1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/delayacct.h> 51 #include <linux/init.h> 52 #include <linux/writeback.h> 53 #include <linux/memcontrol.h> 54 #include <linux/mmu_notifier.h> 55 56 #include <asm/pgalloc.h> 57 #include <asm/uaccess.h> 58 #include <asm/tlb.h> 59 #include <asm/tlbflush.h> 60 #include <asm/pgtable.h> 61 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 65 #include "internal.h" 66 67 #ifndef CONFIG_NEED_MULTIPLE_NODES 68 /* use the per-pgdat data instead for discontigmem - mbligh */ 69 unsigned long max_mapnr; 70 struct page *mem_map; 71 72 EXPORT_SYMBOL(max_mapnr); 73 EXPORT_SYMBOL(mem_map); 74 #endif 75 76 unsigned long num_physpages; 77 /* 78 * A number of key systems in x86 including ioremap() rely on the assumption 79 * that high_memory defines the upper bound on direct map memory, then end 80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 82 * and ZONE_HIGHMEM. 83 */ 84 void * high_memory; 85 86 EXPORT_SYMBOL(num_physpages); 87 EXPORT_SYMBOL(high_memory); 88 89 /* 90 * Randomize the address space (stacks, mmaps, brk, etc.). 91 * 92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 93 * as ancient (libc5 based) binaries can segfault. ) 94 */ 95 int randomize_va_space __read_mostly = 96 #ifdef CONFIG_COMPAT_BRK 97 1; 98 #else 99 2; 100 #endif 101 102 static int __init disable_randmaps(char *s) 103 { 104 randomize_va_space = 0; 105 return 1; 106 } 107 __setup("norandmaps", disable_randmaps); 108 109 110 /* 111 * If a p?d_bad entry is found while walking page tables, report 112 * the error, before resetting entry to p?d_none. Usually (but 113 * very seldom) called out from the p?d_none_or_clear_bad macros. 114 */ 115 116 void pgd_clear_bad(pgd_t *pgd) 117 { 118 pgd_ERROR(*pgd); 119 pgd_clear(pgd); 120 } 121 122 void pud_clear_bad(pud_t *pud) 123 { 124 pud_ERROR(*pud); 125 pud_clear(pud); 126 } 127 128 void pmd_clear_bad(pmd_t *pmd) 129 { 130 pmd_ERROR(*pmd); 131 pmd_clear(pmd); 132 } 133 134 /* 135 * Note: this doesn't free the actual pages themselves. That 136 * has been handled earlier when unmapping all the memory regions. 137 */ 138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 139 { 140 pgtable_t token = pmd_pgtable(*pmd); 141 pmd_clear(pmd); 142 pte_free_tlb(tlb, token); 143 tlb->mm->nr_ptes--; 144 } 145 146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 147 unsigned long addr, unsigned long end, 148 unsigned long floor, unsigned long ceiling) 149 { 150 pmd_t *pmd; 151 unsigned long next; 152 unsigned long start; 153 154 start = addr; 155 pmd = pmd_offset(pud, addr); 156 do { 157 next = pmd_addr_end(addr, end); 158 if (pmd_none_or_clear_bad(pmd)) 159 continue; 160 free_pte_range(tlb, pmd); 161 } while (pmd++, addr = next, addr != end); 162 163 start &= PUD_MASK; 164 if (start < floor) 165 return; 166 if (ceiling) { 167 ceiling &= PUD_MASK; 168 if (!ceiling) 169 return; 170 } 171 if (end - 1 > ceiling - 1) 172 return; 173 174 pmd = pmd_offset(pud, start); 175 pud_clear(pud); 176 pmd_free_tlb(tlb, pmd); 177 } 178 179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 180 unsigned long addr, unsigned long end, 181 unsigned long floor, unsigned long ceiling) 182 { 183 pud_t *pud; 184 unsigned long next; 185 unsigned long start; 186 187 start = addr; 188 pud = pud_offset(pgd, addr); 189 do { 190 next = pud_addr_end(addr, end); 191 if (pud_none_or_clear_bad(pud)) 192 continue; 193 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 194 } while (pud++, addr = next, addr != end); 195 196 start &= PGDIR_MASK; 197 if (start < floor) 198 return; 199 if (ceiling) { 200 ceiling &= PGDIR_MASK; 201 if (!ceiling) 202 return; 203 } 204 if (end - 1 > ceiling - 1) 205 return; 206 207 pud = pud_offset(pgd, start); 208 pgd_clear(pgd); 209 pud_free_tlb(tlb, pud); 210 } 211 212 /* 213 * This function frees user-level page tables of a process. 214 * 215 * Must be called with pagetable lock held. 216 */ 217 void free_pgd_range(struct mmu_gather *tlb, 218 unsigned long addr, unsigned long end, 219 unsigned long floor, unsigned long ceiling) 220 { 221 pgd_t *pgd; 222 unsigned long next; 223 unsigned long start; 224 225 /* 226 * The next few lines have given us lots of grief... 227 * 228 * Why are we testing PMD* at this top level? Because often 229 * there will be no work to do at all, and we'd prefer not to 230 * go all the way down to the bottom just to discover that. 231 * 232 * Why all these "- 1"s? Because 0 represents both the bottom 233 * of the address space and the top of it (using -1 for the 234 * top wouldn't help much: the masks would do the wrong thing). 235 * The rule is that addr 0 and floor 0 refer to the bottom of 236 * the address space, but end 0 and ceiling 0 refer to the top 237 * Comparisons need to use "end - 1" and "ceiling - 1" (though 238 * that end 0 case should be mythical). 239 * 240 * Wherever addr is brought up or ceiling brought down, we must 241 * be careful to reject "the opposite 0" before it confuses the 242 * subsequent tests. But what about where end is brought down 243 * by PMD_SIZE below? no, end can't go down to 0 there. 244 * 245 * Whereas we round start (addr) and ceiling down, by different 246 * masks at different levels, in order to test whether a table 247 * now has no other vmas using it, so can be freed, we don't 248 * bother to round floor or end up - the tests don't need that. 249 */ 250 251 addr &= PMD_MASK; 252 if (addr < floor) { 253 addr += PMD_SIZE; 254 if (!addr) 255 return; 256 } 257 if (ceiling) { 258 ceiling &= PMD_MASK; 259 if (!ceiling) 260 return; 261 } 262 if (end - 1 > ceiling - 1) 263 end -= PMD_SIZE; 264 if (addr > end - 1) 265 return; 266 267 start = addr; 268 pgd = pgd_offset(tlb->mm, addr); 269 do { 270 next = pgd_addr_end(addr, end); 271 if (pgd_none_or_clear_bad(pgd)) 272 continue; 273 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 274 } while (pgd++, addr = next, addr != end); 275 } 276 277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 278 unsigned long floor, unsigned long ceiling) 279 { 280 while (vma) { 281 struct vm_area_struct *next = vma->vm_next; 282 unsigned long addr = vma->vm_start; 283 284 /* 285 * Hide vma from rmap and vmtruncate before freeing pgtables 286 */ 287 anon_vma_unlink(vma); 288 unlink_file_vma(vma); 289 290 if (is_vm_hugetlb_page(vma)) { 291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 292 floor, next? next->vm_start: ceiling); 293 } else { 294 /* 295 * Optimization: gather nearby vmas into one call down 296 */ 297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 298 && !is_vm_hugetlb_page(next)) { 299 vma = next; 300 next = vma->vm_next; 301 anon_vma_unlink(vma); 302 unlink_file_vma(vma); 303 } 304 free_pgd_range(tlb, addr, vma->vm_end, 305 floor, next? next->vm_start: ceiling); 306 } 307 vma = next; 308 } 309 } 310 311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 312 { 313 pgtable_t new = pte_alloc_one(mm, address); 314 if (!new) 315 return -ENOMEM; 316 317 /* 318 * Ensure all pte setup (eg. pte page lock and page clearing) are 319 * visible before the pte is made visible to other CPUs by being 320 * put into page tables. 321 * 322 * The other side of the story is the pointer chasing in the page 323 * table walking code (when walking the page table without locking; 324 * ie. most of the time). Fortunately, these data accesses consist 325 * of a chain of data-dependent loads, meaning most CPUs (alpha 326 * being the notable exception) will already guarantee loads are 327 * seen in-order. See the alpha page table accessors for the 328 * smp_read_barrier_depends() barriers in page table walking code. 329 */ 330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 331 332 spin_lock(&mm->page_table_lock); 333 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 334 mm->nr_ptes++; 335 pmd_populate(mm, pmd, new); 336 new = NULL; 337 } 338 spin_unlock(&mm->page_table_lock); 339 if (new) 340 pte_free(mm, new); 341 return 0; 342 } 343 344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 345 { 346 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 347 if (!new) 348 return -ENOMEM; 349 350 smp_wmb(); /* See comment in __pte_alloc */ 351 352 spin_lock(&init_mm.page_table_lock); 353 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 354 pmd_populate_kernel(&init_mm, pmd, new); 355 new = NULL; 356 } 357 spin_unlock(&init_mm.page_table_lock); 358 if (new) 359 pte_free_kernel(&init_mm, new); 360 return 0; 361 } 362 363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 364 { 365 if (file_rss) 366 add_mm_counter(mm, file_rss, file_rss); 367 if (anon_rss) 368 add_mm_counter(mm, anon_rss, anon_rss); 369 } 370 371 /* 372 * This function is called to print an error when a bad pte 373 * is found. For example, we might have a PFN-mapped pte in 374 * a region that doesn't allow it. 375 * 376 * The calling function must still handle the error. 377 */ 378 static void print_bad_pte(struct vm_area_struct *vma, pte_t pte, 379 unsigned long vaddr) 380 { 381 printk(KERN_ERR "Bad pte = %08llx, process = %s, " 382 "vm_flags = %lx, vaddr = %lx\n", 383 (long long)pte_val(pte), 384 (vma->vm_mm == current->mm ? current->comm : "???"), 385 vma->vm_flags, vaddr); 386 dump_stack(); 387 } 388 389 static inline int is_cow_mapping(unsigned int flags) 390 { 391 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 392 } 393 394 /* 395 * vm_normal_page -- This function gets the "struct page" associated with a pte. 396 * 397 * "Special" mappings do not wish to be associated with a "struct page" (either 398 * it doesn't exist, or it exists but they don't want to touch it). In this 399 * case, NULL is returned here. "Normal" mappings do have a struct page. 400 * 401 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 402 * pte bit, in which case this function is trivial. Secondly, an architecture 403 * may not have a spare pte bit, which requires a more complicated scheme, 404 * described below. 405 * 406 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 407 * special mapping (even if there are underlying and valid "struct pages"). 408 * COWed pages of a VM_PFNMAP are always normal. 409 * 410 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 411 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 412 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 413 * mapping will always honor the rule 414 * 415 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 416 * 417 * And for normal mappings this is false. 418 * 419 * This restricts such mappings to be a linear translation from virtual address 420 * to pfn. To get around this restriction, we allow arbitrary mappings so long 421 * as the vma is not a COW mapping; in that case, we know that all ptes are 422 * special (because none can have been COWed). 