xref: /linux/mm/memory.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 #include <linux/dax.h>
67 
68 #include <asm/io.h>
69 #include <asm/mmu_context.h>
70 #include <asm/pgalloc.h>
71 #include <linux/uaccess.h>
72 #include <asm/tlb.h>
73 #include <asm/tlbflush.h>
74 #include <asm/pgtable.h>
75 
76 #include "internal.h"
77 
78 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
79 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
80 #endif
81 
82 #ifndef CONFIG_NEED_MULTIPLE_NODES
83 /* use the per-pgdat data instead for discontigmem - mbligh */
84 unsigned long max_mapnr;
85 struct page *mem_map;
86 
87 EXPORT_SYMBOL(max_mapnr);
88 EXPORT_SYMBOL(mem_map);
89 #endif
90 
91 /*
92  * A number of key systems in x86 including ioremap() rely on the assumption
93  * that high_memory defines the upper bound on direct map memory, then end
94  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
95  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96  * and ZONE_HIGHMEM.
97  */
98 void * high_memory;
99 
100 EXPORT_SYMBOL(high_memory);
101 
102 /*
103  * Randomize the address space (stacks, mmaps, brk, etc.).
104  *
105  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
106  *   as ancient (libc5 based) binaries can segfault. )
107  */
108 int randomize_va_space __read_mostly =
109 #ifdef CONFIG_COMPAT_BRK
110 					1;
111 #else
112 					2;
113 #endif
114 
115 static int __init disable_randmaps(char *s)
116 {
117 	randomize_va_space = 0;
118 	return 1;
119 }
120 __setup("norandmaps", disable_randmaps);
121 
122 unsigned long zero_pfn __read_mostly;
123 unsigned long highest_memmap_pfn __read_mostly;
124 
125 EXPORT_SYMBOL(zero_pfn);
126 
127 /*
128  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
129  */
130 static int __init init_zero_pfn(void)
131 {
132 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
133 	return 0;
134 }
135 core_initcall(init_zero_pfn);
136 
137 
138 #if defined(SPLIT_RSS_COUNTING)
139 
140 void sync_mm_rss(struct mm_struct *mm)
141 {
142 	int i;
143 
144 	for (i = 0; i < NR_MM_COUNTERS; i++) {
145 		if (current->rss_stat.count[i]) {
146 			add_mm_counter(mm, i, current->rss_stat.count[i]);
147 			current->rss_stat.count[i] = 0;
148 		}
149 	}
150 	current->rss_stat.events = 0;
151 }
152 
153 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
154 {
155 	struct task_struct *task = current;
156 
157 	if (likely(task->mm == mm))
158 		task->rss_stat.count[member] += val;
159 	else
160 		add_mm_counter(mm, member, val);
161 }
162 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
163 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
164 
165 /* sync counter once per 64 page faults */
166 #define TASK_RSS_EVENTS_THRESH	(64)
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 	if (unlikely(task != current))
170 		return;
171 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
172 		sync_mm_rss(task->mm);
173 }
174 #else /* SPLIT_RSS_COUNTING */
175 
176 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
177 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
178 
179 static void check_sync_rss_stat(struct task_struct *task)
180 {
181 }
182 
183 #endif /* SPLIT_RSS_COUNTING */
184 
185 #ifdef HAVE_GENERIC_MMU_GATHER
186 
187 static bool tlb_next_batch(struct mmu_gather *tlb)
188 {
189 	struct mmu_gather_batch *batch;
190 
191 	batch = tlb->active;
192 	if (batch->next) {
193 		tlb->active = batch->next;
194 		return true;
195 	}
196 
197 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
198 		return false;
199 
200 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
201 	if (!batch)
202 		return false;
203 
204 	tlb->batch_count++;
205 	batch->next = NULL;
206 	batch->nr   = 0;
207 	batch->max  = MAX_GATHER_BATCH;
208 
209 	tlb->active->next = batch;
210 	tlb->active = batch;
211 
212 	return true;
213 }
214 
215 /* tlb_gather_mmu
216  *	Called to initialize an (on-stack) mmu_gather structure for page-table
217  *	tear-down from @mm. The @fullmm argument is used when @mm is without
218  *	users and we're going to destroy the full address space (exit/execve).
219  */
220 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
221 {
222 	tlb->mm = mm;
223 
224 	/* Is it from 0 to ~0? */
225 	tlb->fullmm     = !(start | (end+1));
226 	tlb->need_flush_all = 0;
227 	tlb->local.next = NULL;
228 	tlb->local.nr   = 0;
229 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230 	tlb->active     = &tlb->local;
231 	tlb->batch_count = 0;
232 
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 	tlb->batch = NULL;
235 #endif
236 	tlb->page_size = 0;
237 
238 	__tlb_reset_range(tlb);
239 }
240 
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243 	if (!tlb->end)
244 		return;
245 
246 	tlb_flush(tlb);
247 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 	tlb_table_flush(tlb);
250 #endif
251 	__tlb_reset_range(tlb);
252 }
253 
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256 	struct mmu_gather_batch *batch;
257 
258 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 		free_pages_and_swap_cache(batch->pages, batch->nr);
260 		batch->nr = 0;
261 	}
262 	tlb->active = &tlb->local;
263 }
264 
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267 	tlb_flush_mmu_tlbonly(tlb);
268 	tlb_flush_mmu_free(tlb);
269 }
270 
271 /* tlb_finish_mmu
272  *	Called at the end of the shootdown operation to free up any resources
273  *	that were required.
274  */
275 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
276 {
277 	struct mmu_gather_batch *batch, *next;
278 
279 	tlb_flush_mmu(tlb);
280 
281 	/* keep the page table cache within bounds */
282 	check_pgt_cache();
283 
284 	for (batch = tlb->local.next; batch; batch = next) {
285 		next = batch->next;
286 		free_pages((unsigned long)batch, 0);
287 	}
288 	tlb->local.next = NULL;
289 }
290 
291 /* __tlb_remove_page
292  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293  *	handling the additional races in SMP caused by other CPUs caching valid
294  *	mappings in their TLBs. Returns the number of free page slots left.
295  *	When out of page slots we must call tlb_flush_mmu().
296  *returns true if the caller should flush.
297  */
298 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
299 {
300 	struct mmu_gather_batch *batch;
301 
302 	VM_BUG_ON(!tlb->end);
303 	VM_WARN_ON(tlb->page_size != page_size);
304 
305 	batch = tlb->active;
306 	/*
307 	 * Add the page and check if we are full. If so
308 	 * force a flush.
309 	 */
310 	batch->pages[batch->nr++] = page;
311 	if (batch->nr == batch->max) {
312 		if (!tlb_next_batch(tlb))
313 			return true;
314 		batch = tlb->active;
315 	}
316 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
317 
318 	return false;
319 }
320 
321 #endif /* HAVE_GENERIC_MMU_GATHER */
322 
323 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
324 
325 /*
326  * See the comment near struct mmu_table_batch.
327  */
328 
329 static void tlb_remove_table_smp_sync(void *arg)
330 {
331 	/* Simply deliver the interrupt */
332 }
333 
334 static void tlb_remove_table_one(void *table)
335 {
336 	/*
337 	 * This isn't an RCU grace period and hence the page-tables cannot be
338 	 * assumed to be actually RCU-freed.
339 	 *
340 	 * It is however sufficient for software page-table walkers that rely on
341 	 * IRQ disabling. See the comment near struct mmu_table_batch.
342 	 */
343 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
344 	__tlb_remove_table(table);
345 }
346 
347 static void tlb_remove_table_rcu(struct rcu_head *head)
348 {
349 	struct mmu_table_batch *batch;
350 	int i;
351 
352 	batch = container_of(head, struct mmu_table_batch, rcu);
353 
354 	for (i = 0; i < batch->nr; i++)
355 		__tlb_remove_table(batch->tables[i]);
356 
357 	free_page((unsigned long)batch);
358 }
359 
360 void tlb_table_flush(struct mmu_gather *tlb)
361 {
362 	struct mmu_table_batch **batch = &tlb->batch;
363 
364 	if (*batch) {
365 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
366 		*batch = NULL;
367 	}
368 }
369 
370 void tlb_remove_table(struct mmu_gather *tlb, void *table)
371 {
372 	struct mmu_table_batch **batch = &tlb->batch;
373 
374 	/*
375 	 * When there's less then two users of this mm there cannot be a
376 	 * concurrent page-table walk.
377 	 */
378 	if (atomic_read(&tlb->mm->mm_users) < 2) {
379 		__tlb_remove_table(table);
380 		return;
381 	}
382 
383 	if (*batch == NULL) {
384 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
385 		if (*batch == NULL) {
386 			tlb_remove_table_one(table);
387 			return;
388 		}
389 		(*batch)->nr = 0;
390 	}
391 	(*batch)->tables[(*batch)->nr++] = table;
392 	if ((*batch)->nr == MAX_TABLE_BATCH)
393 		tlb_table_flush(tlb);
394 }
395 
396 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
397 
398 /*
399  * Note: this doesn't free the actual pages themselves. That
400  * has been handled earlier when unmapping all the memory regions.
401  */
402 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
403 			   unsigned long addr)
404 {
405 	pgtable_t token = pmd_pgtable(*pmd);
406 	pmd_clear(pmd);
407 	pte_free_tlb(tlb, token, addr);
408 	atomic_long_dec(&tlb->mm->nr_ptes);
409 }
410 
411 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
412 				unsigned long addr, unsigned long end,
413 				unsigned long floor, unsigned long ceiling)
414 {
415 	pmd_t *pmd;
416 	unsigned long next;
417 	unsigned long start;
418 
419 	start = addr;
420 	pmd = pmd_offset(pud, addr);
421 	do {
422 		next = pmd_addr_end(addr, end);
423 		if (pmd_none_or_clear_bad(pmd))
424 			continue;
425 		free_pte_range(tlb, pmd, addr);
426 	} while (pmd++, addr = next, addr != end);
427 
428 	start &= PUD_MASK;
429 	if (start < floor)
430 		return;
431 	if (ceiling) {
432 		ceiling &= PUD_MASK;
433 		if (!ceiling)
434 			return;
435 	}
436 	if (end - 1 > ceiling - 1)
437 		return;
438 
439 	pmd = pmd_offset(pud, start);
440 	pud_clear(pud);
441 	pmd_free_tlb(tlb, pmd, start);
442 	mm_dec_nr_pmds(tlb->mm);
443 }
444 
445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446 				unsigned long addr, unsigned long end,
447 				unsigned long floor, unsigned long ceiling)
448 {
449 	pud_t *pud;
450 	unsigned long next;
451 	unsigned long start;
452 
453 	start = addr;
454 	pud = pud_offset(pgd, addr);
455 	do {
456 		next = pud_addr_end(addr, end);
457 		if (pud_none_or_clear_bad(pud))
458 			continue;
459 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
460 	} while (pud++, addr = next, addr != end);
461 
462 	start &= PGDIR_MASK;
463 	if (start < floor)
464 		return;
465 	if (ceiling) {
466 		ceiling &= PGDIR_MASK;
467 		if (!ceiling)
468 			return;
469 	}
470 	if (end - 1 > ceiling - 1)
471 		return;
472 
473 	pud = pud_offset(pgd, start);
474 	pgd_clear(pgd);
475 	pud_free_tlb(tlb, pud, start);
476 }
477 
478 /*
479  * This function frees user-level page tables of a process.
480  */
481 void free_pgd_range(struct mmu_gather *tlb,
482 			unsigned long addr, unsigned long end,
483 			unsigned long floor, unsigned long ceiling)
484 {
485 	pgd_t *pgd;
486 	unsigned long next;
487 
488 	/*
489 	 * The next few lines have given us lots of grief...
490 	 *
491 	 * Why are we testing PMD* at this top level?  Because often
492 	 * there will be no work to do at all, and we'd prefer not to
493 	 * go all the way down to the bottom just to discover that.
494 	 *
495 	 * Why all these "- 1"s?  Because 0 represents both the bottom
496 	 * of the address space and the top of it (using -1 for the
497 	 * top wouldn't help much: the masks would do the wrong thing).
498 	 * The rule is that addr 0 and floor 0 refer to the bottom of
499 	 * the address space, but end 0 and ceiling 0 refer to the top
500 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
501 	 * that end 0 case should be mythical).
502 	 *
503 	 * Wherever addr is brought up or ceiling brought down, we must
504 	 * be careful to reject "the opposite 0" before it confuses the
505 	 * subsequent tests.  But what about where end is brought down
506 	 * by PMD_SIZE below? no, end can't go down to 0 there.
507 	 *
508 	 * Whereas we round start (addr) and ceiling down, by different
509 	 * masks at different levels, in order to test whether a table
510 	 * now has no other vmas using it, so can be freed, we don't
511 	 * bother to round floor or end up - the tests don't need that.
512 	 */
513 
514 	addr &= PMD_MASK;
515 	if (addr < floor) {
516 		addr += PMD_SIZE;
517 		if (!addr)
518 			return;
519 	}
520 	if (ceiling) {
521 		ceiling &= PMD_MASK;
522 		if (!ceiling)
523 			return;
524 	}
525 	if (end - 1 > ceiling - 1)
526 		end -= PMD_SIZE;
527 	if (addr > end - 1)
528 		return;
529 	/*
530 	 * We add page table cache pages with PAGE_SIZE,
531 	 * (see pte_free_tlb()), flush the tlb if we need
532 	 */
533 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
534 	pgd = pgd_offset(tlb->mm, addr);
535 	do {
536 		next = pgd_addr_end(addr, end);
537 		if (pgd_none_or_clear_bad(pgd))
538 			continue;
539 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
540 	} while (pgd++, addr = next, addr != end);
541 }
542 
543 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
544 		unsigned long floor, unsigned long ceiling)
545 {
546 	while (vma) {
547 		struct vm_area_struct *next = vma->vm_next;
548 		unsigned long addr = vma->vm_start;
549 
550 		/*
551 		 * Hide vma from rmap and truncate_pagecache before freeing
552 		 * pgtables
553 		 */
554 		unlink_anon_vmas(vma);
555 		unlink_file_vma(vma);
556 
557 		if (is_vm_hugetlb_page(vma)) {
558 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
559 				floor, next? next->vm_start: ceiling);
560 		} else {
561 			/*
562 			 * Optimization: gather nearby vmas into one call down
563 			 */
564 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
565 			       && !is_vm_hugetlb_page(next)) {
566 				vma = next;
567 				next = vma->vm_next;
568 				unlink_anon_vmas(vma);
569 				unlink_file_vma(vma);
570 			}
571 			free_pgd_range(tlb, addr, vma->vm_end,
572 				floor, next? next->vm_start: ceiling);
573 		}
574 		vma = next;
575 	}
576 }
577 
578 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
579 {
580 	spinlock_t *ptl;
581 	pgtable_t new = pte_alloc_one(mm, address);
582 	if (!new)
583 		return -ENOMEM;
584 
585 	/*
586 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
587 	 * visible before the pte is made visible to other CPUs by being
588 	 * put into page tables.
589 	 *
590 	 * The other side of the story is the pointer chasing in the page
591 	 * table walking code (when walking the page table without locking;
592 	 * ie. most of the time). Fortunately, these data accesses consist
593 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
594 	 * being the notable exception) will already guarantee loads are
595 	 * seen in-order. See the alpha page table accessors for the
596 	 * smp_read_barrier_depends() barriers in page table walking code.
