xref: /linux/mm/memory.c (revision 60e9b39ebec56467c36c3da76eee28083196cdf1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 
81 #include <trace/events/kmem.h>
82 
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89 
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93 
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97 
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101 
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105 
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 
108 /*
109  * A number of key systems in x86 including ioremap() rely on the assumption
110  * that high_memory defines the upper bound on direct map memory, then end
111  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
112  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113  * and ZONE_HIGHMEM.
114  */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117 
118 /*
119  * Randomize the address space (stacks, mmaps, brk, etc.).
120  *
121  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122  *   as ancient (libc5 based) binaries can segfault. )
123  */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126 					1;
127 #else
128 					2;
129 #endif
130 
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134 	/*
135 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 	 * some architectures, even if it's performed in hardware. By
137 	 * default, "false" means prefaulted entries will be 'young'.
138 	 */
139 	return false;
140 }
141 #endif
142 
143 static int __init disable_randmaps(char *s)
144 {
145 	randomize_va_space = 0;
146 	return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149 
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152 
153 unsigned long highest_memmap_pfn __read_mostly;
154 
155 /*
156  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157  */
158 static int __init init_zero_pfn(void)
159 {
160 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
161 	return 0;
162 }
163 early_initcall(init_zero_pfn);
164 
165 void mm_trace_rss_stat(struct mm_struct *mm, int member)
166 {
167 	trace_rss_stat(mm, member);
168 }
169 
170 /*
171  * Note: this doesn't free the actual pages themselves. That
172  * has been handled earlier when unmapping all the memory regions.
173  */
174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
175 			   unsigned long addr)
176 {
177 	pgtable_t token = pmd_pgtable(*pmd);
178 	pmd_clear(pmd);
179 	pte_free_tlb(tlb, token, addr);
180 	mm_dec_nr_ptes(tlb->mm);
181 }
182 
183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184 				unsigned long addr, unsigned long end,
185 				unsigned long floor, unsigned long ceiling)
186 {
187 	pmd_t *pmd;
188 	unsigned long next;
189 	unsigned long start;
190 
191 	start = addr;
192 	pmd = pmd_offset(pud, addr);
193 	do {
194 		next = pmd_addr_end(addr, end);
195 		if (pmd_none_or_clear_bad(pmd))
196 			continue;
197 		free_pte_range(tlb, pmd, addr);
198 	} while (pmd++, addr = next, addr != end);
199 
200 	start &= PUD_MASK;
201 	if (start < floor)
202 		return;
203 	if (ceiling) {
204 		ceiling &= PUD_MASK;
205 		if (!ceiling)
206 			return;
207 	}
208 	if (end - 1 > ceiling - 1)
209 		return;
210 
211 	pmd = pmd_offset(pud, start);
212 	pud_clear(pud);
213 	pmd_free_tlb(tlb, pmd, start);
214 	mm_dec_nr_pmds(tlb->mm);
215 }
216 
217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
218 				unsigned long addr, unsigned long end,
219 				unsigned long floor, unsigned long ceiling)
220 {
221 	pud_t *pud;
222 	unsigned long next;
223 	unsigned long start;
224 
225 	start = addr;
226 	pud = pud_offset(p4d, addr);
227 	do {
228 		next = pud_addr_end(addr, end);
229 		if (pud_none_or_clear_bad(pud))
230 			continue;
231 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
232 	} while (pud++, addr = next, addr != end);
233 
234 	start &= P4D_MASK;
235 	if (start < floor)
236 		return;
237 	if (ceiling) {
238 		ceiling &= P4D_MASK;
239 		if (!ceiling)
240 			return;
241 	}
242 	if (end - 1 > ceiling - 1)
243 		return;
244 
245 	pud = pud_offset(p4d, start);
246 	p4d_clear(p4d);
247 	pud_free_tlb(tlb, pud, start);
248 	mm_dec_nr_puds(tlb->mm);
249 }
250 
251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252 				unsigned long addr, unsigned long end,
253 				unsigned long floor, unsigned long ceiling)
254 {
255 	p4d_t *p4d;
256 	unsigned long next;
257 	unsigned long start;
258 
259 	start = addr;
260 	p4d = p4d_offset(pgd, addr);
261 	do {
262 		next = p4d_addr_end(addr, end);
263 		if (p4d_none_or_clear_bad(p4d))
264 			continue;
265 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266 	} while (p4d++, addr = next, addr != end);
267 
268 	start &= PGDIR_MASK;
269 	if (start < floor)
270 		return;
271 	if (ceiling) {
272 		ceiling &= PGDIR_MASK;
273 		if (!ceiling)
274 			return;
275 	}
276 	if (end - 1 > ceiling - 1)
277 		return;
278 
279 	p4d = p4d_offset(pgd, start);
280 	pgd_clear(pgd);
281 	p4d_free_tlb(tlb, p4d, start);
282 }
283 
284 /*
285  * This function frees user-level page tables of a process.
286  */
287 void free_pgd_range(struct mmu_gather *tlb,
288 			unsigned long addr, unsigned long end,
289 			unsigned long floor, unsigned long ceiling)
290 {
291 	pgd_t *pgd;
292 	unsigned long next;
293 
294 	/*
295 	 * The next few lines have given us lots of grief...
296 	 *
297 	 * Why are we testing PMD* at this top level?  Because often
298 	 * there will be no work to do at all, and we'd prefer not to
299 	 * go all the way down to the bottom just to discover that.
300 	 *
301 	 * Why all these "- 1"s?  Because 0 represents both the bottom
302 	 * of the address space and the top of it (using -1 for the
303 	 * top wouldn't help much: the masks would do the wrong thing).
304 	 * The rule is that addr 0 and floor 0 refer to the bottom of
305 	 * the address space, but end 0 and ceiling 0 refer to the top
306 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
307 	 * that end 0 case should be mythical).
308 	 *
309 	 * Wherever addr is brought up or ceiling brought down, we must
310 	 * be careful to reject "the opposite 0" before it confuses the
311 	 * subsequent tests.  But what about where end is brought down
312 	 * by PMD_SIZE below? no, end can't go down to 0 there.
313 	 *
314 	 * Whereas we round start (addr) and ceiling down, by different
315 	 * masks at different levels, in order to test whether a table
316 	 * now has no other vmas using it, so can be freed, we don't
317 	 * bother to round floor or end up - the tests don't need that.
318 	 */
319 
320 	addr &= PMD_MASK;
321 	if (addr < floor) {
322 		addr += PMD_SIZE;
323 		if (!addr)
324 			return;
325 	}
326 	if (ceiling) {
327 		ceiling &= PMD_MASK;
328 		if (!ceiling)
329 			return;
330 	}
331 	if (end - 1 > ceiling - 1)
332 		end -= PMD_SIZE;
333 	if (addr > end - 1)
334 		return;
335 	/*
336 	 * We add page table cache pages with PAGE_SIZE,
337 	 * (see pte_free_tlb()), flush the tlb if we need
338 	 */
339 	tlb_change_page_size(tlb, PAGE_SIZE);
340 	pgd = pgd_offset(tlb->mm, addr);
341 	do {
342 		next = pgd_addr_end(addr, end);
343 		if (pgd_none_or_clear_bad(pgd))
344 			continue;
345 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
346 	} while (pgd++, addr = next, addr != end);
347 }
348 
349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350 		   struct vm_area_struct *vma, unsigned long floor,
351 		   unsigned long ceiling)
352 {
353 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
354 
355 	do {
356 		unsigned long addr = vma->vm_start;
357 		struct vm_area_struct *next;
358 
359 		/*
360 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361 		 * be 0.  This will underflow and is okay.
362 		 */
363 		next = mas_find(&mas, ceiling - 1);
364 
365 		/*
366 		 * Hide vma from rmap and truncate_pagecache before freeing
367 		 * pgtables
368 		 */
369 		unlink_anon_vmas(vma);
370 		unlink_file_vma(vma);
371 
372 		if (is_vm_hugetlb_page(vma)) {
373 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
374 				floor, next ? next->vm_start : ceiling);
375 		} else {
376 			/*
377 			 * Optimization: gather nearby vmas into one call down
378 			 */
379 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
380 			       && !is_vm_hugetlb_page(next)) {
381 				vma = next;
382 				next = mas_find(&mas, ceiling - 1);
383 				unlink_anon_vmas(vma);
384 				unlink_file_vma(vma);
385 			}
386 			free_pgd_range(tlb, addr, vma->vm_end,
387 				floor, next ? next->vm_start : ceiling);
388 		}
389 		vma = next;
390 	} while (vma);
391 }
392 
393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
394 {
395 	spinlock_t *ptl = pmd_lock(mm, pmd);
396 
397 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
398 		mm_inc_nr_ptes(mm);
399 		/*
400 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
401 		 * visible before the pte is made visible to other CPUs by being
402 		 * put into page tables.
403 		 *
404 		 * The other side of the story is the pointer chasing in the page
405 		 * table walking code (when walking the page table without locking;
406 		 * ie. most of the time). Fortunately, these data accesses consist
407 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
408 		 * being the notable exception) will already guarantee loads are
409 		 * seen in-order. See the alpha page table accessors for the
410 		 * smp_rmb() barriers in page table walking code.
411 		 */
412 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
413 		pmd_populate(mm, pmd, *pte);
414 		*pte = NULL;
415 	}
416 	spin_unlock(ptl);
417 }
418 
419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
420 {
421 	pgtable_t new = pte_alloc_one(mm);
422 	if (!new)
423 		return -ENOMEM;
424 
425 	pmd_install(mm, pmd, &new);
426 	if (new)
427 		pte_free(mm, new);
428 	return 0;
429 }
430 
431 int __pte_alloc_kernel(pmd_t *pmd)
432 {
433 	pte_t *new = pte_alloc_one_kernel(&init_mm);
434 	if (!new)
435 		return -ENOMEM;
436 
437 	spin_lock(&init_mm.page_table_lock);
438 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
439 		smp_wmb(); /* See comment in pmd_install() */
440 		pmd_populate_kernel(&init_mm, pmd, new);
441 		new = NULL;
442 	}
443 	spin_unlock(&init_mm.page_table_lock);
444 	if (new)
445 		pte_free_kernel(&init_mm, new);
446 	return 0;
447 }
448 
449 static inline void init_rss_vec(int *rss)
450 {
451 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452 }
453 
454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
455 {
456 	int i;
457 
458 	if (current->mm == mm)
459 		sync_mm_rss(mm);
460 	for (i = 0; i < NR_MM_COUNTERS; i++)
461 		if (rss[i])
462 			add_mm_counter(mm, i, rss[i]);
463 }
464 
465 /*
466  * This function is called to print an error when a bad pte
467  * is found. For example, we might have a PFN-mapped pte in
468  * a region that doesn't allow it.
469  *
470  * The calling function must still handle the error.
471  */
472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473 			  pte_t pte, struct page *page)
474 {
475 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476 	p4d_t *p4d = p4d_offset(pgd, addr);
477 	pud_t *pud = pud_offset(p4d, addr);
478 	pmd_t *pmd = pmd_offset(pud, addr);
479 	struct address_space *mapping;
480 	pgoff_t index;
481 	static unsigned long resume;
482 	static unsigned long nr_shown;
483 	static unsigned long nr_unshown;
484 
485 	/*
486 	 * Allow a burst of 60 reports, then keep quiet for that minute;
487 	 * or allow a steady drip of one report per second.
488 	 */
489 	if (nr_shown == 60) {
490 		if (time_before(jiffies, resume)) {
491 			nr_unshown++;
492 			return;
493 		}
494 		if (nr_unshown) {
495 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
496 				 nr_unshown);
497 			nr_unshown = 0;
498 		}
499 		nr_shown = 0;
500 	}
501 	if (nr_shown++ == 0)
502 		resume = jiffies + 60 * HZ;
503 
504 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505 	index = linear_page_index(vma, addr);
506 
507 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
508 		 current->comm,
509 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
510 	if (page)
511 		dump_page(page, "bad pte");
512 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
513 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
514 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
515 		 vma->vm_file,
516 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
517 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
518 		 mapping ? mapping->a_ops->read_folio : NULL);
519 	dump_stack();
520 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
521 }
522 
523 /*
524  * vm_normal_page -- This function gets the "struct page" associated with a pte.
525  *
526  * "Special" mappings do not wish to be associated with a "struct page" (either
527  * it doesn't exist, or it exists but they don't want to touch it). In this
528  * case, NULL is returned here. "Normal" mappings do have a struct page.
529  *
530  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531  * pte bit, in which case this function is trivial. Secondly, an architecture
532  * may not have a spare pte bit, which requires a more complicated scheme,
533  * described below.
534  *
535  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536  * special mapping (even if there are underlying and valid "struct pages").
537  * COWed pages of a VM_PFNMAP are always normal.
538  *
539  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
541  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542  * mapping will always honor the rule
543  *
544  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
545  *
546  * And for normal mappings this is false.
547  *
548  * This restricts such mappings to be a linear translation from virtual address
549  * to pfn. To get around this restriction, we allow arbitrary mappings so long
550  * as the vma is not a COW mapping; in that case, we know that all ptes are
551  * special (because none can have been COWed).
552  *
553  *
554  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
555  *
556  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557  * page" backing, however the difference is that _all_ pages with a struct
558  * page (that is, those where pfn_valid is true) are refcounted and considered
559  * normal pages by the VM. The disadvantage is that pages are refcounted
560  * (which can be slower and simply not an option for some PFNMAP users). The
561  * advantage is that we don't have to follow the strict linearity rule of
562  * PFNMAP mappings in order to support COWable mappings.
563  *
564  */
565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
566 			    pte_t pte)
567 {
568 	unsigned long pfn = pte_pfn(pte);
569 
570 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
571 		if (likely(!pte_special(pte)))
572 			goto check_pfn;
573 		if (vma->vm_ops && vma->vm_ops->find_special_page)
574 			return vma->vm_ops->find_special_page(vma, addr);
575 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
576 			return NULL;
577 		if (is_zero_pfn(pfn))
578 			return NULL;
579 		if (pte_devmap(pte))
580 		/*
581 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582 		 * and will have refcounts incremented on their struct pages
583 		 * when they are inserted into PTEs, thus they are safe to
584 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
586 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
587 		 */
588 			return NULL;
589 
590 		print_bad_pte(vma, addr, pte, NULL);
591 		return NULL;
592 	}
593 
594 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
595 
596 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597 		if (vma->vm_flags & VM_MIXEDMAP) {
598 			if (!pfn_valid(pfn))
599 				return NULL;
600 			goto out;
601 		} else {
602 			unsigned long off;
603 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
604 			if (pfn == vma->vm_pgoff + off)
605 				return NULL;
606 			if (!is_cow_mapping(vma->vm_flags))
607 				return NULL;
608 		}
609 	}
610 
611 	if (is_zero_pfn(pfn))
612 		return NULL;
613 
614 check_pfn:
615 	if (unlikely(pfn > highest_memmap_pfn)) {
616 		print_bad_pte(vma, addr, pte, NULL);
617 		return NULL;
618 	}
619 
620 	/*
621 	 * NOTE! We still have PageReserved() pages in the page tables.
622 	 * eg. VDSO mappings can cause them to exist.
623 	 */
624 out:
625 	return pfn_to_page(pfn);
626 }
627 
628 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
629 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
630 				pmd_t pmd)
631 {
632 	unsigned long pfn = pmd_pfn(pmd);
633 
634 	/*
635 	 * There is no pmd_special() but there may be special pmds, e.g.
636 	 * in a direct-access (dax) mapping, so let's just replicate the
637 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
638 	 */
639 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
640 		if (vma->vm_flags & VM_MIXEDMAP) {
641 			if (!pfn_valid(pfn))
642 				return NULL;
643 			goto out;
644 		} else {
645 			unsigned long off;
646 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
647 			if (pfn == vma->vm_pgoff + off)
648 				return NULL;
649 			if (!is_cow_mapping(vma->vm_flags))
650 				return NULL;
651 		}
652 	}
653 
654 	if (pmd_devmap(pmd))
655 		return NULL;
656 	if (is_huge_zero_pmd(pmd))
657 		return NULL;
658 	if (unlikely(pfn > highest_memmap_pfn))
659 		return NULL;
660 
661 	/*
662 	 * NOTE! We still have PageReserved() pages in the page tables.
663 	 * eg. VDSO mappings can cause them to exist.
664 	 */
665 out:
666 	return pfn_to_page(pfn);
667 }
668 #endif
669 
670 static void restore_exclusive_pte(struct vm_area_struct *vma,
671 				  struct page *page, unsigned long address,
672 				  pte_t *ptep)
673 {
674 	pte_t pte;
675 	swp_entry_t entry;
676 
677 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
678 	if (pte_swp_soft_dirty(*ptep))
679 		pte = pte_mksoft_dirty(pte);
680 
681 	entry = pte_to_swp_entry(*ptep);
682 	if (pte_swp_uffd_wp(*ptep))
683 		pte = pte_mkuffd_wp(pte);
684 	else if (is_writable_device_exclusive_entry(entry))
685 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
686 
687 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
688 
689 	/*
690 	 * No need to take a page reference as one was already
691 	 * created when the swap entry was made.
692 	 */
693 	if (PageAnon(page))
694 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
695 	else
696 		/*
697 		 * Currently device exclusive access only supports anonymous
698 		 * memory so the entry shouldn't point to a filebacked page.
699 		 */
700 		WARN_ON_ONCE(1);
701 
702 	set_pte_at(vma->vm_mm, address, ptep, pte);
703 
704 	/*
705 	 * No need to invalidate - it was non-present before. However
706 	 * secondary CPUs may have mappings that need invalidating.
707 	 */
708 	update_mmu_cache(vma, address, ptep);
709 }
710 
711 /*
712  * Tries to restore an exclusive pte if the page lock can be acquired without
713  * sleeping.
714  */
715 static int
716 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
717 			unsigned long addr)
718 {
719 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
720 	struct page *page = pfn_swap_entry_to_page(entry);
721 
722 	if (trylock_page(page)) {
723 		restore_exclusive_pte(vma, page, addr, src_pte);
724 		unlock_page(page);
725 		return 0;
726 	}
727 
728 	return -EBUSY;
729 }
730 
731 /*
732  * copy one vm_area from one task to the other. Assumes the page tables
733  * already present in the new task to be cleared in the whole range
734  * covered by this vma.
735  */
736 
737 static unsigned long
738 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
739 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
740 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
741 {
742 	unsigned long vm_flags = dst_vma->vm_flags;
743 	pte_t pte = *src_pte;
744 	struct page *page;
745 	swp_entry_t entry = pte_to_swp_entry(pte);
746 
747 	if (likely(!non_swap_entry(entry))) {
748 		if (swap_duplicate(entry) < 0)
749 			return -EIO;
750 
751 		/* make sure dst_mm is on swapoff's mmlist. */
752 		if (unlikely(list_empty(&dst_mm->mmlist))) {
753 			spin_lock(&mmlist_lock);
754 			if (list_empty(&dst_mm->mmlist))
755 				list_add(&dst_mm->mmlist,
756 						&src_mm->mmlist);
757 			spin_unlock(&mmlist_lock);
758 		}
759 		/* Mark the swap entry as shared. */
760 		if (pte_swp_exclusive(*src_pte)) {
761 			pte = pte_swp_clear_exclusive(*src_pte);
762 			set_pte_at(src_mm, addr, src_pte, pte);
763 		}
764 		rss[MM_SWAPENTS]++;
765 	} else if (is_migration_entry(entry)) {
766 		page = pfn_swap_entry_to_page(entry);
767 
768 		rss[mm_counter(page)]++;
769 
770 		if (!is_readable_migration_entry(entry) &&
771 				is_cow_mapping(vm_flags)) {
772 			/*
773 			 * COW mappings require pages in both parent and child
774 			 * to be set to read. A previously exclusive entry is
775 			 * now shared.
776 			 */
777 			entry = make_readable_migration_entry(
778 							swp_offset(entry));
779 			pte = swp_entry_to_pte(entry);
780 			if (pte_swp_soft_dirty(*src_pte))
781 				pte = pte_swp_mksoft_dirty(pte);
782 			if (pte_swp_uffd_wp(*src_pte))
783 				pte = pte_swp_mkuffd_wp(pte);
784 			set_pte_at(src_mm, addr, src_pte, pte);
785 		}
786 	} else if (is_device_private_entry(entry)) {
787 		page = pfn_swap_entry_to_page(entry);
788 
789 		/*
790 		 * Update rss count even for unaddressable pages, as
791 		 * they should treated just like normal pages in this
792 		 * respect.
793 		 *
794 		 * We will likely want to have some new rss counters
795 		 * for unaddressable pages, at some point. But for now
796 		 * keep things as they are.
797 		 */
798 		get_page(page);
799 		rss[mm_counter(page)]++;
800 		/* Cannot fail as these pages cannot get pinned. */
801 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
802 
803 		/*
804 		 * We do not preserve soft-dirty information, because so
805 		 * far, checkpoint/restore is the only feature that
806 		 * requires that. And checkpoint/restore does not work
807 		 * when a device driver is involved (you cannot easily
808 		 * save and restore device driver state).
809 		 */
810 		if (is_writable_device_private_entry(entry) &&
811 		    is_cow_mapping(vm_flags)) {
812 			entry = make_readable_device_private_entry(
813 							swp_offset(entry));
814 			pte = swp_entry_to_pte(entry);
815 			if (pte_swp_uffd_wp(*src_pte))
816 				pte = pte_swp_mkuffd_wp(pte);
817 			set_pte_at(src_mm, addr, src_pte, pte);
818 		}
819 	} else if (is_device_exclusive_entry(entry)) {
820 		/*
821 		 * Make device exclusive entries present by restoring the
822 		 * original entry then copying as for a present pte. Device
823 		 * exclusive entries currently only support private writable
824 		 * (ie. COW) mappings.
825 		 */
826 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
827 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
828 			return -EBUSY;
829 		return -ENOENT;
830 	} else if (is_pte_marker_entry(entry)) {
831 		/*
832 		 * We're copying the pgtable should only because dst_vma has
833 		 * uffd-wp enabled, do sanity check.
834 		 */
835 		WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
836 		set_pte_at(dst_mm, addr, dst_pte, pte);
837 		return 0;
838 	}
839 	if (!userfaultfd_wp(dst_vma))
840 		pte = pte_swp_clear_uffd_wp(pte);
841 	set_pte_at(dst_mm, addr, dst_pte, pte);
842 	return 0;
843 }
844 
845 /*
846  * Copy a present and normal page.
