xref: /linux/mm/memory.c (revision 6f7e0d9d08c7fa3847b1380b16dff7e14523933c)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 
67 #include <asm/io.h>
68 #include <asm/mmu_context.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/tlb.h>
72 #include <asm/tlbflush.h>
73 #include <asm/pgtable.h>
74 
75 #include "internal.h"
76 
77 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
78 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
79 #endif
80 
81 #ifndef CONFIG_NEED_MULTIPLE_NODES
82 /* use the per-pgdat data instead for discontigmem - mbligh */
83 unsigned long max_mapnr;
84 struct page *mem_map;
85 
86 EXPORT_SYMBOL(max_mapnr);
87 EXPORT_SYMBOL(mem_map);
88 #endif
89 
90 /*
91  * A number of key systems in x86 including ioremap() rely on the assumption
92  * that high_memory defines the upper bound on direct map memory, then end
93  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
94  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
95  * and ZONE_HIGHMEM.
96  */
97 void * high_memory;
98 
99 EXPORT_SYMBOL(high_memory);
100 
101 /*
102  * Randomize the address space (stacks, mmaps, brk, etc.).
103  *
104  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
105  *   as ancient (libc5 based) binaries can segfault. )
106  */
107 int randomize_va_space __read_mostly =
108 #ifdef CONFIG_COMPAT_BRK
109 					1;
110 #else
111 					2;
112 #endif
113 
114 static int __init disable_randmaps(char *s)
115 {
116 	randomize_va_space = 0;
117 	return 1;
118 }
119 __setup("norandmaps", disable_randmaps);
120 
121 unsigned long zero_pfn __read_mostly;
122 unsigned long highest_memmap_pfn __read_mostly;
123 
124 EXPORT_SYMBOL(zero_pfn);
125 
126 /*
127  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
128  */
129 static int __init init_zero_pfn(void)
130 {
131 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
132 	return 0;
133 }
134 core_initcall(init_zero_pfn);
135 
136 
137 #if defined(SPLIT_RSS_COUNTING)
138 
139 void sync_mm_rss(struct mm_struct *mm)
140 {
141 	int i;
142 
143 	for (i = 0; i < NR_MM_COUNTERS; i++) {
144 		if (current->rss_stat.count[i]) {
145 			add_mm_counter(mm, i, current->rss_stat.count[i]);
146 			current->rss_stat.count[i] = 0;
147 		}
148 	}
149 	current->rss_stat.events = 0;
150 }
151 
152 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
153 {
154 	struct task_struct *task = current;
155 
156 	if (likely(task->mm == mm))
157 		task->rss_stat.count[member] += val;
158 	else
159 		add_mm_counter(mm, member, val);
160 }
161 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
162 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
163 
164 /* sync counter once per 64 page faults */
165 #define TASK_RSS_EVENTS_THRESH	(64)
166 static void check_sync_rss_stat(struct task_struct *task)
167 {
168 	if (unlikely(task != current))
169 		return;
170 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
171 		sync_mm_rss(task->mm);
172 }
173 #else /* SPLIT_RSS_COUNTING */
174 
175 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
176 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
177 
178 static void check_sync_rss_stat(struct task_struct *task)
179 {
180 }
181 
182 #endif /* SPLIT_RSS_COUNTING */
183 
184 #ifdef HAVE_GENERIC_MMU_GATHER
185 
186 static bool tlb_next_batch(struct mmu_gather *tlb)
187 {
188 	struct mmu_gather_batch *batch;
189 
190 	batch = tlb->active;
191 	if (batch->next) {
192 		tlb->active = batch->next;
193 		return true;
194 	}
195 
196 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
197 		return false;
198 
199 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
200 	if (!batch)
201 		return false;
202 
203 	tlb->batch_count++;
204 	batch->next = NULL;
205 	batch->nr   = 0;
206 	batch->max  = MAX_GATHER_BATCH;
207 
208 	tlb->active->next = batch;
209 	tlb->active = batch;
210 
211 	return true;
212 }
213 
214 /* tlb_gather_mmu
215  *	Called to initialize an (on-stack) mmu_gather structure for page-table
216  *	tear-down from @mm. The @fullmm argument is used when @mm is without
217  *	users and we're going to destroy the full address space (exit/execve).
218  */
219 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
220 {
221 	tlb->mm = mm;
222 
223 	/* Is it from 0 to ~0? */
224 	tlb->fullmm     = !(start | (end+1));
225 	tlb->need_flush_all = 0;
226 	tlb->local.next = NULL;
227 	tlb->local.nr   = 0;
228 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
229 	tlb->active     = &tlb->local;
230 	tlb->batch_count = 0;
231 
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 	tlb->batch = NULL;
234 #endif
235 
236 	__tlb_reset_range(tlb);
237 }
238 
239 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
240 {
241 	if (!tlb->end)
242 		return;
243 
244 	tlb_flush(tlb);
245 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
246 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
247 	tlb_table_flush(tlb);
248 #endif
249 	__tlb_reset_range(tlb);
250 }
251 
252 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
253 {
254 	struct mmu_gather_batch *batch;
255 
256 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
257 		free_pages_and_swap_cache(batch->pages, batch->nr);
258 		batch->nr = 0;
259 	}
260 	tlb->active = &tlb->local;
261 }
262 
263 void tlb_flush_mmu(struct mmu_gather *tlb)
264 {
265 	tlb_flush_mmu_tlbonly(tlb);
266 	tlb_flush_mmu_free(tlb);
267 }
268 
269 /* tlb_finish_mmu
270  *	Called at the end of the shootdown operation to free up any resources
271  *	that were required.
272  */
273 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
274 {
275 	struct mmu_gather_batch *batch, *next;
276 
277 	tlb_flush_mmu(tlb);
278 
279 	/* keep the page table cache within bounds */
280 	check_pgt_cache();
281 
282 	for (batch = tlb->local.next; batch; batch = next) {
283 		next = batch->next;
284 		free_pages((unsigned long)batch, 0);
285 	}
286 	tlb->local.next = NULL;
287 }
288 
289 /* __tlb_remove_page
290  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
291  *	handling the additional races in SMP caused by other CPUs caching valid
292  *	mappings in their TLBs. Returns the number of free page slots left.
293  *	When out of page slots we must call tlb_flush_mmu().
294  */
295 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
296 {
297 	struct mmu_gather_batch *batch;
298 
299 	VM_BUG_ON(!tlb->end);
300 
301 	batch = tlb->active;
302 	batch->pages[batch->nr++] = page;
303 	if (batch->nr == batch->max) {
304 		if (!tlb_next_batch(tlb))
305 			return 0;
306 		batch = tlb->active;
307 	}
308 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
309 
310 	return batch->max - batch->nr;
311 }
312 
313 #endif /* HAVE_GENERIC_MMU_GATHER */
314 
315 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
316 
317 /*
318  * See the comment near struct mmu_table_batch.
319  */
320 
321 static void tlb_remove_table_smp_sync(void *arg)
322 {
323 	/* Simply deliver the interrupt */
324 }
325 
326 static void tlb_remove_table_one(void *table)
327 {
328 	/*
329 	 * This isn't an RCU grace period and hence the page-tables cannot be
330 	 * assumed to be actually RCU-freed.
331 	 *
332 	 * It is however sufficient for software page-table walkers that rely on
333 	 * IRQ disabling. See the comment near struct mmu_table_batch.
334 	 */
335 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
336 	__tlb_remove_table(table);
337 }
338 
339 static void tlb_remove_table_rcu(struct rcu_head *head)
340 {
341 	struct mmu_table_batch *batch;
342 	int i;
343 
344 	batch = container_of(head, struct mmu_table_batch, rcu);
345 
346 	for (i = 0; i < batch->nr; i++)
347 		__tlb_remove_table(batch->tables[i]);
348 
349 	free_page((unsigned long)batch);
350 }
351 
352 void tlb_table_flush(struct mmu_gather *tlb)
353 {
354 	struct mmu_table_batch **batch = &tlb->batch;
355 
356 	if (*batch) {
357 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
358 		*batch = NULL;
359 	}
360 }
361 
362 void tlb_remove_table(struct mmu_gather *tlb, void *table)
363 {
364 	struct mmu_table_batch **batch = &tlb->batch;
365 
366 	/*
367 	 * When there's less then two users of this mm there cannot be a
368 	 * concurrent page-table walk.
369 	 */
370 	if (atomic_read(&tlb->mm->mm_users) < 2) {
371 		__tlb_remove_table(table);
372 		return;
373 	}
374 
375 	if (*batch == NULL) {
376 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
377 		if (*batch == NULL) {
378 			tlb_remove_table_one(table);
379 			return;
380 		}
381 		(*batch)->nr = 0;
382 	}
383 	(*batch)->tables[(*batch)->nr++] = table;
384 	if ((*batch)->nr == MAX_TABLE_BATCH)
385 		tlb_table_flush(tlb);
386 }
387 
388 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
389 
390 /*
391  * Note: this doesn't free the actual pages themselves. That
392  * has been handled earlier when unmapping all the memory regions.
393  */
394 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
395 			   unsigned long addr)
396 {
397 	pgtable_t token = pmd_pgtable(*pmd);
398 	pmd_clear(pmd);
399 	pte_free_tlb(tlb, token, addr);
400 	atomic_long_dec(&tlb->mm->nr_ptes);
401 }
402 
403 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
404 				unsigned long addr, unsigned long end,
405 				unsigned long floor, unsigned long ceiling)
406 {
407 	pmd_t *pmd;
408 	unsigned long next;
409 	unsigned long start;
410 
411 	start = addr;
412 	pmd = pmd_offset(pud, addr);
413 	do {
414 		next = pmd_addr_end(addr, end);
415 		if (pmd_none_or_clear_bad(pmd))
416 			continue;
417 		free_pte_range(tlb, pmd, addr);
418 	} while (pmd++, addr = next, addr != end);
419 
420 	start &= PUD_MASK;
421 	if (start < floor)
422 		return;
423 	if (ceiling) {
424 		ceiling &= PUD_MASK;
425 		if (!ceiling)
426 			return;
427 	}
428 	if (end - 1 > ceiling - 1)
429 		return;
430 
431 	pmd = pmd_offset(pud, start);
432 	pud_clear(pud);
433 	pmd_free_tlb(tlb, pmd, start);
434 	mm_dec_nr_pmds(tlb->mm);
435 }
436 
437 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
438 				unsigned long addr, unsigned long end,
439 				unsigned long floor, unsigned long ceiling)
440 {
441 	pud_t *pud;
442 	unsigned long next;
443 	unsigned long start;
444 
445 	start = addr;
446 	pud = pud_offset(pgd, addr);
447 	do {
448 		next = pud_addr_end(addr, end);
449 		if (pud_none_or_clear_bad(pud))
450 			continue;
451 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
452 	} while (pud++, addr = next, addr != end);
453 
454 	start &= PGDIR_MASK;
455 	if (start < floor)
456 		return;
457 	if (ceiling) {
458 		ceiling &= PGDIR_MASK;
459 		if (!ceiling)
460 			return;
461 	}
462 	if (end - 1 > ceiling - 1)
463 		return;
464 
465 	pud = pud_offset(pgd, start);
466 	pgd_clear(pgd);
467 	pud_free_tlb(tlb, pud, start);
468 }
469 
470 /*
471  * This function frees user-level page tables of a process.
472  */
473 void free_pgd_range(struct mmu_gather *tlb,
474 			unsigned long addr, unsigned long end,
475 			unsigned long floor, unsigned long ceiling)
476 {
477 	pgd_t *pgd;
478 	unsigned long next;
479 
480 	/*
481 	 * The next few lines have given us lots of grief...
482 	 *
483 	 * Why are we testing PMD* at this top level?  Because often
484 	 * there will be no work to do at all, and we'd prefer not to
485 	 * go all the way down to the bottom just to discover that.
486 	 *
487 	 * Why all these "- 1"s?  Because 0 represents both the bottom
488 	 * of the address space and the top of it (using -1 for the
489 	 * top wouldn't help much: the masks would do the wrong thing).
490 	 * The rule is that addr 0 and floor 0 refer to the bottom of
491 	 * the address space, but end 0 and ceiling 0 refer to the top
492 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
493 	 * that end 0 case should be mythical).
494 	 *
495 	 * Wherever addr is brought up or ceiling brought down, we must
496 	 * be careful to reject "the opposite 0" before it confuses the
497 	 * subsequent tests.  But what about where end is brought down
498 	 * by PMD_SIZE below? no, end can't go down to 0 there.
499 	 *
500 	 * Whereas we round start (addr) and ceiling down, by different
501 	 * masks at different levels, in order to test whether a table
502 	 * now has no other vmas using it, so can be freed, we don't
503 	 * bother to round floor or end up - the tests don't need that.
504 	 */
505 
506 	addr &= PMD_MASK;
507 	if (addr < floor) {
508 		addr += PMD_SIZE;
509 		if (!addr)
510 			return;
511 	}
512 	if (ceiling) {
513 		ceiling &= PMD_MASK;
514 		if (!ceiling)
515 			return;
516 	}
517 	if (end - 1 > ceiling - 1)
518 		end -= PMD_SIZE;
519 	if (addr > end - 1)
520 		return;
521 
522 	pgd = pgd_offset(tlb->mm, addr);
523 	do {
524 		next = pgd_addr_end(addr, end);
525 		if (pgd_none_or_clear_bad(pgd))
526 			continue;
527 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
528 	} while (pgd++, addr = next, addr != end);
529 }
530 
531 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
532 		unsigned long floor, unsigned long ceiling)
533 {
534 	while (vma) {
535 		struct vm_area_struct *next = vma->vm_next;
536 		unsigned long addr = vma->vm_start;
537 
538 		/*
539 		 * Hide vma from rmap and truncate_pagecache before freeing
540 		 * pgtables
541 		 */
542 		unlink_anon_vmas(vma);
543 		unlink_file_vma(vma);
544 
545 		if (is_vm_hugetlb_page(vma)) {
546 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
547 				floor, next? next->vm_start: ceiling);
548 		} else {
549 			/*
550 			 * Optimization: gather nearby vmas into one call down
551 			 */
552 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
553 			       && !is_vm_hugetlb_page(next)) {
554 				vma = next;
555 				next = vma->vm_next;
556 				unlink_anon_vmas(vma);
557 				unlink_file_vma(vma);
558 			}
559 			free_pgd_range(tlb, addr, vma->vm_end,
560 				floor, next? next->vm_start: ceiling);
561 		}
562 		vma = next;
563 	}
564 }
565 
566 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
567 {
568 	spinlock_t *ptl;
569 	pgtable_t new = pte_alloc_one(mm, address);
570 	if (!new)
571 		return -ENOMEM;
572 
573 	/*
574 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 	 * visible before the pte is made visible to other CPUs by being
576 	 * put into page tables.
577 	 *
578 	 * The other side of the story is the pointer chasing in the page
579 	 * table walking code (when walking the page table without locking;
580 	 * ie. most of the time). Fortunately, these data accesses consist
581 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 	 * being the notable exception) will already guarantee loads are
583 	 * seen in-order. See the alpha page table accessors for the
584 	 * smp_read_barrier_depends() barriers in page table walking code.
