd_offset((*tlb)->mm, addr); 256 do { 257 next = pgd_addr_end(addr, end); 258 if (pgd_none_or_clear_bad(pgd)) 259 continue; 260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling); 261 } while (pgd++, addr = next, addr != end); 262 263 if (!(*tlb)->fullmm) 264 flush_tlb_pgtables((*tlb)->mm, start, end); 265 } 266 267 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, 268 unsigned long floor, unsigned long ceiling) 269 { 270 while (vma) { 271 struct vm_area_struct *next = vma->vm_next; 272 unsigned long addr = vma->vm_start; 273 274 /* 275 * Hide vma from rmap and vmtruncate before freeing pgtables 276 */ 277 anon_vma_unlink(vma); 278 unlink_file_vma(vma); 279 280 if (is_vm_hugetlb_page(vma)) { 281 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 282 floor, next? next->vm_start: ceiling); 283 } else { 284 /* 285 * Optimization: gather nearby vmas into one call down 286 */ 287 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 288 && !is_vm_hugetlb_page(next)) { 289 vma = next; 290 next = vma->vm_next; 291 anon_vma_unlink(vma); 292 unlink_file_vma(vma); 293 } 294 free_pgd_range(tlb, addr, vma->vm_end, 295 floor, next? next->vm_start: ceiling); 296 } 297 vma = next; 298 } 299 } 300 301 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 302 { 303 struct page *new = pte_alloc_one(mm, address); 304 if (!new) 305 return -ENOMEM; 306 307 pte_lock_init(new); 308 spin_lock(&mm->page_table_lock); 309 if (pmd_present(*pmd)) { /* Another has populated it */ 310 pte_lock_deinit(new); 311 pte_free(new); 312 } else { 313 mm->nr_ptes++; 314 inc_zone_page_state(new, NR_PAGETABLE); 315 pmd_populate(mm, pmd, new); 316 } 317 spin_unlock(&mm->page_table_lock); 318 return 0; 319 } 320 321 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 322 { 323 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 324 if (!new) 325 return -ENOMEM; 326 327 spin_lock(&init_mm.page_table_lock); 328 if (pmd_present(*pmd)) /* Another has populated it */ 329 pte_free_kernel(new); 330 else 331 pmd_populate_kernel(&init_mm, pmd, new); 332 spin_unlock(&init_mm.page_table_lock); 333 return 0; 334 } 335 336 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 337 { 338 if (file_rss) 339 add_mm_counter(mm, file_rss, file_rss); 340 if (anon_rss) 341 add_mm_counter(mm, anon_rss, anon_rss); 342 } 343 344 /* 345 * This function is called to print an error when a bad pte 346 * is found. For example, we might have a PFN-mapped pte in 347 * a region that doesn't allow it. 348 * 349 * The calling function must still handle the error. 350 */ 351 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) 352 { 353 printk(KERN_ERR "Bad pte = %08llx, process = %s, " 354 "vm_flags = %lx, vaddr = %lx\n", 355 (long long)pte_val(pte), 356 (vma->vm_mm == current->mm ? current->comm : "???"), 357 vma->vm_flags, vaddr); 358 dump_stack(); 359 } 360 361 static inline int is_cow_mapping(unsigned int flags) 362 { 363 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 364 } 365 366 /* 367 * This function gets the "struct page" associated with a pte. 368 * 369 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping 370 * will have each page table entry just pointing to a raw page frame 371 * number, and as far as the VM layer is concerned, those do not have 372 * pages associated with them - even if the PFN might point to memory 373 * that otherwise is perfectly fine and has a "struct page". 374 * 375 * The way we recognize those mappings is through the rules set up 376 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set, 377 * and the vm_pgoff will point to the first PFN mapped: thus every 378 * page that is a raw mapping will always honor the rule 379 * 380 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 381 * 382 * and if that isn't true, the page has been COW'ed (in which case it 383 * _does_ have a "struct page" associated with it even if it is in a 384 * VM_PFNMAP range). 385 */ 386 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 387 { 388 unsigned long pfn = pte_pfn(pte); 389 390 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 391 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; 392 if (pfn == vma->vm_pgoff + off) 393 return NULL; 394 if (!is_cow_mapping(vma->vm_flags)) 395 return NULL; 396 } 397 398 /* 399 * Add some anal sanity checks for now. Eventually, 400 * we should just do "return pfn_to_page(pfn)", but 401 * in the meantime we check that we get a valid pfn, 402 * and that the resulting page looks ok. 403 */ 404 if (unlikely(!pfn_valid(pfn))) { 405 print_bad_pte(vma, pte, addr); 406 return NULL; 407 } 408 409 /* 410 * NOTE! We still have PageReserved() pages in the page 411 * tables. 412 * 413 * The PAGE_ZERO() pages and various VDSO mappings can 414 * cause them to exist. 415 */ 416 return pfn_to_page(pfn); 417 } 418 419 /* 420 * copy one vm_area from one task to the other. Assumes the page tables 421 * already present in the new task to be cleared in the whole range 422 * covered by this vma. 423 */ 424 425 static inline void 426 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 427 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 428 unsigned long addr, int *rss) 429 { 430 unsigned long vm_flags = vma->vm_flags; 431 pte_t pte = *src_pte; 432 struct page *page; 433 434 /* pte contains position in swap or file, so copy. */ 435 if (unlikely(!pte_present(pte))) { 436 if (!pte_file(pte)) { 437 swp_entry_t entry = pte_to_swp_entry(pte); 438 439 swap_duplicate(entry); 440 /* make sure dst_mm is on swapoff's mmlist. */ 441 if (unlikely(list_empty(&dst_mm->mmlist))) { 442 spin_lock(&mmlist_lock); 443 if (list_empty(&dst_mm->mmlist)) 444 list_add(&dst_mm->mmlist, 445 &src_mm->mmlist); 446 spin_unlock(&mmlist_lock); 447 } 448 if (is_write_migration_entry(entry) && 449 is_cow_mapping(vm_flags)) { 450 /* 451 * COW mappings require pages in both parent 452 * and child to be set to read. 453 */ 454 make_migration_entry_read(&entry); 455 pte = swp_entry_to_pte(entry); 456 set_pte_at(src_mm, addr, src_pte, pte); 457 } 458 } 459 goto out_set_pte; 460 } 461 462 /* 463 * If it's a COW mapping, write protect it both 464 * in the parent and the child 465 */ 466 if (is_cow_mapping(vm_flags)) { 467 ptep_set_wrprotect(src_mm, addr, src_pte); 468 pte = pte_wrprotect(pte); 469 } 470 471 /* 472 * If it's a shared mapping, mark it clean in 473 * the child 474 */ 475 if (vm_flags & VM_SHARED) 476 pte = pte_mkclean(pte); 477 pte = pte_mkold(pte); 478 479 page = vm_normal_page(vma, addr, pte); 480 if (page) { 481 get_page(page); 482 page_dup_rmap(page, vma, addr); 483 rss[!!PageAnon(page)]++; 484 } 485 486 out_set_pte: 487 set_pte_at(dst_mm, addr, dst_pte, pte); 488 } 489 490 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 491 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 492 unsigned long addr, unsigned long end) 493 { 494 pte_t *src_pte, *dst_pte; 495 spinlock_t *src_ptl, *dst_ptl; 496 int progress = 0; 497 int rss[2]; 498 499 again: 500 rss[1] = rss[0] = 0; 501 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 502 if (!dst_pte) 503 return -ENOMEM; 504 src_pte = pte_offset_map_nested(src_pmd, addr); 505 src_ptl = pte_lockptr(src_mm, src_pmd); 506 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 507 arch_enter_lazy_mmu_mode(); 508 509 do { 510 /* 511 * We are holding two locks at this point - either of them 512 * could generate latencies in another task on another CPU. 513 */ 514 if (progress >= 32) { 515 progress = 0; 516 if (need_resched() || 517 need_lockbreak(src_ptl) || 518 need_lockbreak(dst_ptl)) 519 break; 520 } 521 if (pte_none(*src_pte)) { 522 progress++; 523 continue; 524 } 525 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 526 progress += 8; 527 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 528 529 arch_leave_lazy_mmu_mode(); 530 spin_unlock(src_ptl); 531 pte_unmap_nested(src_pte - 1); 532 add_mm_rss(dst_mm, rss[0], rss[1]); 533 pte_unmap_unlock(dst_pte - 1, dst_ptl); 534 cond_resched(); 535 if (addr != end) 536 goto again; 537 return 0; 538 } 539 540 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 541 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 542 unsigned long addr, unsigned long end) 543 { 544 pmd_t *src_pmd, *dst_pmd; 545 unsigned long next; 546 547 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 548 if (!dst_pmd) 549 return -ENOMEM; 550 src_pmd = pmd_offset(src_pud, addr); 551 do { 552 next = pmd_addr_end(addr, end); 553 if (pmd_none_or_clear_bad(src_pmd)) 554 continue; 555 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 556 vma, addr, next)) 557 return -ENOMEM; 558 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 559 return 0; 560 } 561 562 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 563 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 564 unsigned long addr, unsigned long end) 565 { 566 pud_t *src_pud, *dst_pud; 567 unsigned long next; 568 569 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 570 if (!dst_pud) 571 return -ENOMEM; 572 src_pud = pud_offset(src_pgd, addr); 573 do { 574 next = pud_addr_end(addr, end); 575 if (pud_none_or_clear_bad(src_pud)) 576 continue; 577 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 578 vma, addr, next)) 579 return -ENOMEM; 580 } while (dst_pud++, src_pud++, addr = next, addr != end); 581 return 0; 582 } 583 584 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 585 struct vm_area_struct *vma) 586 { 587 pgd_t *src_pgd, *dst_pgd; 588 unsigned long next; 589 unsigned long addr = vma->vm_start; 590 unsigned long end = vma->vm_end; 591 592 /* 593 * Don't copy ptes where a page fault will fill them correctly. 