xref: /linux/mm/memory.c (revision 6b2d2cec1081a979e0efd6a1e9559e5a01a3c10e)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/tlb.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
59 
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
62 
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr;
66 struct page *mem_map;
67 
68 EXPORT_SYMBOL(max_mapnr);
69 EXPORT_SYMBOL(mem_map);
70 #endif
71 
72 unsigned long num_physpages;
73 /*
74  * A number of key systems in x86 including ioremap() rely on the assumption
75  * that high_memory defines the upper bound on direct map memory, then end
76  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
77  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78  * and ZONE_HIGHMEM.
79  */
80 void * high_memory;
81 
82 EXPORT_SYMBOL(num_physpages);
83 EXPORT_SYMBOL(high_memory);
84 
85 int randomize_va_space __read_mostly = 1;
86 
87 static int __init disable_randmaps(char *s)
88 {
89 	randomize_va_space = 0;
90 	return 1;
91 }
92 __setup("norandmaps", disable_randmaps);
93 
94 
95 /*
96  * If a p?d_bad entry is found while walking page tables, report
97  * the error, before resetting entry to p?d_none.  Usually (but
98  * very seldom) called out from the p?d_none_or_clear_bad macros.
99  */
100 
101 void pgd_clear_bad(pgd_t *pgd)
102 {
103 	pgd_ERROR(*pgd);
104 	pgd_clear(pgd);
105 }
106 
107 void pud_clear_bad(pud_t *pud)
108 {
109 	pud_ERROR(*pud);
110 	pud_clear(pud);
111 }
112 
113 void pmd_clear_bad(pmd_t *pmd)
114 {
115 	pmd_ERROR(*pmd);
116 	pmd_clear(pmd);
117 }
118 
119 /*
120  * Note: this doesn't free the actual pages themselves. That
121  * has been handled earlier when unmapping all the memory regions.
122  */
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
124 {
125 	struct page *page = pmd_page(*pmd);
126 	pmd_clear(pmd);
127 	pte_lock_deinit(page);
128 	pte_free_tlb(tlb, page);
129 	dec_zone_page_state(page, NR_PAGETABLE);
130 	tlb->mm->nr_ptes--;
131 }
132 
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 				unsigned long addr, unsigned long end,
135 				unsigned long floor, unsigned long ceiling)
136 {
137 	pmd_t *pmd;
138 	unsigned long next;
139 	unsigned long start;
140 
141 	start = addr;
142 	pmd = pmd_offset(pud, addr);
143 	do {
144 		next = pmd_addr_end(addr, end);
145 		if (pmd_none_or_clear_bad(pmd))
146 			continue;
147 		free_pte_range(tlb, pmd);
148 	} while (pmd++, addr = next, addr != end);
149 
150 	start &= PUD_MASK;
151 	if (start < floor)
152 		return;
153 	if (ceiling) {
154 		ceiling &= PUD_MASK;
155 		if (!ceiling)
156 			return;
157 	}
158 	if (end - 1 > ceiling - 1)
159 		return;
160 
161 	pmd = pmd_offset(pud, start);
162 	pud_clear(pud);
163 	pmd_free_tlb(tlb, pmd);
164 }
165 
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 				unsigned long addr, unsigned long end,
168 				unsigned long floor, unsigned long ceiling)
169 {
170 	pud_t *pud;
171 	unsigned long next;
172 	unsigned long start;
173 
174 	start = addr;
175 	pud = pud_offset(pgd, addr);
176 	do {
177 		next = pud_addr_end(addr, end);
178 		if (pud_none_or_clear_bad(pud))
179 			continue;
180 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181 	} while (pud++, addr = next, addr != end);
182 
183 	start &= PGDIR_MASK;
184 	if (start < floor)
185 		return;
186 	if (ceiling) {
187 		ceiling &= PGDIR_MASK;
188 		if (!ceiling)
189 			return;
190 	}
191 	if (end - 1 > ceiling - 1)
192 		return;
193 
194 	pud = pud_offset(pgd, start);
195 	pgd_clear(pgd);
196 	pud_free_tlb(tlb, pud);
197 }
198 
199 /*
200  * This function frees user-level page tables of a process.
201  *
202  * Must be called with pagetable lock held.
203  */
204 void free_pgd_range(struct mmu_gather **tlb,
205 			unsigned long addr, unsigned long end,
206 			unsigned long floor, unsigned long ceiling)
207 {
208 	pgd_t *pgd;
209 	unsigned long next;
210 	unsigned long start;
211 
212 	/*
213 	 * The next few lines have given us lots of grief...
214 	 *
215 	 * Why are we testing PMD* at this top level?  Because often
216 	 * there will be no work to do at all, and we'd prefer not to
217 	 * go all the way down to the bottom just to discover that.
218 	 *
219 	 * Why all these "- 1"s?  Because 0 represents both the bottom
220 	 * of the address space and the top of it (using -1 for the
221 	 * top wouldn't help much: the masks would do the wrong thing).
222 	 * The rule is that addr 0 and floor 0 refer to the bottom of
223 	 * the address space, but end 0 and ceiling 0 refer to the top
224 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 	 * that end 0 case should be mythical).
226 	 *
227 	 * Wherever addr is brought up or ceiling brought down, we must
228 	 * be careful to reject "the opposite 0" before it confuses the
229 	 * subsequent tests.  But what about where end is brought down
230 	 * by PMD_SIZE below? no, end can't go down to 0 there.
231 	 *
232 	 * Whereas we round start (addr) and ceiling down, by different
233 	 * masks at different levels, in order to test whether a table
234 	 * now has no other vmas using it, so can be freed, we don't
235 	 * bother to round floor or end up - the tests don't need that.
236 	 */
237 
238 	addr &= PMD_MASK;
239 	if (addr < floor) {
240 		addr += PMD_SIZE;
241 		if (!addr)
242 			return;
243 	}
244 	if (ceiling) {
245 		ceiling &= PMD_MASK;
246 		if (!ceiling)
247 			return;
248 	}
249 	if (end - 1 > ceiling - 1)
250 		end -= PMD_SIZE;
251 	if (addr > end - 1)
252 		return;
253 
254 	start = addr;
255 	pgd = pgd_offset((*tlb)->mm, addr);
256 	do {
257 		next = pgd_addr_end(addr, end);
258 		if (pgd_none_or_clear_bad(pgd))
259 			continue;
260 		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261 	} while (pgd++, addr = next, addr != end);
262 }
263 
264 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
265 		unsigned long floor, unsigned long ceiling)
266 {
267 	while (vma) {
268 		struct vm_area_struct *next = vma->vm_next;
269 		unsigned long addr = vma->vm_start;
270 
271 		/*
272 		 * Hide vma from rmap and vmtruncate before freeing pgtables
273 		 */
274 		anon_vma_unlink(vma);
275 		unlink_file_vma(vma);
276 
277 		if (is_vm_hugetlb_page(vma)) {
278 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
279 				floor, next? next->vm_start: ceiling);
280 		} else {
281 			/*
282 			 * Optimization: gather nearby vmas into one call down
283 			 */
284 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
285 			       && !is_vm_hugetlb_page(next)) {
286 				vma = next;
287 				next = vma->vm_next;
288 				anon_vma_unlink(vma);
289 				unlink_file_vma(vma);
290 			}
291 			free_pgd_range(tlb, addr, vma->vm_end,
292 				floor, next? next->vm_start: ceiling);
293 		}
294 		vma = next;
295 	}
296 }
297 
298 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
299 {
300 	struct page *new = pte_alloc_one(mm, address);
301 	if (!new)
302 		return -ENOMEM;
303 
304 	pte_lock_init(new);
305 	spin_lock(&mm->page_table_lock);
306 	if (pmd_present(*pmd)) {	/* Another has populated it */
307 		pte_lock_deinit(new);
308 		pte_free(new);
309 	} else {
310 		mm->nr_ptes++;
311 		inc_zone_page_state(new, NR_PAGETABLE);
312 		pmd_populate(mm, pmd, new);
313 	}
314 	spin_unlock(&mm->page_table_lock);
315 	return 0;
316 }
317 
318 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
319 {
320 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
321 	if (!new)
322 		return -ENOMEM;
323 
324 	spin_lock(&init_mm.page_table_lock);
325 	if (pmd_present(*pmd))		/* Another has populated it */
326 		pte_free_kernel(new);
327 	else
328 		pmd_populate_kernel(&init_mm, pmd, new);
329 	spin_unlock(&init_mm.page_table_lock);
330 	return 0;
331 }
332 
333 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
334 {
335 	if (file_rss)
336 		add_mm_counter(mm, file_rss, file_rss);
337 	if (anon_rss)
338 		add_mm_counter(mm, anon_rss, anon_rss);
339 }
340 
341 /*
342  * This function is called to print an error when a bad pte
343  * is found. For example, we might have a PFN-mapped pte in
344  * a region that doesn't allow it.
345  *
346  * The calling function must still handle the error.
347  */
348 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
349 {
350 	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
351 			"vm_flags = %lx, vaddr = %lx\n",
352 		(long long)pte_val(pte),
353 		(vma->vm_mm == current->mm ? current->comm : "???"),
354 		vma->vm_flags, vaddr);
355 	dump_stack();
356 }
357 
358 static inline int is_cow_mapping(unsigned int flags)
359 {
360 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
361 }
362 
363 /*
364  * This function gets the "struct page" associated with a pte.
365  *
366  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
367  * will have each page table entry just pointing to a raw page frame
368  * number, and as far as the VM layer is concerned, those do not have
369  * pages associated with them - even if the PFN might point to memory
370  * that otherwise is perfectly fine and has a "struct page".
371  *
372  * The way we recognize those mappings is through the rules set up
373  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
374  * and the vm_pgoff will point to the first PFN mapped: thus every
375  * page that is a raw mapping will always honor the rule
376  *
377  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
378  *
379  * and if that isn't true, the page has been COW'ed (in which case it
380  * _does_ have a "struct page" associated with it even if it is in a
381  * VM_PFNMAP range).
382  */
383 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
384 {
385 	unsigned long pfn = pte_pfn(pte);
386 
387 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
388 		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
389 		if (pfn == vma->vm_pgoff + off)
390 			return NULL;
391 		if (!is_cow_mapping(vma->vm_flags))
392 			return NULL;
393 	}
394 
395 	/*
396 	 * Add some anal sanity checks for now. Eventually,
397 	 * we should just do "return pfn_to_page(pfn)", but
398 	 * in the meantime we check that we get a valid pfn,
399 	 * and that the resulting page looks ok.
400 	 */
401 	if (unlikely(!pfn_valid(pfn))) {
402 		print_bad_pte(vma, pte, addr);
403 		return NULL;
404 	}
405 
406 	/*
407 	 * NOTE! We still have PageReserved() pages in the page
408 	 * tables.
409 	 *
410 	 * The PAGE_ZERO() pages and various VDSO mappings can
411 	 * cause them to exist.
412 	 */
413 	return pfn_to_page(pfn);
414 }
415 
416 /*
417  * copy one vm_area from one task to the other. Assumes the page tables
418  * already present in the new task to be cleared in the whole range
419  * covered by this vma.
