1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 #include <linux/numa.h> 73 #include <linux/perf_event.h> 74 #include <linux/ptrace.h> 75 #include <linux/vmalloc.h> 76 77 #include <trace/events/kmem.h> 78 79 #include <asm/io.h> 80 #include <asm/mmu_context.h> 81 #include <asm/pgalloc.h> 82 #include <linux/uaccess.h> 83 #include <asm/tlb.h> 84 #include <asm/tlbflush.h> 85 86 #include "pgalloc-track.h" 87 #include "internal.h" 88 89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 91 #endif 92 93 #ifndef CONFIG_NEED_MULTIPLE_NODES 94 /* use the per-pgdat data instead for discontigmem - mbligh */ 95 unsigned long max_mapnr; 96 EXPORT_SYMBOL(max_mapnr); 97 98 struct page *mem_map; 99 EXPORT_SYMBOL(mem_map); 100 #endif 101 102 /* 103 * A number of key systems in x86 including ioremap() rely on the assumption 104 * that high_memory defines the upper bound on direct map memory, then end 105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 107 * and ZONE_HIGHMEM. 108 */ 109 void *high_memory; 110 EXPORT_SYMBOL(high_memory); 111 112 /* 113 * Randomize the address space (stacks, mmaps, brk, etc.). 114 * 115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 116 * as ancient (libc5 based) binaries can segfault. ) 117 */ 118 int randomize_va_space __read_mostly = 119 #ifdef CONFIG_COMPAT_BRK 120 1; 121 #else 122 2; 123 #endif 124 125 #ifndef arch_faults_on_old_pte 126 static inline bool arch_faults_on_old_pte(void) 127 { 128 /* 129 * Those arches which don't have hw access flag feature need to 130 * implement their own helper. By default, "true" means pagefault 131 * will be hit on old pte. 132 */ 133 return true; 134 } 135 #endif 136 137 #ifndef arch_wants_old_prefaulted_pte 138 static inline bool arch_wants_old_prefaulted_pte(void) 139 { 140 /* 141 * Transitioning a PTE from 'old' to 'young' can be expensive on 142 * some architectures, even if it's performed in hardware. By 143 * default, "false" means prefaulted entries will be 'young'. 144 */ 145 return false; 146 } 147 #endif 148 149 static int __init disable_randmaps(char *s) 150 { 151 randomize_va_space = 0; 152 return 1; 153 } 154 __setup("norandmaps", disable_randmaps); 155 156 unsigned long zero_pfn __read_mostly; 157 EXPORT_SYMBOL(zero_pfn); 158 159 unsigned long highest_memmap_pfn __read_mostly; 160 161 /* 162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 163 */ 164 static int __init init_zero_pfn(void) 165 { 166 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 167 return 0; 168 } 169 early_initcall(init_zero_pfn); 170 171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 172 { 173 trace_rss_stat(mm, member, count); 174 } 175 176 #if defined(SPLIT_RSS_COUNTING) 177 178 void sync_mm_rss(struct mm_struct *mm) 179 { 180 int i; 181 182 for (i = 0; i < NR_MM_COUNTERS; i++) { 183 if (current->rss_stat.count[i]) { 184 add_mm_counter(mm, i, current->rss_stat.count[i]); 185 current->rss_stat.count[i] = 0; 186 } 187 } 188 current->rss_stat.events = 0; 189 } 190 191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 192 { 193 struct task_struct *task = current; 194 195 if (likely(task->mm == mm)) 196 task->rss_stat.count[member] += val; 197 else 198 add_mm_counter(mm, member, val); 199 } 200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 202 203 /* sync counter once per 64 page faults */ 204 #define TASK_RSS_EVENTS_THRESH (64) 205 static void check_sync_rss_stat(struct task_struct *task) 206 { 207 if (unlikely(task != current)) 208 return; 209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 210 sync_mm_rss(task->mm); 211 } 212 #else /* SPLIT_RSS_COUNTING */ 213 214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 216 217 static void check_sync_rss_stat(struct task_struct *task) 218 { 219 } 220 221 #endif /* SPLIT_RSS_COUNTING */ 222 223 /* 224 * Note: this doesn't free the actual pages themselves. That 225 * has been handled earlier when unmapping all the memory regions. 226 */ 227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 228 unsigned long addr) 229 { 230 pgtable_t token = pmd_pgtable(*pmd); 231 pmd_clear(pmd); 232 pte_free_tlb(tlb, token, addr); 233 mm_dec_nr_ptes(tlb->mm); 234 } 235 236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 237 unsigned long addr, unsigned long end, 238 unsigned long floor, unsigned long ceiling) 239 { 240 pmd_t *pmd; 241 unsigned long next; 242 unsigned long start; 243 244 start = addr; 245 pmd = pmd_offset(pud, addr); 246 do { 247 next = pmd_addr_end(addr, end); 248 if (pmd_none_or_clear_bad(pmd)) 249 continue; 250 free_pte_range(tlb, pmd, addr); 251 } while (pmd++, addr = next, addr != end); 252 253 start &= PUD_MASK; 254 if (start < floor) 255 return; 256 if (ceiling) { 257 ceiling &= PUD_MASK; 258 if (!ceiling) 259 return; 260 } 261 if (end - 1 > ceiling - 1) 262 return; 263 264 pmd = pmd_offset(pud, start); 265 pud_clear(pud); 266 pmd_free_tlb(tlb, pmd, start); 267 mm_dec_nr_pmds(tlb->mm); 268 } 269 270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 271 unsigned long addr, unsigned long end, 272 unsigned long floor, unsigned long ceiling) 273 { 274 pud_t *pud; 275 unsigned long next; 276 unsigned long start; 277 278 start = addr; 279 pud = pud_offset(p4d, addr); 280 do { 281 next = pud_addr_end(addr, end); 282 if (pud_none_or_clear_bad(pud)) 283 continue; 284 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 285 } while (pud++, addr = next, addr != end); 286 287 start &= P4D_MASK; 288 if (start < floor) 289 return; 290 if (ceiling) { 291 ceiling &= P4D_MASK; 292 if (!ceiling) 293 return; 294 } 295 if (end - 1 > ceiling - 1) 296 return; 297 298 pud = pud_offset(p4d, start); 299 p4d_clear(p4d); 300 pud_free_tlb(tlb, pud, start); 301 mm_dec_nr_puds(tlb->mm); 302 } 303 304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 305 unsigned long addr, unsigned long end, 306 unsigned long floor, unsigned long ceiling) 307 { 308 p4d_t *p4d; 309 unsigned long next; 310 unsigned long start; 311 312 start = addr; 313 p4d = p4d_offset(pgd, addr); 314 do { 315 next = p4d_addr_end(addr, end); 316 if (p4d_none_or_clear_bad(p4d)) 317 continue; 318 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 319 } while (p4d++, addr = next, addr != end); 320 321 start &= PGDIR_MASK; 322 if (start < floor) 323 return; 324 if (ceiling) { 325 ceiling &= PGDIR_MASK; 326 if (!ceiling) 327 return; 328 } 329 if (end - 1 > ceiling - 1) 330 return; 331 332 p4d = p4d_offset(pgd, start); 333 pgd_clear(pgd); 334 p4d_free_tlb(tlb, p4d, start); 335 } 336 337 /* 338 * This function frees user-level page tables of a process. 339 */ 340 void free_pgd_range(struct mmu_gather *tlb, 341 unsigned long addr, unsigned long end, 342 unsigned long floor, unsigned long ceiling) 343 { 344 pgd_t *pgd; 345 unsigned long next; 346 347 /* 348 * The next few lines have given us lots of grief... 349 * 350 * Why are we testing PMD* at this top level? Because often 351 * there will be no work to do at all, and we'd prefer not to 352 * go all the way down to the bottom just to discover that. 353 * 354 * Why all these "- 1"s? Because 0 represents both the bottom 355 * of the address space and the top of it (using -1 for the 356 * top wouldn't help much: the masks would do the wrong thing). 357 * The rule is that addr 0 and floor 0 refer to the bottom of 358 * the address space, but end 0 and ceiling 0 refer to the top 359 * Comparisons need to use "end - 1" and "ceiling - 1" (though 360 * that end 0 case should be mythical). 361 * 362 * Wherever addr is brought up or ceiling brought down, we must 363 * be careful to reject "the opposite 0" before it confuses the 364 * subsequent tests. But what about where end is brought down 365 * by PMD_SIZE below? no, end can't go down to 0 there. 366 * 367 * Whereas we round start (addr) and ceiling down, by different 368 * masks at different levels, in order to test whether a table 369 * now has no other vmas using it, so can be freed, we don't 370 * bother to round floor or end up - the tests don't need that. 371 */ 372 373 addr &= PMD_MASK; 374 if (addr < floor) { 375 addr += PMD_SIZE; 376 if (!addr) 377 return; 378 } 379 if (ceiling) { 380 ceiling &= PMD_MASK; 381 if (!ceiling) 382 return; 383 } 384 if (end - 1 > ceiling - 1) 385 end -= PMD_SIZE; 386 if (addr > end - 1) 387 return; 388 /* 389 * We add page table cache pages with PAGE_SIZE, 390 * (see pte_free_tlb()), flush the tlb if we need 391 */ 392 tlb_change_page_size(tlb, PAGE_SIZE); 393 pgd = pgd_offset(tlb->mm, addr); 394 do { 395 next = pgd_addr_end(addr, end); 396 if (pgd_none_or_clear_bad(pgd)) 397 continue; 398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 399 } while (pgd++, addr = next, addr != end); 400 } 401 402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 403 unsigned long floor, unsigned long ceiling) 404 { 405 while (vma) { 406 struct vm_area_struct *next = vma->vm_next; 407 unsigned long addr = vma->vm_start; 408 409 /* 410 * Hide vma from rmap and truncate_pagecache before freeing 411 * pgtables 412 */ 413 unlink_anon_vmas(vma); 414 unlink_file_vma(vma); 415 416 if (is_vm_hugetlb_page(vma)) { 417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 418 floor, next ? next->vm_start : ceiling); 419 } else { 420 /* 421 * Optimization: gather nearby vmas into one call down 422 */ 423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 424 && !is_vm_hugetlb_page(next)) { 425 vma = next; 426 next = vma->vm_next; 427 unlink_anon_vmas(vma); 428 unlink_file_vma(vma); 429 } 430 free_pgd_range(tlb, addr, vma->vm_end, 431 floor, next ? next->vm_start : ceiling); 432 } 433 vma = next; 434 } 435 } 436 437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 438 { 439 spinlock_t *ptl; 440 pgtable_t new = pte_alloc_one(mm); 441 if (!new) 442 return -ENOMEM; 443 444 /* 445 * Ensure all pte setup (eg. pte page lock and page clearing) are 446 * visible before the pte is made visible to other CPUs by being 447 * put into page tables. 448 * 449 * The other side of the story is the pointer chasing in the page 450 * table walking code (when walking the page table without locking; 451 * ie. most of the time). Fortunately, these data accesses consist 452 * of a chain of data-dependent loads, meaning most CPUs (alpha 453 * being the notable exception) will already guarantee loads are 454 * seen in-order. See the alpha page table accessors for the 455 * smp_rmb() barriers in page table walking code. 456 */ 457 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 458 459 ptl = pmd_lock(mm, pmd); 460 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 461 mm_inc_nr_ptes(mm); 462 pmd_populate(mm, pmd, new); 463 new = NULL; 464 } 465 spin_unlock(ptl); 466 if (new) 467 pte_free(mm, new); 468 return 0; 469 } 470 471 int __pte_alloc_kernel(pmd_t *pmd) 472 { 473 pte_t *new = pte_alloc_one_kernel(&init_mm); 474 if (!new) 475 return -ENOMEM; 476 477 smp_wmb(); /* See comment in __pte_alloc */ 478 479 spin_lock(&init_mm.page_table_lock); 480 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 481 pmd_populate_kernel(&init_mm, pmd, new); 482 new = NULL; 483 } 484 spin_unlock(&init_mm.page_table_lock); 485 if (new) 486 pte_free_kernel(&init_mm, new); 487 return 0; 488 } 489 490 static inline void init_rss_vec(int *rss) 491 { 492 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 493 } 494 495 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 496 { 497 int i; 498 499 if (current->mm == mm) 500 sync_mm_rss(mm); 501 for (i = 0; i < NR_MM_COUNTERS; i++) 502 if (rss[i]) 503 add_mm_counter(mm, i, rss[i]); 504 } 505 506 /* 507 * This function is called to print an error when a bad pte 508 * is found. For example, we might have a PFN-mapped pte in 509 * a region that doesn't allow it. 510 * 511 * The calling function must still handle the error. 512 */ 513 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 514 pte_t pte, struct page *page) 515 { 516 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 517 p4d_t *p4d = p4d_offset(pgd, addr); 518 pud_t *pud = pud_offset(p4d, addr); 519 pmd_t *pmd = pmd_offset(pud, addr); 520 struct address_space *mapping; 521 pgoff_t index; 522 static unsigned long resume; 523 static unsigned long nr_shown; 524 static unsigned long nr_unshown; 525 526 /* 527 * Allow a burst of 60 reports, then keep quiet for that minute; 528 * or allow a steady drip of one report per second. 529 */ 530 if (nr_shown == 60) { 531 if (time_before(jiffies, resume)) { 532 nr_unshown++; 533 return; 534 } 535 if (nr_unshown) { 536 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 537 nr_unshown); 538 nr_unshown = 0; 539 } 540 nr_shown = 0; 541 } 542 if (nr_shown++ == 0) 543 resume = jiffies + 60 * HZ; 544 545 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 546 index = linear_page_index(vma, addr); 547 548 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 549 current->comm, 550 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 551 if (page) 552 dump_page(page, "bad pte"); 553 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 554 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 555 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 556 vma->vm_file, 557 vma->vm_ops ? vma->vm_ops->fault : NULL, 558 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 559 mapping ? mapping->a_ops->readpage : NULL); 560 dump_stack(); 561 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 562 } 563 564 /* 565 * vm_normal_page -- This function gets the "struct page" associated with a pte. 566 * 567 * "Special" mappings do not wish to be associated with a "struct page" (either 568 * it doesn't exist, or it exists but they don't want to touch it). In this 569 * case, NULL is returned here. "Normal" mappings do have a struct page. 570 * 571 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 572 * pte bit, in which case this function is trivial. Secondly, an architecture 573 * may not have a spare pte bit, which requires a more complicated scheme, 574 * described below. 575 * 576 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 577 * special mapping (even if there are underlying and valid "struct pages"). 578 * COWed pages of a VM_PFNMAP are always normal. 579 * 580 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 581 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 582 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 583 * mapping will always honor the rule 584 * 585 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 586 * 587 * And for normal mappings this is false. 588 * 589 * This restricts such mappings to be a linear translation from virtual address 590 * to pfn. To get around this restriction, we allow arbitrary mappings so long 591 * as the vma is not a COW mapping; in that case, we know that all ptes are 592 * special (because none can have been COWed). 593 * 594 * 595 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 596 * 597 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 598 * page" backing, however the difference is that _all_ pages with a struct 599 * page (that is, those where pfn_valid is true) are refcounted and considered 600 * normal pages by the VM. The disadvantage is that pages are refcounted 601 * (which can be slower and simply not an option for some PFNMAP users). The 602 * advantage is that we don't have to follow the strict linearity rule of 603 * PFNMAP mappings in order to support COWable mappings. 604 * 605 */ 606 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 607 pte_t pte) 608 { 609 unsigned long pfn = pte_pfn(pte); 610 611 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 612 if (likely(!pte_special(pte))) 613 goto check_pfn; 614 if (vma->vm_ops && vma->vm_ops->find_special_page) 615 return vma->vm_ops->find_special_page(vma, addr); 616 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 617 return NULL; 618 if (is_zero_pfn(pfn)) 619 return NULL; 620 if (pte_devmap(pte)) 621 return NULL; 622 623 print_bad_pte(vma, addr, pte, NULL); 624 return NULL; 625 } 626 627 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 628 629 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 630 if (vma->vm_flags & VM_MIXEDMAP) { 631 if (!pfn_valid(pfn)) 632 return NULL; 633 goto out; 634 } else { 635 unsigned long off; 636 off = (addr - vma->vm_start) >> PAGE_SHIFT; 637 if (pfn == vma->vm_pgoff + off) 638 return NULL; 639 if (!is_cow_mapping(vma->vm_flags)) 640 return NULL; 641 } 642 } 643 644 if (is_zero_pfn(pfn)) 645 return NULL; 646 647 check_pfn: 648 if (unlikely(pfn > highest_memmap_pfn)) { 649 print_bad_pte(vma, addr, pte, NULL); 650 return NULL; 651 } 652 653 /* 654 * NOTE! We still have PageReserved() pages in the page tables. 655 * eg. VDSO mappings can cause them to exist. 656 */ 657 out: 658 return pfn_to_page(pfn); 659 } 660 661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 662 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 663 pmd_t pmd) 664 { 665 unsigned long pfn = pmd_pfn(pmd); 666 667 /* 668 * There is no pmd_special() but there may be special pmds, e.g. 669 * in a direct-access (dax) mapping, so let's just replicate the 670 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 671 */ 672 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 673 if (vma->vm_flags & VM_MIXEDMAP) { 674 if (!pfn_valid(pfn)) 675 return NULL; 676 goto out; 677 } else { 678 unsigned long off; 679 off = (addr - vma->vm_start) >> PAGE_SHIFT; 680 if (pfn == vma->vm_pgoff + off) 681 return NULL; 682 if (!is_cow_mapping(vma->vm_flags)) 683 return NULL; 684 } 685 } 686 687 if (pmd_devmap(pmd)) 688 return NULL; 689 if (is_huge_zero_pmd(pmd)) 690 return NULL; 691 if (unlikely(pfn > highest_memmap_pfn)) 692 return NULL; 693 694 /* 695 * NOTE! We still have PageReserved() pages in the page tables. 696 * eg. VDSO mappings can cause them to exist. 697 */ 698 out: 699 return pfn_to_page(pfn); 700 } 701 #endif 702 703 /* 704 * copy one vm_area from one task to the other. Assumes the page tables 705 * already present in the new task to be cleared in the whole range 706 * covered by this vma. 707 */ 708 709 static unsigned long 710 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 711 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 712 unsigned long addr, int *rss) 713 { 714 unsigned long vm_flags = vma->vm_flags; 715 pte_t pte = *src_pte; 716 struct page *page; 717 swp_entry_t entry = pte_to_swp_entry(pte); 718 719 if (likely(!non_swap_entry(entry))) { 720 if (swap_duplicate(entry) < 0) 721 return entry.val; 722 723 /* make sure dst_mm is on swapoff's mmlist. */ 724 if (unlikely(list_empty(&dst_mm->mmlist))) { 725 spin_lock(&mmlist_lock); 726 if (list_empty(&dst_mm->mmlist)) 727 list_add(&dst_mm->mmlist, 728 &src_mm->mmlist); 729 spin_unlock(&mmlist_lock); 730 } 731 rss[MM_SWAPENTS]++; 732 } else if (is_migration_entry(entry)) { 733 page = migration_entry_to_page(entry); 734 735 rss[mm_counter(page)]++; 736 737 if (is_write_migration_entry(entry) && 738 is_cow_mapping(vm_flags)) { 739 /* 740 * COW mappings require pages in both 741 * parent and child to be set to read. 742 */ 743 make_migration_entry_read(&entry); 744 pte = swp_entry_to_pte(entry); 745 if (pte_swp_soft_dirty(*src_pte)) 746 pte = pte_swp_mksoft_dirty(pte); 747 if (pte_swp_uffd_wp(*src_pte)) 748 pte = pte_swp_mkuffd_wp(pte); 749 set_pte_at(src_mm, addr, src_pte, pte); 750 } 751 } else if (is_device_private_entry(entry)) { 752 page = device_private_entry_to_page(entry); 753 754 /* 755 * Update rss count even for unaddressable pages, as 756 * they should treated just like normal pages in this 757 * respect. 