xref: /linux/mm/memory.c (revision 5a0e3ad6af8660be21ca98a971cd00f331318c05)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67 
68 #include "internal.h"
69 
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74 
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78 
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88 
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91 
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 					1;
101 #else
102 					2;
103 #endif
104 
105 static int __init disable_randmaps(char *s)
106 {
107 	randomize_va_space = 0;
108 	return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111 
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114 
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 	return 0;
122 }
123 core_initcall(init_zero_pfn);
124 
125 
126 #if defined(SPLIT_RSS_COUNTING)
127 
128 void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130 	int i;
131 
132 	for (i = 0; i < NR_MM_COUNTERS; i++) {
133 		if (task->rss_stat.count[i]) {
134 			BUG_ON(!mm);
135 			add_mm_counter(mm, i, task->rss_stat.count[i]);
136 			task->rss_stat.count[i] = 0;
137 		}
138 	}
139 	task->rss_stat.events = 0;
140 }
141 
142 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 {
144 	struct task_struct *task = current;
145 
146 	if (likely(task->mm == mm))
147 		task->rss_stat.count[member] += val;
148 	else
149 		add_mm_counter(mm, member, val);
150 }
151 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
152 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 
154 /* sync counter once per 64 page faults */
155 #define TASK_RSS_EVENTS_THRESH	(64)
156 static void check_sync_rss_stat(struct task_struct *task)
157 {
158 	if (unlikely(task != current))
159 		return;
160 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
161 		__sync_task_rss_stat(task, task->mm);
162 }
163 
164 unsigned long get_mm_counter(struct mm_struct *mm, int member)
165 {
166 	long val = 0;
167 
168 	/*
169 	 * Don't use task->mm here...for avoiding to use task_get_mm()..
170 	 * The caller must guarantee task->mm is not invalid.
171 	 */
172 	val = atomic_long_read(&mm->rss_stat.count[member]);
173 	/*
174 	 * counter is updated in asynchronous manner and may go to minus.
175 	 * But it's never be expected number for users.
176 	 */
177 	if (val < 0)
178 		return 0;
179 	return (unsigned long)val;
180 }
181 
182 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
183 {
184 	__sync_task_rss_stat(task, mm);
185 }
186 #else
187 
188 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
189 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193 }
194 
195 #endif
196 
197 /*
198  * If a p?d_bad entry is found while walking page tables, report
199  * the error, before resetting entry to p?d_none.  Usually (but
200  * very seldom) called out from the p?d_none_or_clear_bad macros.
201  */
202 
203 void pgd_clear_bad(pgd_t *pgd)
204 {
205 	pgd_ERROR(*pgd);
206 	pgd_clear(pgd);
207 }
208 
209 void pud_clear_bad(pud_t *pud)
210 {
211 	pud_ERROR(*pud);
212 	pud_clear(pud);
213 }
214 
215 void pmd_clear_bad(pmd_t *pmd)
216 {
217 	pmd_ERROR(*pmd);
218 	pmd_clear(pmd);
219 }
220 
221 /*
222  * Note: this doesn't free the actual pages themselves. That
223  * has been handled earlier when unmapping all the memory regions.
224  */
225 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
226 			   unsigned long addr)
227 {
228 	pgtable_t token = pmd_pgtable(*pmd);
229 	pmd_clear(pmd);
230 	pte_free_tlb(tlb, token, addr);
231 	tlb->mm->nr_ptes--;
232 }
233 
234 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
235 				unsigned long addr, unsigned long end,
236 				unsigned long floor, unsigned long ceiling)
237 {
238 	pmd_t *pmd;
239 	unsigned long next;
240 	unsigned long start;
241 
242 	start = addr;
243 	pmd = pmd_offset(pud, addr);
244 	do {
245 		next = pmd_addr_end(addr, end);
246 		if (pmd_none_or_clear_bad(pmd))
247 			continue;
248 		free_pte_range(tlb, pmd, addr);
249 	} while (pmd++, addr = next, addr != end);
250 
251 	start &= PUD_MASK;
252 	if (start < floor)
253 		return;
254 	if (ceiling) {
255 		ceiling &= PUD_MASK;
256 		if (!ceiling)
257 			return;
258 	}
259 	if (end - 1 > ceiling - 1)
260 		return;
261 
262 	pmd = pmd_offset(pud, start);
263 	pud_clear(pud);
264 	pmd_free_tlb(tlb, pmd, start);
265 }
266 
267 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
268 				unsigned long addr, unsigned long end,
269 				unsigned long floor, unsigned long ceiling)
270 {
271 	pud_t *pud;
272 	unsigned long next;
273 	unsigned long start;
274 
275 	start = addr;
276 	pud = pud_offset(pgd, addr);
277 	do {
278 		next = pud_addr_end(addr, end);
279 		if (pud_none_or_clear_bad(pud))
280 			continue;
281 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
282 	} while (pud++, addr = next, addr != end);
283 
284 	start &= PGDIR_MASK;
285 	if (start < floor)
286 		return;
287 	if (ceiling) {
288 		ceiling &= PGDIR_MASK;
289 		if (!ceiling)
290 			return;
291 	}
292 	if (end - 1 > ceiling - 1)
293 		return;
294 
295 	pud = pud_offset(pgd, start);
296 	pgd_clear(pgd);
297 	pud_free_tlb(tlb, pud, start);
298 }
299 
300 /*
301  * This function frees user-level page tables of a process.
302  *
303  * Must be called with pagetable lock held.
304  */
305 void free_pgd_range(struct mmu_gather *tlb,
306 			unsigned long addr, unsigned long end,
307 			unsigned long floor, unsigned long ceiling)
308 {
309 	pgd_t *pgd;
310 	unsigned long next;
311 	unsigned long start;
312 
313 	/*
314 	 * The next few lines have given us lots of grief...
315 	 *
316 	 * Why are we testing PMD* at this top level?  Because often
317 	 * there will be no work to do at all, and we'd prefer not to
318 	 * go all the way down to the bottom just to discover that.
319 	 *
320 	 * Why all these "- 1"s?  Because 0 represents both the bottom
321 	 * of the address space and the top of it (using -1 for the
322 	 * top wouldn't help much: the masks would do the wrong thing).
323 	 * The rule is that addr 0 and floor 0 refer to the bottom of
324 	 * the address space, but end 0 and ceiling 0 refer to the top
325 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
326 	 * that end 0 case should be mythical).
327 	 *
328 	 * Wherever addr is brought up or ceiling brought down, we must
329 	 * be careful to reject "the opposite 0" before it confuses the
330 	 * subsequent tests.  But what about where end is brought down
331 	 * by PMD_SIZE below? no, end can't go down to 0 there.
332 	 *
333 	 * Whereas we round start (addr) and ceiling down, by different
334 	 * masks at different levels, in order to test whether a table
335 	 * now has no other vmas using it, so can be freed, we don't
336 	 * bother to round floor or end up - the tests don't need that.
337 	 */
338 
339 	addr &= PMD_MASK;
340 	if (addr < floor) {
341 		addr += PMD_SIZE;
342 		if (!addr)
343 			return;
344 	}
345 	if (ceiling) {
346 		ceiling &= PMD_MASK;
347 		if (!ceiling)
348 			return;
349 	}
350 	if (end - 1 > ceiling - 1)
351 		end -= PMD_SIZE;
352 	if (addr > end - 1)
353 		return;
354 
355 	start = addr;
356 	pgd = pgd_offset(tlb->mm, addr);
357 	do {
358 		next = pgd_addr_end(addr, end);
359 		if (pgd_none_or_clear_bad(pgd))
360 			continue;
361 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
362 	} while (pgd++, addr = next, addr != end);
363 }
364 
365 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
366 		unsigned long floor, unsigned long ceiling)
367 {
368 	while (vma) {
369 		struct vm_area_struct *next = vma->vm_next;
370 		unsigned long addr = vma->vm_start;
371 
372 		/*
373 		 * Hide vma from rmap and truncate_pagecache before freeing
374 		 * pgtables
375 		 */
376 		unlink_anon_vmas(vma);
377 		unlink_file_vma(vma);
378 
379 		if (is_vm_hugetlb_page(vma)) {
380 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
381 				floor, next? next->vm_start: ceiling);
382 		} else {
383 			/*
384 			 * Optimization: gather nearby vmas into one call down
385 			 */
386 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
387 			       && !is_vm_hugetlb_page(next)) {
388 				vma = next;
389 				next = vma->vm_next;
390 				unlink_anon_vmas(vma);
391 				unlink_file_vma(vma);
392 			}
393 			free_pgd_range(tlb, addr, vma->vm_end,
394 				floor, next? next->vm_start: ceiling);
395 		}
396 		vma = next;
397 	}
398 }
399 
400 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
401 {
402 	pgtable_t new = pte_alloc_one(mm, address);
403 	if (!new)
404 		return -ENOMEM;
405 
406 	/*
407 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
408 	 * visible before the pte is made visible to other CPUs by being
409 	 * put into page tables.
410 	 *
411 	 * The other side of the story is the pointer chasing in the page
412 	 * table walking code (when walking the page table without locking;
413 	 * ie. most of the time). Fortunately, these data accesses consist
414 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
415 	 * being the notable exception) will already guarantee loads are
416 	 * seen in-order. See the alpha page table accessors for the
417 	 * smp_read_barrier_depends() barriers in page table walking code.
418 	 */
419 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
420 
421 	spin_lock(&mm->page_table_lock);
422 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
423 		mm->nr_ptes++;
424 		pmd_populate(mm, pmd, new);
425 		new = NULL;
426 	}
427 	spin_unlock(&mm->page_table_lock);
428 	if (new)
429 		pte_free(mm, new);
430 	return 0;
431 }
432 
433 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
434 {
435 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
436 	if (!new)
437 		return -ENOMEM;
438 
439 	smp_wmb(); /* See comment in __pte_alloc */
440 
441 	spin_lock(&init_mm.page_table_lock);
442 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
443 		pmd_populate_kernel(&init_mm, pmd, new);
444 		new = NULL;
445 	}
446 	spin_unlock(&init_mm.page_table_lock);
447 	if (new)
448 		pte_free_kernel(&init_mm, new);
449 	return 0;
450 }
451 
452 static inline void init_rss_vec(int *rss)
453 {
454 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
455 }
456 
457 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
458 {
459 	int i;
460 
461 	if (current->mm == mm)
462 		sync_mm_rss(current, mm);
463 	for (i = 0; i < NR_MM_COUNTERS; i++)
464 		if (rss[i])
465 			add_mm_counter(mm, i, rss[i]);
466 }
467 
468 /*
469  * This function is called to print an error when a bad pte
470  * is found. For example, we might have a PFN-mapped pte in
471  * a region that doesn't allow it.
472  *
473  * The calling function must still handle the error.
474  */
475 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
476 			  pte_t pte, struct page *page)
477 {
478 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
479 	pud_t *pud = pud_offset(pgd, addr);
480 	pmd_t *pmd = pmd_offset(pud, addr);
481 	struct address_space *mapping;
482 	pgoff_t index;
483 	static unsigned long resume;
484 	static unsigned long nr_shown;
485 	static unsigned long nr_unshown;
486 
487 	/*
488 	 * Allow a burst of 60 reports, then keep quiet for that minute;
489 	 * or allow a steady drip of one report per second.
490 	 */
491 	if (nr_shown == 60) {
492 		if (time_before(jiffies, resume)) {
493 			nr_unshown++;
494 			return;
495 		}
496 		if (nr_unshown) {
497 			printk(KERN_ALERT
498 				"BUG: Bad page map: %lu messages suppressed\n",
499 				nr_unshown);
500 			nr_unshown = 0;
501 		}
502 		nr_shown = 0;
503 	}
504 	if (nr_shown++ == 0)
505 		resume = jiffies + 60 * HZ;
506 
507 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
508 	index = linear_page_index(vma, addr);
509 
510 	printk(KERN_ALERT
511 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
512 		current->comm,
513 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
514 	if (page)
515 		dump_page(page);
516 	printk(KERN_ALERT
517 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
518 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
519 	/*
520 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
521 	 */
522 	if (vma->vm_ops)
523 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
524 				(unsigned long)vma->vm_ops->fault);
525 	if (vma->vm_file && vma->vm_file->f_op)
526 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
527 				(unsigned long)vma->vm_file->f_op->mmap);
528 	dump_stack();
529 	add_taint(TAINT_BAD_PAGE);
530 }
531 
532 static inline int is_cow_mapping(unsigned int flags)
533 {
534 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
535 }
536 
537 #ifndef is_zero_pfn
538 static inline int is_zero_pfn(unsigned long pfn)
539 {
540 	return pfn == zero_pfn;
541 }
542 #endif
543 
544 #ifndef my_zero_pfn
545 static inline unsigned long my_zero_pfn(unsigned long addr)
546 {
547 	return zero_pfn;
548 }
549 #endif
550 
551 /*
552  * vm_normal_page -- This function gets the "struct page" associated with a pte.
553  *
554  * "Special" mappings do not wish to be associated with a "struct page" (either
555  * it doesn't exist, or it exists but they don't want to touch it). In this
556  * case, NULL is returned here. "Normal" mappings do have a struct page.
557  *
558  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
559  * pte bit, in which case this function is trivial. Secondly, an architecture
560  * may not have a spare pte bit, which requires a more complicated scheme,
561  * described below.
562  *
563  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
564  * special mapping (even if there are underlying and valid "struct pages").
565  * COWed pages of a VM_PFNMAP are always normal.
566  *
567  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
568  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
569  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
570  * mapping will always honor the rule
571  *
572  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573  *
574  * And for normal mappings this is false.
575  *
576  * This restricts such mappings to be a linear translation from virtual address
577  * to pfn. To get around this restriction, we allow arbitrary mappings so long
578  * as the vma is not a COW mapping; in that case, we know that all ptes are
579  * special (because none can have been COWed).