585 	 */
586 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587 
588 	ptl = pmd_lock(mm, pmd);
589 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
590 		atomic_long_inc(&mm->nr_ptes);
591 		pmd_populate(mm, pmd, new);
592 		new = NULL;
593 	}
594 	spin_unlock(ptl);
595 	if (new)
596 		pte_free(mm, new);
597 	return 0;
598 }
599 
600 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
601 {
602 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
603 	if (!new)
604 		return -ENOMEM;
605 
606 	smp_wmb(); /* See comment in __pte_alloc */
607 
608 	spin_lock(&init_mm.page_table_lock);
609 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
610 		pmd_populate_kernel(&init_mm, pmd, new);
611 		new = NULL;
612 	}
613 	spin_unlock(&init_mm.page_table_lock);
614 	if (new)
615 		pte_free_kernel(&init_mm, new);
616 	return 0;
617 }
618 
619 static inline void init_rss_vec(int *rss)
620 {
621 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
622 }
623 
624 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
625 {
626 	int i;
627 
628 	if (current->mm == mm)
629 		sync_mm_rss(mm);
630 	for (i = 0; i < NR_MM_COUNTERS; i++)
631 		if (rss[i])
632 			add_mm_counter(mm, i, rss[i]);
633 }
634 
635 /*
636  * This function is called to print an error when a bad pte
637  * is found. For example, we might have a PFN-mapped pte in
638  * a region that doesn't allow it.
639  *
640  * The calling function must still handle the error.
641  */
642 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
643 			  pte_t pte, struct page *page)
644 {
645 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
646 	pud_t *pud = pud_offset(pgd, addr);
647 	pmd_t *pmd = pmd_offset(pud, addr);
648 	struct address_space *mapping;
649 	pgoff_t index;
650 	static unsigned long resume;
651 	static unsigned long nr_shown;
652 	static unsigned long nr_unshown;
653 
654 	/*
655 	 * Allow a burst of 60 reports, then keep quiet for that minute;
656 	 * or allow a steady drip of one report per second.
657 	 */
658 	if (nr_shown == 60) {
659 		if (time_before(jiffies, resume)) {
660 			nr_unshown++;
661 			return;
662 		}
663 		if (nr_unshown) {
664 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
665 				 nr_unshown);
666 			nr_unshown = 0;
667 		}
668 		nr_shown = 0;
669 	}
670 	if (nr_shown++ == 0)
671 		resume = jiffies + 60 * HZ;
672 
673 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
674 	index = linear_page_index(vma, addr);
675 
676 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
677 		 current->comm,
678 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
679 	if (page)
680 		dump_page(page, "bad pte");
681 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
682 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
683 	/*
684 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
685 	 */
686 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
687 		 vma->vm_file,
688 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
689 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
690 		 mapping ? mapping->a_ops->readpage : NULL);
691 	dump_stack();
692 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
693 }
694 
695 /*
696  * vm_normal_page -- This function gets the "struct page" associated with a pte.
697  *
698  * "Special" mappings do not wish to be associated with a "struct page" (either
699  * it doesn't exist, or it exists but they don't want to touch it). In this
700  * case, NULL is returned here. "Normal" mappings do have a struct page.
701  *
702  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
703  * pte bit, in which case this function is trivial. Secondly, an architecture
704  * may not have a spare pte bit, which requires a more complicated scheme,
705  * described below.
706  *
707  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
708  * special mapping (even if there are underlying and valid "struct pages").
709  * COWed pages of a VM_PFNMAP are always normal.
710  *
711  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
712  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
713  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
714  * mapping will always honor the rule
715  *
716  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
717  *
718  * And for normal mappings this is false.
719  *
720  * This restricts such mappings to be a linear translation from virtual address
721  * to pfn. To get around this restriction, we allow arbitrary mappings so long
722  * as the vma is not a COW mapping; in that case, we know that all ptes are
723  * special (because none can have been COWed).
724  *
725  *
726  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
727  *
728  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
729  * page" backing, however the difference is that _all_ pages with a struct
730  * page (that is, those where pfn_valid is true) are refcounted and considered
731  * normal pages by the VM. The disadvantage is that pages are refcounted
732  * (which can be slower and simply not an option for some PFNMAP users). The
733  * advantage is that we don't have to follow the strict linearity rule of
734  * PFNMAP mappings in order to support COWable mappings.
735  *
736  */
737 #ifdef __HAVE_ARCH_PTE_SPECIAL
738 # define HAVE_PTE_SPECIAL 1
739 #else
740 # define HAVE_PTE_SPECIAL 0
741 #endif
742 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
743 				pte_t pte)
744 {
745 	unsigned long pfn = pte_pfn(pte);
746 
747 	if (HAVE_PTE_SPECIAL) {
748 		if (likely(!pte_special(pte)))
749 			goto check_pfn;
750 		if (vma->vm_ops && vma->vm_ops->find_special_page)
751 			return vma->vm_ops->find_special_page(vma, addr);
752 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
753 			return NULL;
754 		if (!is_zero_pfn(pfn))
755 			print_bad_pte(vma, addr, pte, NULL);
756 		return NULL;
757 	}
758 
759 	/* !HAVE_PTE_SPECIAL case follows: */
760 
761 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
762 		if (vma->vm_flags & VM_MIXEDMAP) {
763 			if (!pfn_valid(pfn))
764 				return NULL;
765 			goto out;
766 		} else {
767 			unsigned long off;
768 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
769 			if (pfn == vma->vm_pgoff + off)
770 				return NULL;
771 			if (!is_cow_mapping(vma->vm_flags))
772 				return NULL;
773 		}
774 	}
775 
776 	if (is_zero_pfn(pfn))
777 		return NULL;
778 check_pfn:
779 	if (unlikely(pfn > highest_memmap_pfn)) {
780 		print_bad_pte(vma, addr, pte, NULL);
781 		return NULL;
782 	}
783 
784 	/*
785 	 * NOTE! We still have PageReserved() pages in the page tables.
786 	 * eg. VDSO mappings can cause them to exist.
787 	 */
788 out:
789 	return pfn_to_page(pfn);
790 }
791 
792 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
793 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
794 				pmd_t pmd)
795 {
796 	unsigned long pfn = pmd_pfn(pmd);
797 
798 	/*
799 	 * There is no pmd_special() but there may be special pmds, e.g.
800 	 * in a direct-access (dax) mapping, so let's just replicate the
801 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
802 	 */
803 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
804 		if (vma->vm_flags & VM_MIXEDMAP) {
805 			if (!pfn_valid(pfn))
806 				return NULL;
807 			goto out;
808 		} else {
809 			unsigned long off;
810 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
811 			if (pfn == vma->vm_pgoff + off)
812 				return NULL;
813 			if (!is_cow_mapping(vma->vm_flags))
814 				return NULL;
815 		}
816 	}
817 
818 	if (is_zero_pfn(pfn))
819 		return NULL;
820 	if (unlikely(pfn > highest_memmap_pfn))
821 		return NULL;
822 
823 	/*
824 	 * NOTE! We still have PageReserved() pages in the page tables.
825 	 * eg. VDSO mappings can cause them to exist.
826 	 */
827 out:
828 	return pfn_to_page(pfn);
829 }
830 #endif
831 
832 /*
833  * copy one vm_area from one task to the other. Assumes the page tables
834  * already present in the new task to be cleared in the whole range
835  * covered by this vma.
836  */
837 
838 static inline unsigned long
839 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
840 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
841 		unsigned long addr, int *rss)
842 {
843 	unsigned long vm_flags = vma->vm_flags;
844 	pte_t pte = *src_pte;
845 	struct page *page;
846 
847 	/* pte contains position in swap or file, so copy. */
848 	if (unlikely(!pte_present(pte))) {
849 		swp_entry_t entry = pte_to_swp_entry(pte);
850 
851 		if (likely(!non_swap_entry(entry))) {
852 			if (swap_duplicate(entry) < 0)
853 				return entry.val;
854 
855 			/* make sure dst_mm is on swapoff's mmlist. */
856 			if (unlikely(list_empty(&dst_mm->mmlist))) {
857 				spin_lock(&mmlist_lock);
858 				if (list_empty(&dst_mm->mmlist))
859 					list_add(&dst_mm->mmlist,
860 							&src_mm->mmlist);
861 				spin_unlock(&mmlist_lock);
862 			}
863 			rss[MM_SWAPENTS]++;
864 		} else if (is_migration_entry(entry)) {
865 			page = migration_entry_to_page(entry);
866 
867 			rss[mm_counter(page)]++;
868 
869 			if (is_write_migration_entry(entry) &&
870 					is_cow_mapping(vm_flags)) {
871 				/*
872 				 * COW mappings require pages in both
873 				 * parent and child to be set to read.
874 				 */
875 				make_migration_entry_read(&entry);
876 				pte = swp_entry_to_pte(entry);
877 				if (pte_swp_soft_dirty(*src_pte))
878 					pte = pte_swp_mksoft_dirty(pte);
879 				set_pte_at(src_mm, addr, src_pte, pte);
880 			}
881 		}
882 		goto out_set_pte;
883 	}
884 
885 	/*
886 	 * If it's a COW mapping, write protect it both
887 	 * in the parent and the child
888 	 */
889 	if (is_cow_mapping(vm_flags)) {
890 		ptep_set_wrprotect(src_mm, addr, src_pte);
891 		pte = pte_wrprotect(pte);
892 	}
893 
894 	/*
895 	 * If it's a shared mapping, mark it clean in
896 	 * the child
897 	 */
898 	if (vm_flags & VM_SHARED)
899 		pte = pte_mkclean(pte);
900 	pte = pte_mkold(pte);
901 
902 	page = vm_normal_page(vma, addr, pte);
903 	if (page) {
904 		get_page(page);
905 		page_dup_rmap(page, false);
906 		rss[mm_counter(page)]++;
907 	}
908 
909 out_set_pte:
910 	set_pte_at(dst_mm, addr, dst_pte, pte);
911 	return 0;
912 }
913 
914 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
916 		   unsigned long addr, unsigned long end)
917 {
918 	pte_t *orig_src_pte, *orig_dst_pte;
919 	pte_t *src_pte, *dst_pte;
920 	spinlock_t *src_ptl, *dst_ptl;
921 	int progress = 0;
922 	int rss[NR_MM_COUNTERS];
923 	swp_entry_t entry = (swp_entry_t){0};
924 
925 again:
926 	init_rss_vec(rss);
927 
928 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
929 	if (!dst_pte)
930 		return -ENOMEM;
931 	src_pte = pte_offset_map(src_pmd, addr);
932 	src_ptl = pte_lockptr(src_mm, src_pmd);
933 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
934 	orig_src_pte = src_pte;
935 	orig_dst_pte = dst_pte;
936 	arch_enter_lazy_mmu_mode();
937 
938 	do {
939 		/*
940 		 * We are holding two locks at this point - either of them
941 		 * could generate latencies in another task on another CPU.
942 		 */
943 		if (progress >= 32) {
944 			progress = 0;
945 			if (need_resched() ||
946 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
947 				break;
948 		}
949 		if (pte_none(*src_pte)) {
950 			progress++;
951 			continue;
952 		}
953 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
954 							vma, addr, rss);
955 		if (entry.val)
956 			break;
957 		progress += 8;
958 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
959 
960 	arch_leave_lazy_mmu_mode();
961 	spin_unlock(src_ptl);
962 	pte_unmap(orig_src_pte);
963 	add_mm_rss_vec(dst_mm, rss);
964 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
965 	cond_resched();
966 
967 	if (entry.val) {
968 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
969 			return -ENOMEM;
970 		progress = 0;
971 	}
972 	if (addr != end)
973 		goto again;
974 	return 0;
975 }
976 
977 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
979 		unsigned long addr, unsigned long end)
980 {
981 	pmd_t *src_pmd, *dst_pmd;
982 	unsigned long next;
983 
984 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
985 	if (!dst_pmd)
986 		return -ENOMEM;
987 	src_pmd = pmd_offset(src_pud, addr);
988 	do {
989 		next = pmd_addr_end(addr, end);
990 		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
991 			int err;
992 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
993 			err = copy_huge_pmd(dst_mm, src_mm,
994 					    dst_pmd, src_pmd, addr, vma);
995 			if (err == -ENOMEM)
996 				return -ENOMEM;
997 			if (!err)
998 				continue;
999 			/* fall through */
1000 		}
1001 		if (pmd_none_or_clear_bad(src_pmd))
1002 			continue;
1003 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1004 						vma, addr, next))
1005 			return -ENOMEM;
1006 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1007 	return 0;
1008 }
1009 
1010 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1011 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1012 		unsigned long addr, unsigned long end)
1013 {
1014 	pud_t *src_pud, *dst_pud;
1015 	unsigned long next;
1016 
1017 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1018 	if (!dst_pud)
1019 		return -ENOMEM;
1020 	src_pud = pud_offset(src_pgd, addr);
1021 	do {
1022 		next = pud_addr_end(addr, end);
1023 		if (pud_none_or_clear_bad(src_pud))
1024 			continue;
1025 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1026 						vma, addr, next))
1027 			return -ENOMEM;
1028 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1029 	return 0;
1030 }
1031 
1032 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033 		struct vm_area_struct *vma)
1034 {
1035 	pgd_t *src_pgd, *dst_pgd;
1036 	unsigned long next;
1037 	unsigned long addr = vma->vm_start;
1038 	unsigned long end = vma->vm_end;
1039 	unsigned long mmun_start;	/* For mmu_notifiers */
1040 	unsigned long mmun_end;		/* For mmu_notifiers */
1041 	bool is_cow;
1042 	int ret;
1043 
1044 	/*
1045 	 * Don't copy ptes where a page fault will fill them correctly.
1046 	 * Fork becomes much lighter when there are big shared or private
1047 	 * readonly mappings. The tradeoff is that copy_page_range is more
1048 	 * efficient than faulting.
1049 	 */
1050 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1051 			!vma->anon_vma)
1052 		return 0;
1053 
1054 	if (is_vm_hugetlb_page(vma))
1055 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1056 
1057 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1058 		/*
1059 		 * We do not free on error cases below as remove_vma
1060 		 * gets called on error from higher level routine
1061 		 */
1062 		ret = track_pfn_copy(vma);
1063 		if (ret)
1064 			return ret;
1065 	}
1066 
1067 	/*
1068 	 * We need to invalidate the secondary MMU mappings only when
1069 	 * there could be a permission downgrade on the ptes of the
1070 	 * parent mm. And a permission downgrade will only happen if
1071 	 * is_cow_mapping() returns true.
1072 	 */
1073 	is_cow = is_cow_mapping(vma->vm_flags);
1074 	mmun_start = addr;
1075 	mmun_end   = end;
1076 	if (is_cow)
1077 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1078 						    mmun_end);
1079 
1080 	ret = 0;
1081 	dst_pgd = pgd_offset(dst_mm, addr);
1082 	src_pgd = pgd_offset(src_mm, addr);
1083 	do {
1084 		next = pgd_addr_end(addr, end);
1085 		if (pgd_none_or_clear_bad(src_pgd))
1086 			continue;
1087 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1088 					    vma, addr, next))) {
1089 			ret = -ENOMEM;
1090 			break;
1091 		}
1092 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1093 
1094 	if (is_cow)
1095 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1096 	return ret;
1097 }
1098 
1099 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1100 				struct vm_area_struct *vma, pmd_t *pmd,
1101 				unsigned long addr, unsigned long end,
1102 				struct zap_details *details)
1103 {
1104 	struct mm_struct *mm = tlb->mm;
1105 	int force_flush = 0;
1106 	int rss[NR_MM_COUNTERS];
1107 	spinlock_t *ptl;
1108 	pte_t *start_pte;
1109 	pte_t *pte;
1110 	swp_entry_t entry;
1111 
1112 again:
1113 	init_rss_vec(rss);
1114 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1115 	pte = start_pte;
1116 	arch_enter_lazy_mmu_mode();
1117 	do {
1118 		pte_t ptent = *pte;
1119 		if (pte_none(ptent)) {
1120 			continue;
1121 		}
1122 
1123 		if (pte_present(ptent)) {
1124 			struct page *page;
1125 
1126 			page = vm_normal_page(vma, addr, ptent);
1127 			if (unlikely(details) && page) {
1128 				/*
1129 				 * unmap_shared_mapping_pages() wants to
1130 				 * invalidate cache without truncating:
1131 				 * unmap shared but keep private pages.
