1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/pfn_t.h> 61 #include <linux/writeback.h> 62 #include <linux/memcontrol.h> 63 #include <linux/mmu_notifier.h> 64 #include <linux/swapops.h> 65 #include <linux/elf.h> 66 #include <linux/gfp.h> 67 #include <linux/migrate.h> 68 #include <linux/string.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 80 #include <trace/events/kmem.h> 81 82 #include <asm/io.h> 83 #include <asm/mmu_context.h> 84 #include <asm/pgalloc.h> 85 #include <linux/uaccess.h> 86 #include <asm/tlb.h> 87 #include <asm/tlbflush.h> 88 89 #include "pgalloc-track.h" 90 #include "internal.h" 91 #include "swap.h" 92 93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 95 #endif 96 97 #ifndef CONFIG_NUMA 98 unsigned long max_mapnr; 99 EXPORT_SYMBOL(max_mapnr); 100 101 struct page *mem_map; 102 EXPORT_SYMBOL(mem_map); 103 #endif 104 105 static vm_fault_t do_fault(struct vm_fault *vmf); 106 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 107 static bool vmf_pte_changed(struct vm_fault *vmf); 108 109 /* 110 * Return true if the original pte was a uffd-wp pte marker (so the pte was 111 * wr-protected). 112 */ 113 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 114 { 115 if (!userfaultfd_wp(vmf->vma)) 116 return false; 117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 118 return false; 119 120 return pte_marker_uffd_wp(vmf->orig_pte); 121 } 122 123 /* 124 * A number of key systems in x86 including ioremap() rely on the assumption 125 * that high_memory defines the upper bound on direct map memory, then end 126 * of ZONE_NORMAL. 127 */ 128 void *high_memory; 129 EXPORT_SYMBOL(high_memory); 130 131 /* 132 * Randomize the address space (stacks, mmaps, brk, etc.). 133 * 134 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 135 * as ancient (libc5 based) binaries can segfault. ) 136 */ 137 int randomize_va_space __read_mostly = 138 #ifdef CONFIG_COMPAT_BRK 139 1; 140 #else 141 2; 142 #endif 143 144 #ifndef arch_wants_old_prefaulted_pte 145 static inline bool arch_wants_old_prefaulted_pte(void) 146 { 147 /* 148 * Transitioning a PTE from 'old' to 'young' can be expensive on 149 * some architectures, even if it's performed in hardware. By 150 * default, "false" means prefaulted entries will be 'young'. 151 */ 152 return false; 153 } 154 #endif 155 156 static int __init disable_randmaps(char *s) 157 { 158 randomize_va_space = 0; 159 return 1; 160 } 161 __setup("norandmaps", disable_randmaps); 162 163 unsigned long zero_pfn __read_mostly; 164 EXPORT_SYMBOL(zero_pfn); 165 166 unsigned long highest_memmap_pfn __read_mostly; 167 168 /* 169 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 170 */ 171 static int __init init_zero_pfn(void) 172 { 173 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 174 return 0; 175 } 176 early_initcall(init_zero_pfn); 177 178 void mm_trace_rss_stat(struct mm_struct *mm, int member) 179 { 180 trace_rss_stat(mm, member); 181 } 182 183 /* 184 * Note: this doesn't free the actual pages themselves. That 185 * has been handled earlier when unmapping all the memory regions. 186 */ 187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 188 unsigned long addr) 189 { 190 pgtable_t token = pmd_pgtable(*pmd); 191 pmd_clear(pmd); 192 pte_free_tlb(tlb, token, addr); 193 mm_dec_nr_ptes(tlb->mm); 194 } 195 196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 197 unsigned long addr, unsigned long end, 198 unsigned long floor, unsigned long ceiling) 199 { 200 pmd_t *pmd; 201 unsigned long next; 202 unsigned long start; 203 204 start = addr; 205 pmd = pmd_offset(pud, addr); 206 do { 207 next = pmd_addr_end(addr, end); 208 if (pmd_none_or_clear_bad(pmd)) 209 continue; 210 free_pte_range(tlb, pmd, addr); 211 } while (pmd++, addr = next, addr != end); 212 213 start &= PUD_MASK; 214 if (start < floor) 215 return; 216 if (ceiling) { 217 ceiling &= PUD_MASK; 218 if (!ceiling) 219 return; 220 } 221 if (end - 1 > ceiling - 1) 222 return; 223 224 pmd = pmd_offset(pud, start); 225 pud_clear(pud); 226 pmd_free_tlb(tlb, pmd, start); 227 mm_dec_nr_pmds(tlb->mm); 228 } 229 230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 231 unsigned long addr, unsigned long end, 232 unsigned long floor, unsigned long ceiling) 233 { 234 pud_t *pud; 235 unsigned long next; 236 unsigned long start; 237 238 start = addr; 239 pud = pud_offset(p4d, addr); 240 do { 241 next = pud_addr_end(addr, end); 242 if (pud_none_or_clear_bad(pud)) 243 continue; 244 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 245 } while (pud++, addr = next, addr != end); 246 247 start &= P4D_MASK; 248 if (start < floor) 249 return; 250 if (ceiling) { 251 ceiling &= P4D_MASK; 252 if (!ceiling) 253 return; 254 } 255 if (end - 1 > ceiling - 1) 256 return; 257 258 pud = pud_offset(p4d, start); 259 p4d_clear(p4d); 260 pud_free_tlb(tlb, pud, start); 261 mm_dec_nr_puds(tlb->mm); 262 } 263 264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 265 unsigned long addr, unsigned long end, 266 unsigned long floor, unsigned long ceiling) 267 { 268 p4d_t *p4d; 269 unsigned long next; 270 unsigned long start; 271 272 start = addr; 273 p4d = p4d_offset(pgd, addr); 274 do { 275 next = p4d_addr_end(addr, end); 276 if (p4d_none_or_clear_bad(p4d)) 277 continue; 278 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 279 } while (p4d++, addr = next, addr != end); 280 281 start &= PGDIR_MASK; 282 if (start < floor) 283 return; 284 if (ceiling) { 285 ceiling &= PGDIR_MASK; 286 if (!ceiling) 287 return; 288 } 289 if (end - 1 > ceiling - 1) 290 return; 291 292 p4d = p4d_offset(pgd, start); 293 pgd_clear(pgd); 294 p4d_free_tlb(tlb, p4d, start); 295 } 296 297 /* 298 * This function frees user-level page tables of a process. 299 */ 300 void free_pgd_range(struct mmu_gather *tlb, 301 unsigned long addr, unsigned long end, 302 unsigned long floor, unsigned long ceiling) 303 { 304 pgd_t *pgd; 305 unsigned long next; 306 307 /* 308 * The next few lines have given us lots of grief... 309 * 310 * Why are we testing PMD* at this top level? Because often 311 * there will be no work to do at all, and we'd prefer not to 312 * go all the way down to the bottom just to discover that. 313 * 314 * Why all these "- 1"s? Because 0 represents both the bottom 315 * of the address space and the top of it (using -1 for the 316 * top wouldn't help much: the masks would do the wrong thing). 317 * The rule is that addr 0 and floor 0 refer to the bottom of 318 * the address space, but end 0 and ceiling 0 refer to the top 319 * Comparisons need to use "end - 1" and "ceiling - 1" (though 320 * that end 0 case should be mythical). 321 * 322 * Wherever addr is brought up or ceiling brought down, we must 323 * be careful to reject "the opposite 0" before it confuses the 324 * subsequent tests. But what about where end is brought down 325 * by PMD_SIZE below? no, end can't go down to 0 there. 326 * 327 * Whereas we round start (addr) and ceiling down, by different 328 * masks at different levels, in order to test whether a table 329 * now has no other vmas using it, so can be freed, we don't 330 * bother to round floor or end up - the tests don't need that. 331 */ 332 333 addr &= PMD_MASK; 334 if (addr < floor) { 335 addr += PMD_SIZE; 336 if (!addr) 337 return; 338 } 339 if (ceiling) { 340 ceiling &= PMD_MASK; 341 if (!ceiling) 342 return; 343 } 344 if (end - 1 > ceiling - 1) 345 end -= PMD_SIZE; 346 if (addr > end - 1) 347 return; 348 /* 349 * We add page table cache pages with PAGE_SIZE, 350 * (see pte_free_tlb()), flush the tlb if we need 351 */ 352 tlb_change_page_size(tlb, PAGE_SIZE); 353 pgd = pgd_offset(tlb->mm, addr); 354 do { 355 next = pgd_addr_end(addr, end); 356 if (pgd_none_or_clear_bad(pgd)) 357 continue; 358 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 359 } while (pgd++, addr = next, addr != end); 360 } 361 362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 363 struct vm_area_struct *vma, unsigned long floor, 364 unsigned long ceiling, bool mm_wr_locked) 365 { 366 struct unlink_vma_file_batch vb; 367 368 do { 369 unsigned long addr = vma->vm_start; 370 struct vm_area_struct *next; 371 372 /* 373 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 374 * be 0. This will underflow and is okay. 375 */ 376 next = mas_find(mas, ceiling - 1); 377 if (unlikely(xa_is_zero(next))) 378 next = NULL; 379 380 /* 381 * Hide vma from rmap and truncate_pagecache before freeing 382 * pgtables 383 */ 384 if (mm_wr_locked) 385 vma_start_write(vma); 386 unlink_anon_vmas(vma); 387 388 if (is_vm_hugetlb_page(vma)) { 389 unlink_file_vma(vma); 390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 391 floor, next ? next->vm_start : ceiling); 392 } else { 393 unlink_file_vma_batch_init(&vb); 394 unlink_file_vma_batch_add(&vb, vma); 395 396 /* 397 * Optimization: gather nearby vmas into one call down 398 */ 399 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 400 && !is_vm_hugetlb_page(next)) { 401 vma = next; 402 next = mas_find(mas, ceiling - 1); 403 if (unlikely(xa_is_zero(next))) 404 next = NULL; 405 if (mm_wr_locked) 406 vma_start_write(vma); 407 unlink_anon_vmas(vma); 408 unlink_file_vma_batch_add(&vb, vma); 409 } 410 unlink_file_vma_batch_final(&vb); 411 free_pgd_range(tlb, addr, vma->vm_end, 412 floor, next ? next->vm_start : ceiling); 413 } 414 vma = next; 415 } while (vma); 416 } 417 418 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 419 { 420 spinlock_t *ptl = pmd_lock(mm, pmd); 421 422 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 423 mm_inc_nr_ptes(mm); 424 /* 425 * Ensure all pte setup (eg. pte page lock and page clearing) are 426 * visible before the pte is made visible to other CPUs by being 427 * put into page tables. 428 * 429 * The other side of the story is the pointer chasing in the page 430 * table walking code (when walking the page table without locking; 431 * ie. most of the time). Fortunately, these data accesses consist 432 * of a chain of data-dependent loads, meaning most CPUs (alpha 433 * being the notable exception) will already guarantee loads are 434 * seen in-order. See the alpha page table accessors for the 435 * smp_rmb() barriers in page table walking code. 436 */ 437 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 438 pmd_populate(mm, pmd, *pte); 439 *pte = NULL; 440 } 441 spin_unlock(ptl); 442 } 443 444 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 445 { 446 pgtable_t new = pte_alloc_one(mm); 447 if (!new) 448 return -ENOMEM; 449 450 pmd_install(mm, pmd, &new); 451 if (new) 452 pte_free(mm, new); 453 return 0; 454 } 455 456 int __pte_alloc_kernel(pmd_t *pmd) 457 { 458 pte_t *new = pte_alloc_one_kernel(&init_mm); 459 if (!new) 460 return -ENOMEM; 461 462 spin_lock(&init_mm.page_table_lock); 463 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 464 smp_wmb(); /* See comment in pmd_install() */ 465 pmd_populate_kernel(&init_mm, pmd, new); 466 new = NULL; 467 } 468 spin_unlock(&init_mm.page_table_lock); 469 if (new) 470 pte_free_kernel(&init_mm, new); 471 return 0; 472 } 473 474 static inline void init_rss_vec(int *rss) 475 { 476 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 477 } 478 479 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 480 { 481 int i; 482 483 for (i = 0; i < NR_MM_COUNTERS; i++) 484 if (rss[i]) 485 add_mm_counter(mm, i, rss[i]); 486 } 487 488 /* 489 * This function is called to print an error when a bad pte 490 * is found. For example, we might have a PFN-mapped pte in 491 * a region that doesn't allow it. 492 * 493 * The calling function must still handle the error. 494 */ 495 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 496 pte_t pte, struct page *page) 497 { 498 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 499 p4d_t *p4d = p4d_offset(pgd, addr); 500 pud_t *pud = pud_offset(p4d, addr); 501 pmd_t *pmd = pmd_offset(pud, addr); 502 struct address_space *mapping; 503 pgoff_t index; 504 static unsigned long resume; 505 static unsigned long nr_shown; 506 static unsigned long nr_unshown; 507 508 /* 509 * Allow a burst of 60 reports, then keep quiet for that minute; 510 * or allow a steady drip of one report per second. 511 */ 512 if (nr_shown == 60) { 513 if (time_before(jiffies, resume)) { 514 nr_unshown++; 515 return; 516 } 517 if (nr_unshown) { 518 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 519 nr_unshown); 520 nr_unshown = 0; 521 } 522 nr_shown = 0; 523 } 524 if (nr_shown++ == 0) 525 resume = jiffies + 60 * HZ; 526 527 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 528 index = linear_page_index(vma, addr); 529 530 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 531 current->comm, 532 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 533 if (page) 534 dump_page(page, "bad pte"); 535 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 536 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 537 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 538 vma->vm_file, 539 vma->vm_ops ? vma->vm_ops->fault : NULL, 540 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 541 mapping ? mapping->a_ops->read_folio : NULL); 542 dump_stack(); 543 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 544 } 545 546 /* 547 * vm_normal_page -- This function gets the "struct page" associated with a pte. 548 * 549 * "Special" mappings do not wish to be associated with a "struct page" (either 550 * it doesn't exist, or it exists but they don't want to touch it). In this 551 * case, NULL is returned here. "Normal" mappings do have a struct page. 552 * 553 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 554 * pte bit, in which case this function is trivial. Secondly, an architecture 555 * may not have a spare pte bit, which requires a more complicated scheme, 556 * described below. 557 * 558 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 559 * special mapping (even if there are underlying and valid "struct pages"). 560 * COWed pages of a VM_PFNMAP are always normal. 561 * 562 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 563 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 564 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 565 * mapping will always honor the rule 566 * 567 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 568 * 569 * And for normal mappings this is false. 570 * 571 * This restricts such mappings to be a linear translation from virtual address 572 * to pfn. To get around this restriction, we allow arbitrary mappings so long 573 * as the vma is not a COW mapping; in that case, we know that all ptes are 574 * special (because none can have been COWed). 575 * 576 * 577 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 578 * 579 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 580 * page" backing, however the difference is that _all_ pages with a struct 581 * page (that is, those where pfn_valid is true) are refcounted and considered 582 * normal pages by the VM. The only exception are zeropages, which are 583 * *never* refcounted. 584 * 585 * The disadvantage is that pages are refcounted (which can be slower and 586 * simply not an option for some PFNMAP users). The advantage is that we 587 * don't have to follow the strict linearity rule of PFNMAP mappings in 588 * order to support COWable mappings. 589 * 590 */ 591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 592 pte_t pte) 593 { 594 unsigned long pfn = pte_pfn(pte); 595 596 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 597 if (likely(!pte_special(pte))) 598 goto check_pfn; 599 if (vma->vm_ops && vma->vm_ops->find_special_page) 600 return vma->vm_ops->find_special_page(vma, addr); 601 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 602 return NULL; 603 if (is_zero_pfn(pfn)) 604 return NULL; 605 if (pte_devmap(pte)) 606 /* 607 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 608 * and will have refcounts incremented on their struct pages 609 * when they are inserted into PTEs, thus they are safe to 610 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 611 * do not have refcounts. Example of legacy ZONE_DEVICE is 612 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 613 */ 614 return NULL; 615 616 print_bad_pte(vma, addr, pte, NULL); 617 return NULL; 618 } 619 620 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 621 622 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 623 if (vma->vm_flags & VM_MIXEDMAP) { 624 if (!pfn_valid(pfn)) 625 return NULL; 626 if (is_zero_pfn(pfn)) 627 return NULL; 628 goto out; 629 } else { 630 unsigned long off; 631 off = (addr - vma->vm_start) >> PAGE_SHIFT; 632 if (pfn == vma->vm_pgoff + off) 633 return NULL; 634 if (!is_cow_mapping(vma->vm_flags)) 635 return NULL; 636 } 637 } 638 639 if (is_zero_pfn(pfn)) 640 return NULL; 641 642 check_pfn: 643 if (unlikely(pfn > highest_memmap_pfn)) { 644 print_bad_pte(vma, addr, pte, NULL); 645 return NULL; 646 } 647 648 /* 649 * NOTE! We still have PageReserved() pages in the page tables. 650 * eg. VDSO mappings can cause them to exist. 651 */ 652 out: 653 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 654 return pfn_to_page(pfn); 655 } 656 657 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 658 pte_t pte) 659 { 660 struct page *page = vm_normal_page(vma, addr, pte); 661 662 if (page) 663 return page_folio(page); 664 return NULL; 665 } 666 667 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 668 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 669 pmd_t pmd) 670 { 671 unsigned long pfn = pmd_pfn(pmd); 672 673 /* Currently it's only used for huge pfnmaps */ 674 if (unlikely(pmd_special(pmd))) 675 return NULL; 676 677 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 678 if (vma->vm_flags & VM_MIXEDMAP) { 679 if (!pfn_valid(pfn)) 680 return NULL; 681 goto out; 682 } else { 683 unsigned long off; 684 off = (addr - vma->vm_start) >> PAGE_SHIFT; 685 if (pfn == vma->vm_pgoff + off) 686 return NULL; 687 if (!is_cow_mapping(vma->vm_flags)) 688 return NULL; 689 } 690 } 691 692 if (pmd_devmap(pmd)) 693 return NULL; 694 if (is_huge_zero_pmd(pmd)) 695 return NULL; 696 if (unlikely(pfn > highest_memmap_pfn)) 697 return NULL; 698 699 /* 700 * NOTE! We still have PageReserved() pages in the page tables. 701 * eg. VDSO mappings can cause them to exist. 702 */ 703 out: 704 return pfn_to_page(pfn); 705 } 706 707 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 708 unsigned long addr, pmd_t pmd) 709 { 710 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 711 712 if (page) 713 return page_folio(page); 714 return NULL; 715 } 716 #endif 717 718 static void restore_exclusive_pte(struct vm_area_struct *vma, 719 struct page *page, unsigned long address, 720 pte_t *ptep) 721 { 722 struct folio *folio = page_folio(page); 723 pte_t orig_pte; 724 pte_t pte; 725 swp_entry_t entry; 726 727 orig_pte = ptep_get(ptep); 728 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 729 if (pte_swp_soft_dirty(orig_pte)) 730 pte = pte_mksoft_dirty(pte); 731 732 entry = pte_to_swp_entry(orig_pte); 733 if (pte_swp_uffd_wp(orig_pte)) 734 pte = pte_mkuffd_wp(pte); 735 else if (is_writable_device_exclusive_entry(entry)) 736 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 737 738 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) && 739 PageAnonExclusive(page)), folio); 740 741 /* 742 * No need to take a page reference as one was already 743 * created when the swap entry was made. 744 */ 745 if (folio_test_anon(folio)) 746 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE); 747 else 748 /* 749 * Currently device exclusive access only supports anonymous 750 * memory so the entry shouldn't point to a filebacked page. 751 */ 752 WARN_ON_ONCE(1); 753 754 set_pte_at(vma->vm_mm, address, ptep, pte); 755 756 /* 757 * No need to invalidate - it was non-present before. However 758 * secondary CPUs may have mappings that need invalidating. 759 */ 760 update_mmu_cache(vma, address, ptep); 761 } 762 763 /* 764 * Tries to restore an exclusive pte if the page lock can be acquired without 765 * sleeping. 766 */ 767 static int 768 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 769 unsigned long addr) 770 { 771 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 772 struct page *page = pfn_swap_entry_to_page(entry); 773 774 if (trylock_page(page)) { 775 restore_exclusive_pte(vma, page, addr, src_pte); 776 unlock_page(page); 777 return 0; 778 } 779 780 return -EBUSY; 781 } 782 783 /* 784 * copy one vm_area from one task to the other. Assumes the page tables 785 * already present in the new task to be cleared in the whole range 786 * covered by this vma. 787 */ 788 789 static unsigned long 790 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 791 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 792 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 793 { 794 unsigned long vm_flags = dst_vma->vm_flags; 795 pte_t orig_pte = ptep_get(src_pte); 796 pte_t pte = orig_pte; 797 struct folio *folio; 798 struct page *page; 799 swp_entry_t entry = pte_to_swp_entry(orig_pte); 800 801 if (likely(!non_swap_entry(entry))) { 802 if (swap_duplicate(entry) < 0) 803 return -EIO; 804 805 /* make sure dst_mm is on swapoff's mmlist. */ 806 if (unlikely(list_empty(&dst_mm->mmlist))) { 807 spin_lock(&mmlist_lock); 808 if (list_empty(&dst_mm->mmlist)) 809 list_add(&dst_mm->mmlist, 810 &src_mm->mmlist); 811 spin_unlock(&mmlist_lock); 812 } 813 /* Mark the swap entry as shared. */ 814 if (pte_swp_exclusive(orig_pte)) { 815 pte = pte_swp_clear_exclusive(orig_pte); 816 set_pte_at(src_mm, addr, src_pte, pte); 817 } 818 rss[MM_SWAPENTS]++; 819 } else if (is_migration_entry(entry)) { 820 folio = pfn_swap_entry_folio(entry); 821 822 rss[mm_counter(folio)]++; 823 824 if (!is_readable_migration_entry(entry) && 825 is_cow_mapping(vm_flags)) { 826 /* 827 * COW mappings require pages in both parent and child 828 * to be set to read. A previously exclusive entry is 829 * now shared. 830 */ 831 entry = make_readable_migration_entry( 832 swp_offset(entry)); 833 pte = swp_entry_to_pte(entry); 834 if (pte_swp_soft_dirty(orig_pte)) 835 pte = pte_swp_mksoft_dirty(pte); 836 if (pte_swp_uffd_wp(orig_pte)) 837 pte = pte_swp_mkuffd_wp(pte); 838 set_pte_at(src_mm, addr, src_pte, pte); 839 } 840 } else if (is_device_private_entry(entry)) { 841 page = pfn_swap_entry_to_page(entry); 842 folio = page_folio(page); 843 844 /* 845 * Update rss count even for unaddressable pages, as 846 * they should treated just like normal pages in this 847 * respect. 848 * 849 * We will likely want to have some new rss counters 850 * for unaddressable pages, at some point. But for now 851 * keep things as they are. 852 */ 853 folio_get(folio); 854 rss[mm_counter(folio)]++; 855 /* Cannot fail as these pages cannot get pinned. */ 856 folio_try_dup_anon_rmap_pte(folio, page, src_vma); 857 858 /* 859 * We do not preserve soft-dirty information, because so 860 * far, checkpoint/restore is the only feature that 861 * requires that. And checkpoint/restore does not work 862 * when a device driver is involved (you cannot easily 863 * save and restore device driver state). 864 */ 865 if (is_writable_device_private_entry(entry) && 866 is_cow_mapping(vm_flags)) { 867 entry = make_readable_device_private_entry( 868 swp_offset(entry)); 869 pte = swp_entry_to_pte(entry); 870 if (pte_swp_uffd_wp(orig_pte)) 871 pte = pte_swp_mkuffd_wp(pte); 872 set_pte_at(src_mm, addr, src_pte, pte); 873 } 874 } else if (is_device_exclusive_entry(entry)) { 875 /* 876 * Make device exclusive entries present by restoring the 877 * original entry then copying as for a present pte. Device 878 * exclusive entries currently only support private writable 879 * (ie. COW) mappings. 880 */ 881 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 882 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 883 return -EBUSY; 884 return -ENOENT; 885 } else if (is_pte_marker_entry(entry)) { 886 pte_marker marker = copy_pte_marker(entry, dst_vma); 887 888 if (marker) 889 set_pte_at(dst_mm, addr, dst_pte, 890 make_pte_marker(marker)); 891 return 0; 892 } 893 if (!userfaultfd_wp(dst_vma)) 894 pte = pte_swp_clear_uffd_wp(pte); 895 set_pte_at(dst_mm, addr, dst_pte, pte); 896 return 0; 897 } 898 899 /* 900 * Copy a present and normal page. 901 * 902 * NOTE! The usual case is that this isn't required; 903 * instead, the caller can just increase the page refcount 904 * and re-use the pte the traditional way. 905 * 906 * And if we need a pre-allocated page but don't yet have 907 * one, return a negative error to let the preallocation 908 * code know so that it can do so outside the page table 909 * lock. 910 */ 911 static inline int 912 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 913 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 914 struct folio **prealloc, struct page *page) 915 { 916 struct folio *new_folio; 917 pte_t pte; 918 919 new_folio = *prealloc; 920 if (!new_folio) 921 return -EAGAIN; 922 923 /* 924 * We have a prealloc page, all good! Take it 925 * over and copy the page & arm it. 926 */ 927 928 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 929 return -EHWPOISON; 930 931 *prealloc = NULL; 932 __folio_mark_uptodate(new_folio); 933 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 934 folio_add_lru_vma(new_folio, dst_vma); 935 rss[MM_ANONPAGES]++; 936 937 /* All done, just insert the new page copy in the child */ 938 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 939 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 940 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 941 /* Uffd-wp needs to be delivered to dest pte as well */ 942 pte = pte_mkuffd_wp(pte); 943 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 944 return 0; 945 } 946 947 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 948 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 949 pte_t pte, unsigned long addr, int nr) 950 { 951 struct mm_struct *src_mm = src_vma->vm_mm; 952 953 /* If it's a COW mapping, write protect it both processes. */ 954 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 955 wrprotect_ptes(src_mm, addr, src_pte, nr); 956 pte = pte_wrprotect(pte); 957 } 958 959 /* If it's a shared mapping, mark it clean in the child. */ 960 if (src_vma->vm_flags & VM_SHARED) 961 pte = pte_mkclean(pte); 962 pte = pte_mkold(pte); 963 964 if (!userfaultfd_wp(dst_vma)) 965 pte = pte_clear_uffd_wp(pte); 966 967 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 968 } 969 970 /* 971 * Copy one present PTE, trying to batch-process subsequent PTEs that map 972 * consecutive pages of the same folio by copying them as well. 973 * 974 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 975 * Otherwise, returns the number of copied PTEs (at least 1). 