xref: /linux/mm/memory.c (revision 56fb34d86e875dbb0d3e6a81c5d3d035db373031)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82 
83 #include "internal.h"
84 
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88 
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93 
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97 
98 /*
99  * A number of key systems in x86 including ioremap() rely on the assumption
100  * that high_memory defines the upper bound on direct map memory, then end
101  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
102  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103  * and ZONE_HIGHMEM.
104  */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107 
108 /*
109  * Randomize the address space (stacks, mmaps, brk, etc.).
110  *
111  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112  *   as ancient (libc5 based) binaries can segfault. )
113  */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116 					1;
117 #else
118 					2;
119 #endif
120 
121 static int __init disable_randmaps(char *s)
122 {
123 	randomize_va_space = 0;
124 	return 1;
125 }
126 __setup("norandmaps", disable_randmaps);
127 
128 unsigned long zero_pfn __read_mostly;
129 EXPORT_SYMBOL(zero_pfn);
130 
131 unsigned long highest_memmap_pfn __read_mostly;
132 
133 /*
134  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135  */
136 static int __init init_zero_pfn(void)
137 {
138 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
139 	return 0;
140 }
141 core_initcall(init_zero_pfn);
142 
143 
144 #if defined(SPLIT_RSS_COUNTING)
145 
146 void sync_mm_rss(struct mm_struct *mm)
147 {
148 	int i;
149 
150 	for (i = 0; i < NR_MM_COUNTERS; i++) {
151 		if (current->rss_stat.count[i]) {
152 			add_mm_counter(mm, i, current->rss_stat.count[i]);
153 			current->rss_stat.count[i] = 0;
154 		}
155 	}
156 	current->rss_stat.events = 0;
157 }
158 
159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160 {
161 	struct task_struct *task = current;
162 
163 	if (likely(task->mm == mm))
164 		task->rss_stat.count[member] += val;
165 	else
166 		add_mm_counter(mm, member, val);
167 }
168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170 
171 /* sync counter once per 64 page faults */
172 #define TASK_RSS_EVENTS_THRESH	(64)
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 	if (unlikely(task != current))
176 		return;
177 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
178 		sync_mm_rss(task->mm);
179 }
180 #else /* SPLIT_RSS_COUNTING */
181 
182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184 
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187 }
188 
189 #endif /* SPLIT_RSS_COUNTING */
190 
191 /*
192  * Note: this doesn't free the actual pages themselves. That
193  * has been handled earlier when unmapping all the memory regions.
194  */
195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196 			   unsigned long addr)
197 {
198 	pgtable_t token = pmd_pgtable(*pmd);
199 	pmd_clear(pmd);
200 	pte_free_tlb(tlb, token, addr);
201 	mm_dec_nr_ptes(tlb->mm);
202 }
203 
204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205 				unsigned long addr, unsigned long end,
206 				unsigned long floor, unsigned long ceiling)
207 {
208 	pmd_t *pmd;
209 	unsigned long next;
210 	unsigned long start;
211 
212 	start = addr;
213 	pmd = pmd_offset(pud, addr);
214 	do {
215 		next = pmd_addr_end(addr, end);
216 		if (pmd_none_or_clear_bad(pmd))
217 			continue;
218 		free_pte_range(tlb, pmd, addr);
219 	} while (pmd++, addr = next, addr != end);
220 
221 	start &= PUD_MASK;
222 	if (start < floor)
223 		return;
224 	if (ceiling) {
225 		ceiling &= PUD_MASK;
226 		if (!ceiling)
227 			return;
228 	}
229 	if (end - 1 > ceiling - 1)
230 		return;
231 
232 	pmd = pmd_offset(pud, start);
233 	pud_clear(pud);
234 	pmd_free_tlb(tlb, pmd, start);
235 	mm_dec_nr_pmds(tlb->mm);
236 }
237 
238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
239 				unsigned long addr, unsigned long end,
240 				unsigned long floor, unsigned long ceiling)
241 {
242 	pud_t *pud;
243 	unsigned long next;
244 	unsigned long start;
245 
246 	start = addr;
247 	pud = pud_offset(p4d, addr);
248 	do {
249 		next = pud_addr_end(addr, end);
250 		if (pud_none_or_clear_bad(pud))
251 			continue;
252 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
253 	} while (pud++, addr = next, addr != end);
254 
255 	start &= P4D_MASK;
256 	if (start < floor)
257 		return;
258 	if (ceiling) {
259 		ceiling &= P4D_MASK;
260 		if (!ceiling)
261 			return;
262 	}
263 	if (end - 1 > ceiling - 1)
264 		return;
265 
266 	pud = pud_offset(p4d, start);
267 	p4d_clear(p4d);
268 	pud_free_tlb(tlb, pud, start);
269 	mm_dec_nr_puds(tlb->mm);
270 }
271 
272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273 				unsigned long addr, unsigned long end,
274 				unsigned long floor, unsigned long ceiling)
275 {
276 	p4d_t *p4d;
277 	unsigned long next;
278 	unsigned long start;
279 
280 	start = addr;
281 	p4d = p4d_offset(pgd, addr);
282 	do {
283 		next = p4d_addr_end(addr, end);
284 		if (p4d_none_or_clear_bad(p4d))
285 			continue;
286 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287 	} while (p4d++, addr = next, addr != end);
288 
289 	start &= PGDIR_MASK;
290 	if (start < floor)
291 		return;
292 	if (ceiling) {
293 		ceiling &= PGDIR_MASK;
294 		if (!ceiling)
295 			return;
296 	}
297 	if (end - 1 > ceiling - 1)
298 		return;
299 
300 	p4d = p4d_offset(pgd, start);
301 	pgd_clear(pgd);
302 	p4d_free_tlb(tlb, p4d, start);
303 }
304 
305 /*
306  * This function frees user-level page tables of a process.
