1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/memremap.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/export.h> 56 #include <linux/delayacct.h> 57 #include <linux/init.h> 58 #include <linux/pfn_t.h> 59 #include <linux/writeback.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 73 #include <asm/io.h> 74 #include <asm/mmu_context.h> 75 #include <asm/pgalloc.h> 76 #include <linux/uaccess.h> 77 #include <asm/tlb.h> 78 #include <asm/tlbflush.h> 79 #include <asm/pgtable.h> 80 81 #include "internal.h" 82 83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 85 #endif 86 87 #ifndef CONFIG_NEED_MULTIPLE_NODES 88 /* use the per-pgdat data instead for discontigmem - mbligh */ 89 unsigned long max_mapnr; 90 EXPORT_SYMBOL(max_mapnr); 91 92 struct page *mem_map; 93 EXPORT_SYMBOL(mem_map); 94 #endif 95 96 /* 97 * A number of key systems in x86 including ioremap() rely on the assumption 98 * that high_memory defines the upper bound on direct map memory, then end 99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 101 * and ZONE_HIGHMEM. 102 */ 103 void *high_memory; 104 EXPORT_SYMBOL(high_memory); 105 106 /* 107 * Randomize the address space (stacks, mmaps, brk, etc.). 108 * 109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 110 * as ancient (libc5 based) binaries can segfault. ) 111 */ 112 int randomize_va_space __read_mostly = 113 #ifdef CONFIG_COMPAT_BRK 114 1; 115 #else 116 2; 117 #endif 118 119 static int __init disable_randmaps(char *s) 120 { 121 randomize_va_space = 0; 122 return 1; 123 } 124 __setup("norandmaps", disable_randmaps); 125 126 unsigned long zero_pfn __read_mostly; 127 EXPORT_SYMBOL(zero_pfn); 128 129 unsigned long highest_memmap_pfn __read_mostly; 130 131 /* 132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 133 */ 134 static int __init init_zero_pfn(void) 135 { 136 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 137 return 0; 138 } 139 core_initcall(init_zero_pfn); 140 141 142 #if defined(SPLIT_RSS_COUNTING) 143 144 void sync_mm_rss(struct mm_struct *mm) 145 { 146 int i; 147 148 for (i = 0; i < NR_MM_COUNTERS; i++) { 149 if (current->rss_stat.count[i]) { 150 add_mm_counter(mm, i, current->rss_stat.count[i]); 151 current->rss_stat.count[i] = 0; 152 } 153 } 154 current->rss_stat.events = 0; 155 } 156 157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 158 { 159 struct task_struct *task = current; 160 161 if (likely(task->mm == mm)) 162 task->rss_stat.count[member] += val; 163 else 164 add_mm_counter(mm, member, val); 165 } 166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 168 169 /* sync counter once per 64 page faults */ 170 #define TASK_RSS_EVENTS_THRESH (64) 171 static void check_sync_rss_stat(struct task_struct *task) 172 { 173 if (unlikely(task != current)) 174 return; 175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 176 sync_mm_rss(task->mm); 177 } 178 #else /* SPLIT_RSS_COUNTING */ 179 180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 182 183 static void check_sync_rss_stat(struct task_struct *task) 184 { 185 } 186 187 #endif /* SPLIT_RSS_COUNTING */ 188 189 #ifdef HAVE_GENERIC_MMU_GATHER 190 191 static bool tlb_next_batch(struct mmu_gather *tlb) 192 { 193 struct mmu_gather_batch *batch; 194 195 batch = tlb->active; 196 if (batch->next) { 197 tlb->active = batch->next; 198 return true; 199 } 200 201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 202 return false; 203 204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 205 if (!batch) 206 return false; 207 208 tlb->batch_count++; 209 batch->next = NULL; 210 batch->nr = 0; 211 batch->max = MAX_GATHER_BATCH; 212 213 tlb->active->next = batch; 214 tlb->active = batch; 215 216 return true; 217 } 218 219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 220 unsigned long start, unsigned long end) 221 { 222 tlb->mm = mm; 223 224 /* Is it from 0 to ~0? */ 225 tlb->fullmm = !(start | (end+1)); 226 tlb->need_flush_all = 0; 227 tlb->local.next = NULL; 228 tlb->local.nr = 0; 229 tlb->local.max = ARRAY_SIZE(tlb->__pages); 230 tlb->active = &tlb->local; 231 tlb->batch_count = 0; 232 233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 234 tlb->batch = NULL; 235 #endif 236 tlb->page_size = 0; 237 238 __tlb_reset_range(tlb); 239 } 240 241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 242 { 243 if (!tlb->end) 244 return; 245 246 tlb_flush(tlb); 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 249 tlb_table_flush(tlb); 250 #endif 251 __tlb_reset_range(tlb); 252 } 253 254 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 255 { 256 struct mmu_gather_batch *batch; 257 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 259 free_pages_and_swap_cache(batch->pages, batch->nr); 260 batch->nr = 0; 261 } 262 tlb->active = &tlb->local; 263 } 264 265 void tlb_flush_mmu(struct mmu_gather *tlb) 266 { 267 tlb_flush_mmu_tlbonly(tlb); 268 tlb_flush_mmu_free(tlb); 269 } 270 271 /* tlb_finish_mmu 272 * Called at the end of the shootdown operation to free up any resources 273 * that were required. 274 */ 275 void arch_tlb_finish_mmu(struct mmu_gather *tlb, 276 unsigned long start, unsigned long end, bool force) 277 { 278 struct mmu_gather_batch *batch, *next; 279 280 if (force) 281 __tlb_adjust_range(tlb, start, end - start); 282 283 tlb_flush_mmu(tlb); 284 285 /* keep the page table cache within bounds */ 286 check_pgt_cache(); 287 288 for (batch = tlb->local.next; batch; batch = next) { 289 next = batch->next; 290 free_pages((unsigned long)batch, 0); 291 } 292 tlb->local.next = NULL; 293 } 294 295 /* __tlb_remove_page 296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 297 * handling the additional races in SMP caused by other CPUs caching valid 298 * mappings in their TLBs. Returns the number of free page slots left. 299 * When out of page slots we must call tlb_flush_mmu(). 300 *returns true if the caller should flush. 301 */ 302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) 303 { 304 struct mmu_gather_batch *batch; 305 306 VM_BUG_ON(!tlb->end); 307 VM_WARN_ON(tlb->page_size != page_size); 308 309 batch = tlb->active; 310 /* 311 * Add the page and check if we are full. If so 312 * force a flush. 313 */ 314 batch->pages[batch->nr++] = page; 315 if (batch->nr == batch->max) { 316 if (!tlb_next_batch(tlb)) 317 return true; 318 batch = tlb->active; 319 } 320 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 321 322 return false; 323 } 324 325 #endif /* HAVE_GENERIC_MMU_GATHER */ 326 327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 328 329 static void tlb_remove_table_smp_sync(void *arg) 330 { 331 struct mm_struct __maybe_unused *mm = arg; 332 /* 333 * On most architectures this does nothing. Simply delivering the 334 * interrupt is enough to prevent races with software page table 335 * walking like that done in get_user_pages_fast. 336 * 337 * See the comment near struct mmu_table_batch. 338 */ 339 tlb_flush_remove_tables_local(mm); 340 } 341 342 static void tlb_remove_table_one(void *table, struct mmu_gather *tlb) 343 { 344 /* 345 * This isn't an RCU grace period and hence the page-tables cannot be 346 * assumed to be actually RCU-freed. 347 * 348 * It is however sufficient for software page-table walkers that rely on 349 * IRQ disabling. See the comment near struct mmu_table_batch. 350 */ 351 smp_call_function(tlb_remove_table_smp_sync, tlb->mm, 1); 352 __tlb_remove_table(table); 353 } 354 355 static void tlb_remove_table_rcu(struct rcu_head *head) 356 { 357 struct mmu_table_batch *batch; 358 int i; 359 360 batch = container_of(head, struct mmu_table_batch, rcu); 361 362 for (i = 0; i < batch->nr; i++) 363 __tlb_remove_table(batch->tables[i]); 364 365 free_page((unsigned long)batch); 366 } 367 368 void tlb_table_flush(struct mmu_gather *tlb) 369 { 370 struct mmu_table_batch **batch = &tlb->batch; 371 372 tlb_flush_remove_tables(tlb->mm); 373 374 if (*batch) { 375 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 376 *batch = NULL; 377 } 378 } 379 380 void tlb_remove_table(struct mmu_gather *tlb, void *table) 381 { 382 struct mmu_table_batch **batch = &tlb->batch; 383 384 /* 385 * When there's less then two users of this mm there cannot be a 386 * concurrent page-table walk. 387 */ 388 if (atomic_read(&tlb->mm->mm_users) < 2) { 389 __tlb_remove_table(table); 390 return; 391 } 392 393 if (*batch == NULL) { 394 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 395 if (*batch == NULL) { 396 tlb_remove_table_one(table, tlb); 397 return; 398 } 399 (*batch)->nr = 0; 400 } 401 (*batch)->tables[(*batch)->nr++] = table; 402 if ((*batch)->nr == MAX_TABLE_BATCH) 403 tlb_table_flush(tlb); 404 } 405 406 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 407 408 /** 409 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down 410 * @tlb: the mmu_gather structure to initialize 411 * @mm: the mm_struct of the target address space 412 * @start: start of the region that will be removed from the page-table 413 * @end: end of the region that will be removed from the page-table 414 * 415 * Called to initialize an (on-stack) mmu_gather structure for page-table 416 * tear-down from @mm. The @start and @end are set to 0 and -1 417 * respectively when @mm is without users and we're going to destroy 418 * the full address space (exit/execve). 419 */ 420 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 421 unsigned long start, unsigned long end) 422 { 423 arch_tlb_gather_mmu(tlb, mm, start, end); 424 inc_tlb_flush_pending(tlb->mm); 425 } 426 427 void tlb_finish_mmu(struct mmu_gather *tlb, 428 unsigned long start, unsigned long end) 429 { 430 /* 431 * If there are parallel threads are doing PTE changes on same range 432 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB 433 * flush by batching, a thread has stable TLB entry can fail to flush 434 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB 435 * forcefully if we detect parallel PTE batching threads. 436 */ 437 bool force = mm_tlb_flush_nested(tlb->mm); 438 439 arch_tlb_finish_mmu(tlb, start, end, force); 440 dec_tlb_flush_pending(tlb->mm); 441 } 442 443 /* 444 * Note: this doesn't free the actual pages themselves. That 445 * has been handled earlier when unmapping all the memory regions. 446 */ 447 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 448 unsigned long addr) 449 { 450 pgtable_t token = pmd_pgtable(*pmd); 451 pmd_clear(pmd); 452 pte_free_tlb(tlb, token, addr); 453 mm_dec_nr_ptes(tlb->mm); 454 } 455 456 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 457 unsigned long addr, unsigned long end, 458 unsigned long floor, unsigned long ceiling) 459 { 460 pmd_t *pmd; 461 unsigned long next; 462 unsigned long start; 463 464 start = addr; 465 pmd = pmd_offset(pud, addr); 466 do { 467 next = pmd_addr_end(addr, end); 468 if (pmd_none_or_clear_bad(pmd)) 469 continue; 470 free_pte_range(tlb, pmd, addr); 471 } while (pmd++, addr = next, addr != end); 472 473 start &= PUD_MASK; 474 if (start < floor) 475 return; 476 if (ceiling) { 477 ceiling &= PUD_MASK; 478 if (!ceiling) 479 return; 480 } 481 if (end - 1 > ceiling - 1) 482 return; 483 484 pmd = pmd_offset(pud, start); 485 pud_clear(pud); 486 pmd_free_tlb(tlb, pmd, start); 487 mm_dec_nr_pmds(tlb->mm); 488 } 489 490 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 491 unsigned long addr, unsigned long end, 492 unsigned long floor, unsigned long ceiling) 493 { 494 pud_t *pud; 495 unsigned long next; 496 unsigned long start; 497 498 start = addr; 499 pud = pud_offset(p4d, addr); 500 do { 501 next = pud_addr_end(addr, end); 502 if (pud_none_or_clear_bad(pud)) 503 continue; 504 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 505 } while (pud++, addr = next, addr != end); 506 507 start &= P4D_MASK; 508 if (start < floor) 509 return; 510 if (ceiling) { 511 ceiling &= P4D_MASK; 512 if (!ceiling) 513 return; 514 } 515 if (end - 1 > ceiling - 1) 516 return; 517 518 pud = pud_offset(p4d, start); 519 p4d_clear(p4d); 520 pud_free_tlb(tlb, pud, start); 521 mm_dec_nr_puds(tlb->mm); 522 } 523 524 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 525 unsigned long addr, unsigned long end, 526 unsigned long floor, unsigned long ceiling) 527 { 528 p4d_t *p4d; 529 unsigned long next; 530 unsigned long start; 531 532 start = addr; 533 p4d = p4d_offset(pgd, addr); 534 do { 535 next = p4d_addr_end(addr, end); 536 if (p4d_none_or_clear_bad(p4d)) 537 continue; 538 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 539 } while (p4d++, addr = next, addr != end); 540 541 start &= PGDIR_MASK; 542 if (start < floor) 543 return; 544 if (ceiling) { 545 ceiling &= PGDIR_MASK; 546 if (!ceiling) 547 return; 548 } 549 if (end - 1 > ceiling - 1) 550 return; 551 552 p4d = p4d_offset(pgd, start); 553 pgd_clear(pgd); 554 p4d_free_tlb(tlb, p4d, start); 555 } 556 557 /* 558 * This function frees user-level page tables of a process. 559 */ 560 void free_pgd_range(struct mmu_gather *tlb, 561 unsigned long addr, unsigned long end, 562 unsigned long floor, unsigned long ceiling) 563 { 564 pgd_t *pgd; 565 unsigned long next; 566 567 /* 568 * The next few lines have given us lots of grief... 569 * 570 * Why are we testing PMD* at this top level? Because often 571 * there will be no work to do at all, and we'd prefer not to 572 * go all the way down to the bottom just to discover that. 573 * 574 * Why all these "- 1"s? Because 0 represents both the bottom 575 * of the address space and the top of it (using -1 for the 576 * top wouldn't help much: the masks would do the wrong thing). 577 * The rule is that addr 0 and floor 0 refer to the bottom of 578 * the address space, but end 0 and ceiling 0 refer to the top 579 * Comparisons need to use "end - 1" and "ceiling - 1" (though 580 * that end 0 case should be mythical). 581 * 582 * Wherever addr is brought up or ceiling brought down, we must 583 * be careful to reject "the opposite 0" before it confuses the 584 * subsequent tests. But what about where end is brought down 585 * by PMD_SIZE below? no, end can't go down to 0 there. 586 * 587 * Whereas we round start (addr) and ceiling down, by different 588 * masks at different levels, in order to test whether a table 589 * now has no other vmas using it, so can be freed, we don't 590 * bother to round floor or end up - the tests don't need that. 591 */ 592 593 addr &= PMD_MASK; 594 if (addr < floor) { 595 addr += PMD_SIZE; 596 if (!addr) 597 return; 598 } 599 if (ceiling) { 600 ceiling &= PMD_MASK; 601 if (!ceiling) 602 return; 603 } 604 if (end - 1 > ceiling - 1) 605 end -= PMD_SIZE; 606 if (addr > end - 1) 607 return; 608 /* 609 * We add page table cache pages with PAGE_SIZE, 610 * (see pte_free_tlb()), flush the tlb if we need 611 */ 612 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 613 pgd = pgd_offset(tlb->mm, addr); 614 do { 615 next = pgd_addr_end(addr, end); 616 if (pgd_none_or_clear_bad(pgd)) 617 continue; 618 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 619 } while (pgd++, addr = next, addr != end); 620 } 621 622 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 623 unsigned long floor, unsigned long ceiling) 624 { 625 while (vma) { 626 struct vm_area_struct *next = vma->vm_next; 627 unsigned long addr = vma->vm_start; 628 629 /* 630 * Hide vma from rmap and truncate_pagecache before freeing 631 * pgtables 632 */ 633 unlink_anon_vmas(vma); 634 unlink_file_vma(vma); 635 636 if (is_vm_hugetlb_page(vma)) { 637 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 638 floor, next ? next->vm_start : ceiling); 639 } else { 640 /* 641 * Optimization: gather nearby vmas into one call down 642 */ 643 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 644 && !is_vm_hugetlb_page(next)) { 645 vma = next; 646 next = vma->vm_next; 647 unlink_anon_vmas(vma); 648 unlink_file_vma(vma); 649 } 650 free_pgd_range(tlb, addr, vma->vm_end, 651 floor, next ? next->vm_start : ceiling); 652 } 653 vma = next; 654 } 655 } 656 657 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 658 { 659 spinlock_t *ptl; 660 pgtable_t new = pte_alloc_one(mm, address); 661 if (!new) 662 return -ENOMEM; 663 664 /* 665 * Ensure all pte setup (eg. pte page lock and page clearing) are 666 * visible before the pte is made visible to other CPUs by being 667 * put into page tables. 668 * 669 * The other side of the story is the pointer chasing in the page 670 * table walking code (when walking the page table without locking; 671 * ie. most of the time). Fortunately, these data accesses consist 672 * of a chain of data-dependent loads, meaning most CPUs (alpha 673 * being the notable exception) will already guarantee loads are 674 * seen in-order. See the alpha page table accessors for the 675 * smp_read_barrier_depends() barriers in page table walking code. 676 */ 677 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 678 679 ptl = pmd_lock(mm, pmd); 680 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 681 mm_inc_nr_ptes(mm); 682 pmd_populate(mm, pmd, new); 683 new = NULL; 684 } 685 spin_unlock(ptl); 686 if (new) 687 pte_free(mm, new); 688 return 0; 689 } 690 691 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 692 { 693 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 694 if (!new) 695 return -ENOMEM; 696 697 smp_wmb(); /* See comment in __pte_alloc */ 698 699 spin_lock(&init_mm.page_table_lock); 700 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 701 pmd_populate_kernel(&init_mm, pmd, new); 702 new = NULL; 703 } 704 spin_unlock(&init_mm.page_table_lock); 705 if (new) 706 pte_free_kernel(&init_mm, new); 707 return 0; 708 } 709 710 static inline void init_rss_vec(int *rss) 711 { 712 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 713 } 714 715 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 716 { 717 int i; 718 719 if (current->mm == mm) 720 sync_mm_rss(mm); 721 for (i = 0; i < NR_MM_COUNTERS; i++) 722 if (rss[i]) 723 add_mm_counter(mm, i, rss[i]); 724 } 725 726 /* 727 * This function is called to print an error when a bad pte 728 * is found. For example, we might have a PFN-mapped pte in 729 * a region that doesn't allow it. 730 * 731 * The calling function must still handle the error. 