976 */ 977 static inline int 978 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 979 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 980 int max_nr, int *rss, struct folio **prealloc) 981 { 982 struct page *page; 983 struct folio *folio; 984 bool any_writable; 985 fpb_t flags = 0; 986 int err, nr; 987 988 page = vm_normal_page(src_vma, addr, pte); 989 if (unlikely(!page)) 990 goto copy_pte; 991 992 folio = page_folio(page); 993 994 /* 995 * If we likely have to copy, just don't bother with batching. Make 996 * sure that the common "small folio" case is as fast as possible 997 * by keeping the batching logic separate. 998 */ 999 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1000 if (src_vma->vm_flags & VM_SHARED) 1001 flags |= FPB_IGNORE_DIRTY; 1002 if (!vma_soft_dirty_enabled(src_vma)) 1003 flags |= FPB_IGNORE_SOFT_DIRTY; 1004 1005 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 1006 &any_writable, NULL, NULL); 1007 folio_ref_add(folio, nr); 1008 if (folio_test_anon(folio)) { 1009 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1010 nr, src_vma))) { 1011 folio_ref_sub(folio, nr); 1012 return -EAGAIN; 1013 } 1014 rss[MM_ANONPAGES] += nr; 1015 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1016 } else { 1017 folio_dup_file_rmap_ptes(folio, page, nr); 1018 rss[mm_counter_file(folio)] += nr; 1019 } 1020 if (any_writable) 1021 pte = pte_mkwrite(pte, src_vma); 1022 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1023 addr, nr); 1024 return nr; 1025 } 1026 1027 folio_get(folio); 1028 if (folio_test_anon(folio)) { 1029 /* 1030 * If this page may have been pinned by the parent process, 1031 * copy the page immediately for the child so that we'll always 1032 * guarantee the pinned page won't be randomly replaced in the 1033 * future. 1034 */ 1035 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) { 1036 /* Page may be pinned, we have to copy. */ 1037 folio_put(folio); 1038 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1039 addr, rss, prealloc, page); 1040 return err ? err : 1; 1041 } 1042 rss[MM_ANONPAGES]++; 1043 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1044 } else { 1045 folio_dup_file_rmap_pte(folio, page); 1046 rss[mm_counter_file(folio)]++; 1047 } 1048 1049 copy_pte: 1050 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1051 return 1; 1052 } 1053 1054 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1055 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1056 { 1057 struct folio *new_folio; 1058 1059 if (need_zero) 1060 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1061 else 1062 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1063 1064 if (!new_folio) 1065 return NULL; 1066 1067 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1068 folio_put(new_folio); 1069 return NULL; 1070 } 1071 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1072 1073 return new_folio; 1074 } 1075 1076 static int 1077 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1078 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1079 unsigned long end) 1080 { 1081 struct mm_struct *dst_mm = dst_vma->vm_mm; 1082 struct mm_struct *src_mm = src_vma->vm_mm; 1083 pte_t *orig_src_pte, *orig_dst_pte; 1084 pte_t *src_pte, *dst_pte; 1085 pmd_t dummy_pmdval; 1086 pte_t ptent; 1087 spinlock_t *src_ptl, *dst_ptl; 1088 int progress, max_nr, ret = 0; 1089 int rss[NR_MM_COUNTERS]; 1090 swp_entry_t entry = (swp_entry_t){0}; 1091 struct folio *prealloc = NULL; 1092 int nr; 1093 1094 again: 1095 progress = 0; 1096 init_rss_vec(rss); 1097 1098 /* 1099 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1100 * error handling here, assume that exclusive mmap_lock on dst and src 1101 * protects anon from unexpected THP transitions; with shmem and file 1102 * protected by mmap_lock-less collapse skipping areas with anon_vma 1103 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1104 * can remove such assumptions later, but this is good enough for now. 1105 */ 1106 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1107 if (!dst_pte) { 1108 ret = -ENOMEM; 1109 goto out; 1110 } 1111 1112 /* 1113 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1114 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1115 * the PTE page is stable, and there is no need to get pmdval and do 1116 * pmd_same() check. 1117 */ 1118 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1119 &src_ptl); 1120 if (!src_pte) { 1121 pte_unmap_unlock(dst_pte, dst_ptl); 1122 /* ret == 0 */ 1123 goto out; 1124 } 1125 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1126 orig_src_pte = src_pte; 1127 orig_dst_pte = dst_pte; 1128 arch_enter_lazy_mmu_mode(); 1129 1130 do { 1131 nr = 1; 1132 1133 /* 1134 * We are holding two locks at this point - either of them 1135 * could generate latencies in another task on another CPU. 1136 */ 1137 if (progress >= 32) { 1138 progress = 0; 1139 if (need_resched() || 1140 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1141 break; 1142 } 1143 ptent = ptep_get(src_pte); 1144 if (pte_none(ptent)) { 1145 progress++; 1146 continue; 1147 } 1148 if (unlikely(!pte_present(ptent))) { 1149 ret = copy_nonpresent_pte(dst_mm, src_mm, 1150 dst_pte, src_pte, 1151 dst_vma, src_vma, 1152 addr, rss); 1153 if (ret == -EIO) { 1154 entry = pte_to_swp_entry(ptep_get(src_pte)); 1155 break; 1156 } else if (ret == -EBUSY) { 1157 break; 1158 } else if (!ret) { 1159 progress += 8; 1160 continue; 1161 } 1162 ptent = ptep_get(src_pte); 1163 VM_WARN_ON_ONCE(!pte_present(ptent)); 1164 1165 /* 1166 * Device exclusive entry restored, continue by copying 1167 * the now present pte. 1168 */ 1169 WARN_ON_ONCE(ret != -ENOENT); 1170 } 1171 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1172 max_nr = (end - addr) / PAGE_SIZE; 1173 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1174 ptent, addr, max_nr, rss, &prealloc); 1175 /* 1176 * If we need a pre-allocated page for this pte, drop the 1177 * locks, allocate, and try again. 1178 * If copy failed due to hwpoison in source page, break out. 1179 */ 1180 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1181 break; 1182 if (unlikely(prealloc)) { 1183 /* 1184 * pre-alloc page cannot be reused by next time so as 1185 * to strictly follow mempolicy (e.g., alloc_page_vma() 1186 * will allocate page according to address). This 1187 * could only happen if one pinned pte changed. 1188 */ 1189 folio_put(prealloc); 1190 prealloc = NULL; 1191 } 1192 nr = ret; 1193 progress += 8 * nr; 1194 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1195 addr != end); 1196 1197 arch_leave_lazy_mmu_mode(); 1198 pte_unmap_unlock(orig_src_pte, src_ptl); 1199 add_mm_rss_vec(dst_mm, rss); 1200 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1201 cond_resched(); 1202 1203 if (ret == -EIO) { 1204 VM_WARN_ON_ONCE(!entry.val); 1205 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1206 ret = -ENOMEM; 1207 goto out; 1208 } 1209 entry.val = 0; 1210 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1211 goto out; 1212 } else if (ret == -EAGAIN) { 1213 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1214 if (!prealloc) 1215 return -ENOMEM; 1216 } else if (ret < 0) { 1217 VM_WARN_ON_ONCE(1); 1218 } 1219 1220 /* We've captured and resolved the error. Reset, try again. */ 1221 ret = 0; 1222 1223 if (addr != end) 1224 goto again; 1225 out: 1226 if (unlikely(prealloc)) 1227 folio_put(prealloc); 1228 return ret; 1229 } 1230 1231 static inline int 1232 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1233 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1234 unsigned long end) 1235 { 1236 struct mm_struct *dst_mm = dst_vma->vm_mm; 1237 struct mm_struct *src_mm = src_vma->vm_mm; 1238 pmd_t *src_pmd, *dst_pmd; 1239 unsigned long next; 1240 1241 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1242 if (!dst_pmd) 1243 return -ENOMEM; 1244 src_pmd = pmd_offset(src_pud, addr); 1245 do { 1246 next = pmd_addr_end(addr, end); 1247 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1248 || pmd_devmap(*src_pmd)) { 1249 int err; 1250 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1251 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1252 addr, dst_vma, src_vma); 1253 if (err == -ENOMEM) 1254 return -ENOMEM; 1255 if (!err) 1256 continue; 1257 /* fall through */ 1258 } 1259 if (pmd_none_or_clear_bad(src_pmd)) 1260 continue; 1261 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1262 addr, next)) 1263 return -ENOMEM; 1264 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1265 return 0; 1266 } 1267 1268 static inline int 1269 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1270 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1271 unsigned long end) 1272 { 1273 struct mm_struct *dst_mm = dst_vma->vm_mm; 1274 struct mm_struct *src_mm = src_vma->vm_mm; 1275 pud_t *src_pud, *dst_pud; 1276 unsigned long next; 1277 1278 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1279 if (!dst_pud) 1280 return -ENOMEM; 1281 src_pud = pud_offset(src_p4d, addr); 1282 do { 1283 next = pud_addr_end(addr, end); 1284 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1285 int err; 1286 1287 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1288 err = copy_huge_pud(dst_mm, src_mm, 1289 dst_pud, src_pud, addr, src_vma); 1290 if (err == -ENOMEM) 1291 return -ENOMEM; 1292 if (!err) 1293 continue; 1294 /* fall through */ 1295 } 1296 if (pud_none_or_clear_bad(src_pud)) 1297 continue; 1298 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1299 addr, next)) 1300 return -ENOMEM; 1301 } while (dst_pud++, src_pud++, addr = next, addr != end); 1302 return 0; 1303 } 1304 1305 static inline int 1306 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1307 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1308 unsigned long end) 1309 { 1310 struct mm_struct *dst_mm = dst_vma->vm_mm; 1311 p4d_t *src_p4d, *dst_p4d; 1312 unsigned long next; 1313 1314 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1315 if (!dst_p4d) 1316 return -ENOMEM; 1317 src_p4d = p4d_offset(src_pgd, addr); 1318 do { 1319 next = p4d_addr_end(addr, end); 1320 if (p4d_none_or_clear_bad(src_p4d)) 1321 continue; 1322 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1323 addr, next)) 1324 return -ENOMEM; 1325 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1326 return 0; 1327 } 1328 1329 /* 1330 * Return true if the vma needs to copy the pgtable during this fork(). Return 1331 * false when we can speed up fork() by allowing lazy page faults later until 1332 * when the child accesses the memory range. 1333 */ 1334 static bool 1335 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1336 { 1337 /* 1338 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1339 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1340 * contains uffd-wp protection information, that's something we can't 1341 * retrieve from page cache, and skip copying will lose those info. 1342 */ 1343 if (userfaultfd_wp(dst_vma)) 1344 return true; 1345 1346 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1347 return true; 1348 1349 if (src_vma->anon_vma) 1350 return true; 1351 1352 /* 1353 * Don't copy ptes where a page fault will fill them correctly. Fork 1354 * becomes much lighter when there are big shared or private readonly 1355 * mappings. The tradeoff is that copy_page_range is more efficient 1356 * than faulting. 1357 */ 1358 return false; 1359 } 1360 1361 int 1362 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1363 { 1364 pgd_t *src_pgd, *dst_pgd; 1365 unsigned long next; 1366 unsigned long addr = src_vma->vm_start; 1367 unsigned long end = src_vma->vm_end; 1368 struct mm_struct *dst_mm = dst_vma->vm_mm; 1369 struct mm_struct *src_mm = src_vma->vm_mm; 1370 struct mmu_notifier_range range; 1371 bool is_cow; 1372 int ret; 1373 1374 if (!vma_needs_copy(dst_vma, src_vma)) 1375 return 0; 1376 1377 if (is_vm_hugetlb_page(src_vma)) 1378 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1379 1380 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1381 /* 1382 * We do not free on error cases below as remove_vma 1383 * gets called on error from higher level routine 1384 */ 1385 ret = track_pfn_copy(src_vma); 1386 if (ret) 1387 return ret; 1388 } 1389 1390 /* 1391 * We need to invalidate the secondary MMU mappings only when 1392 * there could be a permission downgrade on the ptes of the 1393 * parent mm. And a permission downgrade will only happen if 1394 * is_cow_mapping() returns true. 1395 */ 1396 is_cow = is_cow_mapping(src_vma->vm_flags); 1397 1398 if (is_cow) { 1399 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1400 0, src_mm, addr, end); 1401 mmu_notifier_invalidate_range_start(&range); 1402 /* 1403 * Disabling preemption is not needed for the write side, as 1404 * the read side doesn't spin, but goes to the mmap_lock. 1405 * 1406 * Use the raw variant of the seqcount_t write API to avoid 1407 * lockdep complaining about preemptibility. 1408 */ 1409 vma_assert_write_locked(src_vma); 1410 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1411 } 1412 1413 ret = 0; 1414 dst_pgd = pgd_offset(dst_mm, addr); 1415 src_pgd = pgd_offset(src_mm, addr); 1416 do { 1417 next = pgd_addr_end(addr, end); 1418 if (pgd_none_or_clear_bad(src_pgd)) 1419 continue; 1420 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1421 addr, next))) { 1422 untrack_pfn_clear(dst_vma); 1423 ret = -ENOMEM; 1424 break; 1425 } 1426 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1427 1428 if (is_cow) { 1429 raw_write_seqcount_end(&src_mm->write_protect_seq); 1430 mmu_notifier_invalidate_range_end(&range); 1431 } 1432 return ret; 1433 } 1434 1435 /* Whether we should zap all COWed (private) pages too */ 1436 static inline bool should_zap_cows(struct zap_details *details) 1437 { 1438 /* By default, zap all pages */ 1439 if (!details || details->reclaim_pt) 1440 return true; 1441 1442 /* Or, we zap COWed pages only if the caller wants to */ 1443 return details->even_cows; 1444 } 1445 1446 /* Decides whether we should zap this folio with the folio pointer specified */ 1447 static inline bool should_zap_folio(struct zap_details *details, 1448 struct folio *folio) 1449 { 1450 /* If we can make a decision without *folio.. */ 1451 if (should_zap_cows(details)) 1452 return true; 1453 1454 /* Otherwise we should only zap non-anon folios */ 1455 return !folio_test_anon(folio); 1456 } 1457 1458 static inline bool zap_drop_markers(struct zap_details *details) 1459 { 1460 if (!details) 1461 return false; 1462 1463 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1464 } 1465 1466 /* 1467 * This function makes sure that we'll replace the none pte with an uffd-wp 1468 * swap special pte marker when necessary. Must be with the pgtable lock held. 1469 * 1470 * Returns true if uffd-wp ptes was installed, false otherwise. 1471 */ 1472 static inline bool 1473 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1474 unsigned long addr, pte_t *pte, int nr, 1475 struct zap_details *details, pte_t pteval) 1476 { 1477 bool was_installed = false; 1478 1479 #ifdef CONFIG_PTE_MARKER_UFFD_WP 1480 /* Zap on anonymous always means dropping everything */ 1481 if (vma_is_anonymous(vma)) 1482 return false; 1483 1484 if (zap_drop_markers(details)) 1485 return false; 1486 1487 for (;;) { 1488 /* the PFN in the PTE is irrelevant. */ 1489 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1490 was_installed = true; 1491 if (--nr == 0) 1492 break; 1493 pte++; 1494 addr += PAGE_SIZE; 1495 } 1496 #endif 1497 return was_installed; 1498 } 1499 1500 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1501 struct vm_area_struct *vma, struct folio *folio, 1502 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1503 unsigned long addr, struct zap_details *details, int *rss, 1504 bool *force_flush, bool *force_break, bool *any_skipped) 1505 { 1506 struct mm_struct *mm = tlb->mm; 1507 bool delay_rmap = false; 1508 1509 if (!folio_test_anon(folio)) { 1510 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1511 if (pte_dirty(ptent)) { 1512 folio_mark_dirty(folio); 1513 if (tlb_delay_rmap(tlb)) { 1514 delay_rmap = true; 1515 *force_flush = true; 1516 } 1517 } 1518 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1519 folio_mark_accessed(folio); 1520 rss[mm_counter(folio)] -= nr; 1521 } else { 1522 /* We don't need up-to-date accessed/dirty bits. */ 1523 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1524 rss[MM_ANONPAGES] -= nr; 1525 } 1526 /* Checking a single PTE in a batch is sufficient. */ 1527 arch_check_zapped_pte(vma, ptent); 1528 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1529 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1530 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1531 nr, details, ptent); 1532 1533 if (!delay_rmap) { 1534 folio_remove_rmap_ptes(folio, page, nr, vma); 1535 1536 if (unlikely(folio_mapcount(folio) < 0)) 1537 print_bad_pte(vma, addr, ptent, page); 1538 } 1539 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1540 *force_flush = true; 1541 *force_break = true; 1542 } 1543 } 1544 1545 /* 1546 * Zap or skip at least one present PTE, trying to batch-process subsequent 1547 * PTEs that map consecutive pages of the same folio. 1548 * 1549 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1550 */ 1551 static inline int zap_present_ptes(struct mmu_gather *tlb, 1552 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1553 unsigned int max_nr, unsigned long addr, 1554 struct zap_details *details, int *rss, bool *force_flush, 1555 bool *force_break, bool *any_skipped) 1556 { 1557 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1558 struct mm_struct *mm = tlb->mm; 1559 struct folio *folio; 1560 struct page *page; 1561 int nr; 1562 1563 page = vm_normal_page(vma, addr, ptent); 1564 if (!page) { 1565 /* We don't need up-to-date accessed/dirty bits. */ 1566 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1567 arch_check_zapped_pte(vma, ptent); 1568 tlb_remove_tlb_entry(tlb, pte, addr); 1569 if (userfaultfd_pte_wp(vma, ptent)) 1570 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1571 pte, 1, details, ptent); 1572 ksm_might_unmap_zero_page(mm, ptent); 1573 return 1; 1574 } 1575 1576 folio = page_folio(page); 1577 if (unlikely(!should_zap_folio(details, folio))) { 1578 *any_skipped = true; 1579 return 1; 1580 } 1581 1582 /* 1583 * Make sure that the common "small folio" case is as fast as possible 1584 * by keeping the batching logic separate. 1585 */ 1586 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1587 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1588 NULL, NULL, NULL); 1589 1590 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1591 addr, details, rss, force_flush, 1592 force_break, any_skipped); 1593 return nr; 1594 } 1595 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1596 details, rss, force_flush, force_break, any_skipped); 1597 return 1; 1598 } 1599 1600 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1601 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1602 unsigned int max_nr, unsigned long addr, 1603 struct zap_details *details, int *rss, bool *any_skipped) 1604 { 1605 swp_entry_t entry; 1606 int nr = 1; 1607 1608 *any_skipped = true; 1609 entry = pte_to_swp_entry(ptent); 1610 if (is_device_private_entry(entry) || 1611 is_device_exclusive_entry(entry)) { 1612 struct page *page = pfn_swap_entry_to_page(entry); 1613 struct folio *folio = page_folio(page); 1614 1615 if (unlikely(!should_zap_folio(details, folio))) 1616 return 1; 1617 /* 1618 * Both device private/exclusive mappings should only 1619 * work with anonymous page so far, so we don't need to 1620 * consider uffd-wp bit when zap. For more information, 1621 * see zap_install_uffd_wp_if_needed(). 1622 */ 1623 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1624 rss[mm_counter(folio)]--; 1625 if (is_device_private_entry(entry)) 1626 folio_remove_rmap_pte(folio, page, vma); 1627 folio_put(folio); 1628 } else if (!non_swap_entry(entry)) { 1629 /* Genuine swap entries, hence a private anon pages */ 1630 if (!should_zap_cows(details)) 1631 return 1; 1632 1633 nr = swap_pte_batch(pte, max_nr, ptent); 1634 rss[MM_SWAPENTS] -= nr; 1635 free_swap_and_cache_nr(entry, nr); 1636 } else if (is_migration_entry(entry)) { 1637 struct folio *folio = pfn_swap_entry_folio(entry); 1638 1639 if (!should_zap_folio(details, folio)) 1640 return 1; 1641 rss[mm_counter(folio)]--; 1642 } else if (pte_marker_entry_uffd_wp(entry)) { 1643 /* 1644 * For anon: always drop the marker; for file: only 1645 * drop the marker if explicitly requested. 1646 */ 1647 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1648 return 1; 1649 } else if (is_guard_swp_entry(entry)) { 1650 /* 1651 * Ordinary zapping should not remove guard PTE 1652 * markers. Only do so if we should remove PTE markers 1653 * in general. 1654 */ 1655 if (!zap_drop_markers(details)) 1656 return 1; 1657 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { 1658 if (!should_zap_cows(details)) 1659 return 1; 1660 } else { 1661 /* We should have covered all the swap entry types */ 1662 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1663 WARN_ON_ONCE(1); 1664 } 1665 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1666 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1667 1668 return nr; 1669 } 1670 1671 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1672 struct vm_area_struct *vma, pte_t *pte, 1673 unsigned long addr, unsigned long end, 1674 struct zap_details *details, int *rss, 1675 bool *force_flush, bool *force_break, 1676 bool *any_skipped) 1677 { 1678 pte_t ptent = ptep_get(pte); 1679 int max_nr = (end - addr) / PAGE_SIZE; 1680 int nr = 0; 1681 1682 /* Skip all consecutive none ptes */ 1683 if (pte_none(ptent)) { 1684 for (nr = 1; nr < max_nr; nr++) { 1685 ptent = ptep_get(pte + nr); 1686 if (!pte_none(ptent)) 1687 break; 1688 } 1689 max_nr -= nr; 1690 if (!max_nr) 1691 return nr; 1692 pte += nr; 1693 addr += nr * PAGE_SIZE; 1694 } 1695 1696 if (pte_present(ptent)) 1697 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1698 details, rss, force_flush, force_break, 1699 any_skipped); 1700 else 1701 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1702 details, rss, any_skipped); 1703 1704 return nr; 1705 } 1706 1707 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1708 struct vm_area_struct *vma, pmd_t *pmd, 1709 unsigned long addr, unsigned long end, 1710 struct zap_details *details) 1711 { 1712 bool force_flush = false, force_break = false; 1713 struct mm_struct *mm = tlb->mm; 1714 int rss[NR_MM_COUNTERS]; 1715 spinlock_t *ptl; 1716 pte_t *start_pte; 1717 pte_t *pte; 1718 pmd_t pmdval; 1719 unsigned long start = addr; 1720 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1721 bool direct_reclaim = false; 1722 int nr; 1723 1724 retry: 1725 tlb_change_page_size(tlb, PAGE_SIZE); 1726 init_rss_vec(rss); 1727 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1728 if (!pte) 1729 return addr; 1730 1731 flush_tlb_batched_pending(mm); 1732 arch_enter_lazy_mmu_mode(); 1733 do { 1734 bool any_skipped = false; 1735 1736 if (need_resched()) 1737 break; 1738 1739 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1740 &force_flush, &force_break, &any_skipped); 1741 if (any_skipped) 1742 can_reclaim_pt = false; 1743 if (unlikely(force_break)) { 1744 addr += nr * PAGE_SIZE; 1745 break; 1746 } 1747 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1748 1749 if (can_reclaim_pt && addr == end) 1750 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1751 1752 add_mm_rss_vec(mm, rss); 1753 arch_leave_lazy_mmu_mode(); 1754 1755 /* Do the actual TLB flush before dropping ptl */ 1756 if (force_flush) { 1757 tlb_flush_mmu_tlbonly(tlb); 1758 tlb_flush_rmaps(tlb, vma); 1759 } 1760 pte_unmap_unlock(start_pte, ptl); 1761 1762 /* 1763 * If we forced a TLB flush (either due to running out of 1764 * batch buffers or because we needed to flush dirty TLB 1765 * entries before releasing the ptl), free the batched 1766 * memory too. Come back again if we didn't do everything. 1767 */ 1768 if (force_flush) 1769 tlb_flush_mmu(tlb); 1770 1771 if (addr != end) { 1772 cond_resched(); 1773 force_flush = false; 1774 force_break = false; 1775 goto retry; 1776 } 1777 1778 if (can_reclaim_pt) { 1779 if (direct_reclaim) 1780 free_pte(mm, start, tlb, pmdval); 1781 else 1782 try_to_free_pte(mm, pmd, start, tlb); 1783 } 1784 1785 return addr; 1786 } 1787 1788 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1789 struct vm_area_struct *vma, pud_t *pud, 1790 unsigned long addr, unsigned long end, 1791 struct zap_details *details) 1792 { 1793 pmd_t *pmd; 1794 unsigned long next; 1795 1796 pmd = pmd_offset(pud, addr); 1797 do { 1798 next = pmd_addr_end(addr, end); 1799 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1800 if (next - addr != HPAGE_PMD_SIZE) 1801 __split_huge_pmd(vma, pmd, addr, false, NULL); 1802 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1803 addr = next; 1804 continue; 1805 } 1806 /* fall through */ 1807 } else if (details && details->single_folio && 1808 folio_test_pmd_mappable(details->single_folio) && 1809 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1810 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1811 /* 1812 * Take and drop THP pmd lock so that we cannot return 1813 * prematurely, while zap_huge_pmd() has cleared *pmd, 1814 * but not yet decremented compound_mapcount(). 