307  */
308 void free_pgd_range(struct mmu_gather *tlb,
309 			unsigned long addr, unsigned long end,
310 			unsigned long floor, unsigned long ceiling)
311 {
312 	pgd_t *pgd;
313 	unsigned long next;
314 
315 	/*
316 	 * The next few lines have given us lots of grief...
317 	 *
318 	 * Why are we testing PMD* at this top level?  Because often
319 	 * there will be no work to do at all, and we'd prefer not to
320 	 * go all the way down to the bottom just to discover that.
321 	 *
322 	 * Why all these "- 1"s?  Because 0 represents both the bottom
323 	 * of the address space and the top of it (using -1 for the
324 	 * top wouldn't help much: the masks would do the wrong thing).
325 	 * The rule is that addr 0 and floor 0 refer to the bottom of
326 	 * the address space, but end 0 and ceiling 0 refer to the top
327 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
328 	 * that end 0 case should be mythical).
329 	 *
330 	 * Wherever addr is brought up or ceiling brought down, we must
331 	 * be careful to reject "the opposite 0" before it confuses the
332 	 * subsequent tests.  But what about where end is brought down
333 	 * by PMD_SIZE below? no, end can't go down to 0 there.
334 	 *
335 	 * Whereas we round start (addr) and ceiling down, by different
336 	 * masks at different levels, in order to test whether a table
337 	 * now has no other vmas using it, so can be freed, we don't
338 	 * bother to round floor or end up - the tests don't need that.
339 	 */
340 
341 	addr &= PMD_MASK;
342 	if (addr < floor) {
343 		addr += PMD_SIZE;
344 		if (!addr)
345 			return;
346 	}
347 	if (ceiling) {
348 		ceiling &= PMD_MASK;
349 		if (!ceiling)
350 			return;
351 	}
352 	if (end - 1 > ceiling - 1)
353 		end -= PMD_SIZE;
354 	if (addr > end - 1)
355 		return;
356 	/*
357 	 * We add page table cache pages with PAGE_SIZE,
358 	 * (see pte_free_tlb()), flush the tlb if we need
359 	 */
360 	tlb_change_page_size(tlb, PAGE_SIZE);
361 	pgd = pgd_offset(tlb->mm, addr);
362 	do {
363 		next = pgd_addr_end(addr, end);
364 		if (pgd_none_or_clear_bad(pgd))
365 			continue;
366 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
367 	} while (pgd++, addr = next, addr != end);
368 }
369 
370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
371 		unsigned long floor, unsigned long ceiling)
372 {
373 	while (vma) {
374 		struct vm_area_struct *next = vma->vm_next;
375 		unsigned long addr = vma->vm_start;
376 
377 		/*
378 		 * Hide vma from rmap and truncate_pagecache before freeing
379 		 * pgtables
380 		 */
381 		unlink_anon_vmas(vma);
382 		unlink_file_vma(vma);
383 
384 		if (is_vm_hugetlb_page(vma)) {
385 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386 				floor, next ? next->vm_start : ceiling);
387 		} else {
388 			/*
389 			 * Optimization: gather nearby vmas into one call down
390 			 */
391 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
392 			       && !is_vm_hugetlb_page(next)) {
393 				vma = next;
394 				next = vma->vm_next;
395 				unlink_anon_vmas(vma);
396 				unlink_file_vma(vma);
397 			}
398 			free_pgd_range(tlb, addr, vma->vm_end,
399 				floor, next ? next->vm_start : ceiling);
400 		}
401 		vma = next;
402 	}
403 }
404 
405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
406 {
407 	spinlock_t *ptl;
408 	pgtable_t new = pte_alloc_one(mm);
409 	if (!new)
410 		return -ENOMEM;
411 
412 	/*
413 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
414 	 * visible before the pte is made visible to other CPUs by being
415 	 * put into page tables.
