xref: /linux/mm/memory.c (revision 5ab1de932e2923f490645ad017a689c5b58dc433)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80 
81 #include "internal.h"
82 
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86 
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91 
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95 
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105 
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114 					1;
115 #else
116 					2;
117 #endif
118 
119 static int __init disable_randmaps(char *s)
120 {
121 	randomize_va_space = 0;
122 	return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125 
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128 
129 unsigned long highest_memmap_pfn __read_mostly;
130 
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 	return 0;
138 }
139 core_initcall(init_zero_pfn);
140 
141 
142 #if defined(SPLIT_RSS_COUNTING)
143 
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146 	int i;
147 
148 	for (i = 0; i < NR_MM_COUNTERS; i++) {
149 		if (current->rss_stat.count[i]) {
150 			add_mm_counter(mm, i, current->rss_stat.count[i]);
151 			current->rss_stat.count[i] = 0;
152 		}
153 	}
154 	current->rss_stat.events = 0;
155 }
156 
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159 	struct task_struct *task = current;
160 
161 	if (likely(task->mm == mm))
162 		task->rss_stat.count[member] += val;
163 	else
164 		add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168 
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH	(64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 	if (unlikely(task != current))
174 		return;
175 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 		sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179 
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182 
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186 
187 #endif /* SPLIT_RSS_COUNTING */
188 
189 #ifdef HAVE_GENERIC_MMU_GATHER
190 
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193 	struct mmu_gather_batch *batch;
194 
195 	batch = tlb->active;
196 	if (batch->next) {
197 		tlb->active = batch->next;
198 		return true;
199 	}
200 
201 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 		return false;
203 
204 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 	if (!batch)
206 		return false;
207 
208 	tlb->batch_count++;
209 	batch->next = NULL;
210 	batch->nr   = 0;
211 	batch->max  = MAX_GATHER_BATCH;
212 
213 	tlb->active->next = batch;
214 	tlb->active = batch;
215 
216 	return true;
217 }
218 
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 				unsigned long start, unsigned long end)
221 {
222 	tlb->mm = mm;
223 
224 	/* Is it from 0 to ~0? */
225 	tlb->fullmm     = !(start | (end+1));
226 	tlb->need_flush_all = 0;
227 	tlb->local.next = NULL;
228 	tlb->local.nr   = 0;
229 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230 	tlb->active     = &tlb->local;
231 	tlb->batch_count = 0;
232 
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 	tlb->batch = NULL;
235 #endif
236 	tlb->page_size = 0;
237 
238 	__tlb_reset_range(tlb);
239 }
240 
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243 	if (!tlb->end)
244 		return;
245 
246 	tlb_flush(tlb);
247 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 	tlb_table_flush(tlb);
250 #endif
251 	__tlb_reset_range(tlb);
252 }
253 
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256 	struct mmu_gather_batch *batch;
257 
258 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 		free_pages_and_swap_cache(batch->pages, batch->nr);
260 		batch->nr = 0;
261 	}
262 	tlb->active = &tlb->local;
263 }
264 
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267 	tlb_flush_mmu_tlbonly(tlb);
268 	tlb_flush_mmu_free(tlb);
269 }
270 
271 /* tlb_finish_mmu
272  *	Called at the end of the shootdown operation to free up any resources
273  *	that were required.
274  */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276 		unsigned long start, unsigned long end, bool force)
277 {
278 	struct mmu_gather_batch *batch, *next;
279 
280 	if (force)
281 		__tlb_adjust_range(tlb, start, end - start);
282 
283 	tlb_flush_mmu(tlb);
284 
285 	/* keep the page table cache within bounds */
286 	check_pgt_cache();
287 
288 	for (batch = tlb->local.next; batch; batch = next) {
289 		next = batch->next;
290 		free_pages((unsigned long)batch, 0);
291 	}
292 	tlb->local.next = NULL;
293 }
294 
295 /* __tlb_remove_page
296  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297  *	handling the additional races in SMP caused by other CPUs caching valid
298  *	mappings in their TLBs. Returns the number of free page slots left.
299  *	When out of page slots we must call tlb_flush_mmu().
300  *returns true if the caller should flush.
301  */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304 	struct mmu_gather_batch *batch;
305 
306 	VM_BUG_ON(!tlb->end);
307 	VM_WARN_ON(tlb->page_size != page_size);
308 
309 	batch = tlb->active;
310 	/*
311 	 * Add the page and check if we are full. If so
312 	 * force a flush.
313 	 */
314 	batch->pages[batch->nr++] = page;
315 	if (batch->nr == batch->max) {
316 		if (!tlb_next_batch(tlb))
317 			return true;
318 		batch = tlb->active;
319 	}
320 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321 
322 	return false;
323 }
324 
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326 
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328 
329 static void tlb_remove_table_smp_sync(void *arg)
330 {
331 	struct mm_struct __maybe_unused *mm = arg;
332 	/*
333 	 * On most architectures this does nothing. Simply delivering the
334 	 * interrupt is enough to prevent races with software page table
335 	 * walking like that done in get_user_pages_fast.
336 	 *
337 	 * See the comment near struct mmu_table_batch.
338 	 */
339 	tlb_flush_remove_tables_local(mm);
340 }
341 
342 static void tlb_remove_table_one(void *table, struct mmu_gather *tlb)
343 {
344 	/*
345 	 * This isn't an RCU grace period and hence the page-tables cannot be
346 	 * assumed to be actually RCU-freed.
347 	 *
348 	 * It is however sufficient for software page-table walkers that rely on
349 	 * IRQ disabling. See the comment near struct mmu_table_batch.
350 	 */
351 	smp_call_function(tlb_remove_table_smp_sync, tlb->mm, 1);
352 	__tlb_remove_table(table);
353 }
354 
355 static void tlb_remove_table_rcu(struct rcu_head *head)
356 {
357 	struct mmu_table_batch *batch;
358 	int i;
359 
360 	batch = container_of(head, struct mmu_table_batch, rcu);
361 
362 	for (i = 0; i < batch->nr; i++)
363 		__tlb_remove_table(batch->tables[i]);
364 
365 	free_page((unsigned long)batch);
366 }
367 
368 void tlb_table_flush(struct mmu_gather *tlb)
369 {
370 	struct mmu_table_batch **batch = &tlb->batch;
371 
372 	tlb_flush_remove_tables(tlb->mm);
373 
374 	if (*batch) {
375 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
376 		*batch = NULL;
377 	}
378 }
379 
380 void tlb_remove_table(struct mmu_gather *tlb, void *table)
381 {
382 	struct mmu_table_batch **batch = &tlb->batch;
383 
384 	/*
385 	 * When there's less then two users of this mm there cannot be a
386 	 * concurrent page-table walk.
387 	 */
388 	if (atomic_read(&tlb->mm->mm_users) < 2) {
389 		__tlb_remove_table(table);
390 		return;
391 	}
392 
393 	if (*batch == NULL) {
394 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
395 		if (*batch == NULL) {
396 			tlb_remove_table_one(table, tlb);
397 			return;
398 		}
399 		(*batch)->nr = 0;
400 	}
401 	(*batch)->tables[(*batch)->nr++] = table;
402 	if ((*batch)->nr == MAX_TABLE_BATCH)
403 		tlb_table_flush(tlb);
404 }
405 
406 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
407 
408 /**
409  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
410  * @tlb: the mmu_gather structure to initialize
411  * @mm: the mm_struct of the target address space
412  * @start: start of the region that will be removed from the page-table
413  * @end: end of the region that will be removed from the page-table
414  *
415  * Called to initialize an (on-stack) mmu_gather structure for page-table
416  * tear-down from @mm. The @start and @end are set to 0 and -1
417  * respectively when @mm is without users and we're going to destroy
418  * the full address space (exit/execve).
419  */
420 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
421 			unsigned long start, unsigned long end)
422 {
423 	arch_tlb_gather_mmu(tlb, mm, start, end);
424 	inc_tlb_flush_pending(tlb->mm);
425 }
426 
427 void tlb_finish_mmu(struct mmu_gather *tlb,
428 		unsigned long start, unsigned long end)
429 {
430 	/*
431 	 * If there are parallel threads are doing PTE changes on same range
432 	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
433 	 * flush by batching, a thread has stable TLB entry can fail to flush
434 	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
435 	 * forcefully if we detect parallel PTE batching threads.
436 	 */
437 	bool force = mm_tlb_flush_nested(tlb->mm);
438 
439 	arch_tlb_finish_mmu(tlb, start, end, force);
440 	dec_tlb_flush_pending(tlb->mm);
441 }
442 
443 /*
444  * Note: this doesn't free the actual pages themselves. That
445  * has been handled earlier when unmapping all the memory regions.
446  */
447 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
448 			   unsigned long addr)
449 {
450 	pgtable_t token = pmd_pgtable(*pmd);
451 	pmd_clear(pmd);
452 	pte_free_tlb(tlb, token, addr);
453 	mm_dec_nr_ptes(tlb->mm);
454 }
455 
456 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
457 				unsigned long addr, unsigned long end,
458 				unsigned long floor, unsigned long ceiling)
459 {
460 	pmd_t *pmd;
461 	unsigned long next;
462 	unsigned long start;
463 
464 	start = addr;
465 	pmd = pmd_offset(pud, addr);
466 	do {
467 		next = pmd_addr_end(addr, end);
468 		if (pmd_none_or_clear_bad(pmd))
469 			continue;
470 		free_pte_range(tlb, pmd, addr);
471 	} while (pmd++, addr = next, addr != end);
472 
473 	start &= PUD_MASK;
474 	if (start < floor)
475 		return;
476 	if (ceiling) {
477 		ceiling &= PUD_MASK;
478 		if (!ceiling)
479 			return;
480 	}
481 	if (end - 1 > ceiling - 1)
482 		return;
483 
484 	pmd = pmd_offset(pud, start);
485 	pud_clear(pud);
486 	pmd_free_tlb(tlb, pmd, start);
487 	mm_dec_nr_pmds(tlb->mm);
488 }
489 
490 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
491 				unsigned long addr, unsigned long end,
492 				unsigned long floor, unsigned long ceiling)
493 {
494 	pud_t *pud;
495 	unsigned long next;
496 	unsigned long start;
497 
498 	start = addr;
499 	pud = pud_offset(p4d, addr);
500 	do {
501 		next = pud_addr_end(addr, end);
502 		if (pud_none_or_clear_bad(pud))
503 			continue;
504 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
505 	} while (pud++, addr = next, addr != end);
506 
507 	start &= P4D_MASK;
508 	if (start < floor)
509 		return;
510 	if (ceiling) {
511 		ceiling &= P4D_MASK;
512 		if (!ceiling)
513 			return;
514 	}
515 	if (end - 1 > ceiling - 1)
516 		return;
517 
518 	pud = pud_offset(p4d, start);
519 	p4d_clear(p4d);
520 	pud_free_tlb(tlb, pud, start);
521 	mm_dec_nr_puds(tlb->mm);
522 }
523 
524 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
525 				unsigned long addr, unsigned long end,
526 				unsigned long floor, unsigned long ceiling)
527 {
528 	p4d_t *p4d;
529 	unsigned long next;
530 	unsigned long start;
531 
532 	start = addr;
533 	p4d = p4d_offset(pgd, addr);
534 	do {
535 		next = p4d_addr_end(addr, end);
536 		if (p4d_none_or_clear_bad(p4d))
537 			continue;
538 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
539 	} while (p4d++, addr = next, addr != end);
540 
541 	start &= PGDIR_MASK;
542 	if (start < floor)
543 		return;
544 	if (ceiling) {
545 		ceiling &= PGDIR_MASK;
546 		if (!ceiling)
547 			return;
548 	}
549 	if (end - 1 > ceiling - 1)
550 		return;
551 
552 	p4d = p4d_offset(pgd, start);
553 	pgd_clear(pgd);
554 	p4d_free_tlb(tlb, p4d, start);
555 }
556 
557 /*
558  * This function frees user-level page tables of a process.
559  */
560 void free_pgd_range(struct mmu_gather *tlb,
561 			unsigned long addr, unsigned long end,
562 			unsigned long floor, unsigned long ceiling)
563 {
564 	pgd_t *pgd;
565 	unsigned long next;
566 
567 	/*
568 	 * The next few lines have given us lots of grief...
569 	 *
570 	 * Why are we testing PMD* at this top level?  Because often
571 	 * there will be no work to do at all, and we'd prefer not to
572 	 * go all the way down to the bottom just to discover that.
573 	 *
574 	 * Why all these "- 1"s?  Because 0 represents both the bottom
575 	 * of the address space and the top of it (using -1 for the
576 	 * top wouldn't help much: the masks would do the wrong thing).
577 	 * The rule is that addr 0 and floor 0 refer to the bottom of
578 	 * the address space, but end 0 and ceiling 0 refer to the top
579 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
580 	 * that end 0 case should be mythical).
581 	 *
582 	 * Wherever addr is brought up or ceiling brought down, we must
583 	 * be careful to reject "the opposite 0" before it confuses the
584 	 * subsequent tests.  But what about where end is brought down
585 	 * by PMD_SIZE below? no, end can't go down to 0 there.
586 	 *
587 	 * Whereas we round start (addr) and ceiling down, by different
588 	 * masks at different levels, in order to test whether a table
589 	 * now has no other vmas using it, so can be freed, we don't
590 	 * bother to round floor or end up - the tests don't need that.
591 	 */
592 
593 	addr &= PMD_MASK;
594 	if (addr < floor) {
595 		addr += PMD_SIZE;
596 		if (!addr)
597 			return;
598 	}
599 	if (ceiling) {
600 		ceiling &= PMD_MASK;
601 		if (!ceiling)
602 			return;
603 	}
604 	if (end - 1 > ceiling - 1)
605 		end -= PMD_SIZE;
606 	if (addr > end - 1)
607 		return;
608 	/*
609 	 * We add page table cache pages with PAGE_SIZE,
610 	 * (see pte_free_tlb()), flush the tlb if we need
611 	 */
612 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
613 	pgd = pgd_offset(tlb->mm, addr);
614 	do {
615 		next = pgd_addr_end(addr, end);
616 		if (pgd_none_or_clear_bad(pgd))
617 			continue;
618 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
619 	} while (pgd++, addr = next, addr != end);
620 }
621 
622 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
623 		unsigned long floor, unsigned long ceiling)
624 {
625 	while (vma) {
626 		struct vm_area_struct *next = vma->vm_next;
627 		unsigned long addr = vma->vm_start;
628 
629 		/*
630 		 * Hide vma from rmap and truncate_pagecache before freeing
631 		 * pgtables
632 		 */
633 		unlink_anon_vmas(vma);
634 		unlink_file_vma(vma);
635 
636 		if (is_vm_hugetlb_page(vma)) {
637 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
638 				floor, next ? next->vm_start : ceiling);
639 		} else {
640 			/*
641 			 * Optimization: gather nearby vmas into one call down
642 			 */
643 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
644 			       && !is_vm_hugetlb_page(next)) {
645 				vma = next;
646 				next = vma->vm_next;
647 				unlink_anon_vmas(vma);
648 				unlink_file_vma(vma);
649 			}
650 			free_pgd_range(tlb, addr, vma->vm_end,
651 				floor, next ? next->vm_start : ceiling);
652 		}
653 		vma = next;
654 	}
655 }
656 
657 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
658 {
659 	spinlock_t *ptl;
660 	pgtable_t new = pte_alloc_one(mm, address);
661 	if (!new)
662 		return -ENOMEM;
663 
664 	/*
665 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
666 	 * visible before the pte is made visible to other CPUs by being
667 	 * put into page tables.
668 	 *
669 	 * The other side of the story is the pointer chasing in the page
670 	 * table walking code (when walking the page table without locking;
671 	 * ie. most of the time). Fortunately, these data accesses consist
672 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
673 	 * being the notable exception) will already guarantee loads are
674 	 * seen in-order. See the alpha page table accessors for the
675 	 * smp_read_barrier_depends() barriers in page table walking code.
676 	 */
677 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
678 
679 	ptl = pmd_lock(mm, pmd);
680 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
681 		mm_inc_nr_ptes(mm);
682 		pmd_populate(mm, pmd, new);
683 		new = NULL;
684 	}
685 	spin_unlock(ptl);
686 	if (new)
687 		pte_free(mm, new);
688 	return 0;
689 }
690 
691 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
692 {
693 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
694 	if (!new)
695 		return -ENOMEM;
696 
697 	smp_wmb(); /* See comment in __pte_alloc */
698 
699 	spin_lock(&init_mm.page_table_lock);
700 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
701 		pmd_populate_kernel(&init_mm, pmd, new);
702 		new = NULL;
703 	}
704 	spin_unlock(&init_mm.page_table_lock);
705 	if (new)
706 		pte_free_kernel(&init_mm, new);
707 	return 0;
708 }
709 
710 static inline void init_rss_vec(int *rss)
711 {
712 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
713 }
714 
715 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
716 {
717 	int i;
718 
719 	if (current->mm == mm)
720 		sync_mm_rss(mm);
721 	for (i = 0; i < NR_MM_COUNTERS; i++)
722 		if (rss[i])
723 			add_mm_counter(mm, i, rss[i]);
724 }
725 
726 /*
727  * This function is called to print an error when a bad pte
728  * is found. For example, we might have a PFN-mapped pte in
729  * a region that doesn't allow it.
730  *
731  * The calling function must still handle the error.
732  */
733 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
734 			  pte_t pte, struct page *page)
735 {
736 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
737 	p4d_t *p4d = p4d_offset(pgd, addr);
738 	pud_t *pud = pud_offset(p4d, addr);
739 	pmd_t *pmd = pmd_offset(pud, addr);
740 	struct address_space *mapping;
741 	pgoff_t index;
742 	static unsigned long resume;
743 	static unsigned long nr_shown;
744 	static unsigned long nr_unshown;
745 
746 	/*
747 	 * Allow a burst of 60 reports, then keep quiet for that minute;
748 	 * or allow a steady drip of one report per second.