597 	 */
598 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599 
600 	ptl = pmd_lock(mm, pmd);
601 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
602 		atomic_long_inc(&mm->nr_ptes);
603 		pmd_populate(mm, pmd, new);
604 		new = NULL;
605 	}
606 	spin_unlock(ptl);
607 	if (new)
608 		pte_free(mm, new);
609 	return 0;
610 }
611 
612 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
613 {
614 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
615 	if (!new)
616 		return -ENOMEM;
617 
618 	smp_wmb(); /* See comment in __pte_alloc */
619 
620 	spin_lock(&init_mm.page_table_lock);
621 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
622 		pmd_populate_kernel(&init_mm, pmd, new);
623 		new = NULL;
624 	}
625 	spin_unlock(&init_mm.page_table_lock);
626 	if (new)
627 		pte_free_kernel(&init_mm, new);
628 	return 0;
629 }
630 
631 static inline void init_rss_vec(int *rss)
632 {
633 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
634 }
635 
636 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
637 {
638 	int i;
639 
640 	if (current->mm == mm)
641 		sync_mm_rss(mm);
642 	for (i = 0; i < NR_MM_COUNTERS; i++)
643 		if (rss[i])
644 			add_mm_counter(mm, i, rss[i]);
645 }
646 
647 /*
648  * This function is called to print an error when a bad pte
649  * is found. For example, we might have a PFN-mapped pte in
650  * a region that doesn't allow it.
651  *
652  * The calling function must still handle the error.
653  */
654 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
655 			  pte_t pte, struct page *page)
656 {
657 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
658 	pud_t *pud = pud_offset(pgd, addr);
659 	pmd_t *pmd = pmd_offset(pud, addr);
660 	struct address_space *mapping;
661 	pgoff_t index;
662 	static unsigned long resume;
663 	static unsigned long nr_shown;
664 	static unsigned long nr_unshown;
665 
666 	/*
667 	 * Allow a burst of 60 reports, then keep quiet for that minute;
668 	 * or allow a steady drip of one report per second.
669 	 */
670 	if (nr_shown == 60) {
671 		if (time_before(jiffies, resume)) {
672 			nr_unshown++;
673 			return;
674 		}
675 		if (nr_unshown) {
676 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
677 				 nr_unshown);
678 			nr_unshown = 0;
679 		}
680 		nr_shown = 0;
681 	}
682 	if (nr_shown++ == 0)
683 		resume = jiffies + 60 * HZ;
684 
685 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
686 	index = linear_page_index(vma, addr);
687 
688 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
689 		 current->comm,
690 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
691 	if (page)
692 		dump_page(page, "bad pte");
693 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
694 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
695 	/*
696 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
697 	 */
698 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
699 		 vma->vm_file,
700 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
701 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
702 		 mapping ? mapping->a_ops->readpage : NULL);
703 	dump_stack();
704 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
705 }
706 
707 /*
708  * vm_normal_page -- This function gets the "struct page" associated with a pte.
709  *
710  * "Special" mappings do not wish to be associated with a "struct page" (either
711  * it doesn't exist, or it exists but they don't want to touch it). In this
712  * case, NULL is returned here. "Normal" mappings do have a struct page.
713  *
714  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
715  * pte bit, in which case this function is trivial. Secondly, an architecture
716  * may not have a spare pte bit, which requires a more complicated scheme,
717  * described below.
718  *
719  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
720  * special mapping (even if there are underlying and valid "struct pages").
721  * COWed pages of a VM_PFNMAP are always normal.
722  *
723  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
724  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
725  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
726  * mapping will always honor the rule
727  *
728  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
729  *
730  * And for normal mappings this is false.
731  *
732  * This restricts such mappings to be a linear translation from virtual address
733  * to pfn. To get around this restriction, we allow arbitrary mappings so long
734  * as the vma is not a COW mapping; in that case, we know that all ptes are
735  * special (because none can have been COWed).
736  *
737  *
738  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
739  *
740  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
741  * page" backing, however the difference is that _all_ pages with a struct
742  * page (that is, those where pfn_valid is true) are refcounted and considered
743  * normal pages by the VM. The disadvantage is that pages are refcounted
744  * (which can be slower and simply not an option for some PFNMAP users). The
745  * advantage is that we don't have to follow the strict linearity rule of
746  * PFNMAP mappings in order to support COWable mappings.
747  *
748  */
749 #ifdef __HAVE_ARCH_PTE_SPECIAL
750 # define HAVE_PTE_SPECIAL 1
751 #else
752 # define HAVE_PTE_SPECIAL 0
753 #endif
754 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
755 				pte_t pte)
756 {
757 	unsigned long pfn = pte_pfn(pte);
758 
759 	if (HAVE_PTE_SPECIAL) {
760 		if (likely(!pte_special(pte)))
761 			goto check_pfn;
762 		if (vma->vm_ops && vma->vm_ops->find_special_page)
763 			return vma->vm_ops->find_special_page(vma, addr);
764 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
765 			return NULL;
766 		if (!is_zero_pfn(pfn))
767 			print_bad_pte(vma, addr, pte, NULL);
768 		return NULL;
769 	}
770 
771 	/* !HAVE_PTE_SPECIAL case follows: */
772 
773 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
774 		if (vma->vm_flags & VM_MIXEDMAP) {
775 			if (!pfn_valid(pfn))
776 				return NULL;
777 			goto out;
778 		} else {
779 			unsigned long off;
780 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
781 			if (pfn == vma->vm_pgoff + off)
782 				return NULL;
783 			if (!is_cow_mapping(vma->vm_flags))
784 				return NULL;
785 		}
786 	}
787 
788 	if (is_zero_pfn(pfn))
789 		return NULL;
790 check_pfn:
791 	if (unlikely(pfn > highest_memmap_pfn)) {
792 		print_bad_pte(vma, addr, pte, NULL);
793 		return NULL;
794 	}
795 
796 	/*
797 	 * NOTE! We still have PageReserved() pages in the page tables.
798 	 * eg. VDSO mappings can cause them to exist.
799 	 */
800 out:
801 	return pfn_to_page(pfn);
802 }
803 
804 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
805 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
806 				pmd_t pmd)
807 {
808 	unsigned long pfn = pmd_pfn(pmd);
809 
810 	/*
811 	 * There is no pmd_special() but there may be special pmds, e.g.
812 	 * in a direct-access (dax) mapping, so let's just replicate the
813 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
814 	 */
815 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
816 		if (vma->vm_flags & VM_MIXEDMAP) {
817 			if (!pfn_valid(pfn))
818 				return NULL;
819 			goto out;
820 		} else {
821 			unsigned long off;
822 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
823 			if (pfn == vma->vm_pgoff + off)
824 				return NULL;
825 			if (!is_cow_mapping(vma->vm_flags))
826 				return NULL;
827 		}
828 	}
829 
830 	if (is_zero_pfn(pfn))
831 		return NULL;
832 	if (unlikely(pfn > highest_memmap_pfn))
833 		return NULL;
834 
835 	/*
836 	 * NOTE! We still have PageReserved() pages in the page tables.
837 	 * eg. VDSO mappings can cause them to exist.
838 	 */
839 out:
840 	return pfn_to_page(pfn);
841 }
842 #endif
843 
844 /*
845  * copy one vm_area from one task to the other. Assumes the page tables
846  * already present in the new task to be cleared in the whole range
847  * covered by this vma.
848  */
849 
850 static inline unsigned long
851 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
852 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
853 		unsigned long addr, int *rss)
854 {
855 	unsigned long vm_flags = vma->vm_flags;
856 	pte_t pte = *src_pte;
857 	struct page *page;
858 
859 	/* pte contains position in swap or file, so copy. */
860 	if (unlikely(!pte_present(pte))) {
861 		swp_entry_t entry = pte_to_swp_entry(pte);
862 
863 		if (likely(!non_swap_entry(entry))) {
864 			if (swap_duplicate(entry) < 0)
865 				return entry.val;
866 
867 			/* make sure dst_mm is on swapoff's mmlist. */
868 			if (unlikely(list_empty(&dst_mm->mmlist))) {
869 				spin_lock(&mmlist_lock);
870 				if (list_empty(&dst_mm->mmlist))
871 					list_add(&dst_mm->mmlist,
872 							&src_mm->mmlist);
873 				spin_unlock(&mmlist_lock);
874 			}
875 			rss[MM_SWAPENTS]++;
876 		} else if (is_migration_entry(entry)) {
877 			page = migration_entry_to_page(entry);
878 
879 			rss[mm_counter(page)]++;
880 
881 			if (is_write_migration_entry(entry) &&
882 					is_cow_mapping(vm_flags)) {
883 				/*
884 				 * COW mappings require pages in both
885 				 * parent and child to be set to read.
886 				 */
887 				make_migration_entry_read(&entry);
888 				pte = swp_entry_to_pte(entry);
889 				if (pte_swp_soft_dirty(*src_pte))
890 					pte = pte_swp_mksoft_dirty(pte);
891 				set_pte_at(src_mm, addr, src_pte, pte);
892 			}
893 		}
894 		goto out_set_pte;
895 	}
896 
897 	/*
898 	 * If it's a COW mapping, write protect it both
899 	 * in the parent and the child
900 	 */
901 	if (is_cow_mapping(vm_flags)) {
902 		ptep_set_wrprotect(src_mm, addr, src_pte);
903 		pte = pte_wrprotect(pte);
904 	}
905 
906 	/*
907 	 * If it's a shared mapping, mark it clean in
908 	 * the child
909 	 */
910 	if (vm_flags & VM_SHARED)
911 		pte = pte_mkclean(pte);
912 	pte = pte_mkold(pte);
913 
914 	page = vm_normal_page(vma, addr, pte);
915 	if (page) {
916 		get_page(page);
917 		page_dup_rmap(page, false);
918 		rss[mm_counter(page)]++;
919 	}
920 
921 out_set_pte:
922 	set_pte_at(dst_mm, addr, dst_pte, pte);
923 	return 0;
924 }
925 
926 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
927 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
928 		   unsigned long addr, unsigned long end)
929 {
930 	pte_t *orig_src_pte, *orig_dst_pte;
931 	pte_t *src_pte, *dst_pte;
932 	spinlock_t *src_ptl, *dst_ptl;
933 	int progress = 0;
934 	int rss[NR_MM_COUNTERS];
935 	swp_entry_t entry = (swp_entry_t){0};
936 
937 again:
938 	init_rss_vec(rss);
939 
940 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
941 	if (!dst_pte)
942 		return -ENOMEM;
943 	src_pte = pte_offset_map(src_pmd, addr);
944 	src_ptl = pte_lockptr(src_mm, src_pmd);
945 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
946 	orig_src_pte = src_pte;
947 	orig_dst_pte = dst_pte;
948 	arch_enter_lazy_mmu_mode();
949 
950 	do {
951 		/*
952 		 * We are holding two locks at this point - either of them
953 		 * could generate latencies in another task on another CPU.
954 		 */
955 		if (progress >= 32) {
956 			progress = 0;
957 			if (need_resched() ||
958 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
959 				break;
960 		}
961 		if (pte_none(*src_pte)) {
962 			progress++;
963 			continue;
964 		}
965 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
966 							vma, addr, rss);
967 		if (entry.val)
968 			break;
969 		progress += 8;
970 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
971 
972 	arch_leave_lazy_mmu_mode();
973 	spin_unlock(src_ptl);
974 	pte_unmap(orig_src_pte);
975 	add_mm_rss_vec(dst_mm, rss);
976 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
977 	cond_resched();
978 
979 	if (entry.val) {
980 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
981 			return -ENOMEM;
982 		progress = 0;
983 	}
984 	if (addr != end)
985 		goto again;
986 	return 0;
987 }
988 
989 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
990 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
991 		unsigned long addr, unsigned long end)
992 {
993 	pmd_t *src_pmd, *dst_pmd;
994 	unsigned long next;
995 
996 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
997 	if (!dst_pmd)
998 		return -ENOMEM;
999 	src_pmd = pmd_offset(src_pud, addr);
1000 	do {
1001 		next = pmd_addr_end(addr, end);
1002 		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1003 			int err;
1004 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1005 			err = copy_huge_pmd(dst_mm, src_mm,
1006 					    dst_pmd, src_pmd, addr, vma);
1007 			if (err == -ENOMEM)
1008 				return -ENOMEM;
1009 			if (!err)
1010 				continue;
1011 			/* fall through */
1012 		}
1013 		if (pmd_none_or_clear_bad(src_pmd))
1014 			continue;
1015 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1016 						vma, addr, next))
1017 			return -ENOMEM;
1018 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1019 	return 0;
1020 }
1021 
1022 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1023 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1024 		unsigned long addr, unsigned long end)
1025 {
1026 	pud_t *src_pud, *dst_pud;
1027 	unsigned long next;
1028 
1029 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1030 	if (!dst_pud)
1031 		return -ENOMEM;
1032 	src_pud = pud_offset(src_pgd, addr);
1033 	do {
1034 		next = pud_addr_end(addr, end);
1035 		if (pud_none_or_clear_bad(src_pud))
1036 			continue;
1037 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1038 						vma, addr, next))
1039 			return -ENOMEM;
1040 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1041 	return 0;
1042 }
1043 
1044 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045 		struct vm_area_struct *vma)
1046 {
1047 	pgd_t *src_pgd, *dst_pgd;
1048 	unsigned long next;
1049 	unsigned long addr = vma->vm_start;
1050 	unsigned long end = vma->vm_end;
1051 	unsigned long mmun_start;	/* For mmu_notifiers */
1052 	unsigned long mmun_end;		/* For mmu_notifiers */
1053 	bool is_cow;
1054 	int ret;
1055 
1056 	/*
1057 	 * Don't copy ptes where a page fault will fill them correctly.
1058 	 * Fork becomes much lighter when there are big shared or private
1059 	 * readonly mappings. The tradeoff is that copy_page_range is more
1060 	 * efficient than faulting.
1061 	 */
1062 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1063 			!vma->anon_vma)
1064 		return 0;
1065 
1066 	if (is_vm_hugetlb_page(vma))
1067 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1068 
1069 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1070 		/*
1071 		 * We do not free on error cases below as remove_vma
1072 		 * gets called on error from higher level routine
1073 		 */
1074 		ret = track_pfn_copy(vma);
1075 		if (ret)
1076 			return ret;
1077 	}
1078 
1079 	/*
1080 	 * We need to invalidate the secondary MMU mappings only when
1081 	 * there could be a permission downgrade on the ptes of the
1082 	 * parent mm. And a permission downgrade will only happen if
1083 	 * is_cow_mapping() returns true.
1084 	 */
1085 	is_cow = is_cow_mapping(vma->vm_flags);
1086 	mmun_start = addr;
1087 	mmun_end   = end;
1088 	if (is_cow)
1089 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1090 						    mmun_end);
1091 
1092 	ret = 0;
1093 	dst_pgd = pgd_offset(dst_mm, addr);
1094 	src_pgd = pgd_offset(src_mm, addr);
1095 	do {
1096 		next = pgd_addr_end(addr, end);
1097 		if (pgd_none_or_clear_bad(src_pgd))
1098 			continue;
1099 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1100 					    vma, addr, next))) {
1101 			ret = -ENOMEM;
1102 			break;
1103 		}
1104 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1105 
1106 	if (is_cow)
1107 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1108 	return ret;
1109 }
1110 
1111 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1112 				struct vm_area_struct *vma, pmd_t *pmd,
1113 				unsigned long addr, unsigned long end,
1114 				struct zap_details *details)
1115 {
1116 	struct mm_struct *mm = tlb->mm;
1117 	int force_flush = 0;
1118 	int rss[NR_MM_COUNTERS];
1119 	spinlock_t *ptl;
1120 	pte_t *start_pte;
1121 	pte_t *pte;
1122 	swp_entry_t entry;
1123 
1124 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1125 again:
1126 	init_rss_vec(rss);
1127 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1128 	pte = start_pte;
1129 	arch_enter_lazy_mmu_mode();
1130 	do {
1131 		pte_t ptent = *pte;
1132 		if (pte_none(ptent)) {
1133 			continue;
1134 		}
1135 
1136 		if (pte_present(ptent)) {
1137 			struct page *page;
1138 
1139 			page = vm_normal_page(vma, addr, ptent);
1140 			if (unlikely(details) && page) {
1141 				/*
1142 				 * unmap_shared_mapping_pages() wants to
1143 				 * invalidate cache without truncating:
1144 				 * unmap shared but keep private pages.