423 * 424 * 425 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 426 * 427 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 428 * page" backing, however the difference is that _all_ pages with a struct 429 * page (that is, those where pfn_valid is true) are refcounted and considered 430 * normal pages by the VM. The disadvantage is that pages are refcounted 431 * (which can be slower and simply not an option for some PFNMAP users). The 432 * advantage is that we don't have to follow the strict linearity rule of 433 * PFNMAP mappings in order to support COWable mappings. 434 * 435 */ 436 #ifdef __HAVE_ARCH_PTE_SPECIAL 437 # define HAVE_PTE_SPECIAL 1 438 #else 439 # define HAVE_PTE_SPECIAL 0 440 #endif 441 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 442 pte_t pte) 443 { 444 unsigned long pfn; 445 446 if (HAVE_PTE_SPECIAL) { 447 if (likely(!pte_special(pte))) { 448 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 449 return pte_page(pte); 450 } 451 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 452 return NULL; 453 } 454 455 /* !HAVE_PTE_SPECIAL case follows: */ 456 457 pfn = pte_pfn(pte); 458 459 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 460 if (vma->vm_flags & VM_MIXEDMAP) { 461 if (!pfn_valid(pfn)) 462 return NULL; 463 goto out; 464 } else { 465 unsigned long off; 466 off = (addr - vma->vm_start) >> PAGE_SHIFT; 467 if (pfn == vma->vm_pgoff + off) 468 return NULL; 469 if (!is_cow_mapping(vma->vm_flags)) 470 return NULL; 471 } 472 } 473 474 VM_BUG_ON(!pfn_valid(pfn)); 475 476 /* 477 * NOTE! We still have PageReserved() pages in the page tables. 478 * 479 * eg. VDSO mappings can cause them to exist. 480 */ 481 out: 482 return pfn_to_page(pfn); 483 } 484 485 /* 486 * copy one vm_area from one task to the other. Assumes the page tables 487 * already present in the new task to be cleared in the whole range 488 * covered by this vma. 489 */ 490 491 static inline void 492 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 493 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 494 unsigned long addr, int *rss) 495 { 496 unsigned long vm_flags = vma->vm_flags; 497 pte_t pte = *src_pte; 498 struct page *page; 499 500 /* pte contains position in swap or file, so copy. */ 501 if (unlikely(!pte_present(pte))) { 502 if (!pte_file(pte)) { 503 swp_entry_t entry = pte_to_swp_entry(pte); 504 505 swap_duplicate(entry); 506 /* make sure dst_mm is on swapoff's mmlist. */ 507 if (unlikely(list_empty(&dst_mm->mmlist))) { 508 spin_lock(&mmlist_lock); 509 if (list_empty(&dst_mm->mmlist)) 510 list_add(&dst_mm->mmlist, 511 &src_mm->mmlist); 512 spin_unlock(&mmlist_lock); 513 } 514 if (is_write_migration_entry(entry) && 515 is_cow_mapping(vm_flags)) { 516 /* 517 * COW mappings require pages in both parent 518 * and child to be set to read. 519 */ 520 make_migration_entry_read(&entry); 521 pte = swp_entry_to_pte(entry); 522 set_pte_at(src_mm, addr, src_pte, pte); 523 } 524 } 525 goto out_set_pte; 526 } 527 528 /* 529 * If it's a COW mapping, write protect it both 530 * in the parent and the child 531 */ 532 if (is_cow_mapping(vm_flags)) { 533 ptep_set_wrprotect(src_mm, addr, src_pte); 534 pte = pte_wrprotect(pte); 535 } 536 537 /* 538 * If it's a shared mapping, mark it clean in 539 * the child 540 */ 541 if (vm_flags & VM_SHARED) 542 pte = pte_mkclean(pte); 543 pte = pte_mkold(pte); 544 545 page = vm_normal_page(vma, addr, pte); 546 if (page) { 547 get_page(page); 548 page_dup_rmap(page, vma, addr); 549 rss[!!PageAnon(page)]++; 550 } 551 552 out_set_pte: 553 set_pte_at(dst_mm, addr, dst_pte, pte); 554 } 555 556 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 557 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 558 unsigned long addr, unsigned long end) 559 { 560 pte_t *src_pte, *dst_pte; 561 spinlock_t *src_ptl, *dst_ptl; 562 int progress = 0; 563 int rss[2]; 564 565 again: 566 rss[1] = rss[0] = 0; 567 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 568 if (!dst_pte) 569 return -ENOMEM; 570 src_pte = pte_offset_map_nested(src_pmd, addr); 571 src_ptl = pte_lockptr(src_mm, src_pmd); 572 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 573 arch_enter_lazy_mmu_mode(); 574 575 do { 576 /* 577 * We are holding two locks at this point - either of them 578 * could generate latencies in another task on another CPU. 579 */ 580 if (progress >= 32) { 581 progress = 0; 582 if (need_resched() || 583 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 584 break; 585 } 586 if (pte_none(*src_pte)) { 587 progress++; 588 continue; 589 } 590 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 591 progress += 8; 592 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 593 594 arch_leave_lazy_mmu_mode(); 595 spin_unlock(src_ptl); 596 pte_unmap_nested(src_pte - 1); 597 add_mm_rss(dst_mm, rss[0], rss[1]); 598 pte_unmap_unlock(dst_pte - 1, dst_ptl); 599 cond_resched(); 600 if (addr != end) 601 goto again; 602 return 0; 603 } 604 605 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 606 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 607 unsigned long addr, unsigned long end) 608 { 609 pmd_t *src_pmd, *dst_pmd; 610 unsigned long next; 611 612 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 613 if (!dst_pmd) 614 return -ENOMEM; 615 src_pmd = pmd_offset(src_pud, addr); 616 do { 617 next = pmd_addr_end(addr, end); 618 if (pmd_none_or_clear_bad(src_pmd)) 619 continue; 620 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 621 vma, addr, next)) 622 return -ENOMEM; 623 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 624 return 0; 625 } 626 627 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 628 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 629 unsigned long addr, unsigned long end) 630 { 631 pud_t *src_pud, *dst_pud; 632 unsigned long next; 633 634 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 635 if (!dst_pud) 636 return -ENOMEM; 637 src_pud = pud_offset(src_pgd, addr); 638 do { 639 next = pud_addr_end(addr, end); 640 if (pud_none_or_clear_bad(src_pud)) 641 continue; 642 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 643 vma, addr, next)) 644 return -ENOMEM; 645 } while (dst_pud++, src_pud++, addr = next, addr != end); 646 return 0; 647 } 648 649 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 650 struct vm_area_struct *vma) 651 { 652 pgd_t *src_pgd, *dst_pgd; 653 unsigned long next; 654 unsigned long addr = vma->vm_start; 655 unsigned long end = vma->vm_end; 656 int ret; 657 658 /* 659 * Don't copy ptes where a page fault will fill them correctly. 660 * Fork becomes much lighter when there are big shared or private 661 * readonly mappings. The tradeoff is that copy_page_range is more 662 * efficient than faulting. 663 */ 664 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 665 if (!vma->anon_vma) 666 return 0; 667 } 668 669 if (is_vm_hugetlb_page(vma)) 670 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 671 672 /* 673 * We need to invalidate the secondary MMU mappings only when 674 * there could be a permission downgrade on the ptes of the 675 * parent mm. And a permission downgrade will only happen if 676 * is_cow_mapping() returns true. 677 */ 678 if (is_cow_mapping(vma->vm_flags)) 679 mmu_notifier_invalidate_range_start(src_mm, addr, end); 680 681 ret = 0; 682 dst_pgd = pgd_offset(dst_mm, addr); 683 src_pgd = pgd_offset(src_mm, addr); 684 do { 685 next = pgd_addr_end(addr, end); 686 if (pgd_none_or_clear_bad(src_pgd)) 687 continue; 688 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 689 vma, addr, next))) { 690 ret = -ENOMEM; 691 break; 692 } 693 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 694 695 if (is_cow_mapping(vma->vm_flags)) 696 mmu_notifier_invalidate_range_end(src_mm, 697 vma->vm_start, end); 698 return ret; 699 } 700 701 static unsigned long zap_pte_range(struct mmu_gather *tlb, 702 struct vm_area_struct *vma, pmd_t *pmd, 703 unsigned long addr, unsigned long end, 704 long *zap_work, struct zap_details *details) 705 { 706 struct mm_struct *mm = tlb->mm; 707 pte_t *pte; 708 spinlock_t *ptl; 709 int file_rss = 0; 710 int anon_rss = 0; 711 712 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 713 arch_enter_lazy_mmu_mode(); 714 do { 715 pte_t ptent = *pte; 716 if (pte_none(ptent)) { 717 (*zap_work)--; 718 continue; 719 } 720 721 (*zap_work) -= PAGE_SIZE; 722 723 if (pte_present(ptent)) { 724 struct page *page; 725 726 page = vm_normal_page(vma, addr, ptent); 727 if (unlikely(details) && page) { 728 /* 729 * unmap_shared_mapping_pages() wants to 730 * invalidate cache without truncating: 731 * unmap shared but keep private pages. 732 */ 733 if (details->check_mapping && 734 details->check_mapping != page->mapping) 735 continue; 736 /* 737 * Each page->index must be checked when 738 * invalidating or truncating nonlinear. 739 */ 740 if (details->nonlinear_vma && 741 (page->index < details->first_index || 742 page->index > details->last_index)) 743 continue; 744 } 745 ptent = ptep_get_and_clear_full(mm, addr, pte, 746 tlb->fullmm); 747 tlb_remove_tlb_entry(tlb, pte, addr); 748 if (unlikely(!page)) 749 continue; 750 if (unlikely(details) && details->nonlinear_vma 751 && linear_page_index(details->nonlinear_vma, 752 addr) != page->index) 753 set_pte_at(mm, addr, pte, 754 pgoff_to_pte(page->index)); 755 if (PageAnon(page)) 756 anon_rss--; 757 else { 758 if (pte_dirty(ptent)) 759 set_page_dirty(page); 760 if (pte_young(ptent)) 761 SetPageReferenced(page); 762 file_rss--; 763 } 764 page_remove_rmap(page, vma); 765 tlb_remove_page(tlb, page); 766 continue; 767 } 768 /* 769 * If details->check_mapping, we leave swap entries; 770 * if details->nonlinear_vma, we leave file entries. 771 */ 772 if (unlikely(details)) 773 continue; 774 if (!pte_file(ptent)) 775 free_swap_and_cache(pte_to_swp_entry(ptent)); 776 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 777 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 778 779 add_mm_rss(mm, file_rss, anon_rss); 780 arch_leave_lazy_mmu_mode(); 781 pte_unmap_unlock(pte - 1, ptl); 782 783 return addr; 784 } 785 786 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 787 struct vm_area_struct *vma, pud_t *pud, 788 unsigned long addr, unsigned long end, 789 long *zap_work, struct zap_details *details) 790 { 791 pmd_t *pmd; 792 unsigned long next; 793 794 pmd = pmd_offset(pud, addr); 795 do { 796 next = pmd_addr_end(addr, end); 797 if (pmd_none_or_clear_bad(pmd)) { 798 (*zap_work)--; 799 continue; 800 } 801 next = zap_pte_range(tlb, vma, pmd, addr, next, 802 zap_work, details); 803 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 804 805 return addr; 806 } 807 808 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 809 struct vm_area_struct *vma, pgd_t *pgd, 810 unsigned long addr, unsigned long end, 811 long *zap_work, struct zap_details *details) 812 { 813 pud_t *pud; 814 unsigned long next; 815 816 pud = pud_offset(pgd, addr); 817 do { 818 next = pud_addr_end(addr, end); 819 if (pud_none_or_clear_bad(pud)) { 820 (*zap_work)--; 821 continue; 822 } 823 next = zap_pmd_range(tlb, vma, pud, addr, next, 824 zap_work, details); 825 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 826 827 return addr; 828 } 829 830 static unsigned long unmap_page_range(struct mmu_gather *tlb, 831 struct vm_area_struct *vma, 832 unsigned long addr, unsigned long end, 833 long *zap_work, struct zap_details *details) 834 { 835 pgd_t *pgd; 836 unsigned long next; 837 838 if (details && !details->check_mapping && !details->nonlinear_vma) 839 details = NULL; 840 841 BUG_ON(addr >= end); 842 tlb_start_vma(tlb, vma); 843 pgd = pgd_offset(vma->vm_mm, addr); 844 do { 845 next = pgd_addr_end(addr, end); 846 if (pgd_none_or_clear_bad(pgd)) { 847 (*zap_work)--; 848 continue; 849 } 850 next = zap_pud_range(tlb, vma, pgd, addr, next, 851 zap_work, details); 852 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 853 tlb_end_vma(tlb, vma); 854 855 return addr; 856 } 857 858 #ifdef CONFIG_PREEMPT 859 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 860 #else 861 /* No preempt: go for improved straight-line efficiency */ 862 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 863 #endif 864 865 /** 866 * unmap_vmas - unmap a range of memory covered by a list of vma's 867 * @tlbp: address of the caller's struct mmu_gather 868 * @vma: the starting vma 869 * @start_addr: virtual address at which to start unmapping 870 * @end_addr: virtual address at which to end unmapping 871 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 872 * @details: details of nonlinear truncation or shared cache invalidation 873 * 874 * Returns the end address of the unmapping (restart addr if interrupted). 