416 	 *
417 	 * The other side of the story is the pointer chasing in the page
418 	 * table walking code (when walking the page table without locking;
419 	 * ie. most of the time). Fortunately, these data accesses consist
420 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
421 	 * being the notable exception) will already guarantee loads are
422 	 * seen in-order. See the alpha page table accessors for the
423 	 * smp_read_barrier_depends() barriers in page table walking code.
424 	 */
425 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426 
427 	ptl = pmd_lock(mm, pmd);
428 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
429 		mm_inc_nr_ptes(mm);
430 		pmd_populate(mm, pmd, new);
431 		new = NULL;
432 	}
433 	spin_unlock(ptl);
434 	if (new)
435 		pte_free(mm, new);
436 	return 0;
437 }
438 
439 int __pte_alloc_kernel(pmd_t *pmd)
440 {
441 	pte_t *new = pte_alloc_one_kernel(&init_mm);
442 	if (!new)
443 		return -ENOMEM;
444 
445 	smp_wmb(); /* See comment in __pte_alloc */
446 
447 	spin_lock(&init_mm.page_table_lock);
448 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
449 		pmd_populate_kernel(&init_mm, pmd, new);
450 		new = NULL;
451 	}
452 	spin_unlock(&init_mm.page_table_lock);
453 	if (new)
454 		pte_free_kernel(&init_mm, new);
455 	return 0;
456 }
457 
458 static inline void init_rss_vec(int *rss)
459 {
460 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 }
462 
463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
464 {
465 	int i;
466 
467 	if (current->mm == mm)
468 		sync_mm_rss(mm);
469 	for (i = 0; i < NR_MM_COUNTERS; i++)
470 		if (rss[i])
471 			add_mm_counter(mm, i, rss[i]);
472 }
473 
474 /*
475  * This function is called to print an error when a bad pte
476  * is found. For example, we might have a PFN-mapped pte in
477  * a region that doesn't allow it.
478  *
479  * The calling function must still handle the error.
480  */
481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482 			  pte_t pte, struct page *page)
483 {
484 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
485 	p4d_t *p4d = p4d_offset(pgd, addr);
486 	pud_t *pud = pud_offset(p4d, addr);
487 	pmd_t *pmd = pmd_offset(pud, addr);
488 	struct address_space *mapping;
489 	pgoff_t index;
490 	static unsigned long resume;
491 	static unsigned long nr_shown;
492 	static unsigned long nr_unshown;
493 
494 	/*
495 	 * Allow a burst of 60 reports, then keep quiet for that minute;
496 	 * or allow a steady drip of one report per second.
497 	 */
498 	if (nr_shown == 60) {
499 		if (time_before(jiffies, resume)) {
500 			nr_unshown++;
501 			return;
502 		}
503 		if (nr_unshown) {
504 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505 				 nr_unshown);
506 			nr_unshown = 0;
507 		}
508 		nr_shown = 0;
509 	}
510 	if (nr_shown++ == 0)
511 		resume = jiffies + 60 * HZ;
512 
513 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514 	index = linear_page_index(vma, addr);
515 
516 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
517 		 current->comm,
518 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
519 	if (page)
520 		dump_page(page, "bad pte");
521 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
522 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
524 		 vma->vm_file,
525 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
526 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527 		 mapping ? mapping->a_ops->readpage : NULL);
528 	dump_stack();
529 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
530 }
531 
532 /*
533  * vm_normal_page -- This function gets the "struct page" associated with a pte.
534  *
535  * "Special" mappings do not wish to be associated with a "struct page" (either
536  * it doesn't exist, or it exists but they don't want to touch it). In this
537  * case, NULL is returned here. "Normal" mappings do have a struct page.
538  *
539  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540  * pte bit, in which case this function is trivial. Secondly, an architecture
541  * may not have a spare pte bit, which requires a more complicated scheme,
542  * described below.
543  *
544  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545  * special mapping (even if there are underlying and valid "struct pages").
546  * COWed pages of a VM_PFNMAP are always normal.
547  *
548  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551  * mapping will always honor the rule
552  *
553  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554  *
555  * And for normal mappings this is false.
556  *
557  * This restricts such mappings to be a linear translation from virtual address
558  * to pfn. To get around this restriction, we allow arbitrary mappings so long
559  * as the vma is not a COW mapping; in that case, we know that all ptes are
560  * special (because none can have been COWed).
561  *
562  *
563  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
564  *
565  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566  * page" backing, however the difference is that _all_ pages with a struct
567  * page (that is, those where pfn_valid is true) are refcounted and considered
568  * normal pages by the VM. The disadvantage is that pages are refcounted
569  * (which can be slower and simply not an option for some PFNMAP users). The
570  * advantage is that we don't have to follow the strict linearity rule of
571  * PFNMAP mappings in order to support COWable mappings.
