1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/delayacct.h> 51 #include <linux/init.h> 52 #include <linux/writeback.h> 53 54 #include <asm/pgalloc.h> 55 #include <asm/uaccess.h> 56 #include <asm/tlb.h> 57 #include <asm/tlbflush.h> 58 #include <asm/pgtable.h> 59 60 #include <linux/swapops.h> 61 #include <linux/elf.h> 62 63 #ifndef CONFIG_NEED_MULTIPLE_NODES 64 /* use the per-pgdat data instead for discontigmem - mbligh */ 65 unsigned long max_mapnr; 66 struct page *mem_map; 67 68 EXPORT_SYMBOL(max_mapnr); 69 EXPORT_SYMBOL(mem_map); 70 #endif 71 72 unsigned long num_physpages; 73 /* 74 * A number of key systems in x86 including ioremap() rely on the assumption 75 * that high_memory defines the upper bound on direct map memory, then end 76 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 78 * and ZONE_HIGHMEM. 79 */ 80 void * high_memory; 81 82 EXPORT_SYMBOL(num_physpages); 83 EXPORT_SYMBOL(high_memory); 84 85 int randomize_va_space __read_mostly = 1; 86 87 static int __init disable_randmaps(char *s) 88 { 89 randomize_va_space = 0; 90 return 1; 91 } 92 __setup("norandmaps", disable_randmaps); 93 94 95 /* 96 * If a p?d_bad entry is found while walking page tables, report 97 * the error, before resetting entry to p?d_none. Usually (but 98 * very seldom) called out from the p?d_none_or_clear_bad macros. 99 */ 100 101 void pgd_clear_bad(pgd_t *pgd) 102 { 103 pgd_ERROR(*pgd); 104 pgd_clear(pgd); 105 } 106 107 void pud_clear_bad(pud_t *pud) 108 { 109 pud_ERROR(*pud); 110 pud_clear(pud); 111 } 112 113 void pmd_clear_bad(pmd_t *pmd) 114 { 115 pmd_ERROR(*pmd); 116 pmd_clear(pmd); 117 } 118 119 /* 120 * Note: this doesn't free the actual pages themselves. That 121 * has been handled earlier when unmapping all the memory regions. 122 */ 123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 124 { 125 struct page *page = pmd_page(*pmd); 126 pmd_clear(pmd); 127 pte_lock_deinit(page); 128 pte_free_tlb(tlb, page); 129 dec_zone_page_state(page, NR_PAGETABLE); 130 tlb->mm->nr_ptes--; 131 } 132 133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 134 unsigned long addr, unsigned long end, 135 unsigned long floor, unsigned long ceiling) 136 { 137 pmd_t *pmd; 138 unsigned long next; 139 unsigned long start; 140 141 start = addr; 142 pmd = pmd_offset(pud, addr); 143 do { 144 next = pmd_addr_end(addr, end); 145 if (pmd_none_or_clear_bad(pmd)) 146 continue; 147 free_pte_range(tlb, pmd); 148 } while (pmd++, addr = next, addr != end); 149 150 start &= PUD_MASK; 151 if (start < floor) 152 return; 153 if (ceiling) { 154 ceiling &= PUD_MASK; 155 if (!ceiling) 156 return; 157 } 158 if (end - 1 > ceiling - 1) 159 return; 160 161 pmd = pmd_offset(pud, start); 162 pud_clear(pud); 163 pmd_free_tlb(tlb, pmd); 164 } 165 166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 167 unsigned long addr, unsigned long end, 168 unsigned long floor, unsigned long ceiling) 169 { 170 pud_t *pud; 171 unsigned long next; 172 unsigned long start; 173 174 start = addr; 175 pud = pud_offset(pgd, addr); 176 do { 177 next = pud_addr_end(addr, end); 178 if (pud_none_or_clear_bad(pud)) 179 continue; 180 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 181 } while (pud++, addr = next, addr != end); 182 183 start &= PGDIR_MASK; 184 if (start < floor) 185 return; 186 if (ceiling) { 187 ceiling &= PGDIR_MASK; 188 if (!ceiling) 189 return; 190 } 191 if (end - 1 > ceiling - 1) 192 return; 193 194 pud = pud_offset(pgd, start); 195 pgd_clear(pgd); 196 pud_free_tlb(tlb, pud); 197 } 198 199 /* 200 * This function frees user-level page tables of a process. 201 * 202 * Must be called with pagetable lock held. 203 */ 204 void free_pgd_range(struct mmu_gather **tlb, 205 unsigned long addr, unsigned long end, 206 unsigned long floor, unsigned long ceiling) 207 { 208 pgd_t *pgd; 209 unsigned long next; 210 unsigned long start; 211 212 /* 213 * The next few lines have given us lots of grief... 214 * 215 * Why are we testing PMD* at this top level? Because often 216 * there will be no work to do at all, and we'd prefer not to 217 * go all the way down to the bottom just to discover that. 218 * 219 * Why all these "- 1"s? Because 0 represents both the bottom 220 * of the address space and the top of it (using -1 for the 221 * top wouldn't help much: the masks would do the wrong thing). 222 * The rule is that addr 0 and floor 0 refer to the bottom of 223 * the address space, but end 0 and ceiling 0 refer to the top 224 * Comparisons need to use "end - 1" and "ceiling - 1" (though 225 * that end 0 case should be mythical). 226 * 227 * Wherever addr is brought up or ceiling brought down, we must 228 * be careful to reject "the opposite 0" before it confuses the 229 * subsequent tests. But what about where end is brought down 230 * by PMD_SIZE below? no, end can't go down to 0 there. 231 * 232 * Whereas we round start (addr) and ceiling down, by different 233 * masks at different levels, in order to test whether a table 234 * now has no other vmas using it, so can be freed, we don't 235 * bother to round floor or end up - the tests don't need that. 236 */ 237 238 addr &= PMD_MASK; 239 if (addr < floor) { 240 addr += PMD_SIZE; 241 if (!addr) 242 return; 243 } 244 if (ceiling) { 245 ceiling &= PMD_MASK; 246 if (!ceiling) 247 return; 248 } 249 if (end - 1 > ceiling - 1) 250 end -= PMD_SIZE; 251 if (addr > end - 1) 252 return; 253 254 start = addr; 255 pgd = pgd_offset((*tlb)->mm, addr); 256 do { 257 next = pgd_addr_end(addr, end); 258 if (pgd_none_or_clear_bad(pgd)) 259 continue; 260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling); 261 } while (pgd++, addr = next, addr != end); 262 } 263 264 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, 265 unsigned long floor, unsigned long ceiling) 266 { 267 while (vma) { 268 struct vm_area_struct *next = vma->vm_next; 269 unsigned long addr = vma->vm_start; 270 271 /* 272 * Hide vma from rmap and vmtruncate before freeing pgtables 273 */ 274 anon_vma_unlink(vma); 275 unlink_file_vma(vma); 276 277 if (is_vm_hugetlb_page(vma)) { 278 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 279 floor, next? next->vm_start: ceiling); 280 } else { 281 /* 282 * Optimization: gather nearby vmas into one call down 283 */ 284 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 285 && !is_vm_hugetlb_page(next)) { 286 vma = next; 287 next = vma->vm_next; 288 anon_vma_unlink(vma); 289 unlink_file_vma(vma); 290 } 291 free_pgd_range(tlb, addr, vma->vm_end, 292 floor, next? next->vm_start: ceiling); 293 } 294 vma = next; 295 } 296 } 297 298 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 299 { 300 struct page *new = pte_alloc_one(mm, address); 301 if (!new) 302 return -ENOMEM; 303 304 pte_lock_init(new); 305 spin_lock(&mm->page_table_lock); 306 if (pmd_present(*pmd)) { /* Another has populated it */ 307 pte_lock_deinit(new); 308 pte_free(new); 309 } else { 310 mm->nr_ptes++; 311 inc_zone_page_state(new, NR_PAGETABLE); 312 pmd_populate(mm, pmd, new); 313 } 314 spin_unlock(&mm->page_table_lock); 315 return 0; 316 } 317 318 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 319 { 320 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 321 if (!new) 322 return -ENOMEM; 323 324 spin_lock(&init_mm.page_table_lock); 325 if (pmd_present(*pmd)) /* Another has populated it */ 326 pte_free_kernel(new); 327 else 328 pmd_populate_kernel(&init_mm, pmd, new); 329 spin_unlock(&init_mm.page_table_lock); 330 return 0; 331 } 332 333 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 334 { 335 if (file_rss) 336 add_mm_counter(mm, file_rss, file_rss); 337 if (anon_rss) 338 add_mm_counter(mm, anon_rss, anon_rss); 339 } 340 341 /* 342 * This function is called to print an error when a bad pte 343 * is found. For example, we might have a PFN-mapped pte in 344 * a region that doesn't allow it. 345 * 346 * The calling function must still handle the error. 347 */ 348 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) 349 { 350 printk(KERN_ERR "Bad pte = %08llx, process = %s, " 351 "vm_flags = %lx, vaddr = %lx\n", 352 (long long)pte_val(pte), 353 (vma->vm_mm == current->mm ? current->comm : "???"), 354 vma->vm_flags, vaddr); 355 dump_stack(); 356 } 357 358 static inline int is_cow_mapping(unsigned int flags) 359 { 360 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 361 } 362 363 /* 364 * This function gets the "struct page" associated with a pte. 365 * 366 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping 367 * will have each page table entry just pointing to a raw page frame 368 * number, and as far as the VM layer is concerned, those do not have 369 * pages associated with them - even if the PFN might point to memory 370 * that otherwise is perfectly fine and has a "struct page". 371 * 372 * The way we recognize those mappings is through the rules set up 373 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set, 374 * and the vm_pgoff will point to the first PFN mapped: thus every 375 * page that is a raw mapping will always honor the rule 376 * 377 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 378 * 379 * and if that isn't true, the page has been COW'ed (in which case it 380 * _does_ have a "struct page" associated with it even if it is in a 381 * VM_PFNMAP range). 382 */ 383 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 384 { 385 unsigned long pfn = pte_pfn(pte); 386 387 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 388 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; 389 if (pfn == vma->vm_pgoff + off) 390 return NULL; 391 if (!is_cow_mapping(vma->vm_flags)) 392 return NULL; 393 } 394 395 #ifdef CONFIG_DEBUG_VM 396 /* 397 * Add some anal sanity checks for now. Eventually, 398 * we should just do "return pfn_to_page(pfn)", but 399 * in the meantime we check that we get a valid pfn, 400 * and that the resulting page looks ok. 401 */ 402 if (unlikely(!pfn_valid(pfn))) { 403 print_bad_pte(vma, pte, addr); 404 return NULL; 405 } 406 #endif 407 408 /* 409 * NOTE! We still have PageReserved() pages in the page 410 * tables. 