1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 #include <linux/migrate.h> 61 #include <linux/string.h> 62 #include <linux/dma-debug.h> 63 #include <linux/debugfs.h> 64 65 #include <asm/io.h> 66 #include <asm/pgalloc.h> 67 #include <asm/uaccess.h> 68 #include <asm/tlb.h> 69 #include <asm/tlbflush.h> 70 #include <asm/pgtable.h> 71 72 #include "internal.h" 73 74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 76 #endif 77 78 #ifndef CONFIG_NEED_MULTIPLE_NODES 79 /* use the per-pgdat data instead for discontigmem - mbligh */ 80 unsigned long max_mapnr; 81 struct page *mem_map; 82 83 EXPORT_SYMBOL(max_mapnr); 84 EXPORT_SYMBOL(mem_map); 85 #endif 86 87 /* 88 * A number of key systems in x86 including ioremap() rely on the assumption 89 * that high_memory defines the upper bound on direct map memory, then end 90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 92 * and ZONE_HIGHMEM. 93 */ 94 void * high_memory; 95 96 EXPORT_SYMBOL(high_memory); 97 98 /* 99 * Randomize the address space (stacks, mmaps, brk, etc.). 100 * 101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 102 * as ancient (libc5 based) binaries can segfault. ) 103 */ 104 int randomize_va_space __read_mostly = 105 #ifdef CONFIG_COMPAT_BRK 106 1; 107 #else 108 2; 109 #endif 110 111 static int __init disable_randmaps(char *s) 112 { 113 randomize_va_space = 0; 114 return 1; 115 } 116 __setup("norandmaps", disable_randmaps); 117 118 unsigned long zero_pfn __read_mostly; 119 unsigned long highest_memmap_pfn __read_mostly; 120 121 EXPORT_SYMBOL(zero_pfn); 122 123 /* 124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 125 */ 126 static int __init init_zero_pfn(void) 127 { 128 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 129 return 0; 130 } 131 core_initcall(init_zero_pfn); 132 133 134 #if defined(SPLIT_RSS_COUNTING) 135 136 void sync_mm_rss(struct mm_struct *mm) 137 { 138 int i; 139 140 for (i = 0; i < NR_MM_COUNTERS; i++) { 141 if (current->rss_stat.count[i]) { 142 add_mm_counter(mm, i, current->rss_stat.count[i]); 143 current->rss_stat.count[i] = 0; 144 } 145 } 146 current->rss_stat.events = 0; 147 } 148 149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 150 { 151 struct task_struct *task = current; 152 153 if (likely(task->mm == mm)) 154 task->rss_stat.count[member] += val; 155 else 156 add_mm_counter(mm, member, val); 157 } 158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 160 161 /* sync counter once per 64 page faults */ 162 #define TASK_RSS_EVENTS_THRESH (64) 163 static void check_sync_rss_stat(struct task_struct *task) 164 { 165 if (unlikely(task != current)) 166 return; 167 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 168 sync_mm_rss(task->mm); 169 } 170 #else /* SPLIT_RSS_COUNTING */ 171 172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 174 175 static void check_sync_rss_stat(struct task_struct *task) 176 { 177 } 178 179 #endif /* SPLIT_RSS_COUNTING */ 180 181 #ifdef HAVE_GENERIC_MMU_GATHER 182 183 static int tlb_next_batch(struct mmu_gather *tlb) 184 { 185 struct mmu_gather_batch *batch; 186 187 batch = tlb->active; 188 if (batch->next) { 189 tlb->active = batch->next; 190 return 1; 191 } 192 193 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 194 return 0; 195 196 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 197 if (!batch) 198 return 0; 199 200 tlb->batch_count++; 201 batch->next = NULL; 202 batch->nr = 0; 203 batch->max = MAX_GATHER_BATCH; 204 205 tlb->active->next = batch; 206 tlb->active = batch; 207 208 return 1; 209 } 210 211 /* tlb_gather_mmu 212 * Called to initialize an (on-stack) mmu_gather structure for page-table 213 * tear-down from @mm. The @fullmm argument is used when @mm is without 214 * users and we're going to destroy the full address space (exit/execve). 215 */ 216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 217 { 218 tlb->mm = mm; 219 220 /* Is it from 0 to ~0? */ 221 tlb->fullmm = !(start | (end+1)); 222 tlb->need_flush_all = 0; 223 tlb->local.next = NULL; 224 tlb->local.nr = 0; 225 tlb->local.max = ARRAY_SIZE(tlb->__pages); 226 tlb->active = &tlb->local; 227 tlb->batch_count = 0; 228 229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 230 tlb->batch = NULL; 231 #endif 232 233 __tlb_reset_range(tlb); 234 } 235 236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 237 { 238 if (!tlb->end) 239 return; 240 241 tlb_flush(tlb); 242 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 244 tlb_table_flush(tlb); 245 #endif 246 __tlb_reset_range(tlb); 247 } 248 249 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 250 { 251 struct mmu_gather_batch *batch; 252 253 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 254 free_pages_and_swap_cache(batch->pages, batch->nr); 255 batch->nr = 0; 256 } 257 tlb->active = &tlb->local; 258 } 259 260 void tlb_flush_mmu(struct mmu_gather *tlb) 261 { 262 tlb_flush_mmu_tlbonly(tlb); 263 tlb_flush_mmu_free(tlb); 264 } 265 266 /* tlb_finish_mmu 267 * Called at the end of the shootdown operation to free up any resources 268 * that were required. 269 */ 270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 271 { 272 struct mmu_gather_batch *batch, *next; 273 274 tlb_flush_mmu(tlb); 275 276 /* keep the page table cache within bounds */ 277 check_pgt_cache(); 278 279 for (batch = tlb->local.next; batch; batch = next) { 280 next = batch->next; 281 free_pages((unsigned long)batch, 0); 282 } 283 tlb->local.next = NULL; 284 } 285 286 /* __tlb_remove_page 287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 288 * handling the additional races in SMP caused by other CPUs caching valid 289 * mappings in their TLBs. Returns the number of free page slots left. 290 * When out of page slots we must call tlb_flush_mmu(). 291 */ 292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 293 { 294 struct mmu_gather_batch *batch; 295 296 VM_BUG_ON(!tlb->end); 297 298 batch = tlb->active; 299 batch->pages[batch->nr++] = page; 300 if (batch->nr == batch->max) { 301 if (!tlb_next_batch(tlb)) 302 return 0; 303 batch = tlb->active; 304 } 305 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 306 307 return batch->max - batch->nr; 308 } 309 310 #endif /* HAVE_GENERIC_MMU_GATHER */ 311 312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 313 314 /* 315 * See the comment near struct mmu_table_batch. 316 */ 317 318 static void tlb_remove_table_smp_sync(void *arg) 319 { 320 /* Simply deliver the interrupt */ 321 } 322 323 static void tlb_remove_table_one(void *table) 324 { 325 /* 326 * This isn't an RCU grace period and hence the page-tables cannot be 327 * assumed to be actually RCU-freed. 328 * 329 * It is however sufficient for software page-table walkers that rely on 330 * IRQ disabling. See the comment near struct mmu_table_batch. 331 */ 332 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 333 __tlb_remove_table(table); 334 } 335 336 static void tlb_remove_table_rcu(struct rcu_head *head) 337 { 338 struct mmu_table_batch *batch; 339 int i; 340 341 batch = container_of(head, struct mmu_table_batch, rcu); 342 343 for (i = 0; i < batch->nr; i++) 344 __tlb_remove_table(batch->tables[i]); 345 346 free_page((unsigned long)batch); 347 } 348 349 void tlb_table_flush(struct mmu_gather *tlb) 350 { 351 struct mmu_table_batch **batch = &tlb->batch; 352 353 if (*batch) { 354 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 355 *batch = NULL; 356 } 357 } 358 359 void tlb_remove_table(struct mmu_gather *tlb, void *table) 360 { 361 struct mmu_table_batch **batch = &tlb->batch; 362 363 /* 364 * When there's less then two users of this mm there cannot be a 365 * concurrent page-table walk. 366 */ 367 if (atomic_read(&tlb->mm->mm_users) < 2) { 368 __tlb_remove_table(table); 369 return; 370 } 371 372 if (*batch == NULL) { 373 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 374 if (*batch == NULL) { 375 tlb_remove_table_one(table); 376 return; 377 } 378 (*batch)->nr = 0; 379 } 380 (*batch)->tables[(*batch)->nr++] = table; 381 if ((*batch)->nr == MAX_TABLE_BATCH) 382 tlb_table_flush(tlb); 383 } 384 385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 386 387 /* 388 * Note: this doesn't free the actual pages themselves. That 389 * has been handled earlier when unmapping all the memory regions. 390 */ 391 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 392 unsigned long addr) 393 { 394 pgtable_t token = pmd_pgtable(*pmd); 395 pmd_clear(pmd); 396 pte_free_tlb(tlb, token, addr); 397 atomic_long_dec(&tlb->mm->nr_ptes); 398 } 399 400 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 401 unsigned long addr, unsigned long end, 402 unsigned long floor, unsigned long ceiling) 403 { 404 pmd_t *pmd; 405 unsigned long next; 406 unsigned long start; 407 408 start = addr; 409 pmd = pmd_offset(pud, addr); 410 do { 411 next = pmd_addr_end(addr, end); 412 if (pmd_none_or_clear_bad(pmd)) 413 continue; 414 free_pte_range(tlb, pmd, addr); 415 } while (pmd++, addr = next, addr != end); 416 417 start &= PUD_MASK; 418 if (start < floor) 419 return; 420 if (ceiling) { 421 ceiling &= PUD_MASK; 422 if (!ceiling) 423 return; 424 } 425 if (end - 1 > ceiling - 1) 426 return; 427 428 pmd = pmd_offset(pud, start); 429 pud_clear(pud); 430 pmd_free_tlb(tlb, pmd, start); 431 mm_dec_nr_pmds(tlb->mm); 432 } 433 434 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 435 unsigned long addr, unsigned long end, 436 unsigned long floor, unsigned long ceiling) 437 { 438 pud_t *pud; 439 unsigned long next; 440 unsigned long start; 441 442 start = addr; 443 pud = pud_offset(pgd, addr); 444 do { 445 next = pud_addr_end(addr, end); 446 if (pud_none_or_clear_bad(pud)) 447 continue; 448 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 449 } while (pud++, addr = next, addr != end); 450 451 start &= PGDIR_MASK; 452 if (start < floor) 453 return; 454 if (ceiling) { 455 ceiling &= PGDIR_MASK; 456 if (!ceiling) 457 return; 458 } 459 if (end - 1 > ceiling - 1) 460 return; 461 462 pud = pud_offset(pgd, start); 463 pgd_clear(pgd); 464 pud_free_tlb(tlb, pud, start); 465 } 466 467 /* 468 * This function frees user-level page tables of a process. 469 */ 470 void free_pgd_range(struct mmu_gather *tlb, 471 unsigned long addr, unsigned long end, 472 unsigned long floor, unsigned long ceiling) 473 { 474 pgd_t *pgd; 475 unsigned long next; 476 477 /* 478 * The next few lines have given us lots of grief... 479 * 480 * Why are we testing PMD* at this top level? Because often 481 * there will be no work to do at all, and we'd prefer not to 482 * go all the way down to the bottom just to discover that. 483 * 484 * Why all these "- 1"s? Because 0 represents both the bottom 485 * of the address space and the top of it (using -1 for the 486 * top wouldn't help much: the masks would do the wrong thing). 487 * The rule is that addr 0 and floor 0 refer to the bottom of 488 * the address space, but end 0 and ceiling 0 refer to the top 489 * Comparisons need to use "end - 1" and "ceiling - 1" (though 490 * that end 0 case should be mythical). 491 * 492 * Wherever addr is brought up or ceiling brought down, we must 493 * be careful to reject "the opposite 0" before it confuses the 494 * subsequent tests. But what about where end is brought down 495 * by PMD_SIZE below? no, end can't go down to 0 there. 496 * 497 * Whereas we round start (addr) and ceiling down, by different 498 * masks at different levels, in order to test whether a table 499 * now has no other vmas using it, so can be freed, we don't 500 * bother to round floor or end up - the tests don't need that. 501 */ 502 503 addr &= PMD_MASK; 504 if (addr < floor) { 505 addr += PMD_SIZE; 506 if (!addr) 507 return; 508 } 509 if (ceiling) { 510 ceiling &= PMD_MASK; 511 if (!ceiling) 512 return; 513 } 514 if (end - 1 > ceiling - 1) 515 end -= PMD_SIZE; 516 if (addr > end - 1) 517 return; 518 519 pgd = pgd_offset(tlb->mm, addr); 520 do { 521 next = pgd_addr_end(addr, end); 522 if (pgd_none_or_clear_bad(pgd)) 523 continue; 524 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 525 } while (pgd++, addr = next, addr != end); 526 } 527 528 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 529 unsigned long floor, unsigned long ceiling) 530 { 531 while (vma) { 532 struct vm_area_struct *next = vma->vm_next; 533 unsigned long addr = vma->vm_start; 534 535 /* 536 * Hide vma from rmap and truncate_pagecache before freeing 537 * pgtables 538 */ 539 unlink_anon_vmas(vma); 540 unlink_file_vma(vma); 541 542 if (is_vm_hugetlb_page(vma)) { 543 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 544 floor, next? next->vm_start: ceiling); 545 } else { 546 /* 547 * Optimization: gather nearby vmas into one call down 548 */ 549 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 550 && !is_vm_hugetlb_page(next)) { 551 vma = next; 552 next = vma->vm_next; 553 unlink_anon_vmas(vma); 554 unlink_file_vma(vma); 555 } 556 free_pgd_range(tlb, addr, vma->vm_end, 557 floor, next? next->vm_start: ceiling); 558 } 559 vma = next; 560 } 561 } 562 563 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 564 pmd_t *pmd, unsigned long address) 565 { 566 spinlock_t *ptl; 567 pgtable_t new = pte_alloc_one(mm, address); 568 int wait_split_huge_page; 569 if (!new) 570 return -ENOMEM; 571 572 /* 573 * Ensure all pte setup (eg. pte page lock and page clearing) are 574 * visible before the pte is made visible to other CPUs by being 575 * put into page tables. 