1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 #include <linux/numa.h> 73 #include <linux/perf_event.h> 74 #include <linux/ptrace.h> 75 #include <linux/vmalloc.h> 76 77 #include <trace/events/kmem.h> 78 79 #include <asm/io.h> 80 #include <asm/mmu_context.h> 81 #include <asm/pgalloc.h> 82 #include <linux/uaccess.h> 83 #include <asm/tlb.h> 84 #include <asm/tlbflush.h> 85 86 #include "pgalloc-track.h" 87 #include "internal.h" 88 89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 91 #endif 92 93 #ifndef CONFIG_NUMA 94 unsigned long max_mapnr; 95 EXPORT_SYMBOL(max_mapnr); 96 97 struct page *mem_map; 98 EXPORT_SYMBOL(mem_map); 99 #endif 100 101 /* 102 * A number of key systems in x86 including ioremap() rely on the assumption 103 * that high_memory defines the upper bound on direct map memory, then end 104 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 106 * and ZONE_HIGHMEM. 107 */ 108 void *high_memory; 109 EXPORT_SYMBOL(high_memory); 110 111 /* 112 * Randomize the address space (stacks, mmaps, brk, etc.). 113 * 114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 115 * as ancient (libc5 based) binaries can segfault. ) 116 */ 117 int randomize_va_space __read_mostly = 118 #ifdef CONFIG_COMPAT_BRK 119 1; 120 #else 121 2; 122 #endif 123 124 #ifndef arch_faults_on_old_pte 125 static inline bool arch_faults_on_old_pte(void) 126 { 127 /* 128 * Those arches which don't have hw access flag feature need to 129 * implement their own helper. By default, "true" means pagefault 130 * will be hit on old pte. 131 */ 132 return true; 133 } 134 #endif 135 136 #ifndef arch_wants_old_prefaulted_pte 137 static inline bool arch_wants_old_prefaulted_pte(void) 138 { 139 /* 140 * Transitioning a PTE from 'old' to 'young' can be expensive on 141 * some architectures, even if it's performed in hardware. By 142 * default, "false" means prefaulted entries will be 'young'. 143 */ 144 return false; 145 } 146 #endif 147 148 static int __init disable_randmaps(char *s) 149 { 150 randomize_va_space = 0; 151 return 1; 152 } 153 __setup("norandmaps", disable_randmaps); 154 155 unsigned long zero_pfn __read_mostly; 156 EXPORT_SYMBOL(zero_pfn); 157 158 unsigned long highest_memmap_pfn __read_mostly; 159 160 /* 161 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 162 */ 163 static int __init init_zero_pfn(void) 164 { 165 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 166 return 0; 167 } 168 early_initcall(init_zero_pfn); 169 170 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 171 { 172 trace_rss_stat(mm, member, count); 173 } 174 175 #if defined(SPLIT_RSS_COUNTING) 176 177 void sync_mm_rss(struct mm_struct *mm) 178 { 179 int i; 180 181 for (i = 0; i < NR_MM_COUNTERS; i++) { 182 if (current->rss_stat.count[i]) { 183 add_mm_counter(mm, i, current->rss_stat.count[i]); 184 current->rss_stat.count[i] = 0; 185 } 186 } 187 current->rss_stat.events = 0; 188 } 189 190 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 191 { 192 struct task_struct *task = current; 193 194 if (likely(task->mm == mm)) 195 task->rss_stat.count[member] += val; 196 else 197 add_mm_counter(mm, member, val); 198 } 199 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 200 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 201 202 /* sync counter once per 64 page faults */ 203 #define TASK_RSS_EVENTS_THRESH (64) 204 static void check_sync_rss_stat(struct task_struct *task) 205 { 206 if (unlikely(task != current)) 207 return; 208 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 209 sync_mm_rss(task->mm); 210 } 211 #else /* SPLIT_RSS_COUNTING */ 212 213 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 214 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 215 216 static void check_sync_rss_stat(struct task_struct *task) 217 { 218 } 219 220 #endif /* SPLIT_RSS_COUNTING */ 221 222 /* 223 * Note: this doesn't free the actual pages themselves. That 224 * has been handled earlier when unmapping all the memory regions. 225 */ 226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 227 unsigned long addr) 228 { 229 pgtable_t token = pmd_pgtable(*pmd); 230 pmd_clear(pmd); 231 pte_free_tlb(tlb, token, addr); 232 mm_dec_nr_ptes(tlb->mm); 233 } 234 235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 236 unsigned long addr, unsigned long end, 237 unsigned long floor, unsigned long ceiling) 238 { 239 pmd_t *pmd; 240 unsigned long next; 241 unsigned long start; 242 243 start = addr; 244 pmd = pmd_offset(pud, addr); 245 do { 246 next = pmd_addr_end(addr, end); 247 if (pmd_none_or_clear_bad(pmd)) 248 continue; 249 free_pte_range(tlb, pmd, addr); 250 } while (pmd++, addr = next, addr != end); 251 252 start &= PUD_MASK; 253 if (start < floor) 254 return; 255 if (ceiling) { 256 ceiling &= PUD_MASK; 257 if (!ceiling) 258 return; 259 } 260 if (end - 1 > ceiling - 1) 261 return; 262 263 pmd = pmd_offset(pud, start); 264 pud_clear(pud); 265 pmd_free_tlb(tlb, pmd, start); 266 mm_dec_nr_pmds(tlb->mm); 267 } 268 269 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 270 unsigned long addr, unsigned long end, 271 unsigned long floor, unsigned long ceiling) 272 { 273 pud_t *pud; 274 unsigned long next; 275 unsigned long start; 276 277 start = addr; 278 pud = pud_offset(p4d, addr); 279 do { 280 next = pud_addr_end(addr, end); 281 if (pud_none_or_clear_bad(pud)) 282 continue; 283 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 284 } while (pud++, addr = next, addr != end); 285 286 start &= P4D_MASK; 287 if (start < floor) 288 return; 289 if (ceiling) { 290 ceiling &= P4D_MASK; 291 if (!ceiling) 292 return; 293 } 294 if (end - 1 > ceiling - 1) 295 return; 296 297 pud = pud_offset(p4d, start); 298 p4d_clear(p4d); 299 pud_free_tlb(tlb, pud, start); 300 mm_dec_nr_puds(tlb->mm); 301 } 302 303 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 304 unsigned long addr, unsigned long end, 305 unsigned long floor, unsigned long ceiling) 306 { 307 p4d_t *p4d; 308 unsigned long next; 309 unsigned long start; 310 311 start = addr; 312 p4d = p4d_offset(pgd, addr); 313 do { 314 next = p4d_addr_end(addr, end); 315 if (p4d_none_or_clear_bad(p4d)) 316 continue; 317 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 318 } while (p4d++, addr = next, addr != end); 319 320 start &= PGDIR_MASK; 321 if (start < floor) 322 return; 323 if (ceiling) { 324 ceiling &= PGDIR_MASK; 325 if (!ceiling) 326 return; 327 } 328 if (end - 1 > ceiling - 1) 329 return; 330 331 p4d = p4d_offset(pgd, start); 332 pgd_clear(pgd); 333 p4d_free_tlb(tlb, p4d, start); 334 } 335 336 /* 337 * This function frees user-level page tables of a process. 338 */ 339 void free_pgd_range(struct mmu_gather *tlb, 340 unsigned long addr, unsigned long end, 341 unsigned long floor, unsigned long ceiling) 342 { 343 pgd_t *pgd; 344 unsigned long next; 345 346 /* 347 * The next few lines have given us lots of grief... 348 * 349 * Why are we testing PMD* at this top level? Because often 350 * there will be no work to do at all, and we'd prefer not to 351 * go all the way down to the bottom just to discover that. 352 * 353 * Why all these "- 1"s? Because 0 represents both the bottom 354 * of the address space and the top of it (using -1 for the 355 * top wouldn't help much: the masks would do the wrong thing). 356 * The rule is that addr 0 and floor 0 refer to the bottom of 357 * the address space, but end 0 and ceiling 0 refer to the top 358 * Comparisons need to use "end - 1" and "ceiling - 1" (though 359 * that end 0 case should be mythical). 360 * 361 * Wherever addr is brought up or ceiling brought down, we must 362 * be careful to reject "the opposite 0" before it confuses the 363 * subsequent tests. But what about where end is brought down 364 * by PMD_SIZE below? no, end can't go down to 0 there. 365 * 366 * Whereas we round start (addr) and ceiling down, by different 367 * masks at different levels, in order to test whether a table 368 * now has no other vmas using it, so can be freed, we don't 369 * bother to round floor or end up - the tests don't need that. 370 */ 371 372 addr &= PMD_MASK; 373 if (addr < floor) { 374 addr += PMD_SIZE; 375 if (!addr) 376 return; 377 } 378 if (ceiling) { 379 ceiling &= PMD_MASK; 380 if (!ceiling) 381 return; 382 } 383 if (end - 1 > ceiling - 1) 384 end -= PMD_SIZE; 385 if (addr > end - 1) 386 return; 387 /* 388 * We add page table cache pages with PAGE_SIZE, 389 * (see pte_free_tlb()), flush the tlb if we need 390 */ 391 tlb_change_page_size(tlb, PAGE_SIZE); 392 pgd = pgd_offset(tlb->mm, addr); 393 do { 394 next = pgd_addr_end(addr, end); 395 if (pgd_none_or_clear_bad(pgd)) 396 continue; 397 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 398 } while (pgd++, addr = next, addr != end); 399 } 400 401 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 402 unsigned long floor, unsigned long ceiling) 403 { 404 while (vma) { 405 struct vm_area_struct *next = vma->vm_next; 406 unsigned long addr = vma->vm_start; 407 408 /* 409 * Hide vma from rmap and truncate_pagecache before freeing 410 * pgtables 411 */ 412 unlink_anon_vmas(vma); 413 unlink_file_vma(vma); 414 415 if (is_vm_hugetlb_page(vma)) { 416 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 417 floor, next ? next->vm_start : ceiling); 418 } else { 419 /* 420 * Optimization: gather nearby vmas into one call down 421 */ 422 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 423 && !is_vm_hugetlb_page(next)) { 424 vma = next; 425 next = vma->vm_next; 426 unlink_anon_vmas(vma); 427 unlink_file_vma(vma); 428 } 429 free_pgd_range(tlb, addr, vma->vm_end, 430 floor, next ? next->vm_start : ceiling); 431 } 432 vma = next; 433 } 434 } 435 436 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 437 { 438 spinlock_t *ptl = pmd_lock(mm, pmd); 439 440 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 441 mm_inc_nr_ptes(mm); 442 /* 443 * Ensure all pte setup (eg. pte page lock and page clearing) are 444 * visible before the pte is made visible to other CPUs by being 445 * put into page tables. 446 * 447 * The other side of the story is the pointer chasing in the page 448 * table walking code (when walking the page table without locking; 449 * ie. most of the time). Fortunately, these data accesses consist 450 * of a chain of data-dependent loads, meaning most CPUs (alpha 451 * being the notable exception) will already guarantee loads are 452 * seen in-order. See the alpha page table accessors for the 453 * smp_rmb() barriers in page table walking code. 454 */ 455 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 456 pmd_populate(mm, pmd, *pte); 457 *pte = NULL; 458 } 459 spin_unlock(ptl); 460 } 461 462 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 463 { 464 pgtable_t new = pte_alloc_one(mm); 465 if (!new) 466 return -ENOMEM; 467 468 pmd_install(mm, pmd, &new); 469 if (new) 470 pte_free(mm, new); 471 return 0; 472 } 473 474 int __pte_alloc_kernel(pmd_t *pmd) 475 { 476 pte_t *new = pte_alloc_one_kernel(&init_mm); 477 if (!new) 478 return -ENOMEM; 479 480 spin_lock(&init_mm.page_table_lock); 481 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 482 smp_wmb(); /* See comment in pmd_install() */ 483 pmd_populate_kernel(&init_mm, pmd, new); 484 new = NULL; 485 } 486 spin_unlock(&init_mm.page_table_lock); 487 if (new) 488 pte_free_kernel(&init_mm, new); 489 return 0; 490 } 491 492 static inline void init_rss_vec(int *rss) 493 { 494 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 495 } 496 497 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 498 { 499 int i; 500 501 if (current->mm == mm) 502 sync_mm_rss(mm); 503 for (i = 0; i < NR_MM_COUNTERS; i++) 504 if (rss[i]) 505 add_mm_counter(mm, i, rss[i]); 506 } 507 508 /* 509 * This function is called to print an error when a bad pte 510 * is found. For example, we might have a PFN-mapped pte in 511 * a region that doesn't allow it. 512 * 513 * The calling function must still handle the error. 514 */ 515 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 516 pte_t pte, struct page *page) 517 { 518 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 519 p4d_t *p4d = p4d_offset(pgd, addr); 520 pud_t *pud = pud_offset(p4d, addr); 521 pmd_t *pmd = pmd_offset(pud, addr); 522 struct address_space *mapping; 523 pgoff_t index; 524 static unsigned long resume; 525 static unsigned long nr_shown; 526 static unsigned long nr_unshown; 527 528 /* 529 * Allow a burst of 60 reports, then keep quiet for that minute; 530 * or allow a steady drip of one report per second. 531 */ 532 if (nr_shown == 60) { 533 if (time_before(jiffies, resume)) { 534 nr_unshown++; 535 return; 536 } 537 if (nr_unshown) { 538 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 539 nr_unshown); 540 nr_unshown = 0; 541 } 542 nr_shown = 0; 543 } 544 if (nr_shown++ == 0) 545 resume = jiffies + 60 * HZ; 546 547 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 548 index = linear_page_index(vma, addr); 549 550 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 551 current->comm, 552 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 553 if (page) 554 dump_page(page, "bad pte"); 555 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 556 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 557 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 558 vma->vm_file, 559 vma->vm_ops ? vma->vm_ops->fault : NULL, 560 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 561 mapping ? mapping->a_ops->readpage : NULL); 562 dump_stack(); 563 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 564 } 565 566 /* 567 * vm_normal_page -- This function gets the "struct page" associated with a pte. 568 * 569 * "Special" mappings do not wish to be associated with a "struct page" (either 570 * it doesn't exist, or it exists but they don't want to touch it). In this 571 * case, NULL is returned here. "Normal" mappings do have a struct page. 572 * 573 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 574 * pte bit, in which case this function is trivial. Secondly, an architecture 575 * may not have a spare pte bit, which requires a more complicated scheme, 576 * described below. 577 * 578 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 579 * special mapping (even if there are underlying and valid "struct pages"). 580 * COWed pages of a VM_PFNMAP are always normal. 581 * 582 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 583 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 584 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 585 * mapping will always honor the rule 586 * 587 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 588 * 589 * And for normal mappings this is false. 590 * 591 * This restricts such mappings to be a linear translation from virtual address 592 * to pfn. To get around this restriction, we allow arbitrary mappings so long 593 * as the vma is not a COW mapping; in that case, we know that all ptes are 594 * special (because none can have been COWed). 595 * 596 * 597 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 598 * 599 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 600 * page" backing, however the difference is that _all_ pages with a struct 601 * page (that is, those where pfn_valid is true) are refcounted and considered 602 * normal pages by the VM. The disadvantage is that pages are refcounted 603 * (which can be slower and simply not an option for some PFNMAP users). The 604 * advantage is that we don't have to follow the strict linearity rule of 605 * PFNMAP mappings in order to support COWable mappings. 606 * 607 */ 608 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 609 pte_t pte) 610 { 611 unsigned long pfn = pte_pfn(pte); 612 613 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 614 if (likely(!pte_special(pte))) 615 goto check_pfn; 616 if (vma->vm_ops && vma->vm_ops->find_special_page) 617 return vma->vm_ops->find_special_page(vma, addr); 618 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 619 return NULL; 620 if (is_zero_pfn(pfn)) 621 return NULL; 622 if (pte_devmap(pte)) 623 return NULL; 624 625 print_bad_pte(vma, addr, pte, NULL); 626 return NULL; 627 } 628 629 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 630 631 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 632 if (vma->vm_flags & VM_MIXEDMAP) { 633 if (!pfn_valid(pfn)) 634 return NULL; 635 goto out; 636 } else { 637 unsigned long off; 638 off = (addr - vma->vm_start) >> PAGE_SHIFT; 639 if (pfn == vma->vm_pgoff + off) 640 return NULL; 641 if (!is_cow_mapping(vma->vm_flags)) 642 return NULL; 643 } 644 } 645 646 if (is_zero_pfn(pfn)) 647 return NULL; 648 649 check_pfn: 650 if (unlikely(pfn > highest_memmap_pfn)) { 651 print_bad_pte(vma, addr, pte, NULL); 652 return NULL; 653 } 654 655 /* 656 * NOTE! We still have PageReserved() pages in the page tables. 657 * eg. VDSO mappings can cause them to exist. 658 */ 659 out: 660 return pfn_to_page(pfn); 661 } 662 663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 664 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 665 pmd_t pmd) 666 { 667 unsigned long pfn = pmd_pfn(pmd); 668 669 /* 670 * There is no pmd_special() but there may be special pmds, e.g. 671 * in a direct-access (dax) mapping, so let's just replicate the 672 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 673 */ 674 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 675 if (vma->vm_flags & VM_MIXEDMAP) { 676 if (!pfn_valid(pfn)) 677 return NULL; 678 goto out; 679 } else { 680 unsigned long off; 681 off = (addr - vma->vm_start) >> PAGE_SHIFT; 682 if (pfn == vma->vm_pgoff + off) 683 return NULL; 684 if (!is_cow_mapping(vma->vm_flags)) 685 return NULL; 686 } 687 } 688 689 if (pmd_devmap(pmd)) 690 return NULL; 691 if (is_huge_zero_pmd(pmd)) 692 return NULL; 693 if (unlikely(pfn > highest_memmap_pfn)) 694 return NULL; 695 696 /* 697 * NOTE! We still have PageReserved() pages in the page tables. 698 * eg. VDSO mappings can cause them to exist. 699 */ 700 out: 701 return pfn_to_page(pfn); 702 } 703 #endif 704 705 static void restore_exclusive_pte(struct vm_area_struct *vma, 706 struct page *page, unsigned long address, 707 pte_t *ptep) 708 { 709 pte_t pte; 710 swp_entry_t entry; 711 712 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 713 if (pte_swp_soft_dirty(*ptep)) 714 pte = pte_mksoft_dirty(pte); 715 716 entry = pte_to_swp_entry(*ptep); 717 if (pte_swp_uffd_wp(*ptep)) 718 pte = pte_mkuffd_wp(pte); 719 else if (is_writable_device_exclusive_entry(entry)) 720 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 721 722 set_pte_at(vma->vm_mm, address, ptep, pte); 723 724 /* 725 * No need to take a page reference as one was already 726 * created when the swap entry was made. 727 */ 728 if (PageAnon(page)) 729 page_add_anon_rmap(page, vma, address, false); 730 else 731 /* 732 * Currently device exclusive access only supports anonymous 733 * memory so the entry shouldn't point to a filebacked page. 734 */ 735 WARN_ON_ONCE(!PageAnon(page)); 736 737 if (vma->vm_flags & VM_LOCKED) 738 mlock_vma_page(page); 739 740 /* 741 * No need to invalidate - it was non-present before. However 742 * secondary CPUs may have mappings that need invalidating. 743 */ 744 update_mmu_cache(vma, address, ptep); 745 } 746 747 /* 748 * Tries to restore an exclusive pte if the page lock can be acquired without 749 * sleeping. 750 */ 751 static int 752 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 753 unsigned long addr) 754 { 755 swp_entry_t entry = pte_to_swp_entry(*src_pte); 756 struct page *page = pfn_swap_entry_to_page(entry); 757 758 if (trylock_page(page)) { 759 restore_exclusive_pte(vma, page, addr, src_pte); 760 unlock_page(page); 761 return 0; 762 } 763 764 return -EBUSY; 765 } 766 767 /* 768 * copy one vm_area from one task to the other. Assumes the page tables 769 * already present in the new task to be cleared in the whole range 770 * covered by this vma. 771 */ 772 773 static unsigned long 774 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 775 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 776 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 777 { 778 unsigned long vm_flags = dst_vma->vm_flags; 779 pte_t pte = *src_pte; 780 struct page *page; 781 swp_entry_t entry = pte_to_swp_entry(pte); 782 783 if (likely(!non_swap_entry(entry))) { 784 if (swap_duplicate(entry) < 0) 785 return -EIO; 786 787 /* make sure dst_mm is on swapoff's mmlist. */ 788 if (unlikely(list_empty(&dst_mm->mmlist))) { 789 spin_lock(&mmlist_lock); 790 if (list_empty(&dst_mm->mmlist)) 791 list_add(&dst_mm->mmlist, 792 &src_mm->mmlist); 793 spin_unlock(&mmlist_lock); 794 } 795 rss[MM_SWAPENTS]++; 796 } else if (is_migration_entry(entry)) { 797 page = pfn_swap_entry_to_page(entry); 798 799 rss[mm_counter(page)]++; 800 801 if (is_writable_migration_entry(entry) && 802 is_cow_mapping(vm_flags)) { 803 /* 804 * COW mappings require pages in both 805 * parent and child to be set to read. 806 */ 807 entry = make_readable_migration_entry( 808 swp_offset(entry)); 809 pte = swp_entry_to_pte(entry); 810 if (pte_swp_soft_dirty(*src_pte)) 811 pte = pte_swp_mksoft_dirty(pte); 812 if (pte_swp_uffd_wp(*src_pte)) 813 pte = pte_swp_mkuffd_wp(pte); 814 set_pte_at(src_mm, addr, src_pte, pte); 815 } 816 } else if (is_device_private_entry(entry)) { 817 page = pfn_swap_entry_to_page(entry); 818 819 /* 820 * Update rss count even for unaddressable pages, as 821 * they should treated just like normal pages in this 822 * respect. 