1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/pfn_t.h> 54 #include <linux/writeback.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/kallsyms.h> 58 #include <linux/swapops.h> 59 #include <linux/elf.h> 60 #include <linux/gfp.h> 61 #include <linux/migrate.h> 62 #include <linux/string.h> 63 #include <linux/dma-debug.h> 64 #include <linux/debugfs.h> 65 #include <linux/userfaultfd_k.h> 66 67 #include <asm/io.h> 68 #include <asm/mmu_context.h> 69 #include <asm/pgalloc.h> 70 #include <asm/uaccess.h> 71 #include <asm/tlb.h> 72 #include <asm/tlbflush.h> 73 #include <asm/pgtable.h> 74 75 #include "internal.h" 76 77 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 78 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 79 #endif 80 81 #ifndef CONFIG_NEED_MULTIPLE_NODES 82 /* use the per-pgdat data instead for discontigmem - mbligh */ 83 unsigned long max_mapnr; 84 struct page *mem_map; 85 86 EXPORT_SYMBOL(max_mapnr); 87 EXPORT_SYMBOL(mem_map); 88 #endif 89 90 /* 91 * A number of key systems in x86 including ioremap() rely on the assumption 92 * that high_memory defines the upper bound on direct map memory, then end 93 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 94 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 95 * and ZONE_HIGHMEM. 96 */ 97 void * high_memory; 98 99 EXPORT_SYMBOL(high_memory); 100 101 /* 102 * Randomize the address space (stacks, mmaps, brk, etc.). 103 * 104 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 105 * as ancient (libc5 based) binaries can segfault. ) 106 */ 107 int randomize_va_space __read_mostly = 108 #ifdef CONFIG_COMPAT_BRK 109 1; 110 #else 111 2; 112 #endif 113 114 static int __init disable_randmaps(char *s) 115 { 116 randomize_va_space = 0; 117 return 1; 118 } 119 __setup("norandmaps", disable_randmaps); 120 121 unsigned long zero_pfn __read_mostly; 122 unsigned long highest_memmap_pfn __read_mostly; 123 124 EXPORT_SYMBOL(zero_pfn); 125 126 /* 127 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 128 */ 129 static int __init init_zero_pfn(void) 130 { 131 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 132 return 0; 133 } 134 core_initcall(init_zero_pfn); 135 136 137 #if defined(SPLIT_RSS_COUNTING) 138 139 void sync_mm_rss(struct mm_struct *mm) 140 { 141 int i; 142 143 for (i = 0; i < NR_MM_COUNTERS; i++) { 144 if (current->rss_stat.count[i]) { 145 add_mm_counter(mm, i, current->rss_stat.count[i]); 146 current->rss_stat.count[i] = 0; 147 } 148 } 149 current->rss_stat.events = 0; 150 } 151 152 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 153 { 154 struct task_struct *task = current; 155 156 if (likely(task->mm == mm)) 157 task->rss_stat.count[member] += val; 158 else 159 add_mm_counter(mm, member, val); 160 } 161 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 162 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 163 164 /* sync counter once per 64 page faults */ 165 #define TASK_RSS_EVENTS_THRESH (64) 166 static void check_sync_rss_stat(struct task_struct *task) 167 { 168 if (unlikely(task != current)) 169 return; 170 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 171 sync_mm_rss(task->mm); 172 } 173 #else /* SPLIT_RSS_COUNTING */ 174 175 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 176 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 177 178 static void check_sync_rss_stat(struct task_struct *task) 179 { 180 } 181 182 #endif /* SPLIT_RSS_COUNTING */ 183 184 #ifdef HAVE_GENERIC_MMU_GATHER 185 186 static bool tlb_next_batch(struct mmu_gather *tlb) 187 { 188 struct mmu_gather_batch *batch; 189 190 batch = tlb->active; 191 if (batch->next) { 192 tlb->active = batch->next; 193 return true; 194 } 195 196 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 197 return false; 198 199 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 200 if (!batch) 201 return false; 202 203 tlb->batch_count++; 204 batch->next = NULL; 205 batch->nr = 0; 206 batch->max = MAX_GATHER_BATCH; 207 208 tlb->active->next = batch; 209 tlb->active = batch; 210 211 return true; 212 } 213 214 /* tlb_gather_mmu 215 * Called to initialize an (on-stack) mmu_gather structure for page-table 216 * tear-down from @mm. The @fullmm argument is used when @mm is without 217 * users and we're going to destroy the full address space (exit/execve). 218 */ 219 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 220 { 221 tlb->mm = mm; 222 223 /* Is it from 0 to ~0? */ 224 tlb->fullmm = !(start | (end+1)); 225 tlb->need_flush_all = 0; 226 tlb->local.next = NULL; 227 tlb->local.nr = 0; 228 tlb->local.max = ARRAY_SIZE(tlb->__pages); 229 tlb->active = &tlb->local; 230 tlb->batch_count = 0; 231 232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 233 tlb->batch = NULL; 234 #endif 235 236 __tlb_reset_range(tlb); 237 } 238 239 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 240 { 241 if (!tlb->end) 242 return; 243 244 tlb_flush(tlb); 245 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 246 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 247 tlb_table_flush(tlb); 248 #endif 249 __tlb_reset_range(tlb); 250 } 251 252 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 253 { 254 struct mmu_gather_batch *batch; 255 256 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 257 free_pages_and_swap_cache(batch->pages, batch->nr); 258 batch->nr = 0; 259 } 260 tlb->active = &tlb->local; 261 } 262 263 void tlb_flush_mmu(struct mmu_gather *tlb) 264 { 265 tlb_flush_mmu_tlbonly(tlb); 266 tlb_flush_mmu_free(tlb); 267 } 268 269 /* tlb_finish_mmu 270 * Called at the end of the shootdown operation to free up any resources 271 * that were required. 272 */ 273 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 274 { 275 struct mmu_gather_batch *batch, *next; 276 277 tlb_flush_mmu(tlb); 278 279 /* keep the page table cache within bounds */ 280 check_pgt_cache(); 281 282 for (batch = tlb->local.next; batch; batch = next) { 283 next = batch->next; 284 free_pages((unsigned long)batch, 0); 285 } 286 tlb->local.next = NULL; 287 } 288 289 /* __tlb_remove_page 290 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 291 * handling the additional races in SMP caused by other CPUs caching valid 292 * mappings in their TLBs. Returns the number of free page slots left. 293 * When out of page slots we must call tlb_flush_mmu(). 294 */ 295 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 296 { 297 struct mmu_gather_batch *batch; 298 299 VM_BUG_ON(!tlb->end); 300 301 batch = tlb->active; 302 batch->pages[batch->nr++] = page; 303 if (batch->nr == batch->max) { 304 if (!tlb_next_batch(tlb)) 305 return 0; 306 batch = tlb->active; 307 } 308 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 309 310 return batch->max - batch->nr; 311 } 312 313 #endif /* HAVE_GENERIC_MMU_GATHER */ 314 315 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 316 317 /* 318 * See the comment near struct mmu_table_batch. 319 */ 320 321 static void tlb_remove_table_smp_sync(void *arg) 322 { 323 /* Simply deliver the interrupt */ 324 } 325 326 static void tlb_remove_table_one(void *table) 327 { 328 /* 329 * This isn't an RCU grace period and hence the page-tables cannot be 330 * assumed to be actually RCU-freed. 331 * 332 * It is however sufficient for software page-table walkers that rely on 333 * IRQ disabling. See the comment near struct mmu_table_batch. 334 */ 335 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 336 __tlb_remove_table(table); 337 } 338 339 static void tlb_remove_table_rcu(struct rcu_head *head) 340 { 341 struct mmu_table_batch *batch; 342 int i; 343 344 batch = container_of(head, struct mmu_table_batch, rcu); 345 346 for (i = 0; i < batch->nr; i++) 347 __tlb_remove_table(batch->tables[i]); 348 349 free_page((unsigned long)batch); 350 } 351 352 void tlb_table_flush(struct mmu_gather *tlb) 353 { 354 struct mmu_table_batch **batch = &tlb->batch; 355 356 if (*batch) { 357 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 358 *batch = NULL; 359 } 360 } 361 362 void tlb_remove_table(struct mmu_gather *tlb, void *table) 363 { 364 struct mmu_table_batch **batch = &tlb->batch; 365 366 /* 367 * When there's less then two users of this mm there cannot be a 368 * concurrent page-table walk. 369 */ 370 if (atomic_read(&tlb->mm->mm_users) < 2) { 371 __tlb_remove_table(table); 372 return; 373 } 374 375 if (*batch == NULL) { 376 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 377 if (*batch == NULL) { 378 tlb_remove_table_one(table); 379 return; 380 } 381 (*batch)->nr = 0; 382 } 383 (*batch)->tables[(*batch)->nr++] = table; 384 if ((*batch)->nr == MAX_TABLE_BATCH) 385 tlb_table_flush(tlb); 386 } 387 388 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 389 390 /* 391 * Note: this doesn't free the actual pages themselves. That 392 * has been handled earlier when unmapping all the memory regions. 393 */ 394 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 395 unsigned long addr) 396 { 397 pgtable_t token = pmd_pgtable(*pmd); 398 pmd_clear(pmd); 399 pte_free_tlb(tlb, token, addr); 400 atomic_long_dec(&tlb->mm->nr_ptes); 401 } 402 403 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 404 unsigned long addr, unsigned long end, 405 unsigned long floor, unsigned long ceiling) 406 { 407 pmd_t *pmd; 408 unsigned long next; 409 unsigned long start; 410 411 start = addr; 412 pmd = pmd_offset(pud, addr); 413 do { 414 next = pmd_addr_end(addr, end); 415 if (pmd_none_or_clear_bad(pmd)) 416 continue; 417 free_pte_range(tlb, pmd, addr); 418 } while (pmd++, addr = next, addr != end); 419 420 start &= PUD_MASK; 421 if (start < floor) 422 return; 423 if (ceiling) { 424 ceiling &= PUD_MASK; 425 if (!ceiling) 426 return; 427 } 428 if (end - 1 > ceiling - 1) 429 return; 430 431 pmd = pmd_offset(pud, start); 432 pud_clear(pud); 433 pmd_free_tlb(tlb, pmd, start); 434 mm_dec_nr_pmds(tlb->mm); 435 } 436 437 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 438 unsigned long addr, unsigned long end, 439 unsigned long floor, unsigned long ceiling) 440 { 441 pud_t *pud; 442 unsigned long next; 443 unsigned long start; 444 445 start = addr; 446 pud = pud_offset(pgd, addr); 447 do { 448 next = pud_addr_end(addr, end); 449 if (pud_none_or_clear_bad(pud)) 450 continue; 451 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 452 } while (pud++, addr = next, addr != end); 453 454 start &= PGDIR_MASK; 455 if (start < floor) 456 return; 457 if (ceiling) { 458 ceiling &= PGDIR_MASK; 459 if (!ceiling) 460 return; 461 } 462 if (end - 1 > ceiling - 1) 463 return; 464 465 pud = pud_offset(pgd, start); 466 pgd_clear(pgd); 467 pud_free_tlb(tlb, pud, start); 468 } 469 470 /* 471 * This function frees user-level page tables of a process. 472 */ 473 void free_pgd_range(struct mmu_gather *tlb, 474 unsigned long addr, unsigned long end, 475 unsigned long floor, unsigned long ceiling) 476 { 477 pgd_t *pgd; 478 unsigned long next; 479 480 /* 481 * The next few lines have given us lots of grief... 482 * 483 * Why are we testing PMD* at this top level? Because often 484 * there will be no work to do at all, and we'd prefer not to 485 * go all the way down to the bottom just to discover that. 486 * 487 * Why all these "- 1"s? Because 0 represents both the bottom 488 * of the address space and the top of it (using -1 for the 489 * top wouldn't help much: the masks would do the wrong thing). 490 * The rule is that addr 0 and floor 0 refer to the bottom of 491 * the address space, but end 0 and ceiling 0 refer to the top 492 * Comparisons need to use "end - 1" and "ceiling - 1" (though 493 * that end 0 case should be mythical). 494 * 495 * Wherever addr is brought up or ceiling brought down, we must 496 * be careful to reject "the opposite 0" before it confuses the 497 * subsequent tests. But what about where end is brought down 498 * by PMD_SIZE below? no, end can't go down to 0 there. 499 * 500 * Whereas we round start (addr) and ceiling down, by different 501 * masks at different levels, in order to test whether a table 502 * now has no other vmas using it, so can be freed, we don't 503 * bother to round floor or end up - the tests don't need that. 504 */ 505 506 addr &= PMD_MASK; 507 if (addr < floor) { 508 addr += PMD_SIZE; 509 if (!addr) 510 return; 511 } 512 if (ceiling) { 513 ceiling &= PMD_MASK; 514 if (!ceiling) 515 return; 516 } 517 if (end - 1 > ceiling - 1) 518 end -= PMD_SIZE; 519 if (addr > end - 1) 520 return; 521 522 pgd = pgd_offset(tlb->mm, addr); 523 do { 524 next = pgd_addr_end(addr, end); 525 if (pgd_none_or_clear_bad(pgd)) 526 continue; 527 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 528 } while (pgd++, addr = next, addr != end); 529 } 530 531 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 532 unsigned long floor, unsigned long ceiling) 533 { 534 while (vma) { 535 struct vm_area_struct *next = vma->vm_next; 536 unsigned long addr = vma->vm_start; 537 538 /* 539 * Hide vma from rmap and truncate_pagecache before freeing 540 * pgtables 541 */ 542 unlink_anon_vmas(vma); 543 unlink_file_vma(vma); 544 545 if (is_vm_hugetlb_page(vma)) { 546 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 547 floor, next? next->vm_start: ceiling); 548 } else { 549 /* 550 * Optimization: gather nearby vmas into one call down 551 */ 552 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 553 && !is_vm_hugetlb_page(next)) { 554 vma = next; 555 next = vma->vm_next; 556 unlink_anon_vmas(vma); 557 unlink_file_vma(vma); 558 } 559 free_pgd_range(tlb, addr, vma->vm_end, 560 floor, next? next->vm_start: ceiling); 561 } 562 vma = next; 563 } 564 } 565 566 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 567 { 568 spinlock_t *ptl; 569 pgtable_t new = pte_alloc_one(mm, address); 570 if (!new) 571 return -ENOMEM; 572 573 /* 574 * Ensure all pte setup (eg. pte page lock and page clearing) are 575 * visible before the pte is made visible to other CPUs by being 576 * put into page tables. 