1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/pfn_t.h> 61 #include <linux/writeback.h> 62 #include <linux/memcontrol.h> 63 #include <linux/mmu_notifier.h> 64 #include <linux/swapops.h> 65 #include <linux/elf.h> 66 #include <linux/gfp.h> 67 #include <linux/migrate.h> 68 #include <linux/string.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 80 #include <trace/events/kmem.h> 81 82 #include <asm/io.h> 83 #include <asm/mmu_context.h> 84 #include <asm/pgalloc.h> 85 #include <linux/uaccess.h> 86 #include <asm/tlb.h> 87 #include <asm/tlbflush.h> 88 89 #include "pgalloc-track.h" 90 #include "internal.h" 91 #include "swap.h" 92 93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 95 #endif 96 97 #ifndef CONFIG_NUMA 98 unsigned long max_mapnr; 99 EXPORT_SYMBOL(max_mapnr); 100 101 struct page *mem_map; 102 EXPORT_SYMBOL(mem_map); 103 #endif 104 105 static vm_fault_t do_fault(struct vm_fault *vmf); 106 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 107 static bool vmf_pte_changed(struct vm_fault *vmf); 108 109 /* 110 * Return true if the original pte was a uffd-wp pte marker (so the pte was 111 * wr-protected). 112 */ 113 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 114 { 115 if (!userfaultfd_wp(vmf->vma)) 116 return false; 117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 118 return false; 119 120 return pte_marker_uffd_wp(vmf->orig_pte); 121 } 122 123 /* 124 * A number of key systems in x86 including ioremap() rely on the assumption 125 * that high_memory defines the upper bound on direct map memory, then end 126 * of ZONE_NORMAL. 127 */ 128 void *high_memory; 129 EXPORT_SYMBOL(high_memory); 130 131 /* 132 * Randomize the address space (stacks, mmaps, brk, etc.). 133 * 134 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 135 * as ancient (libc5 based) binaries can segfault. ) 136 */ 137 int randomize_va_space __read_mostly = 138 #ifdef CONFIG_COMPAT_BRK 139 1; 140 #else 141 2; 142 #endif 143 144 #ifndef arch_wants_old_prefaulted_pte 145 static inline bool arch_wants_old_prefaulted_pte(void) 146 { 147 /* 148 * Transitioning a PTE from 'old' to 'young' can be expensive on 149 * some architectures, even if it's performed in hardware. By 150 * default, "false" means prefaulted entries will be 'young'. 151 */ 152 return false; 153 } 154 #endif 155 156 static int __init disable_randmaps(char *s) 157 { 158 randomize_va_space = 0; 159 return 1; 160 } 161 __setup("norandmaps", disable_randmaps); 162 163 unsigned long zero_pfn __read_mostly; 164 EXPORT_SYMBOL(zero_pfn); 165 166 unsigned long highest_memmap_pfn __read_mostly; 167 168 /* 169 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 170 */ 171 static int __init init_zero_pfn(void) 172 { 173 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 174 return 0; 175 } 176 early_initcall(init_zero_pfn); 177 178 void mm_trace_rss_stat(struct mm_struct *mm, int member) 179 { 180 trace_rss_stat(mm, member); 181 } 182 183 /* 184 * Note: this doesn't free the actual pages themselves. That 185 * has been handled earlier when unmapping all the memory regions. 186 */ 187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 188 unsigned long addr) 189 { 190 pgtable_t token = pmd_pgtable(*pmd); 191 pmd_clear(pmd); 192 pte_free_tlb(tlb, token, addr); 193 mm_dec_nr_ptes(tlb->mm); 194 } 195 196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 197 unsigned long addr, unsigned long end, 198 unsigned long floor, unsigned long ceiling) 199 { 200 pmd_t *pmd; 201 unsigned long next; 202 unsigned long start; 203 204 start = addr; 205 pmd = pmd_offset(pud, addr); 206 do { 207 next = pmd_addr_end(addr, end); 208 if (pmd_none_or_clear_bad(pmd)) 209 continue; 210 free_pte_range(tlb, pmd, addr); 211 } while (pmd++, addr = next, addr != end); 212 213 start &= PUD_MASK; 214 if (start < floor) 215 return; 216 if (ceiling) { 217 ceiling &= PUD_MASK; 218 if (!ceiling) 219 return; 220 } 221 if (end - 1 > ceiling - 1) 222 return; 223 224 pmd = pmd_offset(pud, start); 225 pud_clear(pud); 226 pmd_free_tlb(tlb, pmd, start); 227 mm_dec_nr_pmds(tlb->mm); 228 } 229 230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 231 unsigned long addr, unsigned long end, 232 unsigned long floor, unsigned long ceiling) 233 { 234 pud_t *pud; 235 unsigned long next; 236 unsigned long start; 237 238 start = addr; 239 pud = pud_offset(p4d, addr); 240 do { 241 next = pud_addr_end(addr, end); 242 if (pud_none_or_clear_bad(pud)) 243 continue; 244 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 245 } while (pud++, addr = next, addr != end); 246 247 start &= P4D_MASK; 248 if (start < floor) 249 return; 250 if (ceiling) { 251 ceiling &= P4D_MASK; 252 if (!ceiling) 253 return; 254 } 255 if (end - 1 > ceiling - 1) 256 return; 257 258 pud = pud_offset(p4d, start); 259 p4d_clear(p4d); 260 pud_free_tlb(tlb, pud, start); 261 mm_dec_nr_puds(tlb->mm); 262 } 263 264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 265 unsigned long addr, unsigned long end, 266 unsigned long floor, unsigned long ceiling) 267 { 268 p4d_t *p4d; 269 unsigned long next; 270 unsigned long start; 271 272 start = addr; 273 p4d = p4d_offset(pgd, addr); 274 do { 275 next = p4d_addr_end(addr, end); 276 if (p4d_none_or_clear_bad(p4d)) 277 continue; 278 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 279 } while (p4d++, addr = next, addr != end); 280 281 start &= PGDIR_MASK; 282 if (start < floor) 283 return; 284 if (ceiling) { 285 ceiling &= PGDIR_MASK; 286 if (!ceiling) 287 return; 288 } 289 if (end - 1 > ceiling - 1) 290 return; 291 292 p4d = p4d_offset(pgd, start); 293 pgd_clear(pgd); 294 p4d_free_tlb(tlb, p4d, start); 295 } 296 297 /* 298 * This function frees user-level page tables of a process. 299 */ 300 void free_pgd_range(struct mmu_gather *tlb, 301 unsigned long addr, unsigned long end, 302 unsigned long floor, unsigned long ceiling) 303 { 304 pgd_t *pgd; 305 unsigned long next; 306 307 /* 308 * The next few lines have given us lots of grief... 309 * 310 * Why are we testing PMD* at this top level? Because often 311 * there will be no work to do at all, and we'd prefer not to 312 * go all the way down to the bottom just to discover that. 313 * 314 * Why all these "- 1"s? Because 0 represents both the bottom 315 * of the address space and the top of it (using -1 for the 316 * top wouldn't help much: the masks would do the wrong thing). 317 * The rule is that addr 0 and floor 0 refer to the bottom of 318 * the address space, but end 0 and ceiling 0 refer to the top 319 * Comparisons need to use "end - 1" and "ceiling - 1" (though 320 * that end 0 case should be mythical). 321 * 322 * Wherever addr is brought up or ceiling brought down, we must 323 * be careful to reject "the opposite 0" before it confuses the 324 * subsequent tests. But what about where end is brought down 325 * by PMD_SIZE below? no, end can't go down to 0 there. 326 * 327 * Whereas we round start (addr) and ceiling down, by different 328 * masks at different levels, in order to test whether a table 329 * now has no other vmas using it, so can be freed, we don't 330 * bother to round floor or end up - the tests don't need that. 331 */ 332 333 addr &= PMD_MASK; 334 if (addr < floor) { 335 addr += PMD_SIZE; 336 if (!addr) 337 return; 338 } 339 if (ceiling) { 340 ceiling &= PMD_MASK; 341 if (!ceiling) 342 return; 343 } 344 if (end - 1 > ceiling - 1) 345 end -= PMD_SIZE; 346 if (addr > end - 1) 347 return; 348 /* 349 * We add page table cache pages with PAGE_SIZE, 350 * (see pte_free_tlb()), flush the tlb if we need 351 */ 352 tlb_change_page_size(tlb, PAGE_SIZE); 353 pgd = pgd_offset(tlb->mm, addr); 354 do { 355 next = pgd_addr_end(addr, end); 356 if (pgd_none_or_clear_bad(pgd)) 357 continue; 358 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 359 } while (pgd++, addr = next, addr != end); 360 } 361 362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 363 struct vm_area_struct *vma, unsigned long floor, 364 unsigned long ceiling, bool mm_wr_locked) 365 { 366 struct unlink_vma_file_batch vb; 367 368 do { 369 unsigned long addr = vma->vm_start; 370 struct vm_area_struct *next; 371 372 /* 373 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 374 * be 0. This will underflow and is okay. 375 */ 376 next = mas_find(mas, ceiling - 1); 377 if (unlikely(xa_is_zero(next))) 378 next = NULL; 379 380 /* 381 * Hide vma from rmap and truncate_pagecache before freeing 382 * pgtables 383 */ 384 if (mm_wr_locked) 385 vma_start_write(vma); 386 unlink_anon_vmas(vma); 387 388 if (is_vm_hugetlb_page(vma)) { 389 unlink_file_vma(vma); 390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 391 floor, next ? next->vm_start : ceiling); 392 } else { 393 unlink_file_vma_batch_init(&vb); 394 unlink_file_vma_batch_add(&vb, vma); 395 396 /* 397 * Optimization: gather nearby vmas into one call down 398 */ 399 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 400 && !is_vm_hugetlb_page(next)) { 401 vma = next; 402 next = mas_find(mas, ceiling - 1); 403 if (unlikely(xa_is_zero(next))) 404 next = NULL; 405 if (mm_wr_locked) 406 vma_start_write(vma); 407 unlink_anon_vmas(vma); 408 unlink_file_vma_batch_add(&vb, vma); 409 } 410 unlink_file_vma_batch_final(&vb); 411 free_pgd_range(tlb, addr, vma->vm_end, 412 floor, next ? next->vm_start : ceiling); 413 } 414 vma = next; 415 } while (vma); 416 } 417 418 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 419 { 420 spinlock_t *ptl = pmd_lock(mm, pmd); 421 422 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 423 mm_inc_nr_ptes(mm); 424 /* 425 * Ensure all pte setup (eg. pte page lock and page clearing) are 426 * visible before the pte is made visible to other CPUs by being 427 * put into page tables. 428 * 429 * The other side of the story is the pointer chasing in the page 430 * table walking code (when walking the page table without locking; 431 * ie. most of the time). Fortunately, these data accesses consist 432 * of a chain of data-dependent loads, meaning most CPUs (alpha 433 * being the notable exception) will already guarantee loads are 434 * seen in-order. See the alpha page table accessors for the 435 * smp_rmb() barriers in page table walking code. 436 */ 437 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 438 pmd_populate(mm, pmd, *pte); 439 *pte = NULL; 440 } 441 spin_unlock(ptl); 442 } 443 444 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 445 { 446 pgtable_t new = pte_alloc_one(mm); 447 if (!new) 448 return -ENOMEM; 449 450 pmd_install(mm, pmd, &new); 451 if (new) 452 pte_free(mm, new); 453 return 0; 454 } 455 456 int __pte_alloc_kernel(pmd_t *pmd) 457 { 458 pte_t *new = pte_alloc_one_kernel(&init_mm); 459 if (!new) 460 return -ENOMEM; 461 462 spin_lock(&init_mm.page_table_lock); 463 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 464 smp_wmb(); /* See comment in pmd_install() */ 465 pmd_populate_kernel(&init_mm, pmd, new); 466 new = NULL; 467 } 468 spin_unlock(&init_mm.page_table_lock); 469 if (new) 470 pte_free_kernel(&init_mm, new); 471 return 0; 472 } 473 474 static inline void init_rss_vec(int *rss) 475 { 476 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 477 } 478 479 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 480 { 481 int i; 482 483 for (i = 0; i < NR_MM_COUNTERS; i++) 484 if (rss[i]) 485 add_mm_counter(mm, i, rss[i]); 486 } 487 488 /* 489 * This function is called to print an error when a bad pte 490 * is found. For example, we might have a PFN-mapped pte in 491 * a region that doesn't allow it. 492 * 493 * The calling function must still handle the error. 494 */ 495 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 496 pte_t pte, struct page *page) 497 { 498 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 499 p4d_t *p4d = p4d_offset(pgd, addr); 500 pud_t *pud = pud_offset(p4d, addr); 501 pmd_t *pmd = pmd_offset(pud, addr); 502 struct address_space *mapping; 503 pgoff_t index; 504 static unsigned long resume; 505 static unsigned long nr_shown; 506 static unsigned long nr_unshown; 507 508 /* 509 * Allow a burst of 60 reports, then keep quiet for that minute; 510 * or allow a steady drip of one report per second. 511 */ 512 if (nr_shown == 60) { 513 if (time_before(jiffies, resume)) { 514 nr_unshown++; 515 return; 516 } 517 if (nr_unshown) { 518 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 519 nr_unshown); 520 nr_unshown = 0; 521 } 522 nr_shown = 0; 523 } 524 if (nr_shown++ == 0) 525 resume = jiffies + 60 * HZ; 526 527 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 528 index = linear_page_index(vma, addr); 529 530 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 531 current->comm, 532 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 533 if (page) 534 dump_page(page, "bad pte"); 535 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 536 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 537 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 538 vma->vm_file, 539 vma->vm_ops ? vma->vm_ops->fault : NULL, 540 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 541 mapping ? mapping->a_ops->read_folio : NULL); 542 dump_stack(); 543 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 544 } 545 546 /* 547 * vm_normal_page -- This function gets the "struct page" associated with a pte. 548 * 549 * "Special" mappings do not wish to be associated with a "struct page" (either 550 * it doesn't exist, or it exists but they don't want to touch it). In this 551 * case, NULL is returned here. "Normal" mappings do have a struct page. 552 * 553 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 554 * pte bit, in which case this function is trivial. Secondly, an architecture 555 * may not have a spare pte bit, which requires a more complicated scheme, 556 * described below. 557 * 558 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 559 * special mapping (even if there are underlying and valid "struct pages"). 560 * COWed pages of a VM_PFNMAP are always normal. 561 * 562 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 563 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 564 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 565 * mapping will always honor the rule 566 * 567 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 568 * 569 * And for normal mappings this is false. 570 * 571 * This restricts such mappings to be a linear translation from virtual address 572 * to pfn. To get around this restriction, we allow arbitrary mappings so long 573 * as the vma is not a COW mapping; in that case, we know that all ptes are 574 * special (because none can have been COWed). 575 * 576 * 577 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 578 * 579 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 580 * page" backing, however the difference is that _all_ pages with a struct 581 * page (that is, those where pfn_valid is true) are refcounted and considered 582 * normal pages by the VM. The only exception are zeropages, which are 583 * *never* refcounted. 584 * 585 * The disadvantage is that pages are refcounted (which can be slower and 586 * simply not an option for some PFNMAP users). The advantage is that we 587 * don't have to follow the strict linearity rule of PFNMAP mappings in 588 * order to support COWable mappings. 589 * 590 */ 591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 592 pte_t pte) 593 { 594 unsigned long pfn = pte_pfn(pte); 595 596 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 597 if (likely(!pte_special(pte))) 598 goto check_pfn; 599 if (vma->vm_ops && vma->vm_ops->find_special_page) 600 return vma->vm_ops->find_special_page(vma, addr); 601 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 602 return NULL; 603 if (is_zero_pfn(pfn)) 604 return NULL; 605 if (pte_devmap(pte)) 606 /* 607 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 608 * and will have refcounts incremented on their struct pages 609 * when they are inserted into PTEs, thus they are safe to 610 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 611 * do not have refcounts. Example of legacy ZONE_DEVICE is 612 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 613 */ 614 return NULL; 615 616 print_bad_pte(vma, addr, pte, NULL); 617 return NULL; 618 } 619 620 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 621 622 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 623 if (vma->vm_flags & VM_MIXEDMAP) { 624 if (!pfn_valid(pfn)) 625 return NULL; 626 if (is_zero_pfn(pfn)) 627 return NULL; 628 goto out; 629 } else { 630 unsigned long off; 631 off = (addr - vma->vm_start) >> PAGE_SHIFT; 632 if (pfn == vma->vm_pgoff + off) 633 return NULL; 634 if (!is_cow_mapping(vma->vm_flags)) 635 return NULL; 636 } 637 } 638 639 if (is_zero_pfn(pfn)) 640 return NULL; 641 642 check_pfn: 643 if (unlikely(pfn > highest_memmap_pfn)) { 644 print_bad_pte(vma, addr, pte, NULL); 645 return NULL; 646 } 647 648 /* 649 * NOTE! We still have PageReserved() pages in the page tables. 650 * eg. VDSO mappings can cause them to exist. 651 */ 652 out: 653 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 654 return pfn_to_page(pfn); 655 } 656 657 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 658 pte_t pte) 659 { 660 struct page *page = vm_normal_page(vma, addr, pte); 661 662 if (page) 663 return page_folio(page); 664 return NULL; 665 } 666 667 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 668 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 669 pmd_t pmd) 670 { 671 unsigned long pfn = pmd_pfn(pmd); 672 673 /* Currently it's only used for huge pfnmaps */ 674 if (unlikely(pmd_special(pmd))) 675 return NULL; 676 677 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 678 if (vma->vm_flags & VM_MIXEDMAP) { 679 if (!pfn_valid(pfn)) 680 return NULL; 681 goto out; 682 } else { 683 unsigned long off; 684 off = (addr - vma->vm_start) >> PAGE_SHIFT; 685 if (pfn == vma->vm_pgoff + off) 686 return NULL; 687 if (!is_cow_mapping(vma->vm_flags)) 688 return NULL; 689 } 690 } 691 692 if (pmd_devmap(pmd)) 693 return NULL; 694 if (is_huge_zero_pmd(pmd)) 695 return NULL; 696 if (unlikely(pfn > highest_memmap_pfn)) 697 return NULL; 698 699 /* 700 * NOTE! We still have PageReserved() pages in the page tables. 701 * eg. VDSO mappings can cause them to exist. 702 */ 703 out: 704 return pfn_to_page(pfn); 705 } 706 707 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 708 unsigned long addr, pmd_t pmd) 709 { 710 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 711 712 if (page) 713 return page_folio(page); 714 return NULL; 715 } 716 #endif 717 718 static void restore_exclusive_pte(struct vm_area_struct *vma, 719 struct page *page, unsigned long address, 720 pte_t *ptep) 721 { 722 struct folio *folio = page_folio(page); 723 pte_t orig_pte; 724 pte_t pte; 725 swp_entry_t entry; 726 727 orig_pte = ptep_get(ptep); 728 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 729 if (pte_swp_soft_dirty(orig_pte)) 730 pte = pte_mksoft_dirty(pte); 731 732 entry = pte_to_swp_entry(orig_pte); 733 if (pte_swp_uffd_wp(orig_pte)) 734 pte = pte_mkuffd_wp(pte); 735 else if (is_writable_device_exclusive_entry(entry)) 736 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 737 738 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) && 739 PageAnonExclusive(page)), folio); 740 741 /* 742 * No need to take a page reference as one was already 743 * created when the swap entry was made. 744 */ 745 if (folio_test_anon(folio)) 746 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE); 747 else 748 /* 749 * Currently device exclusive access only supports anonymous 750 * memory so the entry shouldn't point to a filebacked page. 751 */ 752 WARN_ON_ONCE(1); 753 754 set_pte_at(vma->vm_mm, address, ptep, pte); 755 756 /* 757 * No need to invalidate - it was non-present before. However 758 * secondary CPUs may have mappings that need invalidating. 759 */ 760 update_mmu_cache(vma, address, ptep); 761 } 762 763 /* 764 * Tries to restore an exclusive pte if the page lock can be acquired without 765 * sleeping. 766 */ 767 static int 768 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 769 unsigned long addr) 770 { 771 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 772 struct page *page = pfn_swap_entry_to_page(entry); 773 774 if (trylock_page(page)) { 775 restore_exclusive_pte(vma, page, addr, src_pte); 776 unlock_page(page); 777 return 0; 778 } 779 780 return -EBUSY; 781 } 782 783 /* 784 * copy one vm_area from one task to the other. Assumes the page tables 785 * already present in the new task to be cleared in the whole range 786 * covered by this vma. 787 */ 788 789 static unsigned long 790 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 791 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 792 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 793 { 794 unsigned long vm_flags = dst_vma->vm_flags; 795 pte_t orig_pte = ptep_get(src_pte); 796 pte_t pte = orig_pte; 797 struct folio *folio; 798 struct page *page; 799 swp_entry_t entry = pte_to_swp_entry(orig_pte); 800 801 if (likely(!non_swap_entry(entry))) { 802 if (swap_duplicate(entry) < 0) 803 return -EIO; 804 805 /* make sure dst_mm is on swapoff's mmlist. */ 806 if (unlikely(list_empty(&dst_mm->mmlist))) { 807 spin_lock(&mmlist_lock); 808 if (list_empty(&dst_mm->mmlist)) 809 list_add(&dst_mm->mmlist, 810 &src_mm->mmlist); 811 spin_unlock(&mmlist_lock); 812 } 813 /* Mark the swap entry as shared. */ 814 if (pte_swp_exclusive(orig_pte)) { 815 pte = pte_swp_clear_exclusive(orig_pte); 816 set_pte_at(src_mm, addr, src_pte, pte); 817 } 818 rss[MM_SWAPENTS]++; 819 } else if (is_migration_entry(entry)) { 820 folio = pfn_swap_entry_folio(entry); 821 822 rss[mm_counter(folio)]++; 823 824 if (!is_readable_migration_entry(entry) && 825 is_cow_mapping(vm_flags)) { 826 /* 827 * COW mappings require pages in both parent and child 828 * to be set to read. A previously exclusive entry is 829 * now shared. 830 */ 831 entry = make_readable_migration_entry( 832 swp_offset(entry)); 833 pte = swp_entry_to_pte(entry); 834 if (pte_swp_soft_dirty(orig_pte)) 835 pte = pte_swp_mksoft_dirty(pte); 836 if (pte_swp_uffd_wp(orig_pte)) 837 pte = pte_swp_mkuffd_wp(pte); 838 set_pte_at(src_mm, addr, src_pte, pte); 839 } 840 } else if (is_device_private_entry(entry)) { 841 page = pfn_swap_entry_to_page(entry); 842 folio = page_folio(page); 843 844 /* 845 * Update rss count even for unaddressable pages, as 846 * they should treated just like normal pages in this 847 * respect. 848 * 849 * We will likely want to have some new rss counters 850 * for unaddressable pages, at some point. But for now 851 * keep things as they are. 852 */ 853 folio_get(folio); 854 rss[mm_counter(folio)]++; 855 /* Cannot fail as these pages cannot get pinned. */ 856 folio_try_dup_anon_rmap_pte(folio, page, src_vma); 857 858 /* 859 * We do not preserve soft-dirty information, because so 860 * far, checkpoint/restore is the only feature that 861 * requires that. And checkpoint/restore does not work 862 * when a device driver is involved (you cannot easily 863 * save and restore device driver state). 864 */ 865 if (is_writable_device_private_entry(entry) && 866 is_cow_mapping(vm_flags)) { 867 entry = make_readable_device_private_entry( 868 swp_offset(entry)); 869 pte = swp_entry_to_pte(entry); 870 if (pte_swp_uffd_wp(orig_pte)) 871 pte = pte_swp_mkuffd_wp(pte); 872 set_pte_at(src_mm, addr, src_pte, pte); 873 } 874 } else if (is_device_exclusive_entry(entry)) { 875 /* 876 * Make device exclusive entries present by restoring the 877 * original entry then copying as for a present pte. Device 878 * exclusive entries currently only support private writable 879 * (ie. COW) mappings. 880 */ 881 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 882 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 883 return -EBUSY; 884 return -ENOENT; 885 } else if (is_pte_marker_entry(entry)) { 886 pte_marker marker = copy_pte_marker(entry, dst_vma); 887 888 if (marker) 889 set_pte_at(dst_mm, addr, dst_pte, 890 make_pte_marker(marker)); 891 return 0; 892 } 893 if (!userfaultfd_wp(dst_vma)) 894 pte = pte_swp_clear_uffd_wp(pte); 895 set_pte_at(dst_mm, addr, dst_pte, pte); 896 return 0; 897 } 898 899 /* 900 * Copy a present and normal page. 901 * 902 * NOTE! The usual case is that this isn't required; 903 * instead, the caller can just increase the page refcount 904 * and re-use the pte the traditional way. 905 * 906 * And if we need a pre-allocated page but don't yet have 907 * one, return a negative error to let the preallocation 908 * code know so that it can do so outside the page table 909 * lock. 910 */ 911 static inline int 912 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 913 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 914 struct folio **prealloc, struct page *page) 915 { 916 struct folio *new_folio; 917 pte_t pte; 918 919 new_folio = *prealloc; 920 if (!new_folio) 921 return -EAGAIN; 922 923 /* 924 * We have a prealloc page, all good! Take it 925 * over and copy the page & arm it. 926 */ 927 928 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 929 return -EHWPOISON; 930 931 *prealloc = NULL; 932 __folio_mark_uptodate(new_folio); 933 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 934 folio_add_lru_vma(new_folio, dst_vma); 935 rss[MM_ANONPAGES]++; 936 937 /* All done, just insert the new page copy in the child */ 938 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 939 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 940 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 941 /* Uffd-wp needs to be delivered to dest pte as well */ 942 pte = pte_mkuffd_wp(pte); 943 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 944 return 0; 945 } 946 947 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 948 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 949 pte_t pte, unsigned long addr, int nr) 950 { 951 struct mm_struct *src_mm = src_vma->vm_mm; 952 953 /* If it's a COW mapping, write protect it both processes. */ 954 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 955 wrprotect_ptes(src_mm, addr, src_pte, nr); 956 pte = pte_wrprotect(pte); 957 } 958 959 /* If it's a shared mapping, mark it clean in the child. */ 960 if (src_vma->vm_flags & VM_SHARED) 961 pte = pte_mkclean(pte); 962 pte = pte_mkold(pte); 963 964 if (!userfaultfd_wp(dst_vma)) 965 pte = pte_clear_uffd_wp(pte); 966 967 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 968 } 969 970 /* 971 * Copy one present PTE, trying to batch-process subsequent PTEs that map 972 * consecutive pages of the same folio by copying them as well. 973 * 974 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 975 * Otherwise, returns the number of copied PTEs (at least 1). 