1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 61 #include <asm/io.h> 62 #include <asm/pgalloc.h> 63 #include <asm/uaccess.h> 64 #include <asm/tlb.h> 65 #include <asm/tlbflush.h> 66 #include <asm/pgtable.h> 67 68 #include "internal.h" 69 70 #ifndef CONFIG_NEED_MULTIPLE_NODES 71 /* use the per-pgdat data instead for discontigmem - mbligh */ 72 unsigned long max_mapnr; 73 struct page *mem_map; 74 75 EXPORT_SYMBOL(max_mapnr); 76 EXPORT_SYMBOL(mem_map); 77 #endif 78 79 unsigned long num_physpages; 80 /* 81 * A number of key systems in x86 including ioremap() rely on the assumption 82 * that high_memory defines the upper bound on direct map memory, then end 83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 85 * and ZONE_HIGHMEM. 86 */ 87 void * high_memory; 88 89 EXPORT_SYMBOL(num_physpages); 90 EXPORT_SYMBOL(high_memory); 91 92 /* 93 * Randomize the address space (stacks, mmaps, brk, etc.). 94 * 95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 96 * as ancient (libc5 based) binaries can segfault. ) 97 */ 98 int randomize_va_space __read_mostly = 99 #ifdef CONFIG_COMPAT_BRK 100 1; 101 #else 102 2; 103 #endif 104 105 static int __init disable_randmaps(char *s) 106 { 107 randomize_va_space = 0; 108 return 1; 109 } 110 __setup("norandmaps", disable_randmaps); 111 112 unsigned long zero_pfn __read_mostly; 113 unsigned long highest_memmap_pfn __read_mostly; 114 115 /* 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 117 */ 118 static int __init init_zero_pfn(void) 119 { 120 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 121 return 0; 122 } 123 core_initcall(init_zero_pfn); 124 125 126 #if defined(SPLIT_RSS_COUNTING) 127 128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) 129 { 130 int i; 131 132 for (i = 0; i < NR_MM_COUNTERS; i++) { 133 if (task->rss_stat.count[i]) { 134 add_mm_counter(mm, i, task->rss_stat.count[i]); 135 task->rss_stat.count[i] = 0; 136 } 137 } 138 task->rss_stat.events = 0; 139 } 140 141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 142 { 143 struct task_struct *task = current; 144 145 if (likely(task->mm == mm)) 146 task->rss_stat.count[member] += val; 147 else 148 add_mm_counter(mm, member, val); 149 } 150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 152 153 /* sync counter once per 64 page faults */ 154 #define TASK_RSS_EVENTS_THRESH (64) 155 static void check_sync_rss_stat(struct task_struct *task) 156 { 157 if (unlikely(task != current)) 158 return; 159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 160 __sync_task_rss_stat(task, task->mm); 161 } 162 163 unsigned long get_mm_counter(struct mm_struct *mm, int member) 164 { 165 long val = 0; 166 167 /* 168 * Don't use task->mm here...for avoiding to use task_get_mm().. 169 * The caller must guarantee task->mm is not invalid. 170 */ 171 val = atomic_long_read(&mm->rss_stat.count[member]); 172 /* 173 * counter is updated in asynchronous manner and may go to minus. 174 * But it's never be expected number for users. 175 */ 176 if (val < 0) 177 return 0; 178 return (unsigned long)val; 179 } 180 181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 182 { 183 __sync_task_rss_stat(task, mm); 184 } 185 #else /* SPLIT_RSS_COUNTING */ 186 187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 189 190 static void check_sync_rss_stat(struct task_struct *task) 191 { 192 } 193 194 #endif /* SPLIT_RSS_COUNTING */ 195 196 #ifdef HAVE_GENERIC_MMU_GATHER 197 198 static int tlb_next_batch(struct mmu_gather *tlb) 199 { 200 struct mmu_gather_batch *batch; 201 202 batch = tlb->active; 203 if (batch->next) { 204 tlb->active = batch->next; 205 return 1; 206 } 207 208 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 209 if (!batch) 210 return 0; 211 212 batch->next = NULL; 213 batch->nr = 0; 214 batch->max = MAX_GATHER_BATCH; 215 216 tlb->active->next = batch; 217 tlb->active = batch; 218 219 return 1; 220 } 221 222 /* tlb_gather_mmu 223 * Called to initialize an (on-stack) mmu_gather structure for page-table 224 * tear-down from @mm. The @fullmm argument is used when @mm is without 225 * users and we're going to destroy the full address space (exit/execve). 226 */ 227 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm) 228 { 229 tlb->mm = mm; 230 231 tlb->fullmm = fullmm; 232 tlb->need_flush = 0; 233 tlb->fast_mode = (num_possible_cpus() == 1); 234 tlb->local.next = NULL; 235 tlb->local.nr = 0; 236 tlb->local.max = ARRAY_SIZE(tlb->__pages); 237 tlb->active = &tlb->local; 238 239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 240 tlb->batch = NULL; 241 #endif 242 } 243 244 void tlb_flush_mmu(struct mmu_gather *tlb) 245 { 246 struct mmu_gather_batch *batch; 247 248 if (!tlb->need_flush) 249 return; 250 tlb->need_flush = 0; 251 tlb_flush(tlb); 252 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 253 tlb_table_flush(tlb); 254 #endif 255 256 if (tlb_fast_mode(tlb)) 257 return; 258 259 for (batch = &tlb->local; batch; batch = batch->next) { 260 free_pages_and_swap_cache(batch->pages, batch->nr); 261 batch->nr = 0; 262 } 263 tlb->active = &tlb->local; 264 } 265 266 /* tlb_finish_mmu 267 * Called at the end of the shootdown operation to free up any resources 268 * that were required. 269 */ 270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 271 { 272 struct mmu_gather_batch *batch, *next; 273 274 tlb_flush_mmu(tlb); 275 276 /* keep the page table cache within bounds */ 277 check_pgt_cache(); 278 279 for (batch = tlb->local.next; batch; batch = next) { 280 next = batch->next; 281 free_pages((unsigned long)batch, 0); 282 } 283 tlb->local.next = NULL; 284 } 285 286 /* __tlb_remove_page 287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 288 * handling the additional races in SMP caused by other CPUs caching valid 289 * mappings in their TLBs. Returns the number of free page slots left. 290 * When out of page slots we must call tlb_flush_mmu(). 291 */ 292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 293 { 294 struct mmu_gather_batch *batch; 295 296 VM_BUG_ON(!tlb->need_flush); 297 298 if (tlb_fast_mode(tlb)) { 299 free_page_and_swap_cache(page); 300 return 1; /* avoid calling tlb_flush_mmu() */ 301 } 302 303 batch = tlb->active; 304 batch->pages[batch->nr++] = page; 305 if (batch->nr == batch->max) { 306 if (!tlb_next_batch(tlb)) 307 return 0; 308 batch = tlb->active; 309 } 310 VM_BUG_ON(batch->nr > batch->max); 311 312 return batch->max - batch->nr; 313 } 314 315 #endif /* HAVE_GENERIC_MMU_GATHER */ 316 317 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 318 319 /* 320 * See the comment near struct mmu_table_batch. 321 */ 322 323 static void tlb_remove_table_smp_sync(void *arg) 324 { 325 /* Simply deliver the interrupt */ 326 } 327 328 static void tlb_remove_table_one(void *table) 329 { 330 /* 331 * This isn't an RCU grace period and hence the page-tables cannot be 332 * assumed to be actually RCU-freed. 333 * 334 * It is however sufficient for software page-table walkers that rely on 335 * IRQ disabling. See the comment near struct mmu_table_batch. 336 */ 337 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 338 __tlb_remove_table(table); 339 } 340 341 static void tlb_remove_table_rcu(struct rcu_head *head) 342 { 343 struct mmu_table_batch *batch; 344 int i; 345 346 batch = container_of(head, struct mmu_table_batch, rcu); 347 348 for (i = 0; i < batch->nr; i++) 349 __tlb_remove_table(batch->tables[i]); 350 351 free_page((unsigned long)batch); 352 } 353 354 void tlb_table_flush(struct mmu_gather *tlb) 355 { 356 struct mmu_table_batch **batch = &tlb->batch; 357 358 if (*batch) { 359 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 360 *batch = NULL; 361 } 362 } 363 364 void tlb_remove_table(struct mmu_gather *tlb, void *table) 365 { 366 struct mmu_table_batch **batch = &tlb->batch; 367 368 tlb->need_flush = 1; 369 370 /* 371 * When there's less then two users of this mm there cannot be a 372 * concurrent page-table walk. 373 */ 374 if (atomic_read(&tlb->mm->mm_users) < 2) { 375 __tlb_remove_table(table); 376 return; 377 } 378 379 if (*batch == NULL) { 380 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 381 if (*batch == NULL) { 382 tlb_remove_table_one(table); 383 return; 384 } 385 (*batch)->nr = 0; 386 } 387 (*batch)->tables[(*batch)->nr++] = table; 388 if ((*batch)->nr == MAX_TABLE_BATCH) 389 tlb_table_flush(tlb); 390 } 391 392 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 393 394 /* 395 * If a p?d_bad entry is found while walking page tables, report 396 * the error, before resetting entry to p?d_none. Usually (but 397 * very seldom) called out from the p?d_none_or_clear_bad macros. 398 */ 399 400 void pgd_clear_bad(pgd_t *pgd) 401 { 402 pgd_ERROR(*pgd); 403 pgd_clear(pgd); 404 } 405 406 void pud_clear_bad(pud_t *pud) 407 { 408 pud_ERROR(*pud); 409 pud_clear(pud); 410 } 411 412 void pmd_clear_bad(pmd_t *pmd) 413 { 414 pmd_ERROR(*pmd); 415 pmd_clear(pmd); 416 } 417 418 /* 419 * Note: this doesn't free the actual pages themselves. That 420 * has been handled earlier when unmapping all the memory regions. 421 */ 422 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 423 unsigned long addr) 424 { 425 pgtable_t token = pmd_pgtable(*pmd); 426 pmd_clear(pmd); 427 pte_free_tlb(tlb, token, addr); 428 tlb->mm->nr_ptes--; 429 } 430 431 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 432 unsigned long addr, unsigned long end, 433 unsigned long floor, unsigned long ceiling) 434 { 435 pmd_t *pmd; 436 unsigned long next; 437 unsigned long start; 438 439 start = addr; 440 pmd = pmd_offset(pud, addr); 441 do { 442 next = pmd_addr_end(addr, end); 443 if (pmd_none_or_clear_bad(pmd)) 444 continue; 445 free_pte_range(tlb, pmd, addr); 446 } while (pmd++, addr = next, addr != end); 447 448 start &= PUD_MASK; 449 if (start < floor) 450 return; 451 if (ceiling) { 452 ceiling &= PUD_MASK; 453 if (!ceiling) 454 return; 455 } 456 if (end - 1 > ceiling - 1) 457 return; 458 459 pmd = pmd_offset(pud, start); 460 pud_clear(pud); 461 pmd_free_tlb(tlb, pmd, start); 462 } 463 464 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 465 unsigned long addr, unsigned long end, 466 unsigned long floor, unsigned long ceiling) 467 { 468 pud_t *pud; 469 unsigned long next; 470 unsigned long start; 471 472 start = addr; 473 pud = pud_offset(pgd, addr); 474 do { 475 next = pud_addr_end(addr, end); 476 if (pud_none_or_clear_bad(pud)) 477 continue; 478 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 479 } while (pud++, addr = next, addr != end); 480 481 start &= PGDIR_MASK; 482 if (start < floor) 483 return; 484 if (ceiling) { 485 ceiling &= PGDIR_MASK; 486 if (!ceiling) 487 return; 488 } 489 if (end - 1 > ceiling - 1) 490 return; 491 492 pud = pud_offset(pgd, start); 493 pgd_clear(pgd); 494 pud_free_tlb(tlb, pud, start); 495 } 496 497 /* 498 * This function frees user-level page tables of a process. 499 * 500 * Must be called with pagetable lock held. 501 */ 502 void free_pgd_range(struct mmu_gather *tlb, 503 unsigned long addr, unsigned long end, 504 unsigned long floor, unsigned long ceiling) 505 { 506 pgd_t *pgd; 507 unsigned long next; 508 509 /* 510 * The next few lines have given us lots of grief... 511 * 512 * Why are we testing PMD* at this top level? Because often 513 * there will be no work to do at all, and we'd prefer not to 514 * go all the way down to the bottom just to discover that. 515 * 516 * Why all these "- 1"s? Because 0 represents both the bottom 517 * of the address space and the top of it (using -1 for the 518 * top wouldn't help much: the masks would do the wrong thing). 519 * The rule is that addr 0 and floor 0 refer to the bottom of 520 * the address space, but end 0 and ceiling 0 refer to the top 521 * Comparisons need to use "end - 1" and "ceiling - 1" (though 522 * that end 0 case should be mythical). 523 * 524 * Wherever addr is brought up or ceiling brought down, we must 525 * be careful to reject "the opposite 0" before it confuses the 526 * subsequent tests. But what about where end is brought down 527 * by PMD_SIZE below? no, end can't go down to 0 there. 528 * 529 * Whereas we round start (addr) and ceiling down, by different 530 * masks at different levels, in order to test whether a table 531 * now has no other vmas using it, so can be freed, we don't 532 * bother to round floor or end up - the tests don't need that. 533 */ 534 535 addr &= PMD_MASK; 536 if (addr < floor) { 537 addr += PMD_SIZE; 538 if (!addr) 539 return; 540 } 541 if (ceiling) { 542 ceiling &= PMD_MASK; 543 if (!ceiling) 544 return; 545 } 546 if (end - 1 > ceiling - 1) 547 end -= PMD_SIZE; 548 if (addr > end - 1) 549 return; 550 551 pgd = pgd_offset(tlb->mm, addr); 552 do { 553 next = pgd_addr_end(addr, end); 554 if (pgd_none_or_clear_bad(pgd)) 555 continue; 556 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 557 } while (pgd++, addr = next, addr != end); 558 } 559 560 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 561 unsigned long floor, unsigned long ceiling) 562 { 563 while (vma) { 564 struct vm_area_struct *next = vma->vm_next; 565 unsigned long addr = vma->vm_start; 566 567 /* 568 * Hide vma from rmap and truncate_pagecache before freeing 569 * pgtables 570 */ 571 unlink_anon_vmas(vma); 572 unlink_file_vma(vma); 573 574 if (is_vm_hugetlb_page(vma)) { 575 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 576 floor, next? next->vm_start: ceiling); 577 } else { 578 /* 579 * Optimization: gather nearby vmas into one call down 580 */ 581 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 582 && !is_vm_hugetlb_page(next)) { 583 vma = next; 584 next = vma->vm_next; 585 unlink_anon_vmas(vma); 586 unlink_file_vma(vma); 587 } 588 free_pgd_range(tlb, addr, vma->vm_end, 589 floor, next? next->vm_start: ceiling); 590 } 591 vma = next; 592 } 593 } 594 595 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 596 pmd_t *pmd, unsigned long address) 597 { 598 pgtable_t new = pte_alloc_one(mm, address); 599 int wait_split_huge_page; 600 if (!new) 601 return -ENOMEM; 602 603 /* 604 * Ensure all pte setup (eg. pte page lock and page clearing) are 605 * visible before the pte is made visible to other CPUs by being 606 * put into page tables. 