580  *
581  *
582  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583  *
584  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
585  * page" backing, however the difference is that _all_ pages with a struct
586  * page (that is, those where pfn_valid is true) are refcounted and considered
587  * normal pages by the VM. The disadvantage is that pages are refcounted
588  * (which can be slower and simply not an option for some PFNMAP users). The
589  * advantage is that we don't have to follow the strict linearity rule of
590  * PFNMAP mappings in order to support COWable mappings.
591  *
592  */
593 #ifdef __HAVE_ARCH_PTE_SPECIAL
594 # define HAVE_PTE_SPECIAL 1
595 #else
596 # define HAVE_PTE_SPECIAL 0
597 #endif
598 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
599 				pte_t pte)
600 {
601 	unsigned long pfn = pte_pfn(pte);
602 
603 	if (HAVE_PTE_SPECIAL) {
604 		if (likely(!pte_special(pte)))
605 			goto check_pfn;
606 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
607 			return NULL;
608 		if (!is_zero_pfn(pfn))
609 			print_bad_pte(vma, addr, pte, NULL);
610 		return NULL;
611 	}
612 
613 	/* !HAVE_PTE_SPECIAL case follows: */
614 
615 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 		if (vma->vm_flags & VM_MIXEDMAP) {
617 			if (!pfn_valid(pfn))
618 				return NULL;
619 			goto out;
620 		} else {
621 			unsigned long off;
622 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 			if (pfn == vma->vm_pgoff + off)
624 				return NULL;
625 			if (!is_cow_mapping(vma->vm_flags))
626 				return NULL;
627 		}
628 	}
629 
630 	if (is_zero_pfn(pfn))
631 		return NULL;
632 check_pfn:
633 	if (unlikely(pfn > highest_memmap_pfn)) {
634 		print_bad_pte(vma, addr, pte, NULL);
635 		return NULL;
636 	}
637 
638 	/*
639 	 * NOTE! We still have PageReserved() pages in the page tables.
640 	 * eg. VDSO mappings can cause them to exist.
641 	 */
642 out:
643 	return pfn_to_page(pfn);
644 }
645 
646 /*
647  * copy one vm_area from one task to the other. Assumes the page tables
648  * already present in the new task to be cleared in the whole range
649  * covered by this vma.
650  */
651 
652 static inline unsigned long
653 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
654 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
655 		unsigned long addr, int *rss)
656 {
657 	unsigned long vm_flags = vma->vm_flags;
658 	pte_t pte = *src_pte;
659 	struct page *page;
660 
661 	/* pte contains position in swap or file, so copy. */
662 	if (unlikely(!pte_present(pte))) {
663 		if (!pte_file(pte)) {
664 			swp_entry_t entry = pte_to_swp_entry(pte);
665 
666 			if (swap_duplicate(entry) < 0)
667 				return entry.val;
668 
669 			/* make sure dst_mm is on swapoff's mmlist. */
670 			if (unlikely(list_empty(&dst_mm->mmlist))) {
671 				spin_lock(&mmlist_lock);
672 				if (list_empty(&dst_mm->mmlist))
673 					list_add(&dst_mm->mmlist,
674 						 &src_mm->mmlist);
675 				spin_unlock(&mmlist_lock);
676 			}
677 			if (likely(!non_swap_entry(entry)))
678 				rss[MM_SWAPENTS]++;
679 			else if (is_write_migration_entry(entry) &&
680 					is_cow_mapping(vm_flags)) {
681 				/*
682 				 * COW mappings require pages in both parent
683 				 * and child to be set to read.
684 				 */
685 				make_migration_entry_read(&entry);
686 				pte = swp_entry_to_pte(entry);
687 				set_pte_at(src_mm, addr, src_pte, pte);
688 			}
689 		}
690 		goto out_set_pte;
691 	}
692 
693 	/*
694 	 * If it's a COW mapping, write protect it both
695 	 * in the parent and the child
696 	 */
697 	if (is_cow_mapping(vm_flags)) {
698 		ptep_set_wrprotect(src_mm, addr, src_pte);
699 		pte = pte_wrprotect(pte);
700 	}
701 
702 	/*
703 	 * If it's a shared mapping, mark it clean in
704 	 * the child
705 	 */
706 	if (vm_flags & VM_SHARED)
707 		pte = pte_mkclean(pte);
708 	pte = pte_mkold(pte);
709 
710 	page = vm_normal_page(vma, addr, pte);
711 	if (page) {
712 		get_page(page);
713 		page_dup_rmap(page);
714 		if (PageAnon(page))
715 			rss[MM_ANONPAGES]++;
716 		else
717 			rss[MM_FILEPAGES]++;
718 	}
719 
720 out_set_pte:
721 	set_pte_at(dst_mm, addr, dst_pte, pte);
722 	return 0;
723 }
724 
725 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
726 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
727 		unsigned long addr, unsigned long end)
728 {
729 	pte_t *orig_src_pte, *orig_dst_pte;
730 	pte_t *src_pte, *dst_pte;
731 	spinlock_t *src_ptl, *dst_ptl;
732 	int progress = 0;
733 	int rss[NR_MM_COUNTERS];
734 	swp_entry_t entry = (swp_entry_t){0};
735 
736 again:
737 	init_rss_vec(rss);
738 
739 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
740 	if (!dst_pte)
741 		return -ENOMEM;
742 	src_pte = pte_offset_map_nested(src_pmd, addr);
743 	src_ptl = pte_lockptr(src_mm, src_pmd);
744 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
745 	orig_src_pte = src_pte;
746 	orig_dst_pte = dst_pte;
747 	arch_enter_lazy_mmu_mode();
748 
749 	do {
750 		/*
751 		 * We are holding two locks at this point - either of them
752 		 * could generate latencies in another task on another CPU.
753 		 */
754 		if (progress >= 32) {
755 			progress = 0;
756 			if (need_resched() ||
757 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
758 				break;
759 		}
760 		if (pte_none(*src_pte)) {
761 			progress++;
762 			continue;
763 		}
764 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
765 							vma, addr, rss);
766 		if (entry.val)
767 			break;
768 		progress += 8;
769 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
770 
771 	arch_leave_lazy_mmu_mode();
772 	spin_unlock(src_ptl);
773 	pte_unmap_nested(orig_src_pte);
774 	add_mm_rss_vec(dst_mm, rss);
775 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
776 	cond_resched();
777 
778 	if (entry.val) {
779 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
780 			return -ENOMEM;
781 		progress = 0;
782 	}
783 	if (addr != end)
784 		goto again;
785 	return 0;
786 }
787 
788 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
789 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
790 		unsigned long addr, unsigned long end)
791 {
792 	pmd_t *src_pmd, *dst_pmd;
793 	unsigned long next;
794 
795 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
796 	if (!dst_pmd)
797 		return -ENOMEM;
798 	src_pmd = pmd_offset(src_pud, addr);
799 	do {
800 		next = pmd_addr_end(addr, end);
801 		if (pmd_none_or_clear_bad(src_pmd))
802 			continue;
803 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
804 						vma, addr, next))
805 			return -ENOMEM;
806 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
807 	return 0;
808 }
809 
810 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
811 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
812 		unsigned long addr, unsigned long end)
813 {
814 	pud_t *src_pud, *dst_pud;
815 	unsigned long next;
816 
817 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
818 	if (!dst_pud)
819 		return -ENOMEM;
820 	src_pud = pud_offset(src_pgd, addr);
821 	do {
822 		next = pud_addr_end(addr, end);
823 		if (pud_none_or_clear_bad(src_pud))
824 			continue;
825 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
826 						vma, addr, next))
827 			return -ENOMEM;
828 	} while (dst_pud++, src_pud++, addr = next, addr != end);
829 	return 0;
830 }
831 
832 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
833 		struct vm_area_struct *vma)
834 {
835 	pgd_t *src_pgd, *dst_pgd;
836 	unsigned long next;
837 	unsigned long addr = vma->vm_start;
838 	unsigned long end = vma->vm_end;
839 	int ret;
840 
841 	/*
842 	 * Don't copy ptes where a page fault will fill them correctly.
843 	 * Fork becomes much lighter when there are big shared or private
844 	 * readonly mappings. The tradeoff is that copy_page_range is more
845 	 * efficient than faulting.
846 	 */
847 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
848 		if (!vma->anon_vma)
849 			return 0;
850 	}
851 
852 	if (is_vm_hugetlb_page(vma))
853 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
854 
855 	if (unlikely(is_pfn_mapping(vma))) {
856 		/*
857 		 * We do not free on error cases below as remove_vma
858 		 * gets called on error from higher level routine
859 		 */
860 		ret = track_pfn_vma_copy(vma);
861 		if (ret)
862 			return ret;
863 	}
864 
865 	/*
866 	 * We need to invalidate the secondary MMU mappings only when
867 	 * there could be a permission downgrade on the ptes of the
868 	 * parent mm. And a permission downgrade will only happen if
869 	 * is_cow_mapping() returns true.
870 	 */
871 	if (is_cow_mapping(vma->vm_flags))
872 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
873 
874 	ret = 0;
875 	dst_pgd = pgd_offset(dst_mm, addr);
876 	src_pgd = pgd_offset(src_mm, addr);
877 	do {
878 		next = pgd_addr_end(addr, end);
879 		if (pgd_none_or_clear_bad(src_pgd))
880 			continue;
881 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
882 					    vma, addr, next))) {
883 			ret = -ENOMEM;
884 			break;
885 		}
886 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
887 
888 	if (is_cow_mapping(vma->vm_flags))
889 		mmu_notifier_invalidate_range_end(src_mm,
890 						  vma->vm_start, end);
891 	return ret;
892 }
893 
894 static unsigned long zap_pte_range(struct mmu_gather *tlb,
895 				struct vm_area_struct *vma, pmd_t *pmd,
896 				unsigned long addr, unsigned long end,
897 				long *zap_work, struct zap_details *details)
898 {
899 	struct mm_struct *mm = tlb->mm;
900 	pte_t *pte;
901 	spinlock_t *ptl;
902 	int rss[NR_MM_COUNTERS];
903 
904 	init_rss_vec(rss);
905 
906 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
907 	arch_enter_lazy_mmu_mode();
908 	do {
909 		pte_t ptent = *pte;
910 		if (pte_none(ptent)) {
911 			(*zap_work)--;
912 			continue;
913 		}
914 
915 		(*zap_work) -= PAGE_SIZE;
916 
917 		if (pte_present(ptent)) {
918 			struct page *page;
919 
920 			page = vm_normal_page(vma, addr, ptent);
921 			if (unlikely(details) && page) {
922 				/*
923 				 * unmap_shared_mapping_pages() wants to
924 				 * invalidate cache without truncating:
925 				 * unmap shared but keep private pages.
926 				 */
927 				if (details->check_mapping &&
928 				    details->check_mapping != page->mapping)
929 					continue;
930 				/*
931 				 * Each page->index must be checked when
932 				 * invalidating or truncating nonlinear.
933 				 */
934 				if (details->nonlinear_vma &&
935 				    (page->index < details->first_index ||
936 				     page->index > details->last_index))
937 					continue;
938 			}
939 			ptent = ptep_get_and_clear_full(mm, addr, pte,
940 							tlb->fullmm);
941 			tlb_remove_tlb_entry(tlb, pte, addr);
942 			if (unlikely(!page))
943 				continue;
944 			if (unlikely(details) && details->nonlinear_vma
945 			    && linear_page_index(details->nonlinear_vma,
946 						addr) != page->index)
947 				set_pte_at(mm, addr, pte,
948 					   pgoff_to_pte(page->index));
949 			if (PageAnon(page))
950 				rss[MM_ANONPAGES]--;
951 			else {
952 				if (pte_dirty(ptent))
953 					set_page_dirty(page);
954 				if (pte_young(ptent) &&
955 				    likely(!VM_SequentialReadHint(vma)))
956 					mark_page_accessed(page);
957 				rss[MM_FILEPAGES]--;
958 			}
959 			page_remove_rmap(page);
960 			if (unlikely(page_mapcount(page) < 0))
961 				print_bad_pte(vma, addr, ptent, page);
962 			tlb_remove_page(tlb, page);
963 			continue;
964 		}
965 		/*
966 		 * If details->check_mapping, we leave swap entries;
967 		 * if details->nonlinear_vma, we leave file entries.