875 * 876 * Unmap all pages in the vma list. 877 * 878 * We aim to not hold locks for too long (for scheduling latency reasons). 879 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 880 * return the ending mmu_gather to the caller. 881 * 882 * Only addresses between `start' and `end' will be unmapped. 883 * 884 * The VMA list must be sorted in ascending virtual address order. 885 * 886 * unmap_vmas() assumes that the caller will flush the whole unmapped address 887 * range after unmap_vmas() returns. So the only responsibility here is to 888 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 889 * drops the lock and schedules. 890 */ 891 unsigned long unmap_vmas(struct mmu_gather **tlbp, 892 struct vm_area_struct *vma, unsigned long start_addr, 893 unsigned long end_addr, unsigned long *nr_accounted, 894 struct zap_details *details) 895 { 896 long zap_work = ZAP_BLOCK_SIZE; 897 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 898 int tlb_start_valid = 0; 899 unsigned long start = start_addr; 900 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 901 int fullmm = (*tlbp)->fullmm; 902 struct mm_struct *mm = vma->vm_mm; 903 904 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 905 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 906 unsigned long end; 907 908 start = max(vma->vm_start, start_addr); 909 if (start >= vma->vm_end) 910 continue; 911 end = min(vma->vm_end, end_addr); 912 if (end <= vma->vm_start) 913 continue; 914 915 if (vma->vm_flags & VM_ACCOUNT) 916 *nr_accounted += (end - start) >> PAGE_SHIFT; 917 918 while (start != end) { 919 if (!tlb_start_valid) { 920 tlb_start = start; 921 tlb_start_valid = 1; 922 } 923 924 if (unlikely(is_vm_hugetlb_page(vma))) { 925 /* 926 * It is undesirable to test vma->vm_file as it 927 * should be non-null for valid hugetlb area. 928 * However, vm_file will be NULL in the error 929 * cleanup path of do_mmap_pgoff. When 930 * hugetlbfs ->mmap method fails, 931 * do_mmap_pgoff() nullifies vma->vm_file 932 * before calling this function to clean up. 933 * Since no pte has actually been setup, it is 934 * safe to do nothing in this case. 935 */ 936 if (vma->vm_file) { 937 unmap_hugepage_range(vma, start, end, NULL); 938 zap_work -= (end - start) / 939 pages_per_huge_page(hstate_vma(vma)); 940 } 941 942 start = end; 943 } else 944 start = unmap_page_range(*tlbp, vma, 945 start, end, &zap_work, details); 946 947 if (zap_work > 0) { 948 BUG_ON(start != end); 949 break; 950 } 951 952 tlb_finish_mmu(*tlbp, tlb_start, start); 953 954 if (need_resched() || 955 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 956 if (i_mmap_lock) { 957 *tlbp = NULL; 958 goto out; 959 } 960 cond_resched(); 961 } 962 963 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 964 tlb_start_valid = 0; 965 zap_work = ZAP_BLOCK_SIZE; 966 } 967 } 968 out: 969 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 970 return start; /* which is now the end (or restart) address */ 971 } 972 973 /** 974 * zap_page_range - remove user pages in a given range 975 * @vma: vm_area_struct holding the applicable pages 976 * @address: starting address of pages to zap 977 * @size: number of bytes to zap 978 * @details: details of nonlinear truncation or shared cache invalidation 979 */ 980 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 981 unsigned long size, struct zap_details *details) 982 { 983 struct mm_struct *mm = vma->vm_mm; 984 struct mmu_gather *tlb; 985 unsigned long end = address + size; 986 unsigned long nr_accounted = 0; 987 988 lru_add_drain(); 989 tlb = tlb_gather_mmu(mm, 0); 990 update_hiwater_rss(mm); 991 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 992 if (tlb) 993 tlb_finish_mmu(tlb, address, end); 994 return end; 995 } 996 EXPORT_SYMBOL_GPL(zap_page_range); 997 998 /** 999 * zap_vma_ptes - remove ptes mapping the vma 1000 * @vma: vm_area_struct holding ptes to be zapped 1001 * @address: starting address of pages to zap 1002 * @size: number of bytes to zap 1003 * 1004 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1005 * 1006 * The entire address range must be fully contained within the vma. 1007 * 1008 * Returns 0 if successful. 1009 */ 1010 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1011 unsigned long size) 1012 { 1013 if (address < vma->vm_start || address + size > vma->vm_end || 1014 !(vma->vm_flags & VM_PFNMAP)) 1015 return -1; 1016 zap_page_range(vma, address, size, NULL); 1017 return 0; 1018 } 1019 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1020 1021 /* 1022 * Do a quick page-table lookup for a single page. 1023 */ 1024 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1025 unsigned int flags) 1026 { 1027 pgd_t *pgd; 1028 pud_t *pud; 1029 pmd_t *pmd; 1030 pte_t *ptep, pte; 1031 spinlock_t *ptl; 1032 struct page *page; 1033 struct mm_struct *mm = vma->vm_mm; 1034 1035 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1036 if (!IS_ERR(page)) { 1037 BUG_ON(flags & FOLL_GET); 1038 goto out; 1039 } 1040 1041 page = NULL; 1042 pgd = pgd_offset(mm, address); 1043 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1044 goto no_page_table; 1045 1046 pud = pud_offset(pgd, address); 1047 if (pud_none(*pud)) 1048 goto no_page_table; 1049 if (pud_huge(*pud)) { 1050 BUG_ON(flags & FOLL_GET); 1051 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1052 goto out; 1053 } 1054 if (unlikely(pud_bad(*pud))) 1055 goto no_page_table; 1056 1057 pmd = pmd_offset(pud, address); 1058 if (pmd_none(*pmd)) 1059 goto no_page_table; 1060 if (pmd_huge(*pmd)) { 1061 BUG_ON(flags & FOLL_GET); 1062 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1063 goto out; 1064 } 1065 if (unlikely(pmd_bad(*pmd))) 1066 goto no_page_table; 1067 1068 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1069 1070 pte = *ptep; 1071 if (!pte_present(pte)) 1072 goto no_page; 1073 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1074 goto unlock; 1075 page = vm_normal_page(vma, address, pte); 1076 if (unlikely(!page)) 1077 goto bad_page; 1078 1079 if (flags & FOLL_GET) 1080 get_page(page); 1081 if (flags & FOLL_TOUCH) { 1082 if ((flags & FOLL_WRITE) && 1083 !pte_dirty(pte) && !PageDirty(page)) 1084 set_page_dirty(page); 1085 mark_page_accessed(page); 1086 } 1087 unlock: 1088 pte_unmap_unlock(ptep, ptl); 1089 out: 1090 return page; 1091 1092 bad_page: 1093 pte_unmap_unlock(ptep, ptl); 1094 return ERR_PTR(-EFAULT); 1095 1096 no_page: 1097 pte_unmap_unlock(ptep, ptl); 1098 if (!pte_none(pte)) 1099 return page; 1100 /* Fall through to ZERO_PAGE handling */ 1101 no_page_table: 1102 /* 1103 * When core dumping an enormous anonymous area that nobody 1104 * has touched so far, we don't want to allocate page tables. 1105 */ 1106 if (flags & FOLL_ANON) { 1107 page = ZERO_PAGE(0); 1108 if (flags & FOLL_GET) 1109 get_page(page); 1110 BUG_ON(flags & FOLL_WRITE); 1111 } 1112 return page; 1113 } 1114 EXPORT_SYMBOL_GPL(follow_page); 1115 1116 /* Can we do the FOLL_ANON optimization? */ 1117 static inline int use_zero_page(struct vm_area_struct *vma) 1118 { 1119 /* 1120 * We don't want to optimize FOLL_ANON for make_pages_present() 1121 * when it tries to page in a VM_LOCKED region. As to VM_SHARED, 1122 * we want to get the page from the page tables to make sure 1123 * that we serialize and update with any other user of that 1124 * mapping. 1125 */ 1126 if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) 1127 return 0; 1128 /* 1129 * And if we have a fault routine, it's not an anonymous region. 1130 */ 1131 return !vma->vm_ops || !vma->vm_ops->fault; 1132 } 1133 1134 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1135 unsigned long start, int len, int write, int force, 1136 struct page **pages, struct vm_area_struct **vmas) 1137 { 1138 int i; 1139 unsigned int vm_flags; 1140 1141 if (len <= 0) 1142 return 0; 1143 /* 1144 * Require read or write permissions. 1145 * If 'force' is set, we only require the "MAY" flags. 1146 */ 1147 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1148 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1149 i = 0; 1150 1151 do { 1152 struct vm_area_struct *vma; 1153 unsigned int foll_flags; 1154 1155 vma = find_extend_vma(mm, start); 1156 if (!vma && in_gate_area(tsk, start)) { 1157 unsigned long pg = start & PAGE_MASK; 1158 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1159 pgd_t *pgd; 1160 pud_t *pud; 1161 pmd_t *pmd; 1162 pte_t *pte; 1163 if (write) /* user gate pages are read-only */ 1164 return i ? : -EFAULT; 1165 if (pg > TASK_SIZE) 1166 pgd = pgd_offset_k(pg); 1167 else 1168 pgd = pgd_offset_gate(mm, pg); 1169 BUG_ON(pgd_none(*pgd)); 1170 pud = pud_offset(pgd, pg); 1171 BUG_ON(pud_none(*pud)); 1172 pmd = pmd_offset(pud, pg); 1173 if (pmd_none(*pmd)) 1174 return i ? : -EFAULT; 1175 pte = pte_offset_map(pmd, pg); 1176 if (pte_none(*pte)) { 1177 pte_unmap(pte); 1178 return i ? : -EFAULT; 1179 } 1180 if (pages) { 1181 struct page *page = vm_normal_page(gate_vma, start, *pte); 1182 pages[i] = page; 1183 if (page) 1184 get_page(page); 1185 } 1186 pte_unmap(pte); 1187 if (vmas) 1188 vmas[i] = gate_vma; 1189 i++; 1190 start += PAGE_SIZE; 1191 len--; 1192 continue; 1193 } 1194 1195 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1196 || !(vm_flags & vma->vm_flags)) 1197 return i ? : -EFAULT; 1198 1199 if (is_vm_hugetlb_page(vma)) { 1200 i = follow_hugetlb_page(mm, vma, pages, vmas, 1201 &start, &len, i, write); 1202 continue; 1203 } 1204 1205 foll_flags = FOLL_TOUCH; 1206 if (pages) 1207 foll_flags |= FOLL_GET; 1208 if (!write && use_zero_page(vma)) 1209 foll_flags |= FOLL_ANON; 1210 1211 do { 1212 struct page *page; 1213 1214 /* 1215 * If tsk is ooming, cut off its access to large memory 1216 * allocations. It has a pending SIGKILL, but it can't 1217 * be processed until returning to user space. 