1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/leafops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/shmem_fs.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 #include <linux/pgalloc.h> 80 #include <linux/uaccess.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/tlb.h> 87 #include <asm/tlbflush.h> 88 89 #include "pgalloc-track.h" 90 #include "internal.h" 91 #include "swap.h" 92 93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 95 #endif 96 97 static vm_fault_t do_fault(struct vm_fault *vmf); 98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 99 static bool vmf_pte_changed(struct vm_fault *vmf); 100 101 /* 102 * Return true if the original pte was a uffd-wp pte marker (so the pte was 103 * wr-protected). 104 */ 105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 106 { 107 if (!userfaultfd_wp(vmf->vma)) 108 return false; 109 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 110 return false; 111 112 return pte_is_uffd_wp_marker(vmf->orig_pte); 113 } 114 115 /* 116 * Randomize the address space (stacks, mmaps, brk, etc.). 117 * 118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 119 * as ancient (libc5 based) binaries can segfault. ) 120 */ 121 int randomize_va_space __read_mostly = 122 #ifdef CONFIG_COMPAT_BRK 123 1; 124 #else 125 2; 126 #endif 127 128 static const struct ctl_table mmu_sysctl_table[] = { 129 { 130 .procname = "randomize_va_space", 131 .data = &randomize_va_space, 132 .maxlen = sizeof(int), 133 .mode = 0644, 134 .proc_handler = proc_dointvec, 135 }, 136 }; 137 138 static int __init init_mm_sysctl(void) 139 { 140 register_sysctl_init("kernel", mmu_sysctl_table); 141 return 0; 142 } 143 144 subsys_initcall(init_mm_sysctl); 145 146 #ifndef arch_wants_old_prefaulted_pte 147 static inline bool arch_wants_old_prefaulted_pte(void) 148 { 149 /* 150 * Transitioning a PTE from 'old' to 'young' can be expensive on 151 * some architectures, even if it's performed in hardware. By 152 * default, "false" means prefaulted entries will be 'young'. 153 */ 154 return false; 155 } 156 #endif 157 158 static int __init disable_randmaps(char *s) 159 { 160 randomize_va_space = 0; 161 return 1; 162 } 163 __setup("norandmaps", disable_randmaps); 164 165 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 167 168 unsigned long highest_memmap_pfn __read_mostly; 169 170 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 173 static int __init init_zero_pfn(void) 174 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177 } 178 early_initcall(init_zero_pfn); 179 180 void mm_trace_rss_stat(struct mm_struct *mm, int member) 181 { 182 trace_rss_stat(mm, member); 183 } 184 185 /* 186 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all the memory regions. 188 */ 189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 191 { 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196 } 197 198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long addr, unsigned long end, 200 unsigned long floor, unsigned long ceiling) 201 { 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd)) 211 continue; 212 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != end); 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230 } 231 232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235 { 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud)) 245 continue; 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != end); 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264 } 265 266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d)) 279 continue; 280 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297 } 298 299 /** 300 * free_pgd_range - Unmap and free page tables in the range 301 * @tlb: the mmu_gather containing pending TLB flush info 302 * @addr: virtual address start 303 * @end: virtual address end 304 * @floor: lowest address boundary 305 * @ceiling: highest address boundary 306 * 307 * This function tears down all user-level page tables in the 308 * specified virtual address range [@addr..@end). It is part of 309 * the memory unmap flow. 310 */ 311 void free_pgd_range(struct mmu_gather *tlb, 312 unsigned long addr, unsigned long end, 313 unsigned long floor, unsigned long ceiling) 314 { 315 pgd_t *pgd; 316 unsigned long next; 317 318 /* 319 * The next few lines have given us lots of grief... 320 * 321 * Why are we testing PMD* at this top level? Because often 322 * there will be no work to do at all, and we'd prefer not to 323 * go all the way down to the bottom just to discover that. 324 * 325 * Why all these "- 1"s? Because 0 represents both the bottom 326 * of the address space and the top of it (using -1 for the 327 * top wouldn't help much: the masks would do the wrong thing). 328 * The rule is that addr 0 and floor 0 refer to the bottom of 329 * the address space, but end 0 and ceiling 0 refer to the top 330 * Comparisons need to use "end - 1" and "ceiling - 1" (though 331 * that end 0 case should be mythical). 332 * 333 * Wherever addr is brought up or ceiling brought down, we must 334 * be careful to reject "the opposite 0" before it confuses the 335 * subsequent tests. But what about where end is brought down 336 * by PMD_SIZE below? no, end can't go down to 0 there. 337 * 338 * Whereas we round start (addr) and ceiling down, by different 339 * masks at different levels, in order to test whether a table 340 * now has no other vmas using it, so can be freed, we don't 341 * bother to round floor or end up - the tests don't need that. 342 */ 343 344 addr &= PMD_MASK; 345 if (addr < floor) { 346 addr += PMD_SIZE; 347 if (!addr) 348 return; 349 } 350 if (ceiling) { 351 ceiling &= PMD_MASK; 352 if (!ceiling) 353 return; 354 } 355 if (end - 1 > ceiling - 1) 356 end -= PMD_SIZE; 357 if (addr > end - 1) 358 return; 359 /* 360 * We add page table cache pages with PAGE_SIZE, 361 * (see pte_free_tlb()), flush the tlb if we need 362 */ 363 tlb_change_page_size(tlb, PAGE_SIZE); 364 pgd = pgd_offset(tlb->mm, addr); 365 do { 366 next = pgd_addr_end(addr, end); 367 if (pgd_none_or_clear_bad(pgd)) 368 continue; 369 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 370 } while (pgd++, addr = next, addr != end); 371 } 372 373 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 374 struct vm_area_struct *vma, unsigned long floor, 375 unsigned long ceiling, bool mm_wr_locked) 376 { 377 struct unlink_vma_file_batch vb; 378 379 tlb_free_vmas(tlb); 380 381 do { 382 unsigned long addr = vma->vm_start; 383 struct vm_area_struct *next; 384 385 /* 386 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 387 * be 0. This will underflow and is okay. 388 */ 389 next = mas_find(mas, ceiling - 1); 390 if (unlikely(xa_is_zero(next))) 391 next = NULL; 392 393 /* 394 * Hide vma from rmap and truncate_pagecache before freeing 395 * pgtables 396 */ 397 if (mm_wr_locked) 398 vma_start_write(vma); 399 unlink_anon_vmas(vma); 400 401 unlink_file_vma_batch_init(&vb); 402 unlink_file_vma_batch_add(&vb, vma); 403 404 /* 405 * Optimization: gather nearby vmas into one call down 406 */ 407 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) { 408 vma = next; 409 next = mas_find(mas, ceiling - 1); 410 if (unlikely(xa_is_zero(next))) 411 next = NULL; 412 if (mm_wr_locked) 413 vma_start_write(vma); 414 unlink_anon_vmas(vma); 415 unlink_file_vma_batch_add(&vb, vma); 416 } 417 unlink_file_vma_batch_final(&vb); 418 419 free_pgd_range(tlb, addr, vma->vm_end, 420 floor, next ? next->vm_start : ceiling); 421 vma = next; 422 } while (vma); 423 } 424 425 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 426 { 427 spinlock_t *ptl = pmd_lock(mm, pmd); 428 429 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 430 mm_inc_nr_ptes(mm); 431 /* 432 * Ensure all pte setup (eg. pte page lock and page clearing) are 433 * visible before the pte is made visible to other CPUs by being 434 * put into page tables. 435 * 436 * The other side of the story is the pointer chasing in the page 437 * table walking code (when walking the page table without locking; 438 * ie. most of the time). Fortunately, these data accesses consist 439 * of a chain of data-dependent loads, meaning most CPUs (alpha 440 * being the notable exception) will already guarantee loads are 441 * seen in-order. See the alpha page table accessors for the 442 * smp_rmb() barriers in page table walking code. 443 */ 444 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 445 pmd_populate(mm, pmd, *pte); 446 *pte = NULL; 447 } 448 spin_unlock(ptl); 449 } 450 451 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 452 { 453 pgtable_t new = pte_alloc_one(mm); 454 if (!new) 455 return -ENOMEM; 456 457 pmd_install(mm, pmd, &new); 458 if (new) 459 pte_free(mm, new); 460 return 0; 461 } 462 463 int __pte_alloc_kernel(pmd_t *pmd) 464 { 465 pte_t *new = pte_alloc_one_kernel(&init_mm); 466 if (!new) 467 return -ENOMEM; 468 469 spin_lock(&init_mm.page_table_lock); 470 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 471 smp_wmb(); /* See comment in pmd_install() */ 472 pmd_populate_kernel(&init_mm, pmd, new); 473 new = NULL; 474 } 475 spin_unlock(&init_mm.page_table_lock); 476 if (new) 477 pte_free_kernel(&init_mm, new); 478 return 0; 479 } 480 481 static inline void init_rss_vec(int *rss) 482 { 483 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 484 } 485 486 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 487 { 488 int i; 489 490 for (i = 0; i < NR_MM_COUNTERS; i++) 491 if (rss[i]) 492 add_mm_counter(mm, i, rss[i]); 493 } 494 495 static bool is_bad_page_map_ratelimited(void) 496 { 497 static unsigned long resume; 498 static unsigned long nr_shown; 499 static unsigned long nr_unshown; 500 501 /* 502 * Allow a burst of 60 reports, then keep quiet for that minute; 503 * or allow a steady drip of one report per second. 504 */ 505 if (nr_shown == 60) { 506 if (time_before(jiffies, resume)) { 507 nr_unshown++; 508 return true; 509 } 510 if (nr_unshown) { 511 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 512 nr_unshown); 513 nr_unshown = 0; 514 } 515 nr_shown = 0; 516 } 517 if (nr_shown++ == 0) 518 resume = jiffies + 60 * HZ; 519 return false; 520 } 521 522 static void __print_bad_page_map_pgtable(struct mm_struct *mm, unsigned long addr) 523 { 524 unsigned long long pgdv, p4dv, pudv, pmdv; 525 p4d_t p4d, *p4dp; 526 pud_t pud, *pudp; 527 pmd_t pmd, *pmdp; 528 pgd_t *pgdp; 529 530 /* 531 * Although this looks like a fully lockless pgtable walk, it is not: 532 * see locking requirements for print_bad_page_map(). 533 */ 534 pgdp = pgd_offset(mm, addr); 535 pgdv = pgd_val(*pgdp); 536 537 if (!pgd_present(*pgdp) || pgd_leaf(*pgdp)) { 538 pr_alert("pgd:%08llx\n", pgdv); 539 return; 540 } 541 542 p4dp = p4d_offset(pgdp, addr); 543 p4d = p4dp_get(p4dp); 544 p4dv = p4d_val(p4d); 545 546 if (!p4d_present(p4d) || p4d_leaf(p4d)) { 547 pr_alert("pgd:%08llx p4d:%08llx\n", pgdv, p4dv); 548 return; 549 } 550 551 pudp = pud_offset(p4dp, addr); 552 pud = pudp_get(pudp); 553 pudv = pud_val(pud); 554 555 if (!pud_present(pud) || pud_leaf(pud)) { 556 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx\n", pgdv, p4dv, pudv); 557 return; 558 } 559 560 pmdp = pmd_offset(pudp, addr); 561 pmd = pmdp_get(pmdp); 562 pmdv = pmd_val(pmd); 563 564 /* 565 * Dumping the PTE would be nice, but it's tricky with CONFIG_HIGHPTE, 566 * because the table should already be mapped by the caller and 567 * doing another map would be bad. print_bad_page_map() should 568 * already take care of printing the PTE. 569 */ 570 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx pmd:%08llx\n", pgdv, 571 p4dv, pudv, pmdv); 572 } 573 574 /* 575 * This function is called to print an error when a bad page table entry (e.g., 576 * corrupted page table entry) is found. For example, we might have a 577 * PFN-mapped pte in a region that doesn't allow it. 578 * 579 * The calling function must still handle the error. 580 * 581 * This function must be called during a proper page table walk, as it will 582 * re-walk the page table to dump information: the caller MUST prevent page 583 * table teardown (by holding mmap, vma or rmap lock) and MUST hold the leaf 584 * page table lock. 585 */ 586 static void print_bad_page_map(struct vm_area_struct *vma, 587 unsigned long addr, unsigned long long entry, struct page *page, 588 enum pgtable_level level) 589 { 590 struct address_space *mapping; 591 pgoff_t index; 592 593 if (is_bad_page_map_ratelimited()) 594 return; 595 596 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 597 index = linear_page_index(vma, addr); 598 599 pr_alert("BUG: Bad page map in process %s %s:%08llx", current->comm, 600 pgtable_level_to_str(level), entry); 601 __print_bad_page_map_pgtable(vma->vm_mm, addr); 602 if (page) 603 dump_page(page, "bad page map"); 604 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 605 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 606 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n", 607 vma->vm_file, 608 vma->vm_ops ? vma->vm_ops->fault : NULL, 609 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 610 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL, 611 mapping ? mapping->a_ops->read_folio : NULL); 612 dump_stack(); 613 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 614 } 615 #define print_bad_pte(vma, addr, pte, page) \ 616 print_bad_page_map(vma, addr, pte_val(pte), page, PGTABLE_LEVEL_PTE) 617 618 /** 619 * __vm_normal_page() - Get the "struct page" associated with a page table entry. 620 * @vma: The VMA mapping the page table entry. 621 * @addr: The address where the page table entry is mapped. 622 * @pfn: The PFN stored in the page table entry. 623 * @special: Whether the page table entry is marked "special". 624 * @level: The page table level for error reporting purposes only. 625 * @entry: The page table entry value for error reporting purposes only. 626 * 627 * "Special" mappings do not wish to be associated with a "struct page" (either 628 * it doesn't exist, or it exists but they don't want to touch it). In this 629 * case, NULL is returned here. "Normal" mappings do have a struct page and 630 * are ordinarily refcounted. 631 * 632 * Page mappings of the shared zero folios are always considered "special", as 633 * they are not ordinarily refcounted: neither the refcount nor the mapcount 634 * of these folios is adjusted when mapping them into user page tables. 635 * Selected page table walkers (such as GUP) can still identify mappings of the 636 * shared zero folios and work with the underlying "struct page". 637 * 638 * There are 2 broad cases. Firstly, an architecture may define a "special" 639 * page table entry bit, such as pte_special(), in which case this function is 640 * trivial. Secondly, an architecture may not have a spare page table 641 * entry bit, which requires a more complicated scheme, described below. 642 * 643 * With CONFIG_FIND_NORMAL_PAGE, we might have the "special" bit set on 644 * page table entries that actually map "normal" pages: however, that page 645 * cannot be looked up through the PFN stored in the page table entry, but 646 * instead will be looked up through vm_ops->find_normal_page(). So far, this 647 * only applies to PTEs. 648 * 649 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 650 * special mapping (even if there are underlying and valid "struct pages"). 651 * COWed pages of a VM_PFNMAP are always normal. 652 * 653 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 654 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 655 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 656 * mapping will always honor the rule 657 * 658 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 659 * 660 * And for normal mappings this is false. 661 * 662 * This restricts such mappings to be a linear translation from virtual address 663 * to pfn. To get around this restriction, we allow arbitrary mappings so long 664 * as the vma is not a COW mapping; in that case, we know that all ptes are 665 * special (because none can have been COWed). 666 * 667 * 668 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 669 * 670 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 671 * page" backing, however the difference is that _all_ pages with a struct 672 * page (that is, those where pfn_valid is true, except the shared zero 673 * folios) are refcounted and considered normal pages by the VM. 674 * 675 * The disadvantage is that pages are refcounted (which can be slower and 676 * simply not an option for some PFNMAP users). The advantage is that we 677 * don't have to follow the strict linearity rule of PFNMAP mappings in 678 * order to support COWable mappings. 679 * 680 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 681 * NULL if this is a "special" mapping. 682 */ 683 static inline struct page *__vm_normal_page(struct vm_area_struct *vma, 684 unsigned long addr, unsigned long pfn, bool special, 685 unsigned long long entry, enum pgtable_level level) 686 { 687 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 688 if (unlikely(special)) { 689 #ifdef CONFIG_FIND_NORMAL_PAGE 690 if (vma->vm_ops && vma->vm_ops->find_normal_page) 691 return vma->vm_ops->find_normal_page(vma, addr); 692 #endif /* CONFIG_FIND_NORMAL_PAGE */ 693 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 694 return NULL; 695 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)) 696 return NULL; 697 698 print_bad_page_map(vma, addr, entry, NULL, level); 699 return NULL; 700 } 701 /* 702 * With CONFIG_ARCH_HAS_PTE_SPECIAL, any special page table 703 * mappings (incl. shared zero folios) are marked accordingly. 704 */ 705 } else { 706 if (unlikely(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) { 707 if (vma->vm_flags & VM_MIXEDMAP) { 708 /* If it has a "struct page", it's "normal". */ 709 if (!pfn_valid(pfn)) 710 return NULL; 711 } else { 712 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; 713 714 /* Only CoW'ed anon folios are "normal". */ 715 if (pfn == vma->vm_pgoff + off) 716 return NULL; 717 if (!is_cow_mapping(vma->vm_flags)) 718 return NULL; 719 } 720 } 721 722 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)) 723 return NULL; 724 } 725 726 if (unlikely(pfn > highest_memmap_pfn)) { 727 /* Corrupted page table entry. */ 728 print_bad_page_map(vma, addr, entry, NULL, level); 729 return NULL; 730 } 731 /* 732 * NOTE! We still have PageReserved() pages in the page tables. 733 * For example, VDSO mappings can cause them to exist. 734 */ 735 VM_WARN_ON_ONCE(is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)); 736 return pfn_to_page(pfn); 737 } 738 739 /** 740 * vm_normal_page() - Get the "struct page" associated with a PTE 741 * @vma: The VMA mapping the @pte. 742 * @addr: The address where the @pte is mapped. 743 * @pte: The PTE. 744 * 745 * Get the "struct page" associated with a PTE. See __vm_normal_page() 746 * for details on "normal" and "special" mappings. 747 * 748 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 749 * NULL if this is a "special" mapping. 750 */ 751 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 752 pte_t pte) 753 { 754 return __vm_normal_page(vma, addr, pte_pfn(pte), pte_special(pte), 755 pte_val(pte), PGTABLE_LEVEL_PTE); 756 } 757 758 /** 759 * vm_normal_folio() - Get the "struct folio" associated with a PTE 760 * @vma: The VMA mapping the @pte. 761 * @addr: The address where the @pte is mapped. 762 * @pte: The PTE. 763 * 764 * Get the "struct folio" associated with a PTE. See __vm_normal_page() 765 * for details on "normal" and "special" mappings. 766 * 767 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns 768 * NULL if this is a "special" mapping. 769 */ 770 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 771 pte_t pte) 772 { 773 struct page *page = vm_normal_page(vma, addr, pte); 774 775 if (page) 776 return page_folio(page); 777 return NULL; 778 } 779 780 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 781 /** 782 * vm_normal_page_pmd() - Get the "struct page" associated with a PMD 783 * @vma: The VMA mapping the @pmd. 784 * @addr: The address where the @pmd is mapped. 785 * @pmd: The PMD. 786 * 787 * Get the "struct page" associated with a PTE. See __vm_normal_page() 788 * for details on "normal" and "special" mappings. 789 * 790 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 791 * NULL if this is a "special" mapping. 792 */ 793 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 794 pmd_t pmd) 795 { 796 return __vm_normal_page(vma, addr, pmd_pfn(pmd), pmd_special(pmd), 797 pmd_val(pmd), PGTABLE_LEVEL_PMD); 798 } 799 800 /** 801 * vm_normal_folio_pmd() - Get the "struct folio" associated with a PMD 802 * @vma: The VMA mapping the @pmd. 803 * @addr: The address where the @pmd is mapped. 804 * @pmd: The PMD. 805 * 806 * Get the "struct folio" associated with a PTE. See __vm_normal_page() 807 * for details on "normal" and "special" mappings. 808 * 809 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns 810 * NULL if this is a "special" mapping. 811 */ 812 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 813 unsigned long addr, pmd_t pmd) 814 { 815 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 816 817 if (page) 818 return page_folio(page); 819 return NULL; 820 } 821 822 /** 823 * vm_normal_page_pud() - Get the "struct page" associated with a PUD 824 * @vma: The VMA mapping the @pud. 825 * @addr: The address where the @pud is mapped. 826 * @pud: The PUD. 827 * 828 * Get the "struct page" associated with a PUD. See __vm_normal_page() 829 * for details on "normal" and "special" mappings. 830 * 831 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 832 * NULL if this is a "special" mapping. 833 */ 834 struct page *vm_normal_page_pud(struct vm_area_struct *vma, 835 unsigned long addr, pud_t pud) 836 { 837 return __vm_normal_page(vma, addr, pud_pfn(pud), pud_special(pud), 838 pud_val(pud), PGTABLE_LEVEL_PUD); 839 } 840 #endif 841 842 /** 843 * restore_exclusive_pte - Restore a device-exclusive entry 844 * @vma: VMA covering @address 845 * @folio: the mapped folio 846 * @page: the mapped folio page 847 * @address: the virtual address 848 * @ptep: pte pointer into the locked page table mapping the folio page 849 * @orig_pte: pte value at @ptep 850 * 851 * Restore a device-exclusive non-swap entry to an ordinary present pte. 852 * 853 * The folio and the page table must be locked, and MMU notifiers must have 854 * been called to invalidate any (exclusive) device mappings. 855 * 856 * Locking the folio makes sure that anybody who just converted the pte to 857 * a device-exclusive entry can map it into the device to make forward 858 * progress without others converting it back until the folio was unlocked. 859 * 860 * If the folio lock ever becomes an issue, we can stop relying on the folio 861 * lock; it might make some scenarios with heavy thrashing less likely to 862 * make forward progress, but these scenarios might not be valid use cases. 863 * 864 * Note that the folio lock does not protect against all cases of concurrent 865 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers 866 * must use MMU notifiers to sync against any concurrent changes. 867 */ 868 static void restore_exclusive_pte(struct vm_area_struct *vma, 869 struct folio *folio, struct page *page, unsigned long address, 870 pte_t *ptep, pte_t orig_pte) 871 { 872 pte_t pte; 873 874 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 875 876 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 877 if (pte_swp_soft_dirty(orig_pte)) 878 pte = pte_mksoft_dirty(pte); 879 880 if (pte_swp_uffd_wp(orig_pte)) 881 pte = pte_mkuffd_wp(pte); 882 883 if ((vma->vm_flags & VM_WRITE) && 884 can_change_pte_writable(vma, address, pte)) { 885 if (folio_test_dirty(folio)) 886 pte = pte_mkdirty(pte); 887 pte = pte_mkwrite(pte, vma); 888 } 889 set_pte_at(vma->vm_mm, address, ptep, pte); 890 891 /* 892 * No need to invalidate - it was non-present before. However 893 * secondary CPUs may have mappings that need invalidating. 894 */ 895 update_mmu_cache(vma, address, ptep); 896 } 897 898 /* 899 * Tries to restore an exclusive pte if the page lock can be acquired without 900 * sleeping. 901 */ 902 static int try_restore_exclusive_pte(struct vm_area_struct *vma, 903 unsigned long addr, pte_t *ptep, pte_t orig_pte) 904 { 905 const softleaf_t entry = softleaf_from_pte(orig_pte); 906 struct page *page = softleaf_to_page(entry); 907 struct folio *folio = page_folio(page); 908 909 if (folio_trylock(folio)) { 910 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte); 911 folio_unlock(folio); 912 return 0; 913 } 914 915 return -EBUSY; 916 } 917 918 /* 919 * copy one vm_area from one task to the other. Assumes the page tables 920 * already present in the new task to be cleared in the whole range 921 * covered by this vma. 922 */ 923 924 static unsigned long 925 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 926 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 927 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 928 { 929 vm_flags_t vm_flags = dst_vma->vm_flags; 930 pte_t orig_pte = ptep_get(src_pte); 931 softleaf_t entry = softleaf_from_pte(orig_pte); 932 pte_t pte = orig_pte; 933 struct folio *folio; 934 struct page *page; 935 936 if (likely(softleaf_is_swap(entry))) { 937 if (swap_duplicate(entry) < 0) 938 return -EIO; 939 940 /* make sure dst_mm is on swapoff's mmlist. */ 941 if (unlikely(list_empty(&dst_mm->mmlist))) { 942 spin_lock(&mmlist_lock); 943 if (list_empty(&dst_mm->mmlist)) 944 list_add(&dst_mm->mmlist, 945 &src_mm->mmlist); 946 spin_unlock(&mmlist_lock); 947 } 948 /* Mark the swap entry as shared. */ 949 if (pte_swp_exclusive(orig_pte)) { 950 pte = pte_swp_clear_exclusive(orig_pte); 951 set_pte_at(src_mm, addr, src_pte, pte); 952 } 953 rss[MM_SWAPENTS]++; 954 } else if (softleaf_is_migration(entry)) { 955 folio = softleaf_to_folio(entry); 956 957 rss[mm_counter(folio)]++; 958 959 if (!softleaf_is_migration_read(entry) && 960 is_cow_mapping(vm_flags)) { 961 /* 962 * COW mappings require pages in both parent and child 963 * to be set to read. A previously exclusive entry is 964 * now shared. 965 */ 966 entry = make_readable_migration_entry( 967 swp_offset(entry)); 968 pte = softleaf_to_pte(entry); 969 if (pte_swp_soft_dirty(orig_pte)) 970 pte = pte_swp_mksoft_dirty(pte); 971 if (pte_swp_uffd_wp(orig_pte)) 972 pte = pte_swp_mkuffd_wp(pte); 973 set_pte_at(src_mm, addr, src_pte, pte); 974 } 975 } else if (softleaf_is_device_private(entry)) { 976 page = softleaf_to_page(entry); 977 folio = page_folio(page); 978 979 /* 980 * Update rss count even for unaddressable pages, as 981 * they should treated just like normal pages in this 982 * respect. 983 * 984 * We will likely want to have some new rss counters 985 * for unaddressable pages, at some point. But for now 986 * keep things as they are. 987 */ 988 folio_get(folio); 989 rss[mm_counter(folio)]++; 990 /* Cannot fail as these pages cannot get pinned. */ 991 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma); 992 993 /* 994 * We do not preserve soft-dirty information, because so 995 * far, checkpoint/restore is the only feature that 996 * requires that. And checkpoint/restore does not work 997 * when a device driver is involved (you cannot easily 998 * save and restore device driver state). 999 */ 1000 if (softleaf_is_device_private_write(entry) && 1001 is_cow_mapping(vm_flags)) { 1002 entry = make_readable_device_private_entry( 1003 swp_offset(entry)); 1004 pte = swp_entry_to_pte(entry); 1005 if (pte_swp_uffd_wp(orig_pte)) 1006 pte = pte_swp_mkuffd_wp(pte); 1007 set_pte_at(src_mm, addr, src_pte, pte); 1008 } 1009 } else if (softleaf_is_device_exclusive(entry)) { 1010 /* 1011 * Make device exclusive entries present by restoring the 1012 * original entry then copying as for a present pte. Device 1013 * exclusive entries currently only support private writable 1014 * (ie. COW) mappings. 