420  */
421 
422 static inline void
423 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
424 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
425 		unsigned long addr, int *rss)
426 {
427 	unsigned long vm_flags = vma->vm_flags;
428 	pte_t pte = *src_pte;
429 	struct page *page;
430 
431 	/* pte contains position in swap or file, so copy. */
432 	if (unlikely(!pte_present(pte))) {
433 		if (!pte_file(pte)) {
434 			swp_entry_t entry = pte_to_swp_entry(pte);
435 
436 			swap_duplicate(entry);
437 			/* make sure dst_mm is on swapoff's mmlist. */
438 			if (unlikely(list_empty(&dst_mm->mmlist))) {
439 				spin_lock(&mmlist_lock);
440 				if (list_empty(&dst_mm->mmlist))
441 					list_add(&dst_mm->mmlist,
442 						 &src_mm->mmlist);
443 				spin_unlock(&mmlist_lock);
444 			}
445 			if (is_write_migration_entry(entry) &&
446 					is_cow_mapping(vm_flags)) {
447 				/*
448 				 * COW mappings require pages in both parent
449 				 * and child to be set to read.
450 				 */
451 				make_migration_entry_read(&entry);
452 				pte = swp_entry_to_pte(entry);
453 				set_pte_at(src_mm, addr, src_pte, pte);
454 			}
455 		}
456 		goto out_set_pte;
457 	}
458 
459 	/*
460 	 * If it's a COW mapping, write protect it both
461 	 * in the parent and the child
462 	 */
463 	if (is_cow_mapping(vm_flags)) {
464 		ptep_set_wrprotect(src_mm, addr, src_pte);
465 		pte = pte_wrprotect(pte);
466 	}
467 
468 	/*
469 	 * If it's a shared mapping, mark it clean in
470 	 * the child
471 	 */
472 	if (vm_flags & VM_SHARED)
473 		pte = pte_mkclean(pte);
474 	pte = pte_mkold(pte);
475 
476 	page = vm_normal_page(vma, addr, pte);
477 	if (page) {
478 		get_page(page);
479 		page_dup_rmap(page, vma, addr);
480 		rss[!!PageAnon(page)]++;
481 	}
482 
483 out_set_pte:
484 	set_pte_at(dst_mm, addr, dst_pte, pte);
485 }
486 
487 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
488 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
489 		unsigned long addr, unsigned long end)
490 {
491 	pte_t *src_pte, *dst_pte;
492 	spinlock_t *src_ptl, *dst_ptl;
493 	int progress = 0;
494 	int rss[2];
495 
496 again:
497 	rss[1] = rss[0] = 0;
498 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
499 	if (!dst_pte)
500 		return -ENOMEM;
501 	src_pte = pte_offset_map_nested(src_pmd, addr);
502 	src_ptl = pte_lockptr(src_mm, src_pmd);
503 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
504 	arch_enter_lazy_mmu_mode();
505 
506 	do {
507 		/*
508 		 * We are holding two locks at this point - either of them
509 		 * could generate latencies in another task on another CPU.
510 		 */
511 		if (progress >= 32) {
512 			progress = 0;
513 			if (need_resched() ||
514 			    need_lockbreak(src_ptl) ||
515 			    need_lockbreak(dst_ptl))
516 				break;
517 		}
518 		if (pte_none(*src_pte)) {
519 			progress++;
520 			continue;
521 		}
522 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
523 		progress += 8;
524 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
525 
526 	arch_leave_lazy_mmu_mode();
527 	spin_unlock(src_ptl);
528 	pte_unmap_nested(src_pte - 1);
529 	add_mm_rss(dst_mm, rss[0], rss[1]);
530 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
531 	cond_resched();
532 	if (addr != end)
533 		goto again;
534 	return 0;
535 }
536 
537 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
538 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
539 		unsigned long addr, unsigned long end)
540 {
541 	pmd_t *src_pmd, *dst_pmd;
542 	unsigned long next;
543 
544 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
545 	if (!dst_pmd)
546 		return -ENOMEM;
547 	src_pmd = pmd_offset(src_pud, addr);
548 	do {
549 		next = pmd_addr_end(addr, end);
550 		if (pmd_none_or_clear_bad(src_pmd))
551 			continue;
552 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
553 						vma, addr, next))
554 			return -ENOMEM;
555 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
556 	return 0;
557 }
558 
559 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
560 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
561 		unsigned long addr, unsigned long end)
562 {
563 	pud_t *src_pud, *dst_pud;
564 	unsigned long next;
565 
566 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
567 	if (!dst_pud)
568 		return -ENOMEM;
569 	src_pud = pud_offset(src_pgd, addr);
570 	do {
571 		next = pud_addr_end(addr, end);
572 		if (pud_none_or_clear_bad(src_pud))
573 			continue;
574 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
575 						vma, addr, next))
576 			return -ENOMEM;
577 	} while (dst_pud++, src_pud++, addr = next, addr != end);
578 	return 0;
579 }
580 
581 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
582 		struct vm_area_struct *vma)
583 {
584 	pgd_t *src_pgd, *dst_pgd;
585 	unsigned long next;
586 	unsigned long addr = vma->vm_start;
587 	unsigned long end = vma->vm_end;
588 
589 	/*
590 	 * Don't copy ptes where a page fault will fill them correctly.
591 	 * Fork becomes much lighter when there are big shared or private
592 	 * readonly mappings. The tradeoff is that copy_page_range is more
593 	 * efficient than faulting.
594 	 */
595 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
596 		if (!vma->anon_vma)
597 			return 0;
598 	}
599 
600 	if (is_vm_hugetlb_page(vma))
601 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
602 
603 	dst_pgd = pgd_offset(dst_mm, addr);
604 	src_pgd = pgd_offset(src_mm, addr);
605 	do {
606 		next = pgd_addr_end(addr, end);
607 		if (pgd_none_or_clear_bad(src_pgd))
608 			continue;
609 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
610 						vma, addr, next))
611 			return -ENOMEM;
612 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
613 	return 0;
614 }
615 
616 static unsigned long zap_pte_range(struct mmu_gather *tlb,
617 				struct vm_area_struct *vma, pmd_t *pmd,
618 				unsigned long addr, unsigned long end,
619 				long *zap_work, struct zap_details *details)
620 {
621 	struct mm_struct *mm = tlb->mm;
622 	pte_t *pte;
623 	spinlock_t *ptl;
624 	int file_rss = 0;
625 	int anon_rss = 0;
626 
627 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
628 	arch_enter_lazy_mmu_mode();
629 	do {
630 		pte_t ptent = *pte;
631 		if (pte_none(ptent)) {
632 			(*zap_work)--;
633 			continue;
634 		}
635 
636 		(*zap_work) -= PAGE_SIZE;
637 
638 		if (pte_present(ptent)) {
639 			struct page *page;
640 
641 			page = vm_normal_page(vma, addr, ptent);
642 			if (unlikely(details) && page) {
643 				/*
644 				 * unmap_shared_mapping_pages() wants to
645 				 * invalidate cache without truncating:
646 				 * unmap shared but keep private pages.
647 				 */
648 				if (details->check_mapping &&
649 				    details->check_mapping != page->mapping)
650 					continue;
651 				/*
652 				 * Each page->index must be checked when
653 				 * invalidating or truncating nonlinear.
654 				 */
655 				if (details->nonlinear_vma &&
656 				    (page->index < details->first_index ||
657 				     page->index > details->last_index))
658 					continue;
659 			}
660 			ptent = ptep_get_and_clear_full(mm, addr, pte,
661 							tlb->fullmm);
662 			tlb_remove_tlb_entry(tlb, pte, addr);
663 			if (unlikely(!page))
664 				continue;
665 			if (unlikely(details) && details->nonlinear_vma
666 			    && linear_page_index(details->nonlinear_vma,
667 						addr) != page->index)
668 				set_pte_at(mm, addr, pte,
669 					   pgoff_to_pte(page->index));
670 			if (PageAnon(page))
671 				anon_rss--;
672 			else {
673 				if (pte_dirty(ptent))
674 					set_page_dirty(page);
675 				if (pte_young(ptent))
676 					SetPageReferenced(page);
677 				file_rss--;
678 			}
679 			page_remove_rmap(page, vma);
680 			tlb_remove_page(tlb, page);
681 			continue;
682 		}
683 		/*
684 		 * If details->check_mapping, we leave swap entries;
685 		 * if details->nonlinear_vma, we leave file entries.
686 		 */
687 		if (unlikely(details))
688 			continue;
689 		if (!pte_file(ptent))
690 			free_swap_and_cache(pte_to_swp_entry(ptent));
691 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
692 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
693 
694 	add_mm_rss(mm, file_rss, anon_rss);
695 	arch_leave_lazy_mmu_mode();
696 	pte_unmap_unlock(pte - 1, ptl);
697 
698 	return addr;
699 }
700 
701 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
702 				struct vm_area_struct *vma, pud_t *pud,
703 				unsigned long addr, unsigned long end,
704 				long *zap_work, struct zap_details *details)
705 {
706 	pmd_t *pmd;
707 	unsigned long next;
708 
709 	pmd = pmd_offset(pud, addr);
710 	do {
711 		next = pmd_addr_end(addr, end);
712 		if (pmd_none_or_clear_bad(pmd)) {
713 			(*zap_work)--;
714 			continue;
715 		}
716 		next = zap_pte_range(tlb, vma, pmd, addr, next,
717 						zap_work, details);
718 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
719 
720 	return addr;
721 }
722 
723 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
724 				struct vm_area_struct *vma, pgd_t *pgd,
725 				unsigned long addr, unsigned long end,
726 				long *zap_work, struct zap_details *details)
727 {
728 	pud_t *pud;
729 	unsigned long next;
730 
731 	pud = pud_offset(pgd, addr);
732 	do {
733 		next = pud_addr_end(addr, end);
734 		if (pud_none_or_clear_bad(pud)) {
735 			(*zap_work)--;
736 			continue;
737 		}
738 		next = zap_pmd_range(tlb, vma, pud, addr, next,
739 						zap_work, details);
740 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
741 
742 	return addr;
743 }
744 
745 static unsigned long unmap_page_range(struct mmu_gather *tlb,
746 				struct vm_area_struct *vma,
747 				unsigned long addr, unsigned long end,
748 				long *zap_work, struct zap_details *details)
749 {
750 	pgd_t *pgd;
751 	unsigned long next;
752 
753 	if (details && !details->check_mapping && !details->nonlinear_vma)
754 		details = NULL;
755 
756 	BUG_ON(addr >= end);
757 	tlb_start_vma(tlb, vma);
758 	pgd = pgd_offset(vma->vm_mm, addr);
759 	do {
760 		next = pgd_addr_end(addr, end);
761 		if (pgd_none_or_clear_bad(pgd)) {
762 			(*zap_work)--;
763 			continue;
764 		}
765 		next = zap_pud_range(tlb, vma, pgd, addr, next,
766 						zap_work, details);
767 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
768 	tlb_end_vma(tlb, vma);
769 
770 	return addr;
771 }
772 
773 #ifdef CONFIG_PREEMPT
774 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
775 #else
776 /* No preempt: go for improved straight-line efficiency */
777 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
778 #endif
779 
780 /**
781  * unmap_vmas - unmap a range of memory covered by a list of vma's
782  * @tlbp: address of the caller's struct mmu_gather
783  * @vma: the starting vma
784  * @start_addr: virtual address at which to start unmapping
785  * @end_addr: virtual address at which to end unmapping
786  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
787  * @details: details of nonlinear truncation or shared cache invalidation
788  *
789  * Returns the end address of the unmapping (restart addr if interrupted).
