1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/module.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 61 #include <asm/io.h> 62 #include <asm/pgalloc.h> 63 #include <asm/uaccess.h> 64 #include <asm/tlb.h> 65 #include <asm/tlbflush.h> 66 #include <asm/pgtable.h> 67 68 #include "internal.h" 69 70 #ifndef CONFIG_NEED_MULTIPLE_NODES 71 /* use the per-pgdat data instead for discontigmem - mbligh */ 72 unsigned long max_mapnr; 73 struct page *mem_map; 74 75 EXPORT_SYMBOL(max_mapnr); 76 EXPORT_SYMBOL(mem_map); 77 #endif 78 79 unsigned long num_physpages; 80 /* 81 * A number of key systems in x86 including ioremap() rely on the assumption 82 * that high_memory defines the upper bound on direct map memory, then end 83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 85 * and ZONE_HIGHMEM. 86 */ 87 void * high_memory; 88 89 EXPORT_SYMBOL(num_physpages); 90 EXPORT_SYMBOL(high_memory); 91 92 /* 93 * Randomize the address space (stacks, mmaps, brk, etc.). 94 * 95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 96 * as ancient (libc5 based) binaries can segfault. ) 97 */ 98 int randomize_va_space __read_mostly = 99 #ifdef CONFIG_COMPAT_BRK 100 1; 101 #else 102 2; 103 #endif 104 105 static int __init disable_randmaps(char *s) 106 { 107 randomize_va_space = 0; 108 return 1; 109 } 110 __setup("norandmaps", disable_randmaps); 111 112 unsigned long zero_pfn __read_mostly; 113 unsigned long highest_memmap_pfn __read_mostly; 114 115 /* 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 117 */ 118 static int __init init_zero_pfn(void) 119 { 120 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 121 return 0; 122 } 123 core_initcall(init_zero_pfn); 124 125 126 #if defined(SPLIT_RSS_COUNTING) 127 128 void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) 129 { 130 int i; 131 132 for (i = 0; i < NR_MM_COUNTERS; i++) { 133 if (task->rss_stat.count[i]) { 134 BUG_ON(!mm); 135 add_mm_counter(mm, i, task->rss_stat.count[i]); 136 task->rss_stat.count[i] = 0; 137 } 138 } 139 task->rss_stat.events = 0; 140 } 141 142 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 143 { 144 struct task_struct *task = current; 145 146 if (likely(task->mm == mm)) 147 task->rss_stat.count[member] += val; 148 else 149 add_mm_counter(mm, member, val); 150 } 151 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 152 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 153 154 /* sync counter once per 64 page faults */ 155 #define TASK_RSS_EVENTS_THRESH (64) 156 static void check_sync_rss_stat(struct task_struct *task) 157 { 158 if (unlikely(task != current)) 159 return; 160 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 161 __sync_task_rss_stat(task, task->mm); 162 } 163 164 unsigned long get_mm_counter(struct mm_struct *mm, int member) 165 { 166 long val = 0; 167 168 /* 169 * Don't use task->mm here...for avoiding to use task_get_mm().. 170 * The caller must guarantee task->mm is not invalid. 171 */ 172 val = atomic_long_read(&mm->rss_stat.count[member]); 173 /* 174 * counter is updated in asynchronous manner and may go to minus. 175 * But it's never be expected number for users. 176 */ 177 if (val < 0) 178 return 0; 179 return (unsigned long)val; 180 } 181 182 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 183 { 184 __sync_task_rss_stat(task, mm); 185 } 186 #else 187 188 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 189 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 190 191 static void check_sync_rss_stat(struct task_struct *task) 192 { 193 } 194 195 #endif 196 197 /* 198 * If a p?d_bad entry is found while walking page tables, report 199 * the error, before resetting entry to p?d_none. Usually (but 200 * very seldom) called out from the p?d_none_or_clear_bad macros. 201 */ 202 203 void pgd_clear_bad(pgd_t *pgd) 204 { 205 pgd_ERROR(*pgd); 206 pgd_clear(pgd); 207 } 208 209 void pud_clear_bad(pud_t *pud) 210 { 211 pud_ERROR(*pud); 212 pud_clear(pud); 213 } 214 215 void pmd_clear_bad(pmd_t *pmd) 216 { 217 pmd_ERROR(*pmd); 218 pmd_clear(pmd); 219 } 220 221 /* 222 * Note: this doesn't free the actual pages themselves. That 223 * has been handled earlier when unmapping all the memory regions. 224 */ 225 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 226 unsigned long addr) 227 { 228 pgtable_t token = pmd_pgtable(*pmd); 229 pmd_clear(pmd); 230 pte_free_tlb(tlb, token, addr); 231 tlb->mm->nr_ptes--; 232 } 233 234 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 235 unsigned long addr, unsigned long end, 236 unsigned long floor, unsigned long ceiling) 237 { 238 pmd_t *pmd; 239 unsigned long next; 240 unsigned long start; 241 242 start = addr; 243 pmd = pmd_offset(pud, addr); 244 do { 245 next = pmd_addr_end(addr, end); 246 if (pmd_none_or_clear_bad(pmd)) 247 continue; 248 free_pte_range(tlb, pmd, addr); 249 } while (pmd++, addr = next, addr != end); 250 251 start &= PUD_MASK; 252 if (start < floor) 253 return; 254 if (ceiling) { 255 ceiling &= PUD_MASK; 256 if (!ceiling) 257 return; 258 } 259 if (end - 1 > ceiling - 1) 260 return; 261 262 pmd = pmd_offset(pud, start); 263 pud_clear(pud); 264 pmd_free_tlb(tlb, pmd, start); 265 } 266 267 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 268 unsigned long addr, unsigned long end, 269 unsigned long floor, unsigned long ceiling) 270 { 271 pud_t *pud; 272 unsigned long next; 273 unsigned long start; 274 275 start = addr; 276 pud = pud_offset(pgd, addr); 277 do { 278 next = pud_addr_end(addr, end); 279 if (pud_none_or_clear_bad(pud)) 280 continue; 281 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 282 } while (pud++, addr = next, addr != end); 283 284 start &= PGDIR_MASK; 285 if (start < floor) 286 return; 287 if (ceiling) { 288 ceiling &= PGDIR_MASK; 289 if (!ceiling) 290 return; 291 } 292 if (end - 1 > ceiling - 1) 293 return; 294 295 pud = pud_offset(pgd, start); 296 pgd_clear(pgd); 297 pud_free_tlb(tlb, pud, start); 298 } 299 300 /* 301 * This function frees user-level page tables of a process. 302 * 303 * Must be called with pagetable lock held. 304 */ 305 void free_pgd_range(struct mmu_gather *tlb, 306 unsigned long addr, unsigned long end, 307 unsigned long floor, unsigned long ceiling) 308 { 309 pgd_t *pgd; 310 unsigned long next; 311 unsigned long start; 312 313 /* 314 * The next few lines have given us lots of grief... 315 * 316 * Why are we testing PMD* at this top level? Because often 317 * there will be no work to do at all, and we'd prefer not to 318 * go all the way down to the bottom just to discover that. 319 * 320 * Why all these "- 1"s? Because 0 represents both the bottom 321 * of the address space and the top of it (using -1 for the 322 * top wouldn't help much: the masks would do the wrong thing). 323 * The rule is that addr 0 and floor 0 refer to the bottom of 324 * the address space, but end 0 and ceiling 0 refer to the top 325 * Comparisons need to use "end - 1" and "ceiling - 1" (though 326 * that end 0 case should be mythical). 327 * 328 * Wherever addr is brought up or ceiling brought down, we must 329 * be careful to reject "the opposite 0" before it confuses the 330 * subsequent tests. But what about where end is brought down 331 * by PMD_SIZE below? no, end can't go down to 0 there. 332 * 333 * Whereas we round start (addr) and ceiling down, by different 334 * masks at different levels, in order to test whether a table 335 * now has no other vmas using it, so can be freed, we don't 336 * bother to round floor or end up - the tests don't need that. 337 */ 338 339 addr &= PMD_MASK; 340 if (addr < floor) { 341 addr += PMD_SIZE; 342 if (!addr) 343 return; 344 } 345 if (ceiling) { 346 ceiling &= PMD_MASK; 347 if (!ceiling) 348 return; 349 } 350 if (end - 1 > ceiling - 1) 351 end -= PMD_SIZE; 352 if (addr > end - 1) 353 return; 354 355 start = addr; 356 pgd = pgd_offset(tlb->mm, addr); 357 do { 358 next = pgd_addr_end(addr, end); 359 if (pgd_none_or_clear_bad(pgd)) 360 continue; 361 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 362 } while (pgd++, addr = next, addr != end); 363 } 364 365 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 366 unsigned long floor, unsigned long ceiling) 367 { 368 while (vma) { 369 struct vm_area_struct *next = vma->vm_next; 370 unsigned long addr = vma->vm_start; 371 372 /* 373 * Hide vma from rmap and truncate_pagecache before freeing 374 * pgtables 375 */ 376 unlink_anon_vmas(vma); 377 unlink_file_vma(vma); 378 379 if (is_vm_hugetlb_page(vma)) { 380 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 381 floor, next? next->vm_start: ceiling); 382 } else { 383 /* 384 * Optimization: gather nearby vmas into one call down 385 */ 386 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 387 && !is_vm_hugetlb_page(next)) { 388 vma = next; 389 next = vma->vm_next; 390 unlink_anon_vmas(vma); 391 unlink_file_vma(vma); 392 } 393 free_pgd_range(tlb, addr, vma->vm_end, 394 floor, next? next->vm_start: ceiling); 395 } 396 vma = next; 397 } 398 } 399 400 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 401 { 402 pgtable_t new = pte_alloc_one(mm, address); 403 if (!new) 404 return -ENOMEM; 405 406 /* 407 * Ensure all pte setup (eg. pte page lock and page clearing) are 408 * visible before the pte is made visible to other CPUs by being 409 * put into page tables. 410 * 411 * The other side of the story is the pointer chasing in the page 412 * table walking code (when walking the page table without locking; 413 * ie. most of the time). Fortunately, these data accesses consist 414 * of a chain of data-dependent loads, meaning most CPUs (alpha 415 * being the notable exception) will already guarantee loads are 416 * seen in-order. See the alpha page table accessors for the 417 * smp_read_barrier_depends() barriers in page table walking code. 418 */ 419 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 420 421 spin_lock(&mm->page_table_lock); 422 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 423 mm->nr_ptes++; 424 pmd_populate(mm, pmd, new); 425 new = NULL; 426 } 427 spin_unlock(&mm->page_table_lock); 428 if (new) 429 pte_free(mm, new); 430 return 0; 431 } 432 433 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 434 { 435 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 436 if (!new) 437 return -ENOMEM; 438 439 smp_wmb(); /* See comment in __pte_alloc */ 440 441 spin_lock(&init_mm.page_table_lock); 442 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 443 pmd_populate_kernel(&init_mm, pmd, new); 444 new = NULL; 445 } 446 spin_unlock(&init_mm.page_table_lock); 447 if (new) 448 pte_free_kernel(&init_mm, new); 449 return 0; 450 } 451 452 static inline void init_rss_vec(int *rss) 453 { 454 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 455 } 456 457 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 458 { 459 int i; 460 461 if (current->mm == mm) 462 sync_mm_rss(current, mm); 463 for (i = 0; i < NR_MM_COUNTERS; i++) 464 if (rss[i]) 465 add_mm_counter(mm, i, rss[i]); 466 } 467 468 /* 469 * This function is called to print an error when a bad pte 470 * is found. For example, we might have a PFN-mapped pte in 471 * a region that doesn't allow it. 472 * 473 * The calling function must still handle the error. 474 */ 475 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 476 pte_t pte, struct page *page) 477 { 478 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 479 pud_t *pud = pud_offset(pgd, addr); 480 pmd_t *pmd = pmd_offset(pud, addr); 481 struct address_space *mapping; 482 pgoff_t index; 483 static unsigned long resume; 484 static unsigned long nr_shown; 485 static unsigned long nr_unshown; 486 487 /* 488 * Allow a burst of 60 reports, then keep quiet for that minute; 489 * or allow a steady drip of one report per second. 490 */ 491 if (nr_shown == 60) { 492 if (time_before(jiffies, resume)) { 493 nr_unshown++; 494 return; 495 } 496 if (nr_unshown) { 497 printk(KERN_ALERT 498 "BUG: Bad page map: %lu messages suppressed\n", 499 nr_unshown); 500 nr_unshown = 0; 501 } 502 nr_shown = 0; 503 } 504 if (nr_shown++ == 0) 505 resume = jiffies + 60 * HZ; 506 507 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 508 index = linear_page_index(vma, addr); 509 510 printk(KERN_ALERT 511 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 512 current->comm, 513 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 514 if (page) 515 dump_page(page); 516 printk(KERN_ALERT 517 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 518 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 519 /* 520 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 521 */ 522 if (vma->vm_ops) 523 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 524 (unsigned long)vma->vm_ops->fault); 525 if (vma->vm_file && vma->vm_file->f_op) 526 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 527 (unsigned long)vma->vm_file->f_op->mmap); 528 dump_stack(); 529 add_taint(TAINT_BAD_PAGE); 530 } 531 532 static inline int is_cow_mapping(unsigned int flags) 533 { 534 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 535 } 536 537 #ifndef is_zero_pfn 538 static inline int is_zero_pfn(unsigned long pfn) 539 { 540 return pfn == zero_pfn; 541 } 542 #endif 543 544 #ifndef my_zero_pfn 545 static inline unsigned long my_zero_pfn(unsigned long addr) 546 { 547 return zero_pfn; 548 } 549 #endif 550 551 /* 552 * vm_normal_page -- This function gets the "struct page" associated with a pte. 553 * 554 * "Special" mappings do not wish to be associated with a "struct page" (either 555 * it doesn't exist, or it exists but they don't want to touch it). In this 556 * case, NULL is returned here. "Normal" mappings do have a struct page. 557 * 558 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 559 * pte bit, in which case this function is trivial. Secondly, an architecture 560 * may not have a spare pte bit, which requires a more complicated scheme, 561 * described below. 