576 * 577 * The other side of the story is the pointer chasing in the page 578 * table walking code (when walking the page table without locking; 579 * ie. most of the time). Fortunately, these data accesses consist 580 * of a chain of data-dependent loads, meaning most CPUs (alpha 581 * being the notable exception) will already guarantee loads are 582 * seen in-order. See the alpha page table accessors for the 583 * smp_read_barrier_depends() barriers in page table walking code. 584 */ 585 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 586 587 ptl = pmd_lock(mm, pmd); 588 wait_split_huge_page = 0; 589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 590 atomic_long_inc(&mm->nr_ptes); 591 pmd_populate(mm, pmd, new); 592 new = NULL; 593 } else if (unlikely(pmd_trans_splitting(*pmd))) 594 wait_split_huge_page = 1; 595 spin_unlock(ptl); 596 if (new) 597 pte_free(mm, new); 598 if (wait_split_huge_page) 599 wait_split_huge_page(vma->anon_vma, pmd); 600 return 0; 601 } 602 603 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 604 { 605 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 606 if (!new) 607 return -ENOMEM; 608 609 smp_wmb(); /* See comment in __pte_alloc */ 610 611 spin_lock(&init_mm.page_table_lock); 612 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 613 pmd_populate_kernel(&init_mm, pmd, new); 614 new = NULL; 615 } else 616 VM_BUG_ON(pmd_trans_splitting(*pmd)); 617 spin_unlock(&init_mm.page_table_lock); 618 if (new) 619 pte_free_kernel(&init_mm, new); 620 return 0; 621 } 622 623 static inline void init_rss_vec(int *rss) 624 { 625 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 626 } 627 628 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 629 { 630 int i; 631 632 if (current->mm == mm) 633 sync_mm_rss(mm); 634 for (i = 0; i < NR_MM_COUNTERS; i++) 635 if (rss[i]) 636 add_mm_counter(mm, i, rss[i]); 637 } 638 639 /* 640 * This function is called to print an error when a bad pte 641 * is found. For example, we might have a PFN-mapped pte in 642 * a region that doesn't allow it. 643 * 644 * The calling function must still handle the error. 645 */ 646 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 647 pte_t pte, struct page *page) 648 { 649 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 650 pud_t *pud = pud_offset(pgd, addr); 651 pmd_t *pmd = pmd_offset(pud, addr); 652 struct address_space *mapping; 653 pgoff_t index; 654 static unsigned long resume; 655 static unsigned long nr_shown; 656 static unsigned long nr_unshown; 657 658 /* 659 * Allow a burst of 60 reports, then keep quiet for that minute; 660 * or allow a steady drip of one report per second. 661 */ 662 if (nr_shown == 60) { 663 if (time_before(jiffies, resume)) { 664 nr_unshown++; 665 return; 666 } 667 if (nr_unshown) { 668 printk(KERN_ALERT 669 "BUG: Bad page map: %lu messages suppressed\n", 670 nr_unshown); 671 nr_unshown = 0; 672 } 673 nr_shown = 0; 674 } 675 if (nr_shown++ == 0) 676 resume = jiffies + 60 * HZ; 677 678 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 679 index = linear_page_index(vma, addr); 680 681 printk(KERN_ALERT 682 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 683 current->comm, 684 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 685 if (page) 686 dump_page(page, "bad pte"); 687 printk(KERN_ALERT 688 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 689 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 690 /* 691 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 692 */ 693 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 694 vma->vm_file, 695 vma->vm_ops ? vma->vm_ops->fault : NULL, 696 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 697 mapping ? mapping->a_ops->readpage : NULL); 698 dump_stack(); 699 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 700 } 701 702 /* 703 * vm_normal_page -- This function gets the "struct page" associated with a pte. 704 * 705 * "Special" mappings do not wish to be associated with a "struct page" (either 706 * it doesn't exist, or it exists but they don't want to touch it). In this 707 * case, NULL is returned here. "Normal" mappings do have a struct page. 708 * 709 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 710 * pte bit, in which case this function is trivial. Secondly, an architecture 711 * may not have a spare pte bit, which requires a more complicated scheme, 712 * described below. 713 * 714 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 715 * special mapping (even if there are underlying and valid "struct pages"). 716 * COWed pages of a VM_PFNMAP are always normal. 717 * 718 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 719 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 720 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 721 * mapping will always honor the rule 722 * 723 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 724 * 725 * And for normal mappings this is false. 726 * 727 * This restricts such mappings to be a linear translation from virtual address 728 * to pfn. To get around this restriction, we allow arbitrary mappings so long 729 * as the vma is not a COW mapping; in that case, we know that all ptes are 730 * special (because none can have been COWed). 731 * 732 * 733 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 734 * 735 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 736 * page" backing, however the difference is that _all_ pages with a struct 737 * page (that is, those where pfn_valid is true) are refcounted and considered 738 * normal pages by the VM. The disadvantage is that pages are refcounted 739 * (which can be slower and simply not an option for some PFNMAP users). The 740 * advantage is that we don't have to follow the strict linearity rule of 741 * PFNMAP mappings in order to support COWable mappings. 742 * 743 */ 744 #ifdef __HAVE_ARCH_PTE_SPECIAL 745 # define HAVE_PTE_SPECIAL 1 746 #else 747 # define HAVE_PTE_SPECIAL 0 748 #endif 749 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 750 pte_t pte) 751 { 752 unsigned long pfn = pte_pfn(pte); 753 754 if (HAVE_PTE_SPECIAL) { 755 if (likely(!pte_special(pte))) 756 goto check_pfn; 757 if (vma->vm_ops && vma->vm_ops->find_special_page) 758 return vma->vm_ops->find_special_page(vma, addr); 759 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 760 return NULL; 761 if (!is_zero_pfn(pfn)) 762 print_bad_pte(vma, addr, pte, NULL); 763 return NULL; 764 } 765 766 /* !HAVE_PTE_SPECIAL case follows: */ 767 768 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 769 if (vma->vm_flags & VM_MIXEDMAP) { 770 if (!pfn_valid(pfn)) 771 return NULL; 772 goto out; 773 } else { 774 unsigned long off; 775 off = (addr - vma->vm_start) >> PAGE_SHIFT; 776 if (pfn == vma->vm_pgoff + off) 777 return NULL; 778 if (!is_cow_mapping(vma->vm_flags)) 779 return NULL; 780 } 781 } 782 783 if (is_zero_pfn(pfn)) 784 return NULL; 785 check_pfn: 786 if (unlikely(pfn > highest_memmap_pfn)) { 787 print_bad_pte(vma, addr, pte, NULL); 788 return NULL; 789 } 790 791 /* 792 * NOTE! We still have PageReserved() pages in the page tables. 793 * eg. VDSO mappings can cause them to exist. 794 */ 795 out: 796 return pfn_to_page(pfn); 797 } 798 799 /* 800 * copy one vm_area from one task to the other. Assumes the page tables 801 * already present in the new task to be cleared in the whole range 802 * covered by this vma. 803 */ 804 805 static inline unsigned long 806 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 807 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 808 unsigned long addr, int *rss) 809 { 810 unsigned long vm_flags = vma->vm_flags; 811 pte_t pte = *src_pte; 812 struct page *page; 813 814 /* pte contains position in swap or file, so copy. */ 815 if (unlikely(!pte_present(pte))) { 816 swp_entry_t entry = pte_to_swp_entry(pte); 817 818 if (likely(!non_swap_entry(entry))) { 819 if (swap_duplicate(entry) < 0) 820 return entry.val; 821 822 /* make sure dst_mm is on swapoff's mmlist. */ 823 if (unlikely(list_empty(&dst_mm->mmlist))) { 824 spin_lock(&mmlist_lock); 825 if (list_empty(&dst_mm->mmlist)) 826 list_add(&dst_mm->mmlist, 827 &src_mm->mmlist); 828 spin_unlock(&mmlist_lock); 829 } 830 rss[MM_SWAPENTS]++; 831 } else if (is_migration_entry(entry)) { 832 page = migration_entry_to_page(entry); 833 834 if (PageAnon(page)) 835 rss[MM_ANONPAGES]++; 836 else 837 rss[MM_FILEPAGES]++; 838 839 if (is_write_migration_entry(entry) && 840 is_cow_mapping(vm_flags)) { 841 /* 842 * COW mappings require pages in both 843 * parent and child to be set to read. 844 */ 845 make_migration_entry_read(&entry); 846 pte = swp_entry_to_pte(entry); 847 if (pte_swp_soft_dirty(*src_pte)) 848 pte = pte_swp_mksoft_dirty(pte); 849 set_pte_at(src_mm, addr, src_pte, pte); 850 } 851 } 852 goto out_set_pte; 853 } 854 855 /* 856 * If it's a COW mapping, write protect it both 857 * in the parent and the child 858 */ 859 if (is_cow_mapping(vm_flags)) { 860 ptep_set_wrprotect(src_mm, addr, src_pte); 861 pte = pte_wrprotect(pte); 862 } 863 864 /* 865 * If it's a shared mapping, mark it clean in 866 * the child 867 */ 868 if (vm_flags & VM_SHARED) 869 pte = pte_mkclean(pte); 870 pte = pte_mkold(pte); 871 872 page = vm_normal_page(vma, addr, pte); 873 if (page) { 874 get_page(page); 875 page_dup_rmap(page); 876 if (PageAnon(page)) 877 rss[MM_ANONPAGES]++; 878 else 879 rss[MM_FILEPAGES]++; 880 } 881 882 out_set_pte: 883 set_pte_at(dst_mm, addr, dst_pte, pte); 884 return 0; 885 } 886 887 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 888 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 889 unsigned long addr, unsigned long end) 890 { 891 pte_t *orig_src_pte, *orig_dst_pte; 892 pte_t *src_pte, *dst_pte; 893 spinlock_t *src_ptl, *dst_ptl; 894 int progress = 0; 895 int rss[NR_MM_COUNTERS]; 896 swp_entry_t entry = (swp_entry_t){0}; 897 898 again: 899 init_rss_vec(rss); 900 901 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 902 if (!dst_pte) 903 return -ENOMEM; 904 src_pte = pte_offset_map(src_pmd, addr); 905 src_ptl = pte_lockptr(src_mm, src_pmd); 906 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 907 orig_src_pte = src_pte; 908 orig_dst_pte = dst_pte; 909 arch_enter_lazy_mmu_mode(); 910 911 do { 912 /* 913 * We are holding two locks at this point - either of them 914 * could generate latencies in another task on another CPU. 915 */ 916 if (progress >= 32) { 917 progress = 0; 918 if (need_resched() || 919 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 920 break; 921 } 922 if (pte_none(*src_pte)) { 923 progress++; 924 continue; 925 } 926 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 927 vma, addr, rss); 928 if (entry.val) 929 break; 930 progress += 8; 931 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 932 933 arch_leave_lazy_mmu_mode(); 934 spin_unlock(src_ptl); 935 pte_unmap(orig_src_pte); 936 add_mm_rss_vec(dst_mm, rss); 937 pte_unmap_unlock(orig_dst_pte, dst_ptl); 938 cond_resched(); 939 940 if (entry.val) { 941 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 942 return -ENOMEM; 943 progress = 0; 944 } 945 if (addr != end) 946 goto again; 947 return 0; 948 } 949 950 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 951 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 952 unsigned long addr, unsigned long end) 953 { 954 pmd_t *src_pmd, *dst_pmd; 955 unsigned long next; 956 957 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 958 if (!dst_pmd) 959 return -ENOMEM; 960 src_pmd = pmd_offset(src_pud, addr); 961 do { 962 next = pmd_addr_end(addr, end); 963 if (pmd_trans_huge(*src_pmd)) { 964 int err; 965 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 966 err = copy_huge_pmd(dst_mm, src_mm, 967 dst_pmd, src_pmd, addr, vma); 968 if (err == -ENOMEM) 969 return -ENOMEM; 970 if (!err) 971 continue; 972 /* fall through */ 973 } 974 if (pmd_none_or_clear_bad(src_pmd)) 975 continue; 976 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 977 vma, addr, next)) 978 return -ENOMEM; 979 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 980 return 0; 981 } 982 983 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 984 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 985 unsigned long addr, unsigned long end) 986 { 987 pud_t *src_pud, *dst_pud; 988 unsigned long next; 989 990 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 991 if (!dst_pud) 992 return -ENOMEM; 993 src_pud = pud_offset(src_pgd, addr); 994 do { 995 next = pud_addr_end(addr, end); 996 if (pud_none_or_clear_bad(src_pud)) 997 continue; 998 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 999 vma, addr, next)) 1000 return -ENOMEM; 1001 } while (dst_pud++, src_pud++, addr = next, addr != end); 1002 return 0; 1003 } 1004 1005 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1006 struct vm_area_struct *vma) 1007 { 1008 pgd_t *src_pgd, *dst_pgd; 1009 unsigned long next; 1010 unsigned long addr = vma->vm_start; 1011 unsigned long end = vma->vm_end; 1012 unsigned long mmun_start; /* For mmu_notifiers */ 1013 unsigned long mmun_end; /* For mmu_notifiers */ 1014 bool is_cow; 1015 int ret; 1016 1017 /* 1018 * Don't copy ptes where a page fault will fill them correctly. 1019 * Fork becomes much lighter when there are big shared or private 1020 * readonly mappings. The tradeoff is that copy_page_range is more 1021 * efficient than faulting. 1022 */ 1023 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1024 !vma->anon_vma) 1025 return 0; 1026 1027 if (is_vm_hugetlb_page(vma)) 1028 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1029 1030 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1031 /* 1032 * We do not free on error cases below as remove_vma 1033 * gets called on error from higher level routine 1034 */ 1035 ret = track_pfn_copy(vma); 1036 if (ret) 1037 return ret; 1038 } 1039 1040 /* 1041 * We need to invalidate the secondary MMU mappings only when 1042 * there could be a permission downgrade on the ptes of the 1043 * parent mm. And a permission downgrade will only happen if 1044 * is_cow_mapping() returns true. 1045 */ 1046 is_cow = is_cow_mapping(vma->vm_flags); 1047 mmun_start = addr; 1048 mmun_end = end; 1049 if (is_cow) 1050 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1051 mmun_end); 1052 1053 ret = 0; 1054 dst_pgd = pgd_offset(dst_mm, addr); 1055 src_pgd = pgd_offset(src_mm, addr); 1056 do { 1057 next = pgd_addr_end(addr, end); 1058 if (pgd_none_or_clear_bad(src_pgd)) 1059 continue; 1060 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1061 vma, addr, next))) { 1062 ret = -ENOMEM; 1063 break; 1064 } 1065 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1066 1067 if (is_cow) 1068 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1069 return ret; 1070 } 1071 1072 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1073 struct vm_area_struct *vma, pmd_t *pmd, 1074 unsigned long addr, unsigned long end, 1075 struct zap_details *details) 1076 { 1077 struct mm_struct *mm = tlb->mm; 1078 int force_flush = 0; 1079 int rss[NR_MM_COUNTERS]; 1080 spinlock_t *ptl; 1081 pte_t *start_pte; 1082 pte_t *pte; 1083 swp_entry_t entry; 1084 1085 again: 1086 init_rss_vec(rss); 1087 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1088 pte = start_pte; 1089 arch_enter_lazy_mmu_mode(); 1090 do { 1091 pte_t ptent = *pte; 1092 if (pte_none(ptent)) { 1093 continue; 1094 } 1095 1096 if (pte_present(ptent)) { 1097 struct page *page; 1098 1099 page = vm_normal_page(vma, addr, ptent); 1100 if (unlikely(details) && page) { 1101 /* 1102 * unmap_shared_mapping_pages() wants to 1103 * invalidate cache without truncating: 1104 * unmap shared but keep private pages. 