732 */ 733 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 734 pte_t pte, struct page *page) 735 { 736 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 737 p4d_t *p4d = p4d_offset(pgd, addr); 738 pud_t *pud = pud_offset(p4d, addr); 739 pmd_t *pmd = pmd_offset(pud, addr); 740 struct address_space *mapping; 741 pgoff_t index; 742 static unsigned long resume; 743 static unsigned long nr_shown; 744 static unsigned long nr_unshown; 745 746 /* 747 * Allow a burst of 60 reports, then keep quiet for that minute; 748 * or allow a steady drip of one report per second. 749 */ 750 if (nr_shown == 60) { 751 if (time_before(jiffies, resume)) { 752 nr_unshown++; 753 return; 754 } 755 if (nr_unshown) { 756 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 757 nr_unshown); 758 nr_unshown = 0; 759 } 760 nr_shown = 0; 761 } 762 if (nr_shown++ == 0) 763 resume = jiffies + 60 * HZ; 764 765 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 766 index = linear_page_index(vma, addr); 767 768 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 769 current->comm, 770 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 771 if (page) 772 dump_page(page, "bad pte"); 773 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 774 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 775 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 776 vma->vm_file, 777 vma->vm_ops ? vma->vm_ops->fault : NULL, 778 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 779 mapping ? mapping->a_ops->readpage : NULL); 780 dump_stack(); 781 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 782 } 783 784 /* 785 * vm_normal_page -- This function gets the "struct page" associated with a pte. 786 * 787 * "Special" mappings do not wish to be associated with a "struct page" (either 788 * it doesn't exist, or it exists but they don't want to touch it). In this 789 * case, NULL is returned here. "Normal" mappings do have a struct page. 790 * 791 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 792 * pte bit, in which case this function is trivial. Secondly, an architecture 793 * may not have a spare pte bit, which requires a more complicated scheme, 794 * described below. 795 * 796 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 797 * special mapping (even if there are underlying and valid "struct pages"). 798 * COWed pages of a VM_PFNMAP are always normal. 799 * 800 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 801 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 802 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 803 * mapping will always honor the rule 804 * 805 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 806 * 807 * And for normal mappings this is false. 808 * 809 * This restricts such mappings to be a linear translation from virtual address 810 * to pfn. To get around this restriction, we allow arbitrary mappings so long 811 * as the vma is not a COW mapping; in that case, we know that all ptes are 812 * special (because none can have been COWed). 813 * 814 * 815 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 816 * 817 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 818 * page" backing, however the difference is that _all_ pages with a struct 819 * page (that is, those where pfn_valid is true) are refcounted and considered 820 * normal pages by the VM. The disadvantage is that pages are refcounted 821 * (which can be slower and simply not an option for some PFNMAP users). The 822 * advantage is that we don't have to follow the strict linearity rule of 823 * PFNMAP mappings in order to support COWable mappings. 824 * 825 */ 826 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 827 pte_t pte, bool with_public_device) 828 { 829 unsigned long pfn = pte_pfn(pte); 830 831 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 832 if (likely(!pte_special(pte))) 833 goto check_pfn; 834 if (vma->vm_ops && vma->vm_ops->find_special_page) 835 return vma->vm_ops->find_special_page(vma, addr); 836 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 837 return NULL; 838 if (is_zero_pfn(pfn)) 839 return NULL; 840 841 /* 842 * Device public pages are special pages (they are ZONE_DEVICE 843 * pages but different from persistent memory). They behave 844 * allmost like normal pages. The difference is that they are 845 * not on the lru and thus should never be involve with any- 846 * thing that involve lru manipulation (mlock, numa balancing, 847 * ...). 848 * 849 * This is why we still want to return NULL for such page from 850 * vm_normal_page() so that we do not have to special case all 851 * call site of vm_normal_page(). 852 */ 853 if (likely(pfn <= highest_memmap_pfn)) { 854 struct page *page = pfn_to_page(pfn); 855 856 if (is_device_public_page(page)) { 857 if (with_public_device) 858 return page; 859 return NULL; 860 } 861 } 862 print_bad_pte(vma, addr, pte, NULL); 863 return NULL; 864 } 865 866 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 867 868 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 869 if (vma->vm_flags & VM_MIXEDMAP) { 870 if (!pfn_valid(pfn)) 871 return NULL; 872 goto out; 873 } else { 874 unsigned long off; 875 off = (addr - vma->vm_start) >> PAGE_SHIFT; 876 if (pfn == vma->vm_pgoff + off) 877 return NULL; 878 if (!is_cow_mapping(vma->vm_flags)) 879 return NULL; 880 } 881 } 882 883 if (is_zero_pfn(pfn)) 884 return NULL; 885 886 check_pfn: 887 if (unlikely(pfn > highest_memmap_pfn)) { 888 print_bad_pte(vma, addr, pte, NULL); 889 return NULL; 890 } 891 892 /* 893 * NOTE! We still have PageReserved() pages in the page tables. 894 * eg. VDSO mappings can cause them to exist. 895 */ 896 out: 897 return pfn_to_page(pfn); 898 } 899 900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 901 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 902 pmd_t pmd) 903 { 904 unsigned long pfn = pmd_pfn(pmd); 905 906 /* 907 * There is no pmd_special() but there may be special pmds, e.g. 908 * in a direct-access (dax) mapping, so let's just replicate the 909 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 910 */ 911 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 912 if (vma->vm_flags & VM_MIXEDMAP) { 913 if (!pfn_valid(pfn)) 914 return NULL; 915 goto out; 916 } else { 917 unsigned long off; 918 off = (addr - vma->vm_start) >> PAGE_SHIFT; 919 if (pfn == vma->vm_pgoff + off) 920 return NULL; 921 if (!is_cow_mapping(vma->vm_flags)) 922 return NULL; 923 } 924 } 925 926 if (is_zero_pfn(pfn)) 927 return NULL; 928 if (unlikely(pfn > highest_memmap_pfn)) 929 return NULL; 930 931 /* 932 * NOTE! We still have PageReserved() pages in the page tables. 933 * eg. VDSO mappings can cause them to exist. 934 */ 935 out: 936 return pfn_to_page(pfn); 937 } 938 #endif 939 940 /* 941 * copy one vm_area from one task to the other. Assumes the page tables 942 * already present in the new task to be cleared in the whole range 943 * covered by this vma. 944 */ 945 946 static inline unsigned long 947 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 948 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 949 unsigned long addr, int *rss) 950 { 951 unsigned long vm_flags = vma->vm_flags; 952 pte_t pte = *src_pte; 953 struct page *page; 954 955 /* pte contains position in swap or file, so copy. */ 956 if (unlikely(!pte_present(pte))) { 957 swp_entry_t entry = pte_to_swp_entry(pte); 958 959 if (likely(!non_swap_entry(entry))) { 960 if (swap_duplicate(entry) < 0) 961 return entry.val; 962 963 /* make sure dst_mm is on swapoff's mmlist. */ 964 if (unlikely(list_empty(&dst_mm->mmlist))) { 965 spin_lock(&mmlist_lock); 966 if (list_empty(&dst_mm->mmlist)) 967 list_add(&dst_mm->mmlist, 968 &src_mm->mmlist); 969 spin_unlock(&mmlist_lock); 970 } 971 rss[MM_SWAPENTS]++; 972 } else if (is_migration_entry(entry)) { 973 page = migration_entry_to_page(entry); 974 975 rss[mm_counter(page)]++; 976 977 if (is_write_migration_entry(entry) && 978 is_cow_mapping(vm_flags)) { 979 /* 980 * COW mappings require pages in both 981 * parent and child to be set to read. 982 */ 983 make_migration_entry_read(&entry); 984 pte = swp_entry_to_pte(entry); 985 if (pte_swp_soft_dirty(*src_pte)) 986 pte = pte_swp_mksoft_dirty(pte); 987 set_pte_at(src_mm, addr, src_pte, pte); 988 } 989 } else if (is_device_private_entry(entry)) { 990 page = device_private_entry_to_page(entry); 991 992 /* 993 * Update rss count even for unaddressable pages, as 994 * they should treated just like normal pages in this 995 * respect. 996 * 997 * We will likely want to have some new rss counters 998 * for unaddressable pages, at some point. But for now 999 * keep things as they are. 1000 */ 1001 get_page(page); 1002 rss[mm_counter(page)]++; 1003 page_dup_rmap(page, false); 1004 1005 /* 1006 * We do not preserve soft-dirty information, because so 1007 * far, checkpoint/restore is the only feature that 1008 * requires that. And checkpoint/restore does not work 1009 * when a device driver is involved (you cannot easily 1010 * save and restore device driver state). 1011 */ 1012 if (is_write_device_private_entry(entry) && 1013 is_cow_mapping(vm_flags)) { 1014 make_device_private_entry_read(&entry); 1015 pte = swp_entry_to_pte(entry); 1016 set_pte_at(src_mm, addr, src_pte, pte); 1017 } 1018 } 1019 goto out_set_pte; 1020 } 1021 1022 /* 1023 * If it's a COW mapping, write protect it both 1024 * in the parent and the child 1025 */ 1026 if (is_cow_mapping(vm_flags)) { 1027 ptep_set_wrprotect(src_mm, addr, src_pte); 1028 pte = pte_wrprotect(pte); 1029 } 1030 1031 /* 1032 * If it's a shared mapping, mark it clean in 1033 * the child 1034 */ 1035 if (vm_flags & VM_SHARED) 1036 pte = pte_mkclean(pte); 1037 pte = pte_mkold(pte); 1038 1039 page = vm_normal_page(vma, addr, pte); 1040 if (page) { 1041 get_page(page); 1042 page_dup_rmap(page, false); 1043 rss[mm_counter(page)]++; 1044 } else if (pte_devmap(pte)) { 1045 page = pte_page(pte); 1046 1047 /* 1048 * Cache coherent device memory behave like regular page and 1049 * not like persistent memory page. For more informations see 1050 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 1051 */ 1052 if (is_device_public_page(page)) { 1053 get_page(page); 1054 page_dup_rmap(page, false); 1055 rss[mm_counter(page)]++; 1056 } 1057 } 1058 1059 out_set_pte: 1060 set_pte_at(dst_mm, addr, dst_pte, pte); 1061 return 0; 1062 } 1063 1064 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1065 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 1066 unsigned long addr, unsigned long end) 1067 { 1068 pte_t *orig_src_pte, *orig_dst_pte; 1069 pte_t *src_pte, *dst_pte; 1070 spinlock_t *src_ptl, *dst_ptl; 1071 int progress = 0; 1072 int rss[NR_MM_COUNTERS]; 1073 swp_entry_t entry = (swp_entry_t){0}; 1074 1075 again: 1076 init_rss_vec(rss); 1077 1078 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1079 if (!dst_pte) 1080 return -ENOMEM; 1081 src_pte = pte_offset_map(src_pmd, addr); 1082 src_ptl = pte_lockptr(src_mm, src_pmd); 1083 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1084 orig_src_pte = src_pte; 1085 orig_dst_pte = dst_pte; 1086 arch_enter_lazy_mmu_mode(); 1087 1088 do { 1089 /* 1090 * We are holding two locks at this point - either of them 1091 * could generate latencies in another task on another CPU. 1092 */ 1093 if (progress >= 32) { 1094 progress = 0; 1095 if (need_resched() || 1096 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1097 break; 1098 } 1099 if (pte_none(*src_pte)) { 1100 progress++; 1101 continue; 1102 } 1103 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 1104 vma, addr, rss); 1105 if (entry.val) 1106 break; 1107 progress += 8; 1108 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1109 1110 arch_leave_lazy_mmu_mode(); 1111 spin_unlock(src_ptl); 1112 pte_unmap(orig_src_pte); 1113 add_mm_rss_vec(dst_mm, rss); 1114 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1115 cond_resched(); 1116 1117 if (entry.val) { 1118 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 1119 return -ENOMEM; 1120 progress = 0; 1121 } 1122 if (addr != end) 1123 goto again; 1124 return 0; 1125 } 1126 1127 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1128 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 1129 unsigned long addr, unsigned long end) 1130 { 1131 pmd_t *src_pmd, *dst_pmd; 1132 unsigned long next; 1133 1134 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1135 if (!dst_pmd) 1136 return -ENOMEM; 1137 src_pmd = pmd_offset(src_pud, addr); 1138 do { 1139 next = pmd_addr_end(addr, end); 1140 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1141 || pmd_devmap(*src_pmd)) { 1142 int err; 1143 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 1144 err = copy_huge_pmd(dst_mm, src_mm, 1145 dst_pmd, src_pmd, addr, vma); 1146 if (err == -ENOMEM) 1147 return -ENOMEM; 1148 if (!err) 1149 continue; 1150 /* fall through */ 1151 } 1152 if (pmd_none_or_clear_bad(src_pmd)) 1153 continue; 1154 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1155 vma, addr, next)) 1156 return -ENOMEM; 1157 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1158 return 0; 1159 } 1160 1161 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1162 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 1163 unsigned long addr, unsigned long end) 1164 { 1165 pud_t *src_pud, *dst_pud; 1166 unsigned long next; 1167 1168 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1169 if (!dst_pud) 1170 return -ENOMEM; 1171 src_pud = pud_offset(src_p4d, addr); 1172 do { 1173 next = pud_addr_end(addr, end); 1174 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1175 int err; 1176 1177 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 1178 err = copy_huge_pud(dst_mm, src_mm, 1179 dst_pud, src_pud, addr, vma); 1180 if (err == -ENOMEM) 1181 return -ENOMEM; 1182 if (!err) 1183 continue; 1184 /* fall through */ 1185 } 1186 if (pud_none_or_clear_bad(src_pud)) 1187 continue; 1188 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1189 vma, addr, next)) 1190 return -ENOMEM; 1191 } while (dst_pud++, src_pud++, addr = next, addr != end); 1192 return 0; 1193 } 1194 1195 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1196 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1197 unsigned long addr, unsigned long end) 1198 { 1199 p4d_t *src_p4d, *dst_p4d; 1200 unsigned long next; 1201 1202 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1203 if (!dst_p4d) 1204 return -ENOMEM; 1205 src_p4d = p4d_offset(src_pgd, addr); 1206 do { 1207 next = p4d_addr_end(addr, end); 1208 if (p4d_none_or_clear_bad(src_p4d)) 1209 continue; 1210 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 1211 vma, addr, next)) 1212 return -ENOMEM; 1213 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1214 return 0; 1215 } 1216 1217 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1218 struct vm_area_struct *vma) 1219 { 1220 pgd_t *src_pgd, *dst_pgd; 1221 unsigned long next; 1222 unsigned long addr = vma->vm_start; 1223 unsigned long end = vma->vm_end; 1224 unsigned long mmun_start; /* For mmu_notifiers */ 1225 unsigned long mmun_end; /* For mmu_notifiers */ 1226 bool is_cow; 1227 int ret; 1228 1229 /* 1230 * Don't copy ptes where a page fault will fill them correctly. 1231 * Fork becomes much lighter when there are big shared or private 1232 * readonly mappings. The tradeoff is that copy_page_range is more 1233 * efficient than faulting. 1234 */ 1235 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1236 !vma->anon_vma) 1237 return 0; 1238 1239 if (is_vm_hugetlb_page(vma)) 1240 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1241 1242 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1243 /* 1244 * We do not free on error cases below as remove_vma 1245 * gets called on error from higher level routine 1246 */ 1247 ret = track_pfn_copy(vma); 1248 if (ret) 1249 return ret; 1250 } 1251 1252 /* 1253 * We need to invalidate the secondary MMU mappings only when 1254 * there could be a permission downgrade on the ptes of the 1255 * parent mm. And a permission downgrade will only happen if 1256 * is_cow_mapping() returns true. 1257 */ 1258 is_cow = is_cow_mapping(vma->vm_flags); 1259 mmun_start = addr; 1260 mmun_end = end; 1261 if (is_cow) 1262 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1263 mmun_end); 1264 1265 ret = 0; 1266 dst_pgd = pgd_offset(dst_mm, addr); 1267 src_pgd = pgd_offset(src_mm, addr); 1268 do { 1269 next = pgd_addr_end(addr, end); 1270 if (pgd_none_or_clear_bad(src_pgd)) 1271 continue; 1272 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1273 vma, addr, next))) { 1274 ret = -ENOMEM; 1275 break; 1276 } 1277 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1278 1279 if (is_cow) 1280 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1281 return ret; 1282 } 1283 1284 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1285 struct vm_area_struct *vma, pmd_t *pmd, 1286 unsigned long addr, unsigned long end, 1287 struct zap_details *details) 1288 { 1289 struct mm_struct *mm = tlb->mm; 1290 int force_flush = 0; 1291 int rss[NR_MM_COUNTERS]; 1292 spinlock_t *ptl; 1293 pte_t *start_pte; 1294 pte_t *pte; 1295 swp_entry_t entry; 1296 1297 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1298 again: 1299 init_rss_vec(rss); 1300 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1301 pte = start_pte; 1302 flush_tlb_batched_pending(mm); 1303 arch_enter_lazy_mmu_mode(); 1304 do { 1305 pte_t ptent = *pte; 1306 if (pte_none(ptent)) 1307 continue; 1308 1309 if (pte_present(ptent)) { 1310 struct page *page; 1311 1312 page = _vm_normal_page(vma, addr, ptent, true); 1313 if (unlikely(details) && page) { 1314 /* 1315 * unmap_shared_mapping_pages() wants to 1316 * invalidate cache without truncating: 1317 * unmap shared but keep private pages. 