847  *
848  * NOTE! The usual case is that this isn't required;
849  * instead, the caller can just increase the page refcount
850  * and re-use the pte the traditional way.
851  *
852  * And if we need a pre-allocated page but don't yet have
853  * one, return a negative error to let the preallocation
854  * code know so that it can do so outside the page table
855  * lock.
856  */
857 static inline int
858 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
859 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
860 		  struct page **prealloc, struct page *page)
861 {
862 	struct page *new_page;
863 	pte_t pte;
864 
865 	new_page = *prealloc;
866 	if (!new_page)
867 		return -EAGAIN;
868 
869 	/*
870 	 * We have a prealloc page, all good!  Take it
871 	 * over and copy the page & arm it.
872 	 */
873 	*prealloc = NULL;
874 	copy_user_highpage(new_page, page, addr, src_vma);
875 	__SetPageUptodate(new_page);
876 	page_add_new_anon_rmap(new_page, dst_vma, addr);
877 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
878 	rss[mm_counter(new_page)]++;
879 
880 	/* All done, just insert the new page copy in the child */
881 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
882 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
883 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
884 		/* Uffd-wp needs to be delivered to dest pte as well */
885 		pte = pte_wrprotect(pte_mkuffd_wp(pte));
886 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
887 	return 0;
888 }
889 
890 /*
891  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
892  * is required to copy this pte.
893  */
894 static inline int
895 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
896 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
897 		 struct page **prealloc)
898 {
899 	struct mm_struct *src_mm = src_vma->vm_mm;
900 	unsigned long vm_flags = src_vma->vm_flags;
901 	pte_t pte = *src_pte;
902 	struct page *page;
903 
904 	page = vm_normal_page(src_vma, addr, pte);
905 	if (page && PageAnon(page)) {
906 		/*
907 		 * If this page may have been pinned by the parent process,
908 		 * copy the page immediately for the child so that we'll always
909 		 * guarantee the pinned page won't be randomly replaced in the
910 		 * future.
911 		 */
912 		get_page(page);
913 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
914 			/* Page maybe pinned, we have to copy. */
915 			put_page(page);
916 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
917 						 addr, rss, prealloc, page);
918 		}
919 		rss[mm_counter(page)]++;
920 	} else if (page) {
921 		get_page(page);
922 		page_dup_file_rmap(page, false);
923 		rss[mm_counter(page)]++;
924 	}
925 
926 	/*
927 	 * If it's a COW mapping, write protect it both
928 	 * in the parent and the child
929 	 */
930 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
931 		ptep_set_wrprotect(src_mm, addr, src_pte);
932 		pte = pte_wrprotect(pte);
933 	}
934 	VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
935 
936 	/*
937 	 * If it's a shared mapping, mark it clean in
938 	 * the child
939 	 */
940 	if (vm_flags & VM_SHARED)
941 		pte = pte_mkclean(pte);
942 	pte = pte_mkold(pte);
943 
944 	if (!userfaultfd_wp(dst_vma))
945 		pte = pte_clear_uffd_wp(pte);
946 
947 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
948 	return 0;
949 }
950 
951 static inline struct page *
952 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
953 		   unsigned long addr)
954 {
955 	struct page *new_page;
956 
957 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
958 	if (!new_page)
959 		return NULL;
960 
961 	if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
962 		put_page(new_page);
963 		return NULL;
964 	}
965 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
966 
967 	return new_page;
968 }
969 
970 static int
971 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
972 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
973 	       unsigned long end)
974 {
975 	struct mm_struct *dst_mm = dst_vma->vm_mm;
976 	struct mm_struct *src_mm = src_vma->vm_mm;
977 	pte_t *orig_src_pte, *orig_dst_pte;
978 	pte_t *src_pte, *dst_pte;
979 	spinlock_t *src_ptl, *dst_ptl;
980 	int progress, ret = 0;
981 	int rss[NR_MM_COUNTERS];
982 	swp_entry_t entry = (swp_entry_t){0};
983 	struct page *prealloc = NULL;
984 
985 again:
986 	progress = 0;
987 	init_rss_vec(rss);
988 
989 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
990 	if (!dst_pte) {
991 		ret = -ENOMEM;
992 		goto out;
993 	}
994 	src_pte = pte_offset_map(src_pmd, addr);
995 	src_ptl = pte_lockptr(src_mm, src_pmd);
996 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
997 	orig_src_pte = src_pte;
998 	orig_dst_pte = dst_pte;
999 	arch_enter_lazy_mmu_mode();
1000 
1001 	do {
1002 		/*
1003 		 * We are holding two locks at this point - either of them
1004 		 * could generate latencies in another task on another CPU.
1005 		 */
1006 		if (progress >= 32) {
1007 			progress = 0;
1008 			if (need_resched() ||
1009 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1010 				break;
1011 		}
1012 		if (pte_none(*src_pte)) {
1013 			progress++;
1014 			continue;
1015 		}
1016 		if (unlikely(!pte_present(*src_pte))) {
1017 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1018 						  dst_pte, src_pte,
1019 						  dst_vma, src_vma,
1020 						  addr, rss);
1021 			if (ret == -EIO) {
1022 				entry = pte_to_swp_entry(*src_pte);
1023 				break;
1024 			} else if (ret == -EBUSY) {
1025 				break;
1026 			} else if (!ret) {
1027 				progress += 8;
1028 				continue;
1029 			}
1030 
1031 			/*
1032 			 * Device exclusive entry restored, continue by copying
1033 			 * the now present pte.
1034 			 */
1035 			WARN_ON_ONCE(ret != -ENOENT);
1036 		}
1037 		/* copy_present_pte() will clear `*prealloc' if consumed */
1038 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1039 				       addr, rss, &prealloc);
1040 		/*
1041 		 * If we need a pre-allocated page for this pte, drop the
1042 		 * locks, allocate, and try again.
1043 		 */
1044 		if (unlikely(ret == -EAGAIN))
1045 			break;
1046 		if (unlikely(prealloc)) {
1047 			/*
1048 			 * pre-alloc page cannot be reused by next time so as
1049 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1050 			 * will allocate page according to address).  This
1051 			 * could only happen if one pinned pte changed.
1052 			 */
1053 			put_page(prealloc);
1054 			prealloc = NULL;
1055 		}
1056 		progress += 8;
1057 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1058 
1059 	arch_leave_lazy_mmu_mode();
1060 	spin_unlock(src_ptl);
1061 	pte_unmap(orig_src_pte);
1062 	add_mm_rss_vec(dst_mm, rss);
1063 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1064 	cond_resched();
1065 
1066 	if (ret == -EIO) {
1067 		VM_WARN_ON_ONCE(!entry.val);
1068 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1069 			ret = -ENOMEM;
1070 			goto out;
1071 		}
1072 		entry.val = 0;
1073 	} else if (ret == -EBUSY) {
1074 		goto out;
1075 	} else if (ret ==  -EAGAIN) {
1076 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1077 		if (!prealloc)
1078 			return -ENOMEM;
1079 	} else if (ret) {
1080 		VM_WARN_ON_ONCE(1);
1081 	}
1082 
1083 	/* We've captured and resolved the error. Reset, try again. */
1084 	ret = 0;
1085 
1086 	if (addr != end)
1087 		goto again;
1088 out:
1089 	if (unlikely(prealloc))
1090 		put_page(prealloc);
1091 	return ret;
1092 }
1093 
1094 static inline int
1095 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1096 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1097 	       unsigned long end)
1098 {
1099 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1100 	struct mm_struct *src_mm = src_vma->vm_mm;
1101 	pmd_t *src_pmd, *dst_pmd;
1102 	unsigned long next;
1103 
1104 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1105 	if (!dst_pmd)
1106 		return -ENOMEM;
1107 	src_pmd = pmd_offset(src_pud, addr);
1108 	do {
1109 		next = pmd_addr_end(addr, end);
1110 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1111 			|| pmd_devmap(*src_pmd)) {
1112 			int err;
1113 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1114 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1115 					    addr, dst_vma, src_vma);
1116 			if (err == -ENOMEM)
1117 				return -ENOMEM;
1118 			if (!err)
1119 				continue;
1120 			/* fall through */
1121 		}
1122 		if (pmd_none_or_clear_bad(src_pmd))
1123 			continue;
1124 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1125 				   addr, next))
1126 			return -ENOMEM;
1127 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1128 	return 0;
1129 }
1130 
1131 static inline int
1132 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1133 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1134 	       unsigned long end)
1135 {
1136 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1137 	struct mm_struct *src_mm = src_vma->vm_mm;
1138 	pud_t *src_pud, *dst_pud;
1139 	unsigned long next;
1140 
1141 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1142 	if (!dst_pud)
1143 		return -ENOMEM;
1144 	src_pud = pud_offset(src_p4d, addr);
1145 	do {
1146 		next = pud_addr_end(addr, end);
1147 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1148 			int err;
1149 
1150 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1151 			err = copy_huge_pud(dst_mm, src_mm,
1152 					    dst_pud, src_pud, addr, src_vma);
1153 			if (err == -ENOMEM)
1154 				return -ENOMEM;
1155 			if (!err)
1156 				continue;
1157 			/* fall through */
1158 		}
1159 		if (pud_none_or_clear_bad(src_pud))
1160 			continue;
1161 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1162 				   addr, next))
1163 			return -ENOMEM;
1164 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1165 	return 0;
1166 }
1167 
1168 static inline int
1169 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1170 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1171 	       unsigned long end)
1172 {
1173 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1174 	p4d_t *src_p4d, *dst_p4d;
1175 	unsigned long next;
1176 
1177 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1178 	if (!dst_p4d)
1179 		return -ENOMEM;
1180 	src_p4d = p4d_offset(src_pgd, addr);
1181 	do {
1182 		next = p4d_addr_end(addr, end);
1183 		if (p4d_none_or_clear_bad(src_p4d))
1184 			continue;
1185 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1186 				   addr, next))
1187 			return -ENOMEM;
1188 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1189 	return 0;
1190 }
1191 
1192 /*
1193  * Return true if the vma needs to copy the pgtable during this fork().  Return
1194  * false when we can speed up fork() by allowing lazy page faults later until
1195  * when the child accesses the memory range.
1196  */
1197 static bool
1198 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1199 {
1200 	/*
1201 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1202 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1203 	 * contains uffd-wp protection information, that's something we can't
1204 	 * retrieve from page cache, and skip copying will lose those info.
1205 	 */
1206 	if (userfaultfd_wp(dst_vma))
1207 		return true;
1208 
1209 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1210 		return true;
1211 
1212 	if (src_vma->anon_vma)
1213 		return true;
1214 
1215 	/*
1216 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1217 	 * becomes much lighter when there are big shared or private readonly
1218 	 * mappings. The tradeoff is that copy_page_range is more efficient
1219 	 * than faulting.
1220 	 */
1221 	return false;
1222 }
1223 
1224 int
1225 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1226 {
1227 	pgd_t *src_pgd, *dst_pgd;
1228 	unsigned long next;
1229 	unsigned long addr = src_vma->vm_start;
1230 	unsigned long end = src_vma->vm_end;
1231 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1232 	struct mm_struct *src_mm = src_vma->vm_mm;
1233 	struct mmu_notifier_range range;
1234 	bool is_cow;
1235 	int ret;
1236 
1237 	if (!vma_needs_copy(dst_vma, src_vma))
1238 		return 0;
1239 
1240 	if (is_vm_hugetlb_page(src_vma))
1241 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1242 
1243 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1244 		/*
1245 		 * We do not free on error cases below as remove_vma
1246 		 * gets called on error from higher level routine
1247 		 */
1248 		ret = track_pfn_copy(src_vma);
1249 		if (ret)
1250 			return ret;
1251 	}
1252 
1253 	/*
1254 	 * We need to invalidate the secondary MMU mappings only when
1255 	 * there could be a permission downgrade on the ptes of the
1256 	 * parent mm. And a permission downgrade will only happen if
1257 	 * is_cow_mapping() returns true.
1258 	 */
1259 	is_cow = is_cow_mapping(src_vma->vm_flags);
1260 
1261 	if (is_cow) {
1262 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1263 					0, src_vma, src_mm, addr, end);
1264 		mmu_notifier_invalidate_range_start(&range);
1265 		/*
1266 		 * Disabling preemption is not needed for the write side, as
1267 		 * the read side doesn't spin, but goes to the mmap_lock.
1268 		 *
1269 		 * Use the raw variant of the seqcount_t write API to avoid
1270 		 * lockdep complaining about preemptibility.
1271 		 */
1272 		mmap_assert_write_locked(src_mm);
1273 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1274 	}
1275 
1276 	ret = 0;
1277 	dst_pgd = pgd_offset(dst_mm, addr);
1278 	src_pgd = pgd_offset(src_mm, addr);
1279 	do {
1280 		next = pgd_addr_end(addr, end);
1281 		if (pgd_none_or_clear_bad(src_pgd))
1282 			continue;
1283 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1284 					    addr, next))) {
1285 			ret = -ENOMEM;
1286 			break;
1287 		}
1288 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1289 
1290 	if (is_cow) {
1291 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1292 		mmu_notifier_invalidate_range_end(&range);
1293 	}
1294 	return ret;
1295 }
1296 
1297 /* Whether we should zap all COWed (private) pages too */
1298 static inline bool should_zap_cows(struct zap_details *details)
1299 {
1300 	/* By default, zap all pages */
1301 	if (!details)
1302 		return true;
1303 
1304 	/* Or, we zap COWed pages only if the caller wants to */
1305 	return details->even_cows;
1306 }
1307 
1308 /* Decides whether we should zap this page with the page pointer specified */
1309 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1310 {
1311 	/* If we can make a decision without *page.. */
1312 	if (should_zap_cows(details))
1313 		return true;
1314 
1315 	/* E.g. the caller passes NULL for the case of a zero page */
1316 	if (!page)
1317 		return true;
1318 
1319 	/* Otherwise we should only zap non-anon pages */
1320 	return !PageAnon(page);
1321 }
1322 
1323 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1324 {
1325 	if (!details)
1326 		return false;
1327 
1328 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1329 }
1330 
1331 /*
1332  * This function makes sure that we'll replace the none pte with an uffd-wp
1333  * swap special pte marker when necessary. Must be with the pgtable lock held.
1334  */
1335 static inline void
1336 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1337 			      unsigned long addr, pte_t *pte,
1338 			      struct zap_details *details, pte_t pteval)
1339 {
1340 	if (zap_drop_file_uffd_wp(details))
1341 		return;
1342 
1343 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1344 }
1345 
1346 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1347 				struct vm_area_struct *vma, pmd_t *pmd,
1348 				unsigned long addr, unsigned long end,
1349 				struct zap_details *details)
1350 {
1351 	struct mm_struct *mm = tlb->mm;
1352 	int force_flush = 0;
1353 	int rss[NR_MM_COUNTERS];
1354 	spinlock_t *ptl;
1355 	pte_t *start_pte;
1356 	pte_t *pte;
1357 	swp_entry_t entry;
1358 
1359 	tlb_change_page_size(tlb, PAGE_SIZE);
1360 again:
1361 	init_rss_vec(rss);
1362 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1363 	pte = start_pte;
1364 	flush_tlb_batched_pending(mm);
1365 	arch_enter_lazy_mmu_mode();
1366 	do {
1367 		pte_t ptent = *pte;
1368 		struct page *page;
1369 
1370 		if (pte_none(ptent))
1371 			continue;
1372 
1373 		if (need_resched())
1374 			break;
1375 
1376 		if (pte_present(ptent)) {
1377 			unsigned int delay_rmap;
1378 
1379 			page = vm_normal_page(vma, addr, ptent);
1380 			if (unlikely(!should_zap_page(details, page)))
1381 				continue;
1382 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1383 							tlb->fullmm);
1384 			tlb_remove_tlb_entry(tlb, pte, addr);
1385 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1386 						      ptent);
1387 			if (unlikely(!page))
1388 				continue;
1389 
1390 			delay_rmap = 0;
1391 			if (!PageAnon(page)) {
1392 				if (pte_dirty(ptent)) {
1393 					set_page_dirty(page);
1394 					if (tlb_delay_rmap(tlb)) {
1395 						delay_rmap = 1;
1396 						force_flush = 1;
1397 					}
1398 				}
1399 				if (pte_young(ptent) &&
1400 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1401 					mark_page_accessed(page);
1402 			}
1403 			rss[mm_counter(page)]--;
1404 			if (!delay_rmap) {
1405 				page_remove_rmap(page, vma, false);
1406 				if (unlikely(page_mapcount(page) < 0))
1407 					print_bad_pte(vma, addr, ptent, page);
1408 			}
1409 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1410 				force_flush = 1;
1411 				addr += PAGE_SIZE;
1412 				break;
1413 			}
1414 			continue;
1415 		}
1416 
1417 		entry = pte_to_swp_entry(ptent);
1418 		if (is_device_private_entry(entry) ||
1419 		    is_device_exclusive_entry(entry)) {
1420 			page = pfn_swap_entry_to_page(entry);
1421 			if (unlikely(!should_zap_page(details, page)))
1422 				continue;
1423 			/*
1424 			 * Both device private/exclusive mappings should only
1425 			 * work with anonymous page so far, so we don't need to
1426 			 * consider uffd-wp bit when zap. For more information,
1427 			 * see zap_install_uffd_wp_if_needed().
1428 			 */
1429 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1430 			rss[mm_counter(page)]--;
1431 			if (is_device_private_entry(entry))
1432 				page_remove_rmap(page, vma, false);
1433 			put_page(page);
1434 		} else if (!non_swap_entry(entry)) {
1435 			/* Genuine swap entry, hence a private anon page */
1436 			if (!should_zap_cows(details))
1437 				continue;
1438 			rss[MM_SWAPENTS]--;
1439 			if (unlikely(!free_swap_and_cache(entry)))
1440 				print_bad_pte(vma, addr, ptent, NULL);
1441 		} else if (is_migration_entry(entry)) {
1442 			page = pfn_swap_entry_to_page(entry);
1443 			if (!should_zap_page(details, page))
1444 				continue;
1445 			rss[mm_counter(page)]--;
1446 		} else if (pte_marker_entry_uffd_wp(entry)) {
1447 			/* Only drop the uffd-wp marker if explicitly requested */
1448 			if (!zap_drop_file_uffd_wp(details))
1449 				continue;
1450 		} else if (is_hwpoison_entry(entry) ||
1451 			   is_swapin_error_entry(entry)) {
1452 			if (!should_zap_cows(details))
1453 				continue;
1454 		} else {
1455 			/* We should have covered all the swap entry types */
1456 			WARN_ON_ONCE(1);
1457 		}
1458 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1459 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1460 	} while (pte++, addr += PAGE_SIZE, addr != end);
1461 
1462 	add_mm_rss_vec(mm, rss);
1463 	arch_leave_lazy_mmu_mode();
1464 
1465 	/* Do the actual TLB flush before dropping ptl */
1466 	if (force_flush) {
1467 		tlb_flush_mmu_tlbonly(tlb);
1468 		tlb_flush_rmaps(tlb, vma);
1469 	}
1470 	pte_unmap_unlock(start_pte, ptl);
1471 
1472 	/*
1473 	 * If we forced a TLB flush (either due to running out of
1474 	 * batch buffers or because we needed to flush dirty TLB
1475 	 * entries before releasing the ptl), free the batched
1476 	 * memory too. Restart if we didn't do everything.
1477 	 */
1478 	if (force_flush) {
1479 		force_flush = 0;
1480 		tlb_flush_mmu(tlb);
1481 	}
1482 
1483 	if (addr != end) {
1484 		cond_resched();
1485 		goto again;
1486 	}
1487 
1488 	return addr;
1489 }
1490 
1491 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1492 				struct vm_area_struct *vma, pud_t *pud,
1493 				unsigned long addr, unsigned long end,
1494 				struct zap_details *details)
1495 {
1496 	pmd_t *pmd;
1497 	unsigned long next;
1498 
1499 	pmd = pmd_offset(pud, addr);
1500 	do {
1501 		next = pmd_addr_end(addr, end);
1502 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1503 			if (next - addr != HPAGE_PMD_SIZE)
1504 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1505 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1506 				goto next;
1507 			/* fall through */
1508 		} else if (details && details->single_folio &&
1509 			   folio_test_pmd_mappable(details->single_folio) &&
1510 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1511 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1512 			/*
1513 			 * Take and drop THP pmd lock so that we cannot return
1514 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1515 			 * but not yet decremented compound_mapcount().
1516 			 */
1517 			spin_unlock(ptl);
1518 		}
1519 
1520 		/*
1521 		 * Here there can be other concurrent MADV_DONTNEED or
1522 		 * trans huge page faults running, and if the pmd is
1523 		 * none or trans huge it can change under us. This is
1524 		 * because MADV_DONTNEED holds the mmap_lock in read
1525 		 * mode.
