xref: /linux/mm/memory.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 #include <linux/kallsyms.h>
56 #include <linux/swapops.h>
57 #include <linux/elf.h>
58 
59 #include <asm/pgalloc.h>
60 #include <asm/uaccess.h>
61 #include <asm/tlb.h>
62 #include <asm/tlbflush.h>
63 #include <asm/pgtable.h>
64 
65 #include "internal.h"
66 
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71 
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75 
76 unsigned long num_physpages;
77 /*
78  * A number of key systems in x86 including ioremap() rely on the assumption
79  * that high_memory defines the upper bound on direct map memory, then end
80  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82  * and ZONE_HIGHMEM.
83  */
84 void * high_memory;
85 
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88 
89 /*
90  * Randomize the address space (stacks, mmaps, brk, etc.).
91  *
92  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93  *   as ancient (libc5 based) binaries can segfault. )
94  */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97 					1;
98 #else
99 					2;
100 #endif
101 
102 static int __init disable_randmaps(char *s)
103 {
104 	randomize_va_space = 0;
105 	return 1;
106 }
107 __setup("norandmaps", disable_randmaps);
108 
109 
110 /*
111  * If a p?d_bad entry is found while walking page tables, report
112  * the error, before resetting entry to p?d_none.  Usually (but
113  * very seldom) called out from the p?d_none_or_clear_bad macros.
114  */
115 
116 void pgd_clear_bad(pgd_t *pgd)
117 {
118 	pgd_ERROR(*pgd);
119 	pgd_clear(pgd);
120 }
121 
122 void pud_clear_bad(pud_t *pud)
123 {
124 	pud_ERROR(*pud);
125 	pud_clear(pud);
126 }
127 
128 void pmd_clear_bad(pmd_t *pmd)
129 {
130 	pmd_ERROR(*pmd);
131 	pmd_clear(pmd);
132 }
133 
134 /*
135  * Note: this doesn't free the actual pages themselves. That
136  * has been handled earlier when unmapping all the memory regions.
137  */
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 {
140 	pgtable_t token = pmd_pgtable(*pmd);
141 	pmd_clear(pmd);
142 	pte_free_tlb(tlb, token);
143 	tlb->mm->nr_ptes--;
144 }
145 
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 				unsigned long addr, unsigned long end,
148 				unsigned long floor, unsigned long ceiling)
149 {
150 	pmd_t *pmd;
151 	unsigned long next;
152 	unsigned long start;
153 
154 	start = addr;
155 	pmd = pmd_offset(pud, addr);
156 	do {
157 		next = pmd_addr_end(addr, end);
158 		if (pmd_none_or_clear_bad(pmd))
159 			continue;
160 		free_pte_range(tlb, pmd);
161 	} while (pmd++, addr = next, addr != end);
162 
163 	start &= PUD_MASK;
164 	if (start < floor)
165 		return;
166 	if (ceiling) {
167 		ceiling &= PUD_MASK;
168 		if (!ceiling)
169 			return;
170 	}
171 	if (end - 1 > ceiling - 1)
172 		return;
173 
174 	pmd = pmd_offset(pud, start);
175 	pud_clear(pud);
176 	pmd_free_tlb(tlb, pmd);
177 }
178 
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 				unsigned long addr, unsigned long end,
181 				unsigned long floor, unsigned long ceiling)
182 {
183 	pud_t *pud;
184 	unsigned long next;
185 	unsigned long start;
186 
187 	start = addr;
188 	pud = pud_offset(pgd, addr);
189 	do {
190 		next = pud_addr_end(addr, end);
191 		if (pud_none_or_clear_bad(pud))
192 			continue;
193 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194 	} while (pud++, addr = next, addr != end);
195 
196 	start &= PGDIR_MASK;
197 	if (start < floor)
198 		return;
199 	if (ceiling) {
200 		ceiling &= PGDIR_MASK;
201 		if (!ceiling)
202 			return;
203 	}
204 	if (end - 1 > ceiling - 1)
205 		return;
206 
207 	pud = pud_offset(pgd, start);
208 	pgd_clear(pgd);
209 	pud_free_tlb(tlb, pud);
210 }
211 
212 /*
213  * This function frees user-level page tables of a process.
214  *
215  * Must be called with pagetable lock held.
216  */
217 void free_pgd_range(struct mmu_gather *tlb,
218 			unsigned long addr, unsigned long end,
219 			unsigned long floor, unsigned long ceiling)
220 {
221 	pgd_t *pgd;
222 	unsigned long next;
223 	unsigned long start;
224 
225 	/*
226 	 * The next few lines have given us lots of grief...
227 	 *
228 	 * Why are we testing PMD* at this top level?  Because often
229 	 * there will be no work to do at all, and we'd prefer not to
230 	 * go all the way down to the bottom just to discover that.
231 	 *
232 	 * Why all these "- 1"s?  Because 0 represents both the bottom
233 	 * of the address space and the top of it (using -1 for the
234 	 * top wouldn't help much: the masks would do the wrong thing).
235 	 * The rule is that addr 0 and floor 0 refer to the bottom of
236 	 * the address space, but end 0 and ceiling 0 refer to the top
237 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 	 * that end 0 case should be mythical).
239 	 *
240 	 * Wherever addr is brought up or ceiling brought down, we must
241 	 * be careful to reject "the opposite 0" before it confuses the
242 	 * subsequent tests.  But what about where end is brought down
243 	 * by PMD_SIZE below? no, end can't go down to 0 there.
244 	 *
245 	 * Whereas we round start (addr) and ceiling down, by different
246 	 * masks at different levels, in order to test whether a table
247 	 * now has no other vmas using it, so can be freed, we don't
248 	 * bother to round floor or end up - the tests don't need that.
249 	 */
250 
251 	addr &= PMD_MASK;
252 	if (addr < floor) {
253 		addr += PMD_SIZE;
254 		if (!addr)
255 			return;
256 	}
257 	if (ceiling) {
258 		ceiling &= PMD_MASK;
259 		if (!ceiling)
260 			return;
261 	}
262 	if (end - 1 > ceiling - 1)
263 		end -= PMD_SIZE;
264 	if (addr > end - 1)
265 		return;
266 
267 	start = addr;
268 	pgd = pgd_offset(tlb->mm, addr);
269 	do {
270 		next = pgd_addr_end(addr, end);
271 		if (pgd_none_or_clear_bad(pgd))
272 			continue;
273 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274 	} while (pgd++, addr = next, addr != end);
275 }
276 
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278 		unsigned long floor, unsigned long ceiling)
279 {
280 	while (vma) {
281 		struct vm_area_struct *next = vma->vm_next;
282 		unsigned long addr = vma->vm_start;
283 
284 		/*
285 		 * Hide vma from rmap and vmtruncate before freeing pgtables
286 		 */
287 		anon_vma_unlink(vma);
288 		unlink_file_vma(vma);
289 
290 		if (is_vm_hugetlb_page(vma)) {
291 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292 				floor, next? next->vm_start: ceiling);
293 		} else {
294 			/*
295 			 * Optimization: gather nearby vmas into one call down
296 			 */
297 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298 			       && !is_vm_hugetlb_page(next)) {
299 				vma = next;
300 				next = vma->vm_next;
301 				anon_vma_unlink(vma);
302 				unlink_file_vma(vma);
303 			}
304 			free_pgd_range(tlb, addr, vma->vm_end,
305 				floor, next? next->vm_start: ceiling);
306 		}
307 		vma = next;
308 	}
309 }
310 
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 {
313 	pgtable_t new = pte_alloc_one(mm, address);
314 	if (!new)
315 		return -ENOMEM;
316 
317 	/*
318 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 	 * visible before the pte is made visible to other CPUs by being
320 	 * put into page tables.
321 	 *
322 	 * The other side of the story is the pointer chasing in the page
323 	 * table walking code (when walking the page table without locking;
324 	 * ie. most of the time). Fortunately, these data accesses consist
325 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 	 * being the notable exception) will already guarantee loads are
327 	 * seen in-order. See the alpha page table accessors for the
328 	 * smp_read_barrier_depends() barriers in page table walking code.
329 	 */
330 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331 
332 	spin_lock(&mm->page_table_lock);
333 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
334 		mm->nr_ptes++;
335 		pmd_populate(mm, pmd, new);
336 		new = NULL;
337 	}
338 	spin_unlock(&mm->page_table_lock);
339 	if (new)
340 		pte_free(mm, new);
341 	return 0;
342 }
343 
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 {
346 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 	if (!new)
348 		return -ENOMEM;
349 
350 	smp_wmb(); /* See comment in __pte_alloc */
351 
352 	spin_lock(&init_mm.page_table_lock);
353 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
354 		pmd_populate_kernel(&init_mm, pmd, new);
355 		new = NULL;
356 	}
357 	spin_unlock(&init_mm.page_table_lock);
358 	if (new)
359 		pte_free_kernel(&init_mm, new);
360 	return 0;
361 }
362 
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 {
365 	if (file_rss)
366 		add_mm_counter(mm, file_rss, file_rss);
367 	if (anon_rss)
368 		add_mm_counter(mm, anon_rss, anon_rss);
369 }
370 
371 /*
372  * This function is called to print an error when a bad pte
373  * is found. For example, we might have a PFN-mapped pte in
374  * a region that doesn't allow it.
375  *
376  * The calling function must still handle the error.
377  */
378 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
379 			  pte_t pte, struct page *page)
380 {
381 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
382 	pud_t *pud = pud_offset(pgd, addr);
383 	pmd_t *pmd = pmd_offset(pud, addr);
384 	struct address_space *mapping;
385 	pgoff_t index;
386 	static unsigned long resume;
387 	static unsigned long nr_shown;
388 	static unsigned long nr_unshown;
389 
390 	/*
391 	 * Allow a burst of 60 reports, then keep quiet for that minute;
392 	 * or allow a steady drip of one report per second.
393 	 */
394 	if (nr_shown == 60) {
395 		if (time_before(jiffies, resume)) {
396 			nr_unshown++;
397 			return;
398 		}
399 		if (nr_unshown) {
400 			printk(KERN_ALERT
401 				"BUG: Bad page map: %lu messages suppressed\n",
402 				nr_unshown);
403 			nr_unshown = 0;
404 		}
405 		nr_shown = 0;
406 	}
407 	if (nr_shown++ == 0)
408 		resume = jiffies + 60 * HZ;
409 
410 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
411 	index = linear_page_index(vma, addr);
412 
413 	printk(KERN_ALERT
414 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
415 		current->comm,
416 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
417 	if (page) {
418 		printk(KERN_ALERT
419 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
420 		page, (void *)page->flags, page_count(page),
421 		page_mapcount(page), page->mapping, page->index);
422 	}
423 	printk(KERN_ALERT
424 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
425 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
426 	/*
427 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
428 	 */
429 	if (vma->vm_ops)
430 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
431 				(unsigned long)vma->vm_ops->fault);
432 	if (vma->vm_file && vma->vm_file->f_op)
433 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
434 				(unsigned long)vma->vm_file->f_op->mmap);
435 	dump_stack();
436 	add_taint(TAINT_BAD_PAGE);
437 }
438 
439 static inline int is_cow_mapping(unsigned int flags)
440 {
441 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
442 }
443 
444 /*
445  * vm_normal_page -- This function gets the "struct page" associated with a pte.
446  *
447  * "Special" mappings do not wish to be associated with a "struct page" (either
448  * it doesn't exist, or it exists but they don't want to touch it). In this
449  * case, NULL is returned here. "Normal" mappings do have a struct page.
450  *
451  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
452  * pte bit, in which case this function is trivial. Secondly, an architecture
453  * may not have a spare pte bit, which requires a more complicated scheme,
454  * described below.
455  *
456  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
457  * special mapping (even if there are underlying and valid "struct pages").
458  * COWed pages of a VM_PFNMAP are always normal.
459  *
460  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
461  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
462  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
463  * mapping will always honor the rule
464  *
465  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
466  *
467  * And for normal mappings this is false.
468  *
469  * This restricts such mappings to be a linear translation from virtual address
470  * to pfn. To get around this restriction, we allow arbitrary mappings so long
471  * as the vma is not a COW mapping; in that case, we know that all ptes are
472  * special (because none can have been COWed).
473  *
474  *
475  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
476  *
477  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
478  * page" backing, however the difference is that _all_ pages with a struct
479  * page (that is, those where pfn_valid is true) are refcounted and considered
480  * normal pages by the VM. The disadvantage is that pages are refcounted
481  * (which can be slower and simply not an option for some PFNMAP users). The
482  * advantage is that we don't have to follow the strict linearity rule of
483  * PFNMAP mappings in order to support COWable mappings.
484  *
485  */
486 #ifdef __HAVE_ARCH_PTE_SPECIAL
487 # define HAVE_PTE_SPECIAL 1
488 #else
489 # define HAVE_PTE_SPECIAL 0
490 #endif
491 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
492 				pte_t pte)
493 {
494 	unsigned long pfn = pte_pfn(pte);
495 
496 	if (HAVE_PTE_SPECIAL) {
497 		if (likely(!pte_special(pte)))
498 			goto check_pfn;
499 		if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
500 			print_bad_pte(vma, addr, pte, NULL);
501 		return NULL;
502 	}
503 
504 	/* !HAVE_PTE_SPECIAL case follows: */
505 
506 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
507 		if (vma->vm_flags & VM_MIXEDMAP) {
508 			if (!pfn_valid(pfn))
509 				return NULL;
510 			goto out;
511 		} else {
512 			unsigned long off;
513 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
514 			if (pfn == vma->vm_pgoff + off)
515 				return NULL;
516 			if (!is_cow_mapping(vma->vm_flags))
517 				return NULL;
518 		}
519 	}
520 
521 check_pfn:
522 	if (unlikely(pfn > highest_memmap_pfn)) {
523 		print_bad_pte(vma, addr, pte, NULL);
524 		return NULL;
525 	}
526 
527 	/*
528 	 * NOTE! We still have PageReserved() pages in the page tables.
