1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/leafops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/shmem_fs.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 #include <linux/pgalloc.h> 80 #include <linux/uaccess.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/tlb.h> 87 #include <asm/tlbflush.h> 88 89 #include "pgalloc-track.h" 90 #include "internal.h" 91 #include "swap.h" 92 93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 95 #endif 96 97 static vm_fault_t do_fault(struct vm_fault *vmf); 98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 99 static bool vmf_pte_changed(struct vm_fault *vmf); 100 101 /* 102 * Return true if the original pte was a uffd-wp pte marker (so the pte was 103 * wr-protected). 104 */ 105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 106 { 107 if (!userfaultfd_wp(vmf->vma)) 108 return false; 109 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 110 return false; 111 112 return pte_is_uffd_wp_marker(vmf->orig_pte); 113 } 114 115 /* 116 * Randomize the address space (stacks, mmaps, brk, etc.). 117 * 118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 119 * as ancient (libc5 based) binaries can segfault. ) 120 */ 121 int randomize_va_space __read_mostly = 122 #ifdef CONFIG_COMPAT_BRK 123 1; 124 #else 125 2; 126 #endif 127 128 static const struct ctl_table mmu_sysctl_table[] = { 129 { 130 .procname = "randomize_va_space", 131 .data = &randomize_va_space, 132 .maxlen = sizeof(int), 133 .mode = 0644, 134 .proc_handler = proc_dointvec, 135 }, 136 }; 137 138 static int __init init_mm_sysctl(void) 139 { 140 register_sysctl_init("kernel", mmu_sysctl_table); 141 return 0; 142 } 143 144 subsys_initcall(init_mm_sysctl); 145 146 #ifndef arch_wants_old_prefaulted_pte 147 static inline bool arch_wants_old_prefaulted_pte(void) 148 { 149 /* 150 * Transitioning a PTE from 'old' to 'young' can be expensive on 151 * some architectures, even if it's performed in hardware. By 152 * default, "false" means prefaulted entries will be 'young'. 153 */ 154 return false; 155 } 156 #endif 157 158 static int __init disable_randmaps(char *s) 159 { 160 randomize_va_space = 0; 161 return 1; 162 } 163 __setup("norandmaps", disable_randmaps); 164 165 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 167 168 unsigned long highest_memmap_pfn __read_mostly; 169 170 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 173 static int __init init_zero_pfn(void) 174 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177 } 178 early_initcall(init_zero_pfn); 179 180 void mm_trace_rss_stat(struct mm_struct *mm, int member) 181 { 182 trace_rss_stat(mm, member); 183 } 184 185 /* 186 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all the memory regions. 188 */ 189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 191 { 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196 } 197 198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long addr, unsigned long end, 200 unsigned long floor, unsigned long ceiling) 201 { 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd)) 211 continue; 212 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != end); 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230 } 231 232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235 { 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud)) 245 continue; 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != end); 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264 } 265 266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d)) 279 continue; 280 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297 } 298 299 /** 300 * free_pgd_range - Unmap and free page tables in the range 301 * @tlb: the mmu_gather containing pending TLB flush info 302 * @addr: virtual address start 303 * @end: virtual address end 304 * @floor: lowest address boundary 305 * @ceiling: highest address boundary 306 * 307 * This function tears down all user-level page tables in the 308 * specified virtual address range [@addr..@end). It is part of 309 * the memory unmap flow. 310 */ 311 void free_pgd_range(struct mmu_gather *tlb, 312 unsigned long addr, unsigned long end, 313 unsigned long floor, unsigned long ceiling) 314 { 315 pgd_t *pgd; 316 unsigned long next; 317 318 /* 319 * The next few lines have given us lots of grief... 320 * 321 * Why are we testing PMD* at this top level? Because often 322 * there will be no work to do at all, and we'd prefer not to 323 * go all the way down to the bottom just to discover that. 324 * 325 * Why all these "- 1"s? Because 0 represents both the bottom 326 * of the address space and the top of it (using -1 for the 327 * top wouldn't help much: the masks would do the wrong thing). 328 * The rule is that addr 0 and floor 0 refer to the bottom of 329 * the address space, but end 0 and ceiling 0 refer to the top 330 * Comparisons need to use "end - 1" and "ceiling - 1" (though 331 * that end 0 case should be mythical). 332 * 333 * Wherever addr is brought up or ceiling brought down, we must 334 * be careful to reject "the opposite 0" before it confuses the 335 * subsequent tests. But what about where end is brought down 336 * by PMD_SIZE below? no, end can't go down to 0 there. 337 * 338 * Whereas we round start (addr) and ceiling down, by different 339 * masks at different levels, in order to test whether a table 340 * now has no other vmas using it, so can be freed, we don't 341 * bother to round floor or end up - the tests don't need that. 342 */ 343 344 addr &= PMD_MASK; 345 if (addr < floor) { 346 addr += PMD_SIZE; 347 if (!addr) 348 return; 349 } 350 if (ceiling) { 351 ceiling &= PMD_MASK; 352 if (!ceiling) 353 return; 354 } 355 if (end - 1 > ceiling - 1) 356 end -= PMD_SIZE; 357 if (addr > end - 1) 358 return; 359 /* 360 * We add page table cache pages with PAGE_SIZE, 361 * (see pte_free_tlb()), flush the tlb if we need 362 */ 363 tlb_change_page_size(tlb, PAGE_SIZE); 364 pgd = pgd_offset(tlb->mm, addr); 365 do { 366 next = pgd_addr_end(addr, end); 367 if (pgd_none_or_clear_bad(pgd)) 368 continue; 369 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 370 } while (pgd++, addr = next, addr != end); 371 } 372 373 /** 374 * free_pgtables() - Free a range of page tables 375 * @tlb: The mmu gather 376 * @unmap: The unmap_desc 377 * 378 * Note: pg_start and pg_end are provided to indicate the absolute range of the 379 * page tables that should be removed. This can differ from the vma mappings on 380 * some archs that may have mappings that need to be removed outside the vmas. 381 * Note that the prev->vm_end and next->vm_start are often used. 382 * 383 * The vma_end differs from the pg_end when a dup_mmap() failed and the tree has 384 * unrelated data to the mm_struct being torn down. 385 */ 386 void free_pgtables(struct mmu_gather *tlb, struct unmap_desc *unmap) 387 { 388 struct unlink_vma_file_batch vb; 389 struct ma_state *mas = unmap->mas; 390 struct vm_area_struct *vma = unmap->first; 391 392 /* 393 * Note: USER_PGTABLES_CEILING may be passed as the value of pg_end and 394 * may be 0. Underflow is expected in this case. Otherwise the 395 * pagetable end is exclusive. vma_end is exclusive. The last vma 396 * address should never be larger than the pagetable end. 397 */ 398 WARN_ON_ONCE(unmap->vma_end - 1 > unmap->pg_end - 1); 399 400 tlb_free_vmas(tlb); 401 402 do { 403 unsigned long addr = vma->vm_start; 404 struct vm_area_struct *next; 405 406 next = mas_find(mas, unmap->tree_end - 1); 407 408 /* 409 * Hide vma from rmap and truncate_pagecache before freeing 410 * pgtables 411 */ 412 if (unmap->mm_wr_locked) 413 vma_start_write(vma); 414 unlink_anon_vmas(vma); 415 416 unlink_file_vma_batch_init(&vb); 417 unlink_file_vma_batch_add(&vb, vma); 418 419 /* 420 * Optimization: gather nearby vmas into one call down 421 */ 422 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) { 423 vma = next; 424 next = mas_find(mas, unmap->tree_end - 1); 425 if (unmap->mm_wr_locked) 426 vma_start_write(vma); 427 unlink_anon_vmas(vma); 428 unlink_file_vma_batch_add(&vb, vma); 429 } 430 unlink_file_vma_batch_final(&vb); 431 432 free_pgd_range(tlb, addr, vma->vm_end, unmap->pg_start, 433 next ? next->vm_start : unmap->pg_end); 434 vma = next; 435 } while (vma); 436 } 437 438 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 439 { 440 spinlock_t *ptl = pmd_lock(mm, pmd); 441 442 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 443 mm_inc_nr_ptes(mm); 444 /* 445 * Ensure all pte setup (eg. pte page lock and page clearing) are 446 * visible before the pte is made visible to other CPUs by being 447 * put into page tables. 448 * 449 * The other side of the story is the pointer chasing in the page 450 * table walking code (when walking the page table without locking; 451 * ie. most of the time). Fortunately, these data accesses consist 452 * of a chain of data-dependent loads, meaning most CPUs (alpha 453 * being the notable exception) will already guarantee loads are 454 * seen in-order. See the alpha page table accessors for the 455 * smp_rmb() barriers in page table walking code. 456 */ 457 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 458 pmd_populate(mm, pmd, *pte); 459 *pte = NULL; 460 } 461 spin_unlock(ptl); 462 } 463 464 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 465 { 466 pgtable_t new = pte_alloc_one(mm); 467 if (!new) 468 return -ENOMEM; 469 470 pmd_install(mm, pmd, &new); 471 if (new) 472 pte_free(mm, new); 473 return 0; 474 } 475 476 int __pte_alloc_kernel(pmd_t *pmd) 477 { 478 pte_t *new = pte_alloc_one_kernel(&init_mm); 479 if (!new) 480 return -ENOMEM; 481 482 spin_lock(&init_mm.page_table_lock); 483 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 484 smp_wmb(); /* See comment in pmd_install() */ 485 pmd_populate_kernel(&init_mm, pmd, new); 486 new = NULL; 487 } 488 spin_unlock(&init_mm.page_table_lock); 489 if (new) 490 pte_free_kernel(&init_mm, new); 491 return 0; 492 } 493 494 static inline void init_rss_vec(int *rss) 495 { 496 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 497 } 498 499 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 500 { 501 int i; 502 503 for (i = 0; i < NR_MM_COUNTERS; i++) 504 if (rss[i]) 505 add_mm_counter(mm, i, rss[i]); 506 } 507 508 static bool is_bad_page_map_ratelimited(void) 509 { 510 static unsigned long resume; 511 static unsigned long nr_shown; 512 static unsigned long nr_unshown; 513 514 /* 515 * Allow a burst of 60 reports, then keep quiet for that minute; 516 * or allow a steady drip of one report per second. 517 */ 518 if (nr_shown == 60) { 519 if (time_before(jiffies, resume)) { 520 nr_unshown++; 521 return true; 522 } 523 if (nr_unshown) { 524 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 525 nr_unshown); 526 nr_unshown = 0; 527 } 528 nr_shown = 0; 529 } 530 if (nr_shown++ == 0) 531 resume = jiffies + 60 * HZ; 532 return false; 533 } 534 535 static void __print_bad_page_map_pgtable(struct mm_struct *mm, unsigned long addr) 536 { 537 unsigned long long pgdv, p4dv, pudv, pmdv; 538 p4d_t p4d, *p4dp; 539 pud_t pud, *pudp; 540 pmd_t pmd, *pmdp; 541 pgd_t *pgdp; 542 543 /* 544 * Although this looks like a fully lockless pgtable walk, it is not: 545 * see locking requirements for print_bad_page_map(). 546 */ 547 pgdp = pgd_offset(mm, addr); 548 pgdv = pgd_val(*pgdp); 549 550 if (!pgd_present(*pgdp) || pgd_leaf(*pgdp)) { 551 pr_alert("pgd:%08llx\n", pgdv); 552 return; 553 } 554 555 p4dp = p4d_offset(pgdp, addr); 556 p4d = p4dp_get(p4dp); 557 p4dv = p4d_val(p4d); 558 559 if (!p4d_present(p4d) || p4d_leaf(p4d)) { 560 pr_alert("pgd:%08llx p4d:%08llx\n", pgdv, p4dv); 561 return; 562 } 563 564 pudp = pud_offset(p4dp, addr); 565 pud = pudp_get(pudp); 566 pudv = pud_val(pud); 567 568 if (!pud_present(pud) || pud_leaf(pud)) { 569 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx\n", pgdv, p4dv, pudv); 570 return; 571 } 572 573 pmdp = pmd_offset(pudp, addr); 574 pmd = pmdp_get(pmdp); 575 pmdv = pmd_val(pmd); 576 577 /* 578 * Dumping the PTE would be nice, but it's tricky with CONFIG_HIGHPTE, 579 * because the table should already be mapped by the caller and 580 * doing another map would be bad. print_bad_page_map() should 581 * already take care of printing the PTE. 582 */ 583 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx pmd:%08llx\n", pgdv, 584 p4dv, pudv, pmdv); 585 } 586 587 /* 588 * This function is called to print an error when a bad page table entry (e.g., 589 * corrupted page table entry) is found. For example, we might have a 590 * PFN-mapped pte in a region that doesn't allow it. 591 * 592 * The calling function must still handle the error. 593 * 594 * This function must be called during a proper page table walk, as it will 595 * re-walk the page table to dump information: the caller MUST prevent page 596 * table teardown (by holding mmap, vma or rmap lock) and MUST hold the leaf 597 * page table lock. 598 */ 599 static void print_bad_page_map(struct vm_area_struct *vma, 600 unsigned long addr, unsigned long long entry, struct page *page, 601 enum pgtable_level level) 602 { 603 struct address_space *mapping; 604 pgoff_t index; 605 606 if (is_bad_page_map_ratelimited()) 607 return; 608 609 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 610 index = linear_page_index(vma, addr); 611 612 pr_alert("BUG: Bad page map in process %s %s:%08llx", current->comm, 613 pgtable_level_to_str(level), entry); 614 __print_bad_page_map_pgtable(vma->vm_mm, addr); 615 if (page) 616 dump_page(page, "bad page map"); 617 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 618 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 619 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n", 620 vma->vm_file, 621 vma->vm_ops ? vma->vm_ops->fault : NULL, 622 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 623 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL, 624 mapping ? mapping->a_ops->read_folio : NULL); 625 dump_stack(); 626 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 627 } 628 #define print_bad_pte(vma, addr, pte, page) \ 629 print_bad_page_map(vma, addr, pte_val(pte), page, PGTABLE_LEVEL_PTE) 630 631 /** 632 * __vm_normal_page() - Get the "struct page" associated with a page table entry. 633 * @vma: The VMA mapping the page table entry. 634 * @addr: The address where the page table entry is mapped. 635 * @pfn: The PFN stored in the page table entry. 636 * @special: Whether the page table entry is marked "special". 637 * @level: The page table level for error reporting purposes only. 638 * @entry: The page table entry value for error reporting purposes only. 639 * 640 * "Special" mappings do not wish to be associated with a "struct page" (either 641 * it doesn't exist, or it exists but they don't want to touch it). In this 642 * case, NULL is returned here. "Normal" mappings do have a struct page and 643 * are ordinarily refcounted. 644 * 645 * Page mappings of the shared zero folios are always considered "special", as 646 * they are not ordinarily refcounted: neither the refcount nor the mapcount 647 * of these folios is adjusted when mapping them into user page tables. 648 * Selected page table walkers (such as GUP) can still identify mappings of the 649 * shared zero folios and work with the underlying "struct page". 650 * 651 * There are 2 broad cases. Firstly, an architecture may define a "special" 652 * page table entry bit, such as pte_special(), in which case this function is 653 * trivial. Secondly, an architecture may not have a spare page table 654 * entry bit, which requires a more complicated scheme, described below. 655 * 656 * With CONFIG_FIND_NORMAL_PAGE, we might have the "special" bit set on 657 * page table entries that actually map "normal" pages: however, that page 658 * cannot be looked up through the PFN stored in the page table entry, but 659 * instead will be looked up through vm_ops->find_normal_page(). So far, this 660 * only applies to PTEs. 661 * 662 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 663 * special mapping (even if there are underlying and valid "struct pages"). 664 * COWed pages of a VM_PFNMAP are always normal. 665 * 666 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 667 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 668 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 669 * mapping will always honor the rule 670 * 671 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 672 * 673 * And for normal mappings this is false. 674 * 675 * This restricts such mappings to be a linear translation from virtual address 676 * to pfn. To get around this restriction, we allow arbitrary mappings so long 677 * as the vma is not a COW mapping; in that case, we know that all ptes are 678 * special (because none can have been COWed). 679 * 680 * 681 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 682 * 683 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 684 * page" backing, however the difference is that _all_ pages with a struct 685 * page (that is, those where pfn_valid is true, except the shared zero 686 * folios) are refcounted and considered normal pages by the VM. 687 * 688 * The disadvantage is that pages are refcounted (which can be slower and 689 * simply not an option for some PFNMAP users). The advantage is that we 690 * don't have to follow the strict linearity rule of PFNMAP mappings in 691 * order to support COWable mappings. 692 * 693 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 694 * NULL if this is a "special" mapping. 695 */ 696 static inline struct page *__vm_normal_page(struct vm_area_struct *vma, 697 unsigned long addr, unsigned long pfn, bool special, 698 unsigned long long entry, enum pgtable_level level) 699 { 700 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 701 if (unlikely(special)) { 702 #ifdef CONFIG_FIND_NORMAL_PAGE 703 if (vma->vm_ops && vma->vm_ops->find_normal_page) 704 return vma->vm_ops->find_normal_page(vma, addr); 705 #endif /* CONFIG_FIND_NORMAL_PAGE */ 706 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 707 return NULL; 708 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)) 709 return NULL; 710 711 print_bad_page_map(vma, addr, entry, NULL, level); 712 return NULL; 713 } 714 /* 715 * With CONFIG_ARCH_HAS_PTE_SPECIAL, any special page table 716 * mappings (incl. shared zero folios) are marked accordingly. 717 */ 718 } else { 719 if (unlikely(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) { 720 if (vma->vm_flags & VM_MIXEDMAP) { 721 /* If it has a "struct page", it's "normal". */ 722 if (!pfn_valid(pfn)) 723 return NULL; 724 } else { 725 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; 726 727 /* Only CoW'ed anon folios are "normal". */ 728 if (pfn == vma->vm_pgoff + off) 729 return NULL; 730 if (!is_cow_mapping(vma->vm_flags)) 731 return NULL; 732 } 733 } 734 735 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)) 736 return NULL; 737 } 738 739 if (unlikely(pfn > highest_memmap_pfn)) { 740 /* Corrupted page table entry. */ 741 print_bad_page_map(vma, addr, entry, NULL, level); 742 return NULL; 743 } 744 /* 745 * NOTE! We still have PageReserved() pages in the page tables. 746 * For example, VDSO mappings can cause them to exist. 747 */ 748 VM_WARN_ON_ONCE(is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)); 749 return pfn_to_page(pfn); 750 } 751 752 /** 753 * vm_normal_page() - Get the "struct page" associated with a PTE 754 * @vma: The VMA mapping the @pte. 755 * @addr: The address where the @pte is mapped. 756 * @pte: The PTE. 757 * 758 * Get the "struct page" associated with a PTE. See __vm_normal_page() 759 * for details on "normal" and "special" mappings. 760 * 761 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 762 * NULL if this is a "special" mapping. 763 */ 764 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 765 pte_t pte) 766 { 767 return __vm_normal_page(vma, addr, pte_pfn(pte), pte_special(pte), 768 pte_val(pte), PGTABLE_LEVEL_PTE); 769 } 770 771 /** 772 * vm_normal_folio() - Get the "struct folio" associated with a PTE 773 * @vma: The VMA mapping the @pte. 774 * @addr: The address where the @pte is mapped. 775 * @pte: The PTE. 776 * 777 * Get the "struct folio" associated with a PTE. See __vm_normal_page() 778 * for details on "normal" and "special" mappings. 779 * 780 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns 781 * NULL if this is a "special" mapping. 782 */ 783 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 784 pte_t pte) 785 { 786 struct page *page = vm_normal_page(vma, addr, pte); 787 788 if (page) 789 return page_folio(page); 790 return NULL; 791 } 792 793 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 794 /** 795 * vm_normal_page_pmd() - Get the "struct page" associated with a PMD 796 * @vma: The VMA mapping the @pmd. 797 * @addr: The address where the @pmd is mapped. 798 * @pmd: The PMD. 799 * 800 * Get the "struct page" associated with a PTE. See __vm_normal_page() 801 * for details on "normal" and "special" mappings. 802 * 803 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 804 * NULL if this is a "special" mapping. 805 */ 806 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 807 pmd_t pmd) 808 { 809 return __vm_normal_page(vma, addr, pmd_pfn(pmd), pmd_special(pmd), 810 pmd_val(pmd), PGTABLE_LEVEL_PMD); 811 } 812 813 /** 814 * vm_normal_folio_pmd() - Get the "struct folio" associated with a PMD 815 * @vma: The VMA mapping the @pmd. 816 * @addr: The address where the @pmd is mapped. 817 * @pmd: The PMD. 818 * 819 * Get the "struct folio" associated with a PTE. See __vm_normal_page() 820 * for details on "normal" and "special" mappings. 821 * 822 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns 823 * NULL if this is a "special" mapping. 824 */ 825 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 826 unsigned long addr, pmd_t pmd) 827 { 828 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 829 830 if (page) 831 return page_folio(page); 832 return NULL; 833 } 834 835 /** 836 * vm_normal_page_pud() - Get the "struct page" associated with a PUD 837 * @vma: The VMA mapping the @pud. 838 * @addr: The address where the @pud is mapped. 839 * @pud: The PUD. 840 * 841 * Get the "struct page" associated with a PUD. See __vm_normal_page() 842 * for details on "normal" and "special" mappings. 843 * 844 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 845 * NULL if this is a "special" mapping. 846 */ 847 struct page *vm_normal_page_pud(struct vm_area_struct *vma, 848 unsigned long addr, pud_t pud) 849 { 850 return __vm_normal_page(vma, addr, pud_pfn(pud), pud_special(pud), 851 pud_val(pud), PGTABLE_LEVEL_PUD); 852 } 853 #endif 854 855 /** 856 * restore_exclusive_pte - Restore a device-exclusive entry 857 * @vma: VMA covering @address 858 * @folio: the mapped folio 859 * @page: the mapped folio page 860 * @address: the virtual address 861 * @ptep: pte pointer into the locked page table mapping the folio page 862 * @orig_pte: pte value at @ptep 863 * 864 * Restore a device-exclusive non-swap entry to an ordinary present pte. 865 * 866 * The folio and the page table must be locked, and MMU notifiers must have 867 * been called to invalidate any (exclusive) device mappings. 868 * 869 * Locking the folio makes sure that anybody who just converted the pte to 870 * a device-exclusive entry can map it into the device to make forward 871 * progress without others converting it back until the folio was unlocked. 872 * 873 * If the folio lock ever becomes an issue, we can stop relying on the folio 874 * lock; it might make some scenarios with heavy thrashing less likely to 875 * make forward progress, but these scenarios might not be valid use cases. 876 * 877 * Note that the folio lock does not protect against all cases of concurrent 878 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers 879 * must use MMU notifiers to sync against any concurrent changes. 880 */ 881 static void restore_exclusive_pte(struct vm_area_struct *vma, 882 struct folio *folio, struct page *page, unsigned long address, 883 pte_t *ptep, pte_t orig_pte) 884 { 885 pte_t pte; 886 887 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 888 889 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 890 if (pte_swp_soft_dirty(orig_pte)) 891 pte = pte_mksoft_dirty(pte); 892 893 if (pte_swp_uffd_wp(orig_pte)) 894 pte = pte_mkuffd_wp(pte); 895 896 if ((vma->vm_flags & VM_WRITE) && 897 can_change_pte_writable(vma, address, pte)) { 898 if (folio_test_dirty(folio)) 899 pte = pte_mkdirty(pte); 900 pte = pte_mkwrite(pte, vma); 901 } 902 set_pte_at(vma->vm_mm, address, ptep, pte); 903 904 /* 905 * No need to invalidate - it was non-present before. However 906 * secondary CPUs may have mappings that need invalidating. 907 */ 908 update_mmu_cache(vma, address, ptep); 909 } 910 911 /* 912 * Tries to restore an exclusive pte if the page lock can be acquired without 913 * sleeping. 914 */ 915 static int try_restore_exclusive_pte(struct vm_area_struct *vma, 916 unsigned long addr, pte_t *ptep, pte_t orig_pte) 917 { 918 const softleaf_t entry = softleaf_from_pte(orig_pte); 919 struct page *page = softleaf_to_page(entry); 920 struct folio *folio = page_folio(page); 921 922 if (folio_trylock(folio)) { 923 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte); 924 folio_unlock(folio); 925 return 0; 926 } 927 928 return -EBUSY; 929 } 930 931 /* 932 * copy one vm_area from one task to the other. Assumes the page tables 933 * already present in the new task to be cleared in the whole range 934 * covered by this vma. 935 */ 936 937 static unsigned long 938 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 939 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 940 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 941 { 942 vm_flags_t vm_flags = dst_vma->vm_flags; 943 pte_t orig_pte = ptep_get(src_pte); 944 softleaf_t entry = softleaf_from_pte(orig_pte); 945 pte_t pte = orig_pte; 946 struct folio *folio; 947 struct page *page; 948 949 if (likely(softleaf_is_swap(entry))) { 950 if (swap_dup_entry_direct(entry) < 0) 951 return -EIO; 952 953 /* make sure dst_mm is on swapoff's mmlist. */ 954 if (unlikely(list_empty(&dst_mm->mmlist))) { 955 spin_lock(&mmlist_lock); 956 if (list_empty(&dst_mm->mmlist)) 957 list_add(&dst_mm->mmlist, 958 &src_mm->mmlist); 959 spin_unlock(&mmlist_lock); 960 } 961 /* Mark the swap entry as shared. */ 962 if (pte_swp_exclusive(orig_pte)) { 963 pte = pte_swp_clear_exclusive(orig_pte); 964 set_pte_at(src_mm, addr, src_pte, pte); 965 } 966 rss[MM_SWAPENTS]++; 967 } else if (softleaf_is_migration(entry)) { 968 folio = softleaf_to_folio(entry); 969 970 rss[mm_counter(folio)]++; 971 972 if (!softleaf_is_migration_read(entry) && 973 is_cow_mapping(vm_flags)) { 974 /* 975 * COW mappings require pages in both parent and child 976 * to be set to read. A previously exclusive entry is 977 * now shared. 978 */ 979 entry = make_readable_migration_entry( 980 swp_offset(entry)); 981 pte = softleaf_to_pte(entry); 982 if (pte_swp_soft_dirty(orig_pte)) 983 pte = pte_swp_mksoft_dirty(pte); 984 if (pte_swp_uffd_wp(orig_pte)) 985 pte = pte_swp_mkuffd_wp(pte); 986 set_pte_at(src_mm, addr, src_pte, pte); 987 } 988 } else if (softleaf_is_device_private(entry)) { 989 page = softleaf_to_page(entry); 990 folio = page_folio(page); 991 992 /* 993 * Update rss count even for unaddressable pages, as 994 * they should treated just like normal pages in this 995 * respect. 996 * 997 * We will likely want to have some new rss counters 998 * for unaddressable pages, at some point. But for now 999 * keep things as they are. 1000 */ 1001 folio_get(folio); 1002 rss[mm_counter(folio)]++; 1003 /* Cannot fail as these pages cannot get pinned. */ 1004 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma); 1005 1006 /* 1007 * We do not preserve soft-dirty information, because so 1008 * far, checkpoint/restore is the only feature that 1009 * requires that. And checkpoint/restore does not work 1010 * when a device driver is involved (you cannot easily 1011 * save and restore device driver state). 1012 */ 1013 if (softleaf_is_device_private_write(entry) && 1014 is_cow_mapping(vm_flags)) { 1015 entry = make_readable_device_private_entry( 1016 swp_offset(entry)); 1017 pte = swp_entry_to_pte(entry); 1018 if (pte_swp_uffd_wp(orig_pte)) 1019 pte = pte_swp_mkuffd_wp(pte); 1020 set_pte_at(src_mm, addr, src_pte, pte); 1021 } 1022 } else if (softleaf_is_device_exclusive(entry)) { 1023 /* 1024 * Make device exclusive entries present by restoring the 1025 * original entry then copying as for a present pte. Device 1026 * exclusive entries currently only support private writable 1027 * (ie. COW) mappings. 