1218 */ 1219 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) 1220 return i ? i : -ENOMEM; 1221 1222 if (write) 1223 foll_flags |= FOLL_WRITE; 1224 1225 cond_resched(); 1226 while (!(page = follow_page(vma, start, foll_flags))) { 1227 int ret; 1228 ret = handle_mm_fault(mm, vma, start, 1229 foll_flags & FOLL_WRITE); 1230 if (ret & VM_FAULT_ERROR) { 1231 if (ret & VM_FAULT_OOM) 1232 return i ? i : -ENOMEM; 1233 else if (ret & VM_FAULT_SIGBUS) 1234 return i ? i : -EFAULT; 1235 BUG(); 1236 } 1237 if (ret & VM_FAULT_MAJOR) 1238 tsk->maj_flt++; 1239 else 1240 tsk->min_flt++; 1241 1242 /* 1243 * The VM_FAULT_WRITE bit tells us that 1244 * do_wp_page has broken COW when necessary, 1245 * even if maybe_mkwrite decided not to set 1246 * pte_write. We can thus safely do subsequent 1247 * page lookups as if they were reads. 1248 */ 1249 if (ret & VM_FAULT_WRITE) 1250 foll_flags &= ~FOLL_WRITE; 1251 1252 cond_resched(); 1253 } 1254 if (IS_ERR(page)) 1255 return i ? i : PTR_ERR(page); 1256 if (pages) { 1257 pages[i] = page; 1258 1259 flush_anon_page(vma, page, start); 1260 flush_dcache_page(page); 1261 } 1262 if (vmas) 1263 vmas[i] = vma; 1264 i++; 1265 start += PAGE_SIZE; 1266 len--; 1267 } while (len && start < vma->vm_end); 1268 } while (len); 1269 return i; 1270 } 1271 EXPORT_SYMBOL(get_user_pages); 1272 1273 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1274 spinlock_t **ptl) 1275 { 1276 pgd_t * pgd = pgd_offset(mm, addr); 1277 pud_t * pud = pud_alloc(mm, pgd, addr); 1278 if (pud) { 1279 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1280 if (pmd) 1281 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1282 } 1283 return NULL; 1284 } 1285 1286 /* 1287 * This is the old fallback for page remapping. 1288 * 1289 * For historical reasons, it only allows reserved pages. Only 1290 * old drivers should use this, and they needed to mark their 1291 * pages reserved for the old functions anyway. 1292 */ 1293 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1294 struct page *page, pgprot_t prot) 1295 { 1296 struct mm_struct *mm = vma->vm_mm; 1297 int retval; 1298 pte_t *pte; 1299 spinlock_t *ptl; 1300 1301 retval = mem_cgroup_charge(page, mm, GFP_KERNEL); 1302 if (retval) 1303 goto out; 1304 1305 retval = -EINVAL; 1306 if (PageAnon(page)) 1307 goto out_uncharge; 1308 retval = -ENOMEM; 1309 flush_dcache_page(page); 1310 pte = get_locked_pte(mm, addr, &ptl); 1311 if (!pte) 1312 goto out_uncharge; 1313 retval = -EBUSY; 1314 if (!pte_none(*pte)) 1315 goto out_unlock; 1316 1317 /* Ok, finally just insert the thing.. */ 1318 get_page(page); 1319 inc_mm_counter(mm, file_rss); 1320 page_add_file_rmap(page); 1321 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1322 1323 retval = 0; 1324 pte_unmap_unlock(pte, ptl); 1325 return retval; 1326 out_unlock: 1327 pte_unmap_unlock(pte, ptl); 1328 out_uncharge: 1329 mem_cgroup_uncharge_page(page); 1330 out: 1331 return retval; 1332 } 1333 1334 /** 1335 * vm_insert_page - insert single page into user vma 1336 * @vma: user vma to map to 1337 * @addr: target user address of this page 1338 * @page: source kernel page 1339 * 1340 * This allows drivers to insert individual pages they've allocated 1341 * into a user vma. 1342 * 1343 * The page has to be a nice clean _individual_ kernel allocation. 1344 * If you allocate a compound page, you need to have marked it as 1345 * such (__GFP_COMP), or manually just split the page up yourself 1346 * (see split_page()). 1347 * 1348 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1349 * took an arbitrary page protection parameter. This doesn't allow 1350 * that. Your vma protection will have to be set up correctly, which 1351 * means that if you want a shared writable mapping, you'd better 1352 * ask for a shared writable mapping! 1353 * 1354 * The page does not need to be reserved. 1355 */ 1356 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1357 struct page *page) 1358 { 1359 if (addr < vma->vm_start || addr >= vma->vm_end) 1360 return -EFAULT; 1361 if (!page_count(page)) 1362 return -EINVAL; 1363 vma->vm_flags |= VM_INSERTPAGE; 1364 return insert_page(vma, addr, page, vma->vm_page_prot); 1365 } 1366 EXPORT_SYMBOL(vm_insert_page); 1367 1368 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1369 unsigned long pfn, pgprot_t prot) 1370 { 1371 struct mm_struct *mm = vma->vm_mm; 1372 int retval; 1373 pte_t *pte, entry; 1374 spinlock_t *ptl; 1375 1376 retval = -ENOMEM; 1377 pte = get_locked_pte(mm, addr, &ptl); 1378 if (!pte) 1379 goto out; 1380 retval = -EBUSY; 1381 if (!pte_none(*pte)) 1382 goto out_unlock; 1383 1384 /* Ok, finally just insert the thing.. */ 1385 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1386 set_pte_at(mm, addr, pte, entry); 1387 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ 1388 1389 retval = 0; 1390 out_unlock: 1391 pte_unmap_unlock(pte, ptl); 1392 out: 1393 return retval; 1394 } 1395 1396 /** 1397 * vm_insert_pfn - insert single pfn into user vma 1398 * @vma: user vma to map to 1399 * @addr: target user address of this page 1400 * @pfn: source kernel pfn 1401 * 1402 * Similar to vm_inert_page, this allows drivers to insert individual pages 1403 * they've allocated into a user vma. Same comments apply. 1404 * 1405 * This function should only be called from a vm_ops->fault handler, and 1406 * in that case the handler should return NULL. 1407 * 1408 * vma cannot be a COW mapping. 1409 * 1410 * As this is called only for pages that do not currently exist, we 1411 * do not need to flush old virtual caches or the TLB. 1412 */ 1413 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1414 unsigned long pfn) 1415 { 1416 /* 1417 * Technically, architectures with pte_special can avoid all these 1418 * restrictions (same for remap_pfn_range). However we would like 1419 * consistency in testing and feature parity among all, so we should 1420 * try to keep these invariants in place for everybody. 1421 */ 1422 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1423 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1424 (VM_PFNMAP|VM_MIXEDMAP)); 1425 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1426 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1427 1428 if (addr < vma->vm_start || addr >= vma->vm_end) 1429 return -EFAULT; 1430 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1431 } 1432 EXPORT_SYMBOL(vm_insert_pfn); 1433 1434 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1435 unsigned long pfn) 1436 { 1437 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1438 1439 if (addr < vma->vm_start || addr >= vma->vm_end) 1440 return -EFAULT; 1441 1442 /* 1443 * If we don't have pte special, then we have to use the pfn_valid() 1444 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1445 * refcount the page if pfn_valid is true (hence insert_page rather 1446 * than insert_pfn). 1447 */ 1448 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1449 struct page *page; 1450 1451 page = pfn_to_page(pfn); 1452 return insert_page(vma, addr, page, vma->vm_page_prot); 1453 } 1454 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1455 } 1456 EXPORT_SYMBOL(vm_insert_mixed); 1457 1458 /* 1459 * maps a range of physical memory into the requested pages. the old 1460 * mappings are removed. any references to nonexistent pages results 1461 * in null mappings (currently treated as "copy-on-access") 1462 */ 1463 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1464 unsigned long addr, unsigned long end, 1465 unsigned long pfn, pgprot_t prot) 1466 { 1467 pte_t *pte; 1468 spinlock_t *ptl; 1469 1470 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1471 if (!pte) 1472 return -ENOMEM; 1473 arch_enter_lazy_mmu_mode(); 1474 do { 1475 BUG_ON(!pte_none(*pte)); 1476 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1477 pfn++; 1478 } while (pte++, addr += PAGE_SIZE, addr != end); 1479 arch_leave_lazy_mmu_mode(); 1480 pte_unmap_unlock(pte - 1, ptl); 1481 return 0; 1482 } 1483 1484 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1485 unsigned long addr, unsigned long end, 1486 unsigned long pfn, pgprot_t prot) 1487 { 1488 pmd_t *pmd; 1489 unsigned long next; 1490 1491 pfn -= addr >> PAGE_SHIFT; 1492 pmd = pmd_alloc(mm, pud, addr); 1493 if (!pmd) 1494 return -ENOMEM; 1495 do { 1496 next = pmd_addr_end(addr, end); 1497 if (remap_pte_range(mm, pmd, addr, next, 1498 pfn + (addr >> PAGE_SHIFT), prot)) 1499 return -ENOMEM; 1500 } while (pmd++, addr = next, addr != end); 1501 return 0; 1502 } 1503 1504 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1505 unsigned long addr, unsigned long end, 1506 unsigned long pfn, pgprot_t prot) 1507 { 1508 pud_t *pud; 1509 unsigned long next; 1510 1511 pfn -= addr >> PAGE_SHIFT; 1512 pud = pud_alloc(mm, pgd, addr); 1513 if (!pud) 1514 return -ENOMEM; 1515 do { 1516 next = pud_addr_end(addr, end); 1517 if (remap_pmd_range(mm, pud, addr, next, 1518 pfn + (addr >> PAGE_SHIFT), prot)) 1519 return -ENOMEM; 1520 } while (pud++, addr = next, addr != end); 1521 return 0; 1522 } 1523 1524 /** 1525 * remap_pfn_range - remap kernel memory to userspace 1526 * @vma: user vma to map to 1527 * @addr: target user address to start at 1528 * @pfn: physical address of kernel memory 1529 * @size: size of map area 1530 * @prot: page protection flags for this mapping 1531 * 1532 * Note: this is only safe if the mm semaphore is held when called. 1533 */ 1534 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1535 unsigned long pfn, unsigned long size, pgprot_t prot) 1536 { 1537 pgd_t *pgd; 1538 unsigned long next; 1539 unsigned long end = addr + PAGE_ALIGN(size); 1540 struct mm_struct *mm = vma->vm_mm; 1541 int err; 1542 1543 /* 1544 * Physically remapped pages are special. Tell the 1545 * rest of the world about it: 1546 * VM_IO tells people not to look at these pages 1547 * (accesses can have side effects). 1548 * VM_RESERVED is specified all over the place, because 1549 * in 2.4 it kept swapout's vma scan off this vma; but 1550 * in 2.6 the LRU scan won't even find its pages, so this 1551 * flag means no more than count its pages in reserved_vm, 1552 * and omit it from core dump, even when VM_IO turned off. 1553 * VM_PFNMAP tells the core MM that the base pages are just 1554 * raw PFN mappings, and do not have a "struct page" associated 1555 * with them. 1556 * 1557 * There's a horrible special case to handle copy-on-write 1558 * behaviour that some programs depend on. We mark the "original" 1559 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1560 */ 1561 if (is_cow_mapping(vma->vm_flags)) { 1562 if (addr != vma->vm_start || end != vma->vm_end) 1563 return -EINVAL; 1564 vma->vm_pgoff = pfn; 1565 } 1566 1567 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1568 1569 BUG_ON(addr >= end); 1570 pfn -= addr >> PAGE_SHIFT; 1571 pgd = pgd_offset(mm, addr); 1572 flush_cache_range(vma, addr, end); 1573 do { 1574 next = pgd_addr_end(addr, end); 1575 err = remap_pud_range(mm, pgd, addr, next, 1576 pfn + (addr >> PAGE_SHIFT), prot); 1577 if (err) 1578 break; 1579 } while (pgd++, addr = next, addr != end); 1580 return err; 1581 } 1582 EXPORT_SYMBOL(remap_pfn_range); 1583 1584 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1585 unsigned long addr, unsigned long end, 1586 pte_fn_t fn, void *data) 1587 { 1588 pte_t *pte; 1589 int err; 1590 pgtable_t token; 1591 spinlock_t *uninitialized_var(ptl); 1592 1593 pte = (mm == &init_mm) ? 