xref: /linux/mm/memory.c (revision 73519ded992fc9dda2807450d6931002bb93cb16)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
79 
80 #include <trace/events/kmem.h>
81 
82 #include <asm/io.h>
83 #include <asm/mmu_context.h>
84 #include <asm/pgalloc.h>
85 #include <linux/uaccess.h>
86 #include <asm/tlb.h>
87 #include <asm/tlbflush.h>
88 
89 #include "pgalloc-track.h"
90 #include "internal.h"
91 #include "swap.h"
92 
93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95 #endif
96 
97 #ifndef CONFIG_NUMA
98 unsigned long max_mapnr;
99 EXPORT_SYMBOL(max_mapnr);
100 
101 struct page *mem_map;
102 EXPORT_SYMBOL(mem_map);
103 #endif
104 
105 static vm_fault_t do_fault(struct vm_fault *vmf);
106 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
107 static bool vmf_pte_changed(struct vm_fault *vmf);
108 
109 /*
110  * Return true if the original pte was a uffd-wp pte marker (so the pte was
111  * wr-protected).
112  */
113 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
114 {
115 	if (!userfaultfd_wp(vmf->vma))
116 		return false;
117 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 		return false;
119 
120 	return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122 
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.
127  */
128 void *high_memory;
129 EXPORT_SYMBOL(high_memory);
130 
131 /*
132  * Randomize the address space (stacks, mmaps, brk, etc.).
133  *
134  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
135  *   as ancient (libc5 based) binaries can segfault. )
136  */
137 int randomize_va_space __read_mostly =
138 #ifdef CONFIG_COMPAT_BRK
139 					1;
140 #else
141 					2;
142 #endif
143 
144 #ifndef arch_wants_old_prefaulted_pte
145 static inline bool arch_wants_old_prefaulted_pte(void)
146 {
147 	/*
148 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
149 	 * some architectures, even if it's performed in hardware. By
150 	 * default, "false" means prefaulted entries will be 'young'.
151 	 */
152 	return false;
153 }
154 #endif
155 
156 static int __init disable_randmaps(char *s)
157 {
158 	randomize_va_space = 0;
159 	return 1;
160 }
161 __setup("norandmaps", disable_randmaps);
162 
163 unsigned long zero_pfn __read_mostly;
164 EXPORT_SYMBOL(zero_pfn);
165 
166 unsigned long highest_memmap_pfn __read_mostly;
167 
168 /*
169  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
170  */
171 static int __init init_zero_pfn(void)
172 {
173 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
174 	return 0;
175 }
176 early_initcall(init_zero_pfn);
177 
178 void mm_trace_rss_stat(struct mm_struct *mm, int member)
179 {
180 	trace_rss_stat(mm, member);
181 }
182 
183 /*
184  * Note: this doesn't free the actual pages themselves. That
185  * has been handled earlier when unmapping all the memory regions.
186  */
187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
188 			   unsigned long addr)
189 {
190 	pgtable_t token = pmd_pgtable(*pmd);
191 	pmd_clear(pmd);
192 	pte_free_tlb(tlb, token, addr);
193 	mm_dec_nr_ptes(tlb->mm);
194 }
195 
196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
197 				unsigned long addr, unsigned long end,
198 				unsigned long floor, unsigned long ceiling)
199 {
200 	pmd_t *pmd;
201 	unsigned long next;
202 	unsigned long start;
203 
204 	start = addr;
205 	pmd = pmd_offset(pud, addr);
206 	do {
207 		next = pmd_addr_end(addr, end);
208 		if (pmd_none_or_clear_bad(pmd))
209 			continue;
210 		free_pte_range(tlb, pmd, addr);
211 	} while (pmd++, addr = next, addr != end);
212 
213 	start &= PUD_MASK;
214 	if (start < floor)
215 		return;
216 	if (ceiling) {
217 		ceiling &= PUD_MASK;
218 		if (!ceiling)
219 			return;
220 	}
221 	if (end - 1 > ceiling - 1)
222 		return;
223 
224 	pmd = pmd_offset(pud, start);
225 	pud_clear(pud);
226 	pmd_free_tlb(tlb, pmd, start);
227 	mm_dec_nr_pmds(tlb->mm);
228 }
229 
230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
231 				unsigned long addr, unsigned long end,
232 				unsigned long floor, unsigned long ceiling)
233 {
234 	pud_t *pud;
235 	unsigned long next;
236 	unsigned long start;
237 
238 	start = addr;
239 	pud = pud_offset(p4d, addr);
240 	do {
241 		next = pud_addr_end(addr, end);
242 		if (pud_none_or_clear_bad(pud))
243 			continue;
244 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
245 	} while (pud++, addr = next, addr != end);
246 
247 	start &= P4D_MASK;
248 	if (start < floor)
249 		return;
250 	if (ceiling) {
251 		ceiling &= P4D_MASK;
252 		if (!ceiling)
253 			return;
254 	}
255 	if (end - 1 > ceiling - 1)
256 		return;
257 
258 	pud = pud_offset(p4d, start);
259 	p4d_clear(p4d);
260 	pud_free_tlb(tlb, pud, start);
261 	mm_dec_nr_puds(tlb->mm);
262 }
263 
264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
265 				unsigned long addr, unsigned long end,
266 				unsigned long floor, unsigned long ceiling)
267 {
268 	p4d_t *p4d;
269 	unsigned long next;
270 	unsigned long start;
271 
272 	start = addr;
273 	p4d = p4d_offset(pgd, addr);
274 	do {
275 		next = p4d_addr_end(addr, end);
276 		if (p4d_none_or_clear_bad(p4d))
277 			continue;
278 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
279 	} while (p4d++, addr = next, addr != end);
280 
281 	start &= PGDIR_MASK;
282 	if (start < floor)
283 		return;
284 	if (ceiling) {
285 		ceiling &= PGDIR_MASK;
286 		if (!ceiling)
287 			return;
288 	}
289 	if (end - 1 > ceiling - 1)
290 		return;
291 
292 	p4d = p4d_offset(pgd, start);
293 	pgd_clear(pgd);
294 	p4d_free_tlb(tlb, p4d, start);
295 }
296 
297 /*
298  * This function frees user-level page tables of a process.
299  */
300 void free_pgd_range(struct mmu_gather *tlb,
301 			unsigned long addr, unsigned long end,
302 			unsigned long floor, unsigned long ceiling)
303 {
304 	pgd_t *pgd;
305 	unsigned long next;
306 
307 	/*
308 	 * The next few lines have given us lots of grief...
309 	 *
310 	 * Why are we testing PMD* at this top level?  Because often
311 	 * there will be no work to do at all, and we'd prefer not to
312 	 * go all the way down to the bottom just to discover that.
313 	 *
314 	 * Why all these "- 1"s?  Because 0 represents both the bottom
315 	 * of the address space and the top of it (using -1 for the
316 	 * top wouldn't help much: the masks would do the wrong thing).
317 	 * The rule is that addr 0 and floor 0 refer to the bottom of
318 	 * the address space, but end 0 and ceiling 0 refer to the top
319 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
320 	 * that end 0 case should be mythical).
321 	 *
322 	 * Wherever addr is brought up or ceiling brought down, we must
323 	 * be careful to reject "the opposite 0" before it confuses the
324 	 * subsequent tests.  But what about where end is brought down
325 	 * by PMD_SIZE below? no, end can't go down to 0 there.
326 	 *
327 	 * Whereas we round start (addr) and ceiling down, by different
328 	 * masks at different levels, in order to test whether a table
329 	 * now has no other vmas using it, so can be freed, we don't
330 	 * bother to round floor or end up - the tests don't need that.
331 	 */
332 
333 	addr &= PMD_MASK;
334 	if (addr < floor) {
335 		addr += PMD_SIZE;
336 		if (!addr)
337 			return;
338 	}
339 	if (ceiling) {
340 		ceiling &= PMD_MASK;
341 		if (!ceiling)
342 			return;
343 	}
344 	if (end - 1 > ceiling - 1)
345 		end -= PMD_SIZE;
346 	if (addr > end - 1)
347 		return;
348 	/*
349 	 * We add page table cache pages with PAGE_SIZE,
350 	 * (see pte_free_tlb()), flush the tlb if we need
351 	 */
352 	tlb_change_page_size(tlb, PAGE_SIZE);
353 	pgd = pgd_offset(tlb->mm, addr);
354 	do {
355 		next = pgd_addr_end(addr, end);
356 		if (pgd_none_or_clear_bad(pgd))
357 			continue;
358 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
359 	} while (pgd++, addr = next, addr != end);
360 }
361 
362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
363 		   struct vm_area_struct *vma, unsigned long floor,
364 		   unsigned long ceiling, bool mm_wr_locked)
365 {
366 	struct unlink_vma_file_batch vb;
367 
368 	do {
369 		unsigned long addr = vma->vm_start;
370 		struct vm_area_struct *next;
371 
372 		/*
373 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 		 * be 0.  This will underflow and is okay.
375 		 */
376 		next = mas_find(mas, ceiling - 1);
377 		if (unlikely(xa_is_zero(next)))
378 			next = NULL;
379 
380 		/*
381 		 * Hide vma from rmap and truncate_pagecache before freeing
382 		 * pgtables
383 		 */
384 		if (mm_wr_locked)
385 			vma_start_write(vma);
386 		unlink_anon_vmas(vma);
387 
388 		if (is_vm_hugetlb_page(vma)) {
389 			unlink_file_vma(vma);
390 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 				floor, next ? next->vm_start : ceiling);
392 		} else {
393 			unlink_file_vma_batch_init(&vb);
394 			unlink_file_vma_batch_add(&vb, vma);
395 
396 			/*
397 			 * Optimization: gather nearby vmas into one call down
398 			 */
399 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
400 			       && !is_vm_hugetlb_page(next)) {
401 				vma = next;
402 				next = mas_find(mas, ceiling - 1);
403 				if (unlikely(xa_is_zero(next)))
404 					next = NULL;
405 				if (mm_wr_locked)
406 					vma_start_write(vma);
407 				unlink_anon_vmas(vma);
408 				unlink_file_vma_batch_add(&vb, vma);
409 			}
410 			unlink_file_vma_batch_final(&vb);
411 			free_pgd_range(tlb, addr, vma->vm_end,
412 				floor, next ? next->vm_start : ceiling);
413 		}
414 		vma = next;
415 	} while (vma);
416 }
417 
418 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
419 {
420 	spinlock_t *ptl = pmd_lock(mm, pmd);
421 
422 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
423 		mm_inc_nr_ptes(mm);
424 		/*
425 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
426 		 * visible before the pte is made visible to other CPUs by being
427 		 * put into page tables.
428 		 *
429 		 * The other side of the story is the pointer chasing in the page
430 		 * table walking code (when walking the page table without locking;
431 		 * ie. most of the time). Fortunately, these data accesses consist
432 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
433 		 * being the notable exception) will already guarantee loads are
434 		 * seen in-order. See the alpha page table accessors for the
435 		 * smp_rmb() barriers in page table walking code.
436 		 */
437 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438 		pmd_populate(mm, pmd, *pte);
439 		*pte = NULL;
440 	}
441 	spin_unlock(ptl);
442 }
443 
444 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
445 {
446 	pgtable_t new = pte_alloc_one(mm);
447 	if (!new)
448 		return -ENOMEM;
449 
450 	pmd_install(mm, pmd, &new);
451 	if (new)
452 		pte_free(mm, new);
453 	return 0;
454 }
455 
456 int __pte_alloc_kernel(pmd_t *pmd)
457 {
458 	pte_t *new = pte_alloc_one_kernel(&init_mm);
459 	if (!new)
460 		return -ENOMEM;
461 
462 	spin_lock(&init_mm.page_table_lock);
463 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
464 		smp_wmb(); /* See comment in pmd_install() */
465 		pmd_populate_kernel(&init_mm, pmd, new);
466 		new = NULL;
467 	}
468 	spin_unlock(&init_mm.page_table_lock);
469 	if (new)
470 		pte_free_kernel(&init_mm, new);
471 	return 0;
472 }
473 
474 static inline void init_rss_vec(int *rss)
475 {
476 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
477 }
478 
479 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
480 {
481 	int i;
482 
483 	for (i = 0; i < NR_MM_COUNTERS; i++)
484 		if (rss[i])
485 			add_mm_counter(mm, i, rss[i]);
486 }
487 
488 /*
489  * This function is called to print an error when a bad pte
490  * is found. For example, we might have a PFN-mapped pte in
491  * a region that doesn't allow it.
492  *
493  * The calling function must still handle the error.
494  */
495 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
496 			  pte_t pte, struct page *page)
497 {
498 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
499 	p4d_t *p4d = p4d_offset(pgd, addr);
500 	pud_t *pud = pud_offset(p4d, addr);
501 	pmd_t *pmd = pmd_offset(pud, addr);
502 	struct address_space *mapping;
503 	pgoff_t index;
504 	static unsigned long resume;
505 	static unsigned long nr_shown;
506 	static unsigned long nr_unshown;
507 
508 	/*
509 	 * Allow a burst of 60 reports, then keep quiet for that minute;
510 	 * or allow a steady drip of one report per second.
511 	 */
512 	if (nr_shown == 60) {
513 		if (time_before(jiffies, resume)) {
514 			nr_unshown++;
515 			return;
516 		}
517 		if (nr_unshown) {
518 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
519 				 nr_unshown);
520 			nr_unshown = 0;
521 		}
522 		nr_shown = 0;
523 	}
524 	if (nr_shown++ == 0)
525 		resume = jiffies + 60 * HZ;
526 
527 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
528 	index = linear_page_index(vma, addr);
529 
530 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
531 		 current->comm,
532 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
533 	if (page)
534 		dump_page(page, "bad pte");
535 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
536 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
537 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
538 		 vma->vm_file,
539 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
540 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
541 		 mapping ? mapping->a_ops->read_folio : NULL);
542 	dump_stack();
543 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
544 }
545 
546 /*
547  * vm_normal_page -- This function gets the "struct page" associated with a pte.
548  *
549  * "Special" mappings do not wish to be associated with a "struct page" (either
550  * it doesn't exist, or it exists but they don't want to touch it). In this
551  * case, NULL is returned here. "Normal" mappings do have a struct page.
552  *
553  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
554  * pte bit, in which case this function is trivial. Secondly, an architecture
555  * may not have a spare pte bit, which requires a more complicated scheme,
556  * described below.
557  *
558  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
559  * special mapping (even if there are underlying and valid "struct pages").
560  * COWed pages of a VM_PFNMAP are always normal.
561  *
562  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
563  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
564  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
565  * mapping will always honor the rule
566  *
567  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
568  *
569  * And for normal mappings this is false.
570  *
571  * This restricts such mappings to be a linear translation from virtual address
572  * to pfn. To get around this restriction, we allow arbitrary mappings so long
573  * as the vma is not a COW mapping; in that case, we know that all ptes are
574  * special (because none can have been COWed).
575  *
576  *
577  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
578  *
579  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
580  * page" backing, however the difference is that _all_ pages with a struct
581  * page (that is, those where pfn_valid is true) are refcounted and considered
582  * normal pages by the VM. The only exception are zeropages, which are
583  * *never* refcounted.
584  *
585  * The disadvantage is that pages are refcounted (which can be slower and
586  * simply not an option for some PFNMAP users). The advantage is that we
587  * don't have to follow the strict linearity rule of PFNMAP mappings in
588  * order to support COWable mappings.
589  *
590  */
591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
592 			    pte_t pte)
593 {
594 	unsigned long pfn = pte_pfn(pte);
595 
596 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
597 		if (likely(!pte_special(pte)))
598 			goto check_pfn;
599 		if (vma->vm_ops && vma->vm_ops->find_special_page)
600 			return vma->vm_ops->find_special_page(vma, addr);
601 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
602 			return NULL;
603 		if (is_zero_pfn(pfn))
604 			return NULL;
605 		if (pte_devmap(pte))
606 		/*
607 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
608 		 * and will have refcounts incremented on their struct pages
609 		 * when they are inserted into PTEs, thus they are safe to
610 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
611 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
612 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
613 		 */
614 			return NULL;
615 
616 		print_bad_pte(vma, addr, pte, NULL);
617 		return NULL;
618 	}
619 
620 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
621 
622 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
623 		if (vma->vm_flags & VM_MIXEDMAP) {
624 			if (!pfn_valid(pfn))
625 				return NULL;
626 			if (is_zero_pfn(pfn))
627 				return NULL;
628 			goto out;
629 		} else {
630 			unsigned long off;
631 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
632 			if (pfn == vma->vm_pgoff + off)
633 				return NULL;
634 			if (!is_cow_mapping(vma->vm_flags))
635 				return NULL;
636 		}
637 	}
638 
639 	if (is_zero_pfn(pfn))
640 		return NULL;
641 
642 check_pfn:
643 	if (unlikely(pfn > highest_memmap_pfn)) {
644 		print_bad_pte(vma, addr, pte, NULL);
645 		return NULL;
646 	}
647 
648 	/*
649 	 * NOTE! We still have PageReserved() pages in the page tables.
650 	 * eg. VDSO mappings can cause them to exist.
651 	 */
652 out:
653 	VM_WARN_ON_ONCE(is_zero_pfn(pfn));
654 	return pfn_to_page(pfn);
655 }
656 
657 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
658 			    pte_t pte)
659 {
660 	struct page *page = vm_normal_page(vma, addr, pte);
661 
662 	if (page)
663 		return page_folio(page);
664 	return NULL;
665 }
666 
667 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
668 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
669 				pmd_t pmd)
670 {
671 	unsigned long pfn = pmd_pfn(pmd);
672 
673 	/* Currently it's only used for huge pfnmaps */
674 	if (unlikely(pmd_special(pmd)))
675 		return NULL;
676 
677 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
678 		if (vma->vm_flags & VM_MIXEDMAP) {
679 			if (!pfn_valid(pfn))
680 				return NULL;
681 			goto out;
682 		} else {
683 			unsigned long off;
684 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
685 			if (pfn == vma->vm_pgoff + off)
686 				return NULL;
687 			if (!is_cow_mapping(vma->vm_flags))
688 				return NULL;
689 		}
690 	}
691 
692 	if (pmd_devmap(pmd))
693 		return NULL;
694 	if (is_huge_zero_pmd(pmd))
695 		return NULL;
696 	if (unlikely(pfn > highest_memmap_pfn))
697 		return NULL;
698 
699 	/*
700 	 * NOTE! We still have PageReserved() pages in the page tables.
701 	 * eg. VDSO mappings can cause them to exist.
702 	 */
703 out:
704 	return pfn_to_page(pfn);
705 }
706 
707 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
708 				  unsigned long addr, pmd_t pmd)
709 {
710 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
711 
712 	if (page)
713 		return page_folio(page);
714 	return NULL;
715 }
716 #endif
717 
718 static void restore_exclusive_pte(struct vm_area_struct *vma,
719 				  struct page *page, unsigned long address,
720 				  pte_t *ptep)
721 {
722 	struct folio *folio = page_folio(page);
723 	pte_t orig_pte;
724 	pte_t pte;
725 	swp_entry_t entry;
726 
727 	orig_pte = ptep_get(ptep);
728 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
729 	if (pte_swp_soft_dirty(orig_pte))
730 		pte = pte_mksoft_dirty(pte);
731 
732 	entry = pte_to_swp_entry(orig_pte);
733 	if (pte_swp_uffd_wp(orig_pte))
734 		pte = pte_mkuffd_wp(pte);
735 	else if (is_writable_device_exclusive_entry(entry))
736 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
737 
738 	VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
739 					   PageAnonExclusive(page)), folio);
740 
741 	/*
742 	 * No need to take a page reference as one was already
743 	 * created when the swap entry was made.
744 	 */
745 	if (folio_test_anon(folio))
746 		folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
747 	else
748 		/*
749 		 * Currently device exclusive access only supports anonymous
750 		 * memory so the entry shouldn't point to a filebacked page.
751 		 */
752 		WARN_ON_ONCE(1);
753 
754 	set_pte_at(vma->vm_mm, address, ptep, pte);
755 
756 	/*
757 	 * No need to invalidate - it was non-present before. However
758 	 * secondary CPUs may have mappings that need invalidating.
759 	 */
760 	update_mmu_cache(vma, address, ptep);
761 }
762 
763 /*
764  * Tries to restore an exclusive pte if the page lock can be acquired without
765  * sleeping.
766  */
767 static int
768 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
769 			unsigned long addr)
770 {
771 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
772 	struct page *page = pfn_swap_entry_to_page(entry);
773 
774 	if (trylock_page(page)) {
775 		restore_exclusive_pte(vma, page, addr, src_pte);
776 		unlock_page(page);
777 		return 0;
778 	}
779 
780 	return -EBUSY;
781 }
782 
783 /*
784  * copy one vm_area from one task to the other. Assumes the page tables
785  * already present in the new task to be cleared in the whole range
786  * covered by this vma.
787  */
788 
789 static unsigned long
790 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
791 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
792 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
793 {
794 	unsigned long vm_flags = dst_vma->vm_flags;
795 	pte_t orig_pte = ptep_get(src_pte);
796 	pte_t pte = orig_pte;
797 	struct folio *folio;
798 	struct page *page;
799 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
800 
801 	if (likely(!non_swap_entry(entry))) {
802 		if (swap_duplicate(entry) < 0)
803 			return -EIO;
804 
805 		/* make sure dst_mm is on swapoff's mmlist. */
806 		if (unlikely(list_empty(&dst_mm->mmlist))) {
807 			spin_lock(&mmlist_lock);
808 			if (list_empty(&dst_mm->mmlist))
809 				list_add(&dst_mm->mmlist,
810 						&src_mm->mmlist);
811 			spin_unlock(&mmlist_lock);
812 		}
813 		/* Mark the swap entry as shared. */
814 		if (pte_swp_exclusive(orig_pte)) {
815 			pte = pte_swp_clear_exclusive(orig_pte);
816 			set_pte_at(src_mm, addr, src_pte, pte);
817 		}
818 		rss[MM_SWAPENTS]++;
819 	} else if (is_migration_entry(entry)) {
820 		folio = pfn_swap_entry_folio(entry);
821 
822 		rss[mm_counter(folio)]++;
823 
824 		if (!is_readable_migration_entry(entry) &&
825 				is_cow_mapping(vm_flags)) {
826 			/*
827 			 * COW mappings require pages in both parent and child
828 			 * to be set to read. A previously exclusive entry is
829 			 * now shared.
830 			 */
831 			entry = make_readable_migration_entry(
832 							swp_offset(entry));
833 			pte = swp_entry_to_pte(entry);
834 			if (pte_swp_soft_dirty(orig_pte))
835 				pte = pte_swp_mksoft_dirty(pte);
836 			if (pte_swp_uffd_wp(orig_pte))
837 				pte = pte_swp_mkuffd_wp(pte);
838 			set_pte_at(src_mm, addr, src_pte, pte);
839 		}
840 	} else if (is_device_private_entry(entry)) {
841 		page = pfn_swap_entry_to_page(entry);
842 		folio = page_folio(page);
843 
844 		/*
845 		 * Update rss count even for unaddressable pages, as
846 		 * they should treated just like normal pages in this
847 		 * respect.
848 		 *
849 		 * We will likely want to have some new rss counters
850 		 * for unaddressable pages, at some point. But for now
851 		 * keep things as they are.
852 		 */
853 		folio_get(folio);
854 		rss[mm_counter(folio)]++;
855 		/* Cannot fail as these pages cannot get pinned. */
856 		folio_try_dup_anon_rmap_pte(folio, page, src_vma);
857 
858 		/*
859 		 * We do not preserve soft-dirty information, because so
860 		 * far, checkpoint/restore is the only feature that
861 		 * requires that. And checkpoint/restore does not work
862 		 * when a device driver is involved (you cannot easily
863 		 * save and restore device driver state).
864 		 */
865 		if (is_writable_device_private_entry(entry) &&
866 		    is_cow_mapping(vm_flags)) {
867 			entry = make_readable_device_private_entry(
868 							swp_offset(entry));
869 			pte = swp_entry_to_pte(entry);
870 			if (pte_swp_uffd_wp(orig_pte))
871 				pte = pte_swp_mkuffd_wp(pte);
872 			set_pte_at(src_mm, addr, src_pte, pte);
873 		}
874 	} else if (is_device_exclusive_entry(entry)) {
875 		/*
876 		 * Make device exclusive entries present by restoring the
877 		 * original entry then copying as for a present pte. Device
878 		 * exclusive entries currently only support private writable
879 		 * (ie. COW) mappings.
880 		 */
881 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
882 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
883 			return -EBUSY;
884 		return -ENOENT;
885 	} else if (is_pte_marker_entry(entry)) {
886 		pte_marker marker = copy_pte_marker(entry, dst_vma);
887 
888 		if (marker)
889 			set_pte_at(dst_mm, addr, dst_pte,
890 				   make_pte_marker(marker));
891 		return 0;
892 	}
893 	if (!userfaultfd_wp(dst_vma))
894 		pte = pte_swp_clear_uffd_wp(pte);
895 	set_pte_at(dst_mm, addr, dst_pte, pte);
896 	return 0;
897 }
898 
899 /*
900  * Copy a present and normal page.
901  *
902  * NOTE! The usual case is that this isn't required;
903  * instead, the caller can just increase the page refcount
904  * and re-use the pte the traditional way.
905  *
906  * And if we need a pre-allocated page but don't yet have
907  * one, return a negative error to let the preallocation
908  * code know so that it can do so outside the page table
909  * lock.
910  */
911 static inline int
912 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
913 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
914 		  struct folio **prealloc, struct page *page)
915 {
916 	struct folio *new_folio;
917 	pte_t pte;
918 
919 	new_folio = *prealloc;
920 	if (!new_folio)
921 		return -EAGAIN;
922 
923 	/*
924 	 * We have a prealloc page, all good!  Take it
925 	 * over and copy the page & arm it.
926 	 */
927 
928 	if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
929 		return -EHWPOISON;
930 
931 	*prealloc = NULL;
932 	__folio_mark_uptodate(new_folio);
933 	folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
934 	folio_add_lru_vma(new_folio, dst_vma);
935 	rss[MM_ANONPAGES]++;
936 
937 	/* All done, just insert the new page copy in the child */
938 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
939 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
940 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
941 		/* Uffd-wp needs to be delivered to dest pte as well */
942 		pte = pte_mkuffd_wp(pte);
943 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
944 	return 0;
945 }
946 
947 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
948 		struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
949 		pte_t pte, unsigned long addr, int nr)
950 {
951 	struct mm_struct *src_mm = src_vma->vm_mm;
952 
953 	/* If it's a COW mapping, write protect it both processes. */
954 	if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
955 		wrprotect_ptes(src_mm, addr, src_pte, nr);
956 		pte = pte_wrprotect(pte);
957 	}
958 
959 	/* If it's a shared mapping, mark it clean in the child. */
960 	if (src_vma->vm_flags & VM_SHARED)
961 		pte = pte_mkclean(pte);
962 	pte = pte_mkold(pte);
963 
964 	if (!userfaultfd_wp(dst_vma))
965 		pte = pte_clear_uffd_wp(pte);
966 
967 	set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
968 }
969 
970 /*
971  * Copy one present PTE, trying to batch-process subsequent PTEs that map
972  * consecutive pages of the same folio by copying them as well.
973  *
974  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
975  * Otherwise, returns the number of copied PTEs (at least 1).
