1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/memory-tiers.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 #include <linux/perf_event.h> 75 #include <linux/ptrace.h> 76 #include <linux/vmalloc.h> 77 #include <linux/sched/sysctl.h> 78 79 #include <trace/events/kmem.h> 80 81 #include <asm/io.h> 82 #include <asm/mmu_context.h> 83 #include <asm/pgalloc.h> 84 #include <linux/uaccess.h> 85 #include <asm/tlb.h> 86 #include <asm/tlbflush.h> 87 88 #include "pgalloc-track.h" 89 #include "internal.h" 90 #include "swap.h" 91 92 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 93 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 94 #endif 95 96 static vm_fault_t do_fault(struct vm_fault *vmf); 97 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 98 static bool vmf_pte_changed(struct vm_fault *vmf); 99 100 /* 101 * Return true if the original pte was a uffd-wp pte marker (so the pte was 102 * wr-protected). 103 */ 104 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 105 { 106 if (!userfaultfd_wp(vmf->vma)) 107 return false; 108 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 109 return false; 110 111 return pte_marker_uffd_wp(vmf->orig_pte); 112 } 113 114 /* 115 * Randomize the address space (stacks, mmaps, brk, etc.). 116 * 117 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 118 * as ancient (libc5 based) binaries can segfault. ) 119 */ 120 int randomize_va_space __read_mostly = 121 #ifdef CONFIG_COMPAT_BRK 122 1; 123 #else 124 2; 125 #endif 126 127 static const struct ctl_table mmu_sysctl_table[] = { 128 { 129 .procname = "randomize_va_space", 130 .data = &randomize_va_space, 131 .maxlen = sizeof(int), 132 .mode = 0644, 133 .proc_handler = proc_dointvec, 134 }, 135 }; 136 137 static int __init init_mm_sysctl(void) 138 { 139 register_sysctl_init("kernel", mmu_sysctl_table); 140 return 0; 141 } 142 143 subsys_initcall(init_mm_sysctl); 144 145 #ifndef arch_wants_old_prefaulted_pte 146 static inline bool arch_wants_old_prefaulted_pte(void) 147 { 148 /* 149 * Transitioning a PTE from 'old' to 'young' can be expensive on 150 * some architectures, even if it's performed in hardware. By 151 * default, "false" means prefaulted entries will be 'young'. 152 */ 153 return false; 154 } 155 #endif 156 157 static int __init disable_randmaps(char *s) 158 { 159 randomize_va_space = 0; 160 return 1; 161 } 162 __setup("norandmaps", disable_randmaps); 163 164 unsigned long zero_pfn __read_mostly; 165 EXPORT_SYMBOL(zero_pfn); 166 167 unsigned long highest_memmap_pfn __read_mostly; 168 169 /* 170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 171 */ 172 static int __init init_zero_pfn(void) 173 { 174 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 175 return 0; 176 } 177 early_initcall(init_zero_pfn); 178 179 void mm_trace_rss_stat(struct mm_struct *mm, int member) 180 { 181 trace_rss_stat(mm, member); 182 } 183 184 /* 185 * Note: this doesn't free the actual pages themselves. That 186 * has been handled earlier when unmapping all the memory regions. 187 */ 188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 189 unsigned long addr) 190 { 191 pgtable_t token = pmd_pgtable(*pmd); 192 pmd_clear(pmd); 193 pte_free_tlb(tlb, token, addr); 194 mm_dec_nr_ptes(tlb->mm); 195 } 196 197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 198 unsigned long addr, unsigned long end, 199 unsigned long floor, unsigned long ceiling) 200 { 201 pmd_t *pmd; 202 unsigned long next; 203 unsigned long start; 204 205 start = addr; 206 pmd = pmd_offset(pud, addr); 207 do { 208 next = pmd_addr_end(addr, end); 209 if (pmd_none_or_clear_bad(pmd)) 210 continue; 211 free_pte_range(tlb, pmd, addr); 212 } while (pmd++, addr = next, addr != end); 213 214 start &= PUD_MASK; 215 if (start < floor) 216 return; 217 if (ceiling) { 218 ceiling &= PUD_MASK; 219 if (!ceiling) 220 return; 221 } 222 if (end - 1 > ceiling - 1) 223 return; 224 225 pmd = pmd_offset(pud, start); 226 pud_clear(pud); 227 pmd_free_tlb(tlb, pmd, start); 228 mm_dec_nr_pmds(tlb->mm); 229 } 230 231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 232 unsigned long addr, unsigned long end, 233 unsigned long floor, unsigned long ceiling) 234 { 235 pud_t *pud; 236 unsigned long next; 237 unsigned long start; 238 239 start = addr; 240 pud = pud_offset(p4d, addr); 241 do { 242 next = pud_addr_end(addr, end); 243 if (pud_none_or_clear_bad(pud)) 244 continue; 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 246 } while (pud++, addr = next, addr != end); 247 248 start &= P4D_MASK; 249 if (start < floor) 250 return; 251 if (ceiling) { 252 ceiling &= P4D_MASK; 253 if (!ceiling) 254 return; 255 } 256 if (end - 1 > ceiling - 1) 257 return; 258 259 pud = pud_offset(p4d, start); 260 p4d_clear(p4d); 261 pud_free_tlb(tlb, pud, start); 262 mm_dec_nr_puds(tlb->mm); 263 } 264 265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 266 unsigned long addr, unsigned long end, 267 unsigned long floor, unsigned long ceiling) 268 { 269 p4d_t *p4d; 270 unsigned long next; 271 unsigned long start; 272 273 start = addr; 274 p4d = p4d_offset(pgd, addr); 275 do { 276 next = p4d_addr_end(addr, end); 277 if (p4d_none_or_clear_bad(p4d)) 278 continue; 279 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 280 } while (p4d++, addr = next, addr != end); 281 282 start &= PGDIR_MASK; 283 if (start < floor) 284 return; 285 if (ceiling) { 286 ceiling &= PGDIR_MASK; 287 if (!ceiling) 288 return; 289 } 290 if (end - 1 > ceiling - 1) 291 return; 292 293 p4d = p4d_offset(pgd, start); 294 pgd_clear(pgd); 295 p4d_free_tlb(tlb, p4d, start); 296 } 297 298 /** 299 * free_pgd_range - Unmap and free page tables in the range 300 * @tlb: the mmu_gather containing pending TLB flush info 301 * @addr: virtual address start 302 * @end: virtual address end 303 * @floor: lowest address boundary 304 * @ceiling: highest address boundary 305 * 306 * This function tears down all user-level page tables in the 307 * specified virtual address range [@addr..@end). It is part of 308 * the memory unmap flow. 309 */ 310 void free_pgd_range(struct mmu_gather *tlb, 311 unsigned long addr, unsigned long end, 312 unsigned long floor, unsigned long ceiling) 313 { 314 pgd_t *pgd; 315 unsigned long next; 316 317 /* 318 * The next few lines have given us lots of grief... 319 * 320 * Why are we testing PMD* at this top level? Because often 321 * there will be no work to do at all, and we'd prefer not to 322 * go all the way down to the bottom just to discover that. 323 * 324 * Why all these "- 1"s? Because 0 represents both the bottom 325 * of the address space and the top of it (using -1 for the 326 * top wouldn't help much: the masks would do the wrong thing). 327 * The rule is that addr 0 and floor 0 refer to the bottom of 328 * the address space, but end 0 and ceiling 0 refer to the top 329 * Comparisons need to use "end - 1" and "ceiling - 1" (though 330 * that end 0 case should be mythical). 331 * 332 * Wherever addr is brought up or ceiling brought down, we must 333 * be careful to reject "the opposite 0" before it confuses the 334 * subsequent tests. But what about where end is brought down 335 * by PMD_SIZE below? no, end can't go down to 0 there. 336 * 337 * Whereas we round start (addr) and ceiling down, by different 338 * masks at different levels, in order to test whether a table 339 * now has no other vmas using it, so can be freed, we don't 340 * bother to round floor or end up - the tests don't need that. 341 */ 342 343 addr &= PMD_MASK; 344 if (addr < floor) { 345 addr += PMD_SIZE; 346 if (!addr) 347 return; 348 } 349 if (ceiling) { 350 ceiling &= PMD_MASK; 351 if (!ceiling) 352 return; 353 } 354 if (end - 1 > ceiling - 1) 355 end -= PMD_SIZE; 356 if (addr > end - 1) 357 return; 358 /* 359 * We add page table cache pages with PAGE_SIZE, 360 * (see pte_free_tlb()), flush the tlb if we need 361 */ 362 tlb_change_page_size(tlb, PAGE_SIZE); 363 pgd = pgd_offset(tlb->mm, addr); 364 do { 365 next = pgd_addr_end(addr, end); 366 if (pgd_none_or_clear_bad(pgd)) 367 continue; 368 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 369 } while (pgd++, addr = next, addr != end); 370 } 371 372 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 373 struct vm_area_struct *vma, unsigned long floor, 374 unsigned long ceiling, bool mm_wr_locked) 375 { 376 struct unlink_vma_file_batch vb; 377 378 tlb_free_vmas(tlb); 379 380 do { 381 unsigned long addr = vma->vm_start; 382 struct vm_area_struct *next; 383 384 /* 385 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 386 * be 0. This will underflow and is okay. 387 */ 388 next = mas_find(mas, ceiling - 1); 389 if (unlikely(xa_is_zero(next))) 390 next = NULL; 391 392 /* 393 * Hide vma from rmap and truncate_pagecache before freeing 394 * pgtables 395 */ 396 if (mm_wr_locked) 397 vma_start_write(vma); 398 unlink_anon_vmas(vma); 399 400 unlink_file_vma_batch_init(&vb); 401 unlink_file_vma_batch_add(&vb, vma); 402 403 /* 404 * Optimization: gather nearby vmas into one call down 405 */ 406 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) { 407 vma = next; 408 next = mas_find(mas, ceiling - 1); 409 if (unlikely(xa_is_zero(next))) 410 next = NULL; 411 if (mm_wr_locked) 412 vma_start_write(vma); 413 unlink_anon_vmas(vma); 414 unlink_file_vma_batch_add(&vb, vma); 415 } 416 unlink_file_vma_batch_final(&vb); 417 418 free_pgd_range(tlb, addr, vma->vm_end, 419 floor, next ? next->vm_start : ceiling); 420 vma = next; 421 } while (vma); 422 } 423 424 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 425 { 426 spinlock_t *ptl = pmd_lock(mm, pmd); 427 428 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 429 mm_inc_nr_ptes(mm); 430 /* 431 * Ensure all pte setup (eg. pte page lock and page clearing) are 432 * visible before the pte is made visible to other CPUs by being 433 * put into page tables. 434 * 435 * The other side of the story is the pointer chasing in the page 436 * table walking code (when walking the page table without locking; 437 * ie. most of the time). Fortunately, these data accesses consist 438 * of a chain of data-dependent loads, meaning most CPUs (alpha 439 * being the notable exception) will already guarantee loads are 440 * seen in-order. See the alpha page table accessors for the 441 * smp_rmb() barriers in page table walking code. 442 */ 443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 444 pmd_populate(mm, pmd, *pte); 445 *pte = NULL; 446 } 447 spin_unlock(ptl); 448 } 449 450 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 451 { 452 pgtable_t new = pte_alloc_one(mm); 453 if (!new) 454 return -ENOMEM; 455 456 pmd_install(mm, pmd, &new); 457 if (new) 458 pte_free(mm, new); 459 return 0; 460 } 461 462 int __pte_alloc_kernel(pmd_t *pmd) 463 { 464 pte_t *new = pte_alloc_one_kernel(&init_mm); 465 if (!new) 466 return -ENOMEM; 467 468 spin_lock(&init_mm.page_table_lock); 469 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 470 smp_wmb(); /* See comment in pmd_install() */ 471 pmd_populate_kernel(&init_mm, pmd, new); 472 new = NULL; 473 } 474 spin_unlock(&init_mm.page_table_lock); 475 if (new) 476 pte_free_kernel(&init_mm, new); 477 return 0; 478 } 479 480 static inline void init_rss_vec(int *rss) 481 { 482 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 483 } 484 485 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 486 { 487 int i; 488 489 for (i = 0; i < NR_MM_COUNTERS; i++) 490 if (rss[i]) 491 add_mm_counter(mm, i, rss[i]); 492 } 493 494 static bool is_bad_page_map_ratelimited(void) 495 { 496 static unsigned long resume; 497 static unsigned long nr_shown; 498 static unsigned long nr_unshown; 499 500 /* 501 * Allow a burst of 60 reports, then keep quiet for that minute; 502 * or allow a steady drip of one report per second. 503 */ 504 if (nr_shown == 60) { 505 if (time_before(jiffies, resume)) { 506 nr_unshown++; 507 return true; 508 } 509 if (nr_unshown) { 510 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 511 nr_unshown); 512 nr_unshown = 0; 513 } 514 nr_shown = 0; 515 } 516 if (nr_shown++ == 0) 517 resume = jiffies + 60 * HZ; 518 return false; 519 } 520 521 static void __print_bad_page_map_pgtable(struct mm_struct *mm, unsigned long addr) 522 { 523 unsigned long long pgdv, p4dv, pudv, pmdv; 524 p4d_t p4d, *p4dp; 525 pud_t pud, *pudp; 526 pmd_t pmd, *pmdp; 527 pgd_t *pgdp; 528 529 /* 530 * Although this looks like a fully lockless pgtable walk, it is not: 531 * see locking requirements for print_bad_page_map(). 532 */ 533 pgdp = pgd_offset(mm, addr); 534 pgdv = pgd_val(*pgdp); 535 536 if (!pgd_present(*pgdp) || pgd_leaf(*pgdp)) { 537 pr_alert("pgd:%08llx\n", pgdv); 538 return; 539 } 540 541 p4dp = p4d_offset(pgdp, addr); 542 p4d = p4dp_get(p4dp); 543 p4dv = p4d_val(p4d); 544 545 if (!p4d_present(p4d) || p4d_leaf(p4d)) { 546 pr_alert("pgd:%08llx p4d:%08llx\n", pgdv, p4dv); 547 return; 548 } 549 550 pudp = pud_offset(p4dp, addr); 551 pud = pudp_get(pudp); 552 pudv = pud_val(pud); 553 554 if (!pud_present(pud) || pud_leaf(pud)) { 555 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx\n", pgdv, p4dv, pudv); 556 return; 557 } 558 559 pmdp = pmd_offset(pudp, addr); 560 pmd = pmdp_get(pmdp); 561 pmdv = pmd_val(pmd); 562 563 /* 564 * Dumping the PTE would be nice, but it's tricky with CONFIG_HIGHPTE, 565 * because the table should already be mapped by the caller and 566 * doing another map would be bad. print_bad_page_map() should 567 * already take care of printing the PTE. 568 */ 569 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx pmd:%08llx\n", pgdv, 570 p4dv, pudv, pmdv); 571 } 572 573 /* 574 * This function is called to print an error when a bad page table entry (e.g., 575 * corrupted page table entry) is found. For example, we might have a 576 * PFN-mapped pte in a region that doesn't allow it. 577 * 578 * The calling function must still handle the error. 579 * 580 * This function must be called during a proper page table walk, as it will 581 * re-walk the page table to dump information: the caller MUST prevent page 582 * table teardown (by holding mmap, vma or rmap lock) and MUST hold the leaf 583 * page table lock. 584 */ 585 static void print_bad_page_map(struct vm_area_struct *vma, 586 unsigned long addr, unsigned long long entry, struct page *page, 587 enum pgtable_level level) 588 { 589 struct address_space *mapping; 590 pgoff_t index; 591 592 if (is_bad_page_map_ratelimited()) 593 return; 594 595 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 596 index = linear_page_index(vma, addr); 597 598 pr_alert("BUG: Bad page map in process %s %s:%08llx", current->comm, 599 pgtable_level_to_str(level), entry); 600 __print_bad_page_map_pgtable(vma->vm_mm, addr); 601 if (page) 602 dump_page(page, "bad page map"); 603 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 604 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 605 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n", 606 vma->vm_file, 607 vma->vm_ops ? vma->vm_ops->fault : NULL, 608 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 609 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL, 610 mapping ? mapping->a_ops->read_folio : NULL); 611 dump_stack(); 612 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 613 } 614 #define print_bad_pte(vma, addr, pte, page) \ 615 print_bad_page_map(vma, addr, pte_val(pte), page, PGTABLE_LEVEL_PTE) 616 617 /** 618 * __vm_normal_page() - Get the "struct page" associated with a page table entry. 619 * @vma: The VMA mapping the page table entry. 620 * @addr: The address where the page table entry is mapped. 621 * @pfn: The PFN stored in the page table entry. 622 * @special: Whether the page table entry is marked "special". 623 * @level: The page table level for error reporting purposes only. 624 * @entry: The page table entry value for error reporting purposes only. 625 * 626 * "Special" mappings do not wish to be associated with a "struct page" (either 627 * it doesn't exist, or it exists but they don't want to touch it). In this 628 * case, NULL is returned here. "Normal" mappings do have a struct page and 629 * are ordinarily refcounted. 630 * 631 * Page mappings of the shared zero folios are always considered "special", as 632 * they are not ordinarily refcounted: neither the refcount nor the mapcount 633 * of these folios is adjusted when mapping them into user page tables. 634 * Selected page table walkers (such as GUP) can still identify mappings of the 635 * shared zero folios and work with the underlying "struct page". 636 * 637 * There are 2 broad cases. Firstly, an architecture may define a "special" 638 * page table entry bit, such as pte_special(), in which case this function is 639 * trivial. Secondly, an architecture may not have a spare page table 640 * entry bit, which requires a more complicated scheme, described below. 641 * 642 * With CONFIG_FIND_NORMAL_PAGE, we might have the "special" bit set on 643 * page table entries that actually map "normal" pages: however, that page 644 * cannot be looked up through the PFN stored in the page table entry, but 645 * instead will be looked up through vm_ops->find_normal_page(). So far, this 646 * only applies to PTEs. 647 * 648 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 649 * special mapping (even if there are underlying and valid "struct pages"). 650 * COWed pages of a VM_PFNMAP are always normal. 651 * 652 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 653 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 654 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 655 * mapping will always honor the rule 656 * 657 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 658 * 659 * And for normal mappings this is false. 660 * 661 * This restricts such mappings to be a linear translation from virtual address 662 * to pfn. To get around this restriction, we allow arbitrary mappings so long 663 * as the vma is not a COW mapping; in that case, we know that all ptes are 664 * special (because none can have been COWed). 665 * 666 * 667 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 668 * 669 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 670 * page" backing, however the difference is that _all_ pages with a struct 671 * page (that is, those where pfn_valid is true, except the shared zero 672 * folios) are refcounted and considered normal pages by the VM. 673 * 674 * The disadvantage is that pages are refcounted (which can be slower and 675 * simply not an option for some PFNMAP users). The advantage is that we 676 * don't have to follow the strict linearity rule of PFNMAP mappings in 677 * order to support COWable mappings. 678 * 679 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 680 * NULL if this is a "special" mapping. 681 */ 682 static inline struct page *__vm_normal_page(struct vm_area_struct *vma, 683 unsigned long addr, unsigned long pfn, bool special, 684 unsigned long long entry, enum pgtable_level level) 685 { 686 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 687 if (unlikely(special)) { 688 #ifdef CONFIG_FIND_NORMAL_PAGE 689 if (vma->vm_ops && vma->vm_ops->find_normal_page) 690 return vma->vm_ops->find_normal_page(vma, addr); 691 #endif /* CONFIG_FIND_NORMAL_PAGE */ 692 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 693 return NULL; 694 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)) 695 return NULL; 696 697 print_bad_page_map(vma, addr, entry, NULL, level); 698 return NULL; 699 } 700 /* 701 * With CONFIG_ARCH_HAS_PTE_SPECIAL, any special page table 702 * mappings (incl. shared zero folios) are marked accordingly. 703 */ 704 } else { 705 if (unlikely(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) { 706 if (vma->vm_flags & VM_MIXEDMAP) { 707 /* If it has a "struct page", it's "normal". */ 708 if (!pfn_valid(pfn)) 709 return NULL; 710 } else { 711 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; 712 713 /* Only CoW'ed anon folios are "normal". */ 714 if (pfn == vma->vm_pgoff + off) 715 return NULL; 716 if (!is_cow_mapping(vma->vm_flags)) 717 return NULL; 718 } 719 } 720 721 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)) 722 return NULL; 723 } 724 725 if (unlikely(pfn > highest_memmap_pfn)) { 726 /* Corrupted page table entry. */ 727 print_bad_page_map(vma, addr, entry, NULL, level); 728 return NULL; 729 } 730 /* 731 * NOTE! We still have PageReserved() pages in the page tables. 732 * For example, VDSO mappings can cause them to exist. 733 */ 734 VM_WARN_ON_ONCE(is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)); 735 return pfn_to_page(pfn); 736 } 737 738 /** 739 * vm_normal_page() - Get the "struct page" associated with a PTE 740 * @vma: The VMA mapping the @pte. 741 * @addr: The address where the @pte is mapped. 742 * @pte: The PTE. 743 * 744 * Get the "struct page" associated with a PTE. See __vm_normal_page() 745 * for details on "normal" and "special" mappings. 746 * 747 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 748 * NULL if this is a "special" mapping. 749 */ 750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 751 pte_t pte) 752 { 753 return __vm_normal_page(vma, addr, pte_pfn(pte), pte_special(pte), 754 pte_val(pte), PGTABLE_LEVEL_PTE); 755 } 756 757 /** 758 * vm_normal_folio() - Get the "struct folio" associated with a PTE 759 * @vma: The VMA mapping the @pte. 760 * @addr: The address where the @pte is mapped. 761 * @pte: The PTE. 762 * 763 * Get the "struct folio" associated with a PTE. See __vm_normal_page() 764 * for details on "normal" and "special" mappings. 765 * 766 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns 767 * NULL if this is a "special" mapping. 768 */ 769 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 770 pte_t pte) 771 { 772 struct page *page = vm_normal_page(vma, addr, pte); 773 774 if (page) 775 return page_folio(page); 776 return NULL; 777 } 778 779 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 780 /** 781 * vm_normal_page_pmd() - Get the "struct page" associated with a PMD 782 * @vma: The VMA mapping the @pmd. 783 * @addr: The address where the @pmd is mapped. 784 * @pmd: The PMD. 785 * 786 * Get the "struct page" associated with a PTE. See __vm_normal_page() 787 * for details on "normal" and "special" mappings. 788 * 789 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 790 * NULL if this is a "special" mapping. 791 */ 792 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 793 pmd_t pmd) 794 { 795 return __vm_normal_page(vma, addr, pmd_pfn(pmd), pmd_special(pmd), 796 pmd_val(pmd), PGTABLE_LEVEL_PMD); 797 } 798 799 /** 800 * vm_normal_folio_pmd() - Get the "struct folio" associated with a PMD 801 * @vma: The VMA mapping the @pmd. 802 * @addr: The address where the @pmd is mapped. 803 * @pmd: The PMD. 804 * 805 * Get the "struct folio" associated with a PTE. See __vm_normal_page() 806 * for details on "normal" and "special" mappings. 807 * 808 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns 809 * NULL if this is a "special" mapping. 810 */ 811 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 812 unsigned long addr, pmd_t pmd) 813 { 814 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 815 816 if (page) 817 return page_folio(page); 818 return NULL; 819 } 820 821 /** 822 * vm_normal_page_pud() - Get the "struct page" associated with a PUD 823 * @vma: The VMA mapping the @pud. 824 * @addr: The address where the @pud is mapped. 825 * @pud: The PUD. 826 * 827 * Get the "struct page" associated with a PUD. See __vm_normal_page() 828 * for details on "normal" and "special" mappings. 829 * 830 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 831 * NULL if this is a "special" mapping. 832 */ 833 struct page *vm_normal_page_pud(struct vm_area_struct *vma, 834 unsigned long addr, pud_t pud) 835 { 836 return __vm_normal_page(vma, addr, pud_pfn(pud), pud_special(pud), 837 pud_val(pud), PGTABLE_LEVEL_PUD); 838 } 839 #endif 840 841 /** 842 * restore_exclusive_pte - Restore a device-exclusive entry 843 * @vma: VMA covering @address 844 * @folio: the mapped folio 845 * @page: the mapped folio page 846 * @address: the virtual address 847 * @ptep: pte pointer into the locked page table mapping the folio page 848 * @orig_pte: pte value at @ptep 849 * 850 * Restore a device-exclusive non-swap entry to an ordinary present pte. 851 * 852 * The folio and the page table must be locked, and MMU notifiers must have 853 * been called to invalidate any (exclusive) device mappings. 854 * 855 * Locking the folio makes sure that anybody who just converted the pte to 856 * a device-exclusive entry can map it into the device to make forward 857 * progress without others converting it back until the folio was unlocked. 858 * 859 * If the folio lock ever becomes an issue, we can stop relying on the folio 860 * lock; it might make some scenarios with heavy thrashing less likely to 861 * make forward progress, but these scenarios might not be valid use cases. 862 * 863 * Note that the folio lock does not protect against all cases of concurrent 864 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers 865 * must use MMU notifiers to sync against any concurrent changes. 866 */ 867 static void restore_exclusive_pte(struct vm_area_struct *vma, 868 struct folio *folio, struct page *page, unsigned long address, 869 pte_t *ptep, pte_t orig_pte) 870 { 871 pte_t pte; 872 873 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 874 875 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 876 if (pte_swp_soft_dirty(orig_pte)) 877 pte = pte_mksoft_dirty(pte); 878 879 if (pte_swp_uffd_wp(orig_pte)) 880 pte = pte_mkuffd_wp(pte); 881 882 if ((vma->vm_flags & VM_WRITE) && 883 can_change_pte_writable(vma, address, pte)) { 884 if (folio_test_dirty(folio)) 885 pte = pte_mkdirty(pte); 886 pte = pte_mkwrite(pte, vma); 887 } 888 set_pte_at(vma->vm_mm, address, ptep, pte); 889 890 /* 891 * No need to invalidate - it was non-present before. However 892 * secondary CPUs may have mappings that need invalidating. 893 */ 894 update_mmu_cache(vma, address, ptep); 895 } 896 897 /* 898 * Tries to restore an exclusive pte if the page lock can be acquired without 899 * sleeping. 900 */ 901 static int try_restore_exclusive_pte(struct vm_area_struct *vma, 902 unsigned long addr, pte_t *ptep, pte_t orig_pte) 903 { 904 struct page *page = pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte)); 905 struct folio *folio = page_folio(page); 906 907 if (folio_trylock(folio)) { 908 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte); 909 folio_unlock(folio); 910 return 0; 911 } 912 913 return -EBUSY; 914 } 915 916 /* 917 * copy one vm_area from one task to the other. Assumes the page tables 918 * already present in the new task to be cleared in the whole range 919 * covered by this vma. 920 */ 921 922 static unsigned long 923 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 924 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 925 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 926 { 927 vm_flags_t vm_flags = dst_vma->vm_flags; 928 pte_t orig_pte = ptep_get(src_pte); 929 pte_t pte = orig_pte; 930 struct folio *folio; 931 struct page *page; 932 swp_entry_t entry = pte_to_swp_entry(orig_pte); 933 934 if (likely(!non_swap_entry(entry))) { 935 if (swap_duplicate(entry) < 0) 936 return -EIO; 937 938 /* make sure dst_mm is on swapoff's mmlist. */ 939 if (unlikely(list_empty(&dst_mm->mmlist))) { 940 spin_lock(&mmlist_lock); 941 if (list_empty(&dst_mm->mmlist)) 942 list_add(&dst_mm->mmlist, 943 &src_mm->mmlist); 944 spin_unlock(&mmlist_lock); 945 } 946 /* Mark the swap entry as shared. */ 947 if (pte_swp_exclusive(orig_pte)) { 948 pte = pte_swp_clear_exclusive(orig_pte); 949 set_pte_at(src_mm, addr, src_pte, pte); 950 } 951 rss[MM_SWAPENTS]++; 952 } else if (is_migration_entry(entry)) { 953 folio = pfn_swap_entry_folio(entry); 954 955 rss[mm_counter(folio)]++; 956 957 if (!is_readable_migration_entry(entry) && 958 is_cow_mapping(vm_flags)) { 959 /* 960 * COW mappings require pages in both parent and child 961 * to be set to read. A previously exclusive entry is 962 * now shared. 