577 * 578 * The other side of the story is the pointer chasing in the page 579 * table walking code (when walking the page table without locking; 580 * ie. most of the time). Fortunately, these data accesses consist 581 * of a chain of data-dependent loads, meaning most CPUs (alpha 582 * being the notable exception) will already guarantee loads are 583 * seen in-order. See the alpha page table accessors for the 584 * smp_read_barrier_depends() barriers in page table walking code. 585 */ 586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 587 588 ptl = pmd_lock(mm, pmd); 589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 590 atomic_long_inc(&mm->nr_ptes); 591 pmd_populate(mm, pmd, new); 592 new = NULL; 593 } 594 spin_unlock(ptl); 595 if (new) 596 pte_free(mm, new); 597 return 0; 598 } 599 600 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 601 { 602 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 603 if (!new) 604 return -ENOMEM; 605 606 smp_wmb(); /* See comment in __pte_alloc */ 607 608 spin_lock(&init_mm.page_table_lock); 609 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 610 pmd_populate_kernel(&init_mm, pmd, new); 611 new = NULL; 612 } 613 spin_unlock(&init_mm.page_table_lock); 614 if (new) 615 pte_free_kernel(&init_mm, new); 616 return 0; 617 } 618 619 static inline void init_rss_vec(int *rss) 620 { 621 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 622 } 623 624 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 625 { 626 int i; 627 628 if (current->mm == mm) 629 sync_mm_rss(mm); 630 for (i = 0; i < NR_MM_COUNTERS; i++) 631 if (rss[i]) 632 add_mm_counter(mm, i, rss[i]); 633 } 634 635 /* 636 * This function is called to print an error when a bad pte 637 * is found. For example, we might have a PFN-mapped pte in 638 * a region that doesn't allow it. 639 * 640 * The calling function must still handle the error. 641 */ 642 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 643 pte_t pte, struct page *page) 644 { 645 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 646 pud_t *pud = pud_offset(pgd, addr); 647 pmd_t *pmd = pmd_offset(pud, addr); 648 struct address_space *mapping; 649 pgoff_t index; 650 static unsigned long resume; 651 static unsigned long nr_shown; 652 static unsigned long nr_unshown; 653 654 /* 655 * Allow a burst of 60 reports, then keep quiet for that minute; 656 * or allow a steady drip of one report per second. 657 */ 658 if (nr_shown == 60) { 659 if (time_before(jiffies, resume)) { 660 nr_unshown++; 661 return; 662 } 663 if (nr_unshown) { 664 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 665 nr_unshown); 666 nr_unshown = 0; 667 } 668 nr_shown = 0; 669 } 670 if (nr_shown++ == 0) 671 resume = jiffies + 60 * HZ; 672 673 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 674 index = linear_page_index(vma, addr); 675 676 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 677 current->comm, 678 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 679 if (page) 680 dump_page(page, "bad pte"); 681 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 682 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 683 /* 684 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 685 */ 686 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 687 vma->vm_file, 688 vma->vm_ops ? vma->vm_ops->fault : NULL, 689 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 690 mapping ? mapping->a_ops->readpage : NULL); 691 dump_stack(); 692 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 693 } 694 695 /* 696 * vm_normal_page -- This function gets the "struct page" associated with a pte. 697 * 698 * "Special" mappings do not wish to be associated with a "struct page" (either 699 * it doesn't exist, or it exists but they don't want to touch it). In this 700 * case, NULL is returned here. "Normal" mappings do have a struct page. 701 * 702 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 703 * pte bit, in which case this function is trivial. Secondly, an architecture 704 * may not have a spare pte bit, which requires a more complicated scheme, 705 * described below. 706 * 707 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 708 * special mapping (even if there are underlying and valid "struct pages"). 709 * COWed pages of a VM_PFNMAP are always normal. 710 * 711 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 712 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 713 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 714 * mapping will always honor the rule 715 * 716 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 717 * 718 * And for normal mappings this is false. 719 * 720 * This restricts such mappings to be a linear translation from virtual address 721 * to pfn. To get around this restriction, we allow arbitrary mappings so long 722 * as the vma is not a COW mapping; in that case, we know that all ptes are 723 * special (because none can have been COWed). 724 * 725 * 726 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 727 * 728 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 729 * page" backing, however the difference is that _all_ pages with a struct 730 * page (that is, those where pfn_valid is true) are refcounted and considered 731 * normal pages by the VM. The disadvantage is that pages are refcounted 732 * (which can be slower and simply not an option for some PFNMAP users). The 733 * advantage is that we don't have to follow the strict linearity rule of 734 * PFNMAP mappings in order to support COWable mappings. 735 * 736 */ 737 #ifdef __HAVE_ARCH_PTE_SPECIAL 738 # define HAVE_PTE_SPECIAL 1 739 #else 740 # define HAVE_PTE_SPECIAL 0 741 #endif 742 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 743 pte_t pte) 744 { 745 unsigned long pfn = pte_pfn(pte); 746 747 if (HAVE_PTE_SPECIAL) { 748 if (likely(!pte_special(pte))) 749 goto check_pfn; 750 if (vma->vm_ops && vma->vm_ops->find_special_page) 751 return vma->vm_ops->find_special_page(vma, addr); 752 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 753 return NULL; 754 if (!is_zero_pfn(pfn)) 755 print_bad_pte(vma, addr, pte, NULL); 756 return NULL; 757 } 758 759 /* !HAVE_PTE_SPECIAL case follows: */ 760 761 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 762 if (vma->vm_flags & VM_MIXEDMAP) { 763 if (!pfn_valid(pfn)) 764 return NULL; 765 goto out; 766 } else { 767 unsigned long off; 768 off = (addr - vma->vm_start) >> PAGE_SHIFT; 769 if (pfn == vma->vm_pgoff + off) 770 return NULL; 771 if (!is_cow_mapping(vma->vm_flags)) 772 return NULL; 773 } 774 } 775 776 if (is_zero_pfn(pfn)) 777 return NULL; 778 check_pfn: 779 if (unlikely(pfn > highest_memmap_pfn)) { 780 print_bad_pte(vma, addr, pte, NULL); 781 return NULL; 782 } 783 784 /* 785 * NOTE! We still have PageReserved() pages in the page tables. 786 * eg. VDSO mappings can cause them to exist. 787 */ 788 out: 789 return pfn_to_page(pfn); 790 } 791 792 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 793 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 794 pmd_t pmd) 795 { 796 unsigned long pfn = pmd_pfn(pmd); 797 798 /* 799 * There is no pmd_special() but there may be special pmds, e.g. 800 * in a direct-access (dax) mapping, so let's just replicate the 801 * !HAVE_PTE_SPECIAL case from vm_normal_page() here. 802 */ 803 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 804 if (vma->vm_flags & VM_MIXEDMAP) { 805 if (!pfn_valid(pfn)) 806 return NULL; 807 goto out; 808 } else { 809 unsigned long off; 810 off = (addr - vma->vm_start) >> PAGE_SHIFT; 811 if (pfn == vma->vm_pgoff + off) 812 return NULL; 813 if (!is_cow_mapping(vma->vm_flags)) 814 return NULL; 815 } 816 } 817 818 if (is_zero_pfn(pfn)) 819 return NULL; 820 if (unlikely(pfn > highest_memmap_pfn)) 821 return NULL; 822 823 /* 824 * NOTE! We still have PageReserved() pages in the page tables. 825 * eg. VDSO mappings can cause them to exist. 826 */ 827 out: 828 return pfn_to_page(pfn); 829 } 830 #endif 831 832 /* 833 * copy one vm_area from one task to the other. Assumes the page tables 834 * already present in the new task to be cleared in the whole range 835 * covered by this vma. 836 */ 837 838 static inline unsigned long 839 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 840 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 841 unsigned long addr, int *rss) 842 { 843 unsigned long vm_flags = vma->vm_flags; 844 pte_t pte = *src_pte; 845 struct page *page; 846 847 /* pte contains position in swap or file, so copy. */ 848 if (unlikely(!pte_present(pte))) { 849 swp_entry_t entry = pte_to_swp_entry(pte); 850 851 if (likely(!non_swap_entry(entry))) { 852 if (swap_duplicate(entry) < 0) 853 return entry.val; 854 855 /* make sure dst_mm is on swapoff's mmlist. */ 856 if (unlikely(list_empty(&dst_mm->mmlist))) { 857 spin_lock(&mmlist_lock); 858 if (list_empty(&dst_mm->mmlist)) 859 list_add(&dst_mm->mmlist, 860 &src_mm->mmlist); 861 spin_unlock(&mmlist_lock); 862 } 863 rss[MM_SWAPENTS]++; 864 } else if (is_migration_entry(entry)) { 865 page = migration_entry_to_page(entry); 866 867 rss[mm_counter(page)]++; 868 869 if (is_write_migration_entry(entry) && 870 is_cow_mapping(vm_flags)) { 871 /* 872 * COW mappings require pages in both 873 * parent and child to be set to read. 874 */ 875 make_migration_entry_read(&entry); 876 pte = swp_entry_to_pte(entry); 877 if (pte_swp_soft_dirty(*src_pte)) 878 pte = pte_swp_mksoft_dirty(pte); 879 set_pte_at(src_mm, addr, src_pte, pte); 880 } 881 } 882 goto out_set_pte; 883 } 884 885 /* 886 * If it's a COW mapping, write protect it both 887 * in the parent and the child 888 */ 889 if (is_cow_mapping(vm_flags)) { 890 ptep_set_wrprotect(src_mm, addr, src_pte); 891 pte = pte_wrprotect(pte); 892 } 893 894 /* 895 * If it's a shared mapping, mark it clean in 896 * the child 897 */ 898 if (vm_flags & VM_SHARED) 899 pte = pte_mkclean(pte); 900 pte = pte_mkold(pte); 901 902 page = vm_normal_page(vma, addr, pte); 903 if (page) { 904 get_page(page); 905 page_dup_rmap(page, false); 906 rss[mm_counter(page)]++; 907 } 908 909 out_set_pte: 910 set_pte_at(dst_mm, addr, dst_pte, pte); 911 return 0; 912 } 913 914 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 915 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 916 unsigned long addr, unsigned long end) 917 { 918 pte_t *orig_src_pte, *orig_dst_pte; 919 pte_t *src_pte, *dst_pte; 920 spinlock_t *src_ptl, *dst_ptl; 921 int progress = 0; 922 int rss[NR_MM_COUNTERS]; 923 swp_entry_t entry = (swp_entry_t){0}; 924 925 again: 926 init_rss_vec(rss); 927 928 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 929 if (!dst_pte) 930 return -ENOMEM; 931 src_pte = pte_offset_map(src_pmd, addr); 932 src_ptl = pte_lockptr(src_mm, src_pmd); 933 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 934 orig_src_pte = src_pte; 935 orig_dst_pte = dst_pte; 936 arch_enter_lazy_mmu_mode(); 937 938 do { 939 /* 940 * We are holding two locks at this point - either of them 941 * could generate latencies in another task on another CPU. 942 */ 943 if (progress >= 32) { 944 progress = 0; 945 if (need_resched() || 946 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 947 break; 948 } 949 if (pte_none(*src_pte)) { 950 progress++; 951 continue; 952 } 953 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 954 vma, addr, rss); 955 if (entry.val) 956 break; 957 progress += 8; 958 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 959 960 arch_leave_lazy_mmu_mode(); 961 spin_unlock(src_ptl); 962 pte_unmap(orig_src_pte); 963 add_mm_rss_vec(dst_mm, rss); 964 pte_unmap_unlock(orig_dst_pte, dst_ptl); 965 cond_resched(); 966 967 if (entry.val) { 968 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 969 return -ENOMEM; 970 progress = 0; 971 } 972 if (addr != end) 973 goto again; 974 return 0; 975 } 976 977 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 978 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 979 unsigned long addr, unsigned long end) 980 { 981 pmd_t *src_pmd, *dst_pmd; 982 unsigned long next; 983 984 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 985 if (!dst_pmd) 986 return -ENOMEM; 987 src_pmd = pmd_offset(src_pud, addr); 988 do { 989 next = pmd_addr_end(addr, end); 990 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { 991 int err; 992 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 993 err = copy_huge_pmd(dst_mm, src_mm, 994 dst_pmd, src_pmd, addr, vma); 995 if (err == -ENOMEM) 996 return -ENOMEM; 997 if (!err) 998 continue; 999 /* fall through */ 1000 } 1001 if (pmd_none_or_clear_bad(src_pmd)) 1002 continue; 1003 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1004 vma, addr, next)) 1005 return -ENOMEM; 1006 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1007 return 0; 1008 } 1009 1010 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1011 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1012 unsigned long addr, unsigned long end) 1013 { 1014 pud_t *src_pud, *dst_pud; 1015 unsigned long next; 1016 1017 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1018 if (!dst_pud) 1019 return -ENOMEM; 1020 src_pud = pud_offset(src_pgd, addr); 1021 do { 1022 next = pud_addr_end(addr, end); 1023 if (pud_none_or_clear_bad(src_pud)) 1024 continue; 1025 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1026 vma, addr, next)) 1027 return -ENOMEM; 1028 } while (dst_pud++, src_pud++, addr = next, addr != end); 1029 return 0; 1030 } 1031 1032 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1033 struct vm_area_struct *vma) 1034 { 1035 pgd_t *src_pgd, *dst_pgd; 1036 unsigned long next; 1037 unsigned long addr = vma->vm_start; 1038 unsigned long end = vma->vm_end; 1039 unsigned long mmun_start; /* For mmu_notifiers */ 1040 unsigned long mmun_end; /* For mmu_notifiers */ 1041 bool is_cow; 1042 int ret; 1043 1044 /* 1045 * Don't copy ptes where a page fault will fill them correctly. 1046 * Fork becomes much lighter when there are big shared or private 1047 * readonly mappings. The tradeoff is that copy_page_range is more 1048 * efficient than faulting. 1049 */ 1050 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1051 !vma->anon_vma) 1052 return 0; 1053 1054 if (is_vm_hugetlb_page(vma)) 1055 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1056 1057 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1058 /* 1059 * We do not free on error cases below as remove_vma 1060 * gets called on error from higher level routine 1061 */ 1062 ret = track_pfn_copy(vma); 1063 if (ret) 1064 return ret; 1065 } 1066 1067 /* 1068 * We need to invalidate the secondary MMU mappings only when 1069 * there could be a permission downgrade on the ptes of the 1070 * parent mm. And a permission downgrade will only happen if 1071 * is_cow_mapping() returns true. 1072 */ 1073 is_cow = is_cow_mapping(vma->vm_flags); 1074 mmun_start = addr; 1075 mmun_end = end; 1076 if (is_cow) 1077 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1078 mmun_end); 1079 1080 ret = 0; 1081 dst_pgd = pgd_offset(dst_mm, addr); 1082 src_pgd = pgd_offset(src_mm, addr); 1083 do { 1084 next = pgd_addr_end(addr, end); 1085 if (pgd_none_or_clear_bad(src_pgd)) 1086 continue; 1087 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1088 vma, addr, next))) { 1089 ret = -ENOMEM; 1090 break; 1091 } 1092 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1093 1094 if (is_cow) 1095 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1096 return ret; 1097 } 1098 1099 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1100 struct vm_area_struct *vma, pmd_t *pmd, 1101 unsigned long addr, unsigned long end, 1102 struct zap_details *details) 1103 { 1104 struct mm_struct *mm = tlb->mm; 1105 int force_flush = 0; 1106 int rss[NR_MM_COUNTERS]; 1107 spinlock_t *ptl; 1108 pte_t *start_pte; 1109 pte_t *pte; 1110 swp_entry_t entry; 1111 1112 again: 1113 init_rss_vec(rss); 1114 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1115 pte = start_pte; 1116 arch_enter_lazy_mmu_mode(); 1117 do { 1118 pte_t ptent = *pte; 1119 if (pte_none(ptent)) { 1120 continue; 1121 } 1122 1123 if (pte_present(ptent)) { 1124 struct page *page; 1125 1126 page = vm_normal_page(vma, addr, ptent); 1127 if (unlikely(details) && page) { 1128 /* 1129 * unmap_shared_mapping_pages() wants to 1130 * invalidate cache without truncating: 1131 * unmap shared but keep private pages. 