749 	 */
750 	if (nr_shown == 60) {
751 		if (time_before(jiffies, resume)) {
752 			nr_unshown++;
753 			return;
754 		}
755 		if (nr_unshown) {
756 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
757 				 nr_unshown);
758 			nr_unshown = 0;
759 		}
760 		nr_shown = 0;
761 	}
762 	if (nr_shown++ == 0)
763 		resume = jiffies + 60 * HZ;
764 
765 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
766 	index = linear_page_index(vma, addr);
767 
768 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
769 		 current->comm,
770 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
771 	if (page)
772 		dump_page(page, "bad pte");
773 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
774 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
775 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
776 		 vma->vm_file,
777 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
778 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
779 		 mapping ? mapping->a_ops->readpage : NULL);
780 	dump_stack();
781 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
782 }
783 
784 /*
785  * vm_normal_page -- This function gets the "struct page" associated with a pte.
786  *
787  * "Special" mappings do not wish to be associated with a "struct page" (either
788  * it doesn't exist, or it exists but they don't want to touch it). In this
789  * case, NULL is returned here. "Normal" mappings do have a struct page.
790  *
791  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
792  * pte bit, in which case this function is trivial. Secondly, an architecture
793  * may not have a spare pte bit, which requires a more complicated scheme,
794  * described below.
795  *
796  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
797  * special mapping (even if there are underlying and valid "struct pages").
798  * COWed pages of a VM_PFNMAP are always normal.
799  *
800  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
801  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
802  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
803  * mapping will always honor the rule
804  *
805  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
806  *
807  * And for normal mappings this is false.
808  *
809  * This restricts such mappings to be a linear translation from virtual address
810  * to pfn. To get around this restriction, we allow arbitrary mappings so long
811  * as the vma is not a COW mapping; in that case, we know that all ptes are
812  * special (because none can have been COWed).
813  *
814  *
815  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
816  *
817  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
818  * page" backing, however the difference is that _all_ pages with a struct
819  * page (that is, those where pfn_valid is true) are refcounted and considered
820  * normal pages by the VM. The disadvantage is that pages are refcounted
821  * (which can be slower and simply not an option for some PFNMAP users). The
822  * advantage is that we don't have to follow the strict linearity rule of
823  * PFNMAP mappings in order to support COWable mappings.
824  *
825  */
826 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
827 			     pte_t pte, bool with_public_device)
828 {
829 	unsigned long pfn = pte_pfn(pte);
830 
831 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
832 		if (likely(!pte_special(pte)))
833 			goto check_pfn;
834 		if (vma->vm_ops && vma->vm_ops->find_special_page)
835 			return vma->vm_ops->find_special_page(vma, addr);
836 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
837 			return NULL;
838 		if (is_zero_pfn(pfn))
839 			return NULL;
840 
841 		/*
842 		 * Device public pages are special pages (they are ZONE_DEVICE
843 		 * pages but different from persistent memory). They behave
844 		 * allmost like normal pages. The difference is that they are
845 		 * not on the lru and thus should never be involve with any-
846 		 * thing that involve lru manipulation (mlock, numa balancing,
847 		 * ...).
848 		 *
849 		 * This is why we still want to return NULL for such page from
850 		 * vm_normal_page() so that we do not have to special case all
851 		 * call site of vm_normal_page().
852 		 */
853 		if (likely(pfn <= highest_memmap_pfn)) {
854 			struct page *page = pfn_to_page(pfn);
855 
856 			if (is_device_public_page(page)) {
857 				if (with_public_device)
858 					return page;
859 				return NULL;
860 			}
861 		}
862 		print_bad_pte(vma, addr, pte, NULL);
863 		return NULL;
864 	}
865 
866 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
867 
868 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
869 		if (vma->vm_flags & VM_MIXEDMAP) {
870 			if (!pfn_valid(pfn))
871 				return NULL;
872 			goto out;
873 		} else {
874 			unsigned long off;
875 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
876 			if (pfn == vma->vm_pgoff + off)
877 				return NULL;
878 			if (!is_cow_mapping(vma->vm_flags))
879 				return NULL;
880 		}
881 	}
882 
883 	if (is_zero_pfn(pfn))
884 		return NULL;
885 
886 check_pfn:
887 	if (unlikely(pfn > highest_memmap_pfn)) {
888 		print_bad_pte(vma, addr, pte, NULL);
889 		return NULL;
890 	}
891 
892 	/*
893 	 * NOTE! We still have PageReserved() pages in the page tables.
894 	 * eg. VDSO mappings can cause them to exist.
895 	 */
896 out:
897 	return pfn_to_page(pfn);
898 }
899 
900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
901 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
902 				pmd_t pmd)
903 {
904 	unsigned long pfn = pmd_pfn(pmd);
905 
906 	/*
907 	 * There is no pmd_special() but there may be special pmds, e.g.
908 	 * in a direct-access (dax) mapping, so let's just replicate the
909 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
910 	 */
911 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
912 		if (vma->vm_flags & VM_MIXEDMAP) {
913 			if (!pfn_valid(pfn))
914 				return NULL;
915 			goto out;
916 		} else {
917 			unsigned long off;
918 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
919 			if (pfn == vma->vm_pgoff + off)
920 				return NULL;
921 			if (!is_cow_mapping(vma->vm_flags))
922 				return NULL;
923 		}
924 	}
925 
926 	if (is_zero_pfn(pfn))
927 		return NULL;
928 	if (unlikely(pfn > highest_memmap_pfn))
929 		return NULL;
930 
931 	/*
932 	 * NOTE! We still have PageReserved() pages in the page tables.
933 	 * eg. VDSO mappings can cause them to exist.
934 	 */
935 out:
936 	return pfn_to_page(pfn);
937 }
938 #endif
939 
940 /*
941  * copy one vm_area from one task to the other. Assumes the page tables
942  * already present in the new task to be cleared in the whole range
943  * covered by this vma.
944  */
945 
946 static inline unsigned long
947 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
948 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
949 		unsigned long addr, int *rss)
950 {
951 	unsigned long vm_flags = vma->vm_flags;
952 	pte_t pte = *src_pte;
953 	struct page *page;
954 
955 	/* pte contains position in swap or file, so copy. */
956 	if (unlikely(!pte_present(pte))) {
957 		swp_entry_t entry = pte_to_swp_entry(pte);
958 
959 		if (likely(!non_swap_entry(entry))) {
960 			if (swap_duplicate(entry) < 0)
961 				return entry.val;
962 
963 			/* make sure dst_mm is on swapoff's mmlist. */
964 			if (unlikely(list_empty(&dst_mm->mmlist))) {
965 				spin_lock(&mmlist_lock);
966 				if (list_empty(&dst_mm->mmlist))
967 					list_add(&dst_mm->mmlist,
968 							&src_mm->mmlist);
969 				spin_unlock(&mmlist_lock);
970 			}
971 			rss[MM_SWAPENTS]++;
972 		} else if (is_migration_entry(entry)) {
973 			page = migration_entry_to_page(entry);
974 
975 			rss[mm_counter(page)]++;
976 
977 			if (is_write_migration_entry(entry) &&
978 					is_cow_mapping(vm_flags)) {
979 				/*
980 				 * COW mappings require pages in both
981 				 * parent and child to be set to read.
982 				 */
983 				make_migration_entry_read(&entry);
984 				pte = swp_entry_to_pte(entry);
985 				if (pte_swp_soft_dirty(*src_pte))
986 					pte = pte_swp_mksoft_dirty(pte);
987 				set_pte_at(src_mm, addr, src_pte, pte);
988 			}
989 		} else if (is_device_private_entry(entry)) {
990 			page = device_private_entry_to_page(entry);
991 
992 			/*
993 			 * Update rss count even for unaddressable pages, as
994 			 * they should treated just like normal pages in this
995 			 * respect.
996 			 *
997 			 * We will likely want to have some new rss counters
998 			 * for unaddressable pages, at some point. But for now
999 			 * keep things as they are.
1000 			 */
1001 			get_page(page);
1002 			rss[mm_counter(page)]++;
1003 			page_dup_rmap(page, false);
1004 
1005 			/*
1006 			 * We do not preserve soft-dirty information, because so
1007 			 * far, checkpoint/restore is the only feature that
1008 			 * requires that. And checkpoint/restore does not work
1009 			 * when a device driver is involved (you cannot easily
1010 			 * save and restore device driver state).
1011 			 */
1012 			if (is_write_device_private_entry(entry) &&
1013 			    is_cow_mapping(vm_flags)) {
1014 				make_device_private_entry_read(&entry);
1015 				pte = swp_entry_to_pte(entry);
1016 				set_pte_at(src_mm, addr, src_pte, pte);
1017 			}
1018 		}
1019 		goto out_set_pte;
1020 	}
1021 
1022 	/*
1023 	 * If it's a COW mapping, write protect it both
1024 	 * in the parent and the child
1025 	 */
1026 	if (is_cow_mapping(vm_flags)) {
1027 		ptep_set_wrprotect(src_mm, addr, src_pte);
1028 		pte = pte_wrprotect(pte);
1029 	}
1030 
1031 	/*
1032 	 * If it's a shared mapping, mark it clean in
1033 	 * the child
1034 	 */
1035 	if (vm_flags & VM_SHARED)
1036 		pte = pte_mkclean(pte);
1037 	pte = pte_mkold(pte);
1038 
1039 	page = vm_normal_page(vma, addr, pte);
1040 	if (page) {
1041 		get_page(page);
1042 		page_dup_rmap(page, false);
1043 		rss[mm_counter(page)]++;
1044 	} else if (pte_devmap(pte)) {
1045 		page = pte_page(pte);
1046 
1047 		/*
1048 		 * Cache coherent device memory behave like regular page and
1049 		 * not like persistent memory page. For more informations see
1050 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1051 		 */
1052 		if (is_device_public_page(page)) {
1053 			get_page(page);
1054 			page_dup_rmap(page, false);
1055 			rss[mm_counter(page)]++;
1056 		}
1057 	}
1058 
1059 out_set_pte:
1060 	set_pte_at(dst_mm, addr, dst_pte, pte);
1061 	return 0;
1062 }
1063 
1064 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1065 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1066 		   unsigned long addr, unsigned long end)
1067 {
1068 	pte_t *orig_src_pte, *orig_dst_pte;
1069 	pte_t *src_pte, *dst_pte;
1070 	spinlock_t *src_ptl, *dst_ptl;
1071 	int progress = 0;
1072 	int rss[NR_MM_COUNTERS];
1073 	swp_entry_t entry = (swp_entry_t){0};
1074 
1075 again:
1076 	init_rss_vec(rss);
1077 
1078 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1079 	if (!dst_pte)
1080 		return -ENOMEM;
1081 	src_pte = pte_offset_map(src_pmd, addr);
1082 	src_ptl = pte_lockptr(src_mm, src_pmd);
1083 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1084 	orig_src_pte = src_pte;
1085 	orig_dst_pte = dst_pte;
1086 	arch_enter_lazy_mmu_mode();
1087 
1088 	do {
1089 		/*
1090 		 * We are holding two locks at this point - either of them
1091 		 * could generate latencies in another task on another CPU.
1092 		 */
1093 		if (progress >= 32) {
1094 			progress = 0;
1095 			if (need_resched() ||
1096 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1097 				break;
1098 		}
1099 		if (pte_none(*src_pte)) {
1100 			progress++;
1101 			continue;
1102 		}
1103 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1104 							vma, addr, rss);
1105 		if (entry.val)
1106 			break;
1107 		progress += 8;
1108 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1109 
1110 	arch_leave_lazy_mmu_mode();
1111 	spin_unlock(src_ptl);
1112 	pte_unmap(orig_src_pte);
1113 	add_mm_rss_vec(dst_mm, rss);
1114 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1115 	cond_resched();
1116 
1117 	if (entry.val) {
1118 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1119 			return -ENOMEM;
1120 		progress = 0;
1121 	}
1122 	if (addr != end)
1123 		goto again;
1124 	return 0;
1125 }
1126 
1127 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1128 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1129 		unsigned long addr, unsigned long end)
1130 {
1131 	pmd_t *src_pmd, *dst_pmd;
1132 	unsigned long next;
1133 
1134 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1135 	if (!dst_pmd)
1136 		return -ENOMEM;
1137 	src_pmd = pmd_offset(src_pud, addr);
1138 	do {
1139 		next = pmd_addr_end(addr, end);
1140 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1141 			|| pmd_devmap(*src_pmd)) {
1142 			int err;
1143 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1144 			err = copy_huge_pmd(dst_mm, src_mm,
1145 					    dst_pmd, src_pmd, addr, vma);
1146 			if (err == -ENOMEM)
1147 				return -ENOMEM;
1148 			if (!err)
1149 				continue;
1150 			/* fall through */
1151 		}
1152 		if (pmd_none_or_clear_bad(src_pmd))
1153 			continue;
1154 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1155 						vma, addr, next))
1156 			return -ENOMEM;
1157 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1158 	return 0;
1159 }
1160 
1161 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1162 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1163 		unsigned long addr, unsigned long end)
1164 {
1165 	pud_t *src_pud, *dst_pud;
1166 	unsigned long next;
1167 
1168 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1169 	if (!dst_pud)
1170 		return -ENOMEM;
1171 	src_pud = pud_offset(src_p4d, addr);
1172 	do {
1173 		next = pud_addr_end(addr, end);
1174 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1175 			int err;
1176 
1177 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1178 			err = copy_huge_pud(dst_mm, src_mm,
1179 					    dst_pud, src_pud, addr, vma);
1180 			if (err == -ENOMEM)
1181 				return -ENOMEM;
1182 			if (!err)
1183 				continue;
1184 			/* fall through */
1185 		}
1186 		if (pud_none_or_clear_bad(src_pud))
1187 			continue;
1188 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1189 						vma, addr, next))
1190 			return -ENOMEM;
1191 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1192 	return 0;
1193 }
1194 
1195 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1196 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1197 		unsigned long addr, unsigned long end)
1198 {
1199 	p4d_t *src_p4d, *dst_p4d;
1200 	unsigned long next;
1201 
1202 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1203 	if (!dst_p4d)
1204 		return -ENOMEM;
1205 	src_p4d = p4d_offset(src_pgd, addr);
1206 	do {
1207 		next = p4d_addr_end(addr, end);
1208 		if (p4d_none_or_clear_bad(src_p4d))
1209 			continue;
1210 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1211 						vma, addr, next))
1212 			return -ENOMEM;
1213 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1214 	return 0;
1215 }
1216 
1217 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1218 		struct vm_area_struct *vma)
1219 {
1220 	pgd_t *src_pgd, *dst_pgd;
1221 	unsigned long next;
1222 	unsigned long addr = vma->vm_start;
1223 	unsigned long end = vma->vm_end;
1224 	unsigned long mmun_start;	/* For mmu_notifiers */
1225 	unsigned long mmun_end;		/* For mmu_notifiers */
1226 	bool is_cow;
1227 	int ret;
1228 
1229 	/*
1230 	 * Don't copy ptes where a page fault will fill them correctly.
1231 	 * Fork becomes much lighter when there are big shared or private
1232 	 * readonly mappings. The tradeoff is that copy_page_range is more
1233 	 * efficient than faulting.
1234 	 */
1235 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1236 			!vma->anon_vma)
1237 		return 0;
1238 
1239 	if (is_vm_hugetlb_page(vma))
1240 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1241 
1242 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1243 		/*
1244 		 * We do not free on error cases below as remove_vma
1245 		 * gets called on error from higher level routine
1246 		 */
1247 		ret = track_pfn_copy(vma);
1248 		if (ret)
1249 			return ret;
1250 	}
1251 
1252 	/*
1253 	 * We need to invalidate the secondary MMU mappings only when
1254 	 * there could be a permission downgrade on the ptes of the
1255 	 * parent mm. And a permission downgrade will only happen if
1256 	 * is_cow_mapping() returns true.
1257 	 */
1258 	is_cow = is_cow_mapping(vma->vm_flags);
1259 	mmun_start = addr;
1260 	mmun_end   = end;
1261 	if (is_cow)
1262 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1263 						    mmun_end);
1264 
1265 	ret = 0;
1266 	dst_pgd = pgd_offset(dst_mm, addr);
1267 	src_pgd = pgd_offset(src_mm, addr);
1268 	do {
1269 		next = pgd_addr_end(addr, end);
1270 		if (pgd_none_or_clear_bad(src_pgd))
1271 			continue;
1272 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1273 					    vma, addr, next))) {
1274 			ret = -ENOMEM;
1275 			break;
1276 		}
1277 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1278 
1279 	if (is_cow)
1280 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1281 	return ret;
1282 }
1283 
1284 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1285 				struct vm_area_struct *vma, pmd_t *pmd,
1286 				unsigned long addr, unsigned long end,
1287 				struct zap_details *details)
1288 {
1289 	struct mm_struct *mm = tlb->mm;
1290 	int force_flush = 0;
1291 	int rss[NR_MM_COUNTERS];
1292 	spinlock_t *ptl;
1293 	pte_t *start_pte;
1294 	pte_t *pte;
1295 	swp_entry_t entry;
1296 
1297 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1298 again:
1299 	init_rss_vec(rss);
1300 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1301 	pte = start_pte;
1302 	flush_tlb_batched_pending(mm);
1303 	arch_enter_lazy_mmu_mode();
1304 	do {
1305 		pte_t ptent = *pte;
1306 		if (pte_none(ptent))
1307 			continue;
1308 
1309 		if (pte_present(ptent)) {
1310 			struct page *page;
1311 
1312 			page = _vm_normal_page(vma, addr, ptent, true);
1313 			if (unlikely(details) && page) {
1314 				/*
1315 				 * unmap_shared_mapping_pages() wants to
1316 				 * invalidate cache without truncating:
1317 				 * unmap shared but keep private pages.