963 */ 964 entry = make_readable_migration_entry( 965 swp_offset(entry)); 966 pte = swp_entry_to_pte(entry); 967 if (pte_swp_soft_dirty(orig_pte)) 968 pte = pte_swp_mksoft_dirty(pte); 969 if (pte_swp_uffd_wp(orig_pte)) 970 pte = pte_swp_mkuffd_wp(pte); 971 set_pte_at(src_mm, addr, src_pte, pte); 972 } 973 } else if (is_device_private_entry(entry)) { 974 page = pfn_swap_entry_to_page(entry); 975 folio = page_folio(page); 976 977 /* 978 * Update rss count even for unaddressable pages, as 979 * they should treated just like normal pages in this 980 * respect. 981 * 982 * We will likely want to have some new rss counters 983 * for unaddressable pages, at some point. But for now 984 * keep things as they are. 985 */ 986 folio_get(folio); 987 rss[mm_counter(folio)]++; 988 /* Cannot fail as these pages cannot get pinned. */ 989 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma); 990 991 /* 992 * We do not preserve soft-dirty information, because so 993 * far, checkpoint/restore is the only feature that 994 * requires that. And checkpoint/restore does not work 995 * when a device driver is involved (you cannot easily 996 * save and restore device driver state). 997 */ 998 if (is_writable_device_private_entry(entry) && 999 is_cow_mapping(vm_flags)) { 1000 entry = make_readable_device_private_entry( 1001 swp_offset(entry)); 1002 pte = swp_entry_to_pte(entry); 1003 if (pte_swp_uffd_wp(orig_pte)) 1004 pte = pte_swp_mkuffd_wp(pte); 1005 set_pte_at(src_mm, addr, src_pte, pte); 1006 } 1007 } else if (is_device_exclusive_entry(entry)) { 1008 /* 1009 * Make device exclusive entries present by restoring the 1010 * original entry then copying as for a present pte. Device 1011 * exclusive entries currently only support private writable 1012 * (ie. COW) mappings. 1013 */ 1014 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 1015 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte)) 1016 return -EBUSY; 1017 return -ENOENT; 1018 } else if (is_pte_marker_entry(entry)) { 1019 pte_marker marker = copy_pte_marker(entry, dst_vma); 1020 1021 if (marker) 1022 set_pte_at(dst_mm, addr, dst_pte, 1023 make_pte_marker(marker)); 1024 return 0; 1025 } 1026 if (!userfaultfd_wp(dst_vma)) 1027 pte = pte_swp_clear_uffd_wp(pte); 1028 set_pte_at(dst_mm, addr, dst_pte, pte); 1029 return 0; 1030 } 1031 1032 /* 1033 * Copy a present and normal page. 1034 * 1035 * NOTE! The usual case is that this isn't required; 1036 * instead, the caller can just increase the page refcount 1037 * and re-use the pte the traditional way. 1038 * 1039 * And if we need a pre-allocated page but don't yet have 1040 * one, return a negative error to let the preallocation 1041 * code know so that it can do so outside the page table 1042 * lock. 1043 */ 1044 static inline int 1045 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1046 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 1047 struct folio **prealloc, struct page *page) 1048 { 1049 struct folio *new_folio; 1050 pte_t pte; 1051 1052 new_folio = *prealloc; 1053 if (!new_folio) 1054 return -EAGAIN; 1055 1056 /* 1057 * We have a prealloc page, all good! Take it 1058 * over and copy the page & arm it. 1059 */ 1060 1061 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 1062 return -EHWPOISON; 1063 1064 *prealloc = NULL; 1065 __folio_mark_uptodate(new_folio); 1066 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 1067 folio_add_lru_vma(new_folio, dst_vma); 1068 rss[MM_ANONPAGES]++; 1069 1070 /* All done, just insert the new page copy in the child */ 1071 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot); 1072 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 1073 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 1074 /* Uffd-wp needs to be delivered to dest pte as well */ 1075 pte = pte_mkuffd_wp(pte); 1076 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 1077 return 0; 1078 } 1079 1080 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 1081 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 1082 pte_t pte, unsigned long addr, int nr) 1083 { 1084 struct mm_struct *src_mm = src_vma->vm_mm; 1085 1086 /* If it's a COW mapping, write protect it both processes. */ 1087 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 1088 wrprotect_ptes(src_mm, addr, src_pte, nr); 1089 pte = pte_wrprotect(pte); 1090 } 1091 1092 /* If it's a shared mapping, mark it clean in the child. */ 1093 if (src_vma->vm_flags & VM_SHARED) 1094 pte = pte_mkclean(pte); 1095 pte = pte_mkold(pte); 1096 1097 if (!userfaultfd_wp(dst_vma)) 1098 pte = pte_clear_uffd_wp(pte); 1099 1100 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 1101 } 1102 1103 /* 1104 * Copy one present PTE, trying to batch-process subsequent PTEs that map 1105 * consecutive pages of the same folio by copying them as well. 1106 * 1107 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 1108 * Otherwise, returns the number of copied PTEs (at least 1). 1109 */ 1110 static inline int 1111 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1112 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 1113 int max_nr, int *rss, struct folio **prealloc) 1114 { 1115 fpb_t flags = FPB_MERGE_WRITE; 1116 struct page *page; 1117 struct folio *folio; 1118 int err, nr; 1119 1120 page = vm_normal_page(src_vma, addr, pte); 1121 if (unlikely(!page)) 1122 goto copy_pte; 1123 1124 folio = page_folio(page); 1125 1126 /* 1127 * If we likely have to copy, just don't bother with batching. Make 1128 * sure that the common "small folio" case is as fast as possible 1129 * by keeping the batching logic separate. 1130 */ 1131 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1132 if (!(src_vma->vm_flags & VM_SHARED)) 1133 flags |= FPB_RESPECT_DIRTY; 1134 if (vma_soft_dirty_enabled(src_vma)) 1135 flags |= FPB_RESPECT_SOFT_DIRTY; 1136 1137 nr = folio_pte_batch_flags(folio, src_vma, src_pte, &pte, max_nr, flags); 1138 folio_ref_add(folio, nr); 1139 if (folio_test_anon(folio)) { 1140 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1141 nr, dst_vma, src_vma))) { 1142 folio_ref_sub(folio, nr); 1143 return -EAGAIN; 1144 } 1145 rss[MM_ANONPAGES] += nr; 1146 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1147 } else { 1148 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma); 1149 rss[mm_counter_file(folio)] += nr; 1150 } 1151 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1152 addr, nr); 1153 return nr; 1154 } 1155 1156 folio_get(folio); 1157 if (folio_test_anon(folio)) { 1158 /* 1159 * If this page may have been pinned by the parent process, 1160 * copy the page immediately for the child so that we'll always 1161 * guarantee the pinned page won't be randomly replaced in the 1162 * future. 1163 */ 1164 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) { 1165 /* Page may be pinned, we have to copy. */ 1166 folio_put(folio); 1167 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1168 addr, rss, prealloc, page); 1169 return err ? err : 1; 1170 } 1171 rss[MM_ANONPAGES]++; 1172 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1173 } else { 1174 folio_dup_file_rmap_pte(folio, page, dst_vma); 1175 rss[mm_counter_file(folio)]++; 1176 } 1177 1178 copy_pte: 1179 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1180 return 1; 1181 } 1182 1183 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1184 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1185 { 1186 struct folio *new_folio; 1187 1188 if (need_zero) 1189 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1190 else 1191 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1192 1193 if (!new_folio) 1194 return NULL; 1195 1196 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1197 folio_put(new_folio); 1198 return NULL; 1199 } 1200 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1201 1202 return new_folio; 1203 } 1204 1205 static int 1206 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1207 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1208 unsigned long end) 1209 { 1210 struct mm_struct *dst_mm = dst_vma->vm_mm; 1211 struct mm_struct *src_mm = src_vma->vm_mm; 1212 pte_t *orig_src_pte, *orig_dst_pte; 1213 pte_t *src_pte, *dst_pte; 1214 pmd_t dummy_pmdval; 1215 pte_t ptent; 1216 spinlock_t *src_ptl, *dst_ptl; 1217 int progress, max_nr, ret = 0; 1218 int rss[NR_MM_COUNTERS]; 1219 swp_entry_t entry = (swp_entry_t){0}; 1220 struct folio *prealloc = NULL; 1221 int nr; 1222 1223 again: 1224 progress = 0; 1225 init_rss_vec(rss); 1226 1227 /* 1228 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1229 * error handling here, assume that exclusive mmap_lock on dst and src 1230 * protects anon from unexpected THP transitions; with shmem and file 1231 * protected by mmap_lock-less collapse skipping areas with anon_vma 1232 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1233 * can remove such assumptions later, but this is good enough for now. 1234 */ 1235 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1236 if (!dst_pte) { 1237 ret = -ENOMEM; 1238 goto out; 1239 } 1240 1241 /* 1242 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1243 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1244 * the PTE page is stable, and there is no need to get pmdval and do 1245 * pmd_same() check. 1246 */ 1247 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1248 &src_ptl); 1249 if (!src_pte) { 1250 pte_unmap_unlock(dst_pte, dst_ptl); 1251 /* ret == 0 */ 1252 goto out; 1253 } 1254 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1255 orig_src_pte = src_pte; 1256 orig_dst_pte = dst_pte; 1257 arch_enter_lazy_mmu_mode(); 1258 1259 do { 1260 nr = 1; 1261 1262 /* 1263 * We are holding two locks at this point - either of them 1264 * could generate latencies in another task on another CPU. 1265 */ 1266 if (progress >= 32) { 1267 progress = 0; 1268 if (need_resched() || 1269 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1270 break; 1271 } 1272 ptent = ptep_get(src_pte); 1273 if (pte_none(ptent)) { 1274 progress++; 1275 continue; 1276 } 1277 if (unlikely(!pte_present(ptent))) { 1278 ret = copy_nonpresent_pte(dst_mm, src_mm, 1279 dst_pte, src_pte, 1280 dst_vma, src_vma, 1281 addr, rss); 1282 if (ret == -EIO) { 1283 entry = pte_to_swp_entry(ptep_get(src_pte)); 1284 break; 1285 } else if (ret == -EBUSY) { 1286 break; 1287 } else if (!ret) { 1288 progress += 8; 1289 continue; 1290 } 1291 ptent = ptep_get(src_pte); 1292 VM_WARN_ON_ONCE(!pte_present(ptent)); 1293 1294 /* 1295 * Device exclusive entry restored, continue by copying 1296 * the now present pte. 1297 */ 1298 WARN_ON_ONCE(ret != -ENOENT); 1299 } 1300 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1301 max_nr = (end - addr) / PAGE_SIZE; 1302 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1303 ptent, addr, max_nr, rss, &prealloc); 1304 /* 1305 * If we need a pre-allocated page for this pte, drop the 1306 * locks, allocate, and try again. 1307 * If copy failed due to hwpoison in source page, break out. 1308 */ 1309 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1310 break; 1311 if (unlikely(prealloc)) { 1312 /* 1313 * pre-alloc page cannot be reused by next time so as 1314 * to strictly follow mempolicy (e.g., alloc_page_vma() 1315 * will allocate page according to address). This 1316 * could only happen if one pinned pte changed. 1317 */ 1318 folio_put(prealloc); 1319 prealloc = NULL; 1320 } 1321 nr = ret; 1322 progress += 8 * nr; 1323 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1324 addr != end); 1325 1326 arch_leave_lazy_mmu_mode(); 1327 pte_unmap_unlock(orig_src_pte, src_ptl); 1328 add_mm_rss_vec(dst_mm, rss); 1329 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1330 cond_resched(); 1331 1332 if (ret == -EIO) { 1333 VM_WARN_ON_ONCE(!entry.val); 1334 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1335 ret = -ENOMEM; 1336 goto out; 1337 } 1338 entry.val = 0; 1339 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1340 goto out; 1341 } else if (ret == -EAGAIN) { 1342 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1343 if (!prealloc) 1344 return -ENOMEM; 1345 } else if (ret < 0) { 1346 VM_WARN_ON_ONCE(1); 1347 } 1348 1349 /* We've captured and resolved the error. Reset, try again. */ 1350 ret = 0; 1351 1352 if (addr != end) 1353 goto again; 1354 out: 1355 if (unlikely(prealloc)) 1356 folio_put(prealloc); 1357 return ret; 1358 } 1359 1360 static inline int 1361 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1362 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1363 unsigned long end) 1364 { 1365 struct mm_struct *dst_mm = dst_vma->vm_mm; 1366 struct mm_struct *src_mm = src_vma->vm_mm; 1367 pmd_t *src_pmd, *dst_pmd; 1368 unsigned long next; 1369 1370 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1371 if (!dst_pmd) 1372 return -ENOMEM; 1373 src_pmd = pmd_offset(src_pud, addr); 1374 do { 1375 next = pmd_addr_end(addr, end); 1376 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)) { 1377 int err; 1378 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1379 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1380 addr, dst_vma, src_vma); 1381 if (err == -ENOMEM) 1382 return -ENOMEM; 1383 if (!err) 1384 continue; 1385 /* fall through */ 1386 } 1387 if (pmd_none_or_clear_bad(src_pmd)) 1388 continue; 1389 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1390 addr, next)) 1391 return -ENOMEM; 1392 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1393 return 0; 1394 } 1395 1396 static inline int 1397 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1398 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1399 unsigned long end) 1400 { 1401 struct mm_struct *dst_mm = dst_vma->vm_mm; 1402 struct mm_struct *src_mm = src_vma->vm_mm; 1403 pud_t *src_pud, *dst_pud; 1404 unsigned long next; 1405 1406 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1407 if (!dst_pud) 1408 return -ENOMEM; 1409 src_pud = pud_offset(src_p4d, addr); 1410 do { 1411 next = pud_addr_end(addr, end); 1412 if (pud_trans_huge(*src_pud)) { 1413 int err; 1414 1415 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1416 err = copy_huge_pud(dst_mm, src_mm, 1417 dst_pud, src_pud, addr, src_vma); 1418 if (err == -ENOMEM) 1419 return -ENOMEM; 1420 if (!err) 1421 continue; 1422 /* fall through */ 1423 } 1424 if (pud_none_or_clear_bad(src_pud)) 1425 continue; 1426 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1427 addr, next)) 1428 return -ENOMEM; 1429 } while (dst_pud++, src_pud++, addr = next, addr != end); 1430 return 0; 1431 } 1432 1433 static inline int 1434 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1435 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1436 unsigned long end) 1437 { 1438 struct mm_struct *dst_mm = dst_vma->vm_mm; 1439 p4d_t *src_p4d, *dst_p4d; 1440 unsigned long next; 1441 1442 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1443 if (!dst_p4d) 1444 return -ENOMEM; 1445 src_p4d = p4d_offset(src_pgd, addr); 1446 do { 1447 next = p4d_addr_end(addr, end); 1448 if (p4d_none_or_clear_bad(src_p4d)) 1449 continue; 1450 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1451 addr, next)) 1452 return -ENOMEM; 1453 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1454 return 0; 1455 } 1456 1457 /* 1458 * Return true if the vma needs to copy the pgtable during this fork(). Return 1459 * false when we can speed up fork() by allowing lazy page faults later until 1460 * when the child accesses the memory range. 1461 */ 1462 static bool 1463 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1464 { 1465 /* 1466 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1467 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1468 * contains uffd-wp protection information, that's something we can't 1469 * retrieve from page cache, and skip copying will lose those info. 1470 */ 1471 if (userfaultfd_wp(dst_vma)) 1472 return true; 1473 1474 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1475 return true; 1476 1477 if (src_vma->anon_vma) 1478 return true; 1479 1480 /* 1481 * Don't copy ptes where a page fault will fill them correctly. Fork 1482 * becomes much lighter when there are big shared or private readonly 1483 * mappings. The tradeoff is that copy_page_range is more efficient 1484 * than faulting. 1485 */ 1486 return false; 1487 } 1488 1489 int 1490 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1491 { 1492 pgd_t *src_pgd, *dst_pgd; 1493 unsigned long addr = src_vma->vm_start; 1494 unsigned long end = src_vma->vm_end; 1495 struct mm_struct *dst_mm = dst_vma->vm_mm; 1496 struct mm_struct *src_mm = src_vma->vm_mm; 1497 struct mmu_notifier_range range; 1498 unsigned long next; 1499 bool is_cow; 1500 int ret; 1501 1502 if (!vma_needs_copy(dst_vma, src_vma)) 1503 return 0; 1504 1505 if (is_vm_hugetlb_page(src_vma)) 1506 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1507 1508 /* 1509 * We need to invalidate the secondary MMU mappings only when 1510 * there could be a permission downgrade on the ptes of the 1511 * parent mm. And a permission downgrade will only happen if 1512 * is_cow_mapping() returns true. 1513 */ 1514 is_cow = is_cow_mapping(src_vma->vm_flags); 1515 1516 if (is_cow) { 1517 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1518 0, src_mm, addr, end); 1519 mmu_notifier_invalidate_range_start(&range); 1520 /* 1521 * Disabling preemption is not needed for the write side, as 1522 * the read side doesn't spin, but goes to the mmap_lock. 1523 * 1524 * Use the raw variant of the seqcount_t write API to avoid 1525 * lockdep complaining about preemptibility. 1526 */ 1527 vma_assert_write_locked(src_vma); 1528 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1529 } 1530 1531 ret = 0; 1532 dst_pgd = pgd_offset(dst_mm, addr); 1533 src_pgd = pgd_offset(src_mm, addr); 1534 do { 1535 next = pgd_addr_end(addr, end); 1536 if (pgd_none_or_clear_bad(src_pgd)) 1537 continue; 1538 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1539 addr, next))) { 1540 ret = -ENOMEM; 1541 break; 1542 } 1543 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1544 1545 if (is_cow) { 1546 raw_write_seqcount_end(&src_mm->write_protect_seq); 1547 mmu_notifier_invalidate_range_end(&range); 1548 } 1549 return ret; 1550 } 1551 1552 /* Whether we should zap all COWed (private) pages too */ 1553 static inline bool should_zap_cows(struct zap_details *details) 1554 { 1555 /* By default, zap all pages */ 1556 if (!details || details->reclaim_pt) 1557 return true; 1558 1559 /* Or, we zap COWed pages only if the caller wants to */ 1560 return details->even_cows; 1561 } 1562 1563 /* Decides whether we should zap this folio with the folio pointer specified */ 1564 static inline bool should_zap_folio(struct zap_details *details, 1565 struct folio *folio) 1566 { 1567 /* If we can make a decision without *folio.. */ 1568 if (should_zap_cows(details)) 1569 return true; 1570 1571 /* Otherwise we should only zap non-anon folios */ 1572 return !folio_test_anon(folio); 1573 } 1574 1575 static inline bool zap_drop_markers(struct zap_details *details) 1576 { 1577 if (!details) 1578 return false; 1579 1580 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1581 } 1582 1583 /* 1584 * This function makes sure that we'll replace the none pte with an uffd-wp 1585 * swap special pte marker when necessary. Must be with the pgtable lock held. 1586 * 1587 * Returns true if uffd-wp ptes was installed, false otherwise. 1588 */ 1589 static inline bool 1590 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1591 unsigned long addr, pte_t *pte, int nr, 1592 struct zap_details *details, pte_t pteval) 1593 { 1594 bool was_installed = false; 1595 1596 #ifdef CONFIG_PTE_MARKER_UFFD_WP 1597 /* Zap on anonymous always means dropping everything */ 1598 if (vma_is_anonymous(vma)) 1599 return false; 1600 1601 if (zap_drop_markers(details)) 1602 return false; 1603 1604 for (;;) { 1605 /* the PFN in the PTE is irrelevant. */ 1606 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1607 was_installed = true; 1608 if (--nr == 0) 1609 break; 1610 pte++; 1611 addr += PAGE_SIZE; 1612 } 1613 #endif 1614 return was_installed; 1615 } 1616 1617 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1618 struct vm_area_struct *vma, struct folio *folio, 1619 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1620 unsigned long addr, struct zap_details *details, int *rss, 1621 bool *force_flush, bool *force_break, bool *any_skipped) 1622 { 1623 struct mm_struct *mm = tlb->mm; 1624 bool delay_rmap = false; 1625 1626 if (!folio_test_anon(folio)) { 1627 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1628 if (pte_dirty(ptent)) { 1629 folio_mark_dirty(folio); 1630 if (tlb_delay_rmap(tlb)) { 1631 delay_rmap = true; 1632 *force_flush = true; 1633 } 1634 } 1635 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1636 folio_mark_accessed(folio); 1637 rss[mm_counter(folio)] -= nr; 1638 } else { 1639 /* We don't need up-to-date accessed/dirty bits. */ 1640 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1641 rss[MM_ANONPAGES] -= nr; 1642 } 1643 /* Checking a single PTE in a batch is sufficient. */ 1644 arch_check_zapped_pte(vma, ptent); 1645 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1646 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1647 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1648 nr, details, ptent); 1649 1650 if (!delay_rmap) { 1651 folio_remove_rmap_ptes(folio, page, nr, vma); 1652 1653 if (unlikely(folio_mapcount(folio) < 0)) 1654 print_bad_pte(vma, addr, ptent, page); 1655 } 1656 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1657 *force_flush = true; 1658 *force_break = true; 1659 } 1660 } 1661 1662 /* 1663 * Zap or skip at least one present PTE, trying to batch-process subsequent 1664 * PTEs that map consecutive pages of the same folio. 1665 * 1666 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1667 */ 1668 static inline int zap_present_ptes(struct mmu_gather *tlb, 1669 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1670 unsigned int max_nr, unsigned long addr, 1671 struct zap_details *details, int *rss, bool *force_flush, 1672 bool *force_break, bool *any_skipped) 1673 { 1674 struct mm_struct *mm = tlb->mm; 1675 struct folio *folio; 1676 struct page *page; 1677 int nr; 1678 1679 page = vm_normal_page(vma, addr, ptent); 1680 if (!page) { 1681 /* We don't need up-to-date accessed/dirty bits. */ 1682 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1683 arch_check_zapped_pte(vma, ptent); 1684 tlb_remove_tlb_entry(tlb, pte, addr); 1685 if (userfaultfd_pte_wp(vma, ptent)) 1686 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1687 pte, 1, details, ptent); 1688 ksm_might_unmap_zero_page(mm, ptent); 1689 return 1; 1690 } 1691 1692 folio = page_folio(page); 1693 if (unlikely(!should_zap_folio(details, folio))) { 1694 *any_skipped = true; 1695 return 1; 1696 } 1697 1698 /* 1699 * Make sure that the common "small folio" case is as fast as possible 1700 * by keeping the batching logic separate. 1701 */ 1702 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1703 nr = folio_pte_batch(folio, pte, ptent, max_nr); 1704 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1705 addr, details, rss, force_flush, 1706 force_break, any_skipped); 1707 return nr; 1708 } 1709 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1710 details, rss, force_flush, force_break, any_skipped); 1711 return 1; 1712 } 1713 1714 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1715 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1716 unsigned int max_nr, unsigned long addr, 1717 struct zap_details *details, int *rss, bool *any_skipped) 1718 { 1719 swp_entry_t entry; 1720 int nr = 1; 1721 1722 *any_skipped = true; 1723 entry = pte_to_swp_entry(ptent); 1724 if (is_device_private_entry(entry) || 1725 is_device_exclusive_entry(entry)) { 1726 struct page *page = pfn_swap_entry_to_page(entry); 1727 struct folio *folio = page_folio(page); 1728 1729 if (unlikely(!should_zap_folio(details, folio))) 1730 return 1; 1731 /* 1732 * Both device private/exclusive mappings should only 1733 * work with anonymous page so far, so we don't need to 1734 * consider uffd-wp bit when zap. For more information, 1735 * see zap_install_uffd_wp_if_needed(). 1736 */ 1737 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1738 rss[mm_counter(folio)]--; 1739 folio_remove_rmap_pte(folio, page, vma); 1740 folio_put(folio); 1741 } else if (!non_swap_entry(entry)) { 1742 /* Genuine swap entries, hence a private anon pages */ 1743 if (!should_zap_cows(details)) 1744 return 1; 1745 1746 nr = swap_pte_batch(pte, max_nr, ptent); 1747 rss[MM_SWAPENTS] -= nr; 1748 free_swap_and_cache_nr(entry, nr); 1749 } else if (is_migration_entry(entry)) { 1750 struct folio *folio = pfn_swap_entry_folio(entry); 1751 1752 if (!should_zap_folio(details, folio)) 1753 return 1; 1754 rss[mm_counter(folio)]--; 1755 } else if (pte_marker_entry_uffd_wp(entry)) { 1756 /* 1757 * For anon: always drop the marker; for file: only 1758 * drop the marker if explicitly requested. 1759 */ 1760 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1761 return 1; 1762 } else if (is_guard_swp_entry(entry)) { 1763 /* 1764 * Ordinary zapping should not remove guard PTE 1765 * markers. Only do so if we should remove PTE markers 1766 * in general. 1767 */ 1768 if (!zap_drop_markers(details)) 1769 return 1; 1770 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { 1771 if (!should_zap_cows(details)) 1772 return 1; 1773 } else { 1774 /* We should have covered all the swap entry types */ 1775 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1776 WARN_ON_ONCE(1); 1777 } 1778 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1779 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1780 1781 return nr; 1782 } 1783 1784 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1785 struct vm_area_struct *vma, pte_t *pte, 1786 unsigned long addr, unsigned long end, 1787 struct zap_details *details, int *rss, 1788 bool *force_flush, bool *force_break, 1789 bool *any_skipped) 1790 { 1791 pte_t ptent = ptep_get(pte); 1792 int max_nr = (end - addr) / PAGE_SIZE; 1793 int nr = 0; 1794 1795 /* Skip all consecutive none ptes */ 1796 if (pte_none(ptent)) { 1797 for (nr = 1; nr < max_nr; nr++) { 1798 ptent = ptep_get(pte + nr); 1799 if (!pte_none(ptent)) 1800 break; 1801 } 1802 max_nr -= nr; 1803 if (!max_nr) 1804 return nr; 1805 pte += nr; 1806 addr += nr * PAGE_SIZE; 1807 } 1808 1809 if (pte_present(ptent)) 1810 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1811 details, rss, force_flush, force_break, 1812 any_skipped); 1813 else 1814 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1815 details, rss, any_skipped); 1816 1817 return nr; 1818 } 1819 1820 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1821 struct vm_area_struct *vma, pmd_t *pmd, 1822 unsigned long addr, unsigned long end, 1823 struct zap_details *details) 1824 { 1825 bool force_flush = false, force_break = false; 1826 struct mm_struct *mm = tlb->mm; 1827 int rss[NR_MM_COUNTERS]; 1828 spinlock_t *ptl; 1829 pte_t *start_pte; 1830 pte_t *pte; 1831 pmd_t pmdval; 1832 unsigned long start = addr; 1833 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1834 bool direct_reclaim = true; 1835 int nr; 1836 1837 retry: 1838 tlb_change_page_size(tlb, PAGE_SIZE); 1839 init_rss_vec(rss); 1840 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1841 if (!pte) 1842 return addr; 1843 1844 flush_tlb_batched_pending(mm); 1845 arch_enter_lazy_mmu_mode(); 1846 do { 1847 bool any_skipped = false; 1848 1849 if (need_resched()) { 1850 direct_reclaim = false; 1851 break; 1852 } 1853 1854 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1855 &force_flush, &force_break, &any_skipped); 1856 if (any_skipped) 1857 can_reclaim_pt = false; 1858 if (unlikely(force_break)) { 1859 addr += nr * PAGE_SIZE; 1860 direct_reclaim = false; 1861 break; 1862 } 1863 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1864 1865 /* 1866 * Fast path: try to hold the pmd lock and unmap the PTE page. 1867 * 1868 * If the pte lock was released midway (retry case), or if the attempt 1869 * to hold the pmd lock failed, then we need to recheck all pte entries 1870 * to ensure they are still none, thereby preventing the pte entries 1871 * from being repopulated by another thread. 