1526 		 */
1527 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1528 			goto next;
1529 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1530 next:
1531 		cond_resched();
1532 	} while (pmd++, addr = next, addr != end);
1533 
1534 	return addr;
1535 }
1536 
1537 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1538 				struct vm_area_struct *vma, p4d_t *p4d,
1539 				unsigned long addr, unsigned long end,
1540 				struct zap_details *details)
1541 {
1542 	pud_t *pud;
1543 	unsigned long next;
1544 
1545 	pud = pud_offset(p4d, addr);
1546 	do {
1547 		next = pud_addr_end(addr, end);
1548 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1549 			if (next - addr != HPAGE_PUD_SIZE) {
1550 				mmap_assert_locked(tlb->mm);
1551 				split_huge_pud(vma, pud, addr);
1552 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1553 				goto next;
1554 			/* fall through */
1555 		}
1556 		if (pud_none_or_clear_bad(pud))
1557 			continue;
1558 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1559 next:
1560 		cond_resched();
1561 	} while (pud++, addr = next, addr != end);
1562 
1563 	return addr;
1564 }
1565 
1566 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1567 				struct vm_area_struct *vma, pgd_t *pgd,
1568 				unsigned long addr, unsigned long end,
1569 				struct zap_details *details)
1570 {
1571 	p4d_t *p4d;
1572 	unsigned long next;
1573 
1574 	p4d = p4d_offset(pgd, addr);
1575 	do {
1576 		next = p4d_addr_end(addr, end);
1577 		if (p4d_none_or_clear_bad(p4d))
1578 			continue;
1579 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1580 	} while (p4d++, addr = next, addr != end);
1581 
1582 	return addr;
1583 }
1584 
1585 void unmap_page_range(struct mmu_gather *tlb,
1586 			     struct vm_area_struct *vma,
1587 			     unsigned long addr, unsigned long end,
1588 			     struct zap_details *details)
1589 {
1590 	pgd_t *pgd;
1591 	unsigned long next;
1592 
1593 	BUG_ON(addr >= end);
1594 	tlb_start_vma(tlb, vma);
1595 	pgd = pgd_offset(vma->vm_mm, addr);
1596 	do {
1597 		next = pgd_addr_end(addr, end);
1598 		if (pgd_none_or_clear_bad(pgd))
1599 			continue;
1600 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1601 	} while (pgd++, addr = next, addr != end);
1602 	tlb_end_vma(tlb, vma);
1603 }
1604 
1605 
1606 static void unmap_single_vma(struct mmu_gather *tlb,
1607 		struct vm_area_struct *vma, unsigned long start_addr,
1608 		unsigned long end_addr,
1609 		struct zap_details *details)
1610 {
1611 	unsigned long start = max(vma->vm_start, start_addr);
1612 	unsigned long end;
1613 
1614 	if (start >= vma->vm_end)
1615 		return;
1616 	end = min(vma->vm_end, end_addr);
1617 	if (end <= vma->vm_start)
1618 		return;
1619 
1620 	if (vma->vm_file)
1621 		uprobe_munmap(vma, start, end);
1622 
1623 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1624 		untrack_pfn(vma, 0, 0);
1625 
1626 	if (start != end) {
1627 		if (unlikely(is_vm_hugetlb_page(vma))) {
1628 			/*
1629 			 * It is undesirable to test vma->vm_file as it
1630 			 * should be non-null for valid hugetlb area.
1631 			 * However, vm_file will be NULL in the error
1632 			 * cleanup path of mmap_region. When
1633 			 * hugetlbfs ->mmap method fails,
1634 			 * mmap_region() nullifies vma->vm_file
1635 			 * before calling this function to clean up.
1636 			 * Since no pte has actually been setup, it is
1637 			 * safe to do nothing in this case.
1638 			 */
1639 			if (vma->vm_file) {
1640 				zap_flags_t zap_flags = details ?
1641 				    details->zap_flags : 0;
1642 				__unmap_hugepage_range_final(tlb, vma, start, end,
1643 							     NULL, zap_flags);
1644 			}
1645 		} else
1646 			unmap_page_range(tlb, vma, start, end, details);
1647 	}
1648 }
1649 
1650 /**
1651  * unmap_vmas - unmap a range of memory covered by a list of vma's
1652  * @tlb: address of the caller's struct mmu_gather
1653  * @mt: the maple tree
1654  * @vma: the starting vma
1655  * @start_addr: virtual address at which to start unmapping
1656  * @end_addr: virtual address at which to end unmapping
1657  *
1658  * Unmap all pages in the vma list.
1659  *
1660  * Only addresses between `start' and `end' will be unmapped.
1661  *
1662  * The VMA list must be sorted in ascending virtual address order.
1663  *
1664  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1665  * range after unmap_vmas() returns.  So the only responsibility here is to
1666  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1667  * drops the lock and schedules.
1668  */
1669 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1670 		struct vm_area_struct *vma, unsigned long start_addr,
1671 		unsigned long end_addr)
1672 {
1673 	struct mmu_notifier_range range;
1674 	struct zap_details details = {
1675 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1676 		/* Careful - we need to zap private pages too! */
1677 		.even_cows = true,
1678 	};
1679 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1680 
1681 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1682 				start_addr, end_addr);
1683 	mmu_notifier_invalidate_range_start(&range);
1684 	do {
1685 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1686 	} while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1687 	mmu_notifier_invalidate_range_end(&range);
1688 }
1689 
1690 /**
1691  * zap_page_range - remove user pages in a given range
1692  * @vma: vm_area_struct holding the applicable pages
1693  * @start: starting address of pages to zap
1694  * @size: number of bytes to zap
1695  *
1696  * Caller must protect the VMA list
1697  */
1698 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1699 		unsigned long size)
1700 {
1701 	struct maple_tree *mt = &vma->vm_mm->mm_mt;
1702 	unsigned long end = start + size;
1703 	struct mmu_notifier_range range;
1704 	struct mmu_gather tlb;
1705 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1706 
1707 	lru_add_drain();
1708 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1709 				start, start + size);
1710 	tlb_gather_mmu(&tlb, vma->vm_mm);
1711 	update_hiwater_rss(vma->vm_mm);
1712 	mmu_notifier_invalidate_range_start(&range);
1713 	do {
1714 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1715 	} while ((vma = mas_find(&mas, end - 1)) != NULL);
1716 	mmu_notifier_invalidate_range_end(&range);
1717 	tlb_finish_mmu(&tlb);
1718 }
1719 
1720 /**
1721  * zap_page_range_single - remove user pages in a given range
1722  * @vma: vm_area_struct holding the applicable pages
1723  * @address: starting address of pages to zap
1724  * @size: number of bytes to zap
1725  * @details: details of shared cache invalidation
1726  *
1727  * The range must fit into one VMA.
1728  */
1729 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1730 		unsigned long size, struct zap_details *details)
1731 {
1732 	const unsigned long end = address + size;
1733 	struct mmu_notifier_range range;
1734 	struct mmu_gather tlb;
1735 
1736 	lru_add_drain();
1737 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1738 				address, end);
1739 	if (is_vm_hugetlb_page(vma))
1740 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1741 						     &range.end);
1742 	tlb_gather_mmu(&tlb, vma->vm_mm);
1743 	update_hiwater_rss(vma->vm_mm);
1744 	mmu_notifier_invalidate_range_start(&range);
1745 	/*
1746 	 * unmap 'address-end' not 'range.start-range.end' as range
1747 	 * could have been expanded for hugetlb pmd sharing.
1748 	 */
1749 	unmap_single_vma(&tlb, vma, address, end, details);
1750 	mmu_notifier_invalidate_range_end(&range);
1751 	tlb_finish_mmu(&tlb);
1752 }
1753 
1754 /**
1755  * zap_vma_ptes - remove ptes mapping the vma
1756  * @vma: vm_area_struct holding ptes to be zapped
1757  * @address: starting address of pages to zap
1758  * @size: number of bytes to zap
1759  *
1760  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1761  *
1762  * The entire address range must be fully contained within the vma.
1763  *
1764  */
1765 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1766 		unsigned long size)
1767 {
1768 	if (!range_in_vma(vma, address, address + size) ||
1769 	    		!(vma->vm_flags & VM_PFNMAP))
1770 		return;
1771 
1772 	zap_page_range_single(vma, address, size, NULL);
1773 }
1774 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1775 
1776 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1777 {
1778 	pgd_t *pgd;
1779 	p4d_t *p4d;
1780 	pud_t *pud;
1781 	pmd_t *pmd;
1782 
1783 	pgd = pgd_offset(mm, addr);
1784 	p4d = p4d_alloc(mm, pgd, addr);
1785 	if (!p4d)
1786 		return NULL;
1787 	pud = pud_alloc(mm, p4d, addr);
1788 	if (!pud)
1789 		return NULL;
1790 	pmd = pmd_alloc(mm, pud, addr);
1791 	if (!pmd)
1792 		return NULL;
1793 
1794 	VM_BUG_ON(pmd_trans_huge(*pmd));
1795 	return pmd;
1796 }
1797 
1798 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1799 			spinlock_t **ptl)
1800 {
1801 	pmd_t *pmd = walk_to_pmd(mm, addr);
1802 
1803 	if (!pmd)
1804 		return NULL;
1805 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1806 }
1807 
1808 static int validate_page_before_insert(struct page *page)
1809 {
1810 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1811 		return -EINVAL;
1812 	flush_dcache_page(page);
1813 	return 0;
1814 }
1815 
1816 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1817 			unsigned long addr, struct page *page, pgprot_t prot)
1818 {
1819 	if (!pte_none(*pte))
1820 		return -EBUSY;
1821 	/* Ok, finally just insert the thing.. */
1822 	get_page(page);
1823 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1824 	page_add_file_rmap(page, vma, false);
1825 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1826 	return 0;
1827 }
1828 
1829 /*
1830  * This is the old fallback for page remapping.
1831  *
1832  * For historical reasons, it only allows reserved pages. Only
1833  * old drivers should use this, and they needed to mark their
1834  * pages reserved for the old functions anyway.
1835  */
1836 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1837 			struct page *page, pgprot_t prot)
1838 {
1839 	int retval;
1840 	pte_t *pte;
1841 	spinlock_t *ptl;
1842 
1843 	retval = validate_page_before_insert(page);
1844 	if (retval)
1845 		goto out;
1846 	retval = -ENOMEM;
1847 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1848 	if (!pte)
1849 		goto out;
1850 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1851 	pte_unmap_unlock(pte, ptl);
1852 out:
1853 	return retval;
1854 }
1855 
1856 #ifdef pte_index
1857 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1858 			unsigned long addr, struct page *page, pgprot_t prot)
1859 {
1860 	int err;
1861 
1862 	if (!page_count(page))
1863 		return -EINVAL;
1864 	err = validate_page_before_insert(page);
1865 	if (err)
1866 		return err;
1867 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1868 }
1869 
1870 /* insert_pages() amortizes the cost of spinlock operations
1871  * when inserting pages in a loop. Arch *must* define pte_index.
1872  */
1873 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1874 			struct page **pages, unsigned long *num, pgprot_t prot)
1875 {
1876 	pmd_t *pmd = NULL;
1877 	pte_t *start_pte, *pte;
1878 	spinlock_t *pte_lock;
1879 	struct mm_struct *const mm = vma->vm_mm;
1880 	unsigned long curr_page_idx = 0;
1881 	unsigned long remaining_pages_total = *num;
1882 	unsigned long pages_to_write_in_pmd;
1883 	int ret;
1884 more:
1885 	ret = -EFAULT;
1886 	pmd = walk_to_pmd(mm, addr);
1887 	if (!pmd)
1888 		goto out;
1889 
1890 	pages_to_write_in_pmd = min_t(unsigned long,
1891 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1892 
1893 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1894 	ret = -ENOMEM;
1895 	if (pte_alloc(mm, pmd))
1896 		goto out;
1897 
1898 	while (pages_to_write_in_pmd) {
1899 		int pte_idx = 0;
1900 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1901 
1902 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1903 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1904 			int err = insert_page_in_batch_locked(vma, pte,
1905 				addr, pages[curr_page_idx], prot);
1906 			if (unlikely(err)) {
1907 				pte_unmap_unlock(start_pte, pte_lock);
1908 				ret = err;
1909 				remaining_pages_total -= pte_idx;
1910 				goto out;
1911 			}
1912 			addr += PAGE_SIZE;
1913 			++curr_page_idx;
1914 		}
1915 		pte_unmap_unlock(start_pte, pte_lock);
1916 		pages_to_write_in_pmd -= batch_size;
1917 		remaining_pages_total -= batch_size;
1918 	}
1919 	if (remaining_pages_total)
1920 		goto more;
1921 	ret = 0;
1922 out:
1923 	*num = remaining_pages_total;
1924 	return ret;
1925 }
1926 #endif  /* ifdef pte_index */
1927 
1928 /**
1929  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1930  * @vma: user vma to map to
1931  * @addr: target start user address of these pages
1932  * @pages: source kernel pages
1933  * @num: in: number of pages to map. out: number of pages that were *not*
1934  * mapped. (0 means all pages were successfully mapped).
1935  *
1936  * Preferred over vm_insert_page() when inserting multiple pages.
1937  *
1938  * In case of error, we may have mapped a subset of the provided
1939  * pages. It is the caller's responsibility to account for this case.
1940  *
1941  * The same restrictions apply as in vm_insert_page().
1942  */
1943 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1944 			struct page **pages, unsigned long *num)
1945 {
1946 #ifdef pte_index
1947 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1948 
1949 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1950 		return -EFAULT;
1951 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1952 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1953 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1954 		vma->vm_flags |= VM_MIXEDMAP;
1955 	}
1956 	/* Defer page refcount checking till we're about to map that page. */
1957 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1958 #else
1959 	unsigned long idx = 0, pgcount = *num;
1960 	int err = -EINVAL;
1961 
1962 	for (; idx < pgcount; ++idx) {
1963 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1964 		if (err)
1965 			break;
1966 	}
1967 	*num = pgcount - idx;
1968 	return err;
1969 #endif  /* ifdef pte_index */
1970 }
1971 EXPORT_SYMBOL(vm_insert_pages);
1972 
1973 /**
1974  * vm_insert_page - insert single page into user vma
1975  * @vma: user vma to map to
1976  * @addr: target user address of this page
1977  * @page: source kernel page
1978  *
1979  * This allows drivers to insert individual pages they've allocated
1980  * into a user vma.
1981  *
1982  * The page has to be a nice clean _individual_ kernel allocation.
1983  * If you allocate a compound page, you need to have marked it as
1984  * such (__GFP_COMP), or manually just split the page up yourself
1985  * (see split_page()).
1986  *
1987  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1988  * took an arbitrary page protection parameter. This doesn't allow
1989  * that. Your vma protection will have to be set up correctly, which
1990  * means that if you want a shared writable mapping, you'd better
1991  * ask for a shared writable mapping!
1992  *
1993  * The page does not need to be reserved.
1994  *
1995  * Usually this function is called from f_op->mmap() handler
1996  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1997  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1998  * function from other places, for example from page-fault handler.
1999  *
2000  * Return: %0 on success, negative error code otherwise.
2001  */
2002 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2003 			struct page *page)
2004 {
2005 	if (addr < vma->vm_start || addr >= vma->vm_end)
2006 		return -EFAULT;
2007 	if (!page_count(page))
2008 		return -EINVAL;
2009 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2010 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2011 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2012 		vma->vm_flags |= VM_MIXEDMAP;
2013 	}
2014 	return insert_page(vma, addr, page, vma->vm_page_prot);
2015 }
2016 EXPORT_SYMBOL(vm_insert_page);
2017 
2018 /*
2019  * __vm_map_pages - maps range of kernel pages into user vma
2020  * @vma: user vma to map to
2021  * @pages: pointer to array of source kernel pages
2022  * @num: number of pages in page array
2023  * @offset: user's requested vm_pgoff
2024  *
2025  * This allows drivers to map range of kernel pages into a user vma.
2026  *
2027  * Return: 0 on success and error code otherwise.
2028  */
2029 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2030 				unsigned long num, unsigned long offset)
2031 {
2032 	unsigned long count = vma_pages(vma);
2033 	unsigned long uaddr = vma->vm_start;
2034 	int ret, i;
2035 
2036 	/* Fail if the user requested offset is beyond the end of the object */
2037 	if (offset >= num)
2038 		return -ENXIO;
2039 
2040 	/* Fail if the user requested size exceeds available object size */
2041 	if (count > num - offset)
2042 		return -ENXIO;
2043 
2044 	for (i = 0; i < count; i++) {
2045 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2046 		if (ret < 0)
2047 			return ret;
2048 		uaddr += PAGE_SIZE;
2049 	}
2050 
2051 	return 0;
2052 }
2053 
2054 /**
2055  * vm_map_pages - maps range of kernel pages starts with non zero offset
2056  * @vma: user vma to map to
2057  * @pages: pointer to array of source kernel pages
2058  * @num: number of pages in page array
2059  *
2060  * Maps an object consisting of @num pages, catering for the user's
2061  * requested vm_pgoff
2062  *
2063  * If we fail to insert any page into the vma, the function will return
2064  * immediately leaving any previously inserted pages present.  Callers
2065  * from the mmap handler may immediately return the error as their caller
2066  * will destroy the vma, removing any successfully inserted pages. Other
2067  * callers should make their own arrangements for calling unmap_region().
2068  *
2069  * Context: Process context. Called by mmap handlers.
2070  * Return: 0 on success and error code otherwise.
2071  */
2072 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2073 				unsigned long num)
2074 {
2075 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2076 }
2077 EXPORT_SYMBOL(vm_map_pages);
2078 
2079 /**
2080  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2081  * @vma: user vma to map to
2082  * @pages: pointer to array of source kernel pages
2083  * @num: number of pages in page array
2084  *
2085  * Similar to vm_map_pages(), except that it explicitly sets the offset
2086  * to 0. This function is intended for the drivers that did not consider
2087  * vm_pgoff.
2088  *
2089  * Context: Process context. Called by mmap handlers.
2090  * Return: 0 on success and error code otherwise.
2091  */
2092 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2093 				unsigned long num)
2094 {
2095 	return __vm_map_pages(vma, pages, num, 0);
2096 }
2097 EXPORT_SYMBOL(vm_map_pages_zero);
2098 
2099 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2100 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2101 {
2102 	struct mm_struct *mm = vma->vm_mm;
2103 	pte_t *pte, entry;
2104 	spinlock_t *ptl;
2105 
2106 	pte = get_locked_pte(mm, addr, &ptl);
2107 	if (!pte)
2108 		return VM_FAULT_OOM;
2109 	if (!pte_none(*pte)) {
2110 		if (mkwrite) {
2111 			/*
2112 			 * For read faults on private mappings the PFN passed
2113 			 * in may not match the PFN we have mapped if the
2114 			 * mapped PFN is a writeable COW page.  In the mkwrite
2115 			 * case we are creating a writable PTE for a shared
2116 			 * mapping and we expect the PFNs to match. If they
2117 			 * don't match, we are likely racing with block
2118 			 * allocation and mapping invalidation so just skip the
2119 			 * update.
2120 			 */
2121 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2122 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2123 				goto out_unlock;
2124 			}
2125 			entry = pte_mkyoung(*pte);
2126 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2127 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2128 				update_mmu_cache(vma, addr, pte);
2129 		}
2130 		goto out_unlock;
2131 	}
2132 
2133 	/* Ok, finally just insert the thing.. */
2134 	if (pfn_t_devmap(pfn))
2135 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2136 	else
2137 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2138 
2139 	if (mkwrite) {
2140 		entry = pte_mkyoung(entry);
2141 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2142 	}
2143 
2144 	set_pte_at(mm, addr, pte, entry);
2145 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2146 
2147 out_unlock:
2148 	pte_unmap_unlock(pte, ptl);
2149 	return VM_FAULT_NOPAGE;
2150 }
2151 
2152 /**
2153  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2154  * @vma: user vma to map to
2155  * @addr: target user address of this page
2156  * @pfn: source kernel pfn
2157  * @pgprot: pgprot flags for the inserted page
2158  *
2159  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2160  * to override pgprot on a per-page basis.
2161  *
2162  * This only makes sense for IO mappings, and it makes no sense for
2163  * COW mappings.  In general, using multiple vmas is preferable;
2164  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2165  * impractical.
2166  *
2167  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2168  * a value of @pgprot different from that of @vma->vm_page_prot.
2169  *
2170  * Context: Process context.  May allocate using %GFP_KERNEL.
2171  * Return: vm_fault_t value.
2172  */
2173 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2174 			unsigned long pfn, pgprot_t pgprot)
2175 {
2176 	/*
2177 	 * Technically, architectures with pte_special can avoid all these
2178 	 * restrictions (same for remap_pfn_range).  However we would like
2179 	 * consistency in testing and feature parity among all, so we should
2180 	 * try to keep these invariants in place for everybody.
2181 	 */
2182 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2183 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2184 						(VM_PFNMAP|VM_MIXEDMAP));
2185 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2186 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2187 
2188 	if (addr < vma->vm_start || addr >= vma->vm_end)
2189 		return VM_FAULT_SIGBUS;
2190 
2191 	if (!pfn_modify_allowed(pfn, pgprot))
2192 		return VM_FAULT_SIGBUS;
2193 
2194 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2195 
2196 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2197 			false);
2198 }
2199 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2200 
2201 /**
2202  * vmf_insert_pfn - insert single pfn into user vma
2203  * @vma: user vma to map to
2204  * @addr: target user address of this page
2205  * @pfn: source kernel pfn
2206  *
2207  * Similar to vm_insert_page, this allows drivers to insert individual pages
2208  * they've allocated into a user vma. Same comments apply.
2209  *
2210  * This function should only be called from a vm_ops->fault handler, and
2211  * in that case the handler should return the result of this function.
2212  *
2213  * vma cannot be a COW mapping.
2214  *
2215  * As this is called only for pages that do not currently exist, we
2216  * do not need to flush old virtual caches or the TLB.
2217  *
2218  * Context: Process context.  May allocate using %GFP_KERNEL.
2219  * Return: vm_fault_t value.
2220  */
2221 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2222 			unsigned long pfn)
2223 {
2224 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2225 }
2226 EXPORT_SYMBOL(vmf_insert_pfn);
2227 
2228 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2229 {
2230 	/* these checks mirror the abort conditions in vm_normal_page */
2231 	if (vma->vm_flags & VM_MIXEDMAP)
2232 		return true;
2233 	if (pfn_t_devmap(pfn))
2234 		return true;
2235 	if (pfn_t_special(pfn))
2236 		return true;
2237 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2238 		return true;
2239 	return false;
2240 }
2241 
2242 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2243 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2244 		bool mkwrite)
2245 {
2246 	int err;
2247 
2248 	BUG_ON(!vm_mixed_ok(vma, pfn));
2249 
2250 	if (addr < vma->vm_start || addr >= vma->vm_end)
2251 		return VM_FAULT_SIGBUS;
2252 
2253 	track_pfn_insert(vma, &pgprot, pfn);
2254 
2255 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2256 		return VM_FAULT_SIGBUS;
2257 
2258 	/*
2259 	 * If we don't have pte special, then we have to use the pfn_valid()
2260 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2261 	 * refcount the page if pfn_valid is true (hence insert_page rather
2262 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2263 	 * without pte special, it would there be refcounted as a normal page.
2264 	 */
2265 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2266 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2267 		struct page *page;
2268 
2269 		/*
2270 		 * At this point we are committed to insert_page()
2271 		 * regardless of whether the caller specified flags that
2272 		 * result in pfn_t_has_page() == false.