1132 				 */
1133 				if (details->check_mapping &&
1134 				    details->check_mapping != page->mapping)
1135 					continue;
1136 			}
1137 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1138 							tlb->fullmm);
1139 			tlb_remove_tlb_entry(tlb, pte, addr);
1140 			if (unlikely(!page))
1141 				continue;
1142 
1143 			if (!PageAnon(page)) {
1144 				if (pte_dirty(ptent)) {
1145 					/*
1146 					 * oom_reaper cannot tear down dirty
1147 					 * pages
1148 					 */
1149 					if (unlikely(details && details->ignore_dirty))
1150 						continue;
1151 					force_flush = 1;
1152 					set_page_dirty(page);
1153 				}
1154 				if (pte_young(ptent) &&
1155 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1156 					mark_page_accessed(page);
1157 			}
1158 			rss[mm_counter(page)]--;
1159 			page_remove_rmap(page, false);
1160 			if (unlikely(page_mapcount(page) < 0))
1161 				print_bad_pte(vma, addr, ptent, page);
1162 			if (unlikely(!__tlb_remove_page(tlb, page))) {
1163 				force_flush = 1;
1164 				addr += PAGE_SIZE;
1165 				break;
1166 			}
1167 			continue;
1168 		}
1169 		/* only check swap_entries if explicitly asked for in details */
1170 		if (unlikely(details && !details->check_swap_entries))
1171 			continue;
1172 
1173 		entry = pte_to_swp_entry(ptent);
1174 		if (!non_swap_entry(entry))
1175 			rss[MM_SWAPENTS]--;
1176 		else if (is_migration_entry(entry)) {
1177 			struct page *page;
1178 
1179 			page = migration_entry_to_page(entry);
1180 			rss[mm_counter(page)]--;
1181 		}
1182 		if (unlikely(!free_swap_and_cache(entry)))
1183 			print_bad_pte(vma, addr, ptent, NULL);
1184 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1185 	} while (pte++, addr += PAGE_SIZE, addr != end);
1186 
1187 	add_mm_rss_vec(mm, rss);
1188 	arch_leave_lazy_mmu_mode();
1189 
1190 	/* Do the actual TLB flush before dropping ptl */
1191 	if (force_flush)
1192 		tlb_flush_mmu_tlbonly(tlb);
1193 	pte_unmap_unlock(start_pte, ptl);
1194 
1195 	/*
1196 	 * If we forced a TLB flush (either due to running out of
1197 	 * batch buffers or because we needed to flush dirty TLB
1198 	 * entries before releasing the ptl), free the batched
1199 	 * memory too. Restart if we didn't do everything.
1200 	 */
1201 	if (force_flush) {
1202 		force_flush = 0;
1203 		tlb_flush_mmu_free(tlb);
1204 
1205 		if (addr != end)
1206 			goto again;
1207 	}
1208 
1209 	return addr;
1210 }
1211 
1212 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1213 				struct vm_area_struct *vma, pud_t *pud,
1214 				unsigned long addr, unsigned long end,
1215 				struct zap_details *details)
1216 {
1217 	pmd_t *pmd;
1218 	unsigned long next;
1219 
1220 	pmd = pmd_offset(pud, addr);
1221 	do {
1222 		next = pmd_addr_end(addr, end);
1223 		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1224 			if (next - addr != HPAGE_PMD_SIZE) {
1225 #ifdef CONFIG_DEBUG_VM
1226 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1227 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1228 						__func__, addr, end,
1229 						vma->vm_start,
1230 						vma->vm_end);
1231 					BUG();
1232 				}
1233 #endif
1234 				split_huge_pmd(vma, pmd, addr);
1235 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1236 				goto next;
1237 			/* fall through */
1238 		}
1239 		/*
1240 		 * Here there can be other concurrent MADV_DONTNEED or
1241 		 * trans huge page faults running, and if the pmd is
1242 		 * none or trans huge it can change under us. This is
1243 		 * because MADV_DONTNEED holds the mmap_sem in read
1244 		 * mode.
1245 		 */
1246 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1247 			goto next;
1248 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1249 next:
1250 		cond_resched();
1251 	} while (pmd++, addr = next, addr != end);
1252 
1253 	return addr;
1254 }
1255 
1256 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1257 				struct vm_area_struct *vma, pgd_t *pgd,
1258 				unsigned long addr, unsigned long end,
1259 				struct zap_details *details)
1260 {
1261 	pud_t *pud;
1262 	unsigned long next;
1263 
1264 	pud = pud_offset(pgd, addr);
1265 	do {
1266 		next = pud_addr_end(addr, end);
1267 		if (pud_none_or_clear_bad(pud))
1268 			continue;
1269 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1270 	} while (pud++, addr = next, addr != end);
1271 
1272 	return addr;
1273 }
1274 
1275 void unmap_page_range(struct mmu_gather *tlb,
1276 			     struct vm_area_struct *vma,
1277 			     unsigned long addr, unsigned long end,
1278 			     struct zap_details *details)
1279 {
1280 	pgd_t *pgd;
1281 	unsigned long next;
1282 
1283 	BUG_ON(addr >= end);
1284 	tlb_start_vma(tlb, vma);
1285 	pgd = pgd_offset(vma->vm_mm, addr);
1286 	do {
1287 		next = pgd_addr_end(addr, end);
1288 		if (pgd_none_or_clear_bad(pgd))
1289 			continue;
1290 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1291 	} while (pgd++, addr = next, addr != end);
1292 	tlb_end_vma(tlb, vma);
1293 }
1294 
1295 
1296 static void unmap_single_vma(struct mmu_gather *tlb,
1297 		struct vm_area_struct *vma, unsigned long start_addr,
1298 		unsigned long end_addr,
1299 		struct zap_details *details)
1300 {
1301 	unsigned long start = max(vma->vm_start, start_addr);
1302 	unsigned long end;
1303 
1304 	if (start >= vma->vm_end)
1305 		return;
1306 	end = min(vma->vm_end, end_addr);
1307 	if (end <= vma->vm_start)
1308 		return;
1309 
1310 	if (vma->vm_file)
1311 		uprobe_munmap(vma, start, end);
1312 
1313 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1314 		untrack_pfn(vma, 0, 0);
1315 
1316 	if (start != end) {
1317 		if (unlikely(is_vm_hugetlb_page(vma))) {
1318 			/*
1319 			 * It is undesirable to test vma->vm_file as it
1320 			 * should be non-null for valid hugetlb area.
1321 			 * However, vm_file will be NULL in the error
1322 			 * cleanup path of mmap_region. When
1323 			 * hugetlbfs ->mmap method fails,
1324 			 * mmap_region() nullifies vma->vm_file
1325 			 * before calling this function to clean up.
1326 			 * Since no pte has actually been setup, it is
1327 			 * safe to do nothing in this case.
1328 			 */
1329 			if (vma->vm_file) {
1330 				i_mmap_lock_write(vma->vm_file->f_mapping);
1331 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1332 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1333 			}
1334 		} else
1335 			unmap_page_range(tlb, vma, start, end, details);
1336 	}
1337 }
1338 
1339 /**
1340  * unmap_vmas - unmap a range of memory covered by a list of vma's
1341  * @tlb: address of the caller's struct mmu_gather
1342  * @vma: the starting vma
1343  * @start_addr: virtual address at which to start unmapping
1344  * @end_addr: virtual address at which to end unmapping
1345  *
1346  * Unmap all pages in the vma list.
1347  *
1348  * Only addresses between `start' and `end' will be unmapped.
1349  *
1350  * The VMA list must be sorted in ascending virtual address order.
1351  *
1352  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1353  * range after unmap_vmas() returns.  So the only responsibility here is to
1354  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1355  * drops the lock and schedules.
1356  */
1357 void unmap_vmas(struct mmu_gather *tlb,
1358 		struct vm_area_struct *vma, unsigned long start_addr,
1359 		unsigned long end_addr)
1360 {
1361 	struct mm_struct *mm = vma->vm_mm;
1362 
1363 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1364 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1365 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1366 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1367 }
1368 
1369 /**
1370  * zap_page_range - remove user pages in a given range
1371  * @vma: vm_area_struct holding the applicable pages
1372  * @start: starting address of pages to zap
1373  * @size: number of bytes to zap
1374  * @details: details of shared cache invalidation
1375  *
1376  * Caller must protect the VMA list
1377  */
1378 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1379 		unsigned long size, struct zap_details *details)
1380 {
1381 	struct mm_struct *mm = vma->vm_mm;
1382 	struct mmu_gather tlb;
1383 	unsigned long end = start + size;
1384 
1385 	lru_add_drain();
1386 	tlb_gather_mmu(&tlb, mm, start, end);
1387 	update_hiwater_rss(mm);
1388 	mmu_notifier_invalidate_range_start(mm, start, end);
1389 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1390 		unmap_single_vma(&tlb, vma, start, end, details);
1391 	mmu_notifier_invalidate_range_end(mm, start, end);
1392 	tlb_finish_mmu(&tlb, start, end);
1393 }
1394 
1395 /**
1396  * zap_page_range_single - remove user pages in a given range
1397  * @vma: vm_area_struct holding the applicable pages
1398  * @address: starting address of pages to zap
1399  * @size: number of bytes to zap
1400  * @details: details of shared cache invalidation
1401  *
1402  * The range must fit into one VMA.
1403  */
1404 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1405 		unsigned long size, struct zap_details *details)
1406 {
1407 	struct mm_struct *mm = vma->vm_mm;
1408 	struct mmu_gather tlb;
1409 	unsigned long end = address + size;
1410 
1411 	lru_add_drain();
1412 	tlb_gather_mmu(&tlb, mm, address, end);
1413 	update_hiwater_rss(mm);
1414 	mmu_notifier_invalidate_range_start(mm, address, end);
1415 	unmap_single_vma(&tlb, vma, address, end, details);
1416 	mmu_notifier_invalidate_range_end(mm, address, end);
1417 	tlb_finish_mmu(&tlb, address, end);
1418 }
1419 
1420 /**
1421  * zap_vma_ptes - remove ptes mapping the vma
1422  * @vma: vm_area_struct holding ptes to be zapped
1423  * @address: starting address of pages to zap
1424  * @size: number of bytes to zap
1425  *
1426  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1427  *
1428  * The entire address range must be fully contained within the vma.
1429  *
1430  * Returns 0 if successful.
1431  */
1432 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1433 		unsigned long size)
1434 {
1435 	if (address < vma->vm_start || address + size > vma->vm_end ||
1436 	    		!(vma->vm_flags & VM_PFNMAP))
1437 		return -1;
1438 	zap_page_range_single(vma, address, size, NULL);
1439 	return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1442 
1443 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1444 			spinlock_t **ptl)
1445 {
1446 	pgd_t * pgd = pgd_offset(mm, addr);
1447 	pud_t * pud = pud_alloc(mm, pgd, addr);
1448 	if (pud) {
1449 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1450 		if (pmd) {
1451 			VM_BUG_ON(pmd_trans_huge(*pmd));
1452 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1453 		}
1454 	}
1455 	return NULL;
1456 }
1457 
1458 /*
1459  * This is the old fallback for page remapping.
1460  *
1461  * For historical reasons, it only allows reserved pages. Only
1462  * old drivers should use this, and they needed to mark their
1463  * pages reserved for the old functions anyway.
1464  */
1465 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1466 			struct page *page, pgprot_t prot)
1467 {
1468 	struct mm_struct *mm = vma->vm_mm;
1469 	int retval;
1470 	pte_t *pte;
1471 	spinlock_t *ptl;
1472 
1473 	retval = -EINVAL;
1474 	if (PageAnon(page))
1475 		goto out;
1476 	retval = -ENOMEM;
1477 	flush_dcache_page(page);
1478 	pte = get_locked_pte(mm, addr, &ptl);
1479 	if (!pte)
1480 		goto out;
1481 	retval = -EBUSY;
1482 	if (!pte_none(*pte))
1483 		goto out_unlock;
1484 
1485 	/* Ok, finally just insert the thing.. */
1486 	get_page(page);
1487 	inc_mm_counter_fast(mm, mm_counter_file(page));
1488 	page_add_file_rmap(page);
1489 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1490 
1491 	retval = 0;
1492 	pte_unmap_unlock(pte, ptl);
1493 	return retval;
1494 out_unlock:
1495 	pte_unmap_unlock(pte, ptl);
1496 out:
1497 	return retval;
1498 }
1499 
1500 /**
1501  * vm_insert_page - insert single page into user vma
1502  * @vma: user vma to map to
1503  * @addr: target user address of this page
1504  * @page: source kernel page
1505  *
1506  * This allows drivers to insert individual pages they've allocated
1507  * into a user vma.
1508  *
1509  * The page has to be a nice clean _individual_ kernel allocation.
1510  * If you allocate a compound page, you need to have marked it as
1511  * such (__GFP_COMP), or manually just split the page up yourself
1512  * (see split_page()).
1513  *
1514  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1515  * took an arbitrary page protection parameter. This doesn't allow
1516  * that. Your vma protection will have to be set up correctly, which
1517  * means that if you want a shared writable mapping, you'd better
1518  * ask for a shared writable mapping!
1519  *
1520  * The page does not need to be reserved.
1521  *
1522  * Usually this function is called from f_op->mmap() handler
1523  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1524  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1525  * function from other places, for example from page-fault handler.
1526  */
1527 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1528 			struct page *page)
1529 {
1530 	if (addr < vma->vm_start || addr >= vma->vm_end)
1531 		return -EFAULT;
1532 	if (!page_count(page))
1533 		return -EINVAL;
1534 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1535 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1536 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1537 		vma->vm_flags |= VM_MIXEDMAP;
1538 	}
1539 	return insert_page(vma, addr, page, vma->vm_page_prot);
1540 }
1541 EXPORT_SYMBOL(vm_insert_page);
1542 
1543 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1544 			pfn_t pfn, pgprot_t prot)
1545 {
1546 	struct mm_struct *mm = vma->vm_mm;
1547 	int retval;
1548 	pte_t *pte, entry;
1549 	spinlock_t *ptl;
1550 
1551 	retval = -ENOMEM;
1552 	pte = get_locked_pte(mm, addr, &ptl);
1553 	if (!pte)
1554 		goto out;
1555 	retval = -EBUSY;
1556 	if (!pte_none(*pte))
1557 		goto out_unlock;
1558 
1559 	/* Ok, finally just insert the thing.. */
1560 	if (pfn_t_devmap(pfn))
1561 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1562 	else
1563 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1564 	set_pte_at(mm, addr, pte, entry);
1565 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1566 
1567 	retval = 0;
1568 out_unlock:
1569 	pte_unmap_unlock(pte, ptl);
1570 out:
1571 	return retval;
1572 }
1573 
1574 /**
1575  * vm_insert_pfn - insert single pfn into user vma
1576  * @vma: user vma to map to
1577  * @addr: target user address of this page
1578  * @pfn: source kernel pfn
1579  *
1580  * Similar to vm_insert_page, this allows drivers to insert individual pages
1581  * they've allocated into a user vma. Same comments apply.