758 * 759 * We will likely want to have some new rss counters 760 * for unaddressable pages, at some point. But for now 761 * keep things as they are. 762 */ 763 get_page(page); 764 rss[mm_counter(page)]++; 765 page_dup_rmap(page, false); 766 767 /* 768 * We do not preserve soft-dirty information, because so 769 * far, checkpoint/restore is the only feature that 770 * requires that. And checkpoint/restore does not work 771 * when a device driver is involved (you cannot easily 772 * save and restore device driver state). 773 */ 774 if (is_write_device_private_entry(entry) && 775 is_cow_mapping(vm_flags)) { 776 make_device_private_entry_read(&entry); 777 pte = swp_entry_to_pte(entry); 778 if (pte_swp_uffd_wp(*src_pte)) 779 pte = pte_swp_mkuffd_wp(pte); 780 set_pte_at(src_mm, addr, src_pte, pte); 781 } 782 } 783 set_pte_at(dst_mm, addr, dst_pte, pte); 784 return 0; 785 } 786 787 /* 788 * Copy a present and normal page if necessary. 789 * 790 * NOTE! The usual case is that this doesn't need to do 791 * anything, and can just return a positive value. That 792 * will let the caller know that it can just increase 793 * the page refcount and re-use the pte the traditional 794 * way. 795 * 796 * But _if_ we need to copy it because it needs to be 797 * pinned in the parent (and the child should get its own 798 * copy rather than just a reference to the same page), 799 * we'll do that here and return zero to let the caller 800 * know we're done. 801 * 802 * And if we need a pre-allocated page but don't yet have 803 * one, return a negative error to let the preallocation 804 * code know so that it can do so outside the page table 805 * lock. 806 */ 807 static inline int 808 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 809 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 810 struct page **prealloc, pte_t pte, struct page *page) 811 { 812 struct page *new_page; 813 814 /* 815 * What we want to do is to check whether this page may 816 * have been pinned by the parent process. If so, 817 * instead of wrprotect the pte on both sides, we copy 818 * the page immediately so that we'll always guarantee 819 * the pinned page won't be randomly replaced in the 820 * future. 821 * 822 * The page pinning checks are just "has this mm ever 823 * seen pinning", along with the (inexact) check of 824 * the page count. That might give false positives for 825 * for pinning, but it will work correctly. 826 */ 827 if (likely(!page_needs_cow_for_dma(src_vma, page))) 828 return 1; 829 830 new_page = *prealloc; 831 if (!new_page) 832 return -EAGAIN; 833 834 /* 835 * We have a prealloc page, all good! Take it 836 * over and copy the page & arm it. 837 */ 838 *prealloc = NULL; 839 copy_user_highpage(new_page, page, addr, src_vma); 840 __SetPageUptodate(new_page); 841 page_add_new_anon_rmap(new_page, dst_vma, addr, false); 842 lru_cache_add_inactive_or_unevictable(new_page, dst_vma); 843 rss[mm_counter(new_page)]++; 844 845 /* All done, just insert the new page copy in the child */ 846 pte = mk_pte(new_page, dst_vma->vm_page_prot); 847 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 848 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 849 return 0; 850 } 851 852 /* 853 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 854 * is required to copy this pte. 855 */ 856 static inline int 857 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 858 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 859 struct page **prealloc) 860 { 861 struct mm_struct *src_mm = src_vma->vm_mm; 862 unsigned long vm_flags = src_vma->vm_flags; 863 pte_t pte = *src_pte; 864 struct page *page; 865 866 page = vm_normal_page(src_vma, addr, pte); 867 if (page) { 868 int retval; 869 870 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 871 addr, rss, prealloc, pte, page); 872 if (retval <= 0) 873 return retval; 874 875 get_page(page); 876 page_dup_rmap(page, false); 877 rss[mm_counter(page)]++; 878 } 879 880 /* 881 * If it's a COW mapping, write protect it both 882 * in the parent and the child 883 */ 884 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 885 ptep_set_wrprotect(src_mm, addr, src_pte); 886 pte = pte_wrprotect(pte); 887 } 888 889 /* 890 * If it's a shared mapping, mark it clean in 891 * the child 892 */ 893 if (vm_flags & VM_SHARED) 894 pte = pte_mkclean(pte); 895 pte = pte_mkold(pte); 896 897 /* 898 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 899 * does not have the VM_UFFD_WP, which means that the uffd 900 * fork event is not enabled. 901 */ 902 if (!(vm_flags & VM_UFFD_WP)) 903 pte = pte_clear_uffd_wp(pte); 904 905 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 906 return 0; 907 } 908 909 static inline struct page * 910 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, 911 unsigned long addr) 912 { 913 struct page *new_page; 914 915 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); 916 if (!new_page) 917 return NULL; 918 919 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) { 920 put_page(new_page); 921 return NULL; 922 } 923 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 924 925 return new_page; 926 } 927 928 static int 929 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 930 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 931 unsigned long end) 932 { 933 struct mm_struct *dst_mm = dst_vma->vm_mm; 934 struct mm_struct *src_mm = src_vma->vm_mm; 935 pte_t *orig_src_pte, *orig_dst_pte; 936 pte_t *src_pte, *dst_pte; 937 spinlock_t *src_ptl, *dst_ptl; 938 int progress, ret = 0; 939 int rss[NR_MM_COUNTERS]; 940 swp_entry_t entry = (swp_entry_t){0}; 941 struct page *prealloc = NULL; 942 943 again: 944 progress = 0; 945 init_rss_vec(rss); 946 947 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 948 if (!dst_pte) { 949 ret = -ENOMEM; 950 goto out; 951 } 952 src_pte = pte_offset_map(src_pmd, addr); 953 src_ptl = pte_lockptr(src_mm, src_pmd); 954 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 955 orig_src_pte = src_pte; 956 orig_dst_pte = dst_pte; 957 arch_enter_lazy_mmu_mode(); 958 959 do { 960 /* 961 * We are holding two locks at this point - either of them 962 * could generate latencies in another task on another CPU. 963 */ 964 if (progress >= 32) { 965 progress = 0; 966 if (need_resched() || 967 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 968 break; 969 } 970 if (pte_none(*src_pte)) { 971 progress++; 972 continue; 973 } 974 if (unlikely(!pte_present(*src_pte))) { 975 entry.val = copy_nonpresent_pte(dst_mm, src_mm, 976 dst_pte, src_pte, 977 src_vma, addr, rss); 978 if (entry.val) 979 break; 980 progress += 8; 981 continue; 982 } 983 /* copy_present_pte() will clear `*prealloc' if consumed */ 984 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 985 addr, rss, &prealloc); 986 /* 987 * If we need a pre-allocated page for this pte, drop the 988 * locks, allocate, and try again. 989 */ 990 if (unlikely(ret == -EAGAIN)) 991 break; 992 if (unlikely(prealloc)) { 993 /* 994 * pre-alloc page cannot be reused by next time so as 995 * to strictly follow mempolicy (e.g., alloc_page_vma() 996 * will allocate page according to address). This 997 * could only happen if one pinned pte changed. 998 */ 999 put_page(prealloc); 1000 prealloc = NULL; 1001 } 1002 progress += 8; 1003 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1004 1005 arch_leave_lazy_mmu_mode(); 1006 spin_unlock(src_ptl); 1007 pte_unmap(orig_src_pte); 1008 add_mm_rss_vec(dst_mm, rss); 1009 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1010 cond_resched(); 1011 1012 if (entry.val) { 1013 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1014 ret = -ENOMEM; 1015 goto out; 1016 } 1017 entry.val = 0; 1018 } else if (ret) { 1019 WARN_ON_ONCE(ret != -EAGAIN); 1020 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1021 if (!prealloc) 1022 return -ENOMEM; 1023 /* We've captured and resolved the error. Reset, try again. */ 1024 ret = 0; 1025 } 1026 if (addr != end) 1027 goto again; 1028 out: 1029 if (unlikely(prealloc)) 1030 put_page(prealloc); 1031 return ret; 1032 } 1033 1034 static inline int 1035 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1036 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1037 unsigned long end) 1038 { 1039 struct mm_struct *dst_mm = dst_vma->vm_mm; 1040 struct mm_struct *src_mm = src_vma->vm_mm; 1041 pmd_t *src_pmd, *dst_pmd; 1042 unsigned long next; 1043 1044 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1045 if (!dst_pmd) 1046 return -ENOMEM; 1047 src_pmd = pmd_offset(src_pud, addr); 1048 do { 1049 next = pmd_addr_end(addr, end); 1050 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1051 || pmd_devmap(*src_pmd)) { 1052 int err; 1053 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1054 err = copy_huge_pmd(dst_mm, src_mm, 1055 dst_pmd, src_pmd, addr, src_vma); 1056 if (err == -ENOMEM) 1057 return -ENOMEM; 1058 if (!err) 1059 continue; 1060 /* fall through */ 1061 } 1062 if (pmd_none_or_clear_bad(src_pmd)) 1063 continue; 1064 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1065 addr, next)) 1066 return -ENOMEM; 1067 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1068 return 0; 1069 } 1070 1071 static inline int 1072 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1073 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1074 unsigned long end) 1075 { 1076 struct mm_struct *dst_mm = dst_vma->vm_mm; 1077 struct mm_struct *src_mm = src_vma->vm_mm; 1078 pud_t *src_pud, *dst_pud; 1079 unsigned long next; 1080 1081 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1082 if (!dst_pud) 1083 return -ENOMEM; 1084 src_pud = pud_offset(src_p4d, addr); 1085 do { 1086 next = pud_addr_end(addr, end); 1087 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1088 int err; 1089 1090 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1091 err = copy_huge_pud(dst_mm, src_mm, 1092 dst_pud, src_pud, addr, src_vma); 1093 if (err == -ENOMEM) 1094 return -ENOMEM; 1095 if (!err) 1096 continue; 1097 /* fall through */ 1098 } 1099 if (pud_none_or_clear_bad(src_pud)) 1100 continue; 1101 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1102 addr, next)) 1103 return -ENOMEM; 1104 } while (dst_pud++, src_pud++, addr = next, addr != end); 1105 return 0; 1106 } 1107 1108 static inline int 1109 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1110 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1111 unsigned long end) 1112 { 1113 struct mm_struct *dst_mm = dst_vma->vm_mm; 1114 p4d_t *src_p4d, *dst_p4d; 1115 unsigned long next; 1116 1117 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1118 if (!dst_p4d) 1119 return -ENOMEM; 1120 src_p4d = p4d_offset(src_pgd, addr); 1121 do { 1122 next = p4d_addr_end(addr, end); 1123 if (p4d_none_or_clear_bad(src_p4d)) 1124 continue; 1125 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1126 addr, next)) 1127 return -ENOMEM; 1128 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1129 return 0; 1130 } 1131 1132 int 1133 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1134 { 1135 pgd_t *src_pgd, *dst_pgd; 1136 unsigned long next; 1137 unsigned long addr = src_vma->vm_start; 1138 unsigned long end = src_vma->vm_end; 1139 struct mm_struct *dst_mm = dst_vma->vm_mm; 1140 struct mm_struct *src_mm = src_vma->vm_mm; 1141 struct mmu_notifier_range range; 1142 bool is_cow; 1143 int ret; 1144 1145 /* 1146 * Don't copy ptes where a page fault will fill them correctly. 1147 * Fork becomes much lighter when there are big shared or private 1148 * readonly mappings. The tradeoff is that copy_page_range is more 1149 * efficient than faulting. 1150 */ 1151 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1152 !src_vma->anon_vma) 1153 return 0; 1154 1155 if (is_vm_hugetlb_page(src_vma)) 1156 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma); 1157 1158 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1159 /* 1160 * We do not free on error cases below as remove_vma 1161 * gets called on error from higher level routine 1162 */ 1163 ret = track_pfn_copy(src_vma); 1164 if (ret) 1165 return ret; 1166 } 1167 1168 /* 1169 * We need to invalidate the secondary MMU mappings only when 1170 * there could be a permission downgrade on the ptes of the 1171 * parent mm. And a permission downgrade will only happen if 1172 * is_cow_mapping() returns true. 1173 */ 1174 is_cow = is_cow_mapping(src_vma->vm_flags); 1175 1176 if (is_cow) { 1177 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1178 0, src_vma, src_mm, addr, end); 1179 mmu_notifier_invalidate_range_start(&range); 1180 /* 1181 * Disabling preemption is not needed for the write side, as 1182 * the read side doesn't spin, but goes to the mmap_lock. 1183 * 1184 * Use the raw variant of the seqcount_t write API to avoid 1185 * lockdep complaining about preemptibility. 1186 */ 1187 mmap_assert_write_locked(src_mm); 1188 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1189 } 1190 1191 ret = 0; 1192 dst_pgd = pgd_offset(dst_mm, addr); 1193 src_pgd = pgd_offset(src_mm, addr); 1194 do { 1195 next = pgd_addr_end(addr, end); 1196 if (pgd_none_or_clear_bad(src_pgd)) 1197 continue; 1198 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1199 addr, next))) { 1200 ret = -ENOMEM; 1201 break; 1202 } 1203 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1204 1205 if (is_cow) { 1206 raw_write_seqcount_end(&src_mm->write_protect_seq); 1207 mmu_notifier_invalidate_range_end(&range); 1208 } 1209 return ret; 1210 } 1211 1212 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1213 struct vm_area_struct *vma, pmd_t *pmd, 1214 unsigned long addr, unsigned long end, 1215 struct zap_details *details) 1216 { 1217 struct mm_struct *mm = tlb->mm; 1218 int force_flush = 0; 1219 int rss[NR_MM_COUNTERS]; 1220 spinlock_t *ptl; 1221 pte_t *start_pte; 1222 pte_t *pte; 1223 swp_entry_t entry; 1224 1225 tlb_change_page_size(tlb, PAGE_SIZE); 1226 again: 1227 init_rss_vec(rss); 1228 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1229 pte = start_pte; 1230 flush_tlb_batched_pending(mm); 1231 arch_enter_lazy_mmu_mode(); 1232 do { 1233 pte_t ptent = *pte; 1234 if (pte_none(ptent)) 1235 continue; 1236 1237 if (need_resched()) 1238 break; 1239 1240 if (pte_present(ptent)) { 1241 struct page *page; 1242 1243 page = vm_normal_page(vma, addr, ptent); 1244 if (unlikely(details) && page) { 1245 /* 1246 * unmap_shared_mapping_pages() wants to 1247 * invalidate cache without truncating: 1248 * unmap shared but keep private pages. 1249 */ 1250 if (details->check_mapping && 1251 details->check_mapping != page_rmapping(page)) 1252 continue; 1253 } 1254 ptent = ptep_get_and_clear_full(mm, addr, pte, 1255 tlb->fullmm); 1256 tlb_remove_tlb_entry(tlb, pte, addr); 1257 if (unlikely(!page)) 1258 continue; 1259 1260 if (!PageAnon(page)) { 1261 if (pte_dirty(ptent)) { 1262 force_flush = 1; 1263 set_page_dirty(page); 1264 } 1265 if (pte_young(ptent) && 1266 likely(!(vma->vm_flags & VM_SEQ_READ))) 1267 mark_page_accessed(page); 1268 } 1269 rss[mm_counter(page)]--; 1270 page_remove_rmap(page, false); 1271 if (unlikely(page_mapcount(page) < 0)) 1272 print_bad_pte(vma, addr, ptent, page); 1273 if (unlikely(__tlb_remove_page(tlb, page))) { 1274 force_flush = 1; 1275 addr += PAGE_SIZE; 1276 break; 1277 } 1278 continue; 1279 } 1280 1281 entry = pte_to_swp_entry(ptent); 1282 if (is_device_private_entry(entry)) { 1283 struct page *page = device_private_entry_to_page(entry); 1284 1285 if (unlikely(details && details->check_mapping)) { 1286 /* 1287 * unmap_shared_mapping_pages() wants to 1288 * invalidate cache without truncating: 1289 * unmap shared but keep private pages. 1290 */ 1291 if (details->check_mapping != 1292 page_rmapping(page)) 1293 continue; 1294 } 1295 1296 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1297 rss[mm_counter(page)]--; 1298 page_remove_rmap(page, false); 1299 put_page(page); 1300 continue; 1301 } 1302 1303 /* If details->check_mapping, we leave swap entries. */ 1304 if (unlikely(details)) 1305 continue; 1306 1307 if (!non_swap_entry(entry)) 1308 rss[MM_SWAPENTS]--; 1309 else if (is_migration_entry(entry)) { 1310 struct page *page; 1311 1312 page = migration_entry_to_page(entry); 1313 rss[mm_counter(page)]--; 1314 } 1315 if (unlikely(!free_swap_and_cache(entry))) 1316 print_bad_pte(vma, addr, ptent, NULL); 1317 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1318 } while (pte++, addr += PAGE_SIZE, addr != end); 1319 1320 add_mm_rss_vec(mm, rss); 1321 arch_leave_lazy_mmu_mode(); 1322 1323 /* Do the actual TLB flush before dropping ptl */ 1324 if (force_flush) 1325 tlb_flush_mmu_tlbonly(tlb); 1326 pte_unmap_unlock(start_pte, ptl); 1327 1328 /* 1329 * If we forced a TLB flush (either due to running out of 1330 * batch buffers or because we needed to flush dirty TLB 1331 * entries before releasing the ptl), free the batched 1332 * memory too. Restart if we didn't do everything. 1333 */ 1334 if (force_flush) { 1335 force_flush = 0; 1336 tlb_flush_mmu(tlb); 1337 } 1338 1339 if (addr != end) { 1340 cond_resched(); 1341 goto again; 1342 } 1343 1344 return addr; 1345 } 1346 1347 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1348 struct vm_area_struct *vma, pud_t *pud, 1349 unsigned long addr, unsigned long end, 1350 struct zap_details *details) 1351 { 1352 pmd_t *pmd; 1353 unsigned long next; 1354 1355 pmd = pmd_offset(pud, addr); 1356 do { 1357 next = pmd_addr_end(addr, end); 1358 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1359 if (next - addr != HPAGE_PMD_SIZE) 1360 __split_huge_pmd(vma, pmd, addr, false, NULL); 1361 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1362 goto next; 1363 /* fall through */ 1364 } 1365 /* 1366 * Here there can be other concurrent MADV_DONTNEED or 1367 * trans huge page faults running, and if the pmd is 1368 * none or trans huge it can change under us. This is 1369 * because MADV_DONTNEED holds the mmap_lock in read 1370 * mode. 1371 */ 1372 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1373 goto next; 1374 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1375 next: 1376 cond_resched(); 1377 } while (pmd++, addr = next, addr != end); 1378 1379 return addr; 1380 } 1381 1382 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1383 struct vm_area_struct *vma, p4d_t *p4d, 1384 unsigned long addr, unsigned long end, 1385 struct zap_details *details) 1386 { 1387 pud_t *pud; 1388 unsigned long next; 1389 1390 pud = pud_offset(p4d, addr); 1391 do { 1392 next = pud_addr_end(addr, end); 1393 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1394 if (next - addr != HPAGE_PUD_SIZE) { 1395 mmap_assert_locked(tlb->mm); 1396 split_huge_pud(vma, pud, addr); 1397 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1398 goto next; 1399 /* fall through */ 1400 } 1401 if (pud_none_or_clear_bad(pud)) 1402 continue; 1403 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1404 next: 1405 cond_resched(); 1406 } while (pud++, addr = next, addr != end); 1407 1408 return addr; 1409 } 1410 1411 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1412 struct vm_area_struct *vma, pgd_t *pgd, 1413 unsigned long addr, unsigned long end, 1414 struct zap_details *details) 1415 { 1416 p4d_t *p4d; 1417 unsigned long next; 1418 1419 p4d = p4d_offset(pgd, addr); 1420 do { 1421 next = p4d_addr_end(addr, end); 1422 if (p4d_none_or_clear_bad(p4d)) 1423 continue; 1424 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1425 } while (p4d++, addr = next, addr != end); 1426 1427 return addr; 1428 } 1429 1430 void unmap_page_range(struct mmu_gather *tlb, 1431 struct vm_area_struct *vma, 1432 unsigned long addr, unsigned long end, 1433 struct zap_details *details) 1434 { 1435 pgd_t *pgd; 1436 unsigned long next; 1437 1438 BUG_ON(addr >= end); 1439 tlb_start_vma(tlb, vma); 1440 pgd = pgd_offset(vma->vm_mm, addr); 1441 do { 1442 next = pgd_addr_end(addr, end); 1443 if (pgd_none_or_clear_bad(pgd)) 1444 continue; 1445 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1446 } while (pgd++, addr = next, addr != end); 1447 tlb_end_vma(tlb, vma); 1448 } 1449 1450 1451 static void unmap_single_vma(struct mmu_gather *tlb, 1452 struct vm_area_struct *vma, unsigned long start_addr, 1453 unsigned long end_addr, 1454 struct zap_details *details) 1455 { 1456 unsigned long start = max(vma->vm_start, start_addr); 1457 unsigned long end; 1458 1459 if (start >= vma->vm_end) 1460 return; 1461 end = min(vma->vm_end, end_addr); 1462 if (end <= vma->vm_start) 1463 return; 1464 1465 if (vma->vm_file) 1466 uprobe_munmap(vma, start, end); 1467 1468 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1469 untrack_pfn(vma, 0, 0); 1470 1471 if (start != end) { 1472 if (unlikely(is_vm_hugetlb_page(vma))) { 1473 /* 1474 * It is undesirable to test vma->vm_file as it 1475 * should be non-null for valid hugetlb area. 1476 * However, vm_file will be NULL in the error 1477 * cleanup path of mmap_region. When 1478 * hugetlbfs ->mmap method fails, 1479 * mmap_region() nullifies vma->vm_file 1480 * before calling this function to clean up. 1481 * Since no pte has actually been setup, it is 1482 * safe to do nothing in this case. 1483 */ 1484 if (vma->vm_file) { 1485 i_mmap_lock_write(vma->vm_file->f_mapping); 1486 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1487 i_mmap_unlock_write(vma->vm_file->f_mapping); 1488 } 1489 } else 1490 unmap_page_range(tlb, vma, start, end, details); 1491 } 1492 } 1493 1494 /** 1495 * unmap_vmas - unmap a range of memory covered by a list of vma's 1496 * @tlb: address of the caller's struct mmu_gather 1497 * @vma: the starting vma 1498 * @start_addr: virtual address at which to start unmapping 1499 * @end_addr: virtual address at which to end unmapping 1500 * 1501 * Unmap all pages in the vma list. 1502 * 1503 * Only addresses between `start' and `end' will be unmapped. 