1318 				 */
1319 				if (details->check_mapping &&
1320 				    details->check_mapping != page_rmapping(page))
1321 					continue;
1322 			}
1323 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1324 							tlb->fullmm);
1325 			tlb_remove_tlb_entry(tlb, pte, addr);
1326 			if (unlikely(!page))
1327 				continue;
1328 
1329 			if (!PageAnon(page)) {
1330 				if (pte_dirty(ptent)) {
1331 					force_flush = 1;
1332 					set_page_dirty(page);
1333 				}
1334 				if (pte_young(ptent) &&
1335 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1336 					mark_page_accessed(page);
1337 			}
1338 			rss[mm_counter(page)]--;
1339 			page_remove_rmap(page, false);
1340 			if (unlikely(page_mapcount(page) < 0))
1341 				print_bad_pte(vma, addr, ptent, page);
1342 			if (unlikely(__tlb_remove_page(tlb, page))) {
1343 				force_flush = 1;
1344 				addr += PAGE_SIZE;
1345 				break;
1346 			}
1347 			continue;
1348 		}
1349 
1350 		entry = pte_to_swp_entry(ptent);
1351 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1352 			struct page *page = device_private_entry_to_page(entry);
1353 
1354 			if (unlikely(details && details->check_mapping)) {
1355 				/*
1356 				 * unmap_shared_mapping_pages() wants to
1357 				 * invalidate cache without truncating:
1358 				 * unmap shared but keep private pages.
1359 				 */
1360 				if (details->check_mapping !=
1361 				    page_rmapping(page))
1362 					continue;
1363 			}
1364 
1365 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1366 			rss[mm_counter(page)]--;
1367 			page_remove_rmap(page, false);
1368 			put_page(page);
1369 			continue;
1370 		}
1371 
1372 		/* If details->check_mapping, we leave swap entries. */
1373 		if (unlikely(details))
1374 			continue;
1375 
1376 		entry = pte_to_swp_entry(ptent);
1377 		if (!non_swap_entry(entry))
1378 			rss[MM_SWAPENTS]--;
1379 		else if (is_migration_entry(entry)) {
1380 			struct page *page;
1381 
1382 			page = migration_entry_to_page(entry);
1383 			rss[mm_counter(page)]--;
1384 		}
1385 		if (unlikely(!free_swap_and_cache(entry)))
1386 			print_bad_pte(vma, addr, ptent, NULL);
1387 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1388 	} while (pte++, addr += PAGE_SIZE, addr != end);
1389 
1390 	add_mm_rss_vec(mm, rss);
1391 	arch_leave_lazy_mmu_mode();
1392 
1393 	/* Do the actual TLB flush before dropping ptl */
1394 	if (force_flush)
1395 		tlb_flush_mmu_tlbonly(tlb);
1396 	pte_unmap_unlock(start_pte, ptl);
1397 
1398 	/*
1399 	 * If we forced a TLB flush (either due to running out of
1400 	 * batch buffers or because we needed to flush dirty TLB
1401 	 * entries before releasing the ptl), free the batched
1402 	 * memory too. Restart if we didn't do everything.
1403 	 */
1404 	if (force_flush) {
1405 		force_flush = 0;
1406 		tlb_flush_mmu_free(tlb);
1407 		if (addr != end)
1408 			goto again;
1409 	}
1410 
1411 	return addr;
1412 }
1413 
1414 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1415 				struct vm_area_struct *vma, pud_t *pud,
1416 				unsigned long addr, unsigned long end,
1417 				struct zap_details *details)
1418 {
1419 	pmd_t *pmd;
1420 	unsigned long next;
1421 
1422 	pmd = pmd_offset(pud, addr);
1423 	do {
1424 		next = pmd_addr_end(addr, end);
1425 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1426 			if (next - addr != HPAGE_PMD_SIZE)
1427 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1428 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1429 				goto next;
1430 			/* fall through */
1431 		}
1432 		/*
1433 		 * Here there can be other concurrent MADV_DONTNEED or
1434 		 * trans huge page faults running, and if the pmd is
1435 		 * none or trans huge it can change under us. This is
1436 		 * because MADV_DONTNEED holds the mmap_sem in read
1437 		 * mode.
1438 		 */
1439 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1440 			goto next;
1441 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1442 next:
1443 		cond_resched();
1444 	} while (pmd++, addr = next, addr != end);
1445 
1446 	return addr;
1447 }
1448 
1449 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1450 				struct vm_area_struct *vma, p4d_t *p4d,
1451 				unsigned long addr, unsigned long end,
1452 				struct zap_details *details)
1453 {
1454 	pud_t *pud;
1455 	unsigned long next;
1456 
1457 	pud = pud_offset(p4d, addr);
1458 	do {
1459 		next = pud_addr_end(addr, end);
1460 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1461 			if (next - addr != HPAGE_PUD_SIZE) {
1462 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1463 				split_huge_pud(vma, pud, addr);
1464 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1465 				goto next;
1466 			/* fall through */
1467 		}
1468 		if (pud_none_or_clear_bad(pud))
1469 			continue;
1470 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1471 next:
1472 		cond_resched();
1473 	} while (pud++, addr = next, addr != end);
1474 
1475 	return addr;
1476 }
1477 
1478 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1479 				struct vm_area_struct *vma, pgd_t *pgd,
1480 				unsigned long addr, unsigned long end,
1481 				struct zap_details *details)
1482 {
1483 	p4d_t *p4d;
1484 	unsigned long next;
1485 
1486 	p4d = p4d_offset(pgd, addr);
1487 	do {
1488 		next = p4d_addr_end(addr, end);
1489 		if (p4d_none_or_clear_bad(p4d))
1490 			continue;
1491 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1492 	} while (p4d++, addr = next, addr != end);
1493 
1494 	return addr;
1495 }
1496 
1497 void unmap_page_range(struct mmu_gather *tlb,
1498 			     struct vm_area_struct *vma,
1499 			     unsigned long addr, unsigned long end,
1500 			     struct zap_details *details)
1501 {
1502 	pgd_t *pgd;
1503 	unsigned long next;
1504 
1505 	BUG_ON(addr >= end);
1506 	tlb_start_vma(tlb, vma);
1507 	pgd = pgd_offset(vma->vm_mm, addr);
1508 	do {
1509 		next = pgd_addr_end(addr, end);
1510 		if (pgd_none_or_clear_bad(pgd))
1511 			continue;
1512 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1513 	} while (pgd++, addr = next, addr != end);
1514 	tlb_end_vma(tlb, vma);
1515 }
1516 
1517 
1518 static void unmap_single_vma(struct mmu_gather *tlb,
1519 		struct vm_area_struct *vma, unsigned long start_addr,
1520 		unsigned long end_addr,
1521 		struct zap_details *details)
1522 {
1523 	unsigned long start = max(vma->vm_start, start_addr);
1524 	unsigned long end;
1525 
1526 	if (start >= vma->vm_end)
1527 		return;
1528 	end = min(vma->vm_end, end_addr);
1529 	if (end <= vma->vm_start)
1530 		return;
1531 
1532 	if (vma->vm_file)
1533 		uprobe_munmap(vma, start, end);
1534 
1535 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1536 		untrack_pfn(vma, 0, 0);
1537 
1538 	if (start != end) {
1539 		if (unlikely(is_vm_hugetlb_page(vma))) {
1540 			/*
1541 			 * It is undesirable to test vma->vm_file as it
1542 			 * should be non-null for valid hugetlb area.
1543 			 * However, vm_file will be NULL in the error
1544 			 * cleanup path of mmap_region. When
1545 			 * hugetlbfs ->mmap method fails,
1546 			 * mmap_region() nullifies vma->vm_file
1547 			 * before calling this function to clean up.
1548 			 * Since no pte has actually been setup, it is
1549 			 * safe to do nothing in this case.
1550 			 */
1551 			if (vma->vm_file) {
1552 				i_mmap_lock_write(vma->vm_file->f_mapping);
1553 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1554 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1555 			}
1556 		} else
1557 			unmap_page_range(tlb, vma, start, end, details);
1558 	}
1559 }
1560 
1561 /**
1562  * unmap_vmas - unmap a range of memory covered by a list of vma's
1563  * @tlb: address of the caller's struct mmu_gather
1564  * @vma: the starting vma
1565  * @start_addr: virtual address at which to start unmapping
1566  * @end_addr: virtual address at which to end unmapping
1567  *
1568  * Unmap all pages in the vma list.
1569  *
1570  * Only addresses between `start' and `end' will be unmapped.
1571  *
1572  * The VMA list must be sorted in ascending virtual address order.
1573  *
1574  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1575  * range after unmap_vmas() returns.  So the only responsibility here is to
1576  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1577  * drops the lock and schedules.
1578  */
1579 void unmap_vmas(struct mmu_gather *tlb,
1580 		struct vm_area_struct *vma, unsigned long start_addr,
1581 		unsigned long end_addr)
1582 {
1583 	struct mm_struct *mm = vma->vm_mm;
1584 
1585 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1586 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1587 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1588 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1589 }
1590 
1591 /**
1592  * zap_page_range - remove user pages in a given range
1593  * @vma: vm_area_struct holding the applicable pages
1594  * @start: starting address of pages to zap
1595  * @size: number of bytes to zap
1596  *
1597  * Caller must protect the VMA list
1598  */
1599 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1600 		unsigned long size)
1601 {
1602 	struct mm_struct *mm = vma->vm_mm;
1603 	struct mmu_gather tlb;
1604 	unsigned long end = start + size;
1605 
1606 	lru_add_drain();
1607 	tlb_gather_mmu(&tlb, mm, start, end);
1608 	update_hiwater_rss(mm);
1609 	mmu_notifier_invalidate_range_start(mm, start, end);
1610 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1611 		unmap_single_vma(&tlb, vma, start, end, NULL);
1612 
1613 		/*
1614 		 * zap_page_range does not specify whether mmap_sem should be
1615 		 * held for read or write. That allows parallel zap_page_range
1616 		 * operations to unmap a PTE and defer a flush meaning that
1617 		 * this call observes pte_none and fails to flush the TLB.
1618 		 * Rather than adding a complex API, ensure that no stale
1619 		 * TLB entries exist when this call returns.
1620 		 */
1621 		flush_tlb_range(vma, start, end);
1622 	}
1623 
1624 	mmu_notifier_invalidate_range_end(mm, start, end);
1625 	tlb_finish_mmu(&tlb, start, end);
1626 }
1627 
1628 /**
1629  * zap_page_range_single - remove user pages in a given range
1630  * @vma: vm_area_struct holding the applicable pages
1631  * @address: starting address of pages to zap
1632  * @size: number of bytes to zap
1633  * @details: details of shared cache invalidation
1634  *
1635  * The range must fit into one VMA.
1636  */
1637 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1638 		unsigned long size, struct zap_details *details)
1639 {
1640 	struct mm_struct *mm = vma->vm_mm;
1641 	struct mmu_gather tlb;
1642 	unsigned long end = address + size;
1643 
1644 	lru_add_drain();
1645 	tlb_gather_mmu(&tlb, mm, address, end);
1646 	update_hiwater_rss(mm);
1647 	mmu_notifier_invalidate_range_start(mm, address, end);
1648 	unmap_single_vma(&tlb, vma, address, end, details);
1649 	mmu_notifier_invalidate_range_end(mm, address, end);
1650 	tlb_finish_mmu(&tlb, address, end);
1651 }
1652 
1653 /**
1654  * zap_vma_ptes - remove ptes mapping the vma
1655  * @vma: vm_area_struct holding ptes to be zapped
1656  * @address: starting address of pages to zap
1657  * @size: number of bytes to zap
1658  *
1659  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1660  *
1661  * The entire address range must be fully contained within the vma.
1662  *
1663  */
1664 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1665 		unsigned long size)
1666 {
1667 	if (address < vma->vm_start || address + size > vma->vm_end ||
1668 	    		!(vma->vm_flags & VM_PFNMAP))
1669 		return;
1670 
1671 	zap_page_range_single(vma, address, size, NULL);
1672 }
1673 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1674 
1675 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1676 			spinlock_t **ptl)
1677 {
1678 	pgd_t *pgd;
1679 	p4d_t *p4d;
1680 	pud_t *pud;
1681 	pmd_t *pmd;
1682 
1683 	pgd = pgd_offset(mm, addr);
1684 	p4d = p4d_alloc(mm, pgd, addr);
1685 	if (!p4d)
1686 		return NULL;
1687 	pud = pud_alloc(mm, p4d, addr);
1688 	if (!pud)
1689 		return NULL;
1690 	pmd = pmd_alloc(mm, pud, addr);
1691 	if (!pmd)
1692 		return NULL;
1693 
1694 	VM_BUG_ON(pmd_trans_huge(*pmd));
1695 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1696 }
1697 
1698 /*
1699  * This is the old fallback for page remapping.
1700  *
1701  * For historical reasons, it only allows reserved pages. Only
1702  * old drivers should use this, and they needed to mark their
1703  * pages reserved for the old functions anyway.
1704  */
1705 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1706 			struct page *page, pgprot_t prot)
1707 {
1708 	struct mm_struct *mm = vma->vm_mm;
1709 	int retval;
1710 	pte_t *pte;
1711 	spinlock_t *ptl;
1712 
1713 	retval = -EINVAL;
1714 	if (PageAnon(page))
1715 		goto out;
1716 	retval = -ENOMEM;
1717 	flush_dcache_page(page);
1718 	pte = get_locked_pte(mm, addr, &ptl);
1719 	if (!pte)
1720 		goto out;
1721 	retval = -EBUSY;
1722 	if (!pte_none(*pte))
1723 		goto out_unlock;
1724 
1725 	/* Ok, finally just insert the thing.. */
1726 	get_page(page);
1727 	inc_mm_counter_fast(mm, mm_counter_file(page));
1728 	page_add_file_rmap(page, false);
1729 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1730 
1731 	retval = 0;
1732 	pte_unmap_unlock(pte, ptl);
1733 	return retval;
1734 out_unlock:
1735 	pte_unmap_unlock(pte, ptl);
1736 out:
1737 	return retval;
1738 }
1739 
1740 /**
1741  * vm_insert_page - insert single page into user vma
1742  * @vma: user vma to map to
1743  * @addr: target user address of this page
1744  * @page: source kernel page
1745  *
1746  * This allows drivers to insert individual pages they've allocated
1747  * into a user vma.
1748  *
1749  * The page has to be a nice clean _individual_ kernel allocation.
1750  * If you allocate a compound page, you need to have marked it as
1751  * such (__GFP_COMP), or manually just split the page up yourself
1752  * (see split_page()).
1753  *
1754  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1755  * took an arbitrary page protection parameter. This doesn't allow
1756  * that. Your vma protection will have to be set up correctly, which
1757  * means that if you want a shared writable mapping, you'd better
1758  * ask for a shared writable mapping!
1759  *
1760  * The page does not need to be reserved.
1761  *
1762  * Usually this function is called from f_op->mmap() handler
1763  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1764  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1765  * function from other places, for example from page-fault handler.
1766  */
1767 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1768 			struct page *page)
1769 {
1770 	if (addr < vma->vm_start || addr >= vma->vm_end)
1771 		return -EFAULT;
1772 	if (!page_count(page))
1773 		return -EINVAL;
1774 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1775 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1776 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1777 		vma->vm_flags |= VM_MIXEDMAP;
1778 	}
1779 	return insert_page(vma, addr, page, vma->vm_page_prot);
1780 }
1781 EXPORT_SYMBOL(vm_insert_page);
1782 
1783 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1784 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1785 {
1786 	struct mm_struct *mm = vma->vm_mm;
1787 	int retval;
1788 	pte_t *pte, entry;
1789 	spinlock_t *ptl;
1790 
1791 	retval = -ENOMEM;
1792 	pte = get_locked_pte(mm, addr, &ptl);
1793 	if (!pte)
1794 		goto out;
1795 	retval = -EBUSY;
1796 	if (!pte_none(*pte)) {
1797 		if (mkwrite) {
1798 			/*
1799 			 * For read faults on private mappings the PFN passed
1800 			 * in may not match the PFN we have mapped if the
1801 			 * mapped PFN is a writeable COW page.  In the mkwrite
1802 			 * case we are creating a writable PTE for a shared
1803 			 * mapping and we expect the PFNs to match.
1804 			 */
1805 			if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1806 				goto out_unlock;
1807 			entry = *pte;
1808 			goto out_mkwrite;
1809 		} else
1810 			goto out_unlock;
1811 	}
1812 
1813 	/* Ok, finally just insert the thing.. */
1814 	if (pfn_t_devmap(pfn))
1815 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1816 	else
1817 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1818 
1819 out_mkwrite:
1820 	if (mkwrite) {
1821 		entry = pte_mkyoung(entry);
1822 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1823 	}
1824 
1825 	set_pte_at(mm, addr, pte, entry);
1826 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1827 
1828 	retval = 0;
1829 out_unlock:
1830 	pte_unmap_unlock(pte, ptl);
1831 out:
1832 	return retval;
1833 }
1834 
1835 /**
1836  * vm_insert_pfn - insert single pfn into user vma
1837  * @vma: user vma to map to
1838  * @addr: target user address of this page
1839  * @pfn: source kernel pfn
1840  *
1841  * Similar to vm_insert_page, this allows drivers to insert individual pages
1842  * they've allocated into a user vma. Same comments apply.
1843  *
1844  * This function should only be called from a vm_ops->fault handler, and
1845  * in that case the handler should return NULL.
1846  *
1847  * vma cannot be a COW mapping.
1848  *
1849  * As this is called only for pages that do not currently exist, we
1850  * do not need to flush old virtual caches or the TLB.
1851  */
1852 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1853 			unsigned long pfn)
1854 {
1855 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1856 }
1857 EXPORT_SYMBOL(vm_insert_pfn);
1858 
1859 /**
1860  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1861  * @vma: user vma to map to
1862  * @addr: target user address of this page
1863  * @pfn: source kernel pfn
1864  * @pgprot: pgprot flags for the inserted page
1865  *
1866  * This is exactly like vm_insert_pfn, except that it allows drivers to
1867  * to override pgprot on a per-page basis.
1868  *
1869  * This only makes sense for IO mappings, and it makes no sense for
1870  * cow mappings.  In general, using multiple vmas is preferable;
1871  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1872  * impractical.