1028 */ 1029 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 1030 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte)) 1031 return -EBUSY; 1032 return -ENOENT; 1033 } else if (softleaf_is_marker(entry)) { 1034 pte_marker marker = copy_pte_marker(entry, dst_vma); 1035 1036 if (marker) 1037 set_pte_at(dst_mm, addr, dst_pte, 1038 make_pte_marker(marker)); 1039 return 0; 1040 } 1041 if (!userfaultfd_wp(dst_vma)) 1042 pte = pte_swp_clear_uffd_wp(pte); 1043 set_pte_at(dst_mm, addr, dst_pte, pte); 1044 return 0; 1045 } 1046 1047 /* 1048 * Copy a present and normal page. 1049 * 1050 * NOTE! The usual case is that this isn't required; 1051 * instead, the caller can just increase the page refcount 1052 * and re-use the pte the traditional way. 1053 * 1054 * And if we need a pre-allocated page but don't yet have 1055 * one, return a negative error to let the preallocation 1056 * code know so that it can do so outside the page table 1057 * lock. 1058 */ 1059 static inline int 1060 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1061 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 1062 struct folio **prealloc, struct page *page) 1063 { 1064 struct folio *new_folio; 1065 pte_t pte; 1066 1067 new_folio = *prealloc; 1068 if (!new_folio) 1069 return -EAGAIN; 1070 1071 /* 1072 * We have a prealloc page, all good! Take it 1073 * over and copy the page & arm it. 1074 */ 1075 1076 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 1077 return -EHWPOISON; 1078 1079 *prealloc = NULL; 1080 __folio_mark_uptodate(new_folio); 1081 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 1082 folio_add_lru_vma(new_folio, dst_vma); 1083 rss[MM_ANONPAGES]++; 1084 1085 /* All done, just insert the new page copy in the child */ 1086 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot); 1087 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 1088 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 1089 /* Uffd-wp needs to be delivered to dest pte as well */ 1090 pte = pte_mkuffd_wp(pte); 1091 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 1092 return 0; 1093 } 1094 1095 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 1096 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 1097 pte_t pte, unsigned long addr, int nr) 1098 { 1099 struct mm_struct *src_mm = src_vma->vm_mm; 1100 1101 /* If it's a COW mapping, write protect it both processes. */ 1102 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 1103 wrprotect_ptes(src_mm, addr, src_pte, nr); 1104 pte = pte_wrprotect(pte); 1105 } 1106 1107 /* If it's a shared mapping, mark it clean in the child. */ 1108 if (src_vma->vm_flags & VM_SHARED) 1109 pte = pte_mkclean(pte); 1110 pte = pte_mkold(pte); 1111 1112 if (!userfaultfd_wp(dst_vma)) 1113 pte = pte_clear_uffd_wp(pte); 1114 1115 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 1116 } 1117 1118 /* 1119 * Copy one present PTE, trying to batch-process subsequent PTEs that map 1120 * consecutive pages of the same folio by copying them as well. 1121 * 1122 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 1123 * Otherwise, returns the number of copied PTEs (at least 1). 1124 */ 1125 static inline int 1126 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1127 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 1128 int max_nr, int *rss, struct folio **prealloc) 1129 { 1130 fpb_t flags = FPB_MERGE_WRITE; 1131 struct page *page; 1132 struct folio *folio; 1133 int err, nr; 1134 1135 page = vm_normal_page(src_vma, addr, pte); 1136 if (unlikely(!page)) 1137 goto copy_pte; 1138 1139 folio = page_folio(page); 1140 1141 /* 1142 * If we likely have to copy, just don't bother with batching. Make 1143 * sure that the common "small folio" case is as fast as possible 1144 * by keeping the batching logic separate. 1145 */ 1146 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1147 if (!(src_vma->vm_flags & VM_SHARED)) 1148 flags |= FPB_RESPECT_DIRTY; 1149 if (vma_soft_dirty_enabled(src_vma)) 1150 flags |= FPB_RESPECT_SOFT_DIRTY; 1151 1152 nr = folio_pte_batch_flags(folio, src_vma, src_pte, &pte, max_nr, flags); 1153 folio_ref_add(folio, nr); 1154 if (folio_test_anon(folio)) { 1155 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1156 nr, dst_vma, src_vma))) { 1157 folio_ref_sub(folio, nr); 1158 return -EAGAIN; 1159 } 1160 rss[MM_ANONPAGES] += nr; 1161 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1162 } else { 1163 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma); 1164 rss[mm_counter_file(folio)] += nr; 1165 } 1166 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1167 addr, nr); 1168 return nr; 1169 } 1170 1171 folio_get(folio); 1172 if (folio_test_anon(folio)) { 1173 /* 1174 * If this page may have been pinned by the parent process, 1175 * copy the page immediately for the child so that we'll always 1176 * guarantee the pinned page won't be randomly replaced in the 1177 * future. 1178 */ 1179 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) { 1180 /* Page may be pinned, we have to copy. */ 1181 folio_put(folio); 1182 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1183 addr, rss, prealloc, page); 1184 return err ? err : 1; 1185 } 1186 rss[MM_ANONPAGES]++; 1187 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1188 } else { 1189 folio_dup_file_rmap_pte(folio, page, dst_vma); 1190 rss[mm_counter_file(folio)]++; 1191 } 1192 1193 copy_pte: 1194 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1195 return 1; 1196 } 1197 1198 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1199 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1200 { 1201 struct folio *new_folio; 1202 1203 if (need_zero) 1204 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1205 else 1206 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1207 1208 if (!new_folio) 1209 return NULL; 1210 1211 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1212 folio_put(new_folio); 1213 return NULL; 1214 } 1215 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1216 1217 return new_folio; 1218 } 1219 1220 static int 1221 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1222 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1223 unsigned long end) 1224 { 1225 struct mm_struct *dst_mm = dst_vma->vm_mm; 1226 struct mm_struct *src_mm = src_vma->vm_mm; 1227 pte_t *orig_src_pte, *orig_dst_pte; 1228 pte_t *src_pte, *dst_pte; 1229 pmd_t dummy_pmdval; 1230 pte_t ptent; 1231 spinlock_t *src_ptl, *dst_ptl; 1232 int progress, max_nr, ret = 0; 1233 int rss[NR_MM_COUNTERS]; 1234 softleaf_t entry = softleaf_mk_none(); 1235 struct folio *prealloc = NULL; 1236 int nr; 1237 1238 again: 1239 progress = 0; 1240 init_rss_vec(rss); 1241 1242 /* 1243 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1244 * error handling here, assume that exclusive mmap_lock on dst and src 1245 * protects anon from unexpected THP transitions; with shmem and file 1246 * protected by mmap_lock-less collapse skipping areas with anon_vma 1247 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1248 * can remove such assumptions later, but this is good enough for now. 1249 */ 1250 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1251 if (!dst_pte) { 1252 ret = -ENOMEM; 1253 goto out; 1254 } 1255 1256 /* 1257 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1258 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1259 * the PTE page is stable, and there is no need to get pmdval and do 1260 * pmd_same() check. 1261 */ 1262 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1263 &src_ptl); 1264 if (!src_pte) { 1265 pte_unmap_unlock(dst_pte, dst_ptl); 1266 /* ret == 0 */ 1267 goto out; 1268 } 1269 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1270 orig_src_pte = src_pte; 1271 orig_dst_pte = dst_pte; 1272 lazy_mmu_mode_enable(); 1273 1274 do { 1275 nr = 1; 1276 1277 /* 1278 * We are holding two locks at this point - either of them 1279 * could generate latencies in another task on another CPU. 1280 */ 1281 if (progress >= 32) { 1282 progress = 0; 1283 if (need_resched() || 1284 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1285 break; 1286 } 1287 ptent = ptep_get(src_pte); 1288 if (pte_none(ptent)) { 1289 progress++; 1290 continue; 1291 } 1292 if (unlikely(!pte_present(ptent))) { 1293 ret = copy_nonpresent_pte(dst_mm, src_mm, 1294 dst_pte, src_pte, 1295 dst_vma, src_vma, 1296 addr, rss); 1297 if (ret == -EIO) { 1298 entry = softleaf_from_pte(ptep_get(src_pte)); 1299 break; 1300 } else if (ret == -EBUSY) { 1301 break; 1302 } else if (!ret) { 1303 progress += 8; 1304 continue; 1305 } 1306 ptent = ptep_get(src_pte); 1307 VM_WARN_ON_ONCE(!pte_present(ptent)); 1308 1309 /* 1310 * Device exclusive entry restored, continue by copying 1311 * the now present pte. 1312 */ 1313 WARN_ON_ONCE(ret != -ENOENT); 1314 } 1315 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1316 max_nr = (end - addr) / PAGE_SIZE; 1317 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1318 ptent, addr, max_nr, rss, &prealloc); 1319 /* 1320 * If we need a pre-allocated page for this pte, drop the 1321 * locks, allocate, and try again. 1322 * If copy failed due to hwpoison in source page, break out. 1323 */ 1324 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1325 break; 1326 if (unlikely(prealloc)) { 1327 /* 1328 * pre-alloc page cannot be reused by next time so as 1329 * to strictly follow mempolicy (e.g., alloc_page_vma() 1330 * will allocate page according to address). This 1331 * could only happen if one pinned pte changed. 1332 */ 1333 folio_put(prealloc); 1334 prealloc = NULL; 1335 } 1336 nr = ret; 1337 progress += 8 * nr; 1338 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1339 addr != end); 1340 1341 lazy_mmu_mode_disable(); 1342 pte_unmap_unlock(orig_src_pte, src_ptl); 1343 add_mm_rss_vec(dst_mm, rss); 1344 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1345 cond_resched(); 1346 1347 if (ret == -EIO) { 1348 VM_WARN_ON_ONCE(!entry.val); 1349 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1350 ret = -ENOMEM; 1351 goto out; 1352 } 1353 entry.val = 0; 1354 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1355 goto out; 1356 } else if (ret == -EAGAIN) { 1357 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1358 if (!prealloc) 1359 return -ENOMEM; 1360 } else if (ret < 0) { 1361 VM_WARN_ON_ONCE(1); 1362 } 1363 1364 /* We've captured and resolved the error. Reset, try again. */ 1365 ret = 0; 1366 1367 if (addr != end) 1368 goto again; 1369 out: 1370 if (unlikely(prealloc)) 1371 folio_put(prealloc); 1372 return ret; 1373 } 1374 1375 static inline int 1376 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1377 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1378 unsigned long end) 1379 { 1380 struct mm_struct *dst_mm = dst_vma->vm_mm; 1381 struct mm_struct *src_mm = src_vma->vm_mm; 1382 pmd_t *src_pmd, *dst_pmd; 1383 unsigned long next; 1384 1385 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1386 if (!dst_pmd) 1387 return -ENOMEM; 1388 src_pmd = pmd_offset(src_pud, addr); 1389 do { 1390 next = pmd_addr_end(addr, end); 1391 if (pmd_is_huge(*src_pmd)) { 1392 int err; 1393 1394 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1395 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1396 addr, dst_vma, src_vma); 1397 if (err == -ENOMEM) 1398 return -ENOMEM; 1399 if (!err) 1400 continue; 1401 /* fall through */ 1402 } 1403 if (pmd_none_or_clear_bad(src_pmd)) 1404 continue; 1405 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1406 addr, next)) 1407 return -ENOMEM; 1408 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1409 return 0; 1410 } 1411 1412 static inline int 1413 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1414 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1415 unsigned long end) 1416 { 1417 struct mm_struct *dst_mm = dst_vma->vm_mm; 1418 struct mm_struct *src_mm = src_vma->vm_mm; 1419 pud_t *src_pud, *dst_pud; 1420 unsigned long next; 1421 1422 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1423 if (!dst_pud) 1424 return -ENOMEM; 1425 src_pud = pud_offset(src_p4d, addr); 1426 do { 1427 next = pud_addr_end(addr, end); 1428 if (pud_trans_huge(*src_pud)) { 1429 int err; 1430 1431 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1432 err = copy_huge_pud(dst_mm, src_mm, 1433 dst_pud, src_pud, addr, src_vma); 1434 if (err == -ENOMEM) 1435 return -ENOMEM; 1436 if (!err) 1437 continue; 1438 /* fall through */ 1439 } 1440 if (pud_none_or_clear_bad(src_pud)) 1441 continue; 1442 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1443 addr, next)) 1444 return -ENOMEM; 1445 } while (dst_pud++, src_pud++, addr = next, addr != end); 1446 return 0; 1447 } 1448 1449 static inline int 1450 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1451 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1452 unsigned long end) 1453 { 1454 struct mm_struct *dst_mm = dst_vma->vm_mm; 1455 p4d_t *src_p4d, *dst_p4d; 1456 unsigned long next; 1457 1458 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1459 if (!dst_p4d) 1460 return -ENOMEM; 1461 src_p4d = p4d_offset(src_pgd, addr); 1462 do { 1463 next = p4d_addr_end(addr, end); 1464 if (p4d_none_or_clear_bad(src_p4d)) 1465 continue; 1466 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1467 addr, next)) 1468 return -ENOMEM; 1469 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1470 return 0; 1471 } 1472 1473 /* 1474 * Return true if the vma needs to copy the pgtable during this fork(). Return 1475 * false when we can speed up fork() by allowing lazy page faults later until 1476 * when the child accesses the memory range. 1477 */ 1478 static bool 1479 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1480 { 1481 /* 1482 * We check against dst_vma as while sane VMA flags will have been 1483 * copied, VM_UFFD_WP may be set only on dst_vma. 1484 */ 1485 if (dst_vma->vm_flags & VM_COPY_ON_FORK) 1486 return true; 1487 /* 1488 * The presence of an anon_vma indicates an anonymous VMA has page 1489 * tables which naturally cannot be reconstituted on page fault. 1490 */ 1491 if (src_vma->anon_vma) 1492 return true; 1493 1494 /* 1495 * Don't copy ptes where a page fault will fill them correctly. Fork 1496 * becomes much lighter when there are big shared or private readonly 1497 * mappings. The tradeoff is that copy_page_range is more efficient 1498 * than faulting. 1499 */ 1500 return false; 1501 } 1502 1503 int 1504 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1505 { 1506 pgd_t *src_pgd, *dst_pgd; 1507 unsigned long addr = src_vma->vm_start; 1508 unsigned long end = src_vma->vm_end; 1509 struct mm_struct *dst_mm = dst_vma->vm_mm; 1510 struct mm_struct *src_mm = src_vma->vm_mm; 1511 struct mmu_notifier_range range; 1512 unsigned long next; 1513 bool is_cow; 1514 int ret; 1515 1516 if (!vma_needs_copy(dst_vma, src_vma)) 1517 return 0; 1518 1519 if (is_vm_hugetlb_page(src_vma)) 1520 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1521 1522 /* 1523 * We need to invalidate the secondary MMU mappings only when 1524 * there could be a permission downgrade on the ptes of the 1525 * parent mm. And a permission downgrade will only happen if 1526 * is_cow_mapping() returns true. 1527 */ 1528 is_cow = is_cow_mapping(src_vma->vm_flags); 1529 1530 if (is_cow) { 1531 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1532 0, src_mm, addr, end); 1533 mmu_notifier_invalidate_range_start(&range); 1534 /* 1535 * Disabling preemption is not needed for the write side, as 1536 * the read side doesn't spin, but goes to the mmap_lock. 1537 * 1538 * Use the raw variant of the seqcount_t write API to avoid 1539 * lockdep complaining about preemptibility. 1540 */ 1541 vma_assert_write_locked(src_vma); 1542 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1543 } 1544 1545 ret = 0; 1546 dst_pgd = pgd_offset(dst_mm, addr); 1547 src_pgd = pgd_offset(src_mm, addr); 1548 do { 1549 next = pgd_addr_end(addr, end); 1550 if (pgd_none_or_clear_bad(src_pgd)) 1551 continue; 1552 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1553 addr, next))) { 1554 ret = -ENOMEM; 1555 break; 1556 } 1557 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1558 1559 if (is_cow) { 1560 raw_write_seqcount_end(&src_mm->write_protect_seq); 1561 mmu_notifier_invalidate_range_end(&range); 1562 } 1563 return ret; 1564 } 1565 1566 /* Whether we should zap all COWed (private) pages too */ 1567 static inline bool should_zap_cows(struct zap_details *details) 1568 { 1569 /* By default, zap all pages */ 1570 if (!details || details->reclaim_pt) 1571 return true; 1572 1573 /* Or, we zap COWed pages only if the caller wants to */ 1574 return details->even_cows; 1575 } 1576 1577 /* Decides whether we should zap this folio with the folio pointer specified */ 1578 static inline bool should_zap_folio(struct zap_details *details, 1579 struct folio *folio) 1580 { 1581 /* If we can make a decision without *folio.. */ 1582 if (should_zap_cows(details)) 1583 return true; 1584 1585 /* Otherwise we should only zap non-anon folios */ 1586 return !folio_test_anon(folio); 1587 } 1588 1589 static inline bool zap_drop_markers(struct zap_details *details) 1590 { 1591 if (!details) 1592 return false; 1593 1594 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1595 } 1596 1597 /* 1598 * This function makes sure that we'll replace the none pte with an uffd-wp 1599 * swap special pte marker when necessary. Must be with the pgtable lock held. 1600 * 1601 * Returns true if uffd-wp ptes was installed, false otherwise. 1602 */ 1603 static inline bool 1604 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1605 unsigned long addr, pte_t *pte, int nr, 1606 struct zap_details *details, pte_t pteval) 1607 { 1608 bool was_installed = false; 1609 1610 if (!uffd_supports_wp_marker()) 1611 return false; 1612 1613 /* Zap on anonymous always means dropping everything */ 1614 if (vma_is_anonymous(vma)) 1615 return false; 1616 1617 if (zap_drop_markers(details)) 1618 return false; 1619 1620 for (;;) { 1621 /* the PFN in the PTE is irrelevant. */ 1622 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1623 was_installed = true; 1624 if (--nr == 0) 1625 break; 1626 pte++; 1627 addr += PAGE_SIZE; 1628 } 1629 1630 return was_installed; 1631 } 1632 1633 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1634 struct vm_area_struct *vma, struct folio *folio, 1635 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1636 unsigned long addr, struct zap_details *details, int *rss, 1637 bool *force_flush, bool *force_break, bool *any_skipped) 1638 { 1639 struct mm_struct *mm = tlb->mm; 1640 bool delay_rmap = false; 1641 1642 if (!folio_test_anon(folio)) { 1643 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1644 if (pte_dirty(ptent)) { 1645 folio_mark_dirty(folio); 1646 if (tlb_delay_rmap(tlb)) { 1647 delay_rmap = true; 1648 *force_flush = true; 1649 } 1650 } 1651 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1652 folio_mark_accessed(folio); 1653 rss[mm_counter(folio)] -= nr; 1654 } else { 1655 /* We don't need up-to-date accessed/dirty bits. */ 1656 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1657 rss[MM_ANONPAGES] -= nr; 1658 } 1659 /* Checking a single PTE in a batch is sufficient. */ 1660 arch_check_zapped_pte(vma, ptent); 1661 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1662 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1663 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1664 nr, details, ptent); 1665 1666 if (!delay_rmap) { 1667 folio_remove_rmap_ptes(folio, page, nr, vma); 1668 1669 if (unlikely(folio_mapcount(folio) < 0)) 1670 print_bad_pte(vma, addr, ptent, page); 1671 } 1672 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1673 *force_flush = true; 1674 *force_break = true; 1675 } 1676 } 1677 1678 /* 1679 * Zap or skip at least one present PTE, trying to batch-process subsequent 1680 * PTEs that map consecutive pages of the same folio. 1681 * 1682 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1683 */ 1684 static inline int zap_present_ptes(struct mmu_gather *tlb, 1685 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1686 unsigned int max_nr, unsigned long addr, 1687 struct zap_details *details, int *rss, bool *force_flush, 1688 bool *force_break, bool *any_skipped) 1689 { 1690 struct mm_struct *mm = tlb->mm; 1691 struct folio *folio; 1692 struct page *page; 1693 int nr; 1694 1695 page = vm_normal_page(vma, addr, ptent); 1696 if (!page) { 1697 /* We don't need up-to-date accessed/dirty bits. */ 1698 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1699 arch_check_zapped_pte(vma, ptent); 1700 tlb_remove_tlb_entry(tlb, pte, addr); 1701 if (userfaultfd_pte_wp(vma, ptent)) 1702 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1703 pte, 1, details, ptent); 1704 ksm_might_unmap_zero_page(mm, ptent); 1705 return 1; 1706 } 1707 1708 folio = page_folio(page); 1709 if (unlikely(!should_zap_folio(details, folio))) { 1710 *any_skipped = true; 1711 return 1; 1712 } 1713 1714 /* 1715 * Make sure that the common "small folio" case is as fast as possible 1716 * by keeping the batching logic separate. 1717 */ 1718 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1719 nr = folio_pte_batch(folio, pte, ptent, max_nr); 1720 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1721 addr, details, rss, force_flush, 1722 force_break, any_skipped); 1723 return nr; 1724 } 1725 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1726 details, rss, force_flush, force_break, any_skipped); 1727 return 1; 1728 } 1729 1730 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1731 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1732 unsigned int max_nr, unsigned long addr, 1733 struct zap_details *details, int *rss, bool *any_skipped) 1734 { 1735 softleaf_t entry; 1736 int nr = 1; 1737 1738 *any_skipped = true; 1739 entry = softleaf_from_pte(ptent); 1740 if (softleaf_is_device_private(entry) || 1741 softleaf_is_device_exclusive(entry)) { 1742 struct page *page = softleaf_to_page(entry); 1743 struct folio *folio = page_folio(page); 1744 1745 if (unlikely(!should_zap_folio(details, folio))) 1746 return 1; 1747 /* 1748 * Both device private/exclusive mappings should only 1749 * work with anonymous page so far, so we don't need to 1750 * consider uffd-wp bit when zap. For more information, 1751 * see zap_install_uffd_wp_if_needed(). 1752 */ 1753 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1754 rss[mm_counter(folio)]--; 1755 folio_remove_rmap_pte(folio, page, vma); 1756 folio_put(folio); 1757 } else if (softleaf_is_swap(entry)) { 1758 /* Genuine swap entries, hence a private anon pages */ 1759 if (!should_zap_cows(details)) 1760 return 1; 1761 1762 nr = swap_pte_batch(pte, max_nr, ptent); 1763 rss[MM_SWAPENTS] -= nr; 1764 swap_put_entries_direct(entry, nr); 1765 } else if (softleaf_is_migration(entry)) { 1766 struct folio *folio = softleaf_to_folio(entry); 1767 1768 if (!should_zap_folio(details, folio)) 1769 return 1; 1770 rss[mm_counter(folio)]--; 1771 } else if (softleaf_is_uffd_wp_marker(entry)) { 1772 /* 1773 * For anon: always drop the marker; for file: only 1774 * drop the marker if explicitly requested. 1775 */ 1776 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1777 return 1; 1778 } else if (softleaf_is_guard_marker(entry)) { 1779 /* 1780 * Ordinary zapping should not remove guard PTE 1781 * markers. Only do so if we should remove PTE markers 1782 * in general. 1783 */ 1784 if (!zap_drop_markers(details)) 1785 return 1; 1786 } else if (softleaf_is_hwpoison(entry) || 1787 softleaf_is_poison_marker(entry)) { 1788 if (!should_zap_cows(details)) 1789 return 1; 1790 } else { 1791 /* We should have covered all the swap entry types */ 1792 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1793 WARN_ON_ONCE(1); 1794 } 1795 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1796 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1797 1798 return nr; 1799 } 1800 1801 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1802 struct vm_area_struct *vma, pte_t *pte, 1803 unsigned long addr, unsigned long end, 1804 struct zap_details *details, int *rss, 1805 bool *force_flush, bool *force_break, 1806 bool *any_skipped) 1807 { 1808 pte_t ptent = ptep_get(pte); 1809 int max_nr = (end - addr) / PAGE_SIZE; 1810 int nr = 0; 1811 1812 /* Skip all consecutive none ptes */ 1813 if (pte_none(ptent)) { 1814 for (nr = 1; nr < max_nr; nr++) { 1815 ptent = ptep_get(pte + nr); 1816 if (!pte_none(ptent)) 1817 break; 1818 } 1819 max_nr -= nr; 1820 if (!max_nr) 1821 return nr; 1822 pte += nr; 1823 addr += nr * PAGE_SIZE; 1824 } 1825 1826 if (pte_present(ptent)) 1827 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1828 details, rss, force_flush, force_break, 1829 any_skipped); 1830 else 1831 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1832 details, rss, any_skipped); 1833 1834 return nr; 1835 } 1836 1837 static bool pte_table_reclaim_possible(unsigned long start, unsigned long end, 1838 struct zap_details *details) 1839 { 1840 if (!IS_ENABLED(CONFIG_PT_RECLAIM)) 1841 return false; 1842 /* Only zap if we are allowed to and cover the full page table. */ 1843 return details && details->reclaim_pt && (end - start >= PMD_SIZE); 1844 } 1845 1846 static bool zap_empty_pte_table(struct mm_struct *mm, pmd_t *pmd, 1847 spinlock_t *ptl, pmd_t *pmdval) 1848 { 1849 spinlock_t *pml = pmd_lockptr(mm, pmd); 1850 1851 if (ptl != pml && !spin_trylock(pml)) 1852 return false; 1853 1854 *pmdval = pmdp_get(pmd); 1855 pmd_clear(pmd); 1856 if (ptl != pml) 1857 spin_unlock(pml); 1858 return true; 1859 } 1860 1861 static bool zap_pte_table_if_empty(struct mm_struct *mm, pmd_t *pmd, 1862 unsigned long addr, pmd_t *pmdval) 1863 { 1864 spinlock_t *pml, *ptl = NULL; 1865 pte_t *start_pte, *pte; 1866 int i; 1867 1868 pml = pmd_lock(mm, pmd); 1869 start_pte = pte_offset_map_rw_nolock(mm, pmd, addr, pmdval, &ptl); 1870 if (!start_pte) 1871 goto out_ptl; 1872 if (ptl != pml) 1873 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1874 1875 for (i = 0, pte = start_pte; i < PTRS_PER_PTE; i++, pte++) { 1876 if (!pte_none(ptep_get(pte))) 1877 goto out_ptl; 1878 } 1879 pte_unmap(start_pte); 1880 1881 pmd_clear(pmd); 1882 1883 if (ptl != pml) 1884 spin_unlock(ptl); 1885 spin_unlock(pml); 1886 return true; 1887 out_ptl: 1888 if (start_pte) 1889 pte_unmap_unlock(start_pte, ptl); 1890 if (ptl != pml) 1891 spin_unlock(pml); 1892 return false; 1893 } 1894 1895 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1896 struct vm_area_struct *vma, pmd_t *pmd, 1897 unsigned long addr, unsigned long end, 1898 struct zap_details *details) 1899 { 1900 bool can_reclaim_pt = pte_table_reclaim_possible(addr, end, details); 1901 bool force_flush = false, force_break = false; 1902 struct mm_struct *mm = tlb->mm; 1903 int rss[NR_MM_COUNTERS]; 1904 spinlock_t *ptl; 1905 pte_t *start_pte; 1906 pte_t *pte; 1907 pmd_t pmdval; 1908 unsigned long start = addr; 1909 bool direct_reclaim = true; 1910 int nr; 1911 1912 retry: 1913 tlb_change_page_size(tlb, PAGE_SIZE); 1914 init_rss_vec(rss); 1915 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1916 if (!pte) 1917 return addr; 1918 1919 flush_tlb_batched_pending(mm); 1920 lazy_mmu_mode_enable(); 1921 do { 1922 bool any_skipped = false; 1923 1924 if (need_resched()) { 1925 direct_reclaim = false; 1926 break; 1927 } 1928 1929 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1930 &force_flush, &force_break, &any_skipped); 1931 if (any_skipped) 1932 can_reclaim_pt = false; 1933 if (unlikely(force_break)) { 1934 addr += nr * PAGE_SIZE; 1935 direct_reclaim = false; 1936 break; 1937 } 1938 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1939 1940 /* 1941 * Fast path: try to hold the pmd lock and unmap the PTE page. 1942 * 1943 * If the pte lock was released midway (retry case), or if the attempt 1944 * to hold the pmd lock failed, then we need to recheck all pte entries 1945 * to ensure they are still none, thereby preventing the pte entries 1946 * from being repopulated by another thread. 1947 */ 1948 if (can_reclaim_pt && direct_reclaim && addr == end) 1949 direct_reclaim = zap_empty_pte_table(mm, pmd, ptl, &pmdval); 1950 1951 add_mm_rss_vec(mm, rss); 1952 lazy_mmu_mode_disable(); 1953 1954 /* Do the actual TLB flush before dropping ptl */ 1955 if (force_flush) { 1956 tlb_flush_mmu_tlbonly(tlb); 1957 tlb_flush_rmaps(tlb, vma); 1958 } 1959 pte_unmap_unlock(start_pte, ptl); 1960 1961 /* 1962 * If we forced a TLB flush (either due to running out of 1963 * batch buffers or because we needed to flush dirty TLB 1964 * entries before releasing the ptl), free the batched 1965 * memory too. Come back again if we didn't do everything. 