xref: /linux/mm/memory.c (revision 7cc9196675234d4de0e1e19b9da1a8b86ecfeedd)
1 
2 // SPDX-License-Identifier: GPL-2.0-only
3 /*
4  *  linux/mm/memory.c
5  *
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  */
8 
9 /*
10  * demand-loading started 01.12.91 - seems it is high on the list of
11  * things wanted, and it should be easy to implement. - Linus
12  */
13 
14 /*
15  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16  * pages started 02.12.91, seems to work. - Linus.
17  *
18  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19  * would have taken more than the 6M I have free, but it worked well as
20  * far as I could see.
21  *
22  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23  */
24 
25 /*
26  * Real VM (paging to/from disk) started 18.12.91. Much more work and
27  * thought has to go into this. Oh, well..
28  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
29  *		Found it. Everything seems to work now.
30  * 20.12.91  -  Ok, making the swap-device changeable like the root.
31  */
32 
33 /*
34  * 05.04.94  -  Multi-page memory management added for v1.1.
35  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
36  *
37  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
38  *		(Gerhard.Wichert@pdb.siemens.de)
39  *
40  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41  */
42 
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/writeback.h>
64 #include <linux/memcontrol.h>
65 #include <linux/mmu_notifier.h>
66 #include <linux/swapops.h>
67 #include <linux/elf.h>
68 #include <linux/gfp.h>
69 #include <linux/migrate.h>
70 #include <linux/string.h>
71 #include <linux/memory-tiers.h>
72 #include <linux/debugfs.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/dax.h>
75 #include <linux/oom.h>
76 #include <linux/numa.h>
77 #include <linux/perf_event.h>
78 #include <linux/ptrace.h>
79 #include <linux/vmalloc.h>
80 #include <linux/sched/sysctl.h>
81 
82 #include <trace/events/kmem.h>
83 
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90 
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94 
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98 
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 		return false;
119 
120 	return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122 
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.
127  */
128 void *high_memory;
129 EXPORT_SYMBOL(high_memory);
130 
131 /*
132  * Randomize the address space (stacks, mmaps, brk, etc.).
133  *
134  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
135  *   as ancient (libc5 based) binaries can segfault. )
136  */
137 int randomize_va_space __read_mostly =
138 #ifdef CONFIG_COMPAT_BRK
139 					1;
140 #else
141 					2;
142 #endif
143 
144 #ifndef arch_wants_old_prefaulted_pte
145 static inline bool arch_wants_old_prefaulted_pte(void)
146 {
147 	/*
148 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
149 	 * some architectures, even if it's performed in hardware. By
150 	 * default, "false" means prefaulted entries will be 'young'.
151 	 */
152 	return false;
153 }
154 #endif
155 
156 static int __init disable_randmaps(char *s)
157 {
158 	randomize_va_space = 0;
159 	return 1;
160 }
161 __setup("norandmaps", disable_randmaps);
162 
163 unsigned long zero_pfn __read_mostly;
164 EXPORT_SYMBOL(zero_pfn);
165 
166 unsigned long highest_memmap_pfn __read_mostly;
167 
168 /*
169  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
170  */
171 static int __init init_zero_pfn(void)
172 {
173 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
174 	return 0;
175 }
176 early_initcall(init_zero_pfn);
177 
178 void mm_trace_rss_stat(struct mm_struct *mm, int member)
179 {
180 	trace_rss_stat(mm, member);
181 }
182 
183 /*
184  * Note: this doesn't free the actual pages themselves. That
185  * has been handled earlier when unmapping all the memory regions.
186  */
187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
188 			   unsigned long addr)
189 {
190 	pgtable_t token = pmd_pgtable(*pmd);
191 	pmd_clear(pmd);
192 	pte_free_tlb(tlb, token, addr);
193 	mm_dec_nr_ptes(tlb->mm);
194 }
195 
196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
197 				unsigned long addr, unsigned long end,
198 				unsigned long floor, unsigned long ceiling)
199 {
200 	pmd_t *pmd;
201 	unsigned long next;
202 	unsigned long start;
203 
204 	start = addr;
205 	pmd = pmd_offset(pud, addr);
206 	do {
207 		next = pmd_addr_end(addr, end);
208 		if (pmd_none_or_clear_bad(pmd))
209 			continue;
210 		free_pte_range(tlb, pmd, addr);
211 	} while (pmd++, addr = next, addr != end);
212 
213 	start &= PUD_MASK;
214 	if (start < floor)
215 		return;
216 	if (ceiling) {
217 		ceiling &= PUD_MASK;
218 		if (!ceiling)
219 			return;
220 	}
221 	if (end - 1 > ceiling - 1)
222 		return;
223 
224 	pmd = pmd_offset(pud, start);
225 	pud_clear(pud);
226 	pmd_free_tlb(tlb, pmd, start);
227 	mm_dec_nr_pmds(tlb->mm);
228 }
229 
230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
231 				unsigned long addr, unsigned long end,
232 				unsigned long floor, unsigned long ceiling)
233 {
234 	pud_t *pud;
235 	unsigned long next;
236 	unsigned long start;
237 
238 	start = addr;
239 	pud = pud_offset(p4d, addr);
240 	do {
241 		next = pud_addr_end(addr, end);
242 		if (pud_none_or_clear_bad(pud))
243 			continue;
244 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
245 	} while (pud++, addr = next, addr != end);
246 
247 	start &= P4D_MASK;
248 	if (start < floor)
249 		return;
250 	if (ceiling) {
251 		ceiling &= P4D_MASK;
252 		if (!ceiling)
253 			return;
254 	}
255 	if (end - 1 > ceiling - 1)
256 		return;
257 
258 	pud = pud_offset(p4d, start);
259 	p4d_clear(p4d);
260 	pud_free_tlb(tlb, pud, start);
261 	mm_dec_nr_puds(tlb->mm);
262 }
263 
264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
265 				unsigned long addr, unsigned long end,
266 				unsigned long floor, unsigned long ceiling)
267 {
268 	p4d_t *p4d;
269 	unsigned long next;
270 	unsigned long start;
271 
272 	start = addr;
273 	p4d = p4d_offset(pgd, addr);
274 	do {
275 		next = p4d_addr_end(addr, end);
276 		if (p4d_none_or_clear_bad(p4d))
277 			continue;
278 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
279 	} while (p4d++, addr = next, addr != end);
280 
281 	start &= PGDIR_MASK;
282 	if (start < floor)
283 		return;
284 	if (ceiling) {
285 		ceiling &= PGDIR_MASK;
286 		if (!ceiling)
287 			return;
288 	}
289 	if (end - 1 > ceiling - 1)
290 		return;
291 
292 	p4d = p4d_offset(pgd, start);
293 	pgd_clear(pgd);
294 	p4d_free_tlb(tlb, p4d, start);
295 }
296 
297 /*
298  * This function frees user-level page tables of a process.
299  */
300 void free_pgd_range(struct mmu_gather *tlb,
301 			unsigned long addr, unsigned long end,
302 			unsigned long floor, unsigned long ceiling)
303 {
304 	pgd_t *pgd;
305 	unsigned long next;
306 
307 	/*
308 	 * The next few lines have given us lots of grief...
309 	 *
310 	 * Why are we testing PMD* at this top level?  Because often
311 	 * there will be no work to do at all, and we'd prefer not to
312 	 * go all the way down to the bottom just to discover that.
313 	 *
314 	 * Why all these "- 1"s?  Because 0 represents both the bottom
315 	 * of the address space and the top of it (using -1 for the
316 	 * top wouldn't help much: the masks would do the wrong thing).
317 	 * The rule is that addr 0 and floor 0 refer to the bottom of
318 	 * the address space, but end 0 and ceiling 0 refer to the top
319 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
320 	 * that end 0 case should be mythical).
321 	 *
322 	 * Wherever addr is brought up or ceiling brought down, we must
323 	 * be careful to reject "the opposite 0" before it confuses the
324 	 * subsequent tests.  But what about where end is brought down
325 	 * by PMD_SIZE below? no, end can't go down to 0 there.
326 	 *
327 	 * Whereas we round start (addr) and ceiling down, by different
328 	 * masks at different levels, in order to test whether a table
329 	 * now has no other vmas using it, so can be freed, we don't
330 	 * bother to round floor or end up - the tests don't need that.
331 	 */
332 
333 	addr &= PMD_MASK;
334 	if (addr < floor) {
335 		addr += PMD_SIZE;
336 		if (!addr)
337 			return;
338 	}
339 	if (ceiling) {
340 		ceiling &= PMD_MASK;
341 		if (!ceiling)
342 			return;
343 	}
344 	if (end - 1 > ceiling - 1)
345 		end -= PMD_SIZE;
346 	if (addr > end - 1)
347 		return;
348 	/*
349 	 * We add page table cache pages with PAGE_SIZE,
350 	 * (see pte_free_tlb()), flush the tlb if we need
351 	 */
352 	tlb_change_page_size(tlb, PAGE_SIZE);
353 	pgd = pgd_offset(tlb->mm, addr);
354 	do {
355 		next = pgd_addr_end(addr, end);
356 		if (pgd_none_or_clear_bad(pgd))
357 			continue;
358 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
359 	} while (pgd++, addr = next, addr != end);
360 }
361 
362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
363 		   struct vm_area_struct *vma, unsigned long floor,
364 		   unsigned long ceiling, bool mm_wr_locked)
365 {
366 	do {
367 		unsigned long addr = vma->vm_start;
368 		struct vm_area_struct *next;
369 
370 		/*
371 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
372 		 * be 0.  This will underflow and is okay.
373 		 */
374 		next = mas_find(mas, ceiling - 1);
375 		if (unlikely(xa_is_zero(next)))
376 			next = NULL;
377 
378 		/*
379 		 * Hide vma from rmap and truncate_pagecache before freeing
380 		 * pgtables
381 		 */
382 		if (mm_wr_locked)
383 			vma_start_write(vma);
384 		unlink_anon_vmas(vma);
385 		unlink_file_vma(vma);
386 
387 		if (is_vm_hugetlb_page(vma)) {
388 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
389 				floor, next ? next->vm_start : ceiling);
390 		} else {
391 			/*
392 			 * Optimization: gather nearby vmas into one call down
393 			 */
394 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
395 			       && !is_vm_hugetlb_page(next)) {
396 				vma = next;
397 				next = mas_find(mas, ceiling - 1);
398 				if (unlikely(xa_is_zero(next)))
399 					next = NULL;
400 				if (mm_wr_locked)
401 					vma_start_write(vma);
402 				unlink_anon_vmas(vma);
403 				unlink_file_vma(vma);
404 			}
405 			free_pgd_range(tlb, addr, vma->vm_end,
406 				floor, next ? next->vm_start : ceiling);
407 		}
408 		vma = next;
409 	} while (vma);
410 }
411 
412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
413 {
414 	spinlock_t *ptl = pmd_lock(mm, pmd);
415 
416 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
417 		mm_inc_nr_ptes(mm);
418 		/*
419 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
420 		 * visible before the pte is made visible to other CPUs by being
421 		 * put into page tables.
422 		 *
423 		 * The other side of the story is the pointer chasing in the page
424 		 * table walking code (when walking the page table without locking;
425 		 * ie. most of the time). Fortunately, these data accesses consist
426 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
427 		 * being the notable exception) will already guarantee loads are
428 		 * seen in-order. See the alpha page table accessors for the
429 		 * smp_rmb() barriers in page table walking code.
430 		 */
431 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
432 		pmd_populate(mm, pmd, *pte);
433 		*pte = NULL;
434 	}
435 	spin_unlock(ptl);
436 }
437 
438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
439 {
440 	pgtable_t new = pte_alloc_one(mm);
441 	if (!new)
442 		return -ENOMEM;
443 
444 	pmd_install(mm, pmd, &new);
445 	if (new)
446 		pte_free(mm, new);
447 	return 0;
448 }
449 
450 int __pte_alloc_kernel(pmd_t *pmd)
451 {
452 	pte_t *new = pte_alloc_one_kernel(&init_mm);
453 	if (!new)
454 		return -ENOMEM;
455 
456 	spin_lock(&init_mm.page_table_lock);
457 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
458 		smp_wmb(); /* See comment in pmd_install() */
459 		pmd_populate_kernel(&init_mm, pmd, new);
460 		new = NULL;
461 	}
462 	spin_unlock(&init_mm.page_table_lock);
463 	if (new)
464 		pte_free_kernel(&init_mm, new);
465 	return 0;
466 }
467 
468 static inline void init_rss_vec(int *rss)
469 {
470 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471 }
472 
473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
474 {
475 	int i;
476 
477 	for (i = 0; i < NR_MM_COUNTERS; i++)
478 		if (rss[i])
479 			add_mm_counter(mm, i, rss[i]);
480 }
481 
482 /*
483  * This function is called to print an error when a bad pte
484  * is found. For example, we might have a PFN-mapped pte in
485  * a region that doesn't allow it.
486  *
487  * The calling function must still handle the error.
488  */
489 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
490 			  pte_t pte, struct page *page)
491 {
492 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
493 	p4d_t *p4d = p4d_offset(pgd, addr);
494 	pud_t *pud = pud_offset(p4d, addr);
495 	pmd_t *pmd = pmd_offset(pud, addr);
496 	struct address_space *mapping;
497 	pgoff_t index;
498 	static unsigned long resume;
499 	static unsigned long nr_shown;
500 	static unsigned long nr_unshown;
501 
502 	/*
503 	 * Allow a burst of 60 reports, then keep quiet for that minute;
504 	 * or allow a steady drip of one report per second.
505 	 */
506 	if (nr_shown == 60) {
507 		if (time_before(jiffies, resume)) {
508 			nr_unshown++;
509 			return;
510 		}
511 		if (nr_unshown) {
512 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
513 				 nr_unshown);
514 			nr_unshown = 0;
515 		}
516 		nr_shown = 0;
517 	}
518 	if (nr_shown++ == 0)
519 		resume = jiffies + 60 * HZ;
520 
521 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
522 	index = linear_page_index(vma, addr);
523 
524 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
525 		 current->comm,
526 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
527 	if (page)
528 		dump_page(page, "bad pte");
529 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
530 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
531 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
532 		 vma->vm_file,
533 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
534 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
535 		 mapping ? mapping->a_ops->read_folio : NULL);
536 	dump_stack();
537 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
538 }
539 
540 /*
541  * vm_normal_page -- This function gets the "struct page" associated with a pte.
542  *
543  * "Special" mappings do not wish to be associated with a "struct page" (either
544  * it doesn't exist, or it exists but they don't want to touch it). In this
545  * case, NULL is returned here. "Normal" mappings do have a struct page.
546  *
547  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
548  * pte bit, in which case this function is trivial. Secondly, an architecture
549  * may not have a spare pte bit, which requires a more complicated scheme,
550  * described below.
551  *
552  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
553  * special mapping (even if there are underlying and valid "struct pages").
554  * COWed pages of a VM_PFNMAP are always normal.
555  *
556  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
557  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
558  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
559  * mapping will always honor the rule
560  *
561  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
562  *
563  * And for normal mappings this is false.
564  *
565  * This restricts such mappings to be a linear translation from virtual address
566  * to pfn. To get around this restriction, we allow arbitrary mappings so long
567  * as the vma is not a COW mapping; in that case, we know that all ptes are
568  * special (because none can have been COWed).
569  *
570  *
571  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
572  *
573  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
574  * page" backing, however the difference is that _all_ pages with a struct
575  * page (that is, those where pfn_valid is true) are refcounted and considered
576  * normal pages by the VM. The disadvantage is that pages are refcounted
577  * (which can be slower and simply not an option for some PFNMAP users). The
578  * advantage is that we don't have to follow the strict linearity rule of
579  * PFNMAP mappings in order to support COWable mappings.
580  *
581  */
582 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
583 			    pte_t pte)
584 {
585 	unsigned long pfn = pte_pfn(pte);
586 
587 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
588 		if (likely(!pte_special(pte)))
589 			goto check_pfn;
590 		if (vma->vm_ops && vma->vm_ops->find_special_page)
591 			return vma->vm_ops->find_special_page(vma, addr);
592 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
593 			return NULL;
594 		if (is_zero_pfn(pfn))
595 			return NULL;
596 		if (pte_devmap(pte))
597 		/*
598 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
599 		 * and will have refcounts incremented on their struct pages
600 		 * when they are inserted into PTEs, thus they are safe to
601 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
602 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
603 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
604 		 */
605 			return NULL;
606 
607 		print_bad_pte(vma, addr, pte, NULL);
608 		return NULL;
609 	}
610 
611 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
612 
613 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
614 		if (vma->vm_flags & VM_MIXEDMAP) {
615 			if (!pfn_valid(pfn))
616 				return NULL;
617 			goto out;
618 		} else {
619 			unsigned long off;
620 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
621 			if (pfn == vma->vm_pgoff + off)
622 				return NULL;
623 			if (!is_cow_mapping(vma->vm_flags))
624 				return NULL;
625 		}
626 	}
627 
628 	if (is_zero_pfn(pfn))
629 		return NULL;
630 
631 check_pfn:
632 	if (unlikely(pfn > highest_memmap_pfn)) {
633 		print_bad_pte(vma, addr, pte, NULL);
634 		return NULL;
635 	}
636 
637 	/*
638 	 * NOTE! We still have PageReserved() pages in the page tables.
639 	 * eg. VDSO mappings can cause them to exist.
640 	 */
641 out:
642 	return pfn_to_page(pfn);
643 }
644 
645 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
646 			    pte_t pte)
647 {
648 	struct page *page = vm_normal_page(vma, addr, pte);
649 
650 	if (page)
651 		return page_folio(page);
652 	return NULL;
653 }
654 
655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
656 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
657 				pmd_t pmd)
658 {
659 	unsigned long pfn = pmd_pfn(pmd);
660 
661 	/*
662 	 * There is no pmd_special() but there may be special pmds, e.g.
663 	 * in a direct-access (dax) mapping, so let's just replicate the
664 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
665 	 */
666 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
667 		if (vma->vm_flags & VM_MIXEDMAP) {
668 			if (!pfn_valid(pfn))
669 				return NULL;
670 			goto out;
671 		} else {
672 			unsigned long off;
673 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
674 			if (pfn == vma->vm_pgoff + off)
675 				return NULL;
676 			if (!is_cow_mapping(vma->vm_flags))
677 				return NULL;
678 		}
679 	}
680 
681 	if (pmd_devmap(pmd))
682 		return NULL;
683 	if (is_huge_zero_pmd(pmd))
684 		return NULL;
685 	if (unlikely(pfn > highest_memmap_pfn))
686 		return NULL;
687 
688 	/*
689 	 * NOTE! We still have PageReserved() pages in the page tables.
690 	 * eg. VDSO mappings can cause them to exist.
691 	 */
692 out:
693 	return pfn_to_page(pfn);
694 }
695 
696 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
697 				  unsigned long addr, pmd_t pmd)
698 {
699 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
700 
701 	if (page)
702 		return page_folio(page);
703 	return NULL;
704 }
705 #endif
706 
707 static void restore_exclusive_pte(struct vm_area_struct *vma,
708 				  struct page *page, unsigned long address,
709 				  pte_t *ptep)
710 {
711 	struct folio *folio = page_folio(page);
712 	pte_t orig_pte;
713 	pte_t pte;
714 	swp_entry_t entry;
715 
716 	orig_pte = ptep_get(ptep);
717 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
718 	if (pte_swp_soft_dirty(orig_pte))
719 		pte = pte_mksoft_dirty(pte);
720 
721 	entry = pte_to_swp_entry(orig_pte);
722 	if (pte_swp_uffd_wp(orig_pte))
723 		pte = pte_mkuffd_wp(pte);
724 	else if (is_writable_device_exclusive_entry(entry))
725 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
726 
727 	VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
728 					   PageAnonExclusive(page)), folio);
729 
730 	/*
731 	 * No need to take a page reference as one was already
732 	 * created when the swap entry was made.
733 	 */
734 	if (folio_test_anon(folio))
735 		folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
736 	else
737 		/*
738 		 * Currently device exclusive access only supports anonymous
739 		 * memory so the entry shouldn't point to a filebacked page.
740 		 */
741 		WARN_ON_ONCE(1);
742 
743 	set_pte_at(vma->vm_mm, address, ptep, pte);
744 
745 	/*
746 	 * No need to invalidate - it was non-present before. However
747 	 * secondary CPUs may have mappings that need invalidating.
748 	 */
749 	update_mmu_cache(vma, address, ptep);
750 }
751 
752 /*
753  * Tries to restore an exclusive pte if the page lock can be acquired without
754  * sleeping.
755  */
756 static int
757 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
758 			unsigned long addr)
759 {
760 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
761 	struct page *page = pfn_swap_entry_to_page(entry);
762 
763 	if (trylock_page(page)) {
764 		restore_exclusive_pte(vma, page, addr, src_pte);
765 		unlock_page(page);
766 		return 0;
767 	}
768 
769 	return -EBUSY;
770 }
771 
772 /*
773  * copy one vm_area from one task to the other. Assumes the page tables
774  * already present in the new task to be cleared in the whole range
775  * covered by this vma.
776  */
777 
778 static unsigned long
779 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
780 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
781 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
782 {
783 	unsigned long vm_flags = dst_vma->vm_flags;
784 	pte_t orig_pte = ptep_get(src_pte);
785 	pte_t pte = orig_pte;
786 	struct folio *folio;
787 	struct page *page;
788 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
789 
790 	if (likely(!non_swap_entry(entry))) {
791 		if (swap_duplicate(entry) < 0)
792 			return -EIO;
793 
794 		/* make sure dst_mm is on swapoff's mmlist. */
795 		if (unlikely(list_empty(&dst_mm->mmlist))) {
796 			spin_lock(&mmlist_lock);
797 			if (list_empty(&dst_mm->mmlist))
798 				list_add(&dst_mm->mmlist,
799 						&src_mm->mmlist);
800 			spin_unlock(&mmlist_lock);
801 		}
802 		/* Mark the swap entry as shared. */
803 		if (pte_swp_exclusive(orig_pte)) {
804 			pte = pte_swp_clear_exclusive(orig_pte);
805 			set_pte_at(src_mm, addr, src_pte, pte);
806 		}
807 		rss[MM_SWAPENTS]++;
808 	} else if (is_migration_entry(entry)) {
809 		page = pfn_swap_entry_to_page(entry);
810 
811 		rss[mm_counter(page)]++;
812 
813 		if (!is_readable_migration_entry(entry) &&
814 				is_cow_mapping(vm_flags)) {
815 			/*
816 			 * COW mappings require pages in both parent and child
817 			 * to be set to read. A previously exclusive entry is
818 			 * now shared.
819 			 */
820 			entry = make_readable_migration_entry(
821 							swp_offset(entry));
822 			pte = swp_entry_to_pte(entry);
823 			if (pte_swp_soft_dirty(orig_pte))
824 				pte = pte_swp_mksoft_dirty(pte);
825 			if (pte_swp_uffd_wp(orig_pte))
826 				pte = pte_swp_mkuffd_wp(pte);
827 			set_pte_at(src_mm, addr, src_pte, pte);
828 		}
829 	} else if (is_device_private_entry(entry)) {
830 		page = pfn_swap_entry_to_page(entry);
831 		folio = page_folio(page);
832 
833 		/*
834 		 * Update rss count even for unaddressable pages, as
835 		 * they should treated just like normal pages in this
836 		 * respect.
837 		 *
838 		 * We will likely want to have some new rss counters
839 		 * for unaddressable pages, at some point. But for now
840 		 * keep things as they are.
841 		 */
842 		folio_get(folio);
843 		rss[mm_counter(page)]++;
844 		/* Cannot fail as these pages cannot get pinned. */
845 		folio_try_dup_anon_rmap_pte(folio, page, src_vma);
846 
847 		/*
848 		 * We do not preserve soft-dirty information, because so
849 		 * far, checkpoint/restore is the only feature that
850 		 * requires that. And checkpoint/restore does not work
851 		 * when a device driver is involved (you cannot easily
852 		 * save and restore device driver state).