594 * Fork becomes much lighter when there are big shared or private 595 * readonly mappings. The tradeoff is that copy_page_range is more 596 * efficient than faulting. 597 */ 598 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 599 if (!vma->anon_vma) 600 return 0; 601 } 602 603 if (is_vm_hugetlb_page(vma)) 604 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 605 606 dst_pgd = pgd_offset(dst_mm, addr); 607 src_pgd = pgd_offset(src_mm, addr); 608 do { 609 next = pgd_addr_end(addr, end); 610 if (pgd_none_or_clear_bad(src_pgd)) 611 continue; 612 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 613 vma, addr, next)) 614 return -ENOMEM; 615 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 616 return 0; 617 } 618 619 static unsigned long zap_pte_range(struct mmu_gather *tlb, 620 struct vm_area_struct *vma, pmd_t *pmd, 621 unsigned long addr, unsigned long end, 622 long *zap_work, struct zap_details *details) 623 { 624 struct mm_struct *mm = tlb->mm; 625 pte_t *pte; 626 spinlock_t *ptl; 627 int file_rss = 0; 628 int anon_rss = 0; 629 630 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 631 arch_enter_lazy_mmu_mode(); 632 do { 633 pte_t ptent = *pte; 634 if (pte_none(ptent)) { 635 (*zap_work)--; 636 continue; 637 } 638 639 (*zap_work) -= PAGE_SIZE; 640 641 if (pte_present(ptent)) { 642 struct page *page; 643 644 page = vm_normal_page(vma, addr, ptent); 645 if (unlikely(details) && page) { 646 /* 647 * unmap_shared_mapping_pages() wants to 648 * invalidate cache without truncating: 649 * unmap shared but keep private pages. 650 */ 651 if (details->check_mapping && 652 details->check_mapping != page->mapping) 653 continue; 654 /* 655 * Each page->index must be checked when 656 * invalidating or truncating nonlinear. 657 */ 658 if (details->nonlinear_vma && 659 (page->index < details->first_index || 660 page->index > details->last_index)) 661 continue; 662 } 663 ptent = ptep_get_and_clear_full(mm, addr, pte, 664 tlb->fullmm); 665 tlb_remove_tlb_entry(tlb, pte, addr); 666 if (unlikely(!page)) 667 continue; 668 if (unlikely(details) && details->nonlinear_vma 669 && linear_page_index(details->nonlinear_vma, 670 addr) != page->index) 671 set_pte_at(mm, addr, pte, 672 pgoff_to_pte(page->index)); 673 if (PageAnon(page)) 674 anon_rss--; 675 else { 676 if (pte_dirty(ptent)) 677 set_page_dirty(page); 678 if (pte_young(ptent)) 679 SetPageReferenced(page); 680 file_rss--; 681 } 682 page_remove_rmap(page, vma); 683 tlb_remove_page(tlb, page); 684 continue; 685 } 686 /* 687 * If details->check_mapping, we leave swap entries; 688 * if details->nonlinear_vma, we leave file entries. 689 */ 690 if (unlikely(details)) 691 continue; 692 if (!pte_file(ptent)) 693 free_swap_and_cache(pte_to_swp_entry(ptent)); 694 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 695 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 696 697 add_mm_rss(mm, file_rss, anon_rss); 698 arch_leave_lazy_mmu_mode(); 699 pte_unmap_unlock(pte - 1, ptl); 700 701 return addr; 702 } 703 704 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 705 struct vm_area_struct *vma, pud_t *pud, 706 unsigned long addr, unsigned long end, 707 long *zap_work, struct zap_details *details) 708 { 709 pmd_t *pmd; 710 unsigned long next; 711 712 pmd = pmd_offset(pud, addr); 713 do { 714 next = pmd_addr_end(addr, end); 715 if (pmd_none_or_clear_bad(pmd)) { 716 (*zap_work)--; 717 continue; 718 } 719 next = zap_pte_range(tlb, vma, pmd, addr, next, 720 zap_work, details); 721 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 722 723 return addr; 724 } 725 726 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 727 struct vm_area_struct *vma, pgd_t *pgd, 728 unsigned long addr, unsigned long end, 729 long *zap_work, struct zap_details *details) 730 { 731 pud_t *pud; 732 unsigned long next; 733 734 pud = pud_offset(pgd, addr); 735 do { 736 next = pud_addr_end(addr, end); 737 if (pud_none_or_clear_bad(pud)) { 738 (*zap_work)--; 739 continue; 740 } 741 next = zap_pmd_range(tlb, vma, pud, addr, next, 742 zap_work, details); 743 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 744 745 return addr; 746 } 747 748 static unsigned long unmap_page_range(struct mmu_gather *tlb, 749 struct vm_area_struct *vma, 750 unsigned long addr, unsigned long end, 751 long *zap_work, struct zap_details *details) 752 { 753 pgd_t *pgd; 754 unsigned long next; 755 756 if (details && !details->check_mapping && !details->nonlinear_vma) 757 details = NULL; 758 759 BUG_ON(addr >= end); 760 tlb_start_vma(tlb, vma); 761 pgd = pgd_offset(vma->vm_mm, addr); 762 do { 763 next = pgd_addr_end(addr, end); 764 if (pgd_none_or_clear_bad(pgd)) { 765 (*zap_work)--; 766 continue; 767 } 768 next = zap_pud_range(tlb, vma, pgd, addr, next, 769 zap_work, details); 770 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 771 tlb_end_vma(tlb, vma); 772 773 return addr; 774 } 775 776 #ifdef CONFIG_PREEMPT 777 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 778 #else 779 /* No preempt: go for improved straight-line efficiency */ 780 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 781 #endif 782 783 /** 784 * unmap_vmas - unmap a range of memory covered by a list of vma's 785 * @tlbp: address of the caller's struct mmu_gather 786 * @vma: the starting vma 787 * @start_addr: virtual address at which to start unmapping 788 * @end_addr: virtual address at which to end unmapping 789 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 790 * @details: details of nonlinear truncation or shared cache invalidation 791 * 792 * Returns the end address of the unmapping (restart addr if interrupted). 793 * 794 * Unmap all pages in the vma list. 795 * 796 * We aim to not hold locks for too long (for scheduling latency reasons). 797 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 798 * return the ending mmu_gather to the caller. 799 * 800 * Only addresses between `start' and `end' will be unmapped. 801 * 802 * The VMA list must be sorted in ascending virtual address order. 803 * 804 * unmap_vmas() assumes that the caller will flush the whole unmapped address 805 * range after unmap_vmas() returns. So the only responsibility here is to 806 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 807 * drops the lock and schedules. 808 */ 809 unsigned long unmap_vmas(struct mmu_gather **tlbp, 810 struct vm_area_struct *vma, unsigned long start_addr, 811 unsigned long end_addr, unsigned long *nr_accounted, 812 struct zap_details *details) 813 { 814 long zap_work = ZAP_BLOCK_SIZE; 815 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 816 int tlb_start_valid = 0; 817 unsigned long start = start_addr; 818 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 819 int fullmm = (*tlbp)->fullmm; 820 821 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 822 unsigned long end; 823 824 start = max(vma->vm_start, start_addr); 825 if (start >= vma->vm_end) 826 continue; 827 end = min(vma->vm_end, end_addr); 828 if (end <= vma->vm_start) 829 continue; 830 831 if (vma->vm_flags & VM_ACCOUNT) 832 *nr_accounted += (end - start) >> PAGE_SHIFT; 833 834 while (start != end) { 835 if (!tlb_start_valid) { 836 tlb_start = start; 837 tlb_start_valid = 1; 838 } 839 840 if (unlikely(is_vm_hugetlb_page(vma))) { 841 unmap_hugepage_range(vma, start, end); 842 zap_work -= (end - start) / 843 (HPAGE_SIZE / PAGE_SIZE); 844 start = end; 845 } else 846 start = unmap_page_range(*tlbp, vma, 847 start, end, &zap_work, details); 848 849 if (zap_work > 0) { 850 BUG_ON(start != end); 851 break; 852 } 853 854 tlb_finish_mmu(*tlbp, tlb_start, start); 855 856 if (need_resched() || 857 (i_mmap_lock && need_lockbreak(i_mmap_lock))) { 858 if (i_mmap_lock) { 859 *tlbp = NULL; 860 goto out; 861 } 862 cond_resched(); 863 } 864 865 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 866 tlb_start_valid = 0; 867 zap_work = ZAP_BLOCK_SIZE; 868 } 869 } 870 out: 871 return start; /* which is now the end (or restart) address */ 872 } 873 874 /** 875 * zap_page_range - remove user pages in a given range 876 * @vma: vm_area_struct holding the applicable pages 877 * @address: starting address of pages to zap 878 * @size: number of bytes to zap 879 * @details: details of nonlinear truncation or shared cache invalidation 880 */ 881 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 882 unsigned long size, struct zap_details *details) 883 { 884 struct mm_struct *mm = vma->vm_mm; 885 struct mmu_gather *tlb; 886 unsigned long end = address + size; 887 unsigned long nr_accounted = 0; 888 889 lru_add_drain(); 890 tlb = tlb_gather_mmu(mm, 0); 891 update_hiwater_rss(mm); 892 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 893 if (tlb) 894 tlb_finish_mmu(tlb, address, end); 895 return end; 896 } 897 898 /* 899 * Do a quick page-table lookup for a single page. 900 */ 901 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 902 unsigned int flags) 903 { 904 pgd_t *pgd; 905 pud_t *pud; 906 pmd_t *pmd; 907 pte_t *ptep, pte; 908 spinlock_t *ptl; 909 struct page *page; 910 struct mm_struct *mm = vma->vm_mm; 911 912 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 913 if (!IS_ERR(page)) { 914 BUG_ON(flags & FOLL_GET); 915 goto out; 916 } 917 918 page = NULL; 919 pgd = pgd_offset(mm, address); 920 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 921 goto no_page_table; 922 923 pud = pud_offset(pgd, address); 924 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 925 goto no_page_table; 926 927 pmd = pmd_offset(pud, address); 928 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 929 goto no_page_table; 930 931 if (pmd_huge(*pmd)) { 932 BUG_ON(flags & FOLL_GET); 933 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 934 goto out; 935 } 936 937 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 938 if (!ptep) 939 goto out; 940 941 pte = *ptep; 942 if (!pte_present(pte)) 943 goto unlock; 944 if ((flags & FOLL_WRITE) && !pte_write(pte)) 945 goto unlock; 946 page = vm_normal_page(vma, address, pte); 947 if (unlikely(!page)) 948 goto unlock; 949 950 if (flags & FOLL_GET) 951 get_page(page); 952 if (flags & FOLL_TOUCH) { 953 if ((flags & FOLL_WRITE) && 954 !pte_dirty(pte) && !PageDirty(page)) 955 set_page_dirty(page); 956 mark_page_accessed(page); 957 } 958 unlock: 959 pte_unmap_unlock(ptep, ptl); 960 out: 961 return page; 962 963 no_page_table: 964 /* 965 * When core dumping an enormous anonymous area that nobody 966 * has touched so far, we don't want to allocate page tables. 