1873  */
1874 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1875 			unsigned long pfn, pgprot_t pgprot)
1876 {
1877 	int ret;
1878 	/*
1879 	 * Technically, architectures with pte_special can avoid all these
1880 	 * restrictions (same for remap_pfn_range).  However we would like
1881 	 * consistency in testing and feature parity among all, so we should
1882 	 * try to keep these invariants in place for everybody.
1883 	 */
1884 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1885 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1886 						(VM_PFNMAP|VM_MIXEDMAP));
1887 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1888 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1889 
1890 	if (addr < vma->vm_start || addr >= vma->vm_end)
1891 		return -EFAULT;
1892 
1893 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1894 
1895 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1896 			false);
1897 
1898 	return ret;
1899 }
1900 EXPORT_SYMBOL(vm_insert_pfn_prot);
1901 
1902 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1903 {
1904 	/* these checks mirror the abort conditions in vm_normal_page */
1905 	if (vma->vm_flags & VM_MIXEDMAP)
1906 		return true;
1907 	if (pfn_t_devmap(pfn))
1908 		return true;
1909 	if (pfn_t_special(pfn))
1910 		return true;
1911 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1912 		return true;
1913 	return false;
1914 }
1915 
1916 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1917 			pfn_t pfn, bool mkwrite)
1918 {
1919 	pgprot_t pgprot = vma->vm_page_prot;
1920 
1921 	BUG_ON(!vm_mixed_ok(vma, pfn));
1922 
1923 	if (addr < vma->vm_start || addr >= vma->vm_end)
1924 		return -EFAULT;
1925 
1926 	track_pfn_insert(vma, &pgprot, pfn);
1927 
1928 	/*
1929 	 * If we don't have pte special, then we have to use the pfn_valid()
1930 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1931 	 * refcount the page if pfn_valid is true (hence insert_page rather
1932 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1933 	 * without pte special, it would there be refcounted as a normal page.
1934 	 */
1935 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1936 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1937 		struct page *page;
1938 
1939 		/*
1940 		 * At this point we are committed to insert_page()
1941 		 * regardless of whether the caller specified flags that
1942 		 * result in pfn_t_has_page() == false.
1943 		 */
1944 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1945 		return insert_page(vma, addr, page, pgprot);
1946 	}
1947 	return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1948 }
1949 
1950 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1951 			pfn_t pfn)
1952 {
1953 	return __vm_insert_mixed(vma, addr, pfn, false);
1954 
1955 }
1956 EXPORT_SYMBOL(vm_insert_mixed);
1957 
1958 /*
1959  *  If the insertion of PTE failed because someone else already added a
1960  *  different entry in the mean time, we treat that as success as we assume
1961  *  the same entry was actually inserted.
1962  */
1963 
1964 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1965 		unsigned long addr, pfn_t pfn)
1966 {
1967 	int err;
1968 
1969 	err =  __vm_insert_mixed(vma, addr, pfn, true);
1970 	if (err == -ENOMEM)
1971 		return VM_FAULT_OOM;
1972 	if (err < 0 && err != -EBUSY)
1973 		return VM_FAULT_SIGBUS;
1974 	return VM_FAULT_NOPAGE;
1975 }
1976 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1977 
1978 /*
1979  * maps a range of physical memory into the requested pages. the old
1980  * mappings are removed. any references to nonexistent pages results
1981  * in null mappings (currently treated as "copy-on-access")
1982  */
1983 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1984 			unsigned long addr, unsigned long end,
1985 			unsigned long pfn, pgprot_t prot)
1986 {
1987 	pte_t *pte;
1988 	spinlock_t *ptl;
1989 
1990 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1991 	if (!pte)
1992 		return -ENOMEM;
1993 	arch_enter_lazy_mmu_mode();
1994 	do {
1995 		BUG_ON(!pte_none(*pte));
1996 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1997 		pfn++;
1998 	} while (pte++, addr += PAGE_SIZE, addr != end);
1999 	arch_leave_lazy_mmu_mode();
2000 	pte_unmap_unlock(pte - 1, ptl);
2001 	return 0;
2002 }
2003 
2004 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2005 			unsigned long addr, unsigned long end,
2006 			unsigned long pfn, pgprot_t prot)
2007 {
2008 	pmd_t *pmd;
2009 	unsigned long next;
2010 
2011 	pfn -= addr >> PAGE_SHIFT;
2012 	pmd = pmd_alloc(mm, pud, addr);
2013 	if (!pmd)
2014 		return -ENOMEM;
2015 	VM_BUG_ON(pmd_trans_huge(*pmd));
2016 	do {
2017 		next = pmd_addr_end(addr, end);
2018 		if (remap_pte_range(mm, pmd, addr, next,
2019 				pfn + (addr >> PAGE_SHIFT), prot))
2020 			return -ENOMEM;
2021 	} while (pmd++, addr = next, addr != end);
2022 	return 0;
2023 }
2024 
2025 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2026 			unsigned long addr, unsigned long end,
2027 			unsigned long pfn, pgprot_t prot)
2028 {
2029 	pud_t *pud;
2030 	unsigned long next;
2031 
2032 	pfn -= addr >> PAGE_SHIFT;
2033 	pud = pud_alloc(mm, p4d, addr);
2034 	if (!pud)
2035 		return -ENOMEM;
2036 	do {
2037 		next = pud_addr_end(addr, end);
2038 		if (remap_pmd_range(mm, pud, addr, next,
2039 				pfn + (addr >> PAGE_SHIFT), prot))
2040 			return -ENOMEM;
2041 	} while (pud++, addr = next, addr != end);
2042 	return 0;
2043 }
2044 
2045 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2046 			unsigned long addr, unsigned long end,
2047 			unsigned long pfn, pgprot_t prot)
2048 {
2049 	p4d_t *p4d;
2050 	unsigned long next;
2051 
2052 	pfn -= addr >> PAGE_SHIFT;
2053 	p4d = p4d_alloc(mm, pgd, addr);
2054 	if (!p4d)
2055 		return -ENOMEM;
2056 	do {
2057 		next = p4d_addr_end(addr, end);
2058 		if (remap_pud_range(mm, p4d, addr, next,
2059 				pfn + (addr >> PAGE_SHIFT), prot))
2060 			return -ENOMEM;
2061 	} while (p4d++, addr = next, addr != end);
2062 	return 0;
2063 }
2064 
2065 /**
2066  * remap_pfn_range - remap kernel memory to userspace
2067  * @vma: user vma to map to
2068  * @addr: target user address to start at
2069  * @pfn: physical address of kernel memory
2070  * @size: size of map area
2071  * @prot: page protection flags for this mapping
2072  *
2073  *  Note: this is only safe if the mm semaphore is held when called.
2074  */
2075 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2076 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2077 {
2078 	pgd_t *pgd;
2079 	unsigned long next;
2080 	unsigned long end = addr + PAGE_ALIGN(size);
2081 	struct mm_struct *mm = vma->vm_mm;
2082 	unsigned long remap_pfn = pfn;
2083 	int err;
2084 
2085 	/*
2086 	 * Physically remapped pages are special. Tell the
2087 	 * rest of the world about it:
2088 	 *   VM_IO tells people not to look at these pages
2089 	 *	(accesses can have side effects).
2090 	 *   VM_PFNMAP tells the core MM that the base pages are just
2091 	 *	raw PFN mappings, and do not have a "struct page" associated
2092 	 *	with them.
2093 	 *   VM_DONTEXPAND
2094 	 *      Disable vma merging and expanding with mremap().
2095 	 *   VM_DONTDUMP
2096 	 *      Omit vma from core dump, even when VM_IO turned off.
2097 	 *
2098 	 * There's a horrible special case to handle copy-on-write
2099 	 * behaviour that some programs depend on. We mark the "original"
2100 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2101 	 * See vm_normal_page() for details.
2102 	 */
2103 	if (is_cow_mapping(vma->vm_flags)) {
2104 		if (addr != vma->vm_start || end != vma->vm_end)
2105 			return -EINVAL;
2106 		vma->vm_pgoff = pfn;
2107 	}
2108 
2109 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2110 	if (err)
2111 		return -EINVAL;
2112 
2113 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2114 
2115 	BUG_ON(addr >= end);
2116 	pfn -= addr >> PAGE_SHIFT;
2117 	pgd = pgd_offset(mm, addr);
2118 	flush_cache_range(vma, addr, end);
2119 	do {
2120 		next = pgd_addr_end(addr, end);
2121 		err = remap_p4d_range(mm, pgd, addr, next,
2122 				pfn + (addr >> PAGE_SHIFT), prot);
2123 		if (err)
2124 			break;
2125 	} while (pgd++, addr = next, addr != end);
2126 
2127 	if (err)
2128 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2129 
2130 	return err;
2131 }
2132 EXPORT_SYMBOL(remap_pfn_range);
2133 
2134 /**
2135  * vm_iomap_memory - remap memory to userspace
2136  * @vma: user vma to map to
2137  * @start: start of area
2138  * @len: size of area
2139  *
2140  * This is a simplified io_remap_pfn_range() for common driver use. The
2141  * driver just needs to give us the physical memory range to be mapped,
2142  * we'll figure out the rest from the vma information.
2143  *
2144  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2145  * whatever write-combining details or similar.
2146  */
2147 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2148 {
2149 	unsigned long vm_len, pfn, pages;
2150 
2151 	/* Check that the physical memory area passed in looks valid */
2152 	if (start + len < start)
2153 		return -EINVAL;
2154 	/*
2155 	 * You *really* shouldn't map things that aren't page-aligned,
2156 	 * but we've historically allowed it because IO memory might
2157 	 * just have smaller alignment.
2158 	 */
2159 	len += start & ~PAGE_MASK;
2160 	pfn = start >> PAGE_SHIFT;
2161 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2162 	if (pfn + pages < pfn)
2163 		return -EINVAL;
2164 
2165 	/* We start the mapping 'vm_pgoff' pages into the area */
2166 	if (vma->vm_pgoff > pages)
2167 		return -EINVAL;
2168 	pfn += vma->vm_pgoff;
2169 	pages -= vma->vm_pgoff;
2170 
2171 	/* Can we fit all of the mapping? */
2172 	vm_len = vma->vm_end - vma->vm_start;
2173 	if (vm_len >> PAGE_SHIFT > pages)
2174 		return -EINVAL;
2175 
2176 	/* Ok, let it rip */
2177 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2178 }
2179 EXPORT_SYMBOL(vm_iomap_memory);
2180 
2181 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2182 				     unsigned long addr, unsigned long end,
2183 				     pte_fn_t fn, void *data)
2184 {
2185 	pte_t *pte;
2186 	int err;
2187 	pgtable_t token;
2188 	spinlock_t *uninitialized_var(ptl);
2189 
2190 	pte = (mm == &init_mm) ?
2191 		pte_alloc_kernel(pmd, addr) :
2192 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2193 	if (!pte)
2194 		return -ENOMEM;
2195 
2196 	BUG_ON(pmd_huge(*pmd));
2197 
2198 	arch_enter_lazy_mmu_mode();
2199 
2200 	token = pmd_pgtable(*pmd);
2201 
2202 	do {
2203 		err = fn(pte++, token, addr, data);
2204 		if (err)
2205 			break;
2206 	} while (addr += PAGE_SIZE, addr != end);
2207 
2208 	arch_leave_lazy_mmu_mode();
2209 
2210 	if (mm != &init_mm)
2211 		pte_unmap_unlock(pte-1, ptl);
2212 	return err;
2213 }
2214 
2215 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2216 				     unsigned long addr, unsigned long end,
2217 				     pte_fn_t fn, void *data)
2218 {
2219 	pmd_t *pmd;
2220 	unsigned long next;
2221 	int err;
2222 
2223 	BUG_ON(pud_huge(*pud));
2224 
2225 	pmd = pmd_alloc(mm, pud, addr);
2226 	if (!pmd)
2227 		return -ENOMEM;
2228 	do {
2229 		next = pmd_addr_end(addr, end);
2230 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2231 		if (err)
2232 			break;
2233 	} while (pmd++, addr = next, addr != end);
2234 	return err;
2235 }
2236 
2237 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2238 				     unsigned long addr, unsigned long end,
2239 				     pte_fn_t fn, void *data)
2240 {
2241 	pud_t *pud;
2242 	unsigned long next;
2243 	int err;
2244 
2245 	pud = pud_alloc(mm, p4d, addr);
2246 	if (!pud)
2247 		return -ENOMEM;
2248 	do {
2249 		next = pud_addr_end(addr, end);
2250 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2251 		if (err)
2252 			break;
2253 	} while (pud++, addr = next, addr != end);
2254 	return err;
2255 }
2256 
2257 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2258 				     unsigned long addr, unsigned long end,
2259 				     pte_fn_t fn, void *data)
2260 {
2261 	p4d_t *p4d;
2262 	unsigned long next;
2263 	int err;
2264 
2265 	p4d = p4d_alloc(mm, pgd, addr);
2266 	if (!p4d)
2267 		return -ENOMEM;
2268 	do {
2269 		next = p4d_addr_end(addr, end);
2270 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2271 		if (err)
2272 			break;
2273 	} while (p4d++, addr = next, addr != end);
2274 	return err;
2275 }
2276 
2277 /*
2278  * Scan a region of virtual memory, filling in page tables as necessary
2279  * and calling a provided function on each leaf page table.
2280  */
2281 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2282 			unsigned long size, pte_fn_t fn, void *data)
2283 {
2284 	pgd_t *pgd;
2285 	unsigned long next;
2286 	unsigned long end = addr + size;
2287 	int err;
2288 
2289 	if (WARN_ON(addr >= end))
2290 		return -EINVAL;
2291 
2292 	pgd = pgd_offset(mm, addr);
2293 	do {
2294 		next = pgd_addr_end(addr, end);
2295 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2296 		if (err)
2297 			break;
2298 	} while (pgd++, addr = next, addr != end);
2299 
2300 	return err;
2301 }
2302 EXPORT_SYMBOL_GPL(apply_to_page_range);
2303 
2304 /*
2305  * handle_pte_fault chooses page fault handler according to an entry which was
2306  * read non-atomically.  Before making any commitment, on those architectures
2307  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2308  * parts, do_swap_page must check under lock before unmapping the pte and
2309  * proceeding (but do_wp_page is only called after already making such a check;
2310  * and do_anonymous_page can safely check later on).
2311  */
2312 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2313 				pte_t *page_table, pte_t orig_pte)
2314 {
2315 	int same = 1;
2316 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2317 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2318 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2319 		spin_lock(ptl);
2320 		same = pte_same(*page_table, orig_pte);
2321 		spin_unlock(ptl);
2322 	}
2323 #endif
2324 	pte_unmap(page_table);
2325 	return same;
2326 }
2327 
2328 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2329 {
2330 	debug_dma_assert_idle(src);
2331 
2332 	/*
2333 	 * If the source page was a PFN mapping, we don't have
2334 	 * a "struct page" for it. We do a best-effort copy by
2335 	 * just copying from the original user address. If that
2336 	 * fails, we just zero-fill it. Live with it.
2337 	 */
2338 	if (unlikely(!src)) {
2339 		void *kaddr = kmap_atomic(dst);
2340 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2341 
2342 		/*
2343 		 * This really shouldn't fail, because the page is there
2344 		 * in the page tables. But it might just be unreadable,
2345 		 * in which case we just give up and fill the result with
2346 		 * zeroes.
2347 		 */
2348 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2349 			clear_page(kaddr);
2350 		kunmap_atomic(kaddr);
2351 		flush_dcache_page(dst);
2352 	} else
2353 		copy_user_highpage(dst, src, va, vma);
2354 }
2355 
2356 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2357 {
2358 	struct file *vm_file = vma->vm_file;
2359 
2360 	if (vm_file)
2361 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2362 
2363 	/*
2364 	 * Special mappings (e.g. VDSO) do not have any file so fake
2365 	 * a default GFP_KERNEL for them.
2366 	 */
2367 	return GFP_KERNEL;
2368 }
2369 
2370 /*
2371  * Notify the address space that the page is about to become writable so that
2372  * it can prohibit this or wait for the page to get into an appropriate state.
2373  *
2374  * We do this without the lock held, so that it can sleep if it needs to.
2375  */
2376 static int do_page_mkwrite(struct vm_fault *vmf)
2377 {
2378 	int ret;
2379 	struct page *page = vmf->page;
2380 	unsigned int old_flags = vmf->flags;
2381 
2382 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2383 
2384 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2385 	/* Restore original flags so that caller is not surprised */
2386 	vmf->flags = old_flags;
2387 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2388 		return ret;
2389 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2390 		lock_page(page);
2391 		if (!page->mapping) {
2392 			unlock_page(page);
2393 			return 0; /* retry */
2394 		}
2395 		ret |= VM_FAULT_LOCKED;
2396 	} else
2397 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2398 	return ret;
2399 }
2400 
2401 /*
2402  * Handle dirtying of a page in shared file mapping on a write fault.
2403  *
2404  * The function expects the page to be locked and unlocks it.
2405  */
2406 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2407 				    struct page *page)
2408 {
2409 	struct address_space *mapping;
2410 	bool dirtied;
2411 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2412 
2413 	dirtied = set_page_dirty(page);
2414 	VM_BUG_ON_PAGE(PageAnon(page), page);
2415 	/*
2416 	 * Take a local copy of the address_space - page.mapping may be zeroed
2417 	 * by truncate after unlock_page().   The address_space itself remains
2418 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2419 	 * release semantics to prevent the compiler from undoing this copying.
2420 	 */
2421 	mapping = page_rmapping(page);
2422 	unlock_page(page);
2423 
2424 	if ((dirtied || page_mkwrite) && mapping) {
2425 		/*
2426 		 * Some device drivers do not set page.mapping
2427 		 * but still dirty their pages
2428 		 */
2429 		balance_dirty_pages_ratelimited(mapping);
2430 	}
2431 
2432 	if (!page_mkwrite)
2433 		file_update_time(vma->vm_file);
2434 }
2435 
2436 /*
2437  * Handle write page faults for pages that can be reused in the current vma
2438  *
2439  * This can happen either due to the mapping being with the VM_SHARED flag,
2440  * or due to us being the last reference standing to the page. In either
2441  * case, all we need to do here is to mark the page as writable and update
2442  * any related book-keeping.