1966 */ 1967 if (force_flush) 1968 tlb_flush_mmu(tlb); 1969 1970 if (addr != end) { 1971 cond_resched(); 1972 force_flush = false; 1973 force_break = false; 1974 goto retry; 1975 } 1976 1977 if (can_reclaim_pt) { 1978 if (direct_reclaim || zap_pte_table_if_empty(mm, pmd, start, &pmdval)) { 1979 pte_free_tlb(tlb, pmd_pgtable(pmdval), addr); 1980 mm_dec_nr_ptes(mm); 1981 } 1982 } 1983 1984 return addr; 1985 } 1986 1987 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1988 struct vm_area_struct *vma, pud_t *pud, 1989 unsigned long addr, unsigned long end, 1990 struct zap_details *details) 1991 { 1992 pmd_t *pmd; 1993 unsigned long next; 1994 1995 pmd = pmd_offset(pud, addr); 1996 do { 1997 next = pmd_addr_end(addr, end); 1998 if (pmd_is_huge(*pmd)) { 1999 if (next - addr != HPAGE_PMD_SIZE) 2000 __split_huge_pmd(vma, pmd, addr, false); 2001 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 2002 addr = next; 2003 continue; 2004 } 2005 /* fall through */ 2006 } else if (details && details->single_folio && 2007 folio_test_pmd_mappable(details->single_folio) && 2008 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 2009 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 2010 /* 2011 * Take and drop THP pmd lock so that we cannot return 2012 * prematurely, while zap_huge_pmd() has cleared *pmd, 2013 * but not yet decremented compound_mapcount(). 2014 */ 2015 spin_unlock(ptl); 2016 } 2017 if (pmd_none(*pmd)) { 2018 addr = next; 2019 continue; 2020 } 2021 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 2022 if (addr != next) 2023 pmd--; 2024 } while (pmd++, cond_resched(), addr != end); 2025 2026 return addr; 2027 } 2028 2029 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 2030 struct vm_area_struct *vma, p4d_t *p4d, 2031 unsigned long addr, unsigned long end, 2032 struct zap_details *details) 2033 { 2034 pud_t *pud; 2035 unsigned long next; 2036 2037 pud = pud_offset(p4d, addr); 2038 do { 2039 next = pud_addr_end(addr, end); 2040 if (pud_trans_huge(*pud)) { 2041 if (next - addr != HPAGE_PUD_SIZE) 2042 split_huge_pud(vma, pud, addr); 2043 else if (zap_huge_pud(tlb, vma, pud, addr)) 2044 goto next; 2045 /* fall through */ 2046 } 2047 if (pud_none_or_clear_bad(pud)) 2048 continue; 2049 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 2050 next: 2051 cond_resched(); 2052 } while (pud++, addr = next, addr != end); 2053 2054 return addr; 2055 } 2056 2057 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 2058 struct vm_area_struct *vma, pgd_t *pgd, 2059 unsigned long addr, unsigned long end, 2060 struct zap_details *details) 2061 { 2062 p4d_t *p4d; 2063 unsigned long next; 2064 2065 p4d = p4d_offset(pgd, addr); 2066 do { 2067 next = p4d_addr_end(addr, end); 2068 if (p4d_none_or_clear_bad(p4d)) 2069 continue; 2070 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 2071 } while (p4d++, addr = next, addr != end); 2072 2073 return addr; 2074 } 2075 2076 void unmap_page_range(struct mmu_gather *tlb, 2077 struct vm_area_struct *vma, 2078 unsigned long addr, unsigned long end, 2079 struct zap_details *details) 2080 { 2081 pgd_t *pgd; 2082 unsigned long next; 2083 2084 BUG_ON(addr >= end); 2085 tlb_start_vma(tlb, vma); 2086 pgd = pgd_offset(vma->vm_mm, addr); 2087 do { 2088 next = pgd_addr_end(addr, end); 2089 if (pgd_none_or_clear_bad(pgd)) 2090 continue; 2091 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 2092 } while (pgd++, addr = next, addr != end); 2093 tlb_end_vma(tlb, vma); 2094 } 2095 2096 2097 static void unmap_single_vma(struct mmu_gather *tlb, 2098 struct vm_area_struct *vma, unsigned long start_addr, 2099 unsigned long end_addr, struct zap_details *details) 2100 { 2101 unsigned long start = max(vma->vm_start, start_addr); 2102 unsigned long end; 2103 2104 if (start >= vma->vm_end) 2105 return; 2106 end = min(vma->vm_end, end_addr); 2107 if (end <= vma->vm_start) 2108 return; 2109 2110 if (vma->vm_file) 2111 uprobe_munmap(vma, start, end); 2112 2113 if (start != end) { 2114 if (unlikely(is_vm_hugetlb_page(vma))) { 2115 /* 2116 * It is undesirable to test vma->vm_file as it 2117 * should be non-null for valid hugetlb area. 2118 * However, vm_file will be NULL in the error 2119 * cleanup path of mmap_region. When 2120 * hugetlbfs ->mmap method fails, 2121 * mmap_region() nullifies vma->vm_file 2122 * before calling this function to clean up. 2123 * Since no pte has actually been setup, it is 2124 * safe to do nothing in this case. 2125 */ 2126 if (vma->vm_file) { 2127 zap_flags_t zap_flags = details ? 2128 details->zap_flags : 0; 2129 __unmap_hugepage_range(tlb, vma, start, end, 2130 NULL, zap_flags); 2131 } 2132 } else 2133 unmap_page_range(tlb, vma, start, end, details); 2134 } 2135 } 2136 2137 /** 2138 * unmap_vmas - unmap a range of memory covered by a list of vma's 2139 * @tlb: address of the caller's struct mmu_gather 2140 * @unmap: The unmap_desc 2141 * 2142 * Unmap all pages in the vma list. 2143 * 2144 * Only addresses between `start' and `end' will be unmapped. 2145 * 2146 * The VMA list must be sorted in ascending virtual address order. 2147 * 2148 * unmap_vmas() assumes that the caller will flush the whole unmapped address 2149 * range after unmap_vmas() returns. So the only responsibility here is to 2150 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 2151 * drops the lock and schedules. 2152 */ 2153 void unmap_vmas(struct mmu_gather *tlb, struct unmap_desc *unmap) 2154 { 2155 struct vm_area_struct *vma; 2156 struct mmu_notifier_range range; 2157 struct zap_details details = { 2158 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 2159 /* Careful - we need to zap private pages too! */ 2160 .even_cows = true, 2161 }; 2162 2163 vma = unmap->first; 2164 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 2165 unmap->vma_start, unmap->vma_end); 2166 mmu_notifier_invalidate_range_start(&range); 2167 do { 2168 unsigned long start = unmap->vma_start; 2169 unsigned long end = unmap->vma_end; 2170 hugetlb_zap_begin(vma, &start, &end); 2171 unmap_single_vma(tlb, vma, start, end, &details); 2172 hugetlb_zap_end(vma, &details); 2173 vma = mas_find(unmap->mas, unmap->tree_end - 1); 2174 } while (vma); 2175 mmu_notifier_invalidate_range_end(&range); 2176 } 2177 2178 /** 2179 * zap_page_range_single_batched - remove user pages in a given range 2180 * @tlb: pointer to the caller's struct mmu_gather 2181 * @vma: vm_area_struct holding the applicable pages 2182 * @address: starting address of pages to remove 2183 * @size: number of bytes to remove 2184 * @details: details of shared cache invalidation 2185 * 2186 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for 2187 * hugetlb, @tlb is flushed and re-initialized by this function. 2188 */ 2189 void zap_page_range_single_batched(struct mmu_gather *tlb, 2190 struct vm_area_struct *vma, unsigned long address, 2191 unsigned long size, struct zap_details *details) 2192 { 2193 const unsigned long end = address + size; 2194 struct mmu_notifier_range range; 2195 2196 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm); 2197 2198 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2199 address, end); 2200 hugetlb_zap_begin(vma, &range.start, &range.end); 2201 update_hiwater_rss(vma->vm_mm); 2202 mmu_notifier_invalidate_range_start(&range); 2203 /* 2204 * unmap 'address-end' not 'range.start-range.end' as range 2205 * could have been expanded for hugetlb pmd sharing. 2206 */ 2207 unmap_single_vma(tlb, vma, address, end, details); 2208 mmu_notifier_invalidate_range_end(&range); 2209 if (is_vm_hugetlb_page(vma)) { 2210 /* 2211 * flush tlb and free resources before hugetlb_zap_end(), to 2212 * avoid concurrent page faults' allocation failure. 2213 */ 2214 tlb_finish_mmu(tlb); 2215 hugetlb_zap_end(vma, details); 2216 tlb_gather_mmu(tlb, vma->vm_mm); 2217 } 2218 } 2219 2220 /** 2221 * zap_page_range_single - remove user pages in a given range 2222 * @vma: vm_area_struct holding the applicable pages 2223 * @address: starting address of pages to zap 2224 * @size: number of bytes to zap 2225 * @details: details of shared cache invalidation 2226 * 2227 * The range must fit into one VMA. 2228 */ 2229 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2230 unsigned long size, struct zap_details *details) 2231 { 2232 struct mmu_gather tlb; 2233 2234 tlb_gather_mmu(&tlb, vma->vm_mm); 2235 zap_page_range_single_batched(&tlb, vma, address, size, details); 2236 tlb_finish_mmu(&tlb); 2237 } 2238 2239 /** 2240 * zap_vma_ptes - remove ptes mapping the vma 2241 * @vma: vm_area_struct holding ptes to be zapped 2242 * @address: starting address of pages to zap 2243 * @size: number of bytes to zap 2244 * 2245 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2246 * 2247 * The entire address range must be fully contained within the vma. 2248 * 2249 */ 2250 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2251 unsigned long size) 2252 { 2253 if (!range_in_vma(vma, address, address + size) || 2254 !(vma->vm_flags & VM_PFNMAP)) 2255 return; 2256 2257 zap_page_range_single(vma, address, size, NULL); 2258 } 2259 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2260 2261 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2262 { 2263 pgd_t *pgd; 2264 p4d_t *p4d; 2265 pud_t *pud; 2266 pmd_t *pmd; 2267 2268 pgd = pgd_offset(mm, addr); 2269 p4d = p4d_alloc(mm, pgd, addr); 2270 if (!p4d) 2271 return NULL; 2272 pud = pud_alloc(mm, p4d, addr); 2273 if (!pud) 2274 return NULL; 2275 pmd = pmd_alloc(mm, pud, addr); 2276 if (!pmd) 2277 return NULL; 2278 2279 VM_BUG_ON(pmd_trans_huge(*pmd)); 2280 return pmd; 2281 } 2282 2283 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2284 spinlock_t **ptl) 2285 { 2286 pmd_t *pmd = walk_to_pmd(mm, addr); 2287 2288 if (!pmd) 2289 return NULL; 2290 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2291 } 2292 2293 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2294 { 2295 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2296 /* 2297 * Whoever wants to forbid the zeropage after some zeropages 2298 * might already have been mapped has to scan the page tables and 2299 * bail out on any zeropages. Zeropages in COW mappings can 2300 * be unshared using FAULT_FLAG_UNSHARE faults. 2301 */ 2302 if (mm_forbids_zeropage(vma->vm_mm)) 2303 return false; 2304 /* zeropages in COW mappings are common and unproblematic. */ 2305 if (is_cow_mapping(vma->vm_flags)) 2306 return true; 2307 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2308 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2309 return true; 2310 /* 2311 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2312 * find the shared zeropage and longterm-pin it, which would 2313 * be problematic as soon as the zeropage gets replaced by a different 2314 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2315 * now differ to what GUP looked up. FSDAX is incompatible to 2316 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2317 * check_vma_flags). 2318 */ 2319 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2320 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2321 } 2322 2323 static int validate_page_before_insert(struct vm_area_struct *vma, 2324 struct page *page) 2325 { 2326 struct folio *folio = page_folio(page); 2327 2328 if (!folio_ref_count(folio)) 2329 return -EINVAL; 2330 if (unlikely(is_zero_folio(folio))) { 2331 if (!vm_mixed_zeropage_allowed(vma)) 2332 return -EINVAL; 2333 return 0; 2334 } 2335 if (folio_test_anon(folio) || page_has_type(page)) 2336 return -EINVAL; 2337 flush_dcache_folio(folio); 2338 return 0; 2339 } 2340 2341 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2342 unsigned long addr, struct page *page, 2343 pgprot_t prot, bool mkwrite) 2344 { 2345 struct folio *folio = page_folio(page); 2346 pte_t pteval = ptep_get(pte); 2347 2348 if (!pte_none(pteval)) { 2349 if (!mkwrite) 2350 return -EBUSY; 2351 2352 /* see insert_pfn(). */ 2353 if (pte_pfn(pteval) != page_to_pfn(page)) { 2354 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval))); 2355 return -EFAULT; 2356 } 2357 pteval = maybe_mkwrite(pteval, vma); 2358 pteval = pte_mkyoung(pteval); 2359 if (ptep_set_access_flags(vma, addr, pte, pteval, 1)) 2360 update_mmu_cache(vma, addr, pte); 2361 return 0; 2362 } 2363 2364 /* Ok, finally just insert the thing.. */ 2365 pteval = mk_pte(page, prot); 2366 if (unlikely(is_zero_folio(folio))) { 2367 pteval = pte_mkspecial(pteval); 2368 } else { 2369 folio_get(folio); 2370 pteval = mk_pte(page, prot); 2371 if (mkwrite) { 2372 pteval = pte_mkyoung(pteval); 2373 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma); 2374 } 2375 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2376 folio_add_file_rmap_pte(folio, page, vma); 2377 } 2378 set_pte_at(vma->vm_mm, addr, pte, pteval); 2379 return 0; 2380 } 2381 2382 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2383 struct page *page, pgprot_t prot, bool mkwrite) 2384 { 2385 int retval; 2386 pte_t *pte; 2387 spinlock_t *ptl; 2388 2389 retval = validate_page_before_insert(vma, page); 2390 if (retval) 2391 goto out; 2392 retval = -ENOMEM; 2393 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2394 if (!pte) 2395 goto out; 2396 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot, 2397 mkwrite); 2398 pte_unmap_unlock(pte, ptl); 2399 out: 2400 return retval; 2401 } 2402 2403 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2404 unsigned long addr, struct page *page, pgprot_t prot) 2405 { 2406 int err; 2407 2408 err = validate_page_before_insert(vma, page); 2409 if (err) 2410 return err; 2411 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false); 2412 } 2413 2414 /* insert_pages() amortizes the cost of spinlock operations 2415 * when inserting pages in a loop. 2416 */ 2417 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2418 struct page **pages, unsigned long *num, pgprot_t prot) 2419 { 2420 pmd_t *pmd = NULL; 2421 pte_t *start_pte, *pte; 2422 spinlock_t *pte_lock; 2423 struct mm_struct *const mm = vma->vm_mm; 2424 unsigned long curr_page_idx = 0; 2425 unsigned long remaining_pages_total = *num; 2426 unsigned long pages_to_write_in_pmd; 2427 int ret; 2428 more: 2429 ret = -EFAULT; 2430 pmd = walk_to_pmd(mm, addr); 2431 if (!pmd) 2432 goto out; 2433 2434 pages_to_write_in_pmd = min_t(unsigned long, 2435 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2436 2437 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2438 ret = -ENOMEM; 2439 if (pte_alloc(mm, pmd)) 2440 goto out; 2441 2442 while (pages_to_write_in_pmd) { 2443 int pte_idx = 0; 2444 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2445 2446 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2447 if (!start_pte) { 2448 ret = -EFAULT; 2449 goto out; 2450 } 2451 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2452 int err = insert_page_in_batch_locked(vma, pte, 2453 addr, pages[curr_page_idx], prot); 2454 if (unlikely(err)) { 2455 pte_unmap_unlock(start_pte, pte_lock); 2456 ret = err; 2457 remaining_pages_total -= pte_idx; 2458 goto out; 2459 } 2460 addr += PAGE_SIZE; 2461 ++curr_page_idx; 2462 } 2463 pte_unmap_unlock(start_pte, pte_lock); 2464 pages_to_write_in_pmd -= batch_size; 2465 remaining_pages_total -= batch_size; 2466 } 2467 if (remaining_pages_total) 2468 goto more; 2469 ret = 0; 2470 out: 2471 *num = remaining_pages_total; 2472 return ret; 2473 } 2474 2475 /** 2476 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2477 * @vma: user vma to map to 2478 * @addr: target start user address of these pages 2479 * @pages: source kernel pages 2480 * @num: in: number of pages to map. out: number of pages that were *not* 2481 * mapped. (0 means all pages were successfully mapped). 2482 * 2483 * Preferred over vm_insert_page() when inserting multiple pages. 2484 * 2485 * In case of error, we may have mapped a subset of the provided 2486 * pages. It is the caller's responsibility to account for this case. 2487 * 2488 * The same restrictions apply as in vm_insert_page(). 2489 */ 2490 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2491 struct page **pages, unsigned long *num) 2492 { 2493 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2494 2495 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2496 return -EFAULT; 2497 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2498 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2499 BUG_ON(vma->vm_flags & VM_PFNMAP); 2500 vm_flags_set(vma, VM_MIXEDMAP); 2501 } 2502 /* Defer page refcount checking till we're about to map that page. */ 2503 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2504 } 2505 EXPORT_SYMBOL(vm_insert_pages); 2506 2507 /** 2508 * vm_insert_page - insert single page into user vma 2509 * @vma: user vma to map to 2510 * @addr: target user address of this page 2511 * @page: source kernel page 2512 * 2513 * This allows drivers to insert individual pages they've allocated 2514 * into a user vma. The zeropage is supported in some VMAs, 2515 * see vm_mixed_zeropage_allowed(). 2516 * 2517 * The page has to be a nice clean _individual_ kernel allocation. 2518 * If you allocate a compound page, you need to have marked it as 2519 * such (__GFP_COMP), or manually just split the page up yourself 2520 * (see split_page()). 2521 * 2522 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2523 * took an arbitrary page protection parameter. This doesn't allow 2524 * that. Your vma protection will have to be set up correctly, which 2525 * means that if you want a shared writable mapping, you'd better 2526 * ask for a shared writable mapping! 2527 * 2528 * The page does not need to be reserved. 2529 * 2530 * Usually this function is called from f_op->mmap() handler 2531 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2532 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2533 * function from other places, for example from page-fault handler. 2534 * 2535 * Return: %0 on success, negative error code otherwise. 2536 */ 2537 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2538 struct page *page) 2539 { 2540 if (addr < vma->vm_start || addr >= vma->vm_end) 2541 return -EFAULT; 2542 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2543 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2544 BUG_ON(vma->vm_flags & VM_PFNMAP); 2545 vm_flags_set(vma, VM_MIXEDMAP); 2546 } 2547 return insert_page(vma, addr, page, vma->vm_page_prot, false); 2548 } 2549 EXPORT_SYMBOL(vm_insert_page); 2550 2551 /* 2552 * __vm_map_pages - maps range of kernel pages into user vma 2553 * @vma: user vma to map to 2554 * @pages: pointer to array of source kernel pages 2555 * @num: number of pages in page array 2556 * @offset: user's requested vm_pgoff 2557 * 2558 * This allows drivers to map range of kernel pages into a user vma. 2559 * The zeropage is supported in some VMAs, see 2560 * vm_mixed_zeropage_allowed(). 2561 * 2562 * Return: 0 on success and error code otherwise. 2563 */ 2564 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2565 unsigned long num, unsigned long offset) 2566 { 2567 unsigned long count = vma_pages(vma); 2568 unsigned long uaddr = vma->vm_start; 2569 2570 /* Fail if the user requested offset is beyond the end of the object */ 2571 if (offset >= num) 2572 return -ENXIO; 2573 2574 /* Fail if the user requested size exceeds available object size */ 2575 if (count > num - offset) 2576 return -ENXIO; 2577 2578 return vm_insert_pages(vma, uaddr, pages + offset, &count); 2579 } 2580 2581 /** 2582 * vm_map_pages - maps range of kernel pages starts with non zero offset 2583 * @vma: user vma to map to 2584 * @pages: pointer to array of source kernel pages 2585 * @num: number of pages in page array 2586 * 2587 * Maps an object consisting of @num pages, catering for the user's 2588 * requested vm_pgoff 2589 * 2590 * If we fail to insert any page into the vma, the function will return 2591 * immediately leaving any previously inserted pages present. Callers 2592 * from the mmap handler may immediately return the error as their caller 2593 * will destroy the vma, removing any successfully inserted pages. Other 2594 * callers should make their own arrangements for calling unmap_region(). 2595 * 2596 * Context: Process context. Called by mmap handlers. 2597 * Return: 0 on success and error code otherwise. 2598 */ 2599 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2600 unsigned long num) 2601 { 2602 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2603 } 2604 EXPORT_SYMBOL(vm_map_pages); 2605 2606 /** 2607 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2608 * @vma: user vma to map to 2609 * @pages: pointer to array of source kernel pages 2610 * @num: number of pages in page array 2611 * 2612 * Similar to vm_map_pages(), except that it explicitly sets the offset 2613 * to 0. This function is intended for the drivers that did not consider 2614 * vm_pgoff. 2615 * 2616 * Context: Process context. Called by mmap handlers. 2617 * Return: 0 on success and error code otherwise. 2618 */ 2619 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2620 unsigned long num) 2621 { 2622 return __vm_map_pages(vma, pages, num, 0); 2623 } 2624 EXPORT_SYMBOL(vm_map_pages_zero); 2625 2626 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2627 unsigned long pfn, pgprot_t prot, bool mkwrite) 2628 { 2629 struct mm_struct *mm = vma->vm_mm; 2630 pte_t *pte, entry; 2631 spinlock_t *ptl; 2632 2633 pte = get_locked_pte(mm, addr, &ptl); 2634 if (!pte) 2635 return VM_FAULT_OOM; 2636 entry = ptep_get(pte); 2637 if (!pte_none(entry)) { 2638 if (mkwrite) { 2639 /* 2640 * For read faults on private mappings the PFN passed 2641 * in may not match the PFN we have mapped if the 2642 * mapped PFN is a writeable COW page. In the mkwrite 2643 * case we are creating a writable PTE for a shared 2644 * mapping and we expect the PFNs to match. If they 2645 * don't match, we are likely racing with block 2646 * allocation and mapping invalidation so just skip the 2647 * update. 2648 */ 2649 if (pte_pfn(entry) != pfn) { 2650 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2651 goto out_unlock; 2652 } 2653 entry = pte_mkyoung(entry); 2654 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2655 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2656 update_mmu_cache(vma, addr, pte); 2657 } 2658 goto out_unlock; 2659 } 2660 2661 /* Ok, finally just insert the thing.. */ 2662 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2663 2664 if (mkwrite) { 2665 entry = pte_mkyoung(entry); 2666 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2667 } 2668 2669 set_pte_at(mm, addr, pte, entry); 2670 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2671 2672 out_unlock: 2673 pte_unmap_unlock(pte, ptl); 2674 return VM_FAULT_NOPAGE; 2675 } 2676 2677 /** 2678 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2679 * @vma: user vma to map to 2680 * @addr: target user address of this page 2681 * @pfn: source kernel pfn 2682 * @pgprot: pgprot flags for the inserted page 2683 * 2684 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2685 * to override pgprot on a per-page basis. 2686 * 2687 * This only makes sense for IO mappings, and it makes no sense for 2688 * COW mappings. In general, using multiple vmas is preferable; 2689 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2690 * impractical. 2691 * 2692 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2693 * caching- and encryption bits different than those of @vma->vm_page_prot, 2694 * because the caching- or encryption mode may not be known at mmap() time. 2695 * 2696 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2697 * to set caching and encryption bits for those vmas (except for COW pages). 2698 * This is ensured by core vm only modifying these page table entries using 2699 * functions that don't touch caching- or encryption bits, using pte_modify() 2700 * if needed. (See for example mprotect()). 2701 * 2702 * Also when new page-table entries are created, this is only done using the 2703 * fault() callback, and never using the value of vma->vm_page_prot, 2704 * except for page-table entries that point to anonymous pages as the result 2705 * of COW. 2706 * 2707 * Context: Process context. May allocate using %GFP_KERNEL. 2708 * Return: vm_fault_t value. 2709 */ 2710 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2711 unsigned long pfn, pgprot_t pgprot) 2712 { 2713 /* 2714 * Technically, architectures with pte_special can avoid all these 2715 * restrictions (same for remap_pfn_range). However we would like 2716 * consistency in testing and feature parity among all, so we should 2717 * try to keep these invariants in place for everybody. 2718 */ 2719 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2720 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2721 (VM_PFNMAP|VM_MIXEDMAP)); 2722 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2723 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2724 2725 if (addr < vma->vm_start || addr >= vma->vm_end) 2726 return VM_FAULT_SIGBUS; 2727 2728 if (!pfn_modify_allowed(pfn, pgprot)) 2729 return VM_FAULT_SIGBUS; 2730 2731 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2732 2733 return insert_pfn(vma, addr, pfn, pgprot, false); 2734 } 2735 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2736 2737 /** 2738 * vmf_insert_pfn - insert single pfn into user vma 2739 * @vma: user vma to map to 2740 * @addr: target user address of this page 2741 * @pfn: source kernel pfn 2742 * 2743 * Similar to vm_insert_page, this allows drivers to insert individual pages 2744 * they've allocated into a user vma. Same comments apply. 2745 * 2746 * This function should only be called from a vm_ops->fault handler, and 2747 * in that case the handler should return the result of this function. 2748 * 2749 * vma cannot be a COW mapping. 2750 * 2751 * As this is called only for pages that do not currently exist, we 2752 * do not need to flush old virtual caches or the TLB. 2753 * 2754 * Context: Process context. May allocate using %GFP_KERNEL. 2755 * Return: vm_fault_t value. 2756 */ 2757 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2758 unsigned long pfn) 2759 { 2760 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2761 } 2762 EXPORT_SYMBOL(vmf_insert_pfn); 2763 2764 static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn, 2765 bool mkwrite) 2766 { 2767 if (unlikely(is_zero_pfn(pfn)) && 2768 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2769 return false; 2770 /* these checks mirror the abort conditions in vm_normal_page */ 2771 if (vma->vm_flags & VM_MIXEDMAP) 2772 return true; 2773 if (is_zero_pfn(pfn)) 2774 return true; 2775 return false; 2776 } 2777 2778 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2779 unsigned long addr, unsigned long pfn, bool mkwrite) 2780 { 2781 pgprot_t pgprot = vma->vm_page_prot; 2782 int err; 2783 2784 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2785 return VM_FAULT_SIGBUS; 2786 2787 if (addr < vma->vm_start || addr >= vma->vm_end) 2788 return VM_FAULT_SIGBUS; 2789 2790 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2791 2792 if (!pfn_modify_allowed(pfn, pgprot)) 2793 return VM_FAULT_SIGBUS; 2794 2795 /* 2796 * If we don't have pte special, then we have to use the pfn_valid() 2797 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2798 * refcount the page if pfn_valid is true (hence insert_page rather 2799 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2800 * without pte special, it would there be refcounted as a normal page. 2801 */ 2802 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) { 2803 struct page *page; 2804 2805 /* 2806 * At this point we are committed to insert_page() 2807 * regardless of whether the caller specified flags that 2808 * result in pfn_t_has_page() == false. 2809 */ 2810 page = pfn_to_page(pfn); 2811 err = insert_page(vma, addr, page, pgprot, mkwrite); 2812 } else { 2813 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2814 } 2815 2816 if (err == -ENOMEM) 2817 return VM_FAULT_OOM; 2818 if (err < 0 && err != -EBUSY) 2819 return VM_FAULT_SIGBUS; 2820 2821 return VM_FAULT_NOPAGE; 2822 } 2823 2824 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 2825 bool write) 2826 { 2827 pgprot_t pgprot = vmf->vma->vm_page_prot; 2828 unsigned long addr = vmf->address; 2829 int err; 2830 2831 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end) 2832 return VM_FAULT_SIGBUS; 2833 2834 err = insert_page(vmf->vma, addr, page, pgprot, write); 2835 if (err == -ENOMEM) 2836 return VM_FAULT_OOM; 2837 if (err < 0 && err != -EBUSY) 2838 return VM_FAULT_SIGBUS; 2839 2840 return VM_FAULT_NOPAGE; 2841 } 2842 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite); 2843 2844 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2845 unsigned long pfn) 2846 { 2847 return __vm_insert_mixed(vma, addr, pfn, false); 2848 } 2849 EXPORT_SYMBOL(vmf_insert_mixed); 2850 2851 /* 2852 * If the insertion of PTE failed because someone else already added a 2853 * different entry in the mean time, we treat that as success as we assume 2854 * the same entry was actually inserted. 