562 * 563 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 564 * special mapping (even if there are underlying and valid "struct pages"). 565 * COWed pages of a VM_PFNMAP are always normal. 566 * 567 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 568 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 569 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 570 * mapping will always honor the rule 571 * 572 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 573 * 574 * And for normal mappings this is false. 575 * 576 * This restricts such mappings to be a linear translation from virtual address 577 * to pfn. To get around this restriction, we allow arbitrary mappings so long 578 * as the vma is not a COW mapping; in that case, we know that all ptes are 579 * special (because none can have been COWed). 580 * 581 * 582 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 583 * 584 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 585 * page" backing, however the difference is that _all_ pages with a struct 586 * page (that is, those where pfn_valid is true) are refcounted and considered 587 * normal pages by the VM. The disadvantage is that pages are refcounted 588 * (which can be slower and simply not an option for some PFNMAP users). The 589 * advantage is that we don't have to follow the strict linearity rule of 590 * PFNMAP mappings in order to support COWable mappings. 591 * 592 */ 593 #ifdef __HAVE_ARCH_PTE_SPECIAL 594 # define HAVE_PTE_SPECIAL 1 595 #else 596 # define HAVE_PTE_SPECIAL 0 597 #endif 598 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 599 pte_t pte) 600 { 601 unsigned long pfn = pte_pfn(pte); 602 603 if (HAVE_PTE_SPECIAL) { 604 if (likely(!pte_special(pte))) 605 goto check_pfn; 606 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 607 return NULL; 608 if (!is_zero_pfn(pfn)) 609 print_bad_pte(vma, addr, pte, NULL); 610 return NULL; 611 } 612 613 /* !HAVE_PTE_SPECIAL case follows: */ 614 615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 616 if (vma->vm_flags & VM_MIXEDMAP) { 617 if (!pfn_valid(pfn)) 618 return NULL; 619 goto out; 620 } else { 621 unsigned long off; 622 off = (addr - vma->vm_start) >> PAGE_SHIFT; 623 if (pfn == vma->vm_pgoff + off) 624 return NULL; 625 if (!is_cow_mapping(vma->vm_flags)) 626 return NULL; 627 } 628 } 629 630 if (is_zero_pfn(pfn)) 631 return NULL; 632 check_pfn: 633 if (unlikely(pfn > highest_memmap_pfn)) { 634 print_bad_pte(vma, addr, pte, NULL); 635 return NULL; 636 } 637 638 /* 639 * NOTE! We still have PageReserved() pages in the page tables. 640 * eg. VDSO mappings can cause them to exist. 641 */ 642 out: 643 return pfn_to_page(pfn); 644 } 645 646 /* 647 * copy one vm_area from one task to the other. Assumes the page tables 648 * already present in the new task to be cleared in the whole range 649 * covered by this vma. 650 */ 651 652 static inline unsigned long 653 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 654 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 655 unsigned long addr, int *rss) 656 { 657 unsigned long vm_flags = vma->vm_flags; 658 pte_t pte = *src_pte; 659 struct page *page; 660 661 /* pte contains position in swap or file, so copy. */ 662 if (unlikely(!pte_present(pte))) { 663 if (!pte_file(pte)) { 664 swp_entry_t entry = pte_to_swp_entry(pte); 665 666 if (swap_duplicate(entry) < 0) 667 return entry.val; 668 669 /* make sure dst_mm is on swapoff's mmlist. */ 670 if (unlikely(list_empty(&dst_mm->mmlist))) { 671 spin_lock(&mmlist_lock); 672 if (list_empty(&dst_mm->mmlist)) 673 list_add(&dst_mm->mmlist, 674 &src_mm->mmlist); 675 spin_unlock(&mmlist_lock); 676 } 677 if (likely(!non_swap_entry(entry))) 678 rss[MM_SWAPENTS]++; 679 else if (is_write_migration_entry(entry) && 680 is_cow_mapping(vm_flags)) { 681 /* 682 * COW mappings require pages in both parent 683 * and child to be set to read. 684 */ 685 make_migration_entry_read(&entry); 686 pte = swp_entry_to_pte(entry); 687 set_pte_at(src_mm, addr, src_pte, pte); 688 } 689 } 690 goto out_set_pte; 691 } 692 693 /* 694 * If it's a COW mapping, write protect it both 695 * in the parent and the child 696 */ 697 if (is_cow_mapping(vm_flags)) { 698 ptep_set_wrprotect(src_mm, addr, src_pte); 699 pte = pte_wrprotect(pte); 700 } 701 702 /* 703 * If it's a shared mapping, mark it clean in 704 * the child 705 */ 706 if (vm_flags & VM_SHARED) 707 pte = pte_mkclean(pte); 708 pte = pte_mkold(pte); 709 710 page = vm_normal_page(vma, addr, pte); 711 if (page) { 712 get_page(page); 713 page_dup_rmap(page); 714 if (PageAnon(page)) 715 rss[MM_ANONPAGES]++; 716 else 717 rss[MM_FILEPAGES]++; 718 } 719 720 out_set_pte: 721 set_pte_at(dst_mm, addr, dst_pte, pte); 722 return 0; 723 } 724 725 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 726 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 727 unsigned long addr, unsigned long end) 728 { 729 pte_t *orig_src_pte, *orig_dst_pte; 730 pte_t *src_pte, *dst_pte; 731 spinlock_t *src_ptl, *dst_ptl; 732 int progress = 0; 733 int rss[NR_MM_COUNTERS]; 734 swp_entry_t entry = (swp_entry_t){0}; 735 736 again: 737 init_rss_vec(rss); 738 739 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 740 if (!dst_pte) 741 return -ENOMEM; 742 src_pte = pte_offset_map_nested(src_pmd, addr); 743 src_ptl = pte_lockptr(src_mm, src_pmd); 744 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 745 orig_src_pte = src_pte; 746 orig_dst_pte = dst_pte; 747 arch_enter_lazy_mmu_mode(); 748 749 do { 750 /* 751 * We are holding two locks at this point - either of them 752 * could generate latencies in another task on another CPU. 753 */ 754 if (progress >= 32) { 755 progress = 0; 756 if (need_resched() || 757 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 758 break; 759 } 760 if (pte_none(*src_pte)) { 761 progress++; 762 continue; 763 } 764 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 765 vma, addr, rss); 766 if (entry.val) 767 break; 768 progress += 8; 769 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 770 771 arch_leave_lazy_mmu_mode(); 772 spin_unlock(src_ptl); 773 pte_unmap_nested(orig_src_pte); 774 add_mm_rss_vec(dst_mm, rss); 775 pte_unmap_unlock(orig_dst_pte, dst_ptl); 776 cond_resched(); 777 778 if (entry.val) { 779 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 780 return -ENOMEM; 781 progress = 0; 782 } 783 if (addr != end) 784 goto again; 785 return 0; 786 } 787 788 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 789 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 790 unsigned long addr, unsigned long end) 791 { 792 pmd_t *src_pmd, *dst_pmd; 793 unsigned long next; 794 795 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 796 if (!dst_pmd) 797 return -ENOMEM; 798 src_pmd = pmd_offset(src_pud, addr); 799 do { 800 next = pmd_addr_end(addr, end); 801 if (pmd_none_or_clear_bad(src_pmd)) 802 continue; 803 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 804 vma, addr, next)) 805 return -ENOMEM; 806 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 807 return 0; 808 } 809 810 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 811 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 812 unsigned long addr, unsigned long end) 813 { 814 pud_t *src_pud, *dst_pud; 815 unsigned long next; 816 817 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 818 if (!dst_pud) 819 return -ENOMEM; 820 src_pud = pud_offset(src_pgd, addr); 821 do { 822 next = pud_addr_end(addr, end); 823 if (pud_none_or_clear_bad(src_pud)) 824 continue; 825 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 826 vma, addr, next)) 827 return -ENOMEM; 828 } while (dst_pud++, src_pud++, addr = next, addr != end); 829 return 0; 830 } 831 832 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 833 struct vm_area_struct *vma) 834 { 835 pgd_t *src_pgd, *dst_pgd; 836 unsigned long next; 837 unsigned long addr = vma->vm_start; 838 unsigned long end = vma->vm_end; 839 int ret; 840 841 /* 842 * Don't copy ptes where a page fault will fill them correctly. 843 * Fork becomes much lighter when there are big shared or private 844 * readonly mappings. The tradeoff is that copy_page_range is more 845 * efficient than faulting. 846 */ 847 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 848 if (!vma->anon_vma) 849 return 0; 850 } 851 852 if (is_vm_hugetlb_page(vma)) 853 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 854 855 if (unlikely(is_pfn_mapping(vma))) { 856 /* 857 * We do not free on error cases below as remove_vma 858 * gets called on error from higher level routine 859 */ 860 ret = track_pfn_vma_copy(vma); 861 if (ret) 862 return ret; 863 } 864 865 /* 866 * We need to invalidate the secondary MMU mappings only when 867 * there could be a permission downgrade on the ptes of the 868 * parent mm. And a permission downgrade will only happen if 869 * is_cow_mapping() returns true. 870 */ 871 if (is_cow_mapping(vma->vm_flags)) 872 mmu_notifier_invalidate_range_start(src_mm, addr, end); 873 874 ret = 0; 875 dst_pgd = pgd_offset(dst_mm, addr); 876 src_pgd = pgd_offset(src_mm, addr); 877 do { 878 next = pgd_addr_end(addr, end); 879 if (pgd_none_or_clear_bad(src_pgd)) 880 continue; 881 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 882 vma, addr, next))) { 883 ret = -ENOMEM; 884 break; 885 } 886 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 887 888 if (is_cow_mapping(vma->vm_flags)) 889 mmu_notifier_invalidate_range_end(src_mm, 890 vma->vm_start, end); 891 return ret; 892 } 893 894 static unsigned long zap_pte_range(struct mmu_gather *tlb, 895 struct vm_area_struct *vma, pmd_t *pmd, 896 unsigned long addr, unsigned long end, 897 long *zap_work, struct zap_details *details) 898 { 899 struct mm_struct *mm = tlb->mm; 900 pte_t *pte; 901 spinlock_t *ptl; 902 int rss[NR_MM_COUNTERS]; 903 904 init_rss_vec(rss); 905 906 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 907 arch_enter_lazy_mmu_mode(); 908 do { 909 pte_t ptent = *pte; 910 if (pte_none(ptent)) { 911 (*zap_work)--; 912 continue; 913 } 914 915 (*zap_work) -= PAGE_SIZE; 916 917 if (pte_present(ptent)) { 918 struct page *page; 919 920 page = vm_normal_page(vma, addr, ptent); 921 if (unlikely(details) && page) { 922 /* 923 * unmap_shared_mapping_pages() wants to 924 * invalidate cache without truncating: 925 * unmap shared but keep private pages. 926 */ 927 if (details->check_mapping && 928 details->check_mapping != page->mapping) 929 continue; 930 /* 931 * Each page->index must be checked when 932 * invalidating or truncating nonlinear. 933 */ 934 if (details->nonlinear_vma && 935 (page->index < details->first_index || 936 page->index > details->last_index)) 937 continue; 938 } 939 ptent = ptep_get_and_clear_full(mm, addr, pte, 940 tlb->fullmm); 941 tlb_remove_tlb_entry(tlb, pte, addr); 942 if (unlikely(!page)) 943 continue; 944 if (unlikely(details) && details->nonlinear_vma 945 && linear_page_index(details->nonlinear_vma, 946 addr) != page->index) 947 set_pte_at(mm, addr, pte, 948 pgoff_to_pte(page->index)); 949 if (PageAnon(page)) 950 rss[MM_ANONPAGES]--; 951 else { 952 if (pte_dirty(ptent)) 953 set_page_dirty(page); 954 if (pte_young(ptent) && 955 likely(!VM_SequentialReadHint(vma))) 956 mark_page_accessed(page); 957 rss[MM_FILEPAGES]--; 958 } 959 page_remove_rmap(page); 960 if (unlikely(page_mapcount(page) < 0)) 961 print_bad_pte(vma, addr, ptent, page); 962 tlb_remove_page(tlb, page); 963 continue; 964 } 965 /* 966 * If details->check_mapping, we leave swap entries; 967 * if details->nonlinear_vma, we leave file entries. 