411 * 412 * The PAGE_ZERO() pages and various VDSO mappings can 413 * cause them to exist. 414 */ 415 return pfn_to_page(pfn); 416 } 417 418 /* 419 * copy one vm_area from one task to the other. Assumes the page tables 420 * already present in the new task to be cleared in the whole range 421 * covered by this vma. 422 */ 423 424 static inline void 425 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 426 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 427 unsigned long addr, int *rss) 428 { 429 unsigned long vm_flags = vma->vm_flags; 430 pte_t pte = *src_pte; 431 struct page *page; 432 433 /* pte contains position in swap or file, so copy. */ 434 if (unlikely(!pte_present(pte))) { 435 if (!pte_file(pte)) { 436 swp_entry_t entry = pte_to_swp_entry(pte); 437 438 swap_duplicate(entry); 439 /* make sure dst_mm is on swapoff's mmlist. */ 440 if (unlikely(list_empty(&dst_mm->mmlist))) { 441 spin_lock(&mmlist_lock); 442 if (list_empty(&dst_mm->mmlist)) 443 list_add(&dst_mm->mmlist, 444 &src_mm->mmlist); 445 spin_unlock(&mmlist_lock); 446 } 447 if (is_write_migration_entry(entry) && 448 is_cow_mapping(vm_flags)) { 449 /* 450 * COW mappings require pages in both parent 451 * and child to be set to read. 452 */ 453 make_migration_entry_read(&entry); 454 pte = swp_entry_to_pte(entry); 455 set_pte_at(src_mm, addr, src_pte, pte); 456 } 457 } 458 goto out_set_pte; 459 } 460 461 /* 462 * If it's a COW mapping, write protect it both 463 * in the parent and the child 464 */ 465 if (is_cow_mapping(vm_flags)) { 466 ptep_set_wrprotect(src_mm, addr, src_pte); 467 pte = pte_wrprotect(pte); 468 } 469 470 /* 471 * If it's a shared mapping, mark it clean in 472 * the child 473 */ 474 if (vm_flags & VM_SHARED) 475 pte = pte_mkclean(pte); 476 pte = pte_mkold(pte); 477 478 page = vm_normal_page(vma, addr, pte); 479 if (page) { 480 get_page(page); 481 page_dup_rmap(page, vma, addr); 482 rss[!!PageAnon(page)]++; 483 } 484 485 out_set_pte: 486 set_pte_at(dst_mm, addr, dst_pte, pte); 487 } 488 489 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 490 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 491 unsigned long addr, unsigned long end) 492 { 493 pte_t *src_pte, *dst_pte; 494 spinlock_t *src_ptl, *dst_ptl; 495 int progress = 0; 496 int rss[2]; 497 498 again: 499 rss[1] = rss[0] = 0; 500 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 501 if (!dst_pte) 502 return -ENOMEM; 503 src_pte = pte_offset_map_nested(src_pmd, addr); 504 src_ptl = pte_lockptr(src_mm, src_pmd); 505 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 506 arch_enter_lazy_mmu_mode(); 507 508 do { 509 /* 510 * We are holding two locks at this point - either of them 511 * could generate latencies in another task on another CPU. 512 */ 513 if (progress >= 32) { 514 progress = 0; 515 if (need_resched() || 516 need_lockbreak(src_ptl) || 517 need_lockbreak(dst_ptl)) 518 break; 519 } 520 if (pte_none(*src_pte)) { 521 progress++; 522 continue; 523 } 524 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 525 progress += 8; 526 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 527 528 arch_leave_lazy_mmu_mode(); 529 spin_unlock(src_ptl); 530 pte_unmap_nested(src_pte - 1); 531 add_mm_rss(dst_mm, rss[0], rss[1]); 532 pte_unmap_unlock(dst_pte - 1, dst_ptl); 533 cond_resched(); 534 if (addr != end) 535 goto again; 536 return 0; 537 } 538 539 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 540 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 541 unsigned long addr, unsigned long end) 542 { 543 pmd_t *src_pmd, *dst_pmd; 544 unsigned long next; 545 546 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 547 if (!dst_pmd) 548 return -ENOMEM; 549 src_pmd = pmd_offset(src_pud, addr); 550 do { 551 next = pmd_addr_end(addr, end); 552 if (pmd_none_or_clear_bad(src_pmd)) 553 continue; 554 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 555 vma, addr, next)) 556 return -ENOMEM; 557 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 558 return 0; 559 } 560 561 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 562 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 563 unsigned long addr, unsigned long end) 564 { 565 pud_t *src_pud, *dst_pud; 566 unsigned long next; 567 568 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 569 if (!dst_pud) 570 return -ENOMEM; 571 src_pud = pud_offset(src_pgd, addr); 572 do { 573 next = pud_addr_end(addr, end); 574 if (pud_none_or_clear_bad(src_pud)) 575 continue; 576 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 577 vma, addr, next)) 578 return -ENOMEM; 579 } while (dst_pud++, src_pud++, addr = next, addr != end); 580 return 0; 581 } 582 583 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 584 struct vm_area_struct *vma) 585 { 586 pgd_t *src_pgd, *dst_pgd; 587 unsigned long next; 588 unsigned long addr = vma->vm_start; 589 unsigned long end = vma->vm_end; 590 591 /* 592 * Don't copy ptes where a page fault will fill them correctly. 593 * Fork becomes much lighter when there are big shared or private 594 * readonly mappings. The tradeoff is that copy_page_range is more 595 * efficient than faulting. 596 */ 597 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 598 if (!vma->anon_vma) 599 return 0; 600 } 601 602 if (is_vm_hugetlb_page(vma)) 603 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 604 605 dst_pgd = pgd_offset(dst_mm, addr); 606 src_pgd = pgd_offset(src_mm, addr); 607 do { 608 next = pgd_addr_end(addr, end); 609 if (pgd_none_or_clear_bad(src_pgd)) 610 continue; 611 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 612 vma, addr, next)) 613 return -ENOMEM; 614 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 615 return 0; 616 } 617 618 static unsigned long zap_pte_range(struct mmu_gather *tlb, 619 struct vm_area_struct *vma, pmd_t *pmd, 620 unsigned long addr, unsigned long end, 621 long *zap_work, struct zap_details *details) 622 { 623 struct mm_struct *mm = tlb->mm; 624 pte_t *pte; 625 spinlock_t *ptl; 626 int file_rss = 0; 627 int anon_rss = 0; 628 629 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 630 arch_enter_lazy_mmu_mode(); 631 do { 632 pte_t ptent = *pte; 633 if (pte_none(ptent)) { 634 (*zap_work)--; 635 continue; 636 } 637 638 (*zap_work) -= PAGE_SIZE; 639 640 if (pte_present(ptent)) { 641 struct page *page; 642 643 page = vm_normal_page(vma, addr, ptent); 644 if (unlikely(details) && page) { 645 /* 646 * unmap_shared_mapping_pages() wants to 647 * invalidate cache without truncating: 648 * unmap shared but keep private pages. 649 */ 650 if (details->check_mapping && 651 details->check_mapping != page->mapping) 652 continue; 653 /* 654 * Each page->index must be checked when 655 * invalidating or truncating nonlinear. 656 */ 657 if (details->nonlinear_vma && 658 (page->index < details->first_index || 659 page->index > details->last_index)) 660 continue; 661 } 662 ptent = ptep_get_and_clear_full(mm, addr, pte, 663 tlb->fullmm); 664 tlb_remove_tlb_entry(tlb, pte, addr); 665 if (unlikely(!page)) 666 continue; 667 if (unlikely(details) && details->nonlinear_vma 668 && linear_page_index(details->nonlinear_vma, 669 addr) != page->index) 670 set_pte_at(mm, addr, pte, 671 pgoff_to_pte(page->index)); 672 if (PageAnon(page)) 673 anon_rss--; 674 else { 675 if (pte_dirty(ptent)) 676 set_page_dirty(page); 677 if (pte_young(ptent)) 678 SetPageReferenced(page); 679 file_rss--; 680 } 681 page_remove_rmap(page, vma); 682 tlb_remove_page(tlb, page); 683 continue; 684 } 685 /* 686 * If details->check_mapping, we leave swap entries; 687 * if details->nonlinear_vma, we leave file entries. 688 */ 689 if (unlikely(details)) 690 continue; 691 if (!pte_file(ptent)) 692 free_swap_and_cache(pte_to_swp_entry(ptent)); 693 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 694 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 695 696 add_mm_rss(mm, file_rss, anon_rss); 697 arch_leave_lazy_mmu_mode(); 698 pte_unmap_unlock(pte - 1, ptl); 699 700 return addr; 701 } 702 703 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 704 struct vm_area_struct *vma, pud_t *pud, 705 unsigned long addr, unsigned long end, 706 long *zap_work, struct zap_details *details) 707 { 708 pmd_t *pmd; 709 unsigned long next; 710 711 pmd = pmd_offset(pud, addr); 712 do { 713 next = pmd_addr_end(addr, end); 714 if (pmd_none_or_clear_bad(pmd)) { 715 (*zap_work)--; 716 continue; 717 } 718 next = zap_pte_range(tlb, vma, pmd, addr, next, 719 zap_work, details); 720 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 721 722 return addr; 723 } 724 725 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 726 struct vm_area_struct *vma, pgd_t *pgd, 727 unsigned long addr, unsigned long end, 728 long *zap_work, struct zap_details *details) 729 { 730 pud_t *pud; 731 unsigned long next; 732 733 pud = pud_offset(pgd, addr); 734 do { 735 next = pud_addr_end(addr, end); 736 if (pud_none_or_clear_bad(pud)) { 737 (*zap_work)--; 738 continue; 739 } 740 next = zap_pmd_range(tlb, vma, pud, addr, next, 741 zap_work, details); 742 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 743 744 return addr; 745 } 746 747 static unsigned long unmap_page_range(struct mmu_gather *tlb, 748 struct vm_area_struct *vma, 749 unsigned long addr, unsigned long end, 750 long *zap_work, struct zap_details *details) 751 { 752 pgd_t *pgd; 753 unsigned long next; 754 755 if (details && !details->check_mapping && !details->nonlinear_vma) 756 details = NULL; 757 758 BUG_ON(addr >= end); 759 tlb_start_vma(tlb, vma); 760 pgd = pgd_offset(vma->vm_mm, addr); 761 do { 762 next = pgd_addr_end(addr, end); 763 if (pgd_none_or_clear_bad(pgd)) { 764 (*zap_work)--; 765 continue; 766 } 767 next = zap_pud_range(tlb, vma, pgd, addr, next, 768 zap_work, details); 769 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 770 tlb_end_vma(tlb, vma); 771 772 return addr; 773 } 774 775 #ifdef CONFIG_PREEMPT 776 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 777 #else 778 /* No preempt: go for improved straight-line efficiency */ 779 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 780 #endif 781 782 /** 783 * unmap_vmas - unmap a range of memory covered by a list of vma's 784 * @tlbp: address of the caller's struct mmu_gather 785 * @vma: the starting vma 786 * @start_addr: virtual address at which to start unmapping 787 * @end_addr: virtual address at which to end unmapping 788 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 789 * @details: details of nonlinear truncation or shared cache invalidation 790 * 791 * Returns the end address of the unmapping (restart addr if interrupted). 