1318 */ 1319 if (details->check_mapping && 1320 details->check_mapping != page_rmapping(page)) 1321 continue; 1322 } 1323 ptent = ptep_get_and_clear_full(mm, addr, pte, 1324 tlb->fullmm); 1325 tlb_remove_tlb_entry(tlb, pte, addr); 1326 if (unlikely(!page)) 1327 continue; 1328 1329 if (!PageAnon(page)) { 1330 if (pte_dirty(ptent)) { 1331 force_flush = 1; 1332 set_page_dirty(page); 1333 } 1334 if (pte_young(ptent) && 1335 likely(!(vma->vm_flags & VM_SEQ_READ))) 1336 mark_page_accessed(page); 1337 } 1338 rss[mm_counter(page)]--; 1339 page_remove_rmap(page, false); 1340 if (unlikely(page_mapcount(page) < 0)) 1341 print_bad_pte(vma, addr, ptent, page); 1342 if (unlikely(__tlb_remove_page(tlb, page))) { 1343 force_flush = 1; 1344 addr += PAGE_SIZE; 1345 break; 1346 } 1347 continue; 1348 } 1349 1350 entry = pte_to_swp_entry(ptent); 1351 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1352 struct page *page = device_private_entry_to_page(entry); 1353 1354 if (unlikely(details && details->check_mapping)) { 1355 /* 1356 * unmap_shared_mapping_pages() wants to 1357 * invalidate cache without truncating: 1358 * unmap shared but keep private pages. 1359 */ 1360 if (details->check_mapping != 1361 page_rmapping(page)) 1362 continue; 1363 } 1364 1365 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1366 rss[mm_counter(page)]--; 1367 page_remove_rmap(page, false); 1368 put_page(page); 1369 continue; 1370 } 1371 1372 /* If details->check_mapping, we leave swap entries. */ 1373 if (unlikely(details)) 1374 continue; 1375 1376 entry = pte_to_swp_entry(ptent); 1377 if (!non_swap_entry(entry)) 1378 rss[MM_SWAPENTS]--; 1379 else if (is_migration_entry(entry)) { 1380 struct page *page; 1381 1382 page = migration_entry_to_page(entry); 1383 rss[mm_counter(page)]--; 1384 } 1385 if (unlikely(!free_swap_and_cache(entry))) 1386 print_bad_pte(vma, addr, ptent, NULL); 1387 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1388 } while (pte++, addr += PAGE_SIZE, addr != end); 1389 1390 add_mm_rss_vec(mm, rss); 1391 arch_leave_lazy_mmu_mode(); 1392 1393 /* Do the actual TLB flush before dropping ptl */ 1394 if (force_flush) 1395 tlb_flush_mmu_tlbonly(tlb); 1396 pte_unmap_unlock(start_pte, ptl); 1397 1398 /* 1399 * If we forced a TLB flush (either due to running out of 1400 * batch buffers or because we needed to flush dirty TLB 1401 * entries before releasing the ptl), free the batched 1402 * memory too. Restart if we didn't do everything. 1403 */ 1404 if (force_flush) { 1405 force_flush = 0; 1406 tlb_flush_mmu_free(tlb); 1407 if (addr != end) 1408 goto again; 1409 } 1410 1411 return addr; 1412 } 1413 1414 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1415 struct vm_area_struct *vma, pud_t *pud, 1416 unsigned long addr, unsigned long end, 1417 struct zap_details *details) 1418 { 1419 pmd_t *pmd; 1420 unsigned long next; 1421 1422 pmd = pmd_offset(pud, addr); 1423 do { 1424 next = pmd_addr_end(addr, end); 1425 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1426 if (next - addr != HPAGE_PMD_SIZE) 1427 __split_huge_pmd(vma, pmd, addr, false, NULL); 1428 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1429 goto next; 1430 /* fall through */ 1431 } 1432 /* 1433 * Here there can be other concurrent MADV_DONTNEED or 1434 * trans huge page faults running, and if the pmd is 1435 * none or trans huge it can change under us. This is 1436 * because MADV_DONTNEED holds the mmap_sem in read 1437 * mode. 1438 */ 1439 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1440 goto next; 1441 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1442 next: 1443 cond_resched(); 1444 } while (pmd++, addr = next, addr != end); 1445 1446 return addr; 1447 } 1448 1449 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1450 struct vm_area_struct *vma, p4d_t *p4d, 1451 unsigned long addr, unsigned long end, 1452 struct zap_details *details) 1453 { 1454 pud_t *pud; 1455 unsigned long next; 1456 1457 pud = pud_offset(p4d, addr); 1458 do { 1459 next = pud_addr_end(addr, end); 1460 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1461 if (next - addr != HPAGE_PUD_SIZE) { 1462 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1463 split_huge_pud(vma, pud, addr); 1464 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1465 goto next; 1466 /* fall through */ 1467 } 1468 if (pud_none_or_clear_bad(pud)) 1469 continue; 1470 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1471 next: 1472 cond_resched(); 1473 } while (pud++, addr = next, addr != end); 1474 1475 return addr; 1476 } 1477 1478 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1479 struct vm_area_struct *vma, pgd_t *pgd, 1480 unsigned long addr, unsigned long end, 1481 struct zap_details *details) 1482 { 1483 p4d_t *p4d; 1484 unsigned long next; 1485 1486 p4d = p4d_offset(pgd, addr); 1487 do { 1488 next = p4d_addr_end(addr, end); 1489 if (p4d_none_or_clear_bad(p4d)) 1490 continue; 1491 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1492 } while (p4d++, addr = next, addr != end); 1493 1494 return addr; 1495 } 1496 1497 void unmap_page_range(struct mmu_gather *tlb, 1498 struct vm_area_struct *vma, 1499 unsigned long addr, unsigned long end, 1500 struct zap_details *details) 1501 { 1502 pgd_t *pgd; 1503 unsigned long next; 1504 1505 BUG_ON(addr >= end); 1506 tlb_start_vma(tlb, vma); 1507 pgd = pgd_offset(vma->vm_mm, addr); 1508 do { 1509 next = pgd_addr_end(addr, end); 1510 if (pgd_none_or_clear_bad(pgd)) 1511 continue; 1512 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1513 } while (pgd++, addr = next, addr != end); 1514 tlb_end_vma(tlb, vma); 1515 } 1516 1517 1518 static void unmap_single_vma(struct mmu_gather *tlb, 1519 struct vm_area_struct *vma, unsigned long start_addr, 1520 unsigned long end_addr, 1521 struct zap_details *details) 1522 { 1523 unsigned long start = max(vma->vm_start, start_addr); 1524 unsigned long end; 1525 1526 if (start >= vma->vm_end) 1527 return; 1528 end = min(vma->vm_end, end_addr); 1529 if (end <= vma->vm_start) 1530 return; 1531 1532 if (vma->vm_file) 1533 uprobe_munmap(vma, start, end); 1534 1535 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1536 untrack_pfn(vma, 0, 0); 1537 1538 if (start != end) { 1539 if (unlikely(is_vm_hugetlb_page(vma))) { 1540 /* 1541 * It is undesirable to test vma->vm_file as it 1542 * should be non-null for valid hugetlb area. 1543 * However, vm_file will be NULL in the error 1544 * cleanup path of mmap_region. When 1545 * hugetlbfs ->mmap method fails, 1546 * mmap_region() nullifies vma->vm_file 1547 * before calling this function to clean up. 1548 * Since no pte has actually been setup, it is 1549 * safe to do nothing in this case. 1550 */ 1551 if (vma->vm_file) { 1552 i_mmap_lock_write(vma->vm_file->f_mapping); 1553 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1554 i_mmap_unlock_write(vma->vm_file->f_mapping); 1555 } 1556 } else 1557 unmap_page_range(tlb, vma, start, end, details); 1558 } 1559 } 1560 1561 /** 1562 * unmap_vmas - unmap a range of memory covered by a list of vma's 1563 * @tlb: address of the caller's struct mmu_gather 1564 * @vma: the starting vma 1565 * @start_addr: virtual address at which to start unmapping 1566 * @end_addr: virtual address at which to end unmapping 1567 * 1568 * Unmap all pages in the vma list. 1569 * 1570 * Only addresses between `start' and `end' will be unmapped. 1571 * 1572 * The VMA list must be sorted in ascending virtual address order. 1573 * 1574 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1575 * range after unmap_vmas() returns. So the only responsibility here is to 1576 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1577 * drops the lock and schedules. 1578 */ 1579 void unmap_vmas(struct mmu_gather *tlb, 1580 struct vm_area_struct *vma, unsigned long start_addr, 1581 unsigned long end_addr) 1582 { 1583 struct mm_struct *mm = vma->vm_mm; 1584 1585 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1586 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1587 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1588 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1589 } 1590 1591 /** 1592 * zap_page_range - remove user pages in a given range 1593 * @vma: vm_area_struct holding the applicable pages 1594 * @start: starting address of pages to zap 1595 * @size: number of bytes to zap 1596 * 1597 * Caller must protect the VMA list 1598 */ 1599 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1600 unsigned long size) 1601 { 1602 struct mm_struct *mm = vma->vm_mm; 1603 struct mmu_gather tlb; 1604 unsigned long end = start + size; 1605 1606 lru_add_drain(); 1607 tlb_gather_mmu(&tlb, mm, start, end); 1608 update_hiwater_rss(mm); 1609 mmu_notifier_invalidate_range_start(mm, start, end); 1610 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 1611 unmap_single_vma(&tlb, vma, start, end, NULL); 1612 1613 /* 1614 * zap_page_range does not specify whether mmap_sem should be 1615 * held for read or write. That allows parallel zap_page_range 1616 * operations to unmap a PTE and defer a flush meaning that 1617 * this call observes pte_none and fails to flush the TLB. 1618 * Rather than adding a complex API, ensure that no stale 1619 * TLB entries exist when this call returns. 1620 */ 1621 flush_tlb_range(vma, start, end); 1622 } 1623 1624 mmu_notifier_invalidate_range_end(mm, start, end); 1625 tlb_finish_mmu(&tlb, start, end); 1626 } 1627 1628 /** 1629 * zap_page_range_single - remove user pages in a given range 1630 * @vma: vm_area_struct holding the applicable pages 1631 * @address: starting address of pages to zap 1632 * @size: number of bytes to zap 1633 * @details: details of shared cache invalidation 1634 * 1635 * The range must fit into one VMA. 1636 */ 1637 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1638 unsigned long size, struct zap_details *details) 1639 { 1640 struct mm_struct *mm = vma->vm_mm; 1641 struct mmu_gather tlb; 1642 unsigned long end = address + size; 1643 1644 lru_add_drain(); 1645 tlb_gather_mmu(&tlb, mm, address, end); 1646 update_hiwater_rss(mm); 1647 mmu_notifier_invalidate_range_start(mm, address, end); 1648 unmap_single_vma(&tlb, vma, address, end, details); 1649 mmu_notifier_invalidate_range_end(mm, address, end); 1650 tlb_finish_mmu(&tlb, address, end); 1651 } 1652 1653 /** 1654 * zap_vma_ptes - remove ptes mapping the vma 1655 * @vma: vm_area_struct holding ptes to be zapped 1656 * @address: starting address of pages to zap 1657 * @size: number of bytes to zap 1658 * 1659 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1660 * 1661 * The entire address range must be fully contained within the vma. 1662 * 1663 */ 1664 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1665 unsigned long size) 1666 { 1667 if (address < vma->vm_start || address + size > vma->vm_end || 1668 !(vma->vm_flags & VM_PFNMAP)) 1669 return; 1670 1671 zap_page_range_single(vma, address, size, NULL); 1672 } 1673 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1674 1675 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1676 spinlock_t **ptl) 1677 { 1678 pgd_t *pgd; 1679 p4d_t *p4d; 1680 pud_t *pud; 1681 pmd_t *pmd; 1682 1683 pgd = pgd_offset(mm, addr); 1684 p4d = p4d_alloc(mm, pgd, addr); 1685 if (!p4d) 1686 return NULL; 1687 pud = pud_alloc(mm, p4d, addr); 1688 if (!pud) 1689 return NULL; 1690 pmd = pmd_alloc(mm, pud, addr); 1691 if (!pmd) 1692 return NULL; 1693 1694 VM_BUG_ON(pmd_trans_huge(*pmd)); 1695 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1696 } 1697 1698 /* 1699 * This is the old fallback for page remapping. 1700 * 1701 * For historical reasons, it only allows reserved pages. Only 1702 * old drivers should use this, and they needed to mark their 1703 * pages reserved for the old functions anyway. 1704 */ 1705 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1706 struct page *page, pgprot_t prot) 1707 { 1708 struct mm_struct *mm = vma->vm_mm; 1709 int retval; 1710 pte_t *pte; 1711 spinlock_t *ptl; 1712 1713 retval = -EINVAL; 1714 if (PageAnon(page)) 1715 goto out; 1716 retval = -ENOMEM; 1717 flush_dcache_page(page); 1718 pte = get_locked_pte(mm, addr, &ptl); 1719 if (!pte) 1720 goto out; 1721 retval = -EBUSY; 1722 if (!pte_none(*pte)) 1723 goto out_unlock; 1724 1725 /* Ok, finally just insert the thing.. */ 1726 get_page(page); 1727 inc_mm_counter_fast(mm, mm_counter_file(page)); 1728 page_add_file_rmap(page, false); 1729 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1730 1731 retval = 0; 1732 pte_unmap_unlock(pte, ptl); 1733 return retval; 1734 out_unlock: 1735 pte_unmap_unlock(pte, ptl); 1736 out: 1737 return retval; 1738 } 1739 1740 /** 1741 * vm_insert_page - insert single page into user vma 1742 * @vma: user vma to map to 1743 * @addr: target user address of this page 1744 * @page: source kernel page 1745 * 1746 * This allows drivers to insert individual pages they've allocated 1747 * into a user vma. 1748 * 1749 * The page has to be a nice clean _individual_ kernel allocation. 1750 * If you allocate a compound page, you need to have marked it as 1751 * such (__GFP_COMP), or manually just split the page up yourself 1752 * (see split_page()). 1753 * 1754 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1755 * took an arbitrary page protection parameter. This doesn't allow 1756 * that. Your vma protection will have to be set up correctly, which 1757 * means that if you want a shared writable mapping, you'd better 1758 * ask for a shared writable mapping! 1759 * 1760 * The page does not need to be reserved. 1761 * 1762 * Usually this function is called from f_op->mmap() handler 1763 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1764 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1765 * function from other places, for example from page-fault handler. 1766 */ 1767 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1768 struct page *page) 1769 { 1770 if (addr < vma->vm_start || addr >= vma->vm_end) 1771 return -EFAULT; 1772 if (!page_count(page)) 1773 return -EINVAL; 1774 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1775 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1776 BUG_ON(vma->vm_flags & VM_PFNMAP); 1777 vma->vm_flags |= VM_MIXEDMAP; 1778 } 1779 return insert_page(vma, addr, page, vma->vm_page_prot); 1780 } 1781 EXPORT_SYMBOL(vm_insert_page); 1782 1783 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1784 pfn_t pfn, pgprot_t prot, bool mkwrite) 1785 { 1786 struct mm_struct *mm = vma->vm_mm; 1787 int retval; 1788 pte_t *pte, entry; 1789 spinlock_t *ptl; 1790 1791 retval = -ENOMEM; 1792 pte = get_locked_pte(mm, addr, &ptl); 1793 if (!pte) 1794 goto out; 1795 retval = -EBUSY; 1796 if (!pte_none(*pte)) { 1797 if (mkwrite) { 1798 /* 1799 * For read faults on private mappings the PFN passed 1800 * in may not match the PFN we have mapped if the 1801 * mapped PFN is a writeable COW page. In the mkwrite 1802 * case we are creating a writable PTE for a shared 1803 * mapping and we expect the PFNs to match. 1804 */ 1805 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn))) 1806 goto out_unlock; 1807 entry = *pte; 1808 goto out_mkwrite; 1809 } else 1810 goto out_unlock; 1811 } 1812 1813 /* Ok, finally just insert the thing.. */ 1814 if (pfn_t_devmap(pfn)) 1815 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1816 else 1817 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1818 1819 out_mkwrite: 1820 if (mkwrite) { 1821 entry = pte_mkyoung(entry); 1822 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1823 } 1824 1825 set_pte_at(mm, addr, pte, entry); 1826 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1827 1828 retval = 0; 1829 out_unlock: 1830 pte_unmap_unlock(pte, ptl); 1831 out: 1832 return retval; 1833 } 1834 1835 /** 1836 * vm_insert_pfn - insert single pfn into user vma 1837 * @vma: user vma to map to 1838 * @addr: target user address of this page 1839 * @pfn: source kernel pfn 1840 * 1841 * Similar to vm_insert_page, this allows drivers to insert individual pages 1842 * they've allocated into a user vma. Same comments apply. 1843 * 1844 * This function should only be called from a vm_ops->fault handler, and 1845 * in that case the handler should return NULL. 1846 * 1847 * vma cannot be a COW mapping. 1848 * 1849 * As this is called only for pages that do not currently exist, we 1850 * do not need to flush old virtual caches or the TLB. 1851 */ 1852 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1853 unsigned long pfn) 1854 { 1855 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1856 } 1857 EXPORT_SYMBOL(vm_insert_pfn); 1858 1859 /** 1860 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1861 * @vma: user vma to map to 1862 * @addr: target user address of this page 1863 * @pfn: source kernel pfn 1864 * @pgprot: pgprot flags for the inserted page 1865 * 1866 * This is exactly like vm_insert_pfn, except that it allows drivers to 1867 * to override pgprot on a per-page basis. 