968 */ 969 if (unlikely(details)) 970 continue; 971 if (pte_file(ptent)) { 972 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 973 print_bad_pte(vma, addr, ptent, NULL); 974 } else { 975 swp_entry_t entry = pte_to_swp_entry(ptent); 976 977 if (!non_swap_entry(entry)) 978 rss[MM_SWAPENTS]--; 979 if (unlikely(!free_swap_and_cache(entry))) 980 print_bad_pte(vma, addr, ptent, NULL); 981 } 982 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 983 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 984 985 add_mm_rss_vec(mm, rss); 986 arch_leave_lazy_mmu_mode(); 987 pte_unmap_unlock(pte - 1, ptl); 988 989 return addr; 990 } 991 992 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 993 struct vm_area_struct *vma, pud_t *pud, 994 unsigned long addr, unsigned long end, 995 long *zap_work, struct zap_details *details) 996 { 997 pmd_t *pmd; 998 unsigned long next; 999 1000 pmd = pmd_offset(pud, addr); 1001 do { 1002 next = pmd_addr_end(addr, end); 1003 if (pmd_none_or_clear_bad(pmd)) { 1004 (*zap_work)--; 1005 continue; 1006 } 1007 next = zap_pte_range(tlb, vma, pmd, addr, next, 1008 zap_work, details); 1009 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 1010 1011 return addr; 1012 } 1013 1014 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1015 struct vm_area_struct *vma, pgd_t *pgd, 1016 unsigned long addr, unsigned long end, 1017 long *zap_work, struct zap_details *details) 1018 { 1019 pud_t *pud; 1020 unsigned long next; 1021 1022 pud = pud_offset(pgd, addr); 1023 do { 1024 next = pud_addr_end(addr, end); 1025 if (pud_none_or_clear_bad(pud)) { 1026 (*zap_work)--; 1027 continue; 1028 } 1029 next = zap_pmd_range(tlb, vma, pud, addr, next, 1030 zap_work, details); 1031 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 1032 1033 return addr; 1034 } 1035 1036 static unsigned long unmap_page_range(struct mmu_gather *tlb, 1037 struct vm_area_struct *vma, 1038 unsigned long addr, unsigned long end, 1039 long *zap_work, struct zap_details *details) 1040 { 1041 pgd_t *pgd; 1042 unsigned long next; 1043 1044 if (details && !details->check_mapping && !details->nonlinear_vma) 1045 details = NULL; 1046 1047 BUG_ON(addr >= end); 1048 mem_cgroup_uncharge_start(); 1049 tlb_start_vma(tlb, vma); 1050 pgd = pgd_offset(vma->vm_mm, addr); 1051 do { 1052 next = pgd_addr_end(addr, end); 1053 if (pgd_none_or_clear_bad(pgd)) { 1054 (*zap_work)--; 1055 continue; 1056 } 1057 next = zap_pud_range(tlb, vma, pgd, addr, next, 1058 zap_work, details); 1059 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 1060 tlb_end_vma(tlb, vma); 1061 mem_cgroup_uncharge_end(); 1062 1063 return addr; 1064 } 1065 1066 #ifdef CONFIG_PREEMPT 1067 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 1068 #else 1069 /* No preempt: go for improved straight-line efficiency */ 1070 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 1071 #endif 1072 1073 /** 1074 * unmap_vmas - unmap a range of memory covered by a list of vma's 1075 * @tlbp: address of the caller's struct mmu_gather 1076 * @vma: the starting vma 1077 * @start_addr: virtual address at which to start unmapping 1078 * @end_addr: virtual address at which to end unmapping 1079 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 1080 * @details: details of nonlinear truncation or shared cache invalidation 1081 * 1082 * Returns the end address of the unmapping (restart addr if interrupted). 1083 * 1084 * Unmap all pages in the vma list. 1085 * 1086 * We aim to not hold locks for too long (for scheduling latency reasons). 1087 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 1088 * return the ending mmu_gather to the caller. 1089 * 1090 * Only addresses between `start' and `end' will be unmapped. 1091 * 1092 * The VMA list must be sorted in ascending virtual address order. 1093 * 1094 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1095 * range after unmap_vmas() returns. So the only responsibility here is to 1096 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1097 * drops the lock and schedules. 1098 */ 1099 unsigned long unmap_vmas(struct mmu_gather **tlbp, 1100 struct vm_area_struct *vma, unsigned long start_addr, 1101 unsigned long end_addr, unsigned long *nr_accounted, 1102 struct zap_details *details) 1103 { 1104 long zap_work = ZAP_BLOCK_SIZE; 1105 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 1106 int tlb_start_valid = 0; 1107 unsigned long start = start_addr; 1108 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 1109 int fullmm = (*tlbp)->fullmm; 1110 struct mm_struct *mm = vma->vm_mm; 1111 1112 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1113 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 1114 unsigned long end; 1115 1116 start = max(vma->vm_start, start_addr); 1117 if (start >= vma->vm_end) 1118 continue; 1119 end = min(vma->vm_end, end_addr); 1120 if (end <= vma->vm_start) 1121 continue; 1122 1123 if (vma->vm_flags & VM_ACCOUNT) 1124 *nr_accounted += (end - start) >> PAGE_SHIFT; 1125 1126 if (unlikely(is_pfn_mapping(vma))) 1127 untrack_pfn_vma(vma, 0, 0); 1128 1129 while (start != end) { 1130 if (!tlb_start_valid) { 1131 tlb_start = start; 1132 tlb_start_valid = 1; 1133 } 1134 1135 if (unlikely(is_vm_hugetlb_page(vma))) { 1136 /* 1137 * It is undesirable to test vma->vm_file as it 1138 * should be non-null for valid hugetlb area. 1139 * However, vm_file will be NULL in the error 1140 * cleanup path of do_mmap_pgoff. When 1141 * hugetlbfs ->mmap method fails, 1142 * do_mmap_pgoff() nullifies vma->vm_file 1143 * before calling this function to clean up. 1144 * Since no pte has actually been setup, it is 1145 * safe to do nothing in this case. 1146 */ 1147 if (vma->vm_file) { 1148 unmap_hugepage_range(vma, start, end, NULL); 1149 zap_work -= (end - start) / 1150 pages_per_huge_page(hstate_vma(vma)); 1151 } 1152 1153 start = end; 1154 } else 1155 start = unmap_page_range(*tlbp, vma, 1156 start, end, &zap_work, details); 1157 1158 if (zap_work > 0) { 1159 BUG_ON(start != end); 1160 break; 1161 } 1162 1163 tlb_finish_mmu(*tlbp, tlb_start, start); 1164 1165 if (need_resched() || 1166 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 1167 if (i_mmap_lock) { 1168 *tlbp = NULL; 1169 goto out; 1170 } 1171 cond_resched(); 1172 } 1173 1174 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 1175 tlb_start_valid = 0; 1176 zap_work = ZAP_BLOCK_SIZE; 1177 } 1178 } 1179 out: 1180 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1181 return start; /* which is now the end (or restart) address */ 1182 } 1183 1184 /** 1185 * zap_page_range - remove user pages in a given range 1186 * @vma: vm_area_struct holding the applicable pages 1187 * @address: starting address of pages to zap 1188 * @size: number of bytes to zap 1189 * @details: details of nonlinear truncation or shared cache invalidation 1190 */ 1191 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1192 unsigned long size, struct zap_details *details) 1193 { 1194 struct mm_struct *mm = vma->vm_mm; 1195 struct mmu_gather *tlb; 1196 unsigned long end = address + size; 1197 unsigned long nr_accounted = 0; 1198 1199 lru_add_drain(); 1200 tlb = tlb_gather_mmu(mm, 0); 1201 update_hiwater_rss(mm); 1202 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1203 if (tlb) 1204 tlb_finish_mmu(tlb, address, end); 1205 return end; 1206 } 1207 1208 /** 1209 * zap_vma_ptes - remove ptes mapping the vma 1210 * @vma: vm_area_struct holding ptes to be zapped 1211 * @address: starting address of pages to zap 1212 * @size: number of bytes to zap 1213 * 1214 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1215 * 1216 * The entire address range must be fully contained within the vma. 1217 * 1218 * Returns 0 if successful. 1219 */ 1220 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1221 unsigned long size) 1222 { 1223 if (address < vma->vm_start || address + size > vma->vm_end || 1224 !(vma->vm_flags & VM_PFNMAP)) 1225 return -1; 1226 zap_page_range(vma, address, size, NULL); 1227 return 0; 1228 } 1229 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1230 1231 /* 1232 * Do a quick page-table lookup for a single page. 1233 */ 1234 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1235 unsigned int flags) 1236 { 1237 pgd_t *pgd; 1238 pud_t *pud; 1239 pmd_t *pmd; 1240 pte_t *ptep, pte; 1241 spinlock_t *ptl; 1242 struct page *page; 1243 struct mm_struct *mm = vma->vm_mm; 1244 1245 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1246 if (!IS_ERR(page)) { 1247 BUG_ON(flags & FOLL_GET); 1248 goto out; 1249 } 1250 1251 page = NULL; 1252 pgd = pgd_offset(mm, address); 1253 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1254 goto no_page_table; 1255 1256 pud = pud_offset(pgd, address); 1257 if (pud_none(*pud)) 1258 goto no_page_table; 1259 if (pud_huge(*pud)) { 1260 BUG_ON(flags & FOLL_GET); 1261 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1262 goto out; 1263 } 1264 if (unlikely(pud_bad(*pud))) 1265 goto no_page_table; 1266 1267 pmd = pmd_offset(pud, address); 1268 if (pmd_none(*pmd)) 1269 goto no_page_table; 1270 if (pmd_huge(*pmd)) { 1271 BUG_ON(flags & FOLL_GET); 1272 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1273 goto out; 1274 } 1275 if (unlikely(pmd_bad(*pmd))) 1276 goto no_page_table; 1277 1278 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1279 1280 pte = *ptep; 1281 if (!pte_present(pte)) 1282 goto no_page; 1283 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1284 goto unlock; 1285 1286 page = vm_normal_page(vma, address, pte); 1287 if (unlikely(!page)) { 1288 if ((flags & FOLL_DUMP) || 1289 !is_zero_pfn(pte_pfn(pte))) 1290 goto bad_page; 1291 page = pte_page(pte); 1292 } 1293 1294 if (flags & FOLL_GET) 1295 get_page(page); 1296 if (flags & FOLL_TOUCH) { 1297 if ((flags & FOLL_WRITE) && 1298 !pte_dirty(pte) && !PageDirty(page)) 1299 set_page_dirty(page); 1300 /* 1301 * pte_mkyoung() would be more correct here, but atomic care 1302 * is needed to avoid losing the dirty bit: it is easier to use 1303 * mark_page_accessed(). 1304 */ 1305 mark_page_accessed(page); 1306 } 1307 unlock: 1308 pte_unmap_unlock(ptep, ptl); 1309 out: 1310 return page; 1311 1312 bad_page: 1313 pte_unmap_unlock(ptep, ptl); 1314 return ERR_PTR(-EFAULT); 1315 1316 no_page: 1317 pte_unmap_unlock(ptep, ptl); 1318 if (!pte_none(pte)) 1319 return page; 1320 1321 no_page_table: 1322 /* 1323 * When core dumping an enormous anonymous area that nobody 1324 * has touched so far, we don't want to allocate unnecessary pages or 1325 * page tables. Return error instead of NULL to skip handle_mm_fault, 1326 * then get_dump_page() will return NULL to leave a hole in the dump. 1327 * But we can only make this optimization where a hole would surely 1328 * be zero-filled if handle_mm_fault() actually did handle it. 1329 */ 1330 if ((flags & FOLL_DUMP) && 1331 (!vma->vm_ops || !vma->vm_ops->fault)) 1332 return ERR_PTR(-EFAULT); 1333 return page; 1334 } 1335 1336 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1337 unsigned long start, int nr_pages, unsigned int gup_flags, 1338 struct page **pages, struct vm_area_struct **vmas) 1339 { 1340 int i; 1341 unsigned long vm_flags; 1342 1343 if (nr_pages <= 0) 1344 return 0; 1345 1346 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1347 1348 /* 1349 * Require read or write permissions. 1350 * If FOLL_FORCE is set, we only require the "MAY" flags. 1351 */ 1352 vm_flags = (gup_flags & FOLL_WRITE) ? 1353 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1354 vm_flags &= (gup_flags & FOLL_FORCE) ? 1355 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1356 i = 0; 1357 1358 do { 1359 struct vm_area_struct *vma; 1360 1361 vma = find_extend_vma(mm, start); 1362 if (!vma && in_gate_area(tsk, start)) { 1363 unsigned long pg = start & PAGE_MASK; 1364 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1365 pgd_t *pgd; 1366 pud_t *pud; 1367 pmd_t *pmd; 1368 pte_t *pte; 1369 1370 /* user gate pages are read-only */ 1371 if (gup_flags & FOLL_WRITE) 1372 return i ? : -EFAULT; 1373 if (pg > TASK_SIZE) 1374 pgd = pgd_offset_k(pg); 1375 else 1376 pgd = pgd_offset_gate(mm, pg); 1377 BUG_ON(pgd_none(*pgd)); 1378 pud = pud_offset(pgd, pg); 1379 BUG_ON(pud_none(*pud)); 1380 pmd = pmd_offset(pud, pg); 1381 if (pmd_none(*pmd)) 1382 return i ? : -EFAULT; 1383 pte = pte_offset_map(pmd, pg); 1384 if (pte_none(*pte)) { 1385 pte_unmap(pte); 1386 return i ? : -EFAULT; 1387 } 1388 if (pages) { 1389 struct page *page = vm_normal_page(gate_vma, start, *pte); 1390 pages[i] = page; 1391 if (page) 1392 get_page(page); 1393 } 1394 pte_unmap(pte); 1395 if (vmas) 1396 vmas[i] = gate_vma; 1397 i++; 1398 start += PAGE_SIZE; 1399 nr_pages--; 1400 continue; 1401 } 1402 1403 if (!vma || 1404 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1405 !(vm_flags & vma->vm_flags)) 1406 return i ? : -EFAULT; 1407 1408 if (is_vm_hugetlb_page(vma)) { 1409 i = follow_hugetlb_page(mm, vma, pages, vmas, 1410 &start, &nr_pages, i, gup_flags); 1411 continue; 1412 } 1413 1414 do { 1415 struct page *page; 1416 unsigned int foll_flags = gup_flags; 1417 1418 /* 1419 * If we have a pending SIGKILL, don't keep faulting 1420 * pages and potentially allocating memory. 1421 */ 1422 if (unlikely(fatal_signal_pending(current))) 1423 return i ? i : -ERESTARTSYS; 1424 1425 cond_resched(); 1426 while (!(page = follow_page(vma, start, foll_flags))) { 1427 int ret; 1428 1429 ret = handle_mm_fault(mm, vma, start, 1430 (foll_flags & FOLL_WRITE) ? 