1504 * 1505 * The VMA list must be sorted in ascending virtual address order. 1506 * 1507 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1508 * range after unmap_vmas() returns. So the only responsibility here is to 1509 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1510 * drops the lock and schedules. 1511 */ 1512 void unmap_vmas(struct mmu_gather *tlb, 1513 struct vm_area_struct *vma, unsigned long start_addr, 1514 unsigned long end_addr) 1515 { 1516 struct mmu_notifier_range range; 1517 1518 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1519 start_addr, end_addr); 1520 mmu_notifier_invalidate_range_start(&range); 1521 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1522 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1523 mmu_notifier_invalidate_range_end(&range); 1524 } 1525 1526 /** 1527 * zap_page_range - remove user pages in a given range 1528 * @vma: vm_area_struct holding the applicable pages 1529 * @start: starting address of pages to zap 1530 * @size: number of bytes to zap 1531 * 1532 * Caller must protect the VMA list 1533 */ 1534 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1535 unsigned long size) 1536 { 1537 struct mmu_notifier_range range; 1538 struct mmu_gather tlb; 1539 1540 lru_add_drain(); 1541 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1542 start, start + size); 1543 tlb_gather_mmu(&tlb, vma->vm_mm); 1544 update_hiwater_rss(vma->vm_mm); 1545 mmu_notifier_invalidate_range_start(&range); 1546 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1547 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1548 mmu_notifier_invalidate_range_end(&range); 1549 tlb_finish_mmu(&tlb); 1550 } 1551 1552 /** 1553 * zap_page_range_single - remove user pages in a given range 1554 * @vma: vm_area_struct holding the applicable pages 1555 * @address: starting address of pages to zap 1556 * @size: number of bytes to zap 1557 * @details: details of shared cache invalidation 1558 * 1559 * The range must fit into one VMA. 1560 */ 1561 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1562 unsigned long size, struct zap_details *details) 1563 { 1564 struct mmu_notifier_range range; 1565 struct mmu_gather tlb; 1566 1567 lru_add_drain(); 1568 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1569 address, address + size); 1570 tlb_gather_mmu(&tlb, vma->vm_mm); 1571 update_hiwater_rss(vma->vm_mm); 1572 mmu_notifier_invalidate_range_start(&range); 1573 unmap_single_vma(&tlb, vma, address, range.end, details); 1574 mmu_notifier_invalidate_range_end(&range); 1575 tlb_finish_mmu(&tlb); 1576 } 1577 1578 /** 1579 * zap_vma_ptes - remove ptes mapping the vma 1580 * @vma: vm_area_struct holding ptes to be zapped 1581 * @address: starting address of pages to zap 1582 * @size: number of bytes to zap 1583 * 1584 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1585 * 1586 * The entire address range must be fully contained within the vma. 1587 * 1588 */ 1589 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1590 unsigned long size) 1591 { 1592 if (address < vma->vm_start || address + size > vma->vm_end || 1593 !(vma->vm_flags & VM_PFNMAP)) 1594 return; 1595 1596 zap_page_range_single(vma, address, size, NULL); 1597 } 1598 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1599 1600 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1601 { 1602 pgd_t *pgd; 1603 p4d_t *p4d; 1604 pud_t *pud; 1605 pmd_t *pmd; 1606 1607 pgd = pgd_offset(mm, addr); 1608 p4d = p4d_alloc(mm, pgd, addr); 1609 if (!p4d) 1610 return NULL; 1611 pud = pud_alloc(mm, p4d, addr); 1612 if (!pud) 1613 return NULL; 1614 pmd = pmd_alloc(mm, pud, addr); 1615 if (!pmd) 1616 return NULL; 1617 1618 VM_BUG_ON(pmd_trans_huge(*pmd)); 1619 return pmd; 1620 } 1621 1622 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1623 spinlock_t **ptl) 1624 { 1625 pmd_t *pmd = walk_to_pmd(mm, addr); 1626 1627 if (!pmd) 1628 return NULL; 1629 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1630 } 1631 1632 static int validate_page_before_insert(struct page *page) 1633 { 1634 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1635 return -EINVAL; 1636 flush_dcache_page(page); 1637 return 0; 1638 } 1639 1640 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 1641 unsigned long addr, struct page *page, pgprot_t prot) 1642 { 1643 if (!pte_none(*pte)) 1644 return -EBUSY; 1645 /* Ok, finally just insert the thing.. */ 1646 get_page(page); 1647 inc_mm_counter_fast(mm, mm_counter_file(page)); 1648 page_add_file_rmap(page, false); 1649 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1650 return 0; 1651 } 1652 1653 /* 1654 * This is the old fallback for page remapping. 1655 * 1656 * For historical reasons, it only allows reserved pages. Only 1657 * old drivers should use this, and they needed to mark their 1658 * pages reserved for the old functions anyway. 1659 */ 1660 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1661 struct page *page, pgprot_t prot) 1662 { 1663 struct mm_struct *mm = vma->vm_mm; 1664 int retval; 1665 pte_t *pte; 1666 spinlock_t *ptl; 1667 1668 retval = validate_page_before_insert(page); 1669 if (retval) 1670 goto out; 1671 retval = -ENOMEM; 1672 pte = get_locked_pte(mm, addr, &ptl); 1673 if (!pte) 1674 goto out; 1675 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 1676 pte_unmap_unlock(pte, ptl); 1677 out: 1678 return retval; 1679 } 1680 1681 #ifdef pte_index 1682 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, 1683 unsigned long addr, struct page *page, pgprot_t prot) 1684 { 1685 int err; 1686 1687 if (!page_count(page)) 1688 return -EINVAL; 1689 err = validate_page_before_insert(page); 1690 if (err) 1691 return err; 1692 return insert_page_into_pte_locked(mm, pte, addr, page, prot); 1693 } 1694 1695 /* insert_pages() amortizes the cost of spinlock operations 1696 * when inserting pages in a loop. Arch *must* define pte_index. 1697 */ 1698 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1699 struct page **pages, unsigned long *num, pgprot_t prot) 1700 { 1701 pmd_t *pmd = NULL; 1702 pte_t *start_pte, *pte; 1703 spinlock_t *pte_lock; 1704 struct mm_struct *const mm = vma->vm_mm; 1705 unsigned long curr_page_idx = 0; 1706 unsigned long remaining_pages_total = *num; 1707 unsigned long pages_to_write_in_pmd; 1708 int ret; 1709 more: 1710 ret = -EFAULT; 1711 pmd = walk_to_pmd(mm, addr); 1712 if (!pmd) 1713 goto out; 1714 1715 pages_to_write_in_pmd = min_t(unsigned long, 1716 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1717 1718 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1719 ret = -ENOMEM; 1720 if (pte_alloc(mm, pmd)) 1721 goto out; 1722 1723 while (pages_to_write_in_pmd) { 1724 int pte_idx = 0; 1725 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1726 1727 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1728 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1729 int err = insert_page_in_batch_locked(mm, pte, 1730 addr, pages[curr_page_idx], prot); 1731 if (unlikely(err)) { 1732 pte_unmap_unlock(start_pte, pte_lock); 1733 ret = err; 1734 remaining_pages_total -= pte_idx; 1735 goto out; 1736 } 1737 addr += PAGE_SIZE; 1738 ++curr_page_idx; 1739 } 1740 pte_unmap_unlock(start_pte, pte_lock); 1741 pages_to_write_in_pmd -= batch_size; 1742 remaining_pages_total -= batch_size; 1743 } 1744 if (remaining_pages_total) 1745 goto more; 1746 ret = 0; 1747 out: 1748 *num = remaining_pages_total; 1749 return ret; 1750 } 1751 #endif /* ifdef pte_index */ 1752 1753 /** 1754 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1755 * @vma: user vma to map to 1756 * @addr: target start user address of these pages 1757 * @pages: source kernel pages 1758 * @num: in: number of pages to map. out: number of pages that were *not* 1759 * mapped. (0 means all pages were successfully mapped). 1760 * 1761 * Preferred over vm_insert_page() when inserting multiple pages. 1762 * 1763 * In case of error, we may have mapped a subset of the provided 1764 * pages. It is the caller's responsibility to account for this case. 1765 * 1766 * The same restrictions apply as in vm_insert_page(). 1767 */ 1768 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1769 struct page **pages, unsigned long *num) 1770 { 1771 #ifdef pte_index 1772 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1773 1774 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1775 return -EFAULT; 1776 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1777 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1778 BUG_ON(vma->vm_flags & VM_PFNMAP); 1779 vma->vm_flags |= VM_MIXEDMAP; 1780 } 1781 /* Defer page refcount checking till we're about to map that page. */ 1782 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1783 #else 1784 unsigned long idx = 0, pgcount = *num; 1785 int err = -EINVAL; 1786 1787 for (; idx < pgcount; ++idx) { 1788 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1789 if (err) 1790 break; 1791 } 1792 *num = pgcount - idx; 1793 return err; 1794 #endif /* ifdef pte_index */ 1795 } 1796 EXPORT_SYMBOL(vm_insert_pages); 1797 1798 /** 1799 * vm_insert_page - insert single page into user vma 1800 * @vma: user vma to map to 1801 * @addr: target user address of this page 1802 * @page: source kernel page 1803 * 1804 * This allows drivers to insert individual pages they've allocated 1805 * into a user vma. 1806 * 1807 * The page has to be a nice clean _individual_ kernel allocation. 1808 * If you allocate a compound page, you need to have marked it as 1809 * such (__GFP_COMP), or manually just split the page up yourself 1810 * (see split_page()). 1811 * 1812 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1813 * took an arbitrary page protection parameter. This doesn't allow 1814 * that. Your vma protection will have to be set up correctly, which 1815 * means that if you want a shared writable mapping, you'd better 1816 * ask for a shared writable mapping! 1817 * 1818 * The page does not need to be reserved. 1819 * 1820 * Usually this function is called from f_op->mmap() handler 1821 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1822 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1823 * function from other places, for example from page-fault handler. 1824 * 1825 * Return: %0 on success, negative error code otherwise. 1826 */ 1827 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1828 struct page *page) 1829 { 1830 if (addr < vma->vm_start || addr >= vma->vm_end) 1831 return -EFAULT; 1832 if (!page_count(page)) 1833 return -EINVAL; 1834 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1835 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1836 BUG_ON(vma->vm_flags & VM_PFNMAP); 1837 vma->vm_flags |= VM_MIXEDMAP; 1838 } 1839 return insert_page(vma, addr, page, vma->vm_page_prot); 1840 } 1841 EXPORT_SYMBOL(vm_insert_page); 1842 1843 /* 1844 * __vm_map_pages - maps range of kernel pages into user vma 1845 * @vma: user vma to map to 1846 * @pages: pointer to array of source kernel pages 1847 * @num: number of pages in page array 1848 * @offset: user's requested vm_pgoff 1849 * 1850 * This allows drivers to map range of kernel pages into a user vma. 1851 * 1852 * Return: 0 on success and error code otherwise. 1853 */ 1854 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1855 unsigned long num, unsigned long offset) 1856 { 1857 unsigned long count = vma_pages(vma); 1858 unsigned long uaddr = vma->vm_start; 1859 int ret, i; 1860 1861 /* Fail if the user requested offset is beyond the end of the object */ 1862 if (offset >= num) 1863 return -ENXIO; 1864 1865 /* Fail if the user requested size exceeds available object size */ 1866 if (count > num - offset) 1867 return -ENXIO; 1868 1869 for (i = 0; i < count; i++) { 1870 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1871 if (ret < 0) 1872 return ret; 1873 uaddr += PAGE_SIZE; 1874 } 1875 1876 return 0; 1877 } 1878 1879 /** 1880 * vm_map_pages - maps range of kernel pages starts with non zero offset 1881 * @vma: user vma to map to 1882 * @pages: pointer to array of source kernel pages 1883 * @num: number of pages in page array 1884 * 1885 * Maps an object consisting of @num pages, catering for the user's 1886 * requested vm_pgoff 1887 * 1888 * If we fail to insert any page into the vma, the function will return 1889 * immediately leaving any previously inserted pages present. Callers 1890 * from the mmap handler may immediately return the error as their caller 1891 * will destroy the vma, removing any successfully inserted pages. Other 1892 * callers should make their own arrangements for calling unmap_region(). 1893 * 1894 * Context: Process context. Called by mmap handlers. 1895 * Return: 0 on success and error code otherwise. 1896 */ 1897 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1898 unsigned long num) 1899 { 1900 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1901 } 1902 EXPORT_SYMBOL(vm_map_pages); 1903 1904 /** 1905 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1906 * @vma: user vma to map to 1907 * @pages: pointer to array of source kernel pages 1908 * @num: number of pages in page array 1909 * 1910 * Similar to vm_map_pages(), except that it explicitly sets the offset 1911 * to 0. This function is intended for the drivers that did not consider 1912 * vm_pgoff. 1913 * 1914 * Context: Process context. Called by mmap handlers. 1915 * Return: 0 on success and error code otherwise. 1916 */ 1917 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1918 unsigned long num) 1919 { 1920 return __vm_map_pages(vma, pages, num, 0); 1921 } 1922 EXPORT_SYMBOL(vm_map_pages_zero); 1923 1924 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1925 pfn_t pfn, pgprot_t prot, bool mkwrite) 1926 { 1927 struct mm_struct *mm = vma->vm_mm; 1928 pte_t *pte, entry; 1929 spinlock_t *ptl; 1930 1931 pte = get_locked_pte(mm, addr, &ptl); 1932 if (!pte) 1933 return VM_FAULT_OOM; 1934 if (!pte_none(*pte)) { 1935 if (mkwrite) { 1936 /* 1937 * For read faults on private mappings the PFN passed 1938 * in may not match the PFN we have mapped if the 1939 * mapped PFN is a writeable COW page. In the mkwrite 1940 * case we are creating a writable PTE for a shared 1941 * mapping and we expect the PFNs to match. If they 1942 * don't match, we are likely racing with block 1943 * allocation and mapping invalidation so just skip the 1944 * update. 1945 */ 1946 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1947 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1948 goto out_unlock; 1949 } 1950 entry = pte_mkyoung(*pte); 1951 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1952 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1953 update_mmu_cache(vma, addr, pte); 1954 } 1955 goto out_unlock; 1956 } 1957 1958 /* Ok, finally just insert the thing.. */ 1959 if (pfn_t_devmap(pfn)) 1960 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1961 else 1962 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1963 1964 if (mkwrite) { 1965 entry = pte_mkyoung(entry); 1966 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1967 } 1968 1969 set_pte_at(mm, addr, pte, entry); 1970 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1971 1972 out_unlock: 1973 pte_unmap_unlock(pte, ptl); 1974 return VM_FAULT_NOPAGE; 1975 } 1976 1977 /** 1978 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1979 * @vma: user vma to map to 1980 * @addr: target user address of this page 1981 * @pfn: source kernel pfn 1982 * @pgprot: pgprot flags for the inserted page 1983 * 1984 * This is exactly like vmf_insert_pfn(), except that it allows drivers 1985 * to override pgprot on a per-page basis. 1986 * 1987 * This only makes sense for IO mappings, and it makes no sense for 1988 * COW mappings. In general, using multiple vmas is preferable; 1989 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1990 * impractical. 1991 * 1992 * See vmf_insert_mixed_prot() for a discussion of the implication of using 1993 * a value of @pgprot different from that of @vma->vm_page_prot. 1994 * 1995 * Context: Process context. May allocate using %GFP_KERNEL. 1996 * Return: vm_fault_t value. 1997 */ 1998 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1999 unsigned long pfn, pgprot_t pgprot) 2000 { 2001 /* 2002 * Technically, architectures with pte_special can avoid all these 2003 * restrictions (same for remap_pfn_range). However we would like 2004 * consistency in testing and feature parity among all, so we should 2005 * try to keep these invariants in place for everybody. 2006 */ 2007 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2008 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2009 (VM_PFNMAP|VM_MIXEDMAP)); 2010 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2011 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2012 2013 if (addr < vma->vm_start || addr >= vma->vm_end) 2014 return VM_FAULT_SIGBUS; 2015 2016 if (!pfn_modify_allowed(pfn, pgprot)) 2017 return VM_FAULT_SIGBUS; 2018 2019 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2020 2021 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2022 false); 2023 } 2024 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2025 2026 /** 2027 * vmf_insert_pfn - insert single pfn into user vma 2028 * @vma: user vma to map to 2029 * @addr: target user address of this page 2030 * @pfn: source kernel pfn 2031 * 2032 * Similar to vm_insert_page, this allows drivers to insert individual pages 2033 * they've allocated into a user vma. Same comments apply. 2034 * 2035 * This function should only be called from a vm_ops->fault handler, and 2036 * in that case the handler should return the result of this function. 2037 * 2038 * vma cannot be a COW mapping. 2039 * 2040 * As this is called only for pages that do not currently exist, we 2041 * do not need to flush old virtual caches or the TLB. 2042 * 2043 * Context: Process context. May allocate using %GFP_KERNEL. 2044 * Return: vm_fault_t value. 