529 	 * eg. VDSO mappings can cause them to exist.
530 	 */
531 out:
532 	return pfn_to_page(pfn);
533 }
534 
535 /*
536  * copy one vm_area from one task to the other. Assumes the page tables
537  * already present in the new task to be cleared in the whole range
538  * covered by this vma.
539  */
540 
541 static inline void
542 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
543 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
544 		unsigned long addr, int *rss)
545 {
546 	unsigned long vm_flags = vma->vm_flags;
547 	pte_t pte = *src_pte;
548 	struct page *page;
549 
550 	/* pte contains position in swap or file, so copy. */
551 	if (unlikely(!pte_present(pte))) {
552 		if (!pte_file(pte)) {
553 			swp_entry_t entry = pte_to_swp_entry(pte);
554 
555 			swap_duplicate(entry);
556 			/* make sure dst_mm is on swapoff's mmlist. */
557 			if (unlikely(list_empty(&dst_mm->mmlist))) {
558 				spin_lock(&mmlist_lock);
559 				if (list_empty(&dst_mm->mmlist))
560 					list_add(&dst_mm->mmlist,
561 						 &src_mm->mmlist);
562 				spin_unlock(&mmlist_lock);
563 			}
564 			if (is_write_migration_entry(entry) &&
565 					is_cow_mapping(vm_flags)) {
566 				/*
567 				 * COW mappings require pages in both parent
568 				 * and child to be set to read.
569 				 */
570 				make_migration_entry_read(&entry);
571 				pte = swp_entry_to_pte(entry);
572 				set_pte_at(src_mm, addr, src_pte, pte);
573 			}
574 		}
575 		goto out_set_pte;
576 	}
577 
578 	/*
579 	 * If it's a COW mapping, write protect it both
580 	 * in the parent and the child
581 	 */
582 	if (is_cow_mapping(vm_flags)) {
583 		ptep_set_wrprotect(src_mm, addr, src_pte);
584 		pte = pte_wrprotect(pte);
585 	}
586 
587 	/*
588 	 * If it's a shared mapping, mark it clean in
589 	 * the child
590 	 */
591 	if (vm_flags & VM_SHARED)
592 		pte = pte_mkclean(pte);
593 	pte = pte_mkold(pte);
594 
595 	page = vm_normal_page(vma, addr, pte);
596 	if (page) {
597 		get_page(page);
598 		page_dup_rmap(page, vma, addr);
599 		rss[!!PageAnon(page)]++;
600 	}
601 
602 out_set_pte:
603 	set_pte_at(dst_mm, addr, dst_pte, pte);
604 }
605 
606 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
607 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
608 		unsigned long addr, unsigned long end)
609 {
610 	pte_t *src_pte, *dst_pte;
611 	spinlock_t *src_ptl, *dst_ptl;
612 	int progress = 0;
613 	int rss[2];
614 
615 again:
616 	rss[1] = rss[0] = 0;
617 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
618 	if (!dst_pte)
619 		return -ENOMEM;
620 	src_pte = pte_offset_map_nested(src_pmd, addr);
621 	src_ptl = pte_lockptr(src_mm, src_pmd);
622 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
623 	arch_enter_lazy_mmu_mode();
624 
625 	do {
626 		/*
627 		 * We are holding two locks at this point - either of them
628 		 * could generate latencies in another task on another CPU.
629 		 */
630 		if (progress >= 32) {
631 			progress = 0;
632 			if (need_resched() ||
633 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
634 				break;
635 		}
636 		if (pte_none(*src_pte)) {
637 			progress++;
638 			continue;
639 		}
640 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
641 		progress += 8;
642 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
643 
644 	arch_leave_lazy_mmu_mode();
645 	spin_unlock(src_ptl);
646 	pte_unmap_nested(src_pte - 1);
647 	add_mm_rss(dst_mm, rss[0], rss[1]);
648 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
649 	cond_resched();
650 	if (addr != end)
651 		goto again;
652 	return 0;
653 }
654 
655 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
656 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
657 		unsigned long addr, unsigned long end)
658 {
659 	pmd_t *src_pmd, *dst_pmd;
660 	unsigned long next;
661 
662 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
663 	if (!dst_pmd)
664 		return -ENOMEM;
665 	src_pmd = pmd_offset(src_pud, addr);
666 	do {
667 		next = pmd_addr_end(addr, end);
668 		if (pmd_none_or_clear_bad(src_pmd))
669 			continue;
670 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
671 						vma, addr, next))
672 			return -ENOMEM;
673 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
674 	return 0;
675 }
676 
677 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
678 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
679 		unsigned long addr, unsigned long end)
680 {
681 	pud_t *src_pud, *dst_pud;
682 	unsigned long next;
683 
684 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
685 	if (!dst_pud)
686 		return -ENOMEM;
687 	src_pud = pud_offset(src_pgd, addr);
688 	do {
689 		next = pud_addr_end(addr, end);
690 		if (pud_none_or_clear_bad(src_pud))
691 			continue;
692 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
693 						vma, addr, next))
694 			return -ENOMEM;
695 	} while (dst_pud++, src_pud++, addr = next, addr != end);
696 	return 0;
697 }
698 
699 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700 		struct vm_area_struct *vma)
701 {
702 	pgd_t *src_pgd, *dst_pgd;
703 	unsigned long next;
704 	unsigned long addr = vma->vm_start;
705 	unsigned long end = vma->vm_end;
706 	int ret;
707 
708 	/*
709 	 * Don't copy ptes where a page fault will fill them correctly.
710 	 * Fork becomes much lighter when there are big shared or private
711 	 * readonly mappings. The tradeoff is that copy_page_range is more
712 	 * efficient than faulting.
713 	 */
714 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
715 		if (!vma->anon_vma)
716 			return 0;
717 	}
718 
719 	if (is_vm_hugetlb_page(vma))
720 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
721 
722 	if (unlikely(is_pfn_mapping(vma))) {
723 		/*
724 		 * We do not free on error cases below as remove_vma
725 		 * gets called on error from higher level routine
726 		 */
727 		ret = track_pfn_vma_copy(vma);
728 		if (ret)
729 			return ret;
730 	}
731 
732 	/*
733 	 * We need to invalidate the secondary MMU mappings only when
734 	 * there could be a permission downgrade on the ptes of the
735 	 * parent mm. And a permission downgrade will only happen if
736 	 * is_cow_mapping() returns true.
737 	 */
738 	if (is_cow_mapping(vma->vm_flags))
739 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
740 
741 	ret = 0;
742 	dst_pgd = pgd_offset(dst_mm, addr);
743 	src_pgd = pgd_offset(src_mm, addr);
744 	do {
745 		next = pgd_addr_end(addr, end);
746 		if (pgd_none_or_clear_bad(src_pgd))
747 			continue;
748 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
749 					    vma, addr, next))) {
750 			ret = -ENOMEM;
751 			break;
752 		}
753 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
754 
755 	if (is_cow_mapping(vma->vm_flags))
756 		mmu_notifier_invalidate_range_end(src_mm,
757 						  vma->vm_start, end);
758 	return ret;
759 }
760 
761 static unsigned long zap_pte_range(struct mmu_gather *tlb,
762 				struct vm_area_struct *vma, pmd_t *pmd,
763 				unsigned long addr, unsigned long end,
764 				long *zap_work, struct zap_details *details)
765 {
766 	struct mm_struct *mm = tlb->mm;
767 	pte_t *pte;
768 	spinlock_t *ptl;
769 	int file_rss = 0;
770 	int anon_rss = 0;
771 
772 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
773 	arch_enter_lazy_mmu_mode();
774 	do {
775 		pte_t ptent = *pte;
776 		if (pte_none(ptent)) {
777 			(*zap_work)--;
778 			continue;
779 		}
780 
781 		(*zap_work) -= PAGE_SIZE;
782 
783 		if (pte_present(ptent)) {
784 			struct page *page;
785 
786 			page = vm_normal_page(vma, addr, ptent);
787 			if (unlikely(details) && page) {
788 				/*
789 				 * unmap_shared_mapping_pages() wants to
790 				 * invalidate cache without truncating:
791 				 * unmap shared but keep private pages.
792 				 */
793 				if (details->check_mapping &&
794 				    details->check_mapping != page->mapping)
795 					continue;
796 				/*
797 				 * Each page->index must be checked when
798 				 * invalidating or truncating nonlinear.
799 				 */
800 				if (details->nonlinear_vma &&
801 				    (page->index < details->first_index ||
802 				     page->index > details->last_index))
803 					continue;
804 			}
805 			ptent = ptep_get_and_clear_full(mm, addr, pte,
806 							tlb->fullmm);
807 			tlb_remove_tlb_entry(tlb, pte, addr);
808 			if (unlikely(!page))
809 				continue;
810 			if (unlikely(details) && details->nonlinear_vma
811 			    && linear_page_index(details->nonlinear_vma,
812 						addr) != page->index)
813 				set_pte_at(mm, addr, pte,
814 					   pgoff_to_pte(page->index));
815 			if (PageAnon(page))
816 				anon_rss--;
817 			else {
818 				if (pte_dirty(ptent))
819 					set_page_dirty(page);
820 				if (pte_young(ptent) &&
821 				    likely(!VM_SequentialReadHint(vma)))
822 					mark_page_accessed(page);
823 				file_rss--;
824 			}
825 			page_remove_rmap(page);
826 			if (unlikely(page_mapcount(page) < 0))
827 				print_bad_pte(vma, addr, ptent, page);
828 			tlb_remove_page(tlb, page);
829 			continue;
830 		}
831 		/*
832 		 * If details->check_mapping, we leave swap entries;
833 		 * if details->nonlinear_vma, we leave file entries.
834 		 */
835 		if (unlikely(details))
836 			continue;
837 		if (pte_file(ptent)) {
838 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
839 				print_bad_pte(vma, addr, ptent, NULL);
840 		} else if
841 		  (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
842 			print_bad_pte(vma, addr, ptent, NULL);
843 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
844 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
845 
846 	add_mm_rss(mm, file_rss, anon_rss);
847 	arch_leave_lazy_mmu_mode();
848 	pte_unmap_unlock(pte - 1, ptl);
849 
850 	return addr;
851 }
852 
853 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
854 				struct vm_area_struct *vma, pud_t *pud,
855 				unsigned long addr, unsigned long end,
856 				long *zap_work, struct zap_details *details)
857 {
858 	pmd_t *pmd;
859 	unsigned long next;
860 
861 	pmd = pmd_offset(pud, addr);
862 	do {
863 		next = pmd_addr_end(addr, end);
864 		if (pmd_none_or_clear_bad(pmd)) {
865 			(*zap_work)--;
866 			continue;
867 		}
868 		next = zap_pte_range(tlb, vma, pmd, addr, next,
869 						zap_work, details);
870 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
871 
872 	return addr;
873 }
874 
875 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
876 				struct vm_area_struct *vma, pgd_t *pgd,
877 				unsigned long addr, unsigned long end,
878 				long *zap_work, struct zap_details *details)
879 {
880 	pud_t *pud;
881 	unsigned long next;
882 
883 	pud = pud_offset(pgd, addr);
884 	do {
885 		next = pud_addr_end(addr, end);
886 		if (pud_none_or_clear_bad(pud)) {
887 			(*zap_work)--;
888 			continue;
889 		}
890 		next = zap_pmd_range(tlb, vma, pud, addr, next,
891 						zap_work, details);
892 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
893 
894 	return addr;
895 }
896 
897 static unsigned long unmap_page_range(struct mmu_gather *tlb,
898 				struct vm_area_struct *vma,
899 				unsigned long addr, unsigned long end,
900 				long *zap_work, struct zap_details *details)
901 {
902 	pgd_t *pgd;
903 	unsigned long next;
904 
905 	if (details && !details->check_mapping && !details->nonlinear_vma)
906 		details = NULL;
907 
908 	BUG_ON(addr >= end);
909 	tlb_start_vma(tlb, vma);
910 	pgd = pgd_offset(vma->vm_mm, addr);
911 	do {
912 		next = pgd_addr_end(addr, end);
913 		if (pgd_none_or_clear_bad(pgd)) {
914 			(*zap_work)--;
915 			continue;
916 		}
917 		next = zap_pud_range(tlb, vma, pgd, addr, next,
918 						zap_work, details);
919 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
920 	tlb_end_vma(tlb, vma);
921 
922 	return addr;
923 }
924 
925 #ifdef CONFIG_PREEMPT
926 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
927 #else
928 /* No preempt: go for improved straight-line efficiency */
929 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
930 #endif
931 
932 /**
933  * unmap_vmas - unmap a range of memory covered by a list of vma's
934  * @tlbp: address of the caller's struct mmu_gather
935  * @vma: the starting vma
936  * @start_addr: virtual address at which to start unmapping
937  * @end_addr: virtual address at which to end unmapping
938  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
939  * @details: details of nonlinear truncation or shared cache invalidation
940  *
941  * Returns the end address of the unmapping (restart addr if interrupted).
942  *
943  * Unmap all pages in the vma list.
944  *
945  * We aim to not hold locks for too long (for scheduling latency reasons).