1815 */ 1816 spin_unlock(ptl); 1817 } 1818 if (pmd_none(*pmd)) { 1819 addr = next; 1820 continue; 1821 } 1822 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1823 if (addr != next) 1824 pmd--; 1825 } while (pmd++, cond_resched(), addr != end); 1826 1827 return addr; 1828 } 1829 1830 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1831 struct vm_area_struct *vma, p4d_t *p4d, 1832 unsigned long addr, unsigned long end, 1833 struct zap_details *details) 1834 { 1835 pud_t *pud; 1836 unsigned long next; 1837 1838 pud = pud_offset(p4d, addr); 1839 do { 1840 next = pud_addr_end(addr, end); 1841 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1842 if (next - addr != HPAGE_PUD_SIZE) { 1843 mmap_assert_locked(tlb->mm); 1844 split_huge_pud(vma, pud, addr); 1845 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1846 goto next; 1847 /* fall through */ 1848 } 1849 if (pud_none_or_clear_bad(pud)) 1850 continue; 1851 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1852 next: 1853 cond_resched(); 1854 } while (pud++, addr = next, addr != end); 1855 1856 return addr; 1857 } 1858 1859 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1860 struct vm_area_struct *vma, pgd_t *pgd, 1861 unsigned long addr, unsigned long end, 1862 struct zap_details *details) 1863 { 1864 p4d_t *p4d; 1865 unsigned long next; 1866 1867 p4d = p4d_offset(pgd, addr); 1868 do { 1869 next = p4d_addr_end(addr, end); 1870 if (p4d_none_or_clear_bad(p4d)) 1871 continue; 1872 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1873 } while (p4d++, addr = next, addr != end); 1874 1875 return addr; 1876 } 1877 1878 void unmap_page_range(struct mmu_gather *tlb, 1879 struct vm_area_struct *vma, 1880 unsigned long addr, unsigned long end, 1881 struct zap_details *details) 1882 { 1883 pgd_t *pgd; 1884 unsigned long next; 1885 1886 BUG_ON(addr >= end); 1887 tlb_start_vma(tlb, vma); 1888 pgd = pgd_offset(vma->vm_mm, addr); 1889 do { 1890 next = pgd_addr_end(addr, end); 1891 if (pgd_none_or_clear_bad(pgd)) 1892 continue; 1893 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1894 } while (pgd++, addr = next, addr != end); 1895 tlb_end_vma(tlb, vma); 1896 } 1897 1898 1899 static void unmap_single_vma(struct mmu_gather *tlb, 1900 struct vm_area_struct *vma, unsigned long start_addr, 1901 unsigned long end_addr, 1902 struct zap_details *details, bool mm_wr_locked) 1903 { 1904 unsigned long start = max(vma->vm_start, start_addr); 1905 unsigned long end; 1906 1907 if (start >= vma->vm_end) 1908 return; 1909 end = min(vma->vm_end, end_addr); 1910 if (end <= vma->vm_start) 1911 return; 1912 1913 if (vma->vm_file) 1914 uprobe_munmap(vma, start, end); 1915 1916 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1917 untrack_pfn(vma, 0, 0, mm_wr_locked); 1918 1919 if (start != end) { 1920 if (unlikely(is_vm_hugetlb_page(vma))) { 1921 /* 1922 * It is undesirable to test vma->vm_file as it 1923 * should be non-null for valid hugetlb area. 1924 * However, vm_file will be NULL in the error 1925 * cleanup path of mmap_region. When 1926 * hugetlbfs ->mmap method fails, 1927 * mmap_region() nullifies vma->vm_file 1928 * before calling this function to clean up. 1929 * Since no pte has actually been setup, it is 1930 * safe to do nothing in this case. 1931 */ 1932 if (vma->vm_file) { 1933 zap_flags_t zap_flags = details ? 1934 details->zap_flags : 0; 1935 __unmap_hugepage_range(tlb, vma, start, end, 1936 NULL, zap_flags); 1937 } 1938 } else 1939 unmap_page_range(tlb, vma, start, end, details); 1940 } 1941 } 1942 1943 /** 1944 * unmap_vmas - unmap a range of memory covered by a list of vma's 1945 * @tlb: address of the caller's struct mmu_gather 1946 * @mas: the maple state 1947 * @vma: the starting vma 1948 * @start_addr: virtual address at which to start unmapping 1949 * @end_addr: virtual address at which to end unmapping 1950 * @tree_end: The maximum index to check 1951 * @mm_wr_locked: lock flag 1952 * 1953 * Unmap all pages in the vma list. 1954 * 1955 * Only addresses between `start' and `end' will be unmapped. 1956 * 1957 * The VMA list must be sorted in ascending virtual address order. 1958 * 1959 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1960 * range after unmap_vmas() returns. So the only responsibility here is to 1961 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1962 * drops the lock and schedules. 1963 */ 1964 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1965 struct vm_area_struct *vma, unsigned long start_addr, 1966 unsigned long end_addr, unsigned long tree_end, 1967 bool mm_wr_locked) 1968 { 1969 struct mmu_notifier_range range; 1970 struct zap_details details = { 1971 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1972 /* Careful - we need to zap private pages too! */ 1973 .even_cows = true, 1974 }; 1975 1976 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1977 start_addr, end_addr); 1978 mmu_notifier_invalidate_range_start(&range); 1979 do { 1980 unsigned long start = start_addr; 1981 unsigned long end = end_addr; 1982 hugetlb_zap_begin(vma, &start, &end); 1983 unmap_single_vma(tlb, vma, start, end, &details, 1984 mm_wr_locked); 1985 hugetlb_zap_end(vma, &details); 1986 vma = mas_find(mas, tree_end - 1); 1987 } while (vma && likely(!xa_is_zero(vma))); 1988 mmu_notifier_invalidate_range_end(&range); 1989 } 1990 1991 /** 1992 * zap_page_range_single - remove user pages in a given range 1993 * @vma: vm_area_struct holding the applicable pages 1994 * @address: starting address of pages to zap 1995 * @size: number of bytes to zap 1996 * @details: details of shared cache invalidation 1997 * 1998 * The range must fit into one VMA. 1999 */ 2000 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2001 unsigned long size, struct zap_details *details) 2002 { 2003 const unsigned long end = address + size; 2004 struct mmu_notifier_range range; 2005 struct mmu_gather tlb; 2006 2007 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2008 address, end); 2009 hugetlb_zap_begin(vma, &range.start, &range.end); 2010 tlb_gather_mmu(&tlb, vma->vm_mm); 2011 update_hiwater_rss(vma->vm_mm); 2012 mmu_notifier_invalidate_range_start(&range); 2013 /* 2014 * unmap 'address-end' not 'range.start-range.end' as range 2015 * could have been expanded for hugetlb pmd sharing. 2016 */ 2017 unmap_single_vma(&tlb, vma, address, end, details, false); 2018 mmu_notifier_invalidate_range_end(&range); 2019 tlb_finish_mmu(&tlb); 2020 hugetlb_zap_end(vma, details); 2021 } 2022 2023 /** 2024 * zap_vma_ptes - remove ptes mapping the vma 2025 * @vma: vm_area_struct holding ptes to be zapped 2026 * @address: starting address of pages to zap 2027 * @size: number of bytes to zap 2028 * 2029 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2030 * 2031 * The entire address range must be fully contained within the vma. 2032 * 2033 */ 2034 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2035 unsigned long size) 2036 { 2037 if (!range_in_vma(vma, address, address + size) || 2038 !(vma->vm_flags & VM_PFNMAP)) 2039 return; 2040 2041 zap_page_range_single(vma, address, size, NULL); 2042 } 2043 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2044 2045 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2046 { 2047 pgd_t *pgd; 2048 p4d_t *p4d; 2049 pud_t *pud; 2050 pmd_t *pmd; 2051 2052 pgd = pgd_offset(mm, addr); 2053 p4d = p4d_alloc(mm, pgd, addr); 2054 if (!p4d) 2055 return NULL; 2056 pud = pud_alloc(mm, p4d, addr); 2057 if (!pud) 2058 return NULL; 2059 pmd = pmd_alloc(mm, pud, addr); 2060 if (!pmd) 2061 return NULL; 2062 2063 VM_BUG_ON(pmd_trans_huge(*pmd)); 2064 return pmd; 2065 } 2066 2067 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2068 spinlock_t **ptl) 2069 { 2070 pmd_t *pmd = walk_to_pmd(mm, addr); 2071 2072 if (!pmd) 2073 return NULL; 2074 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2075 } 2076 2077 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2078 { 2079 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2080 /* 2081 * Whoever wants to forbid the zeropage after some zeropages 2082 * might already have been mapped has to scan the page tables and 2083 * bail out on any zeropages. Zeropages in COW mappings can 2084 * be unshared using FAULT_FLAG_UNSHARE faults. 2085 */ 2086 if (mm_forbids_zeropage(vma->vm_mm)) 2087 return false; 2088 /* zeropages in COW mappings are common and unproblematic. */ 2089 if (is_cow_mapping(vma->vm_flags)) 2090 return true; 2091 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2092 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2093 return true; 2094 /* 2095 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2096 * find the shared zeropage and longterm-pin it, which would 2097 * be problematic as soon as the zeropage gets replaced by a different 2098 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2099 * now differ to what GUP looked up. FSDAX is incompatible to 2100 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2101 * check_vma_flags). 2102 */ 2103 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2104 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2105 } 2106 2107 static int validate_page_before_insert(struct vm_area_struct *vma, 2108 struct page *page) 2109 { 2110 struct folio *folio = page_folio(page); 2111 2112 if (!folio_ref_count(folio)) 2113 return -EINVAL; 2114 if (unlikely(is_zero_folio(folio))) { 2115 if (!vm_mixed_zeropage_allowed(vma)) 2116 return -EINVAL; 2117 return 0; 2118 } 2119 if (folio_test_anon(folio) || folio_test_slab(folio) || 2120 page_has_type(page)) 2121 return -EINVAL; 2122 flush_dcache_folio(folio); 2123 return 0; 2124 } 2125 2126 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2127 unsigned long addr, struct page *page, pgprot_t prot) 2128 { 2129 struct folio *folio = page_folio(page); 2130 pte_t pteval; 2131 2132 if (!pte_none(ptep_get(pte))) 2133 return -EBUSY; 2134 /* Ok, finally just insert the thing.. */ 2135 pteval = mk_pte(page, prot); 2136 if (unlikely(is_zero_folio(folio))) { 2137 pteval = pte_mkspecial(pteval); 2138 } else { 2139 folio_get(folio); 2140 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2141 folio_add_file_rmap_pte(folio, page, vma); 2142 } 2143 set_pte_at(vma->vm_mm, addr, pte, pteval); 2144 return 0; 2145 } 2146 2147 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2148 struct page *page, pgprot_t prot) 2149 { 2150 int retval; 2151 pte_t *pte; 2152 spinlock_t *ptl; 2153 2154 retval = validate_page_before_insert(vma, page); 2155 if (retval) 2156 goto out; 2157 retval = -ENOMEM; 2158 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2159 if (!pte) 2160 goto out; 2161 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 2162 pte_unmap_unlock(pte, ptl); 2163 out: 2164 return retval; 2165 } 2166 2167 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2168 unsigned long addr, struct page *page, pgprot_t prot) 2169 { 2170 int err; 2171 2172 err = validate_page_before_insert(vma, page); 2173 if (err) 2174 return err; 2175 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 2176 } 2177 2178 /* insert_pages() amortizes the cost of spinlock operations 2179 * when inserting pages in a loop. 2180 */ 2181 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2182 struct page **pages, unsigned long *num, pgprot_t prot) 2183 { 2184 pmd_t *pmd = NULL; 2185 pte_t *start_pte, *pte; 2186 spinlock_t *pte_lock; 2187 struct mm_struct *const mm = vma->vm_mm; 2188 unsigned long curr_page_idx = 0; 2189 unsigned long remaining_pages_total = *num; 2190 unsigned long pages_to_write_in_pmd; 2191 int ret; 2192 more: 2193 ret = -EFAULT; 2194 pmd = walk_to_pmd(mm, addr); 2195 if (!pmd) 2196 goto out; 2197 2198 pages_to_write_in_pmd = min_t(unsigned long, 2199 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2200 2201 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2202 ret = -ENOMEM; 2203 if (pte_alloc(mm, pmd)) 2204 goto out; 2205 2206 while (pages_to_write_in_pmd) { 2207 int pte_idx = 0; 2208 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2209 2210 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2211 if (!start_pte) { 2212 ret = -EFAULT; 2213 goto out; 2214 } 2215 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2216 int err = insert_page_in_batch_locked(vma, pte, 2217 addr, pages[curr_page_idx], prot); 2218 if (unlikely(err)) { 2219 pte_unmap_unlock(start_pte, pte_lock); 2220 ret = err; 2221 remaining_pages_total -= pte_idx; 2222 goto out; 2223 } 2224 addr += PAGE_SIZE; 2225 ++curr_page_idx; 2226 } 2227 pte_unmap_unlock(start_pte, pte_lock); 2228 pages_to_write_in_pmd -= batch_size; 2229 remaining_pages_total -= batch_size; 2230 } 2231 if (remaining_pages_total) 2232 goto more; 2233 ret = 0; 2234 out: 2235 *num = remaining_pages_total; 2236 return ret; 2237 } 2238 2239 /** 2240 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2241 * @vma: user vma to map to 2242 * @addr: target start user address of these pages 2243 * @pages: source kernel pages 2244 * @num: in: number of pages to map. out: number of pages that were *not* 2245 * mapped. (0 means all pages were successfully mapped). 2246 * 2247 * Preferred over vm_insert_page() when inserting multiple pages. 2248 * 2249 * In case of error, we may have mapped a subset of the provided 2250 * pages. It is the caller's responsibility to account for this case. 2251 * 2252 * The same restrictions apply as in vm_insert_page(). 2253 */ 2254 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2255 struct page **pages, unsigned long *num) 2256 { 2257 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2258 2259 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2260 return -EFAULT; 2261 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2262 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2263 BUG_ON(vma->vm_flags & VM_PFNMAP); 2264 vm_flags_set(vma, VM_MIXEDMAP); 2265 } 2266 /* Defer page refcount checking till we're about to map that page. */ 2267 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2268 } 2269 EXPORT_SYMBOL(vm_insert_pages); 2270 2271 /** 2272 * vm_insert_page - insert single page into user vma 2273 * @vma: user vma to map to 2274 * @addr: target user address of this page 2275 * @page: source kernel page 2276 * 2277 * This allows drivers to insert individual pages they've allocated 2278 * into a user vma. The zeropage is supported in some VMAs, 2279 * see vm_mixed_zeropage_allowed(). 2280 * 2281 * The page has to be a nice clean _individual_ kernel allocation. 2282 * If you allocate a compound page, you need to have marked it as 2283 * such (__GFP_COMP), or manually just split the page up yourself 2284 * (see split_page()). 2285 * 2286 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2287 * took an arbitrary page protection parameter. This doesn't allow 2288 * that. Your vma protection will have to be set up correctly, which 2289 * means that if you want a shared writable mapping, you'd better 2290 * ask for a shared writable mapping! 2291 * 2292 * The page does not need to be reserved. 2293 * 2294 * Usually this function is called from f_op->mmap() handler 2295 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2296 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2297 * function from other places, for example from page-fault handler. 2298 * 2299 * Return: %0 on success, negative error code otherwise. 2300 */ 2301 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2302 struct page *page) 2303 { 2304 if (addr < vma->vm_start || addr >= vma->vm_end) 2305 return -EFAULT; 2306 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2307 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2308 BUG_ON(vma->vm_flags & VM_PFNMAP); 2309 vm_flags_set(vma, VM_MIXEDMAP); 2310 } 2311 return insert_page(vma, addr, page, vma->vm_page_prot); 2312 } 2313 EXPORT_SYMBOL(vm_insert_page); 2314 2315 /* 2316 * __vm_map_pages - maps range of kernel pages into user vma 2317 * @vma: user vma to map to 2318 * @pages: pointer to array of source kernel pages 2319 * @num: number of pages in page array 2320 * @offset: user's requested vm_pgoff 2321 * 2322 * This allows drivers to map range of kernel pages into a user vma. 2323 * The zeropage is supported in some VMAs, see 2324 * vm_mixed_zeropage_allowed(). 2325 * 2326 * Return: 0 on success and error code otherwise. 2327 */ 2328 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2329 unsigned long num, unsigned long offset) 2330 { 2331 unsigned long count = vma_pages(vma); 2332 unsigned long uaddr = vma->vm_start; 2333 int ret, i; 2334 2335 /* Fail if the user requested offset is beyond the end of the object */ 2336 if (offset >= num) 2337 return -ENXIO; 2338 2339 /* Fail if the user requested size exceeds available object size */ 2340 if (count > num - offset) 2341 return -ENXIO; 2342 2343 for (i = 0; i < count; i++) { 2344 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2345 if (ret < 0) 2346 return ret; 2347 uaddr += PAGE_SIZE; 2348 } 2349 2350 return 0; 2351 } 2352 2353 /** 2354 * vm_map_pages - maps range of kernel pages starts with non zero offset 2355 * @vma: user vma to map to 2356 * @pages: pointer to array of source kernel pages 2357 * @num: number of pages in page array 2358 * 2359 * Maps an object consisting of @num pages, catering for the user's 2360 * requested vm_pgoff 2361 * 2362 * If we fail to insert any page into the vma, the function will return 2363 * immediately leaving any previously inserted pages present. Callers 2364 * from the mmap handler may immediately return the error as their caller 2365 * will destroy the vma, removing any successfully inserted pages. Other 2366 * callers should make their own arrangements for calling unmap_region(). 2367 * 2368 * Context: Process context. Called by mmap handlers. 2369 * Return: 0 on success and error code otherwise. 2370 */ 2371 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2372 unsigned long num) 2373 { 2374 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2375 } 2376 EXPORT_SYMBOL(vm_map_pages); 2377 2378 /** 2379 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2380 * @vma: user vma to map to 2381 * @pages: pointer to array of source kernel pages 2382 * @num: number of pages in page array 2383 * 2384 * Similar to vm_map_pages(), except that it explicitly sets the offset 2385 * to 0. This function is intended for the drivers that did not consider 2386 * vm_pgoff. 2387 * 2388 * Context: Process context. Called by mmap handlers. 2389 * Return: 0 on success and error code otherwise. 2390 */ 2391 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2392 unsigned long num) 2393 { 2394 return __vm_map_pages(vma, pages, num, 0); 2395 } 2396 EXPORT_SYMBOL(vm_map_pages_zero); 2397 2398 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2399 pfn_t pfn, pgprot_t prot, bool mkwrite) 2400 { 2401 struct mm_struct *mm = vma->vm_mm; 2402 pte_t *pte, entry; 2403 spinlock_t *ptl; 2404 2405 pte = get_locked_pte(mm, addr, &ptl); 2406 if (!pte) 2407 return VM_FAULT_OOM; 2408 entry = ptep_get(pte); 2409 if (!pte_none(entry)) { 2410 if (mkwrite) { 2411 /* 2412 * For read faults on private mappings the PFN passed 2413 * in may not match the PFN we have mapped if the 2414 * mapped PFN is a writeable COW page. In the mkwrite 2415 * case we are creating a writable PTE for a shared 2416 * mapping and we expect the PFNs to match. If they 2417 * don't match, we are likely racing with block 2418 * allocation and mapping invalidation so just skip the 2419 * update. 2420 */ 2421 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2422 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2423 goto out_unlock; 2424 } 2425 entry = pte_mkyoung(entry); 2426 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2427 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2428 update_mmu_cache(vma, addr, pte); 2429 } 2430 goto out_unlock; 2431 } 2432 2433 /* Ok, finally just insert the thing.. */ 2434 if (pfn_t_devmap(pfn)) 2435 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2436 else 2437 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2438 2439 if (mkwrite) { 2440 entry = pte_mkyoung(entry); 2441 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2442 } 2443 2444 set_pte_at(mm, addr, pte, entry); 2445 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2446 2447 out_unlock: 2448 pte_unmap_unlock(pte, ptl); 2449 return VM_FAULT_NOPAGE; 2450 } 2451 2452 /** 2453 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2454 * @vma: user vma to map to 2455 * @addr: target user address of this page 2456 * @pfn: source kernel pfn 2457 * @pgprot: pgprot flags for the inserted page 2458 * 2459 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2460 * to override pgprot on a per-page basis. 2461 * 2462 * This only makes sense for IO mappings, and it makes no sense for 2463 * COW mappings. In general, using multiple vmas is preferable; 2464 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2465 * impractical. 2466 * 2467 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2468 * caching- and encryption bits different than those of @vma->vm_page_prot, 2469 * because the caching- or encryption mode may not be known at mmap() time. 2470 * 2471 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2472 * to set caching and encryption bits for those vmas (except for COW pages). 2473 * This is ensured by core vm only modifying these page table entries using 2474 * functions that don't touch caching- or encryption bits, using pte_modify() 2475 * if needed. (See for example mprotect()). 2476 * 2477 * Also when new page-table entries are created, this is only done using the 2478 * fault() callback, and never using the value of vma->vm_page_prot, 2479 * except for page-table entries that point to anonymous pages as the result 2480 * of COW. 2481 * 2482 * Context: Process context. May allocate using %GFP_KERNEL. 2483 * Return: vm_fault_t value. 2484 */ 2485 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2486 unsigned long pfn, pgprot_t pgprot) 2487 { 2488 /* 2489 * Technically, architectures with pte_special can avoid all these 2490 * restrictions (same for remap_pfn_range). However we would like 2491 * consistency in testing and feature parity among all, so we should 2492 * try to keep these invariants in place for everybody. 2493 */ 2494 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2495 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2496 (VM_PFNMAP|VM_MIXEDMAP)); 2497 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2498 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2499 2500 if (addr < vma->vm_start || addr >= vma->vm_end) 2501 return VM_FAULT_SIGBUS; 2502 2503 if (!pfn_modify_allowed(pfn, pgprot)) 2504 return VM_FAULT_SIGBUS; 2505 2506 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2507 2508 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2509 false); 2510 } 2511 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2512 2513 /** 2514 * vmf_insert_pfn - insert single pfn into user vma 2515 * @vma: user vma to map to 2516 * @addr: target user address of this page 2517 * @pfn: source kernel pfn 2518 * 2519 * Similar to vm_insert_page, this allows drivers to insert individual pages 2520 * they've allocated into a user vma. Same comments apply. 2521 * 2522 * This function should only be called from a vm_ops->fault handler, and 2523 * in that case the handler should return the result of this function. 2524 * 2525 * vma cannot be a COW mapping. 2526 * 2527 * As this is called only for pages that do not currently exist, we 2528 * do not need to flush old virtual caches or the TLB. 2529 * 2530 * Context: Process context. May allocate using %GFP_KERNEL. 2531 * Return: vm_fault_t value. 2532 */ 2533 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2534 unsigned long pfn) 2535 { 2536 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2537 } 2538 EXPORT_SYMBOL(vmf_insert_pfn); 2539 2540 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite) 2541 { 2542 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) && 2543 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2544 return false; 2545 /* these checks mirror the abort conditions in vm_normal_page */ 2546 if (vma->vm_flags & VM_MIXEDMAP) 2547 return true; 2548 if (pfn_t_devmap(pfn)) 2549 return true; 2550 if (pfn_t_special(pfn)) 2551 return true; 2552 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2553 return true; 2554 return false; 2555 } 2556 2557 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2558 unsigned long addr, pfn_t pfn, bool mkwrite) 2559 { 2560 pgprot_t pgprot = vma->vm_page_prot; 2561 int err; 2562 2563 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2564 return VM_FAULT_SIGBUS; 2565 2566 if (addr < vma->vm_start || addr >= vma->vm_end) 2567 return VM_FAULT_SIGBUS; 2568 2569 track_pfn_insert(vma, &pgprot, pfn); 2570 2571 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2572 return VM_FAULT_SIGBUS; 2573 2574 /* 2575 * If we don't have pte special, then we have to use the pfn_valid() 2576 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2577 * refcount the page if pfn_valid is true (hence insert_page rather 2578 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2579 * without pte special, it would there be refcounted as a normal page. 2580 */ 2581 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2582 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2583 struct page *page; 2584 2585 /* 2586 * At this point we are committed to insert_page() 2587 * regardless of whether the caller specified flags that 2588 * result in pfn_t_has_page() == false. 2589 */ 2590 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2591 err = insert_page(vma, addr, page, pgprot); 2592 } else { 2593 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2594 } 2595 2596 if (err == -ENOMEM) 2597 return VM_FAULT_OOM; 2598 if (err < 0 && err != -EBUSY) 2599 return VM_FAULT_SIGBUS; 2600 2601 return VM_FAULT_NOPAGE; 2602 } 2603 2604 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2605 pfn_t pfn) 2606 { 2607 return __vm_insert_mixed(vma, addr, pfn, false); 2608 } 2609 EXPORT_SYMBOL(vmf_insert_mixed); 2610 2611 /* 2612 * If the insertion of PTE failed because someone else already added a 2613 * different entry in the mean time, we treat that as success as we assume 2614 * the same entry was actually inserted. 2615 */ 2616 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2617 unsigned long addr, pfn_t pfn) 2618 { 2619 return __vm_insert_mixed(vma, addr, pfn, true); 2620 } 2621 2622 /* 2623 * maps a range of physical memory into the requested pages. the old 2624 * mappings are removed. any references to nonexistent pages results 2625 * in null mappings (currently treated as "copy-on-access") 2626 */ 2627 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2628 unsigned long addr, unsigned long end, 2629 unsigned long pfn, pgprot_t prot) 2630 { 2631 pte_t *pte, *mapped_pte; 2632 spinlock_t *ptl; 2633 int err = 0; 2634 2635 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2636 if (!pte) 2637 return -ENOMEM; 2638 arch_enter_lazy_mmu_mode(); 2639 do { 2640 BUG_ON(!pte_none(ptep_get(pte))); 2641 if (!pfn_modify_allowed(pfn, prot)) { 2642 err = -EACCES; 2643 break; 2644 } 2645 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2646 pfn++; 2647 } while (pte++, addr += PAGE_SIZE, addr != end); 2648 arch_leave_lazy_mmu_mode(); 2649 pte_unmap_unlock(mapped_pte, ptl); 2650 return err; 2651 } 2652 2653 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2654 unsigned long addr, unsigned long end, 2655 unsigned long pfn, pgprot_t prot) 2656 { 2657 pmd_t *pmd; 2658 unsigned long next; 2659 int err; 2660 2661 pfn -= addr >> PAGE_SHIFT; 2662 pmd = pmd_alloc(mm, pud, addr); 2663 if (!pmd) 2664 return -ENOMEM; 2665 VM_BUG_ON(pmd_trans_huge(*pmd)); 2666 do { 2667 next = pmd_addr_end(addr, end); 2668 err = remap_pte_range(mm, pmd, addr, next, 2669 pfn + (addr >> PAGE_SHIFT), prot); 2670 if (err) 2671 return err; 2672 } while (pmd++, addr = next, addr != end); 2673 return 0; 2674 } 2675 2676 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2677 unsigned long addr, unsigned long end, 2678 unsigned long pfn, pgprot_t prot) 2679 { 2680 pud_t *pud; 2681 unsigned long next; 2682 int err; 2683 2684 pfn -= addr >> PAGE_SHIFT; 2685 pud = pud_alloc(mm, p4d, addr); 2686 if (!pud) 2687 return -ENOMEM; 2688 do { 2689 next = pud_addr_end(addr, end); 2690 err = remap_pmd_range(mm, pud, addr, next, 2691 pfn + (addr >> PAGE_SHIFT), prot); 2692 if (err) 2693 return err; 2694 } while (pud++, addr = next, addr != end); 2695 return 0; 2696 } 2697 2698 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2699 unsigned long addr, unsigned long end, 2700 unsigned long pfn, pgprot_t prot) 2701 { 2702 p4d_t *p4d; 2703 unsigned long next; 2704 int err; 2705 2706 pfn -= addr >> PAGE_SHIFT; 2707 p4d = p4d_alloc(mm, pgd, addr); 2708 if (!p4d) 2709 return -ENOMEM; 2710 do { 2711 next = p4d_addr_end(addr, end); 2712 err = remap_pud_range(mm, p4d, addr, next, 2713 pfn + (addr >> PAGE_SHIFT), prot); 2714 if (err) 2715 return err; 2716 } while (p4d++, addr = next, addr != end); 2717 return 0; 2718 } 2719 2720 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2721 unsigned long pfn, unsigned long size, pgprot_t prot) 2722 { 2723 pgd_t *pgd; 2724 unsigned long next; 2725 unsigned long end = addr + PAGE_ALIGN(size); 2726 struct mm_struct *mm = vma->vm_mm; 2727 int err; 2728 2729 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2730 return -EINVAL; 2731 2732 /* 2733 * Physically remapped pages are special. Tell the 2734 * rest of the world about it: 2735 * VM_IO tells people not to look at these pages 2736 * (accesses can have side effects). 