607 * 608 * The other side of the story is the pointer chasing in the page 609 * table walking code (when walking the page table without locking; 610 * ie. most of the time). Fortunately, these data accesses consist 611 * of a chain of data-dependent loads, meaning most CPUs (alpha 612 * being the notable exception) will already guarantee loads are 613 * seen in-order. See the alpha page table accessors for the 614 * smp_read_barrier_depends() barriers in page table walking code. 615 */ 616 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 617 618 spin_lock(&mm->page_table_lock); 619 wait_split_huge_page = 0; 620 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 621 mm->nr_ptes++; 622 pmd_populate(mm, pmd, new); 623 new = NULL; 624 } else if (unlikely(pmd_trans_splitting(*pmd))) 625 wait_split_huge_page = 1; 626 spin_unlock(&mm->page_table_lock); 627 if (new) 628 pte_free(mm, new); 629 if (wait_split_huge_page) 630 wait_split_huge_page(vma->anon_vma, pmd); 631 return 0; 632 } 633 634 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 635 { 636 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 637 if (!new) 638 return -ENOMEM; 639 640 smp_wmb(); /* See comment in __pte_alloc */ 641 642 spin_lock(&init_mm.page_table_lock); 643 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 644 pmd_populate_kernel(&init_mm, pmd, new); 645 new = NULL; 646 } else 647 VM_BUG_ON(pmd_trans_splitting(*pmd)); 648 spin_unlock(&init_mm.page_table_lock); 649 if (new) 650 pte_free_kernel(&init_mm, new); 651 return 0; 652 } 653 654 static inline void init_rss_vec(int *rss) 655 { 656 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 657 } 658 659 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 660 { 661 int i; 662 663 if (current->mm == mm) 664 sync_mm_rss(current, mm); 665 for (i = 0; i < NR_MM_COUNTERS; i++) 666 if (rss[i]) 667 add_mm_counter(mm, i, rss[i]); 668 } 669 670 /* 671 * This function is called to print an error when a bad pte 672 * is found. For example, we might have a PFN-mapped pte in 673 * a region that doesn't allow it. 674 * 675 * The calling function must still handle the error. 676 */ 677 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 678 pte_t pte, struct page *page) 679 { 680 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 681 pud_t *pud = pud_offset(pgd, addr); 682 pmd_t *pmd = pmd_offset(pud, addr); 683 struct address_space *mapping; 684 pgoff_t index; 685 static unsigned long resume; 686 static unsigned long nr_shown; 687 static unsigned long nr_unshown; 688 689 /* 690 * Allow a burst of 60 reports, then keep quiet for that minute; 691 * or allow a steady drip of one report per second. 692 */ 693 if (nr_shown == 60) { 694 if (time_before(jiffies, resume)) { 695 nr_unshown++; 696 return; 697 } 698 if (nr_unshown) { 699 printk(KERN_ALERT 700 "BUG: Bad page map: %lu messages suppressed\n", 701 nr_unshown); 702 nr_unshown = 0; 703 } 704 nr_shown = 0; 705 } 706 if (nr_shown++ == 0) 707 resume = jiffies + 60 * HZ; 708 709 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 710 index = linear_page_index(vma, addr); 711 712 printk(KERN_ALERT 713 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 714 current->comm, 715 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 716 if (page) 717 dump_page(page); 718 printk(KERN_ALERT 719 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 720 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 721 /* 722 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 723 */ 724 if (vma->vm_ops) 725 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 726 (unsigned long)vma->vm_ops->fault); 727 if (vma->vm_file && vma->vm_file->f_op) 728 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 729 (unsigned long)vma->vm_file->f_op->mmap); 730 dump_stack(); 731 add_taint(TAINT_BAD_PAGE); 732 } 733 734 static inline int is_cow_mapping(vm_flags_t flags) 735 { 736 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 737 } 738 739 #ifndef is_zero_pfn 740 static inline int is_zero_pfn(unsigned long pfn) 741 { 742 return pfn == zero_pfn; 743 } 744 #endif 745 746 #ifndef my_zero_pfn 747 static inline unsigned long my_zero_pfn(unsigned long addr) 748 { 749 return zero_pfn; 750 } 751 #endif 752 753 /* 754 * vm_normal_page -- This function gets the "struct page" associated with a pte. 755 * 756 * "Special" mappings do not wish to be associated with a "struct page" (either 757 * it doesn't exist, or it exists but they don't want to touch it). In this 758 * case, NULL is returned here. "Normal" mappings do have a struct page. 759 * 760 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 761 * pte bit, in which case this function is trivial. Secondly, an architecture 762 * may not have a spare pte bit, which requires a more complicated scheme, 763 * described below. 764 * 765 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 766 * special mapping (even if there are underlying and valid "struct pages"). 767 * COWed pages of a VM_PFNMAP are always normal. 768 * 769 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 770 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 771 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 772 * mapping will always honor the rule 773 * 774 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 775 * 776 * And for normal mappings this is false. 777 * 778 * This restricts such mappings to be a linear translation from virtual address 779 * to pfn. To get around this restriction, we allow arbitrary mappings so long 780 * as the vma is not a COW mapping; in that case, we know that all ptes are 781 * special (because none can have been COWed). 782 * 783 * 784 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 785 * 786 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 787 * page" backing, however the difference is that _all_ pages with a struct 788 * page (that is, those where pfn_valid is true) are refcounted and considered 789 * normal pages by the VM. The disadvantage is that pages are refcounted 790 * (which can be slower and simply not an option for some PFNMAP users). The 791 * advantage is that we don't have to follow the strict linearity rule of 792 * PFNMAP mappings in order to support COWable mappings. 793 * 794 */ 795 #ifdef __HAVE_ARCH_PTE_SPECIAL 796 # define HAVE_PTE_SPECIAL 1 797 #else 798 # define HAVE_PTE_SPECIAL 0 799 #endif 800 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 801 pte_t pte) 802 { 803 unsigned long pfn = pte_pfn(pte); 804 805 if (HAVE_PTE_SPECIAL) { 806 if (likely(!pte_special(pte))) 807 goto check_pfn; 808 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 809 return NULL; 810 if (!is_zero_pfn(pfn)) 811 print_bad_pte(vma, addr, pte, NULL); 812 return NULL; 813 } 814 815 /* !HAVE_PTE_SPECIAL case follows: */ 816 817 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 818 if (vma->vm_flags & VM_MIXEDMAP) { 819 if (!pfn_valid(pfn)) 820 return NULL; 821 goto out; 822 } else { 823 unsigned long off; 824 off = (addr - vma->vm_start) >> PAGE_SHIFT; 825 if (pfn == vma->vm_pgoff + off) 826 return NULL; 827 if (!is_cow_mapping(vma->vm_flags)) 828 return NULL; 829 } 830 } 831 832 if (is_zero_pfn(pfn)) 833 return NULL; 834 check_pfn: 835 if (unlikely(pfn > highest_memmap_pfn)) { 836 print_bad_pte(vma, addr, pte, NULL); 837 return NULL; 838 } 839 840 /* 841 * NOTE! We still have PageReserved() pages in the page tables. 842 * eg. VDSO mappings can cause them to exist. 843 */ 844 out: 845 return pfn_to_page(pfn); 846 } 847 848 /* 849 * copy one vm_area from one task to the other. Assumes the page tables 850 * already present in the new task to be cleared in the whole range 851 * covered by this vma. 852 */ 853 854 static inline unsigned long 855 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 856 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 857 unsigned long addr, int *rss) 858 { 859 unsigned long vm_flags = vma->vm_flags; 860 pte_t pte = *src_pte; 861 struct page *page; 862 863 /* pte contains position in swap or file, so copy. */ 864 if (unlikely(!pte_present(pte))) { 865 if (!pte_file(pte)) { 866 swp_entry_t entry = pte_to_swp_entry(pte); 867 868 if (swap_duplicate(entry) < 0) 869 return entry.val; 870 871 /* make sure dst_mm is on swapoff's mmlist. */ 872 if (unlikely(list_empty(&dst_mm->mmlist))) { 873 spin_lock(&mmlist_lock); 874 if (list_empty(&dst_mm->mmlist)) 875 list_add(&dst_mm->mmlist, 876 &src_mm->mmlist); 877 spin_unlock(&mmlist_lock); 878 } 879 if (likely(!non_swap_entry(entry))) 880 rss[MM_SWAPENTS]++; 881 else if (is_migration_entry(entry)) { 882 page = migration_entry_to_page(entry); 883 884 if (PageAnon(page)) 885 rss[MM_ANONPAGES]++; 886 else 887 rss[MM_FILEPAGES]++; 888 889 if (is_write_migration_entry(entry) && 890 is_cow_mapping(vm_flags)) { 891 /* 892 * COW mappings require pages in both 893 * parent and child to be set to read. 894 */ 895 make_migration_entry_read(&entry); 896 pte = swp_entry_to_pte(entry); 897 set_pte_at(src_mm, addr, src_pte, pte); 898 } 899 } 900 } 901 goto out_set_pte; 902 } 903 904 /* 905 * If it's a COW mapping, write protect it both 906 * in the parent and the child 907 */ 908 if (is_cow_mapping(vm_flags)) { 909 ptep_set_wrprotect(src_mm, addr, src_pte); 910 pte = pte_wrprotect(pte); 911 } 912 913 /* 914 * If it's a shared mapping, mark it clean in 915 * the child 916 */ 917 if (vm_flags & VM_SHARED) 918 pte = pte_mkclean(pte); 919 pte = pte_mkold(pte); 920 921 page = vm_normal_page(vma, addr, pte); 922 if (page) { 923 get_page(page); 924 page_dup_rmap(page); 925 if (PageAnon(page)) 926 rss[MM_ANONPAGES]++; 927 else 928 rss[MM_FILEPAGES]++; 929 } 930 931 out_set_pte: 932 set_pte_at(dst_mm, addr, dst_pte, pte); 933 return 0; 934 } 935 936 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 937 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 938 unsigned long addr, unsigned long end) 939 { 940 pte_t *orig_src_pte, *orig_dst_pte; 941 pte_t *src_pte, *dst_pte; 942 spinlock_t *src_ptl, *dst_ptl; 943 int progress = 0; 944 int rss[NR_MM_COUNTERS]; 945 swp_entry_t entry = (swp_entry_t){0}; 946 947 again: 948 init_rss_vec(rss); 949 950 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 951 if (!dst_pte) 952 return -ENOMEM; 953 src_pte = pte_offset_map(src_pmd, addr); 954 src_ptl = pte_lockptr(src_mm, src_pmd); 955 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 956 orig_src_pte = src_pte; 957 orig_dst_pte = dst_pte; 958 arch_enter_lazy_mmu_mode(); 959 960 do { 961 /* 962 * We are holding two locks at this point - either of them 963 * could generate latencies in another task on another CPU. 964 */ 965 if (progress >= 32) { 966 progress = 0; 967 if (need_resched() || 968 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 969 break; 970 } 971 if (pte_none(*src_pte)) { 972 progress++; 973 continue; 974 } 975 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 976 vma, addr, rss); 977 if (entry.val) 978 break; 979 progress += 8; 980 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 981 982 arch_leave_lazy_mmu_mode(); 983 spin_unlock(src_ptl); 984 pte_unmap(orig_src_pte); 985 add_mm_rss_vec(dst_mm, rss); 986 pte_unmap_unlock(orig_dst_pte, dst_ptl); 987 cond_resched(); 988 989 if (entry.val) { 990 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 991 return -ENOMEM; 992 progress = 0; 993 } 994 if (addr != end) 995 goto again; 996 return 0; 997 } 998 999 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1000 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 1001 unsigned long addr, unsigned long end) 1002 { 1003 pmd_t *src_pmd, *dst_pmd; 1004 unsigned long next; 1005 1006 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1007 if (!dst_pmd) 1008 return -ENOMEM; 1009 src_pmd = pmd_offset(src_pud, addr); 1010 do { 1011 next = pmd_addr_end(addr, end); 1012 if (pmd_trans_huge(*src_pmd)) { 1013 int err; 1014 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 1015 err = copy_huge_pmd(dst_mm, src_mm, 1016 dst_pmd, src_pmd, addr, vma); 1017 if (err == -ENOMEM) 1018 return -ENOMEM; 1019 if (!err) 1020 continue; 1021 /* fall through */ 1022 } 1023 if (pmd_none_or_clear_bad(src_pmd)) 1024 continue; 1025 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1026 vma, addr, next)) 1027 return -ENOMEM; 1028 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1029 return 0; 1030 } 1031 1032 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1033 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1034 unsigned long addr, unsigned long end) 1035 { 1036 pud_t *src_pud, *dst_pud; 1037 unsigned long next; 1038 1039 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1040 if (!dst_pud) 1041 return -ENOMEM; 1042 src_pud = pud_offset(src_pgd, addr); 1043 do { 1044 next = pud_addr_end(addr, end); 1045 if (pud_none_or_clear_bad(src_pud)) 1046 continue; 1047 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1048 vma, addr, next)) 1049 return -ENOMEM; 1050 } while (dst_pud++, src_pud++, addr = next, addr != end); 1051 return 0; 1052 } 1053 1054 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1055 struct vm_area_struct *vma) 1056 { 1057 pgd_t *src_pgd, *dst_pgd; 1058 unsigned long next; 1059 unsigned long addr = vma->vm_start; 1060 unsigned long end = vma->vm_end; 1061 int ret; 1062 1063 /* 1064 * Don't copy ptes where a page fault will fill them correctly. 1065 * Fork becomes much lighter when there are big shared or private 1066 * readonly mappings. The tradeoff is that copy_page_range is more 1067 * efficient than faulting. 1068 */ 1069 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 1070 if (!vma->anon_vma) 1071 return 0; 1072 } 1073 1074 if (is_vm_hugetlb_page(vma)) 1075 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1076 1077 if (unlikely(is_pfn_mapping(vma))) { 1078 /* 1079 * We do not free on error cases below as remove_vma 1080 * gets called on error from higher level routine 1081 */ 1082 ret = track_pfn_vma_copy(vma); 1083 if (ret) 1084 return ret; 1085 } 1086 1087 /* 1088 * We need to invalidate the secondary MMU mappings only when 1089 * there could be a permission downgrade on the ptes of the 1090 * parent mm. And a permission downgrade will only happen if 1091 * is_cow_mapping() returns true. 1092 */ 1093 if (is_cow_mapping(vma->vm_flags)) 1094 mmu_notifier_invalidate_range_start(src_mm, addr, end); 1095 1096 ret = 0; 1097 dst_pgd = pgd_offset(dst_mm, addr); 1098 src_pgd = pgd_offset(src_mm, addr); 1099 do { 1100 next = pgd_addr_end(addr, end); 1101 if (pgd_none_or_clear_bad(src_pgd)) 1102 continue; 1103 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1104 vma, addr, next))) { 1105 ret = -ENOMEM; 1106 break; 1107 } 1108 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1109 1110 if (is_cow_mapping(vma->vm_flags)) 1111 mmu_notifier_invalidate_range_end(src_mm, 1112 vma->vm_start, end); 1113 return ret; 1114 } 1115 1116 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1117 struct vm_area_struct *vma, pmd_t *pmd, 1118 unsigned long addr, unsigned long end, 1119 struct zap_details *details) 1120 { 1121 struct mm_struct *mm = tlb->mm; 1122 int force_flush = 0; 1123 int rss[NR_MM_COUNTERS]; 1124 spinlock_t *ptl; 1125 pte_t *start_pte; 1126 pte_t *pte; 1127 1128 again: 1129 init_rss_vec(rss); 1130 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1131 pte = start_pte; 1132 arch_enter_lazy_mmu_mode(); 1133 do { 1134 pte_t ptent = *pte; 1135 if (pte_none(ptent)) { 1136 continue; 1137 } 1138 1139 if (pte_present(ptent)) { 1140 struct page *page; 1141 1142 page = vm_normal_page(vma, addr, ptent); 1143 if (unlikely(details) && page) { 1144 /* 1145 * unmap_shared_mapping_pages() wants to 1146 * invalidate cache without truncating: 1147 * unmap shared but keep private pages. 