2045 */ 2046 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2047 unsigned long pfn) 2048 { 2049 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2050 } 2051 EXPORT_SYMBOL(vmf_insert_pfn); 2052 2053 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2054 { 2055 /* these checks mirror the abort conditions in vm_normal_page */ 2056 if (vma->vm_flags & VM_MIXEDMAP) 2057 return true; 2058 if (pfn_t_devmap(pfn)) 2059 return true; 2060 if (pfn_t_special(pfn)) 2061 return true; 2062 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2063 return true; 2064 return false; 2065 } 2066 2067 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2068 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 2069 bool mkwrite) 2070 { 2071 int err; 2072 2073 BUG_ON(!vm_mixed_ok(vma, pfn)); 2074 2075 if (addr < vma->vm_start || addr >= vma->vm_end) 2076 return VM_FAULT_SIGBUS; 2077 2078 track_pfn_insert(vma, &pgprot, pfn); 2079 2080 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2081 return VM_FAULT_SIGBUS; 2082 2083 /* 2084 * If we don't have pte special, then we have to use the pfn_valid() 2085 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2086 * refcount the page if pfn_valid is true (hence insert_page rather 2087 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2088 * without pte special, it would there be refcounted as a normal page. 2089 */ 2090 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2091 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2092 struct page *page; 2093 2094 /* 2095 * At this point we are committed to insert_page() 2096 * regardless of whether the caller specified flags that 2097 * result in pfn_t_has_page() == false. 2098 */ 2099 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2100 err = insert_page(vma, addr, page, pgprot); 2101 } else { 2102 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2103 } 2104 2105 if (err == -ENOMEM) 2106 return VM_FAULT_OOM; 2107 if (err < 0 && err != -EBUSY) 2108 return VM_FAULT_SIGBUS; 2109 2110 return VM_FAULT_NOPAGE; 2111 } 2112 2113 /** 2114 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 2115 * @vma: user vma to map to 2116 * @addr: target user address of this page 2117 * @pfn: source kernel pfn 2118 * @pgprot: pgprot flags for the inserted page 2119 * 2120 * This is exactly like vmf_insert_mixed(), except that it allows drivers 2121 * to override pgprot on a per-page basis. 2122 * 2123 * Typically this function should be used by drivers to set caching- and 2124 * encryption bits different than those of @vma->vm_page_prot, because 2125 * the caching- or encryption mode may not be known at mmap() time. 2126 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2127 * to set caching and encryption bits for those vmas (except for COW pages). 2128 * This is ensured by core vm only modifying these page table entries using 2129 * functions that don't touch caching- or encryption bits, using pte_modify() 2130 * if needed. (See for example mprotect()). 2131 * Also when new page-table entries are created, this is only done using the 2132 * fault() callback, and never using the value of vma->vm_page_prot, 2133 * except for page-table entries that point to anonymous pages as the result 2134 * of COW. 2135 * 2136 * Context: Process context. May allocate using %GFP_KERNEL. 2137 * Return: vm_fault_t value. 2138 */ 2139 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2140 pfn_t pfn, pgprot_t pgprot) 2141 { 2142 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 2143 } 2144 EXPORT_SYMBOL(vmf_insert_mixed_prot); 2145 2146 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2147 pfn_t pfn) 2148 { 2149 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2150 } 2151 EXPORT_SYMBOL(vmf_insert_mixed); 2152 2153 /* 2154 * If the insertion of PTE failed because someone else already added a 2155 * different entry in the mean time, we treat that as success as we assume 2156 * the same entry was actually inserted. 2157 */ 2158 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2159 unsigned long addr, pfn_t pfn) 2160 { 2161 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2162 } 2163 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2164 2165 /* 2166 * maps a range of physical memory into the requested pages. the old 2167 * mappings are removed. any references to nonexistent pages results 2168 * in null mappings (currently treated as "copy-on-access") 2169 */ 2170 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2171 unsigned long addr, unsigned long end, 2172 unsigned long pfn, pgprot_t prot) 2173 { 2174 pte_t *pte, *mapped_pte; 2175 spinlock_t *ptl; 2176 int err = 0; 2177 2178 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2179 if (!pte) 2180 return -ENOMEM; 2181 arch_enter_lazy_mmu_mode(); 2182 do { 2183 BUG_ON(!pte_none(*pte)); 2184 if (!pfn_modify_allowed(pfn, prot)) { 2185 err = -EACCES; 2186 break; 2187 } 2188 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2189 pfn++; 2190 } while (pte++, addr += PAGE_SIZE, addr != end); 2191 arch_leave_lazy_mmu_mode(); 2192 pte_unmap_unlock(mapped_pte, ptl); 2193 return err; 2194 } 2195 2196 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2197 unsigned long addr, unsigned long end, 2198 unsigned long pfn, pgprot_t prot) 2199 { 2200 pmd_t *pmd; 2201 unsigned long next; 2202 int err; 2203 2204 pfn -= addr >> PAGE_SHIFT; 2205 pmd = pmd_alloc(mm, pud, addr); 2206 if (!pmd) 2207 return -ENOMEM; 2208 VM_BUG_ON(pmd_trans_huge(*pmd)); 2209 do { 2210 next = pmd_addr_end(addr, end); 2211 err = remap_pte_range(mm, pmd, addr, next, 2212 pfn + (addr >> PAGE_SHIFT), prot); 2213 if (err) 2214 return err; 2215 } while (pmd++, addr = next, addr != end); 2216 return 0; 2217 } 2218 2219 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2220 unsigned long addr, unsigned long end, 2221 unsigned long pfn, pgprot_t prot) 2222 { 2223 pud_t *pud; 2224 unsigned long next; 2225 int err; 2226 2227 pfn -= addr >> PAGE_SHIFT; 2228 pud = pud_alloc(mm, p4d, addr); 2229 if (!pud) 2230 return -ENOMEM; 2231 do { 2232 next = pud_addr_end(addr, end); 2233 err = remap_pmd_range(mm, pud, addr, next, 2234 pfn + (addr >> PAGE_SHIFT), prot); 2235 if (err) 2236 return err; 2237 } while (pud++, addr = next, addr != end); 2238 return 0; 2239 } 2240 2241 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2242 unsigned long addr, unsigned long end, 2243 unsigned long pfn, pgprot_t prot) 2244 { 2245 p4d_t *p4d; 2246 unsigned long next; 2247 int err; 2248 2249 pfn -= addr >> PAGE_SHIFT; 2250 p4d = p4d_alloc(mm, pgd, addr); 2251 if (!p4d) 2252 return -ENOMEM; 2253 do { 2254 next = p4d_addr_end(addr, end); 2255 err = remap_pud_range(mm, p4d, addr, next, 2256 pfn + (addr >> PAGE_SHIFT), prot); 2257 if (err) 2258 return err; 2259 } while (p4d++, addr = next, addr != end); 2260 return 0; 2261 } 2262 2263 /* 2264 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2265 * must have pre-validated the caching bits of the pgprot_t. 2266 */ 2267 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2268 unsigned long pfn, unsigned long size, pgprot_t prot) 2269 { 2270 pgd_t *pgd; 2271 unsigned long next; 2272 unsigned long end = addr + PAGE_ALIGN(size); 2273 struct mm_struct *mm = vma->vm_mm; 2274 int err; 2275 2276 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2277 return -EINVAL; 2278 2279 /* 2280 * Physically remapped pages are special. Tell the 2281 * rest of the world about it: 2282 * VM_IO tells people not to look at these pages 2283 * (accesses can have side effects). 2284 * VM_PFNMAP tells the core MM that the base pages are just 2285 * raw PFN mappings, and do not have a "struct page" associated 2286 * with them. 2287 * VM_DONTEXPAND 2288 * Disable vma merging and expanding with mremap(). 2289 * VM_DONTDUMP 2290 * Omit vma from core dump, even when VM_IO turned off. 2291 * 2292 * There's a horrible special case to handle copy-on-write 2293 * behaviour that some programs depend on. We mark the "original" 2294 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2295 * See vm_normal_page() for details. 2296 */ 2297 if (is_cow_mapping(vma->vm_flags)) { 2298 if (addr != vma->vm_start || end != vma->vm_end) 2299 return -EINVAL; 2300 vma->vm_pgoff = pfn; 2301 } 2302 2303 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2304 2305 BUG_ON(addr >= end); 2306 pfn -= addr >> PAGE_SHIFT; 2307 pgd = pgd_offset(mm, addr); 2308 flush_cache_range(vma, addr, end); 2309 do { 2310 next = pgd_addr_end(addr, end); 2311 err = remap_p4d_range(mm, pgd, addr, next, 2312 pfn + (addr >> PAGE_SHIFT), prot); 2313 if (err) 2314 return err; 2315 } while (pgd++, addr = next, addr != end); 2316 2317 return 0; 2318 } 2319 2320 /** 2321 * remap_pfn_range - remap kernel memory to userspace 2322 * @vma: user vma to map to 2323 * @addr: target page aligned user address to start at 2324 * @pfn: page frame number of kernel physical memory address 2325 * @size: size of mapping area 2326 * @prot: page protection flags for this mapping 2327 * 2328 * Note: this is only safe if the mm semaphore is held when called. 2329 * 2330 * Return: %0 on success, negative error code otherwise. 2331 */ 2332 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2333 unsigned long pfn, unsigned long size, pgprot_t prot) 2334 { 2335 int err; 2336 2337 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2338 if (err) 2339 return -EINVAL; 2340 2341 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2342 if (err) 2343 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2344 return err; 2345 } 2346 EXPORT_SYMBOL(remap_pfn_range); 2347 2348 /** 2349 * vm_iomap_memory - remap memory to userspace 2350 * @vma: user vma to map to 2351 * @start: start of the physical memory to be mapped 2352 * @len: size of area 2353 * 2354 * This is a simplified io_remap_pfn_range() for common driver use. The 2355 * driver just needs to give us the physical memory range to be mapped, 2356 * we'll figure out the rest from the vma information. 2357 * 2358 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2359 * whatever write-combining details or similar. 2360 * 2361 * Return: %0 on success, negative error code otherwise. 2362 */ 2363 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2364 { 2365 unsigned long vm_len, pfn, pages; 2366 2367 /* Check that the physical memory area passed in looks valid */ 2368 if (start + len < start) 2369 return -EINVAL; 2370 /* 2371 * You *really* shouldn't map things that aren't page-aligned, 2372 * but we've historically allowed it because IO memory might 2373 * just have smaller alignment. 2374 */ 2375 len += start & ~PAGE_MASK; 2376 pfn = start >> PAGE_SHIFT; 2377 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2378 if (pfn + pages < pfn) 2379 return -EINVAL; 2380 2381 /* We start the mapping 'vm_pgoff' pages into the area */ 2382 if (vma->vm_pgoff > pages) 2383 return -EINVAL; 2384 pfn += vma->vm_pgoff; 2385 pages -= vma->vm_pgoff; 2386 2387 /* Can we fit all of the mapping? */ 2388 vm_len = vma->vm_end - vma->vm_start; 2389 if (vm_len >> PAGE_SHIFT > pages) 2390 return -EINVAL; 2391 2392 /* Ok, let it rip */ 2393 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2394 } 2395 EXPORT_SYMBOL(vm_iomap_memory); 2396 2397 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2398 unsigned long addr, unsigned long end, 2399 pte_fn_t fn, void *data, bool create, 2400 pgtbl_mod_mask *mask) 2401 { 2402 pte_t *pte, *mapped_pte; 2403 int err = 0; 2404 spinlock_t *ptl; 2405 2406 if (create) { 2407 mapped_pte = pte = (mm == &init_mm) ? 2408 pte_alloc_kernel_track(pmd, addr, mask) : 2409 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2410 if (!pte) 2411 return -ENOMEM; 2412 } else { 2413 mapped_pte = pte = (mm == &init_mm) ? 2414 pte_offset_kernel(pmd, addr) : 2415 pte_offset_map_lock(mm, pmd, addr, &ptl); 2416 } 2417 2418 BUG_ON(pmd_huge(*pmd)); 2419 2420 arch_enter_lazy_mmu_mode(); 2421 2422 if (fn) { 2423 do { 2424 if (create || !pte_none(*pte)) { 2425 err = fn(pte++, addr, data); 2426 if (err) 2427 break; 2428 } 2429 } while (addr += PAGE_SIZE, addr != end); 2430 } 2431 *mask |= PGTBL_PTE_MODIFIED; 2432 2433 arch_leave_lazy_mmu_mode(); 2434 2435 if (mm != &init_mm) 2436 pte_unmap_unlock(mapped_pte, ptl); 2437 return err; 2438 } 2439 2440 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2441 unsigned long addr, unsigned long end, 2442 pte_fn_t fn, void *data, bool create, 2443 pgtbl_mod_mask *mask) 2444 { 2445 pmd_t *pmd; 2446 unsigned long next; 2447 int err = 0; 2448 2449 BUG_ON(pud_huge(*pud)); 2450 2451 if (create) { 2452 pmd = pmd_alloc_track(mm, pud, addr, mask); 2453 if (!pmd) 2454 return -ENOMEM; 2455 } else { 2456 pmd = pmd_offset(pud, addr); 2457 } 2458 do { 2459 next = pmd_addr_end(addr, end); 2460 if (pmd_none(*pmd) && !create) 2461 continue; 2462 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2463 return -EINVAL; 2464 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2465 if (!create) 2466 continue; 2467 pmd_clear_bad(pmd); 2468 } 2469 err = apply_to_pte_range(mm, pmd, addr, next, 2470 fn, data, create, mask); 2471 if (err) 2472 break; 2473 } while (pmd++, addr = next, addr != end); 2474 2475 return err; 2476 } 2477 2478 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2479 unsigned long addr, unsigned long end, 2480 pte_fn_t fn, void *data, bool create, 2481 pgtbl_mod_mask *mask) 2482 { 2483 pud_t *pud; 2484 unsigned long next; 2485 int err = 0; 2486 2487 if (create) { 2488 pud = pud_alloc_track(mm, p4d, addr, mask); 2489 if (!pud) 2490 return -ENOMEM; 2491 } else { 2492 pud = pud_offset(p4d, addr); 2493 } 2494 do { 2495 next = pud_addr_end(addr, end); 2496 if (pud_none(*pud) && !create) 2497 continue; 2498 if (WARN_ON_ONCE(pud_leaf(*pud))) 2499 return -EINVAL; 2500 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2501 if (!create) 2502 continue; 2503 pud_clear_bad(pud); 2504 } 2505 err = apply_to_pmd_range(mm, pud, addr, next, 2506 fn, data, create, mask); 2507 if (err) 2508 break; 2509 } while (pud++, addr = next, addr != end); 2510 2511 return err; 2512 } 2513 2514 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2515 unsigned long addr, unsigned long end, 2516 pte_fn_t fn, void *data, bool create, 2517 pgtbl_mod_mask *mask) 2518 { 2519 p4d_t *p4d; 2520 unsigned long next; 2521 int err = 0; 2522 2523 if (create) { 2524 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2525 if (!p4d) 2526 return -ENOMEM; 2527 } else { 2528 p4d = p4d_offset(pgd, addr); 2529 } 2530 do { 2531 next = p4d_addr_end(addr, end); 2532 if (p4d_none(*p4d) && !create) 2533 continue; 2534 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2535 return -EINVAL; 2536 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2537 if (!create) 2538 continue; 2539 p4d_clear_bad(p4d); 2540 } 2541 err = apply_to_pud_range(mm, p4d, addr, next, 2542 fn, data, create, mask); 2543 if (err) 2544 break; 2545 } while (p4d++, addr = next, addr != end); 2546 2547 return err; 2548 } 2549 2550 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2551 unsigned long size, pte_fn_t fn, 2552 void *data, bool create) 2553 { 2554 pgd_t *pgd; 2555 unsigned long start = addr, next; 2556 unsigned long end = addr + size; 2557 pgtbl_mod_mask mask = 0; 2558 int err = 0; 2559 2560 if (WARN_ON(addr >= end)) 2561 return -EINVAL; 2562 2563 pgd = pgd_offset(mm, addr); 2564 do { 2565 next = pgd_addr_end(addr, end); 2566 if (pgd_none(*pgd) && !create) 2567 continue; 2568 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2569 return -EINVAL; 2570 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2571 if (!create) 2572 continue; 2573 pgd_clear_bad(pgd); 2574 } 2575 err = apply_to_p4d_range(mm, pgd, addr, next, 2576 fn, data, create, &mask); 2577 if (err) 2578 break; 2579 } while (pgd++, addr = next, addr != end); 2580 2581 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2582 arch_sync_kernel_mappings(start, start + size); 2583 2584 return err; 2585 } 2586 2587 /* 2588 * Scan a region of virtual memory, filling in page tables as necessary 2589 * and calling a provided function on each leaf page table. 2590 */ 2591 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2592 unsigned long size, pte_fn_t fn, void *data) 2593 { 2594 return __apply_to_page_range(mm, addr, size, fn, data, true); 2595 } 2596 EXPORT_SYMBOL_GPL(apply_to_page_range); 2597 2598 /* 2599 * Scan a region of virtual memory, calling a provided function on 2600 * each leaf page table where it exists. 2601 * 2602 * Unlike apply_to_page_range, this does _not_ fill in page tables 2603 * where they are absent. 2604 */ 2605 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2606 unsigned long size, pte_fn_t fn, void *data) 2607 { 2608 return __apply_to_page_range(mm, addr, size, fn, data, false); 2609 } 2610 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2611 2612 /* 2613 * handle_pte_fault chooses page fault handler according to an entry which was 2614 * read non-atomically. Before making any commitment, on those architectures 2615 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2616 * parts, do_swap_page must check under lock before unmapping the pte and 2617 * proceeding (but do_wp_page is only called after already making such a check; 2618 * and do_anonymous_page can safely check later on). 2619 */ 2620 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2621 pte_t *page_table, pte_t orig_pte) 2622 { 2623 int same = 1; 2624 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2625 if (sizeof(pte_t) > sizeof(unsigned long)) { 2626 spinlock_t *ptl = pte_lockptr(mm, pmd); 2627 spin_lock(ptl); 2628 same = pte_same(*page_table, orig_pte); 2629 spin_unlock(ptl); 2630 } 2631 #endif 2632 pte_unmap(page_table); 2633 return same; 2634 } 2635 2636 static inline bool cow_user_page(struct page *dst, struct page *src, 2637 struct vm_fault *vmf) 2638 { 2639 bool ret; 2640 void *kaddr; 2641 void __user *uaddr; 2642 bool locked = false; 2643 struct vm_area_struct *vma = vmf->vma; 2644 struct mm_struct *mm = vma->vm_mm; 2645 unsigned long addr = vmf->address; 2646 2647 if (likely(src)) { 2648 copy_user_highpage(dst, src, addr, vma); 2649 return true; 2650 } 2651 2652 /* 2653 * If the source page was a PFN mapping, we don't have 2654 * a "struct page" for it. We do a best-effort copy by 2655 * just copying from the original user address. If that 2656 * fails, we just zero-fill it. Live with it. 2657 */ 2658 kaddr = kmap_atomic(dst); 2659 uaddr = (void __user *)(addr & PAGE_MASK); 2660 2661 /* 2662 * On architectures with software "accessed" bits, we would 2663 * take a double page fault, so mark it accessed here. 2664 */ 2665 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2666 pte_t entry; 2667 2668 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2669 locked = true; 2670 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2671 /* 2672 * Other thread has already handled the fault 2673 * and update local tlb only 2674 */ 2675 update_mmu_tlb(vma, addr, vmf->pte); 2676 ret = false; 2677 goto pte_unlock; 2678 } 2679 2680 entry = pte_mkyoung(vmf->orig_pte); 2681 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2682 update_mmu_cache(vma, addr, vmf->pte); 2683 } 2684 2685 /* 2686 * This really shouldn't fail, because the page is there 2687 * in the page tables. But it might just be unreadable, 2688 * in which case we just give up and fill the result with 2689 * zeroes. 2690 */ 2691 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2692 if (locked) 2693 goto warn; 2694 2695 /* Re-validate under PTL if the page is still mapped */ 2696 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2697 locked = true; 2698 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2699 /* The PTE changed under us, update local tlb */ 2700 update_mmu_tlb(vma, addr, vmf->pte); 2701 ret = false; 2702 goto pte_unlock; 2703 } 2704 2705 /* 2706 * The same page can be mapped back since last copy attempt. 