1145 				 */
1146 				if (details->check_mapping &&
1147 				    details->check_mapping != page_rmapping(page))
1148 					continue;
1149 			}
1150 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1151 							tlb->fullmm);
1152 			tlb_remove_tlb_entry(tlb, pte, addr);
1153 			if (unlikely(!page))
1154 				continue;
1155 
1156 			if (!PageAnon(page)) {
1157 				if (pte_dirty(ptent)) {
1158 					/*
1159 					 * oom_reaper cannot tear down dirty
1160 					 * pages
1161 					 */
1162 					if (unlikely(details && details->ignore_dirty))
1163 						continue;
1164 					force_flush = 1;
1165 					set_page_dirty(page);
1166 				}
1167 				if (pte_young(ptent) &&
1168 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1169 					mark_page_accessed(page);
1170 			}
1171 			rss[mm_counter(page)]--;
1172 			page_remove_rmap(page, false);
1173 			if (unlikely(page_mapcount(page) < 0))
1174 				print_bad_pte(vma, addr, ptent, page);
1175 			if (unlikely(__tlb_remove_page(tlb, page))) {
1176 				force_flush = 1;
1177 				addr += PAGE_SIZE;
1178 				break;
1179 			}
1180 			continue;
1181 		}
1182 		/* only check swap_entries if explicitly asked for in details */
1183 		if (unlikely(details && !details->check_swap_entries))
1184 			continue;
1185 
1186 		entry = pte_to_swp_entry(ptent);
1187 		if (!non_swap_entry(entry))
1188 			rss[MM_SWAPENTS]--;
1189 		else if (is_migration_entry(entry)) {
1190 			struct page *page;
1191 
1192 			page = migration_entry_to_page(entry);
1193 			rss[mm_counter(page)]--;
1194 		}
1195 		if (unlikely(!free_swap_and_cache(entry)))
1196 			print_bad_pte(vma, addr, ptent, NULL);
1197 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198 	} while (pte++, addr += PAGE_SIZE, addr != end);
1199 
1200 	add_mm_rss_vec(mm, rss);
1201 	arch_leave_lazy_mmu_mode();
1202 
1203 	/* Do the actual TLB flush before dropping ptl */
1204 	if (force_flush)
1205 		tlb_flush_mmu_tlbonly(tlb);
1206 	pte_unmap_unlock(start_pte, ptl);
1207 
1208 	/*
1209 	 * If we forced a TLB flush (either due to running out of
1210 	 * batch buffers or because we needed to flush dirty TLB
1211 	 * entries before releasing the ptl), free the batched
1212 	 * memory too. Restart if we didn't do everything.
1213 	 */
1214 	if (force_flush) {
1215 		force_flush = 0;
1216 		tlb_flush_mmu_free(tlb);
1217 		if (addr != end)
1218 			goto again;
1219 	}
1220 
1221 	return addr;
1222 }
1223 
1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225 				struct vm_area_struct *vma, pud_t *pud,
1226 				unsigned long addr, unsigned long end,
1227 				struct zap_details *details)
1228 {
1229 	pmd_t *pmd;
1230 	unsigned long next;
1231 
1232 	pmd = pmd_offset(pud, addr);
1233 	do {
1234 		next = pmd_addr_end(addr, end);
1235 		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1236 			if (next - addr != HPAGE_PMD_SIZE) {
1237 				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1238 				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1239 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1240 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1241 				goto next;
1242 			/* fall through */
1243 		}
1244 		/*
1245 		 * Here there can be other concurrent MADV_DONTNEED or
1246 		 * trans huge page faults running, and if the pmd is
1247 		 * none or trans huge it can change under us. This is
1248 		 * because MADV_DONTNEED holds the mmap_sem in read
1249 		 * mode.
1250 		 */
1251 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1252 			goto next;
1253 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1254 next:
1255 		cond_resched();
1256 	} while (pmd++, addr = next, addr != end);
1257 
1258 	return addr;
1259 }
1260 
1261 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1262 				struct vm_area_struct *vma, pgd_t *pgd,
1263 				unsigned long addr, unsigned long end,
1264 				struct zap_details *details)
1265 {
1266 	pud_t *pud;
1267 	unsigned long next;
1268 
1269 	pud = pud_offset(pgd, addr);
1270 	do {
1271 		next = pud_addr_end(addr, end);
1272 		if (pud_none_or_clear_bad(pud))
1273 			continue;
1274 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1275 	} while (pud++, addr = next, addr != end);
1276 
1277 	return addr;
1278 }
1279 
1280 void unmap_page_range(struct mmu_gather *tlb,
1281 			     struct vm_area_struct *vma,
1282 			     unsigned long addr, unsigned long end,
1283 			     struct zap_details *details)
1284 {
1285 	pgd_t *pgd;
1286 	unsigned long next;
1287 
1288 	BUG_ON(addr >= end);
1289 	tlb_start_vma(tlb, vma);
1290 	pgd = pgd_offset(vma->vm_mm, addr);
1291 	do {
1292 		next = pgd_addr_end(addr, end);
1293 		if (pgd_none_or_clear_bad(pgd))
1294 			continue;
1295 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1296 	} while (pgd++, addr = next, addr != end);
1297 	tlb_end_vma(tlb, vma);
1298 }
1299 
1300 
1301 static void unmap_single_vma(struct mmu_gather *tlb,
1302 		struct vm_area_struct *vma, unsigned long start_addr,
1303 		unsigned long end_addr,
1304 		struct zap_details *details)
1305 {
1306 	unsigned long start = max(vma->vm_start, start_addr);
1307 	unsigned long end;
1308 
1309 	if (start >= vma->vm_end)
1310 		return;
1311 	end = min(vma->vm_end, end_addr);
1312 	if (end <= vma->vm_start)
1313 		return;
1314 
1315 	if (vma->vm_file)
1316 		uprobe_munmap(vma, start, end);
1317 
1318 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1319 		untrack_pfn(vma, 0, 0);
1320 
1321 	if (start != end) {
1322 		if (unlikely(is_vm_hugetlb_page(vma))) {
1323 			/*
1324 			 * It is undesirable to test vma->vm_file as it
1325 			 * should be non-null for valid hugetlb area.
1326 			 * However, vm_file will be NULL in the error
1327 			 * cleanup path of mmap_region. When
1328 			 * hugetlbfs ->mmap method fails,
1329 			 * mmap_region() nullifies vma->vm_file
1330 			 * before calling this function to clean up.
1331 			 * Since no pte has actually been setup, it is
1332 			 * safe to do nothing in this case.
1333 			 */
1334 			if (vma->vm_file) {
1335 				i_mmap_lock_write(vma->vm_file->f_mapping);
1336 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1337 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1338 			}
1339 		} else
1340 			unmap_page_range(tlb, vma, start, end, details);
1341 	}
1342 }
1343 
1344 /**
1345  * unmap_vmas - unmap a range of memory covered by a list of vma's
1346  * @tlb: address of the caller's struct mmu_gather
1347  * @vma: the starting vma
1348  * @start_addr: virtual address at which to start unmapping
1349  * @end_addr: virtual address at which to end unmapping
1350  *
1351  * Unmap all pages in the vma list.
1352  *
1353  * Only addresses between `start' and `end' will be unmapped.
1354  *
1355  * The VMA list must be sorted in ascending virtual address order.
1356  *
1357  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1358  * range after unmap_vmas() returns.  So the only responsibility here is to
1359  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1360  * drops the lock and schedules.
1361  */
1362 void unmap_vmas(struct mmu_gather *tlb,
1363 		struct vm_area_struct *vma, unsigned long start_addr,
1364 		unsigned long end_addr)
1365 {
1366 	struct mm_struct *mm = vma->vm_mm;
1367 
1368 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1369 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1370 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1371 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1372 }
1373 
1374 /**
1375  * zap_page_range - remove user pages in a given range
1376  * @vma: vm_area_struct holding the applicable pages
1377  * @start: starting address of pages to zap
1378  * @size: number of bytes to zap
1379  * @details: details of shared cache invalidation
1380  *
1381  * Caller must protect the VMA list
1382  */
1383 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1384 		unsigned long size, struct zap_details *details)
1385 {
1386 	struct mm_struct *mm = vma->vm_mm;
1387 	struct mmu_gather tlb;
1388 	unsigned long end = start + size;
1389 
1390 	lru_add_drain();
1391 	tlb_gather_mmu(&tlb, mm, start, end);
1392 	update_hiwater_rss(mm);
1393 	mmu_notifier_invalidate_range_start(mm, start, end);
1394 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1395 		unmap_single_vma(&tlb, vma, start, end, details);
1396 	mmu_notifier_invalidate_range_end(mm, start, end);
1397 	tlb_finish_mmu(&tlb, start, end);
1398 }
1399 
1400 /**
1401  * zap_page_range_single - remove user pages in a given range
1402  * @vma: vm_area_struct holding the applicable pages
1403  * @address: starting address of pages to zap
1404  * @size: number of bytes to zap
1405  * @details: details of shared cache invalidation
1406  *
1407  * The range must fit into one VMA.
1408  */
1409 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1410 		unsigned long size, struct zap_details *details)
1411 {
1412 	struct mm_struct *mm = vma->vm_mm;
1413 	struct mmu_gather tlb;
1414 	unsigned long end = address + size;
1415 
1416 	lru_add_drain();
1417 	tlb_gather_mmu(&tlb, mm, address, end);
1418 	update_hiwater_rss(mm);
1419 	mmu_notifier_invalidate_range_start(mm, address, end);
1420 	unmap_single_vma(&tlb, vma, address, end, details);
1421 	mmu_notifier_invalidate_range_end(mm, address, end);
1422 	tlb_finish_mmu(&tlb, address, end);
1423 }
1424 
1425 /**
1426  * zap_vma_ptes - remove ptes mapping the vma
1427  * @vma: vm_area_struct holding ptes to be zapped
1428  * @address: starting address of pages to zap
1429  * @size: number of bytes to zap
1430  *
1431  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1432  *
1433  * The entire address range must be fully contained within the vma.
1434  *
1435  * Returns 0 if successful.
1436  */
1437 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1438 		unsigned long size)
1439 {
1440 	if (address < vma->vm_start || address + size > vma->vm_end ||
1441 	    		!(vma->vm_flags & VM_PFNMAP))
1442 		return -1;
1443 	zap_page_range_single(vma, address, size, NULL);
1444 	return 0;
1445 }
1446 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1447 
1448 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1449 			spinlock_t **ptl)
1450 {
1451 	pgd_t * pgd = pgd_offset(mm, addr);
1452 	pud_t * pud = pud_alloc(mm, pgd, addr);
1453 	if (pud) {
1454 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1455 		if (pmd) {
1456 			VM_BUG_ON(pmd_trans_huge(*pmd));
1457 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1458 		}
1459 	}
1460 	return NULL;
1461 }
1462 
1463 /*
1464  * This is the old fallback for page remapping.
1465  *
1466  * For historical reasons, it only allows reserved pages. Only
1467  * old drivers should use this, and they needed to mark their
1468  * pages reserved for the old functions anyway.
1469  */
1470 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1471 			struct page *page, pgprot_t prot)
1472 {
1473 	struct mm_struct *mm = vma->vm_mm;
1474 	int retval;
1475 	pte_t *pte;
1476 	spinlock_t *ptl;
1477 
1478 	retval = -EINVAL;
1479 	if (PageAnon(page))
1480 		goto out;
1481 	retval = -ENOMEM;
1482 	flush_dcache_page(page);
1483 	pte = get_locked_pte(mm, addr, &ptl);
1484 	if (!pte)
1485 		goto out;
1486 	retval = -EBUSY;
1487 	if (!pte_none(*pte))
1488 		goto out_unlock;
1489 
1490 	/* Ok, finally just insert the thing.. */
1491 	get_page(page);
1492 	inc_mm_counter_fast(mm, mm_counter_file(page));
1493 	page_add_file_rmap(page, false);
1494 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1495 
1496 	retval = 0;
1497 	pte_unmap_unlock(pte, ptl);
1498 	return retval;
1499 out_unlock:
1500 	pte_unmap_unlock(pte, ptl);
1501 out:
1502 	return retval;
1503 }
1504 
1505 /**
1506  * vm_insert_page - insert single page into user vma
1507  * @vma: user vma to map to
1508  * @addr: target user address of this page
1509  * @page: source kernel page
1510  *
1511  * This allows drivers to insert individual pages they've allocated
1512  * into a user vma.
1513  *
1514  * The page has to be a nice clean _individual_ kernel allocation.
1515  * If you allocate a compound page, you need to have marked it as
1516  * such (__GFP_COMP), or manually just split the page up yourself
1517  * (see split_page()).
1518  *
1519  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1520  * took an arbitrary page protection parameter. This doesn't allow
1521  * that. Your vma protection will have to be set up correctly, which
1522  * means that if you want a shared writable mapping, you'd better
1523  * ask for a shared writable mapping!
1524  *
1525  * The page does not need to be reserved.
1526  *
1527  * Usually this function is called from f_op->mmap() handler
1528  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1529  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1530  * function from other places, for example from page-fault handler.
1531  */
1532 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1533 			struct page *page)
1534 {
1535 	if (addr < vma->vm_start || addr >= vma->vm_end)
1536 		return -EFAULT;
1537 	if (!page_count(page))
1538 		return -EINVAL;
1539 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1540 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1541 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1542 		vma->vm_flags |= VM_MIXEDMAP;
1543 	}
1544 	return insert_page(vma, addr, page, vma->vm_page_prot);
1545 }
1546 EXPORT_SYMBOL(vm_insert_page);
1547 
1548 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1549 			pfn_t pfn, pgprot_t prot)
1550 {
1551 	struct mm_struct *mm = vma->vm_mm;
1552 	int retval;
1553 	pte_t *pte, entry;
1554 	spinlock_t *ptl;
1555 
1556 	retval = -ENOMEM;
1557 	pte = get_locked_pte(mm, addr, &ptl);
1558 	if (!pte)
1559 		goto out;
1560 	retval = -EBUSY;
1561 	if (!pte_none(*pte))
1562 		goto out_unlock;
1563 
1564 	/* Ok, finally just insert the thing.. */
1565 	if (pfn_t_devmap(pfn))
1566 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1567 	else
1568 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1569 	set_pte_at(mm, addr, pte, entry);
1570 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1571 
1572 	retval = 0;
1573 out_unlock:
1574 	pte_unmap_unlock(pte, ptl);
1575 out:
1576 	return retval;
1577 }
1578 
1579 /**
1580  * vm_insert_pfn - insert single pfn into user vma
1581  * @vma: user vma to map to
1582  * @addr: target user address of this page
1583  * @pfn: source kernel pfn
1584  *
1585  * Similar to vm_insert_page, this allows drivers to insert individual pages
1586  * they've allocated into a user vma. Same comments apply.
1587  *
1588  * This function should only be called from a vm_ops->fault handler, and
1589  * in that case the handler should return NULL.
1590  *
1591  * vma cannot be a COW mapping.
1592  *
1593  * As this is called only for pages that do not currently exist, we
1594  * do not need to flush old virtual caches or the TLB.
1595  */
1596 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1597 			unsigned long pfn)
1598 {
1599 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1600 }
1601 EXPORT_SYMBOL(vm_insert_pfn);
1602 
1603 /**
1604  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1605  * @vma: user vma to map to
1606  * @addr: target user address of this page
1607  * @pfn: source kernel pfn
1608  * @pgprot: pgprot flags for the inserted page
1609  *
1610  * This is exactly like vm_insert_pfn, except that it allows drivers to
1611  * to override pgprot on a per-page basis.
1612  *
1613  * This only makes sense for IO mappings, and it makes no sense for
1614  * cow mappings.  In general, using multiple vmas is preferable;
1615  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1616  * impractical.
1617  */
1618 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1619 			unsigned long pfn, pgprot_t pgprot)
1620 {
1621 	int ret;
1622 	/*
1623 	 * Technically, architectures with pte_special can avoid all these
1624 	 * restrictions (same for remap_pfn_range).  However we would like
1625 	 * consistency in testing and feature parity among all, so we should
1626 	 * try to keep these invariants in place for everybody.