1431 FAULT_FLAG_WRITE : 0); 1432 1433 if (ret & VM_FAULT_ERROR) { 1434 if (ret & VM_FAULT_OOM) 1435 return i ? i : -ENOMEM; 1436 if (ret & 1437 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS)) 1438 return i ? i : -EFAULT; 1439 BUG(); 1440 } 1441 if (ret & VM_FAULT_MAJOR) 1442 tsk->maj_flt++; 1443 else 1444 tsk->min_flt++; 1445 1446 /* 1447 * The VM_FAULT_WRITE bit tells us that 1448 * do_wp_page has broken COW when necessary, 1449 * even if maybe_mkwrite decided not to set 1450 * pte_write. We can thus safely do subsequent 1451 * page lookups as if they were reads. But only 1452 * do so when looping for pte_write is futile: 1453 * in some cases userspace may also be wanting 1454 * to write to the gotten user page, which a 1455 * read fault here might prevent (a readonly 1456 * page might get reCOWed by userspace write). 1457 */ 1458 if ((ret & VM_FAULT_WRITE) && 1459 !(vma->vm_flags & VM_WRITE)) 1460 foll_flags &= ~FOLL_WRITE; 1461 1462 cond_resched(); 1463 } 1464 if (IS_ERR(page)) 1465 return i ? i : PTR_ERR(page); 1466 if (pages) { 1467 pages[i] = page; 1468 1469 flush_anon_page(vma, page, start); 1470 flush_dcache_page(page); 1471 } 1472 if (vmas) 1473 vmas[i] = vma; 1474 i++; 1475 start += PAGE_SIZE; 1476 nr_pages--; 1477 } while (nr_pages && start < vma->vm_end); 1478 } while (nr_pages); 1479 return i; 1480 } 1481 1482 /** 1483 * get_user_pages() - pin user pages in memory 1484 * @tsk: task_struct of target task 1485 * @mm: mm_struct of target mm 1486 * @start: starting user address 1487 * @nr_pages: number of pages from start to pin 1488 * @write: whether pages will be written to by the caller 1489 * @force: whether to force write access even if user mapping is 1490 * readonly. This will result in the page being COWed even 1491 * in MAP_SHARED mappings. You do not want this. 1492 * @pages: array that receives pointers to the pages pinned. 1493 * Should be at least nr_pages long. Or NULL, if caller 1494 * only intends to ensure the pages are faulted in. 1495 * @vmas: array of pointers to vmas corresponding to each page. 1496 * Or NULL if the caller does not require them. 1497 * 1498 * Returns number of pages pinned. This may be fewer than the number 1499 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1500 * were pinned, returns -errno. Each page returned must be released 1501 * with a put_page() call when it is finished with. vmas will only 1502 * remain valid while mmap_sem is held. 1503 * 1504 * Must be called with mmap_sem held for read or write. 1505 * 1506 * get_user_pages walks a process's page tables and takes a reference to 1507 * each struct page that each user address corresponds to at a given 1508 * instant. That is, it takes the page that would be accessed if a user 1509 * thread accesses the given user virtual address at that instant. 1510 * 1511 * This does not guarantee that the page exists in the user mappings when 1512 * get_user_pages returns, and there may even be a completely different 1513 * page there in some cases (eg. if mmapped pagecache has been invalidated 1514 * and subsequently re faulted). However it does guarantee that the page 1515 * won't be freed completely. And mostly callers simply care that the page 1516 * contains data that was valid *at some point in time*. Typically, an IO 1517 * or similar operation cannot guarantee anything stronger anyway because 1518 * locks can't be held over the syscall boundary. 1519 * 1520 * If write=0, the page must not be written to. If the page is written to, 1521 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1522 * after the page is finished with, and before put_page is called. 1523 * 1524 * get_user_pages is typically used for fewer-copy IO operations, to get a 1525 * handle on the memory by some means other than accesses via the user virtual 1526 * addresses. The pages may be submitted for DMA to devices or accessed via 1527 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1528 * use the correct cache flushing APIs. 1529 * 1530 * See also get_user_pages_fast, for performance critical applications. 1531 */ 1532 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1533 unsigned long start, int nr_pages, int write, int force, 1534 struct page **pages, struct vm_area_struct **vmas) 1535 { 1536 int flags = FOLL_TOUCH; 1537 1538 if (pages) 1539 flags |= FOLL_GET; 1540 if (write) 1541 flags |= FOLL_WRITE; 1542 if (force) 1543 flags |= FOLL_FORCE; 1544 1545 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas); 1546 } 1547 EXPORT_SYMBOL(get_user_pages); 1548 1549 /** 1550 * get_dump_page() - pin user page in memory while writing it to core dump 1551 * @addr: user address 1552 * 1553 * Returns struct page pointer of user page pinned for dump, 1554 * to be freed afterwards by page_cache_release() or put_page(). 1555 * 1556 * Returns NULL on any kind of failure - a hole must then be inserted into 1557 * the corefile, to preserve alignment with its headers; and also returns 1558 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1559 * allowing a hole to be left in the corefile to save diskspace. 1560 * 1561 * Called without mmap_sem, but after all other threads have been killed. 1562 */ 1563 #ifdef CONFIG_ELF_CORE 1564 struct page *get_dump_page(unsigned long addr) 1565 { 1566 struct vm_area_struct *vma; 1567 struct page *page; 1568 1569 if (__get_user_pages(current, current->mm, addr, 1, 1570 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1) 1571 return NULL; 1572 flush_cache_page(vma, addr, page_to_pfn(page)); 1573 return page; 1574 } 1575 #endif /* CONFIG_ELF_CORE */ 1576 1577 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1578 spinlock_t **ptl) 1579 { 1580 pgd_t * pgd = pgd_offset(mm, addr); 1581 pud_t * pud = pud_alloc(mm, pgd, addr); 1582 if (pud) { 1583 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1584 if (pmd) 1585 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1586 } 1587 return NULL; 1588 } 1589 1590 /* 1591 * This is the old fallback for page remapping. 1592 * 1593 * For historical reasons, it only allows reserved pages. Only 1594 * old drivers should use this, and they needed to mark their 1595 * pages reserved for the old functions anyway. 1596 */ 1597 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1598 struct page *page, pgprot_t prot) 1599 { 1600 struct mm_struct *mm = vma->vm_mm; 1601 int retval; 1602 pte_t *pte; 1603 spinlock_t *ptl; 1604 1605 retval = -EINVAL; 1606 if (PageAnon(page)) 1607 goto out; 1608 retval = -ENOMEM; 1609 flush_dcache_page(page); 1610 pte = get_locked_pte(mm, addr, &ptl); 1611 if (!pte) 1612 goto out; 1613 retval = -EBUSY; 1614 if (!pte_none(*pte)) 1615 goto out_unlock; 1616 1617 /* Ok, finally just insert the thing.. */ 1618 get_page(page); 1619 inc_mm_counter_fast(mm, MM_FILEPAGES); 1620 page_add_file_rmap(page); 1621 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1622 1623 retval = 0; 1624 pte_unmap_unlock(pte, ptl); 1625 return retval; 1626 out_unlock: 1627 pte_unmap_unlock(pte, ptl); 1628 out: 1629 return retval; 1630 } 1631 1632 /** 1633 * vm_insert_page - insert single page into user vma 1634 * @vma: user vma to map to 1635 * @addr: target user address of this page 1636 * @page: source kernel page 1637 * 1638 * This allows drivers to insert individual pages they've allocated 1639 * into a user vma. 1640 * 1641 * The page has to be a nice clean _individual_ kernel allocation. 1642 * If you allocate a compound page, you need to have marked it as 1643 * such (__GFP_COMP), or manually just split the page up yourself 1644 * (see split_page()). 1645 * 1646 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1647 * took an arbitrary page protection parameter. This doesn't allow 1648 * that. Your vma protection will have to be set up correctly, which 1649 * means that if you want a shared writable mapping, you'd better 1650 * ask for a shared writable mapping! 1651 * 1652 * The page does not need to be reserved. 1653 */ 1654 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1655 struct page *page) 1656 { 1657 if (addr < vma->vm_start || addr >= vma->vm_end) 1658 return -EFAULT; 1659 if (!page_count(page)) 1660 return -EINVAL; 1661 vma->vm_flags |= VM_INSERTPAGE; 1662 return insert_page(vma, addr, page, vma->vm_page_prot); 1663 } 1664 EXPORT_SYMBOL(vm_insert_page); 1665 1666 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1667 unsigned long pfn, pgprot_t prot) 1668 { 1669 struct mm_struct *mm = vma->vm_mm; 1670 int retval; 1671 pte_t *pte, entry; 1672 spinlock_t *ptl; 1673 1674 retval = -ENOMEM; 1675 pte = get_locked_pte(mm, addr, &ptl); 1676 if (!pte) 1677 goto out; 1678 retval = -EBUSY; 1679 if (!pte_none(*pte)) 1680 goto out_unlock; 1681 1682 /* Ok, finally just insert the thing.. */ 1683 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1684 set_pte_at(mm, addr, pte, entry); 1685 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1686 1687 retval = 0; 1688 out_unlock: 1689 pte_unmap_unlock(pte, ptl); 1690 out: 1691 return retval; 1692 } 1693 1694 /** 1695 * vm_insert_pfn - insert single pfn into user vma 1696 * @vma: user vma to map to 1697 * @addr: target user address of this page 1698 * @pfn: source kernel pfn 1699 * 1700 * Similar to vm_inert_page, this allows drivers to insert individual pages 1701 * they've allocated into a user vma. Same comments apply. 1702 * 1703 * This function should only be called from a vm_ops->fault handler, and 1704 * in that case the handler should return NULL. 1705 * 1706 * vma cannot be a COW mapping. 1707 * 1708 * As this is called only for pages that do not currently exist, we 1709 * do not need to flush old virtual caches or the TLB. 1710 */ 1711 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1712 unsigned long pfn) 1713 { 1714 int ret; 1715 pgprot_t pgprot = vma->vm_page_prot; 1716 /* 1717 * Technically, architectures with pte_special can avoid all these 1718 * restrictions (same for remap_pfn_range). However we would like 1719 * consistency in testing and feature parity among all, so we should 1720 * try to keep these invariants in place for everybody. 1721 */ 1722 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1723 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1724 (VM_PFNMAP|VM_MIXEDMAP)); 1725 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1726 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1727 1728 if (addr < vma->vm_start || addr >= vma->vm_end) 1729 return -EFAULT; 1730 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 1731 return -EINVAL; 1732 1733 ret = insert_pfn(vma, addr, pfn, pgprot); 1734 1735 if (ret) 1736 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 1737 1738 return ret; 1739 } 1740 EXPORT_SYMBOL(vm_insert_pfn); 1741 1742 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1743 unsigned long pfn) 1744 { 1745 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1746 1747 if (addr < vma->vm_start || addr >= vma->vm_end) 1748 return -EFAULT; 1749 1750 /* 1751 * If we don't have pte special, then we have to use the pfn_valid() 1752 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1753 * refcount the page if pfn_valid is true (hence insert_page rather 1754 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1755 * without pte special, it would there be refcounted as a normal page. 1756 */ 1757 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1758 struct page *page; 1759 1760 page = pfn_to_page(pfn); 1761 return insert_page(vma, addr, page, vma->vm_page_prot); 1762 } 1763 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1764 } 1765 EXPORT_SYMBOL(vm_insert_mixed); 1766 1767 /* 1768 * maps a range of physical memory into the requested pages. the old 1769 * mappings are removed. any references to nonexistent pages results 1770 * in null mappings (currently treated as "copy-on-access") 1771 */ 1772 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1773 unsigned long addr, unsigned long end, 1774 unsigned long pfn, pgprot_t prot) 1775 { 1776 pte_t *pte; 1777 spinlock_t *ptl; 1778 1779 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1780 if (!pte) 1781 return -ENOMEM; 1782 arch_enter_lazy_mmu_mode(); 1783 do { 1784 BUG_ON(!pte_none(*pte)); 1785 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1786 pfn++; 1787 } while (pte++, addr += PAGE_SIZE, addr != end); 1788 arch_leave_lazy_mmu_mode(); 1789 pte_unmap_unlock(pte - 1, ptl); 1790 return 0; 1791 } 1792 1793 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1794 unsigned long addr, unsigned long end, 1795 unsigned long pfn, pgprot_t prot) 1796 { 1797 pmd_t *pmd; 1798 unsigned long next; 1799 1800 pfn -= addr >> PAGE_SHIFT; 1801 pmd = pmd_alloc(mm, pud, addr); 1802 if (!pmd) 1803 return -ENOMEM; 1804 do { 1805 next = pmd_addr_end(addr, end); 1806 if (remap_pte_range(mm, pmd, addr, next, 1807 pfn + (addr >> PAGE_SHIFT), prot)) 1808 return -ENOMEM; 1809 } while (pmd++, addr = next, addr != end); 1810 return 0; 1811 } 1812 1813 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1814 unsigned long addr, unsigned long end, 1815 unsigned long pfn, pgprot_t prot) 1816 { 1817 pud_t *pud; 1818 unsigned long next; 1819 1820 pfn -= addr >> PAGE_SHIFT; 1821 pud = pud_alloc(mm, pgd, addr); 1822 if (!pud) 1823 return -ENOMEM; 1824 do { 1825 next = pud_addr_end(addr, end); 1826 if (remap_pmd_range(mm, pud, addr, next, 1827 pfn + (addr >> PAGE_SHIFT), prot)) 1828 return -ENOMEM; 1829 } while (pud++, addr = next, addr != end); 1830 return 0; 1831 } 1832 1833 /** 1834 * remap_pfn_range - remap kernel memory to userspace 1835 * @vma: user vma to map to 1836 * @addr: target user address to start at 1837 * @pfn: physical address of kernel memory 1838 * @size: size of map area 1839 * @prot: page protection flags for this mapping 1840 * 1841 * Note: this is only safe if the mm semaphore is held when called. 