976 */ 977 static inline int 978 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 979 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 980 int max_nr, int *rss, struct folio **prealloc) 981 { 982 struct page *page; 983 struct folio *folio; 984 bool any_writable; 985 fpb_t flags = 0; 986 int err, nr; 987 988 page = vm_normal_page(src_vma, addr, pte); 989 if (unlikely(!page)) 990 goto copy_pte; 991 992 folio = page_folio(page); 993 994 /* 995 * If we likely have to copy, just don't bother with batching. Make 996 * sure that the common "small folio" case is as fast as possible 997 * by keeping the batching logic separate. 998 */ 999 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1000 if (src_vma->vm_flags & VM_SHARED) 1001 flags |= FPB_IGNORE_DIRTY; 1002 if (!vma_soft_dirty_enabled(src_vma)) 1003 flags |= FPB_IGNORE_SOFT_DIRTY; 1004 1005 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 1006 &any_writable, NULL, NULL); 1007 folio_ref_add(folio, nr); 1008 if (folio_test_anon(folio)) { 1009 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1010 nr, src_vma))) { 1011 folio_ref_sub(folio, nr); 1012 return -EAGAIN; 1013 } 1014 rss[MM_ANONPAGES] += nr; 1015 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1016 } else { 1017 folio_dup_file_rmap_ptes(folio, page, nr); 1018 rss[mm_counter_file(folio)] += nr; 1019 } 1020 if (any_writable) 1021 pte = pte_mkwrite(pte, src_vma); 1022 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1023 addr, nr); 1024 return nr; 1025 } 1026 1027 folio_get(folio); 1028 if (folio_test_anon(folio)) { 1029 /* 1030 * If this page may have been pinned by the parent process, 1031 * copy the page immediately for the child so that we'll always 1032 * guarantee the pinned page won't be randomly replaced in the 1033 * future. 1034 */ 1035 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) { 1036 /* Page may be pinned, we have to copy. */ 1037 folio_put(folio); 1038 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1039 addr, rss, prealloc, page); 1040 return err ? err : 1; 1041 } 1042 rss[MM_ANONPAGES]++; 1043 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1044 } else { 1045 folio_dup_file_rmap_pte(folio, page); 1046 rss[mm_counter_file(folio)]++; 1047 } 1048 1049 copy_pte: 1050 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1051 return 1; 1052 } 1053 1054 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1055 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1056 { 1057 struct folio *new_folio; 1058 1059 if (need_zero) 1060 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1061 else 1062 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1063 1064 if (!new_folio) 1065 return NULL; 1066 1067 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1068 folio_put(new_folio); 1069 return NULL; 1070 } 1071 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1072 1073 return new_folio; 1074 } 1075 1076 static int 1077 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1078 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1079 unsigned long end) 1080 { 1081 struct mm_struct *dst_mm = dst_vma->vm_mm; 1082 struct mm_struct *src_mm = src_vma->vm_mm; 1083 pte_t *orig_src_pte, *orig_dst_pte; 1084 pte_t *src_pte, *dst_pte; 1085 pmd_t dummy_pmdval; 1086 pte_t ptent; 1087 spinlock_t *src_ptl, *dst_ptl; 1088 int progress, max_nr, ret = 0; 1089 int rss[NR_MM_COUNTERS]; 1090 swp_entry_t entry = (swp_entry_t){0}; 1091 struct folio *prealloc = NULL; 1092 int nr; 1093 1094 again: 1095 progress = 0; 1096 init_rss_vec(rss); 1097 1098 /* 1099 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1100 * error handling here, assume that exclusive mmap_lock on dst and src 1101 * protects anon from unexpected THP transitions; with shmem and file 1102 * protected by mmap_lock-less collapse skipping areas with anon_vma 1103 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1104 * can remove such assumptions later, but this is good enough for now. 1105 */ 1106 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1107 if (!dst_pte) { 1108 ret = -ENOMEM; 1109 goto out; 1110 } 1111 1112 /* 1113 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1114 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1115 * the PTE page is stable, and there is no need to get pmdval and do 1116 * pmd_same() check. 1117 */ 1118 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1119 &src_ptl); 1120 if (!src_pte) { 1121 pte_unmap_unlock(dst_pte, dst_ptl); 1122 /* ret == 0 */ 1123 goto out; 1124 } 1125 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1126 orig_src_pte = src_pte; 1127 orig_dst_pte = dst_pte; 1128 arch_enter_lazy_mmu_mode(); 1129 1130 do { 1131 nr = 1; 1132 1133 /* 1134 * We are holding two locks at this point - either of them 1135 * could generate latencies in another task on another CPU. 1136 */ 1137 if (progress >= 32) { 1138 progress = 0; 1139 if (need_resched() || 1140 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1141 break; 1142 } 1143 ptent = ptep_get(src_pte); 1144 if (pte_none(ptent)) { 1145 progress++; 1146 continue; 1147 } 1148 if (unlikely(!pte_present(ptent))) { 1149 ret = copy_nonpresent_pte(dst_mm, src_mm, 1150 dst_pte, src_pte, 1151 dst_vma, src_vma, 1152 addr, rss); 1153 if (ret == -EIO) { 1154 entry = pte_to_swp_entry(ptep_get(src_pte)); 1155 break; 1156 } else if (ret == -EBUSY) { 1157 break; 1158 } else if (!ret) { 1159 progress += 8; 1160 continue; 1161 } 1162 ptent = ptep_get(src_pte); 1163 VM_WARN_ON_ONCE(!pte_present(ptent)); 1164 1165 /* 1166 * Device exclusive entry restored, continue by copying 1167 * the now present pte. 1168 */ 1169 WARN_ON_ONCE(ret != -ENOENT); 1170 } 1171 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1172 max_nr = (end - addr) / PAGE_SIZE; 1173 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1174 ptent, addr, max_nr, rss, &prealloc); 1175 /* 1176 * If we need a pre-allocated page for this pte, drop the 1177 * locks, allocate, and try again. 1178 * If copy failed due to hwpoison in source page, break out. 1179 */ 1180 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1181 break; 1182 if (unlikely(prealloc)) { 1183 /* 1184 * pre-alloc page cannot be reused by next time so as 1185 * to strictly follow mempolicy (e.g., alloc_page_vma() 1186 * will allocate page according to address). This 1187 * could only happen if one pinned pte changed. 1188 */ 1189 folio_put(prealloc); 1190 prealloc = NULL; 1191 } 1192 nr = ret; 1193 progress += 8 * nr; 1194 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1195 addr != end); 1196 1197 arch_leave_lazy_mmu_mode(); 1198 pte_unmap_unlock(orig_src_pte, src_ptl); 1199 add_mm_rss_vec(dst_mm, rss); 1200 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1201 cond_resched(); 1202 1203 if (ret == -EIO) { 1204 VM_WARN_ON_ONCE(!entry.val); 1205 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1206 ret = -ENOMEM; 1207 goto out; 1208 } 1209 entry.val = 0; 1210 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1211 goto out; 1212 } else if (ret == -EAGAIN) { 1213 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1214 if (!prealloc) 1215 return -ENOMEM; 1216 } else if (ret < 0) { 1217 VM_WARN_ON_ONCE(1); 1218 } 1219 1220 /* We've captured and resolved the error. Reset, try again. */ 1221 ret = 0; 1222 1223 if (addr != end) 1224 goto again; 1225 out: 1226 if (unlikely(prealloc)) 1227 folio_put(prealloc); 1228 return ret; 1229 } 1230 1231 static inline int 1232 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1233 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1234 unsigned long end) 1235 { 1236 struct mm_struct *dst_mm = dst_vma->vm_mm; 1237 struct mm_struct *src_mm = src_vma->vm_mm; 1238 pmd_t *src_pmd, *dst_pmd; 1239 unsigned long next; 1240 1241 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1242 if (!dst_pmd) 1243 return -ENOMEM; 1244 src_pmd = pmd_offset(src_pud, addr); 1245 do { 1246 next = pmd_addr_end(addr, end); 1247 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1248 || pmd_devmap(*src_pmd)) { 1249 int err; 1250 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1251 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1252 addr, dst_vma, src_vma); 1253 if (err == -ENOMEM) 1254 return -ENOMEM; 1255 if (!err) 1256 continue; 1257 /* fall through */ 1258 } 1259 if (pmd_none_or_clear_bad(src_pmd)) 1260 continue; 1261 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1262 addr, next)) 1263 return -ENOMEM; 1264 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1265 return 0; 1266 } 1267 1268 static inline int 1269 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1270 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1271 unsigned long end) 1272 { 1273 struct mm_struct *dst_mm = dst_vma->vm_mm; 1274 struct mm_struct *src_mm = src_vma->vm_mm; 1275 pud_t *src_pud, *dst_pud; 1276 unsigned long next; 1277 1278 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1279 if (!dst_pud) 1280 return -ENOMEM; 1281 src_pud = pud_offset(src_p4d, addr); 1282 do { 1283 next = pud_addr_end(addr, end); 1284 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1285 int err; 1286 1287 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1288 err = copy_huge_pud(dst_mm, src_mm, 1289 dst_pud, src_pud, addr, src_vma); 1290 if (err == -ENOMEM) 1291 return -ENOMEM; 1292 if (!err) 1293 continue; 1294 /* fall through */ 1295 } 1296 if (pud_none_or_clear_bad(src_pud)) 1297 continue; 1298 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1299 addr, next)) 1300 return -ENOMEM; 1301 } while (dst_pud++, src_pud++, addr = next, addr != end); 1302 return 0; 1303 } 1304 1305 static inline int 1306 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1307 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1308 unsigned long end) 1309 { 1310 struct mm_struct *dst_mm = dst_vma->vm_mm; 1311 p4d_t *src_p4d, *dst_p4d; 1312 unsigned long next; 1313 1314 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1315 if (!dst_p4d) 1316 return -ENOMEM; 1317 src_p4d = p4d_offset(src_pgd, addr); 1318 do { 1319 next = p4d_addr_end(addr, end); 1320 if (p4d_none_or_clear_bad(src_p4d)) 1321 continue; 1322 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1323 addr, next)) 1324 return -ENOMEM; 1325 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1326 return 0; 1327 } 1328 1329 /* 1330 * Return true if the vma needs to copy the pgtable during this fork(). Return 1331 * false when we can speed up fork() by allowing lazy page faults later until 1332 * when the child accesses the memory range. 1333 */ 1334 static bool 1335 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1336 { 1337 /* 1338 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1339 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1340 * contains uffd-wp protection information, that's something we can't 1341 * retrieve from page cache, and skip copying will lose those info. 1342 */ 1343 if (userfaultfd_wp(dst_vma)) 1344 return true; 1345 1346 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1347 return true; 1348 1349 if (src_vma->anon_vma) 1350 return true; 1351 1352 /* 1353 * Don't copy ptes where a page fault will fill them correctly. Fork 1354 * becomes much lighter when there are big shared or private readonly 1355 * mappings. The tradeoff is that copy_page_range is more efficient 1356 * than faulting. 1357 */ 1358 return false; 1359 } 1360 1361 int 1362 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1363 { 1364 pgd_t *src_pgd, *dst_pgd; 1365 unsigned long next; 1366 unsigned long addr = src_vma->vm_start; 1367 unsigned long end = src_vma->vm_end; 1368 struct mm_struct *dst_mm = dst_vma->vm_mm; 1369 struct mm_struct *src_mm = src_vma->vm_mm; 1370 struct mmu_notifier_range range; 1371 bool is_cow; 1372 int ret; 1373 1374 if (!vma_needs_copy(dst_vma, src_vma)) 1375 return 0; 1376 1377 if (is_vm_hugetlb_page(src_vma)) 1378 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1379 1380 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1381 /* 1382 * We do not free on error cases below as remove_vma 1383 * gets called on error from higher level routine 1384 */ 1385 ret = track_pfn_copy(src_vma); 1386 if (ret) 1387 return ret; 1388 } 1389 1390 /* 1391 * We need to invalidate the secondary MMU mappings only when 1392 * there could be a permission downgrade on the ptes of the 1393 * parent mm. And a permission downgrade will only happen if 1394 * is_cow_mapping() returns true. 1395 */ 1396 is_cow = is_cow_mapping(src_vma->vm_flags); 1397 1398 if (is_cow) { 1399 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1400 0, src_mm, addr, end); 1401 mmu_notifier_invalidate_range_start(&range); 1402 /* 1403 * Disabling preemption is not needed for the write side, as 1404 * the read side doesn't spin, but goes to the mmap_lock. 1405 * 1406 * Use the raw variant of the seqcount_t write API to avoid 1407 * lockdep complaining about preemptibility. 1408 */ 1409 vma_assert_write_locked(src_vma); 1410 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1411 } 1412 1413 ret = 0; 1414 dst_pgd = pgd_offset(dst_mm, addr); 1415 src_pgd = pgd_offset(src_mm, addr); 1416 do { 1417 next = pgd_addr_end(addr, end); 1418 if (pgd_none_or_clear_bad(src_pgd)) 1419 continue; 1420 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1421 addr, next))) { 1422 untrack_pfn_clear(dst_vma); 1423 ret = -ENOMEM; 1424 break; 1425 } 1426 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1427 1428 if (is_cow) { 1429 raw_write_seqcount_end(&src_mm->write_protect_seq); 1430 mmu_notifier_invalidate_range_end(&range); 1431 } 1432 return ret; 1433 } 1434 1435 /* Whether we should zap all COWed (private) pages too */ 1436 static inline bool should_zap_cows(struct zap_details *details) 1437 { 1438 /* By default, zap all pages */ 1439 if (!details) 1440 return true; 1441 1442 /* Or, we zap COWed pages only if the caller wants to */ 1443 return details->even_cows; 1444 } 1445 1446 /* Decides whether we should zap this folio with the folio pointer specified */ 1447 static inline bool should_zap_folio(struct zap_details *details, 1448 struct folio *folio) 1449 { 1450 /* If we can make a decision without *folio.. */ 1451 if (should_zap_cows(details)) 1452 return true; 1453 1454 /* Otherwise we should only zap non-anon folios */ 1455 return !folio_test_anon(folio); 1456 } 1457 1458 static inline bool zap_drop_markers(struct zap_details *details) 1459 { 1460 if (!details) 1461 return false; 1462 1463 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1464 } 1465 1466 /* 1467 * This function makes sure that we'll replace the none pte with an uffd-wp 1468 * swap special pte marker when necessary. Must be with the pgtable lock held. 1469 */ 1470 static inline void 1471 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1472 unsigned long addr, pte_t *pte, int nr, 1473 struct zap_details *details, pte_t pteval) 1474 { 1475 /* Zap on anonymous always means dropping everything */ 1476 if (vma_is_anonymous(vma)) 1477 return; 1478 1479 if (zap_drop_markers(details)) 1480 return; 1481 1482 for (;;) { 1483 /* the PFN in the PTE is irrelevant. */ 1484 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1485 if (--nr == 0) 1486 break; 1487 pte++; 1488 addr += PAGE_SIZE; 1489 } 1490 } 1491 1492 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1493 struct vm_area_struct *vma, struct folio *folio, 1494 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1495 unsigned long addr, struct zap_details *details, int *rss, 1496 bool *force_flush, bool *force_break) 1497 { 1498 struct mm_struct *mm = tlb->mm; 1499 bool delay_rmap = false; 1500 1501 if (!folio_test_anon(folio)) { 1502 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1503 if (pte_dirty(ptent)) { 1504 folio_mark_dirty(folio); 1505 if (tlb_delay_rmap(tlb)) { 1506 delay_rmap = true; 1507 *force_flush = true; 1508 } 1509 } 1510 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1511 folio_mark_accessed(folio); 1512 rss[mm_counter(folio)] -= nr; 1513 } else { 1514 /* We don't need up-to-date accessed/dirty bits. */ 1515 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1516 rss[MM_ANONPAGES] -= nr; 1517 } 1518 /* Checking a single PTE in a batch is sufficient. */ 1519 arch_check_zapped_pte(vma, ptent); 1520 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1521 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1522 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, 1523 ptent); 1524 1525 if (!delay_rmap) { 1526 folio_remove_rmap_ptes(folio, page, nr, vma); 1527 1528 if (unlikely(folio_mapcount(folio) < 0)) 1529 print_bad_pte(vma, addr, ptent, page); 1530 } 1531 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1532 *force_flush = true; 1533 *force_break = true; 1534 } 1535 } 1536 1537 /* 1538 * Zap or skip at least one present PTE, trying to batch-process subsequent 1539 * PTEs that map consecutive pages of the same folio. 1540 * 1541 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1542 */ 1543 static inline int zap_present_ptes(struct mmu_gather *tlb, 1544 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1545 unsigned int max_nr, unsigned long addr, 1546 struct zap_details *details, int *rss, bool *force_flush, 1547 bool *force_break) 1548 { 1549 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1550 struct mm_struct *mm = tlb->mm; 1551 struct folio *folio; 1552 struct page *page; 1553 int nr; 1554 1555 page = vm_normal_page(vma, addr, ptent); 1556 if (!page) { 1557 /* We don't need up-to-date accessed/dirty bits. */ 1558 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1559 arch_check_zapped_pte(vma, ptent); 1560 tlb_remove_tlb_entry(tlb, pte, addr); 1561 if (userfaultfd_pte_wp(vma, ptent)) 1562 zap_install_uffd_wp_if_needed(vma, addr, pte, 1, 1563 details, ptent); 1564 ksm_might_unmap_zero_page(mm, ptent); 1565 return 1; 1566 } 1567 1568 folio = page_folio(page); 1569 if (unlikely(!should_zap_folio(details, folio))) 1570 return 1; 1571 1572 /* 1573 * Make sure that the common "small folio" case is as fast as possible 1574 * by keeping the batching logic separate. 1575 */ 1576 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1577 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1578 NULL, NULL, NULL); 1579 1580 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1581 addr, details, rss, force_flush, 1582 force_break); 1583 return nr; 1584 } 1585 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1586 details, rss, force_flush, force_break); 1587 return 1; 1588 } 1589 1590 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1591 struct vm_area_struct *vma, pmd_t *pmd, 1592 unsigned long addr, unsigned long end, 1593 struct zap_details *details) 1594 { 1595 bool force_flush = false, force_break = false; 1596 struct mm_struct *mm = tlb->mm; 1597 int rss[NR_MM_COUNTERS]; 1598 spinlock_t *ptl; 1599 pte_t *start_pte; 1600 pte_t *pte; 1601 swp_entry_t entry; 1602 int nr; 1603 1604 tlb_change_page_size(tlb, PAGE_SIZE); 1605 init_rss_vec(rss); 1606 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1607 if (!pte) 1608 return addr; 1609 1610 flush_tlb_batched_pending(mm); 1611 arch_enter_lazy_mmu_mode(); 1612 do { 1613 pte_t ptent = ptep_get(pte); 1614 struct folio *folio; 1615 struct page *page; 1616 int max_nr; 1617 1618 nr = 1; 1619 if (pte_none(ptent)) 1620 continue; 1621 1622 if (need_resched()) 1623 break; 1624 1625 if (pte_present(ptent)) { 1626 max_nr = (end - addr) / PAGE_SIZE; 1627 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr, 1628 addr, details, rss, &force_flush, 1629 &force_break); 1630 if (unlikely(force_break)) { 1631 addr += nr * PAGE_SIZE; 1632 break; 1633 } 1634 continue; 1635 } 1636 1637 entry = pte_to_swp_entry(ptent); 1638 if (is_device_private_entry(entry) || 1639 is_device_exclusive_entry(entry)) { 1640 page = pfn_swap_entry_to_page(entry); 1641 folio = page_folio(page); 1642 if (unlikely(!should_zap_folio(details, folio))) 1643 continue; 1644 /* 1645 * Both device private/exclusive mappings should only 1646 * work with anonymous page so far, so we don't need to 1647 * consider uffd-wp bit when zap. For more information, 1648 * see zap_install_uffd_wp_if_needed(). 1649 */ 1650 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1651 rss[mm_counter(folio)]--; 1652 if (is_device_private_entry(entry)) 1653 folio_remove_rmap_pte(folio, page, vma); 1654 folio_put(folio); 1655 } else if (!non_swap_entry(entry)) { 1656 max_nr = (end - addr) / PAGE_SIZE; 1657 nr = swap_pte_batch(pte, max_nr, ptent); 1658 /* Genuine swap entries, hence a private anon pages */ 1659 if (!should_zap_cows(details)) 1660 continue; 1661 rss[MM_SWAPENTS] -= nr; 1662 free_swap_and_cache_nr(entry, nr); 1663 } else if (is_migration_entry(entry)) { 1664 folio = pfn_swap_entry_folio(entry); 1665 if (!should_zap_folio(details, folio)) 1666 continue; 1667 rss[mm_counter(folio)]--; 1668 } else if (pte_marker_entry_uffd_wp(entry)) { 1669 /* 1670 * For anon: always drop the marker; for file: only 1671 * drop the marker if explicitly requested. 1672 */ 1673 if (!vma_is_anonymous(vma) && 1674 !zap_drop_markers(details)) 1675 continue; 1676 } else if (is_guard_swp_entry(entry)) { 1677 /* 1678 * Ordinary zapping should not remove guard PTE 1679 * markers. Only do so if we should remove PTE markers 1680 * in general. 1681 */ 1682 if (!zap_drop_markers(details)) 1683 continue; 1684 } else if (is_hwpoison_entry(entry) || 1685 is_poisoned_swp_entry(entry)) { 1686 if (!should_zap_cows(details)) 1687 continue; 1688 } else { 1689 /* We should have covered all the swap entry types */ 1690 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1691 WARN_ON_ONCE(1); 1692 } 1693 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1694 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1695 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1696 1697 add_mm_rss_vec(mm, rss); 1698 arch_leave_lazy_mmu_mode(); 1699 1700 /* Do the actual TLB flush before dropping ptl */ 1701 if (force_flush) { 1702 tlb_flush_mmu_tlbonly(tlb); 1703 tlb_flush_rmaps(tlb, vma); 1704 } 1705 pte_unmap_unlock(start_pte, ptl); 1706 1707 /* 1708 * If we forced a TLB flush (either due to running out of 1709 * batch buffers or because we needed to flush dirty TLB 1710 * entries before releasing the ptl), free the batched 1711 * memory too. Come back again if we didn't do everything. 1712 */ 1713 if (force_flush) 1714 tlb_flush_mmu(tlb); 1715 1716 return addr; 1717 } 1718 1719 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1720 struct vm_area_struct *vma, pud_t *pud, 1721 unsigned long addr, unsigned long end, 1722 struct zap_details *details) 1723 { 1724 pmd_t *pmd; 1725 unsigned long next; 1726 1727 pmd = pmd_offset(pud, addr); 1728 do { 1729 next = pmd_addr_end(addr, end); 1730 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1731 if (next - addr != HPAGE_PMD_SIZE) 1732 __split_huge_pmd(vma, pmd, addr, false, NULL); 1733 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1734 addr = next; 1735 continue; 1736 } 1737 /* fall through */ 1738 } else if (details && details->single_folio && 1739 folio_test_pmd_mappable(details->single_folio) && 1740 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1741 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1742 /* 1743 * Take and drop THP pmd lock so that we cannot return 1744 * prematurely, while zap_huge_pmd() has cleared *pmd, 1745 * but not yet decremented compound_mapcount(). 1746 */ 1747 spin_unlock(ptl); 1748 } 1749 if (pmd_none(*pmd)) { 1750 addr = next; 1751 continue; 1752 } 1753 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1754 if (addr != next) 1755 pmd--; 1756 } while (pmd++, cond_resched(), addr != end); 1757 1758 return addr; 1759 } 1760 1761 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1762 struct vm_area_struct *vma, p4d_t *p4d, 1763 unsigned long addr, unsigned long end, 1764 struct zap_details *details) 1765 { 1766 pud_t *pud; 1767 unsigned long next; 1768 1769 pud = pud_offset(p4d, addr); 1770 do { 1771 next = pud_addr_end(addr, end); 1772 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1773 if (next - addr != HPAGE_PUD_SIZE) { 1774 mmap_assert_locked(tlb->mm); 1775 split_huge_pud(vma, pud, addr); 1776 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1777 goto next; 1778 /* fall through */ 1779 } 1780 if (pud_none_or_clear_bad(pud)) 1781 continue; 1782 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1783 next: 1784 cond_resched(); 1785 } while (pud++, addr = next, addr != end); 1786 1787 return addr; 1788 } 1789 1790 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1791 struct vm_area_struct *vma, pgd_t *pgd, 1792 unsigned long addr, unsigned long end, 1793 struct zap_details *details) 1794 { 1795 p4d_t *p4d; 1796 unsigned long next; 1797 1798 p4d = p4d_offset(pgd, addr); 1799 do { 1800 next = p4d_addr_end(addr, end); 1801 if (p4d_none_or_clear_bad(p4d)) 1802 continue; 1803 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1804 } while (p4d++, addr = next, addr != end); 1805 1806 return addr; 1807 } 1808 1809 void unmap_page_range(struct mmu_gather *tlb, 1810 struct vm_area_struct *vma, 1811 unsigned long addr, unsigned long end, 1812 struct zap_details *details) 1813 { 1814 pgd_t *pgd; 1815 unsigned long next; 1816 1817 BUG_ON(addr >= end); 1818 tlb_start_vma(tlb, vma); 1819 pgd = pgd_offset(vma->vm_mm, addr); 1820 do { 1821 next = pgd_addr_end(addr, end); 1822 if (pgd_none_or_clear_bad(pgd)) 1823 continue; 1824 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1825 } while (pgd++, addr = next, addr != end); 1826 tlb_end_vma(tlb, vma); 1827 } 1828 1829 1830 static void unmap_single_vma(struct mmu_gather *tlb, 1831 struct vm_area_struct *vma, unsigned long start_addr, 1832 unsigned long end_addr, 1833 struct zap_details *details, bool mm_wr_locked) 1834 { 1835 unsigned long start = max(vma->vm_start, start_addr); 1836 unsigned long end; 1837 1838 if (start >= vma->vm_end) 1839 return; 1840 end = min(vma->vm_end, end_addr); 1841 if (end <= vma->vm_start) 1842 return; 1843 1844 if (vma->vm_file) 1845 uprobe_munmap(vma, start, end); 1846 1847 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1848 untrack_pfn(vma, 0, 0, mm_wr_locked); 1849 1850 if (start != end) { 1851 if (unlikely(is_vm_hugetlb_page(vma))) { 1852 /* 1853 * It is undesirable to test vma->vm_file as it 1854 * should be non-null for valid hugetlb area. 1855 * However, vm_file will be NULL in the error 1856 * cleanup path of mmap_region. When 1857 * hugetlbfs ->mmap method fails, 1858 * mmap_region() nullifies vma->vm_file 1859 * before calling this function to clean up. 1860 * Since no pte has actually been setup, it is 1861 * safe to do nothing in this case. 1862 */ 1863 if (vma->vm_file) { 1864 zap_flags_t zap_flags = details ? 