1594 pte_alloc_kernel(pmd, addr) : 1595 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1596 if (!pte) 1597 return -ENOMEM; 1598 1599 BUG_ON(pmd_huge(*pmd)); 1600 1601 token = pmd_pgtable(*pmd); 1602 1603 do { 1604 err = fn(pte, token, addr, data); 1605 if (err) 1606 break; 1607 } while (pte++, addr += PAGE_SIZE, addr != end); 1608 1609 if (mm != &init_mm) 1610 pte_unmap_unlock(pte-1, ptl); 1611 return err; 1612 } 1613 1614 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1615 unsigned long addr, unsigned long end, 1616 pte_fn_t fn, void *data) 1617 { 1618 pmd_t *pmd; 1619 unsigned long next; 1620 int err; 1621 1622 BUG_ON(pud_huge(*pud)); 1623 1624 pmd = pmd_alloc(mm, pud, addr); 1625 if (!pmd) 1626 return -ENOMEM; 1627 do { 1628 next = pmd_addr_end(addr, end); 1629 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1630 if (err) 1631 break; 1632 } while (pmd++, addr = next, addr != end); 1633 return err; 1634 } 1635 1636 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1637 unsigned long addr, unsigned long end, 1638 pte_fn_t fn, void *data) 1639 { 1640 pud_t *pud; 1641 unsigned long next; 1642 int err; 1643 1644 pud = pud_alloc(mm, pgd, addr); 1645 if (!pud) 1646 return -ENOMEM; 1647 do { 1648 next = pud_addr_end(addr, end); 1649 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1650 if (err) 1651 break; 1652 } while (pud++, addr = next, addr != end); 1653 return err; 1654 } 1655 1656 /* 1657 * Scan a region of virtual memory, filling in page tables as necessary 1658 * and calling a provided function on each leaf page table. 1659 */ 1660 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1661 unsigned long size, pte_fn_t fn, void *data) 1662 { 1663 pgd_t *pgd; 1664 unsigned long next; 1665 unsigned long start = addr, end = addr + size; 1666 int err; 1667 1668 BUG_ON(addr >= end); 1669 mmu_notifier_invalidate_range_start(mm, start, end); 1670 pgd = pgd_offset(mm, addr); 1671 do { 1672 next = pgd_addr_end(addr, end); 1673 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1674 if (err) 1675 break; 1676 } while (pgd++, addr = next, addr != end); 1677 mmu_notifier_invalidate_range_end(mm, start, end); 1678 return err; 1679 } 1680 EXPORT_SYMBOL_GPL(apply_to_page_range); 1681 1682 /* 1683 * handle_pte_fault chooses page fault handler according to an entry 1684 * which was read non-atomically. Before making any commitment, on 1685 * those architectures or configurations (e.g. i386 with PAE) which 1686 * might give a mix of unmatched parts, do_swap_page and do_file_page 1687 * must check under lock before unmapping the pte and proceeding 1688 * (but do_wp_page is only called after already making such a check; 1689 * and do_anonymous_page and do_no_page can safely check later on). 1690 */ 1691 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1692 pte_t *page_table, pte_t orig_pte) 1693 { 1694 int same = 1; 1695 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1696 if (sizeof(pte_t) > sizeof(unsigned long)) { 1697 spinlock_t *ptl = pte_lockptr(mm, pmd); 1698 spin_lock(ptl); 1699 same = pte_same(*page_table, orig_pte); 1700 spin_unlock(ptl); 1701 } 1702 #endif 1703 pte_unmap(page_table); 1704 return same; 1705 } 1706 1707 /* 1708 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1709 * servicing faults for write access. In the normal case, do always want 1710 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1711 * that do not have writing enabled, when used by access_process_vm. 1712 */ 1713 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1714 { 1715 if (likely(vma->vm_flags & VM_WRITE)) 1716 pte = pte_mkwrite(pte); 1717 return pte; 1718 } 1719 1720 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1721 { 1722 /* 1723 * If the source page was a PFN mapping, we don't have 1724 * a "struct page" for it. We do a best-effort copy by 1725 * just copying from the original user address. If that 1726 * fails, we just zero-fill it. Live with it. 1727 */ 1728 if (unlikely(!src)) { 1729 void *kaddr = kmap_atomic(dst, KM_USER0); 1730 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1731 1732 /* 1733 * This really shouldn't fail, because the page is there 1734 * in the page tables. But it might just be unreadable, 1735 * in which case we just give up and fill the result with 1736 * zeroes. 1737 */ 1738 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1739 memset(kaddr, 0, PAGE_SIZE); 1740 kunmap_atomic(kaddr, KM_USER0); 1741 flush_dcache_page(dst); 1742 } else 1743 copy_user_highpage(dst, src, va, vma); 1744 } 1745 1746 /* 1747 * This routine handles present pages, when users try to write 1748 * to a shared page. It is done by copying the page to a new address 1749 * and decrementing the shared-page counter for the old page. 1750 * 1751 * Note that this routine assumes that the protection checks have been 1752 * done by the caller (the low-level page fault routine in most cases). 1753 * Thus we can safely just mark it writable once we've done any necessary 1754 * COW. 1755 * 1756 * We also mark the page dirty at this point even though the page will 1757 * change only once the write actually happens. This avoids a few races, 1758 * and potentially makes it more efficient. 1759 * 1760 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1761 * but allow concurrent faults), with pte both mapped and locked. 1762 * We return with mmap_sem still held, but pte unmapped and unlocked. 1763 */ 1764 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1765 unsigned long address, pte_t *page_table, pmd_t *pmd, 1766 spinlock_t *ptl, pte_t orig_pte) 1767 { 1768 struct page *old_page, *new_page; 1769 pte_t entry; 1770 int reuse = 0, ret = 0; 1771 int page_mkwrite = 0; 1772 struct page *dirty_page = NULL; 1773 1774 old_page = vm_normal_page(vma, address, orig_pte); 1775 if (!old_page) { 1776 /* 1777 * VM_MIXEDMAP !pfn_valid() case 1778 * 1779 * We should not cow pages in a shared writeable mapping. 1780 * Just mark the pages writable as we can't do any dirty 1781 * accounting on raw pfn maps. 1782 */ 1783 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1784 (VM_WRITE|VM_SHARED)) 1785 goto reuse; 1786 goto gotten; 1787 } 1788 1789 /* 1790 * Take out anonymous pages first, anonymous shared vmas are 1791 * not dirty accountable. 1792 */ 1793 if (PageAnon(old_page)) { 1794 if (!TestSetPageLocked(old_page)) { 1795 reuse = can_share_swap_page(old_page); 1796 unlock_page(old_page); 1797 } 1798 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1799 (VM_WRITE|VM_SHARED))) { 1800 /* 1801 * Only catch write-faults on shared writable pages, 1802 * read-only shared pages can get COWed by 1803 * get_user_pages(.write=1, .force=1). 1804 */ 1805 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 1806 /* 1807 * Notify the address space that the page is about to 1808 * become writable so that it can prohibit this or wait 1809 * for the page to get into an appropriate state. 1810 * 1811 * We do this without the lock held, so that it can 1812 * sleep if it needs to. 1813 */ 1814 page_cache_get(old_page); 1815 pte_unmap_unlock(page_table, ptl); 1816 1817 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) 1818 goto unwritable_page; 1819 1820 /* 1821 * Since we dropped the lock we need to revalidate 1822 * the PTE as someone else may have changed it. If 1823 * they did, we just return, as we can count on the 1824 * MMU to tell us if they didn't also make it writable. 1825 */ 1826 page_table = pte_offset_map_lock(mm, pmd, address, 1827 &ptl); 1828 page_cache_release(old_page); 1829 if (!pte_same(*page_table, orig_pte)) 1830 goto unlock; 1831 1832 page_mkwrite = 1; 1833 } 1834 dirty_page = old_page; 1835 get_page(dirty_page); 1836 reuse = 1; 1837 } 1838 1839 if (reuse) { 1840 reuse: 1841 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1842 entry = pte_mkyoung(orig_pte); 1843 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1844 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 1845 update_mmu_cache(vma, address, entry); 1846 ret |= VM_FAULT_WRITE; 1847 goto unlock; 1848 } 1849 1850 /* 1851 * Ok, we need to copy. Oh, well.. 1852 */ 1853 page_cache_get(old_page); 1854 gotten: 1855 pte_unmap_unlock(page_table, ptl); 1856 1857 if (unlikely(anon_vma_prepare(vma))) 1858 goto oom; 1859 VM_BUG_ON(old_page == ZERO_PAGE(0)); 1860 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1861 if (!new_page) 1862 goto oom; 1863 cow_user_page(new_page, old_page, address, vma); 1864 __SetPageUptodate(new_page); 1865 1866 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 1867 goto oom_free_new; 1868 1869 /* 1870 * Re-check the pte - we dropped the lock 1871 */ 1872 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1873 if (likely(pte_same(*page_table, orig_pte))) { 1874 if (old_page) { 1875 if (!PageAnon(old_page)) { 1876 dec_mm_counter(mm, file_rss); 1877 inc_mm_counter(mm, anon_rss); 1878 } 1879 } else 1880 inc_mm_counter(mm, anon_rss); 1881 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1882 entry = mk_pte(new_page, vma->vm_page_prot); 1883 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1884 /* 1885 * Clear the pte entry and flush it first, before updating the 1886 * pte with the new entry. This will avoid a race condition 1887 * seen in the presence of one thread doing SMC and another 1888 * thread doing COW. 1889 */ 1890 ptep_clear_flush_notify(vma, address, page_table); 1891 set_pte_at(mm, address, page_table, entry); 1892 update_mmu_cache(vma, address, entry); 1893 lru_cache_add_active(new_page); 1894 page_add_new_anon_rmap(new_page, vma, address); 1895 1896 if (old_page) { 1897 /* 1898 * Only after switching the pte to the new page may 1899 * we remove the mapcount here. Otherwise another 1900 * process may come and find the rmap count decremented 1901 * before the pte is switched to the new page, and 1902 * "reuse" the old page writing into it while our pte 1903 * here still points into it and can be read by other 1904 * threads. 1905 * 1906 * The critical issue is to order this 1907 * page_remove_rmap with the ptp_clear_flush above. 1908 * Those stores are ordered by (if nothing else,) 1909 * the barrier present in the atomic_add_negative 1910 * in page_remove_rmap. 1911 * 1912 * Then the TLB flush in ptep_clear_flush ensures that 1913 * no process can access the old page before the 1914 * decremented mapcount is visible. And the old page 1915 * cannot be reused until after the decremented 1916 * mapcount is visible. So transitively, TLBs to 1917 * old page will be flushed before it can be reused. 