968 		 */
969 		if (unlikely(details))
970 			continue;
971 		if (pte_file(ptent)) {
972 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
973 				print_bad_pte(vma, addr, ptent, NULL);
974 		} else {
975 			swp_entry_t entry = pte_to_swp_entry(ptent);
976 
977 			if (!non_swap_entry(entry))
978 				rss[MM_SWAPENTS]--;
979 			if (unlikely(!free_swap_and_cache(entry)))
980 				print_bad_pte(vma, addr, ptent, NULL);
981 		}
982 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
983 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
984 
985 	add_mm_rss_vec(mm, rss);
986 	arch_leave_lazy_mmu_mode();
987 	pte_unmap_unlock(pte - 1, ptl);
988 
989 	return addr;
990 }
991 
992 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
993 				struct vm_area_struct *vma, pud_t *pud,
994 				unsigned long addr, unsigned long end,
995 				long *zap_work, struct zap_details *details)
996 {
997 	pmd_t *pmd;
998 	unsigned long next;
999 
1000 	pmd = pmd_offset(pud, addr);
1001 	do {
1002 		next = pmd_addr_end(addr, end);
1003 		if (pmd_none_or_clear_bad(pmd)) {
1004 			(*zap_work)--;
1005 			continue;
1006 		}
1007 		next = zap_pte_range(tlb, vma, pmd, addr, next,
1008 						zap_work, details);
1009 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
1010 
1011 	return addr;
1012 }
1013 
1014 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1015 				struct vm_area_struct *vma, pgd_t *pgd,
1016 				unsigned long addr, unsigned long end,
1017 				long *zap_work, struct zap_details *details)
1018 {
1019 	pud_t *pud;
1020 	unsigned long next;
1021 
1022 	pud = pud_offset(pgd, addr);
1023 	do {
1024 		next = pud_addr_end(addr, end);
1025 		if (pud_none_or_clear_bad(pud)) {
1026 			(*zap_work)--;
1027 			continue;
1028 		}
1029 		next = zap_pmd_range(tlb, vma, pud, addr, next,
1030 						zap_work, details);
1031 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
1032 
1033 	return addr;
1034 }
1035 
1036 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1037 				struct vm_area_struct *vma,
1038 				unsigned long addr, unsigned long end,
1039 				long *zap_work, struct zap_details *details)
1040 {
1041 	pgd_t *pgd;
1042 	unsigned long next;
1043 
1044 	if (details && !details->check_mapping && !details->nonlinear_vma)
1045 		details = NULL;
1046 
1047 	BUG_ON(addr >= end);
1048 	mem_cgroup_uncharge_start();
1049 	tlb_start_vma(tlb, vma);
1050 	pgd = pgd_offset(vma->vm_mm, addr);
1051 	do {
1052 		next = pgd_addr_end(addr, end);
1053 		if (pgd_none_or_clear_bad(pgd)) {
1054 			(*zap_work)--;
1055 			continue;
1056 		}
1057 		next = zap_pud_range(tlb, vma, pgd, addr, next,
1058 						zap_work, details);
1059 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
1060 	tlb_end_vma(tlb, vma);
1061 	mem_cgroup_uncharge_end();
1062 
1063 	return addr;
1064 }
1065 
1066 #ifdef CONFIG_PREEMPT
1067 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
1068 #else
1069 /* No preempt: go for improved straight-line efficiency */
1070 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
1071 #endif
1072 
1073 /**
1074  * unmap_vmas - unmap a range of memory covered by a list of vma's
1075  * @tlbp: address of the caller's struct mmu_gather
1076  * @vma: the starting vma
1077  * @start_addr: virtual address at which to start unmapping
1078  * @end_addr: virtual address at which to end unmapping
1079  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1080  * @details: details of nonlinear truncation or shared cache invalidation
1081  *
1082  * Returns the end address of the unmapping (restart addr if interrupted).
1083  *
1084  * Unmap all pages in the vma list.
1085  *
1086  * We aim to not hold locks for too long (for scheduling latency reasons).
1087  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
1088  * return the ending mmu_gather to the caller.
1089  *
1090  * Only addresses between `start' and `end' will be unmapped.
1091  *
1092  * The VMA list must be sorted in ascending virtual address order.
1093  *
1094  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1095  * range after unmap_vmas() returns.  So the only responsibility here is to
1096  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1097  * drops the lock and schedules.
1098  */
1099 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1100 		struct vm_area_struct *vma, unsigned long start_addr,
1101 		unsigned long end_addr, unsigned long *nr_accounted,
1102 		struct zap_details *details)
1103 {
1104 	long zap_work = ZAP_BLOCK_SIZE;
1105 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
1106 	int tlb_start_valid = 0;
1107 	unsigned long start = start_addr;
1108 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1109 	int fullmm = (*tlbp)->fullmm;
1110 	struct mm_struct *mm = vma->vm_mm;
1111 
1112 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1113 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1114 		unsigned long end;
1115 
1116 		start = max(vma->vm_start, start_addr);
1117 		if (start >= vma->vm_end)
1118 			continue;
1119 		end = min(vma->vm_end, end_addr);
1120 		if (end <= vma->vm_start)
1121 			continue;
1122 
1123 		if (vma->vm_flags & VM_ACCOUNT)
1124 			*nr_accounted += (end - start) >> PAGE_SHIFT;
1125 
1126 		if (unlikely(is_pfn_mapping(vma)))
1127 			untrack_pfn_vma(vma, 0, 0);
1128 
1129 		while (start != end) {
1130 			if (!tlb_start_valid) {
1131 				tlb_start = start;
1132 				tlb_start_valid = 1;
1133 			}
1134 
1135 			if (unlikely(is_vm_hugetlb_page(vma))) {
1136 				/*
1137 				 * It is undesirable to test vma->vm_file as it
1138 				 * should be non-null for valid hugetlb area.
1139 				 * However, vm_file will be NULL in the error
1140 				 * cleanup path of do_mmap_pgoff. When
1141 				 * hugetlbfs ->mmap method fails,
1142 				 * do_mmap_pgoff() nullifies vma->vm_file
1143 				 * before calling this function to clean up.
1144 				 * Since no pte has actually been setup, it is
1145 				 * safe to do nothing in this case.
1146 				 */
1147 				if (vma->vm_file) {
1148 					unmap_hugepage_range(vma, start, end, NULL);
1149 					zap_work -= (end - start) /
1150 					pages_per_huge_page(hstate_vma(vma));
1151 				}
1152 
1153 				start = end;
1154 			} else
1155 				start = unmap_page_range(*tlbp, vma,
1156 						start, end, &zap_work, details);
1157 
1158 			if (zap_work > 0) {
1159 				BUG_ON(start != end);
1160 				break;
1161 			}
1162 
1163 			tlb_finish_mmu(*tlbp, tlb_start, start);
1164 
1165 			if (need_resched() ||
1166 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1167 				if (i_mmap_lock) {
1168 					*tlbp = NULL;
1169 					goto out;
1170 				}
1171 				cond_resched();
1172 			}
1173 
1174 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1175 			tlb_start_valid = 0;
1176 			zap_work = ZAP_BLOCK_SIZE;
1177 		}
1178 	}
1179 out:
1180 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1181 	return start;	/* which is now the end (or restart) address */
1182 }
1183 
1184 /**
1185  * zap_page_range - remove user pages in a given range
1186  * @vma: vm_area_struct holding the applicable pages
1187  * @address: starting address of pages to zap
1188  * @size: number of bytes to zap
1189  * @details: details of nonlinear truncation or shared cache invalidation
1190  */
1191 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1192 		unsigned long size, struct zap_details *details)
1193 {
1194 	struct mm_struct *mm = vma->vm_mm;
1195 	struct mmu_gather *tlb;
1196 	unsigned long end = address + size;
1197 	unsigned long nr_accounted = 0;
1198 
1199 	lru_add_drain();
1200 	tlb = tlb_gather_mmu(mm, 0);
1201 	update_hiwater_rss(mm);
1202 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1203 	if (tlb)
1204 		tlb_finish_mmu(tlb, address, end);
1205 	return end;
1206 }
1207 
1208 /**
1209  * zap_vma_ptes - remove ptes mapping the vma
1210  * @vma: vm_area_struct holding ptes to be zapped
1211  * @address: starting address of pages to zap
1212  * @size: number of bytes to zap
1213  *
1214  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1215  *
1216  * The entire address range must be fully contained within the vma.
1217  *
1218  * Returns 0 if successful.
1219  */
1220 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1221 		unsigned long size)
1222 {
1223 	if (address < vma->vm_start || address + size > vma->vm_end ||
1224 	    		!(vma->vm_flags & VM_PFNMAP))
1225 		return -1;
1226 	zap_page_range(vma, address, size, NULL);
1227 	return 0;
1228 }
1229 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1230 
1231 /*
1232  * Do a quick page-table lookup for a single page.
1233  */
1234 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1235 			unsigned int flags)
1236 {
1237 	pgd_t *pgd;
1238 	pud_t *pud;
1239 	pmd_t *pmd;
1240 	pte_t *ptep, pte;
1241 	spinlock_t *ptl;
1242 	struct page *page;
1243 	struct mm_struct *mm = vma->vm_mm;
1244 
1245 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1246 	if (!IS_ERR(page)) {
1247 		BUG_ON(flags & FOLL_GET);
1248 		goto out;
1249 	}
1250 
1251 	page = NULL;
1252 	pgd = pgd_offset(mm, address);
1253 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1254 		goto no_page_table;
1255 
1256 	pud = pud_offset(pgd, address);
1257 	if (pud_none(*pud))
1258 		goto no_page_table;
1259 	if (pud_huge(*pud)) {
1260 		BUG_ON(flags & FOLL_GET);
1261 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1262 		goto out;
1263 	}
1264 	if (unlikely(pud_bad(*pud)))
1265 		goto no_page_table;
1266 
1267 	pmd = pmd_offset(pud, address);
1268 	if (pmd_none(*pmd))
1269 		goto no_page_table;
1270 	if (pmd_huge(*pmd)) {
1271 		BUG_ON(flags & FOLL_GET);
1272 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1273 		goto out;
1274 	}
1275 	if (unlikely(pmd_bad(*pmd)))
1276 		goto no_page_table;
1277 
1278 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1279 
1280 	pte = *ptep;
1281 	if (!pte_present(pte))
1282 		goto no_page;
1283 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1284 		goto unlock;
1285 
1286 	page = vm_normal_page(vma, address, pte);
1287 	if (unlikely(!page)) {
1288 		if ((flags & FOLL_DUMP) ||
1289 		    !is_zero_pfn(pte_pfn(pte)))
1290 			goto bad_page;
1291 		page = pte_page(pte);
1292 	}
1293 
1294 	if (flags & FOLL_GET)
1295 		get_page(page);
1296 	if (flags & FOLL_TOUCH) {
1297 		if ((flags & FOLL_WRITE) &&
1298 		    !pte_dirty(pte) && !PageDirty(page))
1299 			set_page_dirty(page);
1300 		/*
1301 		 * pte_mkyoung() would be more correct here, but atomic care
1302 		 * is needed to avoid losing the dirty bit: it is easier to use
1303 		 * mark_page_accessed().
1304 		 */
1305 		mark_page_accessed(page);
1306 	}
1307 unlock:
1308 	pte_unmap_unlock(ptep, ptl);
1309 out:
1310 	return page;
1311 
1312 bad_page:
1313 	pte_unmap_unlock(ptep, ptl);
1314 	return ERR_PTR(-EFAULT);
1315 
1316 no_page:
1317 	pte_unmap_unlock(ptep, ptl);
1318 	if (!pte_none(pte))
1319 		return page;
1320 
1321 no_page_table:
1322 	/*
1323 	 * When core dumping an enormous anonymous area that nobody
1324 	 * has touched so far, we don't want to allocate unnecessary pages or
1325 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1326 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1327 	 * But we can only make this optimization where a hole would surely
1328 	 * be zero-filled if handle_mm_fault() actually did handle it.
1329 	 */
1330 	if ((flags & FOLL_DUMP) &&
1331 	    (!vma->vm_ops || !vma->vm_ops->fault))
1332 		return ERR_PTR(-EFAULT);
1333 	return page;
1334 }
1335 
1336 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1337 		     unsigned long start, int nr_pages, unsigned int gup_flags,
1338 		     struct page **pages, struct vm_area_struct **vmas)
1339 {
1340 	int i;
1341 	unsigned long vm_flags;
1342 
1343 	if (nr_pages <= 0)
1344 		return 0;
1345 
1346 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1347 
1348 	/*
1349 	 * Require read or write permissions.
1350 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1351 	 */
1352 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1353 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1354 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1355 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1356 	i = 0;
1357 
1358 	do {
1359 		struct vm_area_struct *vma;
1360 
1361 		vma = find_extend_vma(mm, start);
1362 		if (!vma && in_gate_area(tsk, start)) {
1363 			unsigned long pg = start & PAGE_MASK;
1364 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1365 			pgd_t *pgd;
1366 			pud_t *pud;
1367 			pmd_t *pmd;
1368 			pte_t *pte;
1369 
1370 			/* user gate pages are read-only */
1371 			if (gup_flags & FOLL_WRITE)
1372 				return i ? : -EFAULT;
1373 			if (pg > TASK_SIZE)
1374 				pgd = pgd_offset_k(pg);
1375 			else
1376 				pgd = pgd_offset_gate(mm, pg);
1377 			BUG_ON(pgd_none(*pgd));
1378 			pud = pud_offset(pgd, pg);
1379 			BUG_ON(pud_none(*pud));
1380 			pmd = pmd_offset(pud, pg);
1381 			if (pmd_none(*pmd))
1382 				return i ? : -EFAULT;
1383 			pte = pte_offset_map(pmd, pg);
1384 			if (pte_none(*pte)) {
1385 				pte_unmap(pte);
1386 				return i ? : -EFAULT;
1387 			}
1388 			if (pages) {
1389 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1390 				pages[i] = page;
1391 				if (page)
1392 					get_page(page);
1393 			}
1394 			pte_unmap(pte);
1395 			if (vmas)
1396 				vmas[i] = gate_vma;
1397 			i++;
1398 			start += PAGE_SIZE;
1399 			nr_pages--;
1400 			continue;
1401 		}
1402 
1403 		if (!vma ||
1404 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1405 		    !(vm_flags & vma->vm_flags))
1406 			return i ? : -EFAULT;
1407 
1408 		if (is_vm_hugetlb_page(vma)) {
1409 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1410 					&start, &nr_pages, i, gup_flags);
1411 			continue;
1412 		}
1413 
1414 		do {
1415 			struct page *page;
1416 			unsigned int foll_flags = gup_flags;
1417 
1418 			/*
1419 			 * If we have a pending SIGKILL, don't keep faulting
1420 			 * pages and potentially allocating memory.
1421 			 */
1422 			if (unlikely(fatal_signal_pending(current)))
1423 				return i ? i : -ERESTARTSYS;
1424 
1425 			cond_resched();
1426 			while (!(page = follow_page(vma, start, foll_flags))) {
1427 				int ret;
1428 
1429 				ret = handle_mm_fault(mm, vma, start,
1430 					(foll_flags & FOLL_WRITE) ?