967 */ 968 if (flags & FOLL_ANON) { 969 page = ZERO_PAGE(address); 970 if (flags & FOLL_GET) 971 get_page(page); 972 BUG_ON(flags & FOLL_WRITE); 973 } 974 return page; 975 } 976 977 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 978 unsigned long start, int len, int write, int force, 979 struct page **pages, struct vm_area_struct **vmas) 980 { 981 int i; 982 unsigned int vm_flags; 983 984 /* 985 * Require read or write permissions. 986 * If 'force' is set, we only require the "MAY" flags. 987 */ 988 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 989 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 990 i = 0; 991 992 do { 993 struct vm_area_struct *vma; 994 unsigned int foll_flags; 995 996 vma = find_extend_vma(mm, start); 997 if (!vma && in_gate_area(tsk, start)) { 998 unsigned long pg = start & PAGE_MASK; 999 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1000 pgd_t *pgd; 1001 pud_t *pud; 1002 pmd_t *pmd; 1003 pte_t *pte; 1004 if (write) /* user gate pages are read-only */ 1005 return i ? : -EFAULT; 1006 if (pg > TASK_SIZE) 1007 pgd = pgd_offset_k(pg); 1008 else 1009 pgd = pgd_offset_gate(mm, pg); 1010 BUG_ON(pgd_none(*pgd)); 1011 pud = pud_offset(pgd, pg); 1012 BUG_ON(pud_none(*pud)); 1013 pmd = pmd_offset(pud, pg); 1014 if (pmd_none(*pmd)) 1015 return i ? : -EFAULT; 1016 pte = pte_offset_map(pmd, pg); 1017 if (pte_none(*pte)) { 1018 pte_unmap(pte); 1019 return i ? : -EFAULT; 1020 } 1021 if (pages) { 1022 struct page *page = vm_normal_page(gate_vma, start, *pte); 1023 pages[i] = page; 1024 if (page) 1025 get_page(page); 1026 } 1027 pte_unmap(pte); 1028 if (vmas) 1029 vmas[i] = gate_vma; 1030 i++; 1031 start += PAGE_SIZE; 1032 len--; 1033 continue; 1034 } 1035 1036 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1037 || !(vm_flags & vma->vm_flags)) 1038 return i ? : -EFAULT; 1039 1040 if (is_vm_hugetlb_page(vma)) { 1041 i = follow_hugetlb_page(mm, vma, pages, vmas, 1042 &start, &len, i); 1043 continue; 1044 } 1045 1046 foll_flags = FOLL_TOUCH; 1047 if (pages) 1048 foll_flags |= FOLL_GET; 1049 if (!write && !(vma->vm_flags & VM_LOCKED) && 1050 (!vma->vm_ops || !vma->vm_ops->nopage)) 1051 foll_flags |= FOLL_ANON; 1052 1053 do { 1054 struct page *page; 1055 1056 /* 1057 * If tsk is ooming, cut off its access to large memory 1058 * allocations. It has a pending SIGKILL, but it can't 1059 * be processed until returning to user space. 1060 */ 1061 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) 1062 return -ENOMEM; 1063 1064 if (write) 1065 foll_flags |= FOLL_WRITE; 1066 1067 cond_resched(); 1068 while (!(page = follow_page(vma, start, foll_flags))) { 1069 int ret; 1070 ret = __handle_mm_fault(mm, vma, start, 1071 foll_flags & FOLL_WRITE); 1072 /* 1073 * The VM_FAULT_WRITE bit tells us that do_wp_page has 1074 * broken COW when necessary, even if maybe_mkwrite 1075 * decided not to set pte_write. We can thus safely do 1076 * subsequent page lookups as if they were reads. 1077 */ 1078 if (ret & VM_FAULT_WRITE) 1079 foll_flags &= ~FOLL_WRITE; 1080 1081 switch (ret & ~VM_FAULT_WRITE) { 1082 case VM_FAULT_MINOR: 1083 tsk->min_flt++; 1084 break; 1085 case VM_FAULT_MAJOR: 1086 tsk->maj_flt++; 1087 break; 1088 case VM_FAULT_SIGBUS: 1089 return i ? i : -EFAULT; 1090 case VM_FAULT_OOM: 1091 return i ? i : -ENOMEM; 1092 default: 1093 BUG(); 1094 } 1095 cond_resched(); 1096 } 1097 if (pages) { 1098 pages[i] = page; 1099 1100 flush_anon_page(vma, page, start); 1101 flush_dcache_page(page); 1102 } 1103 if (vmas) 1104 vmas[i] = vma; 1105 i++; 1106 start += PAGE_SIZE; 1107 len--; 1108 } while (len && start < vma->vm_end); 1109 } while (len); 1110 return i; 1111 } 1112 EXPORT_SYMBOL(get_user_pages); 1113 1114 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1115 unsigned long addr, unsigned long end, pgprot_t prot) 1116 { 1117 pte_t *pte; 1118 spinlock_t *ptl; 1119 int err = 0; 1120 1121 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1122 if (!pte) 1123 return -EAGAIN; 1124 arch_enter_lazy_mmu_mode(); 1125 do { 1126 struct page *page = ZERO_PAGE(addr); 1127 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot)); 1128 1129 if (unlikely(!pte_none(*pte))) { 1130 err = -EEXIST; 1131 pte++; 1132 break; 1133 } 1134 page_cache_get(page); 1135 page_add_file_rmap(page); 1136 inc_mm_counter(mm, file_rss); 1137 set_pte_at(mm, addr, pte, zero_pte); 1138 } while (pte++, addr += PAGE_SIZE, addr != end); 1139 arch_leave_lazy_mmu_mode(); 1140 pte_unmap_unlock(pte - 1, ptl); 1141 return err; 1142 } 1143 1144 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, 1145 unsigned long addr, unsigned long end, pgprot_t prot) 1146 { 1147 pmd_t *pmd; 1148 unsigned long next; 1149 int err; 1150 1151 pmd = pmd_alloc(mm, pud, addr); 1152 if (!pmd) 1153 return -EAGAIN; 1154 do { 1155 next = pmd_addr_end(addr, end); 1156 err = zeromap_pte_range(mm, pmd, addr, next, prot); 1157 if (err) 1158 break; 1159 } while (pmd++, addr = next, addr != end); 1160 return err; 1161 } 1162 1163 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1164 unsigned long addr, unsigned long end, pgprot_t prot) 1165 { 1166 pud_t *pud; 1167 unsigned long next; 1168 int err; 1169 1170 pud = pud_alloc(mm, pgd, addr); 1171 if (!pud) 1172 return -EAGAIN; 1173 do { 1174 next = pud_addr_end(addr, end); 1175 err = zeromap_pmd_range(mm, pud, addr, next, prot); 1176 if (err) 1177 break; 1178 } while (pud++, addr = next, addr != end); 1179 return err; 1180 } 1181 1182 int zeromap_page_range(struct vm_area_struct *vma, 1183 unsigned long addr, unsigned long size, pgprot_t prot) 1184 { 1185 pgd_t *pgd; 1186 unsigned long next; 1187 unsigned long end = addr + size; 1188 struct mm_struct *mm = vma->vm_mm; 1189 int err; 1190 1191 BUG_ON(addr >= end); 1192 pgd = pgd_offset(mm, addr); 1193 flush_cache_range(vma, addr, end); 1194 do { 1195 next = pgd_addr_end(addr, end); 1196 err = zeromap_pud_range(mm, pgd, addr, next, prot); 1197 if (err) 1198 break; 1199 } while (pgd++, addr = next, addr != end); 1200 return err; 1201 } 1202 1203 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) 1204 { 1205 pgd_t * pgd = pgd_offset(mm, addr); 1206 pud_t * pud = pud_alloc(mm, pgd, addr); 1207 if (pud) { 1208 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1209 if (pmd) 1210 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1211 } 1212 return NULL; 1213 } 1214 1215 /* 1216 * This is the old fallback for page remapping. 1217 * 1218 * For historical reasons, it only allows reserved pages. Only 1219 * old drivers should use this, and they needed to mark their 1220 * pages reserved for the old functions anyway. 1221 */ 1222 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot) 1223 { 1224 int retval; 1225 pte_t *pte; 1226 spinlock_t *ptl; 1227 1228 retval = -EINVAL; 1229 if (PageAnon(page)) 1230 goto out; 1231 retval = -ENOMEM; 1232 flush_dcache_page(page); 1233 pte = get_locked_pte(mm, addr, &ptl); 1234 if (!pte) 1235 goto out; 1236 retval = -EBUSY; 1237 if (!pte_none(*pte)) 1238 goto out_unlock; 1239 1240 /* Ok, finally just insert the thing.. */ 1241 get_page(page); 1242 inc_mm_counter(mm, file_rss); 1243 page_add_file_rmap(page); 1244 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1245 1246 retval = 0; 1247 out_unlock: 1248 pte_unmap_unlock(pte, ptl); 1249 out: 1250 return retval; 1251 } 1252 1253 /** 1254 * vm_insert_page - insert single page into user vma 1255 * @vma: user vma to map to 1256 * @addr: target user address of this page 1257 * @page: source kernel page 1258 * 1259 * This allows drivers to insert individual pages they've allocated 1260 * into a user vma. 1261 * 1262 * The page has to be a nice clean _individual_ kernel allocation. 1263 * If you allocate a compound page, you need to have marked it as 1264 * such (__GFP_COMP), or manually just split the page up yourself 1265 * (see split_page()). 1266 * 1267 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1268 * took an arbitrary page protection parameter. This doesn't allow 1269 * that. Your vma protection will have to be set up correctly, which 1270 * means that if you want a shared writable mapping, you'd better 1271 * ask for a shared writable mapping! 1272 * 1273 * The page does not need to be reserved. 1274 */ 1275 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) 1276 { 1277 if (addr < vma->vm_start || addr >= vma->vm_end) 1278 return -EFAULT; 1279 if (!page_count(page)) 1280 return -EINVAL; 1281 vma->vm_flags |= VM_INSERTPAGE; 1282 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot); 1283 } 1284 EXPORT_SYMBOL(vm_insert_page); 1285 1286 /** 1287 * vm_insert_pfn - insert single pfn into user vma 1288 * @vma: user vma to map to 1289 * @addr: target user address of this page 1290 * @pfn: source kernel pfn 1291 * 1292 * Similar to vm_inert_page, this allows drivers to insert individual pages 1293 * they've allocated into a user vma. Same comments apply. 