2443  */
2444 static inline void wp_page_reuse(struct vm_fault *vmf)
2445 	__releases(vmf->ptl)
2446 {
2447 	struct vm_area_struct *vma = vmf->vma;
2448 	struct page *page = vmf->page;
2449 	pte_t entry;
2450 	/*
2451 	 * Clear the pages cpupid information as the existing
2452 	 * information potentially belongs to a now completely
2453 	 * unrelated process.
2454 	 */
2455 	if (page)
2456 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2457 
2458 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2459 	entry = pte_mkyoung(vmf->orig_pte);
2460 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2461 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2462 		update_mmu_cache(vma, vmf->address, vmf->pte);
2463 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2464 }
2465 
2466 /*
2467  * Handle the case of a page which we actually need to copy to a new page.
2468  *
2469  * Called with mmap_sem locked and the old page referenced, but
2470  * without the ptl held.
2471  *
2472  * High level logic flow:
2473  *
2474  * - Allocate a page, copy the content of the old page to the new one.
2475  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2476  * - Take the PTL. If the pte changed, bail out and release the allocated page
2477  * - If the pte is still the way we remember it, update the page table and all
2478  *   relevant references. This includes dropping the reference the page-table
2479  *   held to the old page, as well as updating the rmap.
2480  * - In any case, unlock the PTL and drop the reference we took to the old page.
2481  */
2482 static int wp_page_copy(struct vm_fault *vmf)
2483 {
2484 	struct vm_area_struct *vma = vmf->vma;
2485 	struct mm_struct *mm = vma->vm_mm;
2486 	struct page *old_page = vmf->page;
2487 	struct page *new_page = NULL;
2488 	pte_t entry;
2489 	int page_copied = 0;
2490 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2491 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2492 	struct mem_cgroup *memcg;
2493 
2494 	if (unlikely(anon_vma_prepare(vma)))
2495 		goto oom;
2496 
2497 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2498 		new_page = alloc_zeroed_user_highpage_movable(vma,
2499 							      vmf->address);
2500 		if (!new_page)
2501 			goto oom;
2502 	} else {
2503 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2504 				vmf->address);
2505 		if (!new_page)
2506 			goto oom;
2507 		cow_user_page(new_page, old_page, vmf->address, vma);
2508 	}
2509 
2510 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2511 		goto oom_free_new;
2512 
2513 	__SetPageUptodate(new_page);
2514 
2515 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2516 
2517 	/*
2518 	 * Re-check the pte - we dropped the lock
2519 	 */
2520 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2521 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2522 		if (old_page) {
2523 			if (!PageAnon(old_page)) {
2524 				dec_mm_counter_fast(mm,
2525 						mm_counter_file(old_page));
2526 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2527 			}
2528 		} else {
2529 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2530 		}
2531 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2532 		entry = mk_pte(new_page, vma->vm_page_prot);
2533 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2534 		/*
2535 		 * Clear the pte entry and flush it first, before updating the
2536 		 * pte with the new entry. This will avoid a race condition
2537 		 * seen in the presence of one thread doing SMC and another
2538 		 * thread doing COW.
2539 		 */
2540 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2541 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2542 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2543 		lru_cache_add_active_or_unevictable(new_page, vma);
2544 		/*
2545 		 * We call the notify macro here because, when using secondary
2546 		 * mmu page tables (such as kvm shadow page tables), we want the
2547 		 * new page to be mapped directly into the secondary page table.
2548 		 */
2549 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2550 		update_mmu_cache(vma, vmf->address, vmf->pte);
2551 		if (old_page) {
2552 			/*
2553 			 * Only after switching the pte to the new page may
2554 			 * we remove the mapcount here. Otherwise another
2555 			 * process may come and find the rmap count decremented
2556 			 * before the pte is switched to the new page, and
2557 			 * "reuse" the old page writing into it while our pte
2558 			 * here still points into it and can be read by other
2559 			 * threads.
2560 			 *
2561 			 * The critical issue is to order this
2562 			 * page_remove_rmap with the ptp_clear_flush above.
2563 			 * Those stores are ordered by (if nothing else,)
2564 			 * the barrier present in the atomic_add_negative
2565 			 * in page_remove_rmap.
2566 			 *
2567 			 * Then the TLB flush in ptep_clear_flush ensures that
2568 			 * no process can access the old page before the
2569 			 * decremented mapcount is visible. And the old page
2570 			 * cannot be reused until after the decremented
2571 			 * mapcount is visible. So transitively, TLBs to
2572 			 * old page will be flushed before it can be reused.
2573 			 */
2574 			page_remove_rmap(old_page, false);
2575 		}
2576 
2577 		/* Free the old page.. */
2578 		new_page = old_page;
2579 		page_copied = 1;
2580 	} else {
2581 		mem_cgroup_cancel_charge(new_page, memcg, false);
2582 	}
2583 
2584 	if (new_page)
2585 		put_page(new_page);
2586 
2587 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2588 	/*
2589 	 * No need to double call mmu_notifier->invalidate_range() callback as
2590 	 * the above ptep_clear_flush_notify() did already call it.
2591 	 */
2592 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2593 	if (old_page) {
2594 		/*
2595 		 * Don't let another task, with possibly unlocked vma,
2596 		 * keep the mlocked page.
2597 		 */
2598 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2599 			lock_page(old_page);	/* LRU manipulation */
2600 			if (PageMlocked(old_page))
2601 				munlock_vma_page(old_page);
2602 			unlock_page(old_page);
2603 		}
2604 		put_page(old_page);
2605 	}
2606 	return page_copied ? VM_FAULT_WRITE : 0;
2607 oom_free_new:
2608 	put_page(new_page);
2609 oom:
2610 	if (old_page)
2611 		put_page(old_page);
2612 	return VM_FAULT_OOM;
2613 }
2614 
2615 /**
2616  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2617  *			  writeable once the page is prepared
2618  *
2619  * @vmf: structure describing the fault
2620  *
2621  * This function handles all that is needed to finish a write page fault in a
2622  * shared mapping due to PTE being read-only once the mapped page is prepared.
2623  * It handles locking of PTE and modifying it. The function returns
2624  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2625  * lock.
2626  *
2627  * The function expects the page to be locked or other protection against
2628  * concurrent faults / writeback (such as DAX radix tree locks).
2629  */
2630 int finish_mkwrite_fault(struct vm_fault *vmf)
2631 {
2632 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2633 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2634 				       &vmf->ptl);
2635 	/*
2636 	 * We might have raced with another page fault while we released the
2637 	 * pte_offset_map_lock.
2638 	 */
2639 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2640 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2641 		return VM_FAULT_NOPAGE;
2642 	}
2643 	wp_page_reuse(vmf);
2644 	return 0;
2645 }
2646 
2647 /*
2648  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2649  * mapping
2650  */
2651 static int wp_pfn_shared(struct vm_fault *vmf)
2652 {
2653 	struct vm_area_struct *vma = vmf->vma;
2654 
2655 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2656 		int ret;
2657 
2658 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2659 		vmf->flags |= FAULT_FLAG_MKWRITE;
2660 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2661 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2662 			return ret;
2663 		return finish_mkwrite_fault(vmf);
2664 	}
2665 	wp_page_reuse(vmf);
2666 	return VM_FAULT_WRITE;
2667 }
2668 
2669 static int wp_page_shared(struct vm_fault *vmf)
2670 	__releases(vmf->ptl)
2671 {
2672 	struct vm_area_struct *vma = vmf->vma;
2673 
2674 	get_page(vmf->page);
2675 
2676 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2677 		int tmp;
2678 
2679 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2680 		tmp = do_page_mkwrite(vmf);
2681 		if (unlikely(!tmp || (tmp &
2682 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2683 			put_page(vmf->page);
2684 			return tmp;
2685 		}
2686 		tmp = finish_mkwrite_fault(vmf);
2687 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2688 			unlock_page(vmf->page);
2689 			put_page(vmf->page);
2690 			return tmp;
2691 		}
2692 	} else {
2693 		wp_page_reuse(vmf);
2694 		lock_page(vmf->page);
2695 	}
2696 	fault_dirty_shared_page(vma, vmf->page);
2697 	put_page(vmf->page);
2698 
2699 	return VM_FAULT_WRITE;
2700 }
2701 
2702 /*
2703  * This routine handles present pages, when users try to write
2704  * to a shared page. It is done by copying the page to a new address
2705  * and decrementing the shared-page counter for the old page.
2706  *
2707  * Note that this routine assumes that the protection checks have been
2708  * done by the caller (the low-level page fault routine in most cases).
2709  * Thus we can safely just mark it writable once we've done any necessary
2710  * COW.
2711  *
2712  * We also mark the page dirty at this point even though the page will
2713  * change only once the write actually happens. This avoids a few races,
2714  * and potentially makes it more efficient.
2715  *
2716  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2717  * but allow concurrent faults), with pte both mapped and locked.
2718  * We return with mmap_sem still held, but pte unmapped and unlocked.
2719  */
2720 static int do_wp_page(struct vm_fault *vmf)
2721 	__releases(vmf->ptl)
2722 {
2723 	struct vm_area_struct *vma = vmf->vma;
2724 
2725 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2726 	if (!vmf->page) {
2727 		/*
2728 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2729 		 * VM_PFNMAP VMA.
2730 		 *
2731 		 * We should not cow pages in a shared writeable mapping.
2732 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2733 		 */
2734 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2735 				     (VM_WRITE|VM_SHARED))
2736 			return wp_pfn_shared(vmf);
2737 
2738 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2739 		return wp_page_copy(vmf);
2740 	}
2741 
2742 	/*
2743 	 * Take out anonymous pages first, anonymous shared vmas are
2744 	 * not dirty accountable.
2745 	 */
2746 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2747 		int total_map_swapcount;
2748 		if (!trylock_page(vmf->page)) {
2749 			get_page(vmf->page);
2750 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2751 			lock_page(vmf->page);
2752 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2753 					vmf->address, &vmf->ptl);
2754 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2755 				unlock_page(vmf->page);
2756 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2757 				put_page(vmf->page);
2758 				return 0;
2759 			}
2760 			put_page(vmf->page);
2761 		}
2762 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2763 			if (total_map_swapcount == 1) {
2764 				/*
2765 				 * The page is all ours. Move it to
2766 				 * our anon_vma so the rmap code will
2767 				 * not search our parent or siblings.
2768 				 * Protected against the rmap code by
2769 				 * the page lock.
2770 				 */
2771 				page_move_anon_rmap(vmf->page, vma);
2772 			}
2773 			unlock_page(vmf->page);
2774 			wp_page_reuse(vmf);
2775 			return VM_FAULT_WRITE;
2776 		}
2777 		unlock_page(vmf->page);
2778 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2779 					(VM_WRITE|VM_SHARED))) {
2780 		return wp_page_shared(vmf);
2781 	}
2782 
2783 	/*
2784 	 * Ok, we need to copy. Oh, well..
2785 	 */
2786 	get_page(vmf->page);
2787 
2788 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2789 	return wp_page_copy(vmf);
2790 }
2791 
2792 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2793 		unsigned long start_addr, unsigned long end_addr,
2794 		struct zap_details *details)
2795 {
2796 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2797 }
2798 
2799 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2800 					    struct zap_details *details)
2801 {
2802 	struct vm_area_struct *vma;
2803 	pgoff_t vba, vea, zba, zea;
2804 
2805 	vma_interval_tree_foreach(vma, root,
2806 			details->first_index, details->last_index) {
2807 
2808 		vba = vma->vm_pgoff;
2809 		vea = vba + vma_pages(vma) - 1;
2810 		zba = details->first_index;
2811 		if (zba < vba)
2812 			zba = vba;
2813 		zea = details->last_index;
2814 		if (zea > vea)
2815 			zea = vea;
2816 
2817 		unmap_mapping_range_vma(vma,
2818 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2819 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2820 				details);
2821 	}
2822 }
2823 
2824 /**
2825  * unmap_mapping_pages() - Unmap pages from processes.
2826  * @mapping: The address space containing pages to be unmapped.
2827  * @start: Index of first page to be unmapped.
2828  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2829  * @even_cows: Whether to unmap even private COWed pages.
2830  *
2831  * Unmap the pages in this address space from any userspace process which
2832  * has them mmaped.  Generally, you want to remove COWed pages as well when
2833  * a file is being truncated, but not when invalidating pages from the page
2834  * cache.
2835  */
2836 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2837 		pgoff_t nr, bool even_cows)
2838 {
2839 	struct zap_details details = { };
2840 
2841 	details.check_mapping = even_cows ? NULL : mapping;
2842 	details.first_index = start;
2843 	details.last_index = start + nr - 1;
2844 	if (details.last_index < details.first_index)
2845 		details.last_index = ULONG_MAX;
2846 
2847 	i_mmap_lock_write(mapping);
2848 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2849 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2850 	i_mmap_unlock_write(mapping);
2851 }
2852 
2853 /**
2854  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2855  * address_space corresponding to the specified byte range in the underlying
2856  * file.
2857  *
2858  * @mapping: the address space containing mmaps to be unmapped.
2859  * @holebegin: byte in first page to unmap, relative to the start of
2860  * the underlying file.  This will be rounded down to a PAGE_SIZE
2861  * boundary.  Note that this is different from truncate_pagecache(), which
2862  * must keep the partial page.  In contrast, we must get rid of
2863  * partial pages.
2864  * @holelen: size of prospective hole in bytes.  This will be rounded
2865  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2866  * end of the file.
2867  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2868  * but 0 when invalidating pagecache, don't throw away private data.
2869  */
2870 void unmap_mapping_range(struct address_space *mapping,
2871 		loff_t const holebegin, loff_t const holelen, int even_cows)
2872 {
2873 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2874 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2875 
2876 	/* Check for overflow. */
2877 	if (sizeof(holelen) > sizeof(hlen)) {
2878 		long long holeend =
2879 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2880 		if (holeend & ~(long long)ULONG_MAX)
2881 			hlen = ULONG_MAX - hba + 1;
2882 	}
2883 
2884 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2885 }
2886 EXPORT_SYMBOL(unmap_mapping_range);
2887 
2888 /*
2889  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2890  * but allow concurrent faults), and pte mapped but not yet locked.
2891  * We return with pte unmapped and unlocked.
2892  *
2893  * We return with the mmap_sem locked or unlocked in the same cases
2894  * as does filemap_fault().
2895  */
2896 int do_swap_page(struct vm_fault *vmf)
2897 {
2898 	struct vm_area_struct *vma = vmf->vma;
2899 	struct page *page = NULL, *swapcache;
2900 	struct mem_cgroup *memcg;
2901 	swp_entry_t entry;
2902 	pte_t pte;
2903 	int locked;
2904 	int exclusive = 0;
2905 	int ret = 0;
2906 
2907 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2908 		goto out;
2909 
2910 	entry = pte_to_swp_entry(vmf->orig_pte);
2911 	if (unlikely(non_swap_entry(entry))) {
2912 		if (is_migration_entry(entry)) {
2913 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2914 					     vmf->address);
2915 		} else if (is_device_private_entry(entry)) {
2916 			/*
2917 			 * For un-addressable device memory we call the pgmap
2918 			 * fault handler callback. The callback must migrate
2919 			 * the page back to some CPU accessible page.
2920 			 */
2921 			ret = device_private_entry_fault(vma, vmf->address, entry,
2922 						 vmf->flags, vmf->pmd);
2923 		} else if (is_hwpoison_entry(entry)) {
2924 			ret = VM_FAULT_HWPOISON;
2925 		} else {
2926 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2927 			ret = VM_FAULT_SIGBUS;
2928 		}
2929 		goto out;
2930 	}
2931 
2932 
2933 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2934 	page = lookup_swap_cache(entry, vma, vmf->address);
2935 	swapcache = page;
2936 
2937 	if (!page) {
2938 		struct swap_info_struct *si = swp_swap_info(entry);
2939 
2940 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2941 				__swap_count(si, entry) == 1) {
2942 			/* skip swapcache */
2943 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2944 							vmf->address);
2945 			if (page) {
2946 				__SetPageLocked(page);
2947 				__SetPageSwapBacked(page);
2948 				set_page_private(page, entry.val);
2949 				lru_cache_add_anon(page);
2950 				swap_readpage(page, true);
2951 			}
2952 		} else {
2953 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2954 						vmf);
2955 			swapcache = page;
2956 		}
2957 
2958 		if (!page) {
2959 			/*
2960 			 * Back out if somebody else faulted in this pte
2961 			 * while we released the pte lock.
2962 			 */
2963 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2964 					vmf->address, &vmf->ptl);
2965 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2966 				ret = VM_FAULT_OOM;
2967 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2968 			goto unlock;
2969 		}
2970 
2971 		/* Had to read the page from swap area: Major fault */
2972 		ret = VM_FAULT_MAJOR;
2973 		count_vm_event(PGMAJFAULT);
2974 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2975 	} else if (PageHWPoison(page)) {
2976 		/*
2977 		 * hwpoisoned dirty swapcache pages are kept for killing
2978 		 * owner processes (which may be unknown at hwpoison time)
2979 		 */
2980 		ret = VM_FAULT_HWPOISON;
2981 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2982 		goto out_release;
2983 	}
2984 
2985 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2986 
2987 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2988 	if (!locked) {
2989 		ret |= VM_FAULT_RETRY;
2990 		goto out_release;
2991 	}
2992 
2993 	/*
2994 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2995 	 * release the swapcache from under us.  The page pin, and pte_same
2996 	 * test below, are not enough to exclude that.  Even if it is still
2997 	 * swapcache, we need to check that the page's swap has not changed.