1872 */ 1873 if (can_reclaim_pt && direct_reclaim && addr == end) 1874 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1875 1876 add_mm_rss_vec(mm, rss); 1877 arch_leave_lazy_mmu_mode(); 1878 1879 /* Do the actual TLB flush before dropping ptl */ 1880 if (force_flush) { 1881 tlb_flush_mmu_tlbonly(tlb); 1882 tlb_flush_rmaps(tlb, vma); 1883 } 1884 pte_unmap_unlock(start_pte, ptl); 1885 1886 /* 1887 * If we forced a TLB flush (either due to running out of 1888 * batch buffers or because we needed to flush dirty TLB 1889 * entries before releasing the ptl), free the batched 1890 * memory too. Come back again if we didn't do everything. 1891 */ 1892 if (force_flush) 1893 tlb_flush_mmu(tlb); 1894 1895 if (addr != end) { 1896 cond_resched(); 1897 force_flush = false; 1898 force_break = false; 1899 goto retry; 1900 } 1901 1902 if (can_reclaim_pt) { 1903 if (direct_reclaim) 1904 free_pte(mm, start, tlb, pmdval); 1905 else 1906 try_to_free_pte(mm, pmd, start, tlb); 1907 } 1908 1909 return addr; 1910 } 1911 1912 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1913 struct vm_area_struct *vma, pud_t *pud, 1914 unsigned long addr, unsigned long end, 1915 struct zap_details *details) 1916 { 1917 pmd_t *pmd; 1918 unsigned long next; 1919 1920 pmd = pmd_offset(pud, addr); 1921 do { 1922 next = pmd_addr_end(addr, end); 1923 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd)) { 1924 if (next - addr != HPAGE_PMD_SIZE) 1925 __split_huge_pmd(vma, pmd, addr, false); 1926 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1927 addr = next; 1928 continue; 1929 } 1930 /* fall through */ 1931 } else if (details && details->single_folio && 1932 folio_test_pmd_mappable(details->single_folio) && 1933 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1934 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1935 /* 1936 * Take and drop THP pmd lock so that we cannot return 1937 * prematurely, while zap_huge_pmd() has cleared *pmd, 1938 * but not yet decremented compound_mapcount(). 1939 */ 1940 spin_unlock(ptl); 1941 } 1942 if (pmd_none(*pmd)) { 1943 addr = next; 1944 continue; 1945 } 1946 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1947 if (addr != next) 1948 pmd--; 1949 } while (pmd++, cond_resched(), addr != end); 1950 1951 return addr; 1952 } 1953 1954 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1955 struct vm_area_struct *vma, p4d_t *p4d, 1956 unsigned long addr, unsigned long end, 1957 struct zap_details *details) 1958 { 1959 pud_t *pud; 1960 unsigned long next; 1961 1962 pud = pud_offset(p4d, addr); 1963 do { 1964 next = pud_addr_end(addr, end); 1965 if (pud_trans_huge(*pud)) { 1966 if (next - addr != HPAGE_PUD_SIZE) { 1967 mmap_assert_locked(tlb->mm); 1968 split_huge_pud(vma, pud, addr); 1969 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1970 goto next; 1971 /* fall through */ 1972 } 1973 if (pud_none_or_clear_bad(pud)) 1974 continue; 1975 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1976 next: 1977 cond_resched(); 1978 } while (pud++, addr = next, addr != end); 1979 1980 return addr; 1981 } 1982 1983 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1984 struct vm_area_struct *vma, pgd_t *pgd, 1985 unsigned long addr, unsigned long end, 1986 struct zap_details *details) 1987 { 1988 p4d_t *p4d; 1989 unsigned long next; 1990 1991 p4d = p4d_offset(pgd, addr); 1992 do { 1993 next = p4d_addr_end(addr, end); 1994 if (p4d_none_or_clear_bad(p4d)) 1995 continue; 1996 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1997 } while (p4d++, addr = next, addr != end); 1998 1999 return addr; 2000 } 2001 2002 void unmap_page_range(struct mmu_gather *tlb, 2003 struct vm_area_struct *vma, 2004 unsigned long addr, unsigned long end, 2005 struct zap_details *details) 2006 { 2007 pgd_t *pgd; 2008 unsigned long next; 2009 2010 BUG_ON(addr >= end); 2011 tlb_start_vma(tlb, vma); 2012 pgd = pgd_offset(vma->vm_mm, addr); 2013 do { 2014 next = pgd_addr_end(addr, end); 2015 if (pgd_none_or_clear_bad(pgd)) 2016 continue; 2017 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 2018 } while (pgd++, addr = next, addr != end); 2019 tlb_end_vma(tlb, vma); 2020 } 2021 2022 2023 static void unmap_single_vma(struct mmu_gather *tlb, 2024 struct vm_area_struct *vma, unsigned long start_addr, 2025 unsigned long end_addr, 2026 struct zap_details *details, bool mm_wr_locked) 2027 { 2028 unsigned long start = max(vma->vm_start, start_addr); 2029 unsigned long end; 2030 2031 if (start >= vma->vm_end) 2032 return; 2033 end = min(vma->vm_end, end_addr); 2034 if (end <= vma->vm_start) 2035 return; 2036 2037 if (vma->vm_file) 2038 uprobe_munmap(vma, start, end); 2039 2040 if (start != end) { 2041 if (unlikely(is_vm_hugetlb_page(vma))) { 2042 /* 2043 * It is undesirable to test vma->vm_file as it 2044 * should be non-null for valid hugetlb area. 2045 * However, vm_file will be NULL in the error 2046 * cleanup path of mmap_region. When 2047 * hugetlbfs ->mmap method fails, 2048 * mmap_region() nullifies vma->vm_file 2049 * before calling this function to clean up. 2050 * Since no pte has actually been setup, it is 2051 * safe to do nothing in this case. 2052 */ 2053 if (vma->vm_file) { 2054 zap_flags_t zap_flags = details ? 2055 details->zap_flags : 0; 2056 __unmap_hugepage_range(tlb, vma, start, end, 2057 NULL, zap_flags); 2058 } 2059 } else 2060 unmap_page_range(tlb, vma, start, end, details); 2061 } 2062 } 2063 2064 /** 2065 * unmap_vmas - unmap a range of memory covered by a list of vma's 2066 * @tlb: address of the caller's struct mmu_gather 2067 * @mas: the maple state 2068 * @vma: the starting vma 2069 * @start_addr: virtual address at which to start unmapping 2070 * @end_addr: virtual address at which to end unmapping 2071 * @tree_end: The maximum index to check 2072 * @mm_wr_locked: lock flag 2073 * 2074 * Unmap all pages in the vma list. 2075 * 2076 * Only addresses between `start' and `end' will be unmapped. 2077 * 2078 * The VMA list must be sorted in ascending virtual address order. 2079 * 2080 * unmap_vmas() assumes that the caller will flush the whole unmapped address 2081 * range after unmap_vmas() returns. So the only responsibility here is to 2082 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 2083 * drops the lock and schedules. 2084 */ 2085 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2086 struct vm_area_struct *vma, unsigned long start_addr, 2087 unsigned long end_addr, unsigned long tree_end, 2088 bool mm_wr_locked) 2089 { 2090 struct mmu_notifier_range range; 2091 struct zap_details details = { 2092 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 2093 /* Careful - we need to zap private pages too! */ 2094 .even_cows = true, 2095 }; 2096 2097 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 2098 start_addr, end_addr); 2099 mmu_notifier_invalidate_range_start(&range); 2100 do { 2101 unsigned long start = start_addr; 2102 unsigned long end = end_addr; 2103 hugetlb_zap_begin(vma, &start, &end); 2104 unmap_single_vma(tlb, vma, start, end, &details, 2105 mm_wr_locked); 2106 hugetlb_zap_end(vma, &details); 2107 vma = mas_find(mas, tree_end - 1); 2108 } while (vma && likely(!xa_is_zero(vma))); 2109 mmu_notifier_invalidate_range_end(&range); 2110 } 2111 2112 /** 2113 * zap_page_range_single_batched - remove user pages in a given range 2114 * @tlb: pointer to the caller's struct mmu_gather 2115 * @vma: vm_area_struct holding the applicable pages 2116 * @address: starting address of pages to remove 2117 * @size: number of bytes to remove 2118 * @details: details of shared cache invalidation 2119 * 2120 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for 2121 * hugetlb, @tlb is flushed and re-initialized by this function. 2122 */ 2123 void zap_page_range_single_batched(struct mmu_gather *tlb, 2124 struct vm_area_struct *vma, unsigned long address, 2125 unsigned long size, struct zap_details *details) 2126 { 2127 const unsigned long end = address + size; 2128 struct mmu_notifier_range range; 2129 2130 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm); 2131 2132 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2133 address, end); 2134 hugetlb_zap_begin(vma, &range.start, &range.end); 2135 update_hiwater_rss(vma->vm_mm); 2136 mmu_notifier_invalidate_range_start(&range); 2137 /* 2138 * unmap 'address-end' not 'range.start-range.end' as range 2139 * could have been expanded for hugetlb pmd sharing. 2140 */ 2141 unmap_single_vma(tlb, vma, address, end, details, false); 2142 mmu_notifier_invalidate_range_end(&range); 2143 if (is_vm_hugetlb_page(vma)) { 2144 /* 2145 * flush tlb and free resources before hugetlb_zap_end(), to 2146 * avoid concurrent page faults' allocation failure. 2147 */ 2148 tlb_finish_mmu(tlb); 2149 hugetlb_zap_end(vma, details); 2150 tlb_gather_mmu(tlb, vma->vm_mm); 2151 } 2152 } 2153 2154 /** 2155 * zap_page_range_single - remove user pages in a given range 2156 * @vma: vm_area_struct holding the applicable pages 2157 * @address: starting address of pages to zap 2158 * @size: number of bytes to zap 2159 * @details: details of shared cache invalidation 2160 * 2161 * The range must fit into one VMA. 2162 */ 2163 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2164 unsigned long size, struct zap_details *details) 2165 { 2166 struct mmu_gather tlb; 2167 2168 tlb_gather_mmu(&tlb, vma->vm_mm); 2169 zap_page_range_single_batched(&tlb, vma, address, size, details); 2170 tlb_finish_mmu(&tlb); 2171 } 2172 2173 /** 2174 * zap_vma_ptes - remove ptes mapping the vma 2175 * @vma: vm_area_struct holding ptes to be zapped 2176 * @address: starting address of pages to zap 2177 * @size: number of bytes to zap 2178 * 2179 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2180 * 2181 * The entire address range must be fully contained within the vma. 2182 * 2183 */ 2184 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2185 unsigned long size) 2186 { 2187 if (!range_in_vma(vma, address, address + size) || 2188 !(vma->vm_flags & VM_PFNMAP)) 2189 return; 2190 2191 zap_page_range_single(vma, address, size, NULL); 2192 } 2193 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2194 2195 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2196 { 2197 pgd_t *pgd; 2198 p4d_t *p4d; 2199 pud_t *pud; 2200 pmd_t *pmd; 2201 2202 pgd = pgd_offset(mm, addr); 2203 p4d = p4d_alloc(mm, pgd, addr); 2204 if (!p4d) 2205 return NULL; 2206 pud = pud_alloc(mm, p4d, addr); 2207 if (!pud) 2208 return NULL; 2209 pmd = pmd_alloc(mm, pud, addr); 2210 if (!pmd) 2211 return NULL; 2212 2213 VM_BUG_ON(pmd_trans_huge(*pmd)); 2214 return pmd; 2215 } 2216 2217 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2218 spinlock_t **ptl) 2219 { 2220 pmd_t *pmd = walk_to_pmd(mm, addr); 2221 2222 if (!pmd) 2223 return NULL; 2224 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2225 } 2226 2227 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2228 { 2229 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2230 /* 2231 * Whoever wants to forbid the zeropage after some zeropages 2232 * might already have been mapped has to scan the page tables and 2233 * bail out on any zeropages. Zeropages in COW mappings can 2234 * be unshared using FAULT_FLAG_UNSHARE faults. 2235 */ 2236 if (mm_forbids_zeropage(vma->vm_mm)) 2237 return false; 2238 /* zeropages in COW mappings are common and unproblematic. */ 2239 if (is_cow_mapping(vma->vm_flags)) 2240 return true; 2241 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2242 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2243 return true; 2244 /* 2245 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2246 * find the shared zeropage and longterm-pin it, which would 2247 * be problematic as soon as the zeropage gets replaced by a different 2248 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2249 * now differ to what GUP looked up. FSDAX is incompatible to 2250 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2251 * check_vma_flags). 2252 */ 2253 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2254 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2255 } 2256 2257 static int validate_page_before_insert(struct vm_area_struct *vma, 2258 struct page *page) 2259 { 2260 struct folio *folio = page_folio(page); 2261 2262 if (!folio_ref_count(folio)) 2263 return -EINVAL; 2264 if (unlikely(is_zero_folio(folio))) { 2265 if (!vm_mixed_zeropage_allowed(vma)) 2266 return -EINVAL; 2267 return 0; 2268 } 2269 if (folio_test_anon(folio) || page_has_type(page)) 2270 return -EINVAL; 2271 flush_dcache_folio(folio); 2272 return 0; 2273 } 2274 2275 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2276 unsigned long addr, struct page *page, 2277 pgprot_t prot, bool mkwrite) 2278 { 2279 struct folio *folio = page_folio(page); 2280 pte_t pteval = ptep_get(pte); 2281 2282 if (!pte_none(pteval)) { 2283 if (!mkwrite) 2284 return -EBUSY; 2285 2286 /* see insert_pfn(). */ 2287 if (pte_pfn(pteval) != page_to_pfn(page)) { 2288 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval))); 2289 return -EFAULT; 2290 } 2291 pteval = maybe_mkwrite(pteval, vma); 2292 pteval = pte_mkyoung(pteval); 2293 if (ptep_set_access_flags(vma, addr, pte, pteval, 1)) 2294 update_mmu_cache(vma, addr, pte); 2295 return 0; 2296 } 2297 2298 /* Ok, finally just insert the thing.. */ 2299 pteval = mk_pte(page, prot); 2300 if (unlikely(is_zero_folio(folio))) { 2301 pteval = pte_mkspecial(pteval); 2302 } else { 2303 folio_get(folio); 2304 pteval = mk_pte(page, prot); 2305 if (mkwrite) { 2306 pteval = pte_mkyoung(pteval); 2307 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma); 2308 } 2309 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2310 folio_add_file_rmap_pte(folio, page, vma); 2311 } 2312 set_pte_at(vma->vm_mm, addr, pte, pteval); 2313 return 0; 2314 } 2315 2316 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2317 struct page *page, pgprot_t prot, bool mkwrite) 2318 { 2319 int retval; 2320 pte_t *pte; 2321 spinlock_t *ptl; 2322 2323 retval = validate_page_before_insert(vma, page); 2324 if (retval) 2325 goto out; 2326 retval = -ENOMEM; 2327 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2328 if (!pte) 2329 goto out; 2330 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot, 2331 mkwrite); 2332 pte_unmap_unlock(pte, ptl); 2333 out: 2334 return retval; 2335 } 2336 2337 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2338 unsigned long addr, struct page *page, pgprot_t prot) 2339 { 2340 int err; 2341 2342 err = validate_page_before_insert(vma, page); 2343 if (err) 2344 return err; 2345 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false); 2346 } 2347 2348 /* insert_pages() amortizes the cost of spinlock operations 2349 * when inserting pages in a loop. 2350 */ 2351 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2352 struct page **pages, unsigned long *num, pgprot_t prot) 2353 { 2354 pmd_t *pmd = NULL; 2355 pte_t *start_pte, *pte; 2356 spinlock_t *pte_lock; 2357 struct mm_struct *const mm = vma->vm_mm; 2358 unsigned long curr_page_idx = 0; 2359 unsigned long remaining_pages_total = *num; 2360 unsigned long pages_to_write_in_pmd; 2361 int ret; 2362 more: 2363 ret = -EFAULT; 2364 pmd = walk_to_pmd(mm, addr); 2365 if (!pmd) 2366 goto out; 2367 2368 pages_to_write_in_pmd = min_t(unsigned long, 2369 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2370 2371 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2372 ret = -ENOMEM; 2373 if (pte_alloc(mm, pmd)) 2374 goto out; 2375 2376 while (pages_to_write_in_pmd) { 2377 int pte_idx = 0; 2378 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2379 2380 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2381 if (!start_pte) { 2382 ret = -EFAULT; 2383 goto out; 2384 } 2385 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2386 int err = insert_page_in_batch_locked(vma, pte, 2387 addr, pages[curr_page_idx], prot); 2388 if (unlikely(err)) { 2389 pte_unmap_unlock(start_pte, pte_lock); 2390 ret = err; 2391 remaining_pages_total -= pte_idx; 2392 goto out; 2393 } 2394 addr += PAGE_SIZE; 2395 ++curr_page_idx; 2396 } 2397 pte_unmap_unlock(start_pte, pte_lock); 2398 pages_to_write_in_pmd -= batch_size; 2399 remaining_pages_total -= batch_size; 2400 } 2401 if (remaining_pages_total) 2402 goto more; 2403 ret = 0; 2404 out: 2405 *num = remaining_pages_total; 2406 return ret; 2407 } 2408 2409 /** 2410 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2411 * @vma: user vma to map to 2412 * @addr: target start user address of these pages 2413 * @pages: source kernel pages 2414 * @num: in: number of pages to map. out: number of pages that were *not* 2415 * mapped. (0 means all pages were successfully mapped). 2416 * 2417 * Preferred over vm_insert_page() when inserting multiple pages. 2418 * 2419 * In case of error, we may have mapped a subset of the provided 2420 * pages. It is the caller's responsibility to account for this case. 2421 * 2422 * The same restrictions apply as in vm_insert_page(). 2423 */ 2424 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2425 struct page **pages, unsigned long *num) 2426 { 2427 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2428 2429 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2430 return -EFAULT; 2431 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2432 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2433 BUG_ON(vma->vm_flags & VM_PFNMAP); 2434 vm_flags_set(vma, VM_MIXEDMAP); 2435 } 2436 /* Defer page refcount checking till we're about to map that page. */ 2437 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2438 } 2439 EXPORT_SYMBOL(vm_insert_pages); 2440 2441 /** 2442 * vm_insert_page - insert single page into user vma 2443 * @vma: user vma to map to 2444 * @addr: target user address of this page 2445 * @page: source kernel page 2446 * 2447 * This allows drivers to insert individual pages they've allocated 2448 * into a user vma. The zeropage is supported in some VMAs, 2449 * see vm_mixed_zeropage_allowed(). 2450 * 2451 * The page has to be a nice clean _individual_ kernel allocation. 2452 * If you allocate a compound page, you need to have marked it as 2453 * such (__GFP_COMP), or manually just split the page up yourself 2454 * (see split_page()). 2455 * 2456 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2457 * took an arbitrary page protection parameter. This doesn't allow 2458 * that. Your vma protection will have to be set up correctly, which 2459 * means that if you want a shared writable mapping, you'd better 2460 * ask for a shared writable mapping! 2461 * 2462 * The page does not need to be reserved. 2463 * 2464 * Usually this function is called from f_op->mmap() handler 2465 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2466 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2467 * function from other places, for example from page-fault handler. 2468 * 2469 * Return: %0 on success, negative error code otherwise. 2470 */ 2471 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2472 struct page *page) 2473 { 2474 if (addr < vma->vm_start || addr >= vma->vm_end) 2475 return -EFAULT; 2476 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2477 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2478 BUG_ON(vma->vm_flags & VM_PFNMAP); 2479 vm_flags_set(vma, VM_MIXEDMAP); 2480 } 2481 return insert_page(vma, addr, page, vma->vm_page_prot, false); 2482 } 2483 EXPORT_SYMBOL(vm_insert_page); 2484 2485 /* 2486 * __vm_map_pages - maps range of kernel pages into user vma 2487 * @vma: user vma to map to 2488 * @pages: pointer to array of source kernel pages 2489 * @num: number of pages in page array 2490 * @offset: user's requested vm_pgoff 2491 * 2492 * This allows drivers to map range of kernel pages into a user vma. 2493 * The zeropage is supported in some VMAs, see 2494 * vm_mixed_zeropage_allowed(). 2495 * 2496 * Return: 0 on success and error code otherwise. 2497 */ 2498 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2499 unsigned long num, unsigned long offset) 2500 { 2501 unsigned long count = vma_pages(vma); 2502 unsigned long uaddr = vma->vm_start; 2503 int ret, i; 2504 2505 /* Fail if the user requested offset is beyond the end of the object */ 2506 if (offset >= num) 2507 return -ENXIO; 2508 2509 /* Fail if the user requested size exceeds available object size */ 2510 if (count > num - offset) 2511 return -ENXIO; 2512 2513 for (i = 0; i < count; i++) { 2514 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2515 if (ret < 0) 2516 return ret; 2517 uaddr += PAGE_SIZE; 2518 } 2519 2520 return 0; 2521 } 2522 2523 /** 2524 * vm_map_pages - maps range of kernel pages starts with non zero offset 2525 * @vma: user vma to map to 2526 * @pages: pointer to array of source kernel pages 2527 * @num: number of pages in page array 2528 * 2529 * Maps an object consisting of @num pages, catering for the user's 2530 * requested vm_pgoff 2531 * 2532 * If we fail to insert any page into the vma, the function will return 2533 * immediately leaving any previously inserted pages present. Callers 2534 * from the mmap handler may immediately return the error as their caller 2535 * will destroy the vma, removing any successfully inserted pages. Other 2536 * callers should make their own arrangements for calling unmap_region(). 2537 * 2538 * Context: Process context. Called by mmap handlers. 2539 * Return: 0 on success and error code otherwise. 2540 */ 2541 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2542 unsigned long num) 2543 { 2544 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2545 } 2546 EXPORT_SYMBOL(vm_map_pages); 2547 2548 /** 2549 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2550 * @vma: user vma to map to 2551 * @pages: pointer to array of source kernel pages 2552 * @num: number of pages in page array 2553 * 2554 * Similar to vm_map_pages(), except that it explicitly sets the offset 2555 * to 0. This function is intended for the drivers that did not consider 2556 * vm_pgoff. 2557 * 2558 * Context: Process context. Called by mmap handlers. 2559 * Return: 0 on success and error code otherwise. 2560 */ 2561 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2562 unsigned long num) 2563 { 2564 return __vm_map_pages(vma, pages, num, 0); 2565 } 2566 EXPORT_SYMBOL(vm_map_pages_zero); 2567 2568 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2569 unsigned long pfn, pgprot_t prot, bool mkwrite) 2570 { 2571 struct mm_struct *mm = vma->vm_mm; 2572 pte_t *pte, entry; 2573 spinlock_t *ptl; 2574 2575 pte = get_locked_pte(mm, addr, &ptl); 2576 if (!pte) 2577 return VM_FAULT_OOM; 2578 entry = ptep_get(pte); 2579 if (!pte_none(entry)) { 2580 if (mkwrite) { 2581 /* 2582 * For read faults on private mappings the PFN passed 2583 * in may not match the PFN we have mapped if the 2584 * mapped PFN is a writeable COW page. In the mkwrite 2585 * case we are creating a writable PTE for a shared 2586 * mapping and we expect the PFNs to match. If they 2587 * don't match, we are likely racing with block 2588 * allocation and mapping invalidation so just skip the 2589 * update. 2590 */ 2591 if (pte_pfn(entry) != pfn) { 2592 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2593 goto out_unlock; 2594 } 2595 entry = pte_mkyoung(entry); 2596 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2597 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2598 update_mmu_cache(vma, addr, pte); 2599 } 2600 goto out_unlock; 2601 } 2602 2603 /* Ok, finally just insert the thing.. */ 2604 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2605 2606 if (mkwrite) { 2607 entry = pte_mkyoung(entry); 2608 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2609 } 2610 2611 set_pte_at(mm, addr, pte, entry); 2612 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2613 2614 out_unlock: 2615 pte_unmap_unlock(pte, ptl); 2616 return VM_FAULT_NOPAGE; 2617 } 2618 2619 /** 2620 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2621 * @vma: user vma to map to 2622 * @addr: target user address of this page 2623 * @pfn: source kernel pfn 2624 * @pgprot: pgprot flags for the inserted page 2625 * 2626 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2627 * to override pgprot on a per-page basis. 2628 * 2629 * This only makes sense for IO mappings, and it makes no sense for 2630 * COW mappings. In general, using multiple vmas is preferable; 2631 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2632 * impractical. 2633 * 2634 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2635 * caching- and encryption bits different than those of @vma->vm_page_prot, 2636 * because the caching- or encryption mode may not be known at mmap() time. 2637 * 2638 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2639 * to set caching and encryption bits for those vmas (except for COW pages). 2640 * This is ensured by core vm only modifying these page table entries using 2641 * functions that don't touch caching- or encryption bits, using pte_modify() 2642 * if needed. (See for example mprotect()). 2643 * 2644 * Also when new page-table entries are created, this is only done using the 2645 * fault() callback, and never using the value of vma->vm_page_prot, 2646 * except for page-table entries that point to anonymous pages as the result 2647 * of COW. 2648 * 2649 * Context: Process context. May allocate using %GFP_KERNEL. 2650 * Return: vm_fault_t value. 2651 */ 2652 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2653 unsigned long pfn, pgprot_t pgprot) 2654 { 2655 /* 2656 * Technically, architectures with pte_special can avoid all these 2657 * restrictions (same for remap_pfn_range). However we would like 2658 * consistency in testing and feature parity among all, so we should 2659 * try to keep these invariants in place for everybody. 2660 */ 2661 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2662 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2663 (VM_PFNMAP|VM_MIXEDMAP)); 2664 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2665 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2666 2667 if (addr < vma->vm_start || addr >= vma->vm_end) 2668 return VM_FAULT_SIGBUS; 2669 2670 if (!pfn_modify_allowed(pfn, pgprot)) 2671 return VM_FAULT_SIGBUS; 2672 2673 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2674 2675 return insert_pfn(vma, addr, pfn, pgprot, false); 2676 } 2677 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2678 2679 /** 2680 * vmf_insert_pfn - insert single pfn into user vma 2681 * @vma: user vma to map to 2682 * @addr: target user address of this page 2683 * @pfn: source kernel pfn 2684 * 2685 * Similar to vm_insert_page, this allows drivers to insert individual pages 2686 * they've allocated into a user vma. Same comments apply. 2687 * 2688 * This function should only be called from a vm_ops->fault handler, and 2689 * in that case the handler should return the result of this function. 2690 * 2691 * vma cannot be a COW mapping. 2692 * 2693 * As this is called only for pages that do not currently exist, we 2694 * do not need to flush old virtual caches or the TLB. 2695 * 2696 * Context: Process context. May allocate using %GFP_KERNEL. 2697 * Return: vm_fault_t value. 2698 */ 2699 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2700 unsigned long pfn) 2701 { 2702 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2703 } 2704 EXPORT_SYMBOL(vmf_insert_pfn); 2705 2706 static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn, 2707 bool mkwrite) 2708 { 2709 if (unlikely(is_zero_pfn(pfn)) && 2710 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2711 return false; 2712 /* these checks mirror the abort conditions in vm_normal_page */ 2713 if (vma->vm_flags & VM_MIXEDMAP) 2714 return true; 2715 if (is_zero_pfn(pfn)) 2716 return true; 2717 return false; 2718 } 2719 2720 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2721 unsigned long addr, unsigned long pfn, bool mkwrite) 2722 { 2723 pgprot_t pgprot = vma->vm_page_prot; 2724 int err; 2725 2726 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2727 return VM_FAULT_SIGBUS; 2728 2729 if (addr < vma->vm_start || addr >= vma->vm_end) 2730 return VM_FAULT_SIGBUS; 2731 2732 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2733 2734 if (!pfn_modify_allowed(pfn, pgprot)) 2735 return VM_FAULT_SIGBUS; 2736 2737 /* 2738 * If we don't have pte special, then we have to use the pfn_valid() 2739 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2740 * refcount the page if pfn_valid is true (hence insert_page rather 2741 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2742 * without pte special, it would there be refcounted as a normal page. 2743 */ 2744 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) { 2745 struct page *page; 2746 2747 /* 2748 * At this point we are committed to insert_page() 2749 * regardless of whether the caller specified flags that 2750 * result in pfn_t_has_page() == false. 