1582  *
1583  * This function should only be called from a vm_ops->fault handler, and
1584  * in that case the handler should return NULL.
1585  *
1586  * vma cannot be a COW mapping.
1587  *
1588  * As this is called only for pages that do not currently exist, we
1589  * do not need to flush old virtual caches or the TLB.
1590  */
1591 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1592 			unsigned long pfn)
1593 {
1594 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1595 }
1596 EXPORT_SYMBOL(vm_insert_pfn);
1597 
1598 /**
1599  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1600  * @vma: user vma to map to
1601  * @addr: target user address of this page
1602  * @pfn: source kernel pfn
1603  * @pgprot: pgprot flags for the inserted page
1604  *
1605  * This is exactly like vm_insert_pfn, except that it allows drivers to
1606  * to override pgprot on a per-page basis.
1607  *
1608  * This only makes sense for IO mappings, and it makes no sense for
1609  * cow mappings.  In general, using multiple vmas is preferable;
1610  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1611  * impractical.
1612  */
1613 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1614 			unsigned long pfn, pgprot_t pgprot)
1615 {
1616 	int ret;
1617 	/*
1618 	 * Technically, architectures with pte_special can avoid all these
1619 	 * restrictions (same for remap_pfn_range).  However we would like
1620 	 * consistency in testing and feature parity among all, so we should
1621 	 * try to keep these invariants in place for everybody.
1622 	 */
1623 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1624 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1625 						(VM_PFNMAP|VM_MIXEDMAP));
1626 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1627 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1628 
1629 	if (addr < vma->vm_start || addr >= vma->vm_end)
1630 		return -EFAULT;
1631 	if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1632 		return -EINVAL;
1633 
1634 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1635 
1636 	return ret;
1637 }
1638 EXPORT_SYMBOL(vm_insert_pfn_prot);
1639 
1640 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1641 			pfn_t pfn)
1642 {
1643 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1644 
1645 	if (addr < vma->vm_start || addr >= vma->vm_end)
1646 		return -EFAULT;
1647 
1648 	/*
1649 	 * If we don't have pte special, then we have to use the pfn_valid()
1650 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1651 	 * refcount the page if pfn_valid is true (hence insert_page rather
1652 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1653 	 * without pte special, it would there be refcounted as a normal page.
1654 	 */
1655 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1656 		struct page *page;
1657 
1658 		/*
1659 		 * At this point we are committed to insert_page()
1660 		 * regardless of whether the caller specified flags that
1661 		 * result in pfn_t_has_page() == false.
1662 		 */
1663 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1664 		return insert_page(vma, addr, page, vma->vm_page_prot);
1665 	}
1666 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1667 }
1668 EXPORT_SYMBOL(vm_insert_mixed);
1669 
1670 /*
1671  * maps a range of physical memory into the requested pages. the old
1672  * mappings are removed. any references to nonexistent pages results
1673  * in null mappings (currently treated as "copy-on-access")
1674  */
1675 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1676 			unsigned long addr, unsigned long end,
1677 			unsigned long pfn, pgprot_t prot)
1678 {
1679 	pte_t *pte;
1680 	spinlock_t *ptl;
1681 
1682 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1683 	if (!pte)
1684 		return -ENOMEM;
1685 	arch_enter_lazy_mmu_mode();
1686 	do {
1687 		BUG_ON(!pte_none(*pte));
1688 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1689 		pfn++;
1690 	} while (pte++, addr += PAGE_SIZE, addr != end);
1691 	arch_leave_lazy_mmu_mode();
1692 	pte_unmap_unlock(pte - 1, ptl);
1693 	return 0;
1694 }
1695 
1696 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1697 			unsigned long addr, unsigned long end,
1698 			unsigned long pfn, pgprot_t prot)
1699 {
1700 	pmd_t *pmd;
1701 	unsigned long next;
1702 
1703 	pfn -= addr >> PAGE_SHIFT;
1704 	pmd = pmd_alloc(mm, pud, addr);
1705 	if (!pmd)
1706 		return -ENOMEM;
1707 	VM_BUG_ON(pmd_trans_huge(*pmd));
1708 	do {
1709 		next = pmd_addr_end(addr, end);
1710 		if (remap_pte_range(mm, pmd, addr, next,
1711 				pfn + (addr >> PAGE_SHIFT), prot))
1712 			return -ENOMEM;
1713 	} while (pmd++, addr = next, addr != end);
1714 	return 0;
1715 }
1716 
1717 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1718 			unsigned long addr, unsigned long end,
1719 			unsigned long pfn, pgprot_t prot)
1720 {
1721 	pud_t *pud;
1722 	unsigned long next;
1723 
1724 	pfn -= addr >> PAGE_SHIFT;
1725 	pud = pud_alloc(mm, pgd, addr);
1726 	if (!pud)
1727 		return -ENOMEM;
1728 	do {
1729 		next = pud_addr_end(addr, end);
1730 		if (remap_pmd_range(mm, pud, addr, next,
1731 				pfn + (addr >> PAGE_SHIFT), prot))
1732 			return -ENOMEM;
1733 	} while (pud++, addr = next, addr != end);
1734 	return 0;
1735 }
1736 
1737 /**
1738  * remap_pfn_range - remap kernel memory to userspace
1739  * @vma: user vma to map to
1740  * @addr: target user address to start at
1741  * @pfn: physical address of kernel memory
1742  * @size: size of map area
1743  * @prot: page protection flags for this mapping
1744  *
1745  *  Note: this is only safe if the mm semaphore is held when called.
1746  */
1747 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1748 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1749 {
1750 	pgd_t *pgd;
1751 	unsigned long next;
1752 	unsigned long end = addr + PAGE_ALIGN(size);
1753 	struct mm_struct *mm = vma->vm_mm;
1754 	int err;
1755 
1756 	/*
1757 	 * Physically remapped pages are special. Tell the
1758 	 * rest of the world about it:
1759 	 *   VM_IO tells people not to look at these pages
1760 	 *	(accesses can have side effects).
1761 	 *   VM_PFNMAP tells the core MM that the base pages are just
1762 	 *	raw PFN mappings, and do not have a "struct page" associated
1763 	 *	with them.
1764 	 *   VM_DONTEXPAND
1765 	 *      Disable vma merging and expanding with mremap().
1766 	 *   VM_DONTDUMP
1767 	 *      Omit vma from core dump, even when VM_IO turned off.
1768 	 *
1769 	 * There's a horrible special case to handle copy-on-write
1770 	 * behaviour that some programs depend on. We mark the "original"
1771 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1772 	 * See vm_normal_page() for details.
1773 	 */
1774 	if (is_cow_mapping(vma->vm_flags)) {
1775 		if (addr != vma->vm_start || end != vma->vm_end)
1776 			return -EINVAL;
1777 		vma->vm_pgoff = pfn;
1778 	}
1779 
1780 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1781 	if (err)
1782 		return -EINVAL;
1783 
1784 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1785 
1786 	BUG_ON(addr >= end);
1787 	pfn -= addr >> PAGE_SHIFT;
1788 	pgd = pgd_offset(mm, addr);
1789 	flush_cache_range(vma, addr, end);
1790 	do {
1791 		next = pgd_addr_end(addr, end);
1792 		err = remap_pud_range(mm, pgd, addr, next,
1793 				pfn + (addr >> PAGE_SHIFT), prot);
1794 		if (err)
1795 			break;
1796 	} while (pgd++, addr = next, addr != end);
1797 
1798 	if (err)
1799 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1800 
1801 	return err;
1802 }
1803 EXPORT_SYMBOL(remap_pfn_range);
1804 
1805 /**
1806  * vm_iomap_memory - remap memory to userspace
1807  * @vma: user vma to map to
1808  * @start: start of area
1809  * @len: size of area
1810  *
1811  * This is a simplified io_remap_pfn_range() for common driver use. The
1812  * driver just needs to give us the physical memory range to be mapped,
1813  * we'll figure out the rest from the vma information.
1814  *
1815  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1816  * whatever write-combining details or similar.
1817  */
1818 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1819 {
1820 	unsigned long vm_len, pfn, pages;
1821 
1822 	/* Check that the physical memory area passed in looks valid */
1823 	if (start + len < start)
1824 		return -EINVAL;
1825 	/*
1826 	 * You *really* shouldn't map things that aren't page-aligned,
1827 	 * but we've historically allowed it because IO memory might
1828 	 * just have smaller alignment.
1829 	 */
1830 	len += start & ~PAGE_MASK;
1831 	pfn = start >> PAGE_SHIFT;
1832 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1833 	if (pfn + pages < pfn)
1834 		return -EINVAL;
1835 
1836 	/* We start the mapping 'vm_pgoff' pages into the area */
1837 	if (vma->vm_pgoff > pages)
1838 		return -EINVAL;
1839 	pfn += vma->vm_pgoff;
1840 	pages -= vma->vm_pgoff;
1841 
1842 	/* Can we fit all of the mapping? */
1843 	vm_len = vma->vm_end - vma->vm_start;
1844 	if (vm_len >> PAGE_SHIFT > pages)
1845 		return -EINVAL;
1846 
1847 	/* Ok, let it rip */
1848 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1849 }
1850 EXPORT_SYMBOL(vm_iomap_memory);
1851 
1852 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1853 				     unsigned long addr, unsigned long end,
1854 				     pte_fn_t fn, void *data)
1855 {
1856 	pte_t *pte;
1857 	int err;
1858 	pgtable_t token;
1859 	spinlock_t *uninitialized_var(ptl);
1860 
1861 	pte = (mm == &init_mm) ?
1862 		pte_alloc_kernel(pmd, addr) :
1863 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1864 	if (!pte)
1865 		return -ENOMEM;
1866 
1867 	BUG_ON(pmd_huge(*pmd));
1868 
1869 	arch_enter_lazy_mmu_mode();
1870 
1871 	token = pmd_pgtable(*pmd);
1872 
1873 	do {
1874 		err = fn(pte++, token, addr, data);
1875 		if (err)
1876 			break;
1877 	} while (addr += PAGE_SIZE, addr != end);
1878 
1879 	arch_leave_lazy_mmu_mode();
1880 
1881 	if (mm != &init_mm)
1882 		pte_unmap_unlock(pte-1, ptl);
1883 	return err;
1884 }
1885 
1886 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1887 				     unsigned long addr, unsigned long end,
1888 				     pte_fn_t fn, void *data)
1889 {
1890 	pmd_t *pmd;
1891 	unsigned long next;
1892 	int err;
1893 
1894 	BUG_ON(pud_huge(*pud));
1895 
1896 	pmd = pmd_alloc(mm, pud, addr);
1897 	if (!pmd)
1898 		return -ENOMEM;
1899 	do {
1900 		next = pmd_addr_end(addr, end);
1901 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1902 		if (err)
1903 			break;
1904 	} while (pmd++, addr = next, addr != end);
1905 	return err;
1906 }
1907 
1908 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1909 				     unsigned long addr, unsigned long end,
1910 				     pte_fn_t fn, void *data)
1911 {
1912 	pud_t *pud;
1913 	unsigned long next;
1914 	int err;
1915 
1916 	pud = pud_alloc(mm, pgd, addr);
1917 	if (!pud)
1918 		return -ENOMEM;
1919 	do {
1920 		next = pud_addr_end(addr, end);
1921 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1922 		if (err)
1923 			break;
1924 	} while (pud++, addr = next, addr != end);
1925 	return err;
1926 }
1927 
1928 /*
1929  * Scan a region of virtual memory, filling in page tables as necessary
1930  * and calling a provided function on each leaf page table.
1931  */
1932 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1933 			unsigned long size, pte_fn_t fn, void *data)
1934 {
1935 	pgd_t *pgd;
1936 	unsigned long next;
1937 	unsigned long end = addr + size;
1938 	int err;
1939 
1940 	if (WARN_ON(addr >= end))
1941 		return -EINVAL;
1942 
1943 	pgd = pgd_offset(mm, addr);
1944 	do {
1945 		next = pgd_addr_end(addr, end);
1946 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1947 		if (err)
1948 			break;
1949 	} while (pgd++, addr = next, addr != end);
1950 
1951 	return err;
1952 }
1953 EXPORT_SYMBOL_GPL(apply_to_page_range);
1954 
1955 /*
1956  * handle_pte_fault chooses page fault handler according to an entry which was
1957  * read non-atomically.  Before making any commitment, on those architectures
1958  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1959  * parts, do_swap_page must check under lock before unmapping the pte and
1960  * proceeding (but do_wp_page is only called after already making such a check;
1961  * and do_anonymous_page can safely check later on).
1962  */
1963 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1964 				pte_t *page_table, pte_t orig_pte)
1965 {
1966 	int same = 1;
1967 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1968 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1969 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1970 		spin_lock(ptl);
1971 		same = pte_same(*page_table, orig_pte);
1972 		spin_unlock(ptl);
1973 	}
1974 #endif
1975 	pte_unmap(page_table);
1976 	return same;
1977 }
1978 
1979 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1980 {
1981 	debug_dma_assert_idle(src);
1982 
1983 	/*
1984 	 * If the source page was a PFN mapping, we don't have
1985 	 * a "struct page" for it. We do a best-effort copy by
1986 	 * just copying from the original user address. If that
1987 	 * fails, we just zero-fill it. Live with it.
1988 	 */
1989 	if (unlikely(!src)) {
1990 		void *kaddr = kmap_atomic(dst);
1991 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1992 
1993 		/*
1994 		 * This really shouldn't fail, because the page is there
1995 		 * in the page tables. But it might just be unreadable,
1996 		 * in which case we just give up and fill the result with
1997 		 * zeroes.
1998 		 */
1999 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2000 			clear_page(kaddr);
2001 		kunmap_atomic(kaddr);
2002 		flush_dcache_page(dst);
2003 	} else
2004 		copy_user_highpage(dst, src, va, vma);
2005 }
2006 
2007 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2008 {
2009 	struct file *vm_file = vma->vm_file;
2010 
2011 	if (vm_file)
2012 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2013 
2014 	/*
2015 	 * Special mappings (e.g. VDSO) do not have any file so fake
2016 	 * a default GFP_KERNEL for them.
2017 	 */
2018 	return GFP_KERNEL;
2019 }
2020 
2021 /*
2022  * Notify the address space that the page is about to become writable so that
2023  * it can prohibit this or wait for the page to get into an appropriate state.
2024  *
2025  * We do this without the lock held, so that it can sleep if it needs to.
2026  */
2027 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2028 	       unsigned long address)
2029 {
2030 	struct vm_fault vmf;
2031 	int ret;
2032 
2033 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2034 	vmf.pgoff = page->index;
2035 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2036 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2037 	vmf.page = page;
2038 	vmf.cow_page = NULL;
2039 
2040 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2041 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2042 		return ret;
2043 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2044 		lock_page(page);
2045 		if (!page->mapping) {
2046 			unlock_page(page);
2047 			return 0; /* retry */
2048 		}
2049 		ret |= VM_FAULT_LOCKED;
2050 	} else
2051 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2052 	return ret;
2053 }
2054 
2055 /*
2056  * Handle write page faults for pages that can be reused in the current vma
2057  *
2058  * This can happen either due to the mapping being with the VM_SHARED flag,
2059  * or due to us being the last reference standing to the page. In either
2060  * case, all we need to do here is to mark the page as writable and update
2061  * any related book-keeping.
2062  */
2063 static inline int wp_page_reuse(struct mm_struct *mm,
2064 			struct vm_area_struct *vma, unsigned long address,
2065 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2066 			struct page *page, int page_mkwrite,
2067 			int dirty_shared)
2068 	__releases(ptl)
2069 {
2070 	pte_t entry;
2071 	/*
2072 	 * Clear the pages cpupid information as the existing
2073 	 * information potentially belongs to a now completely
2074 	 * unrelated process.