2998 	 */
2999 	if (unlikely((!PageSwapCache(page) ||
3000 			page_private(page) != entry.val)) && swapcache)
3001 		goto out_page;
3002 
3003 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3004 	if (unlikely(!page)) {
3005 		ret = VM_FAULT_OOM;
3006 		page = swapcache;
3007 		goto out_page;
3008 	}
3009 
3010 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
3011 				&memcg, false)) {
3012 		ret = VM_FAULT_OOM;
3013 		goto out_page;
3014 	}
3015 
3016 	/*
3017 	 * Back out if somebody else already faulted in this pte.
3018 	 */
3019 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3020 			&vmf->ptl);
3021 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3022 		goto out_nomap;
3023 
3024 	if (unlikely(!PageUptodate(page))) {
3025 		ret = VM_FAULT_SIGBUS;
3026 		goto out_nomap;
3027 	}
3028 
3029 	/*
3030 	 * The page isn't present yet, go ahead with the fault.
3031 	 *
3032 	 * Be careful about the sequence of operations here.
3033 	 * To get its accounting right, reuse_swap_page() must be called
3034 	 * while the page is counted on swap but not yet in mapcount i.e.
3035 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3036 	 * must be called after the swap_free(), or it will never succeed.
3037 	 */
3038 
3039 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3040 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3041 	pte = mk_pte(page, vma->vm_page_prot);
3042 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3043 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3044 		vmf->flags &= ~FAULT_FLAG_WRITE;
3045 		ret |= VM_FAULT_WRITE;
3046 		exclusive = RMAP_EXCLUSIVE;
3047 	}
3048 	flush_icache_page(vma, page);
3049 	if (pte_swp_soft_dirty(vmf->orig_pte))
3050 		pte = pte_mksoft_dirty(pte);
3051 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3052 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3053 	vmf->orig_pte = pte;
3054 
3055 	/* ksm created a completely new copy */
3056 	if (unlikely(page != swapcache && swapcache)) {
3057 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3058 		mem_cgroup_commit_charge(page, memcg, false, false);
3059 		lru_cache_add_active_or_unevictable(page, vma);
3060 	} else {
3061 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3062 		mem_cgroup_commit_charge(page, memcg, true, false);
3063 		activate_page(page);
3064 	}
3065 
3066 	swap_free(entry);
3067 	if (mem_cgroup_swap_full(page) ||
3068 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3069 		try_to_free_swap(page);
3070 	unlock_page(page);
3071 	if (page != swapcache && swapcache) {
3072 		/*
3073 		 * Hold the lock to avoid the swap entry to be reused
3074 		 * until we take the PT lock for the pte_same() check
3075 		 * (to avoid false positives from pte_same). For
3076 		 * further safety release the lock after the swap_free
3077 		 * so that the swap count won't change under a
3078 		 * parallel locked swapcache.
3079 		 */
3080 		unlock_page(swapcache);
3081 		put_page(swapcache);
3082 	}
3083 
3084 	if (vmf->flags & FAULT_FLAG_WRITE) {
3085 		ret |= do_wp_page(vmf);
3086 		if (ret & VM_FAULT_ERROR)
3087 			ret &= VM_FAULT_ERROR;
3088 		goto out;
3089 	}
3090 
3091 	/* No need to invalidate - it was non-present before */
3092 	update_mmu_cache(vma, vmf->address, vmf->pte);
3093 unlock:
3094 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3095 out:
3096 	return ret;
3097 out_nomap:
3098 	mem_cgroup_cancel_charge(page, memcg, false);
3099 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3100 out_page:
3101 	unlock_page(page);
3102 out_release:
3103 	put_page(page);
3104 	if (page != swapcache && swapcache) {
3105 		unlock_page(swapcache);
3106 		put_page(swapcache);
3107 	}
3108 	return ret;
3109 }
3110 
3111 /*
3112  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3113  * but allow concurrent faults), and pte mapped but not yet locked.
3114  * We return with mmap_sem still held, but pte unmapped and unlocked.
3115  */
3116 static int do_anonymous_page(struct vm_fault *vmf)
3117 {
3118 	struct vm_area_struct *vma = vmf->vma;
3119 	struct mem_cgroup *memcg;
3120 	struct page *page;
3121 	int ret = 0;
3122 	pte_t entry;
3123 
3124 	/* File mapping without ->vm_ops ? */
3125 	if (vma->vm_flags & VM_SHARED)
3126 		return VM_FAULT_SIGBUS;
3127 
3128 	/*
3129 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3130 	 * pte_offset_map() on pmds where a huge pmd might be created
3131 	 * from a different thread.
3132 	 *
3133 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3134 	 * parallel threads are excluded by other means.
3135 	 *
3136 	 * Here we only have down_read(mmap_sem).
3137 	 */
3138 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3139 		return VM_FAULT_OOM;
3140 
3141 	/* See the comment in pte_alloc_one_map() */
3142 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3143 		return 0;
3144 
3145 	/* Use the zero-page for reads */
3146 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3147 			!mm_forbids_zeropage(vma->vm_mm)) {
3148 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3149 						vma->vm_page_prot));
3150 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3151 				vmf->address, &vmf->ptl);
3152 		if (!pte_none(*vmf->pte))
3153 			goto unlock;
3154 		ret = check_stable_address_space(vma->vm_mm);
3155 		if (ret)
3156 			goto unlock;
3157 		/* Deliver the page fault to userland, check inside PT lock */
3158 		if (userfaultfd_missing(vma)) {
3159 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3160 			return handle_userfault(vmf, VM_UFFD_MISSING);
3161 		}
3162 		goto setpte;
3163 	}
3164 
3165 	/* Allocate our own private page. */
3166 	if (unlikely(anon_vma_prepare(vma)))
3167 		goto oom;
3168 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3169 	if (!page)
3170 		goto oom;
3171 
3172 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3173 		goto oom_free_page;
3174 
3175 	/*
3176 	 * The memory barrier inside __SetPageUptodate makes sure that
3177 	 * preceeding stores to the page contents become visible before
3178 	 * the set_pte_at() write.
3179 	 */
3180 	__SetPageUptodate(page);
3181 
3182 	entry = mk_pte(page, vma->vm_page_prot);
3183 	if (vma->vm_flags & VM_WRITE)
3184 		entry = pte_mkwrite(pte_mkdirty(entry));
3185 
3186 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3187 			&vmf->ptl);
3188 	if (!pte_none(*vmf->pte))
3189 		goto release;
3190 
3191 	ret = check_stable_address_space(vma->vm_mm);
3192 	if (ret)
3193 		goto release;
3194 
3195 	/* Deliver the page fault to userland, check inside PT lock */
3196 	if (userfaultfd_missing(vma)) {
3197 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3198 		mem_cgroup_cancel_charge(page, memcg, false);
3199 		put_page(page);
3200 		return handle_userfault(vmf, VM_UFFD_MISSING);
3201 	}
3202 
3203 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3204 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3205 	mem_cgroup_commit_charge(page, memcg, false, false);
3206 	lru_cache_add_active_or_unevictable(page, vma);
3207 setpte:
3208 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3209 
3210 	/* No need to invalidate - it was non-present before */
3211 	update_mmu_cache(vma, vmf->address, vmf->pte);
3212 unlock:
3213 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3214 	return ret;
3215 release:
3216 	mem_cgroup_cancel_charge(page, memcg, false);
3217 	put_page(page);
3218 	goto unlock;
3219 oom_free_page:
3220 	put_page(page);
3221 oom:
3222 	return VM_FAULT_OOM;
3223 }
3224 
3225 /*
3226  * The mmap_sem must have been held on entry, and may have been
3227  * released depending on flags and vma->vm_ops->fault() return value.
3228  * See filemap_fault() and __lock_page_retry().
3229  */
3230 static int __do_fault(struct vm_fault *vmf)
3231 {
3232 	struct vm_area_struct *vma = vmf->vma;
3233 	int ret;
3234 
3235 	ret = vma->vm_ops->fault(vmf);
3236 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3237 			    VM_FAULT_DONE_COW)))
3238 		return ret;
3239 
3240 	if (unlikely(PageHWPoison(vmf->page))) {
3241 		if (ret & VM_FAULT_LOCKED)
3242 			unlock_page(vmf->page);
3243 		put_page(vmf->page);
3244 		vmf->page = NULL;
3245 		return VM_FAULT_HWPOISON;
3246 	}
3247 
3248 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3249 		lock_page(vmf->page);
3250 	else
3251 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3252 
3253 	return ret;
3254 }
3255 
3256 /*
3257  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3258  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3259  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3260  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3261  */
3262 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3263 {
3264 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3265 }
3266 
3267 static int pte_alloc_one_map(struct vm_fault *vmf)
3268 {
3269 	struct vm_area_struct *vma = vmf->vma;
3270 
3271 	if (!pmd_none(*vmf->pmd))
3272 		goto map_pte;
3273 	if (vmf->prealloc_pte) {
3274 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3275 		if (unlikely(!pmd_none(*vmf->pmd))) {
3276 			spin_unlock(vmf->ptl);
3277 			goto map_pte;
3278 		}
3279 
3280 		mm_inc_nr_ptes(vma->vm_mm);
3281 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3282 		spin_unlock(vmf->ptl);
3283 		vmf->prealloc_pte = NULL;
3284 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3285 		return VM_FAULT_OOM;
3286 	}
3287 map_pte:
3288 	/*
3289 	 * If a huge pmd materialized under us just retry later.  Use
3290 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3291 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3292 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3293 	 * running immediately after a huge pmd fault in a different thread of
3294 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3295 	 * All we have to ensure is that it is a regular pmd that we can walk
3296 	 * with pte_offset_map() and we can do that through an atomic read in
3297 	 * C, which is what pmd_trans_unstable() provides.
3298 	 */
3299 	if (pmd_devmap_trans_unstable(vmf->pmd))
3300 		return VM_FAULT_NOPAGE;
3301 
3302 	/*
3303 	 * At this point we know that our vmf->pmd points to a page of ptes
3304 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3305 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3306 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3307 	 * be valid and we will re-check to make sure the vmf->pte isn't
3308 	 * pte_none() under vmf->ptl protection when we return to
3309 	 * alloc_set_pte().
3310 	 */
3311 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3312 			&vmf->ptl);
3313 	return 0;
3314 }
3315 
3316 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3317 
3318 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3319 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3320 		unsigned long haddr)
3321 {
3322 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3323 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3324 		return false;
3325 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3326 		return false;
3327 	return true;
3328 }
3329 
3330 static void deposit_prealloc_pte(struct vm_fault *vmf)
3331 {
3332 	struct vm_area_struct *vma = vmf->vma;
3333 
3334 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3335 	/*
3336 	 * We are going to consume the prealloc table,
3337 	 * count that as nr_ptes.
3338 	 */
3339 	mm_inc_nr_ptes(vma->vm_mm);
3340 	vmf->prealloc_pte = NULL;
3341 }
3342 
3343 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3344 {
3345 	struct vm_area_struct *vma = vmf->vma;
3346 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3347 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3348 	pmd_t entry;
3349 	int i, ret;
3350 
3351 	if (!transhuge_vma_suitable(vma, haddr))
3352 		return VM_FAULT_FALLBACK;
3353 
3354 	ret = VM_FAULT_FALLBACK;
3355 	page = compound_head(page);
3356 
3357 	/*
3358 	 * Archs like ppc64 need additonal space to store information
3359 	 * related to pte entry. Use the preallocated table for that.
3360 	 */
3361 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3362 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3363 		if (!vmf->prealloc_pte)
3364 			return VM_FAULT_OOM;
3365 		smp_wmb(); /* See comment in __pte_alloc() */
3366 	}
3367 
3368 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3369 	if (unlikely(!pmd_none(*vmf->pmd)))
3370 		goto out;
3371 
3372 	for (i = 0; i < HPAGE_PMD_NR; i++)
3373 		flush_icache_page(vma, page + i);
3374 
3375 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3376 	if (write)
3377 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3378 
3379 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3380 	page_add_file_rmap(page, true);
3381 	/*
3382 	 * deposit and withdraw with pmd lock held
3383 	 */
3384 	if (arch_needs_pgtable_deposit())
3385 		deposit_prealloc_pte(vmf);
3386 
3387 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3388 
3389 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3390 
3391 	/* fault is handled */
3392 	ret = 0;
3393 	count_vm_event(THP_FILE_MAPPED);
3394 out:
3395 	spin_unlock(vmf->ptl);
3396 	return ret;
3397 }
3398 #else
3399 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3400 {
3401 	BUILD_BUG();
3402 	return 0;
3403 }
3404 #endif
3405 
3406 /**
3407  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3408  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3409  *
3410  * @vmf: fault environment
3411  * @memcg: memcg to charge page (only for private mappings)
3412  * @page: page to map
3413  *
3414  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3415  * return.
3416  *
3417  * Target users are page handler itself and implementations of
3418  * vm_ops->map_pages.
3419  */
3420 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3421 		struct page *page)
3422 {
3423 	struct vm_area_struct *vma = vmf->vma;
3424 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3425 	pte_t entry;
3426 	int ret;
3427 
3428 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3429 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3430 		/* THP on COW? */
3431 		VM_BUG_ON_PAGE(memcg, page);
3432 
3433 		ret = do_set_pmd(vmf, page);
3434 		if (ret != VM_FAULT_FALLBACK)
3435 			return ret;
3436 	}
3437 
3438 	if (!vmf->pte) {
3439 		ret = pte_alloc_one_map(vmf);
3440 		if (ret)
3441 			return ret;
3442 	}
3443 
3444 	/* Re-check under ptl */
3445 	if (unlikely(!pte_none(*vmf->pte)))
3446 		return VM_FAULT_NOPAGE;
3447 
3448 	flush_icache_page(vma, page);
3449 	entry = mk_pte(page, vma->vm_page_prot);
3450 	if (write)
3451 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3452 	/* copy-on-write page */
3453 	if (write && !(vma->vm_flags & VM_SHARED)) {
3454 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3455 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3456 		mem_cgroup_commit_charge(page, memcg, false, false);
3457 		lru_cache_add_active_or_unevictable(page, vma);
3458 	} else {
3459 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3460 		page_add_file_rmap(page, false);
3461 	}
3462 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3463 
3464 	/* no need to invalidate: a not-present page won't be cached */
3465 	update_mmu_cache(vma, vmf->address, vmf->pte);
3466 
3467 	return 0;
3468 }
3469 
3470 
3471 /**
3472  * finish_fault - finish page fault once we have prepared the page to fault
3473  *
3474  * @vmf: structure describing the fault
3475  *
3476  * This function handles all that is needed to finish a page fault once the
3477  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3478  * given page, adds reverse page mapping, handles memcg charges and LRU
3479  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3480  * error.
3481  *
3482  * The function expects the page to be locked and on success it consumes a
3483  * reference of a page being mapped (for the PTE which maps it).
3484  */
3485 int finish_fault(struct vm_fault *vmf)
3486 {
3487 	struct page *page;
3488 	int ret = 0;
3489 
3490 	/* Did we COW the page? */
3491 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3492 	    !(vmf->vma->vm_flags & VM_SHARED))
3493 		page = vmf->cow_page;
3494 	else
3495 		page = vmf->page;
3496 
3497 	/*
3498 	 * check even for read faults because we might have lost our CoWed
3499 	 * page
3500 	 */
3501 	if (!(vmf->vma->vm_flags & VM_SHARED))
3502 		ret = check_stable_address_space(vmf->vma->vm_mm);
3503 	if (!ret)
3504 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3505 	if (vmf->pte)
3506 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3507 	return ret;
3508 }
3509 
3510 static unsigned long fault_around_bytes __read_mostly =
3511 	rounddown_pow_of_two(65536);
3512 
3513 #ifdef CONFIG_DEBUG_FS
3514 static int fault_around_bytes_get(void *data, u64 *val)
3515 {
3516 	*val = fault_around_bytes;
3517 	return 0;
3518 }
3519 
3520 /*
3521  * fault_around_bytes must be rounded down to the nearest page order as it's
3522  * what do_fault_around() expects to see.
3523  */
3524 static int fault_around_bytes_set(void *data, u64 val)
3525 {
3526 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3527 		return -EINVAL;
3528 	if (val > PAGE_SIZE)
3529 		fault_around_bytes = rounddown_pow_of_two(val);
3530 	else
3531 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3532 	return 0;
3533 }
3534 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3535 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3536 
3537 static int __init fault_around_debugfs(void)
3538 {
3539 	void *ret;
3540 
3541 	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3542 			&fault_around_bytes_fops);
3543 	if (!ret)
3544 		pr_warn("Failed to create fault_around_bytes in debugfs");
3545 	return 0;
3546 }
3547 late_initcall(fault_around_debugfs);
3548 #endif
3549 
3550 /*
3551  * do_fault_around() tries to map few pages around the fault address. The hope
3552  * is that the pages will be needed soon and this will lower the number of
3553  * faults to handle.
3554  *
3555  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3556  * not ready to be mapped: not up-to-date, locked, etc.
3557  *
3558  * This function is called with the page table lock taken. In the split ptlock
3559  * case the page table lock only protects only those entries which belong to
3560  * the page table corresponding to the fault address.
3561  *
3562  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3563  * only once.
3564  *
3565  * fault_around_bytes defines how many bytes we'll try to map.
3566  * do_fault_around() expects it to be set to a power of two less than or equal
3567  * to PTRS_PER_PTE.
3568  *
3569  * The virtual address of the area that we map is naturally aligned to
3570  * fault_around_bytes rounded down to the machine page size
3571  * (and therefore to page order).  This way it's easier to guarantee
3572  * that we don't cross page table boundaries.