1148 */ 1149 if (details->check_mapping && 1150 details->check_mapping != page->mapping) 1151 continue; 1152 /* 1153 * Each page->index must be checked when 1154 * invalidating or truncating nonlinear. 1155 */ 1156 if (details->nonlinear_vma && 1157 (page->index < details->first_index || 1158 page->index > details->last_index)) 1159 continue; 1160 } 1161 ptent = ptep_get_and_clear_full(mm, addr, pte, 1162 tlb->fullmm); 1163 tlb_remove_tlb_entry(tlb, pte, addr); 1164 if (unlikely(!page)) 1165 continue; 1166 if (unlikely(details) && details->nonlinear_vma 1167 && linear_page_index(details->nonlinear_vma, 1168 addr) != page->index) 1169 set_pte_at(mm, addr, pte, 1170 pgoff_to_pte(page->index)); 1171 if (PageAnon(page)) 1172 rss[MM_ANONPAGES]--; 1173 else { 1174 if (pte_dirty(ptent)) 1175 set_page_dirty(page); 1176 if (pte_young(ptent) && 1177 likely(!VM_SequentialReadHint(vma))) 1178 mark_page_accessed(page); 1179 rss[MM_FILEPAGES]--; 1180 } 1181 page_remove_rmap(page); 1182 if (unlikely(page_mapcount(page) < 0)) 1183 print_bad_pte(vma, addr, ptent, page); 1184 force_flush = !__tlb_remove_page(tlb, page); 1185 if (force_flush) 1186 break; 1187 continue; 1188 } 1189 /* 1190 * If details->check_mapping, we leave swap entries; 1191 * if details->nonlinear_vma, we leave file entries. 1192 */ 1193 if (unlikely(details)) 1194 continue; 1195 if (pte_file(ptent)) { 1196 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1197 print_bad_pte(vma, addr, ptent, NULL); 1198 } else { 1199 swp_entry_t entry = pte_to_swp_entry(ptent); 1200 1201 if (!non_swap_entry(entry)) 1202 rss[MM_SWAPENTS]--; 1203 else if (is_migration_entry(entry)) { 1204 struct page *page; 1205 1206 page = migration_entry_to_page(entry); 1207 1208 if (PageAnon(page)) 1209 rss[MM_ANONPAGES]--; 1210 else 1211 rss[MM_FILEPAGES]--; 1212 } 1213 if (unlikely(!free_swap_and_cache(entry))) 1214 print_bad_pte(vma, addr, ptent, NULL); 1215 } 1216 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1217 } while (pte++, addr += PAGE_SIZE, addr != end); 1218 1219 add_mm_rss_vec(mm, rss); 1220 arch_leave_lazy_mmu_mode(); 1221 pte_unmap_unlock(start_pte, ptl); 1222 1223 /* 1224 * mmu_gather ran out of room to batch pages, we break out of 1225 * the PTE lock to avoid doing the potential expensive TLB invalidate 1226 * and page-free while holding it. 1227 */ 1228 if (force_flush) { 1229 force_flush = 0; 1230 tlb_flush_mmu(tlb); 1231 if (addr != end) 1232 goto again; 1233 } 1234 1235 return addr; 1236 } 1237 1238 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1239 struct vm_area_struct *vma, pud_t *pud, 1240 unsigned long addr, unsigned long end, 1241 struct zap_details *details) 1242 { 1243 pmd_t *pmd; 1244 unsigned long next; 1245 1246 pmd = pmd_offset(pud, addr); 1247 do { 1248 next = pmd_addr_end(addr, end); 1249 if (pmd_trans_huge(*pmd)) { 1250 if (next-addr != HPAGE_PMD_SIZE) { 1251 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); 1252 split_huge_page_pmd(vma->vm_mm, pmd); 1253 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1254 continue; 1255 /* fall through */ 1256 } 1257 if (pmd_none_or_clear_bad(pmd)) 1258 continue; 1259 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1260 cond_resched(); 1261 } while (pmd++, addr = next, addr != end); 1262 1263 return addr; 1264 } 1265 1266 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1267 struct vm_area_struct *vma, pgd_t *pgd, 1268 unsigned long addr, unsigned long end, 1269 struct zap_details *details) 1270 { 1271 pud_t *pud; 1272 unsigned long next; 1273 1274 pud = pud_offset(pgd, addr); 1275 do { 1276 next = pud_addr_end(addr, end); 1277 if (pud_none_or_clear_bad(pud)) 1278 continue; 1279 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1280 } while (pud++, addr = next, addr != end); 1281 1282 return addr; 1283 } 1284 1285 static unsigned long unmap_page_range(struct mmu_gather *tlb, 1286 struct vm_area_struct *vma, 1287 unsigned long addr, unsigned long end, 1288 struct zap_details *details) 1289 { 1290 pgd_t *pgd; 1291 unsigned long next; 1292 1293 if (details && !details->check_mapping && !details->nonlinear_vma) 1294 details = NULL; 1295 1296 BUG_ON(addr >= end); 1297 mem_cgroup_uncharge_start(); 1298 tlb_start_vma(tlb, vma); 1299 pgd = pgd_offset(vma->vm_mm, addr); 1300 do { 1301 next = pgd_addr_end(addr, end); 1302 if (pgd_none_or_clear_bad(pgd)) 1303 continue; 1304 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1305 } while (pgd++, addr = next, addr != end); 1306 tlb_end_vma(tlb, vma); 1307 mem_cgroup_uncharge_end(); 1308 1309 return addr; 1310 } 1311 1312 /** 1313 * unmap_vmas - unmap a range of memory covered by a list of vma's 1314 * @tlb: address of the caller's struct mmu_gather 1315 * @vma: the starting vma 1316 * @start_addr: virtual address at which to start unmapping 1317 * @end_addr: virtual address at which to end unmapping 1318 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 1319 * @details: details of nonlinear truncation or shared cache invalidation 1320 * 1321 * Returns the end address of the unmapping (restart addr if interrupted). 1322 * 1323 * Unmap all pages in the vma list. 1324 * 1325 * Only addresses between `start' and `end' will be unmapped. 1326 * 1327 * The VMA list must be sorted in ascending virtual address order. 1328 * 1329 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1330 * range after unmap_vmas() returns. So the only responsibility here is to 1331 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1332 * drops the lock and schedules. 1333 */ 1334 unsigned long unmap_vmas(struct mmu_gather *tlb, 1335 struct vm_area_struct *vma, unsigned long start_addr, 1336 unsigned long end_addr, unsigned long *nr_accounted, 1337 struct zap_details *details) 1338 { 1339 unsigned long start = start_addr; 1340 struct mm_struct *mm = vma->vm_mm; 1341 1342 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1343 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 1344 unsigned long end; 1345 1346 start = max(vma->vm_start, start_addr); 1347 if (start >= vma->vm_end) 1348 continue; 1349 end = min(vma->vm_end, end_addr); 1350 if (end <= vma->vm_start) 1351 continue; 1352 1353 if (vma->vm_flags & VM_ACCOUNT) 1354 *nr_accounted += (end - start) >> PAGE_SHIFT; 1355 1356 if (unlikely(is_pfn_mapping(vma))) 1357 untrack_pfn_vma(vma, 0, 0); 1358 1359 while (start != end) { 1360 if (unlikely(is_vm_hugetlb_page(vma))) { 1361 /* 1362 * It is undesirable to test vma->vm_file as it 1363 * should be non-null for valid hugetlb area. 1364 * However, vm_file will be NULL in the error 1365 * cleanup path of do_mmap_pgoff. When 1366 * hugetlbfs ->mmap method fails, 1367 * do_mmap_pgoff() nullifies vma->vm_file 1368 * before calling this function to clean up. 1369 * Since no pte has actually been setup, it is 1370 * safe to do nothing in this case. 1371 */ 1372 if (vma->vm_file) 1373 unmap_hugepage_range(vma, start, end, NULL); 1374 1375 start = end; 1376 } else 1377 start = unmap_page_range(tlb, vma, start, end, details); 1378 } 1379 } 1380 1381 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1382 return start; /* which is now the end (or restart) address */ 1383 } 1384 1385 /** 1386 * zap_page_range - remove user pages in a given range 1387 * @vma: vm_area_struct holding the applicable pages 1388 * @address: starting address of pages to zap 1389 * @size: number of bytes to zap 1390 * @details: details of nonlinear truncation or shared cache invalidation 1391 */ 1392 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1393 unsigned long size, struct zap_details *details) 1394 { 1395 struct mm_struct *mm = vma->vm_mm; 1396 struct mmu_gather tlb; 1397 unsigned long end = address + size; 1398 unsigned long nr_accounted = 0; 1399 1400 lru_add_drain(); 1401 tlb_gather_mmu(&tlb, mm, 0); 1402 update_hiwater_rss(mm); 1403 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1404 tlb_finish_mmu(&tlb, address, end); 1405 return end; 1406 } 1407 1408 /** 1409 * zap_vma_ptes - remove ptes mapping the vma 1410 * @vma: vm_area_struct holding ptes to be zapped 1411 * @address: starting address of pages to zap 1412 * @size: number of bytes to zap 1413 * 1414 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1415 * 1416 * The entire address range must be fully contained within the vma. 1417 * 1418 * Returns 0 if successful. 1419 */ 1420 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1421 unsigned long size) 1422 { 1423 if (address < vma->vm_start || address + size > vma->vm_end || 1424 !(vma->vm_flags & VM_PFNMAP)) 1425 return -1; 1426 zap_page_range(vma, address, size, NULL); 1427 return 0; 1428 } 1429 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1430 1431 /** 1432 * follow_page - look up a page descriptor from a user-virtual address 1433 * @vma: vm_area_struct mapping @address 1434 * @address: virtual address to look up 1435 * @flags: flags modifying lookup behaviour 1436 * 1437 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1438 * 1439 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1440 * an error pointer if there is a mapping to something not represented 1441 * by a page descriptor (see also vm_normal_page()). 1442 */ 1443 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1444 unsigned int flags) 1445 { 1446 pgd_t *pgd; 1447 pud_t *pud; 1448 pmd_t *pmd; 1449 pte_t *ptep, pte; 1450 spinlock_t *ptl; 1451 struct page *page; 1452 struct mm_struct *mm = vma->vm_mm; 1453 1454 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1455 if (!IS_ERR(page)) { 1456 BUG_ON(flags & FOLL_GET); 1457 goto out; 1458 } 1459 1460 page = NULL; 1461 pgd = pgd_offset(mm, address); 1462 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1463 goto no_page_table; 1464 1465 pud = pud_offset(pgd, address); 1466 if (pud_none(*pud)) 1467 goto no_page_table; 1468 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1469 BUG_ON(flags & FOLL_GET); 1470 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1471 goto out; 1472 } 1473 if (unlikely(pud_bad(*pud))) 1474 goto no_page_table; 1475 1476 pmd = pmd_offset(pud, address); 1477 if (pmd_none(*pmd)) 1478 goto no_page_table; 1479 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1480 BUG_ON(flags & FOLL_GET); 1481 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1482 goto out; 1483 } 1484 if (pmd_trans_huge(*pmd)) { 1485 if (flags & FOLL_SPLIT) { 1486 split_huge_page_pmd(mm, pmd); 1487 goto split_fallthrough; 1488 } 1489 spin_lock(&mm->page_table_lock); 1490 if (likely(pmd_trans_huge(*pmd))) { 1491 if (unlikely(pmd_trans_splitting(*pmd))) { 1492 spin_unlock(&mm->page_table_lock); 1493 wait_split_huge_page(vma->anon_vma, pmd); 1494 } else { 1495 page = follow_trans_huge_pmd(mm, address, 1496 pmd, flags); 1497 spin_unlock(&mm->page_table_lock); 1498 goto out; 1499 } 1500 } else 1501 spin_unlock(&mm->page_table_lock); 1502 /* fall through */ 1503 } 1504 split_fallthrough: 1505 if (unlikely(pmd_bad(*pmd))) 1506 goto no_page_table; 1507 1508 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1509 1510 pte = *ptep; 1511 if (!pte_present(pte)) 1512 goto no_page; 1513 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1514 goto unlock; 1515 1516 page = vm_normal_page(vma, address, pte); 1517 if (unlikely(!page)) { 1518 if ((flags & FOLL_DUMP) || 1519 !is_zero_pfn(pte_pfn(pte))) 1520 goto bad_page; 1521 page = pte_page(pte); 1522 } 1523 1524 if (flags & FOLL_GET) 1525 get_page_foll(page); 1526 if (flags & FOLL_TOUCH) { 1527 if ((flags & FOLL_WRITE) && 1528 !pte_dirty(pte) && !PageDirty(page)) 1529 set_page_dirty(page); 1530 /* 1531 * pte_mkyoung() would be more correct here, but atomic care 1532 * is needed to avoid losing the dirty bit: it is easier to use 1533 * mark_page_accessed(). 1534 */ 1535 mark_page_accessed(page); 1536 } 1537 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1538 /* 1539 * The preliminary mapping check is mainly to avoid the 1540 * pointless overhead of lock_page on the ZERO_PAGE 1541 * which might bounce very badly if there is contention. 1542 * 1543 * If the page is already locked, we don't need to 1544 * handle it now - vmscan will handle it later if and 1545 * when it attempts to reclaim the page. 1546 */ 1547 if (page->mapping && trylock_page(page)) { 1548 lru_add_drain(); /* push cached pages to LRU */ 1549 /* 1550 * Because we lock page here and migration is 1551 * blocked by the pte's page reference, we need 1552 * only check for file-cache page truncation. 1553 */ 1554 if (page->mapping) 1555 mlock_vma_page(page); 1556 unlock_page(page); 1557 } 1558 } 1559 unlock: 1560 pte_unmap_unlock(ptep, ptl); 1561 out: 1562 return page; 1563 1564 bad_page: 1565 pte_unmap_unlock(ptep, ptl); 1566 return ERR_PTR(-EFAULT); 1567 1568 no_page: 1569 pte_unmap_unlock(ptep, ptl); 1570 if (!pte_none(pte)) 1571 return page; 1572 1573 no_page_table: 1574 /* 1575 * When core dumping an enormous anonymous area that nobody 1576 * has touched so far, we don't want to allocate unnecessary pages or 1577 * page tables. Return error instead of NULL to skip handle_mm_fault, 1578 * then get_dump_page() will return NULL to leave a hole in the dump. 1579 * But we can only make this optimization where a hole would surely 1580 * be zero-filled if handle_mm_fault() actually did handle it. 1581 */ 1582 if ((flags & FOLL_DUMP) && 1583 (!vma->vm_ops || !vma->vm_ops->fault)) 1584 return ERR_PTR(-EFAULT); 1585 return page; 1586 } 1587 1588 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1589 { 1590 return stack_guard_page_start(vma, addr) || 1591 stack_guard_page_end(vma, addr+PAGE_SIZE); 1592 } 1593 1594 /** 1595 * __get_user_pages() - pin user pages in memory 1596 * @tsk: task_struct of target task 1597 * @mm: mm_struct of target mm 1598 * @start: starting user address 1599 * @nr_pages: number of pages from start to pin 1600 * @gup_flags: flags modifying pin behaviour 1601 * @pages: array that receives pointers to the pages pinned. 1602 * Should be at least nr_pages long. Or NULL, if caller 1603 * only intends to ensure the pages are faulted in. 1604 * @vmas: array of pointers to vmas corresponding to each page. 1605 * Or NULL if the caller does not require them. 1606 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1607 * 1608 * Returns number of pages pinned. This may be fewer than the number 1609 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1610 * were pinned, returns -errno. Each page returned must be released 1611 * with a put_page() call when it is finished with. vmas will only 1612 * remain valid while mmap_sem is held. 1613 * 1614 * Must be called with mmap_sem held for read or write. 