1294 * 1295 * This function should only be called from a vm_ops->fault handler, and 1296 * in that case the handler should return NULL. 1297 */ 1298 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1299 unsigned long pfn) 1300 { 1301 struct mm_struct *mm = vma->vm_mm; 1302 int retval; 1303 pte_t *pte, entry; 1304 spinlock_t *ptl; 1305 1306 BUG_ON(!(vma->vm_flags & VM_PFNMAP)); 1307 BUG_ON(is_cow_mapping(vma->vm_flags)); 1308 1309 retval = -ENOMEM; 1310 pte = get_locked_pte(mm, addr, &ptl); 1311 if (!pte) 1312 goto out; 1313 retval = -EBUSY; 1314 if (!pte_none(*pte)) 1315 goto out_unlock; 1316 1317 /* Ok, finally just insert the thing.. */ 1318 entry = pfn_pte(pfn, vma->vm_page_prot); 1319 set_pte_at(mm, addr, pte, entry); 1320 update_mmu_cache(vma, addr, entry); 1321 1322 retval = 0; 1323 out_unlock: 1324 pte_unmap_unlock(pte, ptl); 1325 1326 out: 1327 return retval; 1328 } 1329 EXPORT_SYMBOL(vm_insert_pfn); 1330 1331 /* 1332 * maps a range of physical memory into the requested pages. the old 1333 * mappings are removed. any references to nonexistent pages results 1334 * in null mappings (currently treated as "copy-on-access") 1335 */ 1336 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1337 unsigned long addr, unsigned long end, 1338 unsigned long pfn, pgprot_t prot) 1339 { 1340 pte_t *pte; 1341 spinlock_t *ptl; 1342 1343 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1344 if (!pte) 1345 return -ENOMEM; 1346 arch_enter_lazy_mmu_mode(); 1347 do { 1348 BUG_ON(!pte_none(*pte)); 1349 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); 1350 pfn++; 1351 } while (pte++, addr += PAGE_SIZE, addr != end); 1352 arch_leave_lazy_mmu_mode(); 1353 pte_unmap_unlock(pte - 1, ptl); 1354 return 0; 1355 } 1356 1357 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1358 unsigned long addr, unsigned long end, 1359 unsigned long pfn, pgprot_t prot) 1360 { 1361 pmd_t *pmd; 1362 unsigned long next; 1363 1364 pfn -= addr >> PAGE_SHIFT; 1365 pmd = pmd_alloc(mm, pud, addr); 1366 if (!pmd) 1367 return -ENOMEM; 1368 do { 1369 next = pmd_addr_end(addr, end); 1370 if (remap_pte_range(mm, pmd, addr, next, 1371 pfn + (addr >> PAGE_SHIFT), prot)) 1372 return -ENOMEM; 1373 } while (pmd++, addr = next, addr != end); 1374 return 0; 1375 } 1376 1377 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1378 unsigned long addr, unsigned long end, 1379 unsigned long pfn, pgprot_t prot) 1380 { 1381 pud_t *pud; 1382 unsigned long next; 1383 1384 pfn -= addr >> PAGE_SHIFT; 1385 pud = pud_alloc(mm, pgd, addr); 1386 if (!pud) 1387 return -ENOMEM; 1388 do { 1389 next = pud_addr_end(addr, end); 1390 if (remap_pmd_range(mm, pud, addr, next, 1391 pfn + (addr >> PAGE_SHIFT), prot)) 1392 return -ENOMEM; 1393 } while (pud++, addr = next, addr != end); 1394 return 0; 1395 } 1396 1397 /** 1398 * remap_pfn_range - remap kernel memory to userspace 1399 * @vma: user vma to map to 1400 * @addr: target user address to start at 1401 * @pfn: physical address of kernel memory 1402 * @size: size of map area 1403 * @prot: page protection flags for this mapping 1404 * 1405 * Note: this is only safe if the mm semaphore is held when called. 1406 */ 1407 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1408 unsigned long pfn, unsigned long size, pgprot_t prot) 1409 { 1410 pgd_t *pgd; 1411 unsigned long next; 1412 unsigned long end = addr + PAGE_ALIGN(size); 1413 struct mm_struct *mm = vma->vm_mm; 1414 int err; 1415 1416 /* 1417 * Physically remapped pages are special. Tell the 1418 * rest of the world about it: 1419 * VM_IO tells people not to look at these pages 1420 * (accesses can have side effects). 1421 * VM_RESERVED is specified all over the place, because 1422 * in 2.4 it kept swapout's vma scan off this vma; but 1423 * in 2.6 the LRU scan won't even find its pages, so this 1424 * flag means no more than count its pages in reserved_vm, 1425 * and omit it from core dump, even when VM_IO turned off. 1426 * VM_PFNMAP tells the core MM that the base pages are just 1427 * raw PFN mappings, and do not have a "struct page" associated 1428 * with them. 1429 * 1430 * There's a horrible special case to handle copy-on-write 1431 * behaviour that some programs depend on. We mark the "original" 1432 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1433 */ 1434 if (is_cow_mapping(vma->vm_flags)) { 1435 if (addr != vma->vm_start || end != vma->vm_end) 1436 return -EINVAL; 1437 vma->vm_pgoff = pfn; 1438 } 1439 1440 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1441 1442 BUG_ON(addr >= end); 1443 pfn -= addr >> PAGE_SHIFT; 1444 pgd = pgd_offset(mm, addr); 1445 flush_cache_range(vma, addr, end); 1446 do { 1447 next = pgd_addr_end(addr, end); 1448 err = remap_pud_range(mm, pgd, addr, next, 1449 pfn + (addr >> PAGE_SHIFT), prot); 1450 if (err) 1451 break; 1452 } while (pgd++, addr = next, addr != end); 1453 return err; 1454 } 1455 EXPORT_SYMBOL(remap_pfn_range); 1456 1457 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1458 unsigned long addr, unsigned long end, 1459 pte_fn_t fn, void *data) 1460 { 1461 pte_t *pte; 1462 int err; 1463 struct page *pmd_page; 1464 spinlock_t *uninitialized_var(ptl); 1465 1466 pte = (mm == &init_mm) ? 1467 pte_alloc_kernel(pmd, addr) : 1468 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1469 if (!pte) 1470 return -ENOMEM; 1471 1472 BUG_ON(pmd_huge(*pmd)); 1473 1474 pmd_page = pmd_page(*pmd); 1475 1476 do { 1477 err = fn(pte, pmd_page, addr, data); 1478 if (err) 1479 break; 1480 } while (pte++, addr += PAGE_SIZE, addr != end); 1481 1482 if (mm != &init_mm) 1483 pte_unmap_unlock(pte-1, ptl); 1484 return err; 1485 } 1486 1487 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1488 unsigned long addr, unsigned long end, 1489 pte_fn_t fn, void *data) 1490 { 1491 pmd_t *pmd; 1492 unsigned long next; 1493 int err; 1494 1495 pmd = pmd_alloc(mm, pud, addr); 1496 if (!pmd) 1497 return -ENOMEM; 1498 do { 1499 next = pmd_addr_end(addr, end); 1500 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1501 if (err) 1502 break; 1503 } while (pmd++, addr = next, addr != end); 1504 return err; 1505 } 1506 1507 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1508 unsigned long addr, unsigned long end, 1509 pte_fn_t fn, void *data) 1510 { 1511 pud_t *pud; 1512 unsigned long next; 1513 int err; 1514 1515 pud = pud_alloc(mm, pgd, addr); 1516 if (!pud) 1517 return -ENOMEM; 1518 do { 1519 next = pud_addr_end(addr, end); 1520 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1521 if (err) 1522 break; 1523 } while (pud++, addr = next, addr != end); 1524 return err; 1525 } 1526 1527 /* 1528 * Scan a region of virtual memory, filling in page tables as necessary 1529 * and calling a provided function on each leaf page table. 1530 */ 1531 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1532 unsigned long size, pte_fn_t fn, void *data) 1533 { 1534 pgd_t *pgd; 1535 unsigned long next; 1536 unsigned long end = addr + size; 1537 int err; 1538 1539 BUG_ON(addr >= end); 1540 pgd = pgd_offset(mm, addr); 1541 do { 1542 next = pgd_addr_end(addr, end); 1543 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1544 if (err) 1545 break; 1546 } while (pgd++, addr = next, addr != end); 1547 return err; 1548 } 1549 EXPORT_SYMBOL_GPL(apply_to_page_range); 1550 1551 /* 1552 * handle_pte_fault chooses page fault handler according to an entry 1553 * which was read non-atomically. Before making any commitment, on 1554 * those architectures or configurations (e.g. i386 with PAE) which 1555 * might give a mix of unmatched parts, do_swap_page and do_file_page 1556 * must check under lock before unmapping the pte and proceeding 1557 * (but do_wp_page is only called after already making such a check; 1558 * and do_anonymous_page and do_no_page can safely check later on). 1559 */ 1560 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1561 pte_t *page_table, pte_t orig_pte) 1562 { 1563 int same = 1; 1564 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1565 if (sizeof(pte_t) > sizeof(unsigned long)) { 1566 spinlock_t *ptl = pte_lockptr(mm, pmd); 1567 spin_lock(ptl); 1568 same = pte_same(*page_table, orig_pte); 1569 spin_unlock(ptl); 1570 } 1571 #endif 1572 pte_unmap(page_table); 1573 return same; 1574 } 1575 1576 /* 1577 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1578 * servicing faults for write access. In the normal case, do always want 1579 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1580 * that do not have writing enabled, when used by access_process_vm. 1581 */ 1582 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1583 { 1584 if (likely(vma->vm_flags & VM_WRITE)) 1585 pte = pte_mkwrite(pte); 1586 return pte; 1587 } 1588 1589 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1590 { 1591 /* 1592 * If the source page was a PFN mapping, we don't have 1593 * a "struct page" for it. We do a best-effort copy by 1594 * just copying from the original user address. If that 1595 * fails, we just zero-fill it. Live with it. 1596 */ 1597 if (unlikely(!src)) { 1598 void *kaddr = kmap_atomic(dst, KM_USER0); 1599 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1600 1601 /* 1602 * This really shouldn't fail, because the page is there 1603 * in the page tables. But it might just be unreadable, 1604 * in which case we just give up and fill the result with 1605 * zeroes. 