2855 */ 2856 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2857 unsigned long addr, unsigned long pfn) 2858 { 2859 return __vm_insert_mixed(vma, addr, pfn, true); 2860 } 2861 2862 /* 2863 * maps a range of physical memory into the requested pages. the old 2864 * mappings are removed. any references to nonexistent pages results 2865 * in null mappings (currently treated as "copy-on-access") 2866 */ 2867 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2868 unsigned long addr, unsigned long end, 2869 unsigned long pfn, pgprot_t prot) 2870 { 2871 pte_t *pte, *mapped_pte; 2872 spinlock_t *ptl; 2873 int err = 0; 2874 2875 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2876 if (!pte) 2877 return -ENOMEM; 2878 lazy_mmu_mode_enable(); 2879 do { 2880 BUG_ON(!pte_none(ptep_get(pte))); 2881 if (!pfn_modify_allowed(pfn, prot)) { 2882 err = -EACCES; 2883 break; 2884 } 2885 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2886 pfn++; 2887 } while (pte++, addr += PAGE_SIZE, addr != end); 2888 lazy_mmu_mode_disable(); 2889 pte_unmap_unlock(mapped_pte, ptl); 2890 return err; 2891 } 2892 2893 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2894 unsigned long addr, unsigned long end, 2895 unsigned long pfn, pgprot_t prot) 2896 { 2897 pmd_t *pmd; 2898 unsigned long next; 2899 int err; 2900 2901 pfn -= addr >> PAGE_SHIFT; 2902 pmd = pmd_alloc(mm, pud, addr); 2903 if (!pmd) 2904 return -ENOMEM; 2905 VM_BUG_ON(pmd_trans_huge(*pmd)); 2906 do { 2907 next = pmd_addr_end(addr, end); 2908 err = remap_pte_range(mm, pmd, addr, next, 2909 pfn + (addr >> PAGE_SHIFT), prot); 2910 if (err) 2911 return err; 2912 } while (pmd++, addr = next, addr != end); 2913 return 0; 2914 } 2915 2916 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2917 unsigned long addr, unsigned long end, 2918 unsigned long pfn, pgprot_t prot) 2919 { 2920 pud_t *pud; 2921 unsigned long next; 2922 int err; 2923 2924 pfn -= addr >> PAGE_SHIFT; 2925 pud = pud_alloc(mm, p4d, addr); 2926 if (!pud) 2927 return -ENOMEM; 2928 do { 2929 next = pud_addr_end(addr, end); 2930 err = remap_pmd_range(mm, pud, addr, next, 2931 pfn + (addr >> PAGE_SHIFT), prot); 2932 if (err) 2933 return err; 2934 } while (pud++, addr = next, addr != end); 2935 return 0; 2936 } 2937 2938 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2939 unsigned long addr, unsigned long end, 2940 unsigned long pfn, pgprot_t prot) 2941 { 2942 p4d_t *p4d; 2943 unsigned long next; 2944 int err; 2945 2946 pfn -= addr >> PAGE_SHIFT; 2947 p4d = p4d_alloc(mm, pgd, addr); 2948 if (!p4d) 2949 return -ENOMEM; 2950 do { 2951 next = p4d_addr_end(addr, end); 2952 err = remap_pud_range(mm, p4d, addr, next, 2953 pfn + (addr >> PAGE_SHIFT), prot); 2954 if (err) 2955 return err; 2956 } while (p4d++, addr = next, addr != end); 2957 return 0; 2958 } 2959 2960 static int get_remap_pgoff(bool is_cow, unsigned long addr, 2961 unsigned long end, unsigned long vm_start, unsigned long vm_end, 2962 unsigned long pfn, pgoff_t *vm_pgoff_p) 2963 { 2964 /* 2965 * There's a horrible special case to handle copy-on-write 2966 * behaviour that some programs depend on. We mark the "original" 2967 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2968 * See vm_normal_page() for details. 2969 */ 2970 if (is_cow) { 2971 if (addr != vm_start || end != vm_end) 2972 return -EINVAL; 2973 *vm_pgoff_p = pfn; 2974 } 2975 2976 return 0; 2977 } 2978 2979 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2980 unsigned long pfn, unsigned long size, pgprot_t prot) 2981 { 2982 pgd_t *pgd; 2983 unsigned long next; 2984 unsigned long end = addr + PAGE_ALIGN(size); 2985 struct mm_struct *mm = vma->vm_mm; 2986 int err; 2987 2988 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2989 return -EINVAL; 2990 2991 VM_WARN_ON_ONCE(!vma_test_all_flags_mask(vma, VMA_REMAP_FLAGS)); 2992 2993 BUG_ON(addr >= end); 2994 pfn -= addr >> PAGE_SHIFT; 2995 pgd = pgd_offset(mm, addr); 2996 flush_cache_range(vma, addr, end); 2997 do { 2998 next = pgd_addr_end(addr, end); 2999 err = remap_p4d_range(mm, pgd, addr, next, 3000 pfn + (addr >> PAGE_SHIFT), prot); 3001 if (err) 3002 return err; 3003 } while (pgd++, addr = next, addr != end); 3004 3005 return 0; 3006 } 3007 3008 /* 3009 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 3010 * must have pre-validated the caching bits of the pgprot_t. 3011 */ 3012 static int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3013 unsigned long pfn, unsigned long size, pgprot_t prot) 3014 { 3015 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 3016 3017 if (!error) 3018 return 0; 3019 3020 /* 3021 * A partial pfn range mapping is dangerous: it does not 3022 * maintain page reference counts, and callers may free 3023 * pages due to the error. So zap it early. 3024 */ 3025 zap_page_range_single(vma, addr, size, NULL); 3026 return error; 3027 } 3028 3029 #ifdef __HAVE_PFNMAP_TRACKING 3030 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn, 3031 unsigned long size, pgprot_t *prot) 3032 { 3033 struct pfnmap_track_ctx *ctx; 3034 3035 if (pfnmap_track(pfn, size, prot)) 3036 return ERR_PTR(-EINVAL); 3037 3038 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 3039 if (unlikely(!ctx)) { 3040 pfnmap_untrack(pfn, size); 3041 return ERR_PTR(-ENOMEM); 3042 } 3043 3044 ctx->pfn = pfn; 3045 ctx->size = size; 3046 kref_init(&ctx->kref); 3047 return ctx; 3048 } 3049 3050 void pfnmap_track_ctx_release(struct kref *ref) 3051 { 3052 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref); 3053 3054 pfnmap_untrack(ctx->pfn, ctx->size); 3055 kfree(ctx); 3056 } 3057 3058 static int remap_pfn_range_track(struct vm_area_struct *vma, unsigned long addr, 3059 unsigned long pfn, unsigned long size, pgprot_t prot) 3060 { 3061 struct pfnmap_track_ctx *ctx = NULL; 3062 int err; 3063 3064 size = PAGE_ALIGN(size); 3065 3066 /* 3067 * If we cover the full VMA, we'll perform actual tracking, and 3068 * remember to untrack when the last reference to our tracking 3069 * context from a VMA goes away. We'll keep tracking the whole pfn 3070 * range even during VMA splits and partial unmapping. 3071 * 3072 * If we only cover parts of the VMA, we'll only setup the cachemode 3073 * in the pgprot for the pfn range. 3074 */ 3075 if (addr == vma->vm_start && addr + size == vma->vm_end) { 3076 if (vma->pfnmap_track_ctx) 3077 return -EINVAL; 3078 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot); 3079 if (IS_ERR(ctx)) 3080 return PTR_ERR(ctx); 3081 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) { 3082 return -EINVAL; 3083 } 3084 3085 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 3086 if (ctx) { 3087 if (err) 3088 kref_put(&ctx->kref, pfnmap_track_ctx_release); 3089 else 3090 vma->pfnmap_track_ctx = ctx; 3091 } 3092 return err; 3093 } 3094 3095 static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3096 unsigned long pfn, unsigned long size, pgprot_t prot) 3097 { 3098 return remap_pfn_range_track(vma, addr, pfn, size, prot); 3099 } 3100 #else 3101 static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3102 unsigned long pfn, unsigned long size, pgprot_t prot) 3103 { 3104 return remap_pfn_range_notrack(vma, addr, pfn, size, prot); 3105 } 3106 #endif 3107 3108 void remap_pfn_range_prepare(struct vm_area_desc *desc, unsigned long pfn) 3109 { 3110 /* 3111 * We set addr=VMA start, end=VMA end here, so this won't fail, but we 3112 * check it again on complete and will fail there if specified addr is 3113 * invalid. 3114 */ 3115 get_remap_pgoff(vma_desc_is_cow_mapping(desc), desc->start, desc->end, 3116 desc->start, desc->end, pfn, &desc->pgoff); 3117 vma_desc_set_flags_mask(desc, VMA_REMAP_FLAGS); 3118 } 3119 3120 static int remap_pfn_range_prepare_vma(struct vm_area_struct *vma, unsigned long addr, 3121 unsigned long pfn, unsigned long size) 3122 { 3123 unsigned long end = addr + PAGE_ALIGN(size); 3124 int err; 3125 3126 err = get_remap_pgoff(is_cow_mapping(vma->vm_flags), addr, end, 3127 vma->vm_start, vma->vm_end, pfn, &vma->vm_pgoff); 3128 if (err) 3129 return err; 3130 3131 vma_set_flags_mask(vma, VMA_REMAP_FLAGS); 3132 return 0; 3133 } 3134 3135 /** 3136 * remap_pfn_range - remap kernel memory to userspace 3137 * @vma: user vma to map to 3138 * @addr: target page aligned user address to start at 3139 * @pfn: page frame number of kernel physical memory address 3140 * @size: size of mapping area 3141 * @prot: page protection flags for this mapping 3142 * 3143 * Note: this is only safe if the mm semaphore is held when called. 3144 * 3145 * Return: %0 on success, negative error code otherwise. 3146 */ 3147 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3148 unsigned long pfn, unsigned long size, pgprot_t prot) 3149 { 3150 int err; 3151 3152 err = remap_pfn_range_prepare_vma(vma, addr, pfn, size); 3153 if (err) 3154 return err; 3155 3156 return do_remap_pfn_range(vma, addr, pfn, size, prot); 3157 } 3158 EXPORT_SYMBOL(remap_pfn_range); 3159 3160 int remap_pfn_range_complete(struct vm_area_struct *vma, unsigned long addr, 3161 unsigned long pfn, unsigned long size, pgprot_t prot) 3162 { 3163 return do_remap_pfn_range(vma, addr, pfn, size, prot); 3164 } 3165 3166 /** 3167 * vm_iomap_memory - remap memory to userspace 3168 * @vma: user vma to map to 3169 * @start: start of the physical memory to be mapped 3170 * @len: size of area 3171 * 3172 * This is a simplified io_remap_pfn_range() for common driver use. The 3173 * driver just needs to give us the physical memory range to be mapped, 3174 * we'll figure out the rest from the vma information. 3175 * 3176 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 3177 * whatever write-combining details or similar. 3178 * 3179 * Return: %0 on success, negative error code otherwise. 3180 */ 3181 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 3182 { 3183 unsigned long vm_len, pfn, pages; 3184 3185 /* Check that the physical memory area passed in looks valid */ 3186 if (start + len < start) 3187 return -EINVAL; 3188 /* 3189 * You *really* shouldn't map things that aren't page-aligned, 3190 * but we've historically allowed it because IO memory might 3191 * just have smaller alignment. 3192 */ 3193 len += start & ~PAGE_MASK; 3194 pfn = start >> PAGE_SHIFT; 3195 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 3196 if (pfn + pages < pfn) 3197 return -EINVAL; 3198 3199 /* We start the mapping 'vm_pgoff' pages into the area */ 3200 if (vma->vm_pgoff > pages) 3201 return -EINVAL; 3202 pfn += vma->vm_pgoff; 3203 pages -= vma->vm_pgoff; 3204 3205 /* Can we fit all of the mapping? */ 3206 vm_len = vma->vm_end - vma->vm_start; 3207 if (vm_len >> PAGE_SHIFT > pages) 3208 return -EINVAL; 3209 3210 /* Ok, let it rip */ 3211 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 3212 } 3213 EXPORT_SYMBOL(vm_iomap_memory); 3214 3215 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 3216 unsigned long addr, unsigned long end, 3217 pte_fn_t fn, void *data, bool create, 3218 pgtbl_mod_mask *mask) 3219 { 3220 pte_t *pte, *mapped_pte; 3221 int err = 0; 3222 spinlock_t *ptl; 3223 3224 if (create) { 3225 mapped_pte = pte = (mm == &init_mm) ? 3226 pte_alloc_kernel_track(pmd, addr, mask) : 3227 pte_alloc_map_lock(mm, pmd, addr, &ptl); 3228 if (!pte) 3229 return -ENOMEM; 3230 } else { 3231 mapped_pte = pte = (mm == &init_mm) ? 3232 pte_offset_kernel(pmd, addr) : 3233 pte_offset_map_lock(mm, pmd, addr, &ptl); 3234 if (!pte) 3235 return -EINVAL; 3236 } 3237 3238 lazy_mmu_mode_enable(); 3239 3240 if (fn) { 3241 do { 3242 if (create || !pte_none(ptep_get(pte))) { 3243 err = fn(pte, addr, data); 3244 if (err) 3245 break; 3246 } 3247 } while (pte++, addr += PAGE_SIZE, addr != end); 3248 } 3249 *mask |= PGTBL_PTE_MODIFIED; 3250 3251 lazy_mmu_mode_disable(); 3252 3253 if (mm != &init_mm) 3254 pte_unmap_unlock(mapped_pte, ptl); 3255 return err; 3256 } 3257 3258 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 3259 unsigned long addr, unsigned long end, 3260 pte_fn_t fn, void *data, bool create, 3261 pgtbl_mod_mask *mask) 3262 { 3263 pmd_t *pmd; 3264 unsigned long next; 3265 int err = 0; 3266 3267 BUG_ON(pud_leaf(*pud)); 3268 3269 if (create) { 3270 pmd = pmd_alloc_track(mm, pud, addr, mask); 3271 if (!pmd) 3272 return -ENOMEM; 3273 } else { 3274 pmd = pmd_offset(pud, addr); 3275 } 3276 do { 3277 next = pmd_addr_end(addr, end); 3278 if (pmd_none(*pmd) && !create) 3279 continue; 3280 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 3281 return -EINVAL; 3282 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 3283 if (!create) 3284 continue; 3285 pmd_clear_bad(pmd); 3286 } 3287 err = apply_to_pte_range(mm, pmd, addr, next, 3288 fn, data, create, mask); 3289 if (err) 3290 break; 3291 } while (pmd++, addr = next, addr != end); 3292 3293 return err; 3294 } 3295 3296 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 3297 unsigned long addr, unsigned long end, 3298 pte_fn_t fn, void *data, bool create, 3299 pgtbl_mod_mask *mask) 3300 { 3301 pud_t *pud; 3302 unsigned long next; 3303 int err = 0; 3304 3305 if (create) { 3306 pud = pud_alloc_track(mm, p4d, addr, mask); 3307 if (!pud) 3308 return -ENOMEM; 3309 } else { 3310 pud = pud_offset(p4d, addr); 3311 } 3312 do { 3313 next = pud_addr_end(addr, end); 3314 if (pud_none(*pud) && !create) 3315 continue; 3316 if (WARN_ON_ONCE(pud_leaf(*pud))) 3317 return -EINVAL; 3318 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 3319 if (!create) 3320 continue; 3321 pud_clear_bad(pud); 3322 } 3323 err = apply_to_pmd_range(mm, pud, addr, next, 3324 fn, data, create, mask); 3325 if (err) 3326 break; 3327 } while (pud++, addr = next, addr != end); 3328 3329 return err; 3330 } 3331 3332 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 3333 unsigned long addr, unsigned long end, 3334 pte_fn_t fn, void *data, bool create, 3335 pgtbl_mod_mask *mask) 3336 { 3337 p4d_t *p4d; 3338 unsigned long next; 3339 int err = 0; 3340 3341 if (create) { 3342 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3343 if (!p4d) 3344 return -ENOMEM; 3345 } else { 3346 p4d = p4d_offset(pgd, addr); 3347 } 3348 do { 3349 next = p4d_addr_end(addr, end); 3350 if (p4d_none(*p4d) && !create) 3351 continue; 3352 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3353 return -EINVAL; 3354 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3355 if (!create) 3356 continue; 3357 p4d_clear_bad(p4d); 3358 } 3359 err = apply_to_pud_range(mm, p4d, addr, next, 3360 fn, data, create, mask); 3361 if (err) 3362 break; 3363 } while (p4d++, addr = next, addr != end); 3364 3365 return err; 3366 } 3367 3368 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3369 unsigned long size, pte_fn_t fn, 3370 void *data, bool create) 3371 { 3372 pgd_t *pgd; 3373 unsigned long start = addr, next; 3374 unsigned long end = addr + size; 3375 pgtbl_mod_mask mask = 0; 3376 int err = 0; 3377 3378 if (WARN_ON(addr >= end)) 3379 return -EINVAL; 3380 3381 pgd = pgd_offset(mm, addr); 3382 do { 3383 next = pgd_addr_end(addr, end); 3384 if (pgd_none(*pgd) && !create) 3385 continue; 3386 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3387 err = -EINVAL; 3388 break; 3389 } 3390 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3391 if (!create) 3392 continue; 3393 pgd_clear_bad(pgd); 3394 } 3395 err = apply_to_p4d_range(mm, pgd, addr, next, 3396 fn, data, create, &mask); 3397 if (err) 3398 break; 3399 } while (pgd++, addr = next, addr != end); 3400 3401 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3402 arch_sync_kernel_mappings(start, start + size); 3403 3404 return err; 3405 } 3406 3407 /* 3408 * Scan a region of virtual memory, filling in page tables as necessary 3409 * and calling a provided function on each leaf page table. 3410 */ 3411 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3412 unsigned long size, pte_fn_t fn, void *data) 3413 { 3414 return __apply_to_page_range(mm, addr, size, fn, data, true); 3415 } 3416 EXPORT_SYMBOL_GPL(apply_to_page_range); 3417 3418 /* 3419 * Scan a region of virtual memory, calling a provided function on 3420 * each leaf page table where it exists. 3421 * 3422 * Unlike apply_to_page_range, this does _not_ fill in page tables 3423 * where they are absent. 3424 */ 3425 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3426 unsigned long size, pte_fn_t fn, void *data) 3427 { 3428 return __apply_to_page_range(mm, addr, size, fn, data, false); 3429 } 3430 3431 /* 3432 * handle_pte_fault chooses page fault handler according to an entry which was 3433 * read non-atomically. Before making any commitment, on those architectures 3434 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3435 * parts, do_swap_page must check under lock before unmapping the pte and 3436 * proceeding (but do_wp_page is only called after already making such a check; 3437 * and do_anonymous_page can safely check later on). 3438 */ 3439 static inline int pte_unmap_same(struct vm_fault *vmf) 3440 { 3441 int same = 1; 3442 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3443 if (sizeof(pte_t) > sizeof(unsigned long)) { 3444 spin_lock(vmf->ptl); 3445 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3446 spin_unlock(vmf->ptl); 3447 } 3448 #endif 3449 pte_unmap(vmf->pte); 3450 vmf->pte = NULL; 3451 return same; 3452 } 3453 3454 /* 3455 * Return: 3456 * 0: copied succeeded 3457 * -EHWPOISON: copy failed due to hwpoison in source page 3458 * -EAGAIN: copied failed (some other reason) 3459 */ 3460 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3461 struct vm_fault *vmf) 3462 { 3463 int ret; 3464 void *kaddr; 3465 void __user *uaddr; 3466 struct vm_area_struct *vma = vmf->vma; 3467 struct mm_struct *mm = vma->vm_mm; 3468 unsigned long addr = vmf->address; 3469 3470 if (likely(src)) { 3471 if (copy_mc_user_highpage(dst, src, addr, vma)) 3472 return -EHWPOISON; 3473 return 0; 3474 } 3475 3476 /* 3477 * If the source page was a PFN mapping, we don't have 3478 * a "struct page" for it. We do a best-effort copy by 3479 * just copying from the original user address. If that 3480 * fails, we just zero-fill it. Live with it. 3481 */ 3482 kaddr = kmap_local_page(dst); 3483 pagefault_disable(); 3484 uaddr = (void __user *)(addr & PAGE_MASK); 3485 3486 /* 3487 * On architectures with software "accessed" bits, we would 3488 * take a double page fault, so mark it accessed here. 3489 */ 3490 vmf->pte = NULL; 3491 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3492 pte_t entry; 3493 3494 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3495 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3496 /* 3497 * Other thread has already handled the fault 3498 * and update local tlb only 3499 */ 3500 if (vmf->pte) 3501 update_mmu_tlb(vma, addr, vmf->pte); 3502 ret = -EAGAIN; 3503 goto pte_unlock; 3504 } 3505 3506 entry = pte_mkyoung(vmf->orig_pte); 3507 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3508 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3509 } 3510 3511 /* 3512 * This really shouldn't fail, because the page is there 3513 * in the page tables. But it might just be unreadable, 3514 * in which case we just give up and fill the result with 3515 * zeroes. 3516 */ 3517 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3518 if (vmf->pte) 3519 goto warn; 3520 3521 /* Re-validate under PTL if the page is still mapped */ 3522 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3523 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3524 /* The PTE changed under us, update local tlb */ 3525 if (vmf->pte) 3526 update_mmu_tlb(vma, addr, vmf->pte); 3527 ret = -EAGAIN; 3528 goto pte_unlock; 3529 } 3530 3531 /* 3532 * The same page can be mapped back since last copy attempt. 3533 * Try to copy again under PTL. 3534 */ 3535 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3536 /* 3537 * Give a warn in case there can be some obscure 3538 * use-case 3539 */ 3540 warn: 3541 WARN_ON_ONCE(1); 3542 clear_page(kaddr); 3543 } 3544 } 3545 3546 ret = 0; 3547 3548 pte_unlock: 3549 if (vmf->pte) 3550 pte_unmap_unlock(vmf->pte, vmf->ptl); 3551 pagefault_enable(); 3552 kunmap_local(kaddr); 3553 flush_dcache_page(dst); 3554 3555 return ret; 3556 } 3557 3558 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3559 { 3560 struct file *vm_file = vma->vm_file; 3561 3562 if (vm_file) 3563 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3564 3565 /* 3566 * Special mappings (e.g. VDSO) do not have any file so fake 3567 * a default GFP_KERNEL for them. 3568 */ 3569 return GFP_KERNEL; 3570 } 3571 3572 /* 3573 * Notify the address space that the page is about to become writable so that 3574 * it can prohibit this or wait for the page to get into an appropriate state. 3575 * 3576 * We do this without the lock held, so that it can sleep if it needs to. 3577 */ 3578 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3579 { 3580 vm_fault_t ret; 3581 unsigned int old_flags = vmf->flags; 3582 3583 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3584 3585 if (vmf->vma->vm_file && 3586 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3587 return VM_FAULT_SIGBUS; 3588 3589 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3590 /* Restore original flags so that caller is not surprised */ 3591 vmf->flags = old_flags; 3592 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3593 return ret; 3594 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3595 folio_lock(folio); 3596 if (!folio->mapping) { 3597 folio_unlock(folio); 3598 return 0; /* retry */ 3599 } 3600 ret |= VM_FAULT_LOCKED; 3601 } else 3602 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3603 return ret; 3604 } 3605 3606 /* 3607 * Handle dirtying of a page in shared file mapping on a write fault. 3608 * 3609 * The function expects the page to be locked and unlocks it. 3610 */ 3611 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3612 { 3613 struct vm_area_struct *vma = vmf->vma; 3614 struct address_space *mapping; 3615 struct folio *folio = page_folio(vmf->page); 3616 bool dirtied; 3617 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3618 3619 dirtied = folio_mark_dirty(folio); 3620 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3621 /* 3622 * Take a local copy of the address_space - folio.mapping may be zeroed 3623 * by truncate after folio_unlock(). The address_space itself remains 3624 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3625 * release semantics to prevent the compiler from undoing this copying. 3626 */ 3627 mapping = folio_raw_mapping(folio); 3628 folio_unlock(folio); 3629 3630 if (!page_mkwrite) 3631 file_update_time(vma->vm_file); 3632 3633 /* 3634 * Throttle page dirtying rate down to writeback speed. 3635 * 3636 * mapping may be NULL here because some device drivers do not 3637 * set page.mapping but still dirty their pages 3638 * 3639 * Drop the mmap_lock before waiting on IO, if we can. The file 3640 * is pinning the mapping, as per above. 3641 */ 3642 if ((dirtied || page_mkwrite) && mapping) { 3643 struct file *fpin; 3644 3645 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3646 balance_dirty_pages_ratelimited(mapping); 3647 if (fpin) { 3648 fput(fpin); 3649 return VM_FAULT_COMPLETED; 3650 } 3651 } 3652 3653 return 0; 3654 } 3655 3656 /* 3657 * Handle write page faults for pages that can be reused in the current vma 3658 * 3659 * This can happen either due to the mapping being with the VM_SHARED flag, 3660 * or due to us being the last reference standing to the page. In either 3661 * case, all we need to do here is to mark the page as writable and update 3662 * any related book-keeping. 3663 */ 3664 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3665 __releases(vmf->ptl) 3666 { 3667 struct vm_area_struct *vma = vmf->vma; 3668 pte_t entry; 3669 3670 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3671 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3672 3673 if (folio) { 3674 VM_BUG_ON(folio_test_anon(folio) && 3675 !PageAnonExclusive(vmf->page)); 3676 /* 3677 * Clear the folio's cpupid information as the existing 3678 * information potentially belongs to a now completely 3679 * unrelated process. 3680 */ 3681 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3682 } 3683 3684 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3685 entry = pte_mkyoung(vmf->orig_pte); 3686 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3687 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3688 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3689 pte_unmap_unlock(vmf->pte, vmf->ptl); 3690 count_vm_event(PGREUSE); 3691 } 3692 3693 /* 3694 * We could add a bitflag somewhere, but for now, we know that all 3695 * vm_ops that have a ->map_pages have been audited and don't need 3696 * the mmap_lock to be held. 3697 */ 3698 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3699 { 3700 struct vm_area_struct *vma = vmf->vma; 3701 3702 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3703 return 0; 3704 vma_end_read(vma); 3705 return VM_FAULT_RETRY; 3706 } 3707 3708 /** 3709 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3710 * @vmf: The vm_fault descriptor passed from the fault handler. 3711 * 3712 * When preparing to insert an anonymous page into a VMA from a 3713 * fault handler, call this function rather than anon_vma_prepare(). 3714 * If this vma does not already have an associated anon_vma and we are 3715 * only protected by the per-VMA lock, the caller must retry with the 3716 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3717 * determine if this VMA can share its anon_vma, and that's not safe to 3718 * do with only the per-VMA lock held for this VMA. 3719 * 3720 * Return: 0 if fault handling can proceed. Any other value should be 3721 * returned to the caller. 3722 */ 3723 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3724 { 3725 struct vm_area_struct *vma = vmf->vma; 3726 vm_fault_t ret = 0; 3727 3728 if (likely(vma->anon_vma)) 3729 return 0; 3730 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3731 if (!mmap_read_trylock(vma->vm_mm)) 3732 return VM_FAULT_RETRY; 3733 } 3734 if (__anon_vma_prepare(vma)) 3735 ret = VM_FAULT_OOM; 3736 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3737 mmap_read_unlock(vma->vm_mm); 3738 return ret; 3739 } 3740 3741 /* 3742 * Handle the case of a page which we actually need to copy to a new page, 3743 * either due to COW or unsharing. 3744 * 3745 * Called with mmap_lock locked and the old page referenced, but 3746 * without the ptl held. 3747 * 3748 * High level logic flow: 3749 * 3750 * - Allocate a page, copy the content of the old page to the new one. 3751 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3752 * - Take the PTL. If the pte changed, bail out and release the allocated page 3753 * - If the pte is still the way we remember it, update the page table and all 3754 * relevant references. This includes dropping the reference the page-table 3755 * held to the old page, as well as updating the rmap. 3756 * - In any case, unlock the PTL and drop the reference we took to the old page. 3757 */ 3758 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3759 { 3760 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3761 struct vm_area_struct *vma = vmf->vma; 3762 struct mm_struct *mm = vma->vm_mm; 3763 struct folio *old_folio = NULL; 3764 struct folio *new_folio = NULL; 3765 pte_t entry; 3766 int page_copied = 0; 3767 struct mmu_notifier_range range; 3768 vm_fault_t ret; 3769 bool pfn_is_zero; 3770 3771 delayacct_wpcopy_start(); 3772 3773 if (vmf->page) 3774 old_folio = page_folio(vmf->page); 3775 ret = vmf_anon_prepare(vmf); 3776 if (unlikely(ret)) 3777 goto out; 3778 3779 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3780 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3781 if (!new_folio) 3782 goto oom; 3783 3784 if (!pfn_is_zero) { 3785 int err; 3786 3787 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3788 if (err) { 3789 /* 3790 * COW failed, if the fault was solved by other, 3791 * it's fine. If not, userspace would re-fault on 3792 * the same address and we will handle the fault 3793 * from the second attempt. 3794 * The -EHWPOISON case will not be retried. 