946  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
947  * return the ending mmu_gather to the caller.
948  *
949  * Only addresses between `start' and `end' will be unmapped.
950  *
951  * The VMA list must be sorted in ascending virtual address order.
952  *
953  * unmap_vmas() assumes that the caller will flush the whole unmapped address
954  * range after unmap_vmas() returns.  So the only responsibility here is to
955  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
956  * drops the lock and schedules.
957  */
958 unsigned long unmap_vmas(struct mmu_gather **tlbp,
959 		struct vm_area_struct *vma, unsigned long start_addr,
960 		unsigned long end_addr, unsigned long *nr_accounted,
961 		struct zap_details *details)
962 {
963 	long zap_work = ZAP_BLOCK_SIZE;
964 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
965 	int tlb_start_valid = 0;
966 	unsigned long start = start_addr;
967 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
968 	int fullmm = (*tlbp)->fullmm;
969 	struct mm_struct *mm = vma->vm_mm;
970 
971 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
972 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
973 		unsigned long end;
974 
975 		start = max(vma->vm_start, start_addr);
976 		if (start >= vma->vm_end)
977 			continue;
978 		end = min(vma->vm_end, end_addr);
979 		if (end <= vma->vm_start)
980 			continue;
981 
982 		if (vma->vm_flags & VM_ACCOUNT)
983 			*nr_accounted += (end - start) >> PAGE_SHIFT;
984 
985 		if (unlikely(is_pfn_mapping(vma)))
986 			untrack_pfn_vma(vma, 0, 0);
987 
988 		while (start != end) {
989 			if (!tlb_start_valid) {
990 				tlb_start = start;
991 				tlb_start_valid = 1;
992 			}
993 
994 			if (unlikely(is_vm_hugetlb_page(vma))) {
995 				/*
996 				 * It is undesirable to test vma->vm_file as it
997 				 * should be non-null for valid hugetlb area.
998 				 * However, vm_file will be NULL in the error
999 				 * cleanup path of do_mmap_pgoff. When
1000 				 * hugetlbfs ->mmap method fails,
1001 				 * do_mmap_pgoff() nullifies vma->vm_file
1002 				 * before calling this function to clean up.
1003 				 * Since no pte has actually been setup, it is
1004 				 * safe to do nothing in this case.
1005 				 */
1006 				if (vma->vm_file) {
1007 					unmap_hugepage_range(vma, start, end, NULL);
1008 					zap_work -= (end - start) /
1009 					pages_per_huge_page(hstate_vma(vma));
1010 				}
1011 
1012 				start = end;
1013 			} else
1014 				start = unmap_page_range(*tlbp, vma,
1015 						start, end, &zap_work, details);
1016 
1017 			if (zap_work > 0) {
1018 				BUG_ON(start != end);
1019 				break;
1020 			}
1021 
1022 			tlb_finish_mmu(*tlbp, tlb_start, start);
1023 
1024 			if (need_resched() ||
1025 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1026 				if (i_mmap_lock) {
1027 					*tlbp = NULL;
1028 					goto out;
1029 				}
1030 				cond_resched();
1031 			}
1032 
1033 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1034 			tlb_start_valid = 0;
1035 			zap_work = ZAP_BLOCK_SIZE;
1036 		}
1037 	}
1038 out:
1039 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1040 	return start;	/* which is now the end (or restart) address */
1041 }
1042 
1043 /**
1044  * zap_page_range - remove user pages in a given range
1045  * @vma: vm_area_struct holding the applicable pages
1046  * @address: starting address of pages to zap
1047  * @size: number of bytes to zap
1048  * @details: details of nonlinear truncation or shared cache invalidation
1049  */
1050 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1051 		unsigned long size, struct zap_details *details)
1052 {
1053 	struct mm_struct *mm = vma->vm_mm;
1054 	struct mmu_gather *tlb;
1055 	unsigned long end = address + size;
1056 	unsigned long nr_accounted = 0;
1057 
1058 	lru_add_drain();
1059 	tlb = tlb_gather_mmu(mm, 0);
1060 	update_hiwater_rss(mm);
1061 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1062 	if (tlb)
1063 		tlb_finish_mmu(tlb, address, end);
1064 	return end;
1065 }
1066 
1067 /**
1068  * zap_vma_ptes - remove ptes mapping the vma
1069  * @vma: vm_area_struct holding ptes to be zapped
1070  * @address: starting address of pages to zap
1071  * @size: number of bytes to zap
1072  *
1073  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1074  *
1075  * The entire address range must be fully contained within the vma.
1076  *
1077  * Returns 0 if successful.
1078  */
1079 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1080 		unsigned long size)
1081 {
1082 	if (address < vma->vm_start || address + size > vma->vm_end ||
1083 	    		!(vma->vm_flags & VM_PFNMAP))
1084 		return -1;
1085 	zap_page_range(vma, address, size, NULL);
1086 	return 0;
1087 }
1088 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1089 
1090 /*
1091  * Do a quick page-table lookup for a single page.
1092  */
1093 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1094 			unsigned int flags)
1095 {
1096 	pgd_t *pgd;
1097 	pud_t *pud;
1098 	pmd_t *pmd;
1099 	pte_t *ptep, pte;
1100 	spinlock_t *ptl;
1101 	struct page *page;
1102 	struct mm_struct *mm = vma->vm_mm;
1103 
1104 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1105 	if (!IS_ERR(page)) {
1106 		BUG_ON(flags & FOLL_GET);
1107 		goto out;
1108 	}
1109 
1110 	page = NULL;
1111 	pgd = pgd_offset(mm, address);
1112 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1113 		goto no_page_table;
1114 
1115 	pud = pud_offset(pgd, address);
1116 	if (pud_none(*pud))
1117 		goto no_page_table;
1118 	if (pud_huge(*pud)) {
1119 		BUG_ON(flags & FOLL_GET);
1120 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1121 		goto out;
1122 	}
1123 	if (unlikely(pud_bad(*pud)))
1124 		goto no_page_table;
1125 
1126 	pmd = pmd_offset(pud, address);
1127 	if (pmd_none(*pmd))
1128 		goto no_page_table;
1129 	if (pmd_huge(*pmd)) {
1130 		BUG_ON(flags & FOLL_GET);
1131 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1132 		goto out;
1133 	}
1134 	if (unlikely(pmd_bad(*pmd)))
1135 		goto no_page_table;
1136 
1137 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1138 
1139 	pte = *ptep;
1140 	if (!pte_present(pte))
1141 		goto no_page;
1142 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1143 		goto unlock;
1144 	page = vm_normal_page(vma, address, pte);
1145 	if (unlikely(!page))
1146 		goto bad_page;
1147 
1148 	if (flags & FOLL_GET)
1149 		get_page(page);
1150 	if (flags & FOLL_TOUCH) {
1151 		if ((flags & FOLL_WRITE) &&
1152 		    !pte_dirty(pte) && !PageDirty(page))
1153 			set_page_dirty(page);
1154 		/*
1155 		 * pte_mkyoung() would be more correct here, but atomic care
1156 		 * is needed to avoid losing the dirty bit: it is easier to use
1157 		 * mark_page_accessed().
1158 		 */
1159 		mark_page_accessed(page);
1160 	}
1161 unlock:
1162 	pte_unmap_unlock(ptep, ptl);
1163 out:
1164 	return page;
1165 
1166 bad_page:
1167 	pte_unmap_unlock(ptep, ptl);
1168 	return ERR_PTR(-EFAULT);
1169 
1170 no_page:
1171 	pte_unmap_unlock(ptep, ptl);
1172 	if (!pte_none(pte))
1173 		return page;
1174 	/* Fall through to ZERO_PAGE handling */
1175 no_page_table:
1176 	/*
1177 	 * When core dumping an enormous anonymous area that nobody
1178 	 * has touched so far, we don't want to allocate page tables.
1179 	 */
1180 	if (flags & FOLL_ANON) {
1181 		page = ZERO_PAGE(0);
1182 		if (flags & FOLL_GET)
1183 			get_page(page);
1184 		BUG_ON(flags & FOLL_WRITE);
1185 	}
1186 	return page;
1187 }
1188 
1189 /* Can we do the FOLL_ANON optimization? */
1190 static inline int use_zero_page(struct vm_area_struct *vma)
1191 {
1192 	/*
1193 	 * We don't want to optimize FOLL_ANON for make_pages_present()
1194 	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1195 	 * we want to get the page from the page tables to make sure
1196 	 * that we serialize and update with any other user of that
1197 	 * mapping.
1198 	 */
1199 	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1200 		return 0;
1201 	/*
1202 	 * And if we have a fault routine, it's not an anonymous region.
1203 	 */
1204 	return !vma->vm_ops || !vma->vm_ops->fault;
1205 }
1206 
1207 
1208 
1209 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1210 		     unsigned long start, int nr_pages, int flags,
1211 		     struct page **pages, struct vm_area_struct **vmas)
1212 {
1213 	int i;
1214 	unsigned int vm_flags = 0;
1215 	int write = !!(flags & GUP_FLAGS_WRITE);
1216 	int force = !!(flags & GUP_FLAGS_FORCE);
1217 	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1218 	int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
1219 
1220 	if (nr_pages <= 0)
1221 		return 0;
1222 	/*
1223 	 * Require read or write permissions.
1224 	 * If 'force' is set, we only require the "MAY" flags.
1225 	 */
1226 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1227 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1228 	i = 0;
1229 
1230 	do {
1231 		struct vm_area_struct *vma;
1232 		unsigned int foll_flags;
1233 
1234 		vma = find_extend_vma(mm, start);
1235 		if (!vma && in_gate_area(tsk, start)) {
1236 			unsigned long pg = start & PAGE_MASK;
1237 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1238 			pgd_t *pgd;
1239 			pud_t *pud;
1240 			pmd_t *pmd;
1241 			pte_t *pte;
1242 
1243 			/* user gate pages are read-only */
1244 			if (!ignore && write)
1245 				return i ? : -EFAULT;
1246 			if (pg > TASK_SIZE)
1247 				pgd = pgd_offset_k(pg);
1248 			else
1249 				pgd = pgd_offset_gate(mm, pg);
1250 			BUG_ON(pgd_none(*pgd));
1251 			pud = pud_offset(pgd, pg);
1252 			BUG_ON(pud_none(*pud));
1253 			pmd = pmd_offset(pud, pg);
1254 			if (pmd_none(*pmd))
1255 				return i ? : -EFAULT;
1256 			pte = pte_offset_map(pmd, pg);
1257 			if (pte_none(*pte)) {
1258 				pte_unmap(pte);
1259 				return i ? : -EFAULT;
1260 			}
1261 			if (pages) {
1262 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1263 				pages[i] = page;
1264 				if (page)
1265 					get_page(page);
1266 			}
1267 			pte_unmap(pte);
1268 			if (vmas)
1269 				vmas[i] = gate_vma;
1270 			i++;
1271 			start += PAGE_SIZE;
1272 			nr_pages--;
1273 			continue;
1274 		}
1275 
1276 		if (!vma ||
1277 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1278 		    (!ignore && !(vm_flags & vma->vm_flags)))
1279 			return i ? : -EFAULT;
1280 
1281 		if (is_vm_hugetlb_page(vma)) {
1282 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1283 						&start, &nr_pages, i, write);
1284 			continue;
1285 		}
1286 
1287 		foll_flags = FOLL_TOUCH;
1288 		if (pages)
1289 			foll_flags |= FOLL_GET;
1290 		if (!write && use_zero_page(vma))
1291 			foll_flags |= FOLL_ANON;
1292 
1293 		do {
1294 			struct page *page;
1295 
1296 			/*
1297 			 * If we have a pending SIGKILL, don't keep faulting
1298 			 * pages and potentially allocating memory, unless
1299 			 * current is handling munlock--e.g., on exit. In
1300 			 * that case, we are not allocating memory.  Rather,
1301 			 * we're only unlocking already resident/mapped pages.
1302 			 */
1303 			if (unlikely(!ignore_sigkill &&
1304 					fatal_signal_pending(current)))
1305 				return i ? i : -ERESTARTSYS;
1306 
1307 			if (write)
1308 				foll_flags |= FOLL_WRITE;
1309 
1310 			cond_resched();
1311 			while (!(page = follow_page(vma, start, foll_flags))) {
1312 				int ret;
1313 
1314 				ret = handle_mm_fault(mm, vma, start,
1315 					(foll_flags & FOLL_WRITE) ?
1316 					FAULT_FLAG_WRITE : 0);
1317 
1318 				if (ret & VM_FAULT_ERROR) {
1319 					if (ret & VM_FAULT_OOM)
1320 						return i ? i : -ENOMEM;
1321 					else if (ret & VM_FAULT_SIGBUS)
1322 						return i ? i : -EFAULT;
1323 					BUG();
1324 				}
1325 				if (ret & VM_FAULT_MAJOR)
1326 					tsk->maj_flt++;
1327 				else
1328 					tsk->min_flt++;
1329 
1330 				/*
1331 				 * The VM_FAULT_WRITE bit tells us that
1332 				 * do_wp_page has broken COW when necessary,
1333 				 * even if maybe_mkwrite decided not to set
1334 				 * pte_write. We can thus safely do subsequent
1335 				 * page lookups as if they were reads. But only
1336 				 * do so when looping for pte_write is futile:
1337 				 * in some cases userspace may also be wanting
1338 				 * to write to the gotten user page, which a
1339 				 * read fault here might prevent (a readonly
1340 				 * page might get reCOWed by userspace write).