2273 		 */
2274 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2275 		err = insert_page(vma, addr, page, pgprot);
2276 	} else {
2277 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2278 	}
2279 
2280 	if (err == -ENOMEM)
2281 		return VM_FAULT_OOM;
2282 	if (err < 0 && err != -EBUSY)
2283 		return VM_FAULT_SIGBUS;
2284 
2285 	return VM_FAULT_NOPAGE;
2286 }
2287 
2288 /**
2289  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2290  * @vma: user vma to map to
2291  * @addr: target user address of this page
2292  * @pfn: source kernel pfn
2293  * @pgprot: pgprot flags for the inserted page
2294  *
2295  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2296  * to override pgprot on a per-page basis.
2297  *
2298  * Typically this function should be used by drivers to set caching- and
2299  * encryption bits different than those of @vma->vm_page_prot, because
2300  * the caching- or encryption mode may not be known at mmap() time.
2301  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2302  * to set caching and encryption bits for those vmas (except for COW pages).
2303  * This is ensured by core vm only modifying these page table entries using
2304  * functions that don't touch caching- or encryption bits, using pte_modify()
2305  * if needed. (See for example mprotect()).
2306  * Also when new page-table entries are created, this is only done using the
2307  * fault() callback, and never using the value of vma->vm_page_prot,
2308  * except for page-table entries that point to anonymous pages as the result
2309  * of COW.
2310  *
2311  * Context: Process context.  May allocate using %GFP_KERNEL.
2312  * Return: vm_fault_t value.
2313  */
2314 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2315 				 pfn_t pfn, pgprot_t pgprot)
2316 {
2317 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2318 }
2319 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2320 
2321 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2322 		pfn_t pfn)
2323 {
2324 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2325 }
2326 EXPORT_SYMBOL(vmf_insert_mixed);
2327 
2328 /*
2329  *  If the insertion of PTE failed because someone else already added a
2330  *  different entry in the mean time, we treat that as success as we assume
2331  *  the same entry was actually inserted.
2332  */
2333 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2334 		unsigned long addr, pfn_t pfn)
2335 {
2336 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2337 }
2338 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2339 
2340 /*
2341  * maps a range of physical memory into the requested pages. the old
2342  * mappings are removed. any references to nonexistent pages results
2343  * in null mappings (currently treated as "copy-on-access")
2344  */
2345 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2346 			unsigned long addr, unsigned long end,
2347 			unsigned long pfn, pgprot_t prot)
2348 {
2349 	pte_t *pte, *mapped_pte;
2350 	spinlock_t *ptl;
2351 	int err = 0;
2352 
2353 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2354 	if (!pte)
2355 		return -ENOMEM;
2356 	arch_enter_lazy_mmu_mode();
2357 	do {
2358 		BUG_ON(!pte_none(*pte));
2359 		if (!pfn_modify_allowed(pfn, prot)) {
2360 			err = -EACCES;
2361 			break;
2362 		}
2363 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2364 		pfn++;
2365 	} while (pte++, addr += PAGE_SIZE, addr != end);
2366 	arch_leave_lazy_mmu_mode();
2367 	pte_unmap_unlock(mapped_pte, ptl);
2368 	return err;
2369 }
2370 
2371 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2372 			unsigned long addr, unsigned long end,
2373 			unsigned long pfn, pgprot_t prot)
2374 {
2375 	pmd_t *pmd;
2376 	unsigned long next;
2377 	int err;
2378 
2379 	pfn -= addr >> PAGE_SHIFT;
2380 	pmd = pmd_alloc(mm, pud, addr);
2381 	if (!pmd)
2382 		return -ENOMEM;
2383 	VM_BUG_ON(pmd_trans_huge(*pmd));
2384 	do {
2385 		next = pmd_addr_end(addr, end);
2386 		err = remap_pte_range(mm, pmd, addr, next,
2387 				pfn + (addr >> PAGE_SHIFT), prot);
2388 		if (err)
2389 			return err;
2390 	} while (pmd++, addr = next, addr != end);
2391 	return 0;
2392 }
2393 
2394 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2395 			unsigned long addr, unsigned long end,
2396 			unsigned long pfn, pgprot_t prot)
2397 {
2398 	pud_t *pud;
2399 	unsigned long next;
2400 	int err;
2401 
2402 	pfn -= addr >> PAGE_SHIFT;
2403 	pud = pud_alloc(mm, p4d, addr);
2404 	if (!pud)
2405 		return -ENOMEM;
2406 	do {
2407 		next = pud_addr_end(addr, end);
2408 		err = remap_pmd_range(mm, pud, addr, next,
2409 				pfn + (addr >> PAGE_SHIFT), prot);
2410 		if (err)
2411 			return err;
2412 	} while (pud++, addr = next, addr != end);
2413 	return 0;
2414 }
2415 
2416 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2417 			unsigned long addr, unsigned long end,
2418 			unsigned long pfn, pgprot_t prot)
2419 {
2420 	p4d_t *p4d;
2421 	unsigned long next;
2422 	int err;
2423 
2424 	pfn -= addr >> PAGE_SHIFT;
2425 	p4d = p4d_alloc(mm, pgd, addr);
2426 	if (!p4d)
2427 		return -ENOMEM;
2428 	do {
2429 		next = p4d_addr_end(addr, end);
2430 		err = remap_pud_range(mm, p4d, addr, next,
2431 				pfn + (addr >> PAGE_SHIFT), prot);
2432 		if (err)
2433 			return err;
2434 	} while (p4d++, addr = next, addr != end);
2435 	return 0;
2436 }
2437 
2438 /*
2439  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2440  * must have pre-validated the caching bits of the pgprot_t.
2441  */
2442 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2443 		unsigned long pfn, unsigned long size, pgprot_t prot)
2444 {
2445 	pgd_t *pgd;
2446 	unsigned long next;
2447 	unsigned long end = addr + PAGE_ALIGN(size);
2448 	struct mm_struct *mm = vma->vm_mm;
2449 	int err;
2450 
2451 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2452 		return -EINVAL;
2453 
2454 	/*
2455 	 * Physically remapped pages are special. Tell the
2456 	 * rest of the world about it:
2457 	 *   VM_IO tells people not to look at these pages
2458 	 *	(accesses can have side effects).
2459 	 *   VM_PFNMAP tells the core MM that the base pages are just
2460 	 *	raw PFN mappings, and do not have a "struct page" associated
2461 	 *	with them.
2462 	 *   VM_DONTEXPAND
2463 	 *      Disable vma merging and expanding with mremap().
2464 	 *   VM_DONTDUMP
2465 	 *      Omit vma from core dump, even when VM_IO turned off.
2466 	 *
2467 	 * There's a horrible special case to handle copy-on-write
2468 	 * behaviour that some programs depend on. We mark the "original"
2469 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2470 	 * See vm_normal_page() for details.
2471 	 */
2472 	if (is_cow_mapping(vma->vm_flags)) {
2473 		if (addr != vma->vm_start || end != vma->vm_end)
2474 			return -EINVAL;
2475 		vma->vm_pgoff = pfn;
2476 	}
2477 
2478 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2479 
2480 	BUG_ON(addr >= end);
2481 	pfn -= addr >> PAGE_SHIFT;
2482 	pgd = pgd_offset(mm, addr);
2483 	flush_cache_range(vma, addr, end);
2484 	do {
2485 		next = pgd_addr_end(addr, end);
2486 		err = remap_p4d_range(mm, pgd, addr, next,
2487 				pfn + (addr >> PAGE_SHIFT), prot);
2488 		if (err)
2489 			return err;
2490 	} while (pgd++, addr = next, addr != end);
2491 
2492 	return 0;
2493 }
2494 
2495 /**
2496  * remap_pfn_range - remap kernel memory to userspace
2497  * @vma: user vma to map to
2498  * @addr: target page aligned user address to start at
2499  * @pfn: page frame number of kernel physical memory address
2500  * @size: size of mapping area
2501  * @prot: page protection flags for this mapping
2502  *
2503  * Note: this is only safe if the mm semaphore is held when called.
2504  *
2505  * Return: %0 on success, negative error code otherwise.
2506  */
2507 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2508 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2509 {
2510 	int err;
2511 
2512 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2513 	if (err)
2514 		return -EINVAL;
2515 
2516 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2517 	if (err)
2518 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2519 	return err;
2520 }
2521 EXPORT_SYMBOL(remap_pfn_range);
2522 
2523 /**
2524  * vm_iomap_memory - remap memory to userspace
2525  * @vma: user vma to map to
2526  * @start: start of the physical memory to be mapped
2527  * @len: size of area
2528  *
2529  * This is a simplified io_remap_pfn_range() for common driver use. The
2530  * driver just needs to give us the physical memory range to be mapped,
2531  * we'll figure out the rest from the vma information.
2532  *
2533  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2534  * whatever write-combining details or similar.
2535  *
2536  * Return: %0 on success, negative error code otherwise.
2537  */
2538 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2539 {
2540 	unsigned long vm_len, pfn, pages;
2541 
2542 	/* Check that the physical memory area passed in looks valid */
2543 	if (start + len < start)
2544 		return -EINVAL;
2545 	/*
2546 	 * You *really* shouldn't map things that aren't page-aligned,
2547 	 * but we've historically allowed it because IO memory might
2548 	 * just have smaller alignment.
2549 	 */
2550 	len += start & ~PAGE_MASK;
2551 	pfn = start >> PAGE_SHIFT;
2552 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2553 	if (pfn + pages < pfn)
2554 		return -EINVAL;
2555 
2556 	/* We start the mapping 'vm_pgoff' pages into the area */
2557 	if (vma->vm_pgoff > pages)
2558 		return -EINVAL;
2559 	pfn += vma->vm_pgoff;
2560 	pages -= vma->vm_pgoff;
2561 
2562 	/* Can we fit all of the mapping? */
2563 	vm_len = vma->vm_end - vma->vm_start;
2564 	if (vm_len >> PAGE_SHIFT > pages)
2565 		return -EINVAL;
2566 
2567 	/* Ok, let it rip */
2568 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2569 }
2570 EXPORT_SYMBOL(vm_iomap_memory);
2571 
2572 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2573 				     unsigned long addr, unsigned long end,
2574 				     pte_fn_t fn, void *data, bool create,
2575 				     pgtbl_mod_mask *mask)
2576 {
2577 	pte_t *pte, *mapped_pte;
2578 	int err = 0;
2579 	spinlock_t *ptl;
2580 
2581 	if (create) {
2582 		mapped_pte = pte = (mm == &init_mm) ?
2583 			pte_alloc_kernel_track(pmd, addr, mask) :
2584 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2585 		if (!pte)
2586 			return -ENOMEM;
2587 	} else {
2588 		mapped_pte = pte = (mm == &init_mm) ?
2589 			pte_offset_kernel(pmd, addr) :
2590 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2591 	}
2592 
2593 	BUG_ON(pmd_huge(*pmd));
2594 
2595 	arch_enter_lazy_mmu_mode();
2596 
2597 	if (fn) {
2598 		do {
2599 			if (create || !pte_none(*pte)) {
2600 				err = fn(pte++, addr, data);
2601 				if (err)
2602 					break;
2603 			}
2604 		} while (addr += PAGE_SIZE, addr != end);
2605 	}
2606 	*mask |= PGTBL_PTE_MODIFIED;
2607 
2608 	arch_leave_lazy_mmu_mode();
2609 
2610 	if (mm != &init_mm)
2611 		pte_unmap_unlock(mapped_pte, ptl);
2612 	return err;
2613 }
2614 
2615 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2616 				     unsigned long addr, unsigned long end,
2617 				     pte_fn_t fn, void *data, bool create,
2618 				     pgtbl_mod_mask *mask)
2619 {
2620 	pmd_t *pmd;
2621 	unsigned long next;
2622 	int err = 0;
2623 
2624 	BUG_ON(pud_huge(*pud));
2625 
2626 	if (create) {
2627 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2628 		if (!pmd)
2629 			return -ENOMEM;
2630 	} else {
2631 		pmd = pmd_offset(pud, addr);
2632 	}
2633 	do {
2634 		next = pmd_addr_end(addr, end);
2635 		if (pmd_none(*pmd) && !create)
2636 			continue;
2637 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2638 			return -EINVAL;
2639 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2640 			if (!create)
2641 				continue;
2642 			pmd_clear_bad(pmd);
2643 		}
2644 		err = apply_to_pte_range(mm, pmd, addr, next,
2645 					 fn, data, create, mask);
2646 		if (err)
2647 			break;
2648 	} while (pmd++, addr = next, addr != end);
2649 
2650 	return err;
2651 }
2652 
2653 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2654 				     unsigned long addr, unsigned long end,
2655 				     pte_fn_t fn, void *data, bool create,
2656 				     pgtbl_mod_mask *mask)
2657 {
2658 	pud_t *pud;
2659 	unsigned long next;
2660 	int err = 0;
2661 
2662 	if (create) {
2663 		pud = pud_alloc_track(mm, p4d, addr, mask);
2664 		if (!pud)
2665 			return -ENOMEM;
2666 	} else {
2667 		pud = pud_offset(p4d, addr);
2668 	}
2669 	do {
2670 		next = pud_addr_end(addr, end);
2671 		if (pud_none(*pud) && !create)
2672 			continue;
2673 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2674 			return -EINVAL;
2675 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2676 			if (!create)
2677 				continue;
2678 			pud_clear_bad(pud);
2679 		}
2680 		err = apply_to_pmd_range(mm, pud, addr, next,
2681 					 fn, data, create, mask);
2682 		if (err)
2683 			break;
2684 	} while (pud++, addr = next, addr != end);
2685 
2686 	return err;
2687 }
2688 
2689 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2690 				     unsigned long addr, unsigned long end,
2691 				     pte_fn_t fn, void *data, bool create,
2692 				     pgtbl_mod_mask *mask)
2693 {
2694 	p4d_t *p4d;
2695 	unsigned long next;
2696 	int err = 0;
2697 
2698 	if (create) {
2699 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2700 		if (!p4d)
2701 			return -ENOMEM;
2702 	} else {
2703 		p4d = p4d_offset(pgd, addr);
2704 	}
2705 	do {
2706 		next = p4d_addr_end(addr, end);
2707 		if (p4d_none(*p4d) && !create)
2708 			continue;
2709 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2710 			return -EINVAL;
2711 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2712 			if (!create)
2713 				continue;
2714 			p4d_clear_bad(p4d);
2715 		}
2716 		err = apply_to_pud_range(mm, p4d, addr, next,
2717 					 fn, data, create, mask);
2718 		if (err)
2719 			break;
2720 	} while (p4d++, addr = next, addr != end);
2721 
2722 	return err;
2723 }
2724 
2725 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2726 				 unsigned long size, pte_fn_t fn,
2727 				 void *data, bool create)
2728 {
2729 	pgd_t *pgd;
2730 	unsigned long start = addr, next;
2731 	unsigned long end = addr + size;
2732 	pgtbl_mod_mask mask = 0;
2733 	int err = 0;
2734 
2735 	if (WARN_ON(addr >= end))
2736 		return -EINVAL;
2737 
2738 	pgd = pgd_offset(mm, addr);
2739 	do {
2740 		next = pgd_addr_end(addr, end);
2741 		if (pgd_none(*pgd) && !create)
2742 			continue;
2743 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2744 			return -EINVAL;
2745 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2746 			if (!create)
2747 				continue;
2748 			pgd_clear_bad(pgd);
2749 		}
2750 		err = apply_to_p4d_range(mm, pgd, addr, next,
2751 					 fn, data, create, &mask);
2752 		if (err)
2753 			break;
2754 	} while (pgd++, addr = next, addr != end);
2755 
2756 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2757 		arch_sync_kernel_mappings(start, start + size);
2758 
2759 	return err;
2760 }
2761 
2762 /*
2763  * Scan a region of virtual memory, filling in page tables as necessary
2764  * and calling a provided function on each leaf page table.
2765  */
2766 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2767 			unsigned long size, pte_fn_t fn, void *data)
2768 {
2769 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2770 }
2771 EXPORT_SYMBOL_GPL(apply_to_page_range);
2772 
2773 /*
2774  * Scan a region of virtual memory, calling a provided function on
2775  * each leaf page table where it exists.
2776  *
2777  * Unlike apply_to_page_range, this does _not_ fill in page tables
2778  * where they are absent.
2779  */
2780 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2781 				 unsigned long size, pte_fn_t fn, void *data)
2782 {
2783 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2784 }
2785 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2786 
2787 /*
2788  * handle_pte_fault chooses page fault handler according to an entry which was
2789  * read non-atomically.  Before making any commitment, on those architectures
2790  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2791  * parts, do_swap_page must check under lock before unmapping the pte and
2792  * proceeding (but do_wp_page is only called after already making such a check;
2793  * and do_anonymous_page can safely check later on).
2794  */
2795 static inline int pte_unmap_same(struct vm_fault *vmf)
2796 {
2797 	int same = 1;
2798 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2799 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2800 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2801 		spin_lock(ptl);
2802 		same = pte_same(*vmf->pte, vmf->orig_pte);
2803 		spin_unlock(ptl);
2804 	}
2805 #endif
2806 	pte_unmap(vmf->pte);
2807 	vmf->pte = NULL;
2808 	return same;
2809 }
2810 
2811 /*
2812  * Return:
2813  *	0:		copied succeeded
2814  *	-EHWPOISON:	copy failed due to hwpoison in source page
2815  *	-EAGAIN:	copied failed (some other reason)
2816  */
2817 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2818 				      struct vm_fault *vmf)
2819 {
2820 	int ret;
2821 	void *kaddr;
2822 	void __user *uaddr;
2823 	bool locked = false;
2824 	struct vm_area_struct *vma = vmf->vma;
2825 	struct mm_struct *mm = vma->vm_mm;
2826 	unsigned long addr = vmf->address;
2827 
2828 	if (likely(src)) {
2829 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2830 			memory_failure_queue(page_to_pfn(src), 0);
2831 			return -EHWPOISON;
2832 		}
2833 		return 0;
2834 	}
2835 
2836 	/*
2837 	 * If the source page was a PFN mapping, we don't have
2838 	 * a "struct page" for it. We do a best-effort copy by
2839 	 * just copying from the original user address. If that
2840 	 * fails, we just zero-fill it. Live with it.
2841 	 */
2842 	kaddr = kmap_atomic(dst);
2843 	uaddr = (void __user *)(addr & PAGE_MASK);
2844 
2845 	/*
2846 	 * On architectures with software "accessed" bits, we would
2847 	 * take a double page fault, so mark it accessed here.
2848 	 */
2849 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2850 		pte_t entry;
2851 
2852 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2853 		locked = true;
2854 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2855 			/*
2856 			 * Other thread has already handled the fault
2857 			 * and update local tlb only
2858 			 */
2859 			update_mmu_tlb(vma, addr, vmf->pte);
2860 			ret = -EAGAIN;
2861 			goto pte_unlock;
2862 		}
2863 
2864 		entry = pte_mkyoung(vmf->orig_pte);
2865 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2866 			update_mmu_cache(vma, addr, vmf->pte);
2867 	}
2868 
2869 	/*
2870 	 * This really shouldn't fail, because the page is there
2871 	 * in the page tables. But it might just be unreadable,
2872 	 * in which case we just give up and fill the result with
2873 	 * zeroes.
2874 	 */
2875 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2876 		if (locked)
2877 			goto warn;
2878 
2879 		/* Re-validate under PTL if the page is still mapped */
2880 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2881 		locked = true;
2882 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2883 			/* The PTE changed under us, update local tlb */
2884 			update_mmu_tlb(vma, addr, vmf->pte);
2885 			ret = -EAGAIN;
2886 			goto pte_unlock;
2887 		}
2888 
2889 		/*
2890 		 * The same page can be mapped back since last copy attempt.
2891 		 * Try to copy again under PTL.
2892 		 */
2893 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2894 			/*
2895 			 * Give a warn in case there can be some obscure
2896 			 * use-case
2897 			 */
2898 warn:
2899 			WARN_ON_ONCE(1);
2900 			clear_page(kaddr);
2901 		}
2902 	}
2903 
2904 	ret = 0;
2905 
2906 pte_unlock:
2907 	if (locked)
2908 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2909 	kunmap_atomic(kaddr);
2910 	flush_dcache_page(dst);
2911 
2912 	return ret;
2913 }
2914 
2915 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2916 {
2917 	struct file *vm_file = vma->vm_file;
2918 
2919 	if (vm_file)
2920 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2921 
2922 	/*
2923 	 * Special mappings (e.g. VDSO) do not have any file so fake
2924 	 * a default GFP_KERNEL for them.
2925 	 */
2926 	return GFP_KERNEL;
2927 }
2928 
2929 /*
2930  * Notify the address space that the page is about to become writable so that
2931  * it can prohibit this or wait for the page to get into an appropriate state.
2932  *
2933  * We do this without the lock held, so that it can sleep if it needs to.
2934  */
2935 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2936 {
2937 	vm_fault_t ret;
2938 	struct page *page = vmf->page;
2939 	unsigned int old_flags = vmf->flags;
2940 
2941 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2942 
2943 	if (vmf->vma->vm_file &&
2944 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2945 		return VM_FAULT_SIGBUS;
2946 
2947 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2948 	/* Restore original flags so that caller is not surprised */
2949 	vmf->flags = old_flags;
2950 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2951 		return ret;
2952 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2953 		lock_page(page);
2954 		if (!page->mapping) {
2955 			unlock_page(page);
2956 			return 0; /* retry */
2957 		}
2958 		ret |= VM_FAULT_LOCKED;
2959 	} else
2960 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2961 	return ret;
2962 }
2963 
2964 /*
2965  * Handle dirtying of a page in shared file mapping on a write fault.
2966  *
2967  * The function expects the page to be locked and unlocks it.
2968  */
2969 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2970 {
2971 	struct vm_area_struct *vma = vmf->vma;
2972 	struct address_space *mapping;
2973 	struct page *page = vmf->page;
2974 	bool dirtied;
2975 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2976 
2977 	dirtied = set_page_dirty(page);
2978 	VM_BUG_ON_PAGE(PageAnon(page), page);
2979 	/*
2980 	 * Take a local copy of the address_space - page.mapping may be zeroed
2981 	 * by truncate after unlock_page().   The address_space itself remains
2982 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2983 	 * release semantics to prevent the compiler from undoing this copying.