790  *
791  * Unmap all pages in the vma list.
792  *
793  * We aim to not hold locks for too long (for scheduling latency reasons).
794  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
795  * return the ending mmu_gather to the caller.
796  *
797  * Only addresses between `start' and `end' will be unmapped.
798  *
799  * The VMA list must be sorted in ascending virtual address order.
800  *
801  * unmap_vmas() assumes that the caller will flush the whole unmapped address
802  * range after unmap_vmas() returns.  So the only responsibility here is to
803  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
804  * drops the lock and schedules.
805  */
806 unsigned long unmap_vmas(struct mmu_gather **tlbp,
807 		struct vm_area_struct *vma, unsigned long start_addr,
808 		unsigned long end_addr, unsigned long *nr_accounted,
809 		struct zap_details *details)
810 {
811 	long zap_work = ZAP_BLOCK_SIZE;
812 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
813 	int tlb_start_valid = 0;
814 	unsigned long start = start_addr;
815 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
816 	int fullmm = (*tlbp)->fullmm;
817 
818 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
819 		unsigned long end;
820 
821 		start = max(vma->vm_start, start_addr);
822 		if (start >= vma->vm_end)
823 			continue;
824 		end = min(vma->vm_end, end_addr);
825 		if (end <= vma->vm_start)
826 			continue;
827 
828 		if (vma->vm_flags & VM_ACCOUNT)
829 			*nr_accounted += (end - start) >> PAGE_SHIFT;
830 
831 		while (start != end) {
832 			if (!tlb_start_valid) {
833 				tlb_start = start;
834 				tlb_start_valid = 1;
835 			}
836 
837 			if (unlikely(is_vm_hugetlb_page(vma))) {
838 				unmap_hugepage_range(vma, start, end);
839 				zap_work -= (end - start) /
840 						(HPAGE_SIZE / PAGE_SIZE);
841 				start = end;
842 			} else
843 				start = unmap_page_range(*tlbp, vma,
844 						start, end, &zap_work, details);
845 
846 			if (zap_work > 0) {
847 				BUG_ON(start != end);
848 				break;
849 			}
850 
851 			tlb_finish_mmu(*tlbp, tlb_start, start);
852 
853 			if (need_resched() ||
854 				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
855 				if (i_mmap_lock) {
856 					*tlbp = NULL;
857 					goto out;
858 				}
859 				cond_resched();
860 			}
861 
862 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
863 			tlb_start_valid = 0;
864 			zap_work = ZAP_BLOCK_SIZE;
865 		}
866 	}
867 out:
868 	return start;	/* which is now the end (or restart) address */
869 }
870 
871 /**
872  * zap_page_range - remove user pages in a given range
873  * @vma: vm_area_struct holding the applicable pages
874  * @address: starting address of pages to zap
875  * @size: number of bytes to zap
876  * @details: details of nonlinear truncation or shared cache invalidation
877  */
878 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
879 		unsigned long size, struct zap_details *details)
880 {
881 	struct mm_struct *mm = vma->vm_mm;
882 	struct mmu_gather *tlb;
883 	unsigned long end = address + size;
884 	unsigned long nr_accounted = 0;
885 
886 	lru_add_drain();
887 	tlb = tlb_gather_mmu(mm, 0);
888 	update_hiwater_rss(mm);
889 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
890 	if (tlb)
891 		tlb_finish_mmu(tlb, address, end);
892 	return end;
893 }
894 
895 /*
896  * Do a quick page-table lookup for a single page.
897  */
898 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
899 			unsigned int flags)
900 {
901 	pgd_t *pgd;
902 	pud_t *pud;
903 	pmd_t *pmd;
904 	pte_t *ptep, pte;
905 	spinlock_t *ptl;
906 	struct page *page;
907 	struct mm_struct *mm = vma->vm_mm;
908 
909 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
910 	if (!IS_ERR(page)) {
911 		BUG_ON(flags & FOLL_GET);
912 		goto out;
913 	}
914 
915 	page = NULL;
916 	pgd = pgd_offset(mm, address);
917 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
918 		goto no_page_table;
919 
920 	pud = pud_offset(pgd, address);
921 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
922 		goto no_page_table;
923 
924 	pmd = pmd_offset(pud, address);
925 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
926 		goto no_page_table;
927 
928 	if (pmd_huge(*pmd)) {
929 		BUG_ON(flags & FOLL_GET);
930 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
931 		goto out;
932 	}
933 
934 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
935 	if (!ptep)
936 		goto out;
937 
938 	pte = *ptep;
939 	if (!pte_present(pte))
940 		goto unlock;
941 	if ((flags & FOLL_WRITE) && !pte_write(pte))
942 		goto unlock;
943 	page = vm_normal_page(vma, address, pte);
944 	if (unlikely(!page))
945 		goto unlock;
946 
947 	if (flags & FOLL_GET)
948 		get_page(page);
949 	if (flags & FOLL_TOUCH) {
950 		if ((flags & FOLL_WRITE) &&
951 		    !pte_dirty(pte) && !PageDirty(page))
952 			set_page_dirty(page);
953 		mark_page_accessed(page);
954 	}
955 unlock:
956 	pte_unmap_unlock(ptep, ptl);
957 out:
958 	return page;
959 
960 no_page_table:
961 	/*
962 	 * When core dumping an enormous anonymous area that nobody
963 	 * has touched so far, we don't want to allocate page tables.
964 	 */
965 	if (flags & FOLL_ANON) {
966 		page = ZERO_PAGE(0);
967 		if (flags & FOLL_GET)
968 			get_page(page);
969 		BUG_ON(flags & FOLL_WRITE);
970 	}
971 	return page;
972 }
973 
974 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
975 		unsigned long start, int len, int write, int force,
976 		struct page **pages, struct vm_area_struct **vmas)
977 {
978 	int i;
979 	unsigned int vm_flags;
980 
981 	/*
982 	 * Require read or write permissions.
983 	 * If 'force' is set, we only require the "MAY" flags.
984 	 */
985 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
986 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
987 	i = 0;
988 
989 	do {
990 		struct vm_area_struct *vma;
991 		unsigned int foll_flags;
992 
993 		vma = find_extend_vma(mm, start);
994 		if (!vma && in_gate_area(tsk, start)) {
995 			unsigned long pg = start & PAGE_MASK;
996 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
997 			pgd_t *pgd;
998 			pud_t *pud;
999 			pmd_t *pmd;
1000 			pte_t *pte;
1001 			if (write) /* user gate pages are read-only */
1002 				return i ? : -EFAULT;
1003 			if (pg > TASK_SIZE)
1004 				pgd = pgd_offset_k(pg);
1005 			else
1006 				pgd = pgd_offset_gate(mm, pg);
1007 			BUG_ON(pgd_none(*pgd));
1008 			pud = pud_offset(pgd, pg);
1009 			BUG_ON(pud_none(*pud));
1010 			pmd = pmd_offset(pud, pg);
1011 			if (pmd_none(*pmd))
1012 				return i ? : -EFAULT;
1013 			pte = pte_offset_map(pmd, pg);
1014 			if (pte_none(*pte)) {
1015 				pte_unmap(pte);
1016 				return i ? : -EFAULT;
1017 			}
1018 			if (pages) {
1019 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1020 				pages[i] = page;
1021 				if (page)
1022 					get_page(page);
1023 			}
1024 			pte_unmap(pte);
1025 			if (vmas)
1026 				vmas[i] = gate_vma;
1027 			i++;
1028 			start += PAGE_SIZE;
1029 			len--;
1030 			continue;
1031 		}
1032 
1033 		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1034 				|| !(vm_flags & vma->vm_flags))
1035 			return i ? : -EFAULT;
1036 
1037 		if (is_vm_hugetlb_page(vma)) {
1038 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1039 						&start, &len, i, write);
1040 			continue;
1041 		}
1042 
1043 		foll_flags = FOLL_TOUCH;
1044 		if (pages)
1045 			foll_flags |= FOLL_GET;
1046 		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1047 		    (!vma->vm_ops || (!vma->vm_ops->nopage &&
1048 					!vma->vm_ops->fault)))
1049 			foll_flags |= FOLL_ANON;
1050 
1051 		do {
1052 			struct page *page;
1053 
1054 			/*
1055 			 * If tsk is ooming, cut off its access to large memory
1056 			 * allocations. It has a pending SIGKILL, but it can't
1057 			 * be processed until returning to user space.
1058 			 */
1059 			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1060 				return -ENOMEM;
1061 
1062 			if (write)
1063 				foll_flags |= FOLL_WRITE;
1064 
1065 			cond_resched();
1066 			while (!(page = follow_page(vma, start, foll_flags))) {
1067 				int ret;
1068 				ret = handle_mm_fault(mm, vma, start,
1069 						foll_flags & FOLL_WRITE);
1070 				if (ret & VM_FAULT_ERROR) {
1071 					if (ret & VM_FAULT_OOM)
1072 						return i ? i : -ENOMEM;
1073 					else if (ret & VM_FAULT_SIGBUS)
1074 						return i ? i : -EFAULT;
1075 					BUG();
1076 				}
1077 				if (ret & VM_FAULT_MAJOR)
1078 					tsk->maj_flt++;
1079 				else
1080 					tsk->min_flt++;
1081 
1082 				/*
1083 				 * The VM_FAULT_WRITE bit tells us that
1084 				 * do_wp_page has broken COW when necessary,
1085 				 * even if maybe_mkwrite decided not to set
1086 				 * pte_write. We can thus safely do subsequent
1087 				 * page lookups as if they were reads.
1088 				 */
1089 				if (ret & VM_FAULT_WRITE)
1090 					foll_flags &= ~FOLL_WRITE;
1091 
1092 				cond_resched();
1093 			}
1094 			if (pages) {
1095 				pages[i] = page;
1096 
1097 				flush_anon_page(vma, page, start);
1098 				flush_dcache_page(page);
1099 			}
1100 			if (vmas)
1101 				vmas[i] = vma;
1102 			i++;
1103 			start += PAGE_SIZE;
1104 			len--;
1105 		} while (len && start < vma->vm_end);
1106 	} while (len);
1107 	return i;
1108 }
1109 EXPORT_SYMBOL(get_user_pages);
1110 
1111 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1112 {
1113 	pgd_t * pgd = pgd_offset(mm, addr);
1114 	pud_t * pud = pud_alloc(mm, pgd, addr);
1115 	if (pud) {
1116 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1117 		if (pmd)
1118 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1119 	}
1120 	return NULL;
1121 }
1122 
1123 /*
1124  * This is the old fallback for page remapping.
1125  *
1126  * For historical reasons, it only allows reserved pages. Only
1127  * old drivers should use this, and they needed to mark their
1128  * pages reserved for the old functions anyway.
