xref: /linux/mm/memory.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/tlb.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
59 
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
62 
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr;
66 struct page *mem_map;
67 
68 EXPORT_SYMBOL(max_mapnr);
69 EXPORT_SYMBOL(mem_map);
70 #endif
71 
72 unsigned long num_physpages;
73 /*
74  * A number of key systems in x86 including ioremap() rely on the assumption
75  * that high_memory defines the upper bound on direct map memory, then end
76  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
77  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78  * and ZONE_HIGHMEM.
79  */
80 void * high_memory;
81 unsigned long vmalloc_earlyreserve;
82 
83 EXPORT_SYMBOL(num_physpages);
84 EXPORT_SYMBOL(high_memory);
85 EXPORT_SYMBOL(vmalloc_earlyreserve);
86 
87 int randomize_va_space __read_mostly = 1;
88 
89 static int __init disable_randmaps(char *s)
90 {
91 	randomize_va_space = 0;
92 	return 1;
93 }
94 __setup("norandmaps", disable_randmaps);
95 
96 
97 /*
98  * If a p?d_bad entry is found while walking page tables, report
99  * the error, before resetting entry to p?d_none.  Usually (but
100  * very seldom) called out from the p?d_none_or_clear_bad macros.
101  */
102 
103 void pgd_clear_bad(pgd_t *pgd)
104 {
105 	pgd_ERROR(*pgd);
106 	pgd_clear(pgd);
107 }
108 
109 void pud_clear_bad(pud_t *pud)
110 {
111 	pud_ERROR(*pud);
112 	pud_clear(pud);
113 }
114 
115 void pmd_clear_bad(pmd_t *pmd)
116 {
117 	pmd_ERROR(*pmd);
118 	pmd_clear(pmd);
119 }
120 
121 /*
122  * Note: this doesn't free the actual pages themselves. That
123  * has been handled earlier when unmapping all the memory regions.
124  */
125 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
126 {
127 	struct page *page = pmd_page(*pmd);
128 	pmd_clear(pmd);
129 	pte_lock_deinit(page);
130 	pte_free_tlb(tlb, page);
131 	dec_zone_page_state(page, NR_PAGETABLE);
132 	tlb->mm->nr_ptes--;
133 }
134 
135 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
136 				unsigned long addr, unsigned long end,
137 				unsigned long floor, unsigned long ceiling)
138 {
139 	pmd_t *pmd;
140 	unsigned long next;
141 	unsigned long start;
142 
143 	start = addr;
144 	pmd = pmd_offset(pud, addr);
145 	do {
146 		next = pmd_addr_end(addr, end);
147 		if (pmd_none_or_clear_bad(pmd))
148 			continue;
149 		free_pte_range(tlb, pmd);
150 	} while (pmd++, addr = next, addr != end);
151 
152 	start &= PUD_MASK;
153 	if (start < floor)
154 		return;
155 	if (ceiling) {
156 		ceiling &= PUD_MASK;
157 		if (!ceiling)
158 			return;
159 	}
160 	if (end - 1 > ceiling - 1)
161 		return;
162 
163 	pmd = pmd_offset(pud, start);
164 	pud_clear(pud);
165 	pmd_free_tlb(tlb, pmd);
166 }
167 
168 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
169 				unsigned long addr, unsigned long end,
170 				unsigned long floor, unsigned long ceiling)
171 {
172 	pud_t *pud;
173 	unsigned long next;
174 	unsigned long start;
175 
176 	start = addr;
177 	pud = pud_offset(pgd, addr);
178 	do {
179 		next = pud_addr_end(addr, end);
180 		if (pud_none_or_clear_bad(pud))
181 			continue;
182 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
183 	} while (pud++, addr = next, addr != end);
184 
185 	start &= PGDIR_MASK;
186 	if (start < floor)
187 		return;
188 	if (ceiling) {
189 		ceiling &= PGDIR_MASK;
190 		if (!ceiling)
191 			return;
192 	}
193 	if (end - 1 > ceiling - 1)
194 		return;
195 
196 	pud = pud_offset(pgd, start);
197 	pgd_clear(pgd);
198 	pud_free_tlb(tlb, pud);
199 }
200 
201 /*
202  * This function frees user-level page tables of a process.
203  *
204  * Must be called with pagetable lock held.
205  */
206 void free_pgd_range(struct mmu_gather **tlb,
207 			unsigned long addr, unsigned long end,
208 			unsigned long floor, unsigned long ceiling)
209 {
210 	pgd_t *pgd;
211 	unsigned long next;
212 	unsigned long start;
213 
214 	/*
215 	 * The next few lines have given us lots of grief...
216 	 *
217 	 * Why are we testing PMD* at this top level?  Because often
218 	 * there will be no work to do at all, and we'd prefer not to
219 	 * go all the way down to the bottom just to discover that.
220 	 *
221 	 * Why all these "- 1"s?  Because 0 represents both the bottom
222 	 * of the address space and the top of it (using -1 for the
223 	 * top wouldn't help much: the masks would do the wrong thing).
224 	 * The rule is that addr 0 and floor 0 refer to the bottom of
225 	 * the address space, but end 0 and ceiling 0 refer to the top
226 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
227 	 * that end 0 case should be mythical).
228 	 *
229 	 * Wherever addr is brought up or ceiling brought down, we must
230 	 * be careful to reject "the opposite 0" before it confuses the
231 	 * subsequent tests.  But what about where end is brought down
232 	 * by PMD_SIZE below? no, end can't go down to 0 there.
233 	 *
234 	 * Whereas we round start (addr) and ceiling down, by different
235 	 * masks at different levels, in order to test whether a table
236 	 * now has no other vmas using it, so can be freed, we don't
237 	 * bother to round floor or end up - the tests don't need that.
238 	 */
239 
240 	addr &= PMD_MASK;
241 	if (addr < floor) {
242 		addr += PMD_SIZE;
243 		if (!addr)
244 			return;
245 	}
246 	if (ceiling) {
247 		ceiling &= PMD_MASK;
248 		if (!ceiling)
249 			return;
250 	}
251 	if (end - 1 > ceiling - 1)
252 		end -= PMD_SIZE;
253 	if (addr > end - 1)
254 		return;
255 
256 	start = addr;
257 	pgd = pgd_offset((*tlb)->mm, addr);
258 	do {
259 		next = pgd_addr_end(addr, end);
260 		if (pgd_none_or_clear_bad(pgd))
261 			continue;
262 		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
263 	} while (pgd++, addr = next, addr != end);
264 
265 	if (!(*tlb)->fullmm)
266 		flush_tlb_pgtables((*tlb)->mm, start, end);
267 }
268 
269 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
270 		unsigned long floor, unsigned long ceiling)
271 {
272 	while (vma) {
273 		struct vm_area_struct *next = vma->vm_next;
274 		unsigned long addr = vma->vm_start;
275 
276 		/*
277 		 * Hide vma from rmap and vmtruncate before freeing pgtables
278 		 */
279 		anon_vma_unlink(vma);
280 		unlink_file_vma(vma);
281 
282 		if (is_vm_hugetlb_page(vma)) {
283 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
284 				floor, next? next->vm_start: ceiling);
285 		} else {
286 			/*
287 			 * Optimization: gather nearby vmas into one call down
288 			 */
289 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
290 			       && !is_vm_hugetlb_page(next)) {
291 				vma = next;
292 				next = vma->vm_next;
293 				anon_vma_unlink(vma);
294 				unlink_file_vma(vma);
295 			}
296 			free_pgd_range(tlb, addr, vma->vm_end,
297 				floor, next? next->vm_start: ceiling);
298 		}
299 		vma = next;
300 	}
301 }
302 
303 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
304 {
305 	struct page *new = pte_alloc_one(mm, address);
306 	if (!new)
307 		return -ENOMEM;
308 
309 	pte_lock_init(new);
310 	spin_lock(&mm->page_table_lock);
311 	if (pmd_present(*pmd)) {	/* Another has populated it */
312 		pte_lock_deinit(new);
313 		pte_free(new);
314 	} else {
315 		mm->nr_ptes++;
316 		inc_zone_page_state(new, NR_PAGETABLE);
317 		pmd_populate(mm, pmd, new);
318 	}
319 	spin_unlock(&mm->page_table_lock);
320 	return 0;
321 }
322 
323 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
324 {
325 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
326 	if (!new)
327 		return -ENOMEM;
328 
329 	spin_lock(&init_mm.page_table_lock);
330 	if (pmd_present(*pmd))		/* Another has populated it */
331 		pte_free_kernel(new);
332 	else
333 		pmd_populate_kernel(&init_mm, pmd, new);
334 	spin_unlock(&init_mm.page_table_lock);
335 	return 0;
336 }
337 
338 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
339 {
340 	if (file_rss)
341 		add_mm_counter(mm, file_rss, file_rss);
342 	if (anon_rss)
343 		add_mm_counter(mm, anon_rss, anon_rss);
344 }
345 
346 /*
347  * This function is called to print an error when a bad pte
348  * is found. For example, we might have a PFN-mapped pte in
349  * a region that doesn't allow it.
350  *
351  * The calling function must still handle the error.
352  */
353 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
354 {
355 	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
356 			"vm_flags = %lx, vaddr = %lx\n",
357 		(long long)pte_val(pte),
358 		(vma->vm_mm == current->mm ? current->comm : "???"),
359 		vma->vm_flags, vaddr);
360 	dump_stack();
361 }
362 
363 static inline int is_cow_mapping(unsigned int flags)
364 {
365 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
366 }
367 
368 /*
369  * This function gets the "struct page" associated with a pte.
370  *
371  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
372  * will have each page table entry just pointing to a raw page frame
373  * number, and as far as the VM layer is concerned, those do not have
374  * pages associated with them - even if the PFN might point to memory
375  * that otherwise is perfectly fine and has a "struct page".
376  *
377  * The way we recognize those mappings is through the rules set up
378  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
379  * and the vm_pgoff will point to the first PFN mapped: thus every
380  * page that is a raw mapping will always honor the rule
381  *
382  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
383  *
384  * and if that isn't true, the page has been COW'ed (in which case it
385  * _does_ have a "struct page" associated with it even if it is in a
386  * VM_PFNMAP range).
387  */
388 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
389 {
390 	unsigned long pfn = pte_pfn(pte);
391 
392 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
393 		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
394 		if (pfn == vma->vm_pgoff + off)
395 			return NULL;
396 		if (!is_cow_mapping(vma->vm_flags))
397 			return NULL;
398 	}
399 
400 	/*
401 	 * Add some anal sanity checks for now. Eventually,
402 	 * we should just do "return pfn_to_page(pfn)", but
403 	 * in the meantime we check that we get a valid pfn,
404 	 * and that the resulting page looks ok.
405 	 */
406 	if (unlikely(!pfn_valid(pfn))) {
407 		print_bad_pte(vma, pte, addr);
408 		return NULL;
409 	}
410 
411 	/*
412 	 * NOTE! We still have PageReserved() pages in the page
413 	 * tables.