3573  */
3574 static int do_fault_around(struct vm_fault *vmf)
3575 {
3576 	unsigned long address = vmf->address, nr_pages, mask;
3577 	pgoff_t start_pgoff = vmf->pgoff;
3578 	pgoff_t end_pgoff;
3579 	int off, ret = 0;
3580 
3581 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3582 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3583 
3584 	vmf->address = max(address & mask, vmf->vma->vm_start);
3585 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3586 	start_pgoff -= off;
3587 
3588 	/*
3589 	 *  end_pgoff is either the end of the page table, the end of
3590 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3591 	 */
3592 	end_pgoff = start_pgoff -
3593 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3594 		PTRS_PER_PTE - 1;
3595 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3596 			start_pgoff + nr_pages - 1);
3597 
3598 	if (pmd_none(*vmf->pmd)) {
3599 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3600 						  vmf->address);
3601 		if (!vmf->prealloc_pte)
3602 			goto out;
3603 		smp_wmb(); /* See comment in __pte_alloc() */
3604 	}
3605 
3606 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3607 
3608 	/* Huge page is mapped? Page fault is solved */
3609 	if (pmd_trans_huge(*vmf->pmd)) {
3610 		ret = VM_FAULT_NOPAGE;
3611 		goto out;
3612 	}
3613 
3614 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3615 	if (!vmf->pte)
3616 		goto out;
3617 
3618 	/* check if the page fault is solved */
3619 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3620 	if (!pte_none(*vmf->pte))
3621 		ret = VM_FAULT_NOPAGE;
3622 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3623 out:
3624 	vmf->address = address;
3625 	vmf->pte = NULL;
3626 	return ret;
3627 }
3628 
3629 static int do_read_fault(struct vm_fault *vmf)
3630 {
3631 	struct vm_area_struct *vma = vmf->vma;
3632 	int ret = 0;
3633 
3634 	/*
3635 	 * Let's call ->map_pages() first and use ->fault() as fallback
3636 	 * if page by the offset is not ready to be mapped (cold cache or
3637 	 * something).
3638 	 */
3639 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3640 		ret = do_fault_around(vmf);
3641 		if (ret)
3642 			return ret;
3643 	}
3644 
3645 	ret = __do_fault(vmf);
3646 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3647 		return ret;
3648 
3649 	ret |= finish_fault(vmf);
3650 	unlock_page(vmf->page);
3651 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3652 		put_page(vmf->page);
3653 	return ret;
3654 }
3655 
3656 static int do_cow_fault(struct vm_fault *vmf)
3657 {
3658 	struct vm_area_struct *vma = vmf->vma;
3659 	int ret;
3660 
3661 	if (unlikely(anon_vma_prepare(vma)))
3662 		return VM_FAULT_OOM;
3663 
3664 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3665 	if (!vmf->cow_page)
3666 		return VM_FAULT_OOM;
3667 
3668 	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3669 				&vmf->memcg, false)) {
3670 		put_page(vmf->cow_page);
3671 		return VM_FAULT_OOM;
3672 	}
3673 
3674 	ret = __do_fault(vmf);
3675 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3676 		goto uncharge_out;
3677 	if (ret & VM_FAULT_DONE_COW)
3678 		return ret;
3679 
3680 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3681 	__SetPageUptodate(vmf->cow_page);
3682 
3683 	ret |= finish_fault(vmf);
3684 	unlock_page(vmf->page);
3685 	put_page(vmf->page);
3686 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3687 		goto uncharge_out;
3688 	return ret;
3689 uncharge_out:
3690 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3691 	put_page(vmf->cow_page);
3692 	return ret;
3693 }
3694 
3695 static int do_shared_fault(struct vm_fault *vmf)
3696 {
3697 	struct vm_area_struct *vma = vmf->vma;
3698 	int ret, tmp;
3699 
3700 	ret = __do_fault(vmf);
3701 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3702 		return ret;
3703 
3704 	/*
3705 	 * Check if the backing address space wants to know that the page is
3706 	 * about to become writable
3707 	 */
3708 	if (vma->vm_ops->page_mkwrite) {
3709 		unlock_page(vmf->page);
3710 		tmp = do_page_mkwrite(vmf);
3711 		if (unlikely(!tmp ||
3712 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3713 			put_page(vmf->page);
3714 			return tmp;
3715 		}
3716 	}
3717 
3718 	ret |= finish_fault(vmf);
3719 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3720 					VM_FAULT_RETRY))) {
3721 		unlock_page(vmf->page);
3722 		put_page(vmf->page);
3723 		return ret;
3724 	}
3725 
3726 	fault_dirty_shared_page(vma, vmf->page);
3727 	return ret;
3728 }
3729 
3730 /*
3731  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3732  * but allow concurrent faults).
3733  * The mmap_sem may have been released depending on flags and our
3734  * return value.  See filemap_fault() and __lock_page_or_retry().
3735  */
3736 static int do_fault(struct vm_fault *vmf)
3737 {
3738 	struct vm_area_struct *vma = vmf->vma;
3739 	int ret;
3740 
3741 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3742 	if (!vma->vm_ops->fault)
3743 		ret = VM_FAULT_SIGBUS;
3744 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3745 		ret = do_read_fault(vmf);
3746 	else if (!(vma->vm_flags & VM_SHARED))
3747 		ret = do_cow_fault(vmf);
3748 	else
3749 		ret = do_shared_fault(vmf);
3750 
3751 	/* preallocated pagetable is unused: free it */
3752 	if (vmf->prealloc_pte) {
3753 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3754 		vmf->prealloc_pte = NULL;
3755 	}
3756 	return ret;
3757 }
3758 
3759 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3760 				unsigned long addr, int page_nid,
3761 				int *flags)
3762 {
3763 	get_page(page);
3764 
3765 	count_vm_numa_event(NUMA_HINT_FAULTS);
3766 	if (page_nid == numa_node_id()) {
3767 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3768 		*flags |= TNF_FAULT_LOCAL;
3769 	}
3770 
3771 	return mpol_misplaced(page, vma, addr);
3772 }
3773 
3774 static int do_numa_page(struct vm_fault *vmf)
3775 {
3776 	struct vm_area_struct *vma = vmf->vma;
3777 	struct page *page = NULL;
3778 	int page_nid = -1;
3779 	int last_cpupid;
3780 	int target_nid;
3781 	bool migrated = false;
3782 	pte_t pte;
3783 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3784 	int flags = 0;
3785 
3786 	/*
3787 	 * The "pte" at this point cannot be used safely without
3788 	 * validation through pte_unmap_same(). It's of NUMA type but
3789 	 * the pfn may be screwed if the read is non atomic.
3790 	 */
3791 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3792 	spin_lock(vmf->ptl);
3793 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3794 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3795 		goto out;
3796 	}
3797 
3798 	/*
3799 	 * Make it present again, Depending on how arch implementes non
3800 	 * accessible ptes, some can allow access by kernel mode.
3801 	 */
3802 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3803 	pte = pte_modify(pte, vma->vm_page_prot);
3804 	pte = pte_mkyoung(pte);
3805 	if (was_writable)
3806 		pte = pte_mkwrite(pte);
3807 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3808 	update_mmu_cache(vma, vmf->address, vmf->pte);
3809 
3810 	page = vm_normal_page(vma, vmf->address, pte);
3811 	if (!page) {
3812 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3813 		return 0;
3814 	}
3815 
3816 	/* TODO: handle PTE-mapped THP */
3817 	if (PageCompound(page)) {
3818 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3819 		return 0;
3820 	}
3821 
3822 	/*
3823 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3824 	 * much anyway since they can be in shared cache state. This misses
3825 	 * the case where a mapping is writable but the process never writes
3826 	 * to it but pte_write gets cleared during protection updates and
3827 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3828 	 * background writeback, dirty balancing and application behaviour.
3829 	 */
3830 	if (!pte_write(pte))
3831 		flags |= TNF_NO_GROUP;
3832 
3833 	/*
3834 	 * Flag if the page is shared between multiple address spaces. This
3835 	 * is later used when determining whether to group tasks together
3836 	 */
3837 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3838 		flags |= TNF_SHARED;
3839 
3840 	last_cpupid = page_cpupid_last(page);
3841 	page_nid = page_to_nid(page);
3842 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3843 			&flags);
3844 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3845 	if (target_nid == -1) {
3846 		put_page(page);
3847 		goto out;
3848 	}
3849 
3850 	/* Migrate to the requested node */
3851 	migrated = migrate_misplaced_page(page, vma, target_nid);
3852 	if (migrated) {
3853 		page_nid = target_nid;
3854 		flags |= TNF_MIGRATED;
3855 	} else
3856 		flags |= TNF_MIGRATE_FAIL;
3857 
3858 out:
3859 	if (page_nid != -1)
3860 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3861 	return 0;
3862 }
3863 
3864 static inline int create_huge_pmd(struct vm_fault *vmf)
3865 {
3866 	if (vma_is_anonymous(vmf->vma))
3867 		return do_huge_pmd_anonymous_page(vmf);
3868 	if (vmf->vma->vm_ops->huge_fault)
3869 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3870 	return VM_FAULT_FALLBACK;
3871 }
3872 
3873 /* `inline' is required to avoid gcc 4.1.2 build error */
3874 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3875 {
3876 	if (vma_is_anonymous(vmf->vma))
3877 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3878 	if (vmf->vma->vm_ops->huge_fault)
3879 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3880 
3881 	/* COW handled on pte level: split pmd */
3882 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3883 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3884 
3885 	return VM_FAULT_FALLBACK;
3886 }
3887 
3888 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3889 {
3890 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3891 }
3892 
3893 static int create_huge_pud(struct vm_fault *vmf)
3894 {
3895 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3896 	/* No support for anonymous transparent PUD pages yet */
3897 	if (vma_is_anonymous(vmf->vma))
3898 		return VM_FAULT_FALLBACK;
3899 	if (vmf->vma->vm_ops->huge_fault)
3900 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3901 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3902 	return VM_FAULT_FALLBACK;
3903 }
3904 
3905 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3906 {
3907 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3908 	/* No support for anonymous transparent PUD pages yet */
3909 	if (vma_is_anonymous(vmf->vma))
3910 		return VM_FAULT_FALLBACK;
3911 	if (vmf->vma->vm_ops->huge_fault)
3912 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3913 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3914 	return VM_FAULT_FALLBACK;
3915 }
3916 
3917 /*
3918  * These routines also need to handle stuff like marking pages dirty
3919  * and/or accessed for architectures that don't do it in hardware (most
3920  * RISC architectures).  The early dirtying is also good on the i386.
3921  *
3922  * There is also a hook called "update_mmu_cache()" that architectures
3923  * with external mmu caches can use to update those (ie the Sparc or
3924  * PowerPC hashed page tables that act as extended TLBs).
3925  *
3926  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3927  * concurrent faults).
3928  *
3929  * The mmap_sem may have been released depending on flags and our return value.
3930  * See filemap_fault() and __lock_page_or_retry().
3931  */
3932 static int handle_pte_fault(struct vm_fault *vmf)
3933 {
3934 	pte_t entry;
3935 
3936 	if (unlikely(pmd_none(*vmf->pmd))) {
3937 		/*
3938 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3939 		 * want to allocate huge page, and if we expose page table
3940 		 * for an instant, it will be difficult to retract from
3941 		 * concurrent faults and from rmap lookups.
3942 		 */
3943 		vmf->pte = NULL;
3944 	} else {
3945 		/* See comment in pte_alloc_one_map() */
3946 		if (pmd_devmap_trans_unstable(vmf->pmd))
3947 			return 0;
3948 		/*
3949 		 * A regular pmd is established and it can't morph into a huge
3950 		 * pmd from under us anymore at this point because we hold the
3951 		 * mmap_sem read mode and khugepaged takes it in write mode.
3952 		 * So now it's safe to run pte_offset_map().
3953 		 */
3954 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3955 		vmf->orig_pte = *vmf->pte;
3956 
3957 		/*
3958 		 * some architectures can have larger ptes than wordsize,
3959 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3960 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3961 		 * accesses.  The code below just needs a consistent view
3962 		 * for the ifs and we later double check anyway with the
3963 		 * ptl lock held. So here a barrier will do.
3964 		 */
3965 		barrier();
3966 		if (pte_none(vmf->orig_pte)) {
3967 			pte_unmap(vmf->pte);
3968 			vmf->pte = NULL;
3969 		}
3970 	}
3971 
3972 	if (!vmf->pte) {
3973 		if (vma_is_anonymous(vmf->vma))
3974 			return do_anonymous_page(vmf);
3975 		else
3976 			return do_fault(vmf);
3977 	}
3978 
3979 	if (!pte_present(vmf->orig_pte))
3980 		return do_swap_page(vmf);
3981 
3982 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3983 		return do_numa_page(vmf);
3984 
3985 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3986 	spin_lock(vmf->ptl);
3987 	entry = vmf->orig_pte;
3988 	if (unlikely(!pte_same(*vmf->pte, entry)))
3989 		goto unlock;
3990 	if (vmf->flags & FAULT_FLAG_WRITE) {
3991 		if (!pte_write(entry))
3992 			return do_wp_page(vmf);
3993 		entry = pte_mkdirty(entry);
3994 	}
3995 	entry = pte_mkyoung(entry);
3996 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3997 				vmf->flags & FAULT_FLAG_WRITE)) {
3998 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3999 	} else {
4000 		/*
4001 		 * This is needed only for protection faults but the arch code
4002 		 * is not yet telling us if this is a protection fault or not.
4003 		 * This still avoids useless tlb flushes for .text page faults
4004 		 * with threads.
4005 		 */
4006 		if (vmf->flags & FAULT_FLAG_WRITE)
4007 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4008 	}
4009 unlock:
4010 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4011 	return 0;
4012 }
4013 
4014 /*
4015  * By the time we get here, we already hold the mm semaphore
4016  *
4017  * The mmap_sem may have been released depending on flags and our
4018  * return value.  See filemap_fault() and __lock_page_or_retry().
4019  */
4020 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4021 		unsigned int flags)
4022 {
4023 	struct vm_fault vmf = {
4024 		.vma = vma,
4025 		.address = address & PAGE_MASK,
4026 		.flags = flags,
4027 		.pgoff = linear_page_index(vma, address),
4028 		.gfp_mask = __get_fault_gfp_mask(vma),
4029 	};
4030 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4031 	struct mm_struct *mm = vma->vm_mm;
4032 	pgd_t *pgd;
4033 	p4d_t *p4d;
4034 	int ret;
4035 
4036 	pgd = pgd_offset(mm, address);
4037 	p4d = p4d_alloc(mm, pgd, address);
4038 	if (!p4d)
4039 		return VM_FAULT_OOM;
4040 
4041 	vmf.pud = pud_alloc(mm, p4d, address);
4042 	if (!vmf.pud)
4043 		return VM_FAULT_OOM;
4044 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4045 		ret = create_huge_pud(&vmf);
4046 		if (!(ret & VM_FAULT_FALLBACK))
4047 			return ret;
4048 	} else {
4049 		pud_t orig_pud = *vmf.pud;
4050 
4051 		barrier();
4052 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4053 
4054 			/* NUMA case for anonymous PUDs would go here */
4055 
4056 			if (dirty && !pud_write(orig_pud)) {
4057 				ret = wp_huge_pud(&vmf, orig_pud);
4058 				if (!(ret & VM_FAULT_FALLBACK))
4059 					return ret;
4060 			} else {
4061 				huge_pud_set_accessed(&vmf, orig_pud);
4062 				return 0;
4063 			}
4064 		}
4065 	}
4066 
4067 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4068 	if (!vmf.pmd)
4069 		return VM_FAULT_OOM;
4070 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4071 		ret = create_huge_pmd(&vmf);
4072 		if (!(ret & VM_FAULT_FALLBACK))
4073 			return ret;
4074 	} else {
4075 		pmd_t orig_pmd = *vmf.pmd;
4076 
4077 		barrier();
4078 		if (unlikely(is_swap_pmd(orig_pmd))) {
4079 			VM_BUG_ON(thp_migration_supported() &&
4080 					  !is_pmd_migration_entry(orig_pmd));
4081 			if (is_pmd_migration_entry(orig_pmd))
4082 				pmd_migration_entry_wait(mm, vmf.pmd);
4083 			return 0;
4084 		}
4085 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4086 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4087 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4088 
4089 			if (dirty && !pmd_write(orig_pmd)) {
4090 				ret = wp_huge_pmd(&vmf, orig_pmd);
4091 				if (!(ret & VM_FAULT_FALLBACK))
4092 					return ret;
4093 			} else {
4094 				huge_pmd_set_accessed(&vmf, orig_pmd);
4095 				return 0;
4096 			}
4097 		}
4098 	}
4099 
4100 	return handle_pte_fault(&vmf);
4101 }
4102 
4103 /*
4104  * By the time we get here, we already hold the mm semaphore
4105  *
4106  * The mmap_sem may have been released depending on flags and our
4107  * return value.  See filemap_fault() and __lock_page_or_retry().
4108  */
4109 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4110 		unsigned int flags)
4111 {
4112 	int ret;
4113 
4114 	__set_current_state(TASK_RUNNING);
4115 
4116 	count_vm_event(PGFAULT);
4117 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4118 
4119 	/* do counter updates before entering really critical section. */
4120 	check_sync_rss_stat(current);
4121 
4122 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4123 					    flags & FAULT_FLAG_INSTRUCTION,
4124 					    flags & FAULT_FLAG_REMOTE))
4125 		return VM_FAULT_SIGSEGV;
4126 
4127 	/*
4128 	 * Enable the memcg OOM handling for faults triggered in user
4129 	 * space.  Kernel faults are handled more gracefully.
4130 	 */
4131 	if (flags & FAULT_FLAG_USER)
4132 		mem_cgroup_oom_enable();
4133 
4134 	if (unlikely(is_vm_hugetlb_page(vma)))
4135 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4136 	else
4137 		ret = __handle_mm_fault(vma, address, flags);
4138 
4139 	if (flags & FAULT_FLAG_USER) {
4140 		mem_cgroup_oom_disable();
4141 		/*
4142 		 * The task may have entered a memcg OOM situation but
4143 		 * if the allocation error was handled gracefully (no
4144 		 * VM_FAULT_OOM), there is no need to kill anything.
4145 		 * Just clean up the OOM state peacefully.
4146 		 */
4147 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4148 			mem_cgroup_oom_synchronize(false);
4149 	}
4150 
4151 	return ret;
4152 }
4153 EXPORT_SYMBOL_GPL(handle_mm_fault);
4154 
4155 #ifndef __PAGETABLE_P4D_FOLDED
4156 /*
4157  * Allocate p4d page table.