1105 */ 1106 if (details->check_mapping && 1107 details->check_mapping != page->mapping) 1108 continue; 1109 } 1110 ptent = ptep_get_and_clear_full(mm, addr, pte, 1111 tlb->fullmm); 1112 tlb_remove_tlb_entry(tlb, pte, addr); 1113 if (unlikely(!page)) 1114 continue; 1115 if (PageAnon(page)) 1116 rss[MM_ANONPAGES]--; 1117 else { 1118 if (pte_dirty(ptent)) { 1119 force_flush = 1; 1120 set_page_dirty(page); 1121 } 1122 if (pte_young(ptent) && 1123 likely(!(vma->vm_flags & VM_SEQ_READ))) 1124 mark_page_accessed(page); 1125 rss[MM_FILEPAGES]--; 1126 } 1127 page_remove_rmap(page); 1128 if (unlikely(page_mapcount(page) < 0)) 1129 print_bad_pte(vma, addr, ptent, page); 1130 if (unlikely(!__tlb_remove_page(tlb, page))) { 1131 force_flush = 1; 1132 addr += PAGE_SIZE; 1133 break; 1134 } 1135 continue; 1136 } 1137 /* If details->check_mapping, we leave swap entries. */ 1138 if (unlikely(details)) 1139 continue; 1140 1141 entry = pte_to_swp_entry(ptent); 1142 if (!non_swap_entry(entry)) 1143 rss[MM_SWAPENTS]--; 1144 else if (is_migration_entry(entry)) { 1145 struct page *page; 1146 1147 page = migration_entry_to_page(entry); 1148 1149 if (PageAnon(page)) 1150 rss[MM_ANONPAGES]--; 1151 else 1152 rss[MM_FILEPAGES]--; 1153 } 1154 if (unlikely(!free_swap_and_cache(entry))) 1155 print_bad_pte(vma, addr, ptent, NULL); 1156 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1157 } while (pte++, addr += PAGE_SIZE, addr != end); 1158 1159 add_mm_rss_vec(mm, rss); 1160 arch_leave_lazy_mmu_mode(); 1161 1162 /* Do the actual TLB flush before dropping ptl */ 1163 if (force_flush) 1164 tlb_flush_mmu_tlbonly(tlb); 1165 pte_unmap_unlock(start_pte, ptl); 1166 1167 /* 1168 * If we forced a TLB flush (either due to running out of 1169 * batch buffers or because we needed to flush dirty TLB 1170 * entries before releasing the ptl), free the batched 1171 * memory too. Restart if we didn't do everything. 1172 */ 1173 if (force_flush) { 1174 force_flush = 0; 1175 tlb_flush_mmu_free(tlb); 1176 1177 if (addr != end) 1178 goto again; 1179 } 1180 1181 return addr; 1182 } 1183 1184 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1185 struct vm_area_struct *vma, pud_t *pud, 1186 unsigned long addr, unsigned long end, 1187 struct zap_details *details) 1188 { 1189 pmd_t *pmd; 1190 unsigned long next; 1191 1192 pmd = pmd_offset(pud, addr); 1193 do { 1194 next = pmd_addr_end(addr, end); 1195 if (pmd_trans_huge(*pmd)) { 1196 if (next - addr != HPAGE_PMD_SIZE) { 1197 #ifdef CONFIG_DEBUG_VM 1198 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1199 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1200 __func__, addr, end, 1201 vma->vm_start, 1202 vma->vm_end); 1203 BUG(); 1204 } 1205 #endif 1206 split_huge_page_pmd(vma, addr, pmd); 1207 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1208 goto next; 1209 /* fall through */ 1210 } 1211 /* 1212 * Here there can be other concurrent MADV_DONTNEED or 1213 * trans huge page faults running, and if the pmd is 1214 * none or trans huge it can change under us. This is 1215 * because MADV_DONTNEED holds the mmap_sem in read 1216 * mode. 1217 */ 1218 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1219 goto next; 1220 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1221 next: 1222 cond_resched(); 1223 } while (pmd++, addr = next, addr != end); 1224 1225 return addr; 1226 } 1227 1228 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1229 struct vm_area_struct *vma, pgd_t *pgd, 1230 unsigned long addr, unsigned long end, 1231 struct zap_details *details) 1232 { 1233 pud_t *pud; 1234 unsigned long next; 1235 1236 pud = pud_offset(pgd, addr); 1237 do { 1238 next = pud_addr_end(addr, end); 1239 if (pud_none_or_clear_bad(pud)) 1240 continue; 1241 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1242 } while (pud++, addr = next, addr != end); 1243 1244 return addr; 1245 } 1246 1247 static void unmap_page_range(struct mmu_gather *tlb, 1248 struct vm_area_struct *vma, 1249 unsigned long addr, unsigned long end, 1250 struct zap_details *details) 1251 { 1252 pgd_t *pgd; 1253 unsigned long next; 1254 1255 if (details && !details->check_mapping) 1256 details = NULL; 1257 1258 BUG_ON(addr >= end); 1259 tlb_start_vma(tlb, vma); 1260 pgd = pgd_offset(vma->vm_mm, addr); 1261 do { 1262 next = pgd_addr_end(addr, end); 1263 if (pgd_none_or_clear_bad(pgd)) 1264 continue; 1265 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1266 } while (pgd++, addr = next, addr != end); 1267 tlb_end_vma(tlb, vma); 1268 } 1269 1270 1271 static void unmap_single_vma(struct mmu_gather *tlb, 1272 struct vm_area_struct *vma, unsigned long start_addr, 1273 unsigned long end_addr, 1274 struct zap_details *details) 1275 { 1276 unsigned long start = max(vma->vm_start, start_addr); 1277 unsigned long end; 1278 1279 if (start >= vma->vm_end) 1280 return; 1281 end = min(vma->vm_end, end_addr); 1282 if (end <= vma->vm_start) 1283 return; 1284 1285 if (vma->vm_file) 1286 uprobe_munmap(vma, start, end); 1287 1288 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1289 untrack_pfn(vma, 0, 0); 1290 1291 if (start != end) { 1292 if (unlikely(is_vm_hugetlb_page(vma))) { 1293 /* 1294 * It is undesirable to test vma->vm_file as it 1295 * should be non-null for valid hugetlb area. 1296 * However, vm_file will be NULL in the error 1297 * cleanup path of mmap_region. When 1298 * hugetlbfs ->mmap method fails, 1299 * mmap_region() nullifies vma->vm_file 1300 * before calling this function to clean up. 1301 * Since no pte has actually been setup, it is 1302 * safe to do nothing in this case. 1303 */ 1304 if (vma->vm_file) { 1305 i_mmap_lock_write(vma->vm_file->f_mapping); 1306 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1307 i_mmap_unlock_write(vma->vm_file->f_mapping); 1308 } 1309 } else 1310 unmap_page_range(tlb, vma, start, end, details); 1311 } 1312 } 1313 1314 /** 1315 * unmap_vmas - unmap a range of memory covered by a list of vma's 1316 * @tlb: address of the caller's struct mmu_gather 1317 * @vma: the starting vma 1318 * @start_addr: virtual address at which to start unmapping 1319 * @end_addr: virtual address at which to end unmapping 1320 * 1321 * Unmap all pages in the vma list. 1322 * 1323 * Only addresses between `start' and `end' will be unmapped. 1324 * 1325 * The VMA list must be sorted in ascending virtual address order. 1326 * 1327 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1328 * range after unmap_vmas() returns. So the only responsibility here is to 1329 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1330 * drops the lock and schedules. 1331 */ 1332 void unmap_vmas(struct mmu_gather *tlb, 1333 struct vm_area_struct *vma, unsigned long start_addr, 1334 unsigned long end_addr) 1335 { 1336 struct mm_struct *mm = vma->vm_mm; 1337 1338 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1339 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1340 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1341 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1342 } 1343 1344 /** 1345 * zap_page_range - remove user pages in a given range 1346 * @vma: vm_area_struct holding the applicable pages 1347 * @start: starting address of pages to zap 1348 * @size: number of bytes to zap 1349 * @details: details of shared cache invalidation 1350 * 1351 * Caller must protect the VMA list 1352 */ 1353 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1354 unsigned long size, struct zap_details *details) 1355 { 1356 struct mm_struct *mm = vma->vm_mm; 1357 struct mmu_gather tlb; 1358 unsigned long end = start + size; 1359 1360 lru_add_drain(); 1361 tlb_gather_mmu(&tlb, mm, start, end); 1362 update_hiwater_rss(mm); 1363 mmu_notifier_invalidate_range_start(mm, start, end); 1364 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1365 unmap_single_vma(&tlb, vma, start, end, details); 1366 mmu_notifier_invalidate_range_end(mm, start, end); 1367 tlb_finish_mmu(&tlb, start, end); 1368 } 1369 1370 /** 1371 * zap_page_range_single - remove user pages in a given range 1372 * @vma: vm_area_struct holding the applicable pages 1373 * @address: starting address of pages to zap 1374 * @size: number of bytes to zap 1375 * @details: details of shared cache invalidation 1376 * 1377 * The range must fit into one VMA. 1378 */ 1379 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1380 unsigned long size, struct zap_details *details) 1381 { 1382 struct mm_struct *mm = vma->vm_mm; 1383 struct mmu_gather tlb; 1384 unsigned long end = address + size; 1385 1386 lru_add_drain(); 1387 tlb_gather_mmu(&tlb, mm, address, end); 1388 update_hiwater_rss(mm); 1389 mmu_notifier_invalidate_range_start(mm, address, end); 1390 unmap_single_vma(&tlb, vma, address, end, details); 1391 mmu_notifier_invalidate_range_end(mm, address, end); 1392 tlb_finish_mmu(&tlb, address, end); 1393 } 1394 1395 /** 1396 * zap_vma_ptes - remove ptes mapping the vma 1397 * @vma: vm_area_struct holding ptes to be zapped 1398 * @address: starting address of pages to zap 1399 * @size: number of bytes to zap 1400 * 1401 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1402 * 1403 * The entire address range must be fully contained within the vma. 1404 * 1405 * Returns 0 if successful. 1406 */ 1407 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1408 unsigned long size) 1409 { 1410 if (address < vma->vm_start || address + size > vma->vm_end || 1411 !(vma->vm_flags & VM_PFNMAP)) 1412 return -1; 1413 zap_page_range_single(vma, address, size, NULL); 1414 return 0; 1415 } 1416 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1417 1418 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1419 spinlock_t **ptl) 1420 { 1421 pgd_t * pgd = pgd_offset(mm, addr); 1422 pud_t * pud = pud_alloc(mm, pgd, addr); 1423 if (pud) { 1424 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1425 if (pmd) { 1426 VM_BUG_ON(pmd_trans_huge(*pmd)); 1427 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1428 } 1429 } 1430 return NULL; 1431 } 1432 1433 /* 1434 * This is the old fallback for page remapping. 1435 * 1436 * For historical reasons, it only allows reserved pages. Only 1437 * old drivers should use this, and they needed to mark their 1438 * pages reserved for the old functions anyway. 1439 */ 1440 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1441 struct page *page, pgprot_t prot) 1442 { 1443 struct mm_struct *mm = vma->vm_mm; 1444 int retval; 1445 pte_t *pte; 1446 spinlock_t *ptl; 1447 1448 retval = -EINVAL; 1449 if (PageAnon(page)) 1450 goto out; 1451 retval = -ENOMEM; 1452 flush_dcache_page(page); 1453 pte = get_locked_pte(mm, addr, &ptl); 1454 if (!pte) 1455 goto out; 1456 retval = -EBUSY; 1457 if (!pte_none(*pte)) 1458 goto out_unlock; 1459 1460 /* Ok, finally just insert the thing.. */ 1461 get_page(page); 1462 inc_mm_counter_fast(mm, MM_FILEPAGES); 1463 page_add_file_rmap(page); 1464 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1465 1466 retval = 0; 1467 pte_unmap_unlock(pte, ptl); 1468 return retval; 1469 out_unlock: 1470 pte_unmap_unlock(pte, ptl); 1471 out: 1472 return retval; 1473 } 1474 1475 /** 1476 * vm_insert_page - insert single page into user vma 1477 * @vma: user vma to map to 1478 * @addr: target user address of this page 1479 * @page: source kernel page 1480 * 1481 * This allows drivers to insert individual pages they've allocated 1482 * into a user vma. 1483 * 1484 * The page has to be a nice clean _individual_ kernel allocation. 1485 * If you allocate a compound page, you need to have marked it as 1486 * such (__GFP_COMP), or manually just split the page up yourself 1487 * (see split_page()). 1488 * 1489 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1490 * took an arbitrary page protection parameter. This doesn't allow 1491 * that. Your vma protection will have to be set up correctly, which 1492 * means that if you want a shared writable mapping, you'd better 1493 * ask for a shared writable mapping! 1494 * 1495 * The page does not need to be reserved. 1496 * 1497 * Usually this function is called from f_op->mmap() handler 1498 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1499 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1500 * function from other places, for example from page-fault handler. 1501 */ 1502 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1503 struct page *page) 1504 { 1505 if (addr < vma->vm_start || addr >= vma->vm_end) 1506 return -EFAULT; 1507 if (!page_count(page)) 1508 return -EINVAL; 1509 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1510 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1511 BUG_ON(vma->vm_flags & VM_PFNMAP); 1512 vma->vm_flags |= VM_MIXEDMAP; 1513 } 1514 return insert_page(vma, addr, page, vma->vm_page_prot); 1515 } 1516 EXPORT_SYMBOL(vm_insert_page); 1517 1518 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1519 unsigned long pfn, pgprot_t prot) 1520 { 1521 struct mm_struct *mm = vma->vm_mm; 1522 int retval; 1523 pte_t *pte, entry; 1524 spinlock_t *ptl; 1525 1526 retval = -ENOMEM; 1527 pte = get_locked_pte(mm, addr, &ptl); 1528 if (!pte) 1529 goto out; 1530 retval = -EBUSY; 1531 if (!pte_none(*pte)) 1532 goto out_unlock; 1533 1534 /* Ok, finally just insert the thing.. */ 1535 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1536 set_pte_at(mm, addr, pte, entry); 1537 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1538 1539 retval = 0; 1540 out_unlock: 1541 pte_unmap_unlock(pte, ptl); 1542 out: 1543 return retval; 1544 } 1545 1546 /** 1547 * vm_insert_pfn - insert single pfn into user vma 1548 * @vma: user vma to map to 1549 * @addr: target user address of this page 1550 * @pfn: source kernel pfn 1551 * 1552 * Similar to vm_insert_page, this allows drivers to insert individual pages 1553 * they've allocated into a user vma. Same comments apply. 