792 * 793 * Unmap all pages in the vma list. 794 * 795 * We aim to not hold locks for too long (for scheduling latency reasons). 796 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 797 * return the ending mmu_gather to the caller. 798 * 799 * Only addresses between `start' and `end' will be unmapped. 800 * 801 * The VMA list must be sorted in ascending virtual address order. 802 * 803 * unmap_vmas() assumes that the caller will flush the whole unmapped address 804 * range after unmap_vmas() returns. So the only responsibility here is to 805 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 806 * drops the lock and schedules. 807 */ 808 unsigned long unmap_vmas(struct mmu_gather **tlbp, 809 struct vm_area_struct *vma, unsigned long start_addr, 810 unsigned long end_addr, unsigned long *nr_accounted, 811 struct zap_details *details) 812 { 813 long zap_work = ZAP_BLOCK_SIZE; 814 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 815 int tlb_start_valid = 0; 816 unsigned long start = start_addr; 817 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 818 int fullmm = (*tlbp)->fullmm; 819 820 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 821 unsigned long end; 822 823 start = max(vma->vm_start, start_addr); 824 if (start >= vma->vm_end) 825 continue; 826 end = min(vma->vm_end, end_addr); 827 if (end <= vma->vm_start) 828 continue; 829 830 if (vma->vm_flags & VM_ACCOUNT) 831 *nr_accounted += (end - start) >> PAGE_SHIFT; 832 833 while (start != end) { 834 if (!tlb_start_valid) { 835 tlb_start = start; 836 tlb_start_valid = 1; 837 } 838 839 if (unlikely(is_vm_hugetlb_page(vma))) { 840 unmap_hugepage_range(vma, start, end); 841 zap_work -= (end - start) / 842 (HPAGE_SIZE / PAGE_SIZE); 843 start = end; 844 } else 845 start = unmap_page_range(*tlbp, vma, 846 start, end, &zap_work, details); 847 848 if (zap_work > 0) { 849 BUG_ON(start != end); 850 break; 851 } 852 853 tlb_finish_mmu(*tlbp, tlb_start, start); 854 855 if (need_resched() || 856 (i_mmap_lock && need_lockbreak(i_mmap_lock))) { 857 if (i_mmap_lock) { 858 *tlbp = NULL; 859 goto out; 860 } 861 cond_resched(); 862 } 863 864 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 865 tlb_start_valid = 0; 866 zap_work = ZAP_BLOCK_SIZE; 867 } 868 } 869 out: 870 return start; /* which is now the end (or restart) address */ 871 } 872 873 /** 874 * zap_page_range - remove user pages in a given range 875 * @vma: vm_area_struct holding the applicable pages 876 * @address: starting address of pages to zap 877 * @size: number of bytes to zap 878 * @details: details of nonlinear truncation or shared cache invalidation 879 */ 880 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 881 unsigned long size, struct zap_details *details) 882 { 883 struct mm_struct *mm = vma->vm_mm; 884 struct mmu_gather *tlb; 885 unsigned long end = address + size; 886 unsigned long nr_accounted = 0; 887 888 lru_add_drain(); 889 tlb = tlb_gather_mmu(mm, 0); 890 update_hiwater_rss(mm); 891 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 892 if (tlb) 893 tlb_finish_mmu(tlb, address, end); 894 return end; 895 } 896 897 /* 898 * Do a quick page-table lookup for a single page. 899 */ 900 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 901 unsigned int flags) 902 { 903 pgd_t *pgd; 904 pud_t *pud; 905 pmd_t *pmd; 906 pte_t *ptep, pte; 907 spinlock_t *ptl; 908 struct page *page; 909 struct mm_struct *mm = vma->vm_mm; 910 911 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 912 if (!IS_ERR(page)) { 913 BUG_ON(flags & FOLL_GET); 914 goto out; 915 } 916 917 page = NULL; 918 pgd = pgd_offset(mm, address); 919 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 920 goto no_page_table; 921 922 pud = pud_offset(pgd, address); 923 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 924 goto no_page_table; 925 926 pmd = pmd_offset(pud, address); 927 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 928 goto no_page_table; 929 930 if (pmd_huge(*pmd)) { 931 BUG_ON(flags & FOLL_GET); 932 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 933 goto out; 934 } 935 936 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 937 if (!ptep) 938 goto out; 939 940 pte = *ptep; 941 if (!pte_present(pte)) 942 goto unlock; 943 if ((flags & FOLL_WRITE) && !pte_write(pte)) 944 goto unlock; 945 page = vm_normal_page(vma, address, pte); 946 if (unlikely(!page)) 947 goto unlock; 948 949 if (flags & FOLL_GET) 950 get_page(page); 951 if (flags & FOLL_TOUCH) { 952 if ((flags & FOLL_WRITE) && 953 !pte_dirty(pte) && !PageDirty(page)) 954 set_page_dirty(page); 955 mark_page_accessed(page); 956 } 957 unlock: 958 pte_unmap_unlock(ptep, ptl); 959 out: 960 return page; 961 962 no_page_table: 963 /* 964 * When core dumping an enormous anonymous area that nobody 965 * has touched so far, we don't want to allocate page tables. 966 */ 967 if (flags & FOLL_ANON) { 968 page = ZERO_PAGE(0); 969 if (flags & FOLL_GET) 970 get_page(page); 971 BUG_ON(flags & FOLL_WRITE); 972 } 973 return page; 974 } 975 976 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 977 unsigned long start, int len, int write, int force, 978 struct page **pages, struct vm_area_struct **vmas) 979 { 980 int i; 981 unsigned int vm_flags; 982 983 /* 984 * Require read or write permissions. 985 * If 'force' is set, we only require the "MAY" flags. 986 */ 987 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 988 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 989 i = 0; 990 991 do { 992 struct vm_area_struct *vma; 993 unsigned int foll_flags; 994 995 vma = find_extend_vma(mm, start); 996 if (!vma && in_gate_area(tsk, start)) { 997 unsigned long pg = start & PAGE_MASK; 998 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 999 pgd_t *pgd; 1000 pud_t *pud; 1001 pmd_t *pmd; 1002 pte_t *pte; 1003 if (write) /* user gate pages are read-only */ 1004 return i ? : -EFAULT; 1005 if (pg > TASK_SIZE) 1006 pgd = pgd_offset_k(pg); 1007 else 1008 pgd = pgd_offset_gate(mm, pg); 1009 BUG_ON(pgd_none(*pgd)); 1010 pud = pud_offset(pgd, pg); 1011 BUG_ON(pud_none(*pud)); 1012 pmd = pmd_offset(pud, pg); 1013 if (pmd_none(*pmd)) 1014 return i ? : -EFAULT; 1015 pte = pte_offset_map(pmd, pg); 1016 if (pte_none(*pte)) { 1017 pte_unmap(pte); 1018 return i ? : -EFAULT; 1019 } 1020 if (pages) { 1021 struct page *page = vm_normal_page(gate_vma, start, *pte); 1022 pages[i] = page; 1023 if (page) 1024 get_page(page); 1025 } 1026 pte_unmap(pte); 1027 if (vmas) 1028 vmas[i] = gate_vma; 1029 i++; 1030 start += PAGE_SIZE; 1031 len--; 1032 continue; 1033 } 1034 1035 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1036 || !(vm_flags & vma->vm_flags)) 1037 return i ? : -EFAULT; 1038 1039 if (is_vm_hugetlb_page(vma)) { 1040 i = follow_hugetlb_page(mm, vma, pages, vmas, 1041 &start, &len, i, write); 1042 continue; 1043 } 1044 1045 foll_flags = FOLL_TOUCH; 1046 if (pages) 1047 foll_flags |= FOLL_GET; 1048 if (!write && !(vma->vm_flags & VM_LOCKED) && 1049 (!vma->vm_ops || (!vma->vm_ops->nopage && 1050 !vma->vm_ops->fault))) 1051 foll_flags |= FOLL_ANON; 1052 1053 do { 1054 struct page *page; 1055 1056 /* 1057 * If tsk is ooming, cut off its access to large memory 1058 * allocations. It has a pending SIGKILL, but it can't 1059 * be processed until returning to user space. 1060 */ 1061 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) 1062 return -ENOMEM; 1063 1064 if (write) 1065 foll_flags |= FOLL_WRITE; 1066 1067 cond_resched(); 1068 while (!(page = follow_page(vma, start, foll_flags))) { 1069 int ret; 1070 ret = handle_mm_fault(mm, vma, start, 1071 foll_flags & FOLL_WRITE); 1072 if (ret & VM_FAULT_ERROR) { 1073 if (ret & VM_FAULT_OOM) 1074 return i ? i : -ENOMEM; 1075 else if (ret & VM_FAULT_SIGBUS) 1076 return i ? i : -EFAULT; 1077 BUG(); 1078 } 1079 if (ret & VM_FAULT_MAJOR) 1080 tsk->maj_flt++; 1081 else 1082 tsk->min_flt++; 1083 1084 /* 1085 * The VM_FAULT_WRITE bit tells us that 1086 * do_wp_page has broken COW when necessary, 1087 * even if maybe_mkwrite decided not to set 1088 * pte_write. We can thus safely do subsequent 1089 * page lookups as if they were reads. 1090 */ 1091 if (ret & VM_FAULT_WRITE) 1092 foll_flags &= ~FOLL_WRITE; 1093 1094 cond_resched(); 1095 } 1096 if (pages) { 1097 pages[i] = page; 1098 1099 flush_anon_page(vma, page, start); 1100 flush_dcache_page(page); 1101 } 1102 if (vmas) 1103 vmas[i] = vma; 1104 i++; 1105 start += PAGE_SIZE; 1106 len--; 1107 } while (len && start < vma->vm_end); 1108 } while (len); 1109 return i; 1110 } 1111 EXPORT_SYMBOL(get_user_pages); 1112 1113 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) 1114 { 1115 pgd_t * pgd = pgd_offset(mm, addr); 1116 pud_t * pud = pud_alloc(mm, pgd, addr); 1117 if (pud) { 1118 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1119 if (pmd) 1120 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1121 } 1122 return NULL; 1123 } 1124 1125 /* 1126 * This is the old fallback for page remapping. 1127 * 1128 * For historical reasons, it only allows reserved pages. Only 1129 * old drivers should use this, and they needed to mark their 1130 * pages reserved for the old functions anyway. 