1606 */ 1607 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1608 memset(kaddr, 0, PAGE_SIZE); 1609 kunmap_atomic(kaddr, KM_USER0); 1610 flush_dcache_page(dst); 1611 return; 1612 1613 } 1614 copy_user_highpage(dst, src, va, vma); 1615 } 1616 1617 /* 1618 * This routine handles present pages, when users try to write 1619 * to a shared page. It is done by copying the page to a new address 1620 * and decrementing the shared-page counter for the old page. 1621 * 1622 * Note that this routine assumes that the protection checks have been 1623 * done by the caller (the low-level page fault routine in most cases). 1624 * Thus we can safely just mark it writable once we've done any necessary 1625 * COW. 1626 * 1627 * We also mark the page dirty at this point even though the page will 1628 * change only once the write actually happens. This avoids a few races, 1629 * and potentially makes it more efficient. 1630 * 1631 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1632 * but allow concurrent faults), with pte both mapped and locked. 1633 * We return with mmap_sem still held, but pte unmapped and unlocked. 1634 */ 1635 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1636 unsigned long address, pte_t *page_table, pmd_t *pmd, 1637 spinlock_t *ptl, pte_t orig_pte) 1638 { 1639 struct page *old_page, *new_page; 1640 pte_t entry; 1641 int reuse = 0, ret = VM_FAULT_MINOR; 1642 struct page *dirty_page = NULL; 1643 1644 old_page = vm_normal_page(vma, address, orig_pte); 1645 if (!old_page) 1646 goto gotten; 1647 1648 /* 1649 * Take out anonymous pages first, anonymous shared vmas are 1650 * not dirty accountable. 1651 */ 1652 if (PageAnon(old_page)) { 1653 if (!TestSetPageLocked(old_page)) { 1654 reuse = can_share_swap_page(old_page); 1655 unlock_page(old_page); 1656 } 1657 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1658 (VM_WRITE|VM_SHARED))) { 1659 /* 1660 * Only catch write-faults on shared writable pages, 1661 * read-only shared pages can get COWed by 1662 * get_user_pages(.write=1, .force=1). 1663 */ 1664 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 1665 /* 1666 * Notify the address space that the page is about to 1667 * become writable so that it can prohibit this or wait 1668 * for the page to get into an appropriate state. 1669 * 1670 * We do this without the lock held, so that it can 1671 * sleep if it needs to. 1672 */ 1673 page_cache_get(old_page); 1674 pte_unmap_unlock(page_table, ptl); 1675 1676 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) 1677 goto unwritable_page; 1678 1679 /* 1680 * Since we dropped the lock we need to revalidate 1681 * the PTE as someone else may have changed it. If 1682 * they did, we just return, as we can count on the 1683 * MMU to tell us if they didn't also make it writable. 1684 */ 1685 page_table = pte_offset_map_lock(mm, pmd, address, 1686 &ptl); 1687 page_cache_release(old_page); 1688 if (!pte_same(*page_table, orig_pte)) 1689 goto unlock; 1690 } 1691 dirty_page = old_page; 1692 get_page(dirty_page); 1693 reuse = 1; 1694 } 1695 1696 if (reuse) { 1697 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1698 entry = pte_mkyoung(orig_pte); 1699 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1700 if (ptep_set_access_flags(vma, address, page_table, entry,1)) { 1701 update_mmu_cache(vma, address, entry); 1702 lazy_mmu_prot_update(entry); 1703 } 1704 ret |= VM_FAULT_WRITE; 1705 goto unlock; 1706 } 1707 1708 /* 1709 * Ok, we need to copy. Oh, well.. 1710 */ 1711 page_cache_get(old_page); 1712 gotten: 1713 pte_unmap_unlock(page_table, ptl); 1714 1715 if (unlikely(anon_vma_prepare(vma))) 1716 goto oom; 1717 if (old_page == ZERO_PAGE(address)) { 1718 new_page = alloc_zeroed_user_highpage_movable(vma, address); 1719 if (!new_page) 1720 goto oom; 1721 } else { 1722 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1723 if (!new_page) 1724 goto oom; 1725 cow_user_page(new_page, old_page, address, vma); 1726 } 1727 1728 /* 1729 * Re-check the pte - we dropped the lock 1730 */ 1731 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1732 if (likely(pte_same(*page_table, orig_pte))) { 1733 if (old_page) { 1734 page_remove_rmap(old_page, vma); 1735 if (!PageAnon(old_page)) { 1736 dec_mm_counter(mm, file_rss); 1737 inc_mm_counter(mm, anon_rss); 1738 } 1739 } else 1740 inc_mm_counter(mm, anon_rss); 1741 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1742 entry = mk_pte(new_page, vma->vm_page_prot); 1743 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1744 lazy_mmu_prot_update(entry); 1745 /* 1746 * Clear the pte entry and flush it first, before updating the 1747 * pte with the new entry. This will avoid a race condition 1748 * seen in the presence of one thread doing SMC and another 1749 * thread doing COW. 1750 */ 1751 ptep_clear_flush(vma, address, page_table); 1752 set_pte_at(mm, address, page_table, entry); 1753 update_mmu_cache(vma, address, entry); 1754 lru_cache_add_active(new_page); 1755 page_add_new_anon_rmap(new_page, vma, address); 1756 1757 /* Free the old page.. */ 1758 new_page = old_page; 1759 ret |= VM_FAULT_WRITE; 1760 } 1761 if (new_page) 1762 page_cache_release(new_page); 1763 if (old_page) 1764 page_cache_release(old_page); 1765 unlock: 1766 pte_unmap_unlock(page_table, ptl); 1767 if (dirty_page) { 1768 set_page_dirty_balance(dirty_page); 1769 put_page(dirty_page); 1770 } 1771 return ret; 1772 oom: 1773 if (old_page) 1774 page_cache_release(old_page); 1775 return VM_FAULT_OOM; 1776 1777 unwritable_page: 1778 page_cache_release(old_page); 1779 return VM_FAULT_SIGBUS; 1780 } 1781 1782 /* 1783 * Helper functions for unmap_mapping_range(). 1784 * 1785 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 1786 * 1787 * We have to restart searching the prio_tree whenever we drop the lock, 1788 * since the iterator is only valid while the lock is held, and anyway 1789 * a later vma might be split and reinserted earlier while lock dropped. 1790 * 1791 * The list of nonlinear vmas could be handled more efficiently, using 1792 * a placeholder, but handle it in the same way until a need is shown. 1793 * It is important to search the prio_tree before nonlinear list: a vma 1794 * may become nonlinear and be shifted from prio_tree to nonlinear list 1795 * while the lock is dropped; but never shifted from list to prio_tree. 1796 * 1797 * In order to make forward progress despite restarting the search, 1798 * vm_truncate_count is used to mark a vma as now dealt with, so we can 1799 * quickly skip it next time around. Since the prio_tree search only 1800 * shows us those vmas affected by unmapping the range in question, we 1801 * can't efficiently keep all vmas in step with mapping->truncate_count: 1802 * so instead reset them all whenever it wraps back to 0 (then go to 1). 1803 * mapping->truncate_count and vma->vm_truncate_count are protected by 1804 * i_mmap_lock. 1805 * 1806 * In order to make forward progress despite repeatedly restarting some 1807 * large vma, note the restart_addr from unmap_vmas when it breaks out: 1808 * and restart from that address when we reach that vma again. It might 1809 * have been split or merged, shrunk or extended, but never shifted: so 1810 * restart_addr remains valid so long as it remains in the vma's range. 1811 * unmap_mapping_range forces truncate_count to leap over page-aligned 1812 * values so we can save vma's restart_addr in its truncate_count field. 1813 */ 1814 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 1815 1816 static void reset_vma_truncate_counts(struct address_space *mapping) 1817 { 1818 struct vm_area_struct *vma; 1819 struct prio_tree_iter iter; 1820 1821 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 1822 vma->vm_truncate_count = 0; 1823 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1824 vma->vm_truncate_count = 0; 1825 } 1826 1827 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 1828 unsigned long start_addr, unsigned long end_addr, 1829 struct zap_details *details) 1830 { 1831 unsigned long restart_addr; 1832 int need_break; 1833 1834 again: 1835 restart_addr = vma->vm_truncate_count; 1836 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 1837 start_addr = restart_addr; 1838 if (start_addr >= end_addr) { 1839 /* Top of vma has been split off since last time */ 1840 vma->vm_truncate_count = details->truncate_count; 1841 return 0; 1842 } 1843 } 1844 1845 restart_addr = zap_page_range(vma, start_addr, 1846 end_addr - start_addr, details); 1847 need_break = need_resched() || 1848 need_lockbreak(details->i_mmap_lock); 1849 1850 if (restart_addr >= end_addr) { 1851 /* We have now completed this vma: mark it so */ 1852 vma->vm_truncate_count = details->truncate_count; 1853 if (!need_break) 1854 return 0; 1855 } else { 1856 /* Note restart_addr in vma's truncate_count field */ 1857 vma->vm_truncate_count = restart_addr; 1858 if (!need_break) 1859 goto again; 1860 } 1861 1862 spin_unlock(details->i_mmap_lock); 1863 cond_resched(); 1864 spin_lock(details->i_mmap_lock); 1865 return -EINTR; 1866 } 1867 1868 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 1869 struct zap_details *details) 1870 { 1871 struct vm_area_struct *vma; 1872 struct prio_tree_iter iter; 1873 pgoff_t vba, vea, zba, zea; 1874 1875 restart: 1876 vma_prio_tree_foreach(vma, &iter, root, 1877 details->first_index, details->last_index) { 1878 /* Skip quickly over those we have already dealt with */ 1879 if (vma->vm_truncate_count == details->truncate_count) 1880 continue; 1881 1882 vba = vma->vm_pgoff; 1883 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 1884 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 1885 zba = details->first_index; 1886 if (zba < vba) 1887 zba = vba; 1888 zea = details->last_index; 1889 if (zea > vea) 1890 zea = vea; 1891 1892 if (unmap_mapping_range_vma(vma, 1893 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 1894 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 1895 details) < 0) 1896 goto restart; 1897 } 1898 } 1899 1900 static inline void unmap_mapping_range_list(struct list_head *head, 1901 struct zap_details *details) 1902 { 1903 struct vm_area_struct *vma; 1904 1905 /* 1906 * In nonlinear VMAs there is no correspondence between virtual address 1907 * offset and file offset. So we must perform an exhaustive search 1908 * across *all* the pages in each nonlinear VMA, not just the pages 1909 * whose virtual address lies outside the file truncation point. 