1554 * 1555 * This function should only be called from a vm_ops->fault handler, and 1556 * in that case the handler should return NULL. 1557 * 1558 * vma cannot be a COW mapping. 1559 * 1560 * As this is called only for pages that do not currently exist, we 1561 * do not need to flush old virtual caches or the TLB. 1562 */ 1563 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1564 unsigned long pfn) 1565 { 1566 int ret; 1567 pgprot_t pgprot = vma->vm_page_prot; 1568 /* 1569 * Technically, architectures with pte_special can avoid all these 1570 * restrictions (same for remap_pfn_range). However we would like 1571 * consistency in testing and feature parity among all, so we should 1572 * try to keep these invariants in place for everybody. 1573 */ 1574 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1575 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1576 (VM_PFNMAP|VM_MIXEDMAP)); 1577 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1578 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1579 1580 if (addr < vma->vm_start || addr >= vma->vm_end) 1581 return -EFAULT; 1582 if (track_pfn_insert(vma, &pgprot, pfn)) 1583 return -EINVAL; 1584 1585 ret = insert_pfn(vma, addr, pfn, pgprot); 1586 1587 return ret; 1588 } 1589 EXPORT_SYMBOL(vm_insert_pfn); 1590 1591 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1592 unsigned long pfn) 1593 { 1594 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1595 1596 if (addr < vma->vm_start || addr >= vma->vm_end) 1597 return -EFAULT; 1598 1599 /* 1600 * If we don't have pte special, then we have to use the pfn_valid() 1601 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1602 * refcount the page if pfn_valid is true (hence insert_page rather 1603 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1604 * without pte special, it would there be refcounted as a normal page. 1605 */ 1606 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1607 struct page *page; 1608 1609 page = pfn_to_page(pfn); 1610 return insert_page(vma, addr, page, vma->vm_page_prot); 1611 } 1612 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1613 } 1614 EXPORT_SYMBOL(vm_insert_mixed); 1615 1616 /* 1617 * maps a range of physical memory into the requested pages. the old 1618 * mappings are removed. any references to nonexistent pages results 1619 * in null mappings (currently treated as "copy-on-access") 1620 */ 1621 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1622 unsigned long addr, unsigned long end, 1623 unsigned long pfn, pgprot_t prot) 1624 { 1625 pte_t *pte; 1626 spinlock_t *ptl; 1627 1628 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1629 if (!pte) 1630 return -ENOMEM; 1631 arch_enter_lazy_mmu_mode(); 1632 do { 1633 BUG_ON(!pte_none(*pte)); 1634 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1635 pfn++; 1636 } while (pte++, addr += PAGE_SIZE, addr != end); 1637 arch_leave_lazy_mmu_mode(); 1638 pte_unmap_unlock(pte - 1, ptl); 1639 return 0; 1640 } 1641 1642 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1643 unsigned long addr, unsigned long end, 1644 unsigned long pfn, pgprot_t prot) 1645 { 1646 pmd_t *pmd; 1647 unsigned long next; 1648 1649 pfn -= addr >> PAGE_SHIFT; 1650 pmd = pmd_alloc(mm, pud, addr); 1651 if (!pmd) 1652 return -ENOMEM; 1653 VM_BUG_ON(pmd_trans_huge(*pmd)); 1654 do { 1655 next = pmd_addr_end(addr, end); 1656 if (remap_pte_range(mm, pmd, addr, next, 1657 pfn + (addr >> PAGE_SHIFT), prot)) 1658 return -ENOMEM; 1659 } while (pmd++, addr = next, addr != end); 1660 return 0; 1661 } 1662 1663 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1664 unsigned long addr, unsigned long end, 1665 unsigned long pfn, pgprot_t prot) 1666 { 1667 pud_t *pud; 1668 unsigned long next; 1669 1670 pfn -= addr >> PAGE_SHIFT; 1671 pud = pud_alloc(mm, pgd, addr); 1672 if (!pud) 1673 return -ENOMEM; 1674 do { 1675 next = pud_addr_end(addr, end); 1676 if (remap_pmd_range(mm, pud, addr, next, 1677 pfn + (addr >> PAGE_SHIFT), prot)) 1678 return -ENOMEM; 1679 } while (pud++, addr = next, addr != end); 1680 return 0; 1681 } 1682 1683 /** 1684 * remap_pfn_range - remap kernel memory to userspace 1685 * @vma: user vma to map to 1686 * @addr: target user address to start at 1687 * @pfn: physical address of kernel memory 1688 * @size: size of map area 1689 * @prot: page protection flags for this mapping 1690 * 1691 * Note: this is only safe if the mm semaphore is held when called. 1692 */ 1693 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1694 unsigned long pfn, unsigned long size, pgprot_t prot) 1695 { 1696 pgd_t *pgd; 1697 unsigned long next; 1698 unsigned long end = addr + PAGE_ALIGN(size); 1699 struct mm_struct *mm = vma->vm_mm; 1700 int err; 1701 1702 /* 1703 * Physically remapped pages are special. Tell the 1704 * rest of the world about it: 1705 * VM_IO tells people not to look at these pages 1706 * (accesses can have side effects). 1707 * VM_PFNMAP tells the core MM that the base pages are just 1708 * raw PFN mappings, and do not have a "struct page" associated 1709 * with them. 1710 * VM_DONTEXPAND 1711 * Disable vma merging and expanding with mremap(). 1712 * VM_DONTDUMP 1713 * Omit vma from core dump, even when VM_IO turned off. 1714 * 1715 * There's a horrible special case to handle copy-on-write 1716 * behaviour that some programs depend on. We mark the "original" 1717 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1718 * See vm_normal_page() for details. 1719 */ 1720 if (is_cow_mapping(vma->vm_flags)) { 1721 if (addr != vma->vm_start || end != vma->vm_end) 1722 return -EINVAL; 1723 vma->vm_pgoff = pfn; 1724 } 1725 1726 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 1727 if (err) 1728 return -EINVAL; 1729 1730 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1731 1732 BUG_ON(addr >= end); 1733 pfn -= addr >> PAGE_SHIFT; 1734 pgd = pgd_offset(mm, addr); 1735 flush_cache_range(vma, addr, end); 1736 do { 1737 next = pgd_addr_end(addr, end); 1738 err = remap_pud_range(mm, pgd, addr, next, 1739 pfn + (addr >> PAGE_SHIFT), prot); 1740 if (err) 1741 break; 1742 } while (pgd++, addr = next, addr != end); 1743 1744 if (err) 1745 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 1746 1747 return err; 1748 } 1749 EXPORT_SYMBOL(remap_pfn_range); 1750 1751 /** 1752 * vm_iomap_memory - remap memory to userspace 1753 * @vma: user vma to map to 1754 * @start: start of area 1755 * @len: size of area 1756 * 1757 * This is a simplified io_remap_pfn_range() for common driver use. The 1758 * driver just needs to give us the physical memory range to be mapped, 1759 * we'll figure out the rest from the vma information. 1760 * 1761 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1762 * whatever write-combining details or similar. 1763 */ 1764 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1765 { 1766 unsigned long vm_len, pfn, pages; 1767 1768 /* Check that the physical memory area passed in looks valid */ 1769 if (start + len < start) 1770 return -EINVAL; 1771 /* 1772 * You *really* shouldn't map things that aren't page-aligned, 1773 * but we've historically allowed it because IO memory might 1774 * just have smaller alignment. 1775 */ 1776 len += start & ~PAGE_MASK; 1777 pfn = start >> PAGE_SHIFT; 1778 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1779 if (pfn + pages < pfn) 1780 return -EINVAL; 1781 1782 /* We start the mapping 'vm_pgoff' pages into the area */ 1783 if (vma->vm_pgoff > pages) 1784 return -EINVAL; 1785 pfn += vma->vm_pgoff; 1786 pages -= vma->vm_pgoff; 1787 1788 /* Can we fit all of the mapping? */ 1789 vm_len = vma->vm_end - vma->vm_start; 1790 if (vm_len >> PAGE_SHIFT > pages) 1791 return -EINVAL; 1792 1793 /* Ok, let it rip */ 1794 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1795 } 1796 EXPORT_SYMBOL(vm_iomap_memory); 1797 1798 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1799 unsigned long addr, unsigned long end, 1800 pte_fn_t fn, void *data) 1801 { 1802 pte_t *pte; 1803 int err; 1804 pgtable_t token; 1805 spinlock_t *uninitialized_var(ptl); 1806 1807 pte = (mm == &init_mm) ? 1808 pte_alloc_kernel(pmd, addr) : 1809 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1810 if (!pte) 1811 return -ENOMEM; 1812 1813 BUG_ON(pmd_huge(*pmd)); 1814 1815 arch_enter_lazy_mmu_mode(); 1816 1817 token = pmd_pgtable(*pmd); 1818 1819 do { 1820 err = fn(pte++, token, addr, data); 1821 if (err) 1822 break; 1823 } while (addr += PAGE_SIZE, addr != end); 1824 1825 arch_leave_lazy_mmu_mode(); 1826 1827 if (mm != &init_mm) 1828 pte_unmap_unlock(pte-1, ptl); 1829 return err; 1830 } 1831 1832 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1833 unsigned long addr, unsigned long end, 1834 pte_fn_t fn, void *data) 1835 { 1836 pmd_t *pmd; 1837 unsigned long next; 1838 int err; 1839 1840 BUG_ON(pud_huge(*pud)); 1841 1842 pmd = pmd_alloc(mm, pud, addr); 1843 if (!pmd) 1844 return -ENOMEM; 1845 do { 1846 next = pmd_addr_end(addr, end); 1847 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1848 if (err) 1849 break; 1850 } while (pmd++, addr = next, addr != end); 1851 return err; 1852 } 1853 1854 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1855 unsigned long addr, unsigned long end, 1856 pte_fn_t fn, void *data) 1857 { 1858 pud_t *pud; 1859 unsigned long next; 1860 int err; 1861 1862 pud = pud_alloc(mm, pgd, addr); 1863 if (!pud) 1864 return -ENOMEM; 1865 do { 1866 next = pud_addr_end(addr, end); 1867 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1868 if (err) 1869 break; 1870 } while (pud++, addr = next, addr != end); 1871 return err; 1872 } 1873 1874 /* 1875 * Scan a region of virtual memory, filling in page tables as necessary 1876 * and calling a provided function on each leaf page table. 1877 */ 1878 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1879 unsigned long size, pte_fn_t fn, void *data) 1880 { 1881 pgd_t *pgd; 1882 unsigned long next; 1883 unsigned long end = addr + size; 1884 int err; 1885 1886 BUG_ON(addr >= end); 1887 pgd = pgd_offset(mm, addr); 1888 do { 1889 next = pgd_addr_end(addr, end); 1890 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1891 if (err) 1892 break; 1893 } while (pgd++, addr = next, addr != end); 1894 1895 return err; 1896 } 1897 EXPORT_SYMBOL_GPL(apply_to_page_range); 1898 1899 /* 1900 * handle_pte_fault chooses page fault handler according to an entry which was 1901 * read non-atomically. Before making any commitment, on those architectures 1902 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 1903 * parts, do_swap_page must check under lock before unmapping the pte and 1904 * proceeding (but do_wp_page is only called after already making such a check; 1905 * and do_anonymous_page can safely check later on). 1906 */ 1907 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1908 pte_t *page_table, pte_t orig_pte) 1909 { 1910 int same = 1; 1911 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1912 if (sizeof(pte_t) > sizeof(unsigned long)) { 1913 spinlock_t *ptl = pte_lockptr(mm, pmd); 1914 spin_lock(ptl); 1915 same = pte_same(*page_table, orig_pte); 1916 spin_unlock(ptl); 1917 } 1918 #endif 1919 pte_unmap(page_table); 1920 return same; 1921 } 1922 1923 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1924 { 1925 debug_dma_assert_idle(src); 1926 1927 /* 1928 * If the source page was a PFN mapping, we don't have 1929 * a "struct page" for it. We do a best-effort copy by 1930 * just copying from the original user address. If that 1931 * fails, we just zero-fill it. Live with it. 1932 */ 1933 if (unlikely(!src)) { 1934 void *kaddr = kmap_atomic(dst); 1935 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1936 1937 /* 1938 * This really shouldn't fail, because the page is there 1939 * in the page tables. But it might just be unreadable, 1940 * in which case we just give up and fill the result with 1941 * zeroes. 1942 */ 1943 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1944 clear_page(kaddr); 1945 kunmap_atomic(kaddr); 1946 flush_dcache_page(dst); 1947 } else 1948 copy_user_highpage(dst, src, va, vma); 1949 } 1950 1951 /* 1952 * Notify the address space that the page is about to become writable so that 1953 * it can prohibit this or wait for the page to get into an appropriate state. 1954 * 1955 * We do this without the lock held, so that it can sleep if it needs to. 1956 */ 1957 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, 1958 unsigned long address) 1959 { 1960 struct vm_fault vmf; 1961 int ret; 1962 1963 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 1964 vmf.pgoff = page->index; 1965 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 1966 vmf.page = page; 1967 vmf.cow_page = NULL; 1968 1969 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 1970 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 1971 return ret; 1972 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 1973 lock_page(page); 1974 if (!page->mapping) { 1975 unlock_page(page); 1976 return 0; /* retry */ 1977 } 1978 ret |= VM_FAULT_LOCKED; 1979 } else 1980 VM_BUG_ON_PAGE(!PageLocked(page), page); 1981 return ret; 1982 } 1983 1984 /* 1985 * Handle write page faults for pages that can be reused in the current vma 1986 * 1987 * This can happen either due to the mapping being with the VM_SHARED flag, 1988 * or due to us being the last reference standing to the page. In either 1989 * case, all we need to do here is to mark the page as writable and update 1990 * any related book-keeping. 1991 */ 1992 static inline int wp_page_reuse(struct mm_struct *mm, 1993 struct vm_area_struct *vma, unsigned long address, 1994 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, 1995 struct page *page, int page_mkwrite, 1996 int dirty_shared) 1997 __releases(ptl) 1998 { 1999 pte_t entry; 2000 /* 2001 * Clear the pages cpupid information as the existing 2002 * information potentially belongs to a now completely 2003 * unrelated process. 