976  */
977 static inline int
978 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
979 		 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
980 		 int max_nr, int *rss, struct folio **prealloc)
981 {
982 	struct page *page;
983 	struct folio *folio;
984 	bool any_writable;
985 	fpb_t flags = 0;
986 	int err, nr;
987 
988 	page = vm_normal_page(src_vma, addr, pte);
989 	if (unlikely(!page))
990 		goto copy_pte;
991 
992 	folio = page_folio(page);
993 
994 	/*
995 	 * If we likely have to copy, just don't bother with batching. Make
996 	 * sure that the common "small folio" case is as fast as possible
997 	 * by keeping the batching logic separate.
998 	 */
999 	if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1000 		if (src_vma->vm_flags & VM_SHARED)
1001 			flags |= FPB_IGNORE_DIRTY;
1002 		if (!vma_soft_dirty_enabled(src_vma))
1003 			flags |= FPB_IGNORE_SOFT_DIRTY;
1004 
1005 		nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1006 				     &any_writable, NULL, NULL);
1007 		folio_ref_add(folio, nr);
1008 		if (folio_test_anon(folio)) {
1009 			if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1010 								  nr, src_vma))) {
1011 				folio_ref_sub(folio, nr);
1012 				return -EAGAIN;
1013 			}
1014 			rss[MM_ANONPAGES] += nr;
1015 			VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1016 		} else {
1017 			folio_dup_file_rmap_ptes(folio, page, nr);
1018 			rss[mm_counter_file(folio)] += nr;
1019 		}
1020 		if (any_writable)
1021 			pte = pte_mkwrite(pte, src_vma);
1022 		__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1023 				    addr, nr);
1024 		return nr;
1025 	}
1026 
1027 	folio_get(folio);
1028 	if (folio_test_anon(folio)) {
1029 		/*
1030 		 * If this page may have been pinned by the parent process,
1031 		 * copy the page immediately for the child so that we'll always
1032 		 * guarantee the pinned page won't be randomly replaced in the
1033 		 * future.
1034 		 */
1035 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1036 			/* Page may be pinned, we have to copy. */
1037 			folio_put(folio);
1038 			err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1039 						addr, rss, prealloc, page);
1040 			return err ? err : 1;
1041 		}
1042 		rss[MM_ANONPAGES]++;
1043 		VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1044 	} else {
1045 		folio_dup_file_rmap_pte(folio, page);
1046 		rss[mm_counter_file(folio)]++;
1047 	}
1048 
1049 copy_pte:
1050 	__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1051 	return 1;
1052 }
1053 
1054 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1055 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1056 {
1057 	struct folio *new_folio;
1058 
1059 	if (need_zero)
1060 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1061 	else
1062 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1063 
1064 	if (!new_folio)
1065 		return NULL;
1066 
1067 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1068 		folio_put(new_folio);
1069 		return NULL;
1070 	}
1071 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1072 
1073 	return new_folio;
1074 }
1075 
1076 static int
1077 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1078 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079 	       unsigned long end)
1080 {
1081 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1082 	struct mm_struct *src_mm = src_vma->vm_mm;
1083 	pte_t *orig_src_pte, *orig_dst_pte;
1084 	pte_t *src_pte, *dst_pte;
1085 	pmd_t dummy_pmdval;
1086 	pte_t ptent;
1087 	spinlock_t *src_ptl, *dst_ptl;
1088 	int progress, max_nr, ret = 0;
1089 	int rss[NR_MM_COUNTERS];
1090 	swp_entry_t entry = (swp_entry_t){0};
1091 	struct folio *prealloc = NULL;
1092 	int nr;
1093 
1094 again:
1095 	progress = 0;
1096 	init_rss_vec(rss);
1097 
1098 	/*
1099 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1100 	 * error handling here, assume that exclusive mmap_lock on dst and src
1101 	 * protects anon from unexpected THP transitions; with shmem and file
1102 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1103 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1104 	 * can remove such assumptions later, but this is good enough for now.
1105 	 */
1106 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1107 	if (!dst_pte) {
1108 		ret = -ENOMEM;
1109 		goto out;
1110 	}
1111 
1112 	/*
1113 	 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1114 	 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1115 	 * the PTE page is stable, and there is no need to get pmdval and do
1116 	 * pmd_same() check.
1117 	 */
1118 	src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1119 					   &src_ptl);
1120 	if (!src_pte) {
1121 		pte_unmap_unlock(dst_pte, dst_ptl);
1122 		/* ret == 0 */
1123 		goto out;
1124 	}
1125 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1126 	orig_src_pte = src_pte;
1127 	orig_dst_pte = dst_pte;
1128 	arch_enter_lazy_mmu_mode();
1129 
1130 	do {
1131 		nr = 1;
1132 
1133 		/*
1134 		 * We are holding two locks at this point - either of them
1135 		 * could generate latencies in another task on another CPU.
1136 		 */
1137 		if (progress >= 32) {
1138 			progress = 0;
1139 			if (need_resched() ||
1140 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1141 				break;
1142 		}
1143 		ptent = ptep_get(src_pte);
1144 		if (pte_none(ptent)) {
1145 			progress++;
1146 			continue;
1147 		}
1148 		if (unlikely(!pte_present(ptent))) {
1149 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1150 						  dst_pte, src_pte,
1151 						  dst_vma, src_vma,
1152 						  addr, rss);
1153 			if (ret == -EIO) {
1154 				entry = pte_to_swp_entry(ptep_get(src_pte));
1155 				break;
1156 			} else if (ret == -EBUSY) {
1157 				break;
1158 			} else if (!ret) {
1159 				progress += 8;
1160 				continue;
1161 			}
1162 			ptent = ptep_get(src_pte);
1163 			VM_WARN_ON_ONCE(!pte_present(ptent));
1164 
1165 			/*
1166 			 * Device exclusive entry restored, continue by copying
1167 			 * the now present pte.
1168 			 */
1169 			WARN_ON_ONCE(ret != -ENOENT);
1170 		}
1171 		/* copy_present_ptes() will clear `*prealloc' if consumed */
1172 		max_nr = (end - addr) / PAGE_SIZE;
1173 		ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1174 					ptent, addr, max_nr, rss, &prealloc);
1175 		/*
1176 		 * If we need a pre-allocated page for this pte, drop the
1177 		 * locks, allocate, and try again.
1178 		 * If copy failed due to hwpoison in source page, break out.
1179 		 */
1180 		if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1181 			break;
1182 		if (unlikely(prealloc)) {
1183 			/*
1184 			 * pre-alloc page cannot be reused by next time so as
1185 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1186 			 * will allocate page according to address).  This
1187 			 * could only happen if one pinned pte changed.
1188 			 */
1189 			folio_put(prealloc);
1190 			prealloc = NULL;
1191 		}
1192 		nr = ret;
1193 		progress += 8 * nr;
1194 	} while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1195 		 addr != end);
1196 
1197 	arch_leave_lazy_mmu_mode();
1198 	pte_unmap_unlock(orig_src_pte, src_ptl);
1199 	add_mm_rss_vec(dst_mm, rss);
1200 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1201 	cond_resched();
1202 
1203 	if (ret == -EIO) {
1204 		VM_WARN_ON_ONCE(!entry.val);
1205 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1206 			ret = -ENOMEM;
1207 			goto out;
1208 		}
1209 		entry.val = 0;
1210 	} else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1211 		goto out;
1212 	} else if (ret ==  -EAGAIN) {
1213 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1214 		if (!prealloc)
1215 			return -ENOMEM;
1216 	} else if (ret < 0) {
1217 		VM_WARN_ON_ONCE(1);
1218 	}
1219 
1220 	/* We've captured and resolved the error. Reset, try again. */
1221 	ret = 0;
1222 
1223 	if (addr != end)
1224 		goto again;
1225 out:
1226 	if (unlikely(prealloc))
1227 		folio_put(prealloc);
1228 	return ret;
1229 }
1230 
1231 static inline int
1232 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1233 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1234 	       unsigned long end)
1235 {
1236 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1237 	struct mm_struct *src_mm = src_vma->vm_mm;
1238 	pmd_t *src_pmd, *dst_pmd;
1239 	unsigned long next;
1240 
1241 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1242 	if (!dst_pmd)
1243 		return -ENOMEM;
1244 	src_pmd = pmd_offset(src_pud, addr);
1245 	do {
1246 		next = pmd_addr_end(addr, end);
1247 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1248 			|| pmd_devmap(*src_pmd)) {
1249 			int err;
1250 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1251 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1252 					    addr, dst_vma, src_vma);
1253 			if (err == -ENOMEM)
1254 				return -ENOMEM;
1255 			if (!err)
1256 				continue;
1257 			/* fall through */
1258 		}
1259 		if (pmd_none_or_clear_bad(src_pmd))
1260 			continue;
1261 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1262 				   addr, next))
1263 			return -ENOMEM;
1264 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1265 	return 0;
1266 }
1267 
1268 static inline int
1269 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1270 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1271 	       unsigned long end)
1272 {
1273 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1274 	struct mm_struct *src_mm = src_vma->vm_mm;
1275 	pud_t *src_pud, *dst_pud;
1276 	unsigned long next;
1277 
1278 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1279 	if (!dst_pud)
1280 		return -ENOMEM;
1281 	src_pud = pud_offset(src_p4d, addr);
1282 	do {
1283 		next = pud_addr_end(addr, end);
1284 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1285 			int err;
1286 
1287 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1288 			err = copy_huge_pud(dst_mm, src_mm,
1289 					    dst_pud, src_pud, addr, src_vma);
1290 			if (err == -ENOMEM)
1291 				return -ENOMEM;
1292 			if (!err)
1293 				continue;
1294 			/* fall through */
1295 		}
1296 		if (pud_none_or_clear_bad(src_pud))
1297 			continue;
1298 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1299 				   addr, next))
1300 			return -ENOMEM;
1301 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1302 	return 0;
1303 }
1304 
1305 static inline int
1306 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1307 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1308 	       unsigned long end)
1309 {
1310 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1311 	p4d_t *src_p4d, *dst_p4d;
1312 	unsigned long next;
1313 
1314 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1315 	if (!dst_p4d)
1316 		return -ENOMEM;
1317 	src_p4d = p4d_offset(src_pgd, addr);
1318 	do {
1319 		next = p4d_addr_end(addr, end);
1320 		if (p4d_none_or_clear_bad(src_p4d))
1321 			continue;
1322 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1323 				   addr, next))
1324 			return -ENOMEM;
1325 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1326 	return 0;
1327 }
1328 
1329 /*
1330  * Return true if the vma needs to copy the pgtable during this fork().  Return
1331  * false when we can speed up fork() by allowing lazy page faults later until
1332  * when the child accesses the memory range.
1333  */
1334 static bool
1335 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1336 {
1337 	/*
1338 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1339 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1340 	 * contains uffd-wp protection information, that's something we can't
1341 	 * retrieve from page cache, and skip copying will lose those info.
1342 	 */
1343 	if (userfaultfd_wp(dst_vma))
1344 		return true;
1345 
1346 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1347 		return true;
1348 
1349 	if (src_vma->anon_vma)
1350 		return true;
1351 
1352 	/*
1353 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1354 	 * becomes much lighter when there are big shared or private readonly
1355 	 * mappings. The tradeoff is that copy_page_range is more efficient
1356 	 * than faulting.
1357 	 */
1358 	return false;
1359 }
1360 
1361 int
1362 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1363 {
1364 	pgd_t *src_pgd, *dst_pgd;
1365 	unsigned long next;
1366 	unsigned long addr = src_vma->vm_start;
1367 	unsigned long end = src_vma->vm_end;
1368 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1369 	struct mm_struct *src_mm = src_vma->vm_mm;
1370 	struct mmu_notifier_range range;
1371 	bool is_cow;
1372 	int ret;
1373 
1374 	if (!vma_needs_copy(dst_vma, src_vma))
1375 		return 0;
1376 
1377 	if (is_vm_hugetlb_page(src_vma))
1378 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1379 
1380 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1381 		/*
1382 		 * We do not free on error cases below as remove_vma
1383 		 * gets called on error from higher level routine
1384 		 */
1385 		ret = track_pfn_copy(src_vma);
1386 		if (ret)
1387 			return ret;
1388 	}
1389 
1390 	/*
1391 	 * We need to invalidate the secondary MMU mappings only when
1392 	 * there could be a permission downgrade on the ptes of the
1393 	 * parent mm. And a permission downgrade will only happen if
1394 	 * is_cow_mapping() returns true.
1395 	 */
1396 	is_cow = is_cow_mapping(src_vma->vm_flags);
1397 
1398 	if (is_cow) {
1399 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1400 					0, src_mm, addr, end);
1401 		mmu_notifier_invalidate_range_start(&range);
1402 		/*
1403 		 * Disabling preemption is not needed for the write side, as
1404 		 * the read side doesn't spin, but goes to the mmap_lock.
1405 		 *
1406 		 * Use the raw variant of the seqcount_t write API to avoid
1407 		 * lockdep complaining about preemptibility.
1408 		 */
1409 		vma_assert_write_locked(src_vma);
1410 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1411 	}
1412 
1413 	ret = 0;
1414 	dst_pgd = pgd_offset(dst_mm, addr);
1415 	src_pgd = pgd_offset(src_mm, addr);
1416 	do {
1417 		next = pgd_addr_end(addr, end);
1418 		if (pgd_none_or_clear_bad(src_pgd))
1419 			continue;
1420 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1421 					    addr, next))) {
1422 			untrack_pfn_clear(dst_vma);
1423 			ret = -ENOMEM;
1424 			break;
1425 		}
1426 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1427 
1428 	if (is_cow) {
1429 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1430 		mmu_notifier_invalidate_range_end(&range);
1431 	}
1432 	return ret;
1433 }
1434 
1435 /* Whether we should zap all COWed (private) pages too */
1436 static inline bool should_zap_cows(struct zap_details *details)
1437 {
1438 	/* By default, zap all pages */
1439 	if (!details || details->reclaim_pt)
1440 		return true;
1441 
1442 	/* Or, we zap COWed pages only if the caller wants to */
1443 	return details->even_cows;
1444 }
1445 
1446 /* Decides whether we should zap this folio with the folio pointer specified */
1447 static inline bool should_zap_folio(struct zap_details *details,
1448 				    struct folio *folio)
1449 {
1450 	/* If we can make a decision without *folio.. */
1451 	if (should_zap_cows(details))
1452 		return true;
1453 
1454 	/* Otherwise we should only zap non-anon folios */
1455 	return !folio_test_anon(folio);
1456 }
1457 
1458 static inline bool zap_drop_markers(struct zap_details *details)
1459 {
1460 	if (!details)
1461 		return false;
1462 
1463 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1464 }
1465 
1466 /*
1467  * This function makes sure that we'll replace the none pte with an uffd-wp
1468  * swap special pte marker when necessary. Must be with the pgtable lock held.
1469  *
1470  * Returns true if uffd-wp ptes was installed, false otherwise.
1471  */
1472 static inline bool
1473 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1474 			      unsigned long addr, pte_t *pte, int nr,
1475 			      struct zap_details *details, pte_t pteval)
1476 {
1477 	bool was_installed = false;
1478 
1479 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1480 	/* Zap on anonymous always means dropping everything */
1481 	if (vma_is_anonymous(vma))
1482 		return false;
1483 
1484 	if (zap_drop_markers(details))
1485 		return false;
1486 
1487 	for (;;) {
1488 		/* the PFN in the PTE is irrelevant. */
1489 		if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval))
1490 			was_installed = true;
1491 		if (--nr == 0)
1492 			break;
1493 		pte++;
1494 		addr += PAGE_SIZE;
1495 	}
1496 #endif
1497 	return was_installed;
1498 }
1499 
1500 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1501 		struct vm_area_struct *vma, struct folio *folio,
1502 		struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1503 		unsigned long addr, struct zap_details *details, int *rss,
1504 		bool *force_flush, bool *force_break, bool *any_skipped)
1505 {
1506 	struct mm_struct *mm = tlb->mm;
1507 	bool delay_rmap = false;
1508 
1509 	if (!folio_test_anon(folio)) {
1510 		ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1511 		if (pte_dirty(ptent)) {
1512 			folio_mark_dirty(folio);
1513 			if (tlb_delay_rmap(tlb)) {
1514 				delay_rmap = true;
1515 				*force_flush = true;
1516 			}
1517 		}
1518 		if (pte_young(ptent) && likely(vma_has_recency(vma)))
1519 			folio_mark_accessed(folio);
1520 		rss[mm_counter(folio)] -= nr;
1521 	} else {
1522 		/* We don't need up-to-date accessed/dirty bits. */
1523 		clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1524 		rss[MM_ANONPAGES] -= nr;
1525 	}
1526 	/* Checking a single PTE in a batch is sufficient. */
1527 	arch_check_zapped_pte(vma, ptent);
1528 	tlb_remove_tlb_entries(tlb, pte, nr, addr);
1529 	if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1530 		*any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte,
1531 							     nr, details, ptent);
1532 
1533 	if (!delay_rmap) {
1534 		folio_remove_rmap_ptes(folio, page, nr, vma);
1535 
1536 		if (unlikely(folio_mapcount(folio) < 0))
1537 			print_bad_pte(vma, addr, ptent, page);
1538 	}
1539 	if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1540 		*force_flush = true;
1541 		*force_break = true;
1542 	}
1543 }
1544 
1545 /*
1546  * Zap or skip at least one present PTE, trying to batch-process subsequent
1547  * PTEs that map consecutive pages of the same folio.
1548  *
1549  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1550  */
1551 static inline int zap_present_ptes(struct mmu_gather *tlb,
1552 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1553 		unsigned int max_nr, unsigned long addr,
1554 		struct zap_details *details, int *rss, bool *force_flush,
1555 		bool *force_break, bool *any_skipped)
1556 {
1557 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1558 	struct mm_struct *mm = tlb->mm;
1559 	struct folio *folio;
1560 	struct page *page;
1561 	int nr;
1562 
1563 	page = vm_normal_page(vma, addr, ptent);
1564 	if (!page) {
1565 		/* We don't need up-to-date accessed/dirty bits. */
1566 		ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1567 		arch_check_zapped_pte(vma, ptent);
1568 		tlb_remove_tlb_entry(tlb, pte, addr);
1569 		if (userfaultfd_pte_wp(vma, ptent))
1570 			*any_skipped = zap_install_uffd_wp_if_needed(vma, addr,
1571 						pte, 1, details, ptent);
1572 		ksm_might_unmap_zero_page(mm, ptent);
1573 		return 1;
1574 	}
1575 
1576 	folio = page_folio(page);
1577 	if (unlikely(!should_zap_folio(details, folio))) {
1578 		*any_skipped = true;
1579 		return 1;
1580 	}
1581 
1582 	/*
1583 	 * Make sure that the common "small folio" case is as fast as possible
1584 	 * by keeping the batching logic separate.
1585 	 */
1586 	if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1587 		nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1588 				     NULL, NULL, NULL);
1589 
1590 		zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1591 				       addr, details, rss, force_flush,
1592 				       force_break, any_skipped);
1593 		return nr;
1594 	}
1595 	zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1596 			       details, rss, force_flush, force_break, any_skipped);
1597 	return 1;
1598 }
1599 
1600 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb,
1601 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1602 		unsigned int max_nr, unsigned long addr,
1603 		struct zap_details *details, int *rss, bool *any_skipped)
1604 {
1605 	swp_entry_t entry;
1606 	int nr = 1;
1607 
1608 	*any_skipped = true;
1609 	entry = pte_to_swp_entry(ptent);
1610 	if (is_device_private_entry(entry) ||
1611 		is_device_exclusive_entry(entry)) {
1612 		struct page *page = pfn_swap_entry_to_page(entry);
1613 		struct folio *folio = page_folio(page);
1614 
1615 		if (unlikely(!should_zap_folio(details, folio)))
1616 			return 1;
1617 		/*
1618 		 * Both device private/exclusive mappings should only
1619 		 * work with anonymous page so far, so we don't need to
1620 		 * consider uffd-wp bit when zap. For more information,
1621 		 * see zap_install_uffd_wp_if_needed().
1622 		 */
1623 		WARN_ON_ONCE(!vma_is_anonymous(vma));
1624 		rss[mm_counter(folio)]--;
1625 		if (is_device_private_entry(entry))
1626 			folio_remove_rmap_pte(folio, page, vma);
1627 		folio_put(folio);
1628 	} else if (!non_swap_entry(entry)) {
1629 		/* Genuine swap entries, hence a private anon pages */
1630 		if (!should_zap_cows(details))
1631 			return 1;
1632 
1633 		nr = swap_pte_batch(pte, max_nr, ptent);
1634 		rss[MM_SWAPENTS] -= nr;
1635 		free_swap_and_cache_nr(entry, nr);
1636 	} else if (is_migration_entry(entry)) {
1637 		struct folio *folio = pfn_swap_entry_folio(entry);
1638 
1639 		if (!should_zap_folio(details, folio))
1640 			return 1;
1641 		rss[mm_counter(folio)]--;
1642 	} else if (pte_marker_entry_uffd_wp(entry)) {
1643 		/*
1644 		 * For anon: always drop the marker; for file: only
1645 		 * drop the marker if explicitly requested.
1646 		 */
1647 		if (!vma_is_anonymous(vma) && !zap_drop_markers(details))
1648 			return 1;
1649 	} else if (is_guard_swp_entry(entry)) {
1650 		/*
1651 		 * Ordinary zapping should not remove guard PTE
1652 		 * markers. Only do so if we should remove PTE markers
1653 		 * in general.
1654 		 */
1655 		if (!zap_drop_markers(details))
1656 			return 1;
1657 	} else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) {
1658 		if (!should_zap_cows(details))
1659 			return 1;
1660 	} else {
1661 		/* We should have covered all the swap entry types */
1662 		pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1663 		WARN_ON_ONCE(1);
1664 	}
1665 	clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm);
1666 	*any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1667 
1668 	return nr;
1669 }
1670 
1671 static inline int do_zap_pte_range(struct mmu_gather *tlb,
1672 				   struct vm_area_struct *vma, pte_t *pte,
1673 				   unsigned long addr, unsigned long end,
1674 				   struct zap_details *details, int *rss,
1675 				   bool *force_flush, bool *force_break,
1676 				   bool *any_skipped)
1677 {
1678 	pte_t ptent = ptep_get(pte);
1679 	int max_nr = (end - addr) / PAGE_SIZE;
1680 	int nr = 0;
1681 
1682 	/* Skip all consecutive none ptes */
1683 	if (pte_none(ptent)) {
1684 		for (nr = 1; nr < max_nr; nr++) {
1685 			ptent = ptep_get(pte + nr);
1686 			if (!pte_none(ptent))
1687 				break;
1688 		}
1689 		max_nr -= nr;
1690 		if (!max_nr)
1691 			return nr;
1692 		pte += nr;
1693 		addr += nr * PAGE_SIZE;
1694 	}
1695 
1696 	if (pte_present(ptent))
1697 		nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr,
1698 				       details, rss, force_flush, force_break,
1699 				       any_skipped);
1700 	else
1701 		nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr,
1702 					  details, rss, any_skipped);
1703 
1704 	return nr;
1705 }
1706 
1707 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1708 				struct vm_area_struct *vma, pmd_t *pmd,
1709 				unsigned long addr, unsigned long end,
1710 				struct zap_details *details)
1711 {
1712 	bool force_flush = false, force_break = false;
1713 	struct mm_struct *mm = tlb->mm;
1714 	int rss[NR_MM_COUNTERS];
1715 	spinlock_t *ptl;
1716 	pte_t *start_pte;
1717 	pte_t *pte;
1718 	pmd_t pmdval;
1719 	unsigned long start = addr;
1720 	bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details);
1721 	bool direct_reclaim = false;
1722 	int nr;
1723 
1724 retry:
1725 	tlb_change_page_size(tlb, PAGE_SIZE);
1726 	init_rss_vec(rss);
1727 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1728 	if (!pte)
1729 		return addr;
1730 
1731 	flush_tlb_batched_pending(mm);
1732 	arch_enter_lazy_mmu_mode();
1733 	do {
1734 		bool any_skipped = false;
1735 
1736 		if (need_resched())
1737 			break;
1738 
1739 		nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
1740 				      &force_flush, &force_break, &any_skipped);
1741 		if (any_skipped)
1742 			can_reclaim_pt = false;
1743 		if (unlikely(force_break)) {
1744 			addr += nr * PAGE_SIZE;
1745 			break;
1746 		}
1747 	} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1748 
1749 	if (can_reclaim_pt && addr == end)
1750 		direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval);
1751 
1752 	add_mm_rss_vec(mm, rss);
1753 	arch_leave_lazy_mmu_mode();
1754 
1755 	/* Do the actual TLB flush before dropping ptl */
1756 	if (force_flush) {
1757 		tlb_flush_mmu_tlbonly(tlb);
1758 		tlb_flush_rmaps(tlb, vma);
1759 	}
1760 	pte_unmap_unlock(start_pte, ptl);
1761 
1762 	/*
1763 	 * If we forced a TLB flush (either due to running out of
1764 	 * batch buffers or because we needed to flush dirty TLB
1765 	 * entries before releasing the ptl), free the batched
1766 	 * memory too. Come back again if we didn't do everything.
1767 	 */
1768 	if (force_flush)
1769 		tlb_flush_mmu(tlb);
1770 
1771 	if (addr != end) {
1772 		cond_resched();
1773 		force_flush = false;
1774 		force_break = false;
1775 		goto retry;
1776 	}
1777 
1778 	if (can_reclaim_pt) {
1779 		if (direct_reclaim)
1780 			free_pte(mm, start, tlb, pmdval);
1781 		else
1782 			try_to_free_pte(mm, pmd, start, tlb);
1783 	}
1784 
1785 	return addr;
1786 }
1787 
1788 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1789 				struct vm_area_struct *vma, pud_t *pud,
1790 				unsigned long addr, unsigned long end,
1791 				struct zap_details *details)
1792 {
1793 	pmd_t *pmd;
1794 	unsigned long next;
1795 
1796 	pmd = pmd_offset(pud, addr);
1797 	do {
1798 		next = pmd_addr_end(addr, end);
1799 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1800 			if (next - addr != HPAGE_PMD_SIZE)
1801 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1802 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1803 				addr = next;
1804 				continue;
1805 			}
1806 			/* fall through */
1807 		} else if (details && details->single_folio &&
1808 			   folio_test_pmd_mappable(details->single_folio) &&
1809 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1810 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1811 			/*
1812 			 * Take and drop THP pmd lock so that we cannot return
1813 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1814 			 * but not yet decremented compound_mapcount().