1131 */ 1132 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot) 1133 { 1134 int retval; 1135 pte_t *pte; 1136 spinlock_t *ptl; 1137 1138 retval = -EINVAL; 1139 if (PageAnon(page)) 1140 goto out; 1141 retval = -ENOMEM; 1142 flush_dcache_page(page); 1143 pte = get_locked_pte(mm, addr, &ptl); 1144 if (!pte) 1145 goto out; 1146 retval = -EBUSY; 1147 if (!pte_none(*pte)) 1148 goto out_unlock; 1149 1150 /* Ok, finally just insert the thing.. */ 1151 get_page(page); 1152 inc_mm_counter(mm, file_rss); 1153 page_add_file_rmap(page); 1154 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1155 1156 retval = 0; 1157 out_unlock: 1158 pte_unmap_unlock(pte, ptl); 1159 out: 1160 return retval; 1161 } 1162 1163 /** 1164 * vm_insert_page - insert single page into user vma 1165 * @vma: user vma to map to 1166 * @addr: target user address of this page 1167 * @page: source kernel page 1168 * 1169 * This allows drivers to insert individual pages they've allocated 1170 * into a user vma. 1171 * 1172 * The page has to be a nice clean _individual_ kernel allocation. 1173 * If you allocate a compound page, you need to have marked it as 1174 * such (__GFP_COMP), or manually just split the page up yourself 1175 * (see split_page()). 1176 * 1177 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1178 * took an arbitrary page protection parameter. This doesn't allow 1179 * that. Your vma protection will have to be set up correctly, which 1180 * means that if you want a shared writable mapping, you'd better 1181 * ask for a shared writable mapping! 1182 * 1183 * The page does not need to be reserved. 1184 */ 1185 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) 1186 { 1187 if (addr < vma->vm_start || addr >= vma->vm_end) 1188 return -EFAULT; 1189 if (!page_count(page)) 1190 return -EINVAL; 1191 vma->vm_flags |= VM_INSERTPAGE; 1192 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot); 1193 } 1194 EXPORT_SYMBOL(vm_insert_page); 1195 1196 /** 1197 * vm_insert_pfn - insert single pfn into user vma 1198 * @vma: user vma to map to 1199 * @addr: target user address of this page 1200 * @pfn: source kernel pfn 1201 * 1202 * Similar to vm_inert_page, this allows drivers to insert individual pages 1203 * they've allocated into a user vma. Same comments apply. 1204 * 1205 * This function should only be called from a vm_ops->fault handler, and 1206 * in that case the handler should return NULL. 1207 */ 1208 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1209 unsigned long pfn) 1210 { 1211 struct mm_struct *mm = vma->vm_mm; 1212 int retval; 1213 pte_t *pte, entry; 1214 spinlock_t *ptl; 1215 1216 BUG_ON(!(vma->vm_flags & VM_PFNMAP)); 1217 BUG_ON(is_cow_mapping(vma->vm_flags)); 1218 1219 retval = -ENOMEM; 1220 pte = get_locked_pte(mm, addr, &ptl); 1221 if (!pte) 1222 goto out; 1223 retval = -EBUSY; 1224 if (!pte_none(*pte)) 1225 goto out_unlock; 1226 1227 /* Ok, finally just insert the thing.. */ 1228 entry = pfn_pte(pfn, vma->vm_page_prot); 1229 set_pte_at(mm, addr, pte, entry); 1230 update_mmu_cache(vma, addr, entry); 1231 1232 retval = 0; 1233 out_unlock: 1234 pte_unmap_unlock(pte, ptl); 1235 1236 out: 1237 return retval; 1238 } 1239 EXPORT_SYMBOL(vm_insert_pfn); 1240 1241 /* 1242 * maps a range of physical memory into the requested pages. the old 1243 * mappings are removed. any references to nonexistent pages results 1244 * in null mappings (currently treated as "copy-on-access") 1245 */ 1246 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1247 unsigned long addr, unsigned long end, 1248 unsigned long pfn, pgprot_t prot) 1249 { 1250 pte_t *pte; 1251 spinlock_t *ptl; 1252 1253 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1254 if (!pte) 1255 return -ENOMEM; 1256 arch_enter_lazy_mmu_mode(); 1257 do { 1258 BUG_ON(!pte_none(*pte)); 1259 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); 1260 pfn++; 1261 } while (pte++, addr += PAGE_SIZE, addr != end); 1262 arch_leave_lazy_mmu_mode(); 1263 pte_unmap_unlock(pte - 1, ptl); 1264 return 0; 1265 } 1266 1267 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1268 unsigned long addr, unsigned long end, 1269 unsigned long pfn, pgprot_t prot) 1270 { 1271 pmd_t *pmd; 1272 unsigned long next; 1273 1274 pfn -= addr >> PAGE_SHIFT; 1275 pmd = pmd_alloc(mm, pud, addr); 1276 if (!pmd) 1277 return -ENOMEM; 1278 do { 1279 next = pmd_addr_end(addr, end); 1280 if (remap_pte_range(mm, pmd, addr, next, 1281 pfn + (addr >> PAGE_SHIFT), prot)) 1282 return -ENOMEM; 1283 } while (pmd++, addr = next, addr != end); 1284 return 0; 1285 } 1286 1287 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1288 unsigned long addr, unsigned long end, 1289 unsigned long pfn, pgprot_t prot) 1290 { 1291 pud_t *pud; 1292 unsigned long next; 1293 1294 pfn -= addr >> PAGE_SHIFT; 1295 pud = pud_alloc(mm, pgd, addr); 1296 if (!pud) 1297 return -ENOMEM; 1298 do { 1299 next = pud_addr_end(addr, end); 1300 if (remap_pmd_range(mm, pud, addr, next, 1301 pfn + (addr >> PAGE_SHIFT), prot)) 1302 return -ENOMEM; 1303 } while (pud++, addr = next, addr != end); 1304 return 0; 1305 } 1306 1307 /** 1308 * remap_pfn_range - remap kernel memory to userspace 1309 * @vma: user vma to map to 1310 * @addr: target user address to start at 1311 * @pfn: physical address of kernel memory 1312 * @size: size of map area 1313 * @prot: page protection flags for this mapping 1314 * 1315 * Note: this is only safe if the mm semaphore is held when called. 1316 */ 1317 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1318 unsigned long pfn, unsigned long size, pgprot_t prot) 1319 { 1320 pgd_t *pgd; 1321 unsigned long next; 1322 unsigned long end = addr + PAGE_ALIGN(size); 1323 struct mm_struct *mm = vma->vm_mm; 1324 int err; 1325 1326 /* 1327 * Physically remapped pages are special. Tell the 1328 * rest of the world about it: 1329 * VM_IO tells people not to look at these pages 1330 * (accesses can have side effects). 1331 * VM_RESERVED is specified all over the place, because 1332 * in 2.4 it kept swapout's vma scan off this vma; but 1333 * in 2.6 the LRU scan won't even find its pages, so this 1334 * flag means no more than count its pages in reserved_vm, 1335 * and omit it from core dump, even when VM_IO turned off. 1336 * VM_PFNMAP tells the core MM that the base pages are just 1337 * raw PFN mappings, and do not have a "struct page" associated 1338 * with them. 1339 * 1340 * There's a horrible special case to handle copy-on-write 1341 * behaviour that some programs depend on. We mark the "original" 1342 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1343 */ 1344 if (is_cow_mapping(vma->vm_flags)) { 1345 if (addr != vma->vm_start || end != vma->vm_end) 1346 return -EINVAL; 1347 vma->vm_pgoff = pfn; 1348 } 1349 1350 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1351 1352 BUG_ON(addr >= end); 1353 pfn -= addr >> PAGE_SHIFT; 1354 pgd = pgd_offset(mm, addr); 1355 flush_cache_range(vma, addr, end); 1356 do { 1357 next = pgd_addr_end(addr, end); 1358 err = remap_pud_range(mm, pgd, addr, next, 1359 pfn + (addr >> PAGE_SHIFT), prot); 1360 if (err) 1361 break; 1362 } while (pgd++, addr = next, addr != end); 1363 return err; 1364 } 1365 EXPORT_SYMBOL(remap_pfn_range); 1366 1367 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1368 unsigned long addr, unsigned long end, 1369 pte_fn_t fn, void *data) 1370 { 1371 pte_t *pte; 1372 int err; 1373 struct page *pmd_page; 1374 spinlock_t *uninitialized_var(ptl); 1375 1376 pte = (mm == &init_mm) ? 1377 pte_alloc_kernel(pmd, addr) : 1378 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1379 if (!pte) 1380 return -ENOMEM; 1381 1382 BUG_ON(pmd_huge(*pmd)); 1383 1384 pmd_page = pmd_page(*pmd); 1385 1386 do { 1387 err = fn(pte, pmd_page, addr, data); 1388 if (err) 1389 break; 1390 } while (pte++, addr += PAGE_SIZE, addr != end); 1391 1392 if (mm != &init_mm) 1393 pte_unmap_unlock(pte-1, ptl); 1394 return err; 1395 } 1396 1397 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1398 unsigned long addr, unsigned long end, 1399 pte_fn_t fn, void *data) 1400 { 1401 pmd_t *pmd; 1402 unsigned long next; 1403 int err; 1404 1405 pmd = pmd_alloc(mm, pud, addr); 1406 if (!pmd) 1407 return -ENOMEM; 1408 do { 1409 next = pmd_addr_end(addr, end); 1410 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1411 if (err) 1412 break; 1413 } while (pmd++, addr = next, addr != end); 1414 return err; 1415 } 1416 1417 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1418 unsigned long addr, unsigned long end, 1419 pte_fn_t fn, void *data) 1420 { 1421 pud_t *pud; 1422 unsigned long next; 1423 int err; 1424 1425 pud = pud_alloc(mm, pgd, addr); 1426 if (!pud) 1427 return -ENOMEM; 1428 do { 1429 next = pud_addr_end(addr, end); 1430 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1431 if (err) 1432 break; 1433 } while (pud++, addr = next, addr != end); 1434 return err; 1435 } 1436 1437 /* 1438 * Scan a region of virtual memory, filling in page tables as necessary 1439 * and calling a provided function on each leaf page table. 1440 */ 1441 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1442 unsigned long size, pte_fn_t fn, void *data) 1443 { 1444 pgd_t *pgd; 1445 unsigned long next; 1446 unsigned long end = addr + size; 1447 int err; 1448 1449 BUG_ON(addr >= end); 1450 pgd = pgd_offset(mm, addr); 1451 do { 1452 next = pgd_addr_end(addr, end); 1453 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1454 if (err) 1455 break; 1456 } while (pgd++, addr = next, addr != end); 1457 return err; 1458 } 1459 EXPORT_SYMBOL_GPL(apply_to_page_range); 1460 1461 /* 1462 * handle_pte_fault chooses page fault handler according to an entry 1463 * which was read non-atomically. Before making any commitment, on 1464 * those architectures or configurations (e.g. i386 with PAE) which 1465 * might give a mix of unmatched parts, do_swap_page and do_file_page 1466 * must check under lock before unmapping the pte and proceeding 1467 * (but do_wp_page is only called after already making such a check; 1468 * and do_anonymous_page and do_no_page can safely check later on). 