3795 */ 3796 folio_put(new_folio); 3797 if (old_folio) 3798 folio_put(old_folio); 3799 3800 delayacct_wpcopy_end(); 3801 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3802 } 3803 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3804 } 3805 3806 __folio_mark_uptodate(new_folio); 3807 3808 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3809 vmf->address & PAGE_MASK, 3810 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3811 mmu_notifier_invalidate_range_start(&range); 3812 3813 /* 3814 * Re-check the pte - we dropped the lock 3815 */ 3816 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3817 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3818 if (old_folio) { 3819 if (!folio_test_anon(old_folio)) { 3820 dec_mm_counter(mm, mm_counter_file(old_folio)); 3821 inc_mm_counter(mm, MM_ANONPAGES); 3822 } 3823 } else { 3824 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3825 inc_mm_counter(mm, MM_ANONPAGES); 3826 } 3827 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3828 entry = folio_mk_pte(new_folio, vma->vm_page_prot); 3829 entry = pte_sw_mkyoung(entry); 3830 if (unlikely(unshare)) { 3831 if (pte_soft_dirty(vmf->orig_pte)) 3832 entry = pte_mksoft_dirty(entry); 3833 if (pte_uffd_wp(vmf->orig_pte)) 3834 entry = pte_mkuffd_wp(entry); 3835 } else { 3836 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3837 } 3838 3839 /* 3840 * Clear the pte entry and flush it first, before updating the 3841 * pte with the new entry, to keep TLBs on different CPUs in 3842 * sync. This code used to set the new PTE then flush TLBs, but 3843 * that left a window where the new PTE could be loaded into 3844 * some TLBs while the old PTE remains in others. 3845 */ 3846 ptep_clear_flush(vma, vmf->address, vmf->pte); 3847 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3848 folio_add_lru_vma(new_folio, vma); 3849 BUG_ON(unshare && pte_write(entry)); 3850 set_pte_at(mm, vmf->address, vmf->pte, entry); 3851 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3852 if (old_folio) { 3853 /* 3854 * Only after switching the pte to the new page may 3855 * we remove the mapcount here. Otherwise another 3856 * process may come and find the rmap count decremented 3857 * before the pte is switched to the new page, and 3858 * "reuse" the old page writing into it while our pte 3859 * here still points into it and can be read by other 3860 * threads. 3861 * 3862 * The critical issue is to order this 3863 * folio_remove_rmap_pte() with the ptp_clear_flush 3864 * above. Those stores are ordered by (if nothing else,) 3865 * the barrier present in the atomic_add_negative 3866 * in folio_remove_rmap_pte(); 3867 * 3868 * Then the TLB flush in ptep_clear_flush ensures that 3869 * no process can access the old page before the 3870 * decremented mapcount is visible. And the old page 3871 * cannot be reused until after the decremented 3872 * mapcount is visible. So transitively, TLBs to 3873 * old page will be flushed before it can be reused. 3874 */ 3875 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3876 } 3877 3878 /* Free the old page.. */ 3879 new_folio = old_folio; 3880 page_copied = 1; 3881 pte_unmap_unlock(vmf->pte, vmf->ptl); 3882 } else if (vmf->pte) { 3883 update_mmu_tlb(vma, vmf->address, vmf->pte); 3884 pte_unmap_unlock(vmf->pte, vmf->ptl); 3885 } 3886 3887 mmu_notifier_invalidate_range_end(&range); 3888 3889 if (new_folio) 3890 folio_put(new_folio); 3891 if (old_folio) { 3892 if (page_copied) 3893 free_swap_cache(old_folio); 3894 folio_put(old_folio); 3895 } 3896 3897 delayacct_wpcopy_end(); 3898 return 0; 3899 oom: 3900 ret = VM_FAULT_OOM; 3901 out: 3902 if (old_folio) 3903 folio_put(old_folio); 3904 3905 delayacct_wpcopy_end(); 3906 return ret; 3907 } 3908 3909 /** 3910 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3911 * writeable once the page is prepared 3912 * 3913 * @vmf: structure describing the fault 3914 * @folio: the folio of vmf->page 3915 * 3916 * This function handles all that is needed to finish a write page fault in a 3917 * shared mapping due to PTE being read-only once the mapped page is prepared. 3918 * It handles locking of PTE and modifying it. 3919 * 3920 * The function expects the page to be locked or other protection against 3921 * concurrent faults / writeback (such as DAX radix tree locks). 3922 * 3923 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3924 * we acquired PTE lock. 3925 */ 3926 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3927 { 3928 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3929 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3930 &vmf->ptl); 3931 if (!vmf->pte) 3932 return VM_FAULT_NOPAGE; 3933 /* 3934 * We might have raced with another page fault while we released the 3935 * pte_offset_map_lock. 3936 */ 3937 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3938 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3939 pte_unmap_unlock(vmf->pte, vmf->ptl); 3940 return VM_FAULT_NOPAGE; 3941 } 3942 wp_page_reuse(vmf, folio); 3943 return 0; 3944 } 3945 3946 /* 3947 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3948 * mapping 3949 */ 3950 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3951 { 3952 struct vm_area_struct *vma = vmf->vma; 3953 3954 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3955 vm_fault_t ret; 3956 3957 pte_unmap_unlock(vmf->pte, vmf->ptl); 3958 ret = vmf_can_call_fault(vmf); 3959 if (ret) 3960 return ret; 3961 3962 vmf->flags |= FAULT_FLAG_MKWRITE; 3963 ret = vma->vm_ops->pfn_mkwrite(vmf); 3964 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3965 return ret; 3966 return finish_mkwrite_fault(vmf, NULL); 3967 } 3968 wp_page_reuse(vmf, NULL); 3969 return 0; 3970 } 3971 3972 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3973 __releases(vmf->ptl) 3974 { 3975 struct vm_area_struct *vma = vmf->vma; 3976 vm_fault_t ret = 0; 3977 3978 folio_get(folio); 3979 3980 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3981 vm_fault_t tmp; 3982 3983 pte_unmap_unlock(vmf->pte, vmf->ptl); 3984 tmp = vmf_can_call_fault(vmf); 3985 if (tmp) { 3986 folio_put(folio); 3987 return tmp; 3988 } 3989 3990 tmp = do_page_mkwrite(vmf, folio); 3991 if (unlikely(!tmp || (tmp & 3992 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3993 folio_put(folio); 3994 return tmp; 3995 } 3996 tmp = finish_mkwrite_fault(vmf, folio); 3997 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3998 folio_unlock(folio); 3999 folio_put(folio); 4000 return tmp; 4001 } 4002 } else { 4003 wp_page_reuse(vmf, folio); 4004 folio_lock(folio); 4005 } 4006 ret |= fault_dirty_shared_page(vmf); 4007 folio_put(folio); 4008 4009 return ret; 4010 } 4011 4012 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4013 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 4014 struct vm_area_struct *vma) 4015 { 4016 bool exclusive = false; 4017 4018 /* Let's just free up a large folio if only a single page is mapped. */ 4019 if (folio_large_mapcount(folio) <= 1) 4020 return false; 4021 4022 /* 4023 * The assumption for anonymous folios is that each page can only get 4024 * mapped once into each MM. The only exception are KSM folios, which 4025 * are always small. 4026 * 4027 * Each taken mapcount must be paired with exactly one taken reference, 4028 * whereby the refcount must be incremented before the mapcount when 4029 * mapping a page, and the refcount must be decremented after the 4030 * mapcount when unmapping a page. 4031 * 4032 * If all folio references are from mappings, and all mappings are in 4033 * the page tables of this MM, then this folio is exclusive to this MM. 4034 */ 4035 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 4036 return false; 4037 4038 VM_WARN_ON_ONCE(folio_test_ksm(folio)); 4039 4040 if (unlikely(folio_test_swapcache(folio))) { 4041 /* 4042 * Note: freeing up the swapcache will fail if some PTEs are 4043 * still swap entries. 4044 */ 4045 if (!folio_trylock(folio)) 4046 return false; 4047 folio_free_swap(folio); 4048 folio_unlock(folio); 4049 } 4050 4051 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 4052 return false; 4053 4054 /* Stabilize the mapcount vs. refcount and recheck. */ 4055 folio_lock_large_mapcount(folio); 4056 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio); 4057 4058 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 4059 goto unlock; 4060 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 4061 goto unlock; 4062 4063 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio); 4064 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio); 4065 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id && 4066 folio_mm_id(folio, 1) != vma->vm_mm->mm_id); 4067 4068 /* 4069 * Do we need the folio lock? Likely not. If there would have been 4070 * references from page migration/swapout, we would have detected 4071 * an additional folio reference and never ended up here. 4072 */ 4073 exclusive = true; 4074 unlock: 4075 folio_unlock_large_mapcount(folio); 4076 return exclusive; 4077 } 4078 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4079 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 4080 struct vm_area_struct *vma) 4081 { 4082 BUILD_BUG(); 4083 } 4084 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4085 4086 static bool wp_can_reuse_anon_folio(struct folio *folio, 4087 struct vm_area_struct *vma) 4088 { 4089 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio)) 4090 return __wp_can_reuse_large_anon_folio(folio, vma); 4091 4092 /* 4093 * We have to verify under folio lock: these early checks are 4094 * just an optimization to avoid locking the folio and freeing 4095 * the swapcache if there is little hope that we can reuse. 4096 * 4097 * KSM doesn't necessarily raise the folio refcount. 4098 */ 4099 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 4100 return false; 4101 if (!folio_test_lru(folio)) 4102 /* 4103 * We cannot easily detect+handle references from 4104 * remote LRU caches or references to LRU folios. 4105 */ 4106 lru_add_drain(); 4107 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 4108 return false; 4109 if (!folio_trylock(folio)) 4110 return false; 4111 if (folio_test_swapcache(folio)) 4112 folio_free_swap(folio); 4113 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 4114 folio_unlock(folio); 4115 return false; 4116 } 4117 /* 4118 * Ok, we've got the only folio reference from our mapping 4119 * and the folio is locked, it's dark out, and we're wearing 4120 * sunglasses. Hit it. 4121 */ 4122 folio_move_anon_rmap(folio, vma); 4123 folio_unlock(folio); 4124 return true; 4125 } 4126 4127 /* 4128 * This routine handles present pages, when 4129 * * users try to write to a shared page (FAULT_FLAG_WRITE) 4130 * * GUP wants to take a R/O pin on a possibly shared anonymous page 4131 * (FAULT_FLAG_UNSHARE) 4132 * 4133 * It is done by copying the page to a new address and decrementing the 4134 * shared-page counter for the old page. 4135 * 4136 * Note that this routine assumes that the protection checks have been 4137 * done by the caller (the low-level page fault routine in most cases). 4138 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 4139 * done any necessary COW. 4140 * 4141 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 4142 * though the page will change only once the write actually happens. This 4143 * avoids a few races, and potentially makes it more efficient. 4144 * 4145 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4146 * but allow concurrent faults), with pte both mapped and locked. 4147 * We return with mmap_lock still held, but pte unmapped and unlocked. 4148 */ 4149 static vm_fault_t do_wp_page(struct vm_fault *vmf) 4150 __releases(vmf->ptl) 4151 { 4152 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4153 struct vm_area_struct *vma = vmf->vma; 4154 struct folio *folio = NULL; 4155 pte_t pte; 4156 4157 if (likely(!unshare)) { 4158 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 4159 if (!userfaultfd_wp_async(vma)) { 4160 pte_unmap_unlock(vmf->pte, vmf->ptl); 4161 return handle_userfault(vmf, VM_UFFD_WP); 4162 } 4163 4164 /* 4165 * Nothing needed (cache flush, TLB invalidations, 4166 * etc.) because we're only removing the uffd-wp bit, 4167 * which is completely invisible to the user. 4168 */ 4169 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 4170 4171 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4172 /* 4173 * Update this to be prepared for following up CoW 4174 * handling 4175 */ 4176 vmf->orig_pte = pte; 4177 } 4178 4179 /* 4180 * Userfaultfd write-protect can defer flushes. Ensure the TLB 4181 * is flushed in this case before copying. 4182 */ 4183 if (unlikely(userfaultfd_wp(vmf->vma) && 4184 mm_tlb_flush_pending(vmf->vma->vm_mm))) 4185 flush_tlb_page(vmf->vma, vmf->address); 4186 } 4187 4188 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 4189 4190 if (vmf->page) 4191 folio = page_folio(vmf->page); 4192 4193 /* 4194 * Shared mapping: we are guaranteed to have VM_WRITE and 4195 * FAULT_FLAG_WRITE set at this point. 4196 */ 4197 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4198 /* 4199 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 4200 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called. 4201 * 4202 * We should not cow pages in a shared writeable mapping. 4203 * Just mark the pages writable and/or call ops->pfn_mkwrite. 4204 */ 4205 if (!vmf->page || is_fsdax_page(vmf->page)) { 4206 vmf->page = NULL; 4207 return wp_pfn_shared(vmf); 4208 } 4209 return wp_page_shared(vmf, folio); 4210 } 4211 4212 /* 4213 * Private mapping: create an exclusive anonymous page copy if reuse 4214 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 4215 * 4216 * If we encounter a page that is marked exclusive, we must reuse 4217 * the page without further checks. 4218 */ 4219 if (folio && folio_test_anon(folio) && 4220 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 4221 if (!PageAnonExclusive(vmf->page)) 4222 SetPageAnonExclusive(vmf->page); 4223 if (unlikely(unshare)) { 4224 pte_unmap_unlock(vmf->pte, vmf->ptl); 4225 return 0; 4226 } 4227 wp_page_reuse(vmf, folio); 4228 return 0; 4229 } 4230 /* 4231 * Ok, we need to copy. Oh, well.. 4232 */ 4233 if (folio) 4234 folio_get(folio); 4235 4236 pte_unmap_unlock(vmf->pte, vmf->ptl); 4237 #ifdef CONFIG_KSM 4238 if (folio && folio_test_ksm(folio)) 4239 count_vm_event(COW_KSM); 4240 #endif 4241 return wp_page_copy(vmf); 4242 } 4243 4244 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 4245 unsigned long start_addr, unsigned long end_addr, 4246 struct zap_details *details) 4247 { 4248 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 4249 } 4250 4251 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 4252 pgoff_t first_index, 4253 pgoff_t last_index, 4254 struct zap_details *details) 4255 { 4256 struct vm_area_struct *vma; 4257 pgoff_t vba, vea, zba, zea; 4258 4259 vma_interval_tree_foreach(vma, root, first_index, last_index) { 4260 vba = vma->vm_pgoff; 4261 vea = vba + vma_pages(vma) - 1; 4262 zba = max(first_index, vba); 4263 zea = min(last_index, vea); 4264 4265 unmap_mapping_range_vma(vma, 4266 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 4267 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 4268 details); 4269 } 4270 } 4271 4272 /** 4273 * unmap_mapping_folio() - Unmap single folio from processes. 4274 * @folio: The locked folio to be unmapped. 4275 * 4276 * Unmap this folio from any userspace process which still has it mmaped. 4277 * Typically, for efficiency, the range of nearby pages has already been 4278 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 4279 * truncation or invalidation holds the lock on a folio, it may find that 4280 * the page has been remapped again: and then uses unmap_mapping_folio() 4281 * to unmap it finally. 4282 */ 4283 void unmap_mapping_folio(struct folio *folio) 4284 { 4285 struct address_space *mapping = folio->mapping; 4286 struct zap_details details = { }; 4287 pgoff_t first_index; 4288 pgoff_t last_index; 4289 4290 VM_BUG_ON(!folio_test_locked(folio)); 4291 4292 first_index = folio->index; 4293 last_index = folio_next_index(folio) - 1; 4294 4295 details.even_cows = false; 4296 details.single_folio = folio; 4297 details.zap_flags = ZAP_FLAG_DROP_MARKER; 4298 4299 i_mmap_lock_read(mapping); 4300 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4301 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4302 last_index, &details); 4303 i_mmap_unlock_read(mapping); 4304 } 4305 4306 /** 4307 * unmap_mapping_pages() - Unmap pages from processes. 4308 * @mapping: The address space containing pages to be unmapped. 4309 * @start: Index of first page to be unmapped. 4310 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 4311 * @even_cows: Whether to unmap even private COWed pages. 4312 * 4313 * Unmap the pages in this address space from any userspace process which 4314 * has them mmaped. Generally, you want to remove COWed pages as well when 4315 * a file is being truncated, but not when invalidating pages from the page 4316 * cache. 4317 */ 4318 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 4319 pgoff_t nr, bool even_cows) 4320 { 4321 struct zap_details details = { }; 4322 pgoff_t first_index = start; 4323 pgoff_t last_index = start + nr - 1; 4324 4325 details.even_cows = even_cows; 4326 if (last_index < first_index) 4327 last_index = ULONG_MAX; 4328 4329 i_mmap_lock_read(mapping); 4330 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4331 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4332 last_index, &details); 4333 i_mmap_unlock_read(mapping); 4334 } 4335 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 4336 4337 /** 4338 * unmap_mapping_range - unmap the portion of all mmaps in the specified 4339 * address_space corresponding to the specified byte range in the underlying 4340 * file. 4341 * 4342 * @mapping: the address space containing mmaps to be unmapped. 4343 * @holebegin: byte in first page to unmap, relative to the start of 4344 * the underlying file. This will be rounded down to a PAGE_SIZE 4345 * boundary. Note that this is different from truncate_pagecache(), which 4346 * must keep the partial page. In contrast, we must get rid of 4347 * partial pages. 4348 * @holelen: size of prospective hole in bytes. This will be rounded 4349 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 4350 * end of the file. 4351 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 4352 * but 0 when invalidating pagecache, don't throw away private data. 4353 */ 4354 void unmap_mapping_range(struct address_space *mapping, 4355 loff_t const holebegin, loff_t const holelen, int even_cows) 4356 { 4357 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 4358 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 4359 4360 /* Check for overflow. */ 4361 if (sizeof(holelen) > sizeof(hlen)) { 4362 long long holeend = 4363 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 4364 if (holeend & ~(long long)ULONG_MAX) 4365 hlen = ULONG_MAX - hba + 1; 4366 } 4367 4368 unmap_mapping_pages(mapping, hba, hlen, even_cows); 4369 } 4370 EXPORT_SYMBOL(unmap_mapping_range); 4371 4372 /* 4373 * Restore a potential device exclusive pte to a working pte entry 4374 */ 4375 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 4376 { 4377 struct folio *folio = page_folio(vmf->page); 4378 struct vm_area_struct *vma = vmf->vma; 4379 struct mmu_notifier_range range; 4380 vm_fault_t ret; 4381 4382 /* 4383 * We need a reference to lock the folio because we don't hold 4384 * the PTL so a racing thread can remove the device-exclusive 4385 * entry and unmap it. If the folio is free the entry must 4386 * have been removed already. If it happens to have already 4387 * been re-allocated after being freed all we do is lock and 4388 * unlock it. 4389 */ 4390 if (!folio_try_get(folio)) 4391 return 0; 4392 4393 ret = folio_lock_or_retry(folio, vmf); 4394 if (ret) { 4395 folio_put(folio); 4396 return ret; 4397 } 4398 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0, 4399 vma->vm_mm, vmf->address & PAGE_MASK, 4400 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 4401 mmu_notifier_invalidate_range_start(&range); 4402 4403 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4404 &vmf->ptl); 4405 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4406 restore_exclusive_pte(vma, folio, vmf->page, vmf->address, 4407 vmf->pte, vmf->orig_pte); 4408 4409 if (vmf->pte) 4410 pte_unmap_unlock(vmf->pte, vmf->ptl); 4411 folio_unlock(folio); 4412 folio_put(folio); 4413 4414 mmu_notifier_invalidate_range_end(&range); 4415 return 0; 4416 } 4417 4418 /* 4419 * Check if we should call folio_free_swap to free the swap cache. 4420 * folio_free_swap only frees the swap cache to release the slot if swap 4421 * count is zero, so we don't need to check the swap count here. 4422 */ 4423 static inline bool should_try_to_free_swap(struct swap_info_struct *si, 4424 struct folio *folio, 4425 struct vm_area_struct *vma, 4426 unsigned int extra_refs, 4427 unsigned int fault_flags) 4428 { 4429 if (!folio_test_swapcache(folio)) 4430 return false; 4431 /* 4432 * Always try to free swap cache for SWP_SYNCHRONOUS_IO devices. Swap 4433 * cache can help save some IO or memory overhead, but these devices 4434 * are fast, and meanwhile, swap cache pinning the slot deferring the 4435 * release of metadata or fragmentation is a more critical issue. 4436 */ 4437 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) 4438 return true; 4439 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4440 folio_test_mlocked(folio)) 4441 return true; 4442 /* 4443 * If we want to map a page that's in the swapcache writable, we 4444 * have to detect via the refcount if we're really the exclusive 4445 * user. Try freeing the swapcache to get rid of the swapcache 4446 * reference only in case it's likely that we'll be the exclusive user. 4447 */ 4448 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4449 folio_ref_count(folio) == (extra_refs + folio_nr_pages(folio)); 4450 } 4451 4452 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4453 { 4454 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4455 vmf->address, &vmf->ptl); 4456 if (!vmf->pte) 4457 return 0; 4458 /* 4459 * Be careful so that we will only recover a special uffd-wp pte into a 4460 * none pte. Otherwise it means the pte could have changed, so retry. 4461 * 4462 * This should also cover the case where e.g. the pte changed 4463 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4464 * So pte_is_marker() check is not enough to safely drop the pte. 4465 */ 4466 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4467 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4468 pte_unmap_unlock(vmf->pte, vmf->ptl); 4469 return 0; 4470 } 4471 4472 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4473 { 4474 if (vma_is_anonymous(vmf->vma)) 4475 return do_anonymous_page(vmf); 4476 else 4477 return do_fault(vmf); 4478 } 4479 4480 /* 4481 * This is actually a page-missing access, but with uffd-wp special pte 4482 * installed. It means this pte was wr-protected before being unmapped. 4483 */ 4484 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4485 { 4486 /* 4487 * Just in case there're leftover special ptes even after the region 4488 * got unregistered - we can simply clear them. 4489 */ 4490 if (unlikely(!userfaultfd_wp(vmf->vma))) 4491 return pte_marker_clear(vmf); 4492 4493 return do_pte_missing(vmf); 4494 } 4495 4496 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4497 { 4498 const softleaf_t entry = softleaf_from_pte(vmf->orig_pte); 4499 const pte_marker marker = softleaf_to_marker(entry); 4500 4501 /* 4502 * PTE markers should never be empty. If anything weird happened, 4503 * the best thing to do is to kill the process along with its mm. 4504 */ 4505 if (WARN_ON_ONCE(!marker)) 4506 return VM_FAULT_SIGBUS; 4507 4508 /* Higher priority than uffd-wp when data corrupted */ 4509 if (marker & PTE_MARKER_POISONED) 4510 return VM_FAULT_HWPOISON; 4511 4512 /* Hitting a guard page is always a fatal condition. */ 4513 if (marker & PTE_MARKER_GUARD) 4514 return VM_FAULT_SIGSEGV; 4515 4516 if (softleaf_is_uffd_wp_marker(entry)) 4517 return pte_marker_handle_uffd_wp(vmf); 4518 4519 /* This is an unknown pte marker */ 4520 return VM_FAULT_SIGBUS; 4521 } 4522 4523 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4524 { 4525 struct vm_area_struct *vma = vmf->vma; 4526 struct folio *folio; 4527 softleaf_t entry; 4528 4529 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4530 if (!folio) 4531 return NULL; 4532 4533 entry = softleaf_from_pte(vmf->orig_pte); 4534 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4535 GFP_KERNEL, entry)) { 4536 folio_put(folio); 4537 return NULL; 4538 } 4539 4540 return folio; 4541 } 4542 4543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4544 /* 4545 * Check if the PTEs within a range are contiguous swap entries 4546 * and have consistent swapcache, zeromap. 4547 */ 4548 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4549 { 4550 unsigned long addr; 4551 softleaf_t entry; 4552 int idx; 4553 pte_t pte; 4554 4555 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4556 idx = (vmf->address - addr) / PAGE_SIZE; 4557 pte = ptep_get(ptep); 4558 4559 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4560 return false; 4561 entry = softleaf_from_pte(pte); 4562 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4563 return false; 4564 4565 /* 4566 * swap_read_folio() can't handle the case a large folio is hybridly 4567 * from different backends. And they are likely corner cases. Similar 4568 * things might be added once zswap support large folios. 4569 */ 4570 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4571 return false; 4572 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4573 return false; 4574 4575 return true; 4576 } 4577 4578 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4579 unsigned long addr, 4580 unsigned long orders) 4581 { 4582 int order, nr; 4583 4584 order = highest_order(orders); 4585 4586 /* 4587 * To swap in a THP with nr pages, we require that its first swap_offset 4588 * is aligned with that number, as it was when the THP was swapped out. 4589 * This helps filter out most invalid entries. 4590 */ 4591 while (orders) { 4592 nr = 1 << order; 4593 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4594 break; 4595 order = next_order(&orders, order); 4596 } 4597 4598 return orders; 4599 } 4600 4601 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4602 { 4603 struct vm_area_struct *vma = vmf->vma; 4604 unsigned long orders; 4605 struct folio *folio; 4606 unsigned long addr; 4607 softleaf_t entry; 4608 spinlock_t *ptl; 4609 pte_t *pte; 4610 gfp_t gfp; 4611 int order; 4612 4613 /* 4614 * If uffd is active for the vma we need per-page fault fidelity to 4615 * maintain the uffd semantics. 4616 */ 4617 if (unlikely(userfaultfd_armed(vma))) 4618 goto fallback; 4619 4620 /* 4621 * A large swapped out folio could be partially or fully in zswap. We 4622 * lack handling for such cases, so fallback to swapping in order-0 4623 * folio. 4624 */ 4625 if (!zswap_never_enabled()) 4626 goto fallback; 4627 4628 entry = softleaf_from_pte(vmf->orig_pte); 4629 /* 4630 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4631 * and suitable for swapping THP. 4632 */ 4633 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT, 4634 BIT(PMD_ORDER) - 1); 4635 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4636 orders = thp_swap_suitable_orders(swp_offset(entry), 4637 vmf->address, orders); 4638 4639 if (!orders) 4640 goto fallback; 4641 4642 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4643 vmf->address & PMD_MASK, &ptl); 4644 if (unlikely(!pte)) 4645 goto fallback; 4646 4647 /* 4648 * For do_swap_page, find the highest order where the aligned range is 4649 * completely swap entries with contiguous swap offsets. 4650 */ 4651 order = highest_order(orders); 4652 while (orders) { 4653 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4654 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4655 break; 4656 order = next_order(&orders, order); 4657 } 4658 4659 pte_unmap_unlock(pte, ptl); 4660 4661 /* Try allocating the highest of the remaining orders. */ 4662 gfp = vma_thp_gfp_mask(vma); 4663 while (orders) { 4664 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4665 folio = vma_alloc_folio(gfp, order, vma, addr); 4666 if (folio) { 4667 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4668 gfp, entry)) 4669 return folio; 4670 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4671 folio_put(folio); 4672 } 4673 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4674 order = next_order(&orders, order); 4675 } 4676 4677 fallback: 4678 return __alloc_swap_folio(vmf); 4679 } 4680 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4681 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4682 { 4683 return __alloc_swap_folio(vmf); 4684 } 4685 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4686 4687 /* Sanity check that a folio is fully exclusive */ 4688 static void check_swap_exclusive(struct folio *folio, swp_entry_t entry, 4689 unsigned int nr_pages) 4690 { 4691 /* Called under PT locked and folio locked, the swap count is stable */ 4692 do { 4693 VM_WARN_ON_ONCE_FOLIO(__swap_count(entry) != 1, folio); 4694 entry.val++; 4695 } while (--nr_pages); 4696 } 4697 4698 /* 4699 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4700 * but allow concurrent faults), and pte mapped but not yet locked. 