2707 * Try to copy again under PTL. 2708 */ 2709 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2710 /* 2711 * Give a warn in case there can be some obscure 2712 * use-case 2713 */ 2714 warn: 2715 WARN_ON_ONCE(1); 2716 clear_page(kaddr); 2717 } 2718 } 2719 2720 ret = true; 2721 2722 pte_unlock: 2723 if (locked) 2724 pte_unmap_unlock(vmf->pte, vmf->ptl); 2725 kunmap_atomic(kaddr); 2726 flush_dcache_page(dst); 2727 2728 return ret; 2729 } 2730 2731 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2732 { 2733 struct file *vm_file = vma->vm_file; 2734 2735 if (vm_file) 2736 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2737 2738 /* 2739 * Special mappings (e.g. VDSO) do not have any file so fake 2740 * a default GFP_KERNEL for them. 2741 */ 2742 return GFP_KERNEL; 2743 } 2744 2745 /* 2746 * Notify the address space that the page is about to become writable so that 2747 * it can prohibit this or wait for the page to get into an appropriate state. 2748 * 2749 * We do this without the lock held, so that it can sleep if it needs to. 2750 */ 2751 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2752 { 2753 vm_fault_t ret; 2754 struct page *page = vmf->page; 2755 unsigned int old_flags = vmf->flags; 2756 2757 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2758 2759 if (vmf->vma->vm_file && 2760 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2761 return VM_FAULT_SIGBUS; 2762 2763 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2764 /* Restore original flags so that caller is not surprised */ 2765 vmf->flags = old_flags; 2766 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2767 return ret; 2768 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2769 lock_page(page); 2770 if (!page->mapping) { 2771 unlock_page(page); 2772 return 0; /* retry */ 2773 } 2774 ret |= VM_FAULT_LOCKED; 2775 } else 2776 VM_BUG_ON_PAGE(!PageLocked(page), page); 2777 return ret; 2778 } 2779 2780 /* 2781 * Handle dirtying of a page in shared file mapping on a write fault. 2782 * 2783 * The function expects the page to be locked and unlocks it. 2784 */ 2785 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2786 { 2787 struct vm_area_struct *vma = vmf->vma; 2788 struct address_space *mapping; 2789 struct page *page = vmf->page; 2790 bool dirtied; 2791 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2792 2793 dirtied = set_page_dirty(page); 2794 VM_BUG_ON_PAGE(PageAnon(page), page); 2795 /* 2796 * Take a local copy of the address_space - page.mapping may be zeroed 2797 * by truncate after unlock_page(). The address_space itself remains 2798 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2799 * release semantics to prevent the compiler from undoing this copying. 2800 */ 2801 mapping = page_rmapping(page); 2802 unlock_page(page); 2803 2804 if (!page_mkwrite) 2805 file_update_time(vma->vm_file); 2806 2807 /* 2808 * Throttle page dirtying rate down to writeback speed. 2809 * 2810 * mapping may be NULL here because some device drivers do not 2811 * set page.mapping but still dirty their pages 2812 * 2813 * Drop the mmap_lock before waiting on IO, if we can. The file 2814 * is pinning the mapping, as per above. 2815 */ 2816 if ((dirtied || page_mkwrite) && mapping) { 2817 struct file *fpin; 2818 2819 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2820 balance_dirty_pages_ratelimited(mapping); 2821 if (fpin) { 2822 fput(fpin); 2823 return VM_FAULT_RETRY; 2824 } 2825 } 2826 2827 return 0; 2828 } 2829 2830 /* 2831 * Handle write page faults for pages that can be reused in the current vma 2832 * 2833 * This can happen either due to the mapping being with the VM_SHARED flag, 2834 * or due to us being the last reference standing to the page. In either 2835 * case, all we need to do here is to mark the page as writable and update 2836 * any related book-keeping. 2837 */ 2838 static inline void wp_page_reuse(struct vm_fault *vmf) 2839 __releases(vmf->ptl) 2840 { 2841 struct vm_area_struct *vma = vmf->vma; 2842 struct page *page = vmf->page; 2843 pte_t entry; 2844 /* 2845 * Clear the pages cpupid information as the existing 2846 * information potentially belongs to a now completely 2847 * unrelated process. 2848 */ 2849 if (page) 2850 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2851 2852 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2853 entry = pte_mkyoung(vmf->orig_pte); 2854 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2855 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2856 update_mmu_cache(vma, vmf->address, vmf->pte); 2857 pte_unmap_unlock(vmf->pte, vmf->ptl); 2858 count_vm_event(PGREUSE); 2859 } 2860 2861 /* 2862 * Handle the case of a page which we actually need to copy to a new page. 2863 * 2864 * Called with mmap_lock locked and the old page referenced, but 2865 * without the ptl held. 2866 * 2867 * High level logic flow: 2868 * 2869 * - Allocate a page, copy the content of the old page to the new one. 2870 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2871 * - Take the PTL. If the pte changed, bail out and release the allocated page 2872 * - If the pte is still the way we remember it, update the page table and all 2873 * relevant references. This includes dropping the reference the page-table 2874 * held to the old page, as well as updating the rmap. 2875 * - In any case, unlock the PTL and drop the reference we took to the old page. 2876 */ 2877 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2878 { 2879 struct vm_area_struct *vma = vmf->vma; 2880 struct mm_struct *mm = vma->vm_mm; 2881 struct page *old_page = vmf->page; 2882 struct page *new_page = NULL; 2883 pte_t entry; 2884 int page_copied = 0; 2885 struct mmu_notifier_range range; 2886 2887 if (unlikely(anon_vma_prepare(vma))) 2888 goto oom; 2889 2890 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2891 new_page = alloc_zeroed_user_highpage_movable(vma, 2892 vmf->address); 2893 if (!new_page) 2894 goto oom; 2895 } else { 2896 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2897 vmf->address); 2898 if (!new_page) 2899 goto oom; 2900 2901 if (!cow_user_page(new_page, old_page, vmf)) { 2902 /* 2903 * COW failed, if the fault was solved by other, 2904 * it's fine. If not, userspace would re-fault on 2905 * the same address and we will handle the fault 2906 * from the second attempt. 2907 */ 2908 put_page(new_page); 2909 if (old_page) 2910 put_page(old_page); 2911 return 0; 2912 } 2913 } 2914 2915 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 2916 goto oom_free_new; 2917 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 2918 2919 __SetPageUptodate(new_page); 2920 2921 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2922 vmf->address & PAGE_MASK, 2923 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2924 mmu_notifier_invalidate_range_start(&range); 2925 2926 /* 2927 * Re-check the pte - we dropped the lock 2928 */ 2929 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2930 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2931 if (old_page) { 2932 if (!PageAnon(old_page)) { 2933 dec_mm_counter_fast(mm, 2934 mm_counter_file(old_page)); 2935 inc_mm_counter_fast(mm, MM_ANONPAGES); 2936 } 2937 } else { 2938 inc_mm_counter_fast(mm, MM_ANONPAGES); 2939 } 2940 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2941 entry = mk_pte(new_page, vma->vm_page_prot); 2942 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2943 2944 /* 2945 * Clear the pte entry and flush it first, before updating the 2946 * pte with the new entry, to keep TLBs on different CPUs in 2947 * sync. This code used to set the new PTE then flush TLBs, but 2948 * that left a window where the new PTE could be loaded into 2949 * some TLBs while the old PTE remains in others. 2950 */ 2951 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2952 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2953 lru_cache_add_inactive_or_unevictable(new_page, vma); 2954 /* 2955 * We call the notify macro here because, when using secondary 2956 * mmu page tables (such as kvm shadow page tables), we want the 2957 * new page to be mapped directly into the secondary page table. 2958 */ 2959 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2960 update_mmu_cache(vma, vmf->address, vmf->pte); 2961 if (old_page) { 2962 /* 2963 * Only after switching the pte to the new page may 2964 * we remove the mapcount here. Otherwise another 2965 * process may come and find the rmap count decremented 2966 * before the pte is switched to the new page, and 2967 * "reuse" the old page writing into it while our pte 2968 * here still points into it and can be read by other 2969 * threads. 2970 * 2971 * The critical issue is to order this 2972 * page_remove_rmap with the ptp_clear_flush above. 2973 * Those stores are ordered by (if nothing else,) 2974 * the barrier present in the atomic_add_negative 2975 * in page_remove_rmap. 2976 * 2977 * Then the TLB flush in ptep_clear_flush ensures that 2978 * no process can access the old page before the 2979 * decremented mapcount is visible. And the old page 2980 * cannot be reused until after the decremented 2981 * mapcount is visible. So transitively, TLBs to 2982 * old page will be flushed before it can be reused. 2983 */ 2984 page_remove_rmap(old_page, false); 2985 } 2986 2987 /* Free the old page.. */ 2988 new_page = old_page; 2989 page_copied = 1; 2990 } else { 2991 update_mmu_tlb(vma, vmf->address, vmf->pte); 2992 } 2993 2994 if (new_page) 2995 put_page(new_page); 2996 2997 pte_unmap_unlock(vmf->pte, vmf->ptl); 2998 /* 2999 * No need to double call mmu_notifier->invalidate_range() callback as 3000 * the above ptep_clear_flush_notify() did already call it. 3001 */ 3002 mmu_notifier_invalidate_range_only_end(&range); 3003 if (old_page) { 3004 /* 3005 * Don't let another task, with possibly unlocked vma, 3006 * keep the mlocked page. 3007 */ 3008 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 3009 lock_page(old_page); /* LRU manipulation */ 3010 if (PageMlocked(old_page)) 3011 munlock_vma_page(old_page); 3012 unlock_page(old_page); 3013 } 3014 put_page(old_page); 3015 } 3016 return page_copied ? VM_FAULT_WRITE : 0; 3017 oom_free_new: 3018 put_page(new_page); 3019 oom: 3020 if (old_page) 3021 put_page(old_page); 3022 return VM_FAULT_OOM; 3023 } 3024 3025 /** 3026 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3027 * writeable once the page is prepared 3028 * 3029 * @vmf: structure describing the fault 3030 * 3031 * This function handles all that is needed to finish a write page fault in a 3032 * shared mapping due to PTE being read-only once the mapped page is prepared. 3033 * It handles locking of PTE and modifying it. 3034 * 3035 * The function expects the page to be locked or other protection against 3036 * concurrent faults / writeback (such as DAX radix tree locks). 3037 * 3038 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 3039 * we acquired PTE lock. 3040 */ 3041 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3042 { 3043 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3044 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3045 &vmf->ptl); 3046 /* 3047 * We might have raced with another page fault while we released the 3048 * pte_offset_map_lock. 3049 */ 3050 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3051 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3052 pte_unmap_unlock(vmf->pte, vmf->ptl); 3053 return VM_FAULT_NOPAGE; 3054 } 3055 wp_page_reuse(vmf); 3056 return 0; 3057 } 3058 3059 /* 3060 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3061 * mapping 3062 */ 3063 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3064 { 3065 struct vm_area_struct *vma = vmf->vma; 3066 3067 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3068 vm_fault_t ret; 3069 3070 pte_unmap_unlock(vmf->pte, vmf->ptl); 3071 vmf->flags |= FAULT_FLAG_MKWRITE; 3072 ret = vma->vm_ops->pfn_mkwrite(vmf); 3073 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3074 return ret; 3075 return finish_mkwrite_fault(vmf); 3076 } 3077 wp_page_reuse(vmf); 3078 return VM_FAULT_WRITE; 3079 } 3080 3081 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3082 __releases(vmf->ptl) 3083 { 3084 struct vm_area_struct *vma = vmf->vma; 3085 vm_fault_t ret = VM_FAULT_WRITE; 3086 3087 get_page(vmf->page); 3088 3089 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3090 vm_fault_t tmp; 3091 3092 pte_unmap_unlock(vmf->pte, vmf->ptl); 3093 tmp = do_page_mkwrite(vmf); 3094 if (unlikely(!tmp || (tmp & 3095 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3096 put_page(vmf->page); 3097 return tmp; 3098 } 3099 tmp = finish_mkwrite_fault(vmf); 3100 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3101 unlock_page(vmf->page); 3102 put_page(vmf->page); 3103 return tmp; 3104 } 3105 } else { 3106 wp_page_reuse(vmf); 3107 lock_page(vmf->page); 3108 } 3109 ret |= fault_dirty_shared_page(vmf); 3110 put_page(vmf->page); 3111 3112 return ret; 3113 } 3114 3115 /* 3116 * This routine handles present pages, when users try to write 3117 * to a shared page. It is done by copying the page to a new address 3118 * and decrementing the shared-page counter for the old page. 3119 * 3120 * Note that this routine assumes that the protection checks have been 3121 * done by the caller (the low-level page fault routine in most cases). 3122 * Thus we can safely just mark it writable once we've done any necessary 3123 * COW. 3124 * 3125 * We also mark the page dirty at this point even though the page will 3126 * change only once the write actually happens. This avoids a few races, 3127 * and potentially makes it more efficient. 3128 * 3129 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3130 * but allow concurrent faults), with pte both mapped and locked. 3131 * We return with mmap_lock still held, but pte unmapped and unlocked. 3132 */ 3133 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3134 __releases(vmf->ptl) 3135 { 3136 struct vm_area_struct *vma = vmf->vma; 3137 3138 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3139 pte_unmap_unlock(vmf->pte, vmf->ptl); 3140 return handle_userfault(vmf, VM_UFFD_WP); 3141 } 3142 3143 /* 3144 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3145 * is flushed in this case before copying. 3146 */ 3147 if (unlikely(userfaultfd_wp(vmf->vma) && 3148 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3149 flush_tlb_page(vmf->vma, vmf->address); 3150 3151 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3152 if (!vmf->page) { 3153 /* 3154 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3155 * VM_PFNMAP VMA. 3156 * 3157 * We should not cow pages in a shared writeable mapping. 3158 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3159 */ 3160 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3161 (VM_WRITE|VM_SHARED)) 3162 return wp_pfn_shared(vmf); 3163 3164 pte_unmap_unlock(vmf->pte, vmf->ptl); 3165 return wp_page_copy(vmf); 3166 } 3167 3168 /* 3169 * Take out anonymous pages first, anonymous shared vmas are 3170 * not dirty accountable. 3171 */ 3172 if (PageAnon(vmf->page)) { 3173 struct page *page = vmf->page; 3174 3175 /* PageKsm() doesn't necessarily raise the page refcount */ 3176 if (PageKsm(page) || page_count(page) != 1) 3177 goto copy; 3178 if (!trylock_page(page)) 3179 goto copy; 3180 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { 3181 unlock_page(page); 3182 goto copy; 3183 } 3184 /* 3185 * Ok, we've got the only map reference, and the only 3186 * page count reference, and the page is locked, 3187 * it's dark out, and we're wearing sunglasses. Hit it. 3188 */ 3189 unlock_page(page); 3190 wp_page_reuse(vmf); 3191 return VM_FAULT_WRITE; 3192 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3193 (VM_WRITE|VM_SHARED))) { 3194 return wp_page_shared(vmf); 3195 } 3196 copy: 3197 /* 3198 * Ok, we need to copy. Oh, well.. 3199 */ 3200 get_page(vmf->page); 3201 3202 pte_unmap_unlock(vmf->pte, vmf->ptl); 3203 return wp_page_copy(vmf); 3204 } 3205 3206 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3207 unsigned long start_addr, unsigned long end_addr, 3208 struct zap_details *details) 3209 { 3210 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3211 } 3212 3213 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3214 struct zap_details *details) 3215 { 3216 struct vm_area_struct *vma; 3217 pgoff_t vba, vea, zba, zea; 3218 3219 vma_interval_tree_foreach(vma, root, 3220 details->first_index, details->last_index) { 3221 3222 vba = vma->vm_pgoff; 3223 vea = vba + vma_pages(vma) - 1; 3224 zba = details->first_index; 3225 if (zba < vba) 3226 zba = vba; 3227 zea = details->last_index; 3228 if (zea > vea) 3229 zea = vea; 3230 3231 unmap_mapping_range_vma(vma, 3232 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3233 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3234 details); 3235 } 3236 } 3237 3238 /** 3239 * unmap_mapping_pages() - Unmap pages from processes. 3240 * @mapping: The address space containing pages to be unmapped. 3241 * @start: Index of first page to be unmapped. 3242 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3243 * @even_cows: Whether to unmap even private COWed pages. 3244 * 3245 * Unmap the pages in this address space from any userspace process which 3246 * has them mmaped. Generally, you want to remove COWed pages as well when 3247 * a file is being truncated, but not when invalidating pages from the page 3248 * cache. 3249 */ 3250 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3251 pgoff_t nr, bool even_cows) 3252 { 3253 struct zap_details details = { }; 3254 3255 details.check_mapping = even_cows ? NULL : mapping; 3256 details.first_index = start; 3257 details.last_index = start + nr - 1; 3258 if (details.last_index < details.first_index) 3259 details.last_index = ULONG_MAX; 3260 3261 i_mmap_lock_write(mapping); 3262 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3263 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3264 i_mmap_unlock_write(mapping); 3265 } 3266 3267 /** 3268 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3269 * address_space corresponding to the specified byte range in the underlying 3270 * file. 3271 * 3272 * @mapping: the address space containing mmaps to be unmapped. 3273 * @holebegin: byte in first page to unmap, relative to the start of 3274 * the underlying file. This will be rounded down to a PAGE_SIZE 3275 * boundary. Note that this is different from truncate_pagecache(), which 3276 * must keep the partial page. In contrast, we must get rid of 3277 * partial pages. 3278 * @holelen: size of prospective hole in bytes. This will be rounded 3279 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3280 * end of the file. 3281 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3282 * but 0 when invalidating pagecache, don't throw away private data. 3283 */ 3284 void unmap_mapping_range(struct address_space *mapping, 3285 loff_t const holebegin, loff_t const holelen, int even_cows) 3286 { 3287 pgoff_t hba = holebegin >> PAGE_SHIFT; 3288 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3289 3290 /* Check for overflow. */ 3291 if (sizeof(holelen) > sizeof(hlen)) { 3292 long long holeend = 3293 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3294 if (holeend & ~(long long)ULONG_MAX) 3295 hlen = ULONG_MAX - hba + 1; 3296 } 3297 3298 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3299 } 3300 EXPORT_SYMBOL(unmap_mapping_range); 3301 3302 /* 3303 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3304 * but allow concurrent faults), and pte mapped but not yet locked. 