823 * 824 * We will likely want to have some new rss counters 825 * for unaddressable pages, at some point. But for now 826 * keep things as they are. 827 */ 828 get_page(page); 829 rss[mm_counter(page)]++; 830 page_dup_rmap(page, false); 831 832 /* 833 * We do not preserve soft-dirty information, because so 834 * far, checkpoint/restore is the only feature that 835 * requires that. And checkpoint/restore does not work 836 * when a device driver is involved (you cannot easily 837 * save and restore device driver state). 838 */ 839 if (is_writable_device_private_entry(entry) && 840 is_cow_mapping(vm_flags)) { 841 entry = make_readable_device_private_entry( 842 swp_offset(entry)); 843 pte = swp_entry_to_pte(entry); 844 if (pte_swp_uffd_wp(*src_pte)) 845 pte = pte_swp_mkuffd_wp(pte); 846 set_pte_at(src_mm, addr, src_pte, pte); 847 } 848 } else if (is_device_exclusive_entry(entry)) { 849 /* 850 * Make device exclusive entries present by restoring the 851 * original entry then copying as for a present pte. Device 852 * exclusive entries currently only support private writable 853 * (ie. COW) mappings. 854 */ 855 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 856 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 857 return -EBUSY; 858 return -ENOENT; 859 } 860 if (!userfaultfd_wp(dst_vma)) 861 pte = pte_swp_clear_uffd_wp(pte); 862 set_pte_at(dst_mm, addr, dst_pte, pte); 863 return 0; 864 } 865 866 /* 867 * Copy a present and normal page if necessary. 868 * 869 * NOTE! The usual case is that this doesn't need to do 870 * anything, and can just return a positive value. That 871 * will let the caller know that it can just increase 872 * the page refcount and re-use the pte the traditional 873 * way. 874 * 875 * But _if_ we need to copy it because it needs to be 876 * pinned in the parent (and the child should get its own 877 * copy rather than just a reference to the same page), 878 * we'll do that here and return zero to let the caller 879 * know we're done. 880 * 881 * And if we need a pre-allocated page but don't yet have 882 * one, return a negative error to let the preallocation 883 * code know so that it can do so outside the page table 884 * lock. 885 */ 886 static inline int 887 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 888 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 889 struct page **prealloc, pte_t pte, struct page *page) 890 { 891 struct page *new_page; 892 893 /* 894 * What we want to do is to check whether this page may 895 * have been pinned by the parent process. If so, 896 * instead of wrprotect the pte on both sides, we copy 897 * the page immediately so that we'll always guarantee 898 * the pinned page won't be randomly replaced in the 899 * future. 900 * 901 * The page pinning checks are just "has this mm ever 902 * seen pinning", along with the (inexact) check of 903 * the page count. That might give false positives for 904 * for pinning, but it will work correctly. 905 */ 906 if (likely(!page_needs_cow_for_dma(src_vma, page))) 907 return 1; 908 909 new_page = *prealloc; 910 if (!new_page) 911 return -EAGAIN; 912 913 /* 914 * We have a prealloc page, all good! Take it 915 * over and copy the page & arm it. 916 */ 917 *prealloc = NULL; 918 copy_user_highpage(new_page, page, addr, src_vma); 919 __SetPageUptodate(new_page); 920 page_add_new_anon_rmap(new_page, dst_vma, addr, false); 921 lru_cache_add_inactive_or_unevictable(new_page, dst_vma); 922 rss[mm_counter(new_page)]++; 923 924 /* All done, just insert the new page copy in the child */ 925 pte = mk_pte(new_page, dst_vma->vm_page_prot); 926 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 927 if (userfaultfd_pte_wp(dst_vma, *src_pte)) 928 /* Uffd-wp needs to be delivered to dest pte as well */ 929 pte = pte_wrprotect(pte_mkuffd_wp(pte)); 930 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 931 return 0; 932 } 933 934 /* 935 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 936 * is required to copy this pte. 937 */ 938 static inline int 939 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 940 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 941 struct page **prealloc) 942 { 943 struct mm_struct *src_mm = src_vma->vm_mm; 944 unsigned long vm_flags = src_vma->vm_flags; 945 pte_t pte = *src_pte; 946 struct page *page; 947 948 page = vm_normal_page(src_vma, addr, pte); 949 if (page) { 950 int retval; 951 952 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 953 addr, rss, prealloc, pte, page); 954 if (retval <= 0) 955 return retval; 956 957 get_page(page); 958 page_dup_rmap(page, false); 959 rss[mm_counter(page)]++; 960 } 961 962 /* 963 * If it's a COW mapping, write protect it both 964 * in the parent and the child 965 */ 966 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 967 ptep_set_wrprotect(src_mm, addr, src_pte); 968 pte = pte_wrprotect(pte); 969 } 970 971 /* 972 * If it's a shared mapping, mark it clean in 973 * the child 974 */ 975 if (vm_flags & VM_SHARED) 976 pte = pte_mkclean(pte); 977 pte = pte_mkold(pte); 978 979 if (!userfaultfd_wp(dst_vma)) 980 pte = pte_clear_uffd_wp(pte); 981 982 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 983 return 0; 984 } 985 986 static inline struct page * 987 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, 988 unsigned long addr) 989 { 990 struct page *new_page; 991 992 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); 993 if (!new_page) 994 return NULL; 995 996 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) { 997 put_page(new_page); 998 return NULL; 999 } 1000 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 1001 1002 return new_page; 1003 } 1004 1005 static int 1006 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1007 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1008 unsigned long end) 1009 { 1010 struct mm_struct *dst_mm = dst_vma->vm_mm; 1011 struct mm_struct *src_mm = src_vma->vm_mm; 1012 pte_t *orig_src_pte, *orig_dst_pte; 1013 pte_t *src_pte, *dst_pte; 1014 spinlock_t *src_ptl, *dst_ptl; 1015 int progress, ret = 0; 1016 int rss[NR_MM_COUNTERS]; 1017 swp_entry_t entry = (swp_entry_t){0}; 1018 struct page *prealloc = NULL; 1019 1020 again: 1021 progress = 0; 1022 init_rss_vec(rss); 1023 1024 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1025 if (!dst_pte) { 1026 ret = -ENOMEM; 1027 goto out; 1028 } 1029 src_pte = pte_offset_map(src_pmd, addr); 1030 src_ptl = pte_lockptr(src_mm, src_pmd); 1031 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1032 orig_src_pte = src_pte; 1033 orig_dst_pte = dst_pte; 1034 arch_enter_lazy_mmu_mode(); 1035 1036 do { 1037 /* 1038 * We are holding two locks at this point - either of them 1039 * could generate latencies in another task on another CPU. 1040 */ 1041 if (progress >= 32) { 1042 progress = 0; 1043 if (need_resched() || 1044 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1045 break; 1046 } 1047 if (pte_none(*src_pte)) { 1048 progress++; 1049 continue; 1050 } 1051 if (unlikely(!pte_present(*src_pte))) { 1052 ret = copy_nonpresent_pte(dst_mm, src_mm, 1053 dst_pte, src_pte, 1054 dst_vma, src_vma, 1055 addr, rss); 1056 if (ret == -EIO) { 1057 entry = pte_to_swp_entry(*src_pte); 1058 break; 1059 } else if (ret == -EBUSY) { 1060 break; 1061 } else if (!ret) { 1062 progress += 8; 1063 continue; 1064 } 1065 1066 /* 1067 * Device exclusive entry restored, continue by copying 1068 * the now present pte. 1069 */ 1070 WARN_ON_ONCE(ret != -ENOENT); 1071 } 1072 /* copy_present_pte() will clear `*prealloc' if consumed */ 1073 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1074 addr, rss, &prealloc); 1075 /* 1076 * If we need a pre-allocated page for this pte, drop the 1077 * locks, allocate, and try again. 1078 */ 1079 if (unlikely(ret == -EAGAIN)) 1080 break; 1081 if (unlikely(prealloc)) { 1082 /* 1083 * pre-alloc page cannot be reused by next time so as 1084 * to strictly follow mempolicy (e.g., alloc_page_vma() 1085 * will allocate page according to address). This 1086 * could only happen if one pinned pte changed. 1087 */ 1088 put_page(prealloc); 1089 prealloc = NULL; 1090 } 1091 progress += 8; 1092 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1093 1094 arch_leave_lazy_mmu_mode(); 1095 spin_unlock(src_ptl); 1096 pte_unmap(orig_src_pte); 1097 add_mm_rss_vec(dst_mm, rss); 1098 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1099 cond_resched(); 1100 1101 if (ret == -EIO) { 1102 VM_WARN_ON_ONCE(!entry.val); 1103 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1104 ret = -ENOMEM; 1105 goto out; 1106 } 1107 entry.val = 0; 1108 } else if (ret == -EBUSY) { 1109 goto out; 1110 } else if (ret == -EAGAIN) { 1111 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1112 if (!prealloc) 1113 return -ENOMEM; 1114 } else if (ret) { 1115 VM_WARN_ON_ONCE(1); 1116 } 1117 1118 /* We've captured and resolved the error. Reset, try again. */ 1119 ret = 0; 1120 1121 if (addr != end) 1122 goto again; 1123 out: 1124 if (unlikely(prealloc)) 1125 put_page(prealloc); 1126 return ret; 1127 } 1128 1129 static inline int 1130 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1131 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1132 unsigned long end) 1133 { 1134 struct mm_struct *dst_mm = dst_vma->vm_mm; 1135 struct mm_struct *src_mm = src_vma->vm_mm; 1136 pmd_t *src_pmd, *dst_pmd; 1137 unsigned long next; 1138 1139 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1140 if (!dst_pmd) 1141 return -ENOMEM; 1142 src_pmd = pmd_offset(src_pud, addr); 1143 do { 1144 next = pmd_addr_end(addr, end); 1145 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1146 || pmd_devmap(*src_pmd)) { 1147 int err; 1148 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1149 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1150 addr, dst_vma, src_vma); 1151 if (err == -ENOMEM) 1152 return -ENOMEM; 1153 if (!err) 1154 continue; 1155 /* fall through */ 1156 } 1157 if (pmd_none_or_clear_bad(src_pmd)) 1158 continue; 1159 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1160 addr, next)) 1161 return -ENOMEM; 1162 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1163 return 0; 1164 } 1165 1166 static inline int 1167 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1168 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1169 unsigned long end) 1170 { 1171 struct mm_struct *dst_mm = dst_vma->vm_mm; 1172 struct mm_struct *src_mm = src_vma->vm_mm; 1173 pud_t *src_pud, *dst_pud; 1174 unsigned long next; 1175 1176 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1177 if (!dst_pud) 1178 return -ENOMEM; 1179 src_pud = pud_offset(src_p4d, addr); 1180 do { 1181 next = pud_addr_end(addr, end); 1182 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1183 int err; 1184 1185 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1186 err = copy_huge_pud(dst_mm, src_mm, 1187 dst_pud, src_pud, addr, src_vma); 1188 if (err == -ENOMEM) 1189 return -ENOMEM; 1190 if (!err) 1191 continue; 1192 /* fall through */ 1193 } 1194 if (pud_none_or_clear_bad(src_pud)) 1195 continue; 1196 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1197 addr, next)) 1198 return -ENOMEM; 1199 } while (dst_pud++, src_pud++, addr = next, addr != end); 1200 return 0; 1201 } 1202 1203 static inline int 1204 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1205 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1206 unsigned long end) 1207 { 1208 struct mm_struct *dst_mm = dst_vma->vm_mm; 1209 p4d_t *src_p4d, *dst_p4d; 1210 unsigned long next; 1211 1212 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1213 if (!dst_p4d) 1214 return -ENOMEM; 1215 src_p4d = p4d_offset(src_pgd, addr); 1216 do { 1217 next = p4d_addr_end(addr, end); 1218 if (p4d_none_or_clear_bad(src_p4d)) 1219 continue; 1220 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1221 addr, next)) 1222 return -ENOMEM; 1223 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1224 return 0; 1225 } 1226 1227 int 1228 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1229 { 1230 pgd_t *src_pgd, *dst_pgd; 1231 unsigned long next; 1232 unsigned long addr = src_vma->vm_start; 1233 unsigned long end = src_vma->vm_end; 1234 struct mm_struct *dst_mm = dst_vma->vm_mm; 1235 struct mm_struct *src_mm = src_vma->vm_mm; 1236 struct mmu_notifier_range range; 1237 bool is_cow; 1238 int ret; 1239 1240 /* 1241 * Don't copy ptes where a page fault will fill them correctly. 1242 * Fork becomes much lighter when there are big shared or private 1243 * readonly mappings. The tradeoff is that copy_page_range is more 1244 * efficient than faulting. 1245 */ 1246 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1247 !src_vma->anon_vma) 1248 return 0; 1249 1250 if (is_vm_hugetlb_page(src_vma)) 1251 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma); 1252 1253 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1254 /* 1255 * We do not free on error cases below as remove_vma 1256 * gets called on error from higher level routine 1257 */ 1258 ret = track_pfn_copy(src_vma); 1259 if (ret) 1260 return ret; 1261 } 1262 1263 /* 1264 * We need to invalidate the secondary MMU mappings only when 1265 * there could be a permission downgrade on the ptes of the 1266 * parent mm. And a permission downgrade will only happen if 1267 * is_cow_mapping() returns true. 1268 */ 1269 is_cow = is_cow_mapping(src_vma->vm_flags); 1270 1271 if (is_cow) { 1272 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1273 0, src_vma, src_mm, addr, end); 1274 mmu_notifier_invalidate_range_start(&range); 1275 /* 1276 * Disabling preemption is not needed for the write side, as 1277 * the read side doesn't spin, but goes to the mmap_lock. 1278 * 1279 * Use the raw variant of the seqcount_t write API to avoid 1280 * lockdep complaining about preemptibility. 1281 */ 1282 mmap_assert_write_locked(src_mm); 1283 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1284 } 1285 1286 ret = 0; 1287 dst_pgd = pgd_offset(dst_mm, addr); 1288 src_pgd = pgd_offset(src_mm, addr); 1289 do { 1290 next = pgd_addr_end(addr, end); 1291 if (pgd_none_or_clear_bad(src_pgd)) 1292 continue; 1293 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1294 addr, next))) { 1295 ret = -ENOMEM; 1296 break; 1297 } 1298 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1299 1300 if (is_cow) { 1301 raw_write_seqcount_end(&src_mm->write_protect_seq); 1302 mmu_notifier_invalidate_range_end(&range); 1303 } 1304 return ret; 1305 } 1306 1307 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1308 struct vm_area_struct *vma, pmd_t *pmd, 1309 unsigned long addr, unsigned long end, 1310 struct zap_details *details) 1311 { 1312 struct mm_struct *mm = tlb->mm; 1313 int force_flush = 0; 1314 int rss[NR_MM_COUNTERS]; 1315 spinlock_t *ptl; 1316 pte_t *start_pte; 1317 pte_t *pte; 1318 swp_entry_t entry; 1319 1320 tlb_change_page_size(tlb, PAGE_SIZE); 1321 again: 1322 init_rss_vec(rss); 1323 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1324 pte = start_pte; 1325 flush_tlb_batched_pending(mm); 1326 arch_enter_lazy_mmu_mode(); 1327 do { 1328 pte_t ptent = *pte; 1329 if (pte_none(ptent)) 1330 continue; 1331 1332 if (need_resched()) 1333 break; 1334 1335 if (pte_present(ptent)) { 1336 struct page *page; 1337 1338 page = vm_normal_page(vma, addr, ptent); 1339 if (unlikely(zap_skip_check_mapping(details, page))) 1340 continue; 1341 ptent = ptep_get_and_clear_full(mm, addr, pte, 1342 tlb->fullmm); 1343 tlb_remove_tlb_entry(tlb, pte, addr); 1344 if (unlikely(!page)) 1345 continue; 1346 1347 if (!PageAnon(page)) { 1348 if (pte_dirty(ptent)) { 1349 force_flush = 1; 1350 set_page_dirty(page); 1351 } 1352 if (pte_young(ptent) && 1353 likely(!(vma->vm_flags & VM_SEQ_READ))) 1354 mark_page_accessed(page); 1355 } 1356 rss[mm_counter(page)]--; 1357 page_remove_rmap(page, false); 1358 if (unlikely(page_mapcount(page) < 0)) 1359 print_bad_pte(vma, addr, ptent, page); 1360 if (unlikely(__tlb_remove_page(tlb, page))) { 1361 force_flush = 1; 1362 addr += PAGE_SIZE; 1363 break; 1364 } 1365 continue; 1366 } 1367 1368 entry = pte_to_swp_entry(ptent); 1369 if (is_device_private_entry(entry) || 1370 is_device_exclusive_entry(entry)) { 1371 struct page *page = pfn_swap_entry_to_page(entry); 1372 1373 if (unlikely(zap_skip_check_mapping(details, page))) 1374 continue; 1375 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1376 rss[mm_counter(page)]--; 1377 1378 if (is_device_private_entry(entry)) 1379 page_remove_rmap(page, false); 1380 1381 put_page(page); 1382 continue; 1383 } 1384 1385 /* If details->check_mapping, we leave swap entries. */ 1386 if (unlikely(details)) 1387 continue; 1388 1389 if (!non_swap_entry(entry)) 1390 rss[MM_SWAPENTS]--; 1391 else if (is_migration_entry(entry)) { 1392 struct page *page; 1393 1394 page = pfn_swap_entry_to_page(entry); 1395 rss[mm_counter(page)]--; 1396 } 1397 if (unlikely(!free_swap_and_cache(entry))) 1398 print_bad_pte(vma, addr, ptent, NULL); 1399 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1400 } while (pte++, addr += PAGE_SIZE, addr != end); 1401 1402 add_mm_rss_vec(mm, rss); 1403 arch_leave_lazy_mmu_mode(); 1404 1405 /* Do the actual TLB flush before dropping ptl */ 1406 if (force_flush) 1407 tlb_flush_mmu_tlbonly(tlb); 1408 pte_unmap_unlock(start_pte, ptl); 1409 1410 /* 1411 * If we forced a TLB flush (either due to running out of 1412 * batch buffers or because we needed to flush dirty TLB 1413 * entries before releasing the ptl), free the batched 1414 * memory too. Restart if we didn't do everything. 1415 */ 1416 if (force_flush) { 1417 force_flush = 0; 1418 tlb_flush_mmu(tlb); 1419 } 1420 1421 if (addr != end) { 1422 cond_resched(); 1423 goto again; 1424 } 1425 1426 return addr; 1427 } 1428 1429 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1430 struct vm_area_struct *vma, pud_t *pud, 1431 unsigned long addr, unsigned long end, 1432 struct zap_details *details) 1433 { 1434 pmd_t *pmd; 1435 unsigned long next; 1436 1437 pmd = pmd_offset(pud, addr); 1438 do { 1439 next = pmd_addr_end(addr, end); 1440 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1441 if (next - addr != HPAGE_PMD_SIZE) 1442 __split_huge_pmd(vma, pmd, addr, false, NULL); 1443 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1444 goto next; 1445 /* fall through */ 1446 } else if (details && details->single_page && 1447 PageTransCompound(details->single_page) && 1448 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1449 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1450 /* 1451 * Take and drop THP pmd lock so that we cannot return 1452 * prematurely, while zap_huge_pmd() has cleared *pmd, 1453 * but not yet decremented compound_mapcount(). 