1842 */ 1843 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1844 unsigned long pfn, unsigned long size, pgprot_t prot) 1845 { 1846 pgd_t *pgd; 1847 unsigned long next; 1848 unsigned long end = addr + PAGE_ALIGN(size); 1849 struct mm_struct *mm = vma->vm_mm; 1850 int err; 1851 1852 /* 1853 * Physically remapped pages are special. Tell the 1854 * rest of the world about it: 1855 * VM_IO tells people not to look at these pages 1856 * (accesses can have side effects). 1857 * VM_RESERVED is specified all over the place, because 1858 * in 2.4 it kept swapout's vma scan off this vma; but 1859 * in 2.6 the LRU scan won't even find its pages, so this 1860 * flag means no more than count its pages in reserved_vm, 1861 * and omit it from core dump, even when VM_IO turned off. 1862 * VM_PFNMAP tells the core MM that the base pages are just 1863 * raw PFN mappings, and do not have a "struct page" associated 1864 * with them. 1865 * 1866 * There's a horrible special case to handle copy-on-write 1867 * behaviour that some programs depend on. We mark the "original" 1868 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1869 */ 1870 if (addr == vma->vm_start && end == vma->vm_end) { 1871 vma->vm_pgoff = pfn; 1872 vma->vm_flags |= VM_PFN_AT_MMAP; 1873 } else if (is_cow_mapping(vma->vm_flags)) 1874 return -EINVAL; 1875 1876 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1877 1878 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 1879 if (err) { 1880 /* 1881 * To indicate that track_pfn related cleanup is not 1882 * needed from higher level routine calling unmap_vmas 1883 */ 1884 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 1885 vma->vm_flags &= ~VM_PFN_AT_MMAP; 1886 return -EINVAL; 1887 } 1888 1889 BUG_ON(addr >= end); 1890 pfn -= addr >> PAGE_SHIFT; 1891 pgd = pgd_offset(mm, addr); 1892 flush_cache_range(vma, addr, end); 1893 do { 1894 next = pgd_addr_end(addr, end); 1895 err = remap_pud_range(mm, pgd, addr, next, 1896 pfn + (addr >> PAGE_SHIFT), prot); 1897 if (err) 1898 break; 1899 } while (pgd++, addr = next, addr != end); 1900 1901 if (err) 1902 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 1903 1904 return err; 1905 } 1906 EXPORT_SYMBOL(remap_pfn_range); 1907 1908 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1909 unsigned long addr, unsigned long end, 1910 pte_fn_t fn, void *data) 1911 { 1912 pte_t *pte; 1913 int err; 1914 pgtable_t token; 1915 spinlock_t *uninitialized_var(ptl); 1916 1917 pte = (mm == &init_mm) ? 1918 pte_alloc_kernel(pmd, addr) : 1919 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1920 if (!pte) 1921 return -ENOMEM; 1922 1923 BUG_ON(pmd_huge(*pmd)); 1924 1925 arch_enter_lazy_mmu_mode(); 1926 1927 token = pmd_pgtable(*pmd); 1928 1929 do { 1930 err = fn(pte++, token, addr, data); 1931 if (err) 1932 break; 1933 } while (addr += PAGE_SIZE, addr != end); 1934 1935 arch_leave_lazy_mmu_mode(); 1936 1937 if (mm != &init_mm) 1938 pte_unmap_unlock(pte-1, ptl); 1939 return err; 1940 } 1941 1942 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1943 unsigned long addr, unsigned long end, 1944 pte_fn_t fn, void *data) 1945 { 1946 pmd_t *pmd; 1947 unsigned long next; 1948 int err; 1949 1950 BUG_ON(pud_huge(*pud)); 1951 1952 pmd = pmd_alloc(mm, pud, addr); 1953 if (!pmd) 1954 return -ENOMEM; 1955 do { 1956 next = pmd_addr_end(addr, end); 1957 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1958 if (err) 1959 break; 1960 } while (pmd++, addr = next, addr != end); 1961 return err; 1962 } 1963 1964 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1965 unsigned long addr, unsigned long end, 1966 pte_fn_t fn, void *data) 1967 { 1968 pud_t *pud; 1969 unsigned long next; 1970 int err; 1971 1972 pud = pud_alloc(mm, pgd, addr); 1973 if (!pud) 1974 return -ENOMEM; 1975 do { 1976 next = pud_addr_end(addr, end); 1977 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1978 if (err) 1979 break; 1980 } while (pud++, addr = next, addr != end); 1981 return err; 1982 } 1983 1984 /* 1985 * Scan a region of virtual memory, filling in page tables as necessary 1986 * and calling a provided function on each leaf page table. 1987 */ 1988 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1989 unsigned long size, pte_fn_t fn, void *data) 1990 { 1991 pgd_t *pgd; 1992 unsigned long next; 1993 unsigned long start = addr, end = addr + size; 1994 int err; 1995 1996 BUG_ON(addr >= end); 1997 mmu_notifier_invalidate_range_start(mm, start, end); 1998 pgd = pgd_offset(mm, addr); 1999 do { 2000 next = pgd_addr_end(addr, end); 2001 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2002 if (err) 2003 break; 2004 } while (pgd++, addr = next, addr != end); 2005 mmu_notifier_invalidate_range_end(mm, start, end); 2006 return err; 2007 } 2008 EXPORT_SYMBOL_GPL(apply_to_page_range); 2009 2010 /* 2011 * handle_pte_fault chooses page fault handler according to an entry 2012 * which was read non-atomically. Before making any commitment, on 2013 * those architectures or configurations (e.g. i386 with PAE) which 2014 * might give a mix of unmatched parts, do_swap_page and do_file_page 2015 * must check under lock before unmapping the pte and proceeding 2016 * (but do_wp_page is only called after already making such a check; 2017 * and do_anonymous_page and do_no_page can safely check later on). 2018 */ 2019 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2020 pte_t *page_table, pte_t orig_pte) 2021 { 2022 int same = 1; 2023 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2024 if (sizeof(pte_t) > sizeof(unsigned long)) { 2025 spinlock_t *ptl = pte_lockptr(mm, pmd); 2026 spin_lock(ptl); 2027 same = pte_same(*page_table, orig_pte); 2028 spin_unlock(ptl); 2029 } 2030 #endif 2031 pte_unmap(page_table); 2032 return same; 2033 } 2034 2035 /* 2036 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 2037 * servicing faults for write access. In the normal case, do always want 2038 * pte_mkwrite. But get_user_pages can cause write faults for mappings 2039 * that do not have writing enabled, when used by access_process_vm. 2040 */ 2041 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 2042 { 2043 if (likely(vma->vm_flags & VM_WRITE)) 2044 pte = pte_mkwrite(pte); 2045 return pte; 2046 } 2047 2048 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2049 { 2050 /* 2051 * If the source page was a PFN mapping, we don't have 2052 * a "struct page" for it. We do a best-effort copy by 2053 * just copying from the original user address. If that 2054 * fails, we just zero-fill it. Live with it. 2055 */ 2056 if (unlikely(!src)) { 2057 void *kaddr = kmap_atomic(dst, KM_USER0); 2058 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2059 2060 /* 2061 * This really shouldn't fail, because the page is there 2062 * in the page tables. But it might just be unreadable, 2063 * in which case we just give up and fill the result with 2064 * zeroes. 2065 */ 2066 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2067 memset(kaddr, 0, PAGE_SIZE); 2068 kunmap_atomic(kaddr, KM_USER0); 2069 flush_dcache_page(dst); 2070 } else 2071 copy_user_highpage(dst, src, va, vma); 2072 } 2073 2074 /* 2075 * This routine handles present pages, when users try to write 2076 * to a shared page. It is done by copying the page to a new address 2077 * and decrementing the shared-page counter for the old page. 2078 * 2079 * Note that this routine assumes that the protection checks have been 2080 * done by the caller (the low-level page fault routine in most cases). 2081 * Thus we can safely just mark it writable once we've done any necessary 2082 * COW. 2083 * 2084 * We also mark the page dirty at this point even though the page will 2085 * change only once the write actually happens. This avoids a few races, 2086 * and potentially makes it more efficient. 2087 * 2088 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2089 * but allow concurrent faults), with pte both mapped and locked. 2090 * We return with mmap_sem still held, but pte unmapped and unlocked. 2091 */ 2092 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2093 unsigned long address, pte_t *page_table, pmd_t *pmd, 2094 spinlock_t *ptl, pte_t orig_pte) 2095 { 2096 struct page *old_page, *new_page; 2097 pte_t entry; 2098 int reuse = 0, ret = 0; 2099 int page_mkwrite = 0; 2100 struct page *dirty_page = NULL; 2101 2102 old_page = vm_normal_page(vma, address, orig_pte); 2103 if (!old_page) { 2104 /* 2105 * VM_MIXEDMAP !pfn_valid() case 2106 * 2107 * We should not cow pages in a shared writeable mapping. 2108 * Just mark the pages writable as we can't do any dirty 2109 * accounting on raw pfn maps. 2110 */ 2111 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2112 (VM_WRITE|VM_SHARED)) 2113 goto reuse; 2114 goto gotten; 2115 } 2116 2117 /* 2118 * Take out anonymous pages first, anonymous shared vmas are 2119 * not dirty accountable. 2120 */ 2121 if (PageAnon(old_page) && !PageKsm(old_page)) { 2122 if (!trylock_page(old_page)) { 2123 page_cache_get(old_page); 2124 pte_unmap_unlock(page_table, ptl); 2125 lock_page(old_page); 2126 page_table = pte_offset_map_lock(mm, pmd, address, 2127 &ptl); 2128 if (!pte_same(*page_table, orig_pte)) { 2129 unlock_page(old_page); 2130 page_cache_release(old_page); 2131 goto unlock; 2132 } 2133 page_cache_release(old_page); 2134 } 2135 reuse = reuse_swap_page(old_page); 2136 if (reuse) 2137 /* 2138 * The page is all ours. Move it to our anon_vma so 2139 * the rmap code will not search our parent or siblings. 2140 * Protected against the rmap code by the page lock. 2141 */ 2142 page_move_anon_rmap(old_page, vma, address); 2143 unlock_page(old_page); 2144 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2145 (VM_WRITE|VM_SHARED))) { 2146 /* 2147 * Only catch write-faults on shared writable pages, 2148 * read-only shared pages can get COWed by 2149 * get_user_pages(.write=1, .force=1). 2150 */ 2151 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2152 struct vm_fault vmf; 2153 int tmp; 2154 2155 vmf.virtual_address = (void __user *)(address & 2156 PAGE_MASK); 2157 vmf.pgoff = old_page->index; 2158 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2159 vmf.page = old_page; 2160 2161 /* 2162 * Notify the address space that the page is about to 2163 * become writable so that it can prohibit this or wait 2164 * for the page to get into an appropriate state. 2165 * 2166 * We do this without the lock held, so that it can 2167 * sleep if it needs to. 2168 */ 2169 page_cache_get(old_page); 2170 pte_unmap_unlock(page_table, ptl); 2171 2172 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2173 if (unlikely(tmp & 2174 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2175 ret = tmp; 2176 goto unwritable_page; 2177 } 2178 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2179 lock_page(old_page); 2180 if (!old_page->mapping) { 2181 ret = 0; /* retry the fault */ 2182 unlock_page(old_page); 2183 goto unwritable_page; 2184 } 2185 } else 2186 VM_BUG_ON(!PageLocked(old_page)); 2187 2188 /* 2189 * Since we dropped the lock we need to revalidate 2190 * the PTE as someone else may have changed it. If 2191 * they did, we just return, as we can count on the 2192 * MMU to tell us if they didn't also make it writable. 