414 	 *
415 	 * The PAGE_ZERO() pages and various VDSO mappings can
416 	 * cause them to exist.
417 	 */
418 	return pfn_to_page(pfn);
419 }
420 
421 /*
422  * copy one vm_area from one task to the other. Assumes the page tables
423  * already present in the new task to be cleared in the whole range
424  * covered by this vma.
425  */
426 
427 static inline void
428 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
429 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
430 		unsigned long addr, int *rss)
431 {
432 	unsigned long vm_flags = vma->vm_flags;
433 	pte_t pte = *src_pte;
434 	struct page *page;
435 
436 	/* pte contains position in swap or file, so copy. */
437 	if (unlikely(!pte_present(pte))) {
438 		if (!pte_file(pte)) {
439 			swp_entry_t entry = pte_to_swp_entry(pte);
440 
441 			swap_duplicate(entry);
442 			/* make sure dst_mm is on swapoff's mmlist. */
443 			if (unlikely(list_empty(&dst_mm->mmlist))) {
444 				spin_lock(&mmlist_lock);
445 				if (list_empty(&dst_mm->mmlist))
446 					list_add(&dst_mm->mmlist,
447 						 &src_mm->mmlist);
448 				spin_unlock(&mmlist_lock);
449 			}
450 			if (is_write_migration_entry(entry) &&
451 					is_cow_mapping(vm_flags)) {
452 				/*
453 				 * COW mappings require pages in both parent
454 				 * and child to be set to read.
455 				 */
456 				make_migration_entry_read(&entry);
457 				pte = swp_entry_to_pte(entry);
458 				set_pte_at(src_mm, addr, src_pte, pte);
459 			}
460 		}
461 		goto out_set_pte;
462 	}
463 
464 	/*
465 	 * If it's a COW mapping, write protect it both
466 	 * in the parent and the child
467 	 */
468 	if (is_cow_mapping(vm_flags)) {
469 		ptep_set_wrprotect(src_mm, addr, src_pte);
470 		pte = pte_wrprotect(pte);
471 	}
472 
473 	/*
474 	 * If it's a shared mapping, mark it clean in
475 	 * the child
476 	 */
477 	if (vm_flags & VM_SHARED)
478 		pte = pte_mkclean(pte);
479 	pte = pte_mkold(pte);
480 
481 	page = vm_normal_page(vma, addr, pte);
482 	if (page) {
483 		get_page(page);
484 		page_dup_rmap(page);
485 		rss[!!PageAnon(page)]++;
486 	}
487 
488 out_set_pte:
489 	set_pte_at(dst_mm, addr, dst_pte, pte);
490 }
491 
492 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
493 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
494 		unsigned long addr, unsigned long end)
495 {
496 	pte_t *src_pte, *dst_pte;
497 	spinlock_t *src_ptl, *dst_ptl;
498 	int progress = 0;
499 	int rss[2];
500 
501 again:
502 	rss[1] = rss[0] = 0;
503 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
504 	if (!dst_pte)
505 		return -ENOMEM;
506 	src_pte = pte_offset_map_nested(src_pmd, addr);
507 	src_ptl = pte_lockptr(src_mm, src_pmd);
508 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
509 	arch_enter_lazy_mmu_mode();
510 
511 	do {
512 		/*
513 		 * We are holding two locks at this point - either of them
514 		 * could generate latencies in another task on another CPU.
515 		 */
516 		if (progress >= 32) {
517 			progress = 0;
518 			if (need_resched() ||
519 			    need_lockbreak(src_ptl) ||
520 			    need_lockbreak(dst_ptl))
521 				break;
522 		}
523 		if (pte_none(*src_pte)) {
524 			progress++;
525 			continue;
526 		}
527 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
528 		progress += 8;
529 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
530 
531 	arch_leave_lazy_mmu_mode();
532 	spin_unlock(src_ptl);
533 	pte_unmap_nested(src_pte - 1);
534 	add_mm_rss(dst_mm, rss[0], rss[1]);
535 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
536 	cond_resched();
537 	if (addr != end)
538 		goto again;
539 	return 0;
540 }
541 
542 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
543 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
544 		unsigned long addr, unsigned long end)
545 {
546 	pmd_t *src_pmd, *dst_pmd;
547 	unsigned long next;
548 
549 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
550 	if (!dst_pmd)
551 		return -ENOMEM;
552 	src_pmd = pmd_offset(src_pud, addr);
553 	do {
554 		next = pmd_addr_end(addr, end);
555 		if (pmd_none_or_clear_bad(src_pmd))
556 			continue;
557 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
558 						vma, addr, next))
559 			return -ENOMEM;
560 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
561 	return 0;
562 }
563 
564 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
565 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
566 		unsigned long addr, unsigned long end)
567 {
568 	pud_t *src_pud, *dst_pud;
569 	unsigned long next;
570 
571 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
572 	if (!dst_pud)
573 		return -ENOMEM;
574 	src_pud = pud_offset(src_pgd, addr);
575 	do {
576 		next = pud_addr_end(addr, end);
577 		if (pud_none_or_clear_bad(src_pud))
578 			continue;
579 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
580 						vma, addr, next))
581 			return -ENOMEM;
582 	} while (dst_pud++, src_pud++, addr = next, addr != end);
583 	return 0;
584 }
585 
586 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
587 		struct vm_area_struct *vma)
588 {
589 	pgd_t *src_pgd, *dst_pgd;
590 	unsigned long next;
591 	unsigned long addr = vma->vm_start;
592 	unsigned long end = vma->vm_end;
593 
594 	/*
595 	 * Don't copy ptes where a page fault will fill them correctly.
596 	 * Fork becomes much lighter when there are big shared or private
597 	 * readonly mappings. The tradeoff is that copy_page_range is more
598 	 * efficient than faulting.
599 	 */
600 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
601 		if (!vma->anon_vma)
602 			return 0;
603 	}
604 
605 	if (is_vm_hugetlb_page(vma))
606 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
607 
608 	dst_pgd = pgd_offset(dst_mm, addr);
609 	src_pgd = pgd_offset(src_mm, addr);
610 	do {
611 		next = pgd_addr_end(addr, end);
612 		if (pgd_none_or_clear_bad(src_pgd))
613 			continue;
614 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
615 						vma, addr, next))
616 			return -ENOMEM;
617 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
618 	return 0;
619 }
620 
621 static unsigned long zap_pte_range(struct mmu_gather *tlb,
622 				struct vm_area_struct *vma, pmd_t *pmd,
623 				unsigned long addr, unsigned long end,
624 				long *zap_work, struct zap_details *details)
625 {
626 	struct mm_struct *mm = tlb->mm;
627 	pte_t *pte;
628 	spinlock_t *ptl;
629 	int file_rss = 0;
630 	int anon_rss = 0;
631 
632 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
633 	arch_enter_lazy_mmu_mode();
634 	do {
635 		pte_t ptent = *pte;
636 		if (pte_none(ptent)) {
637 			(*zap_work)--;
638 			continue;
639 		}
640 
641 		(*zap_work) -= PAGE_SIZE;
642 
643 		if (pte_present(ptent)) {
644 			struct page *page;
645 
646 			page = vm_normal_page(vma, addr, ptent);
647 			if (unlikely(details) && page) {
648 				/*
649 				 * unmap_shared_mapping_pages() wants to
650 				 * invalidate cache without truncating:
651 				 * unmap shared but keep private pages.
652 				 */
653 				if (details->check_mapping &&
654 				    details->check_mapping != page->mapping)
655 					continue;
656 				/*
657 				 * Each page->index must be checked when
658 				 * invalidating or truncating nonlinear.
659 				 */
660 				if (details->nonlinear_vma &&
661 				    (page->index < details->first_index ||
662 				     page->index > details->last_index))
663 					continue;
664 			}
665 			ptent = ptep_get_and_clear_full(mm, addr, pte,
666 							tlb->fullmm);
667 			tlb_remove_tlb_entry(tlb, pte, addr);
668 			if (unlikely(!page))
669 				continue;
670 			if (unlikely(details) && details->nonlinear_vma
671 			    && linear_page_index(details->nonlinear_vma,
672 						addr) != page->index)
673 				set_pte_at(mm, addr, pte,
674 					   pgoff_to_pte(page->index));
675 			if (PageAnon(page))
676 				anon_rss--;
677 			else {
678 				if (pte_dirty(ptent))
679 					set_page_dirty(page);
680 				if (pte_young(ptent))
681 					mark_page_accessed(page);
682 				file_rss--;
683 			}
684 			page_remove_rmap(page);
685 			tlb_remove_page(tlb, page);
686 			continue;
687 		}
688 		/*
689 		 * If details->check_mapping, we leave swap entries;
690 		 * if details->nonlinear_vma, we leave file entries.
691 		 */
692 		if (unlikely(details))
693 			continue;
694 		if (!pte_file(ptent))
695 			free_swap_and_cache(pte_to_swp_entry(ptent));
696 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
697 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
698 
699 	add_mm_rss(mm, file_rss, anon_rss);
700 	arch_leave_lazy_mmu_mode();
701 	pte_unmap_unlock(pte - 1, ptl);
702 
703 	return addr;
704 }
705 
706 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
707 				struct vm_area_struct *vma, pud_t *pud,
708 				unsigned long addr, unsigned long end,
709 				long *zap_work, struct zap_details *details)
710 {
711 	pmd_t *pmd;
712 	unsigned long next;
713 
714 	pmd = pmd_offset(pud, addr);
715 	do {
716 		next = pmd_addr_end(addr, end);
717 		if (pmd_none_or_clear_bad(pmd)) {
718 			(*zap_work)--;
719 			continue;
720 		}
721 		next = zap_pte_range(tlb, vma, pmd, addr, next,
722 						zap_work, details);
723 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
724 
725 	return addr;
726 }
727 
728 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
729 				struct vm_area_struct *vma, pgd_t *pgd,
730 				unsigned long addr, unsigned long end,
731 				long *zap_work, struct zap_details *details)
732 {
733 	pud_t *pud;
734 	unsigned long next;
735 
736 	pud = pud_offset(pgd, addr);
737 	do {
738 		next = pud_addr_end(addr, end);
739 		if (pud_none_or_clear_bad(pud)) {
740 			(*zap_work)--;
741 			continue;
742 		}
743 		next = zap_pmd_range(tlb, vma, pud, addr, next,
744 						zap_work, details);
745 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
746 
747 	return addr;
748 }
749 
750 static unsigned long unmap_page_range(struct mmu_gather *tlb,
751 				struct vm_area_struct *vma,
752 				unsigned long addr, unsigned long end,
753 				long *zap_work, struct zap_details *details)
754 {
755 	pgd_t *pgd;
756 	unsigned long next;
757 
758 	if (details && !details->check_mapping && !details->nonlinear_vma)
759 		details = NULL;
760 
761 	BUG_ON(addr >= end);
762 	tlb_start_vma(tlb, vma);
763 	pgd = pgd_offset(vma->vm_mm, addr);
764 	do {
765 		next = pgd_addr_end(addr, end);
766 		if (pgd_none_or_clear_bad(pgd)) {
767 			(*zap_work)--;
768 			continue;
769 		}
770 		next = zap_pud_range(tlb, vma, pgd, addr, next,
771 						zap_work, details);
772 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
773 	tlb_end_vma(tlb, vma);
774 
775 	return addr;
776 }
777 
778 #ifdef CONFIG_PREEMPT
779 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
780 #else
781 /* No preempt: go for improved straight-line efficiency */
782 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
783 #endif
784 
785 /**
786  * unmap_vmas - unmap a range of memory covered by a list of vma's
787  * @tlbp: address of the caller's struct mmu_gather
788  * @vma: the starting vma
789  * @start_addr: virtual address at which to start unmapping
790  * @end_addr: virtual address at which to end unmapping
791  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
792  * @details: details of nonlinear truncation or shared cache invalidation
793  *
794  * Returns the end address of the unmapping (restart addr if interrupted).