1865 details->zap_flags : 0; 1866 __unmap_hugepage_range(tlb, vma, start, end, 1867 NULL, zap_flags); 1868 } 1869 } else 1870 unmap_page_range(tlb, vma, start, end, details); 1871 } 1872 } 1873 1874 /** 1875 * unmap_vmas - unmap a range of memory covered by a list of vma's 1876 * @tlb: address of the caller's struct mmu_gather 1877 * @mas: the maple state 1878 * @vma: the starting vma 1879 * @start_addr: virtual address at which to start unmapping 1880 * @end_addr: virtual address at which to end unmapping 1881 * @tree_end: The maximum index to check 1882 * @mm_wr_locked: lock flag 1883 * 1884 * Unmap all pages in the vma list. 1885 * 1886 * Only addresses between `start' and `end' will be unmapped. 1887 * 1888 * The VMA list must be sorted in ascending virtual address order. 1889 * 1890 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1891 * range after unmap_vmas() returns. So the only responsibility here is to 1892 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1893 * drops the lock and schedules. 1894 */ 1895 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1896 struct vm_area_struct *vma, unsigned long start_addr, 1897 unsigned long end_addr, unsigned long tree_end, 1898 bool mm_wr_locked) 1899 { 1900 struct mmu_notifier_range range; 1901 struct zap_details details = { 1902 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1903 /* Careful - we need to zap private pages too! */ 1904 .even_cows = true, 1905 }; 1906 1907 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1908 start_addr, end_addr); 1909 mmu_notifier_invalidate_range_start(&range); 1910 do { 1911 unsigned long start = start_addr; 1912 unsigned long end = end_addr; 1913 hugetlb_zap_begin(vma, &start, &end); 1914 unmap_single_vma(tlb, vma, start, end, &details, 1915 mm_wr_locked); 1916 hugetlb_zap_end(vma, &details); 1917 vma = mas_find(mas, tree_end - 1); 1918 } while (vma && likely(!xa_is_zero(vma))); 1919 mmu_notifier_invalidate_range_end(&range); 1920 } 1921 1922 /** 1923 * zap_page_range_single - remove user pages in a given range 1924 * @vma: vm_area_struct holding the applicable pages 1925 * @address: starting address of pages to zap 1926 * @size: number of bytes to zap 1927 * @details: details of shared cache invalidation 1928 * 1929 * The range must fit into one VMA. 1930 */ 1931 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1932 unsigned long size, struct zap_details *details) 1933 { 1934 const unsigned long end = address + size; 1935 struct mmu_notifier_range range; 1936 struct mmu_gather tlb; 1937 1938 lru_add_drain(); 1939 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1940 address, end); 1941 hugetlb_zap_begin(vma, &range.start, &range.end); 1942 tlb_gather_mmu(&tlb, vma->vm_mm); 1943 update_hiwater_rss(vma->vm_mm); 1944 mmu_notifier_invalidate_range_start(&range); 1945 /* 1946 * unmap 'address-end' not 'range.start-range.end' as range 1947 * could have been expanded for hugetlb pmd sharing. 1948 */ 1949 unmap_single_vma(&tlb, vma, address, end, details, false); 1950 mmu_notifier_invalidate_range_end(&range); 1951 tlb_finish_mmu(&tlb); 1952 hugetlb_zap_end(vma, details); 1953 } 1954 1955 /** 1956 * zap_vma_ptes - remove ptes mapping the vma 1957 * @vma: vm_area_struct holding ptes to be zapped 1958 * @address: starting address of pages to zap 1959 * @size: number of bytes to zap 1960 * 1961 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1962 * 1963 * The entire address range must be fully contained within the vma. 1964 * 1965 */ 1966 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1967 unsigned long size) 1968 { 1969 if (!range_in_vma(vma, address, address + size) || 1970 !(vma->vm_flags & VM_PFNMAP)) 1971 return; 1972 1973 zap_page_range_single(vma, address, size, NULL); 1974 } 1975 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1976 1977 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1978 { 1979 pgd_t *pgd; 1980 p4d_t *p4d; 1981 pud_t *pud; 1982 pmd_t *pmd; 1983 1984 pgd = pgd_offset(mm, addr); 1985 p4d = p4d_alloc(mm, pgd, addr); 1986 if (!p4d) 1987 return NULL; 1988 pud = pud_alloc(mm, p4d, addr); 1989 if (!pud) 1990 return NULL; 1991 pmd = pmd_alloc(mm, pud, addr); 1992 if (!pmd) 1993 return NULL; 1994 1995 VM_BUG_ON(pmd_trans_huge(*pmd)); 1996 return pmd; 1997 } 1998 1999 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2000 spinlock_t **ptl) 2001 { 2002 pmd_t *pmd = walk_to_pmd(mm, addr); 2003 2004 if (!pmd) 2005 return NULL; 2006 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2007 } 2008 2009 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2010 { 2011 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2012 /* 2013 * Whoever wants to forbid the zeropage after some zeropages 2014 * might already have been mapped has to scan the page tables and 2015 * bail out on any zeropages. Zeropages in COW mappings can 2016 * be unshared using FAULT_FLAG_UNSHARE faults. 2017 */ 2018 if (mm_forbids_zeropage(vma->vm_mm)) 2019 return false; 2020 /* zeropages in COW mappings are common and unproblematic. */ 2021 if (is_cow_mapping(vma->vm_flags)) 2022 return true; 2023 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2024 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2025 return true; 2026 /* 2027 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2028 * find the shared zeropage and longterm-pin it, which would 2029 * be problematic as soon as the zeropage gets replaced by a different 2030 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2031 * now differ to what GUP looked up. FSDAX is incompatible to 2032 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2033 * check_vma_flags). 2034 */ 2035 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2036 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2037 } 2038 2039 static int validate_page_before_insert(struct vm_area_struct *vma, 2040 struct page *page) 2041 { 2042 struct folio *folio = page_folio(page); 2043 2044 if (!folio_ref_count(folio)) 2045 return -EINVAL; 2046 if (unlikely(is_zero_folio(folio))) { 2047 if (!vm_mixed_zeropage_allowed(vma)) 2048 return -EINVAL; 2049 return 0; 2050 } 2051 if (folio_test_anon(folio) || folio_test_slab(folio) || 2052 page_has_type(page)) 2053 return -EINVAL; 2054 flush_dcache_folio(folio); 2055 return 0; 2056 } 2057 2058 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2059 unsigned long addr, struct page *page, pgprot_t prot) 2060 { 2061 struct folio *folio = page_folio(page); 2062 pte_t pteval; 2063 2064 if (!pte_none(ptep_get(pte))) 2065 return -EBUSY; 2066 /* Ok, finally just insert the thing.. */ 2067 pteval = mk_pte(page, prot); 2068 if (unlikely(is_zero_folio(folio))) { 2069 pteval = pte_mkspecial(pteval); 2070 } else { 2071 folio_get(folio); 2072 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2073 folio_add_file_rmap_pte(folio, page, vma); 2074 } 2075 set_pte_at(vma->vm_mm, addr, pte, pteval); 2076 return 0; 2077 } 2078 2079 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2080 struct page *page, pgprot_t prot) 2081 { 2082 int retval; 2083 pte_t *pte; 2084 spinlock_t *ptl; 2085 2086 retval = validate_page_before_insert(vma, page); 2087 if (retval) 2088 goto out; 2089 retval = -ENOMEM; 2090 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2091 if (!pte) 2092 goto out; 2093 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 2094 pte_unmap_unlock(pte, ptl); 2095 out: 2096 return retval; 2097 } 2098 2099 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2100 unsigned long addr, struct page *page, pgprot_t prot) 2101 { 2102 int err; 2103 2104 err = validate_page_before_insert(vma, page); 2105 if (err) 2106 return err; 2107 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 2108 } 2109 2110 /* insert_pages() amortizes the cost of spinlock operations 2111 * when inserting pages in a loop. 2112 */ 2113 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2114 struct page **pages, unsigned long *num, pgprot_t prot) 2115 { 2116 pmd_t *pmd = NULL; 2117 pte_t *start_pte, *pte; 2118 spinlock_t *pte_lock; 2119 struct mm_struct *const mm = vma->vm_mm; 2120 unsigned long curr_page_idx = 0; 2121 unsigned long remaining_pages_total = *num; 2122 unsigned long pages_to_write_in_pmd; 2123 int ret; 2124 more: 2125 ret = -EFAULT; 2126 pmd = walk_to_pmd(mm, addr); 2127 if (!pmd) 2128 goto out; 2129 2130 pages_to_write_in_pmd = min_t(unsigned long, 2131 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2132 2133 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2134 ret = -ENOMEM; 2135 if (pte_alloc(mm, pmd)) 2136 goto out; 2137 2138 while (pages_to_write_in_pmd) { 2139 int pte_idx = 0; 2140 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2141 2142 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2143 if (!start_pte) { 2144 ret = -EFAULT; 2145 goto out; 2146 } 2147 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2148 int err = insert_page_in_batch_locked(vma, pte, 2149 addr, pages[curr_page_idx], prot); 2150 if (unlikely(err)) { 2151 pte_unmap_unlock(start_pte, pte_lock); 2152 ret = err; 2153 remaining_pages_total -= pte_idx; 2154 goto out; 2155 } 2156 addr += PAGE_SIZE; 2157 ++curr_page_idx; 2158 } 2159 pte_unmap_unlock(start_pte, pte_lock); 2160 pages_to_write_in_pmd -= batch_size; 2161 remaining_pages_total -= batch_size; 2162 } 2163 if (remaining_pages_total) 2164 goto more; 2165 ret = 0; 2166 out: 2167 *num = remaining_pages_total; 2168 return ret; 2169 } 2170 2171 /** 2172 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2173 * @vma: user vma to map to 2174 * @addr: target start user address of these pages 2175 * @pages: source kernel pages 2176 * @num: in: number of pages to map. out: number of pages that were *not* 2177 * mapped. (0 means all pages were successfully mapped). 2178 * 2179 * Preferred over vm_insert_page() when inserting multiple pages. 2180 * 2181 * In case of error, we may have mapped a subset of the provided 2182 * pages. It is the caller's responsibility to account for this case. 2183 * 2184 * The same restrictions apply as in vm_insert_page(). 2185 */ 2186 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2187 struct page **pages, unsigned long *num) 2188 { 2189 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2190 2191 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2192 return -EFAULT; 2193 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2194 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2195 BUG_ON(vma->vm_flags & VM_PFNMAP); 2196 vm_flags_set(vma, VM_MIXEDMAP); 2197 } 2198 /* Defer page refcount checking till we're about to map that page. */ 2199 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2200 } 2201 EXPORT_SYMBOL(vm_insert_pages); 2202 2203 /** 2204 * vm_insert_page - insert single page into user vma 2205 * @vma: user vma to map to 2206 * @addr: target user address of this page 2207 * @page: source kernel page 2208 * 2209 * This allows drivers to insert individual pages they've allocated 2210 * into a user vma. The zeropage is supported in some VMAs, 2211 * see vm_mixed_zeropage_allowed(). 2212 * 2213 * The page has to be a nice clean _individual_ kernel allocation. 2214 * If you allocate a compound page, you need to have marked it as 2215 * such (__GFP_COMP), or manually just split the page up yourself 2216 * (see split_page()). 2217 * 2218 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2219 * took an arbitrary page protection parameter. This doesn't allow 2220 * that. Your vma protection will have to be set up correctly, which 2221 * means that if you want a shared writable mapping, you'd better 2222 * ask for a shared writable mapping! 2223 * 2224 * The page does not need to be reserved. 2225 * 2226 * Usually this function is called from f_op->mmap() handler 2227 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2228 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2229 * function from other places, for example from page-fault handler. 2230 * 2231 * Return: %0 on success, negative error code otherwise. 2232 */ 2233 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2234 struct page *page) 2235 { 2236 if (addr < vma->vm_start || addr >= vma->vm_end) 2237 return -EFAULT; 2238 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2239 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2240 BUG_ON(vma->vm_flags & VM_PFNMAP); 2241 vm_flags_set(vma, VM_MIXEDMAP); 2242 } 2243 return insert_page(vma, addr, page, vma->vm_page_prot); 2244 } 2245 EXPORT_SYMBOL(vm_insert_page); 2246 2247 /* 2248 * __vm_map_pages - maps range of kernel pages into user vma 2249 * @vma: user vma to map to 2250 * @pages: pointer to array of source kernel pages 2251 * @num: number of pages in page array 2252 * @offset: user's requested vm_pgoff 2253 * 2254 * This allows drivers to map range of kernel pages into a user vma. 2255 * The zeropage is supported in some VMAs, see 2256 * vm_mixed_zeropage_allowed(). 2257 * 2258 * Return: 0 on success and error code otherwise. 2259 */ 2260 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2261 unsigned long num, unsigned long offset) 2262 { 2263 unsigned long count = vma_pages(vma); 2264 unsigned long uaddr = vma->vm_start; 2265 int ret, i; 2266 2267 /* Fail if the user requested offset is beyond the end of the object */ 2268 if (offset >= num) 2269 return -ENXIO; 2270 2271 /* Fail if the user requested size exceeds available object size */ 2272 if (count > num - offset) 2273 return -ENXIO; 2274 2275 for (i = 0; i < count; i++) { 2276 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2277 if (ret < 0) 2278 return ret; 2279 uaddr += PAGE_SIZE; 2280 } 2281 2282 return 0; 2283 } 2284 2285 /** 2286 * vm_map_pages - maps range of kernel pages starts with non zero offset 2287 * @vma: user vma to map to 2288 * @pages: pointer to array of source kernel pages 2289 * @num: number of pages in page array 2290 * 2291 * Maps an object consisting of @num pages, catering for the user's 2292 * requested vm_pgoff 2293 * 2294 * If we fail to insert any page into the vma, the function will return 2295 * immediately leaving any previously inserted pages present. Callers 2296 * from the mmap handler may immediately return the error as their caller 2297 * will destroy the vma, removing any successfully inserted pages. Other 2298 * callers should make their own arrangements for calling unmap_region(). 2299 * 2300 * Context: Process context. Called by mmap handlers. 2301 * Return: 0 on success and error code otherwise. 2302 */ 2303 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2304 unsigned long num) 2305 { 2306 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2307 } 2308 EXPORT_SYMBOL(vm_map_pages); 2309 2310 /** 2311 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2312 * @vma: user vma to map to 2313 * @pages: pointer to array of source kernel pages 2314 * @num: number of pages in page array 2315 * 2316 * Similar to vm_map_pages(), except that it explicitly sets the offset 2317 * to 0. This function is intended for the drivers that did not consider 2318 * vm_pgoff. 2319 * 2320 * Context: Process context. Called by mmap handlers. 2321 * Return: 0 on success and error code otherwise. 2322 */ 2323 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2324 unsigned long num) 2325 { 2326 return __vm_map_pages(vma, pages, num, 0); 2327 } 2328 EXPORT_SYMBOL(vm_map_pages_zero); 2329 2330 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2331 pfn_t pfn, pgprot_t prot, bool mkwrite) 2332 { 2333 struct mm_struct *mm = vma->vm_mm; 2334 pte_t *pte, entry; 2335 spinlock_t *ptl; 2336 2337 pte = get_locked_pte(mm, addr, &ptl); 2338 if (!pte) 2339 return VM_FAULT_OOM; 2340 entry = ptep_get(pte); 2341 if (!pte_none(entry)) { 2342 if (mkwrite) { 2343 /* 2344 * For read faults on private mappings the PFN passed 2345 * in may not match the PFN we have mapped if the 2346 * mapped PFN is a writeable COW page. In the mkwrite 2347 * case we are creating a writable PTE for a shared 2348 * mapping and we expect the PFNs to match. If they 2349 * don't match, we are likely racing with block 2350 * allocation and mapping invalidation so just skip the 2351 * update. 2352 */ 2353 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2354 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2355 goto out_unlock; 2356 } 2357 entry = pte_mkyoung(entry); 2358 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2359 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2360 update_mmu_cache(vma, addr, pte); 2361 } 2362 goto out_unlock; 2363 } 2364 2365 /* Ok, finally just insert the thing.. */ 2366 if (pfn_t_devmap(pfn)) 2367 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2368 else 2369 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2370 2371 if (mkwrite) { 2372 entry = pte_mkyoung(entry); 2373 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2374 } 2375 2376 set_pte_at(mm, addr, pte, entry); 2377 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2378 2379 out_unlock: 2380 pte_unmap_unlock(pte, ptl); 2381 return VM_FAULT_NOPAGE; 2382 } 2383 2384 /** 2385 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2386 * @vma: user vma to map to 2387 * @addr: target user address of this page 2388 * @pfn: source kernel pfn 2389 * @pgprot: pgprot flags for the inserted page 2390 * 2391 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2392 * to override pgprot on a per-page basis. 2393 * 2394 * This only makes sense for IO mappings, and it makes no sense for 2395 * COW mappings. In general, using multiple vmas is preferable; 2396 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2397 * impractical. 2398 * 2399 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2400 * caching- and encryption bits different than those of @vma->vm_page_prot, 2401 * because the caching- or encryption mode may not be known at mmap() time. 2402 * 2403 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2404 * to set caching and encryption bits for those vmas (except for COW pages). 2405 * This is ensured by core vm only modifying these page table entries using 2406 * functions that don't touch caching- or encryption bits, using pte_modify() 2407 * if needed. (See for example mprotect()). 2408 * 2409 * Also when new page-table entries are created, this is only done using the 2410 * fault() callback, and never using the value of vma->vm_page_prot, 2411 * except for page-table entries that point to anonymous pages as the result 2412 * of COW. 2413 * 2414 * Context: Process context. May allocate using %GFP_KERNEL. 2415 * Return: vm_fault_t value. 2416 */ 2417 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2418 unsigned long pfn, pgprot_t pgprot) 2419 { 2420 /* 2421 * Technically, architectures with pte_special can avoid all these 2422 * restrictions (same for remap_pfn_range). However we would like 2423 * consistency in testing and feature parity among all, so we should 2424 * try to keep these invariants in place for everybody. 2425 */ 2426 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2427 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2428 (VM_PFNMAP|VM_MIXEDMAP)); 2429 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2430 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2431 2432 if (addr < vma->vm_start || addr >= vma->vm_end) 2433 return VM_FAULT_SIGBUS; 2434 2435 if (!pfn_modify_allowed(pfn, pgprot)) 2436 return VM_FAULT_SIGBUS; 2437 2438 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2439 2440 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2441 false); 2442 } 2443 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2444 2445 /** 2446 * vmf_insert_pfn - insert single pfn into user vma 2447 * @vma: user vma to map to 2448 * @addr: target user address of this page 2449 * @pfn: source kernel pfn 2450 * 2451 * Similar to vm_insert_page, this allows drivers to insert individual pages 2452 * they've allocated into a user vma. Same comments apply. 2453 * 2454 * This function should only be called from a vm_ops->fault handler, and 2455 * in that case the handler should return the result of this function. 2456 * 2457 * vma cannot be a COW mapping. 2458 * 2459 * As this is called only for pages that do not currently exist, we 2460 * do not need to flush old virtual caches or the TLB. 2461 * 2462 * Context: Process context. May allocate using %GFP_KERNEL. 2463 * Return: vm_fault_t value. 2464 */ 2465 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2466 unsigned long pfn) 2467 { 2468 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2469 } 2470 EXPORT_SYMBOL(vmf_insert_pfn); 2471 2472 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite) 2473 { 2474 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) && 2475 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2476 return false; 2477 /* these checks mirror the abort conditions in vm_normal_page */ 2478 if (vma->vm_flags & VM_MIXEDMAP) 2479 return true; 2480 if (pfn_t_devmap(pfn)) 2481 return true; 2482 if (pfn_t_special(pfn)) 2483 return true; 2484 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2485 return true; 2486 return false; 2487 } 2488 2489 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2490 unsigned long addr, pfn_t pfn, bool mkwrite) 2491 { 2492 pgprot_t pgprot = vma->vm_page_prot; 2493 int err; 2494 2495 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2496 return VM_FAULT_SIGBUS; 2497 2498 if (addr < vma->vm_start || addr >= vma->vm_end) 2499 return VM_FAULT_SIGBUS; 2500 2501 track_pfn_insert(vma, &pgprot, pfn); 2502 2503 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2504 return VM_FAULT_SIGBUS; 2505 2506 /* 2507 * If we don't have pte special, then we have to use the pfn_valid() 2508 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2509 * refcount the page if pfn_valid is true (hence insert_page rather 2510 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2511 * without pte special, it would there be refcounted as a normal page. 2512 */ 2513 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2514 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2515 struct page *page; 2516 2517 /* 2518 * At this point we are committed to insert_page() 2519 * regardless of whether the caller specified flags that 2520 * result in pfn_t_has_page() == false. 2521 */ 2522 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2523 err = insert_page(vma, addr, page, pgprot); 2524 } else { 2525 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2526 } 2527 2528 if (err == -ENOMEM) 2529 return VM_FAULT_OOM; 2530 if (err < 0 && err != -EBUSY) 2531 return VM_FAULT_SIGBUS; 2532 2533 return VM_FAULT_NOPAGE; 2534 } 2535 2536 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2537 pfn_t pfn) 2538 { 2539 return __vm_insert_mixed(vma, addr, pfn, false); 2540 } 2541 EXPORT_SYMBOL(vmf_insert_mixed); 2542 2543 /* 2544 * If the insertion of PTE failed because someone else already added a 2545 * different entry in the mean time, we treat that as success as we assume 2546 * the same entry was actually inserted. 2547 */ 2548 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2549 unsigned long addr, pfn_t pfn) 2550 { 2551 return __vm_insert_mixed(vma, addr, pfn, true); 2552 } 2553 2554 /* 2555 * maps a range of physical memory into the requested pages. the old 2556 * mappings are removed. any references to nonexistent pages results 2557 * in null mappings (currently treated as "copy-on-access") 2558 */ 2559 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2560 unsigned long addr, unsigned long end, 2561 unsigned long pfn, pgprot_t prot) 2562 { 2563 pte_t *pte, *mapped_pte; 2564 spinlock_t *ptl; 2565 int err = 0; 2566 2567 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2568 if (!pte) 2569 return -ENOMEM; 2570 arch_enter_lazy_mmu_mode(); 2571 do { 2572 BUG_ON(!pte_none(ptep_get(pte))); 2573 if (!pfn_modify_allowed(pfn, prot)) { 2574 err = -EACCES; 2575 break; 2576 } 2577 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2578 pfn++; 2579 } while (pte++, addr += PAGE_SIZE, addr != end); 2580 arch_leave_lazy_mmu_mode(); 2581 pte_unmap_unlock(mapped_pte, ptl); 2582 return err; 2583 } 2584 2585 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2586 unsigned long addr, unsigned long end, 2587 unsigned long pfn, pgprot_t prot) 2588 { 2589 pmd_t *pmd; 2590 unsigned long next; 2591 int err; 2592 2593 pfn -= addr >> PAGE_SHIFT; 2594 pmd = pmd_alloc(mm, pud, addr); 2595 if (!pmd) 2596 return -ENOMEM; 2597 VM_BUG_ON(pmd_trans_huge(*pmd)); 2598 do { 2599 next = pmd_addr_end(addr, end); 2600 err = remap_pte_range(mm, pmd, addr, next, 2601 pfn + (addr >> PAGE_SHIFT), prot); 2602 if (err) 2603 return err; 2604 } while (pmd++, addr = next, addr != end); 2605 return 0; 2606 } 2607 2608 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2609 unsigned long addr, unsigned long end, 2610 unsigned long pfn, pgprot_t prot) 2611 { 2612 pud_t *pud; 2613 unsigned long next; 2614 int err; 2615 2616 pfn -= addr >> PAGE_SHIFT; 2617 pud = pud_alloc(mm, p4d, addr); 2618 if (!pud) 2619 return -ENOMEM; 2620 do { 2621 next = pud_addr_end(addr, end); 2622 err = remap_pmd_range(mm, pud, addr, next, 2623 pfn + (addr >> PAGE_SHIFT), prot); 2624 if (err) 2625 return err; 2626 } while (pud++, addr = next, addr != end); 2627 return 0; 2628 } 2629 2630 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2631 unsigned long addr, unsigned long end, 2632 unsigned long pfn, pgprot_t prot) 2633 { 2634 p4d_t *p4d; 2635 unsigned long next; 2636 int err; 2637 2638 pfn -= addr >> PAGE_SHIFT; 2639 p4d = p4d_alloc(mm, pgd, addr); 2640 if (!p4d) 2641 return -ENOMEM; 2642 do { 2643 next = p4d_addr_end(addr, end); 2644 err = remap_pud_range(mm, p4d, addr, next, 2645 pfn + (addr >> PAGE_SHIFT), prot); 2646 if (err) 2647 return err; 2648 } while (p4d++, addr = next, addr != end); 2649 return 0; 2650 } 2651 2652 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2653 unsigned long pfn, unsigned long size, pgprot_t prot) 2654 { 2655 pgd_t *pgd; 2656 unsigned long next; 2657 unsigned long end = addr + PAGE_ALIGN(size); 2658 struct mm_struct *mm = vma->vm_mm; 2659 int err; 2660 2661 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2662 return -EINVAL; 2663 2664 /* 2665 * Physically remapped pages are special. Tell the 2666 * rest of the world about it: 2667 * VM_IO tells people not to look at these pages 2668 * (accesses can have side effects). 