2984 	 */
2985 	mapping = page_rmapping(page);
2986 	unlock_page(page);
2987 
2988 	if (!page_mkwrite)
2989 		file_update_time(vma->vm_file);
2990 
2991 	/*
2992 	 * Throttle page dirtying rate down to writeback speed.
2993 	 *
2994 	 * mapping may be NULL here because some device drivers do not
2995 	 * set page.mapping but still dirty their pages
2996 	 *
2997 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2998 	 * is pinning the mapping, as per above.
2999 	 */
3000 	if ((dirtied || page_mkwrite) && mapping) {
3001 		struct file *fpin;
3002 
3003 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3004 		balance_dirty_pages_ratelimited(mapping);
3005 		if (fpin) {
3006 			fput(fpin);
3007 			return VM_FAULT_COMPLETED;
3008 		}
3009 	}
3010 
3011 	return 0;
3012 }
3013 
3014 /*
3015  * Handle write page faults for pages that can be reused in the current vma
3016  *
3017  * This can happen either due to the mapping being with the VM_SHARED flag,
3018  * or due to us being the last reference standing to the page. In either
3019  * case, all we need to do here is to mark the page as writable and update
3020  * any related book-keeping.
3021  */
3022 static inline void wp_page_reuse(struct vm_fault *vmf)
3023 	__releases(vmf->ptl)
3024 {
3025 	struct vm_area_struct *vma = vmf->vma;
3026 	struct page *page = vmf->page;
3027 	pte_t entry;
3028 
3029 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3030 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3031 
3032 	/*
3033 	 * Clear the pages cpupid information as the existing
3034 	 * information potentially belongs to a now completely
3035 	 * unrelated process.
3036 	 */
3037 	if (page)
3038 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3039 
3040 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3041 	entry = pte_mkyoung(vmf->orig_pte);
3042 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3043 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3044 		update_mmu_cache(vma, vmf->address, vmf->pte);
3045 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3046 	count_vm_event(PGREUSE);
3047 }
3048 
3049 /*
3050  * Handle the case of a page which we actually need to copy to a new page,
3051  * either due to COW or unsharing.
3052  *
3053  * Called with mmap_lock locked and the old page referenced, but
3054  * without the ptl held.
3055  *
3056  * High level logic flow:
3057  *
3058  * - Allocate a page, copy the content of the old page to the new one.
3059  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3060  * - Take the PTL. If the pte changed, bail out and release the allocated page
3061  * - If the pte is still the way we remember it, update the page table and all
3062  *   relevant references. This includes dropping the reference the page-table
3063  *   held to the old page, as well as updating the rmap.
3064  * - In any case, unlock the PTL and drop the reference we took to the old page.
3065  */
3066 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3067 {
3068 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3069 	struct vm_area_struct *vma = vmf->vma;
3070 	struct mm_struct *mm = vma->vm_mm;
3071 	struct page *old_page = vmf->page;
3072 	struct page *new_page = NULL;
3073 	pte_t entry;
3074 	int page_copied = 0;
3075 	struct mmu_notifier_range range;
3076 	int ret;
3077 
3078 	delayacct_wpcopy_start();
3079 
3080 	if (unlikely(anon_vma_prepare(vma)))
3081 		goto oom;
3082 
3083 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3084 		new_page = alloc_zeroed_user_highpage_movable(vma,
3085 							      vmf->address);
3086 		if (!new_page)
3087 			goto oom;
3088 	} else {
3089 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3090 				vmf->address);
3091 		if (!new_page)
3092 			goto oom;
3093 
3094 		ret = __wp_page_copy_user(new_page, old_page, vmf);
3095 		if (ret) {
3096 			/*
3097 			 * COW failed, if the fault was solved by other,
3098 			 * it's fine. If not, userspace would re-fault on
3099 			 * the same address and we will handle the fault
3100 			 * from the second attempt.
3101 			 * The -EHWPOISON case will not be retried.
3102 			 */
3103 			put_page(new_page);
3104 			if (old_page)
3105 				put_page(old_page);
3106 
3107 			delayacct_wpcopy_end();
3108 			return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3109 		}
3110 		kmsan_copy_page_meta(new_page, old_page);
3111 	}
3112 
3113 	if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3114 		goto oom_free_new;
3115 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3116 
3117 	__SetPageUptodate(new_page);
3118 
3119 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3120 				vmf->address & PAGE_MASK,
3121 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3122 	mmu_notifier_invalidate_range_start(&range);
3123 
3124 	/*
3125 	 * Re-check the pte - we dropped the lock
3126 	 */
3127 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3128 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3129 		if (old_page) {
3130 			if (!PageAnon(old_page)) {
3131 				dec_mm_counter(mm, mm_counter_file(old_page));
3132 				inc_mm_counter(mm, MM_ANONPAGES);
3133 			}
3134 		} else {
3135 			inc_mm_counter(mm, MM_ANONPAGES);
3136 		}
3137 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3138 		entry = mk_pte(new_page, vma->vm_page_prot);
3139 		entry = pte_sw_mkyoung(entry);
3140 		if (unlikely(unshare)) {
3141 			if (pte_soft_dirty(vmf->orig_pte))
3142 				entry = pte_mksoft_dirty(entry);
3143 			if (pte_uffd_wp(vmf->orig_pte))
3144 				entry = pte_mkuffd_wp(entry);
3145 		} else {
3146 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3147 		}
3148 
3149 		/*
3150 		 * Clear the pte entry and flush it first, before updating the
3151 		 * pte with the new entry, to keep TLBs on different CPUs in
3152 		 * sync. This code used to set the new PTE then flush TLBs, but
3153 		 * that left a window where the new PTE could be loaded into
3154 		 * some TLBs while the old PTE remains in others.
3155 		 */
3156 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3157 		page_add_new_anon_rmap(new_page, vma, vmf->address);
3158 		lru_cache_add_inactive_or_unevictable(new_page, vma);
3159 		/*
3160 		 * We call the notify macro here because, when using secondary
3161 		 * mmu page tables (such as kvm shadow page tables), we want the
3162 		 * new page to be mapped directly into the secondary page table.
3163 		 */
3164 		BUG_ON(unshare && pte_write(entry));
3165 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3166 		update_mmu_cache(vma, vmf->address, vmf->pte);
3167 		if (old_page) {
3168 			/*
3169 			 * Only after switching the pte to the new page may
3170 			 * we remove the mapcount here. Otherwise another
3171 			 * process may come and find the rmap count decremented
3172 			 * before the pte is switched to the new page, and
3173 			 * "reuse" the old page writing into it while our pte
3174 			 * here still points into it and can be read by other
3175 			 * threads.
3176 			 *
3177 			 * The critical issue is to order this
3178 			 * page_remove_rmap with the ptp_clear_flush above.
3179 			 * Those stores are ordered by (if nothing else,)
3180 			 * the barrier present in the atomic_add_negative
3181 			 * in page_remove_rmap.
3182 			 *
3183 			 * Then the TLB flush in ptep_clear_flush ensures that
3184 			 * no process can access the old page before the
3185 			 * decremented mapcount is visible. And the old page
3186 			 * cannot be reused until after the decremented
3187 			 * mapcount is visible. So transitively, TLBs to
3188 			 * old page will be flushed before it can be reused.
3189 			 */
3190 			page_remove_rmap(old_page, vma, false);
3191 		}
3192 
3193 		/* Free the old page.. */
3194 		new_page = old_page;
3195 		page_copied = 1;
3196 	} else {
3197 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3198 	}
3199 
3200 	if (new_page)
3201 		put_page(new_page);
3202 
3203 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3204 	/*
3205 	 * No need to double call mmu_notifier->invalidate_range() callback as
3206 	 * the above ptep_clear_flush_notify() did already call it.
3207 	 */
3208 	mmu_notifier_invalidate_range_only_end(&range);
3209 	if (old_page) {
3210 		if (page_copied)
3211 			free_swap_cache(old_page);
3212 		put_page(old_page);
3213 	}
3214 
3215 	delayacct_wpcopy_end();
3216 	return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3217 oom_free_new:
3218 	put_page(new_page);
3219 oom:
3220 	if (old_page)
3221 		put_page(old_page);
3222 
3223 	delayacct_wpcopy_end();
3224 	return VM_FAULT_OOM;
3225 }
3226 
3227 /**
3228  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3229  *			  writeable once the page is prepared
3230  *
3231  * @vmf: structure describing the fault
3232  *
3233  * This function handles all that is needed to finish a write page fault in a
3234  * shared mapping due to PTE being read-only once the mapped page is prepared.
3235  * It handles locking of PTE and modifying it.
3236  *
3237  * The function expects the page to be locked or other protection against
3238  * concurrent faults / writeback (such as DAX radix tree locks).
3239  *
3240  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3241  * we acquired PTE lock.
3242  */
3243 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3244 {
3245 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3246 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3247 				       &vmf->ptl);
3248 	/*
3249 	 * We might have raced with another page fault while we released the
3250 	 * pte_offset_map_lock.
3251 	 */
3252 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3253 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3254 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3255 		return VM_FAULT_NOPAGE;
3256 	}
3257 	wp_page_reuse(vmf);
3258 	return 0;
3259 }
3260 
3261 /*
3262  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3263  * mapping
3264  */
3265 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3266 {
3267 	struct vm_area_struct *vma = vmf->vma;
3268 
3269 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3270 		vm_fault_t ret;
3271 
3272 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3273 		vmf->flags |= FAULT_FLAG_MKWRITE;
3274 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3275 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3276 			return ret;
3277 		return finish_mkwrite_fault(vmf);
3278 	}
3279 	wp_page_reuse(vmf);
3280 	return VM_FAULT_WRITE;
3281 }
3282 
3283 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3284 	__releases(vmf->ptl)
3285 {
3286 	struct vm_area_struct *vma = vmf->vma;
3287 	vm_fault_t ret = VM_FAULT_WRITE;
3288 
3289 	get_page(vmf->page);
3290 
3291 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3292 		vm_fault_t tmp;
3293 
3294 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3295 		tmp = do_page_mkwrite(vmf);
3296 		if (unlikely(!tmp || (tmp &
3297 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3298 			put_page(vmf->page);
3299 			return tmp;
3300 		}
3301 		tmp = finish_mkwrite_fault(vmf);
3302 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3303 			unlock_page(vmf->page);
3304 			put_page(vmf->page);
3305 			return tmp;
3306 		}
3307 	} else {
3308 		wp_page_reuse(vmf);
3309 		lock_page(vmf->page);
3310 	}
3311 	ret |= fault_dirty_shared_page(vmf);
3312 	put_page(vmf->page);
3313 
3314 	return ret;
3315 }
3316 
3317 /*
3318  * This routine handles present pages, when
3319  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3320  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3321  *   (FAULT_FLAG_UNSHARE)
3322  *
3323  * It is done by copying the page to a new address and decrementing the
3324  * shared-page counter for the old page.
3325  *
3326  * Note that this routine assumes that the protection checks have been
3327  * done by the caller (the low-level page fault routine in most cases).
3328  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3329  * done any necessary COW.
3330  *
3331  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3332  * though the page will change only once the write actually happens. This
3333  * avoids a few races, and potentially makes it more efficient.
3334  *
3335  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3336  * but allow concurrent faults), with pte both mapped and locked.
3337  * We return with mmap_lock still held, but pte unmapped and unlocked.
3338  */
3339 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3340 	__releases(vmf->ptl)
3341 {
3342 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3343 	struct vm_area_struct *vma = vmf->vma;
3344 	struct folio *folio;
3345 
3346 	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3347 	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3348 
3349 	if (likely(!unshare)) {
3350 		if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3351 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3352 			return handle_userfault(vmf, VM_UFFD_WP);
3353 		}
3354 
3355 		/*
3356 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3357 		 * is flushed in this case before copying.
3358 		 */
3359 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3360 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3361 			flush_tlb_page(vmf->vma, vmf->address);
3362 	}
3363 
3364 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3365 	if (!vmf->page) {
3366 		if (unlikely(unshare)) {
3367 			/* No anonymous page -> nothing to do. */
3368 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3369 			return 0;
3370 		}
3371 
3372 		/*
3373 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3374 		 * VM_PFNMAP VMA.
3375 		 *
3376 		 * We should not cow pages in a shared writeable mapping.
3377 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3378 		 */
3379 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3380 				     (VM_WRITE|VM_SHARED))
3381 			return wp_pfn_shared(vmf);
3382 
3383 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3384 		return wp_page_copy(vmf);
3385 	}
3386 
3387 	/*
3388 	 * Take out anonymous pages first, anonymous shared vmas are
3389 	 * not dirty accountable.
3390 	 */
3391 	folio = page_folio(vmf->page);
3392 	if (folio_test_anon(folio)) {
3393 		/*
3394 		 * If the page is exclusive to this process we must reuse the
3395 		 * page without further checks.
3396 		 */
3397 		if (PageAnonExclusive(vmf->page))
3398 			goto reuse;
3399 
3400 		/*
3401 		 * We have to verify under folio lock: these early checks are
3402 		 * just an optimization to avoid locking the folio and freeing
3403 		 * the swapcache if there is little hope that we can reuse.
3404 		 *
3405 		 * KSM doesn't necessarily raise the folio refcount.
3406 		 */
3407 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3408 			goto copy;
3409 		if (!folio_test_lru(folio))
3410 			/*
3411 			 * Note: We cannot easily detect+handle references from
3412 			 * remote LRU pagevecs or references to LRU folios.
3413 			 */
3414 			lru_add_drain();
3415 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3416 			goto copy;
3417 		if (!folio_trylock(folio))
3418 			goto copy;
3419 		if (folio_test_swapcache(folio))
3420 			folio_free_swap(folio);
3421 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3422 			folio_unlock(folio);
3423 			goto copy;
3424 		}
3425 		/*
3426 		 * Ok, we've got the only folio reference from our mapping
3427 		 * and the folio is locked, it's dark out, and we're wearing
3428 		 * sunglasses. Hit it.
3429 		 */
3430 		page_move_anon_rmap(vmf->page, vma);
3431 		folio_unlock(folio);
3432 reuse:
3433 		if (unlikely(unshare)) {
3434 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3435 			return 0;
3436 		}
3437 		wp_page_reuse(vmf);
3438 		return VM_FAULT_WRITE;
3439 	} else if (unshare) {
3440 		/* No anonymous page -> nothing to do. */
3441 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3442 		return 0;
3443 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3444 					(VM_WRITE|VM_SHARED))) {
3445 		return wp_page_shared(vmf);
3446 	}
3447 copy:
3448 	/*
3449 	 * Ok, we need to copy. Oh, well..
3450 	 */
3451 	get_page(vmf->page);
3452 
3453 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3454 #ifdef CONFIG_KSM
3455 	if (PageKsm(vmf->page))
3456 		count_vm_event(COW_KSM);
3457 #endif
3458 	return wp_page_copy(vmf);
3459 }
3460 
3461 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3462 		unsigned long start_addr, unsigned long end_addr,
3463 		struct zap_details *details)
3464 {
3465 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3466 }
3467 
3468 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3469 					    pgoff_t first_index,
3470 					    pgoff_t last_index,
3471 					    struct zap_details *details)
3472 {
3473 	struct vm_area_struct *vma;
3474 	pgoff_t vba, vea, zba, zea;
3475 
3476 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3477 		vba = vma->vm_pgoff;
3478 		vea = vba + vma_pages(vma) - 1;
3479 		zba = max(first_index, vba);
3480 		zea = min(last_index, vea);
3481 
3482 		unmap_mapping_range_vma(vma,
3483 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3484 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3485 				details);
3486 	}
3487 }
3488 
3489 /**
3490  * unmap_mapping_folio() - Unmap single folio from processes.
3491  * @folio: The locked folio to be unmapped.
3492  *
3493  * Unmap this folio from any userspace process which still has it mmaped.
3494  * Typically, for efficiency, the range of nearby pages has already been
3495  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3496  * truncation or invalidation holds the lock on a folio, it may find that
3497  * the page has been remapped again: and then uses unmap_mapping_folio()
3498  * to unmap it finally.
3499  */
3500 void unmap_mapping_folio(struct folio *folio)
3501 {
3502 	struct address_space *mapping = folio->mapping;
3503 	struct zap_details details = { };
3504 	pgoff_t	first_index;
3505 	pgoff_t	last_index;
3506 
3507 	VM_BUG_ON(!folio_test_locked(folio));
3508 
3509 	first_index = folio->index;
3510 	last_index = folio->index + folio_nr_pages(folio) - 1;
3511 
3512 	details.even_cows = false;
3513 	details.single_folio = folio;
3514 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3515 
3516 	i_mmap_lock_read(mapping);
3517 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3518 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3519 					 last_index, &details);
3520 	i_mmap_unlock_read(mapping);
3521 }
3522 
3523 /**
3524  * unmap_mapping_pages() - Unmap pages from processes.
3525  * @mapping: The address space containing pages to be unmapped.
3526  * @start: Index of first page to be unmapped.
3527  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3528  * @even_cows: Whether to unmap even private COWed pages.
3529  *
3530  * Unmap the pages in this address space from any userspace process which
3531  * has them mmaped.  Generally, you want to remove COWed pages as well when
3532  * a file is being truncated, but not when invalidating pages from the page
3533  * cache.
3534  */
3535 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3536 		pgoff_t nr, bool even_cows)
3537 {
3538 	struct zap_details details = { };
3539 	pgoff_t	first_index = start;
3540 	pgoff_t	last_index = start + nr - 1;
3541 
3542 	details.even_cows = even_cows;
3543 	if (last_index < first_index)
3544 		last_index = ULONG_MAX;
3545 
3546 	i_mmap_lock_read(mapping);
3547 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3548 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3549 					 last_index, &details);
3550 	i_mmap_unlock_read(mapping);
3551 }
3552 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3553 
3554 /**
3555  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3556  * address_space corresponding to the specified byte range in the underlying
3557  * file.
3558  *
3559  * @mapping: the address space containing mmaps to be unmapped.
3560  * @holebegin: byte in first page to unmap, relative to the start of
3561  * the underlying file.  This will be rounded down to a PAGE_SIZE
3562  * boundary.  Note that this is different from truncate_pagecache(), which
3563  * must keep the partial page.  In contrast, we must get rid of
3564  * partial pages.
3565  * @holelen: size of prospective hole in bytes.  This will be rounded
3566  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3567  * end of the file.
3568  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3569  * but 0 when invalidating pagecache, don't throw away private data.
3570  */
3571 void unmap_mapping_range(struct address_space *mapping,
3572 		loff_t const holebegin, loff_t const holelen, int even_cows)
3573 {
3574 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3575 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3576 
3577 	/* Check for overflow. */
3578 	if (sizeof(holelen) > sizeof(hlen)) {
3579 		long long holeend =
3580 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3581 		if (holeend & ~(long long)ULONG_MAX)
3582 			hlen = ULONG_MAX - hba + 1;
3583 	}
3584 
3585 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3586 }
3587 EXPORT_SYMBOL(unmap_mapping_range);
3588 
3589 /*
3590  * Restore a potential device exclusive pte to a working pte entry
3591  */
3592 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3593 {
3594 	struct folio *folio = page_folio(vmf->page);
3595 	struct vm_area_struct *vma = vmf->vma;
3596 	struct mmu_notifier_range range;
3597 
3598 	if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3599 		return VM_FAULT_RETRY;
3600 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3601 				vma->vm_mm, vmf->address & PAGE_MASK,
3602 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3603 	mmu_notifier_invalidate_range_start(&range);
3604 
3605 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3606 				&vmf->ptl);
3607 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3608 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3609 
3610 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3611 	folio_unlock(folio);
3612 
3613 	mmu_notifier_invalidate_range_end(&range);
3614 	return 0;
3615 }
3616 
3617 static inline bool should_try_to_free_swap(struct folio *folio,
3618 					   struct vm_area_struct *vma,
3619 					   unsigned int fault_flags)
3620 {
3621 	if (!folio_test_swapcache(folio))
3622 		return false;
3623 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3624 	    folio_test_mlocked(folio))
3625 		return true;
3626 	/*
3627 	 * If we want to map a page that's in the swapcache writable, we
3628 	 * have to detect via the refcount if we're really the exclusive
3629 	 * user. Try freeing the swapcache to get rid of the swapcache
3630 	 * reference only in case it's likely that we'll be the exlusive user.
3631 	 */
3632 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3633 		folio_ref_count(folio) == 2;
3634 }
3635 
3636 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3637 {
3638 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3639 				       vmf->address, &vmf->ptl);
3640 	/*
3641 	 * Be careful so that we will only recover a special uffd-wp pte into a
3642 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3643 	 */
3644 	if (is_pte_marker(*vmf->pte))
3645 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3646 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3647 	return 0;
3648 }
3649 
3650 /*
3651  * This is actually a page-missing access, but with uffd-wp special pte
3652  * installed.  It means this pte was wr-protected before being unmapped.
3653  */
3654 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3655 {
3656 	/*
3657 	 * Just in case there're leftover special ptes even after the region
3658 	 * got unregistered - we can simply clear them.  We can also do that
3659 	 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3660 	 * ranges, but it should be more efficient to be done lazily here.
3661 	 */
3662 	if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3663 		return pte_marker_clear(vmf);
3664 
3665 	/* do_fault() can handle pte markers too like none pte */
3666 	return do_fault(vmf);
3667 }
3668 
3669 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3670 {
3671 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3672 	unsigned long marker = pte_marker_get(entry);
3673 
3674 	/*
3675 	 * PTE markers should never be empty.  If anything weird happened,
3676 	 * the best thing to do is to kill the process along with its mm.
3677 	 */
3678 	if (WARN_ON_ONCE(!marker))
3679 		return VM_FAULT_SIGBUS;
3680 
3681 	/* Higher priority than uffd-wp when data corrupted */
3682 	if (marker & PTE_MARKER_SWAPIN_ERROR)
3683 		return VM_FAULT_SIGBUS;
3684 
3685 	if (pte_marker_entry_uffd_wp(entry))
3686 		return pte_marker_handle_uffd_wp(vmf);
3687 
3688 	/* This is an unknown pte marker */
3689 	return VM_FAULT_SIGBUS;
3690 }
3691 
3692 /*
3693  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3694  * but allow concurrent faults), and pte mapped but not yet locked.
3695  * We return with pte unmapped and unlocked.
3696  *
3697  * We return with the mmap_lock locked or unlocked in the same cases
3698  * as does filemap_fault().