1815 			 */
1816 			spin_unlock(ptl);
1817 		}
1818 		if (pmd_none(*pmd)) {
1819 			addr = next;
1820 			continue;
1821 		}
1822 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1823 		if (addr != next)
1824 			pmd--;
1825 	} while (pmd++, cond_resched(), addr != end);
1826 
1827 	return addr;
1828 }
1829 
1830 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1831 				struct vm_area_struct *vma, p4d_t *p4d,
1832 				unsigned long addr, unsigned long end,
1833 				struct zap_details *details)
1834 {
1835 	pud_t *pud;
1836 	unsigned long next;
1837 
1838 	pud = pud_offset(p4d, addr);
1839 	do {
1840 		next = pud_addr_end(addr, end);
1841 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1842 			if (next - addr != HPAGE_PUD_SIZE) {
1843 				mmap_assert_locked(tlb->mm);
1844 				split_huge_pud(vma, pud, addr);
1845 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1846 				goto next;
1847 			/* fall through */
1848 		}
1849 		if (pud_none_or_clear_bad(pud))
1850 			continue;
1851 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1852 next:
1853 		cond_resched();
1854 	} while (pud++, addr = next, addr != end);
1855 
1856 	return addr;
1857 }
1858 
1859 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1860 				struct vm_area_struct *vma, pgd_t *pgd,
1861 				unsigned long addr, unsigned long end,
1862 				struct zap_details *details)
1863 {
1864 	p4d_t *p4d;
1865 	unsigned long next;
1866 
1867 	p4d = p4d_offset(pgd, addr);
1868 	do {
1869 		next = p4d_addr_end(addr, end);
1870 		if (p4d_none_or_clear_bad(p4d))
1871 			continue;
1872 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1873 	} while (p4d++, addr = next, addr != end);
1874 
1875 	return addr;
1876 }
1877 
1878 void unmap_page_range(struct mmu_gather *tlb,
1879 			     struct vm_area_struct *vma,
1880 			     unsigned long addr, unsigned long end,
1881 			     struct zap_details *details)
1882 {
1883 	pgd_t *pgd;
1884 	unsigned long next;
1885 
1886 	BUG_ON(addr >= end);
1887 	tlb_start_vma(tlb, vma);
1888 	pgd = pgd_offset(vma->vm_mm, addr);
1889 	do {
1890 		next = pgd_addr_end(addr, end);
1891 		if (pgd_none_or_clear_bad(pgd))
1892 			continue;
1893 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1894 	} while (pgd++, addr = next, addr != end);
1895 	tlb_end_vma(tlb, vma);
1896 }
1897 
1898 
1899 static void unmap_single_vma(struct mmu_gather *tlb,
1900 		struct vm_area_struct *vma, unsigned long start_addr,
1901 		unsigned long end_addr,
1902 		struct zap_details *details, bool mm_wr_locked)
1903 {
1904 	unsigned long start = max(vma->vm_start, start_addr);
1905 	unsigned long end;
1906 
1907 	if (start >= vma->vm_end)
1908 		return;
1909 	end = min(vma->vm_end, end_addr);
1910 	if (end <= vma->vm_start)
1911 		return;
1912 
1913 	if (vma->vm_file)
1914 		uprobe_munmap(vma, start, end);
1915 
1916 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1917 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1918 
1919 	if (start != end) {
1920 		if (unlikely(is_vm_hugetlb_page(vma))) {
1921 			/*
1922 			 * It is undesirable to test vma->vm_file as it
1923 			 * should be non-null for valid hugetlb area.
1924 			 * However, vm_file will be NULL in the error
1925 			 * cleanup path of mmap_region. When
1926 			 * hugetlbfs ->mmap method fails,
1927 			 * mmap_region() nullifies vma->vm_file
1928 			 * before calling this function to clean up.
1929 			 * Since no pte has actually been setup, it is
1930 			 * safe to do nothing in this case.
1931 			 */
1932 			if (vma->vm_file) {
1933 				zap_flags_t zap_flags = details ?
1934 				    details->zap_flags : 0;
1935 				__unmap_hugepage_range(tlb, vma, start, end,
1936 							     NULL, zap_flags);
1937 			}
1938 		} else
1939 			unmap_page_range(tlb, vma, start, end, details);
1940 	}
1941 }
1942 
1943 /**
1944  * unmap_vmas - unmap a range of memory covered by a list of vma's
1945  * @tlb: address of the caller's struct mmu_gather
1946  * @mas: the maple state
1947  * @vma: the starting vma
1948  * @start_addr: virtual address at which to start unmapping
1949  * @end_addr: virtual address at which to end unmapping
1950  * @tree_end: The maximum index to check
1951  * @mm_wr_locked: lock flag
1952  *
1953  * Unmap all pages in the vma list.
1954  *
1955  * Only addresses between `start' and `end' will be unmapped.
1956  *
1957  * The VMA list must be sorted in ascending virtual address order.
1958  *
1959  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1960  * range after unmap_vmas() returns.  So the only responsibility here is to
1961  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1962  * drops the lock and schedules.
1963  */
1964 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1965 		struct vm_area_struct *vma, unsigned long start_addr,
1966 		unsigned long end_addr, unsigned long tree_end,
1967 		bool mm_wr_locked)
1968 {
1969 	struct mmu_notifier_range range;
1970 	struct zap_details details = {
1971 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1972 		/* Careful - we need to zap private pages too! */
1973 		.even_cows = true,
1974 	};
1975 
1976 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1977 				start_addr, end_addr);
1978 	mmu_notifier_invalidate_range_start(&range);
1979 	do {
1980 		unsigned long start = start_addr;
1981 		unsigned long end = end_addr;
1982 		hugetlb_zap_begin(vma, &start, &end);
1983 		unmap_single_vma(tlb, vma, start, end, &details,
1984 				 mm_wr_locked);
1985 		hugetlb_zap_end(vma, &details);
1986 		vma = mas_find(mas, tree_end - 1);
1987 	} while (vma && likely(!xa_is_zero(vma)));
1988 	mmu_notifier_invalidate_range_end(&range);
1989 }
1990 
1991 /**
1992  * zap_page_range_single - remove user pages in a given range
1993  * @vma: vm_area_struct holding the applicable pages
1994  * @address: starting address of pages to zap
1995  * @size: number of bytes to zap
1996  * @details: details of shared cache invalidation
1997  *
1998  * The range must fit into one VMA.
1999  */
2000 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2001 		unsigned long size, struct zap_details *details)
2002 {
2003 	const unsigned long end = address + size;
2004 	struct mmu_notifier_range range;
2005 	struct mmu_gather tlb;
2006 
2007 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2008 				address, end);
2009 	hugetlb_zap_begin(vma, &range.start, &range.end);
2010 	tlb_gather_mmu(&tlb, vma->vm_mm);
2011 	update_hiwater_rss(vma->vm_mm);
2012 	mmu_notifier_invalidate_range_start(&range);
2013 	/*
2014 	 * unmap 'address-end' not 'range.start-range.end' as range
2015 	 * could have been expanded for hugetlb pmd sharing.
2016 	 */
2017 	unmap_single_vma(&tlb, vma, address, end, details, false);
2018 	mmu_notifier_invalidate_range_end(&range);
2019 	tlb_finish_mmu(&tlb);
2020 	hugetlb_zap_end(vma, details);
2021 }
2022 
2023 /**
2024  * zap_vma_ptes - remove ptes mapping the vma
2025  * @vma: vm_area_struct holding ptes to be zapped
2026  * @address: starting address of pages to zap
2027  * @size: number of bytes to zap
2028  *
2029  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
2030  *
2031  * The entire address range must be fully contained within the vma.
2032  *
2033  */
2034 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2035 		unsigned long size)
2036 {
2037 	if (!range_in_vma(vma, address, address + size) ||
2038 	    		!(vma->vm_flags & VM_PFNMAP))
2039 		return;
2040 
2041 	zap_page_range_single(vma, address, size, NULL);
2042 }
2043 EXPORT_SYMBOL_GPL(zap_vma_ptes);
2044 
2045 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
2046 {
2047 	pgd_t *pgd;
2048 	p4d_t *p4d;
2049 	pud_t *pud;
2050 	pmd_t *pmd;
2051 
2052 	pgd = pgd_offset(mm, addr);
2053 	p4d = p4d_alloc(mm, pgd, addr);
2054 	if (!p4d)
2055 		return NULL;
2056 	pud = pud_alloc(mm, p4d, addr);
2057 	if (!pud)
2058 		return NULL;
2059 	pmd = pmd_alloc(mm, pud, addr);
2060 	if (!pmd)
2061 		return NULL;
2062 
2063 	VM_BUG_ON(pmd_trans_huge(*pmd));
2064 	return pmd;
2065 }
2066 
2067 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2068 			spinlock_t **ptl)
2069 {
2070 	pmd_t *pmd = walk_to_pmd(mm, addr);
2071 
2072 	if (!pmd)
2073 		return NULL;
2074 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
2075 }
2076 
2077 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2078 {
2079 	VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2080 	/*
2081 	 * Whoever wants to forbid the zeropage after some zeropages
2082 	 * might already have been mapped has to scan the page tables and
2083 	 * bail out on any zeropages. Zeropages in COW mappings can
2084 	 * be unshared using FAULT_FLAG_UNSHARE faults.
2085 	 */
2086 	if (mm_forbids_zeropage(vma->vm_mm))
2087 		return false;
2088 	/* zeropages in COW mappings are common and unproblematic. */
2089 	if (is_cow_mapping(vma->vm_flags))
2090 		return true;
2091 	/* Mappings that do not allow for writable PTEs are unproblematic. */
2092 	if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2093 		return true;
2094 	/*
2095 	 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2096 	 * find the shared zeropage and longterm-pin it, which would
2097 	 * be problematic as soon as the zeropage gets replaced by a different
2098 	 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2099 	 * now differ to what GUP looked up. FSDAX is incompatible to
2100 	 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2101 	 * check_vma_flags).
2102 	 */
2103 	return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2104 	       (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2105 }
2106 
2107 static int validate_page_before_insert(struct vm_area_struct *vma,
2108 				       struct page *page)
2109 {
2110 	struct folio *folio = page_folio(page);
2111 
2112 	if (!folio_ref_count(folio))
2113 		return -EINVAL;
2114 	if (unlikely(is_zero_folio(folio))) {
2115 		if (!vm_mixed_zeropage_allowed(vma))
2116 			return -EINVAL;
2117 		return 0;
2118 	}
2119 	if (folio_test_anon(folio) || folio_test_slab(folio) ||
2120 	    page_has_type(page))
2121 		return -EINVAL;
2122 	flush_dcache_folio(folio);
2123 	return 0;
2124 }
2125 
2126 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2127 			unsigned long addr, struct page *page, pgprot_t prot)
2128 {
2129 	struct folio *folio = page_folio(page);
2130 	pte_t pteval;
2131 
2132 	if (!pte_none(ptep_get(pte)))
2133 		return -EBUSY;
2134 	/* Ok, finally just insert the thing.. */
2135 	pteval = mk_pte(page, prot);
2136 	if (unlikely(is_zero_folio(folio))) {
2137 		pteval = pte_mkspecial(pteval);
2138 	} else {
2139 		folio_get(folio);
2140 		inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2141 		folio_add_file_rmap_pte(folio, page, vma);
2142 	}
2143 	set_pte_at(vma->vm_mm, addr, pte, pteval);
2144 	return 0;
2145 }
2146 
2147 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2148 			struct page *page, pgprot_t prot)
2149 {
2150 	int retval;
2151 	pte_t *pte;
2152 	spinlock_t *ptl;
2153 
2154 	retval = validate_page_before_insert(vma, page);
2155 	if (retval)
2156 		goto out;
2157 	retval = -ENOMEM;
2158 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2159 	if (!pte)
2160 		goto out;
2161 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2162 	pte_unmap_unlock(pte, ptl);
2163 out:
2164 	return retval;
2165 }
2166 
2167 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2168 			unsigned long addr, struct page *page, pgprot_t prot)
2169 {
2170 	int err;
2171 
2172 	err = validate_page_before_insert(vma, page);
2173 	if (err)
2174 		return err;
2175 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2176 }
2177 
2178 /* insert_pages() amortizes the cost of spinlock operations
2179  * when inserting pages in a loop.
2180  */
2181 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2182 			struct page **pages, unsigned long *num, pgprot_t prot)
2183 {
2184 	pmd_t *pmd = NULL;
2185 	pte_t *start_pte, *pte;
2186 	spinlock_t *pte_lock;
2187 	struct mm_struct *const mm = vma->vm_mm;
2188 	unsigned long curr_page_idx = 0;
2189 	unsigned long remaining_pages_total = *num;
2190 	unsigned long pages_to_write_in_pmd;
2191 	int ret;
2192 more:
2193 	ret = -EFAULT;
2194 	pmd = walk_to_pmd(mm, addr);
2195 	if (!pmd)
2196 		goto out;
2197 
2198 	pages_to_write_in_pmd = min_t(unsigned long,
2199 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2200 
2201 	/* Allocate the PTE if necessary; takes PMD lock once only. */
2202 	ret = -ENOMEM;
2203 	if (pte_alloc(mm, pmd))
2204 		goto out;
2205 
2206 	while (pages_to_write_in_pmd) {
2207 		int pte_idx = 0;
2208 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2209 
2210 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2211 		if (!start_pte) {
2212 			ret = -EFAULT;
2213 			goto out;
2214 		}
2215 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2216 			int err = insert_page_in_batch_locked(vma, pte,
2217 				addr, pages[curr_page_idx], prot);
2218 			if (unlikely(err)) {
2219 				pte_unmap_unlock(start_pte, pte_lock);
2220 				ret = err;
2221 				remaining_pages_total -= pte_idx;
2222 				goto out;
2223 			}
2224 			addr += PAGE_SIZE;
2225 			++curr_page_idx;
2226 		}
2227 		pte_unmap_unlock(start_pte, pte_lock);
2228 		pages_to_write_in_pmd -= batch_size;
2229 		remaining_pages_total -= batch_size;
2230 	}
2231 	if (remaining_pages_total)
2232 		goto more;
2233 	ret = 0;
2234 out:
2235 	*num = remaining_pages_total;
2236 	return ret;
2237 }
2238 
2239 /**
2240  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2241  * @vma: user vma to map to
2242  * @addr: target start user address of these pages
2243  * @pages: source kernel pages
2244  * @num: in: number of pages to map. out: number of pages that were *not*
2245  * mapped. (0 means all pages were successfully mapped).
2246  *
2247  * Preferred over vm_insert_page() when inserting multiple pages.
2248  *
2249  * In case of error, we may have mapped a subset of the provided
2250  * pages. It is the caller's responsibility to account for this case.
2251  *
2252  * The same restrictions apply as in vm_insert_page().
2253  */
2254 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2255 			struct page **pages, unsigned long *num)
2256 {
2257 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2258 
2259 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2260 		return -EFAULT;
2261 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2262 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2263 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2264 		vm_flags_set(vma, VM_MIXEDMAP);
2265 	}
2266 	/* Defer page refcount checking till we're about to map that page. */
2267 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2268 }
2269 EXPORT_SYMBOL(vm_insert_pages);
2270 
2271 /**
2272  * vm_insert_page - insert single page into user vma
2273  * @vma: user vma to map to
2274  * @addr: target user address of this page
2275  * @page: source kernel page
2276  *
2277  * This allows drivers to insert individual pages they've allocated
2278  * into a user vma. The zeropage is supported in some VMAs,
2279  * see vm_mixed_zeropage_allowed().
2280  *
2281  * The page has to be a nice clean _individual_ kernel allocation.
2282  * If you allocate a compound page, you need to have marked it as
2283  * such (__GFP_COMP), or manually just split the page up yourself
2284  * (see split_page()).
2285  *
2286  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2287  * took an arbitrary page protection parameter. This doesn't allow
2288  * that. Your vma protection will have to be set up correctly, which
2289  * means that if you want a shared writable mapping, you'd better
2290  * ask for a shared writable mapping!
2291  *
2292  * The page does not need to be reserved.
2293  *
2294  * Usually this function is called from f_op->mmap() handler
2295  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2296  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2297  * function from other places, for example from page-fault handler.
2298  *
2299  * Return: %0 on success, negative error code otherwise.
2300  */
2301 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2302 			struct page *page)
2303 {
2304 	if (addr < vma->vm_start || addr >= vma->vm_end)
2305 		return -EFAULT;
2306 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2307 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2308 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2309 		vm_flags_set(vma, VM_MIXEDMAP);
2310 	}
2311 	return insert_page(vma, addr, page, vma->vm_page_prot);
2312 }
2313 EXPORT_SYMBOL(vm_insert_page);
2314 
2315 /*
2316  * __vm_map_pages - maps range of kernel pages into user vma
2317  * @vma: user vma to map to
2318  * @pages: pointer to array of source kernel pages
2319  * @num: number of pages in page array
2320  * @offset: user's requested vm_pgoff
2321  *
2322  * This allows drivers to map range of kernel pages into a user vma.
2323  * The zeropage is supported in some VMAs, see
2324  * vm_mixed_zeropage_allowed().
2325  *
2326  * Return: 0 on success and error code otherwise.
2327  */
2328 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2329 				unsigned long num, unsigned long offset)
2330 {
2331 	unsigned long count = vma_pages(vma);
2332 	unsigned long uaddr = vma->vm_start;
2333 	int ret, i;
2334 
2335 	/* Fail if the user requested offset is beyond the end of the object */
2336 	if (offset >= num)
2337 		return -ENXIO;
2338 
2339 	/* Fail if the user requested size exceeds available object size */
2340 	if (count > num - offset)
2341 		return -ENXIO;
2342 
2343 	for (i = 0; i < count; i++) {
2344 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2345 		if (ret < 0)
2346 			return ret;
2347 		uaddr += PAGE_SIZE;
2348 	}
2349 
2350 	return 0;
2351 }
2352 
2353 /**
2354  * vm_map_pages - maps range of kernel pages starts with non zero offset
2355  * @vma: user vma to map to
2356  * @pages: pointer to array of source kernel pages
2357  * @num: number of pages in page array
2358  *
2359  * Maps an object consisting of @num pages, catering for the user's
2360  * requested vm_pgoff
2361  *
2362  * If we fail to insert any page into the vma, the function will return
2363  * immediately leaving any previously inserted pages present.  Callers
2364  * from the mmap handler may immediately return the error as their caller
2365  * will destroy the vma, removing any successfully inserted pages. Other
2366  * callers should make their own arrangements for calling unmap_region().
2367  *
2368  * Context: Process context. Called by mmap handlers.
2369  * Return: 0 on success and error code otherwise.
2370  */
2371 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2372 				unsigned long num)
2373 {
2374 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2375 }
2376 EXPORT_SYMBOL(vm_map_pages);
2377 
2378 /**
2379  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2380  * @vma: user vma to map to
2381  * @pages: pointer to array of source kernel pages
2382  * @num: number of pages in page array
2383  *
2384  * Similar to vm_map_pages(), except that it explicitly sets the offset
2385  * to 0. This function is intended for the drivers that did not consider
2386  * vm_pgoff.
2387  *
2388  * Context: Process context. Called by mmap handlers.
2389  * Return: 0 on success and error code otherwise.
2390  */
2391 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2392 				unsigned long num)
2393 {
2394 	return __vm_map_pages(vma, pages, num, 0);
2395 }
2396 EXPORT_SYMBOL(vm_map_pages_zero);
2397 
2398 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2399 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2400 {
2401 	struct mm_struct *mm = vma->vm_mm;
2402 	pte_t *pte, entry;
2403 	spinlock_t *ptl;
2404 
2405 	pte = get_locked_pte(mm, addr, &ptl);
2406 	if (!pte)
2407 		return VM_FAULT_OOM;
2408 	entry = ptep_get(pte);
2409 	if (!pte_none(entry)) {
2410 		if (mkwrite) {
2411 			/*
2412 			 * For read faults on private mappings the PFN passed
2413 			 * in may not match the PFN we have mapped if the
2414 			 * mapped PFN is a writeable COW page.  In the mkwrite
2415 			 * case we are creating a writable PTE for a shared
2416 			 * mapping and we expect the PFNs to match. If they
2417 			 * don't match, we are likely racing with block
2418 			 * allocation and mapping invalidation so just skip the
2419 			 * update.
2420 			 */
2421 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2422 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2423 				goto out_unlock;
2424 			}
2425 			entry = pte_mkyoung(entry);
2426 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2427 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2428 				update_mmu_cache(vma, addr, pte);
2429 		}
2430 		goto out_unlock;
2431 	}
2432 
2433 	/* Ok, finally just insert the thing.. */
2434 	if (pfn_t_devmap(pfn))
2435 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2436 	else
2437 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2438 
2439 	if (mkwrite) {
2440 		entry = pte_mkyoung(entry);
2441 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2442 	}
2443 
2444 	set_pte_at(mm, addr, pte, entry);
2445 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2446 
2447 out_unlock:
2448 	pte_unmap_unlock(pte, ptl);
2449 	return VM_FAULT_NOPAGE;
2450 }
2451 
2452 /**
2453  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2454  * @vma: user vma to map to
2455  * @addr: target user address of this page
2456  * @pfn: source kernel pfn
2457  * @pgprot: pgprot flags for the inserted page
2458  *
2459  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2460  * to override pgprot on a per-page basis.
2461  *
2462  * This only makes sense for IO mappings, and it makes no sense for
2463  * COW mappings.  In general, using multiple vmas is preferable;
2464  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2465  * impractical.
2466  *
2467  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2468  * caching- and encryption bits different than those of @vma->vm_page_prot,
2469  * because the caching- or encryption mode may not be known at mmap() time.
2470  *
2471  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2472  * to set caching and encryption bits for those vmas (except for COW pages).
2473  * This is ensured by core vm only modifying these page table entries using
2474  * functions that don't touch caching- or encryption bits, using pte_modify()
2475  * if needed. (See for example mprotect()).
2476  *
2477  * Also when new page-table entries are created, this is only done using the
2478  * fault() callback, and never using the value of vma->vm_page_prot,
2479  * except for page-table entries that point to anonymous pages as the result
2480  * of COW.
2481  *
2482  * Context: Process context.  May allocate using %GFP_KERNEL.
2483  * Return: vm_fault_t value.
2484  */
2485 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2486 			unsigned long pfn, pgprot_t pgprot)
2487 {
2488 	/*
2489 	 * Technically, architectures with pte_special can avoid all these
2490 	 * restrictions (same for remap_pfn_range).  However we would like
2491 	 * consistency in testing and feature parity among all, so we should
2492 	 * try to keep these invariants in place for everybody.
2493 	 */
2494 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2495 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2496 						(VM_PFNMAP|VM_MIXEDMAP));
2497 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2498 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2499 
2500 	if (addr < vma->vm_start || addr >= vma->vm_end)
2501 		return VM_FAULT_SIGBUS;
2502 
2503 	if (!pfn_modify_allowed(pfn, pgprot))
2504 		return VM_FAULT_SIGBUS;
2505 
2506 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2507 
2508 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2509 			false);
2510 }
2511 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2512 
2513 /**
2514  * vmf_insert_pfn - insert single pfn into user vma
2515  * @vma: user vma to map to
2516  * @addr: target user address of this page
2517  * @pfn: source kernel pfn
2518  *
2519  * Similar to vm_insert_page, this allows drivers to insert individual pages
2520  * they've allocated into a user vma. Same comments apply.
2521  *
2522  * This function should only be called from a vm_ops->fault handler, and
2523  * in that case the handler should return the result of this function.
2524  *
2525  * vma cannot be a COW mapping.
2526  *
2527  * As this is called only for pages that do not currently exist, we
2528  * do not need to flush old virtual caches or the TLB.
2529  *
2530  * Context: Process context.  May allocate using %GFP_KERNEL.
2531  * Return: vm_fault_t value.
2532  */
2533 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2534 			unsigned long pfn)
2535 {
2536 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2537 }
2538 EXPORT_SYMBOL(vmf_insert_pfn);
2539 
2540 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2541 {
2542 	if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2543 	    (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2544 		return false;
2545 	/* these checks mirror the abort conditions in vm_normal_page */
2546 	if (vma->vm_flags & VM_MIXEDMAP)
2547 		return true;
2548 	if (pfn_t_devmap(pfn))
2549 		return true;
2550 	if (pfn_t_special(pfn))
2551 		return true;
2552 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2553 		return true;
2554 	return false;
2555 }
2556 
2557 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2558 		unsigned long addr, pfn_t pfn, bool mkwrite)
2559 {
2560 	pgprot_t pgprot = vma->vm_page_prot;
2561 	int err;
2562 
2563 	if (!vm_mixed_ok(vma, pfn, mkwrite))
2564 		return VM_FAULT_SIGBUS;
2565 
2566 	if (addr < vma->vm_start || addr >= vma->vm_end)
2567 		return VM_FAULT_SIGBUS;
2568 
2569 	track_pfn_insert(vma, &pgprot, pfn);
2570 
2571 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2572 		return VM_FAULT_SIGBUS;
2573 
2574 	/*
2575 	 * If we don't have pte special, then we have to use the pfn_valid()
2576 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2577 	 * refcount the page if pfn_valid is true (hence insert_page rather
2578 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2579 	 * without pte special, it would there be refcounted as a normal page.
2580 	 */
2581 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2582 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2583 		struct page *page;
2584 
2585 		/*
2586 		 * At this point we are committed to insert_page()
2587 		 * regardless of whether the caller specified flags that
2588 		 * result in pfn_t_has_page() == false.
2589 		 */
2590 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2591 		err = insert_page(vma, addr, page, pgprot);
2592 	} else {
2593 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2594 	}
2595 
2596 	if (err == -ENOMEM)
2597 		return VM_FAULT_OOM;
2598 	if (err < 0 && err != -EBUSY)
2599 		return VM_FAULT_SIGBUS;
2600 
2601 	return VM_FAULT_NOPAGE;
2602 }
2603 
2604 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2605 		pfn_t pfn)
2606 {
2607 	return __vm_insert_mixed(vma, addr, pfn, false);
2608 }
2609 EXPORT_SYMBOL(vmf_insert_mixed);
2610 
2611 /*
2612  *  If the insertion of PTE failed because someone else already added a
2613  *  different entry in the mean time, we treat that as success as we assume
2614  *  the same entry was actually inserted.
2615  */
2616 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2617 		unsigned long addr, pfn_t pfn)
2618 {
2619 	return __vm_insert_mixed(vma, addr, pfn, true);
2620 }
2621 
2622 /*
2623  * maps a range of physical memory into the requested pages. the old
2624  * mappings are removed. any references to nonexistent pages results
2625  * in null mappings (currently treated as "copy-on-access")
2626  */
2627 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2628 			unsigned long addr, unsigned long end,
2629 			unsigned long pfn, pgprot_t prot)
2630 {
2631 	pte_t *pte, *mapped_pte;
2632 	spinlock_t *ptl;
2633 	int err = 0;
2634 
2635 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2636 	if (!pte)
2637 		return -ENOMEM;
2638 	arch_enter_lazy_mmu_mode();
2639 	do {
2640 		BUG_ON(!pte_none(ptep_get(pte)));
2641 		if (!pfn_modify_allowed(pfn, prot)) {
2642 			err = -EACCES;
2643 			break;
2644 		}
2645 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2646 		pfn++;
2647 	} while (pte++, addr += PAGE_SIZE, addr != end);
2648 	arch_leave_lazy_mmu_mode();
2649 	pte_unmap_unlock(mapped_pte, ptl);
2650 	return err;
2651 }
2652 
2653 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2654 			unsigned long addr, unsigned long end,
2655 			unsigned long pfn, pgprot_t prot)
2656 {
2657 	pmd_t *pmd;
2658 	unsigned long next;
2659 	int err;
2660 
2661 	pfn -= addr >> PAGE_SHIFT;
2662 	pmd = pmd_alloc(mm, pud, addr);
2663 	if (!pmd)
2664 		return -ENOMEM;
2665 	VM_BUG_ON(pmd_trans_huge(*pmd));
2666 	do {
2667 		next = pmd_addr_end(addr, end);
2668 		err = remap_pte_range(mm, pmd, addr, next,
2669 				pfn + (addr >> PAGE_SHIFT), prot);
2670 		if (err)
2671 			return err;
2672 	} while (pmd++, addr = next, addr != end);
2673 	return 0;
2674 }
2675 
2676 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2677 			unsigned long addr, unsigned long end,
2678 			unsigned long pfn, pgprot_t prot)
2679 {
2680 	pud_t *pud;
2681 	unsigned long next;
2682 	int err;
2683 
2684 	pfn -= addr >> PAGE_SHIFT;
2685 	pud = pud_alloc(mm, p4d, addr);
2686 	if (!pud)
2687 		return -ENOMEM;
2688 	do {
2689 		next = pud_addr_end(addr, end);
2690 		err = remap_pmd_range(mm, pud, addr, next,
2691 				pfn + (addr >> PAGE_SHIFT), prot);
2692 		if (err)
2693 			return err;
2694 	} while (pud++, addr = next, addr != end);
2695 	return 0;
2696 }
2697 
2698 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2699 			unsigned long addr, unsigned long end,
2700 			unsigned long pfn, pgprot_t prot)
2701 {
2702 	p4d_t *p4d;
2703 	unsigned long next;
2704 	int err;
2705 
2706 	pfn -= addr >> PAGE_SHIFT;
2707 	p4d = p4d_alloc(mm, pgd, addr);
2708 	if (!p4d)
2709 		return -ENOMEM;
2710 	do {
2711 		next = p4d_addr_end(addr, end);
2712 		err = remap_pud_range(mm, p4d, addr, next,
2713 				pfn + (addr >> PAGE_SHIFT), prot);
2714 		if (err)
2715 			return err;
2716 	} while (p4d++, addr = next, addr != end);
2717 	return 0;
2718 }
2719 
2720 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2721 		unsigned long pfn, unsigned long size, pgprot_t prot)
2722 {
2723 	pgd_t *pgd;
2724 	unsigned long next;
2725 	unsigned long end = addr + PAGE_ALIGN(size);
2726 	struct mm_struct *mm = vma->vm_mm;
2727 	int err;
2728 
2729 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2730 		return -EINVAL;
2731 
2732 	/*
2733 	 * Physically remapped pages are special. Tell the
2734 	 * rest of the world about it:
2735 	 *   VM_IO tells people not to look at these pages
2736 	 *	(accesses can have side effects).