795  *
796  * Unmap all pages in the vma list.
797  *
798  * We aim to not hold locks for too long (for scheduling latency reasons).
799  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
800  * return the ending mmu_gather to the caller.
801  *
802  * Only addresses between `start' and `end' will be unmapped.
803  *
804  * The VMA list must be sorted in ascending virtual address order.
805  *
806  * unmap_vmas() assumes that the caller will flush the whole unmapped address
807  * range after unmap_vmas() returns.  So the only responsibility here is to
808  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
809  * drops the lock and schedules.
810  */
811 unsigned long unmap_vmas(struct mmu_gather **tlbp,
812 		struct vm_area_struct *vma, unsigned long start_addr,
813 		unsigned long end_addr, unsigned long *nr_accounted,
814 		struct zap_details *details)
815 {
816 	long zap_work = ZAP_BLOCK_SIZE;
817 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
818 	int tlb_start_valid = 0;
819 	unsigned long start = start_addr;
820 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
821 	int fullmm = (*tlbp)->fullmm;
822 
823 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
824 		unsigned long end;
825 
826 		start = max(vma->vm_start, start_addr);
827 		if (start >= vma->vm_end)
828 			continue;
829 		end = min(vma->vm_end, end_addr);
830 		if (end <= vma->vm_start)
831 			continue;
832 
833 		if (vma->vm_flags & VM_ACCOUNT)
834 			*nr_accounted += (end - start) >> PAGE_SHIFT;
835 
836 		while (start != end) {
837 			if (!tlb_start_valid) {
838 				tlb_start = start;
839 				tlb_start_valid = 1;
840 			}
841 
842 			if (unlikely(is_vm_hugetlb_page(vma))) {
843 				unmap_hugepage_range(vma, start, end);
844 				zap_work -= (end - start) /
845 						(HPAGE_SIZE / PAGE_SIZE);
846 				start = end;
847 			} else
848 				start = unmap_page_range(*tlbp, vma,
849 						start, end, &zap_work, details);
850 
851 			if (zap_work > 0) {
852 				BUG_ON(start != end);
853 				break;
854 			}
855 
856 			tlb_finish_mmu(*tlbp, tlb_start, start);
857 
858 			if (need_resched() ||
859 				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
860 				if (i_mmap_lock) {
861 					*tlbp = NULL;
862 					goto out;
863 				}
864 				cond_resched();
865 			}
866 
867 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
868 			tlb_start_valid = 0;
869 			zap_work = ZAP_BLOCK_SIZE;
870 		}
871 	}
872 out:
873 	return start;	/* which is now the end (or restart) address */
874 }
875 
876 /**
877  * zap_page_range - remove user pages in a given range
878  * @vma: vm_area_struct holding the applicable pages
879  * @address: starting address of pages to zap
880  * @size: number of bytes to zap
881  * @details: details of nonlinear truncation or shared cache invalidation
882  */
883 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
884 		unsigned long size, struct zap_details *details)
885 {
886 	struct mm_struct *mm = vma->vm_mm;
887 	struct mmu_gather *tlb;
888 	unsigned long end = address + size;
889 	unsigned long nr_accounted = 0;
890 
891 	lru_add_drain();
892 	tlb = tlb_gather_mmu(mm, 0);
893 	update_hiwater_rss(mm);
894 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
895 	if (tlb)
896 		tlb_finish_mmu(tlb, address, end);
897 	return end;
898 }
899 
900 /*
901  * Do a quick page-table lookup for a single page.
902  */
903 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
904 			unsigned int flags)
905 {
906 	pgd_t *pgd;
907 	pud_t *pud;
908 	pmd_t *pmd;
909 	pte_t *ptep, pte;
910 	spinlock_t *ptl;
911 	struct page *page;
912 	struct mm_struct *mm = vma->vm_mm;
913 
914 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
915 	if (!IS_ERR(page)) {
916 		BUG_ON(flags & FOLL_GET);
917 		goto out;
918 	}
919 
920 	page = NULL;
921 	pgd = pgd_offset(mm, address);
922 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
923 		goto no_page_table;
924 
925 	pud = pud_offset(pgd, address);
926 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
927 		goto no_page_table;
928 
929 	pmd = pmd_offset(pud, address);
930 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
931 		goto no_page_table;
932 
933 	if (pmd_huge(*pmd)) {
934 		BUG_ON(flags & FOLL_GET);
935 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
936 		goto out;
937 	}
938 
939 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
940 	if (!ptep)
941 		goto out;
942 
943 	pte = *ptep;
944 	if (!pte_present(pte))
945 		goto unlock;
946 	if ((flags & FOLL_WRITE) && !pte_write(pte))
947 		goto unlock;
948 	page = vm_normal_page(vma, address, pte);
949 	if (unlikely(!page))
950 		goto unlock;
951 
952 	if (flags & FOLL_GET)
953 		get_page(page);
954 	if (flags & FOLL_TOUCH) {
955 		if ((flags & FOLL_WRITE) &&
956 		    !pte_dirty(pte) && !PageDirty(page))
957 			set_page_dirty(page);
958 		mark_page_accessed(page);
959 	}
960 unlock:
961 	pte_unmap_unlock(ptep, ptl);
962 out:
963 	return page;
964 
965 no_page_table:
966 	/*
967 	 * When core dumping an enormous anonymous area that nobody
968 	 * has touched so far, we don't want to allocate page tables.
969 	 */
970 	if (flags & FOLL_ANON) {
971 		page = ZERO_PAGE(address);
972 		if (flags & FOLL_GET)
973 			get_page(page);
974 		BUG_ON(flags & FOLL_WRITE);
975 	}
976 	return page;
977 }
978 
979 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
980 		unsigned long start, int len, int write, int force,
981 		struct page **pages, struct vm_area_struct **vmas)
982 {
983 	int i;
984 	unsigned int vm_flags;
985 
986 	/*
987 	 * Require read or write permissions.
988 	 * If 'force' is set, we only require the "MAY" flags.
989 	 */
990 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
991 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
992 	i = 0;
993 
994 	do {
995 		struct vm_area_struct *vma;
996 		unsigned int foll_flags;
997 
998 		vma = find_extend_vma(mm, start);
999 		if (!vma && in_gate_area(tsk, start)) {
1000 			unsigned long pg = start & PAGE_MASK;
1001 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1002 			pgd_t *pgd;
1003 			pud_t *pud;
1004 			pmd_t *pmd;
1005 			pte_t *pte;
1006 			if (write) /* user gate pages are read-only */
1007 				return i ? : -EFAULT;
1008 			if (pg > TASK_SIZE)
1009 				pgd = pgd_offset_k(pg);
1010 			else
1011 				pgd = pgd_offset_gate(mm, pg);
1012 			BUG_ON(pgd_none(*pgd));
1013 			pud = pud_offset(pgd, pg);
1014 			BUG_ON(pud_none(*pud));
1015 			pmd = pmd_offset(pud, pg);
1016 			if (pmd_none(*pmd))
1017 				return i ? : -EFAULT;
1018 			pte = pte_offset_map(pmd, pg);
1019 			if (pte_none(*pte)) {
1020 				pte_unmap(pte);
1021 				return i ? : -EFAULT;
1022 			}
1023 			if (pages) {
1024 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1025 				pages[i] = page;
1026 				if (page)
1027 					get_page(page);
1028 			}
1029 			pte_unmap(pte);
1030 			if (vmas)
1031 				vmas[i] = gate_vma;
1032 			i++;
1033 			start += PAGE_SIZE;
1034 			len--;
1035 			continue;
1036 		}
1037 
1038 		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1039 				|| !(vm_flags & vma->vm_flags))
1040 			return i ? : -EFAULT;
1041 
1042 		if (is_vm_hugetlb_page(vma)) {
1043 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1044 						&start, &len, i);
1045 			continue;
1046 		}
1047 
1048 		foll_flags = FOLL_TOUCH;
1049 		if (pages)
1050 			foll_flags |= FOLL_GET;
1051 		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1052 		    (!vma->vm_ops || !vma->vm_ops->nopage))
1053 			foll_flags |= FOLL_ANON;
1054 
1055 		do {
1056 			struct page *page;
1057 
1058 			if (write)
1059 				foll_flags |= FOLL_WRITE;
1060 
1061 			cond_resched();
1062 			while (!(page = follow_page(vma, start, foll_flags))) {
1063 				int ret;
1064 				ret = __handle_mm_fault(mm, vma, start,
1065 						foll_flags & FOLL_WRITE);
1066 				/*
1067 				 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1068 				 * broken COW when necessary, even if maybe_mkwrite
1069 				 * decided not to set pte_write. We can thus safely do
1070 				 * subsequent page lookups as if they were reads.