1454 */ 1455 spin_unlock(ptl); 1456 } 1457 1458 /* 1459 * Here there can be other concurrent MADV_DONTNEED or 1460 * trans huge page faults running, and if the pmd is 1461 * none or trans huge it can change under us. This is 1462 * because MADV_DONTNEED holds the mmap_lock in read 1463 * mode. 1464 */ 1465 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1466 goto next; 1467 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1468 next: 1469 cond_resched(); 1470 } while (pmd++, addr = next, addr != end); 1471 1472 return addr; 1473 } 1474 1475 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1476 struct vm_area_struct *vma, p4d_t *p4d, 1477 unsigned long addr, unsigned long end, 1478 struct zap_details *details) 1479 { 1480 pud_t *pud; 1481 unsigned long next; 1482 1483 pud = pud_offset(p4d, addr); 1484 do { 1485 next = pud_addr_end(addr, end); 1486 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1487 if (next - addr != HPAGE_PUD_SIZE) { 1488 mmap_assert_locked(tlb->mm); 1489 split_huge_pud(vma, pud, addr); 1490 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1491 goto next; 1492 /* fall through */ 1493 } 1494 if (pud_none_or_clear_bad(pud)) 1495 continue; 1496 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1497 next: 1498 cond_resched(); 1499 } while (pud++, addr = next, addr != end); 1500 1501 return addr; 1502 } 1503 1504 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1505 struct vm_area_struct *vma, pgd_t *pgd, 1506 unsigned long addr, unsigned long end, 1507 struct zap_details *details) 1508 { 1509 p4d_t *p4d; 1510 unsigned long next; 1511 1512 p4d = p4d_offset(pgd, addr); 1513 do { 1514 next = p4d_addr_end(addr, end); 1515 if (p4d_none_or_clear_bad(p4d)) 1516 continue; 1517 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1518 } while (p4d++, addr = next, addr != end); 1519 1520 return addr; 1521 } 1522 1523 void unmap_page_range(struct mmu_gather *tlb, 1524 struct vm_area_struct *vma, 1525 unsigned long addr, unsigned long end, 1526 struct zap_details *details) 1527 { 1528 pgd_t *pgd; 1529 unsigned long next; 1530 1531 BUG_ON(addr >= end); 1532 tlb_start_vma(tlb, vma); 1533 pgd = pgd_offset(vma->vm_mm, addr); 1534 do { 1535 next = pgd_addr_end(addr, end); 1536 if (pgd_none_or_clear_bad(pgd)) 1537 continue; 1538 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1539 } while (pgd++, addr = next, addr != end); 1540 tlb_end_vma(tlb, vma); 1541 } 1542 1543 1544 static void unmap_single_vma(struct mmu_gather *tlb, 1545 struct vm_area_struct *vma, unsigned long start_addr, 1546 unsigned long end_addr, 1547 struct zap_details *details) 1548 { 1549 unsigned long start = max(vma->vm_start, start_addr); 1550 unsigned long end; 1551 1552 if (start >= vma->vm_end) 1553 return; 1554 end = min(vma->vm_end, end_addr); 1555 if (end <= vma->vm_start) 1556 return; 1557 1558 if (vma->vm_file) 1559 uprobe_munmap(vma, start, end); 1560 1561 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1562 untrack_pfn(vma, 0, 0); 1563 1564 if (start != end) { 1565 if (unlikely(is_vm_hugetlb_page(vma))) { 1566 /* 1567 * It is undesirable to test vma->vm_file as it 1568 * should be non-null for valid hugetlb area. 1569 * However, vm_file will be NULL in the error 1570 * cleanup path of mmap_region. When 1571 * hugetlbfs ->mmap method fails, 1572 * mmap_region() nullifies vma->vm_file 1573 * before calling this function to clean up. 1574 * Since no pte has actually been setup, it is 1575 * safe to do nothing in this case. 1576 */ 1577 if (vma->vm_file) { 1578 i_mmap_lock_write(vma->vm_file->f_mapping); 1579 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1580 i_mmap_unlock_write(vma->vm_file->f_mapping); 1581 } 1582 } else 1583 unmap_page_range(tlb, vma, start, end, details); 1584 } 1585 } 1586 1587 /** 1588 * unmap_vmas - unmap a range of memory covered by a list of vma's 1589 * @tlb: address of the caller's struct mmu_gather 1590 * @vma: the starting vma 1591 * @start_addr: virtual address at which to start unmapping 1592 * @end_addr: virtual address at which to end unmapping 1593 * 1594 * Unmap all pages in the vma list. 1595 * 1596 * Only addresses between `start' and `end' will be unmapped. 1597 * 1598 * The VMA list must be sorted in ascending virtual address order. 1599 * 1600 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1601 * range after unmap_vmas() returns. So the only responsibility here is to 1602 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1603 * drops the lock and schedules. 1604 */ 1605 void unmap_vmas(struct mmu_gather *tlb, 1606 struct vm_area_struct *vma, unsigned long start_addr, 1607 unsigned long end_addr) 1608 { 1609 struct mmu_notifier_range range; 1610 1611 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1612 start_addr, end_addr); 1613 mmu_notifier_invalidate_range_start(&range); 1614 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1615 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1616 mmu_notifier_invalidate_range_end(&range); 1617 } 1618 1619 /** 1620 * zap_page_range - remove user pages in a given range 1621 * @vma: vm_area_struct holding the applicable pages 1622 * @start: starting address of pages to zap 1623 * @size: number of bytes to zap 1624 * 1625 * Caller must protect the VMA list 1626 */ 1627 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1628 unsigned long size) 1629 { 1630 struct mmu_notifier_range range; 1631 struct mmu_gather tlb; 1632 1633 lru_add_drain(); 1634 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1635 start, start + size); 1636 tlb_gather_mmu(&tlb, vma->vm_mm); 1637 update_hiwater_rss(vma->vm_mm); 1638 mmu_notifier_invalidate_range_start(&range); 1639 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1640 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1641 mmu_notifier_invalidate_range_end(&range); 1642 tlb_finish_mmu(&tlb); 1643 } 1644 1645 /** 1646 * zap_page_range_single - remove user pages in a given range 1647 * @vma: vm_area_struct holding the applicable pages 1648 * @address: starting address of pages to zap 1649 * @size: number of bytes to zap 1650 * @details: details of shared cache invalidation 1651 * 1652 * The range must fit into one VMA. 1653 */ 1654 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1655 unsigned long size, struct zap_details *details) 1656 { 1657 struct mmu_notifier_range range; 1658 struct mmu_gather tlb; 1659 1660 lru_add_drain(); 1661 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1662 address, address + size); 1663 tlb_gather_mmu(&tlb, vma->vm_mm); 1664 update_hiwater_rss(vma->vm_mm); 1665 mmu_notifier_invalidate_range_start(&range); 1666 unmap_single_vma(&tlb, vma, address, range.end, details); 1667 mmu_notifier_invalidate_range_end(&range); 1668 tlb_finish_mmu(&tlb); 1669 } 1670 1671 /** 1672 * zap_vma_ptes - remove ptes mapping the vma 1673 * @vma: vm_area_struct holding ptes to be zapped 1674 * @address: starting address of pages to zap 1675 * @size: number of bytes to zap 1676 * 1677 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1678 * 1679 * The entire address range must be fully contained within the vma. 1680 * 1681 */ 1682 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1683 unsigned long size) 1684 { 1685 if (address < vma->vm_start || address + size > vma->vm_end || 1686 !(vma->vm_flags & VM_PFNMAP)) 1687 return; 1688 1689 zap_page_range_single(vma, address, size, NULL); 1690 } 1691 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1692 1693 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1694 { 1695 pgd_t *pgd; 1696 p4d_t *p4d; 1697 pud_t *pud; 1698 pmd_t *pmd; 1699 1700 pgd = pgd_offset(mm, addr); 1701 p4d = p4d_alloc(mm, pgd, addr); 1702 if (!p4d) 1703 return NULL; 1704 pud = pud_alloc(mm, p4d, addr); 1705 if (!pud) 1706 return NULL; 1707 pmd = pmd_alloc(mm, pud, addr); 1708 if (!pmd) 1709 return NULL; 1710 1711 VM_BUG_ON(pmd_trans_huge(*pmd)); 1712 return pmd; 1713 } 1714 1715 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1716 spinlock_t **ptl) 1717 { 1718 pmd_t *pmd = walk_to_pmd(mm, addr); 1719 1720 if (!pmd) 1721 return NULL; 1722 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1723 } 1724 1725 static int validate_page_before_insert(struct page *page) 1726 { 1727 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1728 return -EINVAL; 1729 flush_dcache_page(page); 1730 return 0; 1731 } 1732 1733 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 1734 unsigned long addr, struct page *page, pgprot_t prot) 1735 { 1736 if (!pte_none(*pte)) 1737 return -EBUSY; 1738 /* Ok, finally just insert the thing.. */ 1739 get_page(page); 1740 inc_mm_counter_fast(mm, mm_counter_file(page)); 1741 page_add_file_rmap(page, false); 1742 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1743 return 0; 1744 } 1745 1746 /* 1747 * This is the old fallback for page remapping. 1748 * 1749 * For historical reasons, it only allows reserved pages. Only 1750 * old drivers should use this, and they needed to mark their 1751 * pages reserved for the old functions anyway. 1752 */ 1753 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1754 struct page *page, pgprot_t prot) 1755 { 1756 struct mm_struct *mm = vma->vm_mm; 1757 int retval; 1758 pte_t *pte; 1759 spinlock_t *ptl; 1760 1761 retval = validate_page_before_insert(page); 1762 if (retval) 1763 goto out; 1764 retval = -ENOMEM; 1765 pte = get_locked_pte(mm, addr, &ptl); 1766 if (!pte) 1767 goto out; 1768 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 1769 pte_unmap_unlock(pte, ptl); 1770 out: 1771 return retval; 1772 } 1773 1774 #ifdef pte_index 1775 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, 1776 unsigned long addr, struct page *page, pgprot_t prot) 1777 { 1778 int err; 1779 1780 if (!page_count(page)) 1781 return -EINVAL; 1782 err = validate_page_before_insert(page); 1783 if (err) 1784 return err; 1785 return insert_page_into_pte_locked(mm, pte, addr, page, prot); 1786 } 1787 1788 /* insert_pages() amortizes the cost of spinlock operations 1789 * when inserting pages in a loop. Arch *must* define pte_index. 1790 */ 1791 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1792 struct page **pages, unsigned long *num, pgprot_t prot) 1793 { 1794 pmd_t *pmd = NULL; 1795 pte_t *start_pte, *pte; 1796 spinlock_t *pte_lock; 1797 struct mm_struct *const mm = vma->vm_mm; 1798 unsigned long curr_page_idx = 0; 1799 unsigned long remaining_pages_total = *num; 1800 unsigned long pages_to_write_in_pmd; 1801 int ret; 1802 more: 1803 ret = -EFAULT; 1804 pmd = walk_to_pmd(mm, addr); 1805 if (!pmd) 1806 goto out; 1807 1808 pages_to_write_in_pmd = min_t(unsigned long, 1809 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1810 1811 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1812 ret = -ENOMEM; 1813 if (pte_alloc(mm, pmd)) 1814 goto out; 1815 1816 while (pages_to_write_in_pmd) { 1817 int pte_idx = 0; 1818 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1819 1820 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1821 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1822 int err = insert_page_in_batch_locked(mm, pte, 1823 addr, pages[curr_page_idx], prot); 1824 if (unlikely(err)) { 1825 pte_unmap_unlock(start_pte, pte_lock); 1826 ret = err; 1827 remaining_pages_total -= pte_idx; 1828 goto out; 1829 } 1830 addr += PAGE_SIZE; 1831 ++curr_page_idx; 1832 } 1833 pte_unmap_unlock(start_pte, pte_lock); 1834 pages_to_write_in_pmd -= batch_size; 1835 remaining_pages_total -= batch_size; 1836 } 1837 if (remaining_pages_total) 1838 goto more; 1839 ret = 0; 1840 out: 1841 *num = remaining_pages_total; 1842 return ret; 1843 } 1844 #endif /* ifdef pte_index */ 1845 1846 /** 1847 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1848 * @vma: user vma to map to 1849 * @addr: target start user address of these pages 1850 * @pages: source kernel pages 1851 * @num: in: number of pages to map. out: number of pages that were *not* 1852 * mapped. (0 means all pages were successfully mapped). 1853 * 1854 * Preferred over vm_insert_page() when inserting multiple pages. 1855 * 1856 * In case of error, we may have mapped a subset of the provided 1857 * pages. It is the caller's responsibility to account for this case. 1858 * 1859 * The same restrictions apply as in vm_insert_page(). 1860 */ 1861 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1862 struct page **pages, unsigned long *num) 1863 { 1864 #ifdef pte_index 1865 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1866 1867 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1868 return -EFAULT; 1869 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1870 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1871 BUG_ON(vma->vm_flags & VM_PFNMAP); 1872 vma->vm_flags |= VM_MIXEDMAP; 1873 } 1874 /* Defer page refcount checking till we're about to map that page. */ 1875 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1876 #else 1877 unsigned long idx = 0, pgcount = *num; 1878 int err = -EINVAL; 1879 1880 for (; idx < pgcount; ++idx) { 1881 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1882 if (err) 1883 break; 1884 } 1885 *num = pgcount - idx; 1886 return err; 1887 #endif /* ifdef pte_index */ 1888 } 1889 EXPORT_SYMBOL(vm_insert_pages); 1890 1891 /** 1892 * vm_insert_page - insert single page into user vma 1893 * @vma: user vma to map to 1894 * @addr: target user address of this page 1895 * @page: source kernel page 1896 * 1897 * This allows drivers to insert individual pages they've allocated 1898 * into a user vma. 1899 * 1900 * The page has to be a nice clean _individual_ kernel allocation. 1901 * If you allocate a compound page, you need to have marked it as 1902 * such (__GFP_COMP), or manually just split the page up yourself 1903 * (see split_page()). 1904 * 1905 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1906 * took an arbitrary page protection parameter. This doesn't allow 1907 * that. Your vma protection will have to be set up correctly, which 1908 * means that if you want a shared writable mapping, you'd better 1909 * ask for a shared writable mapping! 1910 * 1911 * The page does not need to be reserved. 1912 * 1913 * Usually this function is called from f_op->mmap() handler 1914 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1915 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1916 * function from other places, for example from page-fault handler. 1917 * 1918 * Return: %0 on success, negative error code otherwise. 1919 */ 1920 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1921 struct page *page) 1922 { 1923 if (addr < vma->vm_start || addr >= vma->vm_end) 1924 return -EFAULT; 1925 if (!page_count(page)) 1926 return -EINVAL; 1927 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1928 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1929 BUG_ON(vma->vm_flags & VM_PFNMAP); 1930 vma->vm_flags |= VM_MIXEDMAP; 1931 } 1932 return insert_page(vma, addr, page, vma->vm_page_prot); 1933 } 1934 EXPORT_SYMBOL(vm_insert_page); 1935 1936 /* 1937 * __vm_map_pages - maps range of kernel pages into user vma 1938 * @vma: user vma to map to 1939 * @pages: pointer to array of source kernel pages 1940 * @num: number of pages in page array 1941 * @offset: user's requested vm_pgoff 1942 * 1943 * This allows drivers to map range of kernel pages into a user vma. 1944 * 1945 * Return: 0 on success and error code otherwise. 1946 */ 1947 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1948 unsigned long num, unsigned long offset) 1949 { 1950 unsigned long count = vma_pages(vma); 1951 unsigned long uaddr = vma->vm_start; 1952 int ret, i; 1953 1954 /* Fail if the user requested offset is beyond the end of the object */ 1955 if (offset >= num) 1956 return -ENXIO; 1957 1958 /* Fail if the user requested size exceeds available object size */ 1959 if (count > num - offset) 1960 return -ENXIO; 1961 1962 for (i = 0; i < count; i++) { 1963 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1964 if (ret < 0) 1965 return ret; 1966 uaddr += PAGE_SIZE; 1967 } 1968 1969 return 0; 1970 } 1971 1972 /** 1973 * vm_map_pages - maps range of kernel pages starts with non zero offset 1974 * @vma: user vma to map to 1975 * @pages: pointer to array of source kernel pages 1976 * @num: number of pages in page array 1977 * 1978 * Maps an object consisting of @num pages, catering for the user's 1979 * requested vm_pgoff 1980 * 1981 * If we fail to insert any page into the vma, the function will return 1982 * immediately leaving any previously inserted pages present. Callers 1983 * from the mmap handler may immediately return the error as their caller 1984 * will destroy the vma, removing any successfully inserted pages. Other 1985 * callers should make their own arrangements for calling unmap_region(). 1986 * 1987 * Context: Process context. Called by mmap handlers. 1988 * Return: 0 on success and error code otherwise. 1989 */ 1990 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1991 unsigned long num) 1992 { 1993 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1994 } 1995 EXPORT_SYMBOL(vm_map_pages); 1996 1997 /** 1998 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1999 * @vma: user vma to map to 2000 * @pages: pointer to array of source kernel pages 2001 * @num: number of pages in page array 2002 * 2003 * Similar to vm_map_pages(), except that it explicitly sets the offset 2004 * to 0. This function is intended for the drivers that did not consider 2005 * vm_pgoff. 2006 * 2007 * Context: Process context. Called by mmap handlers. 2008 * Return: 0 on success and error code otherwise. 2009 */ 2010 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2011 unsigned long num) 2012 { 2013 return __vm_map_pages(vma, pages, num, 0); 2014 } 2015 EXPORT_SYMBOL(vm_map_pages_zero); 2016 2017 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2018 pfn_t pfn, pgprot_t prot, bool mkwrite) 2019 { 2020 struct mm_struct *mm = vma->vm_mm; 2021 pte_t *pte, entry; 2022 spinlock_t *ptl; 2023 2024 pte = get_locked_pte(mm, addr, &ptl); 2025 if (!pte) 2026 return VM_FAULT_OOM; 2027 if (!pte_none(*pte)) { 2028 if (mkwrite) { 2029 /* 2030 * For read faults on private mappings the PFN passed 2031 * in may not match the PFN we have mapped if the 2032 * mapped PFN is a writeable COW page. In the mkwrite 2033 * case we are creating a writable PTE for a shared 2034 * mapping and we expect the PFNs to match. If they 2035 * don't match, we are likely racing with block 2036 * allocation and mapping invalidation so just skip the 2037 * update. 2038 */ 2039 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 2040 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 2041 goto out_unlock; 2042 } 2043 entry = pte_mkyoung(*pte); 2044 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2045 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2046 update_mmu_cache(vma, addr, pte); 2047 } 2048 goto out_unlock; 2049 } 2050 2051 /* Ok, finally just insert the thing.. */ 2052 if (pfn_t_devmap(pfn)) 2053 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2054 else 2055 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2056 2057 if (mkwrite) { 2058 entry = pte_mkyoung(entry); 2059 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2060 } 2061 2062 set_pte_at(mm, addr, pte, entry); 2063 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2064 2065 out_unlock: 2066 pte_unmap_unlock(pte, ptl); 2067 return VM_FAULT_NOPAGE; 2068 } 2069 2070 /** 2071 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2072 * @vma: user vma to map to 2073 * @addr: target user address of this page 2074 * @pfn: source kernel pfn 2075 * @pgprot: pgprot flags for the inserted page 2076 * 2077 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2078 * to override pgprot on a per-page basis. 2079 * 2080 * This only makes sense for IO mappings, and it makes no sense for 2081 * COW mappings. In general, using multiple vmas is preferable; 2082 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2083 * impractical. 2084 * 2085 * See vmf_insert_mixed_prot() for a discussion of the implication of using 2086 * a value of @pgprot different from that of @vma->vm_page_prot. 2087 * 2088 * Context: Process context. May allocate using %GFP_KERNEL. 2089 * Return: vm_fault_t value. 2090 */ 2091 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2092 unsigned long pfn, pgprot_t pgprot) 2093 { 2094 /* 2095 * Technically, architectures with pte_special can avoid all these 2096 * restrictions (same for remap_pfn_range). However we would like 2097 * consistency in testing and feature parity among all, so we should 2098 * try to keep these invariants in place for everybody. 2099 */ 2100 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2101 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2102 (VM_PFNMAP|VM_MIXEDMAP)); 2103 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2104 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2105 2106 if (addr < vma->vm_start || addr >= vma->vm_end) 2107 return VM_FAULT_SIGBUS; 2108 2109 if (!pfn_modify_allowed(pfn, pgprot)) 2110 return VM_FAULT_SIGBUS; 2111 2112 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2113 2114 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2115 false); 2116 } 2117 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2118 2119 /** 2120 * vmf_insert_pfn - insert single pfn into user vma 2121 * @vma: user vma to map to 2122 * @addr: target user address of this page 2123 * @pfn: source kernel pfn 2124 * 2125 * Similar to vm_insert_page, this allows drivers to insert individual pages 2126 * they've allocated into a user vma. Same comments apply. 