xref: /linux/mm/memory.c (revision 63870295de9adb365cd121dab94379b8cfdf986a)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 
56 #include <asm/pgalloc.h>
57 #include <asm/uaccess.h>
58 #include <asm/tlb.h>
59 #include <asm/tlbflush.h>
60 #include <asm/pgtable.h>
61 
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 
65 #include "internal.h"
66 
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71 
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75 
76 unsigned long num_physpages;
77 /*
78  * A number of key systems in x86 including ioremap() rely on the assumption
79  * that high_memory defines the upper bound on direct map memory, then end
80  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82  * and ZONE_HIGHMEM.
83  */
84 void * high_memory;
85 
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88 
89 /*
90  * Randomize the address space (stacks, mmaps, brk, etc.).
91  *
92  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93  *   as ancient (libc5 based) binaries can segfault. )
94  */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97 					1;
98 #else
99 					2;
100 #endif
101 
102 static int __init disable_randmaps(char *s)
103 {
104 	randomize_va_space = 0;
105 	return 1;
106 }
107 __setup("norandmaps", disable_randmaps);
108 
109 
110 /*
111  * If a p?d_bad entry is found while walking page tables, report
112  * the error, before resetting entry to p?d_none.  Usually (but
113  * very seldom) called out from the p?d_none_or_clear_bad macros.
114  */
115 
116 void pgd_clear_bad(pgd_t *pgd)
117 {
118 	pgd_ERROR(*pgd);
119 	pgd_clear(pgd);
120 }
121 
122 void pud_clear_bad(pud_t *pud)
123 {
124 	pud_ERROR(*pud);
125 	pud_clear(pud);
126 }
127 
128 void pmd_clear_bad(pmd_t *pmd)
129 {
130 	pmd_ERROR(*pmd);
131 	pmd_clear(pmd);
132 }
133 
134 /*
135  * Note: this doesn't free the actual pages themselves. That
136  * has been handled earlier when unmapping all the memory regions.
137  */
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 {
140 	pgtable_t token = pmd_pgtable(*pmd);
141 	pmd_clear(pmd);
142 	pte_free_tlb(tlb, token);
143 	tlb->mm->nr_ptes--;
144 }
145 
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 				unsigned long addr, unsigned long end,
148 				unsigned long floor, unsigned long ceiling)
149 {
150 	pmd_t *pmd;
151 	unsigned long next;
152 	unsigned long start;
153 
154 	start = addr;
155 	pmd = pmd_offset(pud, addr);
156 	do {
157 		next = pmd_addr_end(addr, end);
158 		if (pmd_none_or_clear_bad(pmd))
159 			continue;
160 		free_pte_range(tlb, pmd);
161 	} while (pmd++, addr = next, addr != end);
162 
163 	start &= PUD_MASK;
164 	if (start < floor)
165 		return;
166 	if (ceiling) {
167 		ceiling &= PUD_MASK;
168 		if (!ceiling)
169 			return;
170 	}
171 	if (end - 1 > ceiling - 1)
172 		return;
173 
174 	pmd = pmd_offset(pud, start);
175 	pud_clear(pud);
176 	pmd_free_tlb(tlb, pmd);
177 }
178 
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 				unsigned long addr, unsigned long end,
181 				unsigned long floor, unsigned long ceiling)
182 {
183 	pud_t *pud;
184 	unsigned long next;
185 	unsigned long start;
186 
187 	start = addr;
188 	pud = pud_offset(pgd, addr);
189 	do {
190 		next = pud_addr_end(addr, end);
191 		if (pud_none_or_clear_bad(pud))
192 			continue;
193 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194 	} while (pud++, addr = next, addr != end);
195 
196 	start &= PGDIR_MASK;
197 	if (start < floor)
198 		return;
199 	if (ceiling) {
200 		ceiling &= PGDIR_MASK;
201 		if (!ceiling)
202 			return;
203 	}
204 	if (end - 1 > ceiling - 1)
205 		return;
206 
207 	pud = pud_offset(pgd, start);
208 	pgd_clear(pgd);
209 	pud_free_tlb(tlb, pud);
210 }
211 
212 /*
213  * This function frees user-level page tables of a process.
214  *
215  * Must be called with pagetable lock held.
216  */
217 void free_pgd_range(struct mmu_gather *tlb,
218 			unsigned long addr, unsigned long end,
219 			unsigned long floor, unsigned long ceiling)
220 {
221 	pgd_t *pgd;
222 	unsigned long next;
223 	unsigned long start;
224 
225 	/*
226 	 * The next few lines have given us lots of grief...
227 	 *
228 	 * Why are we testing PMD* at this top level?  Because often
229 	 * there will be no work to do at all, and we'd prefer not to
230 	 * go all the way down to the bottom just to discover that.
231 	 *
232 	 * Why all these "- 1"s?  Because 0 represents both the bottom
233 	 * of the address space and the top of it (using -1 for the
234 	 * top wouldn't help much: the masks would do the wrong thing).
235 	 * The rule is that addr 0 and floor 0 refer to the bottom of
236 	 * the address space, but end 0 and ceiling 0 refer to the top
237 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 	 * that end 0 case should be mythical).
239 	 *
240 	 * Wherever addr is brought up or ceiling brought down, we must
241 	 * be careful to reject "the opposite 0" before it confuses the
242 	 * subsequent tests.  But what about where end is brought down
243 	 * by PMD_SIZE below? no, end can't go down to 0 there.
244 	 *
245 	 * Whereas we round start (addr) and ceiling down, by different
246 	 * masks at different levels, in order to test whether a table
247 	 * now has no other vmas using it, so can be freed, we don't
248 	 * bother to round floor or end up - the tests don't need that.
249 	 */
250 
251 	addr &= PMD_MASK;
252 	if (addr < floor) {
253 		addr += PMD_SIZE;
254 		if (!addr)
255 			return;
256 	}
257 	if (ceiling) {
258 		ceiling &= PMD_MASK;
259 		if (!ceiling)
260 			return;
261 	}
262 	if (end - 1 > ceiling - 1)
263 		end -= PMD_SIZE;
264 	if (addr > end - 1)
265 		return;
266 
267 	start = addr;
268 	pgd = pgd_offset(tlb->mm, addr);
269 	do {
270 		next = pgd_addr_end(addr, end);
271 		if (pgd_none_or_clear_bad(pgd))
272 			continue;
273 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274 	} while (pgd++, addr = next, addr != end);
275 }
276 
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278 		unsigned long floor, unsigned long ceiling)
279 {
280 	while (vma) {
281 		struct vm_area_struct *next = vma->vm_next;
282 		unsigned long addr = vma->vm_start;
283 
284 		/*
285 		 * Hide vma from rmap and vmtruncate before freeing pgtables
286 		 */
287 		anon_vma_unlink(vma);
288 		unlink_file_vma(vma);
289 
290 		if (is_vm_hugetlb_page(vma)) {
291 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292 				floor, next? next->vm_start: ceiling);
293 		} else {
294 			/*
295 			 * Optimization: gather nearby vmas into one call down
296 			 */
297 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298 			       && !is_vm_hugetlb_page(next)) {
299 				vma = next;
300 				next = vma->vm_next;
301 				anon_vma_unlink(vma);
302 				unlink_file_vma(vma);
303 			}
304 			free_pgd_range(tlb, addr, vma->vm_end,
305 				floor, next? next->vm_start: ceiling);
306 		}
307 		vma = next;
308 	}
309 }
310 
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 {
313 	pgtable_t new = pte_alloc_one(mm, address);
314 	if (!new)
315 		return -ENOMEM;
316 
317 	/*
318 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 	 * visible before the pte is made visible to other CPUs by being
320 	 * put into page tables.
321 	 *
322 	 * The other side of the story is the pointer chasing in the page
323 	 * table walking code (when walking the page table without locking;
324 	 * ie. most of the time). Fortunately, these data accesses consist
325 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 	 * being the notable exception) will already guarantee loads are
327 	 * seen in-order. See the alpha page table accessors for the
328 	 * smp_read_barrier_depends() barriers in page table walking code.
329 	 */
330 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331 
332 	spin_lock(&mm->page_table_lock);
333 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
334 		mm->nr_ptes++;
335 		pmd_populate(mm, pmd, new);
336 		new = NULL;
337 	}
338 	spin_unlock(&mm->page_table_lock);
339 	if (new)
340 		pte_free(mm, new);
341 	return 0;
342 }
343 
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 {
346 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 	if (!new)
348 		return -ENOMEM;
349 
350 	smp_wmb(); /* See comment in __pte_alloc */
351 
352 	spin_lock(&init_mm.page_table_lock);
353 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
354 		pmd_populate_kernel(&init_mm, pmd, new);
355 		new = NULL;
356 	}
357 	spin_unlock(&init_mm.page_table_lock);
358 	if (new)
359 		pte_free_kernel(&init_mm, new);
360 	return 0;
361 }
362 
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 {
365 	if (file_rss)
366 		add_mm_counter(mm, file_rss, file_rss);
367 	if (anon_rss)
368 		add_mm_counter(mm, anon_rss, anon_rss);
369 }
370 
371 /*
372  * This function is called to print an error when a bad pte
373  * is found. For example, we might have a PFN-mapped pte in
374  * a region that doesn't allow it.
375  *
376  * The calling function must still handle the error.
377  */
378 static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
379 			  unsigned long vaddr)
380 {
381 	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
382 			"vm_flags = %lx, vaddr = %lx\n",
383 		(long long)pte_val(pte),
384 		(vma->vm_mm == current->mm ? current->comm : "???"),
385 		vma->vm_flags, vaddr);
386 	dump_stack();
387 }
388 
389 static inline int is_cow_mapping(unsigned int flags)
390 {
391 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
392 }
393 
394 /*
395  * vm_normal_page -- This function gets the "struct page" associated with a pte.
396  *
397  * "Special" mappings do not wish to be associated with a "struct page" (either
398  * it doesn't exist, or it exists but they don't want to touch it). In this
399  * case, NULL is returned here. "Normal" mappings do have a struct page.
400  *
401  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
402  * pte bit, in which case this function is trivial. Secondly, an architecture
403  * may not have a spare pte bit, which requires a more complicated scheme,
404  * described below.
405  *
406  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
407  * special mapping (even if there are underlying and valid "struct pages").
408  * COWed pages of a VM_PFNMAP are always normal.
409  *
410  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
411  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
412  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
413  * mapping will always honor the rule
414  *
415  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
416  *
417  * And for normal mappings this is false.
418  *
419  * This restricts such mappings to be a linear translation from virtual address
420  * to pfn. To get around this restriction, we allow arbitrary mappings so long
421  * as the vma is not a COW mapping; in that case, we know that all ptes are
422  * special (because none can have been COWed).
423  *
424  *
425  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
426  *
427  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
428  * page" backing, however the difference is that _all_ pages with a struct
429  * page (that is, those where pfn_valid is true) are refcounted and considered
430  * normal pages by the VM. The disadvantage is that pages are refcounted
431  * (which can be slower and simply not an option for some PFNMAP users). The
432  * advantage is that we don't have to follow the strict linearity rule of
433  * PFNMAP mappings in order to support COWable mappings.
434  *
435  */
436 #ifdef __HAVE_ARCH_PTE_SPECIAL
437 # define HAVE_PTE_SPECIAL 1
438 #else
439 # define HAVE_PTE_SPECIAL 0
440 #endif
441 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
442 				pte_t pte)
443 {
444 	unsigned long pfn;
445 
446 	if (HAVE_PTE_SPECIAL) {
447 		if (likely(!pte_special(pte))) {
448 			VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
449 			return pte_page(pte);
450 		}
451 		VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
452 		return NULL;
453 	}
454 
455 	/* !HAVE_PTE_SPECIAL case follows: */
456 
457 	pfn = pte_pfn(pte);
458 
459 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
460 		if (vma->vm_flags & VM_MIXEDMAP) {
461 			if (!pfn_valid(pfn))
462 				return NULL;
463 			goto out;
464 		} else {
465 			unsigned long off;
466 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
467 			if (pfn == vma->vm_pgoff + off)
468 				return NULL;
469 			if (!is_cow_mapping(vma->vm_flags))
470 				return NULL;
471 		}
472 	}
473 
474 	VM_BUG_ON(!pfn_valid(pfn));
475 
476 	/*
477 	 * NOTE! We still have PageReserved() pages in the page tables.