2751 */ 2752 page = pfn_to_page(pfn); 2753 err = insert_page(vma, addr, page, pgprot, mkwrite); 2754 } else { 2755 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2756 } 2757 2758 if (err == -ENOMEM) 2759 return VM_FAULT_OOM; 2760 if (err < 0 && err != -EBUSY) 2761 return VM_FAULT_SIGBUS; 2762 2763 return VM_FAULT_NOPAGE; 2764 } 2765 2766 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 2767 bool write) 2768 { 2769 pgprot_t pgprot = vmf->vma->vm_page_prot; 2770 unsigned long addr = vmf->address; 2771 int err; 2772 2773 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end) 2774 return VM_FAULT_SIGBUS; 2775 2776 err = insert_page(vmf->vma, addr, page, pgprot, write); 2777 if (err == -ENOMEM) 2778 return VM_FAULT_OOM; 2779 if (err < 0 && err != -EBUSY) 2780 return VM_FAULT_SIGBUS; 2781 2782 return VM_FAULT_NOPAGE; 2783 } 2784 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite); 2785 2786 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2787 unsigned long pfn) 2788 { 2789 return __vm_insert_mixed(vma, addr, pfn, false); 2790 } 2791 EXPORT_SYMBOL(vmf_insert_mixed); 2792 2793 /* 2794 * If the insertion of PTE failed because someone else already added a 2795 * different entry in the mean time, we treat that as success as we assume 2796 * the same entry was actually inserted. 2797 */ 2798 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2799 unsigned long addr, unsigned long pfn) 2800 { 2801 return __vm_insert_mixed(vma, addr, pfn, true); 2802 } 2803 2804 /* 2805 * maps a range of physical memory into the requested pages. the old 2806 * mappings are removed. any references to nonexistent pages results 2807 * in null mappings (currently treated as "copy-on-access") 2808 */ 2809 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2810 unsigned long addr, unsigned long end, 2811 unsigned long pfn, pgprot_t prot) 2812 { 2813 pte_t *pte, *mapped_pte; 2814 spinlock_t *ptl; 2815 int err = 0; 2816 2817 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2818 if (!pte) 2819 return -ENOMEM; 2820 arch_enter_lazy_mmu_mode(); 2821 do { 2822 BUG_ON(!pte_none(ptep_get(pte))); 2823 if (!pfn_modify_allowed(pfn, prot)) { 2824 err = -EACCES; 2825 break; 2826 } 2827 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2828 pfn++; 2829 } while (pte++, addr += PAGE_SIZE, addr != end); 2830 arch_leave_lazy_mmu_mode(); 2831 pte_unmap_unlock(mapped_pte, ptl); 2832 return err; 2833 } 2834 2835 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2836 unsigned long addr, unsigned long end, 2837 unsigned long pfn, pgprot_t prot) 2838 { 2839 pmd_t *pmd; 2840 unsigned long next; 2841 int err; 2842 2843 pfn -= addr >> PAGE_SHIFT; 2844 pmd = pmd_alloc(mm, pud, addr); 2845 if (!pmd) 2846 return -ENOMEM; 2847 VM_BUG_ON(pmd_trans_huge(*pmd)); 2848 do { 2849 next = pmd_addr_end(addr, end); 2850 err = remap_pte_range(mm, pmd, addr, next, 2851 pfn + (addr >> PAGE_SHIFT), prot); 2852 if (err) 2853 return err; 2854 } while (pmd++, addr = next, addr != end); 2855 return 0; 2856 } 2857 2858 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2859 unsigned long addr, unsigned long end, 2860 unsigned long pfn, pgprot_t prot) 2861 { 2862 pud_t *pud; 2863 unsigned long next; 2864 int err; 2865 2866 pfn -= addr >> PAGE_SHIFT; 2867 pud = pud_alloc(mm, p4d, addr); 2868 if (!pud) 2869 return -ENOMEM; 2870 do { 2871 next = pud_addr_end(addr, end); 2872 err = remap_pmd_range(mm, pud, addr, next, 2873 pfn + (addr >> PAGE_SHIFT), prot); 2874 if (err) 2875 return err; 2876 } while (pud++, addr = next, addr != end); 2877 return 0; 2878 } 2879 2880 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2881 unsigned long addr, unsigned long end, 2882 unsigned long pfn, pgprot_t prot) 2883 { 2884 p4d_t *p4d; 2885 unsigned long next; 2886 int err; 2887 2888 pfn -= addr >> PAGE_SHIFT; 2889 p4d = p4d_alloc(mm, pgd, addr); 2890 if (!p4d) 2891 return -ENOMEM; 2892 do { 2893 next = p4d_addr_end(addr, end); 2894 err = remap_pud_range(mm, p4d, addr, next, 2895 pfn + (addr >> PAGE_SHIFT), prot); 2896 if (err) 2897 return err; 2898 } while (p4d++, addr = next, addr != end); 2899 return 0; 2900 } 2901 2902 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2903 unsigned long pfn, unsigned long size, pgprot_t prot) 2904 { 2905 pgd_t *pgd; 2906 unsigned long next; 2907 unsigned long end = addr + PAGE_ALIGN(size); 2908 struct mm_struct *mm = vma->vm_mm; 2909 int err; 2910 2911 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2912 return -EINVAL; 2913 2914 /* 2915 * Physically remapped pages are special. Tell the 2916 * rest of the world about it: 2917 * VM_IO tells people not to look at these pages 2918 * (accesses can have side effects). 2919 * VM_PFNMAP tells the core MM that the base pages are just 2920 * raw PFN mappings, and do not have a "struct page" associated 2921 * with them. 2922 * VM_DONTEXPAND 2923 * Disable vma merging and expanding with mremap(). 2924 * VM_DONTDUMP 2925 * Omit vma from core dump, even when VM_IO turned off. 2926 * 2927 * There's a horrible special case to handle copy-on-write 2928 * behaviour that some programs depend on. We mark the "original" 2929 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2930 * See vm_normal_page() for details. 2931 */ 2932 if (is_cow_mapping(vma->vm_flags)) { 2933 if (addr != vma->vm_start || end != vma->vm_end) 2934 return -EINVAL; 2935 vma->vm_pgoff = pfn; 2936 } 2937 2938 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2939 2940 BUG_ON(addr >= end); 2941 pfn -= addr >> PAGE_SHIFT; 2942 pgd = pgd_offset(mm, addr); 2943 flush_cache_range(vma, addr, end); 2944 do { 2945 next = pgd_addr_end(addr, end); 2946 err = remap_p4d_range(mm, pgd, addr, next, 2947 pfn + (addr >> PAGE_SHIFT), prot); 2948 if (err) 2949 return err; 2950 } while (pgd++, addr = next, addr != end); 2951 2952 return 0; 2953 } 2954 2955 /* 2956 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2957 * must have pre-validated the caching bits of the pgprot_t. 2958 */ 2959 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2960 unsigned long pfn, unsigned long size, pgprot_t prot) 2961 { 2962 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2963 2964 if (!error) 2965 return 0; 2966 2967 /* 2968 * A partial pfn range mapping is dangerous: it does not 2969 * maintain page reference counts, and callers may free 2970 * pages due to the error. So zap it early. 2971 */ 2972 zap_page_range_single(vma, addr, size, NULL); 2973 return error; 2974 } 2975 2976 #ifdef __HAVE_PFNMAP_TRACKING 2977 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn, 2978 unsigned long size, pgprot_t *prot) 2979 { 2980 struct pfnmap_track_ctx *ctx; 2981 2982 if (pfnmap_track(pfn, size, prot)) 2983 return ERR_PTR(-EINVAL); 2984 2985 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 2986 if (unlikely(!ctx)) { 2987 pfnmap_untrack(pfn, size); 2988 return ERR_PTR(-ENOMEM); 2989 } 2990 2991 ctx->pfn = pfn; 2992 ctx->size = size; 2993 kref_init(&ctx->kref); 2994 return ctx; 2995 } 2996 2997 void pfnmap_track_ctx_release(struct kref *ref) 2998 { 2999 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref); 3000 3001 pfnmap_untrack(ctx->pfn, ctx->size); 3002 kfree(ctx); 3003 } 3004 #endif /* __HAVE_PFNMAP_TRACKING */ 3005 3006 /** 3007 * remap_pfn_range - remap kernel memory to userspace 3008 * @vma: user vma to map to 3009 * @addr: target page aligned user address to start at 3010 * @pfn: page frame number of kernel physical memory address 3011 * @size: size of mapping area 3012 * @prot: page protection flags for this mapping 3013 * 3014 * Note: this is only safe if the mm semaphore is held when called. 3015 * 3016 * Return: %0 on success, negative error code otherwise. 3017 */ 3018 #ifdef __HAVE_PFNMAP_TRACKING 3019 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3020 unsigned long pfn, unsigned long size, pgprot_t prot) 3021 { 3022 struct pfnmap_track_ctx *ctx = NULL; 3023 int err; 3024 3025 size = PAGE_ALIGN(size); 3026 3027 /* 3028 * If we cover the full VMA, we'll perform actual tracking, and 3029 * remember to untrack when the last reference to our tracking 3030 * context from a VMA goes away. We'll keep tracking the whole pfn 3031 * range even during VMA splits and partial unmapping. 3032 * 3033 * If we only cover parts of the VMA, we'll only setup the cachemode 3034 * in the pgprot for the pfn range. 3035 */ 3036 if (addr == vma->vm_start && addr + size == vma->vm_end) { 3037 if (vma->pfnmap_track_ctx) 3038 return -EINVAL; 3039 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot); 3040 if (IS_ERR(ctx)) 3041 return PTR_ERR(ctx); 3042 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) { 3043 return -EINVAL; 3044 } 3045 3046 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 3047 if (ctx) { 3048 if (err) 3049 kref_put(&ctx->kref, pfnmap_track_ctx_release); 3050 else 3051 vma->pfnmap_track_ctx = ctx; 3052 } 3053 return err; 3054 } 3055 3056 #else 3057 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3058 unsigned long pfn, unsigned long size, pgprot_t prot) 3059 { 3060 return remap_pfn_range_notrack(vma, addr, pfn, size, prot); 3061 } 3062 #endif 3063 EXPORT_SYMBOL(remap_pfn_range); 3064 3065 /** 3066 * vm_iomap_memory - remap memory to userspace 3067 * @vma: user vma to map to 3068 * @start: start of the physical memory to be mapped 3069 * @len: size of area 3070 * 3071 * This is a simplified io_remap_pfn_range() for common driver use. The 3072 * driver just needs to give us the physical memory range to be mapped, 3073 * we'll figure out the rest from the vma information. 3074 * 3075 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 3076 * whatever write-combining details or similar. 3077 * 3078 * Return: %0 on success, negative error code otherwise. 3079 */ 3080 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 3081 { 3082 unsigned long vm_len, pfn, pages; 3083 3084 /* Check that the physical memory area passed in looks valid */ 3085 if (start + len < start) 3086 return -EINVAL; 3087 /* 3088 * You *really* shouldn't map things that aren't page-aligned, 3089 * but we've historically allowed it because IO memory might 3090 * just have smaller alignment. 3091 */ 3092 len += start & ~PAGE_MASK; 3093 pfn = start >> PAGE_SHIFT; 3094 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 3095 if (pfn + pages < pfn) 3096 return -EINVAL; 3097 3098 /* We start the mapping 'vm_pgoff' pages into the area */ 3099 if (vma->vm_pgoff > pages) 3100 return -EINVAL; 3101 pfn += vma->vm_pgoff; 3102 pages -= vma->vm_pgoff; 3103 3104 /* Can we fit all of the mapping? */ 3105 vm_len = vma->vm_end - vma->vm_start; 3106 if (vm_len >> PAGE_SHIFT > pages) 3107 return -EINVAL; 3108 3109 /* Ok, let it rip */ 3110 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 3111 } 3112 EXPORT_SYMBOL(vm_iomap_memory); 3113 3114 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 3115 unsigned long addr, unsigned long end, 3116 pte_fn_t fn, void *data, bool create, 3117 pgtbl_mod_mask *mask) 3118 { 3119 pte_t *pte, *mapped_pte; 3120 int err = 0; 3121 spinlock_t *ptl; 3122 3123 if (create) { 3124 mapped_pte = pte = (mm == &init_mm) ? 3125 pte_alloc_kernel_track(pmd, addr, mask) : 3126 pte_alloc_map_lock(mm, pmd, addr, &ptl); 3127 if (!pte) 3128 return -ENOMEM; 3129 } else { 3130 mapped_pte = pte = (mm == &init_mm) ? 3131 pte_offset_kernel(pmd, addr) : 3132 pte_offset_map_lock(mm, pmd, addr, &ptl); 3133 if (!pte) 3134 return -EINVAL; 3135 } 3136 3137 arch_enter_lazy_mmu_mode(); 3138 3139 if (fn) { 3140 do { 3141 if (create || !pte_none(ptep_get(pte))) { 3142 err = fn(pte, addr, data); 3143 if (err) 3144 break; 3145 } 3146 } while (pte++, addr += PAGE_SIZE, addr != end); 3147 } 3148 *mask |= PGTBL_PTE_MODIFIED; 3149 3150 arch_leave_lazy_mmu_mode(); 3151 3152 if (mm != &init_mm) 3153 pte_unmap_unlock(mapped_pte, ptl); 3154 return err; 3155 } 3156 3157 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 3158 unsigned long addr, unsigned long end, 3159 pte_fn_t fn, void *data, bool create, 3160 pgtbl_mod_mask *mask) 3161 { 3162 pmd_t *pmd; 3163 unsigned long next; 3164 int err = 0; 3165 3166 BUG_ON(pud_leaf(*pud)); 3167 3168 if (create) { 3169 pmd = pmd_alloc_track(mm, pud, addr, mask); 3170 if (!pmd) 3171 return -ENOMEM; 3172 } else { 3173 pmd = pmd_offset(pud, addr); 3174 } 3175 do { 3176 next = pmd_addr_end(addr, end); 3177 if (pmd_none(*pmd) && !create) 3178 continue; 3179 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 3180 return -EINVAL; 3181 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 3182 if (!create) 3183 continue; 3184 pmd_clear_bad(pmd); 3185 } 3186 err = apply_to_pte_range(mm, pmd, addr, next, 3187 fn, data, create, mask); 3188 if (err) 3189 break; 3190 } while (pmd++, addr = next, addr != end); 3191 3192 return err; 3193 } 3194 3195 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 3196 unsigned long addr, unsigned long end, 3197 pte_fn_t fn, void *data, bool create, 3198 pgtbl_mod_mask *mask) 3199 { 3200 pud_t *pud; 3201 unsigned long next; 3202 int err = 0; 3203 3204 if (create) { 3205 pud = pud_alloc_track(mm, p4d, addr, mask); 3206 if (!pud) 3207 return -ENOMEM; 3208 } else { 3209 pud = pud_offset(p4d, addr); 3210 } 3211 do { 3212 next = pud_addr_end(addr, end); 3213 if (pud_none(*pud) && !create) 3214 continue; 3215 if (WARN_ON_ONCE(pud_leaf(*pud))) 3216 return -EINVAL; 3217 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 3218 if (!create) 3219 continue; 3220 pud_clear_bad(pud); 3221 } 3222 err = apply_to_pmd_range(mm, pud, addr, next, 3223 fn, data, create, mask); 3224 if (err) 3225 break; 3226 } while (pud++, addr = next, addr != end); 3227 3228 return err; 3229 } 3230 3231 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 3232 unsigned long addr, unsigned long end, 3233 pte_fn_t fn, void *data, bool create, 3234 pgtbl_mod_mask *mask) 3235 { 3236 p4d_t *p4d; 3237 unsigned long next; 3238 int err = 0; 3239 3240 if (create) { 3241 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3242 if (!p4d) 3243 return -ENOMEM; 3244 } else { 3245 p4d = p4d_offset(pgd, addr); 3246 } 3247 do { 3248 next = p4d_addr_end(addr, end); 3249 if (p4d_none(*p4d) && !create) 3250 continue; 3251 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3252 return -EINVAL; 3253 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3254 if (!create) 3255 continue; 3256 p4d_clear_bad(p4d); 3257 } 3258 err = apply_to_pud_range(mm, p4d, addr, next, 3259 fn, data, create, mask); 3260 if (err) 3261 break; 3262 } while (p4d++, addr = next, addr != end); 3263 3264 return err; 3265 } 3266 3267 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3268 unsigned long size, pte_fn_t fn, 3269 void *data, bool create) 3270 { 3271 pgd_t *pgd; 3272 unsigned long start = addr, next; 3273 unsigned long end = addr + size; 3274 pgtbl_mod_mask mask = 0; 3275 int err = 0; 3276 3277 if (WARN_ON(addr >= end)) 3278 return -EINVAL; 3279 3280 pgd = pgd_offset(mm, addr); 3281 do { 3282 next = pgd_addr_end(addr, end); 3283 if (pgd_none(*pgd) && !create) 3284 continue; 3285 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3286 err = -EINVAL; 3287 break; 3288 } 3289 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3290 if (!create) 3291 continue; 3292 pgd_clear_bad(pgd); 3293 } 3294 err = apply_to_p4d_range(mm, pgd, addr, next, 3295 fn, data, create, &mask); 3296 if (err) 3297 break; 3298 } while (pgd++, addr = next, addr != end); 3299 3300 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3301 arch_sync_kernel_mappings(start, start + size); 3302 3303 return err; 3304 } 3305 3306 /* 3307 * Scan a region of virtual memory, filling in page tables as necessary 3308 * and calling a provided function on each leaf page table. 3309 */ 3310 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3311 unsigned long size, pte_fn_t fn, void *data) 3312 { 3313 return __apply_to_page_range(mm, addr, size, fn, data, true); 3314 } 3315 EXPORT_SYMBOL_GPL(apply_to_page_range); 3316 3317 /* 3318 * Scan a region of virtual memory, calling a provided function on 3319 * each leaf page table where it exists. 3320 * 3321 * Unlike apply_to_page_range, this does _not_ fill in page tables 3322 * where they are absent. 3323 */ 3324 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3325 unsigned long size, pte_fn_t fn, void *data) 3326 { 3327 return __apply_to_page_range(mm, addr, size, fn, data, false); 3328 } 3329 3330 /* 3331 * handle_pte_fault chooses page fault handler according to an entry which was 3332 * read non-atomically. Before making any commitment, on those architectures 3333 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3334 * parts, do_swap_page must check under lock before unmapping the pte and 3335 * proceeding (but do_wp_page is only called after already making such a check; 3336 * and do_anonymous_page can safely check later on). 3337 */ 3338 static inline int pte_unmap_same(struct vm_fault *vmf) 3339 { 3340 int same = 1; 3341 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3342 if (sizeof(pte_t) > sizeof(unsigned long)) { 3343 spin_lock(vmf->ptl); 3344 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3345 spin_unlock(vmf->ptl); 3346 } 3347 #endif 3348 pte_unmap(vmf->pte); 3349 vmf->pte = NULL; 3350 return same; 3351 } 3352 3353 /* 3354 * Return: 3355 * 0: copied succeeded 3356 * -EHWPOISON: copy failed due to hwpoison in source page 3357 * -EAGAIN: copied failed (some other reason) 3358 */ 3359 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3360 struct vm_fault *vmf) 3361 { 3362 int ret; 3363 void *kaddr; 3364 void __user *uaddr; 3365 struct vm_area_struct *vma = vmf->vma; 3366 struct mm_struct *mm = vma->vm_mm; 3367 unsigned long addr = vmf->address; 3368 3369 if (likely(src)) { 3370 if (copy_mc_user_highpage(dst, src, addr, vma)) 3371 return -EHWPOISON; 3372 return 0; 3373 } 3374 3375 /* 3376 * If the source page was a PFN mapping, we don't have 3377 * a "struct page" for it. We do a best-effort copy by 3378 * just copying from the original user address. If that 3379 * fails, we just zero-fill it. Live with it. 3380 */ 3381 kaddr = kmap_local_page(dst); 3382 pagefault_disable(); 3383 uaddr = (void __user *)(addr & PAGE_MASK); 3384 3385 /* 3386 * On architectures with software "accessed" bits, we would 3387 * take a double page fault, so mark it accessed here. 3388 */ 3389 vmf->pte = NULL; 3390 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3391 pte_t entry; 3392 3393 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3394 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3395 /* 3396 * Other thread has already handled the fault 3397 * and update local tlb only 3398 */ 3399 if (vmf->pte) 3400 update_mmu_tlb(vma, addr, vmf->pte); 3401 ret = -EAGAIN; 3402 goto pte_unlock; 3403 } 3404 3405 entry = pte_mkyoung(vmf->orig_pte); 3406 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3407 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3408 } 3409 3410 /* 3411 * This really shouldn't fail, because the page is there 3412 * in the page tables. But it might just be unreadable, 3413 * in which case we just give up and fill the result with 3414 * zeroes. 3415 */ 3416 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3417 if (vmf->pte) 3418 goto warn; 3419 3420 /* Re-validate under PTL if the page is still mapped */ 3421 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3422 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3423 /* The PTE changed under us, update local tlb */ 3424 if (vmf->pte) 3425 update_mmu_tlb(vma, addr, vmf->pte); 3426 ret = -EAGAIN; 3427 goto pte_unlock; 3428 } 3429 3430 /* 3431 * The same page can be mapped back since last copy attempt. 3432 * Try to copy again under PTL. 3433 */ 3434 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3435 /* 3436 * Give a warn in case there can be some obscure 3437 * use-case 3438 */ 3439 warn: 3440 WARN_ON_ONCE(1); 3441 clear_page(kaddr); 3442 } 3443 } 3444 3445 ret = 0; 3446 3447 pte_unlock: 3448 if (vmf->pte) 3449 pte_unmap_unlock(vmf->pte, vmf->ptl); 3450 pagefault_enable(); 3451 kunmap_local(kaddr); 3452 flush_dcache_page(dst); 3453 3454 return ret; 3455 } 3456 3457 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3458 { 3459 struct file *vm_file = vma->vm_file; 3460 3461 if (vm_file) 3462 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3463 3464 /* 3465 * Special mappings (e.g. VDSO) do not have any file so fake 3466 * a default GFP_KERNEL for them. 3467 */ 3468 return GFP_KERNEL; 3469 } 3470 3471 /* 3472 * Notify the address space that the page is about to become writable so that 3473 * it can prohibit this or wait for the page to get into an appropriate state. 3474 * 3475 * We do this without the lock held, so that it can sleep if it needs to. 3476 */ 3477 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3478 { 3479 vm_fault_t ret; 3480 unsigned int old_flags = vmf->flags; 3481 3482 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3483 3484 if (vmf->vma->vm_file && 3485 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3486 return VM_FAULT_SIGBUS; 3487 3488 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3489 /* Restore original flags so that caller is not surprised */ 3490 vmf->flags = old_flags; 3491 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3492 return ret; 3493 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3494 folio_lock(folio); 3495 if (!folio->mapping) { 3496 folio_unlock(folio); 3497 return 0; /* retry */ 3498 } 3499 ret |= VM_FAULT_LOCKED; 3500 } else 3501 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3502 return ret; 3503 } 3504 3505 /* 3506 * Handle dirtying of a page in shared file mapping on a write fault. 3507 * 3508 * The function expects the page to be locked and unlocks it. 3509 */ 3510 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3511 { 3512 struct vm_area_struct *vma = vmf->vma; 3513 struct address_space *mapping; 3514 struct folio *folio = page_folio(vmf->page); 3515 bool dirtied; 3516 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3517 3518 dirtied = folio_mark_dirty(folio); 3519 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3520 /* 3521 * Take a local copy of the address_space - folio.mapping may be zeroed 3522 * by truncate after folio_unlock(). The address_space itself remains 3523 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3524 * release semantics to prevent the compiler from undoing this copying. 3525 */ 3526 mapping = folio_raw_mapping(folio); 3527 folio_unlock(folio); 3528 3529 if (!page_mkwrite) 3530 file_update_time(vma->vm_file); 3531 3532 /* 3533 * Throttle page dirtying rate down to writeback speed. 3534 * 3535 * mapping may be NULL here because some device drivers do not 3536 * set page.mapping but still dirty their pages 3537 * 3538 * Drop the mmap_lock before waiting on IO, if we can. The file 3539 * is pinning the mapping, as per above. 3540 */ 3541 if ((dirtied || page_mkwrite) && mapping) { 3542 struct file *fpin; 3543 3544 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3545 balance_dirty_pages_ratelimited(mapping); 3546 if (fpin) { 3547 fput(fpin); 3548 return VM_FAULT_COMPLETED; 3549 } 3550 } 3551 3552 return 0; 3553 } 3554 3555 /* 3556 * Handle write page faults for pages that can be reused in the current vma 3557 * 3558 * This can happen either due to the mapping being with the VM_SHARED flag, 3559 * or due to us being the last reference standing to the page. In either 3560 * case, all we need to do here is to mark the page as writable and update 3561 * any related book-keeping. 3562 */ 3563 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3564 __releases(vmf->ptl) 3565 { 3566 struct vm_area_struct *vma = vmf->vma; 3567 pte_t entry; 3568 3569 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3570 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3571 3572 if (folio) { 3573 VM_BUG_ON(folio_test_anon(folio) && 3574 !PageAnonExclusive(vmf->page)); 3575 /* 3576 * Clear the folio's cpupid information as the existing 3577 * information potentially belongs to a now completely 3578 * unrelated process. 3579 */ 3580 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3581 } 3582 3583 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3584 entry = pte_mkyoung(vmf->orig_pte); 3585 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3586 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3587 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3588 pte_unmap_unlock(vmf->pte, vmf->ptl); 3589 count_vm_event(PGREUSE); 3590 } 3591 3592 /* 3593 * We could add a bitflag somewhere, but for now, we know that all 3594 * vm_ops that have a ->map_pages have been audited and don't need 3595 * the mmap_lock to be held. 3596 */ 3597 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3598 { 3599 struct vm_area_struct *vma = vmf->vma; 3600 3601 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3602 return 0; 3603 vma_end_read(vma); 3604 return VM_FAULT_RETRY; 3605 } 3606 3607 /** 3608 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3609 * @vmf: The vm_fault descriptor passed from the fault handler. 3610 * 3611 * When preparing to insert an anonymous page into a VMA from a 3612 * fault handler, call this function rather than anon_vma_prepare(). 3613 * If this vma does not already have an associated anon_vma and we are 3614 * only protected by the per-VMA lock, the caller must retry with the 3615 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3616 * determine if this VMA can share its anon_vma, and that's not safe to 3617 * do with only the per-VMA lock held for this VMA. 3618 * 3619 * Return: 0 if fault handling can proceed. Any other value should be 3620 * returned to the caller. 3621 */ 3622 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3623 { 3624 struct vm_area_struct *vma = vmf->vma; 3625 vm_fault_t ret = 0; 3626 3627 if (likely(vma->anon_vma)) 3628 return 0; 3629 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3630 if (!mmap_read_trylock(vma->vm_mm)) 3631 return VM_FAULT_RETRY; 3632 } 3633 if (__anon_vma_prepare(vma)) 3634 ret = VM_FAULT_OOM; 3635 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3636 mmap_read_unlock(vma->vm_mm); 3637 return ret; 3638 } 3639 3640 /* 3641 * Handle the case of a page which we actually need to copy to a new page, 3642 * either due to COW or unsharing. 3643 * 3644 * Called with mmap_lock locked and the old page referenced, but 3645 * without the ptl held. 3646 * 3647 * High level logic flow: 3648 * 3649 * - Allocate a page, copy the content of the old page to the new one. 3650 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3651 * - Take the PTL. If the pte changed, bail out and release the allocated page 3652 * - If the pte is still the way we remember it, update the page table and all 3653 * relevant references. This includes dropping the reference the page-table 3654 * held to the old page, as well as updating the rmap. 3655 * - In any case, unlock the PTL and drop the reference we took to the old page. 3656 */ 3657 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3658 { 3659 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3660 struct vm_area_struct *vma = vmf->vma; 3661 struct mm_struct *mm = vma->vm_mm; 3662 struct folio *old_folio = NULL; 3663 struct folio *new_folio = NULL; 3664 pte_t entry; 3665 int page_copied = 0; 3666 struct mmu_notifier_range range; 3667 vm_fault_t ret; 3668 bool pfn_is_zero; 3669 3670 delayacct_wpcopy_start(); 3671 3672 if (vmf->page) 3673 old_folio = page_folio(vmf->page); 3674 ret = vmf_anon_prepare(vmf); 3675 if (unlikely(ret)) 3676 goto out; 3677 3678 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3679 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3680 if (!new_folio) 3681 goto oom; 3682 3683 if (!pfn_is_zero) { 3684 int err; 3685 3686 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3687 if (err) { 3688 /* 3689 * COW failed, if the fault was solved by other, 3690 * it's fine. If not, userspace would re-fault on 3691 * the same address and we will handle the fault 3692 * from the second attempt. 