1868 * 1869 * This only makes sense for IO mappings, and it makes no sense for 1870 * cow mappings. In general, using multiple vmas is preferable; 1871 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1872 * impractical. 1873 */ 1874 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1875 unsigned long pfn, pgprot_t pgprot) 1876 { 1877 int ret; 1878 /* 1879 * Technically, architectures with pte_special can avoid all these 1880 * restrictions (same for remap_pfn_range). However we would like 1881 * consistency in testing and feature parity among all, so we should 1882 * try to keep these invariants in place for everybody. 1883 */ 1884 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1885 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1886 (VM_PFNMAP|VM_MIXEDMAP)); 1887 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1888 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1889 1890 if (addr < vma->vm_start || addr >= vma->vm_end) 1891 return -EFAULT; 1892 1893 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1894 1895 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1896 false); 1897 1898 return ret; 1899 } 1900 EXPORT_SYMBOL(vm_insert_pfn_prot); 1901 1902 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1903 { 1904 /* these checks mirror the abort conditions in vm_normal_page */ 1905 if (vma->vm_flags & VM_MIXEDMAP) 1906 return true; 1907 if (pfn_t_devmap(pfn)) 1908 return true; 1909 if (pfn_t_special(pfn)) 1910 return true; 1911 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1912 return true; 1913 return false; 1914 } 1915 1916 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1917 pfn_t pfn, bool mkwrite) 1918 { 1919 pgprot_t pgprot = vma->vm_page_prot; 1920 1921 BUG_ON(!vm_mixed_ok(vma, pfn)); 1922 1923 if (addr < vma->vm_start || addr >= vma->vm_end) 1924 return -EFAULT; 1925 1926 track_pfn_insert(vma, &pgprot, pfn); 1927 1928 /* 1929 * If we don't have pte special, then we have to use the pfn_valid() 1930 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1931 * refcount the page if pfn_valid is true (hence insert_page rather 1932 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1933 * without pte special, it would there be refcounted as a normal page. 1934 */ 1935 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1936 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1937 struct page *page; 1938 1939 /* 1940 * At this point we are committed to insert_page() 1941 * regardless of whether the caller specified flags that 1942 * result in pfn_t_has_page() == false. 1943 */ 1944 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1945 return insert_page(vma, addr, page, pgprot); 1946 } 1947 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1948 } 1949 1950 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1951 pfn_t pfn) 1952 { 1953 return __vm_insert_mixed(vma, addr, pfn, false); 1954 1955 } 1956 EXPORT_SYMBOL(vm_insert_mixed); 1957 1958 /* 1959 * If the insertion of PTE failed because someone else already added a 1960 * different entry in the mean time, we treat that as success as we assume 1961 * the same entry was actually inserted. 1962 */ 1963 1964 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1965 unsigned long addr, pfn_t pfn) 1966 { 1967 int err; 1968 1969 err = __vm_insert_mixed(vma, addr, pfn, true); 1970 if (err == -ENOMEM) 1971 return VM_FAULT_OOM; 1972 if (err < 0 && err != -EBUSY) 1973 return VM_FAULT_SIGBUS; 1974 return VM_FAULT_NOPAGE; 1975 } 1976 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1977 1978 /* 1979 * maps a range of physical memory into the requested pages. the old 1980 * mappings are removed. any references to nonexistent pages results 1981 * in null mappings (currently treated as "copy-on-access") 1982 */ 1983 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1984 unsigned long addr, unsigned long end, 1985 unsigned long pfn, pgprot_t prot) 1986 { 1987 pte_t *pte; 1988 spinlock_t *ptl; 1989 1990 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1991 if (!pte) 1992 return -ENOMEM; 1993 arch_enter_lazy_mmu_mode(); 1994 do { 1995 BUG_ON(!pte_none(*pte)); 1996 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1997 pfn++; 1998 } while (pte++, addr += PAGE_SIZE, addr != end); 1999 arch_leave_lazy_mmu_mode(); 2000 pte_unmap_unlock(pte - 1, ptl); 2001 return 0; 2002 } 2003 2004 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2005 unsigned long addr, unsigned long end, 2006 unsigned long pfn, pgprot_t prot) 2007 { 2008 pmd_t *pmd; 2009 unsigned long next; 2010 2011 pfn -= addr >> PAGE_SHIFT; 2012 pmd = pmd_alloc(mm, pud, addr); 2013 if (!pmd) 2014 return -ENOMEM; 2015 VM_BUG_ON(pmd_trans_huge(*pmd)); 2016 do { 2017 next = pmd_addr_end(addr, end); 2018 if (remap_pte_range(mm, pmd, addr, next, 2019 pfn + (addr >> PAGE_SHIFT), prot)) 2020 return -ENOMEM; 2021 } while (pmd++, addr = next, addr != end); 2022 return 0; 2023 } 2024 2025 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2026 unsigned long addr, unsigned long end, 2027 unsigned long pfn, pgprot_t prot) 2028 { 2029 pud_t *pud; 2030 unsigned long next; 2031 2032 pfn -= addr >> PAGE_SHIFT; 2033 pud = pud_alloc(mm, p4d, addr); 2034 if (!pud) 2035 return -ENOMEM; 2036 do { 2037 next = pud_addr_end(addr, end); 2038 if (remap_pmd_range(mm, pud, addr, next, 2039 pfn + (addr >> PAGE_SHIFT), prot)) 2040 return -ENOMEM; 2041 } while (pud++, addr = next, addr != end); 2042 return 0; 2043 } 2044 2045 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2046 unsigned long addr, unsigned long end, 2047 unsigned long pfn, pgprot_t prot) 2048 { 2049 p4d_t *p4d; 2050 unsigned long next; 2051 2052 pfn -= addr >> PAGE_SHIFT; 2053 p4d = p4d_alloc(mm, pgd, addr); 2054 if (!p4d) 2055 return -ENOMEM; 2056 do { 2057 next = p4d_addr_end(addr, end); 2058 if (remap_pud_range(mm, p4d, addr, next, 2059 pfn + (addr >> PAGE_SHIFT), prot)) 2060 return -ENOMEM; 2061 } while (p4d++, addr = next, addr != end); 2062 return 0; 2063 } 2064 2065 /** 2066 * remap_pfn_range - remap kernel memory to userspace 2067 * @vma: user vma to map to 2068 * @addr: target user address to start at 2069 * @pfn: physical address of kernel memory 2070 * @size: size of map area 2071 * @prot: page protection flags for this mapping 2072 * 2073 * Note: this is only safe if the mm semaphore is held when called. 2074 */ 2075 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2076 unsigned long pfn, unsigned long size, pgprot_t prot) 2077 { 2078 pgd_t *pgd; 2079 unsigned long next; 2080 unsigned long end = addr + PAGE_ALIGN(size); 2081 struct mm_struct *mm = vma->vm_mm; 2082 unsigned long remap_pfn = pfn; 2083 int err; 2084 2085 /* 2086 * Physically remapped pages are special. Tell the 2087 * rest of the world about it: 2088 * VM_IO tells people not to look at these pages 2089 * (accesses can have side effects). 2090 * VM_PFNMAP tells the core MM that the base pages are just 2091 * raw PFN mappings, and do not have a "struct page" associated 2092 * with them. 2093 * VM_DONTEXPAND 2094 * Disable vma merging and expanding with mremap(). 2095 * VM_DONTDUMP 2096 * Omit vma from core dump, even when VM_IO turned off. 2097 * 2098 * There's a horrible special case to handle copy-on-write 2099 * behaviour that some programs depend on. We mark the "original" 2100 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2101 * See vm_normal_page() for details. 2102 */ 2103 if (is_cow_mapping(vma->vm_flags)) { 2104 if (addr != vma->vm_start || end != vma->vm_end) 2105 return -EINVAL; 2106 vma->vm_pgoff = pfn; 2107 } 2108 2109 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2110 if (err) 2111 return -EINVAL; 2112 2113 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2114 2115 BUG_ON(addr >= end); 2116 pfn -= addr >> PAGE_SHIFT; 2117 pgd = pgd_offset(mm, addr); 2118 flush_cache_range(vma, addr, end); 2119 do { 2120 next = pgd_addr_end(addr, end); 2121 err = remap_p4d_range(mm, pgd, addr, next, 2122 pfn + (addr >> PAGE_SHIFT), prot); 2123 if (err) 2124 break; 2125 } while (pgd++, addr = next, addr != end); 2126 2127 if (err) 2128 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2129 2130 return err; 2131 } 2132 EXPORT_SYMBOL(remap_pfn_range); 2133 2134 /** 2135 * vm_iomap_memory - remap memory to userspace 2136 * @vma: user vma to map to 2137 * @start: start of area 2138 * @len: size of area 2139 * 2140 * This is a simplified io_remap_pfn_range() for common driver use. The 2141 * driver just needs to give us the physical memory range to be mapped, 2142 * we'll figure out the rest from the vma information. 2143 * 2144 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2145 * whatever write-combining details or similar. 2146 */ 2147 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2148 { 2149 unsigned long vm_len, pfn, pages; 2150 2151 /* Check that the physical memory area passed in looks valid */ 2152 if (start + len < start) 2153 return -EINVAL; 2154 /* 2155 * You *really* shouldn't map things that aren't page-aligned, 2156 * but we've historically allowed it because IO memory might 2157 * just have smaller alignment. 2158 */ 2159 len += start & ~PAGE_MASK; 2160 pfn = start >> PAGE_SHIFT; 2161 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2162 if (pfn + pages < pfn) 2163 return -EINVAL; 2164 2165 /* We start the mapping 'vm_pgoff' pages into the area */ 2166 if (vma->vm_pgoff > pages) 2167 return -EINVAL; 2168 pfn += vma->vm_pgoff; 2169 pages -= vma->vm_pgoff; 2170 2171 /* Can we fit all of the mapping? */ 2172 vm_len = vma->vm_end - vma->vm_start; 2173 if (vm_len >> PAGE_SHIFT > pages) 2174 return -EINVAL; 2175 2176 /* Ok, let it rip */ 2177 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2178 } 2179 EXPORT_SYMBOL(vm_iomap_memory); 2180 2181 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2182 unsigned long addr, unsigned long end, 2183 pte_fn_t fn, void *data) 2184 { 2185 pte_t *pte; 2186 int err; 2187 pgtable_t token; 2188 spinlock_t *uninitialized_var(ptl); 2189 2190 pte = (mm == &init_mm) ? 2191 pte_alloc_kernel(pmd, addr) : 2192 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2193 if (!pte) 2194 return -ENOMEM; 2195 2196 BUG_ON(pmd_huge(*pmd)); 2197 2198 arch_enter_lazy_mmu_mode(); 2199 2200 token = pmd_pgtable(*pmd); 2201 2202 do { 2203 err = fn(pte++, token, addr, data); 2204 if (err) 2205 break; 2206 } while (addr += PAGE_SIZE, addr != end); 2207 2208 arch_leave_lazy_mmu_mode(); 2209 2210 if (mm != &init_mm) 2211 pte_unmap_unlock(pte-1, ptl); 2212 return err; 2213 } 2214 2215 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2216 unsigned long addr, unsigned long end, 2217 pte_fn_t fn, void *data) 2218 { 2219 pmd_t *pmd; 2220 unsigned long next; 2221 int err; 2222 2223 BUG_ON(pud_huge(*pud)); 2224 2225 pmd = pmd_alloc(mm, pud, addr); 2226 if (!pmd) 2227 return -ENOMEM; 2228 do { 2229 next = pmd_addr_end(addr, end); 2230 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2231 if (err) 2232 break; 2233 } while (pmd++, addr = next, addr != end); 2234 return err; 2235 } 2236 2237 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2238 unsigned long addr, unsigned long end, 2239 pte_fn_t fn, void *data) 2240 { 2241 pud_t *pud; 2242 unsigned long next; 2243 int err; 2244 2245 pud = pud_alloc(mm, p4d, addr); 2246 if (!pud) 2247 return -ENOMEM; 2248 do { 2249 next = pud_addr_end(addr, end); 2250 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2251 if (err) 2252 break; 2253 } while (pud++, addr = next, addr != end); 2254 return err; 2255 } 2256 2257 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2258 unsigned long addr, unsigned long end, 2259 pte_fn_t fn, void *data) 2260 { 2261 p4d_t *p4d; 2262 unsigned long next; 2263 int err; 2264 2265 p4d = p4d_alloc(mm, pgd, addr); 2266 if (!p4d) 2267 return -ENOMEM; 2268 do { 2269 next = p4d_addr_end(addr, end); 2270 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2271 if (err) 2272 break; 2273 } while (p4d++, addr = next, addr != end); 2274 return err; 2275 } 2276 2277 /* 2278 * Scan a region of virtual memory, filling in page tables as necessary 2279 * and calling a provided function on each leaf page table. 2280 */ 2281 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2282 unsigned long size, pte_fn_t fn, void *data) 2283 { 2284 pgd_t *pgd; 2285 unsigned long next; 2286 unsigned long end = addr + size; 2287 int err; 2288 2289 if (WARN_ON(addr >= end)) 2290 return -EINVAL; 2291 2292 pgd = pgd_offset(mm, addr); 2293 do { 2294 next = pgd_addr_end(addr, end); 2295 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2296 if (err) 2297 break; 2298 } while (pgd++, addr = next, addr != end); 2299 2300 return err; 2301 } 2302 EXPORT_SYMBOL_GPL(apply_to_page_range); 2303 2304 /* 2305 * handle_pte_fault chooses page fault handler according to an entry which was 2306 * read non-atomically. Before making any commitment, on those architectures 2307 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2308 * parts, do_swap_page must check under lock before unmapping the pte and 2309 * proceeding (but do_wp_page is only called after already making such a check; 2310 * and do_anonymous_page can safely check later on). 2311 */ 2312 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2313 pte_t *page_table, pte_t orig_pte) 2314 { 2315 int same = 1; 2316 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2317 if (sizeof(pte_t) > sizeof(unsigned long)) { 2318 spinlock_t *ptl = pte_lockptr(mm, pmd); 2319 spin_lock(ptl); 2320 same = pte_same(*page_table, orig_pte); 2321 spin_unlock(ptl); 2322 } 2323 #endif 2324 pte_unmap(page_table); 2325 return same; 2326 } 2327 2328 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2329 { 2330 debug_dma_assert_idle(src); 2331 2332 /* 2333 * If the source page was a PFN mapping, we don't have 2334 * a "struct page" for it. We do a best-effort copy by 2335 * just copying from the original user address. If that 2336 * fails, we just zero-fill it. Live with it. 2337 */ 2338 if (unlikely(!src)) { 2339 void *kaddr = kmap_atomic(dst); 2340 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2341 2342 /* 2343 * This really shouldn't fail, because the page is there 2344 * in the page tables. But it might just be unreadable, 2345 * in which case we just give up and fill the result with 2346 * zeroes. 2347 */ 2348 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2349 clear_page(kaddr); 2350 kunmap_atomic(kaddr); 2351 flush_dcache_page(dst); 2352 } else 2353 copy_user_highpage(dst, src, va, vma); 2354 } 2355 2356 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2357 { 2358 struct file *vm_file = vma->vm_file; 2359 2360 if (vm_file) 2361 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2362 2363 /* 2364 * Special mappings (e.g. VDSO) do not have any file so fake 2365 * a default GFP_KERNEL for them. 2366 */ 2367 return GFP_KERNEL; 2368 } 2369 2370 /* 2371 * Notify the address space that the page is about to become writable so that 2372 * it can prohibit this or wait for the page to get into an appropriate state. 2373 * 2374 * We do this without the lock held, so that it can sleep if it needs to. 2375 */ 2376 static int do_page_mkwrite(struct vm_fault *vmf) 2377 { 2378 int ret; 2379 struct page *page = vmf->page; 2380 unsigned int old_flags = vmf->flags; 2381 2382 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2383 2384 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2385 /* Restore original flags so that caller is not surprised */ 2386 vmf->flags = old_flags; 2387 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2388 return ret; 2389 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2390 lock_page(page); 2391 if (!page->mapping) { 2392 unlock_page(page); 2393 return 0; /* retry */ 2394 } 2395 ret |= VM_FAULT_LOCKED; 2396 } else 2397 VM_BUG_ON_PAGE(!PageLocked(page), page); 2398 return ret; 2399 } 2400 2401 /* 2402 * Handle dirtying of a page in shared file mapping on a write fault. 2403 * 2404 * The function expects the page to be locked and unlocks it. 2405 */ 2406 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2407 struct page *page) 2408 { 2409 struct address_space *mapping; 2410 bool dirtied; 2411 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2412 2413 dirtied = set_page_dirty(page); 2414 VM_BUG_ON_PAGE(PageAnon(page), page); 2415 /* 2416 * Take a local copy of the address_space - page.mapping may be zeroed 2417 * by truncate after unlock_page(). The address_space itself remains 2418 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2419 * release semantics to prevent the compiler from undoing this copying. 2420 */ 2421 mapping = page_rmapping(page); 2422 unlock_page(page); 2423 2424 if ((dirtied || page_mkwrite) && mapping) { 2425 /* 2426 * Some device drivers do not set page.mapping 2427 * but still dirty their pages 2428 */ 2429 balance_dirty_pages_ratelimited(mapping); 2430 } 2431 2432 if (!page_mkwrite) 2433 file_update_time(vma->vm_file); 2434 } 2435 2436 /* 2437 * Handle write page faults for pages that can be reused in the current vma 2438 * 2439 * This can happen either due to the mapping being with the VM_SHARED flag, 2440 * or due to us being the last reference standing to the page. In either 2441 * case, all we need to do here is to mark the page as writable and update 2442 * any related book-keeping. 