478 	 *
479 	 * eg. VDSO mappings can cause them to exist.
480 	 */
481 out:
482 	return pfn_to_page(pfn);
483 }
484 
485 /*
486  * copy one vm_area from one task to the other. Assumes the page tables
487  * already present in the new task to be cleared in the whole range
488  * covered by this vma.
489  */
490 
491 static inline void
492 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
493 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
494 		unsigned long addr, int *rss)
495 {
496 	unsigned long vm_flags = vma->vm_flags;
497 	pte_t pte = *src_pte;
498 	struct page *page;
499 
500 	/* pte contains position in swap or file, so copy. */
501 	if (unlikely(!pte_present(pte))) {
502 		if (!pte_file(pte)) {
503 			swp_entry_t entry = pte_to_swp_entry(pte);
504 
505 			swap_duplicate(entry);
506 			/* make sure dst_mm is on swapoff's mmlist. */
507 			if (unlikely(list_empty(&dst_mm->mmlist))) {
508 				spin_lock(&mmlist_lock);
509 				if (list_empty(&dst_mm->mmlist))
510 					list_add(&dst_mm->mmlist,
511 						 &src_mm->mmlist);
512 				spin_unlock(&mmlist_lock);
513 			}
514 			if (is_write_migration_entry(entry) &&
515 					is_cow_mapping(vm_flags)) {
516 				/*
517 				 * COW mappings require pages in both parent
518 				 * and child to be set to read.
519 				 */
520 				make_migration_entry_read(&entry);
521 				pte = swp_entry_to_pte(entry);
522 				set_pte_at(src_mm, addr, src_pte, pte);
523 			}
524 		}
525 		goto out_set_pte;
526 	}
527 
528 	/*
529 	 * If it's a COW mapping, write protect it both
530 	 * in the parent and the child
531 	 */
532 	if (is_cow_mapping(vm_flags)) {
533 		ptep_set_wrprotect(src_mm, addr, src_pte);
534 		pte = pte_wrprotect(pte);
535 	}
536 
537 	/*
538 	 * If it's a shared mapping, mark it clean in
539 	 * the child
540 	 */
541 	if (vm_flags & VM_SHARED)
542 		pte = pte_mkclean(pte);
543 	pte = pte_mkold(pte);
544 
545 	page = vm_normal_page(vma, addr, pte);
546 	if (page) {
547 		get_page(page);
548 		page_dup_rmap(page, vma, addr);
549 		rss[!!PageAnon(page)]++;
550 	}
551 
552 out_set_pte:
553 	set_pte_at(dst_mm, addr, dst_pte, pte);
554 }
555 
556 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
557 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
558 		unsigned long addr, unsigned long end)
559 {
560 	pte_t *src_pte, *dst_pte;
561 	spinlock_t *src_ptl, *dst_ptl;
562 	int progress = 0;
563 	int rss[2];
564 
565 again:
566 	rss[1] = rss[0] = 0;
567 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
568 	if (!dst_pte)
569 		return -ENOMEM;
570 	src_pte = pte_offset_map_nested(src_pmd, addr);
571 	src_ptl = pte_lockptr(src_mm, src_pmd);
572 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
573 	arch_enter_lazy_mmu_mode();
574 
575 	do {
576 		/*
577 		 * We are holding two locks at this point - either of them
578 		 * could generate latencies in another task on another CPU.
579 		 */
580 		if (progress >= 32) {
581 			progress = 0;
582 			if (need_resched() ||
583 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
584 				break;
585 		}
586 		if (pte_none(*src_pte)) {
587 			progress++;
588 			continue;
589 		}
590 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
591 		progress += 8;
592 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
593 
594 	arch_leave_lazy_mmu_mode();
595 	spin_unlock(src_ptl);
596 	pte_unmap_nested(src_pte - 1);
597 	add_mm_rss(dst_mm, rss[0], rss[1]);
598 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
599 	cond_resched();
600 	if (addr != end)
601 		goto again;
602 	return 0;
603 }
604 
605 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
606 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
607 		unsigned long addr, unsigned long end)
608 {
609 	pmd_t *src_pmd, *dst_pmd;
610 	unsigned long next;
611 
612 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
613 	if (!dst_pmd)
614 		return -ENOMEM;
615 	src_pmd = pmd_offset(src_pud, addr);
616 	do {
617 		next = pmd_addr_end(addr, end);
618 		if (pmd_none_or_clear_bad(src_pmd))
619 			continue;
620 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
621 						vma, addr, next))
622 			return -ENOMEM;
623 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
624 	return 0;
625 }
626 
627 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
628 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
629 		unsigned long addr, unsigned long end)
630 {
631 	pud_t *src_pud, *dst_pud;
632 	unsigned long next;
633 
634 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
635 	if (!dst_pud)
636 		return -ENOMEM;
637 	src_pud = pud_offset(src_pgd, addr);
638 	do {
639 		next = pud_addr_end(addr, end);
640 		if (pud_none_or_clear_bad(src_pud))
641 			continue;
642 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
643 						vma, addr, next))
644 			return -ENOMEM;
645 	} while (dst_pud++, src_pud++, addr = next, addr != end);
646 	return 0;
647 }
648 
649 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650 		struct vm_area_struct *vma)
651 {
652 	pgd_t *src_pgd, *dst_pgd;
653 	unsigned long next;
654 	unsigned long addr = vma->vm_start;
655 	unsigned long end = vma->vm_end;
656 	int ret;
657 
658 	/*
659 	 * Don't copy ptes where a page fault will fill them correctly.
660 	 * Fork becomes much lighter when there are big shared or private
661 	 * readonly mappings. The tradeoff is that copy_page_range is more
662 	 * efficient than faulting.
663 	 */
664 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
665 		if (!vma->anon_vma)
666 			return 0;
667 	}
668 
669 	if (is_vm_hugetlb_page(vma))
670 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
671 
672 	/*
673 	 * We need to invalidate the secondary MMU mappings only when
674 	 * there could be a permission downgrade on the ptes of the
675 	 * parent mm. And a permission downgrade will only happen if
676 	 * is_cow_mapping() returns true.
677 	 */
678 	if (is_cow_mapping(vma->vm_flags))
679 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
680 
681 	ret = 0;
682 	dst_pgd = pgd_offset(dst_mm, addr);
683 	src_pgd = pgd_offset(src_mm, addr);
684 	do {
685 		next = pgd_addr_end(addr, end);
686 		if (pgd_none_or_clear_bad(src_pgd))
687 			continue;
688 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
689 					    vma, addr, next))) {
690 			ret = -ENOMEM;
691 			break;
692 		}
693 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
694 
695 	if (is_cow_mapping(vma->vm_flags))
696 		mmu_notifier_invalidate_range_end(src_mm,
697 						  vma->vm_start, end);
698 	return ret;
699 }
700 
701 static unsigned long zap_pte_range(struct mmu_gather *tlb,
702 				struct vm_area_struct *vma, pmd_t *pmd,
703 				unsigned long addr, unsigned long end,
704 				long *zap_work, struct zap_details *details)
705 {
706 	struct mm_struct *mm = tlb->mm;
707 	pte_t *pte;
708 	spinlock_t *ptl;
709 	int file_rss = 0;
710 	int anon_rss = 0;
711 
712 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
713 	arch_enter_lazy_mmu_mode();
714 	do {
715 		pte_t ptent = *pte;
716 		if (pte_none(ptent)) {
717 			(*zap_work)--;
718 			continue;
719 		}
720 
721 		(*zap_work) -= PAGE_SIZE;
722 
723 		if (pte_present(ptent)) {
724 			struct page *page;
725 
726 			page = vm_normal_page(vma, addr, ptent);
727 			if (unlikely(details) && page) {
728 				/*
729 				 * unmap_shared_mapping_pages() wants to
730 				 * invalidate cache without truncating:
731 				 * unmap shared but keep private pages.
732 				 */
733 				if (details->check_mapping &&
734 				    details->check_mapping != page->mapping)
735 					continue;
736 				/*
737 				 * Each page->index must be checked when
738 				 * invalidating or truncating nonlinear.
739 				 */
740 				if (details->nonlinear_vma &&
741 				    (page->index < details->first_index ||
742 				     page->index > details->last_index))
743 					continue;
744 			}
745 			ptent = ptep_get_and_clear_full(mm, addr, pte,
746 							tlb->fullmm);
747 			tlb_remove_tlb_entry(tlb, pte, addr);
748 			if (unlikely(!page))
749 				continue;
750 			if (unlikely(details) && details->nonlinear_vma
751 			    && linear_page_index(details->nonlinear_vma,
752 						addr) != page->index)
753 				set_pte_at(mm, addr, pte,
754 					   pgoff_to_pte(page->index));
755 			if (PageAnon(page))
756 				anon_rss--;
757 			else {
758 				if (pte_dirty(ptent))
759 					set_page_dirty(page);
760 				if (pte_young(ptent))
761 					SetPageReferenced(page);
762 				file_rss--;
763 			}
764 			page_remove_rmap(page, vma);
765 			tlb_remove_page(tlb, page);
766 			continue;
767 		}
768 		/*
769 		 * If details->check_mapping, we leave swap entries;
770 		 * if details->nonlinear_vma, we leave file entries.
771 		 */
772 		if (unlikely(details))
773 			continue;
774 		if (!pte_file(ptent))
775 			free_swap_and_cache(pte_to_swp_entry(ptent));
776 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
777 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
778 
779 	add_mm_rss(mm, file_rss, anon_rss);
780 	arch_leave_lazy_mmu_mode();
781 	pte_unmap_unlock(pte - 1, ptl);
782 
783 	return addr;
784 }
785 
786 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
787 				struct vm_area_struct *vma, pud_t *pud,
788 				unsigned long addr, unsigned long end,
789 				long *zap_work, struct zap_details *details)
790 {
791 	pmd_t *pmd;
792 	unsigned long next;
793 
794 	pmd = pmd_offset(pud, addr);
795 	do {
796 		next = pmd_addr_end(addr, end);
797 		if (pmd_none_or_clear_bad(pmd)) {
798 			(*zap_work)--;
799 			continue;
800 		}
801 		next = zap_pte_range(tlb, vma, pmd, addr, next,
802 						zap_work, details);
803 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
804 
805 	return addr;
806 }
807 
808 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
809 				struct vm_area_struct *vma, pgd_t *pgd,
810 				unsigned long addr, unsigned long end,
811 				long *zap_work, struct zap_details *details)
812 {
813 	pud_t *pud;
814 	unsigned long next;
815 
816 	pud = pud_offset(pgd, addr);
817 	do {
818 		next = pud_addr_end(addr, end);
819 		if (pud_none_or_clear_bad(pud)) {
820 			(*zap_work)--;
821 			continue;
822 		}
823 		next = zap_pmd_range(tlb, vma, pud, addr, next,
824 						zap_work, details);
825 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
826 
827 	return addr;
828 }
829 
830 static unsigned long unmap_page_range(struct mmu_gather *tlb,
831 				struct vm_area_struct *vma,
832 				unsigned long addr, unsigned long end,
833 				long *zap_work, struct zap_details *details)
834 {
835 	pgd_t *pgd;
836 	unsigned long next;
837 
838 	if (details && !details->check_mapping && !details->nonlinear_vma)
839 		details = NULL;
840 
841 	BUG_ON(addr >= end);
842 	tlb_start_vma(tlb, vma);
843 	pgd = pgd_offset(vma->vm_mm, addr);
844 	do {
845 		next = pgd_addr_end(addr, end);
846 		if (pgd_none_or_clear_bad(pgd)) {
847 			(*zap_work)--;
848 			continue;
849 		}
850 		next = zap_pud_range(tlb, vma, pgd, addr, next,
851 						zap_work, details);
852 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
853 	tlb_end_vma(tlb, vma);
854 
855 	return addr;
856 }
857 
858 #ifdef CONFIG_PREEMPT
859 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
860 #else
861 /* No preempt: go for improved straight-line efficiency */
862 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
863 #endif
864 
865 /**
866  * unmap_vmas - unmap a range of memory covered by a list of vma's
867  * @tlbp: address of the caller's struct mmu_gather
868  * @vma: the starting vma
869  * @start_addr: virtual address at which to start unmapping
870  * @end_addr: virtual address at which to end unmapping
871  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
872  * @details: details of nonlinear truncation or shared cache invalidation
873  *
874  * Returns the end address of the unmapping (restart addr if interrupted).