1341 				 */
1342 				if ((ret & VM_FAULT_WRITE) &&
1343 				    !(vma->vm_flags & VM_WRITE))
1344 					foll_flags &= ~FOLL_WRITE;
1345 
1346 				cond_resched();
1347 			}
1348 			if (IS_ERR(page))
1349 				return i ? i : PTR_ERR(page);
1350 			if (pages) {
1351 				pages[i] = page;
1352 
1353 				flush_anon_page(vma, page, start);
1354 				flush_dcache_page(page);
1355 			}
1356 			if (vmas)
1357 				vmas[i] = vma;
1358 			i++;
1359 			start += PAGE_SIZE;
1360 			nr_pages--;
1361 		} while (nr_pages && start < vma->vm_end);
1362 	} while (nr_pages);
1363 	return i;
1364 }
1365 
1366 /**
1367  * get_user_pages() - pin user pages in memory
1368  * @tsk:	task_struct of target task
1369  * @mm:		mm_struct of target mm
1370  * @start:	starting user address
1371  * @nr_pages:	number of pages from start to pin
1372  * @write:	whether pages will be written to by the caller
1373  * @force:	whether to force write access even if user mapping is
1374  *		readonly. This will result in the page being COWed even
1375  *		in MAP_SHARED mappings. You do not want this.
1376  * @pages:	array that receives pointers to the pages pinned.
1377  *		Should be at least nr_pages long. Or NULL, if caller
1378  *		only intends to ensure the pages are faulted in.
1379  * @vmas:	array of pointers to vmas corresponding to each page.
1380  *		Or NULL if the caller does not require them.
1381  *
1382  * Returns number of pages pinned. This may be fewer than the number
1383  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1384  * were pinned, returns -errno. Each page returned must be released
1385  * with a put_page() call when it is finished with. vmas will only
1386  * remain valid while mmap_sem is held.
1387  *
1388  * Must be called with mmap_sem held for read or write.
1389  *
1390  * get_user_pages walks a process's page tables and takes a reference to
1391  * each struct page that each user address corresponds to at a given
1392  * instant. That is, it takes the page that would be accessed if a user
1393  * thread accesses the given user virtual address at that instant.
1394  *
1395  * This does not guarantee that the page exists in the user mappings when
1396  * get_user_pages returns, and there may even be a completely different
1397  * page there in some cases (eg. if mmapped pagecache has been invalidated
1398  * and subsequently re faulted). However it does guarantee that the page
1399  * won't be freed completely. And mostly callers simply care that the page
1400  * contains data that was valid *at some point in time*. Typically, an IO
1401  * or similar operation cannot guarantee anything stronger anyway because
1402  * locks can't be held over the syscall boundary.
1403  *
1404  * If write=0, the page must not be written to. If the page is written to,
1405  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1406  * after the page is finished with, and before put_page is called.
1407  *
1408  * get_user_pages is typically used for fewer-copy IO operations, to get a
1409  * handle on the memory by some means other than accesses via the user virtual
1410  * addresses. The pages may be submitted for DMA to devices or accessed via
1411  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1412  * use the correct cache flushing APIs.
1413  *
1414  * See also get_user_pages_fast, for performance critical applications.
1415  */
1416 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1417 		unsigned long start, int nr_pages, int write, int force,
1418 		struct page **pages, struct vm_area_struct **vmas)
1419 {
1420 	int flags = 0;
1421 
1422 	if (write)
1423 		flags |= GUP_FLAGS_WRITE;
1424 	if (force)
1425 		flags |= GUP_FLAGS_FORCE;
1426 
1427 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1428 }
1429 
1430 EXPORT_SYMBOL(get_user_pages);
1431 
1432 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1433 			spinlock_t **ptl)
1434 {
1435 	pgd_t * pgd = pgd_offset(mm, addr);
1436 	pud_t * pud = pud_alloc(mm, pgd, addr);
1437 	if (pud) {
1438 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1439 		if (pmd)
1440 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1441 	}
1442 	return NULL;
1443 }
1444 
1445 /*
1446  * This is the old fallback for page remapping.
1447  *
1448  * For historical reasons, it only allows reserved pages. Only
1449  * old drivers should use this, and they needed to mark their
1450  * pages reserved for the old functions anyway.
1451  */
1452 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1453 			struct page *page, pgprot_t prot)
1454 {
1455 	struct mm_struct *mm = vma->vm_mm;
1456 	int retval;
1457 	pte_t *pte;
1458 	spinlock_t *ptl;
1459 
1460 	retval = -EINVAL;
1461 	if (PageAnon(page))
1462 		goto out;
1463 	retval = -ENOMEM;
1464 	flush_dcache_page(page);
1465 	pte = get_locked_pte(mm, addr, &ptl);
1466 	if (!pte)
1467 		goto out;
1468 	retval = -EBUSY;
1469 	if (!pte_none(*pte))
1470 		goto out_unlock;
1471 
1472 	/* Ok, finally just insert the thing.. */
1473 	get_page(page);
1474 	inc_mm_counter(mm, file_rss);
1475 	page_add_file_rmap(page);
1476 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1477 
1478 	retval = 0;
1479 	pte_unmap_unlock(pte, ptl);
1480 	return retval;
1481 out_unlock:
1482 	pte_unmap_unlock(pte, ptl);
1483 out:
1484 	return retval;
1485 }
1486 
1487 /**
1488  * vm_insert_page - insert single page into user vma
1489  * @vma: user vma to map to
1490  * @addr: target user address of this page
1491  * @page: source kernel page
1492  *
1493  * This allows drivers to insert individual pages they've allocated
1494  * into a user vma.
1495  *
1496  * The page has to be a nice clean _individual_ kernel allocation.
1497  * If you allocate a compound page, you need to have marked it as
1498  * such (__GFP_COMP), or manually just split the page up yourself
1499  * (see split_page()).
1500  *
1501  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1502  * took an arbitrary page protection parameter. This doesn't allow
1503  * that. Your vma protection will have to be set up correctly, which
1504  * means that if you want a shared writable mapping, you'd better
1505  * ask for a shared writable mapping!
1506  *
1507  * The page does not need to be reserved.
1508  */
1509 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1510 			struct page *page)
1511 {
1512 	if (addr < vma->vm_start || addr >= vma->vm_end)
1513 		return -EFAULT;
1514 	if (!page_count(page))
1515 		return -EINVAL;
1516 	vma->vm_flags |= VM_INSERTPAGE;
1517 	return insert_page(vma, addr, page, vma->vm_page_prot);
1518 }
1519 EXPORT_SYMBOL(vm_insert_page);
1520 
1521 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1522 			unsigned long pfn, pgprot_t prot)
1523 {
1524 	struct mm_struct *mm = vma->vm_mm;
1525 	int retval;
1526 	pte_t *pte, entry;
1527 	spinlock_t *ptl;
1528 
1529 	retval = -ENOMEM;
1530 	pte = get_locked_pte(mm, addr, &ptl);
1531 	if (!pte)
1532 		goto out;
1533 	retval = -EBUSY;
1534 	if (!pte_none(*pte))
1535 		goto out_unlock;
1536 
1537 	/* Ok, finally just insert the thing.. */
1538 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1539 	set_pte_at(mm, addr, pte, entry);
1540 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1541 
1542 	retval = 0;
1543 out_unlock:
1544 	pte_unmap_unlock(pte, ptl);
1545 out:
1546 	return retval;
1547 }
1548 
1549 /**
1550  * vm_insert_pfn - insert single pfn into user vma
1551  * @vma: user vma to map to
1552  * @addr: target user address of this page
1553  * @pfn: source kernel pfn
1554  *
1555  * Similar to vm_inert_page, this allows drivers to insert individual pages
1556  * they've allocated into a user vma. Same comments apply.
1557  *
1558  * This function should only be called from a vm_ops->fault handler, and
1559  * in that case the handler should return NULL.
1560  *
1561  * vma cannot be a COW mapping.
1562  *
1563  * As this is called only for pages that do not currently exist, we
1564  * do not need to flush old virtual caches or the TLB.
1565  */
1566 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1567 			unsigned long pfn)
1568 {
1569 	int ret;
1570 	pgprot_t pgprot = vma->vm_page_prot;
1571 	/*
1572 	 * Technically, architectures with pte_special can avoid all these
1573 	 * restrictions (same for remap_pfn_range).  However we would like
1574 	 * consistency in testing and feature parity among all, so we should
1575 	 * try to keep these invariants in place for everybody.
1576 	 */
1577 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1578 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1579 						(VM_PFNMAP|VM_MIXEDMAP));
1580 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1581 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1582 
1583 	if (addr < vma->vm_start || addr >= vma->vm_end)
1584 		return -EFAULT;
1585 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1586 		return -EINVAL;
1587 
1588 	ret = insert_pfn(vma, addr, pfn, pgprot);
1589 
1590 	if (ret)
1591 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1592 
1593 	return ret;
1594 }
1595 EXPORT_SYMBOL(vm_insert_pfn);
1596 
1597 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1598 			unsigned long pfn)
1599 {
1600 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1601 
1602 	if (addr < vma->vm_start || addr >= vma->vm_end)
1603 		return -EFAULT;
1604 
1605 	/*
1606 	 * If we don't have pte special, then we have to use the pfn_valid()
1607 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1608 	 * refcount the page if pfn_valid is true (hence insert_page rather
1609 	 * than insert_pfn).
1610 	 */
1611 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1612 		struct page *page;
1613 
1614 		page = pfn_to_page(pfn);
1615 		return insert_page(vma, addr, page, vma->vm_page_prot);
1616 	}
1617 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1618 }
1619 EXPORT_SYMBOL(vm_insert_mixed);
1620 
1621 /*
1622  * maps a range of physical memory into the requested pages. the old
1623  * mappings are removed. any references to nonexistent pages results
1624  * in null mappings (currently treated as "copy-on-access")
1625  */
1626 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1627 			unsigned long addr, unsigned long end,
1628 			unsigned long pfn, pgprot_t prot)
1629 {
1630 	pte_t *pte;
1631 	spinlock_t *ptl;
1632 
1633 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1634 	if (!pte)
1635 		return -ENOMEM;
1636 	arch_enter_lazy_mmu_mode();
1637 	do {
1638 		BUG_ON(!pte_none(*pte));
1639 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1640 		pfn++;
1641 	} while (pte++, addr += PAGE_SIZE, addr != end);
1642 	arch_leave_lazy_mmu_mode();
1643 	pte_unmap_unlock(pte - 1, ptl);
1644 	return 0;
1645 }
1646 
1647 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1648 			unsigned long addr, unsigned long end,
1649 			unsigned long pfn, pgprot_t prot)
1650 {
1651 	pmd_t *pmd;
1652 	unsigned long next;
1653 
1654 	pfn -= addr >> PAGE_SHIFT;
1655 	pmd = pmd_alloc(mm, pud, addr);
1656 	if (!pmd)
1657 		return -ENOMEM;
1658 	do {
1659 		next = pmd_addr_end(addr, end);
1660 		if (remap_pte_range(mm, pmd, addr, next,
1661 				pfn + (addr >> PAGE_SHIFT), prot))
1662 			return -ENOMEM;
1663 	} while (pmd++, addr = next, addr != end);
1664 	return 0;
1665 }
1666 
1667 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1668 			unsigned long addr, unsigned long end,
1669 			unsigned long pfn, pgprot_t prot)
1670 {
1671 	pud_t *pud;
1672 	unsigned long next;
1673 
1674 	pfn -= addr >> PAGE_SHIFT;
1675 	pud = pud_alloc(mm, pgd, addr);
1676 	if (!pud)
1677 		return -ENOMEM;
1678 	do {
1679 		next = pud_addr_end(addr, end);
1680 		if (remap_pmd_range(mm, pud, addr, next,
1681 				pfn + (addr >> PAGE_SHIFT), prot))
1682 			return -ENOMEM;
1683 	} while (pud++, addr = next, addr != end);
1684 	return 0;
1685 }
1686 
1687 /**
1688  * remap_pfn_range - remap kernel memory to userspace
1689  * @vma: user vma to map to
1690  * @addr: target user address to start at
1691  * @pfn: physical address of kernel memory
1692  * @size: size of map area
1693  * @prot: page protection flags for this mapping
1694  *
1695  *  Note: this is only safe if the mm semaphore is held when called.
1696  */
1697 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1698 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1699 {
1700 	pgd_t *pgd;
1701 	unsigned long next;
1702 	unsigned long end = addr + PAGE_ALIGN(size);
1703 	struct mm_struct *mm = vma->vm_mm;
1704 	int err;
1705 
1706 	/*
1707 	 * Physically remapped pages are special. Tell the
1708 	 * rest of the world about it:
1709 	 *   VM_IO tells people not to look at these pages
1710 	 *	(accesses can have side effects).
1711 	 *   VM_RESERVED is specified all over the place, because
1712 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1713 	 *	in 2.6 the LRU scan won't even find its pages, so this
1714 	 *	flag means no more than count its pages in reserved_vm,
1715 	 * 	and omit it from core dump, even when VM_IO turned off.
1716 	 *   VM_PFNMAP tells the core MM that the base pages are just
1717 	 *	raw PFN mappings, and do not have a "struct page" associated
1718 	 *	with them.