853 		 */
854 		if (is_writable_device_private_entry(entry) &&
855 		    is_cow_mapping(vm_flags)) {
856 			entry = make_readable_device_private_entry(
857 							swp_offset(entry));
858 			pte = swp_entry_to_pte(entry);
859 			if (pte_swp_uffd_wp(orig_pte))
860 				pte = pte_swp_mkuffd_wp(pte);
861 			set_pte_at(src_mm, addr, src_pte, pte);
862 		}
863 	} else if (is_device_exclusive_entry(entry)) {
864 		/*
865 		 * Make device exclusive entries present by restoring the
866 		 * original entry then copying as for a present pte. Device
867 		 * exclusive entries currently only support private writable
868 		 * (ie. COW) mappings.
869 		 */
870 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
871 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
872 			return -EBUSY;
873 		return -ENOENT;
874 	} else if (is_pte_marker_entry(entry)) {
875 		pte_marker marker = copy_pte_marker(entry, dst_vma);
876 
877 		if (marker)
878 			set_pte_at(dst_mm, addr, dst_pte,
879 				   make_pte_marker(marker));
880 		return 0;
881 	}
882 	if (!userfaultfd_wp(dst_vma))
883 		pte = pte_swp_clear_uffd_wp(pte);
884 	set_pte_at(dst_mm, addr, dst_pte, pte);
885 	return 0;
886 }
887 
888 /*
889  * Copy a present and normal page.
890  *
891  * NOTE! The usual case is that this isn't required;
892  * instead, the caller can just increase the page refcount
893  * and re-use the pte the traditional way.
894  *
895  * And if we need a pre-allocated page but don't yet have
896  * one, return a negative error to let the preallocation
897  * code know so that it can do so outside the page table
898  * lock.
899  */
900 static inline int
901 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903 		  struct folio **prealloc, struct page *page)
904 {
905 	struct folio *new_folio;
906 	pte_t pte;
907 
908 	new_folio = *prealloc;
909 	if (!new_folio)
910 		return -EAGAIN;
911 
912 	/*
913 	 * We have a prealloc page, all good!  Take it
914 	 * over and copy the page & arm it.
915 	 */
916 	*prealloc = NULL;
917 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
918 	__folio_mark_uptodate(new_folio);
919 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
920 	folio_add_lru_vma(new_folio, dst_vma);
921 	rss[MM_ANONPAGES]++;
922 
923 	/* All done, just insert the new page copy in the child */
924 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
925 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
926 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
927 		/* Uffd-wp needs to be delivered to dest pte as well */
928 		pte = pte_mkuffd_wp(pte);
929 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
930 	return 0;
931 }
932 
933 /*
934  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
935  * is required to copy this pte.
936  */
937 static inline int
938 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
939 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
940 		 struct folio **prealloc)
941 {
942 	struct mm_struct *src_mm = src_vma->vm_mm;
943 	unsigned long vm_flags = src_vma->vm_flags;
944 	pte_t pte = ptep_get(src_pte);
945 	struct page *page;
946 	struct folio *folio;
947 
948 	page = vm_normal_page(src_vma, addr, pte);
949 	if (page)
950 		folio = page_folio(page);
951 	if (page && folio_test_anon(folio)) {
952 		/*
953 		 * If this page may have been pinned by the parent process,
954 		 * copy the page immediately for the child so that we'll always
955 		 * guarantee the pinned page won't be randomly replaced in the
956 		 * future.
957 		 */
958 		folio_get(folio);
959 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
960 			/* Page may be pinned, we have to copy. */
961 			folio_put(folio);
962 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
963 						 addr, rss, prealloc, page);
964 		}
965 		rss[MM_ANONPAGES]++;
966 	} else if (page) {
967 		folio_get(folio);
968 		folio_dup_file_rmap_pte(folio, page);
969 		rss[mm_counter_file(page)]++;
970 	}
971 
972 	/*
973 	 * If it's a COW mapping, write protect it both
974 	 * in the parent and the child
975 	 */
976 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
977 		ptep_set_wrprotect(src_mm, addr, src_pte);
978 		pte = pte_wrprotect(pte);
979 	}
980 	VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
981 
982 	/*
983 	 * If it's a shared mapping, mark it clean in
984 	 * the child
985 	 */
986 	if (vm_flags & VM_SHARED)
987 		pte = pte_mkclean(pte);
988 	pte = pte_mkold(pte);
989 
990 	if (!userfaultfd_wp(dst_vma))
991 		pte = pte_clear_uffd_wp(pte);
992 
993 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
994 	return 0;
995 }
996 
997 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
998 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
999 {
1000 	struct folio *new_folio;
1001 
1002 	if (need_zero)
1003 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1004 	else
1005 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1006 					    addr, false);
1007 
1008 	if (!new_folio)
1009 		return NULL;
1010 
1011 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1012 		folio_put(new_folio);
1013 		return NULL;
1014 	}
1015 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1016 
1017 	return new_folio;
1018 }
1019 
1020 static int
1021 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1022 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1023 	       unsigned long end)
1024 {
1025 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1026 	struct mm_struct *src_mm = src_vma->vm_mm;
1027 	pte_t *orig_src_pte, *orig_dst_pte;
1028 	pte_t *src_pte, *dst_pte;
1029 	pte_t ptent;
1030 	spinlock_t *src_ptl, *dst_ptl;
1031 	int progress, ret = 0;
1032 	int rss[NR_MM_COUNTERS];
1033 	swp_entry_t entry = (swp_entry_t){0};
1034 	struct folio *prealloc = NULL;
1035 
1036 again:
1037 	progress = 0;
1038 	init_rss_vec(rss);
1039 
1040 	/*
1041 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1042 	 * error handling here, assume that exclusive mmap_lock on dst and src
1043 	 * protects anon from unexpected THP transitions; with shmem and file
1044 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1045 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1046 	 * can remove such assumptions later, but this is good enough for now.
1047 	 */
1048 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1049 	if (!dst_pte) {
1050 		ret = -ENOMEM;
1051 		goto out;
1052 	}
1053 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1054 	if (!src_pte) {
1055 		pte_unmap_unlock(dst_pte, dst_ptl);
1056 		/* ret == 0 */
1057 		goto out;
1058 	}
1059 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1060 	orig_src_pte = src_pte;
1061 	orig_dst_pte = dst_pte;
1062 	arch_enter_lazy_mmu_mode();
1063 
1064 	do {
1065 		/*
1066 		 * We are holding two locks at this point - either of them
1067 		 * could generate latencies in another task on another CPU.
1068 		 */
1069 		if (progress >= 32) {
1070 			progress = 0;
1071 			if (need_resched() ||
1072 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1073 				break;
1074 		}
1075 		ptent = ptep_get(src_pte);
1076 		if (pte_none(ptent)) {
1077 			progress++;
1078 			continue;
1079 		}
1080 		if (unlikely(!pte_present(ptent))) {
1081 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1082 						  dst_pte, src_pte,
1083 						  dst_vma, src_vma,
1084 						  addr, rss);
1085 			if (ret == -EIO) {
1086 				entry = pte_to_swp_entry(ptep_get(src_pte));
1087 				break;
1088 			} else if (ret == -EBUSY) {
1089 				break;
1090 			} else if (!ret) {
1091 				progress += 8;
1092 				continue;
1093 			}
1094 
1095 			/*
1096 			 * Device exclusive entry restored, continue by copying
1097 			 * the now present pte.
1098 			 */
1099 			WARN_ON_ONCE(ret != -ENOENT);
1100 		}
1101 		/* copy_present_pte() will clear `*prealloc' if consumed */
1102 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1103 				       addr, rss, &prealloc);
1104 		/*
1105 		 * If we need a pre-allocated page for this pte, drop the
1106 		 * locks, allocate, and try again.
1107 		 */
1108 		if (unlikely(ret == -EAGAIN))
1109 			break;
1110 		if (unlikely(prealloc)) {
1111 			/*
1112 			 * pre-alloc page cannot be reused by next time so as
1113 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1114 			 * will allocate page according to address).  This
1115 			 * could only happen if one pinned pte changed.
1116 			 */
1117 			folio_put(prealloc);
1118 			prealloc = NULL;
1119 		}
1120 		progress += 8;
1121 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1122 
1123 	arch_leave_lazy_mmu_mode();
1124 	pte_unmap_unlock(orig_src_pte, src_ptl);
1125 	add_mm_rss_vec(dst_mm, rss);
1126 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1127 	cond_resched();
1128 
1129 	if (ret == -EIO) {
1130 		VM_WARN_ON_ONCE(!entry.val);
1131 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1132 			ret = -ENOMEM;
1133 			goto out;
1134 		}
1135 		entry.val = 0;
1136 	} else if (ret == -EBUSY) {
1137 		goto out;
1138 	} else if (ret ==  -EAGAIN) {
1139 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1140 		if (!prealloc)
1141 			return -ENOMEM;
1142 	} else if (ret) {
1143 		VM_WARN_ON_ONCE(1);
1144 	}
1145 
1146 	/* We've captured and resolved the error. Reset, try again. */
1147 	ret = 0;
1148 
1149 	if (addr != end)
1150 		goto again;
1151 out:
1152 	if (unlikely(prealloc))
1153 		folio_put(prealloc);
1154 	return ret;
1155 }
1156 
1157 static inline int
1158 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1159 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1160 	       unsigned long end)
1161 {
1162 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1163 	struct mm_struct *src_mm = src_vma->vm_mm;
1164 	pmd_t *src_pmd, *dst_pmd;
1165 	unsigned long next;
1166 
1167 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1168 	if (!dst_pmd)
1169 		return -ENOMEM;
1170 	src_pmd = pmd_offset(src_pud, addr);
1171 	do {
1172 		next = pmd_addr_end(addr, end);
1173 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1174 			|| pmd_devmap(*src_pmd)) {
1175 			int err;
1176 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1177 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1178 					    addr, dst_vma, src_vma);
1179 			if (err == -ENOMEM)
1180 				return -ENOMEM;
1181 			if (!err)
1182 				continue;
1183 			/* fall through */
1184 		}
1185 		if (pmd_none_or_clear_bad(src_pmd))
1186 			continue;
1187 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1188 				   addr, next))
1189 			return -ENOMEM;
1190 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1191 	return 0;
1192 }
1193 
1194 static inline int
1195 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1196 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1197 	       unsigned long end)
1198 {
1199 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1200 	struct mm_struct *src_mm = src_vma->vm_mm;
1201 	pud_t *src_pud, *dst_pud;
1202 	unsigned long next;
1203 
1204 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1205 	if (!dst_pud)
1206 		return -ENOMEM;
1207 	src_pud = pud_offset(src_p4d, addr);
1208 	do {
1209 		next = pud_addr_end(addr, end);
1210 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1211 			int err;
1212 
1213 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1214 			err = copy_huge_pud(dst_mm, src_mm,
1215 					    dst_pud, src_pud, addr, src_vma);
1216 			if (err == -ENOMEM)
1217 				return -ENOMEM;
1218 			if (!err)
1219 				continue;
1220 			/* fall through */
1221 		}
1222 		if (pud_none_or_clear_bad(src_pud))
1223 			continue;
1224 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1225 				   addr, next))
1226 			return -ENOMEM;
1227 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1228 	return 0;
1229 }
1230 
1231 static inline int
1232 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1233 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1234 	       unsigned long end)
1235 {
1236 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1237 	p4d_t *src_p4d, *dst_p4d;
1238 	unsigned long next;
1239 
1240 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1241 	if (!dst_p4d)
1242 		return -ENOMEM;
1243 	src_p4d = p4d_offset(src_pgd, addr);
1244 	do {
1245 		next = p4d_addr_end(addr, end);
1246 		if (p4d_none_or_clear_bad(src_p4d))
1247 			continue;
1248 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1249 				   addr, next))
1250 			return -ENOMEM;
1251 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1252 	return 0;
1253 }
1254 
1255 /*
1256  * Return true if the vma needs to copy the pgtable during this fork().  Return
1257  * false when we can speed up fork() by allowing lazy page faults later until
1258  * when the child accesses the memory range.
1259  */
1260 static bool
1261 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1262 {
1263 	/*
1264 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1265 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1266 	 * contains uffd-wp protection information, that's something we can't
1267 	 * retrieve from page cache, and skip copying will lose those info.
1268 	 */
1269 	if (userfaultfd_wp(dst_vma))
1270 		return true;
1271 
1272 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1273 		return true;
1274 
1275 	if (src_vma->anon_vma)
1276 		return true;
1277 
1278 	/*
1279 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1280 	 * becomes much lighter when there are big shared or private readonly
1281 	 * mappings. The tradeoff is that copy_page_range is more efficient
1282 	 * than faulting.
1283 	 */
1284 	return false;
1285 }
1286 
1287 int
1288 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1289 {
1290 	pgd_t *src_pgd, *dst_pgd;
1291 	unsigned long next;
1292 	unsigned long addr = src_vma->vm_start;
1293 	unsigned long end = src_vma->vm_end;
1294 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1295 	struct mm_struct *src_mm = src_vma->vm_mm;
1296 	struct mmu_notifier_range range;
1297 	bool is_cow;
1298 	int ret;
1299 
1300 	if (!vma_needs_copy(dst_vma, src_vma))
1301 		return 0;
1302 
1303 	if (is_vm_hugetlb_page(src_vma))
1304 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1305 
1306 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1307 		/*
1308 		 * We do not free on error cases below as remove_vma
1309 		 * gets called on error from higher level routine
1310 		 */
1311 		ret = track_pfn_copy(src_vma);
1312 		if (ret)
1313 			return ret;
1314 	}
1315 
1316 	/*
1317 	 * We need to invalidate the secondary MMU mappings only when
1318 	 * there could be a permission downgrade on the ptes of the
1319 	 * parent mm. And a permission downgrade will only happen if
1320 	 * is_cow_mapping() returns true.
1321 	 */
1322 	is_cow = is_cow_mapping(src_vma->vm_flags);
1323 
1324 	if (is_cow) {
1325 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1326 					0, src_mm, addr, end);
1327 		mmu_notifier_invalidate_range_start(&range);
1328 		/*
1329 		 * Disabling preemption is not needed for the write side, as
1330 		 * the read side doesn't spin, but goes to the mmap_lock.
1331 		 *
1332 		 * Use the raw variant of the seqcount_t write API to avoid
1333 		 * lockdep complaining about preemptibility.
1334 		 */
1335 		vma_assert_write_locked(src_vma);
1336 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1337 	}
1338 
1339 	ret = 0;
1340 	dst_pgd = pgd_offset(dst_mm, addr);
1341 	src_pgd = pgd_offset(src_mm, addr);
1342 	do {
1343 		next = pgd_addr_end(addr, end);
1344 		if (pgd_none_or_clear_bad(src_pgd))
1345 			continue;
1346 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1347 					    addr, next))) {
1348 			untrack_pfn_clear(dst_vma);
1349 			ret = -ENOMEM;
1350 			break;
1351 		}
1352 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1353 
1354 	if (is_cow) {
1355 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1356 		mmu_notifier_invalidate_range_end(&range);
1357 	}
1358 	return ret;
1359 }
1360 
1361 /* Whether we should zap all COWed (private) pages too */
1362 static inline bool should_zap_cows(struct zap_details *details)
1363 {
1364 	/* By default, zap all pages */
1365 	if (!details)
1366 		return true;
1367 
1368 	/* Or, we zap COWed pages only if the caller wants to */
1369 	return details->even_cows;
1370 }
1371 
1372 /* Decides whether we should zap this page with the page pointer specified */
1373 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1374 {
1375 	/* If we can make a decision without *page.. */
1376 	if (should_zap_cows(details))
1377 		return true;
1378 
1379 	/* E.g. the caller passes NULL for the case of a zero page */
1380 	if (!page)
1381 		return true;
1382 
1383 	/* Otherwise we should only zap non-anon pages */
1384 	return !PageAnon(page);
1385 }
1386 
1387 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1388 {
1389 	if (!details)
1390 		return false;
1391 
1392 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1393 }
1394 
1395 /*
1396  * This function makes sure that we'll replace the none pte with an uffd-wp
1397  * swap special pte marker when necessary. Must be with the pgtable lock held.
1398  */
1399 static inline void
1400 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1401 			      unsigned long addr, pte_t *pte,
1402 			      struct zap_details *details, pte_t pteval)
1403 {
1404 	/* Zap on anonymous always means dropping everything */
1405 	if (vma_is_anonymous(vma))
1406 		return;
1407 
1408 	if (zap_drop_file_uffd_wp(details))
1409 		return;
1410 
1411 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1412 }
1413 
1414 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1415 				struct vm_area_struct *vma, pmd_t *pmd,
1416 				unsigned long addr, unsigned long end,
1417 				struct zap_details *details)
1418 {
1419 	struct mm_struct *mm = tlb->mm;
1420 	int force_flush = 0;
1421 	int rss[NR_MM_COUNTERS];
1422 	spinlock_t *ptl;
1423 	pte_t *start_pte;
1424 	pte_t *pte;
1425 	swp_entry_t entry;
1426 
1427 	tlb_change_page_size(tlb, PAGE_SIZE);
1428 	init_rss_vec(rss);
1429 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1430 	if (!pte)
1431 		return addr;
1432 
1433 	flush_tlb_batched_pending(mm);
1434 	arch_enter_lazy_mmu_mode();
1435 	do {
1436 		pte_t ptent = ptep_get(pte);
1437 		struct folio *folio;
1438 		struct page *page;
1439 
1440 		if (pte_none(ptent))
1441 			continue;
1442 
1443 		if (need_resched())
1444 			break;
1445 
1446 		if (pte_present(ptent)) {
1447 			unsigned int delay_rmap;
1448 
1449 			page = vm_normal_page(vma, addr, ptent);
1450 			if (unlikely(!should_zap_page(details, page)))
1451 				continue;
1452 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1453 							tlb->fullmm);
1454 			arch_check_zapped_pte(vma, ptent);
1455 			tlb_remove_tlb_entry(tlb, pte, addr);
1456 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1457 						      ptent);
1458 			if (unlikely(!page)) {
1459 				ksm_might_unmap_zero_page(mm, ptent);
1460 				continue;
1461 			}
1462 
1463 			folio = page_folio(page);
1464 			delay_rmap = 0;
1465 			if (!folio_test_anon(folio)) {
1466 				if (pte_dirty(ptent)) {
1467 					folio_mark_dirty(folio);
1468 					if (tlb_delay_rmap(tlb)) {
1469 						delay_rmap = 1;
1470 						force_flush = 1;
1471 					}
1472 				}
1473 				if (pte_young(ptent) && likely(vma_has_recency(vma)))
1474 					folio_mark_accessed(folio);
1475 			}
1476 			rss[mm_counter(page)]--;
1477 			if (!delay_rmap) {
1478 				folio_remove_rmap_pte(folio, page, vma);
1479 				if (unlikely(page_mapcount(page) < 0))
1480 					print_bad_pte(vma, addr, ptent, page);
1481 			}
1482 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1483 				force_flush = 1;
1484 				addr += PAGE_SIZE;
1485 				break;
1486 			}
1487 			continue;
1488 		}
1489 
1490 		entry = pte_to_swp_entry(ptent);
1491 		if (is_device_private_entry(entry) ||
1492 		    is_device_exclusive_entry(entry)) {
1493 			page = pfn_swap_entry_to_page(entry);
1494 			folio = page_folio(page);
1495 			if (unlikely(!should_zap_page(details, page)))
1496 				continue;
1497 			/*
1498 			 * Both device private/exclusive mappings should only
1499 			 * work with anonymous page so far, so we don't need to
1500 			 * consider uffd-wp bit when zap. For more information,
1501 			 * see zap_install_uffd_wp_if_needed().
1502 			 */
1503 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1504 			rss[mm_counter(page)]--;
1505 			if (is_device_private_entry(entry))
1506 				folio_remove_rmap_pte(folio, page, vma);
1507 			folio_put(folio);
1508 		} else if (!non_swap_entry(entry)) {
1509 			/* Genuine swap entry, hence a private anon page */
1510 			if (!should_zap_cows(details))
1511 				continue;
1512 			rss[MM_SWAPENTS]--;
1513 			if (unlikely(!free_swap_and_cache(entry)))
1514 				print_bad_pte(vma, addr, ptent, NULL);
1515 		} else if (is_migration_entry(entry)) {
1516 			page = pfn_swap_entry_to_page(entry);
1517 			if (!should_zap_page(details, page))
1518 				continue;
1519 			rss[mm_counter(page)]--;
1520 		} else if (pte_marker_entry_uffd_wp(entry)) {
1521 			/*
1522 			 * For anon: always drop the marker; for file: only
1523 			 * drop the marker if explicitly requested.
1524 			 */
1525 			if (!vma_is_anonymous(vma) &&
1526 			    !zap_drop_file_uffd_wp(details))
1527 				continue;
1528 		} else if (is_hwpoison_entry(entry) ||
1529 			   is_poisoned_swp_entry(entry)) {
1530 			if (!should_zap_cows(details))
1531 				continue;
1532 		} else {
1533 			/* We should have covered all the swap entry types */
1534 			pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1535 			WARN_ON_ONCE(1);
1536 		}
1537 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1538 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1539 	} while (pte++, addr += PAGE_SIZE, addr != end);
1540 
1541 	add_mm_rss_vec(mm, rss);
1542 	arch_leave_lazy_mmu_mode();
1543 
1544 	/* Do the actual TLB flush before dropping ptl */
1545 	if (force_flush) {
1546 		tlb_flush_mmu_tlbonly(tlb);
1547 		tlb_flush_rmaps(tlb, vma);
1548 	}
1549 	pte_unmap_unlock(start_pte, ptl);
1550 
1551 	/*
1552 	 * If we forced a TLB flush (either due to running out of
1553 	 * batch buffers or because we needed to flush dirty TLB
1554 	 * entries before releasing the ptl), free the batched
1555 	 * memory too. Come back again if we didn't do everything.
1556 	 */
1557 	if (force_flush)
1558 		tlb_flush_mmu(tlb);
1559 
1560 	return addr;
1561 }
1562 
1563 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1564 				struct vm_area_struct *vma, pud_t *pud,
1565 				unsigned long addr, unsigned long end,
1566 				struct zap_details *details)
1567 {
1568 	pmd_t *pmd;
1569 	unsigned long next;
1570 
1571 	pmd = pmd_offset(pud, addr);
1572 	do {
1573 		next = pmd_addr_end(addr, end);
1574 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1575 			if (next - addr != HPAGE_PMD_SIZE)
1576 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1577 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1578 				addr = next;
1579 				continue;
1580 			}
1581 			/* fall through */
1582 		} else if (details && details->single_folio &&
1583 			   folio_test_pmd_mappable(details->single_folio) &&
1584 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1585 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1586 			/*
1587 			 * Take and drop THP pmd lock so that we cannot return
1588 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1589 			 * but not yet decremented compound_mapcount().
1590 			 */
1591 			spin_unlock(ptl);
1592 		}
1593 		if (pmd_none(*pmd)) {
1594 			addr = next;
1595 			continue;
1596 		}
1597 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1598 		if (addr != next)
1599 			pmd--;
1600 	} while (pmd++, cond_resched(), addr != end);
1601 
1602 	return addr;
1603 }
1604 
1605 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1606 				struct vm_area_struct *vma, p4d_t *p4d,
1607 				unsigned long addr, unsigned long end,
1608 				struct zap_details *details)
1609 {
1610 	pud_t *pud;
1611 	unsigned long next;
1612 
1613 	pud = pud_offset(p4d, addr);
1614 	do {
1615 		next = pud_addr_end(addr, end);
1616 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1617 			if (next - addr != HPAGE_PUD_SIZE) {
1618 				mmap_assert_locked(tlb->mm);
1619 				split_huge_pud(vma, pud, addr);
1620 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1621 				goto next;
1622 			/* fall through */
1623 		}
1624 		if (pud_none_or_clear_bad(pud))
1625 			continue;
1626 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1627 next:
1628 		cond_resched();
1629 	} while (pud++, addr = next, addr != end);
1630 
1631 	return addr;
1632 }
1633 
1634 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1635 				struct vm_area_struct *vma, pgd_t *pgd,
1636 				unsigned long addr, unsigned long end,
1637 				struct zap_details *details)
1638 {
1639 	p4d_t *p4d;
1640 	unsigned long next;
1641 
1642 	p4d = p4d_offset(pgd, addr);
1643 	do {
1644 		next = p4d_addr_end(addr, end);
1645 		if (p4d_none_or_clear_bad(p4d))
1646 			continue;
1647 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1648 	} while (p4d++, addr = next, addr != end);
1649 
1650 	return addr;
1651 }
1652 
1653 void unmap_page_range(struct mmu_gather *tlb,
1654 			     struct vm_area_struct *vma,
1655 			     unsigned long addr, unsigned long end,
1656 			     struct zap_details *details)
1657 {
1658 	pgd_t *pgd;
1659 	unsigned long next;
1660 
1661 	BUG_ON(addr >= end);
1662 	tlb_start_vma(tlb, vma);
1663 	pgd = pgd_offset(vma->vm_mm, addr);
1664 	do {
1665 		next = pgd_addr_end(addr, end);
1666 		if (pgd_none_or_clear_bad(pgd))
1667 			continue;
1668 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1669 	} while (pgd++, addr = next, addr != end);
1670 	tlb_end_vma(tlb, vma);
1671 }
1672 
1673 
1674 static void unmap_single_vma(struct mmu_gather *tlb,
1675 		struct vm_area_struct *vma, unsigned long start_addr,
1676 		unsigned long end_addr,
1677 		struct zap_details *details, bool mm_wr_locked)
1678 {
1679 	unsigned long start = max(vma->vm_start, start_addr);
1680 	unsigned long end;
1681 
1682 	if (start >= vma->vm_end)
1683 		return;
1684 	end = min(vma->vm_end, end_addr);
1685 	if (end <= vma->vm_start)
1686 		return;
1687 
1688 	if (vma->vm_file)
1689 		uprobe_munmap(vma, start, end);
1690 
1691 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1692 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1693 
1694 	if (start != end) {
1695 		if (unlikely(is_vm_hugetlb_page(vma))) {
1696 			/*
1697 			 * It is undesirable to test vma->vm_file as it
1698 			 * should be non-null for valid hugetlb area.