2127 * 2128 * This function should only be called from a vm_ops->fault handler, and 2129 * in that case the handler should return the result of this function. 2130 * 2131 * vma cannot be a COW mapping. 2132 * 2133 * As this is called only for pages that do not currently exist, we 2134 * do not need to flush old virtual caches or the TLB. 2135 * 2136 * Context: Process context. May allocate using %GFP_KERNEL. 2137 * Return: vm_fault_t value. 2138 */ 2139 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2140 unsigned long pfn) 2141 { 2142 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2143 } 2144 EXPORT_SYMBOL(vmf_insert_pfn); 2145 2146 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2147 { 2148 /* these checks mirror the abort conditions in vm_normal_page */ 2149 if (vma->vm_flags & VM_MIXEDMAP) 2150 return true; 2151 if (pfn_t_devmap(pfn)) 2152 return true; 2153 if (pfn_t_special(pfn)) 2154 return true; 2155 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2156 return true; 2157 return false; 2158 } 2159 2160 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2161 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 2162 bool mkwrite) 2163 { 2164 int err; 2165 2166 BUG_ON(!vm_mixed_ok(vma, pfn)); 2167 2168 if (addr < vma->vm_start || addr >= vma->vm_end) 2169 return VM_FAULT_SIGBUS; 2170 2171 track_pfn_insert(vma, &pgprot, pfn); 2172 2173 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2174 return VM_FAULT_SIGBUS; 2175 2176 /* 2177 * If we don't have pte special, then we have to use the pfn_valid() 2178 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2179 * refcount the page if pfn_valid is true (hence insert_page rather 2180 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2181 * without pte special, it would there be refcounted as a normal page. 2182 */ 2183 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2184 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2185 struct page *page; 2186 2187 /* 2188 * At this point we are committed to insert_page() 2189 * regardless of whether the caller specified flags that 2190 * result in pfn_t_has_page() == false. 2191 */ 2192 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2193 err = insert_page(vma, addr, page, pgprot); 2194 } else { 2195 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2196 } 2197 2198 if (err == -ENOMEM) 2199 return VM_FAULT_OOM; 2200 if (err < 0 && err != -EBUSY) 2201 return VM_FAULT_SIGBUS; 2202 2203 return VM_FAULT_NOPAGE; 2204 } 2205 2206 /** 2207 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 2208 * @vma: user vma to map to 2209 * @addr: target user address of this page 2210 * @pfn: source kernel pfn 2211 * @pgprot: pgprot flags for the inserted page 2212 * 2213 * This is exactly like vmf_insert_mixed(), except that it allows drivers 2214 * to override pgprot on a per-page basis. 2215 * 2216 * Typically this function should be used by drivers to set caching- and 2217 * encryption bits different than those of @vma->vm_page_prot, because 2218 * the caching- or encryption mode may not be known at mmap() time. 2219 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2220 * to set caching and encryption bits for those vmas (except for COW pages). 2221 * This is ensured by core vm only modifying these page table entries using 2222 * functions that don't touch caching- or encryption bits, using pte_modify() 2223 * if needed. (See for example mprotect()). 2224 * Also when new page-table entries are created, this is only done using the 2225 * fault() callback, and never using the value of vma->vm_page_prot, 2226 * except for page-table entries that point to anonymous pages as the result 2227 * of COW. 2228 * 2229 * Context: Process context. May allocate using %GFP_KERNEL. 2230 * Return: vm_fault_t value. 2231 */ 2232 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2233 pfn_t pfn, pgprot_t pgprot) 2234 { 2235 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 2236 } 2237 EXPORT_SYMBOL(vmf_insert_mixed_prot); 2238 2239 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2240 pfn_t pfn) 2241 { 2242 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2243 } 2244 EXPORT_SYMBOL(vmf_insert_mixed); 2245 2246 /* 2247 * If the insertion of PTE failed because someone else already added a 2248 * different entry in the mean time, we treat that as success as we assume 2249 * the same entry was actually inserted. 2250 */ 2251 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2252 unsigned long addr, pfn_t pfn) 2253 { 2254 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2255 } 2256 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2257 2258 /* 2259 * maps a range of physical memory into the requested pages. the old 2260 * mappings are removed. any references to nonexistent pages results 2261 * in null mappings (currently treated as "copy-on-access") 2262 */ 2263 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2264 unsigned long addr, unsigned long end, 2265 unsigned long pfn, pgprot_t prot) 2266 { 2267 pte_t *pte, *mapped_pte; 2268 spinlock_t *ptl; 2269 int err = 0; 2270 2271 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2272 if (!pte) 2273 return -ENOMEM; 2274 arch_enter_lazy_mmu_mode(); 2275 do { 2276 BUG_ON(!pte_none(*pte)); 2277 if (!pfn_modify_allowed(pfn, prot)) { 2278 err = -EACCES; 2279 break; 2280 } 2281 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2282 pfn++; 2283 } while (pte++, addr += PAGE_SIZE, addr != end); 2284 arch_leave_lazy_mmu_mode(); 2285 pte_unmap_unlock(mapped_pte, ptl); 2286 return err; 2287 } 2288 2289 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2290 unsigned long addr, unsigned long end, 2291 unsigned long pfn, pgprot_t prot) 2292 { 2293 pmd_t *pmd; 2294 unsigned long next; 2295 int err; 2296 2297 pfn -= addr >> PAGE_SHIFT; 2298 pmd = pmd_alloc(mm, pud, addr); 2299 if (!pmd) 2300 return -ENOMEM; 2301 VM_BUG_ON(pmd_trans_huge(*pmd)); 2302 do { 2303 next = pmd_addr_end(addr, end); 2304 err = remap_pte_range(mm, pmd, addr, next, 2305 pfn + (addr >> PAGE_SHIFT), prot); 2306 if (err) 2307 return err; 2308 } while (pmd++, addr = next, addr != end); 2309 return 0; 2310 } 2311 2312 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2313 unsigned long addr, unsigned long end, 2314 unsigned long pfn, pgprot_t prot) 2315 { 2316 pud_t *pud; 2317 unsigned long next; 2318 int err; 2319 2320 pfn -= addr >> PAGE_SHIFT; 2321 pud = pud_alloc(mm, p4d, addr); 2322 if (!pud) 2323 return -ENOMEM; 2324 do { 2325 next = pud_addr_end(addr, end); 2326 err = remap_pmd_range(mm, pud, addr, next, 2327 pfn + (addr >> PAGE_SHIFT), prot); 2328 if (err) 2329 return err; 2330 } while (pud++, addr = next, addr != end); 2331 return 0; 2332 } 2333 2334 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2335 unsigned long addr, unsigned long end, 2336 unsigned long pfn, pgprot_t prot) 2337 { 2338 p4d_t *p4d; 2339 unsigned long next; 2340 int err; 2341 2342 pfn -= addr >> PAGE_SHIFT; 2343 p4d = p4d_alloc(mm, pgd, addr); 2344 if (!p4d) 2345 return -ENOMEM; 2346 do { 2347 next = p4d_addr_end(addr, end); 2348 err = remap_pud_range(mm, p4d, addr, next, 2349 pfn + (addr >> PAGE_SHIFT), prot); 2350 if (err) 2351 return err; 2352 } while (p4d++, addr = next, addr != end); 2353 return 0; 2354 } 2355 2356 /* 2357 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2358 * must have pre-validated the caching bits of the pgprot_t. 2359 */ 2360 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2361 unsigned long pfn, unsigned long size, pgprot_t prot) 2362 { 2363 pgd_t *pgd; 2364 unsigned long next; 2365 unsigned long end = addr + PAGE_ALIGN(size); 2366 struct mm_struct *mm = vma->vm_mm; 2367 int err; 2368 2369 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2370 return -EINVAL; 2371 2372 /* 2373 * Physically remapped pages are special. Tell the 2374 * rest of the world about it: 2375 * VM_IO tells people not to look at these pages 2376 * (accesses can have side effects). 2377 * VM_PFNMAP tells the core MM that the base pages are just 2378 * raw PFN mappings, and do not have a "struct page" associated 2379 * with them. 2380 * VM_DONTEXPAND 2381 * Disable vma merging and expanding with mremap(). 2382 * VM_DONTDUMP 2383 * Omit vma from core dump, even when VM_IO turned off. 2384 * 2385 * There's a horrible special case to handle copy-on-write 2386 * behaviour that some programs depend on. We mark the "original" 2387 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2388 * See vm_normal_page() for details. 2389 */ 2390 if (is_cow_mapping(vma->vm_flags)) { 2391 if (addr != vma->vm_start || end != vma->vm_end) 2392 return -EINVAL; 2393 vma->vm_pgoff = pfn; 2394 } 2395 2396 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2397 2398 BUG_ON(addr >= end); 2399 pfn -= addr >> PAGE_SHIFT; 2400 pgd = pgd_offset(mm, addr); 2401 flush_cache_range(vma, addr, end); 2402 do { 2403 next = pgd_addr_end(addr, end); 2404 err = remap_p4d_range(mm, pgd, addr, next, 2405 pfn + (addr >> PAGE_SHIFT), prot); 2406 if (err) 2407 return err; 2408 } while (pgd++, addr = next, addr != end); 2409 2410 return 0; 2411 } 2412 2413 /** 2414 * remap_pfn_range - remap kernel memory to userspace 2415 * @vma: user vma to map to 2416 * @addr: target page aligned user address to start at 2417 * @pfn: page frame number of kernel physical memory address 2418 * @size: size of mapping area 2419 * @prot: page protection flags for this mapping 2420 * 2421 * Note: this is only safe if the mm semaphore is held when called. 2422 * 2423 * Return: %0 on success, negative error code otherwise. 2424 */ 2425 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2426 unsigned long pfn, unsigned long size, pgprot_t prot) 2427 { 2428 int err; 2429 2430 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2431 if (err) 2432 return -EINVAL; 2433 2434 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2435 if (err) 2436 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2437 return err; 2438 } 2439 EXPORT_SYMBOL(remap_pfn_range); 2440 2441 /** 2442 * vm_iomap_memory - remap memory to userspace 2443 * @vma: user vma to map to 2444 * @start: start of the physical memory to be mapped 2445 * @len: size of area 2446 * 2447 * This is a simplified io_remap_pfn_range() for common driver use. The 2448 * driver just needs to give us the physical memory range to be mapped, 2449 * we'll figure out the rest from the vma information. 2450 * 2451 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2452 * whatever write-combining details or similar. 2453 * 2454 * Return: %0 on success, negative error code otherwise. 2455 */ 2456 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2457 { 2458 unsigned long vm_len, pfn, pages; 2459 2460 /* Check that the physical memory area passed in looks valid */ 2461 if (start + len < start) 2462 return -EINVAL; 2463 /* 2464 * You *really* shouldn't map things that aren't page-aligned, 2465 * but we've historically allowed it because IO memory might 2466 * just have smaller alignment. 2467 */ 2468 len += start & ~PAGE_MASK; 2469 pfn = start >> PAGE_SHIFT; 2470 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2471 if (pfn + pages < pfn) 2472 return -EINVAL; 2473 2474 /* We start the mapping 'vm_pgoff' pages into the area */ 2475 if (vma->vm_pgoff > pages) 2476 return -EINVAL; 2477 pfn += vma->vm_pgoff; 2478 pages -= vma->vm_pgoff; 2479 2480 /* Can we fit all of the mapping? */ 2481 vm_len = vma->vm_end - vma->vm_start; 2482 if (vm_len >> PAGE_SHIFT > pages) 2483 return -EINVAL; 2484 2485 /* Ok, let it rip */ 2486 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2487 } 2488 EXPORT_SYMBOL(vm_iomap_memory); 2489 2490 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2491 unsigned long addr, unsigned long end, 2492 pte_fn_t fn, void *data, bool create, 2493 pgtbl_mod_mask *mask) 2494 { 2495 pte_t *pte, *mapped_pte; 2496 int err = 0; 2497 spinlock_t *ptl; 2498 2499 if (create) { 2500 mapped_pte = pte = (mm == &init_mm) ? 2501 pte_alloc_kernel_track(pmd, addr, mask) : 2502 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2503 if (!pte) 2504 return -ENOMEM; 2505 } else { 2506 mapped_pte = pte = (mm == &init_mm) ? 2507 pte_offset_kernel(pmd, addr) : 2508 pte_offset_map_lock(mm, pmd, addr, &ptl); 2509 } 2510 2511 BUG_ON(pmd_huge(*pmd)); 2512 2513 arch_enter_lazy_mmu_mode(); 2514 2515 if (fn) { 2516 do { 2517 if (create || !pte_none(*pte)) { 2518 err = fn(pte++, addr, data); 2519 if (err) 2520 break; 2521 } 2522 } while (addr += PAGE_SIZE, addr != end); 2523 } 2524 *mask |= PGTBL_PTE_MODIFIED; 2525 2526 arch_leave_lazy_mmu_mode(); 2527 2528 if (mm != &init_mm) 2529 pte_unmap_unlock(mapped_pte, ptl); 2530 return err; 2531 } 2532 2533 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2534 unsigned long addr, unsigned long end, 2535 pte_fn_t fn, void *data, bool create, 2536 pgtbl_mod_mask *mask) 2537 { 2538 pmd_t *pmd; 2539 unsigned long next; 2540 int err = 0; 2541 2542 BUG_ON(pud_huge(*pud)); 2543 2544 if (create) { 2545 pmd = pmd_alloc_track(mm, pud, addr, mask); 2546 if (!pmd) 2547 return -ENOMEM; 2548 } else { 2549 pmd = pmd_offset(pud, addr); 2550 } 2551 do { 2552 next = pmd_addr_end(addr, end); 2553 if (pmd_none(*pmd) && !create) 2554 continue; 2555 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2556 return -EINVAL; 2557 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2558 if (!create) 2559 continue; 2560 pmd_clear_bad(pmd); 2561 } 2562 err = apply_to_pte_range(mm, pmd, addr, next, 2563 fn, data, create, mask); 2564 if (err) 2565 break; 2566 } while (pmd++, addr = next, addr != end); 2567 2568 return err; 2569 } 2570 2571 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2572 unsigned long addr, unsigned long end, 2573 pte_fn_t fn, void *data, bool create, 2574 pgtbl_mod_mask *mask) 2575 { 2576 pud_t *pud; 2577 unsigned long next; 2578 int err = 0; 2579 2580 if (create) { 2581 pud = pud_alloc_track(mm, p4d, addr, mask); 2582 if (!pud) 2583 return -ENOMEM; 2584 } else { 2585 pud = pud_offset(p4d, addr); 2586 } 2587 do { 2588 next = pud_addr_end(addr, end); 2589 if (pud_none(*pud) && !create) 2590 continue; 2591 if (WARN_ON_ONCE(pud_leaf(*pud))) 2592 return -EINVAL; 2593 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2594 if (!create) 2595 continue; 2596 pud_clear_bad(pud); 2597 } 2598 err = apply_to_pmd_range(mm, pud, addr, next, 2599 fn, data, create, mask); 2600 if (err) 2601 break; 2602 } while (pud++, addr = next, addr != end); 2603 2604 return err; 2605 } 2606 2607 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2608 unsigned long addr, unsigned long end, 2609 pte_fn_t fn, void *data, bool create, 2610 pgtbl_mod_mask *mask) 2611 { 2612 p4d_t *p4d; 2613 unsigned long next; 2614 int err = 0; 2615 2616 if (create) { 2617 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2618 if (!p4d) 2619 return -ENOMEM; 2620 } else { 2621 p4d = p4d_offset(pgd, addr); 2622 } 2623 do { 2624 next = p4d_addr_end(addr, end); 2625 if (p4d_none(*p4d) && !create) 2626 continue; 2627 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2628 return -EINVAL; 2629 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2630 if (!create) 2631 continue; 2632 p4d_clear_bad(p4d); 2633 } 2634 err = apply_to_pud_range(mm, p4d, addr, next, 2635 fn, data, create, mask); 2636 if (err) 2637 break; 2638 } while (p4d++, addr = next, addr != end); 2639 2640 return err; 2641 } 2642 2643 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2644 unsigned long size, pte_fn_t fn, 2645 void *data, bool create) 2646 { 2647 pgd_t *pgd; 2648 unsigned long start = addr, next; 2649 unsigned long end = addr + size; 2650 pgtbl_mod_mask mask = 0; 2651 int err = 0; 2652 2653 if (WARN_ON(addr >= end)) 2654 return -EINVAL; 2655 2656 pgd = pgd_offset(mm, addr); 2657 do { 2658 next = pgd_addr_end(addr, end); 2659 if (pgd_none(*pgd) && !create) 2660 continue; 2661 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2662 return -EINVAL; 2663 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2664 if (!create) 2665 continue; 2666 pgd_clear_bad(pgd); 2667 } 2668 err = apply_to_p4d_range(mm, pgd, addr, next, 2669 fn, data, create, &mask); 2670 if (err) 2671 break; 2672 } while (pgd++, addr = next, addr != end); 2673 2674 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2675 arch_sync_kernel_mappings(start, start + size); 2676 2677 return err; 2678 } 2679 2680 /* 2681 * Scan a region of virtual memory, filling in page tables as necessary 2682 * and calling a provided function on each leaf page table. 2683 */ 2684 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2685 unsigned long size, pte_fn_t fn, void *data) 2686 { 2687 return __apply_to_page_range(mm, addr, size, fn, data, true); 2688 } 2689 EXPORT_SYMBOL_GPL(apply_to_page_range); 2690 2691 /* 2692 * Scan a region of virtual memory, calling a provided function on 2693 * each leaf page table where it exists. 2694 * 2695 * Unlike apply_to_page_range, this does _not_ fill in page tables 2696 * where they are absent. 2697 */ 2698 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2699 unsigned long size, pte_fn_t fn, void *data) 2700 { 2701 return __apply_to_page_range(mm, addr, size, fn, data, false); 2702 } 2703 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2704 2705 /* 2706 * handle_pte_fault chooses page fault handler according to an entry which was 2707 * read non-atomically. Before making any commitment, on those architectures 2708 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2709 * parts, do_swap_page must check under lock before unmapping the pte and 2710 * proceeding (but do_wp_page is only called after already making such a check; 2711 * and do_anonymous_page can safely check later on). 2712 */ 2713 static inline int pte_unmap_same(struct vm_fault *vmf) 2714 { 2715 int same = 1; 2716 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2717 if (sizeof(pte_t) > sizeof(unsigned long)) { 2718 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 2719 spin_lock(ptl); 2720 same = pte_same(*vmf->pte, vmf->orig_pte); 2721 spin_unlock(ptl); 2722 } 2723 #endif 2724 pte_unmap(vmf->pte); 2725 vmf->pte = NULL; 2726 return same; 2727 } 2728 2729 static inline bool cow_user_page(struct page *dst, struct page *src, 2730 struct vm_fault *vmf) 2731 { 2732 bool ret; 2733 void *kaddr; 2734 void __user *uaddr; 2735 bool locked = false; 2736 struct vm_area_struct *vma = vmf->vma; 2737 struct mm_struct *mm = vma->vm_mm; 2738 unsigned long addr = vmf->address; 2739 2740 if (likely(src)) { 2741 copy_user_highpage(dst, src, addr, vma); 2742 return true; 2743 } 2744 2745 /* 2746 * If the source page was a PFN mapping, we don't have 2747 * a "struct page" for it. We do a best-effort copy by 2748 * just copying from the original user address. If that 2749 * fails, we just zero-fill it. Live with it. 2750 */ 2751 kaddr = kmap_atomic(dst); 2752 uaddr = (void __user *)(addr & PAGE_MASK); 2753 2754 /* 2755 * On architectures with software "accessed" bits, we would 2756 * take a double page fault, so mark it accessed here. 2757 */ 2758 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2759 pte_t entry; 2760 2761 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2762 locked = true; 2763 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2764 /* 2765 * Other thread has already handled the fault 2766 * and update local tlb only 2767 */ 2768 update_mmu_tlb(vma, addr, vmf->pte); 2769 ret = false; 2770 goto pte_unlock; 2771 } 2772 2773 entry = pte_mkyoung(vmf->orig_pte); 2774 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2775 update_mmu_cache(vma, addr, vmf->pte); 2776 } 2777 2778 /* 2779 * This really shouldn't fail, because the page is there 2780 * in the page tables. But it might just be unreadable, 2781 * in which case we just give up and fill the result with 2782 * zeroes. 