1469 */ 1470 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1471 pte_t *page_table, pte_t orig_pte) 1472 { 1473 int same = 1; 1474 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1475 if (sizeof(pte_t) > sizeof(unsigned long)) { 1476 spinlock_t *ptl = pte_lockptr(mm, pmd); 1477 spin_lock(ptl); 1478 same = pte_same(*page_table, orig_pte); 1479 spin_unlock(ptl); 1480 } 1481 #endif 1482 pte_unmap(page_table); 1483 return same; 1484 } 1485 1486 /* 1487 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1488 * servicing faults for write access. In the normal case, do always want 1489 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1490 * that do not have writing enabled, when used by access_process_vm. 1491 */ 1492 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1493 { 1494 if (likely(vma->vm_flags & VM_WRITE)) 1495 pte = pte_mkwrite(pte); 1496 return pte; 1497 } 1498 1499 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1500 { 1501 /* 1502 * If the source page was a PFN mapping, we don't have 1503 * a "struct page" for it. We do a best-effort copy by 1504 * just copying from the original user address. If that 1505 * fails, we just zero-fill it. Live with it. 1506 */ 1507 if (unlikely(!src)) { 1508 void *kaddr = kmap_atomic(dst, KM_USER0); 1509 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1510 1511 /* 1512 * This really shouldn't fail, because the page is there 1513 * in the page tables. But it might just be unreadable, 1514 * in which case we just give up and fill the result with 1515 * zeroes. 1516 */ 1517 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1518 memset(kaddr, 0, PAGE_SIZE); 1519 kunmap_atomic(kaddr, KM_USER0); 1520 flush_dcache_page(dst); 1521 return; 1522 1523 } 1524 copy_user_highpage(dst, src, va, vma); 1525 } 1526 1527 /* 1528 * This routine handles present pages, when users try to write 1529 * to a shared page. It is done by copying the page to a new address 1530 * and decrementing the shared-page counter for the old page. 1531 * 1532 * Note that this routine assumes that the protection checks have been 1533 * done by the caller (the low-level page fault routine in most cases). 1534 * Thus we can safely just mark it writable once we've done any necessary 1535 * COW. 1536 * 1537 * We also mark the page dirty at this point even though the page will 1538 * change only once the write actually happens. This avoids a few races, 1539 * and potentially makes it more efficient. 1540 * 1541 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1542 * but allow concurrent faults), with pte both mapped and locked. 1543 * We return with mmap_sem still held, but pte unmapped and unlocked. 1544 */ 1545 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1546 unsigned long address, pte_t *page_table, pmd_t *pmd, 1547 spinlock_t *ptl, pte_t orig_pte) 1548 { 1549 struct page *old_page, *new_page; 1550 pte_t entry; 1551 int reuse = 0, ret = 0; 1552 int page_mkwrite = 0; 1553 struct page *dirty_page = NULL; 1554 1555 old_page = vm_normal_page(vma, address, orig_pte); 1556 if (!old_page) 1557 goto gotten; 1558 1559 /* 1560 * Take out anonymous pages first, anonymous shared vmas are 1561 * not dirty accountable. 1562 */ 1563 if (PageAnon(old_page)) { 1564 if (!TestSetPageLocked(old_page)) { 1565 reuse = can_share_swap_page(old_page); 1566 unlock_page(old_page); 1567 } 1568 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1569 (VM_WRITE|VM_SHARED))) { 1570 /* 1571 * Only catch write-faults on shared writable pages, 1572 * read-only shared pages can get COWed by 1573 * get_user_pages(.write=1, .force=1). 1574 */ 1575 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 1576 /* 1577 * Notify the address space that the page is about to 1578 * become writable so that it can prohibit this or wait 1579 * for the page to get into an appropriate state. 1580 * 1581 * We do this without the lock held, so that it can 1582 * sleep if it needs to. 1583 */ 1584 page_cache_get(old_page); 1585 pte_unmap_unlock(page_table, ptl); 1586 1587 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) 1588 goto unwritable_page; 1589 1590 /* 1591 * Since we dropped the lock we need to revalidate 1592 * the PTE as someone else may have changed it. If 1593 * they did, we just return, as we can count on the 1594 * MMU to tell us if they didn't also make it writable. 1595 */ 1596 page_table = pte_offset_map_lock(mm, pmd, address, 1597 &ptl); 1598 page_cache_release(old_page); 1599 if (!pte_same(*page_table, orig_pte)) 1600 goto unlock; 1601 1602 page_mkwrite = 1; 1603 } 1604 dirty_page = old_page; 1605 get_page(dirty_page); 1606 reuse = 1; 1607 } 1608 1609 if (reuse) { 1610 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1611 entry = pte_mkyoung(orig_pte); 1612 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1613 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 1614 update_mmu_cache(vma, address, entry); 1615 ret |= VM_FAULT_WRITE; 1616 goto unlock; 1617 } 1618 1619 /* 1620 * Ok, we need to copy. Oh, well.. 1621 */ 1622 page_cache_get(old_page); 1623 gotten: 1624 pte_unmap_unlock(page_table, ptl); 1625 1626 if (unlikely(anon_vma_prepare(vma))) 1627 goto oom; 1628 VM_BUG_ON(old_page == ZERO_PAGE(0)); 1629 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1630 if (!new_page) 1631 goto oom; 1632 cow_user_page(new_page, old_page, address, vma); 1633 1634 /* 1635 * Re-check the pte - we dropped the lock 1636 */ 1637 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1638 if (likely(pte_same(*page_table, orig_pte))) { 1639 if (old_page) { 1640 page_remove_rmap(old_page, vma); 1641 if (!PageAnon(old_page)) { 1642 dec_mm_counter(mm, file_rss); 1643 inc_mm_counter(mm, anon_rss); 1644 } 1645 } else 1646 inc_mm_counter(mm, anon_rss); 1647 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1648 entry = mk_pte(new_page, vma->vm_page_prot); 1649 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1650 /* 1651 * Clear the pte entry and flush it first, before updating the 1652 * pte with the new entry. This will avoid a race condition 1653 * seen in the presence of one thread doing SMC and another 1654 * thread doing COW. 1655 */ 1656 ptep_clear_flush(vma, address, page_table); 1657 set_pte_at(mm, address, page_table, entry); 1658 update_mmu_cache(vma, address, entry); 1659 lru_cache_add_active(new_page); 1660 page_add_new_anon_rmap(new_page, vma, address); 1661 1662 /* Free the old page.. */ 1663 new_page = old_page; 1664 ret |= VM_FAULT_WRITE; 1665 } 1666 if (new_page) 1667 page_cache_release(new_page); 1668 if (old_page) 1669 page_cache_release(old_page); 1670 unlock: 1671 pte_unmap_unlock(page_table, ptl); 1672 if (dirty_page) { 1673 if (vma->vm_file) 1674 file_update_time(vma->vm_file); 1675 1676 /* 1677 * Yes, Virginia, this is actually required to prevent a race 1678 * with clear_page_dirty_for_io() from clearing the page dirty 1679 * bit after it clear all dirty ptes, but before a racing 1680 * do_wp_page installs a dirty pte. 1681 * 1682 * do_no_page is protected similarly. 1683 */ 1684 wait_on_page_locked(dirty_page); 1685 set_page_dirty_balance(dirty_page, page_mkwrite); 1686 put_page(dirty_page); 1687 } 1688 return ret; 1689 oom: 1690 if (old_page) 1691 page_cache_release(old_page); 1692 return VM_FAULT_OOM; 1693 1694 unwritable_page: 1695 page_cache_release(old_page); 1696 return VM_FAULT_SIGBUS; 1697 } 1698 1699 /* 1700 * Helper functions for unmap_mapping_range(). 1701 * 1702 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 1703 * 1704 * We have to restart searching the prio_tree whenever we drop the lock, 1705 * since the iterator is only valid while the lock is held, and anyway 1706 * a later vma might be split and reinserted earlier while lock dropped. 1707 * 1708 * The list of nonlinear vmas could be handled more efficiently, using 1709 * a placeholder, but handle it in the same way until a need is shown. 1710 * It is important to search the prio_tree before nonlinear list: a vma 1711 * may become nonlinear and be shifted from prio_tree to nonlinear list 1712 * while the lock is dropped; but never shifted from list to prio_tree. 1713 * 1714 * In order to make forward progress despite restarting the search, 1715 * vm_truncate_count is used to mark a vma as now dealt with, so we can 1716 * quickly skip it next time around. Since the prio_tree search only 1717 * shows us those vmas affected by unmapping the range in question, we 1718 * can't efficiently keep all vmas in step with mapping->truncate_count: 1719 * so instead reset them all whenever it wraps back to 0 (then go to 1). 1720 * mapping->truncate_count and vma->vm_truncate_count are protected by 1721 * i_mmap_lock. 1722 * 1723 * In order to make forward progress despite repeatedly restarting some 1724 * large vma, note the restart_addr from unmap_vmas when it breaks out: 1725 * and restart from that address when we reach that vma again. It might 1726 * have been split or merged, shrunk or extended, but never shifted: so 1727 * restart_addr remains valid so long as it remains in the vma's range. 1728 * unmap_mapping_range forces truncate_count to leap over page-aligned 1729 * values so we can save vma's restart_addr in its truncate_count field. 1730 */ 1731 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 1732 1733 static void reset_vma_truncate_counts(struct address_space *mapping) 1734 { 1735 struct vm_area_struct *vma; 1736 struct prio_tree_iter iter; 1737 1738 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 1739 vma->vm_truncate_count = 0; 1740 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1741 vma->vm_truncate_count = 0; 1742 } 1743 1744 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 1745 unsigned long start_addr, unsigned long end_addr, 1746 struct zap_details *details) 1747 { 1748 unsigned long restart_addr; 1749 int need_break; 1750 1751 /* 1752 * files that support invalidating or truncating portions of the 1753 * file from under mmaped areas must have their ->fault function 1754 * return a locked page (and set VM_FAULT_LOCKED in the return). 