1699 			 * However, vm_file will be NULL in the error
1700 			 * cleanup path of mmap_region. When
1701 			 * hugetlbfs ->mmap method fails,
1702 			 * mmap_region() nullifies vma->vm_file
1703 			 * before calling this function to clean up.
1704 			 * Since no pte has actually been setup, it is
1705 			 * safe to do nothing in this case.
1706 			 */
1707 			if (vma->vm_file) {
1708 				zap_flags_t zap_flags = details ?
1709 				    details->zap_flags : 0;
1710 				__unmap_hugepage_range(tlb, vma, start, end,
1711 							     NULL, zap_flags);
1712 			}
1713 		} else
1714 			unmap_page_range(tlb, vma, start, end, details);
1715 	}
1716 }
1717 
1718 /**
1719  * unmap_vmas - unmap a range of memory covered by a list of vma's
1720  * @tlb: address of the caller's struct mmu_gather
1721  * @mas: the maple state
1722  * @vma: the starting vma
1723  * @start_addr: virtual address at which to start unmapping
1724  * @end_addr: virtual address at which to end unmapping
1725  * @tree_end: The maximum index to check
1726  * @mm_wr_locked: lock flag
1727  *
1728  * Unmap all pages in the vma list.
1729  *
1730  * Only addresses between `start' and `end' will be unmapped.
1731  *
1732  * The VMA list must be sorted in ascending virtual address order.
1733  *
1734  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1735  * range after unmap_vmas() returns.  So the only responsibility here is to
1736  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1737  * drops the lock and schedules.
1738  */
1739 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1740 		struct vm_area_struct *vma, unsigned long start_addr,
1741 		unsigned long end_addr, unsigned long tree_end,
1742 		bool mm_wr_locked)
1743 {
1744 	struct mmu_notifier_range range;
1745 	struct zap_details details = {
1746 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1747 		/* Careful - we need to zap private pages too! */
1748 		.even_cows = true,
1749 	};
1750 
1751 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1752 				start_addr, end_addr);
1753 	mmu_notifier_invalidate_range_start(&range);
1754 	do {
1755 		unsigned long start = start_addr;
1756 		unsigned long end = end_addr;
1757 		hugetlb_zap_begin(vma, &start, &end);
1758 		unmap_single_vma(tlb, vma, start, end, &details,
1759 				 mm_wr_locked);
1760 		hugetlb_zap_end(vma, &details);
1761 		vma = mas_find(mas, tree_end - 1);
1762 	} while (vma && likely(!xa_is_zero(vma)));
1763 	mmu_notifier_invalidate_range_end(&range);
1764 }
1765 
1766 /**
1767  * zap_page_range_single - remove user pages in a given range
1768  * @vma: vm_area_struct holding the applicable pages
1769  * @address: starting address of pages to zap
1770  * @size: number of bytes to zap
1771  * @details: details of shared cache invalidation
1772  *
1773  * The range must fit into one VMA.
1774  */
1775 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1776 		unsigned long size, struct zap_details *details)
1777 {
1778 	const unsigned long end = address + size;
1779 	struct mmu_notifier_range range;
1780 	struct mmu_gather tlb;
1781 
1782 	lru_add_drain();
1783 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1784 				address, end);
1785 	hugetlb_zap_begin(vma, &range.start, &range.end);
1786 	tlb_gather_mmu(&tlb, vma->vm_mm);
1787 	update_hiwater_rss(vma->vm_mm);
1788 	mmu_notifier_invalidate_range_start(&range);
1789 	/*
1790 	 * unmap 'address-end' not 'range.start-range.end' as range
1791 	 * could have been expanded for hugetlb pmd sharing.
1792 	 */
1793 	unmap_single_vma(&tlb, vma, address, end, details, false);
1794 	mmu_notifier_invalidate_range_end(&range);
1795 	tlb_finish_mmu(&tlb);
1796 	hugetlb_zap_end(vma, details);
1797 }
1798 
1799 /**
1800  * zap_vma_ptes - remove ptes mapping the vma
1801  * @vma: vm_area_struct holding ptes to be zapped
1802  * @address: starting address of pages to zap
1803  * @size: number of bytes to zap
1804  *
1805  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1806  *
1807  * The entire address range must be fully contained within the vma.
1808  *
1809  */
1810 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1811 		unsigned long size)
1812 {
1813 	if (!range_in_vma(vma, address, address + size) ||
1814 	    		!(vma->vm_flags & VM_PFNMAP))
1815 		return;
1816 
1817 	zap_page_range_single(vma, address, size, NULL);
1818 }
1819 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1820 
1821 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1822 {
1823 	pgd_t *pgd;
1824 	p4d_t *p4d;
1825 	pud_t *pud;
1826 	pmd_t *pmd;
1827 
1828 	pgd = pgd_offset(mm, addr);
1829 	p4d = p4d_alloc(mm, pgd, addr);
1830 	if (!p4d)
1831 		return NULL;
1832 	pud = pud_alloc(mm, p4d, addr);
1833 	if (!pud)
1834 		return NULL;
1835 	pmd = pmd_alloc(mm, pud, addr);
1836 	if (!pmd)
1837 		return NULL;
1838 
1839 	VM_BUG_ON(pmd_trans_huge(*pmd));
1840 	return pmd;
1841 }
1842 
1843 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1844 			spinlock_t **ptl)
1845 {
1846 	pmd_t *pmd = walk_to_pmd(mm, addr);
1847 
1848 	if (!pmd)
1849 		return NULL;
1850 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1851 }
1852 
1853 static int validate_page_before_insert(struct page *page)
1854 {
1855 	struct folio *folio = page_folio(page);
1856 
1857 	if (folio_test_anon(folio) || folio_test_slab(folio) ||
1858 	    page_has_type(page))
1859 		return -EINVAL;
1860 	flush_dcache_folio(folio);
1861 	return 0;
1862 }
1863 
1864 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1865 			unsigned long addr, struct page *page, pgprot_t prot)
1866 {
1867 	struct folio *folio = page_folio(page);
1868 
1869 	if (!pte_none(ptep_get(pte)))
1870 		return -EBUSY;
1871 	/* Ok, finally just insert the thing.. */
1872 	folio_get(folio);
1873 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1874 	folio_add_file_rmap_pte(folio, page, vma);
1875 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1876 	return 0;
1877 }
1878 
1879 /*
1880  * This is the old fallback for page remapping.
1881  *
1882  * For historical reasons, it only allows reserved pages. Only
1883  * old drivers should use this, and they needed to mark their
1884  * pages reserved for the old functions anyway.
1885  */
1886 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1887 			struct page *page, pgprot_t prot)
1888 {
1889 	int retval;
1890 	pte_t *pte;
1891 	spinlock_t *ptl;
1892 
1893 	retval = validate_page_before_insert(page);
1894 	if (retval)
1895 		goto out;
1896 	retval = -ENOMEM;
1897 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1898 	if (!pte)
1899 		goto out;
1900 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1901 	pte_unmap_unlock(pte, ptl);
1902 out:
1903 	return retval;
1904 }
1905 
1906 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1907 			unsigned long addr, struct page *page, pgprot_t prot)
1908 {
1909 	int err;
1910 
1911 	if (!page_count(page))
1912 		return -EINVAL;
1913 	err = validate_page_before_insert(page);
1914 	if (err)
1915 		return err;
1916 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1917 }
1918 
1919 /* insert_pages() amortizes the cost of spinlock operations
1920  * when inserting pages in a loop.
1921  */
1922 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1923 			struct page **pages, unsigned long *num, pgprot_t prot)
1924 {
1925 	pmd_t *pmd = NULL;
1926 	pte_t *start_pte, *pte;
1927 	spinlock_t *pte_lock;
1928 	struct mm_struct *const mm = vma->vm_mm;
1929 	unsigned long curr_page_idx = 0;
1930 	unsigned long remaining_pages_total = *num;
1931 	unsigned long pages_to_write_in_pmd;
1932 	int ret;
1933 more:
1934 	ret = -EFAULT;
1935 	pmd = walk_to_pmd(mm, addr);
1936 	if (!pmd)
1937 		goto out;
1938 
1939 	pages_to_write_in_pmd = min_t(unsigned long,
1940 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1941 
1942 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1943 	ret = -ENOMEM;
1944 	if (pte_alloc(mm, pmd))
1945 		goto out;
1946 
1947 	while (pages_to_write_in_pmd) {
1948 		int pte_idx = 0;
1949 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1950 
1951 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1952 		if (!start_pte) {
1953 			ret = -EFAULT;
1954 			goto out;
1955 		}
1956 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1957 			int err = insert_page_in_batch_locked(vma, pte,
1958 				addr, pages[curr_page_idx], prot);
1959 			if (unlikely(err)) {
1960 				pte_unmap_unlock(start_pte, pte_lock);
1961 				ret = err;
1962 				remaining_pages_total -= pte_idx;
1963 				goto out;
1964 			}
1965 			addr += PAGE_SIZE;
1966 			++curr_page_idx;
1967 		}
1968 		pte_unmap_unlock(start_pte, pte_lock);
1969 		pages_to_write_in_pmd -= batch_size;
1970 		remaining_pages_total -= batch_size;
1971 	}
1972 	if (remaining_pages_total)
1973 		goto more;
1974 	ret = 0;
1975 out:
1976 	*num = remaining_pages_total;
1977 	return ret;
1978 }
1979 
1980 /**
1981  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1982  * @vma: user vma to map to
1983  * @addr: target start user address of these pages
1984  * @pages: source kernel pages
1985  * @num: in: number of pages to map. out: number of pages that were *not*
1986  * mapped. (0 means all pages were successfully mapped).
1987  *
1988  * Preferred over vm_insert_page() when inserting multiple pages.
1989  *
1990  * In case of error, we may have mapped a subset of the provided
1991  * pages. It is the caller's responsibility to account for this case.
1992  *
1993  * The same restrictions apply as in vm_insert_page().
1994  */
1995 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1996 			struct page **pages, unsigned long *num)
1997 {
1998 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1999 
2000 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2001 		return -EFAULT;
2002 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2003 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2004 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2005 		vm_flags_set(vma, VM_MIXEDMAP);
2006 	}
2007 	/* Defer page refcount checking till we're about to map that page. */
2008 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2009 }
2010 EXPORT_SYMBOL(vm_insert_pages);
2011 
2012 /**
2013  * vm_insert_page - insert single page into user vma
2014  * @vma: user vma to map to
2015  * @addr: target user address of this page
2016  * @page: source kernel page
2017  *
2018  * This allows drivers to insert individual pages they've allocated
2019  * into a user vma.
2020  *
2021  * The page has to be a nice clean _individual_ kernel allocation.
2022  * If you allocate a compound page, you need to have marked it as
2023  * such (__GFP_COMP), or manually just split the page up yourself
2024  * (see split_page()).
2025  *
2026  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2027  * took an arbitrary page protection parameter. This doesn't allow
2028  * that. Your vma protection will have to be set up correctly, which
2029  * means that if you want a shared writable mapping, you'd better
2030  * ask for a shared writable mapping!
2031  *
2032  * The page does not need to be reserved.
2033  *
2034  * Usually this function is called from f_op->mmap() handler
2035  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2036  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2037  * function from other places, for example from page-fault handler.
2038  *
2039  * Return: %0 on success, negative error code otherwise.
2040  */
2041 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2042 			struct page *page)
2043 {
2044 	if (addr < vma->vm_start || addr >= vma->vm_end)
2045 		return -EFAULT;
2046 	if (!page_count(page))
2047 		return -EINVAL;
2048 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2049 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2050 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2051 		vm_flags_set(vma, VM_MIXEDMAP);
2052 	}
2053 	return insert_page(vma, addr, page, vma->vm_page_prot);
2054 }
2055 EXPORT_SYMBOL(vm_insert_page);
2056 
2057 /*
2058  * __vm_map_pages - maps range of kernel pages into user vma
2059  * @vma: user vma to map to
2060  * @pages: pointer to array of source kernel pages
2061  * @num: number of pages in page array
2062  * @offset: user's requested vm_pgoff
2063  *
2064  * This allows drivers to map range of kernel pages into a user vma.
2065  *
2066  * Return: 0 on success and error code otherwise.
2067  */
2068 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2069 				unsigned long num, unsigned long offset)
2070 {
2071 	unsigned long count = vma_pages(vma);
2072 	unsigned long uaddr = vma->vm_start;
2073 	int ret, i;
2074 
2075 	/* Fail if the user requested offset is beyond the end of the object */
2076 	if (offset >= num)
2077 		return -ENXIO;
2078 
2079 	/* Fail if the user requested size exceeds available object size */
2080 	if (count > num - offset)
2081 		return -ENXIO;
2082 
2083 	for (i = 0; i < count; i++) {
2084 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2085 		if (ret < 0)
2086 			return ret;
2087 		uaddr += PAGE_SIZE;
2088 	}
2089 
2090 	return 0;
2091 }
2092 
2093 /**
2094  * vm_map_pages - maps range of kernel pages starts with non zero offset
2095  * @vma: user vma to map to
2096  * @pages: pointer to array of source kernel pages
2097  * @num: number of pages in page array
2098  *
2099  * Maps an object consisting of @num pages, catering for the user's
2100  * requested vm_pgoff
2101  *
2102  * If we fail to insert any page into the vma, the function will return
2103  * immediately leaving any previously inserted pages present.  Callers
2104  * from the mmap handler may immediately return the error as their caller
2105  * will destroy the vma, removing any successfully inserted pages. Other
2106  * callers should make their own arrangements for calling unmap_region().
2107  *
2108  * Context: Process context. Called by mmap handlers.
2109  * Return: 0 on success and error code otherwise.
2110  */
2111 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2112 				unsigned long num)
2113 {
2114 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2115 }
2116 EXPORT_SYMBOL(vm_map_pages);
2117 
2118 /**
2119  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2120  * @vma: user vma to map to
2121  * @pages: pointer to array of source kernel pages
2122  * @num: number of pages in page array
2123  *
2124  * Similar to vm_map_pages(), except that it explicitly sets the offset
2125  * to 0. This function is intended for the drivers that did not consider
2126  * vm_pgoff.
2127  *
2128  * Context: Process context. Called by mmap handlers.
2129  * Return: 0 on success and error code otherwise.
2130  */
2131 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2132 				unsigned long num)
2133 {
2134 	return __vm_map_pages(vma, pages, num, 0);
2135 }
2136 EXPORT_SYMBOL(vm_map_pages_zero);
2137 
2138 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2139 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2140 {
2141 	struct mm_struct *mm = vma->vm_mm;
2142 	pte_t *pte, entry;
2143 	spinlock_t *ptl;
2144 
2145 	pte = get_locked_pte(mm, addr, &ptl);
2146 	if (!pte)
2147 		return VM_FAULT_OOM;
2148 	entry = ptep_get(pte);
2149 	if (!pte_none(entry)) {
2150 		if (mkwrite) {
2151 			/*
2152 			 * For read faults on private mappings the PFN passed
2153 			 * in may not match the PFN we have mapped if the
2154 			 * mapped PFN is a writeable COW page.  In the mkwrite
2155 			 * case we are creating a writable PTE for a shared
2156 			 * mapping and we expect the PFNs to match. If they
2157 			 * don't match, we are likely racing with block
2158 			 * allocation and mapping invalidation so just skip the
2159 			 * update.
2160 			 */
2161 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2162 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2163 				goto out_unlock;
2164 			}
2165 			entry = pte_mkyoung(entry);
2166 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2167 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2168 				update_mmu_cache(vma, addr, pte);
2169 		}
2170 		goto out_unlock;
2171 	}
2172 
2173 	/* Ok, finally just insert the thing.. */
2174 	if (pfn_t_devmap(pfn))
2175 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2176 	else
2177 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2178 
2179 	if (mkwrite) {
2180 		entry = pte_mkyoung(entry);
2181 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2182 	}
2183 
2184 	set_pte_at(mm, addr, pte, entry);
2185 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2186 
2187 out_unlock:
2188 	pte_unmap_unlock(pte, ptl);
2189 	return VM_FAULT_NOPAGE;
2190 }
2191 
2192 /**
2193  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2194  * @vma: user vma to map to
2195  * @addr: target user address of this page
2196  * @pfn: source kernel pfn
2197  * @pgprot: pgprot flags for the inserted page
2198  *
2199  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2200  * to override pgprot on a per-page basis.
2201  *
2202  * This only makes sense for IO mappings, and it makes no sense for
2203  * COW mappings.  In general, using multiple vmas is preferable;
2204  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2205  * impractical.
2206  *
2207  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2208  * caching- and encryption bits different than those of @vma->vm_page_prot,
2209  * because the caching- or encryption mode may not be known at mmap() time.
2210  *
2211  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2212  * to set caching and encryption bits for those vmas (except for COW pages).
2213  * This is ensured by core vm only modifying these page table entries using
2214  * functions that don't touch caching- or encryption bits, using pte_modify()
2215  * if needed. (See for example mprotect()).
2216  *
2217  * Also when new page-table entries are created, this is only done using the
2218  * fault() callback, and never using the value of vma->vm_page_prot,
2219  * except for page-table entries that point to anonymous pages as the result
2220  * of COW.
2221  *
2222  * Context: Process context.  May allocate using %GFP_KERNEL.
2223  * Return: vm_fault_t value.
2224  */
2225 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2226 			unsigned long pfn, pgprot_t pgprot)
2227 {
2228 	/*
2229 	 * Technically, architectures with pte_special can avoid all these
2230 	 * restrictions (same for remap_pfn_range).  However we would like
2231 	 * consistency in testing and feature parity among all, so we should
2232 	 * try to keep these invariants in place for everybody.
2233 	 */
2234 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2235 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2236 						(VM_PFNMAP|VM_MIXEDMAP));
2237 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2238 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2239 
2240 	if (addr < vma->vm_start || addr >= vma->vm_end)
2241 		return VM_FAULT_SIGBUS;
2242 
2243 	if (!pfn_modify_allowed(pfn, pgprot))
2244 		return VM_FAULT_SIGBUS;
2245 
2246 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2247 
2248 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2249 			false);
2250 }
2251 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2252 
2253 /**
2254  * vmf_insert_pfn - insert single pfn into user vma
2255  * @vma: user vma to map to
2256  * @addr: target user address of this page
2257  * @pfn: source kernel pfn
2258  *
2259  * Similar to vm_insert_page, this allows drivers to insert individual pages
2260  * they've allocated into a user vma. Same comments apply.
2261  *
2262  * This function should only be called from a vm_ops->fault handler, and
2263  * in that case the handler should return the result of this function.
2264  *
2265  * vma cannot be a COW mapping.
2266  *
2267  * As this is called only for pages that do not currently exist, we
2268  * do not need to flush old virtual caches or the TLB.
2269  *
2270  * Context: Process context.  May allocate using %GFP_KERNEL.
2271  * Return: vm_fault_t value.
2272  */
2273 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2274 			unsigned long pfn)
2275 {
2276 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2277 }
2278 EXPORT_SYMBOL(vmf_insert_pfn);
2279 
2280 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2281 {
2282 	/* these checks mirror the abort conditions in vm_normal_page */
2283 	if (vma->vm_flags & VM_MIXEDMAP)
2284 		return true;
2285 	if (pfn_t_devmap(pfn))
2286 		return true;
2287 	if (pfn_t_special(pfn))
2288 		return true;
2289 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2290 		return true;
2291 	return false;
2292 }
2293 
2294 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2295 		unsigned long addr, pfn_t pfn, bool mkwrite)
2296 {
2297 	pgprot_t pgprot = vma->vm_page_prot;
2298 	int err;
2299 
2300 	BUG_ON(!vm_mixed_ok(vma, pfn));
2301 
2302 	if (addr < vma->vm_start || addr >= vma->vm_end)
2303 		return VM_FAULT_SIGBUS;
2304 
2305 	track_pfn_insert(vma, &pgprot, pfn);
2306 
2307 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2308 		return VM_FAULT_SIGBUS;
2309 
2310 	/*
2311 	 * If we don't have pte special, then we have to use the pfn_valid()
2312 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2313 	 * refcount the page if pfn_valid is true (hence insert_page rather
2314 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2315 	 * without pte special, it would there be refcounted as a normal page.
2316 	 */
2317 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2318 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2319 		struct page *page;
2320 
2321 		/*
2322 		 * At this point we are committed to insert_page()
2323 		 * regardless of whether the caller specified flags that
2324 		 * result in pfn_t_has_page() == false.
2325 		 */
2326 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2327 		err = insert_page(vma, addr, page, pgprot);
2328 	} else {
2329 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2330 	}
2331 
2332 	if (err == -ENOMEM)
2333 		return VM_FAULT_OOM;
2334 	if (err < 0 && err != -EBUSY)
2335 		return VM_FAULT_SIGBUS;
2336 
2337 	return VM_FAULT_NOPAGE;
2338 }
2339 
2340 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2341 		pfn_t pfn)
2342 {
2343 	return __vm_insert_mixed(vma, addr, pfn, false);
2344 }
2345 EXPORT_SYMBOL(vmf_insert_mixed);
2346 
2347 /*
2348  *  If the insertion of PTE failed because someone else already added a
2349  *  different entry in the mean time, we treat that as success as we assume
2350  *  the same entry was actually inserted.