875  *
876  * Unmap all pages in the vma list.
877  *
878  * We aim to not hold locks for too long (for scheduling latency reasons).
879  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
880  * return the ending mmu_gather to the caller.
881  *
882  * Only addresses between `start' and `end' will be unmapped.
883  *
884  * The VMA list must be sorted in ascending virtual address order.
885  *
886  * unmap_vmas() assumes that the caller will flush the whole unmapped address
887  * range after unmap_vmas() returns.  So the only responsibility here is to
888  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
889  * drops the lock and schedules.
890  */
891 unsigned long unmap_vmas(struct mmu_gather **tlbp,
892 		struct vm_area_struct *vma, unsigned long start_addr,
893 		unsigned long end_addr, unsigned long *nr_accounted,
894 		struct zap_details *details)
895 {
896 	long zap_work = ZAP_BLOCK_SIZE;
897 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
898 	int tlb_start_valid = 0;
899 	unsigned long start = start_addr;
900 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
901 	int fullmm = (*tlbp)->fullmm;
902 	struct mm_struct *mm = vma->vm_mm;
903 
904 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
905 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
906 		unsigned long end;
907 
908 		start = max(vma->vm_start, start_addr);
909 		if (start >= vma->vm_end)
910 			continue;
911 		end = min(vma->vm_end, end_addr);
912 		if (end <= vma->vm_start)
913 			continue;
914 
915 		if (vma->vm_flags & VM_ACCOUNT)
916 			*nr_accounted += (end - start) >> PAGE_SHIFT;
917 
918 		while (start != end) {
919 			if (!tlb_start_valid) {
920 				tlb_start = start;
921 				tlb_start_valid = 1;
922 			}
923 
924 			if (unlikely(is_vm_hugetlb_page(vma))) {
925 				/*
926 				 * It is undesirable to test vma->vm_file as it
927 				 * should be non-null for valid hugetlb area.
928 				 * However, vm_file will be NULL in the error
929 				 * cleanup path of do_mmap_pgoff. When
930 				 * hugetlbfs ->mmap method fails,
931 				 * do_mmap_pgoff() nullifies vma->vm_file
932 				 * before calling this function to clean up.
933 				 * Since no pte has actually been setup, it is
934 				 * safe to do nothing in this case.
935 				 */
936 				if (vma->vm_file) {
937 					unmap_hugepage_range(vma, start, end, NULL);
938 					zap_work -= (end - start) /
939 					pages_per_huge_page(hstate_vma(vma));
940 				}
941 
942 				start = end;
943 			} else
944 				start = unmap_page_range(*tlbp, vma,
945 						start, end, &zap_work, details);
946 
947 			if (zap_work > 0) {
948 				BUG_ON(start != end);
949 				break;
950 			}
951 
952 			tlb_finish_mmu(*tlbp, tlb_start, start);
953 
954 			if (need_resched() ||
955 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
956 				if (i_mmap_lock) {
957 					*tlbp = NULL;
958 					goto out;
959 				}
960 				cond_resched();
961 			}
962 
963 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
964 			tlb_start_valid = 0;
965 			zap_work = ZAP_BLOCK_SIZE;
966 		}
967 	}
968 out:
969 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
970 	return start;	/* which is now the end (or restart) address */
971 }
972 
973 /**
974  * zap_page_range - remove user pages in a given range
975  * @vma: vm_area_struct holding the applicable pages
976  * @address: starting address of pages to zap
977  * @size: number of bytes to zap
978  * @details: details of nonlinear truncation or shared cache invalidation
979  */
980 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
981 		unsigned long size, struct zap_details *details)
982 {
983 	struct mm_struct *mm = vma->vm_mm;
984 	struct mmu_gather *tlb;
985 	unsigned long end = address + size;
986 	unsigned long nr_accounted = 0;
987 
988 	lru_add_drain();
989 	tlb = tlb_gather_mmu(mm, 0);
990 	update_hiwater_rss(mm);
991 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
992 	if (tlb)
993 		tlb_finish_mmu(tlb, address, end);
994 	return end;
995 }
996 EXPORT_SYMBOL_GPL(zap_page_range);
997 
998 /**
999  * zap_vma_ptes - remove ptes mapping the vma
1000  * @vma: vm_area_struct holding ptes to be zapped
1001  * @address: starting address of pages to zap
1002  * @size: number of bytes to zap
1003  *
1004  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1005  *
1006  * The entire address range must be fully contained within the vma.
1007  *
1008  * Returns 0 if successful.
1009  */
1010 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1011 		unsigned long size)
1012 {
1013 	if (address < vma->vm_start || address + size > vma->vm_end ||
1014 	    		!(vma->vm_flags & VM_PFNMAP))
1015 		return -1;
1016 	zap_page_range(vma, address, size, NULL);
1017 	return 0;
1018 }
1019 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1020 
1021 /*
1022  * Do a quick page-table lookup for a single page.
1023  */
1024 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1025 			unsigned int flags)
1026 {
1027 	pgd_t *pgd;
1028 	pud_t *pud;
1029 	pmd_t *pmd;
1030 	pte_t *ptep, pte;
1031 	spinlock_t *ptl;
1032 	struct page *page;
1033 	struct mm_struct *mm = vma->vm_mm;
1034 
1035 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1036 	if (!IS_ERR(page)) {
1037 		BUG_ON(flags & FOLL_GET);
1038 		goto out;
1039 	}
1040 
1041 	page = NULL;
1042 	pgd = pgd_offset(mm, address);
1043 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1044 		goto no_page_table;
1045 
1046 	pud = pud_offset(pgd, address);
1047 	if (pud_none(*pud))
1048 		goto no_page_table;
1049 	if (pud_huge(*pud)) {
1050 		BUG_ON(flags & FOLL_GET);
1051 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1052 		goto out;
1053 	}
1054 	if (unlikely(pud_bad(*pud)))
1055 		goto no_page_table;
1056 
1057 	pmd = pmd_offset(pud, address);
1058 	if (pmd_none(*pmd))
1059 		goto no_page_table;
1060 	if (pmd_huge(*pmd)) {
1061 		BUG_ON(flags & FOLL_GET);
1062 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1063 		goto out;
1064 	}
1065 	if (unlikely(pmd_bad(*pmd)))
1066 		goto no_page_table;
1067 
1068 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1069 
1070 	pte = *ptep;
1071 	if (!pte_present(pte))
1072 		goto no_page;
1073 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1074 		goto unlock;
1075 	page = vm_normal_page(vma, address, pte);
1076 	if (unlikely(!page))
1077 		goto bad_page;
1078 
1079 	if (flags & FOLL_GET)
1080 		get_page(page);
1081 	if (flags & FOLL_TOUCH) {
1082 		if ((flags & FOLL_WRITE) &&
1083 		    !pte_dirty(pte) && !PageDirty(page))
1084 			set_page_dirty(page);
1085 		mark_page_accessed(page);
1086 	}
1087 unlock:
1088 	pte_unmap_unlock(ptep, ptl);
1089 out:
1090 	return page;
1091 
1092 bad_page:
1093 	pte_unmap_unlock(ptep, ptl);
1094 	return ERR_PTR(-EFAULT);
1095 
1096 no_page:
1097 	pte_unmap_unlock(ptep, ptl);
1098 	if (!pte_none(pte))
1099 		return page;
1100 	/* Fall through to ZERO_PAGE handling */
1101 no_page_table:
1102 	/*
1103 	 * When core dumping an enormous anonymous area that nobody
1104 	 * has touched so far, we don't want to allocate page tables.
1105 	 */
1106 	if (flags & FOLL_ANON) {
1107 		page = ZERO_PAGE(0);
1108 		if (flags & FOLL_GET)
1109 			get_page(page);
1110 		BUG_ON(flags & FOLL_WRITE);
1111 	}
1112 	return page;
1113 }
1114 EXPORT_SYMBOL_GPL(follow_page);
1115 
1116 /* Can we do the FOLL_ANON optimization? */
1117 static inline int use_zero_page(struct vm_area_struct *vma)
1118 {
1119 	/*
1120 	 * We don't want to optimize FOLL_ANON for make_pages_present()
1121 	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1122 	 * we want to get the page from the page tables to make sure
1123 	 * that we serialize and update with any other user of that
1124 	 * mapping.
1125 	 */
1126 	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1127 		return 0;
1128 	/*
1129 	 * And if we have a fault routine, it's not an anonymous region.
1130 	 */
1131 	return !vma->vm_ops || !vma->vm_ops->fault;
1132 }
1133 
1134 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1135 		unsigned long start, int len, int write, int force,
1136 		struct page **pages, struct vm_area_struct **vmas)
1137 {
1138 	int i;
1139 	unsigned int vm_flags;
1140 
1141 	if (len <= 0)
1142 		return 0;
1143 	/*
1144 	 * Require read or write permissions.
1145 	 * If 'force' is set, we only require the "MAY" flags.
1146 	 */
1147 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1148 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1149 	i = 0;
1150 
1151 	do {
1152 		struct vm_area_struct *vma;
1153 		unsigned int foll_flags;
1154 
1155 		vma = find_extend_vma(mm, start);
1156 		if (!vma && in_gate_area(tsk, start)) {
1157 			unsigned long pg = start & PAGE_MASK;
1158 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1159 			pgd_t *pgd;
1160 			pud_t *pud;
1161 			pmd_t *pmd;
1162 			pte_t *pte;
1163 			if (write) /* user gate pages are read-only */
1164 				return i ? : -EFAULT;
1165 			if (pg > TASK_SIZE)
1166 				pgd = pgd_offset_k(pg);
1167 			else
1168 				pgd = pgd_offset_gate(mm, pg);
1169 			BUG_ON(pgd_none(*pgd));
1170 			pud = pud_offset(pgd, pg);
1171 			BUG_ON(pud_none(*pud));
1172 			pmd = pmd_offset(pud, pg);
1173 			if (pmd_none(*pmd))
1174 				return i ? : -EFAULT;
1175 			pte = pte_offset_map(pmd, pg);
1176 			if (pte_none(*pte)) {
1177 				pte_unmap(pte);
1178 				return i ? : -EFAULT;
1179 			}
1180 			if (pages) {
1181 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1182 				pages[i] = page;
1183 				if (page)
1184 					get_page(page);
1185 			}
1186 			pte_unmap(pte);
1187 			if (vmas)
1188 				vmas[i] = gate_vma;
1189 			i++;
1190 			start += PAGE_SIZE;
1191 			len--;
1192 			continue;
1193 		}
1194 
1195 		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1196 				|| !(vm_flags & vma->vm_flags))
1197 			return i ? : -EFAULT;
1198 
1199 		if (is_vm_hugetlb_page(vma)) {
1200 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1201 						&start, &len, i, write);
1202 			continue;
1203 		}
1204 
1205 		foll_flags = FOLL_TOUCH;
1206 		if (pages)
1207 			foll_flags |= FOLL_GET;
1208 		if (!write && use_zero_page(vma))
1209 			foll_flags |= FOLL_ANON;
1210 
1211 		do {
1212 			struct page *page;
1213 
1214 			/*
1215 			 * If tsk is ooming, cut off its access to large memory
1216 			 * allocations. It has a pending SIGKILL, but it can't
1217 			 * be processed until returning to user space.