3693 * The -EHWPOISON case will not be retried. 3694 */ 3695 folio_put(new_folio); 3696 if (old_folio) 3697 folio_put(old_folio); 3698 3699 delayacct_wpcopy_end(); 3700 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3701 } 3702 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3703 } 3704 3705 __folio_mark_uptodate(new_folio); 3706 3707 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3708 vmf->address & PAGE_MASK, 3709 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3710 mmu_notifier_invalidate_range_start(&range); 3711 3712 /* 3713 * Re-check the pte - we dropped the lock 3714 */ 3715 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3716 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3717 if (old_folio) { 3718 if (!folio_test_anon(old_folio)) { 3719 dec_mm_counter(mm, mm_counter_file(old_folio)); 3720 inc_mm_counter(mm, MM_ANONPAGES); 3721 } 3722 } else { 3723 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3724 inc_mm_counter(mm, MM_ANONPAGES); 3725 } 3726 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3727 entry = folio_mk_pte(new_folio, vma->vm_page_prot); 3728 entry = pte_sw_mkyoung(entry); 3729 if (unlikely(unshare)) { 3730 if (pte_soft_dirty(vmf->orig_pte)) 3731 entry = pte_mksoft_dirty(entry); 3732 if (pte_uffd_wp(vmf->orig_pte)) 3733 entry = pte_mkuffd_wp(entry); 3734 } else { 3735 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3736 } 3737 3738 /* 3739 * Clear the pte entry and flush it first, before updating the 3740 * pte with the new entry, to keep TLBs on different CPUs in 3741 * sync. This code used to set the new PTE then flush TLBs, but 3742 * that left a window where the new PTE could be loaded into 3743 * some TLBs while the old PTE remains in others. 3744 */ 3745 ptep_clear_flush(vma, vmf->address, vmf->pte); 3746 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3747 folio_add_lru_vma(new_folio, vma); 3748 BUG_ON(unshare && pte_write(entry)); 3749 set_pte_at(mm, vmf->address, vmf->pte, entry); 3750 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3751 if (old_folio) { 3752 /* 3753 * Only after switching the pte to the new page may 3754 * we remove the mapcount here. Otherwise another 3755 * process may come and find the rmap count decremented 3756 * before the pte is switched to the new page, and 3757 * "reuse" the old page writing into it while our pte 3758 * here still points into it and can be read by other 3759 * threads. 3760 * 3761 * The critical issue is to order this 3762 * folio_remove_rmap_pte() with the ptp_clear_flush 3763 * above. Those stores are ordered by (if nothing else,) 3764 * the barrier present in the atomic_add_negative 3765 * in folio_remove_rmap_pte(); 3766 * 3767 * Then the TLB flush in ptep_clear_flush ensures that 3768 * no process can access the old page before the 3769 * decremented mapcount is visible. And the old page 3770 * cannot be reused until after the decremented 3771 * mapcount is visible. So transitively, TLBs to 3772 * old page will be flushed before it can be reused. 3773 */ 3774 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3775 } 3776 3777 /* Free the old page.. */ 3778 new_folio = old_folio; 3779 page_copied = 1; 3780 pte_unmap_unlock(vmf->pte, vmf->ptl); 3781 } else if (vmf->pte) { 3782 update_mmu_tlb(vma, vmf->address, vmf->pte); 3783 pte_unmap_unlock(vmf->pte, vmf->ptl); 3784 } 3785 3786 mmu_notifier_invalidate_range_end(&range); 3787 3788 if (new_folio) 3789 folio_put(new_folio); 3790 if (old_folio) { 3791 if (page_copied) 3792 free_swap_cache(old_folio); 3793 folio_put(old_folio); 3794 } 3795 3796 delayacct_wpcopy_end(); 3797 return 0; 3798 oom: 3799 ret = VM_FAULT_OOM; 3800 out: 3801 if (old_folio) 3802 folio_put(old_folio); 3803 3804 delayacct_wpcopy_end(); 3805 return ret; 3806 } 3807 3808 /** 3809 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3810 * writeable once the page is prepared 3811 * 3812 * @vmf: structure describing the fault 3813 * @folio: the folio of vmf->page 3814 * 3815 * This function handles all that is needed to finish a write page fault in a 3816 * shared mapping due to PTE being read-only once the mapped page is prepared. 3817 * It handles locking of PTE and modifying it. 3818 * 3819 * The function expects the page to be locked or other protection against 3820 * concurrent faults / writeback (such as DAX radix tree locks). 3821 * 3822 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3823 * we acquired PTE lock. 3824 */ 3825 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3826 { 3827 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3828 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3829 &vmf->ptl); 3830 if (!vmf->pte) 3831 return VM_FAULT_NOPAGE; 3832 /* 3833 * We might have raced with another page fault while we released the 3834 * pte_offset_map_lock. 3835 */ 3836 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3837 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3838 pte_unmap_unlock(vmf->pte, vmf->ptl); 3839 return VM_FAULT_NOPAGE; 3840 } 3841 wp_page_reuse(vmf, folio); 3842 return 0; 3843 } 3844 3845 /* 3846 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3847 * mapping 3848 */ 3849 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3850 { 3851 struct vm_area_struct *vma = vmf->vma; 3852 3853 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3854 vm_fault_t ret; 3855 3856 pte_unmap_unlock(vmf->pte, vmf->ptl); 3857 ret = vmf_can_call_fault(vmf); 3858 if (ret) 3859 return ret; 3860 3861 vmf->flags |= FAULT_FLAG_MKWRITE; 3862 ret = vma->vm_ops->pfn_mkwrite(vmf); 3863 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3864 return ret; 3865 return finish_mkwrite_fault(vmf, NULL); 3866 } 3867 wp_page_reuse(vmf, NULL); 3868 return 0; 3869 } 3870 3871 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3872 __releases(vmf->ptl) 3873 { 3874 struct vm_area_struct *vma = vmf->vma; 3875 vm_fault_t ret = 0; 3876 3877 folio_get(folio); 3878 3879 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3880 vm_fault_t tmp; 3881 3882 pte_unmap_unlock(vmf->pte, vmf->ptl); 3883 tmp = vmf_can_call_fault(vmf); 3884 if (tmp) { 3885 folio_put(folio); 3886 return tmp; 3887 } 3888 3889 tmp = do_page_mkwrite(vmf, folio); 3890 if (unlikely(!tmp || (tmp & 3891 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3892 folio_put(folio); 3893 return tmp; 3894 } 3895 tmp = finish_mkwrite_fault(vmf, folio); 3896 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3897 folio_unlock(folio); 3898 folio_put(folio); 3899 return tmp; 3900 } 3901 } else { 3902 wp_page_reuse(vmf, folio); 3903 folio_lock(folio); 3904 } 3905 ret |= fault_dirty_shared_page(vmf); 3906 folio_put(folio); 3907 3908 return ret; 3909 } 3910 3911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3912 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3913 struct vm_area_struct *vma) 3914 { 3915 bool exclusive = false; 3916 3917 /* Let's just free up a large folio if only a single page is mapped. */ 3918 if (folio_large_mapcount(folio) <= 1) 3919 return false; 3920 3921 /* 3922 * The assumption for anonymous folios is that each page can only get 3923 * mapped once into each MM. The only exception are KSM folios, which 3924 * are always small. 3925 * 3926 * Each taken mapcount must be paired with exactly one taken reference, 3927 * whereby the refcount must be incremented before the mapcount when 3928 * mapping a page, and the refcount must be decremented after the 3929 * mapcount when unmapping a page. 3930 * 3931 * If all folio references are from mappings, and all mappings are in 3932 * the page tables of this MM, then this folio is exclusive to this MM. 3933 */ 3934 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3935 return false; 3936 3937 VM_WARN_ON_ONCE(folio_test_ksm(folio)); 3938 3939 if (unlikely(folio_test_swapcache(folio))) { 3940 /* 3941 * Note: freeing up the swapcache will fail if some PTEs are 3942 * still swap entries. 3943 */ 3944 if (!folio_trylock(folio)) 3945 return false; 3946 folio_free_swap(folio); 3947 folio_unlock(folio); 3948 } 3949 3950 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3951 return false; 3952 3953 /* Stabilize the mapcount vs. refcount and recheck. */ 3954 folio_lock_large_mapcount(folio); 3955 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio); 3956 3957 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3958 goto unlock; 3959 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3960 goto unlock; 3961 3962 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio); 3963 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio); 3964 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id && 3965 folio_mm_id(folio, 1) != vma->vm_mm->mm_id); 3966 3967 /* 3968 * Do we need the folio lock? Likely not. If there would have been 3969 * references from page migration/swapout, we would have detected 3970 * an additional folio reference and never ended up here. 3971 */ 3972 exclusive = true; 3973 unlock: 3974 folio_unlock_large_mapcount(folio); 3975 return exclusive; 3976 } 3977 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 3978 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3979 struct vm_area_struct *vma) 3980 { 3981 BUILD_BUG(); 3982 } 3983 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3984 3985 static bool wp_can_reuse_anon_folio(struct folio *folio, 3986 struct vm_area_struct *vma) 3987 { 3988 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio)) 3989 return __wp_can_reuse_large_anon_folio(folio, vma); 3990 3991 /* 3992 * We have to verify under folio lock: these early checks are 3993 * just an optimization to avoid locking the folio and freeing 3994 * the swapcache if there is little hope that we can reuse. 3995 * 3996 * KSM doesn't necessarily raise the folio refcount. 3997 */ 3998 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3999 return false; 4000 if (!folio_test_lru(folio)) 4001 /* 4002 * We cannot easily detect+handle references from 4003 * remote LRU caches or references to LRU folios. 4004 */ 4005 lru_add_drain(); 4006 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 4007 return false; 4008 if (!folio_trylock(folio)) 4009 return false; 4010 if (folio_test_swapcache(folio)) 4011 folio_free_swap(folio); 4012 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 4013 folio_unlock(folio); 4014 return false; 4015 } 4016 /* 4017 * Ok, we've got the only folio reference from our mapping 4018 * and the folio is locked, it's dark out, and we're wearing 4019 * sunglasses. Hit it. 4020 */ 4021 folio_move_anon_rmap(folio, vma); 4022 folio_unlock(folio); 4023 return true; 4024 } 4025 4026 /* 4027 * This routine handles present pages, when 4028 * * users try to write to a shared page (FAULT_FLAG_WRITE) 4029 * * GUP wants to take a R/O pin on a possibly shared anonymous page 4030 * (FAULT_FLAG_UNSHARE) 4031 * 4032 * It is done by copying the page to a new address and decrementing the 4033 * shared-page counter for the old page. 4034 * 4035 * Note that this routine assumes that the protection checks have been 4036 * done by the caller (the low-level page fault routine in most cases). 4037 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 4038 * done any necessary COW. 4039 * 4040 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 4041 * though the page will change only once the write actually happens. This 4042 * avoids a few races, and potentially makes it more efficient. 4043 * 4044 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4045 * but allow concurrent faults), with pte both mapped and locked. 4046 * We return with mmap_lock still held, but pte unmapped and unlocked. 4047 */ 4048 static vm_fault_t do_wp_page(struct vm_fault *vmf) 4049 __releases(vmf->ptl) 4050 { 4051 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4052 struct vm_area_struct *vma = vmf->vma; 4053 struct folio *folio = NULL; 4054 pte_t pte; 4055 4056 if (likely(!unshare)) { 4057 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 4058 if (!userfaultfd_wp_async(vma)) { 4059 pte_unmap_unlock(vmf->pte, vmf->ptl); 4060 return handle_userfault(vmf, VM_UFFD_WP); 4061 } 4062 4063 /* 4064 * Nothing needed (cache flush, TLB invalidations, 4065 * etc.) because we're only removing the uffd-wp bit, 4066 * which is completely invisible to the user. 4067 */ 4068 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 4069 4070 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4071 /* 4072 * Update this to be prepared for following up CoW 4073 * handling 4074 */ 4075 vmf->orig_pte = pte; 4076 } 4077 4078 /* 4079 * Userfaultfd write-protect can defer flushes. Ensure the TLB 4080 * is flushed in this case before copying. 4081 */ 4082 if (unlikely(userfaultfd_wp(vmf->vma) && 4083 mm_tlb_flush_pending(vmf->vma->vm_mm))) 4084 flush_tlb_page(vmf->vma, vmf->address); 4085 } 4086 4087 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 4088 4089 if (vmf->page) 4090 folio = page_folio(vmf->page); 4091 4092 /* 4093 * Shared mapping: we are guaranteed to have VM_WRITE and 4094 * FAULT_FLAG_WRITE set at this point. 4095 */ 4096 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4097 /* 4098 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 4099 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called. 4100 * 4101 * We should not cow pages in a shared writeable mapping. 4102 * Just mark the pages writable and/or call ops->pfn_mkwrite. 4103 */ 4104 if (!vmf->page || is_fsdax_page(vmf->page)) { 4105 vmf->page = NULL; 4106 return wp_pfn_shared(vmf); 4107 } 4108 return wp_page_shared(vmf, folio); 4109 } 4110 4111 /* 4112 * Private mapping: create an exclusive anonymous page copy if reuse 4113 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 4114 * 4115 * If we encounter a page that is marked exclusive, we must reuse 4116 * the page without further checks. 4117 */ 4118 if (folio && folio_test_anon(folio) && 4119 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 4120 if (!PageAnonExclusive(vmf->page)) 4121 SetPageAnonExclusive(vmf->page); 4122 if (unlikely(unshare)) { 4123 pte_unmap_unlock(vmf->pte, vmf->ptl); 4124 return 0; 4125 } 4126 wp_page_reuse(vmf, folio); 4127 return 0; 4128 } 4129 /* 4130 * Ok, we need to copy. Oh, well.. 4131 */ 4132 if (folio) 4133 folio_get(folio); 4134 4135 pte_unmap_unlock(vmf->pte, vmf->ptl); 4136 #ifdef CONFIG_KSM 4137 if (folio && folio_test_ksm(folio)) 4138 count_vm_event(COW_KSM); 4139 #endif 4140 return wp_page_copy(vmf); 4141 } 4142 4143 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 4144 unsigned long start_addr, unsigned long end_addr, 4145 struct zap_details *details) 4146 { 4147 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 4148 } 4149 4150 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 4151 pgoff_t first_index, 4152 pgoff_t last_index, 4153 struct zap_details *details) 4154 { 4155 struct vm_area_struct *vma; 4156 pgoff_t vba, vea, zba, zea; 4157 4158 vma_interval_tree_foreach(vma, root, first_index, last_index) { 4159 vba = vma->vm_pgoff; 4160 vea = vba + vma_pages(vma) - 1; 4161 zba = max(first_index, vba); 4162 zea = min(last_index, vea); 4163 4164 unmap_mapping_range_vma(vma, 4165 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 4166 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 4167 details); 4168 } 4169 } 4170 4171 /** 4172 * unmap_mapping_folio() - Unmap single folio from processes. 4173 * @folio: The locked folio to be unmapped. 4174 * 4175 * Unmap this folio from any userspace process which still has it mmaped. 4176 * Typically, for efficiency, the range of nearby pages has already been 4177 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 4178 * truncation or invalidation holds the lock on a folio, it may find that 4179 * the page has been remapped again: and then uses unmap_mapping_folio() 4180 * to unmap it finally. 4181 */ 4182 void unmap_mapping_folio(struct folio *folio) 4183 { 4184 struct address_space *mapping = folio->mapping; 4185 struct zap_details details = { }; 4186 pgoff_t first_index; 4187 pgoff_t last_index; 4188 4189 VM_BUG_ON(!folio_test_locked(folio)); 4190 4191 first_index = folio->index; 4192 last_index = folio_next_index(folio) - 1; 4193 4194 details.even_cows = false; 4195 details.single_folio = folio; 4196 details.zap_flags = ZAP_FLAG_DROP_MARKER; 4197 4198 i_mmap_lock_read(mapping); 4199 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4200 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4201 last_index, &details); 4202 i_mmap_unlock_read(mapping); 4203 } 4204 4205 /** 4206 * unmap_mapping_pages() - Unmap pages from processes. 4207 * @mapping: The address space containing pages to be unmapped. 4208 * @start: Index of first page to be unmapped. 4209 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 4210 * @even_cows: Whether to unmap even private COWed pages. 4211 * 4212 * Unmap the pages in this address space from any userspace process which 4213 * has them mmaped. Generally, you want to remove COWed pages as well when 4214 * a file is being truncated, but not when invalidating pages from the page 4215 * cache. 4216 */ 4217 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 4218 pgoff_t nr, bool even_cows) 4219 { 4220 struct zap_details details = { }; 4221 pgoff_t first_index = start; 4222 pgoff_t last_index = start + nr - 1; 4223 4224 details.even_cows = even_cows; 4225 if (last_index < first_index) 4226 last_index = ULONG_MAX; 4227 4228 i_mmap_lock_read(mapping); 4229 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4230 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4231 last_index, &details); 4232 i_mmap_unlock_read(mapping); 4233 } 4234 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 4235 4236 /** 4237 * unmap_mapping_range - unmap the portion of all mmaps in the specified 4238 * address_space corresponding to the specified byte range in the underlying 4239 * file. 4240 * 4241 * @mapping: the address space containing mmaps to be unmapped. 4242 * @holebegin: byte in first page to unmap, relative to the start of 4243 * the underlying file. This will be rounded down to a PAGE_SIZE 4244 * boundary. Note that this is different from truncate_pagecache(), which 4245 * must keep the partial page. In contrast, we must get rid of 4246 * partial pages. 4247 * @holelen: size of prospective hole in bytes. This will be rounded 4248 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 4249 * end of the file. 4250 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 4251 * but 0 when invalidating pagecache, don't throw away private data. 4252 */ 4253 void unmap_mapping_range(struct address_space *mapping, 4254 loff_t const holebegin, loff_t const holelen, int even_cows) 4255 { 4256 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 4257 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 4258 4259 /* Check for overflow. */ 4260 if (sizeof(holelen) > sizeof(hlen)) { 4261 long long holeend = 4262 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 4263 if (holeend & ~(long long)ULONG_MAX) 4264 hlen = ULONG_MAX - hba + 1; 4265 } 4266 4267 unmap_mapping_pages(mapping, hba, hlen, even_cows); 4268 } 4269 EXPORT_SYMBOL(unmap_mapping_range); 4270 4271 /* 4272 * Restore a potential device exclusive pte to a working pte entry 4273 */ 4274 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 4275 { 4276 struct folio *folio = page_folio(vmf->page); 4277 struct vm_area_struct *vma = vmf->vma; 4278 struct mmu_notifier_range range; 4279 vm_fault_t ret; 4280 4281 /* 4282 * We need a reference to lock the folio because we don't hold 4283 * the PTL so a racing thread can remove the device-exclusive 4284 * entry and unmap it. If the folio is free the entry must 4285 * have been removed already. If it happens to have already 4286 * been re-allocated after being freed all we do is lock and 4287 * unlock it. 4288 */ 4289 if (!folio_try_get(folio)) 4290 return 0; 4291 4292 ret = folio_lock_or_retry(folio, vmf); 4293 if (ret) { 4294 folio_put(folio); 4295 return ret; 4296 } 4297 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0, 4298 vma->vm_mm, vmf->address & PAGE_MASK, 4299 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 4300 mmu_notifier_invalidate_range_start(&range); 4301 4302 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4303 &vmf->ptl); 4304 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4305 restore_exclusive_pte(vma, folio, vmf->page, vmf->address, 4306 vmf->pte, vmf->orig_pte); 4307 4308 if (vmf->pte) 4309 pte_unmap_unlock(vmf->pte, vmf->ptl); 4310 folio_unlock(folio); 4311 folio_put(folio); 4312 4313 mmu_notifier_invalidate_range_end(&range); 4314 return 0; 4315 } 4316 4317 static inline bool should_try_to_free_swap(struct folio *folio, 4318 struct vm_area_struct *vma, 4319 unsigned int fault_flags) 4320 { 4321 if (!folio_test_swapcache(folio)) 4322 return false; 4323 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4324 folio_test_mlocked(folio)) 4325 return true; 4326 /* 4327 * If we want to map a page that's in the swapcache writable, we 4328 * have to detect via the refcount if we're really the exclusive 4329 * user. Try freeing the swapcache to get rid of the swapcache 4330 * reference only in case it's likely that we'll be the exlusive user. 4331 */ 4332 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4333 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4334 } 4335 4336 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4337 { 4338 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4339 vmf->address, &vmf->ptl); 4340 if (!vmf->pte) 4341 return 0; 4342 /* 4343 * Be careful so that we will only recover a special uffd-wp pte into a 4344 * none pte. Otherwise it means the pte could have changed, so retry. 4345 * 4346 * This should also cover the case where e.g. the pte changed 4347 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4348 * So is_pte_marker() check is not enough to safely drop the pte. 4349 */ 4350 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4351 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4352 pte_unmap_unlock(vmf->pte, vmf->ptl); 4353 return 0; 4354 } 4355 4356 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4357 { 4358 if (vma_is_anonymous(vmf->vma)) 4359 return do_anonymous_page(vmf); 4360 else 4361 return do_fault(vmf); 4362 } 4363 4364 /* 4365 * This is actually a page-missing access, but with uffd-wp special pte 4366 * installed. It means this pte was wr-protected before being unmapped. 4367 */ 4368 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4369 { 4370 /* 4371 * Just in case there're leftover special ptes even after the region 4372 * got unregistered - we can simply clear them. 4373 */ 4374 if (unlikely(!userfaultfd_wp(vmf->vma))) 4375 return pte_marker_clear(vmf); 4376 4377 return do_pte_missing(vmf); 4378 } 4379 4380 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4381 { 4382 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4383 unsigned long marker = pte_marker_get(entry); 4384 4385 /* 4386 * PTE markers should never be empty. If anything weird happened, 4387 * the best thing to do is to kill the process along with its mm. 4388 */ 4389 if (WARN_ON_ONCE(!marker)) 4390 return VM_FAULT_SIGBUS; 4391 4392 /* Higher priority than uffd-wp when data corrupted */ 4393 if (marker & PTE_MARKER_POISONED) 4394 return VM_FAULT_HWPOISON; 4395 4396 /* Hitting a guard page is always a fatal condition. */ 4397 if (marker & PTE_MARKER_GUARD) 4398 return VM_FAULT_SIGSEGV; 4399 4400 if (pte_marker_entry_uffd_wp(entry)) 4401 return pte_marker_handle_uffd_wp(vmf); 4402 4403 /* This is an unknown pte marker */ 4404 return VM_FAULT_SIGBUS; 4405 } 4406 4407 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4408 { 4409 struct vm_area_struct *vma = vmf->vma; 4410 struct folio *folio; 4411 swp_entry_t entry; 4412 4413 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4414 if (!folio) 4415 return NULL; 4416 4417 entry = pte_to_swp_entry(vmf->orig_pte); 4418 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4419 GFP_KERNEL, entry)) { 4420 folio_put(folio); 4421 return NULL; 4422 } 4423 4424 return folio; 4425 } 4426 4427 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4428 /* 4429 * Check if the PTEs within a range are contiguous swap entries 4430 * and have consistent swapcache, zeromap. 4431 */ 4432 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4433 { 4434 unsigned long addr; 4435 swp_entry_t entry; 4436 int idx; 4437 pte_t pte; 4438 4439 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4440 idx = (vmf->address - addr) / PAGE_SIZE; 4441 pte = ptep_get(ptep); 4442 4443 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4444 return false; 4445 entry = pte_to_swp_entry(pte); 4446 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4447 return false; 4448 4449 /* 4450 * swap_read_folio() can't handle the case a large folio is hybridly 4451 * from different backends. And they are likely corner cases. Similar 4452 * things might be added once zswap support large folios. 4453 */ 4454 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4455 return false; 4456 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4457 return false; 4458 4459 return true; 4460 } 4461 4462 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4463 unsigned long addr, 4464 unsigned long orders) 4465 { 4466 int order, nr; 4467 4468 order = highest_order(orders); 4469 4470 /* 4471 * To swap in a THP with nr pages, we require that its first swap_offset 4472 * is aligned with that number, as it was when the THP was swapped out. 4473 * This helps filter out most invalid entries. 4474 */ 4475 while (orders) { 4476 nr = 1 << order; 4477 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4478 break; 4479 order = next_order(&orders, order); 4480 } 4481 4482 return orders; 4483 } 4484 4485 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4486 { 4487 struct vm_area_struct *vma = vmf->vma; 4488 unsigned long orders; 4489 struct folio *folio; 4490 unsigned long addr; 4491 swp_entry_t entry; 4492 spinlock_t *ptl; 4493 pte_t *pte; 4494 gfp_t gfp; 4495 int order; 4496 4497 /* 4498 * If uffd is active for the vma we need per-page fault fidelity to 4499 * maintain the uffd semantics. 4500 */ 4501 if (unlikely(userfaultfd_armed(vma))) 4502 goto fallback; 4503 4504 /* 4505 * A large swapped out folio could be partially or fully in zswap. We 4506 * lack handling for such cases, so fallback to swapping in order-0 4507 * folio. 4508 */ 4509 if (!zswap_never_enabled()) 4510 goto fallback; 4511 4512 entry = pte_to_swp_entry(vmf->orig_pte); 4513 /* 4514 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4515 * and suitable for swapping THP. 4516 */ 4517 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT, 4518 BIT(PMD_ORDER) - 1); 4519 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4520 orders = thp_swap_suitable_orders(swp_offset(entry), 4521 vmf->address, orders); 4522 4523 if (!orders) 4524 goto fallback; 4525 4526 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4527 vmf->address & PMD_MASK, &ptl); 4528 if (unlikely(!pte)) 4529 goto fallback; 4530 4531 /* 4532 * For do_swap_page, find the highest order where the aligned range is 4533 * completely swap entries with contiguous swap offsets. 