1627 	 */
1628 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1629 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1630 						(VM_PFNMAP|VM_MIXEDMAP));
1631 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1632 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1633 
1634 	if (addr < vma->vm_start || addr >= vma->vm_end)
1635 		return -EFAULT;
1636 
1637 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1638 
1639 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1640 
1641 	return ret;
1642 }
1643 EXPORT_SYMBOL(vm_insert_pfn_prot);
1644 
1645 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1646 			pfn_t pfn)
1647 {
1648 	pgprot_t pgprot = vma->vm_page_prot;
1649 
1650 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1651 
1652 	if (addr < vma->vm_start || addr >= vma->vm_end)
1653 		return -EFAULT;
1654 
1655 	track_pfn_insert(vma, &pgprot, pfn);
1656 
1657 	/*
1658 	 * If we don't have pte special, then we have to use the pfn_valid()
1659 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1660 	 * refcount the page if pfn_valid is true (hence insert_page rather
1661 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1662 	 * without pte special, it would there be refcounted as a normal page.
1663 	 */
1664 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1665 		struct page *page;
1666 
1667 		/*
1668 		 * At this point we are committed to insert_page()
1669 		 * regardless of whether the caller specified flags that
1670 		 * result in pfn_t_has_page() == false.
1671 		 */
1672 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1673 		return insert_page(vma, addr, page, pgprot);
1674 	}
1675 	return insert_pfn(vma, addr, pfn, pgprot);
1676 }
1677 EXPORT_SYMBOL(vm_insert_mixed);
1678 
1679 /*
1680  * maps a range of physical memory into the requested pages. the old
1681  * mappings are removed. any references to nonexistent pages results
1682  * in null mappings (currently treated as "copy-on-access")
1683  */
1684 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1685 			unsigned long addr, unsigned long end,
1686 			unsigned long pfn, pgprot_t prot)
1687 {
1688 	pte_t *pte;
1689 	spinlock_t *ptl;
1690 
1691 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1692 	if (!pte)
1693 		return -ENOMEM;
1694 	arch_enter_lazy_mmu_mode();
1695 	do {
1696 		BUG_ON(!pte_none(*pte));
1697 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1698 		pfn++;
1699 	} while (pte++, addr += PAGE_SIZE, addr != end);
1700 	arch_leave_lazy_mmu_mode();
1701 	pte_unmap_unlock(pte - 1, ptl);
1702 	return 0;
1703 }
1704 
1705 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1706 			unsigned long addr, unsigned long end,
1707 			unsigned long pfn, pgprot_t prot)
1708 {
1709 	pmd_t *pmd;
1710 	unsigned long next;
1711 
1712 	pfn -= addr >> PAGE_SHIFT;
1713 	pmd = pmd_alloc(mm, pud, addr);
1714 	if (!pmd)
1715 		return -ENOMEM;
1716 	VM_BUG_ON(pmd_trans_huge(*pmd));
1717 	do {
1718 		next = pmd_addr_end(addr, end);
1719 		if (remap_pte_range(mm, pmd, addr, next,
1720 				pfn + (addr >> PAGE_SHIFT), prot))
1721 			return -ENOMEM;
1722 	} while (pmd++, addr = next, addr != end);
1723 	return 0;
1724 }
1725 
1726 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1727 			unsigned long addr, unsigned long end,
1728 			unsigned long pfn, pgprot_t prot)
1729 {
1730 	pud_t *pud;
1731 	unsigned long next;
1732 
1733 	pfn -= addr >> PAGE_SHIFT;
1734 	pud = pud_alloc(mm, pgd, addr);
1735 	if (!pud)
1736 		return -ENOMEM;
1737 	do {
1738 		next = pud_addr_end(addr, end);
1739 		if (remap_pmd_range(mm, pud, addr, next,
1740 				pfn + (addr >> PAGE_SHIFT), prot))
1741 			return -ENOMEM;
1742 	} while (pud++, addr = next, addr != end);
1743 	return 0;
1744 }
1745 
1746 /**
1747  * remap_pfn_range - remap kernel memory to userspace
1748  * @vma: user vma to map to
1749  * @addr: target user address to start at
1750  * @pfn: physical address of kernel memory
1751  * @size: size of map area
1752  * @prot: page protection flags for this mapping
1753  *
1754  *  Note: this is only safe if the mm semaphore is held when called.
1755  */
1756 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1757 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1758 {
1759 	pgd_t *pgd;
1760 	unsigned long next;
1761 	unsigned long end = addr + PAGE_ALIGN(size);
1762 	struct mm_struct *mm = vma->vm_mm;
1763 	unsigned long remap_pfn = pfn;
1764 	int err;
1765 
1766 	/*
1767 	 * Physically remapped pages are special. Tell the
1768 	 * rest of the world about it:
1769 	 *   VM_IO tells people not to look at these pages
1770 	 *	(accesses can have side effects).
1771 	 *   VM_PFNMAP tells the core MM that the base pages are just
1772 	 *	raw PFN mappings, and do not have a "struct page" associated
1773 	 *	with them.
1774 	 *   VM_DONTEXPAND
1775 	 *      Disable vma merging and expanding with mremap().
1776 	 *   VM_DONTDUMP
1777 	 *      Omit vma from core dump, even when VM_IO turned off.
1778 	 *
1779 	 * There's a horrible special case to handle copy-on-write
1780 	 * behaviour that some programs depend on. We mark the "original"
1781 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1782 	 * See vm_normal_page() for details.
1783 	 */
1784 	if (is_cow_mapping(vma->vm_flags)) {
1785 		if (addr != vma->vm_start || end != vma->vm_end)
1786 			return -EINVAL;
1787 		vma->vm_pgoff = pfn;
1788 	}
1789 
1790 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1791 	if (err)
1792 		return -EINVAL;
1793 
1794 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1795 
1796 	BUG_ON(addr >= end);
1797 	pfn -= addr >> PAGE_SHIFT;
1798 	pgd = pgd_offset(mm, addr);
1799 	flush_cache_range(vma, addr, end);
1800 	do {
1801 		next = pgd_addr_end(addr, end);
1802 		err = remap_pud_range(mm, pgd, addr, next,
1803 				pfn + (addr >> PAGE_SHIFT), prot);
1804 		if (err)
1805 			break;
1806 	} while (pgd++, addr = next, addr != end);
1807 
1808 	if (err)
1809 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1810 
1811 	return err;
1812 }
1813 EXPORT_SYMBOL(remap_pfn_range);
1814 
1815 /**
1816  * vm_iomap_memory - remap memory to userspace
1817  * @vma: user vma to map to
1818  * @start: start of area
1819  * @len: size of area
1820  *
1821  * This is a simplified io_remap_pfn_range() for common driver use. The
1822  * driver just needs to give us the physical memory range to be mapped,
1823  * we'll figure out the rest from the vma information.
1824  *
1825  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1826  * whatever write-combining details or similar.
1827  */
1828 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1829 {
1830 	unsigned long vm_len, pfn, pages;
1831 
1832 	/* Check that the physical memory area passed in looks valid */
1833 	if (start + len < start)
1834 		return -EINVAL;
1835 	/*
1836 	 * You *really* shouldn't map things that aren't page-aligned,
1837 	 * but we've historically allowed it because IO memory might
1838 	 * just have smaller alignment.
1839 	 */
1840 	len += start & ~PAGE_MASK;
1841 	pfn = start >> PAGE_SHIFT;
1842 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1843 	if (pfn + pages < pfn)
1844 		return -EINVAL;
1845 
1846 	/* We start the mapping 'vm_pgoff' pages into the area */
1847 	if (vma->vm_pgoff > pages)
1848 		return -EINVAL;
1849 	pfn += vma->vm_pgoff;
1850 	pages -= vma->vm_pgoff;
1851 
1852 	/* Can we fit all of the mapping? */
1853 	vm_len = vma->vm_end - vma->vm_start;
1854 	if (vm_len >> PAGE_SHIFT > pages)
1855 		return -EINVAL;
1856 
1857 	/* Ok, let it rip */
1858 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1859 }
1860 EXPORT_SYMBOL(vm_iomap_memory);
1861 
1862 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1863 				     unsigned long addr, unsigned long end,
1864 				     pte_fn_t fn, void *data)
1865 {
1866 	pte_t *pte;
1867 	int err;
1868 	pgtable_t token;
1869 	spinlock_t *uninitialized_var(ptl);
1870 
1871 	pte = (mm == &init_mm) ?
1872 		pte_alloc_kernel(pmd, addr) :
1873 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1874 	if (!pte)
1875 		return -ENOMEM;
1876 
1877 	BUG_ON(pmd_huge(*pmd));
1878 
1879 	arch_enter_lazy_mmu_mode();
1880 
1881 	token = pmd_pgtable(*pmd);
1882 
1883 	do {
1884 		err = fn(pte++, token, addr, data);
1885 		if (err)
1886 			break;
1887 	} while (addr += PAGE_SIZE, addr != end);
1888 
1889 	arch_leave_lazy_mmu_mode();
1890 
1891 	if (mm != &init_mm)
1892 		pte_unmap_unlock(pte-1, ptl);
1893 	return err;
1894 }
1895 
1896 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1897 				     unsigned long addr, unsigned long end,
1898 				     pte_fn_t fn, void *data)
1899 {
1900 	pmd_t *pmd;
1901 	unsigned long next;
1902 	int err;
1903 
1904 	BUG_ON(pud_huge(*pud));
1905 
1906 	pmd = pmd_alloc(mm, pud, addr);
1907 	if (!pmd)
1908 		return -ENOMEM;
1909 	do {
1910 		next = pmd_addr_end(addr, end);
1911 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1912 		if (err)
1913 			break;
1914 	} while (pmd++, addr = next, addr != end);
1915 	return err;
1916 }
1917 
1918 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1919 				     unsigned long addr, unsigned long end,
1920 				     pte_fn_t fn, void *data)
1921 {
1922 	pud_t *pud;
1923 	unsigned long next;
1924 	int err;
1925 
1926 	pud = pud_alloc(mm, pgd, addr);
1927 	if (!pud)
1928 		return -ENOMEM;
1929 	do {
1930 		next = pud_addr_end(addr, end);
1931 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1932 		if (err)
1933 			break;
1934 	} while (pud++, addr = next, addr != end);
1935 	return err;
1936 }
1937 
1938 /*
1939  * Scan a region of virtual memory, filling in page tables as necessary
1940  * and calling a provided function on each leaf page table.
1941  */
1942 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1943 			unsigned long size, pte_fn_t fn, void *data)
1944 {
1945 	pgd_t *pgd;
1946 	unsigned long next;
1947 	unsigned long end = addr + size;
1948 	int err;
1949 
1950 	if (WARN_ON(addr >= end))
1951 		return -EINVAL;
1952 
1953 	pgd = pgd_offset(mm, addr);
1954 	do {
1955 		next = pgd_addr_end(addr, end);
1956 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1957 		if (err)
1958 			break;
1959 	} while (pgd++, addr = next, addr != end);
1960 
1961 	return err;
1962 }
1963 EXPORT_SYMBOL_GPL(apply_to_page_range);
1964 
1965 /*
1966  * handle_pte_fault chooses page fault handler according to an entry which was
1967  * read non-atomically.  Before making any commitment, on those architectures
1968  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1969  * parts, do_swap_page must check under lock before unmapping the pte and
1970  * proceeding (but do_wp_page is only called after already making such a check;
1971  * and do_anonymous_page can safely check later on).
1972  */
1973 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1974 				pte_t *page_table, pte_t orig_pte)
1975 {
1976 	int same = 1;
1977 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1978 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1979 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1980 		spin_lock(ptl);
1981 		same = pte_same(*page_table, orig_pte);
1982 		spin_unlock(ptl);
1983 	}
1984 #endif
1985 	pte_unmap(page_table);
1986 	return same;
1987 }
1988 
1989 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1990 {
1991 	debug_dma_assert_idle(src);
1992 
1993 	/*
1994 	 * If the source page was a PFN mapping, we don't have
1995 	 * a "struct page" for it. We do a best-effort copy by
1996 	 * just copying from the original user address. If that
1997 	 * fails, we just zero-fill it. Live with it.
1998 	 */
1999 	if (unlikely(!src)) {
2000 		void *kaddr = kmap_atomic(dst);
2001 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2002 
2003 		/*
2004 		 * This really shouldn't fail, because the page is there
2005 		 * in the page tables. But it might just be unreadable,
2006 		 * in which case we just give up and fill the result with
2007 		 * zeroes.
2008 		 */
2009 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2010 			clear_page(kaddr);
2011 		kunmap_atomic(kaddr);
2012 		flush_dcache_page(dst);
2013 	} else
2014 		copy_user_highpage(dst, src, va, vma);
2015 }
2016 
2017 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2018 {
2019 	struct file *vm_file = vma->vm_file;
2020 
2021 	if (vm_file)
2022 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2023 
2024 	/*
2025 	 * Special mappings (e.g. VDSO) do not have any file so fake
2026 	 * a default GFP_KERNEL for them.
2027 	 */
2028 	return GFP_KERNEL;
2029 }
2030 
2031 /*
2032  * Notify the address space that the page is about to become writable so that
2033  * it can prohibit this or wait for the page to get into an appropriate state.
2034  *
2035  * We do this without the lock held, so that it can sleep if it needs to.
2036  */
2037 static int do_page_mkwrite(struct vm_fault *vmf)
2038 {
2039 	int ret;
2040 	struct page *page = vmf->page;
2041 	unsigned int old_flags = vmf->flags;
2042 
2043 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2044 
2045 	ret = vmf->vma->vm_ops->page_mkwrite(vmf->vma, vmf);
2046 	/* Restore original flags so that caller is not surprised */
2047 	vmf->flags = old_flags;
2048 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2049 		return ret;
2050 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2051 		lock_page(page);
2052 		if (!page->mapping) {
2053 			unlock_page(page);
2054 			return 0; /* retry */
2055 		}
2056 		ret |= VM_FAULT_LOCKED;
2057 	} else
2058 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2059 	return ret;
2060 }
2061 
2062 /*
2063  * Handle dirtying of a page in shared file mapping on a write fault.
2064  *
2065  * The function expects the page to be locked and unlocks it.
2066  */
2067 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2068 				    struct page *page)
2069 {
2070 	struct address_space *mapping;
2071 	bool dirtied;
2072 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2073 
2074 	dirtied = set_page_dirty(page);
2075 	VM_BUG_ON_PAGE(PageAnon(page), page);
2076 	/*
2077 	 * Take a local copy of the address_space - page.mapping may be zeroed
2078 	 * by truncate after unlock_page().   The address_space itself remains
2079 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2080 	 * release semantics to prevent the compiler from undoing this copying.
2081 	 */
2082 	mapping = page_rmapping(page);
2083 	unlock_page(page);
2084 
2085 	if ((dirtied || page_mkwrite) && mapping) {
2086 		/*
2087 		 * Some device drivers do not set page.mapping
2088 		 * but still dirty their pages
2089 		 */
2090 		balance_dirty_pages_ratelimited(mapping);
2091 	}
2092 
2093 	if (!page_mkwrite)
2094 		file_update_time(vma->vm_file);
2095 }
2096 
2097 /*
2098  * Handle write page faults for pages that can be reused in the current vma
2099  *
2100  * This can happen either due to the mapping being with the VM_SHARED flag,
2101  * or due to us being the last reference standing to the page. In either
2102  * case, all we need to do here is to mark the page as writable and update
2103  * any related book-keeping.
2104  */
2105 static inline void wp_page_reuse(struct vm_fault *vmf)
2106 	__releases(vmf->ptl)
2107 {
2108 	struct vm_area_struct *vma = vmf->vma;
2109 	struct page *page = vmf->page;
2110 	pte_t entry;
2111 	/*
2112 	 * Clear the pages cpupid information as the existing
2113 	 * information potentially belongs to a now completely
2114 	 * unrelated process.
2115 	 */
2116 	if (page)
2117 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2118 
2119 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2120 	entry = pte_mkyoung(vmf->orig_pte);
2121 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2122 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2123 		update_mmu_cache(vma, vmf->address, vmf->pte);
2124 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2125 }
2126 
2127 /*
2128  * Handle the case of a page which we actually need to copy to a new page.
2129  *
2130  * Called with mmap_sem locked and the old page referenced, but
2131  * without the ptl held.