1615 * 1616 * __get_user_pages walks a process's page tables and takes a reference to 1617 * each struct page that each user address corresponds to at a given 1618 * instant. That is, it takes the page that would be accessed if a user 1619 * thread accesses the given user virtual address at that instant. 1620 * 1621 * This does not guarantee that the page exists in the user mappings when 1622 * __get_user_pages returns, and there may even be a completely different 1623 * page there in some cases (eg. if mmapped pagecache has been invalidated 1624 * and subsequently re faulted). However it does guarantee that the page 1625 * won't be freed completely. And mostly callers simply care that the page 1626 * contains data that was valid *at some point in time*. Typically, an IO 1627 * or similar operation cannot guarantee anything stronger anyway because 1628 * locks can't be held over the syscall boundary. 1629 * 1630 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1631 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1632 * appropriate) must be called after the page is finished with, and 1633 * before put_page is called. 1634 * 1635 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1636 * or mmap_sem contention, and if waiting is needed to pin all pages, 1637 * *@nonblocking will be set to 0. 1638 * 1639 * In most cases, get_user_pages or get_user_pages_fast should be used 1640 * instead of __get_user_pages. __get_user_pages should be used only if 1641 * you need some special @gup_flags. 1642 */ 1643 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1644 unsigned long start, int nr_pages, unsigned int gup_flags, 1645 struct page **pages, struct vm_area_struct **vmas, 1646 int *nonblocking) 1647 { 1648 int i; 1649 unsigned long vm_flags; 1650 1651 if (nr_pages <= 0) 1652 return 0; 1653 1654 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1655 1656 /* 1657 * Require read or write permissions. 1658 * If FOLL_FORCE is set, we only require the "MAY" flags. 1659 */ 1660 vm_flags = (gup_flags & FOLL_WRITE) ? 1661 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1662 vm_flags &= (gup_flags & FOLL_FORCE) ? 1663 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1664 i = 0; 1665 1666 do { 1667 struct vm_area_struct *vma; 1668 1669 vma = find_extend_vma(mm, start); 1670 if (!vma && in_gate_area(mm, start)) { 1671 unsigned long pg = start & PAGE_MASK; 1672 pgd_t *pgd; 1673 pud_t *pud; 1674 pmd_t *pmd; 1675 pte_t *pte; 1676 1677 /* user gate pages are read-only */ 1678 if (gup_flags & FOLL_WRITE) 1679 return i ? : -EFAULT; 1680 if (pg > TASK_SIZE) 1681 pgd = pgd_offset_k(pg); 1682 else 1683 pgd = pgd_offset_gate(mm, pg); 1684 BUG_ON(pgd_none(*pgd)); 1685 pud = pud_offset(pgd, pg); 1686 BUG_ON(pud_none(*pud)); 1687 pmd = pmd_offset(pud, pg); 1688 if (pmd_none(*pmd)) 1689 return i ? : -EFAULT; 1690 VM_BUG_ON(pmd_trans_huge(*pmd)); 1691 pte = pte_offset_map(pmd, pg); 1692 if (pte_none(*pte)) { 1693 pte_unmap(pte); 1694 return i ? : -EFAULT; 1695 } 1696 vma = get_gate_vma(mm); 1697 if (pages) { 1698 struct page *page; 1699 1700 page = vm_normal_page(vma, start, *pte); 1701 if (!page) { 1702 if (!(gup_flags & FOLL_DUMP) && 1703 is_zero_pfn(pte_pfn(*pte))) 1704 page = pte_page(*pte); 1705 else { 1706 pte_unmap(pte); 1707 return i ? : -EFAULT; 1708 } 1709 } 1710 pages[i] = page; 1711 get_page(page); 1712 } 1713 pte_unmap(pte); 1714 goto next_page; 1715 } 1716 1717 if (!vma || 1718 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1719 !(vm_flags & vma->vm_flags)) 1720 return i ? : -EFAULT; 1721 1722 if (is_vm_hugetlb_page(vma)) { 1723 i = follow_hugetlb_page(mm, vma, pages, vmas, 1724 &start, &nr_pages, i, gup_flags); 1725 continue; 1726 } 1727 1728 do { 1729 struct page *page; 1730 unsigned int foll_flags = gup_flags; 1731 1732 /* 1733 * If we have a pending SIGKILL, don't keep faulting 1734 * pages and potentially allocating memory. 1735 */ 1736 if (unlikely(fatal_signal_pending(current))) 1737 return i ? i : -ERESTARTSYS; 1738 1739 cond_resched(); 1740 while (!(page = follow_page(vma, start, foll_flags))) { 1741 int ret; 1742 unsigned int fault_flags = 0; 1743 1744 /* For mlock, just skip the stack guard page. */ 1745 if (foll_flags & FOLL_MLOCK) { 1746 if (stack_guard_page(vma, start)) 1747 goto next_page; 1748 } 1749 if (foll_flags & FOLL_WRITE) 1750 fault_flags |= FAULT_FLAG_WRITE; 1751 if (nonblocking) 1752 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1753 if (foll_flags & FOLL_NOWAIT) 1754 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1755 1756 ret = handle_mm_fault(mm, vma, start, 1757 fault_flags); 1758 1759 if (ret & VM_FAULT_ERROR) { 1760 if (ret & VM_FAULT_OOM) 1761 return i ? i : -ENOMEM; 1762 if (ret & (VM_FAULT_HWPOISON | 1763 VM_FAULT_HWPOISON_LARGE)) { 1764 if (i) 1765 return i; 1766 else if (gup_flags & FOLL_HWPOISON) 1767 return -EHWPOISON; 1768 else 1769 return -EFAULT; 1770 } 1771 if (ret & VM_FAULT_SIGBUS) 1772 return i ? i : -EFAULT; 1773 BUG(); 1774 } 1775 1776 if (tsk) { 1777 if (ret & VM_FAULT_MAJOR) 1778 tsk->maj_flt++; 1779 else 1780 tsk->min_flt++; 1781 } 1782 1783 if (ret & VM_FAULT_RETRY) { 1784 if (nonblocking) 1785 *nonblocking = 0; 1786 return i; 1787 } 1788 1789 /* 1790 * The VM_FAULT_WRITE bit tells us that 1791 * do_wp_page has broken COW when necessary, 1792 * even if maybe_mkwrite decided not to set 1793 * pte_write. We can thus safely do subsequent 1794 * page lookups as if they were reads. But only 1795 * do so when looping for pte_write is futile: 1796 * in some cases userspace may also be wanting 1797 * to write to the gotten user page, which a 1798 * read fault here might prevent (a readonly 1799 * page might get reCOWed by userspace write). 1800 */ 1801 if ((ret & VM_FAULT_WRITE) && 1802 !(vma->vm_flags & VM_WRITE)) 1803 foll_flags &= ~FOLL_WRITE; 1804 1805 cond_resched(); 1806 } 1807 if (IS_ERR(page)) 1808 return i ? i : PTR_ERR(page); 1809 if (pages) { 1810 pages[i] = page; 1811 1812 flush_anon_page(vma, page, start); 1813 flush_dcache_page(page); 1814 } 1815 next_page: 1816 if (vmas) 1817 vmas[i] = vma; 1818 i++; 1819 start += PAGE_SIZE; 1820 nr_pages--; 1821 } while (nr_pages && start < vma->vm_end); 1822 } while (nr_pages); 1823 return i; 1824 } 1825 EXPORT_SYMBOL(__get_user_pages); 1826 1827 /* 1828 * fixup_user_fault() - manually resolve a user page fault 1829 * @tsk: the task_struct to use for page fault accounting, or 1830 * NULL if faults are not to be recorded. 1831 * @mm: mm_struct of target mm 1832 * @address: user address 1833 * @fault_flags:flags to pass down to handle_mm_fault() 1834 * 1835 * This is meant to be called in the specific scenario where for locking reasons 1836 * we try to access user memory in atomic context (within a pagefault_disable() 1837 * section), this returns -EFAULT, and we want to resolve the user fault before 1838 * trying again. 1839 * 1840 * Typically this is meant to be used by the futex code. 1841 * 1842 * The main difference with get_user_pages() is that this function will 1843 * unconditionally call handle_mm_fault() which will in turn perform all the 1844 * necessary SW fixup of the dirty and young bits in the PTE, while 1845 * handle_mm_fault() only guarantees to update these in the struct page. 1846 * 1847 * This is important for some architectures where those bits also gate the 1848 * access permission to the page because they are maintained in software. On 1849 * such architectures, gup() will not be enough to make a subsequent access 1850 * succeed. 1851 * 1852 * This should be called with the mm_sem held for read. 1853 */ 1854 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1855 unsigned long address, unsigned int fault_flags) 1856 { 1857 struct vm_area_struct *vma; 1858 int ret; 1859 1860 vma = find_extend_vma(mm, address); 1861 if (!vma || address < vma->vm_start) 1862 return -EFAULT; 1863 1864 ret = handle_mm_fault(mm, vma, address, fault_flags); 1865 if (ret & VM_FAULT_ERROR) { 1866 if (ret & VM_FAULT_OOM) 1867 return -ENOMEM; 1868 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 1869 return -EHWPOISON; 1870 if (ret & VM_FAULT_SIGBUS) 1871 return -EFAULT; 1872 BUG(); 1873 } 1874 if (tsk) { 1875 if (ret & VM_FAULT_MAJOR) 1876 tsk->maj_flt++; 1877 else 1878 tsk->min_flt++; 1879 } 1880 return 0; 1881 } 1882 1883 /* 1884 * get_user_pages() - pin user pages in memory 1885 * @tsk: the task_struct to use for page fault accounting, or 1886 * NULL if faults are not to be recorded. 1887 * @mm: mm_struct of target mm 1888 * @start: starting user address 1889 * @nr_pages: number of pages from start to pin 1890 * @write: whether pages will be written to by the caller 1891 * @force: whether to force write access even if user mapping is 1892 * readonly. This will result in the page being COWed even 1893 * in MAP_SHARED mappings. You do not want this. 1894 * @pages: array that receives pointers to the pages pinned. 1895 * Should be at least nr_pages long. Or NULL, if caller 1896 * only intends to ensure the pages are faulted in. 1897 * @vmas: array of pointers to vmas corresponding to each page. 1898 * Or NULL if the caller does not require them. 1899 * 1900 * Returns number of pages pinned. This may be fewer than the number 1901 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1902 * were pinned, returns -errno. Each page returned must be released 1903 * with a put_page() call when it is finished with. vmas will only 1904 * remain valid while mmap_sem is held. 1905 * 1906 * Must be called with mmap_sem held for read or write. 1907 * 1908 * get_user_pages walks a process's page tables and takes a reference to 1909 * each struct page that each user address corresponds to at a given 1910 * instant. That is, it takes the page that would be accessed if a user 1911 * thread accesses the given user virtual address at that instant. 1912 * 1913 * This does not guarantee that the page exists in the user mappings when 1914 * get_user_pages returns, and there may even be a completely different 1915 * page there in some cases (eg. if mmapped pagecache has been invalidated 1916 * and subsequently re faulted). However it does guarantee that the page 1917 * won't be freed completely. And mostly callers simply care that the page 1918 * contains data that was valid *at some point in time*. Typically, an IO 1919 * or similar operation cannot guarantee anything stronger anyway because 1920 * locks can't be held over the syscall boundary. 1921 * 1922 * If write=0, the page must not be written to. If the page is written to, 1923 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1924 * after the page is finished with, and before put_page is called. 1925 * 1926 * get_user_pages is typically used for fewer-copy IO operations, to get a 1927 * handle on the memory by some means other than accesses via the user virtual 1928 * addresses. The pages may be submitted for DMA to devices or accessed via 1929 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1930 * use the correct cache flushing APIs. 1931 * 1932 * See also get_user_pages_fast, for performance critical applications. 1933 */ 1934 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1935 unsigned long start, int nr_pages, int write, int force, 1936 struct page **pages, struct vm_area_struct **vmas) 1937 { 1938 int flags = FOLL_TOUCH; 1939 1940 if (pages) 1941 flags |= FOLL_GET; 1942 if (write) 1943 flags |= FOLL_WRITE; 1944 if (force) 1945 flags |= FOLL_FORCE; 1946 1947 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 1948 NULL); 1949 } 1950 EXPORT_SYMBOL(get_user_pages); 1951 1952 /** 1953 * get_dump_page() - pin user page in memory while writing it to core dump 1954 * @addr: user address 1955 * 1956 * Returns struct page pointer of user page pinned for dump, 1957 * to be freed afterwards by page_cache_release() or put_page(). 1958 * 1959 * Returns NULL on any kind of failure - a hole must then be inserted into 1960 * the corefile, to preserve alignment with its headers; and also returns 1961 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1962 * allowing a hole to be left in the corefile to save diskspace. 1963 * 1964 * Called without mmap_sem, but after all other threads have been killed. 1965 */ 1966 #ifdef CONFIG_ELF_CORE 1967 struct page *get_dump_page(unsigned long addr) 1968 { 1969 struct vm_area_struct *vma; 1970 struct page *page; 1971 1972 if (__get_user_pages(current, current->mm, addr, 1, 1973 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1974 NULL) < 1) 1975 return NULL; 1976 flush_cache_page(vma, addr, page_to_pfn(page)); 1977 return page; 1978 } 1979 #endif /* CONFIG_ELF_CORE */ 1980 1981 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1982 spinlock_t **ptl) 1983 { 1984 pgd_t * pgd = pgd_offset(mm, addr); 1985 pud_t * pud = pud_alloc(mm, pgd, addr); 1986 if (pud) { 1987 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1988 if (pmd) { 1989 VM_BUG_ON(pmd_trans_huge(*pmd)); 1990 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1991 } 1992 } 1993 return NULL; 1994 } 1995 1996 /* 1997 * This is the old fallback for page remapping. 1998 * 1999 * For historical reasons, it only allows reserved pages. Only 2000 * old drivers should use this, and they needed to mark their 2001 * pages reserved for the old functions anyway. 2002 */ 2003 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2004 struct page *page, pgprot_t prot) 2005 { 2006 struct mm_struct *mm = vma->vm_mm; 2007 int retval; 2008 pte_t *pte; 2009 spinlock_t *ptl; 2010 2011 retval = -EINVAL; 2012 if (PageAnon(page)) 2013 goto out; 2014 retval = -ENOMEM; 2015 flush_dcache_page(page); 2016 pte = get_locked_pte(mm, addr, &ptl); 2017 if (!pte) 2018 goto out; 2019 retval = -EBUSY; 2020 if (!pte_none(*pte)) 2021 goto out_unlock; 2022 2023 /* Ok, finally just insert the thing.. */ 2024 get_page(page); 2025 inc_mm_counter_fast(mm, MM_FILEPAGES); 2026 page_add_file_rmap(page); 2027 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 2028 2029 retval = 0; 2030 pte_unmap_unlock(pte, ptl); 2031 return retval; 2032 out_unlock: 2033 pte_unmap_unlock(pte, ptl); 2034 out: 2035 return retval; 2036 } 2037 2038 /** 2039 * vm_insert_page - insert single page into user vma 2040 * @vma: user vma to map to 2041 * @addr: target user address of this page 2042 * @page: source kernel page 2043 * 2044 * This allows drivers to insert individual pages they've allocated 2045 * into a user vma. 2046 * 2047 * The page has to be a nice clean _individual_ kernel allocation. 2048 * If you allocate a compound page, you need to have marked it as 2049 * such (__GFP_COMP), or manually just split the page up yourself 2050 * (see split_page()). 