1015 */ 1016 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 1017 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte)) 1018 return -EBUSY; 1019 return -ENOENT; 1020 } else if (softleaf_is_marker(entry)) { 1021 pte_marker marker = copy_pte_marker(entry, dst_vma); 1022 1023 if (marker) 1024 set_pte_at(dst_mm, addr, dst_pte, 1025 make_pte_marker(marker)); 1026 return 0; 1027 } 1028 if (!userfaultfd_wp(dst_vma)) 1029 pte = pte_swp_clear_uffd_wp(pte); 1030 set_pte_at(dst_mm, addr, dst_pte, pte); 1031 return 0; 1032 } 1033 1034 /* 1035 * Copy a present and normal page. 1036 * 1037 * NOTE! The usual case is that this isn't required; 1038 * instead, the caller can just increase the page refcount 1039 * and re-use the pte the traditional way. 1040 * 1041 * And if we need a pre-allocated page but don't yet have 1042 * one, return a negative error to let the preallocation 1043 * code know so that it can do so outside the page table 1044 * lock. 1045 */ 1046 static inline int 1047 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1048 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 1049 struct folio **prealloc, struct page *page) 1050 { 1051 struct folio *new_folio; 1052 pte_t pte; 1053 1054 new_folio = *prealloc; 1055 if (!new_folio) 1056 return -EAGAIN; 1057 1058 /* 1059 * We have a prealloc page, all good! Take it 1060 * over and copy the page & arm it. 1061 */ 1062 1063 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 1064 return -EHWPOISON; 1065 1066 *prealloc = NULL; 1067 __folio_mark_uptodate(new_folio); 1068 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 1069 folio_add_lru_vma(new_folio, dst_vma); 1070 rss[MM_ANONPAGES]++; 1071 1072 /* All done, just insert the new page copy in the child */ 1073 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot); 1074 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 1075 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 1076 /* Uffd-wp needs to be delivered to dest pte as well */ 1077 pte = pte_mkuffd_wp(pte); 1078 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 1079 return 0; 1080 } 1081 1082 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 1083 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 1084 pte_t pte, unsigned long addr, int nr) 1085 { 1086 struct mm_struct *src_mm = src_vma->vm_mm; 1087 1088 /* If it's a COW mapping, write protect it both processes. */ 1089 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 1090 wrprotect_ptes(src_mm, addr, src_pte, nr); 1091 pte = pte_wrprotect(pte); 1092 } 1093 1094 /* If it's a shared mapping, mark it clean in the child. */ 1095 if (src_vma->vm_flags & VM_SHARED) 1096 pte = pte_mkclean(pte); 1097 pte = pte_mkold(pte); 1098 1099 if (!userfaultfd_wp(dst_vma)) 1100 pte = pte_clear_uffd_wp(pte); 1101 1102 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 1103 } 1104 1105 /* 1106 * Copy one present PTE, trying to batch-process subsequent PTEs that map 1107 * consecutive pages of the same folio by copying them as well. 1108 * 1109 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 1110 * Otherwise, returns the number of copied PTEs (at least 1). 1111 */ 1112 static inline int 1113 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1114 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 1115 int max_nr, int *rss, struct folio **prealloc) 1116 { 1117 fpb_t flags = FPB_MERGE_WRITE; 1118 struct page *page; 1119 struct folio *folio; 1120 int err, nr; 1121 1122 page = vm_normal_page(src_vma, addr, pte); 1123 if (unlikely(!page)) 1124 goto copy_pte; 1125 1126 folio = page_folio(page); 1127 1128 /* 1129 * If we likely have to copy, just don't bother with batching. Make 1130 * sure that the common "small folio" case is as fast as possible 1131 * by keeping the batching logic separate. 1132 */ 1133 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1134 if (!(src_vma->vm_flags & VM_SHARED)) 1135 flags |= FPB_RESPECT_DIRTY; 1136 if (vma_soft_dirty_enabled(src_vma)) 1137 flags |= FPB_RESPECT_SOFT_DIRTY; 1138 1139 nr = folio_pte_batch_flags(folio, src_vma, src_pte, &pte, max_nr, flags); 1140 folio_ref_add(folio, nr); 1141 if (folio_test_anon(folio)) { 1142 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1143 nr, dst_vma, src_vma))) { 1144 folio_ref_sub(folio, nr); 1145 return -EAGAIN; 1146 } 1147 rss[MM_ANONPAGES] += nr; 1148 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1149 } else { 1150 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma); 1151 rss[mm_counter_file(folio)] += nr; 1152 } 1153 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1154 addr, nr); 1155 return nr; 1156 } 1157 1158 folio_get(folio); 1159 if (folio_test_anon(folio)) { 1160 /* 1161 * If this page may have been pinned by the parent process, 1162 * copy the page immediately for the child so that we'll always 1163 * guarantee the pinned page won't be randomly replaced in the 1164 * future. 1165 */ 1166 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) { 1167 /* Page may be pinned, we have to copy. */ 1168 folio_put(folio); 1169 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1170 addr, rss, prealloc, page); 1171 return err ? err : 1; 1172 } 1173 rss[MM_ANONPAGES]++; 1174 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1175 } else { 1176 folio_dup_file_rmap_pte(folio, page, dst_vma); 1177 rss[mm_counter_file(folio)]++; 1178 } 1179 1180 copy_pte: 1181 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1182 return 1; 1183 } 1184 1185 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1186 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1187 { 1188 struct folio *new_folio; 1189 1190 if (need_zero) 1191 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1192 else 1193 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1194 1195 if (!new_folio) 1196 return NULL; 1197 1198 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1199 folio_put(new_folio); 1200 return NULL; 1201 } 1202 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1203 1204 return new_folio; 1205 } 1206 1207 static int 1208 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1209 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1210 unsigned long end) 1211 { 1212 struct mm_struct *dst_mm = dst_vma->vm_mm; 1213 struct mm_struct *src_mm = src_vma->vm_mm; 1214 pte_t *orig_src_pte, *orig_dst_pte; 1215 pte_t *src_pte, *dst_pte; 1216 pmd_t dummy_pmdval; 1217 pte_t ptent; 1218 spinlock_t *src_ptl, *dst_ptl; 1219 int progress, max_nr, ret = 0; 1220 int rss[NR_MM_COUNTERS]; 1221 softleaf_t entry = softleaf_mk_none(); 1222 struct folio *prealloc = NULL; 1223 int nr; 1224 1225 again: 1226 progress = 0; 1227 init_rss_vec(rss); 1228 1229 /* 1230 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1231 * error handling here, assume that exclusive mmap_lock on dst and src 1232 * protects anon from unexpected THP transitions; with shmem and file 1233 * protected by mmap_lock-less collapse skipping areas with anon_vma 1234 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1235 * can remove such assumptions later, but this is good enough for now. 1236 */ 1237 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1238 if (!dst_pte) { 1239 ret = -ENOMEM; 1240 goto out; 1241 } 1242 1243 /* 1244 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1245 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1246 * the PTE page is stable, and there is no need to get pmdval and do 1247 * pmd_same() check. 1248 */ 1249 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1250 &src_ptl); 1251 if (!src_pte) { 1252 pte_unmap_unlock(dst_pte, dst_ptl); 1253 /* ret == 0 */ 1254 goto out; 1255 } 1256 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1257 orig_src_pte = src_pte; 1258 orig_dst_pte = dst_pte; 1259 arch_enter_lazy_mmu_mode(); 1260 1261 do { 1262 nr = 1; 1263 1264 /* 1265 * We are holding two locks at this point - either of them 1266 * could generate latencies in another task on another CPU. 1267 */ 1268 if (progress >= 32) { 1269 progress = 0; 1270 if (need_resched() || 1271 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1272 break; 1273 } 1274 ptent = ptep_get(src_pte); 1275 if (pte_none(ptent)) { 1276 progress++; 1277 continue; 1278 } 1279 if (unlikely(!pte_present(ptent))) { 1280 ret = copy_nonpresent_pte(dst_mm, src_mm, 1281 dst_pte, src_pte, 1282 dst_vma, src_vma, 1283 addr, rss); 1284 if (ret == -EIO) { 1285 entry = softleaf_from_pte(ptep_get(src_pte)); 1286 break; 1287 } else if (ret == -EBUSY) { 1288 break; 1289 } else if (!ret) { 1290 progress += 8; 1291 continue; 1292 } 1293 ptent = ptep_get(src_pte); 1294 VM_WARN_ON_ONCE(!pte_present(ptent)); 1295 1296 /* 1297 * Device exclusive entry restored, continue by copying 1298 * the now present pte. 1299 */ 1300 WARN_ON_ONCE(ret != -ENOENT); 1301 } 1302 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1303 max_nr = (end - addr) / PAGE_SIZE; 1304 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1305 ptent, addr, max_nr, rss, &prealloc); 1306 /* 1307 * If we need a pre-allocated page for this pte, drop the 1308 * locks, allocate, and try again. 1309 * If copy failed due to hwpoison in source page, break out. 1310 */ 1311 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1312 break; 1313 if (unlikely(prealloc)) { 1314 /* 1315 * pre-alloc page cannot be reused by next time so as 1316 * to strictly follow mempolicy (e.g., alloc_page_vma() 1317 * will allocate page according to address). This 1318 * could only happen if one pinned pte changed. 1319 */ 1320 folio_put(prealloc); 1321 prealloc = NULL; 1322 } 1323 nr = ret; 1324 progress += 8 * nr; 1325 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1326 addr != end); 1327 1328 arch_leave_lazy_mmu_mode(); 1329 pte_unmap_unlock(orig_src_pte, src_ptl); 1330 add_mm_rss_vec(dst_mm, rss); 1331 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1332 cond_resched(); 1333 1334 if (ret == -EIO) { 1335 VM_WARN_ON_ONCE(!entry.val); 1336 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1337 ret = -ENOMEM; 1338 goto out; 1339 } 1340 entry.val = 0; 1341 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1342 goto out; 1343 } else if (ret == -EAGAIN) { 1344 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1345 if (!prealloc) 1346 return -ENOMEM; 1347 } else if (ret < 0) { 1348 VM_WARN_ON_ONCE(1); 1349 } 1350 1351 /* We've captured and resolved the error. Reset, try again. */ 1352 ret = 0; 1353 1354 if (addr != end) 1355 goto again; 1356 out: 1357 if (unlikely(prealloc)) 1358 folio_put(prealloc); 1359 return ret; 1360 } 1361 1362 static inline int 1363 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1364 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1365 unsigned long end) 1366 { 1367 struct mm_struct *dst_mm = dst_vma->vm_mm; 1368 struct mm_struct *src_mm = src_vma->vm_mm; 1369 pmd_t *src_pmd, *dst_pmd; 1370 unsigned long next; 1371 1372 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1373 if (!dst_pmd) 1374 return -ENOMEM; 1375 src_pmd = pmd_offset(src_pud, addr); 1376 do { 1377 next = pmd_addr_end(addr, end); 1378 if (pmd_is_huge(*src_pmd)) { 1379 int err; 1380 1381 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1382 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1383 addr, dst_vma, src_vma); 1384 if (err == -ENOMEM) 1385 return -ENOMEM; 1386 if (!err) 1387 continue; 1388 /* fall through */ 1389 } 1390 if (pmd_none_or_clear_bad(src_pmd)) 1391 continue; 1392 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1393 addr, next)) 1394 return -ENOMEM; 1395 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1396 return 0; 1397 } 1398 1399 static inline int 1400 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1401 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1402 unsigned long end) 1403 { 1404 struct mm_struct *dst_mm = dst_vma->vm_mm; 1405 struct mm_struct *src_mm = src_vma->vm_mm; 1406 pud_t *src_pud, *dst_pud; 1407 unsigned long next; 1408 1409 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1410 if (!dst_pud) 1411 return -ENOMEM; 1412 src_pud = pud_offset(src_p4d, addr); 1413 do { 1414 next = pud_addr_end(addr, end); 1415 if (pud_trans_huge(*src_pud)) { 1416 int err; 1417 1418 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1419 err = copy_huge_pud(dst_mm, src_mm, 1420 dst_pud, src_pud, addr, src_vma); 1421 if (err == -ENOMEM) 1422 return -ENOMEM; 1423 if (!err) 1424 continue; 1425 /* fall through */ 1426 } 1427 if (pud_none_or_clear_bad(src_pud)) 1428 continue; 1429 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1430 addr, next)) 1431 return -ENOMEM; 1432 } while (dst_pud++, src_pud++, addr = next, addr != end); 1433 return 0; 1434 } 1435 1436 static inline int 1437 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1438 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1439 unsigned long end) 1440 { 1441 struct mm_struct *dst_mm = dst_vma->vm_mm; 1442 p4d_t *src_p4d, *dst_p4d; 1443 unsigned long next; 1444 1445 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1446 if (!dst_p4d) 1447 return -ENOMEM; 1448 src_p4d = p4d_offset(src_pgd, addr); 1449 do { 1450 next = p4d_addr_end(addr, end); 1451 if (p4d_none_or_clear_bad(src_p4d)) 1452 continue; 1453 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1454 addr, next)) 1455 return -ENOMEM; 1456 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1457 return 0; 1458 } 1459 1460 /* 1461 * Return true if the vma needs to copy the pgtable during this fork(). Return 1462 * false when we can speed up fork() by allowing lazy page faults later until 1463 * when the child accesses the memory range. 1464 */ 1465 static bool 1466 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1467 { 1468 if (src_vma->vm_flags & VM_COPY_ON_FORK) 1469 return true; 1470 /* 1471 * The presence of an anon_vma indicates an anonymous VMA has page 1472 * tables which naturally cannot be reconstituted on page fault. 1473 */ 1474 if (src_vma->anon_vma) 1475 return true; 1476 1477 /* 1478 * Don't copy ptes where a page fault will fill them correctly. Fork 1479 * becomes much lighter when there are big shared or private readonly 1480 * mappings. The tradeoff is that copy_page_range is more efficient 1481 * than faulting. 1482 */ 1483 return false; 1484 } 1485 1486 int 1487 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1488 { 1489 pgd_t *src_pgd, *dst_pgd; 1490 unsigned long addr = src_vma->vm_start; 1491 unsigned long end = src_vma->vm_end; 1492 struct mm_struct *dst_mm = dst_vma->vm_mm; 1493 struct mm_struct *src_mm = src_vma->vm_mm; 1494 struct mmu_notifier_range range; 1495 unsigned long next; 1496 bool is_cow; 1497 int ret; 1498 1499 if (!vma_needs_copy(dst_vma, src_vma)) 1500 return 0; 1501 1502 if (is_vm_hugetlb_page(src_vma)) 1503 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1504 1505 /* 1506 * We need to invalidate the secondary MMU mappings only when 1507 * there could be a permission downgrade on the ptes of the 1508 * parent mm. And a permission downgrade will only happen if 1509 * is_cow_mapping() returns true. 1510 */ 1511 is_cow = is_cow_mapping(src_vma->vm_flags); 1512 1513 if (is_cow) { 1514 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1515 0, src_mm, addr, end); 1516 mmu_notifier_invalidate_range_start(&range); 1517 /* 1518 * Disabling preemption is not needed for the write side, as 1519 * the read side doesn't spin, but goes to the mmap_lock. 1520 * 1521 * Use the raw variant of the seqcount_t write API to avoid 1522 * lockdep complaining about preemptibility. 1523 */ 1524 vma_assert_write_locked(src_vma); 1525 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1526 } 1527 1528 ret = 0; 1529 dst_pgd = pgd_offset(dst_mm, addr); 1530 src_pgd = pgd_offset(src_mm, addr); 1531 do { 1532 next = pgd_addr_end(addr, end); 1533 if (pgd_none_or_clear_bad(src_pgd)) 1534 continue; 1535 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1536 addr, next))) { 1537 ret = -ENOMEM; 1538 break; 1539 } 1540 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1541 1542 if (is_cow) { 1543 raw_write_seqcount_end(&src_mm->write_protect_seq); 1544 mmu_notifier_invalidate_range_end(&range); 1545 } 1546 return ret; 1547 } 1548 1549 /* Whether we should zap all COWed (private) pages too */ 1550 static inline bool should_zap_cows(struct zap_details *details) 1551 { 1552 /* By default, zap all pages */ 1553 if (!details || details->reclaim_pt) 1554 return true; 1555 1556 /* Or, we zap COWed pages only if the caller wants to */ 1557 return details->even_cows; 1558 } 1559 1560 /* Decides whether we should zap this folio with the folio pointer specified */ 1561 static inline bool should_zap_folio(struct zap_details *details, 1562 struct folio *folio) 1563 { 1564 /* If we can make a decision without *folio.. */ 1565 if (should_zap_cows(details)) 1566 return true; 1567 1568 /* Otherwise we should only zap non-anon folios */ 1569 return !folio_test_anon(folio); 1570 } 1571 1572 static inline bool zap_drop_markers(struct zap_details *details) 1573 { 1574 if (!details) 1575 return false; 1576 1577 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1578 } 1579 1580 /* 1581 * This function makes sure that we'll replace the none pte with an uffd-wp 1582 * swap special pte marker when necessary. Must be with the pgtable lock held. 1583 * 1584 * Returns true if uffd-wp ptes was installed, false otherwise. 1585 */ 1586 static inline bool 1587 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1588 unsigned long addr, pte_t *pte, int nr, 1589 struct zap_details *details, pte_t pteval) 1590 { 1591 bool was_installed = false; 1592 1593 if (!uffd_supports_wp_marker()) 1594 return false; 1595 1596 /* Zap on anonymous always means dropping everything */ 1597 if (vma_is_anonymous(vma)) 1598 return false; 1599 1600 if (zap_drop_markers(details)) 1601 return false; 1602 1603 for (;;) { 1604 /* the PFN in the PTE is irrelevant. */ 1605 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1606 was_installed = true; 1607 if (--nr == 0) 1608 break; 1609 pte++; 1610 addr += PAGE_SIZE; 1611 } 1612 1613 return was_installed; 1614 } 1615 1616 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1617 struct vm_area_struct *vma, struct folio *folio, 1618 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1619 unsigned long addr, struct zap_details *details, int *rss, 1620 bool *force_flush, bool *force_break, bool *any_skipped) 1621 { 1622 struct mm_struct *mm = tlb->mm; 1623 bool delay_rmap = false; 1624 1625 if (!folio_test_anon(folio)) { 1626 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1627 if (pte_dirty(ptent)) { 1628 folio_mark_dirty(folio); 1629 if (tlb_delay_rmap(tlb)) { 1630 delay_rmap = true; 1631 *force_flush = true; 1632 } 1633 } 1634 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1635 folio_mark_accessed(folio); 1636 rss[mm_counter(folio)] -= nr; 1637 } else { 1638 /* We don't need up-to-date accessed/dirty bits. */ 1639 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1640 rss[MM_ANONPAGES] -= nr; 1641 } 1642 /* Checking a single PTE in a batch is sufficient. */ 1643 arch_check_zapped_pte(vma, ptent); 1644 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1645 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1646 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1647 nr, details, ptent); 1648 1649 if (!delay_rmap) { 1650 folio_remove_rmap_ptes(folio, page, nr, vma); 1651 1652 if (unlikely(folio_mapcount(folio) < 0)) 1653 print_bad_pte(vma, addr, ptent, page); 1654 } 1655 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1656 *force_flush = true; 1657 *force_break = true; 1658 } 1659 } 1660 1661 /* 1662 * Zap or skip at least one present PTE, trying to batch-process subsequent 1663 * PTEs that map consecutive pages of the same folio. 1664 * 1665 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1666 */ 1667 static inline int zap_present_ptes(struct mmu_gather *tlb, 1668 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1669 unsigned int max_nr, unsigned long addr, 1670 struct zap_details *details, int *rss, bool *force_flush, 1671 bool *force_break, bool *any_skipped) 1672 { 1673 struct mm_struct *mm = tlb->mm; 1674 struct folio *folio; 1675 struct page *page; 1676 int nr; 1677 1678 page = vm_normal_page(vma, addr, ptent); 1679 if (!page) { 1680 /* We don't need up-to-date accessed/dirty bits. */ 1681 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1682 arch_check_zapped_pte(vma, ptent); 1683 tlb_remove_tlb_entry(tlb, pte, addr); 1684 if (userfaultfd_pte_wp(vma, ptent)) 1685 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1686 pte, 1, details, ptent); 1687 ksm_might_unmap_zero_page(mm, ptent); 1688 return 1; 1689 } 1690 1691 folio = page_folio(page); 1692 if (unlikely(!should_zap_folio(details, folio))) { 1693 *any_skipped = true; 1694 return 1; 1695 } 1696 1697 /* 1698 * Make sure that the common "small folio" case is as fast as possible 1699 * by keeping the batching logic separate. 1700 */ 1701 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1702 nr = folio_pte_batch(folio, pte, ptent, max_nr); 1703 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1704 addr, details, rss, force_flush, 1705 force_break, any_skipped); 1706 return nr; 1707 } 1708 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1709 details, rss, force_flush, force_break, any_skipped); 1710 return 1; 1711 } 1712 1713 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1714 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1715 unsigned int max_nr, unsigned long addr, 1716 struct zap_details *details, int *rss, bool *any_skipped) 1717 { 1718 softleaf_t entry; 1719 int nr = 1; 1720 1721 *any_skipped = true; 1722 entry = softleaf_from_pte(ptent); 1723 if (softleaf_is_device_private(entry) || 1724 softleaf_is_device_exclusive(entry)) { 1725 struct page *page = softleaf_to_page(entry); 1726 struct folio *folio = page_folio(page); 1727 1728 if (unlikely(!should_zap_folio(details, folio))) 1729 return 1; 1730 /* 1731 * Both device private/exclusive mappings should only 1732 * work with anonymous page so far, so we don't need to 1733 * consider uffd-wp bit when zap. For more information, 1734 * see zap_install_uffd_wp_if_needed(). 1735 */ 1736 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1737 rss[mm_counter(folio)]--; 1738 folio_remove_rmap_pte(folio, page, vma); 1739 folio_put(folio); 1740 } else if (softleaf_is_swap(entry)) { 1741 /* Genuine swap entries, hence a private anon pages */ 1742 if (!should_zap_cows(details)) 1743 return 1; 1744 1745 nr = swap_pte_batch(pte, max_nr, ptent); 1746 rss[MM_SWAPENTS] -= nr; 1747 free_swap_and_cache_nr(entry, nr); 1748 } else if (softleaf_is_migration(entry)) { 1749 struct folio *folio = softleaf_to_folio(entry); 1750 1751 if (!should_zap_folio(details, folio)) 1752 return 1; 1753 rss[mm_counter(folio)]--; 1754 } else if (softleaf_is_uffd_wp_marker(entry)) { 1755 /* 1756 * For anon: always drop the marker; for file: only 1757 * drop the marker if explicitly requested. 1758 */ 1759 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1760 return 1; 1761 } else if (softleaf_is_guard_marker(entry)) { 1762 /* 1763 * Ordinary zapping should not remove guard PTE 1764 * markers. Only do so if we should remove PTE markers 1765 * in general. 1766 */ 1767 if (!zap_drop_markers(details)) 1768 return 1; 1769 } else if (softleaf_is_hwpoison(entry) || 1770 softleaf_is_poison_marker(entry)) { 1771 if (!should_zap_cows(details)) 1772 return 1; 1773 } else { 1774 /* We should have covered all the swap entry types */ 1775 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1776 WARN_ON_ONCE(1); 1777 } 1778 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1779 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1780 1781 return nr; 1782 } 1783 1784 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1785 struct vm_area_struct *vma, pte_t *pte, 1786 unsigned long addr, unsigned long end, 1787 struct zap_details *details, int *rss, 1788 bool *force_flush, bool *force_break, 1789 bool *any_skipped) 1790 { 1791 pte_t ptent = ptep_get(pte); 1792 int max_nr = (end - addr) / PAGE_SIZE; 1793 int nr = 0; 1794 1795 /* Skip all consecutive none ptes */ 1796 if (pte_none(ptent)) { 1797 for (nr = 1; nr < max_nr; nr++) { 1798 ptent = ptep_get(pte + nr); 1799 if (!pte_none(ptent)) 1800 break; 1801 } 1802 max_nr -= nr; 1803 if (!max_nr) 1804 return nr; 1805 pte += nr; 1806 addr += nr * PAGE_SIZE; 1807 } 1808 1809 if (pte_present(ptent)) 1810 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1811 details, rss, force_flush, force_break, 1812 any_skipped); 1813 else 1814 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1815 details, rss, any_skipped); 1816 1817 return nr; 1818 } 1819 1820 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1821 struct vm_area_struct *vma, pmd_t *pmd, 1822 unsigned long addr, unsigned long end, 1823 struct zap_details *details) 1824 { 1825 bool force_flush = false, force_break = false; 1826 struct mm_struct *mm = tlb->mm; 1827 int rss[NR_MM_COUNTERS]; 1828 spinlock_t *ptl; 1829 pte_t *start_pte; 1830 pte_t *pte; 1831 pmd_t pmdval; 1832 unsigned long start = addr; 1833 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1834 bool direct_reclaim = true; 1835 int nr; 1836 1837 retry: 1838 tlb_change_page_size(tlb, PAGE_SIZE); 1839 init_rss_vec(rss); 1840 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1841 if (!pte) 1842 return addr; 1843 1844 flush_tlb_batched_pending(mm); 1845 arch_enter_lazy_mmu_mode(); 1846 do { 1847 bool any_skipped = false; 1848 1849 if (need_resched()) { 1850 direct_reclaim = false; 1851 break; 1852 } 1853 1854 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1855 &force_flush, &force_break, &any_skipped); 1856 if (any_skipped) 1857 can_reclaim_pt = false; 1858 if (unlikely(force_break)) { 1859 addr += nr * PAGE_SIZE; 1860 direct_reclaim = false; 1861 break; 1862 } 1863 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1864 1865 /* 1866 * Fast path: try to hold the pmd lock and unmap the PTE page. 1867 * 1868 * If the pte lock was released midway (retry case), or if the attempt 1869 * to hold the pmd lock failed, then we need to recheck all pte entries 1870 * to ensure they are still none, thereby preventing the pte entries 1871 * from being repopulated by another thread. 1872 */ 1873 if (can_reclaim_pt && direct_reclaim && addr == end) 1874 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1875 1876 add_mm_rss_vec(mm, rss); 1877 arch_leave_lazy_mmu_mode(); 1878 1879 /* Do the actual TLB flush before dropping ptl */ 1880 if (force_flush) { 1881 tlb_flush_mmu_tlbonly(tlb); 1882 tlb_flush_rmaps(tlb, vma); 1883 } 1884 pte_unmap_unlock(start_pte, ptl); 1885 1886 /* 1887 * If we forced a TLB flush (either due to running out of 1888 * batch buffers or because we needed to flush dirty TLB 1889 * entries before releasing the ptl), free the batched 1890 * memory too. Come back again if we didn't do everything. 1891 */ 1892 if (force_flush) 1893 tlb_flush_mmu(tlb); 1894 1895 if (addr != end) { 1896 cond_resched(); 1897 force_flush = false; 1898 force_break = false; 1899 goto retry; 1900 } 1901 1902 if (can_reclaim_pt) { 1903 if (direct_reclaim) 1904 free_pte(mm, start, tlb, pmdval); 1905 else 1906 try_to_free_pte(mm, pmd, start, tlb); 1907 } 1908 1909 return addr; 1910 } 1911 1912 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1913 struct vm_area_struct *vma, pud_t *pud, 1914 unsigned long addr, unsigned long end, 1915 struct zap_details *details) 1916 { 1917 pmd_t *pmd; 1918 unsigned long next; 1919 1920 pmd = pmd_offset(pud, addr); 1921 do { 1922 next = pmd_addr_end(addr, end); 1923 if (pmd_is_huge(*pmd)) { 1924 if (next - addr != HPAGE_PMD_SIZE) 1925 __split_huge_pmd(vma, pmd, addr, false); 1926 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1927 addr = next; 1928 continue; 1929 } 1930 /* fall through */ 1931 } else if (details && details->single_folio && 1932 folio_test_pmd_mappable(details->single_folio) && 1933 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1934 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1935 /* 1936 * Take and drop THP pmd lock so that we cannot return 1937 * prematurely, while zap_huge_pmd() has cleared *pmd, 1938 * but not yet decremented compound_mapcount(). 