2193 */ 2194 page_table = pte_offset_map_lock(mm, pmd, address, 2195 &ptl); 2196 if (!pte_same(*page_table, orig_pte)) { 2197 unlock_page(old_page); 2198 page_cache_release(old_page); 2199 goto unlock; 2200 } 2201 2202 page_mkwrite = 1; 2203 } 2204 dirty_page = old_page; 2205 get_page(dirty_page); 2206 reuse = 1; 2207 } 2208 2209 if (reuse) { 2210 reuse: 2211 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2212 entry = pte_mkyoung(orig_pte); 2213 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2214 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2215 update_mmu_cache(vma, address, page_table); 2216 ret |= VM_FAULT_WRITE; 2217 goto unlock; 2218 } 2219 2220 /* 2221 * Ok, we need to copy. Oh, well.. 2222 */ 2223 page_cache_get(old_page); 2224 gotten: 2225 pte_unmap_unlock(page_table, ptl); 2226 2227 if (unlikely(anon_vma_prepare(vma))) 2228 goto oom; 2229 2230 if (is_zero_pfn(pte_pfn(orig_pte))) { 2231 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2232 if (!new_page) 2233 goto oom; 2234 } else { 2235 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2236 if (!new_page) 2237 goto oom; 2238 cow_user_page(new_page, old_page, address, vma); 2239 } 2240 __SetPageUptodate(new_page); 2241 2242 /* 2243 * Don't let another task, with possibly unlocked vma, 2244 * keep the mlocked page. 2245 */ 2246 if ((vma->vm_flags & VM_LOCKED) && old_page) { 2247 lock_page(old_page); /* for LRU manipulation */ 2248 clear_page_mlock(old_page); 2249 unlock_page(old_page); 2250 } 2251 2252 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2253 goto oom_free_new; 2254 2255 /* 2256 * Re-check the pte - we dropped the lock 2257 */ 2258 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2259 if (likely(pte_same(*page_table, orig_pte))) { 2260 if (old_page) { 2261 if (!PageAnon(old_page)) { 2262 dec_mm_counter_fast(mm, MM_FILEPAGES); 2263 inc_mm_counter_fast(mm, MM_ANONPAGES); 2264 } 2265 } else 2266 inc_mm_counter_fast(mm, MM_ANONPAGES); 2267 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2268 entry = mk_pte(new_page, vma->vm_page_prot); 2269 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2270 /* 2271 * Clear the pte entry and flush it first, before updating the 2272 * pte with the new entry. This will avoid a race condition 2273 * seen in the presence of one thread doing SMC and another 2274 * thread doing COW. 2275 */ 2276 ptep_clear_flush(vma, address, page_table); 2277 page_add_new_anon_rmap(new_page, vma, address); 2278 /* 2279 * We call the notify macro here because, when using secondary 2280 * mmu page tables (such as kvm shadow page tables), we want the 2281 * new page to be mapped directly into the secondary page table. 2282 */ 2283 set_pte_at_notify(mm, address, page_table, entry); 2284 update_mmu_cache(vma, address, page_table); 2285 if (old_page) { 2286 /* 2287 * Only after switching the pte to the new page may 2288 * we remove the mapcount here. Otherwise another 2289 * process may come and find the rmap count decremented 2290 * before the pte is switched to the new page, and 2291 * "reuse" the old page writing into it while our pte 2292 * here still points into it and can be read by other 2293 * threads. 2294 * 2295 * The critical issue is to order this 2296 * page_remove_rmap with the ptp_clear_flush above. 2297 * Those stores are ordered by (if nothing else,) 2298 * the barrier present in the atomic_add_negative 2299 * in page_remove_rmap. 2300 * 2301 * Then the TLB flush in ptep_clear_flush ensures that 2302 * no process can access the old page before the 2303 * decremented mapcount is visible. And the old page 2304 * cannot be reused until after the decremented 2305 * mapcount is visible. So transitively, TLBs to 2306 * old page will be flushed before it can be reused. 2307 */ 2308 page_remove_rmap(old_page); 2309 } 2310 2311 /* Free the old page.. */ 2312 new_page = old_page; 2313 ret |= VM_FAULT_WRITE; 2314 } else 2315 mem_cgroup_uncharge_page(new_page); 2316 2317 if (new_page) 2318 page_cache_release(new_page); 2319 if (old_page) 2320 page_cache_release(old_page); 2321 unlock: 2322 pte_unmap_unlock(page_table, ptl); 2323 if (dirty_page) { 2324 /* 2325 * Yes, Virginia, this is actually required to prevent a race 2326 * with clear_page_dirty_for_io() from clearing the page dirty 2327 * bit after it clear all dirty ptes, but before a racing 2328 * do_wp_page installs a dirty pte. 2329 * 2330 * do_no_page is protected similarly. 2331 */ 2332 if (!page_mkwrite) { 2333 wait_on_page_locked(dirty_page); 2334 set_page_dirty_balance(dirty_page, page_mkwrite); 2335 } 2336 put_page(dirty_page); 2337 if (page_mkwrite) { 2338 struct address_space *mapping = dirty_page->mapping; 2339 2340 set_page_dirty(dirty_page); 2341 unlock_page(dirty_page); 2342 page_cache_release(dirty_page); 2343 if (mapping) { 2344 /* 2345 * Some device drivers do not set page.mapping 2346 * but still dirty their pages 2347 */ 2348 balance_dirty_pages_ratelimited(mapping); 2349 } 2350 } 2351 2352 /* file_update_time outside page_lock */ 2353 if (vma->vm_file) 2354 file_update_time(vma->vm_file); 2355 } 2356 return ret; 2357 oom_free_new: 2358 page_cache_release(new_page); 2359 oom: 2360 if (old_page) { 2361 if (page_mkwrite) { 2362 unlock_page(old_page); 2363 page_cache_release(old_page); 2364 } 2365 page_cache_release(old_page); 2366 } 2367 return VM_FAULT_OOM; 2368 2369 unwritable_page: 2370 page_cache_release(old_page); 2371 return ret; 2372 } 2373 2374 /* 2375 * Helper functions for unmap_mapping_range(). 2376 * 2377 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 2378 * 2379 * We have to restart searching the prio_tree whenever we drop the lock, 2380 * since the iterator is only valid while the lock is held, and anyway 2381 * a later vma might be split and reinserted earlier while lock dropped. 2382 * 2383 * The list of nonlinear vmas could be handled more efficiently, using 2384 * a placeholder, but handle it in the same way until a need is shown. 2385 * It is important to search the prio_tree before nonlinear list: a vma 2386 * may become nonlinear and be shifted from prio_tree to nonlinear list 2387 * while the lock is dropped; but never shifted from list to prio_tree. 2388 * 2389 * In order to make forward progress despite restarting the search, 2390 * vm_truncate_count is used to mark a vma as now dealt with, so we can 2391 * quickly skip it next time around. Since the prio_tree search only 2392 * shows us those vmas affected by unmapping the range in question, we 2393 * can't efficiently keep all vmas in step with mapping->truncate_count: 2394 * so instead reset them all whenever it wraps back to 0 (then go to 1). 2395 * mapping->truncate_count and vma->vm_truncate_count are protected by 2396 * i_mmap_lock. 2397 * 2398 * In order to make forward progress despite repeatedly restarting some 2399 * large vma, note the restart_addr from unmap_vmas when it breaks out: 2400 * and restart from that address when we reach that vma again. It might 2401 * have been split or merged, shrunk or extended, but never shifted: so 2402 * restart_addr remains valid so long as it remains in the vma's range. 2403 * unmap_mapping_range forces truncate_count to leap over page-aligned 2404 * values so we can save vma's restart_addr in its truncate_count field. 2405 */ 2406 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 2407 2408 static void reset_vma_truncate_counts(struct address_space *mapping) 2409 { 2410 struct vm_area_struct *vma; 2411 struct prio_tree_iter iter; 2412 2413 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2414 vma->vm_truncate_count = 0; 2415 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2416 vma->vm_truncate_count = 0; 2417 } 2418 2419 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2420 unsigned long start_addr, unsigned long end_addr, 2421 struct zap_details *details) 2422 { 2423 unsigned long restart_addr; 2424 int need_break; 2425 2426 /* 2427 * files that support invalidating or truncating portions of the 2428 * file from under mmaped areas must have their ->fault function 2429 * return a locked page (and set VM_FAULT_LOCKED in the return). 2430 * This provides synchronisation against concurrent unmapping here. 2431 */ 2432 2433 again: 2434 restart_addr = vma->vm_truncate_count; 2435 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2436 start_addr = restart_addr; 2437 if (start_addr >= end_addr) { 2438 /* Top of vma has been split off since last time */ 2439 vma->vm_truncate_count = details->truncate_count; 2440 return 0; 2441 } 2442 } 2443 2444 restart_addr = zap_page_range(vma, start_addr, 2445 end_addr - start_addr, details); 2446 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2447 2448 if (restart_addr >= end_addr) { 2449 /* We have now completed this vma: mark it so */ 2450 vma->vm_truncate_count = details->truncate_count; 2451 if (!need_break) 2452 return 0; 2453 } else { 2454 /* Note restart_addr in vma's truncate_count field */ 2455 vma->vm_truncate_count = restart_addr; 2456 if (!need_break) 2457 goto again; 2458 } 2459 2460 spin_unlock(details->i_mmap_lock); 2461 cond_resched(); 2462 spin_lock(details->i_mmap_lock); 2463 return -EINTR; 2464 } 2465 2466 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2467 struct zap_details *details) 2468 { 2469 struct vm_area_struct *vma; 2470 struct prio_tree_iter iter; 2471 pgoff_t vba, vea, zba, zea; 2472 2473 restart: 2474 vma_prio_tree_foreach(vma, &iter, root, 2475 details->first_index, details->last_index) { 2476 /* Skip quickly over those we have already dealt with */ 2477 if (vma->vm_truncate_count == details->truncate_count) 2478 continue; 2479 2480 vba = vma->vm_pgoff; 2481 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2482 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2483 zba = details->first_index; 2484 if (zba < vba) 2485 zba = vba; 2486 zea = details->last_index; 2487 if (zea > vea) 2488 zea = vea; 2489 2490 if (unmap_mapping_range_vma(vma, 2491 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2492 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2493 details) < 0) 2494 goto restart; 2495 } 2496 } 2497 2498 static inline void unmap_mapping_range_list(struct list_head *head, 2499 struct zap_details *details) 2500 { 2501 struct vm_area_struct *vma; 2502 2503 /* 2504 * In nonlinear VMAs there is no correspondence between virtual address 2505 * offset and file offset. So we must perform an exhaustive search 2506 * across *all* the pages in each nonlinear VMA, not just the pages 2507 * whose virtual address lies outside the file truncation point. 2508 */ 2509 restart: 2510 list_for_each_entry(vma, head, shared.vm_set.list) { 2511 /* Skip quickly over those we have already dealt with */ 2512 if (vma->vm_truncate_count == details->truncate_count) 2513 continue; 2514 details->nonlinear_vma = vma; 2515 if (unmap_mapping_range_vma(vma, vma->vm_start, 2516 vma->vm_end, details) < 0) 2517 goto restart; 2518 } 2519 } 2520 2521 /** 2522 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2523 * @mapping: the address space containing mmaps to be unmapped. 2524 * @holebegin: byte in first page to unmap, relative to the start of 2525 * the underlying file. This will be rounded down to a PAGE_SIZE 2526 * boundary. Note that this is different from truncate_pagecache(), which 2527 * must keep the partial page. In contrast, we must get rid of 2528 * partial pages. 2529 * @holelen: size of prospective hole in bytes. This will be rounded 2530 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2531 * end of the file. 2532 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2533 * but 0 when invalidating pagecache, don't throw away private data. 2534 */ 2535 void unmap_mapping_range(struct address_space *mapping, 2536 loff_t const holebegin, loff_t const holelen, int even_cows) 2537 { 2538 struct zap_details details; 2539 pgoff_t hba = holebegin >> PAGE_SHIFT; 2540 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2541 2542 /* Check for overflow. */ 2543 if (sizeof(holelen) > sizeof(hlen)) { 2544 long long holeend = 2545 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2546 if (holeend & ~(long long)ULONG_MAX) 2547 hlen = ULONG_MAX - hba + 1; 2548 } 2549 2550 details.check_mapping = even_cows? NULL: mapping; 2551 details.nonlinear_vma = NULL; 2552 details.first_index = hba; 2553 details.last_index = hba + hlen - 1; 2554 if (details.last_index < details.first_index) 2555 details.last_index = ULONG_MAX; 2556 details.i_mmap_lock = &mapping->i_mmap_lock; 2557 2558 spin_lock(&mapping->i_mmap_lock); 2559 2560 /* Protect against endless unmapping loops */ 2561 mapping->truncate_count++; 2562 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2563 if (mapping->truncate_count == 0) 2564 reset_vma_truncate_counts(mapping); 2565 mapping->truncate_count++; 2566 } 2567 details.truncate_count = mapping->truncate_count; 2568 2569 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2570 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2571 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2572 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2573 spin_unlock(&mapping->i_mmap_lock); 2574 } 2575 EXPORT_SYMBOL(unmap_mapping_range); 2576 2577 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2578 { 2579 struct address_space *mapping = inode->i_mapping; 2580 2581 /* 2582 * If the underlying filesystem is not going to provide 2583 * a way to truncate a range of blocks (punch a hole) - 2584 * we should return failure right now. 2585 */ 2586 if (!inode->i_op->truncate_range) 2587 return -ENOSYS; 2588 2589 mutex_lock(&inode->i_mutex); 2590 down_write(&inode->i_alloc_sem); 2591 unmap_mapping_range(mapping, offset, (end - offset), 1); 2592 truncate_inode_pages_range(mapping, offset, end); 2593 unmap_mapping_range(mapping, offset, (end - offset), 1); 2594 inode->i_op->truncate_range(inode, offset, end); 2595 up_write(&inode->i_alloc_sem); 2596 mutex_unlock(&inode->i_mutex); 2597 2598 return 0; 2599 } 2600 2601 /* 2602 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2603 * but allow concurrent faults), and pte mapped but not yet locked. 