1132 */ 1133 if (details->check_mapping && 1134 details->check_mapping != page->mapping) 1135 continue; 1136 } 1137 ptent = ptep_get_and_clear_full(mm, addr, pte, 1138 tlb->fullmm); 1139 tlb_remove_tlb_entry(tlb, pte, addr); 1140 if (unlikely(!page)) 1141 continue; 1142 1143 if (!PageAnon(page)) { 1144 if (pte_dirty(ptent)) { 1145 /* 1146 * oom_reaper cannot tear down dirty 1147 * pages 1148 */ 1149 if (unlikely(details && details->ignore_dirty)) 1150 continue; 1151 force_flush = 1; 1152 set_page_dirty(page); 1153 } 1154 if (pte_young(ptent) && 1155 likely(!(vma->vm_flags & VM_SEQ_READ))) 1156 mark_page_accessed(page); 1157 } 1158 rss[mm_counter(page)]--; 1159 page_remove_rmap(page, false); 1160 if (unlikely(page_mapcount(page) < 0)) 1161 print_bad_pte(vma, addr, ptent, page); 1162 if (unlikely(!__tlb_remove_page(tlb, page))) { 1163 force_flush = 1; 1164 addr += PAGE_SIZE; 1165 break; 1166 } 1167 continue; 1168 } 1169 /* only check swap_entries if explicitly asked for in details */ 1170 if (unlikely(details && !details->check_swap_entries)) 1171 continue; 1172 1173 entry = pte_to_swp_entry(ptent); 1174 if (!non_swap_entry(entry)) 1175 rss[MM_SWAPENTS]--; 1176 else if (is_migration_entry(entry)) { 1177 struct page *page; 1178 1179 page = migration_entry_to_page(entry); 1180 rss[mm_counter(page)]--; 1181 } 1182 if (unlikely(!free_swap_and_cache(entry))) 1183 print_bad_pte(vma, addr, ptent, NULL); 1184 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1185 } while (pte++, addr += PAGE_SIZE, addr != end); 1186 1187 add_mm_rss_vec(mm, rss); 1188 arch_leave_lazy_mmu_mode(); 1189 1190 /* Do the actual TLB flush before dropping ptl */ 1191 if (force_flush) 1192 tlb_flush_mmu_tlbonly(tlb); 1193 pte_unmap_unlock(start_pte, ptl); 1194 1195 /* 1196 * If we forced a TLB flush (either due to running out of 1197 * batch buffers or because we needed to flush dirty TLB 1198 * entries before releasing the ptl), free the batched 1199 * memory too. Restart if we didn't do everything. 1200 */ 1201 if (force_flush) { 1202 force_flush = 0; 1203 tlb_flush_mmu_free(tlb); 1204 1205 if (addr != end) 1206 goto again; 1207 } 1208 1209 return addr; 1210 } 1211 1212 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1213 struct vm_area_struct *vma, pud_t *pud, 1214 unsigned long addr, unsigned long end, 1215 struct zap_details *details) 1216 { 1217 pmd_t *pmd; 1218 unsigned long next; 1219 1220 pmd = pmd_offset(pud, addr); 1221 do { 1222 next = pmd_addr_end(addr, end); 1223 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1224 if (next - addr != HPAGE_PMD_SIZE) { 1225 #ifdef CONFIG_DEBUG_VM 1226 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1227 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1228 __func__, addr, end, 1229 vma->vm_start, 1230 vma->vm_end); 1231 BUG(); 1232 } 1233 #endif 1234 split_huge_pmd(vma, pmd, addr); 1235 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1236 goto next; 1237 /* fall through */ 1238 } 1239 /* 1240 * Here there can be other concurrent MADV_DONTNEED or 1241 * trans huge page faults running, and if the pmd is 1242 * none or trans huge it can change under us. This is 1243 * because MADV_DONTNEED holds the mmap_sem in read 1244 * mode. 1245 */ 1246 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1247 goto next; 1248 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1249 next: 1250 cond_resched(); 1251 } while (pmd++, addr = next, addr != end); 1252 1253 return addr; 1254 } 1255 1256 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1257 struct vm_area_struct *vma, pgd_t *pgd, 1258 unsigned long addr, unsigned long end, 1259 struct zap_details *details) 1260 { 1261 pud_t *pud; 1262 unsigned long next; 1263 1264 pud = pud_offset(pgd, addr); 1265 do { 1266 next = pud_addr_end(addr, end); 1267 if (pud_none_or_clear_bad(pud)) 1268 continue; 1269 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1270 } while (pud++, addr = next, addr != end); 1271 1272 return addr; 1273 } 1274 1275 void unmap_page_range(struct mmu_gather *tlb, 1276 struct vm_area_struct *vma, 1277 unsigned long addr, unsigned long end, 1278 struct zap_details *details) 1279 { 1280 pgd_t *pgd; 1281 unsigned long next; 1282 1283 BUG_ON(addr >= end); 1284 tlb_start_vma(tlb, vma); 1285 pgd = pgd_offset(vma->vm_mm, addr); 1286 do { 1287 next = pgd_addr_end(addr, end); 1288 if (pgd_none_or_clear_bad(pgd)) 1289 continue; 1290 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1291 } while (pgd++, addr = next, addr != end); 1292 tlb_end_vma(tlb, vma); 1293 } 1294 1295 1296 static void unmap_single_vma(struct mmu_gather *tlb, 1297 struct vm_area_struct *vma, unsigned long start_addr, 1298 unsigned long end_addr, 1299 struct zap_details *details) 1300 { 1301 unsigned long start = max(vma->vm_start, start_addr); 1302 unsigned long end; 1303 1304 if (start >= vma->vm_end) 1305 return; 1306 end = min(vma->vm_end, end_addr); 1307 if (end <= vma->vm_start) 1308 return; 1309 1310 if (vma->vm_file) 1311 uprobe_munmap(vma, start, end); 1312 1313 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1314 untrack_pfn(vma, 0, 0); 1315 1316 if (start != end) { 1317 if (unlikely(is_vm_hugetlb_page(vma))) { 1318 /* 1319 * It is undesirable to test vma->vm_file as it 1320 * should be non-null for valid hugetlb area. 1321 * However, vm_file will be NULL in the error 1322 * cleanup path of mmap_region. When 1323 * hugetlbfs ->mmap method fails, 1324 * mmap_region() nullifies vma->vm_file 1325 * before calling this function to clean up. 1326 * Since no pte has actually been setup, it is 1327 * safe to do nothing in this case. 1328 */ 1329 if (vma->vm_file) { 1330 i_mmap_lock_write(vma->vm_file->f_mapping); 1331 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1332 i_mmap_unlock_write(vma->vm_file->f_mapping); 1333 } 1334 } else 1335 unmap_page_range(tlb, vma, start, end, details); 1336 } 1337 } 1338 1339 /** 1340 * unmap_vmas - unmap a range of memory covered by a list of vma's 1341 * @tlb: address of the caller's struct mmu_gather 1342 * @vma: the starting vma 1343 * @start_addr: virtual address at which to start unmapping 1344 * @end_addr: virtual address at which to end unmapping 1345 * 1346 * Unmap all pages in the vma list. 1347 * 1348 * Only addresses between `start' and `end' will be unmapped. 1349 * 1350 * The VMA list must be sorted in ascending virtual address order. 1351 * 1352 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1353 * range after unmap_vmas() returns. So the only responsibility here is to 1354 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1355 * drops the lock and schedules. 1356 */ 1357 void unmap_vmas(struct mmu_gather *tlb, 1358 struct vm_area_struct *vma, unsigned long start_addr, 1359 unsigned long end_addr) 1360 { 1361 struct mm_struct *mm = vma->vm_mm; 1362 1363 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1364 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1365 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1366 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1367 } 1368 1369 /** 1370 * zap_page_range - remove user pages in a given range 1371 * @vma: vm_area_struct holding the applicable pages 1372 * @start: starting address of pages to zap 1373 * @size: number of bytes to zap 1374 * @details: details of shared cache invalidation 1375 * 1376 * Caller must protect the VMA list 1377 */ 1378 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1379 unsigned long size, struct zap_details *details) 1380 { 1381 struct mm_struct *mm = vma->vm_mm; 1382 struct mmu_gather tlb; 1383 unsigned long end = start + size; 1384 1385 lru_add_drain(); 1386 tlb_gather_mmu(&tlb, mm, start, end); 1387 update_hiwater_rss(mm); 1388 mmu_notifier_invalidate_range_start(mm, start, end); 1389 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1390 unmap_single_vma(&tlb, vma, start, end, details); 1391 mmu_notifier_invalidate_range_end(mm, start, end); 1392 tlb_finish_mmu(&tlb, start, end); 1393 } 1394 1395 /** 1396 * zap_page_range_single - remove user pages in a given range 1397 * @vma: vm_area_struct holding the applicable pages 1398 * @address: starting address of pages to zap 1399 * @size: number of bytes to zap 1400 * @details: details of shared cache invalidation 1401 * 1402 * The range must fit into one VMA. 1403 */ 1404 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1405 unsigned long size, struct zap_details *details) 1406 { 1407 struct mm_struct *mm = vma->vm_mm; 1408 struct mmu_gather tlb; 1409 unsigned long end = address + size; 1410 1411 lru_add_drain(); 1412 tlb_gather_mmu(&tlb, mm, address, end); 1413 update_hiwater_rss(mm); 1414 mmu_notifier_invalidate_range_start(mm, address, end); 1415 unmap_single_vma(&tlb, vma, address, end, details); 1416 mmu_notifier_invalidate_range_end(mm, address, end); 1417 tlb_finish_mmu(&tlb, address, end); 1418 } 1419 1420 /** 1421 * zap_vma_ptes - remove ptes mapping the vma 1422 * @vma: vm_area_struct holding ptes to be zapped 1423 * @address: starting address of pages to zap 1424 * @size: number of bytes to zap 1425 * 1426 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1427 * 1428 * The entire address range must be fully contained within the vma. 1429 * 1430 * Returns 0 if successful. 1431 */ 1432 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1433 unsigned long size) 1434 { 1435 if (address < vma->vm_start || address + size > vma->vm_end || 1436 !(vma->vm_flags & VM_PFNMAP)) 1437 return -1; 1438 zap_page_range_single(vma, address, size, NULL); 1439 return 0; 1440 } 1441 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1442 1443 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1444 spinlock_t **ptl) 1445 { 1446 pgd_t * pgd = pgd_offset(mm, addr); 1447 pud_t * pud = pud_alloc(mm, pgd, addr); 1448 if (pud) { 1449 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1450 if (pmd) { 1451 VM_BUG_ON(pmd_trans_huge(*pmd)); 1452 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1453 } 1454 } 1455 return NULL; 1456 } 1457 1458 /* 1459 * This is the old fallback for page remapping. 1460 * 1461 * For historical reasons, it only allows reserved pages. Only 1462 * old drivers should use this, and they needed to mark their 1463 * pages reserved for the old functions anyway. 1464 */ 1465 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1466 struct page *page, pgprot_t prot) 1467 { 1468 struct mm_struct *mm = vma->vm_mm; 1469 int retval; 1470 pte_t *pte; 1471 spinlock_t *ptl; 1472 1473 retval = -EINVAL; 1474 if (PageAnon(page)) 1475 goto out; 1476 retval = -ENOMEM; 1477 flush_dcache_page(page); 1478 pte = get_locked_pte(mm, addr, &ptl); 1479 if (!pte) 1480 goto out; 1481 retval = -EBUSY; 1482 if (!pte_none(*pte)) 1483 goto out_unlock; 1484 1485 /* Ok, finally just insert the thing.. */ 1486 get_page(page); 1487 inc_mm_counter_fast(mm, mm_counter_file(page)); 1488 page_add_file_rmap(page); 1489 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1490 1491 retval = 0; 1492 pte_unmap_unlock(pte, ptl); 1493 return retval; 1494 out_unlock: 1495 pte_unmap_unlock(pte, ptl); 1496 out: 1497 return retval; 1498 } 1499 1500 /** 1501 * vm_insert_page - insert single page into user vma 1502 * @vma: user vma to map to 1503 * @addr: target user address of this page 1504 * @page: source kernel page 1505 * 1506 * This allows drivers to insert individual pages they've allocated 1507 * into a user vma. 1508 * 1509 * The page has to be a nice clean _individual_ kernel allocation. 1510 * If you allocate a compound page, you need to have marked it as 1511 * such (__GFP_COMP), or manually just split the page up yourself 1512 * (see split_page()). 1513 * 1514 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1515 * took an arbitrary page protection parameter. This doesn't allow 1516 * that. Your vma protection will have to be set up correctly, which 1517 * means that if you want a shared writable mapping, you'd better 1518 * ask for a shared writable mapping! 1519 * 1520 * The page does not need to be reserved. 1521 * 1522 * Usually this function is called from f_op->mmap() handler 1523 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1524 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1525 * function from other places, for example from page-fault handler. 1526 */ 1527 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1528 struct page *page) 1529 { 1530 if (addr < vma->vm_start || addr >= vma->vm_end) 1531 return -EFAULT; 1532 if (!page_count(page)) 1533 return -EINVAL; 1534 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1535 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1536 BUG_ON(vma->vm_flags & VM_PFNMAP); 1537 vma->vm_flags |= VM_MIXEDMAP; 1538 } 1539 return insert_page(vma, addr, page, vma->vm_page_prot); 1540 } 1541 EXPORT_SYMBOL(vm_insert_page); 1542 1543 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1544 pfn_t pfn, pgprot_t prot) 1545 { 1546 struct mm_struct *mm = vma->vm_mm; 1547 int retval; 1548 pte_t *pte, entry; 1549 spinlock_t *ptl; 1550 1551 retval = -ENOMEM; 1552 pte = get_locked_pte(mm, addr, &ptl); 1553 if (!pte) 1554 goto out; 1555 retval = -EBUSY; 1556 if (!pte_none(*pte)) 1557 goto out_unlock; 1558 1559 /* Ok, finally just insert the thing.. */ 1560 if (pfn_t_devmap(pfn)) 1561 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1562 else 1563 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1564 set_pte_at(mm, addr, pte, entry); 1565 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1566 1567 retval = 0; 1568 out_unlock: 1569 pte_unmap_unlock(pte, ptl); 1570 out: 1571 return retval; 1572 } 1573 1574 /** 1575 * vm_insert_pfn - insert single pfn into user vma 1576 * @vma: user vma to map to 1577 * @addr: target user address of this page 1578 * @pfn: source kernel pfn 1579 * 1580 * Similar to vm_insert_page, this allows drivers to insert individual pages 1581 * they've allocated into a user vma. Same comments apply. 1582 * 1583 * This function should only be called from a vm_ops->fault handler, and 1584 * in that case the handler should return NULL. 1585 * 1586 * vma cannot be a COW mapping. 