2783 */ 2784 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2785 if (locked) 2786 goto warn; 2787 2788 /* Re-validate under PTL if the page is still mapped */ 2789 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2790 locked = true; 2791 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2792 /* The PTE changed under us, update local tlb */ 2793 update_mmu_tlb(vma, addr, vmf->pte); 2794 ret = false; 2795 goto pte_unlock; 2796 } 2797 2798 /* 2799 * The same page can be mapped back since last copy attempt. 2800 * Try to copy again under PTL. 2801 */ 2802 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2803 /* 2804 * Give a warn in case there can be some obscure 2805 * use-case 2806 */ 2807 warn: 2808 WARN_ON_ONCE(1); 2809 clear_page(kaddr); 2810 } 2811 } 2812 2813 ret = true; 2814 2815 pte_unlock: 2816 if (locked) 2817 pte_unmap_unlock(vmf->pte, vmf->ptl); 2818 kunmap_atomic(kaddr); 2819 flush_dcache_page(dst); 2820 2821 return ret; 2822 } 2823 2824 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2825 { 2826 struct file *vm_file = vma->vm_file; 2827 2828 if (vm_file) 2829 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2830 2831 /* 2832 * Special mappings (e.g. VDSO) do not have any file so fake 2833 * a default GFP_KERNEL for them. 2834 */ 2835 return GFP_KERNEL; 2836 } 2837 2838 /* 2839 * Notify the address space that the page is about to become writable so that 2840 * it can prohibit this or wait for the page to get into an appropriate state. 2841 * 2842 * We do this without the lock held, so that it can sleep if it needs to. 2843 */ 2844 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2845 { 2846 vm_fault_t ret; 2847 struct page *page = vmf->page; 2848 unsigned int old_flags = vmf->flags; 2849 2850 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2851 2852 if (vmf->vma->vm_file && 2853 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2854 return VM_FAULT_SIGBUS; 2855 2856 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2857 /* Restore original flags so that caller is not surprised */ 2858 vmf->flags = old_flags; 2859 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2860 return ret; 2861 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2862 lock_page(page); 2863 if (!page->mapping) { 2864 unlock_page(page); 2865 return 0; /* retry */ 2866 } 2867 ret |= VM_FAULT_LOCKED; 2868 } else 2869 VM_BUG_ON_PAGE(!PageLocked(page), page); 2870 return ret; 2871 } 2872 2873 /* 2874 * Handle dirtying of a page in shared file mapping on a write fault. 2875 * 2876 * The function expects the page to be locked and unlocks it. 2877 */ 2878 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2879 { 2880 struct vm_area_struct *vma = vmf->vma; 2881 struct address_space *mapping; 2882 struct page *page = vmf->page; 2883 bool dirtied; 2884 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2885 2886 dirtied = set_page_dirty(page); 2887 VM_BUG_ON_PAGE(PageAnon(page), page); 2888 /* 2889 * Take a local copy of the address_space - page.mapping may be zeroed 2890 * by truncate after unlock_page(). The address_space itself remains 2891 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2892 * release semantics to prevent the compiler from undoing this copying. 2893 */ 2894 mapping = page_rmapping(page); 2895 unlock_page(page); 2896 2897 if (!page_mkwrite) 2898 file_update_time(vma->vm_file); 2899 2900 /* 2901 * Throttle page dirtying rate down to writeback speed. 2902 * 2903 * mapping may be NULL here because some device drivers do not 2904 * set page.mapping but still dirty their pages 2905 * 2906 * Drop the mmap_lock before waiting on IO, if we can. The file 2907 * is pinning the mapping, as per above. 2908 */ 2909 if ((dirtied || page_mkwrite) && mapping) { 2910 struct file *fpin; 2911 2912 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2913 balance_dirty_pages_ratelimited(mapping); 2914 if (fpin) { 2915 fput(fpin); 2916 return VM_FAULT_RETRY; 2917 } 2918 } 2919 2920 return 0; 2921 } 2922 2923 /* 2924 * Handle write page faults for pages that can be reused in the current vma 2925 * 2926 * This can happen either due to the mapping being with the VM_SHARED flag, 2927 * or due to us being the last reference standing to the page. In either 2928 * case, all we need to do here is to mark the page as writable and update 2929 * any related book-keeping. 2930 */ 2931 static inline void wp_page_reuse(struct vm_fault *vmf) 2932 __releases(vmf->ptl) 2933 { 2934 struct vm_area_struct *vma = vmf->vma; 2935 struct page *page = vmf->page; 2936 pte_t entry; 2937 /* 2938 * Clear the pages cpupid information as the existing 2939 * information potentially belongs to a now completely 2940 * unrelated process. 2941 */ 2942 if (page) 2943 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2944 2945 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2946 entry = pte_mkyoung(vmf->orig_pte); 2947 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2948 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2949 update_mmu_cache(vma, vmf->address, vmf->pte); 2950 pte_unmap_unlock(vmf->pte, vmf->ptl); 2951 count_vm_event(PGREUSE); 2952 } 2953 2954 /* 2955 * Handle the case of a page which we actually need to copy to a new page. 2956 * 2957 * Called with mmap_lock locked and the old page referenced, but 2958 * without the ptl held. 2959 * 2960 * High level logic flow: 2961 * 2962 * - Allocate a page, copy the content of the old page to the new one. 2963 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2964 * - Take the PTL. If the pte changed, bail out and release the allocated page 2965 * - If the pte is still the way we remember it, update the page table and all 2966 * relevant references. This includes dropping the reference the page-table 2967 * held to the old page, as well as updating the rmap. 2968 * - In any case, unlock the PTL and drop the reference we took to the old page. 2969 */ 2970 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2971 { 2972 struct vm_area_struct *vma = vmf->vma; 2973 struct mm_struct *mm = vma->vm_mm; 2974 struct page *old_page = vmf->page; 2975 struct page *new_page = NULL; 2976 pte_t entry; 2977 int page_copied = 0; 2978 struct mmu_notifier_range range; 2979 2980 if (unlikely(anon_vma_prepare(vma))) 2981 goto oom; 2982 2983 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2984 new_page = alloc_zeroed_user_highpage_movable(vma, 2985 vmf->address); 2986 if (!new_page) 2987 goto oom; 2988 } else { 2989 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2990 vmf->address); 2991 if (!new_page) 2992 goto oom; 2993 2994 if (!cow_user_page(new_page, old_page, vmf)) { 2995 /* 2996 * COW failed, if the fault was solved by other, 2997 * it's fine. If not, userspace would re-fault on 2998 * the same address and we will handle the fault 2999 * from the second attempt. 3000 */ 3001 put_page(new_page); 3002 if (old_page) 3003 put_page(old_page); 3004 return 0; 3005 } 3006 } 3007 3008 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL)) 3009 goto oom_free_new; 3010 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 3011 3012 __SetPageUptodate(new_page); 3013 3014 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 3015 vmf->address & PAGE_MASK, 3016 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3017 mmu_notifier_invalidate_range_start(&range); 3018 3019 /* 3020 * Re-check the pte - we dropped the lock 3021 */ 3022 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3023 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 3024 if (old_page) { 3025 if (!PageAnon(old_page)) { 3026 dec_mm_counter_fast(mm, 3027 mm_counter_file(old_page)); 3028 inc_mm_counter_fast(mm, MM_ANONPAGES); 3029 } 3030 } else { 3031 inc_mm_counter_fast(mm, MM_ANONPAGES); 3032 } 3033 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3034 entry = mk_pte(new_page, vma->vm_page_prot); 3035 entry = pte_sw_mkyoung(entry); 3036 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3037 3038 /* 3039 * Clear the pte entry and flush it first, before updating the 3040 * pte with the new entry, to keep TLBs on different CPUs in 3041 * sync. This code used to set the new PTE then flush TLBs, but 3042 * that left a window where the new PTE could be loaded into 3043 * some TLBs while the old PTE remains in others. 3044 */ 3045 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3046 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 3047 lru_cache_add_inactive_or_unevictable(new_page, vma); 3048 /* 3049 * We call the notify macro here because, when using secondary 3050 * mmu page tables (such as kvm shadow page tables), we want the 3051 * new page to be mapped directly into the secondary page table. 3052 */ 3053 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3054 update_mmu_cache(vma, vmf->address, vmf->pte); 3055 if (old_page) { 3056 /* 3057 * Only after switching the pte to the new page may 3058 * we remove the mapcount here. Otherwise another 3059 * process may come and find the rmap count decremented 3060 * before the pte is switched to the new page, and 3061 * "reuse" the old page writing into it while our pte 3062 * here still points into it and can be read by other 3063 * threads. 3064 * 3065 * The critical issue is to order this 3066 * page_remove_rmap with the ptp_clear_flush above. 3067 * Those stores are ordered by (if nothing else,) 3068 * the barrier present in the atomic_add_negative 3069 * in page_remove_rmap. 3070 * 3071 * Then the TLB flush in ptep_clear_flush ensures that 3072 * no process can access the old page before the 3073 * decremented mapcount is visible. And the old page 3074 * cannot be reused until after the decremented 3075 * mapcount is visible. So transitively, TLBs to 3076 * old page will be flushed before it can be reused. 3077 */ 3078 page_remove_rmap(old_page, false); 3079 } 3080 3081 /* Free the old page.. */ 3082 new_page = old_page; 3083 page_copied = 1; 3084 } else { 3085 update_mmu_tlb(vma, vmf->address, vmf->pte); 3086 } 3087 3088 if (new_page) 3089 put_page(new_page); 3090 3091 pte_unmap_unlock(vmf->pte, vmf->ptl); 3092 /* 3093 * No need to double call mmu_notifier->invalidate_range() callback as 3094 * the above ptep_clear_flush_notify() did already call it. 3095 */ 3096 mmu_notifier_invalidate_range_only_end(&range); 3097 if (old_page) { 3098 /* 3099 * Don't let another task, with possibly unlocked vma, 3100 * keep the mlocked page. 3101 */ 3102 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 3103 lock_page(old_page); /* LRU manipulation */ 3104 if (PageMlocked(old_page)) 3105 munlock_vma_page(old_page); 3106 unlock_page(old_page); 3107 } 3108 if (page_copied) 3109 free_swap_cache(old_page); 3110 put_page(old_page); 3111 } 3112 return page_copied ? VM_FAULT_WRITE : 0; 3113 oom_free_new: 3114 put_page(new_page); 3115 oom: 3116 if (old_page) 3117 put_page(old_page); 3118 return VM_FAULT_OOM; 3119 } 3120 3121 /** 3122 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3123 * writeable once the page is prepared 3124 * 3125 * @vmf: structure describing the fault 3126 * 3127 * This function handles all that is needed to finish a write page fault in a 3128 * shared mapping due to PTE being read-only once the mapped page is prepared. 3129 * It handles locking of PTE and modifying it. 3130 * 3131 * The function expects the page to be locked or other protection against 3132 * concurrent faults / writeback (such as DAX radix tree locks). 3133 * 3134 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3135 * we acquired PTE lock. 3136 */ 3137 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3138 { 3139 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3140 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3141 &vmf->ptl); 3142 /* 3143 * We might have raced with another page fault while we released the 3144 * pte_offset_map_lock. 3145 */ 3146 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3147 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3148 pte_unmap_unlock(vmf->pte, vmf->ptl); 3149 return VM_FAULT_NOPAGE; 3150 } 3151 wp_page_reuse(vmf); 3152 return 0; 3153 } 3154 3155 /* 3156 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3157 * mapping 3158 */ 3159 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3160 { 3161 struct vm_area_struct *vma = vmf->vma; 3162 3163 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3164 vm_fault_t ret; 3165 3166 pte_unmap_unlock(vmf->pte, vmf->ptl); 3167 vmf->flags |= FAULT_FLAG_MKWRITE; 3168 ret = vma->vm_ops->pfn_mkwrite(vmf); 3169 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3170 return ret; 3171 return finish_mkwrite_fault(vmf); 3172 } 3173 wp_page_reuse(vmf); 3174 return VM_FAULT_WRITE; 3175 } 3176 3177 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3178 __releases(vmf->ptl) 3179 { 3180 struct vm_area_struct *vma = vmf->vma; 3181 vm_fault_t ret = VM_FAULT_WRITE; 3182 3183 get_page(vmf->page); 3184 3185 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3186 vm_fault_t tmp; 3187 3188 pte_unmap_unlock(vmf->pte, vmf->ptl); 3189 tmp = do_page_mkwrite(vmf); 3190 if (unlikely(!tmp || (tmp & 3191 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3192 put_page(vmf->page); 3193 return tmp; 3194 } 3195 tmp = finish_mkwrite_fault(vmf); 3196 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3197 unlock_page(vmf->page); 3198 put_page(vmf->page); 3199 return tmp; 3200 } 3201 } else { 3202 wp_page_reuse(vmf); 3203 lock_page(vmf->page); 3204 } 3205 ret |= fault_dirty_shared_page(vmf); 3206 put_page(vmf->page); 3207 3208 return ret; 3209 } 3210 3211 /* 3212 * This routine handles present pages, when users try to write 3213 * to a shared page. It is done by copying the page to a new address 3214 * and decrementing the shared-page counter for the old page. 3215 * 3216 * Note that this routine assumes that the protection checks have been 3217 * done by the caller (the low-level page fault routine in most cases). 3218 * Thus we can safely just mark it writable once we've done any necessary 3219 * COW. 3220 * 3221 * We also mark the page dirty at this point even though the page will 3222 * change only once the write actually happens. This avoids a few races, 3223 * and potentially makes it more efficient. 3224 * 3225 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3226 * but allow concurrent faults), with pte both mapped and locked. 3227 * We return with mmap_lock still held, but pte unmapped and unlocked. 3228 */ 3229 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3230 __releases(vmf->ptl) 3231 { 3232 struct vm_area_struct *vma = vmf->vma; 3233 3234 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3235 pte_unmap_unlock(vmf->pte, vmf->ptl); 3236 return handle_userfault(vmf, VM_UFFD_WP); 3237 } 3238 3239 /* 3240 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3241 * is flushed in this case before copying. 3242 */ 3243 if (unlikely(userfaultfd_wp(vmf->vma) && 3244 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3245 flush_tlb_page(vmf->vma, vmf->address); 3246 3247 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3248 if (!vmf->page) { 3249 /* 3250 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3251 * VM_PFNMAP VMA. 3252 * 3253 * We should not cow pages in a shared writeable mapping. 3254 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3255 */ 3256 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3257 (VM_WRITE|VM_SHARED)) 3258 return wp_pfn_shared(vmf); 3259 3260 pte_unmap_unlock(vmf->pte, vmf->ptl); 3261 return wp_page_copy(vmf); 3262 } 3263 3264 /* 3265 * Take out anonymous pages first, anonymous shared vmas are 3266 * not dirty accountable. 3267 */ 3268 if (PageAnon(vmf->page)) { 3269 struct page *page = vmf->page; 3270 3271 /* PageKsm() doesn't necessarily raise the page refcount */ 3272 if (PageKsm(page) || page_count(page) != 1) 3273 goto copy; 3274 if (!trylock_page(page)) 3275 goto copy; 3276 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { 3277 unlock_page(page); 3278 goto copy; 3279 } 3280 /* 3281 * Ok, we've got the only map reference, and the only 3282 * page count reference, and the page is locked, 3283 * it's dark out, and we're wearing sunglasses. Hit it. 3284 */ 3285 unlock_page(page); 3286 wp_page_reuse(vmf); 3287 return VM_FAULT_WRITE; 3288 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3289 (VM_WRITE|VM_SHARED))) { 3290 return wp_page_shared(vmf); 3291 } 3292 copy: 3293 /* 3294 * Ok, we need to copy. Oh, well.. 3295 */ 3296 get_page(vmf->page); 3297 3298 pte_unmap_unlock(vmf->pte, vmf->ptl); 3299 return wp_page_copy(vmf); 3300 } 3301 3302 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3303 unsigned long start_addr, unsigned long end_addr, 3304 struct zap_details *details) 3305 { 3306 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3307 } 3308 3309 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3310 pgoff_t first_index, 3311 pgoff_t last_index, 3312 struct zap_details *details) 3313 { 3314 struct vm_area_struct *vma; 3315 pgoff_t vba, vea, zba, zea; 3316 3317 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3318 vba = vma->vm_pgoff; 3319 vea = vba + vma_pages(vma) - 1; 3320 zba = first_index; 3321 if (zba < vba) 3322 zba = vba; 3323 zea = last_index; 3324 if (zea > vea) 3325 zea = vea; 3326 3327 unmap_mapping_range_vma(vma, 3328 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3329 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3330 details); 3331 } 3332 } 3333 3334 /** 3335 * unmap_mapping_page() - Unmap single page from processes. 3336 * @page: The locked page to be unmapped. 3337 * 3338 * Unmap this page from any userspace process which still has it mmaped. 3339 * Typically, for efficiency, the range of nearby pages has already been 3340 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3341 * truncation or invalidation holds the lock on a page, it may find that 3342 * the page has been remapped again: and then uses unmap_mapping_page() 3343 * to unmap it finally. 3344 */ 3345 void unmap_mapping_page(struct page *page) 3346 { 3347 struct address_space *mapping = page->mapping; 3348 struct zap_details details = { }; 3349 pgoff_t first_index; 3350 pgoff_t last_index; 3351 3352 VM_BUG_ON(!PageLocked(page)); 3353 VM_BUG_ON(PageTail(page)); 3354 3355 first_index = page->index; 3356 last_index = page->index + thp_nr_pages(page) - 1; 3357 3358 details.zap_mapping = mapping; 3359 details.single_page = page; 3360 3361 i_mmap_lock_write(mapping); 3362 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3363 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3364 last_index, &details); 3365 i_mmap_unlock_write(mapping); 3366 } 3367 3368 /** 3369 * unmap_mapping_pages() - Unmap pages from processes. 3370 * @mapping: The address space containing pages to be unmapped. 3371 * @start: Index of first page to be unmapped. 3372 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3373 * @even_cows: Whether to unmap even private COWed pages. 3374 * 3375 * Unmap the pages in this address space from any userspace process which 3376 * has them mmaped. Generally, you want to remove COWed pages as well when 3377 * a file is being truncated, but not when invalidating pages from the page 3378 * cache. 3379 */ 3380 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3381 pgoff_t nr, bool even_cows) 3382 { 3383 struct zap_details details = { }; 3384 pgoff_t first_index = start; 3385 pgoff_t last_index = start + nr - 1; 3386 3387 details.zap_mapping = even_cows ? NULL : mapping; 3388 if (last_index < first_index) 3389 last_index = ULONG_MAX; 3390 3391 i_mmap_lock_write(mapping); 3392 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3393 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3394 last_index, &details); 3395 i_mmap_unlock_write(mapping); 3396 } 3397 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3398 3399 /** 3400 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3401 * address_space corresponding to the specified byte range in the underlying 3402 * file. 3403 * 3404 * @mapping: the address space containing mmaps to be unmapped. 3405 * @holebegin: byte in first page to unmap, relative to the start of 3406 * the underlying file. This will be rounded down to a PAGE_SIZE 3407 * boundary. Note that this is different from truncate_pagecache(), which 3408 * must keep the partial page. In contrast, we must get rid of 3409 * partial pages. 