1939 */ 1940 spin_unlock(ptl); 1941 } 1942 if (pmd_none(*pmd)) { 1943 addr = next; 1944 continue; 1945 } 1946 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1947 if (addr != next) 1948 pmd--; 1949 } while (pmd++, cond_resched(), addr != end); 1950 1951 return addr; 1952 } 1953 1954 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1955 struct vm_area_struct *vma, p4d_t *p4d, 1956 unsigned long addr, unsigned long end, 1957 struct zap_details *details) 1958 { 1959 pud_t *pud; 1960 unsigned long next; 1961 1962 pud = pud_offset(p4d, addr); 1963 do { 1964 next = pud_addr_end(addr, end); 1965 if (pud_trans_huge(*pud)) { 1966 if (next - addr != HPAGE_PUD_SIZE) { 1967 mmap_assert_locked(tlb->mm); 1968 split_huge_pud(vma, pud, addr); 1969 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1970 goto next; 1971 /* fall through */ 1972 } 1973 if (pud_none_or_clear_bad(pud)) 1974 continue; 1975 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1976 next: 1977 cond_resched(); 1978 } while (pud++, addr = next, addr != end); 1979 1980 return addr; 1981 } 1982 1983 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1984 struct vm_area_struct *vma, pgd_t *pgd, 1985 unsigned long addr, unsigned long end, 1986 struct zap_details *details) 1987 { 1988 p4d_t *p4d; 1989 unsigned long next; 1990 1991 p4d = p4d_offset(pgd, addr); 1992 do { 1993 next = p4d_addr_end(addr, end); 1994 if (p4d_none_or_clear_bad(p4d)) 1995 continue; 1996 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1997 } while (p4d++, addr = next, addr != end); 1998 1999 return addr; 2000 } 2001 2002 void unmap_page_range(struct mmu_gather *tlb, 2003 struct vm_area_struct *vma, 2004 unsigned long addr, unsigned long end, 2005 struct zap_details *details) 2006 { 2007 pgd_t *pgd; 2008 unsigned long next; 2009 2010 BUG_ON(addr >= end); 2011 tlb_start_vma(tlb, vma); 2012 pgd = pgd_offset(vma->vm_mm, addr); 2013 do { 2014 next = pgd_addr_end(addr, end); 2015 if (pgd_none_or_clear_bad(pgd)) 2016 continue; 2017 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 2018 } while (pgd++, addr = next, addr != end); 2019 tlb_end_vma(tlb, vma); 2020 } 2021 2022 2023 static void unmap_single_vma(struct mmu_gather *tlb, 2024 struct vm_area_struct *vma, unsigned long start_addr, 2025 unsigned long end_addr, struct zap_details *details) 2026 { 2027 unsigned long start = max(vma->vm_start, start_addr); 2028 unsigned long end; 2029 2030 if (start >= vma->vm_end) 2031 return; 2032 end = min(vma->vm_end, end_addr); 2033 if (end <= vma->vm_start) 2034 return; 2035 2036 if (vma->vm_file) 2037 uprobe_munmap(vma, start, end); 2038 2039 if (start != end) { 2040 if (unlikely(is_vm_hugetlb_page(vma))) { 2041 /* 2042 * It is undesirable to test vma->vm_file as it 2043 * should be non-null for valid hugetlb area. 2044 * However, vm_file will be NULL in the error 2045 * cleanup path of mmap_region. When 2046 * hugetlbfs ->mmap method fails, 2047 * mmap_region() nullifies vma->vm_file 2048 * before calling this function to clean up. 2049 * Since no pte has actually been setup, it is 2050 * safe to do nothing in this case. 2051 */ 2052 if (vma->vm_file) { 2053 zap_flags_t zap_flags = details ? 2054 details->zap_flags : 0; 2055 __unmap_hugepage_range(tlb, vma, start, end, 2056 NULL, zap_flags); 2057 } 2058 } else 2059 unmap_page_range(tlb, vma, start, end, details); 2060 } 2061 } 2062 2063 /** 2064 * unmap_vmas - unmap a range of memory covered by a list of vma's 2065 * @tlb: address of the caller's struct mmu_gather 2066 * @mas: the maple state 2067 * @vma: the starting vma 2068 * @start_addr: virtual address at which to start unmapping 2069 * @end_addr: virtual address at which to end unmapping 2070 * @tree_end: The maximum index to check 2071 * 2072 * Unmap all pages in the vma list. 2073 * 2074 * Only addresses between `start' and `end' will be unmapped. 2075 * 2076 * The VMA list must be sorted in ascending virtual address order. 2077 * 2078 * unmap_vmas() assumes that the caller will flush the whole unmapped address 2079 * range after unmap_vmas() returns. So the only responsibility here is to 2080 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 2081 * drops the lock and schedules. 2082 */ 2083 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2084 struct vm_area_struct *vma, unsigned long start_addr, 2085 unsigned long end_addr, unsigned long tree_end) 2086 { 2087 struct mmu_notifier_range range; 2088 struct zap_details details = { 2089 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 2090 /* Careful - we need to zap private pages too! */ 2091 .even_cows = true, 2092 }; 2093 2094 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 2095 start_addr, end_addr); 2096 mmu_notifier_invalidate_range_start(&range); 2097 do { 2098 unsigned long start = start_addr; 2099 unsigned long end = end_addr; 2100 hugetlb_zap_begin(vma, &start, &end); 2101 unmap_single_vma(tlb, vma, start, end, &details); 2102 hugetlb_zap_end(vma, &details); 2103 vma = mas_find(mas, tree_end - 1); 2104 } while (vma && likely(!xa_is_zero(vma))); 2105 mmu_notifier_invalidate_range_end(&range); 2106 } 2107 2108 /** 2109 * zap_page_range_single_batched - remove user pages in a given range 2110 * @tlb: pointer to the caller's struct mmu_gather 2111 * @vma: vm_area_struct holding the applicable pages 2112 * @address: starting address of pages to remove 2113 * @size: number of bytes to remove 2114 * @details: details of shared cache invalidation 2115 * 2116 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for 2117 * hugetlb, @tlb is flushed and re-initialized by this function. 2118 */ 2119 void zap_page_range_single_batched(struct mmu_gather *tlb, 2120 struct vm_area_struct *vma, unsigned long address, 2121 unsigned long size, struct zap_details *details) 2122 { 2123 const unsigned long end = address + size; 2124 struct mmu_notifier_range range; 2125 2126 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm); 2127 2128 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2129 address, end); 2130 hugetlb_zap_begin(vma, &range.start, &range.end); 2131 update_hiwater_rss(vma->vm_mm); 2132 mmu_notifier_invalidate_range_start(&range); 2133 /* 2134 * unmap 'address-end' not 'range.start-range.end' as range 2135 * could have been expanded for hugetlb pmd sharing. 2136 */ 2137 unmap_single_vma(tlb, vma, address, end, details); 2138 mmu_notifier_invalidate_range_end(&range); 2139 if (is_vm_hugetlb_page(vma)) { 2140 /* 2141 * flush tlb and free resources before hugetlb_zap_end(), to 2142 * avoid concurrent page faults' allocation failure. 2143 */ 2144 tlb_finish_mmu(tlb); 2145 hugetlb_zap_end(vma, details); 2146 tlb_gather_mmu(tlb, vma->vm_mm); 2147 } 2148 } 2149 2150 /** 2151 * zap_page_range_single - remove user pages in a given range 2152 * @vma: vm_area_struct holding the applicable pages 2153 * @address: starting address of pages to zap 2154 * @size: number of bytes to zap 2155 * @details: details of shared cache invalidation 2156 * 2157 * The range must fit into one VMA. 2158 */ 2159 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2160 unsigned long size, struct zap_details *details) 2161 { 2162 struct mmu_gather tlb; 2163 2164 tlb_gather_mmu(&tlb, vma->vm_mm); 2165 zap_page_range_single_batched(&tlb, vma, address, size, details); 2166 tlb_finish_mmu(&tlb); 2167 } 2168 2169 /** 2170 * zap_vma_ptes - remove ptes mapping the vma 2171 * @vma: vm_area_struct holding ptes to be zapped 2172 * @address: starting address of pages to zap 2173 * @size: number of bytes to zap 2174 * 2175 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2176 * 2177 * The entire address range must be fully contained within the vma. 2178 * 2179 */ 2180 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2181 unsigned long size) 2182 { 2183 if (!range_in_vma(vma, address, address + size) || 2184 !(vma->vm_flags & VM_PFNMAP)) 2185 return; 2186 2187 zap_page_range_single(vma, address, size, NULL); 2188 } 2189 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2190 2191 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2192 { 2193 pgd_t *pgd; 2194 p4d_t *p4d; 2195 pud_t *pud; 2196 pmd_t *pmd; 2197 2198 pgd = pgd_offset(mm, addr); 2199 p4d = p4d_alloc(mm, pgd, addr); 2200 if (!p4d) 2201 return NULL; 2202 pud = pud_alloc(mm, p4d, addr); 2203 if (!pud) 2204 return NULL; 2205 pmd = pmd_alloc(mm, pud, addr); 2206 if (!pmd) 2207 return NULL; 2208 2209 VM_BUG_ON(pmd_trans_huge(*pmd)); 2210 return pmd; 2211 } 2212 2213 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2214 spinlock_t **ptl) 2215 { 2216 pmd_t *pmd = walk_to_pmd(mm, addr); 2217 2218 if (!pmd) 2219 return NULL; 2220 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2221 } 2222 2223 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2224 { 2225 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2226 /* 2227 * Whoever wants to forbid the zeropage after some zeropages 2228 * might already have been mapped has to scan the page tables and 2229 * bail out on any zeropages. Zeropages in COW mappings can 2230 * be unshared using FAULT_FLAG_UNSHARE faults. 2231 */ 2232 if (mm_forbids_zeropage(vma->vm_mm)) 2233 return false; 2234 /* zeropages in COW mappings are common and unproblematic. */ 2235 if (is_cow_mapping(vma->vm_flags)) 2236 return true; 2237 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2238 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2239 return true; 2240 /* 2241 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2242 * find the shared zeropage and longterm-pin it, which would 2243 * be problematic as soon as the zeropage gets replaced by a different 2244 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2245 * now differ to what GUP looked up. FSDAX is incompatible to 2246 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2247 * check_vma_flags). 2248 */ 2249 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2250 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2251 } 2252 2253 static int validate_page_before_insert(struct vm_area_struct *vma, 2254 struct page *page) 2255 { 2256 struct folio *folio = page_folio(page); 2257 2258 if (!folio_ref_count(folio)) 2259 return -EINVAL; 2260 if (unlikely(is_zero_folio(folio))) { 2261 if (!vm_mixed_zeropage_allowed(vma)) 2262 return -EINVAL; 2263 return 0; 2264 } 2265 if (folio_test_anon(folio) || page_has_type(page)) 2266 return -EINVAL; 2267 flush_dcache_folio(folio); 2268 return 0; 2269 } 2270 2271 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2272 unsigned long addr, struct page *page, 2273 pgprot_t prot, bool mkwrite) 2274 { 2275 struct folio *folio = page_folio(page); 2276 pte_t pteval = ptep_get(pte); 2277 2278 if (!pte_none(pteval)) { 2279 if (!mkwrite) 2280 return -EBUSY; 2281 2282 /* see insert_pfn(). */ 2283 if (pte_pfn(pteval) != page_to_pfn(page)) { 2284 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval))); 2285 return -EFAULT; 2286 } 2287 pteval = maybe_mkwrite(pteval, vma); 2288 pteval = pte_mkyoung(pteval); 2289 if (ptep_set_access_flags(vma, addr, pte, pteval, 1)) 2290 update_mmu_cache(vma, addr, pte); 2291 return 0; 2292 } 2293 2294 /* Ok, finally just insert the thing.. */ 2295 pteval = mk_pte(page, prot); 2296 if (unlikely(is_zero_folio(folio))) { 2297 pteval = pte_mkspecial(pteval); 2298 } else { 2299 folio_get(folio); 2300 pteval = mk_pte(page, prot); 2301 if (mkwrite) { 2302 pteval = pte_mkyoung(pteval); 2303 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma); 2304 } 2305 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2306 folio_add_file_rmap_pte(folio, page, vma); 2307 } 2308 set_pte_at(vma->vm_mm, addr, pte, pteval); 2309 return 0; 2310 } 2311 2312 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2313 struct page *page, pgprot_t prot, bool mkwrite) 2314 { 2315 int retval; 2316 pte_t *pte; 2317 spinlock_t *ptl; 2318 2319 retval = validate_page_before_insert(vma, page); 2320 if (retval) 2321 goto out; 2322 retval = -ENOMEM; 2323 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2324 if (!pte) 2325 goto out; 2326 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot, 2327 mkwrite); 2328 pte_unmap_unlock(pte, ptl); 2329 out: 2330 return retval; 2331 } 2332 2333 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2334 unsigned long addr, struct page *page, pgprot_t prot) 2335 { 2336 int err; 2337 2338 err = validate_page_before_insert(vma, page); 2339 if (err) 2340 return err; 2341 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false); 2342 } 2343 2344 /* insert_pages() amortizes the cost of spinlock operations 2345 * when inserting pages in a loop. 2346 */ 2347 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2348 struct page **pages, unsigned long *num, pgprot_t prot) 2349 { 2350 pmd_t *pmd = NULL; 2351 pte_t *start_pte, *pte; 2352 spinlock_t *pte_lock; 2353 struct mm_struct *const mm = vma->vm_mm; 2354 unsigned long curr_page_idx = 0; 2355 unsigned long remaining_pages_total = *num; 2356 unsigned long pages_to_write_in_pmd; 2357 int ret; 2358 more: 2359 ret = -EFAULT; 2360 pmd = walk_to_pmd(mm, addr); 2361 if (!pmd) 2362 goto out; 2363 2364 pages_to_write_in_pmd = min_t(unsigned long, 2365 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2366 2367 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2368 ret = -ENOMEM; 2369 if (pte_alloc(mm, pmd)) 2370 goto out; 2371 2372 while (pages_to_write_in_pmd) { 2373 int pte_idx = 0; 2374 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2375 2376 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2377 if (!start_pte) { 2378 ret = -EFAULT; 2379 goto out; 2380 } 2381 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2382 int err = insert_page_in_batch_locked(vma, pte, 2383 addr, pages[curr_page_idx], prot); 2384 if (unlikely(err)) { 2385 pte_unmap_unlock(start_pte, pte_lock); 2386 ret = err; 2387 remaining_pages_total -= pte_idx; 2388 goto out; 2389 } 2390 addr += PAGE_SIZE; 2391 ++curr_page_idx; 2392 } 2393 pte_unmap_unlock(start_pte, pte_lock); 2394 pages_to_write_in_pmd -= batch_size; 2395 remaining_pages_total -= batch_size; 2396 } 2397 if (remaining_pages_total) 2398 goto more; 2399 ret = 0; 2400 out: 2401 *num = remaining_pages_total; 2402 return ret; 2403 } 2404 2405 /** 2406 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2407 * @vma: user vma to map to 2408 * @addr: target start user address of these pages 2409 * @pages: source kernel pages 2410 * @num: in: number of pages to map. out: number of pages that were *not* 2411 * mapped. (0 means all pages were successfully mapped). 2412 * 2413 * Preferred over vm_insert_page() when inserting multiple pages. 2414 * 2415 * In case of error, we may have mapped a subset of the provided 2416 * pages. It is the caller's responsibility to account for this case. 2417 * 2418 * The same restrictions apply as in vm_insert_page(). 2419 */ 2420 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2421 struct page **pages, unsigned long *num) 2422 { 2423 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2424 2425 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2426 return -EFAULT; 2427 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2428 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2429 BUG_ON(vma->vm_flags & VM_PFNMAP); 2430 vm_flags_set(vma, VM_MIXEDMAP); 2431 } 2432 /* Defer page refcount checking till we're about to map that page. */ 2433 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2434 } 2435 EXPORT_SYMBOL(vm_insert_pages); 2436 2437 /** 2438 * vm_insert_page - insert single page into user vma 2439 * @vma: user vma to map to 2440 * @addr: target user address of this page 2441 * @page: source kernel page 2442 * 2443 * This allows drivers to insert individual pages they've allocated 2444 * into a user vma. The zeropage is supported in some VMAs, 2445 * see vm_mixed_zeropage_allowed(). 2446 * 2447 * The page has to be a nice clean _individual_ kernel allocation. 2448 * If you allocate a compound page, you need to have marked it as 2449 * such (__GFP_COMP), or manually just split the page up yourself 2450 * (see split_page()). 2451 * 2452 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2453 * took an arbitrary page protection parameter. This doesn't allow 2454 * that. Your vma protection will have to be set up correctly, which 2455 * means that if you want a shared writable mapping, you'd better 2456 * ask for a shared writable mapping! 2457 * 2458 * The page does not need to be reserved. 2459 * 2460 * Usually this function is called from f_op->mmap() handler 2461 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2462 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2463 * function from other places, for example from page-fault handler. 2464 * 2465 * Return: %0 on success, negative error code otherwise. 2466 */ 2467 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2468 struct page *page) 2469 { 2470 if (addr < vma->vm_start || addr >= vma->vm_end) 2471 return -EFAULT; 2472 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2473 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2474 BUG_ON(vma->vm_flags & VM_PFNMAP); 2475 vm_flags_set(vma, VM_MIXEDMAP); 2476 } 2477 return insert_page(vma, addr, page, vma->vm_page_prot, false); 2478 } 2479 EXPORT_SYMBOL(vm_insert_page); 2480 2481 /* 2482 * __vm_map_pages - maps range of kernel pages into user vma 2483 * @vma: user vma to map to 2484 * @pages: pointer to array of source kernel pages 2485 * @num: number of pages in page array 2486 * @offset: user's requested vm_pgoff 2487 * 2488 * This allows drivers to map range of kernel pages into a user vma. 2489 * The zeropage is supported in some VMAs, see 2490 * vm_mixed_zeropage_allowed(). 2491 * 2492 * Return: 0 on success and error code otherwise. 2493 */ 2494 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2495 unsigned long num, unsigned long offset) 2496 { 2497 unsigned long count = vma_pages(vma); 2498 unsigned long uaddr = vma->vm_start; 2499 int ret, i; 2500 2501 /* Fail if the user requested offset is beyond the end of the object */ 2502 if (offset >= num) 2503 return -ENXIO; 2504 2505 /* Fail if the user requested size exceeds available object size */ 2506 if (count > num - offset) 2507 return -ENXIO; 2508 2509 for (i = 0; i < count; i++) { 2510 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2511 if (ret < 0) 2512 return ret; 2513 uaddr += PAGE_SIZE; 2514 } 2515 2516 return 0; 2517 } 2518 2519 /** 2520 * vm_map_pages - maps range of kernel pages starts with non zero offset 2521 * @vma: user vma to map to 2522 * @pages: pointer to array of source kernel pages 2523 * @num: number of pages in page array 2524 * 2525 * Maps an object consisting of @num pages, catering for the user's 2526 * requested vm_pgoff 2527 * 2528 * If we fail to insert any page into the vma, the function will return 2529 * immediately leaving any previously inserted pages present. Callers 2530 * from the mmap handler may immediately return the error as their caller 2531 * will destroy the vma, removing any successfully inserted pages. Other 2532 * callers should make their own arrangements for calling unmap_region(). 2533 * 2534 * Context: Process context. Called by mmap handlers. 2535 * Return: 0 on success and error code otherwise. 2536 */ 2537 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2538 unsigned long num) 2539 { 2540 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2541 } 2542 EXPORT_SYMBOL(vm_map_pages); 2543 2544 /** 2545 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2546 * @vma: user vma to map to 2547 * @pages: pointer to array of source kernel pages 2548 * @num: number of pages in page array 2549 * 2550 * Similar to vm_map_pages(), except that it explicitly sets the offset 2551 * to 0. This function is intended for the drivers that did not consider 2552 * vm_pgoff. 2553 * 2554 * Context: Process context. Called by mmap handlers. 2555 * Return: 0 on success and error code otherwise. 2556 */ 2557 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2558 unsigned long num) 2559 { 2560 return __vm_map_pages(vma, pages, num, 0); 2561 } 2562 EXPORT_SYMBOL(vm_map_pages_zero); 2563 2564 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2565 unsigned long pfn, pgprot_t prot, bool mkwrite) 2566 { 2567 struct mm_struct *mm = vma->vm_mm; 2568 pte_t *pte, entry; 2569 spinlock_t *ptl; 2570 2571 pte = get_locked_pte(mm, addr, &ptl); 2572 if (!pte) 2573 return VM_FAULT_OOM; 2574 entry = ptep_get(pte); 2575 if (!pte_none(entry)) { 2576 if (mkwrite) { 2577 /* 2578 * For read faults on private mappings the PFN passed 2579 * in may not match the PFN we have mapped if the 2580 * mapped PFN is a writeable COW page. In the mkwrite 2581 * case we are creating a writable PTE for a shared 2582 * mapping and we expect the PFNs to match. If they 2583 * don't match, we are likely racing with block 2584 * allocation and mapping invalidation so just skip the 2585 * update. 2586 */ 2587 if (pte_pfn(entry) != pfn) { 2588 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2589 goto out_unlock; 2590 } 2591 entry = pte_mkyoung(entry); 2592 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2593 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2594 update_mmu_cache(vma, addr, pte); 2595 } 2596 goto out_unlock; 2597 } 2598 2599 /* Ok, finally just insert the thing.. */ 2600 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2601 2602 if (mkwrite) { 2603 entry = pte_mkyoung(entry); 2604 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2605 } 2606 2607 set_pte_at(mm, addr, pte, entry); 2608 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2609 2610 out_unlock: 2611 pte_unmap_unlock(pte, ptl); 2612 return VM_FAULT_NOPAGE; 2613 } 2614 2615 /** 2616 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2617 * @vma: user vma to map to 2618 * @addr: target user address of this page 2619 * @pfn: source kernel pfn 2620 * @pgprot: pgprot flags for the inserted page 2621 * 2622 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2623 * to override pgprot on a per-page basis. 2624 * 2625 * This only makes sense for IO mappings, and it makes no sense for 2626 * COW mappings. In general, using multiple vmas is preferable; 2627 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2628 * impractical. 2629 * 2630 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2631 * caching- and encryption bits different than those of @vma->vm_page_prot, 2632 * because the caching- or encryption mode may not be known at mmap() time. 2633 * 2634 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2635 * to set caching and encryption bits for those vmas (except for COW pages). 2636 * This is ensured by core vm only modifying these page table entries using 2637 * functions that don't touch caching- or encryption bits, using pte_modify() 2638 * if needed. (See for example mprotect()). 2639 * 2640 * Also when new page-table entries are created, this is only done using the 2641 * fault() callback, and never using the value of vma->vm_page_prot, 2642 * except for page-table entries that point to anonymous pages as the result 2643 * of COW. 2644 * 2645 * Context: Process context. May allocate using %GFP_KERNEL. 2646 * Return: vm_fault_t value. 2647 */ 2648 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2649 unsigned long pfn, pgprot_t pgprot) 2650 { 2651 /* 2652 * Technically, architectures with pte_special can avoid all these 2653 * restrictions (same for remap_pfn_range). However we would like 2654 * consistency in testing and feature parity among all, so we should 2655 * try to keep these invariants in place for everybody. 2656 */ 2657 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2658 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2659 (VM_PFNMAP|VM_MIXEDMAP)); 2660 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2661 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2662 2663 if (addr < vma->vm_start || addr >= vma->vm_end) 2664 return VM_FAULT_SIGBUS; 2665 2666 if (!pfn_modify_allowed(pfn, pgprot)) 2667 return VM_FAULT_SIGBUS; 2668 2669 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2670 2671 return insert_pfn(vma, addr, pfn, pgprot, false); 2672 } 2673 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2674 2675 /** 2676 * vmf_insert_pfn - insert single pfn into user vma 2677 * @vma: user vma to map to 2678 * @addr: target user address of this page 2679 * @pfn: source kernel pfn 2680 * 2681 * Similar to vm_insert_page, this allows drivers to insert individual pages 2682 * they've allocated into a user vma. Same comments apply. 2683 * 2684 * This function should only be called from a vm_ops->fault handler, and 2685 * in that case the handler should return the result of this function. 2686 * 2687 * vma cannot be a COW mapping. 2688 * 2689 * As this is called only for pages that do not currently exist, we 2690 * do not need to flush old virtual caches or the TLB. 2691 * 2692 * Context: Process context. May allocate using %GFP_KERNEL. 2693 * Return: vm_fault_t value. 2694 */ 2695 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2696 unsigned long pfn) 2697 { 2698 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2699 } 2700 EXPORT_SYMBOL(vmf_insert_pfn); 2701 2702 static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn, 2703 bool mkwrite) 2704 { 2705 if (unlikely(is_zero_pfn(pfn)) && 2706 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2707 return false; 2708 /* these checks mirror the abort conditions in vm_normal_page */ 2709 if (vma->vm_flags & VM_MIXEDMAP) 2710 return true; 2711 if (is_zero_pfn(pfn)) 2712 return true; 2713 return false; 2714 } 2715 2716 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2717 unsigned long addr, unsigned long pfn, bool mkwrite) 2718 { 2719 pgprot_t pgprot = vma->vm_page_prot; 2720 int err; 2721 2722 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2723 return VM_FAULT_SIGBUS; 2724 2725 if (addr < vma->vm_start || addr >= vma->vm_end) 2726 return VM_FAULT_SIGBUS; 2727 2728 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2729 2730 if (!pfn_modify_allowed(pfn, pgprot)) 2731 return VM_FAULT_SIGBUS; 2732 2733 /* 2734 * If we don't have pte special, then we have to use the pfn_valid() 2735 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2736 * refcount the page if pfn_valid is true (hence insert_page rather 2737 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2738 * without pte special, it would there be refcounted as a normal page. 2739 */ 2740 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) { 2741 struct page *page; 2742 2743 /* 2744 * At this point we are committed to insert_page() 2745 * regardless of whether the caller specified flags that 2746 * result in pfn_t_has_page() == false. 2747 */ 2748 page = pfn_to_page(pfn); 2749 err = insert_page(vma, addr, page, pgprot, mkwrite); 2750 } else { 2751 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2752 } 2753 2754 if (err == -ENOMEM) 2755 return VM_FAULT_OOM; 2756 if (err < 0 && err != -EBUSY) 2757 return VM_FAULT_SIGBUS; 2758 2759 return VM_FAULT_NOPAGE; 2760 } 2761 2762 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 2763 bool write) 2764 { 2765 pgprot_t pgprot = vmf->vma->vm_page_prot; 2766 unsigned long addr = vmf->address; 2767 int err; 2768 2769 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end) 2770 return VM_FAULT_SIGBUS; 2771 2772 err = insert_page(vmf->vma, addr, page, pgprot, write); 2773 if (err == -ENOMEM) 2774 return VM_FAULT_OOM; 2775 if (err < 0 && err != -EBUSY) 2776 return VM_FAULT_SIGBUS; 2777 2778 return VM_FAULT_NOPAGE; 2779 } 2780 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite); 2781 2782 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2783 unsigned long pfn) 2784 { 2785 return __vm_insert_mixed(vma, addr, pfn, false); 2786 } 2787 EXPORT_SYMBOL(vmf_insert_mixed); 2788 2789 /* 2790 * If the insertion of PTE failed because someone else already added a 2791 * different entry in the mean time, we treat that as success as we assume 2792 * the same entry was actually inserted. 