2132  *
2133  * High level logic flow:
2134  *
2135  * - Allocate a page, copy the content of the old page to the new one.
2136  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2137  * - Take the PTL. If the pte changed, bail out and release the allocated page
2138  * - If the pte is still the way we remember it, update the page table and all
2139  *   relevant references. This includes dropping the reference the page-table
2140  *   held to the old page, as well as updating the rmap.
2141  * - In any case, unlock the PTL and drop the reference we took to the old page.
2142  */
2143 static int wp_page_copy(struct vm_fault *vmf)
2144 {
2145 	struct vm_area_struct *vma = vmf->vma;
2146 	struct mm_struct *mm = vma->vm_mm;
2147 	struct page *old_page = vmf->page;
2148 	struct page *new_page = NULL;
2149 	pte_t entry;
2150 	int page_copied = 0;
2151 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2152 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2153 	struct mem_cgroup *memcg;
2154 
2155 	if (unlikely(anon_vma_prepare(vma)))
2156 		goto oom;
2157 
2158 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2159 		new_page = alloc_zeroed_user_highpage_movable(vma,
2160 							      vmf->address);
2161 		if (!new_page)
2162 			goto oom;
2163 	} else {
2164 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2165 				vmf->address);
2166 		if (!new_page)
2167 			goto oom;
2168 		cow_user_page(new_page, old_page, vmf->address, vma);
2169 	}
2170 
2171 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2172 		goto oom_free_new;
2173 
2174 	__SetPageUptodate(new_page);
2175 
2176 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2177 
2178 	/*
2179 	 * Re-check the pte - we dropped the lock
2180 	 */
2181 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2182 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2183 		if (old_page) {
2184 			if (!PageAnon(old_page)) {
2185 				dec_mm_counter_fast(mm,
2186 						mm_counter_file(old_page));
2187 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2188 			}
2189 		} else {
2190 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2191 		}
2192 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2193 		entry = mk_pte(new_page, vma->vm_page_prot);
2194 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2195 		/*
2196 		 * Clear the pte entry and flush it first, before updating the
2197 		 * pte with the new entry. This will avoid a race condition
2198 		 * seen in the presence of one thread doing SMC and another
2199 		 * thread doing COW.
2200 		 */
2201 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2202 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2203 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2204 		lru_cache_add_active_or_unevictable(new_page, vma);
2205 		/*
2206 		 * We call the notify macro here because, when using secondary
2207 		 * mmu page tables (such as kvm shadow page tables), we want the
2208 		 * new page to be mapped directly into the secondary page table.
2209 		 */
2210 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2211 		update_mmu_cache(vma, vmf->address, vmf->pte);
2212 		if (old_page) {
2213 			/*
2214 			 * Only after switching the pte to the new page may
2215 			 * we remove the mapcount here. Otherwise another
2216 			 * process may come and find the rmap count decremented
2217 			 * before the pte is switched to the new page, and
2218 			 * "reuse" the old page writing into it while our pte
2219 			 * here still points into it and can be read by other
2220 			 * threads.
2221 			 *
2222 			 * The critical issue is to order this
2223 			 * page_remove_rmap with the ptp_clear_flush above.
2224 			 * Those stores are ordered by (if nothing else,)
2225 			 * the barrier present in the atomic_add_negative
2226 			 * in page_remove_rmap.
2227 			 *
2228 			 * Then the TLB flush in ptep_clear_flush ensures that
2229 			 * no process can access the old page before the
2230 			 * decremented mapcount is visible. And the old page
2231 			 * cannot be reused until after the decremented
2232 			 * mapcount is visible. So transitively, TLBs to
2233 			 * old page will be flushed before it can be reused.
2234 			 */
2235 			page_remove_rmap(old_page, false);
2236 		}
2237 
2238 		/* Free the old page.. */
2239 		new_page = old_page;
2240 		page_copied = 1;
2241 	} else {
2242 		mem_cgroup_cancel_charge(new_page, memcg, false);
2243 	}
2244 
2245 	if (new_page)
2246 		put_page(new_page);
2247 
2248 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2249 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2250 	if (old_page) {
2251 		/*
2252 		 * Don't let another task, with possibly unlocked vma,
2253 		 * keep the mlocked page.
2254 		 */
2255 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2256 			lock_page(old_page);	/* LRU manipulation */
2257 			if (PageMlocked(old_page))
2258 				munlock_vma_page(old_page);
2259 			unlock_page(old_page);
2260 		}
2261 		put_page(old_page);
2262 	}
2263 	return page_copied ? VM_FAULT_WRITE : 0;
2264 oom_free_new:
2265 	put_page(new_page);
2266 oom:
2267 	if (old_page)
2268 		put_page(old_page);
2269 	return VM_FAULT_OOM;
2270 }
2271 
2272 /**
2273  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2274  *			  writeable once the page is prepared
2275  *
2276  * @vmf: structure describing the fault
2277  *
2278  * This function handles all that is needed to finish a write page fault in a
2279  * shared mapping due to PTE being read-only once the mapped page is prepared.
2280  * It handles locking of PTE and modifying it. The function returns
2281  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2282  * lock.
2283  *
2284  * The function expects the page to be locked or other protection against
2285  * concurrent faults / writeback (such as DAX radix tree locks).
2286  */
2287 int finish_mkwrite_fault(struct vm_fault *vmf)
2288 {
2289 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2290 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2291 				       &vmf->ptl);
2292 	/*
2293 	 * We might have raced with another page fault while we released the
2294 	 * pte_offset_map_lock.
2295 	 */
2296 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2297 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2298 		return VM_FAULT_NOPAGE;
2299 	}
2300 	wp_page_reuse(vmf);
2301 	return 0;
2302 }
2303 
2304 /*
2305  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2306  * mapping
2307  */
2308 static int wp_pfn_shared(struct vm_fault *vmf)
2309 {
2310 	struct vm_area_struct *vma = vmf->vma;
2311 
2312 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2313 		int ret;
2314 
2315 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2316 		vmf->flags |= FAULT_FLAG_MKWRITE;
2317 		ret = vma->vm_ops->pfn_mkwrite(vma, vmf);
2318 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2319 			return ret;
2320 		return finish_mkwrite_fault(vmf);
2321 	}
2322 	wp_page_reuse(vmf);
2323 	return VM_FAULT_WRITE;
2324 }
2325 
2326 static int wp_page_shared(struct vm_fault *vmf)
2327 	__releases(vmf->ptl)
2328 {
2329 	struct vm_area_struct *vma = vmf->vma;
2330 
2331 	get_page(vmf->page);
2332 
2333 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2334 		int tmp;
2335 
2336 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2337 		tmp = do_page_mkwrite(vmf);
2338 		if (unlikely(!tmp || (tmp &
2339 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2340 			put_page(vmf->page);
2341 			return tmp;
2342 		}
2343 		tmp = finish_mkwrite_fault(vmf);
2344 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2345 			unlock_page(vmf->page);
2346 			put_page(vmf->page);
2347 			return tmp;
2348 		}
2349 	} else {
2350 		wp_page_reuse(vmf);
2351 		lock_page(vmf->page);
2352 	}
2353 	fault_dirty_shared_page(vma, vmf->page);
2354 	put_page(vmf->page);
2355 
2356 	return VM_FAULT_WRITE;
2357 }
2358 
2359 /*
2360  * This routine handles present pages, when users try to write
2361  * to a shared page. It is done by copying the page to a new address
2362  * and decrementing the shared-page counter for the old page.
2363  *
2364  * Note that this routine assumes that the protection checks have been
2365  * done by the caller (the low-level page fault routine in most cases).
2366  * Thus we can safely just mark it writable once we've done any necessary
2367  * COW.
2368  *
2369  * We also mark the page dirty at this point even though the page will
2370  * change only once the write actually happens. This avoids a few races,
2371  * and potentially makes it more efficient.
2372  *
2373  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2374  * but allow concurrent faults), with pte both mapped and locked.
2375  * We return with mmap_sem still held, but pte unmapped and unlocked.
2376  */
2377 static int do_wp_page(struct vm_fault *vmf)
2378 	__releases(vmf->ptl)
2379 {
2380 	struct vm_area_struct *vma = vmf->vma;
2381 
2382 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2383 	if (!vmf->page) {
2384 		/*
2385 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2386 		 * VM_PFNMAP VMA.
2387 		 *
2388 		 * We should not cow pages in a shared writeable mapping.
2389 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2390 		 */
2391 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2392 				     (VM_WRITE|VM_SHARED))
2393 			return wp_pfn_shared(vmf);
2394 
2395 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2396 		return wp_page_copy(vmf);
2397 	}
2398 
2399 	/*
2400 	 * Take out anonymous pages first, anonymous shared vmas are
2401 	 * not dirty accountable.
2402 	 */
2403 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2404 		int total_mapcount;
2405 		if (!trylock_page(vmf->page)) {
2406 			get_page(vmf->page);
2407 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2408 			lock_page(vmf->page);
2409 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2410 					vmf->address, &vmf->ptl);
2411 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2412 				unlock_page(vmf->page);
2413 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2414 				put_page(vmf->page);
2415 				return 0;
2416 			}
2417 			put_page(vmf->page);
2418 		}
2419 		if (reuse_swap_page(vmf->page, &total_mapcount)) {
2420 			if (total_mapcount == 1) {
2421 				/*
2422 				 * The page is all ours. Move it to
2423 				 * our anon_vma so the rmap code will
2424 				 * not search our parent or siblings.
2425 				 * Protected against the rmap code by
2426 				 * the page lock.
2427 				 */
2428 				page_move_anon_rmap(vmf->page, vma);
2429 			}
2430 			unlock_page(vmf->page);
2431 			wp_page_reuse(vmf);
2432 			return VM_FAULT_WRITE;
2433 		}
2434 		unlock_page(vmf->page);
2435 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2436 					(VM_WRITE|VM_SHARED))) {
2437 		return wp_page_shared(vmf);
2438 	}
2439 
2440 	/*
2441 	 * Ok, we need to copy. Oh, well..
2442 	 */
2443 	get_page(vmf->page);
2444 
2445 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2446 	return wp_page_copy(vmf);
2447 }
2448 
2449 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2450 		unsigned long start_addr, unsigned long end_addr,
2451 		struct zap_details *details)
2452 {
2453 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2454 }
2455 
2456 static inline void unmap_mapping_range_tree(struct rb_root *root,
2457 					    struct zap_details *details)
2458 {
2459 	struct vm_area_struct *vma;
2460 	pgoff_t vba, vea, zba, zea;
2461 
2462 	vma_interval_tree_foreach(vma, root,
2463 			details->first_index, details->last_index) {
2464 
2465 		vba = vma->vm_pgoff;
2466 		vea = vba + vma_pages(vma) - 1;
2467 		zba = details->first_index;
2468 		if (zba < vba)
2469 			zba = vba;
2470 		zea = details->last_index;
2471 		if (zea > vea)
2472 			zea = vea;
2473 
2474 		unmap_mapping_range_vma(vma,
2475 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2476 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2477 				details);
2478 	}
2479 }
2480 
2481 /**
2482  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2483  * address_space corresponding to the specified page range in the underlying
2484  * file.
2485  *
2486  * @mapping: the address space containing mmaps to be unmapped.
2487  * @holebegin: byte in first page to unmap, relative to the start of
2488  * the underlying file.  This will be rounded down to a PAGE_SIZE
2489  * boundary.  Note that this is different from truncate_pagecache(), which
2490  * must keep the partial page.  In contrast, we must get rid of
2491  * partial pages.
2492  * @holelen: size of prospective hole in bytes.  This will be rounded
2493  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2494  * end of the file.
2495  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2496  * but 0 when invalidating pagecache, don't throw away private data.
2497  */
2498 void unmap_mapping_range(struct address_space *mapping,
2499 		loff_t const holebegin, loff_t const holelen, int even_cows)
2500 {
2501 	struct zap_details details = { };
2502 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2503 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2504 
2505 	/* Check for overflow. */
2506 	if (sizeof(holelen) > sizeof(hlen)) {
2507 		long long holeend =
2508 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2509 		if (holeend & ~(long long)ULONG_MAX)
2510 			hlen = ULONG_MAX - hba + 1;
2511 	}
2512 
2513 	details.check_mapping = even_cows? NULL: mapping;
2514 	details.first_index = hba;
2515 	details.last_index = hba + hlen - 1;
2516 	if (details.last_index < details.first_index)
2517 		details.last_index = ULONG_MAX;
2518 
2519 	i_mmap_lock_write(mapping);
2520 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2521 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2522 	i_mmap_unlock_write(mapping);
2523 }
2524 EXPORT_SYMBOL(unmap_mapping_range);
2525 
2526 /*
2527  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2528  * but allow concurrent faults), and pte mapped but not yet locked.
2529  * We return with pte unmapped and unlocked.
2530  *
2531  * We return with the mmap_sem locked or unlocked in the same cases
2532  * as does filemap_fault().
2533  */
2534 int do_swap_page(struct vm_fault *vmf)
2535 {
2536 	struct vm_area_struct *vma = vmf->vma;
2537 	struct page *page, *swapcache;
2538 	struct mem_cgroup *memcg;
2539 	swp_entry_t entry;
2540 	pte_t pte;
2541 	int locked;
2542 	int exclusive = 0;
2543 	int ret = 0;
2544 
2545 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2546 		goto out;
2547 
2548 	entry = pte_to_swp_entry(vmf->orig_pte);
2549 	if (unlikely(non_swap_entry(entry))) {
2550 		if (is_migration_entry(entry)) {
2551 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2552 					     vmf->address);
2553 		} else if (is_hwpoison_entry(entry)) {
2554 			ret = VM_FAULT_HWPOISON;
2555 		} else {
2556 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2557 			ret = VM_FAULT_SIGBUS;
2558 		}
2559 		goto out;
2560 	}
2561 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2562 	page = lookup_swap_cache(entry);
2563 	if (!page) {
2564 		page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2565 					vmf->address);
2566 		if (!page) {
2567 			/*
2568 			 * Back out if somebody else faulted in this pte
2569 			 * while we released the pte lock.
2570 			 */
2571 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2572 					vmf->address, &vmf->ptl);
2573 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2574 				ret = VM_FAULT_OOM;
2575 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2576 			goto unlock;
2577 		}
2578 
2579 		/* Had to read the page from swap area: Major fault */
2580 		ret = VM_FAULT_MAJOR;
2581 		count_vm_event(PGMAJFAULT);
2582 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2583 	} else if (PageHWPoison(page)) {
2584 		/*
2585 		 * hwpoisoned dirty swapcache pages are kept for killing
2586 		 * owner processes (which may be unknown at hwpoison time)
2587 		 */
2588 		ret = VM_FAULT_HWPOISON;
2589 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2590 		swapcache = page;
2591 		goto out_release;
2592 	}
2593 
2594 	swapcache = page;
2595 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2596 
2597 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2598 	if (!locked) {
2599 		ret |= VM_FAULT_RETRY;
2600 		goto out_release;
2601 	}
2602 
2603 	/*
2604 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2605 	 * release the swapcache from under us.  The page pin, and pte_same
2606 	 * test below, are not enough to exclude that.  Even if it is still
2607 	 * swapcache, we need to check that the page's swap has not changed.
2608 	 */
2609 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2610 		goto out_page;
2611 
2612 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2613 	if (unlikely(!page)) {
2614 		ret = VM_FAULT_OOM;
2615 		page = swapcache;
2616 		goto out_page;
2617 	}
2618 
2619 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2620 				&memcg, false)) {
2621 		ret = VM_FAULT_OOM;
2622 		goto out_page;
2623 	}
2624 
2625 	/*
2626 	 * Back out if somebody else already faulted in this pte.
2627 	 */
2628 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2629 			&vmf->ptl);
2630 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2631 		goto out_nomap;
2632 
2633 	if (unlikely(!PageUptodate(page))) {
2634 		ret = VM_FAULT_SIGBUS;
2635 		goto out_nomap;
2636 	}
2637 
2638 	/*
2639 	 * The page isn't present yet, go ahead with the fault.