3410 * @holelen: size of prospective hole in bytes. This will be rounded 3411 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3412 * end of the file. 3413 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3414 * but 0 when invalidating pagecache, don't throw away private data. 3415 */ 3416 void unmap_mapping_range(struct address_space *mapping, 3417 loff_t const holebegin, loff_t const holelen, int even_cows) 3418 { 3419 pgoff_t hba = holebegin >> PAGE_SHIFT; 3420 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3421 3422 /* Check for overflow. */ 3423 if (sizeof(holelen) > sizeof(hlen)) { 3424 long long holeend = 3425 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3426 if (holeend & ~(long long)ULONG_MAX) 3427 hlen = ULONG_MAX - hba + 1; 3428 } 3429 3430 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3431 } 3432 EXPORT_SYMBOL(unmap_mapping_range); 3433 3434 /* 3435 * Restore a potential device exclusive pte to a working pte entry 3436 */ 3437 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3438 { 3439 struct page *page = vmf->page; 3440 struct vm_area_struct *vma = vmf->vma; 3441 struct mmu_notifier_range range; 3442 3443 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) 3444 return VM_FAULT_RETRY; 3445 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, 3446 vma->vm_mm, vmf->address & PAGE_MASK, 3447 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3448 mmu_notifier_invalidate_range_start(&range); 3449 3450 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3451 &vmf->ptl); 3452 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3453 restore_exclusive_pte(vma, page, vmf->address, vmf->pte); 3454 3455 pte_unmap_unlock(vmf->pte, vmf->ptl); 3456 unlock_page(page); 3457 3458 mmu_notifier_invalidate_range_end(&range); 3459 return 0; 3460 } 3461 3462 /* 3463 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3464 * but allow concurrent faults), and pte mapped but not yet locked. 3465 * We return with pte unmapped and unlocked. 3466 * 3467 * We return with the mmap_lock locked or unlocked in the same cases 3468 * as does filemap_fault(). 3469 */ 3470 vm_fault_t do_swap_page(struct vm_fault *vmf) 3471 { 3472 struct vm_area_struct *vma = vmf->vma; 3473 struct page *page = NULL, *swapcache; 3474 struct swap_info_struct *si = NULL; 3475 swp_entry_t entry; 3476 pte_t pte; 3477 int locked; 3478 int exclusive = 0; 3479 vm_fault_t ret = 0; 3480 void *shadow = NULL; 3481 3482 if (!pte_unmap_same(vmf)) 3483 goto out; 3484 3485 entry = pte_to_swp_entry(vmf->orig_pte); 3486 if (unlikely(non_swap_entry(entry))) { 3487 if (is_migration_entry(entry)) { 3488 migration_entry_wait(vma->vm_mm, vmf->pmd, 3489 vmf->address); 3490 } else if (is_device_exclusive_entry(entry)) { 3491 vmf->page = pfn_swap_entry_to_page(entry); 3492 ret = remove_device_exclusive_entry(vmf); 3493 } else if (is_device_private_entry(entry)) { 3494 vmf->page = pfn_swap_entry_to_page(entry); 3495 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3496 } else if (is_hwpoison_entry(entry)) { 3497 ret = VM_FAULT_HWPOISON; 3498 } else { 3499 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3500 ret = VM_FAULT_SIGBUS; 3501 } 3502 goto out; 3503 } 3504 3505 /* Prevent swapoff from happening to us. */ 3506 si = get_swap_device(entry); 3507 if (unlikely(!si)) 3508 goto out; 3509 3510 page = lookup_swap_cache(entry, vma, vmf->address); 3511 swapcache = page; 3512 3513 if (!page) { 3514 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3515 __swap_count(entry) == 1) { 3516 /* skip swapcache */ 3517 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3518 vmf->address); 3519 if (page) { 3520 __SetPageLocked(page); 3521 __SetPageSwapBacked(page); 3522 3523 if (mem_cgroup_swapin_charge_page(page, 3524 vma->vm_mm, GFP_KERNEL, entry)) { 3525 ret = VM_FAULT_OOM; 3526 goto out_page; 3527 } 3528 mem_cgroup_swapin_uncharge_swap(entry); 3529 3530 shadow = get_shadow_from_swap_cache(entry); 3531 if (shadow) 3532 workingset_refault(page_folio(page), 3533 shadow); 3534 3535 lru_cache_add(page); 3536 3537 /* To provide entry to swap_readpage() */ 3538 set_page_private(page, entry.val); 3539 swap_readpage(page, true); 3540 set_page_private(page, 0); 3541 } 3542 } else { 3543 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3544 vmf); 3545 swapcache = page; 3546 } 3547 3548 if (!page) { 3549 /* 3550 * Back out if somebody else faulted in this pte 3551 * while we released the pte lock. 3552 */ 3553 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3554 vmf->address, &vmf->ptl); 3555 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3556 ret = VM_FAULT_OOM; 3557 goto unlock; 3558 } 3559 3560 /* Had to read the page from swap area: Major fault */ 3561 ret = VM_FAULT_MAJOR; 3562 count_vm_event(PGMAJFAULT); 3563 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3564 } else if (PageHWPoison(page)) { 3565 /* 3566 * hwpoisoned dirty swapcache pages are kept for killing 3567 * owner processes (which may be unknown at hwpoison time) 3568 */ 3569 ret = VM_FAULT_HWPOISON; 3570 goto out_release; 3571 } 3572 3573 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3574 3575 if (!locked) { 3576 ret |= VM_FAULT_RETRY; 3577 goto out_release; 3578 } 3579 3580 /* 3581 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3582 * release the swapcache from under us. The page pin, and pte_same 3583 * test below, are not enough to exclude that. Even if it is still 3584 * swapcache, we need to check that the page's swap has not changed. 3585 */ 3586 if (unlikely((!PageSwapCache(page) || 3587 page_private(page) != entry.val)) && swapcache) 3588 goto out_page; 3589 3590 page = ksm_might_need_to_copy(page, vma, vmf->address); 3591 if (unlikely(!page)) { 3592 ret = VM_FAULT_OOM; 3593 page = swapcache; 3594 goto out_page; 3595 } 3596 3597 cgroup_throttle_swaprate(page, GFP_KERNEL); 3598 3599 /* 3600 * Back out if somebody else already faulted in this pte. 3601 */ 3602 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3603 &vmf->ptl); 3604 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3605 goto out_nomap; 3606 3607 if (unlikely(!PageUptodate(page))) { 3608 ret = VM_FAULT_SIGBUS; 3609 goto out_nomap; 3610 } 3611 3612 /* 3613 * The page isn't present yet, go ahead with the fault. 3614 * 3615 * Be careful about the sequence of operations here. 3616 * To get its accounting right, reuse_swap_page() must be called 3617 * while the page is counted on swap but not yet in mapcount i.e. 3618 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3619 * must be called after the swap_free(), or it will never succeed. 3620 */ 3621 3622 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3623 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3624 pte = mk_pte(page, vma->vm_page_prot); 3625 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3626 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3627 vmf->flags &= ~FAULT_FLAG_WRITE; 3628 ret |= VM_FAULT_WRITE; 3629 exclusive = RMAP_EXCLUSIVE; 3630 } 3631 flush_icache_page(vma, page); 3632 if (pte_swp_soft_dirty(vmf->orig_pte)) 3633 pte = pte_mksoft_dirty(pte); 3634 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3635 pte = pte_mkuffd_wp(pte); 3636 pte = pte_wrprotect(pte); 3637 } 3638 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3639 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3640 vmf->orig_pte = pte; 3641 3642 /* ksm created a completely new copy */ 3643 if (unlikely(page != swapcache && swapcache)) { 3644 page_add_new_anon_rmap(page, vma, vmf->address, false); 3645 lru_cache_add_inactive_or_unevictable(page, vma); 3646 } else { 3647 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3648 } 3649 3650 swap_free(entry); 3651 if (mem_cgroup_swap_full(page) || 3652 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3653 try_to_free_swap(page); 3654 unlock_page(page); 3655 if (page != swapcache && swapcache) { 3656 /* 3657 * Hold the lock to avoid the swap entry to be reused 3658 * until we take the PT lock for the pte_same() check 3659 * (to avoid false positives from pte_same). For 3660 * further safety release the lock after the swap_free 3661 * so that the swap count won't change under a 3662 * parallel locked swapcache. 3663 */ 3664 unlock_page(swapcache); 3665 put_page(swapcache); 3666 } 3667 3668 if (vmf->flags & FAULT_FLAG_WRITE) { 3669 ret |= do_wp_page(vmf); 3670 if (ret & VM_FAULT_ERROR) 3671 ret &= VM_FAULT_ERROR; 3672 goto out; 3673 } 3674 3675 /* No need to invalidate - it was non-present before */ 3676 update_mmu_cache(vma, vmf->address, vmf->pte); 3677 unlock: 3678 pte_unmap_unlock(vmf->pte, vmf->ptl); 3679 out: 3680 if (si) 3681 put_swap_device(si); 3682 return ret; 3683 out_nomap: 3684 pte_unmap_unlock(vmf->pte, vmf->ptl); 3685 out_page: 3686 unlock_page(page); 3687 out_release: 3688 put_page(page); 3689 if (page != swapcache && swapcache) { 3690 unlock_page(swapcache); 3691 put_page(swapcache); 3692 } 3693 if (si) 3694 put_swap_device(si); 3695 return ret; 3696 } 3697 3698 /* 3699 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3700 * but allow concurrent faults), and pte mapped but not yet locked. 3701 * We return with mmap_lock still held, but pte unmapped and unlocked. 3702 */ 3703 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3704 { 3705 struct vm_area_struct *vma = vmf->vma; 3706 struct page *page; 3707 vm_fault_t ret = 0; 3708 pte_t entry; 3709 3710 /* File mapping without ->vm_ops ? */ 3711 if (vma->vm_flags & VM_SHARED) 3712 return VM_FAULT_SIGBUS; 3713 3714 /* 3715 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3716 * pte_offset_map() on pmds where a huge pmd might be created 3717 * from a different thread. 3718 * 3719 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 3720 * parallel threads are excluded by other means. 3721 * 3722 * Here we only have mmap_read_lock(mm). 3723 */ 3724 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3725 return VM_FAULT_OOM; 3726 3727 /* See comment in handle_pte_fault() */ 3728 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3729 return 0; 3730 3731 /* Use the zero-page for reads */ 3732 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3733 !mm_forbids_zeropage(vma->vm_mm)) { 3734 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3735 vma->vm_page_prot)); 3736 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3737 vmf->address, &vmf->ptl); 3738 if (!pte_none(*vmf->pte)) { 3739 update_mmu_tlb(vma, vmf->address, vmf->pte); 3740 goto unlock; 3741 } 3742 ret = check_stable_address_space(vma->vm_mm); 3743 if (ret) 3744 goto unlock; 3745 /* Deliver the page fault to userland, check inside PT lock */ 3746 if (userfaultfd_missing(vma)) { 3747 pte_unmap_unlock(vmf->pte, vmf->ptl); 3748 return handle_userfault(vmf, VM_UFFD_MISSING); 3749 } 3750 goto setpte; 3751 } 3752 3753 /* Allocate our own private page. */ 3754 if (unlikely(anon_vma_prepare(vma))) 3755 goto oom; 3756 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3757 if (!page) 3758 goto oom; 3759 3760 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) 3761 goto oom_free_page; 3762 cgroup_throttle_swaprate(page, GFP_KERNEL); 3763 3764 /* 3765 * The memory barrier inside __SetPageUptodate makes sure that 3766 * preceding stores to the page contents become visible before 3767 * the set_pte_at() write. 3768 */ 3769 __SetPageUptodate(page); 3770 3771 entry = mk_pte(page, vma->vm_page_prot); 3772 entry = pte_sw_mkyoung(entry); 3773 if (vma->vm_flags & VM_WRITE) 3774 entry = pte_mkwrite(pte_mkdirty(entry)); 3775 3776 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3777 &vmf->ptl); 3778 if (!pte_none(*vmf->pte)) { 3779 update_mmu_cache(vma, vmf->address, vmf->pte); 3780 goto release; 3781 } 3782 3783 ret = check_stable_address_space(vma->vm_mm); 3784 if (ret) 3785 goto release; 3786 3787 /* Deliver the page fault to userland, check inside PT lock */ 3788 if (userfaultfd_missing(vma)) { 3789 pte_unmap_unlock(vmf->pte, vmf->ptl); 3790 put_page(page); 3791 return handle_userfault(vmf, VM_UFFD_MISSING); 3792 } 3793 3794 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3795 page_add_new_anon_rmap(page, vma, vmf->address, false); 3796 lru_cache_add_inactive_or_unevictable(page, vma); 3797 setpte: 3798 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3799 3800 /* No need to invalidate - it was non-present before */ 3801 update_mmu_cache(vma, vmf->address, vmf->pte); 3802 unlock: 3803 pte_unmap_unlock(vmf->pte, vmf->ptl); 3804 return ret; 3805 release: 3806 put_page(page); 3807 goto unlock; 3808 oom_free_page: 3809 put_page(page); 3810 oom: 3811 return VM_FAULT_OOM; 3812 } 3813 3814 /* 3815 * The mmap_lock must have been held on entry, and may have been 3816 * released depending on flags and vma->vm_ops->fault() return value. 3817 * See filemap_fault() and __lock_page_retry(). 3818 */ 3819 static vm_fault_t __do_fault(struct vm_fault *vmf) 3820 { 3821 struct vm_area_struct *vma = vmf->vma; 3822 vm_fault_t ret; 3823 3824 /* 3825 * Preallocate pte before we take page_lock because this might lead to 3826 * deadlocks for memcg reclaim which waits for pages under writeback: 3827 * lock_page(A) 3828 * SetPageWriteback(A) 3829 * unlock_page(A) 3830 * lock_page(B) 3831 * lock_page(B) 3832 * pte_alloc_one 3833 * shrink_page_list 3834 * wait_on_page_writeback(A) 3835 * SetPageWriteback(B) 3836 * unlock_page(B) 3837 * # flush A, B to clear the writeback 3838 */ 3839 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3840 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3841 if (!vmf->prealloc_pte) 3842 return VM_FAULT_OOM; 3843 } 3844 3845 ret = vma->vm_ops->fault(vmf); 3846 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3847 VM_FAULT_DONE_COW))) 3848 return ret; 3849 3850 if (unlikely(PageHWPoison(vmf->page))) { 3851 if (ret & VM_FAULT_LOCKED) 3852 unlock_page(vmf->page); 3853 put_page(vmf->page); 3854 vmf->page = NULL; 3855 return VM_FAULT_HWPOISON; 3856 } 3857 3858 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3859 lock_page(vmf->page); 3860 else 3861 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3862 3863 return ret; 3864 } 3865 3866 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3867 static void deposit_prealloc_pte(struct vm_fault *vmf) 3868 { 3869 struct vm_area_struct *vma = vmf->vma; 3870 3871 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3872 /* 3873 * We are going to consume the prealloc table, 3874 * count that as nr_ptes. 3875 */ 3876 mm_inc_nr_ptes(vma->vm_mm); 3877 vmf->prealloc_pte = NULL; 3878 } 3879 3880 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3881 { 3882 struct vm_area_struct *vma = vmf->vma; 3883 bool write = vmf->flags & FAULT_FLAG_WRITE; 3884 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3885 pmd_t entry; 3886 int i; 3887 vm_fault_t ret = VM_FAULT_FALLBACK; 3888 3889 if (!transhuge_vma_suitable(vma, haddr)) 3890 return ret; 3891 3892 page = compound_head(page); 3893 if (compound_order(page) != HPAGE_PMD_ORDER) 3894 return ret; 3895 3896 /* 3897 * Just backoff if any subpage of a THP is corrupted otherwise 3898 * the corrupted page may mapped by PMD silently to escape the 3899 * check. This kind of THP just can be PTE mapped. Access to 3900 * the corrupted subpage should trigger SIGBUS as expected. 3901 */ 3902 if (unlikely(PageHasHWPoisoned(page))) 3903 return ret; 3904 3905 /* 3906 * Archs like ppc64 need additional space to store information 3907 * related to pte entry. Use the preallocated table for that. 3908 */ 3909 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3910 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3911 if (!vmf->prealloc_pte) 3912 return VM_FAULT_OOM; 3913 } 3914 3915 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3916 if (unlikely(!pmd_none(*vmf->pmd))) 3917 goto out; 3918 3919 for (i = 0; i < HPAGE_PMD_NR; i++) 3920 flush_icache_page(vma, page + i); 3921 3922 entry = mk_huge_pmd(page, vma->vm_page_prot); 3923 if (write) 3924 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3925 3926 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3927 page_add_file_rmap(page, true); 3928 /* 3929 * deposit and withdraw with pmd lock held 3930 */ 3931 if (arch_needs_pgtable_deposit()) 3932 deposit_prealloc_pte(vmf); 3933 3934 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3935 3936 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3937 3938 /* fault is handled */ 3939 ret = 0; 3940 count_vm_event(THP_FILE_MAPPED); 3941 out: 3942 spin_unlock(vmf->ptl); 3943 return ret; 3944 } 3945 #else 3946 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3947 { 3948 return VM_FAULT_FALLBACK; 3949 } 3950 #endif 3951 3952 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 3953 { 3954 struct vm_area_struct *vma = vmf->vma; 3955 bool write = vmf->flags & FAULT_FLAG_WRITE; 3956 bool prefault = vmf->address != addr; 3957 pte_t entry; 3958 3959 flush_icache_page(vma, page); 3960 entry = mk_pte(page, vma->vm_page_prot); 3961 3962 if (prefault && arch_wants_old_prefaulted_pte()) 3963 entry = pte_mkold(entry); 3964 else 3965 entry = pte_sw_mkyoung(entry); 3966 3967 if (write) 3968 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3969 /* copy-on-write page */ 3970 if (write && !(vma->vm_flags & VM_SHARED)) { 3971 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3972 page_add_new_anon_rmap(page, vma, addr, false); 3973 lru_cache_add_inactive_or_unevictable(page, vma); 3974 } else { 3975 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3976 page_add_file_rmap(page, false); 3977 } 3978 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 3979 } 3980 3981 /** 3982 * finish_fault - finish page fault once we have prepared the page to fault 3983 * 3984 * @vmf: structure describing the fault 3985 * 3986 * This function handles all that is needed to finish a page fault once the 3987 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3988 * given page, adds reverse page mapping, handles memcg charges and LRU 3989 * addition. 3990 * 3991 * The function expects the page to be locked and on success it consumes a 3992 * reference of a page being mapped (for the PTE which maps it). 3993 * 3994 * Return: %0 on success, %VM_FAULT_ code in case of error. 3995 */ 3996 vm_fault_t finish_fault(struct vm_fault *vmf) 3997 { 3998 struct vm_area_struct *vma = vmf->vma; 3999 struct page *page; 4000 vm_fault_t ret; 4001 4002 /* Did we COW the page? */ 4003 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4004 page = vmf->cow_page; 4005 else 4006 page = vmf->page; 4007 4008 /* 4009 * check even for read faults because we might have lost our CoWed 4010 * page 4011 */ 4012 if (!(vma->vm_flags & VM_SHARED)) { 4013 ret = check_stable_address_space(vma->vm_mm); 4014 if (ret) 4015 return ret; 4016 } 4017 4018 if (pmd_none(*vmf->pmd)) { 4019 if (PageTransCompound(page)) { 4020 ret = do_set_pmd(vmf, page); 4021 if (ret != VM_FAULT_FALLBACK) 4022 return ret; 4023 } 4024 4025 if (vmf->prealloc_pte) 4026 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4027 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4028 return VM_FAULT_OOM; 4029 } 4030 4031 /* See comment in handle_pte_fault() */ 4032 if (pmd_devmap_trans_unstable(vmf->pmd)) 4033 return 0; 4034 4035 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4036 vmf->address, &vmf->ptl); 4037 ret = 0; 4038 /* Re-check under ptl */ 4039 if (likely(pte_none(*vmf->pte))) 4040 do_set_pte(vmf, page, vmf->address); 4041 else 4042 ret = VM_FAULT_NOPAGE; 4043 4044 update_mmu_tlb(vma, vmf->address, vmf->pte); 4045 pte_unmap_unlock(vmf->pte, vmf->ptl); 4046 return ret; 4047 } 4048 4049 static unsigned long fault_around_bytes __read_mostly = 4050 rounddown_pow_of_two(65536); 4051 4052 #ifdef CONFIG_DEBUG_FS 4053 static int fault_around_bytes_get(void *data, u64 *val) 4054 { 4055 *val = fault_around_bytes; 4056 return 0; 4057 } 4058 4059 /* 4060 * fault_around_bytes must be rounded down to the nearest page order as it's 4061 * what do_fault_around() expects to see. 4062 */ 4063 static int fault_around_bytes_set(void *data, u64 val) 4064 { 4065 if (val / PAGE_SIZE > PTRS_PER_PTE) 4066 return -EINVAL; 4067 if (val > PAGE_SIZE) 4068 fault_around_bytes = rounddown_pow_of_two(val); 4069 else 4070 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 4071 return 0; 4072 } 4073 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4074 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4075 4076 static int __init fault_around_debugfs(void) 4077 { 4078 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4079 &fault_around_bytes_fops); 4080 return 0; 4081 } 4082 late_initcall(fault_around_debugfs); 4083 #endif 4084 4085 /* 4086 * do_fault_around() tries to map few pages around the fault address. The hope 4087 * is that the pages will be needed soon and this will lower the number of 4088 * faults to handle. 