3305 * We return with pte unmapped and unlocked. 3306 * 3307 * We return with the mmap_lock locked or unlocked in the same cases 3308 * as does filemap_fault(). 3309 */ 3310 vm_fault_t do_swap_page(struct vm_fault *vmf) 3311 { 3312 struct vm_area_struct *vma = vmf->vma; 3313 struct page *page = NULL, *swapcache; 3314 swp_entry_t entry; 3315 pte_t pte; 3316 int locked; 3317 int exclusive = 0; 3318 vm_fault_t ret = 0; 3319 void *shadow = NULL; 3320 3321 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 3322 goto out; 3323 3324 entry = pte_to_swp_entry(vmf->orig_pte); 3325 if (unlikely(non_swap_entry(entry))) { 3326 if (is_migration_entry(entry)) { 3327 migration_entry_wait(vma->vm_mm, vmf->pmd, 3328 vmf->address); 3329 } else if (is_device_private_entry(entry)) { 3330 vmf->page = device_private_entry_to_page(entry); 3331 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3332 } else if (is_hwpoison_entry(entry)) { 3333 ret = VM_FAULT_HWPOISON; 3334 } else { 3335 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3336 ret = VM_FAULT_SIGBUS; 3337 } 3338 goto out; 3339 } 3340 3341 3342 delayacct_set_flag(current, DELAYACCT_PF_SWAPIN); 3343 page = lookup_swap_cache(entry, vma, vmf->address); 3344 swapcache = page; 3345 3346 if (!page) { 3347 struct swap_info_struct *si = swp_swap_info(entry); 3348 3349 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3350 __swap_count(entry) == 1) { 3351 /* skip swapcache */ 3352 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3353 vmf->address); 3354 if (page) { 3355 __SetPageLocked(page); 3356 __SetPageSwapBacked(page); 3357 3358 if (mem_cgroup_swapin_charge_page(page, 3359 vma->vm_mm, GFP_KERNEL, entry)) { 3360 ret = VM_FAULT_OOM; 3361 goto out_page; 3362 } 3363 mem_cgroup_swapin_uncharge_swap(entry); 3364 3365 shadow = get_shadow_from_swap_cache(entry); 3366 if (shadow) 3367 workingset_refault(page, shadow); 3368 3369 lru_cache_add(page); 3370 3371 /* To provide entry to swap_readpage() */ 3372 set_page_private(page, entry.val); 3373 swap_readpage(page, true); 3374 set_page_private(page, 0); 3375 } 3376 } else { 3377 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3378 vmf); 3379 swapcache = page; 3380 } 3381 3382 if (!page) { 3383 /* 3384 * Back out if somebody else faulted in this pte 3385 * while we released the pte lock. 3386 */ 3387 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3388 vmf->address, &vmf->ptl); 3389 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3390 ret = VM_FAULT_OOM; 3391 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN); 3392 goto unlock; 3393 } 3394 3395 /* Had to read the page from swap area: Major fault */ 3396 ret = VM_FAULT_MAJOR; 3397 count_vm_event(PGMAJFAULT); 3398 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3399 } else if (PageHWPoison(page)) { 3400 /* 3401 * hwpoisoned dirty swapcache pages are kept for killing 3402 * owner processes (which may be unknown at hwpoison time) 3403 */ 3404 ret = VM_FAULT_HWPOISON; 3405 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN); 3406 goto out_release; 3407 } 3408 3409 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3410 3411 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN); 3412 if (!locked) { 3413 ret |= VM_FAULT_RETRY; 3414 goto out_release; 3415 } 3416 3417 /* 3418 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3419 * release the swapcache from under us. The page pin, and pte_same 3420 * test below, are not enough to exclude that. Even if it is still 3421 * swapcache, we need to check that the page's swap has not changed. 3422 */ 3423 if (unlikely((!PageSwapCache(page) || 3424 page_private(page) != entry.val)) && swapcache) 3425 goto out_page; 3426 3427 page = ksm_might_need_to_copy(page, vma, vmf->address); 3428 if (unlikely(!page)) { 3429 ret = VM_FAULT_OOM; 3430 page = swapcache; 3431 goto out_page; 3432 } 3433 3434 cgroup_throttle_swaprate(page, GFP_KERNEL); 3435 3436 /* 3437 * Back out if somebody else already faulted in this pte. 3438 */ 3439 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3440 &vmf->ptl); 3441 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3442 goto out_nomap; 3443 3444 if (unlikely(!PageUptodate(page))) { 3445 ret = VM_FAULT_SIGBUS; 3446 goto out_nomap; 3447 } 3448 3449 /* 3450 * The page isn't present yet, go ahead with the fault. 3451 * 3452 * Be careful about the sequence of operations here. 3453 * To get its accounting right, reuse_swap_page() must be called 3454 * while the page is counted on swap but not yet in mapcount i.e. 3455 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3456 * must be called after the swap_free(), or it will never succeed. 3457 */ 3458 3459 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3460 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3461 pte = mk_pte(page, vma->vm_page_prot); 3462 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3463 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3464 vmf->flags &= ~FAULT_FLAG_WRITE; 3465 ret |= VM_FAULT_WRITE; 3466 exclusive = RMAP_EXCLUSIVE; 3467 } 3468 flush_icache_page(vma, page); 3469 if (pte_swp_soft_dirty(vmf->orig_pte)) 3470 pte = pte_mksoft_dirty(pte); 3471 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3472 pte = pte_mkuffd_wp(pte); 3473 pte = pte_wrprotect(pte); 3474 } 3475 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3476 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3477 vmf->orig_pte = pte; 3478 3479 /* ksm created a completely new copy */ 3480 if (unlikely(page != swapcache && swapcache)) { 3481 page_add_new_anon_rmap(page, vma, vmf->address, false); 3482 lru_cache_add_inactive_or_unevictable(page, vma); 3483 } else { 3484 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3485 } 3486 3487 swap_free(entry); 3488 if (mem_cgroup_swap_full(page) || 3489 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3490 try_to_free_swap(page); 3491 unlock_page(page); 3492 if (page != swapcache && swapcache) { 3493 /* 3494 * Hold the lock to avoid the swap entry to be reused 3495 * until we take the PT lock for the pte_same() check 3496 * (to avoid false positives from pte_same). For 3497 * further safety release the lock after the swap_free 3498 * so that the swap count won't change under a 3499 * parallel locked swapcache. 3500 */ 3501 unlock_page(swapcache); 3502 put_page(swapcache); 3503 } 3504 3505 if (vmf->flags & FAULT_FLAG_WRITE) { 3506 ret |= do_wp_page(vmf); 3507 if (ret & VM_FAULT_ERROR) 3508 ret &= VM_FAULT_ERROR; 3509 goto out; 3510 } 3511 3512 /* No need to invalidate - it was non-present before */ 3513 update_mmu_cache(vma, vmf->address, vmf->pte); 3514 unlock: 3515 pte_unmap_unlock(vmf->pte, vmf->ptl); 3516 out: 3517 return ret; 3518 out_nomap: 3519 pte_unmap_unlock(vmf->pte, vmf->ptl); 3520 out_page: 3521 unlock_page(page); 3522 out_release: 3523 put_page(page); 3524 if (page != swapcache && swapcache) { 3525 unlock_page(swapcache); 3526 put_page(swapcache); 3527 } 3528 return ret; 3529 } 3530 3531 /* 3532 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3533 * but allow concurrent faults), and pte mapped but not yet locked. 3534 * We return with mmap_lock still held, but pte unmapped and unlocked. 3535 */ 3536 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3537 { 3538 struct vm_area_struct *vma = vmf->vma; 3539 struct page *page; 3540 vm_fault_t ret = 0; 3541 pte_t entry; 3542 3543 /* File mapping without ->vm_ops ? */ 3544 if (vma->vm_flags & VM_SHARED) 3545 return VM_FAULT_SIGBUS; 3546 3547 /* 3548 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3549 * pte_offset_map() on pmds where a huge pmd might be created 3550 * from a different thread. 3551 * 3552 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 3553 * parallel threads are excluded by other means. 3554 * 3555 * Here we only have mmap_read_lock(mm). 3556 */ 3557 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3558 return VM_FAULT_OOM; 3559 3560 /* See comment in handle_pte_fault() */ 3561 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3562 return 0; 3563 3564 /* Use the zero-page for reads */ 3565 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3566 !mm_forbids_zeropage(vma->vm_mm)) { 3567 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3568 vma->vm_page_prot)); 3569 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3570 vmf->address, &vmf->ptl); 3571 if (!pte_none(*vmf->pte)) { 3572 update_mmu_tlb(vma, vmf->address, vmf->pte); 3573 goto unlock; 3574 } 3575 ret = check_stable_address_space(vma->vm_mm); 3576 if (ret) 3577 goto unlock; 3578 /* Deliver the page fault to userland, check inside PT lock */ 3579 if (userfaultfd_missing(vma)) { 3580 pte_unmap_unlock(vmf->pte, vmf->ptl); 3581 return handle_userfault(vmf, VM_UFFD_MISSING); 3582 } 3583 goto setpte; 3584 } 3585 3586 /* Allocate our own private page. */ 3587 if (unlikely(anon_vma_prepare(vma))) 3588 goto oom; 3589 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3590 if (!page) 3591 goto oom; 3592 3593 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 3594 goto oom_free_page; 3595 cgroup_throttle_swaprate(page, GFP_KERNEL); 3596 3597 /* 3598 * The memory barrier inside __SetPageUptodate makes sure that 3599 * preceding stores to the page contents become visible before 3600 * the set_pte_at() write. 3601 */ 3602 __SetPageUptodate(page); 3603 3604 entry = mk_pte(page, vma->vm_page_prot); 3605 if (vma->vm_flags & VM_WRITE) 3606 entry = pte_mkwrite(pte_mkdirty(entry)); 3607 3608 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3609 &vmf->ptl); 3610 if (!pte_none(*vmf->pte)) { 3611 update_mmu_cache(vma, vmf->address, vmf->pte); 3612 goto release; 3613 } 3614 3615 ret = check_stable_address_space(vma->vm_mm); 3616 if (ret) 3617 goto release; 3618 3619 /* Deliver the page fault to userland, check inside PT lock */ 3620 if (userfaultfd_missing(vma)) { 3621 pte_unmap_unlock(vmf->pte, vmf->ptl); 3622 put_page(page); 3623 return handle_userfault(vmf, VM_UFFD_MISSING); 3624 } 3625 3626 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3627 page_add_new_anon_rmap(page, vma, vmf->address, false); 3628 lru_cache_add_inactive_or_unevictable(page, vma); 3629 setpte: 3630 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3631 3632 /* No need to invalidate - it was non-present before */ 3633 update_mmu_cache(vma, vmf->address, vmf->pte); 3634 unlock: 3635 pte_unmap_unlock(vmf->pte, vmf->ptl); 3636 return ret; 3637 release: 3638 put_page(page); 3639 goto unlock; 3640 oom_free_page: 3641 put_page(page); 3642 oom: 3643 return VM_FAULT_OOM; 3644 } 3645 3646 /* 3647 * The mmap_lock must have been held on entry, and may have been 3648 * released depending on flags and vma->vm_ops->fault() return value. 3649 * See filemap_fault() and __lock_page_retry(). 3650 */ 3651 static vm_fault_t __do_fault(struct vm_fault *vmf) 3652 { 3653 struct vm_area_struct *vma = vmf->vma; 3654 vm_fault_t ret; 3655 3656 /* 3657 * Preallocate pte before we take page_lock because this might lead to 3658 * deadlocks for memcg reclaim which waits for pages under writeback: 3659 * lock_page(A) 3660 * SetPageWriteback(A) 3661 * unlock_page(A) 3662 * lock_page(B) 3663 * lock_page(B) 3664 * pte_alloc_one 3665 * shrink_page_list 3666 * wait_on_page_writeback(A) 3667 * SetPageWriteback(B) 3668 * unlock_page(B) 3669 * # flush A, B to clear the writeback 3670 */ 3671 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3672 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3673 if (!vmf->prealloc_pte) 3674 return VM_FAULT_OOM; 3675 smp_wmb(); /* See comment in __pte_alloc() */ 3676 } 3677 3678 ret = vma->vm_ops->fault(vmf); 3679 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3680 VM_FAULT_DONE_COW))) 3681 return ret; 3682 3683 if (unlikely(PageHWPoison(vmf->page))) { 3684 if (ret & VM_FAULT_LOCKED) 3685 unlock_page(vmf->page); 3686 put_page(vmf->page); 3687 vmf->page = NULL; 3688 return VM_FAULT_HWPOISON; 3689 } 3690 3691 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3692 lock_page(vmf->page); 3693 else 3694 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3695 3696 return ret; 3697 } 3698 3699 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3700 static void deposit_prealloc_pte(struct vm_fault *vmf) 3701 { 3702 struct vm_area_struct *vma = vmf->vma; 3703 3704 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3705 /* 3706 * We are going to consume the prealloc table, 3707 * count that as nr_ptes. 3708 */ 3709 mm_inc_nr_ptes(vma->vm_mm); 3710 vmf->prealloc_pte = NULL; 3711 } 3712 3713 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3714 { 3715 struct vm_area_struct *vma = vmf->vma; 3716 bool write = vmf->flags & FAULT_FLAG_WRITE; 3717 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3718 pmd_t entry; 3719 int i; 3720 vm_fault_t ret = VM_FAULT_FALLBACK; 3721 3722 if (!transhuge_vma_suitable(vma, haddr)) 3723 return ret; 3724 3725 page = compound_head(page); 3726 if (compound_order(page) != HPAGE_PMD_ORDER) 3727 return ret; 3728 3729 /* 3730 * Archs like ppc64 need additional space to store information 3731 * related to pte entry. Use the preallocated table for that. 3732 */ 3733 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3734 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3735 if (!vmf->prealloc_pte) 3736 return VM_FAULT_OOM; 3737 smp_wmb(); /* See comment in __pte_alloc() */ 3738 } 3739 3740 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3741 if (unlikely(!pmd_none(*vmf->pmd))) 3742 goto out; 3743 3744 for (i = 0; i < HPAGE_PMD_NR; i++) 3745 flush_icache_page(vma, page + i); 3746 3747 entry = mk_huge_pmd(page, vma->vm_page_prot); 3748 if (write) 3749 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3750 3751 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3752 page_add_file_rmap(page, true); 3753 /* 3754 * deposit and withdraw with pmd lock held 3755 */ 3756 if (arch_needs_pgtable_deposit()) 3757 deposit_prealloc_pte(vmf); 3758 3759 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3760 3761 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3762 3763 /* fault is handled */ 3764 ret = 0; 3765 count_vm_event(THP_FILE_MAPPED); 3766 out: 3767 spin_unlock(vmf->ptl); 3768 return ret; 3769 } 3770 #else 3771 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3772 { 3773 return VM_FAULT_FALLBACK; 3774 } 3775 #endif 3776 3777 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 3778 { 3779 struct vm_area_struct *vma = vmf->vma; 3780 bool write = vmf->flags & FAULT_FLAG_WRITE; 3781 bool prefault = vmf->address != addr; 3782 pte_t entry; 3783 3784 flush_icache_page(vma, page); 3785 entry = mk_pte(page, vma->vm_page_prot); 3786 3787 if (prefault && arch_wants_old_prefaulted_pte()) 3788 entry = pte_mkold(entry); 3789 3790 if (write) 3791 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3792 /* copy-on-write page */ 3793 if (write && !(vma->vm_flags & VM_SHARED)) { 3794 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3795 page_add_new_anon_rmap(page, vma, addr, false); 3796 lru_cache_add_inactive_or_unevictable(page, vma); 3797 } else { 3798 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3799 page_add_file_rmap(page, false); 3800 } 3801 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 3802 } 3803 3804 /** 3805 * finish_fault - finish page fault once we have prepared the page to fault 3806 * 3807 * @vmf: structure describing the fault 3808 * 3809 * This function handles all that is needed to finish a page fault once the 3810 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3811 * given page, adds reverse page mapping, handles memcg charges and LRU 3812 * addition. 3813 * 3814 * The function expects the page to be locked and on success it consumes a 3815 * reference of a page being mapped (for the PTE which maps it). 3816 * 3817 * Return: %0 on success, %VM_FAULT_ code in case of error. 3818 */ 3819 vm_fault_t finish_fault(struct vm_fault *vmf) 3820 { 3821 struct vm_area_struct *vma = vmf->vma; 3822 struct page *page; 3823 vm_fault_t ret; 3824 3825 /* Did we COW the page? */ 3826 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 3827 page = vmf->cow_page; 3828 else 3829 page = vmf->page; 3830 3831 /* 3832 * check even for read faults because we might have lost our CoWed 3833 * page 3834 */ 3835 if (!(vma->vm_flags & VM_SHARED)) { 3836 ret = check_stable_address_space(vma->vm_mm); 3837 if (ret) 3838 return ret; 3839 } 3840 3841 if (pmd_none(*vmf->pmd)) { 3842 if (PageTransCompound(page)) { 3843 ret = do_set_pmd(vmf, page); 3844 if (ret != VM_FAULT_FALLBACK) 3845 return ret; 3846 } 3847 3848 if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 3849 return VM_FAULT_OOM; 3850 } 3851 3852 /* See comment in handle_pte_fault() */ 3853 if (pmd_devmap_trans_unstable(vmf->pmd)) 3854 return 0; 3855 3856 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3857 vmf->address, &vmf->ptl); 3858 ret = 0; 3859 /* Re-check under ptl */ 3860 if (likely(pte_none(*vmf->pte))) 3861 do_set_pte(vmf, page, vmf->address); 3862 else 3863 ret = VM_FAULT_NOPAGE; 3864 3865 update_mmu_tlb(vma, vmf->address, vmf->pte); 3866 pte_unmap_unlock(vmf->pte, vmf->ptl); 3867 return ret; 3868 } 3869 3870 static unsigned long fault_around_bytes __read_mostly = 3871 rounddown_pow_of_two(65536); 3872 3873 #ifdef CONFIG_DEBUG_FS 3874 static int fault_around_bytes_get(void *data, u64 *val) 3875 { 3876 *val = fault_around_bytes; 3877 return 0; 3878 } 3879 3880 /* 3881 * fault_around_bytes must be rounded down to the nearest page order as it's 3882 * what do_fault_around() expects to see. 3883 */ 3884 static int fault_around_bytes_set(void *data, u64 val) 3885 { 3886 if (val / PAGE_SIZE > PTRS_PER_PTE) 3887 return -EINVAL; 3888 if (val > PAGE_SIZE) 3889 fault_around_bytes = rounddown_pow_of_two(val); 3890 else 3891 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3892 return 0; 3893 } 3894 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3895 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3896 3897 static int __init fault_around_debugfs(void) 3898 { 3899 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3900 &fault_around_bytes_fops); 3901 return 0; 3902 } 3903 late_initcall(fault_around_debugfs); 3904 #endif 3905 3906 /* 3907 * do_fault_around() tries to map few pages around the fault address. The hope 3908 * is that the pages will be needed soon and this will lower the number of 3909 * faults to handle. 3910 * 3911 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3912 * not ready to be mapped: not up-to-date, locked, etc. 3913 * 3914 * This function is called with the page table lock taken. In the split ptlock 3915 * case the page table lock only protects only those entries which belong to 3916 * the page table corresponding to the fault address. 3917 * 3918 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3919 * only once. 3920 * 3921 * fault_around_bytes defines how many bytes we'll try to map. 3922 * do_fault_around() expects it to be set to a power of two less than or equal 3923 * to PTRS_PER_PTE. 3924 * 3925 * The virtual address of the area that we map is naturally aligned to 3926 * fault_around_bytes rounded down to the machine page size 3927 * (and therefore to page order). This way it's easier to guarantee 3928 * that we don't cross page table boundaries. 3929 */ 3930 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3931 { 3932 unsigned long address = vmf->address, nr_pages, mask; 3933 pgoff_t start_pgoff = vmf->pgoff; 3934 pgoff_t end_pgoff; 3935 int off; 3936 3937 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3938 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3939 3940 address = max(address & mask, vmf->vma->vm_start); 3941 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3942 start_pgoff -= off; 3943 3944 /* 3945 * end_pgoff is either the end of the page table, the end of 3946 * the vma or nr_pages from start_pgoff, depending what is nearest. 