2737 	 *   VM_PFNMAP tells the core MM that the base pages are just
2738 	 *	raw PFN mappings, and do not have a "struct page" associated
2739 	 *	with them.
2740 	 *   VM_DONTEXPAND
2741 	 *      Disable vma merging and expanding with mremap().
2742 	 *   VM_DONTDUMP
2743 	 *      Omit vma from core dump, even when VM_IO turned off.
2744 	 *
2745 	 * There's a horrible special case to handle copy-on-write
2746 	 * behaviour that some programs depend on. We mark the "original"
2747 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2748 	 * See vm_normal_page() for details.
2749 	 */
2750 	if (is_cow_mapping(vma->vm_flags)) {
2751 		if (addr != vma->vm_start || end != vma->vm_end)
2752 			return -EINVAL;
2753 		vma->vm_pgoff = pfn;
2754 	}
2755 
2756 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2757 
2758 	BUG_ON(addr >= end);
2759 	pfn -= addr >> PAGE_SHIFT;
2760 	pgd = pgd_offset(mm, addr);
2761 	flush_cache_range(vma, addr, end);
2762 	do {
2763 		next = pgd_addr_end(addr, end);
2764 		err = remap_p4d_range(mm, pgd, addr, next,
2765 				pfn + (addr >> PAGE_SHIFT), prot);
2766 		if (err)
2767 			return err;
2768 	} while (pgd++, addr = next, addr != end);
2769 
2770 	return 0;
2771 }
2772 
2773 /*
2774  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2775  * must have pre-validated the caching bits of the pgprot_t.
2776  */
2777 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2778 		unsigned long pfn, unsigned long size, pgprot_t prot)
2779 {
2780 	int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2781 
2782 	if (!error)
2783 		return 0;
2784 
2785 	/*
2786 	 * A partial pfn range mapping is dangerous: it does not
2787 	 * maintain page reference counts, and callers may free
2788 	 * pages due to the error. So zap it early.
2789 	 */
2790 	zap_page_range_single(vma, addr, size, NULL);
2791 	return error;
2792 }
2793 
2794 /**
2795  * remap_pfn_range - remap kernel memory to userspace
2796  * @vma: user vma to map to
2797  * @addr: target page aligned user address to start at
2798  * @pfn: page frame number of kernel physical memory address
2799  * @size: size of mapping area
2800  * @prot: page protection flags for this mapping
2801  *
2802  * Note: this is only safe if the mm semaphore is held when called.
2803  *
2804  * Return: %0 on success, negative error code otherwise.
2805  */
2806 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2807 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2808 {
2809 	int err;
2810 
2811 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2812 	if (err)
2813 		return -EINVAL;
2814 
2815 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2816 	if (err)
2817 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2818 	return err;
2819 }
2820 EXPORT_SYMBOL(remap_pfn_range);
2821 
2822 /**
2823  * vm_iomap_memory - remap memory to userspace
2824  * @vma: user vma to map to
2825  * @start: start of the physical memory to be mapped
2826  * @len: size of area
2827  *
2828  * This is a simplified io_remap_pfn_range() for common driver use. The
2829  * driver just needs to give us the physical memory range to be mapped,
2830  * we'll figure out the rest from the vma information.
2831  *
2832  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2833  * whatever write-combining details or similar.
2834  *
2835  * Return: %0 on success, negative error code otherwise.
2836  */
2837 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2838 {
2839 	unsigned long vm_len, pfn, pages;
2840 
2841 	/* Check that the physical memory area passed in looks valid */
2842 	if (start + len < start)
2843 		return -EINVAL;
2844 	/*
2845 	 * You *really* shouldn't map things that aren't page-aligned,
2846 	 * but we've historically allowed it because IO memory might
2847 	 * just have smaller alignment.
2848 	 */
2849 	len += start & ~PAGE_MASK;
2850 	pfn = start >> PAGE_SHIFT;
2851 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2852 	if (pfn + pages < pfn)
2853 		return -EINVAL;
2854 
2855 	/* We start the mapping 'vm_pgoff' pages into the area */
2856 	if (vma->vm_pgoff > pages)
2857 		return -EINVAL;
2858 	pfn += vma->vm_pgoff;
2859 	pages -= vma->vm_pgoff;
2860 
2861 	/* Can we fit all of the mapping? */
2862 	vm_len = vma->vm_end - vma->vm_start;
2863 	if (vm_len >> PAGE_SHIFT > pages)
2864 		return -EINVAL;
2865 
2866 	/* Ok, let it rip */
2867 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2868 }
2869 EXPORT_SYMBOL(vm_iomap_memory);
2870 
2871 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2872 				     unsigned long addr, unsigned long end,
2873 				     pte_fn_t fn, void *data, bool create,
2874 				     pgtbl_mod_mask *mask)
2875 {
2876 	pte_t *pte, *mapped_pte;
2877 	int err = 0;
2878 	spinlock_t *ptl;
2879 
2880 	if (create) {
2881 		mapped_pte = pte = (mm == &init_mm) ?
2882 			pte_alloc_kernel_track(pmd, addr, mask) :
2883 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2884 		if (!pte)
2885 			return -ENOMEM;
2886 	} else {
2887 		mapped_pte = pte = (mm == &init_mm) ?
2888 			pte_offset_kernel(pmd, addr) :
2889 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2890 		if (!pte)
2891 			return -EINVAL;
2892 	}
2893 
2894 	arch_enter_lazy_mmu_mode();
2895 
2896 	if (fn) {
2897 		do {
2898 			if (create || !pte_none(ptep_get(pte))) {
2899 				err = fn(pte++, addr, data);
2900 				if (err)
2901 					break;
2902 			}
2903 		} while (addr += PAGE_SIZE, addr != end);
2904 	}
2905 	*mask |= PGTBL_PTE_MODIFIED;
2906 
2907 	arch_leave_lazy_mmu_mode();
2908 
2909 	if (mm != &init_mm)
2910 		pte_unmap_unlock(mapped_pte, ptl);
2911 	return err;
2912 }
2913 
2914 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2915 				     unsigned long addr, unsigned long end,
2916 				     pte_fn_t fn, void *data, bool create,
2917 				     pgtbl_mod_mask *mask)
2918 {
2919 	pmd_t *pmd;
2920 	unsigned long next;
2921 	int err = 0;
2922 
2923 	BUG_ON(pud_leaf(*pud));
2924 
2925 	if (create) {
2926 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2927 		if (!pmd)
2928 			return -ENOMEM;
2929 	} else {
2930 		pmd = pmd_offset(pud, addr);
2931 	}
2932 	do {
2933 		next = pmd_addr_end(addr, end);
2934 		if (pmd_none(*pmd) && !create)
2935 			continue;
2936 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2937 			return -EINVAL;
2938 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2939 			if (!create)
2940 				continue;
2941 			pmd_clear_bad(pmd);
2942 		}
2943 		err = apply_to_pte_range(mm, pmd, addr, next,
2944 					 fn, data, create, mask);
2945 		if (err)
2946 			break;
2947 	} while (pmd++, addr = next, addr != end);
2948 
2949 	return err;
2950 }
2951 
2952 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2953 				     unsigned long addr, unsigned long end,
2954 				     pte_fn_t fn, void *data, bool create,
2955 				     pgtbl_mod_mask *mask)
2956 {
2957 	pud_t *pud;
2958 	unsigned long next;
2959 	int err = 0;
2960 
2961 	if (create) {
2962 		pud = pud_alloc_track(mm, p4d, addr, mask);
2963 		if (!pud)
2964 			return -ENOMEM;
2965 	} else {
2966 		pud = pud_offset(p4d, addr);
2967 	}
2968 	do {
2969 		next = pud_addr_end(addr, end);
2970 		if (pud_none(*pud) && !create)
2971 			continue;
2972 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2973 			return -EINVAL;
2974 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2975 			if (!create)
2976 				continue;
2977 			pud_clear_bad(pud);
2978 		}
2979 		err = apply_to_pmd_range(mm, pud, addr, next,
2980 					 fn, data, create, mask);
2981 		if (err)
2982 			break;
2983 	} while (pud++, addr = next, addr != end);
2984 
2985 	return err;
2986 }
2987 
2988 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2989 				     unsigned long addr, unsigned long end,
2990 				     pte_fn_t fn, void *data, bool create,
2991 				     pgtbl_mod_mask *mask)
2992 {
2993 	p4d_t *p4d;
2994 	unsigned long next;
2995 	int err = 0;
2996 
2997 	if (create) {
2998 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2999 		if (!p4d)
3000 			return -ENOMEM;
3001 	} else {
3002 		p4d = p4d_offset(pgd, addr);
3003 	}
3004 	do {
3005 		next = p4d_addr_end(addr, end);
3006 		if (p4d_none(*p4d) && !create)
3007 			continue;
3008 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
3009 			return -EINVAL;
3010 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
3011 			if (!create)
3012 				continue;
3013 			p4d_clear_bad(p4d);
3014 		}
3015 		err = apply_to_pud_range(mm, p4d, addr, next,
3016 					 fn, data, create, mask);
3017 		if (err)
3018 			break;
3019 	} while (p4d++, addr = next, addr != end);
3020 
3021 	return err;
3022 }
3023 
3024 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3025 				 unsigned long size, pte_fn_t fn,
3026 				 void *data, bool create)
3027 {
3028 	pgd_t *pgd;
3029 	unsigned long start = addr, next;
3030 	unsigned long end = addr + size;
3031 	pgtbl_mod_mask mask = 0;
3032 	int err = 0;
3033 
3034 	if (WARN_ON(addr >= end))
3035 		return -EINVAL;
3036 
3037 	pgd = pgd_offset(mm, addr);
3038 	do {
3039 		next = pgd_addr_end(addr, end);
3040 		if (pgd_none(*pgd) && !create)
3041 			continue;
3042 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
3043 			return -EINVAL;
3044 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
3045 			if (!create)
3046 				continue;
3047 			pgd_clear_bad(pgd);
3048 		}
3049 		err = apply_to_p4d_range(mm, pgd, addr, next,
3050 					 fn, data, create, &mask);
3051 		if (err)
3052 			break;
3053 	} while (pgd++, addr = next, addr != end);
3054 
3055 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
3056 		arch_sync_kernel_mappings(start, start + size);
3057 
3058 	return err;
3059 }
3060 
3061 /*
3062  * Scan a region of virtual memory, filling in page tables as necessary
3063  * and calling a provided function on each leaf page table.
3064  */
3065 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3066 			unsigned long size, pte_fn_t fn, void *data)
3067 {
3068 	return __apply_to_page_range(mm, addr, size, fn, data, true);
3069 }
3070 EXPORT_SYMBOL_GPL(apply_to_page_range);
3071 
3072 /*
3073  * Scan a region of virtual memory, calling a provided function on
3074  * each leaf page table where it exists.
3075  *
3076  * Unlike apply_to_page_range, this does _not_ fill in page tables
3077  * where they are absent.
3078  */
3079 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3080 				 unsigned long size, pte_fn_t fn, void *data)
3081 {
3082 	return __apply_to_page_range(mm, addr, size, fn, data, false);
3083 }
3084 
3085 /*
3086  * handle_pte_fault chooses page fault handler according to an entry which was
3087  * read non-atomically.  Before making any commitment, on those architectures
3088  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3089  * parts, do_swap_page must check under lock before unmapping the pte and
3090  * proceeding (but do_wp_page is only called after already making such a check;
3091  * and do_anonymous_page can safely check later on).
3092  */
3093 static inline int pte_unmap_same(struct vm_fault *vmf)
3094 {
3095 	int same = 1;
3096 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3097 	if (sizeof(pte_t) > sizeof(unsigned long)) {
3098 		spin_lock(vmf->ptl);
3099 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3100 		spin_unlock(vmf->ptl);
3101 	}
3102 #endif
3103 	pte_unmap(vmf->pte);
3104 	vmf->pte = NULL;
3105 	return same;
3106 }
3107 
3108 /*
3109  * Return:
3110  *	0:		copied succeeded
3111  *	-EHWPOISON:	copy failed due to hwpoison in source page
3112  *	-EAGAIN:	copied failed (some other reason)
3113  */
3114 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3115 				      struct vm_fault *vmf)
3116 {
3117 	int ret;
3118 	void *kaddr;
3119 	void __user *uaddr;
3120 	struct vm_area_struct *vma = vmf->vma;
3121 	struct mm_struct *mm = vma->vm_mm;
3122 	unsigned long addr = vmf->address;
3123 
3124 	if (likely(src)) {
3125 		if (copy_mc_user_highpage(dst, src, addr, vma))
3126 			return -EHWPOISON;
3127 		return 0;
3128 	}
3129 
3130 	/*
3131 	 * If the source page was a PFN mapping, we don't have
3132 	 * a "struct page" for it. We do a best-effort copy by
3133 	 * just copying from the original user address. If that
3134 	 * fails, we just zero-fill it. Live with it.
3135 	 */
3136 	kaddr = kmap_local_page(dst);
3137 	pagefault_disable();
3138 	uaddr = (void __user *)(addr & PAGE_MASK);
3139 
3140 	/*
3141 	 * On architectures with software "accessed" bits, we would
3142 	 * take a double page fault, so mark it accessed here.
3143 	 */
3144 	vmf->pte = NULL;
3145 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3146 		pte_t entry;
3147 
3148 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3149 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3150 			/*
3151 			 * Other thread has already handled the fault
3152 			 * and update local tlb only
3153 			 */
3154 			if (vmf->pte)
3155 				update_mmu_tlb(vma, addr, vmf->pte);
3156 			ret = -EAGAIN;
3157 			goto pte_unlock;
3158 		}
3159 
3160 		entry = pte_mkyoung(vmf->orig_pte);
3161 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3162 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3163 	}
3164 
3165 	/*
3166 	 * This really shouldn't fail, because the page is there
3167 	 * in the page tables. But it might just be unreadable,
3168 	 * in which case we just give up and fill the result with
3169 	 * zeroes.
3170 	 */
3171 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3172 		if (vmf->pte)
3173 			goto warn;
3174 
3175 		/* Re-validate under PTL if the page is still mapped */
3176 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3177 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3178 			/* The PTE changed under us, update local tlb */
3179 			if (vmf->pte)
3180 				update_mmu_tlb(vma, addr, vmf->pte);
3181 			ret = -EAGAIN;
3182 			goto pte_unlock;
3183 		}
3184 
3185 		/*
3186 		 * The same page can be mapped back since last copy attempt.
3187 		 * Try to copy again under PTL.
3188 		 */
3189 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3190 			/*
3191 			 * Give a warn in case there can be some obscure
3192 			 * use-case
3193 			 */
3194 warn:
3195 			WARN_ON_ONCE(1);
3196 			clear_page(kaddr);
3197 		}
3198 	}
3199 
3200 	ret = 0;
3201 
3202 pte_unlock:
3203 	if (vmf->pte)
3204 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3205 	pagefault_enable();
3206 	kunmap_local(kaddr);
3207 	flush_dcache_page(dst);
3208 
3209 	return ret;
3210 }
3211 
3212 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3213 {
3214 	struct file *vm_file = vma->vm_file;
3215 
3216 	if (vm_file)
3217 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3218 
3219 	/*
3220 	 * Special mappings (e.g. VDSO) do not have any file so fake
3221 	 * a default GFP_KERNEL for them.
3222 	 */
3223 	return GFP_KERNEL;
3224 }
3225 
3226 /*
3227  * Notify the address space that the page is about to become writable so that
3228  * it can prohibit this or wait for the page to get into an appropriate state.
3229  *
3230  * We do this without the lock held, so that it can sleep if it needs to.
3231  */
3232 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3233 {
3234 	vm_fault_t ret;
3235 	unsigned int old_flags = vmf->flags;
3236 
3237 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3238 
3239 	if (vmf->vma->vm_file &&
3240 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3241 		return VM_FAULT_SIGBUS;
3242 
3243 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3244 	/* Restore original flags so that caller is not surprised */
3245 	vmf->flags = old_flags;
3246 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3247 		return ret;
3248 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3249 		folio_lock(folio);
3250 		if (!folio->mapping) {
3251 			folio_unlock(folio);
3252 			return 0; /* retry */
3253 		}
3254 		ret |= VM_FAULT_LOCKED;
3255 	} else
3256 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3257 	return ret;
3258 }
3259 
3260 /*
3261  * Handle dirtying of a page in shared file mapping on a write fault.
3262  *
3263  * The function expects the page to be locked and unlocks it.
3264  */
3265 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3266 {
3267 	struct vm_area_struct *vma = vmf->vma;
3268 	struct address_space *mapping;
3269 	struct folio *folio = page_folio(vmf->page);
3270 	bool dirtied;
3271 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3272 
3273 	dirtied = folio_mark_dirty(folio);
3274 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3275 	/*
3276 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3277 	 * by truncate after folio_unlock().   The address_space itself remains
3278 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3279 	 * release semantics to prevent the compiler from undoing this copying.
3280 	 */
3281 	mapping = folio_raw_mapping(folio);
3282 	folio_unlock(folio);
3283 
3284 	if (!page_mkwrite)
3285 		file_update_time(vma->vm_file);
3286 
3287 	/*
3288 	 * Throttle page dirtying rate down to writeback speed.
3289 	 *
3290 	 * mapping may be NULL here because some device drivers do not
3291 	 * set page.mapping but still dirty their pages
3292 	 *
3293 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3294 	 * is pinning the mapping, as per above.
3295 	 */
3296 	if ((dirtied || page_mkwrite) && mapping) {
3297 		struct file *fpin;
3298 
3299 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3300 		balance_dirty_pages_ratelimited(mapping);
3301 		if (fpin) {
3302 			fput(fpin);
3303 			return VM_FAULT_COMPLETED;
3304 		}
3305 	}
3306 
3307 	return 0;
3308 }
3309 
3310 /*
3311  * Handle write page faults for pages that can be reused in the current vma
3312  *
3313  * This can happen either due to the mapping being with the VM_SHARED flag,
3314  * or due to us being the last reference standing to the page. In either
3315  * case, all we need to do here is to mark the page as writable and update
3316  * any related book-keeping.
3317  */
3318 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3319 	__releases(vmf->ptl)
3320 {
3321 	struct vm_area_struct *vma = vmf->vma;
3322 	pte_t entry;
3323 
3324 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3325 	VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3326 
3327 	if (folio) {
3328 		VM_BUG_ON(folio_test_anon(folio) &&
3329 			  !PageAnonExclusive(vmf->page));
3330 		/*
3331 		 * Clear the folio's cpupid information as the existing
3332 		 * information potentially belongs to a now completely
3333 		 * unrelated process.
3334 		 */
3335 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3336 	}
3337 
3338 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3339 	entry = pte_mkyoung(vmf->orig_pte);
3340 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3341 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3342 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3343 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3344 	count_vm_event(PGREUSE);
3345 }
3346 
3347 /*
3348  * We could add a bitflag somewhere, but for now, we know that all
3349  * vm_ops that have a ->map_pages have been audited and don't need
3350  * the mmap_lock to be held.
3351  */
3352 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3353 {
3354 	struct vm_area_struct *vma = vmf->vma;
3355 
3356 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3357 		return 0;
3358 	vma_end_read(vma);
3359 	return VM_FAULT_RETRY;
3360 }
3361 
3362 /**
3363  * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3364  * @vmf: The vm_fault descriptor passed from the fault handler.
3365  *
3366  * When preparing to insert an anonymous page into a VMA from a
3367  * fault handler, call this function rather than anon_vma_prepare().
3368  * If this vma does not already have an associated anon_vma and we are
3369  * only protected by the per-VMA lock, the caller must retry with the
3370  * mmap_lock held.  __anon_vma_prepare() will look at adjacent VMAs to
3371  * determine if this VMA can share its anon_vma, and that's not safe to
3372  * do with only the per-VMA lock held for this VMA.
3373  *
3374  * Return: 0 if fault handling can proceed.  Any other value should be
3375  * returned to the caller.
3376  */
3377 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3378 {
3379 	struct vm_area_struct *vma = vmf->vma;
3380 	vm_fault_t ret = 0;
3381 
3382 	if (likely(vma->anon_vma))
3383 		return 0;
3384 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3385 		if (!mmap_read_trylock(vma->vm_mm))
3386 			return VM_FAULT_RETRY;
3387 	}
3388 	if (__anon_vma_prepare(vma))
3389 		ret = VM_FAULT_OOM;
3390 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3391 		mmap_read_unlock(vma->vm_mm);
3392 	return ret;
3393 }
3394 
3395 /*
3396  * Handle the case of a page which we actually need to copy to a new page,
3397  * either due to COW or unsharing.
3398  *
3399  * Called with mmap_lock locked and the old page referenced, but
3400  * without the ptl held.
3401  *
3402  * High level logic flow:
3403  *
3404  * - Allocate a page, copy the content of the old page to the new one.
3405  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3406  * - Take the PTL. If the pte changed, bail out and release the allocated page
3407  * - If the pte is still the way we remember it, update the page table and all
3408  *   relevant references. This includes dropping the reference the page-table
3409  *   held to the old page, as well as updating the rmap.
3410  * - In any case, unlock the PTL and drop the reference we took to the old page.
3411  */
3412 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3413 {
3414 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3415 	struct vm_area_struct *vma = vmf->vma;
3416 	struct mm_struct *mm = vma->vm_mm;
3417 	struct folio *old_folio = NULL;
3418 	struct folio *new_folio = NULL;
3419 	pte_t entry;
3420 	int page_copied = 0;
3421 	struct mmu_notifier_range range;
3422 	vm_fault_t ret;
3423 	bool pfn_is_zero;
3424 
3425 	delayacct_wpcopy_start();
3426 
3427 	if (vmf->page)
3428 		old_folio = page_folio(vmf->page);
3429 	ret = vmf_anon_prepare(vmf);
3430 	if (unlikely(ret))
3431 		goto out;
3432 
3433 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3434 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3435 	if (!new_folio)
3436 		goto oom;
3437 
3438 	if (!pfn_is_zero) {
3439 		int err;
3440 
3441 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3442 		if (err) {
3443 			/*
3444 			 * COW failed, if the fault was solved by other,
3445 			 * it's fine. If not, userspace would re-fault on
3446 			 * the same address and we will handle the fault
3447 			 * from the second attempt.
3448 			 * The -EHWPOISON case will not be retried.
3449 			 */
3450 			folio_put(new_folio);
3451 			if (old_folio)
3452 				folio_put(old_folio);
3453 
3454 			delayacct_wpcopy_end();
3455 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3456 		}
3457 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3458 	}
3459 
3460 	__folio_mark_uptodate(new_folio);
3461 
3462 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3463 				vmf->address & PAGE_MASK,
3464 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3465 	mmu_notifier_invalidate_range_start(&range);
3466 
3467 	/*
3468 	 * Re-check the pte - we dropped the lock
3469 	 */
3470 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3471 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3472 		if (old_folio) {
3473 			if (!folio_test_anon(old_folio)) {
3474 				dec_mm_counter(mm, mm_counter_file(old_folio));
3475 				inc_mm_counter(mm, MM_ANONPAGES);
3476 			}
3477 		} else {
3478 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3479 			inc_mm_counter(mm, MM_ANONPAGES);
3480 		}
3481 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3482 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3483 		entry = pte_sw_mkyoung(entry);
3484 		if (unlikely(unshare)) {
3485 			if (pte_soft_dirty(vmf->orig_pte))
3486 				entry = pte_mksoft_dirty(entry);
3487 			if (pte_uffd_wp(vmf->orig_pte))
3488 				entry = pte_mkuffd_wp(entry);
3489 		} else {
3490 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3491 		}
3492 
3493 		/*
3494 		 * Clear the pte entry and flush it first, before updating the
3495 		 * pte with the new entry, to keep TLBs on different CPUs in
3496 		 * sync. This code used to set the new PTE then flush TLBs, but
3497 		 * that left a window where the new PTE could be loaded into
3498 		 * some TLBs while the old PTE remains in others.
3499 		 */
3500 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3501 		folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3502 		folio_add_lru_vma(new_folio, vma);
3503 		BUG_ON(unshare && pte_write(entry));
3504 		set_pte_at(mm, vmf->address, vmf->pte, entry);
3505 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3506 		if (old_folio) {
3507 			/*
3508 			 * Only after switching the pte to the new page may
3509 			 * we remove the mapcount here. Otherwise another
3510 			 * process may come and find the rmap count decremented
3511 			 * before the pte is switched to the new page, and
3512 			 * "reuse" the old page writing into it while our pte
3513 			 * here still points into it and can be read by other
3514 			 * threads.
3515 			 *
3516 			 * The critical issue is to order this
3517 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3518 			 * above. Those stores are ordered by (if nothing else,)
3519 			 * the barrier present in the atomic_add_negative
3520 			 * in folio_remove_rmap_pte();
3521 			 *
3522 			 * Then the TLB flush in ptep_clear_flush ensures that
3523 			 * no process can access the old page before the
3524 			 * decremented mapcount is visible. And the old page
3525 			 * cannot be reused until after the decremented
3526 			 * mapcount is visible. So transitively, TLBs to
3527 			 * old page will be flushed before it can be reused.
3528 			 */
3529 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3530 		}
3531 
3532 		/* Free the old page.. */
3533 		new_folio = old_folio;
3534 		page_copied = 1;
3535 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3536 	} else if (vmf->pte) {
3537 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3538 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3539 	}
3540 
3541 	mmu_notifier_invalidate_range_end(&range);
3542 
3543 	if (new_folio)
3544 		folio_put(new_folio);
3545 	if (old_folio) {
3546 		if (page_copied)
3547 			free_swap_cache(old_folio);
3548 		folio_put(old_folio);
3549 	}
3550 
3551 	delayacct_wpcopy_end();
3552 	return 0;
3553 oom:
3554 	ret = VM_FAULT_OOM;
3555 out:
3556 	if (old_folio)
3557 		folio_put(old_folio);
3558 
3559 	delayacct_wpcopy_end();
3560 	return ret;
3561 }
3562 
3563 /**
3564  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3565  *			  writeable once the page is prepared
3566  *
3567  * @vmf: structure describing the fault
3568  * @folio: the folio of vmf->page
3569  *
3570  * This function handles all that is needed to finish a write page fault in a
3571  * shared mapping due to PTE being read-only once the mapped page is prepared.