2075 	 */
2076 	if (page)
2077 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2078 
2079 	flush_cache_page(vma, address, pte_pfn(orig_pte));
2080 	entry = pte_mkyoung(orig_pte);
2081 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2082 	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2083 		update_mmu_cache(vma, address, page_table);
2084 	pte_unmap_unlock(page_table, ptl);
2085 
2086 	if (dirty_shared) {
2087 		struct address_space *mapping;
2088 		int dirtied;
2089 
2090 		if (!page_mkwrite)
2091 			lock_page(page);
2092 
2093 		dirtied = set_page_dirty(page);
2094 		VM_BUG_ON_PAGE(PageAnon(page), page);
2095 		mapping = page->mapping;
2096 		unlock_page(page);
2097 		put_page(page);
2098 
2099 		if ((dirtied || page_mkwrite) && mapping) {
2100 			/*
2101 			 * Some device drivers do not set page.mapping
2102 			 * but still dirty their pages
2103 			 */
2104 			balance_dirty_pages_ratelimited(mapping);
2105 		}
2106 
2107 		if (!page_mkwrite)
2108 			file_update_time(vma->vm_file);
2109 	}
2110 
2111 	return VM_FAULT_WRITE;
2112 }
2113 
2114 /*
2115  * Handle the case of a page which we actually need to copy to a new page.
2116  *
2117  * Called with mmap_sem locked and the old page referenced, but
2118  * without the ptl held.
2119  *
2120  * High level logic flow:
2121  *
2122  * - Allocate a page, copy the content of the old page to the new one.
2123  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2124  * - Take the PTL. If the pte changed, bail out and release the allocated page
2125  * - If the pte is still the way we remember it, update the page table and all
2126  *   relevant references. This includes dropping the reference the page-table
2127  *   held to the old page, as well as updating the rmap.
2128  * - In any case, unlock the PTL and drop the reference we took to the old page.
2129  */
2130 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2131 			unsigned long address, pte_t *page_table, pmd_t *pmd,
2132 			pte_t orig_pte, struct page *old_page)
2133 {
2134 	struct page *new_page = NULL;
2135 	spinlock_t *ptl = NULL;
2136 	pte_t entry;
2137 	int page_copied = 0;
2138 	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
2139 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
2140 	struct mem_cgroup *memcg;
2141 
2142 	if (unlikely(anon_vma_prepare(vma)))
2143 		goto oom;
2144 
2145 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2146 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2147 		if (!new_page)
2148 			goto oom;
2149 	} else {
2150 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2151 		if (!new_page)
2152 			goto oom;
2153 		cow_user_page(new_page, old_page, address, vma);
2154 	}
2155 
2156 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2157 		goto oom_free_new;
2158 
2159 	__SetPageUptodate(new_page);
2160 
2161 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2162 
2163 	/*
2164 	 * Re-check the pte - we dropped the lock
2165 	 */
2166 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2167 	if (likely(pte_same(*page_table, orig_pte))) {
2168 		if (old_page) {
2169 			if (!PageAnon(old_page)) {
2170 				dec_mm_counter_fast(mm,
2171 						mm_counter_file(old_page));
2172 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2173 			}
2174 		} else {
2175 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2176 		}
2177 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2178 		entry = mk_pte(new_page, vma->vm_page_prot);
2179 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2180 		/*
2181 		 * Clear the pte entry and flush it first, before updating the
2182 		 * pte with the new entry. This will avoid a race condition
2183 		 * seen in the presence of one thread doing SMC and another
2184 		 * thread doing COW.
2185 		 */
2186 		ptep_clear_flush_notify(vma, address, page_table);
2187 		page_add_new_anon_rmap(new_page, vma, address, false);
2188 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2189 		lru_cache_add_active_or_unevictable(new_page, vma);
2190 		/*
2191 		 * We call the notify macro here because, when using secondary
2192 		 * mmu page tables (such as kvm shadow page tables), we want the
2193 		 * new page to be mapped directly into the secondary page table.
2194 		 */
2195 		set_pte_at_notify(mm, address, page_table, entry);
2196 		update_mmu_cache(vma, address, page_table);
2197 		if (old_page) {
2198 			/*
2199 			 * Only after switching the pte to the new page may
2200 			 * we remove the mapcount here. Otherwise another
2201 			 * process may come and find the rmap count decremented
2202 			 * before the pte is switched to the new page, and
2203 			 * "reuse" the old page writing into it while our pte
2204 			 * here still points into it and can be read by other
2205 			 * threads.
2206 			 *
2207 			 * The critical issue is to order this
2208 			 * page_remove_rmap with the ptp_clear_flush above.
2209 			 * Those stores are ordered by (if nothing else,)
2210 			 * the barrier present in the atomic_add_negative
2211 			 * in page_remove_rmap.
2212 			 *
2213 			 * Then the TLB flush in ptep_clear_flush ensures that
2214 			 * no process can access the old page before the
2215 			 * decremented mapcount is visible. And the old page
2216 			 * cannot be reused until after the decremented
2217 			 * mapcount is visible. So transitively, TLBs to
2218 			 * old page will be flushed before it can be reused.
2219 			 */
2220 			page_remove_rmap(old_page, false);
2221 		}
2222 
2223 		/* Free the old page.. */
2224 		new_page = old_page;
2225 		page_copied = 1;
2226 	} else {
2227 		mem_cgroup_cancel_charge(new_page, memcg, false);
2228 	}
2229 
2230 	if (new_page)
2231 		put_page(new_page);
2232 
2233 	pte_unmap_unlock(page_table, ptl);
2234 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2235 	if (old_page) {
2236 		/*
2237 		 * Don't let another task, with possibly unlocked vma,
2238 		 * keep the mlocked page.
2239 		 */
2240 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2241 			lock_page(old_page);	/* LRU manipulation */
2242 			if (PageMlocked(old_page))
2243 				munlock_vma_page(old_page);
2244 			unlock_page(old_page);
2245 		}
2246 		put_page(old_page);
2247 	}
2248 	return page_copied ? VM_FAULT_WRITE : 0;
2249 oom_free_new:
2250 	put_page(new_page);
2251 oom:
2252 	if (old_page)
2253 		put_page(old_page);
2254 	return VM_FAULT_OOM;
2255 }
2256 
2257 /*
2258  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2259  * mapping
2260  */
2261 static int wp_pfn_shared(struct mm_struct *mm,
2262 			struct vm_area_struct *vma, unsigned long address,
2263 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2264 			pmd_t *pmd)
2265 {
2266 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2267 		struct vm_fault vmf = {
2268 			.page = NULL,
2269 			.pgoff = linear_page_index(vma, address),
2270 			.virtual_address = (void __user *)(address & PAGE_MASK),
2271 			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2272 		};
2273 		int ret;
2274 
2275 		pte_unmap_unlock(page_table, ptl);
2276 		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2277 		if (ret & VM_FAULT_ERROR)
2278 			return ret;
2279 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2280 		/*
2281 		 * We might have raced with another page fault while we
2282 		 * released the pte_offset_map_lock.
2283 		 */
2284 		if (!pte_same(*page_table, orig_pte)) {
2285 			pte_unmap_unlock(page_table, ptl);
2286 			return 0;
2287 		}
2288 	}
2289 	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2290 			     NULL, 0, 0);
2291 }
2292 
2293 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2294 			  unsigned long address, pte_t *page_table,
2295 			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2296 			  struct page *old_page)
2297 	__releases(ptl)
2298 {
2299 	int page_mkwrite = 0;
2300 
2301 	get_page(old_page);
2302 
2303 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2304 		int tmp;
2305 
2306 		pte_unmap_unlock(page_table, ptl);
2307 		tmp = do_page_mkwrite(vma, old_page, address);
2308 		if (unlikely(!tmp || (tmp &
2309 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2310 			put_page(old_page);
2311 			return tmp;
2312 		}
2313 		/*
2314 		 * Since we dropped the lock we need to revalidate
2315 		 * the PTE as someone else may have changed it.  If
2316 		 * they did, we just return, as we can count on the
2317 		 * MMU to tell us if they didn't also make it writable.
2318 		 */
2319 		page_table = pte_offset_map_lock(mm, pmd, address,
2320 						 &ptl);
2321 		if (!pte_same(*page_table, orig_pte)) {
2322 			unlock_page(old_page);
2323 			pte_unmap_unlock(page_table, ptl);
2324 			put_page(old_page);
2325 			return 0;
2326 		}
2327 		page_mkwrite = 1;
2328 	}
2329 
2330 	return wp_page_reuse(mm, vma, address, page_table, ptl,
2331 			     orig_pte, old_page, page_mkwrite, 1);
2332 }
2333 
2334 /*
2335  * This routine handles present pages, when users try to write
2336  * to a shared page. It is done by copying the page to a new address
2337  * and decrementing the shared-page counter for the old page.
2338  *
2339  * Note that this routine assumes that the protection checks have been
2340  * done by the caller (the low-level page fault routine in most cases).
2341  * Thus we can safely just mark it writable once we've done any necessary
2342  * COW.
2343  *
2344  * We also mark the page dirty at this point even though the page will
2345  * change only once the write actually happens. This avoids a few races,
2346  * and potentially makes it more efficient.
2347  *
2348  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2349  * but allow concurrent faults), with pte both mapped and locked.
2350  * We return with mmap_sem still held, but pte unmapped and unlocked.
2351  */
2352 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2353 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2354 		spinlock_t *ptl, pte_t orig_pte)
2355 	__releases(ptl)
2356 {
2357 	struct page *old_page;
2358 
2359 	old_page = vm_normal_page(vma, address, orig_pte);
2360 	if (!old_page) {
2361 		/*
2362 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2363 		 * VM_PFNMAP VMA.
2364 		 *
2365 		 * We should not cow pages in a shared writeable mapping.
2366 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2367 		 */
2368 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2369 				     (VM_WRITE|VM_SHARED))
2370 			return wp_pfn_shared(mm, vma, address, page_table, ptl,
2371 					     orig_pte, pmd);
2372 
2373 		pte_unmap_unlock(page_table, ptl);
2374 		return wp_page_copy(mm, vma, address, page_table, pmd,
2375 				    orig_pte, old_page);
2376 	}
2377 
2378 	/*
2379 	 * Take out anonymous pages first, anonymous shared vmas are
2380 	 * not dirty accountable.
2381 	 */
2382 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2383 		if (!trylock_page(old_page)) {
2384 			get_page(old_page);
2385 			pte_unmap_unlock(page_table, ptl);
2386 			lock_page(old_page);
2387 			page_table = pte_offset_map_lock(mm, pmd, address,
2388 							 &ptl);
2389 			if (!pte_same(*page_table, orig_pte)) {
2390 				unlock_page(old_page);
2391 				pte_unmap_unlock(page_table, ptl);
2392 				put_page(old_page);
2393 				return 0;
2394 			}
2395 			put_page(old_page);
2396 		}
2397 		if (reuse_swap_page(old_page)) {
2398 			/*
2399 			 * The page is all ours.  Move it to our anon_vma so
2400 			 * the rmap code will not search our parent or siblings.
2401 			 * Protected against the rmap code by the page lock.
2402 			 */
2403 			page_move_anon_rmap(old_page, vma, address);
2404 			unlock_page(old_page);
2405 			return wp_page_reuse(mm, vma, address, page_table, ptl,
2406 					     orig_pte, old_page, 0, 0);
2407 		}
2408 		unlock_page(old_page);
2409 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2410 					(VM_WRITE|VM_SHARED))) {
2411 		return wp_page_shared(mm, vma, address, page_table, pmd,
2412 				      ptl, orig_pte, old_page);
2413 	}
2414 
2415 	/*
2416 	 * Ok, we need to copy. Oh, well..
2417 	 */
2418 	get_page(old_page);
2419 
2420 	pte_unmap_unlock(page_table, ptl);
2421 	return wp_page_copy(mm, vma, address, page_table, pmd,
2422 			    orig_pte, old_page);
2423 }
2424 
2425 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2426 		unsigned long start_addr, unsigned long end_addr,
2427 		struct zap_details *details)
2428 {
2429 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2430 }
2431 
2432 static inline void unmap_mapping_range_tree(struct rb_root *root,
2433 					    struct zap_details *details)
2434 {
2435 	struct vm_area_struct *vma;
2436 	pgoff_t vba, vea, zba, zea;
2437 
2438 	vma_interval_tree_foreach(vma, root,
2439 			details->first_index, details->last_index) {
2440 
2441 		vba = vma->vm_pgoff;
2442 		vea = vba + vma_pages(vma) - 1;
2443 		zba = details->first_index;
2444 		if (zba < vba)
2445 			zba = vba;
2446 		zea = details->last_index;
2447 		if (zea > vea)
2448 			zea = vea;
2449 
2450 		unmap_mapping_range_vma(vma,
2451 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2452 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2453 				details);
2454 	}
2455 }
2456 
2457 /**
2458  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2459  * address_space corresponding to the specified page range in the underlying
2460  * file.
2461  *
2462  * @mapping: the address space containing mmaps to be unmapped.
2463  * @holebegin: byte in first page to unmap, relative to the start of
2464  * the underlying file.  This will be rounded down to a PAGE_SIZE
2465  * boundary.  Note that this is different from truncate_pagecache(), which
2466  * must keep the partial page.  In contrast, we must get rid of
2467  * partial pages.
2468  * @holelen: size of prospective hole in bytes.  This will be rounded
2469  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2470  * end of the file.
2471  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2472  * but 0 when invalidating pagecache, don't throw away private data.
2473  */
2474 void unmap_mapping_range(struct address_space *mapping,
2475 		loff_t const holebegin, loff_t const holelen, int even_cows)
2476 {
2477 	struct zap_details details = { };
2478 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2479 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2480 
2481 	/* Check for overflow. */
2482 	if (sizeof(holelen) > sizeof(hlen)) {
2483 		long long holeend =
2484 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2485 		if (holeend & ~(long long)ULONG_MAX)
2486 			hlen = ULONG_MAX - hba + 1;
2487 	}
2488 
2489 	details.check_mapping = even_cows? NULL: mapping;
2490 	details.first_index = hba;
2491 	details.last_index = hba + hlen - 1;
2492 	if (details.last_index < details.first_index)
2493 		details.last_index = ULONG_MAX;
2494 
2495 
2496 	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2497 	i_mmap_lock_write(mapping);
2498 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2499 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2500 	i_mmap_unlock_write(mapping);
2501 }
2502 EXPORT_SYMBOL(unmap_mapping_range);
2503 
2504 /*
2505  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2506  * but allow concurrent faults), and pte mapped but not yet locked.
2507  * We return with pte unmapped and unlocked.
2508  *
2509  * We return with the mmap_sem locked or unlocked in the same cases
2510  * as does filemap_fault().