2640 	 *
2641 	 * Be careful about the sequence of operations here.
2642 	 * To get its accounting right, reuse_swap_page() must be called
2643 	 * while the page is counted on swap but not yet in mapcount i.e.
2644 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2645 	 * must be called after the swap_free(), or it will never succeed.
2646 	 */
2647 
2648 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2649 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2650 	pte = mk_pte(page, vma->vm_page_prot);
2651 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2652 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2653 		vmf->flags &= ~FAULT_FLAG_WRITE;
2654 		ret |= VM_FAULT_WRITE;
2655 		exclusive = RMAP_EXCLUSIVE;
2656 	}
2657 	flush_icache_page(vma, page);
2658 	if (pte_swp_soft_dirty(vmf->orig_pte))
2659 		pte = pte_mksoft_dirty(pte);
2660 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2661 	vmf->orig_pte = pte;
2662 	if (page == swapcache) {
2663 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2664 		mem_cgroup_commit_charge(page, memcg, true, false);
2665 		activate_page(page);
2666 	} else { /* ksm created a completely new copy */
2667 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2668 		mem_cgroup_commit_charge(page, memcg, false, false);
2669 		lru_cache_add_active_or_unevictable(page, vma);
2670 	}
2671 
2672 	swap_free(entry);
2673 	if (mem_cgroup_swap_full(page) ||
2674 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2675 		try_to_free_swap(page);
2676 	unlock_page(page);
2677 	if (page != swapcache) {
2678 		/*
2679 		 * Hold the lock to avoid the swap entry to be reused
2680 		 * until we take the PT lock for the pte_same() check
2681 		 * (to avoid false positives from pte_same). For
2682 		 * further safety release the lock after the swap_free
2683 		 * so that the swap count won't change under a
2684 		 * parallel locked swapcache.
2685 		 */
2686 		unlock_page(swapcache);
2687 		put_page(swapcache);
2688 	}
2689 
2690 	if (vmf->flags & FAULT_FLAG_WRITE) {
2691 		ret |= do_wp_page(vmf);
2692 		if (ret & VM_FAULT_ERROR)
2693 			ret &= VM_FAULT_ERROR;
2694 		goto out;
2695 	}
2696 
2697 	/* No need to invalidate - it was non-present before */
2698 	update_mmu_cache(vma, vmf->address, vmf->pte);
2699 unlock:
2700 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2701 out:
2702 	return ret;
2703 out_nomap:
2704 	mem_cgroup_cancel_charge(page, memcg, false);
2705 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2706 out_page:
2707 	unlock_page(page);
2708 out_release:
2709 	put_page(page);
2710 	if (page != swapcache) {
2711 		unlock_page(swapcache);
2712 		put_page(swapcache);
2713 	}
2714 	return ret;
2715 }
2716 
2717 /*
2718  * This is like a special single-page "expand_{down|up}wards()",
2719  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2720  * doesn't hit another vma.
2721  */
2722 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2723 {
2724 	address &= PAGE_MASK;
2725 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2726 		struct vm_area_struct *prev = vma->vm_prev;
2727 
2728 		/*
2729 		 * Is there a mapping abutting this one below?
2730 		 *
2731 		 * That's only ok if it's the same stack mapping
2732 		 * that has gotten split..
2733 		 */
2734 		if (prev && prev->vm_end == address)
2735 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2736 
2737 		return expand_downwards(vma, address - PAGE_SIZE);
2738 	}
2739 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2740 		struct vm_area_struct *next = vma->vm_next;
2741 
2742 		/* As VM_GROWSDOWN but s/below/above/ */
2743 		if (next && next->vm_start == address + PAGE_SIZE)
2744 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2745 
2746 		return expand_upwards(vma, address + PAGE_SIZE);
2747 	}
2748 	return 0;
2749 }
2750 
2751 /*
2752  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2753  * but allow concurrent faults), and pte mapped but not yet locked.
2754  * We return with mmap_sem still held, but pte unmapped and unlocked.
2755  */
2756 static int do_anonymous_page(struct vm_fault *vmf)
2757 {
2758 	struct vm_area_struct *vma = vmf->vma;
2759 	struct mem_cgroup *memcg;
2760 	struct page *page;
2761 	pte_t entry;
2762 
2763 	/* File mapping without ->vm_ops ? */
2764 	if (vma->vm_flags & VM_SHARED)
2765 		return VM_FAULT_SIGBUS;
2766 
2767 	/* Check if we need to add a guard page to the stack */
2768 	if (check_stack_guard_page(vma, vmf->address) < 0)
2769 		return VM_FAULT_SIGSEGV;
2770 
2771 	/*
2772 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2773 	 * pte_offset_map() on pmds where a huge pmd might be created
2774 	 * from a different thread.
2775 	 *
2776 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2777 	 * parallel threads are excluded by other means.
2778 	 *
2779 	 * Here we only have down_read(mmap_sem).
2780 	 */
2781 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2782 		return VM_FAULT_OOM;
2783 
2784 	/* See the comment in pte_alloc_one_map() */
2785 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2786 		return 0;
2787 
2788 	/* Use the zero-page for reads */
2789 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2790 			!mm_forbids_zeropage(vma->vm_mm)) {
2791 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2792 						vma->vm_page_prot));
2793 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2794 				vmf->address, &vmf->ptl);
2795 		if (!pte_none(*vmf->pte))
2796 			goto unlock;
2797 		/* Deliver the page fault to userland, check inside PT lock */
2798 		if (userfaultfd_missing(vma)) {
2799 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2800 			return handle_userfault(vmf, VM_UFFD_MISSING);
2801 		}
2802 		goto setpte;
2803 	}
2804 
2805 	/* Allocate our own private page. */
2806 	if (unlikely(anon_vma_prepare(vma)))
2807 		goto oom;
2808 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2809 	if (!page)
2810 		goto oom;
2811 
2812 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2813 		goto oom_free_page;
2814 
2815 	/*
2816 	 * The memory barrier inside __SetPageUptodate makes sure that
2817 	 * preceeding stores to the page contents become visible before
2818 	 * the set_pte_at() write.
2819 	 */
2820 	__SetPageUptodate(page);
2821 
2822 	entry = mk_pte(page, vma->vm_page_prot);
2823 	if (vma->vm_flags & VM_WRITE)
2824 		entry = pte_mkwrite(pte_mkdirty(entry));
2825 
2826 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2827 			&vmf->ptl);
2828 	if (!pte_none(*vmf->pte))
2829 		goto release;
2830 
2831 	/* Deliver the page fault to userland, check inside PT lock */
2832 	if (userfaultfd_missing(vma)) {
2833 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2834 		mem_cgroup_cancel_charge(page, memcg, false);
2835 		put_page(page);
2836 		return handle_userfault(vmf, VM_UFFD_MISSING);
2837 	}
2838 
2839 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2840 	page_add_new_anon_rmap(page, vma, vmf->address, false);
2841 	mem_cgroup_commit_charge(page, memcg, false, false);
2842 	lru_cache_add_active_or_unevictable(page, vma);
2843 setpte:
2844 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2845 
2846 	/* No need to invalidate - it was non-present before */
2847 	update_mmu_cache(vma, vmf->address, vmf->pte);
2848 unlock:
2849 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2850 	return 0;
2851 release:
2852 	mem_cgroup_cancel_charge(page, memcg, false);
2853 	put_page(page);
2854 	goto unlock;
2855 oom_free_page:
2856 	put_page(page);
2857 oom:
2858 	return VM_FAULT_OOM;
2859 }
2860 
2861 /*
2862  * The mmap_sem must have been held on entry, and may have been
2863  * released depending on flags and vma->vm_ops->fault() return value.
2864  * See filemap_fault() and __lock_page_retry().
2865  */
2866 static int __do_fault(struct vm_fault *vmf)
2867 {
2868 	struct vm_area_struct *vma = vmf->vma;
2869 	int ret;
2870 
2871 	ret = vma->vm_ops->fault(vma, vmf);
2872 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2873 			    VM_FAULT_DONE_COW)))
2874 		return ret;
2875 
2876 	if (unlikely(PageHWPoison(vmf->page))) {
2877 		if (ret & VM_FAULT_LOCKED)
2878 			unlock_page(vmf->page);
2879 		put_page(vmf->page);
2880 		vmf->page = NULL;
2881 		return VM_FAULT_HWPOISON;
2882 	}
2883 
2884 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2885 		lock_page(vmf->page);
2886 	else
2887 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
2888 
2889 	return ret;
2890 }
2891 
2892 static int pte_alloc_one_map(struct vm_fault *vmf)
2893 {
2894 	struct vm_area_struct *vma = vmf->vma;
2895 
2896 	if (!pmd_none(*vmf->pmd))
2897 		goto map_pte;
2898 	if (vmf->prealloc_pte) {
2899 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2900 		if (unlikely(!pmd_none(*vmf->pmd))) {
2901 			spin_unlock(vmf->ptl);
2902 			goto map_pte;
2903 		}
2904 
2905 		atomic_long_inc(&vma->vm_mm->nr_ptes);
2906 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2907 		spin_unlock(vmf->ptl);
2908 		vmf->prealloc_pte = 0;
2909 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
2910 		return VM_FAULT_OOM;
2911 	}
2912 map_pte:
2913 	/*
2914 	 * If a huge pmd materialized under us just retry later.  Use
2915 	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2916 	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
2917 	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
2918 	 * in a different thread of this mm, in turn leading to a misleading
2919 	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
2920 	 * regular pmd that we can walk with pte_offset_map() and we can do that
2921 	 * through an atomic read in C, which is what pmd_trans_unstable()
2922 	 * provides.
2923 	 */
2924 	if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
2925 		return VM_FAULT_NOPAGE;
2926 
2927 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2928 			&vmf->ptl);
2929 	return 0;
2930 }
2931 
2932 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2933 
2934 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2935 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2936 		unsigned long haddr)
2937 {
2938 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2939 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2940 		return false;
2941 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2942 		return false;
2943 	return true;
2944 }
2945 
2946 static void deposit_prealloc_pte(struct vm_fault *vmf)
2947 {
2948 	struct vm_area_struct *vma = vmf->vma;
2949 
2950 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2951 	/*
2952 	 * We are going to consume the prealloc table,
2953 	 * count that as nr_ptes.
2954 	 */
2955 	atomic_long_inc(&vma->vm_mm->nr_ptes);
2956 	vmf->prealloc_pte = 0;
2957 }
2958 
2959 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
2960 {
2961 	struct vm_area_struct *vma = vmf->vma;
2962 	bool write = vmf->flags & FAULT_FLAG_WRITE;
2963 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2964 	pmd_t entry;
2965 	int i, ret;
2966 
2967 	if (!transhuge_vma_suitable(vma, haddr))
2968 		return VM_FAULT_FALLBACK;
2969 
2970 	ret = VM_FAULT_FALLBACK;
2971 	page = compound_head(page);
2972 
2973 	/*
2974 	 * Archs like ppc64 need additonal space to store information
2975 	 * related to pte entry. Use the preallocated table for that.
2976 	 */
2977 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
2978 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
2979 		if (!vmf->prealloc_pte)
2980 			return VM_FAULT_OOM;
2981 		smp_wmb(); /* See comment in __pte_alloc() */
2982 	}
2983 
2984 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2985 	if (unlikely(!pmd_none(*vmf->pmd)))
2986 		goto out;
2987 
2988 	for (i = 0; i < HPAGE_PMD_NR; i++)
2989 		flush_icache_page(vma, page + i);
2990 
2991 	entry = mk_huge_pmd(page, vma->vm_page_prot);
2992 	if (write)
2993 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2994 
2995 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
2996 	page_add_file_rmap(page, true);
2997 	/*
2998 	 * deposit and withdraw with pmd lock held
2999 	 */
3000 	if (arch_needs_pgtable_deposit())
3001 		deposit_prealloc_pte(vmf);
3002 
3003 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3004 
3005 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3006 
3007 	/* fault is handled */
3008 	ret = 0;
3009 	count_vm_event(THP_FILE_MAPPED);
3010 out:
3011 	/*
3012 	 * If we are going to fallback to pte mapping, do a
3013 	 * withdraw with pmd lock held.
3014 	 */
3015 	if (arch_needs_pgtable_deposit() && ret == VM_FAULT_FALLBACK)
3016 		vmf->prealloc_pte = pgtable_trans_huge_withdraw(vma->vm_mm,
3017 								vmf->pmd);
3018 	spin_unlock(vmf->ptl);
3019 	return ret;
3020 }
3021 #else
3022 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3023 {
3024 	BUILD_BUG();
3025 	return 0;
3026 }
3027 #endif
3028 
3029 /**
3030  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3031  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3032  *
3033  * @vmf: fault environment
3034  * @memcg: memcg to charge page (only for private mappings)
3035  * @page: page to map
3036  *
3037  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3038  * return.
3039  *
3040  * Target users are page handler itself and implementations of
3041  * vm_ops->map_pages.
3042  */
3043 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3044 		struct page *page)
3045 {
3046 	struct vm_area_struct *vma = vmf->vma;
3047 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3048 	pte_t entry;
3049 	int ret;
3050 
3051 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3052 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3053 		/* THP on COW? */
3054 		VM_BUG_ON_PAGE(memcg, page);
3055 
3056 		ret = do_set_pmd(vmf, page);
3057 		if (ret != VM_FAULT_FALLBACK)
3058 			goto fault_handled;
3059 	}
3060 
3061 	if (!vmf->pte) {
3062 		ret = pte_alloc_one_map(vmf);
3063 		if (ret)
3064 			goto fault_handled;
3065 	}
3066 
3067 	/* Re-check under ptl */
3068 	if (unlikely(!pte_none(*vmf->pte))) {
3069 		ret = VM_FAULT_NOPAGE;
3070 		goto fault_handled;
3071 	}
3072 
3073 	flush_icache_page(vma, page);
3074 	entry = mk_pte(page, vma->vm_page_prot);
3075 	if (write)
3076 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3077 	/* copy-on-write page */
3078 	if (write && !(vma->vm_flags & VM_SHARED)) {
3079 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3080 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3081 		mem_cgroup_commit_charge(page, memcg, false, false);
3082 		lru_cache_add_active_or_unevictable(page, vma);
3083 	} else {
3084 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3085 		page_add_file_rmap(page, false);
3086 	}
3087 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3088 
3089 	/* no need to invalidate: a not-present page won't be cached */
3090 	update_mmu_cache(vma, vmf->address, vmf->pte);
3091 	ret = 0;
3092 
3093 fault_handled:
3094 	/* preallocated pagetable is unused: free it */
3095 	if (vmf->prealloc_pte) {
3096 		pte_free(vmf->vma->vm_mm, vmf->prealloc_pte);
3097 		vmf->prealloc_pte = 0;
3098 	}
3099 	return ret;
3100 }
3101 
3102 
3103 /**
3104  * finish_fault - finish page fault once we have prepared the page to fault
3105  *
3106  * @vmf: structure describing the fault
3107  *
3108  * This function handles all that is needed to finish a page fault once the
3109  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3110  * given page, adds reverse page mapping, handles memcg charges and LRU
3111  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3112  * error.
3113  *
3114  * The function expects the page to be locked and on success it consumes a
3115  * reference of a page being mapped (for the PTE which maps it).
3116  */
3117 int finish_fault(struct vm_fault *vmf)
3118 {
3119 	struct page *page;
3120 	int ret;
3121 
3122 	/* Did we COW the page? */
3123 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3124 	    !(vmf->vma->vm_flags & VM_SHARED))
3125 		page = vmf->cow_page;
3126 	else
3127 		page = vmf->page;
3128 	ret = alloc_set_pte(vmf, vmf->memcg, page);
3129 	if (vmf->pte)
3130 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3131 	return ret;
3132 }
3133 
3134 static unsigned long fault_around_bytes __read_mostly =
3135 	rounddown_pow_of_two(65536);
3136 
3137 #ifdef CONFIG_DEBUG_FS
3138 static int fault_around_bytes_get(void *data, u64 *val)
3139 {
3140 	*val = fault_around_bytes;
3141 	return 0;
3142 }
3143 
3144 /*
3145  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3146  * rounded down to nearest page order. It's what do_fault_around() expects to
3147  * see.