4534 */ 4535 order = highest_order(orders); 4536 while (orders) { 4537 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4538 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4539 break; 4540 order = next_order(&orders, order); 4541 } 4542 4543 pte_unmap_unlock(pte, ptl); 4544 4545 /* Try allocating the highest of the remaining orders. */ 4546 gfp = vma_thp_gfp_mask(vma); 4547 while (orders) { 4548 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4549 folio = vma_alloc_folio(gfp, order, vma, addr); 4550 if (folio) { 4551 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4552 gfp, entry)) 4553 return folio; 4554 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4555 folio_put(folio); 4556 } 4557 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4558 order = next_order(&orders, order); 4559 } 4560 4561 fallback: 4562 return __alloc_swap_folio(vmf); 4563 } 4564 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4565 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4566 { 4567 return __alloc_swap_folio(vmf); 4568 } 4569 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4570 4571 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4572 4573 /* 4574 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4575 * but allow concurrent faults), and pte mapped but not yet locked. 4576 * We return with pte unmapped and unlocked. 4577 * 4578 * We return with the mmap_lock locked or unlocked in the same cases 4579 * as does filemap_fault(). 4580 */ 4581 vm_fault_t do_swap_page(struct vm_fault *vmf) 4582 { 4583 struct vm_area_struct *vma = vmf->vma; 4584 struct folio *swapcache, *folio = NULL; 4585 DECLARE_WAITQUEUE(wait, current); 4586 struct page *page; 4587 struct swap_info_struct *si = NULL; 4588 rmap_t rmap_flags = RMAP_NONE; 4589 bool need_clear_cache = false; 4590 bool exclusive = false; 4591 swp_entry_t entry; 4592 pte_t pte; 4593 vm_fault_t ret = 0; 4594 void *shadow = NULL; 4595 int nr_pages; 4596 unsigned long page_idx; 4597 unsigned long address; 4598 pte_t *ptep; 4599 4600 if (!pte_unmap_same(vmf)) 4601 goto out; 4602 4603 entry = pte_to_swp_entry(vmf->orig_pte); 4604 if (unlikely(non_swap_entry(entry))) { 4605 if (is_migration_entry(entry)) { 4606 migration_entry_wait(vma->vm_mm, vmf->pmd, 4607 vmf->address); 4608 } else if (is_device_exclusive_entry(entry)) { 4609 vmf->page = pfn_swap_entry_to_page(entry); 4610 ret = remove_device_exclusive_entry(vmf); 4611 } else if (is_device_private_entry(entry)) { 4612 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4613 /* 4614 * migrate_to_ram is not yet ready to operate 4615 * under VMA lock. 4616 */ 4617 vma_end_read(vma); 4618 ret = VM_FAULT_RETRY; 4619 goto out; 4620 } 4621 4622 vmf->page = pfn_swap_entry_to_page(entry); 4623 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4624 vmf->address, &vmf->ptl); 4625 if (unlikely(!vmf->pte || 4626 !pte_same(ptep_get(vmf->pte), 4627 vmf->orig_pte))) 4628 goto unlock; 4629 4630 /* 4631 * Get a page reference while we know the page can't be 4632 * freed. 4633 */ 4634 if (trylock_page(vmf->page)) { 4635 struct dev_pagemap *pgmap; 4636 4637 get_page(vmf->page); 4638 pte_unmap_unlock(vmf->pte, vmf->ptl); 4639 pgmap = page_pgmap(vmf->page); 4640 ret = pgmap->ops->migrate_to_ram(vmf); 4641 unlock_page(vmf->page); 4642 put_page(vmf->page); 4643 } else { 4644 pte_unmap_unlock(vmf->pte, vmf->ptl); 4645 } 4646 } else if (is_hwpoison_entry(entry)) { 4647 ret = VM_FAULT_HWPOISON; 4648 } else if (is_pte_marker_entry(entry)) { 4649 ret = handle_pte_marker(vmf); 4650 } else { 4651 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4652 ret = VM_FAULT_SIGBUS; 4653 } 4654 goto out; 4655 } 4656 4657 /* Prevent swapoff from happening to us. */ 4658 si = get_swap_device(entry); 4659 if (unlikely(!si)) 4660 goto out; 4661 4662 folio = swap_cache_get_folio(entry); 4663 if (folio) 4664 swap_update_readahead(folio, vma, vmf->address); 4665 swapcache = folio; 4666 4667 if (!folio) { 4668 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4669 __swap_count(entry) == 1) { 4670 /* skip swapcache */ 4671 folio = alloc_swap_folio(vmf); 4672 if (folio) { 4673 __folio_set_locked(folio); 4674 __folio_set_swapbacked(folio); 4675 4676 nr_pages = folio_nr_pages(folio); 4677 if (folio_test_large(folio)) 4678 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4679 /* 4680 * Prevent parallel swapin from proceeding with 4681 * the cache flag. Otherwise, another thread 4682 * may finish swapin first, free the entry, and 4683 * swapout reusing the same entry. It's 4684 * undetectable as pte_same() returns true due 4685 * to entry reuse. 4686 */ 4687 if (swapcache_prepare(entry, nr_pages)) { 4688 /* 4689 * Relax a bit to prevent rapid 4690 * repeated page faults. 4691 */ 4692 add_wait_queue(&swapcache_wq, &wait); 4693 schedule_timeout_uninterruptible(1); 4694 remove_wait_queue(&swapcache_wq, &wait); 4695 goto out_page; 4696 } 4697 need_clear_cache = true; 4698 4699 memcg1_swapin(entry, nr_pages); 4700 4701 shadow = swap_cache_get_shadow(entry); 4702 if (shadow) 4703 workingset_refault(folio, shadow); 4704 4705 folio_add_lru(folio); 4706 4707 /* To provide entry to swap_read_folio() */ 4708 folio->swap = entry; 4709 swap_read_folio(folio, NULL); 4710 folio->private = NULL; 4711 } 4712 } else { 4713 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4714 vmf); 4715 swapcache = folio; 4716 } 4717 4718 if (!folio) { 4719 /* 4720 * Back out if somebody else faulted in this pte 4721 * while we released the pte lock. 4722 */ 4723 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4724 vmf->address, &vmf->ptl); 4725 if (likely(vmf->pte && 4726 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4727 ret = VM_FAULT_OOM; 4728 goto unlock; 4729 } 4730 4731 /* Had to read the page from swap area: Major fault */ 4732 ret = VM_FAULT_MAJOR; 4733 count_vm_event(PGMAJFAULT); 4734 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4735 } 4736 4737 ret |= folio_lock_or_retry(folio, vmf); 4738 if (ret & VM_FAULT_RETRY) 4739 goto out_release; 4740 4741 page = folio_file_page(folio, swp_offset(entry)); 4742 if (swapcache) { 4743 /* 4744 * Make sure folio_free_swap() or swapoff did not release the 4745 * swapcache from under us. The page pin, and pte_same test 4746 * below, are not enough to exclude that. Even if it is still 4747 * swapcache, we need to check that the page's swap has not 4748 * changed. 4749 */ 4750 if (unlikely(!folio_matches_swap_entry(folio, entry))) 4751 goto out_page; 4752 4753 if (unlikely(PageHWPoison(page))) { 4754 /* 4755 * hwpoisoned dirty swapcache pages are kept for killing 4756 * owner processes (which may be unknown at hwpoison time) 4757 */ 4758 ret = VM_FAULT_HWPOISON; 4759 goto out_page; 4760 } 4761 4762 /* 4763 * KSM sometimes has to copy on read faults, for example, if 4764 * folio->index of non-ksm folios would be nonlinear inside the 4765 * anon VMA -- the ksm flag is lost on actual swapout. 4766 */ 4767 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4768 if (unlikely(!folio)) { 4769 ret = VM_FAULT_OOM; 4770 folio = swapcache; 4771 goto out_page; 4772 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4773 ret = VM_FAULT_HWPOISON; 4774 folio = swapcache; 4775 goto out_page; 4776 } 4777 if (folio != swapcache) 4778 page = folio_page(folio, 0); 4779 4780 /* 4781 * If we want to map a page that's in the swapcache writable, we 4782 * have to detect via the refcount if we're really the exclusive 4783 * owner. Try removing the extra reference from the local LRU 4784 * caches if required. 4785 */ 4786 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4787 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4788 lru_add_drain(); 4789 } 4790 4791 folio_throttle_swaprate(folio, GFP_KERNEL); 4792 4793 /* 4794 * Back out if somebody else already faulted in this pte. 4795 */ 4796 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4797 &vmf->ptl); 4798 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4799 goto out_nomap; 4800 4801 if (unlikely(!folio_test_uptodate(folio))) { 4802 ret = VM_FAULT_SIGBUS; 4803 goto out_nomap; 4804 } 4805 4806 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4807 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4808 unsigned long nr = folio_nr_pages(folio); 4809 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4810 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4811 pte_t *folio_ptep = vmf->pte - idx; 4812 pte_t folio_pte = ptep_get(folio_ptep); 4813 4814 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4815 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4816 goto out_nomap; 4817 4818 page_idx = idx; 4819 address = folio_start; 4820 ptep = folio_ptep; 4821 goto check_folio; 4822 } 4823 4824 nr_pages = 1; 4825 page_idx = 0; 4826 address = vmf->address; 4827 ptep = vmf->pte; 4828 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4829 int nr = folio_nr_pages(folio); 4830 unsigned long idx = folio_page_idx(folio, page); 4831 unsigned long folio_start = address - idx * PAGE_SIZE; 4832 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4833 pte_t *folio_ptep; 4834 pte_t folio_pte; 4835 4836 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4837 goto check_folio; 4838 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4839 goto check_folio; 4840 4841 folio_ptep = vmf->pte - idx; 4842 folio_pte = ptep_get(folio_ptep); 4843 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4844 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4845 goto check_folio; 4846 4847 page_idx = idx; 4848 address = folio_start; 4849 ptep = folio_ptep; 4850 nr_pages = nr; 4851 entry = folio->swap; 4852 page = &folio->page; 4853 } 4854 4855 check_folio: 4856 /* 4857 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4858 * must never point at an anonymous page in the swapcache that is 4859 * PG_anon_exclusive. Sanity check that this holds and especially, that 4860 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4861 * check after taking the PT lock and making sure that nobody 4862 * concurrently faulted in this page and set PG_anon_exclusive. 4863 */ 4864 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4865 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4866 4867 /* 4868 * Check under PT lock (to protect against concurrent fork() sharing 4869 * the swap entry concurrently) for certainly exclusive pages. 4870 */ 4871 if (!folio_test_ksm(folio)) { 4872 exclusive = pte_swp_exclusive(vmf->orig_pte); 4873 if (folio != swapcache) { 4874 /* 4875 * We have a fresh page that is not exposed to the 4876 * swapcache -> certainly exclusive. 4877 */ 4878 exclusive = true; 4879 } else if (exclusive && folio_test_writeback(folio) && 4880 data_race(si->flags & SWP_STABLE_WRITES)) { 4881 /* 4882 * This is tricky: not all swap backends support 4883 * concurrent page modifications while under writeback. 4884 * 4885 * So if we stumble over such a page in the swapcache 4886 * we must not set the page exclusive, otherwise we can 4887 * map it writable without further checks and modify it 4888 * while still under writeback. 4889 * 4890 * For these problematic swap backends, simply drop the 4891 * exclusive marker: this is perfectly fine as we start 4892 * writeback only if we fully unmapped the page and 4893 * there are no unexpected references on the page after 4894 * unmapping succeeded. After fully unmapped, no 4895 * further GUP references (FOLL_GET and FOLL_PIN) can 4896 * appear, so dropping the exclusive marker and mapping 4897 * it only R/O is fine. 4898 */ 4899 exclusive = false; 4900 } 4901 } 4902 4903 /* 4904 * Some architectures may have to restore extra metadata to the page 4905 * when reading from swap. This metadata may be indexed by swap entry 4906 * so this must be called before swap_free(). 4907 */ 4908 arch_swap_restore(folio_swap(entry, folio), folio); 4909 4910 /* 4911 * Remove the swap entry and conditionally try to free up the swapcache. 4912 * We're already holding a reference on the page but haven't mapped it 4913 * yet. 4914 */ 4915 swap_free_nr(entry, nr_pages); 4916 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4917 folio_free_swap(folio); 4918 4919 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4920 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4921 pte = mk_pte(page, vma->vm_page_prot); 4922 if (pte_swp_soft_dirty(vmf->orig_pte)) 4923 pte = pte_mksoft_dirty(pte); 4924 if (pte_swp_uffd_wp(vmf->orig_pte)) 4925 pte = pte_mkuffd_wp(pte); 4926 4927 /* 4928 * Same logic as in do_wp_page(); however, optimize for pages that are 4929 * certainly not shared either because we just allocated them without 4930 * exposing them to the swapcache or because the swap entry indicates 4931 * exclusivity. 4932 */ 4933 if (!folio_test_ksm(folio) && 4934 (exclusive || folio_ref_count(folio) == 1)) { 4935 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4936 !pte_needs_soft_dirty_wp(vma, pte)) { 4937 pte = pte_mkwrite(pte, vma); 4938 if (vmf->flags & FAULT_FLAG_WRITE) { 4939 pte = pte_mkdirty(pte); 4940 vmf->flags &= ~FAULT_FLAG_WRITE; 4941 } 4942 } 4943 rmap_flags |= RMAP_EXCLUSIVE; 4944 } 4945 folio_ref_add(folio, nr_pages - 1); 4946 flush_icache_pages(vma, page, nr_pages); 4947 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4948 4949 /* ksm created a completely new copy */ 4950 if (unlikely(folio != swapcache && swapcache)) { 4951 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4952 folio_add_lru_vma(folio, vma); 4953 } else if (!folio_test_anon(folio)) { 4954 /* 4955 * We currently only expect small !anon folios which are either 4956 * fully exclusive or fully shared, or new allocated large 4957 * folios which are fully exclusive. If we ever get large 4958 * folios within swapcache here, we have to be careful. 4959 */ 4960 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4961 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4962 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4963 } else { 4964 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4965 rmap_flags); 4966 } 4967 4968 VM_BUG_ON(!folio_test_anon(folio) || 4969 (pte_write(pte) && !PageAnonExclusive(page))); 4970 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4971 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4972 pte, pte, nr_pages); 4973 4974 folio_unlock(folio); 4975 if (folio != swapcache && swapcache) { 4976 /* 4977 * Hold the lock to avoid the swap entry to be reused 4978 * until we take the PT lock for the pte_same() check 4979 * (to avoid false positives from pte_same). For 4980 * further safety release the lock after the swap_free 4981 * so that the swap count won't change under a 4982 * parallel locked swapcache. 4983 */ 4984 folio_unlock(swapcache); 4985 folio_put(swapcache); 4986 } 4987 4988 if (vmf->flags & FAULT_FLAG_WRITE) { 4989 ret |= do_wp_page(vmf); 4990 if (ret & VM_FAULT_ERROR) 4991 ret &= VM_FAULT_ERROR; 4992 goto out; 4993 } 4994 4995 /* No need to invalidate - it was non-present before */ 4996 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4997 unlock: 4998 if (vmf->pte) 4999 pte_unmap_unlock(vmf->pte, vmf->ptl); 5000 out: 5001 /* Clear the swap cache pin for direct swapin after PTL unlock */ 5002 if (need_clear_cache) { 5003 swapcache_clear(si, entry, nr_pages); 5004 if (waitqueue_active(&swapcache_wq)) 5005 wake_up(&swapcache_wq); 5006 } 5007 if (si) 5008 put_swap_device(si); 5009 return ret; 5010 out_nomap: 5011 if (vmf->pte) 5012 pte_unmap_unlock(vmf->pte, vmf->ptl); 5013 out_page: 5014 folio_unlock(folio); 5015 out_release: 5016 folio_put(folio); 5017 if (folio != swapcache && swapcache) { 5018 folio_unlock(swapcache); 5019 folio_put(swapcache); 5020 } 5021 if (need_clear_cache) { 5022 swapcache_clear(si, entry, nr_pages); 5023 if (waitqueue_active(&swapcache_wq)) 5024 wake_up(&swapcache_wq); 5025 } 5026 if (si) 5027 put_swap_device(si); 5028 return ret; 5029 } 5030 5031 static bool pte_range_none(pte_t *pte, int nr_pages) 5032 { 5033 int i; 5034 5035 for (i = 0; i < nr_pages; i++) { 5036 if (!pte_none(ptep_get_lockless(pte + i))) 5037 return false; 5038 } 5039 5040 return true; 5041 } 5042 5043 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 5044 { 5045 struct vm_area_struct *vma = vmf->vma; 5046 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5047 unsigned long orders; 5048 struct folio *folio; 5049 unsigned long addr; 5050 pte_t *pte; 5051 gfp_t gfp; 5052 int order; 5053 5054 /* 5055 * If uffd is active for the vma we need per-page fault fidelity to 5056 * maintain the uffd semantics. 5057 */ 5058 if (unlikely(userfaultfd_armed(vma))) 5059 goto fallback; 5060 5061 /* 5062 * Get a list of all the (large) orders below PMD_ORDER that are enabled 5063 * for this vma. Then filter out the orders that can't be allocated over 5064 * the faulting address and still be fully contained in the vma. 5065 */ 5066 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT, 5067 BIT(PMD_ORDER) - 1); 5068 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 5069 5070 if (!orders) 5071 goto fallback; 5072 5073 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 5074 if (!pte) 5075 return ERR_PTR(-EAGAIN); 5076 5077 /* 5078 * Find the highest order where the aligned range is completely 5079 * pte_none(). Note that all remaining orders will be completely 5080 * pte_none(). 5081 */ 5082 order = highest_order(orders); 5083 while (orders) { 5084 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5085 if (pte_range_none(pte + pte_index(addr), 1 << order)) 5086 break; 5087 order = next_order(&orders, order); 5088 } 5089 5090 pte_unmap(pte); 5091 5092 if (!orders) 5093 goto fallback; 5094 5095 /* Try allocating the highest of the remaining orders. */ 5096 gfp = vma_thp_gfp_mask(vma); 5097 while (orders) { 5098 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5099 folio = vma_alloc_folio(gfp, order, vma, addr); 5100 if (folio) { 5101 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 5102 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 5103 folio_put(folio); 5104 goto next; 5105 } 5106 folio_throttle_swaprate(folio, gfp); 5107 /* 5108 * When a folio is not zeroed during allocation 5109 * (__GFP_ZERO not used) or user folios require special 5110 * handling, folio_zero_user() is used to make sure 5111 * that the page corresponding to the faulting address 5112 * will be hot in the cache after zeroing. 5113 */ 5114 if (user_alloc_needs_zeroing()) 5115 folio_zero_user(folio, vmf->address); 5116 return folio; 5117 } 5118 next: 5119 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 5120 order = next_order(&orders, order); 5121 } 5122 5123 fallback: 5124 #endif 5125 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 5126 } 5127 5128 /* 5129 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5130 * but allow concurrent faults), and pte mapped but not yet locked. 5131 * We return with mmap_lock still held, but pte unmapped and unlocked. 5132 */ 5133 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 5134 { 5135 struct vm_area_struct *vma = vmf->vma; 5136 unsigned long addr = vmf->address; 5137 struct folio *folio; 5138 vm_fault_t ret = 0; 5139 int nr_pages = 1; 5140 pte_t entry; 5141 5142 /* File mapping without ->vm_ops ? */ 5143 if (vma->vm_flags & VM_SHARED) 5144 return VM_FAULT_SIGBUS; 5145 5146 /* 5147 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 5148 * be distinguished from a transient failure of pte_offset_map(). 5149 */ 5150 if (pte_alloc(vma->vm_mm, vmf->pmd)) 5151 return VM_FAULT_OOM; 5152 5153 /* Use the zero-page for reads */ 5154 if (!(vmf->flags & FAULT_FLAG_WRITE) && 5155 !mm_forbids_zeropage(vma->vm_mm)) { 5156 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 5157 vma->vm_page_prot)); 5158 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5159 vmf->address, &vmf->ptl); 5160 if (!vmf->pte) 5161 goto unlock; 5162 if (vmf_pte_changed(vmf)) { 5163 update_mmu_tlb(vma, vmf->address, vmf->pte); 5164 goto unlock; 5165 } 5166 ret = check_stable_address_space(vma->vm_mm); 5167 if (ret) 5168 goto unlock; 5169 /* Deliver the page fault to userland, check inside PT lock */ 5170 if (userfaultfd_missing(vma)) { 5171 pte_unmap_unlock(vmf->pte, vmf->ptl); 5172 return handle_userfault(vmf, VM_UFFD_MISSING); 5173 } 5174 goto setpte; 5175 } 5176 5177 /* Allocate our own private page. */ 5178 ret = vmf_anon_prepare(vmf); 5179 if (ret) 5180 return ret; 5181 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 5182 folio = alloc_anon_folio(vmf); 5183 if (IS_ERR(folio)) 5184 return 0; 5185 if (!folio) 5186 goto oom; 5187 5188 nr_pages = folio_nr_pages(folio); 5189 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 5190 5191 /* 5192 * The memory barrier inside __folio_mark_uptodate makes sure that 5193 * preceding stores to the page contents become visible before 5194 * the set_pte_at() write. 5195 */ 5196 __folio_mark_uptodate(folio); 5197 5198 entry = folio_mk_pte(folio, vma->vm_page_prot); 5199 entry = pte_sw_mkyoung(entry); 5200 if (vma->vm_flags & VM_WRITE) 5201 entry = pte_mkwrite(pte_mkdirty(entry), vma); 5202 5203 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 5204 if (!vmf->pte) 5205 goto release; 5206 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 5207 update_mmu_tlb(vma, addr, vmf->pte); 5208 goto release; 5209 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5210 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5211 goto release; 5212 } 5213 5214 ret = check_stable_address_space(vma->vm_mm); 5215 if (ret) 5216 goto release; 5217 5218 /* Deliver the page fault to userland, check inside PT lock */ 5219 if (userfaultfd_missing(vma)) { 5220 pte_unmap_unlock(vmf->pte, vmf->ptl); 5221 folio_put(folio); 5222 return handle_userfault(vmf, VM_UFFD_MISSING); 5223 } 5224 5225 folio_ref_add(folio, nr_pages - 1); 5226 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 5227 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 5228 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5229 folio_add_lru_vma(folio, vma); 5230 setpte: 5231 if (vmf_orig_pte_uffd_wp(vmf)) 5232 entry = pte_mkuffd_wp(entry); 5233 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 5234 5235 /* No need to invalidate - it was non-present before */ 5236 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 5237 unlock: 5238 if (vmf->pte) 5239 pte_unmap_unlock(vmf->pte, vmf->ptl); 5240 return ret; 5241 release: 5242 folio_put(folio); 5243 goto unlock; 5244 oom: 5245 return VM_FAULT_OOM; 5246 } 5247 5248 /* 5249 * The mmap_lock must have been held on entry, and may have been 5250 * released depending on flags and vma->vm_ops->fault() return value. 5251 * See filemap_fault() and __lock_page_retry(). 5252 */ 5253 static vm_fault_t __do_fault(struct vm_fault *vmf) 5254 { 5255 struct vm_area_struct *vma = vmf->vma; 5256 struct folio *folio; 5257 vm_fault_t ret; 5258 5259 /* 5260 * Preallocate pte before we take page_lock because this might lead to 5261 * deadlocks for memcg reclaim which waits for pages under writeback: 5262 * lock_page(A) 5263 * SetPageWriteback(A) 5264 * unlock_page(A) 5265 * lock_page(B) 5266 * lock_page(B) 5267 * pte_alloc_one 5268 * shrink_folio_list 5269 * wait_on_page_writeback(A) 5270 * SetPageWriteback(B) 5271 * unlock_page(B) 5272 * # flush A, B to clear the writeback 5273 */ 5274 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 5275 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5276 if (!vmf->prealloc_pte) 5277 return VM_FAULT_OOM; 5278 } 5279 5280 ret = vma->vm_ops->fault(vmf); 5281 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 5282 VM_FAULT_DONE_COW))) 5283 return ret; 5284 5285 folio = page_folio(vmf->page); 5286 if (unlikely(PageHWPoison(vmf->page))) { 5287 vm_fault_t poisonret = VM_FAULT_HWPOISON; 5288 if (ret & VM_FAULT_LOCKED) { 5289 if (page_mapped(vmf->page)) 5290 unmap_mapping_folio(folio); 5291 /* Retry if a clean folio was removed from the cache. */ 5292 if (mapping_evict_folio(folio->mapping, folio)) 5293 poisonret = VM_FAULT_NOPAGE; 5294 folio_unlock(folio); 5295 } 5296 folio_put(folio); 5297 vmf->page = NULL; 5298 return poisonret; 5299 } 5300 5301 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5302 folio_lock(folio); 5303 else 5304 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5305 5306 return ret; 5307 } 5308 5309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5310 static void deposit_prealloc_pte(struct vm_fault *vmf) 5311 { 5312 struct vm_area_struct *vma = vmf->vma; 5313 5314 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5315 /* 5316 * We are going to consume the prealloc table, 5317 * count that as nr_ptes. 5318 */ 5319 mm_inc_nr_ptes(vma->vm_mm); 5320 vmf->prealloc_pte = NULL; 5321 } 5322 5323 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5324 { 5325 struct vm_area_struct *vma = vmf->vma; 5326 bool write = vmf->flags & FAULT_FLAG_WRITE; 5327 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5328 pmd_t entry; 5329 vm_fault_t ret = VM_FAULT_FALLBACK; 5330 5331 /* 5332 * It is too late to allocate a small folio, we already have a large 5333 * folio in the pagecache: especially s390 KVM cannot tolerate any 5334 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5335 * PMD mappings if THPs are disabled. As we already have a THP, 5336 * behave as if we are forcing a collapse. 5337 */ 5338 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags, 5339 /* forced_collapse=*/ true)) 5340 return ret; 5341 5342 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5343 return ret; 5344 5345 if (folio_order(folio) != HPAGE_PMD_ORDER) 5346 return ret; 5347 page = &folio->page; 5348 5349 /* 5350 * Just backoff if any subpage of a THP is corrupted otherwise 5351 * the corrupted page may mapped by PMD silently to escape the 5352 * check. This kind of THP just can be PTE mapped. Access to 5353 * the corrupted subpage should trigger SIGBUS as expected. 5354 */ 5355 if (unlikely(folio_test_has_hwpoisoned(folio))) 5356 return ret; 5357 5358 /* 5359 * Archs like ppc64 need additional space to store information 5360 * related to pte entry. Use the preallocated table for that. 5361 */ 5362 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5363 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5364 if (!vmf->prealloc_pte) 5365 return VM_FAULT_OOM; 5366 } 5367 5368 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5369 if (unlikely(!pmd_none(*vmf->pmd))) 5370 goto out; 5371 5372 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5373 5374 entry = folio_mk_pmd(folio, vma->vm_page_prot); 5375 if (write) 5376 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5377 5378 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5379 folio_add_file_rmap_pmd(folio, page, vma); 5380 5381 /* 5382 * deposit and withdraw with pmd lock held 5383 */ 5384 if (arch_needs_pgtable_deposit()) 5385 deposit_prealloc_pte(vmf); 5386 5387 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5388 5389 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5390 5391 /* fault is handled */ 5392 ret = 0; 5393 count_vm_event(THP_FILE_MAPPED); 5394 out: 5395 spin_unlock(vmf->ptl); 5396 return ret; 5397 } 5398 #else 5399 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5400 { 5401 return VM_FAULT_FALLBACK; 5402 } 5403 #endif 5404 5405 /** 5406 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5407 * @vmf: Fault decription. 5408 * @folio: The folio that contains @page. 5409 * @page: The first page to create a PTE for. 5410 * @nr: The number of PTEs to create. 5411 * @addr: The first address to create a PTE for. 5412 */ 5413 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5414 struct page *page, unsigned int nr, unsigned long addr) 5415 { 5416 struct vm_area_struct *vma = vmf->vma; 5417 bool write = vmf->flags & FAULT_FLAG_WRITE; 5418 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5419 pte_t entry; 5420 5421 flush_icache_pages(vma, page, nr); 5422 entry = mk_pte(page, vma->vm_page_prot); 5423 5424 if (prefault && arch_wants_old_prefaulted_pte()) 5425 entry = pte_mkold(entry); 5426 else 5427 entry = pte_sw_mkyoung(entry); 5428 5429 if (write) 5430 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5431 else if (pte_write(entry) && folio_test_dirty(folio)) 5432 entry = pte_mkdirty(entry); 5433 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5434 entry = pte_mkuffd_wp(entry); 5435 /* copy-on-write page */ 5436 if (write && !