1071 				 */
1072 				if (ret & VM_FAULT_WRITE)
1073 					foll_flags &= ~FOLL_WRITE;
1074 
1075 				switch (ret & ~VM_FAULT_WRITE) {
1076 				case VM_FAULT_MINOR:
1077 					tsk->min_flt++;
1078 					break;
1079 				case VM_FAULT_MAJOR:
1080 					tsk->maj_flt++;
1081 					break;
1082 				case VM_FAULT_SIGBUS:
1083 					return i ? i : -EFAULT;
1084 				case VM_FAULT_OOM:
1085 					return i ? i : -ENOMEM;
1086 				default:
1087 					BUG();
1088 				}
1089 				cond_resched();
1090 			}
1091 			if (pages) {
1092 				pages[i] = page;
1093 
1094 				flush_anon_page(page, start);
1095 				flush_dcache_page(page);
1096 			}
1097 			if (vmas)
1098 				vmas[i] = vma;
1099 			i++;
1100 			start += PAGE_SIZE;
1101 			len--;
1102 		} while (len && start < vma->vm_end);
1103 	} while (len);
1104 	return i;
1105 }
1106 EXPORT_SYMBOL(get_user_pages);
1107 
1108 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1109 			unsigned long addr, unsigned long end, pgprot_t prot)
1110 {
1111 	pte_t *pte;
1112 	spinlock_t *ptl;
1113 
1114 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1115 	if (!pte)
1116 		return -ENOMEM;
1117 	arch_enter_lazy_mmu_mode();
1118 	do {
1119 		struct page *page = ZERO_PAGE(addr);
1120 		pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1121 		page_cache_get(page);
1122 		page_add_file_rmap(page);
1123 		inc_mm_counter(mm, file_rss);
1124 		BUG_ON(!pte_none(*pte));
1125 		set_pte_at(mm, addr, pte, zero_pte);
1126 	} while (pte++, addr += PAGE_SIZE, addr != end);
1127 	arch_leave_lazy_mmu_mode();
1128 	pte_unmap_unlock(pte - 1, ptl);
1129 	return 0;
1130 }
1131 
1132 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1133 			unsigned long addr, unsigned long end, pgprot_t prot)
1134 {
1135 	pmd_t *pmd;
1136 	unsigned long next;
1137 
1138 	pmd = pmd_alloc(mm, pud, addr);
1139 	if (!pmd)
1140 		return -ENOMEM;
1141 	do {
1142 		next = pmd_addr_end(addr, end);
1143 		if (zeromap_pte_range(mm, pmd, addr, next, prot))
1144 			return -ENOMEM;
1145 	} while (pmd++, addr = next, addr != end);
1146 	return 0;
1147 }
1148 
1149 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1150 			unsigned long addr, unsigned long end, pgprot_t prot)
1151 {
1152 	pud_t *pud;
1153 	unsigned long next;
1154 
1155 	pud = pud_alloc(mm, pgd, addr);
1156 	if (!pud)
1157 		return -ENOMEM;
1158 	do {
1159 		next = pud_addr_end(addr, end);
1160 		if (zeromap_pmd_range(mm, pud, addr, next, prot))
1161 			return -ENOMEM;
1162 	} while (pud++, addr = next, addr != end);
1163 	return 0;
1164 }
1165 
1166 int zeromap_page_range(struct vm_area_struct *vma,
1167 			unsigned long addr, unsigned long size, pgprot_t prot)
1168 {
1169 	pgd_t *pgd;
1170 	unsigned long next;
1171 	unsigned long end = addr + size;
1172 	struct mm_struct *mm = vma->vm_mm;
1173 	int err;
1174 
1175 	BUG_ON(addr >= end);
1176 	pgd = pgd_offset(mm, addr);
1177 	flush_cache_range(vma, addr, end);
1178 	do {
1179 		next = pgd_addr_end(addr, end);
1180 		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1181 		if (err)
1182 			break;
1183 	} while (pgd++, addr = next, addr != end);
1184 	return err;
1185 }
1186 
1187 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1188 {
1189 	pgd_t * pgd = pgd_offset(mm, addr);
1190 	pud_t * pud = pud_alloc(mm, pgd, addr);
1191 	if (pud) {
1192 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1193 		if (pmd)
1194 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1195 	}
1196 	return NULL;
1197 }
1198 
1199 /*
1200  * This is the old fallback for page remapping.
1201  *
1202  * For historical reasons, it only allows reserved pages. Only
1203  * old drivers should use this, and they needed to mark their
1204  * pages reserved for the old functions anyway.
1205  */
1206 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1207 {
1208 	int retval;
1209 	pte_t *pte;
1210 	spinlock_t *ptl;
1211 
1212 	retval = -EINVAL;
1213 	if (PageAnon(page))
1214 		goto out;
1215 	retval = -ENOMEM;
1216 	flush_dcache_page(page);
1217 	pte = get_locked_pte(mm, addr, &ptl);
1218 	if (!pte)
1219 		goto out;
1220 	retval = -EBUSY;
1221 	if (!pte_none(*pte))
1222 		goto out_unlock;
1223 
1224 	/* Ok, finally just insert the thing.. */
1225 	get_page(page);
1226 	inc_mm_counter(mm, file_rss);
1227 	page_add_file_rmap(page);
1228 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1229 
1230 	retval = 0;
1231 out_unlock:
1232 	pte_unmap_unlock(pte, ptl);
1233 out:
1234 	return retval;
1235 }
1236 
1237 /**
1238  * vm_insert_page - insert single page into user vma
1239  * @vma: user vma to map to
1240  * @addr: target user address of this page
1241  * @page: source kernel page
1242  *
1243  * This allows drivers to insert individual pages they've allocated
1244  * into a user vma.
1245  *
1246  * The page has to be a nice clean _individual_ kernel allocation.
1247  * If you allocate a compound page, you need to have marked it as
1248  * such (__GFP_COMP), or manually just split the page up yourself
1249  * (see split_page()).
1250  *
1251  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1252  * took an arbitrary page protection parameter. This doesn't allow
1253  * that. Your vma protection will have to be set up correctly, which
1254  * means that if you want a shared writable mapping, you'd better
1255  * ask for a shared writable mapping!
1256  *
1257  * The page does not need to be reserved.
1258  */
1259 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1260 {
1261 	if (addr < vma->vm_start || addr >= vma->vm_end)
1262 		return -EFAULT;
1263 	if (!page_count(page))
1264 		return -EINVAL;
1265 	vma->vm_flags |= VM_INSERTPAGE;
1266 	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1267 }
1268 EXPORT_SYMBOL(vm_insert_page);
1269 
1270 /*
1271  * maps a range of physical memory into the requested pages. the old
1272  * mappings are removed. any references to nonexistent pages results
1273  * in null mappings (currently treated as "copy-on-access")
1274  */
1275 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1276 			unsigned long addr, unsigned long end,
1277 			unsigned long pfn, pgprot_t prot)
1278 {
1279 	pte_t *pte;
1280 	spinlock_t *ptl;
1281 
1282 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1283 	if (!pte)
1284 		return -ENOMEM;
1285 	arch_enter_lazy_mmu_mode();
1286 	do {
1287 		BUG_ON(!pte_none(*pte));
1288 		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1289 		pfn++;
1290 	} while (pte++, addr += PAGE_SIZE, addr != end);
1291 	arch_leave_lazy_mmu_mode();
1292 	pte_unmap_unlock(pte - 1, ptl);
1293 	return 0;
1294 }
1295 
1296 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1297 			unsigned long addr, unsigned long end,
1298 			unsigned long pfn, pgprot_t prot)
1299 {
1300 	pmd_t *pmd;
1301 	unsigned long next;
1302 
1303 	pfn -= addr >> PAGE_SHIFT;
1304 	pmd = pmd_alloc(mm, pud, addr);
1305 	if (!pmd)
1306 		return -ENOMEM;
1307 	do {
1308 		next = pmd_addr_end(addr, end);
1309 		if (remap_pte_range(mm, pmd, addr, next,
1310 				pfn + (addr >> PAGE_SHIFT), prot))
1311 			return -ENOMEM;
1312 	} while (pmd++, addr = next, addr != end);
1313 	return 0;
1314 }
1315 
1316 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1317 			unsigned long addr, unsigned long end,
1318 			unsigned long pfn, pgprot_t prot)
1319 {
1320 	pud_t *pud;
1321 	unsigned long next;
1322 
1323 	pfn -= addr >> PAGE_SHIFT;
1324 	pud = pud_alloc(mm, pgd, addr);
1325 	if (!pud)
1326 		return -ENOMEM;
1327 	do {
1328 		next = pud_addr_end(addr, end);
1329 		if (remap_pmd_range(mm, pud, addr, next,
1330 				pfn + (addr >> PAGE_SHIFT), prot))
1331 			return -ENOMEM;
1332 	} while (pud++, addr = next, addr != end);
1333 	return 0;
1334 }
1335 
1336 /**
1337  * remap_pfn_range - remap kernel memory to userspace
1338  * @vma: user vma to map to
1339  * @addr: target user address to start at
1340  * @pfn: physical address of kernel memory
1341  * @size: size of map area
1342  * @prot: page protection flags for this mapping
1343  *
1344  *  Note: this is only safe if the mm semaphore is held when called.
1345  */
1346 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1347 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1348 {
1349 	pgd_t *pgd;
1350 	unsigned long next;
1351 	unsigned long end = addr + PAGE_ALIGN(size);
1352 	struct mm_struct *mm = vma->vm_mm;
1353 	int err;
1354 
1355 	/*
1356 	 * Physically remapped pages are special. Tell the
1357 	 * rest of the world about it:
1358 	 *   VM_IO tells people not to look at these pages
1359 	 *	(accesses can have side effects).
1360 	 *   VM_RESERVED is specified all over the place, because
1361 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1362 	 *	in 2.6 the LRU scan won't even find its pages, so this
1363 	 *	flag means no more than count its pages in reserved_vm,
1364 	 * 	and omit it from core dump, even when VM_IO turned off.
1365 	 *   VM_PFNMAP tells the core MM that the base pages are just
1366 	 *	raw PFN mappings, and do not have a "struct page" associated
1367 	 *	with them.
1368 	 *
1369 	 * There's a horrible special case to handle copy-on-write
1370 	 * behaviour that some programs depend on. We mark the "original"
1371 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1372 	 */
1373 	if (is_cow_mapping(vma->vm_flags)) {
1374 		if (addr != vma->vm_start || end != vma->vm_end)
1375 			return -EINVAL;
1376 		vma->vm_pgoff = pfn;
1377 	}
1378 
1379 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1380 
1381 	BUG_ON(addr >= end);
1382 	pfn -= addr >> PAGE_SHIFT;
1383 	pgd = pgd_offset(mm, addr);
1384 	flush_cache_range(vma, addr, end);
1385 	do {
1386 		next = pgd_addr_end(addr, end);
1387 		err = remap_pud_range(mm, pgd, addr, next,
1388 				pfn + (addr >> PAGE_SHIFT), prot);
1389 		if (err)
1390 			break;
1391 	} while (pgd++, addr = next, addr != end);
1392 	return err;
1393 }
1394 EXPORT_SYMBOL(remap_pfn_range);
1395 
1396 /*
1397  * handle_pte_fault chooses page fault handler according to an entry
1398  * which was read non-atomically.  Before making any commitment, on
1399  * those architectures or configurations (e.g. i386 with PAE) which
1400  * might give a mix of unmatched parts, do_swap_page and do_file_page
1401  * must check under lock before unmapping the pte and proceeding
1402  * (but do_wp_page is only called after already making such a check;
1403  * and do_anonymous_page and do_no_page can safely check later on).
1404  */
1405 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1406 				pte_t *page_table, pte_t orig_pte)
1407 {
1408 	int same = 1;
1409 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1410 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1411 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1412 		spin_lock(ptl);
1413 		same = pte_same(*page_table, orig_pte);
1414 		spin_unlock(ptl);
1415 	}
1416 #endif
1417 	pte_unmap(page_table);
1418 	return same;
1419 }
1420 
1421 /*
1422  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1423  * servicing faults for write access.  In the normal case, do always want
1424  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1425  * that do not have writing enabled, when used by access_process_vm.