1918 */ 1919 page_remove_rmap(old_page, vma); 1920 } 1921 1922 /* Free the old page.. */ 1923 new_page = old_page; 1924 ret |= VM_FAULT_WRITE; 1925 } else 1926 mem_cgroup_uncharge_page(new_page); 1927 1928 if (new_page) 1929 page_cache_release(new_page); 1930 if (old_page) 1931 page_cache_release(old_page); 1932 unlock: 1933 pte_unmap_unlock(page_table, ptl); 1934 if (dirty_page) { 1935 if (vma->vm_file) 1936 file_update_time(vma->vm_file); 1937 1938 /* 1939 * Yes, Virginia, this is actually required to prevent a race 1940 * with clear_page_dirty_for_io() from clearing the page dirty 1941 * bit after it clear all dirty ptes, but before a racing 1942 * do_wp_page installs a dirty pte. 1943 * 1944 * do_no_page is protected similarly. 1945 */ 1946 wait_on_page_locked(dirty_page); 1947 set_page_dirty_balance(dirty_page, page_mkwrite); 1948 put_page(dirty_page); 1949 } 1950 return ret; 1951 oom_free_new: 1952 page_cache_release(new_page); 1953 oom: 1954 if (old_page) 1955 page_cache_release(old_page); 1956 return VM_FAULT_OOM; 1957 1958 unwritable_page: 1959 page_cache_release(old_page); 1960 return VM_FAULT_SIGBUS; 1961 } 1962 1963 /* 1964 * Helper functions for unmap_mapping_range(). 1965 * 1966 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 1967 * 1968 * We have to restart searching the prio_tree whenever we drop the lock, 1969 * since the iterator is only valid while the lock is held, and anyway 1970 * a later vma might be split and reinserted earlier while lock dropped. 1971 * 1972 * The list of nonlinear vmas could be handled more efficiently, using 1973 * a placeholder, but handle it in the same way until a need is shown. 1974 * It is important to search the prio_tree before nonlinear list: a vma 1975 * may become nonlinear and be shifted from prio_tree to nonlinear list 1976 * while the lock is dropped; but never shifted from list to prio_tree. 1977 * 1978 * In order to make forward progress despite restarting the search, 1979 * vm_truncate_count is used to mark a vma as now dealt with, so we can 1980 * quickly skip it next time around. Since the prio_tree search only 1981 * shows us those vmas affected by unmapping the range in question, we 1982 * can't efficiently keep all vmas in step with mapping->truncate_count: 1983 * so instead reset them all whenever it wraps back to 0 (then go to 1). 1984 * mapping->truncate_count and vma->vm_truncate_count are protected by 1985 * i_mmap_lock. 1986 * 1987 * In order to make forward progress despite repeatedly restarting some 1988 * large vma, note the restart_addr from unmap_vmas when it breaks out: 1989 * and restart from that address when we reach that vma again. It might 1990 * have been split or merged, shrunk or extended, but never shifted: so 1991 * restart_addr remains valid so long as it remains in the vma's range. 1992 * unmap_mapping_range forces truncate_count to leap over page-aligned 1993 * values so we can save vma's restart_addr in its truncate_count field. 1994 */ 1995 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 1996 1997 static void reset_vma_truncate_counts(struct address_space *mapping) 1998 { 1999 struct vm_area_struct *vma; 2000 struct prio_tree_iter iter; 2001 2002 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2003 vma->vm_truncate_count = 0; 2004 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2005 vma->vm_truncate_count = 0; 2006 } 2007 2008 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2009 unsigned long start_addr, unsigned long end_addr, 2010 struct zap_details *details) 2011 { 2012 unsigned long restart_addr; 2013 int need_break; 2014 2015 /* 2016 * files that support invalidating or truncating portions of the 2017 * file from under mmaped areas must have their ->fault function 2018 * return a locked page (and set VM_FAULT_LOCKED in the return). 2019 * This provides synchronisation against concurrent unmapping here. 2020 */ 2021 2022 again: 2023 restart_addr = vma->vm_truncate_count; 2024 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2025 start_addr = restart_addr; 2026 if (start_addr >= end_addr) { 2027 /* Top of vma has been split off since last time */ 2028 vma->vm_truncate_count = details->truncate_count; 2029 return 0; 2030 } 2031 } 2032 2033 restart_addr = zap_page_range(vma, start_addr, 2034 end_addr - start_addr, details); 2035 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2036 2037 if (restart_addr >= end_addr) { 2038 /* We have now completed this vma: mark it so */ 2039 vma->vm_truncate_count = details->truncate_count; 2040 if (!need_break) 2041 return 0; 2042 } else { 2043 /* Note restart_addr in vma's truncate_count field */ 2044 vma->vm_truncate_count = restart_addr; 2045 if (!need_break) 2046 goto again; 2047 } 2048 2049 spin_unlock(details->i_mmap_lock); 2050 cond_resched(); 2051 spin_lock(details->i_mmap_lock); 2052 return -EINTR; 2053 } 2054 2055 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2056 struct zap_details *details) 2057 { 2058 struct vm_area_struct *vma; 2059 struct prio_tree_iter iter; 2060 pgoff_t vba, vea, zba, zea; 2061 2062 restart: 2063 vma_prio_tree_foreach(vma, &iter, root, 2064 details->first_index, details->last_index) { 2065 /* Skip quickly over those we have already dealt with */ 2066 if (vma->vm_truncate_count == details->truncate_count) 2067 continue; 2068 2069 vba = vma->vm_pgoff; 2070 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2071 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2072 zba = details->first_index; 2073 if (zba < vba) 2074 zba = vba; 2075 zea = details->last_index; 2076 if (zea > vea) 2077 zea = vea; 2078 2079 if (unmap_mapping_range_vma(vma, 2080 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2081 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2082 details) < 0) 2083 goto restart; 2084 } 2085 } 2086 2087 static inline void unmap_mapping_range_list(struct list_head *head, 2088 struct zap_details *details) 2089 { 2090 struct vm_area_struct *vma; 2091 2092 /* 2093 * In nonlinear VMAs there is no correspondence between virtual address 2094 * offset and file offset. So we must perform an exhaustive search 2095 * across *all* the pages in each nonlinear VMA, not just the pages 2096 * whose virtual address lies outside the file truncation point. 2097 */ 2098 restart: 2099 list_for_each_entry(vma, head, shared.vm_set.list) { 2100 /* Skip quickly over those we have already dealt with */ 2101 if (vma->vm_truncate_count == details->truncate_count) 2102 continue; 2103 details->nonlinear_vma = vma; 2104 if (unmap_mapping_range_vma(vma, vma->vm_start, 2105 vma->vm_end, details) < 0) 2106 goto restart; 2107 } 2108 } 2109 2110 /** 2111 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2112 * @mapping: the address space containing mmaps to be unmapped. 2113 * @holebegin: byte in first page to unmap, relative to the start of 2114 * the underlying file. This will be rounded down to a PAGE_SIZE 2115 * boundary. Note that this is different from vmtruncate(), which 2116 * must keep the partial page. In contrast, we must get rid of 2117 * partial pages. 2118 * @holelen: size of prospective hole in bytes. This will be rounded 2119 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2120 * end of the file. 2121 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2122 * but 0 when invalidating pagecache, don't throw away private data. 2123 */ 2124 void unmap_mapping_range(struct address_space *mapping, 2125 loff_t const holebegin, loff_t const holelen, int even_cows) 2126 { 2127 struct zap_details details; 2128 pgoff_t hba = holebegin >> PAGE_SHIFT; 2129 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2130 2131 /* Check for overflow. */ 2132 if (sizeof(holelen) > sizeof(hlen)) { 2133 long long holeend = 2134 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2135 if (holeend & ~(long long)ULONG_MAX) 2136 hlen = ULONG_MAX - hba + 1; 2137 } 2138 2139 details.check_mapping = even_cows? NULL: mapping; 2140 details.nonlinear_vma = NULL; 2141 details.first_index = hba; 2142 details.last_index = hba + hlen - 1; 2143 if (details.last_index < details.first_index) 2144 details.last_index = ULONG_MAX; 2145 details.i_mmap_lock = &mapping->i_mmap_lock; 2146 2147 spin_lock(&mapping->i_mmap_lock); 2148 2149 /* Protect against endless unmapping loops */ 2150 mapping->truncate_count++; 2151 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2152 if (mapping->truncate_count == 0) 2153 reset_vma_truncate_counts(mapping); 2154 mapping->truncate_count++; 2155 } 2156 details.truncate_count = mapping->truncate_count; 2157 2158 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2159 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2160 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2161 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2162 spin_unlock(&mapping->i_mmap_lock); 2163 } 2164 EXPORT_SYMBOL(unmap_mapping_range); 2165 2166 /** 2167 * vmtruncate - unmap mappings "freed" by truncate() syscall 2168 * @inode: inode of the file used 2169 * @offset: file offset to start truncating 2170 * 2171 * NOTE! We have to be ready to update the memory sharing 2172 * between the file and the memory map for a potential last 2173 * incomplete page. Ugly, but necessary. 2174 */ 2175 int vmtruncate(struct inode * inode, loff_t offset) 2176 { 2177 if (inode->i_size < offset) { 2178 unsigned long limit; 2179 2180 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2181 if (limit != RLIM_INFINITY && offset > limit) 2182 goto out_sig; 2183 if (offset > inode->i_sb->s_maxbytes) 2184 goto out_big; 2185 i_size_write(inode, offset); 2186 } else { 2187 struct address_space *mapping = inode->i_mapping; 2188 2189 /* 2190 * truncation of in-use swapfiles is disallowed - it would 2191 * cause subsequent swapout to scribble on the now-freed 2192 * blocks. 2193 */ 2194 if (IS_SWAPFILE(inode)) 2195 return -ETXTBSY; 2196 i_size_write(inode, offset); 2197 2198 /* 2199 * unmap_mapping_range is called twice, first simply for 2200 * efficiency so that truncate_inode_pages does fewer 2201 * single-page unmaps. However after this first call, and 2202 * before truncate_inode_pages finishes, it is possible for 2203 * private pages to be COWed, which remain after 2204 * truncate_inode_pages finishes, hence the second 2205 * unmap_mapping_range call must be made for correctness. 2206 */ 2207 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2208 truncate_inode_pages(mapping, offset); 2209 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2210 } 2211 2212 if (inode->i_op && inode->i_op->truncate) 2213 inode->i_op->truncate(inode); 2214 return 0; 2215 2216 out_sig: 2217 send_sig(SIGXFSZ, current, 0); 2218 out_big: 2219 return -EFBIG; 2220 } 2221 EXPORT_SYMBOL(vmtruncate); 2222 2223 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2224 { 2225 struct address_space *mapping = inode->i_mapping; 2226 2227 /* 2228 * If the underlying filesystem is not going to provide 2229 * a way to truncate a range of blocks (punch a hole) - 2230 * we should return failure right now. 2231 */ 2232 if (!inode->i_op || !inode->i_op->truncate_range) 2233 return -ENOSYS; 2234 2235 mutex_lock(&inode->i_mutex); 2236 down_write(&inode->i_alloc_sem); 2237 unmap_mapping_range(mapping, offset, (end - offset), 1); 2238 truncate_inode_pages_range(mapping, offset, end); 2239 unmap_mapping_range(mapping, offset, (end - offset), 1); 2240 inode->i_op->truncate_range(inode, offset, end); 2241 up_write(&inode->i_alloc_sem); 2242 mutex_unlock(&inode->i_mutex); 2243 2244 return 0; 2245 } 2246 2247 /* 2248 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2249 * but allow concurrent faults), and pte mapped but not yet locked. 