2737 * VM_PFNMAP tells the core MM that the base pages are just 2738 * raw PFN mappings, and do not have a "struct page" associated 2739 * with them. 2740 * VM_DONTEXPAND 2741 * Disable vma merging and expanding with mremap(). 2742 * VM_DONTDUMP 2743 * Omit vma from core dump, even when VM_IO turned off. 2744 * 2745 * There's a horrible special case to handle copy-on-write 2746 * behaviour that some programs depend on. We mark the "original" 2747 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2748 * See vm_normal_page() for details. 2749 */ 2750 if (is_cow_mapping(vma->vm_flags)) { 2751 if (addr != vma->vm_start || end != vma->vm_end) 2752 return -EINVAL; 2753 vma->vm_pgoff = pfn; 2754 } 2755 2756 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2757 2758 BUG_ON(addr >= end); 2759 pfn -= addr >> PAGE_SHIFT; 2760 pgd = pgd_offset(mm, addr); 2761 flush_cache_range(vma, addr, end); 2762 do { 2763 next = pgd_addr_end(addr, end); 2764 err = remap_p4d_range(mm, pgd, addr, next, 2765 pfn + (addr >> PAGE_SHIFT), prot); 2766 if (err) 2767 return err; 2768 } while (pgd++, addr = next, addr != end); 2769 2770 return 0; 2771 } 2772 2773 /* 2774 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2775 * must have pre-validated the caching bits of the pgprot_t. 2776 */ 2777 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2778 unsigned long pfn, unsigned long size, pgprot_t prot) 2779 { 2780 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2781 2782 if (!error) 2783 return 0; 2784 2785 /* 2786 * A partial pfn range mapping is dangerous: it does not 2787 * maintain page reference counts, and callers may free 2788 * pages due to the error. So zap it early. 2789 */ 2790 zap_page_range_single(vma, addr, size, NULL); 2791 return error; 2792 } 2793 2794 /** 2795 * remap_pfn_range - remap kernel memory to userspace 2796 * @vma: user vma to map to 2797 * @addr: target page aligned user address to start at 2798 * @pfn: page frame number of kernel physical memory address 2799 * @size: size of mapping area 2800 * @prot: page protection flags for this mapping 2801 * 2802 * Note: this is only safe if the mm semaphore is held when called. 2803 * 2804 * Return: %0 on success, negative error code otherwise. 2805 */ 2806 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2807 unsigned long pfn, unsigned long size, pgprot_t prot) 2808 { 2809 int err; 2810 2811 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2812 if (err) 2813 return -EINVAL; 2814 2815 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2816 if (err) 2817 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2818 return err; 2819 } 2820 EXPORT_SYMBOL(remap_pfn_range); 2821 2822 /** 2823 * vm_iomap_memory - remap memory to userspace 2824 * @vma: user vma to map to 2825 * @start: start of the physical memory to be mapped 2826 * @len: size of area 2827 * 2828 * This is a simplified io_remap_pfn_range() for common driver use. The 2829 * driver just needs to give us the physical memory range to be mapped, 2830 * we'll figure out the rest from the vma information. 2831 * 2832 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2833 * whatever write-combining details or similar. 2834 * 2835 * Return: %0 on success, negative error code otherwise. 2836 */ 2837 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2838 { 2839 unsigned long vm_len, pfn, pages; 2840 2841 /* Check that the physical memory area passed in looks valid */ 2842 if (start + len < start) 2843 return -EINVAL; 2844 /* 2845 * You *really* shouldn't map things that aren't page-aligned, 2846 * but we've historically allowed it because IO memory might 2847 * just have smaller alignment. 2848 */ 2849 len += start & ~PAGE_MASK; 2850 pfn = start >> PAGE_SHIFT; 2851 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2852 if (pfn + pages < pfn) 2853 return -EINVAL; 2854 2855 /* We start the mapping 'vm_pgoff' pages into the area */ 2856 if (vma->vm_pgoff > pages) 2857 return -EINVAL; 2858 pfn += vma->vm_pgoff; 2859 pages -= vma->vm_pgoff; 2860 2861 /* Can we fit all of the mapping? */ 2862 vm_len = vma->vm_end - vma->vm_start; 2863 if (vm_len >> PAGE_SHIFT > pages) 2864 return -EINVAL; 2865 2866 /* Ok, let it rip */ 2867 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2868 } 2869 EXPORT_SYMBOL(vm_iomap_memory); 2870 2871 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2872 unsigned long addr, unsigned long end, 2873 pte_fn_t fn, void *data, bool create, 2874 pgtbl_mod_mask *mask) 2875 { 2876 pte_t *pte, *mapped_pte; 2877 int err = 0; 2878 spinlock_t *ptl; 2879 2880 if (create) { 2881 mapped_pte = pte = (mm == &init_mm) ? 2882 pte_alloc_kernel_track(pmd, addr, mask) : 2883 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2884 if (!pte) 2885 return -ENOMEM; 2886 } else { 2887 mapped_pte = pte = (mm == &init_mm) ? 2888 pte_offset_kernel(pmd, addr) : 2889 pte_offset_map_lock(mm, pmd, addr, &ptl); 2890 if (!pte) 2891 return -EINVAL; 2892 } 2893 2894 arch_enter_lazy_mmu_mode(); 2895 2896 if (fn) { 2897 do { 2898 if (create || !pte_none(ptep_get(pte))) { 2899 err = fn(pte++, addr, data); 2900 if (err) 2901 break; 2902 } 2903 } while (addr += PAGE_SIZE, addr != end); 2904 } 2905 *mask |= PGTBL_PTE_MODIFIED; 2906 2907 arch_leave_lazy_mmu_mode(); 2908 2909 if (mm != &init_mm) 2910 pte_unmap_unlock(mapped_pte, ptl); 2911 return err; 2912 } 2913 2914 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2915 unsigned long addr, unsigned long end, 2916 pte_fn_t fn, void *data, bool create, 2917 pgtbl_mod_mask *mask) 2918 { 2919 pmd_t *pmd; 2920 unsigned long next; 2921 int err = 0; 2922 2923 BUG_ON(pud_leaf(*pud)); 2924 2925 if (create) { 2926 pmd = pmd_alloc_track(mm, pud, addr, mask); 2927 if (!pmd) 2928 return -ENOMEM; 2929 } else { 2930 pmd = pmd_offset(pud, addr); 2931 } 2932 do { 2933 next = pmd_addr_end(addr, end); 2934 if (pmd_none(*pmd) && !create) 2935 continue; 2936 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2937 return -EINVAL; 2938 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2939 if (!create) 2940 continue; 2941 pmd_clear_bad(pmd); 2942 } 2943 err = apply_to_pte_range(mm, pmd, addr, next, 2944 fn, data, create, mask); 2945 if (err) 2946 break; 2947 } while (pmd++, addr = next, addr != end); 2948 2949 return err; 2950 } 2951 2952 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2953 unsigned long addr, unsigned long end, 2954 pte_fn_t fn, void *data, bool create, 2955 pgtbl_mod_mask *mask) 2956 { 2957 pud_t *pud; 2958 unsigned long next; 2959 int err = 0; 2960 2961 if (create) { 2962 pud = pud_alloc_track(mm, p4d, addr, mask); 2963 if (!pud) 2964 return -ENOMEM; 2965 } else { 2966 pud = pud_offset(p4d, addr); 2967 } 2968 do { 2969 next = pud_addr_end(addr, end); 2970 if (pud_none(*pud) && !create) 2971 continue; 2972 if (WARN_ON_ONCE(pud_leaf(*pud))) 2973 return -EINVAL; 2974 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2975 if (!create) 2976 continue; 2977 pud_clear_bad(pud); 2978 } 2979 err = apply_to_pmd_range(mm, pud, addr, next, 2980 fn, data, create, mask); 2981 if (err) 2982 break; 2983 } while (pud++, addr = next, addr != end); 2984 2985 return err; 2986 } 2987 2988 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2989 unsigned long addr, unsigned long end, 2990 pte_fn_t fn, void *data, bool create, 2991 pgtbl_mod_mask *mask) 2992 { 2993 p4d_t *p4d; 2994 unsigned long next; 2995 int err = 0; 2996 2997 if (create) { 2998 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2999 if (!p4d) 3000 return -ENOMEM; 3001 } else { 3002 p4d = p4d_offset(pgd, addr); 3003 } 3004 do { 3005 next = p4d_addr_end(addr, end); 3006 if (p4d_none(*p4d) && !create) 3007 continue; 3008 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3009 return -EINVAL; 3010 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3011 if (!create) 3012 continue; 3013 p4d_clear_bad(p4d); 3014 } 3015 err = apply_to_pud_range(mm, p4d, addr, next, 3016 fn, data, create, mask); 3017 if (err) 3018 break; 3019 } while (p4d++, addr = next, addr != end); 3020 3021 return err; 3022 } 3023 3024 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3025 unsigned long size, pte_fn_t fn, 3026 void *data, bool create) 3027 { 3028 pgd_t *pgd; 3029 unsigned long start = addr, next; 3030 unsigned long end = addr + size; 3031 pgtbl_mod_mask mask = 0; 3032 int err = 0; 3033 3034 if (WARN_ON(addr >= end)) 3035 return -EINVAL; 3036 3037 pgd = pgd_offset(mm, addr); 3038 do { 3039 next = pgd_addr_end(addr, end); 3040 if (pgd_none(*pgd) && !create) 3041 continue; 3042 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 3043 return -EINVAL; 3044 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3045 if (!create) 3046 continue; 3047 pgd_clear_bad(pgd); 3048 } 3049 err = apply_to_p4d_range(mm, pgd, addr, next, 3050 fn, data, create, &mask); 3051 if (err) 3052 break; 3053 } while (pgd++, addr = next, addr != end); 3054 3055 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3056 arch_sync_kernel_mappings(start, start + size); 3057 3058 return err; 3059 } 3060 3061 /* 3062 * Scan a region of virtual memory, filling in page tables as necessary 3063 * and calling a provided function on each leaf page table. 3064 */ 3065 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3066 unsigned long size, pte_fn_t fn, void *data) 3067 { 3068 return __apply_to_page_range(mm, addr, size, fn, data, true); 3069 } 3070 EXPORT_SYMBOL_GPL(apply_to_page_range); 3071 3072 /* 3073 * Scan a region of virtual memory, calling a provided function on 3074 * each leaf page table where it exists. 3075 * 3076 * Unlike apply_to_page_range, this does _not_ fill in page tables 3077 * where they are absent. 3078 */ 3079 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3080 unsigned long size, pte_fn_t fn, void *data) 3081 { 3082 return __apply_to_page_range(mm, addr, size, fn, data, false); 3083 } 3084 3085 /* 3086 * handle_pte_fault chooses page fault handler according to an entry which was 3087 * read non-atomically. Before making any commitment, on those architectures 3088 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3089 * parts, do_swap_page must check under lock before unmapping the pte and 3090 * proceeding (but do_wp_page is only called after already making such a check; 3091 * and do_anonymous_page can safely check later on). 3092 */ 3093 static inline int pte_unmap_same(struct vm_fault *vmf) 3094 { 3095 int same = 1; 3096 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3097 if (sizeof(pte_t) > sizeof(unsigned long)) { 3098 spin_lock(vmf->ptl); 3099 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3100 spin_unlock(vmf->ptl); 3101 } 3102 #endif 3103 pte_unmap(vmf->pte); 3104 vmf->pte = NULL; 3105 return same; 3106 } 3107 3108 /* 3109 * Return: 3110 * 0: copied succeeded 3111 * -EHWPOISON: copy failed due to hwpoison in source page 3112 * -EAGAIN: copied failed (some other reason) 3113 */ 3114 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3115 struct vm_fault *vmf) 3116 { 3117 int ret; 3118 void *kaddr; 3119 void __user *uaddr; 3120 struct vm_area_struct *vma = vmf->vma; 3121 struct mm_struct *mm = vma->vm_mm; 3122 unsigned long addr = vmf->address; 3123 3124 if (likely(src)) { 3125 if (copy_mc_user_highpage(dst, src, addr, vma)) 3126 return -EHWPOISON; 3127 return 0; 3128 } 3129 3130 /* 3131 * If the source page was a PFN mapping, we don't have 3132 * a "struct page" for it. We do a best-effort copy by 3133 * just copying from the original user address. If that 3134 * fails, we just zero-fill it. Live with it. 3135 */ 3136 kaddr = kmap_local_page(dst); 3137 pagefault_disable(); 3138 uaddr = (void __user *)(addr & PAGE_MASK); 3139 3140 /* 3141 * On architectures with software "accessed" bits, we would 3142 * take a double page fault, so mark it accessed here. 3143 */ 3144 vmf->pte = NULL; 3145 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3146 pte_t entry; 3147 3148 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3149 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3150 /* 3151 * Other thread has already handled the fault 3152 * and update local tlb only 3153 */ 3154 if (vmf->pte) 3155 update_mmu_tlb(vma, addr, vmf->pte); 3156 ret = -EAGAIN; 3157 goto pte_unlock; 3158 } 3159 3160 entry = pte_mkyoung(vmf->orig_pte); 3161 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3162 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3163 } 3164 3165 /* 3166 * This really shouldn't fail, because the page is there 3167 * in the page tables. But it might just be unreadable, 3168 * in which case we just give up and fill the result with 3169 * zeroes. 3170 */ 3171 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3172 if (vmf->pte) 3173 goto warn; 3174 3175 /* Re-validate under PTL if the page is still mapped */ 3176 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3177 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3178 /* The PTE changed under us, update local tlb */ 3179 if (vmf->pte) 3180 update_mmu_tlb(vma, addr, vmf->pte); 3181 ret = -EAGAIN; 3182 goto pte_unlock; 3183 } 3184 3185 /* 3186 * The same page can be mapped back since last copy attempt. 3187 * Try to copy again under PTL. 3188 */ 3189 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3190 /* 3191 * Give a warn in case there can be some obscure 3192 * use-case 3193 */ 3194 warn: 3195 WARN_ON_ONCE(1); 3196 clear_page(kaddr); 3197 } 3198 } 3199 3200 ret = 0; 3201 3202 pte_unlock: 3203 if (vmf->pte) 3204 pte_unmap_unlock(vmf->pte, vmf->ptl); 3205 pagefault_enable(); 3206 kunmap_local(kaddr); 3207 flush_dcache_page(dst); 3208 3209 return ret; 3210 } 3211 3212 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3213 { 3214 struct file *vm_file = vma->vm_file; 3215 3216 if (vm_file) 3217 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3218 3219 /* 3220 * Special mappings (e.g. VDSO) do not have any file so fake 3221 * a default GFP_KERNEL for them. 3222 */ 3223 return GFP_KERNEL; 3224 } 3225 3226 /* 3227 * Notify the address space that the page is about to become writable so that 3228 * it can prohibit this or wait for the page to get into an appropriate state. 3229 * 3230 * We do this without the lock held, so that it can sleep if it needs to. 3231 */ 3232 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3233 { 3234 vm_fault_t ret; 3235 unsigned int old_flags = vmf->flags; 3236 3237 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3238 3239 if (vmf->vma->vm_file && 3240 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3241 return VM_FAULT_SIGBUS; 3242 3243 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3244 /* Restore original flags so that caller is not surprised */ 3245 vmf->flags = old_flags; 3246 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3247 return ret; 3248 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3249 folio_lock(folio); 3250 if (!folio->mapping) { 3251 folio_unlock(folio); 3252 return 0; /* retry */ 3253 } 3254 ret |= VM_FAULT_LOCKED; 3255 } else 3256 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3257 return ret; 3258 } 3259 3260 /* 3261 * Handle dirtying of a page in shared file mapping on a write fault. 3262 * 3263 * The function expects the page to be locked and unlocks it. 3264 */ 3265 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3266 { 3267 struct vm_area_struct *vma = vmf->vma; 3268 struct address_space *mapping; 3269 struct folio *folio = page_folio(vmf->page); 3270 bool dirtied; 3271 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3272 3273 dirtied = folio_mark_dirty(folio); 3274 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3275 /* 3276 * Take a local copy of the address_space - folio.mapping may be zeroed 3277 * by truncate after folio_unlock(). The address_space itself remains 3278 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3279 * release semantics to prevent the compiler from undoing this copying. 3280 */ 3281 mapping = folio_raw_mapping(folio); 3282 folio_unlock(folio); 3283 3284 if (!page_mkwrite) 3285 file_update_time(vma->vm_file); 3286 3287 /* 3288 * Throttle page dirtying rate down to writeback speed. 3289 * 3290 * mapping may be NULL here because some device drivers do not 3291 * set page.mapping but still dirty their pages 3292 * 3293 * Drop the mmap_lock before waiting on IO, if we can. The file 3294 * is pinning the mapping, as per above. 3295 */ 3296 if ((dirtied || page_mkwrite) && mapping) { 3297 struct file *fpin; 3298 3299 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3300 balance_dirty_pages_ratelimited(mapping); 3301 if (fpin) { 3302 fput(fpin); 3303 return VM_FAULT_COMPLETED; 3304 } 3305 } 3306 3307 return 0; 3308 } 3309 3310 /* 3311 * Handle write page faults for pages that can be reused in the current vma 3312 * 3313 * This can happen either due to the mapping being with the VM_SHARED flag, 3314 * or due to us being the last reference standing to the page. In either 3315 * case, all we need to do here is to mark the page as writable and update 3316 * any related book-keeping. 3317 */ 3318 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3319 __releases(vmf->ptl) 3320 { 3321 struct vm_area_struct *vma = vmf->vma; 3322 pte_t entry; 3323 3324 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3325 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3326 3327 if (folio) { 3328 VM_BUG_ON(folio_test_anon(folio) && 3329 !PageAnonExclusive(vmf->page)); 3330 /* 3331 * Clear the folio's cpupid information as the existing 3332 * information potentially belongs to a now completely 3333 * unrelated process. 3334 */ 3335 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3336 } 3337 3338 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3339 entry = pte_mkyoung(vmf->orig_pte); 3340 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3341 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3342 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3343 pte_unmap_unlock(vmf->pte, vmf->ptl); 3344 count_vm_event(PGREUSE); 3345 } 3346 3347 /* 3348 * We could add a bitflag somewhere, but for now, we know that all 3349 * vm_ops that have a ->map_pages have been audited and don't need 3350 * the mmap_lock to be held. 3351 */ 3352 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3353 { 3354 struct vm_area_struct *vma = vmf->vma; 3355 3356 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3357 return 0; 3358 vma_end_read(vma); 3359 return VM_FAULT_RETRY; 3360 } 3361 3362 /** 3363 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3364 * @vmf: The vm_fault descriptor passed from the fault handler. 3365 * 3366 * When preparing to insert an anonymous page into a VMA from a 3367 * fault handler, call this function rather than anon_vma_prepare(). 3368 * If this vma does not already have an associated anon_vma and we are 3369 * only protected by the per-VMA lock, the caller must retry with the 3370 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3371 * determine if this VMA can share its anon_vma, and that's not safe to 3372 * do with only the per-VMA lock held for this VMA. 3373 * 3374 * Return: 0 if fault handling can proceed. Any other value should be 3375 * returned to the caller. 3376 */ 3377 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3378 { 3379 struct vm_area_struct *vma = vmf->vma; 3380 vm_fault_t ret = 0; 3381 3382 if (likely(vma->anon_vma)) 3383 return 0; 3384 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3385 if (!mmap_read_trylock(vma->vm_mm)) 3386 return VM_FAULT_RETRY; 3387 } 3388 if (__anon_vma_prepare(vma)) 3389 ret = VM_FAULT_OOM; 3390 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3391 mmap_read_unlock(vma->vm_mm); 3392 return ret; 3393 } 3394 3395 /* 3396 * Handle the case of a page which we actually need to copy to a new page, 3397 * either due to COW or unsharing. 3398 * 3399 * Called with mmap_lock locked and the old page referenced, but 3400 * without the ptl held. 3401 * 3402 * High level logic flow: 3403 * 3404 * - Allocate a page, copy the content of the old page to the new one. 3405 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3406 * - Take the PTL. If the pte changed, bail out and release the allocated page 3407 * - If the pte is still the way we remember it, update the page table and all 3408 * relevant references. This includes dropping the reference the page-table 3409 * held to the old page, as well as updating the rmap. 3410 * - In any case, unlock the PTL and drop the reference we took to the old page. 3411 */ 3412 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3413 { 3414 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3415 struct vm_area_struct *vma = vmf->vma; 3416 struct mm_struct *mm = vma->vm_mm; 3417 struct folio *old_folio = NULL; 3418 struct folio *new_folio = NULL; 3419 pte_t entry; 3420 int page_copied = 0; 3421 struct mmu_notifier_range range; 3422 vm_fault_t ret; 3423 bool pfn_is_zero; 3424 3425 delayacct_wpcopy_start(); 3426 3427 if (vmf->page) 3428 old_folio = page_folio(vmf->page); 3429 ret = vmf_anon_prepare(vmf); 3430 if (unlikely(ret)) 3431 goto out; 3432 3433 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3434 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3435 if (!new_folio) 3436 goto oom; 3437 3438 if (!pfn_is_zero) { 3439 int err; 3440 3441 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3442 if (err) { 3443 /* 3444 * COW failed, if the fault was solved by other, 3445 * it's fine. If not, userspace would re-fault on 3446 * the same address and we will handle the fault 3447 * from the second attempt. 3448 * The -EHWPOISON case will not be retried. 3449 */ 3450 folio_put(new_folio); 3451 if (old_folio) 3452 folio_put(old_folio); 3453 3454 delayacct_wpcopy_end(); 3455 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3456 } 3457 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3458 } 3459 3460 __folio_mark_uptodate(new_folio); 3461 3462 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3463 vmf->address & PAGE_MASK, 3464 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3465 mmu_notifier_invalidate_range_start(&range); 3466 3467 /* 3468 * Re-check the pte - we dropped the lock 3469 */ 3470 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3471 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3472 if (old_folio) { 3473 if (!folio_test_anon(old_folio)) { 3474 dec_mm_counter(mm, mm_counter_file(old_folio)); 3475 inc_mm_counter(mm, MM_ANONPAGES); 3476 } 3477 } else { 3478 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3479 inc_mm_counter(mm, MM_ANONPAGES); 3480 } 3481 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3482 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3483 entry = pte_sw_mkyoung(entry); 3484 if (unlikely(unshare)) { 3485 if (pte_soft_dirty(vmf->orig_pte)) 3486 entry = pte_mksoft_dirty(entry); 3487 if (pte_uffd_wp(vmf->orig_pte)) 3488 entry = pte_mkuffd_wp(entry); 3489 } else { 3490 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3491 } 3492 3493 /* 3494 * Clear the pte entry and flush it first, before updating the 3495 * pte with the new entry, to keep TLBs on different CPUs in 3496 * sync. This code used to set the new PTE then flush TLBs, but 3497 * that left a window where the new PTE could be loaded into 3498 * some TLBs while the old PTE remains in others. 3499 */ 3500 ptep_clear_flush(vma, vmf->address, vmf->pte); 3501 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3502 folio_add_lru_vma(new_folio, vma); 3503 BUG_ON(unshare && pte_write(entry)); 3504 set_pte_at(mm, vmf->address, vmf->pte, entry); 3505 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3506 if (old_folio) { 3507 /* 3508 * Only after switching the pte to the new page may 3509 * we remove the mapcount here. Otherwise another 3510 * process may come and find the rmap count decremented 3511 * before the pte is switched to the new page, and 3512 * "reuse" the old page writing into it while our pte 3513 * here still points into it and can be read by other 3514 * threads. 3515 * 3516 * The critical issue is to order this 3517 * folio_remove_rmap_pte() with the ptp_clear_flush 3518 * above. Those stores are ordered by (if nothing else,) 3519 * the barrier present in the atomic_add_negative 3520 * in folio_remove_rmap_pte(); 3521 * 3522 * Then the TLB flush in ptep_clear_flush ensures that 3523 * no process can access the old page before the 3524 * decremented mapcount is visible. And the old page 3525 * cannot be reused until after the decremented 3526 * mapcount is visible. So transitively, TLBs to 3527 * old page will be flushed before it can be reused. 3528 */ 3529 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3530 } 3531 3532 /* Free the old page.. */ 3533 new_folio = old_folio; 3534 page_copied = 1; 3535 pte_unmap_unlock(vmf->pte, vmf->ptl); 3536 } else if (vmf->pte) { 3537 update_mmu_tlb(vma, vmf->address, vmf->pte); 3538 pte_unmap_unlock(vmf->pte, vmf->ptl); 3539 } 3540 3541 mmu_notifier_invalidate_range_end(&range); 3542 3543 if (new_folio) 3544 folio_put(new_folio); 3545 if (old_folio) { 3546 if (page_copied) 3547 free_swap_cache(old_folio); 3548 folio_put(old_folio); 3549 } 3550 3551 delayacct_wpcopy_end(); 3552 return 0; 3553 oom: 3554 ret = VM_FAULT_OOM; 3555 out: 3556 if (old_folio) 3557 folio_put(old_folio); 3558 3559 delayacct_wpcopy_end(); 3560 return ret; 3561 } 3562 3563 /** 3564 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3565 * writeable once the page is prepared 3566 * 3567 * @vmf: structure describing the fault 3568 * @folio: the folio of vmf->page 3569 * 3570 * This function handles all that is needed to finish a write page fault in a 3571 * shared mapping due to PTE being read-only once the mapped page is prepared. 