2793 */ 2794 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2795 unsigned long addr, unsigned long pfn) 2796 { 2797 return __vm_insert_mixed(vma, addr, pfn, true); 2798 } 2799 2800 /* 2801 * maps a range of physical memory into the requested pages. the old 2802 * mappings are removed. any references to nonexistent pages results 2803 * in null mappings (currently treated as "copy-on-access") 2804 */ 2805 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2806 unsigned long addr, unsigned long end, 2807 unsigned long pfn, pgprot_t prot) 2808 { 2809 pte_t *pte, *mapped_pte; 2810 spinlock_t *ptl; 2811 int err = 0; 2812 2813 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2814 if (!pte) 2815 return -ENOMEM; 2816 arch_enter_lazy_mmu_mode(); 2817 do { 2818 BUG_ON(!pte_none(ptep_get(pte))); 2819 if (!pfn_modify_allowed(pfn, prot)) { 2820 err = -EACCES; 2821 break; 2822 } 2823 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2824 pfn++; 2825 } while (pte++, addr += PAGE_SIZE, addr != end); 2826 arch_leave_lazy_mmu_mode(); 2827 pte_unmap_unlock(mapped_pte, ptl); 2828 return err; 2829 } 2830 2831 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2832 unsigned long addr, unsigned long end, 2833 unsigned long pfn, pgprot_t prot) 2834 { 2835 pmd_t *pmd; 2836 unsigned long next; 2837 int err; 2838 2839 pfn -= addr >> PAGE_SHIFT; 2840 pmd = pmd_alloc(mm, pud, addr); 2841 if (!pmd) 2842 return -ENOMEM; 2843 VM_BUG_ON(pmd_trans_huge(*pmd)); 2844 do { 2845 next = pmd_addr_end(addr, end); 2846 err = remap_pte_range(mm, pmd, addr, next, 2847 pfn + (addr >> PAGE_SHIFT), prot); 2848 if (err) 2849 return err; 2850 } while (pmd++, addr = next, addr != end); 2851 return 0; 2852 } 2853 2854 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2855 unsigned long addr, unsigned long end, 2856 unsigned long pfn, pgprot_t prot) 2857 { 2858 pud_t *pud; 2859 unsigned long next; 2860 int err; 2861 2862 pfn -= addr >> PAGE_SHIFT; 2863 pud = pud_alloc(mm, p4d, addr); 2864 if (!pud) 2865 return -ENOMEM; 2866 do { 2867 next = pud_addr_end(addr, end); 2868 err = remap_pmd_range(mm, pud, addr, next, 2869 pfn + (addr >> PAGE_SHIFT), prot); 2870 if (err) 2871 return err; 2872 } while (pud++, addr = next, addr != end); 2873 return 0; 2874 } 2875 2876 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2877 unsigned long addr, unsigned long end, 2878 unsigned long pfn, pgprot_t prot) 2879 { 2880 p4d_t *p4d; 2881 unsigned long next; 2882 int err; 2883 2884 pfn -= addr >> PAGE_SHIFT; 2885 p4d = p4d_alloc(mm, pgd, addr); 2886 if (!p4d) 2887 return -ENOMEM; 2888 do { 2889 next = p4d_addr_end(addr, end); 2890 err = remap_pud_range(mm, p4d, addr, next, 2891 pfn + (addr >> PAGE_SHIFT), prot); 2892 if (err) 2893 return err; 2894 } while (p4d++, addr = next, addr != end); 2895 return 0; 2896 } 2897 2898 static int get_remap_pgoff(vm_flags_t vm_flags, unsigned long addr, 2899 unsigned long end, unsigned long vm_start, unsigned long vm_end, 2900 unsigned long pfn, pgoff_t *vm_pgoff_p) 2901 { 2902 /* 2903 * There's a horrible special case to handle copy-on-write 2904 * behaviour that some programs depend on. We mark the "original" 2905 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2906 * See vm_normal_page() for details. 2907 */ 2908 if (is_cow_mapping(vm_flags)) { 2909 if (addr != vm_start || end != vm_end) 2910 return -EINVAL; 2911 *vm_pgoff_p = pfn; 2912 } 2913 2914 return 0; 2915 } 2916 2917 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2918 unsigned long pfn, unsigned long size, pgprot_t prot) 2919 { 2920 pgd_t *pgd; 2921 unsigned long next; 2922 unsigned long end = addr + PAGE_ALIGN(size); 2923 struct mm_struct *mm = vma->vm_mm; 2924 int err; 2925 2926 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2927 return -EINVAL; 2928 2929 VM_WARN_ON_ONCE((vma->vm_flags & VM_REMAP_FLAGS) != VM_REMAP_FLAGS); 2930 2931 BUG_ON(addr >= end); 2932 pfn -= addr >> PAGE_SHIFT; 2933 pgd = pgd_offset(mm, addr); 2934 flush_cache_range(vma, addr, end); 2935 do { 2936 next = pgd_addr_end(addr, end); 2937 err = remap_p4d_range(mm, pgd, addr, next, 2938 pfn + (addr >> PAGE_SHIFT), prot); 2939 if (err) 2940 return err; 2941 } while (pgd++, addr = next, addr != end); 2942 2943 return 0; 2944 } 2945 2946 /* 2947 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2948 * must have pre-validated the caching bits of the pgprot_t. 2949 */ 2950 static int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2951 unsigned long pfn, unsigned long size, pgprot_t prot) 2952 { 2953 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2954 2955 if (!error) 2956 return 0; 2957 2958 /* 2959 * A partial pfn range mapping is dangerous: it does not 2960 * maintain page reference counts, and callers may free 2961 * pages due to the error. So zap it early. 2962 */ 2963 zap_page_range_single(vma, addr, size, NULL); 2964 return error; 2965 } 2966 2967 #ifdef __HAVE_PFNMAP_TRACKING 2968 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn, 2969 unsigned long size, pgprot_t *prot) 2970 { 2971 struct pfnmap_track_ctx *ctx; 2972 2973 if (pfnmap_track(pfn, size, prot)) 2974 return ERR_PTR(-EINVAL); 2975 2976 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 2977 if (unlikely(!ctx)) { 2978 pfnmap_untrack(pfn, size); 2979 return ERR_PTR(-ENOMEM); 2980 } 2981 2982 ctx->pfn = pfn; 2983 ctx->size = size; 2984 kref_init(&ctx->kref); 2985 return ctx; 2986 } 2987 2988 void pfnmap_track_ctx_release(struct kref *ref) 2989 { 2990 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref); 2991 2992 pfnmap_untrack(ctx->pfn, ctx->size); 2993 kfree(ctx); 2994 } 2995 2996 static int remap_pfn_range_track(struct vm_area_struct *vma, unsigned long addr, 2997 unsigned long pfn, unsigned long size, pgprot_t prot) 2998 { 2999 struct pfnmap_track_ctx *ctx = NULL; 3000 int err; 3001 3002 size = PAGE_ALIGN(size); 3003 3004 /* 3005 * If we cover the full VMA, we'll perform actual tracking, and 3006 * remember to untrack when the last reference to our tracking 3007 * context from a VMA goes away. We'll keep tracking the whole pfn 3008 * range even during VMA splits and partial unmapping. 3009 * 3010 * If we only cover parts of the VMA, we'll only setup the cachemode 3011 * in the pgprot for the pfn range. 3012 */ 3013 if (addr == vma->vm_start && addr + size == vma->vm_end) { 3014 if (vma->pfnmap_track_ctx) 3015 return -EINVAL; 3016 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot); 3017 if (IS_ERR(ctx)) 3018 return PTR_ERR(ctx); 3019 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) { 3020 return -EINVAL; 3021 } 3022 3023 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 3024 if (ctx) { 3025 if (err) 3026 kref_put(&ctx->kref, pfnmap_track_ctx_release); 3027 else 3028 vma->pfnmap_track_ctx = ctx; 3029 } 3030 return err; 3031 } 3032 3033 static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3034 unsigned long pfn, unsigned long size, pgprot_t prot) 3035 { 3036 return remap_pfn_range_track(vma, addr, pfn, size, prot); 3037 } 3038 #else 3039 static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3040 unsigned long pfn, unsigned long size, pgprot_t prot) 3041 { 3042 return remap_pfn_range_notrack(vma, addr, pfn, size, prot); 3043 } 3044 #endif 3045 3046 void remap_pfn_range_prepare(struct vm_area_desc *desc, unsigned long pfn) 3047 { 3048 /* 3049 * We set addr=VMA start, end=VMA end here, so this won't fail, but we 3050 * check it again on complete and will fail there if specified addr is 3051 * invalid. 3052 */ 3053 get_remap_pgoff(desc->vm_flags, desc->start, desc->end, 3054 desc->start, desc->end, pfn, &desc->pgoff); 3055 desc->vm_flags |= VM_REMAP_FLAGS; 3056 } 3057 3058 static int remap_pfn_range_prepare_vma(struct vm_area_struct *vma, unsigned long addr, 3059 unsigned long pfn, unsigned long size) 3060 { 3061 unsigned long end = addr + PAGE_ALIGN(size); 3062 int err; 3063 3064 err = get_remap_pgoff(vma->vm_flags, addr, end, 3065 vma->vm_start, vma->vm_end, 3066 pfn, &vma->vm_pgoff); 3067 if (err) 3068 return err; 3069 3070 vm_flags_set(vma, VM_REMAP_FLAGS); 3071 return 0; 3072 } 3073 3074 /** 3075 * remap_pfn_range - remap kernel memory to userspace 3076 * @vma: user vma to map to 3077 * @addr: target page aligned user address to start at 3078 * @pfn: page frame number of kernel physical memory address 3079 * @size: size of mapping area 3080 * @prot: page protection flags for this mapping 3081 * 3082 * Note: this is only safe if the mm semaphore is held when called. 3083 * 3084 * Return: %0 on success, negative error code otherwise. 3085 */ 3086 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3087 unsigned long pfn, unsigned long size, pgprot_t prot) 3088 { 3089 int err; 3090 3091 err = remap_pfn_range_prepare_vma(vma, addr, pfn, size); 3092 if (err) 3093 return err; 3094 3095 return do_remap_pfn_range(vma, addr, pfn, size, prot); 3096 } 3097 EXPORT_SYMBOL(remap_pfn_range); 3098 3099 int remap_pfn_range_complete(struct vm_area_struct *vma, unsigned long addr, 3100 unsigned long pfn, unsigned long size, pgprot_t prot) 3101 { 3102 return do_remap_pfn_range(vma, addr, pfn, size, prot); 3103 } 3104 3105 /** 3106 * vm_iomap_memory - remap memory to userspace 3107 * @vma: user vma to map to 3108 * @start: start of the physical memory to be mapped 3109 * @len: size of area 3110 * 3111 * This is a simplified io_remap_pfn_range() for common driver use. The 3112 * driver just needs to give us the physical memory range to be mapped, 3113 * we'll figure out the rest from the vma information. 3114 * 3115 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 3116 * whatever write-combining details or similar. 3117 * 3118 * Return: %0 on success, negative error code otherwise. 3119 */ 3120 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 3121 { 3122 unsigned long vm_len, pfn, pages; 3123 3124 /* Check that the physical memory area passed in looks valid */ 3125 if (start + len < start) 3126 return -EINVAL; 3127 /* 3128 * You *really* shouldn't map things that aren't page-aligned, 3129 * but we've historically allowed it because IO memory might 3130 * just have smaller alignment. 3131 */ 3132 len += start & ~PAGE_MASK; 3133 pfn = start >> PAGE_SHIFT; 3134 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 3135 if (pfn + pages < pfn) 3136 return -EINVAL; 3137 3138 /* We start the mapping 'vm_pgoff' pages into the area */ 3139 if (vma->vm_pgoff > pages) 3140 return -EINVAL; 3141 pfn += vma->vm_pgoff; 3142 pages -= vma->vm_pgoff; 3143 3144 /* Can we fit all of the mapping? */ 3145 vm_len = vma->vm_end - vma->vm_start; 3146 if (vm_len >> PAGE_SHIFT > pages) 3147 return -EINVAL; 3148 3149 /* Ok, let it rip */ 3150 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 3151 } 3152 EXPORT_SYMBOL(vm_iomap_memory); 3153 3154 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 3155 unsigned long addr, unsigned long end, 3156 pte_fn_t fn, void *data, bool create, 3157 pgtbl_mod_mask *mask) 3158 { 3159 pte_t *pte, *mapped_pte; 3160 int err = 0; 3161 spinlock_t *ptl; 3162 3163 if (create) { 3164 mapped_pte = pte = (mm == &init_mm) ? 3165 pte_alloc_kernel_track(pmd, addr, mask) : 3166 pte_alloc_map_lock(mm, pmd, addr, &ptl); 3167 if (!pte) 3168 return -ENOMEM; 3169 } else { 3170 mapped_pte = pte = (mm == &init_mm) ? 3171 pte_offset_kernel(pmd, addr) : 3172 pte_offset_map_lock(mm, pmd, addr, &ptl); 3173 if (!pte) 3174 return -EINVAL; 3175 } 3176 3177 arch_enter_lazy_mmu_mode(); 3178 3179 if (fn) { 3180 do { 3181 if (create || !pte_none(ptep_get(pte))) { 3182 err = fn(pte, addr, data); 3183 if (err) 3184 break; 3185 } 3186 } while (pte++, addr += PAGE_SIZE, addr != end); 3187 } 3188 *mask |= PGTBL_PTE_MODIFIED; 3189 3190 arch_leave_lazy_mmu_mode(); 3191 3192 if (mm != &init_mm) 3193 pte_unmap_unlock(mapped_pte, ptl); 3194 return err; 3195 } 3196 3197 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 3198 unsigned long addr, unsigned long end, 3199 pte_fn_t fn, void *data, bool create, 3200 pgtbl_mod_mask *mask) 3201 { 3202 pmd_t *pmd; 3203 unsigned long next; 3204 int err = 0; 3205 3206 BUG_ON(pud_leaf(*pud)); 3207 3208 if (create) { 3209 pmd = pmd_alloc_track(mm, pud, addr, mask); 3210 if (!pmd) 3211 return -ENOMEM; 3212 } else { 3213 pmd = pmd_offset(pud, addr); 3214 } 3215 do { 3216 next = pmd_addr_end(addr, end); 3217 if (pmd_none(*pmd) && !create) 3218 continue; 3219 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 3220 return -EINVAL; 3221 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 3222 if (!create) 3223 continue; 3224 pmd_clear_bad(pmd); 3225 } 3226 err = apply_to_pte_range(mm, pmd, addr, next, 3227 fn, data, create, mask); 3228 if (err) 3229 break; 3230 } while (pmd++, addr = next, addr != end); 3231 3232 return err; 3233 } 3234 3235 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 3236 unsigned long addr, unsigned long end, 3237 pte_fn_t fn, void *data, bool create, 3238 pgtbl_mod_mask *mask) 3239 { 3240 pud_t *pud; 3241 unsigned long next; 3242 int err = 0; 3243 3244 if (create) { 3245 pud = pud_alloc_track(mm, p4d, addr, mask); 3246 if (!pud) 3247 return -ENOMEM; 3248 } else { 3249 pud = pud_offset(p4d, addr); 3250 } 3251 do { 3252 next = pud_addr_end(addr, end); 3253 if (pud_none(*pud) && !create) 3254 continue; 3255 if (WARN_ON_ONCE(pud_leaf(*pud))) 3256 return -EINVAL; 3257 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 3258 if (!create) 3259 continue; 3260 pud_clear_bad(pud); 3261 } 3262 err = apply_to_pmd_range(mm, pud, addr, next, 3263 fn, data, create, mask); 3264 if (err) 3265 break; 3266 } while (pud++, addr = next, addr != end); 3267 3268 return err; 3269 } 3270 3271 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 3272 unsigned long addr, unsigned long end, 3273 pte_fn_t fn, void *data, bool create, 3274 pgtbl_mod_mask *mask) 3275 { 3276 p4d_t *p4d; 3277 unsigned long next; 3278 int err = 0; 3279 3280 if (create) { 3281 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3282 if (!p4d) 3283 return -ENOMEM; 3284 } else { 3285 p4d = p4d_offset(pgd, addr); 3286 } 3287 do { 3288 next = p4d_addr_end(addr, end); 3289 if (p4d_none(*p4d) && !create) 3290 continue; 3291 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3292 return -EINVAL; 3293 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3294 if (!create) 3295 continue; 3296 p4d_clear_bad(p4d); 3297 } 3298 err = apply_to_pud_range(mm, p4d, addr, next, 3299 fn, data, create, mask); 3300 if (err) 3301 break; 3302 } while (p4d++, addr = next, addr != end); 3303 3304 return err; 3305 } 3306 3307 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3308 unsigned long size, pte_fn_t fn, 3309 void *data, bool create) 3310 { 3311 pgd_t *pgd; 3312 unsigned long start = addr, next; 3313 unsigned long end = addr + size; 3314 pgtbl_mod_mask mask = 0; 3315 int err = 0; 3316 3317 if (WARN_ON(addr >= end)) 3318 return -EINVAL; 3319 3320 pgd = pgd_offset(mm, addr); 3321 do { 3322 next = pgd_addr_end(addr, end); 3323 if (pgd_none(*pgd) && !create) 3324 continue; 3325 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3326 err = -EINVAL; 3327 break; 3328 } 3329 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3330 if (!create) 3331 continue; 3332 pgd_clear_bad(pgd); 3333 } 3334 err = apply_to_p4d_range(mm, pgd, addr, next, 3335 fn, data, create, &mask); 3336 if (err) 3337 break; 3338 } while (pgd++, addr = next, addr != end); 3339 3340 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3341 arch_sync_kernel_mappings(start, start + size); 3342 3343 return err; 3344 } 3345 3346 /* 3347 * Scan a region of virtual memory, filling in page tables as necessary 3348 * and calling a provided function on each leaf page table. 3349 */ 3350 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3351 unsigned long size, pte_fn_t fn, void *data) 3352 { 3353 return __apply_to_page_range(mm, addr, size, fn, data, true); 3354 } 3355 EXPORT_SYMBOL_GPL(apply_to_page_range); 3356 3357 /* 3358 * Scan a region of virtual memory, calling a provided function on 3359 * each leaf page table where it exists. 3360 * 3361 * Unlike apply_to_page_range, this does _not_ fill in page tables 3362 * where they are absent. 3363 */ 3364 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3365 unsigned long size, pte_fn_t fn, void *data) 3366 { 3367 return __apply_to_page_range(mm, addr, size, fn, data, false); 3368 } 3369 3370 /* 3371 * handle_pte_fault chooses page fault handler according to an entry which was 3372 * read non-atomically. Before making any commitment, on those architectures 3373 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3374 * parts, do_swap_page must check under lock before unmapping the pte and 3375 * proceeding (but do_wp_page is only called after already making such a check; 3376 * and do_anonymous_page can safely check later on). 3377 */ 3378 static inline int pte_unmap_same(struct vm_fault *vmf) 3379 { 3380 int same = 1; 3381 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3382 if (sizeof(pte_t) > sizeof(unsigned long)) { 3383 spin_lock(vmf->ptl); 3384 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3385 spin_unlock(vmf->ptl); 3386 } 3387 #endif 3388 pte_unmap(vmf->pte); 3389 vmf->pte = NULL; 3390 return same; 3391 } 3392 3393 /* 3394 * Return: 3395 * 0: copied succeeded 3396 * -EHWPOISON: copy failed due to hwpoison in source page 3397 * -EAGAIN: copied failed (some other reason) 3398 */ 3399 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3400 struct vm_fault *vmf) 3401 { 3402 int ret; 3403 void *kaddr; 3404 void __user *uaddr; 3405 struct vm_area_struct *vma = vmf->vma; 3406 struct mm_struct *mm = vma->vm_mm; 3407 unsigned long addr = vmf->address; 3408 3409 if (likely(src)) { 3410 if (copy_mc_user_highpage(dst, src, addr, vma)) 3411 return -EHWPOISON; 3412 return 0; 3413 } 3414 3415 /* 3416 * If the source page was a PFN mapping, we don't have 3417 * a "struct page" for it. We do a best-effort copy by 3418 * just copying from the original user address. If that 3419 * fails, we just zero-fill it. Live with it. 3420 */ 3421 kaddr = kmap_local_page(dst); 3422 pagefault_disable(); 3423 uaddr = (void __user *)(addr & PAGE_MASK); 3424 3425 /* 3426 * On architectures with software "accessed" bits, we would 3427 * take a double page fault, so mark it accessed here. 3428 */ 3429 vmf->pte = NULL; 3430 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3431 pte_t entry; 3432 3433 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3434 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3435 /* 3436 * Other thread has already handled the fault 3437 * and update local tlb only 3438 */ 3439 if (vmf->pte) 3440 update_mmu_tlb(vma, addr, vmf->pte); 3441 ret = -EAGAIN; 3442 goto pte_unlock; 3443 } 3444 3445 entry = pte_mkyoung(vmf->orig_pte); 3446 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3447 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3448 } 3449 3450 /* 3451 * This really shouldn't fail, because the page is there 3452 * in the page tables. But it might just be unreadable, 3453 * in which case we just give up and fill the result with 3454 * zeroes. 3455 */ 3456 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3457 if (vmf->pte) 3458 goto warn; 3459 3460 /* Re-validate under PTL if the page is still mapped */ 3461 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3462 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3463 /* The PTE changed under us, update local tlb */ 3464 if (vmf->pte) 3465 update_mmu_tlb(vma, addr, vmf->pte); 3466 ret = -EAGAIN; 3467 goto pte_unlock; 3468 } 3469 3470 /* 3471 * The same page can be mapped back since last copy attempt. 3472 * Try to copy again under PTL. 3473 */ 3474 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3475 /* 3476 * Give a warn in case there can be some obscure 3477 * use-case 3478 */ 3479 warn: 3480 WARN_ON_ONCE(1); 3481 clear_page(kaddr); 3482 } 3483 } 3484 3485 ret = 0; 3486 3487 pte_unlock: 3488 if (vmf->pte) 3489 pte_unmap_unlock(vmf->pte, vmf->ptl); 3490 pagefault_enable(); 3491 kunmap_local(kaddr); 3492 flush_dcache_page(dst); 3493 3494 return ret; 3495 } 3496 3497 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3498 { 3499 struct file *vm_file = vma->vm_file; 3500 3501 if (vm_file) 3502 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3503 3504 /* 3505 * Special mappings (e.g. VDSO) do not have any file so fake 3506 * a default GFP_KERNEL for them. 3507 */ 3508 return GFP_KERNEL; 3509 } 3510 3511 /* 3512 * Notify the address space that the page is about to become writable so that 3513 * it can prohibit this or wait for the page to get into an appropriate state. 3514 * 3515 * We do this without the lock held, so that it can sleep if it needs to. 3516 */ 3517 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3518 { 3519 vm_fault_t ret; 3520 unsigned int old_flags = vmf->flags; 3521 3522 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3523 3524 if (vmf->vma->vm_file && 3525 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3526 return VM_FAULT_SIGBUS; 3527 3528 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3529 /* Restore original flags so that caller is not surprised */ 3530 vmf->flags = old_flags; 3531 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3532 return ret; 3533 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3534 folio_lock(folio); 3535 if (!folio->mapping) { 3536 folio_unlock(folio); 3537 return 0; /* retry */ 3538 } 3539 ret |= VM_FAULT_LOCKED; 3540 } else 3541 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3542 return ret; 3543 } 3544 3545 /* 3546 * Handle dirtying of a page in shared file mapping on a write fault. 3547 * 3548 * The function expects the page to be locked and unlocks it. 3549 */ 3550 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3551 { 3552 struct vm_area_struct *vma = vmf->vma; 3553 struct address_space *mapping; 3554 struct folio *folio = page_folio(vmf->page); 3555 bool dirtied; 3556 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3557 3558 dirtied = folio_mark_dirty(folio); 3559 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3560 /* 3561 * Take a local copy of the address_space - folio.mapping may be zeroed 3562 * by truncate after folio_unlock(). The address_space itself remains 3563 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3564 * release semantics to prevent the compiler from undoing this copying. 3565 */ 3566 mapping = folio_raw_mapping(folio); 3567 folio_unlock(folio); 3568 3569 if (!page_mkwrite) 3570 file_update_time(vma->vm_file); 3571 3572 /* 3573 * Throttle page dirtying rate down to writeback speed. 3574 * 3575 * mapping may be NULL here because some device drivers do not 3576 * set page.mapping but still dirty their pages 3577 * 3578 * Drop the mmap_lock before waiting on IO, if we can. The file 3579 * is pinning the mapping, as per above. 3580 */ 3581 if ((dirtied || page_mkwrite) && mapping) { 3582 struct file *fpin; 3583 3584 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3585 balance_dirty_pages_ratelimited(mapping); 3586 if (fpin) { 3587 fput(fpin); 3588 return VM_FAULT_COMPLETED; 3589 } 3590 } 3591 3592 return 0; 3593 } 3594 3595 /* 3596 * Handle write page faults for pages that can be reused in the current vma 3597 * 3598 * This can happen either due to the mapping being with the VM_SHARED flag, 3599 * or due to us being the last reference standing to the page. In either 3600 * case, all we need to do here is to mark the page as writable and update 3601 * any related book-keeping. 3602 */ 3603 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3604 __releases(vmf->ptl) 3605 { 3606 struct vm_area_struct *vma = vmf->vma; 3607 pte_t entry; 3608 3609 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3610 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3611 3612 if (folio) { 3613 VM_BUG_ON(folio_test_anon(folio) && 3614 !PageAnonExclusive(vmf->page)); 3615 /* 3616 * Clear the folio's cpupid information as the existing 3617 * information potentially belongs to a now completely 3618 * unrelated process. 3619 */ 3620 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3621 } 3622 3623 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3624 entry = pte_mkyoung(vmf->orig_pte); 3625 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3626 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3627 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3628 pte_unmap_unlock(vmf->pte, vmf->ptl); 3629 count_vm_event(PGREUSE); 3630 } 3631 3632 /* 3633 * We could add a bitflag somewhere, but for now, we know that all 3634 * vm_ops that have a ->map_pages have been audited and don't need 3635 * the mmap_lock to be held. 3636 */ 3637 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3638 { 3639 struct vm_area_struct *vma = vmf->vma; 3640 3641 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3642 return 0; 3643 vma_end_read(vma); 3644 return VM_FAULT_RETRY; 3645 } 3646 3647 /** 3648 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3649 * @vmf: The vm_fault descriptor passed from the fault handler. 3650 * 3651 * When preparing to insert an anonymous page into a VMA from a 3652 * fault handler, call this function rather than anon_vma_prepare(). 3653 * If this vma does not already have an associated anon_vma and we are 3654 * only protected by the per-VMA lock, the caller must retry with the 3655 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3656 * determine if this VMA can share its anon_vma, and that's not safe to 3657 * do with only the per-VMA lock held for this VMA. 3658 * 3659 * Return: 0 if fault handling can proceed. Any other value should be 3660 * returned to the caller. 3661 */ 3662 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3663 { 3664 struct vm_area_struct *vma = vmf->vma; 3665 vm_fault_t ret = 0; 3666 3667 if (likely(vma->anon_vma)) 3668 return 0; 3669 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3670 if (!mmap_read_trylock(vma->vm_mm)) 3671 return VM_FAULT_RETRY; 3672 } 3673 if (__anon_vma_prepare(vma)) 3674 ret = VM_FAULT_OOM; 3675 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3676 mmap_read_unlock(vma->vm_mm); 3677 return ret; 3678 } 3679 3680 /* 3681 * Handle the case of a page which we actually need to copy to a new page, 3682 * either due to COW or unsharing. 3683 * 3684 * Called with mmap_lock locked and the old page referenced, but 3685 * without the ptl held. 3686 * 3687 * High level logic flow: 3688 * 3689 * - Allocate a page, copy the content of the old page to the new one. 3690 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3691 * - Take the PTL. If the pte changed, bail out and release the allocated page 3692 * - If the pte is still the way we remember it, update the page table and all 3693 * relevant references. This includes dropping the reference the page-table 3694 * held to the old page, as well as updating the rmap. 3695 * - In any case, unlock the PTL and drop the reference we took to the old page. 3696 */ 3697 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3698 { 3699 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3700 struct vm_area_struct *vma = vmf->vma; 3701 struct mm_struct *mm = vma->vm_mm; 3702 struct folio *old_folio = NULL; 3703 struct folio *new_folio = NULL; 3704 pte_t entry; 3705 int page_copied = 0; 3706 struct mmu_notifier_range range; 3707 vm_fault_t ret; 3708 bool pfn_is_zero; 3709 3710 delayacct_wpcopy_start(); 3711 3712 if (vmf->page) 3713 old_folio = page_folio(vmf->page); 3714 ret = vmf_anon_prepare(vmf); 3715 if (unlikely(ret)) 3716 goto out; 3717 3718 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3719 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3720 if (!new_folio) 3721 goto oom; 3722 3723 if (!pfn_is_zero) { 3724 int err; 3725 3726 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3727 if (err) { 3728 /* 3729 * COW failed, if the fault was solved by other, 3730 * it's fine. If not, userspace would re-fault on 3731 * the same address and we will handle the fault 3732 * from the second attempt. 3733 * The -EHWPOISON case will not be retried. 