2443 */ 2444 static inline void wp_page_reuse(struct vm_fault *vmf) 2445 __releases(vmf->ptl) 2446 { 2447 struct vm_area_struct *vma = vmf->vma; 2448 struct page *page = vmf->page; 2449 pte_t entry; 2450 /* 2451 * Clear the pages cpupid information as the existing 2452 * information potentially belongs to a now completely 2453 * unrelated process. 2454 */ 2455 if (page) 2456 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2457 2458 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2459 entry = pte_mkyoung(vmf->orig_pte); 2460 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2461 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2462 update_mmu_cache(vma, vmf->address, vmf->pte); 2463 pte_unmap_unlock(vmf->pte, vmf->ptl); 2464 } 2465 2466 /* 2467 * Handle the case of a page which we actually need to copy to a new page. 2468 * 2469 * Called with mmap_sem locked and the old page referenced, but 2470 * without the ptl held. 2471 * 2472 * High level logic flow: 2473 * 2474 * - Allocate a page, copy the content of the old page to the new one. 2475 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2476 * - Take the PTL. If the pte changed, bail out and release the allocated page 2477 * - If the pte is still the way we remember it, update the page table and all 2478 * relevant references. This includes dropping the reference the page-table 2479 * held to the old page, as well as updating the rmap. 2480 * - In any case, unlock the PTL and drop the reference we took to the old page. 2481 */ 2482 static int wp_page_copy(struct vm_fault *vmf) 2483 { 2484 struct vm_area_struct *vma = vmf->vma; 2485 struct mm_struct *mm = vma->vm_mm; 2486 struct page *old_page = vmf->page; 2487 struct page *new_page = NULL; 2488 pte_t entry; 2489 int page_copied = 0; 2490 const unsigned long mmun_start = vmf->address & PAGE_MASK; 2491 const unsigned long mmun_end = mmun_start + PAGE_SIZE; 2492 struct mem_cgroup *memcg; 2493 2494 if (unlikely(anon_vma_prepare(vma))) 2495 goto oom; 2496 2497 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2498 new_page = alloc_zeroed_user_highpage_movable(vma, 2499 vmf->address); 2500 if (!new_page) 2501 goto oom; 2502 } else { 2503 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2504 vmf->address); 2505 if (!new_page) 2506 goto oom; 2507 cow_user_page(new_page, old_page, vmf->address, vma); 2508 } 2509 2510 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) 2511 goto oom_free_new; 2512 2513 __SetPageUptodate(new_page); 2514 2515 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2516 2517 /* 2518 * Re-check the pte - we dropped the lock 2519 */ 2520 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2521 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2522 if (old_page) { 2523 if (!PageAnon(old_page)) { 2524 dec_mm_counter_fast(mm, 2525 mm_counter_file(old_page)); 2526 inc_mm_counter_fast(mm, MM_ANONPAGES); 2527 } 2528 } else { 2529 inc_mm_counter_fast(mm, MM_ANONPAGES); 2530 } 2531 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2532 entry = mk_pte(new_page, vma->vm_page_prot); 2533 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2534 /* 2535 * Clear the pte entry and flush it first, before updating the 2536 * pte with the new entry. This will avoid a race condition 2537 * seen in the presence of one thread doing SMC and another 2538 * thread doing COW. 2539 */ 2540 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2541 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2542 mem_cgroup_commit_charge(new_page, memcg, false, false); 2543 lru_cache_add_active_or_unevictable(new_page, vma); 2544 /* 2545 * We call the notify macro here because, when using secondary 2546 * mmu page tables (such as kvm shadow page tables), we want the 2547 * new page to be mapped directly into the secondary page table. 2548 */ 2549 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2550 update_mmu_cache(vma, vmf->address, vmf->pte); 2551 if (old_page) { 2552 /* 2553 * Only after switching the pte to the new page may 2554 * we remove the mapcount here. Otherwise another 2555 * process may come and find the rmap count decremented 2556 * before the pte is switched to the new page, and 2557 * "reuse" the old page writing into it while our pte 2558 * here still points into it and can be read by other 2559 * threads. 2560 * 2561 * The critical issue is to order this 2562 * page_remove_rmap with the ptp_clear_flush above. 2563 * Those stores are ordered by (if nothing else,) 2564 * the barrier present in the atomic_add_negative 2565 * in page_remove_rmap. 2566 * 2567 * Then the TLB flush in ptep_clear_flush ensures that 2568 * no process can access the old page before the 2569 * decremented mapcount is visible. And the old page 2570 * cannot be reused until after the decremented 2571 * mapcount is visible. So transitively, TLBs to 2572 * old page will be flushed before it can be reused. 2573 */ 2574 page_remove_rmap(old_page, false); 2575 } 2576 2577 /* Free the old page.. */ 2578 new_page = old_page; 2579 page_copied = 1; 2580 } else { 2581 mem_cgroup_cancel_charge(new_page, memcg, false); 2582 } 2583 2584 if (new_page) 2585 put_page(new_page); 2586 2587 pte_unmap_unlock(vmf->pte, vmf->ptl); 2588 /* 2589 * No need to double call mmu_notifier->invalidate_range() callback as 2590 * the above ptep_clear_flush_notify() did already call it. 2591 */ 2592 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end); 2593 if (old_page) { 2594 /* 2595 * Don't let another task, with possibly unlocked vma, 2596 * keep the mlocked page. 2597 */ 2598 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2599 lock_page(old_page); /* LRU manipulation */ 2600 if (PageMlocked(old_page)) 2601 munlock_vma_page(old_page); 2602 unlock_page(old_page); 2603 } 2604 put_page(old_page); 2605 } 2606 return page_copied ? VM_FAULT_WRITE : 0; 2607 oom_free_new: 2608 put_page(new_page); 2609 oom: 2610 if (old_page) 2611 put_page(old_page); 2612 return VM_FAULT_OOM; 2613 } 2614 2615 /** 2616 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2617 * writeable once the page is prepared 2618 * 2619 * @vmf: structure describing the fault 2620 * 2621 * This function handles all that is needed to finish a write page fault in a 2622 * shared mapping due to PTE being read-only once the mapped page is prepared. 2623 * It handles locking of PTE and modifying it. The function returns 2624 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE 2625 * lock. 2626 * 2627 * The function expects the page to be locked or other protection against 2628 * concurrent faults / writeback (such as DAX radix tree locks). 2629 */ 2630 int finish_mkwrite_fault(struct vm_fault *vmf) 2631 { 2632 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2633 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2634 &vmf->ptl); 2635 /* 2636 * We might have raced with another page fault while we released the 2637 * pte_offset_map_lock. 2638 */ 2639 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2640 pte_unmap_unlock(vmf->pte, vmf->ptl); 2641 return VM_FAULT_NOPAGE; 2642 } 2643 wp_page_reuse(vmf); 2644 return 0; 2645 } 2646 2647 /* 2648 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2649 * mapping 2650 */ 2651 static int wp_pfn_shared(struct vm_fault *vmf) 2652 { 2653 struct vm_area_struct *vma = vmf->vma; 2654 2655 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2656 int ret; 2657 2658 pte_unmap_unlock(vmf->pte, vmf->ptl); 2659 vmf->flags |= FAULT_FLAG_MKWRITE; 2660 ret = vma->vm_ops->pfn_mkwrite(vmf); 2661 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2662 return ret; 2663 return finish_mkwrite_fault(vmf); 2664 } 2665 wp_page_reuse(vmf); 2666 return VM_FAULT_WRITE; 2667 } 2668 2669 static int wp_page_shared(struct vm_fault *vmf) 2670 __releases(vmf->ptl) 2671 { 2672 struct vm_area_struct *vma = vmf->vma; 2673 2674 get_page(vmf->page); 2675 2676 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2677 int tmp; 2678 2679 pte_unmap_unlock(vmf->pte, vmf->ptl); 2680 tmp = do_page_mkwrite(vmf); 2681 if (unlikely(!tmp || (tmp & 2682 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2683 put_page(vmf->page); 2684 return tmp; 2685 } 2686 tmp = finish_mkwrite_fault(vmf); 2687 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2688 unlock_page(vmf->page); 2689 put_page(vmf->page); 2690 return tmp; 2691 } 2692 } else { 2693 wp_page_reuse(vmf); 2694 lock_page(vmf->page); 2695 } 2696 fault_dirty_shared_page(vma, vmf->page); 2697 put_page(vmf->page); 2698 2699 return VM_FAULT_WRITE; 2700 } 2701 2702 /* 2703 * This routine handles present pages, when users try to write 2704 * to a shared page. It is done by copying the page to a new address 2705 * and decrementing the shared-page counter for the old page. 2706 * 2707 * Note that this routine assumes that the protection checks have been 2708 * done by the caller (the low-level page fault routine in most cases). 2709 * Thus we can safely just mark it writable once we've done any necessary 2710 * COW. 2711 * 2712 * We also mark the page dirty at this point even though the page will 2713 * change only once the write actually happens. This avoids a few races, 2714 * and potentially makes it more efficient. 2715 * 2716 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2717 * but allow concurrent faults), with pte both mapped and locked. 2718 * We return with mmap_sem still held, but pte unmapped and unlocked. 2719 */ 2720 static int do_wp_page(struct vm_fault *vmf) 2721 __releases(vmf->ptl) 2722 { 2723 struct vm_area_struct *vma = vmf->vma; 2724 2725 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2726 if (!vmf->page) { 2727 /* 2728 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2729 * VM_PFNMAP VMA. 2730 * 2731 * We should not cow pages in a shared writeable mapping. 2732 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2733 */ 2734 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2735 (VM_WRITE|VM_SHARED)) 2736 return wp_pfn_shared(vmf); 2737 2738 pte_unmap_unlock(vmf->pte, vmf->ptl); 2739 return wp_page_copy(vmf); 2740 } 2741 2742 /* 2743 * Take out anonymous pages first, anonymous shared vmas are 2744 * not dirty accountable. 2745 */ 2746 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { 2747 int total_map_swapcount; 2748 if (!trylock_page(vmf->page)) { 2749 get_page(vmf->page); 2750 pte_unmap_unlock(vmf->pte, vmf->ptl); 2751 lock_page(vmf->page); 2752 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2753 vmf->address, &vmf->ptl); 2754 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2755 unlock_page(vmf->page); 2756 pte_unmap_unlock(vmf->pte, vmf->ptl); 2757 put_page(vmf->page); 2758 return 0; 2759 } 2760 put_page(vmf->page); 2761 } 2762 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2763 if (total_map_swapcount == 1) { 2764 /* 2765 * The page is all ours. Move it to 2766 * our anon_vma so the rmap code will 2767 * not search our parent or siblings. 2768 * Protected against the rmap code by 2769 * the page lock. 2770 */ 2771 page_move_anon_rmap(vmf->page, vma); 2772 } 2773 unlock_page(vmf->page); 2774 wp_page_reuse(vmf); 2775 return VM_FAULT_WRITE; 2776 } 2777 unlock_page(vmf->page); 2778 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2779 (VM_WRITE|VM_SHARED))) { 2780 return wp_page_shared(vmf); 2781 } 2782 2783 /* 2784 * Ok, we need to copy. Oh, well.. 2785 */ 2786 get_page(vmf->page); 2787 2788 pte_unmap_unlock(vmf->pte, vmf->ptl); 2789 return wp_page_copy(vmf); 2790 } 2791 2792 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2793 unsigned long start_addr, unsigned long end_addr, 2794 struct zap_details *details) 2795 { 2796 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2797 } 2798 2799 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2800 struct zap_details *details) 2801 { 2802 struct vm_area_struct *vma; 2803 pgoff_t vba, vea, zba, zea; 2804 2805 vma_interval_tree_foreach(vma, root, 2806 details->first_index, details->last_index) { 2807 2808 vba = vma->vm_pgoff; 2809 vea = vba + vma_pages(vma) - 1; 2810 zba = details->first_index; 2811 if (zba < vba) 2812 zba = vba; 2813 zea = details->last_index; 2814 if (zea > vea) 2815 zea = vea; 2816 2817 unmap_mapping_range_vma(vma, 2818 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2819 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2820 details); 2821 } 2822 } 2823 2824 /** 2825 * unmap_mapping_pages() - Unmap pages from processes. 2826 * @mapping: The address space containing pages to be unmapped. 2827 * @start: Index of first page to be unmapped. 2828 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2829 * @even_cows: Whether to unmap even private COWed pages. 2830 * 2831 * Unmap the pages in this address space from any userspace process which 2832 * has them mmaped. Generally, you want to remove COWed pages as well when 2833 * a file is being truncated, but not when invalidating pages from the page 2834 * cache. 2835 */ 2836 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2837 pgoff_t nr, bool even_cows) 2838 { 2839 struct zap_details details = { }; 2840 2841 details.check_mapping = even_cows ? NULL : mapping; 2842 details.first_index = start; 2843 details.last_index = start + nr - 1; 2844 if (details.last_index < details.first_index) 2845 details.last_index = ULONG_MAX; 2846 2847 i_mmap_lock_write(mapping); 2848 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2849 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2850 i_mmap_unlock_write(mapping); 2851 } 2852 2853 /** 2854 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2855 * address_space corresponding to the specified byte range in the underlying 2856 * file. 2857 * 2858 * @mapping: the address space containing mmaps to be unmapped. 2859 * @holebegin: byte in first page to unmap, relative to the start of 2860 * the underlying file. This will be rounded down to a PAGE_SIZE 2861 * boundary. Note that this is different from truncate_pagecache(), which 2862 * must keep the partial page. In contrast, we must get rid of 2863 * partial pages. 2864 * @holelen: size of prospective hole in bytes. This will be rounded 2865 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2866 * end of the file. 2867 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2868 * but 0 when invalidating pagecache, don't throw away private data. 2869 */ 2870 void unmap_mapping_range(struct address_space *mapping, 2871 loff_t const holebegin, loff_t const holelen, int even_cows) 2872 { 2873 pgoff_t hba = holebegin >> PAGE_SHIFT; 2874 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2875 2876 /* Check for overflow. */ 2877 if (sizeof(holelen) > sizeof(hlen)) { 2878 long long holeend = 2879 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2880 if (holeend & ~(long long)ULONG_MAX) 2881 hlen = ULONG_MAX - hba + 1; 2882 } 2883 2884 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2885 } 2886 EXPORT_SYMBOL(unmap_mapping_range); 2887 2888 /* 2889 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2890 * but allow concurrent faults), and pte mapped but not yet locked. 2891 * We return with pte unmapped and unlocked. 2892 * 2893 * We return with the mmap_sem locked or unlocked in the same cases 2894 * as does filemap_fault(). 2895 */ 2896 int do_swap_page(struct vm_fault *vmf) 2897 { 2898 struct vm_area_struct *vma = vmf->vma; 2899 struct page *page = NULL, *swapcache; 2900 struct mem_cgroup *memcg; 2901 swp_entry_t entry; 2902 pte_t pte; 2903 int locked; 2904 int exclusive = 0; 2905 int ret = 0; 2906 2907 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2908 goto out; 2909 2910 entry = pte_to_swp_entry(vmf->orig_pte); 2911 if (unlikely(non_swap_entry(entry))) { 2912 if (is_migration_entry(entry)) { 2913 migration_entry_wait(vma->vm_mm, vmf->pmd, 2914 vmf->address); 2915 } else if (is_device_private_entry(entry)) { 2916 /* 2917 * For un-addressable device memory we call the pgmap 2918 * fault handler callback. The callback must migrate 2919 * the page back to some CPU accessible page. 2920 */ 2921 ret = device_private_entry_fault(vma, vmf->address, entry, 2922 vmf->flags, vmf->pmd); 2923 } else if (is_hwpoison_entry(entry)) { 2924 ret = VM_FAULT_HWPOISON; 2925 } else { 2926 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2927 ret = VM_FAULT_SIGBUS; 2928 } 2929 goto out; 2930 } 2931 2932 2933 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2934 page = lookup_swap_cache(entry, vma, vmf->address); 2935 swapcache = page; 2936 2937 if (!page) { 2938 struct swap_info_struct *si = swp_swap_info(entry); 2939 2940 if (si->flags & SWP_SYNCHRONOUS_IO && 2941 __swap_count(si, entry) == 1) { 2942 /* skip swapcache */ 2943 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2944 vmf->address); 2945 if (page) { 2946 __SetPageLocked(page); 2947 __SetPageSwapBacked(page); 2948 set_page_private(page, entry.val); 2949 lru_cache_add_anon(page); 2950 swap_readpage(page, true); 2951 } 2952 } else { 2953 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2954 vmf); 2955 swapcache = page; 2956 } 2957 2958 if (!page) { 2959 /* 2960 * Back out if somebody else faulted in this pte 2961 * while we released the pte lock. 2962 */ 2963 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2964 vmf->address, &vmf->ptl); 2965 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2966 ret = VM_FAULT_OOM; 2967 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2968 goto unlock; 2969 } 2970 2971 /* Had to read the page from swap area: Major fault */ 2972 ret = VM_FAULT_MAJOR; 2973 count_vm_event(PGMAJFAULT); 2974 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2975 } else if (PageHWPoison(page)) { 2976 /* 2977 * hwpoisoned dirty swapcache pages are kept for killing 2978 * owner processes (which may be unknown at hwpoison time) 2979 */ 2980 ret = VM_FAULT_HWPOISON; 2981 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2982 goto out_release; 2983 } 2984 2985 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2986 2987 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2988 if (!locked) { 2989 ret |= VM_FAULT_RETRY; 2990 goto out_release; 2991 } 2992 2993 /* 2994 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2995 * release the swapcache from under us. The page pin, and pte_same 2996 * test below, are not enough to exclude that. Even if it is still 2997 * swapcache, we need to check that the page's swap has not changed. 