1426  */
1427 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1428 {
1429 	if (likely(vma->vm_flags & VM_WRITE))
1430 		pte = pte_mkwrite(pte);
1431 	return pte;
1432 }
1433 
1434 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1435 {
1436 	/*
1437 	 * If the source page was a PFN mapping, we don't have
1438 	 * a "struct page" for it. We do a best-effort copy by
1439 	 * just copying from the original user address. If that
1440 	 * fails, we just zero-fill it. Live with it.
1441 	 */
1442 	if (unlikely(!src)) {
1443 		void *kaddr = kmap_atomic(dst, KM_USER0);
1444 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1445 
1446 		/*
1447 		 * This really shouldn't fail, because the page is there
1448 		 * in the page tables. But it might just be unreadable,
1449 		 * in which case we just give up and fill the result with
1450 		 * zeroes.
1451 		 */
1452 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1453 			memset(kaddr, 0, PAGE_SIZE);
1454 		kunmap_atomic(kaddr, KM_USER0);
1455 		flush_dcache_page(dst);
1456 		return;
1457 
1458 	}
1459 	copy_user_highpage(dst, src, va);
1460 }
1461 
1462 /*
1463  * This routine handles present pages, when users try to write
1464  * to a shared page. It is done by copying the page to a new address
1465  * and decrementing the shared-page counter for the old page.
1466  *
1467  * Note that this routine assumes that the protection checks have been
1468  * done by the caller (the low-level page fault routine in most cases).
1469  * Thus we can safely just mark it writable once we've done any necessary
1470  * COW.
1471  *
1472  * We also mark the page dirty at this point even though the page will
1473  * change only once the write actually happens. This avoids a few races,
1474  * and potentially makes it more efficient.
1475  *
1476  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1477  * but allow concurrent faults), with pte both mapped and locked.
1478  * We return with mmap_sem still held, but pte unmapped and unlocked.
1479  */
1480 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1481 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1482 		spinlock_t *ptl, pte_t orig_pte)
1483 {
1484 	struct page *old_page, *new_page;
1485 	pte_t entry;
1486 	int reuse = 0, ret = VM_FAULT_MINOR;
1487 	struct page *dirty_page = NULL;
1488 
1489 	old_page = vm_normal_page(vma, address, orig_pte);
1490 	if (!old_page)
1491 		goto gotten;
1492 
1493 	/*
1494 	 * Take out anonymous pages first, anonymous shared vmas are
1495 	 * not dirty accountable.
1496 	 */
1497 	if (PageAnon(old_page)) {
1498 		if (!TestSetPageLocked(old_page)) {
1499 			reuse = can_share_swap_page(old_page);
1500 			unlock_page(old_page);
1501 		}
1502 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1503 					(VM_WRITE|VM_SHARED))) {
1504 		/*
1505 		 * Only catch write-faults on shared writable pages,
1506 		 * read-only shared pages can get COWed by
1507 		 * get_user_pages(.write=1, .force=1).
1508 		 */
1509 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1510 			/*
1511 			 * Notify the address space that the page is about to
1512 			 * become writable so that it can prohibit this or wait
1513 			 * for the page to get into an appropriate state.
1514 			 *
1515 			 * We do this without the lock held, so that it can
1516 			 * sleep if it needs to.
1517 			 */
1518 			page_cache_get(old_page);
1519 			pte_unmap_unlock(page_table, ptl);
1520 
1521 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1522 				goto unwritable_page;
1523 
1524 			page_cache_release(old_page);
1525 
1526 			/*
1527 			 * Since we dropped the lock we need to revalidate
1528 			 * the PTE as someone else may have changed it.  If
1529 			 * they did, we just return, as we can count on the
1530 			 * MMU to tell us if they didn't also make it writable.
1531 			 */
1532 			page_table = pte_offset_map_lock(mm, pmd, address,
1533 							 &ptl);
1534 			if (!pte_same(*page_table, orig_pte))
1535 				goto unlock;
1536 		}
1537 		dirty_page = old_page;
1538 		get_page(dirty_page);
1539 		reuse = 1;
1540 	}
1541 
1542 	if (reuse) {
1543 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1544 		entry = pte_mkyoung(orig_pte);
1545 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1546 		ptep_set_access_flags(vma, address, page_table, entry, 1);
1547 		update_mmu_cache(vma, address, entry);
1548 		lazy_mmu_prot_update(entry);
1549 		ret |= VM_FAULT_WRITE;
1550 		goto unlock;
1551 	}
1552 
1553 	/*
1554 	 * Ok, we need to copy. Oh, well..
1555 	 */
1556 	page_cache_get(old_page);
1557 gotten:
1558 	pte_unmap_unlock(page_table, ptl);
1559 
1560 	if (unlikely(anon_vma_prepare(vma)))
1561 		goto oom;
1562 	if (old_page == ZERO_PAGE(address)) {
1563 		new_page = alloc_zeroed_user_highpage(vma, address);
1564 		if (!new_page)
1565 			goto oom;
1566 	} else {
1567 		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1568 		if (!new_page)
1569 			goto oom;
1570 		cow_user_page(new_page, old_page, address);
1571 	}
1572 
1573 	/*
1574 	 * Re-check the pte - we dropped the lock
1575 	 */
1576 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1577 	if (likely(pte_same(*page_table, orig_pte))) {
1578 		if (old_page) {
1579 			page_remove_rmap(old_page);
1580 			if (!PageAnon(old_page)) {
1581 				dec_mm_counter(mm, file_rss);
1582 				inc_mm_counter(mm, anon_rss);
1583 			}
1584 		} else
1585 			inc_mm_counter(mm, anon_rss);
1586 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1587 		entry = mk_pte(new_page, vma->vm_page_prot);
1588 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1589 		lazy_mmu_prot_update(entry);
1590 		/*
1591 		 * Clear the pte entry and flush it first, before updating the
1592 		 * pte with the new entry. This will avoid a race condition
1593 		 * seen in the presence of one thread doing SMC and another
1594 		 * thread doing COW.
1595 		 */
1596 		ptep_clear_flush(vma, address, page_table);
1597 		set_pte_at(mm, address, page_table, entry);
1598 		update_mmu_cache(vma, address, entry);
1599 		lru_cache_add_active(new_page);
1600 		page_add_new_anon_rmap(new_page, vma, address);
1601 
1602 		/* Free the old page.. */
1603 		new_page = old_page;
1604 		ret |= VM_FAULT_WRITE;
1605 	}
1606 	if (new_page)
1607 		page_cache_release(new_page);
1608 	if (old_page)
1609 		page_cache_release(old_page);
1610 unlock:
1611 	pte_unmap_unlock(page_table, ptl);
1612 	if (dirty_page) {
1613 		set_page_dirty_balance(dirty_page);
1614 		put_page(dirty_page);
1615 	}
1616 	return ret;
1617 oom:
1618 	if (old_page)
1619 		page_cache_release(old_page);
1620 	return VM_FAULT_OOM;
1621 
1622 unwritable_page:
1623 	page_cache_release(old_page);
1624 	return VM_FAULT_SIGBUS;
1625 }
1626 
1627 /*
1628  * Helper functions for unmap_mapping_range().
1629  *
1630  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1631  *
1632  * We have to restart searching the prio_tree whenever we drop the lock,
1633  * since the iterator is only valid while the lock is held, and anyway
1634  * a later vma might be split and reinserted earlier while lock dropped.
1635  *
1636  * The list of nonlinear vmas could be handled more efficiently, using
1637  * a placeholder, but handle it in the same way until a need is shown.
1638  * It is important to search the prio_tree before nonlinear list: a vma
1639  * may become nonlinear and be shifted from prio_tree to nonlinear list
1640  * while the lock is dropped; but never shifted from list to prio_tree.
1641  *
1642  * In order to make forward progress despite restarting the search,
1643  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1644  * quickly skip it next time around.  Since the prio_tree search only
1645  * shows us those vmas affected by unmapping the range in question, we
1646  * can't efficiently keep all vmas in step with mapping->truncate_count:
1647  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1648  * mapping->truncate_count and vma->vm_truncate_count are protected by
1649  * i_mmap_lock.
1650  *
1651  * In order to make forward progress despite repeatedly restarting some
1652  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1653  * and restart from that address when we reach that vma again.  It might
1654  * have been split or merged, shrunk or extended, but never shifted: so
1655  * restart_addr remains valid so long as it remains in the vma's range.
1656  * unmap_mapping_range forces truncate_count to leap over page-aligned
1657  * values so we can save vma's restart_addr in its truncate_count field.
1658  */
1659 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1660 
1661 static void reset_vma_truncate_counts(struct address_space *mapping)
1662 {
1663 	struct vm_area_struct *vma;
1664 	struct prio_tree_iter iter;
1665 
1666 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1667 		vma->vm_truncate_count = 0;
1668 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1669 		vma->vm_truncate_count = 0;
1670 }
1671 
1672 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1673 		unsigned long start_addr, unsigned long end_addr,
1674 		struct zap_details *details)
1675 {
1676 	unsigned long restart_addr;
1677 	int need_break;
1678 
1679 again:
1680 	restart_addr = vma->vm_truncate_count;
1681 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1682 		start_addr = restart_addr;
1683 		if (start_addr >= end_addr) {
1684 			/* Top of vma has been split off since last time */
1685 			vma->vm_truncate_count = details->truncate_count;
1686 			return 0;
1687 		}
1688 	}
1689 
1690 	restart_addr = zap_page_range(vma, start_addr,
1691 					end_addr - start_addr, details);
1692 	need_break = need_resched() ||
1693 			need_lockbreak(details->i_mmap_lock);
1694 
1695 	if (restart_addr >= end_addr) {
1696 		/* We have now completed this vma: mark it so */
1697 		vma->vm_truncate_count = details->truncate_count;
1698 		if (!need_break)
1699 			return 0;
1700 	} else {
1701 		/* Note restart_addr in vma's truncate_count field */
1702 		vma->vm_truncate_count = restart_addr;
1703 		if (!need_break)
1704 			goto again;
1705 	}
1706 
1707 	spin_unlock(details->i_mmap_lock);
1708 	cond_resched();
1709 	spin_lock(details->i_mmap_lock);
1710 	return -EINTR;
1711 }
1712 
1713 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1714 					    struct zap_details *details)
1715 {
1716 	struct vm_area_struct *vma;
1717 	struct prio_tree_iter iter;
1718 	pgoff_t vba, vea, zba, zea;
1719 
1720 restart:
1721 	vma_prio_tree_foreach(vma, &iter, root,
1722 			details->first_index, details->last_index) {
1723 		/* Skip quickly over those we have already dealt with */
1724 		if (vma->vm_truncate_count == details->truncate_count)
1725 			continue;
1726 
1727 		vba = vma->vm_pgoff;
1728 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1729 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1730 		zba = details->first_index;
1731 		if (zba < vba)
1732 			zba = vba;
1733 		zea = details->last_index;
1734 		if (zea > vea)
1735 			zea = vea;
1736 
1737 		if (unmap_mapping_range_vma(vma,
1738 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1739 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1740 				details) < 0)
1741 			goto restart;
1742 	}
1743 }
1744 
1745 static inline void unmap_mapping_range_list(struct list_head *head,
1746 					    struct zap_details *details)
1747 {
1748 	struct vm_area_struct *vma;
1749 
1750 	/*
1751 	 * In nonlinear VMAs there is no correspondence between virtual address
1752 	 * offset and file offset.  So we must perform an exhaustive search
1753 	 * across *all* the pages in each nonlinear VMA, not just the pages
1754 	 * whose virtual address lies outside the file truncation point.