1755 * This provides synchronisation against concurrent unmapping here. 1756 */ 1757 1758 again: 1759 restart_addr = vma->vm_truncate_count; 1760 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 1761 start_addr = restart_addr; 1762 if (start_addr >= end_addr) { 1763 /* Top of vma has been split off since last time */ 1764 vma->vm_truncate_count = details->truncate_count; 1765 return 0; 1766 } 1767 } 1768 1769 restart_addr = zap_page_range(vma, start_addr, 1770 end_addr - start_addr, details); 1771 need_break = need_resched() || 1772 need_lockbreak(details->i_mmap_lock); 1773 1774 if (restart_addr >= end_addr) { 1775 /* We have now completed this vma: mark it so */ 1776 vma->vm_truncate_count = details->truncate_count; 1777 if (!need_break) 1778 return 0; 1779 } else { 1780 /* Note restart_addr in vma's truncate_count field */ 1781 vma->vm_truncate_count = restart_addr; 1782 if (!need_break) 1783 goto again; 1784 } 1785 1786 spin_unlock(details->i_mmap_lock); 1787 cond_resched(); 1788 spin_lock(details->i_mmap_lock); 1789 return -EINTR; 1790 } 1791 1792 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 1793 struct zap_details *details) 1794 { 1795 struct vm_area_struct *vma; 1796 struct prio_tree_iter iter; 1797 pgoff_t vba, vea, zba, zea; 1798 1799 restart: 1800 vma_prio_tree_foreach(vma, &iter, root, 1801 details->first_index, details->last_index) { 1802 /* Skip quickly over those we have already dealt with */ 1803 if (vma->vm_truncate_count == details->truncate_count) 1804 continue; 1805 1806 vba = vma->vm_pgoff; 1807 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 1808 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 1809 zba = details->first_index; 1810 if (zba < vba) 1811 zba = vba; 1812 zea = details->last_index; 1813 if (zea > vea) 1814 zea = vea; 1815 1816 if (unmap_mapping_range_vma(vma, 1817 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 1818 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 1819 details) < 0) 1820 goto restart; 1821 } 1822 } 1823 1824 static inline void unmap_mapping_range_list(struct list_head *head, 1825 struct zap_details *details) 1826 { 1827 struct vm_area_struct *vma; 1828 1829 /* 1830 * In nonlinear VMAs there is no correspondence between virtual address 1831 * offset and file offset. So we must perform an exhaustive search 1832 * across *all* the pages in each nonlinear VMA, not just the pages 1833 * whose virtual address lies outside the file truncation point. 1834 */ 1835 restart: 1836 list_for_each_entry(vma, head, shared.vm_set.list) { 1837 /* Skip quickly over those we have already dealt with */ 1838 if (vma->vm_truncate_count == details->truncate_count) 1839 continue; 1840 details->nonlinear_vma = vma; 1841 if (unmap_mapping_range_vma(vma, vma->vm_start, 1842 vma->vm_end, details) < 0) 1843 goto restart; 1844 } 1845 } 1846 1847 /** 1848 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 1849 * @mapping: the address space containing mmaps to be unmapped. 1850 * @holebegin: byte in first page to unmap, relative to the start of 1851 * the underlying file. This will be rounded down to a PAGE_SIZE 1852 * boundary. Note that this is different from vmtruncate(), which 1853 * must keep the partial page. In contrast, we must get rid of 1854 * partial pages. 1855 * @holelen: size of prospective hole in bytes. This will be rounded 1856 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 1857 * end of the file. 1858 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 1859 * but 0 when invalidating pagecache, don't throw away private data. 1860 */ 1861 void unmap_mapping_range(struct address_space *mapping, 1862 loff_t const holebegin, loff_t const holelen, int even_cows) 1863 { 1864 struct zap_details details; 1865 pgoff_t hba = holebegin >> PAGE_SHIFT; 1866 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1867 1868 /* Check for overflow. */ 1869 if (sizeof(holelen) > sizeof(hlen)) { 1870 long long holeend = 1871 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1872 if (holeend & ~(long long)ULONG_MAX) 1873 hlen = ULONG_MAX - hba + 1; 1874 } 1875 1876 details.check_mapping = even_cows? NULL: mapping; 1877 details.nonlinear_vma = NULL; 1878 details.first_index = hba; 1879 details.last_index = hba + hlen - 1; 1880 if (details.last_index < details.first_index) 1881 details.last_index = ULONG_MAX; 1882 details.i_mmap_lock = &mapping->i_mmap_lock; 1883 1884 spin_lock(&mapping->i_mmap_lock); 1885 1886 /* Protect against endless unmapping loops */ 1887 mapping->truncate_count++; 1888 if (unlikely(is_restart_addr(mapping->truncate_count))) { 1889 if (mapping->truncate_count == 0) 1890 reset_vma_truncate_counts(mapping); 1891 mapping->truncate_count++; 1892 } 1893 details.truncate_count = mapping->truncate_count; 1894 1895 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 1896 unmap_mapping_range_tree(&mapping->i_mmap, &details); 1897 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 1898 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 1899 spin_unlock(&mapping->i_mmap_lock); 1900 } 1901 EXPORT_SYMBOL(unmap_mapping_range); 1902 1903 /** 1904 * vmtruncate - unmap mappings "freed" by truncate() syscall 1905 * @inode: inode of the file used 1906 * @offset: file offset to start truncating 1907 * 1908 * NOTE! We have to be ready to update the memory sharing 1909 * between the file and the memory map for a potential last 1910 * incomplete page. Ugly, but necessary. 1911 */ 1912 int vmtruncate(struct inode * inode, loff_t offset) 1913 { 1914 struct address_space *mapping = inode->i_mapping; 1915 unsigned long limit; 1916 1917 if (inode->i_size < offset) 1918 goto do_expand; 1919 /* 1920 * truncation of in-use swapfiles is disallowed - it would cause 1921 * subsequent swapout to scribble on the now-freed blocks. 1922 */ 1923 if (IS_SWAPFILE(inode)) 1924 goto out_busy; 1925 i_size_write(inode, offset); 1926 1927 /* 1928 * unmap_mapping_range is called twice, first simply for efficiency 1929 * so that truncate_inode_pages does fewer single-page unmaps. However 1930 * after this first call, and before truncate_inode_pages finishes, 1931 * it is possible for private pages to be COWed, which remain after 1932 * truncate_inode_pages finishes, hence the second unmap_mapping_range 1933 * call must be made for correctness. 1934 */ 1935 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 1936 truncate_inode_pages(mapping, offset); 1937 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 1938 goto out_truncate; 1939 1940 do_expand: 1941 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1942 if (limit != RLIM_INFINITY && offset > limit) 1943 goto out_sig; 1944 if (offset > inode->i_sb->s_maxbytes) 1945 goto out_big; 1946 i_size_write(inode, offset); 1947 1948 out_truncate: 1949 if (inode->i_op && inode->i_op->truncate) 1950 inode->i_op->truncate(inode); 1951 return 0; 1952 out_sig: 1953 send_sig(SIGXFSZ, current, 0); 1954 out_big: 1955 return -EFBIG; 1956 out_busy: 1957 return -ETXTBSY; 1958 } 1959 EXPORT_SYMBOL(vmtruncate); 1960 1961 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 1962 { 1963 struct address_space *mapping = inode->i_mapping; 1964 1965 /* 1966 * If the underlying filesystem is not going to provide 1967 * a way to truncate a range of blocks (punch a hole) - 1968 * we should return failure right now. 1969 */ 1970 if (!inode->i_op || !inode->i_op->truncate_range) 1971 return -ENOSYS; 1972 1973 mutex_lock(&inode->i_mutex); 1974 down_write(&inode->i_alloc_sem); 1975 unmap_mapping_range(mapping, offset, (end - offset), 1); 1976 truncate_inode_pages_range(mapping, offset, end); 1977 unmap_mapping_range(mapping, offset, (end - offset), 1); 1978 inode->i_op->truncate_range(inode, offset, end); 1979 up_write(&inode->i_alloc_sem); 1980 mutex_unlock(&inode->i_mutex); 1981 1982 return 0; 1983 } 1984 1985 /** 1986 * swapin_readahead - swap in pages in hope we need them soon 1987 * @entry: swap entry of this memory 1988 * @addr: address to start 1989 * @vma: user vma this addresses belong to 1990 * 1991 * Primitive swap readahead code. We simply read an aligned block of 1992 * (1 << page_cluster) entries in the swap area. This method is chosen 1993 * because it doesn't cost us any seek time. We also make sure to queue 1994 * the 'original' request together with the readahead ones... 1995 * 1996 * This has been extended to use the NUMA policies from the mm triggering 1997 * the readahead. 1998 * 1999 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 2000 */ 2001 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) 2002 { 2003 #ifdef CONFIG_NUMA 2004 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; 2005 #endif 2006 int i, num; 2007 struct page *new_page; 2008 unsigned long offset; 2009 2010 /* 2011 * Get the number of handles we should do readahead io to. 2012 */ 2013 num = valid_swaphandles(entry, &offset); 2014 for (i = 0; i < num; offset++, i++) { 2015 /* Ok, do the async read-ahead now */ 2016 new_page = read_swap_cache_async(swp_entry(swp_type(entry), 2017 offset), vma, addr); 2018 if (!new_page) 2019 break; 2020 page_cache_release(new_page); 2021 #ifdef CONFIG_NUMA 2022 /* 2023 * Find the next applicable VMA for the NUMA policy. 2024 */ 2025 addr += PAGE_SIZE; 2026 if (addr == 0) 2027 vma = NULL; 2028 if (vma) { 2029 if (addr >= vma->vm_end) { 2030 vma = next_vma; 2031 next_vma = vma ? vma->vm_next : NULL; 2032 } 2033 if (vma && addr < vma->vm_start) 2034 vma = NULL; 2035 } else { 2036 if (next_vma && addr >= next_vma->vm_start) { 2037 vma = next_vma; 2038 next_vma = vma->vm_next; 2039 } 2040 } 2041 #endif 2042 } 2043 lru_add_drain(); /* Push any new pages onto the LRU now */ 2044 } 2045 2046 /* 2047 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2048 * but allow concurrent faults), and pte mapped but not yet locked. 2049 * We return with mmap_sem still held, but pte unmapped and unlocked. 