1129  */
1130 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1131 {
1132 	int retval;
1133 	pte_t *pte;
1134 	spinlock_t *ptl;
1135 
1136 	retval = -EINVAL;
1137 	if (PageAnon(page))
1138 		goto out;
1139 	retval = -ENOMEM;
1140 	flush_dcache_page(page);
1141 	pte = get_locked_pte(mm, addr, &ptl);
1142 	if (!pte)
1143 		goto out;
1144 	retval = -EBUSY;
1145 	if (!pte_none(*pte))
1146 		goto out_unlock;
1147 
1148 	/* Ok, finally just insert the thing.. */
1149 	get_page(page);
1150 	inc_mm_counter(mm, file_rss);
1151 	page_add_file_rmap(page);
1152 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1153 
1154 	retval = 0;
1155 out_unlock:
1156 	pte_unmap_unlock(pte, ptl);
1157 out:
1158 	return retval;
1159 }
1160 
1161 /**
1162  * vm_insert_page - insert single page into user vma
1163  * @vma: user vma to map to
1164  * @addr: target user address of this page
1165  * @page: source kernel page
1166  *
1167  * This allows drivers to insert individual pages they've allocated
1168  * into a user vma.
1169  *
1170  * The page has to be a nice clean _individual_ kernel allocation.
1171  * If you allocate a compound page, you need to have marked it as
1172  * such (__GFP_COMP), or manually just split the page up yourself
1173  * (see split_page()).
1174  *
1175  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1176  * took an arbitrary page protection parameter. This doesn't allow
1177  * that. Your vma protection will have to be set up correctly, which
1178  * means that if you want a shared writable mapping, you'd better
1179  * ask for a shared writable mapping!
1180  *
1181  * The page does not need to be reserved.
1182  */
1183 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1184 {
1185 	if (addr < vma->vm_start || addr >= vma->vm_end)
1186 		return -EFAULT;
1187 	if (!page_count(page))
1188 		return -EINVAL;
1189 	vma->vm_flags |= VM_INSERTPAGE;
1190 	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1191 }
1192 EXPORT_SYMBOL(vm_insert_page);
1193 
1194 /**
1195  * vm_insert_pfn - insert single pfn into user vma
1196  * @vma: user vma to map to
1197  * @addr: target user address of this page
1198  * @pfn: source kernel pfn
1199  *
1200  * Similar to vm_inert_page, this allows drivers to insert individual pages
1201  * they've allocated into a user vma. Same comments apply.
1202  *
1203  * This function should only be called from a vm_ops->fault handler, and
1204  * in that case the handler should return NULL.
1205  */
1206 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1207 		unsigned long pfn)
1208 {
1209 	struct mm_struct *mm = vma->vm_mm;
1210 	int retval;
1211 	pte_t *pte, entry;
1212 	spinlock_t *ptl;
1213 
1214 	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1215 	BUG_ON(is_cow_mapping(vma->vm_flags));
1216 
1217 	retval = -ENOMEM;
1218 	pte = get_locked_pte(mm, addr, &ptl);
1219 	if (!pte)
1220 		goto out;
1221 	retval = -EBUSY;
1222 	if (!pte_none(*pte))
1223 		goto out_unlock;
1224 
1225 	/* Ok, finally just insert the thing.. */
1226 	entry = pfn_pte(pfn, vma->vm_page_prot);
1227 	set_pte_at(mm, addr, pte, entry);
1228 	update_mmu_cache(vma, addr, entry);
1229 
1230 	retval = 0;
1231 out_unlock:
1232 	pte_unmap_unlock(pte, ptl);
1233 
1234 out:
1235 	return retval;
1236 }
1237 EXPORT_SYMBOL(vm_insert_pfn);
1238 
1239 /*
1240  * maps a range of physical memory into the requested pages. the old
1241  * mappings are removed. any references to nonexistent pages results
1242  * in null mappings (currently treated as "copy-on-access")
1243  */
1244 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1245 			unsigned long addr, unsigned long end,
1246 			unsigned long pfn, pgprot_t prot)
1247 {
1248 	pte_t *pte;
1249 	spinlock_t *ptl;
1250 
1251 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1252 	if (!pte)
1253 		return -ENOMEM;
1254 	arch_enter_lazy_mmu_mode();
1255 	do {
1256 		BUG_ON(!pte_none(*pte));
1257 		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1258 		pfn++;
1259 	} while (pte++, addr += PAGE_SIZE, addr != end);
1260 	arch_leave_lazy_mmu_mode();
1261 	pte_unmap_unlock(pte - 1, ptl);
1262 	return 0;
1263 }
1264 
1265 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1266 			unsigned long addr, unsigned long end,
1267 			unsigned long pfn, pgprot_t prot)
1268 {
1269 	pmd_t *pmd;
1270 	unsigned long next;
1271 
1272 	pfn -= addr >> PAGE_SHIFT;
1273 	pmd = pmd_alloc(mm, pud, addr);
1274 	if (!pmd)
1275 		return -ENOMEM;
1276 	do {
1277 		next = pmd_addr_end(addr, end);
1278 		if (remap_pte_range(mm, pmd, addr, next,
1279 				pfn + (addr >> PAGE_SHIFT), prot))
1280 			return -ENOMEM;
1281 	} while (pmd++, addr = next, addr != end);
1282 	return 0;
1283 }
1284 
1285 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1286 			unsigned long addr, unsigned long end,
1287 			unsigned long pfn, pgprot_t prot)
1288 {
1289 	pud_t *pud;
1290 	unsigned long next;
1291 
1292 	pfn -= addr >> PAGE_SHIFT;
1293 	pud = pud_alloc(mm, pgd, addr);
1294 	if (!pud)
1295 		return -ENOMEM;
1296 	do {
1297 		next = pud_addr_end(addr, end);
1298 		if (remap_pmd_range(mm, pud, addr, next,
1299 				pfn + (addr >> PAGE_SHIFT), prot))
1300 			return -ENOMEM;
1301 	} while (pud++, addr = next, addr != end);
1302 	return 0;
1303 }
1304 
1305 /**
1306  * remap_pfn_range - remap kernel memory to userspace
1307  * @vma: user vma to map to
1308  * @addr: target user address to start at
1309  * @pfn: physical address of kernel memory
1310  * @size: size of map area
1311  * @prot: page protection flags for this mapping
1312  *
1313  *  Note: this is only safe if the mm semaphore is held when called.
1314  */
1315 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1316 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1317 {
1318 	pgd_t *pgd;
1319 	unsigned long next;
1320 	unsigned long end = addr + PAGE_ALIGN(size);
1321 	struct mm_struct *mm = vma->vm_mm;
1322 	int err;
1323 
1324 	/*
1325 	 * Physically remapped pages are special. Tell the
1326 	 * rest of the world about it:
1327 	 *   VM_IO tells people not to look at these pages
1328 	 *	(accesses can have side effects).
1329 	 *   VM_RESERVED is specified all over the place, because
1330 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1331 	 *	in 2.6 the LRU scan won't even find its pages, so this
1332 	 *	flag means no more than count its pages in reserved_vm,
1333 	 * 	and omit it from core dump, even when VM_IO turned off.
1334 	 *   VM_PFNMAP tells the core MM that the base pages are just
1335 	 *	raw PFN mappings, and do not have a "struct page" associated
1336 	 *	with them.
1337 	 *
1338 	 * There's a horrible special case to handle copy-on-write
1339 	 * behaviour that some programs depend on. We mark the "original"
1340 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1341 	 */
1342 	if (is_cow_mapping(vma->vm_flags)) {
1343 		if (addr != vma->vm_start || end != vma->vm_end)
1344 			return -EINVAL;
1345 		vma->vm_pgoff = pfn;
1346 	}
1347 
1348 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1349 
1350 	BUG_ON(addr >= end);
1351 	pfn -= addr >> PAGE_SHIFT;
1352 	pgd = pgd_offset(mm, addr);
1353 	flush_cache_range(vma, addr, end);
1354 	do {
1355 		next = pgd_addr_end(addr, end);
1356 		err = remap_pud_range(mm, pgd, addr, next,
1357 				pfn + (addr >> PAGE_SHIFT), prot);
1358 		if (err)
1359 			break;
1360 	} while (pgd++, addr = next, addr != end);
1361 	return err;
1362 }
1363 EXPORT_SYMBOL(remap_pfn_range);
1364 
1365 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1366 				     unsigned long addr, unsigned long end,
1367 				     pte_fn_t fn, void *data)
1368 {
1369 	pte_t *pte;
1370 	int err;
1371 	struct page *pmd_page;
1372 	spinlock_t *uninitialized_var(ptl);
1373 
1374 	pte = (mm == &init_mm) ?
1375 		pte_alloc_kernel(pmd, addr) :
1376 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1377 	if (!pte)
1378 		return -ENOMEM;
1379 
1380 	BUG_ON(pmd_huge(*pmd));
1381 
1382 	pmd_page = pmd_page(*pmd);
1383 
1384 	do {
1385 		err = fn(pte, pmd_page, addr, data);
1386 		if (err)
1387 			break;
1388 	} while (pte++, addr += PAGE_SIZE, addr != end);
1389 
1390 	if (mm != &init_mm)
1391 		pte_unmap_unlock(pte-1, ptl);
1392 	return err;
1393 }
1394 
1395 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1396 				     unsigned long addr, unsigned long end,
1397 				     pte_fn_t fn, void *data)
1398 {
1399 	pmd_t *pmd;
1400 	unsigned long next;
1401 	int err;
1402 
1403 	pmd = pmd_alloc(mm, pud, addr);
1404 	if (!pmd)
1405 		return -ENOMEM;
1406 	do {
1407 		next = pmd_addr_end(addr, end);
1408 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1409 		if (err)
1410 			break;
1411 	} while (pmd++, addr = next, addr != end);
1412 	return err;
1413 }
1414 
1415 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1416 				     unsigned long addr, unsigned long end,
1417 				     pte_fn_t fn, void *data)
1418 {
1419 	pud_t *pud;
1420 	unsigned long next;
1421 	int err;
1422 
1423 	pud = pud_alloc(mm, pgd, addr);
1424 	if (!pud)
1425 		return -ENOMEM;
1426 	do {
1427 		next = pud_addr_end(addr, end);
1428 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1429 		if (err)
1430 			break;
1431 	} while (pud++, addr = next, addr != end);
1432 	return err;
1433 }
1434 
1435 /*
1436  * Scan a region of virtual memory, filling in page tables as necessary
1437  * and calling a provided function on each leaf page table.
1438  */
1439 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1440 			unsigned long size, pte_fn_t fn, void *data)
1441 {
1442 	pgd_t *pgd;
1443 	unsigned long next;
1444 	unsigned long end = addr + size;
1445 	int err;
1446 
1447 	BUG_ON(addr >= end);
1448 	pgd = pgd_offset(mm, addr);
1449 	do {
1450 		next = pgd_addr_end(addr, end);
1451 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1452 		if (err)
1453 			break;
1454 	} while (pgd++, addr = next, addr != end);
1455 	return err;
1456 }
1457 EXPORT_SYMBOL_GPL(apply_to_page_range);
1458 
1459 /*
1460  * handle_pte_fault chooses page fault handler according to an entry
1461  * which was read non-atomically.  Before making any commitment, on
1462  * those architectures or configurations (e.g. i386 with PAE) which
1463  * might give a mix of unmatched parts, do_swap_page and do_file_page
1464  * must check under lock before unmapping the pte and proceeding
1465  * (but do_wp_page is only called after already making such a check;
1466  * and do_anonymous_page and do_no_page can safely check later on).