4089 * 4090 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4091 * not ready to be mapped: not up-to-date, locked, etc. 4092 * 4093 * This function is called with the page table lock taken. In the split ptlock 4094 * case the page table lock only protects only those entries which belong to 4095 * the page table corresponding to the fault address. 4096 * 4097 * This function doesn't cross the VMA boundaries, in order to call map_pages() 4098 * only once. 4099 * 4100 * fault_around_bytes defines how many bytes we'll try to map. 4101 * do_fault_around() expects it to be set to a power of two less than or equal 4102 * to PTRS_PER_PTE. 4103 * 4104 * The virtual address of the area that we map is naturally aligned to 4105 * fault_around_bytes rounded down to the machine page size 4106 * (and therefore to page order). This way it's easier to guarantee 4107 * that we don't cross page table boundaries. 4108 */ 4109 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4110 { 4111 unsigned long address = vmf->address, nr_pages, mask; 4112 pgoff_t start_pgoff = vmf->pgoff; 4113 pgoff_t end_pgoff; 4114 int off; 4115 4116 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 4117 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 4118 4119 address = max(address & mask, vmf->vma->vm_start); 4120 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 4121 start_pgoff -= off; 4122 4123 /* 4124 * end_pgoff is either the end of the page table, the end of 4125 * the vma or nr_pages from start_pgoff, depending what is nearest. 4126 */ 4127 end_pgoff = start_pgoff - 4128 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 4129 PTRS_PER_PTE - 1; 4130 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 4131 start_pgoff + nr_pages - 1); 4132 4133 if (pmd_none(*vmf->pmd)) { 4134 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4135 if (!vmf->prealloc_pte) 4136 return VM_FAULT_OOM; 4137 } 4138 4139 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 4140 } 4141 4142 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4143 { 4144 struct vm_area_struct *vma = vmf->vma; 4145 vm_fault_t ret = 0; 4146 4147 /* 4148 * Let's call ->map_pages() first and use ->fault() as fallback 4149 * if page by the offset is not ready to be mapped (cold cache or 4150 * something). 4151 */ 4152 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 4153 if (likely(!userfaultfd_minor(vmf->vma))) { 4154 ret = do_fault_around(vmf); 4155 if (ret) 4156 return ret; 4157 } 4158 } 4159 4160 ret = __do_fault(vmf); 4161 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4162 return ret; 4163 4164 ret |= finish_fault(vmf); 4165 unlock_page(vmf->page); 4166 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4167 put_page(vmf->page); 4168 return ret; 4169 } 4170 4171 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4172 { 4173 struct vm_area_struct *vma = vmf->vma; 4174 vm_fault_t ret; 4175 4176 if (unlikely(anon_vma_prepare(vma))) 4177 return VM_FAULT_OOM; 4178 4179 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4180 if (!vmf->cow_page) 4181 return VM_FAULT_OOM; 4182 4183 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4184 GFP_KERNEL)) { 4185 put_page(vmf->cow_page); 4186 return VM_FAULT_OOM; 4187 } 4188 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 4189 4190 ret = __do_fault(vmf); 4191 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4192 goto uncharge_out; 4193 if (ret & VM_FAULT_DONE_COW) 4194 return ret; 4195 4196 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4197 __SetPageUptodate(vmf->cow_page); 4198 4199 ret |= finish_fault(vmf); 4200 unlock_page(vmf->page); 4201 put_page(vmf->page); 4202 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4203 goto uncharge_out; 4204 return ret; 4205 uncharge_out: 4206 put_page(vmf->cow_page); 4207 return ret; 4208 } 4209 4210 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4211 { 4212 struct vm_area_struct *vma = vmf->vma; 4213 vm_fault_t ret, tmp; 4214 4215 ret = __do_fault(vmf); 4216 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4217 return ret; 4218 4219 /* 4220 * Check if the backing address space wants to know that the page is 4221 * about to become writable 4222 */ 4223 if (vma->vm_ops->page_mkwrite) { 4224 unlock_page(vmf->page); 4225 tmp = do_page_mkwrite(vmf); 4226 if (unlikely(!tmp || 4227 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4228 put_page(vmf->page); 4229 return tmp; 4230 } 4231 } 4232 4233 ret |= finish_fault(vmf); 4234 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4235 VM_FAULT_RETRY))) { 4236 unlock_page(vmf->page); 4237 put_page(vmf->page); 4238 return ret; 4239 } 4240 4241 ret |= fault_dirty_shared_page(vmf); 4242 return ret; 4243 } 4244 4245 /* 4246 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4247 * but allow concurrent faults). 4248 * The mmap_lock may have been released depending on flags and our 4249 * return value. See filemap_fault() and __folio_lock_or_retry(). 4250 * If mmap_lock is released, vma may become invalid (for example 4251 * by other thread calling munmap()). 4252 */ 4253 static vm_fault_t do_fault(struct vm_fault *vmf) 4254 { 4255 struct vm_area_struct *vma = vmf->vma; 4256 struct mm_struct *vm_mm = vma->vm_mm; 4257 vm_fault_t ret; 4258 4259 /* 4260 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4261 */ 4262 if (!vma->vm_ops->fault) { 4263 /* 4264 * If we find a migration pmd entry or a none pmd entry, which 4265 * should never happen, return SIGBUS 4266 */ 4267 if (unlikely(!pmd_present(*vmf->pmd))) 4268 ret = VM_FAULT_SIGBUS; 4269 else { 4270 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4271 vmf->pmd, 4272 vmf->address, 4273 &vmf->ptl); 4274 /* 4275 * Make sure this is not a temporary clearing of pte 4276 * by holding ptl and checking again. A R/M/W update 4277 * of pte involves: take ptl, clearing the pte so that 4278 * we don't have concurrent modification by hardware 4279 * followed by an update. 4280 */ 4281 if (unlikely(pte_none(*vmf->pte))) 4282 ret = VM_FAULT_SIGBUS; 4283 else 4284 ret = VM_FAULT_NOPAGE; 4285 4286 pte_unmap_unlock(vmf->pte, vmf->ptl); 4287 } 4288 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4289 ret = do_read_fault(vmf); 4290 else if (!(vma->vm_flags & VM_SHARED)) 4291 ret = do_cow_fault(vmf); 4292 else 4293 ret = do_shared_fault(vmf); 4294 4295 /* preallocated pagetable is unused: free it */ 4296 if (vmf->prealloc_pte) { 4297 pte_free(vm_mm, vmf->prealloc_pte); 4298 vmf->prealloc_pte = NULL; 4299 } 4300 return ret; 4301 } 4302 4303 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4304 unsigned long addr, int page_nid, int *flags) 4305 { 4306 get_page(page); 4307 4308 count_vm_numa_event(NUMA_HINT_FAULTS); 4309 if (page_nid == numa_node_id()) { 4310 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4311 *flags |= TNF_FAULT_LOCAL; 4312 } 4313 4314 return mpol_misplaced(page, vma, addr); 4315 } 4316 4317 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4318 { 4319 struct vm_area_struct *vma = vmf->vma; 4320 struct page *page = NULL; 4321 int page_nid = NUMA_NO_NODE; 4322 int last_cpupid; 4323 int target_nid; 4324 pte_t pte, old_pte; 4325 bool was_writable = pte_savedwrite(vmf->orig_pte); 4326 int flags = 0; 4327 4328 /* 4329 * The "pte" at this point cannot be used safely without 4330 * validation through pte_unmap_same(). It's of NUMA type but 4331 * the pfn may be screwed if the read is non atomic. 4332 */ 4333 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4334 spin_lock(vmf->ptl); 4335 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4336 pte_unmap_unlock(vmf->pte, vmf->ptl); 4337 goto out; 4338 } 4339 4340 /* Get the normal PTE */ 4341 old_pte = ptep_get(vmf->pte); 4342 pte = pte_modify(old_pte, vma->vm_page_prot); 4343 4344 page = vm_normal_page(vma, vmf->address, pte); 4345 if (!page) 4346 goto out_map; 4347 4348 /* TODO: handle PTE-mapped THP */ 4349 if (PageCompound(page)) 4350 goto out_map; 4351 4352 /* 4353 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4354 * much anyway since they can be in shared cache state. This misses 4355 * the case where a mapping is writable but the process never writes 4356 * to it but pte_write gets cleared during protection updates and 4357 * pte_dirty has unpredictable behaviour between PTE scan updates, 4358 * background writeback, dirty balancing and application behaviour. 4359 */ 4360 if (!was_writable) 4361 flags |= TNF_NO_GROUP; 4362 4363 /* 4364 * Flag if the page is shared between multiple address spaces. This 4365 * is later used when determining whether to group tasks together 4366 */ 4367 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4368 flags |= TNF_SHARED; 4369 4370 last_cpupid = page_cpupid_last(page); 4371 page_nid = page_to_nid(page); 4372 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4373 &flags); 4374 if (target_nid == NUMA_NO_NODE) { 4375 put_page(page); 4376 goto out_map; 4377 } 4378 pte_unmap_unlock(vmf->pte, vmf->ptl); 4379 4380 /* Migrate to the requested node */ 4381 if (migrate_misplaced_page(page, vma, target_nid)) { 4382 page_nid = target_nid; 4383 flags |= TNF_MIGRATED; 4384 } else { 4385 flags |= TNF_MIGRATE_FAIL; 4386 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4387 spin_lock(vmf->ptl); 4388 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4389 pte_unmap_unlock(vmf->pte, vmf->ptl); 4390 goto out; 4391 } 4392 goto out_map; 4393 } 4394 4395 out: 4396 if (page_nid != NUMA_NO_NODE) 4397 task_numa_fault(last_cpupid, page_nid, 1, flags); 4398 return 0; 4399 out_map: 4400 /* 4401 * Make it present again, depending on how arch implements 4402 * non-accessible ptes, some can allow access by kernel mode. 4403 */ 4404 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4405 pte = pte_modify(old_pte, vma->vm_page_prot); 4406 pte = pte_mkyoung(pte); 4407 if (was_writable) 4408 pte = pte_mkwrite(pte); 4409 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4410 update_mmu_cache(vma, vmf->address, vmf->pte); 4411 pte_unmap_unlock(vmf->pte, vmf->ptl); 4412 goto out; 4413 } 4414 4415 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4416 { 4417 if (vma_is_anonymous(vmf->vma)) 4418 return do_huge_pmd_anonymous_page(vmf); 4419 if (vmf->vma->vm_ops->huge_fault) 4420 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4421 return VM_FAULT_FALLBACK; 4422 } 4423 4424 /* `inline' is required to avoid gcc 4.1.2 build error */ 4425 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4426 { 4427 if (vma_is_anonymous(vmf->vma)) { 4428 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) 4429 return handle_userfault(vmf, VM_UFFD_WP); 4430 return do_huge_pmd_wp_page(vmf); 4431 } 4432 if (vmf->vma->vm_ops->huge_fault) { 4433 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4434 4435 if (!(ret & VM_FAULT_FALLBACK)) 4436 return ret; 4437 } 4438 4439 /* COW or write-notify handled on pte level: split pmd. */ 4440 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4441 4442 return VM_FAULT_FALLBACK; 4443 } 4444 4445 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4446 { 4447 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4448 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4449 /* No support for anonymous transparent PUD pages yet */ 4450 if (vma_is_anonymous(vmf->vma)) 4451 goto split; 4452 if (vmf->vma->vm_ops->huge_fault) { 4453 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4454 4455 if (!(ret & VM_FAULT_FALLBACK)) 4456 return ret; 4457 } 4458 split: 4459 /* COW or write-notify not handled on PUD level: split pud.*/ 4460 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4461 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4462 return VM_FAULT_FALLBACK; 4463 } 4464 4465 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4466 { 4467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4468 /* No support for anonymous transparent PUD pages yet */ 4469 if (vma_is_anonymous(vmf->vma)) 4470 return VM_FAULT_FALLBACK; 4471 if (vmf->vma->vm_ops->huge_fault) 4472 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4473 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4474 return VM_FAULT_FALLBACK; 4475 } 4476 4477 /* 4478 * These routines also need to handle stuff like marking pages dirty 4479 * and/or accessed for architectures that don't do it in hardware (most 4480 * RISC architectures). The early dirtying is also good on the i386. 4481 * 4482 * There is also a hook called "update_mmu_cache()" that architectures 4483 * with external mmu caches can use to update those (ie the Sparc or 4484 * PowerPC hashed page tables that act as extended TLBs). 4485 * 4486 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4487 * concurrent faults). 4488 * 4489 * The mmap_lock may have been released depending on flags and our return value. 4490 * See filemap_fault() and __folio_lock_or_retry(). 4491 */ 4492 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4493 { 4494 pte_t entry; 4495 4496 if (unlikely(pmd_none(*vmf->pmd))) { 4497 /* 4498 * Leave __pte_alloc() until later: because vm_ops->fault may 4499 * want to allocate huge page, and if we expose page table 4500 * for an instant, it will be difficult to retract from 4501 * concurrent faults and from rmap lookups. 4502 */ 4503 vmf->pte = NULL; 4504 } else { 4505 /* 4506 * If a huge pmd materialized under us just retry later. Use 4507 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead 4508 * of pmd_trans_huge() to ensure the pmd didn't become 4509 * pmd_trans_huge under us and then back to pmd_none, as a 4510 * result of MADV_DONTNEED running immediately after a huge pmd 4511 * fault in a different thread of this mm, in turn leading to a 4512 * misleading pmd_trans_huge() retval. All we have to ensure is 4513 * that it is a regular pmd that we can walk with 4514 * pte_offset_map() and we can do that through an atomic read 4515 * in C, which is what pmd_trans_unstable() provides. 4516 */ 4517 if (pmd_devmap_trans_unstable(vmf->pmd)) 4518 return 0; 4519 /* 4520 * A regular pmd is established and it can't morph into a huge 4521 * pmd from under us anymore at this point because we hold the 4522 * mmap_lock read mode and khugepaged takes it in write mode. 4523 * So now it's safe to run pte_offset_map(). 4524 */ 4525 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4526 vmf->orig_pte = *vmf->pte; 4527 4528 /* 4529 * some architectures can have larger ptes than wordsize, 4530 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4531 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4532 * accesses. The code below just needs a consistent view 4533 * for the ifs and we later double check anyway with the 4534 * ptl lock held. So here a barrier will do. 4535 */ 4536 barrier(); 4537 if (pte_none(vmf->orig_pte)) { 4538 pte_unmap(vmf->pte); 4539 vmf->pte = NULL; 4540 } 4541 } 4542 4543 if (!vmf->pte) { 4544 if (vma_is_anonymous(vmf->vma)) 4545 return do_anonymous_page(vmf); 4546 else 4547 return do_fault(vmf); 4548 } 4549 4550 if (!pte_present(vmf->orig_pte)) 4551 return do_swap_page(vmf); 4552 4553 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4554 return do_numa_page(vmf); 4555 4556 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4557 spin_lock(vmf->ptl); 4558 entry = vmf->orig_pte; 4559 if (unlikely(!pte_same(*vmf->pte, entry))) { 4560 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4561 goto unlock; 4562 } 4563 if (vmf->flags & FAULT_FLAG_WRITE) { 4564 if (!pte_write(entry)) 4565 return do_wp_page(vmf); 4566 entry = pte_mkdirty(entry); 4567 } 4568 entry = pte_mkyoung(entry); 4569 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4570 vmf->flags & FAULT_FLAG_WRITE)) { 4571 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4572 } else { 4573 /* Skip spurious TLB flush for retried page fault */ 4574 if (vmf->flags & FAULT_FLAG_TRIED) 4575 goto unlock; 4576 /* 4577 * This is needed only for protection faults but the arch code 4578 * is not yet telling us if this is a protection fault or not. 4579 * This still avoids useless tlb flushes for .text page faults 4580 * with threads. 4581 */ 4582 if (vmf->flags & FAULT_FLAG_WRITE) 4583 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4584 } 4585 unlock: 4586 pte_unmap_unlock(vmf->pte, vmf->ptl); 4587 return 0; 4588 } 4589 4590 /* 4591 * By the time we get here, we already hold the mm semaphore 4592 * 4593 * The mmap_lock may have been released depending on flags and our 4594 * return value. See filemap_fault() and __folio_lock_or_retry(). 4595 */ 4596 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4597 unsigned long address, unsigned int flags) 4598 { 4599 struct vm_fault vmf = { 4600 .vma = vma, 4601 .address = address & PAGE_MASK, 4602 .flags = flags, 4603 .pgoff = linear_page_index(vma, address), 4604 .gfp_mask = __get_fault_gfp_mask(vma), 4605 }; 4606 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4607 struct mm_struct *mm = vma->vm_mm; 4608 pgd_t *pgd; 4609 p4d_t *p4d; 4610 vm_fault_t ret; 4611 4612 pgd = pgd_offset(mm, address); 4613 p4d = p4d_alloc(mm, pgd, address); 4614 if (!p4d) 4615 return VM_FAULT_OOM; 4616 4617 vmf.pud = pud_alloc(mm, p4d, address); 4618 if (!vmf.pud) 4619 return VM_FAULT_OOM; 4620 retry_pud: 4621 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4622 ret = create_huge_pud(&vmf); 4623 if (!(ret & VM_FAULT_FALLBACK)) 4624 return ret; 4625 } else { 4626 pud_t orig_pud = *vmf.pud; 4627 4628 barrier(); 4629 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4630 4631 /* NUMA case for anonymous PUDs would go here */ 4632 4633 if (dirty && !pud_write(orig_pud)) { 4634 ret = wp_huge_pud(&vmf, orig_pud); 4635 if (!(ret & VM_FAULT_FALLBACK)) 4636 return ret; 4637 } else { 4638 huge_pud_set_accessed(&vmf, orig_pud); 4639 return 0; 4640 } 4641 } 4642 } 4643 4644 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4645 if (!vmf.pmd) 4646 return VM_FAULT_OOM; 4647 4648 /* Huge pud page fault raced with pmd_alloc? */ 4649 if (pud_trans_unstable(vmf.pud)) 4650 goto retry_pud; 4651 4652 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4653 ret = create_huge_pmd(&vmf); 4654 if (!(ret & VM_FAULT_FALLBACK)) 4655 return ret; 4656 } else { 4657 vmf.orig_pmd = *vmf.pmd; 4658 4659 barrier(); 4660 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 4661 VM_BUG_ON(thp_migration_supported() && 4662 !is_pmd_migration_entry(vmf.orig_pmd)); 4663 if (is_pmd_migration_entry(vmf.orig_pmd)) 4664 pmd_migration_entry_wait(mm, vmf.pmd); 4665 return 0; 4666 } 4667 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 4668 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 4669 return do_huge_pmd_numa_page(&vmf); 4670 4671 if (dirty && !pmd_write(vmf.orig_pmd)) { 4672 ret = wp_huge_pmd(&vmf); 4673 if (!(ret & VM_FAULT_FALLBACK)) 4674 return ret; 4675 } else { 4676 huge_pmd_set_accessed(&vmf); 4677 return 0; 4678 } 4679 } 4680 } 4681 4682 return handle_pte_fault(&vmf); 4683 } 4684 4685 /** 4686 * mm_account_fault - Do page fault accounting 4687 * 4688 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 4689 * of perf event counters, but we'll still do the per-task accounting to 4690 * the task who triggered this page fault. 4691 * @address: the faulted address. 4692 * @flags: the fault flags. 4693 * @ret: the fault retcode. 4694 * 4695 * This will take care of most of the page fault accounting. Meanwhile, it 4696 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 4697 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 4698 * still be in per-arch page fault handlers at the entry of page fault. 4699 */ 4700 static inline void mm_account_fault(struct pt_regs *regs, 4701 unsigned long address, unsigned int flags, 4702 vm_fault_t ret) 4703 { 4704 bool major; 4705 4706 /* 4707 * We don't do accounting for some specific faults: 4708 * 4709 * - Unsuccessful faults (e.g. when the address wasn't valid). That 4710 * includes arch_vma_access_permitted() failing before reaching here. 4711 * So this is not a "this many hardware page faults" counter. We 4712 * should use the hw profiling for that. 4713 * 4714 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 4715 * once they're completed. 4716 */ 4717 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 4718 return; 4719 4720 /* 4721 * We define the fault as a major fault when the final successful fault 4722 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 4723 * handle it immediately previously). 