3572  * It handles locking of PTE and modifying it.
3573  *
3574  * The function expects the page to be locked or other protection against
3575  * concurrent faults / writeback (such as DAX radix tree locks).
3576  *
3577  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3578  * we acquired PTE lock.
3579  */
3580 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3581 {
3582 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3583 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3584 				       &vmf->ptl);
3585 	if (!vmf->pte)
3586 		return VM_FAULT_NOPAGE;
3587 	/*
3588 	 * We might have raced with another page fault while we released the
3589 	 * pte_offset_map_lock.
3590 	 */
3591 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3592 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3593 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3594 		return VM_FAULT_NOPAGE;
3595 	}
3596 	wp_page_reuse(vmf, folio);
3597 	return 0;
3598 }
3599 
3600 /*
3601  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3602  * mapping
3603  */
3604 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3605 {
3606 	struct vm_area_struct *vma = vmf->vma;
3607 
3608 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3609 		vm_fault_t ret;
3610 
3611 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3612 		ret = vmf_can_call_fault(vmf);
3613 		if (ret)
3614 			return ret;
3615 
3616 		vmf->flags |= FAULT_FLAG_MKWRITE;
3617 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3618 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3619 			return ret;
3620 		return finish_mkwrite_fault(vmf, NULL);
3621 	}
3622 	wp_page_reuse(vmf, NULL);
3623 	return 0;
3624 }
3625 
3626 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3627 	__releases(vmf->ptl)
3628 {
3629 	struct vm_area_struct *vma = vmf->vma;
3630 	vm_fault_t ret = 0;
3631 
3632 	folio_get(folio);
3633 
3634 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3635 		vm_fault_t tmp;
3636 
3637 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3638 		tmp = vmf_can_call_fault(vmf);
3639 		if (tmp) {
3640 			folio_put(folio);
3641 			return tmp;
3642 		}
3643 
3644 		tmp = do_page_mkwrite(vmf, folio);
3645 		if (unlikely(!tmp || (tmp &
3646 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3647 			folio_put(folio);
3648 			return tmp;
3649 		}
3650 		tmp = finish_mkwrite_fault(vmf, folio);
3651 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3652 			folio_unlock(folio);
3653 			folio_put(folio);
3654 			return tmp;
3655 		}
3656 	} else {
3657 		wp_page_reuse(vmf, folio);
3658 		folio_lock(folio);
3659 	}
3660 	ret |= fault_dirty_shared_page(vmf);
3661 	folio_put(folio);
3662 
3663 	return ret;
3664 }
3665 
3666 static bool wp_can_reuse_anon_folio(struct folio *folio,
3667 				    struct vm_area_struct *vma)
3668 {
3669 	/*
3670 	 * We could currently only reuse a subpage of a large folio if no
3671 	 * other subpages of the large folios are still mapped. However,
3672 	 * let's just consistently not reuse subpages even if we could
3673 	 * reuse in that scenario, and give back a large folio a bit
3674 	 * sooner.
3675 	 */
3676 	if (folio_test_large(folio))
3677 		return false;
3678 
3679 	/*
3680 	 * We have to verify under folio lock: these early checks are
3681 	 * just an optimization to avoid locking the folio and freeing
3682 	 * the swapcache if there is little hope that we can reuse.
3683 	 *
3684 	 * KSM doesn't necessarily raise the folio refcount.
3685 	 */
3686 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3687 		return false;
3688 	if (!folio_test_lru(folio))
3689 		/*
3690 		 * We cannot easily detect+handle references from
3691 		 * remote LRU caches or references to LRU folios.
3692 		 */
3693 		lru_add_drain();
3694 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3695 		return false;
3696 	if (!folio_trylock(folio))
3697 		return false;
3698 	if (folio_test_swapcache(folio))
3699 		folio_free_swap(folio);
3700 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3701 		folio_unlock(folio);
3702 		return false;
3703 	}
3704 	/*
3705 	 * Ok, we've got the only folio reference from our mapping
3706 	 * and the folio is locked, it's dark out, and we're wearing
3707 	 * sunglasses. Hit it.
3708 	 */
3709 	folio_move_anon_rmap(folio, vma);
3710 	folio_unlock(folio);
3711 	return true;
3712 }
3713 
3714 /*
3715  * This routine handles present pages, when
3716  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3717  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3718  *   (FAULT_FLAG_UNSHARE)
3719  *
3720  * It is done by copying the page to a new address and decrementing the
3721  * shared-page counter for the old page.
3722  *
3723  * Note that this routine assumes that the protection checks have been
3724  * done by the caller (the low-level page fault routine in most cases).
3725  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3726  * done any necessary COW.
3727  *
3728  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3729  * though the page will change only once the write actually happens. This
3730  * avoids a few races, and potentially makes it more efficient.
3731  *
3732  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3733  * but allow concurrent faults), with pte both mapped and locked.
3734  * We return with mmap_lock still held, but pte unmapped and unlocked.
3735  */
3736 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3737 	__releases(vmf->ptl)
3738 {
3739 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3740 	struct vm_area_struct *vma = vmf->vma;
3741 	struct folio *folio = NULL;
3742 	pte_t pte;
3743 
3744 	if (likely(!unshare)) {
3745 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3746 			if (!userfaultfd_wp_async(vma)) {
3747 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3748 				return handle_userfault(vmf, VM_UFFD_WP);
3749 			}
3750 
3751 			/*
3752 			 * Nothing needed (cache flush, TLB invalidations,
3753 			 * etc.) because we're only removing the uffd-wp bit,
3754 			 * which is completely invisible to the user.
3755 			 */
3756 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3757 
3758 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3759 			/*
3760 			 * Update this to be prepared for following up CoW
3761 			 * handling
3762 			 */
3763 			vmf->orig_pte = pte;
3764 		}
3765 
3766 		/*
3767 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3768 		 * is flushed in this case before copying.
3769 		 */
3770 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3771 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3772 			flush_tlb_page(vmf->vma, vmf->address);
3773 	}
3774 
3775 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3776 
3777 	if (vmf->page)
3778 		folio = page_folio(vmf->page);
3779 
3780 	/*
3781 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3782 	 * FAULT_FLAG_WRITE set at this point.
3783 	 */
3784 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3785 		/*
3786 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3787 		 * VM_PFNMAP VMA.
3788 		 *
3789 		 * We should not cow pages in a shared writeable mapping.
3790 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3791 		 */
3792 		if (!vmf->page)
3793 			return wp_pfn_shared(vmf);
3794 		return wp_page_shared(vmf, folio);
3795 	}
3796 
3797 	/*
3798 	 * Private mapping: create an exclusive anonymous page copy if reuse
3799 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3800 	 *
3801 	 * If we encounter a page that is marked exclusive, we must reuse
3802 	 * the page without further checks.
3803 	 */
3804 	if (folio && folio_test_anon(folio) &&
3805 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3806 		if (!PageAnonExclusive(vmf->page))
3807 			SetPageAnonExclusive(vmf->page);
3808 		if (unlikely(unshare)) {
3809 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3810 			return 0;
3811 		}
3812 		wp_page_reuse(vmf, folio);
3813 		return 0;
3814 	}
3815 	/*
3816 	 * Ok, we need to copy. Oh, well..
3817 	 */
3818 	if (folio)
3819 		folio_get(folio);
3820 
3821 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3822 #ifdef CONFIG_KSM
3823 	if (folio && folio_test_ksm(folio))
3824 		count_vm_event(COW_KSM);
3825 #endif
3826 	return wp_page_copy(vmf);
3827 }
3828 
3829 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3830 		unsigned long start_addr, unsigned long end_addr,
3831 		struct zap_details *details)
3832 {
3833 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3834 }
3835 
3836 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3837 					    pgoff_t first_index,
3838 					    pgoff_t last_index,
3839 					    struct zap_details *details)
3840 {
3841 	struct vm_area_struct *vma;
3842 	pgoff_t vba, vea, zba, zea;
3843 
3844 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3845 		vba = vma->vm_pgoff;
3846 		vea = vba + vma_pages(vma) - 1;
3847 		zba = max(first_index, vba);
3848 		zea = min(last_index, vea);
3849 
3850 		unmap_mapping_range_vma(vma,
3851 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3852 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3853 				details);
3854 	}
3855 }
3856 
3857 /**
3858  * unmap_mapping_folio() - Unmap single folio from processes.
3859  * @folio: The locked folio to be unmapped.
3860  *
3861  * Unmap this folio from any userspace process which still has it mmaped.
3862  * Typically, for efficiency, the range of nearby pages has already been
3863  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3864  * truncation or invalidation holds the lock on a folio, it may find that
3865  * the page has been remapped again: and then uses unmap_mapping_folio()
3866  * to unmap it finally.
3867  */
3868 void unmap_mapping_folio(struct folio *folio)
3869 {
3870 	struct address_space *mapping = folio->mapping;
3871 	struct zap_details details = { };
3872 	pgoff_t	first_index;
3873 	pgoff_t	last_index;
3874 
3875 	VM_BUG_ON(!folio_test_locked(folio));
3876 
3877 	first_index = folio->index;
3878 	last_index = folio_next_index(folio) - 1;
3879 
3880 	details.even_cows = false;
3881 	details.single_folio = folio;
3882 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3883 
3884 	i_mmap_lock_read(mapping);
3885 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3886 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3887 					 last_index, &details);
3888 	i_mmap_unlock_read(mapping);
3889 }
3890 
3891 /**
3892  * unmap_mapping_pages() - Unmap pages from processes.
3893  * @mapping: The address space containing pages to be unmapped.
3894  * @start: Index of first page to be unmapped.
3895  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3896  * @even_cows: Whether to unmap even private COWed pages.
3897  *
3898  * Unmap the pages in this address space from any userspace process which
3899  * has them mmaped.  Generally, you want to remove COWed pages as well when
3900  * a file is being truncated, but not when invalidating pages from the page
3901  * cache.
3902  */
3903 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3904 		pgoff_t nr, bool even_cows)
3905 {
3906 	struct zap_details details = { };
3907 	pgoff_t	first_index = start;
3908 	pgoff_t	last_index = start + nr - 1;
3909 
3910 	details.even_cows = even_cows;
3911 	if (last_index < first_index)
3912 		last_index = ULONG_MAX;
3913 
3914 	i_mmap_lock_read(mapping);
3915 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3916 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3917 					 last_index, &details);
3918 	i_mmap_unlock_read(mapping);
3919 }
3920 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3921 
3922 /**
3923  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3924  * address_space corresponding to the specified byte range in the underlying
3925  * file.
3926  *
3927  * @mapping: the address space containing mmaps to be unmapped.
3928  * @holebegin: byte in first page to unmap, relative to the start of
3929  * the underlying file.  This will be rounded down to a PAGE_SIZE
3930  * boundary.  Note that this is different from truncate_pagecache(), which
3931  * must keep the partial page.  In contrast, we must get rid of
3932  * partial pages.
3933  * @holelen: size of prospective hole in bytes.  This will be rounded
3934  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3935  * end of the file.
3936  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3937  * but 0 when invalidating pagecache, don't throw away private data.
3938  */
3939 void unmap_mapping_range(struct address_space *mapping,
3940 		loff_t const holebegin, loff_t const holelen, int even_cows)
3941 {
3942 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3943 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3944 
3945 	/* Check for overflow. */
3946 	if (sizeof(holelen) > sizeof(hlen)) {
3947 		long long holeend =
3948 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3949 		if (holeend & ~(long long)ULONG_MAX)
3950 			hlen = ULONG_MAX - hba + 1;
3951 	}
3952 
3953 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3954 }
3955 EXPORT_SYMBOL(unmap_mapping_range);
3956 
3957 /*
3958  * Restore a potential device exclusive pte to a working pte entry
3959  */
3960 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3961 {
3962 	struct folio *folio = page_folio(vmf->page);
3963 	struct vm_area_struct *vma = vmf->vma;
3964 	struct mmu_notifier_range range;
3965 	vm_fault_t ret;
3966 
3967 	/*
3968 	 * We need a reference to lock the folio because we don't hold
3969 	 * the PTL so a racing thread can remove the device-exclusive
3970 	 * entry and unmap it. If the folio is free the entry must
3971 	 * have been removed already. If it happens to have already
3972 	 * been re-allocated after being freed all we do is lock and
3973 	 * unlock it.
3974 	 */
3975 	if (!folio_try_get(folio))
3976 		return 0;
3977 
3978 	ret = folio_lock_or_retry(folio, vmf);
3979 	if (ret) {
3980 		folio_put(folio);
3981 		return ret;
3982 	}
3983 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3984 				vma->vm_mm, vmf->address & PAGE_MASK,
3985 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3986 	mmu_notifier_invalidate_range_start(&range);
3987 
3988 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3989 				&vmf->ptl);
3990 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3991 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3992 
3993 	if (vmf->pte)
3994 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3995 	folio_unlock(folio);
3996 	folio_put(folio);
3997 
3998 	mmu_notifier_invalidate_range_end(&range);
3999 	return 0;
4000 }
4001 
4002 static inline bool should_try_to_free_swap(struct folio *folio,
4003 					   struct vm_area_struct *vma,
4004 					   unsigned int fault_flags)
4005 {
4006 	if (!folio_test_swapcache(folio))
4007 		return false;
4008 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
4009 	    folio_test_mlocked(folio))
4010 		return true;
4011 	/*
4012 	 * If we want to map a page that's in the swapcache writable, we
4013 	 * have to detect via the refcount if we're really the exclusive
4014 	 * user. Try freeing the swapcache to get rid of the swapcache
4015 	 * reference only in case it's likely that we'll be the exlusive user.
4016 	 */
4017 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
4018 		folio_ref_count(folio) == (1 + folio_nr_pages(folio));
4019 }
4020 
4021 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
4022 {
4023 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4024 				       vmf->address, &vmf->ptl);
4025 	if (!vmf->pte)
4026 		return 0;
4027 	/*
4028 	 * Be careful so that we will only recover a special uffd-wp pte into a
4029 	 * none pte.  Otherwise it means the pte could have changed, so retry.
4030 	 *
4031 	 * This should also cover the case where e.g. the pte changed
4032 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
4033 	 * So is_pte_marker() check is not enough to safely drop the pte.
4034 	 */
4035 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
4036 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
4037 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4038 	return 0;
4039 }
4040 
4041 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
4042 {
4043 	if (vma_is_anonymous(vmf->vma))
4044 		return do_anonymous_page(vmf);
4045 	else
4046 		return do_fault(vmf);
4047 }
4048 
4049 /*
4050  * This is actually a page-missing access, but with uffd-wp special pte
4051  * installed.  It means this pte was wr-protected before being unmapped.
4052  */
4053 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
4054 {
4055 	/*
4056 	 * Just in case there're leftover special ptes even after the region
4057 	 * got unregistered - we can simply clear them.
4058 	 */
4059 	if (unlikely(!userfaultfd_wp(vmf->vma)))
4060 		return pte_marker_clear(vmf);
4061 
4062 	return do_pte_missing(vmf);
4063 }
4064 
4065 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4066 {
4067 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
4068 	unsigned long marker = pte_marker_get(entry);
4069 
4070 	/*
4071 	 * PTE markers should never be empty.  If anything weird happened,
4072 	 * the best thing to do is to kill the process along with its mm.
4073 	 */
4074 	if (WARN_ON_ONCE(!marker))
4075 		return VM_FAULT_SIGBUS;
4076 
4077 	/* Higher priority than uffd-wp when data corrupted */
4078 	if (marker & PTE_MARKER_POISONED)
4079 		return VM_FAULT_HWPOISON;
4080 
4081 	/* Hitting a guard page is always a fatal condition. */
4082 	if (marker & PTE_MARKER_GUARD)
4083 		return VM_FAULT_SIGSEGV;
4084 
4085 	if (pte_marker_entry_uffd_wp(entry))
4086 		return pte_marker_handle_uffd_wp(vmf);
4087 
4088 	/* This is an unknown pte marker */
4089 	return VM_FAULT_SIGBUS;
4090 }
4091 
4092 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4093 {
4094 	struct vm_area_struct *vma = vmf->vma;
4095 	struct folio *folio;
4096 	swp_entry_t entry;
4097 
4098 	folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4099 	if (!folio)
4100 		return NULL;
4101 
4102 	entry = pte_to_swp_entry(vmf->orig_pte);
4103 	if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4104 					   GFP_KERNEL, entry)) {
4105 		folio_put(folio);
4106 		return NULL;
4107 	}
4108 
4109 	return folio;
4110 }
4111 
4112 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4113 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
4114 {
4115 	struct swap_info_struct *si = swp_swap_info(entry);
4116 	pgoff_t offset = swp_offset(entry);
4117 	int i;
4118 
4119 	/*
4120 	 * While allocating a large folio and doing swap_read_folio, which is
4121 	 * the case the being faulted pte doesn't have swapcache. We need to
4122 	 * ensure all PTEs have no cache as well, otherwise, we might go to
4123 	 * swap devices while the content is in swapcache.
4124 	 */
4125 	for (i = 0; i < max_nr; i++) {
4126 		if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
4127 			return i;
4128 	}
4129 
4130 	return i;
4131 }
4132 
4133 /*
4134  * Check if the PTEs within a range are contiguous swap entries
4135  * and have consistent swapcache, zeromap.
4136  */
4137 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4138 {
4139 	unsigned long addr;
4140 	swp_entry_t entry;
4141 	int idx;
4142 	pte_t pte;
4143 
4144 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4145 	idx = (vmf->address - addr) / PAGE_SIZE;
4146 	pte = ptep_get(ptep);
4147 
4148 	if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4149 		return false;
4150 	entry = pte_to_swp_entry(pte);
4151 	if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4152 		return false;
4153 
4154 	/*
4155 	 * swap_read_folio() can't handle the case a large folio is hybridly
4156 	 * from different backends. And they are likely corner cases. Similar
4157 	 * things might be added once zswap support large folios.
4158 	 */
4159 	if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4160 		return false;
4161 	if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4162 		return false;
4163 
4164 	return true;
4165 }
4166 
4167 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4168 						     unsigned long addr,
4169 						     unsigned long orders)
4170 {
4171 	int order, nr;
4172 
4173 	order = highest_order(orders);
4174 
4175 	/*
4176 	 * To swap in a THP with nr pages, we require that its first swap_offset
4177 	 * is aligned with that number, as it was when the THP was swapped out.
4178 	 * This helps filter out most invalid entries.
4179 	 */
4180 	while (orders) {
4181 		nr = 1 << order;
4182 		if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4183 			break;
4184 		order = next_order(&orders, order);
4185 	}
4186 
4187 	return orders;
4188 }
4189 
4190 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4191 {
4192 	struct vm_area_struct *vma = vmf->vma;
4193 	unsigned long orders;
4194 	struct folio *folio;
4195 	unsigned long addr;
4196 	swp_entry_t entry;
4197 	spinlock_t *ptl;
4198 	pte_t *pte;
4199 	gfp_t gfp;
4200 	int order;
4201 
4202 	/*
4203 	 * If uffd is active for the vma we need per-page fault fidelity to
4204 	 * maintain the uffd semantics.
4205 	 */
4206 	if (unlikely(userfaultfd_armed(vma)))
4207 		goto fallback;
4208 
4209 	/*
4210 	 * A large swapped out folio could be partially or fully in zswap. We
4211 	 * lack handling for such cases, so fallback to swapping in order-0
4212 	 * folio.
4213 	 */
4214 	if (!zswap_never_enabled())
4215 		goto fallback;
4216 
4217 	entry = pte_to_swp_entry(vmf->orig_pte);
4218 	/*
4219 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4220 	 * and suitable for swapping THP.
4221 	 */
4222 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4223 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4224 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4225 	orders = thp_swap_suitable_orders(swp_offset(entry),
4226 					  vmf->address, orders);
4227 
4228 	if (!orders)
4229 		goto fallback;
4230 
4231 	pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4232 				  vmf->address & PMD_MASK, &ptl);
4233 	if (unlikely(!pte))
4234 		goto fallback;
4235 
4236 	/*
4237 	 * For do_swap_page, find the highest order where the aligned range is
4238 	 * completely swap entries with contiguous swap offsets.
4239 	 */
4240 	order = highest_order(orders);
4241 	while (orders) {
4242 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4243 		if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4244 			break;
4245 		order = next_order(&orders, order);
4246 	}
4247 
4248 	pte_unmap_unlock(pte, ptl);
4249 
4250 	/* Try allocating the highest of the remaining orders. */
4251 	gfp = vma_thp_gfp_mask(vma);
4252 	while (orders) {
4253 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4254 		folio = vma_alloc_folio(gfp, order, vma, addr);
4255 		if (folio) {
4256 			if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4257 							    gfp, entry))
4258 				return folio;
4259 			count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
4260 			folio_put(folio);
4261 		}
4262 		count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK);
4263 		order = next_order(&orders, order);
4264 	}
4265 
4266 fallback:
4267 	return __alloc_swap_folio(vmf);
4268 }
4269 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4270 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4271 {
4272 	return __alloc_swap_folio(vmf);
4273 }
4274 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4275 
4276 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4277 
4278 /*
4279  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4280  * but allow concurrent faults), and pte mapped but not yet locked.
4281  * We return with pte unmapped and unlocked.
4282  *
4283  * We return with the mmap_lock locked or unlocked in the same cases
4284  * as does filemap_fault().
4285  */
4286 vm_fault_t do_swap_page(struct vm_fault *vmf)
4287 {
4288 	struct vm_area_struct *vma = vmf->vma;
4289 	struct folio *swapcache, *folio = NULL;
4290 	DECLARE_WAITQUEUE(wait, current);
4291 	struct page *page;
4292 	struct swap_info_struct *si = NULL;
4293 	rmap_t rmap_flags = RMAP_NONE;
4294 	bool need_clear_cache = false;
4295 	bool exclusive = false;
4296 	swp_entry_t entry;
4297 	pte_t pte;
4298 	vm_fault_t ret = 0;
4299 	void *shadow = NULL;
4300 	int nr_pages;
4301 	unsigned long page_idx;
4302 	unsigned long address;
4303 	pte_t *ptep;
4304 
4305 	if (!pte_unmap_same(vmf))
4306 		goto out;
4307 
4308 	entry = pte_to_swp_entry(vmf->orig_pte);
4309 	if (unlikely(non_swap_entry(entry))) {
4310 		if (is_migration_entry(entry)) {
4311 			migration_entry_wait(vma->vm_mm, vmf->pmd,
4312 					     vmf->address);
4313 		} else if (is_device_exclusive_entry(entry)) {
4314 			vmf->page = pfn_swap_entry_to_page(entry);
4315 			ret = remove_device_exclusive_entry(vmf);
4316 		} else if (is_device_private_entry(entry)) {
4317 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4318 				/*
4319 				 * migrate_to_ram is not yet ready to operate
4320 				 * under VMA lock.
4321 				 */
4322 				vma_end_read(vma);
4323 				ret = VM_FAULT_RETRY;
4324 				goto out;
4325 			}
4326 
4327 			vmf->page = pfn_swap_entry_to_page(entry);
4328 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4329 					vmf->address, &vmf->ptl);
4330 			if (unlikely(!vmf->pte ||
4331 				     !pte_same(ptep_get(vmf->pte),
4332 							vmf->orig_pte)))
4333 				goto unlock;
4334 
4335 			/*
4336 			 * Get a page reference while we know the page can't be
4337 			 * freed.
4338 			 */
4339 			get_page(vmf->page);
4340 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4341 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4342 			put_page(vmf->page);
4343 		} else if (is_hwpoison_entry(entry)) {
4344 			ret = VM_FAULT_HWPOISON;
4345 		} else if (is_pte_marker_entry(entry)) {
4346 			ret = handle_pte_marker(vmf);
4347 		} else {
4348 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4349 			ret = VM_FAULT_SIGBUS;
4350 		}
4351 		goto out;
4352 	}
4353 
4354 	/* Prevent swapoff from happening to us. */
4355 	si = get_swap_device(entry);
4356 	if (unlikely(!si))
4357 		goto out;
4358 
4359 	folio = swap_cache_get_folio(entry, vma, vmf->address);
4360 	if (folio)
4361 		page = folio_file_page(folio, swp_offset(entry));
4362 	swapcache = folio;
4363 
4364 	if (!folio) {
4365 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4366 		    __swap_count(entry) == 1) {
4367 			/* skip swapcache */
4368 			folio = alloc_swap_folio(vmf);
4369 			if (folio) {
4370 				__folio_set_locked(folio);
4371 				__folio_set_swapbacked(folio);
4372 
4373 				nr_pages = folio_nr_pages(folio);
4374 				if (folio_test_large(folio))
4375 					entry.val = ALIGN_DOWN(entry.val, nr_pages);
4376 				/*
4377 				 * Prevent parallel swapin from proceeding with
4378 				 * the cache flag. Otherwise, another thread
4379 				 * may finish swapin first, free the entry, and
4380 				 * swapout reusing the same entry. It's
4381 				 * undetectable as pte_same() returns true due
4382 				 * to entry reuse.
4383 				 */
4384 				if (swapcache_prepare(entry, nr_pages)) {
4385 					/*
4386 					 * Relax a bit to prevent rapid
4387 					 * repeated page faults.
4388 					 */
4389 					add_wait_queue(&swapcache_wq, &wait);
4390 					schedule_timeout_uninterruptible(1);
4391 					remove_wait_queue(&swapcache_wq, &wait);
4392 					goto out_page;
4393 				}
4394 				need_clear_cache = true;
4395 
4396 				mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
4397 
4398 				shadow = get_shadow_from_swap_cache(entry);
4399 				if (shadow)
4400 					workingset_refault(folio, shadow);
4401 
4402 				folio_add_lru(folio);
4403 
4404 				/* To provide entry to swap_read_folio() */
4405 				folio->swap = entry;
4406 				swap_read_folio(folio, NULL);
4407 				folio->private = NULL;
4408 			}
4409 		} else {
4410 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4411 						vmf);
4412 			swapcache = folio;
4413 		}
4414 
4415 		if (!folio) {
4416 			/*
4417 			 * Back out if somebody else faulted in this pte
4418 			 * while we released the pte lock.
4419 			 */
4420 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4421 					vmf->address, &vmf->ptl);
4422 			if (likely(vmf->pte &&
4423 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4424 				ret = VM_FAULT_OOM;
4425 			goto unlock;
4426 		}
4427 
4428 		/* Had to read the page from swap area: Major fault */
4429 		ret = VM_FAULT_MAJOR;
4430 		count_vm_event(PGMAJFAULT);
4431 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4432 		page = folio_file_page(folio, swp_offset(entry));
4433 	} else if (PageHWPoison(page)) {
4434 		/*
4435 		 * hwpoisoned dirty swapcache pages are kept for killing
4436 		 * owner processes (which may be unknown at hwpoison time)
4437 		 */
4438 		ret = VM_FAULT_HWPOISON;
4439 		goto out_release;
4440 	}
4441 
4442 	ret |= folio_lock_or_retry(folio, vmf);
4443 	if (ret & VM_FAULT_RETRY)
4444 		goto out_release;
4445 
4446 	if (swapcache) {
4447 		/*
4448 		 * Make sure folio_free_swap() or swapoff did not release the
4449 		 * swapcache from under us.  The page pin, and pte_same test
4450 		 * below, are not enough to exclude that.  Even if it is still
4451 		 * swapcache, we need to check that the page's swap has not
4452 		 * changed.