1218 			 */
1219 			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1220 				return i ? i : -ENOMEM;
1221 
1222 			if (write)
1223 				foll_flags |= FOLL_WRITE;
1224 
1225 			cond_resched();
1226 			while (!(page = follow_page(vma, start, foll_flags))) {
1227 				int ret;
1228 				ret = handle_mm_fault(mm, vma, start,
1229 						foll_flags & FOLL_WRITE);
1230 				if (ret & VM_FAULT_ERROR) {
1231 					if (ret & VM_FAULT_OOM)
1232 						return i ? i : -ENOMEM;
1233 					else if (ret & VM_FAULT_SIGBUS)
1234 						return i ? i : -EFAULT;
1235 					BUG();
1236 				}
1237 				if (ret & VM_FAULT_MAJOR)
1238 					tsk->maj_flt++;
1239 				else
1240 					tsk->min_flt++;
1241 
1242 				/*
1243 				 * The VM_FAULT_WRITE bit tells us that
1244 				 * do_wp_page has broken COW when necessary,
1245 				 * even if maybe_mkwrite decided not to set
1246 				 * pte_write. We can thus safely do subsequent
1247 				 * page lookups as if they were reads.
1248 				 */
1249 				if (ret & VM_FAULT_WRITE)
1250 					foll_flags &= ~FOLL_WRITE;
1251 
1252 				cond_resched();
1253 			}
1254 			if (IS_ERR(page))
1255 				return i ? i : PTR_ERR(page);
1256 			if (pages) {
1257 				pages[i] = page;
1258 
1259 				flush_anon_page(vma, page, start);
1260 				flush_dcache_page(page);
1261 			}
1262 			if (vmas)
1263 				vmas[i] = vma;
1264 			i++;
1265 			start += PAGE_SIZE;
1266 			len--;
1267 		} while (len && start < vma->vm_end);
1268 	} while (len);
1269 	return i;
1270 }
1271 EXPORT_SYMBOL(get_user_pages);
1272 
1273 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1274 			spinlock_t **ptl)
1275 {
1276 	pgd_t * pgd = pgd_offset(mm, addr);
1277 	pud_t * pud = pud_alloc(mm, pgd, addr);
1278 	if (pud) {
1279 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1280 		if (pmd)
1281 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1282 	}
1283 	return NULL;
1284 }
1285 
1286 /*
1287  * This is the old fallback for page remapping.
1288  *
1289  * For historical reasons, it only allows reserved pages. Only
1290  * old drivers should use this, and they needed to mark their
1291  * pages reserved for the old functions anyway.
1292  */
1293 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1294 			struct page *page, pgprot_t prot)
1295 {
1296 	struct mm_struct *mm = vma->vm_mm;
1297 	int retval;
1298 	pte_t *pte;
1299 	spinlock_t *ptl;
1300 
1301 	retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1302 	if (retval)
1303 		goto out;
1304 
1305 	retval = -EINVAL;
1306 	if (PageAnon(page))
1307 		goto out_uncharge;
1308 	retval = -ENOMEM;
1309 	flush_dcache_page(page);
1310 	pte = get_locked_pte(mm, addr, &ptl);
1311 	if (!pte)
1312 		goto out_uncharge;
1313 	retval = -EBUSY;
1314 	if (!pte_none(*pte))
1315 		goto out_unlock;
1316 
1317 	/* Ok, finally just insert the thing.. */
1318 	get_page(page);
1319 	inc_mm_counter(mm, file_rss);
1320 	page_add_file_rmap(page);
1321 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1322 
1323 	retval = 0;
1324 	pte_unmap_unlock(pte, ptl);
1325 	return retval;
1326 out_unlock:
1327 	pte_unmap_unlock(pte, ptl);
1328 out_uncharge:
1329 	mem_cgroup_uncharge_page(page);
1330 out:
1331 	return retval;
1332 }
1333 
1334 /**
1335  * vm_insert_page - insert single page into user vma
1336  * @vma: user vma to map to
1337  * @addr: target user address of this page
1338  * @page: source kernel page
1339  *
1340  * This allows drivers to insert individual pages they've allocated
1341  * into a user vma.
1342  *
1343  * The page has to be a nice clean _individual_ kernel allocation.
1344  * If you allocate a compound page, you need to have marked it as
1345  * such (__GFP_COMP), or manually just split the page up yourself
1346  * (see split_page()).
1347  *
1348  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1349  * took an arbitrary page protection parameter. This doesn't allow
1350  * that. Your vma protection will have to be set up correctly, which
1351  * means that if you want a shared writable mapping, you'd better
1352  * ask for a shared writable mapping!
1353  *
1354  * The page does not need to be reserved.
1355  */
1356 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1357 			struct page *page)
1358 {
1359 	if (addr < vma->vm_start || addr >= vma->vm_end)
1360 		return -EFAULT;
1361 	if (!page_count(page))
1362 		return -EINVAL;
1363 	vma->vm_flags |= VM_INSERTPAGE;
1364 	return insert_page(vma, addr, page, vma->vm_page_prot);
1365 }
1366 EXPORT_SYMBOL(vm_insert_page);
1367 
1368 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1369 			unsigned long pfn, pgprot_t prot)
1370 {
1371 	struct mm_struct *mm = vma->vm_mm;
1372 	int retval;
1373 	pte_t *pte, entry;
1374 	spinlock_t *ptl;
1375 
1376 	retval = -ENOMEM;
1377 	pte = get_locked_pte(mm, addr, &ptl);
1378 	if (!pte)
1379 		goto out;
1380 	retval = -EBUSY;
1381 	if (!pte_none(*pte))
1382 		goto out_unlock;
1383 
1384 	/* Ok, finally just insert the thing.. */
1385 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1386 	set_pte_at(mm, addr, pte, entry);
1387 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1388 
1389 	retval = 0;
1390 out_unlock:
1391 	pte_unmap_unlock(pte, ptl);
1392 out:
1393 	return retval;
1394 }
1395 
1396 /**
1397  * vm_insert_pfn - insert single pfn into user vma
1398  * @vma: user vma to map to
1399  * @addr: target user address of this page
1400  * @pfn: source kernel pfn
1401  *
1402  * Similar to vm_inert_page, this allows drivers to insert individual pages
1403  * they've allocated into a user vma. Same comments apply.
1404  *
1405  * This function should only be called from a vm_ops->fault handler, and
1406  * in that case the handler should return NULL.
1407  *
1408  * vma cannot be a COW mapping.
1409  *
1410  * As this is called only for pages that do not currently exist, we
1411  * do not need to flush old virtual caches or the TLB.
1412  */
1413 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1414 			unsigned long pfn)
1415 {
1416 	/*
1417 	 * Technically, architectures with pte_special can avoid all these
1418 	 * restrictions (same for remap_pfn_range).  However we would like
1419 	 * consistency in testing and feature parity among all, so we should
1420 	 * try to keep these invariants in place for everybody.
1421 	 */
1422 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1423 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1424 						(VM_PFNMAP|VM_MIXEDMAP));
1425 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1426 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1427 
1428 	if (addr < vma->vm_start || addr >= vma->vm_end)
1429 		return -EFAULT;
1430 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1431 }
1432 EXPORT_SYMBOL(vm_insert_pfn);
1433 
1434 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1435 			unsigned long pfn)
1436 {
1437 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1438 
1439 	if (addr < vma->vm_start || addr >= vma->vm_end)
1440 		return -EFAULT;
1441 
1442 	/*
1443 	 * If we don't have pte special, then we have to use the pfn_valid()
1444 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1445 	 * refcount the page if pfn_valid is true (hence insert_page rather
1446 	 * than insert_pfn).
1447 	 */
1448 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1449 		struct page *page;
1450 
1451 		page = pfn_to_page(pfn);
1452 		return insert_page(vma, addr, page, vma->vm_page_prot);
1453 	}
1454 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1455 }
1456 EXPORT_SYMBOL(vm_insert_mixed);
1457 
1458 /*
1459  * maps a range of physical memory into the requested pages. the old
1460  * mappings are removed. any references to nonexistent pages results
1461  * in null mappings (currently treated as "copy-on-access")
1462  */
1463 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1464 			unsigned long addr, unsigned long end,
1465 			unsigned long pfn, pgprot_t prot)
1466 {
1467 	pte_t *pte;
1468 	spinlock_t *ptl;
1469 
1470 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1471 	if (!pte)
1472 		return -ENOMEM;
1473 	arch_enter_lazy_mmu_mode();
1474 	do {
1475 		BUG_ON(!pte_none(*pte));
1476 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1477 		pfn++;
1478 	} while (pte++, addr += PAGE_SIZE, addr != end);
1479 	arch_leave_lazy_mmu_mode();
1480 	pte_unmap_unlock(pte - 1, ptl);
1481 	return 0;
1482 }
1483 
1484 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1485 			unsigned long addr, unsigned long end,
1486 			unsigned long pfn, pgprot_t prot)
1487 {
1488 	pmd_t *pmd;
1489 	unsigned long next;
1490 
1491 	pfn -= addr >> PAGE_SHIFT;
1492 	pmd = pmd_alloc(mm, pud, addr);
1493 	if (!pmd)
1494 		return -ENOMEM;
1495 	do {
1496 		next = pmd_addr_end(addr, end);
1497 		if (remap_pte_range(mm, pmd, addr, next,
1498 				pfn + (addr >> PAGE_SHIFT), prot))
1499 			return -ENOMEM;
1500 	} while (pmd++, addr = next, addr != end);
1501 	return 0;
1502 }
1503 
1504 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1505 			unsigned long addr, unsigned long end,
1506 			unsigned long pfn, pgprot_t prot)
1507 {
1508 	pud_t *pud;
1509 	unsigned long next;
1510 
1511 	pfn -= addr >> PAGE_SHIFT;
1512 	pud = pud_alloc(mm, pgd, addr);
1513 	if (!pud)
1514 		return -ENOMEM;
1515 	do {
1516 		next = pud_addr_end(addr, end);
1517 		if (remap_pmd_range(mm, pud, addr, next,
1518 				pfn + (addr >> PAGE_SHIFT), prot))
1519 			return -ENOMEM;
1520 	} while (pud++, addr = next, addr != end);
1521 	return 0;
1522 }
1523 
1524 /**
1525  * remap_pfn_range - remap kernel memory to userspace
1526  * @vma: user vma to map to
1527  * @addr: target user address to start at
1528  * @pfn: physical address of kernel memory
1529  * @size: size of map area
1530  * @prot: page protection flags for this mapping
1531  *
1532  *  Note: this is only safe if the mm semaphore is held when called.
1533  */
1534 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1535 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1536 {
1537 	pgd_t *pgd;
1538 	unsigned long next;
1539 	unsigned long end = addr + PAGE_ALIGN(size);
1540 	struct mm_struct *mm = vma->vm_mm;
1541 	int err;
1542 
1543 	/*
1544 	 * Physically remapped pages are special. Tell the
1545 	 * rest of the world about it:
1546 	 *   VM_IO tells people not to look at these pages
1547 	 *	(accesses can have side effects).
1548 	 *   VM_RESERVED is specified all over the place, because
1549 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1550 	 *	in 2.6 the LRU scan won't even find its pages, so this
1551 	 *	flag means no more than count its pages in reserved_vm,
1552 	 * 	and omit it from core dump, even when VM_IO turned off.
1553 	 *   VM_PFNMAP tells the core MM that the base pages are just
1554 	 *	raw PFN mappings, and do not have a "struct page" associated
1555 	 *	with them.
1556 	 *
1557 	 * There's a horrible special case to handle copy-on-write
1558 	 * behaviour that some programs depend on. We mark the "original"
1559 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1560 	 */
1561 	if (is_cow_mapping(vma->vm_flags)) {
1562 		if (addr != vma->vm_start || end != vma->vm_end)
1563 			return -EINVAL;
1564 		vma->vm_pgoff = pfn;
1565 	}
1566 
1567 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1568 
1569 	BUG_ON(addr >= end);
1570 	pfn -= addr >> PAGE_SHIFT;
1571 	pgd = pgd_offset(mm, addr);
1572 	flush_cache_range(vma, addr, end);
1573 	do {
1574 		next = pgd_addr_end(addr, end);
1575 		err = remap_pud_range(mm, pgd, addr, next,
1576 				pfn + (addr >> PAGE_SHIFT), prot);
1577 		if (err)
1578 			break;
1579 	} while (pgd++, addr = next, addr != end);
1580 	return err;
1581 }
1582 EXPORT_SYMBOL(remap_pfn_range);
1583 
1584 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1585 				     unsigned long addr, unsigned long end,
1586 				     pte_fn_t fn, void *data)
1587 {
1588 	pte_t *pte;
1589 	int err;
1590 	pgtable_t token;
1591 	spinlock_t *uninitialized_var(ptl);
1592 
1593 	pte = (mm == &init_mm) ?