3572 * It handles locking of PTE and modifying it. 3573 * 3574 * The function expects the page to be locked or other protection against 3575 * concurrent faults / writeback (such as DAX radix tree locks). 3576 * 3577 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3578 * we acquired PTE lock. 3579 */ 3580 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3581 { 3582 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3583 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3584 &vmf->ptl); 3585 if (!vmf->pte) 3586 return VM_FAULT_NOPAGE; 3587 /* 3588 * We might have raced with another page fault while we released the 3589 * pte_offset_map_lock. 3590 */ 3591 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3592 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3593 pte_unmap_unlock(vmf->pte, vmf->ptl); 3594 return VM_FAULT_NOPAGE; 3595 } 3596 wp_page_reuse(vmf, folio); 3597 return 0; 3598 } 3599 3600 /* 3601 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3602 * mapping 3603 */ 3604 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3605 { 3606 struct vm_area_struct *vma = vmf->vma; 3607 3608 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3609 vm_fault_t ret; 3610 3611 pte_unmap_unlock(vmf->pte, vmf->ptl); 3612 ret = vmf_can_call_fault(vmf); 3613 if (ret) 3614 return ret; 3615 3616 vmf->flags |= FAULT_FLAG_MKWRITE; 3617 ret = vma->vm_ops->pfn_mkwrite(vmf); 3618 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3619 return ret; 3620 return finish_mkwrite_fault(vmf, NULL); 3621 } 3622 wp_page_reuse(vmf, NULL); 3623 return 0; 3624 } 3625 3626 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3627 __releases(vmf->ptl) 3628 { 3629 struct vm_area_struct *vma = vmf->vma; 3630 vm_fault_t ret = 0; 3631 3632 folio_get(folio); 3633 3634 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3635 vm_fault_t tmp; 3636 3637 pte_unmap_unlock(vmf->pte, vmf->ptl); 3638 tmp = vmf_can_call_fault(vmf); 3639 if (tmp) { 3640 folio_put(folio); 3641 return tmp; 3642 } 3643 3644 tmp = do_page_mkwrite(vmf, folio); 3645 if (unlikely(!tmp || (tmp & 3646 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3647 folio_put(folio); 3648 return tmp; 3649 } 3650 tmp = finish_mkwrite_fault(vmf, folio); 3651 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3652 folio_unlock(folio); 3653 folio_put(folio); 3654 return tmp; 3655 } 3656 } else { 3657 wp_page_reuse(vmf, folio); 3658 folio_lock(folio); 3659 } 3660 ret |= fault_dirty_shared_page(vmf); 3661 folio_put(folio); 3662 3663 return ret; 3664 } 3665 3666 static bool wp_can_reuse_anon_folio(struct folio *folio, 3667 struct vm_area_struct *vma) 3668 { 3669 /* 3670 * We could currently only reuse a subpage of a large folio if no 3671 * other subpages of the large folios are still mapped. However, 3672 * let's just consistently not reuse subpages even if we could 3673 * reuse in that scenario, and give back a large folio a bit 3674 * sooner. 3675 */ 3676 if (folio_test_large(folio)) 3677 return false; 3678 3679 /* 3680 * We have to verify under folio lock: these early checks are 3681 * just an optimization to avoid locking the folio and freeing 3682 * the swapcache if there is little hope that we can reuse. 3683 * 3684 * KSM doesn't necessarily raise the folio refcount. 3685 */ 3686 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3687 return false; 3688 if (!folio_test_lru(folio)) 3689 /* 3690 * We cannot easily detect+handle references from 3691 * remote LRU caches or references to LRU folios. 3692 */ 3693 lru_add_drain(); 3694 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3695 return false; 3696 if (!folio_trylock(folio)) 3697 return false; 3698 if (folio_test_swapcache(folio)) 3699 folio_free_swap(folio); 3700 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3701 folio_unlock(folio); 3702 return false; 3703 } 3704 /* 3705 * Ok, we've got the only folio reference from our mapping 3706 * and the folio is locked, it's dark out, and we're wearing 3707 * sunglasses. Hit it. 3708 */ 3709 folio_move_anon_rmap(folio, vma); 3710 folio_unlock(folio); 3711 return true; 3712 } 3713 3714 /* 3715 * This routine handles present pages, when 3716 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3717 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3718 * (FAULT_FLAG_UNSHARE) 3719 * 3720 * It is done by copying the page to a new address and decrementing the 3721 * shared-page counter for the old page. 3722 * 3723 * Note that this routine assumes that the protection checks have been 3724 * done by the caller (the low-level page fault routine in most cases). 3725 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3726 * done any necessary COW. 3727 * 3728 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3729 * though the page will change only once the write actually happens. This 3730 * avoids a few races, and potentially makes it more efficient. 3731 * 3732 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3733 * but allow concurrent faults), with pte both mapped and locked. 3734 * We return with mmap_lock still held, but pte unmapped and unlocked. 3735 */ 3736 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3737 __releases(vmf->ptl) 3738 { 3739 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3740 struct vm_area_struct *vma = vmf->vma; 3741 struct folio *folio = NULL; 3742 pte_t pte; 3743 3744 if (likely(!unshare)) { 3745 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3746 if (!userfaultfd_wp_async(vma)) { 3747 pte_unmap_unlock(vmf->pte, vmf->ptl); 3748 return handle_userfault(vmf, VM_UFFD_WP); 3749 } 3750 3751 /* 3752 * Nothing needed (cache flush, TLB invalidations, 3753 * etc.) because we're only removing the uffd-wp bit, 3754 * which is completely invisible to the user. 3755 */ 3756 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3757 3758 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3759 /* 3760 * Update this to be prepared for following up CoW 3761 * handling 3762 */ 3763 vmf->orig_pte = pte; 3764 } 3765 3766 /* 3767 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3768 * is flushed in this case before copying. 3769 */ 3770 if (unlikely(userfaultfd_wp(vmf->vma) && 3771 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3772 flush_tlb_page(vmf->vma, vmf->address); 3773 } 3774 3775 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3776 3777 if (vmf->page) 3778 folio = page_folio(vmf->page); 3779 3780 /* 3781 * Shared mapping: we are guaranteed to have VM_WRITE and 3782 * FAULT_FLAG_WRITE set at this point. 3783 */ 3784 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3785 /* 3786 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3787 * VM_PFNMAP VMA. 3788 * 3789 * We should not cow pages in a shared writeable mapping. 3790 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3791 */ 3792 if (!vmf->page) 3793 return wp_pfn_shared(vmf); 3794 return wp_page_shared(vmf, folio); 3795 } 3796 3797 /* 3798 * Private mapping: create an exclusive anonymous page copy if reuse 3799 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3800 * 3801 * If we encounter a page that is marked exclusive, we must reuse 3802 * the page without further checks. 3803 */ 3804 if (folio && folio_test_anon(folio) && 3805 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3806 if (!PageAnonExclusive(vmf->page)) 3807 SetPageAnonExclusive(vmf->page); 3808 if (unlikely(unshare)) { 3809 pte_unmap_unlock(vmf->pte, vmf->ptl); 3810 return 0; 3811 } 3812 wp_page_reuse(vmf, folio); 3813 return 0; 3814 } 3815 /* 3816 * Ok, we need to copy. Oh, well.. 3817 */ 3818 if (folio) 3819 folio_get(folio); 3820 3821 pte_unmap_unlock(vmf->pte, vmf->ptl); 3822 #ifdef CONFIG_KSM 3823 if (folio && folio_test_ksm(folio)) 3824 count_vm_event(COW_KSM); 3825 #endif 3826 return wp_page_copy(vmf); 3827 } 3828 3829 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3830 unsigned long start_addr, unsigned long end_addr, 3831 struct zap_details *details) 3832 { 3833 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3834 } 3835 3836 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3837 pgoff_t first_index, 3838 pgoff_t last_index, 3839 struct zap_details *details) 3840 { 3841 struct vm_area_struct *vma; 3842 pgoff_t vba, vea, zba, zea; 3843 3844 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3845 vba = vma->vm_pgoff; 3846 vea = vba + vma_pages(vma) - 1; 3847 zba = max(first_index, vba); 3848 zea = min(last_index, vea); 3849 3850 unmap_mapping_range_vma(vma, 3851 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3852 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3853 details); 3854 } 3855 } 3856 3857 /** 3858 * unmap_mapping_folio() - Unmap single folio from processes. 3859 * @folio: The locked folio to be unmapped. 3860 * 3861 * Unmap this folio from any userspace process which still has it mmaped. 3862 * Typically, for efficiency, the range of nearby pages has already been 3863 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3864 * truncation or invalidation holds the lock on a folio, it may find that 3865 * the page has been remapped again: and then uses unmap_mapping_folio() 3866 * to unmap it finally. 3867 */ 3868 void unmap_mapping_folio(struct folio *folio) 3869 { 3870 struct address_space *mapping = folio->mapping; 3871 struct zap_details details = { }; 3872 pgoff_t first_index; 3873 pgoff_t last_index; 3874 3875 VM_BUG_ON(!folio_test_locked(folio)); 3876 3877 first_index = folio->index; 3878 last_index = folio_next_index(folio) - 1; 3879 3880 details.even_cows = false; 3881 details.single_folio = folio; 3882 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3883 3884 i_mmap_lock_read(mapping); 3885 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3886 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3887 last_index, &details); 3888 i_mmap_unlock_read(mapping); 3889 } 3890 3891 /** 3892 * unmap_mapping_pages() - Unmap pages from processes. 3893 * @mapping: The address space containing pages to be unmapped. 3894 * @start: Index of first page to be unmapped. 3895 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3896 * @even_cows: Whether to unmap even private COWed pages. 3897 * 3898 * Unmap the pages in this address space from any userspace process which 3899 * has them mmaped. Generally, you want to remove COWed pages as well when 3900 * a file is being truncated, but not when invalidating pages from the page 3901 * cache. 3902 */ 3903 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3904 pgoff_t nr, bool even_cows) 3905 { 3906 struct zap_details details = { }; 3907 pgoff_t first_index = start; 3908 pgoff_t last_index = start + nr - 1; 3909 3910 details.even_cows = even_cows; 3911 if (last_index < first_index) 3912 last_index = ULONG_MAX; 3913 3914 i_mmap_lock_read(mapping); 3915 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3916 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3917 last_index, &details); 3918 i_mmap_unlock_read(mapping); 3919 } 3920 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3921 3922 /** 3923 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3924 * address_space corresponding to the specified byte range in the underlying 3925 * file. 3926 * 3927 * @mapping: the address space containing mmaps to be unmapped. 3928 * @holebegin: byte in first page to unmap, relative to the start of 3929 * the underlying file. This will be rounded down to a PAGE_SIZE 3930 * boundary. Note that this is different from truncate_pagecache(), which 3931 * must keep the partial page. In contrast, we must get rid of 3932 * partial pages. 3933 * @holelen: size of prospective hole in bytes. This will be rounded 3934 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3935 * end of the file. 3936 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3937 * but 0 when invalidating pagecache, don't throw away private data. 3938 */ 3939 void unmap_mapping_range(struct address_space *mapping, 3940 loff_t const holebegin, loff_t const holelen, int even_cows) 3941 { 3942 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3943 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3944 3945 /* Check for overflow. */ 3946 if (sizeof(holelen) > sizeof(hlen)) { 3947 long long holeend = 3948 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3949 if (holeend & ~(long long)ULONG_MAX) 3950 hlen = ULONG_MAX - hba + 1; 3951 } 3952 3953 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3954 } 3955 EXPORT_SYMBOL(unmap_mapping_range); 3956 3957 /* 3958 * Restore a potential device exclusive pte to a working pte entry 3959 */ 3960 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3961 { 3962 struct folio *folio = page_folio(vmf->page); 3963 struct vm_area_struct *vma = vmf->vma; 3964 struct mmu_notifier_range range; 3965 vm_fault_t ret; 3966 3967 /* 3968 * We need a reference to lock the folio because we don't hold 3969 * the PTL so a racing thread can remove the device-exclusive 3970 * entry and unmap it. If the folio is free the entry must 3971 * have been removed already. If it happens to have already 3972 * been re-allocated after being freed all we do is lock and 3973 * unlock it. 3974 */ 3975 if (!folio_try_get(folio)) 3976 return 0; 3977 3978 ret = folio_lock_or_retry(folio, vmf); 3979 if (ret) { 3980 folio_put(folio); 3981 return ret; 3982 } 3983 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3984 vma->vm_mm, vmf->address & PAGE_MASK, 3985 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3986 mmu_notifier_invalidate_range_start(&range); 3987 3988 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3989 &vmf->ptl); 3990 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3991 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3992 3993 if (vmf->pte) 3994 pte_unmap_unlock(vmf->pte, vmf->ptl); 3995 folio_unlock(folio); 3996 folio_put(folio); 3997 3998 mmu_notifier_invalidate_range_end(&range); 3999 return 0; 4000 } 4001 4002 static inline bool should_try_to_free_swap(struct folio *folio, 4003 struct vm_area_struct *vma, 4004 unsigned int fault_flags) 4005 { 4006 if (!folio_test_swapcache(folio)) 4007 return false; 4008 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4009 folio_test_mlocked(folio)) 4010 return true; 4011 /* 4012 * If we want to map a page that's in the swapcache writable, we 4013 * have to detect via the refcount if we're really the exclusive 4014 * user. Try freeing the swapcache to get rid of the swapcache 4015 * reference only in case it's likely that we'll be the exlusive user. 4016 */ 4017 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4018 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4019 } 4020 4021 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4022 { 4023 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4024 vmf->address, &vmf->ptl); 4025 if (!vmf->pte) 4026 return 0; 4027 /* 4028 * Be careful so that we will only recover a special uffd-wp pte into a 4029 * none pte. Otherwise it means the pte could have changed, so retry. 4030 * 4031 * This should also cover the case where e.g. the pte changed 4032 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4033 * So is_pte_marker() check is not enough to safely drop the pte. 4034 */ 4035 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4036 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4037 pte_unmap_unlock(vmf->pte, vmf->ptl); 4038 return 0; 4039 } 4040 4041 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4042 { 4043 if (vma_is_anonymous(vmf->vma)) 4044 return do_anonymous_page(vmf); 4045 else 4046 return do_fault(vmf); 4047 } 4048 4049 /* 4050 * This is actually a page-missing access, but with uffd-wp special pte 4051 * installed. It means this pte was wr-protected before being unmapped. 4052 */ 4053 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4054 { 4055 /* 4056 * Just in case there're leftover special ptes even after the region 4057 * got unregistered - we can simply clear them. 4058 */ 4059 if (unlikely(!userfaultfd_wp(vmf->vma))) 4060 return pte_marker_clear(vmf); 4061 4062 return do_pte_missing(vmf); 4063 } 4064 4065 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4066 { 4067 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4068 unsigned long marker = pte_marker_get(entry); 4069 4070 /* 4071 * PTE markers should never be empty. If anything weird happened, 4072 * the best thing to do is to kill the process along with its mm. 4073 */ 4074 if (WARN_ON_ONCE(!marker)) 4075 return VM_FAULT_SIGBUS; 4076 4077 /* Higher priority than uffd-wp when data corrupted */ 4078 if (marker & PTE_MARKER_POISONED) 4079 return VM_FAULT_HWPOISON; 4080 4081 /* Hitting a guard page is always a fatal condition. */ 4082 if (marker & PTE_MARKER_GUARD) 4083 return VM_FAULT_SIGSEGV; 4084 4085 if (pte_marker_entry_uffd_wp(entry)) 4086 return pte_marker_handle_uffd_wp(vmf); 4087 4088 /* This is an unknown pte marker */ 4089 return VM_FAULT_SIGBUS; 4090 } 4091 4092 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4093 { 4094 struct vm_area_struct *vma = vmf->vma; 4095 struct folio *folio; 4096 swp_entry_t entry; 4097 4098 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4099 if (!folio) 4100 return NULL; 4101 4102 entry = pte_to_swp_entry(vmf->orig_pte); 4103 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4104 GFP_KERNEL, entry)) { 4105 folio_put(folio); 4106 return NULL; 4107 } 4108 4109 return folio; 4110 } 4111 4112 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4113 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr) 4114 { 4115 struct swap_info_struct *si = swp_swap_info(entry); 4116 pgoff_t offset = swp_offset(entry); 4117 int i; 4118 4119 /* 4120 * While allocating a large folio and doing swap_read_folio, which is 4121 * the case the being faulted pte doesn't have swapcache. We need to 4122 * ensure all PTEs have no cache as well, otherwise, we might go to 4123 * swap devices while the content is in swapcache. 4124 */ 4125 for (i = 0; i < max_nr; i++) { 4126 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE)) 4127 return i; 4128 } 4129 4130 return i; 4131 } 4132 4133 /* 4134 * Check if the PTEs within a range are contiguous swap entries 4135 * and have consistent swapcache, zeromap. 4136 */ 4137 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4138 { 4139 unsigned long addr; 4140 swp_entry_t entry; 4141 int idx; 4142 pte_t pte; 4143 4144 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4145 idx = (vmf->address - addr) / PAGE_SIZE; 4146 pte = ptep_get(ptep); 4147 4148 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4149 return false; 4150 entry = pte_to_swp_entry(pte); 4151 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4152 return false; 4153 4154 /* 4155 * swap_read_folio() can't handle the case a large folio is hybridly 4156 * from different backends. And they are likely corner cases. Similar 4157 * things might be added once zswap support large folios. 4158 */ 4159 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4160 return false; 4161 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4162 return false; 4163 4164 return true; 4165 } 4166 4167 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4168 unsigned long addr, 4169 unsigned long orders) 4170 { 4171 int order, nr; 4172 4173 order = highest_order(orders); 4174 4175 /* 4176 * To swap in a THP with nr pages, we require that its first swap_offset 4177 * is aligned with that number, as it was when the THP was swapped out. 4178 * This helps filter out most invalid entries. 4179 */ 4180 while (orders) { 4181 nr = 1 << order; 4182 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4183 break; 4184 order = next_order(&orders, order); 4185 } 4186 4187 return orders; 4188 } 4189 4190 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4191 { 4192 struct vm_area_struct *vma = vmf->vma; 4193 unsigned long orders; 4194 struct folio *folio; 4195 unsigned long addr; 4196 swp_entry_t entry; 4197 spinlock_t *ptl; 4198 pte_t *pte; 4199 gfp_t gfp; 4200 int order; 4201 4202 /* 4203 * If uffd is active for the vma we need per-page fault fidelity to 4204 * maintain the uffd semantics. 4205 */ 4206 if (unlikely(userfaultfd_armed(vma))) 4207 goto fallback; 4208 4209 /* 4210 * A large swapped out folio could be partially or fully in zswap. We 4211 * lack handling for such cases, so fallback to swapping in order-0 4212 * folio. 4213 */ 4214 if (!zswap_never_enabled()) 4215 goto fallback; 4216 4217 entry = pte_to_swp_entry(vmf->orig_pte); 4218 /* 4219 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4220 * and suitable for swapping THP. 4221 */ 4222 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4223 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4224 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4225 orders = thp_swap_suitable_orders(swp_offset(entry), 4226 vmf->address, orders); 4227 4228 if (!orders) 4229 goto fallback; 4230 4231 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4232 vmf->address & PMD_MASK, &ptl); 4233 if (unlikely(!pte)) 4234 goto fallback; 4235 4236 /* 4237 * For do_swap_page, find the highest order where the aligned range is 4238 * completely swap entries with contiguous swap offsets. 4239 */ 4240 order = highest_order(orders); 4241 while (orders) { 4242 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4243 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4244 break; 4245 order = next_order(&orders, order); 4246 } 4247 4248 pte_unmap_unlock(pte, ptl); 4249 4250 /* Try allocating the highest of the remaining orders. */ 4251 gfp = vma_thp_gfp_mask(vma); 4252 while (orders) { 4253 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4254 folio = vma_alloc_folio(gfp, order, vma, addr); 4255 if (folio) { 4256 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4257 gfp, entry)) 4258 return folio; 4259 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4260 folio_put(folio); 4261 } 4262 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4263 order = next_order(&orders, order); 4264 } 4265 4266 fallback: 4267 return __alloc_swap_folio(vmf); 4268 } 4269 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4270 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4271 { 4272 return __alloc_swap_folio(vmf); 4273 } 4274 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4275 4276 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4277 4278 /* 4279 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4280 * but allow concurrent faults), and pte mapped but not yet locked. 4281 * We return with pte unmapped and unlocked. 4282 * 4283 * We return with the mmap_lock locked or unlocked in the same cases 4284 * as does filemap_fault(). 4285 */ 4286 vm_fault_t do_swap_page(struct vm_fault *vmf) 4287 { 4288 struct vm_area_struct *vma = vmf->vma; 4289 struct folio *swapcache, *folio = NULL; 4290 DECLARE_WAITQUEUE(wait, current); 4291 struct page *page; 4292 struct swap_info_struct *si = NULL; 4293 rmap_t rmap_flags = RMAP_NONE; 4294 bool need_clear_cache = false; 4295 bool exclusive = false; 4296 swp_entry_t entry; 4297 pte_t pte; 4298 vm_fault_t ret = 0; 4299 void *shadow = NULL; 4300 int nr_pages; 4301 unsigned long page_idx; 4302 unsigned long address; 4303 pte_t *ptep; 4304 4305 if (!pte_unmap_same(vmf)) 4306 goto out; 4307 4308 entry = pte_to_swp_entry(vmf->orig_pte); 4309 if (unlikely(non_swap_entry(entry))) { 4310 if (is_migration_entry(entry)) { 4311 migration_entry_wait(vma->vm_mm, vmf->pmd, 4312 vmf->address); 4313 } else if (is_device_exclusive_entry(entry)) { 4314 vmf->page = pfn_swap_entry_to_page(entry); 4315 ret = remove_device_exclusive_entry(vmf); 4316 } else if (is_device_private_entry(entry)) { 4317 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4318 /* 4319 * migrate_to_ram is not yet ready to operate 4320 * under VMA lock. 4321 */ 4322 vma_end_read(vma); 4323 ret = VM_FAULT_RETRY; 4324 goto out; 4325 } 4326 4327 vmf->page = pfn_swap_entry_to_page(entry); 4328 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4329 vmf->address, &vmf->ptl); 4330 if (unlikely(!vmf->pte || 4331 !pte_same(ptep_get(vmf->pte), 4332 vmf->orig_pte))) 4333 goto unlock; 4334 4335 /* 4336 * Get a page reference while we know the page can't be 4337 * freed. 4338 */ 4339 get_page(vmf->page); 4340 pte_unmap_unlock(vmf->pte, vmf->ptl); 4341 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 4342 put_page(vmf->page); 4343 } else if (is_hwpoison_entry(entry)) { 4344 ret = VM_FAULT_HWPOISON; 4345 } else if (is_pte_marker_entry(entry)) { 4346 ret = handle_pte_marker(vmf); 4347 } else { 4348 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4349 ret = VM_FAULT_SIGBUS; 4350 } 4351 goto out; 4352 } 4353 4354 /* Prevent swapoff from happening to us. */ 4355 si = get_swap_device(entry); 4356 if (unlikely(!si)) 4357 goto out; 4358 4359 folio = swap_cache_get_folio(entry, vma, vmf->address); 4360 if (folio) 4361 page = folio_file_page(folio, swp_offset(entry)); 4362 swapcache = folio; 4363 4364 if (!folio) { 4365 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4366 __swap_count(entry) == 1) { 4367 /* skip swapcache */ 4368 folio = alloc_swap_folio(vmf); 4369 if (folio) { 4370 __folio_set_locked(folio); 4371 __folio_set_swapbacked(folio); 4372 4373 nr_pages = folio_nr_pages(folio); 4374 if (folio_test_large(folio)) 4375 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4376 /* 4377 * Prevent parallel swapin from proceeding with 4378 * the cache flag. Otherwise, another thread 4379 * may finish swapin first, free the entry, and 4380 * swapout reusing the same entry. It's 4381 * undetectable as pte_same() returns true due 4382 * to entry reuse. 4383 */ 4384 if (swapcache_prepare(entry, nr_pages)) { 4385 /* 4386 * Relax a bit to prevent rapid 4387 * repeated page faults. 