1910 */ 1911 restart: 1912 list_for_each_entry(vma, head, shared.vm_set.list) { 1913 /* Skip quickly over those we have already dealt with */ 1914 if (vma->vm_truncate_count == details->truncate_count) 1915 continue; 1916 details->nonlinear_vma = vma; 1917 if (unmap_mapping_range_vma(vma, vma->vm_start, 1918 vma->vm_end, details) < 0) 1919 goto restart; 1920 } 1921 } 1922 1923 /** 1924 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 1925 * @mapping: the address space containing mmaps to be unmapped. 1926 * @holebegin: byte in first page to unmap, relative to the start of 1927 * the underlying file. This will be rounded down to a PAGE_SIZE 1928 * boundary. Note that this is different from vmtruncate(), which 1929 * must keep the partial page. In contrast, we must get rid of 1930 * partial pages. 1931 * @holelen: size of prospective hole in bytes. This will be rounded 1932 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 1933 * end of the file. 1934 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 1935 * but 0 when invalidating pagecache, don't throw away private data. 1936 */ 1937 void unmap_mapping_range(struct address_space *mapping, 1938 loff_t const holebegin, loff_t const holelen, int even_cows) 1939 { 1940 struct zap_details details; 1941 pgoff_t hba = holebegin >> PAGE_SHIFT; 1942 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1943 1944 /* Check for overflow. */ 1945 if (sizeof(holelen) > sizeof(hlen)) { 1946 long long holeend = 1947 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1948 if (holeend & ~(long long)ULONG_MAX) 1949 hlen = ULONG_MAX - hba + 1; 1950 } 1951 1952 details.check_mapping = even_cows? NULL: mapping; 1953 details.nonlinear_vma = NULL; 1954 details.first_index = hba; 1955 details.last_index = hba + hlen - 1; 1956 if (details.last_index < details.first_index) 1957 details.last_index = ULONG_MAX; 1958 details.i_mmap_lock = &mapping->i_mmap_lock; 1959 1960 spin_lock(&mapping->i_mmap_lock); 1961 1962 /* serialize i_size write against truncate_count write */ 1963 smp_wmb(); 1964 /* Protect against page faults, and endless unmapping loops */ 1965 mapping->truncate_count++; 1966 /* 1967 * For archs where spin_lock has inclusive semantics like ia64 1968 * this smp_mb() will prevent to read pagetable contents 1969 * before the truncate_count increment is visible to 1970 * other cpus. 1971 */ 1972 smp_mb(); 1973 if (unlikely(is_restart_addr(mapping->truncate_count))) { 1974 if (mapping->truncate_count == 0) 1975 reset_vma_truncate_counts(mapping); 1976 mapping->truncate_count++; 1977 } 1978 details.truncate_count = mapping->truncate_count; 1979 1980 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 1981 unmap_mapping_range_tree(&mapping->i_mmap, &details); 1982 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 1983 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 1984 spin_unlock(&mapping->i_mmap_lock); 1985 } 1986 EXPORT_SYMBOL(unmap_mapping_range); 1987 1988 /** 1989 * vmtruncate - unmap mappings "freed" by truncate() syscall 1990 * @inode: inode of the file used 1991 * @offset: file offset to start truncating 1992 * 1993 * NOTE! We have to be ready to update the memory sharing 1994 * between the file and the memory map for a potential last 1995 * incomplete page. Ugly, but necessary. 1996 */ 1997 int vmtruncate(struct inode * inode, loff_t offset) 1998 { 1999 struct address_space *mapping = inode->i_mapping; 2000 unsigned long limit; 2001 2002 if (inode->i_size < offset) 2003 goto do_expand; 2004 /* 2005 * truncation of in-use swapfiles is disallowed - it would cause 2006 * subsequent swapout to scribble on the now-freed blocks. 2007 */ 2008 if (IS_SWAPFILE(inode)) 2009 goto out_busy; 2010 i_size_write(inode, offset); 2011 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2012 truncate_inode_pages(mapping, offset); 2013 goto out_truncate; 2014 2015 do_expand: 2016 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2017 if (limit != RLIM_INFINITY && offset > limit) 2018 goto out_sig; 2019 if (offset > inode->i_sb->s_maxbytes) 2020 goto out_big; 2021 i_size_write(inode, offset); 2022 2023 out_truncate: 2024 if (inode->i_op && inode->i_op->truncate) 2025 inode->i_op->truncate(inode); 2026 return 0; 2027 out_sig: 2028 send_sig(SIGXFSZ, current, 0); 2029 out_big: 2030 return -EFBIG; 2031 out_busy: 2032 return -ETXTBSY; 2033 } 2034 EXPORT_SYMBOL(vmtruncate); 2035 2036 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2037 { 2038 struct address_space *mapping = inode->i_mapping; 2039 2040 /* 2041 * If the underlying filesystem is not going to provide 2042 * a way to truncate a range of blocks (punch a hole) - 2043 * we should return failure right now. 2044 */ 2045 if (!inode->i_op || !inode->i_op->truncate_range) 2046 return -ENOSYS; 2047 2048 mutex_lock(&inode->i_mutex); 2049 down_write(&inode->i_alloc_sem); 2050 unmap_mapping_range(mapping, offset, (end - offset), 1); 2051 truncate_inode_pages_range(mapping, offset, end); 2052 inode->i_op->truncate_range(inode, offset, end); 2053 up_write(&inode->i_alloc_sem); 2054 mutex_unlock(&inode->i_mutex); 2055 2056 return 0; 2057 } 2058 2059 /** 2060 * swapin_readahead - swap in pages in hope we need them soon 2061 * @entry: swap entry of this memory 2062 * @addr: address to start 2063 * @vma: user vma this addresses belong to 2064 * 2065 * Primitive swap readahead code. We simply read an aligned block of 2066 * (1 << page_cluster) entries in the swap area. This method is chosen 2067 * because it doesn't cost us any seek time. We also make sure to queue 2068 * the 'original' request together with the readahead ones... 2069 * 2070 * This has been extended to use the NUMA policies from the mm triggering 2071 * the readahead. 2072 * 2073 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 2074 */ 2075 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) 2076 { 2077 #ifdef CONFIG_NUMA 2078 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; 2079 #endif 2080 int i, num; 2081 struct page *new_page; 2082 unsigned long offset; 2083 2084 /* 2085 * Get the number of handles we should do readahead io to. 2086 */ 2087 num = valid_swaphandles(entry, &offset); 2088 for (i = 0; i < num; offset++, i++) { 2089 /* Ok, do the async read-ahead now */ 2090 new_page = read_swap_cache_async(swp_entry(swp_type(entry), 2091 offset), vma, addr); 2092 if (!new_page) 2093 break; 2094 page_cache_release(new_page); 2095 #ifdef CONFIG_NUMA 2096 /* 2097 * Find the next applicable VMA for the NUMA policy. 2098 */ 2099 addr += PAGE_SIZE; 2100 if (addr == 0) 2101 vma = NULL; 2102 if (vma) { 2103 if (addr >= vma->vm_end) { 2104 vma = next_vma; 2105 next_vma = vma ? vma->vm_next : NULL; 2106 } 2107 if (vma && addr < vma->vm_start) 2108 vma = NULL; 2109 } else { 2110 if (next_vma && addr >= next_vma->vm_start) { 2111 vma = next_vma; 2112 next_vma = vma->vm_next; 2113 } 2114 } 2115 #endif 2116 } 2117 lru_add_drain(); /* Push any new pages onto the LRU now */ 2118 } 2119 2120 /* 2121 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2122 * but allow concurrent faults), and pte mapped but not yet locked. 2123 * We return with mmap_sem still held, but pte unmapped and unlocked. 2124 */ 2125 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2126 unsigned long address, pte_t *page_table, pmd_t *pmd, 2127 int write_access, pte_t orig_pte) 2128 { 2129 spinlock_t *ptl; 2130 struct page *page; 2131 swp_entry_t entry; 2132 pte_t pte; 2133 int ret = VM_FAULT_MINOR; 2134 2135 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2136 goto out; 2137 2138 entry = pte_to_swp_entry(orig_pte); 2139 if (is_migration_entry(entry)) { 2140 migration_entry_wait(mm, pmd, address); 2141 goto out; 2142 } 2143 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2144 page = lookup_swap_cache(entry); 2145 if (!page) { 2146 grab_swap_token(); /* Contend for token _before_ read-in */ 2147 swapin_readahead(entry, address, vma); 2148 page = read_swap_cache_async(entry, vma, address); 2149 if (!page) { 2150 /* 2151 * Back out if somebody else faulted in this pte 2152 * while we released the pte lock. 2153 */ 2154 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2155 if (likely(pte_same(*page_table, orig_pte))) 2156 ret = VM_FAULT_OOM; 2157 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2158 goto unlock; 2159 } 2160 2161 /* Had to read the page from swap area: Major fault */ 2162 ret = VM_FAULT_MAJOR; 2163 count_vm_event(PGMAJFAULT); 2164 } 2165 2166 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2167 mark_page_accessed(page); 2168 lock_page(page); 2169 2170 /* 2171 * Back out if somebody else already faulted in this pte. 2172 */ 2173 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2174 if (unlikely(!pte_same(*page_table, orig_pte))) 2175 goto out_nomap; 2176 2177 if (unlikely(!PageUptodate(page))) { 2178 ret = VM_FAULT_SIGBUS; 2179 goto out_nomap; 2180 } 2181 2182 /* The page isn't present yet, go ahead with the fault. */ 2183 2184 inc_mm_counter(mm, anon_rss); 2185 pte = mk_pte(page, vma->vm_page_prot); 2186 if (write_access && can_share_swap_page(page)) { 2187 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2188 write_access = 0; 2189 } 2190 2191 flush_icache_page(vma, page); 2192 set_pte_at(mm, address, page_table, pte); 2193 page_add_anon_rmap(page, vma, address); 2194 2195 swap_free(entry); 2196 if (vm_swap_full()) 2197 remove_exclusive_swap_page(page); 2198 unlock_page(page); 2199 2200 if (write_access) { 2201 if (do_wp_page(mm, vma, address, 2202 page_table, pmd, ptl, pte) == VM_FAULT_OOM) 2203 ret = VM_FAULT_OOM; 2204 goto out; 2205 } 2206 2207 /* No need to invalidate - it was non-present before */ 2208 update_mmu_cache(vma, address, pte); 2209 lazy_mmu_prot_update(pte); 2210 unlock: 2211 pte_unmap_unlock(page_table, ptl); 2212 out: 2213 return ret; 2214 out_nomap: 2215 pte_unmap_unlock(page_table, ptl); 2216 unlock_page(page); 2217 page_cache_release(page); 2218 return ret; 2219 } 2220 2221 /* 2222 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2223 * but allow concurrent faults), and pte mapped but not yet locked. 