4453 		 */
4454 		if (unlikely(!folio_test_swapcache(folio) ||
4455 			     page_swap_entry(page).val != entry.val))
4456 			goto out_page;
4457 
4458 		/*
4459 		 * KSM sometimes has to copy on read faults, for example, if
4460 		 * page->index of !PageKSM() pages would be nonlinear inside the
4461 		 * anon VMA -- PageKSM() is lost on actual swapout.
4462 		 */
4463 		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4464 		if (unlikely(!folio)) {
4465 			ret = VM_FAULT_OOM;
4466 			folio = swapcache;
4467 			goto out_page;
4468 		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4469 			ret = VM_FAULT_HWPOISON;
4470 			folio = swapcache;
4471 			goto out_page;
4472 		}
4473 		if (folio != swapcache)
4474 			page = folio_page(folio, 0);
4475 
4476 		/*
4477 		 * If we want to map a page that's in the swapcache writable, we
4478 		 * have to detect via the refcount if we're really the exclusive
4479 		 * owner. Try removing the extra reference from the local LRU
4480 		 * caches if required.
4481 		 */
4482 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4483 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
4484 			lru_add_drain();
4485 	}
4486 
4487 	folio_throttle_swaprate(folio, GFP_KERNEL);
4488 
4489 	/*
4490 	 * Back out if somebody else already faulted in this pte.
4491 	 */
4492 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4493 			&vmf->ptl);
4494 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4495 		goto out_nomap;
4496 
4497 	if (unlikely(!folio_test_uptodate(folio))) {
4498 		ret = VM_FAULT_SIGBUS;
4499 		goto out_nomap;
4500 	}
4501 
4502 	/* allocated large folios for SWP_SYNCHRONOUS_IO */
4503 	if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4504 		unsigned long nr = folio_nr_pages(folio);
4505 		unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4506 		unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4507 		pte_t *folio_ptep = vmf->pte - idx;
4508 		pte_t folio_pte = ptep_get(folio_ptep);
4509 
4510 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4511 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4512 			goto out_nomap;
4513 
4514 		page_idx = idx;
4515 		address = folio_start;
4516 		ptep = folio_ptep;
4517 		goto check_folio;
4518 	}
4519 
4520 	nr_pages = 1;
4521 	page_idx = 0;
4522 	address = vmf->address;
4523 	ptep = vmf->pte;
4524 	if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4525 		int nr = folio_nr_pages(folio);
4526 		unsigned long idx = folio_page_idx(folio, page);
4527 		unsigned long folio_start = address - idx * PAGE_SIZE;
4528 		unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4529 		pte_t *folio_ptep;
4530 		pte_t folio_pte;
4531 
4532 		if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4533 			goto check_folio;
4534 		if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4535 			goto check_folio;
4536 
4537 		folio_ptep = vmf->pte - idx;
4538 		folio_pte = ptep_get(folio_ptep);
4539 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4540 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4541 			goto check_folio;
4542 
4543 		page_idx = idx;
4544 		address = folio_start;
4545 		ptep = folio_ptep;
4546 		nr_pages = nr;
4547 		entry = folio->swap;
4548 		page = &folio->page;
4549 	}
4550 
4551 check_folio:
4552 	/*
4553 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4554 	 * must never point at an anonymous page in the swapcache that is
4555 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4556 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4557 	 * check after taking the PT lock and making sure that nobody
4558 	 * concurrently faulted in this page and set PG_anon_exclusive.
4559 	 */
4560 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4561 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4562 
4563 	/*
4564 	 * Check under PT lock (to protect against concurrent fork() sharing
4565 	 * the swap entry concurrently) for certainly exclusive pages.
4566 	 */
4567 	if (!folio_test_ksm(folio)) {
4568 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4569 		if (folio != swapcache) {
4570 			/*
4571 			 * We have a fresh page that is not exposed to the
4572 			 * swapcache -> certainly exclusive.
4573 			 */
4574 			exclusive = true;
4575 		} else if (exclusive && folio_test_writeback(folio) &&
4576 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4577 			/*
4578 			 * This is tricky: not all swap backends support
4579 			 * concurrent page modifications while under writeback.
4580 			 *
4581 			 * So if we stumble over such a page in the swapcache
4582 			 * we must not set the page exclusive, otherwise we can
4583 			 * map it writable without further checks and modify it
4584 			 * while still under writeback.
4585 			 *
4586 			 * For these problematic swap backends, simply drop the
4587 			 * exclusive marker: this is perfectly fine as we start
4588 			 * writeback only if we fully unmapped the page and
4589 			 * there are no unexpected references on the page after
4590 			 * unmapping succeeded. After fully unmapped, no
4591 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4592 			 * appear, so dropping the exclusive marker and mapping
4593 			 * it only R/O is fine.
4594 			 */
4595 			exclusive = false;
4596 		}
4597 	}
4598 
4599 	/*
4600 	 * Some architectures may have to restore extra metadata to the page
4601 	 * when reading from swap. This metadata may be indexed by swap entry
4602 	 * so this must be called before swap_free().
4603 	 */
4604 	arch_swap_restore(folio_swap(entry, folio), folio);
4605 
4606 	/*
4607 	 * Remove the swap entry and conditionally try to free up the swapcache.
4608 	 * We're already holding a reference on the page but haven't mapped it
4609 	 * yet.
4610 	 */
4611 	swap_free_nr(entry, nr_pages);
4612 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4613 		folio_free_swap(folio);
4614 
4615 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4616 	add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4617 	pte = mk_pte(page, vma->vm_page_prot);
4618 	if (pte_swp_soft_dirty(vmf->orig_pte))
4619 		pte = pte_mksoft_dirty(pte);
4620 	if (pte_swp_uffd_wp(vmf->orig_pte))
4621 		pte = pte_mkuffd_wp(pte);
4622 
4623 	/*
4624 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4625 	 * certainly not shared either because we just allocated them without
4626 	 * exposing them to the swapcache or because the swap entry indicates
4627 	 * exclusivity.
4628 	 */
4629 	if (!folio_test_ksm(folio) &&
4630 	    (exclusive || folio_ref_count(folio) == 1)) {
4631 		if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4632 		    !pte_needs_soft_dirty_wp(vma, pte)) {
4633 			pte = pte_mkwrite(pte, vma);
4634 			if (vmf->flags & FAULT_FLAG_WRITE) {
4635 				pte = pte_mkdirty(pte);
4636 				vmf->flags &= ~FAULT_FLAG_WRITE;
4637 			}
4638 		}
4639 		rmap_flags |= RMAP_EXCLUSIVE;
4640 	}
4641 	folio_ref_add(folio, nr_pages - 1);
4642 	flush_icache_pages(vma, page, nr_pages);
4643 	vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4644 
4645 	/* ksm created a completely new copy */
4646 	if (unlikely(folio != swapcache && swapcache)) {
4647 		folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4648 		folio_add_lru_vma(folio, vma);
4649 	} else if (!folio_test_anon(folio)) {
4650 		/*
4651 		 * We currently only expect small !anon folios which are either
4652 		 * fully exclusive or fully shared, or new allocated large
4653 		 * folios which are fully exclusive. If we ever get large
4654 		 * folios within swapcache here, we have to be careful.
4655 		 */
4656 		VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4657 		VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4658 		folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4659 	} else {
4660 		folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4661 					rmap_flags);
4662 	}
4663 
4664 	VM_BUG_ON(!folio_test_anon(folio) ||
4665 			(pte_write(pte) && !PageAnonExclusive(page)));
4666 	set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4667 	arch_do_swap_page_nr(vma->vm_mm, vma, address,
4668 			pte, pte, nr_pages);
4669 
4670 	folio_unlock(folio);
4671 	if (folio != swapcache && swapcache) {
4672 		/*
4673 		 * Hold the lock to avoid the swap entry to be reused
4674 		 * until we take the PT lock for the pte_same() check
4675 		 * (to avoid false positives from pte_same). For
4676 		 * further safety release the lock after the swap_free
4677 		 * so that the swap count won't change under a
4678 		 * parallel locked swapcache.
4679 		 */
4680 		folio_unlock(swapcache);
4681 		folio_put(swapcache);
4682 	}
4683 
4684 	if (vmf->flags & FAULT_FLAG_WRITE) {
4685 		ret |= do_wp_page(vmf);
4686 		if (ret & VM_FAULT_ERROR)
4687 			ret &= VM_FAULT_ERROR;
4688 		goto out;
4689 	}
4690 
4691 	/* No need to invalidate - it was non-present before */
4692 	update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4693 unlock:
4694 	if (vmf->pte)
4695 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4696 out:
4697 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4698 	if (need_clear_cache) {
4699 		swapcache_clear(si, entry, nr_pages);
4700 		if (waitqueue_active(&swapcache_wq))
4701 			wake_up(&swapcache_wq);
4702 	}
4703 	if (si)
4704 		put_swap_device(si);
4705 	return ret;
4706 out_nomap:
4707 	if (vmf->pte)
4708 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4709 out_page:
4710 	folio_unlock(folio);
4711 out_release:
4712 	folio_put(folio);
4713 	if (folio != swapcache && swapcache) {
4714 		folio_unlock(swapcache);
4715 		folio_put(swapcache);
4716 	}
4717 	if (need_clear_cache) {
4718 		swapcache_clear(si, entry, nr_pages);
4719 		if (waitqueue_active(&swapcache_wq))
4720 			wake_up(&swapcache_wq);
4721 	}
4722 	if (si)
4723 		put_swap_device(si);
4724 	return ret;
4725 }
4726 
4727 static bool pte_range_none(pte_t *pte, int nr_pages)
4728 {
4729 	int i;
4730 
4731 	for (i = 0; i < nr_pages; i++) {
4732 		if (!pte_none(ptep_get_lockless(pte + i)))
4733 			return false;
4734 	}
4735 
4736 	return true;
4737 }
4738 
4739 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4740 {
4741 	struct vm_area_struct *vma = vmf->vma;
4742 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4743 	unsigned long orders;
4744 	struct folio *folio;
4745 	unsigned long addr;
4746 	pte_t *pte;
4747 	gfp_t gfp;
4748 	int order;
4749 
4750 	/*
4751 	 * If uffd is active for the vma we need per-page fault fidelity to
4752 	 * maintain the uffd semantics.
4753 	 */
4754 	if (unlikely(userfaultfd_armed(vma)))
4755 		goto fallback;
4756 
4757 	/*
4758 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4759 	 * for this vma. Then filter out the orders that can't be allocated over
4760 	 * the faulting address and still be fully contained in the vma.
4761 	 */
4762 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4763 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4764 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4765 
4766 	if (!orders)
4767 		goto fallback;
4768 
4769 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4770 	if (!pte)
4771 		return ERR_PTR(-EAGAIN);
4772 
4773 	/*
4774 	 * Find the highest order where the aligned range is completely
4775 	 * pte_none(). Note that all remaining orders will be completely
4776 	 * pte_none().
4777 	 */
4778 	order = highest_order(orders);
4779 	while (orders) {
4780 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4781 		if (pte_range_none(pte + pte_index(addr), 1 << order))
4782 			break;
4783 		order = next_order(&orders, order);
4784 	}
4785 
4786 	pte_unmap(pte);
4787 
4788 	if (!orders)
4789 		goto fallback;
4790 
4791 	/* Try allocating the highest of the remaining orders. */
4792 	gfp = vma_thp_gfp_mask(vma);
4793 	while (orders) {
4794 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4795 		folio = vma_alloc_folio(gfp, order, vma, addr);
4796 		if (folio) {
4797 			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4798 				count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4799 				folio_put(folio);
4800 				goto next;
4801 			}
4802 			folio_throttle_swaprate(folio, gfp);
4803 			/*
4804 			 * When a folio is not zeroed during allocation
4805 			 * (__GFP_ZERO not used) or user folios require special
4806 			 * handling, folio_zero_user() is used to make sure
4807 			 * that the page corresponding to the faulting address
4808 			 * will be hot in the cache after zeroing.
4809 			 */
4810 			if (user_alloc_needs_zeroing())
4811 				folio_zero_user(folio, vmf->address);
4812 			return folio;
4813 		}
4814 next:
4815 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4816 		order = next_order(&orders, order);
4817 	}
4818 
4819 fallback:
4820 #endif
4821 	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4822 }
4823 
4824 /*
4825  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4826  * but allow concurrent faults), and pte mapped but not yet locked.
4827  * We return with mmap_lock still held, but pte unmapped and unlocked.
4828  */
4829 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4830 {
4831 	struct vm_area_struct *vma = vmf->vma;
4832 	unsigned long addr = vmf->address;
4833 	struct folio *folio;
4834 	vm_fault_t ret = 0;
4835 	int nr_pages = 1;
4836 	pte_t entry;
4837 
4838 	/* File mapping without ->vm_ops ? */
4839 	if (vma->vm_flags & VM_SHARED)
4840 		return VM_FAULT_SIGBUS;
4841 
4842 	/*
4843 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4844 	 * be distinguished from a transient failure of pte_offset_map().
4845 	 */
4846 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4847 		return VM_FAULT_OOM;
4848 
4849 	/* Use the zero-page for reads */
4850 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4851 			!mm_forbids_zeropage(vma->vm_mm)) {
4852 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4853 						vma->vm_page_prot));
4854 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4855 				vmf->address, &vmf->ptl);
4856 		if (!vmf->pte)
4857 			goto unlock;
4858 		if (vmf_pte_changed(vmf)) {
4859 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4860 			goto unlock;
4861 		}
4862 		ret = check_stable_address_space(vma->vm_mm);
4863 		if (ret)
4864 			goto unlock;
4865 		/* Deliver the page fault to userland, check inside PT lock */
4866 		if (userfaultfd_missing(vma)) {
4867 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4868 			return handle_userfault(vmf, VM_UFFD_MISSING);
4869 		}
4870 		goto setpte;
4871 	}
4872 
4873 	/* Allocate our own private page. */
4874 	ret = vmf_anon_prepare(vmf);
4875 	if (ret)
4876 		return ret;
4877 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4878 	folio = alloc_anon_folio(vmf);
4879 	if (IS_ERR(folio))
4880 		return 0;
4881 	if (!folio)
4882 		goto oom;
4883 
4884 	nr_pages = folio_nr_pages(folio);
4885 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4886 
4887 	/*
4888 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4889 	 * preceding stores to the page contents become visible before
4890 	 * the set_pte_at() write.
4891 	 */
4892 	__folio_mark_uptodate(folio);
4893 
4894 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4895 	entry = pte_sw_mkyoung(entry);
4896 	if (vma->vm_flags & VM_WRITE)
4897 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4898 
4899 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4900 	if (!vmf->pte)
4901 		goto release;
4902 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4903 		update_mmu_tlb(vma, addr, vmf->pte);
4904 		goto release;
4905 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4906 		update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4907 		goto release;
4908 	}
4909 
4910 	ret = check_stable_address_space(vma->vm_mm);
4911 	if (ret)
4912 		goto release;
4913 
4914 	/* Deliver the page fault to userland, check inside PT lock */
4915 	if (userfaultfd_missing(vma)) {
4916 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4917 		folio_put(folio);
4918 		return handle_userfault(vmf, VM_UFFD_MISSING);
4919 	}
4920 
4921 	folio_ref_add(folio, nr_pages - 1);
4922 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4923 	count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4924 	folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4925 	folio_add_lru_vma(folio, vma);
4926 setpte:
4927 	if (vmf_orig_pte_uffd_wp(vmf))
4928 		entry = pte_mkuffd_wp(entry);
4929 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4930 
4931 	/* No need to invalidate - it was non-present before */
4932 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4933 unlock:
4934 	if (vmf->pte)
4935 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4936 	return ret;
4937 release:
4938 	folio_put(folio);
4939 	goto unlock;
4940 oom:
4941 	return VM_FAULT_OOM;
4942 }
4943 
4944 /*
4945  * The mmap_lock must have been held on entry, and may have been
4946  * released depending on flags and vma->vm_ops->fault() return value.
4947  * See filemap_fault() and __lock_page_retry().
4948  */
4949 static vm_fault_t __do_fault(struct vm_fault *vmf)
4950 {
4951 	struct vm_area_struct *vma = vmf->vma;
4952 	struct folio *folio;
4953 	vm_fault_t ret;
4954 
4955 	/*
4956 	 * Preallocate pte before we take page_lock because this might lead to
4957 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4958 	 *				lock_page(A)
4959 	 *				SetPageWriteback(A)
4960 	 *				unlock_page(A)
4961 	 * lock_page(B)
4962 	 *				lock_page(B)
4963 	 * pte_alloc_one
4964 	 *   shrink_folio_list
4965 	 *     wait_on_page_writeback(A)
4966 	 *				SetPageWriteback(B)
4967 	 *				unlock_page(B)
4968 	 *				# flush A, B to clear the writeback
4969 	 */
4970 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4971 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4972 		if (!vmf->prealloc_pte)
4973 			return VM_FAULT_OOM;
4974 	}
4975 
4976 	ret = vma->vm_ops->fault(vmf);
4977 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4978 			    VM_FAULT_DONE_COW)))
4979 		return ret;
4980 
4981 	folio = page_folio(vmf->page);
4982 	if (unlikely(PageHWPoison(vmf->page))) {
4983 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4984 		if (ret & VM_FAULT_LOCKED) {
4985 			if (page_mapped(vmf->page))
4986 				unmap_mapping_folio(folio);
4987 			/* Retry if a clean folio was removed from the cache. */
4988 			if (mapping_evict_folio(folio->mapping, folio))
4989 				poisonret = VM_FAULT_NOPAGE;
4990 			folio_unlock(folio);
4991 		}
4992 		folio_put(folio);
4993 		vmf->page = NULL;
4994 		return poisonret;
4995 	}
4996 
4997 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4998 		folio_lock(folio);
4999 	else
5000 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
5001 
5002 	return ret;
5003 }
5004 
5005 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5006 static void deposit_prealloc_pte(struct vm_fault *vmf)
5007 {
5008 	struct vm_area_struct *vma = vmf->vma;
5009 
5010 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
5011 	/*
5012 	 * We are going to consume the prealloc table,
5013 	 * count that as nr_ptes.
5014 	 */
5015 	mm_inc_nr_ptes(vma->vm_mm);
5016 	vmf->prealloc_pte = NULL;
5017 }
5018 
5019 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5020 {
5021 	struct folio *folio = page_folio(page);
5022 	struct vm_area_struct *vma = vmf->vma;
5023 	bool write = vmf->flags & FAULT_FLAG_WRITE;
5024 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
5025 	pmd_t entry;
5026 	vm_fault_t ret = VM_FAULT_FALLBACK;
5027 
5028 	/*
5029 	 * It is too late to allocate a small folio, we already have a large
5030 	 * folio in the pagecache: especially s390 KVM cannot tolerate any
5031 	 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
5032 	 * PMD mappings if THPs are disabled.
5033 	 */
5034 	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
5035 		return ret;
5036 
5037 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
5038 		return ret;
5039 
5040 	if (folio_order(folio) != HPAGE_PMD_ORDER)
5041 		return ret;
5042 	page = &folio->page;
5043 
5044 	/*
5045 	 * Just backoff if any subpage of a THP is corrupted otherwise
5046 	 * the corrupted page may mapped by PMD silently to escape the
5047 	 * check.  This kind of THP just can be PTE mapped.  Access to
5048 	 * the corrupted subpage should trigger SIGBUS as expected.
5049 	 */
5050 	if (unlikely(folio_test_has_hwpoisoned(folio)))
5051 		return ret;
5052 
5053 	/*
5054 	 * Archs like ppc64 need additional space to store information
5055 	 * related to pte entry. Use the preallocated table for that.
5056 	 */
5057 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
5058 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5059 		if (!vmf->prealloc_pte)
5060 			return VM_FAULT_OOM;
5061 	}
5062 
5063 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
5064 	if (unlikely(!pmd_none(*vmf->pmd)))
5065 		goto out;
5066 
5067 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
5068 
5069 	entry = mk_huge_pmd(page, vma->vm_page_prot);
5070 	if (write)
5071 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5072 
5073 	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5074 	folio_add_file_rmap_pmd(folio, page, vma);
5075 
5076 	/*
5077 	 * deposit and withdraw with pmd lock held
5078 	 */
5079 	if (arch_needs_pgtable_deposit())
5080 		deposit_prealloc_pte(vmf);
5081 
5082 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5083 
5084 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5085 
5086 	/* fault is handled */
5087 	ret = 0;
5088 	count_vm_event(THP_FILE_MAPPED);
5089 out:
5090 	spin_unlock(vmf->ptl);
5091 	return ret;
5092 }
5093 #else
5094 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5095 {
5096 	return VM_FAULT_FALLBACK;
5097 }
5098 #endif
5099 
5100 /**
5101  * set_pte_range - Set a range of PTEs to point to pages in a folio.
5102  * @vmf: Fault decription.
5103  * @folio: The folio that contains @page.
5104  * @page: The first page to create a PTE for.
5105  * @nr: The number of PTEs to create.
5106  * @addr: The first address to create a PTE for.
5107  */
5108 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5109 		struct page *page, unsigned int nr, unsigned long addr)
5110 {
5111 	struct vm_area_struct *vma = vmf->vma;
5112 	bool write = vmf->flags & FAULT_FLAG_WRITE;
5113 	bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5114 	pte_t entry;
5115 
5116 	flush_icache_pages(vma, page, nr);
5117 	entry = mk_pte(page, vma->vm_page_prot);
5118 
5119 	if (prefault && arch_wants_old_prefaulted_pte())
5120 		entry = pte_mkold(entry);
5121 	else
5122 		entry = pte_sw_mkyoung(entry);
5123 
5124 	if (write)
5125 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5126 	if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5127 		entry = pte_mkuffd_wp(entry);
5128 	/* copy-on-write page */
5129 	if (write && !(vma->vm_flags & VM_SHARED)) {
5130 		VM_BUG_ON_FOLIO(nr != 1, folio);
5131 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5132 		folio_add_lru_vma(folio, vma);
5133 	} else {
5134 		folio_add_file_rmap_ptes(folio, page, nr, vma);
5135 	}
5136 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5137 
5138 	/* no need to invalidate: a not-present page won't be cached */
5139 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5140 }
5141 
5142 static bool vmf_pte_changed(struct vm_fault *vmf)
5143 {
5144 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5145 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5146 
5147 	return !pte_none(ptep_get(vmf->pte));
5148 }
5149 
5150 /**
5151  * finish_fault - finish page fault once we have prepared the page to fault
5152  *
5153  * @vmf: structure describing the fault
5154  *
5155  * This function handles all that is needed to finish a page fault once the
5156  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5157  * given page, adds reverse page mapping, handles memcg charges and LRU
5158  * addition.
5159  *
5160  * The function expects the page to be locked and on success it consumes a
5161  * reference of a page being mapped (for the PTE which maps it).
5162  *
5163  * Return: %0 on success, %VM_FAULT_ code in case of error.
5164  */
5165 vm_fault_t finish_fault(struct vm_fault *vmf)
5166 {
5167 	struct vm_area_struct *vma = vmf->vma;
5168 	struct page *page;
5169 	struct folio *folio;
5170 	vm_fault_t ret;
5171 	bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5172 		      !(vma->vm_flags & VM_SHARED);
5173 	int type, nr_pages;
5174 	unsigned long addr = vmf->address;
5175 
5176 	/* Did we COW the page? */
5177 	if (is_cow)
5178 		page = vmf->cow_page;
5179 	else
5180 		page = vmf->page;
5181 
5182 	/*
5183 	 * check even for read faults because we might have lost our CoWed
5184 	 * page
5185 	 */
5186 	if (!(vma->vm_flags & VM_SHARED)) {
5187 		ret = check_stable_address_space(vma->vm_mm);
5188 		if (ret)
5189 			return ret;
5190 	}
5191 
5192 	if (pmd_none(*vmf->pmd)) {
5193 		if (PageTransCompound(page)) {
5194 			ret = do_set_pmd(vmf, page);
5195 			if (ret != VM_FAULT_FALLBACK)
5196 				return ret;
5197 		}
5198 
5199 		if (vmf->prealloc_pte)
5200 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5201 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5202 			return VM_FAULT_OOM;
5203 	}
5204 
5205 	folio = page_folio(page);
5206 	nr_pages = folio_nr_pages(folio);
5207 
5208 	/*
5209 	 * Using per-page fault to maintain the uffd semantics, and same
5210 	 * approach also applies to non-anonymous-shmem faults to avoid
5211 	 * inflating the RSS of the process.
5212 	 */
5213 	if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) {
5214 		nr_pages = 1;
5215 	} else if (nr_pages > 1) {
5216 		pgoff_t idx = folio_page_idx(folio, page);
5217 		/* The page offset of vmf->address within the VMA. */
5218 		pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5219 		/* The index of the entry in the pagetable for fault page. */
5220 		pgoff_t pte_off = pte_index(vmf->address);
5221 
5222 		/*
5223 		 * Fallback to per-page fault in case the folio size in page
5224 		 * cache beyond the VMA limits and PMD pagetable limits.
5225 		 */
5226 		if (unlikely(vma_off < idx ||
5227 			    vma_off + (nr_pages - idx) > vma_pages(vma) ||
5228 			    pte_off < idx ||
5229 			    pte_off + (nr_pages - idx)  > PTRS_PER_PTE)) {
5230 			nr_pages = 1;
5231 		} else {
5232 			/* Now we can set mappings for the whole large folio. */
5233 			addr = vmf->address - idx * PAGE_SIZE;
5234 			page = &folio->page;
5235 		}
5236 	}
5237 
5238 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5239 				       addr, &vmf->ptl);
5240 	if (!vmf->pte)
5241 		return VM_FAULT_NOPAGE;
5242 
5243 	/* Re-check under ptl */
5244 	if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5245 		update_mmu_tlb(vma, addr, vmf->pte);
5246 		ret = VM_FAULT_NOPAGE;
5247 		goto unlock;
5248 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5249 		update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5250 		ret = VM_FAULT_NOPAGE;
5251 		goto unlock;
5252 	}
5253 
5254 	folio_ref_add(folio, nr_pages - 1);
5255 	set_pte_range(vmf, folio, page, nr_pages, addr);
5256 	type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5257 	add_mm_counter(vma->vm_mm, type, nr_pages);
5258 	ret = 0;
5259 
5260 unlock:
5261 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5262 	return ret;
5263 }
5264 
5265 static unsigned long fault_around_pages __read_mostly =
5266 	65536 >> PAGE_SHIFT;
5267 
5268 #ifdef CONFIG_DEBUG_FS
5269 static int fault_around_bytes_get(void *data, u64 *val)
5270 {
5271 	*val = fault_around_pages << PAGE_SHIFT;
5272 	return 0;
5273 }
5274 
5275 /*
5276  * fault_around_bytes must be rounded down to the nearest page order as it's
5277  * what do_fault_around() expects to see.
5278  */
5279 static int fault_around_bytes_set(void *data, u64 val)
5280 {
5281 	if (val / PAGE_SIZE > PTRS_PER_PTE)
5282 		return -EINVAL;
5283 
5284 	/*
5285 	 * The minimum value is 1 page, however this results in no fault-around
5286 	 * at all. See should_fault_around().
5287 	 */
5288 	val = max(val, PAGE_SIZE);
5289 	fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5290 
5291 	return 0;
5292 }
5293 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5294 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5295 
5296 static int __init fault_around_debugfs(void)
5297 {
5298 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5299 				   &fault_around_bytes_fops);
5300 	return 0;
5301 }
5302 late_initcall(fault_around_debugfs);
5303 #endif
5304 
5305 /*
5306  * do_fault_around() tries to map few pages around the fault address. The hope
5307  * is that the pages will be needed soon and this will lower the number of
5308  * faults to handle.