3734 */ 3735 folio_put(new_folio); 3736 if (old_folio) 3737 folio_put(old_folio); 3738 3739 delayacct_wpcopy_end(); 3740 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3741 } 3742 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3743 } 3744 3745 __folio_mark_uptodate(new_folio); 3746 3747 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3748 vmf->address & PAGE_MASK, 3749 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3750 mmu_notifier_invalidate_range_start(&range); 3751 3752 /* 3753 * Re-check the pte - we dropped the lock 3754 */ 3755 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3756 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3757 if (old_folio) { 3758 if (!folio_test_anon(old_folio)) { 3759 dec_mm_counter(mm, mm_counter_file(old_folio)); 3760 inc_mm_counter(mm, MM_ANONPAGES); 3761 } 3762 } else { 3763 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3764 inc_mm_counter(mm, MM_ANONPAGES); 3765 } 3766 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3767 entry = folio_mk_pte(new_folio, vma->vm_page_prot); 3768 entry = pte_sw_mkyoung(entry); 3769 if (unlikely(unshare)) { 3770 if (pte_soft_dirty(vmf->orig_pte)) 3771 entry = pte_mksoft_dirty(entry); 3772 if (pte_uffd_wp(vmf->orig_pte)) 3773 entry = pte_mkuffd_wp(entry); 3774 } else { 3775 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3776 } 3777 3778 /* 3779 * Clear the pte entry and flush it first, before updating the 3780 * pte with the new entry, to keep TLBs on different CPUs in 3781 * sync. This code used to set the new PTE then flush TLBs, but 3782 * that left a window where the new PTE could be loaded into 3783 * some TLBs while the old PTE remains in others. 3784 */ 3785 ptep_clear_flush(vma, vmf->address, vmf->pte); 3786 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3787 folio_add_lru_vma(new_folio, vma); 3788 BUG_ON(unshare && pte_write(entry)); 3789 set_pte_at(mm, vmf->address, vmf->pte, entry); 3790 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3791 if (old_folio) { 3792 /* 3793 * Only after switching the pte to the new page may 3794 * we remove the mapcount here. Otherwise another 3795 * process may come and find the rmap count decremented 3796 * before the pte is switched to the new page, and 3797 * "reuse" the old page writing into it while our pte 3798 * here still points into it and can be read by other 3799 * threads. 3800 * 3801 * The critical issue is to order this 3802 * folio_remove_rmap_pte() with the ptp_clear_flush 3803 * above. Those stores are ordered by (if nothing else,) 3804 * the barrier present in the atomic_add_negative 3805 * in folio_remove_rmap_pte(); 3806 * 3807 * Then the TLB flush in ptep_clear_flush ensures that 3808 * no process can access the old page before the 3809 * decremented mapcount is visible. And the old page 3810 * cannot be reused until after the decremented 3811 * mapcount is visible. So transitively, TLBs to 3812 * old page will be flushed before it can be reused. 3813 */ 3814 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3815 } 3816 3817 /* Free the old page.. */ 3818 new_folio = old_folio; 3819 page_copied = 1; 3820 pte_unmap_unlock(vmf->pte, vmf->ptl); 3821 } else if (vmf->pte) { 3822 update_mmu_tlb(vma, vmf->address, vmf->pte); 3823 pte_unmap_unlock(vmf->pte, vmf->ptl); 3824 } 3825 3826 mmu_notifier_invalidate_range_end(&range); 3827 3828 if (new_folio) 3829 folio_put(new_folio); 3830 if (old_folio) { 3831 if (page_copied) 3832 free_swap_cache(old_folio); 3833 folio_put(old_folio); 3834 } 3835 3836 delayacct_wpcopy_end(); 3837 return 0; 3838 oom: 3839 ret = VM_FAULT_OOM; 3840 out: 3841 if (old_folio) 3842 folio_put(old_folio); 3843 3844 delayacct_wpcopy_end(); 3845 return ret; 3846 } 3847 3848 /** 3849 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3850 * writeable once the page is prepared 3851 * 3852 * @vmf: structure describing the fault 3853 * @folio: the folio of vmf->page 3854 * 3855 * This function handles all that is needed to finish a write page fault in a 3856 * shared mapping due to PTE being read-only once the mapped page is prepared. 3857 * It handles locking of PTE and modifying it. 3858 * 3859 * The function expects the page to be locked or other protection against 3860 * concurrent faults / writeback (such as DAX radix tree locks). 3861 * 3862 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3863 * we acquired PTE lock. 3864 */ 3865 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3866 { 3867 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3868 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3869 &vmf->ptl); 3870 if (!vmf->pte) 3871 return VM_FAULT_NOPAGE; 3872 /* 3873 * We might have raced with another page fault while we released the 3874 * pte_offset_map_lock. 3875 */ 3876 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3877 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3878 pte_unmap_unlock(vmf->pte, vmf->ptl); 3879 return VM_FAULT_NOPAGE; 3880 } 3881 wp_page_reuse(vmf, folio); 3882 return 0; 3883 } 3884 3885 /* 3886 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3887 * mapping 3888 */ 3889 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3890 { 3891 struct vm_area_struct *vma = vmf->vma; 3892 3893 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3894 vm_fault_t ret; 3895 3896 pte_unmap_unlock(vmf->pte, vmf->ptl); 3897 ret = vmf_can_call_fault(vmf); 3898 if (ret) 3899 return ret; 3900 3901 vmf->flags |= FAULT_FLAG_MKWRITE; 3902 ret = vma->vm_ops->pfn_mkwrite(vmf); 3903 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3904 return ret; 3905 return finish_mkwrite_fault(vmf, NULL); 3906 } 3907 wp_page_reuse(vmf, NULL); 3908 return 0; 3909 } 3910 3911 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3912 __releases(vmf->ptl) 3913 { 3914 struct vm_area_struct *vma = vmf->vma; 3915 vm_fault_t ret = 0; 3916 3917 folio_get(folio); 3918 3919 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3920 vm_fault_t tmp; 3921 3922 pte_unmap_unlock(vmf->pte, vmf->ptl); 3923 tmp = vmf_can_call_fault(vmf); 3924 if (tmp) { 3925 folio_put(folio); 3926 return tmp; 3927 } 3928 3929 tmp = do_page_mkwrite(vmf, folio); 3930 if (unlikely(!tmp || (tmp & 3931 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3932 folio_put(folio); 3933 return tmp; 3934 } 3935 tmp = finish_mkwrite_fault(vmf, folio); 3936 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3937 folio_unlock(folio); 3938 folio_put(folio); 3939 return tmp; 3940 } 3941 } else { 3942 wp_page_reuse(vmf, folio); 3943 folio_lock(folio); 3944 } 3945 ret |= fault_dirty_shared_page(vmf); 3946 folio_put(folio); 3947 3948 return ret; 3949 } 3950 3951 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3952 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3953 struct vm_area_struct *vma) 3954 { 3955 bool exclusive = false; 3956 3957 /* Let's just free up a large folio if only a single page is mapped. */ 3958 if (folio_large_mapcount(folio) <= 1) 3959 return false; 3960 3961 /* 3962 * The assumption for anonymous folios is that each page can only get 3963 * mapped once into each MM. The only exception are KSM folios, which 3964 * are always small. 3965 * 3966 * Each taken mapcount must be paired with exactly one taken reference, 3967 * whereby the refcount must be incremented before the mapcount when 3968 * mapping a page, and the refcount must be decremented after the 3969 * mapcount when unmapping a page. 3970 * 3971 * If all folio references are from mappings, and all mappings are in 3972 * the page tables of this MM, then this folio is exclusive to this MM. 3973 */ 3974 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3975 return false; 3976 3977 VM_WARN_ON_ONCE(folio_test_ksm(folio)); 3978 3979 if (unlikely(folio_test_swapcache(folio))) { 3980 /* 3981 * Note: freeing up the swapcache will fail if some PTEs are 3982 * still swap entries. 3983 */ 3984 if (!folio_trylock(folio)) 3985 return false; 3986 folio_free_swap(folio); 3987 folio_unlock(folio); 3988 } 3989 3990 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3991 return false; 3992 3993 /* Stabilize the mapcount vs. refcount and recheck. */ 3994 folio_lock_large_mapcount(folio); 3995 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio); 3996 3997 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3998 goto unlock; 3999 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 4000 goto unlock; 4001 4002 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio); 4003 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio); 4004 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id && 4005 folio_mm_id(folio, 1) != vma->vm_mm->mm_id); 4006 4007 /* 4008 * Do we need the folio lock? Likely not. If there would have been 4009 * references from page migration/swapout, we would have detected 4010 * an additional folio reference and never ended up here. 4011 */ 4012 exclusive = true; 4013 unlock: 4014 folio_unlock_large_mapcount(folio); 4015 return exclusive; 4016 } 4017 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4018 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 4019 struct vm_area_struct *vma) 4020 { 4021 BUILD_BUG(); 4022 } 4023 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4024 4025 static bool wp_can_reuse_anon_folio(struct folio *folio, 4026 struct vm_area_struct *vma) 4027 { 4028 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio)) 4029 return __wp_can_reuse_large_anon_folio(folio, vma); 4030 4031 /* 4032 * We have to verify under folio lock: these early checks are 4033 * just an optimization to avoid locking the folio and freeing 4034 * the swapcache if there is little hope that we can reuse. 4035 * 4036 * KSM doesn't necessarily raise the folio refcount. 4037 */ 4038 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 4039 return false; 4040 if (!folio_test_lru(folio)) 4041 /* 4042 * We cannot easily detect+handle references from 4043 * remote LRU caches or references to LRU folios. 4044 */ 4045 lru_add_drain(); 4046 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 4047 return false; 4048 if (!folio_trylock(folio)) 4049 return false; 4050 if (folio_test_swapcache(folio)) 4051 folio_free_swap(folio); 4052 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 4053 folio_unlock(folio); 4054 return false; 4055 } 4056 /* 4057 * Ok, we've got the only folio reference from our mapping 4058 * and the folio is locked, it's dark out, and we're wearing 4059 * sunglasses. Hit it. 4060 */ 4061 folio_move_anon_rmap(folio, vma); 4062 folio_unlock(folio); 4063 return true; 4064 } 4065 4066 /* 4067 * This routine handles present pages, when 4068 * * users try to write to a shared page (FAULT_FLAG_WRITE) 4069 * * GUP wants to take a R/O pin on a possibly shared anonymous page 4070 * (FAULT_FLAG_UNSHARE) 4071 * 4072 * It is done by copying the page to a new address and decrementing the 4073 * shared-page counter for the old page. 4074 * 4075 * Note that this routine assumes that the protection checks have been 4076 * done by the caller (the low-level page fault routine in most cases). 4077 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 4078 * done any necessary COW. 4079 * 4080 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 4081 * though the page will change only once the write actually happens. This 4082 * avoids a few races, and potentially makes it more efficient. 4083 * 4084 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4085 * but allow concurrent faults), with pte both mapped and locked. 4086 * We return with mmap_lock still held, but pte unmapped and unlocked. 4087 */ 4088 static vm_fault_t do_wp_page(struct vm_fault *vmf) 4089 __releases(vmf->ptl) 4090 { 4091 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4092 struct vm_area_struct *vma = vmf->vma; 4093 struct folio *folio = NULL; 4094 pte_t pte; 4095 4096 if (likely(!unshare)) { 4097 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 4098 if (!userfaultfd_wp_async(vma)) { 4099 pte_unmap_unlock(vmf->pte, vmf->ptl); 4100 return handle_userfault(vmf, VM_UFFD_WP); 4101 } 4102 4103 /* 4104 * Nothing needed (cache flush, TLB invalidations, 4105 * etc.) because we're only removing the uffd-wp bit, 4106 * which is completely invisible to the user. 4107 */ 4108 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 4109 4110 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4111 /* 4112 * Update this to be prepared for following up CoW 4113 * handling 4114 */ 4115 vmf->orig_pte = pte; 4116 } 4117 4118 /* 4119 * Userfaultfd write-protect can defer flushes. Ensure the TLB 4120 * is flushed in this case before copying. 4121 */ 4122 if (unlikely(userfaultfd_wp(vmf->vma) && 4123 mm_tlb_flush_pending(vmf->vma->vm_mm))) 4124 flush_tlb_page(vmf->vma, vmf->address); 4125 } 4126 4127 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 4128 4129 if (vmf->page) 4130 folio = page_folio(vmf->page); 4131 4132 /* 4133 * Shared mapping: we are guaranteed to have VM_WRITE and 4134 * FAULT_FLAG_WRITE set at this point. 4135 */ 4136 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4137 /* 4138 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 4139 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called. 4140 * 4141 * We should not cow pages in a shared writeable mapping. 4142 * Just mark the pages writable and/or call ops->pfn_mkwrite. 4143 */ 4144 if (!vmf->page || is_fsdax_page(vmf->page)) { 4145 vmf->page = NULL; 4146 return wp_pfn_shared(vmf); 4147 } 4148 return wp_page_shared(vmf, folio); 4149 } 4150 4151 /* 4152 * Private mapping: create an exclusive anonymous page copy if reuse 4153 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 4154 * 4155 * If we encounter a page that is marked exclusive, we must reuse 4156 * the page without further checks. 4157 */ 4158 if (folio && folio_test_anon(folio) && 4159 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 4160 if (!PageAnonExclusive(vmf->page)) 4161 SetPageAnonExclusive(vmf->page); 4162 if (unlikely(unshare)) { 4163 pte_unmap_unlock(vmf->pte, vmf->ptl); 4164 return 0; 4165 } 4166 wp_page_reuse(vmf, folio); 4167 return 0; 4168 } 4169 /* 4170 * Ok, we need to copy. Oh, well.. 4171 */ 4172 if (folio) 4173 folio_get(folio); 4174 4175 pte_unmap_unlock(vmf->pte, vmf->ptl); 4176 #ifdef CONFIG_KSM 4177 if (folio && folio_test_ksm(folio)) 4178 count_vm_event(COW_KSM); 4179 #endif 4180 return wp_page_copy(vmf); 4181 } 4182 4183 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 4184 unsigned long start_addr, unsigned long end_addr, 4185 struct zap_details *details) 4186 { 4187 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 4188 } 4189 4190 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 4191 pgoff_t first_index, 4192 pgoff_t last_index, 4193 struct zap_details *details) 4194 { 4195 struct vm_area_struct *vma; 4196 pgoff_t vba, vea, zba, zea; 4197 4198 vma_interval_tree_foreach(vma, root, first_index, last_index) { 4199 vba = vma->vm_pgoff; 4200 vea = vba + vma_pages(vma) - 1; 4201 zba = max(first_index, vba); 4202 zea = min(last_index, vea); 4203 4204 unmap_mapping_range_vma(vma, 4205 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 4206 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 4207 details); 4208 } 4209 } 4210 4211 /** 4212 * unmap_mapping_folio() - Unmap single folio from processes. 4213 * @folio: The locked folio to be unmapped. 4214 * 4215 * Unmap this folio from any userspace process which still has it mmaped. 4216 * Typically, for efficiency, the range of nearby pages has already been 4217 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 4218 * truncation or invalidation holds the lock on a folio, it may find that 4219 * the page has been remapped again: and then uses unmap_mapping_folio() 4220 * to unmap it finally. 4221 */ 4222 void unmap_mapping_folio(struct folio *folio) 4223 { 4224 struct address_space *mapping = folio->mapping; 4225 struct zap_details details = { }; 4226 pgoff_t first_index; 4227 pgoff_t last_index; 4228 4229 VM_BUG_ON(!folio_test_locked(folio)); 4230 4231 first_index = folio->index; 4232 last_index = folio_next_index(folio) - 1; 4233 4234 details.even_cows = false; 4235 details.single_folio = folio; 4236 details.zap_flags = ZAP_FLAG_DROP_MARKER; 4237 4238 i_mmap_lock_read(mapping); 4239 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4240 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4241 last_index, &details); 4242 i_mmap_unlock_read(mapping); 4243 } 4244 4245 /** 4246 * unmap_mapping_pages() - Unmap pages from processes. 4247 * @mapping: The address space containing pages to be unmapped. 4248 * @start: Index of first page to be unmapped. 4249 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 4250 * @even_cows: Whether to unmap even private COWed pages. 4251 * 4252 * Unmap the pages in this address space from any userspace process which 4253 * has them mmaped. Generally, you want to remove COWed pages as well when 4254 * a file is being truncated, but not when invalidating pages from the page 4255 * cache. 4256 */ 4257 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 4258 pgoff_t nr, bool even_cows) 4259 { 4260 struct zap_details details = { }; 4261 pgoff_t first_index = start; 4262 pgoff_t last_index = start + nr - 1; 4263 4264 details.even_cows = even_cows; 4265 if (last_index < first_index) 4266 last_index = ULONG_MAX; 4267 4268 i_mmap_lock_read(mapping); 4269 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4270 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4271 last_index, &details); 4272 i_mmap_unlock_read(mapping); 4273 } 4274 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 4275 4276 /** 4277 * unmap_mapping_range - unmap the portion of all mmaps in the specified 4278 * address_space corresponding to the specified byte range in the underlying 4279 * file. 4280 * 4281 * @mapping: the address space containing mmaps to be unmapped. 4282 * @holebegin: byte in first page to unmap, relative to the start of 4283 * the underlying file. This will be rounded down to a PAGE_SIZE 4284 * boundary. Note that this is different from truncate_pagecache(), which 4285 * must keep the partial page. In contrast, we must get rid of 4286 * partial pages. 4287 * @holelen: size of prospective hole in bytes. This will be rounded 4288 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 4289 * end of the file. 4290 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 4291 * but 0 when invalidating pagecache, don't throw away private data. 4292 */ 4293 void unmap_mapping_range(struct address_space *mapping, 4294 loff_t const holebegin, loff_t const holelen, int even_cows) 4295 { 4296 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 4297 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 4298 4299 /* Check for overflow. */ 4300 if (sizeof(holelen) > sizeof(hlen)) { 4301 long long holeend = 4302 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 4303 if (holeend & ~(long long)ULONG_MAX) 4304 hlen = ULONG_MAX - hba + 1; 4305 } 4306 4307 unmap_mapping_pages(mapping, hba, hlen, even_cows); 4308 } 4309 EXPORT_SYMBOL(unmap_mapping_range); 4310 4311 /* 4312 * Restore a potential device exclusive pte to a working pte entry 4313 */ 4314 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 4315 { 4316 struct folio *folio = page_folio(vmf->page); 4317 struct vm_area_struct *vma = vmf->vma; 4318 struct mmu_notifier_range range; 4319 vm_fault_t ret; 4320 4321 /* 4322 * We need a reference to lock the folio because we don't hold 4323 * the PTL so a racing thread can remove the device-exclusive 4324 * entry and unmap it. If the folio is free the entry must 4325 * have been removed already. If it happens to have already 4326 * been re-allocated after being freed all we do is lock and 4327 * unlock it. 4328 */ 4329 if (!folio_try_get(folio)) 4330 return 0; 4331 4332 ret = folio_lock_or_retry(folio, vmf); 4333 if (ret) { 4334 folio_put(folio); 4335 return ret; 4336 } 4337 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0, 4338 vma->vm_mm, vmf->address & PAGE_MASK, 4339 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 4340 mmu_notifier_invalidate_range_start(&range); 4341 4342 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4343 &vmf->ptl); 4344 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4345 restore_exclusive_pte(vma, folio, vmf->page, vmf->address, 4346 vmf->pte, vmf->orig_pte); 4347 4348 if (vmf->pte) 4349 pte_unmap_unlock(vmf->pte, vmf->ptl); 4350 folio_unlock(folio); 4351 folio_put(folio); 4352 4353 mmu_notifier_invalidate_range_end(&range); 4354 return 0; 4355 } 4356 4357 static inline bool should_try_to_free_swap(struct folio *folio, 4358 struct vm_area_struct *vma, 4359 unsigned int fault_flags) 4360 { 4361 if (!folio_test_swapcache(folio)) 4362 return false; 4363 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4364 folio_test_mlocked(folio)) 4365 return true; 4366 /* 4367 * If we want to map a page that's in the swapcache writable, we 4368 * have to detect via the refcount if we're really the exclusive 4369 * user. Try freeing the swapcache to get rid of the swapcache 4370 * reference only in case it's likely that we'll be the exclusive user. 4371 */ 4372 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4373 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4374 } 4375 4376 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4377 { 4378 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4379 vmf->address, &vmf->ptl); 4380 if (!vmf->pte) 4381 return 0; 4382 /* 4383 * Be careful so that we will only recover a special uffd-wp pte into a 4384 * none pte. Otherwise it means the pte could have changed, so retry. 4385 * 4386 * This should also cover the case where e.g. the pte changed 4387 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4388 * So pte_is_marker() check is not enough to safely drop the pte. 4389 */ 4390 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4391 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4392 pte_unmap_unlock(vmf->pte, vmf->ptl); 4393 return 0; 4394 } 4395 4396 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4397 { 4398 if (vma_is_anonymous(vmf->vma)) 4399 return do_anonymous_page(vmf); 4400 else 4401 return do_fault(vmf); 4402 } 4403 4404 /* 4405 * This is actually a page-missing access, but with uffd-wp special pte 4406 * installed. It means this pte was wr-protected before being unmapped. 4407 */ 4408 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4409 { 4410 /* 4411 * Just in case there're leftover special ptes even after the region 4412 * got unregistered - we can simply clear them. 4413 */ 4414 if (unlikely(!userfaultfd_wp(vmf->vma))) 4415 return pte_marker_clear(vmf); 4416 4417 return do_pte_missing(vmf); 4418 } 4419 4420 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4421 { 4422 const softleaf_t entry = softleaf_from_pte(vmf->orig_pte); 4423 const pte_marker marker = softleaf_to_marker(entry); 4424 4425 /* 4426 * PTE markers should never be empty. If anything weird happened, 4427 * the best thing to do is to kill the process along with its mm. 4428 */ 4429 if (WARN_ON_ONCE(!marker)) 4430 return VM_FAULT_SIGBUS; 4431 4432 /* Higher priority than uffd-wp when data corrupted */ 4433 if (marker & PTE_MARKER_POISONED) 4434 return VM_FAULT_HWPOISON; 4435 4436 /* Hitting a guard page is always a fatal condition. */ 4437 if (marker & PTE_MARKER_GUARD) 4438 return VM_FAULT_SIGSEGV; 4439 4440 if (softleaf_is_uffd_wp_marker(entry)) 4441 return pte_marker_handle_uffd_wp(vmf); 4442 4443 /* This is an unknown pte marker */ 4444 return VM_FAULT_SIGBUS; 4445 } 4446 4447 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4448 { 4449 struct vm_area_struct *vma = vmf->vma; 4450 struct folio *folio; 4451 softleaf_t entry; 4452 4453 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4454 if (!folio) 4455 return NULL; 4456 4457 entry = softleaf_from_pte(vmf->orig_pte); 4458 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4459 GFP_KERNEL, entry)) { 4460 folio_put(folio); 4461 return NULL; 4462 } 4463 4464 return folio; 4465 } 4466 4467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4468 /* 4469 * Check if the PTEs within a range are contiguous swap entries 4470 * and have consistent swapcache, zeromap. 4471 */ 4472 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4473 { 4474 unsigned long addr; 4475 softleaf_t entry; 4476 int idx; 4477 pte_t pte; 4478 4479 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4480 idx = (vmf->address - addr) / PAGE_SIZE; 4481 pte = ptep_get(ptep); 4482 4483 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4484 return false; 4485 entry = softleaf_from_pte(pte); 4486 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4487 return false; 4488 4489 /* 4490 * swap_read_folio() can't handle the case a large folio is hybridly 4491 * from different backends. And they are likely corner cases. Similar 4492 * things might be added once zswap support large folios. 4493 */ 4494 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4495 return false; 4496 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4497 return false; 4498 4499 return true; 4500 } 4501 4502 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4503 unsigned long addr, 4504 unsigned long orders) 4505 { 4506 int order, nr; 4507 4508 order = highest_order(orders); 4509 4510 /* 4511 * To swap in a THP with nr pages, we require that its first swap_offset 4512 * is aligned with that number, as it was when the THP was swapped out. 4513 * This helps filter out most invalid entries. 4514 */ 4515 while (orders) { 4516 nr = 1 << order; 4517 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4518 break; 4519 order = next_order(&orders, order); 4520 } 4521 4522 return orders; 4523 } 4524 4525 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4526 { 4527 struct vm_area_struct *vma = vmf->vma; 4528 unsigned long orders; 4529 struct folio *folio; 4530 unsigned long addr; 4531 softleaf_t entry; 4532 spinlock_t *ptl; 4533 pte_t *pte; 4534 gfp_t gfp; 4535 int order; 4536 4537 /* 4538 * If uffd is active for the vma we need per-page fault fidelity to 4539 * maintain the uffd semantics. 4540 */ 4541 if (unlikely(userfaultfd_armed(vma))) 4542 goto fallback; 4543 4544 /* 4545 * A large swapped out folio could be partially or fully in zswap. We 4546 * lack handling for such cases, so fallback to swapping in order-0 4547 * folio. 4548 */ 4549 if (!zswap_never_enabled()) 4550 goto fallback; 4551 4552 entry = softleaf_from_pte(vmf->orig_pte); 4553 /* 4554 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4555 * and suitable for swapping THP. 4556 */ 4557 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT, 4558 BIT(PMD_ORDER) - 1); 4559 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4560 orders = thp_swap_suitable_orders(swp_offset(entry), 4561 vmf->address, orders); 4562 4563 if (!orders) 4564 goto fallback; 4565 4566 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4567 vmf->address & PMD_MASK, &ptl); 4568 if (unlikely(!pte)) 4569 goto fallback; 4570 4571 /* 4572 * For do_swap_page, find the highest order where the aligned range is 4573 * completely swap entries with contiguous swap offsets. 4574 */ 4575 order = highest_order(orders); 4576 while (orders) { 4577 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4578 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4579 break; 4580 order = next_order(&orders, order); 4581 } 4582 4583 pte_unmap_unlock(pte, ptl); 4584 4585 /* Try allocating the highest of the remaining orders. */ 4586 gfp = vma_thp_gfp_mask(vma); 4587 while (orders) { 4588 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4589 folio = vma_alloc_folio(gfp, order, vma, addr); 4590 if (folio) { 4591 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4592 gfp, entry)) 4593 return folio; 4594 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4595 folio_put(folio); 4596 } 4597 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4598 order = next_order(&orders, order); 4599 } 4600 4601 fallback: 4602 return __alloc_swap_folio(vmf); 4603 } 4604 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4605 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4606 { 4607 return __alloc_swap_folio(vmf); 4608 } 4609 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4610 4611 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4612 4613 /* 4614 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4615 * but allow concurrent faults), and pte mapped but not yet locked. 4616 * We return with pte unmapped and unlocked. 4617 * 4618 * We return with the mmap_lock locked or unlocked in the same cases 4619 * as does filemap_fault(). 