2998 */ 2999 if (unlikely((!PageSwapCache(page) || 3000 page_private(page) != entry.val)) && swapcache) 3001 goto out_page; 3002 3003 page = ksm_might_need_to_copy(page, vma, vmf->address); 3004 if (unlikely(!page)) { 3005 ret = VM_FAULT_OOM; 3006 page = swapcache; 3007 goto out_page; 3008 } 3009 3010 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 3011 &memcg, false)) { 3012 ret = VM_FAULT_OOM; 3013 goto out_page; 3014 } 3015 3016 /* 3017 * Back out if somebody else already faulted in this pte. 3018 */ 3019 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3020 &vmf->ptl); 3021 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3022 goto out_nomap; 3023 3024 if (unlikely(!PageUptodate(page))) { 3025 ret = VM_FAULT_SIGBUS; 3026 goto out_nomap; 3027 } 3028 3029 /* 3030 * The page isn't present yet, go ahead with the fault. 3031 * 3032 * Be careful about the sequence of operations here. 3033 * To get its accounting right, reuse_swap_page() must be called 3034 * while the page is counted on swap but not yet in mapcount i.e. 3035 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3036 * must be called after the swap_free(), or it will never succeed. 3037 */ 3038 3039 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3040 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3041 pte = mk_pte(page, vma->vm_page_prot); 3042 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3043 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3044 vmf->flags &= ~FAULT_FLAG_WRITE; 3045 ret |= VM_FAULT_WRITE; 3046 exclusive = RMAP_EXCLUSIVE; 3047 } 3048 flush_icache_page(vma, page); 3049 if (pte_swp_soft_dirty(vmf->orig_pte)) 3050 pte = pte_mksoft_dirty(pte); 3051 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3052 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3053 vmf->orig_pte = pte; 3054 3055 /* ksm created a completely new copy */ 3056 if (unlikely(page != swapcache && swapcache)) { 3057 page_add_new_anon_rmap(page, vma, vmf->address, false); 3058 mem_cgroup_commit_charge(page, memcg, false, false); 3059 lru_cache_add_active_or_unevictable(page, vma); 3060 } else { 3061 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3062 mem_cgroup_commit_charge(page, memcg, true, false); 3063 activate_page(page); 3064 } 3065 3066 swap_free(entry); 3067 if (mem_cgroup_swap_full(page) || 3068 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3069 try_to_free_swap(page); 3070 unlock_page(page); 3071 if (page != swapcache && swapcache) { 3072 /* 3073 * Hold the lock to avoid the swap entry to be reused 3074 * until we take the PT lock for the pte_same() check 3075 * (to avoid false positives from pte_same). For 3076 * further safety release the lock after the swap_free 3077 * so that the swap count won't change under a 3078 * parallel locked swapcache. 3079 */ 3080 unlock_page(swapcache); 3081 put_page(swapcache); 3082 } 3083 3084 if (vmf->flags & FAULT_FLAG_WRITE) { 3085 ret |= do_wp_page(vmf); 3086 if (ret & VM_FAULT_ERROR) 3087 ret &= VM_FAULT_ERROR; 3088 goto out; 3089 } 3090 3091 /* No need to invalidate - it was non-present before */ 3092 update_mmu_cache(vma, vmf->address, vmf->pte); 3093 unlock: 3094 pte_unmap_unlock(vmf->pte, vmf->ptl); 3095 out: 3096 return ret; 3097 out_nomap: 3098 mem_cgroup_cancel_charge(page, memcg, false); 3099 pte_unmap_unlock(vmf->pte, vmf->ptl); 3100 out_page: 3101 unlock_page(page); 3102 out_release: 3103 put_page(page); 3104 if (page != swapcache && swapcache) { 3105 unlock_page(swapcache); 3106 put_page(swapcache); 3107 } 3108 return ret; 3109 } 3110 3111 /* 3112 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3113 * but allow concurrent faults), and pte mapped but not yet locked. 3114 * We return with mmap_sem still held, but pte unmapped and unlocked. 3115 */ 3116 static int do_anonymous_page(struct vm_fault *vmf) 3117 { 3118 struct vm_area_struct *vma = vmf->vma; 3119 struct mem_cgroup *memcg; 3120 struct page *page; 3121 int ret = 0; 3122 pte_t entry; 3123 3124 /* File mapping without ->vm_ops ? */ 3125 if (vma->vm_flags & VM_SHARED) 3126 return VM_FAULT_SIGBUS; 3127 3128 /* 3129 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3130 * pte_offset_map() on pmds where a huge pmd might be created 3131 * from a different thread. 3132 * 3133 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 3134 * parallel threads are excluded by other means. 3135 * 3136 * Here we only have down_read(mmap_sem). 3137 */ 3138 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address)) 3139 return VM_FAULT_OOM; 3140 3141 /* See the comment in pte_alloc_one_map() */ 3142 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3143 return 0; 3144 3145 /* Use the zero-page for reads */ 3146 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3147 !mm_forbids_zeropage(vma->vm_mm)) { 3148 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3149 vma->vm_page_prot)); 3150 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3151 vmf->address, &vmf->ptl); 3152 if (!pte_none(*vmf->pte)) 3153 goto unlock; 3154 ret = check_stable_address_space(vma->vm_mm); 3155 if (ret) 3156 goto unlock; 3157 /* Deliver the page fault to userland, check inside PT lock */ 3158 if (userfaultfd_missing(vma)) { 3159 pte_unmap_unlock(vmf->pte, vmf->ptl); 3160 return handle_userfault(vmf, VM_UFFD_MISSING); 3161 } 3162 goto setpte; 3163 } 3164 3165 /* Allocate our own private page. */ 3166 if (unlikely(anon_vma_prepare(vma))) 3167 goto oom; 3168 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3169 if (!page) 3170 goto oom; 3171 3172 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 3173 goto oom_free_page; 3174 3175 /* 3176 * The memory barrier inside __SetPageUptodate makes sure that 3177 * preceeding stores to the page contents become visible before 3178 * the set_pte_at() write. 3179 */ 3180 __SetPageUptodate(page); 3181 3182 entry = mk_pte(page, vma->vm_page_prot); 3183 if (vma->vm_flags & VM_WRITE) 3184 entry = pte_mkwrite(pte_mkdirty(entry)); 3185 3186 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3187 &vmf->ptl); 3188 if (!pte_none(*vmf->pte)) 3189 goto release; 3190 3191 ret = check_stable_address_space(vma->vm_mm); 3192 if (ret) 3193 goto release; 3194 3195 /* Deliver the page fault to userland, check inside PT lock */ 3196 if (userfaultfd_missing(vma)) { 3197 pte_unmap_unlock(vmf->pte, vmf->ptl); 3198 mem_cgroup_cancel_charge(page, memcg, false); 3199 put_page(page); 3200 return handle_userfault(vmf, VM_UFFD_MISSING); 3201 } 3202 3203 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3204 page_add_new_anon_rmap(page, vma, vmf->address, false); 3205 mem_cgroup_commit_charge(page, memcg, false, false); 3206 lru_cache_add_active_or_unevictable(page, vma); 3207 setpte: 3208 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3209 3210 /* No need to invalidate - it was non-present before */ 3211 update_mmu_cache(vma, vmf->address, vmf->pte); 3212 unlock: 3213 pte_unmap_unlock(vmf->pte, vmf->ptl); 3214 return ret; 3215 release: 3216 mem_cgroup_cancel_charge(page, memcg, false); 3217 put_page(page); 3218 goto unlock; 3219 oom_free_page: 3220 put_page(page); 3221 oom: 3222 return VM_FAULT_OOM; 3223 } 3224 3225 /* 3226 * The mmap_sem must have been held on entry, and may have been 3227 * released depending on flags and vma->vm_ops->fault() return value. 3228 * See filemap_fault() and __lock_page_retry(). 3229 */ 3230 static int __do_fault(struct vm_fault *vmf) 3231 { 3232 struct vm_area_struct *vma = vmf->vma; 3233 int ret; 3234 3235 ret = vma->vm_ops->fault(vmf); 3236 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3237 VM_FAULT_DONE_COW))) 3238 return ret; 3239 3240 if (unlikely(PageHWPoison(vmf->page))) { 3241 if (ret & VM_FAULT_LOCKED) 3242 unlock_page(vmf->page); 3243 put_page(vmf->page); 3244 vmf->page = NULL; 3245 return VM_FAULT_HWPOISON; 3246 } 3247 3248 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3249 lock_page(vmf->page); 3250 else 3251 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3252 3253 return ret; 3254 } 3255 3256 /* 3257 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3258 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3259 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3260 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3261 */ 3262 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3263 { 3264 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3265 } 3266 3267 static int pte_alloc_one_map(struct vm_fault *vmf) 3268 { 3269 struct vm_area_struct *vma = vmf->vma; 3270 3271 if (!pmd_none(*vmf->pmd)) 3272 goto map_pte; 3273 if (vmf->prealloc_pte) { 3274 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3275 if (unlikely(!pmd_none(*vmf->pmd))) { 3276 spin_unlock(vmf->ptl); 3277 goto map_pte; 3278 } 3279 3280 mm_inc_nr_ptes(vma->vm_mm); 3281 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3282 spin_unlock(vmf->ptl); 3283 vmf->prealloc_pte = NULL; 3284 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) { 3285 return VM_FAULT_OOM; 3286 } 3287 map_pte: 3288 /* 3289 * If a huge pmd materialized under us just retry later. Use 3290 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3291 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3292 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3293 * running immediately after a huge pmd fault in a different thread of 3294 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3295 * All we have to ensure is that it is a regular pmd that we can walk 3296 * with pte_offset_map() and we can do that through an atomic read in 3297 * C, which is what pmd_trans_unstable() provides. 3298 */ 3299 if (pmd_devmap_trans_unstable(vmf->pmd)) 3300 return VM_FAULT_NOPAGE; 3301 3302 /* 3303 * At this point we know that our vmf->pmd points to a page of ptes 3304 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3305 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3306 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3307 * be valid and we will re-check to make sure the vmf->pte isn't 3308 * pte_none() under vmf->ptl protection when we return to 3309 * alloc_set_pte(). 3310 */ 3311 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3312 &vmf->ptl); 3313 return 0; 3314 } 3315 3316 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3317 3318 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3319 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3320 unsigned long haddr) 3321 { 3322 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3323 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3324 return false; 3325 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3326 return false; 3327 return true; 3328 } 3329 3330 static void deposit_prealloc_pte(struct vm_fault *vmf) 3331 { 3332 struct vm_area_struct *vma = vmf->vma; 3333 3334 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3335 /* 3336 * We are going to consume the prealloc table, 3337 * count that as nr_ptes. 3338 */ 3339 mm_inc_nr_ptes(vma->vm_mm); 3340 vmf->prealloc_pte = NULL; 3341 } 3342 3343 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3344 { 3345 struct vm_area_struct *vma = vmf->vma; 3346 bool write = vmf->flags & FAULT_FLAG_WRITE; 3347 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3348 pmd_t entry; 3349 int i, ret; 3350 3351 if (!transhuge_vma_suitable(vma, haddr)) 3352 return VM_FAULT_FALLBACK; 3353 3354 ret = VM_FAULT_FALLBACK; 3355 page = compound_head(page); 3356 3357 /* 3358 * Archs like ppc64 need additonal space to store information 3359 * related to pte entry. Use the preallocated table for that. 3360 */ 3361 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3362 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address); 3363 if (!vmf->prealloc_pte) 3364 return VM_FAULT_OOM; 3365 smp_wmb(); /* See comment in __pte_alloc() */ 3366 } 3367 3368 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3369 if (unlikely(!pmd_none(*vmf->pmd))) 3370 goto out; 3371 3372 for (i = 0; i < HPAGE_PMD_NR; i++) 3373 flush_icache_page(vma, page + i); 3374 3375 entry = mk_huge_pmd(page, vma->vm_page_prot); 3376 if (write) 3377 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3378 3379 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR); 3380 page_add_file_rmap(page, true); 3381 /* 3382 * deposit and withdraw with pmd lock held 3383 */ 3384 if (arch_needs_pgtable_deposit()) 3385 deposit_prealloc_pte(vmf); 3386 3387 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3388 3389 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3390 3391 /* fault is handled */ 3392 ret = 0; 3393 count_vm_event(THP_FILE_MAPPED); 3394 out: 3395 spin_unlock(vmf->ptl); 3396 return ret; 3397 } 3398 #else 3399 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3400 { 3401 BUILD_BUG(); 3402 return 0; 3403 } 3404 #endif 3405 3406 /** 3407 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3408 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3409 * 3410 * @vmf: fault environment 3411 * @memcg: memcg to charge page (only for private mappings) 3412 * @page: page to map 3413 * 3414 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3415 * return. 3416 * 3417 * Target users are page handler itself and implementations of 3418 * vm_ops->map_pages. 3419 */ 3420 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3421 struct page *page) 3422 { 3423 struct vm_area_struct *vma = vmf->vma; 3424 bool write = vmf->flags & FAULT_FLAG_WRITE; 3425 pte_t entry; 3426 int ret; 3427 3428 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3429 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3430 /* THP on COW? */ 3431 VM_BUG_ON_PAGE(memcg, page); 3432 3433 ret = do_set_pmd(vmf, page); 3434 if (ret != VM_FAULT_FALLBACK) 3435 return ret; 3436 } 3437 3438 if (!vmf->pte) { 3439 ret = pte_alloc_one_map(vmf); 3440 if (ret) 3441 return ret; 3442 } 3443 3444 /* Re-check under ptl */ 3445 if (unlikely(!pte_none(*vmf->pte))) 3446 return VM_FAULT_NOPAGE; 3447 3448 flush_icache_page(vma, page); 3449 entry = mk_pte(page, vma->vm_page_prot); 3450 if (write) 3451 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3452 /* copy-on-write page */ 3453 if (write && !(vma->vm_flags & VM_SHARED)) { 3454 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3455 page_add_new_anon_rmap(page, vma, vmf->address, false); 3456 mem_cgroup_commit_charge(page, memcg, false, false); 3457 lru_cache_add_active_or_unevictable(page, vma); 3458 } else { 3459 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3460 page_add_file_rmap(page, false); 3461 } 3462 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3463 3464 /* no need to invalidate: a not-present page won't be cached */ 3465 update_mmu_cache(vma, vmf->address, vmf->pte); 3466 3467 return 0; 3468 } 3469 3470 3471 /** 3472 * finish_fault - finish page fault once we have prepared the page to fault 3473 * 3474 * @vmf: structure describing the fault 3475 * 3476 * This function handles all that is needed to finish a page fault once the 3477 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3478 * given page, adds reverse page mapping, handles memcg charges and LRU 3479 * addition. The function returns 0 on success, VM_FAULT_ code in case of 3480 * error. 3481 * 3482 * The function expects the page to be locked and on success it consumes a 3483 * reference of a page being mapped (for the PTE which maps it). 3484 */ 3485 int finish_fault(struct vm_fault *vmf) 3486 { 3487 struct page *page; 3488 int ret = 0; 3489 3490 /* Did we COW the page? */ 3491 if ((vmf->flags & FAULT_FLAG_WRITE) && 3492 !(vmf->vma->vm_flags & VM_SHARED)) 3493 page = vmf->cow_page; 3494 else 3495 page = vmf->page; 3496 3497 /* 3498 * check even for read faults because we might have lost our CoWed 3499 * page 3500 */ 3501 if (!(vmf->vma->vm_flags & VM_SHARED)) 3502 ret = check_stable_address_space(vmf->vma->vm_mm); 3503 if (!ret) 3504 ret = alloc_set_pte(vmf, vmf->memcg, page); 3505 if (vmf->pte) 3506 pte_unmap_unlock(vmf->pte, vmf->ptl); 3507 return ret; 3508 } 3509 3510 static unsigned long fault_around_bytes __read_mostly = 3511 rounddown_pow_of_two(65536); 3512 3513 #ifdef CONFIG_DEBUG_FS 3514 static int fault_around_bytes_get(void *data, u64 *val) 3515 { 3516 *val = fault_around_bytes; 3517 return 0; 3518 } 3519 3520 /* 3521 * fault_around_bytes must be rounded down to the nearest page order as it's 3522 * what do_fault_around() expects to see. 3523 */ 3524 static int fault_around_bytes_set(void *data, u64 val) 3525 { 3526 if (val / PAGE_SIZE > PTRS_PER_PTE) 3527 return -EINVAL; 3528 if (val > PAGE_SIZE) 3529 fault_around_bytes = rounddown_pow_of_two(val); 3530 else 3531 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3532 return 0; 3533 } 3534 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3535 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3536 3537 static int __init fault_around_debugfs(void) 3538 { 3539 void *ret; 3540 3541 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3542 &fault_around_bytes_fops); 3543 if (!ret) 3544 pr_warn("Failed to create fault_around_bytes in debugfs"); 3545 return 0; 3546 } 3547 late_initcall(fault_around_debugfs); 3548 #endif 3549 3550 /* 3551 * do_fault_around() tries to map few pages around the fault address. The hope 3552 * is that the pages will be needed soon and this will lower the number of 3553 * faults to handle. 