1594 		pte_alloc_kernel(pmd, addr) :
1595 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1596 	if (!pte)
1597 		return -ENOMEM;
1598 
1599 	BUG_ON(pmd_huge(*pmd));
1600 
1601 	token = pmd_pgtable(*pmd);
1602 
1603 	do {
1604 		err = fn(pte, token, addr, data);
1605 		if (err)
1606 			break;
1607 	} while (pte++, addr += PAGE_SIZE, addr != end);
1608 
1609 	if (mm != &init_mm)
1610 		pte_unmap_unlock(pte-1, ptl);
1611 	return err;
1612 }
1613 
1614 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1615 				     unsigned long addr, unsigned long end,
1616 				     pte_fn_t fn, void *data)
1617 {
1618 	pmd_t *pmd;
1619 	unsigned long next;
1620 	int err;
1621 
1622 	BUG_ON(pud_huge(*pud));
1623 
1624 	pmd = pmd_alloc(mm, pud, addr);
1625 	if (!pmd)
1626 		return -ENOMEM;
1627 	do {
1628 		next = pmd_addr_end(addr, end);
1629 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1630 		if (err)
1631 			break;
1632 	} while (pmd++, addr = next, addr != end);
1633 	return err;
1634 }
1635 
1636 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1637 				     unsigned long addr, unsigned long end,
1638 				     pte_fn_t fn, void *data)
1639 {
1640 	pud_t *pud;
1641 	unsigned long next;
1642 	int err;
1643 
1644 	pud = pud_alloc(mm, pgd, addr);
1645 	if (!pud)
1646 		return -ENOMEM;
1647 	do {
1648 		next = pud_addr_end(addr, end);
1649 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1650 		if (err)
1651 			break;
1652 	} while (pud++, addr = next, addr != end);
1653 	return err;
1654 }
1655 
1656 /*
1657  * Scan a region of virtual memory, filling in page tables as necessary
1658  * and calling a provided function on each leaf page table.
1659  */
1660 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1661 			unsigned long size, pte_fn_t fn, void *data)
1662 {
1663 	pgd_t *pgd;
1664 	unsigned long next;
1665 	unsigned long start = addr, end = addr + size;
1666 	int err;
1667 
1668 	BUG_ON(addr >= end);
1669 	mmu_notifier_invalidate_range_start(mm, start, end);
1670 	pgd = pgd_offset(mm, addr);
1671 	do {
1672 		next = pgd_addr_end(addr, end);
1673 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1674 		if (err)
1675 			break;
1676 	} while (pgd++, addr = next, addr != end);
1677 	mmu_notifier_invalidate_range_end(mm, start, end);
1678 	return err;
1679 }
1680 EXPORT_SYMBOL_GPL(apply_to_page_range);
1681 
1682 /*
1683  * handle_pte_fault chooses page fault handler according to an entry
1684  * which was read non-atomically.  Before making any commitment, on
1685  * those architectures or configurations (e.g. i386 with PAE) which
1686  * might give a mix of unmatched parts, do_swap_page and do_file_page
1687  * must check under lock before unmapping the pte and proceeding
1688  * (but do_wp_page is only called after already making such a check;
1689  * and do_anonymous_page and do_no_page can safely check later on).
1690  */
1691 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1692 				pte_t *page_table, pte_t orig_pte)
1693 {
1694 	int same = 1;
1695 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1696 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1697 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1698 		spin_lock(ptl);
1699 		same = pte_same(*page_table, orig_pte);
1700 		spin_unlock(ptl);
1701 	}
1702 #endif
1703 	pte_unmap(page_table);
1704 	return same;
1705 }
1706 
1707 /*
1708  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1709  * servicing faults for write access.  In the normal case, do always want
1710  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1711  * that do not have writing enabled, when used by access_process_vm.
1712  */
1713 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1714 {
1715 	if (likely(vma->vm_flags & VM_WRITE))
1716 		pte = pte_mkwrite(pte);
1717 	return pte;
1718 }
1719 
1720 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1721 {
1722 	/*
1723 	 * If the source page was a PFN mapping, we don't have
1724 	 * a "struct page" for it. We do a best-effort copy by
1725 	 * just copying from the original user address. If that
1726 	 * fails, we just zero-fill it. Live with it.
1727 	 */
1728 	if (unlikely(!src)) {
1729 		void *kaddr = kmap_atomic(dst, KM_USER0);
1730 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1731 
1732 		/*
1733 		 * This really shouldn't fail, because the page is there
1734 		 * in the page tables. But it might just be unreadable,
1735 		 * in which case we just give up and fill the result with
1736 		 * zeroes.
1737 		 */
1738 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1739 			memset(kaddr, 0, PAGE_SIZE);
1740 		kunmap_atomic(kaddr, KM_USER0);
1741 		flush_dcache_page(dst);
1742 	} else
1743 		copy_user_highpage(dst, src, va, vma);
1744 }
1745 
1746 /*
1747  * This routine handles present pages, when users try to write
1748  * to a shared page. It is done by copying the page to a new address
1749  * and decrementing the shared-page counter for the old page.
1750  *
1751  * Note that this routine assumes that the protection checks have been
1752  * done by the caller (the low-level page fault routine in most cases).
1753  * Thus we can safely just mark it writable once we've done any necessary
1754  * COW.
1755  *
1756  * We also mark the page dirty at this point even though the page will
1757  * change only once the write actually happens. This avoids a few races,
1758  * and potentially makes it more efficient.
1759  *
1760  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1761  * but allow concurrent faults), with pte both mapped and locked.
1762  * We return with mmap_sem still held, but pte unmapped and unlocked.
1763  */
1764 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1765 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1766 		spinlock_t *ptl, pte_t orig_pte)
1767 {
1768 	struct page *old_page, *new_page;
1769 	pte_t entry;
1770 	int reuse = 0, ret = 0;
1771 	int page_mkwrite = 0;
1772 	struct page *dirty_page = NULL;
1773 
1774 	old_page = vm_normal_page(vma, address, orig_pte);
1775 	if (!old_page) {
1776 		/*
1777 		 * VM_MIXEDMAP !pfn_valid() case
1778 		 *
1779 		 * We should not cow pages in a shared writeable mapping.
1780 		 * Just mark the pages writable as we can't do any dirty
1781 		 * accounting on raw pfn maps.
1782 		 */
1783 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1784 				     (VM_WRITE|VM_SHARED))
1785 			goto reuse;
1786 		goto gotten;
1787 	}
1788 
1789 	/*
1790 	 * Take out anonymous pages first, anonymous shared vmas are
1791 	 * not dirty accountable.
1792 	 */
1793 	if (PageAnon(old_page)) {
1794 		if (!TestSetPageLocked(old_page)) {
1795 			reuse = can_share_swap_page(old_page);
1796 			unlock_page(old_page);
1797 		}
1798 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1799 					(VM_WRITE|VM_SHARED))) {
1800 		/*
1801 		 * Only catch write-faults on shared writable pages,
1802 		 * read-only shared pages can get COWed by
1803 		 * get_user_pages(.write=1, .force=1).
1804 		 */
1805 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1806 			/*
1807 			 * Notify the address space that the page is about to
1808 			 * become writable so that it can prohibit this or wait
1809 			 * for the page to get into an appropriate state.
1810 			 *
1811 			 * We do this without the lock held, so that it can
1812 			 * sleep if it needs to.
1813 			 */
1814 			page_cache_get(old_page);
1815 			pte_unmap_unlock(page_table, ptl);
1816 
1817 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1818 				goto unwritable_page;
1819 
1820 			/*
1821 			 * Since we dropped the lock we need to revalidate
1822 			 * the PTE as someone else may have changed it.  If
1823 			 * they did, we just return, as we can count on the
1824 			 * MMU to tell us if they didn't also make it writable.
1825 			 */
1826 			page_table = pte_offset_map_lock(mm, pmd, address,
1827 							 &ptl);
1828 			page_cache_release(old_page);
1829 			if (!pte_same(*page_table, orig_pte))
1830 				goto unlock;
1831 
1832 			page_mkwrite = 1;
1833 		}
1834 		dirty_page = old_page;
1835 		get_page(dirty_page);
1836 		reuse = 1;
1837 	}
1838 
1839 	if (reuse) {
1840 reuse:
1841 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1842 		entry = pte_mkyoung(orig_pte);
1843 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1844 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1845 			update_mmu_cache(vma, address, entry);
1846 		ret |= VM_FAULT_WRITE;
1847 		goto unlock;
1848 	}
1849 
1850 	/*
1851 	 * Ok, we need to copy. Oh, well..
1852 	 */
1853 	page_cache_get(old_page);
1854 gotten:
1855 	pte_unmap_unlock(page_table, ptl);
1856 
1857 	if (unlikely(anon_vma_prepare(vma)))
1858 		goto oom;
1859 	VM_BUG_ON(old_page == ZERO_PAGE(0));
1860 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1861 	if (!new_page)
1862 		goto oom;
1863 	cow_user_page(new_page, old_page, address, vma);
1864 	__SetPageUptodate(new_page);
1865 
1866 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1867 		goto oom_free_new;
1868 
1869 	/*
1870 	 * Re-check the pte - we dropped the lock
1871 	 */
1872 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1873 	if (likely(pte_same(*page_table, orig_pte))) {
1874 		if (old_page) {
1875 			if (!PageAnon(old_page)) {
1876 				dec_mm_counter(mm, file_rss);
1877 				inc_mm_counter(mm, anon_rss);
1878 			}
1879 		} else
1880 			inc_mm_counter(mm, anon_rss);
1881 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1882 		entry = mk_pte(new_page, vma->vm_page_prot);
1883 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1884 		/*
1885 		 * Clear the pte entry and flush it first, before updating the
1886 		 * pte with the new entry. This will avoid a race condition
1887 		 * seen in the presence of one thread doing SMC and another
1888 		 * thread doing COW.
1889 		 */
1890 		ptep_clear_flush_notify(vma, address, page_table);
1891 		set_pte_at(mm, address, page_table, entry);
1892 		update_mmu_cache(vma, address, entry);
1893 		lru_cache_add_active(new_page);
1894 		page_add_new_anon_rmap(new_page, vma, address);
1895 
1896 		if (old_page) {
1897 			/*
1898 			 * Only after switching the pte to the new page may
1899 			 * we remove the mapcount here. Otherwise another
1900 			 * process may come and find the rmap count decremented
1901 			 * before the pte is switched to the new page, and
1902 			 * "reuse" the old page writing into it while our pte
1903 			 * here still points into it and can be read by other
1904 			 * threads.
1905 			 *
1906 			 * The critical issue is to order this
1907 			 * page_remove_rmap with the ptp_clear_flush above.
1908 			 * Those stores are ordered by (if nothing else,)
1909 			 * the barrier present in the atomic_add_negative
1910 			 * in page_remove_rmap.
1911 			 *
1912 			 * Then the TLB flush in ptep_clear_flush ensures that
1913 			 * no process can access the old page before the
1914 			 * decremented mapcount is visible. And the old page
1915 			 * cannot be reused until after the decremented
1916 			 * mapcount is visible. So transitively, TLBs to
1917 			 * old page will be flushed before it can be reused.