5309  *
5310  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5311  * not ready to be mapped: not up-to-date, locked, etc.
5312  *
5313  * This function doesn't cross VMA or page table boundaries, in order to call
5314  * map_pages() and acquire a PTE lock only once.
5315  *
5316  * fault_around_pages defines how many pages we'll try to map.
5317  * do_fault_around() expects it to be set to a power of two less than or equal
5318  * to PTRS_PER_PTE.
5319  *
5320  * The virtual address of the area that we map is naturally aligned to
5321  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5322  * (and therefore to page order).  This way it's easier to guarantee
5323  * that we don't cross page table boundaries.
5324  */
5325 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5326 {
5327 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5328 	pgoff_t pte_off = pte_index(vmf->address);
5329 	/* The page offset of vmf->address within the VMA. */
5330 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5331 	pgoff_t from_pte, to_pte;
5332 	vm_fault_t ret;
5333 
5334 	/* The PTE offset of the start address, clamped to the VMA. */
5335 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5336 		       pte_off - min(pte_off, vma_off));
5337 
5338 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
5339 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5340 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5341 
5342 	if (pmd_none(*vmf->pmd)) {
5343 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5344 		if (!vmf->prealloc_pte)
5345 			return VM_FAULT_OOM;
5346 	}
5347 
5348 	rcu_read_lock();
5349 	ret = vmf->vma->vm_ops->map_pages(vmf,
5350 			vmf->pgoff + from_pte - pte_off,
5351 			vmf->pgoff + to_pte - pte_off);
5352 	rcu_read_unlock();
5353 
5354 	return ret;
5355 }
5356 
5357 /* Return true if we should do read fault-around, false otherwise */
5358 static inline bool should_fault_around(struct vm_fault *vmf)
5359 {
5360 	/* No ->map_pages?  No way to fault around... */
5361 	if (!vmf->vma->vm_ops->map_pages)
5362 		return false;
5363 
5364 	if (uffd_disable_fault_around(vmf->vma))
5365 		return false;
5366 
5367 	/* A single page implies no faulting 'around' at all. */
5368 	return fault_around_pages > 1;
5369 }
5370 
5371 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5372 {
5373 	vm_fault_t ret = 0;
5374 	struct folio *folio;
5375 
5376 	/*
5377 	 * Let's call ->map_pages() first and use ->fault() as fallback
5378 	 * if page by the offset is not ready to be mapped (cold cache or
5379 	 * something).
5380 	 */
5381 	if (should_fault_around(vmf)) {
5382 		ret = do_fault_around(vmf);
5383 		if (ret)
5384 			return ret;
5385 	}
5386 
5387 	ret = vmf_can_call_fault(vmf);
5388 	if (ret)
5389 		return ret;
5390 
5391 	ret = __do_fault(vmf);
5392 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5393 		return ret;
5394 
5395 	ret |= finish_fault(vmf);
5396 	folio = page_folio(vmf->page);
5397 	folio_unlock(folio);
5398 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5399 		folio_put(folio);
5400 	return ret;
5401 }
5402 
5403 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5404 {
5405 	struct vm_area_struct *vma = vmf->vma;
5406 	struct folio *folio;
5407 	vm_fault_t ret;
5408 
5409 	ret = vmf_can_call_fault(vmf);
5410 	if (!ret)
5411 		ret = vmf_anon_prepare(vmf);
5412 	if (ret)
5413 		return ret;
5414 
5415 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5416 	if (!folio)
5417 		return VM_FAULT_OOM;
5418 
5419 	vmf->cow_page = &folio->page;
5420 
5421 	ret = __do_fault(vmf);
5422 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5423 		goto uncharge_out;
5424 	if (ret & VM_FAULT_DONE_COW)
5425 		return ret;
5426 
5427 	if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5428 		ret = VM_FAULT_HWPOISON;
5429 		goto unlock;
5430 	}
5431 	__folio_mark_uptodate(folio);
5432 
5433 	ret |= finish_fault(vmf);
5434 unlock:
5435 	unlock_page(vmf->page);
5436 	put_page(vmf->page);
5437 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5438 		goto uncharge_out;
5439 	return ret;
5440 uncharge_out:
5441 	folio_put(folio);
5442 	return ret;
5443 }
5444 
5445 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5446 {
5447 	struct vm_area_struct *vma = vmf->vma;
5448 	vm_fault_t ret, tmp;
5449 	struct folio *folio;
5450 
5451 	ret = vmf_can_call_fault(vmf);
5452 	if (ret)
5453 		return ret;
5454 
5455 	ret = __do_fault(vmf);
5456 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5457 		return ret;
5458 
5459 	folio = page_folio(vmf->page);
5460 
5461 	/*
5462 	 * Check if the backing address space wants to know that the page is
5463 	 * about to become writable
5464 	 */
5465 	if (vma->vm_ops->page_mkwrite) {
5466 		folio_unlock(folio);
5467 		tmp = do_page_mkwrite(vmf, folio);
5468 		if (unlikely(!tmp ||
5469 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5470 			folio_put(folio);
5471 			return tmp;
5472 		}
5473 	}
5474 
5475 	ret |= finish_fault(vmf);
5476 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5477 					VM_FAULT_RETRY))) {
5478 		folio_unlock(folio);
5479 		folio_put(folio);
5480 		return ret;
5481 	}
5482 
5483 	ret |= fault_dirty_shared_page(vmf);
5484 	return ret;
5485 }
5486 
5487 /*
5488  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5489  * but allow concurrent faults).
5490  * The mmap_lock may have been released depending on flags and our
5491  * return value.  See filemap_fault() and __folio_lock_or_retry().
5492  * If mmap_lock is released, vma may become invalid (for example
5493  * by other thread calling munmap()).
5494  */
5495 static vm_fault_t do_fault(struct vm_fault *vmf)
5496 {
5497 	struct vm_area_struct *vma = vmf->vma;
5498 	struct mm_struct *vm_mm = vma->vm_mm;
5499 	vm_fault_t ret;
5500 
5501 	/*
5502 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5503 	 */
5504 	if (!vma->vm_ops->fault) {
5505 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5506 					       vmf->address, &vmf->ptl);
5507 		if (unlikely(!vmf->pte))
5508 			ret = VM_FAULT_SIGBUS;
5509 		else {
5510 			/*
5511 			 * Make sure this is not a temporary clearing of pte
5512 			 * by holding ptl and checking again. A R/M/W update
5513 			 * of pte involves: take ptl, clearing the pte so that
5514 			 * we don't have concurrent modification by hardware
5515 			 * followed by an update.
5516 			 */
5517 			if (unlikely(pte_none(ptep_get(vmf->pte))))
5518 				ret = VM_FAULT_SIGBUS;
5519 			else
5520 				ret = VM_FAULT_NOPAGE;
5521 
5522 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5523 		}
5524 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
5525 		ret = do_read_fault(vmf);
5526 	else if (!(vma->vm_flags & VM_SHARED))
5527 		ret = do_cow_fault(vmf);
5528 	else
5529 		ret = do_shared_fault(vmf);
5530 
5531 	/* preallocated pagetable is unused: free it */
5532 	if (vmf->prealloc_pte) {
5533 		pte_free(vm_mm, vmf->prealloc_pte);
5534 		vmf->prealloc_pte = NULL;
5535 	}
5536 	return ret;
5537 }
5538 
5539 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5540 		      unsigned long addr, int *flags,
5541 		      bool writable, int *last_cpupid)
5542 {
5543 	struct vm_area_struct *vma = vmf->vma;
5544 
5545 	/*
5546 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5547 	 * much anyway since they can be in shared cache state. This misses
5548 	 * the case where a mapping is writable but the process never writes
5549 	 * to it but pte_write gets cleared during protection updates and
5550 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
5551 	 * background writeback, dirty balancing and application behaviour.
5552 	 */
5553 	if (!writable)
5554 		*flags |= TNF_NO_GROUP;
5555 
5556 	/*
5557 	 * Flag if the folio is shared between multiple address spaces. This
5558 	 * is later used when determining whether to group tasks together
5559 	 */
5560 	if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5561 		*flags |= TNF_SHARED;
5562 	/*
5563 	 * For memory tiering mode, cpupid of slow memory page is used
5564 	 * to record page access time.  So use default value.
5565 	 */
5566 	if (folio_use_access_time(folio))
5567 		*last_cpupid = (-1 & LAST_CPUPID_MASK);
5568 	else
5569 		*last_cpupid = folio_last_cpupid(folio);
5570 
5571 	/* Record the current PID acceesing VMA */
5572 	vma_set_access_pid_bit(vma);
5573 
5574 	count_vm_numa_event(NUMA_HINT_FAULTS);
5575 #ifdef CONFIG_NUMA_BALANCING
5576 	count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5577 #endif
5578 	if (folio_nid(folio) == numa_node_id()) {
5579 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5580 		*flags |= TNF_FAULT_LOCAL;
5581 	}
5582 
5583 	return mpol_misplaced(folio, vmf, addr);
5584 }
5585 
5586 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5587 					unsigned long fault_addr, pte_t *fault_pte,
5588 					bool writable)
5589 {
5590 	pte_t pte, old_pte;
5591 
5592 	old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5593 	pte = pte_modify(old_pte, vma->vm_page_prot);
5594 	pte = pte_mkyoung(pte);
5595 	if (writable)
5596 		pte = pte_mkwrite(pte, vma);
5597 	ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5598 	update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5599 }
5600 
5601 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5602 				       struct folio *folio, pte_t fault_pte,
5603 				       bool ignore_writable, bool pte_write_upgrade)
5604 {
5605 	int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5606 	unsigned long start, end, addr = vmf->address;
5607 	unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5608 	unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5609 	pte_t *start_ptep;
5610 
5611 	/* Stay within the VMA and within the page table. */
5612 	start = max3(addr_start, pt_start, vma->vm_start);
5613 	end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5614 		   vma->vm_end);
5615 	start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5616 
5617 	/* Restore all PTEs' mapping of the large folio */
5618 	for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5619 		pte_t ptent = ptep_get(start_ptep);
5620 		bool writable = false;
5621 
5622 		if (!pte_present(ptent) || !pte_protnone(ptent))
5623 			continue;
5624 
5625 		if (pfn_folio(pte_pfn(ptent)) != folio)
5626 			continue;
5627 
5628 		if (!ignore_writable) {
5629 			ptent = pte_modify(ptent, vma->vm_page_prot);
5630 			writable = pte_write(ptent);
5631 			if (!writable && pte_write_upgrade &&
5632 			    can_change_pte_writable(vma, addr, ptent))
5633 				writable = true;
5634 		}
5635 
5636 		numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5637 	}
5638 }
5639 
5640 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5641 {
5642 	struct vm_area_struct *vma = vmf->vma;
5643 	struct folio *folio = NULL;
5644 	int nid = NUMA_NO_NODE;
5645 	bool writable = false, ignore_writable = false;
5646 	bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5647 	int last_cpupid;
5648 	int target_nid;
5649 	pte_t pte, old_pte;
5650 	int flags = 0, nr_pages;
5651 
5652 	/*
5653 	 * The pte cannot be used safely until we verify, while holding the page
5654 	 * table lock, that its contents have not changed during fault handling.
5655 	 */
5656 	spin_lock(vmf->ptl);
5657 	/* Read the live PTE from the page tables: */
5658 	old_pte = ptep_get(vmf->pte);
5659 
5660 	if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5661 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5662 		return 0;
5663 	}
5664 
5665 	pte = pte_modify(old_pte, vma->vm_page_prot);
5666 
5667 	/*
5668 	 * Detect now whether the PTE could be writable; this information
5669 	 * is only valid while holding the PT lock.
5670 	 */
5671 	writable = pte_write(pte);
5672 	if (!writable && pte_write_upgrade &&
5673 	    can_change_pte_writable(vma, vmf->address, pte))
5674 		writable = true;
5675 
5676 	folio = vm_normal_folio(vma, vmf->address, pte);
5677 	if (!folio || folio_is_zone_device(folio))
5678 		goto out_map;
5679 
5680 	nid = folio_nid(folio);
5681 	nr_pages = folio_nr_pages(folio);
5682 
5683 	target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5684 					writable, &last_cpupid);
5685 	if (target_nid == NUMA_NO_NODE)
5686 		goto out_map;
5687 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5688 		flags |= TNF_MIGRATE_FAIL;
5689 		goto out_map;
5690 	}
5691 	/* The folio is isolated and isolation code holds a folio reference. */
5692 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5693 	writable = false;
5694 	ignore_writable = true;
5695 
5696 	/* Migrate to the requested node */
5697 	if (!migrate_misplaced_folio(folio, target_nid)) {
5698 		nid = target_nid;
5699 		flags |= TNF_MIGRATED;
5700 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5701 		return 0;
5702 	}
5703 
5704 	flags |= TNF_MIGRATE_FAIL;
5705 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5706 				       vmf->address, &vmf->ptl);
5707 	if (unlikely(!vmf->pte))
5708 		return 0;
5709 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5710 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5711 		return 0;
5712 	}
5713 out_map:
5714 	/*
5715 	 * Make it present again, depending on how arch implements
5716 	 * non-accessible ptes, some can allow access by kernel mode.
5717 	 */
5718 	if (folio && folio_test_large(folio))
5719 		numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5720 					   pte_write_upgrade);
5721 	else
5722 		numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5723 					    writable);
5724 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5725 
5726 	if (nid != NUMA_NO_NODE)
5727 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5728 	return 0;
5729 }
5730 
5731 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5732 {
5733 	struct vm_area_struct *vma = vmf->vma;
5734 	if (vma_is_anonymous(vma))
5735 		return do_huge_pmd_anonymous_page(vmf);
5736 	if (vma->vm_ops->huge_fault)
5737 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5738 	return VM_FAULT_FALLBACK;
5739 }
5740 
5741 /* `inline' is required to avoid gcc 4.1.2 build error */
5742 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5743 {
5744 	struct vm_area_struct *vma = vmf->vma;
5745 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5746 	vm_fault_t ret;
5747 
5748 	if (vma_is_anonymous(vma)) {
5749 		if (likely(!unshare) &&
5750 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5751 			if (userfaultfd_wp_async(vmf->vma))
5752 				goto split;
5753 			return handle_userfault(vmf, VM_UFFD_WP);
5754 		}
5755 		return do_huge_pmd_wp_page(vmf);
5756 	}
5757 
5758 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5759 		if (vma->vm_ops->huge_fault) {
5760 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5761 			if (!(ret & VM_FAULT_FALLBACK))
5762 				return ret;
5763 		}
5764 	}
5765 
5766 split:
5767 	/* COW or write-notify handled on pte level: split pmd. */
5768 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5769 
5770 	return VM_FAULT_FALLBACK;
5771 }
5772 
5773 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5774 {
5775 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5776 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5777 	struct vm_area_struct *vma = vmf->vma;
5778 	/* No support for anonymous transparent PUD pages yet */
5779 	if (vma_is_anonymous(vma))
5780 		return VM_FAULT_FALLBACK;
5781 	if (vma->vm_ops->huge_fault)
5782 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5783 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5784 	return VM_FAULT_FALLBACK;
5785 }
5786 
5787 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5788 {
5789 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5790 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5791 	struct vm_area_struct *vma = vmf->vma;
5792 	vm_fault_t ret;
5793 
5794 	/* No support for anonymous transparent PUD pages yet */
5795 	if (vma_is_anonymous(vma))
5796 		goto split;
5797 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5798 		if (vma->vm_ops->huge_fault) {
5799 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5800 			if (!(ret & VM_FAULT_FALLBACK))
5801 				return ret;
5802 		}
5803 	}
5804 split:
5805 	/* COW or write-notify not handled on PUD level: split pud.*/
5806 	__split_huge_pud(vma, vmf->pud, vmf->address);
5807 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5808 	return VM_FAULT_FALLBACK;
5809 }
5810 
5811 /*
5812  * These routines also need to handle stuff like marking pages dirty
5813  * and/or accessed for architectures that don't do it in hardware (most
5814  * RISC architectures).  The early dirtying is also good on the i386.
5815  *
5816  * There is also a hook called "update_mmu_cache()" that architectures
5817  * with external mmu caches can use to update those (ie the Sparc or
5818  * PowerPC hashed page tables that act as extended TLBs).
5819  *
5820  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5821  * concurrent faults).
5822  *
5823  * The mmap_lock may have been released depending on flags and our return value.
5824  * See filemap_fault() and __folio_lock_or_retry().
5825  */
5826 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5827 {
5828 	pte_t entry;
5829 
5830 	if (unlikely(pmd_none(*vmf->pmd))) {
5831 		/*
5832 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5833 		 * want to allocate huge page, and if we expose page table
5834 		 * for an instant, it will be difficult to retract from
5835 		 * concurrent faults and from rmap lookups.
5836 		 */
5837 		vmf->pte = NULL;
5838 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5839 	} else {
5840 		pmd_t dummy_pmdval;
5841 
5842 		/*
5843 		 * A regular pmd is established and it can't morph into a huge
5844 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5845 		 * mode; but shmem or file collapse to THP could still morph
5846 		 * it into a huge pmd: just retry later if so.
5847 		 *
5848 		 * Use the maywrite version to indicate that vmf->pte may be
5849 		 * modified, but since we will use pte_same() to detect the
5850 		 * change of the !pte_none() entry, there is no need to recheck
5851 		 * the pmdval. Here we chooes to pass a dummy variable instead
5852 		 * of NULL, which helps new user think about why this place is
5853 		 * special.
5854 		 */
5855 		vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
5856 						    vmf->address, &dummy_pmdval,
5857 						    &vmf->ptl);
5858 		if (unlikely(!vmf->pte))
5859 			return 0;
5860 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5861 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5862 
5863 		if (pte_none(vmf->orig_pte)) {
5864 			pte_unmap(vmf->pte);
5865 			vmf->pte = NULL;
5866 		}
5867 	}
5868 
5869 	if (!vmf->pte)
5870 		return do_pte_missing(vmf);
5871 
5872 	if (!pte_present(vmf->orig_pte))
5873 		return do_swap_page(vmf);
5874 
5875 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5876 		return do_numa_page(vmf);
5877 
5878 	spin_lock(vmf->ptl);
5879 	entry = vmf->orig_pte;
5880 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5881 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5882 		goto unlock;
5883 	}
5884 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5885 		if (!pte_write(entry))
5886 			return do_wp_page(vmf);
5887 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5888 			entry = pte_mkdirty(entry);
5889 	}
5890 	entry = pte_mkyoung(entry);
5891 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5892 				vmf->flags & FAULT_FLAG_WRITE)) {
5893 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5894 				vmf->pte, 1);
5895 	} else {
5896 		/* Skip spurious TLB flush for retried page fault */
5897 		if (vmf->flags & FAULT_FLAG_TRIED)
5898 			goto unlock;
5899 		/*
5900 		 * This is needed only for protection faults but the arch code
5901 		 * is not yet telling us if this is a protection fault or not.
5902 		 * This still avoids useless tlb flushes for .text page faults
5903 		 * with threads.
5904 		 */
5905 		if (vmf->flags & FAULT_FLAG_WRITE)
5906 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5907 						     vmf->pte);
5908 	}
5909 unlock:
5910 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5911 	return 0;
5912 }
5913 
5914 /*
5915  * On entry, we hold either the VMA lock or the mmap_lock
5916  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5917  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5918  * and __folio_lock_or_retry().
5919  */
5920 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5921 		unsigned long address, unsigned int flags)
5922 {
5923 	struct vm_fault vmf = {
5924 		.vma = vma,
5925 		.address = address & PAGE_MASK,
5926 		.real_address = address,
5927 		.flags = flags,
5928 		.pgoff = linear_page_index(vma, address),
5929 		.gfp_mask = __get_fault_gfp_mask(vma),
5930 	};
5931 	struct mm_struct *mm = vma->vm_mm;
5932 	unsigned long vm_flags = vma->vm_flags;
5933 	pgd_t *pgd;
5934 	p4d_t *p4d;
5935 	vm_fault_t ret;
5936 
5937 	pgd = pgd_offset(mm, address);
5938 	p4d = p4d_alloc(mm, pgd, address);
5939 	if (!p4d)
5940 		return VM_FAULT_OOM;
5941 
5942 	vmf.pud = pud_alloc(mm, p4d, address);
5943 	if (!vmf.pud)
5944 		return VM_FAULT_OOM;
5945 retry_pud:
5946 	if (pud_none(*vmf.pud) &&
5947 	    thp_vma_allowable_order(vma, vm_flags,
5948 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5949 		ret = create_huge_pud(&vmf);
5950 		if (!(ret & VM_FAULT_FALLBACK))
5951 			return ret;
5952 	} else {
5953 		pud_t orig_pud = *vmf.pud;
5954 
5955 		barrier();
5956 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5957 
5958 			/*
5959 			 * TODO once we support anonymous PUDs: NUMA case and
5960 			 * FAULT_FLAG_UNSHARE handling.
5961 			 */
5962 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5963 				ret = wp_huge_pud(&vmf, orig_pud);
5964 				if (!(ret & VM_FAULT_FALLBACK))
5965 					return ret;
5966 			} else {
5967 				huge_pud_set_accessed(&vmf, orig_pud);
5968 				return 0;
5969 			}
5970 		}
5971 	}
5972 
5973 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5974 	if (!vmf.pmd)
5975 		return VM_FAULT_OOM;
5976 
5977 	/* Huge pud page fault raced with pmd_alloc? */
5978 	if (pud_trans_unstable(vmf.pud))
5979 		goto retry_pud;
5980 
5981 	if (pmd_none(*vmf.pmd) &&
5982 	    thp_vma_allowable_order(vma, vm_flags,
5983 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5984 		ret = create_huge_pmd(&vmf);
5985 		if (!(ret & VM_FAULT_FALLBACK))
5986 			return ret;
5987 	} else {
5988 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5989 
5990 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5991 			VM_BUG_ON(thp_migration_supported() &&
5992 					  !is_pmd_migration_entry(vmf.orig_pmd));
5993 			if (is_pmd_migration_entry(vmf.orig_pmd))
5994 				pmd_migration_entry_wait(mm, vmf.pmd);
5995 			return 0;
5996 		}
5997 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5998 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5999 				return do_huge_pmd_numa_page(&vmf);
6000 
6001 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6002 			    !pmd_write(vmf.orig_pmd)) {
6003 				ret = wp_huge_pmd(&vmf);
6004 				if (!(ret & VM_FAULT_FALLBACK))
6005 					return ret;
6006 			} else {
6007 				huge_pmd_set_accessed(&vmf);
6008 				return 0;
6009 			}
6010 		}
6011 	}
6012 
6013 	return handle_pte_fault(&vmf);
6014 }
6015 
6016 /**
6017  * mm_account_fault - Do page fault accounting
6018  * @mm: mm from which memcg should be extracted. It can be NULL.
6019  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
6020  *        of perf event counters, but we'll still do the per-task accounting to
6021  *        the task who triggered this page fault.
6022  * @address: the faulted address.
6023  * @flags: the fault flags.
6024  * @ret: the fault retcode.
6025  *
6026  * This will take care of most of the page fault accounting.  Meanwhile, it
6027  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
6028  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
6029  * still be in per-arch page fault handlers at the entry of page fault.
6030  */
6031 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
6032 				    unsigned long address, unsigned int flags,
6033 				    vm_fault_t ret)
6034 {
6035 	bool major;
6036 
6037 	/* Incomplete faults will be accounted upon completion. */
6038 	if (ret & VM_FAULT_RETRY)
6039 		return;
6040 
6041 	/*
6042 	 * To preserve the behavior of older kernels, PGFAULT counters record
6043 	 * both successful and failed faults, as opposed to perf counters,
6044 	 * which ignore failed cases.
6045 	 */
6046 	count_vm_event(PGFAULT);
6047 	count_memcg_event_mm(mm, PGFAULT);
6048 
6049 	/*
6050 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
6051 	 * valid).  That includes arch_vma_access_permitted() failing before
6052 	 * reaching here. So this is not a "this many hardware page faults"
6053 	 * counter.  We should use the hw profiling for that.
6054 	 */
6055 	if (ret & VM_FAULT_ERROR)
6056 		return;
6057 
6058 	/*
6059 	 * We define the fault as a major fault when the final successful fault
6060 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6061 	 * handle it immediately previously).
6062 	 */
6063 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6064 
6065 	if (major)
6066 		current->maj_flt++;
6067 	else
6068 		current->min_flt++;
6069 
6070 	/*
6071 	 * If the fault is done for GUP, regs will be NULL.  We only do the
6072 	 * accounting for the per thread fault counters who triggered the
6073 	 * fault, and we skip the perf event updates.
6074 	 */
6075 	if (!regs)
6076 		return;
6077 
6078 	if (major)
6079 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6080 	else
6081 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6082 }
6083 
6084 #ifdef CONFIG_LRU_GEN
6085 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6086 {
6087 	/* the LRU algorithm only applies to accesses with recency */
6088 	current->in_lru_fault = vma_has_recency(vma);
6089 }
6090 
6091 static void lru_gen_exit_fault(void)
6092 {
6093 	current->in_lru_fault = false;
6094 }
6095 #else
6096 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6097 {
6098 }
6099 
6100 static void lru_gen_exit_fault(void)
6101 {
6102 }
6103 #endif /* CONFIG_LRU_GEN */
6104 
6105 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6106 				       unsigned int *flags)
6107 {
6108 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6109 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6110 			return VM_FAULT_SIGSEGV;
6111 		/*
6112 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6113 		 * just treat it like an ordinary read-fault otherwise.
6114 		 */
6115 		if (!is_cow_mapping(vma->vm_flags))
6116 			*flags &= ~FAULT_FLAG_UNSHARE;
6117 	} else if (*flags & FAULT_FLAG_WRITE) {
6118 		/* Write faults on read-only mappings are impossible ... */
6119 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6120 			return VM_FAULT_SIGSEGV;
6121 		/* ... and FOLL_FORCE only applies to COW mappings. */
6122 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6123 				 !is_cow_mapping(vma->vm_flags)))
6124 			return VM_FAULT_SIGSEGV;
6125 	}
6126 #ifdef CONFIG_PER_VMA_LOCK
6127 	/*
6128 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6129 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
6130 	 */
6131 	if (WARN_ON_ONCE((*flags &
6132 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6133 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6134 		return VM_FAULT_SIGSEGV;
6135 #endif
6136 
6137 	return 0;
6138 }
6139 
6140 /*
6141  * By the time we get here, we already hold either the VMA lock or the
6142  * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
6143  *
6144  * The mmap_lock may have been released depending on flags and our
6145  * return value.  See filemap_fault() and __folio_lock_or_retry().
6146  */
6147 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6148 			   unsigned int flags, struct pt_regs *regs)
6149 {
6150 	/* If the fault handler drops the mmap_lock, vma may be freed */
6151 	struct mm_struct *mm = vma->vm_mm;
6152 	vm_fault_t ret;
6153 	bool is_droppable;
6154 
6155 	__set_current_state(TASK_RUNNING);
6156 
6157 	ret = sanitize_fault_flags(vma, &flags);
6158 	if (ret)
6159 		goto out;
6160 
6161 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6162 					    flags & FAULT_FLAG_INSTRUCTION,
6163 					    flags & FAULT_FLAG_REMOTE)) {
6164 		ret = VM_FAULT_SIGSEGV;
6165 		goto out;
6166 	}
6167 
6168 	is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6169 
6170 	/*
6171 	 * Enable the memcg OOM handling for faults triggered in user
6172 	 * space.  Kernel faults are handled more gracefully.