4701 * We return with pte unmapped and unlocked. 4702 * 4703 * We return with the mmap_lock locked or unlocked in the same cases 4704 * as does filemap_fault(). 4705 */ 4706 vm_fault_t do_swap_page(struct vm_fault *vmf) 4707 { 4708 struct vm_area_struct *vma = vmf->vma; 4709 struct folio *swapcache = NULL, *folio; 4710 struct page *page; 4711 struct swap_info_struct *si = NULL; 4712 rmap_t rmap_flags = RMAP_NONE; 4713 bool exclusive = false; 4714 softleaf_t entry; 4715 pte_t pte; 4716 vm_fault_t ret = 0; 4717 int nr_pages; 4718 unsigned long page_idx; 4719 unsigned long address; 4720 pte_t *ptep; 4721 4722 if (!pte_unmap_same(vmf)) 4723 goto out; 4724 4725 entry = softleaf_from_pte(vmf->orig_pte); 4726 if (unlikely(!softleaf_is_swap(entry))) { 4727 if (softleaf_is_migration(entry)) { 4728 migration_entry_wait(vma->vm_mm, vmf->pmd, 4729 vmf->address); 4730 } else if (softleaf_is_device_exclusive(entry)) { 4731 vmf->page = softleaf_to_page(entry); 4732 ret = remove_device_exclusive_entry(vmf); 4733 } else if (softleaf_is_device_private(entry)) { 4734 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4735 /* 4736 * migrate_to_ram is not yet ready to operate 4737 * under VMA lock. 4738 */ 4739 vma_end_read(vma); 4740 ret = VM_FAULT_RETRY; 4741 goto out; 4742 } 4743 4744 vmf->page = softleaf_to_page(entry); 4745 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4746 vmf->address, &vmf->ptl); 4747 if (unlikely(!vmf->pte || 4748 !pte_same(ptep_get(vmf->pte), 4749 vmf->orig_pte))) 4750 goto unlock; 4751 4752 /* 4753 * Get a page reference while we know the page can't be 4754 * freed. 4755 */ 4756 if (trylock_page(vmf->page)) { 4757 struct dev_pagemap *pgmap; 4758 4759 get_page(vmf->page); 4760 pte_unmap_unlock(vmf->pte, vmf->ptl); 4761 pgmap = page_pgmap(vmf->page); 4762 ret = pgmap->ops->migrate_to_ram(vmf); 4763 unlock_page(vmf->page); 4764 put_page(vmf->page); 4765 } else { 4766 pte_unmap_unlock(vmf->pte, vmf->ptl); 4767 } 4768 } else if (softleaf_is_hwpoison(entry)) { 4769 ret = VM_FAULT_HWPOISON; 4770 } else if (softleaf_is_marker(entry)) { 4771 ret = handle_pte_marker(vmf); 4772 } else { 4773 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4774 ret = VM_FAULT_SIGBUS; 4775 } 4776 goto out; 4777 } 4778 4779 /* Prevent swapoff from happening to us. */ 4780 si = get_swap_device(entry); 4781 if (unlikely(!si)) 4782 goto out; 4783 4784 folio = swap_cache_get_folio(entry); 4785 if (folio) 4786 swap_update_readahead(folio, vma, vmf->address); 4787 if (!folio) { 4788 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 4789 folio = alloc_swap_folio(vmf); 4790 if (folio) { 4791 /* 4792 * folio is charged, so swapin can only fail due 4793 * to raced swapin and return NULL. 4794 */ 4795 swapcache = swapin_folio(entry, folio); 4796 if (swapcache != folio) 4797 folio_put(folio); 4798 folio = swapcache; 4799 } 4800 } else { 4801 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vmf); 4802 } 4803 4804 if (!folio) { 4805 /* 4806 * Back out if somebody else faulted in this pte 4807 * while we released the pte lock. 4808 */ 4809 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4810 vmf->address, &vmf->ptl); 4811 if (likely(vmf->pte && 4812 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4813 ret = VM_FAULT_OOM; 4814 goto unlock; 4815 } 4816 4817 /* Had to read the page from swap area: Major fault */ 4818 ret = VM_FAULT_MAJOR; 4819 count_vm_event(PGMAJFAULT); 4820 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4821 } 4822 4823 swapcache = folio; 4824 ret |= folio_lock_or_retry(folio, vmf); 4825 if (ret & VM_FAULT_RETRY) 4826 goto out_release; 4827 4828 page = folio_file_page(folio, swp_offset(entry)); 4829 /* 4830 * Make sure folio_free_swap() or swapoff did not release the 4831 * swapcache from under us. The page pin, and pte_same test 4832 * below, are not enough to exclude that. Even if it is still 4833 * swapcache, we need to check that the page's swap has not 4834 * changed. 4835 */ 4836 if (unlikely(!folio_matches_swap_entry(folio, entry))) 4837 goto out_page; 4838 4839 if (unlikely(PageHWPoison(page))) { 4840 /* 4841 * hwpoisoned dirty swapcache pages are kept for killing 4842 * owner processes (which may be unknown at hwpoison time) 4843 */ 4844 ret = VM_FAULT_HWPOISON; 4845 goto out_page; 4846 } 4847 4848 /* 4849 * KSM sometimes has to copy on read faults, for example, if 4850 * folio->index of non-ksm folios would be nonlinear inside the 4851 * anon VMA -- the ksm flag is lost on actual swapout. 4852 */ 4853 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4854 if (unlikely(!folio)) { 4855 ret = VM_FAULT_OOM; 4856 folio = swapcache; 4857 goto out_page; 4858 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4859 ret = VM_FAULT_HWPOISON; 4860 folio = swapcache; 4861 goto out_page; 4862 } else if (folio != swapcache) 4863 page = folio_page(folio, 0); 4864 4865 /* 4866 * If we want to map a page that's in the swapcache writable, we 4867 * have to detect via the refcount if we're really the exclusive 4868 * owner. Try removing the extra reference from the local LRU 4869 * caches if required. 4870 */ 4871 if ((vmf->flags & FAULT_FLAG_WRITE) && 4872 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4873 lru_add_drain(); 4874 4875 folio_throttle_swaprate(folio, GFP_KERNEL); 4876 4877 /* 4878 * Back out if somebody else already faulted in this pte. 4879 */ 4880 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4881 &vmf->ptl); 4882 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4883 goto out_nomap; 4884 4885 if (unlikely(!folio_test_uptodate(folio))) { 4886 ret = VM_FAULT_SIGBUS; 4887 goto out_nomap; 4888 } 4889 4890 nr_pages = 1; 4891 page_idx = 0; 4892 address = vmf->address; 4893 ptep = vmf->pte; 4894 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4895 int nr = folio_nr_pages(folio); 4896 unsigned long idx = folio_page_idx(folio, page); 4897 unsigned long folio_start = address - idx * PAGE_SIZE; 4898 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4899 pte_t *folio_ptep; 4900 pte_t folio_pte; 4901 4902 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4903 goto check_folio; 4904 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4905 goto check_folio; 4906 4907 folio_ptep = vmf->pte - idx; 4908 folio_pte = ptep_get(folio_ptep); 4909 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4910 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4911 goto check_folio; 4912 4913 page_idx = idx; 4914 address = folio_start; 4915 ptep = folio_ptep; 4916 nr_pages = nr; 4917 entry = folio->swap; 4918 page = &folio->page; 4919 } 4920 4921 check_folio: 4922 /* 4923 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4924 * must never point at an anonymous page in the swapcache that is 4925 * PG_anon_exclusive. Sanity check that this holds and especially, that 4926 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4927 * check after taking the PT lock and making sure that nobody 4928 * concurrently faulted in this page and set PG_anon_exclusive. 4929 */ 4930 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4931 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4932 4933 /* 4934 * If a large folio already belongs to anon mapping, then we 4935 * can just go on and map it partially. 4936 * If not, with the large swapin check above failing, the page table 4937 * have changed, so sub pages might got charged to the wrong cgroup, 4938 * or even should be shmem. So we have to free it and fallback. 4939 * Nothing should have touched it, both anon and shmem checks if a 4940 * large folio is fully appliable before use. 4941 * 4942 * This will be removed once we unify folio allocation in the swap cache 4943 * layer, where allocation of a folio stabilizes the swap entries. 4944 */ 4945 if (!folio_test_anon(folio) && folio_test_large(folio) && 4946 nr_pages != folio_nr_pages(folio)) { 4947 if (!WARN_ON_ONCE(folio_test_dirty(folio))) 4948 swap_cache_del_folio(folio); 4949 goto out_nomap; 4950 } 4951 4952 /* 4953 * Check under PT lock (to protect against concurrent fork() sharing 4954 * the swap entry concurrently) for certainly exclusive pages. 4955 */ 4956 if (!folio_test_ksm(folio)) { 4957 /* 4958 * The can_swapin_thp check above ensures all PTE have 4959 * same exclusiveness. Checking just one PTE is fine. 4960 */ 4961 exclusive = pte_swp_exclusive(vmf->orig_pte); 4962 if (exclusive) 4963 check_swap_exclusive(folio, entry, nr_pages); 4964 if (folio != swapcache) { 4965 /* 4966 * We have a fresh page that is not exposed to the 4967 * swapcache -> certainly exclusive. 4968 */ 4969 exclusive = true; 4970 } else if (exclusive && folio_test_writeback(folio) && 4971 data_race(si->flags & SWP_STABLE_WRITES)) { 4972 /* 4973 * This is tricky: not all swap backends support 4974 * concurrent page modifications while under writeback. 4975 * 4976 * So if we stumble over such a page in the swapcache 4977 * we must not set the page exclusive, otherwise we can 4978 * map it writable without further checks and modify it 4979 * while still under writeback. 4980 * 4981 * For these problematic swap backends, simply drop the 4982 * exclusive marker: this is perfectly fine as we start 4983 * writeback only if we fully unmapped the page and 4984 * there are no unexpected references on the page after 4985 * unmapping succeeded. After fully unmapped, no 4986 * further GUP references (FOLL_GET and FOLL_PIN) can 4987 * appear, so dropping the exclusive marker and mapping 4988 * it only R/O is fine. 4989 */ 4990 exclusive = false; 4991 } 4992 } 4993 4994 /* 4995 * Some architectures may have to restore extra metadata to the page 4996 * when reading from swap. This metadata may be indexed by swap entry 4997 * so this must be called before folio_put_swap(). 4998 */ 4999 arch_swap_restore(folio_swap(entry, folio), folio); 5000 5001 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 5002 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 5003 pte = mk_pte(page, vma->vm_page_prot); 5004 if (pte_swp_soft_dirty(vmf->orig_pte)) 5005 pte = pte_mksoft_dirty(pte); 5006 if (pte_swp_uffd_wp(vmf->orig_pte)) 5007 pte = pte_mkuffd_wp(pte); 5008 5009 /* 5010 * Same logic as in do_wp_page(); however, optimize for pages that are 5011 * certainly not shared either because we just allocated them without 5012 * exposing them to the swapcache or because the swap entry indicates 5013 * exclusivity. 5014 */ 5015 if (!folio_test_ksm(folio) && 5016 (exclusive || folio_ref_count(folio) == 1)) { 5017 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 5018 !pte_needs_soft_dirty_wp(vma, pte)) { 5019 pte = pte_mkwrite(pte, vma); 5020 if (vmf->flags & FAULT_FLAG_WRITE) { 5021 pte = pte_mkdirty(pte); 5022 vmf->flags &= ~FAULT_FLAG_WRITE; 5023 } 5024 } 5025 rmap_flags |= RMAP_EXCLUSIVE; 5026 } 5027 folio_ref_add(folio, nr_pages - 1); 5028 flush_icache_pages(vma, page, nr_pages); 5029 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 5030 5031 /* ksm created a completely new copy */ 5032 if (unlikely(folio != swapcache)) { 5033 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 5034 folio_add_lru_vma(folio, vma); 5035 folio_put_swap(swapcache, NULL); 5036 } else if (!folio_test_anon(folio)) { 5037 /* 5038 * We currently only expect !anon folios that are fully 5039 * mappable. See the comment after can_swapin_thp above. 5040 */ 5041 VM_WARN_ON_ONCE_FOLIO(folio_nr_pages(folio) != nr_pages, folio); 5042 VM_WARN_ON_ONCE_FOLIO(folio_mapped(folio), folio); 5043 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 5044 folio_put_swap(folio, NULL); 5045 } else { 5046 VM_WARN_ON_ONCE(nr_pages != 1 && nr_pages != folio_nr_pages(folio)); 5047 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 5048 rmap_flags); 5049 folio_put_swap(folio, nr_pages == 1 ? page : NULL); 5050 } 5051 5052 VM_BUG_ON(!folio_test_anon(folio) || 5053 (pte_write(pte) && !PageAnonExclusive(page))); 5054 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 5055 arch_do_swap_page_nr(vma->vm_mm, vma, address, 5056 pte, pte, nr_pages); 5057 5058 /* 5059 * Remove the swap entry and conditionally try to free up the swapcache. 5060 * Do it after mapping, so raced page faults will likely see the folio 5061 * in swap cache and wait on the folio lock. 5062 */ 5063 if (should_try_to_free_swap(si, folio, vma, nr_pages, vmf->flags)) 5064 folio_free_swap(folio); 5065 5066 folio_unlock(folio); 5067 if (unlikely(folio != swapcache)) { 5068 /* 5069 * Hold the lock to avoid the swap entry to be reused 5070 * until we take the PT lock for the pte_same() check 5071 * (to avoid false positives from pte_same). For 5072 * further safety release the lock after the folio_put_swap 5073 * so that the swap count won't change under a 5074 * parallel locked swapcache. 5075 */ 5076 folio_unlock(swapcache); 5077 folio_put(swapcache); 5078 } 5079 5080 if (vmf->flags & FAULT_FLAG_WRITE) { 5081 ret |= do_wp_page(vmf); 5082 if (ret & VM_FAULT_ERROR) 5083 ret &= VM_FAULT_ERROR; 5084 goto out; 5085 } 5086 5087 /* No need to invalidate - it was non-present before */ 5088 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 5089 unlock: 5090 if (vmf->pte) 5091 pte_unmap_unlock(vmf->pte, vmf->ptl); 5092 out: 5093 if (si) 5094 put_swap_device(si); 5095 return ret; 5096 out_nomap: 5097 if (vmf->pte) 5098 pte_unmap_unlock(vmf->pte, vmf->ptl); 5099 out_page: 5100 if (folio_test_swapcache(folio)) 5101 folio_free_swap(folio); 5102 folio_unlock(folio); 5103 out_release: 5104 folio_put(folio); 5105 if (folio != swapcache) { 5106 folio_unlock(swapcache); 5107 folio_put(swapcache); 5108 } 5109 if (si) 5110 put_swap_device(si); 5111 return ret; 5112 } 5113 5114 static bool pte_range_none(pte_t *pte, int nr_pages) 5115 { 5116 int i; 5117 5118 for (i = 0; i < nr_pages; i++) { 5119 if (!pte_none(ptep_get_lockless(pte + i))) 5120 return false; 5121 } 5122 5123 return true; 5124 } 5125 5126 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 5127 { 5128 struct vm_area_struct *vma = vmf->vma; 5129 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5130 unsigned long orders; 5131 struct folio *folio; 5132 unsigned long addr; 5133 pte_t *pte; 5134 gfp_t gfp; 5135 int order; 5136 5137 /* 5138 * If uffd is active for the vma we need per-page fault fidelity to 5139 * maintain the uffd semantics. 5140 */ 5141 if (unlikely(userfaultfd_armed(vma))) 5142 goto fallback; 5143 5144 /* 5145 * Get a list of all the (large) orders below PMD_ORDER that are enabled 5146 * for this vma. Then filter out the orders that can't be allocated over 5147 * the faulting address and still be fully contained in the vma. 5148 */ 5149 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT, 5150 BIT(PMD_ORDER) - 1); 5151 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 5152 5153 if (!orders) 5154 goto fallback; 5155 5156 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 5157 if (!pte) 5158 return ERR_PTR(-EAGAIN); 5159 5160 /* 5161 * Find the highest order where the aligned range is completely 5162 * pte_none(). Note that all remaining orders will be completely 5163 * pte_none(). 5164 */ 5165 order = highest_order(orders); 5166 while (orders) { 5167 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5168 if (pte_range_none(pte + pte_index(addr), 1 << order)) 5169 break; 5170 order = next_order(&orders, order); 5171 } 5172 5173 pte_unmap(pte); 5174 5175 if (!orders) 5176 goto fallback; 5177 5178 /* Try allocating the highest of the remaining orders. */ 5179 gfp = vma_thp_gfp_mask(vma); 5180 while (orders) { 5181 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5182 folio = vma_alloc_folio(gfp, order, vma, addr); 5183 if (folio) { 5184 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 5185 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 5186 folio_put(folio); 5187 goto next; 5188 } 5189 folio_throttle_swaprate(folio, gfp); 5190 /* 5191 * When a folio is not zeroed during allocation 5192 * (__GFP_ZERO not used) or user folios require special 5193 * handling, folio_zero_user() is used to make sure 5194 * that the page corresponding to the faulting address 5195 * will be hot in the cache after zeroing. 5196 */ 5197 if (user_alloc_needs_zeroing()) 5198 folio_zero_user(folio, vmf->address); 5199 return folio; 5200 } 5201 next: 5202 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 5203 order = next_order(&orders, order); 5204 } 5205 5206 fallback: 5207 #endif 5208 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 5209 } 5210 5211 /* 5212 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5213 * but allow concurrent faults), and pte mapped but not yet locked. 5214 * We return with mmap_lock still held, but pte unmapped and unlocked. 5215 */ 5216 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 5217 { 5218 struct vm_area_struct *vma = vmf->vma; 5219 unsigned long addr = vmf->address; 5220 struct folio *folio; 5221 vm_fault_t ret = 0; 5222 int nr_pages = 1; 5223 pte_t entry; 5224 5225 /* File mapping without ->vm_ops ? */ 5226 if (vma->vm_flags & VM_SHARED) 5227 return VM_FAULT_SIGBUS; 5228 5229 /* 5230 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 5231 * be distinguished from a transient failure of pte_offset_map(). 5232 */ 5233 if (pte_alloc(vma->vm_mm, vmf->pmd)) 5234 return VM_FAULT_OOM; 5235 5236 /* Use the zero-page for reads */ 5237 if (!(vmf->flags & FAULT_FLAG_WRITE) && 5238 !mm_forbids_zeropage(vma->vm_mm)) { 5239 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 5240 vma->vm_page_prot)); 5241 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5242 vmf->address, &vmf->ptl); 5243 if (!vmf->pte) 5244 goto unlock; 5245 if (vmf_pte_changed(vmf)) { 5246 update_mmu_tlb(vma, vmf->address, vmf->pte); 5247 goto unlock; 5248 } 5249 ret = check_stable_address_space(vma->vm_mm); 5250 if (ret) 5251 goto unlock; 5252 /* Deliver the page fault to userland, check inside PT lock */ 5253 if (userfaultfd_missing(vma)) { 5254 pte_unmap_unlock(vmf->pte, vmf->ptl); 5255 return handle_userfault(vmf, VM_UFFD_MISSING); 5256 } 5257 goto setpte; 5258 } 5259 5260 /* Allocate our own private page. */ 5261 ret = vmf_anon_prepare(vmf); 5262 if (ret) 5263 return ret; 5264 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 5265 folio = alloc_anon_folio(vmf); 5266 if (IS_ERR(folio)) 5267 return 0; 5268 if (!folio) 5269 goto oom; 5270 5271 nr_pages = folio_nr_pages(folio); 5272 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 5273 5274 /* 5275 * The memory barrier inside __folio_mark_uptodate makes sure that 5276 * preceding stores to the page contents become visible before 5277 * the set_pte_at() write. 5278 */ 5279 __folio_mark_uptodate(folio); 5280 5281 entry = folio_mk_pte(folio, vma->vm_page_prot); 5282 entry = pte_sw_mkyoung(entry); 5283 if (vma->vm_flags & VM_WRITE) 5284 entry = pte_mkwrite(pte_mkdirty(entry), vma); 5285 5286 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 5287 if (!vmf->pte) 5288 goto release; 5289 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 5290 update_mmu_tlb(vma, addr, vmf->pte); 5291 goto release; 5292 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5293 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5294 goto release; 5295 } 5296 5297 ret = check_stable_address_space(vma->vm_mm); 5298 if (ret) 5299 goto release; 5300 5301 /* Deliver the page fault to userland, check inside PT lock */ 5302 if (userfaultfd_missing(vma)) { 5303 pte_unmap_unlock(vmf->pte, vmf->ptl); 5304 folio_put(folio); 5305 return handle_userfault(vmf, VM_UFFD_MISSING); 5306 } 5307 5308 folio_ref_add(folio, nr_pages - 1); 5309 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 5310 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 5311 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5312 folio_add_lru_vma(folio, vma); 5313 setpte: 5314 if (vmf_orig_pte_uffd_wp(vmf)) 5315 entry = pte_mkuffd_wp(entry); 5316 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 5317 5318 /* No need to invalidate - it was non-present before */ 5319 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 5320 unlock: 5321 if (vmf->pte) 5322 pte_unmap_unlock(vmf->pte, vmf->ptl); 5323 return ret; 5324 release: 5325 folio_put(folio); 5326 goto unlock; 5327 oom: 5328 return VM_FAULT_OOM; 5329 } 5330 5331 /* 5332 * The mmap_lock must have been held on entry, and may have been 5333 * released depending on flags and vma->vm_ops->fault() return value. 5334 * See filemap_fault() and __lock_page_retry(). 5335 */ 5336 static vm_fault_t __do_fault(struct vm_fault *vmf) 5337 { 5338 struct vm_area_struct *vma = vmf->vma; 5339 struct folio *folio; 5340 vm_fault_t ret; 5341 5342 /* 5343 * Preallocate pte before we take page_lock because this might lead to 5344 * deadlocks for memcg reclaim which waits for pages under writeback: 5345 * lock_page(A) 5346 * SetPageWriteback(A) 5347 * unlock_page(A) 5348 * lock_page(B) 5349 * lock_page(B) 5350 * pte_alloc_one 5351 * shrink_folio_list 5352 * wait_on_page_writeback(A) 5353 * SetPageWriteback(B) 5354 * unlock_page(B) 5355 * # flush A, B to clear the writeback 5356 */ 5357 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 5358 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5359 if (!vmf->prealloc_pte) 5360 return VM_FAULT_OOM; 5361 } 5362 5363 ret = vma->vm_ops->fault(vmf); 5364 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 5365 VM_FAULT_DONE_COW))) 5366 return ret; 5367 5368 folio = page_folio(vmf->page); 5369 if (unlikely(PageHWPoison(vmf->page))) { 5370 vm_fault_t poisonret = VM_FAULT_HWPOISON; 5371 if (ret & VM_FAULT_LOCKED) { 5372 if (page_mapped(vmf->page)) 5373 unmap_mapping_folio(folio); 5374 /* Retry if a clean folio was removed from the cache. */ 5375 if (mapping_evict_folio(folio->mapping, folio)) 5376 poisonret = VM_FAULT_NOPAGE; 5377 folio_unlock(folio); 5378 } 5379 folio_put(folio); 5380 vmf->page = NULL; 5381 return poisonret; 5382 } 5383 5384 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5385 folio_lock(folio); 5386 else 5387 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5388 5389 return ret; 5390 } 5391 5392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5393 static void deposit_prealloc_pte(struct vm_fault *vmf) 5394 { 5395 struct vm_area_struct *vma = vmf->vma; 5396 5397 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5398 /* 5399 * We are going to consume the prealloc table, 5400 * count that as nr_ptes. 5401 */ 5402 mm_inc_nr_ptes(vma->vm_mm); 5403 vmf->prealloc_pte = NULL; 5404 } 5405 5406 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5407 { 5408 struct vm_area_struct *vma = vmf->vma; 5409 bool write = vmf->flags & FAULT_FLAG_WRITE; 5410 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5411 pmd_t entry; 5412 vm_fault_t ret = VM_FAULT_FALLBACK; 5413 5414 /* 5415 * It is too late to allocate a small folio, we already have a large 5416 * folio in the pagecache: especially s390 KVM cannot tolerate any 5417 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5418 * PMD mappings if THPs are disabled. As we already have a THP, 5419 * behave as if we are forcing a collapse. 5420 */ 5421 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags, 5422 /* forced_collapse=*/ true)) 5423 return ret; 5424 5425 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5426 return ret; 5427 5428 if (folio_order(folio) != HPAGE_PMD_ORDER) 5429 return ret; 5430 page = &folio->page; 5431 5432 /* 5433 * Just backoff if any subpage of a THP is corrupted otherwise 5434 * the corrupted page may mapped by PMD silently to escape the 5435 * check. This kind of THP just can be PTE mapped. Access to 5436 * the corrupted subpage should trigger SIGBUS as expected. 5437 */ 5438 if (unlikely(folio_test_has_hwpoisoned(folio))) 5439 return ret; 5440 5441 /* 5442 * Archs like ppc64 need additional space to store information 5443 * related to pte entry. Use the preallocated table for that. 5444 */ 5445 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5446 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5447 if (!vmf->prealloc_pte) 5448 return VM_FAULT_OOM; 5449 } 5450 5451 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5452 if (unlikely(!pmd_none(*vmf->pmd))) 5453 goto out; 5454 5455 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5456 5457 entry = folio_mk_pmd(folio, vma->vm_page_prot); 5458 if (write) 5459 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5460 5461 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5462 folio_add_file_rmap_pmd(folio, page, vma); 5463 5464 /* 5465 * deposit and withdraw with pmd lock held 5466 */ 5467 if (arch_needs_pgtable_deposit()) 5468 deposit_prealloc_pte(vmf); 5469 5470 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5471 5472 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5473 5474 /* fault is handled */ 5475 ret = 0; 5476 count_vm_event(THP_FILE_MAPPED); 5477 out: 5478 spin_unlock(vmf->ptl); 5479 return ret; 5480 } 5481 #else 5482 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5483 { 5484 return VM_FAULT_FALLBACK; 5485 } 5486 #endif 5487 5488 /** 5489 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5490 * @vmf: Fault description. 5491 * @folio: The folio that contains @page. 5492 * @page: The first page to create a PTE for. 5493 * @nr: The number of PTEs to create. 5494 * @addr: The first address to create a PTE for. 5495 */ 5496 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5497 struct page *page, unsigned int nr, unsigned long addr) 5498 { 5499 struct vm_area_struct *vma = vmf->vma; 5500 bool write = vmf->flags & FAULT_FLAG_WRITE; 5501 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5502 pte_t entry; 5503 5504 flush_icache_pages(vma, page, nr); 5505 entry = mk_pte(page, vma->vm_page_prot); 5506 5507 if (prefault && arch_wants_old_prefaulted_pte()) 5508 entry = pte_mkold(entry); 5509 else 5510 entry = pte_sw_mkyoung(entry); 5511 5512 if (write) 5513 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5514 else if (pte_write(entry) && folio_test_dirty(folio)) 5515 entry = pte_mkdirty(entry); 5516 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5517 entry = pte_mkuffd_wp(entry); 5518 /* copy-on-write page */ 5519 if (write && !(vma->vm_flags & VM_SHARED)) { 5520 VM_BUG_ON_FOLIO(nr != 1, folio); 5521 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5522 folio_add_lru_vma(folio, vma); 5523 } else { 5524 folio_add_file_rmap_ptes(folio, page, nr, vma); 5525 } 5526 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5527 5528 /* no need to invalidate: a not-present page won't be cached */ 5529 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5530 } 5531 5532 static bool vmf_pte_changed(struct vm_fault *vmf) 5533 { 5534 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5535 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5536 5537 return !pte_none(ptep_get(vmf->pte)); 5538 } 5539 5540 /** 5541 * finish_fault - finish page fault once we have prepared the page to fault 5542 * 5543 * @vmf: structure describing the fault 5544 * 5545 * This function handles all that is needed to finish a page fault once the 5546 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5547 * given page, adds reverse page mapping, handles memcg charges and LRU 5548 * addition. 5549 * 5550 * The function expects the page to be locked and on success it consumes a 5551 * reference of a page being mapped (for the PTE which maps it). 5552 * 5553 * Return: %0 on success, %VM_FAULT_ code in case of error. 5554 */ 5555 vm_fault_t finish_fault(struct vm_fault *vmf) 5556 { 5557 struct vm_area_struct *vma = vmf->vma; 5558 struct page *page; 5559 struct folio *folio; 5560 vm_fault_t ret; 5561 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5562 !(vma->vm_flags & VM_SHARED); 5563 int type, nr_pages; 5564 unsigned long addr; 5565 bool needs_fallback = false; 5566 5567 fallback: 5568 addr = vmf->address; 5569 5570 /* Did we COW the page? */ 5571 if (is_cow) 5572 page = vmf->cow_page; 5573 else 5574 page = vmf->page; 5575 5576 folio = page_folio(page); 5577 /* 5578 * check even for read faults because we might have lost our CoWed 5579 * page 5580 */ 5581 if (!(vma->vm_flags & VM_SHARED)) { 5582 ret = check_stable_address_space(vma->vm_mm); 5583 if (ret) 5584 return ret; 5585 } 5586 5587 if (!needs_fallback && vma->vm_file) { 5588 struct address_space *mapping = vma->vm_file->f_mapping; 5589 pgoff_t file_end; 5590 5591 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 5592 5593 /* 5594 * Do not allow to map with PTEs beyond i_size and with PMD 5595 * across i_size to preserve SIGBUS semantics. 