1467  */
1468 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1469 				pte_t *page_table, pte_t orig_pte)
1470 {
1471 	int same = 1;
1472 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1473 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1474 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1475 		spin_lock(ptl);
1476 		same = pte_same(*page_table, orig_pte);
1477 		spin_unlock(ptl);
1478 	}
1479 #endif
1480 	pte_unmap(page_table);
1481 	return same;
1482 }
1483 
1484 /*
1485  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1486  * servicing faults for write access.  In the normal case, do always want
1487  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1488  * that do not have writing enabled, when used by access_process_vm.
1489  */
1490 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1491 {
1492 	if (likely(vma->vm_flags & VM_WRITE))
1493 		pte = pte_mkwrite(pte);
1494 	return pte;
1495 }
1496 
1497 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1498 {
1499 	/*
1500 	 * If the source page was a PFN mapping, we don't have
1501 	 * a "struct page" for it. We do a best-effort copy by
1502 	 * just copying from the original user address. If that
1503 	 * fails, we just zero-fill it. Live with it.
1504 	 */
1505 	if (unlikely(!src)) {
1506 		void *kaddr = kmap_atomic(dst, KM_USER0);
1507 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1508 
1509 		/*
1510 		 * This really shouldn't fail, because the page is there
1511 		 * in the page tables. But it might just be unreadable,
1512 		 * in which case we just give up and fill the result with
1513 		 * zeroes.
1514 		 */
1515 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1516 			memset(kaddr, 0, PAGE_SIZE);
1517 		kunmap_atomic(kaddr, KM_USER0);
1518 		flush_dcache_page(dst);
1519 		return;
1520 
1521 	}
1522 	copy_user_highpage(dst, src, va, vma);
1523 }
1524 
1525 /*
1526  * This routine handles present pages, when users try to write
1527  * to a shared page. It is done by copying the page to a new address
1528  * and decrementing the shared-page counter for the old page.
1529  *
1530  * Note that this routine assumes that the protection checks have been
1531  * done by the caller (the low-level page fault routine in most cases).
1532  * Thus we can safely just mark it writable once we've done any necessary
1533  * COW.
1534  *
1535  * We also mark the page dirty at this point even though the page will
1536  * change only once the write actually happens. This avoids a few races,
1537  * and potentially makes it more efficient.
1538  *
1539  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1540  * but allow concurrent faults), with pte both mapped and locked.
1541  * We return with mmap_sem still held, but pte unmapped and unlocked.
1542  */
1543 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1544 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1545 		spinlock_t *ptl, pte_t orig_pte)
1546 {
1547 	struct page *old_page, *new_page;
1548 	pte_t entry;
1549 	int reuse = 0, ret = 0;
1550 	int page_mkwrite = 0;
1551 	struct page *dirty_page = NULL;
1552 
1553 	old_page = vm_normal_page(vma, address, orig_pte);
1554 	if (!old_page)
1555 		goto gotten;
1556 
1557 	/*
1558 	 * Take out anonymous pages first, anonymous shared vmas are
1559 	 * not dirty accountable.
1560 	 */
1561 	if (PageAnon(old_page)) {
1562 		if (!TestSetPageLocked(old_page)) {
1563 			reuse = can_share_swap_page(old_page);
1564 			unlock_page(old_page);
1565 		}
1566 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1567 					(VM_WRITE|VM_SHARED))) {
1568 		/*
1569 		 * Only catch write-faults on shared writable pages,
1570 		 * read-only shared pages can get COWed by
1571 		 * get_user_pages(.write=1, .force=1).
1572 		 */
1573 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1574 			/*
1575 			 * Notify the address space that the page is about to
1576 			 * become writable so that it can prohibit this or wait
1577 			 * for the page to get into an appropriate state.
1578 			 *
1579 			 * We do this without the lock held, so that it can
1580 			 * sleep if it needs to.
1581 			 */
1582 			page_cache_get(old_page);
1583 			pte_unmap_unlock(page_table, ptl);
1584 
1585 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1586 				goto unwritable_page;
1587 
1588 			/*
1589 			 * Since we dropped the lock we need to revalidate
1590 			 * the PTE as someone else may have changed it.  If
1591 			 * they did, we just return, as we can count on the
1592 			 * MMU to tell us if they didn't also make it writable.
1593 			 */
1594 			page_table = pte_offset_map_lock(mm, pmd, address,
1595 							 &ptl);
1596 			page_cache_release(old_page);
1597 			if (!pte_same(*page_table, orig_pte))
1598 				goto unlock;
1599 
1600 			page_mkwrite = 1;
1601 		}
1602 		dirty_page = old_page;
1603 		get_page(dirty_page);
1604 		reuse = 1;
1605 	}
1606 
1607 	if (reuse) {
1608 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1609 		entry = pte_mkyoung(orig_pte);
1610 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1611 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1612 			update_mmu_cache(vma, address, entry);
1613 		ret |= VM_FAULT_WRITE;
1614 		goto unlock;
1615 	}
1616 
1617 	/*
1618 	 * Ok, we need to copy. Oh, well..
1619 	 */
1620 	page_cache_get(old_page);
1621 gotten:
1622 	pte_unmap_unlock(page_table, ptl);
1623 
1624 	if (unlikely(anon_vma_prepare(vma)))
1625 		goto oom;
1626 	VM_BUG_ON(old_page == ZERO_PAGE(0));
1627 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1628 	if (!new_page)
1629 		goto oom;
1630 	cow_user_page(new_page, old_page, address, vma);
1631 
1632 	/*
1633 	 * Re-check the pte - we dropped the lock
1634 	 */
1635 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1636 	if (likely(pte_same(*page_table, orig_pte))) {
1637 		if (old_page) {
1638 			page_remove_rmap(old_page, vma);
1639 			if (!PageAnon(old_page)) {
1640 				dec_mm_counter(mm, file_rss);
1641 				inc_mm_counter(mm, anon_rss);
1642 			}
1643 		} else
1644 			inc_mm_counter(mm, anon_rss);
1645 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1646 		entry = mk_pte(new_page, vma->vm_page_prot);
1647 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1648 		/*
1649 		 * Clear the pte entry and flush it first, before updating the
1650 		 * pte with the new entry. This will avoid a race condition
1651 		 * seen in the presence of one thread doing SMC and another
1652 		 * thread doing COW.
1653 		 */
1654 		ptep_clear_flush(vma, address, page_table);
1655 		set_pte_at(mm, address, page_table, entry);
1656 		update_mmu_cache(vma, address, entry);
1657 		lru_cache_add_active(new_page);
1658 		page_add_new_anon_rmap(new_page, vma, address);
1659 
1660 		/* Free the old page.. */
1661 		new_page = old_page;
1662 		ret |= VM_FAULT_WRITE;
1663 	}
1664 	if (new_page)
1665 		page_cache_release(new_page);
1666 	if (old_page)
1667 		page_cache_release(old_page);
1668 unlock:
1669 	pte_unmap_unlock(page_table, ptl);
1670 	if (dirty_page) {
1671 		/*
1672 		 * Yes, Virginia, this is actually required to prevent a race
1673 		 * with clear_page_dirty_for_io() from clearing the page dirty
1674 		 * bit after it clear all dirty ptes, but before a racing
1675 		 * do_wp_page installs a dirty pte.
1676 		 *
1677 		 * do_no_page is protected similarly.
1678 		 */
1679 		wait_on_page_locked(dirty_page);
1680 		set_page_dirty_balance(dirty_page, page_mkwrite);
1681 		put_page(dirty_page);
1682 	}
1683 	return ret;
1684 oom:
1685 	if (old_page)
1686 		page_cache_release(old_page);
1687 	return VM_FAULT_OOM;
1688 
1689 unwritable_page:
1690 	page_cache_release(old_page);
1691 	return VM_FAULT_SIGBUS;
1692 }
1693 
1694 /*
1695  * Helper functions for unmap_mapping_range().
1696  *
1697  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1698  *
1699  * We have to restart searching the prio_tree whenever we drop the lock,
1700  * since the iterator is only valid while the lock is held, and anyway
1701  * a later vma might be split and reinserted earlier while lock dropped.
1702  *
1703  * The list of nonlinear vmas could be handled more efficiently, using
1704  * a placeholder, but handle it in the same way until a need is shown.
1705  * It is important to search the prio_tree before nonlinear list: a vma
1706  * may become nonlinear and be shifted from prio_tree to nonlinear list
1707  * while the lock is dropped; but never shifted from list to prio_tree.
1708  *
1709  * In order to make forward progress despite restarting the search,
1710  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1711  * quickly skip it next time around.  Since the prio_tree search only
1712  * shows us those vmas affected by unmapping the range in question, we
1713  * can't efficiently keep all vmas in step with mapping->truncate_count:
1714  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1715  * mapping->truncate_count and vma->vm_truncate_count are protected by
1716  * i_mmap_lock.
1717  *
1718  * In order to make forward progress despite repeatedly restarting some
1719  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1720  * and restart from that address when we reach that vma again.  It might
1721  * have been split or merged, shrunk or extended, but never shifted: so
1722  * restart_addr remains valid so long as it remains in the vma's range.
1723  * unmap_mapping_range forces truncate_count to leap over page-aligned
1724  * values so we can save vma's restart_addr in its truncate_count field.
1725  */
1726 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1727 
1728 static void reset_vma_truncate_counts(struct address_space *mapping)
1729 {
1730 	struct vm_area_struct *vma;
1731 	struct prio_tree_iter iter;
1732 
1733 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1734 		vma->vm_truncate_count = 0;
1735 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1736 		vma->vm_truncate_count = 0;
1737 }
1738 
1739 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1740 		unsigned long start_addr, unsigned long end_addr,
1741 		struct zap_details *details)
1742 {
1743 	unsigned long restart_addr;
1744 	int need_break;
1745 
1746 	/*
1747 	 * files that support invalidating or truncating portions of the
1748 	 * file from under mmaped areas must have their ->fault function
1749 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
1750 	 * This provides synchronisation against concurrent unmapping here.