1918 			 */
1919 			page_remove_rmap(old_page, vma);
1920 		}
1921 
1922 		/* Free the old page.. */
1923 		new_page = old_page;
1924 		ret |= VM_FAULT_WRITE;
1925 	} else
1926 		mem_cgroup_uncharge_page(new_page);
1927 
1928 	if (new_page)
1929 		page_cache_release(new_page);
1930 	if (old_page)
1931 		page_cache_release(old_page);
1932 unlock:
1933 	pte_unmap_unlock(page_table, ptl);
1934 	if (dirty_page) {
1935 		if (vma->vm_file)
1936 			file_update_time(vma->vm_file);
1937 
1938 		/*
1939 		 * Yes, Virginia, this is actually required to prevent a race
1940 		 * with clear_page_dirty_for_io() from clearing the page dirty
1941 		 * bit after it clear all dirty ptes, but before a racing
1942 		 * do_wp_page installs a dirty pte.
1943 		 *
1944 		 * do_no_page is protected similarly.
1945 		 */
1946 		wait_on_page_locked(dirty_page);
1947 		set_page_dirty_balance(dirty_page, page_mkwrite);
1948 		put_page(dirty_page);
1949 	}
1950 	return ret;
1951 oom_free_new:
1952 	page_cache_release(new_page);
1953 oom:
1954 	if (old_page)
1955 		page_cache_release(old_page);
1956 	return VM_FAULT_OOM;
1957 
1958 unwritable_page:
1959 	page_cache_release(old_page);
1960 	return VM_FAULT_SIGBUS;
1961 }
1962 
1963 /*
1964  * Helper functions for unmap_mapping_range().
1965  *
1966  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1967  *
1968  * We have to restart searching the prio_tree whenever we drop the lock,
1969  * since the iterator is only valid while the lock is held, and anyway
1970  * a later vma might be split and reinserted earlier while lock dropped.
1971  *
1972  * The list of nonlinear vmas could be handled more efficiently, using
1973  * a placeholder, but handle it in the same way until a need is shown.
1974  * It is important to search the prio_tree before nonlinear list: a vma
1975  * may become nonlinear and be shifted from prio_tree to nonlinear list
1976  * while the lock is dropped; but never shifted from list to prio_tree.
1977  *
1978  * In order to make forward progress despite restarting the search,
1979  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1980  * quickly skip it next time around.  Since the prio_tree search only
1981  * shows us those vmas affected by unmapping the range in question, we
1982  * can't efficiently keep all vmas in step with mapping->truncate_count:
1983  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1984  * mapping->truncate_count and vma->vm_truncate_count are protected by
1985  * i_mmap_lock.
1986  *
1987  * In order to make forward progress despite repeatedly restarting some
1988  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1989  * and restart from that address when we reach that vma again.  It might
1990  * have been split or merged, shrunk or extended, but never shifted: so
1991  * restart_addr remains valid so long as it remains in the vma's range.
1992  * unmap_mapping_range forces truncate_count to leap over page-aligned
1993  * values so we can save vma's restart_addr in its truncate_count field.
1994  */
1995 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1996 
1997 static void reset_vma_truncate_counts(struct address_space *mapping)
1998 {
1999 	struct vm_area_struct *vma;
2000 	struct prio_tree_iter iter;
2001 
2002 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2003 		vma->vm_truncate_count = 0;
2004 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2005 		vma->vm_truncate_count = 0;
2006 }
2007 
2008 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2009 		unsigned long start_addr, unsigned long end_addr,
2010 		struct zap_details *details)
2011 {
2012 	unsigned long restart_addr;
2013 	int need_break;
2014 
2015 	/*
2016 	 * files that support invalidating or truncating portions of the
2017 	 * file from under mmaped areas must have their ->fault function
2018 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2019 	 * This provides synchronisation against concurrent unmapping here.
2020 	 */
2021 
2022 again:
2023 	restart_addr = vma->vm_truncate_count;
2024 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2025 		start_addr = restart_addr;
2026 		if (start_addr >= end_addr) {
2027 			/* Top of vma has been split off since last time */
2028 			vma->vm_truncate_count = details->truncate_count;
2029 			return 0;
2030 		}
2031 	}
2032 
2033 	restart_addr = zap_page_range(vma, start_addr,
2034 					end_addr - start_addr, details);
2035 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2036 
2037 	if (restart_addr >= end_addr) {
2038 		/* We have now completed this vma: mark it so */
2039 		vma->vm_truncate_count = details->truncate_count;
2040 		if (!need_break)
2041 			return 0;
2042 	} else {
2043 		/* Note restart_addr in vma's truncate_count field */
2044 		vma->vm_truncate_count = restart_addr;
2045 		if (!need_break)
2046 			goto again;
2047 	}
2048 
2049 	spin_unlock(details->i_mmap_lock);
2050 	cond_resched();
2051 	spin_lock(details->i_mmap_lock);
2052 	return -EINTR;
2053 }
2054 
2055 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2056 					    struct zap_details *details)
2057 {
2058 	struct vm_area_struct *vma;
2059 	struct prio_tree_iter iter;
2060 	pgoff_t vba, vea, zba, zea;
2061 
2062 restart:
2063 	vma_prio_tree_foreach(vma, &iter, root,
2064 			details->first_index, details->last_index) {
2065 		/* Skip quickly over those we have already dealt with */
2066 		if (vma->vm_truncate_count == details->truncate_count)
2067 			continue;
2068 
2069 		vba = vma->vm_pgoff;
2070 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2071 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2072 		zba = details->first_index;
2073 		if (zba < vba)
2074 			zba = vba;
2075 		zea = details->last_index;
2076 		if (zea > vea)
2077 			zea = vea;
2078 
2079 		if (unmap_mapping_range_vma(vma,
2080 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2081 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2082 				details) < 0)
2083 			goto restart;
2084 	}
2085 }
2086 
2087 static inline void unmap_mapping_range_list(struct list_head *head,
2088 					    struct zap_details *details)
2089 {
2090 	struct vm_area_struct *vma;
2091 
2092 	/*
2093 	 * In nonlinear VMAs there is no correspondence between virtual address
2094 	 * offset and file offset.  So we must perform an exhaustive search
2095 	 * across *all* the pages in each nonlinear VMA, not just the pages
2096 	 * whose virtual address lies outside the file truncation point.
2097 	 */
2098 restart:
2099 	list_for_each_entry(vma, head, shared.vm_set.list) {
2100 		/* Skip quickly over those we have already dealt with */
2101 		if (vma->vm_truncate_count == details->truncate_count)
2102 			continue;
2103 		details->nonlinear_vma = vma;
2104 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2105 					vma->vm_end, details) < 0)
2106 			goto restart;
2107 	}
2108 }
2109 
2110 /**
2111  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2112  * @mapping: the address space containing mmaps to be unmapped.
2113  * @holebegin: byte in first page to unmap, relative to the start of
2114  * the underlying file.  This will be rounded down to a PAGE_SIZE
2115  * boundary.  Note that this is different from vmtruncate(), which
2116  * must keep the partial page.  In contrast, we must get rid of
2117  * partial pages.
2118  * @holelen: size of prospective hole in bytes.  This will be rounded
2119  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2120  * end of the file.
2121  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2122  * but 0 when invalidating pagecache, don't throw away private data.
2123  */
2124 void unmap_mapping_range(struct address_space *mapping,
2125 		loff_t const holebegin, loff_t const holelen, int even_cows)
2126 {
2127 	struct zap_details details;
2128 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2129 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2130 
2131 	/* Check for overflow. */
2132 	if (sizeof(holelen) > sizeof(hlen)) {
2133 		long long holeend =
2134 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2135 		if (holeend & ~(long long)ULONG_MAX)
2136 			hlen = ULONG_MAX - hba + 1;
2137 	}
2138 
2139 	details.check_mapping = even_cows? NULL: mapping;
2140 	details.nonlinear_vma = NULL;
2141 	details.first_index = hba;
2142 	details.last_index = hba + hlen - 1;
2143 	if (details.last_index < details.first_index)
2144 		details.last_index = ULONG_MAX;
2145 	details.i_mmap_lock = &mapping->i_mmap_lock;
2146 
2147 	spin_lock(&mapping->i_mmap_lock);
2148 
2149 	/* Protect against endless unmapping loops */
2150 	mapping->truncate_count++;
2151 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2152 		if (mapping->truncate_count == 0)
2153 			reset_vma_truncate_counts(mapping);
2154 		mapping->truncate_count++;
2155 	}
2156 	details.truncate_count = mapping->truncate_count;
2157 
2158 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2159 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2160 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2161 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2162 	spin_unlock(&mapping->i_mmap_lock);
2163 }
2164 EXPORT_SYMBOL(unmap_mapping_range);
2165 
2166 /**
2167  * vmtruncate - unmap mappings "freed" by truncate() syscall
2168  * @inode: inode of the file used
2169  * @offset: file offset to start truncating
2170  *
2171  * NOTE! We have to be ready to update the memory sharing
2172  * between the file and the memory map for a potential last
2173  * incomplete page.  Ugly, but necessary.
2174  */
2175 int vmtruncate(struct inode * inode, loff_t offset)
2176 {
2177 	if (inode->i_size < offset) {
2178 		unsigned long limit;
2179 
2180 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2181 		if (limit != RLIM_INFINITY && offset > limit)
2182 			goto out_sig;
2183 		if (offset > inode->i_sb->s_maxbytes)
2184 			goto out_big;
2185 		i_size_write(inode, offset);
2186 	} else {
2187 		struct address_space *mapping = inode->i_mapping;
2188 
2189 		/*
2190 		 * truncation of in-use swapfiles is disallowed - it would
2191 		 * cause subsequent swapout to scribble on the now-freed
2192 		 * blocks.
2193 		 */
2194 		if (IS_SWAPFILE(inode))
2195 			return -ETXTBSY;
2196 		i_size_write(inode, offset);
2197 
2198 		/*
2199 		 * unmap_mapping_range is called twice, first simply for
2200 		 * efficiency so that truncate_inode_pages does fewer
2201 		 * single-page unmaps.  However after this first call, and
2202 		 * before truncate_inode_pages finishes, it is possible for
2203 		 * private pages to be COWed, which remain after
2204 		 * truncate_inode_pages finishes, hence the second
2205 		 * unmap_mapping_range call must be made for correctness.
2206 		 */
2207 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2208 		truncate_inode_pages(mapping, offset);
2209 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2210 	}
2211 
2212 	if (inode->i_op && inode->i_op->truncate)
2213 		inode->i_op->truncate(inode);
2214 	return 0;
2215 
2216 out_sig:
2217 	send_sig(SIGXFSZ, current, 0);
2218 out_big:
2219 	return -EFBIG;
2220 }
2221 EXPORT_SYMBOL(vmtruncate);
2222 
2223 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2224 {
2225 	struct address_space *mapping = inode->i_mapping;
2226 
2227 	/*
2228 	 * If the underlying filesystem is not going to provide
2229 	 * a way to truncate a range of blocks (punch a hole) -
2230 	 * we should return failure right now.
2231 	 */
2232 	if (!inode->i_op || !inode->i_op->truncate_range)
2233 		return -ENOSYS;
2234 
2235 	mutex_lock(&inode->i_mutex);
2236 	down_write(&inode->i_alloc_sem);
2237 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2238 	truncate_inode_pages_range(mapping, offset, end);
2239 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2240 	inode->i_op->truncate_range(inode, offset, end);
2241 	up_write(&inode->i_alloc_sem);
2242 	mutex_unlock(&inode->i_mutex);
2243 
2244 	return 0;
2245 }
2246 
2247 /*
2248  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2249  * but allow concurrent faults), and pte mapped but not yet locked.
2250  * We return with mmap_sem still held, but pte unmapped and unlocked.
2251  */
2252 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2253 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2254 		int write_access, pte_t orig_pte)
2255 {
2256 	spinlock_t *ptl;
2257 	struct page *page;
2258 	swp_entry_t entry;
2259 	pte_t pte;
2260 	int ret = 0;
2261 
2262 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2263 		goto out;
2264 
2265 	entry = pte_to_swp_entry(orig_pte);
2266 	if (is_migration_entry(entry)) {
2267 		migration_entry_wait(mm, pmd, address);
2268 		goto out;
2269 	}
2270 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2271 	page = lookup_swap_cache(entry);
2272 	if (!page) {
2273 		grab_swap_token(); /* Contend for token _before_ read-in */
2274 		page = swapin_readahead(entry,
2275 					GFP_HIGHUSER_MOVABLE, vma, address);
2276 		if (!page) {
2277 			/*
2278 			 * Back out if somebody else faulted in this pte
2279 			 * while we released the pte lock.