3699  */
3700 vm_fault_t do_swap_page(struct vm_fault *vmf)
3701 {
3702 	struct vm_area_struct *vma = vmf->vma;
3703 	struct folio *swapcache, *folio = NULL;
3704 	struct page *page;
3705 	struct swap_info_struct *si = NULL;
3706 	rmap_t rmap_flags = RMAP_NONE;
3707 	bool exclusive = false;
3708 	swp_entry_t entry;
3709 	pte_t pte;
3710 	int locked;
3711 	vm_fault_t ret = 0;
3712 	void *shadow = NULL;
3713 
3714 	if (!pte_unmap_same(vmf))
3715 		goto out;
3716 
3717 	entry = pte_to_swp_entry(vmf->orig_pte);
3718 	if (unlikely(non_swap_entry(entry))) {
3719 		if (is_migration_entry(entry)) {
3720 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3721 					     vmf->address);
3722 		} else if (is_device_exclusive_entry(entry)) {
3723 			vmf->page = pfn_swap_entry_to_page(entry);
3724 			ret = remove_device_exclusive_entry(vmf);
3725 		} else if (is_device_private_entry(entry)) {
3726 			vmf->page = pfn_swap_entry_to_page(entry);
3727 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3728 					vmf->address, &vmf->ptl);
3729 			if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3730 				spin_unlock(vmf->ptl);
3731 				goto out;
3732 			}
3733 
3734 			/*
3735 			 * Get a page reference while we know the page can't be
3736 			 * freed.
3737 			 */
3738 			get_page(vmf->page);
3739 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3740 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3741 			put_page(vmf->page);
3742 		} else if (is_hwpoison_entry(entry)) {
3743 			ret = VM_FAULT_HWPOISON;
3744 		} else if (is_pte_marker_entry(entry)) {
3745 			ret = handle_pte_marker(vmf);
3746 		} else {
3747 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3748 			ret = VM_FAULT_SIGBUS;
3749 		}
3750 		goto out;
3751 	}
3752 
3753 	/* Prevent swapoff from happening to us. */
3754 	si = get_swap_device(entry);
3755 	if (unlikely(!si))
3756 		goto out;
3757 
3758 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3759 	if (folio)
3760 		page = folio_file_page(folio, swp_offset(entry));
3761 	swapcache = folio;
3762 
3763 	if (!folio) {
3764 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3765 		    __swap_count(entry) == 1) {
3766 			/* skip swapcache */
3767 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3768 						vma, vmf->address, false);
3769 			page = &folio->page;
3770 			if (folio) {
3771 				__folio_set_locked(folio);
3772 				__folio_set_swapbacked(folio);
3773 
3774 				if (mem_cgroup_swapin_charge_folio(folio,
3775 							vma->vm_mm, GFP_KERNEL,
3776 							entry)) {
3777 					ret = VM_FAULT_OOM;
3778 					goto out_page;
3779 				}
3780 				mem_cgroup_swapin_uncharge_swap(entry);
3781 
3782 				shadow = get_shadow_from_swap_cache(entry);
3783 				if (shadow)
3784 					workingset_refault(folio, shadow);
3785 
3786 				folio_add_lru(folio);
3787 
3788 				/* To provide entry to swap_readpage() */
3789 				folio_set_swap_entry(folio, entry);
3790 				swap_readpage(page, true, NULL);
3791 				folio->private = NULL;
3792 			}
3793 		} else {
3794 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3795 						vmf);
3796 			if (page)
3797 				folio = page_folio(page);
3798 			swapcache = folio;
3799 		}
3800 
3801 		if (!folio) {
3802 			/*
3803 			 * Back out if somebody else faulted in this pte
3804 			 * while we released the pte lock.
3805 			 */
3806 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3807 					vmf->address, &vmf->ptl);
3808 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3809 				ret = VM_FAULT_OOM;
3810 			goto unlock;
3811 		}
3812 
3813 		/* Had to read the page from swap area: Major fault */
3814 		ret = VM_FAULT_MAJOR;
3815 		count_vm_event(PGMAJFAULT);
3816 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3817 	} else if (PageHWPoison(page)) {
3818 		/*
3819 		 * hwpoisoned dirty swapcache pages are kept for killing
3820 		 * owner processes (which may be unknown at hwpoison time)
3821 		 */
3822 		ret = VM_FAULT_HWPOISON;
3823 		goto out_release;
3824 	}
3825 
3826 	locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3827 
3828 	if (!locked) {
3829 		ret |= VM_FAULT_RETRY;
3830 		goto out_release;
3831 	}
3832 
3833 	if (swapcache) {
3834 		/*
3835 		 * Make sure folio_free_swap() or swapoff did not release the
3836 		 * swapcache from under us.  The page pin, and pte_same test
3837 		 * below, are not enough to exclude that.  Even if it is still
3838 		 * swapcache, we need to check that the page's swap has not
3839 		 * changed.
3840 		 */
3841 		if (unlikely(!folio_test_swapcache(folio) ||
3842 			     page_private(page) != entry.val))
3843 			goto out_page;
3844 
3845 		/*
3846 		 * KSM sometimes has to copy on read faults, for example, if
3847 		 * page->index of !PageKSM() pages would be nonlinear inside the
3848 		 * anon VMA -- PageKSM() is lost on actual swapout.
3849 		 */
3850 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3851 		if (unlikely(!page)) {
3852 			ret = VM_FAULT_OOM;
3853 			goto out_page;
3854 		}
3855 		folio = page_folio(page);
3856 
3857 		/*
3858 		 * If we want to map a page that's in the swapcache writable, we
3859 		 * have to detect via the refcount if we're really the exclusive
3860 		 * owner. Try removing the extra reference from the local LRU
3861 		 * pagevecs if required.
3862 		 */
3863 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3864 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3865 			lru_add_drain();
3866 	}
3867 
3868 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3869 
3870 	/*
3871 	 * Back out if somebody else already faulted in this pte.
3872 	 */
3873 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3874 			&vmf->ptl);
3875 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3876 		goto out_nomap;
3877 
3878 	if (unlikely(!folio_test_uptodate(folio))) {
3879 		ret = VM_FAULT_SIGBUS;
3880 		goto out_nomap;
3881 	}
3882 
3883 	/*
3884 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3885 	 * must never point at an anonymous page in the swapcache that is
3886 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3887 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3888 	 * check after taking the PT lock and making sure that nobody
3889 	 * concurrently faulted in this page and set PG_anon_exclusive.
3890 	 */
3891 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3892 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3893 
3894 	/*
3895 	 * Check under PT lock (to protect against concurrent fork() sharing
3896 	 * the swap entry concurrently) for certainly exclusive pages.
3897 	 */
3898 	if (!folio_test_ksm(folio)) {
3899 		/*
3900 		 * Note that pte_swp_exclusive() == false for architectures
3901 		 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3902 		 */
3903 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3904 		if (folio != swapcache) {
3905 			/*
3906 			 * We have a fresh page that is not exposed to the
3907 			 * swapcache -> certainly exclusive.
3908 			 */
3909 			exclusive = true;
3910 		} else if (exclusive && folio_test_writeback(folio) &&
3911 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3912 			/*
3913 			 * This is tricky: not all swap backends support
3914 			 * concurrent page modifications while under writeback.
3915 			 *
3916 			 * So if we stumble over such a page in the swapcache
3917 			 * we must not set the page exclusive, otherwise we can
3918 			 * map it writable without further checks and modify it
3919 			 * while still under writeback.
3920 			 *
3921 			 * For these problematic swap backends, simply drop the
3922 			 * exclusive marker: this is perfectly fine as we start
3923 			 * writeback only if we fully unmapped the page and
3924 			 * there are no unexpected references on the page after
3925 			 * unmapping succeeded. After fully unmapped, no
3926 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3927 			 * appear, so dropping the exclusive marker and mapping
3928 			 * it only R/O is fine.
3929 			 */
3930 			exclusive = false;
3931 		}
3932 	}
3933 
3934 	/*
3935 	 * Remove the swap entry and conditionally try to free up the swapcache.
3936 	 * We're already holding a reference on the page but haven't mapped it
3937 	 * yet.
3938 	 */
3939 	swap_free(entry);
3940 	if (should_try_to_free_swap(folio, vma, vmf->flags))
3941 		folio_free_swap(folio);
3942 
3943 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3944 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3945 	pte = mk_pte(page, vma->vm_page_prot);
3946 
3947 	/*
3948 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3949 	 * certainly not shared either because we just allocated them without
3950 	 * exposing them to the swapcache or because the swap entry indicates
3951 	 * exclusivity.
3952 	 */
3953 	if (!folio_test_ksm(folio) &&
3954 	    (exclusive || folio_ref_count(folio) == 1)) {
3955 		if (vmf->flags & FAULT_FLAG_WRITE) {
3956 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3957 			vmf->flags &= ~FAULT_FLAG_WRITE;
3958 			ret |= VM_FAULT_WRITE;
3959 		}
3960 		rmap_flags |= RMAP_EXCLUSIVE;
3961 	}
3962 	flush_icache_page(vma, page);
3963 	if (pte_swp_soft_dirty(vmf->orig_pte))
3964 		pte = pte_mksoft_dirty(pte);
3965 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3966 		pte = pte_mkuffd_wp(pte);
3967 		pte = pte_wrprotect(pte);
3968 	}
3969 	vmf->orig_pte = pte;
3970 
3971 	/* ksm created a completely new copy */
3972 	if (unlikely(folio != swapcache && swapcache)) {
3973 		page_add_new_anon_rmap(page, vma, vmf->address);
3974 		folio_add_lru_vma(folio, vma);
3975 	} else {
3976 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3977 	}
3978 
3979 	VM_BUG_ON(!folio_test_anon(folio) ||
3980 			(pte_write(pte) && !PageAnonExclusive(page)));
3981 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3982 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3983 
3984 	folio_unlock(folio);
3985 	if (folio != swapcache && swapcache) {
3986 		/*
3987 		 * Hold the lock to avoid the swap entry to be reused
3988 		 * until we take the PT lock for the pte_same() check
3989 		 * (to avoid false positives from pte_same). For
3990 		 * further safety release the lock after the swap_free
3991 		 * so that the swap count won't change under a
3992 		 * parallel locked swapcache.
3993 		 */
3994 		folio_unlock(swapcache);
3995 		folio_put(swapcache);
3996 	}
3997 
3998 	if (vmf->flags & FAULT_FLAG_WRITE) {
3999 		ret |= do_wp_page(vmf);
4000 		if (ret & VM_FAULT_ERROR)
4001 			ret &= VM_FAULT_ERROR;
4002 		goto out;
4003 	}
4004 
4005 	/* No need to invalidate - it was non-present before */
4006 	update_mmu_cache(vma, vmf->address, vmf->pte);
4007 unlock:
4008 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4009 out:
4010 	if (si)
4011 		put_swap_device(si);
4012 	return ret;
4013 out_nomap:
4014 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4015 out_page:
4016 	folio_unlock(folio);
4017 out_release:
4018 	folio_put(folio);
4019 	if (folio != swapcache && swapcache) {
4020 		folio_unlock(swapcache);
4021 		folio_put(swapcache);
4022 	}
4023 	if (si)
4024 		put_swap_device(si);
4025 	return ret;
4026 }
4027 
4028 /*
4029  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4030  * but allow concurrent faults), and pte mapped but not yet locked.
4031  * We return with mmap_lock still held, but pte unmapped and unlocked.
4032  */
4033 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4034 {
4035 	struct vm_area_struct *vma = vmf->vma;
4036 	struct page *page;
4037 	vm_fault_t ret = 0;
4038 	pte_t entry;
4039 
4040 	/* File mapping without ->vm_ops ? */
4041 	if (vma->vm_flags & VM_SHARED)
4042 		return VM_FAULT_SIGBUS;
4043 
4044 	/*
4045 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
4046 	 * pte_offset_map() on pmds where a huge pmd might be created
4047 	 * from a different thread.
4048 	 *
4049 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4050 	 * parallel threads are excluded by other means.
4051 	 *
4052 	 * Here we only have mmap_read_lock(mm).
4053 	 */
4054 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4055 		return VM_FAULT_OOM;
4056 
4057 	/* See comment in handle_pte_fault() */
4058 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
4059 		return 0;
4060 
4061 	/* Use the zero-page for reads */
4062 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4063 			!mm_forbids_zeropage(vma->vm_mm)) {
4064 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4065 						vma->vm_page_prot));
4066 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4067 				vmf->address, &vmf->ptl);
4068 		if (!pte_none(*vmf->pte)) {
4069 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4070 			goto unlock;
4071 		}
4072 		ret = check_stable_address_space(vma->vm_mm);
4073 		if (ret)
4074 			goto unlock;
4075 		/* Deliver the page fault to userland, check inside PT lock */
4076 		if (userfaultfd_missing(vma)) {
4077 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4078 			return handle_userfault(vmf, VM_UFFD_MISSING);
4079 		}
4080 		goto setpte;
4081 	}
4082 
4083 	/* Allocate our own private page. */
4084 	if (unlikely(anon_vma_prepare(vma)))
4085 		goto oom;
4086 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4087 	if (!page)
4088 		goto oom;
4089 
4090 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4091 		goto oom_free_page;
4092 	cgroup_throttle_swaprate(page, GFP_KERNEL);
4093 
4094 	/*
4095 	 * The memory barrier inside __SetPageUptodate makes sure that
4096 	 * preceding stores to the page contents become visible before
4097 	 * the set_pte_at() write.
4098 	 */
4099 	__SetPageUptodate(page);
4100 
4101 	entry = mk_pte(page, vma->vm_page_prot);
4102 	entry = pte_sw_mkyoung(entry);
4103 	if (vma->vm_flags & VM_WRITE)
4104 		entry = pte_mkwrite(pte_mkdirty(entry));
4105 
4106 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4107 			&vmf->ptl);
4108 	if (!pte_none(*vmf->pte)) {
4109 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4110 		goto release;
4111 	}
4112 
4113 	ret = check_stable_address_space(vma->vm_mm);
4114 	if (ret)
4115 		goto release;
4116 
4117 	/* Deliver the page fault to userland, check inside PT lock */
4118 	if (userfaultfd_missing(vma)) {
4119 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4120 		put_page(page);
4121 		return handle_userfault(vmf, VM_UFFD_MISSING);
4122 	}
4123 
4124 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4125 	page_add_new_anon_rmap(page, vma, vmf->address);
4126 	lru_cache_add_inactive_or_unevictable(page, vma);
4127 setpte:
4128 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4129 
4130 	/* No need to invalidate - it was non-present before */
4131 	update_mmu_cache(vma, vmf->address, vmf->pte);
4132 unlock:
4133 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4134 	return ret;
4135 release:
4136 	put_page(page);
4137 	goto unlock;
4138 oom_free_page:
4139 	put_page(page);
4140 oom:
4141 	return VM_FAULT_OOM;
4142 }
4143 
4144 /*
4145  * The mmap_lock must have been held on entry, and may have been
4146  * released depending on flags and vma->vm_ops->fault() return value.
4147  * See filemap_fault() and __lock_page_retry().
4148  */
4149 static vm_fault_t __do_fault(struct vm_fault *vmf)
4150 {
4151 	struct vm_area_struct *vma = vmf->vma;
4152 	vm_fault_t ret;
4153 
4154 	/*
4155 	 * Preallocate pte before we take page_lock because this might lead to
4156 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4157 	 *				lock_page(A)
4158 	 *				SetPageWriteback(A)
4159 	 *				unlock_page(A)
4160 	 * lock_page(B)
4161 	 *				lock_page(B)
4162 	 * pte_alloc_one
4163 	 *   shrink_page_list
4164 	 *     wait_on_page_writeback(A)
4165 	 *				SetPageWriteback(B)
4166 	 *				unlock_page(B)
4167 	 *				# flush A, B to clear the writeback
4168 	 */
4169 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4170 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4171 		if (!vmf->prealloc_pte)
4172 			return VM_FAULT_OOM;
4173 	}
4174 
4175 	ret = vma->vm_ops->fault(vmf);
4176 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4177 			    VM_FAULT_DONE_COW)))
4178 		return ret;
4179 
4180 	if (unlikely(PageHWPoison(vmf->page))) {
4181 		struct page *page = vmf->page;
4182 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4183 		if (ret & VM_FAULT_LOCKED) {
4184 			if (page_mapped(page))
4185 				unmap_mapping_pages(page_mapping(page),
4186 						    page->index, 1, false);
4187 			/* Retry if a clean page was removed from the cache. */
4188 			if (invalidate_inode_page(page))
4189 				poisonret = VM_FAULT_NOPAGE;
4190 			unlock_page(page);
4191 		}
4192 		put_page(page);
4193 		vmf->page = NULL;
4194 		return poisonret;
4195 	}
4196 
4197 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4198 		lock_page(vmf->page);
4199 	else
4200 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4201 
4202 	return ret;
4203 }
4204 
4205 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4206 static void deposit_prealloc_pte(struct vm_fault *vmf)
4207 {
4208 	struct vm_area_struct *vma = vmf->vma;
4209 
4210 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4211 	/*
4212 	 * We are going to consume the prealloc table,
4213 	 * count that as nr_ptes.
4214 	 */
4215 	mm_inc_nr_ptes(vma->vm_mm);
4216 	vmf->prealloc_pte = NULL;
4217 }
4218 
4219 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4220 {
4221 	struct vm_area_struct *vma = vmf->vma;
4222 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4223 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4224 	pmd_t entry;
4225 	int i;
4226 	vm_fault_t ret = VM_FAULT_FALLBACK;
4227 
4228 	if (!transhuge_vma_suitable(vma, haddr))
4229 		return ret;
4230 
4231 	page = compound_head(page);
4232 	if (compound_order(page) != HPAGE_PMD_ORDER)
4233 		return ret;
4234 
4235 	/*
4236 	 * Just backoff if any subpage of a THP is corrupted otherwise
4237 	 * the corrupted page may mapped by PMD silently to escape the
4238 	 * check.  This kind of THP just can be PTE mapped.  Access to
4239 	 * the corrupted subpage should trigger SIGBUS as expected.
4240 	 */
4241 	if (unlikely(PageHasHWPoisoned(page)))
4242 		return ret;
4243 
4244 	/*
4245 	 * Archs like ppc64 need additional space to store information
4246 	 * related to pte entry. Use the preallocated table for that.
4247 	 */
4248 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4249 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4250 		if (!vmf->prealloc_pte)
4251 			return VM_FAULT_OOM;
4252 	}
4253 
4254 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4255 	if (unlikely(!pmd_none(*vmf->pmd)))
4256 		goto out;
4257 
4258 	for (i = 0; i < HPAGE_PMD_NR; i++)
4259 		flush_icache_page(vma, page + i);
4260 
4261 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4262 	if (write)
4263 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4264 
4265 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4266 	page_add_file_rmap(page, vma, true);
4267 
4268 	/*
4269 	 * deposit and withdraw with pmd lock held
4270 	 */
4271 	if (arch_needs_pgtable_deposit())
4272 		deposit_prealloc_pte(vmf);
4273 
4274 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4275 
4276 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4277 
4278 	/* fault is handled */
4279 	ret = 0;
4280 	count_vm_event(THP_FILE_MAPPED);
4281 out:
4282 	spin_unlock(vmf->ptl);
4283 	return ret;
4284 }
4285 #else
4286 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4287 {
4288 	return VM_FAULT_FALLBACK;
4289 }
4290 #endif
4291 
4292 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4293 {
4294 	struct vm_area_struct *vma = vmf->vma;
4295 	bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4296 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4297 	bool prefault = vmf->address != addr;
4298 	pte_t entry;
4299 
4300 	flush_icache_page(vma, page);
4301 	entry = mk_pte(page, vma->vm_page_prot);
4302 
4303 	if (prefault && arch_wants_old_prefaulted_pte())
4304 		entry = pte_mkold(entry);
4305 	else
4306 		entry = pte_sw_mkyoung(entry);
4307 
4308 	if (write)
4309 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4310 	if (unlikely(uffd_wp))
4311 		entry = pte_mkuffd_wp(pte_wrprotect(entry));
4312 	/* copy-on-write page */
4313 	if (write && !(vma->vm_flags & VM_SHARED)) {
4314 		inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4315 		page_add_new_anon_rmap(page, vma, addr);
4316 		lru_cache_add_inactive_or_unevictable(page, vma);
4317 	} else {
4318 		inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4319 		page_add_file_rmap(page, vma, false);
4320 	}
4321 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4322 }
4323 
4324 static bool vmf_pte_changed(struct vm_fault *vmf)
4325 {
4326 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4327 		return !pte_same(*vmf->pte, vmf->orig_pte);
4328 
4329 	return !pte_none(*vmf->pte);
4330 }
4331 
4332 /**
4333  * finish_fault - finish page fault once we have prepared the page to fault
4334  *
4335  * @vmf: structure describing the fault
4336  *
4337  * This function handles all that is needed to finish a page fault once the
4338  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4339  * given page, adds reverse page mapping, handles memcg charges and LRU
4340  * addition.
4341  *
4342  * The function expects the page to be locked and on success it consumes a
4343  * reference of a page being mapped (for the PTE which maps it).
4344  *
4345  * Return: %0 on success, %VM_FAULT_ code in case of error.
4346  */
4347 vm_fault_t finish_fault(struct vm_fault *vmf)
4348 {
4349 	struct vm_area_struct *vma = vmf->vma;
4350 	struct page *page;
4351 	vm_fault_t ret;
4352 
4353 	/* Did we COW the page? */
4354 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4355 		page = vmf->cow_page;
4356 	else
4357 		page = vmf->page;
4358 
4359 	/*
4360 	 * check even for read faults because we might have lost our CoWed
4361 	 * page
4362 	 */
4363 	if (!(vma->vm_flags & VM_SHARED)) {
4364 		ret = check_stable_address_space(vma->vm_mm);
4365 		if (ret)
4366 			return ret;
4367 	}
4368 
4369 	if (pmd_none(*vmf->pmd)) {
4370 		if (PageTransCompound(page)) {
4371 			ret = do_set_pmd(vmf, page);
4372 			if (ret != VM_FAULT_FALLBACK)
4373 				return ret;
4374 		}
4375 
4376 		if (vmf->prealloc_pte)
4377 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4378 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4379 			return VM_FAULT_OOM;
4380 	}
4381 
4382 	/*
4383 	 * See comment in handle_pte_fault() for how this scenario happens, we
4384 	 * need to return NOPAGE so that we drop this page.