4388 */ 4389 add_wait_queue(&swapcache_wq, &wait); 4390 schedule_timeout_uninterruptible(1); 4391 remove_wait_queue(&swapcache_wq, &wait); 4392 goto out_page; 4393 } 4394 need_clear_cache = true; 4395 4396 mem_cgroup_swapin_uncharge_swap(entry, nr_pages); 4397 4398 shadow = get_shadow_from_swap_cache(entry); 4399 if (shadow) 4400 workingset_refault(folio, shadow); 4401 4402 folio_add_lru(folio); 4403 4404 /* To provide entry to swap_read_folio() */ 4405 folio->swap = entry; 4406 swap_read_folio(folio, NULL); 4407 folio->private = NULL; 4408 } 4409 } else { 4410 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4411 vmf); 4412 swapcache = folio; 4413 } 4414 4415 if (!folio) { 4416 /* 4417 * Back out if somebody else faulted in this pte 4418 * while we released the pte lock. 4419 */ 4420 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4421 vmf->address, &vmf->ptl); 4422 if (likely(vmf->pte && 4423 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4424 ret = VM_FAULT_OOM; 4425 goto unlock; 4426 } 4427 4428 /* Had to read the page from swap area: Major fault */ 4429 ret = VM_FAULT_MAJOR; 4430 count_vm_event(PGMAJFAULT); 4431 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4432 page = folio_file_page(folio, swp_offset(entry)); 4433 } else if (PageHWPoison(page)) { 4434 /* 4435 * hwpoisoned dirty swapcache pages are kept for killing 4436 * owner processes (which may be unknown at hwpoison time) 4437 */ 4438 ret = VM_FAULT_HWPOISON; 4439 goto out_release; 4440 } 4441 4442 ret |= folio_lock_or_retry(folio, vmf); 4443 if (ret & VM_FAULT_RETRY) 4444 goto out_release; 4445 4446 if (swapcache) { 4447 /* 4448 * Make sure folio_free_swap() or swapoff did not release the 4449 * swapcache from under us. The page pin, and pte_same test 4450 * below, are not enough to exclude that. Even if it is still 4451 * swapcache, we need to check that the page's swap has not 4452 * changed. 4453 */ 4454 if (unlikely(!folio_test_swapcache(folio) || 4455 page_swap_entry(page).val != entry.val)) 4456 goto out_page; 4457 4458 /* 4459 * KSM sometimes has to copy on read faults, for example, if 4460 * page->index of !PageKSM() pages would be nonlinear inside the 4461 * anon VMA -- PageKSM() is lost on actual swapout. 4462 */ 4463 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4464 if (unlikely(!folio)) { 4465 ret = VM_FAULT_OOM; 4466 folio = swapcache; 4467 goto out_page; 4468 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4469 ret = VM_FAULT_HWPOISON; 4470 folio = swapcache; 4471 goto out_page; 4472 } 4473 if (folio != swapcache) 4474 page = folio_page(folio, 0); 4475 4476 /* 4477 * If we want to map a page that's in the swapcache writable, we 4478 * have to detect via the refcount if we're really the exclusive 4479 * owner. Try removing the extra reference from the local LRU 4480 * caches if required. 4481 */ 4482 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4483 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4484 lru_add_drain(); 4485 } 4486 4487 folio_throttle_swaprate(folio, GFP_KERNEL); 4488 4489 /* 4490 * Back out if somebody else already faulted in this pte. 4491 */ 4492 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4493 &vmf->ptl); 4494 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4495 goto out_nomap; 4496 4497 if (unlikely(!folio_test_uptodate(folio))) { 4498 ret = VM_FAULT_SIGBUS; 4499 goto out_nomap; 4500 } 4501 4502 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4503 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4504 unsigned long nr = folio_nr_pages(folio); 4505 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4506 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4507 pte_t *folio_ptep = vmf->pte - idx; 4508 pte_t folio_pte = ptep_get(folio_ptep); 4509 4510 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4511 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4512 goto out_nomap; 4513 4514 page_idx = idx; 4515 address = folio_start; 4516 ptep = folio_ptep; 4517 goto check_folio; 4518 } 4519 4520 nr_pages = 1; 4521 page_idx = 0; 4522 address = vmf->address; 4523 ptep = vmf->pte; 4524 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4525 int nr = folio_nr_pages(folio); 4526 unsigned long idx = folio_page_idx(folio, page); 4527 unsigned long folio_start = address - idx * PAGE_SIZE; 4528 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4529 pte_t *folio_ptep; 4530 pte_t folio_pte; 4531 4532 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4533 goto check_folio; 4534 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4535 goto check_folio; 4536 4537 folio_ptep = vmf->pte - idx; 4538 folio_pte = ptep_get(folio_ptep); 4539 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4540 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4541 goto check_folio; 4542 4543 page_idx = idx; 4544 address = folio_start; 4545 ptep = folio_ptep; 4546 nr_pages = nr; 4547 entry = folio->swap; 4548 page = &folio->page; 4549 } 4550 4551 check_folio: 4552 /* 4553 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4554 * must never point at an anonymous page in the swapcache that is 4555 * PG_anon_exclusive. Sanity check that this holds and especially, that 4556 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4557 * check after taking the PT lock and making sure that nobody 4558 * concurrently faulted in this page and set PG_anon_exclusive. 4559 */ 4560 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4561 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4562 4563 /* 4564 * Check under PT lock (to protect against concurrent fork() sharing 4565 * the swap entry concurrently) for certainly exclusive pages. 4566 */ 4567 if (!folio_test_ksm(folio)) { 4568 exclusive = pte_swp_exclusive(vmf->orig_pte); 4569 if (folio != swapcache) { 4570 /* 4571 * We have a fresh page that is not exposed to the 4572 * swapcache -> certainly exclusive. 4573 */ 4574 exclusive = true; 4575 } else if (exclusive && folio_test_writeback(folio) && 4576 data_race(si->flags & SWP_STABLE_WRITES)) { 4577 /* 4578 * This is tricky: not all swap backends support 4579 * concurrent page modifications while under writeback. 4580 * 4581 * So if we stumble over such a page in the swapcache 4582 * we must not set the page exclusive, otherwise we can 4583 * map it writable without further checks and modify it 4584 * while still under writeback. 4585 * 4586 * For these problematic swap backends, simply drop the 4587 * exclusive marker: this is perfectly fine as we start 4588 * writeback only if we fully unmapped the page and 4589 * there are no unexpected references on the page after 4590 * unmapping succeeded. After fully unmapped, no 4591 * further GUP references (FOLL_GET and FOLL_PIN) can 4592 * appear, so dropping the exclusive marker and mapping 4593 * it only R/O is fine. 4594 */ 4595 exclusive = false; 4596 } 4597 } 4598 4599 /* 4600 * Some architectures may have to restore extra metadata to the page 4601 * when reading from swap. This metadata may be indexed by swap entry 4602 * so this must be called before swap_free(). 4603 */ 4604 arch_swap_restore(folio_swap(entry, folio), folio); 4605 4606 /* 4607 * Remove the swap entry and conditionally try to free up the swapcache. 4608 * We're already holding a reference on the page but haven't mapped it 4609 * yet. 4610 */ 4611 swap_free_nr(entry, nr_pages); 4612 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4613 folio_free_swap(folio); 4614 4615 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4616 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4617 pte = mk_pte(page, vma->vm_page_prot); 4618 if (pte_swp_soft_dirty(vmf->orig_pte)) 4619 pte = pte_mksoft_dirty(pte); 4620 if (pte_swp_uffd_wp(vmf->orig_pte)) 4621 pte = pte_mkuffd_wp(pte); 4622 4623 /* 4624 * Same logic as in do_wp_page(); however, optimize for pages that are 4625 * certainly not shared either because we just allocated them without 4626 * exposing them to the swapcache or because the swap entry indicates 4627 * exclusivity. 4628 */ 4629 if (!folio_test_ksm(folio) && 4630 (exclusive || folio_ref_count(folio) == 1)) { 4631 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4632 !pte_needs_soft_dirty_wp(vma, pte)) { 4633 pte = pte_mkwrite(pte, vma); 4634 if (vmf->flags & FAULT_FLAG_WRITE) { 4635 pte = pte_mkdirty(pte); 4636 vmf->flags &= ~FAULT_FLAG_WRITE; 4637 } 4638 } 4639 rmap_flags |= RMAP_EXCLUSIVE; 4640 } 4641 folio_ref_add(folio, nr_pages - 1); 4642 flush_icache_pages(vma, page, nr_pages); 4643 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4644 4645 /* ksm created a completely new copy */ 4646 if (unlikely(folio != swapcache && swapcache)) { 4647 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4648 folio_add_lru_vma(folio, vma); 4649 } else if (!folio_test_anon(folio)) { 4650 /* 4651 * We currently only expect small !anon folios which are either 4652 * fully exclusive or fully shared, or new allocated large 4653 * folios which are fully exclusive. If we ever get large 4654 * folios within swapcache here, we have to be careful. 4655 */ 4656 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4657 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4658 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4659 } else { 4660 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4661 rmap_flags); 4662 } 4663 4664 VM_BUG_ON(!folio_test_anon(folio) || 4665 (pte_write(pte) && !PageAnonExclusive(page))); 4666 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4667 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4668 pte, pte, nr_pages); 4669 4670 folio_unlock(folio); 4671 if (folio != swapcache && swapcache) { 4672 /* 4673 * Hold the lock to avoid the swap entry to be reused 4674 * until we take the PT lock for the pte_same() check 4675 * (to avoid false positives from pte_same). For 4676 * further safety release the lock after the swap_free 4677 * so that the swap count won't change under a 4678 * parallel locked swapcache. 4679 */ 4680 folio_unlock(swapcache); 4681 folio_put(swapcache); 4682 } 4683 4684 if (vmf->flags & FAULT_FLAG_WRITE) { 4685 ret |= do_wp_page(vmf); 4686 if (ret & VM_FAULT_ERROR) 4687 ret &= VM_FAULT_ERROR; 4688 goto out; 4689 } 4690 4691 /* No need to invalidate - it was non-present before */ 4692 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4693 unlock: 4694 if (vmf->pte) 4695 pte_unmap_unlock(vmf->pte, vmf->ptl); 4696 out: 4697 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4698 if (need_clear_cache) { 4699 swapcache_clear(si, entry, nr_pages); 4700 if (waitqueue_active(&swapcache_wq)) 4701 wake_up(&swapcache_wq); 4702 } 4703 if (si) 4704 put_swap_device(si); 4705 return ret; 4706 out_nomap: 4707 if (vmf->pte) 4708 pte_unmap_unlock(vmf->pte, vmf->ptl); 4709 out_page: 4710 folio_unlock(folio); 4711 out_release: 4712 folio_put(folio); 4713 if (folio != swapcache && swapcache) { 4714 folio_unlock(swapcache); 4715 folio_put(swapcache); 4716 } 4717 if (need_clear_cache) { 4718 swapcache_clear(si, entry, nr_pages); 4719 if (waitqueue_active(&swapcache_wq)) 4720 wake_up(&swapcache_wq); 4721 } 4722 if (si) 4723 put_swap_device(si); 4724 return ret; 4725 } 4726 4727 static bool pte_range_none(pte_t *pte, int nr_pages) 4728 { 4729 int i; 4730 4731 for (i = 0; i < nr_pages; i++) { 4732 if (!pte_none(ptep_get_lockless(pte + i))) 4733 return false; 4734 } 4735 4736 return true; 4737 } 4738 4739 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4740 { 4741 struct vm_area_struct *vma = vmf->vma; 4742 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4743 unsigned long orders; 4744 struct folio *folio; 4745 unsigned long addr; 4746 pte_t *pte; 4747 gfp_t gfp; 4748 int order; 4749 4750 /* 4751 * If uffd is active for the vma we need per-page fault fidelity to 4752 * maintain the uffd semantics. 4753 */ 4754 if (unlikely(userfaultfd_armed(vma))) 4755 goto fallback; 4756 4757 /* 4758 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4759 * for this vma. Then filter out the orders that can't be allocated over 4760 * the faulting address and still be fully contained in the vma. 4761 */ 4762 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4763 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4764 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4765 4766 if (!orders) 4767 goto fallback; 4768 4769 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4770 if (!pte) 4771 return ERR_PTR(-EAGAIN); 4772 4773 /* 4774 * Find the highest order where the aligned range is completely 4775 * pte_none(). Note that all remaining orders will be completely 4776 * pte_none(). 4777 */ 4778 order = highest_order(orders); 4779 while (orders) { 4780 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4781 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4782 break; 4783 order = next_order(&orders, order); 4784 } 4785 4786 pte_unmap(pte); 4787 4788 if (!orders) 4789 goto fallback; 4790 4791 /* Try allocating the highest of the remaining orders. */ 4792 gfp = vma_thp_gfp_mask(vma); 4793 while (orders) { 4794 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4795 folio = vma_alloc_folio(gfp, order, vma, addr); 4796 if (folio) { 4797 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4798 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 4799 folio_put(folio); 4800 goto next; 4801 } 4802 folio_throttle_swaprate(folio, gfp); 4803 /* 4804 * When a folio is not zeroed during allocation 4805 * (__GFP_ZERO not used) or user folios require special 4806 * handling, folio_zero_user() is used to make sure 4807 * that the page corresponding to the faulting address 4808 * will be hot in the cache after zeroing. 4809 */ 4810 if (user_alloc_needs_zeroing()) 4811 folio_zero_user(folio, vmf->address); 4812 return folio; 4813 } 4814 next: 4815 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 4816 order = next_order(&orders, order); 4817 } 4818 4819 fallback: 4820 #endif 4821 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4822 } 4823 4824 /* 4825 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4826 * but allow concurrent faults), and pte mapped but not yet locked. 4827 * We return with mmap_lock still held, but pte unmapped and unlocked. 4828 */ 4829 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4830 { 4831 struct vm_area_struct *vma = vmf->vma; 4832 unsigned long addr = vmf->address; 4833 struct folio *folio; 4834 vm_fault_t ret = 0; 4835 int nr_pages = 1; 4836 pte_t entry; 4837 4838 /* File mapping without ->vm_ops ? */ 4839 if (vma->vm_flags & VM_SHARED) 4840 return VM_FAULT_SIGBUS; 4841 4842 /* 4843 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4844 * be distinguished from a transient failure of pte_offset_map(). 4845 */ 4846 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4847 return VM_FAULT_OOM; 4848 4849 /* Use the zero-page for reads */ 4850 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4851 !mm_forbids_zeropage(vma->vm_mm)) { 4852 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4853 vma->vm_page_prot)); 4854 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4855 vmf->address, &vmf->ptl); 4856 if (!vmf->pte) 4857 goto unlock; 4858 if (vmf_pte_changed(vmf)) { 4859 update_mmu_tlb(vma, vmf->address, vmf->pte); 4860 goto unlock; 4861 } 4862 ret = check_stable_address_space(vma->vm_mm); 4863 if (ret) 4864 goto unlock; 4865 /* Deliver the page fault to userland, check inside PT lock */ 4866 if (userfaultfd_missing(vma)) { 4867 pte_unmap_unlock(vmf->pte, vmf->ptl); 4868 return handle_userfault(vmf, VM_UFFD_MISSING); 4869 } 4870 goto setpte; 4871 } 4872 4873 /* Allocate our own private page. */ 4874 ret = vmf_anon_prepare(vmf); 4875 if (ret) 4876 return ret; 4877 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 4878 folio = alloc_anon_folio(vmf); 4879 if (IS_ERR(folio)) 4880 return 0; 4881 if (!folio) 4882 goto oom; 4883 4884 nr_pages = folio_nr_pages(folio); 4885 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4886 4887 /* 4888 * The memory barrier inside __folio_mark_uptodate makes sure that 4889 * preceding stores to the page contents become visible before 4890 * the set_pte_at() write. 4891 */ 4892 __folio_mark_uptodate(folio); 4893 4894 entry = mk_pte(&folio->page, vma->vm_page_prot); 4895 entry = pte_sw_mkyoung(entry); 4896 if (vma->vm_flags & VM_WRITE) 4897 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4898 4899 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 4900 if (!vmf->pte) 4901 goto release; 4902 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 4903 update_mmu_tlb(vma, addr, vmf->pte); 4904 goto release; 4905 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 4906 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 4907 goto release; 4908 } 4909 4910 ret = check_stable_address_space(vma->vm_mm); 4911 if (ret) 4912 goto release; 4913 4914 /* Deliver the page fault to userland, check inside PT lock */ 4915 if (userfaultfd_missing(vma)) { 4916 pte_unmap_unlock(vmf->pte, vmf->ptl); 4917 folio_put(folio); 4918 return handle_userfault(vmf, VM_UFFD_MISSING); 4919 } 4920 4921 folio_ref_add(folio, nr_pages - 1); 4922 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4923 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 4924 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 4925 folio_add_lru_vma(folio, vma); 4926 setpte: 4927 if (vmf_orig_pte_uffd_wp(vmf)) 4928 entry = pte_mkuffd_wp(entry); 4929 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 4930 4931 /* No need to invalidate - it was non-present before */ 4932 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 4933 unlock: 4934 if (vmf->pte) 4935 pte_unmap_unlock(vmf->pte, vmf->ptl); 4936 return ret; 4937 release: 4938 folio_put(folio); 4939 goto unlock; 4940 oom: 4941 return VM_FAULT_OOM; 4942 } 4943 4944 /* 4945 * The mmap_lock must have been held on entry, and may have been 4946 * released depending on flags and vma->vm_ops->fault() return value. 4947 * See filemap_fault() and __lock_page_retry(). 4948 */ 4949 static vm_fault_t __do_fault(struct vm_fault *vmf) 4950 { 4951 struct vm_area_struct *vma = vmf->vma; 4952 struct folio *folio; 4953 vm_fault_t ret; 4954 4955 /* 4956 * Preallocate pte before we take page_lock because this might lead to 4957 * deadlocks for memcg reclaim which waits for pages under writeback: 4958 * lock_page(A) 4959 * SetPageWriteback(A) 4960 * unlock_page(A) 4961 * lock_page(B) 4962 * lock_page(B) 4963 * pte_alloc_one 4964 * shrink_folio_list 4965 * wait_on_page_writeback(A) 4966 * SetPageWriteback(B) 4967 * unlock_page(B) 4968 * # flush A, B to clear the writeback 4969 */ 4970 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4971 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4972 if (!vmf->prealloc_pte) 4973 return VM_FAULT_OOM; 4974 } 4975 4976 ret = vma->vm_ops->fault(vmf); 4977 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4978 VM_FAULT_DONE_COW))) 4979 return ret; 4980 4981 folio = page_folio(vmf->page); 4982 if (unlikely(PageHWPoison(vmf->page))) { 4983 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4984 if (ret & VM_FAULT_LOCKED) { 4985 if (page_mapped(vmf->page)) 4986 unmap_mapping_folio(folio); 4987 /* Retry if a clean folio was removed from the cache. */ 4988 if (mapping_evict_folio(folio->mapping, folio)) 4989 poisonret = VM_FAULT_NOPAGE; 4990 folio_unlock(folio); 4991 } 4992 folio_put(folio); 4993 vmf->page = NULL; 4994 return poisonret; 4995 } 4996 4997 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4998 folio_lock(folio); 4999 else 5000 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5001 5002 return ret; 5003 } 5004 5005 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5006 static void deposit_prealloc_pte(struct vm_fault *vmf) 5007 { 5008 struct vm_area_struct *vma = vmf->vma; 5009 5010 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5011 /* 5012 * We are going to consume the prealloc table, 5013 * count that as nr_ptes. 5014 */ 5015 mm_inc_nr_ptes(vma->vm_mm); 5016 vmf->prealloc_pte = NULL; 5017 } 5018 5019 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 5020 { 5021 struct folio *folio = page_folio(page); 5022 struct vm_area_struct *vma = vmf->vma; 5023 bool write = vmf->flags & FAULT_FLAG_WRITE; 5024 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5025 pmd_t entry; 5026 vm_fault_t ret = VM_FAULT_FALLBACK; 5027 5028 /* 5029 * It is too late to allocate a small folio, we already have a large 5030 * folio in the pagecache: especially s390 KVM cannot tolerate any 5031 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5032 * PMD mappings if THPs are disabled. 5033 */ 5034 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) 5035 return ret; 5036 5037 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5038 return ret; 5039 5040 if (folio_order(folio) != HPAGE_PMD_ORDER) 5041 return ret; 5042 page = &folio->page; 5043 5044 /* 5045 * Just backoff if any subpage of a THP is corrupted otherwise 5046 * the corrupted page may mapped by PMD silently to escape the 5047 * check. This kind of THP just can be PTE mapped. Access to 5048 * the corrupted subpage should trigger SIGBUS as expected. 5049 */ 5050 if (unlikely(folio_test_has_hwpoisoned(folio))) 5051 return ret; 5052 5053 /* 5054 * Archs like ppc64 need additional space to store information 5055 * related to pte entry. Use the preallocated table for that. 5056 */ 5057 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5058 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5059 if (!vmf->prealloc_pte) 5060 return VM_FAULT_OOM; 5061 } 5062 5063 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5064 if (unlikely(!pmd_none(*vmf->pmd))) 5065 goto out; 5066 5067 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5068 5069 entry = mk_huge_pmd(page, vma->vm_page_prot); 5070 if (write) 5071 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5072 5073 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5074 folio_add_file_rmap_pmd(folio, page, vma); 5075 5076 /* 5077 * deposit and withdraw with pmd lock held 5078 */ 5079 if (arch_needs_pgtable_deposit()) 5080 deposit_prealloc_pte(vmf); 5081 5082 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5083 5084 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5085 5086 /* fault is handled */ 5087 ret = 0; 5088 count_vm_event(THP_FILE_MAPPED); 5089 out: 5090 spin_unlock(vmf->ptl); 5091 return ret; 5092 } 5093 #else 5094 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 5095 { 5096 return VM_FAULT_FALLBACK; 5097 } 5098 #endif 5099 5100 /** 5101 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5102 * @vmf: Fault decription. 5103 * @folio: The folio that contains @page. 5104 * @page: The first page to create a PTE for. 5105 * @nr: The number of PTEs to create. 5106 * @addr: The first address to create a PTE for. 5107 */ 5108 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5109 struct page *page, unsigned int nr, unsigned long addr) 5110 { 5111 struct vm_area_struct *vma = vmf->vma; 5112 bool write = vmf->flags & FAULT_FLAG_WRITE; 5113 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5114 pte_t entry; 5115 5116 flush_icache_pages(vma, page, nr); 5117 entry = mk_pte(page, vma->vm_page_prot); 5118 5119 if (prefault && arch_wants_old_prefaulted_pte()) 5120 entry = pte_mkold(entry); 5121 else 5122 entry = pte_sw_mkyoung(entry); 5123 5124 if (write) 5125 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5126 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5127 entry = pte_mkuffd_wp(entry); 5128 /* copy-on-write page */ 5129 if (write && !(vma->vm_flags & VM_SHARED)) { 5130 VM_BUG_ON_FOLIO(nr != 1, folio); 5131 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5132 folio_add_lru_vma(folio, vma); 5133 } else { 5134 folio_add_file_rmap_ptes(folio, page, nr, vma); 5135 } 5136 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5137 5138 /* no need to invalidate: a not-present page won't be cached */ 5139 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5140 } 5141 5142 static bool vmf_pte_changed(struct vm_fault *vmf) 5143 { 5144 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5145 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5146 5147 return !pte_none(ptep_get(vmf->pte)); 5148 } 5149 5150 /** 5151 * finish_fault - finish page fault once we have prepared the page to fault 5152 * 5153 * @vmf: structure describing the fault 5154 * 5155 * This function handles all that is needed to finish a page fault once the 5156 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5157 * given page, adds reverse page mapping, handles memcg charges and LRU 5158 * addition. 5159 * 5160 * The function expects the page to be locked and on success it consumes a 5161 * reference of a page being mapped (for the PTE which maps it). 5162 * 5163 * Return: %0 on success, %VM_FAULT_ code in case of error. 5164 */ 5165 vm_fault_t finish_fault(struct vm_fault *vmf) 5166 { 5167 struct vm_area_struct *vma = vmf->vma; 5168 struct page *page; 5169 struct folio *folio; 5170 vm_fault_t ret; 5171 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5172 !(vma->vm_flags & VM_SHARED); 5173 int type, nr_pages; 5174 unsigned long addr = vmf->address; 5175 5176 /* Did we COW the page? */ 5177 if (is_cow) 5178 page = vmf->cow_page; 5179 else 5180 page = vmf->page; 5181 5182 /* 5183 * check even for read faults because we might have lost our CoWed 5184 * page 5185 */ 5186 if (!(vma->vm_flags & VM_SHARED)) { 5187 ret = check_stable_address_space(vma->vm_mm); 5188 if (ret) 5189 return ret; 5190 } 5191 5192 if (pmd_none(*vmf->pmd)) { 5193 if (PageTransCompound(page)) { 5194 ret = do_set_pmd(vmf, page); 5195 if (ret != VM_FAULT_FALLBACK) 5196 return ret; 5197 } 5198 5199 if (vmf->prealloc_pte) 5200 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5201 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5202 return VM_FAULT_OOM; 5203 } 5204 5205 folio = page_folio(page); 5206 nr_pages = folio_nr_pages(folio); 5207 5208 /* 5209 * Using per-page fault to maintain the uffd semantics, and same 5210 * approach also applies to non-anonymous-shmem faults to avoid 5211 * inflating the RSS of the process. 5212 */ 5213 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) { 5214 nr_pages = 1; 5215 } else if (nr_pages > 1) { 5216 pgoff_t idx = folio_page_idx(folio, page); 5217 /* The page offset of vmf->address within the VMA. */ 5218 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5219 /* The index of the entry in the pagetable for fault page. */ 5220 pgoff_t pte_off = pte_index(vmf->address); 5221 5222 /* 5223 * Fallback to per-page fault in case the folio size in page 5224 * cache beyond the VMA limits and PMD pagetable limits. 5225 */ 5226 if (unlikely(vma_off < idx || 5227 vma_off + (nr_pages - idx) > vma_pages(vma) || 5228 pte_off < idx || 5229 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5230 nr_pages = 1; 5231 } else { 5232 /* Now we can set mappings for the whole large folio. */ 5233 addr = vmf->address - idx * PAGE_SIZE; 5234 page = &folio->page; 5235 } 5236 } 5237 5238 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5239 addr, &vmf->ptl); 5240 if (!vmf->pte) 5241 return VM_FAULT_NOPAGE; 5242 5243 /* Re-check under ptl */ 5244 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5245 update_mmu_tlb(vma, addr, vmf->pte); 5246 ret = VM_FAULT_NOPAGE; 5247 goto unlock; 5248 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5249 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5250 ret = VM_FAULT_NOPAGE; 5251 goto unlock; 5252 } 5253 5254 folio_ref_add(folio, nr_pages - 1); 5255 set_pte_range(vmf, folio, page, nr_pages, addr); 5256 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5257 add_mm_counter(vma->vm_mm, type, nr_pages); 5258 ret = 0; 5259 5260 unlock: 5261 pte_unmap_unlock(vmf->pte, vmf->ptl); 5262 return ret; 5263 } 5264 5265 static unsigned long fault_around_pages __read_mostly = 5266 65536 >> PAGE_SHIFT; 5267 5268 #ifdef CONFIG_DEBUG_FS 5269 static int fault_around_bytes_get(void *data, u64 *val) 5270 { 5271 *val = fault_around_pages << PAGE_SHIFT; 5272 return 0; 5273 } 5274 5275 /* 5276 * fault_around_bytes must be rounded down to the nearest page order as it's 5277 * what do_fault_around() expects to see. 5278 */ 5279 static int fault_around_bytes_set(void *data, u64 val) 5280 { 5281 if (val / PAGE_SIZE > PTRS_PER_PTE) 5282 return -EINVAL; 5283 5284 /* 5285 * The minimum value is 1 page, however this results in no fault-around 5286 * at all. See should_fault_around(). 