1431 					FAULT_FLAG_WRITE : 0);
1432 
1433 				if (ret & VM_FAULT_ERROR) {
1434 					if (ret & VM_FAULT_OOM)
1435 						return i ? i : -ENOMEM;
1436 					if (ret &
1437 					    (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1438 						return i ? i : -EFAULT;
1439 					BUG();
1440 				}
1441 				if (ret & VM_FAULT_MAJOR)
1442 					tsk->maj_flt++;
1443 				else
1444 					tsk->min_flt++;
1445 
1446 				/*
1447 				 * The VM_FAULT_WRITE bit tells us that
1448 				 * do_wp_page has broken COW when necessary,
1449 				 * even if maybe_mkwrite decided not to set
1450 				 * pte_write. We can thus safely do subsequent
1451 				 * page lookups as if they were reads. But only
1452 				 * do so when looping for pte_write is futile:
1453 				 * in some cases userspace may also be wanting
1454 				 * to write to the gotten user page, which a
1455 				 * read fault here might prevent (a readonly
1456 				 * page might get reCOWed by userspace write).
1457 				 */
1458 				if ((ret & VM_FAULT_WRITE) &&
1459 				    !(vma->vm_flags & VM_WRITE))
1460 					foll_flags &= ~FOLL_WRITE;
1461 
1462 				cond_resched();
1463 			}
1464 			if (IS_ERR(page))
1465 				return i ? i : PTR_ERR(page);
1466 			if (pages) {
1467 				pages[i] = page;
1468 
1469 				flush_anon_page(vma, page, start);
1470 				flush_dcache_page(page);
1471 			}
1472 			if (vmas)
1473 				vmas[i] = vma;
1474 			i++;
1475 			start += PAGE_SIZE;
1476 			nr_pages--;
1477 		} while (nr_pages && start < vma->vm_end);
1478 	} while (nr_pages);
1479 	return i;
1480 }
1481 
1482 /**
1483  * get_user_pages() - pin user pages in memory
1484  * @tsk:	task_struct of target task
1485  * @mm:		mm_struct of target mm
1486  * @start:	starting user address
1487  * @nr_pages:	number of pages from start to pin
1488  * @write:	whether pages will be written to by the caller
1489  * @force:	whether to force write access even if user mapping is
1490  *		readonly. This will result in the page being COWed even
1491  *		in MAP_SHARED mappings. You do not want this.
1492  * @pages:	array that receives pointers to the pages pinned.
1493  *		Should be at least nr_pages long. Or NULL, if caller
1494  *		only intends to ensure the pages are faulted in.
1495  * @vmas:	array of pointers to vmas corresponding to each page.
1496  *		Or NULL if the caller does not require them.
1497  *
1498  * Returns number of pages pinned. This may be fewer than the number
1499  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1500  * were pinned, returns -errno. Each page returned must be released
1501  * with a put_page() call when it is finished with. vmas will only
1502  * remain valid while mmap_sem is held.
1503  *
1504  * Must be called with mmap_sem held for read or write.
1505  *
1506  * get_user_pages walks a process's page tables and takes a reference to
1507  * each struct page that each user address corresponds to at a given
1508  * instant. That is, it takes the page that would be accessed if a user
1509  * thread accesses the given user virtual address at that instant.
1510  *
1511  * This does not guarantee that the page exists in the user mappings when
1512  * get_user_pages returns, and there may even be a completely different
1513  * page there in some cases (eg. if mmapped pagecache has been invalidated
1514  * and subsequently re faulted). However it does guarantee that the page
1515  * won't be freed completely. And mostly callers simply care that the page
1516  * contains data that was valid *at some point in time*. Typically, an IO
1517  * or similar operation cannot guarantee anything stronger anyway because
1518  * locks can't be held over the syscall boundary.
1519  *
1520  * If write=0, the page must not be written to. If the page is written to,
1521  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1522  * after the page is finished with, and before put_page is called.
1523  *
1524  * get_user_pages is typically used for fewer-copy IO operations, to get a
1525  * handle on the memory by some means other than accesses via the user virtual
1526  * addresses. The pages may be submitted for DMA to devices or accessed via
1527  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1528  * use the correct cache flushing APIs.
1529  *
1530  * See also get_user_pages_fast, for performance critical applications.
1531  */
1532 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1533 		unsigned long start, int nr_pages, int write, int force,
1534 		struct page **pages, struct vm_area_struct **vmas)
1535 {
1536 	int flags = FOLL_TOUCH;
1537 
1538 	if (pages)
1539 		flags |= FOLL_GET;
1540 	if (write)
1541 		flags |= FOLL_WRITE;
1542 	if (force)
1543 		flags |= FOLL_FORCE;
1544 
1545 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1546 }
1547 EXPORT_SYMBOL(get_user_pages);
1548 
1549 /**
1550  * get_dump_page() - pin user page in memory while writing it to core dump
1551  * @addr: user address
1552  *
1553  * Returns struct page pointer of user page pinned for dump,
1554  * to be freed afterwards by page_cache_release() or put_page().
1555  *
1556  * Returns NULL on any kind of failure - a hole must then be inserted into
1557  * the corefile, to preserve alignment with its headers; and also returns
1558  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1559  * allowing a hole to be left in the corefile to save diskspace.
1560  *
1561  * Called without mmap_sem, but after all other threads have been killed.
1562  */
1563 #ifdef CONFIG_ELF_CORE
1564 struct page *get_dump_page(unsigned long addr)
1565 {
1566 	struct vm_area_struct *vma;
1567 	struct page *page;
1568 
1569 	if (__get_user_pages(current, current->mm, addr, 1,
1570 			FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1571 		return NULL;
1572 	flush_cache_page(vma, addr, page_to_pfn(page));
1573 	return page;
1574 }
1575 #endif /* CONFIG_ELF_CORE */
1576 
1577 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1578 			spinlock_t **ptl)
1579 {
1580 	pgd_t * pgd = pgd_offset(mm, addr);
1581 	pud_t * pud = pud_alloc(mm, pgd, addr);
1582 	if (pud) {
1583 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1584 		if (pmd)
1585 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1586 	}
1587 	return NULL;
1588 }
1589 
1590 /*
1591  * This is the old fallback for page remapping.
1592  *
1593  * For historical reasons, it only allows reserved pages. Only
1594  * old drivers should use this, and they needed to mark their
1595  * pages reserved for the old functions anyway.
1596  */
1597 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1598 			struct page *page, pgprot_t prot)
1599 {
1600 	struct mm_struct *mm = vma->vm_mm;
1601 	int retval;
1602 	pte_t *pte;
1603 	spinlock_t *ptl;
1604 
1605 	retval = -EINVAL;
1606 	if (PageAnon(page))
1607 		goto out;
1608 	retval = -ENOMEM;
1609 	flush_dcache_page(page);
1610 	pte = get_locked_pte(mm, addr, &ptl);
1611 	if (!pte)
1612 		goto out;
1613 	retval = -EBUSY;
1614 	if (!pte_none(*pte))
1615 		goto out_unlock;
1616 
1617 	/* Ok, finally just insert the thing.. */
1618 	get_page(page);
1619 	inc_mm_counter_fast(mm, MM_FILEPAGES);
1620 	page_add_file_rmap(page);
1621 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1622 
1623 	retval = 0;
1624 	pte_unmap_unlock(pte, ptl);
1625 	return retval;
1626 out_unlock:
1627 	pte_unmap_unlock(pte, ptl);
1628 out:
1629 	return retval;
1630 }
1631 
1632 /**
1633  * vm_insert_page - insert single page into user vma
1634  * @vma: user vma to map to
1635  * @addr: target user address of this page
1636  * @page: source kernel page
1637  *
1638  * This allows drivers to insert individual pages they've allocated
1639  * into a user vma.
1640  *
1641  * The page has to be a nice clean _individual_ kernel allocation.
1642  * If you allocate a compound page, you need to have marked it as
1643  * such (__GFP_COMP), or manually just split the page up yourself
1644  * (see split_page()).
1645  *
1646  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1647  * took an arbitrary page protection parameter. This doesn't allow
1648  * that. Your vma protection will have to be set up correctly, which
1649  * means that if you want a shared writable mapping, you'd better
1650  * ask for a shared writable mapping!
1651  *
1652  * The page does not need to be reserved.
1653  */
1654 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1655 			struct page *page)
1656 {
1657 	if (addr < vma->vm_start || addr >= vma->vm_end)
1658 		return -EFAULT;
1659 	if (!page_count(page))
1660 		return -EINVAL;
1661 	vma->vm_flags |= VM_INSERTPAGE;
1662 	return insert_page(vma, addr, page, vma->vm_page_prot);
1663 }
1664 EXPORT_SYMBOL(vm_insert_page);
1665 
1666 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1667 			unsigned long pfn, pgprot_t prot)
1668 {
1669 	struct mm_struct *mm = vma->vm_mm;
1670 	int retval;
1671 	pte_t *pte, entry;
1672 	spinlock_t *ptl;
1673 
1674 	retval = -ENOMEM;
1675 	pte = get_locked_pte(mm, addr, &ptl);
1676 	if (!pte)
1677 		goto out;
1678 	retval = -EBUSY;
1679 	if (!pte_none(*pte))
1680 		goto out_unlock;
1681 
1682 	/* Ok, finally just insert the thing.. */
1683 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1684 	set_pte_at(mm, addr, pte, entry);
1685 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1686 
1687 	retval = 0;
1688 out_unlock:
1689 	pte_unmap_unlock(pte, ptl);
1690 out:
1691 	return retval;
1692 }
1693 
1694 /**
1695  * vm_insert_pfn - insert single pfn into user vma
1696  * @vma: user vma to map to
1697  * @addr: target user address of this page
1698  * @pfn: source kernel pfn
1699  *
1700  * Similar to vm_inert_page, this allows drivers to insert individual pages
1701  * they've allocated into a user vma. Same comments apply.
1702  *
1703  * This function should only be called from a vm_ops->fault handler, and
1704  * in that case the handler should return NULL.
1705  *
1706  * vma cannot be a COW mapping.
1707  *
1708  * As this is called only for pages that do not currently exist, we
1709  * do not need to flush old virtual caches or the TLB.
1710  */
1711 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1712 			unsigned long pfn)
1713 {
1714 	int ret;
1715 	pgprot_t pgprot = vma->vm_page_prot;
1716 	/*
1717 	 * Technically, architectures with pte_special can avoid all these
1718 	 * restrictions (same for remap_pfn_range).  However we would like
1719 	 * consistency in testing and feature parity among all, so we should
1720 	 * try to keep these invariants in place for everybody.
1721 	 */
1722 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1723 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1724 						(VM_PFNMAP|VM_MIXEDMAP));
1725 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1726 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1727 
1728 	if (addr < vma->vm_start || addr >= vma->vm_end)
1729 		return -EFAULT;
1730 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1731 		return -EINVAL;
1732 
1733 	ret = insert_pfn(vma, addr, pfn, pgprot);
1734 
1735 	if (ret)
1736 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1737 
1738 	return ret;
1739 }
1740 EXPORT_SYMBOL(vm_insert_pfn);
1741 
1742 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1743 			unsigned long pfn)
1744 {
1745 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1746 
1747 	if (addr < vma->vm_start || addr >= vma->vm_end)
1748 		return -EFAULT;
1749 
1750 	/*
1751 	 * If we don't have pte special, then we have to use the pfn_valid()
1752 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1753 	 * refcount the page if pfn_valid is true (hence insert_page rather
1754 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1755 	 * without pte special, it would there be refcounted as a normal page.
1756 	 */
1757 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1758 		struct page *page;
1759 
1760 		page = pfn_to_page(pfn);
1761 		return insert_page(vma, addr, page, vma->vm_page_prot);
1762 	}
1763 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1764 }
1765 EXPORT_SYMBOL(vm_insert_mixed);
1766 
1767 /*
1768  * maps a range of physical memory into the requested pages. the old
1769  * mappings are removed. any references to nonexistent pages results
1770  * in null mappings (currently treated as "copy-on-access")
1771  */
1772 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1773 			unsigned long addr, unsigned long end,
1774 			unsigned long pfn, pgprot_t prot)
1775 {
1776 	pte_t *pte;
1777 	spinlock_t *ptl;
1778 
1779 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1780 	if (!pte)
1781 		return -ENOMEM;
1782 	arch_enter_lazy_mmu_mode();
1783 	do {
1784 		BUG_ON(!pte_none(*pte));
1785 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1786 		pfn++;
1787 	} while (pte++, addr += PAGE_SIZE, addr != end);
1788 	arch_leave_lazy_mmu_mode();
1789 	pte_unmap_unlock(pte - 1, ptl);
1790 	return 0;
1791 }
1792 
1793 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1794 			unsigned long addr, unsigned long end,
1795 			unsigned long pfn, pgprot_t prot)
1796 {
1797 	pmd_t *pmd;
1798 	unsigned long next;
1799 
1800 	pfn -= addr >> PAGE_SHIFT;
1801 	pmd = pmd_alloc(mm, pud, addr);
1802 	if (!pmd)
1803 		return -ENOMEM;
1804 	do {
1805 		next = pmd_addr_end(addr, end);
1806 		if (remap_pte_range(mm, pmd, addr, next,
1807 				pfn + (addr >> PAGE_SHIFT), prot))
1808 			return -ENOMEM;
1809 	} while (pmd++, addr = next, addr != end);
1810 	return 0;
1811 }
1812 
1813 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1814 			unsigned long addr, unsigned long end,
1815 			unsigned long pfn, pgprot_t prot)
1816 {
1817 	pud_t *pud;
1818 	unsigned long next;
1819 
1820 	pfn -= addr >> PAGE_SHIFT;
1821 	pud = pud_alloc(mm, pgd, addr);
1822 	if (!pud)
1823 		return -ENOMEM;
1824 	do {
1825 		next = pud_addr_end(addr, end);
1826 		if (remap_pmd_range(mm, pud, addr, next,
1827 				pfn + (addr >> PAGE_SHIFT), prot))
1828 			return -ENOMEM;
1829 	} while (pud++, addr = next, addr != end);
1830 	return 0;
1831 }
1832 
1833 /**
1834  * remap_pfn_range - remap kernel memory to userspace
1835  * @vma: user vma to map to
1836  * @addr: target user address to start at
1837  * @pfn: physical address of kernel memory
1838  * @size: size of map area
1839  * @prot: page protection flags for this mapping
1840  *
1841  *  Note: this is only safe if the mm semaphore is held when called.