4385 	 */
4386 	if (pmd_devmap_trans_unstable(vmf->pmd))
4387 		return VM_FAULT_NOPAGE;
4388 
4389 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4390 				      vmf->address, &vmf->ptl);
4391 
4392 	/* Re-check under ptl */
4393 	if (likely(!vmf_pte_changed(vmf))) {
4394 		do_set_pte(vmf, page, vmf->address);
4395 
4396 		/* no need to invalidate: a not-present page won't be cached */
4397 		update_mmu_cache(vma, vmf->address, vmf->pte);
4398 
4399 		ret = 0;
4400 	} else {
4401 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4402 		ret = VM_FAULT_NOPAGE;
4403 	}
4404 
4405 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4406 	return ret;
4407 }
4408 
4409 static unsigned long fault_around_bytes __read_mostly =
4410 	rounddown_pow_of_two(65536);
4411 
4412 #ifdef CONFIG_DEBUG_FS
4413 static int fault_around_bytes_get(void *data, u64 *val)
4414 {
4415 	*val = fault_around_bytes;
4416 	return 0;
4417 }
4418 
4419 /*
4420  * fault_around_bytes must be rounded down to the nearest page order as it's
4421  * what do_fault_around() expects to see.
4422  */
4423 static int fault_around_bytes_set(void *data, u64 val)
4424 {
4425 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4426 		return -EINVAL;
4427 	if (val > PAGE_SIZE)
4428 		fault_around_bytes = rounddown_pow_of_two(val);
4429 	else
4430 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4431 	return 0;
4432 }
4433 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4434 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4435 
4436 static int __init fault_around_debugfs(void)
4437 {
4438 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4439 				   &fault_around_bytes_fops);
4440 	return 0;
4441 }
4442 late_initcall(fault_around_debugfs);
4443 #endif
4444 
4445 /*
4446  * do_fault_around() tries to map few pages around the fault address. The hope
4447  * is that the pages will be needed soon and this will lower the number of
4448  * faults to handle.
4449  *
4450  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4451  * not ready to be mapped: not up-to-date, locked, etc.
4452  *
4453  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4454  * only once.
4455  *
4456  * fault_around_bytes defines how many bytes we'll try to map.
4457  * do_fault_around() expects it to be set to a power of two less than or equal
4458  * to PTRS_PER_PTE.
4459  *
4460  * The virtual address of the area that we map is naturally aligned to
4461  * fault_around_bytes rounded down to the machine page size
4462  * (and therefore to page order).  This way it's easier to guarantee
4463  * that we don't cross page table boundaries.
4464  */
4465 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4466 {
4467 	unsigned long address = vmf->address, nr_pages, mask;
4468 	pgoff_t start_pgoff = vmf->pgoff;
4469 	pgoff_t end_pgoff;
4470 	int off;
4471 
4472 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4473 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4474 
4475 	address = max(address & mask, vmf->vma->vm_start);
4476 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4477 	start_pgoff -= off;
4478 
4479 	/*
4480 	 *  end_pgoff is either the end of the page table, the end of
4481 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4482 	 */
4483 	end_pgoff = start_pgoff -
4484 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4485 		PTRS_PER_PTE - 1;
4486 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4487 			start_pgoff + nr_pages - 1);
4488 
4489 	if (pmd_none(*vmf->pmd)) {
4490 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4491 		if (!vmf->prealloc_pte)
4492 			return VM_FAULT_OOM;
4493 	}
4494 
4495 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4496 }
4497 
4498 /* Return true if we should do read fault-around, false otherwise */
4499 static inline bool should_fault_around(struct vm_fault *vmf)
4500 {
4501 	/* No ->map_pages?  No way to fault around... */
4502 	if (!vmf->vma->vm_ops->map_pages)
4503 		return false;
4504 
4505 	if (uffd_disable_fault_around(vmf->vma))
4506 		return false;
4507 
4508 	return fault_around_bytes >> PAGE_SHIFT > 1;
4509 }
4510 
4511 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4512 {
4513 	vm_fault_t ret = 0;
4514 
4515 	/*
4516 	 * Let's call ->map_pages() first and use ->fault() as fallback
4517 	 * if page by the offset is not ready to be mapped (cold cache or
4518 	 * something).
4519 	 */
4520 	if (should_fault_around(vmf)) {
4521 		ret = do_fault_around(vmf);
4522 		if (ret)
4523 			return ret;
4524 	}
4525 
4526 	ret = __do_fault(vmf);
4527 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4528 		return ret;
4529 
4530 	ret |= finish_fault(vmf);
4531 	unlock_page(vmf->page);
4532 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4533 		put_page(vmf->page);
4534 	return ret;
4535 }
4536 
4537 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4538 {
4539 	struct vm_area_struct *vma = vmf->vma;
4540 	vm_fault_t ret;
4541 
4542 	if (unlikely(anon_vma_prepare(vma)))
4543 		return VM_FAULT_OOM;
4544 
4545 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4546 	if (!vmf->cow_page)
4547 		return VM_FAULT_OOM;
4548 
4549 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4550 				GFP_KERNEL)) {
4551 		put_page(vmf->cow_page);
4552 		return VM_FAULT_OOM;
4553 	}
4554 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4555 
4556 	ret = __do_fault(vmf);
4557 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4558 		goto uncharge_out;
4559 	if (ret & VM_FAULT_DONE_COW)
4560 		return ret;
4561 
4562 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4563 	__SetPageUptodate(vmf->cow_page);
4564 
4565 	ret |= finish_fault(vmf);
4566 	unlock_page(vmf->page);
4567 	put_page(vmf->page);
4568 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4569 		goto uncharge_out;
4570 	return ret;
4571 uncharge_out:
4572 	put_page(vmf->cow_page);
4573 	return ret;
4574 }
4575 
4576 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4577 {
4578 	struct vm_area_struct *vma = vmf->vma;
4579 	vm_fault_t ret, tmp;
4580 
4581 	ret = __do_fault(vmf);
4582 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4583 		return ret;
4584 
4585 	/*
4586 	 * Check if the backing address space wants to know that the page is
4587 	 * about to become writable
4588 	 */
4589 	if (vma->vm_ops->page_mkwrite) {
4590 		unlock_page(vmf->page);
4591 		tmp = do_page_mkwrite(vmf);
4592 		if (unlikely(!tmp ||
4593 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4594 			put_page(vmf->page);
4595 			return tmp;
4596 		}
4597 	}
4598 
4599 	ret |= finish_fault(vmf);
4600 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4601 					VM_FAULT_RETRY))) {
4602 		unlock_page(vmf->page);
4603 		put_page(vmf->page);
4604 		return ret;
4605 	}
4606 
4607 	ret |= fault_dirty_shared_page(vmf);
4608 	return ret;
4609 }
4610 
4611 /*
4612  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4613  * but allow concurrent faults).
4614  * The mmap_lock may have been released depending on flags and our
4615  * return value.  See filemap_fault() and __folio_lock_or_retry().
4616  * If mmap_lock is released, vma may become invalid (for example
4617  * by other thread calling munmap()).
4618  */
4619 static vm_fault_t do_fault(struct vm_fault *vmf)
4620 {
4621 	struct vm_area_struct *vma = vmf->vma;
4622 	struct mm_struct *vm_mm = vma->vm_mm;
4623 	vm_fault_t ret;
4624 
4625 	/*
4626 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4627 	 */
4628 	if (!vma->vm_ops->fault) {
4629 		/*
4630 		 * If we find a migration pmd entry or a none pmd entry, which
4631 		 * should never happen, return SIGBUS
4632 		 */
4633 		if (unlikely(!pmd_present(*vmf->pmd)))
4634 			ret = VM_FAULT_SIGBUS;
4635 		else {
4636 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4637 						       vmf->pmd,
4638 						       vmf->address,
4639 						       &vmf->ptl);
4640 			/*
4641 			 * Make sure this is not a temporary clearing of pte
4642 			 * by holding ptl and checking again. A R/M/W update
4643 			 * of pte involves: take ptl, clearing the pte so that
4644 			 * we don't have concurrent modification by hardware
4645 			 * followed by an update.
4646 			 */
4647 			if (unlikely(pte_none(*vmf->pte)))
4648 				ret = VM_FAULT_SIGBUS;
4649 			else
4650 				ret = VM_FAULT_NOPAGE;
4651 
4652 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4653 		}
4654 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4655 		ret = do_read_fault(vmf);
4656 	else if (!(vma->vm_flags & VM_SHARED))
4657 		ret = do_cow_fault(vmf);
4658 	else
4659 		ret = do_shared_fault(vmf);
4660 
4661 	/* preallocated pagetable is unused: free it */
4662 	if (vmf->prealloc_pte) {
4663 		pte_free(vm_mm, vmf->prealloc_pte);
4664 		vmf->prealloc_pte = NULL;
4665 	}
4666 	return ret;
4667 }
4668 
4669 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4670 		      unsigned long addr, int page_nid, int *flags)
4671 {
4672 	get_page(page);
4673 
4674 	count_vm_numa_event(NUMA_HINT_FAULTS);
4675 	if (page_nid == numa_node_id()) {
4676 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4677 		*flags |= TNF_FAULT_LOCAL;
4678 	}
4679 
4680 	return mpol_misplaced(page, vma, addr);
4681 }
4682 
4683 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4684 {
4685 	struct vm_area_struct *vma = vmf->vma;
4686 	struct page *page = NULL;
4687 	int page_nid = NUMA_NO_NODE;
4688 	bool writable = false;
4689 	int last_cpupid;
4690 	int target_nid;
4691 	pte_t pte, old_pte;
4692 	int flags = 0;
4693 
4694 	/*
4695 	 * The "pte" at this point cannot be used safely without
4696 	 * validation through pte_unmap_same(). It's of NUMA type but
4697 	 * the pfn may be screwed if the read is non atomic.
4698 	 */
4699 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4700 	spin_lock(vmf->ptl);
4701 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4702 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4703 		goto out;
4704 	}
4705 
4706 	/* Get the normal PTE  */
4707 	old_pte = ptep_get(vmf->pte);
4708 	pte = pte_modify(old_pte, vma->vm_page_prot);
4709 
4710 	/*
4711 	 * Detect now whether the PTE could be writable; this information
4712 	 * is only valid while holding the PT lock.
4713 	 */
4714 	writable = pte_write(pte);
4715 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4716 	    can_change_pte_writable(vma, vmf->address, pte))
4717 		writable = true;
4718 
4719 	page = vm_normal_page(vma, vmf->address, pte);
4720 	if (!page || is_zone_device_page(page))
4721 		goto out_map;
4722 
4723 	/* TODO: handle PTE-mapped THP */
4724 	if (PageCompound(page))
4725 		goto out_map;
4726 
4727 	/*
4728 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4729 	 * much anyway since they can be in shared cache state. This misses
4730 	 * the case where a mapping is writable but the process never writes
4731 	 * to it but pte_write gets cleared during protection updates and
4732 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4733 	 * background writeback, dirty balancing and application behaviour.
4734 	 */
4735 	if (!writable)
4736 		flags |= TNF_NO_GROUP;
4737 
4738 	/*
4739 	 * Flag if the page is shared between multiple address spaces. This
4740 	 * is later used when determining whether to group tasks together
4741 	 */
4742 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4743 		flags |= TNF_SHARED;
4744 
4745 	page_nid = page_to_nid(page);
4746 	/*
4747 	 * For memory tiering mode, cpupid of slow memory page is used
4748 	 * to record page access time.  So use default value.
4749 	 */
4750 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4751 	    !node_is_toptier(page_nid))
4752 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4753 	else
4754 		last_cpupid = page_cpupid_last(page);
4755 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4756 			&flags);
4757 	if (target_nid == NUMA_NO_NODE) {
4758 		put_page(page);
4759 		goto out_map;
4760 	}
4761 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4762 	writable = false;
4763 
4764 	/* Migrate to the requested node */
4765 	if (migrate_misplaced_page(page, vma, target_nid)) {
4766 		page_nid = target_nid;
4767 		flags |= TNF_MIGRATED;
4768 	} else {
4769 		flags |= TNF_MIGRATE_FAIL;
4770 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4771 		spin_lock(vmf->ptl);
4772 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4773 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4774 			goto out;
4775 		}
4776 		goto out_map;
4777 	}
4778 
4779 out:
4780 	if (page_nid != NUMA_NO_NODE)
4781 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4782 	return 0;
4783 out_map:
4784 	/*
4785 	 * Make it present again, depending on how arch implements
4786 	 * non-accessible ptes, some can allow access by kernel mode.
4787 	 */
4788 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4789 	pte = pte_modify(old_pte, vma->vm_page_prot);
4790 	pte = pte_mkyoung(pte);
4791 	if (writable)
4792 		pte = pte_mkwrite(pte);
4793 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4794 	update_mmu_cache(vma, vmf->address, vmf->pte);
4795 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4796 	goto out;
4797 }
4798 
4799 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4800 {
4801 	if (vma_is_anonymous(vmf->vma))
4802 		return do_huge_pmd_anonymous_page(vmf);
4803 	if (vmf->vma->vm_ops->huge_fault)
4804 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4805 	return VM_FAULT_FALLBACK;
4806 }
4807 
4808 /* `inline' is required to avoid gcc 4.1.2 build error */
4809 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4810 {
4811 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4812 
4813 	if (vma_is_anonymous(vmf->vma)) {
4814 		if (likely(!unshare) &&
4815 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4816 			return handle_userfault(vmf, VM_UFFD_WP);
4817 		return do_huge_pmd_wp_page(vmf);
4818 	}
4819 	if (vmf->vma->vm_ops->huge_fault) {
4820 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4821 
4822 		if (!(ret & VM_FAULT_FALLBACK))
4823 			return ret;
4824 	}
4825 
4826 	/* COW or write-notify handled on pte level: split pmd. */
4827 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4828 
4829 	return VM_FAULT_FALLBACK;
4830 }
4831 
4832 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4833 {
4834 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4835 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4836 	/* No support for anonymous transparent PUD pages yet */
4837 	if (vma_is_anonymous(vmf->vma))
4838 		return VM_FAULT_FALLBACK;
4839 	if (vmf->vma->vm_ops->huge_fault)
4840 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4841 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4842 	return VM_FAULT_FALLBACK;
4843 }
4844 
4845 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4846 {
4847 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4848 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4849 	/* No support for anonymous transparent PUD pages yet */
4850 	if (vma_is_anonymous(vmf->vma))
4851 		goto split;
4852 	if (vmf->vma->vm_ops->huge_fault) {
4853 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4854 
4855 		if (!(ret & VM_FAULT_FALLBACK))
4856 			return ret;
4857 	}
4858 split:
4859 	/* COW or write-notify not handled on PUD level: split pud.*/
4860 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4861 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4862 	return VM_FAULT_FALLBACK;
4863 }
4864 
4865 /*
4866  * These routines also need to handle stuff like marking pages dirty
4867  * and/or accessed for architectures that don't do it in hardware (most
4868  * RISC architectures).  The early dirtying is also good on the i386.
4869  *
4870  * There is also a hook called "update_mmu_cache()" that architectures
4871  * with external mmu caches can use to update those (ie the Sparc or
4872  * PowerPC hashed page tables that act as extended TLBs).
4873  *
4874  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4875  * concurrent faults).
4876  *
4877  * The mmap_lock may have been released depending on flags and our return value.
4878  * See filemap_fault() and __folio_lock_or_retry().
4879  */
4880 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4881 {
4882 	pte_t entry;
4883 
4884 	if (unlikely(pmd_none(*vmf->pmd))) {
4885 		/*
4886 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4887 		 * want to allocate huge page, and if we expose page table
4888 		 * for an instant, it will be difficult to retract from
4889 		 * concurrent faults and from rmap lookups.
4890 		 */
4891 		vmf->pte = NULL;
4892 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4893 	} else {
4894 		/*
4895 		 * If a huge pmd materialized under us just retry later.  Use
4896 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4897 		 * of pmd_trans_huge() to ensure the pmd didn't become
4898 		 * pmd_trans_huge under us and then back to pmd_none, as a
4899 		 * result of MADV_DONTNEED running immediately after a huge pmd
4900 		 * fault in a different thread of this mm, in turn leading to a
4901 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4902 		 * that it is a regular pmd that we can walk with
4903 		 * pte_offset_map() and we can do that through an atomic read
4904 		 * in C, which is what pmd_trans_unstable() provides.
4905 		 */
4906 		if (pmd_devmap_trans_unstable(vmf->pmd))
4907 			return 0;
4908 		/*
4909 		 * A regular pmd is established and it can't morph into a huge
4910 		 * pmd from under us anymore at this point because we hold the
4911 		 * mmap_lock read mode and khugepaged takes it in write mode.
4912 		 * So now it's safe to run pte_offset_map().
4913 		 */
4914 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4915 		vmf->orig_pte = *vmf->pte;
4916 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4917 
4918 		/*
4919 		 * some architectures can have larger ptes than wordsize,
4920 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4921 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4922 		 * accesses.  The code below just needs a consistent view
4923 		 * for the ifs and we later double check anyway with the
4924 		 * ptl lock held. So here a barrier will do.
4925 		 */
4926 		barrier();
4927 		if (pte_none(vmf->orig_pte)) {
4928 			pte_unmap(vmf->pte);
4929 			vmf->pte = NULL;
4930 		}
4931 	}
4932 
4933 	if (!vmf->pte) {
4934 		if (vma_is_anonymous(vmf->vma))
4935 			return do_anonymous_page(vmf);
4936 		else
4937 			return do_fault(vmf);
4938 	}
4939 
4940 	if (!pte_present(vmf->orig_pte))
4941 		return do_swap_page(vmf);
4942 
4943 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4944 		return do_numa_page(vmf);
4945 
4946 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4947 	spin_lock(vmf->ptl);
4948 	entry = vmf->orig_pte;
4949 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4950 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4951 		goto unlock;
4952 	}
4953 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4954 		if (!pte_write(entry))
4955 			return do_wp_page(vmf);
4956 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4957 			entry = pte_mkdirty(entry);
4958 	}
4959 	entry = pte_mkyoung(entry);
4960 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4961 				vmf->flags & FAULT_FLAG_WRITE)) {
4962 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4963 	} else {
4964 		/* Skip spurious TLB flush for retried page fault */
4965 		if (vmf->flags & FAULT_FLAG_TRIED)
4966 			goto unlock;
4967 		/*
4968 		 * This is needed only for protection faults but the arch code
4969 		 * is not yet telling us if this is a protection fault or not.
4970 		 * This still avoids useless tlb flushes for .text page faults
4971 		 * with threads.
4972 		 */
4973 		if (vmf->flags & FAULT_FLAG_WRITE)
4974 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4975 	}
4976 unlock:
4977 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4978 	return 0;
4979 }
4980 
4981 /*
4982  * By the time we get here, we already hold the mm semaphore
4983  *
4984  * The mmap_lock may have been released depending on flags and our
4985  * return value.  See filemap_fault() and __folio_lock_or_retry().
4986  */
4987 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4988 		unsigned long address, unsigned int flags)
4989 {
4990 	struct vm_fault vmf = {
4991 		.vma = vma,
4992 		.address = address & PAGE_MASK,
4993 		.real_address = address,
4994 		.flags = flags,
4995 		.pgoff = linear_page_index(vma, address),
4996 		.gfp_mask = __get_fault_gfp_mask(vma),
4997 	};
4998 	struct mm_struct *mm = vma->vm_mm;
4999 	unsigned long vm_flags = vma->vm_flags;
5000 	pgd_t *pgd;
5001 	p4d_t *p4d;
5002 	vm_fault_t ret;
5003 
5004 	pgd = pgd_offset(mm, address);
5005 	p4d = p4d_alloc(mm, pgd, address);
5006 	if (!p4d)
5007 		return VM_FAULT_OOM;
5008 
5009 	vmf.pud = pud_alloc(mm, p4d, address);
5010 	if (!vmf.pud)
5011 		return VM_FAULT_OOM;
5012 retry_pud:
5013 	if (pud_none(*vmf.pud) &&
5014 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5015 		ret = create_huge_pud(&vmf);
5016 		if (!(ret & VM_FAULT_FALLBACK))
5017 			return ret;
5018 	} else {
5019 		pud_t orig_pud = *vmf.pud;
5020 
5021 		barrier();
5022 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5023 
5024 			/*
5025 			 * TODO once we support anonymous PUDs: NUMA case and
5026 			 * FAULT_FLAG_UNSHARE handling.
5027 			 */
5028 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5029 				ret = wp_huge_pud(&vmf, orig_pud);
5030 				if (!(ret & VM_FAULT_FALLBACK))
5031 					return ret;
5032 			} else {
5033 				huge_pud_set_accessed(&vmf, orig_pud);
5034 				return 0;
5035 			}
5036 		}
5037 	}
5038 
5039 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5040 	if (!vmf.pmd)
5041 		return VM_FAULT_OOM;
5042 
5043 	/* Huge pud page fault raced with pmd_alloc? */
5044 	if (pud_trans_unstable(vmf.pud))
5045 		goto retry_pud;
5046 
5047 	if (pmd_none(*vmf.pmd) &&
5048 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5049 		ret = create_huge_pmd(&vmf);
5050 		if (!(ret & VM_FAULT_FALLBACK))
5051 			return ret;
5052 	} else {
5053 		vmf.orig_pmd = *vmf.pmd;
5054 
5055 		barrier();
5056 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5057 			VM_BUG_ON(thp_migration_supported() &&
5058 					  !is_pmd_migration_entry(vmf.orig_pmd));
5059 			if (is_pmd_migration_entry(vmf.orig_pmd))
5060 				pmd_migration_entry_wait(mm, vmf.pmd);
5061 			return 0;
5062 		}
5063 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5064 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5065 				return do_huge_pmd_numa_page(&vmf);
5066 
5067 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5068 			    !pmd_write(vmf.orig_pmd)) {
5069 				ret = wp_huge_pmd(&vmf);
5070 				if (!(ret & VM_FAULT_FALLBACK))
5071 					return ret;
5072 			} else {
5073 				huge_pmd_set_accessed(&vmf);
5074 				return 0;
5075 			}
5076 		}
5077 	}
5078 
5079 	return handle_pte_fault(&vmf);
5080 }
5081 
5082 /**
5083  * mm_account_fault - Do page fault accounting
5084  *
5085  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5086  *        of perf event counters, but we'll still do the per-task accounting to
5087  *        the task who triggered this page fault.