2351  */
2352 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2353 		unsigned long addr, pfn_t pfn)
2354 {
2355 	return __vm_insert_mixed(vma, addr, pfn, true);
2356 }
2357 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2358 
2359 /*
2360  * maps a range of physical memory into the requested pages. the old
2361  * mappings are removed. any references to nonexistent pages results
2362  * in null mappings (currently treated as "copy-on-access")
2363  */
2364 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2365 			unsigned long addr, unsigned long end,
2366 			unsigned long pfn, pgprot_t prot)
2367 {
2368 	pte_t *pte, *mapped_pte;
2369 	spinlock_t *ptl;
2370 	int err = 0;
2371 
2372 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2373 	if (!pte)
2374 		return -ENOMEM;
2375 	arch_enter_lazy_mmu_mode();
2376 	do {
2377 		BUG_ON(!pte_none(ptep_get(pte)));
2378 		if (!pfn_modify_allowed(pfn, prot)) {
2379 			err = -EACCES;
2380 			break;
2381 		}
2382 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2383 		pfn++;
2384 	} while (pte++, addr += PAGE_SIZE, addr != end);
2385 	arch_leave_lazy_mmu_mode();
2386 	pte_unmap_unlock(mapped_pte, ptl);
2387 	return err;
2388 }
2389 
2390 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2391 			unsigned long addr, unsigned long end,
2392 			unsigned long pfn, pgprot_t prot)
2393 {
2394 	pmd_t *pmd;
2395 	unsigned long next;
2396 	int err;
2397 
2398 	pfn -= addr >> PAGE_SHIFT;
2399 	pmd = pmd_alloc(mm, pud, addr);
2400 	if (!pmd)
2401 		return -ENOMEM;
2402 	VM_BUG_ON(pmd_trans_huge(*pmd));
2403 	do {
2404 		next = pmd_addr_end(addr, end);
2405 		err = remap_pte_range(mm, pmd, addr, next,
2406 				pfn + (addr >> PAGE_SHIFT), prot);
2407 		if (err)
2408 			return err;
2409 	} while (pmd++, addr = next, addr != end);
2410 	return 0;
2411 }
2412 
2413 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2414 			unsigned long addr, unsigned long end,
2415 			unsigned long pfn, pgprot_t prot)
2416 {
2417 	pud_t *pud;
2418 	unsigned long next;
2419 	int err;
2420 
2421 	pfn -= addr >> PAGE_SHIFT;
2422 	pud = pud_alloc(mm, p4d, addr);
2423 	if (!pud)
2424 		return -ENOMEM;
2425 	do {
2426 		next = pud_addr_end(addr, end);
2427 		err = remap_pmd_range(mm, pud, addr, next,
2428 				pfn + (addr >> PAGE_SHIFT), prot);
2429 		if (err)
2430 			return err;
2431 	} while (pud++, addr = next, addr != end);
2432 	return 0;
2433 }
2434 
2435 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2436 			unsigned long addr, unsigned long end,
2437 			unsigned long pfn, pgprot_t prot)
2438 {
2439 	p4d_t *p4d;
2440 	unsigned long next;
2441 	int err;
2442 
2443 	pfn -= addr >> PAGE_SHIFT;
2444 	p4d = p4d_alloc(mm, pgd, addr);
2445 	if (!p4d)
2446 		return -ENOMEM;
2447 	do {
2448 		next = p4d_addr_end(addr, end);
2449 		err = remap_pud_range(mm, p4d, addr, next,
2450 				pfn + (addr >> PAGE_SHIFT), prot);
2451 		if (err)
2452 			return err;
2453 	} while (p4d++, addr = next, addr != end);
2454 	return 0;
2455 }
2456 
2457 /*
2458  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2459  * must have pre-validated the caching bits of the pgprot_t.
2460  */
2461 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2462 		unsigned long pfn, unsigned long size, pgprot_t prot)
2463 {
2464 	pgd_t *pgd;
2465 	unsigned long next;
2466 	unsigned long end = addr + PAGE_ALIGN(size);
2467 	struct mm_struct *mm = vma->vm_mm;
2468 	int err;
2469 
2470 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2471 		return -EINVAL;
2472 
2473 	/*
2474 	 * Physically remapped pages are special. Tell the
2475 	 * rest of the world about it:
2476 	 *   VM_IO tells people not to look at these pages
2477 	 *	(accesses can have side effects).
2478 	 *   VM_PFNMAP tells the core MM that the base pages are just
2479 	 *	raw PFN mappings, and do not have a "struct page" associated
2480 	 *	with them.
2481 	 *   VM_DONTEXPAND
2482 	 *      Disable vma merging and expanding with mremap().
2483 	 *   VM_DONTDUMP
2484 	 *      Omit vma from core dump, even when VM_IO turned off.
2485 	 *
2486 	 * There's a horrible special case to handle copy-on-write
2487 	 * behaviour that some programs depend on. We mark the "original"
2488 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2489 	 * See vm_normal_page() for details.
2490 	 */
2491 	if (is_cow_mapping(vma->vm_flags)) {
2492 		if (addr != vma->vm_start || end != vma->vm_end)
2493 			return -EINVAL;
2494 		vma->vm_pgoff = pfn;
2495 	}
2496 
2497 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2498 
2499 	BUG_ON(addr >= end);
2500 	pfn -= addr >> PAGE_SHIFT;
2501 	pgd = pgd_offset(mm, addr);
2502 	flush_cache_range(vma, addr, end);
2503 	do {
2504 		next = pgd_addr_end(addr, end);
2505 		err = remap_p4d_range(mm, pgd, addr, next,
2506 				pfn + (addr >> PAGE_SHIFT), prot);
2507 		if (err)
2508 			return err;
2509 	} while (pgd++, addr = next, addr != end);
2510 
2511 	return 0;
2512 }
2513 
2514 /**
2515  * remap_pfn_range - remap kernel memory to userspace
2516  * @vma: user vma to map to
2517  * @addr: target page aligned user address to start at
2518  * @pfn: page frame number of kernel physical memory address
2519  * @size: size of mapping area
2520  * @prot: page protection flags for this mapping
2521  *
2522  * Note: this is only safe if the mm semaphore is held when called.
2523  *
2524  * Return: %0 on success, negative error code otherwise.
2525  */
2526 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2527 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2528 {
2529 	int err;
2530 
2531 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2532 	if (err)
2533 		return -EINVAL;
2534 
2535 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2536 	if (err)
2537 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2538 	return err;
2539 }
2540 EXPORT_SYMBOL(remap_pfn_range);
2541 
2542 /**
2543  * vm_iomap_memory - remap memory to userspace
2544  * @vma: user vma to map to
2545  * @start: start of the physical memory to be mapped
2546  * @len: size of area
2547  *
2548  * This is a simplified io_remap_pfn_range() for common driver use. The
2549  * driver just needs to give us the physical memory range to be mapped,
2550  * we'll figure out the rest from the vma information.
2551  *
2552  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2553  * whatever write-combining details or similar.
2554  *
2555  * Return: %0 on success, negative error code otherwise.
2556  */
2557 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2558 {
2559 	unsigned long vm_len, pfn, pages;
2560 
2561 	/* Check that the physical memory area passed in looks valid */
2562 	if (start + len < start)
2563 		return -EINVAL;
2564 	/*
2565 	 * You *really* shouldn't map things that aren't page-aligned,
2566 	 * but we've historically allowed it because IO memory might
2567 	 * just have smaller alignment.
2568 	 */
2569 	len += start & ~PAGE_MASK;
2570 	pfn = start >> PAGE_SHIFT;
2571 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2572 	if (pfn + pages < pfn)
2573 		return -EINVAL;
2574 
2575 	/* We start the mapping 'vm_pgoff' pages into the area */
2576 	if (vma->vm_pgoff > pages)
2577 		return -EINVAL;
2578 	pfn += vma->vm_pgoff;
2579 	pages -= vma->vm_pgoff;
2580 
2581 	/* Can we fit all of the mapping? */
2582 	vm_len = vma->vm_end - vma->vm_start;
2583 	if (vm_len >> PAGE_SHIFT > pages)
2584 		return -EINVAL;
2585 
2586 	/* Ok, let it rip */
2587 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2588 }
2589 EXPORT_SYMBOL(vm_iomap_memory);
2590 
2591 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2592 				     unsigned long addr, unsigned long end,
2593 				     pte_fn_t fn, void *data, bool create,
2594 				     pgtbl_mod_mask *mask)
2595 {
2596 	pte_t *pte, *mapped_pte;
2597 	int err = 0;
2598 	spinlock_t *ptl;
2599 
2600 	if (create) {
2601 		mapped_pte = pte = (mm == &init_mm) ?
2602 			pte_alloc_kernel_track(pmd, addr, mask) :
2603 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2604 		if (!pte)
2605 			return -ENOMEM;
2606 	} else {
2607 		mapped_pte = pte = (mm == &init_mm) ?
2608 			pte_offset_kernel(pmd, addr) :
2609 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2610 		if (!pte)
2611 			return -EINVAL;
2612 	}
2613 
2614 	arch_enter_lazy_mmu_mode();
2615 
2616 	if (fn) {
2617 		do {
2618 			if (create || !pte_none(ptep_get(pte))) {
2619 				err = fn(pte++, addr, data);
2620 				if (err)
2621 					break;
2622 			}
2623 		} while (addr += PAGE_SIZE, addr != end);
2624 	}
2625 	*mask |= PGTBL_PTE_MODIFIED;
2626 
2627 	arch_leave_lazy_mmu_mode();
2628 
2629 	if (mm != &init_mm)
2630 		pte_unmap_unlock(mapped_pte, ptl);
2631 	return err;
2632 }
2633 
2634 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2635 				     unsigned long addr, unsigned long end,
2636 				     pte_fn_t fn, void *data, bool create,
2637 				     pgtbl_mod_mask *mask)
2638 {
2639 	pmd_t *pmd;
2640 	unsigned long next;
2641 	int err = 0;
2642 
2643 	BUG_ON(pud_huge(*pud));
2644 
2645 	if (create) {
2646 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2647 		if (!pmd)
2648 			return -ENOMEM;
2649 	} else {
2650 		pmd = pmd_offset(pud, addr);
2651 	}
2652 	do {
2653 		next = pmd_addr_end(addr, end);
2654 		if (pmd_none(*pmd) && !create)
2655 			continue;
2656 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2657 			return -EINVAL;
2658 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2659 			if (!create)
2660 				continue;
2661 			pmd_clear_bad(pmd);
2662 		}
2663 		err = apply_to_pte_range(mm, pmd, addr, next,
2664 					 fn, data, create, mask);
2665 		if (err)
2666 			break;
2667 	} while (pmd++, addr = next, addr != end);
2668 
2669 	return err;
2670 }
2671 
2672 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2673 				     unsigned long addr, unsigned long end,
2674 				     pte_fn_t fn, void *data, bool create,
2675 				     pgtbl_mod_mask *mask)
2676 {
2677 	pud_t *pud;
2678 	unsigned long next;
2679 	int err = 0;
2680 
2681 	if (create) {
2682 		pud = pud_alloc_track(mm, p4d, addr, mask);
2683 		if (!pud)
2684 			return -ENOMEM;
2685 	} else {
2686 		pud = pud_offset(p4d, addr);
2687 	}
2688 	do {
2689 		next = pud_addr_end(addr, end);
2690 		if (pud_none(*pud) && !create)
2691 			continue;
2692 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2693 			return -EINVAL;
2694 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2695 			if (!create)
2696 				continue;
2697 			pud_clear_bad(pud);
2698 		}
2699 		err = apply_to_pmd_range(mm, pud, addr, next,
2700 					 fn, data, create, mask);
2701 		if (err)
2702 			break;
2703 	} while (pud++, addr = next, addr != end);
2704 
2705 	return err;
2706 }
2707 
2708 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2709 				     unsigned long addr, unsigned long end,
2710 				     pte_fn_t fn, void *data, bool create,
2711 				     pgtbl_mod_mask *mask)
2712 {
2713 	p4d_t *p4d;
2714 	unsigned long next;
2715 	int err = 0;
2716 
2717 	if (create) {
2718 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2719 		if (!p4d)
2720 			return -ENOMEM;
2721 	} else {
2722 		p4d = p4d_offset(pgd, addr);
2723 	}
2724 	do {
2725 		next = p4d_addr_end(addr, end);
2726 		if (p4d_none(*p4d) && !create)
2727 			continue;
2728 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2729 			return -EINVAL;
2730 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2731 			if (!create)
2732 				continue;
2733 			p4d_clear_bad(p4d);
2734 		}
2735 		err = apply_to_pud_range(mm, p4d, addr, next,
2736 					 fn, data, create, mask);
2737 		if (err)
2738 			break;
2739 	} while (p4d++, addr = next, addr != end);
2740 
2741 	return err;
2742 }
2743 
2744 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2745 				 unsigned long size, pte_fn_t fn,
2746 				 void *data, bool create)
2747 {
2748 	pgd_t *pgd;
2749 	unsigned long start = addr, next;
2750 	unsigned long end = addr + size;
2751 	pgtbl_mod_mask mask = 0;
2752 	int err = 0;
2753 
2754 	if (WARN_ON(addr >= end))
2755 		return -EINVAL;
2756 
2757 	pgd = pgd_offset(mm, addr);
2758 	do {
2759 		next = pgd_addr_end(addr, end);
2760 		if (pgd_none(*pgd) && !create)
2761 			continue;
2762 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2763 			return -EINVAL;
2764 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2765 			if (!create)
2766 				continue;
2767 			pgd_clear_bad(pgd);
2768 		}
2769 		err = apply_to_p4d_range(mm, pgd, addr, next,
2770 					 fn, data, create, &mask);
2771 		if (err)
2772 			break;
2773 	} while (pgd++, addr = next, addr != end);
2774 
2775 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2776 		arch_sync_kernel_mappings(start, start + size);
2777 
2778 	return err;
2779 }
2780 
2781 /*
2782  * Scan a region of virtual memory, filling in page tables as necessary
2783  * and calling a provided function on each leaf page table.
2784  */
2785 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2786 			unsigned long size, pte_fn_t fn, void *data)
2787 {
2788 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2789 }
2790 EXPORT_SYMBOL_GPL(apply_to_page_range);
2791 
2792 /*
2793  * Scan a region of virtual memory, calling a provided function on
2794  * each leaf page table where it exists.
2795  *
2796  * Unlike apply_to_page_range, this does _not_ fill in page tables
2797  * where they are absent.
2798  */
2799 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2800 				 unsigned long size, pte_fn_t fn, void *data)
2801 {
2802 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2803 }
2804 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2805 
2806 /*
2807  * handle_pte_fault chooses page fault handler according to an entry which was
2808  * read non-atomically.  Before making any commitment, on those architectures
2809  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2810  * parts, do_swap_page must check under lock before unmapping the pte and
2811  * proceeding (but do_wp_page is only called after already making such a check;
2812  * and do_anonymous_page can safely check later on).
2813  */
2814 static inline int pte_unmap_same(struct vm_fault *vmf)
2815 {
2816 	int same = 1;
2817 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2818 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2819 		spin_lock(vmf->ptl);
2820 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2821 		spin_unlock(vmf->ptl);
2822 	}
2823 #endif
2824 	pte_unmap(vmf->pte);
2825 	vmf->pte = NULL;
2826 	return same;
2827 }
2828 
2829 /*
2830  * Return:
2831  *	0:		copied succeeded
2832  *	-EHWPOISON:	copy failed due to hwpoison in source page
2833  *	-EAGAIN:	copied failed (some other reason)
2834  */
2835 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2836 				      struct vm_fault *vmf)
2837 {
2838 	int ret;
2839 	void *kaddr;
2840 	void __user *uaddr;
2841 	struct vm_area_struct *vma = vmf->vma;
2842 	struct mm_struct *mm = vma->vm_mm;
2843 	unsigned long addr = vmf->address;
2844 
2845 	if (likely(src)) {
2846 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2847 			memory_failure_queue(page_to_pfn(src), 0);
2848 			return -EHWPOISON;
2849 		}
2850 		return 0;
2851 	}
2852 
2853 	/*
2854 	 * If the source page was a PFN mapping, we don't have
2855 	 * a "struct page" for it. We do a best-effort copy by
2856 	 * just copying from the original user address. If that
2857 	 * fails, we just zero-fill it. Live with it.
2858 	 */
2859 	kaddr = kmap_local_page(dst);
2860 	pagefault_disable();
2861 	uaddr = (void __user *)(addr & PAGE_MASK);
2862 
2863 	/*
2864 	 * On architectures with software "accessed" bits, we would
2865 	 * take a double page fault, so mark it accessed here.
2866 	 */
2867 	vmf->pte = NULL;
2868 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2869 		pte_t entry;
2870 
2871 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2872 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2873 			/*
2874 			 * Other thread has already handled the fault
2875 			 * and update local tlb only
2876 			 */
2877 			if (vmf->pte)
2878 				update_mmu_tlb(vma, addr, vmf->pte);
2879 			ret = -EAGAIN;
2880 			goto pte_unlock;
2881 		}
2882 
2883 		entry = pte_mkyoung(vmf->orig_pte);
2884 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2885 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2886 	}
2887 
2888 	/*
2889 	 * This really shouldn't fail, because the page is there
2890 	 * in the page tables. But it might just be unreadable,
2891 	 * in which case we just give up and fill the result with
2892 	 * zeroes.
2893 	 */
2894 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2895 		if (vmf->pte)
2896 			goto warn;
2897 
2898 		/* Re-validate under PTL if the page is still mapped */
2899 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2900 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2901 			/* The PTE changed under us, update local tlb */
2902 			if (vmf->pte)
2903 				update_mmu_tlb(vma, addr, vmf->pte);
2904 			ret = -EAGAIN;
2905 			goto pte_unlock;
2906 		}
2907 
2908 		/*
2909 		 * The same page can be mapped back since last copy attempt.
2910 		 * Try to copy again under PTL.
2911 		 */
2912 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2913 			/*
2914 			 * Give a warn in case there can be some obscure
2915 			 * use-case
2916 			 */
2917 warn:
2918 			WARN_ON_ONCE(1);
2919 			clear_page(kaddr);
2920 		}
2921 	}
2922 
2923 	ret = 0;
2924 
2925 pte_unlock:
2926 	if (vmf->pte)
2927 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2928 	pagefault_enable();
2929 	kunmap_local(kaddr);
2930 	flush_dcache_page(dst);
2931 
2932 	return ret;
2933 }
2934 
2935 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2936 {
2937 	struct file *vm_file = vma->vm_file;
2938 
2939 	if (vm_file)
2940 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2941 
2942 	/*
2943 	 * Special mappings (e.g. VDSO) do not have any file so fake
2944 	 * a default GFP_KERNEL for them.
2945 	 */
2946 	return GFP_KERNEL;
2947 }
2948 
2949 /*
2950  * Notify the address space that the page is about to become writable so that
2951  * it can prohibit this or wait for the page to get into an appropriate state.
2952  *
2953  * We do this without the lock held, so that it can sleep if it needs to.
2954  */
2955 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2956 {
2957 	vm_fault_t ret;
2958 	unsigned int old_flags = vmf->flags;
2959 
2960 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2961 
2962 	if (vmf->vma->vm_file &&
2963 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2964 		return VM_FAULT_SIGBUS;
2965 
2966 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2967 	/* Restore original flags so that caller is not surprised */
2968 	vmf->flags = old_flags;
2969 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2970 		return ret;
2971 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2972 		folio_lock(folio);
2973 		if (!folio->mapping) {
2974 			folio_unlock(folio);
2975 			return 0; /* retry */
2976 		}
2977 		ret |= VM_FAULT_LOCKED;
2978 	} else
2979 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2980 	return ret;
2981 }
2982 
2983 /*
2984  * Handle dirtying of a page in shared file mapping on a write fault.
2985  *
2986  * The function expects the page to be locked and unlocks it.
2987  */
2988 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2989 {
2990 	struct vm_area_struct *vma = vmf->vma;
2991 	struct address_space *mapping;
2992 	struct folio *folio = page_folio(vmf->page);
2993 	bool dirtied;
2994 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2995 
2996 	dirtied = folio_mark_dirty(folio);
2997 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2998 	/*
2999 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3000 	 * by truncate after folio_unlock().   The address_space itself remains
3001 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3002 	 * release semantics to prevent the compiler from undoing this copying.
3003 	 */
3004 	mapping = folio_raw_mapping(folio);
3005 	folio_unlock(folio);
3006 
3007 	if (!page_mkwrite)
3008 		file_update_time(vma->vm_file);
3009 
3010 	/*
3011 	 * Throttle page dirtying rate down to writeback speed.
3012 	 *
3013 	 * mapping may be NULL here because some device drivers do not
3014 	 * set page.mapping but still dirty their pages
3015 	 *
3016 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3017 	 * is pinning the mapping, as per above.
3018 	 */
3019 	if ((dirtied || page_mkwrite) && mapping) {
3020 		struct file *fpin;
3021 
3022 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3023 		balance_dirty_pages_ratelimited(mapping);
3024 		if (fpin) {
3025 			fput(fpin);
3026 			return VM_FAULT_COMPLETED;
3027 		}
3028 	}
3029 
3030 	return 0;
3031 }
3032 
3033 /*
3034  * Handle write page faults for pages that can be reused in the current vma
3035  *
3036  * This can happen either due to the mapping being with the VM_SHARED flag,
3037  * or due to us being the last reference standing to the page. In either
3038  * case, all we need to do here is to mark the page as writable and update
3039  * any related book-keeping.
3040  */
3041 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3042 	__releases(vmf->ptl)
3043 {
3044 	struct vm_area_struct *vma = vmf->vma;
3045 	pte_t entry;
3046 
3047 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3048 
3049 	if (folio) {
3050 		VM_BUG_ON(folio_test_anon(folio) &&
3051 			  !PageAnonExclusive(vmf->page));
3052 		/*
3053 		 * Clear the folio's cpupid information as the existing
3054 		 * information potentially belongs to a now completely
3055 		 * unrelated process.
3056 		 */
3057 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3058 	}
3059 
3060 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3061 	entry = pte_mkyoung(vmf->orig_pte);
3062 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3063 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3064 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3065 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3066 	count_vm_event(PGREUSE);
3067 }
3068 
3069 /*
3070  * We could add a bitflag somewhere, but for now, we know that all
3071  * vm_ops that have a ->map_pages have been audited and don't need
3072  * the mmap_lock to be held.
3073  */
3074 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3075 {
3076 	struct vm_area_struct *vma = vmf->vma;
3077 
3078 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3079 		return 0;
3080 	vma_end_read(vma);
3081 	return VM_FAULT_RETRY;
3082 }
3083 
3084 static vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3085 {
3086 	struct vm_area_struct *vma = vmf->vma;
3087 
3088 	if (likely(vma->anon_vma))
3089 		return 0;
3090 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3091 		vma_end_read(vma);
3092 		return VM_FAULT_RETRY;
3093 	}
3094 	if (__anon_vma_prepare(vma))
3095 		return VM_FAULT_OOM;
3096 	return 0;
3097 }
3098 
3099 /*
3100  * Handle the case of a page which we actually need to copy to a new page,
3101  * either due to COW or unsharing.
3102  *
3103  * Called with mmap_lock locked and the old page referenced, but
3104  * without the ptl held.
3105  *
3106  * High level logic flow:
3107  *
3108  * - Allocate a page, copy the content of the old page to the new one.
3109  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3110  * - Take the PTL. If the pte changed, bail out and release the allocated page
3111  * - If the pte is still the way we remember it, update the page table and all
3112  *   relevant references. This includes dropping the reference the page-table
3113  *   held to the old page, as well as updating the rmap.
3114  * - In any case, unlock the PTL and drop the reference we took to the old page.
3115  */
3116 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3117 {
3118 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3119 	struct vm_area_struct *vma = vmf->vma;
3120 	struct mm_struct *mm = vma->vm_mm;
3121 	struct folio *old_folio = NULL;
3122 	struct folio *new_folio = NULL;
3123 	pte_t entry;
3124 	int page_copied = 0;
3125 	struct mmu_notifier_range range;
3126 	vm_fault_t ret;
3127 	bool pfn_is_zero;
3128 
3129 	delayacct_wpcopy_start();
3130 
3131 	if (vmf->page)
3132 		old_folio = page_folio(vmf->page);
3133 	ret = vmf_anon_prepare(vmf);
3134 	if (unlikely(ret))
3135 		goto out;
3136 
3137 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3138 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3139 	if (!new_folio)
3140 		goto oom;
3141 
3142 	if (!pfn_is_zero) {
3143 		int err;
3144 
3145 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3146 		if (err) {
3147 			/*
3148 			 * COW failed, if the fault was solved by other,
3149 			 * it's fine. If not, userspace would re-fault on
3150 			 * the same address and we will handle the fault
3151 			 * from the second attempt.
3152 			 * The -EHWPOISON case will not be retried.
3153 			 */
3154 			folio_put(new_folio);
3155 			if (old_folio)
3156 				folio_put(old_folio);
3157 
3158 			delayacct_wpcopy_end();
3159 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3160 		}
3161 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3162 	}
3163 
3164 	__folio_mark_uptodate(new_folio);
3165 
3166 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3167 				vmf->address & PAGE_MASK,
3168 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3169 	mmu_notifier_invalidate_range_start(&range);
3170 
3171 	/*
3172 	 * Re-check the pte - we dropped the lock
3173 	 */
3174 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3175 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3176 		if (old_folio) {
3177 			if (!folio_test_anon(old_folio)) {
3178 				dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3179 				inc_mm_counter(mm, MM_ANONPAGES);
3180 			}
3181 		} else {
3182 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3183 			inc_mm_counter(mm, MM_ANONPAGES);
3184 		}
3185 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3186 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3187 		entry = pte_sw_mkyoung(entry);
3188 		if (unlikely(unshare)) {
3189 			if (pte_soft_dirty(vmf->orig_pte))
3190 				entry = pte_mksoft_dirty(entry);
3191 			if (pte_uffd_wp(vmf->orig_pte))
3192 				entry = pte_mkuffd_wp(entry);
3193 		} else {
3194 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3195 		}
3196 
3197 		/*
3198 		 * Clear the pte entry and flush it first, before updating the
3199 		 * pte with the new entry, to keep TLBs on different CPUs in
3200 		 * sync. This code used to set the new PTE then flush TLBs, but
3201 		 * that left a window where the new PTE could be loaded into
3202 		 * some TLBs while the old PTE remains in others.