2511  */
2512 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2513 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2514 		unsigned int flags, pte_t orig_pte)
2515 {
2516 	spinlock_t *ptl;
2517 	struct page *page, *swapcache;
2518 	struct mem_cgroup *memcg;
2519 	swp_entry_t entry;
2520 	pte_t pte;
2521 	int locked;
2522 	int exclusive = 0;
2523 	int ret = 0;
2524 
2525 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2526 		goto out;
2527 
2528 	entry = pte_to_swp_entry(orig_pte);
2529 	if (unlikely(non_swap_entry(entry))) {
2530 		if (is_migration_entry(entry)) {
2531 			migration_entry_wait(mm, pmd, address);
2532 		} else if (is_hwpoison_entry(entry)) {
2533 			ret = VM_FAULT_HWPOISON;
2534 		} else {
2535 			print_bad_pte(vma, address, orig_pte, NULL);
2536 			ret = VM_FAULT_SIGBUS;
2537 		}
2538 		goto out;
2539 	}
2540 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2541 	page = lookup_swap_cache(entry);
2542 	if (!page) {
2543 		page = swapin_readahead(entry,
2544 					GFP_HIGHUSER_MOVABLE, vma, address);
2545 		if (!page) {
2546 			/*
2547 			 * Back out if somebody else faulted in this pte
2548 			 * while we released the pte lock.
2549 			 */
2550 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2551 			if (likely(pte_same(*page_table, orig_pte)))
2552 				ret = VM_FAULT_OOM;
2553 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2554 			goto unlock;
2555 		}
2556 
2557 		/* Had to read the page from swap area: Major fault */
2558 		ret = VM_FAULT_MAJOR;
2559 		count_vm_event(PGMAJFAULT);
2560 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2561 	} else if (PageHWPoison(page)) {
2562 		/*
2563 		 * hwpoisoned dirty swapcache pages are kept for killing
2564 		 * owner processes (which may be unknown at hwpoison time)
2565 		 */
2566 		ret = VM_FAULT_HWPOISON;
2567 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2568 		swapcache = page;
2569 		goto out_release;
2570 	}
2571 
2572 	swapcache = page;
2573 	locked = lock_page_or_retry(page, mm, flags);
2574 
2575 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2576 	if (!locked) {
2577 		ret |= VM_FAULT_RETRY;
2578 		goto out_release;
2579 	}
2580 
2581 	/*
2582 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2583 	 * release the swapcache from under us.  The page pin, and pte_same
2584 	 * test below, are not enough to exclude that.  Even if it is still
2585 	 * swapcache, we need to check that the page's swap has not changed.
2586 	 */
2587 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2588 		goto out_page;
2589 
2590 	page = ksm_might_need_to_copy(page, vma, address);
2591 	if (unlikely(!page)) {
2592 		ret = VM_FAULT_OOM;
2593 		page = swapcache;
2594 		goto out_page;
2595 	}
2596 
2597 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2598 		ret = VM_FAULT_OOM;
2599 		goto out_page;
2600 	}
2601 
2602 	/*
2603 	 * Back out if somebody else already faulted in this pte.
2604 	 */
2605 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2606 	if (unlikely(!pte_same(*page_table, orig_pte)))
2607 		goto out_nomap;
2608 
2609 	if (unlikely(!PageUptodate(page))) {
2610 		ret = VM_FAULT_SIGBUS;
2611 		goto out_nomap;
2612 	}
2613 
2614 	/*
2615 	 * The page isn't present yet, go ahead with the fault.
2616 	 *
2617 	 * Be careful about the sequence of operations here.
2618 	 * To get its accounting right, reuse_swap_page() must be called
2619 	 * while the page is counted on swap but not yet in mapcount i.e.
2620 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2621 	 * must be called after the swap_free(), or it will never succeed.
2622 	 */
2623 
2624 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2625 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2626 	pte = mk_pte(page, vma->vm_page_prot);
2627 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2628 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2629 		flags &= ~FAULT_FLAG_WRITE;
2630 		ret |= VM_FAULT_WRITE;
2631 		exclusive = RMAP_EXCLUSIVE;
2632 	}
2633 	flush_icache_page(vma, page);
2634 	if (pte_swp_soft_dirty(orig_pte))
2635 		pte = pte_mksoft_dirty(pte);
2636 	set_pte_at(mm, address, page_table, pte);
2637 	if (page == swapcache) {
2638 		do_page_add_anon_rmap(page, vma, address, exclusive);
2639 		mem_cgroup_commit_charge(page, memcg, true, false);
2640 	} else { /* ksm created a completely new copy */
2641 		page_add_new_anon_rmap(page, vma, address, false);
2642 		mem_cgroup_commit_charge(page, memcg, false, false);
2643 		lru_cache_add_active_or_unevictable(page, vma);
2644 	}
2645 
2646 	swap_free(entry);
2647 	if (mem_cgroup_swap_full(page) ||
2648 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2649 		try_to_free_swap(page);
2650 	unlock_page(page);
2651 	if (page != swapcache) {
2652 		/*
2653 		 * Hold the lock to avoid the swap entry to be reused
2654 		 * until we take the PT lock for the pte_same() check
2655 		 * (to avoid false positives from pte_same). For
2656 		 * further safety release the lock after the swap_free
2657 		 * so that the swap count won't change under a
2658 		 * parallel locked swapcache.
2659 		 */
2660 		unlock_page(swapcache);
2661 		put_page(swapcache);
2662 	}
2663 
2664 	if (flags & FAULT_FLAG_WRITE) {
2665 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2666 		if (ret & VM_FAULT_ERROR)
2667 			ret &= VM_FAULT_ERROR;
2668 		goto out;
2669 	}
2670 
2671 	/* No need to invalidate - it was non-present before */
2672 	update_mmu_cache(vma, address, page_table);
2673 unlock:
2674 	pte_unmap_unlock(page_table, ptl);
2675 out:
2676 	return ret;
2677 out_nomap:
2678 	mem_cgroup_cancel_charge(page, memcg, false);
2679 	pte_unmap_unlock(page_table, ptl);
2680 out_page:
2681 	unlock_page(page);
2682 out_release:
2683 	put_page(page);
2684 	if (page != swapcache) {
2685 		unlock_page(swapcache);
2686 		put_page(swapcache);
2687 	}
2688 	return ret;
2689 }
2690 
2691 /*
2692  * This is like a special single-page "expand_{down|up}wards()",
2693  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2694  * doesn't hit another vma.
2695  */
2696 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2697 {
2698 	address &= PAGE_MASK;
2699 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2700 		struct vm_area_struct *prev = vma->vm_prev;
2701 
2702 		/*
2703 		 * Is there a mapping abutting this one below?
2704 		 *
2705 		 * That's only ok if it's the same stack mapping
2706 		 * that has gotten split..
2707 		 */
2708 		if (prev && prev->vm_end == address)
2709 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2710 
2711 		return expand_downwards(vma, address - PAGE_SIZE);
2712 	}
2713 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2714 		struct vm_area_struct *next = vma->vm_next;
2715 
2716 		/* As VM_GROWSDOWN but s/below/above/ */
2717 		if (next && next->vm_start == address + PAGE_SIZE)
2718 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2719 
2720 		return expand_upwards(vma, address + PAGE_SIZE);
2721 	}
2722 	return 0;
2723 }
2724 
2725 /*
2726  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2727  * but allow concurrent faults), and pte mapped but not yet locked.
2728  * We return with mmap_sem still held, but pte unmapped and unlocked.
2729  */
2730 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2731 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2732 		unsigned int flags)
2733 {
2734 	struct mem_cgroup *memcg;
2735 	struct page *page;
2736 	spinlock_t *ptl;
2737 	pte_t entry;
2738 
2739 	pte_unmap(page_table);
2740 
2741 	/* File mapping without ->vm_ops ? */
2742 	if (vma->vm_flags & VM_SHARED)
2743 		return VM_FAULT_SIGBUS;
2744 
2745 	/* Check if we need to add a guard page to the stack */
2746 	if (check_stack_guard_page(vma, address) < 0)
2747 		return VM_FAULT_SIGSEGV;
2748 
2749 	/* Use the zero-page for reads */
2750 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2751 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2752 						vma->vm_page_prot));
2753 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2754 		if (!pte_none(*page_table))
2755 			goto unlock;
2756 		/* Deliver the page fault to userland, check inside PT lock */
2757 		if (userfaultfd_missing(vma)) {
2758 			pte_unmap_unlock(page_table, ptl);
2759 			return handle_userfault(vma, address, flags,
2760 						VM_UFFD_MISSING);
2761 		}
2762 		goto setpte;
2763 	}
2764 
2765 	/* Allocate our own private page. */
2766 	if (unlikely(anon_vma_prepare(vma)))
2767 		goto oom;
2768 	page = alloc_zeroed_user_highpage_movable(vma, address);
2769 	if (!page)
2770 		goto oom;
2771 
2772 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2773 		goto oom_free_page;
2774 
2775 	/*
2776 	 * The memory barrier inside __SetPageUptodate makes sure that
2777 	 * preceeding stores to the page contents become visible before
2778 	 * the set_pte_at() write.
2779 	 */
2780 	__SetPageUptodate(page);
2781 
2782 	entry = mk_pte(page, vma->vm_page_prot);
2783 	if (vma->vm_flags & VM_WRITE)
2784 		entry = pte_mkwrite(pte_mkdirty(entry));
2785 
2786 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2787 	if (!pte_none(*page_table))
2788 		goto release;
2789 
2790 	/* Deliver the page fault to userland, check inside PT lock */
2791 	if (userfaultfd_missing(vma)) {
2792 		pte_unmap_unlock(page_table, ptl);
2793 		mem_cgroup_cancel_charge(page, memcg, false);
2794 		put_page(page);
2795 		return handle_userfault(vma, address, flags,
2796 					VM_UFFD_MISSING);
2797 	}
2798 
2799 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2800 	page_add_new_anon_rmap(page, vma, address, false);
2801 	mem_cgroup_commit_charge(page, memcg, false, false);
2802 	lru_cache_add_active_or_unevictable(page, vma);
2803 setpte:
2804 	set_pte_at(mm, address, page_table, entry);
2805 
2806 	/* No need to invalidate - it was non-present before */
2807 	update_mmu_cache(vma, address, page_table);
2808 unlock:
2809 	pte_unmap_unlock(page_table, ptl);
2810 	return 0;
2811 release:
2812 	mem_cgroup_cancel_charge(page, memcg, false);
2813 	put_page(page);
2814 	goto unlock;
2815 oom_free_page:
2816 	put_page(page);
2817 oom:
2818 	return VM_FAULT_OOM;
2819 }
2820 
2821 /*
2822  * The mmap_sem must have been held on entry, and may have been
2823  * released depending on flags and vma->vm_ops->fault() return value.
2824  * See filemap_fault() and __lock_page_retry().
2825  */
2826 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2827 			pgoff_t pgoff, unsigned int flags,
2828 			struct page *cow_page, struct page **page)
2829 {
2830 	struct vm_fault vmf;
2831 	int ret;
2832 
2833 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2834 	vmf.pgoff = pgoff;
2835 	vmf.flags = flags;
2836 	vmf.page = NULL;
2837 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2838 	vmf.cow_page = cow_page;
2839 
2840 	ret = vma->vm_ops->fault(vma, &vmf);
2841 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2842 		return ret;
2843 	if (!vmf.page)
2844 		goto out;
2845 
2846 	if (unlikely(PageHWPoison(vmf.page))) {
2847 		if (ret & VM_FAULT_LOCKED)
2848 			unlock_page(vmf.page);
2849 		put_page(vmf.page);
2850 		return VM_FAULT_HWPOISON;
2851 	}
2852 
2853 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2854 		lock_page(vmf.page);
2855 	else
2856 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2857 
2858  out:
2859 	*page = vmf.page;
2860 	return ret;
2861 }
2862 
2863 /**
2864  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2865  *
2866  * @vma: virtual memory area
2867  * @address: user virtual address
2868  * @page: page to map
2869  * @pte: pointer to target page table entry
2870  * @write: true, if new entry is writable
2871  * @anon: true, if it's anonymous page
2872  *
2873  * Caller must hold page table lock relevant for @pte.
2874  *
2875  * Target users are page handler itself and implementations of
2876  * vm_ops->map_pages.
2877  */
2878 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2879 		struct page *page, pte_t *pte, bool write, bool anon)
2880 {
2881 	pte_t entry;
2882 
2883 	flush_icache_page(vma, page);
2884 	entry = mk_pte(page, vma->vm_page_prot);
2885 	if (write)
2886 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2887 	if (anon) {
2888 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2889 		page_add_new_anon_rmap(page, vma, address, false);
2890 	} else {
2891 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2892 		page_add_file_rmap(page);
2893 	}
2894 	set_pte_at(vma->vm_mm, address, pte, entry);
2895 
2896 	/* no need to invalidate: a not-present page won't be cached */
2897 	update_mmu_cache(vma, address, pte);
2898 }
2899 
2900 static unsigned long fault_around_bytes __read_mostly =
2901 	rounddown_pow_of_two(65536);
2902 
2903 #ifdef CONFIG_DEBUG_FS
2904 static int fault_around_bytes_get(void *data, u64 *val)
2905 {
2906 	*val = fault_around_bytes;
2907 	return 0;
2908 }
2909 
2910 /*
2911  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2912  * rounded down to nearest page order. It's what do_fault_around() expects to
2913  * see.
2914  */
2915 static int fault_around_bytes_set(void *data, u64 val)
2916 {
2917 	if (val / PAGE_SIZE > PTRS_PER_PTE)
2918 		return -EINVAL;
2919 	if (val > PAGE_SIZE)
2920 		fault_around_bytes = rounddown_pow_of_two(val);
2921 	else
2922 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2923 	return 0;
2924 }
2925 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2926 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2927 
2928 static int __init fault_around_debugfs(void)
2929 {
2930 	void *ret;
2931 
2932 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2933 			&fault_around_bytes_fops);
2934 	if (!ret)
2935 		pr_warn("Failed to create fault_around_bytes in debugfs");
2936 	return 0;
2937 }
2938 late_initcall(fault_around_debugfs);
2939 #endif
2940 
2941 /*
2942  * do_fault_around() tries to map few pages around the fault address. The hope
2943  * is that the pages will be needed soon and this will lower the number of
2944  * faults to handle.
2945  *
2946  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2947  * not ready to be mapped: not up-to-date, locked, etc.
2948  *
2949  * This function is called with the page table lock taken. In the split ptlock
2950  * case the page table lock only protects only those entries which belong to
2951  * the page table corresponding to the fault address.
2952  *
2953  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2954  * only once.
2955  *
2956  * fault_around_pages() defines how many pages we'll try to map.
2957  * do_fault_around() expects it to return a power of two less than or equal to
2958  * PTRS_PER_PTE.
2959  *
2960  * The virtual address of the area that we map is naturally aligned to the
2961  * fault_around_pages() value (and therefore to page order).  This way it's
2962  * easier to guarantee that we don't cross page table boundaries.
2963  */
2964 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2965 		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2966 {
2967 	unsigned long start_addr, nr_pages, mask;
2968 	pgoff_t max_pgoff;
2969 	struct vm_fault vmf;
2970 	int off;
2971 
2972 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2973 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2974 
2975 	start_addr = max(address & mask, vma->vm_start);
2976 	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2977 	pte -= off;
2978 	pgoff -= off;
2979 
2980 	/*
2981 	 *  max_pgoff is either end of page table or end of vma
2982 	 *  or fault_around_pages() from pgoff, depending what is nearest.
2983 	 */
2984 	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2985 		PTRS_PER_PTE - 1;
2986 	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2987 			pgoff + nr_pages - 1);
2988 
2989 	/* Check if it makes any sense to call ->map_pages */
2990 	while (!pte_none(*pte)) {
2991 		if (++pgoff > max_pgoff)
2992 			return;
2993 		start_addr += PAGE_SIZE;
2994 		if (start_addr >= vma->vm_end)
2995 			return;
2996 		pte++;
2997 	}
2998 
2999 	vmf.virtual_address = (void __user *) start_addr;
3000 	vmf.pte = pte;
3001 	vmf.pgoff = pgoff;
3002 	vmf.max_pgoff = max_pgoff;
3003 	vmf.flags = flags;
3004 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
3005 	vma->vm_ops->map_pages(vma, &vmf);
3006 }
3007 
3008 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3009 		unsigned long address, pmd_t *pmd,
3010 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3011 {
3012 	struct page *fault_page;
3013 	spinlock_t *ptl;
3014 	pte_t *pte;
3015 	int ret = 0;
3016 
3017 	/*
3018 	 * Let's call ->map_pages() first and use ->fault() as fallback
3019 	 * if page by the offset is not ready to be mapped (cold cache or
3020 	 * something).