1719 	 *
1720 	 * There's a horrible special case to handle copy-on-write
1721 	 * behaviour that some programs depend on. We mark the "original"
1722 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1723 	 */
1724 	if (addr == vma->vm_start && end == vma->vm_end) {
1725 		vma->vm_pgoff = pfn;
1726 		vma->vm_flags |= VM_PFN_AT_MMAP;
1727 	} else if (is_cow_mapping(vma->vm_flags))
1728 		return -EINVAL;
1729 
1730 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1731 
1732 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1733 	if (err) {
1734 		/*
1735 		 * To indicate that track_pfn related cleanup is not
1736 		 * needed from higher level routine calling unmap_vmas
1737 		 */
1738 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1739 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
1740 		return -EINVAL;
1741 	}
1742 
1743 	BUG_ON(addr >= end);
1744 	pfn -= addr >> PAGE_SHIFT;
1745 	pgd = pgd_offset(mm, addr);
1746 	flush_cache_range(vma, addr, end);
1747 	do {
1748 		next = pgd_addr_end(addr, end);
1749 		err = remap_pud_range(mm, pgd, addr, next,
1750 				pfn + (addr >> PAGE_SHIFT), prot);
1751 		if (err)
1752 			break;
1753 	} while (pgd++, addr = next, addr != end);
1754 
1755 	if (err)
1756 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1757 
1758 	return err;
1759 }
1760 EXPORT_SYMBOL(remap_pfn_range);
1761 
1762 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1763 				     unsigned long addr, unsigned long end,
1764 				     pte_fn_t fn, void *data)
1765 {
1766 	pte_t *pte;
1767 	int err;
1768 	pgtable_t token;
1769 	spinlock_t *uninitialized_var(ptl);
1770 
1771 	pte = (mm == &init_mm) ?
1772 		pte_alloc_kernel(pmd, addr) :
1773 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1774 	if (!pte)
1775 		return -ENOMEM;
1776 
1777 	BUG_ON(pmd_huge(*pmd));
1778 
1779 	arch_enter_lazy_mmu_mode();
1780 
1781 	token = pmd_pgtable(*pmd);
1782 
1783 	do {
1784 		err = fn(pte, token, addr, data);
1785 		if (err)
1786 			break;
1787 	} while (pte++, addr += PAGE_SIZE, addr != end);
1788 
1789 	arch_leave_lazy_mmu_mode();
1790 
1791 	if (mm != &init_mm)
1792 		pte_unmap_unlock(pte-1, ptl);
1793 	return err;
1794 }
1795 
1796 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1797 				     unsigned long addr, unsigned long end,
1798 				     pte_fn_t fn, void *data)
1799 {
1800 	pmd_t *pmd;
1801 	unsigned long next;
1802 	int err;
1803 
1804 	BUG_ON(pud_huge(*pud));
1805 
1806 	pmd = pmd_alloc(mm, pud, addr);
1807 	if (!pmd)
1808 		return -ENOMEM;
1809 	do {
1810 		next = pmd_addr_end(addr, end);
1811 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1812 		if (err)
1813 			break;
1814 	} while (pmd++, addr = next, addr != end);
1815 	return err;
1816 }
1817 
1818 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1819 				     unsigned long addr, unsigned long end,
1820 				     pte_fn_t fn, void *data)
1821 {
1822 	pud_t *pud;
1823 	unsigned long next;
1824 	int err;
1825 
1826 	pud = pud_alloc(mm, pgd, addr);
1827 	if (!pud)
1828 		return -ENOMEM;
1829 	do {
1830 		next = pud_addr_end(addr, end);
1831 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1832 		if (err)
1833 			break;
1834 	} while (pud++, addr = next, addr != end);
1835 	return err;
1836 }
1837 
1838 /*
1839  * Scan a region of virtual memory, filling in page tables as necessary
1840  * and calling a provided function on each leaf page table.
1841  */
1842 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1843 			unsigned long size, pte_fn_t fn, void *data)
1844 {
1845 	pgd_t *pgd;
1846 	unsigned long next;
1847 	unsigned long start = addr, end = addr + size;
1848 	int err;
1849 
1850 	BUG_ON(addr >= end);
1851 	mmu_notifier_invalidate_range_start(mm, start, end);
1852 	pgd = pgd_offset(mm, addr);
1853 	do {
1854 		next = pgd_addr_end(addr, end);
1855 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1856 		if (err)
1857 			break;
1858 	} while (pgd++, addr = next, addr != end);
1859 	mmu_notifier_invalidate_range_end(mm, start, end);
1860 	return err;
1861 }
1862 EXPORT_SYMBOL_GPL(apply_to_page_range);
1863 
1864 /*
1865  * handle_pte_fault chooses page fault handler according to an entry
1866  * which was read non-atomically.  Before making any commitment, on
1867  * those architectures or configurations (e.g. i386 with PAE) which
1868  * might give a mix of unmatched parts, do_swap_page and do_file_page
1869  * must check under lock before unmapping the pte and proceeding
1870  * (but do_wp_page is only called after already making such a check;
1871  * and do_anonymous_page and do_no_page can safely check later on).
1872  */
1873 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1874 				pte_t *page_table, pte_t orig_pte)
1875 {
1876 	int same = 1;
1877 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1878 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1879 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1880 		spin_lock(ptl);
1881 		same = pte_same(*page_table, orig_pte);
1882 		spin_unlock(ptl);
1883 	}
1884 #endif
1885 	pte_unmap(page_table);
1886 	return same;
1887 }
1888 
1889 /*
1890  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1891  * servicing faults for write access.  In the normal case, do always want
1892  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1893  * that do not have writing enabled, when used by access_process_vm.
1894  */
1895 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1896 {
1897 	if (likely(vma->vm_flags & VM_WRITE))
1898 		pte = pte_mkwrite(pte);
1899 	return pte;
1900 }
1901 
1902 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1903 {
1904 	/*
1905 	 * If the source page was a PFN mapping, we don't have
1906 	 * a "struct page" for it. We do a best-effort copy by
1907 	 * just copying from the original user address. If that
1908 	 * fails, we just zero-fill it. Live with it.
1909 	 */
1910 	if (unlikely(!src)) {
1911 		void *kaddr = kmap_atomic(dst, KM_USER0);
1912 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1913 
1914 		/*
1915 		 * This really shouldn't fail, because the page is there
1916 		 * in the page tables. But it might just be unreadable,
1917 		 * in which case we just give up and fill the result with
1918 		 * zeroes.
1919 		 */
1920 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1921 			memset(kaddr, 0, PAGE_SIZE);
1922 		kunmap_atomic(kaddr, KM_USER0);
1923 		flush_dcache_page(dst);
1924 	} else
1925 		copy_user_highpage(dst, src, va, vma);
1926 }
1927 
1928 /*
1929  * This routine handles present pages, when users try to write
1930  * to a shared page. It is done by copying the page to a new address
1931  * and decrementing the shared-page counter for the old page.
1932  *
1933  * Note that this routine assumes that the protection checks have been
1934  * done by the caller (the low-level page fault routine in most cases).
1935  * Thus we can safely just mark it writable once we've done any necessary
1936  * COW.
1937  *
1938  * We also mark the page dirty at this point even though the page will
1939  * change only once the write actually happens. This avoids a few races,
1940  * and potentially makes it more efficient.
1941  *
1942  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1943  * but allow concurrent faults), with pte both mapped and locked.
1944  * We return with mmap_sem still held, but pte unmapped and unlocked.
1945  */
1946 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1947 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1948 		spinlock_t *ptl, pte_t orig_pte)
1949 {
1950 	struct page *old_page, *new_page;
1951 	pte_t entry;
1952 	int reuse = 0, ret = 0;
1953 	int page_mkwrite = 0;
1954 	struct page *dirty_page = NULL;
1955 
1956 	old_page = vm_normal_page(vma, address, orig_pte);
1957 	if (!old_page) {
1958 		/*
1959 		 * VM_MIXEDMAP !pfn_valid() case
1960 		 *
1961 		 * We should not cow pages in a shared writeable mapping.
1962 		 * Just mark the pages writable as we can't do any dirty
1963 		 * accounting on raw pfn maps.
1964 		 */
1965 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1966 				     (VM_WRITE|VM_SHARED))
1967 			goto reuse;
1968 		goto gotten;
1969 	}
1970 
1971 	/*
1972 	 * Take out anonymous pages first, anonymous shared vmas are
1973 	 * not dirty accountable.
1974 	 */
1975 	if (PageAnon(old_page)) {
1976 		if (!trylock_page(old_page)) {
1977 			page_cache_get(old_page);
1978 			pte_unmap_unlock(page_table, ptl);
1979 			lock_page(old_page);
1980 			page_table = pte_offset_map_lock(mm, pmd, address,
1981 							 &ptl);
1982 			if (!pte_same(*page_table, orig_pte)) {
1983 				unlock_page(old_page);
1984 				page_cache_release(old_page);
1985 				goto unlock;
1986 			}
1987 			page_cache_release(old_page);
1988 		}
1989 		reuse = reuse_swap_page(old_page);
1990 		unlock_page(old_page);
1991 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1992 					(VM_WRITE|VM_SHARED))) {
1993 		/*
1994 		 * Only catch write-faults on shared writable pages,
1995 		 * read-only shared pages can get COWed by
1996 		 * get_user_pages(.write=1, .force=1).
1997 		 */
1998 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1999 			struct vm_fault vmf;
2000 			int tmp;
2001 
2002 			vmf.virtual_address = (void __user *)(address &
2003 								PAGE_MASK);
2004 			vmf.pgoff = old_page->index;
2005 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2006 			vmf.page = old_page;
2007 
2008 			/*
2009 			 * Notify the address space that the page is about to
2010 			 * become writable so that it can prohibit this or wait
2011 			 * for the page to get into an appropriate state.
2012 			 *
2013 			 * We do this without the lock held, so that it can
2014 			 * sleep if it needs to.
2015 			 */
2016 			page_cache_get(old_page);
2017 			pte_unmap_unlock(page_table, ptl);
2018 
2019 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2020 			if (unlikely(tmp &
2021 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2022 				ret = tmp;
2023 				goto unwritable_page;
2024 			}
2025 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2026 				lock_page(old_page);
2027 				if (!old_page->mapping) {
2028 					ret = 0; /* retry the fault */
2029 					unlock_page(old_page);
2030 					goto unwritable_page;
2031 				}
2032 			} else
2033 				VM_BUG_ON(!PageLocked(old_page));
2034 
2035 			/*
2036 			 * Since we dropped the lock we need to revalidate
2037 			 * the PTE as someone else may have changed it.  If
2038 			 * they did, we just return, as we can count on the
2039 			 * MMU to tell us if they didn't also make it writable.
2040 			 */
2041 			page_table = pte_offset_map_lock(mm, pmd, address,
2042 							 &ptl);
2043 			if (!pte_same(*page_table, orig_pte)) {
2044 				unlock_page(old_page);
2045 				page_cache_release(old_page);
2046 				goto unlock;
2047 			}
2048 
2049 			page_mkwrite = 1;
2050 		}
2051 		dirty_page = old_page;
2052 		get_page(dirty_page);
2053 		reuse = 1;
2054 	}
2055 
2056 	if (reuse) {
2057 reuse:
2058 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2059 		entry = pte_mkyoung(orig_pte);
2060 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2061 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2062 			update_mmu_cache(vma, address, entry);
2063 		ret |= VM_FAULT_WRITE;
2064 		goto unlock;
2065 	}
2066 
2067 	/*
2068 	 * Ok, we need to copy. Oh, well..
2069 	 */
2070 	page_cache_get(old_page);
2071 gotten:
2072 	pte_unmap_unlock(page_table, ptl);
2073 
2074 	if (unlikely(anon_vma_prepare(vma)))
2075 		goto oom;
2076 	VM_BUG_ON(old_page == ZERO_PAGE(0));
2077 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2078 	if (!new_page)
2079 		goto oom;
2080 	/*
2081 	 * Don't let another task, with possibly unlocked vma,
2082 	 * keep the mlocked page.
2083 	 */
2084 	if ((vma->vm_flags & VM_LOCKED) && old_page) {
2085 		lock_page(old_page);	/* for LRU manipulation */
2086 		clear_page_mlock(old_page);
2087 		unlock_page(old_page);
2088 	}
2089 	cow_user_page(new_page, old_page, address, vma);
2090 	__SetPageUptodate(new_page);
2091 
2092 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2093 		goto oom_free_new;
2094 
2095 	/*
2096 	 * Re-check the pte - we dropped the lock
2097 	 */
2098 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2099 	if (likely(pte_same(*page_table, orig_pte))) {
2100 		if (old_page) {
2101 			if (!PageAnon(old_page)) {
2102 				dec_mm_counter(mm, file_rss);
2103 				inc_mm_counter(mm, anon_rss);
2104 			}
2105 		} else
2106 			inc_mm_counter(mm, anon_rss);
2107 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2108 		entry = mk_pte(new_page, vma->vm_page_prot);
2109 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2110 		/*
2111 		 * Clear the pte entry and flush it first, before updating the
2112 		 * pte with the new entry. This will avoid a race condition
2113 		 * seen in the presence of one thread doing SMC and another
2114 		 * thread doing COW.
2115 		 */
2116 		ptep_clear_flush_notify(vma, address, page_table);
2117 		page_add_new_anon_rmap(new_page, vma, address);
2118 		set_pte_at(mm, address, page_table, entry);
2119 		update_mmu_cache(vma, address, entry);
2120 		if (old_page) {
2121 			/*
2122 			 * Only after switching the pte to the new page may
2123 			 * we remove the mapcount here. Otherwise another
2124 			 * process may come and find the rmap count decremented
2125 			 * before the pte is switched to the new page, and
2126 			 * "reuse" the old page writing into it while our pte
2127 			 * here still points into it and can be read by other
2128 			 * threads.
2129 			 *
2130 			 * The critical issue is to order this
2131 			 * page_remove_rmap with the ptp_clear_flush above.