2051 * 2052 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2053 * took an arbitrary page protection parameter. This doesn't allow 2054 * that. Your vma protection will have to be set up correctly, which 2055 * means that if you want a shared writable mapping, you'd better 2056 * ask for a shared writable mapping! 2057 * 2058 * The page does not need to be reserved. 2059 */ 2060 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2061 struct page *page) 2062 { 2063 if (addr < vma->vm_start || addr >= vma->vm_end) 2064 return -EFAULT; 2065 if (!page_count(page)) 2066 return -EINVAL; 2067 vma->vm_flags |= VM_INSERTPAGE; 2068 return insert_page(vma, addr, page, vma->vm_page_prot); 2069 } 2070 EXPORT_SYMBOL(vm_insert_page); 2071 2072 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2073 unsigned long pfn, pgprot_t prot) 2074 { 2075 struct mm_struct *mm = vma->vm_mm; 2076 int retval; 2077 pte_t *pte, entry; 2078 spinlock_t *ptl; 2079 2080 retval = -ENOMEM; 2081 pte = get_locked_pte(mm, addr, &ptl); 2082 if (!pte) 2083 goto out; 2084 retval = -EBUSY; 2085 if (!pte_none(*pte)) 2086 goto out_unlock; 2087 2088 /* Ok, finally just insert the thing.. */ 2089 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2090 set_pte_at(mm, addr, pte, entry); 2091 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2092 2093 retval = 0; 2094 out_unlock: 2095 pte_unmap_unlock(pte, ptl); 2096 out: 2097 return retval; 2098 } 2099 2100 /** 2101 * vm_insert_pfn - insert single pfn into user vma 2102 * @vma: user vma to map to 2103 * @addr: target user address of this page 2104 * @pfn: source kernel pfn 2105 * 2106 * Similar to vm_inert_page, this allows drivers to insert individual pages 2107 * they've allocated into a user vma. Same comments apply. 2108 * 2109 * This function should only be called from a vm_ops->fault handler, and 2110 * in that case the handler should return NULL. 2111 * 2112 * vma cannot be a COW mapping. 2113 * 2114 * As this is called only for pages that do not currently exist, we 2115 * do not need to flush old virtual caches or the TLB. 2116 */ 2117 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2118 unsigned long pfn) 2119 { 2120 int ret; 2121 pgprot_t pgprot = vma->vm_page_prot; 2122 /* 2123 * Technically, architectures with pte_special can avoid all these 2124 * restrictions (same for remap_pfn_range). However we would like 2125 * consistency in testing and feature parity among all, so we should 2126 * try to keep these invariants in place for everybody. 2127 */ 2128 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2129 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2130 (VM_PFNMAP|VM_MIXEDMAP)); 2131 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2132 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2133 2134 if (addr < vma->vm_start || addr >= vma->vm_end) 2135 return -EFAULT; 2136 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 2137 return -EINVAL; 2138 2139 ret = insert_pfn(vma, addr, pfn, pgprot); 2140 2141 if (ret) 2142 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 2143 2144 return ret; 2145 } 2146 EXPORT_SYMBOL(vm_insert_pfn); 2147 2148 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2149 unsigned long pfn) 2150 { 2151 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 2152 2153 if (addr < vma->vm_start || addr >= vma->vm_end) 2154 return -EFAULT; 2155 2156 /* 2157 * If we don't have pte special, then we have to use the pfn_valid() 2158 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2159 * refcount the page if pfn_valid is true (hence insert_page rather 2160 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2161 * without pte special, it would there be refcounted as a normal page. 2162 */ 2163 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 2164 struct page *page; 2165 2166 page = pfn_to_page(pfn); 2167 return insert_page(vma, addr, page, vma->vm_page_prot); 2168 } 2169 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 2170 } 2171 EXPORT_SYMBOL(vm_insert_mixed); 2172 2173 /* 2174 * maps a range of physical memory into the requested pages. the old 2175 * mappings are removed. any references to nonexistent pages results 2176 * in null mappings (currently treated as "copy-on-access") 2177 */ 2178 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2179 unsigned long addr, unsigned long end, 2180 unsigned long pfn, pgprot_t prot) 2181 { 2182 pte_t *pte; 2183 spinlock_t *ptl; 2184 2185 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2186 if (!pte) 2187 return -ENOMEM; 2188 arch_enter_lazy_mmu_mode(); 2189 do { 2190 BUG_ON(!pte_none(*pte)); 2191 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2192 pfn++; 2193 } while (pte++, addr += PAGE_SIZE, addr != end); 2194 arch_leave_lazy_mmu_mode(); 2195 pte_unmap_unlock(pte - 1, ptl); 2196 return 0; 2197 } 2198 2199 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2200 unsigned long addr, unsigned long end, 2201 unsigned long pfn, pgprot_t prot) 2202 { 2203 pmd_t *pmd; 2204 unsigned long next; 2205 2206 pfn -= addr >> PAGE_SHIFT; 2207 pmd = pmd_alloc(mm, pud, addr); 2208 if (!pmd) 2209 return -ENOMEM; 2210 VM_BUG_ON(pmd_trans_huge(*pmd)); 2211 do { 2212 next = pmd_addr_end(addr, end); 2213 if (remap_pte_range(mm, pmd, addr, next, 2214 pfn + (addr >> PAGE_SHIFT), prot)) 2215 return -ENOMEM; 2216 } while (pmd++, addr = next, addr != end); 2217 return 0; 2218 } 2219 2220 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 2221 unsigned long addr, unsigned long end, 2222 unsigned long pfn, pgprot_t prot) 2223 { 2224 pud_t *pud; 2225 unsigned long next; 2226 2227 pfn -= addr >> PAGE_SHIFT; 2228 pud = pud_alloc(mm, pgd, addr); 2229 if (!pud) 2230 return -ENOMEM; 2231 do { 2232 next = pud_addr_end(addr, end); 2233 if (remap_pmd_range(mm, pud, addr, next, 2234 pfn + (addr >> PAGE_SHIFT), prot)) 2235 return -ENOMEM; 2236 } while (pud++, addr = next, addr != end); 2237 return 0; 2238 } 2239 2240 /** 2241 * remap_pfn_range - remap kernel memory to userspace 2242 * @vma: user vma to map to 2243 * @addr: target user address to start at 2244 * @pfn: physical address of kernel memory 2245 * @size: size of map area 2246 * @prot: page protection flags for this mapping 2247 * 2248 * Note: this is only safe if the mm semaphore is held when called. 2249 */ 2250 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2251 unsigned long pfn, unsigned long size, pgprot_t prot) 2252 { 2253 pgd_t *pgd; 2254 unsigned long next; 2255 unsigned long end = addr + PAGE_ALIGN(size); 2256 struct mm_struct *mm = vma->vm_mm; 2257 int err; 2258 2259 /* 2260 * Physically remapped pages are special. Tell the 2261 * rest of the world about it: 2262 * VM_IO tells people not to look at these pages 2263 * (accesses can have side effects). 2264 * VM_RESERVED is specified all over the place, because 2265 * in 2.4 it kept swapout's vma scan off this vma; but 2266 * in 2.6 the LRU scan won't even find its pages, so this 2267 * flag means no more than count its pages in reserved_vm, 2268 * and omit it from core dump, even when VM_IO turned off. 2269 * VM_PFNMAP tells the core MM that the base pages are just 2270 * raw PFN mappings, and do not have a "struct page" associated 2271 * with them. 2272 * 2273 * There's a horrible special case to handle copy-on-write 2274 * behaviour that some programs depend on. We mark the "original" 2275 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2276 */ 2277 if (addr == vma->vm_start && end == vma->vm_end) { 2278 vma->vm_pgoff = pfn; 2279 vma->vm_flags |= VM_PFN_AT_MMAP; 2280 } else if (is_cow_mapping(vma->vm_flags)) 2281 return -EINVAL; 2282 2283 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 2284 2285 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 2286 if (err) { 2287 /* 2288 * To indicate that track_pfn related cleanup is not 2289 * needed from higher level routine calling unmap_vmas 2290 */ 2291 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 2292 vma->vm_flags &= ~VM_PFN_AT_MMAP; 2293 return -EINVAL; 2294 } 2295 2296 BUG_ON(addr >= end); 2297 pfn -= addr >> PAGE_SHIFT; 2298 pgd = pgd_offset(mm, addr); 2299 flush_cache_range(vma, addr, end); 2300 do { 2301 next = pgd_addr_end(addr, end); 2302 err = remap_pud_range(mm, pgd, addr, next, 2303 pfn + (addr >> PAGE_SHIFT), prot); 2304 if (err) 2305 break; 2306 } while (pgd++, addr = next, addr != end); 2307 2308 if (err) 2309 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 2310 2311 return err; 2312 } 2313 EXPORT_SYMBOL(remap_pfn_range); 2314 2315 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2316 unsigned long addr, unsigned long end, 2317 pte_fn_t fn, void *data) 2318 { 2319 pte_t *pte; 2320 int err; 2321 pgtable_t token; 2322 spinlock_t *uninitialized_var(ptl); 2323 2324 pte = (mm == &init_mm) ? 2325 pte_alloc_kernel(pmd, addr) : 2326 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2327 if (!pte) 2328 return -ENOMEM; 2329 2330 BUG_ON(pmd_huge(*pmd)); 2331 2332 arch_enter_lazy_mmu_mode(); 2333 2334 token = pmd_pgtable(*pmd); 2335 2336 do { 2337 err = fn(pte++, token, addr, data); 2338 if (err) 2339 break; 2340 } while (addr += PAGE_SIZE, addr != end); 2341 2342 arch_leave_lazy_mmu_mode(); 2343 2344 if (mm != &init_mm) 2345 pte_unmap_unlock(pte-1, ptl); 2346 return err; 2347 } 2348 2349 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2350 unsigned long addr, unsigned long end, 2351 pte_fn_t fn, void *data) 2352 { 2353 pmd_t *pmd; 2354 unsigned long next; 2355 int err; 2356 2357 BUG_ON(pud_huge(*pud)); 2358 2359 pmd = pmd_alloc(mm, pud, addr); 2360 if (!pmd) 2361 return -ENOMEM; 2362 do { 2363 next = pmd_addr_end(addr, end); 2364 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2365 if (err) 2366 break; 2367 } while (pmd++, addr = next, addr != end); 2368 return err; 2369 } 2370 2371 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2372 unsigned long addr, unsigned long end, 2373 pte_fn_t fn, void *data) 2374 { 2375 pud_t *pud; 2376 unsigned long next; 2377 int err; 2378 2379 pud = pud_alloc(mm, pgd, addr); 2380 if (!pud) 2381 return -ENOMEM; 2382 do { 2383 next = pud_addr_end(addr, end); 2384 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2385 if (err) 2386 break; 2387 } while (pud++, addr = next, addr != end); 2388 return err; 2389 } 2390 2391 /* 2392 * Scan a region of virtual memory, filling in page tables as necessary 2393 * and calling a provided function on each leaf page table. 2394 */ 2395 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2396 unsigned long size, pte_fn_t fn, void *data) 2397 { 2398 pgd_t *pgd; 2399 unsigned long next; 2400 unsigned long end = addr + size; 2401 int err; 2402 2403 BUG_ON(addr >= end); 2404 pgd = pgd_offset(mm, addr); 2405 do { 2406 next = pgd_addr_end(addr, end); 2407 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2408 if (err) 2409 break; 2410 } while (pgd++, addr = next, addr != end); 2411 2412 return err; 2413 } 2414 EXPORT_SYMBOL_GPL(apply_to_page_range); 2415 2416 /* 2417 * handle_pte_fault chooses page fault handler according to an entry 2418 * which was read non-atomically. Before making any commitment, on 2419 * those architectures or configurations (e.g. i386 with PAE) which 2420 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2421 * must check under lock before unmapping the pte and proceeding 2422 * (but do_wp_page is only called after already making such a check; 2423 * and do_anonymous_page can safely check later on). 2424 */ 2425 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2426 pte_t *page_table, pte_t orig_pte) 2427 { 2428 int same = 1; 2429 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2430 if (sizeof(pte_t) > sizeof(unsigned long)) { 2431 spinlock_t *ptl = pte_lockptr(mm, pmd); 2432 spin_lock(ptl); 2433 same = pte_same(*page_table, orig_pte); 2434 spin_unlock(ptl); 2435 } 2436 #endif 2437 pte_unmap(page_table); 2438 return same; 2439 } 2440 2441 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2442 { 2443 /* 2444 * If the source page was a PFN mapping, we don't have 2445 * a "struct page" for it. We do a best-effort copy by 2446 * just copying from the original user address. If that 2447 * fails, we just zero-fill it. Live with it. 2448 */ 2449 if (unlikely(!src)) { 2450 void *kaddr = kmap_atomic(dst, KM_USER0); 2451 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2452 2453 /* 2454 * This really shouldn't fail, because the page is there 2455 * in the page tables. But it might just be unreadable, 2456 * in which case we just give up and fill the result with 2457 * zeroes. 2458 */ 2459 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2460 clear_page(kaddr); 2461 kunmap_atomic(kaddr, KM_USER0); 2462 flush_dcache_page(dst); 2463 } else 2464 copy_user_highpage(dst, src, va, vma); 2465 } 2466 2467 /* 2468 * This routine handles present pages, when users try to write 2469 * to a shared page. It is done by copying the page to a new address 2470 * and decrementing the shared-page counter for the old page. 2471 * 2472 * Note that this routine assumes that the protection checks have been 2473 * done by the caller (the low-level page fault routine in most cases). 2474 * Thus we can safely just mark it writable once we've done any necessary 2475 * COW. 2476 * 2477 * We also mark the page dirty at this point even though the page will 2478 * change only once the write actually happens. This avoids a few races, 2479 * and potentially makes it more efficient. 2480 * 2481 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2482 * but allow concurrent faults), with pte both mapped and locked. 2483 * We return with mmap_sem still held, but pte unmapped and unlocked. 2484 */ 2485 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2486 unsigned long address, pte_t *page_table, pmd_t *pmd, 2487 spinlock_t *ptl, pte_t orig_pte) 2488 __releases(ptl) 2489 { 2490 struct page *old_page, *new_page; 2491 pte_t entry; 2492 int ret = 0; 2493 int page_mkwrite = 0; 2494 struct page *dirty_page = NULL; 2495 2496 old_page = vm_normal_page(vma, address, orig_pte); 2497 if (!old_page) { 2498 /* 2499 * VM_MIXEDMAP !pfn_valid() case 2500 * 2501 * We should not cow pages in a shared writeable mapping. 2502 * Just mark the pages writable as we can't do any dirty 2503 * accounting on raw pfn maps. 2504 */ 2505 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2506 (VM_WRITE|VM_SHARED)) 2507 goto reuse; 2508 goto gotten; 2509 } 2510 2511 /* 2512 * Take out anonymous pages first, anonymous shared vmas are 2513 * not dirty accountable. 