1755 	 */
1756 restart:
1757 	list_for_each_entry(vma, head, shared.vm_set.list) {
1758 		/* Skip quickly over those we have already dealt with */
1759 		if (vma->vm_truncate_count == details->truncate_count)
1760 			continue;
1761 		details->nonlinear_vma = vma;
1762 		if (unmap_mapping_range_vma(vma, vma->vm_start,
1763 					vma->vm_end, details) < 0)
1764 			goto restart;
1765 	}
1766 }
1767 
1768 /**
1769  * unmap_mapping_range - unmap the portion of all mmaps
1770  * in the specified address_space corresponding to the specified
1771  * page range in the underlying file.
1772  * @mapping: the address space containing mmaps to be unmapped.
1773  * @holebegin: byte in first page to unmap, relative to the start of
1774  * the underlying file.  This will be rounded down to a PAGE_SIZE
1775  * boundary.  Note that this is different from vmtruncate(), which
1776  * must keep the partial page.  In contrast, we must get rid of
1777  * partial pages.
1778  * @holelen: size of prospective hole in bytes.  This will be rounded
1779  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1780  * end of the file.
1781  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1782  * but 0 when invalidating pagecache, don't throw away private data.
1783  */
1784 void unmap_mapping_range(struct address_space *mapping,
1785 		loff_t const holebegin, loff_t const holelen, int even_cows)
1786 {
1787 	struct zap_details details;
1788 	pgoff_t hba = holebegin >> PAGE_SHIFT;
1789 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1790 
1791 	/* Check for overflow. */
1792 	if (sizeof(holelen) > sizeof(hlen)) {
1793 		long long holeend =
1794 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1795 		if (holeend & ~(long long)ULONG_MAX)
1796 			hlen = ULONG_MAX - hba + 1;
1797 	}
1798 
1799 	details.check_mapping = even_cows? NULL: mapping;
1800 	details.nonlinear_vma = NULL;
1801 	details.first_index = hba;
1802 	details.last_index = hba + hlen - 1;
1803 	if (details.last_index < details.first_index)
1804 		details.last_index = ULONG_MAX;
1805 	details.i_mmap_lock = &mapping->i_mmap_lock;
1806 
1807 	spin_lock(&mapping->i_mmap_lock);
1808 
1809 	/* serialize i_size write against truncate_count write */
1810 	smp_wmb();
1811 	/* Protect against page faults, and endless unmapping loops */
1812 	mapping->truncate_count++;
1813 	/*
1814 	 * For archs where spin_lock has inclusive semantics like ia64
1815 	 * this smp_mb() will prevent to read pagetable contents
1816 	 * before the truncate_count increment is visible to
1817 	 * other cpus.
1818 	 */
1819 	smp_mb();
1820 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1821 		if (mapping->truncate_count == 0)
1822 			reset_vma_truncate_counts(mapping);
1823 		mapping->truncate_count++;
1824 	}
1825 	details.truncate_count = mapping->truncate_count;
1826 
1827 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1828 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1829 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1830 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1831 	spin_unlock(&mapping->i_mmap_lock);
1832 }
1833 EXPORT_SYMBOL(unmap_mapping_range);
1834 
1835 /**
1836  * vmtruncate - unmap mappings "freed" by truncate() syscall
1837  * @inode: inode of the file used
1838  * @offset: file offset to start truncating
1839  *
1840  * NOTE! We have to be ready to update the memory sharing
1841  * between the file and the memory map for a potential last
1842  * incomplete page.  Ugly, but necessary.
1843  */
1844 int vmtruncate(struct inode * inode, loff_t offset)
1845 {
1846 	struct address_space *mapping = inode->i_mapping;
1847 	unsigned long limit;
1848 
1849 	if (inode->i_size < offset)
1850 		goto do_expand;
1851 	/*
1852 	 * truncation of in-use swapfiles is disallowed - it would cause
1853 	 * subsequent swapout to scribble on the now-freed blocks.
1854 	 */
1855 	if (IS_SWAPFILE(inode))
1856 		goto out_busy;
1857 	i_size_write(inode, offset);
1858 	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1859 	truncate_inode_pages(mapping, offset);
1860 	goto out_truncate;
1861 
1862 do_expand:
1863 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1864 	if (limit != RLIM_INFINITY && offset > limit)
1865 		goto out_sig;
1866 	if (offset > inode->i_sb->s_maxbytes)
1867 		goto out_big;
1868 	i_size_write(inode, offset);
1869 
1870 out_truncate:
1871 	if (inode->i_op && inode->i_op->truncate)
1872 		inode->i_op->truncate(inode);
1873 	return 0;
1874 out_sig:
1875 	send_sig(SIGXFSZ, current, 0);
1876 out_big:
1877 	return -EFBIG;
1878 out_busy:
1879 	return -ETXTBSY;
1880 }
1881 EXPORT_SYMBOL(vmtruncate);
1882 
1883 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1884 {
1885 	struct address_space *mapping = inode->i_mapping;
1886 
1887 	/*
1888 	 * If the underlying filesystem is not going to provide
1889 	 * a way to truncate a range of blocks (punch a hole) -
1890 	 * we should return failure right now.
1891 	 */
1892 	if (!inode->i_op || !inode->i_op->truncate_range)
1893 		return -ENOSYS;
1894 
1895 	mutex_lock(&inode->i_mutex);
1896 	down_write(&inode->i_alloc_sem);
1897 	unmap_mapping_range(mapping, offset, (end - offset), 1);
1898 	truncate_inode_pages_range(mapping, offset, end);
1899 	inode->i_op->truncate_range(inode, offset, end);
1900 	up_write(&inode->i_alloc_sem);
1901 	mutex_unlock(&inode->i_mutex);
1902 
1903 	return 0;
1904 }
1905 
1906 /**
1907  * swapin_readahead - swap in pages in hope we need them soon
1908  * @entry: swap entry of this memory
1909  * @addr: address to start
1910  * @vma: user vma this addresses belong to
1911  *
1912  * Primitive swap readahead code. We simply read an aligned block of
1913  * (1 << page_cluster) entries in the swap area. This method is chosen
1914  * because it doesn't cost us any seek time.  We also make sure to queue
1915  * the 'original' request together with the readahead ones...
1916  *
1917  * This has been extended to use the NUMA policies from the mm triggering
1918  * the readahead.
1919  *
1920  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1921  */
1922 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1923 {
1924 #ifdef CONFIG_NUMA
1925 	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1926 #endif
1927 	int i, num;
1928 	struct page *new_page;
1929 	unsigned long offset;
1930 
1931 	/*
1932 	 * Get the number of handles we should do readahead io to.
1933 	 */
1934 	num = valid_swaphandles(entry, &offset);
1935 	for (i = 0; i < num; offset++, i++) {
1936 		/* Ok, do the async read-ahead now */
1937 		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1938 							   offset), vma, addr);
1939 		if (!new_page)
1940 			break;
1941 		page_cache_release(new_page);
1942 #ifdef CONFIG_NUMA
1943 		/*
1944 		 * Find the next applicable VMA for the NUMA policy.
1945 		 */
1946 		addr += PAGE_SIZE;
1947 		if (addr == 0)
1948 			vma = NULL;
1949 		if (vma) {
1950 			if (addr >= vma->vm_end) {
1951 				vma = next_vma;
1952 				next_vma = vma ? vma->vm_next : NULL;
1953 			}
1954 			if (vma && addr < vma->vm_start)
1955 				vma = NULL;
1956 		} else {
1957 			if (next_vma && addr >= next_vma->vm_start) {
1958 				vma = next_vma;
1959 				next_vma = vma->vm_next;
1960 			}
1961 		}
1962 #endif
1963 	}
1964 	lru_add_drain();	/* Push any new pages onto the LRU now */
1965 }
1966 
1967 /*
1968  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1969  * but allow concurrent faults), and pte mapped but not yet locked.
1970  * We return with mmap_sem still held, but pte unmapped and unlocked.
1971  */
1972 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1973 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1974 		int write_access, pte_t orig_pte)
1975 {
1976 	spinlock_t *ptl;
1977 	struct page *page;
1978 	swp_entry_t entry;
1979 	pte_t pte;
1980 	int ret = VM_FAULT_MINOR;
1981 
1982 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1983 		goto out;
1984 
1985 	entry = pte_to_swp_entry(orig_pte);
1986 	if (is_migration_entry(entry)) {
1987 		migration_entry_wait(mm, pmd, address);
1988 		goto out;
1989 	}
1990 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1991 	page = lookup_swap_cache(entry);
1992 	if (!page) {
1993 		grab_swap_token(); /* Contend for token _before_ read-in */
1994  		swapin_readahead(entry, address, vma);
1995  		page = read_swap_cache_async(entry, vma, address);
1996 		if (!page) {
1997 			/*
1998 			 * Back out if somebody else faulted in this pte
1999 			 * while we released the pte lock.
2000 			 */
2001 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2002 			if (likely(pte_same(*page_table, orig_pte)))
2003 				ret = VM_FAULT_OOM;
2004 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2005 			goto unlock;
2006 		}
2007 
2008 		/* Had to read the page from swap area: Major fault */
2009 		ret = VM_FAULT_MAJOR;
2010 		count_vm_event(PGMAJFAULT);
2011 	}
2012 
2013 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2014 	mark_page_accessed(page);
2015 	lock_page(page);
2016 
2017 	/*
2018 	 * Back out if somebody else already faulted in this pte.
2019 	 */
2020 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2021 	if (unlikely(!pte_same(*page_table, orig_pte)))
2022 		goto out_nomap;
2023 
2024 	if (unlikely(!PageUptodate(page))) {
2025 		ret = VM_FAULT_SIGBUS;
2026 		goto out_nomap;
2027 	}
2028 
2029 	/* The page isn't present yet, go ahead with the fault. */
2030 
2031 	inc_mm_counter(mm, anon_rss);
2032 	pte = mk_pte(page, vma->vm_page_prot);
2033 	if (write_access && can_share_swap_page(page)) {
2034 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2035 		write_access = 0;
2036 	}
2037 
2038 	flush_icache_page(vma, page);
2039 	set_pte_at(mm, address, page_table, pte);
2040 	page_add_anon_rmap(page, vma, address);
2041 
2042 	swap_free(entry);
2043 	if (vm_swap_full())
2044 		remove_exclusive_swap_page(page);
2045 	unlock_page(page);
2046 
2047 	if (write_access) {
2048 		if (do_wp_page(mm, vma, address,
2049 				page_table, pmd, ptl, pte) == VM_FAULT_OOM)
2050 			ret = VM_FAULT_OOM;
2051 		goto out;
2052 	}
2053 
2054 	/* No need to invalidate - it was non-present before */
2055 	update_mmu_cache(vma, address, pte);
2056 	lazy_mmu_prot_update(pte);
2057 unlock:
2058 	pte_unmap_unlock(page_table, ptl);
2059 out:
2060 	return ret;
2061 out_nomap:
2062 	pte_unmap_unlock(page_table, ptl);
2063 	unlock_page(page);
2064 	page_cache_release(page);
2065 	return ret;
2066 }
2067 
2068 /*
2069  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2070  * but allow concurrent faults), and pte mapped but not yet locked.