2669 * VM_PFNMAP tells the core MM that the base pages are just 2670 * raw PFN mappings, and do not have a "struct page" associated 2671 * with them. 2672 * VM_DONTEXPAND 2673 * Disable vma merging and expanding with mremap(). 2674 * VM_DONTDUMP 2675 * Omit vma from core dump, even when VM_IO turned off. 2676 * 2677 * There's a horrible special case to handle copy-on-write 2678 * behaviour that some programs depend on. We mark the "original" 2679 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2680 * See vm_normal_page() for details. 2681 */ 2682 if (is_cow_mapping(vma->vm_flags)) { 2683 if (addr != vma->vm_start || end != vma->vm_end) 2684 return -EINVAL; 2685 vma->vm_pgoff = pfn; 2686 } 2687 2688 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2689 2690 BUG_ON(addr >= end); 2691 pfn -= addr >> PAGE_SHIFT; 2692 pgd = pgd_offset(mm, addr); 2693 flush_cache_range(vma, addr, end); 2694 do { 2695 next = pgd_addr_end(addr, end); 2696 err = remap_p4d_range(mm, pgd, addr, next, 2697 pfn + (addr >> PAGE_SHIFT), prot); 2698 if (err) 2699 return err; 2700 } while (pgd++, addr = next, addr != end); 2701 2702 return 0; 2703 } 2704 2705 /* 2706 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2707 * must have pre-validated the caching bits of the pgprot_t. 2708 */ 2709 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2710 unsigned long pfn, unsigned long size, pgprot_t prot) 2711 { 2712 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2713 2714 if (!error) 2715 return 0; 2716 2717 /* 2718 * A partial pfn range mapping is dangerous: it does not 2719 * maintain page reference counts, and callers may free 2720 * pages due to the error. So zap it early. 2721 */ 2722 zap_page_range_single(vma, addr, size, NULL); 2723 return error; 2724 } 2725 2726 /** 2727 * remap_pfn_range - remap kernel memory to userspace 2728 * @vma: user vma to map to 2729 * @addr: target page aligned user address to start at 2730 * @pfn: page frame number of kernel physical memory address 2731 * @size: size of mapping area 2732 * @prot: page protection flags for this mapping 2733 * 2734 * Note: this is only safe if the mm semaphore is held when called. 2735 * 2736 * Return: %0 on success, negative error code otherwise. 2737 */ 2738 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2739 unsigned long pfn, unsigned long size, pgprot_t prot) 2740 { 2741 int err; 2742 2743 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2744 if (err) 2745 return -EINVAL; 2746 2747 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2748 if (err) 2749 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2750 return err; 2751 } 2752 EXPORT_SYMBOL(remap_pfn_range); 2753 2754 /** 2755 * vm_iomap_memory - remap memory to userspace 2756 * @vma: user vma to map to 2757 * @start: start of the physical memory to be mapped 2758 * @len: size of area 2759 * 2760 * This is a simplified io_remap_pfn_range() for common driver use. The 2761 * driver just needs to give us the physical memory range to be mapped, 2762 * we'll figure out the rest from the vma information. 2763 * 2764 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2765 * whatever write-combining details or similar. 2766 * 2767 * Return: %0 on success, negative error code otherwise. 2768 */ 2769 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2770 { 2771 unsigned long vm_len, pfn, pages; 2772 2773 /* Check that the physical memory area passed in looks valid */ 2774 if (start + len < start) 2775 return -EINVAL; 2776 /* 2777 * You *really* shouldn't map things that aren't page-aligned, 2778 * but we've historically allowed it because IO memory might 2779 * just have smaller alignment. 2780 */ 2781 len += start & ~PAGE_MASK; 2782 pfn = start >> PAGE_SHIFT; 2783 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2784 if (pfn + pages < pfn) 2785 return -EINVAL; 2786 2787 /* We start the mapping 'vm_pgoff' pages into the area */ 2788 if (vma->vm_pgoff > pages) 2789 return -EINVAL; 2790 pfn += vma->vm_pgoff; 2791 pages -= vma->vm_pgoff; 2792 2793 /* Can we fit all of the mapping? */ 2794 vm_len = vma->vm_end - vma->vm_start; 2795 if (vm_len >> PAGE_SHIFT > pages) 2796 return -EINVAL; 2797 2798 /* Ok, let it rip */ 2799 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2800 } 2801 EXPORT_SYMBOL(vm_iomap_memory); 2802 2803 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2804 unsigned long addr, unsigned long end, 2805 pte_fn_t fn, void *data, bool create, 2806 pgtbl_mod_mask *mask) 2807 { 2808 pte_t *pte, *mapped_pte; 2809 int err = 0; 2810 spinlock_t *ptl; 2811 2812 if (create) { 2813 mapped_pte = pte = (mm == &init_mm) ? 2814 pte_alloc_kernel_track(pmd, addr, mask) : 2815 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2816 if (!pte) 2817 return -ENOMEM; 2818 } else { 2819 mapped_pte = pte = (mm == &init_mm) ? 2820 pte_offset_kernel(pmd, addr) : 2821 pte_offset_map_lock(mm, pmd, addr, &ptl); 2822 if (!pte) 2823 return -EINVAL; 2824 } 2825 2826 arch_enter_lazy_mmu_mode(); 2827 2828 if (fn) { 2829 do { 2830 if (create || !pte_none(ptep_get(pte))) { 2831 err = fn(pte++, addr, data); 2832 if (err) 2833 break; 2834 } 2835 } while (addr += PAGE_SIZE, addr != end); 2836 } 2837 *mask |= PGTBL_PTE_MODIFIED; 2838 2839 arch_leave_lazy_mmu_mode(); 2840 2841 if (mm != &init_mm) 2842 pte_unmap_unlock(mapped_pte, ptl); 2843 return err; 2844 } 2845 2846 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2847 unsigned long addr, unsigned long end, 2848 pte_fn_t fn, void *data, bool create, 2849 pgtbl_mod_mask *mask) 2850 { 2851 pmd_t *pmd; 2852 unsigned long next; 2853 int err = 0; 2854 2855 BUG_ON(pud_leaf(*pud)); 2856 2857 if (create) { 2858 pmd = pmd_alloc_track(mm, pud, addr, mask); 2859 if (!pmd) 2860 return -ENOMEM; 2861 } else { 2862 pmd = pmd_offset(pud, addr); 2863 } 2864 do { 2865 next = pmd_addr_end(addr, end); 2866 if (pmd_none(*pmd) && !create) 2867 continue; 2868 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2869 return -EINVAL; 2870 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2871 if (!create) 2872 continue; 2873 pmd_clear_bad(pmd); 2874 } 2875 err = apply_to_pte_range(mm, pmd, addr, next, 2876 fn, data, create, mask); 2877 if (err) 2878 break; 2879 } while (pmd++, addr = next, addr != end); 2880 2881 return err; 2882 } 2883 2884 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2885 unsigned long addr, unsigned long end, 2886 pte_fn_t fn, void *data, bool create, 2887 pgtbl_mod_mask *mask) 2888 { 2889 pud_t *pud; 2890 unsigned long next; 2891 int err = 0; 2892 2893 if (create) { 2894 pud = pud_alloc_track(mm, p4d, addr, mask); 2895 if (!pud) 2896 return -ENOMEM; 2897 } else { 2898 pud = pud_offset(p4d, addr); 2899 } 2900 do { 2901 next = pud_addr_end(addr, end); 2902 if (pud_none(*pud) && !create) 2903 continue; 2904 if (WARN_ON_ONCE(pud_leaf(*pud))) 2905 return -EINVAL; 2906 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2907 if (!create) 2908 continue; 2909 pud_clear_bad(pud); 2910 } 2911 err = apply_to_pmd_range(mm, pud, addr, next, 2912 fn, data, create, mask); 2913 if (err) 2914 break; 2915 } while (pud++, addr = next, addr != end); 2916 2917 return err; 2918 } 2919 2920 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2921 unsigned long addr, unsigned long end, 2922 pte_fn_t fn, void *data, bool create, 2923 pgtbl_mod_mask *mask) 2924 { 2925 p4d_t *p4d; 2926 unsigned long next; 2927 int err = 0; 2928 2929 if (create) { 2930 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2931 if (!p4d) 2932 return -ENOMEM; 2933 } else { 2934 p4d = p4d_offset(pgd, addr); 2935 } 2936 do { 2937 next = p4d_addr_end(addr, end); 2938 if (p4d_none(*p4d) && !create) 2939 continue; 2940 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2941 return -EINVAL; 2942 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2943 if (!create) 2944 continue; 2945 p4d_clear_bad(p4d); 2946 } 2947 err = apply_to_pud_range(mm, p4d, addr, next, 2948 fn, data, create, mask); 2949 if (err) 2950 break; 2951 } while (p4d++, addr = next, addr != end); 2952 2953 return err; 2954 } 2955 2956 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2957 unsigned long size, pte_fn_t fn, 2958 void *data, bool create) 2959 { 2960 pgd_t *pgd; 2961 unsigned long start = addr, next; 2962 unsigned long end = addr + size; 2963 pgtbl_mod_mask mask = 0; 2964 int err = 0; 2965 2966 if (WARN_ON(addr >= end)) 2967 return -EINVAL; 2968 2969 pgd = pgd_offset(mm, addr); 2970 do { 2971 next = pgd_addr_end(addr, end); 2972 if (pgd_none(*pgd) && !create) 2973 continue; 2974 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2975 return -EINVAL; 2976 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2977 if (!create) 2978 continue; 2979 pgd_clear_bad(pgd); 2980 } 2981 err = apply_to_p4d_range(mm, pgd, addr, next, 2982 fn, data, create, &mask); 2983 if (err) 2984 break; 2985 } while (pgd++, addr = next, addr != end); 2986 2987 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2988 arch_sync_kernel_mappings(start, start + size); 2989 2990 return err; 2991 } 2992 2993 /* 2994 * Scan a region of virtual memory, filling in page tables as necessary 2995 * and calling a provided function on each leaf page table. 2996 */ 2997 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2998 unsigned long size, pte_fn_t fn, void *data) 2999 { 3000 return __apply_to_page_range(mm, addr, size, fn, data, true); 3001 } 3002 EXPORT_SYMBOL_GPL(apply_to_page_range); 3003 3004 /* 3005 * Scan a region of virtual memory, calling a provided function on 3006 * each leaf page table where it exists. 3007 * 3008 * Unlike apply_to_page_range, this does _not_ fill in page tables 3009 * where they are absent. 3010 */ 3011 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3012 unsigned long size, pte_fn_t fn, void *data) 3013 { 3014 return __apply_to_page_range(mm, addr, size, fn, data, false); 3015 } 3016 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 3017 3018 /* 3019 * handle_pte_fault chooses page fault handler according to an entry which was 3020 * read non-atomically. Before making any commitment, on those architectures 3021 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3022 * parts, do_swap_page must check under lock before unmapping the pte and 3023 * proceeding (but do_wp_page is only called after already making such a check; 3024 * and do_anonymous_page can safely check later on). 3025 */ 3026 static inline int pte_unmap_same(struct vm_fault *vmf) 3027 { 3028 int same = 1; 3029 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3030 if (sizeof(pte_t) > sizeof(unsigned long)) { 3031 spin_lock(vmf->ptl); 3032 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3033 spin_unlock(vmf->ptl); 3034 } 3035 #endif 3036 pte_unmap(vmf->pte); 3037 vmf->pte = NULL; 3038 return same; 3039 } 3040 3041 /* 3042 * Return: 3043 * 0: copied succeeded 3044 * -EHWPOISON: copy failed due to hwpoison in source page 3045 * -EAGAIN: copied failed (some other reason) 3046 */ 3047 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3048 struct vm_fault *vmf) 3049 { 3050 int ret; 3051 void *kaddr; 3052 void __user *uaddr; 3053 struct vm_area_struct *vma = vmf->vma; 3054 struct mm_struct *mm = vma->vm_mm; 3055 unsigned long addr = vmf->address; 3056 3057 if (likely(src)) { 3058 if (copy_mc_user_highpage(dst, src, addr, vma)) 3059 return -EHWPOISON; 3060 return 0; 3061 } 3062 3063 /* 3064 * If the source page was a PFN mapping, we don't have 3065 * a "struct page" for it. We do a best-effort copy by 3066 * just copying from the original user address. If that 3067 * fails, we just zero-fill it. Live with it. 3068 */ 3069 kaddr = kmap_local_page(dst); 3070 pagefault_disable(); 3071 uaddr = (void __user *)(addr & PAGE_MASK); 3072 3073 /* 3074 * On architectures with software "accessed" bits, we would 3075 * take a double page fault, so mark it accessed here. 3076 */ 3077 vmf->pte = NULL; 3078 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3079 pte_t entry; 3080 3081 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3082 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3083 /* 3084 * Other thread has already handled the fault 3085 * and update local tlb only 3086 */ 3087 if (vmf->pte) 3088 update_mmu_tlb(vma, addr, vmf->pte); 3089 ret = -EAGAIN; 3090 goto pte_unlock; 3091 } 3092 3093 entry = pte_mkyoung(vmf->orig_pte); 3094 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3095 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3096 } 3097 3098 /* 3099 * This really shouldn't fail, because the page is there 3100 * in the page tables. But it might just be unreadable, 3101 * in which case we just give up and fill the result with 3102 * zeroes. 3103 */ 3104 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3105 if (vmf->pte) 3106 goto warn; 3107 3108 /* Re-validate under PTL if the page is still mapped */ 3109 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3110 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3111 /* The PTE changed under us, update local tlb */ 3112 if (vmf->pte) 3113 update_mmu_tlb(vma, addr, vmf->pte); 3114 ret = -EAGAIN; 3115 goto pte_unlock; 3116 } 3117 3118 /* 3119 * The same page can be mapped back since last copy attempt. 3120 * Try to copy again under PTL. 3121 */ 3122 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3123 /* 3124 * Give a warn in case there can be some obscure 3125 * use-case 3126 */ 3127 warn: 3128 WARN_ON_ONCE(1); 3129 clear_page(kaddr); 3130 } 3131 } 3132 3133 ret = 0; 3134 3135 pte_unlock: 3136 if (vmf->pte) 3137 pte_unmap_unlock(vmf->pte, vmf->ptl); 3138 pagefault_enable(); 3139 kunmap_local(kaddr); 3140 flush_dcache_page(dst); 3141 3142 return ret; 3143 } 3144 3145 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3146 { 3147 struct file *vm_file = vma->vm_file; 3148 3149 if (vm_file) 3150 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3151 3152 /* 3153 * Special mappings (e.g. VDSO) do not have any file so fake 3154 * a default GFP_KERNEL for them. 3155 */ 3156 return GFP_KERNEL; 3157 } 3158 3159 /* 3160 * Notify the address space that the page is about to become writable so that 3161 * it can prohibit this or wait for the page to get into an appropriate state. 3162 * 3163 * We do this without the lock held, so that it can sleep if it needs to. 3164 */ 3165 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3166 { 3167 vm_fault_t ret; 3168 unsigned int old_flags = vmf->flags; 3169 3170 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3171 3172 if (vmf->vma->vm_file && 3173 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3174 return VM_FAULT_SIGBUS; 3175 3176 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3177 /* Restore original flags so that caller is not surprised */ 3178 vmf->flags = old_flags; 3179 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3180 return ret; 3181 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3182 folio_lock(folio); 3183 if (!folio->mapping) { 3184 folio_unlock(folio); 3185 return 0; /* retry */ 3186 } 3187 ret |= VM_FAULT_LOCKED; 3188 } else 3189 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3190 return ret; 3191 } 3192 3193 /* 3194 * Handle dirtying of a page in shared file mapping on a write fault. 3195 * 3196 * The function expects the page to be locked and unlocks it. 3197 */ 3198 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3199 { 3200 struct vm_area_struct *vma = vmf->vma; 3201 struct address_space *mapping; 3202 struct folio *folio = page_folio(vmf->page); 3203 bool dirtied; 3204 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3205 3206 dirtied = folio_mark_dirty(folio); 3207 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3208 /* 3209 * Take a local copy of the address_space - folio.mapping may be zeroed 3210 * by truncate after folio_unlock(). The address_space itself remains 3211 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3212 * release semantics to prevent the compiler from undoing this copying. 3213 */ 3214 mapping = folio_raw_mapping(folio); 3215 folio_unlock(folio); 3216 3217 if (!page_mkwrite) 3218 file_update_time(vma->vm_file); 3219 3220 /* 3221 * Throttle page dirtying rate down to writeback speed. 3222 * 3223 * mapping may be NULL here because some device drivers do not 3224 * set page.mapping but still dirty their pages 3225 * 3226 * Drop the mmap_lock before waiting on IO, if we can. The file 3227 * is pinning the mapping, as per above. 3228 */ 3229 if ((dirtied || page_mkwrite) && mapping) { 3230 struct file *fpin; 3231 3232 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3233 balance_dirty_pages_ratelimited(mapping); 3234 if (fpin) { 3235 fput(fpin); 3236 return VM_FAULT_COMPLETED; 3237 } 3238 } 3239 3240 return 0; 3241 } 3242 3243 /* 3244 * Handle write page faults for pages that can be reused in the current vma 3245 * 3246 * This can happen either due to the mapping being with the VM_SHARED flag, 3247 * or due to us being the last reference standing to the page. In either 3248 * case, all we need to do here is to mark the page as writable and update 3249 * any related book-keeping. 3250 */ 3251 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3252 __releases(vmf->ptl) 3253 { 3254 struct vm_area_struct *vma = vmf->vma; 3255 pte_t entry; 3256 3257 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3258 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3259 3260 if (folio) { 3261 VM_BUG_ON(folio_test_anon(folio) && 3262 !PageAnonExclusive(vmf->page)); 3263 /* 3264 * Clear the folio's cpupid information as the existing 3265 * information potentially belongs to a now completely 3266 * unrelated process. 3267 */ 3268 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3269 } 3270 3271 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3272 entry = pte_mkyoung(vmf->orig_pte); 3273 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3274 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3275 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3276 pte_unmap_unlock(vmf->pte, vmf->ptl); 3277 count_vm_event(PGREUSE); 3278 } 3279 3280 /* 3281 * We could add a bitflag somewhere, but for now, we know that all 3282 * vm_ops that have a ->map_pages have been audited and don't need 3283 * the mmap_lock to be held. 3284 */ 3285 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3286 { 3287 struct vm_area_struct *vma = vmf->vma; 3288 3289 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3290 return 0; 3291 vma_end_read(vma); 3292 return VM_FAULT_RETRY; 3293 } 3294 3295 /** 3296 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3297 * @vmf: The vm_fault descriptor passed from the fault handler. 3298 * 3299 * When preparing to insert an anonymous page into a VMA from a 3300 * fault handler, call this function rather than anon_vma_prepare(). 3301 * If this vma does not already have an associated anon_vma and we are 3302 * only protected by the per-VMA lock, the caller must retry with the 3303 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3304 * determine if this VMA can share its anon_vma, and that's not safe to 3305 * do with only the per-VMA lock held for this VMA. 3306 * 3307 * Return: 0 if fault handling can proceed. Any other value should be 3308 * returned to the caller. 3309 */ 3310 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3311 { 3312 struct vm_area_struct *vma = vmf->vma; 3313 vm_fault_t ret = 0; 3314 3315 if (likely(vma->anon_vma)) 3316 return 0; 3317 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3318 if (!mmap_read_trylock(vma->vm_mm)) 3319 return VM_FAULT_RETRY; 3320 } 3321 if (__anon_vma_prepare(vma)) 3322 ret = VM_FAULT_OOM; 3323 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3324 mmap_read_unlock(vma->vm_mm); 3325 return ret; 3326 } 3327 3328 /* 3329 * Handle the case of a page which we actually need to copy to a new page, 3330 * either due to COW or unsharing. 3331 * 3332 * Called with mmap_lock locked and the old page referenced, but 3333 * without the ptl held. 3334 * 3335 * High level logic flow: 3336 * 3337 * - Allocate a page, copy the content of the old page to the new one. 3338 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3339 * - Take the PTL. If the pte changed, bail out and release the allocated page 3340 * - If the pte is still the way we remember it, update the page table and all 3341 * relevant references. This includes dropping the reference the page-table 3342 * held to the old page, as well as updating the rmap. 3343 * - In any case, unlock the PTL and drop the reference we took to the old page. 3344 */ 3345 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3346 { 3347 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3348 struct vm_area_struct *vma = vmf->vma; 3349 struct mm_struct *mm = vma->vm_mm; 3350 struct folio *old_folio = NULL; 3351 struct folio *new_folio = NULL; 3352 pte_t entry; 3353 int page_copied = 0; 3354 struct mmu_notifier_range range; 3355 vm_fault_t ret; 3356 bool pfn_is_zero; 3357 3358 delayacct_wpcopy_start(); 3359 3360 if (vmf->page) 3361 old_folio = page_folio(vmf->page); 3362 ret = vmf_anon_prepare(vmf); 3363 if (unlikely(ret)) 3364 goto out; 3365 3366 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3367 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3368 if (!new_folio) 3369 goto oom; 3370 3371 if (!pfn_is_zero) { 3372 int err; 3373 3374 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3375 if (err) { 3376 /* 3377 * COW failed, if the fault was solved by other, 3378 * it's fine. If not, userspace would re-fault on 3379 * the same address and we will handle the fault 3380 * from the second attempt. 3381 * The -EHWPOISON case will not be retried. 3382 */ 3383 folio_put(new_folio); 3384 if (old_folio) 3385 folio_put(old_folio); 3386 3387 delayacct_wpcopy_end(); 3388 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3389 } 3390 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3391 } 3392 3393 __folio_mark_uptodate(new_folio); 3394 3395 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3396 vmf->address & PAGE_MASK, 3397 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3398 mmu_notifier_invalidate_range_start(&range); 3399 3400 /* 3401 * Re-check the pte - we dropped the lock 3402 */ 3403 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3404 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3405 if (old_folio) { 3406 if (!folio_test_anon(old_folio)) { 3407 dec_mm_counter(mm, mm_counter_file(old_folio)); 3408 inc_mm_counter(mm, MM_ANONPAGES); 3409 } 3410 } else { 3411 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3412 inc_mm_counter(mm, MM_ANONPAGES); 3413 } 3414 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3415 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3416 entry = pte_sw_mkyoung(entry); 3417 if (unlikely(unshare)) { 3418 if (pte_soft_dirty(vmf->orig_pte)) 3419 entry = pte_mksoft_dirty(entry); 3420 if (pte_uffd_wp(vmf->orig_pte)) 3421 entry = pte_mkuffd_wp(entry); 3422 } else { 3423 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3424 } 3425 3426 /* 3427 * Clear the pte entry and flush it first, before updating the 3428 * pte with the new entry, to keep TLBs on different CPUs in 3429 * sync. This code used to set the new PTE then flush TLBs, but 3430 * that left a window where the new PTE could be loaded into 3431 * some TLBs while the old PTE remains in others. 3432 */ 3433 ptep_clear_flush(vma, vmf->address, vmf->pte); 3434 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3435 folio_add_lru_vma(new_folio, vma); 3436 BUG_ON(unshare && pte_write(entry)); 3437 set_pte_at(mm, vmf->address, vmf->pte, entry); 3438 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3439 if (old_folio) { 3440 /* 3441 * Only after switching the pte to the new page may 3442 * we remove the mapcount here. Otherwise another 3443 * process may come and find the rmap count decremented 3444 * before the pte is switched to the new page, and 3445 * "reuse" the old page writing into it while our pte 3446 * here still points into it and can be read by other 3447 * threads. 3448 * 3449 * The critical issue is to order this 3450 * folio_remove_rmap_pte() with the ptp_clear_flush 3451 * above. Those stores are ordered by (if nothing else,) 3452 * the barrier present in the atomic_add_negative 3453 * in folio_remove_rmap_pte(); 3454 * 3455 * Then the TLB flush in ptep_clear_flush ensures that 3456 * no process can access the old page before the 3457 * decremented mapcount is visible. And the old page 3458 * cannot be reused until after the decremented 3459 * mapcount is visible. So transitively, TLBs to 3460 * old page will be flushed before it can be reused. 3461 */ 3462 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3463 } 3464 3465 /* Free the old page.. */ 3466 new_folio = old_folio; 3467 page_copied = 1; 3468 pte_unmap_unlock(vmf->pte, vmf->ptl); 3469 } else if (vmf->pte) { 3470 update_mmu_tlb(vma, vmf->address, vmf->pte); 3471 pte_unmap_unlock(vmf->pte, vmf->ptl); 3472 } 3473 3474 mmu_notifier_invalidate_range_end(&range); 3475 3476 if (new_folio) 3477 folio_put(new_folio); 3478 if (old_folio) { 3479 if (page_copied) 3480 free_swap_cache(old_folio); 3481 folio_put(old_folio); 3482 } 3483 3484 delayacct_wpcopy_end(); 3485 return 0; 3486 oom: 3487 ret = VM_FAULT_OOM; 3488 out: 3489 if (old_folio) 3490 folio_put(old_folio); 3491 3492 delayacct_wpcopy_end(); 3493 return ret; 3494 } 3495 3496 /** 3497 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3498 * writeable once the page is prepared 3499 * 3500 * @vmf: structure describing the fault 3501 * @folio: the folio of vmf->page 3502 * 3503 * This function handles all that is needed to finish a write page fault in a 3504 * shared mapping due to PTE being read-only once the mapped page is prepared. 3505 * It handles locking of PTE and modifying it. 3506 * 3507 * The function expects the page to be locked or other protection against 3508 * concurrent faults / writeback (such as DAX radix tree locks). 