2050 */ 2051 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2052 unsigned long address, pte_t *page_table, pmd_t *pmd, 2053 int write_access, pte_t orig_pte) 2054 { 2055 spinlock_t *ptl; 2056 struct page *page; 2057 swp_entry_t entry; 2058 pte_t pte; 2059 int ret = 0; 2060 2061 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2062 goto out; 2063 2064 entry = pte_to_swp_entry(orig_pte); 2065 if (is_migration_entry(entry)) { 2066 migration_entry_wait(mm, pmd, address); 2067 goto out; 2068 } 2069 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2070 page = lookup_swap_cache(entry); 2071 if (!page) { 2072 grab_swap_token(); /* Contend for token _before_ read-in */ 2073 swapin_readahead(entry, address, vma); 2074 page = read_swap_cache_async(entry, vma, address); 2075 if (!page) { 2076 /* 2077 * Back out if somebody else faulted in this pte 2078 * while we released the pte lock. 2079 */ 2080 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2081 if (likely(pte_same(*page_table, orig_pte))) 2082 ret = VM_FAULT_OOM; 2083 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2084 goto unlock; 2085 } 2086 2087 /* Had to read the page from swap area: Major fault */ 2088 ret = VM_FAULT_MAJOR; 2089 count_vm_event(PGMAJFAULT); 2090 } 2091 2092 mark_page_accessed(page); 2093 lock_page(page); 2094 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2095 2096 /* 2097 * Back out if somebody else already faulted in this pte. 2098 */ 2099 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2100 if (unlikely(!pte_same(*page_table, orig_pte))) 2101 goto out_nomap; 2102 2103 if (unlikely(!PageUptodate(page))) { 2104 ret = VM_FAULT_SIGBUS; 2105 goto out_nomap; 2106 } 2107 2108 /* The page isn't present yet, go ahead with the fault. */ 2109 2110 inc_mm_counter(mm, anon_rss); 2111 pte = mk_pte(page, vma->vm_page_prot); 2112 if (write_access && can_share_swap_page(page)) { 2113 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2114 write_access = 0; 2115 } 2116 2117 flush_icache_page(vma, page); 2118 set_pte_at(mm, address, page_table, pte); 2119 page_add_anon_rmap(page, vma, address); 2120 2121 swap_free(entry); 2122 if (vm_swap_full()) 2123 remove_exclusive_swap_page(page); 2124 unlock_page(page); 2125 2126 if (write_access) { 2127 /* XXX: We could OR the do_wp_page code with this one? */ 2128 if (do_wp_page(mm, vma, address, 2129 page_table, pmd, ptl, pte) & VM_FAULT_OOM) 2130 ret = VM_FAULT_OOM; 2131 goto out; 2132 } 2133 2134 /* No need to invalidate - it was non-present before */ 2135 update_mmu_cache(vma, address, pte); 2136 unlock: 2137 pte_unmap_unlock(page_table, ptl); 2138 out: 2139 return ret; 2140 out_nomap: 2141 pte_unmap_unlock(page_table, ptl); 2142 unlock_page(page); 2143 page_cache_release(page); 2144 return ret; 2145 } 2146 2147 /* 2148 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2149 * but allow concurrent faults), and pte mapped but not yet locked. 2150 * We return with mmap_sem still held, but pte unmapped and unlocked. 2151 */ 2152 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2153 unsigned long address, pte_t *page_table, pmd_t *pmd, 2154 int write_access) 2155 { 2156 struct page *page; 2157 spinlock_t *ptl; 2158 pte_t entry; 2159 2160 /* Allocate our own private page. */ 2161 pte_unmap(page_table); 2162 2163 if (unlikely(anon_vma_prepare(vma))) 2164 goto oom; 2165 page = alloc_zeroed_user_highpage_movable(vma, address); 2166 if (!page) 2167 goto oom; 2168 2169 entry = mk_pte(page, vma->vm_page_prot); 2170 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2171 2172 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2173 if (!pte_none(*page_table)) 2174 goto release; 2175 inc_mm_counter(mm, anon_rss); 2176 lru_cache_add_active(page); 2177 page_add_new_anon_rmap(page, vma, address); 2178 set_pte_at(mm, address, page_table, entry); 2179 2180 /* No need to invalidate - it was non-present before */ 2181 update_mmu_cache(vma, address, entry); 2182 unlock: 2183 pte_unmap_unlock(page_table, ptl); 2184 return 0; 2185 release: 2186 page_cache_release(page); 2187 goto unlock; 2188 oom: 2189 return VM_FAULT_OOM; 2190 } 2191 2192 /* 2193 * __do_fault() tries to create a new page mapping. It aggressively 2194 * tries to share with existing pages, but makes a separate copy if 2195 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2196 * the next page fault. 2197 * 2198 * As this is called only for pages that do not currently exist, we 2199 * do not need to flush old virtual caches or the TLB. 2200 * 2201 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2202 * but allow concurrent faults), and pte neither mapped nor locked. 2203 * We return with mmap_sem still held, but pte unmapped and unlocked. 2204 */ 2205 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2206 unsigned long address, pmd_t *pmd, 2207 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2208 { 2209 pte_t *page_table; 2210 spinlock_t *ptl; 2211 struct page *page; 2212 pte_t entry; 2213 int anon = 0; 2214 struct page *dirty_page = NULL; 2215 struct vm_fault vmf; 2216 int ret; 2217 int page_mkwrite = 0; 2218 2219 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2220 vmf.pgoff = pgoff; 2221 vmf.flags = flags; 2222 vmf.page = NULL; 2223 2224 BUG_ON(vma->vm_flags & VM_PFNMAP); 2225 2226 if (likely(vma->vm_ops->fault)) { 2227 ret = vma->vm_ops->fault(vma, &vmf); 2228 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2229 return ret; 2230 } else { 2231 /* Legacy ->nopage path */ 2232 ret = 0; 2233 vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); 2234 /* no page was available -- either SIGBUS or OOM */ 2235 if (unlikely(vmf.page == NOPAGE_SIGBUS)) 2236 return VM_FAULT_SIGBUS; 2237 else if (unlikely(vmf.page == NOPAGE_OOM)) 2238 return VM_FAULT_OOM; 2239 } 2240 2241 /* 2242 * For consistency in subsequent calls, make the faulted page always 2243 * locked. 2244 */ 2245 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2246 lock_page(vmf.page); 2247 else 2248 VM_BUG_ON(!PageLocked(vmf.page)); 2249 2250 /* 2251 * Should we do an early C-O-W break? 2252 */ 2253 page = vmf.page; 2254 if (flags & FAULT_FLAG_WRITE) { 2255 if (!(vma->vm_flags & VM_SHARED)) { 2256 anon = 1; 2257 if (unlikely(anon_vma_prepare(vma))) { 2258 ret = VM_FAULT_OOM; 2259 goto out; 2260 } 2261 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2262 vma, address); 2263 if (!page) { 2264 ret = VM_FAULT_OOM; 2265 goto out; 2266 } 2267 copy_user_highpage(page, vmf.page, address, vma); 2268 } else { 2269 /* 2270 * If the page will be shareable, see if the backing 2271 * address space wants to know that the page is about 2272 * to become writable 2273 */ 2274 if (vma->vm_ops->page_mkwrite) { 2275 unlock_page(page); 2276 if (vma->vm_ops->page_mkwrite(vma, page) < 0) { 2277 ret = VM_FAULT_SIGBUS; 2278 anon = 1; /* no anon but release vmf.page */ 2279 goto out_unlocked; 2280 } 2281 lock_page(page); 2282 /* 2283 * XXX: this is not quite right (racy vs 2284 * invalidate) to unlock and relock the page 2285 * like this, however a better fix requires 2286 * reworking page_mkwrite locking API, which 2287 * is better done later. 2288 */ 2289 if (!page->mapping) { 2290 ret = 0; 2291 anon = 1; /* no anon but release vmf.page */ 2292 goto out; 2293 } 2294 page_mkwrite = 1; 2295 } 2296 } 2297 2298 } 2299 2300 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2301 2302 /* 2303 * This silly early PAGE_DIRTY setting removes a race 2304 * due to the bad i386 page protection. But it's valid 2305 * for other architectures too. 2306 * 2307 * Note that if write_access is true, we either now have 2308 * an exclusive copy of the page, or this is a shared mapping, 2309 * so we can make it writable and dirty to avoid having to 2310 * handle that later. 2311 */ 2312 /* Only go through if we didn't race with anybody else... */ 2313 if (likely(pte_same(*page_table, orig_pte))) { 2314 flush_icache_page(vma, page); 2315 entry = mk_pte(page, vma->vm_page_prot); 2316 if (flags & FAULT_FLAG_WRITE) 2317 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2318 set_pte_at(mm, address, page_table, entry); 2319 if (anon) { 2320 inc_mm_counter(mm, anon_rss); 2321 lru_cache_add_active(page); 2322 page_add_new_anon_rmap(page, vma, address); 2323 } else { 2324 inc_mm_counter(mm, file_rss); 2325 page_add_file_rmap(page); 2326 if (flags & FAULT_FLAG_WRITE) { 2327 dirty_page = page; 2328 get_page(dirty_page); 2329 } 2330 } 2331 2332 /* no need to invalidate: a not-present page won't be cached */ 2333 update_mmu_cache(vma, address, entry); 2334 } else { 2335 if (anon) 2336 page_cache_release(page); 2337 else 2338 anon = 1; /* no anon but release faulted_page */ 2339 } 2340 2341 pte_unmap_unlock(page_table, ptl); 2342 2343 out: 2344 unlock_page(vmf.page); 2345 out_unlocked: 2346 if (anon) 2347 page_cache_release(vmf.page); 2348 else if (dirty_page) { 2349 if (vma->vm_file) 2350 file_update_time(vma->vm_file); 2351 2352 set_page_dirty_balance(dirty_page, page_mkwrite); 2353 put_page(dirty_page); 2354 } 2355 2356 return ret; 2357 } 2358 2359 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2360 unsigned long address, pte_t *page_table, pmd_t *pmd, 2361 int write_access, pte_t orig_pte) 2362 { 2363 pgoff_t pgoff = (((address & PAGE_MASK) 2364 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2365 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); 2366 2367 pte_unmap(page_table); 2368 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2369 } 2370 2371 2372 /* 2373 * do_no_pfn() tries to create a new page mapping for a page without 2374 * a struct_page backing it 2375 * 2376 * As this is called only for pages that do not currently exist, we 2377 * do not need to flush old virtual caches or the TLB. 2378 * 2379 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2380 * but allow concurrent faults), and pte mapped but not yet locked. 2381 * We return with mmap_sem still held, but pte unmapped and unlocked. 2382 * 2383 * It is expected that the ->nopfn handler always returns the same pfn 2384 * for a given virtual mapping. 2385 * 2386 * Mark this `noinline' to prevent it from bloating the main pagefault code. 2387 */ 2388 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma, 2389 unsigned long address, pte_t *page_table, pmd_t *pmd, 2390 int write_access) 2391 { 2392 spinlock_t *ptl; 2393 pte_t entry; 2394 unsigned long pfn; 2395 2396 pte_unmap(page_table); 2397 BUG_ON(!