2071  * We return with mmap_sem still held, but pte unmapped and unlocked.
2072  */
2073 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2074 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2075 		int write_access)
2076 {
2077 	struct page *page;
2078 	spinlock_t *ptl;
2079 	pte_t entry;
2080 
2081 	if (write_access) {
2082 		/* Allocate our own private page. */
2083 		pte_unmap(page_table);
2084 
2085 		if (unlikely(anon_vma_prepare(vma)))
2086 			goto oom;
2087 		page = alloc_zeroed_user_highpage(vma, address);
2088 		if (!page)
2089 			goto oom;
2090 
2091 		entry = mk_pte(page, vma->vm_page_prot);
2092 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2093 
2094 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2095 		if (!pte_none(*page_table))
2096 			goto release;
2097 		inc_mm_counter(mm, anon_rss);
2098 		lru_cache_add_active(page);
2099 		page_add_new_anon_rmap(page, vma, address);
2100 	} else {
2101 		/* Map the ZERO_PAGE - vm_page_prot is readonly */
2102 		page = ZERO_PAGE(address);
2103 		page_cache_get(page);
2104 		entry = mk_pte(page, vma->vm_page_prot);
2105 
2106 		ptl = pte_lockptr(mm, pmd);
2107 		spin_lock(ptl);
2108 		if (!pte_none(*page_table))
2109 			goto release;
2110 		inc_mm_counter(mm, file_rss);
2111 		page_add_file_rmap(page);
2112 	}
2113 
2114 	set_pte_at(mm, address, page_table, entry);
2115 
2116 	/* No need to invalidate - it was non-present before */
2117 	update_mmu_cache(vma, address, entry);
2118 	lazy_mmu_prot_update(entry);
2119 unlock:
2120 	pte_unmap_unlock(page_table, ptl);
2121 	return VM_FAULT_MINOR;
2122 release:
2123 	page_cache_release(page);
2124 	goto unlock;
2125 oom:
2126 	return VM_FAULT_OOM;
2127 }
2128 
2129 /*
2130  * do_no_page() tries to create a new page mapping. It aggressively
2131  * tries to share with existing pages, but makes a separate copy if
2132  * the "write_access" parameter is true in order to avoid the next
2133  * page fault.
2134  *
2135  * As this is called only for pages that do not currently exist, we
2136  * do not need to flush old virtual caches or the TLB.
2137  *
2138  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2139  * but allow concurrent faults), and pte mapped but not yet locked.
2140  * We return with mmap_sem still held, but pte unmapped and unlocked.
2141  */
2142 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2143 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2144 		int write_access)
2145 {
2146 	spinlock_t *ptl;
2147 	struct page *new_page;
2148 	struct address_space *mapping = NULL;
2149 	pte_t entry;
2150 	unsigned int sequence = 0;
2151 	int ret = VM_FAULT_MINOR;
2152 	int anon = 0;
2153 	struct page *dirty_page = NULL;
2154 
2155 	pte_unmap(page_table);
2156 	BUG_ON(vma->vm_flags & VM_PFNMAP);
2157 
2158 	if (vma->vm_file) {
2159 		mapping = vma->vm_file->f_mapping;
2160 		sequence = mapping->truncate_count;
2161 		smp_rmb(); /* serializes i_size against truncate_count */
2162 	}
2163 retry:
2164 	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2165 	/*
2166 	 * No smp_rmb is needed here as long as there's a full
2167 	 * spin_lock/unlock sequence inside the ->nopage callback
2168 	 * (for the pagecache lookup) that acts as an implicit
2169 	 * smp_mb() and prevents the i_size read to happen
2170 	 * after the next truncate_count read.
2171 	 */
2172 
2173 	/* no page was available -- either SIGBUS, OOM or REFAULT */
2174 	if (unlikely(new_page == NOPAGE_SIGBUS))
2175 		return VM_FAULT_SIGBUS;
2176 	else if (unlikely(new_page == NOPAGE_OOM))
2177 		return VM_FAULT_OOM;
2178 	else if (unlikely(new_page == NOPAGE_REFAULT))
2179 		return VM_FAULT_MINOR;
2180 
2181 	/*
2182 	 * Should we do an early C-O-W break?
2183 	 */
2184 	if (write_access) {
2185 		if (!(vma->vm_flags & VM_SHARED)) {
2186 			struct page *page;
2187 
2188 			if (unlikely(anon_vma_prepare(vma)))
2189 				goto oom;
2190 			page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2191 			if (!page)
2192 				goto oom;
2193 			copy_user_highpage(page, new_page, address);
2194 			page_cache_release(new_page);
2195 			new_page = page;
2196 			anon = 1;
2197 
2198 		} else {
2199 			/* if the page will be shareable, see if the backing
2200 			 * address space wants to know that the page is about
2201 			 * to become writable */
2202 			if (vma->vm_ops->page_mkwrite &&
2203 			    vma->vm_ops->page_mkwrite(vma, new_page) < 0
2204 			    ) {
2205 				page_cache_release(new_page);
2206 				return VM_FAULT_SIGBUS;
2207 			}
2208 		}
2209 	}
2210 
2211 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2212 	/*
2213 	 * For a file-backed vma, someone could have truncated or otherwise
2214 	 * invalidated this page.  If unmap_mapping_range got called,
2215 	 * retry getting the page.
2216 	 */
2217 	if (mapping && unlikely(sequence != mapping->truncate_count)) {
2218 		pte_unmap_unlock(page_table, ptl);
2219 		page_cache_release(new_page);
2220 		cond_resched();
2221 		sequence = mapping->truncate_count;
2222 		smp_rmb();
2223 		goto retry;
2224 	}
2225 
2226 	/*
2227 	 * This silly early PAGE_DIRTY setting removes a race
2228 	 * due to the bad i386 page protection. But it's valid
2229 	 * for other architectures too.
2230 	 *
2231 	 * Note that if write_access is true, we either now have
2232 	 * an exclusive copy of the page, or this is a shared mapping,
2233 	 * so we can make it writable and dirty to avoid having to
2234 	 * handle that later.
2235 	 */
2236 	/* Only go through if we didn't race with anybody else... */
2237 	if (pte_none(*page_table)) {
2238 		flush_icache_page(vma, new_page);
2239 		entry = mk_pte(new_page, vma->vm_page_prot);
2240 		if (write_access)
2241 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2242 		set_pte_at(mm, address, page_table, entry);
2243 		if (anon) {
2244 			inc_mm_counter(mm, anon_rss);
2245 			lru_cache_add_active(new_page);
2246 			page_add_new_anon_rmap(new_page, vma, address);
2247 		} else {
2248 			inc_mm_counter(mm, file_rss);
2249 			page_add_file_rmap(new_page);
2250 			if (write_access) {
2251 				dirty_page = new_page;
2252 				get_page(dirty_page);
2253 			}
2254 		}
2255 	} else {
2256 		/* One of our sibling threads was faster, back out. */
2257 		page_cache_release(new_page);
2258 		goto unlock;
2259 	}
2260 
2261 	/* no need to invalidate: a not-present page shouldn't be cached */
2262 	update_mmu_cache(vma, address, entry);
2263 	lazy_mmu_prot_update(entry);
2264 unlock:
2265 	pte_unmap_unlock(page_table, ptl);
2266 	if (dirty_page) {
2267 		set_page_dirty_balance(dirty_page);
2268 		put_page(dirty_page);
2269 	}
2270 	return ret;
2271 oom:
2272 	page_cache_release(new_page);
2273 	return VM_FAULT_OOM;
2274 }
2275 
2276 /*
2277  * do_no_pfn() tries to create a new page mapping for a page without
2278  * a struct_page backing it
2279  *
2280  * As this is called only for pages that do not currently exist, we
2281  * do not need to flush old virtual caches or the TLB.
2282  *
2283  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2284  * but allow concurrent faults), and pte mapped but not yet locked.
2285  * We return with mmap_sem still held, but pte unmapped and unlocked.
2286  *
2287  * It is expected that the ->nopfn handler always returns the same pfn
2288  * for a given virtual mapping.
2289  *
2290  * Mark this `noinline' to prevent it from bloating the main pagefault code.
2291  */
2292 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2293 		     unsigned long address, pte_t *page_table, pmd_t *pmd,
2294 		     int write_access)
2295 {
2296 	spinlock_t *ptl;
2297 	pte_t entry;
2298 	unsigned long pfn;
2299 	int ret = VM_FAULT_MINOR;
2300 
2301 	pte_unmap(page_table);
2302 	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2303 	BUG_ON(is_cow_mapping(vma->vm_flags));
2304 
2305 	pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2306 	if (pfn == NOPFN_OOM)
2307 		return VM_FAULT_OOM;
2308 	if (pfn == NOPFN_SIGBUS)
2309 		return VM_FAULT_SIGBUS;
2310 
2311 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2312 
2313 	/* Only go through if we didn't race with anybody else... */
2314 	if (pte_none(*page_table)) {
2315 		entry = pfn_pte(pfn, vma->vm_page_prot);
2316 		if (write_access)
2317 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2318 		set_pte_at(mm, address, page_table, entry);
2319 	}
2320 	pte_unmap_unlock(page_table, ptl);
2321 	return ret;
2322 }
2323 
2324 /*
2325  * Fault of a previously existing named mapping. Repopulate the pte
2326  * from the encoded file_pte if possible. This enables swappable
2327  * nonlinear vmas.
2328  *
2329  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2330  * but allow concurrent faults), and pte mapped but not yet locked.
2331  * We return with mmap_sem still held, but pte unmapped and unlocked.
2332  */
2333 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2334 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2335 		int write_access, pte_t orig_pte)
2336 {
2337 	pgoff_t pgoff;
2338 	int err;
2339 
2340 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2341 		return VM_FAULT_MINOR;
2342 
2343 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2344 		/*
2345 		 * Page table corrupted: show pte and kill process.
2346 		 */
2347 		print_bad_pte(vma, orig_pte, address);
2348 		return VM_FAULT_OOM;
2349 	}
2350 	/* We can then assume vm->vm_ops && vma->vm_ops->populate */
2351 
2352 	pgoff = pte_to_pgoff(orig_pte);
2353 	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2354 					vma->vm_page_prot, pgoff, 0);
2355 	if (err == -ENOMEM)
2356 		return VM_FAULT_OOM;
2357 	if (err)
2358 		return VM_FAULT_SIGBUS;
2359 	return VM_FAULT_MAJOR;
2360 }
2361 
2362 /*
2363  * These routines also need to handle stuff like marking pages dirty
2364  * and/or accessed for architectures that don't do it in hardware (most
2365  * RISC architectures).  The early dirtying is also good on the i386.