2280 			 */
2281 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2282 			if (likely(pte_same(*page_table, orig_pte)))
2283 				ret = VM_FAULT_OOM;
2284 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2285 			goto unlock;
2286 		}
2287 
2288 		/* Had to read the page from swap area: Major fault */
2289 		ret = VM_FAULT_MAJOR;
2290 		count_vm_event(PGMAJFAULT);
2291 	}
2292 
2293 	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2294 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2295 		ret = VM_FAULT_OOM;
2296 		goto out;
2297 	}
2298 
2299 	mark_page_accessed(page);
2300 	lock_page(page);
2301 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2302 
2303 	/*
2304 	 * Back out if somebody else already faulted in this pte.
2305 	 */
2306 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2307 	if (unlikely(!pte_same(*page_table, orig_pte)))
2308 		goto out_nomap;
2309 
2310 	if (unlikely(!PageUptodate(page))) {
2311 		ret = VM_FAULT_SIGBUS;
2312 		goto out_nomap;
2313 	}
2314 
2315 	/* The page isn't present yet, go ahead with the fault. */
2316 
2317 	inc_mm_counter(mm, anon_rss);
2318 	pte = mk_pte(page, vma->vm_page_prot);
2319 	if (write_access && can_share_swap_page(page)) {
2320 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2321 		write_access = 0;
2322 	}
2323 
2324 	flush_icache_page(vma, page);
2325 	set_pte_at(mm, address, page_table, pte);
2326 	page_add_anon_rmap(page, vma, address);
2327 
2328 	swap_free(entry);
2329 	if (vm_swap_full())
2330 		remove_exclusive_swap_page(page);
2331 	unlock_page(page);
2332 
2333 	if (write_access) {
2334 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2335 		if (ret & VM_FAULT_ERROR)
2336 			ret &= VM_FAULT_ERROR;
2337 		goto out;
2338 	}
2339 
2340 	/* No need to invalidate - it was non-present before */
2341 	update_mmu_cache(vma, address, pte);
2342 unlock:
2343 	pte_unmap_unlock(page_table, ptl);
2344 out:
2345 	return ret;
2346 out_nomap:
2347 	mem_cgroup_uncharge_page(page);
2348 	pte_unmap_unlock(page_table, ptl);
2349 	unlock_page(page);
2350 	page_cache_release(page);
2351 	return ret;
2352 }
2353 
2354 /*
2355  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2356  * but allow concurrent faults), and pte mapped but not yet locked.
2357  * We return with mmap_sem still held, but pte unmapped and unlocked.
2358  */
2359 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2360 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2361 		int write_access)
2362 {
2363 	struct page *page;
2364 	spinlock_t *ptl;
2365 	pte_t entry;
2366 
2367 	/* Allocate our own private page. */
2368 	pte_unmap(page_table);
2369 
2370 	if (unlikely(anon_vma_prepare(vma)))
2371 		goto oom;
2372 	page = alloc_zeroed_user_highpage_movable(vma, address);
2373 	if (!page)
2374 		goto oom;
2375 	__SetPageUptodate(page);
2376 
2377 	if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2378 		goto oom_free_page;
2379 
2380 	entry = mk_pte(page, vma->vm_page_prot);
2381 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2382 
2383 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2384 	if (!pte_none(*page_table))
2385 		goto release;
2386 	inc_mm_counter(mm, anon_rss);
2387 	lru_cache_add_active(page);
2388 	page_add_new_anon_rmap(page, vma, address);
2389 	set_pte_at(mm, address, page_table, entry);
2390 
2391 	/* No need to invalidate - it was non-present before */
2392 	update_mmu_cache(vma, address, entry);
2393 unlock:
2394 	pte_unmap_unlock(page_table, ptl);
2395 	return 0;
2396 release:
2397 	mem_cgroup_uncharge_page(page);
2398 	page_cache_release(page);
2399 	goto unlock;
2400 oom_free_page:
2401 	page_cache_release(page);
2402 oom:
2403 	return VM_FAULT_OOM;
2404 }
2405 
2406 /*
2407  * __do_fault() tries to create a new page mapping. It aggressively
2408  * tries to share with existing pages, but makes a separate copy if
2409  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2410  * the next page fault.
2411  *
2412  * As this is called only for pages that do not currently exist, we
2413  * do not need to flush old virtual caches or the TLB.
2414  *
2415  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2416  * but allow concurrent faults), and pte neither mapped nor locked.
2417  * We return with mmap_sem still held, but pte unmapped and unlocked.
2418  */
2419 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2420 		unsigned long address, pmd_t *pmd,
2421 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2422 {
2423 	pte_t *page_table;
2424 	spinlock_t *ptl;
2425 	struct page *page;
2426 	pte_t entry;
2427 	int anon = 0;
2428 	struct page *dirty_page = NULL;
2429 	struct vm_fault vmf;
2430 	int ret;
2431 	int page_mkwrite = 0;
2432 
2433 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2434 	vmf.pgoff = pgoff;
2435 	vmf.flags = flags;
2436 	vmf.page = NULL;
2437 
2438 	ret = vma->vm_ops->fault(vma, &vmf);
2439 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2440 		return ret;
2441 
2442 	/*
2443 	 * For consistency in subsequent calls, make the faulted page always
2444 	 * locked.
2445 	 */
2446 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2447 		lock_page(vmf.page);
2448 	else
2449 		VM_BUG_ON(!PageLocked(vmf.page));
2450 
2451 	/*
2452 	 * Should we do an early C-O-W break?
2453 	 */
2454 	page = vmf.page;
2455 	if (flags & FAULT_FLAG_WRITE) {
2456 		if (!(vma->vm_flags & VM_SHARED)) {
2457 			anon = 1;
2458 			if (unlikely(anon_vma_prepare(vma))) {
2459 				ret = VM_FAULT_OOM;
2460 				goto out;
2461 			}
2462 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2463 						vma, address);
2464 			if (!page) {
2465 				ret = VM_FAULT_OOM;
2466 				goto out;
2467 			}
2468 			copy_user_highpage(page, vmf.page, address, vma);
2469 			__SetPageUptodate(page);
2470 		} else {
2471 			/*
2472 			 * If the page will be shareable, see if the backing
2473 			 * address space wants to know that the page is about
2474 			 * to become writable
2475 			 */
2476 			if (vma->vm_ops->page_mkwrite) {
2477 				unlock_page(page);
2478 				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2479 					ret = VM_FAULT_SIGBUS;
2480 					anon = 1; /* no anon but release vmf.page */
2481 					goto out_unlocked;
2482 				}
2483 				lock_page(page);
2484 				/*
2485 				 * XXX: this is not quite right (racy vs
2486 				 * invalidate) to unlock and relock the page
2487 				 * like this, however a better fix requires
2488 				 * reworking page_mkwrite locking API, which
2489 				 * is better done later.
2490 				 */
2491 				if (!page->mapping) {
2492 					ret = 0;
2493 					anon = 1; /* no anon but release vmf.page */
2494 					goto out;
2495 				}
2496 				page_mkwrite = 1;
2497 			}
2498 		}
2499 
2500 	}
2501 
2502 	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2503 		ret = VM_FAULT_OOM;
2504 		goto out;
2505 	}
2506 
2507 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2508 
2509 	/*
2510 	 * This silly early PAGE_DIRTY setting removes a race
2511 	 * due to the bad i386 page protection. But it's valid
2512 	 * for other architectures too.
2513 	 *
2514 	 * Note that if write_access is true, we either now have
2515 	 * an exclusive copy of the page, or this is a shared mapping,
2516 	 * so we can make it writable and dirty to avoid having to
2517 	 * handle that later.
2518 	 */
2519 	/* Only go through if we didn't race with anybody else... */
2520 	if (likely(pte_same(*page_table, orig_pte))) {
2521 		flush_icache_page(vma, page);
2522 		entry = mk_pte(page, vma->vm_page_prot);
2523 		if (flags & FAULT_FLAG_WRITE)
2524 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2525 		set_pte_at(mm, address, page_table, entry);
2526 		if (anon) {
2527                         inc_mm_counter(mm, anon_rss);
2528                         lru_cache_add_active(page);
2529                         page_add_new_anon_rmap(page, vma, address);
2530 		} else {
2531 			inc_mm_counter(mm, file_rss);
2532 			page_add_file_rmap(page);
2533 			if (flags & FAULT_FLAG_WRITE) {
2534 				dirty_page = page;
2535 				get_page(dirty_page);
2536 			}
2537 		}
2538 
2539 		/* no need to invalidate: a not-present page won't be cached */
2540 		update_mmu_cache(vma, address, entry);
2541 	} else {
2542 		mem_cgroup_uncharge_page(page);
2543 		if (anon)
2544 			page_cache_release(page);
2545 		else
2546 			anon = 1; /* no anon but release faulted_page */
2547 	}
2548 
2549 	pte_unmap_unlock(page_table, ptl);
2550 
2551 out:
2552 	unlock_page(vmf.page);
2553 out_unlocked:
2554 	if (anon)
2555 		page_cache_release(vmf.page);
2556 	else if (dirty_page) {
2557 		if (vma->vm_file)
2558 			file_update_time(vma->vm_file);
2559 
2560 		set_page_dirty_balance(dirty_page, page_mkwrite);
2561 		put_page(dirty_page);
2562 	}
2563 
2564 	return ret;
2565 }
2566 
2567 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2568 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2569 		int write_access, pte_t orig_pte)
2570 {
2571 	pgoff_t pgoff = (((address & PAGE_MASK)
2572 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2573 	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2574 
2575 	pte_unmap(page_table);
2576 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2577 }
2578 
2579 /*
2580  * Fault of a previously existing named mapping. Repopulate the pte
2581  * from the encoded file_pte if possible. This enables swappable
2582  * nonlinear vmas.
2583  *
2584  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2585  * but allow concurrent faults), and pte mapped but not yet locked.
2586  * We return with mmap_sem still held, but pte unmapped and unlocked.
2587  */
2588 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2589 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2590 		int write_access, pte_t orig_pte)
2591 {
2592 	unsigned int flags = FAULT_FLAG_NONLINEAR |
2593 				(write_access ? FAULT_FLAG_WRITE : 0);
2594 	pgoff_t pgoff;
2595 
2596 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2597 		return 0;
2598 
2599 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2600 			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2601 		/*
2602 		 * Page table corrupted: show pte and kill process.
2603 		 */
2604 		print_bad_pte(vma, orig_pte, address);
2605 		return VM_FAULT_OOM;
2606 	}
2607 
2608 	pgoff = pte_to_pgoff(orig_pte);
2609 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2610 }
2611 
2612 /*
2613  * These routines also need to handle stuff like marking pages dirty
2614  * and/or accessed for architectures that don't do it in hardware (most
2615  * RISC architectures).  The early dirtying is also good on the i386.
2616  *
2617  * There is also a hook called "update_mmu_cache()" that architectures
2618  * with external mmu caches can use to update those (ie the Sparc or
2619  * PowerPC hashed page tables that act as extended TLBs).
2620  *
2621  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2622  * but allow concurrent faults), and pte mapped but not yet locked.
2623  * We return with mmap_sem still held, but pte unmapped and unlocked.