3509 * 3510 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3511 * we acquired PTE lock. 3512 */ 3513 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3514 { 3515 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3516 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3517 &vmf->ptl); 3518 if (!vmf->pte) 3519 return VM_FAULT_NOPAGE; 3520 /* 3521 * We might have raced with another page fault while we released the 3522 * pte_offset_map_lock. 3523 */ 3524 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3525 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3526 pte_unmap_unlock(vmf->pte, vmf->ptl); 3527 return VM_FAULT_NOPAGE; 3528 } 3529 wp_page_reuse(vmf, folio); 3530 return 0; 3531 } 3532 3533 /* 3534 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3535 * mapping 3536 */ 3537 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3538 { 3539 struct vm_area_struct *vma = vmf->vma; 3540 3541 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3542 vm_fault_t ret; 3543 3544 pte_unmap_unlock(vmf->pte, vmf->ptl); 3545 ret = vmf_can_call_fault(vmf); 3546 if (ret) 3547 return ret; 3548 3549 vmf->flags |= FAULT_FLAG_MKWRITE; 3550 ret = vma->vm_ops->pfn_mkwrite(vmf); 3551 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3552 return ret; 3553 return finish_mkwrite_fault(vmf, NULL); 3554 } 3555 wp_page_reuse(vmf, NULL); 3556 return 0; 3557 } 3558 3559 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3560 __releases(vmf->ptl) 3561 { 3562 struct vm_area_struct *vma = vmf->vma; 3563 vm_fault_t ret = 0; 3564 3565 folio_get(folio); 3566 3567 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3568 vm_fault_t tmp; 3569 3570 pte_unmap_unlock(vmf->pte, vmf->ptl); 3571 tmp = vmf_can_call_fault(vmf); 3572 if (tmp) { 3573 folio_put(folio); 3574 return tmp; 3575 } 3576 3577 tmp = do_page_mkwrite(vmf, folio); 3578 if (unlikely(!tmp || (tmp & 3579 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3580 folio_put(folio); 3581 return tmp; 3582 } 3583 tmp = finish_mkwrite_fault(vmf, folio); 3584 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3585 folio_unlock(folio); 3586 folio_put(folio); 3587 return tmp; 3588 } 3589 } else { 3590 wp_page_reuse(vmf, folio); 3591 folio_lock(folio); 3592 } 3593 ret |= fault_dirty_shared_page(vmf); 3594 folio_put(folio); 3595 3596 return ret; 3597 } 3598 3599 static bool wp_can_reuse_anon_folio(struct folio *folio, 3600 struct vm_area_struct *vma) 3601 { 3602 /* 3603 * We could currently only reuse a subpage of a large folio if no 3604 * other subpages of the large folios are still mapped. However, 3605 * let's just consistently not reuse subpages even if we could 3606 * reuse in that scenario, and give back a large folio a bit 3607 * sooner. 3608 */ 3609 if (folio_test_large(folio)) 3610 return false; 3611 3612 /* 3613 * We have to verify under folio lock: these early checks are 3614 * just an optimization to avoid locking the folio and freeing 3615 * the swapcache if there is little hope that we can reuse. 3616 * 3617 * KSM doesn't necessarily raise the folio refcount. 3618 */ 3619 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3620 return false; 3621 if (!folio_test_lru(folio)) 3622 /* 3623 * We cannot easily detect+handle references from 3624 * remote LRU caches or references to LRU folios. 3625 */ 3626 lru_add_drain(); 3627 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3628 return false; 3629 if (!folio_trylock(folio)) 3630 return false; 3631 if (folio_test_swapcache(folio)) 3632 folio_free_swap(folio); 3633 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3634 folio_unlock(folio); 3635 return false; 3636 } 3637 /* 3638 * Ok, we've got the only folio reference from our mapping 3639 * and the folio is locked, it's dark out, and we're wearing 3640 * sunglasses. Hit it. 3641 */ 3642 folio_move_anon_rmap(folio, vma); 3643 folio_unlock(folio); 3644 return true; 3645 } 3646 3647 /* 3648 * This routine handles present pages, when 3649 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3650 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3651 * (FAULT_FLAG_UNSHARE) 3652 * 3653 * It is done by copying the page to a new address and decrementing the 3654 * shared-page counter for the old page. 3655 * 3656 * Note that this routine assumes that the protection checks have been 3657 * done by the caller (the low-level page fault routine in most cases). 3658 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3659 * done any necessary COW. 3660 * 3661 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3662 * though the page will change only once the write actually happens. This 3663 * avoids a few races, and potentially makes it more efficient. 3664 * 3665 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3666 * but allow concurrent faults), with pte both mapped and locked. 3667 * We return with mmap_lock still held, but pte unmapped and unlocked. 3668 */ 3669 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3670 __releases(vmf->ptl) 3671 { 3672 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3673 struct vm_area_struct *vma = vmf->vma; 3674 struct folio *folio = NULL; 3675 pte_t pte; 3676 3677 if (likely(!unshare)) { 3678 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3679 if (!userfaultfd_wp_async(vma)) { 3680 pte_unmap_unlock(vmf->pte, vmf->ptl); 3681 return handle_userfault(vmf, VM_UFFD_WP); 3682 } 3683 3684 /* 3685 * Nothing needed (cache flush, TLB invalidations, 3686 * etc.) because we're only removing the uffd-wp bit, 3687 * which is completely invisible to the user. 3688 */ 3689 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3690 3691 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3692 /* 3693 * Update this to be prepared for following up CoW 3694 * handling 3695 */ 3696 vmf->orig_pte = pte; 3697 } 3698 3699 /* 3700 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3701 * is flushed in this case before copying. 3702 */ 3703 if (unlikely(userfaultfd_wp(vmf->vma) && 3704 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3705 flush_tlb_page(vmf->vma, vmf->address); 3706 } 3707 3708 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3709 3710 if (vmf->page) 3711 folio = page_folio(vmf->page); 3712 3713 /* 3714 * Shared mapping: we are guaranteed to have VM_WRITE and 3715 * FAULT_FLAG_WRITE set at this point. 3716 */ 3717 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3718 /* 3719 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3720 * VM_PFNMAP VMA. 3721 * 3722 * We should not cow pages in a shared writeable mapping. 3723 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3724 */ 3725 if (!vmf->page) 3726 return wp_pfn_shared(vmf); 3727 return wp_page_shared(vmf, folio); 3728 } 3729 3730 /* 3731 * Private mapping: create an exclusive anonymous page copy if reuse 3732 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3733 * 3734 * If we encounter a page that is marked exclusive, we must reuse 3735 * the page without further checks. 3736 */ 3737 if (folio && folio_test_anon(folio) && 3738 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3739 if (!PageAnonExclusive(vmf->page)) 3740 SetPageAnonExclusive(vmf->page); 3741 if (unlikely(unshare)) { 3742 pte_unmap_unlock(vmf->pte, vmf->ptl); 3743 return 0; 3744 } 3745 wp_page_reuse(vmf, folio); 3746 return 0; 3747 } 3748 /* 3749 * Ok, we need to copy. Oh, well.. 3750 */ 3751 if (folio) 3752 folio_get(folio); 3753 3754 pte_unmap_unlock(vmf->pte, vmf->ptl); 3755 #ifdef CONFIG_KSM 3756 if (folio && folio_test_ksm(folio)) 3757 count_vm_event(COW_KSM); 3758 #endif 3759 return wp_page_copy(vmf); 3760 } 3761 3762 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3763 unsigned long start_addr, unsigned long end_addr, 3764 struct zap_details *details) 3765 { 3766 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3767 } 3768 3769 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3770 pgoff_t first_index, 3771 pgoff_t last_index, 3772 struct zap_details *details) 3773 { 3774 struct vm_area_struct *vma; 3775 pgoff_t vba, vea, zba, zea; 3776 3777 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3778 vba = vma->vm_pgoff; 3779 vea = vba + vma_pages(vma) - 1; 3780 zba = max(first_index, vba); 3781 zea = min(last_index, vea); 3782 3783 unmap_mapping_range_vma(vma, 3784 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3785 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3786 details); 3787 } 3788 } 3789 3790 /** 3791 * unmap_mapping_folio() - Unmap single folio from processes. 3792 * @folio: The locked folio to be unmapped. 3793 * 3794 * Unmap this folio from any userspace process which still has it mmaped. 3795 * Typically, for efficiency, the range of nearby pages has already been 3796 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3797 * truncation or invalidation holds the lock on a folio, it may find that 3798 * the page has been remapped again: and then uses unmap_mapping_folio() 3799 * to unmap it finally. 3800 */ 3801 void unmap_mapping_folio(struct folio *folio) 3802 { 3803 struct address_space *mapping = folio->mapping; 3804 struct zap_details details = { }; 3805 pgoff_t first_index; 3806 pgoff_t last_index; 3807 3808 VM_BUG_ON(!folio_test_locked(folio)); 3809 3810 first_index = folio->index; 3811 last_index = folio_next_index(folio) - 1; 3812 3813 details.even_cows = false; 3814 details.single_folio = folio; 3815 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3816 3817 i_mmap_lock_read(mapping); 3818 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3819 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3820 last_index, &details); 3821 i_mmap_unlock_read(mapping); 3822 } 3823 3824 /** 3825 * unmap_mapping_pages() - Unmap pages from processes. 3826 * @mapping: The address space containing pages to be unmapped. 3827 * @start: Index of first page to be unmapped. 3828 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3829 * @even_cows: Whether to unmap even private COWed pages. 3830 * 3831 * Unmap the pages in this address space from any userspace process which 3832 * has them mmaped. Generally, you want to remove COWed pages as well when 3833 * a file is being truncated, but not when invalidating pages from the page 3834 * cache. 3835 */ 3836 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3837 pgoff_t nr, bool even_cows) 3838 { 3839 struct zap_details details = { }; 3840 pgoff_t first_index = start; 3841 pgoff_t last_index = start + nr - 1; 3842 3843 details.even_cows = even_cows; 3844 if (last_index < first_index) 3845 last_index = ULONG_MAX; 3846 3847 i_mmap_lock_read(mapping); 3848 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3849 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3850 last_index, &details); 3851 i_mmap_unlock_read(mapping); 3852 } 3853 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3854 3855 /** 3856 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3857 * address_space corresponding to the specified byte range in the underlying 3858 * file. 3859 * 3860 * @mapping: the address space containing mmaps to be unmapped. 3861 * @holebegin: byte in first page to unmap, relative to the start of 3862 * the underlying file. This will be rounded down to a PAGE_SIZE 3863 * boundary. Note that this is different from truncate_pagecache(), which 3864 * must keep the partial page. In contrast, we must get rid of 3865 * partial pages. 3866 * @holelen: size of prospective hole in bytes. This will be rounded 3867 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3868 * end of the file. 3869 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3870 * but 0 when invalidating pagecache, don't throw away private data. 3871 */ 3872 void unmap_mapping_range(struct address_space *mapping, 3873 loff_t const holebegin, loff_t const holelen, int even_cows) 3874 { 3875 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3876 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3877 3878 /* Check for overflow. */ 3879 if (sizeof(holelen) > sizeof(hlen)) { 3880 long long holeend = 3881 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3882 if (holeend & ~(long long)ULONG_MAX) 3883 hlen = ULONG_MAX - hba + 1; 3884 } 3885 3886 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3887 } 3888 EXPORT_SYMBOL(unmap_mapping_range); 3889 3890 /* 3891 * Restore a potential device exclusive pte to a working pte entry 3892 */ 3893 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3894 { 3895 struct folio *folio = page_folio(vmf->page); 3896 struct vm_area_struct *vma = vmf->vma; 3897 struct mmu_notifier_range range; 3898 vm_fault_t ret; 3899 3900 /* 3901 * We need a reference to lock the folio because we don't hold 3902 * the PTL so a racing thread can remove the device-exclusive 3903 * entry and unmap it. If the folio is free the entry must 3904 * have been removed already. If it happens to have already 3905 * been re-allocated after being freed all we do is lock and 3906 * unlock it. 3907 */ 3908 if (!folio_try_get(folio)) 3909 return 0; 3910 3911 ret = folio_lock_or_retry(folio, vmf); 3912 if (ret) { 3913 folio_put(folio); 3914 return ret; 3915 } 3916 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3917 vma->vm_mm, vmf->address & PAGE_MASK, 3918 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3919 mmu_notifier_invalidate_range_start(&range); 3920 3921 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3922 &vmf->ptl); 3923 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3924 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3925 3926 if (vmf->pte) 3927 pte_unmap_unlock(vmf->pte, vmf->ptl); 3928 folio_unlock(folio); 3929 folio_put(folio); 3930 3931 mmu_notifier_invalidate_range_end(&range); 3932 return 0; 3933 } 3934 3935 static inline bool should_try_to_free_swap(struct folio *folio, 3936 struct vm_area_struct *vma, 3937 unsigned int fault_flags) 3938 { 3939 if (!folio_test_swapcache(folio)) 3940 return false; 3941 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3942 folio_test_mlocked(folio)) 3943 return true; 3944 /* 3945 * If we want to map a page that's in the swapcache writable, we 3946 * have to detect via the refcount if we're really the exclusive 3947 * user. Try freeing the swapcache to get rid of the swapcache 3948 * reference only in case it's likely that we'll be the exlusive user. 3949 */ 3950 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3951 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 3952 } 3953 3954 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3955 { 3956 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3957 vmf->address, &vmf->ptl); 3958 if (!vmf->pte) 3959 return 0; 3960 /* 3961 * Be careful so that we will only recover a special uffd-wp pte into a 3962 * none pte. Otherwise it means the pte could have changed, so retry. 3963 * 3964 * This should also cover the case where e.g. the pte changed 3965 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3966 * So is_pte_marker() check is not enough to safely drop the pte. 3967 */ 3968 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3969 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3970 pte_unmap_unlock(vmf->pte, vmf->ptl); 3971 return 0; 3972 } 3973 3974 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3975 { 3976 if (vma_is_anonymous(vmf->vma)) 3977 return do_anonymous_page(vmf); 3978 else 3979 return do_fault(vmf); 3980 } 3981 3982 /* 3983 * This is actually a page-missing access, but with uffd-wp special pte 3984 * installed. It means this pte was wr-protected before being unmapped. 3985 */ 3986 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3987 { 3988 /* 3989 * Just in case there're leftover special ptes even after the region 3990 * got unregistered - we can simply clear them. 3991 */ 3992 if (unlikely(!userfaultfd_wp(vmf->vma))) 3993 return pte_marker_clear(vmf); 3994 3995 return do_pte_missing(vmf); 3996 } 3997 3998 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3999 { 4000 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4001 unsigned long marker = pte_marker_get(entry); 4002 4003 /* 4004 * PTE markers should never be empty. If anything weird happened, 4005 * the best thing to do is to kill the process along with its mm. 4006 */ 4007 if (WARN_ON_ONCE(!marker)) 4008 return VM_FAULT_SIGBUS; 4009 4010 /* Higher priority than uffd-wp when data corrupted */ 4011 if (marker & PTE_MARKER_POISONED) 4012 return VM_FAULT_HWPOISON; 4013 4014 /* Hitting a guard page is always a fatal condition. */ 4015 if (marker & PTE_MARKER_GUARD) 4016 return VM_FAULT_SIGSEGV; 4017 4018 if (pte_marker_entry_uffd_wp(entry)) 4019 return pte_marker_handle_uffd_wp(vmf); 4020 4021 /* This is an unknown pte marker */ 4022 return VM_FAULT_SIGBUS; 4023 } 4024 4025 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4026 { 4027 struct vm_area_struct *vma = vmf->vma; 4028 struct folio *folio; 4029 swp_entry_t entry; 4030 4031 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4032 if (!folio) 4033 return NULL; 4034 4035 entry = pte_to_swp_entry(vmf->orig_pte); 4036 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4037 GFP_KERNEL, entry)) { 4038 folio_put(folio); 4039 return NULL; 4040 } 4041 4042 return folio; 4043 } 4044 4045 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4046 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr) 4047 { 4048 struct swap_info_struct *si = swp_swap_info(entry); 4049 pgoff_t offset = swp_offset(entry); 4050 int i; 4051 4052 /* 4053 * While allocating a large folio and doing swap_read_folio, which is 4054 * the case the being faulted pte doesn't have swapcache. We need to 4055 * ensure all PTEs have no cache as well, otherwise, we might go to 4056 * swap devices while the content is in swapcache. 4057 */ 4058 for (i = 0; i < max_nr; i++) { 4059 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE)) 4060 return i; 4061 } 4062 4063 return i; 4064 } 4065 4066 /* 4067 * Check if the PTEs within a range are contiguous swap entries 4068 * and have consistent swapcache, zeromap. 4069 */ 4070 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4071 { 4072 unsigned long addr; 4073 swp_entry_t entry; 4074 int idx; 4075 pte_t pte; 4076 4077 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4078 idx = (vmf->address - addr) / PAGE_SIZE; 4079 pte = ptep_get(ptep); 4080 4081 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4082 return false; 4083 entry = pte_to_swp_entry(pte); 4084 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4085 return false; 4086 4087 /* 4088 * swap_read_folio() can't handle the case a large folio is hybridly 4089 * from different backends. And they are likely corner cases. Similar 4090 * things might be added once zswap support large folios. 4091 */ 4092 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4093 return false; 4094 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4095 return false; 4096 4097 return true; 4098 } 4099 4100 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4101 unsigned long addr, 4102 unsigned long orders) 4103 { 4104 int order, nr; 4105 4106 order = highest_order(orders); 4107 4108 /* 4109 * To swap in a THP with nr pages, we require that its first swap_offset 4110 * is aligned with that number, as it was when the THP was swapped out. 4111 * This helps filter out most invalid entries. 4112 */ 4113 while (orders) { 4114 nr = 1 << order; 4115 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4116 break; 4117 order = next_order(&orders, order); 4118 } 4119 4120 return orders; 4121 } 4122 4123 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4124 { 4125 struct vm_area_struct *vma = vmf->vma; 4126 unsigned long orders; 4127 struct folio *folio; 4128 unsigned long addr; 4129 swp_entry_t entry; 4130 spinlock_t *ptl; 4131 pte_t *pte; 4132 gfp_t gfp; 4133 int order; 4134 4135 /* 4136 * If uffd is active for the vma we need per-page fault fidelity to 4137 * maintain the uffd semantics. 4138 */ 4139 if (unlikely(userfaultfd_armed(vma))) 4140 goto fallback; 4141 4142 /* 4143 * A large swapped out folio could be partially or fully in zswap. We 4144 * lack handling for such cases, so fallback to swapping in order-0 4145 * folio. 4146 */ 4147 if (!zswap_never_enabled()) 4148 goto fallback; 4149 4150 entry = pte_to_swp_entry(vmf->orig_pte); 4151 /* 4152 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4153 * and suitable for swapping THP. 4154 */ 4155 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4156 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4157 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4158 orders = thp_swap_suitable_orders(swp_offset(entry), 4159 vmf->address, orders); 4160 4161 if (!orders) 4162 goto fallback; 4163 4164 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4165 vmf->address & PMD_MASK, &ptl); 4166 if (unlikely(!pte)) 4167 goto fallback; 4168 4169 /* 4170 * For do_swap_page, find the highest order where the aligned range is 4171 * completely swap entries with contiguous swap offsets. 4172 */ 4173 order = highest_order(orders); 4174 while (orders) { 4175 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4176 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4177 break; 4178 order = next_order(&orders, order); 4179 } 4180 4181 pte_unmap_unlock(pte, ptl); 4182 4183 /* Try allocating the highest of the remaining orders. */ 4184 gfp = vma_thp_gfp_mask(vma); 4185 while (orders) { 4186 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4187 folio = vma_alloc_folio(gfp, order, vma, addr); 4188 if (folio) { 4189 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4190 gfp, entry)) 4191 return folio; 4192 folio_put(folio); 4193 } 4194 order = next_order(&orders, order); 4195 } 4196 4197 fallback: 4198 return __alloc_swap_folio(vmf); 4199 } 4200 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4201 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4202 { 4203 return __alloc_swap_folio(vmf); 4204 } 4205 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4206 4207 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4208 4209 /* 4210 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4211 * but allow concurrent faults), and pte mapped but not yet locked. 4212 * We return with pte unmapped and unlocked. 4213 * 4214 * We return with the mmap_lock locked or unlocked in the same cases 4215 * as does filemap_fault(). 4216 */ 4217 vm_fault_t do_swap_page(struct vm_fault *vmf) 4218 { 4219 struct vm_area_struct *vma = vmf->vma; 4220 struct folio *swapcache, *folio = NULL; 4221 DECLARE_WAITQUEUE(wait, current); 4222 struct page *page; 4223 struct swap_info_struct *si = NULL; 4224 rmap_t rmap_flags = RMAP_NONE; 4225 bool need_clear_cache = false; 4226 bool exclusive = false; 4227 swp_entry_t entry; 4228 pte_t pte; 4229 vm_fault_t ret = 0; 4230 void *shadow = NULL; 4231 int nr_pages; 4232 unsigned long page_idx; 4233 unsigned long address; 4234 pte_t *ptep; 4235 4236 if (!pte_unmap_same(vmf)) 4237 goto out; 4238 4239 entry = pte_to_swp_entry(vmf->orig_pte); 4240 if (unlikely(non_swap_entry(entry))) { 4241 if (is_migration_entry(entry)) { 4242 migration_entry_wait(vma->vm_mm, vmf->pmd, 4243 vmf->address); 4244 } else if (is_device_exclusive_entry(entry)) { 4245 vmf->page = pfn_swap_entry_to_page(entry); 4246 ret = remove_device_exclusive_entry(vmf); 4247 } else if (is_device_private_entry(entry)) { 4248 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4249 /* 4250 * migrate_to_ram is not yet ready to operate 4251 * under VMA lock. 4252 */ 4253 vma_end_read(vma); 4254 ret = VM_FAULT_RETRY; 4255 goto out; 4256 } 4257 4258 vmf->page = pfn_swap_entry_to_page(entry); 4259 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4260 vmf->address, &vmf->ptl); 4261 if (unlikely(!vmf->pte || 4262 !pte_same(ptep_get(vmf->pte), 4263 vmf->orig_pte))) 4264 goto unlock; 4265 4266 /* 4267 * Get a page reference while we know the page can't be 4268 * freed. 4269 */ 4270 get_page(vmf->page); 4271 pte_unmap_unlock(vmf->pte, vmf->ptl); 4272 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 4273 put_page(vmf->page); 4274 } else if (is_hwpoison_entry(entry)) { 4275 ret = VM_FAULT_HWPOISON; 4276 } else if (is_pte_marker_entry(entry)) { 4277 ret = handle_pte_marker(vmf); 4278 } else { 4279 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4280 ret = VM_FAULT_SIGBUS; 4281 } 4282 goto out; 4283 } 4284 4285 /* Prevent swapoff from happening to us. */ 4286 si = get_swap_device(entry); 4287 if (unlikely(!si)) 4288 goto out; 4289 4290 folio = swap_cache_get_folio(entry, vma, vmf->address); 4291 if (folio) 4292 page = folio_file_page(folio, swp_offset(entry)); 4293 swapcache = folio; 4294 4295 if (!folio) { 4296 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4297 __swap_count(entry) == 1) { 4298 /* skip swapcache */ 4299 folio = alloc_swap_folio(vmf); 4300 if (folio) { 4301 __folio_set_locked(folio); 4302 __folio_set_swapbacked(folio); 4303 4304 nr_pages = folio_nr_pages(folio); 4305 if (folio_test_large(folio)) 4306 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4307 /* 4308 * Prevent parallel swapin from proceeding with 4309 * the cache flag. Otherwise, another thread 4310 * may finish swapin first, free the entry, and 4311 * swapout reusing the same entry. It's 4312 * undetectable as pte_same() returns true due 4313 * to entry reuse. 4314 */ 4315 if (swapcache_prepare(entry, nr_pages)) { 4316 /* 4317 * Relax a bit to prevent rapid 4318 * repeated page faults. 4319 */ 4320 add_wait_queue(&swapcache_wq, &wait); 4321 schedule_timeout_uninterruptible(1); 4322 remove_wait_queue(&swapcache_wq, &wait); 4323 goto out_page; 4324 } 4325 need_clear_cache = true; 4326 4327 mem_cgroup_swapin_uncharge_swap(entry, nr_pages); 4328 4329 shadow = get_shadow_from_swap_cache(entry); 4330 if (shadow) 4331 workingset_refault(folio, shadow); 4332 4333 folio_add_lru(folio); 4334 4335 /* To provide entry to swap_read_folio() */ 4336 folio->swap = entry; 4337 swap_read_folio(folio, NULL); 4338 folio->private = NULL; 4339 } 4340 } else { 4341 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4342 vmf); 4343 swapcache = folio; 4344 } 4345 4346 if (!folio) { 4347 /* 4348 * Back out if somebody else faulted in this pte 4349 * while we released the pte lock. 4350 */ 4351 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4352 vmf->address, &vmf->ptl); 4353 if (likely(vmf->pte && 4354 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4355 ret = VM_FAULT_OOM; 4356 goto unlock; 4357 } 4358 4359 /* Had to read the page from swap area: Major fault */ 4360 ret = VM_FAULT_MAJOR; 4361 count_vm_event(PGMAJFAULT); 4362 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4363 page = folio_file_page(folio, swp_offset(entry)); 4364 } else if (PageHWPoison(page)) { 4365 /* 4366 * hwpoisoned dirty swapcache pages are kept for killing 4367 * owner processes (which may be unknown at hwpoison time) 4368 */ 4369 ret = VM_FAULT_HWPOISON; 4370 goto out_release; 4371 } 4372 4373 ret |= folio_lock_or_retry(folio, vmf); 4374 if (ret & VM_FAULT_RETRY) 4375 goto out_release; 4376 4377 if (swapcache) { 4378 /* 4379 * Make sure folio_free_swap() or swapoff did not release the 4380 * swapcache from under us. The page pin, and pte_same test 4381 * below, are not enough to exclude that. Even if it is still 4382 * swapcache, we need to check that the page's swap has not 4383 * changed. 