4158  * We've already handled the fast-path in-line.
4159  */
4160 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4161 {
4162 	p4d_t *new = p4d_alloc_one(mm, address);
4163 	if (!new)
4164 		return -ENOMEM;
4165 
4166 	smp_wmb(); /* See comment in __pte_alloc */
4167 
4168 	spin_lock(&mm->page_table_lock);
4169 	if (pgd_present(*pgd))		/* Another has populated it */
4170 		p4d_free(mm, new);
4171 	else
4172 		pgd_populate(mm, pgd, new);
4173 	spin_unlock(&mm->page_table_lock);
4174 	return 0;
4175 }
4176 #endif /* __PAGETABLE_P4D_FOLDED */
4177 
4178 #ifndef __PAGETABLE_PUD_FOLDED
4179 /*
4180  * Allocate page upper directory.
4181  * We've already handled the fast-path in-line.
4182  */
4183 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4184 {
4185 	pud_t *new = pud_alloc_one(mm, address);
4186 	if (!new)
4187 		return -ENOMEM;
4188 
4189 	smp_wmb(); /* See comment in __pte_alloc */
4190 
4191 	spin_lock(&mm->page_table_lock);
4192 #ifndef __ARCH_HAS_5LEVEL_HACK
4193 	if (!p4d_present(*p4d)) {
4194 		mm_inc_nr_puds(mm);
4195 		p4d_populate(mm, p4d, new);
4196 	} else	/* Another has populated it */
4197 		pud_free(mm, new);
4198 #else
4199 	if (!pgd_present(*p4d)) {
4200 		mm_inc_nr_puds(mm);
4201 		pgd_populate(mm, p4d, new);
4202 	} else	/* Another has populated it */
4203 		pud_free(mm, new);
4204 #endif /* __ARCH_HAS_5LEVEL_HACK */
4205 	spin_unlock(&mm->page_table_lock);
4206 	return 0;
4207 }
4208 #endif /* __PAGETABLE_PUD_FOLDED */
4209 
4210 #ifndef __PAGETABLE_PMD_FOLDED
4211 /*
4212  * Allocate page middle directory.
4213  * We've already handled the fast-path in-line.
4214  */
4215 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4216 {
4217 	spinlock_t *ptl;
4218 	pmd_t *new = pmd_alloc_one(mm, address);
4219 	if (!new)
4220 		return -ENOMEM;
4221 
4222 	smp_wmb(); /* See comment in __pte_alloc */
4223 
4224 	ptl = pud_lock(mm, pud);
4225 #ifndef __ARCH_HAS_4LEVEL_HACK
4226 	if (!pud_present(*pud)) {
4227 		mm_inc_nr_pmds(mm);
4228 		pud_populate(mm, pud, new);
4229 	} else	/* Another has populated it */
4230 		pmd_free(mm, new);
4231 #else
4232 	if (!pgd_present(*pud)) {
4233 		mm_inc_nr_pmds(mm);
4234 		pgd_populate(mm, pud, new);
4235 	} else /* Another has populated it */
4236 		pmd_free(mm, new);
4237 #endif /* __ARCH_HAS_4LEVEL_HACK */
4238 	spin_unlock(ptl);
4239 	return 0;
4240 }
4241 #endif /* __PAGETABLE_PMD_FOLDED */
4242 
4243 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4244 			    unsigned long *start, unsigned long *end,
4245 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4246 {
4247 	pgd_t *pgd;
4248 	p4d_t *p4d;
4249 	pud_t *pud;
4250 	pmd_t *pmd;
4251 	pte_t *ptep;
4252 
4253 	pgd = pgd_offset(mm, address);
4254 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4255 		goto out;
4256 
4257 	p4d = p4d_offset(pgd, address);
4258 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4259 		goto out;
4260 
4261 	pud = pud_offset(p4d, address);
4262 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4263 		goto out;
4264 
4265 	pmd = pmd_offset(pud, address);
4266 	VM_BUG_ON(pmd_trans_huge(*pmd));
4267 
4268 	if (pmd_huge(*pmd)) {
4269 		if (!pmdpp)
4270 			goto out;
4271 
4272 		if (start && end) {
4273 			*start = address & PMD_MASK;
4274 			*end = *start + PMD_SIZE;
4275 			mmu_notifier_invalidate_range_start(mm, *start, *end);
4276 		}
4277 		*ptlp = pmd_lock(mm, pmd);
4278 		if (pmd_huge(*pmd)) {
4279 			*pmdpp = pmd;
4280 			return 0;
4281 		}
4282 		spin_unlock(*ptlp);
4283 		if (start && end)
4284 			mmu_notifier_invalidate_range_end(mm, *start, *end);
4285 	}
4286 
4287 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4288 		goto out;
4289 
4290 	if (start && end) {
4291 		*start = address & PAGE_MASK;
4292 		*end = *start + PAGE_SIZE;
4293 		mmu_notifier_invalidate_range_start(mm, *start, *end);
4294 	}
4295 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4296 	if (!pte_present(*ptep))
4297 		goto unlock;
4298 	*ptepp = ptep;
4299 	return 0;
4300 unlock:
4301 	pte_unmap_unlock(ptep, *ptlp);
4302 	if (start && end)
4303 		mmu_notifier_invalidate_range_end(mm, *start, *end);
4304 out:
4305 	return -EINVAL;
4306 }
4307 
4308 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4309 			     pte_t **ptepp, spinlock_t **ptlp)
4310 {
4311 	int res;
4312 
4313 	/* (void) is needed to make gcc happy */
4314 	(void) __cond_lock(*ptlp,
4315 			   !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4316 						    ptepp, NULL, ptlp)));
4317 	return res;
4318 }
4319 
4320 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4321 			     unsigned long *start, unsigned long *end,
4322 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4323 {
4324 	int res;
4325 
4326 	/* (void) is needed to make gcc happy */
4327 	(void) __cond_lock(*ptlp,
4328 			   !(res = __follow_pte_pmd(mm, address, start, end,
4329 						    ptepp, pmdpp, ptlp)));
4330 	return res;
4331 }
4332 EXPORT_SYMBOL(follow_pte_pmd);
4333 
4334 /**
4335  * follow_pfn - look up PFN at a user virtual address
4336  * @vma: memory mapping
4337  * @address: user virtual address
4338  * @pfn: location to store found PFN
4339  *
4340  * Only IO mappings and raw PFN mappings are allowed.
4341  *
4342  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4343  */
4344 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4345 	unsigned long *pfn)
4346 {
4347 	int ret = -EINVAL;
4348 	spinlock_t *ptl;
4349 	pte_t *ptep;
4350 
4351 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4352 		return ret;
4353 
4354 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4355 	if (ret)
4356 		return ret;
4357 	*pfn = pte_pfn(*ptep);
4358 	pte_unmap_unlock(ptep, ptl);
4359 	return 0;
4360 }
4361 EXPORT_SYMBOL(follow_pfn);
4362 
4363 #ifdef CONFIG_HAVE_IOREMAP_PROT
4364 int follow_phys(struct vm_area_struct *vma,
4365 		unsigned long address, unsigned int flags,
4366 		unsigned long *prot, resource_size_t *phys)
4367 {
4368 	int ret = -EINVAL;
4369 	pte_t *ptep, pte;
4370 	spinlock_t *ptl;
4371 
4372 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4373 		goto out;
4374 
4375 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4376 		goto out;
4377 	pte = *ptep;
4378 
4379 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4380 		goto unlock;
4381 
4382 	*prot = pgprot_val(pte_pgprot(pte));
4383 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4384 
4385 	ret = 0;
4386 unlock:
4387 	pte_unmap_unlock(ptep, ptl);
4388 out:
4389 	return ret;
4390 }
4391 
4392 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4393 			void *buf, int len, int write)
4394 {
4395 	resource_size_t phys_addr;
4396 	unsigned long prot = 0;
4397 	void __iomem *maddr;
4398 	int offset = addr & (PAGE_SIZE-1);
4399 
4400 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4401 		return -EINVAL;
4402 
4403 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4404 	if (!maddr)
4405 		return -ENOMEM;
4406 
4407 	if (write)
4408 		memcpy_toio(maddr + offset, buf, len);
4409 	else
4410 		memcpy_fromio(buf, maddr + offset, len);
4411 	iounmap(maddr);
4412 
4413 	return len;
4414 }
4415 EXPORT_SYMBOL_GPL(generic_access_phys);
4416 #endif
4417 
4418 /*
4419  * Access another process' address space as given in mm.  If non-NULL, use the
4420  * given task for page fault accounting.
4421  */
4422 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4423 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4424 {
4425 	struct vm_area_struct *vma;
4426 	void *old_buf = buf;
4427 	int write = gup_flags & FOLL_WRITE;
4428 
4429 	down_read(&mm->mmap_sem);
4430 	/* ignore errors, just check how much was successfully transferred */
4431 	while (len) {
4432 		int bytes, ret, offset;
4433 		void *maddr;
4434 		struct page *page = NULL;
4435 
4436 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4437 				gup_flags, &page, &vma, NULL);
4438 		if (ret <= 0) {
4439 #ifndef CONFIG_HAVE_IOREMAP_PROT
4440 			break;
4441 #else
4442 			/*
4443 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4444 			 * we can access using slightly different code.
4445 			 */
4446 			vma = find_vma(mm, addr);
4447 			if (!vma || vma->vm_start > addr)
4448 				break;
4449 			if (vma->vm_ops && vma->vm_ops->access)
4450 				ret = vma->vm_ops->access(vma, addr, buf,
4451 							  len, write);
4452 			if (ret <= 0)
4453 				break;
4454 			bytes = ret;
4455 #endif
4456 		} else {
4457 			bytes = len;
4458 			offset = addr & (PAGE_SIZE-1);
4459 			if (bytes > PAGE_SIZE-offset)
4460 				bytes = PAGE_SIZE-offset;
4461 
4462 			maddr = kmap(page);
4463 			if (write) {
4464 				copy_to_user_page(vma, page, addr,
4465 						  maddr + offset, buf, bytes);
4466 				set_page_dirty_lock(page);
4467 			} else {
4468 				copy_from_user_page(vma, page, addr,
4469 						    buf, maddr + offset, bytes);
4470 			}
4471 			kunmap(page);
4472 			put_page(page);
4473 		}
4474 		len -= bytes;
4475 		buf += bytes;
4476 		addr += bytes;
4477 	}
4478 	up_read(&mm->mmap_sem);
4479 
4480 	return buf - old_buf;
4481 }
4482 
4483 /**
4484  * access_remote_vm - access another process' address space
4485  * @mm:		the mm_struct of the target address space
4486  * @addr:	start address to access
4487  * @buf:	source or destination buffer
4488  * @len:	number of bytes to transfer
4489  * @gup_flags:	flags modifying lookup behaviour
4490  *
4491  * The caller must hold a reference on @mm.
4492  */
4493 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4494 		void *buf, int len, unsigned int gup_flags)
4495 {
4496 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4497 }
4498 
4499 /*
4500  * Access another process' address space.
4501  * Source/target buffer must be kernel space,
4502  * Do not walk the page table directly, use get_user_pages
4503  */
4504 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4505 		void *buf, int len, unsigned int gup_flags)
4506 {
4507 	struct mm_struct *mm;
4508 	int ret;
4509 
4510 	mm = get_task_mm(tsk);
4511 	if (!mm)
4512 		return 0;
4513 
4514 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4515 
4516 	mmput(mm);
4517 
4518 	return ret;
4519 }
4520 EXPORT_SYMBOL_GPL(access_process_vm);
4521 
4522 /*
4523  * Print the name of a VMA.
4524  */
4525 void print_vma_addr(char *prefix, unsigned long ip)
4526 {
4527 	struct mm_struct *mm = current->mm;
4528 	struct vm_area_struct *vma;
4529 
4530 	/*
4531 	 * we might be running from an atomic context so we cannot sleep
4532 	 */
4533 	if (!down_read_trylock(&mm->mmap_sem))
4534 		return;
4535 
4536 	vma = find_vma(mm, ip);
4537 	if (vma && vma->vm_file) {
4538 		struct file *f = vma->vm_file;
4539 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4540 		if (buf) {
4541 			char *p;
4542 
4543 			p = file_path(f, buf, PAGE_SIZE);
4544 			if (IS_ERR(p))
4545 				p = "?";
4546 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4547 					vma->vm_start,
4548 					vma->vm_end - vma->vm_start);
4549 			free_page((unsigned long)buf);
4550 		}
4551 	}
4552 	up_read(&mm->mmap_sem);
4553 }
4554 
4555 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4556 void __might_fault(const char *file, int line)
4557 {
4558 	/*
4559 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4560 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4561 	 * get paged out, therefore we'll never actually fault, and the
4562 	 * below annotations will generate false positives.
4563 	 */
4564 	if (uaccess_kernel())
4565 		return;
4566 	if (pagefault_disabled())
4567 		return;
4568 	__might_sleep(file, line, 0);
4569 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4570 	if (current->mm)
4571 		might_lock_read(&current->mm->mmap_sem);
4572 #endif
4573 }
4574 EXPORT_SYMBOL(__might_fault);
4575 #endif
4576 
4577 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4578 static void clear_gigantic_page(struct page *page,
4579 				unsigned long addr,
4580 				unsigned int pages_per_huge_page)
4581 {
4582 	int i;
4583 	struct page *p = page;
4584 
4585 	might_sleep();
4586 	for (i = 0; i < pages_per_huge_page;
4587 	     i++, p = mem_map_next(p, page, i)) {
4588 		cond_resched();
4589 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4590 	}
4591 }
4592 void clear_huge_page(struct page *page,
4593 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4594 {
4595 	int i, n, base, l;
4596 	unsigned long addr = addr_hint &
4597 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4598 
4599 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4600 		clear_gigantic_page(page, addr, pages_per_huge_page);
4601 		return;
4602 	}
4603 
4604 	/* Clear sub-page to access last to keep its cache lines hot */
4605 	might_sleep();
4606 	n = (addr_hint - addr) / PAGE_SIZE;
4607 	if (2 * n <= pages_per_huge_page) {
4608 		/* If sub-page to access in first half of huge page */
4609 		base = 0;
4610 		l = n;
4611 		/* Clear sub-pages at the end of huge page */
4612 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4613 			cond_resched();
4614 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4615 		}
4616 	} else {
4617 		/* If sub-page to access in second half of huge page */
4618 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4619 		l = pages_per_huge_page - n;
4620 		/* Clear sub-pages at the begin of huge page */
4621 		for (i = 0; i < base; i++) {
4622 			cond_resched();
4623 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4624 		}
4625 	}
4626 	/*
4627 	 * Clear remaining sub-pages in left-right-left-right pattern
4628 	 * towards the sub-page to access
4629 	 */
4630 	for (i = 0; i < l; i++) {
4631 		int left_idx = base + i;
4632 		int right_idx = base + 2 * l - 1 - i;
4633 
4634 		cond_resched();
4635 		clear_user_highpage(page + left_idx,
4636 				    addr + left_idx * PAGE_SIZE);
4637 		cond_resched();
4638 		clear_user_highpage(page + right_idx,
4639 				    addr + right_idx * PAGE_SIZE);
4640 	}
4641 }
4642 
4643 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4644 				    unsigned long addr,
4645 				    struct vm_area_struct *vma,
4646 				    unsigned int pages_per_huge_page)
4647 {
4648 	int i;
4649 	struct page *dst_base = dst;
4650 	struct page *src_base = src;
4651 
4652 	for (i = 0; i < pages_per_huge_page; ) {
4653 		cond_resched();
4654 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4655 
4656 		i++;
4657 		dst = mem_map_next(dst, dst_base, i);
4658 		src = mem_map_next(src, src_base, i);
4659 	}
4660 }
4661 
4662 void copy_user_huge_page(struct page *dst, struct page *src,
4663 			 unsigned long addr, struct vm_area_struct *vma,
4664 			 unsigned int pages_per_huge_page)
4665 {
4666 	int i;
4667 
4668 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4669 		copy_user_gigantic_page(dst, src, addr, vma,
4670 					pages_per_huge_page);
4671 		return;
4672 	}
4673 
4674 	might_sleep();
4675 	for (i = 0; i < pages_per_huge_page; i++) {
4676 		cond_resched();
4677 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4678 	}
4679 }
4680 
4681 long copy_huge_page_from_user(struct page *dst_page,
4682 				const void __user *usr_src,
4683 				unsigned int pages_per_huge_page,
4684 				bool allow_pagefault)
4685 {
4686 	void *src = (void *)usr_src;
4687 	void *page_kaddr;
4688 	unsigned long i, rc = 0;
4689 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4690 
4691 	for (i = 0; i < pages_per_huge_page; i++) {
4692 		if (allow_pagefault)
4693 			page_kaddr = kmap(dst_page + i);
4694 		else
4695 			page_kaddr = kmap_atomic(dst_page + i);
4696 		rc = copy_from_user(page_kaddr,
4697 				(const void __user *)(src + i * PAGE_SIZE),
4698 				PAGE_SIZE);
4699 		if (allow_pagefault)
4700 			kunmap(dst_page + i);
4701 		else
4702 			kunmap_atomic(page_kaddr);
4703 
4704 		ret_val -= (PAGE_SIZE - rc);
4705 		if (rc)
4706 			break;
4707 
4708 		cond_resched();
4709 	}
4710 	return ret_val;
4711 }
4712 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4713 
4714 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4715 
4716 static struct kmem_cache *page_ptl_cachep;
4717 
4718 void __init ptlock_cache_init(void)
4719 {
4720 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4721 			SLAB_PANIC, NULL);
4722 }
4723 
4724 bool ptlock_alloc(struct page *page)
4725 {
4726 	spinlock_t *ptl;
4727 
4728 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4729 	if (!ptl)
4730 		return false;
4731 	page->ptl = ptl;
4732 	return true;
4733 }
4734 
4735 void ptlock_free(struct page *page)
4736 {
4737 	kmem_cache_free(page_ptl_cachep, page->ptl);
4738 }
4739 #endif
4740