5287 */ 5288 val = max(val, PAGE_SIZE); 5289 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5290 5291 return 0; 5292 } 5293 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5294 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5295 5296 static int __init fault_around_debugfs(void) 5297 { 5298 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5299 &fault_around_bytes_fops); 5300 return 0; 5301 } 5302 late_initcall(fault_around_debugfs); 5303 #endif 5304 5305 /* 5306 * do_fault_around() tries to map few pages around the fault address. The hope 5307 * is that the pages will be needed soon and this will lower the number of 5308 * faults to handle. 5309 * 5310 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5311 * not ready to be mapped: not up-to-date, locked, etc. 5312 * 5313 * This function doesn't cross VMA or page table boundaries, in order to call 5314 * map_pages() and acquire a PTE lock only once. 5315 * 5316 * fault_around_pages defines how many pages we'll try to map. 5317 * do_fault_around() expects it to be set to a power of two less than or equal 5318 * to PTRS_PER_PTE. 5319 * 5320 * The virtual address of the area that we map is naturally aligned to 5321 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5322 * (and therefore to page order). This way it's easier to guarantee 5323 * that we don't cross page table boundaries. 5324 */ 5325 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5326 { 5327 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5328 pgoff_t pte_off = pte_index(vmf->address); 5329 /* The page offset of vmf->address within the VMA. */ 5330 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5331 pgoff_t from_pte, to_pte; 5332 vm_fault_t ret; 5333 5334 /* The PTE offset of the start address, clamped to the VMA. */ 5335 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5336 pte_off - min(pte_off, vma_off)); 5337 5338 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5339 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5340 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5341 5342 if (pmd_none(*vmf->pmd)) { 5343 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5344 if (!vmf->prealloc_pte) 5345 return VM_FAULT_OOM; 5346 } 5347 5348 rcu_read_lock(); 5349 ret = vmf->vma->vm_ops->map_pages(vmf, 5350 vmf->pgoff + from_pte - pte_off, 5351 vmf->pgoff + to_pte - pte_off); 5352 rcu_read_unlock(); 5353 5354 return ret; 5355 } 5356 5357 /* Return true if we should do read fault-around, false otherwise */ 5358 static inline bool should_fault_around(struct vm_fault *vmf) 5359 { 5360 /* No ->map_pages? No way to fault around... */ 5361 if (!vmf->vma->vm_ops->map_pages) 5362 return false; 5363 5364 if (uffd_disable_fault_around(vmf->vma)) 5365 return false; 5366 5367 /* A single page implies no faulting 'around' at all. */ 5368 return fault_around_pages > 1; 5369 } 5370 5371 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5372 { 5373 vm_fault_t ret = 0; 5374 struct folio *folio; 5375 5376 /* 5377 * Let's call ->map_pages() first and use ->fault() as fallback 5378 * if page by the offset is not ready to be mapped (cold cache or 5379 * something). 5380 */ 5381 if (should_fault_around(vmf)) { 5382 ret = do_fault_around(vmf); 5383 if (ret) 5384 return ret; 5385 } 5386 5387 ret = vmf_can_call_fault(vmf); 5388 if (ret) 5389 return ret; 5390 5391 ret = __do_fault(vmf); 5392 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5393 return ret; 5394 5395 ret |= finish_fault(vmf); 5396 folio = page_folio(vmf->page); 5397 folio_unlock(folio); 5398 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5399 folio_put(folio); 5400 return ret; 5401 } 5402 5403 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5404 { 5405 struct vm_area_struct *vma = vmf->vma; 5406 struct folio *folio; 5407 vm_fault_t ret; 5408 5409 ret = vmf_can_call_fault(vmf); 5410 if (!ret) 5411 ret = vmf_anon_prepare(vmf); 5412 if (ret) 5413 return ret; 5414 5415 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5416 if (!folio) 5417 return VM_FAULT_OOM; 5418 5419 vmf->cow_page = &folio->page; 5420 5421 ret = __do_fault(vmf); 5422 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5423 goto uncharge_out; 5424 if (ret & VM_FAULT_DONE_COW) 5425 return ret; 5426 5427 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5428 ret = VM_FAULT_HWPOISON; 5429 goto unlock; 5430 } 5431 __folio_mark_uptodate(folio); 5432 5433 ret |= finish_fault(vmf); 5434 unlock: 5435 unlock_page(vmf->page); 5436 put_page(vmf->page); 5437 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5438 goto uncharge_out; 5439 return ret; 5440 uncharge_out: 5441 folio_put(folio); 5442 return ret; 5443 } 5444 5445 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5446 { 5447 struct vm_area_struct *vma = vmf->vma; 5448 vm_fault_t ret, tmp; 5449 struct folio *folio; 5450 5451 ret = vmf_can_call_fault(vmf); 5452 if (ret) 5453 return ret; 5454 5455 ret = __do_fault(vmf); 5456 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5457 return ret; 5458 5459 folio = page_folio(vmf->page); 5460 5461 /* 5462 * Check if the backing address space wants to know that the page is 5463 * about to become writable 5464 */ 5465 if (vma->vm_ops->page_mkwrite) { 5466 folio_unlock(folio); 5467 tmp = do_page_mkwrite(vmf, folio); 5468 if (unlikely(!tmp || 5469 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5470 folio_put(folio); 5471 return tmp; 5472 } 5473 } 5474 5475 ret |= finish_fault(vmf); 5476 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5477 VM_FAULT_RETRY))) { 5478 folio_unlock(folio); 5479 folio_put(folio); 5480 return ret; 5481 } 5482 5483 ret |= fault_dirty_shared_page(vmf); 5484 return ret; 5485 } 5486 5487 /* 5488 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5489 * but allow concurrent faults). 5490 * The mmap_lock may have been released depending on flags and our 5491 * return value. See filemap_fault() and __folio_lock_or_retry(). 5492 * If mmap_lock is released, vma may become invalid (for example 5493 * by other thread calling munmap()). 5494 */ 5495 static vm_fault_t do_fault(struct vm_fault *vmf) 5496 { 5497 struct vm_area_struct *vma = vmf->vma; 5498 struct mm_struct *vm_mm = vma->vm_mm; 5499 vm_fault_t ret; 5500 5501 /* 5502 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5503 */ 5504 if (!vma->vm_ops->fault) { 5505 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5506 vmf->address, &vmf->ptl); 5507 if (unlikely(!vmf->pte)) 5508 ret = VM_FAULT_SIGBUS; 5509 else { 5510 /* 5511 * Make sure this is not a temporary clearing of pte 5512 * by holding ptl and checking again. A R/M/W update 5513 * of pte involves: take ptl, clearing the pte so that 5514 * we don't have concurrent modification by hardware 5515 * followed by an update. 5516 */ 5517 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5518 ret = VM_FAULT_SIGBUS; 5519 else 5520 ret = VM_FAULT_NOPAGE; 5521 5522 pte_unmap_unlock(vmf->pte, vmf->ptl); 5523 } 5524 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5525 ret = do_read_fault(vmf); 5526 else if (!(vma->vm_flags & VM_SHARED)) 5527 ret = do_cow_fault(vmf); 5528 else 5529 ret = do_shared_fault(vmf); 5530 5531 /* preallocated pagetable is unused: free it */ 5532 if (vmf->prealloc_pte) { 5533 pte_free(vm_mm, vmf->prealloc_pte); 5534 vmf->prealloc_pte = NULL; 5535 } 5536 return ret; 5537 } 5538 5539 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5540 unsigned long addr, int *flags, 5541 bool writable, int *last_cpupid) 5542 { 5543 struct vm_area_struct *vma = vmf->vma; 5544 5545 /* 5546 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5547 * much anyway since they can be in shared cache state. This misses 5548 * the case where a mapping is writable but the process never writes 5549 * to it but pte_write gets cleared during protection updates and 5550 * pte_dirty has unpredictable behaviour between PTE scan updates, 5551 * background writeback, dirty balancing and application behaviour. 5552 */ 5553 if (!writable) 5554 *flags |= TNF_NO_GROUP; 5555 5556 /* 5557 * Flag if the folio is shared between multiple address spaces. This 5558 * is later used when determining whether to group tasks together 5559 */ 5560 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5561 *flags |= TNF_SHARED; 5562 /* 5563 * For memory tiering mode, cpupid of slow memory page is used 5564 * to record page access time. So use default value. 5565 */ 5566 if (folio_use_access_time(folio)) 5567 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5568 else 5569 *last_cpupid = folio_last_cpupid(folio); 5570 5571 /* Record the current PID acceesing VMA */ 5572 vma_set_access_pid_bit(vma); 5573 5574 count_vm_numa_event(NUMA_HINT_FAULTS); 5575 #ifdef CONFIG_NUMA_BALANCING 5576 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5577 #endif 5578 if (folio_nid(folio) == numa_node_id()) { 5579 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5580 *flags |= TNF_FAULT_LOCAL; 5581 } 5582 5583 return mpol_misplaced(folio, vmf, addr); 5584 } 5585 5586 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5587 unsigned long fault_addr, pte_t *fault_pte, 5588 bool writable) 5589 { 5590 pte_t pte, old_pte; 5591 5592 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5593 pte = pte_modify(old_pte, vma->vm_page_prot); 5594 pte = pte_mkyoung(pte); 5595 if (writable) 5596 pte = pte_mkwrite(pte, vma); 5597 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5598 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5599 } 5600 5601 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5602 struct folio *folio, pte_t fault_pte, 5603 bool ignore_writable, bool pte_write_upgrade) 5604 { 5605 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5606 unsigned long start, end, addr = vmf->address; 5607 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5608 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5609 pte_t *start_ptep; 5610 5611 /* Stay within the VMA and within the page table. */ 5612 start = max3(addr_start, pt_start, vma->vm_start); 5613 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5614 vma->vm_end); 5615 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5616 5617 /* Restore all PTEs' mapping of the large folio */ 5618 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5619 pte_t ptent = ptep_get(start_ptep); 5620 bool writable = false; 5621 5622 if (!pte_present(ptent) || !pte_protnone(ptent)) 5623 continue; 5624 5625 if (pfn_folio(pte_pfn(ptent)) != folio) 5626 continue; 5627 5628 if (!ignore_writable) { 5629 ptent = pte_modify(ptent, vma->vm_page_prot); 5630 writable = pte_write(ptent); 5631 if (!writable && pte_write_upgrade && 5632 can_change_pte_writable(vma, addr, ptent)) 5633 writable = true; 5634 } 5635 5636 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5637 } 5638 } 5639 5640 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5641 { 5642 struct vm_area_struct *vma = vmf->vma; 5643 struct folio *folio = NULL; 5644 int nid = NUMA_NO_NODE; 5645 bool writable = false, ignore_writable = false; 5646 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5647 int last_cpupid; 5648 int target_nid; 5649 pte_t pte, old_pte; 5650 int flags = 0, nr_pages; 5651 5652 /* 5653 * The pte cannot be used safely until we verify, while holding the page 5654 * table lock, that its contents have not changed during fault handling. 5655 */ 5656 spin_lock(vmf->ptl); 5657 /* Read the live PTE from the page tables: */ 5658 old_pte = ptep_get(vmf->pte); 5659 5660 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5661 pte_unmap_unlock(vmf->pte, vmf->ptl); 5662 return 0; 5663 } 5664 5665 pte = pte_modify(old_pte, vma->vm_page_prot); 5666 5667 /* 5668 * Detect now whether the PTE could be writable; this information 5669 * is only valid while holding the PT lock. 5670 */ 5671 writable = pte_write(pte); 5672 if (!writable && pte_write_upgrade && 5673 can_change_pte_writable(vma, vmf->address, pte)) 5674 writable = true; 5675 5676 folio = vm_normal_folio(vma, vmf->address, pte); 5677 if (!folio || folio_is_zone_device(folio)) 5678 goto out_map; 5679 5680 nid = folio_nid(folio); 5681 nr_pages = folio_nr_pages(folio); 5682 5683 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5684 writable, &last_cpupid); 5685 if (target_nid == NUMA_NO_NODE) 5686 goto out_map; 5687 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5688 flags |= TNF_MIGRATE_FAIL; 5689 goto out_map; 5690 } 5691 /* The folio is isolated and isolation code holds a folio reference. */ 5692 pte_unmap_unlock(vmf->pte, vmf->ptl); 5693 writable = false; 5694 ignore_writable = true; 5695 5696 /* Migrate to the requested node */ 5697 if (!migrate_misplaced_folio(folio, target_nid)) { 5698 nid = target_nid; 5699 flags |= TNF_MIGRATED; 5700 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5701 return 0; 5702 } 5703 5704 flags |= TNF_MIGRATE_FAIL; 5705 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5706 vmf->address, &vmf->ptl); 5707 if (unlikely(!vmf->pte)) 5708 return 0; 5709 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5710 pte_unmap_unlock(vmf->pte, vmf->ptl); 5711 return 0; 5712 } 5713 out_map: 5714 /* 5715 * Make it present again, depending on how arch implements 5716 * non-accessible ptes, some can allow access by kernel mode. 5717 */ 5718 if (folio && folio_test_large(folio)) 5719 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5720 pte_write_upgrade); 5721 else 5722 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5723 writable); 5724 pte_unmap_unlock(vmf->pte, vmf->ptl); 5725 5726 if (nid != NUMA_NO_NODE) 5727 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5728 return 0; 5729 } 5730 5731 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5732 { 5733 struct vm_area_struct *vma = vmf->vma; 5734 if (vma_is_anonymous(vma)) 5735 return do_huge_pmd_anonymous_page(vmf); 5736 if (vma->vm_ops->huge_fault) 5737 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5738 return VM_FAULT_FALLBACK; 5739 } 5740 5741 /* `inline' is required to avoid gcc 4.1.2 build error */ 5742 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5743 { 5744 struct vm_area_struct *vma = vmf->vma; 5745 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5746 vm_fault_t ret; 5747 5748 if (vma_is_anonymous(vma)) { 5749 if (likely(!unshare) && 5750 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5751 if (userfaultfd_wp_async(vmf->vma)) 5752 goto split; 5753 return handle_userfault(vmf, VM_UFFD_WP); 5754 } 5755 return do_huge_pmd_wp_page(vmf); 5756 } 5757 5758 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5759 if (vma->vm_ops->huge_fault) { 5760 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5761 if (!(ret & VM_FAULT_FALLBACK)) 5762 return ret; 5763 } 5764 } 5765 5766 split: 5767 /* COW or write-notify handled on pte level: split pmd. */ 5768 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5769 5770 return VM_FAULT_FALLBACK; 5771 } 5772 5773 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5774 { 5775 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5776 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5777 struct vm_area_struct *vma = vmf->vma; 5778 /* No support for anonymous transparent PUD pages yet */ 5779 if (vma_is_anonymous(vma)) 5780 return VM_FAULT_FALLBACK; 5781 if (vma->vm_ops->huge_fault) 5782 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5783 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5784 return VM_FAULT_FALLBACK; 5785 } 5786 5787 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5788 { 5789 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5790 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5791 struct vm_area_struct *vma = vmf->vma; 5792 vm_fault_t ret; 5793 5794 /* No support for anonymous transparent PUD pages yet */ 5795 if (vma_is_anonymous(vma)) 5796 goto split; 5797 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5798 if (vma->vm_ops->huge_fault) { 5799 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5800 if (!(ret & VM_FAULT_FALLBACK)) 5801 return ret; 5802 } 5803 } 5804 split: 5805 /* COW or write-notify not handled on PUD level: split pud.*/ 5806 __split_huge_pud(vma, vmf->pud, vmf->address); 5807 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5808 return VM_FAULT_FALLBACK; 5809 } 5810 5811 /* 5812 * These routines also need to handle stuff like marking pages dirty 5813 * and/or accessed for architectures that don't do it in hardware (most 5814 * RISC architectures). The early dirtying is also good on the i386. 5815 * 5816 * There is also a hook called "update_mmu_cache()" that architectures 5817 * with external mmu caches can use to update those (ie the Sparc or 5818 * PowerPC hashed page tables that act as extended TLBs). 5819 * 5820 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5821 * concurrent faults). 5822 * 5823 * The mmap_lock may have been released depending on flags and our return value. 5824 * See filemap_fault() and __folio_lock_or_retry(). 5825 */ 5826 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5827 { 5828 pte_t entry; 5829 5830 if (unlikely(pmd_none(*vmf->pmd))) { 5831 /* 5832 * Leave __pte_alloc() until later: because vm_ops->fault may 5833 * want to allocate huge page, and if we expose page table 5834 * for an instant, it will be difficult to retract from 5835 * concurrent faults and from rmap lookups. 5836 */ 5837 vmf->pte = NULL; 5838 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5839 } else { 5840 pmd_t dummy_pmdval; 5841 5842 /* 5843 * A regular pmd is established and it can't morph into a huge 5844 * pmd by anon khugepaged, since that takes mmap_lock in write 5845 * mode; but shmem or file collapse to THP could still morph 5846 * it into a huge pmd: just retry later if so. 5847 * 5848 * Use the maywrite version to indicate that vmf->pte may be 5849 * modified, but since we will use pte_same() to detect the 5850 * change of the !pte_none() entry, there is no need to recheck 5851 * the pmdval. Here we chooes to pass a dummy variable instead 5852 * of NULL, which helps new user think about why this place is 5853 * special. 5854 */ 5855 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 5856 vmf->address, &dummy_pmdval, 5857 &vmf->ptl); 5858 if (unlikely(!vmf->pte)) 5859 return 0; 5860 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5861 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5862 5863 if (pte_none(vmf->orig_pte)) { 5864 pte_unmap(vmf->pte); 5865 vmf->pte = NULL; 5866 } 5867 } 5868 5869 if (!vmf->pte) 5870 return do_pte_missing(vmf); 5871 5872 if (!pte_present(vmf->orig_pte)) 5873 return do_swap_page(vmf); 5874 5875 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5876 return do_numa_page(vmf); 5877 5878 spin_lock(vmf->ptl); 5879 entry = vmf->orig_pte; 5880 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5881 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5882 goto unlock; 5883 } 5884 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5885 if (!pte_write(entry)) 5886 return do_wp_page(vmf); 5887 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5888 entry = pte_mkdirty(entry); 5889 } 5890 entry = pte_mkyoung(entry); 5891 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5892 vmf->flags & FAULT_FLAG_WRITE)) { 5893 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5894 vmf->pte, 1); 5895 } else { 5896 /* Skip spurious TLB flush for retried page fault */ 5897 if (vmf->flags & FAULT_FLAG_TRIED) 5898 goto unlock; 5899 /* 5900 * This is needed only for protection faults but the arch code 5901 * is not yet telling us if this is a protection fault or not. 5902 * This still avoids useless tlb flushes for .text page faults 5903 * with threads. 5904 */ 5905 if (vmf->flags & FAULT_FLAG_WRITE) 5906 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5907 vmf->pte); 5908 } 5909 unlock: 5910 pte_unmap_unlock(vmf->pte, vmf->ptl); 5911 return 0; 5912 } 5913 5914 /* 5915 * On entry, we hold either the VMA lock or the mmap_lock 5916 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5917 * the result, the mmap_lock is not held on exit. See filemap_fault() 5918 * and __folio_lock_or_retry(). 5919 */ 5920 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5921 unsigned long address, unsigned int flags) 5922 { 5923 struct vm_fault vmf = { 5924 .vma = vma, 5925 .address = address & PAGE_MASK, 5926 .real_address = address, 5927 .flags = flags, 5928 .pgoff = linear_page_index(vma, address), 5929 .gfp_mask = __get_fault_gfp_mask(vma), 5930 }; 5931 struct mm_struct *mm = vma->vm_mm; 5932 unsigned long vm_flags = vma->vm_flags; 5933 pgd_t *pgd; 5934 p4d_t *p4d; 5935 vm_fault_t ret; 5936 5937 pgd = pgd_offset(mm, address); 5938 p4d = p4d_alloc(mm, pgd, address); 5939 if (!p4d) 5940 return VM_FAULT_OOM; 5941 5942 vmf.pud = pud_alloc(mm, p4d, address); 5943 if (!vmf.pud) 5944 return VM_FAULT_OOM; 5945 retry_pud: 5946 if (pud_none(*vmf.pud) && 5947 thp_vma_allowable_order(vma, vm_flags, 5948 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 5949 ret = create_huge_pud(&vmf); 5950 if (!(ret & VM_FAULT_FALLBACK)) 5951 return ret; 5952 } else { 5953 pud_t orig_pud = *vmf.pud; 5954 5955 barrier(); 5956 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5957 5958 /* 5959 * TODO once we support anonymous PUDs: NUMA case and 5960 * FAULT_FLAG_UNSHARE handling. 5961 */ 5962 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5963 ret = wp_huge_pud(&vmf, orig_pud); 5964 if (!(ret & VM_FAULT_FALLBACK)) 5965 return ret; 5966 } else { 5967 huge_pud_set_accessed(&vmf, orig_pud); 5968 return 0; 5969 } 5970 } 5971 } 5972 5973 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5974 if (!vmf.pmd) 5975 return VM_FAULT_OOM; 5976 5977 /* Huge pud page fault raced with pmd_alloc? */ 5978 if (pud_trans_unstable(vmf.pud)) 5979 goto retry_pud; 5980 5981 if (pmd_none(*vmf.pmd) && 5982 thp_vma_allowable_order(vma, vm_flags, 5983 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 5984 ret = create_huge_pmd(&vmf); 5985 if (!(ret & VM_FAULT_FALLBACK)) 5986 return ret; 5987 } else { 5988 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5989 5990 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5991 VM_BUG_ON(thp_migration_supported() && 5992 !is_pmd_migration_entry(vmf.orig_pmd)); 5993 if (is_pmd_migration_entry(vmf.orig_pmd)) 5994 pmd_migration_entry_wait(mm, vmf.pmd); 5995 return 0; 5996 } 5997 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5998 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5999 return do_huge_pmd_numa_page(&vmf); 6000 6001 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6002 !pmd_write(vmf.orig_pmd)) { 6003 ret = wp_huge_pmd(&vmf); 6004 if (!(ret & VM_FAULT_FALLBACK)) 6005 return ret; 6006 } else { 6007 huge_pmd_set_accessed(&vmf); 6008 return 0; 6009 } 6010 } 6011 } 6012 6013 return handle_pte_fault(&vmf); 6014 } 6015 6016 /** 6017 * mm_account_fault - Do page fault accounting 6018 * @mm: mm from which memcg should be extracted. It can be NULL. 6019 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6020 * of perf event counters, but we'll still do the per-task accounting to 6021 * the task who triggered this page fault. 6022 * @address: the faulted address. 6023 * @flags: the fault flags. 6024 * @ret: the fault retcode. 6025 * 6026 * This will take care of most of the page fault accounting. Meanwhile, it 6027 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6028 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6029 * still be in per-arch page fault handlers at the entry of page fault. 6030 */ 6031 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6032 unsigned long address, unsigned int flags, 6033 vm_fault_t ret) 6034 { 6035 bool major; 6036 6037 /* Incomplete faults will be accounted upon completion. */ 6038 if (ret & VM_FAULT_RETRY) 6039 return; 6040 6041 /* 6042 * To preserve the behavior of older kernels, PGFAULT counters record 6043 * both successful and failed faults, as opposed to perf counters, 6044 * which ignore failed cases. 6045 */ 6046 count_vm_event(PGFAULT); 6047 count_memcg_event_mm(mm, PGFAULT); 6048 6049 /* 6050 * Do not account for unsuccessful faults (e.g. when the address wasn't 6051 * valid). That includes arch_vma_access_permitted() failing before 6052 * reaching here. So this is not a "this many hardware page faults" 6053 * counter. We should use the hw profiling for that. 6054 */ 6055 if (ret & VM_FAULT_ERROR) 6056 return; 6057 6058 /* 6059 * We define the fault as a major fault when the final successful fault 6060 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6061 * handle it immediately previously). 6062 */ 6063 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6064 6065 if (major) 6066 current->maj_flt++; 6067 else 6068 current->min_flt++; 6069 6070 /* 6071 * If the fault is done for GUP, regs will be NULL. We only do the 6072 * accounting for the per thread fault counters who triggered the 6073 * fault, and we skip the perf event updates. 6074 */ 6075 if (!regs) 6076 return; 6077 6078 if (major) 6079 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6080 else 6081 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6082 } 6083 6084 #ifdef CONFIG_LRU_GEN 6085 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6086 { 6087 /* the LRU algorithm only applies to accesses with recency */ 6088 current->in_lru_fault = vma_has_recency(vma); 6089 } 6090 6091 static void lru_gen_exit_fault(void) 6092 { 6093 current->in_lru_fault = false; 6094 } 6095 #else 6096 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6097 { 6098 } 6099 6100 static void lru_gen_exit_fault(void) 6101 { 6102 } 6103 #endif /* CONFIG_LRU_GEN */ 6104 6105 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6106 unsigned int *flags) 6107 { 6108 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6109 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6110 return VM_FAULT_SIGSEGV; 6111 /* 6112 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6113 * just treat it like an ordinary read-fault otherwise. 