1751 	 */
1752 
1753 again:
1754 	restart_addr = vma->vm_truncate_count;
1755 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1756 		start_addr = restart_addr;
1757 		if (start_addr >= end_addr) {
1758 			/* Top of vma has been split off since last time */
1759 			vma->vm_truncate_count = details->truncate_count;
1760 			return 0;
1761 		}
1762 	}
1763 
1764 	restart_addr = zap_page_range(vma, start_addr,
1765 					end_addr - start_addr, details);
1766 	need_break = need_resched() ||
1767 			need_lockbreak(details->i_mmap_lock);
1768 
1769 	if (restart_addr >= end_addr) {
1770 		/* We have now completed this vma: mark it so */
1771 		vma->vm_truncate_count = details->truncate_count;
1772 		if (!need_break)
1773 			return 0;
1774 	} else {
1775 		/* Note restart_addr in vma's truncate_count field */
1776 		vma->vm_truncate_count = restart_addr;
1777 		if (!need_break)
1778 			goto again;
1779 	}
1780 
1781 	spin_unlock(details->i_mmap_lock);
1782 	cond_resched();
1783 	spin_lock(details->i_mmap_lock);
1784 	return -EINTR;
1785 }
1786 
1787 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1788 					    struct zap_details *details)
1789 {
1790 	struct vm_area_struct *vma;
1791 	struct prio_tree_iter iter;
1792 	pgoff_t vba, vea, zba, zea;
1793 
1794 restart:
1795 	vma_prio_tree_foreach(vma, &iter, root,
1796 			details->first_index, details->last_index) {
1797 		/* Skip quickly over those we have already dealt with */
1798 		if (vma->vm_truncate_count == details->truncate_count)
1799 			continue;
1800 
1801 		vba = vma->vm_pgoff;
1802 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1803 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1804 		zba = details->first_index;
1805 		if (zba < vba)
1806 			zba = vba;
1807 		zea = details->last_index;
1808 		if (zea > vea)
1809 			zea = vea;
1810 
1811 		if (unmap_mapping_range_vma(vma,
1812 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1813 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1814 				details) < 0)
1815 			goto restart;
1816 	}
1817 }
1818 
1819 static inline void unmap_mapping_range_list(struct list_head *head,
1820 					    struct zap_details *details)
1821 {
1822 	struct vm_area_struct *vma;
1823 
1824 	/*
1825 	 * In nonlinear VMAs there is no correspondence between virtual address
1826 	 * offset and file offset.  So we must perform an exhaustive search
1827 	 * across *all* the pages in each nonlinear VMA, not just the pages
1828 	 * whose virtual address lies outside the file truncation point.
1829 	 */
1830 restart:
1831 	list_for_each_entry(vma, head, shared.vm_set.list) {
1832 		/* Skip quickly over those we have already dealt with */
1833 		if (vma->vm_truncate_count == details->truncate_count)
1834 			continue;
1835 		details->nonlinear_vma = vma;
1836 		if (unmap_mapping_range_vma(vma, vma->vm_start,
1837 					vma->vm_end, details) < 0)
1838 			goto restart;
1839 	}
1840 }
1841 
1842 /**
1843  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1844  * @mapping: the address space containing mmaps to be unmapped.
1845  * @holebegin: byte in first page to unmap, relative to the start of
1846  * the underlying file.  This will be rounded down to a PAGE_SIZE
1847  * boundary.  Note that this is different from vmtruncate(), which
1848  * must keep the partial page.  In contrast, we must get rid of
1849  * partial pages.
1850  * @holelen: size of prospective hole in bytes.  This will be rounded
1851  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1852  * end of the file.
1853  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1854  * but 0 when invalidating pagecache, don't throw away private data.
1855  */
1856 void unmap_mapping_range(struct address_space *mapping,
1857 		loff_t const holebegin, loff_t const holelen, int even_cows)
1858 {
1859 	struct zap_details details;
1860 	pgoff_t hba = holebegin >> PAGE_SHIFT;
1861 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1862 
1863 	/* Check for overflow. */
1864 	if (sizeof(holelen) > sizeof(hlen)) {
1865 		long long holeend =
1866 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1867 		if (holeend & ~(long long)ULONG_MAX)
1868 			hlen = ULONG_MAX - hba + 1;
1869 	}
1870 
1871 	details.check_mapping = even_cows? NULL: mapping;
1872 	details.nonlinear_vma = NULL;
1873 	details.first_index = hba;
1874 	details.last_index = hba + hlen - 1;
1875 	if (details.last_index < details.first_index)
1876 		details.last_index = ULONG_MAX;
1877 	details.i_mmap_lock = &mapping->i_mmap_lock;
1878 
1879 	spin_lock(&mapping->i_mmap_lock);
1880 
1881 	/* Protect against endless unmapping loops */
1882 	mapping->truncate_count++;
1883 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1884 		if (mapping->truncate_count == 0)
1885 			reset_vma_truncate_counts(mapping);
1886 		mapping->truncate_count++;
1887 	}
1888 	details.truncate_count = mapping->truncate_count;
1889 
1890 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1891 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1892 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1893 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1894 	spin_unlock(&mapping->i_mmap_lock);
1895 }
1896 EXPORT_SYMBOL(unmap_mapping_range);
1897 
1898 /**
1899  * vmtruncate - unmap mappings "freed" by truncate() syscall
1900  * @inode: inode of the file used
1901  * @offset: file offset to start truncating
1902  *
1903  * NOTE! We have to be ready to update the memory sharing
1904  * between the file and the memory map for a potential last
1905  * incomplete page.  Ugly, but necessary.
1906  */
1907 int vmtruncate(struct inode * inode, loff_t offset)
1908 {
1909 	struct address_space *mapping = inode->i_mapping;
1910 	unsigned long limit;
1911 
1912 	if (inode->i_size < offset)
1913 		goto do_expand;
1914 	/*
1915 	 * truncation of in-use swapfiles is disallowed - it would cause
1916 	 * subsequent swapout to scribble on the now-freed blocks.
1917 	 */
1918 	if (IS_SWAPFILE(inode))
1919 		goto out_busy;
1920 	i_size_write(inode, offset);
1921 
1922 	/*
1923 	 * unmap_mapping_range is called twice, first simply for efficiency
1924 	 * so that truncate_inode_pages does fewer single-page unmaps. However
1925 	 * after this first call, and before truncate_inode_pages finishes,
1926 	 * it is possible for private pages to be COWed, which remain after
1927 	 * truncate_inode_pages finishes, hence the second unmap_mapping_range
1928 	 * call must be made for correctness.
1929 	 */
1930 	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1931 	truncate_inode_pages(mapping, offset);
1932 	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1933 	goto out_truncate;
1934 
1935 do_expand:
1936 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1937 	if (limit != RLIM_INFINITY && offset > limit)
1938 		goto out_sig;
1939 	if (offset > inode->i_sb->s_maxbytes)
1940 		goto out_big;
1941 	i_size_write(inode, offset);
1942 
1943 out_truncate:
1944 	if (inode->i_op && inode->i_op->truncate)
1945 		inode->i_op->truncate(inode);
1946 	return 0;
1947 out_sig:
1948 	send_sig(SIGXFSZ, current, 0);
1949 out_big:
1950 	return -EFBIG;
1951 out_busy:
1952 	return -ETXTBSY;
1953 }
1954 EXPORT_SYMBOL(vmtruncate);
1955 
1956 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1957 {
1958 	struct address_space *mapping = inode->i_mapping;
1959 
1960 	/*
1961 	 * If the underlying filesystem is not going to provide
1962 	 * a way to truncate a range of blocks (punch a hole) -
1963 	 * we should return failure right now.
1964 	 */
1965 	if (!inode->i_op || !inode->i_op->truncate_range)
1966 		return -ENOSYS;
1967 
1968 	mutex_lock(&inode->i_mutex);
1969 	down_write(&inode->i_alloc_sem);
1970 	unmap_mapping_range(mapping, offset, (end - offset), 1);
1971 	truncate_inode_pages_range(mapping, offset, end);
1972 	unmap_mapping_range(mapping, offset, (end - offset), 1);
1973 	inode->i_op->truncate_range(inode, offset, end);
1974 	up_write(&inode->i_alloc_sem);
1975 	mutex_unlock(&inode->i_mutex);
1976 
1977 	return 0;
1978 }
1979 
1980 /**
1981  * swapin_readahead - swap in pages in hope we need them soon
1982  * @entry: swap entry of this memory
1983  * @addr: address to start
1984  * @vma: user vma this addresses belong to
1985  *
1986  * Primitive swap readahead code. We simply read an aligned block of
1987  * (1 << page_cluster) entries in the swap area. This method is chosen
1988  * because it doesn't cost us any seek time.  We also make sure to queue
1989  * the 'original' request together with the readahead ones...
1990  *
1991  * This has been extended to use the NUMA policies from the mm triggering
1992  * the readahead.
1993  *
1994  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1995  */
1996 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1997 {
1998 #ifdef CONFIG_NUMA
1999 	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
2000 #endif
2001 	int i, num;
2002 	struct page *new_page;
2003 	unsigned long offset;
2004 
2005 	/*
2006 	 * Get the number of handles we should do readahead io to.
2007 	 */
2008 	num = valid_swaphandles(entry, &offset);
2009 	for (i = 0; i < num; offset++, i++) {
2010 		/* Ok, do the async read-ahead now */
2011 		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
2012 							   offset), vma, addr);
2013 		if (!new_page)
2014 			break;
2015 		page_cache_release(new_page);
2016 #ifdef CONFIG_NUMA
2017 		/*
2018 		 * Find the next applicable VMA for the NUMA policy.
2019 		 */
2020 		addr += PAGE_SIZE;
2021 		if (addr == 0)
2022 			vma = NULL;
2023 		if (vma) {
2024 			if (addr >= vma->vm_end) {
2025 				vma = next_vma;
2026 				next_vma = vma ? vma->vm_next : NULL;
2027 			}
2028 			if (vma && addr < vma->vm_start)
2029 				vma = NULL;
2030 		} else {
2031 			if (next_vma && addr >= next_vma->vm_start) {
2032 				vma = next_vma;
2033 				next_vma = vma->vm_next;
2034 			}
2035 		}
2036 #endif
2037 	}
2038 	lru_add_drain();	/* Push any new pages onto the LRU now */
2039 }
2040 
2041 /*
2042  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2043  * but allow concurrent faults), and pte mapped but not yet locked.
2044  * We return with mmap_sem still held, but pte unmapped and unlocked.
2045  */
2046 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2047 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2048 		int write_access, pte_t orig_pte)
2049 {
2050 	spinlock_t *ptl;
2051 	struct page *page;
2052 	swp_entry_t entry;
2053 	pte_t pte;
2054 	int ret = 0;
2055 
2056 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2057 		goto out;
2058 
2059 	entry = pte_to_swp_entry(orig_pte);
2060 	if (is_migration_entry(entry)) {
2061 		migration_entry_wait(mm, pmd, address);
2062 		goto out;
2063 	}
2064 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2065 	page = lookup_swap_cache(entry);
2066 	if (!page) {
2067 		grab_swap_token(); /* Contend for token _before_ read-in */
2068  		swapin_readahead(entry, address, vma);
2069  		page = read_swap_cache_async(entry, vma, address);
2070 		if (!page) {
2071 			/*
2072 			 * Back out if somebody else faulted in this pte
2073 			 * while we released the pte lock.
2074 			 */
2075 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2076 			if (likely(pte_same(*page_table, orig_pte)))
2077 				ret = VM_FAULT_OOM;
2078 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2079 			goto unlock;
2080 		}
2081 
2082 		/* Had to read the page from swap area: Major fault */
2083 		ret = VM_FAULT_MAJOR;
2084 		count_vm_event(PGMAJFAULT);
2085 	}
2086 
2087 	mark_page_accessed(page);
2088 	lock_page(page);
2089 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2090 
2091 	/*
2092 	 * Back out if somebody else already faulted in this pte.