2224 * We return with mmap_sem still held, but pte unmapped and unlocked. 2225 */ 2226 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2227 unsigned long address, pte_t *page_table, pmd_t *pmd, 2228 int write_access) 2229 { 2230 struct page *page; 2231 spinlock_t *ptl; 2232 pte_t entry; 2233 2234 if (write_access) { 2235 /* Allocate our own private page. */ 2236 pte_unmap(page_table); 2237 2238 if (unlikely(anon_vma_prepare(vma))) 2239 goto oom; 2240 page = alloc_zeroed_user_highpage_movable(vma, address); 2241 if (!page) 2242 goto oom; 2243 2244 entry = mk_pte(page, vma->vm_page_prot); 2245 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2246 2247 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2248 if (!pte_none(*page_table)) 2249 goto release; 2250 inc_mm_counter(mm, anon_rss); 2251 lru_cache_add_active(page); 2252 page_add_new_anon_rmap(page, vma, address); 2253 } else { 2254 /* Map the ZERO_PAGE - vm_page_prot is readonly */ 2255 page = ZERO_PAGE(address); 2256 page_cache_get(page); 2257 entry = mk_pte(page, vma->vm_page_prot); 2258 2259 ptl = pte_lockptr(mm, pmd); 2260 spin_lock(ptl); 2261 if (!pte_none(*page_table)) 2262 goto release; 2263 inc_mm_counter(mm, file_rss); 2264 page_add_file_rmap(page); 2265 } 2266 2267 set_pte_at(mm, address, page_table, entry); 2268 2269 /* No need to invalidate - it was non-present before */ 2270 update_mmu_cache(vma, address, entry); 2271 lazy_mmu_prot_update(entry); 2272 unlock: 2273 pte_unmap_unlock(page_table, ptl); 2274 return VM_FAULT_MINOR; 2275 release: 2276 page_cache_release(page); 2277 goto unlock; 2278 oom: 2279 return VM_FAULT_OOM; 2280 } 2281 2282 /* 2283 * do_no_page() tries to create a new page mapping. It aggressively 2284 * tries to share with existing pages, but makes a separate copy if 2285 * the "write_access" parameter is true in order to avoid the next 2286 * page fault. 2287 * 2288 * As this is called only for pages that do not currently exist, we 2289 * do not need to flush old virtual caches or the TLB. 2290 * 2291 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2292 * but allow concurrent faults), and pte mapped but not yet locked. 2293 * We return with mmap_sem still held, but pte unmapped and unlocked. 2294 */ 2295 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 2296 unsigned long address, pte_t *page_table, pmd_t *pmd, 2297 int write_access) 2298 { 2299 spinlock_t *ptl; 2300 struct page *new_page; 2301 struct address_space *mapping = NULL; 2302 pte_t entry; 2303 unsigned int sequence = 0; 2304 int ret = VM_FAULT_MINOR; 2305 int anon = 0; 2306 struct page *dirty_page = NULL; 2307 2308 pte_unmap(page_table); 2309 BUG_ON(vma->vm_flags & VM_PFNMAP); 2310 2311 if (vma->vm_file) { 2312 mapping = vma->vm_file->f_mapping; 2313 sequence = mapping->truncate_count; 2314 smp_rmb(); /* serializes i_size against truncate_count */ 2315 } 2316 retry: 2317 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); 2318 /* 2319 * No smp_rmb is needed here as long as there's a full 2320 * spin_lock/unlock sequence inside the ->nopage callback 2321 * (for the pagecache lookup) that acts as an implicit 2322 * smp_mb() and prevents the i_size read to happen 2323 * after the next truncate_count read. 2324 */ 2325 2326 /* no page was available -- either SIGBUS, OOM or REFAULT */ 2327 if (unlikely(new_page == NOPAGE_SIGBUS)) 2328 return VM_FAULT_SIGBUS; 2329 else if (unlikely(new_page == NOPAGE_OOM)) 2330 return VM_FAULT_OOM; 2331 else if (unlikely(new_page == NOPAGE_REFAULT)) 2332 return VM_FAULT_MINOR; 2333 2334 /* 2335 * Should we do an early C-O-W break? 2336 */ 2337 if (write_access) { 2338 if (!(vma->vm_flags & VM_SHARED)) { 2339 struct page *page; 2340 2341 if (unlikely(anon_vma_prepare(vma))) 2342 goto oom; 2343 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2344 vma, address); 2345 if (!page) 2346 goto oom; 2347 copy_user_highpage(page, new_page, address, vma); 2348 page_cache_release(new_page); 2349 new_page = page; 2350 anon = 1; 2351 2352 } else { 2353 /* if the page will be shareable, see if the backing 2354 * address space wants to know that the page is about 2355 * to become writable */ 2356 if (vma->vm_ops->page_mkwrite && 2357 vma->vm_ops->page_mkwrite(vma, new_page) < 0 2358 ) { 2359 page_cache_release(new_page); 2360 return VM_FAULT_SIGBUS; 2361 } 2362 } 2363 } 2364 2365 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2366 /* 2367 * For a file-backed vma, someone could have truncated or otherwise 2368 * invalidated this page. If unmap_mapping_range got called, 2369 * retry getting the page. 2370 */ 2371 if (mapping && unlikely(sequence != mapping->truncate_count)) { 2372 pte_unmap_unlock(page_table, ptl); 2373 page_cache_release(new_page); 2374 cond_resched(); 2375 sequence = mapping->truncate_count; 2376 smp_rmb(); 2377 goto retry; 2378 } 2379 2380 /* 2381 * This silly early PAGE_DIRTY setting removes a race 2382 * due to the bad i386 page protection. But it's valid 2383 * for other architectures too. 2384 * 2385 * Note that if write_access is true, we either now have 2386 * an exclusive copy of the page, or this is a shared mapping, 2387 * so we can make it writable and dirty to avoid having to 2388 * handle that later. 2389 */ 2390 /* Only go through if we didn't race with anybody else... */ 2391 if (pte_none(*page_table)) { 2392 flush_icache_page(vma, new_page); 2393 entry = mk_pte(new_page, vma->vm_page_prot); 2394 if (write_access) 2395 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2396 set_pte_at(mm, address, page_table, entry); 2397 if (anon) { 2398 inc_mm_counter(mm, anon_rss); 2399 lru_cache_add_active(new_page); 2400 page_add_new_anon_rmap(new_page, vma, address); 2401 } else { 2402 inc_mm_counter(mm, file_rss); 2403 page_add_file_rmap(new_page); 2404 if (write_access) { 2405 dirty_page = new_page; 2406 get_page(dirty_page); 2407 } 2408 } 2409 } else { 2410 /* One of our sibling threads was faster, back out. */ 2411 page_cache_release(new_page); 2412 goto unlock; 2413 } 2414 2415 /* no need to invalidate: a not-present page shouldn't be cached */ 2416 update_mmu_cache(vma, address, entry); 2417 lazy_mmu_prot_update(entry); 2418 unlock: 2419 pte_unmap_unlock(page_table, ptl); 2420 if (dirty_page) { 2421 set_page_dirty_balance(dirty_page); 2422 put_page(dirty_page); 2423 } 2424 return ret; 2425 oom: 2426 page_cache_release(new_page); 2427 return VM_FAULT_OOM; 2428 } 2429 2430 /* 2431 * do_no_pfn() tries to create a new page mapping for a page without 2432 * a struct_page backing it 2433 * 2434 * As this is called only for pages that do not currently exist, we 2435 * do not need to flush old virtual caches or the TLB. 2436 * 2437 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2438 * but allow concurrent faults), and pte mapped but not yet locked. 2439 * We return with mmap_sem still held, but pte unmapped and unlocked. 2440 * 2441 * It is expected that the ->nopfn handler always returns the same pfn 2442 * for a given virtual mapping. 2443 * 2444 * Mark this `noinline' to prevent it from bloating the main pagefault code. 2445 */ 2446 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma, 2447 unsigned long address, pte_t *page_table, pmd_t *pmd, 2448 int write_access) 2449 { 2450 spinlock_t *ptl; 2451 pte_t entry; 2452 unsigned long pfn; 2453 int ret = VM_FAULT_MINOR; 2454 2455 pte_unmap(page_table); 2456 BUG_ON(!(vma->vm_flags & VM_PFNMAP)); 2457 BUG_ON(is_cow_mapping(vma->vm_flags)); 2458 2459 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK); 2460 if (unlikely(pfn == NOPFN_OOM)) 2461 return VM_FAULT_OOM; 2462 else if (unlikely(pfn == NOPFN_SIGBUS)) 2463 return VM_FAULT_SIGBUS; 2464 else if (unlikely(pfn == NOPFN_REFAULT)) 2465 return VM_FAULT_MINOR; 2466 2467 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2468 2469 /* Only go through if we didn't race with anybody else... */ 2470 if (pte_none(*page_table)) { 2471 entry = pfn_pte(pfn, vma->vm_page_prot); 2472 if (write_access) 2473 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2474 set_pte_at(mm, address, page_table, entry); 2475 } 2476 pte_unmap_unlock(page_table, ptl); 2477 return ret; 2478 } 2479 2480 /* 2481 * Fault of a previously existing named mapping. Repopulate the pte 2482 * from the encoded file_pte if possible. This enables swappable 2483 * nonlinear vmas. 2484 * 2485 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2486 * but allow concurrent faults), and pte mapped but not yet locked. 