6114 */ 6115 if (!is_cow_mapping(vma->vm_flags)) 6116 *flags &= ~FAULT_FLAG_UNSHARE; 6117 } else if (*flags & FAULT_FLAG_WRITE) { 6118 /* Write faults on read-only mappings are impossible ... */ 6119 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6120 return VM_FAULT_SIGSEGV; 6121 /* ... and FOLL_FORCE only applies to COW mappings. */ 6122 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6123 !is_cow_mapping(vma->vm_flags))) 6124 return VM_FAULT_SIGSEGV; 6125 } 6126 #ifdef CONFIG_PER_VMA_LOCK 6127 /* 6128 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6129 * the assumption that lock is dropped on VM_FAULT_RETRY. 6130 */ 6131 if (WARN_ON_ONCE((*flags & 6132 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6133 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6134 return VM_FAULT_SIGSEGV; 6135 #endif 6136 6137 return 0; 6138 } 6139 6140 /* 6141 * By the time we get here, we already hold either the VMA lock or the 6142 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6143 * 6144 * The mmap_lock may have been released depending on flags and our 6145 * return value. See filemap_fault() and __folio_lock_or_retry(). 6146 */ 6147 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6148 unsigned int flags, struct pt_regs *regs) 6149 { 6150 /* If the fault handler drops the mmap_lock, vma may be freed */ 6151 struct mm_struct *mm = vma->vm_mm; 6152 vm_fault_t ret; 6153 bool is_droppable; 6154 6155 __set_current_state(TASK_RUNNING); 6156 6157 ret = sanitize_fault_flags(vma, &flags); 6158 if (ret) 6159 goto out; 6160 6161 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6162 flags & FAULT_FLAG_INSTRUCTION, 6163 flags & FAULT_FLAG_REMOTE)) { 6164 ret = VM_FAULT_SIGSEGV; 6165 goto out; 6166 } 6167 6168 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6169 6170 /* 6171 * Enable the memcg OOM handling for faults triggered in user 6172 * space. Kernel faults are handled more gracefully. 6173 */ 6174 if (flags & FAULT_FLAG_USER) 6175 mem_cgroup_enter_user_fault(); 6176 6177 lru_gen_enter_fault(vma); 6178 6179 if (unlikely(is_vm_hugetlb_page(vma))) 6180 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6181 else 6182 ret = __handle_mm_fault(vma, address, flags); 6183 6184 /* 6185 * Warning: It is no longer safe to dereference vma-> after this point, 6186 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6187 * vma might be destroyed from underneath us. 6188 */ 6189 6190 lru_gen_exit_fault(); 6191 6192 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6193 if (is_droppable) 6194 ret &= ~VM_FAULT_OOM; 6195 6196 if (flags & FAULT_FLAG_USER) { 6197 mem_cgroup_exit_user_fault(); 6198 /* 6199 * The task may have entered a memcg OOM situation but 6200 * if the allocation error was handled gracefully (no 6201 * VM_FAULT_OOM), there is no need to kill anything. 6202 * Just clean up the OOM state peacefully. 6203 */ 6204 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6205 mem_cgroup_oom_synchronize(false); 6206 } 6207 out: 6208 mm_account_fault(mm, regs, address, flags, ret); 6209 6210 return ret; 6211 } 6212 EXPORT_SYMBOL_GPL(handle_mm_fault); 6213 6214 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 6215 #include <linux/extable.h> 6216 6217 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6218 { 6219 if (likely(mmap_read_trylock(mm))) 6220 return true; 6221 6222 if (regs && !user_mode(regs)) { 6223 unsigned long ip = exception_ip(regs); 6224 if (!search_exception_tables(ip)) 6225 return false; 6226 } 6227 6228 return !mmap_read_lock_killable(mm); 6229 } 6230 6231 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 6232 { 6233 /* 6234 * We don't have this operation yet. 6235 * 6236 * It should be easy enough to do: it's basically a 6237 * atomic_long_try_cmpxchg_acquire() 6238 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 6239 * it also needs the proper lockdep magic etc. 6240 */ 6241 return false; 6242 } 6243 6244 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6245 { 6246 mmap_read_unlock(mm); 6247 if (regs && !user_mode(regs)) { 6248 unsigned long ip = exception_ip(regs); 6249 if (!search_exception_tables(ip)) 6250 return false; 6251 } 6252 return !mmap_write_lock_killable(mm); 6253 } 6254 6255 /* 6256 * Helper for page fault handling. 6257 * 6258 * This is kind of equivalent to "mmap_read_lock()" followed 6259 * by "find_extend_vma()", except it's a lot more careful about 6260 * the locking (and will drop the lock on failure). 6261 * 6262 * For example, if we have a kernel bug that causes a page 6263 * fault, we don't want to just use mmap_read_lock() to get 6264 * the mm lock, because that would deadlock if the bug were 6265 * to happen while we're holding the mm lock for writing. 6266 * 6267 * So this checks the exception tables on kernel faults in 6268 * order to only do this all for instructions that are actually 6269 * expected to fault. 6270 * 6271 * We can also actually take the mm lock for writing if we 6272 * need to extend the vma, which helps the VM layer a lot. 6273 */ 6274 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 6275 unsigned long addr, struct pt_regs *regs) 6276 { 6277 struct vm_area_struct *vma; 6278 6279 if (!get_mmap_lock_carefully(mm, regs)) 6280 return NULL; 6281 6282 vma = find_vma(mm, addr); 6283 if (likely(vma && (vma->vm_start <= addr))) 6284 return vma; 6285 6286 /* 6287 * Well, dang. We might still be successful, but only 6288 * if we can extend a vma to do so. 6289 */ 6290 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 6291 mmap_read_unlock(mm); 6292 return NULL; 6293 } 6294 6295 /* 6296 * We can try to upgrade the mmap lock atomically, 6297 * in which case we can continue to use the vma 6298 * we already looked up. 6299 * 6300 * Otherwise we'll have to drop the mmap lock and 6301 * re-take it, and also look up the vma again, 6302 * re-checking it. 6303 */ 6304 if (!mmap_upgrade_trylock(mm)) { 6305 if (!upgrade_mmap_lock_carefully(mm, regs)) 6306 return NULL; 6307 6308 vma = find_vma(mm, addr); 6309 if (!vma) 6310 goto fail; 6311 if (vma->vm_start <= addr) 6312 goto success; 6313 if (!(vma->vm_flags & VM_GROWSDOWN)) 6314 goto fail; 6315 } 6316 6317 if (expand_stack_locked(vma, addr)) 6318 goto fail; 6319 6320 success: 6321 mmap_write_downgrade(mm); 6322 return vma; 6323 6324 fail: 6325 mmap_write_unlock(mm); 6326 return NULL; 6327 } 6328 #endif 6329 6330 #ifdef CONFIG_PER_VMA_LOCK 6331 /* 6332 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 6333 * stable and not isolated. If the VMA is not found or is being modified the 6334 * function returns NULL. 6335 */ 6336 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 6337 unsigned long address) 6338 { 6339 MA_STATE(mas, &mm->mm_mt, address, address); 6340 struct vm_area_struct *vma; 6341 6342 rcu_read_lock(); 6343 retry: 6344 vma = mas_walk(&mas); 6345 if (!vma) 6346 goto inval; 6347 6348 if (!vma_start_read(vma)) 6349 goto inval; 6350 6351 /* Check if the VMA got isolated after we found it */ 6352 if (vma->detached) { 6353 vma_end_read(vma); 6354 count_vm_vma_lock_event(VMA_LOCK_MISS); 6355 /* The area was replaced with another one */ 6356 goto retry; 6357 } 6358 /* 6359 * At this point, we have a stable reference to a VMA: The VMA is 6360 * locked and we know it hasn't already been isolated. 6361 * From here on, we can access the VMA without worrying about which 6362 * fields are accessible for RCU readers. 6363 */ 6364 6365 /* Check since vm_start/vm_end might change before we lock the VMA */ 6366 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6367 goto inval_end_read; 6368 6369 rcu_read_unlock(); 6370 return vma; 6371 6372 inval_end_read: 6373 vma_end_read(vma); 6374 inval: 6375 rcu_read_unlock(); 6376 count_vm_vma_lock_event(VMA_LOCK_ABORT); 6377 return NULL; 6378 } 6379 #endif /* CONFIG_PER_VMA_LOCK */ 6380 6381 #ifndef __PAGETABLE_P4D_FOLDED 6382 /* 6383 * Allocate p4d page table. 6384 * We've already handled the fast-path in-line. 6385 */ 6386 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6387 { 6388 p4d_t *new = p4d_alloc_one(mm, address); 6389 if (!new) 6390 return -ENOMEM; 6391 6392 spin_lock(&mm->page_table_lock); 6393 if (pgd_present(*pgd)) { /* Another has populated it */ 6394 p4d_free(mm, new); 6395 } else { 6396 smp_wmb(); /* See comment in pmd_install() */ 6397 pgd_populate(mm, pgd, new); 6398 } 6399 spin_unlock(&mm->page_table_lock); 6400 return 0; 6401 } 6402 #endif /* __PAGETABLE_P4D_FOLDED */ 6403 6404 #ifndef __PAGETABLE_PUD_FOLDED 6405 /* 6406 * Allocate page upper directory. 6407 * We've already handled the fast-path in-line. 6408 */ 6409 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6410 { 6411 pud_t *new = pud_alloc_one(mm, address); 6412 if (!new) 6413 return -ENOMEM; 6414 6415 spin_lock(&mm->page_table_lock); 6416 if (!p4d_present(*p4d)) { 6417 mm_inc_nr_puds(mm); 6418 smp_wmb(); /* See comment in pmd_install() */ 6419 p4d_populate(mm, p4d, new); 6420 } else /* Another has populated it */ 6421 pud_free(mm, new); 6422 spin_unlock(&mm->page_table_lock); 6423 return 0; 6424 } 6425 #endif /* __PAGETABLE_PUD_FOLDED */ 6426 6427 #ifndef __PAGETABLE_PMD_FOLDED 6428 /* 6429 * Allocate page middle directory. 6430 * We've already handled the fast-path in-line. 6431 */ 6432 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6433 { 6434 spinlock_t *ptl; 6435 pmd_t *new = pmd_alloc_one(mm, address); 6436 if (!new) 6437 return -ENOMEM; 6438 6439 ptl = pud_lock(mm, pud); 6440 if (!pud_present(*pud)) { 6441 mm_inc_nr_pmds(mm); 6442 smp_wmb(); /* See comment in pmd_install() */ 6443 pud_populate(mm, pud, new); 6444 } else { /* Another has populated it */ 6445 pmd_free(mm, new); 6446 } 6447 spin_unlock(ptl); 6448 return 0; 6449 } 6450 #endif /* __PAGETABLE_PMD_FOLDED */ 6451 6452 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6453 spinlock_t *lock, pte_t *ptep, 6454 pgprot_t pgprot, unsigned long pfn_base, 6455 unsigned long addr_mask, bool writable, 6456 bool special) 6457 { 6458 args->lock = lock; 6459 args->ptep = ptep; 6460 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6461 args->pgprot = pgprot; 6462 args->writable = writable; 6463 args->special = special; 6464 } 6465 6466 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6467 { 6468 #ifdef CONFIG_LOCKDEP 6469 struct file *file = vma->vm_file; 6470 struct address_space *mapping = file ? file->f_mapping : NULL; 6471 6472 if (mapping) 6473 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6474 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6475 else 6476 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6477 #endif 6478 } 6479 6480 /** 6481 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6482 * @args: Pointer to struct @follow_pfnmap_args 6483 * 6484 * The caller needs to setup args->vma and args->address to point to the 6485 * virtual address as the target of such lookup. On a successful return, 6486 * the results will be put into other output fields. 6487 * 6488 * After the caller finished using the fields, the caller must invoke 6489 * another follow_pfnmap_end() to proper releases the locks and resources 6490 * of such look up request. 6491 * 6492 * During the start() and end() calls, the results in @args will be valid 6493 * as proper locks will be held. After the end() is called, all the fields 6494 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6495 * use of such information after end() may require proper synchronizations 6496 * by the caller with page table updates, otherwise it can create a 6497 * security bug. 6498 * 6499 * If the PTE maps a refcounted page, callers are responsible to protect 6500 * against invalidation with MMU notifiers; otherwise access to the PFN at 6501 * a later point in time can trigger use-after-free. 6502 * 6503 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6504 * should be taken for read, and the mmap semaphore cannot be released 6505 * before the end() is invoked. 6506 * 6507 * This function must not be used to modify PTE content. 6508 * 6509 * Return: zero on success, negative otherwise. 6510 */ 6511 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6512 { 6513 struct vm_area_struct *vma = args->vma; 6514 unsigned long address = args->address; 6515 struct mm_struct *mm = vma->vm_mm; 6516 spinlock_t *lock; 6517 pgd_t *pgdp; 6518 p4d_t *p4dp, p4d; 6519 pud_t *pudp, pud; 6520 pmd_t *pmdp, pmd; 6521 pte_t *ptep, pte; 6522 6523 pfnmap_lockdep_assert(vma); 6524 6525 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6526 goto out; 6527 6528 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6529 goto out; 6530 retry: 6531 pgdp = pgd_offset(mm, address); 6532 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6533 goto out; 6534 6535 p4dp = p4d_offset(pgdp, address); 6536 p4d = READ_ONCE(*p4dp); 6537 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6538 goto out; 6539 6540 pudp = pud_offset(p4dp, address); 6541 pud = READ_ONCE(*pudp); 6542 if (pud_none(pud)) 6543 goto out; 6544 if (pud_leaf(pud)) { 6545 lock = pud_lock(mm, pudp); 6546 if (!unlikely(pud_leaf(pud))) { 6547 spin_unlock(lock); 6548 goto retry; 6549 } 6550 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6551 pud_pfn(pud), PUD_MASK, pud_write(pud), 6552 pud_special(pud)); 6553 return 0; 6554 } 6555 6556 pmdp = pmd_offset(pudp, address); 6557 pmd = pmdp_get_lockless(pmdp); 6558 if (pmd_leaf(pmd)) { 6559 lock = pmd_lock(mm, pmdp); 6560 if (!unlikely(pmd_leaf(pmd))) { 6561 spin_unlock(lock); 6562 goto retry; 6563 } 6564 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6565 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6566 pmd_special(pmd)); 6567 return 0; 6568 } 6569 6570 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6571 if (!ptep) 6572 goto out; 6573 pte = ptep_get(ptep); 6574 if (!pte_present(pte)) 6575 goto unlock; 6576 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6577 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6578 pte_special(pte)); 6579 return 0; 6580 unlock: 6581 pte_unmap_unlock(ptep, lock); 6582 out: 6583 return -EINVAL; 6584 } 6585 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6586 6587 /** 6588 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6589 * @args: Pointer to struct @follow_pfnmap_args 6590 * 6591 * Must be used in pair of follow_pfnmap_start(). See the start() function 6592 * above for more information. 6593 */ 6594 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6595 { 6596 if (args->lock) 6597 spin_unlock(args->lock); 6598 if (args->ptep) 6599 pte_unmap(args->ptep); 6600 } 6601 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6602 6603 #ifdef CONFIG_HAVE_IOREMAP_PROT 6604 /** 6605 * generic_access_phys - generic implementation for iomem mmap access 6606 * @vma: the vma to access 6607 * @addr: userspace address, not relative offset within @vma 6608 * @buf: buffer to read/write 6609 * @len: length of transfer 6610 * @write: set to FOLL_WRITE when writing, otherwise reading 6611 * 6612 * This is a generic implementation for &vm_operations_struct.access for an 6613 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6614 * not page based. 6615 */ 6616 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6617 void *buf, int len, int write) 6618 { 6619 resource_size_t phys_addr; 6620 unsigned long prot = 0; 6621 void __iomem *maddr; 6622 int offset = offset_in_page(addr); 6623 int ret = -EINVAL; 6624 bool writable; 6625 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6626 6627 retry: 6628 if (follow_pfnmap_start(&args)) 6629 return -EINVAL; 6630 prot = pgprot_val(args.pgprot); 6631 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6632 writable = args.writable; 6633 follow_pfnmap_end(&args); 6634 6635 if ((write & FOLL_WRITE) && !writable) 6636 return -EINVAL; 6637 6638 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6639 if (!maddr) 6640 return -ENOMEM; 6641 6642 if (follow_pfnmap_start(&args)) 6643 goto out_unmap; 6644 6645 if ((prot != pgprot_val(args.pgprot)) || 6646 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6647 (writable != args.writable)) { 6648 follow_pfnmap_end(&args); 6649 iounmap(maddr); 6650 goto retry; 6651 } 6652 6653 if (write) 6654 memcpy_toio(maddr + offset, buf, len); 6655 else 6656 memcpy_fromio(buf, maddr + offset, len); 6657 ret = len; 6658 follow_pfnmap_end(&args); 6659 out_unmap: 6660 iounmap(maddr); 6661 6662 return ret; 6663 } 6664 EXPORT_SYMBOL_GPL(generic_access_phys); 6665 #endif 6666 6667 /* 6668 * Access another process' address space as given in mm. 6669 */ 6670 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6671 void *buf, int len, unsigned int gup_flags) 6672 { 6673 void *old_buf = buf; 6674 int write = gup_flags & FOLL_WRITE; 6675 6676 if (mmap_read_lock_killable(mm)) 6677 return 0; 6678 6679 /* Untag the address before looking up the VMA */ 6680 addr = untagged_addr_remote(mm, addr); 6681 6682 /* Avoid triggering the temporary warning in __get_user_pages */ 6683 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6684 return 0; 6685 6686 /* ignore errors, just check how much was successfully transferred */ 6687 while (len) { 6688 int bytes, offset; 6689 void *maddr; 6690 struct vm_area_struct *vma = NULL; 6691 struct page *page = get_user_page_vma_remote(mm, addr, 6692 gup_flags, &vma); 6693 6694 if (IS_ERR(page)) { 6695 /* We might need to expand the stack to access it */ 6696 vma = vma_lookup(mm, addr); 6697 if (!vma) { 6698 vma = expand_stack(mm, addr); 6699 6700 /* mmap_lock was dropped on failure */ 6701 if (!vma) 6702 return buf - old_buf; 6703 6704 /* Try again if stack expansion worked */ 6705 continue; 6706 } 6707 6708 /* 6709 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6710 * we can access using slightly different code. 6711 */ 6712 bytes = 0; 6713 #ifdef CONFIG_HAVE_IOREMAP_PROT 6714 if (vma->vm_ops && vma->vm_ops->access) 6715 bytes = vma->vm_ops->access(vma, addr, buf, 6716 len, write); 6717 #endif 6718 if (bytes <= 0) 6719 break; 6720 } else { 6721 bytes = len; 6722 offset = addr & (PAGE_SIZE-1); 6723 if (bytes > PAGE_SIZE-offset) 6724 bytes = PAGE_SIZE-offset; 6725 6726 maddr = kmap_local_page(page); 6727 if (write) { 6728 copy_to_user_page(vma, page, addr, 6729 maddr + offset, buf, bytes); 6730 set_page_dirty_lock(page); 6731 } else { 6732 copy_from_user_page(vma, page, addr, 6733 buf, maddr + offset, bytes); 6734 } 6735 unmap_and_put_page(page, maddr); 6736 } 6737 len -= bytes; 6738 buf += bytes; 6739 addr += bytes; 6740 } 6741 mmap_read_unlock(mm); 6742 6743 return buf - old_buf; 6744 } 6745 6746 /** 6747 * access_remote_vm - access another process' address space 6748 * @mm: the mm_struct of the target address space 6749 * @addr: start address to access 6750 * @buf: source or destination buffer 6751 * @len: number of bytes to transfer 6752 * @gup_flags: flags modifying lookup behaviour 6753 * 6754 * The caller must hold a reference on @mm. 6755 * 6756 * Return: number of bytes copied from source to destination. 6757 */ 6758 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6759 void *buf, int len, unsigned int gup_flags) 6760 { 6761 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6762 } 6763 6764 /* 6765 * Access another process' address space. 6766 * Source/target buffer must be kernel space, 6767 * Do not walk the page table directly, use get_user_pages 6768 */ 6769 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6770 void *buf, int len, unsigned int gup_flags) 6771 { 6772 struct mm_struct *mm; 6773 int ret; 6774 6775 mm = get_task_mm(tsk); 6776 if (!mm) 6777 return 0; 6778 6779 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6780 6781 mmput(mm); 6782 6783 return ret; 6784 } 6785 EXPORT_SYMBOL_GPL(access_process_vm); 6786 6787 /* 6788 * Print the name of a VMA. 6789 */ 6790 void print_vma_addr(char *prefix, unsigned long ip) 6791 { 6792 struct mm_struct *mm = current->mm; 6793 struct vm_area_struct *vma; 6794 6795 /* 6796 * we might be running from an atomic context so we cannot sleep 6797 */ 6798 if (!mmap_read_trylock(mm)) 6799 return; 6800 6801 vma = vma_lookup(mm, ip); 6802 if (vma && vma->vm_file) { 6803 struct file *f = vma->vm_file; 6804 ip -= vma->vm_start; 6805 ip += vma->vm_pgoff << PAGE_SHIFT; 6806 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 6807 vma->vm_start, 6808 vma->vm_end - vma->vm_start); 6809 } 6810 mmap_read_unlock(mm); 6811 } 6812 6813 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6814 void __might_fault(const char *file, int line) 6815 { 6816 if (pagefault_disabled()) 6817 return; 6818 __might_sleep(file, line); 6819 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6820 if (current->mm) 6821 might_lock_read(¤t->mm->mmap_lock); 6822 #endif 6823 } 6824 EXPORT_SYMBOL(__might_fault); 6825 #endif 6826 6827 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6828 /* 6829 * Process all subpages of the specified huge page with the specified 6830 * operation. The target subpage will be processed last to keep its 6831 * cache lines hot. 6832 */ 6833 static inline int process_huge_page( 6834 unsigned long addr_hint, unsigned int nr_pages, 6835 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6836 void *arg) 6837 { 6838 int i, n, base, l, ret; 6839 unsigned long addr = addr_hint & 6840 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 6841 6842 /* Process target subpage last to keep its cache lines hot */ 6843 might_sleep(); 6844 n = (addr_hint - addr) / PAGE_SIZE; 6845 if (2 * n <= nr_pages) { 6846 /* If target subpage in first half of huge page */ 6847 base = 0; 6848 l = n; 6849 /* Process subpages at the end of huge page */ 6850 for (i = nr_pages - 1; i >= 2 * n; i--) { 6851 cond_resched(); 6852 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6853 if (ret) 6854 return ret; 6855 } 6856 } else { 6857 /* If target subpage in second half of huge page */ 6858 base = nr_pages - 2 * (nr_pages - n); 6859 l = nr_pages - n; 6860 /* Process subpages at the begin of huge page */ 6861 for (i = 0; i < base; i++) { 6862 cond_resched(); 6863 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6864 if (ret) 6865 return ret; 6866 } 6867 } 6868 /* 6869 * Process remaining subpages in left-right-left-right pattern 6870 * towards the target subpage 6871 */ 6872 for (i = 0; i < l; i++) { 6873 int left_idx = base + i; 6874 int right_idx = base + 2 * l - 1 - i; 6875 6876 cond_resched(); 6877 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6878 if (ret) 6879 return ret; 6880 cond_resched(); 6881 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6882 if (ret) 6883 return ret; 6884 } 6885 return 0; 6886 } 6887 6888 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 6889 unsigned int nr_pages) 6890 { 6891 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 6892 int i; 6893 6894 might_sleep(); 6895 for (i = 0; i < nr_pages; i++) { 6896 cond_resched(); 6897 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 6898 } 6899 } 6900 6901 static int clear_subpage(unsigned long addr, int idx, void *arg) 6902 { 6903 struct folio *folio = arg; 6904 6905 clear_user_highpage(folio_page(folio, idx), addr); 6906 return 0; 6907 } 6908 6909 /** 6910 * folio_zero_user - Zero a folio which will be mapped to userspace. 6911 * @folio: The folio to zero. 6912 * @addr_hint: The address will be accessed or the base address if uncelar. 6913 */ 6914 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 6915 { 6916 unsigned int nr_pages = folio_nr_pages(folio); 6917 6918 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 6919 clear_gigantic_page(folio, addr_hint, nr_pages); 6920 else 6921 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 6922 } 6923 6924 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6925 unsigned long addr_hint, 6926 struct vm_area_struct *vma, 6927 unsigned int nr_pages) 6928 { 6929 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 6930 struct page *dst_page; 6931 struct page *src_page; 6932 int i; 6933 6934 for (i = 0; i < nr_pages; i++) { 6935 dst_page = folio_page(dst, i); 6936 src_page = folio_page(src, i); 6937 6938 cond_resched(); 6939 if (copy_mc_user_highpage(dst_page, src_page, 6940 addr + i*PAGE_SIZE, vma)) 6941 return -EHWPOISON; 6942 } 6943 return 0; 6944 } 6945 6946 struct copy_subpage_arg { 6947 struct folio *dst; 6948 struct folio *src; 6949 struct vm_area_struct *vma; 6950 }; 6951 6952 static int copy_subpage(unsigned long addr, int idx, void *arg) 6953 { 6954 struct copy_subpage_arg *copy_arg = arg; 6955 struct page *dst = folio_page(copy_arg->dst, idx); 6956 struct page *src = folio_page(copy_arg->src, idx); 6957 6958 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 6959 return -EHWPOISON; 6960 return 0; 6961 } 6962 6963 int copy_user_large_folio(struct folio *dst, struct folio *src, 6964 unsigned long addr_hint, struct vm_area_struct *vma) 6965 { 6966 unsigned int nr_pages = folio_nr_pages(dst); 6967 struct copy_subpage_arg arg = { 6968 .dst = dst, 6969 .src = src, 6970 .vma = vma, 6971 }; 6972 6973 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 6974 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 6975 6976 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 6977 } 6978 6979 long copy_folio_from_user(struct folio *dst_folio, 6980 const void __user *usr_src, 6981 bool allow_pagefault) 6982 { 6983 void *kaddr; 6984 unsigned long i, rc = 0; 6985 unsigned int nr_pages = folio_nr_pages(dst_folio); 6986 unsigned long ret_val = nr_pages * PAGE_SIZE; 6987 struct page *subpage; 6988 6989 for (i = 0; i < nr_pages; i++) { 6990 subpage = folio_page(dst_folio, i); 6991 kaddr = kmap_local_page(subpage); 6992 if (!allow_pagefault) 6993 pagefault_disable(); 6994 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6995 if (!allow_pagefault) 6996 pagefault_enable(); 6997 kunmap_local(kaddr); 6998 6999 ret_val -= (PAGE_SIZE - rc); 7000 if (rc) 7001 break; 7002 7003 flush_dcache_page(subpage); 7004 7005 cond_resched(); 7006 } 7007 return ret_val; 7008 } 7009 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7010 7011 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7012 7013 static struct kmem_cache *page_ptl_cachep; 7014 7015 void __init ptlock_cache_init(void) 7016 { 7017 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7018 SLAB_PANIC, NULL); 7019 } 7020 7021 bool ptlock_alloc(struct ptdesc *ptdesc) 7022 { 7023 spinlock_t *ptl; 7024 7025 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7026 if (!ptl) 7027 return false; 7028 ptdesc->ptl = ptl; 7029 return true; 7030 } 7031 7032 void ptlock_free(struct ptdesc *ptdesc) 7033 { 7034 if (ptdesc->ptl) 7035 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7036 } 7037 #endif 7038 7039 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7040 { 7041 if (is_vm_hugetlb_page(vma)) 7042 hugetlb_vma_lock_read(vma); 7043 } 7044 7045 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7046 { 7047 if (is_vm_hugetlb_page(vma)) 7048 hugetlb_vma_unlock_read(vma); 7049 } 7050