4384 */ 4385 if (unlikely(!folio_test_swapcache(folio) || 4386 page_swap_entry(page).val != entry.val)) 4387 goto out_page; 4388 4389 /* 4390 * KSM sometimes has to copy on read faults, for example, if 4391 * page->index of !PageKSM() pages would be nonlinear inside the 4392 * anon VMA -- PageKSM() is lost on actual swapout. 4393 */ 4394 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4395 if (unlikely(!folio)) { 4396 ret = VM_FAULT_OOM; 4397 folio = swapcache; 4398 goto out_page; 4399 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4400 ret = VM_FAULT_HWPOISON; 4401 folio = swapcache; 4402 goto out_page; 4403 } 4404 if (folio != swapcache) 4405 page = folio_page(folio, 0); 4406 4407 /* 4408 * If we want to map a page that's in the swapcache writable, we 4409 * have to detect via the refcount if we're really the exclusive 4410 * owner. Try removing the extra reference from the local LRU 4411 * caches if required. 4412 */ 4413 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4414 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4415 lru_add_drain(); 4416 } 4417 4418 folio_throttle_swaprate(folio, GFP_KERNEL); 4419 4420 /* 4421 * Back out if somebody else already faulted in this pte. 4422 */ 4423 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4424 &vmf->ptl); 4425 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4426 goto out_nomap; 4427 4428 if (unlikely(!folio_test_uptodate(folio))) { 4429 ret = VM_FAULT_SIGBUS; 4430 goto out_nomap; 4431 } 4432 4433 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4434 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4435 unsigned long nr = folio_nr_pages(folio); 4436 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4437 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4438 pte_t *folio_ptep = vmf->pte - idx; 4439 pte_t folio_pte = ptep_get(folio_ptep); 4440 4441 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4442 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4443 goto out_nomap; 4444 4445 page_idx = idx; 4446 address = folio_start; 4447 ptep = folio_ptep; 4448 goto check_folio; 4449 } 4450 4451 nr_pages = 1; 4452 page_idx = 0; 4453 address = vmf->address; 4454 ptep = vmf->pte; 4455 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4456 int nr = folio_nr_pages(folio); 4457 unsigned long idx = folio_page_idx(folio, page); 4458 unsigned long folio_start = address - idx * PAGE_SIZE; 4459 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4460 pte_t *folio_ptep; 4461 pte_t folio_pte; 4462 4463 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4464 goto check_folio; 4465 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4466 goto check_folio; 4467 4468 folio_ptep = vmf->pte - idx; 4469 folio_pte = ptep_get(folio_ptep); 4470 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4471 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4472 goto check_folio; 4473 4474 page_idx = idx; 4475 address = folio_start; 4476 ptep = folio_ptep; 4477 nr_pages = nr; 4478 entry = folio->swap; 4479 page = &folio->page; 4480 } 4481 4482 check_folio: 4483 /* 4484 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4485 * must never point at an anonymous page in the swapcache that is 4486 * PG_anon_exclusive. Sanity check that this holds and especially, that 4487 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4488 * check after taking the PT lock and making sure that nobody 4489 * concurrently faulted in this page and set PG_anon_exclusive. 4490 */ 4491 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4492 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4493 4494 /* 4495 * Check under PT lock (to protect against concurrent fork() sharing 4496 * the swap entry concurrently) for certainly exclusive pages. 4497 */ 4498 if (!folio_test_ksm(folio)) { 4499 exclusive = pte_swp_exclusive(vmf->orig_pte); 4500 if (folio != swapcache) { 4501 /* 4502 * We have a fresh page that is not exposed to the 4503 * swapcache -> certainly exclusive. 4504 */ 4505 exclusive = true; 4506 } else if (exclusive && folio_test_writeback(folio) && 4507 data_race(si->flags & SWP_STABLE_WRITES)) { 4508 /* 4509 * This is tricky: not all swap backends support 4510 * concurrent page modifications while under writeback. 4511 * 4512 * So if we stumble over such a page in the swapcache 4513 * we must not set the page exclusive, otherwise we can 4514 * map it writable without further checks and modify it 4515 * while still under writeback. 4516 * 4517 * For these problematic swap backends, simply drop the 4518 * exclusive marker: this is perfectly fine as we start 4519 * writeback only if we fully unmapped the page and 4520 * there are no unexpected references on the page after 4521 * unmapping succeeded. After fully unmapped, no 4522 * further GUP references (FOLL_GET and FOLL_PIN) can 4523 * appear, so dropping the exclusive marker and mapping 4524 * it only R/O is fine. 4525 */ 4526 exclusive = false; 4527 } 4528 } 4529 4530 /* 4531 * Some architectures may have to restore extra metadata to the page 4532 * when reading from swap. This metadata may be indexed by swap entry 4533 * so this must be called before swap_free(). 4534 */ 4535 arch_swap_restore(folio_swap(entry, folio), folio); 4536 4537 /* 4538 * Remove the swap entry and conditionally try to free up the swapcache. 4539 * We're already holding a reference on the page but haven't mapped it 4540 * yet. 4541 */ 4542 swap_free_nr(entry, nr_pages); 4543 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4544 folio_free_swap(folio); 4545 4546 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4547 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4548 pte = mk_pte(page, vma->vm_page_prot); 4549 if (pte_swp_soft_dirty(vmf->orig_pte)) 4550 pte = pte_mksoft_dirty(pte); 4551 if (pte_swp_uffd_wp(vmf->orig_pte)) 4552 pte = pte_mkuffd_wp(pte); 4553 4554 /* 4555 * Same logic as in do_wp_page(); however, optimize for pages that are 4556 * certainly not shared either because we just allocated them without 4557 * exposing them to the swapcache or because the swap entry indicates 4558 * exclusivity. 4559 */ 4560 if (!folio_test_ksm(folio) && 4561 (exclusive || folio_ref_count(folio) == 1)) { 4562 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4563 !pte_needs_soft_dirty_wp(vma, pte)) { 4564 pte = pte_mkwrite(pte, vma); 4565 if (vmf->flags & FAULT_FLAG_WRITE) { 4566 pte = pte_mkdirty(pte); 4567 vmf->flags &= ~FAULT_FLAG_WRITE; 4568 } 4569 } 4570 rmap_flags |= RMAP_EXCLUSIVE; 4571 } 4572 folio_ref_add(folio, nr_pages - 1); 4573 flush_icache_pages(vma, page, nr_pages); 4574 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4575 4576 /* ksm created a completely new copy */ 4577 if (unlikely(folio != swapcache && swapcache)) { 4578 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4579 folio_add_lru_vma(folio, vma); 4580 } else if (!folio_test_anon(folio)) { 4581 /* 4582 * We currently only expect small !anon folios which are either 4583 * fully exclusive or fully shared, or new allocated large 4584 * folios which are fully exclusive. If we ever get large 4585 * folios within swapcache here, we have to be careful. 4586 */ 4587 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4588 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4589 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4590 } else { 4591 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4592 rmap_flags); 4593 } 4594 4595 VM_BUG_ON(!folio_test_anon(folio) || 4596 (pte_write(pte) && !PageAnonExclusive(page))); 4597 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4598 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4599 pte, pte, nr_pages); 4600 4601 folio_unlock(folio); 4602 if (folio != swapcache && swapcache) { 4603 /* 4604 * Hold the lock to avoid the swap entry to be reused 4605 * until we take the PT lock for the pte_same() check 4606 * (to avoid false positives from pte_same). For 4607 * further safety release the lock after the swap_free 4608 * so that the swap count won't change under a 4609 * parallel locked swapcache. 4610 */ 4611 folio_unlock(swapcache); 4612 folio_put(swapcache); 4613 } 4614 4615 if (vmf->flags & FAULT_FLAG_WRITE) { 4616 ret |= do_wp_page(vmf); 4617 if (ret & VM_FAULT_ERROR) 4618 ret &= VM_FAULT_ERROR; 4619 goto out; 4620 } 4621 4622 /* No need to invalidate - it was non-present before */ 4623 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4624 unlock: 4625 if (vmf->pte) 4626 pte_unmap_unlock(vmf->pte, vmf->ptl); 4627 out: 4628 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4629 if (need_clear_cache) { 4630 swapcache_clear(si, entry, nr_pages); 4631 if (waitqueue_active(&swapcache_wq)) 4632 wake_up(&swapcache_wq); 4633 } 4634 if (si) 4635 put_swap_device(si); 4636 return ret; 4637 out_nomap: 4638 if (vmf->pte) 4639 pte_unmap_unlock(vmf->pte, vmf->ptl); 4640 out_page: 4641 folio_unlock(folio); 4642 out_release: 4643 folio_put(folio); 4644 if (folio != swapcache && swapcache) { 4645 folio_unlock(swapcache); 4646 folio_put(swapcache); 4647 } 4648 if (need_clear_cache) { 4649 swapcache_clear(si, entry, nr_pages); 4650 if (waitqueue_active(&swapcache_wq)) 4651 wake_up(&swapcache_wq); 4652 } 4653 if (si) 4654 put_swap_device(si); 4655 return ret; 4656 } 4657 4658 static bool pte_range_none(pte_t *pte, int nr_pages) 4659 { 4660 int i; 4661 4662 for (i = 0; i < nr_pages; i++) { 4663 if (!pte_none(ptep_get_lockless(pte + i))) 4664 return false; 4665 } 4666 4667 return true; 4668 } 4669 4670 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4671 { 4672 struct vm_area_struct *vma = vmf->vma; 4673 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4674 unsigned long orders; 4675 struct folio *folio; 4676 unsigned long addr; 4677 pte_t *pte; 4678 gfp_t gfp; 4679 int order; 4680 4681 /* 4682 * If uffd is active for the vma we need per-page fault fidelity to 4683 * maintain the uffd semantics. 4684 */ 4685 if (unlikely(userfaultfd_armed(vma))) 4686 goto fallback; 4687 4688 /* 4689 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4690 * for this vma. Then filter out the orders that can't be allocated over 4691 * the faulting address and still be fully contained in the vma. 4692 */ 4693 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4694 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4695 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4696 4697 if (!orders) 4698 goto fallback; 4699 4700 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4701 if (!pte) 4702 return ERR_PTR(-EAGAIN); 4703 4704 /* 4705 * Find the highest order where the aligned range is completely 4706 * pte_none(). Note that all remaining orders will be completely 4707 * pte_none(). 4708 */ 4709 order = highest_order(orders); 4710 while (orders) { 4711 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4712 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4713 break; 4714 order = next_order(&orders, order); 4715 } 4716 4717 pte_unmap(pte); 4718 4719 if (!orders) 4720 goto fallback; 4721 4722 /* Try allocating the highest of the remaining orders. */ 4723 gfp = vma_thp_gfp_mask(vma); 4724 while (orders) { 4725 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4726 folio = vma_alloc_folio(gfp, order, vma, addr); 4727 if (folio) { 4728 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4729 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 4730 folio_put(folio); 4731 goto next; 4732 } 4733 folio_throttle_swaprate(folio, gfp); 4734 /* 4735 * When a folio is not zeroed during allocation 4736 * (__GFP_ZERO not used), folio_zero_user() is used 4737 * to make sure that the page corresponding to the 4738 * faulting address will be hot in the cache after 4739 * zeroing. 4740 */ 4741 if (!alloc_zeroed()) 4742 folio_zero_user(folio, vmf->address); 4743 return folio; 4744 } 4745 next: 4746 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 4747 order = next_order(&orders, order); 4748 } 4749 4750 fallback: 4751 #endif 4752 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4753 } 4754 4755 /* 4756 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4757 * but allow concurrent faults), and pte mapped but not yet locked. 4758 * We return with mmap_lock still held, but pte unmapped and unlocked. 4759 */ 4760 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4761 { 4762 struct vm_area_struct *vma = vmf->vma; 4763 unsigned long addr = vmf->address; 4764 struct folio *folio; 4765 vm_fault_t ret = 0; 4766 int nr_pages = 1; 4767 pte_t entry; 4768 4769 /* File mapping without ->vm_ops ? */ 4770 if (vma->vm_flags & VM_SHARED) 4771 return VM_FAULT_SIGBUS; 4772 4773 /* 4774 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4775 * be distinguished from a transient failure of pte_offset_map(). 4776 */ 4777 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4778 return VM_FAULT_OOM; 4779 4780 /* Use the zero-page for reads */ 4781 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4782 !mm_forbids_zeropage(vma->vm_mm)) { 4783 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4784 vma->vm_page_prot)); 4785 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4786 vmf->address, &vmf->ptl); 4787 if (!vmf->pte) 4788 goto unlock; 4789 if (vmf_pte_changed(vmf)) { 4790 update_mmu_tlb(vma, vmf->address, vmf->pte); 4791 goto unlock; 4792 } 4793 ret = check_stable_address_space(vma->vm_mm); 4794 if (ret) 4795 goto unlock; 4796 /* Deliver the page fault to userland, check inside PT lock */ 4797 if (userfaultfd_missing(vma)) { 4798 pte_unmap_unlock(vmf->pte, vmf->ptl); 4799 return handle_userfault(vmf, VM_UFFD_MISSING); 4800 } 4801 goto setpte; 4802 } 4803 4804 /* Allocate our own private page. */ 4805 ret = vmf_anon_prepare(vmf); 4806 if (ret) 4807 return ret; 4808 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 4809 folio = alloc_anon_folio(vmf); 4810 if (IS_ERR(folio)) 4811 return 0; 4812 if (!folio) 4813 goto oom; 4814 4815 nr_pages = folio_nr_pages(folio); 4816 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4817 4818 /* 4819 * The memory barrier inside __folio_mark_uptodate makes sure that 4820 * preceding stores to the page contents become visible before 4821 * the set_pte_at() write. 4822 */ 4823 __folio_mark_uptodate(folio); 4824 4825 entry = mk_pte(&folio->page, vma->vm_page_prot); 4826 entry = pte_sw_mkyoung(entry); 4827 if (vma->vm_flags & VM_WRITE) 4828 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4829 4830 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 4831 if (!vmf->pte) 4832 goto release; 4833 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 4834 update_mmu_tlb(vma, addr, vmf->pte); 4835 goto release; 4836 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 4837 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 4838 goto release; 4839 } 4840 4841 ret = check_stable_address_space(vma->vm_mm); 4842 if (ret) 4843 goto release; 4844 4845 /* Deliver the page fault to userland, check inside PT lock */ 4846 if (userfaultfd_missing(vma)) { 4847 pte_unmap_unlock(vmf->pte, vmf->ptl); 4848 folio_put(folio); 4849 return handle_userfault(vmf, VM_UFFD_MISSING); 4850 } 4851 4852 folio_ref_add(folio, nr_pages - 1); 4853 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4854 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 4855 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 4856 folio_add_lru_vma(folio, vma); 4857 setpte: 4858 if (vmf_orig_pte_uffd_wp(vmf)) 4859 entry = pte_mkuffd_wp(entry); 4860 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 4861 4862 /* No need to invalidate - it was non-present before */ 4863 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 4864 unlock: 4865 if (vmf->pte) 4866 pte_unmap_unlock(vmf->pte, vmf->ptl); 4867 return ret; 4868 release: 4869 folio_put(folio); 4870 goto unlock; 4871 oom: 4872 return VM_FAULT_OOM; 4873 } 4874 4875 /* 4876 * The mmap_lock must have been held on entry, and may have been 4877 * released depending on flags and vma->vm_ops->fault() return value. 4878 * See filemap_fault() and __lock_page_retry(). 4879 */ 4880 static vm_fault_t __do_fault(struct vm_fault *vmf) 4881 { 4882 struct vm_area_struct *vma = vmf->vma; 4883 struct folio *folio; 4884 vm_fault_t ret; 4885 4886 /* 4887 * Preallocate pte before we take page_lock because this might lead to 4888 * deadlocks for memcg reclaim which waits for pages under writeback: 4889 * lock_page(A) 4890 * SetPageWriteback(A) 4891 * unlock_page(A) 4892 * lock_page(B) 4893 * lock_page(B) 4894 * pte_alloc_one 4895 * shrink_folio_list 4896 * wait_on_page_writeback(A) 4897 * SetPageWriteback(B) 4898 * unlock_page(B) 4899 * # flush A, B to clear the writeback 4900 */ 4901 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4902 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4903 if (!vmf->prealloc_pte) 4904 return VM_FAULT_OOM; 4905 } 4906 4907 ret = vma->vm_ops->fault(vmf); 4908 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4909 VM_FAULT_DONE_COW))) 4910 return ret; 4911 4912 folio = page_folio(vmf->page); 4913 if (unlikely(PageHWPoison(vmf->page))) { 4914 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4915 if (ret & VM_FAULT_LOCKED) { 4916 if (page_mapped(vmf->page)) 4917 unmap_mapping_folio(folio); 4918 /* Retry if a clean folio was removed from the cache. */ 4919 if (mapping_evict_folio(folio->mapping, folio)) 4920 poisonret = VM_FAULT_NOPAGE; 4921 folio_unlock(folio); 4922 } 4923 folio_put(folio); 4924 vmf->page = NULL; 4925 return poisonret; 4926 } 4927 4928 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4929 folio_lock(folio); 4930 else 4931 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 4932 4933 return ret; 4934 } 4935 4936 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4937 static void deposit_prealloc_pte(struct vm_fault *vmf) 4938 { 4939 struct vm_area_struct *vma = vmf->vma; 4940 4941 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4942 /* 4943 * We are going to consume the prealloc table, 4944 * count that as nr_ptes. 4945 */ 4946 mm_inc_nr_ptes(vma->vm_mm); 4947 vmf->prealloc_pte = NULL; 4948 } 4949 4950 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4951 { 4952 struct folio *folio = page_folio(page); 4953 struct vm_area_struct *vma = vmf->vma; 4954 bool write = vmf->flags & FAULT_FLAG_WRITE; 4955 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4956 pmd_t entry; 4957 vm_fault_t ret = VM_FAULT_FALLBACK; 4958 4959 /* 4960 * It is too late to allocate a small folio, we already have a large 4961 * folio in the pagecache: especially s390 KVM cannot tolerate any 4962 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 4963 * PMD mappings if THPs are disabled. 4964 */ 4965 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) 4966 return ret; 4967 4968 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 4969 return ret; 4970 4971 if (folio_order(folio) != HPAGE_PMD_ORDER) 4972 return ret; 4973 page = &folio->page; 4974 4975 /* 4976 * Just backoff if any subpage of a THP is corrupted otherwise 4977 * the corrupted page may mapped by PMD silently to escape the 4978 * check. This kind of THP just can be PTE mapped. Access to 4979 * the corrupted subpage should trigger SIGBUS as expected. 4980 */ 4981 if (unlikely(folio_test_has_hwpoisoned(folio))) 4982 return ret; 4983 4984 /* 4985 * Archs like ppc64 need additional space to store information 4986 * related to pte entry. Use the preallocated table for that. 4987 */ 4988 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4989 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4990 if (!vmf->prealloc_pte) 4991 return VM_FAULT_OOM; 4992 } 4993 4994 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4995 if (unlikely(!pmd_none(*vmf->pmd))) 4996 goto out; 4997 4998 flush_icache_pages(vma, page, HPAGE_PMD_NR); 4999 5000 entry = mk_huge_pmd(page, vma->vm_page_prot); 5001 if (write) 5002 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5003 5004 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5005 folio_add_file_rmap_pmd(folio, page, vma); 5006 5007 /* 5008 * deposit and withdraw with pmd lock held 5009 */ 5010 if (arch_needs_pgtable_deposit()) 5011 deposit_prealloc_pte(vmf); 5012 5013 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5014 5015 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5016 5017 /* fault is handled */ 5018 ret = 0; 5019 count_vm_event(THP_FILE_MAPPED); 5020 out: 5021 spin_unlock(vmf->ptl); 5022 return ret; 5023 } 5024 #else 5025 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 5026 { 5027 return VM_FAULT_FALLBACK; 5028 } 5029 #endif 5030 5031 /** 5032 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5033 * @vmf: Fault decription. 5034 * @folio: The folio that contains @page. 5035 * @page: The first page to create a PTE for. 5036 * @nr: The number of PTEs to create. 5037 * @addr: The first address to create a PTE for. 5038 */ 5039 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5040 struct page *page, unsigned int nr, unsigned long addr) 5041 { 5042 struct vm_area_struct *vma = vmf->vma; 5043 bool write = vmf->flags & FAULT_FLAG_WRITE; 5044 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5045 pte_t entry; 5046 5047 flush_icache_pages(vma, page, nr); 5048 entry = mk_pte(page, vma->vm_page_prot); 5049 5050 if (prefault && arch_wants_old_prefaulted_pte()) 5051 entry = pte_mkold(entry); 5052 else 5053 entry = pte_sw_mkyoung(entry); 5054 5055 if (write) 5056 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5057 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5058 entry = pte_mkuffd_wp(entry); 5059 /* copy-on-write page */ 5060 if (write && !(vma->vm_flags & VM_SHARED)) { 5061 VM_BUG_ON_FOLIO(nr != 1, folio); 5062 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5063 folio_add_lru_vma(folio, vma); 5064 } else { 5065 folio_add_file_rmap_ptes(folio, page, nr, vma); 5066 } 5067 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5068 5069 /* no need to invalidate: a not-present page won't be cached */ 5070 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5071 } 5072 5073 static bool vmf_pte_changed(struct vm_fault *vmf) 5074 { 5075 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5076 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5077 5078 return !pte_none(ptep_get(vmf->pte)); 5079 } 5080 5081 /** 5082 * finish_fault - finish page fault once we have prepared the page to fault 5083 * 5084 * @vmf: structure describing the fault 5085 * 5086 * This function handles all that is needed to finish a page fault once the 5087 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5088 * given page, adds reverse page mapping, handles memcg charges and LRU 5089 * addition. 5090 * 5091 * The function expects the page to be locked and on success it consumes a 5092 * reference of a page being mapped (for the PTE which maps it). 5093 * 5094 * Return: %0 on success, %VM_FAULT_ code in case of error. 5095 */ 5096 vm_fault_t finish_fault(struct vm_fault *vmf) 5097 { 5098 struct vm_area_struct *vma = vmf->vma; 5099 struct page *page; 5100 struct folio *folio; 5101 vm_fault_t ret; 5102 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5103 !(vma->vm_flags & VM_SHARED); 5104 int type, nr_pages; 5105 unsigned long addr = vmf->address; 5106 5107 /* Did we COW the page? */ 5108 if (is_cow) 5109 page = vmf->cow_page; 5110 else 5111 page = vmf->page; 5112 5113 /* 5114 * check even for read faults because we might have lost our CoWed 5115 * page 5116 */ 5117 if (!(vma->vm_flags & VM_SHARED)) { 5118 ret = check_stable_address_space(vma->vm_mm); 5119 if (ret) 5120 return ret; 5121 } 5122 5123 if (pmd_none(*vmf->pmd)) { 5124 if (PageTransCompound(page)) { 5125 ret = do_set_pmd(vmf, page); 5126 if (ret != VM_FAULT_FALLBACK) 5127 return ret; 5128 } 5129 5130 if (vmf->prealloc_pte) 5131 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5132 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5133 return VM_FAULT_OOM; 5134 } 5135 5136 folio = page_folio(page); 5137 nr_pages = folio_nr_pages(folio); 5138 5139 /* 5140 * Using per-page fault to maintain the uffd semantics, and same 5141 * approach also applies to non-anonymous-shmem faults to avoid 5142 * inflating the RSS of the process. 5143 */ 5144 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) { 5145 nr_pages = 1; 5146 } else if (nr_pages > 1) { 5147 pgoff_t idx = folio_page_idx(folio, page); 5148 /* The page offset of vmf->address within the VMA. */ 5149 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5150 /* The index of the entry in the pagetable for fault page. */ 5151 pgoff_t pte_off = pte_index(vmf->address); 5152 5153 /* 5154 * Fallback to per-page fault in case the folio size in page 5155 * cache beyond the VMA limits and PMD pagetable limits. 5156 */ 5157 if (unlikely(vma_off < idx || 5158 vma_off + (nr_pages - idx) > vma_pages(vma) || 5159 pte_off < idx || 5160 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5161 nr_pages = 1; 5162 } else { 5163 /* Now we can set mappings for the whole large folio. */ 5164 addr = vmf->address - idx * PAGE_SIZE; 5165 page = &folio->page; 5166 } 5167 } 5168 5169 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5170 addr, &vmf->ptl); 5171 if (!vmf->pte) 5172 return VM_FAULT_NOPAGE; 5173 5174 /* Re-check under ptl */ 5175 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5176 update_mmu_tlb(vma, addr, vmf->pte); 5177 ret = VM_FAULT_NOPAGE; 5178 goto unlock; 5179 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5180 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5181 ret = VM_FAULT_NOPAGE; 5182 goto unlock; 5183 } 5184 5185 folio_ref_add(folio, nr_pages - 1); 5186 set_pte_range(vmf, folio, page, nr_pages, addr); 5187 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5188 add_mm_counter(vma->vm_mm, type, nr_pages); 5189 ret = 0; 5190 5191 unlock: 5192 pte_unmap_unlock(vmf->pte, vmf->ptl); 5193 return ret; 5194 } 5195 5196 static unsigned long fault_around_pages __read_mostly = 5197 65536 >> PAGE_SHIFT; 5198 5199 #ifdef CONFIG_DEBUG_FS 5200 static int fault_around_bytes_get(void *data, u64 *val) 5201 { 5202 *val = fault_around_pages << PAGE_SHIFT; 5203 return 0; 5204 } 5205 5206 /* 5207 * fault_around_bytes must be rounded down to the nearest page order as it's 5208 * what do_fault_around() expects to see. 5209 */ 5210 static int fault_around_bytes_set(void *data, u64 val) 5211 { 5212 if (val / PAGE_SIZE > PTRS_PER_PTE) 5213 return -EINVAL; 5214 5215 /* 5216 * The minimum value is 1 page, however this results in no fault-around 5217 * at all. See should_fault_around(). 