2132 			 * Those stores are ordered by (if nothing else,)
2133 			 * the barrier present in the atomic_add_negative
2134 			 * in page_remove_rmap.
2135 			 *
2136 			 * Then the TLB flush in ptep_clear_flush ensures that
2137 			 * no process can access the old page before the
2138 			 * decremented mapcount is visible. And the old page
2139 			 * cannot be reused until after the decremented
2140 			 * mapcount is visible. So transitively, TLBs to
2141 			 * old page will be flushed before it can be reused.
2142 			 */
2143 			page_remove_rmap(old_page);
2144 		}
2145 
2146 		/* Free the old page.. */
2147 		new_page = old_page;
2148 		ret |= VM_FAULT_WRITE;
2149 	} else
2150 		mem_cgroup_uncharge_page(new_page);
2151 
2152 	if (new_page)
2153 		page_cache_release(new_page);
2154 	if (old_page)
2155 		page_cache_release(old_page);
2156 unlock:
2157 	pte_unmap_unlock(page_table, ptl);
2158 	if (dirty_page) {
2159 		/*
2160 		 * Yes, Virginia, this is actually required to prevent a race
2161 		 * with clear_page_dirty_for_io() from clearing the page dirty
2162 		 * bit after it clear all dirty ptes, but before a racing
2163 		 * do_wp_page installs a dirty pte.
2164 		 *
2165 		 * do_no_page is protected similarly.
2166 		 */
2167 		if (!page_mkwrite) {
2168 			wait_on_page_locked(dirty_page);
2169 			set_page_dirty_balance(dirty_page, page_mkwrite);
2170 		}
2171 		put_page(dirty_page);
2172 		if (page_mkwrite) {
2173 			struct address_space *mapping = dirty_page->mapping;
2174 
2175 			set_page_dirty(dirty_page);
2176 			unlock_page(dirty_page);
2177 			page_cache_release(dirty_page);
2178 			if (mapping)	{
2179 				/*
2180 				 * Some device drivers do not set page.mapping
2181 				 * but still dirty their pages
2182 				 */
2183 				balance_dirty_pages_ratelimited(mapping);
2184 			}
2185 		}
2186 
2187 		/* file_update_time outside page_lock */
2188 		if (vma->vm_file)
2189 			file_update_time(vma->vm_file);
2190 	}
2191 	return ret;
2192 oom_free_new:
2193 	page_cache_release(new_page);
2194 oom:
2195 	if (old_page) {
2196 		if (page_mkwrite) {
2197 			unlock_page(old_page);
2198 			page_cache_release(old_page);
2199 		}
2200 		page_cache_release(old_page);
2201 	}
2202 	return VM_FAULT_OOM;
2203 
2204 unwritable_page:
2205 	page_cache_release(old_page);
2206 	return ret;
2207 }
2208 
2209 /*
2210  * Helper functions for unmap_mapping_range().
2211  *
2212  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2213  *
2214  * We have to restart searching the prio_tree whenever we drop the lock,
2215  * since the iterator is only valid while the lock is held, and anyway
2216  * a later vma might be split and reinserted earlier while lock dropped.
2217  *
2218  * The list of nonlinear vmas could be handled more efficiently, using
2219  * a placeholder, but handle it in the same way until a need is shown.
2220  * It is important to search the prio_tree before nonlinear list: a vma
2221  * may become nonlinear and be shifted from prio_tree to nonlinear list
2222  * while the lock is dropped; but never shifted from list to prio_tree.
2223  *
2224  * In order to make forward progress despite restarting the search,
2225  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2226  * quickly skip it next time around.  Since the prio_tree search only
2227  * shows us those vmas affected by unmapping the range in question, we
2228  * can't efficiently keep all vmas in step with mapping->truncate_count:
2229  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2230  * mapping->truncate_count and vma->vm_truncate_count are protected by
2231  * i_mmap_lock.
2232  *
2233  * In order to make forward progress despite repeatedly restarting some
2234  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2235  * and restart from that address when we reach that vma again.  It might
2236  * have been split or merged, shrunk or extended, but never shifted: so
2237  * restart_addr remains valid so long as it remains in the vma's range.
2238  * unmap_mapping_range forces truncate_count to leap over page-aligned
2239  * values so we can save vma's restart_addr in its truncate_count field.
2240  */
2241 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2242 
2243 static void reset_vma_truncate_counts(struct address_space *mapping)
2244 {
2245 	struct vm_area_struct *vma;
2246 	struct prio_tree_iter iter;
2247 
2248 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2249 		vma->vm_truncate_count = 0;
2250 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2251 		vma->vm_truncate_count = 0;
2252 }
2253 
2254 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2255 		unsigned long start_addr, unsigned long end_addr,
2256 		struct zap_details *details)
2257 {
2258 	unsigned long restart_addr;
2259 	int need_break;
2260 
2261 	/*
2262 	 * files that support invalidating or truncating portions of the
2263 	 * file from under mmaped areas must have their ->fault function
2264 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2265 	 * This provides synchronisation against concurrent unmapping here.
2266 	 */
2267 
2268 again:
2269 	restart_addr = vma->vm_truncate_count;
2270 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2271 		start_addr = restart_addr;
2272 		if (start_addr >= end_addr) {
2273 			/* Top of vma has been split off since last time */
2274 			vma->vm_truncate_count = details->truncate_count;
2275 			return 0;
2276 		}
2277 	}
2278 
2279 	restart_addr = zap_page_range(vma, start_addr,
2280 					end_addr - start_addr, details);
2281 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2282 
2283 	if (restart_addr >= end_addr) {
2284 		/* We have now completed this vma: mark it so */
2285 		vma->vm_truncate_count = details->truncate_count;
2286 		if (!need_break)
2287 			return 0;
2288 	} else {
2289 		/* Note restart_addr in vma's truncate_count field */
2290 		vma->vm_truncate_count = restart_addr;
2291 		if (!need_break)
2292 			goto again;
2293 	}
2294 
2295 	spin_unlock(details->i_mmap_lock);
2296 	cond_resched();
2297 	spin_lock(details->i_mmap_lock);
2298 	return -EINTR;
2299 }
2300 
2301 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2302 					    struct zap_details *details)
2303 {
2304 	struct vm_area_struct *vma;
2305 	struct prio_tree_iter iter;
2306 	pgoff_t vba, vea, zba, zea;
2307 
2308 restart:
2309 	vma_prio_tree_foreach(vma, &iter, root,
2310 			details->first_index, details->last_index) {
2311 		/* Skip quickly over those we have already dealt with */
2312 		if (vma->vm_truncate_count == details->truncate_count)
2313 			continue;
2314 
2315 		vba = vma->vm_pgoff;
2316 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2317 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2318 		zba = details->first_index;
2319 		if (zba < vba)
2320 			zba = vba;
2321 		zea = details->last_index;
2322 		if (zea > vea)
2323 			zea = vea;
2324 
2325 		if (unmap_mapping_range_vma(vma,
2326 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2327 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2328 				details) < 0)
2329 			goto restart;
2330 	}
2331 }
2332 
2333 static inline void unmap_mapping_range_list(struct list_head *head,
2334 					    struct zap_details *details)
2335 {
2336 	struct vm_area_struct *vma;
2337 
2338 	/*
2339 	 * In nonlinear VMAs there is no correspondence between virtual address
2340 	 * offset and file offset.  So we must perform an exhaustive search
2341 	 * across *all* the pages in each nonlinear VMA, not just the pages
2342 	 * whose virtual address lies outside the file truncation point.
2343 	 */
2344 restart:
2345 	list_for_each_entry(vma, head, shared.vm_set.list) {
2346 		/* Skip quickly over those we have already dealt with */
2347 		if (vma->vm_truncate_count == details->truncate_count)
2348 			continue;
2349 		details->nonlinear_vma = vma;
2350 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2351 					vma->vm_end, details) < 0)
2352 			goto restart;
2353 	}
2354 }
2355 
2356 /**
2357  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2358  * @mapping: the address space containing mmaps to be unmapped.
2359  * @holebegin: byte in first page to unmap, relative to the start of
2360  * the underlying file.  This will be rounded down to a PAGE_SIZE
2361  * boundary.  Note that this is different from vmtruncate(), which
2362  * must keep the partial page.  In contrast, we must get rid of
2363  * partial pages.
2364  * @holelen: size of prospective hole in bytes.  This will be rounded
2365  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2366  * end of the file.
2367  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2368  * but 0 when invalidating pagecache, don't throw away private data.
2369  */
2370 void unmap_mapping_range(struct address_space *mapping,
2371 		loff_t const holebegin, loff_t const holelen, int even_cows)
2372 {
2373 	struct zap_details details;
2374 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2375 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2376 
2377 	/* Check for overflow. */
2378 	if (sizeof(holelen) > sizeof(hlen)) {
2379 		long long holeend =
2380 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2381 		if (holeend & ~(long long)ULONG_MAX)
2382 			hlen = ULONG_MAX - hba + 1;
2383 	}
2384 
2385 	details.check_mapping = even_cows? NULL: mapping;
2386 	details.nonlinear_vma = NULL;
2387 	details.first_index = hba;
2388 	details.last_index = hba + hlen - 1;
2389 	if (details.last_index < details.first_index)
2390 		details.last_index = ULONG_MAX;
2391 	details.i_mmap_lock = &mapping->i_mmap_lock;
2392 
2393 	spin_lock(&mapping->i_mmap_lock);
2394 
2395 	/* Protect against endless unmapping loops */
2396 	mapping->truncate_count++;
2397 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2398 		if (mapping->truncate_count == 0)
2399 			reset_vma_truncate_counts(mapping);
2400 		mapping->truncate_count++;
2401 	}
2402 	details.truncate_count = mapping->truncate_count;
2403 
2404 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2405 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2406 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2407 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2408 	spin_unlock(&mapping->i_mmap_lock);
2409 }
2410 EXPORT_SYMBOL(unmap_mapping_range);
2411 
2412 /**
2413  * vmtruncate - unmap mappings "freed" by truncate() syscall
2414  * @inode: inode of the file used
2415  * @offset: file offset to start truncating
2416  *
2417  * NOTE! We have to be ready to update the memory sharing
2418  * between the file and the memory map for a potential last
2419  * incomplete page.  Ugly, but necessary.
2420  */
2421 int vmtruncate(struct inode * inode, loff_t offset)
2422 {
2423 	if (inode->i_size < offset) {
2424 		unsigned long limit;
2425 
2426 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2427 		if (limit != RLIM_INFINITY && offset > limit)
2428 			goto out_sig;
2429 		if (offset > inode->i_sb->s_maxbytes)
2430 			goto out_big;
2431 		i_size_write(inode, offset);
2432 	} else {
2433 		struct address_space *mapping = inode->i_mapping;
2434 
2435 		/*
2436 		 * truncation of in-use swapfiles is disallowed - it would
2437 		 * cause subsequent swapout to scribble on the now-freed
2438 		 * blocks.
2439 		 */
2440 		if (IS_SWAPFILE(inode))
2441 			return -ETXTBSY;
2442 		i_size_write(inode, offset);
2443 
2444 		/*
2445 		 * unmap_mapping_range is called twice, first simply for
2446 		 * efficiency so that truncate_inode_pages does fewer
2447 		 * single-page unmaps.  However after this first call, and
2448 		 * before truncate_inode_pages finishes, it is possible for
2449 		 * private pages to be COWed, which remain after
2450 		 * truncate_inode_pages finishes, hence the second
2451 		 * unmap_mapping_range call must be made for correctness.
2452 		 */
2453 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2454 		truncate_inode_pages(mapping, offset);
2455 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2456 	}
2457 
2458 	if (inode->i_op->truncate)
2459 		inode->i_op->truncate(inode);
2460 	return 0;
2461 
2462 out_sig:
2463 	send_sig(SIGXFSZ, current, 0);
2464 out_big:
2465 	return -EFBIG;
2466 }
2467 EXPORT_SYMBOL(vmtruncate);
2468 
2469 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2470 {
2471 	struct address_space *mapping = inode->i_mapping;
2472 
2473 	/*
2474 	 * If the underlying filesystem is not going to provide
2475 	 * a way to truncate a range of blocks (punch a hole) -
2476 	 * we should return failure right now.
2477 	 */
2478 	if (!inode->i_op->truncate_range)
2479 		return -ENOSYS;
2480 
2481 	mutex_lock(&inode->i_mutex);
2482 	down_write(&inode->i_alloc_sem);
2483 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2484 	truncate_inode_pages_range(mapping, offset, end);
2485 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2486 	inode->i_op->truncate_range(inode, offset, end);
2487 	up_write(&inode->i_alloc_sem);
2488 	mutex_unlock(&inode->i_mutex);
2489 
2490 	return 0;
2491 }
2492 
2493 /*
2494  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2495  * but allow concurrent faults), and pte mapped but not yet locked.
2496  * We return with mmap_sem still held, but pte unmapped and unlocked.
2497  */
2498 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2499 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2500 		unsigned int flags, pte_t orig_pte)
2501 {
2502 	spinlock_t *ptl;
2503 	struct page *page;
2504 	swp_entry_t entry;
2505 	pte_t pte;
2506 	struct mem_cgroup *ptr = NULL;
2507 	int ret = 0;
2508 
2509 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2510 		goto out;
2511 
2512 	entry = pte_to_swp_entry(orig_pte);
2513 	if (is_migration_entry(entry)) {
2514 		migration_entry_wait(mm, pmd, address);
2515 		goto out;
2516 	}
2517 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2518 	page = lookup_swap_cache(entry);
2519 	if (!page) {
2520 		grab_swap_token(mm); /* Contend for token _before_ read-in */
2521 		page = swapin_readahead(entry,
2522 					GFP_HIGHUSER_MOVABLE, vma, address);
2523 		if (!page) {
2524 			/*
2525 			 * Back out if somebody else faulted in this pte
2526 			 * while we released the pte lock.