5596 * 5597 * Make an exception for shmem/tmpfs that for long time 5598 * intentionally mapped with PMDs across i_size. 5599 */ 5600 needs_fallback = !shmem_mapping(mapping) && 5601 file_end < folio_next_index(folio); 5602 } 5603 5604 if (pmd_none(*vmf->pmd)) { 5605 if (!needs_fallback && folio_test_pmd_mappable(folio)) { 5606 ret = do_set_pmd(vmf, folio, page); 5607 if (ret != VM_FAULT_FALLBACK) 5608 return ret; 5609 } 5610 5611 if (vmf->prealloc_pte) 5612 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5613 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5614 return VM_FAULT_OOM; 5615 } 5616 5617 nr_pages = folio_nr_pages(folio); 5618 5619 /* Using per-page fault to maintain the uffd semantics */ 5620 if (unlikely(userfaultfd_armed(vma)) || unlikely(needs_fallback)) { 5621 nr_pages = 1; 5622 } else if (nr_pages > 1) { 5623 pgoff_t idx = folio_page_idx(folio, page); 5624 /* The page offset of vmf->address within the VMA. */ 5625 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5626 /* The index of the entry in the pagetable for fault page. */ 5627 pgoff_t pte_off = pte_index(vmf->address); 5628 5629 /* 5630 * Fallback to per-page fault in case the folio size in page 5631 * cache beyond the VMA limits and PMD pagetable limits. 5632 */ 5633 if (unlikely(vma_off < idx || 5634 vma_off + (nr_pages - idx) > vma_pages(vma) || 5635 pte_off < idx || 5636 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5637 nr_pages = 1; 5638 } else { 5639 /* Now we can set mappings for the whole large folio. */ 5640 addr = vmf->address - idx * PAGE_SIZE; 5641 page = &folio->page; 5642 } 5643 } 5644 5645 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5646 addr, &vmf->ptl); 5647 if (!vmf->pte) 5648 return VM_FAULT_NOPAGE; 5649 5650 /* Re-check under ptl */ 5651 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5652 update_mmu_tlb(vma, addr, vmf->pte); 5653 ret = VM_FAULT_NOPAGE; 5654 goto unlock; 5655 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5656 needs_fallback = true; 5657 pte_unmap_unlock(vmf->pte, vmf->ptl); 5658 goto fallback; 5659 } 5660 5661 folio_ref_add(folio, nr_pages - 1); 5662 set_pte_range(vmf, folio, page, nr_pages, addr); 5663 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5664 add_mm_counter(vma->vm_mm, type, nr_pages); 5665 ret = 0; 5666 5667 unlock: 5668 pte_unmap_unlock(vmf->pte, vmf->ptl); 5669 return ret; 5670 } 5671 5672 static unsigned long fault_around_pages __read_mostly = 5673 65536 >> PAGE_SHIFT; 5674 5675 #ifdef CONFIG_DEBUG_FS 5676 static int fault_around_bytes_get(void *data, u64 *val) 5677 { 5678 *val = fault_around_pages << PAGE_SHIFT; 5679 return 0; 5680 } 5681 5682 /* 5683 * fault_around_bytes must be rounded down to the nearest page order as it's 5684 * what do_fault_around() expects to see. 5685 */ 5686 static int fault_around_bytes_set(void *data, u64 val) 5687 { 5688 if (val / PAGE_SIZE > PTRS_PER_PTE) 5689 return -EINVAL; 5690 5691 /* 5692 * The minimum value is 1 page, however this results in no fault-around 5693 * at all. See should_fault_around(). 5694 */ 5695 val = max(val, PAGE_SIZE); 5696 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5697 5698 return 0; 5699 } 5700 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5701 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5702 5703 static int __init fault_around_debugfs(void) 5704 { 5705 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5706 &fault_around_bytes_fops); 5707 return 0; 5708 } 5709 late_initcall(fault_around_debugfs); 5710 #endif 5711 5712 /* 5713 * do_fault_around() tries to map few pages around the fault address. The hope 5714 * is that the pages will be needed soon and this will lower the number of 5715 * faults to handle. 5716 * 5717 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5718 * not ready to be mapped: not up-to-date, locked, etc. 5719 * 5720 * This function doesn't cross VMA or page table boundaries, in order to call 5721 * map_pages() and acquire a PTE lock only once. 5722 * 5723 * fault_around_pages defines how many pages we'll try to map. 5724 * do_fault_around() expects it to be set to a power of two less than or equal 5725 * to PTRS_PER_PTE. 5726 * 5727 * The virtual address of the area that we map is naturally aligned to 5728 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5729 * (and therefore to page order). This way it's easier to guarantee 5730 * that we don't cross page table boundaries. 5731 */ 5732 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5733 { 5734 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5735 pgoff_t pte_off = pte_index(vmf->address); 5736 /* The page offset of vmf->address within the VMA. */ 5737 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5738 pgoff_t from_pte, to_pte; 5739 vm_fault_t ret; 5740 5741 /* The PTE offset of the start address, clamped to the VMA. */ 5742 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5743 pte_off - min(pte_off, vma_off)); 5744 5745 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5746 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5747 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5748 5749 if (pmd_none(*vmf->pmd)) { 5750 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5751 if (!vmf->prealloc_pte) 5752 return VM_FAULT_OOM; 5753 } 5754 5755 rcu_read_lock(); 5756 ret = vmf->vma->vm_ops->map_pages(vmf, 5757 vmf->pgoff + from_pte - pte_off, 5758 vmf->pgoff + to_pte - pte_off); 5759 rcu_read_unlock(); 5760 5761 return ret; 5762 } 5763 5764 /* Return true if we should do read fault-around, false otherwise */ 5765 static inline bool should_fault_around(struct vm_fault *vmf) 5766 { 5767 /* No ->map_pages? No way to fault around... */ 5768 if (!vmf->vma->vm_ops->map_pages) 5769 return false; 5770 5771 if (uffd_disable_fault_around(vmf->vma)) 5772 return false; 5773 5774 /* A single page implies no faulting 'around' at all. */ 5775 return fault_around_pages > 1; 5776 } 5777 5778 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5779 { 5780 vm_fault_t ret = 0; 5781 struct folio *folio; 5782 5783 /* 5784 * Let's call ->map_pages() first and use ->fault() as fallback 5785 * if page by the offset is not ready to be mapped (cold cache or 5786 * something). 5787 */ 5788 if (should_fault_around(vmf)) { 5789 ret = do_fault_around(vmf); 5790 if (ret) 5791 return ret; 5792 } 5793 5794 ret = vmf_can_call_fault(vmf); 5795 if (ret) 5796 return ret; 5797 5798 ret = __do_fault(vmf); 5799 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5800 return ret; 5801 5802 ret |= finish_fault(vmf); 5803 folio = page_folio(vmf->page); 5804 folio_unlock(folio); 5805 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5806 folio_put(folio); 5807 return ret; 5808 } 5809 5810 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5811 { 5812 struct vm_area_struct *vma = vmf->vma; 5813 struct folio *folio; 5814 vm_fault_t ret; 5815 5816 ret = vmf_can_call_fault(vmf); 5817 if (!ret) 5818 ret = vmf_anon_prepare(vmf); 5819 if (ret) 5820 return ret; 5821 5822 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5823 if (!folio) 5824 return VM_FAULT_OOM; 5825 5826 vmf->cow_page = &folio->page; 5827 5828 ret = __do_fault(vmf); 5829 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5830 goto uncharge_out; 5831 if (ret & VM_FAULT_DONE_COW) 5832 return ret; 5833 5834 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5835 ret = VM_FAULT_HWPOISON; 5836 goto unlock; 5837 } 5838 __folio_mark_uptodate(folio); 5839 5840 ret |= finish_fault(vmf); 5841 unlock: 5842 unlock_page(vmf->page); 5843 put_page(vmf->page); 5844 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5845 goto uncharge_out; 5846 return ret; 5847 uncharge_out: 5848 folio_put(folio); 5849 return ret; 5850 } 5851 5852 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5853 { 5854 struct vm_area_struct *vma = vmf->vma; 5855 vm_fault_t ret, tmp; 5856 struct folio *folio; 5857 5858 ret = vmf_can_call_fault(vmf); 5859 if (ret) 5860 return ret; 5861 5862 ret = __do_fault(vmf); 5863 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5864 return ret; 5865 5866 folio = page_folio(vmf->page); 5867 5868 /* 5869 * Check if the backing address space wants to know that the page is 5870 * about to become writable 5871 */ 5872 if (vma->vm_ops->page_mkwrite) { 5873 folio_unlock(folio); 5874 tmp = do_page_mkwrite(vmf, folio); 5875 if (unlikely(!tmp || 5876 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5877 folio_put(folio); 5878 return tmp; 5879 } 5880 } 5881 5882 ret |= finish_fault(vmf); 5883 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5884 VM_FAULT_RETRY))) { 5885 folio_unlock(folio); 5886 folio_put(folio); 5887 return ret; 5888 } 5889 5890 ret |= fault_dirty_shared_page(vmf); 5891 return ret; 5892 } 5893 5894 /* 5895 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5896 * but allow concurrent faults). 5897 * The mmap_lock may have been released depending on flags and our 5898 * return value. See filemap_fault() and __folio_lock_or_retry(). 5899 * If mmap_lock is released, vma may become invalid (for example 5900 * by other thread calling munmap()). 5901 */ 5902 static vm_fault_t do_fault(struct vm_fault *vmf) 5903 { 5904 struct vm_area_struct *vma = vmf->vma; 5905 struct mm_struct *vm_mm = vma->vm_mm; 5906 vm_fault_t ret; 5907 5908 /* 5909 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5910 */ 5911 if (!vma->vm_ops->fault) { 5912 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5913 vmf->address, &vmf->ptl); 5914 if (unlikely(!vmf->pte)) 5915 ret = VM_FAULT_SIGBUS; 5916 else { 5917 /* 5918 * Make sure this is not a temporary clearing of pte 5919 * by holding ptl and checking again. A R/M/W update 5920 * of pte involves: take ptl, clearing the pte so that 5921 * we don't have concurrent modification by hardware 5922 * followed by an update. 5923 */ 5924 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5925 ret = VM_FAULT_SIGBUS; 5926 else 5927 ret = VM_FAULT_NOPAGE; 5928 5929 pte_unmap_unlock(vmf->pte, vmf->ptl); 5930 } 5931 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5932 ret = do_read_fault(vmf); 5933 else if (!(vma->vm_flags & VM_SHARED)) 5934 ret = do_cow_fault(vmf); 5935 else 5936 ret = do_shared_fault(vmf); 5937 5938 /* preallocated pagetable is unused: free it */ 5939 if (vmf->prealloc_pte) { 5940 pte_free(vm_mm, vmf->prealloc_pte); 5941 vmf->prealloc_pte = NULL; 5942 } 5943 return ret; 5944 } 5945 5946 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5947 unsigned long addr, int *flags, 5948 bool writable, int *last_cpupid) 5949 { 5950 struct vm_area_struct *vma = vmf->vma; 5951 5952 /* 5953 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5954 * much anyway since they can be in shared cache state. This misses 5955 * the case where a mapping is writable but the process never writes 5956 * to it but pte_write gets cleared during protection updates and 5957 * pte_dirty has unpredictable behaviour between PTE scan updates, 5958 * background writeback, dirty balancing and application behaviour. 5959 */ 5960 if (!writable) 5961 *flags |= TNF_NO_GROUP; 5962 5963 /* 5964 * Flag if the folio is shared between multiple address spaces. This 5965 * is later used when determining whether to group tasks together 5966 */ 5967 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5968 *flags |= TNF_SHARED; 5969 /* 5970 * For memory tiering mode, cpupid of slow memory page is used 5971 * to record page access time. So use default value. 5972 */ 5973 if (folio_use_access_time(folio)) 5974 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5975 else 5976 *last_cpupid = folio_last_cpupid(folio); 5977 5978 /* Record the current PID accessing VMA */ 5979 vma_set_access_pid_bit(vma); 5980 5981 count_vm_numa_event(NUMA_HINT_FAULTS); 5982 #ifdef CONFIG_NUMA_BALANCING 5983 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5984 #endif 5985 if (folio_nid(folio) == numa_node_id()) { 5986 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5987 *flags |= TNF_FAULT_LOCAL; 5988 } 5989 5990 return mpol_misplaced(folio, vmf, addr); 5991 } 5992 5993 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5994 unsigned long fault_addr, pte_t *fault_pte, 5995 bool writable) 5996 { 5997 pte_t pte, old_pte; 5998 5999 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 6000 pte = pte_modify(old_pte, vma->vm_page_prot); 6001 pte = pte_mkyoung(pte); 6002 if (writable) 6003 pte = pte_mkwrite(pte, vma); 6004 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 6005 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 6006 } 6007 6008 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 6009 struct folio *folio, pte_t fault_pte, 6010 bool ignore_writable, bool pte_write_upgrade) 6011 { 6012 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 6013 unsigned long start, end, addr = vmf->address; 6014 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 6015 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 6016 pte_t *start_ptep; 6017 6018 /* Stay within the VMA and within the page table. */ 6019 start = max3(addr_start, pt_start, vma->vm_start); 6020 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 6021 vma->vm_end); 6022 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 6023 6024 /* Restore all PTEs' mapping of the large folio */ 6025 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 6026 pte_t ptent = ptep_get(start_ptep); 6027 bool writable = false; 6028 6029 if (!pte_present(ptent) || !pte_protnone(ptent)) 6030 continue; 6031 6032 if (pfn_folio(pte_pfn(ptent)) != folio) 6033 continue; 6034 6035 if (!ignore_writable) { 6036 ptent = pte_modify(ptent, vma->vm_page_prot); 6037 writable = pte_write(ptent); 6038 if (!writable && pte_write_upgrade && 6039 can_change_pte_writable(vma, addr, ptent)) 6040 writable = true; 6041 } 6042 6043 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 6044 } 6045 } 6046 6047 static vm_fault_t do_numa_page(struct vm_fault *vmf) 6048 { 6049 struct vm_area_struct *vma = vmf->vma; 6050 struct folio *folio = NULL; 6051 int nid = NUMA_NO_NODE; 6052 bool writable = false, ignore_writable = false; 6053 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 6054 int last_cpupid; 6055 int target_nid; 6056 pte_t pte, old_pte; 6057 int flags = 0, nr_pages; 6058 6059 /* 6060 * The pte cannot be used safely until we verify, while holding the page 6061 * table lock, that its contents have not changed during fault handling. 6062 */ 6063 spin_lock(vmf->ptl); 6064 /* Read the live PTE from the page tables: */ 6065 old_pte = ptep_get(vmf->pte); 6066 6067 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 6068 pte_unmap_unlock(vmf->pte, vmf->ptl); 6069 return 0; 6070 } 6071 6072 pte = pte_modify(old_pte, vma->vm_page_prot); 6073 6074 /* 6075 * Detect now whether the PTE could be writable; this information 6076 * is only valid while holding the PT lock. 6077 */ 6078 writable = pte_write(pte); 6079 if (!writable && pte_write_upgrade && 6080 can_change_pte_writable(vma, vmf->address, pte)) 6081 writable = true; 6082 6083 folio = vm_normal_folio(vma, vmf->address, pte); 6084 if (!folio || folio_is_zone_device(folio)) 6085 goto out_map; 6086 6087 nid = folio_nid(folio); 6088 nr_pages = folio_nr_pages(folio); 6089 6090 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 6091 writable, &last_cpupid); 6092 if (target_nid == NUMA_NO_NODE) 6093 goto out_map; 6094 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 6095 flags |= TNF_MIGRATE_FAIL; 6096 goto out_map; 6097 } 6098 /* The folio is isolated and isolation code holds a folio reference. */ 6099 pte_unmap_unlock(vmf->pte, vmf->ptl); 6100 writable = false; 6101 ignore_writable = true; 6102 6103 /* Migrate to the requested node */ 6104 if (!migrate_misplaced_folio(folio, target_nid)) { 6105 nid = target_nid; 6106 flags |= TNF_MIGRATED; 6107 task_numa_fault(last_cpupid, nid, nr_pages, flags); 6108 return 0; 6109 } 6110 6111 flags |= TNF_MIGRATE_FAIL; 6112 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 6113 vmf->address, &vmf->ptl); 6114 if (unlikely(!vmf->pte)) 6115 return 0; 6116 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 6117 pte_unmap_unlock(vmf->pte, vmf->ptl); 6118 return 0; 6119 } 6120 out_map: 6121 /* 6122 * Make it present again, depending on how arch implements 6123 * non-accessible ptes, some can allow access by kernel mode. 6124 */ 6125 if (folio && folio_test_large(folio)) 6126 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 6127 pte_write_upgrade); 6128 else 6129 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 6130 writable); 6131 pte_unmap_unlock(vmf->pte, vmf->ptl); 6132 6133 if (nid != NUMA_NO_NODE) 6134 task_numa_fault(last_cpupid, nid, nr_pages, flags); 6135 return 0; 6136 } 6137 6138 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 6139 { 6140 struct vm_area_struct *vma = vmf->vma; 6141 if (vma_is_anonymous(vma)) 6142 return do_huge_pmd_anonymous_page(vmf); 6143 if (vma->vm_ops->huge_fault) 6144 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 6145 return VM_FAULT_FALLBACK; 6146 } 6147 6148 /* `inline' is required to avoid gcc 4.1.2 build error */ 6149 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 6150 { 6151 struct vm_area_struct *vma = vmf->vma; 6152 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6153 vm_fault_t ret; 6154 6155 if (vma_is_anonymous(vma)) { 6156 if (likely(!unshare) && 6157 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 6158 if (userfaultfd_wp_async(vmf->vma)) 6159 goto split; 6160 return handle_userfault(vmf, VM_UFFD_WP); 6161 } 6162 return do_huge_pmd_wp_page(vmf); 6163 } 6164 6165 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6166 if (vma->vm_ops->huge_fault) { 6167 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 6168 if (!(ret & VM_FAULT_FALLBACK)) 6169 return ret; 6170 } 6171 } 6172 6173 split: 6174 /* COW or write-notify handled on pte level: split pmd. */ 6175 __split_huge_pmd(vma, vmf->pmd, vmf->address, false); 6176 6177 return VM_FAULT_FALLBACK; 6178 } 6179 6180 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 6181 { 6182 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6183 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6184 struct vm_area_struct *vma = vmf->vma; 6185 /* No support for anonymous transparent PUD pages yet */ 6186 if (vma_is_anonymous(vma)) 6187 return VM_FAULT_FALLBACK; 6188 if (vma->vm_ops->huge_fault) 6189 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6190 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 6191 return VM_FAULT_FALLBACK; 6192 } 6193 6194 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 6195 { 6196 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6197 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6198 struct vm_area_struct *vma = vmf->vma; 6199 vm_fault_t ret; 6200 6201 /* No support for anonymous transparent PUD pages yet */ 6202 if (vma_is_anonymous(vma)) 6203 goto split; 6204 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6205 if (vma->vm_ops->huge_fault) { 6206 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6207 if (!(ret & VM_FAULT_FALLBACK)) 6208 return ret; 6209 } 6210 } 6211 split: 6212 /* COW or write-notify not handled on PUD level: split pud.*/ 6213 __split_huge_pud(vma, vmf->pud, vmf->address); 6214 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 6215 return VM_FAULT_FALLBACK; 6216 } 6217 6218 /* 6219 * The page faults may be spurious because of the racy access to the 6220 * page table. For example, a non-populated virtual page is accessed 6221 * on 2 CPUs simultaneously, thus the page faults are triggered on 6222 * both CPUs. However, it's possible that one CPU (say CPU A) cannot 6223 * find the reason for the page fault if the other CPU (say CPU B) has 6224 * changed the page table before the PTE is checked on CPU A. Most of 6225 * the time, the spurious page faults can be ignored safely. However, 6226 * if the page fault is for the write access, it's possible that a 6227 * stale read-only TLB entry exists in the local CPU and needs to be 6228 * flushed on some architectures. This is called the spurious page 6229 * fault fixing. 6230 * 6231 * Note: flush_tlb_fix_spurious_fault() is defined as flush_tlb_page() 6232 * by default and used as such on most architectures, while 6233 * flush_tlb_fix_spurious_fault_pmd() is defined as NOP by default and 6234 * used as such on most architectures. 6235 */ 6236 static void fix_spurious_fault(struct vm_fault *vmf, 6237 enum pgtable_level ptlevel) 6238 { 6239 /* Skip spurious TLB flush for retried page fault */ 6240 if (vmf->flags & FAULT_FLAG_TRIED) 6241 return; 6242 /* 6243 * This is needed only for protection faults but the arch code 6244 * is not yet telling us if this is a protection fault or not. 6245 * This still avoids useless tlb flushes for .text page faults 6246 * with threads. 6247 */ 6248 if (vmf->flags & FAULT_FLAG_WRITE) { 6249 if (ptlevel == PGTABLE_LEVEL_PTE) 6250 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 6251 vmf->pte); 6252 else 6253 flush_tlb_fix_spurious_fault_pmd(vmf->vma, vmf->address, 6254 vmf->pmd); 6255 } 6256 } 6257 /* 6258 * These routines also need to handle stuff like marking pages dirty 6259 * and/or accessed for architectures that don't do it in hardware (most 6260 * RISC architectures). The early dirtying is also good on the i386. 6261 * 6262 * There is also a hook called "update_mmu_cache()" that architectures 6263 * with external mmu caches can use to update those (ie the Sparc or 6264 * PowerPC hashed page tables that act as extended TLBs). 6265 * 6266 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 6267 * concurrent faults). 6268 * 6269 * The mmap_lock may have been released depending on flags and our return value. 6270 * See filemap_fault() and __folio_lock_or_retry(). 6271 */ 6272 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 6273 { 6274 pte_t entry; 6275 6276 if (unlikely(pmd_none(*vmf->pmd))) { 6277 /* 6278 * Leave __pte_alloc() until later: because vm_ops->fault may 6279 * want to allocate huge page, and if we expose page table 6280 * for an instant, it will be difficult to retract from 6281 * concurrent faults and from rmap lookups. 6282 */ 6283 vmf->pte = NULL; 6284 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 6285 } else { 6286 pmd_t dummy_pmdval; 6287 6288 /* 6289 * A regular pmd is established and it can't morph into a huge 6290 * pmd by anon khugepaged, since that takes mmap_lock in write 6291 * mode; but shmem or file collapse to THP could still morph 6292 * it into a huge pmd: just retry later if so. 6293 * 6294 * Use the maywrite version to indicate that vmf->pte may be 6295 * modified, but since we will use pte_same() to detect the 6296 * change of the !pte_none() entry, there is no need to recheck 6297 * the pmdval. Here we choose to pass a dummy variable instead 6298 * of NULL, which helps new user think about why this place is 6299 * special. 6300 */ 6301 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 6302 vmf->address, &dummy_pmdval, 6303 &vmf->ptl); 6304 if (unlikely(!vmf->pte)) 6305 return 0; 6306 vmf->orig_pte = ptep_get_lockless(vmf->pte); 6307 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 6308 6309 if (pte_none(vmf->orig_pte)) { 6310 pte_unmap(vmf->pte); 6311 vmf->pte = NULL; 6312 } 6313 } 6314 6315 if (!vmf->pte) 6316 return do_pte_missing(vmf); 6317 6318 if (!pte_present(vmf->orig_pte)) 6319 return do_swap_page(vmf); 6320 6321 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 6322 return do_numa_page(vmf); 6323 6324 spin_lock(vmf->ptl); 6325 entry = vmf->orig_pte; 6326 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 6327 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 6328 goto unlock; 6329 } 6330 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6331 if (!pte_write(entry)) 6332 return do_wp_page(vmf); 6333 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 6334 entry = pte_mkdirty(entry); 6335 } 6336 entry = pte_mkyoung(entry); 6337 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 6338 vmf->flags & FAULT_FLAG_WRITE)) 6339 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 6340 vmf->pte, 1); 6341 else 6342 fix_spurious_fault(vmf, PGTABLE_LEVEL_PTE); 6343 unlock: 6344 pte_unmap_unlock(vmf->pte, vmf->ptl); 6345 return 0; 6346 } 6347 6348 /* 6349 * On entry, we hold either the VMA lock or the mmap_lock 6350 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 6351 * the result, the mmap_lock is not held on exit. See filemap_fault() 6352 * and __folio_lock_or_retry(). 6353 */ 6354 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 6355 unsigned long address, unsigned int flags) 6356 { 6357 struct vm_fault vmf = { 6358 .vma = vma, 6359 .address = address & PAGE_MASK, 6360 .real_address = address, 6361 .flags = flags, 6362 .pgoff = linear_page_index(vma, address), 6363 .gfp_mask = __get_fault_gfp_mask(vma), 6364 }; 6365 struct mm_struct *mm = vma->vm_mm; 6366 vm_flags_t vm_flags = vma->vm_flags; 6367 pgd_t *pgd; 6368 p4d_t *p4d; 6369 vm_fault_t ret; 6370 6371 pgd = pgd_offset(mm, address); 6372 p4d = p4d_alloc(mm, pgd, address); 6373 if (!p4d) 6374 return VM_FAULT_OOM; 6375 6376 vmf.pud = pud_alloc(mm, p4d, address); 6377 if (!vmf.pud) 6378 return VM_FAULT_OOM; 6379 retry_pud: 6380 if (pud_none(*vmf.pud) && 6381 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PUD_ORDER)) { 6382 ret = create_huge_pud(&vmf); 6383 if (!(ret & VM_FAULT_FALLBACK)) 6384 return ret; 6385 } else { 6386 pud_t orig_pud = *vmf.pud; 6387 6388 barrier(); 6389 if (pud_trans_huge(orig_pud)) { 6390 6391 /* 6392 * TODO once we support anonymous PUDs: NUMA case and 6393 * FAULT_FLAG_UNSHARE handling. 6394 */ 6395 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 6396 ret = wp_huge_pud(&vmf, orig_pud); 6397 if (!(ret & VM_FAULT_FALLBACK)) 6398 return ret; 6399 } else { 6400 huge_pud_set_accessed(&vmf, orig_pud); 6401 return 0; 6402 } 6403 } 6404 } 6405 6406 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 6407 if (!vmf.pmd) 6408 return VM_FAULT_OOM; 6409 6410 /* Huge pud page fault raced with pmd_alloc? */ 6411 if (pud_trans_unstable(vmf.pud)) 6412 goto retry_pud; 6413 6414 if (pmd_none(*vmf.pmd) && 6415 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PMD_ORDER)) { 6416 ret = create_huge_pmd(&vmf); 6417 if (ret & VM_FAULT_FALLBACK) 6418 goto fallback; 6419 else 6420 return ret; 6421 } 6422 6423 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6424 if (pmd_none(vmf.orig_pmd)) 6425 goto fallback; 6426 6427 if (unlikely(!pmd_present(vmf.orig_pmd))) { 6428 if (pmd_is_device_private_entry(vmf.orig_pmd)) 6429 return do_huge_pmd_device_private(&vmf); 6430 6431 if (pmd_is_migration_entry(vmf.orig_pmd)) 6432 pmd_migration_entry_wait(mm, vmf.pmd); 6433 return 0; 6434 } 6435 if (pmd_trans_huge(vmf.orig_pmd)) { 6436 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6437 return do_huge_pmd_numa_page(&vmf); 6438 6439 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6440 !pmd_write(vmf.orig_pmd)) { 6441 ret = wp_huge_pmd(&vmf); 6442 if (!(ret & VM_FAULT_FALLBACK)) 6443 return ret; 6444 } else { 6445 vmf.ptl = pmd_lock(mm, vmf.pmd); 6446 if (!huge_pmd_set_accessed(&vmf)) 6447 fix_spurious_fault(&vmf, PGTABLE_LEVEL_PMD); 6448 spin_unlock(vmf.ptl); 6449 return 0; 6450 } 6451 } 6452 6453 fallback: 6454 return handle_pte_fault(&vmf); 6455 } 6456 6457 /** 6458 * mm_account_fault - Do page fault accounting 6459 * @mm: mm from which memcg should be extracted. It can be NULL. 6460 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6461 * of perf event counters, but we'll still do the per-task accounting to 6462 * the task who triggered this page fault. 6463 * @address: the faulted address. 6464 * @flags: the fault flags. 6465 * @ret: the fault retcode. 6466 * 6467 * This will take care of most of the page fault accounting. Meanwhile, it 6468 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6469 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6470 * still be in per-arch page fault handlers at the entry of page fault. 6471 */ 6472 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6473 unsigned long address, unsigned int flags, 6474 vm_fault_t ret) 6475 { 6476 bool major; 6477 6478 /* Incomplete faults will be accounted upon completion. */ 6479 if (ret & VM_FAULT_RETRY) 6480 return; 6481 6482 /* 6483 * To preserve the behavior of older kernels, PGFAULT counters record 6484 * both successful and failed faults, as opposed to perf counters, 6485 * which ignore failed cases. 