3148  */
3149 static int fault_around_bytes_set(void *data, u64 val)
3150 {
3151 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3152 		return -EINVAL;
3153 	if (val > PAGE_SIZE)
3154 		fault_around_bytes = rounddown_pow_of_two(val);
3155 	else
3156 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3157 	return 0;
3158 }
3159 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3160 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3161 
3162 static int __init fault_around_debugfs(void)
3163 {
3164 	void *ret;
3165 
3166 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3167 			&fault_around_bytes_fops);
3168 	if (!ret)
3169 		pr_warn("Failed to create fault_around_bytes in debugfs");
3170 	return 0;
3171 }
3172 late_initcall(fault_around_debugfs);
3173 #endif
3174 
3175 /*
3176  * do_fault_around() tries to map few pages around the fault address. The hope
3177  * is that the pages will be needed soon and this will lower the number of
3178  * faults to handle.
3179  *
3180  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3181  * not ready to be mapped: not up-to-date, locked, etc.
3182  *
3183  * This function is called with the page table lock taken. In the split ptlock
3184  * case the page table lock only protects only those entries which belong to
3185  * the page table corresponding to the fault address.
3186  *
3187  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3188  * only once.
3189  *
3190  * fault_around_pages() defines how many pages we'll try to map.
3191  * do_fault_around() expects it to return a power of two less than or equal to
3192  * PTRS_PER_PTE.
3193  *
3194  * The virtual address of the area that we map is naturally aligned to the
3195  * fault_around_pages() value (and therefore to page order).  This way it's
3196  * easier to guarantee that we don't cross page table boundaries.
3197  */
3198 static int do_fault_around(struct vm_fault *vmf)
3199 {
3200 	unsigned long address = vmf->address, nr_pages, mask;
3201 	pgoff_t start_pgoff = vmf->pgoff;
3202 	pgoff_t end_pgoff;
3203 	int off, ret = 0;
3204 
3205 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3206 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3207 
3208 	vmf->address = max(address & mask, vmf->vma->vm_start);
3209 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3210 	start_pgoff -= off;
3211 
3212 	/*
3213 	 *  end_pgoff is either end of page table or end of vma
3214 	 *  or fault_around_pages() from start_pgoff, depending what is nearest.
3215 	 */
3216 	end_pgoff = start_pgoff -
3217 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3218 		PTRS_PER_PTE - 1;
3219 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3220 			start_pgoff + nr_pages - 1);
3221 
3222 	if (pmd_none(*vmf->pmd)) {
3223 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3224 						  vmf->address);
3225 		if (!vmf->prealloc_pte)
3226 			goto out;
3227 		smp_wmb(); /* See comment in __pte_alloc() */
3228 	}
3229 
3230 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3231 
3232 	/* Huge page is mapped? Page fault is solved */
3233 	if (pmd_trans_huge(*vmf->pmd)) {
3234 		ret = VM_FAULT_NOPAGE;
3235 		goto out;
3236 	}
3237 
3238 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3239 	if (!vmf->pte)
3240 		goto out;
3241 
3242 	/* check if the page fault is solved */
3243 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3244 	if (!pte_none(*vmf->pte))
3245 		ret = VM_FAULT_NOPAGE;
3246 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3247 out:
3248 	vmf->address = address;
3249 	vmf->pte = NULL;
3250 	return ret;
3251 }
3252 
3253 static int do_read_fault(struct vm_fault *vmf)
3254 {
3255 	struct vm_area_struct *vma = vmf->vma;
3256 	int ret = 0;
3257 
3258 	/*
3259 	 * Let's call ->map_pages() first and use ->fault() as fallback
3260 	 * if page by the offset is not ready to be mapped (cold cache or
3261 	 * something).
3262 	 */
3263 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3264 		ret = do_fault_around(vmf);
3265 		if (ret)
3266 			return ret;
3267 	}
3268 
3269 	ret = __do_fault(vmf);
3270 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3271 		return ret;
3272 
3273 	ret |= finish_fault(vmf);
3274 	unlock_page(vmf->page);
3275 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3276 		put_page(vmf->page);
3277 	return ret;
3278 }
3279 
3280 static int do_cow_fault(struct vm_fault *vmf)
3281 {
3282 	struct vm_area_struct *vma = vmf->vma;
3283 	int ret;
3284 
3285 	if (unlikely(anon_vma_prepare(vma)))
3286 		return VM_FAULT_OOM;
3287 
3288 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3289 	if (!vmf->cow_page)
3290 		return VM_FAULT_OOM;
3291 
3292 	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3293 				&vmf->memcg, false)) {
3294 		put_page(vmf->cow_page);
3295 		return VM_FAULT_OOM;
3296 	}
3297 
3298 	ret = __do_fault(vmf);
3299 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3300 		goto uncharge_out;
3301 	if (ret & VM_FAULT_DONE_COW)
3302 		return ret;
3303 
3304 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3305 	__SetPageUptodate(vmf->cow_page);
3306 
3307 	ret |= finish_fault(vmf);
3308 	unlock_page(vmf->page);
3309 	put_page(vmf->page);
3310 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3311 		goto uncharge_out;
3312 	return ret;
3313 uncharge_out:
3314 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3315 	put_page(vmf->cow_page);
3316 	return ret;
3317 }
3318 
3319 static int do_shared_fault(struct vm_fault *vmf)
3320 {
3321 	struct vm_area_struct *vma = vmf->vma;
3322 	int ret, tmp;
3323 
3324 	ret = __do_fault(vmf);
3325 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3326 		return ret;
3327 
3328 	/*
3329 	 * Check if the backing address space wants to know that the page is
3330 	 * about to become writable
3331 	 */
3332 	if (vma->vm_ops->page_mkwrite) {
3333 		unlock_page(vmf->page);
3334 		tmp = do_page_mkwrite(vmf);
3335 		if (unlikely(!tmp ||
3336 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3337 			put_page(vmf->page);
3338 			return tmp;
3339 		}
3340 	}
3341 
3342 	ret |= finish_fault(vmf);
3343 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3344 					VM_FAULT_RETRY))) {
3345 		unlock_page(vmf->page);
3346 		put_page(vmf->page);
3347 		return ret;
3348 	}
3349 
3350 	fault_dirty_shared_page(vma, vmf->page);
3351 	return ret;
3352 }
3353 
3354 /*
3355  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3356  * but allow concurrent faults).
3357  * The mmap_sem may have been released depending on flags and our
3358  * return value.  See filemap_fault() and __lock_page_or_retry().
3359  */
3360 static int do_fault(struct vm_fault *vmf)
3361 {
3362 	struct vm_area_struct *vma = vmf->vma;
3363 
3364 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3365 	if (!vma->vm_ops->fault)
3366 		return VM_FAULT_SIGBUS;
3367 	if (!(vmf->flags & FAULT_FLAG_WRITE))
3368 		return do_read_fault(vmf);
3369 	if (!(vma->vm_flags & VM_SHARED))
3370 		return do_cow_fault(vmf);
3371 	return do_shared_fault(vmf);
3372 }
3373 
3374 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3375 				unsigned long addr, int page_nid,
3376 				int *flags)
3377 {
3378 	get_page(page);
3379 
3380 	count_vm_numa_event(NUMA_HINT_FAULTS);
3381 	if (page_nid == numa_node_id()) {
3382 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3383 		*flags |= TNF_FAULT_LOCAL;
3384 	}
3385 
3386 	return mpol_misplaced(page, vma, addr);
3387 }
3388 
3389 static int do_numa_page(struct vm_fault *vmf)
3390 {
3391 	struct vm_area_struct *vma = vmf->vma;
3392 	struct page *page = NULL;
3393 	int page_nid = -1;
3394 	int last_cpupid;
3395 	int target_nid;
3396 	bool migrated = false;
3397 	pte_t pte = vmf->orig_pte;
3398 	bool was_writable = pte_write(pte);
3399 	int flags = 0;
3400 
3401 	/*
3402 	* The "pte" at this point cannot be used safely without
3403 	* validation through pte_unmap_same(). It's of NUMA type but
3404 	* the pfn may be screwed if the read is non atomic.
3405 	*
3406 	* We can safely just do a "set_pte_at()", because the old
3407 	* page table entry is not accessible, so there would be no
3408 	* concurrent hardware modifications to the PTE.
3409 	*/
3410 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3411 	spin_lock(vmf->ptl);
3412 	if (unlikely(!pte_same(*vmf->pte, pte))) {
3413 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3414 		goto out;
3415 	}
3416 
3417 	/* Make it present again */
3418 	pte = pte_modify(pte, vma->vm_page_prot);
3419 	pte = pte_mkyoung(pte);
3420 	if (was_writable)
3421 		pte = pte_mkwrite(pte);
3422 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3423 	update_mmu_cache(vma, vmf->address, vmf->pte);
3424 
3425 	page = vm_normal_page(vma, vmf->address, pte);
3426 	if (!page) {
3427 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3428 		return 0;
3429 	}
3430 
3431 	/* TODO: handle PTE-mapped THP */
3432 	if (PageCompound(page)) {
3433 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3434 		return 0;
3435 	}
3436 
3437 	/*
3438 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3439 	 * much anyway since they can be in shared cache state. This misses
3440 	 * the case where a mapping is writable but the process never writes
3441 	 * to it but pte_write gets cleared during protection updates and
3442 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3443 	 * background writeback, dirty balancing and application behaviour.
3444 	 */
3445 	if (!pte_write(pte))
3446 		flags |= TNF_NO_GROUP;
3447 
3448 	/*
3449 	 * Flag if the page is shared between multiple address spaces. This
3450 	 * is later used when determining whether to group tasks together
3451 	 */
3452 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3453 		flags |= TNF_SHARED;
3454 
3455 	last_cpupid = page_cpupid_last(page);
3456 	page_nid = page_to_nid(page);
3457 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3458 			&flags);
3459 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3460 	if (target_nid == -1) {
3461 		put_page(page);
3462 		goto out;
3463 	}
3464 
3465 	/* Migrate to the requested node */
3466 	migrated = migrate_misplaced_page(page, vma, target_nid);
3467 	if (migrated) {
3468 		page_nid = target_nid;
3469 		flags |= TNF_MIGRATED;
3470 	} else
3471 		flags |= TNF_MIGRATE_FAIL;
3472 
3473 out:
3474 	if (page_nid != -1)
3475 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3476 	return 0;
3477 }
3478 
3479 static int create_huge_pmd(struct vm_fault *vmf)
3480 {
3481 	struct vm_area_struct *vma = vmf->vma;
3482 	if (vma_is_anonymous(vma))
3483 		return do_huge_pmd_anonymous_page(vmf);
3484 	if (vma->vm_ops->pmd_fault)
3485 		return vma->vm_ops->pmd_fault(vma, vmf->address, vmf->pmd,
3486 				vmf->flags);
3487 	return VM_FAULT_FALLBACK;
3488 }
3489 
3490 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3491 {
3492 	if (vma_is_anonymous(vmf->vma))
3493 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3494 	if (vmf->vma->vm_ops->pmd_fault)
3495 		return vmf->vma->vm_ops->pmd_fault(vmf->vma, vmf->address,
3496 						   vmf->pmd, vmf->flags);
3497 
3498 	/* COW handled on pte level: split pmd */
3499 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3500 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3501 
3502 	return VM_FAULT_FALLBACK;
3503 }
3504 
3505 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3506 {
3507 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3508 }
3509 
3510 /*
3511  * These routines also need to handle stuff like marking pages dirty
3512  * and/or accessed for architectures that don't do it in hardware (most
3513  * RISC architectures).  The early dirtying is also good on the i386.
3514  *
3515  * There is also a hook called "update_mmu_cache()" that architectures
3516  * with external mmu caches can use to update those (ie the Sparc or
3517  * PowerPC hashed page tables that act as extended TLBs).
3518  *
3519  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3520  * concurrent faults).
3521  *
3522  * The mmap_sem may have been released depending on flags and our return value.
3523  * See filemap_fault() and __lock_page_or_retry().
3524  */
3525 static int handle_pte_fault(struct vm_fault *vmf)
3526 {
3527 	pte_t entry;
3528 
3529 	if (unlikely(pmd_none(*vmf->pmd))) {
3530 		/*
3531 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3532 		 * want to allocate huge page, and if we expose page table
3533 		 * for an instant, it will be difficult to retract from
3534 		 * concurrent faults and from rmap lookups.
3535 		 */
3536 		vmf->pte = NULL;
3537 	} else {
3538 		/* See comment in pte_alloc_one_map() */
3539 		if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
3540 			return 0;
3541 		/*
3542 		 * A regular pmd is established and it can't morph into a huge
3543 		 * pmd from under us anymore at this point because we hold the
3544 		 * mmap_sem read mode and khugepaged takes it in write mode.
3545 		 * So now it's safe to run pte_offset_map().
3546 		 */
3547 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3548 		vmf->orig_pte = *vmf->pte;
3549 
3550 		/*
3551 		 * some architectures can have larger ptes than wordsize,
3552 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3553 		 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3554 		 * atomic accesses.  The code below just needs a consistent
3555 		 * view for the ifs and we later double check anyway with the
3556 		 * ptl lock held. So here a barrier will do.
3557 		 */
3558 		barrier();
3559 		if (pte_none(vmf->orig_pte)) {
3560 			pte_unmap(vmf->pte);
3561 			vmf->pte = NULL;
3562 		}
3563 	}
3564 
3565 	if (!vmf->pte) {
3566 		if (vma_is_anonymous(vmf->vma))
3567 			return do_anonymous_page(vmf);
3568 		else
3569 			return do_fault(vmf);
3570 	}
3571 
3572 	if (!pte_present(vmf->orig_pte))
3573 		return do_swap_page(vmf);
3574 
3575 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3576 		return do_numa_page(vmf);
3577 
3578 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3579 	spin_lock(vmf->ptl);
3580 	entry = vmf->orig_pte;
3581 	if (unlikely(!pte_same(*vmf->pte, entry)))
3582 		goto unlock;
3583 	if (vmf->flags & FAULT_FLAG_WRITE) {
3584 		if (!pte_write(entry))
3585 			return do_wp_page(vmf);
3586 		entry = pte_mkdirty(entry);
3587 	}
3588 	entry = pte_mkyoung(entry);
3589 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3590 				vmf->flags & FAULT_FLAG_WRITE)) {
3591 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3592 	} else {
3593 		/*
3594 		 * This is needed only for protection faults but the arch code
3595 		 * is not yet telling us if this is a protection fault or not.
3596 		 * This still avoids useless tlb flushes for .text page faults
3597 		 * with threads.
3598 		 */
3599 		if (vmf->flags & FAULT_FLAG_WRITE)
3600 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3601 	}
3602 unlock:
3603 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3604 	return 0;
3605 }
3606 
3607 /*
3608  * By the time we get here, we already hold the mm semaphore
3609  *
3610  * The mmap_sem may have been released depending on flags and our
3611  * return value.  See filemap_fault() and __lock_page_or_retry().
3612  */
3613 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3614 		unsigned int flags)
3615 {
3616 	struct vm_fault vmf = {
3617 		.vma = vma,
3618 		.address = address & PAGE_MASK,
3619 		.flags = flags,
3620 		.pgoff = linear_page_index(vma, address),
3621 		.gfp_mask = __get_fault_gfp_mask(vma),
3622 	};
3623 	struct mm_struct *mm = vma->vm_mm;
3624 	pgd_t *pgd;
3625 	pud_t *pud;
3626 
3627 	pgd = pgd_offset(mm, address);
3628 	pud = pud_alloc(mm, pgd, address);
3629 	if (!pud)
3630 		return VM_FAULT_OOM;
3631 	vmf.pmd = pmd_alloc(mm, pud, address);
3632 	if (!vmf.pmd)
3633 		return VM_FAULT_OOM;
3634 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3635 		int ret = create_huge_pmd(&vmf);
3636 		if (!(ret & VM_FAULT_FALLBACK))
3637 			return ret;
3638 	} else {
3639 		pmd_t orig_pmd = *vmf.pmd;
3640 		int ret;
3641 
3642 		barrier();
3643 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3644 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3645 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3646 
3647 			if ((vmf.flags & FAULT_FLAG_WRITE) &&
3648 					!pmd_write(orig_pmd)) {
3649 				ret = wp_huge_pmd(&vmf, orig_pmd);
3650 				if (!(ret & VM_FAULT_FALLBACK))
3651 					return ret;
3652 			} else {
3653 				huge_pmd_set_accessed(&vmf, orig_pmd);
3654 				return 0;
3655 			}
3656 		}
3657 	}
3658 
3659 	return handle_pte_fault(&vmf);
3660 }
3661 
3662 /*
3663  * By the time we get here, we already hold the mm semaphore
3664  *
3665  * The mmap_sem may have been released depending on flags and our
3666  * return value.  See filemap_fault() and __lock_page_or_retry().