3947 */ 3948 end_pgoff = start_pgoff - 3949 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3950 PTRS_PER_PTE - 1; 3951 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3952 start_pgoff + nr_pages - 1); 3953 3954 if (pmd_none(*vmf->pmd)) { 3955 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3956 if (!vmf->prealloc_pte) 3957 return VM_FAULT_OOM; 3958 smp_wmb(); /* See comment in __pte_alloc() */ 3959 } 3960 3961 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3962 } 3963 3964 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3965 { 3966 struct vm_area_struct *vma = vmf->vma; 3967 vm_fault_t ret = 0; 3968 3969 /* 3970 * Let's call ->map_pages() first and use ->fault() as fallback 3971 * if page by the offset is not ready to be mapped (cold cache or 3972 * something). 3973 */ 3974 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3975 ret = do_fault_around(vmf); 3976 if (ret) 3977 return ret; 3978 } 3979 3980 ret = __do_fault(vmf); 3981 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3982 return ret; 3983 3984 ret |= finish_fault(vmf); 3985 unlock_page(vmf->page); 3986 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3987 put_page(vmf->page); 3988 return ret; 3989 } 3990 3991 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3992 { 3993 struct vm_area_struct *vma = vmf->vma; 3994 vm_fault_t ret; 3995 3996 if (unlikely(anon_vma_prepare(vma))) 3997 return VM_FAULT_OOM; 3998 3999 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4000 if (!vmf->cow_page) 4001 return VM_FAULT_OOM; 4002 4003 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { 4004 put_page(vmf->cow_page); 4005 return VM_FAULT_OOM; 4006 } 4007 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 4008 4009 ret = __do_fault(vmf); 4010 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4011 goto uncharge_out; 4012 if (ret & VM_FAULT_DONE_COW) 4013 return ret; 4014 4015 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4016 __SetPageUptodate(vmf->cow_page); 4017 4018 ret |= finish_fault(vmf); 4019 unlock_page(vmf->page); 4020 put_page(vmf->page); 4021 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4022 goto uncharge_out; 4023 return ret; 4024 uncharge_out: 4025 put_page(vmf->cow_page); 4026 return ret; 4027 } 4028 4029 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4030 { 4031 struct vm_area_struct *vma = vmf->vma; 4032 vm_fault_t ret, tmp; 4033 4034 ret = __do_fault(vmf); 4035 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4036 return ret; 4037 4038 /* 4039 * Check if the backing address space wants to know that the page is 4040 * about to become writable 4041 */ 4042 if (vma->vm_ops->page_mkwrite) { 4043 unlock_page(vmf->page); 4044 tmp = do_page_mkwrite(vmf); 4045 if (unlikely(!tmp || 4046 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4047 put_page(vmf->page); 4048 return tmp; 4049 } 4050 } 4051 4052 ret |= finish_fault(vmf); 4053 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4054 VM_FAULT_RETRY))) { 4055 unlock_page(vmf->page); 4056 put_page(vmf->page); 4057 return ret; 4058 } 4059 4060 ret |= fault_dirty_shared_page(vmf); 4061 return ret; 4062 } 4063 4064 /* 4065 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4066 * but allow concurrent faults). 4067 * The mmap_lock may have been released depending on flags and our 4068 * return value. See filemap_fault() and __lock_page_or_retry(). 4069 * If mmap_lock is released, vma may become invalid (for example 4070 * by other thread calling munmap()). 4071 */ 4072 static vm_fault_t do_fault(struct vm_fault *vmf) 4073 { 4074 struct vm_area_struct *vma = vmf->vma; 4075 struct mm_struct *vm_mm = vma->vm_mm; 4076 vm_fault_t ret; 4077 4078 /* 4079 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4080 */ 4081 if (!vma->vm_ops->fault) { 4082 /* 4083 * If we find a migration pmd entry or a none pmd entry, which 4084 * should never happen, return SIGBUS 4085 */ 4086 if (unlikely(!pmd_present(*vmf->pmd))) 4087 ret = VM_FAULT_SIGBUS; 4088 else { 4089 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4090 vmf->pmd, 4091 vmf->address, 4092 &vmf->ptl); 4093 /* 4094 * Make sure this is not a temporary clearing of pte 4095 * by holding ptl and checking again. A R/M/W update 4096 * of pte involves: take ptl, clearing the pte so that 4097 * we don't have concurrent modification by hardware 4098 * followed by an update. 4099 */ 4100 if (unlikely(pte_none(*vmf->pte))) 4101 ret = VM_FAULT_SIGBUS; 4102 else 4103 ret = VM_FAULT_NOPAGE; 4104 4105 pte_unmap_unlock(vmf->pte, vmf->ptl); 4106 } 4107 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4108 ret = do_read_fault(vmf); 4109 else if (!(vma->vm_flags & VM_SHARED)) 4110 ret = do_cow_fault(vmf); 4111 else 4112 ret = do_shared_fault(vmf); 4113 4114 /* preallocated pagetable is unused: free it */ 4115 if (vmf->prealloc_pte) { 4116 pte_free(vm_mm, vmf->prealloc_pte); 4117 vmf->prealloc_pte = NULL; 4118 } 4119 return ret; 4120 } 4121 4122 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4123 unsigned long addr, int page_nid, 4124 int *flags) 4125 { 4126 get_page(page); 4127 4128 count_vm_numa_event(NUMA_HINT_FAULTS); 4129 if (page_nid == numa_node_id()) { 4130 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4131 *flags |= TNF_FAULT_LOCAL; 4132 } 4133 4134 return mpol_misplaced(page, vma, addr); 4135 } 4136 4137 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4138 { 4139 struct vm_area_struct *vma = vmf->vma; 4140 struct page *page = NULL; 4141 int page_nid = NUMA_NO_NODE; 4142 int last_cpupid; 4143 int target_nid; 4144 pte_t pte, old_pte; 4145 bool was_writable = pte_savedwrite(vmf->orig_pte); 4146 int flags = 0; 4147 4148 /* 4149 * The "pte" at this point cannot be used safely without 4150 * validation through pte_unmap_same(). It's of NUMA type but 4151 * the pfn may be screwed if the read is non atomic. 4152 */ 4153 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4154 spin_lock(vmf->ptl); 4155 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4156 pte_unmap_unlock(vmf->pte, vmf->ptl); 4157 goto out; 4158 } 4159 4160 /* Get the normal PTE */ 4161 old_pte = ptep_get(vmf->pte); 4162 pte = pte_modify(old_pte, vma->vm_page_prot); 4163 4164 page = vm_normal_page(vma, vmf->address, pte); 4165 if (!page) 4166 goto out_map; 4167 4168 /* TODO: handle PTE-mapped THP */ 4169 if (PageCompound(page)) 4170 goto out_map; 4171 4172 /* 4173 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4174 * much anyway since they can be in shared cache state. This misses 4175 * the case where a mapping is writable but the process never writes 4176 * to it but pte_write gets cleared during protection updates and 4177 * pte_dirty has unpredictable behaviour between PTE scan updates, 4178 * background writeback, dirty balancing and application behaviour. 4179 */ 4180 if (!was_writable) 4181 flags |= TNF_NO_GROUP; 4182 4183 /* 4184 * Flag if the page is shared between multiple address spaces. This 4185 * is later used when determining whether to group tasks together 4186 */ 4187 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4188 flags |= TNF_SHARED; 4189 4190 last_cpupid = page_cpupid_last(page); 4191 page_nid = page_to_nid(page); 4192 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4193 &flags); 4194 if (target_nid == NUMA_NO_NODE) { 4195 put_page(page); 4196 goto out_map; 4197 } 4198 pte_unmap_unlock(vmf->pte, vmf->ptl); 4199 4200 /* Migrate to the requested node */ 4201 if (migrate_misplaced_page(page, vma, target_nid)) { 4202 page_nid = target_nid; 4203 flags |= TNF_MIGRATED; 4204 } else { 4205 flags |= TNF_MIGRATE_FAIL; 4206 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4207 spin_lock(vmf->ptl); 4208 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4209 pte_unmap_unlock(vmf->pte, vmf->ptl); 4210 goto out; 4211 } 4212 goto out_map; 4213 } 4214 4215 out: 4216 if (page_nid != NUMA_NO_NODE) 4217 task_numa_fault(last_cpupid, page_nid, 1, flags); 4218 return 0; 4219 out_map: 4220 /* 4221 * Make it present again, depending on how arch implements 4222 * non-accessible ptes, some can allow access by kernel mode. 4223 */ 4224 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4225 pte = pte_modify(old_pte, vma->vm_page_prot); 4226 pte = pte_mkyoung(pte); 4227 if (was_writable) 4228 pte = pte_mkwrite(pte); 4229 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4230 update_mmu_cache(vma, vmf->address, vmf->pte); 4231 pte_unmap_unlock(vmf->pte, vmf->ptl); 4232 goto out; 4233 } 4234 4235 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4236 { 4237 if (vma_is_anonymous(vmf->vma)) 4238 return do_huge_pmd_anonymous_page(vmf); 4239 if (vmf->vma->vm_ops->huge_fault) 4240 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4241 return VM_FAULT_FALLBACK; 4242 } 4243 4244 /* `inline' is required to avoid gcc 4.1.2 build error */ 4245 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 4246 { 4247 if (vma_is_anonymous(vmf->vma)) { 4248 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) 4249 return handle_userfault(vmf, VM_UFFD_WP); 4250 return do_huge_pmd_wp_page(vmf, orig_pmd); 4251 } 4252 if (vmf->vma->vm_ops->huge_fault) { 4253 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4254 4255 if (!(ret & VM_FAULT_FALLBACK)) 4256 return ret; 4257 } 4258 4259 /* COW or write-notify handled on pte level: split pmd. */ 4260 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4261 4262 return VM_FAULT_FALLBACK; 4263 } 4264 4265 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4266 { 4267 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4268 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4269 /* No support for anonymous transparent PUD pages yet */ 4270 if (vma_is_anonymous(vmf->vma)) 4271 goto split; 4272 if (vmf->vma->vm_ops->huge_fault) { 4273 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4274 4275 if (!(ret & VM_FAULT_FALLBACK)) 4276 return ret; 4277 } 4278 split: 4279 /* COW or write-notify not handled on PUD level: split pud.*/ 4280 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4281 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4282 return VM_FAULT_FALLBACK; 4283 } 4284 4285 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4286 { 4287 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4288 /* No support for anonymous transparent PUD pages yet */ 4289 if (vma_is_anonymous(vmf->vma)) 4290 return VM_FAULT_FALLBACK; 4291 if (vmf->vma->vm_ops->huge_fault) 4292 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4293 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4294 return VM_FAULT_FALLBACK; 4295 } 4296 4297 /* 4298 * These routines also need to handle stuff like marking pages dirty 4299 * and/or accessed for architectures that don't do it in hardware (most 4300 * RISC architectures). The early dirtying is also good on the i386. 4301 * 4302 * There is also a hook called "update_mmu_cache()" that architectures 4303 * with external mmu caches can use to update those (ie the Sparc or 4304 * PowerPC hashed page tables that act as extended TLBs). 4305 * 4306 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4307 * concurrent faults). 4308 * 4309 * The mmap_lock may have been released depending on flags and our return value. 4310 * See filemap_fault() and __lock_page_or_retry(). 4311 */ 4312 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4313 { 4314 pte_t entry; 4315 4316 if (unlikely(pmd_none(*vmf->pmd))) { 4317 /* 4318 * Leave __pte_alloc() until later: because vm_ops->fault may 4319 * want to allocate huge page, and if we expose page table 4320 * for an instant, it will be difficult to retract from 4321 * concurrent faults and from rmap lookups. 4322 */ 4323 vmf->pte = NULL; 4324 } else { 4325 /* 4326 * If a huge pmd materialized under us just retry later. Use 4327 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead 4328 * of pmd_trans_huge() to ensure the pmd didn't become 4329 * pmd_trans_huge under us and then back to pmd_none, as a 4330 * result of MADV_DONTNEED running immediately after a huge pmd 4331 * fault in a different thread of this mm, in turn leading to a 4332 * misleading pmd_trans_huge() retval. All we have to ensure is 4333 * that it is a regular pmd that we can walk with 4334 * pte_offset_map() and we can do that through an atomic read 4335 * in C, which is what pmd_trans_unstable() provides. 4336 */ 4337 if (pmd_devmap_trans_unstable(vmf->pmd)) 4338 return 0; 4339 /* 4340 * A regular pmd is established and it can't morph into a huge 4341 * pmd from under us anymore at this point because we hold the 4342 * mmap_lock read mode and khugepaged takes it in write mode. 4343 * So now it's safe to run pte_offset_map(). 4344 */ 4345 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4346 vmf->orig_pte = *vmf->pte; 4347 4348 /* 4349 * some architectures can have larger ptes than wordsize, 4350 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4351 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4352 * accesses. The code below just needs a consistent view 4353 * for the ifs and we later double check anyway with the 4354 * ptl lock held. So here a barrier will do. 4355 */ 4356 barrier(); 4357 if (pte_none(vmf->orig_pte)) { 4358 pte_unmap(vmf->pte); 4359 vmf->pte = NULL; 4360 } 4361 } 4362 4363 if (!vmf->pte) { 4364 if (vma_is_anonymous(vmf->vma)) 4365 return do_anonymous_page(vmf); 4366 else 4367 return do_fault(vmf); 4368 } 4369 4370 if (!pte_present(vmf->orig_pte)) 4371 return do_swap_page(vmf); 4372 4373 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4374 return do_numa_page(vmf); 4375 4376 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4377 spin_lock(vmf->ptl); 4378 entry = vmf->orig_pte; 4379 if (unlikely(!pte_same(*vmf->pte, entry))) { 4380 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4381 goto unlock; 4382 } 4383 if (vmf->flags & FAULT_FLAG_WRITE) { 4384 if (!pte_write(entry)) 4385 return do_wp_page(vmf); 4386 entry = pte_mkdirty(entry); 4387 } 4388 entry = pte_mkyoung(entry); 4389 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4390 vmf->flags & FAULT_FLAG_WRITE)) { 4391 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4392 } else { 4393 /* Skip spurious TLB flush for retried page fault */ 4394 if (vmf->flags & FAULT_FLAG_TRIED) 4395 goto unlock; 4396 /* 4397 * This is needed only for protection faults but the arch code 4398 * is not yet telling us if this is a protection fault or not. 4399 * This still avoids useless tlb flushes for .text page faults 4400 * with threads. 4401 */ 4402 if (vmf->flags & FAULT_FLAG_WRITE) 4403 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4404 } 4405 unlock: 4406 pte_unmap_unlock(vmf->pte, vmf->ptl); 4407 return 0; 4408 } 4409 4410 /* 4411 * By the time we get here, we already hold the mm semaphore 4412 * 4413 * The mmap_lock may have been released depending on flags and our 4414 * return value. See filemap_fault() and __lock_page_or_retry(). 4415 */ 4416 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4417 unsigned long address, unsigned int flags) 4418 { 4419 struct vm_fault vmf = { 4420 .vma = vma, 4421 .address = address & PAGE_MASK, 4422 .flags = flags, 4423 .pgoff = linear_page_index(vma, address), 4424 .gfp_mask = __get_fault_gfp_mask(vma), 4425 }; 4426 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4427 struct mm_struct *mm = vma->vm_mm; 4428 pgd_t *pgd; 4429 p4d_t *p4d; 4430 vm_fault_t ret; 4431 4432 pgd = pgd_offset(mm, address); 4433 p4d = p4d_alloc(mm, pgd, address); 4434 if (!p4d) 4435 return VM_FAULT_OOM; 4436 4437 vmf.pud = pud_alloc(mm, p4d, address); 4438 if (!vmf.pud) 4439 return VM_FAULT_OOM; 4440 retry_pud: 4441 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4442 ret = create_huge_pud(&vmf); 4443 if (!(ret & VM_FAULT_FALLBACK)) 4444 return ret; 4445 } else { 4446 pud_t orig_pud = *vmf.pud; 4447 4448 barrier(); 4449 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4450 4451 /* NUMA case for anonymous PUDs would go here */ 4452 4453 if (dirty && !pud_write(orig_pud)) { 4454 ret = wp_huge_pud(&vmf, orig_pud); 4455 if (!(ret & VM_FAULT_FALLBACK)) 4456 return ret; 4457 } else { 4458 huge_pud_set_accessed(&vmf, orig_pud); 4459 return 0; 4460 } 4461 } 4462 } 4463 4464 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4465 if (!vmf.pmd) 4466 return VM_FAULT_OOM; 4467 4468 /* Huge pud page fault raced with pmd_alloc? */ 4469 if (pud_trans_unstable(vmf.pud)) 4470 goto retry_pud; 4471 4472 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4473 ret = create_huge_pmd(&vmf); 4474 if (!(ret & VM_FAULT_FALLBACK)) 4475 return ret; 4476 } else { 4477 pmd_t orig_pmd = *vmf.pmd; 4478 4479 barrier(); 4480 if (unlikely(is_swap_pmd(orig_pmd))) { 4481 VM_BUG_ON(thp_migration_supported() && 4482 !is_pmd_migration_entry(orig_pmd)); 4483 if (is_pmd_migration_entry(orig_pmd)) 4484 pmd_migration_entry_wait(mm, vmf.pmd); 4485 return 0; 4486 } 4487 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4488 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4489 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4490 4491 if (dirty && !pmd_write(orig_pmd)) { 4492 ret = wp_huge_pmd(&vmf, orig_pmd); 4493 if (!(ret & VM_FAULT_FALLBACK)) 4494 return ret; 4495 } else { 4496 huge_pmd_set_accessed(&vmf, orig_pmd); 4497 return 0; 4498 } 4499 } 4500 } 4501 4502 return handle_pte_fault(&vmf); 4503 } 4504 4505 /** 4506 * mm_account_fault - Do page fault accounting 4507 * 4508 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 4509 * of perf event counters, but we'll still do the per-task accounting to 4510 * the task who triggered this page fault. 4511 * @address: the faulted address. 4512 * @flags: the fault flags. 4513 * @ret: the fault retcode. 4514 * 4515 * This will take care of most of the page fault accounting. Meanwhile, it 4516 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 4517 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 4518 * still be in per-arch page fault handlers at the entry of page fault. 4519 */ 4520 static inline void mm_account_fault(struct pt_regs *regs, 4521 unsigned long address, unsigned int flags, 4522 vm_fault_t ret) 4523 { 4524 bool major; 4525 4526 /* 4527 * We don't do accounting for some specific faults: 4528 * 4529 * - Unsuccessful faults (e.g. when the address wasn't valid). That 4530 * includes arch_vma_access_permitted() failing before reaching here. 4531 * So this is not a "this many hardware page faults" counter. We 4532 * should use the hw profiling for that. 4533 * 4534 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 4535 * once they're completed. 4536 */ 4537 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 4538 return; 4539 4540 /* 4541 * We define the fault as a major fault when the final successful fault 4542 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 4543 * handle it immediately previously). 4544 */ 4545 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 4546 4547 if (major) 4548 current->maj_flt++; 4549 else 4550 current->min_flt++; 4551 4552 /* 4553 * If the fault is done for GUP, regs will be NULL. We only do the 4554 * accounting for the per thread fault counters who triggered the 4555 * fault, and we skip the perf event updates. 4556 */ 4557 if (!regs) 4558 return; 4559 4560 if (major) 4561 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 4562 else 4563 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 4564 } 4565 4566 /* 4567 * By the time we get here, we already hold the mm semaphore 4568 * 4569 * The mmap_lock may have been released depending on flags and our 4570 * return value. See filemap_fault() and __lock_page_or_retry(). 