1842  */
1843 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1844 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1845 {
1846 	pgd_t *pgd;
1847 	unsigned long next;
1848 	unsigned long end = addr + PAGE_ALIGN(size);
1849 	struct mm_struct *mm = vma->vm_mm;
1850 	int err;
1851 
1852 	/*
1853 	 * Physically remapped pages are special. Tell the
1854 	 * rest of the world about it:
1855 	 *   VM_IO tells people not to look at these pages
1856 	 *	(accesses can have side effects).
1857 	 *   VM_RESERVED is specified all over the place, because
1858 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1859 	 *	in 2.6 the LRU scan won't even find its pages, so this
1860 	 *	flag means no more than count its pages in reserved_vm,
1861 	 * 	and omit it from core dump, even when VM_IO turned off.
1862 	 *   VM_PFNMAP tells the core MM that the base pages are just
1863 	 *	raw PFN mappings, and do not have a "struct page" associated
1864 	 *	with them.
1865 	 *
1866 	 * There's a horrible special case to handle copy-on-write
1867 	 * behaviour that some programs depend on. We mark the "original"
1868 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1869 	 */
1870 	if (addr == vma->vm_start && end == vma->vm_end) {
1871 		vma->vm_pgoff = pfn;
1872 		vma->vm_flags |= VM_PFN_AT_MMAP;
1873 	} else if (is_cow_mapping(vma->vm_flags))
1874 		return -EINVAL;
1875 
1876 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1877 
1878 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1879 	if (err) {
1880 		/*
1881 		 * To indicate that track_pfn related cleanup is not
1882 		 * needed from higher level routine calling unmap_vmas
1883 		 */
1884 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1885 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
1886 		return -EINVAL;
1887 	}
1888 
1889 	BUG_ON(addr >= end);
1890 	pfn -= addr >> PAGE_SHIFT;
1891 	pgd = pgd_offset(mm, addr);
1892 	flush_cache_range(vma, addr, end);
1893 	do {
1894 		next = pgd_addr_end(addr, end);
1895 		err = remap_pud_range(mm, pgd, addr, next,
1896 				pfn + (addr >> PAGE_SHIFT), prot);
1897 		if (err)
1898 			break;
1899 	} while (pgd++, addr = next, addr != end);
1900 
1901 	if (err)
1902 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1903 
1904 	return err;
1905 }
1906 EXPORT_SYMBOL(remap_pfn_range);
1907 
1908 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1909 				     unsigned long addr, unsigned long end,
1910 				     pte_fn_t fn, void *data)
1911 {
1912 	pte_t *pte;
1913 	int err;
1914 	pgtable_t token;
1915 	spinlock_t *uninitialized_var(ptl);
1916 
1917 	pte = (mm == &init_mm) ?
1918 		pte_alloc_kernel(pmd, addr) :
1919 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1920 	if (!pte)
1921 		return -ENOMEM;
1922 
1923 	BUG_ON(pmd_huge(*pmd));
1924 
1925 	arch_enter_lazy_mmu_mode();
1926 
1927 	token = pmd_pgtable(*pmd);
1928 
1929 	do {
1930 		err = fn(pte++, token, addr, data);
1931 		if (err)
1932 			break;
1933 	} while (addr += PAGE_SIZE, addr != end);
1934 
1935 	arch_leave_lazy_mmu_mode();
1936 
1937 	if (mm != &init_mm)
1938 		pte_unmap_unlock(pte-1, ptl);
1939 	return err;
1940 }
1941 
1942 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1943 				     unsigned long addr, unsigned long end,
1944 				     pte_fn_t fn, void *data)
1945 {
1946 	pmd_t *pmd;
1947 	unsigned long next;
1948 	int err;
1949 
1950 	BUG_ON(pud_huge(*pud));
1951 
1952 	pmd = pmd_alloc(mm, pud, addr);
1953 	if (!pmd)
1954 		return -ENOMEM;
1955 	do {
1956 		next = pmd_addr_end(addr, end);
1957 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1958 		if (err)
1959 			break;
1960 	} while (pmd++, addr = next, addr != end);
1961 	return err;
1962 }
1963 
1964 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1965 				     unsigned long addr, unsigned long end,
1966 				     pte_fn_t fn, void *data)
1967 {
1968 	pud_t *pud;
1969 	unsigned long next;
1970 	int err;
1971 
1972 	pud = pud_alloc(mm, pgd, addr);
1973 	if (!pud)
1974 		return -ENOMEM;
1975 	do {
1976 		next = pud_addr_end(addr, end);
1977 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1978 		if (err)
1979 			break;
1980 	} while (pud++, addr = next, addr != end);
1981 	return err;
1982 }
1983 
1984 /*
1985  * Scan a region of virtual memory, filling in page tables as necessary
1986  * and calling a provided function on each leaf page table.
1987  */
1988 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1989 			unsigned long size, pte_fn_t fn, void *data)
1990 {
1991 	pgd_t *pgd;
1992 	unsigned long next;
1993 	unsigned long start = addr, end = addr + size;
1994 	int err;
1995 
1996 	BUG_ON(addr >= end);
1997 	mmu_notifier_invalidate_range_start(mm, start, end);
1998 	pgd = pgd_offset(mm, addr);
1999 	do {
2000 		next = pgd_addr_end(addr, end);
2001 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2002 		if (err)
2003 			break;
2004 	} while (pgd++, addr = next, addr != end);
2005 	mmu_notifier_invalidate_range_end(mm, start, end);
2006 	return err;
2007 }
2008 EXPORT_SYMBOL_GPL(apply_to_page_range);
2009 
2010 /*
2011  * handle_pte_fault chooses page fault handler according to an entry
2012  * which was read non-atomically.  Before making any commitment, on
2013  * those architectures or configurations (e.g. i386 with PAE) which
2014  * might give a mix of unmatched parts, do_swap_page and do_file_page
2015  * must check under lock before unmapping the pte and proceeding
2016  * (but do_wp_page is only called after already making such a check;
2017  * and do_anonymous_page and do_no_page can safely check later on).
2018  */
2019 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2020 				pte_t *page_table, pte_t orig_pte)
2021 {
2022 	int same = 1;
2023 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2024 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2025 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2026 		spin_lock(ptl);
2027 		same = pte_same(*page_table, orig_pte);
2028 		spin_unlock(ptl);
2029 	}
2030 #endif
2031 	pte_unmap(page_table);
2032 	return same;
2033 }
2034 
2035 /*
2036  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
2037  * servicing faults for write access.  In the normal case, do always want
2038  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
2039  * that do not have writing enabled, when used by access_process_vm.
2040  */
2041 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
2042 {
2043 	if (likely(vma->vm_flags & VM_WRITE))
2044 		pte = pte_mkwrite(pte);
2045 	return pte;
2046 }
2047 
2048 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2049 {
2050 	/*
2051 	 * If the source page was a PFN mapping, we don't have
2052 	 * a "struct page" for it. We do a best-effort copy by
2053 	 * just copying from the original user address. If that
2054 	 * fails, we just zero-fill it. Live with it.
2055 	 */
2056 	if (unlikely(!src)) {
2057 		void *kaddr = kmap_atomic(dst, KM_USER0);
2058 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2059 
2060 		/*
2061 		 * This really shouldn't fail, because the page is there
2062 		 * in the page tables. But it might just be unreadable,
2063 		 * in which case we just give up and fill the result with
2064 		 * zeroes.
2065 		 */
2066 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2067 			memset(kaddr, 0, PAGE_SIZE);
2068 		kunmap_atomic(kaddr, KM_USER0);
2069 		flush_dcache_page(dst);
2070 	} else
2071 		copy_user_highpage(dst, src, va, vma);
2072 }
2073 
2074 /*
2075  * This routine handles present pages, when users try to write
2076  * to a shared page. It is done by copying the page to a new address
2077  * and decrementing the shared-page counter for the old page.
2078  *
2079  * Note that this routine assumes that the protection checks have been
2080  * done by the caller (the low-level page fault routine in most cases).
2081  * Thus we can safely just mark it writable once we've done any necessary
2082  * COW.
2083  *
2084  * We also mark the page dirty at this point even though the page will
2085  * change only once the write actually happens. This avoids a few races,
2086  * and potentially makes it more efficient.
2087  *
2088  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2089  * but allow concurrent faults), with pte both mapped and locked.
2090  * We return with mmap_sem still held, but pte unmapped and unlocked.
2091  */
2092 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2093 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2094 		spinlock_t *ptl, pte_t orig_pte)
2095 {
2096 	struct page *old_page, *new_page;
2097 	pte_t entry;
2098 	int reuse = 0, ret = 0;
2099 	int page_mkwrite = 0;
2100 	struct page *dirty_page = NULL;
2101 
2102 	old_page = vm_normal_page(vma, address, orig_pte);
2103 	if (!old_page) {
2104 		/*
2105 		 * VM_MIXEDMAP !pfn_valid() case
2106 		 *
2107 		 * We should not cow pages in a shared writeable mapping.
2108 		 * Just mark the pages writable as we can't do any dirty
2109 		 * accounting on raw pfn maps.
2110 		 */
2111 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2112 				     (VM_WRITE|VM_SHARED))
2113 			goto reuse;
2114 		goto gotten;
2115 	}
2116 
2117 	/*
2118 	 * Take out anonymous pages first, anonymous shared vmas are
2119 	 * not dirty accountable.
2120 	 */
2121 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2122 		if (!trylock_page(old_page)) {
2123 			page_cache_get(old_page);
2124 			pte_unmap_unlock(page_table, ptl);
2125 			lock_page(old_page);
2126 			page_table = pte_offset_map_lock(mm, pmd, address,
2127 							 &ptl);
2128 			if (!pte_same(*page_table, orig_pte)) {
2129 				unlock_page(old_page);
2130 				page_cache_release(old_page);
2131 				goto unlock;
2132 			}
2133 			page_cache_release(old_page);
2134 		}
2135 		reuse = reuse_swap_page(old_page);
2136 		if (reuse)
2137 			/*
2138 			 * The page is all ours.  Move it to our anon_vma so
2139 			 * the rmap code will not search our parent or siblings.
2140 			 * Protected against the rmap code by the page lock.
2141 			 */
2142 			page_move_anon_rmap(old_page, vma, address);
2143 		unlock_page(old_page);
2144 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2145 					(VM_WRITE|VM_SHARED))) {
2146 		/*
2147 		 * Only catch write-faults on shared writable pages,
2148 		 * read-only shared pages can get COWed by
2149 		 * get_user_pages(.write=1, .force=1).
2150 		 */
2151 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2152 			struct vm_fault vmf;
2153 			int tmp;
2154 
2155 			vmf.virtual_address = (void __user *)(address &
2156 								PAGE_MASK);
2157 			vmf.pgoff = old_page->index;
2158 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2159 			vmf.page = old_page;
2160 
2161 			/*
2162 			 * Notify the address space that the page is about to
2163 			 * become writable so that it can prohibit this or wait
2164 			 * for the page to get into an appropriate state.
2165 			 *
2166 			 * We do this without the lock held, so that it can
2167 			 * sleep if it needs to.
2168 			 */
2169 			page_cache_get(old_page);
2170 			pte_unmap_unlock(page_table, ptl);
2171 
2172 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2173 			if (unlikely(tmp &
2174 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2175 				ret = tmp;
2176 				goto unwritable_page;
2177 			}
2178 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2179 				lock_page(old_page);
2180 				if (!old_page->mapping) {
2181 					ret = 0; /* retry the fault */
2182 					unlock_page(old_page);
2183 					goto unwritable_page;
2184 				}
2185 			} else
2186 				VM_BUG_ON(!PageLocked(old_page));
2187 
2188 			/*
2189 			 * Since we dropped the lock we need to revalidate
2190 			 * the PTE as someone else may have changed it.  If
2191 			 * they did, we just return, as we can count on the
2192 			 * MMU to tell us if they didn't also make it writable.
2193 			 */
2194 			page_table = pte_offset_map_lock(mm, pmd, address,
2195 							 &ptl);
2196 			if (!pte_same(*page_table, orig_pte)) {
2197 				unlock_page(old_page);
2198 				page_cache_release(old_page);
2199 				goto unlock;
2200 			}
2201 
2202 			page_mkwrite = 1;
2203 		}
2204 		dirty_page = old_page;
2205 		get_page(dirty_page);
2206 		reuse = 1;
2207 	}
2208 
2209 	if (reuse) {
2210 reuse:
2211 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2212 		entry = pte_mkyoung(orig_pte);
2213 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2214 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2215 			update_mmu_cache(vma, address, page_table);
2216 		ret |= VM_FAULT_WRITE;
2217 		goto unlock;
2218 	}
2219 
2220 	/*
2221 	 * Ok, we need to copy. Oh, well..
2222 	 */
2223 	page_cache_get(old_page);
2224 gotten:
2225 	pte_unmap_unlock(page_table, ptl);
2226 
2227 	if (unlikely(anon_vma_prepare(vma)))
2228 		goto oom;
2229 
2230 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2231 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2232 		if (!new_page)
2233 			goto oom;
2234 	} else {
2235 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2236 		if (!new_page)
2237 			goto oom;
2238 		cow_user_page(new_page, old_page, address, vma);
2239 	}
2240 	__SetPageUptodate(new_page);
2241 
2242 	/*
2243 	 * Don't let another task, with possibly unlocked vma,
2244 	 * keep the mlocked page.