3203 		 */
3204 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3205 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3206 		folio_add_lru_vma(new_folio, vma);
3207 		/*
3208 		 * We call the notify macro here because, when using secondary
3209 		 * mmu page tables (such as kvm shadow page tables), we want the
3210 		 * new page to be mapped directly into the secondary page table.
3211 		 */
3212 		BUG_ON(unshare && pte_write(entry));
3213 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3214 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3215 		if (old_folio) {
3216 			/*
3217 			 * Only after switching the pte to the new page may
3218 			 * we remove the mapcount here. Otherwise another
3219 			 * process may come and find the rmap count decremented
3220 			 * before the pte is switched to the new page, and
3221 			 * "reuse" the old page writing into it while our pte
3222 			 * here still points into it and can be read by other
3223 			 * threads.
3224 			 *
3225 			 * The critical issue is to order this
3226 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3227 			 * above. Those stores are ordered by (if nothing else,)
3228 			 * the barrier present in the atomic_add_negative
3229 			 * in folio_remove_rmap_pte();
3230 			 *
3231 			 * Then the TLB flush in ptep_clear_flush ensures that
3232 			 * no process can access the old page before the
3233 			 * decremented mapcount is visible. And the old page
3234 			 * cannot be reused until after the decremented
3235 			 * mapcount is visible. So transitively, TLBs to
3236 			 * old page will be flushed before it can be reused.
3237 			 */
3238 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3239 		}
3240 
3241 		/* Free the old page.. */
3242 		new_folio = old_folio;
3243 		page_copied = 1;
3244 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3245 	} else if (vmf->pte) {
3246 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3247 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3248 	}
3249 
3250 	mmu_notifier_invalidate_range_end(&range);
3251 
3252 	if (new_folio)
3253 		folio_put(new_folio);
3254 	if (old_folio) {
3255 		if (page_copied)
3256 			free_swap_cache(&old_folio->page);
3257 		folio_put(old_folio);
3258 	}
3259 
3260 	delayacct_wpcopy_end();
3261 	return 0;
3262 oom:
3263 	ret = VM_FAULT_OOM;
3264 out:
3265 	if (old_folio)
3266 		folio_put(old_folio);
3267 
3268 	delayacct_wpcopy_end();
3269 	return ret;
3270 }
3271 
3272 /**
3273  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3274  *			  writeable once the page is prepared
3275  *
3276  * @vmf: structure describing the fault
3277  * @folio: the folio of vmf->page
3278  *
3279  * This function handles all that is needed to finish a write page fault in a
3280  * shared mapping due to PTE being read-only once the mapped page is prepared.
3281  * It handles locking of PTE and modifying it.
3282  *
3283  * The function expects the page to be locked or other protection against
3284  * concurrent faults / writeback (such as DAX radix tree locks).
3285  *
3286  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3287  * we acquired PTE lock.
3288  */
3289 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3290 {
3291 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3292 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3293 				       &vmf->ptl);
3294 	if (!vmf->pte)
3295 		return VM_FAULT_NOPAGE;
3296 	/*
3297 	 * We might have raced with another page fault while we released the
3298 	 * pte_offset_map_lock.
3299 	 */
3300 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3301 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3302 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3303 		return VM_FAULT_NOPAGE;
3304 	}
3305 	wp_page_reuse(vmf, folio);
3306 	return 0;
3307 }
3308 
3309 /*
3310  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3311  * mapping
3312  */
3313 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3314 {
3315 	struct vm_area_struct *vma = vmf->vma;
3316 
3317 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3318 		vm_fault_t ret;
3319 
3320 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3321 		ret = vmf_can_call_fault(vmf);
3322 		if (ret)
3323 			return ret;
3324 
3325 		vmf->flags |= FAULT_FLAG_MKWRITE;
3326 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3327 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3328 			return ret;
3329 		return finish_mkwrite_fault(vmf, NULL);
3330 	}
3331 	wp_page_reuse(vmf, NULL);
3332 	return 0;
3333 }
3334 
3335 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3336 	__releases(vmf->ptl)
3337 {
3338 	struct vm_area_struct *vma = vmf->vma;
3339 	vm_fault_t ret = 0;
3340 
3341 	folio_get(folio);
3342 
3343 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3344 		vm_fault_t tmp;
3345 
3346 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3347 		tmp = vmf_can_call_fault(vmf);
3348 		if (tmp) {
3349 			folio_put(folio);
3350 			return tmp;
3351 		}
3352 
3353 		tmp = do_page_mkwrite(vmf, folio);
3354 		if (unlikely(!tmp || (tmp &
3355 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3356 			folio_put(folio);
3357 			return tmp;
3358 		}
3359 		tmp = finish_mkwrite_fault(vmf, folio);
3360 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3361 			folio_unlock(folio);
3362 			folio_put(folio);
3363 			return tmp;
3364 		}
3365 	} else {
3366 		wp_page_reuse(vmf, folio);
3367 		folio_lock(folio);
3368 	}
3369 	ret |= fault_dirty_shared_page(vmf);
3370 	folio_put(folio);
3371 
3372 	return ret;
3373 }
3374 
3375 static bool wp_can_reuse_anon_folio(struct folio *folio,
3376 				    struct vm_area_struct *vma)
3377 {
3378 	/*
3379 	 * We have to verify under folio lock: these early checks are
3380 	 * just an optimization to avoid locking the folio and freeing
3381 	 * the swapcache if there is little hope that we can reuse.
3382 	 *
3383 	 * KSM doesn't necessarily raise the folio refcount.
3384 	 */
3385 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3386 		return false;
3387 	if (!folio_test_lru(folio))
3388 		/*
3389 		 * We cannot easily detect+handle references from
3390 		 * remote LRU caches or references to LRU folios.
3391 		 */
3392 		lru_add_drain();
3393 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3394 		return false;
3395 	if (!folio_trylock(folio))
3396 		return false;
3397 	if (folio_test_swapcache(folio))
3398 		folio_free_swap(folio);
3399 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3400 		folio_unlock(folio);
3401 		return false;
3402 	}
3403 	/*
3404 	 * Ok, we've got the only folio reference from our mapping
3405 	 * and the folio is locked, it's dark out, and we're wearing
3406 	 * sunglasses. Hit it.
3407 	 */
3408 	folio_move_anon_rmap(folio, vma);
3409 	folio_unlock(folio);
3410 	return true;
3411 }
3412 
3413 /*
3414  * This routine handles present pages, when
3415  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3416  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3417  *   (FAULT_FLAG_UNSHARE)
3418  *
3419  * It is done by copying the page to a new address and decrementing the
3420  * shared-page counter for the old page.
3421  *
3422  * Note that this routine assumes that the protection checks have been
3423  * done by the caller (the low-level page fault routine in most cases).
3424  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3425  * done any necessary COW.
3426  *
3427  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3428  * though the page will change only once the write actually happens. This
3429  * avoids a few races, and potentially makes it more efficient.
3430  *
3431  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3432  * but allow concurrent faults), with pte both mapped and locked.
3433  * We return with mmap_lock still held, but pte unmapped and unlocked.
3434  */
3435 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3436 	__releases(vmf->ptl)
3437 {
3438 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3439 	struct vm_area_struct *vma = vmf->vma;
3440 	struct folio *folio = NULL;
3441 	pte_t pte;
3442 
3443 	if (likely(!unshare)) {
3444 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3445 			if (!userfaultfd_wp_async(vma)) {
3446 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3447 				return handle_userfault(vmf, VM_UFFD_WP);
3448 			}
3449 
3450 			/*
3451 			 * Nothing needed (cache flush, TLB invalidations,
3452 			 * etc.) because we're only removing the uffd-wp bit,
3453 			 * which is completely invisible to the user.
3454 			 */
3455 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3456 
3457 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3458 			/*
3459 			 * Update this to be prepared for following up CoW
3460 			 * handling
3461 			 */
3462 			vmf->orig_pte = pte;
3463 		}
3464 
3465 		/*
3466 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3467 		 * is flushed in this case before copying.
3468 		 */
3469 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3470 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3471 			flush_tlb_page(vmf->vma, vmf->address);
3472 	}
3473 
3474 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3475 
3476 	if (vmf->page)
3477 		folio = page_folio(vmf->page);
3478 
3479 	/*
3480 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3481 	 * FAULT_FLAG_WRITE set at this point.
3482 	 */
3483 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3484 		/*
3485 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3486 		 * VM_PFNMAP VMA.
3487 		 *
3488 		 * We should not cow pages in a shared writeable mapping.
3489 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3490 		 */
3491 		if (!vmf->page)
3492 			return wp_pfn_shared(vmf);
3493 		return wp_page_shared(vmf, folio);
3494 	}
3495 
3496 	/*
3497 	 * Private mapping: create an exclusive anonymous page copy if reuse
3498 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3499 	 *
3500 	 * If we encounter a page that is marked exclusive, we must reuse
3501 	 * the page without further checks.
3502 	 */
3503 	if (folio && folio_test_anon(folio) &&
3504 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3505 		if (!PageAnonExclusive(vmf->page))
3506 			SetPageAnonExclusive(vmf->page);
3507 		if (unlikely(unshare)) {
3508 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3509 			return 0;
3510 		}
3511 		wp_page_reuse(vmf, folio);
3512 		return 0;
3513 	}
3514 	/*
3515 	 * Ok, we need to copy. Oh, well..
3516 	 */
3517 	if (folio)
3518 		folio_get(folio);
3519 
3520 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3521 #ifdef CONFIG_KSM
3522 	if (folio && folio_test_ksm(folio))
3523 		count_vm_event(COW_KSM);
3524 #endif
3525 	return wp_page_copy(vmf);
3526 }
3527 
3528 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3529 		unsigned long start_addr, unsigned long end_addr,
3530 		struct zap_details *details)
3531 {
3532 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3533 }
3534 
3535 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3536 					    pgoff_t first_index,
3537 					    pgoff_t last_index,
3538 					    struct zap_details *details)
3539 {
3540 	struct vm_area_struct *vma;
3541 	pgoff_t vba, vea, zba, zea;
3542 
3543 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3544 		vba = vma->vm_pgoff;
3545 		vea = vba + vma_pages(vma) - 1;
3546 		zba = max(first_index, vba);
3547 		zea = min(last_index, vea);
3548 
3549 		unmap_mapping_range_vma(vma,
3550 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3551 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3552 				details);
3553 	}
3554 }
3555 
3556 /**
3557  * unmap_mapping_folio() - Unmap single folio from processes.
3558  * @folio: The locked folio to be unmapped.
3559  *
3560  * Unmap this folio from any userspace process which still has it mmaped.
3561  * Typically, for efficiency, the range of nearby pages has already been
3562  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3563  * truncation or invalidation holds the lock on a folio, it may find that
3564  * the page has been remapped again: and then uses unmap_mapping_folio()
3565  * to unmap it finally.
3566  */
3567 void unmap_mapping_folio(struct folio *folio)
3568 {
3569 	struct address_space *mapping = folio->mapping;
3570 	struct zap_details details = { };
3571 	pgoff_t	first_index;
3572 	pgoff_t	last_index;
3573 
3574 	VM_BUG_ON(!folio_test_locked(folio));
3575 
3576 	first_index = folio->index;
3577 	last_index = folio_next_index(folio) - 1;
3578 
3579 	details.even_cows = false;
3580 	details.single_folio = folio;
3581 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3582 
3583 	i_mmap_lock_read(mapping);
3584 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3585 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3586 					 last_index, &details);
3587 	i_mmap_unlock_read(mapping);
3588 }
3589 
3590 /**
3591  * unmap_mapping_pages() - Unmap pages from processes.
3592  * @mapping: The address space containing pages to be unmapped.
3593  * @start: Index of first page to be unmapped.
3594  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3595  * @even_cows: Whether to unmap even private COWed pages.
3596  *
3597  * Unmap the pages in this address space from any userspace process which
3598  * has them mmaped.  Generally, you want to remove COWed pages as well when
3599  * a file is being truncated, but not when invalidating pages from the page
3600  * cache.
3601  */
3602 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3603 		pgoff_t nr, bool even_cows)
3604 {
3605 	struct zap_details details = { };
3606 	pgoff_t	first_index = start;
3607 	pgoff_t	last_index = start + nr - 1;
3608 
3609 	details.even_cows = even_cows;
3610 	if (last_index < first_index)
3611 		last_index = ULONG_MAX;
3612 
3613 	i_mmap_lock_read(mapping);
3614 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3615 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3616 					 last_index, &details);
3617 	i_mmap_unlock_read(mapping);
3618 }
3619 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3620 
3621 /**
3622  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3623  * address_space corresponding to the specified byte range in the underlying
3624  * file.
3625  *
3626  * @mapping: the address space containing mmaps to be unmapped.
3627  * @holebegin: byte in first page to unmap, relative to the start of
3628  * the underlying file.  This will be rounded down to a PAGE_SIZE
3629  * boundary.  Note that this is different from truncate_pagecache(), which
3630  * must keep the partial page.  In contrast, we must get rid of
3631  * partial pages.
3632  * @holelen: size of prospective hole in bytes.  This will be rounded
3633  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3634  * end of the file.
3635  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3636  * but 0 when invalidating pagecache, don't throw away private data.
3637  */
3638 void unmap_mapping_range(struct address_space *mapping,
3639 		loff_t const holebegin, loff_t const holelen, int even_cows)
3640 {
3641 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3642 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3643 
3644 	/* Check for overflow. */
3645 	if (sizeof(holelen) > sizeof(hlen)) {
3646 		long long holeend =
3647 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3648 		if (holeend & ~(long long)ULONG_MAX)
3649 			hlen = ULONG_MAX - hba + 1;
3650 	}
3651 
3652 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3653 }
3654 EXPORT_SYMBOL(unmap_mapping_range);
3655 
3656 /*
3657  * Restore a potential device exclusive pte to a working pte entry
3658  */
3659 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3660 {
3661 	struct folio *folio = page_folio(vmf->page);
3662 	struct vm_area_struct *vma = vmf->vma;
3663 	struct mmu_notifier_range range;
3664 	vm_fault_t ret;
3665 
3666 	/*
3667 	 * We need a reference to lock the folio because we don't hold
3668 	 * the PTL so a racing thread can remove the device-exclusive
3669 	 * entry and unmap it. If the folio is free the entry must
3670 	 * have been removed already. If it happens to have already
3671 	 * been re-allocated after being freed all we do is lock and
3672 	 * unlock it.
3673 	 */
3674 	if (!folio_try_get(folio))
3675 		return 0;
3676 
3677 	ret = folio_lock_or_retry(folio, vmf);
3678 	if (ret) {
3679 		folio_put(folio);
3680 		return ret;
3681 	}
3682 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3683 				vma->vm_mm, vmf->address & PAGE_MASK,
3684 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3685 	mmu_notifier_invalidate_range_start(&range);
3686 
3687 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3688 				&vmf->ptl);
3689 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3690 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3691 
3692 	if (vmf->pte)
3693 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3694 	folio_unlock(folio);
3695 	folio_put(folio);
3696 
3697 	mmu_notifier_invalidate_range_end(&range);
3698 	return 0;
3699 }
3700 
3701 static inline bool should_try_to_free_swap(struct folio *folio,
3702 					   struct vm_area_struct *vma,
3703 					   unsigned int fault_flags)
3704 {
3705 	if (!folio_test_swapcache(folio))
3706 		return false;
3707 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3708 	    folio_test_mlocked(folio))
3709 		return true;
3710 	/*
3711 	 * If we want to map a page that's in the swapcache writable, we
3712 	 * have to detect via the refcount if we're really the exclusive
3713 	 * user. Try freeing the swapcache to get rid of the swapcache
3714 	 * reference only in case it's likely that we'll be the exlusive user.
3715 	 */
3716 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3717 		folio_ref_count(folio) == 2;
3718 }
3719 
3720 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3721 {
3722 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3723 				       vmf->address, &vmf->ptl);
3724 	if (!vmf->pte)
3725 		return 0;
3726 	/*
3727 	 * Be careful so that we will only recover a special uffd-wp pte into a
3728 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3729 	 *
3730 	 * This should also cover the case where e.g. the pte changed
3731 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3732 	 * So is_pte_marker() check is not enough to safely drop the pte.
3733 	 */
3734 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3735 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3736 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3737 	return 0;
3738 }
3739 
3740 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3741 {
3742 	if (vma_is_anonymous(vmf->vma))
3743 		return do_anonymous_page(vmf);
3744 	else
3745 		return do_fault(vmf);
3746 }
3747 
3748 /*
3749  * This is actually a page-missing access, but with uffd-wp special pte
3750  * installed.  It means this pte was wr-protected before being unmapped.
3751  */
3752 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3753 {
3754 	/*
3755 	 * Just in case there're leftover special ptes even after the region
3756 	 * got unregistered - we can simply clear them.
3757 	 */
3758 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3759 		return pte_marker_clear(vmf);
3760 
3761 	return do_pte_missing(vmf);
3762 }
3763 
3764 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3765 {
3766 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3767 	unsigned long marker = pte_marker_get(entry);
3768 
3769 	/*
3770 	 * PTE markers should never be empty.  If anything weird happened,
3771 	 * the best thing to do is to kill the process along with its mm.
3772 	 */
3773 	if (WARN_ON_ONCE(!marker))
3774 		return VM_FAULT_SIGBUS;
3775 
3776 	/* Higher priority than uffd-wp when data corrupted */
3777 	if (marker & PTE_MARKER_POISONED)
3778 		return VM_FAULT_HWPOISON;
3779 
3780 	if (pte_marker_entry_uffd_wp(entry))
3781 		return pte_marker_handle_uffd_wp(vmf);
3782 
3783 	/* This is an unknown pte marker */
3784 	return VM_FAULT_SIGBUS;
3785 }
3786 
3787 /*
3788  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3789  * but allow concurrent faults), and pte mapped but not yet locked.
3790  * We return with pte unmapped and unlocked.
3791  *
3792  * We return with the mmap_lock locked or unlocked in the same cases
3793  * as does filemap_fault().
3794  */
3795 vm_fault_t do_swap_page(struct vm_fault *vmf)
3796 {
3797 	struct vm_area_struct *vma = vmf->vma;
3798 	struct folio *swapcache, *folio = NULL;
3799 	struct page *page;
3800 	struct swap_info_struct *si = NULL;
3801 	rmap_t rmap_flags = RMAP_NONE;
3802 	bool need_clear_cache = false;
3803 	bool exclusive = false;
3804 	swp_entry_t entry;
3805 	pte_t pte;
3806 	vm_fault_t ret = 0;
3807 	void *shadow = NULL;
3808 
3809 	if (!pte_unmap_same(vmf))
3810 		goto out;
3811 
3812 	entry = pte_to_swp_entry(vmf->orig_pte);
3813 	if (unlikely(non_swap_entry(entry))) {
3814 		if (is_migration_entry(entry)) {
3815 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3816 					     vmf->address);
3817 		} else if (is_device_exclusive_entry(entry)) {
3818 			vmf->page = pfn_swap_entry_to_page(entry);
3819 			ret = remove_device_exclusive_entry(vmf);
3820 		} else if (is_device_private_entry(entry)) {
3821 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3822 				/*
3823 				 * migrate_to_ram is not yet ready to operate
3824 				 * under VMA lock.
3825 				 */
3826 				vma_end_read(vma);
3827 				ret = VM_FAULT_RETRY;
3828 				goto out;
3829 			}
3830 
3831 			vmf->page = pfn_swap_entry_to_page(entry);
3832 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3833 					vmf->address, &vmf->ptl);
3834 			if (unlikely(!vmf->pte ||
3835 				     !pte_same(ptep_get(vmf->pte),
3836 							vmf->orig_pte)))
3837 				goto unlock;
3838 
3839 			/*
3840 			 * Get a page reference while we know the page can't be
3841 			 * freed.
3842 			 */
3843 			get_page(vmf->page);
3844 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3845 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3846 			put_page(vmf->page);
3847 		} else if (is_hwpoison_entry(entry)) {
3848 			ret = VM_FAULT_HWPOISON;
3849 		} else if (is_pte_marker_entry(entry)) {
3850 			ret = handle_pte_marker(vmf);
3851 		} else {
3852 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3853 			ret = VM_FAULT_SIGBUS;
3854 		}
3855 		goto out;
3856 	}
3857 
3858 	/* Prevent swapoff from happening to us. */
3859 	si = get_swap_device(entry);
3860 	if (unlikely(!si))
3861 		goto out;
3862 
3863 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3864 	if (folio)
3865 		page = folio_file_page(folio, swp_offset(entry));
3866 	swapcache = folio;
3867 
3868 	if (!folio) {
3869 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3870 		    __swap_count(entry) == 1) {
3871 			/*
3872 			 * Prevent parallel swapin from proceeding with
3873 			 * the cache flag. Otherwise, another thread may
3874 			 * finish swapin first, free the entry, and swapout
3875 			 * reusing the same entry. It's undetectable as
3876 			 * pte_same() returns true due to entry reuse.
3877 			 */
3878 			if (swapcache_prepare(entry)) {
3879 				/* Relax a bit to prevent rapid repeated page faults */
3880 				schedule_timeout_uninterruptible(1);
3881 				goto out;
3882 			}
3883 			need_clear_cache = true;
3884 
3885 			/* skip swapcache */
3886 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3887 						vma, vmf->address, false);
3888 			page = &folio->page;
3889 			if (folio) {
3890 				__folio_set_locked(folio);
3891 				__folio_set_swapbacked(folio);
3892 
3893 				if (mem_cgroup_swapin_charge_folio(folio,
3894 							vma->vm_mm, GFP_KERNEL,
3895 							entry)) {
3896 					ret = VM_FAULT_OOM;
3897 					goto out_page;
3898 				}
3899 				mem_cgroup_swapin_uncharge_swap(entry);
3900 
3901 				shadow = get_shadow_from_swap_cache(entry);
3902 				if (shadow)
3903 					workingset_refault(folio, shadow);
3904 
3905 				folio_add_lru(folio);
3906 
3907 				/* To provide entry to swap_read_folio() */
3908 				folio->swap = entry;
3909 				swap_read_folio(folio, true, NULL);
3910 				folio->private = NULL;
3911 			}
3912 		} else {
3913 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3914 						vmf);
3915 			if (page)
3916 				folio = page_folio(page);
3917 			swapcache = folio;
3918 		}
3919 
3920 		if (!folio) {
3921 			/*
3922 			 * Back out if somebody else faulted in this pte
3923 			 * while we released the pte lock.
3924 			 */
3925 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3926 					vmf->address, &vmf->ptl);
3927 			if (likely(vmf->pte &&
3928 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3929 				ret = VM_FAULT_OOM;
3930 			goto unlock;
3931 		}
3932 
3933 		/* Had to read the page from swap area: Major fault */
3934 		ret = VM_FAULT_MAJOR;
3935 		count_vm_event(PGMAJFAULT);
3936 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3937 	} else if (PageHWPoison(page)) {
3938 		/*
3939 		 * hwpoisoned dirty swapcache pages are kept for killing
3940 		 * owner processes (which may be unknown at hwpoison time)
3941 		 */
3942 		ret = VM_FAULT_HWPOISON;
3943 		goto out_release;
3944 	}
3945 
3946 	ret |= folio_lock_or_retry(folio, vmf);
3947 	if (ret & VM_FAULT_RETRY)
3948 		goto out_release;
3949 
3950 	if (swapcache) {
3951 		/*
3952 		 * Make sure folio_free_swap() or swapoff did not release the
3953 		 * swapcache from under us.  The page pin, and pte_same test
3954 		 * below, are not enough to exclude that.  Even if it is still
3955 		 * swapcache, we need to check that the page's swap has not
3956 		 * changed.