(vma->vm_flags & VM_SHARED)) { 5437 VM_BUG_ON_FOLIO(nr != 1, folio); 5438 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5439 folio_add_lru_vma(folio, vma); 5440 } else { 5441 folio_add_file_rmap_ptes(folio, page, nr, vma); 5442 } 5443 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5444 5445 /* no need to invalidate: a not-present page won't be cached */ 5446 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5447 } 5448 5449 static bool vmf_pte_changed(struct vm_fault *vmf) 5450 { 5451 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5452 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5453 5454 return !pte_none(ptep_get(vmf->pte)); 5455 } 5456 5457 /** 5458 * finish_fault - finish page fault once we have prepared the page to fault 5459 * 5460 * @vmf: structure describing the fault 5461 * 5462 * This function handles all that is needed to finish a page fault once the 5463 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5464 * given page, adds reverse page mapping, handles memcg charges and LRU 5465 * addition. 5466 * 5467 * The function expects the page to be locked and on success it consumes a 5468 * reference of a page being mapped (for the PTE which maps it). 5469 * 5470 * Return: %0 on success, %VM_FAULT_ code in case of error. 5471 */ 5472 vm_fault_t finish_fault(struct vm_fault *vmf) 5473 { 5474 struct vm_area_struct *vma = vmf->vma; 5475 struct page *page; 5476 struct folio *folio; 5477 vm_fault_t ret; 5478 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5479 !(vma->vm_flags & VM_SHARED); 5480 int type, nr_pages; 5481 unsigned long addr; 5482 bool needs_fallback = false; 5483 5484 fallback: 5485 addr = vmf->address; 5486 5487 /* Did we COW the page? */ 5488 if (is_cow) 5489 page = vmf->cow_page; 5490 else 5491 page = vmf->page; 5492 5493 folio = page_folio(page); 5494 /* 5495 * check even for read faults because we might have lost our CoWed 5496 * page 5497 */ 5498 if (!(vma->vm_flags & VM_SHARED)) { 5499 ret = check_stable_address_space(vma->vm_mm); 5500 if (ret) 5501 return ret; 5502 } 5503 5504 if (pmd_none(*vmf->pmd)) { 5505 if (folio_test_pmd_mappable(folio)) { 5506 ret = do_set_pmd(vmf, folio, page); 5507 if (ret != VM_FAULT_FALLBACK) 5508 return ret; 5509 } 5510 5511 if (vmf->prealloc_pte) 5512 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5513 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5514 return VM_FAULT_OOM; 5515 } 5516 5517 nr_pages = folio_nr_pages(folio); 5518 5519 /* Using per-page fault to maintain the uffd semantics */ 5520 if (unlikely(userfaultfd_armed(vma)) || unlikely(needs_fallback)) { 5521 nr_pages = 1; 5522 } else if (nr_pages > 1) { 5523 pgoff_t idx = folio_page_idx(folio, page); 5524 /* The page offset of vmf->address within the VMA. */ 5525 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5526 /* The index of the entry in the pagetable for fault page. */ 5527 pgoff_t pte_off = pte_index(vmf->address); 5528 5529 /* 5530 * Fallback to per-page fault in case the folio size in page 5531 * cache beyond the VMA limits and PMD pagetable limits. 5532 */ 5533 if (unlikely(vma_off < idx || 5534 vma_off + (nr_pages - idx) > vma_pages(vma) || 5535 pte_off < idx || 5536 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5537 nr_pages = 1; 5538 } else { 5539 /* Now we can set mappings for the whole large folio. */ 5540 addr = vmf->address - idx * PAGE_SIZE; 5541 page = &folio->page; 5542 } 5543 } 5544 5545 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5546 addr, &vmf->ptl); 5547 if (!vmf->pte) 5548 return VM_FAULT_NOPAGE; 5549 5550 /* Re-check under ptl */ 5551 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5552 update_mmu_tlb(vma, addr, vmf->pte); 5553 ret = VM_FAULT_NOPAGE; 5554 goto unlock; 5555 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5556 needs_fallback = true; 5557 pte_unmap_unlock(vmf->pte, vmf->ptl); 5558 goto fallback; 5559 } 5560 5561 folio_ref_add(folio, nr_pages - 1); 5562 set_pte_range(vmf, folio, page, nr_pages, addr); 5563 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5564 add_mm_counter(vma->vm_mm, type, nr_pages); 5565 ret = 0; 5566 5567 unlock: 5568 pte_unmap_unlock(vmf->pte, vmf->ptl); 5569 return ret; 5570 } 5571 5572 static unsigned long fault_around_pages __read_mostly = 5573 65536 >> PAGE_SHIFT; 5574 5575 #ifdef CONFIG_DEBUG_FS 5576 static int fault_around_bytes_get(void *data, u64 *val) 5577 { 5578 *val = fault_around_pages << PAGE_SHIFT; 5579 return 0; 5580 } 5581 5582 /* 5583 * fault_around_bytes must be rounded down to the nearest page order as it's 5584 * what do_fault_around() expects to see. 5585 */ 5586 static int fault_around_bytes_set(void *data, u64 val) 5587 { 5588 if (val / PAGE_SIZE > PTRS_PER_PTE) 5589 return -EINVAL; 5590 5591 /* 5592 * The minimum value is 1 page, however this results in no fault-around 5593 * at all. See should_fault_around(). 5594 */ 5595 val = max(val, PAGE_SIZE); 5596 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5597 5598 return 0; 5599 } 5600 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5601 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5602 5603 static int __init fault_around_debugfs(void) 5604 { 5605 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5606 &fault_around_bytes_fops); 5607 return 0; 5608 } 5609 late_initcall(fault_around_debugfs); 5610 #endif 5611 5612 /* 5613 * do_fault_around() tries to map few pages around the fault address. The hope 5614 * is that the pages will be needed soon and this will lower the number of 5615 * faults to handle. 5616 * 5617 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5618 * not ready to be mapped: not up-to-date, locked, etc. 5619 * 5620 * This function doesn't cross VMA or page table boundaries, in order to call 5621 * map_pages() and acquire a PTE lock only once. 5622 * 5623 * fault_around_pages defines how many pages we'll try to map. 5624 * do_fault_around() expects it to be set to a power of two less than or equal 5625 * to PTRS_PER_PTE. 5626 * 5627 * The virtual address of the area that we map is naturally aligned to 5628 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5629 * (and therefore to page order). This way it's easier to guarantee 5630 * that we don't cross page table boundaries. 5631 */ 5632 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5633 { 5634 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5635 pgoff_t pte_off = pte_index(vmf->address); 5636 /* The page offset of vmf->address within the VMA. */ 5637 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5638 pgoff_t from_pte, to_pte; 5639 vm_fault_t ret; 5640 5641 /* The PTE offset of the start address, clamped to the VMA. */ 5642 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5643 pte_off - min(pte_off, vma_off)); 5644 5645 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5646 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5647 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5648 5649 if (pmd_none(*vmf->pmd)) { 5650 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5651 if (!vmf->prealloc_pte) 5652 return VM_FAULT_OOM; 5653 } 5654 5655 rcu_read_lock(); 5656 ret = vmf->vma->vm_ops->map_pages(vmf, 5657 vmf->pgoff + from_pte - pte_off, 5658 vmf->pgoff + to_pte - pte_off); 5659 rcu_read_unlock(); 5660 5661 return ret; 5662 } 5663 5664 /* Return true if we should do read fault-around, false otherwise */ 5665 static inline bool should_fault_around(struct vm_fault *vmf) 5666 { 5667 /* No ->map_pages? No way to fault around... */ 5668 if (!vmf->vma->vm_ops->map_pages) 5669 return false; 5670 5671 if (uffd_disable_fault_around(vmf->vma)) 5672 return false; 5673 5674 /* A single page implies no faulting 'around' at all. */ 5675 return fault_around_pages > 1; 5676 } 5677 5678 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5679 { 5680 vm_fault_t ret = 0; 5681 struct folio *folio; 5682 5683 /* 5684 * Let's call ->map_pages() first and use ->fault() as fallback 5685 * if page by the offset is not ready to be mapped (cold cache or 5686 * something). 5687 */ 5688 if (should_fault_around(vmf)) { 5689 ret = do_fault_around(vmf); 5690 if (ret) 5691 return ret; 5692 } 5693 5694 ret = vmf_can_call_fault(vmf); 5695 if (ret) 5696 return ret; 5697 5698 ret = __do_fault(vmf); 5699 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5700 return ret; 5701 5702 ret |= finish_fault(vmf); 5703 folio = page_folio(vmf->page); 5704 folio_unlock(folio); 5705 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5706 folio_put(folio); 5707 return ret; 5708 } 5709 5710 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5711 { 5712 struct vm_area_struct *vma = vmf->vma; 5713 struct folio *folio; 5714 vm_fault_t ret; 5715 5716 ret = vmf_can_call_fault(vmf); 5717 if (!ret) 5718 ret = vmf_anon_prepare(vmf); 5719 if (ret) 5720 return ret; 5721 5722 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5723 if (!folio) 5724 return VM_FAULT_OOM; 5725 5726 vmf->cow_page = &folio->page; 5727 5728 ret = __do_fault(vmf); 5729 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5730 goto uncharge_out; 5731 if (ret & VM_FAULT_DONE_COW) 5732 return ret; 5733 5734 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5735 ret = VM_FAULT_HWPOISON; 5736 goto unlock; 5737 } 5738 __folio_mark_uptodate(folio); 5739 5740 ret |= finish_fault(vmf); 5741 unlock: 5742 unlock_page(vmf->page); 5743 put_page(vmf->page); 5744 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5745 goto uncharge_out; 5746 return ret; 5747 uncharge_out: 5748 folio_put(folio); 5749 return ret; 5750 } 5751 5752 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5753 { 5754 struct vm_area_struct *vma = vmf->vma; 5755 vm_fault_t ret, tmp; 5756 struct folio *folio; 5757 5758 ret = vmf_can_call_fault(vmf); 5759 if (ret) 5760 return ret; 5761 5762 ret = __do_fault(vmf); 5763 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5764 return ret; 5765 5766 folio = page_folio(vmf->page); 5767 5768 /* 5769 * Check if the backing address space wants to know that the page is 5770 * about to become writable 5771 */ 5772 if (vma->vm_ops->page_mkwrite) { 5773 folio_unlock(folio); 5774 tmp = do_page_mkwrite(vmf, folio); 5775 if (unlikely(!tmp || 5776 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5777 folio_put(folio); 5778 return tmp; 5779 } 5780 } 5781 5782 ret |= finish_fault(vmf); 5783 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5784 VM_FAULT_RETRY))) { 5785 folio_unlock(folio); 5786 folio_put(folio); 5787 return ret; 5788 } 5789 5790 ret |= fault_dirty_shared_page(vmf); 5791 return ret; 5792 } 5793 5794 /* 5795 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5796 * but allow concurrent faults). 5797 * The mmap_lock may have been released depending on flags and our 5798 * return value. See filemap_fault() and __folio_lock_or_retry(). 5799 * If mmap_lock is released, vma may become invalid (for example 5800 * by other thread calling munmap()). 5801 */ 5802 static vm_fault_t do_fault(struct vm_fault *vmf) 5803 { 5804 struct vm_area_struct *vma = vmf->vma; 5805 struct mm_struct *vm_mm = vma->vm_mm; 5806 vm_fault_t ret; 5807 5808 /* 5809 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5810 */ 5811 if (!vma->vm_ops->fault) { 5812 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5813 vmf->address, &vmf->ptl); 5814 if (unlikely(!vmf->pte)) 5815 ret = VM_FAULT_SIGBUS; 5816 else { 5817 /* 5818 * Make sure this is not a temporary clearing of pte 5819 * by holding ptl and checking again. A R/M/W update 5820 * of pte involves: take ptl, clearing the pte so that 5821 * we don't have concurrent modification by hardware 5822 * followed by an update. 5823 */ 5824 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5825 ret = VM_FAULT_SIGBUS; 5826 else 5827 ret = VM_FAULT_NOPAGE; 5828 5829 pte_unmap_unlock(vmf->pte, vmf->ptl); 5830 } 5831 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5832 ret = do_read_fault(vmf); 5833 else if (!(vma->vm_flags & VM_SHARED)) 5834 ret = do_cow_fault(vmf); 5835 else 5836 ret = do_shared_fault(vmf); 5837 5838 /* preallocated pagetable is unused: free it */ 5839 if (vmf->prealloc_pte) { 5840 pte_free(vm_mm, vmf->prealloc_pte); 5841 vmf->prealloc_pte = NULL; 5842 } 5843 return ret; 5844 } 5845 5846 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5847 unsigned long addr, int *flags, 5848 bool writable, int *last_cpupid) 5849 { 5850 struct vm_area_struct *vma = vmf->vma; 5851 5852 /* 5853 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5854 * much anyway since they can be in shared cache state. This misses 5855 * the case where a mapping is writable but the process never writes 5856 * to it but pte_write gets cleared during protection updates and 5857 * pte_dirty has unpredictable behaviour between PTE scan updates, 5858 * background writeback, dirty balancing and application behaviour. 5859 */ 5860 if (!writable) 5861 *flags |= TNF_NO_GROUP; 5862 5863 /* 5864 * Flag if the folio is shared between multiple address spaces. This 5865 * is later used when determining whether to group tasks together 5866 */ 5867 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5868 *flags |= TNF_SHARED; 5869 /* 5870 * For memory tiering mode, cpupid of slow memory page is used 5871 * to record page access time. So use default value. 5872 */ 5873 if (folio_use_access_time(folio)) 5874 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5875 else 5876 *last_cpupid = folio_last_cpupid(folio); 5877 5878 /* Record the current PID acceesing VMA */ 5879 vma_set_access_pid_bit(vma); 5880 5881 count_vm_numa_event(NUMA_HINT_FAULTS); 5882 #ifdef CONFIG_NUMA_BALANCING 5883 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5884 #endif 5885 if (folio_nid(folio) == numa_node_id()) { 5886 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5887 *flags |= TNF_FAULT_LOCAL; 5888 } 5889 5890 return mpol_misplaced(folio, vmf, addr); 5891 } 5892 5893 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5894 unsigned long fault_addr, pte_t *fault_pte, 5895 bool writable) 5896 { 5897 pte_t pte, old_pte; 5898 5899 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5900 pte = pte_modify(old_pte, vma->vm_page_prot); 5901 pte = pte_mkyoung(pte); 5902 if (writable) 5903 pte = pte_mkwrite(pte, vma); 5904 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5905 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5906 } 5907 5908 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5909 struct folio *folio, pte_t fault_pte, 5910 bool ignore_writable, bool pte_write_upgrade) 5911 { 5912 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5913 unsigned long start, end, addr = vmf->address; 5914 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5915 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5916 pte_t *start_ptep; 5917 5918 /* Stay within the VMA and within the page table. */ 5919 start = max3(addr_start, pt_start, vma->vm_start); 5920 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5921 vma->vm_end); 5922 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5923 5924 /* Restore all PTEs' mapping of the large folio */ 5925 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5926 pte_t ptent = ptep_get(start_ptep); 5927 bool writable = false; 5928 5929 if (!pte_present(ptent) || !pte_protnone(ptent)) 5930 continue; 5931 5932 if (pfn_folio(pte_pfn(ptent)) != folio) 5933 continue; 5934 5935 if (!ignore_writable) { 5936 ptent = pte_modify(ptent, vma->vm_page_prot); 5937 writable = pte_write(ptent); 5938 if (!writable && pte_write_upgrade && 5939 can_change_pte_writable(vma, addr, ptent)) 5940 writable = true; 5941 } 5942 5943 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5944 } 5945 } 5946 5947 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5948 { 5949 struct vm_area_struct *vma = vmf->vma; 5950 struct folio *folio = NULL; 5951 int nid = NUMA_NO_NODE; 5952 bool writable = false, ignore_writable = false; 5953 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5954 int last_cpupid; 5955 int target_nid; 5956 pte_t pte, old_pte; 5957 int flags = 0, nr_pages; 5958 5959 /* 5960 * The pte cannot be used safely until we verify, while holding the page 5961 * table lock, that its contents have not changed during fault handling. 5962 */ 5963 spin_lock(vmf->ptl); 5964 /* Read the live PTE from the page tables: */ 5965 old_pte = ptep_get(vmf->pte); 5966 5967 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5968 pte_unmap_unlock(vmf->pte, vmf->ptl); 5969 return 0; 5970 } 5971 5972 pte = pte_modify(old_pte, vma->vm_page_prot); 5973 5974 /* 5975 * Detect now whether the PTE could be writable; this information 5976 * is only valid while holding the PT lock. 5977 */ 5978 writable = pte_write(pte); 5979 if (!writable && pte_write_upgrade && 5980 can_change_pte_writable(vma, vmf->address, pte)) 5981 writable = true; 5982 5983 folio = vm_normal_folio(vma, vmf->address, pte); 5984 if (!folio || folio_is_zone_device(folio)) 5985 goto out_map; 5986 5987 nid = folio_nid(folio); 5988 nr_pages = folio_nr_pages(folio); 5989 5990 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5991 writable, &last_cpupid); 5992 if (target_nid == NUMA_NO_NODE) 5993 goto out_map; 5994 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5995 flags |= TNF_MIGRATE_FAIL; 5996 goto out_map; 5997 } 5998 /* The folio is isolated and isolation code holds a folio reference. */ 5999 pte_unmap_unlock(vmf->pte, vmf->ptl); 6000 writable = false; 6001 ignore_writable = true; 6002 6003 /* Migrate to the requested node */ 6004 if (!migrate_misplaced_folio(folio, target_nid)) { 6005 nid = target_nid; 6006 flags |= TNF_MIGRATED; 6007 task_numa_fault(last_cpupid, nid, nr_pages, flags); 6008 return 0; 6009 } 6010 6011 flags |= TNF_MIGRATE_FAIL; 6012 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 6013 vmf->address, &vmf->ptl); 6014 if (unlikely(!vmf->pte)) 6015 return 0; 6016 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 6017 pte_unmap_unlock(vmf->pte, vmf->ptl); 6018 return 0; 6019 } 6020 out_map: 6021 /* 6022 * Make it present again, depending on how arch implements 6023 * non-accessible ptes, some can allow access by kernel mode. 6024 */ 6025 if (folio && folio_test_large(folio)) 6026 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 6027 pte_write_upgrade); 6028 else 6029 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 6030 writable); 6031 pte_unmap_unlock(vmf->pte, vmf->ptl); 6032 6033 if (nid != NUMA_NO_NODE) 6034 task_numa_fault(last_cpupid, nid, nr_pages, flags); 6035 return 0; 6036 } 6037 6038 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 6039 { 6040 struct vm_area_struct *vma = vmf->vma; 6041 if (vma_is_anonymous(vma)) 6042 return do_huge_pmd_anonymous_page(vmf); 6043 if (vma->vm_ops->huge_fault) 6044 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 6045 return VM_FAULT_FALLBACK; 6046 } 6047 6048 /* `inline' is required to avoid gcc 4.1.2 build error */ 6049 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 6050 { 6051 struct vm_area_struct *vma = vmf->vma; 6052 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6053 vm_fault_t ret; 6054 6055 if (vma_is_anonymous(vma)) { 6056 if (likely(!unshare) && 6057 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 6058 if (userfaultfd_wp_async(vmf->vma)) 6059 goto split; 6060 return handle_userfault(vmf, VM_UFFD_WP); 6061 } 6062 return do_huge_pmd_wp_page(vmf); 6063 } 6064 6065 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6066 if (vma->vm_ops->huge_fault) { 6067 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 6068 if (!(ret & VM_FAULT_FALLBACK)) 6069 return ret; 6070 } 6071 } 6072 6073 split: 6074 /* COW or write-notify handled on pte level: split pmd. */ 6075 __split_huge_pmd(vma, vmf->pmd, vmf->address, false); 6076 6077 return VM_FAULT_FALLBACK; 6078 } 6079 6080 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 6081 { 6082 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6083 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6084 struct vm_area_struct *vma = vmf->vma; 6085 /* No support for anonymous transparent PUD pages yet */ 6086 if (vma_is_anonymous(vma)) 6087 return VM_FAULT_FALLBACK; 6088 if (vma->vm_ops->huge_fault) 6089 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6090 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 6091 return VM_FAULT_FALLBACK; 6092 } 6093 6094 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 6095 { 6096 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6097 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6098 struct vm_area_struct *vma = vmf->vma; 6099 vm_fault_t ret; 6100 6101 /* No support for anonymous transparent PUD pages yet */ 6102 if (vma_is_anonymous(vma)) 6103 goto split; 6104 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6105 if (vma->vm_ops->huge_fault) { 6106 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6107 if (!(ret & VM_FAULT_FALLBACK)) 6108 return ret; 6109 } 6110 } 6111 split: 6112 /* COW or write-notify not handled on PUD level: split pud.*/ 6113 __split_huge_pud(vma, vmf->pud, vmf->address); 6114 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 6115 return VM_FAULT_FALLBACK; 6116 } 6117 6118 /* 6119 * These routines also need to handle stuff like marking pages dirty 6120 * and/or accessed for architectures that don't do it in hardware (most 6121 * RISC architectures). The early dirtying is also good on the i386. 6122 * 6123 * There is also a hook called "update_mmu_cache()" that architectures 6124 * with external mmu caches can use to update those (ie the Sparc or 6125 * PowerPC hashed page tables that act as extended TLBs). 6126 * 6127 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 6128 * concurrent faults). 6129 * 6130 * The mmap_lock may have been released depending on flags and our return value. 6131 * See filemap_fault() and __folio_lock_or_retry(). 6132 */ 6133 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 6134 { 6135 pte_t entry; 6136 6137 if (unlikely(pmd_none(*vmf->pmd))) { 6138 /* 6139 * Leave __pte_alloc() until later: because vm_ops->fault may 6140 * want to allocate huge page, and if we expose page table 6141 * for an instant, it will be difficult to retract from 6142 * concurrent faults and from rmap lookups. 6143 */ 6144 vmf->pte = NULL; 6145 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 6146 } else { 6147 pmd_t dummy_pmdval; 6148 6149 /* 6150 * A regular pmd is established and it can't morph into a huge 6151 * pmd by anon khugepaged, since that takes mmap_lock in write 6152 * mode; but shmem or file collapse to THP could still morph 6153 * it into a huge pmd: just retry later if so. 6154 * 6155 * Use the maywrite version to indicate that vmf->pte may be 6156 * modified, but since we will use pte_same() to detect the 6157 * change of the !pte_none() entry, there is no need to recheck 6158 * the pmdval. Here we chooes to pass a dummy variable instead 6159 * of NULL, which helps new user think about why this place is 6160 * special. 6161 */ 6162 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 6163 vmf->address, &dummy_pmdval, 6164 &vmf->ptl); 6165 if (unlikely(!vmf->pte)) 6166 return 0; 6167 vmf->orig_pte = ptep_get_lockless(vmf->pte); 6168 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 6169 6170 if (pte_none(vmf->orig_pte)) { 6171 pte_unmap(vmf->pte); 6172 vmf->pte = NULL; 6173 } 6174 } 6175 6176 if (!vmf->pte) 6177 return do_pte_missing(vmf); 6178 6179 if (!pte_present(vmf->orig_pte)) 6180 return do_swap_page(vmf); 6181 6182 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 6183 return do_numa_page(vmf); 6184 6185 spin_lock(vmf->ptl); 6186 entry = vmf->orig_pte; 6187 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 6188 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 6189 goto unlock; 6190 } 6191 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6192 if (!pte_write(entry)) 6193 return do_wp_page(vmf); 6194 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 6195 entry = pte_mkdirty(entry); 6196 } 6197 entry = pte_mkyoung(entry); 6198 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 6199 vmf->flags & FAULT_FLAG_WRITE)) { 6200 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 6201 vmf->pte, 1); 6202 } else { 6203 /* Skip spurious TLB flush for retried page fault */ 6204 if (vmf->flags & FAULT_FLAG_TRIED) 6205 goto unlock; 6206 /* 6207 * This is needed only for protection faults but the arch code 6208 * is not yet telling us if this is a protection fault or not. 6209 * This still avoids useless tlb flushes for .text page faults 6210 * with threads. 6211 */ 6212 if (vmf->flags & FAULT_FLAG_WRITE) 6213 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 6214 vmf->pte); 6215 } 6216 unlock: 6217 pte_unmap_unlock(vmf->pte, vmf->ptl); 6218 return 0; 6219 } 6220 6221 /* 6222 * On entry, we hold either the VMA lock or the mmap_lock 6223 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 6224 * the result, the mmap_lock is not held on exit. See filemap_fault() 6225 * and __folio_lock_or_retry(). 6226 */ 6227 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 6228 unsigned long address, unsigned int flags) 6229 { 6230 struct vm_fault vmf = { 6231 .vma = vma, 6232 .address = address & PAGE_MASK, 6233 .real_address = address, 6234 .flags = flags, 6235 .pgoff = linear_page_index(vma, address), 6236 .gfp_mask = __get_fault_gfp_mask(vma), 6237 }; 6238 struct mm_struct *mm = vma->vm_mm; 6239 vm_flags_t vm_flags = vma->vm_flags; 6240 pgd_t *pgd; 6241 p4d_t *p4d; 6242 vm_fault_t ret; 6243 6244 pgd = pgd_offset(mm, address); 6245 p4d = p4d_alloc(mm, pgd, address); 6246 if (!p4d) 6247 return VM_FAULT_OOM; 6248 6249 vmf.pud = pud_alloc(mm, p4d, address); 6250 if (!vmf.pud) 6251 return VM_FAULT_OOM; 6252 retry_pud: 6253 if (pud_none(*vmf.pud) && 6254 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PUD_ORDER)) { 6255 ret = create_huge_pud(&vmf); 6256 if (!(ret & VM_FAULT_FALLBACK)) 6257 return ret; 6258 } else { 6259 pud_t orig_pud = *vmf.pud; 6260 6261 barrier(); 6262 if (pud_trans_huge(orig_pud)) { 6263 6264 /* 6265 * TODO once we support anonymous PUDs: NUMA case and 6266 * FAULT_FLAG_UNSHARE handling. 6267 */ 6268 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 6269 ret = wp_huge_pud(&vmf, orig_pud); 6270 if (!(ret & VM_FAULT_FALLBACK)) 6271 return ret; 6272 } else { 6273 huge_pud_set_accessed(&vmf, orig_pud); 6274 return 0; 6275 } 6276 } 6277 } 6278 6279 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 6280 if (!vmf.pmd) 6281 return VM_FAULT_OOM; 6282 6283 /* Huge pud page fault raced with pmd_alloc? */ 6284 if (pud_trans_unstable(vmf.pud)) 6285 goto retry_pud; 6286 6287 if (pmd_none(*vmf.pmd) && 6288 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PMD_ORDER)) { 6289 ret = create_huge_pmd(&vmf); 6290 if (!(ret & VM_FAULT_FALLBACK)) 6291 return ret; 6292 } else { 6293 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6294 6295 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 6296 VM_BUG_ON(thp_migration_supported() && 6297 !is_pmd_migration_entry(vmf.orig_pmd)); 6298 if (is_pmd_migration_entry(vmf.orig_pmd)) 6299 pmd_migration_entry_wait(mm, vmf.pmd); 6300 return 0; 6301 } 6302 if (pmd_trans_huge(vmf.orig_pmd)) { 6303 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6304 return do_huge_pmd_numa_page(&vmf); 6305 6306 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6307 !pmd_write(vmf.orig_pmd)) { 6308 ret = wp_huge_pmd(&vmf); 6309 if (!(ret & VM_FAULT_FALLBACK)) 6310 return ret; 6311 } else { 6312 huge_pmd_set_accessed(&vmf); 6313 return 0; 6314 } 6315 } 6316 } 6317 6318 return handle_pte_fault(&vmf); 6319 } 6320 6321 /** 6322 * mm_account_fault - Do page fault accounting 6323 * @mm: mm from which memcg should be extracted. It can be NULL. 6324 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6325 * of perf event counters, but we'll still do the per-task accounting to 6326 * the task who triggered this page fault. 6327 * @address: the faulted address. 6328 * @flags: the fault flags. 6329 * @ret: the fault retcode. 