3554 * 3555 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3556 * not ready to be mapped: not up-to-date, locked, etc. 3557 * 3558 * This function is called with the page table lock taken. In the split ptlock 3559 * case the page table lock only protects only those entries which belong to 3560 * the page table corresponding to the fault address. 3561 * 3562 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3563 * only once. 3564 * 3565 * fault_around_bytes defines how many bytes we'll try to map. 3566 * do_fault_around() expects it to be set to a power of two less than or equal 3567 * to PTRS_PER_PTE. 3568 * 3569 * The virtual address of the area that we map is naturally aligned to 3570 * fault_around_bytes rounded down to the machine page size 3571 * (and therefore to page order). This way it's easier to guarantee 3572 * that we don't cross page table boundaries. 3573 */ 3574 static int do_fault_around(struct vm_fault *vmf) 3575 { 3576 unsigned long address = vmf->address, nr_pages, mask; 3577 pgoff_t start_pgoff = vmf->pgoff; 3578 pgoff_t end_pgoff; 3579 int off, ret = 0; 3580 3581 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3582 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3583 3584 vmf->address = max(address & mask, vmf->vma->vm_start); 3585 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3586 start_pgoff -= off; 3587 3588 /* 3589 * end_pgoff is either the end of the page table, the end of 3590 * the vma or nr_pages from start_pgoff, depending what is nearest. 3591 */ 3592 end_pgoff = start_pgoff - 3593 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3594 PTRS_PER_PTE - 1; 3595 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3596 start_pgoff + nr_pages - 1); 3597 3598 if (pmd_none(*vmf->pmd)) { 3599 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm, 3600 vmf->address); 3601 if (!vmf->prealloc_pte) 3602 goto out; 3603 smp_wmb(); /* See comment in __pte_alloc() */ 3604 } 3605 3606 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3607 3608 /* Huge page is mapped? Page fault is solved */ 3609 if (pmd_trans_huge(*vmf->pmd)) { 3610 ret = VM_FAULT_NOPAGE; 3611 goto out; 3612 } 3613 3614 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3615 if (!vmf->pte) 3616 goto out; 3617 3618 /* check if the page fault is solved */ 3619 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3620 if (!pte_none(*vmf->pte)) 3621 ret = VM_FAULT_NOPAGE; 3622 pte_unmap_unlock(vmf->pte, vmf->ptl); 3623 out: 3624 vmf->address = address; 3625 vmf->pte = NULL; 3626 return ret; 3627 } 3628 3629 static int do_read_fault(struct vm_fault *vmf) 3630 { 3631 struct vm_area_struct *vma = vmf->vma; 3632 int ret = 0; 3633 3634 /* 3635 * Let's call ->map_pages() first and use ->fault() as fallback 3636 * if page by the offset is not ready to be mapped (cold cache or 3637 * something). 3638 */ 3639 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3640 ret = do_fault_around(vmf); 3641 if (ret) 3642 return ret; 3643 } 3644 3645 ret = __do_fault(vmf); 3646 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3647 return ret; 3648 3649 ret |= finish_fault(vmf); 3650 unlock_page(vmf->page); 3651 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3652 put_page(vmf->page); 3653 return ret; 3654 } 3655 3656 static int do_cow_fault(struct vm_fault *vmf) 3657 { 3658 struct vm_area_struct *vma = vmf->vma; 3659 int ret; 3660 3661 if (unlikely(anon_vma_prepare(vma))) 3662 return VM_FAULT_OOM; 3663 3664 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3665 if (!vmf->cow_page) 3666 return VM_FAULT_OOM; 3667 3668 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3669 &vmf->memcg, false)) { 3670 put_page(vmf->cow_page); 3671 return VM_FAULT_OOM; 3672 } 3673 3674 ret = __do_fault(vmf); 3675 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3676 goto uncharge_out; 3677 if (ret & VM_FAULT_DONE_COW) 3678 return ret; 3679 3680 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3681 __SetPageUptodate(vmf->cow_page); 3682 3683 ret |= finish_fault(vmf); 3684 unlock_page(vmf->page); 3685 put_page(vmf->page); 3686 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3687 goto uncharge_out; 3688 return ret; 3689 uncharge_out: 3690 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3691 put_page(vmf->cow_page); 3692 return ret; 3693 } 3694 3695 static int do_shared_fault(struct vm_fault *vmf) 3696 { 3697 struct vm_area_struct *vma = vmf->vma; 3698 int ret, tmp; 3699 3700 ret = __do_fault(vmf); 3701 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3702 return ret; 3703 3704 /* 3705 * Check if the backing address space wants to know that the page is 3706 * about to become writable 3707 */ 3708 if (vma->vm_ops->page_mkwrite) { 3709 unlock_page(vmf->page); 3710 tmp = do_page_mkwrite(vmf); 3711 if (unlikely(!tmp || 3712 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3713 put_page(vmf->page); 3714 return tmp; 3715 } 3716 } 3717 3718 ret |= finish_fault(vmf); 3719 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3720 VM_FAULT_RETRY))) { 3721 unlock_page(vmf->page); 3722 put_page(vmf->page); 3723 return ret; 3724 } 3725 3726 fault_dirty_shared_page(vma, vmf->page); 3727 return ret; 3728 } 3729 3730 /* 3731 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3732 * but allow concurrent faults). 3733 * The mmap_sem may have been released depending on flags and our 3734 * return value. See filemap_fault() and __lock_page_or_retry(). 3735 */ 3736 static int do_fault(struct vm_fault *vmf) 3737 { 3738 struct vm_area_struct *vma = vmf->vma; 3739 int ret; 3740 3741 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3742 if (!vma->vm_ops->fault) 3743 ret = VM_FAULT_SIGBUS; 3744 else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3745 ret = do_read_fault(vmf); 3746 else if (!(vma->vm_flags & VM_SHARED)) 3747 ret = do_cow_fault(vmf); 3748 else 3749 ret = do_shared_fault(vmf); 3750 3751 /* preallocated pagetable is unused: free it */ 3752 if (vmf->prealloc_pte) { 3753 pte_free(vma->vm_mm, vmf->prealloc_pte); 3754 vmf->prealloc_pte = NULL; 3755 } 3756 return ret; 3757 } 3758 3759 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3760 unsigned long addr, int page_nid, 3761 int *flags) 3762 { 3763 get_page(page); 3764 3765 count_vm_numa_event(NUMA_HINT_FAULTS); 3766 if (page_nid == numa_node_id()) { 3767 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3768 *flags |= TNF_FAULT_LOCAL; 3769 } 3770 3771 return mpol_misplaced(page, vma, addr); 3772 } 3773 3774 static int do_numa_page(struct vm_fault *vmf) 3775 { 3776 struct vm_area_struct *vma = vmf->vma; 3777 struct page *page = NULL; 3778 int page_nid = -1; 3779 int last_cpupid; 3780 int target_nid; 3781 bool migrated = false; 3782 pte_t pte; 3783 bool was_writable = pte_savedwrite(vmf->orig_pte); 3784 int flags = 0; 3785 3786 /* 3787 * The "pte" at this point cannot be used safely without 3788 * validation through pte_unmap_same(). It's of NUMA type but 3789 * the pfn may be screwed if the read is non atomic. 3790 */ 3791 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3792 spin_lock(vmf->ptl); 3793 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3794 pte_unmap_unlock(vmf->pte, vmf->ptl); 3795 goto out; 3796 } 3797 3798 /* 3799 * Make it present again, Depending on how arch implementes non 3800 * accessible ptes, some can allow access by kernel mode. 3801 */ 3802 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte); 3803 pte = pte_modify(pte, vma->vm_page_prot); 3804 pte = pte_mkyoung(pte); 3805 if (was_writable) 3806 pte = pte_mkwrite(pte); 3807 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte); 3808 update_mmu_cache(vma, vmf->address, vmf->pte); 3809 3810 page = vm_normal_page(vma, vmf->address, pte); 3811 if (!page) { 3812 pte_unmap_unlock(vmf->pte, vmf->ptl); 3813 return 0; 3814 } 3815 3816 /* TODO: handle PTE-mapped THP */ 3817 if (PageCompound(page)) { 3818 pte_unmap_unlock(vmf->pte, vmf->ptl); 3819 return 0; 3820 } 3821 3822 /* 3823 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3824 * much anyway since they can be in shared cache state. This misses 3825 * the case where a mapping is writable but the process never writes 3826 * to it but pte_write gets cleared during protection updates and 3827 * pte_dirty has unpredictable behaviour between PTE scan updates, 3828 * background writeback, dirty balancing and application behaviour. 3829 */ 3830 if (!pte_write(pte)) 3831 flags |= TNF_NO_GROUP; 3832 3833 /* 3834 * Flag if the page is shared between multiple address spaces. This 3835 * is later used when determining whether to group tasks together 3836 */ 3837 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3838 flags |= TNF_SHARED; 3839 3840 last_cpupid = page_cpupid_last(page); 3841 page_nid = page_to_nid(page); 3842 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3843 &flags); 3844 pte_unmap_unlock(vmf->pte, vmf->ptl); 3845 if (target_nid == -1) { 3846 put_page(page); 3847 goto out; 3848 } 3849 3850 /* Migrate to the requested node */ 3851 migrated = migrate_misplaced_page(page, vma, target_nid); 3852 if (migrated) { 3853 page_nid = target_nid; 3854 flags |= TNF_MIGRATED; 3855 } else 3856 flags |= TNF_MIGRATE_FAIL; 3857 3858 out: 3859 if (page_nid != -1) 3860 task_numa_fault(last_cpupid, page_nid, 1, flags); 3861 return 0; 3862 } 3863 3864 static inline int create_huge_pmd(struct vm_fault *vmf) 3865 { 3866 if (vma_is_anonymous(vmf->vma)) 3867 return do_huge_pmd_anonymous_page(vmf); 3868 if (vmf->vma->vm_ops->huge_fault) 3869 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3870 return VM_FAULT_FALLBACK; 3871 } 3872 3873 /* `inline' is required to avoid gcc 4.1.2 build error */ 3874 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3875 { 3876 if (vma_is_anonymous(vmf->vma)) 3877 return do_huge_pmd_wp_page(vmf, orig_pmd); 3878 if (vmf->vma->vm_ops->huge_fault) 3879 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3880 3881 /* COW handled on pte level: split pmd */ 3882 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3883 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3884 3885 return VM_FAULT_FALLBACK; 3886 } 3887 3888 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3889 { 3890 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3891 } 3892 3893 static int create_huge_pud(struct vm_fault *vmf) 3894 { 3895 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3896 /* No support for anonymous transparent PUD pages yet */ 3897 if (vma_is_anonymous(vmf->vma)) 3898 return VM_FAULT_FALLBACK; 3899 if (vmf->vma->vm_ops->huge_fault) 3900 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3901 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3902 return VM_FAULT_FALLBACK; 3903 } 3904 3905 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3906 { 3907 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3908 /* No support for anonymous transparent PUD pages yet */ 3909 if (vma_is_anonymous(vmf->vma)) 3910 return VM_FAULT_FALLBACK; 3911 if (vmf->vma->vm_ops->huge_fault) 3912 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3913 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3914 return VM_FAULT_FALLBACK; 3915 } 3916 3917 /* 3918 * These routines also need to handle stuff like marking pages dirty 3919 * and/or accessed for architectures that don't do it in hardware (most 3920 * RISC architectures). The early dirtying is also good on the i386. 3921 * 3922 * There is also a hook called "update_mmu_cache()" that architectures 3923 * with external mmu caches can use to update those (ie the Sparc or 3924 * PowerPC hashed page tables that act as extended TLBs). 3925 * 3926 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3927 * concurrent faults). 3928 * 3929 * The mmap_sem may have been released depending on flags and our return value. 3930 * See filemap_fault() and __lock_page_or_retry(). 3931 */ 3932 static int handle_pte_fault(struct vm_fault *vmf) 3933 { 3934 pte_t entry; 3935 3936 if (unlikely(pmd_none(*vmf->pmd))) { 3937 /* 3938 * Leave __pte_alloc() until later: because vm_ops->fault may 3939 * want to allocate huge page, and if we expose page table 3940 * for an instant, it will be difficult to retract from 3941 * concurrent faults and from rmap lookups. 3942 */ 3943 vmf->pte = NULL; 3944 } else { 3945 /* See comment in pte_alloc_one_map() */ 3946 if (pmd_devmap_trans_unstable(vmf->pmd)) 3947 return 0; 3948 /* 3949 * A regular pmd is established and it can't morph into a huge 3950 * pmd from under us anymore at this point because we hold the 3951 * mmap_sem read mode and khugepaged takes it in write mode. 3952 * So now it's safe to run pte_offset_map(). 3953 */ 3954 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3955 vmf->orig_pte = *vmf->pte; 3956 3957 /* 3958 * some architectures can have larger ptes than wordsize, 3959 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3960 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3961 * accesses. The code below just needs a consistent view 3962 * for the ifs and we later double check anyway with the 3963 * ptl lock held. So here a barrier will do. 3964 */ 3965 barrier(); 3966 if (pte_none(vmf->orig_pte)) { 3967 pte_unmap(vmf->pte); 3968 vmf->pte = NULL; 3969 } 3970 } 3971 3972 if (!vmf->pte) { 3973 if (vma_is_anonymous(vmf->vma)) 3974 return do_anonymous_page(vmf); 3975 else 3976 return do_fault(vmf); 3977 } 3978 3979 if (!pte_present(vmf->orig_pte)) 3980 return do_swap_page(vmf); 3981 3982 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3983 return do_numa_page(vmf); 3984 3985 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3986 spin_lock(vmf->ptl); 3987 entry = vmf->orig_pte; 3988 if (unlikely(!pte_same(*vmf->pte, entry))) 3989 goto unlock; 3990 if (vmf->flags & FAULT_FLAG_WRITE) { 3991 if (!pte_write(entry)) 3992 return do_wp_page(vmf); 3993 entry = pte_mkdirty(entry); 3994 } 3995 entry = pte_mkyoung(entry); 3996 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3997 vmf->flags & FAULT_FLAG_WRITE)) { 3998 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3999 } else { 4000 /* 4001 * This is needed only for protection faults but the arch code 4002 * is not yet telling us if this is a protection fault or not. 4003 * This still avoids useless tlb flushes for .text page faults 4004 * with threads. 4005 */ 4006 if (vmf->flags & FAULT_FLAG_WRITE) 4007 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4008 } 4009 unlock: 4010 pte_unmap_unlock(vmf->pte, vmf->ptl); 4011 return 0; 4012 } 4013 4014 /* 4015 * By the time we get here, we already hold the mm semaphore 4016 * 4017 * The mmap_sem may have been released depending on flags and our 4018 * return value. See filemap_fault() and __lock_page_or_retry(). 4019 */ 4020 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4021 unsigned int flags) 4022 { 4023 struct vm_fault vmf = { 4024 .vma = vma, 4025 .address = address & PAGE_MASK, 4026 .flags = flags, 4027 .pgoff = linear_page_index(vma, address), 4028 .gfp_mask = __get_fault_gfp_mask(vma), 4029 }; 4030 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4031 struct mm_struct *mm = vma->vm_mm; 4032 pgd_t *pgd; 4033 p4d_t *p4d; 4034 int ret; 4035 4036 pgd = pgd_offset(mm, address); 4037 p4d = p4d_alloc(mm, pgd, address); 4038 if (!p4d) 4039 return VM_FAULT_OOM; 4040 4041 vmf.pud = pud_alloc(mm, p4d, address); 4042 if (!vmf.pud) 4043 return VM_FAULT_OOM; 4044 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) { 4045 ret = create_huge_pud(&vmf); 4046 if (!(ret & VM_FAULT_FALLBACK)) 4047 return ret; 4048 } else { 4049 pud_t orig_pud = *vmf.pud; 4050 4051 barrier(); 4052 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4053 4054 /* NUMA case for anonymous PUDs would go here */ 4055 4056 if (dirty && !pud_write(orig_pud)) { 4057 ret = wp_huge_pud(&vmf, orig_pud); 4058 if (!(ret & VM_FAULT_FALLBACK)) 4059 return ret; 4060 } else { 4061 huge_pud_set_accessed(&vmf, orig_pud); 4062 return 0; 4063 } 4064 } 4065 } 4066 4067 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4068 if (!vmf.pmd) 4069 return VM_FAULT_OOM; 4070 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { 4071 ret = create_huge_pmd(&vmf); 4072 if (!(ret & VM_FAULT_FALLBACK)) 4073 return ret; 4074 } else { 4075 pmd_t orig_pmd = *vmf.pmd; 4076 4077 barrier(); 4078 if (unlikely(is_swap_pmd(orig_pmd))) { 4079 VM_BUG_ON(thp_migration_supported() && 4080 !is_pmd_migration_entry(orig_pmd)); 4081 if (is_pmd_migration_entry(orig_pmd)) 4082 pmd_migration_entry_wait(mm, vmf.pmd); 4083 return 0; 4084 } 4085 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4086 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4087 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4088 4089 if (dirty && !pmd_write(orig_pmd)) { 4090 ret = wp_huge_pmd(&vmf, orig_pmd); 4091 if (!