3667  */
3668 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3669 		unsigned int flags)
3670 {
3671 	int ret;
3672 
3673 	__set_current_state(TASK_RUNNING);
3674 
3675 	count_vm_event(PGFAULT);
3676 	mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3677 
3678 	/* do counter updates before entering really critical section. */
3679 	check_sync_rss_stat(current);
3680 
3681 	/*
3682 	 * Enable the memcg OOM handling for faults triggered in user
3683 	 * space.  Kernel faults are handled more gracefully.
3684 	 */
3685 	if (flags & FAULT_FLAG_USER)
3686 		mem_cgroup_oom_enable();
3687 
3688 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3689 					    flags & FAULT_FLAG_INSTRUCTION,
3690 					    flags & FAULT_FLAG_REMOTE))
3691 		return VM_FAULT_SIGSEGV;
3692 
3693 	if (unlikely(is_vm_hugetlb_page(vma)))
3694 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3695 	else
3696 		ret = __handle_mm_fault(vma, address, flags);
3697 
3698 	if (flags & FAULT_FLAG_USER) {
3699 		mem_cgroup_oom_disable();
3700                 /*
3701                  * The task may have entered a memcg OOM situation but
3702                  * if the allocation error was handled gracefully (no
3703                  * VM_FAULT_OOM), there is no need to kill anything.
3704                  * Just clean up the OOM state peacefully.
3705                  */
3706                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3707                         mem_cgroup_oom_synchronize(false);
3708 	}
3709 
3710 	/*
3711 	 * This mm has been already reaped by the oom reaper and so the
3712 	 * refault cannot be trusted in general. Anonymous refaults would
3713 	 * lose data and give a zero page instead e.g. This is especially
3714 	 * problem for use_mm() because regular tasks will just die and
3715 	 * the corrupted data will not be visible anywhere while kthread
3716 	 * will outlive the oom victim and potentially propagate the date
3717 	 * further.
3718 	 */
3719 	if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3720 				&& test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3721 		ret = VM_FAULT_SIGBUS;
3722 
3723 	return ret;
3724 }
3725 EXPORT_SYMBOL_GPL(handle_mm_fault);
3726 
3727 #ifndef __PAGETABLE_PUD_FOLDED
3728 /*
3729  * Allocate page upper directory.
3730  * We've already handled the fast-path in-line.
3731  */
3732 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3733 {
3734 	pud_t *new = pud_alloc_one(mm, address);
3735 	if (!new)
3736 		return -ENOMEM;
3737 
3738 	smp_wmb(); /* See comment in __pte_alloc */
3739 
3740 	spin_lock(&mm->page_table_lock);
3741 	if (pgd_present(*pgd))		/* Another has populated it */
3742 		pud_free(mm, new);
3743 	else
3744 		pgd_populate(mm, pgd, new);
3745 	spin_unlock(&mm->page_table_lock);
3746 	return 0;
3747 }
3748 #endif /* __PAGETABLE_PUD_FOLDED */
3749 
3750 #ifndef __PAGETABLE_PMD_FOLDED
3751 /*
3752  * Allocate page middle directory.
3753  * We've already handled the fast-path in-line.
3754  */
3755 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3756 {
3757 	pmd_t *new = pmd_alloc_one(mm, address);
3758 	if (!new)
3759 		return -ENOMEM;
3760 
3761 	smp_wmb(); /* See comment in __pte_alloc */
3762 
3763 	spin_lock(&mm->page_table_lock);
3764 #ifndef __ARCH_HAS_4LEVEL_HACK
3765 	if (!pud_present(*pud)) {
3766 		mm_inc_nr_pmds(mm);
3767 		pud_populate(mm, pud, new);
3768 	} else	/* Another has populated it */
3769 		pmd_free(mm, new);
3770 #else
3771 	if (!pgd_present(*pud)) {
3772 		mm_inc_nr_pmds(mm);
3773 		pgd_populate(mm, pud, new);
3774 	} else /* Another has populated it */
3775 		pmd_free(mm, new);
3776 #endif /* __ARCH_HAS_4LEVEL_HACK */
3777 	spin_unlock(&mm->page_table_lock);
3778 	return 0;
3779 }
3780 #endif /* __PAGETABLE_PMD_FOLDED */
3781 
3782 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3783 		pte_t **ptepp, spinlock_t **ptlp)
3784 {
3785 	pgd_t *pgd;
3786 	pud_t *pud;
3787 	pmd_t *pmd;
3788 	pte_t *ptep;
3789 
3790 	pgd = pgd_offset(mm, address);
3791 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3792 		goto out;
3793 
3794 	pud = pud_offset(pgd, address);
3795 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3796 		goto out;
3797 
3798 	pmd = pmd_offset(pud, address);
3799 	VM_BUG_ON(pmd_trans_huge(*pmd));
3800 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3801 		goto out;
3802 
3803 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3804 	if (pmd_huge(*pmd))
3805 		goto out;
3806 
3807 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3808 	if (!ptep)
3809 		goto out;
3810 	if (!pte_present(*ptep))
3811 		goto unlock;
3812 	*ptepp = ptep;
3813 	return 0;
3814 unlock:
3815 	pte_unmap_unlock(ptep, *ptlp);
3816 out:
3817 	return -EINVAL;
3818 }
3819 
3820 int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp,
3821 	       spinlock_t **ptlp)
3822 {
3823 	int res;
3824 
3825 	/* (void) is needed to make gcc happy */
3826 	(void) __cond_lock(*ptlp,
3827 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3828 	return res;
3829 }
3830 
3831 /**
3832  * follow_pfn - look up PFN at a user virtual address
3833  * @vma: memory mapping
3834  * @address: user virtual address
3835  * @pfn: location to store found PFN
3836  *
3837  * Only IO mappings and raw PFN mappings are allowed.
3838  *
3839  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3840  */
3841 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3842 	unsigned long *pfn)
3843 {
3844 	int ret = -EINVAL;
3845 	spinlock_t *ptl;
3846 	pte_t *ptep;
3847 
3848 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3849 		return ret;
3850 
3851 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3852 	if (ret)
3853 		return ret;
3854 	*pfn = pte_pfn(*ptep);
3855 	pte_unmap_unlock(ptep, ptl);
3856 	return 0;
3857 }
3858 EXPORT_SYMBOL(follow_pfn);
3859 
3860 #ifdef CONFIG_HAVE_IOREMAP_PROT
3861 int follow_phys(struct vm_area_struct *vma,
3862 		unsigned long address, unsigned int flags,
3863 		unsigned long *prot, resource_size_t *phys)
3864 {
3865 	int ret = -EINVAL;
3866 	pte_t *ptep, pte;
3867 	spinlock_t *ptl;
3868 
3869 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3870 		goto out;
3871 
3872 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3873 		goto out;
3874 	pte = *ptep;
3875 
3876 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3877 		goto unlock;
3878 
3879 	*prot = pgprot_val(pte_pgprot(pte));
3880 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3881 
3882 	ret = 0;
3883 unlock:
3884 	pte_unmap_unlock(ptep, ptl);
3885 out:
3886 	return ret;
3887 }
3888 
3889 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3890 			void *buf, int len, int write)
3891 {
3892 	resource_size_t phys_addr;
3893 	unsigned long prot = 0;
3894 	void __iomem *maddr;
3895 	int offset = addr & (PAGE_SIZE-1);
3896 
3897 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3898 		return -EINVAL;
3899 
3900 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3901 	if (write)
3902 		memcpy_toio(maddr + offset, buf, len);
3903 	else
3904 		memcpy_fromio(buf, maddr + offset, len);
3905 	iounmap(maddr);
3906 
3907 	return len;
3908 }
3909 EXPORT_SYMBOL_GPL(generic_access_phys);
3910 #endif
3911 
3912 /*
3913  * Access another process' address space as given in mm.  If non-NULL, use the
3914  * given task for page fault accounting.
3915  */
3916 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3917 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
3918 {
3919 	struct vm_area_struct *vma;
3920 	void *old_buf = buf;
3921 	int write = gup_flags & FOLL_WRITE;
3922 
3923 	down_read(&mm->mmap_sem);
3924 	/* ignore errors, just check how much was successfully transferred */
3925 	while (len) {
3926 		int bytes, ret, offset;
3927 		void *maddr;
3928 		struct page *page = NULL;
3929 
3930 		ret = get_user_pages_remote(tsk, mm, addr, 1,
3931 				gup_flags, &page, &vma, NULL);
3932 		if (ret <= 0) {
3933 #ifndef CONFIG_HAVE_IOREMAP_PROT
3934 			break;
3935 #else
3936 			/*
3937 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3938 			 * we can access using slightly different code.
3939 			 */
3940 			vma = find_vma(mm, addr);
3941 			if (!vma || vma->vm_start > addr)
3942 				break;
3943 			if (vma->vm_ops && vma->vm_ops->access)
3944 				ret = vma->vm_ops->access(vma, addr, buf,
3945 							  len, write);
3946 			if (ret <= 0)
3947 				break;
3948 			bytes = ret;
3949 #endif
3950 		} else {
3951 			bytes = len;
3952 			offset = addr & (PAGE_SIZE-1);
3953 			if (bytes > PAGE_SIZE-offset)
3954 				bytes = PAGE_SIZE-offset;
3955 
3956 			maddr = kmap(page);
3957 			if (write) {
3958 				copy_to_user_page(vma, page, addr,
3959 						  maddr + offset, buf, bytes);
3960 				set_page_dirty_lock(page);
3961 			} else {
3962 				copy_from_user_page(vma, page, addr,
3963 						    buf, maddr + offset, bytes);
3964 			}
3965 			kunmap(page);
3966 			put_page(page);
3967 		}
3968 		len -= bytes;
3969 		buf += bytes;
3970 		addr += bytes;
3971 	}
3972 	up_read(&mm->mmap_sem);
3973 
3974 	return buf - old_buf;
3975 }
3976 
3977 /**
3978  * access_remote_vm - access another process' address space
3979  * @mm:		the mm_struct of the target address space
3980  * @addr:	start address to access
3981  * @buf:	source or destination buffer
3982  * @len:	number of bytes to transfer
3983  * @gup_flags:	flags modifying lookup behaviour
3984  *
3985  * The caller must hold a reference on @mm.
3986  */
3987 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3988 		void *buf, int len, unsigned int gup_flags)
3989 {
3990 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
3991 }
3992 
3993 /*
3994  * Access another process' address space.
3995  * Source/target buffer must be kernel space,
3996  * Do not walk the page table directly, use get_user_pages
3997  */
3998 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3999 		void *buf, int len, unsigned int gup_flags)
4000 {
4001 	struct mm_struct *mm;
4002 	int ret;
4003 
4004 	mm = get_task_mm(tsk);
4005 	if (!mm)
4006 		return 0;
4007 
4008 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4009 
4010 	mmput(mm);
4011 
4012 	return ret;
4013 }
4014 EXPORT_SYMBOL_GPL(access_process_vm);
4015 
4016 /*
4017  * Print the name of a VMA.
4018  */
4019 void print_vma_addr(char *prefix, unsigned long ip)
4020 {
4021 	struct mm_struct *mm = current->mm;
4022 	struct vm_area_struct *vma;
4023 
4024 	/*
4025 	 * Do not print if we are in atomic
4026 	 * contexts (in exception stacks, etc.):
4027 	 */
4028 	if (preempt_count())
4029 		return;
4030 
4031 	down_read(&mm->mmap_sem);
4032 	vma = find_vma(mm, ip);
4033 	if (vma && vma->vm_file) {
4034 		struct file *f = vma->vm_file;
4035 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4036 		if (buf) {
4037 			char *p;
4038 
4039 			p = file_path(f, buf, PAGE_SIZE);
4040 			if (IS_ERR(p))
4041 				p = "?";
4042 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4043 					vma->vm_start,
4044 					vma->vm_end - vma->vm_start);
4045 			free_page((unsigned long)buf);
4046 		}
4047 	}
4048 	up_read(&mm->mmap_sem);
4049 }
4050 
4051 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4052 void __might_fault(const char *file, int line)
4053 {
4054 	/*
4055 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4056 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4057 	 * get paged out, therefore we'll never actually fault, and the
4058 	 * below annotations will generate false positives.
4059 	 */
4060 	if (segment_eq(get_fs(), KERNEL_DS))
4061 		return;
4062 	if (pagefault_disabled())
4063 		return;
4064 	__might_sleep(file, line, 0);
4065 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4066 	if (current->mm)
4067 		might_lock_read(&current->mm->mmap_sem);
4068 #endif
4069 }
4070 EXPORT_SYMBOL(__might_fault);
4071 #endif
4072 
4073 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4074 static void clear_gigantic_page(struct page *page,
4075 				unsigned long addr,
4076 				unsigned int pages_per_huge_page)
4077 {
4078 	int i;
4079 	struct page *p = page;
4080 
4081 	might_sleep();
4082 	for (i = 0; i < pages_per_huge_page;
4083 	     i++, p = mem_map_next(p, page, i)) {
4084 		cond_resched();
4085 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4086 	}
4087 }
4088 void clear_huge_page(struct page *page,
4089 		     unsigned long addr, unsigned int pages_per_huge_page)
4090 {
4091 	int i;
4092 
4093 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4094 		clear_gigantic_page(page, addr, pages_per_huge_page);
4095 		return;
4096 	}
4097 
4098 	might_sleep();
4099 	for (i = 0; i < pages_per_huge_page; i++) {
4100 		cond_resched();
4101 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4102 	}
4103 }
4104 
4105 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4106 				    unsigned long addr,
4107 				    struct vm_area_struct *vma,
4108 				    unsigned int pages_per_huge_page)
4109 {
4110 	int i;
4111 	struct page *dst_base = dst;
4112 	struct page *src_base = src;
4113 
4114 	for (i = 0; i < pages_per_huge_page; ) {
4115 		cond_resched();
4116 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4117 
4118 		i++;
4119 		dst = mem_map_next(dst, dst_base, i);
4120 		src = mem_map_next(src, src_base, i);
4121 	}
4122 }
4123 
4124 void copy_user_huge_page(struct page *dst, struct page *src,
4125 			 unsigned long addr, struct vm_area_struct *vma,
4126 			 unsigned int pages_per_huge_page)
4127 {
4128 	int i;
4129 
4130 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4131 		copy_user_gigantic_page(dst, src, addr, vma,
4132 					pages_per_huge_page);
4133 		return;
4134 	}
4135 
4136 	might_sleep();
4137 	for (i = 0; i < pages_per_huge_page; i++) {
4138 		cond_resched();
4139 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4140 	}
4141 }
4142 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4143 
4144 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4145 
4146 static struct kmem_cache *page_ptl_cachep;
4147 
4148 void __init ptlock_cache_init(void)
4149 {
4150 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4151 			SLAB_PANIC, NULL);
4152 }
4153 
4154 bool ptlock_alloc(struct page *page)
4155 {
4156 	spinlock_t *ptl;
4157 
4158 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4159 	if (!ptl)
4160 		return false;
4161 	page->ptl = ptl;
4162 	return true;
4163 }
4164 
4165 void ptlock_free(struct page *page)
4166 {
4167 	kmem_cache_free(page_ptl_cachep, page->ptl);
4168 }
4169 #endif
4170