4724 */ 4725 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 4726 4727 if (major) 4728 current->maj_flt++; 4729 else 4730 current->min_flt++; 4731 4732 /* 4733 * If the fault is done for GUP, regs will be NULL. We only do the 4734 * accounting for the per thread fault counters who triggered the 4735 * fault, and we skip the perf event updates. 4736 */ 4737 if (!regs) 4738 return; 4739 4740 if (major) 4741 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 4742 else 4743 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 4744 } 4745 4746 /* 4747 * By the time we get here, we already hold the mm semaphore 4748 * 4749 * The mmap_lock may have been released depending on flags and our 4750 * return value. See filemap_fault() and __folio_lock_or_retry(). 4751 */ 4752 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4753 unsigned int flags, struct pt_regs *regs) 4754 { 4755 vm_fault_t ret; 4756 4757 __set_current_state(TASK_RUNNING); 4758 4759 count_vm_event(PGFAULT); 4760 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4761 4762 /* do counter updates before entering really critical section. */ 4763 check_sync_rss_stat(current); 4764 4765 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4766 flags & FAULT_FLAG_INSTRUCTION, 4767 flags & FAULT_FLAG_REMOTE)) 4768 return VM_FAULT_SIGSEGV; 4769 4770 /* 4771 * Enable the memcg OOM handling for faults triggered in user 4772 * space. Kernel faults are handled more gracefully. 4773 */ 4774 if (flags & FAULT_FLAG_USER) 4775 mem_cgroup_enter_user_fault(); 4776 4777 if (unlikely(is_vm_hugetlb_page(vma))) 4778 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4779 else 4780 ret = __handle_mm_fault(vma, address, flags); 4781 4782 if (flags & FAULT_FLAG_USER) { 4783 mem_cgroup_exit_user_fault(); 4784 /* 4785 * The task may have entered a memcg OOM situation but 4786 * if the allocation error was handled gracefully (no 4787 * VM_FAULT_OOM), there is no need to kill anything. 4788 * Just clean up the OOM state peacefully. 4789 */ 4790 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4791 mem_cgroup_oom_synchronize(false); 4792 } 4793 4794 mm_account_fault(regs, address, flags, ret); 4795 4796 return ret; 4797 } 4798 EXPORT_SYMBOL_GPL(handle_mm_fault); 4799 4800 #ifndef __PAGETABLE_P4D_FOLDED 4801 /* 4802 * Allocate p4d page table. 4803 * We've already handled the fast-path in-line. 4804 */ 4805 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4806 { 4807 p4d_t *new = p4d_alloc_one(mm, address); 4808 if (!new) 4809 return -ENOMEM; 4810 4811 spin_lock(&mm->page_table_lock); 4812 if (pgd_present(*pgd)) { /* Another has populated it */ 4813 p4d_free(mm, new); 4814 } else { 4815 smp_wmb(); /* See comment in pmd_install() */ 4816 pgd_populate(mm, pgd, new); 4817 } 4818 spin_unlock(&mm->page_table_lock); 4819 return 0; 4820 } 4821 #endif /* __PAGETABLE_P4D_FOLDED */ 4822 4823 #ifndef __PAGETABLE_PUD_FOLDED 4824 /* 4825 * Allocate page upper directory. 4826 * We've already handled the fast-path in-line. 4827 */ 4828 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4829 { 4830 pud_t *new = pud_alloc_one(mm, address); 4831 if (!new) 4832 return -ENOMEM; 4833 4834 spin_lock(&mm->page_table_lock); 4835 if (!p4d_present(*p4d)) { 4836 mm_inc_nr_puds(mm); 4837 smp_wmb(); /* See comment in pmd_install() */ 4838 p4d_populate(mm, p4d, new); 4839 } else /* Another has populated it */ 4840 pud_free(mm, new); 4841 spin_unlock(&mm->page_table_lock); 4842 return 0; 4843 } 4844 #endif /* __PAGETABLE_PUD_FOLDED */ 4845 4846 #ifndef __PAGETABLE_PMD_FOLDED 4847 /* 4848 * Allocate page middle directory. 4849 * We've already handled the fast-path in-line. 4850 */ 4851 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4852 { 4853 spinlock_t *ptl; 4854 pmd_t *new = pmd_alloc_one(mm, address); 4855 if (!new) 4856 return -ENOMEM; 4857 4858 ptl = pud_lock(mm, pud); 4859 if (!pud_present(*pud)) { 4860 mm_inc_nr_pmds(mm); 4861 smp_wmb(); /* See comment in pmd_install() */ 4862 pud_populate(mm, pud, new); 4863 } else { /* Another has populated it */ 4864 pmd_free(mm, new); 4865 } 4866 spin_unlock(ptl); 4867 return 0; 4868 } 4869 #endif /* __PAGETABLE_PMD_FOLDED */ 4870 4871 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 4872 struct mmu_notifier_range *range, pte_t **ptepp, 4873 pmd_t **pmdpp, spinlock_t **ptlp) 4874 { 4875 pgd_t *pgd; 4876 p4d_t *p4d; 4877 pud_t *pud; 4878 pmd_t *pmd; 4879 pte_t *ptep; 4880 4881 pgd = pgd_offset(mm, address); 4882 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4883 goto out; 4884 4885 p4d = p4d_offset(pgd, address); 4886 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4887 goto out; 4888 4889 pud = pud_offset(p4d, address); 4890 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4891 goto out; 4892 4893 pmd = pmd_offset(pud, address); 4894 VM_BUG_ON(pmd_trans_huge(*pmd)); 4895 4896 if (pmd_huge(*pmd)) { 4897 if (!pmdpp) 4898 goto out; 4899 4900 if (range) { 4901 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4902 NULL, mm, address & PMD_MASK, 4903 (address & PMD_MASK) + PMD_SIZE); 4904 mmu_notifier_invalidate_range_start(range); 4905 } 4906 *ptlp = pmd_lock(mm, pmd); 4907 if (pmd_huge(*pmd)) { 4908 *pmdpp = pmd; 4909 return 0; 4910 } 4911 spin_unlock(*ptlp); 4912 if (range) 4913 mmu_notifier_invalidate_range_end(range); 4914 } 4915 4916 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4917 goto out; 4918 4919 if (range) { 4920 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4921 address & PAGE_MASK, 4922 (address & PAGE_MASK) + PAGE_SIZE); 4923 mmu_notifier_invalidate_range_start(range); 4924 } 4925 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4926 if (!pte_present(*ptep)) 4927 goto unlock; 4928 *ptepp = ptep; 4929 return 0; 4930 unlock: 4931 pte_unmap_unlock(ptep, *ptlp); 4932 if (range) 4933 mmu_notifier_invalidate_range_end(range); 4934 out: 4935 return -EINVAL; 4936 } 4937 4938 /** 4939 * follow_pte - look up PTE at a user virtual address 4940 * @mm: the mm_struct of the target address space 4941 * @address: user virtual address 4942 * @ptepp: location to store found PTE 4943 * @ptlp: location to store the lock for the PTE 4944 * 4945 * On a successful return, the pointer to the PTE is stored in @ptepp; 4946 * the corresponding lock is taken and its location is stored in @ptlp. 4947 * The contents of the PTE are only stable until @ptlp is released; 4948 * any further use, if any, must be protected against invalidation 4949 * with MMU notifiers. 4950 * 4951 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 4952 * should be taken for read. 4953 * 4954 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 4955 * it is not a good general-purpose API. 4956 * 4957 * Return: zero on success, -ve otherwise. 4958 */ 4959 int follow_pte(struct mm_struct *mm, unsigned long address, 4960 pte_t **ptepp, spinlock_t **ptlp) 4961 { 4962 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp); 4963 } 4964 EXPORT_SYMBOL_GPL(follow_pte); 4965 4966 /** 4967 * follow_pfn - look up PFN at a user virtual address 4968 * @vma: memory mapping 4969 * @address: user virtual address 4970 * @pfn: location to store found PFN 4971 * 4972 * Only IO mappings and raw PFN mappings are allowed. 4973 * 4974 * This function does not allow the caller to read the permissions 4975 * of the PTE. Do not use it. 4976 * 4977 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4978 */ 4979 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4980 unsigned long *pfn) 4981 { 4982 int ret = -EINVAL; 4983 spinlock_t *ptl; 4984 pte_t *ptep; 4985 4986 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4987 return ret; 4988 4989 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4990 if (ret) 4991 return ret; 4992 *pfn = pte_pfn(*ptep); 4993 pte_unmap_unlock(ptep, ptl); 4994 return 0; 4995 } 4996 EXPORT_SYMBOL(follow_pfn); 4997 4998 #ifdef CONFIG_HAVE_IOREMAP_PROT 4999 int follow_phys(struct vm_area_struct *vma, 5000 unsigned long address, unsigned int flags, 5001 unsigned long *prot, resource_size_t *phys) 5002 { 5003 int ret = -EINVAL; 5004 pte_t *ptep, pte; 5005 spinlock_t *ptl; 5006 5007 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5008 goto out; 5009 5010 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5011 goto out; 5012 pte = *ptep; 5013 5014 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5015 goto unlock; 5016 5017 *prot = pgprot_val(pte_pgprot(pte)); 5018 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5019 5020 ret = 0; 5021 unlock: 5022 pte_unmap_unlock(ptep, ptl); 5023 out: 5024 return ret; 5025 } 5026 5027 /** 5028 * generic_access_phys - generic implementation for iomem mmap access 5029 * @vma: the vma to access 5030 * @addr: userspace address, not relative offset within @vma 5031 * @buf: buffer to read/write 5032 * @len: length of transfer 5033 * @write: set to FOLL_WRITE when writing, otherwise reading 5034 * 5035 * This is a generic implementation for &vm_operations_struct.access for an 5036 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5037 * not page based. 5038 */ 5039 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5040 void *buf, int len, int write) 5041 { 5042 resource_size_t phys_addr; 5043 unsigned long prot = 0; 5044 void __iomem *maddr; 5045 pte_t *ptep, pte; 5046 spinlock_t *ptl; 5047 int offset = offset_in_page(addr); 5048 int ret = -EINVAL; 5049 5050 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5051 return -EINVAL; 5052 5053 retry: 5054 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5055 return -EINVAL; 5056 pte = *ptep; 5057 pte_unmap_unlock(ptep, ptl); 5058 5059 prot = pgprot_val(pte_pgprot(pte)); 5060 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5061 5062 if ((write & FOLL_WRITE) && !pte_write(pte)) 5063 return -EINVAL; 5064 5065 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5066 if (!maddr) 5067 return -ENOMEM; 5068 5069 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5070 goto out_unmap; 5071 5072 if (!pte_same(pte, *ptep)) { 5073 pte_unmap_unlock(ptep, ptl); 5074 iounmap(maddr); 5075 5076 goto retry; 5077 } 5078 5079 if (write) 5080 memcpy_toio(maddr + offset, buf, len); 5081 else 5082 memcpy_fromio(buf, maddr + offset, len); 5083 ret = len; 5084 pte_unmap_unlock(ptep, ptl); 5085 out_unmap: 5086 iounmap(maddr); 5087 5088 return ret; 5089 } 5090 EXPORT_SYMBOL_GPL(generic_access_phys); 5091 #endif 5092 5093 /* 5094 * Access another process' address space as given in mm. 5095 */ 5096 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5097 int len, unsigned int gup_flags) 5098 { 5099 struct vm_area_struct *vma; 5100 void *old_buf = buf; 5101 int write = gup_flags & FOLL_WRITE; 5102 5103 if (mmap_read_lock_killable(mm)) 5104 return 0; 5105 5106 /* ignore errors, just check how much was successfully transferred */ 5107 while (len) { 5108 int bytes, ret, offset; 5109 void *maddr; 5110 struct page *page = NULL; 5111 5112 ret = get_user_pages_remote(mm, addr, 1, 5113 gup_flags, &page, &vma, NULL); 5114 if (ret <= 0) { 5115 #ifndef CONFIG_HAVE_IOREMAP_PROT 5116 break; 5117 #else 5118 /* 5119 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5120 * we can access using slightly different code. 5121 */ 5122 vma = vma_lookup(mm, addr); 5123 if (!vma) 5124 break; 5125 if (vma->vm_ops && vma->vm_ops->access) 5126 ret = vma->vm_ops->access(vma, addr, buf, 5127 len, write); 5128 if (ret <= 0) 5129 break; 5130 bytes = ret; 5131 #endif 5132 } else { 5133 bytes = len; 5134 offset = addr & (PAGE_SIZE-1); 5135 if (bytes > PAGE_SIZE-offset) 5136 bytes = PAGE_SIZE-offset; 5137 5138 maddr = kmap(page); 5139 if (write) { 5140 copy_to_user_page(vma, page, addr, 5141 maddr + offset, buf, bytes); 5142 set_page_dirty_lock(page); 5143 } else { 5144 copy_from_user_page(vma, page, addr, 5145 buf, maddr + offset, bytes); 5146 } 5147 kunmap(page); 5148 put_page(page); 5149 } 5150 len -= bytes; 5151 buf += bytes; 5152 addr += bytes; 5153 } 5154 mmap_read_unlock(mm); 5155 5156 return buf - old_buf; 5157 } 5158 5159 /** 5160 * access_remote_vm - access another process' address space 5161 * @mm: the mm_struct of the target address space 5162 * @addr: start address to access 5163 * @buf: source or destination buffer 5164 * @len: number of bytes to transfer 5165 * @gup_flags: flags modifying lookup behaviour 5166 * 5167 * The caller must hold a reference on @mm. 5168 * 5169 * Return: number of bytes copied from source to destination. 5170 */ 5171 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5172 void *buf, int len, unsigned int gup_flags) 5173 { 5174 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5175 } 5176 5177 /* 5178 * Access another process' address space. 5179 * Source/target buffer must be kernel space, 5180 * Do not walk the page table directly, use get_user_pages 5181 */ 5182 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5183 void *buf, int len, unsigned int gup_flags) 5184 { 5185 struct mm_struct *mm; 5186 int ret; 5187 5188 mm = get_task_mm(tsk); 5189 if (!mm) 5190 return 0; 5191 5192 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5193 5194 mmput(mm); 5195 5196 return ret; 5197 } 5198 EXPORT_SYMBOL_GPL(access_process_vm); 5199 5200 /* 5201 * Print the name of a VMA. 5202 */ 5203 void print_vma_addr(char *prefix, unsigned long ip) 5204 { 5205 struct mm_struct *mm = current->mm; 5206 struct vm_area_struct *vma; 5207 5208 /* 5209 * we might be running from an atomic context so we cannot sleep 5210 */ 5211 if (!mmap_read_trylock(mm)) 5212 return; 5213 5214 vma = find_vma(mm, ip); 5215 if (vma && vma->vm_file) { 5216 struct file *f = vma->vm_file; 5217 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5218 if (buf) { 5219 char *p; 5220 5221 p = file_path(f, buf, PAGE_SIZE); 5222 if (IS_ERR(p)) 5223 p = "?"; 5224 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5225 vma->vm_start, 5226 vma->vm_end - vma->vm_start); 5227 free_page((unsigned long)buf); 5228 } 5229 } 5230 mmap_read_unlock(mm); 5231 } 5232 5233 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5234 void __might_fault(const char *file, int line) 5235 { 5236 /* 5237 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 5238 * holding the mmap_lock, this is safe because kernel memory doesn't 5239 * get paged out, therefore we'll never actually fault, and the 5240 * below annotations will generate false positives. 5241 */ 5242 if (uaccess_kernel()) 5243 return; 5244 if (pagefault_disabled()) 5245 return; 5246 __might_sleep(file, line); 5247 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5248 if (current->mm) 5249 might_lock_read(¤t->mm->mmap_lock); 5250 #endif 5251 } 5252 EXPORT_SYMBOL(__might_fault); 5253 #endif 5254 5255 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5256 /* 5257 * Process all subpages of the specified huge page with the specified 5258 * operation. The target subpage will be processed last to keep its 5259 * cache lines hot. 5260 */ 5261 static inline void process_huge_page( 5262 unsigned long addr_hint, unsigned int pages_per_huge_page, 5263 void (*process_subpage)(unsigned long addr, int idx, void *arg), 5264 void *arg) 5265 { 5266 int i, n, base, l; 5267 unsigned long addr = addr_hint & 5268 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5269 5270 /* Process target subpage last to keep its cache lines hot */ 5271 might_sleep(); 5272 n = (addr_hint - addr) / PAGE_SIZE; 5273 if (2 * n <= pages_per_huge_page) { 5274 /* If target subpage in first half of huge page */ 5275 base = 0; 5276 l = n; 5277 /* Process subpages at the end of huge page */ 5278 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5279 cond_resched(); 5280 process_subpage(addr + i * PAGE_SIZE, i, arg); 5281 } 5282 } else { 5283 /* If target subpage in second half of huge page */ 5284 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5285 l = pages_per_huge_page - n; 5286 /* Process subpages at the begin of huge page */ 5287 for (i = 0; i < base; i++) { 5288 cond_resched(); 5289 process_subpage(addr + i * PAGE_SIZE, i, arg); 5290 } 5291 } 5292 /* 5293 * Process remaining subpages in left-right-left-right pattern 5294 * towards the target subpage 5295 */ 5296 for (i = 0; i < l; i++) { 5297 int left_idx = base + i; 5298 int right_idx = base + 2 * l - 1 - i; 5299 5300 cond_resched(); 5301 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5302 cond_resched(); 5303 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5304 } 5305 } 5306 5307 static void clear_gigantic_page(struct page *page, 5308 unsigned long addr, 5309 unsigned int pages_per_huge_page) 5310 { 5311 int i; 5312 struct page *p = page; 5313 5314 might_sleep(); 5315 for (i = 0; i < pages_per_huge_page; 5316 i++, p = mem_map_next(p, page, i)) { 5317 cond_resched(); 5318 clear_user_highpage(p, addr + i * PAGE_SIZE); 5319 } 5320 } 5321 5322 static void clear_subpage(unsigned long addr, int idx, void *arg) 5323 { 5324 struct page *page = arg; 5325 5326 clear_user_highpage(page + idx, addr); 5327 } 5328 5329 void clear_huge_page(struct page *page, 5330 unsigned long addr_hint, unsigned int pages_per_huge_page) 5331 { 5332 unsigned long addr = addr_hint & 5333 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5334 5335 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5336 clear_gigantic_page(page, addr, pages_per_huge_page); 5337 return; 5338 } 5339 5340 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5341 } 5342 5343 static void copy_user_gigantic_page(struct page *dst, struct page *src, 5344 unsigned long addr, 5345 struct vm_area_struct *vma, 5346 unsigned int pages_per_huge_page) 5347 { 5348 int i; 5349 struct page *dst_base = dst; 5350 struct page *src_base = src; 5351 5352 for (i = 0; i < pages_per_huge_page; ) { 5353 cond_resched(); 5354 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 5355 5356 i++; 5357 dst = mem_map_next(dst, dst_base, i); 5358 src = mem_map_next(src, src_base, i); 5359 } 5360 } 5361 5362 struct copy_subpage_arg { 5363 struct page *dst; 5364 struct page *src; 5365 struct vm_area_struct *vma; 5366 }; 5367 5368 static void copy_subpage(unsigned long addr, int idx, void *arg) 5369 { 5370 struct copy_subpage_arg *copy_arg = arg; 5371 5372 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5373 addr, copy_arg->vma); 5374 } 5375 5376 void copy_user_huge_page(struct page *dst, struct page *src, 5377 unsigned long addr_hint, struct vm_area_struct *vma, 5378 unsigned int pages_per_huge_page) 5379 { 5380 unsigned long addr = addr_hint & 5381 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5382 struct copy_subpage_arg arg = { 5383 .dst = dst, 5384 .src = src, 5385 .vma = vma, 5386 }; 5387 5388 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5389 copy_user_gigantic_page(dst, src, addr, vma, 5390 pages_per_huge_page); 5391 return; 5392 } 5393 5394 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5395 } 5396 5397 long copy_huge_page_from_user(struct page *dst_page, 5398 const void __user *usr_src, 5399 unsigned int pages_per_huge_page, 5400 bool allow_pagefault) 5401 { 5402 void *page_kaddr; 5403 unsigned long i, rc = 0; 5404 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5405 struct page *subpage = dst_page; 5406 5407 for (i = 0; i < pages_per_huge_page; 5408 i++, subpage = mem_map_next(subpage, dst_page, i)) { 5409 if (allow_pagefault) 5410 page_kaddr = kmap(subpage); 5411 else 5412 page_kaddr = kmap_atomic(subpage); 5413 rc = copy_from_user(page_kaddr, 5414 usr_src + i * PAGE_SIZE, PAGE_SIZE); 5415 if (allow_pagefault) 5416 kunmap(subpage); 5417 else 5418 kunmap_atomic(page_kaddr); 5419 5420 ret_val -= (PAGE_SIZE - rc); 5421 if (rc) 5422 break; 5423 5424 cond_resched(); 5425 } 5426 return ret_val; 5427 } 5428 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5429 5430 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5431 5432 static struct kmem_cache *page_ptl_cachep; 5433 5434 void __init ptlock_cache_init(void) 5435 { 5436 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5437 SLAB_PANIC, NULL); 5438 } 5439 5440 bool ptlock_alloc(struct page *page) 5441 { 5442 spinlock_t *ptl; 5443 5444 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5445 if (!ptl) 5446 return false; 5447 page->ptl = ptl; 5448 return true; 5449 } 5450 5451 void ptlock_free(struct page *page) 5452 { 5453 kmem_cache_free(page_ptl_cachep, page->ptl); 5454 } 5455 #endif 5456