3957 		 */
3958 		if (unlikely(!folio_test_swapcache(folio) ||
3959 			     page_swap_entry(page).val != entry.val))
3960 			goto out_page;
3961 
3962 		/*
3963 		 * KSM sometimes has to copy on read faults, for example, if
3964 		 * page->index of !PageKSM() pages would be nonlinear inside the
3965 		 * anon VMA -- PageKSM() is lost on actual swapout.
3966 		 */
3967 		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
3968 		if (unlikely(!folio)) {
3969 			ret = VM_FAULT_OOM;
3970 			folio = swapcache;
3971 			goto out_page;
3972 		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
3973 			ret = VM_FAULT_HWPOISON;
3974 			folio = swapcache;
3975 			goto out_page;
3976 		}
3977 		if (folio != swapcache)
3978 			page = folio_page(folio, 0);
3979 
3980 		/*
3981 		 * If we want to map a page that's in the swapcache writable, we
3982 		 * have to detect via the refcount if we're really the exclusive
3983 		 * owner. Try removing the extra reference from the local LRU
3984 		 * caches if required.
3985 		 */
3986 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3987 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3988 			lru_add_drain();
3989 	}
3990 
3991 	folio_throttle_swaprate(folio, GFP_KERNEL);
3992 
3993 	/*
3994 	 * Back out if somebody else already faulted in this pte.
3995 	 */
3996 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3997 			&vmf->ptl);
3998 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3999 		goto out_nomap;
4000 
4001 	if (unlikely(!folio_test_uptodate(folio))) {
4002 		ret = VM_FAULT_SIGBUS;
4003 		goto out_nomap;
4004 	}
4005 
4006 	/*
4007 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4008 	 * must never point at an anonymous page in the swapcache that is
4009 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4010 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4011 	 * check after taking the PT lock and making sure that nobody
4012 	 * concurrently faulted in this page and set PG_anon_exclusive.
4013 	 */
4014 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4015 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4016 
4017 	/*
4018 	 * Check under PT lock (to protect against concurrent fork() sharing
4019 	 * the swap entry concurrently) for certainly exclusive pages.
4020 	 */
4021 	if (!folio_test_ksm(folio)) {
4022 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4023 		if (folio != swapcache) {
4024 			/*
4025 			 * We have a fresh page that is not exposed to the
4026 			 * swapcache -> certainly exclusive.
4027 			 */
4028 			exclusive = true;
4029 		} else if (exclusive && folio_test_writeback(folio) &&
4030 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4031 			/*
4032 			 * This is tricky: not all swap backends support
4033 			 * concurrent page modifications while under writeback.
4034 			 *
4035 			 * So if we stumble over such a page in the swapcache
4036 			 * we must not set the page exclusive, otherwise we can
4037 			 * map it writable without further checks and modify it
4038 			 * while still under writeback.
4039 			 *
4040 			 * For these problematic swap backends, simply drop the
4041 			 * exclusive marker: this is perfectly fine as we start
4042 			 * writeback only if we fully unmapped the page and
4043 			 * there are no unexpected references on the page after
4044 			 * unmapping succeeded. After fully unmapped, no
4045 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4046 			 * appear, so dropping the exclusive marker and mapping
4047 			 * it only R/O is fine.
4048 			 */
4049 			exclusive = false;
4050 		}
4051 	}
4052 
4053 	/*
4054 	 * Some architectures may have to restore extra metadata to the page
4055 	 * when reading from swap. This metadata may be indexed by swap entry
4056 	 * so this must be called before swap_free().
4057 	 */
4058 	arch_swap_restore(entry, folio);
4059 
4060 	/*
4061 	 * Remove the swap entry and conditionally try to free up the swapcache.
4062 	 * We're already holding a reference on the page but haven't mapped it
4063 	 * yet.
4064 	 */
4065 	swap_free(entry);
4066 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4067 		folio_free_swap(folio);
4068 
4069 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4070 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4071 	pte = mk_pte(page, vma->vm_page_prot);
4072 
4073 	/*
4074 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4075 	 * certainly not shared either because we just allocated them without
4076 	 * exposing them to the swapcache or because the swap entry indicates
4077 	 * exclusivity.
4078 	 */
4079 	if (!folio_test_ksm(folio) &&
4080 	    (exclusive || folio_ref_count(folio) == 1)) {
4081 		if (vmf->flags & FAULT_FLAG_WRITE) {
4082 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4083 			vmf->flags &= ~FAULT_FLAG_WRITE;
4084 		}
4085 		rmap_flags |= RMAP_EXCLUSIVE;
4086 	}
4087 	flush_icache_page(vma, page);
4088 	if (pte_swp_soft_dirty(vmf->orig_pte))
4089 		pte = pte_mksoft_dirty(pte);
4090 	if (pte_swp_uffd_wp(vmf->orig_pte))
4091 		pte = pte_mkuffd_wp(pte);
4092 	vmf->orig_pte = pte;
4093 
4094 	/* ksm created a completely new copy */
4095 	if (unlikely(folio != swapcache && swapcache)) {
4096 		folio_add_new_anon_rmap(folio, vma, vmf->address);
4097 		folio_add_lru_vma(folio, vma);
4098 	} else {
4099 		folio_add_anon_rmap_pte(folio, page, vma, vmf->address,
4100 					rmap_flags);
4101 	}
4102 
4103 	VM_BUG_ON(!folio_test_anon(folio) ||
4104 			(pte_write(pte) && !PageAnonExclusive(page)));
4105 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4106 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4107 
4108 	folio_unlock(folio);
4109 	if (folio != swapcache && swapcache) {
4110 		/*
4111 		 * Hold the lock to avoid the swap entry to be reused
4112 		 * until we take the PT lock for the pte_same() check
4113 		 * (to avoid false positives from pte_same). For
4114 		 * further safety release the lock after the swap_free
4115 		 * so that the swap count won't change under a
4116 		 * parallel locked swapcache.
4117 		 */
4118 		folio_unlock(swapcache);
4119 		folio_put(swapcache);
4120 	}
4121 
4122 	if (vmf->flags & FAULT_FLAG_WRITE) {
4123 		ret |= do_wp_page(vmf);
4124 		if (ret & VM_FAULT_ERROR)
4125 			ret &= VM_FAULT_ERROR;
4126 		goto out;
4127 	}
4128 
4129 	/* No need to invalidate - it was non-present before */
4130 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4131 unlock:
4132 	if (vmf->pte)
4133 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4134 out:
4135 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4136 	if (need_clear_cache)
4137 		swapcache_clear(si, entry);
4138 	if (si)
4139 		put_swap_device(si);
4140 	return ret;
4141 out_nomap:
4142 	if (vmf->pte)
4143 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4144 out_page:
4145 	folio_unlock(folio);
4146 out_release:
4147 	folio_put(folio);
4148 	if (folio != swapcache && swapcache) {
4149 		folio_unlock(swapcache);
4150 		folio_put(swapcache);
4151 	}
4152 	if (need_clear_cache)
4153 		swapcache_clear(si, entry);
4154 	if (si)
4155 		put_swap_device(si);
4156 	return ret;
4157 }
4158 
4159 static bool pte_range_none(pte_t *pte, int nr_pages)
4160 {
4161 	int i;
4162 
4163 	for (i = 0; i < nr_pages; i++) {
4164 		if (!pte_none(ptep_get_lockless(pte + i)))
4165 			return false;
4166 	}
4167 
4168 	return true;
4169 }
4170 
4171 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4172 {
4173 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4174 	struct vm_area_struct *vma = vmf->vma;
4175 	unsigned long orders;
4176 	struct folio *folio;
4177 	unsigned long addr;
4178 	pte_t *pte;
4179 	gfp_t gfp;
4180 	int order;
4181 
4182 	/*
4183 	 * If uffd is active for the vma we need per-page fault fidelity to
4184 	 * maintain the uffd semantics.
4185 	 */
4186 	if (unlikely(userfaultfd_armed(vma)))
4187 		goto fallback;
4188 
4189 	/*
4190 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4191 	 * for this vma. Then filter out the orders that can't be allocated over
4192 	 * the faulting address and still be fully contained in the vma.
4193 	 */
4194 	orders = thp_vma_allowable_orders(vma, vma->vm_flags, false, true, true,
4195 					  BIT(PMD_ORDER) - 1);
4196 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4197 
4198 	if (!orders)
4199 		goto fallback;
4200 
4201 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4202 	if (!pte)
4203 		return ERR_PTR(-EAGAIN);
4204 
4205 	/*
4206 	 * Find the highest order where the aligned range is completely
4207 	 * pte_none(). Note that all remaining orders will be completely
4208 	 * pte_none().
4209 	 */
4210 	order = highest_order(orders);
4211 	while (orders) {
4212 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4213 		if (pte_range_none(pte + pte_index(addr), 1 << order))
4214 			break;
4215 		order = next_order(&orders, order);
4216 	}
4217 
4218 	pte_unmap(pte);
4219 
4220 	/* Try allocating the highest of the remaining orders. */
4221 	gfp = vma_thp_gfp_mask(vma);
4222 	while (orders) {
4223 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4224 		folio = vma_alloc_folio(gfp, order, vma, addr, true);
4225 		if (folio) {
4226 			clear_huge_page(&folio->page, vmf->address, 1 << order);
4227 			return folio;
4228 		}
4229 		order = next_order(&orders, order);
4230 	}
4231 
4232 fallback:
4233 #endif
4234 	return vma_alloc_zeroed_movable_folio(vmf->vma, vmf->address);
4235 }
4236 
4237 /*
4238  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4239  * but allow concurrent faults), and pte mapped but not yet locked.
4240  * We return with mmap_lock still held, but pte unmapped and unlocked.
4241  */
4242 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4243 {
4244 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4245 	struct vm_area_struct *vma = vmf->vma;
4246 	unsigned long addr = vmf->address;
4247 	struct folio *folio;
4248 	vm_fault_t ret = 0;
4249 	int nr_pages = 1;
4250 	pte_t entry;
4251 	int i;
4252 
4253 	/* File mapping without ->vm_ops ? */
4254 	if (vma->vm_flags & VM_SHARED)
4255 		return VM_FAULT_SIGBUS;
4256 
4257 	/*
4258 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4259 	 * be distinguished from a transient failure of pte_offset_map().
4260 	 */
4261 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4262 		return VM_FAULT_OOM;
4263 
4264 	/* Use the zero-page for reads */
4265 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4266 			!mm_forbids_zeropage(vma->vm_mm)) {
4267 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4268 						vma->vm_page_prot));
4269 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4270 				vmf->address, &vmf->ptl);
4271 		if (!vmf->pte)
4272 			goto unlock;
4273 		if (vmf_pte_changed(vmf)) {
4274 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4275 			goto unlock;
4276 		}
4277 		ret = check_stable_address_space(vma->vm_mm);
4278 		if (ret)
4279 			goto unlock;
4280 		/* Deliver the page fault to userland, check inside PT lock */
4281 		if (userfaultfd_missing(vma)) {
4282 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4283 			return handle_userfault(vmf, VM_UFFD_MISSING);
4284 		}
4285 		goto setpte;
4286 	}
4287 
4288 	/* Allocate our own private page. */
4289 	if (unlikely(anon_vma_prepare(vma)))
4290 		goto oom;
4291 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4292 	folio = alloc_anon_folio(vmf);
4293 	if (IS_ERR(folio))
4294 		return 0;
4295 	if (!folio)
4296 		goto oom;
4297 
4298 	nr_pages = folio_nr_pages(folio);
4299 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4300 
4301 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4302 		goto oom_free_page;
4303 	folio_throttle_swaprate(folio, GFP_KERNEL);
4304 
4305 	/*
4306 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4307 	 * preceding stores to the page contents become visible before
4308 	 * the set_pte_at() write.
4309 	 */
4310 	__folio_mark_uptodate(folio);
4311 
4312 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4313 	entry = pte_sw_mkyoung(entry);
4314 	if (vma->vm_flags & VM_WRITE)
4315 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4316 
4317 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4318 	if (!vmf->pte)
4319 		goto release;
4320 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4321 		update_mmu_tlb(vma, addr, vmf->pte);
4322 		goto release;
4323 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4324 		for (i = 0; i < nr_pages; i++)
4325 			update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i);
4326 		goto release;
4327 	}
4328 
4329 	ret = check_stable_address_space(vma->vm_mm);
4330 	if (ret)
4331 		goto release;
4332 
4333 	/* Deliver the page fault to userland, check inside PT lock */
4334 	if (userfaultfd_missing(vma)) {
4335 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4336 		folio_put(folio);
4337 		return handle_userfault(vmf, VM_UFFD_MISSING);
4338 	}
4339 
4340 	folio_ref_add(folio, nr_pages - 1);
4341 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4342 	folio_add_new_anon_rmap(folio, vma, addr);
4343 	folio_add_lru_vma(folio, vma);
4344 setpte:
4345 	if (uffd_wp)
4346 		entry = pte_mkuffd_wp(entry);
4347 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4348 
4349 	/* No need to invalidate - it was non-present before */
4350 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4351 unlock:
4352 	if (vmf->pte)
4353 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4354 	return ret;
4355 release:
4356 	folio_put(folio);
4357 	goto unlock;
4358 oom_free_page:
4359 	folio_put(folio);
4360 oom:
4361 	return VM_FAULT_OOM;
4362 }
4363 
4364 /*
4365  * The mmap_lock must have been held on entry, and may have been
4366  * released depending on flags and vma->vm_ops->fault() return value.
4367  * See filemap_fault() and __lock_page_retry().
4368  */
4369 static vm_fault_t __do_fault(struct vm_fault *vmf)
4370 {
4371 	struct vm_area_struct *vma = vmf->vma;
4372 	struct folio *folio;
4373 	vm_fault_t ret;
4374 
4375 	/*
4376 	 * Preallocate pte before we take page_lock because this might lead to
4377 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4378 	 *				lock_page(A)
4379 	 *				SetPageWriteback(A)
4380 	 *				unlock_page(A)
4381 	 * lock_page(B)
4382 	 *				lock_page(B)
4383 	 * pte_alloc_one
4384 	 *   shrink_page_list
4385 	 *     wait_on_page_writeback(A)
4386 	 *				SetPageWriteback(B)
4387 	 *				unlock_page(B)
4388 	 *				# flush A, B to clear the writeback
4389 	 */
4390 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4391 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4392 		if (!vmf->prealloc_pte)
4393 			return VM_FAULT_OOM;
4394 	}
4395 
4396 	ret = vma->vm_ops->fault(vmf);
4397 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4398 			    VM_FAULT_DONE_COW)))
4399 		return ret;
4400 
4401 	folio = page_folio(vmf->page);
4402 	if (unlikely(PageHWPoison(vmf->page))) {
4403 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4404 		if (ret & VM_FAULT_LOCKED) {
4405 			if (page_mapped(vmf->page))
4406 				unmap_mapping_folio(folio);
4407 			/* Retry if a clean folio was removed from the cache. */
4408 			if (mapping_evict_folio(folio->mapping, folio))
4409 				poisonret = VM_FAULT_NOPAGE;
4410 			folio_unlock(folio);
4411 		}
4412 		folio_put(folio);
4413 		vmf->page = NULL;
4414 		return poisonret;
4415 	}
4416 
4417 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4418 		folio_lock(folio);
4419 	else
4420 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4421 
4422 	return ret;
4423 }
4424 
4425 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4426 static void deposit_prealloc_pte(struct vm_fault *vmf)
4427 {
4428 	struct vm_area_struct *vma = vmf->vma;
4429 
4430 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4431 	/*
4432 	 * We are going to consume the prealloc table,
4433 	 * count that as nr_ptes.
4434 	 */
4435 	mm_inc_nr_ptes(vma->vm_mm);
4436 	vmf->prealloc_pte = NULL;
4437 }
4438 
4439 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4440 {
4441 	struct folio *folio = page_folio(page);
4442 	struct vm_area_struct *vma = vmf->vma;
4443 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4444 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4445 	pmd_t entry;
4446 	vm_fault_t ret = VM_FAULT_FALLBACK;
4447 
4448 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4449 		return ret;
4450 
4451 	if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER)
4452 		return ret;
4453 
4454 	/*
4455 	 * Just backoff if any subpage of a THP is corrupted otherwise
4456 	 * the corrupted page may mapped by PMD silently to escape the
4457 	 * check.  This kind of THP just can be PTE mapped.  Access to
4458 	 * the corrupted subpage should trigger SIGBUS as expected.
4459 	 */
4460 	if (unlikely(folio_test_has_hwpoisoned(folio)))
4461 		return ret;
4462 
4463 	/*
4464 	 * Archs like ppc64 need additional space to store information
4465 	 * related to pte entry. Use the preallocated table for that.
4466 	 */
4467 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4468 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4469 		if (!vmf->prealloc_pte)
4470 			return VM_FAULT_OOM;
4471 	}
4472 
4473 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4474 	if (unlikely(!pmd_none(*vmf->pmd)))
4475 		goto out;
4476 
4477 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
4478 
4479 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4480 	if (write)
4481 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4482 
4483 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4484 	folio_add_file_rmap_pmd(folio, page, vma);
4485 
4486 	/*
4487 	 * deposit and withdraw with pmd lock held
4488 	 */
4489 	if (arch_needs_pgtable_deposit())
4490 		deposit_prealloc_pte(vmf);
4491 
4492 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4493 
4494 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4495 
4496 	/* fault is handled */
4497 	ret = 0;
4498 	count_vm_event(THP_FILE_MAPPED);
4499 out:
4500 	spin_unlock(vmf->ptl);
4501 	return ret;
4502 }
4503 #else
4504 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4505 {
4506 	return VM_FAULT_FALLBACK;
4507 }
4508 #endif
4509 
4510 /**
4511  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4512  * @vmf: Fault decription.
4513  * @folio: The folio that contains @page.
4514  * @page: The first page to create a PTE for.
4515  * @nr: The number of PTEs to create.
4516  * @addr: The first address to create a PTE for.
4517  */
4518 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4519 		struct page *page, unsigned int nr, unsigned long addr)
4520 {
4521 	struct vm_area_struct *vma = vmf->vma;
4522 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4523 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4524 	bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4525 	pte_t entry;
4526 
4527 	flush_icache_pages(vma, page, nr);
4528 	entry = mk_pte(page, vma->vm_page_prot);
4529 
4530 	if (prefault && arch_wants_old_prefaulted_pte())
4531 		entry = pte_mkold(entry);
4532 	else
4533 		entry = pte_sw_mkyoung(entry);
4534 
4535 	if (write)
4536 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4537 	if (unlikely(uffd_wp))
4538 		entry = pte_mkuffd_wp(entry);
4539 	/* copy-on-write page */
4540 	if (write && !(vma->vm_flags & VM_SHARED)) {
4541 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4542 		VM_BUG_ON_FOLIO(nr != 1, folio);
4543 		folio_add_new_anon_rmap(folio, vma, addr);
4544 		folio_add_lru_vma(folio, vma);
4545 	} else {
4546 		add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4547 		folio_add_file_rmap_ptes(folio, page, nr, vma);
4548 	}
4549 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4550 
4551 	/* no need to invalidate: a not-present page won't be cached */
4552 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4553 }
4554 
4555 static bool vmf_pte_changed(struct vm_fault *vmf)
4556 {
4557 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4558 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4559 
4560 	return !pte_none(ptep_get(vmf->pte));
4561 }
4562 
4563 /**
4564  * finish_fault - finish page fault once we have prepared the page to fault
4565  *
4566  * @vmf: structure describing the fault
4567  *
4568  * This function handles all that is needed to finish a page fault once the
4569  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4570  * given page, adds reverse page mapping, handles memcg charges and LRU
4571  * addition.
4572  *
4573  * The function expects the page to be locked and on success it consumes a
4574  * reference of a page being mapped (for the PTE which maps it).
4575  *
4576  * Return: %0 on success, %VM_FAULT_ code in case of error.
4577  */
4578 vm_fault_t finish_fault(struct vm_fault *vmf)
4579 {
4580 	struct vm_area_struct *vma = vmf->vma;
4581 	struct page *page;
4582 	vm_fault_t ret;
4583 
4584 	/* Did we COW the page? */
4585 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4586 		page = vmf->cow_page;
4587 	else
4588 		page = vmf->page;
4589 
4590 	/*
4591 	 * check even for read faults because we might have lost our CoWed
4592 	 * page
4593 	 */
4594 	if (!(vma->vm_flags & VM_SHARED)) {
4595 		ret = check_stable_address_space(vma->vm_mm);
4596 		if (ret)
4597 			return ret;
4598 	}
4599 
4600 	if (pmd_none(*vmf->pmd)) {
4601 		if (PageTransCompound(page)) {
4602 			ret = do_set_pmd(vmf, page);
4603 			if (ret != VM_FAULT_FALLBACK)
4604 				return ret;
4605 		}
4606 
4607 		if (vmf->prealloc_pte)
4608 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4609 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4610 			return VM_FAULT_OOM;
4611 	}
4612 
4613 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4614 				      vmf->address, &vmf->ptl);
4615 	if (!vmf->pte)
4616 		return VM_FAULT_NOPAGE;
4617 
4618 	/* Re-check under ptl */
4619 	if (likely(!vmf_pte_changed(vmf))) {
4620 		struct folio *folio = page_folio(page);
4621 
4622 		set_pte_range(vmf, folio, page, 1, vmf->address);
4623 		ret = 0;
4624 	} else {
4625 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4626 		ret = VM_FAULT_NOPAGE;
4627 	}
4628 
4629 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4630 	return ret;
4631 }
4632 
4633 static unsigned long fault_around_pages __read_mostly =
4634 	65536 >> PAGE_SHIFT;
4635 
4636 #ifdef CONFIG_DEBUG_FS
4637 static int fault_around_bytes_get(void *data, u64 *val)
4638 {
4639 	*val = fault_around_pages << PAGE_SHIFT;
4640 	return 0;
4641 }
4642 
4643 /*
4644  * fault_around_bytes must be rounded down to the nearest page order as it's
4645  * what do_fault_around() expects to see.
4646  */
4647 static int fault_around_bytes_set(void *data, u64 val)
4648 {
4649 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4650 		return -EINVAL;
4651 
4652 	/*
4653 	 * The minimum value is 1 page, however this results in no fault-around
4654 	 * at all. See should_fault_around().
4655 	 */
4656 	fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4657 
4658 	return 0;
4659 }
4660 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4661 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4662 
4663 static int __init fault_around_debugfs(void)
4664 {
4665 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4666 				   &fault_around_bytes_fops);
4667 	return 0;
4668 }
4669 late_initcall(fault_around_debugfs);
4670 #endif
4671 
4672 /*
4673  * do_fault_around() tries to map few pages around the fault address. The hope
4674  * is that the pages will be needed soon and this will lower the number of
4675  * faults to handle.
4676  *
4677  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4678  * not ready to be mapped: not up-to-date, locked, etc.
4679  *
4680  * This function doesn't cross VMA or page table boundaries, in order to call
4681  * map_pages() and acquire a PTE lock only once.
4682  *
4683  * fault_around_pages defines how many pages we'll try to map.
4684  * do_fault_around() expects it to be set to a power of two less than or equal
4685  * to PTRS_PER_PTE.
4686  *
4687  * The virtual address of the area that we map is naturally aligned to
4688  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4689  * (and therefore to page order).  This way it's easier to guarantee
4690  * that we don't cross page table boundaries.
4691  */
4692 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4693 {
4694 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4695 	pgoff_t pte_off = pte_index(vmf->address);
4696 	/* The page offset of vmf->address within the VMA. */
4697 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4698 	pgoff_t from_pte, to_pte;
4699 	vm_fault_t ret;
4700 
4701 	/* The PTE offset of the start address, clamped to the VMA. */
4702 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4703 		       pte_off - min(pte_off, vma_off));
4704 
4705 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4706 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4707 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4708 
4709 	if (pmd_none(*vmf->pmd)) {
4710 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4711 		if (!vmf->prealloc_pte)
4712 			return VM_FAULT_OOM;
4713 	}
4714 
4715 	rcu_read_lock();
4716 	ret = vmf->vma->vm_ops->map_pages(vmf,
4717 			vmf->pgoff + from_pte - pte_off,
4718 			vmf->pgoff + to_pte - pte_off);
4719 	rcu_read_unlock();
4720 
4721 	return ret;
4722 }
4723 
4724 /* Return true if we should do read fault-around, false otherwise */
4725 static inline bool should_fault_around(struct vm_fault *vmf)
4726 {
4727 	/* No ->map_pages?  No way to fault around... */
4728 	if (!vmf->vma->vm_ops->map_pages)
4729 		return false;
4730 
4731 	if (uffd_disable_fault_around(vmf->vma))
4732 		return false;
4733 
4734 	/* A single page implies no faulting 'around' at all. */
4735 	return fault_around_pages > 1;
4736 }
4737 
4738 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4739 {
4740 	vm_fault_t ret = 0;
4741 	struct folio *folio;
4742 
4743 	/*
4744 	 * Let's call ->map_pages() first and use ->fault() as fallback
4745 	 * if page by the offset is not ready to be mapped (cold cache or
4746 	 * something).