1587 * 1588 * As this is called only for pages that do not currently exist, we 1589 * do not need to flush old virtual caches or the TLB. 1590 */ 1591 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1592 unsigned long pfn) 1593 { 1594 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1595 } 1596 EXPORT_SYMBOL(vm_insert_pfn); 1597 1598 /** 1599 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1600 * @vma: user vma to map to 1601 * @addr: target user address of this page 1602 * @pfn: source kernel pfn 1603 * @pgprot: pgprot flags for the inserted page 1604 * 1605 * This is exactly like vm_insert_pfn, except that it allows drivers to 1606 * to override pgprot on a per-page basis. 1607 * 1608 * This only makes sense for IO mappings, and it makes no sense for 1609 * cow mappings. In general, using multiple vmas is preferable; 1610 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1611 * impractical. 1612 */ 1613 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1614 unsigned long pfn, pgprot_t pgprot) 1615 { 1616 int ret; 1617 /* 1618 * Technically, architectures with pte_special can avoid all these 1619 * restrictions (same for remap_pfn_range). However we would like 1620 * consistency in testing and feature parity among all, so we should 1621 * try to keep these invariants in place for everybody. 1622 */ 1623 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1624 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1625 (VM_PFNMAP|VM_MIXEDMAP)); 1626 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1627 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1628 1629 if (addr < vma->vm_start || addr >= vma->vm_end) 1630 return -EFAULT; 1631 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV))) 1632 return -EINVAL; 1633 1634 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot); 1635 1636 return ret; 1637 } 1638 EXPORT_SYMBOL(vm_insert_pfn_prot); 1639 1640 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1641 pfn_t pfn) 1642 { 1643 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1644 1645 if (addr < vma->vm_start || addr >= vma->vm_end) 1646 return -EFAULT; 1647 1648 /* 1649 * If we don't have pte special, then we have to use the pfn_valid() 1650 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1651 * refcount the page if pfn_valid is true (hence insert_page rather 1652 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1653 * without pte special, it would there be refcounted as a normal page. 1654 */ 1655 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1656 struct page *page; 1657 1658 /* 1659 * At this point we are committed to insert_page() 1660 * regardless of whether the caller specified flags that 1661 * result in pfn_t_has_page() == false. 1662 */ 1663 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1664 return insert_page(vma, addr, page, vma->vm_page_prot); 1665 } 1666 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1667 } 1668 EXPORT_SYMBOL(vm_insert_mixed); 1669 1670 /* 1671 * maps a range of physical memory into the requested pages. the old 1672 * mappings are removed. any references to nonexistent pages results 1673 * in null mappings (currently treated as "copy-on-access") 1674 */ 1675 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1676 unsigned long addr, unsigned long end, 1677 unsigned long pfn, pgprot_t prot) 1678 { 1679 pte_t *pte; 1680 spinlock_t *ptl; 1681 1682 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1683 if (!pte) 1684 return -ENOMEM; 1685 arch_enter_lazy_mmu_mode(); 1686 do { 1687 BUG_ON(!pte_none(*pte)); 1688 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1689 pfn++; 1690 } while (pte++, addr += PAGE_SIZE, addr != end); 1691 arch_leave_lazy_mmu_mode(); 1692 pte_unmap_unlock(pte - 1, ptl); 1693 return 0; 1694 } 1695 1696 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1697 unsigned long addr, unsigned long end, 1698 unsigned long pfn, pgprot_t prot) 1699 { 1700 pmd_t *pmd; 1701 unsigned long next; 1702 1703 pfn -= addr >> PAGE_SHIFT; 1704 pmd = pmd_alloc(mm, pud, addr); 1705 if (!pmd) 1706 return -ENOMEM; 1707 VM_BUG_ON(pmd_trans_huge(*pmd)); 1708 do { 1709 next = pmd_addr_end(addr, end); 1710 if (remap_pte_range(mm, pmd, addr, next, 1711 pfn + (addr >> PAGE_SHIFT), prot)) 1712 return -ENOMEM; 1713 } while (pmd++, addr = next, addr != end); 1714 return 0; 1715 } 1716 1717 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1718 unsigned long addr, unsigned long end, 1719 unsigned long pfn, pgprot_t prot) 1720 { 1721 pud_t *pud; 1722 unsigned long next; 1723 1724 pfn -= addr >> PAGE_SHIFT; 1725 pud = pud_alloc(mm, pgd, addr); 1726 if (!pud) 1727 return -ENOMEM; 1728 do { 1729 next = pud_addr_end(addr, end); 1730 if (remap_pmd_range(mm, pud, addr, next, 1731 pfn + (addr >> PAGE_SHIFT), prot)) 1732 return -ENOMEM; 1733 } while (pud++, addr = next, addr != end); 1734 return 0; 1735 } 1736 1737 /** 1738 * remap_pfn_range - remap kernel memory to userspace 1739 * @vma: user vma to map to 1740 * @addr: target user address to start at 1741 * @pfn: physical address of kernel memory 1742 * @size: size of map area 1743 * @prot: page protection flags for this mapping 1744 * 1745 * Note: this is only safe if the mm semaphore is held when called. 1746 */ 1747 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1748 unsigned long pfn, unsigned long size, pgprot_t prot) 1749 { 1750 pgd_t *pgd; 1751 unsigned long next; 1752 unsigned long end = addr + PAGE_ALIGN(size); 1753 struct mm_struct *mm = vma->vm_mm; 1754 int err; 1755 1756 /* 1757 * Physically remapped pages are special. Tell the 1758 * rest of the world about it: 1759 * VM_IO tells people not to look at these pages 1760 * (accesses can have side effects). 1761 * VM_PFNMAP tells the core MM that the base pages are just 1762 * raw PFN mappings, and do not have a "struct page" associated 1763 * with them. 1764 * VM_DONTEXPAND 1765 * Disable vma merging and expanding with mremap(). 1766 * VM_DONTDUMP 1767 * Omit vma from core dump, even when VM_IO turned off. 1768 * 1769 * There's a horrible special case to handle copy-on-write 1770 * behaviour that some programs depend on. We mark the "original" 1771 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1772 * See vm_normal_page() for details. 1773 */ 1774 if (is_cow_mapping(vma->vm_flags)) { 1775 if (addr != vma->vm_start || end != vma->vm_end) 1776 return -EINVAL; 1777 vma->vm_pgoff = pfn; 1778 } 1779 1780 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 1781 if (err) 1782 return -EINVAL; 1783 1784 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1785 1786 BUG_ON(addr >= end); 1787 pfn -= addr >> PAGE_SHIFT; 1788 pgd = pgd_offset(mm, addr); 1789 flush_cache_range(vma, addr, end); 1790 do { 1791 next = pgd_addr_end(addr, end); 1792 err = remap_pud_range(mm, pgd, addr, next, 1793 pfn + (addr >> PAGE_SHIFT), prot); 1794 if (err) 1795 break; 1796 } while (pgd++, addr = next, addr != end); 1797 1798 if (err) 1799 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 1800 1801 return err; 1802 } 1803 EXPORT_SYMBOL(remap_pfn_range); 1804 1805 /** 1806 * vm_iomap_memory - remap memory to userspace 1807 * @vma: user vma to map to 1808 * @start: start of area 1809 * @len: size of area 1810 * 1811 * This is a simplified io_remap_pfn_range() for common driver use. The 1812 * driver just needs to give us the physical memory range to be mapped, 1813 * we'll figure out the rest from the vma information. 1814 * 1815 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1816 * whatever write-combining details or similar. 1817 */ 1818 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1819 { 1820 unsigned long vm_len, pfn, pages; 1821 1822 /* Check that the physical memory area passed in looks valid */ 1823 if (start + len < start) 1824 return -EINVAL; 1825 /* 1826 * You *really* shouldn't map things that aren't page-aligned, 1827 * but we've historically allowed it because IO memory might 1828 * just have smaller alignment. 1829 */ 1830 len += start & ~PAGE_MASK; 1831 pfn = start >> PAGE_SHIFT; 1832 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1833 if (pfn + pages < pfn) 1834 return -EINVAL; 1835 1836 /* We start the mapping 'vm_pgoff' pages into the area */ 1837 if (vma->vm_pgoff > pages) 1838 return -EINVAL; 1839 pfn += vma->vm_pgoff; 1840 pages -= vma->vm_pgoff; 1841 1842 /* Can we fit all of the mapping? */ 1843 vm_len = vma->vm_end - vma->vm_start; 1844 if (vm_len >> PAGE_SHIFT > pages) 1845 return -EINVAL; 1846 1847 /* Ok, let it rip */ 1848 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1849 } 1850 EXPORT_SYMBOL(vm_iomap_memory); 1851 1852 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1853 unsigned long addr, unsigned long end, 1854 pte_fn_t fn, void *data) 1855 { 1856 pte_t *pte; 1857 int err; 1858 pgtable_t token; 1859 spinlock_t *uninitialized_var(ptl); 1860 1861 pte = (mm == &init_mm) ? 1862 pte_alloc_kernel(pmd, addr) : 1863 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1864 if (!pte) 1865 return -ENOMEM; 1866 1867 BUG_ON(pmd_huge(*pmd)); 1868 1869 arch_enter_lazy_mmu_mode(); 1870 1871 token = pmd_pgtable(*pmd); 1872 1873 do { 1874 err = fn(pte++, token, addr, data); 1875 if (err) 1876 break; 1877 } while (addr += PAGE_SIZE, addr != end); 1878 1879 arch_leave_lazy_mmu_mode(); 1880 1881 if (mm != &init_mm) 1882 pte_unmap_unlock(pte-1, ptl); 1883 return err; 1884 } 1885 1886 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1887 unsigned long addr, unsigned long end, 1888 pte_fn_t fn, void *data) 1889 { 1890 pmd_t *pmd; 1891 unsigned long next; 1892 int err; 1893 1894 BUG_ON(pud_huge(*pud)); 1895 1896 pmd = pmd_alloc(mm, pud, addr); 1897 if (!pmd) 1898 return -ENOMEM; 1899 do { 1900 next = pmd_addr_end(addr, end); 1901 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1902 if (err) 1903 break; 1904 } while (pmd++, addr = next, addr != end); 1905 return err; 1906 } 1907 1908 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1909 unsigned long addr, unsigned long end, 1910 pte_fn_t fn, void *data) 1911 { 1912 pud_t *pud; 1913 unsigned long next; 1914 int err; 1915 1916 pud = pud_alloc(mm, pgd, addr); 1917 if (!pud) 1918 return -ENOMEM; 1919 do { 1920 next = pud_addr_end(addr, end); 1921 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1922 if (err) 1923 break; 1924 } while (pud++, addr = next, addr != end); 1925 return err; 1926 } 1927 1928 /* 1929 * Scan a region of virtual memory, filling in page tables as necessary 1930 * and calling a provided function on each leaf page table. 1931 */ 1932 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1933 unsigned long size, pte_fn_t fn, void *data) 1934 { 1935 pgd_t *pgd; 1936 unsigned long next; 1937 unsigned long end = addr + size; 1938 int err; 1939 1940 if (WARN_ON(addr >= end)) 1941 return -EINVAL; 1942 1943 pgd = pgd_offset(mm, addr); 1944 do { 1945 next = pgd_addr_end(addr, end); 1946 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1947 if (err) 1948 break; 1949 } while (pgd++, addr = next, addr != end); 1950 1951 return err; 1952 } 1953 EXPORT_SYMBOL_GPL(apply_to_page_range); 1954 1955 /* 1956 * handle_pte_fault chooses page fault handler according to an entry which was 1957 * read non-atomically. Before making any commitment, on those architectures 1958 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 1959 * parts, do_swap_page must check under lock before unmapping the pte and 1960 * proceeding (but do_wp_page is only called after already making such a check; 1961 * and do_anonymous_page can safely check later on). 1962 */ 1963 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1964 pte_t *page_table, pte_t orig_pte) 1965 { 1966 int same = 1; 1967 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1968 if (sizeof(pte_t) > sizeof(unsigned long)) { 1969 spinlock_t *ptl = pte_lockptr(mm, pmd); 1970 spin_lock(ptl); 1971 same = pte_same(*page_table, orig_pte); 1972 spin_unlock(ptl); 1973 } 1974 #endif 1975 pte_unmap(page_table); 1976 return same; 1977 } 1978 1979 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1980 { 1981 debug_dma_assert_idle(src); 1982 1983 /* 1984 * If the source page was a PFN mapping, we don't have 1985 * a "struct page" for it. We do a best-effort copy by 1986 * just copying from the original user address. If that 1987 * fails, we just zero-fill it. Live with it. 1988 */ 1989 if (unlikely(!src)) { 1990 void *kaddr = kmap_atomic(dst); 1991 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1992 1993 /* 1994 * This really shouldn't fail, because the page is there 1995 * in the page tables. But it might just be unreadable, 1996 * in which case we just give up and fill the result with 1997 * zeroes. 1998 */ 1999 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2000 clear_page(kaddr); 2001 kunmap_atomic(kaddr); 2002 flush_dcache_page(dst); 2003 } else 2004 copy_user_highpage(dst, src, va, vma); 2005 } 2006 2007 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2008 { 2009 struct file *vm_file = vma->vm_file; 2010 2011 if (vm_file) 2012 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2013 2014 /* 2015 * Special mappings (e.g. VDSO) do not have any file so fake 2016 * a default GFP_KERNEL for them. 2017 */ 2018 return GFP_KERNEL; 2019 } 2020 2021 /* 2022 * Notify the address space that the page is about to become writable so that 2023 * it can prohibit this or wait for the page to get into an appropriate state. 2024 * 2025 * We do this without the lock held, so that it can sleep if it needs to. 2026 */ 2027 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, 2028 unsigned long address) 2029 { 2030 struct vm_fault vmf; 2031 int ret; 2032 2033 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2034 vmf.pgoff = page->index; 2035 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2036 vmf.gfp_mask = __get_fault_gfp_mask(vma); 2037 vmf.page = page; 2038 vmf.cow_page = NULL; 2039 2040 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 2041 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2042 return ret; 2043 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2044 lock_page(page); 2045 if (!page->mapping) { 2046 unlock_page(page); 2047 return 0; /* retry */ 2048 } 2049 ret |= VM_FAULT_LOCKED; 2050 } else 2051 VM_BUG_ON_PAGE(!PageLocked(page), page); 2052 return ret; 2053 } 2054 2055 /* 2056 * Handle write page faults for pages that can be reused in the current vma 2057 * 2058 * This can happen either due to the mapping being with the VM_SHARED flag, 2059 * or due to us being the last reference standing to the page. In either 2060 * case, all we need to do here is to mark the page as writable and update 2061 * any related book-keeping. 