6173 	 */
6174 	if (flags & FAULT_FLAG_USER)
6175 		mem_cgroup_enter_user_fault();
6176 
6177 	lru_gen_enter_fault(vma);
6178 
6179 	if (unlikely(is_vm_hugetlb_page(vma)))
6180 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6181 	else
6182 		ret = __handle_mm_fault(vma, address, flags);
6183 
6184 	/*
6185 	 * Warning: It is no longer safe to dereference vma-> after this point,
6186 	 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6187 	 * vma might be destroyed from underneath us.
6188 	 */
6189 
6190 	lru_gen_exit_fault();
6191 
6192 	/* If the mapping is droppable, then errors due to OOM aren't fatal. */
6193 	if (is_droppable)
6194 		ret &= ~VM_FAULT_OOM;
6195 
6196 	if (flags & FAULT_FLAG_USER) {
6197 		mem_cgroup_exit_user_fault();
6198 		/*
6199 		 * The task may have entered a memcg OOM situation but
6200 		 * if the allocation error was handled gracefully (no
6201 		 * VM_FAULT_OOM), there is no need to kill anything.
6202 		 * Just clean up the OOM state peacefully.
6203 		 */
6204 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6205 			mem_cgroup_oom_synchronize(false);
6206 	}
6207 out:
6208 	mm_account_fault(mm, regs, address, flags, ret);
6209 
6210 	return ret;
6211 }
6212 EXPORT_SYMBOL_GPL(handle_mm_fault);
6213 
6214 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6215 #include <linux/extable.h>
6216 
6217 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6218 {
6219 	if (likely(mmap_read_trylock(mm)))
6220 		return true;
6221 
6222 	if (regs && !user_mode(regs)) {
6223 		unsigned long ip = exception_ip(regs);
6224 		if (!search_exception_tables(ip))
6225 			return false;
6226 	}
6227 
6228 	return !mmap_read_lock_killable(mm);
6229 }
6230 
6231 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
6232 {
6233 	/*
6234 	 * We don't have this operation yet.
6235 	 *
6236 	 * It should be easy enough to do: it's basically a
6237 	 *    atomic_long_try_cmpxchg_acquire()
6238 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6239 	 * it also needs the proper lockdep magic etc.
6240 	 */
6241 	return false;
6242 }
6243 
6244 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6245 {
6246 	mmap_read_unlock(mm);
6247 	if (regs && !user_mode(regs)) {
6248 		unsigned long ip = exception_ip(regs);
6249 		if (!search_exception_tables(ip))
6250 			return false;
6251 	}
6252 	return !mmap_write_lock_killable(mm);
6253 }
6254 
6255 /*
6256  * Helper for page fault handling.
6257  *
6258  * This is kind of equivalent to "mmap_read_lock()" followed
6259  * by "find_extend_vma()", except it's a lot more careful about
6260  * the locking (and will drop the lock on failure).
6261  *
6262  * For example, if we have a kernel bug that causes a page
6263  * fault, we don't want to just use mmap_read_lock() to get
6264  * the mm lock, because that would deadlock if the bug were
6265  * to happen while we're holding the mm lock for writing.
6266  *
6267  * So this checks the exception tables on kernel faults in
6268  * order to only do this all for instructions that are actually
6269  * expected to fault.
6270  *
6271  * We can also actually take the mm lock for writing if we
6272  * need to extend the vma, which helps the VM layer a lot.
6273  */
6274 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
6275 			unsigned long addr, struct pt_regs *regs)
6276 {
6277 	struct vm_area_struct *vma;
6278 
6279 	if (!get_mmap_lock_carefully(mm, regs))
6280 		return NULL;
6281 
6282 	vma = find_vma(mm, addr);
6283 	if (likely(vma && (vma->vm_start <= addr)))
6284 		return vma;
6285 
6286 	/*
6287 	 * Well, dang. We might still be successful, but only
6288 	 * if we can extend a vma to do so.
6289 	 */
6290 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
6291 		mmap_read_unlock(mm);
6292 		return NULL;
6293 	}
6294 
6295 	/*
6296 	 * We can try to upgrade the mmap lock atomically,
6297 	 * in which case we can continue to use the vma
6298 	 * we already looked up.
6299 	 *
6300 	 * Otherwise we'll have to drop the mmap lock and
6301 	 * re-take it, and also look up the vma again,
6302 	 * re-checking it.
6303 	 */
6304 	if (!mmap_upgrade_trylock(mm)) {
6305 		if (!upgrade_mmap_lock_carefully(mm, regs))
6306 			return NULL;
6307 
6308 		vma = find_vma(mm, addr);
6309 		if (!vma)
6310 			goto fail;
6311 		if (vma->vm_start <= addr)
6312 			goto success;
6313 		if (!(vma->vm_flags & VM_GROWSDOWN))
6314 			goto fail;
6315 	}
6316 
6317 	if (expand_stack_locked(vma, addr))
6318 		goto fail;
6319 
6320 success:
6321 	mmap_write_downgrade(mm);
6322 	return vma;
6323 
6324 fail:
6325 	mmap_write_unlock(mm);
6326 	return NULL;
6327 }
6328 #endif
6329 
6330 #ifdef CONFIG_PER_VMA_LOCK
6331 /*
6332  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6333  * stable and not isolated. If the VMA is not found or is being modified the
6334  * function returns NULL.
6335  */
6336 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6337 					  unsigned long address)
6338 {
6339 	MA_STATE(mas, &mm->mm_mt, address, address);
6340 	struct vm_area_struct *vma;
6341 
6342 	rcu_read_lock();
6343 retry:
6344 	vma = mas_walk(&mas);
6345 	if (!vma)
6346 		goto inval;
6347 
6348 	if (!vma_start_read(vma))
6349 		goto inval;
6350 
6351 	/* Check if the VMA got isolated after we found it */
6352 	if (vma->detached) {
6353 		vma_end_read(vma);
6354 		count_vm_vma_lock_event(VMA_LOCK_MISS);
6355 		/* The area was replaced with another one */
6356 		goto retry;
6357 	}
6358 	/*
6359 	 * At this point, we have a stable reference to a VMA: The VMA is
6360 	 * locked and we know it hasn't already been isolated.
6361 	 * From here on, we can access the VMA without worrying about which
6362 	 * fields are accessible for RCU readers.
6363 	 */
6364 
6365 	/* Check since vm_start/vm_end might change before we lock the VMA */
6366 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6367 		goto inval_end_read;
6368 
6369 	rcu_read_unlock();
6370 	return vma;
6371 
6372 inval_end_read:
6373 	vma_end_read(vma);
6374 inval:
6375 	rcu_read_unlock();
6376 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
6377 	return NULL;
6378 }
6379 #endif /* CONFIG_PER_VMA_LOCK */
6380 
6381 #ifndef __PAGETABLE_P4D_FOLDED
6382 /*
6383  * Allocate p4d page table.
6384  * We've already handled the fast-path in-line.
6385  */
6386 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6387 {
6388 	p4d_t *new = p4d_alloc_one(mm, address);
6389 	if (!new)
6390 		return -ENOMEM;
6391 
6392 	spin_lock(&mm->page_table_lock);
6393 	if (pgd_present(*pgd)) {	/* Another has populated it */
6394 		p4d_free(mm, new);
6395 	} else {
6396 		smp_wmb(); /* See comment in pmd_install() */
6397 		pgd_populate(mm, pgd, new);
6398 	}
6399 	spin_unlock(&mm->page_table_lock);
6400 	return 0;
6401 }
6402 #endif /* __PAGETABLE_P4D_FOLDED */
6403 
6404 #ifndef __PAGETABLE_PUD_FOLDED
6405 /*
6406  * Allocate page upper directory.
6407  * We've already handled the fast-path in-line.
6408  */
6409 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6410 {
6411 	pud_t *new = pud_alloc_one(mm, address);
6412 	if (!new)
6413 		return -ENOMEM;
6414 
6415 	spin_lock(&mm->page_table_lock);
6416 	if (!p4d_present(*p4d)) {
6417 		mm_inc_nr_puds(mm);
6418 		smp_wmb(); /* See comment in pmd_install() */
6419 		p4d_populate(mm, p4d, new);
6420 	} else	/* Another has populated it */
6421 		pud_free(mm, new);
6422 	spin_unlock(&mm->page_table_lock);
6423 	return 0;
6424 }
6425 #endif /* __PAGETABLE_PUD_FOLDED */
6426 
6427 #ifndef __PAGETABLE_PMD_FOLDED
6428 /*
6429  * Allocate page middle directory.
6430  * We've already handled the fast-path in-line.
6431  */
6432 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6433 {
6434 	spinlock_t *ptl;
6435 	pmd_t *new = pmd_alloc_one(mm, address);
6436 	if (!new)
6437 		return -ENOMEM;
6438 
6439 	ptl = pud_lock(mm, pud);
6440 	if (!pud_present(*pud)) {
6441 		mm_inc_nr_pmds(mm);
6442 		smp_wmb(); /* See comment in pmd_install() */
6443 		pud_populate(mm, pud, new);
6444 	} else {	/* Another has populated it */
6445 		pmd_free(mm, new);
6446 	}
6447 	spin_unlock(ptl);
6448 	return 0;
6449 }
6450 #endif /* __PAGETABLE_PMD_FOLDED */
6451 
6452 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6453 				     spinlock_t *lock, pte_t *ptep,
6454 				     pgprot_t pgprot, unsigned long pfn_base,
6455 				     unsigned long addr_mask, bool writable,
6456 				     bool special)
6457 {
6458 	args->lock = lock;
6459 	args->ptep = ptep;
6460 	args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6461 	args->pgprot = pgprot;
6462 	args->writable = writable;
6463 	args->special = special;
6464 }
6465 
6466 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6467 {
6468 #ifdef CONFIG_LOCKDEP
6469 	struct file *file = vma->vm_file;
6470 	struct address_space *mapping = file ? file->f_mapping : NULL;
6471 
6472 	if (mapping)
6473 		lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6474 			       lockdep_is_held(&vma->vm_mm->mmap_lock));
6475 	else
6476 		lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6477 #endif
6478 }
6479 
6480 /**
6481  * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6482  * @args: Pointer to struct @follow_pfnmap_args
6483  *
6484  * The caller needs to setup args->vma and args->address to point to the
6485  * virtual address as the target of such lookup.  On a successful return,
6486  * the results will be put into other output fields.
6487  *
6488  * After the caller finished using the fields, the caller must invoke
6489  * another follow_pfnmap_end() to proper releases the locks and resources
6490  * of such look up request.
6491  *
6492  * During the start() and end() calls, the results in @args will be valid
6493  * as proper locks will be held.  After the end() is called, all the fields
6494  * in @follow_pfnmap_args will be invalid to be further accessed.  Further
6495  * use of such information after end() may require proper synchronizations
6496  * by the caller with page table updates, otherwise it can create a
6497  * security bug.
6498  *
6499  * If the PTE maps a refcounted page, callers are responsible to protect
6500  * against invalidation with MMU notifiers; otherwise access to the PFN at
6501  * a later point in time can trigger use-after-free.
6502  *
6503  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
6504  * should be taken for read, and the mmap semaphore cannot be released
6505  * before the end() is invoked.
6506  *
6507  * This function must not be used to modify PTE content.
6508  *
6509  * Return: zero on success, negative otherwise.
6510  */
6511 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6512 {
6513 	struct vm_area_struct *vma = args->vma;
6514 	unsigned long address = args->address;
6515 	struct mm_struct *mm = vma->vm_mm;
6516 	spinlock_t *lock;
6517 	pgd_t *pgdp;
6518 	p4d_t *p4dp, p4d;
6519 	pud_t *pudp, pud;
6520 	pmd_t *pmdp, pmd;
6521 	pte_t *ptep, pte;
6522 
6523 	pfnmap_lockdep_assert(vma);
6524 
6525 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6526 		goto out;
6527 
6528 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6529 		goto out;
6530 retry:
6531 	pgdp = pgd_offset(mm, address);
6532 	if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6533 		goto out;
6534 
6535 	p4dp = p4d_offset(pgdp, address);
6536 	p4d = READ_ONCE(*p4dp);
6537 	if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6538 		goto out;
6539 
6540 	pudp = pud_offset(p4dp, address);
6541 	pud = READ_ONCE(*pudp);
6542 	if (pud_none(pud))
6543 		goto out;
6544 	if (pud_leaf(pud)) {
6545 		lock = pud_lock(mm, pudp);
6546 		if (!unlikely(pud_leaf(pud))) {
6547 			spin_unlock(lock);
6548 			goto retry;
6549 		}
6550 		pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6551 				  pud_pfn(pud), PUD_MASK, pud_write(pud),
6552 				  pud_special(pud));
6553 		return 0;
6554 	}
6555 
6556 	pmdp = pmd_offset(pudp, address);
6557 	pmd = pmdp_get_lockless(pmdp);
6558 	if (pmd_leaf(pmd)) {
6559 		lock = pmd_lock(mm, pmdp);
6560 		if (!unlikely(pmd_leaf(pmd))) {
6561 			spin_unlock(lock);
6562 			goto retry;
6563 		}
6564 		pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6565 				  pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6566 				  pmd_special(pmd));
6567 		return 0;
6568 	}
6569 
6570 	ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6571 	if (!ptep)
6572 		goto out;
6573 	pte = ptep_get(ptep);
6574 	if (!pte_present(pte))
6575 		goto unlock;
6576 	pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6577 			  pte_pfn(pte), PAGE_MASK, pte_write(pte),
6578 			  pte_special(pte));
6579 	return 0;
6580 unlock:
6581 	pte_unmap_unlock(ptep, lock);
6582 out:
6583 	return -EINVAL;
6584 }
6585 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6586 
6587 /**
6588  * follow_pfnmap_end(): End a follow_pfnmap_start() process
6589  * @args: Pointer to struct @follow_pfnmap_args
6590  *
6591  * Must be used in pair of follow_pfnmap_start().  See the start() function
6592  * above for more information.
6593  */
6594 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6595 {
6596 	if (args->lock)
6597 		spin_unlock(args->lock);
6598 	if (args->ptep)
6599 		pte_unmap(args->ptep);
6600 }
6601 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6602 
6603 #ifdef CONFIG_HAVE_IOREMAP_PROT
6604 /**
6605  * generic_access_phys - generic implementation for iomem mmap access
6606  * @vma: the vma to access
6607  * @addr: userspace address, not relative offset within @vma
6608  * @buf: buffer to read/write
6609  * @len: length of transfer
6610  * @write: set to FOLL_WRITE when writing, otherwise reading
6611  *
6612  * This is a generic implementation for &vm_operations_struct.access for an
6613  * iomem mapping. This callback is used by access_process_vm() when the @vma is
6614  * not page based.
6615  */
6616 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6617 			void *buf, int len, int write)
6618 {
6619 	resource_size_t phys_addr;
6620 	unsigned long prot = 0;
6621 	void __iomem *maddr;
6622 	int offset = offset_in_page(addr);
6623 	int ret = -EINVAL;
6624 	bool writable;
6625 	struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6626 
6627 retry:
6628 	if (follow_pfnmap_start(&args))
6629 		return -EINVAL;
6630 	prot = pgprot_val(args.pgprot);
6631 	phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6632 	writable = args.writable;
6633 	follow_pfnmap_end(&args);
6634 
6635 	if ((write & FOLL_WRITE) && !writable)
6636 		return -EINVAL;
6637 
6638 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6639 	if (!maddr)
6640 		return -ENOMEM;
6641 
6642 	if (follow_pfnmap_start(&args))
6643 		goto out_unmap;
6644 
6645 	if ((prot != pgprot_val(args.pgprot)) ||
6646 	    (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6647 	    (writable != args.writable)) {
6648 		follow_pfnmap_end(&args);
6649 		iounmap(maddr);
6650 		goto retry;
6651 	}
6652 
6653 	if (write)
6654 		memcpy_toio(maddr + offset, buf, len);
6655 	else
6656 		memcpy_fromio(buf, maddr + offset, len);
6657 	ret = len;
6658 	follow_pfnmap_end(&args);
6659 out_unmap:
6660 	iounmap(maddr);
6661 
6662 	return ret;
6663 }
6664 EXPORT_SYMBOL_GPL(generic_access_phys);
6665 #endif
6666 
6667 /*
6668  * Access another process' address space as given in mm.
6669  */
6670 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6671 			      void *buf, int len, unsigned int gup_flags)
6672 {
6673 	void *old_buf = buf;
6674 	int write = gup_flags & FOLL_WRITE;
6675 
6676 	if (mmap_read_lock_killable(mm))
6677 		return 0;
6678 
6679 	/* Untag the address before looking up the VMA */
6680 	addr = untagged_addr_remote(mm, addr);
6681 
6682 	/* Avoid triggering the temporary warning in __get_user_pages */
6683 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6684 		return 0;
6685 
6686 	/* ignore errors, just check how much was successfully transferred */
6687 	while (len) {
6688 		int bytes, offset;
6689 		void *maddr;
6690 		struct vm_area_struct *vma = NULL;
6691 		struct page *page = get_user_page_vma_remote(mm, addr,
6692 							     gup_flags, &vma);
6693 
6694 		if (IS_ERR(page)) {
6695 			/* We might need to expand the stack to access it */
6696 			vma = vma_lookup(mm, addr);
6697 			if (!vma) {
6698 				vma = expand_stack(mm, addr);
6699 
6700 				/* mmap_lock was dropped on failure */
6701 				if (!vma)
6702 					return buf - old_buf;
6703 
6704 				/* Try again if stack expansion worked */
6705 				continue;
6706 			}
6707 
6708 			/*
6709 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6710 			 * we can access using slightly different code.
6711 			 */
6712 			bytes = 0;
6713 #ifdef CONFIG_HAVE_IOREMAP_PROT
6714 			if (vma->vm_ops && vma->vm_ops->access)
6715 				bytes = vma->vm_ops->access(vma, addr, buf,
6716 							    len, write);
6717 #endif
6718 			if (bytes <= 0)
6719 				break;
6720 		} else {
6721 			bytes = len;
6722 			offset = addr & (PAGE_SIZE-1);
6723 			if (bytes > PAGE_SIZE-offset)
6724 				bytes = PAGE_SIZE-offset;
6725 
6726 			maddr = kmap_local_page(page);
6727 			if (write) {
6728 				copy_to_user_page(vma, page, addr,
6729 						  maddr + offset, buf, bytes);
6730 				set_page_dirty_lock(page);
6731 			} else {
6732 				copy_from_user_page(vma, page, addr,
6733 						    buf, maddr + offset, bytes);
6734 			}
6735 			unmap_and_put_page(page, maddr);
6736 		}
6737 		len -= bytes;
6738 		buf += bytes;
6739 		addr += bytes;
6740 	}
6741 	mmap_read_unlock(mm);
6742 
6743 	return buf - old_buf;
6744 }
6745 
6746 /**
6747  * access_remote_vm - access another process' address space
6748  * @mm:		the mm_struct of the target address space
6749  * @addr:	start address to access
6750  * @buf:	source or destination buffer
6751  * @len:	number of bytes to transfer
6752  * @gup_flags:	flags modifying lookup behaviour
6753  *
6754  * The caller must hold a reference on @mm.
6755  *
6756  * Return: number of bytes copied from source to destination.
6757  */
6758 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6759 		void *buf, int len, unsigned int gup_flags)
6760 {
6761 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6762 }
6763 
6764 /*
6765  * Access another process' address space.
6766  * Source/target buffer must be kernel space,
6767  * Do not walk the page table directly, use get_user_pages
6768  */
6769 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6770 		void *buf, int len, unsigned int gup_flags)
6771 {
6772 	struct mm_struct *mm;
6773 	int ret;
6774 
6775 	mm = get_task_mm(tsk);
6776 	if (!mm)
6777 		return 0;
6778 
6779 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6780 
6781 	mmput(mm);
6782 
6783 	return ret;
6784 }
6785 EXPORT_SYMBOL_GPL(access_process_vm);
6786 
6787 /*
6788  * Print the name of a VMA.
6789  */
6790 void print_vma_addr(char *prefix, unsigned long ip)
6791 {
6792 	struct mm_struct *mm = current->mm;
6793 	struct vm_area_struct *vma;
6794 
6795 	/*
6796 	 * we might be running from an atomic context so we cannot sleep
6797 	 */
6798 	if (!mmap_read_trylock(mm))
6799 		return;
6800 
6801 	vma = vma_lookup(mm, ip);
6802 	if (vma && vma->vm_file) {
6803 		struct file *f = vma->vm_file;
6804 		ip -= vma->vm_start;
6805 		ip += vma->vm_pgoff << PAGE_SHIFT;
6806 		printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6807 				vma->vm_start,
6808 				vma->vm_end - vma->vm_start);
6809 	}
6810 	mmap_read_unlock(mm);
6811 }
6812 
6813 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6814 void __might_fault(const char *file, int line)
6815 {
6816 	if (pagefault_disabled())
6817 		return;
6818 	__might_sleep(file, line);
6819 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6820 	if (current->mm)
6821 		might_lock_read(&current->mm->mmap_lock);
6822 #endif
6823 }
6824 EXPORT_SYMBOL(__might_fault);
6825 #endif
6826 
6827 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6828 /*
6829  * Process all subpages of the specified huge page with the specified
6830  * operation.  The target subpage will be processed last to keep its
6831  * cache lines hot.
6832  */
6833 static inline int process_huge_page(
6834 	unsigned long addr_hint, unsigned int nr_pages,
6835 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
6836 	void *arg)
6837 {
6838 	int i, n, base, l, ret;
6839 	unsigned long addr = addr_hint &
6840 		~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6841 
6842 	/* Process target subpage last to keep its cache lines hot */
6843 	might_sleep();
6844 	n = (addr_hint - addr) / PAGE_SIZE;
6845 	if (2 * n <= nr_pages) {
6846 		/* If target subpage in first half of huge page */
6847 		base = 0;
6848 		l = n;
6849 		/* Process subpages at the end of huge page */
6850 		for (i = nr_pages - 1; i >= 2 * n; i--) {
6851 			cond_resched();
6852 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6853 			if (ret)
6854 				return ret;
6855 		}
6856 	} else {
6857 		/* If target subpage in second half of huge page */
6858 		base = nr_pages - 2 * (nr_pages - n);
6859 		l = nr_pages - n;
6860 		/* Process subpages at the begin of huge page */
6861 		for (i = 0; i < base; i++) {
6862 			cond_resched();
6863 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6864 			if (ret)
6865 				return ret;
6866 		}
6867 	}
6868 	/*
6869 	 * Process remaining subpages in left-right-left-right pattern
6870 	 * towards the target subpage
6871 	 */
6872 	for (i = 0; i < l; i++) {
6873 		int left_idx = base + i;
6874 		int right_idx = base + 2 * l - 1 - i;
6875 
6876 		cond_resched();
6877 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6878 		if (ret)
6879 			return ret;
6880 		cond_resched();
6881 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6882 		if (ret)
6883 			return ret;
6884 	}
6885 	return 0;
6886 }
6887 
6888 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
6889 				unsigned int nr_pages)
6890 {
6891 	unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
6892 	int i;
6893 
6894 	might_sleep();
6895 	for (i = 0; i < nr_pages; i++) {
6896 		cond_resched();
6897 		clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6898 	}
6899 }
6900 
6901 static int clear_subpage(unsigned long addr, int idx, void *arg)
6902 {
6903 	struct folio *folio = arg;
6904 
6905 	clear_user_highpage(folio_page(folio, idx), addr);
6906 	return 0;
6907 }
6908 
6909 /**
6910  * folio_zero_user - Zero a folio which will be mapped to userspace.
6911  * @folio: The folio to zero.
6912  * @addr_hint: The address will be accessed or the base address if uncelar.
6913  */
6914 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6915 {
6916 	unsigned int nr_pages = folio_nr_pages(folio);
6917 
6918 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6919 		clear_gigantic_page(folio, addr_hint, nr_pages);
6920 	else
6921 		process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6922 }
6923 
6924 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6925 				   unsigned long addr_hint,
6926 				   struct vm_area_struct *vma,
6927 				   unsigned int nr_pages)
6928 {
6929 	unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
6930 	struct page *dst_page;
6931 	struct page *src_page;
6932 	int i;
6933 
6934 	for (i = 0; i < nr_pages; i++) {
6935 		dst_page = folio_page(dst, i);
6936 		src_page = folio_page(src, i);
6937 
6938 		cond_resched();
6939 		if (copy_mc_user_highpage(dst_page, src_page,
6940 					  addr + i*PAGE_SIZE, vma))
6941 			return -EHWPOISON;
6942 	}
6943 	return 0;
6944 }
6945 
6946 struct copy_subpage_arg {
6947 	struct folio *dst;
6948 	struct folio *src;
6949 	struct vm_area_struct *vma;
6950 };
6951 
6952 static int copy_subpage(unsigned long addr, int idx, void *arg)
6953 {
6954 	struct copy_subpage_arg *copy_arg = arg;
6955 	struct page *dst = folio_page(copy_arg->dst, idx);
6956 	struct page *src = folio_page(copy_arg->src, idx);
6957 
6958 	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6959 		return -EHWPOISON;
6960 	return 0;
6961 }
6962 
6963 int copy_user_large_folio(struct folio *dst, struct folio *src,
6964 			  unsigned long addr_hint, struct vm_area_struct *vma)
6965 {
6966 	unsigned int nr_pages = folio_nr_pages(dst);
6967 	struct copy_subpage_arg arg = {
6968 		.dst = dst,
6969 		.src = src,
6970 		.vma = vma,
6971 	};
6972 
6973 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6974 		return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6975 
6976 	return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6977 }
6978 
6979 long copy_folio_from_user(struct folio *dst_folio,
6980 			   const void __user *usr_src,
6981 			   bool allow_pagefault)
6982 {
6983 	void *kaddr;
6984 	unsigned long i, rc = 0;
6985 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6986 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6987 	struct page *subpage;
6988 
6989 	for (i = 0; i < nr_pages; i++) {
6990 		subpage = folio_page(dst_folio, i);
6991 		kaddr = kmap_local_page(subpage);
6992 		if (!allow_pagefault)
6993 			pagefault_disable();
6994 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6995 		if (!allow_pagefault)
6996 			pagefault_enable();
6997 		kunmap_local(kaddr);
6998 
6999 		ret_val -= (PAGE_SIZE - rc);
7000 		if (rc)
7001 			break;
7002 
7003 		flush_dcache_page(subpage);
7004 
7005 		cond_resched();
7006 	}
7007 	return ret_val;
7008 }
7009 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7010 
7011 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7012 
7013 static struct kmem_cache *page_ptl_cachep;
7014 
7015 void __init ptlock_cache_init(void)
7016 {
7017 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
7018 			SLAB_PANIC, NULL);
7019 }
7020 
7021 bool ptlock_alloc(struct ptdesc *ptdesc)
7022 {
7023 	spinlock_t *ptl;
7024 
7025 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
7026 	if (!ptl)
7027 		return false;
7028 	ptdesc->ptl = ptl;
7029 	return true;
7030 }
7031 
7032 void ptlock_free(struct ptdesc *ptdesc)
7033 {
7034 	if (ptdesc->ptl)
7035 		kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
7036 }
7037 #endif
7038 
7039 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
7040 {
7041 	if (is_vm_hugetlb_page(vma))
7042 		hugetlb_vma_lock_read(vma);
7043 }
7044 
7045 void vma_pgtable_walk_end(struct vm_area_struct *vma)
7046 {
7047 	if (is_vm_hugetlb_page(vma))
7048 		hugetlb_vma_unlock_read(vma);
7049 }
7050