2514 */ 2515 if (PageAnon(old_page) && !PageKsm(old_page)) { 2516 if (!trylock_page(old_page)) { 2517 page_cache_get(old_page); 2518 pte_unmap_unlock(page_table, ptl); 2519 lock_page(old_page); 2520 page_table = pte_offset_map_lock(mm, pmd, address, 2521 &ptl); 2522 if (!pte_same(*page_table, orig_pte)) { 2523 unlock_page(old_page); 2524 goto unlock; 2525 } 2526 page_cache_release(old_page); 2527 } 2528 if (reuse_swap_page(old_page)) { 2529 /* 2530 * The page is all ours. Move it to our anon_vma so 2531 * the rmap code will not search our parent or siblings. 2532 * Protected against the rmap code by the page lock. 2533 */ 2534 page_move_anon_rmap(old_page, vma, address); 2535 unlock_page(old_page); 2536 goto reuse; 2537 } 2538 unlock_page(old_page); 2539 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2540 (VM_WRITE|VM_SHARED))) { 2541 /* 2542 * Only catch write-faults on shared writable pages, 2543 * read-only shared pages can get COWed by 2544 * get_user_pages(.write=1, .force=1). 2545 */ 2546 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2547 struct vm_fault vmf; 2548 int tmp; 2549 2550 vmf.virtual_address = (void __user *)(address & 2551 PAGE_MASK); 2552 vmf.pgoff = old_page->index; 2553 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2554 vmf.page = old_page; 2555 2556 /* 2557 * Notify the address space that the page is about to 2558 * become writable so that it can prohibit this or wait 2559 * for the page to get into an appropriate state. 2560 * 2561 * We do this without the lock held, so that it can 2562 * sleep if it needs to. 2563 */ 2564 page_cache_get(old_page); 2565 pte_unmap_unlock(page_table, ptl); 2566 2567 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2568 if (unlikely(tmp & 2569 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2570 ret = tmp; 2571 goto unwritable_page; 2572 } 2573 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2574 lock_page(old_page); 2575 if (!old_page->mapping) { 2576 ret = 0; /* retry the fault */ 2577 unlock_page(old_page); 2578 goto unwritable_page; 2579 } 2580 } else 2581 VM_BUG_ON(!PageLocked(old_page)); 2582 2583 /* 2584 * Since we dropped the lock we need to revalidate 2585 * the PTE as someone else may have changed it. If 2586 * they did, we just return, as we can count on the 2587 * MMU to tell us if they didn't also make it writable. 2588 */ 2589 page_table = pte_offset_map_lock(mm, pmd, address, 2590 &ptl); 2591 if (!pte_same(*page_table, orig_pte)) { 2592 unlock_page(old_page); 2593 goto unlock; 2594 } 2595 2596 page_mkwrite = 1; 2597 } 2598 dirty_page = old_page; 2599 get_page(dirty_page); 2600 2601 reuse: 2602 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2603 entry = pte_mkyoung(orig_pte); 2604 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2605 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2606 update_mmu_cache(vma, address, page_table); 2607 pte_unmap_unlock(page_table, ptl); 2608 ret |= VM_FAULT_WRITE; 2609 2610 if (!dirty_page) 2611 return ret; 2612 2613 /* 2614 * Yes, Virginia, this is actually required to prevent a race 2615 * with clear_page_dirty_for_io() from clearing the page dirty 2616 * bit after it clear all dirty ptes, but before a racing 2617 * do_wp_page installs a dirty pte. 2618 * 2619 * __do_fault is protected similarly. 2620 */ 2621 if (!page_mkwrite) { 2622 wait_on_page_locked(dirty_page); 2623 set_page_dirty_balance(dirty_page, page_mkwrite); 2624 } 2625 put_page(dirty_page); 2626 if (page_mkwrite) { 2627 struct address_space *mapping = dirty_page->mapping; 2628 2629 set_page_dirty(dirty_page); 2630 unlock_page(dirty_page); 2631 page_cache_release(dirty_page); 2632 if (mapping) { 2633 /* 2634 * Some device drivers do not set page.mapping 2635 * but still dirty their pages 2636 */ 2637 balance_dirty_pages_ratelimited(mapping); 2638 } 2639 } 2640 2641 /* file_update_time outside page_lock */ 2642 if (vma->vm_file) 2643 file_update_time(vma->vm_file); 2644 2645 return ret; 2646 } 2647 2648 /* 2649 * Ok, we need to copy. Oh, well.. 2650 */ 2651 page_cache_get(old_page); 2652 gotten: 2653 pte_unmap_unlock(page_table, ptl); 2654 2655 if (unlikely(anon_vma_prepare(vma))) 2656 goto oom; 2657 2658 if (is_zero_pfn(pte_pfn(orig_pte))) { 2659 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2660 if (!new_page) 2661 goto oom; 2662 } else { 2663 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2664 if (!new_page) 2665 goto oom; 2666 cow_user_page(new_page, old_page, address, vma); 2667 } 2668 __SetPageUptodate(new_page); 2669 2670 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2671 goto oom_free_new; 2672 2673 /* 2674 * Re-check the pte - we dropped the lock 2675 */ 2676 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2677 if (likely(pte_same(*page_table, orig_pte))) { 2678 if (old_page) { 2679 if (!PageAnon(old_page)) { 2680 dec_mm_counter_fast(mm, MM_FILEPAGES); 2681 inc_mm_counter_fast(mm, MM_ANONPAGES); 2682 } 2683 } else 2684 inc_mm_counter_fast(mm, MM_ANONPAGES); 2685 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2686 entry = mk_pte(new_page, vma->vm_page_prot); 2687 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2688 /* 2689 * Clear the pte entry and flush it first, before updating the 2690 * pte with the new entry. This will avoid a race condition 2691 * seen in the presence of one thread doing SMC and another 2692 * thread doing COW. 2693 */ 2694 ptep_clear_flush(vma, address, page_table); 2695 page_add_new_anon_rmap(new_page, vma, address); 2696 /* 2697 * We call the notify macro here because, when using secondary 2698 * mmu page tables (such as kvm shadow page tables), we want the 2699 * new page to be mapped directly into the secondary page table. 2700 */ 2701 set_pte_at_notify(mm, address, page_table, entry); 2702 update_mmu_cache(vma, address, page_table); 2703 if (old_page) { 2704 /* 2705 * Only after switching the pte to the new page may 2706 * we remove the mapcount here. Otherwise another 2707 * process may come and find the rmap count decremented 2708 * before the pte is switched to the new page, and 2709 * "reuse" the old page writing into it while our pte 2710 * here still points into it and can be read by other 2711 * threads. 2712 * 2713 * The critical issue is to order this 2714 * page_remove_rmap with the ptp_clear_flush above. 2715 * Those stores are ordered by (if nothing else,) 2716 * the barrier present in the atomic_add_negative 2717 * in page_remove_rmap. 2718 * 2719 * Then the TLB flush in ptep_clear_flush ensures that 2720 * no process can access the old page before the 2721 * decremented mapcount is visible. And the old page 2722 * cannot be reused until after the decremented 2723 * mapcount is visible. So transitively, TLBs to 2724 * old page will be flushed before it can be reused. 2725 */ 2726 page_remove_rmap(old_page); 2727 } 2728 2729 /* Free the old page.. */ 2730 new_page = old_page; 2731 ret |= VM_FAULT_WRITE; 2732 } else 2733 mem_cgroup_uncharge_page(new_page); 2734 2735 if (new_page) 2736 page_cache_release(new_page); 2737 unlock: 2738 pte_unmap_unlock(page_table, ptl); 2739 if (old_page) { 2740 /* 2741 * Don't let another task, with possibly unlocked vma, 2742 * keep the mlocked page. 2743 */ 2744 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2745 lock_page(old_page); /* LRU manipulation */ 2746 munlock_vma_page(old_page); 2747 unlock_page(old_page); 2748 } 2749 page_cache_release(old_page); 2750 } 2751 return ret; 2752 oom_free_new: 2753 page_cache_release(new_page); 2754 oom: 2755 if (old_page) { 2756 if (page_mkwrite) { 2757 unlock_page(old_page); 2758 page_cache_release(old_page); 2759 } 2760 page_cache_release(old_page); 2761 } 2762 return VM_FAULT_OOM; 2763 2764 unwritable_page: 2765 page_cache_release(old_page); 2766 return ret; 2767 } 2768 2769 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2770 unsigned long start_addr, unsigned long end_addr, 2771 struct zap_details *details) 2772 { 2773 zap_page_range(vma, start_addr, end_addr - start_addr, details); 2774 } 2775 2776 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2777 struct zap_details *details) 2778 { 2779 struct vm_area_struct *vma; 2780 struct prio_tree_iter iter; 2781 pgoff_t vba, vea, zba, zea; 2782 2783 vma_prio_tree_foreach(vma, &iter, root, 2784 details->first_index, details->last_index) { 2785 2786 vba = vma->vm_pgoff; 2787 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2788 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2789 zba = details->first_index; 2790 if (zba < vba) 2791 zba = vba; 2792 zea = details->last_index; 2793 if (zea > vea) 2794 zea = vea; 2795 2796 unmap_mapping_range_vma(vma, 2797 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2798 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2799 details); 2800 } 2801 } 2802 2803 static inline void unmap_mapping_range_list(struct list_head *head, 2804 struct zap_details *details) 2805 { 2806 struct vm_area_struct *vma; 2807 2808 /* 2809 * In nonlinear VMAs there is no correspondence between virtual address 2810 * offset and file offset. So we must perform an exhaustive search 2811 * across *all* the pages in each nonlinear VMA, not just the pages 2812 * whose virtual address lies outside the file truncation point. 2813 */ 2814 list_for_each_entry(vma, head, shared.vm_set.list) { 2815 details->nonlinear_vma = vma; 2816 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2817 } 2818 } 2819 2820 /** 2821 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2822 * @mapping: the address space containing mmaps to be unmapped. 2823 * @holebegin: byte in first page to unmap, relative to the start of 2824 * the underlying file. This will be rounded down to a PAGE_SIZE 2825 * boundary. Note that this is different from truncate_pagecache(), which 2826 * must keep the partial page. In contrast, we must get rid of 2827 * partial pages. 2828 * @holelen: size of prospective hole in bytes. This will be rounded 2829 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2830 * end of the file. 2831 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2832 * but 0 when invalidating pagecache, don't throw away private data. 2833 */ 2834 void unmap_mapping_range(struct address_space *mapping, 2835 loff_t const holebegin, loff_t const holelen, int even_cows) 2836 { 2837 struct zap_details details; 2838 pgoff_t hba = holebegin >> PAGE_SHIFT; 2839 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2840 2841 /* Check for overflow. */ 2842 if (sizeof(holelen) > sizeof(hlen)) { 2843 long long holeend = 2844 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2845 if (holeend & ~(long long)ULONG_MAX) 2846 hlen = ULONG_MAX - hba + 1; 2847 } 2848 2849 details.check_mapping = even_cows? NULL: mapping; 2850 details.nonlinear_vma = NULL; 2851 details.first_index = hba; 2852 details.last_index = hba + hlen - 1; 2853 if (details.last_index < details.first_index) 2854 details.last_index = ULONG_MAX; 2855 2856 2857 mutex_lock(&mapping->i_mmap_mutex); 2858 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2859 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2860 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2861 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2862 mutex_unlock(&mapping->i_mmap_mutex); 2863 } 2864 EXPORT_SYMBOL(unmap_mapping_range); 2865 2866 /* 2867 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2868 * but allow concurrent faults), and pte mapped but not yet locked. 2869 * We return with mmap_sem still held, but pte unmapped and unlocked. 2870 */ 2871 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2872 unsigned long address, pte_t *page_table, pmd_t *pmd, 2873 unsigned int flags, pte_t orig_pte) 2874 { 2875 spinlock_t *ptl; 2876 struct page *page, *swapcache = NULL; 2877 swp_entry_t entry; 2878 pte_t pte; 2879 int locked; 2880 struct mem_cgroup *ptr; 2881 int exclusive = 0; 2882 int ret = 0; 2883 2884 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2885 goto out; 2886 2887 entry = pte_to_swp_entry(orig_pte); 2888 if (unlikely(non_swap_entry(entry))) { 2889 if (is_migration_entry(entry)) { 2890 migration_entry_wait(mm, pmd, address); 2891 } else if (is_hwpoison_entry(entry)) { 2892 ret = VM_FAULT_HWPOISON; 2893 } else { 2894 print_bad_pte(vma, address, orig_pte, NULL); 2895 ret = VM_FAULT_SIGBUS; 2896 } 2897 goto out; 2898 } 2899 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2900 page = lookup_swap_cache(entry); 2901 if (!page) { 2902 grab_swap_token(mm); /* Contend for token _before_ read-in */ 2903 page = swapin_readahead(entry, 2904 GFP_HIGHUSER_MOVABLE, vma, address); 2905 if (!page) { 2906 /* 2907 * Back out if somebody else faulted in this pte 2908 * while we released the pte lock. 2909 */ 2910 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2911 if (likely(pte_same(*page_table, orig_pte))) 2912 ret = VM_FAULT_OOM; 2913 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2914 goto unlock; 2915 } 2916 2917 /* Had to read the page from swap area: Major fault */ 2918 ret = VM_FAULT_MAJOR; 2919 count_vm_event(PGMAJFAULT); 2920 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2921 } else if (PageHWPoison(page)) { 2922 /* 2923 * hwpoisoned dirty swapcache pages are kept for killing 2924 * owner processes (which may be unknown at hwpoison time) 2925 */ 2926 ret = VM_FAULT_HWPOISON; 2927 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2928 goto out_release; 2929 } 2930 2931 locked = lock_page_or_retry(page, mm, flags); 2932 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2933 if (!locked) { 2934 ret |= VM_FAULT_RETRY; 2935 goto out_release; 2936 } 2937 2938 /* 2939 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2940 * release the swapcache from under us. The page pin, and pte_same 2941 * test below, are not enough to exclude that. Even if it is still 2942 * swapcache, we need to check that the page's swap has not changed. 2943 */ 2944 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2945 goto out_page; 2946 2947 if (ksm_might_need_to_copy(page, vma, address)) { 2948 swapcache = page; 2949 page = ksm_does_need_to_copy(page, vma, address); 2950 2951 if (unlikely(!page)) { 2952 ret = VM_FAULT_OOM; 2953 page = swapcache; 2954 swapcache = NULL; 2955 goto out_page; 2956 } 2957 } 2958 2959 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2960 ret = VM_FAULT_OOM; 2961 goto out_page; 2962 } 2963 2964 /* 2965 * Back out if somebody else already faulted in this pte. 2966 */ 2967 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2968 if (unlikely(!pte_same(*page_table, orig_pte))) 2969 goto out_nomap; 2970 2971 if (unlikely(!PageUptodate(page))) { 2972 ret = VM_FAULT_SIGBUS; 2973 goto out_nomap; 2974 } 2975 2976 /* 2977 * The page isn't present yet, go ahead with the fault. 2978 * 2979 * Be careful about the sequence of operations here. 2980 * To get its accounting right, reuse_swap_page() must be called 2981 * while the page is counted on swap but not yet in mapcount i.e. 2982 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2983 * must be called after the swap_free(), or it will never succeed. 