4620 */ 4621 vm_fault_t do_swap_page(struct vm_fault *vmf) 4622 { 4623 struct vm_area_struct *vma = vmf->vma; 4624 struct folio *swapcache, *folio = NULL; 4625 DECLARE_WAITQUEUE(wait, current); 4626 struct page *page; 4627 struct swap_info_struct *si = NULL; 4628 rmap_t rmap_flags = RMAP_NONE; 4629 bool need_clear_cache = false; 4630 bool exclusive = false; 4631 softleaf_t entry; 4632 pte_t pte; 4633 vm_fault_t ret = 0; 4634 void *shadow = NULL; 4635 int nr_pages; 4636 unsigned long page_idx; 4637 unsigned long address; 4638 pte_t *ptep; 4639 4640 if (!pte_unmap_same(vmf)) 4641 goto out; 4642 4643 entry = softleaf_from_pte(vmf->orig_pte); 4644 if (unlikely(!softleaf_is_swap(entry))) { 4645 if (softleaf_is_migration(entry)) { 4646 migration_entry_wait(vma->vm_mm, vmf->pmd, 4647 vmf->address); 4648 } else if (softleaf_is_device_exclusive(entry)) { 4649 vmf->page = softleaf_to_page(entry); 4650 ret = remove_device_exclusive_entry(vmf); 4651 } else if (softleaf_is_device_private(entry)) { 4652 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4653 /* 4654 * migrate_to_ram is not yet ready to operate 4655 * under VMA lock. 4656 */ 4657 vma_end_read(vma); 4658 ret = VM_FAULT_RETRY; 4659 goto out; 4660 } 4661 4662 vmf->page = softleaf_to_page(entry); 4663 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4664 vmf->address, &vmf->ptl); 4665 if (unlikely(!vmf->pte || 4666 !pte_same(ptep_get(vmf->pte), 4667 vmf->orig_pte))) 4668 goto unlock; 4669 4670 /* 4671 * Get a page reference while we know the page can't be 4672 * freed. 4673 */ 4674 if (trylock_page(vmf->page)) { 4675 struct dev_pagemap *pgmap; 4676 4677 get_page(vmf->page); 4678 pte_unmap_unlock(vmf->pte, vmf->ptl); 4679 pgmap = page_pgmap(vmf->page); 4680 ret = pgmap->ops->migrate_to_ram(vmf); 4681 unlock_page(vmf->page); 4682 put_page(vmf->page); 4683 } else { 4684 pte_unmap_unlock(vmf->pte, vmf->ptl); 4685 } 4686 } else if (softleaf_is_hwpoison(entry)) { 4687 ret = VM_FAULT_HWPOISON; 4688 } else if (softleaf_is_marker(entry)) { 4689 ret = handle_pte_marker(vmf); 4690 } else { 4691 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4692 ret = VM_FAULT_SIGBUS; 4693 } 4694 goto out; 4695 } 4696 4697 /* Prevent swapoff from happening to us. */ 4698 si = get_swap_device(entry); 4699 if (unlikely(!si)) 4700 goto out; 4701 4702 folio = swap_cache_get_folio(entry); 4703 if (folio) 4704 swap_update_readahead(folio, vma, vmf->address); 4705 swapcache = folio; 4706 4707 if (!folio) { 4708 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4709 __swap_count(entry) == 1) { 4710 /* skip swapcache */ 4711 folio = alloc_swap_folio(vmf); 4712 if (folio) { 4713 __folio_set_locked(folio); 4714 __folio_set_swapbacked(folio); 4715 4716 nr_pages = folio_nr_pages(folio); 4717 if (folio_test_large(folio)) 4718 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4719 /* 4720 * Prevent parallel swapin from proceeding with 4721 * the cache flag. Otherwise, another thread 4722 * may finish swapin first, free the entry, and 4723 * swapout reusing the same entry. It's 4724 * undetectable as pte_same() returns true due 4725 * to entry reuse. 4726 */ 4727 if (swapcache_prepare(entry, nr_pages)) { 4728 /* 4729 * Relax a bit to prevent rapid 4730 * repeated page faults. 4731 */ 4732 add_wait_queue(&swapcache_wq, &wait); 4733 schedule_timeout_uninterruptible(1); 4734 remove_wait_queue(&swapcache_wq, &wait); 4735 goto out_page; 4736 } 4737 need_clear_cache = true; 4738 4739 memcg1_swapin(entry, nr_pages); 4740 4741 shadow = swap_cache_get_shadow(entry); 4742 if (shadow) 4743 workingset_refault(folio, shadow); 4744 4745 folio_add_lru(folio); 4746 4747 /* To provide entry to swap_read_folio() */ 4748 folio->swap = entry; 4749 swap_read_folio(folio, NULL); 4750 folio->private = NULL; 4751 } 4752 } else { 4753 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4754 vmf); 4755 swapcache = folio; 4756 } 4757 4758 if (!folio) { 4759 /* 4760 * Back out if somebody else faulted in this pte 4761 * while we released the pte lock. 4762 */ 4763 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4764 vmf->address, &vmf->ptl); 4765 if (likely(vmf->pte && 4766 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4767 ret = VM_FAULT_OOM; 4768 goto unlock; 4769 } 4770 4771 /* Had to read the page from swap area: Major fault */ 4772 ret = VM_FAULT_MAJOR; 4773 count_vm_event(PGMAJFAULT); 4774 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4775 } 4776 4777 ret |= folio_lock_or_retry(folio, vmf); 4778 if (ret & VM_FAULT_RETRY) 4779 goto out_release; 4780 4781 page = folio_file_page(folio, swp_offset(entry)); 4782 if (swapcache) { 4783 /* 4784 * Make sure folio_free_swap() or swapoff did not release the 4785 * swapcache from under us. The page pin, and pte_same test 4786 * below, are not enough to exclude that. Even if it is still 4787 * swapcache, we need to check that the page's swap has not 4788 * changed. 4789 */ 4790 if (unlikely(!folio_matches_swap_entry(folio, entry))) 4791 goto out_page; 4792 4793 if (unlikely(PageHWPoison(page))) { 4794 /* 4795 * hwpoisoned dirty swapcache pages are kept for killing 4796 * owner processes (which may be unknown at hwpoison time) 4797 */ 4798 ret = VM_FAULT_HWPOISON; 4799 goto out_page; 4800 } 4801 4802 /* 4803 * KSM sometimes has to copy on read faults, for example, if 4804 * folio->index of non-ksm folios would be nonlinear inside the 4805 * anon VMA -- the ksm flag is lost on actual swapout. 4806 */ 4807 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4808 if (unlikely(!folio)) { 4809 ret = VM_FAULT_OOM; 4810 folio = swapcache; 4811 goto out_page; 4812 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4813 ret = VM_FAULT_HWPOISON; 4814 folio = swapcache; 4815 goto out_page; 4816 } 4817 if (folio != swapcache) 4818 page = folio_page(folio, 0); 4819 4820 /* 4821 * If we want to map a page that's in the swapcache writable, we 4822 * have to detect via the refcount if we're really the exclusive 4823 * owner. Try removing the extra reference from the local LRU 4824 * caches if required. 4825 */ 4826 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4827 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4828 lru_add_drain(); 4829 } 4830 4831 folio_throttle_swaprate(folio, GFP_KERNEL); 4832 4833 /* 4834 * Back out if somebody else already faulted in this pte. 4835 */ 4836 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4837 &vmf->ptl); 4838 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4839 goto out_nomap; 4840 4841 if (unlikely(!folio_test_uptodate(folio))) { 4842 ret = VM_FAULT_SIGBUS; 4843 goto out_nomap; 4844 } 4845 4846 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4847 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4848 unsigned long nr = folio_nr_pages(folio); 4849 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4850 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4851 pte_t *folio_ptep = vmf->pte - idx; 4852 pte_t folio_pte = ptep_get(folio_ptep); 4853 4854 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4855 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4856 goto out_nomap; 4857 4858 page_idx = idx; 4859 address = folio_start; 4860 ptep = folio_ptep; 4861 goto check_folio; 4862 } 4863 4864 nr_pages = 1; 4865 page_idx = 0; 4866 address = vmf->address; 4867 ptep = vmf->pte; 4868 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4869 int nr = folio_nr_pages(folio); 4870 unsigned long idx = folio_page_idx(folio, page); 4871 unsigned long folio_start = address - idx * PAGE_SIZE; 4872 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4873 pte_t *folio_ptep; 4874 pte_t folio_pte; 4875 4876 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4877 goto check_folio; 4878 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4879 goto check_folio; 4880 4881 folio_ptep = vmf->pte - idx; 4882 folio_pte = ptep_get(folio_ptep); 4883 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4884 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4885 goto check_folio; 4886 4887 page_idx = idx; 4888 address = folio_start; 4889 ptep = folio_ptep; 4890 nr_pages = nr; 4891 entry = folio->swap; 4892 page = &folio->page; 4893 } 4894 4895 check_folio: 4896 /* 4897 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4898 * must never point at an anonymous page in the swapcache that is 4899 * PG_anon_exclusive. Sanity check that this holds and especially, that 4900 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4901 * check after taking the PT lock and making sure that nobody 4902 * concurrently faulted in this page and set PG_anon_exclusive. 4903 */ 4904 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4905 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4906 4907 /* 4908 * Check under PT lock (to protect against concurrent fork() sharing 4909 * the swap entry concurrently) for certainly exclusive pages. 4910 */ 4911 if (!folio_test_ksm(folio)) { 4912 exclusive = pte_swp_exclusive(vmf->orig_pte); 4913 if (folio != swapcache) { 4914 /* 4915 * We have a fresh page that is not exposed to the 4916 * swapcache -> certainly exclusive. 4917 */ 4918 exclusive = true; 4919 } else if (exclusive && folio_test_writeback(folio) && 4920 data_race(si->flags & SWP_STABLE_WRITES)) { 4921 /* 4922 * This is tricky: not all swap backends support 4923 * concurrent page modifications while under writeback. 4924 * 4925 * So if we stumble over such a page in the swapcache 4926 * we must not set the page exclusive, otherwise we can 4927 * map it writable without further checks and modify it 4928 * while still under writeback. 4929 * 4930 * For these problematic swap backends, simply drop the 4931 * exclusive marker: this is perfectly fine as we start 4932 * writeback only if we fully unmapped the page and 4933 * there are no unexpected references on the page after 4934 * unmapping succeeded. After fully unmapped, no 4935 * further GUP references (FOLL_GET and FOLL_PIN) can 4936 * appear, so dropping the exclusive marker and mapping 4937 * it only R/O is fine. 4938 */ 4939 exclusive = false; 4940 } 4941 } 4942 4943 /* 4944 * Some architectures may have to restore extra metadata to the page 4945 * when reading from swap. This metadata may be indexed by swap entry 4946 * so this must be called before swap_free(). 4947 */ 4948 arch_swap_restore(folio_swap(entry, folio), folio); 4949 4950 /* 4951 * Remove the swap entry and conditionally try to free up the swapcache. 4952 * We're already holding a reference on the page but haven't mapped it 4953 * yet. 4954 */ 4955 swap_free_nr(entry, nr_pages); 4956 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4957 folio_free_swap(folio); 4958 4959 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4960 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4961 pte = mk_pte(page, vma->vm_page_prot); 4962 if (pte_swp_soft_dirty(vmf->orig_pte)) 4963 pte = pte_mksoft_dirty(pte); 4964 if (pte_swp_uffd_wp(vmf->orig_pte)) 4965 pte = pte_mkuffd_wp(pte); 4966 4967 /* 4968 * Same logic as in do_wp_page(); however, optimize for pages that are 4969 * certainly not shared either because we just allocated them without 4970 * exposing them to the swapcache or because the swap entry indicates 4971 * exclusivity. 4972 */ 4973 if (!folio_test_ksm(folio) && 4974 (exclusive || folio_ref_count(folio) == 1)) { 4975 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4976 !pte_needs_soft_dirty_wp(vma, pte)) { 4977 pte = pte_mkwrite(pte, vma); 4978 if (vmf->flags & FAULT_FLAG_WRITE) { 4979 pte = pte_mkdirty(pte); 4980 vmf->flags &= ~FAULT_FLAG_WRITE; 4981 } 4982 } 4983 rmap_flags |= RMAP_EXCLUSIVE; 4984 } 4985 folio_ref_add(folio, nr_pages - 1); 4986 flush_icache_pages(vma, page, nr_pages); 4987 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4988 4989 /* ksm created a completely new copy */ 4990 if (unlikely(folio != swapcache && swapcache)) { 4991 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4992 folio_add_lru_vma(folio, vma); 4993 } else if (!folio_test_anon(folio)) { 4994 /* 4995 * We currently only expect small !anon folios which are either 4996 * fully exclusive or fully shared, or new allocated large 4997 * folios which are fully exclusive. If we ever get large 4998 * folios within swapcache here, we have to be careful. 4999 */ 5000 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 5001 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 5002 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 5003 } else { 5004 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 5005 rmap_flags); 5006 } 5007 5008 VM_BUG_ON(!folio_test_anon(folio) || 5009 (pte_write(pte) && !PageAnonExclusive(page))); 5010 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 5011 arch_do_swap_page_nr(vma->vm_mm, vma, address, 5012 pte, pte, nr_pages); 5013 5014 folio_unlock(folio); 5015 if (folio != swapcache && swapcache) { 5016 /* 5017 * Hold the lock to avoid the swap entry to be reused 5018 * until we take the PT lock for the pte_same() check 5019 * (to avoid false positives from pte_same). For 5020 * further safety release the lock after the swap_free 5021 * so that the swap count won't change under a 5022 * parallel locked swapcache. 5023 */ 5024 folio_unlock(swapcache); 5025 folio_put(swapcache); 5026 } 5027 5028 if (vmf->flags & FAULT_FLAG_WRITE) { 5029 ret |= do_wp_page(vmf); 5030 if (ret & VM_FAULT_ERROR) 5031 ret &= VM_FAULT_ERROR; 5032 goto out; 5033 } 5034 5035 /* No need to invalidate - it was non-present before */ 5036 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 5037 unlock: 5038 if (vmf->pte) 5039 pte_unmap_unlock(vmf->pte, vmf->ptl); 5040 out: 5041 /* Clear the swap cache pin for direct swapin after PTL unlock */ 5042 if (need_clear_cache) { 5043 swapcache_clear(si, entry, nr_pages); 5044 if (waitqueue_active(&swapcache_wq)) 5045 wake_up(&swapcache_wq); 5046 } 5047 if (si) 5048 put_swap_device(si); 5049 return ret; 5050 out_nomap: 5051 if (vmf->pte) 5052 pte_unmap_unlock(vmf->pte, vmf->ptl); 5053 out_page: 5054 folio_unlock(folio); 5055 out_release: 5056 folio_put(folio); 5057 if (folio != swapcache && swapcache) { 5058 folio_unlock(swapcache); 5059 folio_put(swapcache); 5060 } 5061 if (need_clear_cache) { 5062 swapcache_clear(si, entry, nr_pages); 5063 if (waitqueue_active(&swapcache_wq)) 5064 wake_up(&swapcache_wq); 5065 } 5066 if (si) 5067 put_swap_device(si); 5068 return ret; 5069 } 5070 5071 static bool pte_range_none(pte_t *pte, int nr_pages) 5072 { 5073 int i; 5074 5075 for (i = 0; i < nr_pages; i++) { 5076 if (!pte_none(ptep_get_lockless(pte + i))) 5077 return false; 5078 } 5079 5080 return true; 5081 } 5082 5083 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 5084 { 5085 struct vm_area_struct *vma = vmf->vma; 5086 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5087 unsigned long orders; 5088 struct folio *folio; 5089 unsigned long addr; 5090 pte_t *pte; 5091 gfp_t gfp; 5092 int order; 5093 5094 /* 5095 * If uffd is active for the vma we need per-page fault fidelity to 5096 * maintain the uffd semantics. 5097 */ 5098 if (unlikely(userfaultfd_armed(vma))) 5099 goto fallback; 5100 5101 /* 5102 * Get a list of all the (large) orders below PMD_ORDER that are enabled 5103 * for this vma. Then filter out the orders that can't be allocated over 5104 * the faulting address and still be fully contained in the vma. 5105 */ 5106 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT, 5107 BIT(PMD_ORDER) - 1); 5108 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 5109 5110 if (!orders) 5111 goto fallback; 5112 5113 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 5114 if (!pte) 5115 return ERR_PTR(-EAGAIN); 5116 5117 /* 5118 * Find the highest order where the aligned range is completely 5119 * pte_none(). Note that all remaining orders will be completely 5120 * pte_none(). 5121 */ 5122 order = highest_order(orders); 5123 while (orders) { 5124 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5125 if (pte_range_none(pte + pte_index(addr), 1 << order)) 5126 break; 5127 order = next_order(&orders, order); 5128 } 5129 5130 pte_unmap(pte); 5131 5132 if (!orders) 5133 goto fallback; 5134 5135 /* Try allocating the highest of the remaining orders. */ 5136 gfp = vma_thp_gfp_mask(vma); 5137 while (orders) { 5138 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5139 folio = vma_alloc_folio(gfp, order, vma, addr); 5140 if (folio) { 5141 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 5142 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 5143 folio_put(folio); 5144 goto next; 5145 } 5146 folio_throttle_swaprate(folio, gfp); 5147 /* 5148 * When a folio is not zeroed during allocation 5149 * (__GFP_ZERO not used) or user folios require special 5150 * handling, folio_zero_user() is used to make sure 5151 * that the page corresponding to the faulting address 5152 * will be hot in the cache after zeroing. 5153 */ 5154 if (user_alloc_needs_zeroing()) 5155 folio_zero_user(folio, vmf->address); 5156 return folio; 5157 } 5158 next: 5159 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 5160 order = next_order(&orders, order); 5161 } 5162 5163 fallback: 5164 #endif 5165 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 5166 } 5167 5168 /* 5169 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5170 * but allow concurrent faults), and pte mapped but not yet locked. 5171 * We return with mmap_lock still held, but pte unmapped and unlocked. 5172 */ 5173 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 5174 { 5175 struct vm_area_struct *vma = vmf->vma; 5176 unsigned long addr = vmf->address; 5177 struct folio *folio; 5178 vm_fault_t ret = 0; 5179 int nr_pages = 1; 5180 pte_t entry; 5181 5182 /* File mapping without ->vm_ops ? */ 5183 if (vma->vm_flags & VM_SHARED) 5184 return VM_FAULT_SIGBUS; 5185 5186 /* 5187 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 5188 * be distinguished from a transient failure of pte_offset_map(). 5189 */ 5190 if (pte_alloc(vma->vm_mm, vmf->pmd)) 5191 return VM_FAULT_OOM; 5192 5193 /* Use the zero-page for reads */ 5194 if (!(vmf->flags & FAULT_FLAG_WRITE) && 5195 !mm_forbids_zeropage(vma->vm_mm)) { 5196 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 5197 vma->vm_page_prot)); 5198 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5199 vmf->address, &vmf->ptl); 5200 if (!vmf->pte) 5201 goto unlock; 5202 if (vmf_pte_changed(vmf)) { 5203 update_mmu_tlb(vma, vmf->address, vmf->pte); 5204 goto unlock; 5205 } 5206 ret = check_stable_address_space(vma->vm_mm); 5207 if (ret) 5208 goto unlock; 5209 /* Deliver the page fault to userland, check inside PT lock */ 5210 if (userfaultfd_missing(vma)) { 5211 pte_unmap_unlock(vmf->pte, vmf->ptl); 5212 return handle_userfault(vmf, VM_UFFD_MISSING); 5213 } 5214 goto setpte; 5215 } 5216 5217 /* Allocate our own private page. */ 5218 ret = vmf_anon_prepare(vmf); 5219 if (ret) 5220 return ret; 5221 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 5222 folio = alloc_anon_folio(vmf); 5223 if (IS_ERR(folio)) 5224 return 0; 5225 if (!folio) 5226 goto oom; 5227 5228 nr_pages = folio_nr_pages(folio); 5229 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 5230 5231 /* 5232 * The memory barrier inside __folio_mark_uptodate makes sure that 5233 * preceding stores to the page contents become visible before 5234 * the set_pte_at() write. 5235 */ 5236 __folio_mark_uptodate(folio); 5237 5238 entry = folio_mk_pte(folio, vma->vm_page_prot); 5239 entry = pte_sw_mkyoung(entry); 5240 if (vma->vm_flags & VM_WRITE) 5241 entry = pte_mkwrite(pte_mkdirty(entry), vma); 5242 5243 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 5244 if (!vmf->pte) 5245 goto release; 5246 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 5247 update_mmu_tlb(vma, addr, vmf->pte); 5248 goto release; 5249 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5250 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5251 goto release; 5252 } 5253 5254 ret = check_stable_address_space(vma->vm_mm); 5255 if (ret) 5256 goto release; 5257 5258 /* Deliver the page fault to userland, check inside PT lock */ 5259 if (userfaultfd_missing(vma)) { 5260 pte_unmap_unlock(vmf->pte, vmf->ptl); 5261 folio_put(folio); 5262 return handle_userfault(vmf, VM_UFFD_MISSING); 5263 } 5264 5265 folio_ref_add(folio, nr_pages - 1); 5266 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 5267 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 5268 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5269 folio_add_lru_vma(folio, vma); 5270 setpte: 5271 if (vmf_orig_pte_uffd_wp(vmf)) 5272 entry = pte_mkuffd_wp(entry); 5273 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 5274 5275 /* No need to invalidate - it was non-present before */ 5276 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 5277 unlock: 5278 if (vmf->pte) 5279 pte_unmap_unlock(vmf->pte, vmf->ptl); 5280 return ret; 5281 release: 5282 folio_put(folio); 5283 goto unlock; 5284 oom: 5285 return VM_FAULT_OOM; 5286 } 5287 5288 /* 5289 * The mmap_lock must have been held on entry, and may have been 5290 * released depending on flags and vma->vm_ops->fault() return value. 5291 * See filemap_fault() and __lock_page_retry(). 5292 */ 5293 static vm_fault_t __do_fault(struct vm_fault *vmf) 5294 { 5295 struct vm_area_struct *vma = vmf->vma; 5296 struct folio *folio; 5297 vm_fault_t ret; 5298 5299 /* 5300 * Preallocate pte before we take page_lock because this might lead to 5301 * deadlocks for memcg reclaim which waits for pages under writeback: 5302 * lock_page(A) 5303 * SetPageWriteback(A) 5304 * unlock_page(A) 5305 * lock_page(B) 5306 * lock_page(B) 5307 * pte_alloc_one 5308 * shrink_folio_list 5309 * wait_on_page_writeback(A) 5310 * SetPageWriteback(B) 5311 * unlock_page(B) 5312 * # flush A, B to clear the writeback 5313 */ 5314 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 5315 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5316 if (!vmf->prealloc_pte) 5317 return VM_FAULT_OOM; 5318 } 5319 5320 ret = vma->vm_ops->fault(vmf); 5321 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 5322 VM_FAULT_DONE_COW))) 5323 return ret; 5324 5325 folio = page_folio(vmf->page); 5326 if (unlikely(PageHWPoison(vmf->page))) { 5327 vm_fault_t poisonret = VM_FAULT_HWPOISON; 5328 if (ret & VM_FAULT_LOCKED) { 5329 if (page_mapped(vmf->page)) 5330 unmap_mapping_folio(folio); 5331 /* Retry if a clean folio was removed from the cache. */ 5332 if (mapping_evict_folio(folio->mapping, folio)) 5333 poisonret = VM_FAULT_NOPAGE; 5334 folio_unlock(folio); 5335 } 5336 folio_put(folio); 5337 vmf->page = NULL; 5338 return poisonret; 5339 } 5340 5341 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5342 folio_lock(folio); 5343 else 5344 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5345 5346 return ret; 5347 } 5348 5349 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5350 static void deposit_prealloc_pte(struct vm_fault *vmf) 5351 { 5352 struct vm_area_struct *vma = vmf->vma; 5353 5354 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5355 /* 5356 * We are going to consume the prealloc table, 5357 * count that as nr_ptes. 5358 */ 5359 mm_inc_nr_ptes(vma->vm_mm); 5360 vmf->prealloc_pte = NULL; 5361 } 5362 5363 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5364 { 5365 struct vm_area_struct *vma = vmf->vma; 5366 bool write = vmf->flags & FAULT_FLAG_WRITE; 5367 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5368 pmd_t entry; 5369 vm_fault_t ret = VM_FAULT_FALLBACK; 5370 5371 /* 5372 * It is too late to allocate a small folio, we already have a large 5373 * folio in the pagecache: especially s390 KVM cannot tolerate any 5374 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5375 * PMD mappings if THPs are disabled. As we already have a THP, 5376 * behave as if we are forcing a collapse. 5377 */ 5378 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags, 5379 /* forced_collapse=*/ true)) 5380 return ret; 5381 5382 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5383 return ret; 5384 5385 if (folio_order(folio) != HPAGE_PMD_ORDER) 5386 return ret; 5387 page = &folio->page; 5388 5389 /* 5390 * Just backoff if any subpage of a THP is corrupted otherwise 5391 * the corrupted page may mapped by PMD silently to escape the 5392 * check. This kind of THP just can be PTE mapped. Access to 5393 * the corrupted subpage should trigger SIGBUS as expected. 5394 */ 5395 if (unlikely(folio_test_has_hwpoisoned(folio))) 5396 return ret; 5397 5398 /* 5399 * Archs like ppc64 need additional space to store information 5400 * related to pte entry. Use the preallocated table for that. 5401 */ 5402 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5403 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5404 if (!vmf->prealloc_pte) 5405 return VM_FAULT_OOM; 5406 } 5407 5408 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5409 if (unlikely(!pmd_none(*vmf->pmd))) 5410 goto out; 5411 5412 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5413 5414 entry = folio_mk_pmd(folio, vma->vm_page_prot); 5415 if (write) 5416 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5417 5418 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5419 folio_add_file_rmap_pmd(folio, page, vma); 5420 5421 /* 5422 * deposit and withdraw with pmd lock held 5423 */ 5424 if (arch_needs_pgtable_deposit()) 5425 deposit_prealloc_pte(vmf); 5426 5427 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5428 5429 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5430 5431 /* fault is handled */ 5432 ret = 0; 5433 count_vm_event(THP_FILE_MAPPED); 5434 out: 5435 spin_unlock(vmf->ptl); 5436 return ret; 5437 } 5438 #else 5439 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5440 { 5441 return VM_FAULT_FALLBACK; 5442 } 5443 #endif 5444 5445 /** 5446 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5447 * @vmf: Fault description. 5448 * @folio: The folio that contains @page. 5449 * @page: The first page to create a PTE for. 5450 * @nr: The number of PTEs to create. 5451 * @addr: The first address to create a PTE for. 5452 */ 5453 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5454 struct page *page, unsigned int nr, unsigned long addr) 5455 { 5456 struct vm_area_struct *vma = vmf->vma; 5457 bool write = vmf->flags & FAULT_FLAG_WRITE; 5458 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5459 pte_t entry; 5460 5461 flush_icache_pages(vma, page, nr); 5462 entry = mk_pte(page, vma->vm_page_prot); 5463 5464 if (prefault && arch_wants_old_prefaulted_pte()) 5465 entry = pte_mkold(entry); 5466 else 5467 entry = pte_sw_mkyoung(entry); 5468 5469 if (write) 5470 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5471 else if (pte_write(entry) && folio_test_dirty(folio)) 5472 entry = pte_mkdirty(entry); 5473 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5474 entry = pte_mkuffd_wp(entry); 5475 /* copy-on-write page */ 5476 if (write && !(vma->vm_flags & VM_SHARED)) { 5477 VM_BUG_ON_FOLIO(nr != 1, folio); 5478 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5479 folio_add_lru_vma(folio, vma); 5480 } else { 5481 folio_add_file_rmap_ptes(folio, page, nr, vma); 5482 } 5483 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5484 5485 /* no need to invalidate: a not-present page won't be cached */ 5486 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5487 } 5488 5489 static bool vmf_pte_changed(struct vm_fault *vmf) 5490 { 5491 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5492 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5493 5494 return !pte_none(ptep_get(vmf->pte)); 5495 } 5496 5497 /** 5498 * finish_fault - finish page fault once we have prepared the page to fault 5499 * 5500 * @vmf: structure describing the fault 5501 * 5502 * This function handles all that is needed to finish a page fault once the 5503 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5504 * given page, adds reverse page mapping, handles memcg charges and LRU 5505 * addition. 5506 * 5507 * The function expects the page to be locked and on success it consumes a 5508 * reference of a page being mapped (for the PTE which maps it). 5509 * 5510 * Return: %0 on success, %VM_FAULT_ code in case of error. 5511 */ 5512 vm_fault_t finish_fault(struct vm_fault *vmf) 5513 { 5514 struct vm_area_struct *vma = vmf->vma; 5515 struct page *page; 5516 struct folio *folio; 5517 vm_fault_t ret; 5518 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5519 !(vma->vm_flags & VM_SHARED); 5520 int type, nr_pages; 5521 unsigned long addr; 5522 bool needs_fallback = false; 5523 5524 fallback: 5525 addr = vmf->address; 5526 5527 /* Did we COW the page? */ 5528 if (is_cow) 5529 page = vmf->cow_page; 5530 else 5531 page = vmf->page; 5532 5533 folio = page_folio(page); 5534 /* 5535 * check even for read faults because we might have lost our CoWed 5536 * page 5537 */ 5538 if (!