2004 */ 2005 if (page) 2006 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2007 2008 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2009 entry = pte_mkyoung(orig_pte); 2010 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2011 if (ptep_set_access_flags(vma, address, page_table, entry, 1)) 2012 update_mmu_cache(vma, address, page_table); 2013 pte_unmap_unlock(page_table, ptl); 2014 2015 if (dirty_shared) { 2016 struct address_space *mapping; 2017 int dirtied; 2018 2019 if (!page_mkwrite) 2020 lock_page(page); 2021 2022 dirtied = set_page_dirty(page); 2023 VM_BUG_ON_PAGE(PageAnon(page), page); 2024 mapping = page->mapping; 2025 unlock_page(page); 2026 page_cache_release(page); 2027 2028 if ((dirtied || page_mkwrite) && mapping) { 2029 /* 2030 * Some device drivers do not set page.mapping 2031 * but still dirty their pages 2032 */ 2033 balance_dirty_pages_ratelimited(mapping); 2034 } 2035 2036 if (!page_mkwrite) 2037 file_update_time(vma->vm_file); 2038 } 2039 2040 return VM_FAULT_WRITE; 2041 } 2042 2043 /* 2044 * Handle the case of a page which we actually need to copy to a new page. 2045 * 2046 * Called with mmap_sem locked and the old page referenced, but 2047 * without the ptl held. 2048 * 2049 * High level logic flow: 2050 * 2051 * - Allocate a page, copy the content of the old page to the new one. 2052 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2053 * - Take the PTL. If the pte changed, bail out and release the allocated page 2054 * - If the pte is still the way we remember it, update the page table and all 2055 * relevant references. This includes dropping the reference the page-table 2056 * held to the old page, as well as updating the rmap. 2057 * - In any case, unlock the PTL and drop the reference we took to the old page. 2058 */ 2059 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma, 2060 unsigned long address, pte_t *page_table, pmd_t *pmd, 2061 pte_t orig_pte, struct page *old_page) 2062 { 2063 struct page *new_page = NULL; 2064 spinlock_t *ptl = NULL; 2065 pte_t entry; 2066 int page_copied = 0; 2067 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */ 2068 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */ 2069 struct mem_cgroup *memcg; 2070 2071 if (unlikely(anon_vma_prepare(vma))) 2072 goto oom; 2073 2074 if (is_zero_pfn(pte_pfn(orig_pte))) { 2075 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2076 if (!new_page) 2077 goto oom; 2078 } else { 2079 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2080 if (!new_page) 2081 goto oom; 2082 cow_user_page(new_page, old_page, address, vma); 2083 } 2084 __SetPageUptodate(new_page); 2085 2086 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) 2087 goto oom_free_new; 2088 2089 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2090 2091 /* 2092 * Re-check the pte - we dropped the lock 2093 */ 2094 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2095 if (likely(pte_same(*page_table, orig_pte))) { 2096 if (old_page) { 2097 if (!PageAnon(old_page)) { 2098 dec_mm_counter_fast(mm, MM_FILEPAGES); 2099 inc_mm_counter_fast(mm, MM_ANONPAGES); 2100 } 2101 } else { 2102 inc_mm_counter_fast(mm, MM_ANONPAGES); 2103 } 2104 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2105 entry = mk_pte(new_page, vma->vm_page_prot); 2106 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2107 /* 2108 * Clear the pte entry and flush it first, before updating the 2109 * pte with the new entry. This will avoid a race condition 2110 * seen in the presence of one thread doing SMC and another 2111 * thread doing COW. 2112 */ 2113 ptep_clear_flush_notify(vma, address, page_table); 2114 page_add_new_anon_rmap(new_page, vma, address); 2115 mem_cgroup_commit_charge(new_page, memcg, false); 2116 lru_cache_add_active_or_unevictable(new_page, vma); 2117 /* 2118 * We call the notify macro here because, when using secondary 2119 * mmu page tables (such as kvm shadow page tables), we want the 2120 * new page to be mapped directly into the secondary page table. 2121 */ 2122 set_pte_at_notify(mm, address, page_table, entry); 2123 update_mmu_cache(vma, address, page_table); 2124 if (old_page) { 2125 /* 2126 * Only after switching the pte to the new page may 2127 * we remove the mapcount here. Otherwise another 2128 * process may come and find the rmap count decremented 2129 * before the pte is switched to the new page, and 2130 * "reuse" the old page writing into it while our pte 2131 * here still points into it and can be read by other 2132 * threads. 2133 * 2134 * The critical issue is to order this 2135 * page_remove_rmap with the ptp_clear_flush above. 2136 * Those stores are ordered by (if nothing else,) 2137 * the barrier present in the atomic_add_negative 2138 * in page_remove_rmap. 2139 * 2140 * Then the TLB flush in ptep_clear_flush ensures that 2141 * no process can access the old page before the 2142 * decremented mapcount is visible. And the old page 2143 * cannot be reused until after the decremented 2144 * mapcount is visible. So transitively, TLBs to 2145 * old page will be flushed before it can be reused. 2146 */ 2147 page_remove_rmap(old_page); 2148 } 2149 2150 /* Free the old page.. */ 2151 new_page = old_page; 2152 page_copied = 1; 2153 } else { 2154 mem_cgroup_cancel_charge(new_page, memcg); 2155 } 2156 2157 if (new_page) 2158 page_cache_release(new_page); 2159 2160 pte_unmap_unlock(page_table, ptl); 2161 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2162 if (old_page) { 2163 /* 2164 * Don't let another task, with possibly unlocked vma, 2165 * keep the mlocked page. 2166 */ 2167 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2168 lock_page(old_page); /* LRU manipulation */ 2169 munlock_vma_page(old_page); 2170 unlock_page(old_page); 2171 } 2172 page_cache_release(old_page); 2173 } 2174 return page_copied ? VM_FAULT_WRITE : 0; 2175 oom_free_new: 2176 page_cache_release(new_page); 2177 oom: 2178 if (old_page) 2179 page_cache_release(old_page); 2180 return VM_FAULT_OOM; 2181 } 2182 2183 /* 2184 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2185 * mapping 2186 */ 2187 static int wp_pfn_shared(struct mm_struct *mm, 2188 struct vm_area_struct *vma, unsigned long address, 2189 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, 2190 pmd_t *pmd) 2191 { 2192 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2193 struct vm_fault vmf = { 2194 .page = NULL, 2195 .pgoff = linear_page_index(vma, address), 2196 .virtual_address = (void __user *)(address & PAGE_MASK), 2197 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE, 2198 }; 2199 int ret; 2200 2201 pte_unmap_unlock(page_table, ptl); 2202 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf); 2203 if (ret & VM_FAULT_ERROR) 2204 return ret; 2205 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2206 /* 2207 * We might have raced with another page fault while we 2208 * released the pte_offset_map_lock. 2209 */ 2210 if (!pte_same(*page_table, orig_pte)) { 2211 pte_unmap_unlock(page_table, ptl); 2212 return 0; 2213 } 2214 } 2215 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte, 2216 NULL, 0, 0); 2217 } 2218 2219 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma, 2220 unsigned long address, pte_t *page_table, 2221 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte, 2222 struct page *old_page) 2223 __releases(ptl) 2224 { 2225 int page_mkwrite = 0; 2226 2227 page_cache_get(old_page); 2228 2229 /* 2230 * Only catch write-faults on shared writable pages, 2231 * read-only shared pages can get COWed by 2232 * get_user_pages(.write=1, .force=1). 2233 */ 2234 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2235 int tmp; 2236 2237 pte_unmap_unlock(page_table, ptl); 2238 tmp = do_page_mkwrite(vma, old_page, address); 2239 if (unlikely(!tmp || (tmp & 2240 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2241 page_cache_release(old_page); 2242 return tmp; 2243 } 2244 /* 2245 * Since we dropped the lock we need to revalidate 2246 * the PTE as someone else may have changed it. If 2247 * they did, we just return, as we can count on the 2248 * MMU to tell us if they didn't also make it writable. 2249 */ 2250 page_table = pte_offset_map_lock(mm, pmd, address, 2251 &ptl); 2252 if (!pte_same(*page_table, orig_pte)) { 2253 unlock_page(old_page); 2254 pte_unmap_unlock(page_table, ptl); 2255 page_cache_release(old_page); 2256 return 0; 2257 } 2258 page_mkwrite = 1; 2259 } 2260 2261 return wp_page_reuse(mm, vma, address, page_table, ptl, 2262 orig_pte, old_page, page_mkwrite, 1); 2263 } 2264 2265 /* 2266 * This routine handles present pages, when users try to write 2267 * to a shared page. It is done by copying the page to a new address 2268 * and decrementing the shared-page counter for the old page. 2269 * 2270 * Note that this routine assumes that the protection checks have been 2271 * done by the caller (the low-level page fault routine in most cases). 2272 * Thus we can safely just mark it writable once we've done any necessary 2273 * COW. 2274 * 2275 * We also mark the page dirty at this point even though the page will 2276 * change only once the write actually happens. This avoids a few races, 2277 * and potentially makes it more efficient. 2278 * 2279 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2280 * but allow concurrent faults), with pte both mapped and locked. 2281 * We return with mmap_sem still held, but pte unmapped and unlocked. 2282 */ 2283 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2284 unsigned long address, pte_t *page_table, pmd_t *pmd, 2285 spinlock_t *ptl, pte_t orig_pte) 2286 __releases(ptl) 2287 { 2288 struct page *old_page; 2289 2290 old_page = vm_normal_page(vma, address, orig_pte); 2291 if (!old_page) { 2292 /* 2293 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2294 * VM_PFNMAP VMA. 2295 * 2296 * We should not cow pages in a shared writeable mapping. 2297 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2298 */ 2299 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2300 (VM_WRITE|VM_SHARED)) 2301 return wp_pfn_shared(mm, vma, address, page_table, ptl, 2302 orig_pte, pmd); 2303 2304 pte_unmap_unlock(page_table, ptl); 2305 return wp_page_copy(mm, vma, address, page_table, pmd, 2306 orig_pte, old_page); 2307 } 2308 2309 /* 2310 * Take out anonymous pages first, anonymous shared vmas are 2311 * not dirty accountable. 2312 */ 2313 if (PageAnon(old_page) && !PageKsm(old_page)) { 2314 if (!trylock_page(old_page)) { 2315 page_cache_get(old_page); 2316 pte_unmap_unlock(page_table, ptl); 2317 lock_page(old_page); 2318 page_table = pte_offset_map_lock(mm, pmd, address, 2319 &ptl); 2320 if (!pte_same(*page_table, orig_pte)) { 2321 unlock_page(old_page); 2322 pte_unmap_unlock(page_table, ptl); 2323 page_cache_release(old_page); 2324 return 0; 2325 } 2326 page_cache_release(old_page); 2327 } 2328 if (reuse_swap_page(old_page)) { 2329 /* 2330 * The page is all ours. Move it to our anon_vma so 2331 * the rmap code will not search our parent or siblings. 2332 * Protected against the rmap code by the page lock. 2333 */ 2334 page_move_anon_rmap(old_page, vma, address); 2335 unlock_page(old_page); 2336 return wp_page_reuse(mm, vma, address, page_table, ptl, 2337 orig_pte, old_page, 0, 0); 2338 } 2339 unlock_page(old_page); 2340 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2341 (VM_WRITE|VM_SHARED))) { 2342 return wp_page_shared(mm, vma, address, page_table, pmd, 2343 ptl, orig_pte, old_page); 2344 } 2345 2346 /* 2347 * Ok, we need to copy. Oh, well.. 2348 */ 2349 page_cache_get(old_page); 2350 2351 pte_unmap_unlock(page_table, ptl); 2352 return wp_page_copy(mm, vma, address, page_table, pmd, 2353 orig_pte, old_page); 2354 } 2355 2356 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2357 unsigned long start_addr, unsigned long end_addr, 2358 struct zap_details *details) 2359 { 2360 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2361 } 2362 2363 static inline void unmap_mapping_range_tree(struct rb_root *root, 2364 struct zap_details *details) 2365 { 2366 struct vm_area_struct *vma; 2367 pgoff_t vba, vea, zba, zea; 2368 2369 vma_interval_tree_foreach(vma, root, 2370 details->first_index, details->last_index) { 2371 2372 vba = vma->vm_pgoff; 2373 vea = vba + vma_pages(vma) - 1; 2374 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2375 zba = details->first_index; 2376 if (zba < vba) 2377 zba = vba; 2378 zea = details->last_index; 2379 if (zea > vea) 2380 zea = vea; 2381 2382 unmap_mapping_range_vma(vma, 2383 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2384 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2385 details); 2386 } 2387 } 2388 2389 /** 2390 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2391 * address_space corresponding to the specified page range in the underlying 2392 * file. 2393 * 2394 * @mapping: the address space containing mmaps to be unmapped. 2395 * @holebegin: byte in first page to unmap, relative to the start of 2396 * the underlying file. This will be rounded down to a PAGE_SIZE 2397 * boundary. Note that this is different from truncate_pagecache(), which 2398 * must keep the partial page. In contrast, we must get rid of 2399 * partial pages. 2400 * @holelen: size of prospective hole in bytes. This will be rounded 2401 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2402 * end of the file. 2403 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2404 * but 0 when invalidating pagecache, don't throw away private data. 2405 */ 2406 void unmap_mapping_range(struct address_space *mapping, 2407 loff_t const holebegin, loff_t const holelen, int even_cows) 2408 { 2409 struct zap_details details; 2410 pgoff_t hba = holebegin >> PAGE_SHIFT; 2411 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2412 2413 /* Check for overflow. */ 2414 if (sizeof(holelen) > sizeof(hlen)) { 2415 long long holeend = 2416 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2417 if (holeend & ~(long long)ULONG_MAX) 2418 hlen = ULONG_MAX - hba + 1; 2419 } 2420 2421 details.check_mapping = even_cows? NULL: mapping; 2422 details.first_index = hba; 2423 details.last_index = hba + hlen - 1; 2424 if (details.last_index < details.first_index) 2425 details.last_index = ULONG_MAX; 2426 2427 2428 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */ 2429 i_mmap_lock_write(mapping); 2430 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2431 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2432 i_mmap_unlock_write(mapping); 2433 } 2434 EXPORT_SYMBOL(unmap_mapping_range); 2435 2436 /* 2437 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2438 * but allow concurrent faults), and pte mapped but not yet locked. 