2245 	 */
2246 	if ((vma->vm_flags & VM_LOCKED) && old_page) {
2247 		lock_page(old_page);	/* for LRU manipulation */
2248 		clear_page_mlock(old_page);
2249 		unlock_page(old_page);
2250 	}
2251 
2252 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2253 		goto oom_free_new;
2254 
2255 	/*
2256 	 * Re-check the pte - we dropped the lock
2257 	 */
2258 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2259 	if (likely(pte_same(*page_table, orig_pte))) {
2260 		if (old_page) {
2261 			if (!PageAnon(old_page)) {
2262 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2263 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2264 			}
2265 		} else
2266 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2267 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2268 		entry = mk_pte(new_page, vma->vm_page_prot);
2269 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2270 		/*
2271 		 * Clear the pte entry and flush it first, before updating the
2272 		 * pte with the new entry. This will avoid a race condition
2273 		 * seen in the presence of one thread doing SMC and another
2274 		 * thread doing COW.
2275 		 */
2276 		ptep_clear_flush(vma, address, page_table);
2277 		page_add_new_anon_rmap(new_page, vma, address);
2278 		/*
2279 		 * We call the notify macro here because, when using secondary
2280 		 * mmu page tables (such as kvm shadow page tables), we want the
2281 		 * new page to be mapped directly into the secondary page table.
2282 		 */
2283 		set_pte_at_notify(mm, address, page_table, entry);
2284 		update_mmu_cache(vma, address, page_table);
2285 		if (old_page) {
2286 			/*
2287 			 * Only after switching the pte to the new page may
2288 			 * we remove the mapcount here. Otherwise another
2289 			 * process may come and find the rmap count decremented
2290 			 * before the pte is switched to the new page, and
2291 			 * "reuse" the old page writing into it while our pte
2292 			 * here still points into it and can be read by other
2293 			 * threads.
2294 			 *
2295 			 * The critical issue is to order this
2296 			 * page_remove_rmap with the ptp_clear_flush above.
2297 			 * Those stores are ordered by (if nothing else,)
2298 			 * the barrier present in the atomic_add_negative
2299 			 * in page_remove_rmap.
2300 			 *
2301 			 * Then the TLB flush in ptep_clear_flush ensures that
2302 			 * no process can access the old page before the
2303 			 * decremented mapcount is visible. And the old page
2304 			 * cannot be reused until after the decremented
2305 			 * mapcount is visible. So transitively, TLBs to
2306 			 * old page will be flushed before it can be reused.
2307 			 */
2308 			page_remove_rmap(old_page);
2309 		}
2310 
2311 		/* Free the old page.. */
2312 		new_page = old_page;
2313 		ret |= VM_FAULT_WRITE;
2314 	} else
2315 		mem_cgroup_uncharge_page(new_page);
2316 
2317 	if (new_page)
2318 		page_cache_release(new_page);
2319 	if (old_page)
2320 		page_cache_release(old_page);
2321 unlock:
2322 	pte_unmap_unlock(page_table, ptl);
2323 	if (dirty_page) {
2324 		/*
2325 		 * Yes, Virginia, this is actually required to prevent a race
2326 		 * with clear_page_dirty_for_io() from clearing the page dirty
2327 		 * bit after it clear all dirty ptes, but before a racing
2328 		 * do_wp_page installs a dirty pte.
2329 		 *
2330 		 * do_no_page is protected similarly.
2331 		 */
2332 		if (!page_mkwrite) {
2333 			wait_on_page_locked(dirty_page);
2334 			set_page_dirty_balance(dirty_page, page_mkwrite);
2335 		}
2336 		put_page(dirty_page);
2337 		if (page_mkwrite) {
2338 			struct address_space *mapping = dirty_page->mapping;
2339 
2340 			set_page_dirty(dirty_page);
2341 			unlock_page(dirty_page);
2342 			page_cache_release(dirty_page);
2343 			if (mapping)	{
2344 				/*
2345 				 * Some device drivers do not set page.mapping
2346 				 * but still dirty their pages
2347 				 */
2348 				balance_dirty_pages_ratelimited(mapping);
2349 			}
2350 		}
2351 
2352 		/* file_update_time outside page_lock */
2353 		if (vma->vm_file)
2354 			file_update_time(vma->vm_file);
2355 	}
2356 	return ret;
2357 oom_free_new:
2358 	page_cache_release(new_page);
2359 oom:
2360 	if (old_page) {
2361 		if (page_mkwrite) {
2362 			unlock_page(old_page);
2363 			page_cache_release(old_page);
2364 		}
2365 		page_cache_release(old_page);
2366 	}
2367 	return VM_FAULT_OOM;
2368 
2369 unwritable_page:
2370 	page_cache_release(old_page);
2371 	return ret;
2372 }
2373 
2374 /*
2375  * Helper functions for unmap_mapping_range().
2376  *
2377  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2378  *
2379  * We have to restart searching the prio_tree whenever we drop the lock,
2380  * since the iterator is only valid while the lock is held, and anyway
2381  * a later vma might be split and reinserted earlier while lock dropped.
2382  *
2383  * The list of nonlinear vmas could be handled more efficiently, using
2384  * a placeholder, but handle it in the same way until a need is shown.
2385  * It is important to search the prio_tree before nonlinear list: a vma
2386  * may become nonlinear and be shifted from prio_tree to nonlinear list
2387  * while the lock is dropped; but never shifted from list to prio_tree.
2388  *
2389  * In order to make forward progress despite restarting the search,
2390  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2391  * quickly skip it next time around.  Since the prio_tree search only
2392  * shows us those vmas affected by unmapping the range in question, we
2393  * can't efficiently keep all vmas in step with mapping->truncate_count:
2394  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2395  * mapping->truncate_count and vma->vm_truncate_count are protected by
2396  * i_mmap_lock.
2397  *
2398  * In order to make forward progress despite repeatedly restarting some
2399  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2400  * and restart from that address when we reach that vma again.  It might
2401  * have been split or merged, shrunk or extended, but never shifted: so
2402  * restart_addr remains valid so long as it remains in the vma's range.
2403  * unmap_mapping_range forces truncate_count to leap over page-aligned
2404  * values so we can save vma's restart_addr in its truncate_count field.
2405  */
2406 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2407 
2408 static void reset_vma_truncate_counts(struct address_space *mapping)
2409 {
2410 	struct vm_area_struct *vma;
2411 	struct prio_tree_iter iter;
2412 
2413 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2414 		vma->vm_truncate_count = 0;
2415 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2416 		vma->vm_truncate_count = 0;
2417 }
2418 
2419 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2420 		unsigned long start_addr, unsigned long end_addr,
2421 		struct zap_details *details)
2422 {
2423 	unsigned long restart_addr;
2424 	int need_break;
2425 
2426 	/*
2427 	 * files that support invalidating or truncating portions of the
2428 	 * file from under mmaped areas must have their ->fault function
2429 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2430 	 * This provides synchronisation against concurrent unmapping here.
2431 	 */
2432 
2433 again:
2434 	restart_addr = vma->vm_truncate_count;
2435 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2436 		start_addr = restart_addr;
2437 		if (start_addr >= end_addr) {
2438 			/* Top of vma has been split off since last time */
2439 			vma->vm_truncate_count = details->truncate_count;
2440 			return 0;
2441 		}
2442 	}
2443 
2444 	restart_addr = zap_page_range(vma, start_addr,
2445 					end_addr - start_addr, details);
2446 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2447 
2448 	if (restart_addr >= end_addr) {
2449 		/* We have now completed this vma: mark it so */
2450 		vma->vm_truncate_count = details->truncate_count;
2451 		if (!need_break)
2452 			return 0;
2453 	} else {
2454 		/* Note restart_addr in vma's truncate_count field */
2455 		vma->vm_truncate_count = restart_addr;
2456 		if (!need_break)
2457 			goto again;
2458 	}
2459 
2460 	spin_unlock(details->i_mmap_lock);
2461 	cond_resched();
2462 	spin_lock(details->i_mmap_lock);
2463 	return -EINTR;
2464 }
2465 
2466 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2467 					    struct zap_details *details)
2468 {
2469 	struct vm_area_struct *vma;
2470 	struct prio_tree_iter iter;
2471 	pgoff_t vba, vea, zba, zea;
2472 
2473 restart:
2474 	vma_prio_tree_foreach(vma, &iter, root,
2475 			details->first_index, details->last_index) {
2476 		/* Skip quickly over those we have already dealt with */
2477 		if (vma->vm_truncate_count == details->truncate_count)
2478 			continue;
2479 
2480 		vba = vma->vm_pgoff;
2481 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2482 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2483 		zba = details->first_index;
2484 		if (zba < vba)
2485 			zba = vba;
2486 		zea = details->last_index;
2487 		if (zea > vea)
2488 			zea = vea;
2489 
2490 		if (unmap_mapping_range_vma(vma,
2491 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2492 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2493 				details) < 0)
2494 			goto restart;
2495 	}
2496 }
2497 
2498 static inline void unmap_mapping_range_list(struct list_head *head,
2499 					    struct zap_details *details)
2500 {
2501 	struct vm_area_struct *vma;
2502 
2503 	/*
2504 	 * In nonlinear VMAs there is no correspondence between virtual address
2505 	 * offset and file offset.  So we must perform an exhaustive search
2506 	 * across *all* the pages in each nonlinear VMA, not just the pages
2507 	 * whose virtual address lies outside the file truncation point.
2508 	 */
2509 restart:
2510 	list_for_each_entry(vma, head, shared.vm_set.list) {
2511 		/* Skip quickly over those we have already dealt with */
2512 		if (vma->vm_truncate_count == details->truncate_count)
2513 			continue;
2514 		details->nonlinear_vma = vma;
2515 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2516 					vma->vm_end, details) < 0)
2517 			goto restart;
2518 	}
2519 }
2520 
2521 /**
2522  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2523  * @mapping: the address space containing mmaps to be unmapped.
2524  * @holebegin: byte in first page to unmap, relative to the start of
2525  * the underlying file.  This will be rounded down to a PAGE_SIZE
2526  * boundary.  Note that this is different from truncate_pagecache(), which
2527  * must keep the partial page.  In contrast, we must get rid of
2528  * partial pages.
2529  * @holelen: size of prospective hole in bytes.  This will be rounded
2530  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2531  * end of the file.
2532  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2533  * but 0 when invalidating pagecache, don't throw away private data.
2534  */
2535 void unmap_mapping_range(struct address_space *mapping,
2536 		loff_t const holebegin, loff_t const holelen, int even_cows)
2537 {
2538 	struct zap_details details;
2539 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2540 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2541 
2542 	/* Check for overflow. */
2543 	if (sizeof(holelen) > sizeof(hlen)) {
2544 		long long holeend =
2545 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2546 		if (holeend & ~(long long)ULONG_MAX)
2547 			hlen = ULONG_MAX - hba + 1;
2548 	}
2549 
2550 	details.check_mapping = even_cows? NULL: mapping;
2551 	details.nonlinear_vma = NULL;
2552 	details.first_index = hba;
2553 	details.last_index = hba + hlen - 1;
2554 	if (details.last_index < details.first_index)
2555 		details.last_index = ULONG_MAX;
2556 	details.i_mmap_lock = &mapping->i_mmap_lock;
2557 
2558 	spin_lock(&mapping->i_mmap_lock);
2559 
2560 	/* Protect against endless unmapping loops */
2561 	mapping->truncate_count++;
2562 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2563 		if (mapping->truncate_count == 0)
2564 			reset_vma_truncate_counts(mapping);
2565 		mapping->truncate_count++;
2566 	}
2567 	details.truncate_count = mapping->truncate_count;
2568 
2569 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2570 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2571 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2572 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2573 	spin_unlock(&mapping->i_mmap_lock);
2574 }
2575 EXPORT_SYMBOL(unmap_mapping_range);
2576 
2577 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2578 {
2579 	struct address_space *mapping = inode->i_mapping;
2580 
2581 	/*
2582 	 * If the underlying filesystem is not going to provide
2583 	 * a way to truncate a range of blocks (punch a hole) -
2584 	 * we should return failure right now.
2585 	 */
2586 	if (!inode->i_op->truncate_range)
2587 		return -ENOSYS;
2588 
2589 	mutex_lock(&inode->i_mutex);
2590 	down_write(&inode->i_alloc_sem);
2591 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2592 	truncate_inode_pages_range(mapping, offset, end);
2593 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2594 	inode->i_op->truncate_range(inode, offset, end);
2595 	up_write(&inode->i_alloc_sem);
2596 	mutex_unlock(&inode->i_mutex);
2597 
2598 	return 0;
2599 }
2600 
2601 /*
2602  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2603  * but allow concurrent faults), and pte mapped but not yet locked.
2604  * We return with mmap_sem still held, but pte unmapped and unlocked.
2605  */
2606 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2607 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2608 		unsigned int flags, pte_t orig_pte)
2609 {
2610 	spinlock_t *ptl;
2611 	struct page *page;
2612 	swp_entry_t entry;
2613 	pte_t pte;
2614 	struct mem_cgroup *ptr = NULL;
2615 	int ret = 0;
2616 
2617 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2618 		goto out;
2619 
2620 	entry = pte_to_swp_entry(orig_pte);
2621 	if (unlikely(non_swap_entry(entry))) {
2622 		if (is_migration_entry(entry)) {
2623 			migration_entry_wait(mm, pmd, address);
2624 		} else if (is_hwpoison_entry(entry)) {
2625 			ret = VM_FAULT_HWPOISON;
2626 		} else {
2627 			print_bad_pte(vma, address, orig_pte, NULL);
2628 			ret = VM_FAULT_SIGBUS;
2629 		}
2630 		goto out;
2631 	}
2632 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2633 	page = lookup_swap_cache(entry);
2634 	if (!page) {
2635 		grab_swap_token(mm); /* Contend for token _before_ read-in */
2636 		page = swapin_readahead(entry,
2637 					GFP_HIGHUSER_MOVABLE, vma, address);
2638 		if (!page) {
2639 			/*
2640 			 * Back out if somebody else faulted in this pte
2641 			 * while we released the pte lock.