3021 	 */
3022 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3023 		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3024 		do_fault_around(vma, address, pte, pgoff, flags);
3025 		if (!pte_same(*pte, orig_pte))
3026 			goto unlock_out;
3027 		pte_unmap_unlock(pte, ptl);
3028 	}
3029 
3030 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3031 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3032 		return ret;
3033 
3034 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3035 	if (unlikely(!pte_same(*pte, orig_pte))) {
3036 		pte_unmap_unlock(pte, ptl);
3037 		unlock_page(fault_page);
3038 		put_page(fault_page);
3039 		return ret;
3040 	}
3041 	do_set_pte(vma, address, fault_page, pte, false, false);
3042 	unlock_page(fault_page);
3043 unlock_out:
3044 	pte_unmap_unlock(pte, ptl);
3045 	return ret;
3046 }
3047 
3048 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3049 		unsigned long address, pmd_t *pmd,
3050 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3051 {
3052 	struct page *fault_page, *new_page;
3053 	struct mem_cgroup *memcg;
3054 	spinlock_t *ptl;
3055 	pte_t *pte;
3056 	int ret;
3057 
3058 	if (unlikely(anon_vma_prepare(vma)))
3059 		return VM_FAULT_OOM;
3060 
3061 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3062 	if (!new_page)
3063 		return VM_FAULT_OOM;
3064 
3065 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3066 		put_page(new_page);
3067 		return VM_FAULT_OOM;
3068 	}
3069 
3070 	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3071 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3072 		goto uncharge_out;
3073 
3074 	if (fault_page)
3075 		copy_user_highpage(new_page, fault_page, address, vma);
3076 	__SetPageUptodate(new_page);
3077 
3078 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3079 	if (unlikely(!pte_same(*pte, orig_pte))) {
3080 		pte_unmap_unlock(pte, ptl);
3081 		if (fault_page) {
3082 			unlock_page(fault_page);
3083 			put_page(fault_page);
3084 		} else {
3085 			/*
3086 			 * The fault handler has no page to lock, so it holds
3087 			 * i_mmap_lock for read to protect against truncate.
3088 			 */
3089 			i_mmap_unlock_read(vma->vm_file->f_mapping);
3090 		}
3091 		goto uncharge_out;
3092 	}
3093 	do_set_pte(vma, address, new_page, pte, true, true);
3094 	mem_cgroup_commit_charge(new_page, memcg, false, false);
3095 	lru_cache_add_active_or_unevictable(new_page, vma);
3096 	pte_unmap_unlock(pte, ptl);
3097 	if (fault_page) {
3098 		unlock_page(fault_page);
3099 		put_page(fault_page);
3100 	} else {
3101 		/*
3102 		 * The fault handler has no page to lock, so it holds
3103 		 * i_mmap_lock for read to protect against truncate.
3104 		 */
3105 		i_mmap_unlock_read(vma->vm_file->f_mapping);
3106 	}
3107 	return ret;
3108 uncharge_out:
3109 	mem_cgroup_cancel_charge(new_page, memcg, false);
3110 	put_page(new_page);
3111 	return ret;
3112 }
3113 
3114 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3115 		unsigned long address, pmd_t *pmd,
3116 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3117 {
3118 	struct page *fault_page;
3119 	struct address_space *mapping;
3120 	spinlock_t *ptl;
3121 	pte_t *pte;
3122 	int dirtied = 0;
3123 	int ret, tmp;
3124 
3125 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3126 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3127 		return ret;
3128 
3129 	/*
3130 	 * Check if the backing address space wants to know that the page is
3131 	 * about to become writable
3132 	 */
3133 	if (vma->vm_ops->page_mkwrite) {
3134 		unlock_page(fault_page);
3135 		tmp = do_page_mkwrite(vma, fault_page, address);
3136 		if (unlikely(!tmp ||
3137 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3138 			put_page(fault_page);
3139 			return tmp;
3140 		}
3141 	}
3142 
3143 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3144 	if (unlikely(!pte_same(*pte, orig_pte))) {
3145 		pte_unmap_unlock(pte, ptl);
3146 		unlock_page(fault_page);
3147 		put_page(fault_page);
3148 		return ret;
3149 	}
3150 	do_set_pte(vma, address, fault_page, pte, true, false);
3151 	pte_unmap_unlock(pte, ptl);
3152 
3153 	if (set_page_dirty(fault_page))
3154 		dirtied = 1;
3155 	/*
3156 	 * Take a local copy of the address_space - page.mapping may be zeroed
3157 	 * by truncate after unlock_page().   The address_space itself remains
3158 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3159 	 * release semantics to prevent the compiler from undoing this copying.
3160 	 */
3161 	mapping = page_rmapping(fault_page);
3162 	unlock_page(fault_page);
3163 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3164 		/*
3165 		 * Some device drivers do not set page.mapping but still
3166 		 * dirty their pages
3167 		 */
3168 		balance_dirty_pages_ratelimited(mapping);
3169 	}
3170 
3171 	if (!vma->vm_ops->page_mkwrite)
3172 		file_update_time(vma->vm_file);
3173 
3174 	return ret;
3175 }
3176 
3177 /*
3178  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3179  * but allow concurrent faults).
3180  * The mmap_sem may have been released depending on flags and our
3181  * return value.  See filemap_fault() and __lock_page_or_retry().
3182  */
3183 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3184 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3185 		unsigned int flags, pte_t orig_pte)
3186 {
3187 	pgoff_t pgoff = linear_page_index(vma, address);
3188 
3189 	pte_unmap(page_table);
3190 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3191 	if (!vma->vm_ops->fault)
3192 		return VM_FAULT_SIGBUS;
3193 	if (!(flags & FAULT_FLAG_WRITE))
3194 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3195 				orig_pte);
3196 	if (!(vma->vm_flags & VM_SHARED))
3197 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3198 				orig_pte);
3199 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3200 }
3201 
3202 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3203 				unsigned long addr, int page_nid,
3204 				int *flags)
3205 {
3206 	get_page(page);
3207 
3208 	count_vm_numa_event(NUMA_HINT_FAULTS);
3209 	if (page_nid == numa_node_id()) {
3210 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3211 		*flags |= TNF_FAULT_LOCAL;
3212 	}
3213 
3214 	return mpol_misplaced(page, vma, addr);
3215 }
3216 
3217 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3218 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3219 {
3220 	struct page *page = NULL;
3221 	spinlock_t *ptl;
3222 	int page_nid = -1;
3223 	int last_cpupid;
3224 	int target_nid;
3225 	bool migrated = false;
3226 	bool was_writable = pte_write(pte);
3227 	int flags = 0;
3228 
3229 	/* A PROT_NONE fault should not end up here */
3230 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3231 
3232 	/*
3233 	* The "pte" at this point cannot be used safely without
3234 	* validation through pte_unmap_same(). It's of NUMA type but
3235 	* the pfn may be screwed if the read is non atomic.
3236 	*
3237 	* We can safely just do a "set_pte_at()", because the old
3238 	* page table entry is not accessible, so there would be no
3239 	* concurrent hardware modifications to the PTE.
3240 	*/
3241 	ptl = pte_lockptr(mm, pmd);
3242 	spin_lock(ptl);
3243 	if (unlikely(!pte_same(*ptep, pte))) {
3244 		pte_unmap_unlock(ptep, ptl);
3245 		goto out;
3246 	}
3247 
3248 	/* Make it present again */
3249 	pte = pte_modify(pte, vma->vm_page_prot);
3250 	pte = pte_mkyoung(pte);
3251 	if (was_writable)
3252 		pte = pte_mkwrite(pte);
3253 	set_pte_at(mm, addr, ptep, pte);
3254 	update_mmu_cache(vma, addr, ptep);
3255 
3256 	page = vm_normal_page(vma, addr, pte);
3257 	if (!page) {
3258 		pte_unmap_unlock(ptep, ptl);
3259 		return 0;
3260 	}
3261 
3262 	/* TODO: handle PTE-mapped THP */
3263 	if (PageCompound(page)) {
3264 		pte_unmap_unlock(ptep, ptl);
3265 		return 0;
3266 	}
3267 
3268 	/*
3269 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3270 	 * much anyway since they can be in shared cache state. This misses
3271 	 * the case where a mapping is writable but the process never writes
3272 	 * to it but pte_write gets cleared during protection updates and
3273 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3274 	 * background writeback, dirty balancing and application behaviour.
3275 	 */
3276 	if (!(vma->vm_flags & VM_WRITE))
3277 		flags |= TNF_NO_GROUP;
3278 
3279 	/*
3280 	 * Flag if the page is shared between multiple address spaces. This
3281 	 * is later used when determining whether to group tasks together
3282 	 */
3283 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3284 		flags |= TNF_SHARED;
3285 
3286 	last_cpupid = page_cpupid_last(page);
3287 	page_nid = page_to_nid(page);
3288 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3289 	pte_unmap_unlock(ptep, ptl);
3290 	if (target_nid == -1) {
3291 		put_page(page);
3292 		goto out;
3293 	}
3294 
3295 	/* Migrate to the requested node */
3296 	migrated = migrate_misplaced_page(page, vma, target_nid);
3297 	if (migrated) {
3298 		page_nid = target_nid;
3299 		flags |= TNF_MIGRATED;
3300 	} else
3301 		flags |= TNF_MIGRATE_FAIL;
3302 
3303 out:
3304 	if (page_nid != -1)
3305 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3306 	return 0;
3307 }
3308 
3309 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3310 			unsigned long address, pmd_t *pmd, unsigned int flags)
3311 {
3312 	if (vma_is_anonymous(vma))
3313 		return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3314 	if (vma->vm_ops->pmd_fault)
3315 		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3316 	return VM_FAULT_FALLBACK;
3317 }
3318 
3319 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3320 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3321 			unsigned int flags)
3322 {
3323 	if (vma_is_anonymous(vma))
3324 		return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3325 	if (vma->vm_ops->pmd_fault)
3326 		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3327 	return VM_FAULT_FALLBACK;
3328 }
3329 
3330 /*
3331  * These routines also need to handle stuff like marking pages dirty
3332  * and/or accessed for architectures that don't do it in hardware (most
3333  * RISC architectures).  The early dirtying is also good on the i386.
3334  *
3335  * There is also a hook called "update_mmu_cache()" that architectures
3336  * with external mmu caches can use to update those (ie the Sparc or
3337  * PowerPC hashed page tables that act as extended TLBs).
3338  *
3339  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3340  * but allow concurrent faults), and pte mapped but not yet locked.
3341  * We return with pte unmapped and unlocked.
3342  *
3343  * The mmap_sem may have been released depending on flags and our
3344  * return value.  See filemap_fault() and __lock_page_or_retry().
3345  */
3346 static int handle_pte_fault(struct mm_struct *mm,
3347 		     struct vm_area_struct *vma, unsigned long address,
3348 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3349 {
3350 	pte_t entry;
3351 	spinlock_t *ptl;
3352 
3353 	/*
3354 	 * some architectures can have larger ptes than wordsize,
3355 	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3356 	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3357 	 * The code below just needs a consistent view for the ifs and
3358 	 * we later double check anyway with the ptl lock held. So here
3359 	 * a barrier will do.
3360 	 */
3361 	entry = *pte;
3362 	barrier();
3363 	if (!pte_present(entry)) {
3364 		if (pte_none(entry)) {
3365 			if (vma_is_anonymous(vma))
3366 				return do_anonymous_page(mm, vma, address,
3367 							 pte, pmd, flags);
3368 			else
3369 				return do_fault(mm, vma, address, pte, pmd,
3370 						flags, entry);
3371 		}
3372 		return do_swap_page(mm, vma, address,
3373 					pte, pmd, flags, entry);
3374 	}
3375 
3376 	if (pte_protnone(entry))
3377 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3378 
3379 	ptl = pte_lockptr(mm, pmd);
3380 	spin_lock(ptl);
3381 	if (unlikely(!pte_same(*pte, entry)))
3382 		goto unlock;
3383 	if (flags & FAULT_FLAG_WRITE) {
3384 		if (!pte_write(entry))
3385 			return do_wp_page(mm, vma, address,
3386 					pte, pmd, ptl, entry);
3387 		entry = pte_mkdirty(entry);
3388 	}
3389 	entry = pte_mkyoung(entry);
3390 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3391 		update_mmu_cache(vma, address, pte);
3392 	} else {
3393 		/*
3394 		 * This is needed only for protection faults but the arch code
3395 		 * is not yet telling us if this is a protection fault or not.
3396 		 * This still avoids useless tlb flushes for .text page faults
3397 		 * with threads.
3398 		 */
3399 		if (flags & FAULT_FLAG_WRITE)
3400 			flush_tlb_fix_spurious_fault(vma, address);
3401 	}
3402 unlock:
3403 	pte_unmap_unlock(pte, ptl);
3404 	return 0;
3405 }
3406 
3407 /*
3408  * By the time we get here, we already hold the mm semaphore
3409  *
3410  * The mmap_sem may have been released depending on flags and our
3411  * return value.  See filemap_fault() and __lock_page_or_retry().
3412  */
3413 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3414 			     unsigned long address, unsigned int flags)
3415 {
3416 	pgd_t *pgd;
3417 	pud_t *pud;
3418 	pmd_t *pmd;
3419 	pte_t *pte;
3420 
3421 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3422 					    flags & FAULT_FLAG_INSTRUCTION,
3423 					    flags & FAULT_FLAG_REMOTE))
3424 		return VM_FAULT_SIGSEGV;
3425 
3426 	if (unlikely(is_vm_hugetlb_page(vma)))
3427 		return hugetlb_fault(mm, vma, address, flags);
3428 
3429 	pgd = pgd_offset(mm, address);
3430 	pud = pud_alloc(mm, pgd, address);
3431 	if (!pud)
3432 		return VM_FAULT_OOM;
3433 	pmd = pmd_alloc(mm, pud, address);
3434 	if (!pmd)
3435 		return VM_FAULT_OOM;
3436 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3437 		int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3438 		if (!(ret & VM_FAULT_FALLBACK))
3439 			return ret;
3440 	} else {
3441 		pmd_t orig_pmd = *pmd;
3442 		int ret;
3443 
3444 		barrier();
3445 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3446 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3447 
3448 			if (pmd_protnone(orig_pmd))
3449 				return do_huge_pmd_numa_page(mm, vma, address,
3450 							     orig_pmd, pmd);
3451 
3452 			if (dirty && !pmd_write(orig_pmd)) {
3453 				ret = wp_huge_pmd(mm, vma, address, pmd,
3454 							orig_pmd, flags);
3455 				if (!(ret & VM_FAULT_FALLBACK))
3456 					return ret;
3457 			} else {
3458 				huge_pmd_set_accessed(mm, vma, address, pmd,
3459 						      orig_pmd, dirty);
3460 				return 0;
3461 			}
3462 		}
3463 	}
3464 
3465 	/*
3466 	 * Use pte_alloc() instead of pte_alloc_map, because we can't
3467 	 * run pte_offset_map on the pmd, if an huge pmd could
3468 	 * materialize from under us from a different thread.