2093 	 */
2094 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2095 	if (unlikely(!pte_same(*page_table, orig_pte)))
2096 		goto out_nomap;
2097 
2098 	if (unlikely(!PageUptodate(page))) {
2099 		ret = VM_FAULT_SIGBUS;
2100 		goto out_nomap;
2101 	}
2102 
2103 	/* The page isn't present yet, go ahead with the fault. */
2104 
2105 	inc_mm_counter(mm, anon_rss);
2106 	pte = mk_pte(page, vma->vm_page_prot);
2107 	if (write_access && can_share_swap_page(page)) {
2108 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2109 		write_access = 0;
2110 	}
2111 
2112 	flush_icache_page(vma, page);
2113 	set_pte_at(mm, address, page_table, pte);
2114 	page_add_anon_rmap(page, vma, address);
2115 
2116 	swap_free(entry);
2117 	if (vm_swap_full())
2118 		remove_exclusive_swap_page(page);
2119 	unlock_page(page);
2120 
2121 	if (write_access) {
2122 		/* XXX: We could OR the do_wp_page code with this one? */
2123 		if (do_wp_page(mm, vma, address,
2124 				page_table, pmd, ptl, pte) & VM_FAULT_OOM)
2125 			ret = VM_FAULT_OOM;
2126 		goto out;
2127 	}
2128 
2129 	/* No need to invalidate - it was non-present before */
2130 	update_mmu_cache(vma, address, pte);
2131 unlock:
2132 	pte_unmap_unlock(page_table, ptl);
2133 out:
2134 	return ret;
2135 out_nomap:
2136 	pte_unmap_unlock(page_table, ptl);
2137 	unlock_page(page);
2138 	page_cache_release(page);
2139 	return ret;
2140 }
2141 
2142 /*
2143  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2144  * but allow concurrent faults), and pte mapped but not yet locked.
2145  * We return with mmap_sem still held, but pte unmapped and unlocked.
2146  */
2147 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2148 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2149 		int write_access)
2150 {
2151 	struct page *page;
2152 	spinlock_t *ptl;
2153 	pte_t entry;
2154 
2155 	/* Allocate our own private page. */
2156 	pte_unmap(page_table);
2157 
2158 	if (unlikely(anon_vma_prepare(vma)))
2159 		goto oom;
2160 	page = alloc_zeroed_user_highpage_movable(vma, address);
2161 	if (!page)
2162 		goto oom;
2163 
2164 	entry = mk_pte(page, vma->vm_page_prot);
2165 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2166 
2167 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2168 	if (!pte_none(*page_table))
2169 		goto release;
2170 	inc_mm_counter(mm, anon_rss);
2171 	lru_cache_add_active(page);
2172 	page_add_new_anon_rmap(page, vma, address);
2173 	set_pte_at(mm, address, page_table, entry);
2174 
2175 	/* No need to invalidate - it was non-present before */
2176 	update_mmu_cache(vma, address, entry);
2177 unlock:
2178 	pte_unmap_unlock(page_table, ptl);
2179 	return 0;
2180 release:
2181 	page_cache_release(page);
2182 	goto unlock;
2183 oom:
2184 	return VM_FAULT_OOM;
2185 }
2186 
2187 /*
2188  * __do_fault() tries to create a new page mapping. It aggressively
2189  * tries to share with existing pages, but makes a separate copy if
2190  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2191  * the next page fault.
2192  *
2193  * As this is called only for pages that do not currently exist, we
2194  * do not need to flush old virtual caches or the TLB.
2195  *
2196  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2197  * but allow concurrent faults), and pte neither mapped nor locked.
2198  * We return with mmap_sem still held, but pte unmapped and unlocked.
2199  */
2200 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2201 		unsigned long address, pmd_t *pmd,
2202 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2203 {
2204 	pte_t *page_table;
2205 	spinlock_t *ptl;
2206 	struct page *page;
2207 	pte_t entry;
2208 	int anon = 0;
2209 	struct page *dirty_page = NULL;
2210 	struct vm_fault vmf;
2211 	int ret;
2212 	int page_mkwrite = 0;
2213 
2214 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2215 	vmf.pgoff = pgoff;
2216 	vmf.flags = flags;
2217 	vmf.page = NULL;
2218 
2219 	BUG_ON(vma->vm_flags & VM_PFNMAP);
2220 
2221 	if (likely(vma->vm_ops->fault)) {
2222 		ret = vma->vm_ops->fault(vma, &vmf);
2223 		if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2224 			return ret;
2225 	} else {
2226 		/* Legacy ->nopage path */
2227 		ret = 0;
2228 		vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2229 		/* no page was available -- either SIGBUS or OOM */
2230 		if (unlikely(vmf.page == NOPAGE_SIGBUS))
2231 			return VM_FAULT_SIGBUS;
2232 		else if (unlikely(vmf.page == NOPAGE_OOM))
2233 			return VM_FAULT_OOM;
2234 	}
2235 
2236 	/*
2237 	 * For consistency in subsequent calls, make the faulted page always
2238 	 * locked.
2239 	 */
2240 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2241 		lock_page(vmf.page);
2242 	else
2243 		VM_BUG_ON(!PageLocked(vmf.page));
2244 
2245 	/*
2246 	 * Should we do an early C-O-W break?
2247 	 */
2248 	page = vmf.page;
2249 	if (flags & FAULT_FLAG_WRITE) {
2250 		if (!(vma->vm_flags & VM_SHARED)) {
2251 			anon = 1;
2252 			if (unlikely(anon_vma_prepare(vma))) {
2253 				ret = VM_FAULT_OOM;
2254 				goto out;
2255 			}
2256 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2257 						vma, address);
2258 			if (!page) {
2259 				ret = VM_FAULT_OOM;
2260 				goto out;
2261 			}
2262 			copy_user_highpage(page, vmf.page, address, vma);
2263 		} else {
2264 			/*
2265 			 * If the page will be shareable, see if the backing
2266 			 * address space wants to know that the page is about
2267 			 * to become writable
2268 			 */
2269 			if (vma->vm_ops->page_mkwrite) {
2270 				unlock_page(page);
2271 				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2272 					ret = VM_FAULT_SIGBUS;
2273 					anon = 1; /* no anon but release vmf.page */
2274 					goto out_unlocked;
2275 				}
2276 				lock_page(page);
2277 				/*
2278 				 * XXX: this is not quite right (racy vs
2279 				 * invalidate) to unlock and relock the page
2280 				 * like this, however a better fix requires
2281 				 * reworking page_mkwrite locking API, which
2282 				 * is better done later.
2283 				 */
2284 				if (!page->mapping) {
2285 					ret = 0;
2286 					anon = 1; /* no anon but release vmf.page */
2287 					goto out;
2288 				}
2289 				page_mkwrite = 1;
2290 			}
2291 		}
2292 
2293 	}
2294 
2295 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2296 
2297 	/*
2298 	 * This silly early PAGE_DIRTY setting removes a race
2299 	 * due to the bad i386 page protection. But it's valid
2300 	 * for other architectures too.
2301 	 *
2302 	 * Note that if write_access is true, we either now have
2303 	 * an exclusive copy of the page, or this is a shared mapping,
2304 	 * so we can make it writable and dirty to avoid having to
2305 	 * handle that later.
2306 	 */
2307 	/* Only go through if we didn't race with anybody else... */
2308 	if (likely(pte_same(*page_table, orig_pte))) {
2309 		flush_icache_page(vma, page);
2310 		entry = mk_pte(page, vma->vm_page_prot);
2311 		if (flags & FAULT_FLAG_WRITE)
2312 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2313 		set_pte_at(mm, address, page_table, entry);
2314 		if (anon) {
2315                         inc_mm_counter(mm, anon_rss);
2316                         lru_cache_add_active(page);
2317                         page_add_new_anon_rmap(page, vma, address);
2318 		} else {
2319 			inc_mm_counter(mm, file_rss);
2320 			page_add_file_rmap(page);
2321 			if (flags & FAULT_FLAG_WRITE) {
2322 				dirty_page = page;
2323 				get_page(dirty_page);
2324 			}
2325 		}
2326 
2327 		/* no need to invalidate: a not-present page won't be cached */
2328 		update_mmu_cache(vma, address, entry);
2329 	} else {
2330 		if (anon)
2331 			page_cache_release(page);
2332 		else
2333 			anon = 1; /* no anon but release faulted_page */
2334 	}
2335 
2336 	pte_unmap_unlock(page_table, ptl);
2337 
2338 out:
2339 	unlock_page(vmf.page);
2340 out_unlocked:
2341 	if (anon)
2342 		page_cache_release(vmf.page);
2343 	else if (dirty_page) {
2344 		set_page_dirty_balance(dirty_page, page_mkwrite);
2345 		put_page(dirty_page);
2346 	}
2347 
2348 	return ret;
2349 }
2350 
2351 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2352 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2353 		int write_access, pte_t orig_pte)
2354 {
2355 	pgoff_t pgoff = (((address & PAGE_MASK)
2356 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2357 	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2358 
2359 	pte_unmap(page_table);
2360 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2361 }
2362 
2363 
2364 /*
2365  * do_no_pfn() tries to create a new page mapping for a page without
2366  * a struct_page backing it
2367  *
2368  * As this is called only for pages that do not currently exist, we
2369  * do not need to flush old virtual caches or the TLB.
2370  *
2371  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2372  * but allow concurrent faults), and pte mapped but not yet locked.
2373  * We return with mmap_sem still held, but pte unmapped and unlocked.
2374  *
2375  * It is expected that the ->nopfn handler always returns the same pfn
2376  * for a given virtual mapping.
2377  *
2378  * Mark this `noinline' to prevent it from bloating the main pagefault code.
2379  */
2380 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2381 		     unsigned long address, pte_t *page_table, pmd_t *pmd,
2382 		     int write_access)
2383 {
2384 	spinlock_t *ptl;
2385 	pte_t entry;
2386 	unsigned long pfn;
2387 
2388 	pte_unmap(page_table);
2389 	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2390 	BUG_ON(is_cow_mapping(vma->vm_flags));
2391 
2392 	pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2393 	if (unlikely(pfn == NOPFN_OOM))
2394 		return VM_FAULT_OOM;
2395 	else if (unlikely(pfn == NOPFN_SIGBUS))
2396 		return VM_FAULT_SIGBUS;
2397 	else if (unlikely(pfn == NOPFN_REFAULT))
2398 		return 0;
2399 
2400 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2401 
2402 	/* Only go through if we didn't race with anybody else... */
2403 	if (pte_none(*page_table)) {
2404 		entry = pfn_pte(pfn, vma->vm_page_prot);
2405 		if (write_access)
2406 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2407 		set_pte_at(mm, address, page_table, entry);
2408 	}
2409 	pte_unmap_unlock(page_table, ptl);
2410 	return 0;
2411 }
2412 
2413 /*
2414  * Fault of a previously existing named mapping. Repopulate the pte
2415  * from the encoded file_pte if possible. This enables swappable
2416  * nonlinear vmas.
2417  *
2418  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2419  * but allow concurrent faults), and pte mapped but not yet locked.
2420  * We return with mmap_sem still held, but pte unmapped and unlocked.