2487 * We return with mmap_sem still held, but pte unmapped and unlocked. 2488 */ 2489 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma, 2490 unsigned long address, pte_t *page_table, pmd_t *pmd, 2491 int write_access, pte_t orig_pte) 2492 { 2493 pgoff_t pgoff; 2494 int err; 2495 2496 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2497 return VM_FAULT_MINOR; 2498 2499 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 2500 /* 2501 * Page table corrupted: show pte and kill process. 2502 */ 2503 print_bad_pte(vma, orig_pte, address); 2504 return VM_FAULT_OOM; 2505 } 2506 /* We can then assume vm->vm_ops && vma->vm_ops->populate */ 2507 2508 pgoff = pte_to_pgoff(orig_pte); 2509 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, 2510 vma->vm_page_prot, pgoff, 0); 2511 if (err == -ENOMEM) 2512 return VM_FAULT_OOM; 2513 if (err) 2514 return VM_FAULT_SIGBUS; 2515 return VM_FAULT_MAJOR; 2516 } 2517 2518 /* 2519 * These routines also need to handle stuff like marking pages dirty 2520 * and/or accessed for architectures that don't do it in hardware (most 2521 * RISC architectures). The early dirtying is also good on the i386. 2522 * 2523 * There is also a hook called "update_mmu_cache()" that architectures 2524 * with external mmu caches can use to update those (ie the Sparc or 2525 * PowerPC hashed page tables that act as extended TLBs). 2526 * 2527 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2528 * but allow concurrent faults), and pte mapped but not yet locked. 2529 * We return with mmap_sem still held, but pte unmapped and unlocked. 2530 */ 2531 static inline int handle_pte_fault(struct mm_struct *mm, 2532 struct vm_area_struct *vma, unsigned long address, 2533 pte_t *pte, pmd_t *pmd, int write_access) 2534 { 2535 pte_t entry; 2536 spinlock_t *ptl; 2537 2538 entry = *pte; 2539 if (!pte_present(entry)) { 2540 if (pte_none(entry)) { 2541 if (vma->vm_ops) { 2542 if (vma->vm_ops->nopage) 2543 return do_no_page(mm, vma, address, 2544 pte, pmd, 2545 write_access); 2546 if (unlikely(vma->vm_ops->nopfn)) 2547 return do_no_pfn(mm, vma, address, pte, 2548 pmd, write_access); 2549 } 2550 return do_anonymous_page(mm, vma, address, 2551 pte, pmd, write_access); 2552 } 2553 if (pte_file(entry)) 2554 return do_file_page(mm, vma, address, 2555 pte, pmd, write_access, entry); 2556 return do_swap_page(mm, vma, address, 2557 pte, pmd, write_access, entry); 2558 } 2559 2560 ptl = pte_lockptr(mm, pmd); 2561 spin_lock(ptl); 2562 if (unlikely(!pte_same(*pte, entry))) 2563 goto unlock; 2564 if (write_access) { 2565 if (!pte_write(entry)) 2566 return do_wp_page(mm, vma, address, 2567 pte, pmd, ptl, entry); 2568 entry = pte_mkdirty(entry); 2569 } 2570 entry = pte_mkyoung(entry); 2571 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { 2572 update_mmu_cache(vma, address, entry); 2573 lazy_mmu_prot_update(entry); 2574 } else { 2575 /* 2576 * This is needed only for protection faults but the arch code 2577 * is not yet telling us if this is a protection fault or not. 2578 * This still avoids useless tlb flushes for .text page faults 2579 * with threads. 2580 */ 2581 if (write_access) 2582 flush_tlb_page(vma, address); 2583 } 2584 unlock: 2585 pte_unmap_unlock(pte, ptl); 2586 return VM_FAULT_MINOR; 2587 } 2588 2589 /* 2590 * By the time we get here, we already hold the mm semaphore 2591 */ 2592 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2593 unsigned long address, int write_access) 2594 { 2595 pgd_t *pgd; 2596 pud_t *pud; 2597 pmd_t *pmd; 2598 pte_t *pte; 2599 2600 __set_current_state(TASK_RUNNING); 2601 2602 count_vm_event(PGFAULT); 2603 2604 if (unlikely(is_vm_hugetlb_page(vma))) 2605 return hugetlb_fault(mm, vma, address, write_access); 2606 2607 pgd = pgd_offset(mm, address); 2608 pud = pud_alloc(mm, pgd, address); 2609 if (!pud) 2610 return VM_FAULT_OOM; 2611 pmd = pmd_alloc(mm, pud, address); 2612 if (!pmd) 2613 return VM_FAULT_OOM; 2614 pte = pte_alloc_map(mm, pmd, address); 2615 if (!pte) 2616 return VM_FAULT_OOM; 2617 2618 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2619 } 2620 2621 EXPORT_SYMBOL_GPL(__handle_mm_fault); 2622 2623 #ifndef __PAGETABLE_PUD_FOLDED 2624 /* 2625 * Allocate page upper directory. 2626 * We've already handled the fast-path in-line. 2627 */ 2628 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2629 { 2630 pud_t *new = pud_alloc_one(mm, address); 2631 if (!new) 2632 return -ENOMEM; 2633 2634 spin_lock(&mm->page_table_lock); 2635 if (pgd_present(*pgd)) /* Another has populated it */ 2636 pud_free(new); 2637 else 2638 pgd_populate(mm, pgd, new); 2639 spin_unlock(&mm->page_table_lock); 2640 return 0; 2641 } 2642 #endif /* __PAGETABLE_PUD_FOLDED */ 2643 2644 #ifndef __PAGETABLE_PMD_FOLDED 2645 /* 2646 * Allocate page middle directory. 2647 * We've already handled the fast-path in-line. 2648 */ 2649 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2650 { 2651 pmd_t *new = pmd_alloc_one(mm, address); 2652 if (!new) 2653 return -ENOMEM; 2654 2655 spin_lock(&mm->page_table_lock); 2656 #ifndef __ARCH_HAS_4LEVEL_HACK 2657 if (pud_present(*pud)) /* Another has populated it */ 2658 pmd_free(new); 2659 else 2660 pud_populate(mm, pud, new); 2661 #else 2662 if (pgd_present(*pud)) /* Another has populated it */ 2663 pmd_free(new); 2664 else 2665 pgd_populate(mm, pud, new); 2666 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2667 spin_unlock(&mm->page_table_lock); 2668 return 0; 2669 } 2670 #endif /* __PAGETABLE_PMD_FOLDED */ 2671 2672 int make_pages_present(unsigned long addr, unsigned long end) 2673 { 2674 int ret, len, write; 2675 struct vm_area_struct * vma; 2676 2677 vma = find_vma(current->mm, addr); 2678 if (!vma) 2679 return -1; 2680 write = (vma->vm_flags & VM_WRITE) != 0; 2681 BUG_ON(addr >= end); 2682 BUG_ON(end > vma->vm_end); 2683 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 2684 ret = get_user_pages(current, current->mm, addr, 2685 len, write, 0, NULL, NULL); 2686 if (ret < 0) 2687 return ret; 2688 return ret == len ? 0 : -1; 2689 } 2690 2691 /* 2692 * Map a vmalloc()-space virtual address to the physical page. 2693 */ 2694 struct page * vmalloc_to_page(void * vmalloc_addr) 2695 { 2696 unsigned long addr = (unsigned long) vmalloc_addr; 2697 struct page *page = NULL; 2698 pgd_t *pgd = pgd_offset_k(addr); 2699 pud_t *pud; 2700 pmd_t *pmd; 2701 pte_t *ptep, pte; 2702 2703 if (!pgd_none(*pgd)) { 2704 pud = pud_offset(pgd, addr); 2705 if (!pud_none(*pud)) { 2706 pmd = pmd_offset(pud, addr); 2707 if (!pmd_none(*pmd)) { 2708 ptep = pte_offset_map(pmd, addr); 2709 pte = *ptep; 2710 if (pte_present(pte)) 2711 page = pte_page(pte); 2712 pte_unmap(ptep); 2713 } 2714 } 2715 } 2716 return page; 2717 } 2718 2719 EXPORT_SYMBOL(vmalloc_to_page); 2720 2721 /* 2722 * Map a vmalloc()-space virtual address to the physical page frame number. 2723 */ 2724 unsigned long vmalloc_to_pfn(void * vmalloc_addr) 2725 { 2726 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 2727 } 2728 2729 EXPORT_SYMBOL(vmalloc_to_pfn); 2730 2731 #if !defined(__HAVE_ARCH_GATE_AREA) 2732 2733 #if defined(AT_SYSINFO_EHDR) 2734 static struct vm_area_struct gate_vma; 2735 2736 static int __init gate_vma_init(void) 2737 { 2738 gate_vma.vm_mm = NULL; 2739 gate_vma.vm_start = FIXADDR_USER_START; 2740 gate_vma.vm_end = FIXADDR_USER_END; 2741 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 2742 gate_vma.vm_page_prot = __P101; 2743 /* 2744 * Make sure the vDSO gets into every core dump. 2745 * Dumping its contents makes post-mortem fully interpretable later 2746 * without matching up the same kernel and hardware config to see 2747 * what PC values meant. 2748 */ 2749 gate_vma.vm_flags |= VM_ALWAYSDUMP; 2750 return 0; 2751 } 2752 __initcall(gate_vma_init); 2753 #endif 2754 2755 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2756 { 2757 #ifdef AT_SYSINFO_EHDR 2758 return &gate_vma; 2759 #else 2760 return NULL; 2761 #endif 2762 } 2763 2764 int in_gate_area_no_task(unsigned long addr) 2765 { 2766 #ifdef AT_SYSINFO_EHDR 2767 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2768 return 1; 2769 #endif 2770 return 0; 2771 } 2772 2773 #endif /* __HAVE_ARCH_GATE_AREA */ 2774 2775 /* 2776 * Access another process' address space. 2777 * Source/target buffer must be kernel space, 2778 * Do not walk the page table directly, use get_user_pages 2779 */ 2780 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 2781 { 2782 struct mm_struct *mm; 2783 struct vm_area_struct *vma; 2784 struct page *page; 2785 void *old_buf = buf; 2786 2787 mm = get_task_mm(tsk); 2788 if (!mm) 2789 return 0; 2790 2791 down_read(&mm->mmap_sem); 2792 /* ignore errors, just check how much was sucessfully transfered */ 2793 while (len) { 2794 int bytes, ret, offset; 2795 void *maddr; 2796 2797 ret = get_user_pages(tsk, mm, addr, 1, 2798 write, 1, &page, &vma); 2799 if (ret <= 0) 2800 break; 2801 2802 bytes = len; 2803 offset = addr & (PAGE_SIZE-1); 2804 if (bytes > PAGE_SIZE-offset) 2805 bytes = PAGE_SIZE-offset; 2806 2807 maddr = kmap(page); 2808 if (write) { 2809 copy_to_user_page(vma, page, addr, 2810 maddr + offset, buf, bytes); 2811 set_page_dirty_lock(page); 2812 } else { 2813 copy_from_user_page(vma, page, addr, 2814 buf, maddr + offset, bytes); 2815 } 2816 kunmap(page); 2817 page_cache_release(page); 2818 len -= bytes; 2819 buf += bytes; 2820 addr += bytes; 2821 } 2822 up_read(&mm->mmap_sem); 2823 mmput(mm); 2824 2825 return buf - old_buf; 2826 } 2827