6330 * 6331 * This will take care of most of the page fault accounting. Meanwhile, it 6332 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6333 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6334 * still be in per-arch page fault handlers at the entry of page fault. 6335 */ 6336 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6337 unsigned long address, unsigned int flags, 6338 vm_fault_t ret) 6339 { 6340 bool major; 6341 6342 /* Incomplete faults will be accounted upon completion. */ 6343 if (ret & VM_FAULT_RETRY) 6344 return; 6345 6346 /* 6347 * To preserve the behavior of older kernels, PGFAULT counters record 6348 * both successful and failed faults, as opposed to perf counters, 6349 * which ignore failed cases. 6350 */ 6351 count_vm_event(PGFAULT); 6352 count_memcg_event_mm(mm, PGFAULT); 6353 6354 /* 6355 * Do not account for unsuccessful faults (e.g. when the address wasn't 6356 * valid). That includes arch_vma_access_permitted() failing before 6357 * reaching here. So this is not a "this many hardware page faults" 6358 * counter. We should use the hw profiling for that. 6359 */ 6360 if (ret & VM_FAULT_ERROR) 6361 return; 6362 6363 /* 6364 * We define the fault as a major fault when the final successful fault 6365 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6366 * handle it immediately previously). 6367 */ 6368 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6369 6370 if (major) 6371 current->maj_flt++; 6372 else 6373 current->min_flt++; 6374 6375 /* 6376 * If the fault is done for GUP, regs will be NULL. We only do the 6377 * accounting for the per thread fault counters who triggered the 6378 * fault, and we skip the perf event updates. 6379 */ 6380 if (!regs) 6381 return; 6382 6383 if (major) 6384 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6385 else 6386 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6387 } 6388 6389 #ifdef CONFIG_LRU_GEN 6390 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6391 { 6392 /* the LRU algorithm only applies to accesses with recency */ 6393 current->in_lru_fault = vma_has_recency(vma); 6394 } 6395 6396 static void lru_gen_exit_fault(void) 6397 { 6398 current->in_lru_fault = false; 6399 } 6400 #else 6401 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6402 { 6403 } 6404 6405 static void lru_gen_exit_fault(void) 6406 { 6407 } 6408 #endif /* CONFIG_LRU_GEN */ 6409 6410 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6411 unsigned int *flags) 6412 { 6413 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6414 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6415 return VM_FAULT_SIGSEGV; 6416 /* 6417 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6418 * just treat it like an ordinary read-fault otherwise. 6419 */ 6420 if (!is_cow_mapping(vma->vm_flags)) 6421 *flags &= ~FAULT_FLAG_UNSHARE; 6422 } else if (*flags & FAULT_FLAG_WRITE) { 6423 /* Write faults on read-only mappings are impossible ... */ 6424 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6425 return VM_FAULT_SIGSEGV; 6426 /* ... and FOLL_FORCE only applies to COW mappings. */ 6427 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6428 !is_cow_mapping(vma->vm_flags))) 6429 return VM_FAULT_SIGSEGV; 6430 } 6431 #ifdef CONFIG_PER_VMA_LOCK 6432 /* 6433 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6434 * the assumption that lock is dropped on VM_FAULT_RETRY. 6435 */ 6436 if (WARN_ON_ONCE((*flags & 6437 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6438 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6439 return VM_FAULT_SIGSEGV; 6440 #endif 6441 6442 return 0; 6443 } 6444 6445 /* 6446 * By the time we get here, we already hold either the VMA lock or the 6447 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6448 * 6449 * The mmap_lock may have been released depending on flags and our 6450 * return value. See filemap_fault() and __folio_lock_or_retry(). 6451 */ 6452 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6453 unsigned int flags, struct pt_regs *regs) 6454 { 6455 /* If the fault handler drops the mmap_lock, vma may be freed */ 6456 struct mm_struct *mm = vma->vm_mm; 6457 vm_fault_t ret; 6458 bool is_droppable; 6459 6460 __set_current_state(TASK_RUNNING); 6461 6462 ret = sanitize_fault_flags(vma, &flags); 6463 if (ret) 6464 goto out; 6465 6466 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6467 flags & FAULT_FLAG_INSTRUCTION, 6468 flags & FAULT_FLAG_REMOTE)) { 6469 ret = VM_FAULT_SIGSEGV; 6470 goto out; 6471 } 6472 6473 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6474 6475 /* 6476 * Enable the memcg OOM handling for faults triggered in user 6477 * space. Kernel faults are handled more gracefully. 6478 */ 6479 if (flags & FAULT_FLAG_USER) 6480 mem_cgroup_enter_user_fault(); 6481 6482 lru_gen_enter_fault(vma); 6483 6484 if (unlikely(is_vm_hugetlb_page(vma))) 6485 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6486 else 6487 ret = __handle_mm_fault(vma, address, flags); 6488 6489 /* 6490 * Warning: It is no longer safe to dereference vma-> after this point, 6491 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6492 * vma might be destroyed from underneath us. 6493 */ 6494 6495 lru_gen_exit_fault(); 6496 6497 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6498 if (is_droppable) 6499 ret &= ~VM_FAULT_OOM; 6500 6501 if (flags & FAULT_FLAG_USER) { 6502 mem_cgroup_exit_user_fault(); 6503 /* 6504 * The task may have entered a memcg OOM situation but 6505 * if the allocation error was handled gracefully (no 6506 * VM_FAULT_OOM), there is no need to kill anything. 6507 * Just clean up the OOM state peacefully. 6508 */ 6509 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6510 mem_cgroup_oom_synchronize(false); 6511 } 6512 out: 6513 mm_account_fault(mm, regs, address, flags, ret); 6514 6515 return ret; 6516 } 6517 EXPORT_SYMBOL_GPL(handle_mm_fault); 6518 6519 #ifndef __PAGETABLE_P4D_FOLDED 6520 /* 6521 * Allocate p4d page table. 6522 * We've already handled the fast-path in-line. 6523 */ 6524 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6525 { 6526 p4d_t *new = p4d_alloc_one(mm, address); 6527 if (!new) 6528 return -ENOMEM; 6529 6530 spin_lock(&mm->page_table_lock); 6531 if (pgd_present(*pgd)) { /* Another has populated it */ 6532 p4d_free(mm, new); 6533 } else { 6534 smp_wmb(); /* See comment in pmd_install() */ 6535 pgd_populate(mm, pgd, new); 6536 } 6537 spin_unlock(&mm->page_table_lock); 6538 return 0; 6539 } 6540 #endif /* __PAGETABLE_P4D_FOLDED */ 6541 6542 #ifndef __PAGETABLE_PUD_FOLDED 6543 /* 6544 * Allocate page upper directory. 6545 * We've already handled the fast-path in-line. 6546 */ 6547 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6548 { 6549 pud_t *new = pud_alloc_one(mm, address); 6550 if (!new) 6551 return -ENOMEM; 6552 6553 spin_lock(&mm->page_table_lock); 6554 if (!p4d_present(*p4d)) { 6555 mm_inc_nr_puds(mm); 6556 smp_wmb(); /* See comment in pmd_install() */ 6557 p4d_populate(mm, p4d, new); 6558 } else /* Another has populated it */ 6559 pud_free(mm, new); 6560 spin_unlock(&mm->page_table_lock); 6561 return 0; 6562 } 6563 #endif /* __PAGETABLE_PUD_FOLDED */ 6564 6565 #ifndef __PAGETABLE_PMD_FOLDED 6566 /* 6567 * Allocate page middle directory. 6568 * We've already handled the fast-path in-line. 6569 */ 6570 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6571 { 6572 spinlock_t *ptl; 6573 pmd_t *new = pmd_alloc_one(mm, address); 6574 if (!new) 6575 return -ENOMEM; 6576 6577 ptl = pud_lock(mm, pud); 6578 if (!pud_present(*pud)) { 6579 mm_inc_nr_pmds(mm); 6580 smp_wmb(); /* See comment in pmd_install() */ 6581 pud_populate(mm, pud, new); 6582 } else { /* Another has populated it */ 6583 pmd_free(mm, new); 6584 } 6585 spin_unlock(ptl); 6586 return 0; 6587 } 6588 #endif /* __PAGETABLE_PMD_FOLDED */ 6589 6590 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6591 spinlock_t *lock, pte_t *ptep, 6592 pgprot_t pgprot, unsigned long pfn_base, 6593 unsigned long addr_mask, bool writable, 6594 bool special) 6595 { 6596 args->lock = lock; 6597 args->ptep = ptep; 6598 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6599 args->addr_mask = addr_mask; 6600 args->pgprot = pgprot; 6601 args->writable = writable; 6602 args->special = special; 6603 } 6604 6605 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6606 { 6607 #ifdef CONFIG_LOCKDEP 6608 struct file *file = vma->vm_file; 6609 struct address_space *mapping = file ? file->f_mapping : NULL; 6610 6611 if (mapping) 6612 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6613 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6614 else 6615 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6616 #endif 6617 } 6618 6619 /** 6620 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6621 * @args: Pointer to struct @follow_pfnmap_args 6622 * 6623 * The caller needs to setup args->vma and args->address to point to the 6624 * virtual address as the target of such lookup. On a successful return, 6625 * the results will be put into other output fields. 6626 * 6627 * After the caller finished using the fields, the caller must invoke 6628 * another follow_pfnmap_end() to proper releases the locks and resources 6629 * of such look up request. 6630 * 6631 * During the start() and end() calls, the results in @args will be valid 6632 * as proper locks will be held. After the end() is called, all the fields 6633 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6634 * use of such information after end() may require proper synchronizations 6635 * by the caller with page table updates, otherwise it can create a 6636 * security bug. 6637 * 6638 * If the PTE maps a refcounted page, callers are responsible to protect 6639 * against invalidation with MMU notifiers; otherwise access to the PFN at 6640 * a later point in time can trigger use-after-free. 6641 * 6642 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6643 * should be taken for read, and the mmap semaphore cannot be released 6644 * before the end() is invoked. 6645 * 6646 * This function must not be used to modify PTE content. 6647 * 6648 * Return: zero on success, negative otherwise. 6649 */ 6650 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6651 { 6652 struct vm_area_struct *vma = args->vma; 6653 unsigned long address = args->address; 6654 struct mm_struct *mm = vma->vm_mm; 6655 spinlock_t *lock; 6656 pgd_t *pgdp; 6657 p4d_t *p4dp, p4d; 6658 pud_t *pudp, pud; 6659 pmd_t *pmdp, pmd; 6660 pte_t *ptep, pte; 6661 6662 pfnmap_lockdep_assert(vma); 6663 6664 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6665 goto out; 6666 6667 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6668 goto out; 6669 retry: 6670 pgdp = pgd_offset(mm, address); 6671 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6672 goto out; 6673 6674 p4dp = p4d_offset(pgdp, address); 6675 p4d = READ_ONCE(*p4dp); 6676 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6677 goto out; 6678 6679 pudp = pud_offset(p4dp, address); 6680 pud = READ_ONCE(*pudp); 6681 if (pud_none(pud)) 6682 goto out; 6683 if (pud_leaf(pud)) { 6684 lock = pud_lock(mm, pudp); 6685 if (!unlikely(pud_leaf(pud))) { 6686 spin_unlock(lock); 6687 goto retry; 6688 } 6689 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6690 pud_pfn(pud), PUD_MASK, pud_write(pud), 6691 pud_special(pud)); 6692 return 0; 6693 } 6694 6695 pmdp = pmd_offset(pudp, address); 6696 pmd = pmdp_get_lockless(pmdp); 6697 if (pmd_leaf(pmd)) { 6698 lock = pmd_lock(mm, pmdp); 6699 if (!unlikely(pmd_leaf(pmd))) { 6700 spin_unlock(lock); 6701 goto retry; 6702 } 6703 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6704 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6705 pmd_special(pmd)); 6706 return 0; 6707 } 6708 6709 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6710 if (!ptep) 6711 goto out; 6712 pte = ptep_get(ptep); 6713 if (!pte_present(pte)) 6714 goto unlock; 6715 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6716 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6717 pte_special(pte)); 6718 return 0; 6719 unlock: 6720 pte_unmap_unlock(ptep, lock); 6721 out: 6722 return -EINVAL; 6723 } 6724 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6725 6726 /** 6727 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6728 * @args: Pointer to struct @follow_pfnmap_args 6729 * 6730 * Must be used in pair of follow_pfnmap_start(). See the start() function 6731 * above for more information. 6732 */ 6733 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6734 { 6735 if (args->lock) 6736 spin_unlock(args->lock); 6737 if (args->ptep) 6738 pte_unmap(args->ptep); 6739 } 6740 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6741 6742 #ifdef CONFIG_HAVE_IOREMAP_PROT 6743 /** 6744 * generic_access_phys - generic implementation for iomem mmap access 6745 * @vma: the vma to access 6746 * @addr: userspace address, not relative offset within @vma 6747 * @buf: buffer to read/write 6748 * @len: length of transfer 6749 * @write: set to FOLL_WRITE when writing, otherwise reading 6750 * 6751 * This is a generic implementation for &vm_operations_struct.access for an 6752 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6753 * not page based. 6754 */ 6755 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6756 void *buf, int len, int write) 6757 { 6758 resource_size_t phys_addr; 6759 pgprot_t prot = __pgprot(0); 6760 void __iomem *maddr; 6761 int offset = offset_in_page(addr); 6762 int ret = -EINVAL; 6763 bool writable; 6764 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6765 6766 retry: 6767 if (follow_pfnmap_start(&args)) 6768 return -EINVAL; 6769 prot = args.pgprot; 6770 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6771 writable = args.writable; 6772 follow_pfnmap_end(&args); 6773 6774 if ((write & FOLL_WRITE) && !writable) 6775 return -EINVAL; 6776 6777 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6778 if (!maddr) 6779 return -ENOMEM; 6780 6781 if (follow_pfnmap_start(&args)) 6782 goto out_unmap; 6783 6784 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || 6785 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6786 (writable != args.writable)) { 6787 follow_pfnmap_end(&args); 6788 iounmap(maddr); 6789 goto retry; 6790 } 6791 6792 if (write) 6793 memcpy_toio(maddr + offset, buf, len); 6794 else 6795 memcpy_fromio(buf, maddr + offset, len); 6796 ret = len; 6797 follow_pfnmap_end(&args); 6798 out_unmap: 6799 iounmap(maddr); 6800 6801 return ret; 6802 } 6803 EXPORT_SYMBOL_GPL(generic_access_phys); 6804 #endif 6805 6806 /* 6807 * Access another process' address space as given in mm. 6808 */ 6809 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6810 void *buf, int len, unsigned int gup_flags) 6811 { 6812 void *old_buf = buf; 6813 int write = gup_flags & FOLL_WRITE; 6814 6815 if (mmap_read_lock_killable(mm)) 6816 return 0; 6817 6818 /* Untag the address before looking up the VMA */ 6819 addr = untagged_addr_remote(mm, addr); 6820 6821 /* Avoid triggering the temporary warning in __get_user_pages */ 6822 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6823 return 0; 6824 6825 /* ignore errors, just check how much was successfully transferred */ 6826 while (len) { 6827 int bytes, offset; 6828 void *maddr; 6829 struct folio *folio; 6830 struct vm_area_struct *vma = NULL; 6831 struct page *page = get_user_page_vma_remote(mm, addr, 6832 gup_flags, &vma); 6833 6834 if (IS_ERR(page)) { 6835 /* We might need to expand the stack to access it */ 6836 vma = vma_lookup(mm, addr); 6837 if (!vma) { 6838 vma = expand_stack(mm, addr); 6839 6840 /* mmap_lock was dropped on failure */ 6841 if (!vma) 6842 return buf - old_buf; 6843 6844 /* Try again if stack expansion worked */ 6845 continue; 6846 } 6847 6848 /* 6849 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6850 * we can access using slightly different code. 6851 */ 6852 bytes = 0; 6853 #ifdef CONFIG_HAVE_IOREMAP_PROT 6854 if (vma->vm_ops && vma->vm_ops->access) 6855 bytes = vma->vm_ops->access(vma, addr, buf, 6856 len, write); 6857 #endif 6858 if (bytes <= 0) 6859 break; 6860 } else { 6861 folio = page_folio(page); 6862 bytes = len; 6863 offset = addr & (PAGE_SIZE-1); 6864 if (bytes > PAGE_SIZE-offset) 6865 bytes = PAGE_SIZE-offset; 6866 6867 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 6868 if (write) { 6869 copy_to_user_page(vma, page, addr, 6870 maddr + offset, buf, bytes); 6871 folio_mark_dirty_lock(folio); 6872 } else { 6873 copy_from_user_page(vma, page, addr, 6874 buf, maddr + offset, bytes); 6875 } 6876 folio_release_kmap(folio, maddr); 6877 } 6878 len -= bytes; 6879 buf += bytes; 6880 addr += bytes; 6881 } 6882 mmap_read_unlock(mm); 6883 6884 return buf - old_buf; 6885 } 6886 6887 /** 6888 * access_remote_vm - access another process' address space 6889 * @mm: the mm_struct of the target address space 6890 * @addr: start address to access 6891 * @buf: source or destination buffer 6892 * @len: number of bytes to transfer 6893 * @gup_flags: flags modifying lookup behaviour 6894 * 6895 * The caller must hold a reference on @mm. 6896 * 6897 * Return: number of bytes copied from source to destination. 6898 */ 6899 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6900 void *buf, int len, unsigned int gup_flags) 6901 { 6902 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6903 } 6904 6905 /* 6906 * Access another process' address space. 6907 * Source/target buffer must be kernel space, 6908 * Do not walk the page table directly, use get_user_pages 6909 */ 6910 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6911 void *buf, int len, unsigned int gup_flags) 6912 { 6913 struct mm_struct *mm; 6914 int ret; 6915 6916 mm = get_task_mm(tsk); 6917 if (!mm) 6918 return 0; 6919 6920 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6921 6922 mmput(mm); 6923 6924 return ret; 6925 } 6926 EXPORT_SYMBOL_GPL(access_process_vm); 6927 6928 #ifdef CONFIG_BPF_SYSCALL 6929 /* 6930 * Copy a string from another process's address space as given in mm. 6931 * If there is any error return -EFAULT. 6932 */ 6933 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 6934 void *buf, int len, unsigned int gup_flags) 6935 { 6936 void *old_buf = buf; 6937 int err = 0; 6938 6939 *(char *)buf = '\0'; 6940 6941 if (mmap_read_lock_killable(mm)) 6942 return -EFAULT; 6943 6944 addr = untagged_addr_remote(mm, addr); 6945 6946 /* Avoid triggering the temporary warning in __get_user_pages */ 6947 if (!vma_lookup(mm, addr)) { 6948 err = -EFAULT; 6949 goto out; 6950 } 6951 6952 while (len) { 6953 int bytes, offset, retval; 6954 void *maddr; 6955 struct folio *folio; 6956 struct page *page; 6957 struct vm_area_struct *vma = NULL; 6958 6959 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); 6960 if (IS_ERR(page)) { 6961 /* 6962 * Treat as a total failure for now until we decide how 6963 * to handle the CONFIG_HAVE_IOREMAP_PROT case and 6964 * stack expansion. 6965 */ 6966 *(char *)buf = '\0'; 6967 err = -EFAULT; 6968 goto out; 6969 } 6970 6971 folio = page_folio(page); 6972 bytes = len; 6973 offset = addr & (PAGE_SIZE - 1); 6974 if (bytes > PAGE_SIZE - offset) 6975 bytes = PAGE_SIZE - offset; 6976 6977 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 6978 retval = strscpy(buf, maddr + offset, bytes); 6979 if (retval >= 0) { 6980 /* Found the end of the string */ 6981 buf += retval; 6982 folio_release_kmap(folio, maddr); 6983 break; 6984 } 6985 6986 buf += bytes - 1; 6987 /* 6988 * Because strscpy always NUL terminates we need to 6989 * copy the last byte in the page if we are going to 6990 * load more pages 6991 */ 6992 if (bytes != len) { 6993 addr += bytes - 1; 6994 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); 6995 buf += 1; 6996 addr += 1; 6997 } 6998 len -= bytes; 6999 7000 folio_release_kmap(folio, maddr); 7001 } 7002 7003 out: 7004 mmap_read_unlock(mm); 7005 if (err) 7006 return err; 7007 return buf - old_buf; 7008 } 7009 7010 /** 7011 * copy_remote_vm_str - copy a string from another process's address space. 7012 * @tsk: the task of the target address space 7013 * @addr: start address to read from 7014 * @buf: destination buffer 7015 * @len: number of bytes to copy 7016 * @gup_flags: flags modifying lookup behaviour 7017 * 7018 * The caller must hold a reference on @mm. 7019 * 7020 * Return: number of bytes copied from @addr (source) to @buf (destination); 7021 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 7022 * buffer. On any error, return -EFAULT. 7023 */ 7024 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 7025 void *buf, int len, unsigned int gup_flags) 7026 { 7027 struct mm_struct *mm; 7028 int ret; 7029 7030 if (unlikely(len == 0)) 7031 return 0; 7032 7033 mm = get_task_mm(tsk); 7034 if (!mm) { 7035 *(char *)buf = '\0'; 7036 return -EFAULT; 7037 } 7038 7039 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); 7040 7041 mmput(mm); 7042 7043 return ret; 7044 } 7045 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 7046 #endif /* CONFIG_BPF_SYSCALL */ 7047 7048 /* 7049 * Print the name of a VMA. 7050 */ 7051 void print_vma_addr(char *prefix, unsigned long ip) 7052 { 7053 struct mm_struct *mm = current->mm; 7054 struct vm_area_struct *vma; 7055 7056 /* 7057 * we might be running from an atomic context so we cannot sleep 7058 */ 7059 if (!mmap_read_trylock(mm)) 7060 return; 7061 7062 vma = vma_lookup(mm, ip); 7063 if (vma && vma->vm_file) { 7064 struct file *f = vma->vm_file; 7065 ip -= vma->vm_start; 7066 ip += vma->vm_pgoff << PAGE_SHIFT; 7067 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 7068 vma->vm_start, 7069 vma->vm_end - vma->vm_start); 7070 } 7071 mmap_read_unlock(mm); 7072 } 7073 7074 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 7075 void __might_fault(const char *file, int line) 7076 { 7077 if (pagefault_disabled()) 7078 return; 7079 __might_sleep(file, line); 7080 if (current->mm) 7081 might_lock_read(¤t->mm->mmap_lock); 7082 } 7083 EXPORT_SYMBOL(__might_fault); 7084 #endif 7085 7086 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 7087 /* 7088 * Process all subpages of the specified huge page with the specified 7089 * operation. The target subpage will be processed last to keep its 7090 * cache lines hot. 7091 */ 7092 static inline int process_huge_page( 7093 unsigned long addr_hint, unsigned int nr_pages, 7094 int (*process_subpage)(unsigned long addr, int idx, void *arg), 7095 void *arg) 7096 { 7097 int i, n, base, l, ret; 7098 unsigned long addr = addr_hint & 7099 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 7100 7101 /* Process target subpage last to keep its cache lines hot */ 7102 might_sleep(); 7103 n = (addr_hint - addr) / PAGE_SIZE; 7104 if (2 * n <= nr_pages) { 7105 /* If target subpage in first half of huge page */ 7106 base = 0; 7107 l = n; 7108 /* Process subpages at the end of huge page */ 7109 for (i = nr_pages - 1; i >= 2 * n; i--) { 7110 cond_resched(); 7111 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7112 if (ret) 7113 return ret; 7114 } 7115 } else { 7116 /* If target subpage in second half of huge page */ 7117 base = nr_pages - 2 * (nr_pages - n); 7118 l = nr_pages - n; 7119 /* Process subpages at the begin of huge page */ 7120 for (i = 0; i < base; i++) { 7121 cond_resched(); 7122 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7123 if (ret) 7124 return ret; 7125 } 7126 } 7127 /* 7128 * Process remaining subpages in left-right-left-right pattern 7129 * towards the target subpage 7130 */ 7131 for (i = 0; i < l; i++) { 7132 int left_idx = base + i; 7133 int right_idx = base + 2 * l - 1 - i; 7134 7135 cond_resched(); 7136 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 7137 if (ret) 7138 return ret; 7139 cond_resched(); 7140 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 7141 if (ret) 7142 return ret; 7143 } 7144 return 0; 7145 } 7146 7147 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 7148 unsigned int nr_pages) 7149 { 7150 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7151 int i; 7152 7153 might_sleep(); 7154 for (i = 0; i < nr_pages; i++) { 7155 cond_resched(); 7156 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 7157 } 7158 } 7159 7160 static int clear_subpage(unsigned long addr, int idx, void *arg) 7161 { 7162 struct folio *folio = arg; 7163 7164 clear_user_highpage(folio_page(folio, idx), addr); 7165 return 0; 7166 } 7167 7168 /** 7169 * folio_zero_user - Zero a folio which will be mapped to userspace. 7170 * @folio: The folio to zero. 7171 * @addr_hint: The address will be accessed or the base address if uncelar. 7172 */ 7173 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7174 { 7175 unsigned int nr_pages = folio_nr_pages(folio); 7176 7177 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7178 clear_gigantic_page(folio, addr_hint, nr_pages); 7179 else 7180 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 7181 } 7182 7183 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7184 unsigned long addr_hint, 7185 struct vm_area_struct *vma, 7186 unsigned int nr_pages) 7187 { 7188 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7189 struct page *dst_page; 7190 struct page *src_page; 7191 int i; 7192 7193 for (i = 0; i < nr_pages; i++) { 7194 dst_page = folio_page(dst, i); 7195 src_page = folio_page(src, i); 7196 7197 cond_resched(); 7198 if (copy_mc_user_highpage(dst_page, src_page, 7199 addr + i*PAGE_SIZE, vma)) 7200 return -EHWPOISON; 7201 } 7202 return 0; 7203 } 7204 7205 struct copy_subpage_arg { 7206 struct folio *dst; 7207 struct folio *src; 7208 struct vm_area_struct *vma; 7209 }; 7210 7211 static int copy_subpage(unsigned long addr, int idx, void *arg) 7212 { 7213 struct copy_subpage_arg *copy_arg = arg; 7214 struct page *dst = folio_page(copy_arg->dst, idx); 7215 struct page *src = folio_page(copy_arg->src, idx); 7216 7217 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7218 return -EHWPOISON; 7219 return 0; 7220 } 7221 7222 int copy_user_large_folio(struct folio *dst, struct folio *src, 7223 unsigned long addr_hint, struct vm_area_struct *vma) 7224 { 7225 unsigned int nr_pages = folio_nr_pages(dst); 7226 struct copy_subpage_arg arg = { 7227 .dst = dst, 7228 .src = src, 7229 .vma = vma, 7230 }; 7231 7232 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7233 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7234 7235 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7236 } 7237 7238 long copy_folio_from_user(struct folio *dst_folio, 7239 const void __user *usr_src, 7240 bool allow_pagefault) 7241 { 7242 void *kaddr; 7243 unsigned long i, rc = 0; 7244 unsigned int nr_pages = folio_nr_pages(dst_folio); 7245 unsigned long ret_val = nr_pages * PAGE_SIZE; 7246 struct page *subpage; 7247 7248 for (i = 0; i < nr_pages; i++) { 7249 subpage = folio_page(dst_folio, i); 7250 kaddr = kmap_local_page(subpage); 7251 if (!allow_pagefault) 7252 pagefault_disable(); 7253 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7254 if (!allow_pagefault) 7255 pagefault_enable(); 7256 kunmap_local(kaddr); 7257 7258 ret_val -= (PAGE_SIZE - rc); 7259 if (rc) 7260 break; 7261 7262 flush_dcache_page(subpage); 7263 7264 cond_resched(); 7265 } 7266 return ret_val; 7267 } 7268 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7269 7270 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7271 7272 static struct kmem_cache *page_ptl_cachep; 7273 7274 void __init ptlock_cache_init(void) 7275 { 7276 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7277 SLAB_PANIC, NULL); 7278 } 7279 7280 bool ptlock_alloc(struct ptdesc *ptdesc) 7281 { 7282 spinlock_t *ptl; 7283 7284 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7285 if (!ptl) 7286 return false; 7287 ptdesc->ptl = ptl; 7288 return true; 7289 } 7290 7291 void ptlock_free(struct ptdesc *ptdesc) 7292 { 7293 if (ptdesc->ptl) 7294 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7295 } 7296 #endif 7297 7298 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7299 { 7300 if (is_vm_hugetlb_page(vma)) 7301 hugetlb_vma_lock_read(vma); 7302 } 7303 7304 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7305 { 7306 if (is_vm_hugetlb_page(vma)) 7307 hugetlb_vma_unlock_read(vma); 7308 } 7309