2062 */ 2063 static inline int wp_page_reuse(struct mm_struct *mm, 2064 struct vm_area_struct *vma, unsigned long address, 2065 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, 2066 struct page *page, int page_mkwrite, 2067 int dirty_shared) 2068 __releases(ptl) 2069 { 2070 pte_t entry; 2071 /* 2072 * Clear the pages cpupid information as the existing 2073 * information potentially belongs to a now completely 2074 * unrelated process. 2075 */ 2076 if (page) 2077 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2078 2079 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2080 entry = pte_mkyoung(orig_pte); 2081 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2082 if (ptep_set_access_flags(vma, address, page_table, entry, 1)) 2083 update_mmu_cache(vma, address, page_table); 2084 pte_unmap_unlock(page_table, ptl); 2085 2086 if (dirty_shared) { 2087 struct address_space *mapping; 2088 int dirtied; 2089 2090 if (!page_mkwrite) 2091 lock_page(page); 2092 2093 dirtied = set_page_dirty(page); 2094 VM_BUG_ON_PAGE(PageAnon(page), page); 2095 mapping = page->mapping; 2096 unlock_page(page); 2097 put_page(page); 2098 2099 if ((dirtied || page_mkwrite) && mapping) { 2100 /* 2101 * Some device drivers do not set page.mapping 2102 * but still dirty their pages 2103 */ 2104 balance_dirty_pages_ratelimited(mapping); 2105 } 2106 2107 if (!page_mkwrite) 2108 file_update_time(vma->vm_file); 2109 } 2110 2111 return VM_FAULT_WRITE; 2112 } 2113 2114 /* 2115 * Handle the case of a page which we actually need to copy to a new page. 2116 * 2117 * Called with mmap_sem locked and the old page referenced, but 2118 * without the ptl held. 2119 * 2120 * High level logic flow: 2121 * 2122 * - Allocate a page, copy the content of the old page to the new one. 2123 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2124 * - Take the PTL. If the pte changed, bail out and release the allocated page 2125 * - If the pte is still the way we remember it, update the page table and all 2126 * relevant references. This includes dropping the reference the page-table 2127 * held to the old page, as well as updating the rmap. 2128 * - In any case, unlock the PTL and drop the reference we took to the old page. 2129 */ 2130 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma, 2131 unsigned long address, pte_t *page_table, pmd_t *pmd, 2132 pte_t orig_pte, struct page *old_page) 2133 { 2134 struct page *new_page = NULL; 2135 spinlock_t *ptl = NULL; 2136 pte_t entry; 2137 int page_copied = 0; 2138 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */ 2139 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */ 2140 struct mem_cgroup *memcg; 2141 2142 if (unlikely(anon_vma_prepare(vma))) 2143 goto oom; 2144 2145 if (is_zero_pfn(pte_pfn(orig_pte))) { 2146 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2147 if (!new_page) 2148 goto oom; 2149 } else { 2150 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2151 if (!new_page) 2152 goto oom; 2153 cow_user_page(new_page, old_page, address, vma); 2154 } 2155 2156 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) 2157 goto oom_free_new; 2158 2159 __SetPageUptodate(new_page); 2160 2161 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2162 2163 /* 2164 * Re-check the pte - we dropped the lock 2165 */ 2166 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2167 if (likely(pte_same(*page_table, orig_pte))) { 2168 if (old_page) { 2169 if (!PageAnon(old_page)) { 2170 dec_mm_counter_fast(mm, 2171 mm_counter_file(old_page)); 2172 inc_mm_counter_fast(mm, MM_ANONPAGES); 2173 } 2174 } else { 2175 inc_mm_counter_fast(mm, MM_ANONPAGES); 2176 } 2177 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2178 entry = mk_pte(new_page, vma->vm_page_prot); 2179 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2180 /* 2181 * Clear the pte entry and flush it first, before updating the 2182 * pte with the new entry. This will avoid a race condition 2183 * seen in the presence of one thread doing SMC and another 2184 * thread doing COW. 2185 */ 2186 ptep_clear_flush_notify(vma, address, page_table); 2187 page_add_new_anon_rmap(new_page, vma, address, false); 2188 mem_cgroup_commit_charge(new_page, memcg, false, false); 2189 lru_cache_add_active_or_unevictable(new_page, vma); 2190 /* 2191 * We call the notify macro here because, when using secondary 2192 * mmu page tables (such as kvm shadow page tables), we want the 2193 * new page to be mapped directly into the secondary page table. 2194 */ 2195 set_pte_at_notify(mm, address, page_table, entry); 2196 update_mmu_cache(vma, address, page_table); 2197 if (old_page) { 2198 /* 2199 * Only after switching the pte to the new page may 2200 * we remove the mapcount here. Otherwise another 2201 * process may come and find the rmap count decremented 2202 * before the pte is switched to the new page, and 2203 * "reuse" the old page writing into it while our pte 2204 * here still points into it and can be read by other 2205 * threads. 2206 * 2207 * The critical issue is to order this 2208 * page_remove_rmap with the ptp_clear_flush above. 2209 * Those stores are ordered by (if nothing else,) 2210 * the barrier present in the atomic_add_negative 2211 * in page_remove_rmap. 2212 * 2213 * Then the TLB flush in ptep_clear_flush ensures that 2214 * no process can access the old page before the 2215 * decremented mapcount is visible. And the old page 2216 * cannot be reused until after the decremented 2217 * mapcount is visible. So transitively, TLBs to 2218 * old page will be flushed before it can be reused. 2219 */ 2220 page_remove_rmap(old_page, false); 2221 } 2222 2223 /* Free the old page.. */ 2224 new_page = old_page; 2225 page_copied = 1; 2226 } else { 2227 mem_cgroup_cancel_charge(new_page, memcg, false); 2228 } 2229 2230 if (new_page) 2231 put_page(new_page); 2232 2233 pte_unmap_unlock(page_table, ptl); 2234 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2235 if (old_page) { 2236 /* 2237 * Don't let another task, with possibly unlocked vma, 2238 * keep the mlocked page. 2239 */ 2240 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2241 lock_page(old_page); /* LRU manipulation */ 2242 if (PageMlocked(old_page)) 2243 munlock_vma_page(old_page); 2244 unlock_page(old_page); 2245 } 2246 put_page(old_page); 2247 } 2248 return page_copied ? VM_FAULT_WRITE : 0; 2249 oom_free_new: 2250 put_page(new_page); 2251 oom: 2252 if (old_page) 2253 put_page(old_page); 2254 return VM_FAULT_OOM; 2255 } 2256 2257 /* 2258 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2259 * mapping 2260 */ 2261 static int wp_pfn_shared(struct mm_struct *mm, 2262 struct vm_area_struct *vma, unsigned long address, 2263 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, 2264 pmd_t *pmd) 2265 { 2266 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2267 struct vm_fault vmf = { 2268 .page = NULL, 2269 .pgoff = linear_page_index(vma, address), 2270 .virtual_address = (void __user *)(address & PAGE_MASK), 2271 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE, 2272 }; 2273 int ret; 2274 2275 pte_unmap_unlock(page_table, ptl); 2276 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf); 2277 if (ret & VM_FAULT_ERROR) 2278 return ret; 2279 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2280 /* 2281 * We might have raced with another page fault while we 2282 * released the pte_offset_map_lock. 2283 */ 2284 if (!pte_same(*page_table, orig_pte)) { 2285 pte_unmap_unlock(page_table, ptl); 2286 return 0; 2287 } 2288 } 2289 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte, 2290 NULL, 0, 0); 2291 } 2292 2293 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma, 2294 unsigned long address, pte_t *page_table, 2295 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte, 2296 struct page *old_page) 2297 __releases(ptl) 2298 { 2299 int page_mkwrite = 0; 2300 2301 get_page(old_page); 2302 2303 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2304 int tmp; 2305 2306 pte_unmap_unlock(page_table, ptl); 2307 tmp = do_page_mkwrite(vma, old_page, address); 2308 if (unlikely(!tmp || (tmp & 2309 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2310 put_page(old_page); 2311 return tmp; 2312 } 2313 /* 2314 * Since we dropped the lock we need to revalidate 2315 * the PTE as someone else may have changed it. If 2316 * they did, we just return, as we can count on the 2317 * MMU to tell us if they didn't also make it writable. 2318 */ 2319 page_table = pte_offset_map_lock(mm, pmd, address, 2320 &ptl); 2321 if (!pte_same(*page_table, orig_pte)) { 2322 unlock_page(old_page); 2323 pte_unmap_unlock(page_table, ptl); 2324 put_page(old_page); 2325 return 0; 2326 } 2327 page_mkwrite = 1; 2328 } 2329 2330 return wp_page_reuse(mm, vma, address, page_table, ptl, 2331 orig_pte, old_page, page_mkwrite, 1); 2332 } 2333 2334 /* 2335 * This routine handles present pages, when users try to write 2336 * to a shared page. It is done by copying the page to a new address 2337 * and decrementing the shared-page counter for the old page. 2338 * 2339 * Note that this routine assumes that the protection checks have been 2340 * done by the caller (the low-level page fault routine in most cases). 2341 * Thus we can safely just mark it writable once we've done any necessary 2342 * COW. 2343 * 2344 * We also mark the page dirty at this point even though the page will 2345 * change only once the write actually happens. This avoids a few races, 2346 * and potentially makes it more efficient. 2347 * 2348 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2349 * but allow concurrent faults), with pte both mapped and locked. 2350 * We return with mmap_sem still held, but pte unmapped and unlocked. 2351 */ 2352 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2353 unsigned long address, pte_t *page_table, pmd_t *pmd, 2354 spinlock_t *ptl, pte_t orig_pte) 2355 __releases(ptl) 2356 { 2357 struct page *old_page; 2358 2359 old_page = vm_normal_page(vma, address, orig_pte); 2360 if (!old_page) { 2361 /* 2362 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2363 * VM_PFNMAP VMA. 2364 * 2365 * We should not cow pages in a shared writeable mapping. 2366 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2367 */ 2368 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2369 (VM_WRITE|VM_SHARED)) 2370 return wp_pfn_shared(mm, vma, address, page_table, ptl, 2371 orig_pte, pmd); 2372 2373 pte_unmap_unlock(page_table, ptl); 2374 return wp_page_copy(mm, vma, address, page_table, pmd, 2375 orig_pte, old_page); 2376 } 2377 2378 /* 2379 * Take out anonymous pages first, anonymous shared vmas are 2380 * not dirty accountable. 2381 */ 2382 if (PageAnon(old_page) && !PageKsm(old_page)) { 2383 if (!trylock_page(old_page)) { 2384 get_page(old_page); 2385 pte_unmap_unlock(page_table, ptl); 2386 lock_page(old_page); 2387 page_table = pte_offset_map_lock(mm, pmd, address, 2388 &ptl); 2389 if (!pte_same(*page_table, orig_pte)) { 2390 unlock_page(old_page); 2391 pte_unmap_unlock(page_table, ptl); 2392 put_page(old_page); 2393 return 0; 2394 } 2395 put_page(old_page); 2396 } 2397 if (reuse_swap_page(old_page)) { 2398 /* 2399 * The page is all ours. Move it to our anon_vma so 2400 * the rmap code will not search our parent or siblings. 2401 * Protected against the rmap code by the page lock. 2402 */ 2403 page_move_anon_rmap(old_page, vma, address); 2404 unlock_page(old_page); 2405 return wp_page_reuse(mm, vma, address, page_table, ptl, 2406 orig_pte, old_page, 0, 0); 2407 } 2408 unlock_page(old_page); 2409 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2410 (VM_WRITE|VM_SHARED))) { 2411 return wp_page_shared(mm, vma, address, page_table, pmd, 2412 ptl, orig_pte, old_page); 2413 } 2414 2415 /* 2416 * Ok, we need to copy. Oh, well.. 2417 */ 2418 get_page(old_page); 2419 2420 pte_unmap_unlock(page_table, ptl); 2421 return wp_page_copy(mm, vma, address, page_table, pmd, 2422 orig_pte, old_page); 2423 } 2424 2425 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2426 unsigned long start_addr, unsigned long end_addr, 2427 struct zap_details *details) 2428 { 2429 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2430 } 2431 2432 static inline void unmap_mapping_range_tree(struct rb_root *root, 2433 struct zap_details *details) 2434 { 2435 struct vm_area_struct *vma; 2436 pgoff_t vba, vea, zba, zea; 2437 2438 vma_interval_tree_foreach(vma, root, 2439 details->first_index, details->last_index) { 2440 2441 vba = vma->vm_pgoff; 2442 vea = vba + vma_pages(vma) - 1; 2443 zba = details->first_index; 2444 if (zba < vba) 2445 zba = vba; 2446 zea = details->last_index; 2447 if (zea > vea) 2448 zea = vea; 2449 2450 unmap_mapping_range_vma(vma, 2451 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2452 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2453 details); 2454 } 2455 } 2456 2457 /** 2458 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2459 * address_space corresponding to the specified page range in the underlying 2460 * file. 2461 * 2462 * @mapping: the address space containing mmaps to be unmapped. 2463 * @holebegin: byte in first page to unmap, relative to the start of 2464 * the underlying file. This will be rounded down to a PAGE_SIZE 2465 * boundary. Note that this is different from truncate_pagecache(), which 2466 * must keep the partial page. In contrast, we must get rid of 2467 * partial pages. 2468 * @holelen: size of prospective hole in bytes. This will be rounded 2469 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2470 * end of the file. 2471 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2472 * but 0 when invalidating pagecache, don't throw away private data. 2473 */ 2474 void unmap_mapping_range(struct address_space *mapping, 2475 loff_t const holebegin, loff_t const holelen, int even_cows) 2476 { 2477 struct zap_details details = { }; 2478 pgoff_t hba = holebegin >> PAGE_SHIFT; 2479 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2480 2481 /* Check for overflow. */ 2482 if (sizeof(holelen) > sizeof(hlen)) { 2483 long long holeend = 2484 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2485 if (holeend & ~(long long)ULONG_MAX) 2486 hlen = ULONG_MAX - hba + 1; 2487 } 2488 2489 details.check_mapping = even_cows? NULL: mapping; 2490 details.first_index = hba; 2491 details.last_index = hba + hlen - 1; 2492 if (details.last_index < details.first_index) 2493 details.last_index = ULONG_MAX; 2494 2495 2496 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */ 2497 i_mmap_lock_write(mapping); 2498 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2499 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2500 i_mmap_unlock_write(mapping); 2501 } 2502 EXPORT_SYMBOL(unmap_mapping_range); 2503 2504 /* 2505 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2506 * but allow concurrent faults), and pte mapped but not yet locked. 2507 * We return with pte unmapped and unlocked. 2508 * 2509 * We return with the mmap_sem locked or unlocked in the same cases 2510 * as does filemap_fault(). 