(vma->vm_flags & VM_SHARED)) { 5539 ret = check_stable_address_space(vma->vm_mm); 5540 if (ret) 5541 return ret; 5542 } 5543 5544 if (!needs_fallback && vma->vm_file) { 5545 struct address_space *mapping = vma->vm_file->f_mapping; 5546 pgoff_t file_end; 5547 5548 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 5549 5550 /* 5551 * Do not allow to map with PTEs beyond i_size and with PMD 5552 * across i_size to preserve SIGBUS semantics. 5553 * 5554 * Make an exception for shmem/tmpfs that for long time 5555 * intentionally mapped with PMDs across i_size. 5556 */ 5557 needs_fallback = !shmem_mapping(mapping) && 5558 file_end < folio_next_index(folio); 5559 } 5560 5561 if (pmd_none(*vmf->pmd)) { 5562 if (!needs_fallback && folio_test_pmd_mappable(folio)) { 5563 ret = do_set_pmd(vmf, folio, page); 5564 if (ret != VM_FAULT_FALLBACK) 5565 return ret; 5566 } 5567 5568 if (vmf->prealloc_pte) 5569 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5570 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5571 return VM_FAULT_OOM; 5572 } 5573 5574 nr_pages = folio_nr_pages(folio); 5575 5576 /* Using per-page fault to maintain the uffd semantics */ 5577 if (unlikely(userfaultfd_armed(vma)) || unlikely(needs_fallback)) { 5578 nr_pages = 1; 5579 } else if (nr_pages > 1) { 5580 pgoff_t idx = folio_page_idx(folio, page); 5581 /* The page offset of vmf->address within the VMA. */ 5582 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5583 /* The index of the entry in the pagetable for fault page. */ 5584 pgoff_t pte_off = pte_index(vmf->address); 5585 5586 /* 5587 * Fallback to per-page fault in case the folio size in page 5588 * cache beyond the VMA limits and PMD pagetable limits. 5589 */ 5590 if (unlikely(vma_off < idx || 5591 vma_off + (nr_pages - idx) > vma_pages(vma) || 5592 pte_off < idx || 5593 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5594 nr_pages = 1; 5595 } else { 5596 /* Now we can set mappings for the whole large folio. */ 5597 addr = vmf->address - idx * PAGE_SIZE; 5598 page = &folio->page; 5599 } 5600 } 5601 5602 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5603 addr, &vmf->ptl); 5604 if (!vmf->pte) 5605 return VM_FAULT_NOPAGE; 5606 5607 /* Re-check under ptl */ 5608 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5609 update_mmu_tlb(vma, addr, vmf->pte); 5610 ret = VM_FAULT_NOPAGE; 5611 goto unlock; 5612 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5613 needs_fallback = true; 5614 pte_unmap_unlock(vmf->pte, vmf->ptl); 5615 goto fallback; 5616 } 5617 5618 folio_ref_add(folio, nr_pages - 1); 5619 set_pte_range(vmf, folio, page, nr_pages, addr); 5620 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5621 add_mm_counter(vma->vm_mm, type, nr_pages); 5622 ret = 0; 5623 5624 unlock: 5625 pte_unmap_unlock(vmf->pte, vmf->ptl); 5626 return ret; 5627 } 5628 5629 static unsigned long fault_around_pages __read_mostly = 5630 65536 >> PAGE_SHIFT; 5631 5632 #ifdef CONFIG_DEBUG_FS 5633 static int fault_around_bytes_get(void *data, u64 *val) 5634 { 5635 *val = fault_around_pages << PAGE_SHIFT; 5636 return 0; 5637 } 5638 5639 /* 5640 * fault_around_bytes must be rounded down to the nearest page order as it's 5641 * what do_fault_around() expects to see. 5642 */ 5643 static int fault_around_bytes_set(void *data, u64 val) 5644 { 5645 if (val / PAGE_SIZE > PTRS_PER_PTE) 5646 return -EINVAL; 5647 5648 /* 5649 * The minimum value is 1 page, however this results in no fault-around 5650 * at all. See should_fault_around(). 5651 */ 5652 val = max(val, PAGE_SIZE); 5653 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5654 5655 return 0; 5656 } 5657 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5658 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5659 5660 static int __init fault_around_debugfs(void) 5661 { 5662 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5663 &fault_around_bytes_fops); 5664 return 0; 5665 } 5666 late_initcall(fault_around_debugfs); 5667 #endif 5668 5669 /* 5670 * do_fault_around() tries to map few pages around the fault address. The hope 5671 * is that the pages will be needed soon and this will lower the number of 5672 * faults to handle. 5673 * 5674 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5675 * not ready to be mapped: not up-to-date, locked, etc. 5676 * 5677 * This function doesn't cross VMA or page table boundaries, in order to call 5678 * map_pages() and acquire a PTE lock only once. 5679 * 5680 * fault_around_pages defines how many pages we'll try to map. 5681 * do_fault_around() expects it to be set to a power of two less than or equal 5682 * to PTRS_PER_PTE. 5683 * 5684 * The virtual address of the area that we map is naturally aligned to 5685 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5686 * (and therefore to page order). This way it's easier to guarantee 5687 * that we don't cross page table boundaries. 5688 */ 5689 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5690 { 5691 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5692 pgoff_t pte_off = pte_index(vmf->address); 5693 /* The page offset of vmf->address within the VMA. */ 5694 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5695 pgoff_t from_pte, to_pte; 5696 vm_fault_t ret; 5697 5698 /* The PTE offset of the start address, clamped to the VMA. */ 5699 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5700 pte_off - min(pte_off, vma_off)); 5701 5702 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5703 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5704 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5705 5706 if (pmd_none(*vmf->pmd)) { 5707 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5708 if (!vmf->prealloc_pte) 5709 return VM_FAULT_OOM; 5710 } 5711 5712 rcu_read_lock(); 5713 ret = vmf->vma->vm_ops->map_pages(vmf, 5714 vmf->pgoff + from_pte - pte_off, 5715 vmf->pgoff + to_pte - pte_off); 5716 rcu_read_unlock(); 5717 5718 return ret; 5719 } 5720 5721 /* Return true if we should do read fault-around, false otherwise */ 5722 static inline bool should_fault_around(struct vm_fault *vmf) 5723 { 5724 /* No ->map_pages? No way to fault around... */ 5725 if (!vmf->vma->vm_ops->map_pages) 5726 return false; 5727 5728 if (uffd_disable_fault_around(vmf->vma)) 5729 return false; 5730 5731 /* A single page implies no faulting 'around' at all. */ 5732 return fault_around_pages > 1; 5733 } 5734 5735 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5736 { 5737 vm_fault_t ret = 0; 5738 struct folio *folio; 5739 5740 /* 5741 * Let's call ->map_pages() first and use ->fault() as fallback 5742 * if page by the offset is not ready to be mapped (cold cache or 5743 * something). 5744 */ 5745 if (should_fault_around(vmf)) { 5746 ret = do_fault_around(vmf); 5747 if (ret) 5748 return ret; 5749 } 5750 5751 ret = vmf_can_call_fault(vmf); 5752 if (ret) 5753 return ret; 5754 5755 ret = __do_fault(vmf); 5756 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5757 return ret; 5758 5759 ret |= finish_fault(vmf); 5760 folio = page_folio(vmf->page); 5761 folio_unlock(folio); 5762 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5763 folio_put(folio); 5764 return ret; 5765 } 5766 5767 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5768 { 5769 struct vm_area_struct *vma = vmf->vma; 5770 struct folio *folio; 5771 vm_fault_t ret; 5772 5773 ret = vmf_can_call_fault(vmf); 5774 if (!ret) 5775 ret = vmf_anon_prepare(vmf); 5776 if (ret) 5777 return ret; 5778 5779 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5780 if (!folio) 5781 return VM_FAULT_OOM; 5782 5783 vmf->cow_page = &folio->page; 5784 5785 ret = __do_fault(vmf); 5786 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5787 goto uncharge_out; 5788 if (ret & VM_FAULT_DONE_COW) 5789 return ret; 5790 5791 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5792 ret = VM_FAULT_HWPOISON; 5793 goto unlock; 5794 } 5795 __folio_mark_uptodate(folio); 5796 5797 ret |= finish_fault(vmf); 5798 unlock: 5799 unlock_page(vmf->page); 5800 put_page(vmf->page); 5801 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5802 goto uncharge_out; 5803 return ret; 5804 uncharge_out: 5805 folio_put(folio); 5806 return ret; 5807 } 5808 5809 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5810 { 5811 struct vm_area_struct *vma = vmf->vma; 5812 vm_fault_t ret, tmp; 5813 struct folio *folio; 5814 5815 ret = vmf_can_call_fault(vmf); 5816 if (ret) 5817 return ret; 5818 5819 ret = __do_fault(vmf); 5820 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5821 return ret; 5822 5823 folio = page_folio(vmf->page); 5824 5825 /* 5826 * Check if the backing address space wants to know that the page is 5827 * about to become writable 5828 */ 5829 if (vma->vm_ops->page_mkwrite) { 5830 folio_unlock(folio); 5831 tmp = do_page_mkwrite(vmf, folio); 5832 if (unlikely(!tmp || 5833 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5834 folio_put(folio); 5835 return tmp; 5836 } 5837 } 5838 5839 ret |= finish_fault(vmf); 5840 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5841 VM_FAULT_RETRY))) { 5842 folio_unlock(folio); 5843 folio_put(folio); 5844 return ret; 5845 } 5846 5847 ret |= fault_dirty_shared_page(vmf); 5848 return ret; 5849 } 5850 5851 /* 5852 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5853 * but allow concurrent faults). 5854 * The mmap_lock may have been released depending on flags and our 5855 * return value. See filemap_fault() and __folio_lock_or_retry(). 5856 * If mmap_lock is released, vma may become invalid (for example 5857 * by other thread calling munmap()). 5858 */ 5859 static vm_fault_t do_fault(struct vm_fault *vmf) 5860 { 5861 struct vm_area_struct *vma = vmf->vma; 5862 struct mm_struct *vm_mm = vma->vm_mm; 5863 vm_fault_t ret; 5864 5865 /* 5866 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5867 */ 5868 if (!vma->vm_ops->fault) { 5869 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5870 vmf->address, &vmf->ptl); 5871 if (unlikely(!vmf->pte)) 5872 ret = VM_FAULT_SIGBUS; 5873 else { 5874 /* 5875 * Make sure this is not a temporary clearing of pte 5876 * by holding ptl and checking again. A R/M/W update 5877 * of pte involves: take ptl, clearing the pte so that 5878 * we don't have concurrent modification by hardware 5879 * followed by an update. 5880 */ 5881 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5882 ret = VM_FAULT_SIGBUS; 5883 else 5884 ret = VM_FAULT_NOPAGE; 5885 5886 pte_unmap_unlock(vmf->pte, vmf->ptl); 5887 } 5888 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5889 ret = do_read_fault(vmf); 5890 else if (!(vma->vm_flags & VM_SHARED)) 5891 ret = do_cow_fault(vmf); 5892 else 5893 ret = do_shared_fault(vmf); 5894 5895 /* preallocated pagetable is unused: free it */ 5896 if (vmf->prealloc_pte) { 5897 pte_free(vm_mm, vmf->prealloc_pte); 5898 vmf->prealloc_pte = NULL; 5899 } 5900 return ret; 5901 } 5902 5903 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5904 unsigned long addr, int *flags, 5905 bool writable, int *last_cpupid) 5906 { 5907 struct vm_area_struct *vma = vmf->vma; 5908 5909 /* 5910 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5911 * much anyway since they can be in shared cache state. This misses 5912 * the case where a mapping is writable but the process never writes 5913 * to it but pte_write gets cleared during protection updates and 5914 * pte_dirty has unpredictable behaviour between PTE scan updates, 5915 * background writeback, dirty balancing and application behaviour. 5916 */ 5917 if (!writable) 5918 *flags |= TNF_NO_GROUP; 5919 5920 /* 5921 * Flag if the folio is shared between multiple address spaces. This 5922 * is later used when determining whether to group tasks together 5923 */ 5924 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5925 *flags |= TNF_SHARED; 5926 /* 5927 * For memory tiering mode, cpupid of slow memory page is used 5928 * to record page access time. So use default value. 5929 */ 5930 if (folio_use_access_time(folio)) 5931 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5932 else 5933 *last_cpupid = folio_last_cpupid(folio); 5934 5935 /* Record the current PID acceesing VMA */ 5936 vma_set_access_pid_bit(vma); 5937 5938 count_vm_numa_event(NUMA_HINT_FAULTS); 5939 #ifdef CONFIG_NUMA_BALANCING 5940 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5941 #endif 5942 if (folio_nid(folio) == numa_node_id()) { 5943 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5944 *flags |= TNF_FAULT_LOCAL; 5945 } 5946 5947 return mpol_misplaced(folio, vmf, addr); 5948 } 5949 5950 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5951 unsigned long fault_addr, pte_t *fault_pte, 5952 bool writable) 5953 { 5954 pte_t pte, old_pte; 5955 5956 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5957 pte = pte_modify(old_pte, vma->vm_page_prot); 5958 pte = pte_mkyoung(pte); 5959 if (writable) 5960 pte = pte_mkwrite(pte, vma); 5961 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5962 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5963 } 5964 5965 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5966 struct folio *folio, pte_t fault_pte, 5967 bool ignore_writable, bool pte_write_upgrade) 5968 { 5969 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5970 unsigned long start, end, addr = vmf->address; 5971 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5972 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5973 pte_t *start_ptep; 5974 5975 /* Stay within the VMA and within the page table. */ 5976 start = max3(addr_start, pt_start, vma->vm_start); 5977 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5978 vma->vm_end); 5979 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5980 5981 /* Restore all PTEs' mapping of the large folio */ 5982 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5983 pte_t ptent = ptep_get(start_ptep); 5984 bool writable = false; 5985 5986 if (!pte_present(ptent) || !pte_protnone(ptent)) 5987 continue; 5988 5989 if (pfn_folio(pte_pfn(ptent)) != folio) 5990 continue; 5991 5992 if (!ignore_writable) { 5993 ptent = pte_modify(ptent, vma->vm_page_prot); 5994 writable = pte_write(ptent); 5995 if (!writable && pte_write_upgrade && 5996 can_change_pte_writable(vma, addr, ptent)) 5997 writable = true; 5998 } 5999 6000 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 6001 } 6002 } 6003 6004 static vm_fault_t do_numa_page(struct vm_fault *vmf) 6005 { 6006 struct vm_area_struct *vma = vmf->vma; 6007 struct folio *folio = NULL; 6008 int nid = NUMA_NO_NODE; 6009 bool writable = false, ignore_writable = false; 6010 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 6011 int last_cpupid; 6012 int target_nid; 6013 pte_t pte, old_pte; 6014 int flags = 0, nr_pages; 6015 6016 /* 6017 * The pte cannot be used safely until we verify, while holding the page 6018 * table lock, that its contents have not changed during fault handling. 6019 */ 6020 spin_lock(vmf->ptl); 6021 /* Read the live PTE from the page tables: */ 6022 old_pte = ptep_get(vmf->pte); 6023 6024 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 6025 pte_unmap_unlock(vmf->pte, vmf->ptl); 6026 return 0; 6027 } 6028 6029 pte = pte_modify(old_pte, vma->vm_page_prot); 6030 6031 /* 6032 * Detect now whether the PTE could be writable; this information 6033 * is only valid while holding the PT lock. 6034 */ 6035 writable = pte_write(pte); 6036 if (!writable && pte_write_upgrade && 6037 can_change_pte_writable(vma, vmf->address, pte)) 6038 writable = true; 6039 6040 folio = vm_normal_folio(vma, vmf->address, pte); 6041 if (!folio || folio_is_zone_device(folio)) 6042 goto out_map; 6043 6044 nid = folio_nid(folio); 6045 nr_pages = folio_nr_pages(folio); 6046 6047 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 6048 writable, &last_cpupid); 6049 if (target_nid == NUMA_NO_NODE) 6050 goto out_map; 6051 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 6052 flags |= TNF_MIGRATE_FAIL; 6053 goto out_map; 6054 } 6055 /* The folio is isolated and isolation code holds a folio reference. */ 6056 pte_unmap_unlock(vmf->pte, vmf->ptl); 6057 writable = false; 6058 ignore_writable = true; 6059 6060 /* Migrate to the requested node */ 6061 if (!migrate_misplaced_folio(folio, target_nid)) { 6062 nid = target_nid; 6063 flags |= TNF_MIGRATED; 6064 task_numa_fault(last_cpupid, nid, nr_pages, flags); 6065 return 0; 6066 } 6067 6068 flags |= TNF_MIGRATE_FAIL; 6069 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 6070 vmf->address, &vmf->ptl); 6071 if (unlikely(!vmf->pte)) 6072 return 0; 6073 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 6074 pte_unmap_unlock(vmf->pte, vmf->ptl); 6075 return 0; 6076 } 6077 out_map: 6078 /* 6079 * Make it present again, depending on how arch implements 6080 * non-accessible ptes, some can allow access by kernel mode. 6081 */ 6082 if (folio && folio_test_large(folio)) 6083 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 6084 pte_write_upgrade); 6085 else 6086 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 6087 writable); 6088 pte_unmap_unlock(vmf->pte, vmf->ptl); 6089 6090 if (nid != NUMA_NO_NODE) 6091 task_numa_fault(last_cpupid, nid, nr_pages, flags); 6092 return 0; 6093 } 6094 6095 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 6096 { 6097 struct vm_area_struct *vma = vmf->vma; 6098 if (vma_is_anonymous(vma)) 6099 return do_huge_pmd_anonymous_page(vmf); 6100 if (vma->vm_ops->huge_fault) 6101 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 6102 return VM_FAULT_FALLBACK; 6103 } 6104 6105 /* `inline' is required to avoid gcc 4.1.2 build error */ 6106 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 6107 { 6108 struct vm_area_struct *vma = vmf->vma; 6109 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6110 vm_fault_t ret; 6111 6112 if (vma_is_anonymous(vma)) { 6113 if (likely(!unshare) && 6114 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 6115 if (userfaultfd_wp_async(vmf->vma)) 6116 goto split; 6117 return handle_userfault(vmf, VM_UFFD_WP); 6118 } 6119 return do_huge_pmd_wp_page(vmf); 6120 } 6121 6122 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6123 if (vma->vm_ops->huge_fault) { 6124 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 6125 if (!(ret & VM_FAULT_FALLBACK)) 6126 return ret; 6127 } 6128 } 6129 6130 split: 6131 /* COW or write-notify handled on pte level: split pmd. */ 6132 __split_huge_pmd(vma, vmf->pmd, vmf->address, false); 6133 6134 return VM_FAULT_FALLBACK; 6135 } 6136 6137 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 6138 { 6139 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6140 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6141 struct vm_area_struct *vma = vmf->vma; 6142 /* No support for anonymous transparent PUD pages yet */ 6143 if (vma_is_anonymous(vma)) 6144 return VM_FAULT_FALLBACK; 6145 if (vma->vm_ops->huge_fault) 6146 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6147 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 6148 return VM_FAULT_FALLBACK; 6149 } 6150 6151 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 6152 { 6153 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6154 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6155 struct vm_area_struct *vma = vmf->vma; 6156 vm_fault_t ret; 6157 6158 /* No support for anonymous transparent PUD pages yet */ 6159 if (vma_is_anonymous(vma)) 6160 goto split; 6161 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6162 if (vma->vm_ops->huge_fault) { 6163 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6164 if (!(ret & VM_FAULT_FALLBACK)) 6165 return ret; 6166 } 6167 } 6168 split: 6169 /* COW or write-notify not handled on PUD level: split pud.*/ 6170 __split_huge_pud(vma, vmf->pud, vmf->address); 6171 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 6172 return VM_FAULT_FALLBACK; 6173 } 6174 6175 /* 6176 * The page faults may be spurious because of the racy access to the 6177 * page table. For example, a non-populated virtual page is accessed 6178 * on 2 CPUs simultaneously, thus the page faults are triggered on 6179 * both CPUs. However, it's possible that one CPU (say CPU A) cannot 6180 * find the reason for the page fault if the other CPU (say CPU B) has 6181 * changed the page table before the PTE is checked on CPU A. Most of 6182 * the time, the spurious page faults can be ignored safely. However, 6183 * if the page fault is for the write access, it's possible that a 6184 * stale read-only TLB entry exists in the local CPU and needs to be 6185 * flushed on some architectures. This is called the spurious page 6186 * fault fixing. 6187 * 6188 * Note: flush_tlb_fix_spurious_fault() is defined as flush_tlb_page() 6189 * by default and used as such on most architectures, while 6190 * flush_tlb_fix_spurious_fault_pmd() is defined as NOP by default and 6191 * used as such on most architectures. 6192 */ 6193 static void fix_spurious_fault(struct vm_fault *vmf, 6194 enum pgtable_level ptlevel) 6195 { 6196 /* Skip spurious TLB flush for retried page fault */ 6197 if (vmf->flags & FAULT_FLAG_TRIED) 6198 return; 6199 /* 6200 * This is needed only for protection faults but the arch code 6201 * is not yet telling us if this is a protection fault or not. 6202 * This still avoids useless tlb flushes for .text page faults 6203 * with threads. 6204 */ 6205 if (vmf->flags & FAULT_FLAG_WRITE) { 6206 if (ptlevel == PGTABLE_LEVEL_PTE) 6207 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 6208 vmf->pte); 6209 else 6210 flush_tlb_fix_spurious_fault_pmd(vmf->vma, vmf->address, 6211 vmf->pmd); 6212 } 6213 } 6214 /* 6215 * These routines also need to handle stuff like marking pages dirty 6216 * and/or accessed for architectures that don't do it in hardware (most 6217 * RISC architectures). The early dirtying is also good on the i386. 6218 * 6219 * There is also a hook called "update_mmu_cache()" that architectures 6220 * with external mmu caches can use to update those (ie the Sparc or 6221 * PowerPC hashed page tables that act as extended TLBs). 6222 * 6223 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 6224 * concurrent faults). 6225 * 6226 * The mmap_lock may have been released depending on flags and our return value. 6227 * See filemap_fault() and __folio_lock_or_retry(). 6228 */ 6229 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 6230 { 6231 pte_t entry; 6232 6233 if (unlikely(pmd_none(*vmf->pmd))) { 6234 /* 6235 * Leave __pte_alloc() until later: because vm_ops->fault may 6236 * want to allocate huge page, and if we expose page table 6237 * for an instant, it will be difficult to retract from 6238 * concurrent faults and from rmap lookups. 6239 */ 6240 vmf->pte = NULL; 6241 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 6242 } else { 6243 pmd_t dummy_pmdval; 6244 6245 /* 6246 * A regular pmd is established and it can't morph into a huge 6247 * pmd by anon khugepaged, since that takes mmap_lock in write 6248 * mode; but shmem or file collapse to THP could still morph 6249 * it into a huge pmd: just retry later if so. 6250 * 6251 * Use the maywrite version to indicate that vmf->pte may be 6252 * modified, but since we will use pte_same() to detect the 6253 * change of the !pte_none() entry, there is no need to recheck 6254 * the pmdval. Here we chooes to pass a dummy variable instead 6255 * of NULL, which helps new user think about why this place is 6256 * special. 6257 */ 6258 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 6259 vmf->address, &dummy_pmdval, 6260 &vmf->ptl); 6261 if (unlikely(!vmf->pte)) 6262 return 0; 6263 vmf->orig_pte = ptep_get_lockless(vmf->pte); 6264 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 6265 6266 if (pte_none(vmf->orig_pte)) { 6267 pte_unmap(vmf->pte); 6268 vmf->pte = NULL; 6269 } 6270 } 6271 6272 if (!vmf->pte) 6273 return do_pte_missing(vmf); 6274 6275 if (!pte_present(vmf->orig_pte)) 6276 return do_swap_page(vmf); 6277 6278 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 6279 return do_numa_page(vmf); 6280 6281 spin_lock(vmf->ptl); 6282 entry = vmf->orig_pte; 6283 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 6284 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 6285 goto unlock; 6286 } 6287 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6288 if (!pte_write(entry)) 6289 return do_wp_page(vmf); 6290 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 6291 entry = pte_mkdirty(entry); 6292 } 6293 entry = pte_mkyoung(entry); 6294 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 6295 vmf->flags & FAULT_FLAG_WRITE)) 6296 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 6297 vmf->pte, 1); 6298 else 6299 fix_spurious_fault(vmf, PGTABLE_LEVEL_PTE); 6300 unlock: 6301 pte_unmap_unlock(vmf->pte, vmf->ptl); 6302 return 0; 6303 } 6304 6305 /* 6306 * On entry, we hold either the VMA lock or the mmap_lock 6307 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 6308 * the result, the mmap_lock is not held on exit. See filemap_fault() 6309 * and __folio_lock_or_retry(). 6310 */ 6311 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 6312 unsigned long address, unsigned int flags) 6313 { 6314 struct vm_fault vmf = { 6315 .vma = vma, 6316 .address = address & PAGE_MASK, 6317 .real_address = address, 6318 .flags = flags, 6319 .pgoff = linear_page_index(vma, address), 6320 .gfp_mask = __get_fault_gfp_mask(vma), 6321 }; 6322 struct mm_struct *mm = vma->vm_mm; 6323 vm_flags_t vm_flags = vma->vm_flags; 6324 pgd_t *pgd; 6325 p4d_t *p4d; 6326 vm_fault_t ret; 6327 6328 pgd = pgd_offset(mm, address); 6329 p4d = p4d_alloc(mm, pgd, address); 6330 if (!p4d) 6331 return VM_FAULT_OOM; 6332 6333 vmf.pud = pud_alloc(mm, p4d, address); 6334 if (!vmf.pud) 6335 return VM_FAULT_OOM; 6336 retry_pud: 6337 if (pud_none(*vmf.pud) && 6338 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PUD_ORDER)) { 6339 ret = create_huge_pud(&vmf); 6340 if (!(ret & VM_FAULT_FALLBACK)) 6341 return ret; 6342 } else { 6343 pud_t orig_pud = *vmf.pud; 6344 6345 barrier(); 6346 if (pud_trans_huge(orig_pud)) { 6347 6348 /* 6349 * TODO once we support anonymous PUDs: NUMA case and 6350 * FAULT_FLAG_UNSHARE handling. 6351 */ 6352 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 6353 ret = wp_huge_pud(&vmf, orig_pud); 6354 if (!(ret & VM_FAULT_FALLBACK)) 6355 return ret; 6356 } else { 6357 huge_pud_set_accessed(&vmf, orig_pud); 6358 return 0; 6359 } 6360 } 6361 } 6362 6363 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 6364 if (!vmf.pmd) 6365 return VM_FAULT_OOM; 6366 6367 /* Huge pud page fault raced with pmd_alloc? */ 6368 if (pud_trans_unstable(vmf.pud)) 6369 goto retry_pud; 6370 6371 if (pmd_none(*vmf.pmd) && 6372 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PMD_ORDER)) { 6373 ret = create_huge_pmd(&vmf); 6374 if (ret & VM_FAULT_FALLBACK) 6375 goto fallback; 6376 else 6377 return ret; 6378 } 6379 6380 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6381 if (pmd_none(vmf.orig_pmd)) 6382 goto fallback; 6383 6384 if (unlikely(!pmd_present(vmf.orig_pmd))) { 6385 if (pmd_is_device_private_entry(vmf.orig_pmd)) 6386 return do_huge_pmd_device_private(&vmf); 6387 6388 if (pmd_is_migration_entry(vmf.orig_pmd)) 6389 pmd_migration_entry_wait(mm, vmf.pmd); 6390 return 0; 6391 } 6392 if (pmd_trans_huge(vmf.orig_pmd)) { 6393 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6394 return do_huge_pmd_numa_page(&vmf); 6395 6396 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6397 !pmd_write(vmf.orig_pmd)) { 6398 ret = wp_huge_pmd(&vmf); 6399 if (!(ret & VM_FAULT_FALLBACK)) 6400 return ret; 6401 } else { 6402 vmf.ptl = pmd_lock(mm, vmf.pmd); 6403 if (!huge_pmd_set_accessed(&vmf)) 6404 fix_spurious_fault(&vmf, PGTABLE_LEVEL_PMD); 6405 spin_unlock(vmf.ptl); 6406 return 0; 6407 } 6408 } 6409 6410 fallback: 6411 return handle_pte_fault(&vmf); 6412 } 6413 6414 /** 6415 * mm_account_fault - Do page fault accounting 6416 * @mm: mm from which memcg should be extracted. It can be NULL. 6417 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6418 * of perf event counters, but we'll still do the per-task accounting to 6419 * the task who triggered this page fault. 