2984 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2985 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2986 * in page->private. In this case, a record in swap_cgroup is silently 2987 * discarded at swap_free(). 2988 */ 2989 2990 inc_mm_counter_fast(mm, MM_ANONPAGES); 2991 dec_mm_counter_fast(mm, MM_SWAPENTS); 2992 pte = mk_pte(page, vma->vm_page_prot); 2993 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2994 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2995 flags &= ~FAULT_FLAG_WRITE; 2996 ret |= VM_FAULT_WRITE; 2997 exclusive = 1; 2998 } 2999 flush_icache_page(vma, page); 3000 set_pte_at(mm, address, page_table, pte); 3001 do_page_add_anon_rmap(page, vma, address, exclusive); 3002 /* It's better to call commit-charge after rmap is established */ 3003 mem_cgroup_commit_charge_swapin(page, ptr); 3004 3005 swap_free(entry); 3006 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3007 try_to_free_swap(page); 3008 unlock_page(page); 3009 if (swapcache) { 3010 /* 3011 * Hold the lock to avoid the swap entry to be reused 3012 * until we take the PT lock for the pte_same() check 3013 * (to avoid false positives from pte_same). For 3014 * further safety release the lock after the swap_free 3015 * so that the swap count won't change under a 3016 * parallel locked swapcache. 3017 */ 3018 unlock_page(swapcache); 3019 page_cache_release(swapcache); 3020 } 3021 3022 if (flags & FAULT_FLAG_WRITE) { 3023 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 3024 if (ret & VM_FAULT_ERROR) 3025 ret &= VM_FAULT_ERROR; 3026 goto out; 3027 } 3028 3029 /* No need to invalidate - it was non-present before */ 3030 update_mmu_cache(vma, address, page_table); 3031 unlock: 3032 pte_unmap_unlock(page_table, ptl); 3033 out: 3034 return ret; 3035 out_nomap: 3036 mem_cgroup_cancel_charge_swapin(ptr); 3037 pte_unmap_unlock(page_table, ptl); 3038 out_page: 3039 unlock_page(page); 3040 out_release: 3041 page_cache_release(page); 3042 if (swapcache) { 3043 unlock_page(swapcache); 3044 page_cache_release(swapcache); 3045 } 3046 return ret; 3047 } 3048 3049 /* 3050 * This is like a special single-page "expand_{down|up}wards()", 3051 * except we must first make sure that 'address{-|+}PAGE_SIZE' 3052 * doesn't hit another vma. 3053 */ 3054 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 3055 { 3056 address &= PAGE_MASK; 3057 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 3058 struct vm_area_struct *prev = vma->vm_prev; 3059 3060 /* 3061 * Is there a mapping abutting this one below? 3062 * 3063 * That's only ok if it's the same stack mapping 3064 * that has gotten split.. 3065 */ 3066 if (prev && prev->vm_end == address) 3067 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 3068 3069 expand_downwards(vma, address - PAGE_SIZE); 3070 } 3071 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 3072 struct vm_area_struct *next = vma->vm_next; 3073 3074 /* As VM_GROWSDOWN but s/below/above/ */ 3075 if (next && next->vm_start == address + PAGE_SIZE) 3076 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 3077 3078 expand_upwards(vma, address + PAGE_SIZE); 3079 } 3080 return 0; 3081 } 3082 3083 /* 3084 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3085 * but allow concurrent faults), and pte mapped but not yet locked. 3086 * We return with mmap_sem still held, but pte unmapped and unlocked. 3087 */ 3088 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 3089 unsigned long address, pte_t *page_table, pmd_t *pmd, 3090 unsigned int flags) 3091 { 3092 struct page *page; 3093 spinlock_t *ptl; 3094 pte_t entry; 3095 3096 pte_unmap(page_table); 3097 3098 /* Check if we need to add a guard page to the stack */ 3099 if (check_stack_guard_page(vma, address) < 0) 3100 return VM_FAULT_SIGBUS; 3101 3102 /* Use the zero-page for reads */ 3103 if (!(flags & FAULT_FLAG_WRITE)) { 3104 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3105 vma->vm_page_prot)); 3106 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3107 if (!pte_none(*page_table)) 3108 goto unlock; 3109 goto setpte; 3110 } 3111 3112 /* Allocate our own private page. */ 3113 if (unlikely(anon_vma_prepare(vma))) 3114 goto oom; 3115 page = alloc_zeroed_user_highpage_movable(vma, address); 3116 if (!page) 3117 goto oom; 3118 __SetPageUptodate(page); 3119 3120 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3121 goto oom_free_page; 3122 3123 entry = mk_pte(page, vma->vm_page_prot); 3124 if (vma->vm_flags & VM_WRITE) 3125 entry = pte_mkwrite(pte_mkdirty(entry)); 3126 3127 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3128 if (!pte_none(*page_table)) 3129 goto release; 3130 3131 inc_mm_counter_fast(mm, MM_ANONPAGES); 3132 page_add_new_anon_rmap(page, vma, address); 3133 setpte: 3134 set_pte_at(mm, address, page_table, entry); 3135 3136 /* No need to invalidate - it was non-present before */ 3137 update_mmu_cache(vma, address, page_table); 3138 unlock: 3139 pte_unmap_unlock(page_table, ptl); 3140 return 0; 3141 release: 3142 mem_cgroup_uncharge_page(page); 3143 page_cache_release(page); 3144 goto unlock; 3145 oom_free_page: 3146 page_cache_release(page); 3147 oom: 3148 return VM_FAULT_OOM; 3149 } 3150 3151 /* 3152 * __do_fault() tries to create a new page mapping. It aggressively 3153 * tries to share with existing pages, but makes a separate copy if 3154 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3155 * the next page fault. 3156 * 3157 * As this is called only for pages that do not currently exist, we 3158 * do not need to flush old virtual caches or the TLB. 3159 * 3160 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3161 * but allow concurrent faults), and pte neither mapped nor locked. 3162 * We return with mmap_sem still held, but pte unmapped and unlocked. 3163 */ 3164 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3165 unsigned long address, pmd_t *pmd, 3166 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3167 { 3168 pte_t *page_table; 3169 spinlock_t *ptl; 3170 struct page *page; 3171 struct page *cow_page; 3172 pte_t entry; 3173 int anon = 0; 3174 struct page *dirty_page = NULL; 3175 struct vm_fault vmf; 3176 int ret; 3177 int page_mkwrite = 0; 3178 3179 /* 3180 * If we do COW later, allocate page befor taking lock_page() 3181 * on the file cache page. This will reduce lock holding time. 3182 */ 3183 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3184 3185 if (unlikely(anon_vma_prepare(vma))) 3186 return VM_FAULT_OOM; 3187 3188 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3189 if (!cow_page) 3190 return VM_FAULT_OOM; 3191 3192 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) { 3193 page_cache_release(cow_page); 3194 return VM_FAULT_OOM; 3195 } 3196 } else 3197 cow_page = NULL; 3198 3199 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3200 vmf.pgoff = pgoff; 3201 vmf.flags = flags; 3202 vmf.page = NULL; 3203 3204 ret = vma->vm_ops->fault(vma, &vmf); 3205 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3206 VM_FAULT_RETRY))) 3207 goto uncharge_out; 3208 3209 if (unlikely(PageHWPoison(vmf.page))) { 3210 if (ret & VM_FAULT_LOCKED) 3211 unlock_page(vmf.page); 3212 ret = VM_FAULT_HWPOISON; 3213 goto uncharge_out; 3214 } 3215 3216 /* 3217 * For consistency in subsequent calls, make the faulted page always 3218 * locked. 3219 */ 3220 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3221 lock_page(vmf.page); 3222 else 3223 VM_BUG_ON(!PageLocked(vmf.page)); 3224 3225 /* 3226 * Should we do an early C-O-W break? 3227 */ 3228 page = vmf.page; 3229 if (flags & FAULT_FLAG_WRITE) { 3230 if (!(vma->vm_flags & VM_SHARED)) { 3231 page = cow_page; 3232 anon = 1; 3233 copy_user_highpage(page, vmf.page, address, vma); 3234 __SetPageUptodate(page); 3235 } else { 3236 /* 3237 * If the page will be shareable, see if the backing 3238 * address space wants to know that the page is about 3239 * to become writable 3240 */ 3241 if (vma->vm_ops->page_mkwrite) { 3242 int tmp; 3243 3244 unlock_page(page); 3245 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3246 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3247 if (unlikely(tmp & 3248 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3249 ret = tmp; 3250 goto unwritable_page; 3251 } 3252 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3253 lock_page(page); 3254 if (!page->mapping) { 3255 ret = 0; /* retry the fault */ 3256 unlock_page(page); 3257 goto unwritable_page; 3258 } 3259 } else 3260 VM_BUG_ON(!PageLocked(page)); 3261 page_mkwrite = 1; 3262 } 3263 } 3264 3265 } 3266 3267 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3268 3269 /* 3270 * This silly early PAGE_DIRTY setting removes a race 3271 * due to the bad i386 page protection. But it's valid 3272 * for other architectures too. 3273 * 3274 * Note that if FAULT_FLAG_WRITE is set, we either now have 3275 * an exclusive copy of the page, or this is a shared mapping, 3276 * so we can make it writable and dirty to avoid having to 3277 * handle that later. 3278 */ 3279 /* Only go through if we didn't race with anybody else... */ 3280 if (likely(pte_same(*page_table, orig_pte))) { 3281 flush_icache_page(vma, page); 3282 entry = mk_pte(page, vma->vm_page_prot); 3283 if (flags & FAULT_FLAG_WRITE) 3284 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3285 if (anon) { 3286 inc_mm_counter_fast(mm, MM_ANONPAGES); 3287 page_add_new_anon_rmap(page, vma, address); 3288 } else { 3289 inc_mm_counter_fast(mm, MM_FILEPAGES); 3290 page_add_file_rmap(page); 3291 if (flags & FAULT_FLAG_WRITE) { 3292 dirty_page = page; 3293 get_page(dirty_page); 3294 } 3295 } 3296 set_pte_at(mm, address, page_table, entry); 3297 3298 /* no need to invalidate: a not-present page won't be cached */ 3299 update_mmu_cache(vma, address, page_table); 3300 } else { 3301 if (cow_page) 3302 mem_cgroup_uncharge_page(cow_page); 3303 if (anon) 3304 page_cache_release(page); 3305 else 3306 anon = 1; /* no anon but release faulted_page */ 3307 } 3308 3309 pte_unmap_unlock(page_table, ptl); 3310 3311 if (dirty_page) { 3312 struct address_space *mapping = page->mapping; 3313 3314 if (set_page_dirty(dirty_page)) 3315 page_mkwrite = 1; 3316 unlock_page(dirty_page); 3317 put_page(dirty_page); 3318 if (page_mkwrite && mapping) { 3319 /* 3320 * Some device drivers do not set page.mapping but still 3321 * dirty their pages 3322 */ 3323 balance_dirty_pages_ratelimited(mapping); 3324 } 3325 3326 /* file_update_time outside page_lock */ 3327 if (vma->vm_file) 3328 file_update_time(vma->vm_file); 3329 } else { 3330 unlock_page(vmf.page); 3331 if (anon) 3332 page_cache_release(vmf.page); 3333 } 3334 3335 return ret; 3336 3337 unwritable_page: 3338 page_cache_release(page); 3339 return ret; 3340 uncharge_out: 3341 /* fs's fault handler get error */ 3342 if (cow_page) { 3343 mem_cgroup_uncharge_page(cow_page); 3344 page_cache_release(cow_page); 3345 } 3346 return ret; 3347 } 3348 3349 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3350 unsigned long address, pte_t *page_table, pmd_t *pmd, 3351 unsigned int flags, pte_t orig_pte) 3352 { 3353 pgoff_t pgoff = (((address & PAGE_MASK) 3354 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3355 3356 pte_unmap(page_table); 3357 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3358 } 3359 3360 /* 3361 * Fault of a previously existing named mapping. Repopulate the pte 3362 * from the encoded file_pte if possible. This enables swappable 3363 * nonlinear vmas. 3364 * 3365 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3366 * but allow concurrent faults), and pte mapped but not yet locked. 3367 * We return with mmap_sem still held, but pte unmapped and unlocked. 3368 */ 3369 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3370 unsigned long address, pte_t *page_table, pmd_t *pmd, 3371 unsigned int flags, pte_t orig_pte) 3372 { 3373 pgoff_t pgoff; 3374 3375 flags |= FAULT_FLAG_NONLINEAR; 3376 3377 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3378 return 0; 3379 3380 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3381 /* 3382 * Page table corrupted: show pte and kill process. 3383 */ 3384 print_bad_pte(vma, address, orig_pte, NULL); 3385 return VM_FAULT_SIGBUS; 3386 } 3387 3388 pgoff = pte_to_pgoff(orig_pte); 3389 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3390 } 3391 3392 /* 3393 * These routines also need to handle stuff like marking pages dirty 3394 * and/or accessed for architectures that don't do it in hardware (most 3395 * RISC architectures). The early dirtying is also good on the i386. 3396 * 3397 * There is also a hook called "update_mmu_cache()" that architectures 3398 * with external mmu caches can use to update those (ie the Sparc or 3399 * PowerPC hashed page tables that act as extended TLBs). 3400 * 3401 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3402 * but allow concurrent faults), and pte mapped but not yet locked. 3403 * We return with mmap_sem still held, but pte unmapped and unlocked. 3404 */ 3405 int handle_pte_fault(struct mm_struct *mm, 3406 struct vm_area_struct *vma, unsigned long address, 3407 pte_t *pte, pmd_t *pmd, unsigned int flags) 3408 { 3409 pte_t entry; 3410 spinlock_t *ptl; 3411 3412 entry = *pte; 3413 if (!pte_present(entry)) { 3414 if (pte_none(entry)) { 3415 if (vma->vm_ops) { 3416 if (likely(vma->vm_ops->fault)) 3417 return do_linear_fault(mm, vma, address, 3418 pte, pmd, flags, entry); 3419 } 3420 return do_anonymous_page(mm, vma, address, 3421 pte, pmd, flags); 3422 } 3423 if (pte_file(entry)) 3424 return do_nonlinear_fault(mm, vma, address, 3425 pte, pmd, flags, entry); 3426 return do_swap_page(mm, vma, address, 3427 pte, pmd, flags, entry); 3428 } 3429 3430 ptl = pte_lockptr(mm, pmd); 3431 spin_lock(ptl); 3432 if (unlikely(!pte_same(*pte, entry))) 3433 goto unlock; 3434 if (flags & FAULT_FLAG_WRITE) { 3435 if (!pte_write(entry)) 3436 return do_wp_page(mm, vma, address, 3437 pte, pmd, ptl, entry); 3438 entry = pte_mkdirty(entry); 3439 } 3440 entry = pte_mkyoung(entry); 3441 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3442 update_mmu_cache(vma, address, pte); 3443 } else { 3444 /* 3445 * This is needed only for protection faults but the arch code 3446 * is not yet telling us if this is a protection fault or not. 3447 * This still avoids useless tlb flushes for .text page faults 3448 * with threads. 