(vma->vm_flags & VM_PFNMAP)); 2398 BUG_ON(is_cow_mapping(vma->vm_flags)); 2399 2400 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK); 2401 if (unlikely(pfn == NOPFN_OOM)) 2402 return VM_FAULT_OOM; 2403 else if (unlikely(pfn == NOPFN_SIGBUS)) 2404 return VM_FAULT_SIGBUS; 2405 else if (unlikely(pfn == NOPFN_REFAULT)) 2406 return 0; 2407 2408 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2409 2410 /* Only go through if we didn't race with anybody else... */ 2411 if (pte_none(*page_table)) { 2412 entry = pfn_pte(pfn, vma->vm_page_prot); 2413 if (write_access) 2414 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2415 set_pte_at(mm, address, page_table, entry); 2416 } 2417 pte_unmap_unlock(page_table, ptl); 2418 return 0; 2419 } 2420 2421 /* 2422 * Fault of a previously existing named mapping. Repopulate the pte 2423 * from the encoded file_pte if possible. This enables swappable 2424 * nonlinear vmas. 2425 * 2426 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2427 * but allow concurrent faults), and pte mapped but not yet locked. 2428 * We return with mmap_sem still held, but pte unmapped and unlocked. 2429 */ 2430 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2431 unsigned long address, pte_t *page_table, pmd_t *pmd, 2432 int write_access, pte_t orig_pte) 2433 { 2434 unsigned int flags = FAULT_FLAG_NONLINEAR | 2435 (write_access ? FAULT_FLAG_WRITE : 0); 2436 pgoff_t pgoff; 2437 2438 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2439 return 0; 2440 2441 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) || 2442 !(vma->vm_flags & VM_CAN_NONLINEAR))) { 2443 /* 2444 * Page table corrupted: show pte and kill process. 2445 */ 2446 print_bad_pte(vma, orig_pte, address); 2447 return VM_FAULT_OOM; 2448 } 2449 2450 pgoff = pte_to_pgoff(orig_pte); 2451 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2452 } 2453 2454 /* 2455 * These routines also need to handle stuff like marking pages dirty 2456 * and/or accessed for architectures that don't do it in hardware (most 2457 * RISC architectures). The early dirtying is also good on the i386. 2458 * 2459 * There is also a hook called "update_mmu_cache()" that architectures 2460 * with external mmu caches can use to update those (ie the Sparc or 2461 * PowerPC hashed page tables that act as extended TLBs). 2462 * 2463 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2464 * but allow concurrent faults), and pte mapped but not yet locked. 2465 * We return with mmap_sem still held, but pte unmapped and unlocked. 2466 */ 2467 static inline int handle_pte_fault(struct mm_struct *mm, 2468 struct vm_area_struct *vma, unsigned long address, 2469 pte_t *pte, pmd_t *pmd, int write_access) 2470 { 2471 pte_t entry; 2472 spinlock_t *ptl; 2473 2474 entry = *pte; 2475 if (!pte_present(entry)) { 2476 if (pte_none(entry)) { 2477 if (vma->vm_ops) { 2478 if (vma->vm_ops->fault || vma->vm_ops->nopage) 2479 return do_linear_fault(mm, vma, address, 2480 pte, pmd, write_access, entry); 2481 if (unlikely(vma->vm_ops->nopfn)) 2482 return do_no_pfn(mm, vma, address, pte, 2483 pmd, write_access); 2484 } 2485 return do_anonymous_page(mm, vma, address, 2486 pte, pmd, write_access); 2487 } 2488 if (pte_file(entry)) 2489 return do_nonlinear_fault(mm, vma, address, 2490 pte, pmd, write_access, entry); 2491 return do_swap_page(mm, vma, address, 2492 pte, pmd, write_access, entry); 2493 } 2494 2495 ptl = pte_lockptr(mm, pmd); 2496 spin_lock(ptl); 2497 if (unlikely(!pte_same(*pte, entry))) 2498 goto unlock; 2499 if (write_access) { 2500 if (!pte_write(entry)) 2501 return do_wp_page(mm, vma, address, 2502 pte, pmd, ptl, entry); 2503 entry = pte_mkdirty(entry); 2504 } 2505 entry = pte_mkyoung(entry); 2506 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { 2507 update_mmu_cache(vma, address, entry); 2508 } else { 2509 /* 2510 * This is needed only for protection faults but the arch code 2511 * is not yet telling us if this is a protection fault or not. 2512 * This still avoids useless tlb flushes for .text page faults 2513 * with threads. 2514 */ 2515 if (write_access) 2516 flush_tlb_page(vma, address); 2517 } 2518 unlock: 2519 pte_unmap_unlock(pte, ptl); 2520 return 0; 2521 } 2522 2523 /* 2524 * By the time we get here, we already hold the mm semaphore 2525 */ 2526 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2527 unsigned long address, int write_access) 2528 { 2529 pgd_t *pgd; 2530 pud_t *pud; 2531 pmd_t *pmd; 2532 pte_t *pte; 2533 2534 __set_current_state(TASK_RUNNING); 2535 2536 count_vm_event(PGFAULT); 2537 2538 if (unlikely(is_vm_hugetlb_page(vma))) 2539 return hugetlb_fault(mm, vma, address, write_access); 2540 2541 pgd = pgd_offset(mm, address); 2542 pud = pud_alloc(mm, pgd, address); 2543 if (!pud) 2544 return VM_FAULT_OOM; 2545 pmd = pmd_alloc(mm, pud, address); 2546 if (!pmd) 2547 return VM_FAULT_OOM; 2548 pte = pte_alloc_map(mm, pmd, address); 2549 if (!pte) 2550 return VM_FAULT_OOM; 2551 2552 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2553 } 2554 2555 #ifndef __PAGETABLE_PUD_FOLDED 2556 /* 2557 * Allocate page upper directory. 2558 * We've already handled the fast-path in-line. 2559 */ 2560 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2561 { 2562 pud_t *new = pud_alloc_one(mm, address); 2563 if (!new) 2564 return -ENOMEM; 2565 2566 spin_lock(&mm->page_table_lock); 2567 if (pgd_present(*pgd)) /* Another has populated it */ 2568 pud_free(new); 2569 else 2570 pgd_populate(mm, pgd, new); 2571 spin_unlock(&mm->page_table_lock); 2572 return 0; 2573 } 2574 #endif /* __PAGETABLE_PUD_FOLDED */ 2575 2576 #ifndef __PAGETABLE_PMD_FOLDED 2577 /* 2578 * Allocate page middle directory. 2579 * We've already handled the fast-path in-line. 2580 */ 2581 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2582 { 2583 pmd_t *new = pmd_alloc_one(mm, address); 2584 if (!new) 2585 return -ENOMEM; 2586 2587 spin_lock(&mm->page_table_lock); 2588 #ifndef __ARCH_HAS_4LEVEL_HACK 2589 if (pud_present(*pud)) /* Another has populated it */ 2590 pmd_free(new); 2591 else 2592 pud_populate(mm, pud, new); 2593 #else 2594 if (pgd_present(*pud)) /* Another has populated it */ 2595 pmd_free(new); 2596 else 2597 pgd_populate(mm, pud, new); 2598 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2599 spin_unlock(&mm->page_table_lock); 2600 return 0; 2601 } 2602 #endif /* __PAGETABLE_PMD_FOLDED */ 2603 2604 int make_pages_present(unsigned long addr, unsigned long end) 2605 { 2606 int ret, len, write; 2607 struct vm_area_struct * vma; 2608 2609 vma = find_vma(current->mm, addr); 2610 if (!vma) 2611 return -1; 2612 write = (vma->vm_flags & VM_WRITE) != 0; 2613 BUG_ON(addr >= end); 2614 BUG_ON(end > vma->vm_end); 2615 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 2616 ret = get_user_pages(current, current->mm, addr, 2617 len, write, 0, NULL, NULL); 2618 if (ret < 0) 2619 return ret; 2620 return ret == len ? 0 : -1; 2621 } 2622 2623 /* 2624 * Map a vmalloc()-space virtual address to the physical page. 2625 */ 2626 struct page * vmalloc_to_page(void * vmalloc_addr) 2627 { 2628 unsigned long addr = (unsigned long) vmalloc_addr; 2629 struct page *page = NULL; 2630 pgd_t *pgd = pgd_offset_k(addr); 2631 pud_t *pud; 2632 pmd_t *pmd; 2633 pte_t *ptep, pte; 2634 2635 if (!pgd_none(*pgd)) { 2636 pud = pud_offset(pgd, addr); 2637 if (!pud_none(*pud)) { 2638 pmd = pmd_offset(pud, addr); 2639 if (!pmd_none(*pmd)) { 2640 ptep = pte_offset_map(pmd, addr); 2641 pte = *ptep; 2642 if (pte_present(pte)) 2643 page = pte_page(pte); 2644 pte_unmap(ptep); 2645 } 2646 } 2647 } 2648 return page; 2649 } 2650 2651 EXPORT_SYMBOL(vmalloc_to_page); 2652 2653 /* 2654 * Map a vmalloc()-space virtual address to the physical page frame number. 2655 */ 2656 unsigned long vmalloc_to_pfn(void * vmalloc_addr) 2657 { 2658 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 2659 } 2660 2661 EXPORT_SYMBOL(vmalloc_to_pfn); 2662 2663 #if !defined(__HAVE_ARCH_GATE_AREA) 2664 2665 #if defined(AT_SYSINFO_EHDR) 2666 static struct vm_area_struct gate_vma; 2667 2668 static int __init gate_vma_init(void) 2669 { 2670 gate_vma.vm_mm = NULL; 2671 gate_vma.vm_start = FIXADDR_USER_START; 2672 gate_vma.vm_end = FIXADDR_USER_END; 2673 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 2674 gate_vma.vm_page_prot = __P101; 2675 /* 2676 * Make sure the vDSO gets into every core dump. 2677 * Dumping its contents makes post-mortem fully interpretable later 2678 * without matching up the same kernel and hardware config to see 2679 * what PC values meant. 2680 */ 2681 gate_vma.vm_flags |= VM_ALWAYSDUMP; 2682 return 0; 2683 } 2684 __initcall(gate_vma_init); 2685 #endif 2686 2687 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2688 { 2689 #ifdef AT_SYSINFO_EHDR 2690 return &gate_vma; 2691 #else 2692 return NULL; 2693 #endif 2694 } 2695 2696 int in_gate_area_no_task(unsigned long addr) 2697 { 2698 #ifdef AT_SYSINFO_EHDR 2699 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2700 return 1; 2701 #endif 2702 return 0; 2703 } 2704 2705 #endif /* __HAVE_ARCH_GATE_AREA */ 2706 2707 /* 2708 * Access another process' address space. 2709 * Source/target buffer must be kernel space, 2710 * Do not walk the page table directly, use get_user_pages 2711 */ 2712 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 2713 { 2714 struct mm_struct *mm; 2715 struct vm_area_struct *vma; 2716 struct page *page; 2717 void *old_buf = buf; 2718 2719 mm = get_task_mm(tsk); 2720 if (!mm) 2721 return 0; 2722 2723 down_read(&mm->mmap_sem); 2724 /* ignore errors, just check how much was successfully transferred */ 2725 while (len) { 2726 int bytes, ret, offset; 2727 void *maddr; 2728 2729 ret = get_user_pages(tsk, mm, addr, 1, 2730 write, 1, &page, &vma); 2731 if (ret <= 0) 2732 break; 2733 2734 bytes = len; 2735 offset = addr & (PAGE_SIZE-1); 2736 if (bytes > PAGE_SIZE-offset) 2737 bytes = PAGE_SIZE-offset; 2738 2739 maddr = kmap(page); 2740 if (write) { 2741 copy_to_user_page(vma, page, addr, 2742 maddr + offset, buf, bytes); 2743 set_page_dirty_lock(page); 2744 } else { 2745 copy_from_user_page(vma, page, addr, 2746 buf, maddr + offset, bytes); 2747 } 2748 kunmap(page); 2749 page_cache_release(page); 2750 len -= bytes; 2751 buf += bytes; 2752 addr += bytes; 2753 } 2754 up_read(&mm->mmap_sem); 2755 mmput(mm); 2756 2757 return buf - old_buf; 2758 } 2759