2511 */ 2512 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2513 unsigned long address, pte_t *page_table, pmd_t *pmd, 2514 unsigned int flags, pte_t orig_pte) 2515 { 2516 spinlock_t *ptl; 2517 struct page *page, *swapcache; 2518 struct mem_cgroup *memcg; 2519 swp_entry_t entry; 2520 pte_t pte; 2521 int locked; 2522 int exclusive = 0; 2523 int ret = 0; 2524 2525 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2526 goto out; 2527 2528 entry = pte_to_swp_entry(orig_pte); 2529 if (unlikely(non_swap_entry(entry))) { 2530 if (is_migration_entry(entry)) { 2531 migration_entry_wait(mm, pmd, address); 2532 } else if (is_hwpoison_entry(entry)) { 2533 ret = VM_FAULT_HWPOISON; 2534 } else { 2535 print_bad_pte(vma, address, orig_pte, NULL); 2536 ret = VM_FAULT_SIGBUS; 2537 } 2538 goto out; 2539 } 2540 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2541 page = lookup_swap_cache(entry); 2542 if (!page) { 2543 page = swapin_readahead(entry, 2544 GFP_HIGHUSER_MOVABLE, vma, address); 2545 if (!page) { 2546 /* 2547 * Back out if somebody else faulted in this pte 2548 * while we released the pte lock. 2549 */ 2550 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2551 if (likely(pte_same(*page_table, orig_pte))) 2552 ret = VM_FAULT_OOM; 2553 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2554 goto unlock; 2555 } 2556 2557 /* Had to read the page from swap area: Major fault */ 2558 ret = VM_FAULT_MAJOR; 2559 count_vm_event(PGMAJFAULT); 2560 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2561 } else if (PageHWPoison(page)) { 2562 /* 2563 * hwpoisoned dirty swapcache pages are kept for killing 2564 * owner processes (which may be unknown at hwpoison time) 2565 */ 2566 ret = VM_FAULT_HWPOISON; 2567 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2568 swapcache = page; 2569 goto out_release; 2570 } 2571 2572 swapcache = page; 2573 locked = lock_page_or_retry(page, mm, flags); 2574 2575 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2576 if (!locked) { 2577 ret |= VM_FAULT_RETRY; 2578 goto out_release; 2579 } 2580 2581 /* 2582 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2583 * release the swapcache from under us. The page pin, and pte_same 2584 * test below, are not enough to exclude that. Even if it is still 2585 * swapcache, we need to check that the page's swap has not changed. 2586 */ 2587 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2588 goto out_page; 2589 2590 page = ksm_might_need_to_copy(page, vma, address); 2591 if (unlikely(!page)) { 2592 ret = VM_FAULT_OOM; 2593 page = swapcache; 2594 goto out_page; 2595 } 2596 2597 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) { 2598 ret = VM_FAULT_OOM; 2599 goto out_page; 2600 } 2601 2602 /* 2603 * Back out if somebody else already faulted in this pte. 2604 */ 2605 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2606 if (unlikely(!pte_same(*page_table, orig_pte))) 2607 goto out_nomap; 2608 2609 if (unlikely(!PageUptodate(page))) { 2610 ret = VM_FAULT_SIGBUS; 2611 goto out_nomap; 2612 } 2613 2614 /* 2615 * The page isn't present yet, go ahead with the fault. 2616 * 2617 * Be careful about the sequence of operations here. 2618 * To get its accounting right, reuse_swap_page() must be called 2619 * while the page is counted on swap but not yet in mapcount i.e. 2620 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2621 * must be called after the swap_free(), or it will never succeed. 2622 */ 2623 2624 inc_mm_counter_fast(mm, MM_ANONPAGES); 2625 dec_mm_counter_fast(mm, MM_SWAPENTS); 2626 pte = mk_pte(page, vma->vm_page_prot); 2627 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2628 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2629 flags &= ~FAULT_FLAG_WRITE; 2630 ret |= VM_FAULT_WRITE; 2631 exclusive = RMAP_EXCLUSIVE; 2632 } 2633 flush_icache_page(vma, page); 2634 if (pte_swp_soft_dirty(orig_pte)) 2635 pte = pte_mksoft_dirty(pte); 2636 set_pte_at(mm, address, page_table, pte); 2637 if (page == swapcache) { 2638 do_page_add_anon_rmap(page, vma, address, exclusive); 2639 mem_cgroup_commit_charge(page, memcg, true, false); 2640 } else { /* ksm created a completely new copy */ 2641 page_add_new_anon_rmap(page, vma, address, false); 2642 mem_cgroup_commit_charge(page, memcg, false, false); 2643 lru_cache_add_active_or_unevictable(page, vma); 2644 } 2645 2646 swap_free(entry); 2647 if (mem_cgroup_swap_full(page) || 2648 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2649 try_to_free_swap(page); 2650 unlock_page(page); 2651 if (page != swapcache) { 2652 /* 2653 * Hold the lock to avoid the swap entry to be reused 2654 * until we take the PT lock for the pte_same() check 2655 * (to avoid false positives from pte_same). For 2656 * further safety release the lock after the swap_free 2657 * so that the swap count won't change under a 2658 * parallel locked swapcache. 2659 */ 2660 unlock_page(swapcache); 2661 put_page(swapcache); 2662 } 2663 2664 if (flags & FAULT_FLAG_WRITE) { 2665 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2666 if (ret & VM_FAULT_ERROR) 2667 ret &= VM_FAULT_ERROR; 2668 goto out; 2669 } 2670 2671 /* No need to invalidate - it was non-present before */ 2672 update_mmu_cache(vma, address, page_table); 2673 unlock: 2674 pte_unmap_unlock(page_table, ptl); 2675 out: 2676 return ret; 2677 out_nomap: 2678 mem_cgroup_cancel_charge(page, memcg, false); 2679 pte_unmap_unlock(page_table, ptl); 2680 out_page: 2681 unlock_page(page); 2682 out_release: 2683 put_page(page); 2684 if (page != swapcache) { 2685 unlock_page(swapcache); 2686 put_page(swapcache); 2687 } 2688 return ret; 2689 } 2690 2691 /* 2692 * This is like a special single-page "expand_{down|up}wards()", 2693 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2694 * doesn't hit another vma. 2695 */ 2696 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2697 { 2698 address &= PAGE_MASK; 2699 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2700 struct vm_area_struct *prev = vma->vm_prev; 2701 2702 /* 2703 * Is there a mapping abutting this one below? 2704 * 2705 * That's only ok if it's the same stack mapping 2706 * that has gotten split.. 2707 */ 2708 if (prev && prev->vm_end == address) 2709 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2710 2711 return expand_downwards(vma, address - PAGE_SIZE); 2712 } 2713 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2714 struct vm_area_struct *next = vma->vm_next; 2715 2716 /* As VM_GROWSDOWN but s/below/above/ */ 2717 if (next && next->vm_start == address + PAGE_SIZE) 2718 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2719 2720 return expand_upwards(vma, address + PAGE_SIZE); 2721 } 2722 return 0; 2723 } 2724 2725 /* 2726 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2727 * but allow concurrent faults), and pte mapped but not yet locked. 2728 * We return with mmap_sem still held, but pte unmapped and unlocked. 2729 */ 2730 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2731 unsigned long address, pte_t *page_table, pmd_t *pmd, 2732 unsigned int flags) 2733 { 2734 struct mem_cgroup *memcg; 2735 struct page *page; 2736 spinlock_t *ptl; 2737 pte_t entry; 2738 2739 pte_unmap(page_table); 2740 2741 /* File mapping without ->vm_ops ? */ 2742 if (vma->vm_flags & VM_SHARED) 2743 return VM_FAULT_SIGBUS; 2744 2745 /* Check if we need to add a guard page to the stack */ 2746 if (check_stack_guard_page(vma, address) < 0) 2747 return VM_FAULT_SIGSEGV; 2748 2749 /* Use the zero-page for reads */ 2750 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) { 2751 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2752 vma->vm_page_prot)); 2753 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2754 if (!pte_none(*page_table)) 2755 goto unlock; 2756 /* Deliver the page fault to userland, check inside PT lock */ 2757 if (userfaultfd_missing(vma)) { 2758 pte_unmap_unlock(page_table, ptl); 2759 return handle_userfault(vma, address, flags, 2760 VM_UFFD_MISSING); 2761 } 2762 goto setpte; 2763 } 2764 2765 /* Allocate our own private page. */ 2766 if (unlikely(anon_vma_prepare(vma))) 2767 goto oom; 2768 page = alloc_zeroed_user_highpage_movable(vma, address); 2769 if (!page) 2770 goto oom; 2771 2772 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) 2773 goto oom_free_page; 2774 2775 /* 2776 * The memory barrier inside __SetPageUptodate makes sure that 2777 * preceeding stores to the page contents become visible before 2778 * the set_pte_at() write. 2779 */ 2780 __SetPageUptodate(page); 2781 2782 entry = mk_pte(page, vma->vm_page_prot); 2783 if (vma->vm_flags & VM_WRITE) 2784 entry = pte_mkwrite(pte_mkdirty(entry)); 2785 2786 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2787 if (!pte_none(*page_table)) 2788 goto release; 2789 2790 /* Deliver the page fault to userland, check inside PT lock */ 2791 if (userfaultfd_missing(vma)) { 2792 pte_unmap_unlock(page_table, ptl); 2793 mem_cgroup_cancel_charge(page, memcg, false); 2794 put_page(page); 2795 return handle_userfault(vma, address, flags, 2796 VM_UFFD_MISSING); 2797 } 2798 2799 inc_mm_counter_fast(mm, MM_ANONPAGES); 2800 page_add_new_anon_rmap(page, vma, address, false); 2801 mem_cgroup_commit_charge(page, memcg, false, false); 2802 lru_cache_add_active_or_unevictable(page, vma); 2803 setpte: 2804 set_pte_at(mm, address, page_table, entry); 2805 2806 /* No need to invalidate - it was non-present before */ 2807 update_mmu_cache(vma, address, page_table); 2808 unlock: 2809 pte_unmap_unlock(page_table, ptl); 2810 return 0; 2811 release: 2812 mem_cgroup_cancel_charge(page, memcg, false); 2813 put_page(page); 2814 goto unlock; 2815 oom_free_page: 2816 put_page(page); 2817 oom: 2818 return VM_FAULT_OOM; 2819 } 2820 2821 /* 2822 * The mmap_sem must have been held on entry, and may have been 2823 * released depending on flags and vma->vm_ops->fault() return value. 2824 * See filemap_fault() and __lock_page_retry(). 2825 */ 2826 static int __do_fault(struct vm_area_struct *vma, unsigned long address, 2827 pgoff_t pgoff, unsigned int flags, 2828 struct page *cow_page, struct page **page) 2829 { 2830 struct vm_fault vmf; 2831 int ret; 2832 2833 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2834 vmf.pgoff = pgoff; 2835 vmf.flags = flags; 2836 vmf.page = NULL; 2837 vmf.gfp_mask = __get_fault_gfp_mask(vma); 2838 vmf.cow_page = cow_page; 2839 2840 ret = vma->vm_ops->fault(vma, &vmf); 2841 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2842 return ret; 2843 if (!vmf.page) 2844 goto out; 2845 2846 if (unlikely(PageHWPoison(vmf.page))) { 2847 if (ret & VM_FAULT_LOCKED) 2848 unlock_page(vmf.page); 2849 put_page(vmf.page); 2850 return VM_FAULT_HWPOISON; 2851 } 2852 2853 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2854 lock_page(vmf.page); 2855 else 2856 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 2857 2858 out: 2859 *page = vmf.page; 2860 return ret; 2861 } 2862 2863 /** 2864 * do_set_pte - setup new PTE entry for given page and add reverse page mapping. 2865 * 2866 * @vma: virtual memory area 2867 * @address: user virtual address 2868 * @page: page to map 2869 * @pte: pointer to target page table entry 2870 * @write: true, if new entry is writable 2871 * @anon: true, if it's anonymous page 2872 * 2873 * Caller must hold page table lock relevant for @pte. 2874 * 2875 * Target users are page handler itself and implementations of 2876 * vm_ops->map_pages. 2877 */ 2878 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 2879 struct page *page, pte_t *pte, bool write, bool anon) 2880 { 2881 pte_t entry; 2882 2883 flush_icache_page(vma, page); 2884 entry = mk_pte(page, vma->vm_page_prot); 2885 if (write) 2886 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2887 if (anon) { 2888 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2889 page_add_new_anon_rmap(page, vma, address, false); 2890 } else { 2891 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 2892 page_add_file_rmap(page); 2893 } 2894 set_pte_at(vma->vm_mm, address, pte, entry); 2895 2896 /* no need to invalidate: a not-present page won't be cached */ 2897 update_mmu_cache(vma, address, pte); 2898 } 2899 2900 static unsigned long fault_around_bytes __read_mostly = 2901 rounddown_pow_of_two(65536); 2902 2903 #ifdef CONFIG_DEBUG_FS 2904 static int fault_around_bytes_get(void *data, u64 *val) 2905 { 2906 *val = fault_around_bytes; 2907 return 0; 2908 } 2909 2910 /* 2911 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 2912 * rounded down to nearest page order. It's what do_fault_around() expects to 2913 * see. 2914 */ 2915 static int fault_around_bytes_set(void *data, u64 val) 2916 { 2917 if (val / PAGE_SIZE > PTRS_PER_PTE) 2918 return -EINVAL; 2919 if (val > PAGE_SIZE) 2920 fault_around_bytes = rounddown_pow_of_two(val); 2921 else 2922 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 2923 return 0; 2924 } 2925 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 2926 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 2927 2928 static int __init fault_around_debugfs(void) 2929 { 2930 void *ret; 2931 2932 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 2933 &fault_around_bytes_fops); 2934 if (!ret) 2935 pr_warn("Failed to create fault_around_bytes in debugfs"); 2936 return 0; 2937 } 2938 late_initcall(fault_around_debugfs); 2939 #endif 2940 2941 /* 2942 * do_fault_around() tries to map few pages around the fault address. The hope 2943 * is that the pages will be needed soon and this will lower the number of 2944 * faults to handle. 2945 * 2946 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 2947 * not ready to be mapped: not up-to-date, locked, etc. 2948 * 2949 * This function is called with the page table lock taken. In the split ptlock 2950 * case the page table lock only protects only those entries which belong to 2951 * the page table corresponding to the fault address. 2952 * 2953 * This function doesn't cross the VMA boundaries, in order to call map_pages() 2954 * only once. 2955 * 2956 * fault_around_pages() defines how many pages we'll try to map. 2957 * do_fault_around() expects it to return a power of two less than or equal to 2958 * PTRS_PER_PTE. 2959 * 2960 * The virtual address of the area that we map is naturally aligned to the 2961 * fault_around_pages() value (and therefore to page order). This way it's 2962 * easier to guarantee that we don't cross page table boundaries. 2963 */ 2964 static void do_fault_around(struct vm_area_struct *vma, unsigned long address, 2965 pte_t *pte, pgoff_t pgoff, unsigned int flags) 2966 { 2967 unsigned long start_addr, nr_pages, mask; 2968 pgoff_t max_pgoff; 2969 struct vm_fault vmf; 2970 int off; 2971 2972 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 2973 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 2974 2975 start_addr = max(address & mask, vma->vm_start); 2976 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 2977 pte -= off; 2978 pgoff -= off; 2979 2980 /* 2981 * max_pgoff is either end of page table or end of vma 2982 * or fault_around_pages() from pgoff, depending what is nearest. 