6486 */ 6487 count_vm_event(PGFAULT); 6488 count_memcg_event_mm(mm, PGFAULT); 6489 6490 /* 6491 * Do not account for unsuccessful faults (e.g. when the address wasn't 6492 * valid). That includes arch_vma_access_permitted() failing before 6493 * reaching here. So this is not a "this many hardware page faults" 6494 * counter. We should use the hw profiling for that. 6495 */ 6496 if (ret & VM_FAULT_ERROR) 6497 return; 6498 6499 /* 6500 * We define the fault as a major fault when the final successful fault 6501 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6502 * handle it immediately previously). 6503 */ 6504 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6505 6506 if (major) 6507 current->maj_flt++; 6508 else 6509 current->min_flt++; 6510 6511 /* 6512 * If the fault is done for GUP, regs will be NULL. We only do the 6513 * accounting for the per thread fault counters who triggered the 6514 * fault, and we skip the perf event updates. 6515 */ 6516 if (!regs) 6517 return; 6518 6519 if (major) 6520 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6521 else 6522 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6523 } 6524 6525 #ifdef CONFIG_LRU_GEN 6526 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6527 { 6528 /* the LRU algorithm only applies to accesses with recency */ 6529 current->in_lru_fault = vma_has_recency(vma); 6530 } 6531 6532 static void lru_gen_exit_fault(void) 6533 { 6534 current->in_lru_fault = false; 6535 } 6536 #else 6537 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6538 { 6539 } 6540 6541 static void lru_gen_exit_fault(void) 6542 { 6543 } 6544 #endif /* CONFIG_LRU_GEN */ 6545 6546 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6547 unsigned int *flags) 6548 { 6549 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6550 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6551 return VM_FAULT_SIGSEGV; 6552 /* 6553 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6554 * just treat it like an ordinary read-fault otherwise. 6555 */ 6556 if (!is_cow_mapping(vma->vm_flags)) 6557 *flags &= ~FAULT_FLAG_UNSHARE; 6558 } else if (*flags & FAULT_FLAG_WRITE) { 6559 /* Write faults on read-only mappings are impossible ... */ 6560 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6561 return VM_FAULT_SIGSEGV; 6562 /* ... and FOLL_FORCE only applies to COW mappings. */ 6563 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6564 !is_cow_mapping(vma->vm_flags))) 6565 return VM_FAULT_SIGSEGV; 6566 } 6567 #ifdef CONFIG_PER_VMA_LOCK 6568 /* 6569 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6570 * the assumption that lock is dropped on VM_FAULT_RETRY. 6571 */ 6572 if (WARN_ON_ONCE((*flags & 6573 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6574 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6575 return VM_FAULT_SIGSEGV; 6576 #endif 6577 6578 return 0; 6579 } 6580 6581 /* 6582 * By the time we get here, we already hold either the VMA lock or the 6583 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6584 * 6585 * The mmap_lock may have been released depending on flags and our 6586 * return value. See filemap_fault() and __folio_lock_or_retry(). 6587 */ 6588 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6589 unsigned int flags, struct pt_regs *regs) 6590 { 6591 /* If the fault handler drops the mmap_lock, vma may be freed */ 6592 struct mm_struct *mm = vma->vm_mm; 6593 vm_fault_t ret; 6594 bool is_droppable; 6595 6596 __set_current_state(TASK_RUNNING); 6597 6598 ret = sanitize_fault_flags(vma, &flags); 6599 if (ret) 6600 goto out; 6601 6602 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6603 flags & FAULT_FLAG_INSTRUCTION, 6604 flags & FAULT_FLAG_REMOTE)) { 6605 ret = VM_FAULT_SIGSEGV; 6606 goto out; 6607 } 6608 6609 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6610 6611 /* 6612 * Enable the memcg OOM handling for faults triggered in user 6613 * space. Kernel faults are handled more gracefully. 6614 */ 6615 if (flags & FAULT_FLAG_USER) 6616 mem_cgroup_enter_user_fault(); 6617 6618 lru_gen_enter_fault(vma); 6619 6620 if (unlikely(is_vm_hugetlb_page(vma))) 6621 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6622 else 6623 ret = __handle_mm_fault(vma, address, flags); 6624 6625 /* 6626 * Warning: It is no longer safe to dereference vma-> after this point, 6627 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6628 * vma might be destroyed from underneath us. 6629 */ 6630 6631 lru_gen_exit_fault(); 6632 6633 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6634 if (is_droppable) 6635 ret &= ~VM_FAULT_OOM; 6636 6637 if (flags & FAULT_FLAG_USER) { 6638 mem_cgroup_exit_user_fault(); 6639 /* 6640 * The task may have entered a memcg OOM situation but 6641 * if the allocation error was handled gracefully (no 6642 * VM_FAULT_OOM), there is no need to kill anything. 6643 * Just clean up the OOM state peacefully. 6644 */ 6645 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6646 mem_cgroup_oom_synchronize(false); 6647 } 6648 out: 6649 mm_account_fault(mm, regs, address, flags, ret); 6650 6651 return ret; 6652 } 6653 EXPORT_SYMBOL_GPL(handle_mm_fault); 6654 6655 #ifndef __PAGETABLE_P4D_FOLDED 6656 /* 6657 * Allocate p4d page table. 6658 * We've already handled the fast-path in-line. 6659 */ 6660 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6661 { 6662 p4d_t *new = p4d_alloc_one(mm, address); 6663 if (!new) 6664 return -ENOMEM; 6665 6666 spin_lock(&mm->page_table_lock); 6667 if (pgd_present(*pgd)) { /* Another has populated it */ 6668 p4d_free(mm, new); 6669 } else { 6670 smp_wmb(); /* See comment in pmd_install() */ 6671 pgd_populate(mm, pgd, new); 6672 } 6673 spin_unlock(&mm->page_table_lock); 6674 return 0; 6675 } 6676 #endif /* __PAGETABLE_P4D_FOLDED */ 6677 6678 #ifndef __PAGETABLE_PUD_FOLDED 6679 /* 6680 * Allocate page upper directory. 6681 * We've already handled the fast-path in-line. 6682 */ 6683 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6684 { 6685 pud_t *new = pud_alloc_one(mm, address); 6686 if (!new) 6687 return -ENOMEM; 6688 6689 spin_lock(&mm->page_table_lock); 6690 if (!p4d_present(*p4d)) { 6691 mm_inc_nr_puds(mm); 6692 smp_wmb(); /* See comment in pmd_install() */ 6693 p4d_populate(mm, p4d, new); 6694 } else /* Another has populated it */ 6695 pud_free(mm, new); 6696 spin_unlock(&mm->page_table_lock); 6697 return 0; 6698 } 6699 #endif /* __PAGETABLE_PUD_FOLDED */ 6700 6701 #ifndef __PAGETABLE_PMD_FOLDED 6702 /* 6703 * Allocate page middle directory. 6704 * We've already handled the fast-path in-line. 6705 */ 6706 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6707 { 6708 spinlock_t *ptl; 6709 pmd_t *new = pmd_alloc_one(mm, address); 6710 if (!new) 6711 return -ENOMEM; 6712 6713 ptl = pud_lock(mm, pud); 6714 if (!pud_present(*pud)) { 6715 mm_inc_nr_pmds(mm); 6716 smp_wmb(); /* See comment in pmd_install() */ 6717 pud_populate(mm, pud, new); 6718 } else { /* Another has populated it */ 6719 pmd_free(mm, new); 6720 } 6721 spin_unlock(ptl); 6722 return 0; 6723 } 6724 #endif /* __PAGETABLE_PMD_FOLDED */ 6725 6726 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6727 spinlock_t *lock, pte_t *ptep, 6728 pgprot_t pgprot, unsigned long pfn_base, 6729 unsigned long addr_mask, bool writable, 6730 bool special) 6731 { 6732 args->lock = lock; 6733 args->ptep = ptep; 6734 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6735 args->addr_mask = addr_mask; 6736 args->pgprot = pgprot; 6737 args->writable = writable; 6738 args->special = special; 6739 } 6740 6741 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6742 { 6743 #ifdef CONFIG_LOCKDEP 6744 struct file *file = vma->vm_file; 6745 struct address_space *mapping = file ? file->f_mapping : NULL; 6746 6747 if (mapping) 6748 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6749 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6750 else 6751 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6752 #endif 6753 } 6754 6755 /** 6756 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6757 * @args: Pointer to struct @follow_pfnmap_args 6758 * 6759 * The caller needs to setup args->vma and args->address to point to the 6760 * virtual address as the target of such lookup. On a successful return, 6761 * the results will be put into other output fields. 6762 * 6763 * After the caller finished using the fields, the caller must invoke 6764 * another follow_pfnmap_end() to proper releases the locks and resources 6765 * of such look up request. 6766 * 6767 * During the start() and end() calls, the results in @args will be valid 6768 * as proper locks will be held. After the end() is called, all the fields 6769 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6770 * use of such information after end() may require proper synchronizations 6771 * by the caller with page table updates, otherwise it can create a 6772 * security bug. 6773 * 6774 * If the PTE maps a refcounted page, callers are responsible to protect 6775 * against invalidation with MMU notifiers; otherwise access to the PFN at 6776 * a later point in time can trigger use-after-free. 6777 * 6778 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6779 * should be taken for read, and the mmap semaphore cannot be released 6780 * before the end() is invoked. 6781 * 6782 * This function must not be used to modify PTE content. 6783 * 6784 * Return: zero on success, negative otherwise. 6785 */ 6786 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6787 { 6788 struct vm_area_struct *vma = args->vma; 6789 unsigned long address = args->address; 6790 struct mm_struct *mm = vma->vm_mm; 6791 spinlock_t *lock; 6792 pgd_t *pgdp; 6793 p4d_t *p4dp, p4d; 6794 pud_t *pudp, pud; 6795 pmd_t *pmdp, pmd; 6796 pte_t *ptep, pte; 6797 6798 pfnmap_lockdep_assert(vma); 6799 6800 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6801 goto out; 6802 6803 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6804 goto out; 6805 retry: 6806 pgdp = pgd_offset(mm, address); 6807 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6808 goto out; 6809 6810 p4dp = p4d_offset(pgdp, address); 6811 p4d = p4dp_get(p4dp); 6812 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6813 goto out; 6814 6815 pudp = pud_offset(p4dp, address); 6816 pud = pudp_get(pudp); 6817 if (pud_none(pud)) 6818 goto out; 6819 if (pud_leaf(pud)) { 6820 lock = pud_lock(mm, pudp); 6821 if (!unlikely(pud_leaf(pud))) { 6822 spin_unlock(lock); 6823 goto retry; 6824 } 6825 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6826 pud_pfn(pud), PUD_MASK, pud_write(pud), 6827 pud_special(pud)); 6828 return 0; 6829 } 6830 6831 pmdp = pmd_offset(pudp, address); 6832 pmd = pmdp_get_lockless(pmdp); 6833 if (pmd_leaf(pmd)) { 6834 lock = pmd_lock(mm, pmdp); 6835 if (!unlikely(pmd_leaf(pmd))) { 6836 spin_unlock(lock); 6837 goto retry; 6838 } 6839 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6840 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6841 pmd_special(pmd)); 6842 return 0; 6843 } 6844 6845 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6846 if (!ptep) 6847 goto out; 6848 pte = ptep_get(ptep); 6849 if (!pte_present(pte)) 6850 goto unlock; 6851 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6852 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6853 pte_special(pte)); 6854 return 0; 6855 unlock: 6856 pte_unmap_unlock(ptep, lock); 6857 out: 6858 return -EINVAL; 6859 } 6860 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6861 6862 /** 6863 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6864 * @args: Pointer to struct @follow_pfnmap_args 6865 * 6866 * Must be used in pair of follow_pfnmap_start(). See the start() function 6867 * above for more information. 6868 */ 6869 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6870 { 6871 if (args->lock) 6872 spin_unlock(args->lock); 6873 if (args->ptep) 6874 pte_unmap(args->ptep); 6875 } 6876 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6877 6878 #ifdef CONFIG_HAVE_IOREMAP_PROT 6879 /** 6880 * generic_access_phys - generic implementation for iomem mmap access 6881 * @vma: the vma to access 6882 * @addr: userspace address, not relative offset within @vma 6883 * @buf: buffer to read/write 6884 * @len: length of transfer 6885 * @write: set to FOLL_WRITE when writing, otherwise reading 6886 * 6887 * This is a generic implementation for &vm_operations_struct.access for an 6888 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6889 * not page based. 6890 */ 6891 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6892 void *buf, int len, int write) 6893 { 6894 resource_size_t phys_addr; 6895 pgprot_t prot = __pgprot(0); 6896 void __iomem *maddr; 6897 int offset = offset_in_page(addr); 6898 int ret = -EINVAL; 6899 bool writable; 6900 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6901 6902 retry: 6903 if (follow_pfnmap_start(&args)) 6904 return -EINVAL; 6905 prot = args.pgprot; 6906 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6907 writable = args.writable; 6908 follow_pfnmap_end(&args); 6909 6910 if ((write & FOLL_WRITE) && !writable) 6911 return -EINVAL; 6912 6913 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6914 if (!maddr) 6915 return -ENOMEM; 6916 6917 if (follow_pfnmap_start(&args)) 6918 goto out_unmap; 6919 6920 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || 6921 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6922 (writable != args.writable)) { 6923 follow_pfnmap_end(&args); 6924 iounmap(maddr); 6925 goto retry; 6926 } 6927 6928 if (write) 6929 memcpy_toio(maddr + offset, buf, len); 6930 else 6931 memcpy_fromio(buf, maddr + offset, len); 6932 ret = len; 6933 follow_pfnmap_end(&args); 6934 out_unmap: 6935 iounmap(maddr); 6936 6937 return ret; 6938 } 6939 EXPORT_SYMBOL_GPL(generic_access_phys); 6940 #endif 6941 6942 /* 6943 * Access another process' address space as given in mm. 6944 */ 6945 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6946 void *buf, int len, unsigned int gup_flags) 6947 { 6948 void *old_buf = buf; 6949 int write = gup_flags & FOLL_WRITE; 6950 6951 if (mmap_read_lock_killable(mm)) 6952 return 0; 6953 6954 /* Untag the address before looking up the VMA */ 6955 addr = untagged_addr_remote(mm, addr); 6956 6957 /* Avoid triggering the temporary warning in __get_user_pages */ 6958 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6959 return 0; 6960 6961 /* ignore errors, just check how much was successfully transferred */ 6962 while (len) { 6963 int bytes, offset; 6964 void *maddr; 6965 struct folio *folio; 6966 struct vm_area_struct *vma = NULL; 6967 struct page *page = get_user_page_vma_remote(mm, addr, 6968 gup_flags, &vma); 6969 6970 if (IS_ERR(page)) { 6971 /* We might need to expand the stack to access it */ 6972 vma = vma_lookup(mm, addr); 6973 if (!vma) { 6974 vma = expand_stack(mm, addr); 6975 6976 /* mmap_lock was dropped on failure */ 6977 if (!vma) 6978 return buf - old_buf; 6979 6980 /* Try again if stack expansion worked */ 6981 continue; 6982 } 6983 6984 /* 6985 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6986 * we can access using slightly different code. 6987 */ 6988 bytes = 0; 6989 #ifdef CONFIG_HAVE_IOREMAP_PROT 6990 if (vma->vm_ops && vma->vm_ops->access) 6991 bytes = vma->vm_ops->access(vma, addr, buf, 6992 len, write); 6993 #endif 6994 if (bytes <= 0) 6995 break; 6996 } else { 6997 folio = page_folio(page); 6998 bytes = len; 6999 offset = addr & (PAGE_SIZE-1); 7000 if (bytes > PAGE_SIZE-offset) 7001 bytes = PAGE_SIZE-offset; 7002 7003 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 7004 if (write) { 7005 copy_to_user_page(vma, page, addr, 7006 maddr + offset, buf, bytes); 7007 folio_mark_dirty_lock(folio); 7008 } else { 7009 copy_from_user_page(vma, page, addr, 7010 buf, maddr + offset, bytes); 7011 } 7012 folio_release_kmap(folio, maddr); 7013 } 7014 len -= bytes; 7015 buf += bytes; 7016 addr += bytes; 7017 } 7018 mmap_read_unlock(mm); 7019 7020 return buf - old_buf; 7021 } 7022 7023 /** 7024 * access_remote_vm - access another process' address space 7025 * @mm: the mm_struct of the target address space 7026 * @addr: start address to access 7027 * @buf: source or destination buffer 7028 * @len: number of bytes to transfer 7029 * @gup_flags: flags modifying lookup behaviour 7030 * 7031 * The caller must hold a reference on @mm. 7032 * 7033 * Return: number of bytes copied from source to destination. 7034 */ 7035 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 7036 void *buf, int len, unsigned int gup_flags) 7037 { 7038 return __access_remote_vm(mm, addr, buf, len, gup_flags); 7039 } 7040 7041 /* 7042 * Access another process' address space. 7043 * Source/target buffer must be kernel space, 7044 * Do not walk the page table directly, use get_user_pages 7045 */ 7046 int access_process_vm(struct task_struct *tsk, unsigned long addr, 7047 void *buf, int len, unsigned int gup_flags) 7048 { 7049 struct mm_struct *mm; 7050 int ret; 7051 7052 mm = get_task_mm(tsk); 7053 if (!mm) 7054 return 0; 7055 7056 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 7057 7058 mmput(mm); 7059 7060 return ret; 7061 } 7062 EXPORT_SYMBOL_GPL(access_process_vm); 7063 7064 #ifdef CONFIG_BPF_SYSCALL 7065 /* 7066 * Copy a string from another process's address space as given in mm. 7067 * If there is any error return -EFAULT. 7068 */ 7069 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 7070 void *buf, int len, unsigned int gup_flags) 7071 { 7072 void *old_buf = buf; 7073 int err = 0; 7074 7075 *(char *)buf = '\0'; 7076 7077 if (mmap_read_lock_killable(mm)) 7078 return -EFAULT; 7079 7080 addr = untagged_addr_remote(mm, addr); 7081 7082 /* Avoid triggering the temporary warning in __get_user_pages */ 7083 if (!vma_lookup(mm, addr)) { 7084 err = -EFAULT; 7085 goto out; 7086 } 7087 7088 while (len) { 7089 int bytes, offset, retval; 7090 void *maddr; 7091 struct folio *folio; 7092 struct page *page; 7093 struct vm_area_struct *vma = NULL; 7094 7095 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); 7096 if (IS_ERR(page)) { 7097 /* 7098 * Treat as a total failure for now until we decide how 7099 * to handle the CONFIG_HAVE_IOREMAP_PROT case and 7100 * stack expansion. 7101 */ 7102 *(char *)buf = '\0'; 7103 err = -EFAULT; 7104 goto out; 7105 } 7106 7107 folio = page_folio(page); 7108 bytes = len; 7109 offset = addr & (PAGE_SIZE - 1); 7110 if (bytes > PAGE_SIZE - offset) 7111 bytes = PAGE_SIZE - offset; 7112 7113 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 7114 retval = strscpy(buf, maddr + offset, bytes); 7115 if (retval >= 0) { 7116 /* Found the end of the string */ 7117 buf += retval; 7118 folio_release_kmap(folio, maddr); 7119 break; 7120 } 7121 7122 buf += bytes - 1; 7123 /* 7124 * Because strscpy always NUL terminates we need to 7125 * copy the last byte in the page if we are going to 7126 * load more pages 7127 */ 7128 if (bytes != len) { 7129 addr += bytes - 1; 7130 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); 7131 buf += 1; 7132 addr += 1; 7133 } 7134 len -= bytes; 7135 7136 folio_release_kmap(folio, maddr); 7137 } 7138 7139 out: 7140 mmap_read_unlock(mm); 7141 if (err) 7142 return err; 7143 return buf - old_buf; 7144 } 7145 7146 /** 7147 * copy_remote_vm_str - copy a string from another process's address space. 7148 * @tsk: the task of the target address space 7149 * @addr: start address to read from 7150 * @buf: destination buffer 7151 * @len: number of bytes to copy 7152 * @gup_flags: flags modifying lookup behaviour 7153 * 7154 * The caller must hold a reference on @mm. 7155 * 7156 * Return: number of bytes copied from @addr (source) to @buf (destination); 7157 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 7158 * buffer. On any error, return -EFAULT. 7159 */ 7160 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 7161 void *buf, int len, unsigned int gup_flags) 7162 { 7163 struct mm_struct *mm; 7164 int ret; 7165 7166 if (unlikely(len == 0)) 7167 return 0; 7168 7169 mm = get_task_mm(tsk); 7170 if (!mm) { 7171 *(char *)buf = '\0'; 7172 return -EFAULT; 7173 } 7174 7175 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); 7176 7177 mmput(mm); 7178 7179 return ret; 7180 } 7181 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 7182 #endif /* CONFIG_BPF_SYSCALL */ 7183 7184 /* 7185 * Print the name of a VMA. 7186 */ 7187 void print_vma_addr(char *prefix, unsigned long ip) 7188 { 7189 struct mm_struct *mm = current->mm; 7190 struct vm_area_struct *vma; 7191 7192 /* 7193 * we might be running from an atomic context so we cannot sleep 7194 */ 7195 if (!mmap_read_trylock(mm)) 7196 return; 7197 7198 vma = vma_lookup(mm, ip); 7199 if (vma && vma->vm_file) { 7200 struct file *f = vma->vm_file; 7201 ip -= vma->vm_start; 7202 ip += vma->vm_pgoff << PAGE_SHIFT; 7203 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 7204 vma->vm_start, 7205 vma->vm_end - vma->vm_start); 7206 } 7207 mmap_read_unlock(mm); 7208 } 7209 7210 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 7211 void __might_fault(const char *file, int line) 7212 { 7213 if (pagefault_disabled()) 7214 return; 7215 __might_sleep(file, line); 7216 if (current->mm) 7217 might_lock_read(¤t->mm->mmap_lock); 7218 } 7219 EXPORT_SYMBOL(__might_fault); 7220 #endif 7221 7222 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 7223 /* 7224 * Process all subpages of the specified huge page with the specified 7225 * operation. The target subpage will be processed last to keep its 7226 * cache lines hot. 7227 */ 7228 static inline int process_huge_page( 7229 unsigned long addr_hint, unsigned int nr_pages, 7230 int (*process_subpage)(unsigned long addr, int idx, void *arg), 7231 void *arg) 7232 { 7233 int i, n, base, l, ret; 7234 unsigned long addr = addr_hint & 7235 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 7236 7237 /* Process target subpage last to keep its cache lines hot */ 7238 might_sleep(); 7239 n = (addr_hint - addr) / PAGE_SIZE; 7240 if (2 * n <= nr_pages) { 7241 /* If target subpage in first half of huge page */ 7242 base = 0; 7243 l = n; 7244 /* Process subpages at the end of huge page */ 7245 for (i = nr_pages - 1; i >= 2 * n; i--) { 7246 cond_resched(); 7247 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7248 if (ret) 7249 return ret; 7250 } 7251 } else { 7252 /* If target subpage in second half of huge page */ 7253 base = nr_pages - 2 * (nr_pages - n); 7254 l = nr_pages - n; 7255 /* Process subpages at the begin of huge page */ 7256 for (i = 0; i < base; i++) { 7257 cond_resched(); 7258 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7259 if (ret) 7260 return ret; 7261 } 7262 } 7263 /* 7264 * Process remaining subpages in left-right-left-right pattern 7265 * towards the target subpage 7266 */ 7267 for (i = 0; i < l; i++) { 7268 int left_idx = base + i; 7269 int right_idx = base + 2 * l - 1 - i; 7270 7271 cond_resched(); 7272 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 7273 if (ret) 7274 return ret; 7275 cond_resched(); 7276 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 7277 if (ret) 7278 return ret; 7279 } 7280 return 0; 7281 } 7282 7283 static void clear_contig_highpages(struct page *page, unsigned long addr, 7284 unsigned int nr_pages) 7285 { 7286 unsigned int i, count; 7287 /* 7288 * When clearing we want to operate on the largest extent possible to 7289 * allow for architecture specific extent based optimizations. 7290 * 7291 * However, since clear_user_highpages() (and primitives clear_user_pages(), 7292 * clear_pages()), do not call cond_resched(), limit the unit size when 7293 * running under non-preemptible scheduling models. 7294 */ 7295 const unsigned int unit = preempt_model_preemptible() ? 7296 nr_pages : PROCESS_PAGES_NON_PREEMPT_BATCH; 7297 7298 might_sleep(); 7299 7300 for (i = 0; i < nr_pages; i += count) { 7301 cond_resched(); 7302 7303 count = min(unit, nr_pages - i); 7304 clear_user_highpages(page + i, addr + i * PAGE_SIZE, count); 7305 } 7306 } 7307 7308 /* 7309 * When zeroing a folio, we want to differentiate between pages in the 7310 * vicinity of the faulting address where we have spatial and temporal 7311 * locality, and those far away where we don't. 7312 * 7313 * Use a radius of 2 for determining the local neighbourhood. 7314 */ 7315 #define FOLIO_ZERO_LOCALITY_RADIUS 2 7316 7317 /** 7318 * folio_zero_user - Zero a folio which will be mapped to userspace. 7319 * @folio: The folio to zero. 7320 * @addr_hint: The address accessed by the user or the base address. 7321 */ 7322 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7323 { 7324 const unsigned long base_addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7325 const long fault_idx = (addr_hint - base_addr) / PAGE_SIZE; 7326 const struct range pg = DEFINE_RANGE(0, folio_nr_pages(folio) - 1); 7327 const long radius = FOLIO_ZERO_LOCALITY_RADIUS; 7328 struct range r[3]; 7329 int i; 7330 7331 /* 7332 * Faulting page and its immediate neighbourhood. Will be cleared at the 7333 * end to keep its cachelines hot. 7334 */ 7335 r[2] = DEFINE_RANGE(fault_idx - radius < (long)pg.start ? pg.start : fault_idx - radius, 7336 fault_idx + radius > (long)pg.end ? pg.end : fault_idx + radius); 7337 7338 7339 /* Region to the left of the fault */ 7340 r[1] = DEFINE_RANGE(pg.start, r[2].start - 1); 7341 7342 /* Region to the right of the fault: always valid for the common fault_idx=0 case. */ 7343 r[0] = DEFINE_RANGE(r[2].end + 1, pg.end); 7344 7345 for (i = 0; i < ARRAY_SIZE(r); i++) { 7346 const unsigned long addr = base_addr + r[i].start * PAGE_SIZE; 7347 const long nr_pages = (long)range_len(&r[i]); 7348 struct page *page = folio_page(folio, r[i].start); 7349 7350 if (nr_pages > 0) 7351 clear_contig_highpages(page, addr, nr_pages); 7352 } 7353 } 7354 7355 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7356 unsigned long addr_hint, 7357 struct vm_area_struct *vma, 7358 unsigned int nr_pages) 7359 { 7360 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7361 struct page *dst_page; 7362 struct page *src_page; 7363 int i; 7364 7365 for (i = 0; i < nr_pages; i++) { 7366 dst_page = folio_page(dst, i); 7367 src_page = folio_page(src, i); 7368 7369 cond_resched(); 7370 if (copy_mc_user_highpage(dst_page, src_page, 7371 addr + i*PAGE_SIZE, vma)) 7372 return -EHWPOISON; 7373 } 7374 return 0; 7375 } 7376 7377 struct copy_subpage_arg { 7378 struct folio *dst; 7379 struct folio *src; 7380 struct vm_area_struct *vma; 7381 }; 7382 7383 static int copy_subpage(unsigned long addr, int idx, void *arg) 7384 { 7385 struct copy_subpage_arg *copy_arg = arg; 7386 struct page *dst = folio_page(copy_arg->dst, idx); 7387 struct page *src = folio_page(copy_arg->src, idx); 7388 7389 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7390 return -EHWPOISON; 7391 return 0; 7392 } 7393 7394 int copy_user_large_folio(struct folio *dst, struct folio *src, 7395 unsigned long addr_hint, struct vm_area_struct *vma) 7396 { 7397 unsigned int nr_pages = folio_nr_pages(dst); 7398 struct copy_subpage_arg arg = { 7399 .dst = dst, 7400 .src = src, 7401 .vma = vma, 7402 }; 7403 7404 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7405 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7406 7407 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7408 } 7409 7410 long copy_folio_from_user(struct folio *dst_folio, 7411 const void __user *usr_src, 7412 bool allow_pagefault) 7413 { 7414 void *kaddr; 7415 unsigned long i, rc = 0; 7416 unsigned int nr_pages = folio_nr_pages(dst_folio); 7417 unsigned long ret_val = nr_pages * PAGE_SIZE; 7418 struct page *subpage; 7419 7420 for (i = 0; i < nr_pages; i++) { 7421 subpage = folio_page(dst_folio, i); 7422 kaddr = kmap_local_page(subpage); 7423 if (!allow_pagefault) 7424 pagefault_disable(); 7425 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7426 if (!allow_pagefault) 7427 pagefault_enable(); 7428 kunmap_local(kaddr); 7429 7430 ret_val -= (PAGE_SIZE - rc); 7431 if (rc) 7432 break; 7433 7434 flush_dcache_page(subpage); 7435 7436 cond_resched(); 7437 } 7438 return ret_val; 7439 } 7440 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7441 7442 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7443 7444 static struct kmem_cache *page_ptl_cachep; 7445 7446 void __init ptlock_cache_init(void) 7447 { 7448 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7449 SLAB_PANIC, NULL); 7450 } 7451 7452 bool ptlock_alloc(struct ptdesc *ptdesc) 7453 { 7454 spinlock_t *ptl; 7455 7456 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7457 if (!ptl) 7458 return false; 7459 ptdesc->ptl = ptl; 7460 return true; 7461 } 7462 7463 void ptlock_free(struct ptdesc *ptdesc) 7464 { 7465 if (ptdesc->ptl) 7466 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7467 } 7468 #endif 7469 7470 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7471 { 7472 if (is_vm_hugetlb_page(vma)) 7473 hugetlb_vma_lock_read(vma); 7474 } 7475 7476 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7477 { 7478 if (is_vm_hugetlb_page(vma)) 7479 hugetlb_vma_unlock_read(vma); 7480 } 7481