2250 * We return with mmap_sem still held, but pte unmapped and unlocked. 2251 */ 2252 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2253 unsigned long address, pte_t *page_table, pmd_t *pmd, 2254 int write_access, pte_t orig_pte) 2255 { 2256 spinlock_t *ptl; 2257 struct page *page; 2258 swp_entry_t entry; 2259 pte_t pte; 2260 int ret = 0; 2261 2262 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2263 goto out; 2264 2265 entry = pte_to_swp_entry(orig_pte); 2266 if (is_migration_entry(entry)) { 2267 migration_entry_wait(mm, pmd, address); 2268 goto out; 2269 } 2270 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2271 page = lookup_swap_cache(entry); 2272 if (!page) { 2273 grab_swap_token(); /* Contend for token _before_ read-in */ 2274 page = swapin_readahead(entry, 2275 GFP_HIGHUSER_MOVABLE, vma, address); 2276 if (!page) { 2277 /* 2278 * Back out if somebody else faulted in this pte 2279 * while we released the pte lock. 2280 */ 2281 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2282 if (likely(pte_same(*page_table, orig_pte))) 2283 ret = VM_FAULT_OOM; 2284 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2285 goto unlock; 2286 } 2287 2288 /* Had to read the page from swap area: Major fault */ 2289 ret = VM_FAULT_MAJOR; 2290 count_vm_event(PGMAJFAULT); 2291 } 2292 2293 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { 2294 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2295 ret = VM_FAULT_OOM; 2296 goto out; 2297 } 2298 2299 mark_page_accessed(page); 2300 lock_page(page); 2301 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2302 2303 /* 2304 * Back out if somebody else already faulted in this pte. 2305 */ 2306 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2307 if (unlikely(!pte_same(*page_table, orig_pte))) 2308 goto out_nomap; 2309 2310 if (unlikely(!PageUptodate(page))) { 2311 ret = VM_FAULT_SIGBUS; 2312 goto out_nomap; 2313 } 2314 2315 /* The page isn't present yet, go ahead with the fault. */ 2316 2317 inc_mm_counter(mm, anon_rss); 2318 pte = mk_pte(page, vma->vm_page_prot); 2319 if (write_access && can_share_swap_page(page)) { 2320 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2321 write_access = 0; 2322 } 2323 2324 flush_icache_page(vma, page); 2325 set_pte_at(mm, address, page_table, pte); 2326 page_add_anon_rmap(page, vma, address); 2327 2328 swap_free(entry); 2329 if (vm_swap_full()) 2330 remove_exclusive_swap_page(page); 2331 unlock_page(page); 2332 2333 if (write_access) { 2334 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2335 if (ret & VM_FAULT_ERROR) 2336 ret &= VM_FAULT_ERROR; 2337 goto out; 2338 } 2339 2340 /* No need to invalidate - it was non-present before */ 2341 update_mmu_cache(vma, address, pte); 2342 unlock: 2343 pte_unmap_unlock(page_table, ptl); 2344 out: 2345 return ret; 2346 out_nomap: 2347 mem_cgroup_uncharge_page(page); 2348 pte_unmap_unlock(page_table, ptl); 2349 unlock_page(page); 2350 page_cache_release(page); 2351 return ret; 2352 } 2353 2354 /* 2355 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2356 * but allow concurrent faults), and pte mapped but not yet locked. 2357 * We return with mmap_sem still held, but pte unmapped and unlocked. 2358 */ 2359 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2360 unsigned long address, pte_t *page_table, pmd_t *pmd, 2361 int write_access) 2362 { 2363 struct page *page; 2364 spinlock_t *ptl; 2365 pte_t entry; 2366 2367 /* Allocate our own private page. */ 2368 pte_unmap(page_table); 2369 2370 if (unlikely(anon_vma_prepare(vma))) 2371 goto oom; 2372 page = alloc_zeroed_user_highpage_movable(vma, address); 2373 if (!page) 2374 goto oom; 2375 __SetPageUptodate(page); 2376 2377 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) 2378 goto oom_free_page; 2379 2380 entry = mk_pte(page, vma->vm_page_prot); 2381 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2382 2383 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2384 if (!pte_none(*page_table)) 2385 goto release; 2386 inc_mm_counter(mm, anon_rss); 2387 lru_cache_add_active(page); 2388 page_add_new_anon_rmap(page, vma, address); 2389 set_pte_at(mm, address, page_table, entry); 2390 2391 /* No need to invalidate - it was non-present before */ 2392 update_mmu_cache(vma, address, entry); 2393 unlock: 2394 pte_unmap_unlock(page_table, ptl); 2395 return 0; 2396 release: 2397 mem_cgroup_uncharge_page(page); 2398 page_cache_release(page); 2399 goto unlock; 2400 oom_free_page: 2401 page_cache_release(page); 2402 oom: 2403 return VM_FAULT_OOM; 2404 } 2405 2406 /* 2407 * __do_fault() tries to create a new page mapping. It aggressively 2408 * tries to share with existing pages, but makes a separate copy if 2409 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2410 * the next page fault. 2411 * 2412 * As this is called only for pages that do not currently exist, we 2413 * do not need to flush old virtual caches or the TLB. 2414 * 2415 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2416 * but allow concurrent faults), and pte neither mapped nor locked. 2417 * We return with mmap_sem still held, but pte unmapped and unlocked. 2418 */ 2419 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2420 unsigned long address, pmd_t *pmd, 2421 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2422 { 2423 pte_t *page_table; 2424 spinlock_t *ptl; 2425 struct page *page; 2426 pte_t entry; 2427 int anon = 0; 2428 struct page *dirty_page = NULL; 2429 struct vm_fault vmf; 2430 int ret; 2431 int page_mkwrite = 0; 2432 2433 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2434 vmf.pgoff = pgoff; 2435 vmf.flags = flags; 2436 vmf.page = NULL; 2437 2438 ret = vma->vm_ops->fault(vma, &vmf); 2439 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2440 return ret; 2441 2442 /* 2443 * For consistency in subsequent calls, make the faulted page always 2444 * locked. 2445 */ 2446 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2447 lock_page(vmf.page); 2448 else 2449 VM_BUG_ON(!PageLocked(vmf.page)); 2450 2451 /* 2452 * Should we do an early C-O-W break? 2453 */ 2454 page = vmf.page; 2455 if (flags & FAULT_FLAG_WRITE) { 2456 if (!(vma->vm_flags & VM_SHARED)) { 2457 anon = 1; 2458 if (unlikely(anon_vma_prepare(vma))) { 2459 ret = VM_FAULT_OOM; 2460 goto out; 2461 } 2462 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2463 vma, address); 2464 if (!page) { 2465 ret = VM_FAULT_OOM; 2466 goto out; 2467 } 2468 copy_user_highpage(page, vmf.page, address, vma); 2469 __SetPageUptodate(page); 2470 } else { 2471 /* 2472 * If the page will be shareable, see if the backing 2473 * address space wants to know that the page is about 2474 * to become writable 2475 */ 2476 if (vma->vm_ops->page_mkwrite) { 2477 unlock_page(page); 2478 if (vma->vm_ops->page_mkwrite(vma, page) < 0) { 2479 ret = VM_FAULT_SIGBUS; 2480 anon = 1; /* no anon but release vmf.page */ 2481 goto out_unlocked; 2482 } 2483 lock_page(page); 2484 /* 2485 * XXX: this is not quite right (racy vs 2486 * invalidate) to unlock and relock the page 2487 * like this, however a better fix requires 2488 * reworking page_mkwrite locking API, which 2489 * is better done later. 2490 */ 2491 if (!page->mapping) { 2492 ret = 0; 2493 anon = 1; /* no anon but release vmf.page */ 2494 goto out; 2495 } 2496 page_mkwrite = 1; 2497 } 2498 } 2499 2500 } 2501 2502 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { 2503 ret = VM_FAULT_OOM; 2504 goto out; 2505 } 2506 2507 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2508 2509 /* 2510 * This silly early PAGE_DIRTY setting removes a race 2511 * due to the bad i386 page protection. But it's valid 2512 * for other architectures too. 2513 * 2514 * Note that if write_access is true, we either now have 2515 * an exclusive copy of the page, or this is a shared mapping, 2516 * so we can make it writable and dirty to avoid having to 2517 * handle that later. 2518 */ 2519 /* Only go through if we didn't race with anybody else... */ 2520 if (likely(pte_same(*page_table, orig_pte))) { 2521 flush_icache_page(vma, page); 2522 entry = mk_pte(page, vma->vm_page_prot); 2523 if (flags & FAULT_FLAG_WRITE) 2524 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2525 set_pte_at(mm, address, page_table, entry); 2526 if (anon) { 2527 inc_mm_counter(mm, anon_rss); 2528 lru_cache_add_active(page); 2529 page_add_new_anon_rmap(page, vma, address); 2530 } else { 2531 inc_mm_counter(mm, file_rss); 2532 page_add_file_rmap(page); 2533 if (flags & FAULT_FLAG_WRITE) { 2534 dirty_page = page; 2535 get_page(dirty_page); 2536 } 2537 } 2538 2539 /* no need to invalidate: a not-present page won't be cached */ 2540 update_mmu_cache(vma, address, entry); 2541 } else { 2542 mem_cgroup_uncharge_page(page); 2543 if (anon) 2544 page_cache_release(page); 2545 else 2546 anon = 1; /* no anon but release faulted_page */ 2547 } 2548 2549 pte_unmap_unlock(page_table, ptl); 2550 2551 out: 2552 unlock_page(vmf.page); 2553 out_unlocked: 2554 if (anon) 2555 page_cache_release(vmf.page); 2556 else if (dirty_page) { 2557 if (vma->vm_file) 2558 file_update_time(vma->vm_file); 2559 2560 set_page_dirty_balance(dirty_page, page_mkwrite); 2561 put_page(dirty_page); 2562 } 2563 2564 return ret; 2565 } 2566 2567 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2568 unsigned long address, pte_t *page_table, pmd_t *pmd, 2569 int write_access, pte_t orig_pte) 2570 { 2571 pgoff_t pgoff = (((address & PAGE_MASK) 2572 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2573 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); 2574 2575 pte_unmap(page_table); 2576 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2577 } 2578 2579 /* 2580 * Fault of a previously existing named mapping. Repopulate the pte 2581 * from the encoded file_pte if possible. This enables swappable 2582 * nonlinear vmas. 2583 * 2584 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2585 * but allow concurrent faults), and pte mapped but not yet locked. 2586 * We return with mmap_sem still held, but pte unmapped and unlocked. 2587 */ 2588 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2589 unsigned long address, pte_t *page_table, pmd_t *pmd, 2590 int write_access, pte_t orig_pte) 2591 { 2592 unsigned int flags = FAULT_FLAG_NONLINEAR | 2593 (write_access ? FAULT_FLAG_WRITE : 0); 2594 pgoff_t pgoff; 2595 2596 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2597 return 0; 2598 2599 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) || 2600 !(vma->vm_flags & VM_CAN_NONLINEAR))) { 2601 /* 2602 * Page table corrupted: show pte and kill process. 