2983 */ 2984 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 2985 PTRS_PER_PTE - 1; 2986 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1, 2987 pgoff + nr_pages - 1); 2988 2989 /* Check if it makes any sense to call ->map_pages */ 2990 while (!pte_none(*pte)) { 2991 if (++pgoff > max_pgoff) 2992 return; 2993 start_addr += PAGE_SIZE; 2994 if (start_addr >= vma->vm_end) 2995 return; 2996 pte++; 2997 } 2998 2999 vmf.virtual_address = (void __user *) start_addr; 3000 vmf.pte = pte; 3001 vmf.pgoff = pgoff; 3002 vmf.max_pgoff = max_pgoff; 3003 vmf.flags = flags; 3004 vmf.gfp_mask = __get_fault_gfp_mask(vma); 3005 vma->vm_ops->map_pages(vma, &vmf); 3006 } 3007 3008 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3009 unsigned long address, pmd_t *pmd, 3010 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3011 { 3012 struct page *fault_page; 3013 spinlock_t *ptl; 3014 pte_t *pte; 3015 int ret = 0; 3016 3017 /* 3018 * Let's call ->map_pages() first and use ->fault() as fallback 3019 * if page by the offset is not ready to be mapped (cold cache or 3020 * something). 3021 */ 3022 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3023 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3024 do_fault_around(vma, address, pte, pgoff, flags); 3025 if (!pte_same(*pte, orig_pte)) 3026 goto unlock_out; 3027 pte_unmap_unlock(pte, ptl); 3028 } 3029 3030 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page); 3031 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3032 return ret; 3033 3034 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3035 if (unlikely(!pte_same(*pte, orig_pte))) { 3036 pte_unmap_unlock(pte, ptl); 3037 unlock_page(fault_page); 3038 put_page(fault_page); 3039 return ret; 3040 } 3041 do_set_pte(vma, address, fault_page, pte, false, false); 3042 unlock_page(fault_page); 3043 unlock_out: 3044 pte_unmap_unlock(pte, ptl); 3045 return ret; 3046 } 3047 3048 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3049 unsigned long address, pmd_t *pmd, 3050 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3051 { 3052 struct page *fault_page, *new_page; 3053 struct mem_cgroup *memcg; 3054 spinlock_t *ptl; 3055 pte_t *pte; 3056 int ret; 3057 3058 if (unlikely(anon_vma_prepare(vma))) 3059 return VM_FAULT_OOM; 3060 3061 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3062 if (!new_page) 3063 return VM_FAULT_OOM; 3064 3065 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) { 3066 put_page(new_page); 3067 return VM_FAULT_OOM; 3068 } 3069 3070 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page); 3071 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3072 goto uncharge_out; 3073 3074 if (fault_page) 3075 copy_user_highpage(new_page, fault_page, address, vma); 3076 __SetPageUptodate(new_page); 3077 3078 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3079 if (unlikely(!pte_same(*pte, orig_pte))) { 3080 pte_unmap_unlock(pte, ptl); 3081 if (fault_page) { 3082 unlock_page(fault_page); 3083 put_page(fault_page); 3084 } else { 3085 /* 3086 * The fault handler has no page to lock, so it holds 3087 * i_mmap_lock for read to protect against truncate. 3088 */ 3089 i_mmap_unlock_read(vma->vm_file->f_mapping); 3090 } 3091 goto uncharge_out; 3092 } 3093 do_set_pte(vma, address, new_page, pte, true, true); 3094 mem_cgroup_commit_charge(new_page, memcg, false, false); 3095 lru_cache_add_active_or_unevictable(new_page, vma); 3096 pte_unmap_unlock(pte, ptl); 3097 if (fault_page) { 3098 unlock_page(fault_page); 3099 put_page(fault_page); 3100 } else { 3101 /* 3102 * The fault handler has no page to lock, so it holds 3103 * i_mmap_lock for read to protect against truncate. 3104 */ 3105 i_mmap_unlock_read(vma->vm_file->f_mapping); 3106 } 3107 return ret; 3108 uncharge_out: 3109 mem_cgroup_cancel_charge(new_page, memcg, false); 3110 put_page(new_page); 3111 return ret; 3112 } 3113 3114 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3115 unsigned long address, pmd_t *pmd, 3116 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3117 { 3118 struct page *fault_page; 3119 struct address_space *mapping; 3120 spinlock_t *ptl; 3121 pte_t *pte; 3122 int dirtied = 0; 3123 int ret, tmp; 3124 3125 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page); 3126 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3127 return ret; 3128 3129 /* 3130 * Check if the backing address space wants to know that the page is 3131 * about to become writable 3132 */ 3133 if (vma->vm_ops->page_mkwrite) { 3134 unlock_page(fault_page); 3135 tmp = do_page_mkwrite(vma, fault_page, address); 3136 if (unlikely(!tmp || 3137 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3138 put_page(fault_page); 3139 return tmp; 3140 } 3141 } 3142 3143 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3144 if (unlikely(!pte_same(*pte, orig_pte))) { 3145 pte_unmap_unlock(pte, ptl); 3146 unlock_page(fault_page); 3147 put_page(fault_page); 3148 return ret; 3149 } 3150 do_set_pte(vma, address, fault_page, pte, true, false); 3151 pte_unmap_unlock(pte, ptl); 3152 3153 if (set_page_dirty(fault_page)) 3154 dirtied = 1; 3155 /* 3156 * Take a local copy of the address_space - page.mapping may be zeroed 3157 * by truncate after unlock_page(). The address_space itself remains 3158 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 3159 * release semantics to prevent the compiler from undoing this copying. 3160 */ 3161 mapping = page_rmapping(fault_page); 3162 unlock_page(fault_page); 3163 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { 3164 /* 3165 * Some device drivers do not set page.mapping but still 3166 * dirty their pages 3167 */ 3168 balance_dirty_pages_ratelimited(mapping); 3169 } 3170 3171 if (!vma->vm_ops->page_mkwrite) 3172 file_update_time(vma->vm_file); 3173 3174 return ret; 3175 } 3176 3177 /* 3178 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3179 * but allow concurrent faults). 3180 * The mmap_sem may have been released depending on flags and our 3181 * return value. See filemap_fault() and __lock_page_or_retry(). 3182 */ 3183 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3184 unsigned long address, pte_t *page_table, pmd_t *pmd, 3185 unsigned int flags, pte_t orig_pte) 3186 { 3187 pgoff_t pgoff = linear_page_index(vma, address); 3188 3189 pte_unmap(page_table); 3190 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3191 if (!vma->vm_ops->fault) 3192 return VM_FAULT_SIGBUS; 3193 if (!(flags & FAULT_FLAG_WRITE)) 3194 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3195 orig_pte); 3196 if (!(vma->vm_flags & VM_SHARED)) 3197 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3198 orig_pte); 3199 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3200 } 3201 3202 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3203 unsigned long addr, int page_nid, 3204 int *flags) 3205 { 3206 get_page(page); 3207 3208 count_vm_numa_event(NUMA_HINT_FAULTS); 3209 if (page_nid == numa_node_id()) { 3210 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3211 *flags |= TNF_FAULT_LOCAL; 3212 } 3213 3214 return mpol_misplaced(page, vma, addr); 3215 } 3216 3217 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3218 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3219 { 3220 struct page *page = NULL; 3221 spinlock_t *ptl; 3222 int page_nid = -1; 3223 int last_cpupid; 3224 int target_nid; 3225 bool migrated = false; 3226 bool was_writable = pte_write(pte); 3227 int flags = 0; 3228 3229 /* A PROT_NONE fault should not end up here */ 3230 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))); 3231 3232 /* 3233 * The "pte" at this point cannot be used safely without 3234 * validation through pte_unmap_same(). It's of NUMA type but 3235 * the pfn may be screwed if the read is non atomic. 3236 * 3237 * We can safely just do a "set_pte_at()", because the old 3238 * page table entry is not accessible, so there would be no 3239 * concurrent hardware modifications to the PTE. 3240 */ 3241 ptl = pte_lockptr(mm, pmd); 3242 spin_lock(ptl); 3243 if (unlikely(!pte_same(*ptep, pte))) { 3244 pte_unmap_unlock(ptep, ptl); 3245 goto out; 3246 } 3247 3248 /* Make it present again */ 3249 pte = pte_modify(pte, vma->vm_page_prot); 3250 pte = pte_mkyoung(pte); 3251 if (was_writable) 3252 pte = pte_mkwrite(pte); 3253 set_pte_at(mm, addr, ptep, pte); 3254 update_mmu_cache(vma, addr, ptep); 3255 3256 page = vm_normal_page(vma, addr, pte); 3257 if (!page) { 3258 pte_unmap_unlock(ptep, ptl); 3259 return 0; 3260 } 3261 3262 /* TODO: handle PTE-mapped THP */ 3263 if (PageCompound(page)) { 3264 pte_unmap_unlock(ptep, ptl); 3265 return 0; 3266 } 3267 3268 /* 3269 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3270 * much anyway since they can be in shared cache state. This misses 3271 * the case where a mapping is writable but the process never writes 3272 * to it but pte_write gets cleared during protection updates and 3273 * pte_dirty has unpredictable behaviour between PTE scan updates, 3274 * background writeback, dirty balancing and application behaviour. 3275 */ 3276 if (!(vma->vm_flags & VM_WRITE)) 3277 flags |= TNF_NO_GROUP; 3278 3279 /* 3280 * Flag if the page is shared between multiple address spaces. This 3281 * is later used when determining whether to group tasks together 3282 */ 3283 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3284 flags |= TNF_SHARED; 3285 3286 last_cpupid = page_cpupid_last(page); 3287 page_nid = page_to_nid(page); 3288 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3289 pte_unmap_unlock(ptep, ptl); 3290 if (target_nid == -1) { 3291 put_page(page); 3292 goto out; 3293 } 3294 3295 /* Migrate to the requested node */ 3296 migrated = migrate_misplaced_page(page, vma, target_nid); 3297 if (migrated) { 3298 page_nid = target_nid; 3299 flags |= TNF_MIGRATED; 3300 } else 3301 flags |= TNF_MIGRATE_FAIL; 3302 3303 out: 3304 if (page_nid != -1) 3305 task_numa_fault(last_cpupid, page_nid, 1, flags); 3306 return 0; 3307 } 3308 3309 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 3310 unsigned long address, pmd_t *pmd, unsigned int flags) 3311 { 3312 if (vma_is_anonymous(vma)) 3313 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags); 3314 if (vma->vm_ops->pmd_fault) 3315 return vma->vm_ops->pmd_fault(vma, address, pmd, flags); 3316 return VM_FAULT_FALLBACK; 3317 } 3318 3319 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 3320 unsigned long address, pmd_t *pmd, pmd_t orig_pmd, 3321 unsigned int flags) 3322 { 3323 if (vma_is_anonymous(vma)) 3324 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd); 3325 if (vma->vm_ops->pmd_fault) 3326 return vma->vm_ops->pmd_fault(vma, address, pmd, flags); 3327 return VM_FAULT_FALLBACK; 3328 } 3329 3330 /* 3331 * These routines also need to handle stuff like marking pages dirty 3332 * and/or accessed for architectures that don't do it in hardware (most 3333 * RISC architectures). The early dirtying is also good on the i386. 3334 * 3335 * There is also a hook called "update_mmu_cache()" that architectures 3336 * with external mmu caches can use to update those (ie the Sparc or 3337 * PowerPC hashed page tables that act as extended TLBs). 3338 * 3339 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3340 * but allow concurrent faults), and pte mapped but not yet locked. 3341 * We return with pte unmapped and unlocked. 3342 * 3343 * The mmap_sem may have been released depending on flags and our 3344 * return value. See filemap_fault() and __lock_page_or_retry(). 3345 */ 3346 static int handle_pte_fault(struct mm_struct *mm, 3347 struct vm_area_struct *vma, unsigned long address, 3348 pte_t *pte, pmd_t *pmd, unsigned int flags) 3349 { 3350 pte_t entry; 3351 spinlock_t *ptl; 3352 3353 /* 3354 * some architectures can have larger ptes than wordsize, 3355 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y, 3356 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses. 3357 * The code below just needs a consistent view for the ifs and 3358 * we later double check anyway with the ptl lock held. So here 3359 * a barrier will do. 3360 */ 3361 entry = *pte; 3362 barrier(); 3363 if (!pte_present(entry)) { 3364 if (pte_none(entry)) { 3365 if (vma_is_anonymous(vma)) 3366 return do_anonymous_page(mm, vma, address, 3367 pte, pmd, flags); 3368 else 3369 return do_fault(mm, vma, address, pte, pmd, 3370 flags, entry); 3371 } 3372 return do_swap_page(mm, vma, address, 3373 pte, pmd, flags, entry); 3374 } 3375 3376 if (pte_protnone(entry)) 3377 return do_numa_page(mm, vma, address, entry, pte, pmd); 3378 3379 ptl = pte_lockptr(mm, pmd); 3380 spin_lock(ptl); 3381 if (unlikely(!pte_same(*pte, entry))) 3382 goto unlock; 3383 if (flags & FAULT_FLAG_WRITE) { 3384 if (!pte_write(entry)) 3385 return do_wp_page(mm, vma, address, 3386 pte, pmd, ptl, entry); 3387 entry = pte_mkdirty(entry); 3388 } 3389 entry = pte_mkyoung(entry); 3390 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3391 update_mmu_cache(vma, address, pte); 3392 } else { 3393 /* 3394 * This is needed only for protection faults but the arch code 3395 * is not yet telling us if this is a protection fault or not. 3396 * This still avoids useless tlb flushes for .text page faults 3397 * with threads. 3398 */ 3399 if (flags & FAULT_FLAG_WRITE) 3400 flush_tlb_fix_spurious_fault(vma, address); 3401 } 3402 unlock: 3403 pte_unmap_unlock(pte, ptl); 3404 return 0; 3405 } 3406 3407 /* 3408 * By the time we get here, we already hold the mm semaphore 3409 * 3410 * The mmap_sem may have been released depending on flags and our 3411 * return value. See filemap_fault() and __lock_page_or_retry(). 3412 */ 3413 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3414 unsigned long address, unsigned int flags) 3415 { 3416 pgd_t *pgd; 3417 pud_t *pud; 3418 pmd_t *pmd; 3419 pte_t *pte; 3420 3421 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 3422 flags & FAULT_FLAG_INSTRUCTION, 3423 flags & FAULT_FLAG_REMOTE)) 3424 return VM_FAULT_SIGSEGV; 3425 3426 if (unlikely(is_vm_hugetlb_page(vma))) 3427 return hugetlb_fault(mm, vma, address, flags); 3428 3429 pgd = pgd_offset(mm, address); 3430 pud = pud_alloc(mm, pgd, address); 3431 if (!pud) 3432 return VM_FAULT_OOM; 3433 pmd = pmd_alloc(mm, pud, address); 3434 if (!pmd) 3435 return VM_FAULT_OOM; 3436 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3437 int ret = create_huge_pmd(mm, vma, address, pmd, flags); 3438 if (!