5218 */ 5219 val = max(val, PAGE_SIZE); 5220 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5221 5222 return 0; 5223 } 5224 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5225 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5226 5227 static int __init fault_around_debugfs(void) 5228 { 5229 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5230 &fault_around_bytes_fops); 5231 return 0; 5232 } 5233 late_initcall(fault_around_debugfs); 5234 #endif 5235 5236 /* 5237 * do_fault_around() tries to map few pages around the fault address. The hope 5238 * is that the pages will be needed soon and this will lower the number of 5239 * faults to handle. 5240 * 5241 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5242 * not ready to be mapped: not up-to-date, locked, etc. 5243 * 5244 * This function doesn't cross VMA or page table boundaries, in order to call 5245 * map_pages() and acquire a PTE lock only once. 5246 * 5247 * fault_around_pages defines how many pages we'll try to map. 5248 * do_fault_around() expects it to be set to a power of two less than or equal 5249 * to PTRS_PER_PTE. 5250 * 5251 * The virtual address of the area that we map is naturally aligned to 5252 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5253 * (and therefore to page order). This way it's easier to guarantee 5254 * that we don't cross page table boundaries. 5255 */ 5256 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5257 { 5258 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5259 pgoff_t pte_off = pte_index(vmf->address); 5260 /* The page offset of vmf->address within the VMA. */ 5261 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5262 pgoff_t from_pte, to_pte; 5263 vm_fault_t ret; 5264 5265 /* The PTE offset of the start address, clamped to the VMA. */ 5266 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5267 pte_off - min(pte_off, vma_off)); 5268 5269 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5270 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5271 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5272 5273 if (pmd_none(*vmf->pmd)) { 5274 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5275 if (!vmf->prealloc_pte) 5276 return VM_FAULT_OOM; 5277 } 5278 5279 rcu_read_lock(); 5280 ret = vmf->vma->vm_ops->map_pages(vmf, 5281 vmf->pgoff + from_pte - pte_off, 5282 vmf->pgoff + to_pte - pte_off); 5283 rcu_read_unlock(); 5284 5285 return ret; 5286 } 5287 5288 /* Return true if we should do read fault-around, false otherwise */ 5289 static inline bool should_fault_around(struct vm_fault *vmf) 5290 { 5291 /* No ->map_pages? No way to fault around... */ 5292 if (!vmf->vma->vm_ops->map_pages) 5293 return false; 5294 5295 if (uffd_disable_fault_around(vmf->vma)) 5296 return false; 5297 5298 /* A single page implies no faulting 'around' at all. */ 5299 return fault_around_pages > 1; 5300 } 5301 5302 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5303 { 5304 vm_fault_t ret = 0; 5305 struct folio *folio; 5306 5307 /* 5308 * Let's call ->map_pages() first and use ->fault() as fallback 5309 * if page by the offset is not ready to be mapped (cold cache or 5310 * something). 5311 */ 5312 if (should_fault_around(vmf)) { 5313 ret = do_fault_around(vmf); 5314 if (ret) 5315 return ret; 5316 } 5317 5318 ret = vmf_can_call_fault(vmf); 5319 if (ret) 5320 return ret; 5321 5322 ret = __do_fault(vmf); 5323 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5324 return ret; 5325 5326 ret |= finish_fault(vmf); 5327 folio = page_folio(vmf->page); 5328 folio_unlock(folio); 5329 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5330 folio_put(folio); 5331 return ret; 5332 } 5333 5334 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5335 { 5336 struct vm_area_struct *vma = vmf->vma; 5337 struct folio *folio; 5338 vm_fault_t ret; 5339 5340 ret = vmf_can_call_fault(vmf); 5341 if (!ret) 5342 ret = vmf_anon_prepare(vmf); 5343 if (ret) 5344 return ret; 5345 5346 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5347 if (!folio) 5348 return VM_FAULT_OOM; 5349 5350 vmf->cow_page = &folio->page; 5351 5352 ret = __do_fault(vmf); 5353 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5354 goto uncharge_out; 5355 if (ret & VM_FAULT_DONE_COW) 5356 return ret; 5357 5358 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5359 ret = VM_FAULT_HWPOISON; 5360 goto unlock; 5361 } 5362 __folio_mark_uptodate(folio); 5363 5364 ret |= finish_fault(vmf); 5365 unlock: 5366 unlock_page(vmf->page); 5367 put_page(vmf->page); 5368 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5369 goto uncharge_out; 5370 return ret; 5371 uncharge_out: 5372 folio_put(folio); 5373 return ret; 5374 } 5375 5376 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5377 { 5378 struct vm_area_struct *vma = vmf->vma; 5379 vm_fault_t ret, tmp; 5380 struct folio *folio; 5381 5382 ret = vmf_can_call_fault(vmf); 5383 if (ret) 5384 return ret; 5385 5386 ret = __do_fault(vmf); 5387 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5388 return ret; 5389 5390 folio = page_folio(vmf->page); 5391 5392 /* 5393 * Check if the backing address space wants to know that the page is 5394 * about to become writable 5395 */ 5396 if (vma->vm_ops->page_mkwrite) { 5397 folio_unlock(folio); 5398 tmp = do_page_mkwrite(vmf, folio); 5399 if (unlikely(!tmp || 5400 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5401 folio_put(folio); 5402 return tmp; 5403 } 5404 } 5405 5406 ret |= finish_fault(vmf); 5407 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5408 VM_FAULT_RETRY))) { 5409 folio_unlock(folio); 5410 folio_put(folio); 5411 return ret; 5412 } 5413 5414 ret |= fault_dirty_shared_page(vmf); 5415 return ret; 5416 } 5417 5418 /* 5419 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5420 * but allow concurrent faults). 5421 * The mmap_lock may have been released depending on flags and our 5422 * return value. See filemap_fault() and __folio_lock_or_retry(). 5423 * If mmap_lock is released, vma may become invalid (for example 5424 * by other thread calling munmap()). 5425 */ 5426 static vm_fault_t do_fault(struct vm_fault *vmf) 5427 { 5428 struct vm_area_struct *vma = vmf->vma; 5429 struct mm_struct *vm_mm = vma->vm_mm; 5430 vm_fault_t ret; 5431 5432 /* 5433 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5434 */ 5435 if (!vma->vm_ops->fault) { 5436 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5437 vmf->address, &vmf->ptl); 5438 if (unlikely(!vmf->pte)) 5439 ret = VM_FAULT_SIGBUS; 5440 else { 5441 /* 5442 * Make sure this is not a temporary clearing of pte 5443 * by holding ptl and checking again. A R/M/W update 5444 * of pte involves: take ptl, clearing the pte so that 5445 * we don't have concurrent modification by hardware 5446 * followed by an update. 5447 */ 5448 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5449 ret = VM_FAULT_SIGBUS; 5450 else 5451 ret = VM_FAULT_NOPAGE; 5452 5453 pte_unmap_unlock(vmf->pte, vmf->ptl); 5454 } 5455 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5456 ret = do_read_fault(vmf); 5457 else if (!(vma->vm_flags & VM_SHARED)) 5458 ret = do_cow_fault(vmf); 5459 else 5460 ret = do_shared_fault(vmf); 5461 5462 /* preallocated pagetable is unused: free it */ 5463 if (vmf->prealloc_pte) { 5464 pte_free(vm_mm, vmf->prealloc_pte); 5465 vmf->prealloc_pte = NULL; 5466 } 5467 return ret; 5468 } 5469 5470 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5471 unsigned long addr, int *flags, 5472 bool writable, int *last_cpupid) 5473 { 5474 struct vm_area_struct *vma = vmf->vma; 5475 5476 /* 5477 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5478 * much anyway since they can be in shared cache state. This misses 5479 * the case where a mapping is writable but the process never writes 5480 * to it but pte_write gets cleared during protection updates and 5481 * pte_dirty has unpredictable behaviour between PTE scan updates, 5482 * background writeback, dirty balancing and application behaviour. 5483 */ 5484 if (!writable) 5485 *flags |= TNF_NO_GROUP; 5486 5487 /* 5488 * Flag if the folio is shared between multiple address spaces. This 5489 * is later used when determining whether to group tasks together 5490 */ 5491 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5492 *flags |= TNF_SHARED; 5493 /* 5494 * For memory tiering mode, cpupid of slow memory page is used 5495 * to record page access time. So use default value. 5496 */ 5497 if (folio_use_access_time(folio)) 5498 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5499 else 5500 *last_cpupid = folio_last_cpupid(folio); 5501 5502 /* Record the current PID acceesing VMA */ 5503 vma_set_access_pid_bit(vma); 5504 5505 count_vm_numa_event(NUMA_HINT_FAULTS); 5506 #ifdef CONFIG_NUMA_BALANCING 5507 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5508 #endif 5509 if (folio_nid(folio) == numa_node_id()) { 5510 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5511 *flags |= TNF_FAULT_LOCAL; 5512 } 5513 5514 return mpol_misplaced(folio, vmf, addr); 5515 } 5516 5517 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5518 unsigned long fault_addr, pte_t *fault_pte, 5519 bool writable) 5520 { 5521 pte_t pte, old_pte; 5522 5523 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5524 pte = pte_modify(old_pte, vma->vm_page_prot); 5525 pte = pte_mkyoung(pte); 5526 if (writable) 5527 pte = pte_mkwrite(pte, vma); 5528 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5529 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5530 } 5531 5532 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5533 struct folio *folio, pte_t fault_pte, 5534 bool ignore_writable, bool pte_write_upgrade) 5535 { 5536 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5537 unsigned long start, end, addr = vmf->address; 5538 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5539 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5540 pte_t *start_ptep; 5541 5542 /* Stay within the VMA and within the page table. */ 5543 start = max3(addr_start, pt_start, vma->vm_start); 5544 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5545 vma->vm_end); 5546 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5547 5548 /* Restore all PTEs' mapping of the large folio */ 5549 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5550 pte_t ptent = ptep_get(start_ptep); 5551 bool writable = false; 5552 5553 if (!pte_present(ptent) || !pte_protnone(ptent)) 5554 continue; 5555 5556 if (pfn_folio(pte_pfn(ptent)) != folio) 5557 continue; 5558 5559 if (!ignore_writable) { 5560 ptent = pte_modify(ptent, vma->vm_page_prot); 5561 writable = pte_write(ptent); 5562 if (!writable && pte_write_upgrade && 5563 can_change_pte_writable(vma, addr, ptent)) 5564 writable = true; 5565 } 5566 5567 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5568 } 5569 } 5570 5571 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5572 { 5573 struct vm_area_struct *vma = vmf->vma; 5574 struct folio *folio = NULL; 5575 int nid = NUMA_NO_NODE; 5576 bool writable = false, ignore_writable = false; 5577 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5578 int last_cpupid; 5579 int target_nid; 5580 pte_t pte, old_pte; 5581 int flags = 0, nr_pages; 5582 5583 /* 5584 * The pte cannot be used safely until we verify, while holding the page 5585 * table lock, that its contents have not changed during fault handling. 5586 */ 5587 spin_lock(vmf->ptl); 5588 /* Read the live PTE from the page tables: */ 5589 old_pte = ptep_get(vmf->pte); 5590 5591 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5592 pte_unmap_unlock(vmf->pte, vmf->ptl); 5593 return 0; 5594 } 5595 5596 pte = pte_modify(old_pte, vma->vm_page_prot); 5597 5598 /* 5599 * Detect now whether the PTE could be writable; this information 5600 * is only valid while holding the PT lock. 5601 */ 5602 writable = pte_write(pte); 5603 if (!writable && pte_write_upgrade && 5604 can_change_pte_writable(vma, vmf->address, pte)) 5605 writable = true; 5606 5607 folio = vm_normal_folio(vma, vmf->address, pte); 5608 if (!folio || folio_is_zone_device(folio)) 5609 goto out_map; 5610 5611 nid = folio_nid(folio); 5612 nr_pages = folio_nr_pages(folio); 5613 5614 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5615 writable, &last_cpupid); 5616 if (target_nid == NUMA_NO_NODE) 5617 goto out_map; 5618 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5619 flags |= TNF_MIGRATE_FAIL; 5620 goto out_map; 5621 } 5622 /* The folio is isolated and isolation code holds a folio reference. */ 5623 pte_unmap_unlock(vmf->pte, vmf->ptl); 5624 writable = false; 5625 ignore_writable = true; 5626 5627 /* Migrate to the requested node */ 5628 if (!migrate_misplaced_folio(folio, vma, target_nid)) { 5629 nid = target_nid; 5630 flags |= TNF_MIGRATED; 5631 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5632 return 0; 5633 } 5634 5635 flags |= TNF_MIGRATE_FAIL; 5636 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5637 vmf->address, &vmf->ptl); 5638 if (unlikely(!vmf->pte)) 5639 return 0; 5640 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5641 pte_unmap_unlock(vmf->pte, vmf->ptl); 5642 return 0; 5643 } 5644 out_map: 5645 /* 5646 * Make it present again, depending on how arch implements 5647 * non-accessible ptes, some can allow access by kernel mode. 5648 */ 5649 if (folio && folio_test_large(folio)) 5650 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5651 pte_write_upgrade); 5652 else 5653 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5654 writable); 5655 pte_unmap_unlock(vmf->pte, vmf->ptl); 5656 5657 if (nid != NUMA_NO_NODE) 5658 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5659 return 0; 5660 } 5661 5662 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5663 { 5664 struct vm_area_struct *vma = vmf->vma; 5665 if (vma_is_anonymous(vma)) 5666 return do_huge_pmd_anonymous_page(vmf); 5667 if (vma->vm_ops->huge_fault) 5668 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5669 return VM_FAULT_FALLBACK; 5670 } 5671 5672 /* `inline' is required to avoid gcc 4.1.2 build error */ 5673 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5674 { 5675 struct vm_area_struct *vma = vmf->vma; 5676 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5677 vm_fault_t ret; 5678 5679 if (vma_is_anonymous(vma)) { 5680 if (likely(!unshare) && 5681 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5682 if (userfaultfd_wp_async(vmf->vma)) 5683 goto split; 5684 return handle_userfault(vmf, VM_UFFD_WP); 5685 } 5686 return do_huge_pmd_wp_page(vmf); 5687 } 5688 5689 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5690 if (vma->vm_ops->huge_fault) { 5691 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5692 if (!(ret & VM_FAULT_FALLBACK)) 5693 return ret; 5694 } 5695 } 5696 5697 split: 5698 /* COW or write-notify handled on pte level: split pmd. */ 5699 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5700 5701 return VM_FAULT_FALLBACK; 5702 } 5703 5704 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5705 { 5706 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5707 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5708 struct vm_area_struct *vma = vmf->vma; 5709 /* No support for anonymous transparent PUD pages yet */ 5710 if (vma_is_anonymous(vma)) 5711 return VM_FAULT_FALLBACK; 5712 if (vma->vm_ops->huge_fault) 5713 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5714 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5715 return VM_FAULT_FALLBACK; 5716 } 5717 5718 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5719 { 5720 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5721 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5722 struct vm_area_struct *vma = vmf->vma; 5723 vm_fault_t ret; 5724 5725 /* No support for anonymous transparent PUD pages yet */ 5726 if (vma_is_anonymous(vma)) 5727 goto split; 5728 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5729 if (vma->vm_ops->huge_fault) { 5730 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5731 if (!(ret & VM_FAULT_FALLBACK)) 5732 return ret; 5733 } 5734 } 5735 split: 5736 /* COW or write-notify not handled on PUD level: split pud.*/ 5737 __split_huge_pud(vma, vmf->pud, vmf->address); 5738 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5739 return VM_FAULT_FALLBACK; 5740 } 5741 5742 /* 5743 * These routines also need to handle stuff like marking pages dirty 5744 * and/or accessed for architectures that don't do it in hardware (most 5745 * RISC architectures). The early dirtying is also good on the i386. 5746 * 5747 * There is also a hook called "update_mmu_cache()" that architectures 5748 * with external mmu caches can use to update those (ie the Sparc or 5749 * PowerPC hashed page tables that act as extended TLBs). 5750 * 5751 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5752 * concurrent faults). 5753 * 5754 * The mmap_lock may have been released depending on flags and our return value. 5755 * See filemap_fault() and __folio_lock_or_retry(). 5756 */ 5757 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5758 { 5759 pte_t entry; 5760 5761 if (unlikely(pmd_none(*vmf->pmd))) { 5762 /* 5763 * Leave __pte_alloc() until later: because vm_ops->fault may 5764 * want to allocate huge page, and if we expose page table 5765 * for an instant, it will be difficult to retract from 5766 * concurrent faults and from rmap lookups. 5767 */ 5768 vmf->pte = NULL; 5769 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5770 } else { 5771 pmd_t dummy_pmdval; 5772 5773 /* 5774 * A regular pmd is established and it can't morph into a huge 5775 * pmd by anon khugepaged, since that takes mmap_lock in write 5776 * mode; but shmem or file collapse to THP could still morph 5777 * it into a huge pmd: just retry later if so. 5778 * 5779 * Use the maywrite version to indicate that vmf->pte may be 5780 * modified, but since we will use pte_same() to detect the 5781 * change of the !pte_none() entry, there is no need to recheck 5782 * the pmdval. Here we chooes to pass a dummy variable instead 5783 * of NULL, which helps new user think about why this place is 5784 * special. 5785 */ 5786 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 5787 vmf->address, &dummy_pmdval, 5788 &vmf->ptl); 5789 if (unlikely(!vmf->pte)) 5790 return 0; 5791 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5792 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5793 5794 if (pte_none(vmf->orig_pte)) { 5795 pte_unmap(vmf->pte); 5796 vmf->pte = NULL; 5797 } 5798 } 5799 5800 if (!vmf->pte) 5801 return do_pte_missing(vmf); 5802 5803 if (!pte_present(vmf->orig_pte)) 5804 return do_swap_page(vmf); 5805 5806 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5807 return do_numa_page(vmf); 5808 5809 spin_lock(vmf->ptl); 5810 entry = vmf->orig_pte; 5811 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5812 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5813 goto unlock; 5814 } 5815 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5816 if (!pte_write(entry)) 5817 return do_wp_page(vmf); 5818 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5819 entry = pte_mkdirty(entry); 5820 } 5821 entry = pte_mkyoung(entry); 5822 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5823 vmf->flags & FAULT_FLAG_WRITE)) { 5824 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5825 vmf->pte, 1); 5826 } else { 5827 /* Skip spurious TLB flush for retried page fault */ 5828 if (vmf->flags & FAULT_FLAG_TRIED) 5829 goto unlock; 5830 /* 5831 * This is needed only for protection faults but the arch code 5832 * is not yet telling us if this is a protection fault or not. 5833 * This still avoids useless tlb flushes for .text page faults 5834 * with threads. 5835 */ 5836 if (vmf->flags & FAULT_FLAG_WRITE) 5837 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5838 vmf->pte); 5839 } 5840 unlock: 5841 pte_unmap_unlock(vmf->pte, vmf->ptl); 5842 return 0; 5843 } 5844 5845 /* 5846 * On entry, we hold either the VMA lock or the mmap_lock 5847 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5848 * the result, the mmap_lock is not held on exit. See filemap_fault() 5849 * and __folio_lock_or_retry(). 5850 */ 5851 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5852 unsigned long address, unsigned int flags) 5853 { 5854 struct vm_fault vmf = { 5855 .vma = vma, 5856 .address = address & PAGE_MASK, 5857 .real_address = address, 5858 .flags = flags, 5859 .pgoff = linear_page_index(vma, address), 5860 .gfp_mask = __get_fault_gfp_mask(vma), 5861 }; 5862 struct mm_struct *mm = vma->vm_mm; 5863 unsigned long vm_flags = vma->vm_flags; 5864 pgd_t *pgd; 5865 p4d_t *p4d; 5866 vm_fault_t ret; 5867 5868 pgd = pgd_offset(mm, address); 5869 p4d = p4d_alloc(mm, pgd, address); 5870 if (!p4d) 5871 return VM_FAULT_OOM; 5872 5873 vmf.pud = pud_alloc(mm, p4d, address); 5874 if (!vmf.pud) 5875 return VM_FAULT_OOM; 5876 retry_pud: 5877 if (pud_none(*vmf.pud) && 5878 thp_vma_allowable_order(vma, vm_flags, 5879 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 5880 ret = create_huge_pud(&vmf); 5881 if (!(ret & VM_FAULT_FALLBACK)) 5882 return ret; 5883 } else { 5884 pud_t orig_pud = *vmf.pud; 5885 5886 barrier(); 5887 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5888 5889 /* 5890 * TODO once we support anonymous PUDs: NUMA case and 5891 * FAULT_FLAG_UNSHARE handling. 5892 */ 5893 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5894 ret = wp_huge_pud(&vmf, orig_pud); 5895 if (!(ret & VM_FAULT_FALLBACK)) 5896 return ret; 5897 } else { 5898 huge_pud_set_accessed(&vmf, orig_pud); 5899 return 0; 5900 } 5901 } 5902 } 5903 5904 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5905 if (!vmf.pmd) 5906 return VM_FAULT_OOM; 5907 5908 /* Huge pud page fault raced with pmd_alloc? */ 5909 if (pud_trans_unstable(vmf.pud)) 5910 goto retry_pud; 5911 5912 if (pmd_none(*vmf.pmd) && 5913 thp_vma_allowable_order(vma, vm_flags, 5914 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 5915 ret = create_huge_pmd(&vmf); 5916 if (!(ret & VM_FAULT_FALLBACK)) 5917 return ret; 5918 } else { 5919 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5920 5921 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5922 VM_BUG_ON(thp_migration_supported() && 5923 !is_pmd_migration_entry(vmf.orig_pmd)); 5924 if (is_pmd_migration_entry(vmf.orig_pmd)) 5925 pmd_migration_entry_wait(mm, vmf.pmd); 5926 return 0; 5927 } 5928 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5929 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5930 return do_huge_pmd_numa_page(&vmf); 5931 5932 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5933 !pmd_write(vmf.orig_pmd)) { 5934 ret = wp_huge_pmd(&vmf); 5935 if (!(ret & VM_FAULT_FALLBACK)) 5936 return ret; 5937 } else { 5938 huge_pmd_set_accessed(&vmf); 5939 return 0; 5940 } 5941 } 5942 } 5943 5944 return handle_pte_fault(&vmf); 5945 } 5946 5947 /** 5948 * mm_account_fault - Do page fault accounting 5949 * @mm: mm from which memcg should be extracted. It can be NULL. 5950 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5951 * of perf event counters, but we'll still do the per-task accounting to 5952 * the task who triggered this page fault. 5953 * @address: the faulted address. 5954 * @flags: the fault flags. 5955 * @ret: the fault retcode. 5956 * 5957 * This will take care of most of the page fault accounting. Meanwhile, it 5958 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5959 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5960 * still be in per-arch page fault handlers at the entry of page fault. 5961 */ 5962 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5963 unsigned long address, unsigned int flags, 5964 vm_fault_t ret) 5965 { 5966 bool major; 5967 5968 /* Incomplete faults will be accounted upon completion. */ 5969 if (ret & VM_FAULT_RETRY) 5970 return; 5971 5972 /* 5973 * To preserve the behavior of older kernels, PGFAULT counters record 5974 * both successful and failed faults, as opposed to perf counters, 5975 * which ignore failed cases. 5976 */ 5977 count_vm_event(PGFAULT); 5978 count_memcg_event_mm(mm, PGFAULT); 5979 5980 /* 5981 * Do not account for unsuccessful faults (e.g. when the address wasn't 5982 * valid). That includes arch_vma_access_permitted() failing before 5983 * reaching here. So this is not a "this many hardware page faults" 5984 * counter. We should use the hw profiling for that. 5985 */ 5986 if (ret & VM_FAULT_ERROR) 5987 return; 5988 5989 /* 5990 * We define the fault as a major fault when the final successful fault 5991 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5992 * handle it immediately previously). 5993 */ 5994 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5995 5996 if (major) 5997 current->maj_flt++; 5998 else 5999 current->min_flt++; 6000 6001 /* 6002 * If the fault is done for GUP, regs will be NULL. We only do the 6003 * accounting for the per thread fault counters who triggered the 6004 * fault, and we skip the perf event updates. 6005 */ 6006 if (!regs) 6007 return; 6008 6009 if (major) 6010 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6011 else 6012 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6013 } 6014 6015 #ifdef CONFIG_LRU_GEN 6016 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6017 { 6018 /* the LRU algorithm only applies to accesses with recency */ 6019 current->in_lru_fault = vma_has_recency(vma); 6020 } 6021 6022 static void lru_gen_exit_fault(void) 6023 { 6024 current->in_lru_fault = false; 6025 } 6026 #else 6027 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6028 { 6029 } 6030 6031 static void lru_gen_exit_fault(void) 6032 { 6033 } 6034 #endif /* CONFIG_LRU_GEN */ 6035 6036 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6037 unsigned int *flags) 6038 { 6039 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6040 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6041 return VM_FAULT_SIGSEGV; 6042 /* 6043 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6044 * just treat it like an ordinary read-fault otherwise. 