2439 * We return with pte unmapped and unlocked. 2440 * 2441 * We return with the mmap_sem locked or unlocked in the same cases 2442 * as does filemap_fault(). 2443 */ 2444 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2445 unsigned long address, pte_t *page_table, pmd_t *pmd, 2446 unsigned int flags, pte_t orig_pte) 2447 { 2448 spinlock_t *ptl; 2449 struct page *page, *swapcache; 2450 struct mem_cgroup *memcg; 2451 swp_entry_t entry; 2452 pte_t pte; 2453 int locked; 2454 int exclusive = 0; 2455 int ret = 0; 2456 2457 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2458 goto out; 2459 2460 entry = pte_to_swp_entry(orig_pte); 2461 if (unlikely(non_swap_entry(entry))) { 2462 if (is_migration_entry(entry)) { 2463 migration_entry_wait(mm, pmd, address); 2464 } else if (is_hwpoison_entry(entry)) { 2465 ret = VM_FAULT_HWPOISON; 2466 } else { 2467 print_bad_pte(vma, address, orig_pte, NULL); 2468 ret = VM_FAULT_SIGBUS; 2469 } 2470 goto out; 2471 } 2472 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2473 page = lookup_swap_cache(entry); 2474 if (!page) { 2475 page = swapin_readahead(entry, 2476 GFP_HIGHUSER_MOVABLE, vma, address); 2477 if (!page) { 2478 /* 2479 * Back out if somebody else faulted in this pte 2480 * while we released the pte lock. 2481 */ 2482 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2483 if (likely(pte_same(*page_table, orig_pte))) 2484 ret = VM_FAULT_OOM; 2485 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2486 goto unlock; 2487 } 2488 2489 /* Had to read the page from swap area: Major fault */ 2490 ret = VM_FAULT_MAJOR; 2491 count_vm_event(PGMAJFAULT); 2492 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2493 } else if (PageHWPoison(page)) { 2494 /* 2495 * hwpoisoned dirty swapcache pages are kept for killing 2496 * owner processes (which may be unknown at hwpoison time) 2497 */ 2498 ret = VM_FAULT_HWPOISON; 2499 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2500 swapcache = page; 2501 goto out_release; 2502 } 2503 2504 swapcache = page; 2505 locked = lock_page_or_retry(page, mm, flags); 2506 2507 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2508 if (!locked) { 2509 ret |= VM_FAULT_RETRY; 2510 goto out_release; 2511 } 2512 2513 /* 2514 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2515 * release the swapcache from under us. The page pin, and pte_same 2516 * test below, are not enough to exclude that. Even if it is still 2517 * swapcache, we need to check that the page's swap has not changed. 2518 */ 2519 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2520 goto out_page; 2521 2522 page = ksm_might_need_to_copy(page, vma, address); 2523 if (unlikely(!page)) { 2524 ret = VM_FAULT_OOM; 2525 page = swapcache; 2526 goto out_page; 2527 } 2528 2529 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) { 2530 ret = VM_FAULT_OOM; 2531 goto out_page; 2532 } 2533 2534 /* 2535 * Back out if somebody else already faulted in this pte. 2536 */ 2537 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2538 if (unlikely(!pte_same(*page_table, orig_pte))) 2539 goto out_nomap; 2540 2541 if (unlikely(!PageUptodate(page))) { 2542 ret = VM_FAULT_SIGBUS; 2543 goto out_nomap; 2544 } 2545 2546 /* 2547 * The page isn't present yet, go ahead with the fault. 2548 * 2549 * Be careful about the sequence of operations here. 2550 * To get its accounting right, reuse_swap_page() must be called 2551 * while the page is counted on swap but not yet in mapcount i.e. 2552 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2553 * must be called after the swap_free(), or it will never succeed. 2554 */ 2555 2556 inc_mm_counter_fast(mm, MM_ANONPAGES); 2557 dec_mm_counter_fast(mm, MM_SWAPENTS); 2558 pte = mk_pte(page, vma->vm_page_prot); 2559 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2560 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2561 flags &= ~FAULT_FLAG_WRITE; 2562 ret |= VM_FAULT_WRITE; 2563 exclusive = 1; 2564 } 2565 flush_icache_page(vma, page); 2566 if (pte_swp_soft_dirty(orig_pte)) 2567 pte = pte_mksoft_dirty(pte); 2568 set_pte_at(mm, address, page_table, pte); 2569 if (page == swapcache) { 2570 do_page_add_anon_rmap(page, vma, address, exclusive); 2571 mem_cgroup_commit_charge(page, memcg, true); 2572 } else { /* ksm created a completely new copy */ 2573 page_add_new_anon_rmap(page, vma, address); 2574 mem_cgroup_commit_charge(page, memcg, false); 2575 lru_cache_add_active_or_unevictable(page, vma); 2576 } 2577 2578 swap_free(entry); 2579 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2580 try_to_free_swap(page); 2581 unlock_page(page); 2582 if (page != swapcache) { 2583 /* 2584 * Hold the lock to avoid the swap entry to be reused 2585 * until we take the PT lock for the pte_same() check 2586 * (to avoid false positives from pte_same). For 2587 * further safety release the lock after the swap_free 2588 * so that the swap count won't change under a 2589 * parallel locked swapcache. 2590 */ 2591 unlock_page(swapcache); 2592 page_cache_release(swapcache); 2593 } 2594 2595 if (flags & FAULT_FLAG_WRITE) { 2596 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2597 if (ret & VM_FAULT_ERROR) 2598 ret &= VM_FAULT_ERROR; 2599 goto out; 2600 } 2601 2602 /* No need to invalidate - it was non-present before */ 2603 update_mmu_cache(vma, address, page_table); 2604 unlock: 2605 pte_unmap_unlock(page_table, ptl); 2606 out: 2607 return ret; 2608 out_nomap: 2609 mem_cgroup_cancel_charge(page, memcg); 2610 pte_unmap_unlock(page_table, ptl); 2611 out_page: 2612 unlock_page(page); 2613 out_release: 2614 page_cache_release(page); 2615 if (page != swapcache) { 2616 unlock_page(swapcache); 2617 page_cache_release(swapcache); 2618 } 2619 return ret; 2620 } 2621 2622 /* 2623 * This is like a special single-page "expand_{down|up}wards()", 2624 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2625 * doesn't hit another vma. 2626 */ 2627 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2628 { 2629 address &= PAGE_MASK; 2630 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2631 struct vm_area_struct *prev = vma->vm_prev; 2632 2633 /* 2634 * Is there a mapping abutting this one below? 2635 * 2636 * That's only ok if it's the same stack mapping 2637 * that has gotten split.. 2638 */ 2639 if (prev && prev->vm_end == address) 2640 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2641 2642 return expand_downwards(vma, address - PAGE_SIZE); 2643 } 2644 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2645 struct vm_area_struct *next = vma->vm_next; 2646 2647 /* As VM_GROWSDOWN but s/below/above/ */ 2648 if (next && next->vm_start == address + PAGE_SIZE) 2649 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2650 2651 return expand_upwards(vma, address + PAGE_SIZE); 2652 } 2653 return 0; 2654 } 2655 2656 /* 2657 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2658 * but allow concurrent faults), and pte mapped but not yet locked. 2659 * We return with mmap_sem still held, but pte unmapped and unlocked. 2660 */ 2661 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2662 unsigned long address, pte_t *page_table, pmd_t *pmd, 2663 unsigned int flags) 2664 { 2665 struct mem_cgroup *memcg; 2666 struct page *page; 2667 spinlock_t *ptl; 2668 pte_t entry; 2669 2670 pte_unmap(page_table); 2671 2672 /* Check if we need to add a guard page to the stack */ 2673 if (check_stack_guard_page(vma, address) < 0) 2674 return VM_FAULT_SIGSEGV; 2675 2676 /* Use the zero-page for reads */ 2677 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) { 2678 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2679 vma->vm_page_prot)); 2680 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2681 if (!pte_none(*page_table)) 2682 goto unlock; 2683 goto setpte; 2684 } 2685 2686 /* Allocate our own private page. */ 2687 if (unlikely(anon_vma_prepare(vma))) 2688 goto oom; 2689 page = alloc_zeroed_user_highpage_movable(vma, address); 2690 if (!page) 2691 goto oom; 2692 /* 2693 * The memory barrier inside __SetPageUptodate makes sure that 2694 * preceeding stores to the page contents become visible before 2695 * the set_pte_at() write. 2696 */ 2697 __SetPageUptodate(page); 2698 2699 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) 2700 goto oom_free_page; 2701 2702 entry = mk_pte(page, vma->vm_page_prot); 2703 if (vma->vm_flags & VM_WRITE) 2704 entry = pte_mkwrite(pte_mkdirty(entry)); 2705 2706 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2707 if (!pte_none(*page_table)) 2708 goto release; 2709 2710 inc_mm_counter_fast(mm, MM_ANONPAGES); 2711 page_add_new_anon_rmap(page, vma, address); 2712 mem_cgroup_commit_charge(page, memcg, false); 2713 lru_cache_add_active_or_unevictable(page, vma); 2714 setpte: 2715 set_pte_at(mm, address, page_table, entry); 2716 2717 /* No need to invalidate - it was non-present before */ 2718 update_mmu_cache(vma, address, page_table); 2719 unlock: 2720 pte_unmap_unlock(page_table, ptl); 2721 return 0; 2722 release: 2723 mem_cgroup_cancel_charge(page, memcg); 2724 page_cache_release(page); 2725 goto unlock; 2726 oom_free_page: 2727 page_cache_release(page); 2728 oom: 2729 return VM_FAULT_OOM; 2730 } 2731 2732 /* 2733 * The mmap_sem must have been held on entry, and may have been 2734 * released depending on flags and vma->vm_ops->fault() return value. 2735 * See filemap_fault() and __lock_page_retry(). 2736 */ 2737 static int __do_fault(struct vm_area_struct *vma, unsigned long address, 2738 pgoff_t pgoff, unsigned int flags, 2739 struct page *cow_page, struct page **page) 2740 { 2741 struct vm_fault vmf; 2742 int ret; 2743 2744 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2745 vmf.pgoff = pgoff; 2746 vmf.flags = flags; 2747 vmf.page = NULL; 2748 vmf.cow_page = cow_page; 2749 2750 ret = vma->vm_ops->fault(vma, &vmf); 2751 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2752 return ret; 2753 if (!vmf.page) 2754 goto out; 2755 2756 if (unlikely(PageHWPoison(vmf.page))) { 2757 if (ret & VM_FAULT_LOCKED) 2758 unlock_page(vmf.page); 2759 page_cache_release(vmf.page); 2760 return VM_FAULT_HWPOISON; 2761 } 2762 2763 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2764 lock_page(vmf.page); 2765 else 2766 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 2767 2768 out: 2769 *page = vmf.page; 2770 return ret; 2771 } 2772 2773 /** 2774 * do_set_pte - setup new PTE entry for given page and add reverse page mapping. 2775 * 2776 * @vma: virtual memory area 2777 * @address: user virtual address 2778 * @page: page to map 2779 * @pte: pointer to target page table entry 2780 * @write: true, if new entry is writable 2781 * @anon: true, if it's anonymous page 2782 * 2783 * Caller must hold page table lock relevant for @pte. 2784 * 2785 * Target users are page handler itself and implementations of 2786 * vm_ops->map_pages. 2787 */ 2788 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 2789 struct page *page, pte_t *pte, bool write, bool anon) 2790 { 2791 pte_t entry; 2792 2793 flush_icache_page(vma, page); 2794 entry = mk_pte(page, vma->vm_page_prot); 2795 if (write) 2796 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2797 if (anon) { 2798 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2799 page_add_new_anon_rmap(page, vma, address); 2800 } else { 2801 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES); 2802 page_add_file_rmap(page); 2803 } 2804 set_pte_at(vma->vm_mm, address, pte, entry); 2805 2806 /* no need to invalidate: a not-present page won't be cached */ 2807 update_mmu_cache(vma, address, pte); 2808 } 2809 2810 static unsigned long fault_around_bytes __read_mostly = 2811 rounddown_pow_of_two(65536); 2812 2813 #ifdef CONFIG_DEBUG_FS 2814 static int fault_around_bytes_get(void *data, u64 *val) 2815 { 2816 *val = fault_around_bytes; 2817 return 0; 2818 } 2819 2820 /* 2821 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 2822 * rounded down to nearest page order. It's what do_fault_around() expects to 2823 * see. 2824 */ 2825 static int fault_around_bytes_set(void *data, u64 val) 2826 { 2827 if (val / PAGE_SIZE > PTRS_PER_PTE) 2828 return -EINVAL; 2829 if (val > PAGE_SIZE) 2830 fault_around_bytes = rounddown_pow_of_two(val); 2831 else 2832 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 2833 return 0; 2834 } 2835 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 2836 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 2837 2838 static int __init fault_around_debugfs(void) 2839 { 2840 void *ret; 2841 2842 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 2843 &fault_around_bytes_fops); 2844 if (!ret) 2845 pr_warn("Failed to create fault_around_bytes in debugfs"); 2846 return 0; 2847 } 2848 late_initcall(fault_around_debugfs); 2849 #endif 2850 2851 /* 2852 * do_fault_around() tries to map few pages around the fault address. The hope 2853 * is that the pages will be needed soon and this will lower the number of 2854 * faults to handle. 2855 * 2856 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 2857 * not ready to be mapped: not up-to-date, locked, etc. 2858 * 2859 * This function is called with the page table lock taken. In the split ptlock 2860 * case the page table lock only protects only those entries which belong to 2861 * the page table corresponding to the fault address. 2862 * 2863 * This function doesn't cross the VMA boundaries, in order to call map_pages() 2864 * only once. 2865 * 2866 * fault_around_pages() defines how many pages we'll try to map. 2867 * do_fault_around() expects it to return a power of two less than or equal to 2868 * PTRS_PER_PTE. 2869 * 2870 * The virtual address of the area that we map is naturally aligned to the 2871 * fault_around_pages() value (and therefore to page order). This way it's 2872 * easier to guarantee that we don't cross page table boundaries. 