4571 */ 4572 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4573 unsigned int flags, struct pt_regs *regs) 4574 { 4575 vm_fault_t ret; 4576 4577 __set_current_state(TASK_RUNNING); 4578 4579 count_vm_event(PGFAULT); 4580 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4581 4582 /* do counter updates before entering really critical section. */ 4583 check_sync_rss_stat(current); 4584 4585 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4586 flags & FAULT_FLAG_INSTRUCTION, 4587 flags & FAULT_FLAG_REMOTE)) 4588 return VM_FAULT_SIGSEGV; 4589 4590 /* 4591 * Enable the memcg OOM handling for faults triggered in user 4592 * space. Kernel faults are handled more gracefully. 4593 */ 4594 if (flags & FAULT_FLAG_USER) 4595 mem_cgroup_enter_user_fault(); 4596 4597 if (unlikely(is_vm_hugetlb_page(vma))) 4598 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4599 else 4600 ret = __handle_mm_fault(vma, address, flags); 4601 4602 if (flags & FAULT_FLAG_USER) { 4603 mem_cgroup_exit_user_fault(); 4604 /* 4605 * The task may have entered a memcg OOM situation but 4606 * if the allocation error was handled gracefully (no 4607 * VM_FAULT_OOM), there is no need to kill anything. 4608 * Just clean up the OOM state peacefully. 4609 */ 4610 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4611 mem_cgroup_oom_synchronize(false); 4612 } 4613 4614 mm_account_fault(regs, address, flags, ret); 4615 4616 return ret; 4617 } 4618 EXPORT_SYMBOL_GPL(handle_mm_fault); 4619 4620 #ifndef __PAGETABLE_P4D_FOLDED 4621 /* 4622 * Allocate p4d page table. 4623 * We've already handled the fast-path in-line. 4624 */ 4625 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4626 { 4627 p4d_t *new = p4d_alloc_one(mm, address); 4628 if (!new) 4629 return -ENOMEM; 4630 4631 smp_wmb(); /* See comment in __pte_alloc */ 4632 4633 spin_lock(&mm->page_table_lock); 4634 if (pgd_present(*pgd)) /* Another has populated it */ 4635 p4d_free(mm, new); 4636 else 4637 pgd_populate(mm, pgd, new); 4638 spin_unlock(&mm->page_table_lock); 4639 return 0; 4640 } 4641 #endif /* __PAGETABLE_P4D_FOLDED */ 4642 4643 #ifndef __PAGETABLE_PUD_FOLDED 4644 /* 4645 * Allocate page upper directory. 4646 * We've already handled the fast-path in-line. 4647 */ 4648 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4649 { 4650 pud_t *new = pud_alloc_one(mm, address); 4651 if (!new) 4652 return -ENOMEM; 4653 4654 smp_wmb(); /* See comment in __pte_alloc */ 4655 4656 spin_lock(&mm->page_table_lock); 4657 if (!p4d_present(*p4d)) { 4658 mm_inc_nr_puds(mm); 4659 p4d_populate(mm, p4d, new); 4660 } else /* Another has populated it */ 4661 pud_free(mm, new); 4662 spin_unlock(&mm->page_table_lock); 4663 return 0; 4664 } 4665 #endif /* __PAGETABLE_PUD_FOLDED */ 4666 4667 #ifndef __PAGETABLE_PMD_FOLDED 4668 /* 4669 * Allocate page middle directory. 4670 * We've already handled the fast-path in-line. 4671 */ 4672 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4673 { 4674 spinlock_t *ptl; 4675 pmd_t *new = pmd_alloc_one(mm, address); 4676 if (!new) 4677 return -ENOMEM; 4678 4679 smp_wmb(); /* See comment in __pte_alloc */ 4680 4681 ptl = pud_lock(mm, pud); 4682 if (!pud_present(*pud)) { 4683 mm_inc_nr_pmds(mm); 4684 pud_populate(mm, pud, new); 4685 } else /* Another has populated it */ 4686 pmd_free(mm, new); 4687 spin_unlock(ptl); 4688 return 0; 4689 } 4690 #endif /* __PAGETABLE_PMD_FOLDED */ 4691 4692 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 4693 struct mmu_notifier_range *range, pte_t **ptepp, 4694 pmd_t **pmdpp, spinlock_t **ptlp) 4695 { 4696 pgd_t *pgd; 4697 p4d_t *p4d; 4698 pud_t *pud; 4699 pmd_t *pmd; 4700 pte_t *ptep; 4701 4702 pgd = pgd_offset(mm, address); 4703 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4704 goto out; 4705 4706 p4d = p4d_offset(pgd, address); 4707 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4708 goto out; 4709 4710 pud = pud_offset(p4d, address); 4711 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4712 goto out; 4713 4714 pmd = pmd_offset(pud, address); 4715 VM_BUG_ON(pmd_trans_huge(*pmd)); 4716 4717 if (pmd_huge(*pmd)) { 4718 if (!pmdpp) 4719 goto out; 4720 4721 if (range) { 4722 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4723 NULL, mm, address & PMD_MASK, 4724 (address & PMD_MASK) + PMD_SIZE); 4725 mmu_notifier_invalidate_range_start(range); 4726 } 4727 *ptlp = pmd_lock(mm, pmd); 4728 if (pmd_huge(*pmd)) { 4729 *pmdpp = pmd; 4730 return 0; 4731 } 4732 spin_unlock(*ptlp); 4733 if (range) 4734 mmu_notifier_invalidate_range_end(range); 4735 } 4736 4737 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4738 goto out; 4739 4740 if (range) { 4741 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4742 address & PAGE_MASK, 4743 (address & PAGE_MASK) + PAGE_SIZE); 4744 mmu_notifier_invalidate_range_start(range); 4745 } 4746 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4747 if (!pte_present(*ptep)) 4748 goto unlock; 4749 *ptepp = ptep; 4750 return 0; 4751 unlock: 4752 pte_unmap_unlock(ptep, *ptlp); 4753 if (range) 4754 mmu_notifier_invalidate_range_end(range); 4755 out: 4756 return -EINVAL; 4757 } 4758 4759 /** 4760 * follow_pte - look up PTE at a user virtual address 4761 * @mm: the mm_struct of the target address space 4762 * @address: user virtual address 4763 * @ptepp: location to store found PTE 4764 * @ptlp: location to store the lock for the PTE 4765 * 4766 * On a successful return, the pointer to the PTE is stored in @ptepp; 4767 * the corresponding lock is taken and its location is stored in @ptlp. 4768 * The contents of the PTE are only stable until @ptlp is released; 4769 * any further use, if any, must be protected against invalidation 4770 * with MMU notifiers. 4771 * 4772 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 4773 * should be taken for read. 4774 * 4775 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 4776 * it is not a good general-purpose API. 4777 * 4778 * Return: zero on success, -ve otherwise. 4779 */ 4780 int follow_pte(struct mm_struct *mm, unsigned long address, 4781 pte_t **ptepp, spinlock_t **ptlp) 4782 { 4783 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp); 4784 } 4785 EXPORT_SYMBOL_GPL(follow_pte); 4786 4787 /** 4788 * follow_pfn - look up PFN at a user virtual address 4789 * @vma: memory mapping 4790 * @address: user virtual address 4791 * @pfn: location to store found PFN 4792 * 4793 * Only IO mappings and raw PFN mappings are allowed. 4794 * 4795 * This function does not allow the caller to read the permissions 4796 * of the PTE. Do not use it. 4797 * 4798 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4799 */ 4800 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4801 unsigned long *pfn) 4802 { 4803 int ret = -EINVAL; 4804 spinlock_t *ptl; 4805 pte_t *ptep; 4806 4807 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4808 return ret; 4809 4810 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4811 if (ret) 4812 return ret; 4813 *pfn = pte_pfn(*ptep); 4814 pte_unmap_unlock(ptep, ptl); 4815 return 0; 4816 } 4817 EXPORT_SYMBOL(follow_pfn); 4818 4819 #ifdef CONFIG_HAVE_IOREMAP_PROT 4820 int follow_phys(struct vm_area_struct *vma, 4821 unsigned long address, unsigned int flags, 4822 unsigned long *prot, resource_size_t *phys) 4823 { 4824 int ret = -EINVAL; 4825 pte_t *ptep, pte; 4826 spinlock_t *ptl; 4827 4828 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4829 goto out; 4830 4831 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4832 goto out; 4833 pte = *ptep; 4834 4835 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4836 goto unlock; 4837 4838 *prot = pgprot_val(pte_pgprot(pte)); 4839 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4840 4841 ret = 0; 4842 unlock: 4843 pte_unmap_unlock(ptep, ptl); 4844 out: 4845 return ret; 4846 } 4847 4848 /** 4849 * generic_access_phys - generic implementation for iomem mmap access 4850 * @vma: the vma to access 4851 * @addr: userspace address, not relative offset within @vma 4852 * @buf: buffer to read/write 4853 * @len: length of transfer 4854 * @write: set to FOLL_WRITE when writing, otherwise reading 4855 * 4856 * This is a generic implementation for &vm_operations_struct.access for an 4857 * iomem mapping. This callback is used by access_process_vm() when the @vma is 4858 * not page based. 4859 */ 4860 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4861 void *buf, int len, int write) 4862 { 4863 resource_size_t phys_addr; 4864 unsigned long prot = 0; 4865 void __iomem *maddr; 4866 pte_t *ptep, pte; 4867 spinlock_t *ptl; 4868 int offset = offset_in_page(addr); 4869 int ret = -EINVAL; 4870 4871 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4872 return -EINVAL; 4873 4874 retry: 4875 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 4876 return -EINVAL; 4877 pte = *ptep; 4878 pte_unmap_unlock(ptep, ptl); 4879 4880 prot = pgprot_val(pte_pgprot(pte)); 4881 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4882 4883 if ((write & FOLL_WRITE) && !pte_write(pte)) 4884 return -EINVAL; 4885 4886 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4887 if (!maddr) 4888 return -ENOMEM; 4889 4890 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 4891 goto out_unmap; 4892 4893 if (!pte_same(pte, *ptep)) { 4894 pte_unmap_unlock(ptep, ptl); 4895 iounmap(maddr); 4896 4897 goto retry; 4898 } 4899 4900 if (write) 4901 memcpy_toio(maddr + offset, buf, len); 4902 else 4903 memcpy_fromio(buf, maddr + offset, len); 4904 ret = len; 4905 pte_unmap_unlock(ptep, ptl); 4906 out_unmap: 4907 iounmap(maddr); 4908 4909 return ret; 4910 } 4911 EXPORT_SYMBOL_GPL(generic_access_phys); 4912 #endif 4913 4914 /* 4915 * Access another process' address space as given in mm. 4916 */ 4917 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 4918 int len, unsigned int gup_flags) 4919 { 4920 struct vm_area_struct *vma; 4921 void *old_buf = buf; 4922 int write = gup_flags & FOLL_WRITE; 4923 4924 if (mmap_read_lock_killable(mm)) 4925 return 0; 4926 4927 /* ignore errors, just check how much was successfully transferred */ 4928 while (len) { 4929 int bytes, ret, offset; 4930 void *maddr; 4931 struct page *page = NULL; 4932 4933 ret = get_user_pages_remote(mm, addr, 1, 4934 gup_flags, &page, &vma, NULL); 4935 if (ret <= 0) { 4936 #ifndef CONFIG_HAVE_IOREMAP_PROT 4937 break; 4938 #else 4939 /* 4940 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4941 * we can access using slightly different code. 4942 */ 4943 vma = find_vma(mm, addr); 4944 if (!vma || vma->vm_start > addr) 4945 break; 4946 if (vma->vm_ops && vma->vm_ops->access) 4947 ret = vma->vm_ops->access(vma, addr, buf, 4948 len, write); 4949 if (ret <= 0) 4950 break; 4951 bytes = ret; 4952 #endif 4953 } else { 4954 bytes = len; 4955 offset = addr & (PAGE_SIZE-1); 4956 if (bytes > PAGE_SIZE-offset) 4957 bytes = PAGE_SIZE-offset; 4958 4959 maddr = kmap(page); 4960 if (write) { 4961 copy_to_user_page(vma, page, addr, 4962 maddr + offset, buf, bytes); 4963 set_page_dirty_lock(page); 4964 } else { 4965 copy_from_user_page(vma, page, addr, 4966 buf, maddr + offset, bytes); 4967 } 4968 kunmap(page); 4969 put_page(page); 4970 } 4971 len -= bytes; 4972 buf += bytes; 4973 addr += bytes; 4974 } 4975 mmap_read_unlock(mm); 4976 4977 return buf - old_buf; 4978 } 4979 4980 /** 4981 * access_remote_vm - access another process' address space 4982 * @mm: the mm_struct of the target address space 4983 * @addr: start address to access 4984 * @buf: source or destination buffer 4985 * @len: number of bytes to transfer 4986 * @gup_flags: flags modifying lookup behaviour 4987 * 4988 * The caller must hold a reference on @mm. 4989 * 4990 * Return: number of bytes copied from source to destination. 4991 */ 4992 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4993 void *buf, int len, unsigned int gup_flags) 4994 { 4995 return __access_remote_vm(mm, addr, buf, len, gup_flags); 4996 } 4997 4998 /* 4999 * Access another process' address space. 5000 * Source/target buffer must be kernel space, 5001 * Do not walk the page table directly, use get_user_pages 5002 */ 5003 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5004 void *buf, int len, unsigned int gup_flags) 5005 { 5006 struct mm_struct *mm; 5007 int ret; 5008 5009 mm = get_task_mm(tsk); 5010 if (!mm) 5011 return 0; 5012 5013 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5014 5015 mmput(mm); 5016 5017 return ret; 5018 } 5019 EXPORT_SYMBOL_GPL(access_process_vm); 5020 5021 /* 5022 * Print the name of a VMA. 5023 */ 5024 void print_vma_addr(char *prefix, unsigned long ip) 5025 { 5026 struct mm_struct *mm = current->mm; 5027 struct vm_area_struct *vma; 5028 5029 /* 5030 * we might be running from an atomic context so we cannot sleep 5031 */ 5032 if (!mmap_read_trylock(mm)) 5033 return; 5034 5035 vma = find_vma(mm, ip); 5036 if (vma && vma->vm_file) { 5037 struct file *f = vma->vm_file; 5038 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5039 if (buf) { 5040 char *p; 5041 5042 p = file_path(f, buf, PAGE_SIZE); 5043 if (IS_ERR(p)) 5044 p = "?"; 5045 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5046 vma->vm_start, 5047 vma->vm_end - vma->vm_start); 5048 free_page((unsigned long)buf); 5049 } 5050 } 5051 mmap_read_unlock(mm); 5052 } 5053 5054 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5055 void __might_fault(const char *file, int line) 5056 { 5057 /* 5058 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 5059 * holding the mmap_lock, this is safe because kernel memory doesn't 5060 * get paged out, therefore we'll never actually fault, and the 5061 * below annotations will generate false positives. 5062 */ 5063 if (uaccess_kernel()) 5064 return; 5065 if (pagefault_disabled()) 5066 return; 5067 __might_sleep(file, line, 0); 5068 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5069 if (current->mm) 5070 might_lock_read(¤t->mm->mmap_lock); 5071 #endif 5072 } 5073 EXPORT_SYMBOL(__might_fault); 5074 #endif 5075 5076 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5077 /* 5078 * Process all subpages of the specified huge page with the specified 5079 * operation. The target subpage will be processed last to keep its 5080 * cache lines hot. 5081 */ 5082 static inline void process_huge_page( 5083 unsigned long addr_hint, unsigned int pages_per_huge_page, 5084 void (*process_subpage)(unsigned long addr, int idx, void *arg), 5085 void *arg) 5086 { 5087 int i, n, base, l; 5088 unsigned long addr = addr_hint & 5089 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5090 5091 /* Process target subpage last to keep its cache lines hot */ 5092 might_sleep(); 5093 n = (addr_hint - addr) / PAGE_SIZE; 5094 if (2 * n <= pages_per_huge_page) { 5095 /* If target subpage in first half of huge page */ 5096 base = 0; 5097 l = n; 5098 /* Process subpages at the end of huge page */ 5099 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5100 cond_resched(); 5101 process_subpage(addr + i * PAGE_SIZE, i, arg); 5102 } 5103 } else { 5104 /* If target subpage in second half of huge page */ 5105 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5106 l = pages_per_huge_page - n; 5107 /* Process subpages at the begin of huge page */ 5108 for (i = 0; i < base; i++) { 5109 cond_resched(); 5110 process_subpage(addr + i * PAGE_SIZE, i, arg); 5111 } 5112 } 5113 /* 5114 * Process remaining subpages in left-right-left-right pattern 5115 * towards the target subpage 5116 */ 5117 for (i = 0; i < l; i++) { 5118 int left_idx = base + i; 5119 int right_idx = base + 2 * l - 1 - i; 5120 5121 cond_resched(); 5122 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5123 cond_resched(); 5124 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5125 } 5126 } 5127 5128 static void clear_gigantic_page(struct page *page, 5129 unsigned long addr, 5130 unsigned int pages_per_huge_page) 5131 { 5132 int i; 5133 struct page *p = page; 5134 5135 might_sleep(); 5136 for (i = 0; i < pages_per_huge_page; 5137 i++, p = mem_map_next(p, page, i)) { 5138 cond_resched(); 5139 clear_user_highpage(p, addr + i * PAGE_SIZE); 5140 } 5141 } 5142 5143 static void clear_subpage(unsigned long addr, int idx, void *arg) 5144 { 5145 struct page *page = arg; 5146 5147 clear_user_highpage(page + idx, addr); 5148 } 5149 5150 void clear_huge_page(struct page *page, 5151 unsigned long addr_hint, unsigned int pages_per_huge_page) 5152 { 5153 unsigned long addr = addr_hint & 5154 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5155 5156 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5157 clear_gigantic_page(page, addr, pages_per_huge_page); 5158 return; 5159 } 5160 5161 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5162 } 5163 5164 static void copy_user_gigantic_page(struct page *dst, struct page *src, 5165 unsigned long addr, 5166 struct vm_area_struct *vma, 5167 unsigned int pages_per_huge_page) 5168 { 5169 int i; 5170 struct page *dst_base = dst; 5171 struct page *src_base = src; 5172 5173 for (i = 0; i < pages_per_huge_page; ) { 5174 cond_resched(); 5175 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 5176 5177 i++; 5178 dst = mem_map_next(dst, dst_base, i); 5179 src = mem_map_next(src, src_base, i); 5180 } 5181 } 5182 5183 struct copy_subpage_arg { 5184 struct page *dst; 5185 struct page *src; 5186 struct vm_area_struct *vma; 5187 }; 5188 5189 static void copy_subpage(unsigned long addr, int idx, void *arg) 5190 { 5191 struct copy_subpage_arg *copy_arg = arg; 5192 5193 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5194 addr, copy_arg->vma); 5195 } 5196 5197 void copy_user_huge_page(struct page *dst, struct page *src, 5198 unsigned long addr_hint, struct vm_area_struct *vma, 5199 unsigned int pages_per_huge_page) 5200 { 5201 unsigned long addr = addr_hint & 5202 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5203 struct copy_subpage_arg arg = { 5204 .dst = dst, 5205 .src = src, 5206 .vma = vma, 5207 }; 5208 5209 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5210 copy_user_gigantic_page(dst, src, addr, vma, 5211 pages_per_huge_page); 5212 return; 5213 } 5214 5215 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5216 } 5217 5218 long copy_huge_page_from_user(struct page *dst_page, 5219 const void __user *usr_src, 5220 unsigned int pages_per_huge_page, 5221 bool allow_pagefault) 5222 { 5223 void *src = (void *)usr_src; 5224 void *page_kaddr; 5225 unsigned long i, rc = 0; 5226 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5227 struct page *subpage = dst_page; 5228 5229 for (i = 0; i < pages_per_huge_page; 5230 i++, subpage = mem_map_next(subpage, dst_page, i)) { 5231 if (allow_pagefault) 5232 page_kaddr = kmap(subpage); 5233 else 5234 page_kaddr = kmap_atomic(subpage); 5235 rc = copy_from_user(page_kaddr, 5236 (const void __user *)(src + i * PAGE_SIZE), 5237 PAGE_SIZE); 5238 if (allow_pagefault) 5239 kunmap(subpage); 5240 else 5241 kunmap_atomic(page_kaddr); 5242 5243 ret_val -= (PAGE_SIZE - rc); 5244 if (rc) 5245 break; 5246 5247 cond_resched(); 5248 } 5249 return ret_val; 5250 } 5251 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5252 5253 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5254 5255 static struct kmem_cache *page_ptl_cachep; 5256 5257 void __init ptlock_cache_init(void) 5258 { 5259 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5260 SLAB_PANIC, NULL); 5261 } 5262 5263 bool ptlock_alloc(struct page *page) 5264 { 5265 spinlock_t *ptl; 5266 5267 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5268 if (!ptl) 5269 return false; 5270 page->ptl = ptl; 5271 return true; 5272 } 5273 5274 void ptlock_free(struct page *page) 5275 { 5276 kmem_cache_free(page_ptl_cachep, page->ptl); 5277 } 5278 #endif 5279