3469 	 */
3470 	if (unlikely(pte_alloc(mm, pmd, address)))
3471 		return VM_FAULT_OOM;
3472 	/*
3473 	 * If a huge pmd materialized under us just retry later.  Use
3474 	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3475 	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3476 	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3477 	 * in a different thread of this mm, in turn leading to a misleading
3478 	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
3479 	 * regular pmd that we can walk with pte_offset_map() and we can do that
3480 	 * through an atomic read in C, which is what pmd_trans_unstable()
3481 	 * provides.
3482 	 */
3483 	if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3484 		return 0;
3485 	/*
3486 	 * A regular pmd is established and it can't morph into a huge pmd
3487 	 * from under us anymore at this point because we hold the mmap_sem
3488 	 * read mode and khugepaged takes it in write mode. So now it's
3489 	 * safe to run pte_offset_map().
3490 	 */
3491 	pte = pte_offset_map(pmd, address);
3492 
3493 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3494 }
3495 
3496 /*
3497  * By the time we get here, we already hold the mm semaphore
3498  *
3499  * The mmap_sem may have been released depending on flags and our
3500  * return value.  See filemap_fault() and __lock_page_or_retry().
3501  */
3502 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3503 		    unsigned long address, unsigned int flags)
3504 {
3505 	int ret;
3506 
3507 	__set_current_state(TASK_RUNNING);
3508 
3509 	count_vm_event(PGFAULT);
3510 	mem_cgroup_count_vm_event(mm, PGFAULT);
3511 
3512 	/* do counter updates before entering really critical section. */
3513 	check_sync_rss_stat(current);
3514 
3515 	/*
3516 	 * Enable the memcg OOM handling for faults triggered in user
3517 	 * space.  Kernel faults are handled more gracefully.
3518 	 */
3519 	if (flags & FAULT_FLAG_USER)
3520 		mem_cgroup_oom_enable();
3521 
3522 	ret = __handle_mm_fault(mm, vma, address, flags);
3523 
3524 	if (flags & FAULT_FLAG_USER) {
3525 		mem_cgroup_oom_disable();
3526                 /*
3527                  * The task may have entered a memcg OOM situation but
3528                  * if the allocation error was handled gracefully (no
3529                  * VM_FAULT_OOM), there is no need to kill anything.
3530                  * Just clean up the OOM state peacefully.
3531                  */
3532                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3533                         mem_cgroup_oom_synchronize(false);
3534 	}
3535 
3536 	return ret;
3537 }
3538 EXPORT_SYMBOL_GPL(handle_mm_fault);
3539 
3540 #ifndef __PAGETABLE_PUD_FOLDED
3541 /*
3542  * Allocate page upper directory.
3543  * We've already handled the fast-path in-line.
3544  */
3545 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3546 {
3547 	pud_t *new = pud_alloc_one(mm, address);
3548 	if (!new)
3549 		return -ENOMEM;
3550 
3551 	smp_wmb(); /* See comment in __pte_alloc */
3552 
3553 	spin_lock(&mm->page_table_lock);
3554 	if (pgd_present(*pgd))		/* Another has populated it */
3555 		pud_free(mm, new);
3556 	else
3557 		pgd_populate(mm, pgd, new);
3558 	spin_unlock(&mm->page_table_lock);
3559 	return 0;
3560 }
3561 #endif /* __PAGETABLE_PUD_FOLDED */
3562 
3563 #ifndef __PAGETABLE_PMD_FOLDED
3564 /*
3565  * Allocate page middle directory.
3566  * We've already handled the fast-path in-line.
3567  */
3568 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3569 {
3570 	pmd_t *new = pmd_alloc_one(mm, address);
3571 	if (!new)
3572 		return -ENOMEM;
3573 
3574 	smp_wmb(); /* See comment in __pte_alloc */
3575 
3576 	spin_lock(&mm->page_table_lock);
3577 #ifndef __ARCH_HAS_4LEVEL_HACK
3578 	if (!pud_present(*pud)) {
3579 		mm_inc_nr_pmds(mm);
3580 		pud_populate(mm, pud, new);
3581 	} else	/* Another has populated it */
3582 		pmd_free(mm, new);
3583 #else
3584 	if (!pgd_present(*pud)) {
3585 		mm_inc_nr_pmds(mm);
3586 		pgd_populate(mm, pud, new);
3587 	} else /* Another has populated it */
3588 		pmd_free(mm, new);
3589 #endif /* __ARCH_HAS_4LEVEL_HACK */
3590 	spin_unlock(&mm->page_table_lock);
3591 	return 0;
3592 }
3593 #endif /* __PAGETABLE_PMD_FOLDED */
3594 
3595 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3596 		pte_t **ptepp, spinlock_t **ptlp)
3597 {
3598 	pgd_t *pgd;
3599 	pud_t *pud;
3600 	pmd_t *pmd;
3601 	pte_t *ptep;
3602 
3603 	pgd = pgd_offset(mm, address);
3604 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3605 		goto out;
3606 
3607 	pud = pud_offset(pgd, address);
3608 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3609 		goto out;
3610 
3611 	pmd = pmd_offset(pud, address);
3612 	VM_BUG_ON(pmd_trans_huge(*pmd));
3613 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3614 		goto out;
3615 
3616 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3617 	if (pmd_huge(*pmd))
3618 		goto out;
3619 
3620 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3621 	if (!ptep)
3622 		goto out;
3623 	if (!pte_present(*ptep))
3624 		goto unlock;
3625 	*ptepp = ptep;
3626 	return 0;
3627 unlock:
3628 	pte_unmap_unlock(ptep, *ptlp);
3629 out:
3630 	return -EINVAL;
3631 }
3632 
3633 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3634 			     pte_t **ptepp, spinlock_t **ptlp)
3635 {
3636 	int res;
3637 
3638 	/* (void) is needed to make gcc happy */
3639 	(void) __cond_lock(*ptlp,
3640 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3641 	return res;
3642 }
3643 
3644 /**
3645  * follow_pfn - look up PFN at a user virtual address
3646  * @vma: memory mapping
3647  * @address: user virtual address
3648  * @pfn: location to store found PFN
3649  *
3650  * Only IO mappings and raw PFN mappings are allowed.
3651  *
3652  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3653  */
3654 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3655 	unsigned long *pfn)
3656 {
3657 	int ret = -EINVAL;
3658 	spinlock_t *ptl;
3659 	pte_t *ptep;
3660 
3661 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3662 		return ret;
3663 
3664 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3665 	if (ret)
3666 		return ret;
3667 	*pfn = pte_pfn(*ptep);
3668 	pte_unmap_unlock(ptep, ptl);
3669 	return 0;
3670 }
3671 EXPORT_SYMBOL(follow_pfn);
3672 
3673 #ifdef CONFIG_HAVE_IOREMAP_PROT
3674 int follow_phys(struct vm_area_struct *vma,
3675 		unsigned long address, unsigned int flags,
3676 		unsigned long *prot, resource_size_t *phys)
3677 {
3678 	int ret = -EINVAL;
3679 	pte_t *ptep, pte;
3680 	spinlock_t *ptl;
3681 
3682 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3683 		goto out;
3684 
3685 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3686 		goto out;
3687 	pte = *ptep;
3688 
3689 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3690 		goto unlock;
3691 
3692 	*prot = pgprot_val(pte_pgprot(pte));
3693 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3694 
3695 	ret = 0;
3696 unlock:
3697 	pte_unmap_unlock(ptep, ptl);
3698 out:
3699 	return ret;
3700 }
3701 
3702 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3703 			void *buf, int len, int write)
3704 {
3705 	resource_size_t phys_addr;
3706 	unsigned long prot = 0;
3707 	void __iomem *maddr;
3708 	int offset = addr & (PAGE_SIZE-1);
3709 
3710 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3711 		return -EINVAL;
3712 
3713 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3714 	if (write)
3715 		memcpy_toio(maddr + offset, buf, len);
3716 	else
3717 		memcpy_fromio(buf, maddr + offset, len);
3718 	iounmap(maddr);
3719 
3720 	return len;
3721 }
3722 EXPORT_SYMBOL_GPL(generic_access_phys);
3723 #endif
3724 
3725 /*
3726  * Access another process' address space as given in mm.  If non-NULL, use the
3727  * given task for page fault accounting.
3728  */
3729 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3730 		unsigned long addr, void *buf, int len, int write)
3731 {
3732 	struct vm_area_struct *vma;
3733 	void *old_buf = buf;
3734 
3735 	down_read(&mm->mmap_sem);
3736 	/* ignore errors, just check how much was successfully transferred */
3737 	while (len) {
3738 		int bytes, ret, offset;
3739 		void *maddr;
3740 		struct page *page = NULL;
3741 
3742 		ret = get_user_pages_remote(tsk, mm, addr, 1,
3743 				write, 1, &page, &vma);
3744 		if (ret <= 0) {
3745 #ifndef CONFIG_HAVE_IOREMAP_PROT
3746 			break;
3747 #else
3748 			/*
3749 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3750 			 * we can access using slightly different code.
3751 			 */
3752 			vma = find_vma(mm, addr);
3753 			if (!vma || vma->vm_start > addr)
3754 				break;
3755 			if (vma->vm_ops && vma->vm_ops->access)
3756 				ret = vma->vm_ops->access(vma, addr, buf,
3757 							  len, write);
3758 			if (ret <= 0)
3759 				break;
3760 			bytes = ret;
3761 #endif
3762 		} else {
3763 			bytes = len;
3764 			offset = addr & (PAGE_SIZE-1);
3765 			if (bytes > PAGE_SIZE-offset)
3766 				bytes = PAGE_SIZE-offset;
3767 
3768 			maddr = kmap(page);
3769 			if (write) {
3770 				copy_to_user_page(vma, page, addr,
3771 						  maddr + offset, buf, bytes);
3772 				set_page_dirty_lock(page);
3773 			} else {
3774 				copy_from_user_page(vma, page, addr,
3775 						    buf, maddr + offset, bytes);
3776 			}
3777 			kunmap(page);
3778 			put_page(page);
3779 		}
3780 		len -= bytes;
3781 		buf += bytes;
3782 		addr += bytes;
3783 	}
3784 	up_read(&mm->mmap_sem);
3785 
3786 	return buf - old_buf;
3787 }
3788 
3789 /**
3790  * access_remote_vm - access another process' address space
3791  * @mm:		the mm_struct of the target address space
3792  * @addr:	start address to access
3793  * @buf:	source or destination buffer
3794  * @len:	number of bytes to transfer
3795  * @write:	whether the access is a write
3796  *
3797  * The caller must hold a reference on @mm.
3798  */
3799 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3800 		void *buf, int len, int write)
3801 {
3802 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3803 }
3804 
3805 /*
3806  * Access another process' address space.
3807  * Source/target buffer must be kernel space,
3808  * Do not walk the page table directly, use get_user_pages
3809  */
3810 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3811 		void *buf, int len, int write)
3812 {
3813 	struct mm_struct *mm;
3814 	int ret;
3815 
3816 	mm = get_task_mm(tsk);
3817 	if (!mm)
3818 		return 0;
3819 
3820 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3821 	mmput(mm);
3822 
3823 	return ret;
3824 }
3825 
3826 /*
3827  * Print the name of a VMA.
3828  */
3829 void print_vma_addr(char *prefix, unsigned long ip)
3830 {
3831 	struct mm_struct *mm = current->mm;
3832 	struct vm_area_struct *vma;
3833 
3834 	/*
3835 	 * Do not print if we are in atomic
3836 	 * contexts (in exception stacks, etc.):
3837 	 */
3838 	if (preempt_count())
3839 		return;
3840 
3841 	down_read(&mm->mmap_sem);
3842 	vma = find_vma(mm, ip);
3843 	if (vma && vma->vm_file) {
3844 		struct file *f = vma->vm_file;
3845 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3846 		if (buf) {
3847 			char *p;
3848 
3849 			p = file_path(f, buf, PAGE_SIZE);
3850 			if (IS_ERR(p))
3851 				p = "?";
3852 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3853 					vma->vm_start,
3854 					vma->vm_end - vma->vm_start);
3855 			free_page((unsigned long)buf);
3856 		}
3857 	}
3858 	up_read(&mm->mmap_sem);
3859 }
3860 
3861 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3862 void __might_fault(const char *file, int line)
3863 {
3864 	/*
3865 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3866 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3867 	 * get paged out, therefore we'll never actually fault, and the
3868 	 * below annotations will generate false positives.
3869 	 */
3870 	if (segment_eq(get_fs(), KERNEL_DS))
3871 		return;
3872 	if (pagefault_disabled())
3873 		return;
3874 	__might_sleep(file, line, 0);
3875 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3876 	if (current->mm)
3877 		might_lock_read(&current->mm->mmap_sem);
3878 #endif
3879 }
3880 EXPORT_SYMBOL(__might_fault);
3881 #endif
3882 
3883 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3884 static void clear_gigantic_page(struct page *page,
3885 				unsigned long addr,
3886 				unsigned int pages_per_huge_page)
3887 {
3888 	int i;
3889 	struct page *p = page;
3890 
3891 	might_sleep();
3892 	for (i = 0; i < pages_per_huge_page;
3893 	     i++, p = mem_map_next(p, page, i)) {
3894 		cond_resched();
3895 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3896 	}
3897 }
3898 void clear_huge_page(struct page *page,
3899 		     unsigned long addr, unsigned int pages_per_huge_page)
3900 {
3901 	int i;
3902 
3903 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3904 		clear_gigantic_page(page, addr, pages_per_huge_page);
3905 		return;
3906 	}
3907 
3908 	might_sleep();
3909 	for (i = 0; i < pages_per_huge_page; i++) {
3910 		cond_resched();
3911 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3912 	}
3913 }
3914 
3915 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3916 				    unsigned long addr,
3917 				    struct vm_area_struct *vma,
3918 				    unsigned int pages_per_huge_page)
3919 {
3920 	int i;
3921 	struct page *dst_base = dst;
3922 	struct page *src_base = src;
3923 
3924 	for (i = 0; i < pages_per_huge_page; ) {
3925 		cond_resched();
3926 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3927 
3928 		i++;
3929 		dst = mem_map_next(dst, dst_base, i);
3930 		src = mem_map_next(src, src_base, i);
3931 	}
3932 }
3933 
3934 void copy_user_huge_page(struct page *dst, struct page *src,
3935 			 unsigned long addr, struct vm_area_struct *vma,
3936 			 unsigned int pages_per_huge_page)
3937 {
3938 	int i;
3939 
3940 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3941 		copy_user_gigantic_page(dst, src, addr, vma,
3942 					pages_per_huge_page);
3943 		return;
3944 	}
3945 
3946 	might_sleep();
3947 	for (i = 0; i < pages_per_huge_page; i++) {
3948 		cond_resched();
3949 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3950 	}
3951 }
3952 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3953 
3954 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3955 
3956 static struct kmem_cache *page_ptl_cachep;
3957 
3958 void __init ptlock_cache_init(void)
3959 {
3960 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3961 			SLAB_PANIC, NULL);
3962 }
3963 
3964 bool ptlock_alloc(struct page *page)
3965 {
3966 	spinlock_t *ptl;
3967 
3968 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3969 	if (!ptl)
3970 		return false;
3971 	page->ptl = ptl;
3972 	return true;
3973 }
3974 
3975 void ptlock_free(struct page *page)
3976 {
3977 	kmem_cache_free(page_ptl_cachep, page->ptl);
3978 }
3979 #endif
3980