2873 */ 2874 static void do_fault_around(struct vm_area_struct *vma, unsigned long address, 2875 pte_t *pte, pgoff_t pgoff, unsigned int flags) 2876 { 2877 unsigned long start_addr, nr_pages, mask; 2878 pgoff_t max_pgoff; 2879 struct vm_fault vmf; 2880 int off; 2881 2882 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 2883 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 2884 2885 start_addr = max(address & mask, vma->vm_start); 2886 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 2887 pte -= off; 2888 pgoff -= off; 2889 2890 /* 2891 * max_pgoff is either end of page table or end of vma 2892 * or fault_around_pages() from pgoff, depending what is nearest. 2893 */ 2894 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 2895 PTRS_PER_PTE - 1; 2896 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1, 2897 pgoff + nr_pages - 1); 2898 2899 /* Check if it makes any sense to call ->map_pages */ 2900 while (!pte_none(*pte)) { 2901 if (++pgoff > max_pgoff) 2902 return; 2903 start_addr += PAGE_SIZE; 2904 if (start_addr >= vma->vm_end) 2905 return; 2906 pte++; 2907 } 2908 2909 vmf.virtual_address = (void __user *) start_addr; 2910 vmf.pte = pte; 2911 vmf.pgoff = pgoff; 2912 vmf.max_pgoff = max_pgoff; 2913 vmf.flags = flags; 2914 vma->vm_ops->map_pages(vma, &vmf); 2915 } 2916 2917 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2918 unsigned long address, pmd_t *pmd, 2919 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2920 { 2921 struct page *fault_page; 2922 spinlock_t *ptl; 2923 pte_t *pte; 2924 int ret = 0; 2925 2926 /* 2927 * Let's call ->map_pages() first and use ->fault() as fallback 2928 * if page by the offset is not ready to be mapped (cold cache or 2929 * something). 2930 */ 2931 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 2932 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2933 do_fault_around(vma, address, pte, pgoff, flags); 2934 if (!pte_same(*pte, orig_pte)) 2935 goto unlock_out; 2936 pte_unmap_unlock(pte, ptl); 2937 } 2938 2939 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page); 2940 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2941 return ret; 2942 2943 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2944 if (unlikely(!pte_same(*pte, orig_pte))) { 2945 pte_unmap_unlock(pte, ptl); 2946 unlock_page(fault_page); 2947 page_cache_release(fault_page); 2948 return ret; 2949 } 2950 do_set_pte(vma, address, fault_page, pte, false, false); 2951 unlock_page(fault_page); 2952 unlock_out: 2953 pte_unmap_unlock(pte, ptl); 2954 return ret; 2955 } 2956 2957 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2958 unsigned long address, pmd_t *pmd, 2959 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2960 { 2961 struct page *fault_page, *new_page; 2962 struct mem_cgroup *memcg; 2963 spinlock_t *ptl; 2964 pte_t *pte; 2965 int ret; 2966 2967 if (unlikely(anon_vma_prepare(vma))) 2968 return VM_FAULT_OOM; 2969 2970 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2971 if (!new_page) 2972 return VM_FAULT_OOM; 2973 2974 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) { 2975 page_cache_release(new_page); 2976 return VM_FAULT_OOM; 2977 } 2978 2979 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page); 2980 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2981 goto uncharge_out; 2982 2983 if (fault_page) 2984 copy_user_highpage(new_page, fault_page, address, vma); 2985 __SetPageUptodate(new_page); 2986 2987 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2988 if (unlikely(!pte_same(*pte, orig_pte))) { 2989 pte_unmap_unlock(pte, ptl); 2990 if (fault_page) { 2991 unlock_page(fault_page); 2992 page_cache_release(fault_page); 2993 } else { 2994 /* 2995 * The fault handler has no page to lock, so it holds 2996 * i_mmap_lock for read to protect against truncate. 2997 */ 2998 i_mmap_unlock_read(vma->vm_file->f_mapping); 2999 } 3000 goto uncharge_out; 3001 } 3002 do_set_pte(vma, address, new_page, pte, true, true); 3003 mem_cgroup_commit_charge(new_page, memcg, false); 3004 lru_cache_add_active_or_unevictable(new_page, vma); 3005 pte_unmap_unlock(pte, ptl); 3006 if (fault_page) { 3007 unlock_page(fault_page); 3008 page_cache_release(fault_page); 3009 } else { 3010 /* 3011 * The fault handler has no page to lock, so it holds 3012 * i_mmap_lock for read to protect against truncate. 3013 */ 3014 i_mmap_unlock_read(vma->vm_file->f_mapping); 3015 } 3016 return ret; 3017 uncharge_out: 3018 mem_cgroup_cancel_charge(new_page, memcg); 3019 page_cache_release(new_page); 3020 return ret; 3021 } 3022 3023 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3024 unsigned long address, pmd_t *pmd, 3025 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3026 { 3027 struct page *fault_page; 3028 struct address_space *mapping; 3029 spinlock_t *ptl; 3030 pte_t *pte; 3031 int dirtied = 0; 3032 int ret, tmp; 3033 3034 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page); 3035 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3036 return ret; 3037 3038 /* 3039 * Check if the backing address space wants to know that the page is 3040 * about to become writable 3041 */ 3042 if (vma->vm_ops->page_mkwrite) { 3043 unlock_page(fault_page); 3044 tmp = do_page_mkwrite(vma, fault_page, address); 3045 if (unlikely(!tmp || 3046 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3047 page_cache_release(fault_page); 3048 return tmp; 3049 } 3050 } 3051 3052 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3053 if (unlikely(!pte_same(*pte, orig_pte))) { 3054 pte_unmap_unlock(pte, ptl); 3055 unlock_page(fault_page); 3056 page_cache_release(fault_page); 3057 return ret; 3058 } 3059 do_set_pte(vma, address, fault_page, pte, true, false); 3060 pte_unmap_unlock(pte, ptl); 3061 3062 if (set_page_dirty(fault_page)) 3063 dirtied = 1; 3064 /* 3065 * Take a local copy of the address_space - page.mapping may be zeroed 3066 * by truncate after unlock_page(). The address_space itself remains 3067 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 3068 * release semantics to prevent the compiler from undoing this copying. 3069 */ 3070 mapping = fault_page->mapping; 3071 unlock_page(fault_page); 3072 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { 3073 /* 3074 * Some device drivers do not set page.mapping but still 3075 * dirty their pages 3076 */ 3077 balance_dirty_pages_ratelimited(mapping); 3078 } 3079 3080 if (!vma->vm_ops->page_mkwrite) 3081 file_update_time(vma->vm_file); 3082 3083 return ret; 3084 } 3085 3086 /* 3087 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3088 * but allow concurrent faults). 3089 * The mmap_sem may have been released depending on flags and our 3090 * return value. See filemap_fault() and __lock_page_or_retry(). 3091 */ 3092 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3093 unsigned long address, pte_t *page_table, pmd_t *pmd, 3094 unsigned int flags, pte_t orig_pte) 3095 { 3096 pgoff_t pgoff = (((address & PAGE_MASK) 3097 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3098 3099 pte_unmap(page_table); 3100 if (!(flags & FAULT_FLAG_WRITE)) 3101 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3102 orig_pte); 3103 if (!(vma->vm_flags & VM_SHARED)) 3104 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3105 orig_pte); 3106 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3107 } 3108 3109 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3110 unsigned long addr, int page_nid, 3111 int *flags) 3112 { 3113 get_page(page); 3114 3115 count_vm_numa_event(NUMA_HINT_FAULTS); 3116 if (page_nid == numa_node_id()) { 3117 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3118 *flags |= TNF_FAULT_LOCAL; 3119 } 3120 3121 return mpol_misplaced(page, vma, addr); 3122 } 3123 3124 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3125 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3126 { 3127 struct page *page = NULL; 3128 spinlock_t *ptl; 3129 int page_nid = -1; 3130 int last_cpupid; 3131 int target_nid; 3132 bool migrated = false; 3133 bool was_writable = pte_write(pte); 3134 int flags = 0; 3135 3136 /* A PROT_NONE fault should not end up here */ 3137 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))); 3138 3139 /* 3140 * The "pte" at this point cannot be used safely without 3141 * validation through pte_unmap_same(). It's of NUMA type but 3142 * the pfn may be screwed if the read is non atomic. 3143 * 3144 * We can safely just do a "set_pte_at()", because the old 3145 * page table entry is not accessible, so there would be no 3146 * concurrent hardware modifications to the PTE. 3147 */ 3148 ptl = pte_lockptr(mm, pmd); 3149 spin_lock(ptl); 3150 if (unlikely(!pte_same(*ptep, pte))) { 3151 pte_unmap_unlock(ptep, ptl); 3152 goto out; 3153 } 3154 3155 /* Make it present again */ 3156 pte = pte_modify(pte, vma->vm_page_prot); 3157 pte = pte_mkyoung(pte); 3158 if (was_writable) 3159 pte = pte_mkwrite(pte); 3160 set_pte_at(mm, addr, ptep, pte); 3161 update_mmu_cache(vma, addr, ptep); 3162 3163 page = vm_normal_page(vma, addr, pte); 3164 if (!page) { 3165 pte_unmap_unlock(ptep, ptl); 3166 return 0; 3167 } 3168 3169 /* 3170 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3171 * much anyway since they can be in shared cache state. This misses 3172 * the case where a mapping is writable but the process never writes 3173 * to it but pte_write gets cleared during protection updates and 3174 * pte_dirty has unpredictable behaviour between PTE scan updates, 3175 * background writeback, dirty balancing and application behaviour. 3176 */ 3177 if (!(vma->vm_flags & VM_WRITE)) 3178 flags |= TNF_NO_GROUP; 3179 3180 /* 3181 * Flag if the page is shared between multiple address spaces. This 3182 * is later used when determining whether to group tasks together 3183 */ 3184 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3185 flags |= TNF_SHARED; 3186 3187 last_cpupid = page_cpupid_last(page); 3188 page_nid = page_to_nid(page); 3189 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3190 pte_unmap_unlock(ptep, ptl); 3191 if (target_nid == -1) { 3192 put_page(page); 3193 goto out; 3194 } 3195 3196 /* Migrate to the requested node */ 3197 migrated = migrate_misplaced_page(page, vma, target_nid); 3198 if (migrated) { 3199 page_nid = target_nid; 3200 flags |= TNF_MIGRATED; 3201 } else 3202 flags |= TNF_MIGRATE_FAIL; 3203 3204 out: 3205 if (page_nid != -1) 3206 task_numa_fault(last_cpupid, page_nid, 1, flags); 3207 return 0; 3208 } 3209 3210 /* 3211 * These routines also need to handle stuff like marking pages dirty 3212 * and/or accessed for architectures that don't do it in hardware (most 3213 * RISC architectures). The early dirtying is also good on the i386. 3214 * 3215 * There is also a hook called "update_mmu_cache()" that architectures 3216 * with external mmu caches can use to update those (ie the Sparc or 3217 * PowerPC hashed page tables that act as extended TLBs). 3218 * 3219 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3220 * but allow concurrent faults), and pte mapped but not yet locked. 3221 * We return with pte unmapped and unlocked. 3222 * 3223 * The mmap_sem may have been released depending on flags and our 3224 * return value. See filemap_fault() and __lock_page_or_retry(). 3225 */ 3226 static int handle_pte_fault(struct mm_struct *mm, 3227 struct vm_area_struct *vma, unsigned long address, 3228 pte_t *pte, pmd_t *pmd, unsigned int flags) 3229 { 3230 pte_t entry; 3231 spinlock_t *ptl; 3232 3233 /* 3234 * some architectures can have larger ptes than wordsize, 3235 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y, 3236 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses. 3237 * The code below just needs a consistent view for the ifs and 3238 * we later double check anyway with the ptl lock held. So here 3239 * a barrier will do. 3240 */ 3241 entry = *pte; 3242 barrier(); 3243 if (!pte_present(entry)) { 3244 if (pte_none(entry)) { 3245 if (vma->vm_ops) { 3246 if (likely(vma->vm_ops->fault)) 3247 return do_fault(mm, vma, address, pte, 3248 pmd, flags, entry); 3249 } 3250 return do_anonymous_page(mm, vma, address, 3251 pte, pmd, flags); 3252 } 3253 return do_swap_page(mm, vma, address, 3254 pte, pmd, flags, entry); 3255 } 3256 3257 if (pte_protnone(entry)) 3258 return do_numa_page(mm, vma, address, entry, pte, pmd); 3259 3260 ptl = pte_lockptr(mm, pmd); 3261 spin_lock(ptl); 3262 if (unlikely(!pte_same(*pte, entry))) 3263 goto unlock; 3264 if (flags & FAULT_FLAG_WRITE) { 3265 if (!pte_write(entry)) 3266 return do_wp_page(mm, vma, address, 3267 pte, pmd, ptl, entry); 3268 entry = pte_mkdirty(entry); 3269 } 3270 entry = pte_mkyoung(entry); 3271 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3272 update_mmu_cache(vma, address, pte); 3273 } else { 3274 /* 3275 * This is needed only for protection faults but the arch code 3276 * is not yet telling us if this is a protection fault or not. 3277 * This still avoids useless tlb flushes for .text page faults 3278 * with threads. 3279 */ 3280 if (flags & FAULT_FLAG_WRITE) 3281 flush_tlb_fix_spurious_fault(vma, address); 3282 } 3283 unlock: 3284 pte_unmap_unlock(pte, ptl); 3285 return 0; 3286 } 3287 3288 /* 3289 * By the time we get here, we already hold the mm semaphore 3290 * 3291 * The mmap_sem may have been released depending on flags and our 3292 * return value. See filemap_fault() and __lock_page_or_retry(). 3293 */ 3294 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3295 unsigned long address, unsigned int flags) 3296 { 3297 pgd_t *pgd; 3298 pud_t *pud; 3299 pmd_t *pmd; 3300 pte_t *pte; 3301 3302 if (unlikely(is_vm_hugetlb_page(vma))) 3303 return hugetlb_fault(mm, vma, address, flags); 3304 3305 pgd = pgd_offset(mm, address); 3306 pud = pud_alloc(mm, pgd, address); 3307 if (!pud) 3308 return VM_FAULT_OOM; 3309 pmd = pmd_alloc(mm, pud, address); 3310 if (!pmd) 3311 return VM_FAULT_OOM; 3312 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3313 int ret = VM_FAULT_FALLBACK; 3314 if (!vma->vm_ops) 3315 ret = do_huge_pmd_anonymous_page(mm, vma, address, 3316 pmd, flags); 3317 if (!(ret & VM_FAULT_FALLBACK)) 3318 return ret; 3319 } else { 3320 pmd_t orig_pmd = *pmd; 3321 int ret; 3322 3323 barrier(); 3324 if (pmd_trans_huge(orig_pmd)) { 3325 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3326 3327 /* 3328 * If the pmd is splitting, return and retry the 3329 * the fault. Alternative: wait until the split 3330 * is done, and goto retry. 