2642 			 */
2643 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2644 			if (likely(pte_same(*page_table, orig_pte)))
2645 				ret = VM_FAULT_OOM;
2646 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2647 			goto unlock;
2648 		}
2649 
2650 		/* Had to read the page from swap area: Major fault */
2651 		ret = VM_FAULT_MAJOR;
2652 		count_vm_event(PGMAJFAULT);
2653 	} else if (PageHWPoison(page)) {
2654 		/*
2655 		 * hwpoisoned dirty swapcache pages are kept for killing
2656 		 * owner processes (which may be unknown at hwpoison time)
2657 		 */
2658 		ret = VM_FAULT_HWPOISON;
2659 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2660 		goto out_release;
2661 	}
2662 
2663 	lock_page(page);
2664 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2665 
2666 	page = ksm_might_need_to_copy(page, vma, address);
2667 	if (!page) {
2668 		ret = VM_FAULT_OOM;
2669 		goto out;
2670 	}
2671 
2672 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2673 		ret = VM_FAULT_OOM;
2674 		goto out_page;
2675 	}
2676 
2677 	/*
2678 	 * Back out if somebody else already faulted in this pte.
2679 	 */
2680 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2681 	if (unlikely(!pte_same(*page_table, orig_pte)))
2682 		goto out_nomap;
2683 
2684 	if (unlikely(!PageUptodate(page))) {
2685 		ret = VM_FAULT_SIGBUS;
2686 		goto out_nomap;
2687 	}
2688 
2689 	/*
2690 	 * The page isn't present yet, go ahead with the fault.
2691 	 *
2692 	 * Be careful about the sequence of operations here.
2693 	 * To get its accounting right, reuse_swap_page() must be called
2694 	 * while the page is counted on swap but not yet in mapcount i.e.
2695 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2696 	 * must be called after the swap_free(), or it will never succeed.
2697 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2698 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2699 	 * in page->private. In this case, a record in swap_cgroup  is silently
2700 	 * discarded at swap_free().
2701 	 */
2702 
2703 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2704 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2705 	pte = mk_pte(page, vma->vm_page_prot);
2706 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2707 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2708 		flags &= ~FAULT_FLAG_WRITE;
2709 	}
2710 	flush_icache_page(vma, page);
2711 	set_pte_at(mm, address, page_table, pte);
2712 	page_add_anon_rmap(page, vma, address);
2713 	/* It's better to call commit-charge after rmap is established */
2714 	mem_cgroup_commit_charge_swapin(page, ptr);
2715 
2716 	swap_free(entry);
2717 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2718 		try_to_free_swap(page);
2719 	unlock_page(page);
2720 
2721 	if (flags & FAULT_FLAG_WRITE) {
2722 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2723 		if (ret & VM_FAULT_ERROR)
2724 			ret &= VM_FAULT_ERROR;
2725 		goto out;
2726 	}
2727 
2728 	/* No need to invalidate - it was non-present before */
2729 	update_mmu_cache(vma, address, page_table);
2730 unlock:
2731 	pte_unmap_unlock(page_table, ptl);
2732 out:
2733 	return ret;
2734 out_nomap:
2735 	mem_cgroup_cancel_charge_swapin(ptr);
2736 	pte_unmap_unlock(page_table, ptl);
2737 out_page:
2738 	unlock_page(page);
2739 out_release:
2740 	page_cache_release(page);
2741 	return ret;
2742 }
2743 
2744 /*
2745  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2746  * but allow concurrent faults), and pte mapped but not yet locked.
2747  * We return with mmap_sem still held, but pte unmapped and unlocked.
2748  */
2749 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2750 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2751 		unsigned int flags)
2752 {
2753 	struct page *page;
2754 	spinlock_t *ptl;
2755 	pte_t entry;
2756 
2757 	if (!(flags & FAULT_FLAG_WRITE)) {
2758 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2759 						vma->vm_page_prot));
2760 		ptl = pte_lockptr(mm, pmd);
2761 		spin_lock(ptl);
2762 		if (!pte_none(*page_table))
2763 			goto unlock;
2764 		goto setpte;
2765 	}
2766 
2767 	/* Allocate our own private page. */
2768 	pte_unmap(page_table);
2769 
2770 	if (unlikely(anon_vma_prepare(vma)))
2771 		goto oom;
2772 	page = alloc_zeroed_user_highpage_movable(vma, address);
2773 	if (!page)
2774 		goto oom;
2775 	__SetPageUptodate(page);
2776 
2777 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2778 		goto oom_free_page;
2779 
2780 	entry = mk_pte(page, vma->vm_page_prot);
2781 	if (vma->vm_flags & VM_WRITE)
2782 		entry = pte_mkwrite(pte_mkdirty(entry));
2783 
2784 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2785 	if (!pte_none(*page_table))
2786 		goto release;
2787 
2788 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2789 	page_add_new_anon_rmap(page, vma, address);
2790 setpte:
2791 	set_pte_at(mm, address, page_table, entry);
2792 
2793 	/* No need to invalidate - it was non-present before */
2794 	update_mmu_cache(vma, address, page_table);
2795 unlock:
2796 	pte_unmap_unlock(page_table, ptl);
2797 	return 0;
2798 release:
2799 	mem_cgroup_uncharge_page(page);
2800 	page_cache_release(page);
2801 	goto unlock;
2802 oom_free_page:
2803 	page_cache_release(page);
2804 oom:
2805 	return VM_FAULT_OOM;
2806 }
2807 
2808 /*
2809  * __do_fault() tries to create a new page mapping. It aggressively
2810  * tries to share with existing pages, but makes a separate copy if
2811  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2812  * the next page fault.
2813  *
2814  * As this is called only for pages that do not currently exist, we
2815  * do not need to flush old virtual caches or the TLB.
2816  *
2817  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2818  * but allow concurrent faults), and pte neither mapped nor locked.
2819  * We return with mmap_sem still held, but pte unmapped and unlocked.
2820  */
2821 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2822 		unsigned long address, pmd_t *pmd,
2823 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2824 {
2825 	pte_t *page_table;
2826 	spinlock_t *ptl;
2827 	struct page *page;
2828 	pte_t entry;
2829 	int anon = 0;
2830 	int charged = 0;
2831 	struct page *dirty_page = NULL;
2832 	struct vm_fault vmf;
2833 	int ret;
2834 	int page_mkwrite = 0;
2835 
2836 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2837 	vmf.pgoff = pgoff;
2838 	vmf.flags = flags;
2839 	vmf.page = NULL;
2840 
2841 	ret = vma->vm_ops->fault(vma, &vmf);
2842 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2843 		return ret;
2844 
2845 	if (unlikely(PageHWPoison(vmf.page))) {
2846 		if (ret & VM_FAULT_LOCKED)
2847 			unlock_page(vmf.page);
2848 		return VM_FAULT_HWPOISON;
2849 	}
2850 
2851 	/*
2852 	 * For consistency in subsequent calls, make the faulted page always
2853 	 * locked.
2854 	 */
2855 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2856 		lock_page(vmf.page);
2857 	else
2858 		VM_BUG_ON(!PageLocked(vmf.page));
2859 
2860 	/*
2861 	 * Should we do an early C-O-W break?
2862 	 */
2863 	page = vmf.page;
2864 	if (flags & FAULT_FLAG_WRITE) {
2865 		if (!(vma->vm_flags & VM_SHARED)) {
2866 			anon = 1;
2867 			if (unlikely(anon_vma_prepare(vma))) {
2868 				ret = VM_FAULT_OOM;
2869 				goto out;
2870 			}
2871 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2872 						vma, address);
2873 			if (!page) {
2874 				ret = VM_FAULT_OOM;
2875 				goto out;
2876 			}
2877 			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2878 				ret = VM_FAULT_OOM;
2879 				page_cache_release(page);
2880 				goto out;
2881 			}
2882 			charged = 1;
2883 			/*
2884 			 * Don't let another task, with possibly unlocked vma,
2885 			 * keep the mlocked page.
2886 			 */
2887 			if (vma->vm_flags & VM_LOCKED)
2888 				clear_page_mlock(vmf.page);
2889 			copy_user_highpage(page, vmf.page, address, vma);
2890 			__SetPageUptodate(page);
2891 		} else {
2892 			/*
2893 			 * If the page will be shareable, see if the backing
2894 			 * address space wants to know that the page is about
2895 			 * to become writable
2896 			 */
2897 			if (vma->vm_ops->page_mkwrite) {
2898 				int tmp;
2899 
2900 				unlock_page(page);
2901 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2902 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2903 				if (unlikely(tmp &
2904 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2905 					ret = tmp;
2906 					goto unwritable_page;
2907 				}
2908 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2909 					lock_page(page);
2910 					if (!page->mapping) {
2911 						ret = 0; /* retry the fault */
2912 						unlock_page(page);
2913 						goto unwritable_page;
2914 					}
2915 				} else
2916 					VM_BUG_ON(!PageLocked(page));
2917 				page_mkwrite = 1;
2918 			}
2919 		}
2920 
2921 	}
2922 
2923 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2924 
2925 	/*
2926 	 * This silly early PAGE_DIRTY setting removes a race
2927 	 * due to the bad i386 page protection. But it's valid
2928 	 * for other architectures too.
2929 	 *
2930 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
2931 	 * an exclusive copy of the page, or this is a shared mapping,
2932 	 * so we can make it writable and dirty to avoid having to
2933 	 * handle that later.
2934 	 */
2935 	/* Only go through if we didn't race with anybody else... */
2936 	if (likely(pte_same(*page_table, orig_pte))) {
2937 		flush_icache_page(vma, page);
2938 		entry = mk_pte(page, vma->vm_page_prot);
2939 		if (flags & FAULT_FLAG_WRITE)
2940 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2941 		if (anon) {
2942 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2943 			page_add_new_anon_rmap(page, vma, address);
2944 		} else {
2945 			inc_mm_counter_fast(mm, MM_FILEPAGES);
2946 			page_add_file_rmap(page);
2947 			if (flags & FAULT_FLAG_WRITE) {
2948 				dirty_page = page;
2949 				get_page(dirty_page);
2950 			}
2951 		}
2952 		set_pte_at(mm, address, page_table, entry);
2953 
2954 		/* no need to invalidate: a not-present page won't be cached */
2955 		update_mmu_cache(vma, address, page_table);
2956 	} else {
2957 		if (charged)
2958 			mem_cgroup_uncharge_page(page);
2959 		if (anon)
2960 			page_cache_release(page);
2961 		else
2962 			anon = 1; /* no anon but release faulted_page */
2963 	}
2964 
2965 	pte_unmap_unlock(page_table, ptl);
2966 
2967 out:
2968 	if (dirty_page) {
2969 		struct address_space *mapping = page->mapping;
2970 
2971 		if (set_page_dirty(dirty_page))
2972 			page_mkwrite = 1;
2973 		unlock_page(dirty_page);
2974 		put_page(dirty_page);
2975 		if (page_mkwrite && mapping) {
2976 			/*
2977 			 * Some device drivers do not set page.mapping but still
2978 			 * dirty their pages
2979 			 */
2980 			balance_dirty_pages_ratelimited(mapping);
2981 		}
2982 
2983 		/* file_update_time outside page_lock */
2984 		if (vma->vm_file)
2985 			file_update_time(vma->vm_file);
2986 	} else {
2987 		unlock_page(vmf.page);
2988 		if (anon)
2989 			page_cache_release(vmf.page);
2990 	}
2991 
2992 	return ret;
2993 
2994 unwritable_page:
2995 	page_cache_release(page);
2996 	return ret;
2997 }
2998 
2999 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3000 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3001 		unsigned int flags, pte_t orig_pte)
3002 {
3003 	pgoff_t pgoff = (((address & PAGE_MASK)
3004 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3005 
3006 	pte_unmap(page_table);
3007 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3008 }
3009 
3010 /*
3011  * Fault of a previously existing named mapping. Repopulate the pte
3012  * from the encoded file_pte if possible. This enables swappable
3013  * nonlinear vmas.
3014  *
3015  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3016  * but allow concurrent faults), and pte mapped but not yet locked.
3017  * We return with mmap_sem still held, but pte unmapped and unlocked.
3018  */
3019 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3020 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3021 		unsigned int flags, pte_t orig_pte)
3022 {
3023 	pgoff_t pgoff;
3024 
3025 	flags |= FAULT_FLAG_NONLINEAR;
3026 
3027 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3028 		return 0;
3029 
3030 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3031 		/*
3032 		 * Page table corrupted: show pte and kill process.
3033 		 */
3034 		print_bad_pte(vma, address, orig_pte, NULL);
3035 		return VM_FAULT_SIGBUS;
3036 	}
3037 
3038 	pgoff = pte_to_pgoff(orig_pte);
3039 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3040 }
3041 
3042 /*
3043  * These routines also need to handle stuff like marking pages dirty
3044  * and/or accessed for architectures that don't do it in hardware (most
3045  * RISC architectures).  The early dirtying is also good on the i386.
3046  *
3047  * There is also a hook called "update_mmu_cache()" that architectures
3048  * with external mmu caches can use to update those (ie the Sparc or
3049  * PowerPC hashed page tables that act as extended TLBs).
3050  *
3051  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3052  * but allow concurrent faults), and pte mapped but not yet locked.
3053  * We return with mmap_sem still held, but pte unmapped and unlocked.