(ret & VM_FAULT_FALLBACK)) 4092 return ret; 4093 } else { 4094 huge_pmd_set_accessed(&vmf, orig_pmd); 4095 return 0; 4096 } 4097 } 4098 } 4099 4100 return handle_pte_fault(&vmf); 4101 } 4102 4103 /* 4104 * By the time we get here, we already hold the mm semaphore 4105 * 4106 * The mmap_sem may have been released depending on flags and our 4107 * return value. See filemap_fault() and __lock_page_or_retry(). 4108 */ 4109 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4110 unsigned int flags) 4111 { 4112 int ret; 4113 4114 __set_current_state(TASK_RUNNING); 4115 4116 count_vm_event(PGFAULT); 4117 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4118 4119 /* do counter updates before entering really critical section. */ 4120 check_sync_rss_stat(current); 4121 4122 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4123 flags & FAULT_FLAG_INSTRUCTION, 4124 flags & FAULT_FLAG_REMOTE)) 4125 return VM_FAULT_SIGSEGV; 4126 4127 /* 4128 * Enable the memcg OOM handling for faults triggered in user 4129 * space. Kernel faults are handled more gracefully. 4130 */ 4131 if (flags & FAULT_FLAG_USER) 4132 mem_cgroup_oom_enable(); 4133 4134 if (unlikely(is_vm_hugetlb_page(vma))) 4135 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4136 else 4137 ret = __handle_mm_fault(vma, address, flags); 4138 4139 if (flags & FAULT_FLAG_USER) { 4140 mem_cgroup_oom_disable(); 4141 /* 4142 * The task may have entered a memcg OOM situation but 4143 * if the allocation error was handled gracefully (no 4144 * VM_FAULT_OOM), there is no need to kill anything. 4145 * Just clean up the OOM state peacefully. 4146 */ 4147 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4148 mem_cgroup_oom_synchronize(false); 4149 } 4150 4151 return ret; 4152 } 4153 EXPORT_SYMBOL_GPL(handle_mm_fault); 4154 4155 #ifndef __PAGETABLE_P4D_FOLDED 4156 /* 4157 * Allocate p4d page table. 4158 * We've already handled the fast-path in-line. 4159 */ 4160 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4161 { 4162 p4d_t *new = p4d_alloc_one(mm, address); 4163 if (!new) 4164 return -ENOMEM; 4165 4166 smp_wmb(); /* See comment in __pte_alloc */ 4167 4168 spin_lock(&mm->page_table_lock); 4169 if (pgd_present(*pgd)) /* Another has populated it */ 4170 p4d_free(mm, new); 4171 else 4172 pgd_populate(mm, pgd, new); 4173 spin_unlock(&mm->page_table_lock); 4174 return 0; 4175 } 4176 #endif /* __PAGETABLE_P4D_FOLDED */ 4177 4178 #ifndef __PAGETABLE_PUD_FOLDED 4179 /* 4180 * Allocate page upper directory. 4181 * We've already handled the fast-path in-line. 4182 */ 4183 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4184 { 4185 pud_t *new = pud_alloc_one(mm, address); 4186 if (!new) 4187 return -ENOMEM; 4188 4189 smp_wmb(); /* See comment in __pte_alloc */ 4190 4191 spin_lock(&mm->page_table_lock); 4192 #ifndef __ARCH_HAS_5LEVEL_HACK 4193 if (!p4d_present(*p4d)) { 4194 mm_inc_nr_puds(mm); 4195 p4d_populate(mm, p4d, new); 4196 } else /* Another has populated it */ 4197 pud_free(mm, new); 4198 #else 4199 if (!pgd_present(*p4d)) { 4200 mm_inc_nr_puds(mm); 4201 pgd_populate(mm, p4d, new); 4202 } else /* Another has populated it */ 4203 pud_free(mm, new); 4204 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4205 spin_unlock(&mm->page_table_lock); 4206 return 0; 4207 } 4208 #endif /* __PAGETABLE_PUD_FOLDED */ 4209 4210 #ifndef __PAGETABLE_PMD_FOLDED 4211 /* 4212 * Allocate page middle directory. 4213 * We've already handled the fast-path in-line. 4214 */ 4215 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4216 { 4217 spinlock_t *ptl; 4218 pmd_t *new = pmd_alloc_one(mm, address); 4219 if (!new) 4220 return -ENOMEM; 4221 4222 smp_wmb(); /* See comment in __pte_alloc */ 4223 4224 ptl = pud_lock(mm, pud); 4225 #ifndef __ARCH_HAS_4LEVEL_HACK 4226 if (!pud_present(*pud)) { 4227 mm_inc_nr_pmds(mm); 4228 pud_populate(mm, pud, new); 4229 } else /* Another has populated it */ 4230 pmd_free(mm, new); 4231 #else 4232 if (!pgd_present(*pud)) { 4233 mm_inc_nr_pmds(mm); 4234 pgd_populate(mm, pud, new); 4235 } else /* Another has populated it */ 4236 pmd_free(mm, new); 4237 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4238 spin_unlock(ptl); 4239 return 0; 4240 } 4241 #endif /* __PAGETABLE_PMD_FOLDED */ 4242 4243 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4244 unsigned long *start, unsigned long *end, 4245 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4246 { 4247 pgd_t *pgd; 4248 p4d_t *p4d; 4249 pud_t *pud; 4250 pmd_t *pmd; 4251 pte_t *ptep; 4252 4253 pgd = pgd_offset(mm, address); 4254 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4255 goto out; 4256 4257 p4d = p4d_offset(pgd, address); 4258 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4259 goto out; 4260 4261 pud = pud_offset(p4d, address); 4262 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4263 goto out; 4264 4265 pmd = pmd_offset(pud, address); 4266 VM_BUG_ON(pmd_trans_huge(*pmd)); 4267 4268 if (pmd_huge(*pmd)) { 4269 if (!pmdpp) 4270 goto out; 4271 4272 if (start && end) { 4273 *start = address & PMD_MASK; 4274 *end = *start + PMD_SIZE; 4275 mmu_notifier_invalidate_range_start(mm, *start, *end); 4276 } 4277 *ptlp = pmd_lock(mm, pmd); 4278 if (pmd_huge(*pmd)) { 4279 *pmdpp = pmd; 4280 return 0; 4281 } 4282 spin_unlock(*ptlp); 4283 if (start && end) 4284 mmu_notifier_invalidate_range_end(mm, *start, *end); 4285 } 4286 4287 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4288 goto out; 4289 4290 if (start && end) { 4291 *start = address & PAGE_MASK; 4292 *end = *start + PAGE_SIZE; 4293 mmu_notifier_invalidate_range_start(mm, *start, *end); 4294 } 4295 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4296 if (!pte_present(*ptep)) 4297 goto unlock; 4298 *ptepp = ptep; 4299 return 0; 4300 unlock: 4301 pte_unmap_unlock(ptep, *ptlp); 4302 if (start && end) 4303 mmu_notifier_invalidate_range_end(mm, *start, *end); 4304 out: 4305 return -EINVAL; 4306 } 4307 4308 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4309 pte_t **ptepp, spinlock_t **ptlp) 4310 { 4311 int res; 4312 4313 /* (void) is needed to make gcc happy */ 4314 (void) __cond_lock(*ptlp, 4315 !(res = __follow_pte_pmd(mm, address, NULL, NULL, 4316 ptepp, NULL, ptlp))); 4317 return res; 4318 } 4319 4320 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4321 unsigned long *start, unsigned long *end, 4322 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4323 { 4324 int res; 4325 4326 /* (void) is needed to make gcc happy */ 4327 (void) __cond_lock(*ptlp, 4328 !(res = __follow_pte_pmd(mm, address, start, end, 4329 ptepp, pmdpp, ptlp))); 4330 return res; 4331 } 4332 EXPORT_SYMBOL(follow_pte_pmd); 4333 4334 /** 4335 * follow_pfn - look up PFN at a user virtual address 4336 * @vma: memory mapping 4337 * @address: user virtual address 4338 * @pfn: location to store found PFN 4339 * 4340 * Only IO mappings and raw PFN mappings are allowed. 4341 * 4342 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4343 */ 4344 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4345 unsigned long *pfn) 4346 { 4347 int ret = -EINVAL; 4348 spinlock_t *ptl; 4349 pte_t *ptep; 4350 4351 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4352 return ret; 4353 4354 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4355 if (ret) 4356 return ret; 4357 *pfn = pte_pfn(*ptep); 4358 pte_unmap_unlock(ptep, ptl); 4359 return 0; 4360 } 4361 EXPORT_SYMBOL(follow_pfn); 4362 4363 #ifdef CONFIG_HAVE_IOREMAP_PROT 4364 int follow_phys(struct vm_area_struct *vma, 4365 unsigned long address, unsigned int flags, 4366 unsigned long *prot, resource_size_t *phys) 4367 { 4368 int ret = -EINVAL; 4369 pte_t *ptep, pte; 4370 spinlock_t *ptl; 4371 4372 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4373 goto out; 4374 4375 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4376 goto out; 4377 pte = *ptep; 4378 4379 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4380 goto unlock; 4381 4382 *prot = pgprot_val(pte_pgprot(pte)); 4383 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4384 4385 ret = 0; 4386 unlock: 4387 pte_unmap_unlock(ptep, ptl); 4388 out: 4389 return ret; 4390 } 4391 4392 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4393 void *buf, int len, int write) 4394 { 4395 resource_size_t phys_addr; 4396 unsigned long prot = 0; 4397 void __iomem *maddr; 4398 int offset = addr & (PAGE_SIZE-1); 4399 4400 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4401 return -EINVAL; 4402 4403 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4404 if (!maddr) 4405 return -ENOMEM; 4406 4407 if (write) 4408 memcpy_toio(maddr + offset, buf, len); 4409 else 4410 memcpy_fromio(buf, maddr + offset, len); 4411 iounmap(maddr); 4412 4413 return len; 4414 } 4415 EXPORT_SYMBOL_GPL(generic_access_phys); 4416 #endif 4417 4418 /* 4419 * Access another process' address space as given in mm. If non-NULL, use the 4420 * given task for page fault accounting. 4421 */ 4422 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4423 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4424 { 4425 struct vm_area_struct *vma; 4426 void *old_buf = buf; 4427 int write = gup_flags & FOLL_WRITE; 4428 4429 down_read(&mm->mmap_sem); 4430 /* ignore errors, just check how much was successfully transferred */ 4431 while (len) { 4432 int bytes, ret, offset; 4433 void *maddr; 4434 struct page *page = NULL; 4435 4436 ret = get_user_pages_remote(tsk, mm, addr, 1, 4437 gup_flags, &page, &vma, NULL); 4438 if (ret <= 0) { 4439 #ifndef CONFIG_HAVE_IOREMAP_PROT 4440 break; 4441 #else 4442 /* 4443 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4444 * we can access using slightly different code. 4445 */ 4446 vma = find_vma(mm, addr); 4447 if (!vma || vma->vm_start > addr) 4448 break; 4449 if (vma->vm_ops && vma->vm_ops->access) 4450 ret = vma->vm_ops->access(vma, addr, buf, 4451 len, write); 4452 if (ret <= 0) 4453 break; 4454 bytes = ret; 4455 #endif 4456 } else { 4457 bytes = len; 4458 offset = addr & (PAGE_SIZE-1); 4459 if (bytes > PAGE_SIZE-offset) 4460 bytes = PAGE_SIZE-offset; 4461 4462 maddr = kmap(page); 4463 if (write) { 4464 copy_to_user_page(vma, page, addr, 4465 maddr + offset, buf, bytes); 4466 set_page_dirty_lock(page); 4467 } else { 4468 copy_from_user_page(vma, page, addr, 4469 buf, maddr + offset, bytes); 4470 } 4471 kunmap(page); 4472 put_page(page); 4473 } 4474 len -= bytes; 4475 buf += bytes; 4476 addr += bytes; 4477 } 4478 up_read(&mm->mmap_sem); 4479 4480 return buf - old_buf; 4481 } 4482 4483 /** 4484 * access_remote_vm - access another process' address space 4485 * @mm: the mm_struct of the target address space 4486 * @addr: start address to access 4487 * @buf: source or destination buffer 4488 * @len: number of bytes to transfer 4489 * @gup_flags: flags modifying lookup behaviour 4490 * 4491 * The caller must hold a reference on @mm. 4492 */ 4493 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4494 void *buf, int len, unsigned int gup_flags) 4495 { 4496 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4497 } 4498 4499 /* 4500 * Access another process' address space. 4501 * Source/target buffer must be kernel space, 4502 * Do not walk the page table directly, use get_user_pages 4503 */ 4504 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4505 void *buf, int len, unsigned int gup_flags) 4506 { 4507 struct mm_struct *mm; 4508 int ret; 4509 4510 mm = get_task_mm(tsk); 4511 if (!mm) 4512 return 0; 4513 4514 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4515 4516 mmput(mm); 4517 4518 return ret; 4519 } 4520 EXPORT_SYMBOL_GPL(access_process_vm); 4521 4522 /* 4523 * Print the name of a VMA. 4524 */ 4525 void print_vma_addr(char *prefix, unsigned long ip) 4526 { 4527 struct mm_struct *mm = current->mm; 4528 struct vm_area_struct *vma; 4529 4530 /* 4531 * we might be running from an atomic context so we cannot sleep 4532 */ 4533 if (!down_read_trylock(&mm->mmap_sem)) 4534 return; 4535 4536 vma = find_vma(mm, ip); 4537 if (vma && vma->vm_file) { 4538 struct file *f = vma->vm_file; 4539 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4540 if (buf) { 4541 char *p; 4542 4543 p = file_path(f, buf, PAGE_SIZE); 4544 if (IS_ERR(p)) 4545 p = "?"; 4546 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4547 vma->vm_start, 4548 vma->vm_end - vma->vm_start); 4549 free_page((unsigned long)buf); 4550 } 4551 } 4552 up_read(&mm->mmap_sem); 4553 } 4554 4555 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4556 void __might_fault(const char *file, int line) 4557 { 4558 /* 4559 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4560 * holding the mmap_sem, this is safe because kernel memory doesn't 4561 * get paged out, therefore we'll never actually fault, and the 4562 * below annotations will generate false positives. 4563 */ 4564 if (uaccess_kernel()) 4565 return; 4566 if (pagefault_disabled()) 4567 return; 4568 __might_sleep(file, line, 0); 4569 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4570 if (current->mm) 4571 might_lock_read(¤t->mm->mmap_sem); 4572 #endif 4573 } 4574 EXPORT_SYMBOL(__might_fault); 4575 #endif 4576 4577 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4578 static void clear_gigantic_page(struct page *page, 4579 unsigned long addr, 4580 unsigned int pages_per_huge_page) 4581 { 4582 int i; 4583 struct page *p = page; 4584 4585 might_sleep(); 4586 for (i = 0; i < pages_per_huge_page; 4587 i++, p = mem_map_next(p, page, i)) { 4588 cond_resched(); 4589 clear_user_highpage(p, addr + i * PAGE_SIZE); 4590 } 4591 } 4592 void clear_huge_page(struct page *page, 4593 unsigned long addr_hint, unsigned int pages_per_huge_page) 4594 { 4595 int i, n, base, l; 4596 unsigned long addr = addr_hint & 4597 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4598 4599 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4600 clear_gigantic_page(page, addr, pages_per_huge_page); 4601 return; 4602 } 4603 4604 /* Clear sub-page to access last to keep its cache lines hot */ 4605 might_sleep(); 4606 n = (addr_hint - addr) / PAGE_SIZE; 4607 if (2 * n <= pages_per_huge_page) { 4608 /* If sub-page to access in first half of huge page */ 4609 base = 0; 4610 l = n; 4611 /* Clear sub-pages at the end of huge page */ 4612 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4613 cond_resched(); 4614 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4615 } 4616 } else { 4617 /* If sub-page to access in second half of huge page */ 4618 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4619 l = pages_per_huge_page - n; 4620 /* Clear sub-pages at the begin of huge page */ 4621 for (i = 0; i < base; i++) { 4622 cond_resched(); 4623 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4624 } 4625 } 4626 /* 4627 * Clear remaining sub-pages in left-right-left-right pattern 4628 * towards the sub-page to access 4629 */ 4630 for (i = 0; i < l; i++) { 4631 int left_idx = base + i; 4632 int right_idx = base + 2 * l - 1 - i; 4633 4634 cond_resched(); 4635 clear_user_highpage(page + left_idx, 4636 addr + left_idx * PAGE_SIZE); 4637 cond_resched(); 4638 clear_user_highpage(page + right_idx, 4639 addr + right_idx * PAGE_SIZE); 4640 } 4641 } 4642 4643 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4644 unsigned long addr, 4645 struct vm_area_struct *vma, 4646 unsigned int pages_per_huge_page) 4647 { 4648 int i; 4649 struct page *dst_base = dst; 4650 struct page *src_base = src; 4651 4652 for (i = 0; i < pages_per_huge_page; ) { 4653 cond_resched(); 4654 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4655 4656 i++; 4657 dst = mem_map_next(dst, dst_base, i); 4658 src = mem_map_next(src, src_base, i); 4659 } 4660 } 4661 4662 void copy_user_huge_page(struct page *dst, struct page *src, 4663 unsigned long addr, struct vm_area_struct *vma, 4664 unsigned int pages_per_huge_page) 4665 { 4666 int i; 4667 4668 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4669 copy_user_gigantic_page(dst, src, addr, vma, 4670 pages_per_huge_page); 4671 return; 4672 } 4673 4674 might_sleep(); 4675 for (i = 0; i < pages_per_huge_page; i++) { 4676 cond_resched(); 4677 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4678 } 4679 } 4680 4681 long copy_huge_page_from_user(struct page *dst_page, 4682 const void __user *usr_src, 4683 unsigned int pages_per_huge_page, 4684 bool allow_pagefault) 4685 { 4686 void *src = (void *)usr_src; 4687 void *page_kaddr; 4688 unsigned long i, rc = 0; 4689 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4690 4691 for (i = 0; i < pages_per_huge_page; i++) { 4692 if (allow_pagefault) 4693 page_kaddr = kmap(dst_page + i); 4694 else 4695 page_kaddr = kmap_atomic(dst_page + i); 4696 rc = copy_from_user(page_kaddr, 4697 (const void __user *)(src + i * PAGE_SIZE), 4698 PAGE_SIZE); 4699 if (allow_pagefault) 4700 kunmap(dst_page + i); 4701 else 4702 kunmap_atomic(page_kaddr); 4703 4704 ret_val -= (PAGE_SIZE - rc); 4705 if (rc) 4706 break; 4707 4708 cond_resched(); 4709 } 4710 return ret_val; 4711 } 4712 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4713 4714 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4715 4716 static struct kmem_cache *page_ptl_cachep; 4717 4718 void __init ptlock_cache_init(void) 4719 { 4720 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4721 SLAB_PANIC, NULL); 4722 } 4723 4724 bool ptlock_alloc(struct page *page) 4725 { 4726 spinlock_t *ptl; 4727 4728 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4729 if (!ptl) 4730 return false; 4731 page->ptl = ptl; 4732 return true; 4733 } 4734 4735 void ptlock_free(struct page *page) 4736 { 4737 kmem_cache_free(page_ptl_cachep, page->ptl); 4738 } 4739 #endif 4740