3449 */ 3450 if (flags & FAULT_FLAG_WRITE) 3451 flush_tlb_fix_spurious_fault(vma, address); 3452 } 3453 unlock: 3454 pte_unmap_unlock(pte, ptl); 3455 return 0; 3456 } 3457 3458 /* 3459 * By the time we get here, we already hold the mm semaphore 3460 */ 3461 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3462 unsigned long address, unsigned int flags) 3463 { 3464 pgd_t *pgd; 3465 pud_t *pud; 3466 pmd_t *pmd; 3467 pte_t *pte; 3468 3469 __set_current_state(TASK_RUNNING); 3470 3471 count_vm_event(PGFAULT); 3472 mem_cgroup_count_vm_event(mm, PGFAULT); 3473 3474 /* do counter updates before entering really critical section. */ 3475 check_sync_rss_stat(current); 3476 3477 if (unlikely(is_vm_hugetlb_page(vma))) 3478 return hugetlb_fault(mm, vma, address, flags); 3479 3480 pgd = pgd_offset(mm, address); 3481 pud = pud_alloc(mm, pgd, address); 3482 if (!pud) 3483 return VM_FAULT_OOM; 3484 pmd = pmd_alloc(mm, pud, address); 3485 if (!pmd) 3486 return VM_FAULT_OOM; 3487 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3488 if (!vma->vm_ops) 3489 return do_huge_pmd_anonymous_page(mm, vma, address, 3490 pmd, flags); 3491 } else { 3492 pmd_t orig_pmd = *pmd; 3493 barrier(); 3494 if (pmd_trans_huge(orig_pmd)) { 3495 if (flags & FAULT_FLAG_WRITE && 3496 !pmd_write(orig_pmd) && 3497 !pmd_trans_splitting(orig_pmd)) 3498 return do_huge_pmd_wp_page(mm, vma, address, 3499 pmd, orig_pmd); 3500 return 0; 3501 } 3502 } 3503 3504 /* 3505 * Use __pte_alloc instead of pte_alloc_map, because we can't 3506 * run pte_offset_map on the pmd, if an huge pmd could 3507 * materialize from under us from a different thread. 3508 */ 3509 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address)) 3510 return VM_FAULT_OOM; 3511 /* if an huge pmd materialized from under us just retry later */ 3512 if (unlikely(pmd_trans_huge(*pmd))) 3513 return 0; 3514 /* 3515 * A regular pmd is established and it can't morph into a huge pmd 3516 * from under us anymore at this point because we hold the mmap_sem 3517 * read mode and khugepaged takes it in write mode. So now it's 3518 * safe to run pte_offset_map(). 3519 */ 3520 pte = pte_offset_map(pmd, address); 3521 3522 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3523 } 3524 3525 #ifndef __PAGETABLE_PUD_FOLDED 3526 /* 3527 * Allocate page upper directory. 3528 * We've already handled the fast-path in-line. 3529 */ 3530 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3531 { 3532 pud_t *new = pud_alloc_one(mm, address); 3533 if (!new) 3534 return -ENOMEM; 3535 3536 smp_wmb(); /* See comment in __pte_alloc */ 3537 3538 spin_lock(&mm->page_table_lock); 3539 if (pgd_present(*pgd)) /* Another has populated it */ 3540 pud_free(mm, new); 3541 else 3542 pgd_populate(mm, pgd, new); 3543 spin_unlock(&mm->page_table_lock); 3544 return 0; 3545 } 3546 #endif /* __PAGETABLE_PUD_FOLDED */ 3547 3548 #ifndef __PAGETABLE_PMD_FOLDED 3549 /* 3550 * Allocate page middle directory. 3551 * We've already handled the fast-path in-line. 3552 */ 3553 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3554 { 3555 pmd_t *new = pmd_alloc_one(mm, address); 3556 if (!new) 3557 return -ENOMEM; 3558 3559 smp_wmb(); /* See comment in __pte_alloc */ 3560 3561 spin_lock(&mm->page_table_lock); 3562 #ifndef __ARCH_HAS_4LEVEL_HACK 3563 if (pud_present(*pud)) /* Another has populated it */ 3564 pmd_free(mm, new); 3565 else 3566 pud_populate(mm, pud, new); 3567 #else 3568 if (pgd_present(*pud)) /* Another has populated it */ 3569 pmd_free(mm, new); 3570 else 3571 pgd_populate(mm, pud, new); 3572 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3573 spin_unlock(&mm->page_table_lock); 3574 return 0; 3575 } 3576 #endif /* __PAGETABLE_PMD_FOLDED */ 3577 3578 int make_pages_present(unsigned long addr, unsigned long end) 3579 { 3580 int ret, len, write; 3581 struct vm_area_struct * vma; 3582 3583 vma = find_vma(current->mm, addr); 3584 if (!vma) 3585 return -ENOMEM; 3586 /* 3587 * We want to touch writable mappings with a write fault in order 3588 * to break COW, except for shared mappings because these don't COW 3589 * and we would not want to dirty them for nothing. 3590 */ 3591 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE; 3592 BUG_ON(addr >= end); 3593 BUG_ON(end > vma->vm_end); 3594 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3595 ret = get_user_pages(current, current->mm, addr, 3596 len, write, 0, NULL, NULL); 3597 if (ret < 0) 3598 return ret; 3599 return ret == len ? 0 : -EFAULT; 3600 } 3601 3602 #if !defined(__HAVE_ARCH_GATE_AREA) 3603 3604 #if defined(AT_SYSINFO_EHDR) 3605 static struct vm_area_struct gate_vma; 3606 3607 static int __init gate_vma_init(void) 3608 { 3609 gate_vma.vm_mm = NULL; 3610 gate_vma.vm_start = FIXADDR_USER_START; 3611 gate_vma.vm_end = FIXADDR_USER_END; 3612 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3613 gate_vma.vm_page_prot = __P101; 3614 /* 3615 * Make sure the vDSO gets into every core dump. 3616 * Dumping its contents makes post-mortem fully interpretable later 3617 * without matching up the same kernel and hardware config to see 3618 * what PC values meant. 3619 */ 3620 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3621 return 0; 3622 } 3623 __initcall(gate_vma_init); 3624 #endif 3625 3626 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3627 { 3628 #ifdef AT_SYSINFO_EHDR 3629 return &gate_vma; 3630 #else 3631 return NULL; 3632 #endif 3633 } 3634 3635 int in_gate_area_no_mm(unsigned long addr) 3636 { 3637 #ifdef AT_SYSINFO_EHDR 3638 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3639 return 1; 3640 #endif 3641 return 0; 3642 } 3643 3644 #endif /* __HAVE_ARCH_GATE_AREA */ 3645 3646 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3647 pte_t **ptepp, spinlock_t **ptlp) 3648 { 3649 pgd_t *pgd; 3650 pud_t *pud; 3651 pmd_t *pmd; 3652 pte_t *ptep; 3653 3654 pgd = pgd_offset(mm, address); 3655 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3656 goto out; 3657 3658 pud = pud_offset(pgd, address); 3659 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3660 goto out; 3661 3662 pmd = pmd_offset(pud, address); 3663 VM_BUG_ON(pmd_trans_huge(*pmd)); 3664 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3665 goto out; 3666 3667 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3668 if (pmd_huge(*pmd)) 3669 goto out; 3670 3671 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3672 if (!ptep) 3673 goto out; 3674 if (!pte_present(*ptep)) 3675 goto unlock; 3676 *ptepp = ptep; 3677 return 0; 3678 unlock: 3679 pte_unmap_unlock(ptep, *ptlp); 3680 out: 3681 return -EINVAL; 3682 } 3683 3684 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3685 pte_t **ptepp, spinlock_t **ptlp) 3686 { 3687 int res; 3688 3689 /* (void) is needed to make gcc happy */ 3690 (void) __cond_lock(*ptlp, 3691 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3692 return res; 3693 } 3694 3695 /** 3696 * follow_pfn - look up PFN at a user virtual address 3697 * @vma: memory mapping 3698 * @address: user virtual address 3699 * @pfn: location to store found PFN 3700 * 3701 * Only IO mappings and raw PFN mappings are allowed. 3702 * 3703 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3704 */ 3705 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3706 unsigned long *pfn) 3707 { 3708 int ret = -EINVAL; 3709 spinlock_t *ptl; 3710 pte_t *ptep; 3711 3712 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3713 return ret; 3714 3715 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3716 if (ret) 3717 return ret; 3718 *pfn = pte_pfn(*ptep); 3719 pte_unmap_unlock(ptep, ptl); 3720 return 0; 3721 } 3722 EXPORT_SYMBOL(follow_pfn); 3723 3724 #ifdef CONFIG_HAVE_IOREMAP_PROT 3725 int follow_phys(struct vm_area_struct *vma, 3726 unsigned long address, unsigned int flags, 3727 unsigned long *prot, resource_size_t *phys) 3728 { 3729 int ret = -EINVAL; 3730 pte_t *ptep, pte; 3731 spinlock_t *ptl; 3732 3733 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3734 goto out; 3735 3736 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3737 goto out; 3738 pte = *ptep; 3739 3740 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3741 goto unlock; 3742 3743 *prot = pgprot_val(pte_pgprot(pte)); 3744 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3745 3746 ret = 0; 3747 unlock: 3748 pte_unmap_unlock(ptep, ptl); 3749 out: 3750 return ret; 3751 } 3752 3753 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3754 void *buf, int len, int write) 3755 { 3756 resource_size_t phys_addr; 3757 unsigned long prot = 0; 3758 void __iomem *maddr; 3759 int offset = addr & (PAGE_SIZE-1); 3760 3761 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3762 return -EINVAL; 3763 3764 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3765 if (write) 3766 memcpy_toio(maddr + offset, buf, len); 3767 else 3768 memcpy_fromio(buf, maddr + offset, len); 3769 iounmap(maddr); 3770 3771 return len; 3772 } 3773 #endif 3774 3775 /* 3776 * Access another process' address space as given in mm. If non-NULL, use the 3777 * given task for page fault accounting. 3778 */ 3779 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3780 unsigned long addr, void *buf, int len, int write) 3781 { 3782 struct vm_area_struct *vma; 3783 void *old_buf = buf; 3784 3785 down_read(&mm->mmap_sem); 3786 /* ignore errors, just check how much was successfully transferred */ 3787 while (len) { 3788 int bytes, ret, offset; 3789 void *maddr; 3790 struct page *page = NULL; 3791 3792 ret = get_user_pages(tsk, mm, addr, 1, 3793 write, 1, &page, &vma); 3794 if (ret <= 0) { 3795 /* 3796 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3797 * we can access using slightly different code. 3798 */ 3799 #ifdef CONFIG_HAVE_IOREMAP_PROT 3800 vma = find_vma(mm, addr); 3801 if (!vma || vma->vm_start > addr) 3802 break; 3803 if (vma->vm_ops && vma->vm_ops->access) 3804 ret = vma->vm_ops->access(vma, addr, buf, 3805 len, write); 3806 if (ret <= 0) 3807 #endif 3808 break; 3809 bytes = ret; 3810 } else { 3811 bytes = len; 3812 offset = addr & (PAGE_SIZE-1); 3813 if (bytes > PAGE_SIZE-offset) 3814 bytes = PAGE_SIZE-offset; 3815 3816 maddr = kmap(page); 3817 if (write) { 3818 copy_to_user_page(vma, page, addr, 3819 maddr + offset, buf, bytes); 3820 set_page_dirty_lock(page); 3821 } else { 3822 copy_from_user_page(vma, page, addr, 3823 buf, maddr + offset, bytes); 3824 } 3825 kunmap(page); 3826 page_cache_release(page); 3827 } 3828 len -= bytes; 3829 buf += bytes; 3830 addr += bytes; 3831 } 3832 up_read(&mm->mmap_sem); 3833 3834 return buf - old_buf; 3835 } 3836 3837 /** 3838 * access_remote_vm - access another process' address space 3839 * @mm: the mm_struct of the target address space 3840 * @addr: start address to access 3841 * @buf: source or destination buffer 3842 * @len: number of bytes to transfer 3843 * @write: whether the access is a write 3844 * 3845 * The caller must hold a reference on @mm. 3846 */ 3847 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3848 void *buf, int len, int write) 3849 { 3850 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3851 } 3852 3853 /* 3854 * Access another process' address space. 3855 * Source/target buffer must be kernel space, 3856 * Do not walk the page table directly, use get_user_pages 3857 */ 3858 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3859 void *buf, int len, int write) 3860 { 3861 struct mm_struct *mm; 3862 int ret; 3863 3864 mm = get_task_mm(tsk); 3865 if (!mm) 3866 return 0; 3867 3868 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3869 mmput(mm); 3870 3871 return ret; 3872 } 3873 3874 /* 3875 * Print the name of a VMA. 3876 */ 3877 void print_vma_addr(char *prefix, unsigned long ip) 3878 { 3879 struct mm_struct *mm = current->mm; 3880 struct vm_area_struct *vma; 3881 3882 /* 3883 * Do not print if we are in atomic 3884 * contexts (in exception stacks, etc.): 3885 */ 3886 if (preempt_count()) 3887 return; 3888 3889 down_read(&mm->mmap_sem); 3890 vma = find_vma(mm, ip); 3891 if (vma && vma->vm_file) { 3892 struct file *f = vma->vm_file; 3893 char *buf = (char *)__get_free_page(GFP_KERNEL); 3894 if (buf) { 3895 char *p, *s; 3896 3897 p = d_path(&f->f_path, buf, PAGE_SIZE); 3898 if (IS_ERR(p)) 3899 p = "?"; 3900 s = strrchr(p, '/'); 3901 if (s) 3902 p = s+1; 3903 printk("%s%s[%lx+%lx]", prefix, p, 3904 vma->vm_start, 3905 vma->vm_end - vma->vm_start); 3906 free_page((unsigned long)buf); 3907 } 3908 } 3909 up_read(¤t->mm->mmap_sem); 3910 } 3911 3912 #ifdef CONFIG_PROVE_LOCKING 3913 void might_fault(void) 3914 { 3915 /* 3916 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3917 * holding the mmap_sem, this is safe because kernel memory doesn't 3918 * get paged out, therefore we'll never actually fault, and the 3919 * below annotations will generate false positives. 3920 */ 3921 if (segment_eq(get_fs(), KERNEL_DS)) 3922 return; 3923 3924 might_sleep(); 3925 /* 3926 * it would be nicer only to annotate paths which are not under 3927 * pagefault_disable, however that requires a larger audit and 3928 * providing helpers like get_user_atomic. 3929 */ 3930 if (!in_atomic() && current->mm) 3931 might_lock_read(¤t->mm->mmap_sem); 3932 } 3933 EXPORT_SYMBOL(might_fault); 3934 #endif 3935 3936 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3937 static void clear_gigantic_page(struct page *page, 3938 unsigned long addr, 3939 unsigned int pages_per_huge_page) 3940 { 3941 int i; 3942 struct page *p = page; 3943 3944 might_sleep(); 3945 for (i = 0; i < pages_per_huge_page; 3946 i++, p = mem_map_next(p, page, i)) { 3947 cond_resched(); 3948 clear_user_highpage(p, addr + i * PAGE_SIZE); 3949 } 3950 } 3951 void clear_huge_page(struct page *page, 3952 unsigned long addr, unsigned int pages_per_huge_page) 3953 { 3954 int i; 3955 3956 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3957 clear_gigantic_page(page, addr, pages_per_huge_page); 3958 return; 3959 } 3960 3961 might_sleep(); 3962 for (i = 0; i < pages_per_huge_page; i++) { 3963 cond_resched(); 3964 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3965 } 3966 } 3967 3968 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3969 unsigned long addr, 3970 struct vm_area_struct *vma, 3971 unsigned int pages_per_huge_page) 3972 { 3973 int i; 3974 struct page *dst_base = dst; 3975 struct page *src_base = src; 3976 3977 for (i = 0; i < pages_per_huge_page; ) { 3978 cond_resched(); 3979 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3980 3981 i++; 3982 dst = mem_map_next(dst, dst_base, i); 3983 src = mem_map_next(src, src_base, i); 3984 } 3985 } 3986 3987 void copy_user_huge_page(struct page *dst, struct page *src, 3988 unsigned long addr, struct vm_area_struct *vma, 3989 unsigned int pages_per_huge_page) 3990 { 3991 int i; 3992 3993 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3994 copy_user_gigantic_page(dst, src, addr, vma, 3995 pages_per_huge_page); 3996 return; 3997 } 3998 3999 might_sleep(); 4000 for (i = 0; i < pages_per_huge_page; i++) { 4001 cond_resched(); 4002 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4003 } 4004 } 4005 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4006