2421  */
2422 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2423 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2424 		int write_access, pte_t orig_pte)
2425 {
2426 	unsigned int flags = FAULT_FLAG_NONLINEAR |
2427 				(write_access ? FAULT_FLAG_WRITE : 0);
2428 	pgoff_t pgoff;
2429 
2430 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2431 		return 0;
2432 
2433 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2434 			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2435 		/*
2436 		 * Page table corrupted: show pte and kill process.
2437 		 */
2438 		print_bad_pte(vma, orig_pte, address);
2439 		return VM_FAULT_OOM;
2440 	}
2441 
2442 	pgoff = pte_to_pgoff(orig_pte);
2443 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2444 }
2445 
2446 /*
2447  * These routines also need to handle stuff like marking pages dirty
2448  * and/or accessed for architectures that don't do it in hardware (most
2449  * RISC architectures).  The early dirtying is also good on the i386.
2450  *
2451  * There is also a hook called "update_mmu_cache()" that architectures
2452  * with external mmu caches can use to update those (ie the Sparc or
2453  * PowerPC hashed page tables that act as extended TLBs).
2454  *
2455  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2456  * but allow concurrent faults), and pte mapped but not yet locked.
2457  * We return with mmap_sem still held, but pte unmapped and unlocked.
2458  */
2459 static inline int handle_pte_fault(struct mm_struct *mm,
2460 		struct vm_area_struct *vma, unsigned long address,
2461 		pte_t *pte, pmd_t *pmd, int write_access)
2462 {
2463 	pte_t entry;
2464 	spinlock_t *ptl;
2465 
2466 	entry = *pte;
2467 	if (!pte_present(entry)) {
2468 		if (pte_none(entry)) {
2469 			if (vma->vm_ops) {
2470 				if (vma->vm_ops->fault || vma->vm_ops->nopage)
2471 					return do_linear_fault(mm, vma, address,
2472 						pte, pmd, write_access, entry);
2473 				if (unlikely(vma->vm_ops->nopfn))
2474 					return do_no_pfn(mm, vma, address, pte,
2475 							 pmd, write_access);
2476 			}
2477 			return do_anonymous_page(mm, vma, address,
2478 						 pte, pmd, write_access);
2479 		}
2480 		if (pte_file(entry))
2481 			return do_nonlinear_fault(mm, vma, address,
2482 					pte, pmd, write_access, entry);
2483 		return do_swap_page(mm, vma, address,
2484 					pte, pmd, write_access, entry);
2485 	}
2486 
2487 	ptl = pte_lockptr(mm, pmd);
2488 	spin_lock(ptl);
2489 	if (unlikely(!pte_same(*pte, entry)))
2490 		goto unlock;
2491 	if (write_access) {
2492 		if (!pte_write(entry))
2493 			return do_wp_page(mm, vma, address,
2494 					pte, pmd, ptl, entry);
2495 		entry = pte_mkdirty(entry);
2496 	}
2497 	entry = pte_mkyoung(entry);
2498 	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2499 		update_mmu_cache(vma, address, entry);
2500 	} else {
2501 		/*
2502 		 * This is needed only for protection faults but the arch code
2503 		 * is not yet telling us if this is a protection fault or not.
2504 		 * This still avoids useless tlb flushes for .text page faults
2505 		 * with threads.
2506 		 */
2507 		if (write_access)
2508 			flush_tlb_page(vma, address);
2509 	}
2510 unlock:
2511 	pte_unmap_unlock(pte, ptl);
2512 	return 0;
2513 }
2514 
2515 /*
2516  * By the time we get here, we already hold the mm semaphore
2517  */
2518 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2519 		unsigned long address, int write_access)
2520 {
2521 	pgd_t *pgd;
2522 	pud_t *pud;
2523 	pmd_t *pmd;
2524 	pte_t *pte;
2525 
2526 	__set_current_state(TASK_RUNNING);
2527 
2528 	count_vm_event(PGFAULT);
2529 
2530 	if (unlikely(is_vm_hugetlb_page(vma)))
2531 		return hugetlb_fault(mm, vma, address, write_access);
2532 
2533 	pgd = pgd_offset(mm, address);
2534 	pud = pud_alloc(mm, pgd, address);
2535 	if (!pud)
2536 		return VM_FAULT_OOM;
2537 	pmd = pmd_alloc(mm, pud, address);
2538 	if (!pmd)
2539 		return VM_FAULT_OOM;
2540 	pte = pte_alloc_map(mm, pmd, address);
2541 	if (!pte)
2542 		return VM_FAULT_OOM;
2543 
2544 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2545 }
2546 
2547 #ifndef __PAGETABLE_PUD_FOLDED
2548 /*
2549  * Allocate page upper directory.
2550  * We've already handled the fast-path in-line.
2551  */
2552 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2553 {
2554 	pud_t *new = pud_alloc_one(mm, address);
2555 	if (!new)
2556 		return -ENOMEM;
2557 
2558 	spin_lock(&mm->page_table_lock);
2559 	if (pgd_present(*pgd))		/* Another has populated it */
2560 		pud_free(new);
2561 	else
2562 		pgd_populate(mm, pgd, new);
2563 	spin_unlock(&mm->page_table_lock);
2564 	return 0;
2565 }
2566 #endif /* __PAGETABLE_PUD_FOLDED */
2567 
2568 #ifndef __PAGETABLE_PMD_FOLDED
2569 /*
2570  * Allocate page middle directory.
2571  * We've already handled the fast-path in-line.
2572  */
2573 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2574 {
2575 	pmd_t *new = pmd_alloc_one(mm, address);
2576 	if (!new)
2577 		return -ENOMEM;
2578 
2579 	spin_lock(&mm->page_table_lock);
2580 #ifndef __ARCH_HAS_4LEVEL_HACK
2581 	if (pud_present(*pud))		/* Another has populated it */
2582 		pmd_free(new);
2583 	else
2584 		pud_populate(mm, pud, new);
2585 #else
2586 	if (pgd_present(*pud))		/* Another has populated it */
2587 		pmd_free(new);
2588 	else
2589 		pgd_populate(mm, pud, new);
2590 #endif /* __ARCH_HAS_4LEVEL_HACK */
2591 	spin_unlock(&mm->page_table_lock);
2592 	return 0;
2593 }
2594 #endif /* __PAGETABLE_PMD_FOLDED */
2595 
2596 int make_pages_present(unsigned long addr, unsigned long end)
2597 {
2598 	int ret, len, write;
2599 	struct vm_area_struct * vma;
2600 
2601 	vma = find_vma(current->mm, addr);
2602 	if (!vma)
2603 		return -1;
2604 	write = (vma->vm_flags & VM_WRITE) != 0;
2605 	BUG_ON(addr >= end);
2606 	BUG_ON(end > vma->vm_end);
2607 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2608 	ret = get_user_pages(current, current->mm, addr,
2609 			len, write, 0, NULL, NULL);
2610 	if (ret < 0)
2611 		return ret;
2612 	return ret == len ? 0 : -1;
2613 }
2614 
2615 /*
2616  * Map a vmalloc()-space virtual address to the physical page.
2617  */
2618 struct page * vmalloc_to_page(void * vmalloc_addr)
2619 {
2620 	unsigned long addr = (unsigned long) vmalloc_addr;
2621 	struct page *page = NULL;
2622 	pgd_t *pgd = pgd_offset_k(addr);
2623 	pud_t *pud;
2624 	pmd_t *pmd;
2625 	pte_t *ptep, pte;
2626 
2627 	if (!pgd_none(*pgd)) {
2628 		pud = pud_offset(pgd, addr);
2629 		if (!pud_none(*pud)) {
2630 			pmd = pmd_offset(pud, addr);
2631 			if (!pmd_none(*pmd)) {
2632 				ptep = pte_offset_map(pmd, addr);
2633 				pte = *ptep;
2634 				if (pte_present(pte))
2635 					page = pte_page(pte);
2636 				pte_unmap(ptep);
2637 			}
2638 		}
2639 	}
2640 	return page;
2641 }
2642 
2643 EXPORT_SYMBOL(vmalloc_to_page);
2644 
2645 /*
2646  * Map a vmalloc()-space virtual address to the physical page frame number.
2647  */
2648 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2649 {
2650 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2651 }
2652 
2653 EXPORT_SYMBOL(vmalloc_to_pfn);
2654 
2655 #if !defined(__HAVE_ARCH_GATE_AREA)
2656 
2657 #if defined(AT_SYSINFO_EHDR)
2658 static struct vm_area_struct gate_vma;
2659 
2660 static int __init gate_vma_init(void)
2661 {
2662 	gate_vma.vm_mm = NULL;
2663 	gate_vma.vm_start = FIXADDR_USER_START;
2664 	gate_vma.vm_end = FIXADDR_USER_END;
2665 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2666 	gate_vma.vm_page_prot = __P101;
2667 	/*
2668 	 * Make sure the vDSO gets into every core dump.
2669 	 * Dumping its contents makes post-mortem fully interpretable later
2670 	 * without matching up the same kernel and hardware config to see
2671 	 * what PC values meant.
2672 	 */
2673 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2674 	return 0;
2675 }
2676 __initcall(gate_vma_init);
2677 #endif
2678 
2679 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2680 {
2681 #ifdef AT_SYSINFO_EHDR
2682 	return &gate_vma;
2683 #else
2684 	return NULL;
2685 #endif
2686 }
2687 
2688 int in_gate_area_no_task(unsigned long addr)
2689 {
2690 #ifdef AT_SYSINFO_EHDR
2691 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2692 		return 1;
2693 #endif
2694 	return 0;
2695 }
2696 
2697 #endif	/* __HAVE_ARCH_GATE_AREA */
2698 
2699 /*
2700  * Access another process' address space.
2701  * Source/target buffer must be kernel space,
2702  * Do not walk the page table directly, use get_user_pages
2703  */
2704 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2705 {
2706 	struct mm_struct *mm;
2707 	struct vm_area_struct *vma;
2708 	struct page *page;
2709 	void *old_buf = buf;
2710 
2711 	mm = get_task_mm(tsk);
2712 	if (!mm)
2713 		return 0;
2714 
2715 	down_read(&mm->mmap_sem);
2716 	/* ignore errors, just check how much was successfully transferred */
2717 	while (len) {
2718 		int bytes, ret, offset;
2719 		void *maddr;
2720 
2721 		ret = get_user_pages(tsk, mm, addr, 1,
2722 				write, 1, &page, &vma);
2723 		if (ret <= 0)
2724 			break;
2725 
2726 		bytes = len;
2727 		offset = addr & (PAGE_SIZE-1);
2728 		if (bytes > PAGE_SIZE-offset)
2729 			bytes = PAGE_SIZE-offset;
2730 
2731 		maddr = kmap(page);
2732 		if (write) {
2733 			copy_to_user_page(vma, page, addr,
2734 					  maddr + offset, buf, bytes);
2735 			set_page_dirty_lock(page);
2736 		} else {
2737 			copy_from_user_page(vma, page, addr,
2738 					    buf, maddr + offset, bytes);
2739 		}
2740 		kunmap(page);
2741 		page_cache_release(page);
2742 		len -= bytes;
2743 		buf += bytes;
2744 		addr += bytes;
2745 	}
2746 	up_read(&mm->mmap_sem);
2747 	mmput(mm);
2748 
2749 	return buf - old_buf;
2750 }
2751