2624  */
2625 static inline int handle_pte_fault(struct mm_struct *mm,
2626 		struct vm_area_struct *vma, unsigned long address,
2627 		pte_t *pte, pmd_t *pmd, int write_access)
2628 {
2629 	pte_t entry;
2630 	spinlock_t *ptl;
2631 
2632 	entry = *pte;
2633 	if (!pte_present(entry)) {
2634 		if (pte_none(entry)) {
2635 			if (vma->vm_ops) {
2636 				if (likely(vma->vm_ops->fault))
2637 					return do_linear_fault(mm, vma, address,
2638 						pte, pmd, write_access, entry);
2639 			}
2640 			return do_anonymous_page(mm, vma, address,
2641 						 pte, pmd, write_access);
2642 		}
2643 		if (pte_file(entry))
2644 			return do_nonlinear_fault(mm, vma, address,
2645 					pte, pmd, write_access, entry);
2646 		return do_swap_page(mm, vma, address,
2647 					pte, pmd, write_access, entry);
2648 	}
2649 
2650 	ptl = pte_lockptr(mm, pmd);
2651 	spin_lock(ptl);
2652 	if (unlikely(!pte_same(*pte, entry)))
2653 		goto unlock;
2654 	if (write_access) {
2655 		if (!pte_write(entry))
2656 			return do_wp_page(mm, vma, address,
2657 					pte, pmd, ptl, entry);
2658 		entry = pte_mkdirty(entry);
2659 	}
2660 	entry = pte_mkyoung(entry);
2661 	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2662 		update_mmu_cache(vma, address, entry);
2663 	} else {
2664 		/*
2665 		 * This is needed only for protection faults but the arch code
2666 		 * is not yet telling us if this is a protection fault or not.
2667 		 * This still avoids useless tlb flushes for .text page faults
2668 		 * with threads.
2669 		 */
2670 		if (write_access)
2671 			flush_tlb_page(vma, address);
2672 	}
2673 unlock:
2674 	pte_unmap_unlock(pte, ptl);
2675 	return 0;
2676 }
2677 
2678 /*
2679  * By the time we get here, we already hold the mm semaphore
2680  */
2681 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2682 		unsigned long address, int write_access)
2683 {
2684 	pgd_t *pgd;
2685 	pud_t *pud;
2686 	pmd_t *pmd;
2687 	pte_t *pte;
2688 
2689 	__set_current_state(TASK_RUNNING);
2690 
2691 	count_vm_event(PGFAULT);
2692 
2693 	if (unlikely(is_vm_hugetlb_page(vma)))
2694 		return hugetlb_fault(mm, vma, address, write_access);
2695 
2696 	pgd = pgd_offset(mm, address);
2697 	pud = pud_alloc(mm, pgd, address);
2698 	if (!pud)
2699 		return VM_FAULT_OOM;
2700 	pmd = pmd_alloc(mm, pud, address);
2701 	if (!pmd)
2702 		return VM_FAULT_OOM;
2703 	pte = pte_alloc_map(mm, pmd, address);
2704 	if (!pte)
2705 		return VM_FAULT_OOM;
2706 
2707 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2708 }
2709 
2710 #ifndef __PAGETABLE_PUD_FOLDED
2711 /*
2712  * Allocate page upper directory.
2713  * We've already handled the fast-path in-line.
2714  */
2715 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2716 {
2717 	pud_t *new = pud_alloc_one(mm, address);
2718 	if (!new)
2719 		return -ENOMEM;
2720 
2721 	smp_wmb(); /* See comment in __pte_alloc */
2722 
2723 	spin_lock(&mm->page_table_lock);
2724 	if (pgd_present(*pgd))		/* Another has populated it */
2725 		pud_free(mm, new);
2726 	else
2727 		pgd_populate(mm, pgd, new);
2728 	spin_unlock(&mm->page_table_lock);
2729 	return 0;
2730 }
2731 #endif /* __PAGETABLE_PUD_FOLDED */
2732 
2733 #ifndef __PAGETABLE_PMD_FOLDED
2734 /*
2735  * Allocate page middle directory.
2736  * We've already handled the fast-path in-line.
2737  */
2738 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2739 {
2740 	pmd_t *new = pmd_alloc_one(mm, address);
2741 	if (!new)
2742 		return -ENOMEM;
2743 
2744 	smp_wmb(); /* See comment in __pte_alloc */
2745 
2746 	spin_lock(&mm->page_table_lock);
2747 #ifndef __ARCH_HAS_4LEVEL_HACK
2748 	if (pud_present(*pud))		/* Another has populated it */
2749 		pmd_free(mm, new);
2750 	else
2751 		pud_populate(mm, pud, new);
2752 #else
2753 	if (pgd_present(*pud))		/* Another has populated it */
2754 		pmd_free(mm, new);
2755 	else
2756 		pgd_populate(mm, pud, new);
2757 #endif /* __ARCH_HAS_4LEVEL_HACK */
2758 	spin_unlock(&mm->page_table_lock);
2759 	return 0;
2760 }
2761 #endif /* __PAGETABLE_PMD_FOLDED */
2762 
2763 int make_pages_present(unsigned long addr, unsigned long end)
2764 {
2765 	int ret, len, write;
2766 	struct vm_area_struct * vma;
2767 
2768 	vma = find_vma(current->mm, addr);
2769 	if (!vma)
2770 		return -1;
2771 	write = (vma->vm_flags & VM_WRITE) != 0;
2772 	BUG_ON(addr >= end);
2773 	BUG_ON(end > vma->vm_end);
2774 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2775 	ret = get_user_pages(current, current->mm, addr,
2776 			len, write, 0, NULL, NULL);
2777 	if (ret < 0)
2778 		return ret;
2779 	return ret == len ? 0 : -1;
2780 }
2781 
2782 #if !defined(__HAVE_ARCH_GATE_AREA)
2783 
2784 #if defined(AT_SYSINFO_EHDR)
2785 static struct vm_area_struct gate_vma;
2786 
2787 static int __init gate_vma_init(void)
2788 {
2789 	gate_vma.vm_mm = NULL;
2790 	gate_vma.vm_start = FIXADDR_USER_START;
2791 	gate_vma.vm_end = FIXADDR_USER_END;
2792 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2793 	gate_vma.vm_page_prot = __P101;
2794 	/*
2795 	 * Make sure the vDSO gets into every core dump.
2796 	 * Dumping its contents makes post-mortem fully interpretable later
2797 	 * without matching up the same kernel and hardware config to see
2798 	 * what PC values meant.
2799 	 */
2800 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2801 	return 0;
2802 }
2803 __initcall(gate_vma_init);
2804 #endif
2805 
2806 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2807 {
2808 #ifdef AT_SYSINFO_EHDR
2809 	return &gate_vma;
2810 #else
2811 	return NULL;
2812 #endif
2813 }
2814 
2815 int in_gate_area_no_task(unsigned long addr)
2816 {
2817 #ifdef AT_SYSINFO_EHDR
2818 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2819 		return 1;
2820 #endif
2821 	return 0;
2822 }
2823 
2824 #endif	/* __HAVE_ARCH_GATE_AREA */
2825 
2826 #ifdef CONFIG_HAVE_IOREMAP_PROT
2827 static resource_size_t follow_phys(struct vm_area_struct *vma,
2828 			unsigned long address, unsigned int flags,
2829 			unsigned long *prot)
2830 {
2831 	pgd_t *pgd;
2832 	pud_t *pud;
2833 	pmd_t *pmd;
2834 	pte_t *ptep, pte;
2835 	spinlock_t *ptl;
2836 	resource_size_t phys_addr = 0;
2837 	struct mm_struct *mm = vma->vm_mm;
2838 
2839 	VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2840 
2841 	pgd = pgd_offset(mm, address);
2842 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2843 		goto no_page_table;
2844 
2845 	pud = pud_offset(pgd, address);
2846 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2847 		goto no_page_table;
2848 
2849 	pmd = pmd_offset(pud, address);
2850 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2851 		goto no_page_table;
2852 
2853 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
2854 	if (pmd_huge(*pmd))
2855 		goto no_page_table;
2856 
2857 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2858 	if (!ptep)
2859 		goto out;
2860 
2861 	pte = *ptep;
2862 	if (!pte_present(pte))
2863 		goto unlock;
2864 	if ((flags & FOLL_WRITE) && !pte_write(pte))
2865 		goto unlock;
2866 	phys_addr = pte_pfn(pte);
2867 	phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2868 
2869 	*prot = pgprot_val(pte_pgprot(pte));
2870 
2871 unlock:
2872 	pte_unmap_unlock(ptep, ptl);
2873 out:
2874 	return phys_addr;
2875 no_page_table:
2876 	return 0;
2877 }
2878 
2879 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2880 			void *buf, int len, int write)
2881 {
2882 	resource_size_t phys_addr;
2883 	unsigned long prot = 0;
2884 	void *maddr;
2885 	int offset = addr & (PAGE_SIZE-1);
2886 
2887 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2888 		return -EINVAL;
2889 
2890 	phys_addr = follow_phys(vma, addr, write, &prot);
2891 
2892 	if (!phys_addr)
2893 		return -EINVAL;
2894 
2895 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2896 	if (write)
2897 		memcpy_toio(maddr + offset, buf, len);
2898 	else
2899 		memcpy_fromio(buf, maddr + offset, len);
2900 	iounmap(maddr);
2901 
2902 	return len;
2903 }
2904 #endif
2905 
2906 /*
2907  * Access another process' address space.
2908  * Source/target buffer must be kernel space,
2909  * Do not walk the page table directly, use get_user_pages
2910  */
2911 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2912 {
2913 	struct mm_struct *mm;
2914 	struct vm_area_struct *vma;
2915 	void *old_buf = buf;
2916 
2917 	mm = get_task_mm(tsk);
2918 	if (!mm)
2919 		return 0;
2920 
2921 	down_read(&mm->mmap_sem);
2922 	/* ignore errors, just check how much was successfully transferred */
2923 	while (len) {
2924 		int bytes, ret, offset;
2925 		void *maddr;
2926 		struct page *page = NULL;
2927 
2928 		ret = get_user_pages(tsk, mm, addr, 1,
2929 				write, 1, &page, &vma);
2930 		if (ret <= 0) {
2931 			/*
2932 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2933 			 * we can access using slightly different code.
2934 			 */
2935 #ifdef CONFIG_HAVE_IOREMAP_PROT
2936 			vma = find_vma(mm, addr);
2937 			if (!vma)
2938 				break;
2939 			if (vma->vm_ops && vma->vm_ops->access)
2940 				ret = vma->vm_ops->access(vma, addr, buf,
2941 							  len, write);
2942 			if (ret <= 0)
2943 #endif
2944 				break;
2945 			bytes = ret;
2946 		} else {
2947 			bytes = len;
2948 			offset = addr & (PAGE_SIZE-1);
2949 			if (bytes > PAGE_SIZE-offset)
2950 				bytes = PAGE_SIZE-offset;
2951 
2952 			maddr = kmap(page);
2953 			if (write) {
2954 				copy_to_user_page(vma, page, addr,
2955 						  maddr + offset, buf, bytes);
2956 				set_page_dirty_lock(page);
2957 			} else {
2958 				copy_from_user_page(vma, page, addr,
2959 						    buf, maddr + offset, bytes);
2960 			}
2961 			kunmap(page);
2962 			page_cache_release(page);
2963 		}
2964 		len -= bytes;
2965 		buf += bytes;
2966 		addr += bytes;
2967 	}
2968 	up_read(&mm->mmap_sem);
2969 	mmput(mm);
2970 
2971 	return buf - old_buf;
2972 }
2973 
2974 /*
2975  * Print the name of a VMA.
2976  */
2977 void print_vma_addr(char *prefix, unsigned long ip)
2978 {
2979 	struct mm_struct *mm = current->mm;
2980 	struct vm_area_struct *vma;
2981 
2982 	/*
2983 	 * Do not print if we are in atomic
2984 	 * contexts (in exception stacks, etc.):
2985 	 */
2986 	if (preempt_count())
2987 		return;
2988 
2989 	down_read(&mm->mmap_sem);
2990 	vma = find_vma(mm, ip);
2991 	if (vma && vma->vm_file) {
2992 		struct file *f = vma->vm_file;
2993 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2994 		if (buf) {
2995 			char *p, *s;
2996 
2997 			p = d_path(&f->f_path, buf, PAGE_SIZE);
2998 			if (IS_ERR(p))
2999 				p = "?";
3000 			s = strrchr(p, '/');
3001 			if (s)
3002 				p = s+1;
3003 			printk("%s%s[%lx+%lx]", prefix, p,
3004 					vma->vm_start,
3005 					vma->vm_end - vma->vm_start);
3006 			free_page((unsigned long)buf);
3007 		}
3008 	}
3009 	up_read(&current->mm->mmap_sem);
3010 }
3011