2527 			 */
2528 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2529 			if (likely(pte_same(*page_table, orig_pte)))
2530 				ret = VM_FAULT_OOM;
2531 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2532 			goto unlock;
2533 		}
2534 
2535 		/* Had to read the page from swap area: Major fault */
2536 		ret = VM_FAULT_MAJOR;
2537 		count_vm_event(PGMAJFAULT);
2538 	}
2539 
2540 	lock_page(page);
2541 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2542 
2543 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2544 		ret = VM_FAULT_OOM;
2545 		goto out_page;
2546 	}
2547 
2548 	/*
2549 	 * Back out if somebody else already faulted in this pte.
2550 	 */
2551 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2552 	if (unlikely(!pte_same(*page_table, orig_pte)))
2553 		goto out_nomap;
2554 
2555 	if (unlikely(!PageUptodate(page))) {
2556 		ret = VM_FAULT_SIGBUS;
2557 		goto out_nomap;
2558 	}
2559 
2560 	/*
2561 	 * The page isn't present yet, go ahead with the fault.
2562 	 *
2563 	 * Be careful about the sequence of operations here.
2564 	 * To get its accounting right, reuse_swap_page() must be called
2565 	 * while the page is counted on swap but not yet in mapcount i.e.
2566 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2567 	 * must be called after the swap_free(), or it will never succeed.
2568 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2569 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2570 	 * in page->private. In this case, a record in swap_cgroup  is silently
2571 	 * discarded at swap_free().
2572 	 */
2573 
2574 	inc_mm_counter(mm, anon_rss);
2575 	pte = mk_pte(page, vma->vm_page_prot);
2576 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2577 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2578 		flags &= ~FAULT_FLAG_WRITE;
2579 	}
2580 	flush_icache_page(vma, page);
2581 	set_pte_at(mm, address, page_table, pte);
2582 	page_add_anon_rmap(page, vma, address);
2583 	/* It's better to call commit-charge after rmap is established */
2584 	mem_cgroup_commit_charge_swapin(page, ptr);
2585 
2586 	swap_free(entry);
2587 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2588 		try_to_free_swap(page);
2589 	unlock_page(page);
2590 
2591 	if (flags & FAULT_FLAG_WRITE) {
2592 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2593 		if (ret & VM_FAULT_ERROR)
2594 			ret &= VM_FAULT_ERROR;
2595 		goto out;
2596 	}
2597 
2598 	/* No need to invalidate - it was non-present before */
2599 	update_mmu_cache(vma, address, pte);
2600 unlock:
2601 	pte_unmap_unlock(page_table, ptl);
2602 out:
2603 	return ret;
2604 out_nomap:
2605 	mem_cgroup_cancel_charge_swapin(ptr);
2606 	pte_unmap_unlock(page_table, ptl);
2607 out_page:
2608 	unlock_page(page);
2609 	page_cache_release(page);
2610 	return ret;
2611 }
2612 
2613 /*
2614  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2615  * but allow concurrent faults), and pte mapped but not yet locked.
2616  * We return with mmap_sem still held, but pte unmapped and unlocked.
2617  */
2618 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2619 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2620 		unsigned int flags)
2621 {
2622 	struct page *page;
2623 	spinlock_t *ptl;
2624 	pte_t entry;
2625 
2626 	/* Allocate our own private page. */
2627 	pte_unmap(page_table);
2628 
2629 	if (unlikely(anon_vma_prepare(vma)))
2630 		goto oom;
2631 	page = alloc_zeroed_user_highpage_movable(vma, address);
2632 	if (!page)
2633 		goto oom;
2634 	__SetPageUptodate(page);
2635 
2636 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2637 		goto oom_free_page;
2638 
2639 	entry = mk_pte(page, vma->vm_page_prot);
2640 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2641 
2642 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2643 	if (!pte_none(*page_table))
2644 		goto release;
2645 	inc_mm_counter(mm, anon_rss);
2646 	page_add_new_anon_rmap(page, vma, address);
2647 	set_pte_at(mm, address, page_table, entry);
2648 
2649 	/* No need to invalidate - it was non-present before */
2650 	update_mmu_cache(vma, address, entry);
2651 unlock:
2652 	pte_unmap_unlock(page_table, ptl);
2653 	return 0;
2654 release:
2655 	mem_cgroup_uncharge_page(page);
2656 	page_cache_release(page);
2657 	goto unlock;
2658 oom_free_page:
2659 	page_cache_release(page);
2660 oom:
2661 	return VM_FAULT_OOM;
2662 }
2663 
2664 /*
2665  * __do_fault() tries to create a new page mapping. It aggressively
2666  * tries to share with existing pages, but makes a separate copy if
2667  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2668  * the next page fault.
2669  *
2670  * As this is called only for pages that do not currently exist, we
2671  * do not need to flush old virtual caches or the TLB.
2672  *
2673  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2674  * but allow concurrent faults), and pte neither mapped nor locked.
2675  * We return with mmap_sem still held, but pte unmapped and unlocked.
2676  */
2677 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2678 		unsigned long address, pmd_t *pmd,
2679 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2680 {
2681 	pte_t *page_table;
2682 	spinlock_t *ptl;
2683 	struct page *page;
2684 	pte_t entry;
2685 	int anon = 0;
2686 	int charged = 0;
2687 	struct page *dirty_page = NULL;
2688 	struct vm_fault vmf;
2689 	int ret;
2690 	int page_mkwrite = 0;
2691 
2692 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2693 	vmf.pgoff = pgoff;
2694 	vmf.flags = flags;
2695 	vmf.page = NULL;
2696 
2697 	ret = vma->vm_ops->fault(vma, &vmf);
2698 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2699 		return ret;
2700 
2701 	/*
2702 	 * For consistency in subsequent calls, make the faulted page always
2703 	 * locked.
2704 	 */
2705 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2706 		lock_page(vmf.page);
2707 	else
2708 		VM_BUG_ON(!PageLocked(vmf.page));
2709 
2710 	/*
2711 	 * Should we do an early C-O-W break?
2712 	 */
2713 	page = vmf.page;
2714 	if (flags & FAULT_FLAG_WRITE) {
2715 		if (!(vma->vm_flags & VM_SHARED)) {
2716 			anon = 1;
2717 			if (unlikely(anon_vma_prepare(vma))) {
2718 				ret = VM_FAULT_OOM;
2719 				goto out;
2720 			}
2721 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2722 						vma, address);
2723 			if (!page) {
2724 				ret = VM_FAULT_OOM;
2725 				goto out;
2726 			}
2727 			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2728 				ret = VM_FAULT_OOM;
2729 				page_cache_release(page);
2730 				goto out;
2731 			}
2732 			charged = 1;
2733 			/*
2734 			 * Don't let another task, with possibly unlocked vma,
2735 			 * keep the mlocked page.
2736 			 */
2737 			if (vma->vm_flags & VM_LOCKED)
2738 				clear_page_mlock(vmf.page);
2739 			copy_user_highpage(page, vmf.page, address, vma);
2740 			__SetPageUptodate(page);
2741 		} else {
2742 			/*
2743 			 * If the page will be shareable, see if the backing
2744 			 * address space wants to know that the page is about
2745 			 * to become writable
2746 			 */
2747 			if (vma->vm_ops->page_mkwrite) {
2748 				int tmp;
2749 
2750 				unlock_page(page);
2751 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2752 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2753 				if (unlikely(tmp &
2754 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2755 					ret = tmp;
2756 					goto unwritable_page;
2757 				}
2758 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2759 					lock_page(page);
2760 					if (!page->mapping) {
2761 						ret = 0; /* retry the fault */
2762 						unlock_page(page);
2763 						goto unwritable_page;
2764 					}
2765 				} else
2766 					VM_BUG_ON(!PageLocked(page));
2767 				page_mkwrite = 1;
2768 			}
2769 		}
2770 
2771 	}
2772 
2773 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2774 
2775 	/*
2776 	 * This silly early PAGE_DIRTY setting removes a race
2777 	 * due to the bad i386 page protection. But it's valid
2778 	 * for other architectures too.
2779 	 *
2780 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
2781 	 * an exclusive copy of the page, or this is a shared mapping,
2782 	 * so we can make it writable and dirty to avoid having to
2783 	 * handle that later.
2784 	 */
2785 	/* Only go through if we didn't race with anybody else... */
2786 	if (likely(pte_same(*page_table, orig_pte))) {
2787 		flush_icache_page(vma, page);
2788 		entry = mk_pte(page, vma->vm_page_prot);
2789 		if (flags & FAULT_FLAG_WRITE)
2790 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2791 		if (anon) {
2792 			inc_mm_counter(mm, anon_rss);
2793 			page_add_new_anon_rmap(page, vma, address);
2794 		} else {
2795 			inc_mm_counter(mm, file_rss);
2796 			page_add_file_rmap(page);
2797 			if (flags & FAULT_FLAG_WRITE) {
2798 				dirty_page = page;
2799 				get_page(dirty_page);
2800 			}
2801 		}
2802 		set_pte_at(mm, address, page_table, entry);
2803 
2804 		/* no need to invalidate: a not-present page won't be cached */
2805 		update_mmu_cache(vma, address, entry);
2806 	} else {
2807 		if (charged)
2808 			mem_cgroup_uncharge_page(page);
2809 		if (anon)
2810 			page_cache_release(page);
2811 		else
2812 			anon = 1; /* no anon but release faulted_page */
2813 	}
2814 
2815 	pte_unmap_unlock(page_table, ptl);
2816 
2817 out:
2818 	if (dirty_page) {
2819 		struct address_space *mapping = page->mapping;
2820 
2821 		if (set_page_dirty(dirty_page))
2822 			page_mkwrite = 1;
2823 		unlock_page(dirty_page);
2824 		put_page(dirty_page);
2825 		if (page_mkwrite && mapping) {
2826 			/*
2827 			 * Some device drivers do not set page.mapping but still
2828 			 * dirty their pages
2829 			 */
2830 			balance_dirty_pages_ratelimited(mapping);
2831 		}
2832 
2833 		/* file_update_time outside page_lock */
2834 		if (vma->vm_file)
2835 			file_update_time(vma->vm_file);
2836 	} else {
2837 		unlock_page(vmf.page);
2838 		if (anon)
2839 			page_cache_release(vmf.page);
2840 	}
2841 
2842 	return ret;
2843 
2844 unwritable_page:
2845 	page_cache_release(page);
2846 	return ret;
2847 }
2848 
2849 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2850 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2851 		unsigned int flags, pte_t orig_pte)
2852 {
2853 	pgoff_t pgoff = (((address & PAGE_MASK)
2854 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2855 
2856 	pte_unmap(page_table);
2857 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2858 }
2859 
2860 /*
2861  * Fault of a previously existing named mapping. Repopulate the pte
2862  * from the encoded file_pte if possible. This enables swappable
2863  * nonlinear vmas.
2864  *
2865  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2866  * but allow concurrent faults), and pte mapped but not yet locked.
2867  * We return with mmap_sem still held, but pte unmapped and unlocked.
2868  */
2869 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2870 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2871 		unsigned int flags, pte_t orig_pte)
2872 {
2873 	pgoff_t pgoff;
2874 
2875 	flags |= FAULT_FLAG_NONLINEAR;
2876 
2877 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2878 		return 0;
2879 
2880 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2881 		/*
2882 		 * Page table corrupted: show pte and kill process.
2883 		 */
2884 		print_bad_pte(vma, address, orig_pte, NULL);
2885 		return VM_FAULT_OOM;
2886 	}
2887 
2888 	pgoff = pte_to_pgoff(orig_pte);
2889 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2890 }
2891 
2892 /*
2893  * These routines also need to handle stuff like marking pages dirty
2894  * and/or accessed for architectures that don't do it in hardware (most
2895  * RISC architectures).  The early dirtying is also good on the i386.
2896  *
2897  * There is also a hook called "update_mmu_cache()" that architectures
2898  * with external mmu caches can use to update those (ie the Sparc or
2899  * PowerPC hashed page tables that act as extended TLBs).
2900  *
2901  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2902  * but allow concurrent faults), and pte mapped but not yet locked.
2903  * We return with mmap_sem still held, but pte unmapped and unlocked.
2904  */
2905 static inline int handle_pte_fault(struct mm_struct *mm,
2906 		struct vm_area_struct *vma, unsigned long address,
2907 		pte_t *pte, pmd_t *pmd, unsigned int flags)
2908 {
2909 	pte_t entry;
2910 	spinlock_t *ptl;
2911 
2912 	entry = *pte;
2913 	if (!pte_present(entry)) {
2914 		if (pte_none(entry)) {
2915 			if (vma->vm_ops) {
2916 				if (likely(vma->vm_ops->fault))
2917 					return do_linear_fault(mm, vma, address,
2918 						pte, pmd, flags, entry);
2919 			}
2920 			return do_anonymous_page(mm, vma, address,
2921 						 pte, pmd, flags);
2922 		}
2923 		if (pte_file(entry))
2924 			return do_nonlinear_fault(mm, vma, address,
2925 					pte, pmd, flags, entry);
2926 		return do_swap_page(mm, vma, address,
2927 					pte, pmd, flags, entry);
2928 	}
2929 
2930 	ptl = pte_lockptr(mm, pmd);
2931 	spin_lock(ptl);
2932 	if (unlikely(!pte_same(*pte, entry)))
2933 		goto unlock;
2934 	if (flags & FAULT_FLAG_WRITE) {
2935 		if (!pte_write(entry))
2936 			return do_wp_page(mm, vma, address,
2937 					pte, pmd, ptl, entry);
2938 		entry = pte_mkdirty(entry);
2939 	}
2940 	entry = pte_mkyoung(entry);
2941 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
2942 		update_mmu_cache(vma, address, entry);
2943 	} else {
2944 		/*
2945 		 * This is needed only for protection faults but the arch code
2946 		 * is not yet telling us if this is a protection fault or not.