2604 * We return with mmap_sem still held, but pte unmapped and unlocked. 2605 */ 2606 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2607 unsigned long address, pte_t *page_table, pmd_t *pmd, 2608 unsigned int flags, pte_t orig_pte) 2609 { 2610 spinlock_t *ptl; 2611 struct page *page; 2612 swp_entry_t entry; 2613 pte_t pte; 2614 struct mem_cgroup *ptr = NULL; 2615 int ret = 0; 2616 2617 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2618 goto out; 2619 2620 entry = pte_to_swp_entry(orig_pte); 2621 if (unlikely(non_swap_entry(entry))) { 2622 if (is_migration_entry(entry)) { 2623 migration_entry_wait(mm, pmd, address); 2624 } else if (is_hwpoison_entry(entry)) { 2625 ret = VM_FAULT_HWPOISON; 2626 } else { 2627 print_bad_pte(vma, address, orig_pte, NULL); 2628 ret = VM_FAULT_SIGBUS; 2629 } 2630 goto out; 2631 } 2632 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2633 page = lookup_swap_cache(entry); 2634 if (!page) { 2635 grab_swap_token(mm); /* Contend for token _before_ read-in */ 2636 page = swapin_readahead(entry, 2637 GFP_HIGHUSER_MOVABLE, vma, address); 2638 if (!page) { 2639 /* 2640 * Back out if somebody else faulted in this pte 2641 * while we released the pte lock. 2642 */ 2643 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2644 if (likely(pte_same(*page_table, orig_pte))) 2645 ret = VM_FAULT_OOM; 2646 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2647 goto unlock; 2648 } 2649 2650 /* Had to read the page from swap area: Major fault */ 2651 ret = VM_FAULT_MAJOR; 2652 count_vm_event(PGMAJFAULT); 2653 } else if (PageHWPoison(page)) { 2654 /* 2655 * hwpoisoned dirty swapcache pages are kept for killing 2656 * owner processes (which may be unknown at hwpoison time) 2657 */ 2658 ret = VM_FAULT_HWPOISON; 2659 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2660 goto out_release; 2661 } 2662 2663 lock_page(page); 2664 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2665 2666 page = ksm_might_need_to_copy(page, vma, address); 2667 if (!page) { 2668 ret = VM_FAULT_OOM; 2669 goto out; 2670 } 2671 2672 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2673 ret = VM_FAULT_OOM; 2674 goto out_page; 2675 } 2676 2677 /* 2678 * Back out if somebody else already faulted in this pte. 2679 */ 2680 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2681 if (unlikely(!pte_same(*page_table, orig_pte))) 2682 goto out_nomap; 2683 2684 if (unlikely(!PageUptodate(page))) { 2685 ret = VM_FAULT_SIGBUS; 2686 goto out_nomap; 2687 } 2688 2689 /* 2690 * The page isn't present yet, go ahead with the fault. 2691 * 2692 * Be careful about the sequence of operations here. 2693 * To get its accounting right, reuse_swap_page() must be called 2694 * while the page is counted on swap but not yet in mapcount i.e. 2695 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2696 * must be called after the swap_free(), or it will never succeed. 2697 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2698 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2699 * in page->private. In this case, a record in swap_cgroup is silently 2700 * discarded at swap_free(). 2701 */ 2702 2703 inc_mm_counter_fast(mm, MM_ANONPAGES); 2704 dec_mm_counter_fast(mm, MM_SWAPENTS); 2705 pte = mk_pte(page, vma->vm_page_prot); 2706 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2707 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2708 flags &= ~FAULT_FLAG_WRITE; 2709 } 2710 flush_icache_page(vma, page); 2711 set_pte_at(mm, address, page_table, pte); 2712 page_add_anon_rmap(page, vma, address); 2713 /* It's better to call commit-charge after rmap is established */ 2714 mem_cgroup_commit_charge_swapin(page, ptr); 2715 2716 swap_free(entry); 2717 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2718 try_to_free_swap(page); 2719 unlock_page(page); 2720 2721 if (flags & FAULT_FLAG_WRITE) { 2722 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2723 if (ret & VM_FAULT_ERROR) 2724 ret &= VM_FAULT_ERROR; 2725 goto out; 2726 } 2727 2728 /* No need to invalidate - it was non-present before */ 2729 update_mmu_cache(vma, address, page_table); 2730 unlock: 2731 pte_unmap_unlock(page_table, ptl); 2732 out: 2733 return ret; 2734 out_nomap: 2735 mem_cgroup_cancel_charge_swapin(ptr); 2736 pte_unmap_unlock(page_table, ptl); 2737 out_page: 2738 unlock_page(page); 2739 out_release: 2740 page_cache_release(page); 2741 return ret; 2742 } 2743 2744 /* 2745 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2746 * but allow concurrent faults), and pte mapped but not yet locked. 2747 * We return with mmap_sem still held, but pte unmapped and unlocked. 2748 */ 2749 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2750 unsigned long address, pte_t *page_table, pmd_t *pmd, 2751 unsigned int flags) 2752 { 2753 struct page *page; 2754 spinlock_t *ptl; 2755 pte_t entry; 2756 2757 if (!(flags & FAULT_FLAG_WRITE)) { 2758 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2759 vma->vm_page_prot)); 2760 ptl = pte_lockptr(mm, pmd); 2761 spin_lock(ptl); 2762 if (!pte_none(*page_table)) 2763 goto unlock; 2764 goto setpte; 2765 } 2766 2767 /* Allocate our own private page. */ 2768 pte_unmap(page_table); 2769 2770 if (unlikely(anon_vma_prepare(vma))) 2771 goto oom; 2772 page = alloc_zeroed_user_highpage_movable(vma, address); 2773 if (!page) 2774 goto oom; 2775 __SetPageUptodate(page); 2776 2777 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 2778 goto oom_free_page; 2779 2780 entry = mk_pte(page, vma->vm_page_prot); 2781 if (vma->vm_flags & VM_WRITE) 2782 entry = pte_mkwrite(pte_mkdirty(entry)); 2783 2784 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2785 if (!pte_none(*page_table)) 2786 goto release; 2787 2788 inc_mm_counter_fast(mm, MM_ANONPAGES); 2789 page_add_new_anon_rmap(page, vma, address); 2790 setpte: 2791 set_pte_at(mm, address, page_table, entry); 2792 2793 /* No need to invalidate - it was non-present before */ 2794 update_mmu_cache(vma, address, page_table); 2795 unlock: 2796 pte_unmap_unlock(page_table, ptl); 2797 return 0; 2798 release: 2799 mem_cgroup_uncharge_page(page); 2800 page_cache_release(page); 2801 goto unlock; 2802 oom_free_page: 2803 page_cache_release(page); 2804 oom: 2805 return VM_FAULT_OOM; 2806 } 2807 2808 /* 2809 * __do_fault() tries to create a new page mapping. It aggressively 2810 * tries to share with existing pages, but makes a separate copy if 2811 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2812 * the next page fault. 2813 * 2814 * As this is called only for pages that do not currently exist, we 2815 * do not need to flush old virtual caches or the TLB. 2816 * 2817 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2818 * but allow concurrent faults), and pte neither mapped nor locked. 2819 * We return with mmap_sem still held, but pte unmapped and unlocked. 2820 */ 2821 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2822 unsigned long address, pmd_t *pmd, 2823 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2824 { 2825 pte_t *page_table; 2826 spinlock_t *ptl; 2827 struct page *page; 2828 pte_t entry; 2829 int anon = 0; 2830 int charged = 0; 2831 struct page *dirty_page = NULL; 2832 struct vm_fault vmf; 2833 int ret; 2834 int page_mkwrite = 0; 2835 2836 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2837 vmf.pgoff = pgoff; 2838 vmf.flags = flags; 2839 vmf.page = NULL; 2840 2841 ret = vma->vm_ops->fault(vma, &vmf); 2842 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2843 return ret; 2844 2845 if (unlikely(PageHWPoison(vmf.page))) { 2846 if (ret & VM_FAULT_LOCKED) 2847 unlock_page(vmf.page); 2848 return VM_FAULT_HWPOISON; 2849 } 2850 2851 /* 2852 * For consistency in subsequent calls, make the faulted page always 2853 * locked. 2854 */ 2855 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2856 lock_page(vmf.page); 2857 else 2858 VM_BUG_ON(!PageLocked(vmf.page)); 2859 2860 /* 2861 * Should we do an early C-O-W break? 2862 */ 2863 page = vmf.page; 2864 if (flags & FAULT_FLAG_WRITE) { 2865 if (!(vma->vm_flags & VM_SHARED)) { 2866 anon = 1; 2867 if (unlikely(anon_vma_prepare(vma))) { 2868 ret = VM_FAULT_OOM; 2869 goto out; 2870 } 2871 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2872 vma, address); 2873 if (!page) { 2874 ret = VM_FAULT_OOM; 2875 goto out; 2876 } 2877 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 2878 ret = VM_FAULT_OOM; 2879 page_cache_release(page); 2880 goto out; 2881 } 2882 charged = 1; 2883 /* 2884 * Don't let another task, with possibly unlocked vma, 2885 * keep the mlocked page. 2886 */ 2887 if (vma->vm_flags & VM_LOCKED) 2888 clear_page_mlock(vmf.page); 2889 copy_user_highpage(page, vmf.page, address, vma); 2890 __SetPageUptodate(page); 2891 } else { 2892 /* 2893 * If the page will be shareable, see if the backing 2894 * address space wants to know that the page is about 2895 * to become writable 2896 */ 2897 if (vma->vm_ops->page_mkwrite) { 2898 int tmp; 2899 2900 unlock_page(page); 2901 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2902 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2903 if (unlikely(tmp & 2904 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2905 ret = tmp; 2906 goto unwritable_page; 2907 } 2908 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2909 lock_page(page); 2910 if (!page->mapping) { 2911 ret = 0; /* retry the fault */ 2912 unlock_page(page); 2913 goto unwritable_page; 2914 } 2915 } else 2916 VM_BUG_ON(!PageLocked(page)); 2917 page_mkwrite = 1; 2918 } 2919 } 2920 2921 } 2922 2923 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2924 2925 /* 2926 * This silly early PAGE_DIRTY setting removes a race 2927 * due to the bad i386 page protection. But it's valid 2928 * for other architectures too. 2929 * 2930 * Note that if FAULT_FLAG_WRITE is set, we either now have 2931 * an exclusive copy of the page, or this is a shared mapping, 2932 * so we can make it writable and dirty to avoid having to 2933 * handle that later. 2934 */ 2935 /* Only go through if we didn't race with anybody else... */ 2936 if (likely(pte_same(*page_table, orig_pte))) { 2937 flush_icache_page(vma, page); 2938 entry = mk_pte(page, vma->vm_page_prot); 2939 if (flags & FAULT_FLAG_WRITE) 2940 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2941 if (anon) { 2942 inc_mm_counter_fast(mm, MM_ANONPAGES); 2943 page_add_new_anon_rmap(page, vma, address); 2944 } else { 2945 inc_mm_counter_fast(mm, MM_FILEPAGES); 2946 page_add_file_rmap(page); 2947 if (flags & FAULT_FLAG_WRITE) { 2948 dirty_page = page; 2949 get_page(dirty_page); 2950 } 2951 } 2952 set_pte_at(mm, address, page_table, entry); 2953 2954 /* no need to invalidate: a not-present page won't be cached */ 2955 update_mmu_cache(vma, address, page_table); 2956 } else { 2957 if (charged) 2958 mem_cgroup_uncharge_page(page); 2959 if (anon) 2960 page_cache_release(page); 2961 else 2962 anon = 1; /* no anon but release faulted_page */ 2963 } 2964 2965 pte_unmap_unlock(page_table, ptl); 2966 2967 out: 2968 if (dirty_page) { 2969 struct address_space *mapping = page->mapping; 2970 2971 if (set_page_dirty(dirty_page)) 2972 page_mkwrite = 1; 2973 unlock_page(dirty_page); 2974 put_page(dirty_page); 2975 if (page_mkwrite && mapping) { 2976 /* 2977 * Some device drivers do not set page.mapping but still 2978 * dirty their pages 2979 */ 2980 balance_dirty_pages_ratelimited(mapping); 2981 } 2982 2983 /* file_update_time outside page_lock */ 2984 if (vma->vm_file) 2985 file_update_time(vma->vm_file); 2986 } else { 2987 unlock_page(vmf.page); 2988 if (anon) 2989 page_cache_release(vmf.page); 2990 } 2991 2992 return ret; 2993 2994 unwritable_page: 2995 page_cache_release(page); 2996 return ret; 2997 } 2998 2999 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3000 unsigned long address, pte_t *page_table, pmd_t *pmd, 3001 unsigned int flags, pte_t orig_pte) 3002 { 3003 pgoff_t pgoff = (((address & PAGE_MASK) 3004 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3005 3006 pte_unmap(page_table); 3007 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3008 } 3009 3010 /* 3011 * Fault of a previously existing named mapping. Repopulate the pte 3012 * from the encoded file_pte if possible. This enables swappable 3013 * nonlinear vmas. 3014 * 3015 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3016 * but allow concurrent faults), and pte mapped but not yet locked. 3017 * We return with mmap_sem still held, but pte unmapped and unlocked. 3018 */ 3019 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3020 unsigned long address, pte_t *page_table, pmd_t *pmd, 3021 unsigned int flags, pte_t orig_pte) 3022 { 3023 pgoff_t pgoff; 3024 3025 flags |= FAULT_FLAG_NONLINEAR; 3026 3027 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3028 return 0; 3029 3030 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3031 /* 3032 * Page table corrupted: show pte and kill process. 