6045 */ 6046 if (!is_cow_mapping(vma->vm_flags)) 6047 *flags &= ~FAULT_FLAG_UNSHARE; 6048 } else if (*flags & FAULT_FLAG_WRITE) { 6049 /* Write faults on read-only mappings are impossible ... */ 6050 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6051 return VM_FAULT_SIGSEGV; 6052 /* ... and FOLL_FORCE only applies to COW mappings. */ 6053 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6054 !is_cow_mapping(vma->vm_flags))) 6055 return VM_FAULT_SIGSEGV; 6056 } 6057 #ifdef CONFIG_PER_VMA_LOCK 6058 /* 6059 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6060 * the assumption that lock is dropped on VM_FAULT_RETRY. 6061 */ 6062 if (WARN_ON_ONCE((*flags & 6063 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6064 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6065 return VM_FAULT_SIGSEGV; 6066 #endif 6067 6068 return 0; 6069 } 6070 6071 /* 6072 * By the time we get here, we already hold the mm semaphore 6073 * 6074 * The mmap_lock may have been released depending on flags and our 6075 * return value. See filemap_fault() and __folio_lock_or_retry(). 6076 */ 6077 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6078 unsigned int flags, struct pt_regs *regs) 6079 { 6080 /* If the fault handler drops the mmap_lock, vma may be freed */ 6081 struct mm_struct *mm = vma->vm_mm; 6082 vm_fault_t ret; 6083 bool is_droppable; 6084 6085 __set_current_state(TASK_RUNNING); 6086 6087 ret = sanitize_fault_flags(vma, &flags); 6088 if (ret) 6089 goto out; 6090 6091 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6092 flags & FAULT_FLAG_INSTRUCTION, 6093 flags & FAULT_FLAG_REMOTE)) { 6094 ret = VM_FAULT_SIGSEGV; 6095 goto out; 6096 } 6097 6098 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6099 6100 /* 6101 * Enable the memcg OOM handling for faults triggered in user 6102 * space. Kernel faults are handled more gracefully. 6103 */ 6104 if (flags & FAULT_FLAG_USER) 6105 mem_cgroup_enter_user_fault(); 6106 6107 lru_gen_enter_fault(vma); 6108 6109 if (unlikely(is_vm_hugetlb_page(vma))) 6110 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6111 else 6112 ret = __handle_mm_fault(vma, address, flags); 6113 6114 /* 6115 * Warning: It is no longer safe to dereference vma-> after this point, 6116 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6117 * vma might be destroyed from underneath us. 6118 */ 6119 6120 lru_gen_exit_fault(); 6121 6122 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6123 if (is_droppable) 6124 ret &= ~VM_FAULT_OOM; 6125 6126 if (flags & FAULT_FLAG_USER) { 6127 mem_cgroup_exit_user_fault(); 6128 /* 6129 * The task may have entered a memcg OOM situation but 6130 * if the allocation error was handled gracefully (no 6131 * VM_FAULT_OOM), there is no need to kill anything. 6132 * Just clean up the OOM state peacefully. 6133 */ 6134 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6135 mem_cgroup_oom_synchronize(false); 6136 } 6137 out: 6138 mm_account_fault(mm, regs, address, flags, ret); 6139 6140 return ret; 6141 } 6142 EXPORT_SYMBOL_GPL(handle_mm_fault); 6143 6144 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 6145 #include <linux/extable.h> 6146 6147 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6148 { 6149 if (likely(mmap_read_trylock(mm))) 6150 return true; 6151 6152 if (regs && !user_mode(regs)) { 6153 unsigned long ip = exception_ip(regs); 6154 if (!search_exception_tables(ip)) 6155 return false; 6156 } 6157 6158 return !mmap_read_lock_killable(mm); 6159 } 6160 6161 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 6162 { 6163 /* 6164 * We don't have this operation yet. 6165 * 6166 * It should be easy enough to do: it's basically a 6167 * atomic_long_try_cmpxchg_acquire() 6168 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 6169 * it also needs the proper lockdep magic etc. 6170 */ 6171 return false; 6172 } 6173 6174 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6175 { 6176 mmap_read_unlock(mm); 6177 if (regs && !user_mode(regs)) { 6178 unsigned long ip = exception_ip(regs); 6179 if (!search_exception_tables(ip)) 6180 return false; 6181 } 6182 return !mmap_write_lock_killable(mm); 6183 } 6184 6185 /* 6186 * Helper for page fault handling. 6187 * 6188 * This is kind of equivalend to "mmap_read_lock()" followed 6189 * by "find_extend_vma()", except it's a lot more careful about 6190 * the locking (and will drop the lock on failure). 6191 * 6192 * For example, if we have a kernel bug that causes a page 6193 * fault, we don't want to just use mmap_read_lock() to get 6194 * the mm lock, because that would deadlock if the bug were 6195 * to happen while we're holding the mm lock for writing. 6196 * 6197 * So this checks the exception tables on kernel faults in 6198 * order to only do this all for instructions that are actually 6199 * expected to fault. 6200 * 6201 * We can also actually take the mm lock for writing if we 6202 * need to extend the vma, which helps the VM layer a lot. 6203 */ 6204 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 6205 unsigned long addr, struct pt_regs *regs) 6206 { 6207 struct vm_area_struct *vma; 6208 6209 if (!get_mmap_lock_carefully(mm, regs)) 6210 return NULL; 6211 6212 vma = find_vma(mm, addr); 6213 if (likely(vma && (vma->vm_start <= addr))) 6214 return vma; 6215 6216 /* 6217 * Well, dang. We might still be successful, but only 6218 * if we can extend a vma to do so. 6219 */ 6220 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 6221 mmap_read_unlock(mm); 6222 return NULL; 6223 } 6224 6225 /* 6226 * We can try to upgrade the mmap lock atomically, 6227 * in which case we can continue to use the vma 6228 * we already looked up. 6229 * 6230 * Otherwise we'll have to drop the mmap lock and 6231 * re-take it, and also look up the vma again, 6232 * re-checking it. 6233 */ 6234 if (!mmap_upgrade_trylock(mm)) { 6235 if (!upgrade_mmap_lock_carefully(mm, regs)) 6236 return NULL; 6237 6238 vma = find_vma(mm, addr); 6239 if (!vma) 6240 goto fail; 6241 if (vma->vm_start <= addr) 6242 goto success; 6243 if (!(vma->vm_flags & VM_GROWSDOWN)) 6244 goto fail; 6245 } 6246 6247 if (expand_stack_locked(vma, addr)) 6248 goto fail; 6249 6250 success: 6251 mmap_write_downgrade(mm); 6252 return vma; 6253 6254 fail: 6255 mmap_write_unlock(mm); 6256 return NULL; 6257 } 6258 #endif 6259 6260 #ifdef CONFIG_PER_VMA_LOCK 6261 /* 6262 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 6263 * stable and not isolated. If the VMA is not found or is being modified the 6264 * function returns NULL. 6265 */ 6266 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 6267 unsigned long address) 6268 { 6269 MA_STATE(mas, &mm->mm_mt, address, address); 6270 struct vm_area_struct *vma; 6271 6272 rcu_read_lock(); 6273 retry: 6274 vma = mas_walk(&mas); 6275 if (!vma) 6276 goto inval; 6277 6278 if (!vma_start_read(vma)) 6279 goto inval; 6280 6281 /* Check if the VMA got isolated after we found it */ 6282 if (vma->detached) { 6283 vma_end_read(vma); 6284 count_vm_vma_lock_event(VMA_LOCK_MISS); 6285 /* The area was replaced with another one */ 6286 goto retry; 6287 } 6288 /* 6289 * At this point, we have a stable reference to a VMA: The VMA is 6290 * locked and we know it hasn't already been isolated. 6291 * From here on, we can access the VMA without worrying about which 6292 * fields are accessible for RCU readers. 6293 */ 6294 6295 /* Check since vm_start/vm_end might change before we lock the VMA */ 6296 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6297 goto inval_end_read; 6298 6299 rcu_read_unlock(); 6300 return vma; 6301 6302 inval_end_read: 6303 vma_end_read(vma); 6304 inval: 6305 rcu_read_unlock(); 6306 count_vm_vma_lock_event(VMA_LOCK_ABORT); 6307 return NULL; 6308 } 6309 #endif /* CONFIG_PER_VMA_LOCK */ 6310 6311 #ifndef __PAGETABLE_P4D_FOLDED 6312 /* 6313 * Allocate p4d page table. 6314 * We've already handled the fast-path in-line. 6315 */ 6316 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6317 { 6318 p4d_t *new = p4d_alloc_one(mm, address); 6319 if (!new) 6320 return -ENOMEM; 6321 6322 spin_lock(&mm->page_table_lock); 6323 if (pgd_present(*pgd)) { /* Another has populated it */ 6324 p4d_free(mm, new); 6325 } else { 6326 smp_wmb(); /* See comment in pmd_install() */ 6327 pgd_populate(mm, pgd, new); 6328 } 6329 spin_unlock(&mm->page_table_lock); 6330 return 0; 6331 } 6332 #endif /* __PAGETABLE_P4D_FOLDED */ 6333 6334 #ifndef __PAGETABLE_PUD_FOLDED 6335 /* 6336 * Allocate page upper directory. 6337 * We've already handled the fast-path in-line. 6338 */ 6339 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6340 { 6341 pud_t *new = pud_alloc_one(mm, address); 6342 if (!new) 6343 return -ENOMEM; 6344 6345 spin_lock(&mm->page_table_lock); 6346 if (!p4d_present(*p4d)) { 6347 mm_inc_nr_puds(mm); 6348 smp_wmb(); /* See comment in pmd_install() */ 6349 p4d_populate(mm, p4d, new); 6350 } else /* Another has populated it */ 6351 pud_free(mm, new); 6352 spin_unlock(&mm->page_table_lock); 6353 return 0; 6354 } 6355 #endif /* __PAGETABLE_PUD_FOLDED */ 6356 6357 #ifndef __PAGETABLE_PMD_FOLDED 6358 /* 6359 * Allocate page middle directory. 6360 * We've already handled the fast-path in-line. 6361 */ 6362 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6363 { 6364 spinlock_t *ptl; 6365 pmd_t *new = pmd_alloc_one(mm, address); 6366 if (!new) 6367 return -ENOMEM; 6368 6369 ptl = pud_lock(mm, pud); 6370 if (!pud_present(*pud)) { 6371 mm_inc_nr_pmds(mm); 6372 smp_wmb(); /* See comment in pmd_install() */ 6373 pud_populate(mm, pud, new); 6374 } else { /* Another has populated it */ 6375 pmd_free(mm, new); 6376 } 6377 spin_unlock(ptl); 6378 return 0; 6379 } 6380 #endif /* __PAGETABLE_PMD_FOLDED */ 6381 6382 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6383 spinlock_t *lock, pte_t *ptep, 6384 pgprot_t pgprot, unsigned long pfn_base, 6385 unsigned long addr_mask, bool writable, 6386 bool special) 6387 { 6388 args->lock = lock; 6389 args->ptep = ptep; 6390 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6391 args->pgprot = pgprot; 6392 args->writable = writable; 6393 args->special = special; 6394 } 6395 6396 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6397 { 6398 #ifdef CONFIG_LOCKDEP 6399 struct file *file = vma->vm_file; 6400 struct address_space *mapping = file ? file->f_mapping : NULL; 6401 6402 if (mapping) 6403 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6404 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6405 else 6406 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6407 #endif 6408 } 6409 6410 /** 6411 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6412 * @args: Pointer to struct @follow_pfnmap_args 6413 * 6414 * The caller needs to setup args->vma and args->address to point to the 6415 * virtual address as the target of such lookup. On a successful return, 6416 * the results will be put into other output fields. 6417 * 6418 * After the caller finished using the fields, the caller must invoke 6419 * another follow_pfnmap_end() to proper releases the locks and resources 6420 * of such look up request. 6421 * 6422 * During the start() and end() calls, the results in @args will be valid 6423 * as proper locks will be held. After the end() is called, all the fields 6424 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6425 * use of such information after end() may require proper synchronizations 6426 * by the caller with page table updates, otherwise it can create a 6427 * security bug. 6428 * 6429 * If the PTE maps a refcounted page, callers are responsible to protect 6430 * against invalidation with MMU notifiers; otherwise access to the PFN at 6431 * a later point in time can trigger use-after-free. 6432 * 6433 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6434 * should be taken for read, and the mmap semaphore cannot be released 6435 * before the end() is invoked. 6436 * 6437 * This function must not be used to modify PTE content. 6438 * 6439 * Return: zero on success, negative otherwise. 6440 */ 6441 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6442 { 6443 struct vm_area_struct *vma = args->vma; 6444 unsigned long address = args->address; 6445 struct mm_struct *mm = vma->vm_mm; 6446 spinlock_t *lock; 6447 pgd_t *pgdp; 6448 p4d_t *p4dp, p4d; 6449 pud_t *pudp, pud; 6450 pmd_t *pmdp, pmd; 6451 pte_t *ptep, pte; 6452 6453 pfnmap_lockdep_assert(vma); 6454 6455 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6456 goto out; 6457 6458 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6459 goto out; 6460 retry: 6461 pgdp = pgd_offset(mm, address); 6462 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6463 goto out; 6464 6465 p4dp = p4d_offset(pgdp, address); 6466 p4d = READ_ONCE(*p4dp); 6467 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6468 goto out; 6469 6470 pudp = pud_offset(p4dp, address); 6471 pud = READ_ONCE(*pudp); 6472 if (pud_none(pud)) 6473 goto out; 6474 if (pud_leaf(pud)) { 6475 lock = pud_lock(mm, pudp); 6476 if (!unlikely(pud_leaf(pud))) { 6477 spin_unlock(lock); 6478 goto retry; 6479 } 6480 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6481 pud_pfn(pud), PUD_MASK, pud_write(pud), 6482 pud_special(pud)); 6483 return 0; 6484 } 6485 6486 pmdp = pmd_offset(pudp, address); 6487 pmd = pmdp_get_lockless(pmdp); 6488 if (pmd_leaf(pmd)) { 6489 lock = pmd_lock(mm, pmdp); 6490 if (!unlikely(pmd_leaf(pmd))) { 6491 spin_unlock(lock); 6492 goto retry; 6493 } 6494 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6495 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6496 pmd_special(pmd)); 6497 return 0; 6498 } 6499 6500 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6501 if (!ptep) 6502 goto out; 6503 pte = ptep_get(ptep); 6504 if (!pte_present(pte)) 6505 goto unlock; 6506 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6507 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6508 pte_special(pte)); 6509 return 0; 6510 unlock: 6511 pte_unmap_unlock(ptep, lock); 6512 out: 6513 return -EINVAL; 6514 } 6515 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6516 6517 /** 6518 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6519 * @args: Pointer to struct @follow_pfnmap_args 6520 * 6521 * Must be used in pair of follow_pfnmap_start(). See the start() function 6522 * above for more information. 6523 */ 6524 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6525 { 6526 if (args->lock) 6527 spin_unlock(args->lock); 6528 if (args->ptep) 6529 pte_unmap(args->ptep); 6530 } 6531 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6532 6533 #ifdef CONFIG_HAVE_IOREMAP_PROT 6534 /** 6535 * generic_access_phys - generic implementation for iomem mmap access 6536 * @vma: the vma to access 6537 * @addr: userspace address, not relative offset within @vma 6538 * @buf: buffer to read/write 6539 * @len: length of transfer 6540 * @write: set to FOLL_WRITE when writing, otherwise reading 6541 * 6542 * This is a generic implementation for &vm_operations_struct.access for an 6543 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6544 * not page based. 6545 */ 6546 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6547 void *buf, int len, int write) 6548 { 6549 resource_size_t phys_addr; 6550 unsigned long prot = 0; 6551 void __iomem *maddr; 6552 int offset = offset_in_page(addr); 6553 int ret = -EINVAL; 6554 bool writable; 6555 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6556 6557 retry: 6558 if (follow_pfnmap_start(&args)) 6559 return -EINVAL; 6560 prot = pgprot_val(args.pgprot); 6561 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6562 writable = args.writable; 6563 follow_pfnmap_end(&args); 6564 6565 if ((write & FOLL_WRITE) && !writable) 6566 return -EINVAL; 6567 6568 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6569 if (!maddr) 6570 return -ENOMEM; 6571 6572 if (follow_pfnmap_start(&args)) 6573 goto out_unmap; 6574 6575 if ((prot != pgprot_val(args.pgprot)) || 6576 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6577 (writable != args.writable)) { 6578 follow_pfnmap_end(&args); 6579 iounmap(maddr); 6580 goto retry; 6581 } 6582 6583 if (write) 6584 memcpy_toio(maddr + offset, buf, len); 6585 else 6586 memcpy_fromio(buf, maddr + offset, len); 6587 ret = len; 6588 follow_pfnmap_end(&args); 6589 out_unmap: 6590 iounmap(maddr); 6591 6592 return ret; 6593 } 6594 EXPORT_SYMBOL_GPL(generic_access_phys); 6595 #endif 6596 6597 /* 6598 * Access another process' address space as given in mm. 6599 */ 6600 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6601 void *buf, int len, unsigned int gup_flags) 6602 { 6603 void *old_buf = buf; 6604 int write = gup_flags & FOLL_WRITE; 6605 6606 if (mmap_read_lock_killable(mm)) 6607 return 0; 6608 6609 /* Untag the address before looking up the VMA */ 6610 addr = untagged_addr_remote(mm, addr); 6611 6612 /* Avoid triggering the temporary warning in __get_user_pages */ 6613 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6614 return 0; 6615 6616 /* ignore errors, just check how much was successfully transferred */ 6617 while (len) { 6618 int bytes, offset; 6619 void *maddr; 6620 struct vm_area_struct *vma = NULL; 6621 struct page *page = get_user_page_vma_remote(mm, addr, 6622 gup_flags, &vma); 6623 6624 if (IS_ERR(page)) { 6625 /* We might need to expand the stack to access it */ 6626 vma = vma_lookup(mm, addr); 6627 if (!vma) { 6628 vma = expand_stack(mm, addr); 6629 6630 /* mmap_lock was dropped on failure */ 6631 if (!vma) 6632 return buf - old_buf; 6633 6634 /* Try again if stack expansion worked */ 6635 continue; 6636 } 6637 6638 /* 6639 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6640 * we can access using slightly different code. 6641 */ 6642 bytes = 0; 6643 #ifdef CONFIG_HAVE_IOREMAP_PROT 6644 if (vma->vm_ops && vma->vm_ops->access) 6645 bytes = vma->vm_ops->access(vma, addr, buf, 6646 len, write); 6647 #endif 6648 if (bytes <= 0) 6649 break; 6650 } else { 6651 bytes = len; 6652 offset = addr & (PAGE_SIZE-1); 6653 if (bytes > PAGE_SIZE-offset) 6654 bytes = PAGE_SIZE-offset; 6655 6656 maddr = kmap_local_page(page); 6657 if (write) { 6658 copy_to_user_page(vma, page, addr, 6659 maddr + offset, buf, bytes); 6660 set_page_dirty_lock(page); 6661 } else { 6662 copy_from_user_page(vma, page, addr, 6663 buf, maddr + offset, bytes); 6664 } 6665 unmap_and_put_page(page, maddr); 6666 } 6667 len -= bytes; 6668 buf += bytes; 6669 addr += bytes; 6670 } 6671 mmap_read_unlock(mm); 6672 6673 return buf - old_buf; 6674 } 6675 6676 /** 6677 * access_remote_vm - access another process' address space 6678 * @mm: the mm_struct of the target address space 6679 * @addr: start address to access 6680 * @buf: source or destination buffer 6681 * @len: number of bytes to transfer 6682 * @gup_flags: flags modifying lookup behaviour 6683 * 6684 * The caller must hold a reference on @mm. 6685 * 6686 * Return: number of bytes copied from source to destination. 6687 */ 6688 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6689 void *buf, int len, unsigned int gup_flags) 6690 { 6691 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6692 } 6693 6694 /* 6695 * Access another process' address space. 6696 * Source/target buffer must be kernel space, 6697 * Do not walk the page table directly, use get_user_pages 6698 */ 6699 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6700 void *buf, int len, unsigned int gup_flags) 6701 { 6702 struct mm_struct *mm; 6703 int ret; 6704 6705 mm = get_task_mm(tsk); 6706 if (!mm) 6707 return 0; 6708 6709 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6710 6711 mmput(mm); 6712 6713 return ret; 6714 } 6715 EXPORT_SYMBOL_GPL(access_process_vm); 6716 6717 /* 6718 * Print the name of a VMA. 6719 */ 6720 void print_vma_addr(char *prefix, unsigned long ip) 6721 { 6722 struct mm_struct *mm = current->mm; 6723 struct vm_area_struct *vma; 6724 6725 /* 6726 * we might be running from an atomic context so we cannot sleep 6727 */ 6728 if (!mmap_read_trylock(mm)) 6729 return; 6730 6731 vma = vma_lookup(mm, ip); 6732 if (vma && vma->vm_file) { 6733 struct file *f = vma->vm_file; 6734 ip -= vma->vm_start; 6735 ip += vma->vm_pgoff << PAGE_SHIFT; 6736 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 6737 vma->vm_start, 6738 vma->vm_end - vma->vm_start); 6739 } 6740 mmap_read_unlock(mm); 6741 } 6742 6743 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6744 void __might_fault(const char *file, int line) 6745 { 6746 if (pagefault_disabled()) 6747 return; 6748 __might_sleep(file, line); 6749 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6750 if (current->mm) 6751 might_lock_read(¤t->mm->mmap_lock); 6752 #endif 6753 } 6754 EXPORT_SYMBOL(__might_fault); 6755 #endif 6756 6757 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6758 /* 6759 * Process all subpages of the specified huge page with the specified 6760 * operation. The target subpage will be processed last to keep its 6761 * cache lines hot. 6762 */ 6763 static inline int process_huge_page( 6764 unsigned long addr_hint, unsigned int nr_pages, 6765 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6766 void *arg) 6767 { 6768 int i, n, base, l, ret; 6769 unsigned long addr = addr_hint & 6770 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 6771 6772 /* Process target subpage last to keep its cache lines hot */ 6773 might_sleep(); 6774 n = (addr_hint - addr) / PAGE_SIZE; 6775 if (2 * n <= nr_pages) { 6776 /* If target subpage in first half of huge page */ 6777 base = 0; 6778 l = n; 6779 /* Process subpages at the end of huge page */ 6780 for (i = nr_pages - 1; i >= 2 * n; i--) { 6781 cond_resched(); 6782 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6783 if (ret) 6784 return ret; 6785 } 6786 } else { 6787 /* If target subpage in second half of huge page */ 6788 base = nr_pages - 2 * (nr_pages - n); 6789 l = nr_pages - n; 6790 /* Process subpages at the begin of huge page */ 6791 for (i = 0; i < base; i++) { 6792 cond_resched(); 6793 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6794 if (ret) 6795 return ret; 6796 } 6797 } 6798 /* 6799 * Process remaining subpages in left-right-left-right pattern 6800 * towards the target subpage 6801 */ 6802 for (i = 0; i < l; i++) { 6803 int left_idx = base + i; 6804 int right_idx = base + 2 * l - 1 - i; 6805 6806 cond_resched(); 6807 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6808 if (ret) 6809 return ret; 6810 cond_resched(); 6811 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6812 if (ret) 6813 return ret; 6814 } 6815 return 0; 6816 } 6817 6818 static void clear_gigantic_page(struct folio *folio, unsigned long addr, 6819 unsigned int nr_pages) 6820 { 6821 int i; 6822 6823 might_sleep(); 6824 for (i = 0; i < nr_pages; i++) { 6825 cond_resched(); 6826 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 6827 } 6828 } 6829 6830 static int clear_subpage(unsigned long addr, int idx, void *arg) 6831 { 6832 struct folio *folio = arg; 6833 6834 clear_user_highpage(folio_page(folio, idx), addr); 6835 return 0; 6836 } 6837 6838 /** 6839 * folio_zero_user - Zero a folio which will be mapped to userspace. 6840 * @folio: The folio to zero. 6841 * @addr_hint: The address will be accessed or the base address if uncelar. 6842 */ 6843 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 6844 { 6845 unsigned int nr_pages = folio_nr_pages(folio); 6846 6847 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 6848 clear_gigantic_page(folio, addr_hint, nr_pages); 6849 else 6850 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 6851 } 6852 6853 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6854 unsigned long addr, 6855 struct vm_area_struct *vma, 6856 unsigned int nr_pages) 6857 { 6858 int i; 6859 struct page *dst_page; 6860 struct page *src_page; 6861 6862 for (i = 0; i < nr_pages; i++) { 6863 dst_page = folio_page(dst, i); 6864 src_page = folio_page(src, i); 6865 6866 cond_resched(); 6867 if (copy_mc_user_highpage(dst_page, src_page, 6868 addr + i*PAGE_SIZE, vma)) 6869 return -EHWPOISON; 6870 } 6871 return 0; 6872 } 6873 6874 struct copy_subpage_arg { 6875 struct folio *dst; 6876 struct folio *src; 6877 struct vm_area_struct *vma; 6878 }; 6879 6880 static int copy_subpage(unsigned long addr, int idx, void *arg) 6881 { 6882 struct copy_subpage_arg *copy_arg = arg; 6883 struct page *dst = folio_page(copy_arg->dst, idx); 6884 struct page *src = folio_page(copy_arg->src, idx); 6885 6886 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 6887 return -EHWPOISON; 6888 return 0; 6889 } 6890 6891 int copy_user_large_folio(struct folio *dst, struct folio *src, 6892 unsigned long addr_hint, struct vm_area_struct *vma) 6893 { 6894 unsigned int nr_pages = folio_nr_pages(dst); 6895 struct copy_subpage_arg arg = { 6896 .dst = dst, 6897 .src = src, 6898 .vma = vma, 6899 }; 6900 6901 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 6902 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 6903 6904 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 6905 } 6906 6907 long copy_folio_from_user(struct folio *dst_folio, 6908 const void __user *usr_src, 6909 bool allow_pagefault) 6910 { 6911 void *kaddr; 6912 unsigned long i, rc = 0; 6913 unsigned int nr_pages = folio_nr_pages(dst_folio); 6914 unsigned long ret_val = nr_pages * PAGE_SIZE; 6915 struct page *subpage; 6916 6917 for (i = 0; i < nr_pages; i++) { 6918 subpage = folio_page(dst_folio, i); 6919 kaddr = kmap_local_page(subpage); 6920 if (!allow_pagefault) 6921 pagefault_disable(); 6922 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6923 if (!allow_pagefault) 6924 pagefault_enable(); 6925 kunmap_local(kaddr); 6926 6927 ret_val -= (PAGE_SIZE - rc); 6928 if (rc) 6929 break; 6930 6931 flush_dcache_page(subpage); 6932 6933 cond_resched(); 6934 } 6935 return ret_val; 6936 } 6937 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6938 6939 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 6940 6941 static struct kmem_cache *page_ptl_cachep; 6942 6943 void __init ptlock_cache_init(void) 6944 { 6945 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6946 SLAB_PANIC, NULL); 6947 } 6948 6949 bool ptlock_alloc(struct ptdesc *ptdesc) 6950 { 6951 spinlock_t *ptl; 6952 6953 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6954 if (!ptl) 6955 return false; 6956 ptdesc->ptl = ptl; 6957 return true; 6958 } 6959 6960 void ptlock_free(struct ptdesc *ptdesc) 6961 { 6962 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 6963 } 6964 #endif 6965 6966 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 6967 { 6968 if (is_vm_hugetlb_page(vma)) 6969 hugetlb_vma_lock_read(vma); 6970 } 6971 6972 void vma_pgtable_walk_end(struct vm_area_struct *vma) 6973 { 6974 if (is_vm_hugetlb_page(vma)) 6975 hugetlb_vma_unlock_read(vma); 6976 } 6977