3331 */ 3332 if (pmd_trans_splitting(orig_pmd)) 3333 return 0; 3334 3335 if (pmd_protnone(orig_pmd)) 3336 return do_huge_pmd_numa_page(mm, vma, address, 3337 orig_pmd, pmd); 3338 3339 if (dirty && !pmd_write(orig_pmd)) { 3340 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3341 orig_pmd); 3342 if (!(ret & VM_FAULT_FALLBACK)) 3343 return ret; 3344 } else { 3345 huge_pmd_set_accessed(mm, vma, address, pmd, 3346 orig_pmd, dirty); 3347 return 0; 3348 } 3349 } 3350 } 3351 3352 /* 3353 * Use __pte_alloc instead of pte_alloc_map, because we can't 3354 * run pte_offset_map on the pmd, if an huge pmd could 3355 * materialize from under us from a different thread. 3356 */ 3357 if (unlikely(pmd_none(*pmd)) && 3358 unlikely(__pte_alloc(mm, vma, pmd, address))) 3359 return VM_FAULT_OOM; 3360 /* if an huge pmd materialized from under us just retry later */ 3361 if (unlikely(pmd_trans_huge(*pmd))) 3362 return 0; 3363 /* 3364 * A regular pmd is established and it can't morph into a huge pmd 3365 * from under us anymore at this point because we hold the mmap_sem 3366 * read mode and khugepaged takes it in write mode. So now it's 3367 * safe to run pte_offset_map(). 3368 */ 3369 pte = pte_offset_map(pmd, address); 3370 3371 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3372 } 3373 3374 /* 3375 * By the time we get here, we already hold the mm semaphore 3376 * 3377 * The mmap_sem may have been released depending on flags and our 3378 * return value. See filemap_fault() and __lock_page_or_retry(). 3379 */ 3380 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3381 unsigned long address, unsigned int flags) 3382 { 3383 int ret; 3384 3385 __set_current_state(TASK_RUNNING); 3386 3387 count_vm_event(PGFAULT); 3388 mem_cgroup_count_vm_event(mm, PGFAULT); 3389 3390 /* do counter updates before entering really critical section. */ 3391 check_sync_rss_stat(current); 3392 3393 /* 3394 * Enable the memcg OOM handling for faults triggered in user 3395 * space. Kernel faults are handled more gracefully. 3396 */ 3397 if (flags & FAULT_FLAG_USER) 3398 mem_cgroup_oom_enable(); 3399 3400 ret = __handle_mm_fault(mm, vma, address, flags); 3401 3402 if (flags & FAULT_FLAG_USER) { 3403 mem_cgroup_oom_disable(); 3404 /* 3405 * The task may have entered a memcg OOM situation but 3406 * if the allocation error was handled gracefully (no 3407 * VM_FAULT_OOM), there is no need to kill anything. 3408 * Just clean up the OOM state peacefully. 3409 */ 3410 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3411 mem_cgroup_oom_synchronize(false); 3412 } 3413 3414 return ret; 3415 } 3416 EXPORT_SYMBOL_GPL(handle_mm_fault); 3417 3418 #ifndef __PAGETABLE_PUD_FOLDED 3419 /* 3420 * Allocate page upper directory. 3421 * We've already handled the fast-path in-line. 3422 */ 3423 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3424 { 3425 pud_t *new = pud_alloc_one(mm, address); 3426 if (!new) 3427 return -ENOMEM; 3428 3429 smp_wmb(); /* See comment in __pte_alloc */ 3430 3431 spin_lock(&mm->page_table_lock); 3432 if (pgd_present(*pgd)) /* Another has populated it */ 3433 pud_free(mm, new); 3434 else 3435 pgd_populate(mm, pgd, new); 3436 spin_unlock(&mm->page_table_lock); 3437 return 0; 3438 } 3439 #endif /* __PAGETABLE_PUD_FOLDED */ 3440 3441 #ifndef __PAGETABLE_PMD_FOLDED 3442 /* 3443 * Allocate page middle directory. 3444 * We've already handled the fast-path in-line. 3445 */ 3446 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3447 { 3448 pmd_t *new = pmd_alloc_one(mm, address); 3449 if (!new) 3450 return -ENOMEM; 3451 3452 smp_wmb(); /* See comment in __pte_alloc */ 3453 3454 spin_lock(&mm->page_table_lock); 3455 #ifndef __ARCH_HAS_4LEVEL_HACK 3456 if (!pud_present(*pud)) { 3457 mm_inc_nr_pmds(mm); 3458 pud_populate(mm, pud, new); 3459 } else /* Another has populated it */ 3460 pmd_free(mm, new); 3461 #else 3462 if (!pgd_present(*pud)) { 3463 mm_inc_nr_pmds(mm); 3464 pgd_populate(mm, pud, new); 3465 } else /* Another has populated it */ 3466 pmd_free(mm, new); 3467 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3468 spin_unlock(&mm->page_table_lock); 3469 return 0; 3470 } 3471 #endif /* __PAGETABLE_PMD_FOLDED */ 3472 3473 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3474 pte_t **ptepp, spinlock_t **ptlp) 3475 { 3476 pgd_t *pgd; 3477 pud_t *pud; 3478 pmd_t *pmd; 3479 pte_t *ptep; 3480 3481 pgd = pgd_offset(mm, address); 3482 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3483 goto out; 3484 3485 pud = pud_offset(pgd, address); 3486 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3487 goto out; 3488 3489 pmd = pmd_offset(pud, address); 3490 VM_BUG_ON(pmd_trans_huge(*pmd)); 3491 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3492 goto out; 3493 3494 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3495 if (pmd_huge(*pmd)) 3496 goto out; 3497 3498 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3499 if (!ptep) 3500 goto out; 3501 if (!pte_present(*ptep)) 3502 goto unlock; 3503 *ptepp = ptep; 3504 return 0; 3505 unlock: 3506 pte_unmap_unlock(ptep, *ptlp); 3507 out: 3508 return -EINVAL; 3509 } 3510 3511 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3512 pte_t **ptepp, spinlock_t **ptlp) 3513 { 3514 int res; 3515 3516 /* (void) is needed to make gcc happy */ 3517 (void) __cond_lock(*ptlp, 3518 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3519 return res; 3520 } 3521 3522 /** 3523 * follow_pfn - look up PFN at a user virtual address 3524 * @vma: memory mapping 3525 * @address: user virtual address 3526 * @pfn: location to store found PFN 3527 * 3528 * Only IO mappings and raw PFN mappings are allowed. 3529 * 3530 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3531 */ 3532 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3533 unsigned long *pfn) 3534 { 3535 int ret = -EINVAL; 3536 spinlock_t *ptl; 3537 pte_t *ptep; 3538 3539 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3540 return ret; 3541 3542 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3543 if (ret) 3544 return ret; 3545 *pfn = pte_pfn(*ptep); 3546 pte_unmap_unlock(ptep, ptl); 3547 return 0; 3548 } 3549 EXPORT_SYMBOL(follow_pfn); 3550 3551 #ifdef CONFIG_HAVE_IOREMAP_PROT 3552 int follow_phys(struct vm_area_struct *vma, 3553 unsigned long address, unsigned int flags, 3554 unsigned long *prot, resource_size_t *phys) 3555 { 3556 int ret = -EINVAL; 3557 pte_t *ptep, pte; 3558 spinlock_t *ptl; 3559 3560 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3561 goto out; 3562 3563 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3564 goto out; 3565 pte = *ptep; 3566 3567 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3568 goto unlock; 3569 3570 *prot = pgprot_val(pte_pgprot(pte)); 3571 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3572 3573 ret = 0; 3574 unlock: 3575 pte_unmap_unlock(ptep, ptl); 3576 out: 3577 return ret; 3578 } 3579 3580 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3581 void *buf, int len, int write) 3582 { 3583 resource_size_t phys_addr; 3584 unsigned long prot = 0; 3585 void __iomem *maddr; 3586 int offset = addr & (PAGE_SIZE-1); 3587 3588 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3589 return -EINVAL; 3590 3591 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 3592 if (write) 3593 memcpy_toio(maddr + offset, buf, len); 3594 else 3595 memcpy_fromio(buf, maddr + offset, len); 3596 iounmap(maddr); 3597 3598 return len; 3599 } 3600 EXPORT_SYMBOL_GPL(generic_access_phys); 3601 #endif 3602 3603 /* 3604 * Access another process' address space as given in mm. If non-NULL, use the 3605 * given task for page fault accounting. 3606 */ 3607 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3608 unsigned long addr, void *buf, int len, int write) 3609 { 3610 struct vm_area_struct *vma; 3611 void *old_buf = buf; 3612 3613 down_read(&mm->mmap_sem); 3614 /* ignore errors, just check how much was successfully transferred */ 3615 while (len) { 3616 int bytes, ret, offset; 3617 void *maddr; 3618 struct page *page = NULL; 3619 3620 ret = get_user_pages(tsk, mm, addr, 1, 3621 write, 1, &page, &vma); 3622 if (ret <= 0) { 3623 #ifndef CONFIG_HAVE_IOREMAP_PROT 3624 break; 3625 #else 3626 /* 3627 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3628 * we can access using slightly different code. 3629 */ 3630 vma = find_vma(mm, addr); 3631 if (!vma || vma->vm_start > addr) 3632 break; 3633 if (vma->vm_ops && vma->vm_ops->access) 3634 ret = vma->vm_ops->access(vma, addr, buf, 3635 len, write); 3636 if (ret <= 0) 3637 break; 3638 bytes = ret; 3639 #endif 3640 } else { 3641 bytes = len; 3642 offset = addr & (PAGE_SIZE-1); 3643 if (bytes > PAGE_SIZE-offset) 3644 bytes = PAGE_SIZE-offset; 3645 3646 maddr = kmap(page); 3647 if (write) { 3648 copy_to_user_page(vma, page, addr, 3649 maddr + offset, buf, bytes); 3650 set_page_dirty_lock(page); 3651 } else { 3652 copy_from_user_page(vma, page, addr, 3653 buf, maddr + offset, bytes); 3654 } 3655 kunmap(page); 3656 page_cache_release(page); 3657 } 3658 len -= bytes; 3659 buf += bytes; 3660 addr += bytes; 3661 } 3662 up_read(&mm->mmap_sem); 3663 3664 return buf - old_buf; 3665 } 3666 3667 /** 3668 * access_remote_vm - access another process' address space 3669 * @mm: the mm_struct of the target address space 3670 * @addr: start address to access 3671 * @buf: source or destination buffer 3672 * @len: number of bytes to transfer 3673 * @write: whether the access is a write 3674 * 3675 * The caller must hold a reference on @mm. 3676 */ 3677 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3678 void *buf, int len, int write) 3679 { 3680 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3681 } 3682 3683 /* 3684 * Access another process' address space. 3685 * Source/target buffer must be kernel space, 3686 * Do not walk the page table directly, use get_user_pages 3687 */ 3688 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3689 void *buf, int len, int write) 3690 { 3691 struct mm_struct *mm; 3692 int ret; 3693 3694 mm = get_task_mm(tsk); 3695 if (!mm) 3696 return 0; 3697 3698 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3699 mmput(mm); 3700 3701 return ret; 3702 } 3703 3704 /* 3705 * Print the name of a VMA. 3706 */ 3707 void print_vma_addr(char *prefix, unsigned long ip) 3708 { 3709 struct mm_struct *mm = current->mm; 3710 struct vm_area_struct *vma; 3711 3712 /* 3713 * Do not print if we are in atomic 3714 * contexts (in exception stacks, etc.): 3715 */ 3716 if (preempt_count()) 3717 return; 3718 3719 down_read(&mm->mmap_sem); 3720 vma = find_vma(mm, ip); 3721 if (vma && vma->vm_file) { 3722 struct file *f = vma->vm_file; 3723 char *buf = (char *)__get_free_page(GFP_KERNEL); 3724 if (buf) { 3725 char *p; 3726 3727 p = d_path(&f->f_path, buf, PAGE_SIZE); 3728 if (IS_ERR(p)) 3729 p = "?"; 3730 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 3731 vma->vm_start, 3732 vma->vm_end - vma->vm_start); 3733 free_page((unsigned long)buf); 3734 } 3735 } 3736 up_read(&mm->mmap_sem); 3737 } 3738 3739 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3740 void might_fault(void) 3741 { 3742 /* 3743 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3744 * holding the mmap_sem, this is safe because kernel memory doesn't 3745 * get paged out, therefore we'll never actually fault, and the 3746 * below annotations will generate false positives. 3747 */ 3748 if (segment_eq(get_fs(), KERNEL_DS)) 3749 return; 3750 3751 /* 3752 * it would be nicer only to annotate paths which are not under 3753 * pagefault_disable, however that requires a larger audit and 3754 * providing helpers like get_user_atomic. 3755 */ 3756 if (in_atomic()) 3757 return; 3758 3759 __might_sleep(__FILE__, __LINE__, 0); 3760 3761 if (current->mm) 3762 might_lock_read(¤t->mm->mmap_sem); 3763 } 3764 EXPORT_SYMBOL(might_fault); 3765 #endif 3766 3767 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3768 static void clear_gigantic_page(struct page *page, 3769 unsigned long addr, 3770 unsigned int pages_per_huge_page) 3771 { 3772 int i; 3773 struct page *p = page; 3774 3775 might_sleep(); 3776 for (i = 0; i < pages_per_huge_page; 3777 i++, p = mem_map_next(p, page, i)) { 3778 cond_resched(); 3779 clear_user_highpage(p, addr + i * PAGE_SIZE); 3780 } 3781 } 3782 void clear_huge_page(struct page *page, 3783 unsigned long addr, unsigned int pages_per_huge_page) 3784 { 3785 int i; 3786 3787 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3788 clear_gigantic_page(page, addr, pages_per_huge_page); 3789 return; 3790 } 3791 3792 might_sleep(); 3793 for (i = 0; i < pages_per_huge_page; i++) { 3794 cond_resched(); 3795 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3796 } 3797 } 3798 3799 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3800 unsigned long addr, 3801 struct vm_area_struct *vma, 3802 unsigned int pages_per_huge_page) 3803 { 3804 int i; 3805 struct page *dst_base = dst; 3806 struct page *src_base = src; 3807 3808 for (i = 0; i < pages_per_huge_page; ) { 3809 cond_resched(); 3810 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3811 3812 i++; 3813 dst = mem_map_next(dst, dst_base, i); 3814 src = mem_map_next(src, src_base, i); 3815 } 3816 } 3817 3818 void copy_user_huge_page(struct page *dst, struct page *src, 3819 unsigned long addr, struct vm_area_struct *vma, 3820 unsigned int pages_per_huge_page) 3821 { 3822 int i; 3823 3824 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3825 copy_user_gigantic_page(dst, src, addr, vma, 3826 pages_per_huge_page); 3827 return; 3828 } 3829 3830 might_sleep(); 3831 for (i = 0; i < pages_per_huge_page; i++) { 3832 cond_resched(); 3833 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3834 } 3835 } 3836 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3837 3838 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 3839 3840 static struct kmem_cache *page_ptl_cachep; 3841 3842 void __init ptlock_cache_init(void) 3843 { 3844 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 3845 SLAB_PANIC, NULL); 3846 } 3847 3848 bool ptlock_alloc(struct page *page) 3849 { 3850 spinlock_t *ptl; 3851 3852 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 3853 if (!ptl) 3854 return false; 3855 page->ptl = ptl; 3856 return true; 3857 } 3858 3859 void ptlock_free(struct page *page) 3860 { 3861 kmem_cache_free(page_ptl_cachep, page->ptl); 3862 } 3863 #endif 3864