3033 */ 3034 print_bad_pte(vma, address, orig_pte, NULL); 3035 return VM_FAULT_SIGBUS; 3036 } 3037 3038 pgoff = pte_to_pgoff(orig_pte); 3039 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3040 } 3041 3042 /* 3043 * These routines also need to handle stuff like marking pages dirty 3044 * and/or accessed for architectures that don't do it in hardware (most 3045 * RISC architectures). The early dirtying is also good on the i386. 3046 * 3047 * There is also a hook called "update_mmu_cache()" that architectures 3048 * with external mmu caches can use to update those (ie the Sparc or 3049 * PowerPC hashed page tables that act as extended TLBs). 3050 * 3051 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3052 * but allow concurrent faults), and pte mapped but not yet locked. 3053 * We return with mmap_sem still held, but pte unmapped and unlocked. 3054 */ 3055 static inline int handle_pte_fault(struct mm_struct *mm, 3056 struct vm_area_struct *vma, unsigned long address, 3057 pte_t *pte, pmd_t *pmd, unsigned int flags) 3058 { 3059 pte_t entry; 3060 spinlock_t *ptl; 3061 3062 entry = *pte; 3063 if (!pte_present(entry)) { 3064 if (pte_none(entry)) { 3065 if (vma->vm_ops) { 3066 if (likely(vma->vm_ops->fault)) 3067 return do_linear_fault(mm, vma, address, 3068 pte, pmd, flags, entry); 3069 } 3070 return do_anonymous_page(mm, vma, address, 3071 pte, pmd, flags); 3072 } 3073 if (pte_file(entry)) 3074 return do_nonlinear_fault(mm, vma, address, 3075 pte, pmd, flags, entry); 3076 return do_swap_page(mm, vma, address, 3077 pte, pmd, flags, entry); 3078 } 3079 3080 ptl = pte_lockptr(mm, pmd); 3081 spin_lock(ptl); 3082 if (unlikely(!pte_same(*pte, entry))) 3083 goto unlock; 3084 if (flags & FAULT_FLAG_WRITE) { 3085 if (!pte_write(entry)) 3086 return do_wp_page(mm, vma, address, 3087 pte, pmd, ptl, entry); 3088 entry = pte_mkdirty(entry); 3089 } 3090 entry = pte_mkyoung(entry); 3091 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3092 update_mmu_cache(vma, address, pte); 3093 } else { 3094 /* 3095 * This is needed only for protection faults but the arch code 3096 * is not yet telling us if this is a protection fault or not. 3097 * This still avoids useless tlb flushes for .text page faults 3098 * with threads. 3099 */ 3100 if (flags & FAULT_FLAG_WRITE) 3101 flush_tlb_page(vma, address); 3102 } 3103 unlock: 3104 pte_unmap_unlock(pte, ptl); 3105 return 0; 3106 } 3107 3108 /* 3109 * By the time we get here, we already hold the mm semaphore 3110 */ 3111 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3112 unsigned long address, unsigned int flags) 3113 { 3114 pgd_t *pgd; 3115 pud_t *pud; 3116 pmd_t *pmd; 3117 pte_t *pte; 3118 3119 __set_current_state(TASK_RUNNING); 3120 3121 count_vm_event(PGFAULT); 3122 3123 /* do counter updates before entering really critical section. */ 3124 check_sync_rss_stat(current); 3125 3126 if (unlikely(is_vm_hugetlb_page(vma))) 3127 return hugetlb_fault(mm, vma, address, flags); 3128 3129 pgd = pgd_offset(mm, address); 3130 pud = pud_alloc(mm, pgd, address); 3131 if (!pud) 3132 return VM_FAULT_OOM; 3133 pmd = pmd_alloc(mm, pud, address); 3134 if (!pmd) 3135 return VM_FAULT_OOM; 3136 pte = pte_alloc_map(mm, pmd, address); 3137 if (!pte) 3138 return VM_FAULT_OOM; 3139 3140 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3141 } 3142 3143 #ifndef __PAGETABLE_PUD_FOLDED 3144 /* 3145 * Allocate page upper directory. 3146 * We've already handled the fast-path in-line. 3147 */ 3148 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3149 { 3150 pud_t *new = pud_alloc_one(mm, address); 3151 if (!new) 3152 return -ENOMEM; 3153 3154 smp_wmb(); /* See comment in __pte_alloc */ 3155 3156 spin_lock(&mm->page_table_lock); 3157 if (pgd_present(*pgd)) /* Another has populated it */ 3158 pud_free(mm, new); 3159 else 3160 pgd_populate(mm, pgd, new); 3161 spin_unlock(&mm->page_table_lock); 3162 return 0; 3163 } 3164 #endif /* __PAGETABLE_PUD_FOLDED */ 3165 3166 #ifndef __PAGETABLE_PMD_FOLDED 3167 /* 3168 * Allocate page middle directory. 3169 * We've already handled the fast-path in-line. 3170 */ 3171 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3172 { 3173 pmd_t *new = pmd_alloc_one(mm, address); 3174 if (!new) 3175 return -ENOMEM; 3176 3177 smp_wmb(); /* See comment in __pte_alloc */ 3178 3179 spin_lock(&mm->page_table_lock); 3180 #ifndef __ARCH_HAS_4LEVEL_HACK 3181 if (pud_present(*pud)) /* Another has populated it */ 3182 pmd_free(mm, new); 3183 else 3184 pud_populate(mm, pud, new); 3185 #else 3186 if (pgd_present(*pud)) /* Another has populated it */ 3187 pmd_free(mm, new); 3188 else 3189 pgd_populate(mm, pud, new); 3190 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3191 spin_unlock(&mm->page_table_lock); 3192 return 0; 3193 } 3194 #endif /* __PAGETABLE_PMD_FOLDED */ 3195 3196 int make_pages_present(unsigned long addr, unsigned long end) 3197 { 3198 int ret, len, write; 3199 struct vm_area_struct * vma; 3200 3201 vma = find_vma(current->mm, addr); 3202 if (!vma) 3203 return -ENOMEM; 3204 write = (vma->vm_flags & VM_WRITE) != 0; 3205 BUG_ON(addr >= end); 3206 BUG_ON(end > vma->vm_end); 3207 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3208 ret = get_user_pages(current, current->mm, addr, 3209 len, write, 0, NULL, NULL); 3210 if (ret < 0) 3211 return ret; 3212 return ret == len ? 0 : -EFAULT; 3213 } 3214 3215 #if !defined(__HAVE_ARCH_GATE_AREA) 3216 3217 #if defined(AT_SYSINFO_EHDR) 3218 static struct vm_area_struct gate_vma; 3219 3220 static int __init gate_vma_init(void) 3221 { 3222 gate_vma.vm_mm = NULL; 3223 gate_vma.vm_start = FIXADDR_USER_START; 3224 gate_vma.vm_end = FIXADDR_USER_END; 3225 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3226 gate_vma.vm_page_prot = __P101; 3227 /* 3228 * Make sure the vDSO gets into every core dump. 3229 * Dumping its contents makes post-mortem fully interpretable later 3230 * without matching up the same kernel and hardware config to see 3231 * what PC values meant. 3232 */ 3233 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3234 return 0; 3235 } 3236 __initcall(gate_vma_init); 3237 #endif 3238 3239 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 3240 { 3241 #ifdef AT_SYSINFO_EHDR 3242 return &gate_vma; 3243 #else 3244 return NULL; 3245 #endif 3246 } 3247 3248 int in_gate_area_no_task(unsigned long addr) 3249 { 3250 #ifdef AT_SYSINFO_EHDR 3251 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3252 return 1; 3253 #endif 3254 return 0; 3255 } 3256 3257 #endif /* __HAVE_ARCH_GATE_AREA */ 3258 3259 static int follow_pte(struct mm_struct *mm, unsigned long address, 3260 pte_t **ptepp, spinlock_t **ptlp) 3261 { 3262 pgd_t *pgd; 3263 pud_t *pud; 3264 pmd_t *pmd; 3265 pte_t *ptep; 3266 3267 pgd = pgd_offset(mm, address); 3268 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3269 goto out; 3270 3271 pud = pud_offset(pgd, address); 3272 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3273 goto out; 3274 3275 pmd = pmd_offset(pud, address); 3276 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3277 goto out; 3278 3279 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3280 if (pmd_huge(*pmd)) 3281 goto out; 3282 3283 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3284 if (!ptep) 3285 goto out; 3286 if (!pte_present(*ptep)) 3287 goto unlock; 3288 *ptepp = ptep; 3289 return 0; 3290 unlock: 3291 pte_unmap_unlock(ptep, *ptlp); 3292 out: 3293 return -EINVAL; 3294 } 3295 3296 /** 3297 * follow_pfn - look up PFN at a user virtual address 3298 * @vma: memory mapping 3299 * @address: user virtual address 3300 * @pfn: location to store found PFN 3301 * 3302 * Only IO mappings and raw PFN mappings are allowed. 3303 * 3304 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3305 */ 3306 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3307 unsigned long *pfn) 3308 { 3309 int ret = -EINVAL; 3310 spinlock_t *ptl; 3311 pte_t *ptep; 3312 3313 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3314 return ret; 3315 3316 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3317 if (ret) 3318 return ret; 3319 *pfn = pte_pfn(*ptep); 3320 pte_unmap_unlock(ptep, ptl); 3321 return 0; 3322 } 3323 EXPORT_SYMBOL(follow_pfn); 3324 3325 #ifdef CONFIG_HAVE_IOREMAP_PROT 3326 int follow_phys(struct vm_area_struct *vma, 3327 unsigned long address, unsigned int flags, 3328 unsigned long *prot, resource_size_t *phys) 3329 { 3330 int ret = -EINVAL; 3331 pte_t *ptep, pte; 3332 spinlock_t *ptl; 3333 3334 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3335 goto out; 3336 3337 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3338 goto out; 3339 pte = *ptep; 3340 3341 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3342 goto unlock; 3343 3344 *prot = pgprot_val(pte_pgprot(pte)); 3345 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3346 3347 ret = 0; 3348 unlock: 3349 pte_unmap_unlock(ptep, ptl); 3350 out: 3351 return ret; 3352 } 3353 3354 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3355 void *buf, int len, int write) 3356 { 3357 resource_size_t phys_addr; 3358 unsigned long prot = 0; 3359 void __iomem *maddr; 3360 int offset = addr & (PAGE_SIZE-1); 3361 3362 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3363 return -EINVAL; 3364 3365 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3366 if (write) 3367 memcpy_toio(maddr + offset, buf, len); 3368 else 3369 memcpy_fromio(buf, maddr + offset, len); 3370 iounmap(maddr); 3371 3372 return len; 3373 } 3374 #endif 3375 3376 /* 3377 * Access another process' address space. 3378 * Source/target buffer must be kernel space, 3379 * Do not walk the page table directly, use get_user_pages 3380 */ 3381 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 3382 { 3383 struct mm_struct *mm; 3384 struct vm_area_struct *vma; 3385 void *old_buf = buf; 3386 3387 mm = get_task_mm(tsk); 3388 if (!mm) 3389 return 0; 3390 3391 down_read(&mm->mmap_sem); 3392 /* ignore errors, just check how much was successfully transferred */ 3393 while (len) { 3394 int bytes, ret, offset; 3395 void *maddr; 3396 struct page *page = NULL; 3397 3398 ret = get_user_pages(tsk, mm, addr, 1, 3399 write, 1, &page, &vma); 3400 if (ret <= 0) { 3401 /* 3402 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3403 * we can access using slightly different code. 3404 */ 3405 #ifdef CONFIG_HAVE_IOREMAP_PROT 3406 vma = find_vma(mm, addr); 3407 if (!vma) 3408 break; 3409 if (vma->vm_ops && vma->vm_ops->access) 3410 ret = vma->vm_ops->access(vma, addr, buf, 3411 len, write); 3412 if (ret <= 0) 3413 #endif 3414 break; 3415 bytes = ret; 3416 } else { 3417 bytes = len; 3418 offset = addr & (PAGE_SIZE-1); 3419 if (bytes > PAGE_SIZE-offset) 3420 bytes = PAGE_SIZE-offset; 3421 3422 maddr = kmap(page); 3423 if (write) { 3424 copy_to_user_page(vma, page, addr, 3425 maddr + offset, buf, bytes); 3426 set_page_dirty_lock(page); 3427 } else { 3428 copy_from_user_page(vma, page, addr, 3429 buf, maddr + offset, bytes); 3430 } 3431 kunmap(page); 3432 page_cache_release(page); 3433 } 3434 len -= bytes; 3435 buf += bytes; 3436 addr += bytes; 3437 } 3438 up_read(&mm->mmap_sem); 3439 mmput(mm); 3440 3441 return buf - old_buf; 3442 } 3443 3444 /* 3445 * Print the name of a VMA. 3446 */ 3447 void print_vma_addr(char *prefix, unsigned long ip) 3448 { 3449 struct mm_struct *mm = current->mm; 3450 struct vm_area_struct *vma; 3451 3452 /* 3453 * Do not print if we are in atomic 3454 * contexts (in exception stacks, etc.): 3455 */ 3456 if (preempt_count()) 3457 return; 3458 3459 down_read(&mm->mmap_sem); 3460 vma = find_vma(mm, ip); 3461 if (vma && vma->vm_file) { 3462 struct file *f = vma->vm_file; 3463 char *buf = (char *)__get_free_page(GFP_KERNEL); 3464 if (buf) { 3465 char *p, *s; 3466 3467 p = d_path(&f->f_path, buf, PAGE_SIZE); 3468 if (IS_ERR(p)) 3469 p = "?"; 3470 s = strrchr(p, '/'); 3471 if (s) 3472 p = s+1; 3473 printk("%s%s[%lx+%lx]", prefix, p, 3474 vma->vm_start, 3475 vma->vm_end - vma->vm_start); 3476 free_page((unsigned long)buf); 3477 } 3478 } 3479 up_read(¤t->mm->mmap_sem); 3480 } 3481 3482 #ifdef CONFIG_PROVE_LOCKING 3483 void might_fault(void) 3484 { 3485 /* 3486 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3487 * holding the mmap_sem, this is safe because kernel memory doesn't 3488 * get paged out, therefore we'll never actually fault, and the 3489 * below annotations will generate false positives. 3490 */ 3491 if (segment_eq(get_fs(), KERNEL_DS)) 3492 return; 3493 3494 might_sleep(); 3495 /* 3496 * it would be nicer only to annotate paths which are not under 3497 * pagefault_disable, however that requires a larger audit and 3498 * providing helpers like get_user_atomic. 3499 */ 3500 if (!in_atomic() && current->mm) 3501 might_lock_read(¤t->mm->mmap_sem); 3502 } 3503 EXPORT_SYMBOL(might_fault); 3504 #endif 3505