6420 * @address: the faulted address. 6421 * @flags: the fault flags. 6422 * @ret: the fault retcode. 6423 * 6424 * This will take care of most of the page fault accounting. Meanwhile, it 6425 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6426 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6427 * still be in per-arch page fault handlers at the entry of page fault. 6428 */ 6429 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6430 unsigned long address, unsigned int flags, 6431 vm_fault_t ret) 6432 { 6433 bool major; 6434 6435 /* Incomplete faults will be accounted upon completion. */ 6436 if (ret & VM_FAULT_RETRY) 6437 return; 6438 6439 /* 6440 * To preserve the behavior of older kernels, PGFAULT counters record 6441 * both successful and failed faults, as opposed to perf counters, 6442 * which ignore failed cases. 6443 */ 6444 count_vm_event(PGFAULT); 6445 count_memcg_event_mm(mm, PGFAULT); 6446 6447 /* 6448 * Do not account for unsuccessful faults (e.g. when the address wasn't 6449 * valid). That includes arch_vma_access_permitted() failing before 6450 * reaching here. So this is not a "this many hardware page faults" 6451 * counter. We should use the hw profiling for that. 6452 */ 6453 if (ret & VM_FAULT_ERROR) 6454 return; 6455 6456 /* 6457 * We define the fault as a major fault when the final successful fault 6458 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6459 * handle it immediately previously). 6460 */ 6461 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6462 6463 if (major) 6464 current->maj_flt++; 6465 else 6466 current->min_flt++; 6467 6468 /* 6469 * If the fault is done for GUP, regs will be NULL. We only do the 6470 * accounting for the per thread fault counters who triggered the 6471 * fault, and we skip the perf event updates. 6472 */ 6473 if (!regs) 6474 return; 6475 6476 if (major) 6477 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6478 else 6479 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6480 } 6481 6482 #ifdef CONFIG_LRU_GEN 6483 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6484 { 6485 /* the LRU algorithm only applies to accesses with recency */ 6486 current->in_lru_fault = vma_has_recency(vma); 6487 } 6488 6489 static void lru_gen_exit_fault(void) 6490 { 6491 current->in_lru_fault = false; 6492 } 6493 #else 6494 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6495 { 6496 } 6497 6498 static void lru_gen_exit_fault(void) 6499 { 6500 } 6501 #endif /* CONFIG_LRU_GEN */ 6502 6503 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6504 unsigned int *flags) 6505 { 6506 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6507 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6508 return VM_FAULT_SIGSEGV; 6509 /* 6510 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6511 * just treat it like an ordinary read-fault otherwise. 6512 */ 6513 if (!is_cow_mapping(vma->vm_flags)) 6514 *flags &= ~FAULT_FLAG_UNSHARE; 6515 } else if (*flags & FAULT_FLAG_WRITE) { 6516 /* Write faults on read-only mappings are impossible ... */ 6517 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6518 return VM_FAULT_SIGSEGV; 6519 /* ... and FOLL_FORCE only applies to COW mappings. */ 6520 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6521 !is_cow_mapping(vma->vm_flags))) 6522 return VM_FAULT_SIGSEGV; 6523 } 6524 #ifdef CONFIG_PER_VMA_LOCK 6525 /* 6526 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6527 * the assumption that lock is dropped on VM_FAULT_RETRY. 6528 */ 6529 if (WARN_ON_ONCE((*flags & 6530 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6531 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6532 return VM_FAULT_SIGSEGV; 6533 #endif 6534 6535 return 0; 6536 } 6537 6538 /* 6539 * By the time we get here, we already hold either the VMA lock or the 6540 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6541 * 6542 * The mmap_lock may have been released depending on flags and our 6543 * return value. See filemap_fault() and __folio_lock_or_retry(). 6544 */ 6545 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6546 unsigned int flags, struct pt_regs *regs) 6547 { 6548 /* If the fault handler drops the mmap_lock, vma may be freed */ 6549 struct mm_struct *mm = vma->vm_mm; 6550 vm_fault_t ret; 6551 bool is_droppable; 6552 6553 __set_current_state(TASK_RUNNING); 6554 6555 ret = sanitize_fault_flags(vma, &flags); 6556 if (ret) 6557 goto out; 6558 6559 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6560 flags & FAULT_FLAG_INSTRUCTION, 6561 flags & FAULT_FLAG_REMOTE)) { 6562 ret = VM_FAULT_SIGSEGV; 6563 goto out; 6564 } 6565 6566 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6567 6568 /* 6569 * Enable the memcg OOM handling for faults triggered in user 6570 * space. Kernel faults are handled more gracefully. 6571 */ 6572 if (flags & FAULT_FLAG_USER) 6573 mem_cgroup_enter_user_fault(); 6574 6575 lru_gen_enter_fault(vma); 6576 6577 if (unlikely(is_vm_hugetlb_page(vma))) 6578 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6579 else 6580 ret = __handle_mm_fault(vma, address, flags); 6581 6582 /* 6583 * Warning: It is no longer safe to dereference vma-> after this point, 6584 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6585 * vma might be destroyed from underneath us. 6586 */ 6587 6588 lru_gen_exit_fault(); 6589 6590 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6591 if (is_droppable) 6592 ret &= ~VM_FAULT_OOM; 6593 6594 if (flags & FAULT_FLAG_USER) { 6595 mem_cgroup_exit_user_fault(); 6596 /* 6597 * The task may have entered a memcg OOM situation but 6598 * if the allocation error was handled gracefully (no 6599 * VM_FAULT_OOM), there is no need to kill anything. 6600 * Just clean up the OOM state peacefully. 6601 */ 6602 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6603 mem_cgroup_oom_synchronize(false); 6604 } 6605 out: 6606 mm_account_fault(mm, regs, address, flags, ret); 6607 6608 return ret; 6609 } 6610 EXPORT_SYMBOL_GPL(handle_mm_fault); 6611 6612 #ifndef __PAGETABLE_P4D_FOLDED 6613 /* 6614 * Allocate p4d page table. 6615 * We've already handled the fast-path in-line. 6616 */ 6617 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6618 { 6619 p4d_t *new = p4d_alloc_one(mm, address); 6620 if (!new) 6621 return -ENOMEM; 6622 6623 spin_lock(&mm->page_table_lock); 6624 if (pgd_present(*pgd)) { /* Another has populated it */ 6625 p4d_free(mm, new); 6626 } else { 6627 smp_wmb(); /* See comment in pmd_install() */ 6628 pgd_populate(mm, pgd, new); 6629 } 6630 spin_unlock(&mm->page_table_lock); 6631 return 0; 6632 } 6633 #endif /* __PAGETABLE_P4D_FOLDED */ 6634 6635 #ifndef __PAGETABLE_PUD_FOLDED 6636 /* 6637 * Allocate page upper directory. 6638 * We've already handled the fast-path in-line. 6639 */ 6640 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6641 { 6642 pud_t *new = pud_alloc_one(mm, address); 6643 if (!new) 6644 return -ENOMEM; 6645 6646 spin_lock(&mm->page_table_lock); 6647 if (!p4d_present(*p4d)) { 6648 mm_inc_nr_puds(mm); 6649 smp_wmb(); /* See comment in pmd_install() */ 6650 p4d_populate(mm, p4d, new); 6651 } else /* Another has populated it */ 6652 pud_free(mm, new); 6653 spin_unlock(&mm->page_table_lock); 6654 return 0; 6655 } 6656 #endif /* __PAGETABLE_PUD_FOLDED */ 6657 6658 #ifndef __PAGETABLE_PMD_FOLDED 6659 /* 6660 * Allocate page middle directory. 6661 * We've already handled the fast-path in-line. 6662 */ 6663 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6664 { 6665 spinlock_t *ptl; 6666 pmd_t *new = pmd_alloc_one(mm, address); 6667 if (!new) 6668 return -ENOMEM; 6669 6670 ptl = pud_lock(mm, pud); 6671 if (!pud_present(*pud)) { 6672 mm_inc_nr_pmds(mm); 6673 smp_wmb(); /* See comment in pmd_install() */ 6674 pud_populate(mm, pud, new); 6675 } else { /* Another has populated it */ 6676 pmd_free(mm, new); 6677 } 6678 spin_unlock(ptl); 6679 return 0; 6680 } 6681 #endif /* __PAGETABLE_PMD_FOLDED */ 6682 6683 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6684 spinlock_t *lock, pte_t *ptep, 6685 pgprot_t pgprot, unsigned long pfn_base, 6686 unsigned long addr_mask, bool writable, 6687 bool special) 6688 { 6689 args->lock = lock; 6690 args->ptep = ptep; 6691 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6692 args->addr_mask = addr_mask; 6693 args->pgprot = pgprot; 6694 args->writable = writable; 6695 args->special = special; 6696 } 6697 6698 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6699 { 6700 #ifdef CONFIG_LOCKDEP 6701 struct file *file = vma->vm_file; 6702 struct address_space *mapping = file ? file->f_mapping : NULL; 6703 6704 if (mapping) 6705 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6706 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6707 else 6708 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6709 #endif 6710 } 6711 6712 /** 6713 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6714 * @args: Pointer to struct @follow_pfnmap_args 6715 * 6716 * The caller needs to setup args->vma and args->address to point to the 6717 * virtual address as the target of such lookup. On a successful return, 6718 * the results will be put into other output fields. 6719 * 6720 * After the caller finished using the fields, the caller must invoke 6721 * another follow_pfnmap_end() to proper releases the locks and resources 6722 * of such look up request. 6723 * 6724 * During the start() and end() calls, the results in @args will be valid 6725 * as proper locks will be held. After the end() is called, all the fields 6726 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6727 * use of such information after end() may require proper synchronizations 6728 * by the caller with page table updates, otherwise it can create a 6729 * security bug. 6730 * 6731 * If the PTE maps a refcounted page, callers are responsible to protect 6732 * against invalidation with MMU notifiers; otherwise access to the PFN at 6733 * a later point in time can trigger use-after-free. 6734 * 6735 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6736 * should be taken for read, and the mmap semaphore cannot be released 6737 * before the end() is invoked. 6738 * 6739 * This function must not be used to modify PTE content. 6740 * 6741 * Return: zero on success, negative otherwise. 6742 */ 6743 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6744 { 6745 struct vm_area_struct *vma = args->vma; 6746 unsigned long address = args->address; 6747 struct mm_struct *mm = vma->vm_mm; 6748 spinlock_t *lock; 6749 pgd_t *pgdp; 6750 p4d_t *p4dp, p4d; 6751 pud_t *pudp, pud; 6752 pmd_t *pmdp, pmd; 6753 pte_t *ptep, pte; 6754 6755 pfnmap_lockdep_assert(vma); 6756 6757 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6758 goto out; 6759 6760 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6761 goto out; 6762 retry: 6763 pgdp = pgd_offset(mm, address); 6764 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6765 goto out; 6766 6767 p4dp = p4d_offset(pgdp, address); 6768 p4d = p4dp_get(p4dp); 6769 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6770 goto out; 6771 6772 pudp = pud_offset(p4dp, address); 6773 pud = pudp_get(pudp); 6774 if (pud_none(pud)) 6775 goto out; 6776 if (pud_leaf(pud)) { 6777 lock = pud_lock(mm, pudp); 6778 if (!unlikely(pud_leaf(pud))) { 6779 spin_unlock(lock); 6780 goto retry; 6781 } 6782 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6783 pud_pfn(pud), PUD_MASK, pud_write(pud), 6784 pud_special(pud)); 6785 return 0; 6786 } 6787 6788 pmdp = pmd_offset(pudp, address); 6789 pmd = pmdp_get_lockless(pmdp); 6790 if (pmd_leaf(pmd)) { 6791 lock = pmd_lock(mm, pmdp); 6792 if (!unlikely(pmd_leaf(pmd))) { 6793 spin_unlock(lock); 6794 goto retry; 6795 } 6796 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6797 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6798 pmd_special(pmd)); 6799 return 0; 6800 } 6801 6802 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6803 if (!ptep) 6804 goto out; 6805 pte = ptep_get(ptep); 6806 if (!pte_present(pte)) 6807 goto unlock; 6808 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6809 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6810 pte_special(pte)); 6811 return 0; 6812 unlock: 6813 pte_unmap_unlock(ptep, lock); 6814 out: 6815 return -EINVAL; 6816 } 6817 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6818 6819 /** 6820 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6821 * @args: Pointer to struct @follow_pfnmap_args 6822 * 6823 * Must be used in pair of follow_pfnmap_start(). See the start() function 6824 * above for more information. 6825 */ 6826 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6827 { 6828 if (args->lock) 6829 spin_unlock(args->lock); 6830 if (args->ptep) 6831 pte_unmap(args->ptep); 6832 } 6833 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6834 6835 #ifdef CONFIG_HAVE_IOREMAP_PROT 6836 /** 6837 * generic_access_phys - generic implementation for iomem mmap access 6838 * @vma: the vma to access 6839 * @addr: userspace address, not relative offset within @vma 6840 * @buf: buffer to read/write 6841 * @len: length of transfer 6842 * @write: set to FOLL_WRITE when writing, otherwise reading 6843 * 6844 * This is a generic implementation for &vm_operations_struct.access for an 6845 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6846 * not page based. 6847 */ 6848 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6849 void *buf, int len, int write) 6850 { 6851 resource_size_t phys_addr; 6852 pgprot_t prot = __pgprot(0); 6853 void __iomem *maddr; 6854 int offset = offset_in_page(addr); 6855 int ret = -EINVAL; 6856 bool writable; 6857 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6858 6859 retry: 6860 if (follow_pfnmap_start(&args)) 6861 return -EINVAL; 6862 prot = args.pgprot; 6863 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6864 writable = args.writable; 6865 follow_pfnmap_end(&args); 6866 6867 if ((write & FOLL_WRITE) && !writable) 6868 return -EINVAL; 6869 6870 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6871 if (!maddr) 6872 return -ENOMEM; 6873 6874 if (follow_pfnmap_start(&args)) 6875 goto out_unmap; 6876 6877 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || 6878 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6879 (writable != args.writable)) { 6880 follow_pfnmap_end(&args); 6881 iounmap(maddr); 6882 goto retry; 6883 } 6884 6885 if (write) 6886 memcpy_toio(maddr + offset, buf, len); 6887 else 6888 memcpy_fromio(buf, maddr + offset, len); 6889 ret = len; 6890 follow_pfnmap_end(&args); 6891 out_unmap: 6892 iounmap(maddr); 6893 6894 return ret; 6895 } 6896 EXPORT_SYMBOL_GPL(generic_access_phys); 6897 #endif 6898 6899 /* 6900 * Access another process' address space as given in mm. 6901 */ 6902 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6903 void *buf, int len, unsigned int gup_flags) 6904 { 6905 void *old_buf = buf; 6906 int write = gup_flags & FOLL_WRITE; 6907 6908 if (mmap_read_lock_killable(mm)) 6909 return 0; 6910 6911 /* Untag the address before looking up the VMA */ 6912 addr = untagged_addr_remote(mm, addr); 6913 6914 /* Avoid triggering the temporary warning in __get_user_pages */ 6915 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6916 return 0; 6917 6918 /* ignore errors, just check how much was successfully transferred */ 6919 while (len) { 6920 int bytes, offset; 6921 void *maddr; 6922 struct folio *folio; 6923 struct vm_area_struct *vma = NULL; 6924 struct page *page = get_user_page_vma_remote(mm, addr, 6925 gup_flags, &vma); 6926 6927 if (IS_ERR(page)) { 6928 /* We might need to expand the stack to access it */ 6929 vma = vma_lookup(mm, addr); 6930 if (!vma) { 6931 vma = expand_stack(mm, addr); 6932 6933 /* mmap_lock was dropped on failure */ 6934 if (!vma) 6935 return buf - old_buf; 6936 6937 /* Try again if stack expansion worked */ 6938 continue; 6939 } 6940 6941 /* 6942 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6943 * we can access using slightly different code. 6944 */ 6945 bytes = 0; 6946 #ifdef CONFIG_HAVE_IOREMAP_PROT 6947 if (vma->vm_ops && vma->vm_ops->access) 6948 bytes = vma->vm_ops->access(vma, addr, buf, 6949 len, write); 6950 #endif 6951 if (bytes <= 0) 6952 break; 6953 } else { 6954 folio = page_folio(page); 6955 bytes = len; 6956 offset = addr & (PAGE_SIZE-1); 6957 if (bytes > PAGE_SIZE-offset) 6958 bytes = PAGE_SIZE-offset; 6959 6960 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 6961 if (write) { 6962 copy_to_user_page(vma, page, addr, 6963 maddr + offset, buf, bytes); 6964 folio_mark_dirty_lock(folio); 6965 } else { 6966 copy_from_user_page(vma, page, addr, 6967 buf, maddr + offset, bytes); 6968 } 6969 folio_release_kmap(folio, maddr); 6970 } 6971 len -= bytes; 6972 buf += bytes; 6973 addr += bytes; 6974 } 6975 mmap_read_unlock(mm); 6976 6977 return buf - old_buf; 6978 } 6979 6980 /** 6981 * access_remote_vm - access another process' address space 6982 * @mm: the mm_struct of the target address space 6983 * @addr: start address to access 6984 * @buf: source or destination buffer 6985 * @len: number of bytes to transfer 6986 * @gup_flags: flags modifying lookup behaviour 6987 * 6988 * The caller must hold a reference on @mm. 6989 * 6990 * Return: number of bytes copied from source to destination. 6991 */ 6992 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6993 void *buf, int len, unsigned int gup_flags) 6994 { 6995 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6996 } 6997 6998 /* 6999 * Access another process' address space. 7000 * Source/target buffer must be kernel space, 7001 * Do not walk the page table directly, use get_user_pages 7002 */ 7003 int access_process_vm(struct task_struct *tsk, unsigned long addr, 7004 void *buf, int len, unsigned int gup_flags) 7005 { 7006 struct mm_struct *mm; 7007 int ret; 7008 7009 mm = get_task_mm(tsk); 7010 if (!mm) 7011 return 0; 7012 7013 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 7014 7015 mmput(mm); 7016 7017 return ret; 7018 } 7019 EXPORT_SYMBOL_GPL(access_process_vm); 7020 7021 #ifdef CONFIG_BPF_SYSCALL 7022 /* 7023 * Copy a string from another process's address space as given in mm. 7024 * If there is any error return -EFAULT. 7025 */ 7026 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 7027 void *buf, int len, unsigned int gup_flags) 7028 { 7029 void *old_buf = buf; 7030 int err = 0; 7031 7032 *(char *)buf = '\0'; 7033 7034 if (mmap_read_lock_killable(mm)) 7035 return -EFAULT; 7036 7037 addr = untagged_addr_remote(mm, addr); 7038 7039 /* Avoid triggering the temporary warning in __get_user_pages */ 7040 if (!vma_lookup(mm, addr)) { 7041 err = -EFAULT; 7042 goto out; 7043 } 7044 7045 while (len) { 7046 int bytes, offset, retval; 7047 void *maddr; 7048 struct folio *folio; 7049 struct page *page; 7050 struct vm_area_struct *vma = NULL; 7051 7052 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); 7053 if (IS_ERR(page)) { 7054 /* 7055 * Treat as a total failure for now until we decide how 7056 * to handle the CONFIG_HAVE_IOREMAP_PROT case and 7057 * stack expansion. 7058 */ 7059 *(char *)buf = '\0'; 7060 err = -EFAULT; 7061 goto out; 7062 } 7063 7064 folio = page_folio(page); 7065 bytes = len; 7066 offset = addr & (PAGE_SIZE - 1); 7067 if (bytes > PAGE_SIZE - offset) 7068 bytes = PAGE_SIZE - offset; 7069 7070 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 7071 retval = strscpy(buf, maddr + offset, bytes); 7072 if (retval >= 0) { 7073 /* Found the end of the string */ 7074 buf += retval; 7075 folio_release_kmap(folio, maddr); 7076 break; 7077 } 7078 7079 buf += bytes - 1; 7080 /* 7081 * Because strscpy always NUL terminates we need to 7082 * copy the last byte in the page if we are going to 7083 * load more pages 7084 */ 7085 if (bytes != len) { 7086 addr += bytes - 1; 7087 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); 7088 buf += 1; 7089 addr += 1; 7090 } 7091 len -= bytes; 7092 7093 folio_release_kmap(folio, maddr); 7094 } 7095 7096 out: 7097 mmap_read_unlock(mm); 7098 if (err) 7099 return err; 7100 return buf - old_buf; 7101 } 7102 7103 /** 7104 * copy_remote_vm_str - copy a string from another process's address space. 7105 * @tsk: the task of the target address space 7106 * @addr: start address to read from 7107 * @buf: destination buffer 7108 * @len: number of bytes to copy 7109 * @gup_flags: flags modifying lookup behaviour 7110 * 7111 * The caller must hold a reference on @mm. 7112 * 7113 * Return: number of bytes copied from @addr (source) to @buf (destination); 7114 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 7115 * buffer. On any error, return -EFAULT. 7116 */ 7117 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 7118 void *buf, int len, unsigned int gup_flags) 7119 { 7120 struct mm_struct *mm; 7121 int ret; 7122 7123 if (unlikely(len == 0)) 7124 return 0; 7125 7126 mm = get_task_mm(tsk); 7127 if (!mm) { 7128 *(char *)buf = '\0'; 7129 return -EFAULT; 7130 } 7131 7132 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); 7133 7134 mmput(mm); 7135 7136 return ret; 7137 } 7138 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 7139 #endif /* CONFIG_BPF_SYSCALL */ 7140 7141 /* 7142 * Print the name of a VMA. 7143 */ 7144 void print_vma_addr(char *prefix, unsigned long ip) 7145 { 7146 struct mm_struct *mm = current->mm; 7147 struct vm_area_struct *vma; 7148 7149 /* 7150 * we might be running from an atomic context so we cannot sleep 7151 */ 7152 if (!mmap_read_trylock(mm)) 7153 return; 7154 7155 vma = vma_lookup(mm, ip); 7156 if (vma && vma->vm_file) { 7157 struct file *f = vma->vm_file; 7158 ip -= vma->vm_start; 7159 ip += vma->vm_pgoff << PAGE_SHIFT; 7160 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 7161 vma->vm_start, 7162 vma->vm_end - vma->vm_start); 7163 } 7164 mmap_read_unlock(mm); 7165 } 7166 7167 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 7168 void __might_fault(const char *file, int line) 7169 { 7170 if (pagefault_disabled()) 7171 return; 7172 __might_sleep(file, line); 7173 if (current->mm) 7174 might_lock_read(¤t->mm->mmap_lock); 7175 } 7176 EXPORT_SYMBOL(__might_fault); 7177 #endif 7178 7179 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 7180 /* 7181 * Process all subpages of the specified huge page with the specified 7182 * operation. The target subpage will be processed last to keep its 7183 * cache lines hot. 7184 */ 7185 static inline int process_huge_page( 7186 unsigned long addr_hint, unsigned int nr_pages, 7187 int (*process_subpage)(unsigned long addr, int idx, void *arg), 7188 void *arg) 7189 { 7190 int i, n, base, l, ret; 7191 unsigned long addr = addr_hint & 7192 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 7193 7194 /* Process target subpage last to keep its cache lines hot */ 7195 might_sleep(); 7196 n = (addr_hint - addr) / PAGE_SIZE; 7197 if (2 * n <= nr_pages) { 7198 /* If target subpage in first half of huge page */ 7199 base = 0; 7200 l = n; 7201 /* Process subpages at the end of huge page */ 7202 for (i = nr_pages - 1; i >= 2 * n; i--) { 7203 cond_resched(); 7204 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7205 if (ret) 7206 return ret; 7207 } 7208 } else { 7209 /* If target subpage in second half of huge page */ 7210 base = nr_pages - 2 * (nr_pages - n); 7211 l = nr_pages - n; 7212 /* Process subpages at the begin of huge page */ 7213 for (i = 0; i < base; i++) { 7214 cond_resched(); 7215 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7216 if (ret) 7217 return ret; 7218 } 7219 } 7220 /* 7221 * Process remaining subpages in left-right-left-right pattern 7222 * towards the target subpage 7223 */ 7224 for (i = 0; i < l; i++) { 7225 int left_idx = base + i; 7226 int right_idx = base + 2 * l - 1 - i; 7227 7228 cond_resched(); 7229 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 7230 if (ret) 7231 return ret; 7232 cond_resched(); 7233 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 7234 if (ret) 7235 return ret; 7236 } 7237 return 0; 7238 } 7239 7240 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 7241 unsigned int nr_pages) 7242 { 7243 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7244 int i; 7245 7246 might_sleep(); 7247 for (i = 0; i < nr_pages; i++) { 7248 cond_resched(); 7249 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 7250 } 7251 } 7252 7253 static int clear_subpage(unsigned long addr, int idx, void *arg) 7254 { 7255 struct folio *folio = arg; 7256 7257 clear_user_highpage(folio_page(folio, idx), addr); 7258 return 0; 7259 } 7260 7261 /** 7262 * folio_zero_user - Zero a folio which will be mapped to userspace. 7263 * @folio: The folio to zero. 7264 * @addr_hint: The address will be accessed or the base address if uncelar. 7265 */ 7266 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7267 { 7268 unsigned int nr_pages = folio_nr_pages(folio); 7269 7270 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7271 clear_gigantic_page(folio, addr_hint, nr_pages); 7272 else 7273 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 7274 } 7275 7276 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7277 unsigned long addr_hint, 7278 struct vm_area_struct *vma, 7279 unsigned int nr_pages) 7280 { 7281 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7282 struct page *dst_page; 7283 struct page *src_page; 7284 int i; 7285 7286 for (i = 0; i < nr_pages; i++) { 7287 dst_page = folio_page(dst, i); 7288 src_page = folio_page(src, i); 7289 7290 cond_resched(); 7291 if (copy_mc_user_highpage(dst_page, src_page, 7292 addr + i*PAGE_SIZE, vma)) 7293 return -EHWPOISON; 7294 } 7295 return 0; 7296 } 7297 7298 struct copy_subpage_arg { 7299 struct folio *dst; 7300 struct folio *src; 7301 struct vm_area_struct *vma; 7302 }; 7303 7304 static int copy_subpage(unsigned long addr, int idx, void *arg) 7305 { 7306 struct copy_subpage_arg *copy_arg = arg; 7307 struct page *dst = folio_page(copy_arg->dst, idx); 7308 struct page *src = folio_page(copy_arg->src, idx); 7309 7310 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7311 return -EHWPOISON; 7312 return 0; 7313 } 7314 7315 int copy_user_large_folio(struct folio *dst, struct folio *src, 7316 unsigned long addr_hint, struct vm_area_struct *vma) 7317 { 7318 unsigned int nr_pages = folio_nr_pages(dst); 7319 struct copy_subpage_arg arg = { 7320 .dst = dst, 7321 .src = src, 7322 .vma = vma, 7323 }; 7324 7325 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7326 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7327 7328 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7329 } 7330 7331 long copy_folio_from_user(struct folio *dst_folio, 7332 const void __user *usr_src, 7333 bool allow_pagefault) 7334 { 7335 void *kaddr; 7336 unsigned long i, rc = 0; 7337 unsigned int nr_pages = folio_nr_pages(dst_folio); 7338 unsigned long ret_val = nr_pages * PAGE_SIZE; 7339 struct page *subpage; 7340 7341 for (i = 0; i < nr_pages; i++) { 7342 subpage = folio_page(dst_folio, i); 7343 kaddr = kmap_local_page(subpage); 7344 if (!allow_pagefault) 7345 pagefault_disable(); 7346 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7347 if (!allow_pagefault) 7348 pagefault_enable(); 7349 kunmap_local(kaddr); 7350 7351 ret_val -= (PAGE_SIZE - rc); 7352 if (rc) 7353 break; 7354 7355 flush_dcache_page(subpage); 7356 7357 cond_resched(); 7358 } 7359 return ret_val; 7360 } 7361 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7362 7363 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7364 7365 static struct kmem_cache *page_ptl_cachep; 7366 7367 void __init ptlock_cache_init(void) 7368 { 7369 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7370 SLAB_PANIC, NULL); 7371 } 7372 7373 bool ptlock_alloc(struct ptdesc *ptdesc) 7374 { 7375 spinlock_t *ptl; 7376 7377 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7378 if (!ptl) 7379 return false; 7380 ptdesc->ptl = ptl; 7381 return true; 7382 } 7383 7384 void ptlock_free(struct ptdesc *ptdesc) 7385 { 7386 if (ptdesc->ptl) 7387 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7388 } 7389 #endif 7390 7391 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7392 { 7393 if (is_vm_hugetlb_page(vma)) 7394 hugetlb_vma_lock_read(vma); 7395 } 7396 7397 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7398 { 7399 if (is_vm_hugetlb_page(vma)) 7400 hugetlb_vma_unlock_read(vma); 7401 } 7402