2603 */ 2604 print_bad_pte(vma, orig_pte, address); 2605 return VM_FAULT_OOM; 2606 } 2607 2608 pgoff = pte_to_pgoff(orig_pte); 2609 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2610 } 2611 2612 /* 2613 * These routines also need to handle stuff like marking pages dirty 2614 * and/or accessed for architectures that don't do it in hardware (most 2615 * RISC architectures). The early dirtying is also good on the i386. 2616 * 2617 * There is also a hook called "update_mmu_cache()" that architectures 2618 * with external mmu caches can use to update those (ie the Sparc or 2619 * PowerPC hashed page tables that act as extended TLBs). 2620 * 2621 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2622 * but allow concurrent faults), and pte mapped but not yet locked. 2623 * We return with mmap_sem still held, but pte unmapped and unlocked. 2624 */ 2625 static inline int handle_pte_fault(struct mm_struct *mm, 2626 struct vm_area_struct *vma, unsigned long address, 2627 pte_t *pte, pmd_t *pmd, int write_access) 2628 { 2629 pte_t entry; 2630 spinlock_t *ptl; 2631 2632 entry = *pte; 2633 if (!pte_present(entry)) { 2634 if (pte_none(entry)) { 2635 if (vma->vm_ops) { 2636 if (likely(vma->vm_ops->fault)) 2637 return do_linear_fault(mm, vma, address, 2638 pte, pmd, write_access, entry); 2639 } 2640 return do_anonymous_page(mm, vma, address, 2641 pte, pmd, write_access); 2642 } 2643 if (pte_file(entry)) 2644 return do_nonlinear_fault(mm, vma, address, 2645 pte, pmd, write_access, entry); 2646 return do_swap_page(mm, vma, address, 2647 pte, pmd, write_access, entry); 2648 } 2649 2650 ptl = pte_lockptr(mm, pmd); 2651 spin_lock(ptl); 2652 if (unlikely(!pte_same(*pte, entry))) 2653 goto unlock; 2654 if (write_access) { 2655 if (!pte_write(entry)) 2656 return do_wp_page(mm, vma, address, 2657 pte, pmd, ptl, entry); 2658 entry = pte_mkdirty(entry); 2659 } 2660 entry = pte_mkyoung(entry); 2661 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { 2662 update_mmu_cache(vma, address, entry); 2663 } else { 2664 /* 2665 * This is needed only for protection faults but the arch code 2666 * is not yet telling us if this is a protection fault or not. 2667 * This still avoids useless tlb flushes for .text page faults 2668 * with threads. 2669 */ 2670 if (write_access) 2671 flush_tlb_page(vma, address); 2672 } 2673 unlock: 2674 pte_unmap_unlock(pte, ptl); 2675 return 0; 2676 } 2677 2678 /* 2679 * By the time we get here, we already hold the mm semaphore 2680 */ 2681 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2682 unsigned long address, int write_access) 2683 { 2684 pgd_t *pgd; 2685 pud_t *pud; 2686 pmd_t *pmd; 2687 pte_t *pte; 2688 2689 __set_current_state(TASK_RUNNING); 2690 2691 count_vm_event(PGFAULT); 2692 2693 if (unlikely(is_vm_hugetlb_page(vma))) 2694 return hugetlb_fault(mm, vma, address, write_access); 2695 2696 pgd = pgd_offset(mm, address); 2697 pud = pud_alloc(mm, pgd, address); 2698 if (!pud) 2699 return VM_FAULT_OOM; 2700 pmd = pmd_alloc(mm, pud, address); 2701 if (!pmd) 2702 return VM_FAULT_OOM; 2703 pte = pte_alloc_map(mm, pmd, address); 2704 if (!pte) 2705 return VM_FAULT_OOM; 2706 2707 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2708 } 2709 2710 #ifndef __PAGETABLE_PUD_FOLDED 2711 /* 2712 * Allocate page upper directory. 2713 * We've already handled the fast-path in-line. 2714 */ 2715 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2716 { 2717 pud_t *new = pud_alloc_one(mm, address); 2718 if (!new) 2719 return -ENOMEM; 2720 2721 smp_wmb(); /* See comment in __pte_alloc */ 2722 2723 spin_lock(&mm->page_table_lock); 2724 if (pgd_present(*pgd)) /* Another has populated it */ 2725 pud_free(mm, new); 2726 else 2727 pgd_populate(mm, pgd, new); 2728 spin_unlock(&mm->page_table_lock); 2729 return 0; 2730 } 2731 #endif /* __PAGETABLE_PUD_FOLDED */ 2732 2733 #ifndef __PAGETABLE_PMD_FOLDED 2734 /* 2735 * Allocate page middle directory. 2736 * We've already handled the fast-path in-line. 2737 */ 2738 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2739 { 2740 pmd_t *new = pmd_alloc_one(mm, address); 2741 if (!new) 2742 return -ENOMEM; 2743 2744 smp_wmb(); /* See comment in __pte_alloc */ 2745 2746 spin_lock(&mm->page_table_lock); 2747 #ifndef __ARCH_HAS_4LEVEL_HACK 2748 if (pud_present(*pud)) /* Another has populated it */ 2749 pmd_free(mm, new); 2750 else 2751 pud_populate(mm, pud, new); 2752 #else 2753 if (pgd_present(*pud)) /* Another has populated it */ 2754 pmd_free(mm, new); 2755 else 2756 pgd_populate(mm, pud, new); 2757 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2758 spin_unlock(&mm->page_table_lock); 2759 return 0; 2760 } 2761 #endif /* __PAGETABLE_PMD_FOLDED */ 2762 2763 int make_pages_present(unsigned long addr, unsigned long end) 2764 { 2765 int ret, len, write; 2766 struct vm_area_struct * vma; 2767 2768 vma = find_vma(current->mm, addr); 2769 if (!vma) 2770 return -1; 2771 write = (vma->vm_flags & VM_WRITE) != 0; 2772 BUG_ON(addr >= end); 2773 BUG_ON(end > vma->vm_end); 2774 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 2775 ret = get_user_pages(current, current->mm, addr, 2776 len, write, 0, NULL, NULL); 2777 if (ret < 0) 2778 return ret; 2779 return ret == len ? 0 : -1; 2780 } 2781 2782 #if !defined(__HAVE_ARCH_GATE_AREA) 2783 2784 #if defined(AT_SYSINFO_EHDR) 2785 static struct vm_area_struct gate_vma; 2786 2787 static int __init gate_vma_init(void) 2788 { 2789 gate_vma.vm_mm = NULL; 2790 gate_vma.vm_start = FIXADDR_USER_START; 2791 gate_vma.vm_end = FIXADDR_USER_END; 2792 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 2793 gate_vma.vm_page_prot = __P101; 2794 /* 2795 * Make sure the vDSO gets into every core dump. 2796 * Dumping its contents makes post-mortem fully interpretable later 2797 * without matching up the same kernel and hardware config to see 2798 * what PC values meant. 2799 */ 2800 gate_vma.vm_flags |= VM_ALWAYSDUMP; 2801 return 0; 2802 } 2803 __initcall(gate_vma_init); 2804 #endif 2805 2806 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2807 { 2808 #ifdef AT_SYSINFO_EHDR 2809 return &gate_vma; 2810 #else 2811 return NULL; 2812 #endif 2813 } 2814 2815 int in_gate_area_no_task(unsigned long addr) 2816 { 2817 #ifdef AT_SYSINFO_EHDR 2818 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2819 return 1; 2820 #endif 2821 return 0; 2822 } 2823 2824 #endif /* __HAVE_ARCH_GATE_AREA */ 2825 2826 #ifdef CONFIG_HAVE_IOREMAP_PROT 2827 static resource_size_t follow_phys(struct vm_area_struct *vma, 2828 unsigned long address, unsigned int flags, 2829 unsigned long *prot) 2830 { 2831 pgd_t *pgd; 2832 pud_t *pud; 2833 pmd_t *pmd; 2834 pte_t *ptep, pte; 2835 spinlock_t *ptl; 2836 resource_size_t phys_addr = 0; 2837 struct mm_struct *mm = vma->vm_mm; 2838 2839 VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP))); 2840 2841 pgd = pgd_offset(mm, address); 2842 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 2843 goto no_page_table; 2844 2845 pud = pud_offset(pgd, address); 2846 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 2847 goto no_page_table; 2848 2849 pmd = pmd_offset(pud, address); 2850 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 2851 goto no_page_table; 2852 2853 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 2854 if (pmd_huge(*pmd)) 2855 goto no_page_table; 2856 2857 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 2858 if (!ptep) 2859 goto out; 2860 2861 pte = *ptep; 2862 if (!pte_present(pte)) 2863 goto unlock; 2864 if ((flags & FOLL_WRITE) && !pte_write(pte)) 2865 goto unlock; 2866 phys_addr = pte_pfn(pte); 2867 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */ 2868 2869 *prot = pgprot_val(pte_pgprot(pte)); 2870 2871 unlock: 2872 pte_unmap_unlock(ptep, ptl); 2873 out: 2874 return phys_addr; 2875 no_page_table: 2876 return 0; 2877 } 2878 2879 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2880 void *buf, int len, int write) 2881 { 2882 resource_size_t phys_addr; 2883 unsigned long prot = 0; 2884 void *maddr; 2885 int offset = addr & (PAGE_SIZE-1); 2886 2887 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 2888 return -EINVAL; 2889 2890 phys_addr = follow_phys(vma, addr, write, &prot); 2891 2892 if (!phys_addr) 2893 return -EINVAL; 2894 2895 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 2896 if (write) 2897 memcpy_toio(maddr + offset, buf, len); 2898 else 2899 memcpy_fromio(buf, maddr + offset, len); 2900 iounmap(maddr); 2901 2902 return len; 2903 } 2904 #endif 2905 2906 /* 2907 * Access another process' address space. 2908 * Source/target buffer must be kernel space, 2909 * Do not walk the page table directly, use get_user_pages 2910 */ 2911 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 2912 { 2913 struct mm_struct *mm; 2914 struct vm_area_struct *vma; 2915 void *old_buf = buf; 2916 2917 mm = get_task_mm(tsk); 2918 if (!mm) 2919 return 0; 2920 2921 down_read(&mm->mmap_sem); 2922 /* ignore errors, just check how much was successfully transferred */ 2923 while (len) { 2924 int bytes, ret, offset; 2925 void *maddr; 2926 struct page *page = NULL; 2927 2928 ret = get_user_pages(tsk, mm, addr, 1, 2929 write, 1, &page, &vma); 2930 if (ret <= 0) { 2931 /* 2932 * Check if this is a VM_IO | VM_PFNMAP VMA, which 2933 * we can access using slightly different code. 2934 */ 2935 #ifdef CONFIG_HAVE_IOREMAP_PROT 2936 vma = find_vma(mm, addr); 2937 if (!vma) 2938 break; 2939 if (vma->vm_ops && vma->vm_ops->access) 2940 ret = vma->vm_ops->access(vma, addr, buf, 2941 len, write); 2942 if (ret <= 0) 2943 #endif 2944 break; 2945 bytes = ret; 2946 } else { 2947 bytes = len; 2948 offset = addr & (PAGE_SIZE-1); 2949 if (bytes > PAGE_SIZE-offset) 2950 bytes = PAGE_SIZE-offset; 2951 2952 maddr = kmap(page); 2953 if (write) { 2954 copy_to_user_page(vma, page, addr, 2955 maddr + offset, buf, bytes); 2956 set_page_dirty_lock(page); 2957 } else { 2958 copy_from_user_page(vma, page, addr, 2959 buf, maddr + offset, bytes); 2960 } 2961 kunmap(page); 2962 page_cache_release(page); 2963 } 2964 len -= bytes; 2965 buf += bytes; 2966 addr += bytes; 2967 } 2968 up_read(&mm->mmap_sem); 2969 mmput(mm); 2970 2971 return buf - old_buf; 2972 } 2973 2974 /* 2975 * Print the name of a VMA. 2976 */ 2977 void print_vma_addr(char *prefix, unsigned long ip) 2978 { 2979 struct mm_struct *mm = current->mm; 2980 struct vm_area_struct *vma; 2981 2982 /* 2983 * Do not print if we are in atomic 2984 * contexts (in exception stacks, etc.): 2985 */ 2986 if (preempt_count()) 2987 return; 2988 2989 down_read(&mm->mmap_sem); 2990 vma = find_vma(mm, ip); 2991 if (vma && vma->vm_file) { 2992 struct file *f = vma->vm_file; 2993 char *buf = (char *)__get_free_page(GFP_KERNEL); 2994 if (buf) { 2995 char *p, *s; 2996 2997 p = d_path(&f->f_path, buf, PAGE_SIZE); 2998 if (IS_ERR(p)) 2999 p = "?"; 3000 s = strrchr(p, '/'); 3001 if (s) 3002 p = s+1; 3003 printk("%s%s[%lx+%lx]", prefix, p, 3004 vma->vm_start, 3005 vma->vm_end - vma->vm_start); 3006 free_page((unsigned long)buf); 3007 } 3008 } 3009 up_read(¤t->mm->mmap_sem); 3010 } 3011