2947 		 * This still avoids useless tlb flushes for .text page faults
2948 		 * with threads.
2949 		 */
2950 		if (flags & FAULT_FLAG_WRITE)
2951 			flush_tlb_page(vma, address);
2952 	}
2953 unlock:
2954 	pte_unmap_unlock(pte, ptl);
2955 	return 0;
2956 }
2957 
2958 /*
2959  * By the time we get here, we already hold the mm semaphore
2960  */
2961 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2962 		unsigned long address, unsigned int flags)
2963 {
2964 	pgd_t *pgd;
2965 	pud_t *pud;
2966 	pmd_t *pmd;
2967 	pte_t *pte;
2968 
2969 	__set_current_state(TASK_RUNNING);
2970 
2971 	count_vm_event(PGFAULT);
2972 
2973 	if (unlikely(is_vm_hugetlb_page(vma)))
2974 		return hugetlb_fault(mm, vma, address, flags);
2975 
2976 	pgd = pgd_offset(mm, address);
2977 	pud = pud_alloc(mm, pgd, address);
2978 	if (!pud)
2979 		return VM_FAULT_OOM;
2980 	pmd = pmd_alloc(mm, pud, address);
2981 	if (!pmd)
2982 		return VM_FAULT_OOM;
2983 	pte = pte_alloc_map(mm, pmd, address);
2984 	if (!pte)
2985 		return VM_FAULT_OOM;
2986 
2987 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
2988 }
2989 
2990 #ifndef __PAGETABLE_PUD_FOLDED
2991 /*
2992  * Allocate page upper directory.
2993  * We've already handled the fast-path in-line.
2994  */
2995 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2996 {
2997 	pud_t *new = pud_alloc_one(mm, address);
2998 	if (!new)
2999 		return -ENOMEM;
3000 
3001 	smp_wmb(); /* See comment in __pte_alloc */
3002 
3003 	spin_lock(&mm->page_table_lock);
3004 	if (pgd_present(*pgd))		/* Another has populated it */
3005 		pud_free(mm, new);
3006 	else
3007 		pgd_populate(mm, pgd, new);
3008 	spin_unlock(&mm->page_table_lock);
3009 	return 0;
3010 }
3011 #endif /* __PAGETABLE_PUD_FOLDED */
3012 
3013 #ifndef __PAGETABLE_PMD_FOLDED
3014 /*
3015  * Allocate page middle directory.
3016  * We've already handled the fast-path in-line.
3017  */
3018 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3019 {
3020 	pmd_t *new = pmd_alloc_one(mm, address);
3021 	if (!new)
3022 		return -ENOMEM;
3023 
3024 	smp_wmb(); /* See comment in __pte_alloc */
3025 
3026 	spin_lock(&mm->page_table_lock);
3027 #ifndef __ARCH_HAS_4LEVEL_HACK
3028 	if (pud_present(*pud))		/* Another has populated it */
3029 		pmd_free(mm, new);
3030 	else
3031 		pud_populate(mm, pud, new);
3032 #else
3033 	if (pgd_present(*pud))		/* Another has populated it */
3034 		pmd_free(mm, new);
3035 	else
3036 		pgd_populate(mm, pud, new);
3037 #endif /* __ARCH_HAS_4LEVEL_HACK */
3038 	spin_unlock(&mm->page_table_lock);
3039 	return 0;
3040 }
3041 #endif /* __PAGETABLE_PMD_FOLDED */
3042 
3043 int make_pages_present(unsigned long addr, unsigned long end)
3044 {
3045 	int ret, len, write;
3046 	struct vm_area_struct * vma;
3047 
3048 	vma = find_vma(current->mm, addr);
3049 	if (!vma)
3050 		return -ENOMEM;
3051 	write = (vma->vm_flags & VM_WRITE) != 0;
3052 	BUG_ON(addr >= end);
3053 	BUG_ON(end > vma->vm_end);
3054 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3055 	ret = get_user_pages(current, current->mm, addr,
3056 			len, write, 0, NULL, NULL);
3057 	if (ret < 0)
3058 		return ret;
3059 	return ret == len ? 0 : -EFAULT;
3060 }
3061 
3062 #if !defined(__HAVE_ARCH_GATE_AREA)
3063 
3064 #if defined(AT_SYSINFO_EHDR)
3065 static struct vm_area_struct gate_vma;
3066 
3067 static int __init gate_vma_init(void)
3068 {
3069 	gate_vma.vm_mm = NULL;
3070 	gate_vma.vm_start = FIXADDR_USER_START;
3071 	gate_vma.vm_end = FIXADDR_USER_END;
3072 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3073 	gate_vma.vm_page_prot = __P101;
3074 	/*
3075 	 * Make sure the vDSO gets into every core dump.
3076 	 * Dumping its contents makes post-mortem fully interpretable later
3077 	 * without matching up the same kernel and hardware config to see
3078 	 * what PC values meant.
3079 	 */
3080 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3081 	return 0;
3082 }
3083 __initcall(gate_vma_init);
3084 #endif
3085 
3086 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3087 {
3088 #ifdef AT_SYSINFO_EHDR
3089 	return &gate_vma;
3090 #else
3091 	return NULL;
3092 #endif
3093 }
3094 
3095 int in_gate_area_no_task(unsigned long addr)
3096 {
3097 #ifdef AT_SYSINFO_EHDR
3098 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3099 		return 1;
3100 #endif
3101 	return 0;
3102 }
3103 
3104 #endif	/* __HAVE_ARCH_GATE_AREA */
3105 
3106 static int follow_pte(struct mm_struct *mm, unsigned long address,
3107 		pte_t **ptepp, spinlock_t **ptlp)
3108 {
3109 	pgd_t *pgd;
3110 	pud_t *pud;
3111 	pmd_t *pmd;
3112 	pte_t *ptep;
3113 
3114 	pgd = pgd_offset(mm, address);
3115 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3116 		goto out;
3117 
3118 	pud = pud_offset(pgd, address);
3119 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3120 		goto out;
3121 
3122 	pmd = pmd_offset(pud, address);
3123 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3124 		goto out;
3125 
3126 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3127 	if (pmd_huge(*pmd))
3128 		goto out;
3129 
3130 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3131 	if (!ptep)
3132 		goto out;
3133 	if (!pte_present(*ptep))
3134 		goto unlock;
3135 	*ptepp = ptep;
3136 	return 0;
3137 unlock:
3138 	pte_unmap_unlock(ptep, *ptlp);
3139 out:
3140 	return -EINVAL;
3141 }
3142 
3143 /**
3144  * follow_pfn - look up PFN at a user virtual address
3145  * @vma: memory mapping
3146  * @address: user virtual address
3147  * @pfn: location to store found PFN
3148  *
3149  * Only IO mappings and raw PFN mappings are allowed.
3150  *
3151  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3152  */
3153 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3154 	unsigned long *pfn)
3155 {
3156 	int ret = -EINVAL;
3157 	spinlock_t *ptl;
3158 	pte_t *ptep;
3159 
3160 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3161 		return ret;
3162 
3163 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3164 	if (ret)
3165 		return ret;
3166 	*pfn = pte_pfn(*ptep);
3167 	pte_unmap_unlock(ptep, ptl);
3168 	return 0;
3169 }
3170 EXPORT_SYMBOL(follow_pfn);
3171 
3172 #ifdef CONFIG_HAVE_IOREMAP_PROT
3173 int follow_phys(struct vm_area_struct *vma,
3174 		unsigned long address, unsigned int flags,
3175 		unsigned long *prot, resource_size_t *phys)
3176 {
3177 	int ret = -EINVAL;
3178 	pte_t *ptep, pte;
3179 	spinlock_t *ptl;
3180 
3181 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3182 		goto out;
3183 
3184 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3185 		goto out;
3186 	pte = *ptep;
3187 
3188 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3189 		goto unlock;
3190 
3191 	*prot = pgprot_val(pte_pgprot(pte));
3192 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3193 
3194 	ret = 0;
3195 unlock:
3196 	pte_unmap_unlock(ptep, ptl);
3197 out:
3198 	return ret;
3199 }
3200 
3201 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3202 			void *buf, int len, int write)
3203 {
3204 	resource_size_t phys_addr;
3205 	unsigned long prot = 0;
3206 	void __iomem *maddr;
3207 	int offset = addr & (PAGE_SIZE-1);
3208 
3209 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3210 		return -EINVAL;
3211 
3212 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3213 	if (write)
3214 		memcpy_toio(maddr + offset, buf, len);
3215 	else
3216 		memcpy_fromio(buf, maddr + offset, len);
3217 	iounmap(maddr);
3218 
3219 	return len;
3220 }
3221 #endif
3222 
3223 /*
3224  * Access another process' address space.
3225  * Source/target buffer must be kernel space,
3226  * Do not walk the page table directly, use get_user_pages
3227  */
3228 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3229 {
3230 	struct mm_struct *mm;
3231 	struct vm_area_struct *vma;
3232 	void *old_buf = buf;
3233 
3234 	mm = get_task_mm(tsk);
3235 	if (!mm)
3236 		return 0;
3237 
3238 	down_read(&mm->mmap_sem);
3239 	/* ignore errors, just check how much was successfully transferred */
3240 	while (len) {
3241 		int bytes, ret, offset;
3242 		void *maddr;
3243 		struct page *page = NULL;
3244 
3245 		ret = get_user_pages(tsk, mm, addr, 1,
3246 				write, 1, &page, &vma);
3247 		if (ret <= 0) {
3248 			/*
3249 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3250 			 * we can access using slightly different code.
3251 			 */
3252 #ifdef CONFIG_HAVE_IOREMAP_PROT
3253 			vma = find_vma(mm, addr);
3254 			if (!vma)
3255 				break;
3256 			if (vma->vm_ops && vma->vm_ops->access)
3257 				ret = vma->vm_ops->access(vma, addr, buf,
3258 							  len, write);
3259 			if (ret <= 0)
3260 #endif
3261 				break;
3262 			bytes = ret;
3263 		} else {
3264 			bytes = len;
3265 			offset = addr & (PAGE_SIZE-1);
3266 			if (bytes > PAGE_SIZE-offset)
3267 				bytes = PAGE_SIZE-offset;
3268 
3269 			maddr = kmap(page);
3270 			if (write) {
3271 				copy_to_user_page(vma, page, addr,
3272 						  maddr + offset, buf, bytes);
3273 				set_page_dirty_lock(page);
3274 			} else {
3275 				copy_from_user_page(vma, page, addr,
3276 						    buf, maddr + offset, bytes);
3277 			}
3278 			kunmap(page);
3279 			page_cache_release(page);
3280 		}
3281 		len -= bytes;
3282 		buf += bytes;
3283 		addr += bytes;
3284 	}
3285 	up_read(&mm->mmap_sem);
3286 	mmput(mm);
3287 
3288 	return buf - old_buf;
3289 }
3290 
3291 /*
3292  * Print the name of a VMA.
3293  */
3294 void print_vma_addr(char *prefix, unsigned long ip)
3295 {
3296 	struct mm_struct *mm = current->mm;
3297 	struct vm_area_struct *vma;
3298 
3299 	/*
3300 	 * Do not print if we are in atomic
3301 	 * contexts (in exception stacks, etc.):
3302 	 */
3303 	if (preempt_count())
3304 		return;
3305 
3306 	down_read(&mm->mmap_sem);
3307 	vma = find_vma(mm, ip);
3308 	if (vma && vma->vm_file) {
3309 		struct file *f = vma->vm_file;
3310 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3311 		if (buf) {
3312 			char *p, *s;
3313 
3314 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3315 			if (IS_ERR(p))
3316 				p = "?";
3317 			s = strrchr(p, '/');
3318 			if (s)
3319 				p = s+1;
3320 			printk("%s%s[%lx+%lx]", prefix, p,
3321 					vma->vm_start,
3322 					vma->vm_end - vma->vm_start);
3323 			free_page((unsigned long)buf);
3324 		}
3325 	}
3326 	up_read(&current->mm->mmap_sem);
3327 }
3328 
3329 #ifdef CONFIG_PROVE_LOCKING
3330 void might_fault(void)
3331 {
3332 	/*
3333 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3334 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3335 	 * get paged out, therefore we'll never actually fault, and the
3336 	 * below annotations will generate false positives.
3337 	 */
3338 	if (segment_eq(get_fs(), KERNEL_DS))
3339 		return;
3340 
3341 	might_sleep();
3342 	/*
3343 	 * it would be nicer only to annotate paths which are not under
3344 	 * pagefault_disable, however that requires a larger audit and
3345 	 * providing helpers like get_user_atomic.
3346 	 */
3347 	if (!in_atomic() && current->mm)
3348 		might_lock_read(&current->mm->mmap_sem);
3349 }
3350 EXPORT_SYMBOL(might_fault);
3351 #endif
3352