5088  * @address: the faulted address.
5089  * @flags: the fault flags.
5090  * @ret: the fault retcode.
5091  *
5092  * This will take care of most of the page fault accounting.  Meanwhile, it
5093  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5094  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5095  * still be in per-arch page fault handlers at the entry of page fault.
5096  */
5097 static inline void mm_account_fault(struct pt_regs *regs,
5098 				    unsigned long address, unsigned int flags,
5099 				    vm_fault_t ret)
5100 {
5101 	bool major;
5102 
5103 	/*
5104 	 * We don't do accounting for some specific faults:
5105 	 *
5106 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5107 	 *   includes arch_vma_access_permitted() failing before reaching here.
5108 	 *   So this is not a "this many hardware page faults" counter.  We
5109 	 *   should use the hw profiling for that.
5110 	 *
5111 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5112 	 *   once they're completed.
5113 	 */
5114 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5115 		return;
5116 
5117 	/*
5118 	 * We define the fault as a major fault when the final successful fault
5119 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5120 	 * handle it immediately previously).
5121 	 */
5122 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5123 
5124 	if (major)
5125 		current->maj_flt++;
5126 	else
5127 		current->min_flt++;
5128 
5129 	/*
5130 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5131 	 * accounting for the per thread fault counters who triggered the
5132 	 * fault, and we skip the perf event updates.
5133 	 */
5134 	if (!regs)
5135 		return;
5136 
5137 	if (major)
5138 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5139 	else
5140 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5141 }
5142 
5143 #ifdef CONFIG_LRU_GEN
5144 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5145 {
5146 	/* the LRU algorithm doesn't apply to sequential or random reads */
5147 	current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5148 }
5149 
5150 static void lru_gen_exit_fault(void)
5151 {
5152 	current->in_lru_fault = false;
5153 }
5154 #else
5155 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5156 {
5157 }
5158 
5159 static void lru_gen_exit_fault(void)
5160 {
5161 }
5162 #endif /* CONFIG_LRU_GEN */
5163 
5164 /*
5165  * By the time we get here, we already hold the mm semaphore
5166  *
5167  * The mmap_lock may have been released depending on flags and our
5168  * return value.  See filemap_fault() and __folio_lock_or_retry().
5169  */
5170 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5171 			   unsigned int flags, struct pt_regs *regs)
5172 {
5173 	vm_fault_t ret;
5174 
5175 	__set_current_state(TASK_RUNNING);
5176 
5177 	count_vm_event(PGFAULT);
5178 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
5179 
5180 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5181 					    flags & FAULT_FLAG_INSTRUCTION,
5182 					    flags & FAULT_FLAG_REMOTE))
5183 		return VM_FAULT_SIGSEGV;
5184 
5185 	/*
5186 	 * Enable the memcg OOM handling for faults triggered in user
5187 	 * space.  Kernel faults are handled more gracefully.
5188 	 */
5189 	if (flags & FAULT_FLAG_USER)
5190 		mem_cgroup_enter_user_fault();
5191 
5192 	lru_gen_enter_fault(vma);
5193 
5194 	if (unlikely(is_vm_hugetlb_page(vma)))
5195 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5196 	else
5197 		ret = __handle_mm_fault(vma, address, flags);
5198 
5199 	lru_gen_exit_fault();
5200 
5201 	if (flags & FAULT_FLAG_USER) {
5202 		mem_cgroup_exit_user_fault();
5203 		/*
5204 		 * The task may have entered a memcg OOM situation but
5205 		 * if the allocation error was handled gracefully (no
5206 		 * VM_FAULT_OOM), there is no need to kill anything.
5207 		 * Just clean up the OOM state peacefully.
5208 		 */
5209 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5210 			mem_cgroup_oom_synchronize(false);
5211 	}
5212 
5213 	mm_account_fault(regs, address, flags, ret);
5214 
5215 	return ret;
5216 }
5217 EXPORT_SYMBOL_GPL(handle_mm_fault);
5218 
5219 #ifndef __PAGETABLE_P4D_FOLDED
5220 /*
5221  * Allocate p4d page table.
5222  * We've already handled the fast-path in-line.
5223  */
5224 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5225 {
5226 	p4d_t *new = p4d_alloc_one(mm, address);
5227 	if (!new)
5228 		return -ENOMEM;
5229 
5230 	spin_lock(&mm->page_table_lock);
5231 	if (pgd_present(*pgd)) {	/* Another has populated it */
5232 		p4d_free(mm, new);
5233 	} else {
5234 		smp_wmb(); /* See comment in pmd_install() */
5235 		pgd_populate(mm, pgd, new);
5236 	}
5237 	spin_unlock(&mm->page_table_lock);
5238 	return 0;
5239 }
5240 #endif /* __PAGETABLE_P4D_FOLDED */
5241 
5242 #ifndef __PAGETABLE_PUD_FOLDED
5243 /*
5244  * Allocate page upper directory.
5245  * We've already handled the fast-path in-line.
5246  */
5247 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5248 {
5249 	pud_t *new = pud_alloc_one(mm, address);
5250 	if (!new)
5251 		return -ENOMEM;
5252 
5253 	spin_lock(&mm->page_table_lock);
5254 	if (!p4d_present(*p4d)) {
5255 		mm_inc_nr_puds(mm);
5256 		smp_wmb(); /* See comment in pmd_install() */
5257 		p4d_populate(mm, p4d, new);
5258 	} else	/* Another has populated it */
5259 		pud_free(mm, new);
5260 	spin_unlock(&mm->page_table_lock);
5261 	return 0;
5262 }
5263 #endif /* __PAGETABLE_PUD_FOLDED */
5264 
5265 #ifndef __PAGETABLE_PMD_FOLDED
5266 /*
5267  * Allocate page middle directory.
5268  * We've already handled the fast-path in-line.
5269  */
5270 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5271 {
5272 	spinlock_t *ptl;
5273 	pmd_t *new = pmd_alloc_one(mm, address);
5274 	if (!new)
5275 		return -ENOMEM;
5276 
5277 	ptl = pud_lock(mm, pud);
5278 	if (!pud_present(*pud)) {
5279 		mm_inc_nr_pmds(mm);
5280 		smp_wmb(); /* See comment in pmd_install() */
5281 		pud_populate(mm, pud, new);
5282 	} else {	/* Another has populated it */
5283 		pmd_free(mm, new);
5284 	}
5285 	spin_unlock(ptl);
5286 	return 0;
5287 }
5288 #endif /* __PAGETABLE_PMD_FOLDED */
5289 
5290 /**
5291  * follow_pte - look up PTE at a user virtual address
5292  * @mm: the mm_struct of the target address space
5293  * @address: user virtual address
5294  * @ptepp: location to store found PTE
5295  * @ptlp: location to store the lock for the PTE
5296  *
5297  * On a successful return, the pointer to the PTE is stored in @ptepp;
5298  * the corresponding lock is taken and its location is stored in @ptlp.
5299  * The contents of the PTE are only stable until @ptlp is released;
5300  * any further use, if any, must be protected against invalidation
5301  * with MMU notifiers.
5302  *
5303  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5304  * should be taken for read.
5305  *
5306  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5307  * it is not a good general-purpose API.
5308  *
5309  * Return: zero on success, -ve otherwise.
5310  */
5311 int follow_pte(struct mm_struct *mm, unsigned long address,
5312 	       pte_t **ptepp, spinlock_t **ptlp)
5313 {
5314 	pgd_t *pgd;
5315 	p4d_t *p4d;
5316 	pud_t *pud;
5317 	pmd_t *pmd;
5318 	pte_t *ptep;
5319 
5320 	pgd = pgd_offset(mm, address);
5321 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5322 		goto out;
5323 
5324 	p4d = p4d_offset(pgd, address);
5325 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5326 		goto out;
5327 
5328 	pud = pud_offset(p4d, address);
5329 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5330 		goto out;
5331 
5332 	pmd = pmd_offset(pud, address);
5333 	VM_BUG_ON(pmd_trans_huge(*pmd));
5334 
5335 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5336 		goto out;
5337 
5338 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5339 	if (!pte_present(*ptep))
5340 		goto unlock;
5341 	*ptepp = ptep;
5342 	return 0;
5343 unlock:
5344 	pte_unmap_unlock(ptep, *ptlp);
5345 out:
5346 	return -EINVAL;
5347 }
5348 EXPORT_SYMBOL_GPL(follow_pte);
5349 
5350 /**
5351  * follow_pfn - look up PFN at a user virtual address
5352  * @vma: memory mapping
5353  * @address: user virtual address
5354  * @pfn: location to store found PFN
5355  *
5356  * Only IO mappings and raw PFN mappings are allowed.
5357  *
5358  * This function does not allow the caller to read the permissions
5359  * of the PTE.  Do not use it.
5360  *
5361  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5362  */
5363 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5364 	unsigned long *pfn)
5365 {
5366 	int ret = -EINVAL;
5367 	spinlock_t *ptl;
5368 	pte_t *ptep;
5369 
5370 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5371 		return ret;
5372 
5373 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5374 	if (ret)
5375 		return ret;
5376 	*pfn = pte_pfn(*ptep);
5377 	pte_unmap_unlock(ptep, ptl);
5378 	return 0;
5379 }
5380 EXPORT_SYMBOL(follow_pfn);
5381 
5382 #ifdef CONFIG_HAVE_IOREMAP_PROT
5383 int follow_phys(struct vm_area_struct *vma,
5384 		unsigned long address, unsigned int flags,
5385 		unsigned long *prot, resource_size_t *phys)
5386 {
5387 	int ret = -EINVAL;
5388 	pte_t *ptep, pte;
5389 	spinlock_t *ptl;
5390 
5391 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5392 		goto out;
5393 
5394 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5395 		goto out;
5396 	pte = *ptep;
5397 
5398 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5399 		goto unlock;
5400 
5401 	*prot = pgprot_val(pte_pgprot(pte));
5402 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5403 
5404 	ret = 0;
5405 unlock:
5406 	pte_unmap_unlock(ptep, ptl);
5407 out:
5408 	return ret;
5409 }
5410 
5411 /**
5412  * generic_access_phys - generic implementation for iomem mmap access
5413  * @vma: the vma to access
5414  * @addr: userspace address, not relative offset within @vma
5415  * @buf: buffer to read/write
5416  * @len: length of transfer
5417  * @write: set to FOLL_WRITE when writing, otherwise reading
5418  *
5419  * This is a generic implementation for &vm_operations_struct.access for an
5420  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5421  * not page based.
5422  */
5423 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5424 			void *buf, int len, int write)
5425 {
5426 	resource_size_t phys_addr;
5427 	unsigned long prot = 0;
5428 	void __iomem *maddr;
5429 	pte_t *ptep, pte;
5430 	spinlock_t *ptl;
5431 	int offset = offset_in_page(addr);
5432 	int ret = -EINVAL;
5433 
5434 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5435 		return -EINVAL;
5436 
5437 retry:
5438 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5439 		return -EINVAL;
5440 	pte = *ptep;
5441 	pte_unmap_unlock(ptep, ptl);
5442 
5443 	prot = pgprot_val(pte_pgprot(pte));
5444 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5445 
5446 	if ((write & FOLL_WRITE) && !pte_write(pte))
5447 		return -EINVAL;
5448 
5449 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5450 	if (!maddr)
5451 		return -ENOMEM;
5452 
5453 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5454 		goto out_unmap;
5455 
5456 	if (!pte_same(pte, *ptep)) {
5457 		pte_unmap_unlock(ptep, ptl);
5458 		iounmap(maddr);
5459 
5460 		goto retry;
5461 	}
5462 
5463 	if (write)
5464 		memcpy_toio(maddr + offset, buf, len);
5465 	else
5466 		memcpy_fromio(buf, maddr + offset, len);
5467 	ret = len;
5468 	pte_unmap_unlock(ptep, ptl);
5469 out_unmap:
5470 	iounmap(maddr);
5471 
5472 	return ret;
5473 }
5474 EXPORT_SYMBOL_GPL(generic_access_phys);
5475 #endif
5476 
5477 /*
5478  * Access another process' address space as given in mm.
5479  */
5480 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5481 		       int len, unsigned int gup_flags)
5482 {
5483 	struct vm_area_struct *vma;
5484 	void *old_buf = buf;
5485 	int write = gup_flags & FOLL_WRITE;
5486 
5487 	if (mmap_read_lock_killable(mm))
5488 		return 0;
5489 
5490 	/* ignore errors, just check how much was successfully transferred */
5491 	while (len) {
5492 		int bytes, ret, offset;
5493 		void *maddr;
5494 		struct page *page = NULL;
5495 
5496 		ret = get_user_pages_remote(mm, addr, 1,
5497 				gup_flags, &page, &vma, NULL);
5498 		if (ret <= 0) {
5499 #ifndef CONFIG_HAVE_IOREMAP_PROT
5500 			break;
5501 #else
5502 			/*
5503 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5504 			 * we can access using slightly different code.
5505 			 */
5506 			vma = vma_lookup(mm, addr);
5507 			if (!vma)
5508 				break;
5509 			if (vma->vm_ops && vma->vm_ops->access)
5510 				ret = vma->vm_ops->access(vma, addr, buf,
5511 							  len, write);
5512 			if (ret <= 0)
5513 				break;
5514 			bytes = ret;
5515 #endif
5516 		} else {
5517 			bytes = len;
5518 			offset = addr & (PAGE_SIZE-1);
5519 			if (bytes > PAGE_SIZE-offset)
5520 				bytes = PAGE_SIZE-offset;
5521 
5522 			maddr = kmap(page);
5523 			if (write) {
5524 				copy_to_user_page(vma, page, addr,
5525 						  maddr + offset, buf, bytes);
5526 				set_page_dirty_lock(page);
5527 			} else {
5528 				copy_from_user_page(vma, page, addr,
5529 						    buf, maddr + offset, bytes);
5530 			}
5531 			kunmap(page);
5532 			put_page(page);
5533 		}
5534 		len -= bytes;
5535 		buf += bytes;
5536 		addr += bytes;
5537 	}
5538 	mmap_read_unlock(mm);
5539 
5540 	return buf - old_buf;
5541 }
5542 
5543 /**
5544  * access_remote_vm - access another process' address space
5545  * @mm:		the mm_struct of the target address space
5546  * @addr:	start address to access
5547  * @buf:	source or destination buffer
5548  * @len:	number of bytes to transfer
5549  * @gup_flags:	flags modifying lookup behaviour
5550  *
5551  * The caller must hold a reference on @mm.
5552  *
5553  * Return: number of bytes copied from source to destination.
5554  */
5555 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5556 		void *buf, int len, unsigned int gup_flags)
5557 {
5558 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5559 }
5560 
5561 /*
5562  * Access another process' address space.
5563  * Source/target buffer must be kernel space,
5564  * Do not walk the page table directly, use get_user_pages
5565  */
5566 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5567 		void *buf, int len, unsigned int gup_flags)
5568 {
5569 	struct mm_struct *mm;
5570 	int ret;
5571 
5572 	mm = get_task_mm(tsk);
5573 	if (!mm)
5574 		return 0;
5575 
5576 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5577 
5578 	mmput(mm);
5579 
5580 	return ret;
5581 }
5582 EXPORT_SYMBOL_GPL(access_process_vm);
5583 
5584 /*
5585  * Print the name of a VMA.
5586  */
5587 void print_vma_addr(char *prefix, unsigned long ip)
5588 {
5589 	struct mm_struct *mm = current->mm;
5590 	struct vm_area_struct *vma;
5591 
5592 	/*
5593 	 * we might be running from an atomic context so we cannot sleep
5594 	 */
5595 	if (!mmap_read_trylock(mm))
5596 		return;
5597 
5598 	vma = find_vma(mm, ip);
5599 	if (vma && vma->vm_file) {
5600 		struct file *f = vma->vm_file;
5601 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5602 		if (buf) {
5603 			char *p;
5604 
5605 			p = file_path(f, buf, PAGE_SIZE);
5606 			if (IS_ERR(p))
5607 				p = "?";
5608 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5609 					vma->vm_start,
5610 					vma->vm_end - vma->vm_start);
5611 			free_page((unsigned long)buf);
5612 		}
5613 	}
5614 	mmap_read_unlock(mm);
5615 }
5616 
5617 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5618 void __might_fault(const char *file, int line)
5619 {
5620 	if (pagefault_disabled())
5621 		return;
5622 	__might_sleep(file, line);
5623 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5624 	if (current->mm)
5625 		might_lock_read(&current->mm->mmap_lock);
5626 #endif
5627 }
5628 EXPORT_SYMBOL(__might_fault);
5629 #endif
5630 
5631 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5632 /*
5633  * Process all subpages of the specified huge page with the specified
5634  * operation.  The target subpage will be processed last to keep its
5635  * cache lines hot.
5636  */
5637 static inline void process_huge_page(
5638 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5639 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5640 	void *arg)
5641 {
5642 	int i, n, base, l;
5643 	unsigned long addr = addr_hint &
5644 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5645 
5646 	/* Process target subpage last to keep its cache lines hot */
5647 	might_sleep();
5648 	n = (addr_hint - addr) / PAGE_SIZE;
5649 	if (2 * n <= pages_per_huge_page) {
5650 		/* If target subpage in first half of huge page */
5651 		base = 0;
5652 		l = n;
5653 		/* Process subpages at the end of huge page */
5654 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5655 			cond_resched();
5656 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5657 		}
5658 	} else {
5659 		/* If target subpage in second half of huge page */
5660 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5661 		l = pages_per_huge_page - n;
5662 		/* Process subpages at the begin of huge page */
5663 		for (i = 0; i < base; i++) {
5664 			cond_resched();
5665 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5666 		}
5667 	}
5668 	/*
5669 	 * Process remaining subpages in left-right-left-right pattern
5670 	 * towards the target subpage
5671 	 */
5672 	for (i = 0; i < l; i++) {
5673 		int left_idx = base + i;
5674 		int right_idx = base + 2 * l - 1 - i;
5675 
5676 		cond_resched();
5677 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5678 		cond_resched();
5679 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5680 	}
5681 }
5682 
5683 static void clear_gigantic_page(struct page *page,
5684 				unsigned long addr,
5685 				unsigned int pages_per_huge_page)
5686 {
5687 	int i;
5688 	struct page *p;
5689 
5690 	might_sleep();
5691 	for (i = 0; i < pages_per_huge_page; i++) {
5692 		p = nth_page(page, i);
5693 		cond_resched();
5694 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5695 	}
5696 }
5697 
5698 static void clear_subpage(unsigned long addr, int idx, void *arg)
5699 {
5700 	struct page *page = arg;
5701 
5702 	clear_user_highpage(page + idx, addr);
5703 }
5704 
5705 void clear_huge_page(struct page *page,
5706 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5707 {
5708 	unsigned long addr = addr_hint &
5709 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5710 
5711 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5712 		clear_gigantic_page(page, addr, pages_per_huge_page);
5713 		return;
5714 	}
5715 
5716 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5717 }
5718 
5719 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5720 				    unsigned long addr,
5721 				    struct vm_area_struct *vma,
5722 				    unsigned int pages_per_huge_page)
5723 {
5724 	int i;
5725 	struct page *dst_base = dst;
5726 	struct page *src_base = src;
5727 
5728 	for (i = 0; i < pages_per_huge_page; i++) {
5729 		dst = nth_page(dst_base, i);
5730 		src = nth_page(src_base, i);
5731 
5732 		cond_resched();
5733 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5734 	}
5735 }
5736 
5737 struct copy_subpage_arg {
5738 	struct page *dst;
5739 	struct page *src;
5740 	struct vm_area_struct *vma;
5741 };
5742 
5743 static void copy_subpage(unsigned long addr, int idx, void *arg)
5744 {
5745 	struct copy_subpage_arg *copy_arg = arg;
5746 
5747 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5748 			   addr, copy_arg->vma);
5749 }
5750 
5751 void copy_user_huge_page(struct page *dst, struct page *src,
5752 			 unsigned long addr_hint, struct vm_area_struct *vma,
5753 			 unsigned int pages_per_huge_page)
5754 {
5755 	unsigned long addr = addr_hint &
5756 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5757 	struct copy_subpage_arg arg = {
5758 		.dst = dst,
5759 		.src = src,
5760 		.vma = vma,
5761 	};
5762 
5763 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5764 		copy_user_gigantic_page(dst, src, addr, vma,
5765 					pages_per_huge_page);
5766 		return;
5767 	}
5768 
5769 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5770 }
5771 
5772 long copy_huge_page_from_user(struct page *dst_page,
5773 				const void __user *usr_src,
5774 				unsigned int pages_per_huge_page,
5775 				bool allow_pagefault)
5776 {
5777 	void *page_kaddr;
5778 	unsigned long i, rc = 0;
5779 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5780 	struct page *subpage;
5781 
5782 	for (i = 0; i < pages_per_huge_page; i++) {
5783 		subpage = nth_page(dst_page, i);
5784 		if (allow_pagefault)
5785 			page_kaddr = kmap(subpage);
5786 		else
5787 			page_kaddr = kmap_atomic(subpage);
5788 		rc = copy_from_user(page_kaddr,
5789 				usr_src + i * PAGE_SIZE, PAGE_SIZE);
5790 		if (allow_pagefault)
5791 			kunmap(subpage);
5792 		else
5793 			kunmap_atomic(page_kaddr);
5794 
5795 		ret_val -= (PAGE_SIZE - rc);
5796 		if (rc)
5797 			break;
5798 
5799 		flush_dcache_page(subpage);
5800 
5801 		cond_resched();
5802 	}
5803 	return ret_val;
5804 }
5805 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5806 
5807 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5808 
5809 static struct kmem_cache *page_ptl_cachep;
5810 
5811 void __init ptlock_cache_init(void)
5812 {
5813 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5814 			SLAB_PANIC, NULL);
5815 }
5816 
5817 bool ptlock_alloc(struct page *page)
5818 {
5819 	spinlock_t *ptl;
5820 
5821 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5822 	if (!ptl)
5823 		return false;
5824 	page->ptl = ptl;
5825 	return true;
5826 }
5827 
5828 void ptlock_free(struct page *page)
5829 {
5830 	kmem_cache_free(page_ptl_cachep, page->ptl);
5831 }
5832 #endif
5833