4747 	 */
4748 	if (should_fault_around(vmf)) {
4749 		ret = do_fault_around(vmf);
4750 		if (ret)
4751 			return ret;
4752 	}
4753 
4754 	ret = vmf_can_call_fault(vmf);
4755 	if (ret)
4756 		return ret;
4757 
4758 	ret = __do_fault(vmf);
4759 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4760 		return ret;
4761 
4762 	ret |= finish_fault(vmf);
4763 	folio = page_folio(vmf->page);
4764 	folio_unlock(folio);
4765 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4766 		folio_put(folio);
4767 	return ret;
4768 }
4769 
4770 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4771 {
4772 	struct vm_area_struct *vma = vmf->vma;
4773 	struct folio *folio;
4774 	vm_fault_t ret;
4775 
4776 	ret = vmf_can_call_fault(vmf);
4777 	if (!ret)
4778 		ret = vmf_anon_prepare(vmf);
4779 	if (ret)
4780 		return ret;
4781 
4782 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
4783 	if (!folio)
4784 		return VM_FAULT_OOM;
4785 
4786 	vmf->cow_page = &folio->page;
4787 
4788 	ret = __do_fault(vmf);
4789 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4790 		goto uncharge_out;
4791 	if (ret & VM_FAULT_DONE_COW)
4792 		return ret;
4793 
4794 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4795 	__folio_mark_uptodate(folio);
4796 
4797 	ret |= finish_fault(vmf);
4798 	unlock_page(vmf->page);
4799 	put_page(vmf->page);
4800 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4801 		goto uncharge_out;
4802 	return ret;
4803 uncharge_out:
4804 	folio_put(folio);
4805 	return ret;
4806 }
4807 
4808 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4809 {
4810 	struct vm_area_struct *vma = vmf->vma;
4811 	vm_fault_t ret, tmp;
4812 	struct folio *folio;
4813 
4814 	ret = vmf_can_call_fault(vmf);
4815 	if (ret)
4816 		return ret;
4817 
4818 	ret = __do_fault(vmf);
4819 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4820 		return ret;
4821 
4822 	folio = page_folio(vmf->page);
4823 
4824 	/*
4825 	 * Check if the backing address space wants to know that the page is
4826 	 * about to become writable
4827 	 */
4828 	if (vma->vm_ops->page_mkwrite) {
4829 		folio_unlock(folio);
4830 		tmp = do_page_mkwrite(vmf, folio);
4831 		if (unlikely(!tmp ||
4832 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4833 			folio_put(folio);
4834 			return tmp;
4835 		}
4836 	}
4837 
4838 	ret |= finish_fault(vmf);
4839 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4840 					VM_FAULT_RETRY))) {
4841 		folio_unlock(folio);
4842 		folio_put(folio);
4843 		return ret;
4844 	}
4845 
4846 	ret |= fault_dirty_shared_page(vmf);
4847 	return ret;
4848 }
4849 
4850 /*
4851  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4852  * but allow concurrent faults).
4853  * The mmap_lock may have been released depending on flags and our
4854  * return value.  See filemap_fault() and __folio_lock_or_retry().
4855  * If mmap_lock is released, vma may become invalid (for example
4856  * by other thread calling munmap()).
4857  */
4858 static vm_fault_t do_fault(struct vm_fault *vmf)
4859 {
4860 	struct vm_area_struct *vma = vmf->vma;
4861 	struct mm_struct *vm_mm = vma->vm_mm;
4862 	vm_fault_t ret;
4863 
4864 	/*
4865 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4866 	 */
4867 	if (!vma->vm_ops->fault) {
4868 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4869 					       vmf->address, &vmf->ptl);
4870 		if (unlikely(!vmf->pte))
4871 			ret = VM_FAULT_SIGBUS;
4872 		else {
4873 			/*
4874 			 * Make sure this is not a temporary clearing of pte
4875 			 * by holding ptl and checking again. A R/M/W update
4876 			 * of pte involves: take ptl, clearing the pte so that
4877 			 * we don't have concurrent modification by hardware
4878 			 * followed by an update.
4879 			 */
4880 			if (unlikely(pte_none(ptep_get(vmf->pte))))
4881 				ret = VM_FAULT_SIGBUS;
4882 			else
4883 				ret = VM_FAULT_NOPAGE;
4884 
4885 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4886 		}
4887 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4888 		ret = do_read_fault(vmf);
4889 	else if (!(vma->vm_flags & VM_SHARED))
4890 		ret = do_cow_fault(vmf);
4891 	else
4892 		ret = do_shared_fault(vmf);
4893 
4894 	/* preallocated pagetable is unused: free it */
4895 	if (vmf->prealloc_pte) {
4896 		pte_free(vm_mm, vmf->prealloc_pte);
4897 		vmf->prealloc_pte = NULL;
4898 	}
4899 	return ret;
4900 }
4901 
4902 int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
4903 		      unsigned long addr, int page_nid, int *flags)
4904 {
4905 	folio_get(folio);
4906 
4907 	/* Record the current PID acceesing VMA */
4908 	vma_set_access_pid_bit(vma);
4909 
4910 	count_vm_numa_event(NUMA_HINT_FAULTS);
4911 	if (page_nid == numa_node_id()) {
4912 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4913 		*flags |= TNF_FAULT_LOCAL;
4914 	}
4915 
4916 	return mpol_misplaced(folio, vma, addr);
4917 }
4918 
4919 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4920 {
4921 	struct vm_area_struct *vma = vmf->vma;
4922 	struct folio *folio = NULL;
4923 	int nid = NUMA_NO_NODE;
4924 	bool writable = false;
4925 	int last_cpupid;
4926 	int target_nid;
4927 	pte_t pte, old_pte;
4928 	int flags = 0;
4929 
4930 	/*
4931 	 * The "pte" at this point cannot be used safely without
4932 	 * validation through pte_unmap_same(). It's of NUMA type but
4933 	 * the pfn may be screwed if the read is non atomic.
4934 	 */
4935 	spin_lock(vmf->ptl);
4936 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4937 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4938 		goto out;
4939 	}
4940 
4941 	/* Get the normal PTE  */
4942 	old_pte = ptep_get(vmf->pte);
4943 	pte = pte_modify(old_pte, vma->vm_page_prot);
4944 
4945 	/*
4946 	 * Detect now whether the PTE could be writable; this information
4947 	 * is only valid while holding the PT lock.
4948 	 */
4949 	writable = pte_write(pte);
4950 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4951 	    can_change_pte_writable(vma, vmf->address, pte))
4952 		writable = true;
4953 
4954 	folio = vm_normal_folio(vma, vmf->address, pte);
4955 	if (!folio || folio_is_zone_device(folio))
4956 		goto out_map;
4957 
4958 	/* TODO: handle PTE-mapped THP */
4959 	if (folio_test_large(folio))
4960 		goto out_map;
4961 
4962 	/*
4963 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4964 	 * much anyway since they can be in shared cache state. This misses
4965 	 * the case where a mapping is writable but the process never writes
4966 	 * to it but pte_write gets cleared during protection updates and
4967 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4968 	 * background writeback, dirty balancing and application behaviour.
4969 	 */
4970 	if (!writable)
4971 		flags |= TNF_NO_GROUP;
4972 
4973 	/*
4974 	 * Flag if the folio is shared between multiple address spaces. This
4975 	 * is later used when determining whether to group tasks together
4976 	 */
4977 	if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED))
4978 		flags |= TNF_SHARED;
4979 
4980 	nid = folio_nid(folio);
4981 	/*
4982 	 * For memory tiering mode, cpupid of slow memory page is used
4983 	 * to record page access time.  So use default value.
4984 	 */
4985 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4986 	    !node_is_toptier(nid))
4987 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4988 	else
4989 		last_cpupid = folio_last_cpupid(folio);
4990 	target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags);
4991 	if (target_nid == NUMA_NO_NODE) {
4992 		folio_put(folio);
4993 		goto out_map;
4994 	}
4995 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4996 	writable = false;
4997 
4998 	/* Migrate to the requested node */
4999 	if (migrate_misplaced_folio(folio, vma, target_nid)) {
5000 		nid = target_nid;
5001 		flags |= TNF_MIGRATED;
5002 	} else {
5003 		flags |= TNF_MIGRATE_FAIL;
5004 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5005 					       vmf->address, &vmf->ptl);
5006 		if (unlikely(!vmf->pte))
5007 			goto out;
5008 		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5009 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5010 			goto out;
5011 		}
5012 		goto out_map;
5013 	}
5014 
5015 out:
5016 	if (nid != NUMA_NO_NODE)
5017 		task_numa_fault(last_cpupid, nid, 1, flags);
5018 	return 0;
5019 out_map:
5020 	/*
5021 	 * Make it present again, depending on how arch implements
5022 	 * non-accessible ptes, some can allow access by kernel mode.
5023 	 */
5024 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
5025 	pte = pte_modify(old_pte, vma->vm_page_prot);
5026 	pte = pte_mkyoung(pte);
5027 	if (writable)
5028 		pte = pte_mkwrite(pte, vma);
5029 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
5030 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
5031 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5032 	goto out;
5033 }
5034 
5035 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5036 {
5037 	struct vm_area_struct *vma = vmf->vma;
5038 	if (vma_is_anonymous(vma))
5039 		return do_huge_pmd_anonymous_page(vmf);
5040 	if (vma->vm_ops->huge_fault)
5041 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5042 	return VM_FAULT_FALLBACK;
5043 }
5044 
5045 /* `inline' is required to avoid gcc 4.1.2 build error */
5046 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5047 {
5048 	struct vm_area_struct *vma = vmf->vma;
5049 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5050 	vm_fault_t ret;
5051 
5052 	if (vma_is_anonymous(vma)) {
5053 		if (likely(!unshare) &&
5054 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5055 			if (userfaultfd_wp_async(vmf->vma))
5056 				goto split;
5057 			return handle_userfault(vmf, VM_UFFD_WP);
5058 		}
5059 		return do_huge_pmd_wp_page(vmf);
5060 	}
5061 
5062 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5063 		if (vma->vm_ops->huge_fault) {
5064 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5065 			if (!(ret & VM_FAULT_FALLBACK))
5066 				return ret;
5067 		}
5068 	}
5069 
5070 split:
5071 	/* COW or write-notify handled on pte level: split pmd. */
5072 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5073 
5074 	return VM_FAULT_FALLBACK;
5075 }
5076 
5077 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5078 {
5079 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5080 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5081 	struct vm_area_struct *vma = vmf->vma;
5082 	/* No support for anonymous transparent PUD pages yet */
5083 	if (vma_is_anonymous(vma))
5084 		return VM_FAULT_FALLBACK;
5085 	if (vma->vm_ops->huge_fault)
5086 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5087 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5088 	return VM_FAULT_FALLBACK;
5089 }
5090 
5091 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5092 {
5093 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5094 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5095 	struct vm_area_struct *vma = vmf->vma;
5096 	vm_fault_t ret;
5097 
5098 	/* No support for anonymous transparent PUD pages yet */
5099 	if (vma_is_anonymous(vma))
5100 		goto split;
5101 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5102 		if (vma->vm_ops->huge_fault) {
5103 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5104 			if (!(ret & VM_FAULT_FALLBACK))
5105 				return ret;
5106 		}
5107 	}
5108 split:
5109 	/* COW or write-notify not handled on PUD level: split pud.*/
5110 	__split_huge_pud(vma, vmf->pud, vmf->address);
5111 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5112 	return VM_FAULT_FALLBACK;
5113 }
5114 
5115 /*
5116  * These routines also need to handle stuff like marking pages dirty
5117  * and/or accessed for architectures that don't do it in hardware (most
5118  * RISC architectures).  The early dirtying is also good on the i386.
5119  *
5120  * There is also a hook called "update_mmu_cache()" that architectures
5121  * with external mmu caches can use to update those (ie the Sparc or
5122  * PowerPC hashed page tables that act as extended TLBs).
5123  *
5124  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5125  * concurrent faults).
5126  *
5127  * The mmap_lock may have been released depending on flags and our return value.
5128  * See filemap_fault() and __folio_lock_or_retry().
5129  */
5130 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5131 {
5132 	pte_t entry;
5133 
5134 	if (unlikely(pmd_none(*vmf->pmd))) {
5135 		/*
5136 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5137 		 * want to allocate huge page, and if we expose page table
5138 		 * for an instant, it will be difficult to retract from
5139 		 * concurrent faults and from rmap lookups.
5140 		 */
5141 		vmf->pte = NULL;
5142 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5143 	} else {
5144 		/*
5145 		 * A regular pmd is established and it can't morph into a huge
5146 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5147 		 * mode; but shmem or file collapse to THP could still morph
5148 		 * it into a huge pmd: just retry later if so.
5149 		 */
5150 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5151 						 vmf->address, &vmf->ptl);
5152 		if (unlikely(!vmf->pte))
5153 			return 0;
5154 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5155 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5156 
5157 		if (pte_none(vmf->orig_pte)) {
5158 			pte_unmap(vmf->pte);
5159 			vmf->pte = NULL;
5160 		}
5161 	}
5162 
5163 	if (!vmf->pte)
5164 		return do_pte_missing(vmf);
5165 
5166 	if (!pte_present(vmf->orig_pte))
5167 		return do_swap_page(vmf);
5168 
5169 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5170 		return do_numa_page(vmf);
5171 
5172 	spin_lock(vmf->ptl);
5173 	entry = vmf->orig_pte;
5174 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5175 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5176 		goto unlock;
5177 	}
5178 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5179 		if (!pte_write(entry))
5180 			return do_wp_page(vmf);
5181 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5182 			entry = pte_mkdirty(entry);
5183 	}
5184 	entry = pte_mkyoung(entry);
5185 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5186 				vmf->flags & FAULT_FLAG_WRITE)) {
5187 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5188 				vmf->pte, 1);
5189 	} else {
5190 		/* Skip spurious TLB flush for retried page fault */
5191 		if (vmf->flags & FAULT_FLAG_TRIED)
5192 			goto unlock;
5193 		/*
5194 		 * This is needed only for protection faults but the arch code
5195 		 * is not yet telling us if this is a protection fault or not.
5196 		 * This still avoids useless tlb flushes for .text page faults
5197 		 * with threads.
5198 		 */
5199 		if (vmf->flags & FAULT_FLAG_WRITE)
5200 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5201 						     vmf->pte);
5202 	}
5203 unlock:
5204 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5205 	return 0;
5206 }
5207 
5208 /*
5209  * On entry, we hold either the VMA lock or the mmap_lock
5210  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5211  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5212  * and __folio_lock_or_retry().
5213  */
5214 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5215 		unsigned long address, unsigned int flags)
5216 {
5217 	struct vm_fault vmf = {
5218 		.vma = vma,
5219 		.address = address & PAGE_MASK,
5220 		.real_address = address,
5221 		.flags = flags,
5222 		.pgoff = linear_page_index(vma, address),
5223 		.gfp_mask = __get_fault_gfp_mask(vma),
5224 	};
5225 	struct mm_struct *mm = vma->vm_mm;
5226 	unsigned long vm_flags = vma->vm_flags;
5227 	pgd_t *pgd;
5228 	p4d_t *p4d;
5229 	vm_fault_t ret;
5230 
5231 	pgd = pgd_offset(mm, address);
5232 	p4d = p4d_alloc(mm, pgd, address);
5233 	if (!p4d)
5234 		return VM_FAULT_OOM;
5235 
5236 	vmf.pud = pud_alloc(mm, p4d, address);
5237 	if (!vmf.pud)
5238 		return VM_FAULT_OOM;
5239 retry_pud:
5240 	if (pud_none(*vmf.pud) &&
5241 	    thp_vma_allowable_order(vma, vm_flags, false, true, true, PUD_ORDER)) {
5242 		ret = create_huge_pud(&vmf);
5243 		if (!(ret & VM_FAULT_FALLBACK))
5244 			return ret;
5245 	} else {
5246 		pud_t orig_pud = *vmf.pud;
5247 
5248 		barrier();
5249 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5250 
5251 			/*
5252 			 * TODO once we support anonymous PUDs: NUMA case and
5253 			 * FAULT_FLAG_UNSHARE handling.
5254 			 */
5255 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5256 				ret = wp_huge_pud(&vmf, orig_pud);
5257 				if (!(ret & VM_FAULT_FALLBACK))
5258 					return ret;
5259 			} else {
5260 				huge_pud_set_accessed(&vmf, orig_pud);
5261 				return 0;
5262 			}
5263 		}
5264 	}
5265 
5266 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5267 	if (!vmf.pmd)
5268 		return VM_FAULT_OOM;
5269 
5270 	/* Huge pud page fault raced with pmd_alloc? */
5271 	if (pud_trans_unstable(vmf.pud))
5272 		goto retry_pud;
5273 
5274 	if (pmd_none(*vmf.pmd) &&
5275 	    thp_vma_allowable_order(vma, vm_flags, false, true, true, PMD_ORDER)) {
5276 		ret = create_huge_pmd(&vmf);
5277 		if (!(ret & VM_FAULT_FALLBACK))
5278 			return ret;
5279 	} else {
5280 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5281 
5282 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5283 			VM_BUG_ON(thp_migration_supported() &&
5284 					  !is_pmd_migration_entry(vmf.orig_pmd));
5285 			if (is_pmd_migration_entry(vmf.orig_pmd))
5286 				pmd_migration_entry_wait(mm, vmf.pmd);
5287 			return 0;
5288 		}
5289 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5290 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5291 				return do_huge_pmd_numa_page(&vmf);
5292 
5293 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5294 			    !pmd_write(vmf.orig_pmd)) {
5295 				ret = wp_huge_pmd(&vmf);
5296 				if (!(ret & VM_FAULT_FALLBACK))
5297 					return ret;
5298 			} else {
5299 				huge_pmd_set_accessed(&vmf);
5300 				return 0;
5301 			}
5302 		}
5303 	}
5304 
5305 	return handle_pte_fault(&vmf);
5306 }
5307 
5308 /**
5309  * mm_account_fault - Do page fault accounting
5310  * @mm: mm from which memcg should be extracted. It can be NULL.
5311  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5312  *        of perf event counters, but we'll still do the per-task accounting to
5313  *        the task who triggered this page fault.
5314  * @address: the faulted address.
5315  * @flags: the fault flags.
5316  * @ret: the fault retcode.
5317  *
5318  * This will take care of most of the page fault accounting.  Meanwhile, it
5319  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5320  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5321  * still be in per-arch page fault handlers at the entry of page fault.
5322  */
5323 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5324 				    unsigned long address, unsigned int flags,
5325 				    vm_fault_t ret)
5326 {
5327 	bool major;
5328 
5329 	/* Incomplete faults will be accounted upon completion. */
5330 	if (ret & VM_FAULT_RETRY)
5331 		return;
5332 
5333 	/*
5334 	 * To preserve the behavior of older kernels, PGFAULT counters record
5335 	 * both successful and failed faults, as opposed to perf counters,
5336 	 * which ignore failed cases.
5337 	 */
5338 	count_vm_event(PGFAULT);
5339 	count_memcg_event_mm(mm, PGFAULT);
5340 
5341 	/*
5342 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5343 	 * valid).  That includes arch_vma_access_permitted() failing before
5344 	 * reaching here. So this is not a "this many hardware page faults"
5345 	 * counter.  We should use the hw profiling for that.
5346 	 */
5347 	if (ret & VM_FAULT_ERROR)
5348 		return;
5349 
5350 	/*
5351 	 * We define the fault as a major fault when the final successful fault
5352 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5353 	 * handle it immediately previously).
5354 	 */
5355 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5356 
5357 	if (major)
5358 		current->maj_flt++;
5359 	else
5360 		current->min_flt++;
5361 
5362 	/*
5363 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5364 	 * accounting for the per thread fault counters who triggered the
5365 	 * fault, and we skip the perf event updates.
5366 	 */
5367 	if (!regs)
5368 		return;
5369 
5370 	if (major)
5371 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5372 	else
5373 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5374 }
5375 
5376 #ifdef CONFIG_LRU_GEN
5377 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5378 {
5379 	/* the LRU algorithm only applies to accesses with recency */
5380 	current->in_lru_fault = vma_has_recency(vma);
5381 }
5382 
5383 static void lru_gen_exit_fault(void)
5384 {
5385 	current->in_lru_fault = false;
5386 }
5387 #else
5388 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5389 {
5390 }
5391 
5392 static void lru_gen_exit_fault(void)
5393 {
5394 }
5395 #endif /* CONFIG_LRU_GEN */
5396 
5397 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5398 				       unsigned int *flags)
5399 {
5400 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5401 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5402 			return VM_FAULT_SIGSEGV;
5403 		/*
5404 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5405 		 * just treat it like an ordinary read-fault otherwise.
5406 		 */
5407 		if (!is_cow_mapping(vma->vm_flags))
5408 			*flags &= ~FAULT_FLAG_UNSHARE;
5409 	} else if (*flags & FAULT_FLAG_WRITE) {
5410 		/* Write faults on read-only mappings are impossible ... */
5411 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5412 			return VM_FAULT_SIGSEGV;
5413 		/* ... and FOLL_FORCE only applies to COW mappings. */
5414 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5415 				 !is_cow_mapping(vma->vm_flags)))
5416 			return VM_FAULT_SIGSEGV;
5417 	}
5418 #ifdef CONFIG_PER_VMA_LOCK
5419 	/*
5420 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5421 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
5422 	 */
5423 	if (WARN_ON_ONCE((*flags &
5424 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5425 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5426 		return VM_FAULT_SIGSEGV;
5427 #endif
5428 
5429 	return 0;
5430 }
5431 
5432 /*
5433  * By the time we get here, we already hold the mm semaphore
5434  *
5435  * The mmap_lock may have been released depending on flags and our
5436  * return value.  See filemap_fault() and __folio_lock_or_retry().
5437  */
5438 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5439 			   unsigned int flags, struct pt_regs *regs)
5440 {
5441 	/* If the fault handler drops the mmap_lock, vma may be freed */
5442 	struct mm_struct *mm = vma->vm_mm;
5443 	vm_fault_t ret;
5444 
5445 	__set_current_state(TASK_RUNNING);
5446 
5447 	ret = sanitize_fault_flags(vma, &flags);
5448 	if (ret)
5449 		goto out;
5450 
5451 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5452 					    flags & FAULT_FLAG_INSTRUCTION,
5453 					    flags & FAULT_FLAG_REMOTE)) {
5454 		ret = VM_FAULT_SIGSEGV;
5455 		goto out;
5456 	}
5457 
5458 	/*
5459 	 * Enable the memcg OOM handling for faults triggered in user
5460 	 * space.  Kernel faults are handled more gracefully.
5461 	 */
5462 	if (flags & FAULT_FLAG_USER)
5463 		mem_cgroup_enter_user_fault();
5464 
5465 	lru_gen_enter_fault(vma);
5466 
5467 	if (unlikely(is_vm_hugetlb_page(vma)))
5468 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5469 	else
5470 		ret = __handle_mm_fault(vma, address, flags);
5471 
5472 	lru_gen_exit_fault();
5473 
5474 	if (flags & FAULT_FLAG_USER) {
5475 		mem_cgroup_exit_user_fault();
5476 		/*
5477 		 * The task may have entered a memcg OOM situation but
5478 		 * if the allocation error was handled gracefully (no
5479 		 * VM_FAULT_OOM), there is no need to kill anything.
5480 		 * Just clean up the OOM state peacefully.