3054  */
3055 static inline int handle_pte_fault(struct mm_struct *mm,
3056 		struct vm_area_struct *vma, unsigned long address,
3057 		pte_t *pte, pmd_t *pmd, unsigned int flags)
3058 {
3059 	pte_t entry;
3060 	spinlock_t *ptl;
3061 
3062 	entry = *pte;
3063 	if (!pte_present(entry)) {
3064 		if (pte_none(entry)) {
3065 			if (vma->vm_ops) {
3066 				if (likely(vma->vm_ops->fault))
3067 					return do_linear_fault(mm, vma, address,
3068 						pte, pmd, flags, entry);
3069 			}
3070 			return do_anonymous_page(mm, vma, address,
3071 						 pte, pmd, flags);
3072 		}
3073 		if (pte_file(entry))
3074 			return do_nonlinear_fault(mm, vma, address,
3075 					pte, pmd, flags, entry);
3076 		return do_swap_page(mm, vma, address,
3077 					pte, pmd, flags, entry);
3078 	}
3079 
3080 	ptl = pte_lockptr(mm, pmd);
3081 	spin_lock(ptl);
3082 	if (unlikely(!pte_same(*pte, entry)))
3083 		goto unlock;
3084 	if (flags & FAULT_FLAG_WRITE) {
3085 		if (!pte_write(entry))
3086 			return do_wp_page(mm, vma, address,
3087 					pte, pmd, ptl, entry);
3088 		entry = pte_mkdirty(entry);
3089 	}
3090 	entry = pte_mkyoung(entry);
3091 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3092 		update_mmu_cache(vma, address, pte);
3093 	} else {
3094 		/*
3095 		 * This is needed only for protection faults but the arch code
3096 		 * is not yet telling us if this is a protection fault or not.
3097 		 * This still avoids useless tlb flushes for .text page faults
3098 		 * with threads.
3099 		 */
3100 		if (flags & FAULT_FLAG_WRITE)
3101 			flush_tlb_page(vma, address);
3102 	}
3103 unlock:
3104 	pte_unmap_unlock(pte, ptl);
3105 	return 0;
3106 }
3107 
3108 /*
3109  * By the time we get here, we already hold the mm semaphore
3110  */
3111 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3112 		unsigned long address, unsigned int flags)
3113 {
3114 	pgd_t *pgd;
3115 	pud_t *pud;
3116 	pmd_t *pmd;
3117 	pte_t *pte;
3118 
3119 	__set_current_state(TASK_RUNNING);
3120 
3121 	count_vm_event(PGFAULT);
3122 
3123 	/* do counter updates before entering really critical section. */
3124 	check_sync_rss_stat(current);
3125 
3126 	if (unlikely(is_vm_hugetlb_page(vma)))
3127 		return hugetlb_fault(mm, vma, address, flags);
3128 
3129 	pgd = pgd_offset(mm, address);
3130 	pud = pud_alloc(mm, pgd, address);
3131 	if (!pud)
3132 		return VM_FAULT_OOM;
3133 	pmd = pmd_alloc(mm, pud, address);
3134 	if (!pmd)
3135 		return VM_FAULT_OOM;
3136 	pte = pte_alloc_map(mm, pmd, address);
3137 	if (!pte)
3138 		return VM_FAULT_OOM;
3139 
3140 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3141 }
3142 
3143 #ifndef __PAGETABLE_PUD_FOLDED
3144 /*
3145  * Allocate page upper directory.
3146  * We've already handled the fast-path in-line.
3147  */
3148 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3149 {
3150 	pud_t *new = pud_alloc_one(mm, address);
3151 	if (!new)
3152 		return -ENOMEM;
3153 
3154 	smp_wmb(); /* See comment in __pte_alloc */
3155 
3156 	spin_lock(&mm->page_table_lock);
3157 	if (pgd_present(*pgd))		/* Another has populated it */
3158 		pud_free(mm, new);
3159 	else
3160 		pgd_populate(mm, pgd, new);
3161 	spin_unlock(&mm->page_table_lock);
3162 	return 0;
3163 }
3164 #endif /* __PAGETABLE_PUD_FOLDED */
3165 
3166 #ifndef __PAGETABLE_PMD_FOLDED
3167 /*
3168  * Allocate page middle directory.
3169  * We've already handled the fast-path in-line.
3170  */
3171 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3172 {
3173 	pmd_t *new = pmd_alloc_one(mm, address);
3174 	if (!new)
3175 		return -ENOMEM;
3176 
3177 	smp_wmb(); /* See comment in __pte_alloc */
3178 
3179 	spin_lock(&mm->page_table_lock);
3180 #ifndef __ARCH_HAS_4LEVEL_HACK
3181 	if (pud_present(*pud))		/* Another has populated it */
3182 		pmd_free(mm, new);
3183 	else
3184 		pud_populate(mm, pud, new);
3185 #else
3186 	if (pgd_present(*pud))		/* Another has populated it */
3187 		pmd_free(mm, new);
3188 	else
3189 		pgd_populate(mm, pud, new);
3190 #endif /* __ARCH_HAS_4LEVEL_HACK */
3191 	spin_unlock(&mm->page_table_lock);
3192 	return 0;
3193 }
3194 #endif /* __PAGETABLE_PMD_FOLDED */
3195 
3196 int make_pages_present(unsigned long addr, unsigned long end)
3197 {
3198 	int ret, len, write;
3199 	struct vm_area_struct * vma;
3200 
3201 	vma = find_vma(current->mm, addr);
3202 	if (!vma)
3203 		return -ENOMEM;
3204 	write = (vma->vm_flags & VM_WRITE) != 0;
3205 	BUG_ON(addr >= end);
3206 	BUG_ON(end > vma->vm_end);
3207 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3208 	ret = get_user_pages(current, current->mm, addr,
3209 			len, write, 0, NULL, NULL);
3210 	if (ret < 0)
3211 		return ret;
3212 	return ret == len ? 0 : -EFAULT;
3213 }
3214 
3215 #if !defined(__HAVE_ARCH_GATE_AREA)
3216 
3217 #if defined(AT_SYSINFO_EHDR)
3218 static struct vm_area_struct gate_vma;
3219 
3220 static int __init gate_vma_init(void)
3221 {
3222 	gate_vma.vm_mm = NULL;
3223 	gate_vma.vm_start = FIXADDR_USER_START;
3224 	gate_vma.vm_end = FIXADDR_USER_END;
3225 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3226 	gate_vma.vm_page_prot = __P101;
3227 	/*
3228 	 * Make sure the vDSO gets into every core dump.
3229 	 * Dumping its contents makes post-mortem fully interpretable later
3230 	 * without matching up the same kernel and hardware config to see
3231 	 * what PC values meant.
3232 	 */
3233 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3234 	return 0;
3235 }
3236 __initcall(gate_vma_init);
3237 #endif
3238 
3239 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3240 {
3241 #ifdef AT_SYSINFO_EHDR
3242 	return &gate_vma;
3243 #else
3244 	return NULL;
3245 #endif
3246 }
3247 
3248 int in_gate_area_no_task(unsigned long addr)
3249 {
3250 #ifdef AT_SYSINFO_EHDR
3251 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3252 		return 1;
3253 #endif
3254 	return 0;
3255 }
3256 
3257 #endif	/* __HAVE_ARCH_GATE_AREA */
3258 
3259 static int follow_pte(struct mm_struct *mm, unsigned long address,
3260 		pte_t **ptepp, spinlock_t **ptlp)
3261 {
3262 	pgd_t *pgd;
3263 	pud_t *pud;
3264 	pmd_t *pmd;
3265 	pte_t *ptep;
3266 
3267 	pgd = pgd_offset(mm, address);
3268 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3269 		goto out;
3270 
3271 	pud = pud_offset(pgd, address);
3272 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3273 		goto out;
3274 
3275 	pmd = pmd_offset(pud, address);
3276 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3277 		goto out;
3278 
3279 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3280 	if (pmd_huge(*pmd))
3281 		goto out;
3282 
3283 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3284 	if (!ptep)
3285 		goto out;
3286 	if (!pte_present(*ptep))
3287 		goto unlock;
3288 	*ptepp = ptep;
3289 	return 0;
3290 unlock:
3291 	pte_unmap_unlock(ptep, *ptlp);
3292 out:
3293 	return -EINVAL;
3294 }
3295 
3296 /**
3297  * follow_pfn - look up PFN at a user virtual address
3298  * @vma: memory mapping
3299  * @address: user virtual address
3300  * @pfn: location to store found PFN
3301  *
3302  * Only IO mappings and raw PFN mappings are allowed.
3303  *
3304  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3305  */
3306 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3307 	unsigned long *pfn)
3308 {
3309 	int ret = -EINVAL;
3310 	spinlock_t *ptl;
3311 	pte_t *ptep;
3312 
3313 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3314 		return ret;
3315 
3316 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3317 	if (ret)
3318 		return ret;
3319 	*pfn = pte_pfn(*ptep);
3320 	pte_unmap_unlock(ptep, ptl);
3321 	return 0;
3322 }
3323 EXPORT_SYMBOL(follow_pfn);
3324 
3325 #ifdef CONFIG_HAVE_IOREMAP_PROT
3326 int follow_phys(struct vm_area_struct *vma,
3327 		unsigned long address, unsigned int flags,
3328 		unsigned long *prot, resource_size_t *phys)
3329 {
3330 	int ret = -EINVAL;
3331 	pte_t *ptep, pte;
3332 	spinlock_t *ptl;
3333 
3334 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3335 		goto out;
3336 
3337 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3338 		goto out;
3339 	pte = *ptep;
3340 
3341 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3342 		goto unlock;
3343 
3344 	*prot = pgprot_val(pte_pgprot(pte));
3345 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3346 
3347 	ret = 0;
3348 unlock:
3349 	pte_unmap_unlock(ptep, ptl);
3350 out:
3351 	return ret;
3352 }
3353 
3354 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3355 			void *buf, int len, int write)
3356 {
3357 	resource_size_t phys_addr;
3358 	unsigned long prot = 0;
3359 	void __iomem *maddr;
3360 	int offset = addr & (PAGE_SIZE-1);
3361 
3362 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3363 		return -EINVAL;
3364 
3365 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3366 	if (write)
3367 		memcpy_toio(maddr + offset, buf, len);
3368 	else
3369 		memcpy_fromio(buf, maddr + offset, len);
3370 	iounmap(maddr);
3371 
3372 	return len;
3373 }
3374 #endif
3375 
3376 /*
3377  * Access another process' address space.
3378  * Source/target buffer must be kernel space,
3379  * Do not walk the page table directly, use get_user_pages
3380  */
3381 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3382 {
3383 	struct mm_struct *mm;
3384 	struct vm_area_struct *vma;
3385 	void *old_buf = buf;
3386 
3387 	mm = get_task_mm(tsk);
3388 	if (!mm)
3389 		return 0;
3390 
3391 	down_read(&mm->mmap_sem);
3392 	/* ignore errors, just check how much was successfully transferred */
3393 	while (len) {
3394 		int bytes, ret, offset;
3395 		void *maddr;
3396 		struct page *page = NULL;
3397 
3398 		ret = get_user_pages(tsk, mm, addr, 1,
3399 				write, 1, &page, &vma);
3400 		if (ret <= 0) {
3401 			/*
3402 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3403 			 * we can access using slightly different code.
3404 			 */
3405 #ifdef CONFIG_HAVE_IOREMAP_PROT
3406 			vma = find_vma(mm, addr);
3407 			if (!vma)
3408 				break;
3409 			if (vma->vm_ops && vma->vm_ops->access)
3410 				ret = vma->vm_ops->access(vma, addr, buf,
3411 							  len, write);
3412 			if (ret <= 0)
3413 #endif
3414 				break;
3415 			bytes = ret;
3416 		} else {
3417 			bytes = len;
3418 			offset = addr & (PAGE_SIZE-1);
3419 			if (bytes > PAGE_SIZE-offset)
3420 				bytes = PAGE_SIZE-offset;
3421 
3422 			maddr = kmap(page);
3423 			if (write) {
3424 				copy_to_user_page(vma, page, addr,
3425 						  maddr + offset, buf, bytes);
3426 				set_page_dirty_lock(page);
3427 			} else {
3428 				copy_from_user_page(vma, page, addr,
3429 						    buf, maddr + offset, bytes);
3430 			}
3431 			kunmap(page);
3432 			page_cache_release(page);
3433 		}
3434 		len -= bytes;
3435 		buf += bytes;
3436 		addr += bytes;
3437 	}
3438 	up_read(&mm->mmap_sem);
3439 	mmput(mm);
3440 
3441 	return buf - old_buf;
3442 }
3443 
3444 /*
3445  * Print the name of a VMA.
3446  */
3447 void print_vma_addr(char *prefix, unsigned long ip)
3448 {
3449 	struct mm_struct *mm = current->mm;
3450 	struct vm_area_struct *vma;
3451 
3452 	/*
3453 	 * Do not print if we are in atomic
3454 	 * contexts (in exception stacks, etc.):
3455 	 */
3456 	if (preempt_count())
3457 		return;
3458 
3459 	down_read(&mm->mmap_sem);
3460 	vma = find_vma(mm, ip);
3461 	if (vma && vma->vm_file) {
3462 		struct file *f = vma->vm_file;
3463 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3464 		if (buf) {
3465 			char *p, *s;
3466 
3467 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3468 			if (IS_ERR(p))
3469 				p = "?";
3470 			s = strrchr(p, '/');
3471 			if (s)
3472 				p = s+1;
3473 			printk("%s%s[%lx+%lx]", prefix, p,
3474 					vma->vm_start,
3475 					vma->vm_end - vma->vm_start);
3476 			free_page((unsigned long)buf);
3477 		}
3478 	}
3479 	up_read(&current->mm->mmap_sem);
3480 }
3481 
3482 #ifdef CONFIG_PROVE_LOCKING
3483 void might_fault(void)
3484 {
3485 	/*
3486 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3487 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3488 	 * get paged out, therefore we'll never actually fault, and the
3489 	 * below annotations will generate false positives.
3490 	 */
3491 	if (segment_eq(get_fs(), KERNEL_DS))
3492 		return;
3493 
3494 	might_sleep();
3495 	/*
3496 	 * it would be nicer only to annotate paths which are not under
3497 	 * pagefault_disable, however that requires a larger audit and
3498 	 * providing helpers like get_user_atomic.
3499 	 */
3500 	if (!in_atomic() && current->mm)
3501 		might_lock_read(&current->mm->mmap_sem);
3502 }
3503 EXPORT_SYMBOL(might_fault);
3504 #endif
3505