(ret & VM_FAULT_FALLBACK)) 3439 return ret; 3440 } else { 3441 pmd_t orig_pmd = *pmd; 3442 int ret; 3443 3444 barrier(); 3445 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3446 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3447 3448 if (pmd_protnone(orig_pmd)) 3449 return do_huge_pmd_numa_page(mm, vma, address, 3450 orig_pmd, pmd); 3451 3452 if (dirty && !pmd_write(orig_pmd)) { 3453 ret = wp_huge_pmd(mm, vma, address, pmd, 3454 orig_pmd, flags); 3455 if (!(ret & VM_FAULT_FALLBACK)) 3456 return ret; 3457 } else { 3458 huge_pmd_set_accessed(mm, vma, address, pmd, 3459 orig_pmd, dirty); 3460 return 0; 3461 } 3462 } 3463 } 3464 3465 /* 3466 * Use pte_alloc() instead of pte_alloc_map, because we can't 3467 * run pte_offset_map on the pmd, if an huge pmd could 3468 * materialize from under us from a different thread. 3469 */ 3470 if (unlikely(pte_alloc(mm, pmd, address))) 3471 return VM_FAULT_OOM; 3472 /* 3473 * If a huge pmd materialized under us just retry later. Use 3474 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd 3475 * didn't become pmd_trans_huge under us and then back to pmd_none, as 3476 * a result of MADV_DONTNEED running immediately after a huge pmd fault 3477 * in a different thread of this mm, in turn leading to a misleading 3478 * pmd_trans_huge() retval. All we have to ensure is that it is a 3479 * regular pmd that we can walk with pte_offset_map() and we can do that 3480 * through an atomic read in C, which is what pmd_trans_unstable() 3481 * provides. 3482 */ 3483 if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd))) 3484 return 0; 3485 /* 3486 * A regular pmd is established and it can't morph into a huge pmd 3487 * from under us anymore at this point because we hold the mmap_sem 3488 * read mode and khugepaged takes it in write mode. So now it's 3489 * safe to run pte_offset_map(). 3490 */ 3491 pte = pte_offset_map(pmd, address); 3492 3493 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3494 } 3495 3496 /* 3497 * By the time we get here, we already hold the mm semaphore 3498 * 3499 * The mmap_sem may have been released depending on flags and our 3500 * return value. See filemap_fault() and __lock_page_or_retry(). 3501 */ 3502 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3503 unsigned long address, unsigned int flags) 3504 { 3505 int ret; 3506 3507 __set_current_state(TASK_RUNNING); 3508 3509 count_vm_event(PGFAULT); 3510 mem_cgroup_count_vm_event(mm, PGFAULT); 3511 3512 /* do counter updates before entering really critical section. */ 3513 check_sync_rss_stat(current); 3514 3515 /* 3516 * Enable the memcg OOM handling for faults triggered in user 3517 * space. Kernel faults are handled more gracefully. 3518 */ 3519 if (flags & FAULT_FLAG_USER) 3520 mem_cgroup_oom_enable(); 3521 3522 ret = __handle_mm_fault(mm, vma, address, flags); 3523 3524 if (flags & FAULT_FLAG_USER) { 3525 mem_cgroup_oom_disable(); 3526 /* 3527 * The task may have entered a memcg OOM situation but 3528 * if the allocation error was handled gracefully (no 3529 * VM_FAULT_OOM), there is no need to kill anything. 3530 * Just clean up the OOM state peacefully. 3531 */ 3532 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3533 mem_cgroup_oom_synchronize(false); 3534 } 3535 3536 return ret; 3537 } 3538 EXPORT_SYMBOL_GPL(handle_mm_fault); 3539 3540 #ifndef __PAGETABLE_PUD_FOLDED 3541 /* 3542 * Allocate page upper directory. 3543 * We've already handled the fast-path in-line. 3544 */ 3545 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3546 { 3547 pud_t *new = pud_alloc_one(mm, address); 3548 if (!new) 3549 return -ENOMEM; 3550 3551 smp_wmb(); /* See comment in __pte_alloc */ 3552 3553 spin_lock(&mm->page_table_lock); 3554 if (pgd_present(*pgd)) /* Another has populated it */ 3555 pud_free(mm, new); 3556 else 3557 pgd_populate(mm, pgd, new); 3558 spin_unlock(&mm->page_table_lock); 3559 return 0; 3560 } 3561 #endif /* __PAGETABLE_PUD_FOLDED */ 3562 3563 #ifndef __PAGETABLE_PMD_FOLDED 3564 /* 3565 * Allocate page middle directory. 3566 * We've already handled the fast-path in-line. 3567 */ 3568 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3569 { 3570 pmd_t *new = pmd_alloc_one(mm, address); 3571 if (!new) 3572 return -ENOMEM; 3573 3574 smp_wmb(); /* See comment in __pte_alloc */ 3575 3576 spin_lock(&mm->page_table_lock); 3577 #ifndef __ARCH_HAS_4LEVEL_HACK 3578 if (!pud_present(*pud)) { 3579 mm_inc_nr_pmds(mm); 3580 pud_populate(mm, pud, new); 3581 } else /* Another has populated it */ 3582 pmd_free(mm, new); 3583 #else 3584 if (!pgd_present(*pud)) { 3585 mm_inc_nr_pmds(mm); 3586 pgd_populate(mm, pud, new); 3587 } else /* Another has populated it */ 3588 pmd_free(mm, new); 3589 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3590 spin_unlock(&mm->page_table_lock); 3591 return 0; 3592 } 3593 #endif /* __PAGETABLE_PMD_FOLDED */ 3594 3595 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3596 pte_t **ptepp, spinlock_t **ptlp) 3597 { 3598 pgd_t *pgd; 3599 pud_t *pud; 3600 pmd_t *pmd; 3601 pte_t *ptep; 3602 3603 pgd = pgd_offset(mm, address); 3604 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3605 goto out; 3606 3607 pud = pud_offset(pgd, address); 3608 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3609 goto out; 3610 3611 pmd = pmd_offset(pud, address); 3612 VM_BUG_ON(pmd_trans_huge(*pmd)); 3613 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3614 goto out; 3615 3616 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3617 if (pmd_huge(*pmd)) 3618 goto out; 3619 3620 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3621 if (!ptep) 3622 goto out; 3623 if (!pte_present(*ptep)) 3624 goto unlock; 3625 *ptepp = ptep; 3626 return 0; 3627 unlock: 3628 pte_unmap_unlock(ptep, *ptlp); 3629 out: 3630 return -EINVAL; 3631 } 3632 3633 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3634 pte_t **ptepp, spinlock_t **ptlp) 3635 { 3636 int res; 3637 3638 /* (void) is needed to make gcc happy */ 3639 (void) __cond_lock(*ptlp, 3640 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3641 return res; 3642 } 3643 3644 /** 3645 * follow_pfn - look up PFN at a user virtual address 3646 * @vma: memory mapping 3647 * @address: user virtual address 3648 * @pfn: location to store found PFN 3649 * 3650 * Only IO mappings and raw PFN mappings are allowed. 3651 * 3652 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3653 */ 3654 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3655 unsigned long *pfn) 3656 { 3657 int ret = -EINVAL; 3658 spinlock_t *ptl; 3659 pte_t *ptep; 3660 3661 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3662 return ret; 3663 3664 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3665 if (ret) 3666 return ret; 3667 *pfn = pte_pfn(*ptep); 3668 pte_unmap_unlock(ptep, ptl); 3669 return 0; 3670 } 3671 EXPORT_SYMBOL(follow_pfn); 3672 3673 #ifdef CONFIG_HAVE_IOREMAP_PROT 3674 int follow_phys(struct vm_area_struct *vma, 3675 unsigned long address, unsigned int flags, 3676 unsigned long *prot, resource_size_t *phys) 3677 { 3678 int ret = -EINVAL; 3679 pte_t *ptep, pte; 3680 spinlock_t *ptl; 3681 3682 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3683 goto out; 3684 3685 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3686 goto out; 3687 pte = *ptep; 3688 3689 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3690 goto unlock; 3691 3692 *prot = pgprot_val(pte_pgprot(pte)); 3693 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3694 3695 ret = 0; 3696 unlock: 3697 pte_unmap_unlock(ptep, ptl); 3698 out: 3699 return ret; 3700 } 3701 3702 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3703 void *buf, int len, int write) 3704 { 3705 resource_size_t phys_addr; 3706 unsigned long prot = 0; 3707 void __iomem *maddr; 3708 int offset = addr & (PAGE_SIZE-1); 3709 3710 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3711 return -EINVAL; 3712 3713 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 3714 if (write) 3715 memcpy_toio(maddr + offset, buf, len); 3716 else 3717 memcpy_fromio(buf, maddr + offset, len); 3718 iounmap(maddr); 3719 3720 return len; 3721 } 3722 EXPORT_SYMBOL_GPL(generic_access_phys); 3723 #endif 3724 3725 /* 3726 * Access another process' address space as given in mm. If non-NULL, use the 3727 * given task for page fault accounting. 3728 */ 3729 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3730 unsigned long addr, void *buf, int len, int write) 3731 { 3732 struct vm_area_struct *vma; 3733 void *old_buf = buf; 3734 3735 down_read(&mm->mmap_sem); 3736 /* ignore errors, just check how much was successfully transferred */ 3737 while (len) { 3738 int bytes, ret, offset; 3739 void *maddr; 3740 struct page *page = NULL; 3741 3742 ret = get_user_pages_remote(tsk, mm, addr, 1, 3743 write, 1, &page, &vma); 3744 if (ret <= 0) { 3745 #ifndef CONFIG_HAVE_IOREMAP_PROT 3746 break; 3747 #else 3748 /* 3749 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3750 * we can access using slightly different code. 3751 */ 3752 vma = find_vma(mm, addr); 3753 if (!vma || vma->vm_start > addr) 3754 break; 3755 if (vma->vm_ops && vma->vm_ops->access) 3756 ret = vma->vm_ops->access(vma, addr, buf, 3757 len, write); 3758 if (ret <= 0) 3759 break; 3760 bytes = ret; 3761 #endif 3762 } else { 3763 bytes = len; 3764 offset = addr & (PAGE_SIZE-1); 3765 if (bytes > PAGE_SIZE-offset) 3766 bytes = PAGE_SIZE-offset; 3767 3768 maddr = kmap(page); 3769 if (write) { 3770 copy_to_user_page(vma, page, addr, 3771 maddr + offset, buf, bytes); 3772 set_page_dirty_lock(page); 3773 } else { 3774 copy_from_user_page(vma, page, addr, 3775 buf, maddr + offset, bytes); 3776 } 3777 kunmap(page); 3778 put_page(page); 3779 } 3780 len -= bytes; 3781 buf += bytes; 3782 addr += bytes; 3783 } 3784 up_read(&mm->mmap_sem); 3785 3786 return buf - old_buf; 3787 } 3788 3789 /** 3790 * access_remote_vm - access another process' address space 3791 * @mm: the mm_struct of the target address space 3792 * @addr: start address to access 3793 * @buf: source or destination buffer 3794 * @len: number of bytes to transfer 3795 * @write: whether the access is a write 3796 * 3797 * The caller must hold a reference on @mm. 3798 */ 3799 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3800 void *buf, int len, int write) 3801 { 3802 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3803 } 3804 3805 /* 3806 * Access another process' address space. 3807 * Source/target buffer must be kernel space, 3808 * Do not walk the page table directly, use get_user_pages 3809 */ 3810 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3811 void *buf, int len, int write) 3812 { 3813 struct mm_struct *mm; 3814 int ret; 3815 3816 mm = get_task_mm(tsk); 3817 if (!mm) 3818 return 0; 3819 3820 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3821 mmput(mm); 3822 3823 return ret; 3824 } 3825 3826 /* 3827 * Print the name of a VMA. 3828 */ 3829 void print_vma_addr(char *prefix, unsigned long ip) 3830 { 3831 struct mm_struct *mm = current->mm; 3832 struct vm_area_struct *vma; 3833 3834 /* 3835 * Do not print if we are in atomic 3836 * contexts (in exception stacks, etc.): 3837 */ 3838 if (preempt_count()) 3839 return; 3840 3841 down_read(&mm->mmap_sem); 3842 vma = find_vma(mm, ip); 3843 if (vma && vma->vm_file) { 3844 struct file *f = vma->vm_file; 3845 char *buf = (char *)__get_free_page(GFP_KERNEL); 3846 if (buf) { 3847 char *p; 3848 3849 p = file_path(f, buf, PAGE_SIZE); 3850 if (IS_ERR(p)) 3851 p = "?"; 3852 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 3853 vma->vm_start, 3854 vma->vm_end - vma->vm_start); 3855 free_page((unsigned long)buf); 3856 } 3857 } 3858 up_read(&mm->mmap_sem); 3859 } 3860 3861 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3862 void __might_fault(const char *file, int line) 3863 { 3864 /* 3865 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3866 * holding the mmap_sem, this is safe because kernel memory doesn't 3867 * get paged out, therefore we'll never actually fault, and the 3868 * below annotations will generate false positives. 3869 */ 3870 if (segment_eq(get_fs(), KERNEL_DS)) 3871 return; 3872 if (pagefault_disabled()) 3873 return; 3874 __might_sleep(file, line, 0); 3875 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3876 if (current->mm) 3877 might_lock_read(¤t->mm->mmap_sem); 3878 #endif 3879 } 3880 EXPORT_SYMBOL(__might_fault); 3881 #endif 3882 3883 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3884 static void clear_gigantic_page(struct page *page, 3885 unsigned long addr, 3886 unsigned int pages_per_huge_page) 3887 { 3888 int i; 3889 struct page *p = page; 3890 3891 might_sleep(); 3892 for (i = 0; i < pages_per_huge_page; 3893 i++, p = mem_map_next(p, page, i)) { 3894 cond_resched(); 3895 clear_user_highpage(p, addr + i * PAGE_SIZE); 3896 } 3897 } 3898 void clear_huge_page(struct page *page, 3899 unsigned long addr, unsigned int pages_per_huge_page) 3900 { 3901 int i; 3902 3903 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3904 clear_gigantic_page(page, addr, pages_per_huge_page); 3905 return; 3906 } 3907 3908 might_sleep(); 3909 for (i = 0; i < pages_per_huge_page; i++) { 3910 cond_resched(); 3911 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3912 } 3913 } 3914 3915 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3916 unsigned long addr, 3917 struct vm_area_struct *vma, 3918 unsigned int pages_per_huge_page) 3919 { 3920 int i; 3921 struct page *dst_base = dst; 3922 struct page *src_base = src; 3923 3924 for (i = 0; i < pages_per_huge_page; ) { 3925 cond_resched(); 3926 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3927 3928 i++; 3929 dst = mem_map_next(dst, dst_base, i); 3930 src = mem_map_next(src, src_base, i); 3931 } 3932 } 3933 3934 void copy_user_huge_page(struct page *dst, struct page *src, 3935 unsigned long addr, struct vm_area_struct *vma, 3936 unsigned int pages_per_huge_page) 3937 { 3938 int i; 3939 3940 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3941 copy_user_gigantic_page(dst, src, addr, vma, 3942 pages_per_huge_page); 3943 return; 3944 } 3945 3946 might_sleep(); 3947 for (i = 0; i < pages_per_huge_page; i++) { 3948 cond_resched(); 3949 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3950 } 3951 } 3952 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3953 3954 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 3955 3956 static struct kmem_cache *page_ptl_cachep; 3957 3958 void __init ptlock_cache_init(void) 3959 { 3960 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 3961 SLAB_PANIC, NULL); 3962 } 3963 3964 bool ptlock_alloc(struct page *page) 3965 { 3966 spinlock_t *ptl; 3967 3968 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 3969 if (!ptl) 3970 return false; 3971 page->ptl = ptl; 3972 return true; 3973 } 3974 3975 void ptlock_free(struct page *page) 3976 { 3977 kmem_cache_free(page_ptl_cachep, page->ptl); 3978 } 3979 #endif 3980