2366  *
2367  * There is also a hook called "update_mmu_cache()" that architectures
2368  * with external mmu caches can use to update those (ie the Sparc or
2369  * PowerPC hashed page tables that act as extended TLBs).
2370  *
2371  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2372  * but allow concurrent faults), and pte mapped but not yet locked.
2373  * We return with mmap_sem still held, but pte unmapped and unlocked.
2374  */
2375 static inline int handle_pte_fault(struct mm_struct *mm,
2376 		struct vm_area_struct *vma, unsigned long address,
2377 		pte_t *pte, pmd_t *pmd, int write_access)
2378 {
2379 	pte_t entry;
2380 	pte_t old_entry;
2381 	spinlock_t *ptl;
2382 
2383 	old_entry = entry = *pte;
2384 	if (!pte_present(entry)) {
2385 		if (pte_none(entry)) {
2386 			if (vma->vm_ops) {
2387 				if (vma->vm_ops->nopage)
2388 					return do_no_page(mm, vma, address,
2389 							  pte, pmd,
2390 							  write_access);
2391 				if (unlikely(vma->vm_ops->nopfn))
2392 					return do_no_pfn(mm, vma, address, pte,
2393 							 pmd, write_access);
2394 			}
2395 			return do_anonymous_page(mm, vma, address,
2396 						 pte, pmd, write_access);
2397 		}
2398 		if (pte_file(entry))
2399 			return do_file_page(mm, vma, address,
2400 					pte, pmd, write_access, entry);
2401 		return do_swap_page(mm, vma, address,
2402 					pte, pmd, write_access, entry);
2403 	}
2404 
2405 	ptl = pte_lockptr(mm, pmd);
2406 	spin_lock(ptl);
2407 	if (unlikely(!pte_same(*pte, entry)))
2408 		goto unlock;
2409 	if (write_access) {
2410 		if (!pte_write(entry))
2411 			return do_wp_page(mm, vma, address,
2412 					pte, pmd, ptl, entry);
2413 		entry = pte_mkdirty(entry);
2414 	}
2415 	entry = pte_mkyoung(entry);
2416 	if (!pte_same(old_entry, entry)) {
2417 		ptep_set_access_flags(vma, address, pte, entry, write_access);
2418 		update_mmu_cache(vma, address, entry);
2419 		lazy_mmu_prot_update(entry);
2420 	} else {
2421 		/*
2422 		 * This is needed only for protection faults but the arch code
2423 		 * is not yet telling us if this is a protection fault or not.
2424 		 * This still avoids useless tlb flushes for .text page faults
2425 		 * with threads.
2426 		 */
2427 		if (write_access)
2428 			flush_tlb_page(vma, address);
2429 	}
2430 unlock:
2431 	pte_unmap_unlock(pte, ptl);
2432 	return VM_FAULT_MINOR;
2433 }
2434 
2435 /*
2436  * By the time we get here, we already hold the mm semaphore
2437  */
2438 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2439 		unsigned long address, int write_access)
2440 {
2441 	pgd_t *pgd;
2442 	pud_t *pud;
2443 	pmd_t *pmd;
2444 	pte_t *pte;
2445 
2446 	__set_current_state(TASK_RUNNING);
2447 
2448 	count_vm_event(PGFAULT);
2449 
2450 	if (unlikely(is_vm_hugetlb_page(vma)))
2451 		return hugetlb_fault(mm, vma, address, write_access);
2452 
2453 	pgd = pgd_offset(mm, address);
2454 	pud = pud_alloc(mm, pgd, address);
2455 	if (!pud)
2456 		return VM_FAULT_OOM;
2457 	pmd = pmd_alloc(mm, pud, address);
2458 	if (!pmd)
2459 		return VM_FAULT_OOM;
2460 	pte = pte_alloc_map(mm, pmd, address);
2461 	if (!pte)
2462 		return VM_FAULT_OOM;
2463 
2464 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2465 }
2466 
2467 EXPORT_SYMBOL_GPL(__handle_mm_fault);
2468 
2469 #ifndef __PAGETABLE_PUD_FOLDED
2470 /*
2471  * Allocate page upper directory.
2472  * We've already handled the fast-path in-line.
2473  */
2474 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2475 {
2476 	pud_t *new = pud_alloc_one(mm, address);
2477 	if (!new)
2478 		return -ENOMEM;
2479 
2480 	spin_lock(&mm->page_table_lock);
2481 	if (pgd_present(*pgd))		/* Another has populated it */
2482 		pud_free(new);
2483 	else
2484 		pgd_populate(mm, pgd, new);
2485 	spin_unlock(&mm->page_table_lock);
2486 	return 0;
2487 }
2488 #else
2489 /* Workaround for gcc 2.96 */
2490 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2491 {
2492 	return 0;
2493 }
2494 #endif /* __PAGETABLE_PUD_FOLDED */
2495 
2496 #ifndef __PAGETABLE_PMD_FOLDED
2497 /*
2498  * Allocate page middle directory.
2499  * We've already handled the fast-path in-line.
2500  */
2501 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2502 {
2503 	pmd_t *new = pmd_alloc_one(mm, address);
2504 	if (!new)
2505 		return -ENOMEM;
2506 
2507 	spin_lock(&mm->page_table_lock);
2508 #ifndef __ARCH_HAS_4LEVEL_HACK
2509 	if (pud_present(*pud))		/* Another has populated it */
2510 		pmd_free(new);
2511 	else
2512 		pud_populate(mm, pud, new);
2513 #else
2514 	if (pgd_present(*pud))		/* Another has populated it */
2515 		pmd_free(new);
2516 	else
2517 		pgd_populate(mm, pud, new);
2518 #endif /* __ARCH_HAS_4LEVEL_HACK */
2519 	spin_unlock(&mm->page_table_lock);
2520 	return 0;
2521 }
2522 #else
2523 /* Workaround for gcc 2.96 */
2524 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2525 {
2526 	return 0;
2527 }
2528 #endif /* __PAGETABLE_PMD_FOLDED */
2529 
2530 int make_pages_present(unsigned long addr, unsigned long end)
2531 {
2532 	int ret, len, write;
2533 	struct vm_area_struct * vma;
2534 
2535 	vma = find_vma(current->mm, addr);
2536 	if (!vma)
2537 		return -1;
2538 	write = (vma->vm_flags & VM_WRITE) != 0;
2539 	BUG_ON(addr >= end);
2540 	BUG_ON(end > vma->vm_end);
2541 	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2542 	ret = get_user_pages(current, current->mm, addr,
2543 			len, write, 0, NULL, NULL);
2544 	if (ret < 0)
2545 		return ret;
2546 	return ret == len ? 0 : -1;
2547 }
2548 
2549 /*
2550  * Map a vmalloc()-space virtual address to the physical page.
2551  */
2552 struct page * vmalloc_to_page(void * vmalloc_addr)
2553 {
2554 	unsigned long addr = (unsigned long) vmalloc_addr;
2555 	struct page *page = NULL;
2556 	pgd_t *pgd = pgd_offset_k(addr);
2557 	pud_t *pud;
2558 	pmd_t *pmd;
2559 	pte_t *ptep, pte;
2560 
2561 	if (!pgd_none(*pgd)) {
2562 		pud = pud_offset(pgd, addr);
2563 		if (!pud_none(*pud)) {
2564 			pmd = pmd_offset(pud, addr);
2565 			if (!pmd_none(*pmd)) {
2566 				ptep = pte_offset_map(pmd, addr);
2567 				pte = *ptep;
2568 				if (pte_present(pte))
2569 					page = pte_page(pte);
2570 				pte_unmap(ptep);
2571 			}
2572 		}
2573 	}
2574 	return page;
2575 }
2576 
2577 EXPORT_SYMBOL(vmalloc_to_page);
2578 
2579 /*
2580  * Map a vmalloc()-space virtual address to the physical page frame number.
2581  */
2582 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2583 {
2584 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2585 }
2586 
2587 EXPORT_SYMBOL(vmalloc_to_pfn);
2588 
2589 #if !defined(__HAVE_ARCH_GATE_AREA)
2590 
2591 #if defined(AT_SYSINFO_EHDR)
2592 static struct vm_area_struct gate_vma;
2593 
2594 static int __init gate_vma_init(void)
2595 {
2596 	gate_vma.vm_mm = NULL;
2597 	gate_vma.vm_start = FIXADDR_USER_START;
2598 	gate_vma.vm_end = FIXADDR_USER_END;
2599 	gate_vma.vm_page_prot = PAGE_READONLY;
2600 	gate_vma.vm_flags = 0;
2601 	return 0;
2602 }
2603 __initcall(gate_vma_init);
2604 #endif
2605 
2606 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2607 {
2608 #ifdef AT_SYSINFO_EHDR
2609 	return &gate_vma;
2610 #else
2611 	return NULL;
2612 #endif
2613 }
2614 
2615 int in_gate_area_no_task(unsigned long addr)
2616 {
2617 #ifdef AT_SYSINFO_EHDR
2618 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2619 		return 1;
2620 #endif
2621 	return 0;
2622 }
2623 
2624 #endif	/* __HAVE_ARCH_GATE_AREA */
2625 
2626 /*
2627  * Access another process' address space.
2628  * Source/target buffer must be kernel space,
2629  * Do not walk the page table directly, use get_user_pages
2630  */
2631 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2632 {
2633 	struct mm_struct *mm;
2634 	struct vm_area_struct *vma;
2635 	struct page *page;
2636 	void *old_buf = buf;
2637 
2638 	mm = get_task_mm(tsk);
2639 	if (!mm)
2640 		return 0;
2641 
2642 	down_read(&mm->mmap_sem);
2643 	/* ignore errors, just check how much was sucessfully transfered */
2644 	while (len) {
2645 		int bytes, ret, offset;
2646 		void *maddr;
2647 
2648 		ret = get_user_pages(tsk, mm, addr, 1,
2649 				write, 1, &page, &vma);
2650 		if (ret <= 0)
2651 			break;
2652 
2653 		bytes = len;
2654 		offset = addr & (PAGE_SIZE-1);
2655 		if (bytes > PAGE_SIZE-offset)
2656 			bytes = PAGE_SIZE-offset;
2657 
2658 		maddr = kmap(page);
2659 		if (write) {
2660 			copy_to_user_page(vma, page, addr,
2661 					  maddr + offset, buf, bytes);
2662 			set_page_dirty_lock(page);
2663 		} else {
2664 			copy_from_user_page(vma, page, addr,
2665 					    buf, maddr + offset, bytes);
2666 		}
2667 		kunmap(page);
2668 		page_cache_release(page);
2669 		len -= bytes;
2670 		buf += bytes;
2671 		addr += bytes;
2672 	}
2673 	up_read(&mm->mmap_sem);
2674 	mmput(mm);
2675 
2676 	return buf - old_buf;
2677 }
2678