5481 		 */
5482 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5483 			mem_cgroup_oom_synchronize(false);
5484 	}
5485 out:
5486 	mm_account_fault(mm, regs, address, flags, ret);
5487 
5488 	return ret;
5489 }
5490 EXPORT_SYMBOL_GPL(handle_mm_fault);
5491 
5492 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5493 #include <linux/extable.h>
5494 
5495 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5496 {
5497 	if (likely(mmap_read_trylock(mm)))
5498 		return true;
5499 
5500 	if (regs && !user_mode(regs)) {
5501 		unsigned long ip = exception_ip(regs);
5502 		if (!search_exception_tables(ip))
5503 			return false;
5504 	}
5505 
5506 	return !mmap_read_lock_killable(mm);
5507 }
5508 
5509 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5510 {
5511 	/*
5512 	 * We don't have this operation yet.
5513 	 *
5514 	 * It should be easy enough to do: it's basically a
5515 	 *    atomic_long_try_cmpxchg_acquire()
5516 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5517 	 * it also needs the proper lockdep magic etc.
5518 	 */
5519 	return false;
5520 }
5521 
5522 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5523 {
5524 	mmap_read_unlock(mm);
5525 	if (regs && !user_mode(regs)) {
5526 		unsigned long ip = exception_ip(regs);
5527 		if (!search_exception_tables(ip))
5528 			return false;
5529 	}
5530 	return !mmap_write_lock_killable(mm);
5531 }
5532 
5533 /*
5534  * Helper for page fault handling.
5535  *
5536  * This is kind of equivalend to "mmap_read_lock()" followed
5537  * by "find_extend_vma()", except it's a lot more careful about
5538  * the locking (and will drop the lock on failure).
5539  *
5540  * For example, if we have a kernel bug that causes a page
5541  * fault, we don't want to just use mmap_read_lock() to get
5542  * the mm lock, because that would deadlock if the bug were
5543  * to happen while we're holding the mm lock for writing.
5544  *
5545  * So this checks the exception tables on kernel faults in
5546  * order to only do this all for instructions that are actually
5547  * expected to fault.
5548  *
5549  * We can also actually take the mm lock for writing if we
5550  * need to extend the vma, which helps the VM layer a lot.
5551  */
5552 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5553 			unsigned long addr, struct pt_regs *regs)
5554 {
5555 	struct vm_area_struct *vma;
5556 
5557 	if (!get_mmap_lock_carefully(mm, regs))
5558 		return NULL;
5559 
5560 	vma = find_vma(mm, addr);
5561 	if (likely(vma && (vma->vm_start <= addr)))
5562 		return vma;
5563 
5564 	/*
5565 	 * Well, dang. We might still be successful, but only
5566 	 * if we can extend a vma to do so.
5567 	 */
5568 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5569 		mmap_read_unlock(mm);
5570 		return NULL;
5571 	}
5572 
5573 	/*
5574 	 * We can try to upgrade the mmap lock atomically,
5575 	 * in which case we can continue to use the vma
5576 	 * we already looked up.
5577 	 *
5578 	 * Otherwise we'll have to drop the mmap lock and
5579 	 * re-take it, and also look up the vma again,
5580 	 * re-checking it.
5581 	 */
5582 	if (!mmap_upgrade_trylock(mm)) {
5583 		if (!upgrade_mmap_lock_carefully(mm, regs))
5584 			return NULL;
5585 
5586 		vma = find_vma(mm, addr);
5587 		if (!vma)
5588 			goto fail;
5589 		if (vma->vm_start <= addr)
5590 			goto success;
5591 		if (!(vma->vm_flags & VM_GROWSDOWN))
5592 			goto fail;
5593 	}
5594 
5595 	if (expand_stack_locked(vma, addr))
5596 		goto fail;
5597 
5598 success:
5599 	mmap_write_downgrade(mm);
5600 	return vma;
5601 
5602 fail:
5603 	mmap_write_unlock(mm);
5604 	return NULL;
5605 }
5606 #endif
5607 
5608 #ifdef CONFIG_PER_VMA_LOCK
5609 /*
5610  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5611  * stable and not isolated. If the VMA is not found or is being modified the
5612  * function returns NULL.
5613  */
5614 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5615 					  unsigned long address)
5616 {
5617 	MA_STATE(mas, &mm->mm_mt, address, address);
5618 	struct vm_area_struct *vma;
5619 
5620 	rcu_read_lock();
5621 retry:
5622 	vma = mas_walk(&mas);
5623 	if (!vma)
5624 		goto inval;
5625 
5626 	if (!vma_start_read(vma))
5627 		goto inval;
5628 
5629 	/*
5630 	 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5631 	 * This check must happen after vma_start_read(); otherwise, a
5632 	 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5633 	 * from its anon_vma.
5634 	 */
5635 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5636 		goto inval_end_read;
5637 
5638 	/* Check since vm_start/vm_end might change before we lock the VMA */
5639 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5640 		goto inval_end_read;
5641 
5642 	/* Check if the VMA got isolated after we found it */
5643 	if (vma->detached) {
5644 		vma_end_read(vma);
5645 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5646 		/* The area was replaced with another one */
5647 		goto retry;
5648 	}
5649 
5650 	rcu_read_unlock();
5651 	return vma;
5652 
5653 inval_end_read:
5654 	vma_end_read(vma);
5655 inval:
5656 	rcu_read_unlock();
5657 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5658 	return NULL;
5659 }
5660 #endif /* CONFIG_PER_VMA_LOCK */
5661 
5662 #ifndef __PAGETABLE_P4D_FOLDED
5663 /*
5664  * Allocate p4d page table.
5665  * We've already handled the fast-path in-line.
5666  */
5667 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5668 {
5669 	p4d_t *new = p4d_alloc_one(mm, address);
5670 	if (!new)
5671 		return -ENOMEM;
5672 
5673 	spin_lock(&mm->page_table_lock);
5674 	if (pgd_present(*pgd)) {	/* Another has populated it */
5675 		p4d_free(mm, new);
5676 	} else {
5677 		smp_wmb(); /* See comment in pmd_install() */
5678 		pgd_populate(mm, pgd, new);
5679 	}
5680 	spin_unlock(&mm->page_table_lock);
5681 	return 0;
5682 }
5683 #endif /* __PAGETABLE_P4D_FOLDED */
5684 
5685 #ifndef __PAGETABLE_PUD_FOLDED
5686 /*
5687  * Allocate page upper directory.
5688  * We've already handled the fast-path in-line.
5689  */
5690 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5691 {
5692 	pud_t *new = pud_alloc_one(mm, address);
5693 	if (!new)
5694 		return -ENOMEM;
5695 
5696 	spin_lock(&mm->page_table_lock);
5697 	if (!p4d_present(*p4d)) {
5698 		mm_inc_nr_puds(mm);
5699 		smp_wmb(); /* See comment in pmd_install() */
5700 		p4d_populate(mm, p4d, new);
5701 	} else	/* Another has populated it */
5702 		pud_free(mm, new);
5703 	spin_unlock(&mm->page_table_lock);
5704 	return 0;
5705 }
5706 #endif /* __PAGETABLE_PUD_FOLDED */
5707 
5708 #ifndef __PAGETABLE_PMD_FOLDED
5709 /*
5710  * Allocate page middle directory.
5711  * We've already handled the fast-path in-line.
5712  */
5713 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5714 {
5715 	spinlock_t *ptl;
5716 	pmd_t *new = pmd_alloc_one(mm, address);
5717 	if (!new)
5718 		return -ENOMEM;
5719 
5720 	ptl = pud_lock(mm, pud);
5721 	if (!pud_present(*pud)) {
5722 		mm_inc_nr_pmds(mm);
5723 		smp_wmb(); /* See comment in pmd_install() */
5724 		pud_populate(mm, pud, new);
5725 	} else {	/* Another has populated it */
5726 		pmd_free(mm, new);
5727 	}
5728 	spin_unlock(ptl);
5729 	return 0;
5730 }
5731 #endif /* __PAGETABLE_PMD_FOLDED */
5732 
5733 /**
5734  * follow_pte - look up PTE at a user virtual address
5735  * @mm: the mm_struct of the target address space
5736  * @address: user virtual address
5737  * @ptepp: location to store found PTE
5738  * @ptlp: location to store the lock for the PTE
5739  *
5740  * On a successful return, the pointer to the PTE is stored in @ptepp;
5741  * the corresponding lock is taken and its location is stored in @ptlp.
5742  * The contents of the PTE are only stable until @ptlp is released;
5743  * any further use, if any, must be protected against invalidation
5744  * with MMU notifiers.
5745  *
5746  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5747  * should be taken for read.
5748  *
5749  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5750  * it is not a good general-purpose API.
5751  *
5752  * Return: zero on success, -ve otherwise.
5753  */
5754 int follow_pte(struct mm_struct *mm, unsigned long address,
5755 	       pte_t **ptepp, spinlock_t **ptlp)
5756 {
5757 	pgd_t *pgd;
5758 	p4d_t *p4d;
5759 	pud_t *pud;
5760 	pmd_t *pmd;
5761 	pte_t *ptep;
5762 
5763 	pgd = pgd_offset(mm, address);
5764 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5765 		goto out;
5766 
5767 	p4d = p4d_offset(pgd, address);
5768 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5769 		goto out;
5770 
5771 	pud = pud_offset(p4d, address);
5772 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5773 		goto out;
5774 
5775 	pmd = pmd_offset(pud, address);
5776 	VM_BUG_ON(pmd_trans_huge(*pmd));
5777 
5778 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5779 	if (!ptep)
5780 		goto out;
5781 	if (!pte_present(ptep_get(ptep)))
5782 		goto unlock;
5783 	*ptepp = ptep;
5784 	return 0;
5785 unlock:
5786 	pte_unmap_unlock(ptep, *ptlp);
5787 out:
5788 	return -EINVAL;
5789 }
5790 EXPORT_SYMBOL_GPL(follow_pte);
5791 
5792 /**
5793  * follow_pfn - look up PFN at a user virtual address
5794  * @vma: memory mapping
5795  * @address: user virtual address
5796  * @pfn: location to store found PFN
5797  *
5798  * Only IO mappings and raw PFN mappings are allowed.
5799  *
5800  * This function does not allow the caller to read the permissions
5801  * of the PTE.  Do not use it.
5802  *
5803  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5804  */
5805 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5806 	unsigned long *pfn)
5807 {
5808 	int ret = -EINVAL;
5809 	spinlock_t *ptl;
5810 	pte_t *ptep;
5811 
5812 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5813 		return ret;
5814 
5815 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5816 	if (ret)
5817 		return ret;
5818 	*pfn = pte_pfn(ptep_get(ptep));
5819 	pte_unmap_unlock(ptep, ptl);
5820 	return 0;
5821 }
5822 EXPORT_SYMBOL(follow_pfn);
5823 
5824 #ifdef CONFIG_HAVE_IOREMAP_PROT
5825 int follow_phys(struct vm_area_struct *vma,
5826 		unsigned long address, unsigned int flags,
5827 		unsigned long *prot, resource_size_t *phys)
5828 {
5829 	int ret = -EINVAL;
5830 	pte_t *ptep, pte;
5831 	spinlock_t *ptl;
5832 
5833 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5834 		goto out;
5835 
5836 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5837 		goto out;
5838 	pte = ptep_get(ptep);
5839 
5840 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5841 		goto unlock;
5842 
5843 	*prot = pgprot_val(pte_pgprot(pte));
5844 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5845 
5846 	ret = 0;
5847 unlock:
5848 	pte_unmap_unlock(ptep, ptl);
5849 out:
5850 	return ret;
5851 }
5852 
5853 /**
5854  * generic_access_phys - generic implementation for iomem mmap access
5855  * @vma: the vma to access
5856  * @addr: userspace address, not relative offset within @vma
5857  * @buf: buffer to read/write
5858  * @len: length of transfer
5859  * @write: set to FOLL_WRITE when writing, otherwise reading
5860  *
5861  * This is a generic implementation for &vm_operations_struct.access for an
5862  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5863  * not page based.
5864  */
5865 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5866 			void *buf, int len, int write)
5867 {
5868 	resource_size_t phys_addr;
5869 	unsigned long prot = 0;
5870 	void __iomem *maddr;
5871 	pte_t *ptep, pte;
5872 	spinlock_t *ptl;
5873 	int offset = offset_in_page(addr);
5874 	int ret = -EINVAL;
5875 
5876 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5877 		return -EINVAL;
5878 
5879 retry:
5880 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5881 		return -EINVAL;
5882 	pte = ptep_get(ptep);
5883 	pte_unmap_unlock(ptep, ptl);
5884 
5885 	prot = pgprot_val(pte_pgprot(pte));
5886 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5887 
5888 	if ((write & FOLL_WRITE) && !pte_write(pte))
5889 		return -EINVAL;
5890 
5891 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5892 	if (!maddr)
5893 		return -ENOMEM;
5894 
5895 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5896 		goto out_unmap;
5897 
5898 	if (!pte_same(pte, ptep_get(ptep))) {
5899 		pte_unmap_unlock(ptep, ptl);
5900 		iounmap(maddr);
5901 
5902 		goto retry;
5903 	}
5904 
5905 	if (write)
5906 		memcpy_toio(maddr + offset, buf, len);
5907 	else
5908 		memcpy_fromio(buf, maddr + offset, len);
5909 	ret = len;
5910 	pte_unmap_unlock(ptep, ptl);
5911 out_unmap:
5912 	iounmap(maddr);
5913 
5914 	return ret;
5915 }
5916 EXPORT_SYMBOL_GPL(generic_access_phys);
5917 #endif
5918 
5919 /*
5920  * Access another process' address space as given in mm.
5921  */
5922 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
5923 			      void *buf, int len, unsigned int gup_flags)
5924 {
5925 	void *old_buf = buf;
5926 	int write = gup_flags & FOLL_WRITE;
5927 
5928 	if (mmap_read_lock_killable(mm))
5929 		return 0;
5930 
5931 	/* Untag the address before looking up the VMA */
5932 	addr = untagged_addr_remote(mm, addr);
5933 
5934 	/* Avoid triggering the temporary warning in __get_user_pages */
5935 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5936 		return 0;
5937 
5938 	/* ignore errors, just check how much was successfully transferred */
5939 	while (len) {
5940 		int bytes, offset;
5941 		void *maddr;
5942 		struct vm_area_struct *vma = NULL;
5943 		struct page *page = get_user_page_vma_remote(mm, addr,
5944 							     gup_flags, &vma);
5945 
5946 		if (IS_ERR(page)) {
5947 			/* We might need to expand the stack to access it */
5948 			vma = vma_lookup(mm, addr);
5949 			if (!vma) {
5950 				vma = expand_stack(mm, addr);
5951 
5952 				/* mmap_lock was dropped on failure */
5953 				if (!vma)
5954 					return buf - old_buf;
5955 
5956 				/* Try again if stack expansion worked */
5957 				continue;
5958 			}
5959 
5960 			/*
5961 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5962 			 * we can access using slightly different code.
5963 			 */
5964 			bytes = 0;
5965 #ifdef CONFIG_HAVE_IOREMAP_PROT
5966 			if (vma->vm_ops && vma->vm_ops->access)
5967 				bytes = vma->vm_ops->access(vma, addr, buf,
5968 							    len, write);
5969 #endif
5970 			if (bytes <= 0)
5971 				break;
5972 		} else {
5973 			bytes = len;
5974 			offset = addr & (PAGE_SIZE-1);
5975 			if (bytes > PAGE_SIZE-offset)
5976 				bytes = PAGE_SIZE-offset;
5977 
5978 			maddr = kmap_local_page(page);
5979 			if (write) {
5980 				copy_to_user_page(vma, page, addr,
5981 						  maddr + offset, buf, bytes);
5982 				set_page_dirty_lock(page);
5983 			} else {
5984 				copy_from_user_page(vma, page, addr,
5985 						    buf, maddr + offset, bytes);
5986 			}
5987 			unmap_and_put_page(page, maddr);
5988 		}
5989 		len -= bytes;
5990 		buf += bytes;
5991 		addr += bytes;
5992 	}
5993 	mmap_read_unlock(mm);
5994 
5995 	return buf - old_buf;
5996 }
5997 
5998 /**
5999  * access_remote_vm - access another process' address space
6000  * @mm:		the mm_struct of the target address space
6001  * @addr:	start address to access
6002  * @buf:	source or destination buffer
6003  * @len:	number of bytes to transfer
6004  * @gup_flags:	flags modifying lookup behaviour
6005  *
6006  * The caller must hold a reference on @mm.
6007  *
6008  * Return: number of bytes copied from source to destination.
6009  */
6010 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6011 		void *buf, int len, unsigned int gup_flags)
6012 {
6013 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6014 }
6015 
6016 /*
6017  * Access another process' address space.
6018  * Source/target buffer must be kernel space,
6019  * Do not walk the page table directly, use get_user_pages
6020  */
6021 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6022 		void *buf, int len, unsigned int gup_flags)
6023 {
6024 	struct mm_struct *mm;
6025 	int ret;
6026 
6027 	mm = get_task_mm(tsk);
6028 	if (!mm)
6029 		return 0;
6030 
6031 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6032 
6033 	mmput(mm);
6034 
6035 	return ret;
6036 }
6037 EXPORT_SYMBOL_GPL(access_process_vm);
6038 
6039 /*
6040  * Print the name of a VMA.
6041  */
6042 void print_vma_addr(char *prefix, unsigned long ip)
6043 {
6044 	struct mm_struct *mm = current->mm;
6045 	struct vm_area_struct *vma;
6046 
6047 	/*
6048 	 * we might be running from an atomic context so we cannot sleep
6049 	 */
6050 	if (!mmap_read_trylock(mm))
6051 		return;
6052 
6053 	vma = find_vma(mm, ip);
6054 	if (vma && vma->vm_file) {
6055 		struct file *f = vma->vm_file;
6056 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
6057 		if (buf) {
6058 			char *p;
6059 
6060 			p = file_path(f, buf, PAGE_SIZE);
6061 			if (IS_ERR(p))
6062 				p = "?";
6063 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
6064 					vma->vm_start,
6065 					vma->vm_end - vma->vm_start);
6066 			free_page((unsigned long)buf);
6067 		}
6068 	}
6069 	mmap_read_unlock(mm);
6070 }
6071 
6072 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6073 void __might_fault(const char *file, int line)
6074 {
6075 	if (pagefault_disabled())
6076 		return;
6077 	__might_sleep(file, line);
6078 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6079 	if (current->mm)
6080 		might_lock_read(&current->mm->mmap_lock);
6081 #endif
6082 }
6083 EXPORT_SYMBOL(__might_fault);
6084 #endif
6085 
6086 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6087 /*
6088  * Process all subpages of the specified huge page with the specified
6089  * operation.  The target subpage will be processed last to keep its
6090  * cache lines hot.
6091  */
6092 static inline int process_huge_page(
6093 	unsigned long addr_hint, unsigned int pages_per_huge_page,
6094 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
6095 	void *arg)
6096 {
6097 	int i, n, base, l, ret;
6098 	unsigned long addr = addr_hint &
6099 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6100 
6101 	/* Process target subpage last to keep its cache lines hot */
6102 	might_sleep();
6103 	n = (addr_hint - addr) / PAGE_SIZE;
6104 	if (2 * n <= pages_per_huge_page) {
6105 		/* If target subpage in first half of huge page */
6106 		base = 0;
6107 		l = n;
6108 		/* Process subpages at the end of huge page */
6109 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
6110 			cond_resched();
6111 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6112 			if (ret)
6113 				return ret;
6114 		}
6115 	} else {
6116 		/* If target subpage in second half of huge page */
6117 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
6118 		l = pages_per_huge_page - n;
6119 		/* Process subpages at the begin of huge page */
6120 		for (i = 0; i < base; i++) {
6121 			cond_resched();
6122 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6123 			if (ret)
6124 				return ret;
6125 		}
6126 	}
6127 	/*
6128 	 * Process remaining subpages in left-right-left-right pattern
6129 	 * towards the target subpage
6130 	 */
6131 	for (i = 0; i < l; i++) {
6132 		int left_idx = base + i;
6133 		int right_idx = base + 2 * l - 1 - i;
6134 
6135 		cond_resched();
6136 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6137 		if (ret)
6138 			return ret;
6139 		cond_resched();
6140 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6141 		if (ret)
6142 			return ret;
6143 	}
6144 	return 0;
6145 }
6146 
6147 static void clear_gigantic_page(struct page *page,
6148 				unsigned long addr,
6149 				unsigned int pages_per_huge_page)
6150 {
6151 	int i;
6152 	struct page *p;
6153 
6154 	might_sleep();
6155 	for (i = 0; i < pages_per_huge_page; i++) {
6156 		p = nth_page(page, i);
6157 		cond_resched();
6158 		clear_user_highpage(p, addr + i * PAGE_SIZE);
6159 	}
6160 }
6161 
6162 static int clear_subpage(unsigned long addr, int idx, void *arg)
6163 {
6164 	struct page *page = arg;
6165 
6166 	clear_user_highpage(page + idx, addr);
6167 	return 0;
6168 }
6169 
6170 void clear_huge_page(struct page *page,
6171 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
6172 {
6173 	unsigned long addr = addr_hint &
6174 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6175 
6176 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6177 		clear_gigantic_page(page, addr, pages_per_huge_page);
6178 		return;
6179 	}
6180 
6181 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6182 }
6183 
6184 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6185 				     unsigned long addr,
6186 				     struct vm_area_struct *vma,
6187 				     unsigned int pages_per_huge_page)
6188 {
6189 	int i;
6190 	struct page *dst_page;
6191 	struct page *src_page;
6192 
6193 	for (i = 0; i < pages_per_huge_page; i++) {
6194 		dst_page = folio_page(dst, i);
6195 		src_page = folio_page(src, i);
6196 
6197 		cond_resched();
6198 		if (copy_mc_user_highpage(dst_page, src_page,
6199 					  addr + i*PAGE_SIZE, vma)) {
6200 			memory_failure_queue(page_to_pfn(src_page), 0);
6201 			return -EHWPOISON;
6202 		}
6203 	}
6204 	return 0;
6205 }
6206 
6207 struct copy_subpage_arg {
6208 	struct page *dst;
6209 	struct page *src;
6210 	struct vm_area_struct *vma;
6211 };
6212 
6213 static int copy_subpage(unsigned long addr, int idx, void *arg)
6214 {
6215 	struct copy_subpage_arg *copy_arg = arg;
6216 
6217 	if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6218 				  addr, copy_arg->vma)) {
6219 		memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6220 		return -EHWPOISON;
6221 	}
6222 	return 0;
6223 }
6224 
6225 int copy_user_large_folio(struct folio *dst, struct folio *src,
6226 			  unsigned long addr_hint, struct vm_area_struct *vma)
6227 {
6228 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6229 	unsigned long addr = addr_hint &
6230 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6231 	struct copy_subpage_arg arg = {
6232 		.dst = &dst->page,
6233 		.src = &src->page,
6234 		.vma = vma,
6235 	};
6236 
6237 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6238 		return copy_user_gigantic_page(dst, src, addr, vma,
6239 					       pages_per_huge_page);
6240 
6241 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6242 }
6243 
6244 long copy_folio_from_user(struct folio *dst_folio,
6245 			   const void __user *usr_src,
6246 			   bool allow_pagefault)
6247 {
6248 	void *kaddr;
6249 	unsigned long i, rc = 0;
6250 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6251 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6252 	struct page *subpage;
6253 
6254 	for (i = 0; i < nr_pages; i++) {
6255 		subpage = folio_page(dst_folio, i);
6256 		kaddr = kmap_local_page(subpage);
6257 		if (!allow_pagefault)
6258 			pagefault_disable();
6259 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6260 		if (!allow_pagefault)
6261 			pagefault_enable();
6262 		kunmap_local(kaddr);
6263 
6264 		ret_val -= (PAGE_SIZE - rc);
6265 		if (rc)
6266 			break;
6267 
6268 		flush_dcache_page(subpage);
6269 
6270 		cond_resched();
6271 	}
6272 	return ret_val;
6273 }
6274 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6275 
6276 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6277 
6278 static struct kmem_cache *page_ptl_cachep;
6279 
6280 void __init ptlock_cache_init(void)
6281 {
6282 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6283 			SLAB_PANIC, NULL);
6284 }
6285 
6286 bool ptlock_alloc(struct ptdesc *ptdesc)
6287 {
6288 	spinlock_t *ptl;
6289 
6290 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6291 	if (!ptl)
6292 		return false;
6293 	ptdesc->ptl = ptl;
6294 	return true;
6295 }
6296 
6297 void ptlock_free(struct ptdesc *ptdesc)
6298 {
6299 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6300 }
6301 #endif
6302