572  *
573  */
574 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575 			    pte_t pte)
576 {
577 	unsigned long pfn = pte_pfn(pte);
578 
579 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
580 		if (likely(!pte_special(pte)))
581 			goto check_pfn;
582 		if (vma->vm_ops && vma->vm_ops->find_special_page)
583 			return vma->vm_ops->find_special_page(vma, addr);
584 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585 			return NULL;
586 		if (is_zero_pfn(pfn))
587 			return NULL;
588 		if (pte_devmap(pte))
589 			return NULL;
590 
591 		print_bad_pte(vma, addr, pte, NULL);
592 		return NULL;
593 	}
594 
595 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
596 
597 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
598 		if (vma->vm_flags & VM_MIXEDMAP) {
599 			if (!pfn_valid(pfn))
600 				return NULL;
601 			goto out;
602 		} else {
603 			unsigned long off;
604 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
605 			if (pfn == vma->vm_pgoff + off)
606 				return NULL;
607 			if (!is_cow_mapping(vma->vm_flags))
608 				return NULL;
609 		}
610 	}
611 
612 	if (is_zero_pfn(pfn))
613 		return NULL;
614 
615 check_pfn:
616 	if (unlikely(pfn > highest_memmap_pfn)) {
617 		print_bad_pte(vma, addr, pte, NULL);
618 		return NULL;
619 	}
620 
621 	/*
622 	 * NOTE! We still have PageReserved() pages in the page tables.
623 	 * eg. VDSO mappings can cause them to exist.
624 	 */
625 out:
626 	return pfn_to_page(pfn);
627 }
628 
629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
630 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
631 				pmd_t pmd)
632 {
633 	unsigned long pfn = pmd_pfn(pmd);
634 
635 	/*
636 	 * There is no pmd_special() but there may be special pmds, e.g.
637 	 * in a direct-access (dax) mapping, so let's just replicate the
638 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
639 	 */
640 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
641 		if (vma->vm_flags & VM_MIXEDMAP) {
642 			if (!pfn_valid(pfn))
643 				return NULL;
644 			goto out;
645 		} else {
646 			unsigned long off;
647 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
648 			if (pfn == vma->vm_pgoff + off)
649 				return NULL;
650 			if (!is_cow_mapping(vma->vm_flags))
651 				return NULL;
652 		}
653 	}
654 
655 	if (pmd_devmap(pmd))
656 		return NULL;
657 	if (is_zero_pfn(pfn))
658 		return NULL;
659 	if (unlikely(pfn > highest_memmap_pfn))
660 		return NULL;
661 
662 	/*
663 	 * NOTE! We still have PageReserved() pages in the page tables.
664 	 * eg. VDSO mappings can cause them to exist.
665 	 */
666 out:
667 	return pfn_to_page(pfn);
668 }
669 #endif
670 
671 /*
672  * copy one vm_area from one task to the other. Assumes the page tables
673  * already present in the new task to be cleared in the whole range
674  * covered by this vma.
675  */
676 
677 static inline unsigned long
678 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
679 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
680 		unsigned long addr, int *rss)
681 {
682 	unsigned long vm_flags = vma->vm_flags;
683 	pte_t pte = *src_pte;
684 	struct page *page;
685 
686 	/* pte contains position in swap or file, so copy. */
687 	if (unlikely(!pte_present(pte))) {
688 		swp_entry_t entry = pte_to_swp_entry(pte);
689 
690 		if (likely(!non_swap_entry(entry))) {
691 			if (swap_duplicate(entry) < 0)
692 				return entry.val;
693 
694 			/* make sure dst_mm is on swapoff's mmlist. */
695 			if (unlikely(list_empty(&dst_mm->mmlist))) {
696 				spin_lock(&mmlist_lock);
697 				if (list_empty(&dst_mm->mmlist))
698 					list_add(&dst_mm->mmlist,
699 							&src_mm->mmlist);
700 				spin_unlock(&mmlist_lock);
701 			}
702 			rss[MM_SWAPENTS]++;
703 		} else if (is_migration_entry(entry)) {
704 			page = migration_entry_to_page(entry);
705 
706 			rss[mm_counter(page)]++;
707 
708 			if (is_write_migration_entry(entry) &&
709 					is_cow_mapping(vm_flags)) {
710 				/*
711 				 * COW mappings require pages in both
712 				 * parent and child to be set to read.
713 				 */
714 				make_migration_entry_read(&entry);
715 				pte = swp_entry_to_pte(entry);
716 				if (pte_swp_soft_dirty(*src_pte))
717 					pte = pte_swp_mksoft_dirty(pte);
718 				set_pte_at(src_mm, addr, src_pte, pte);
719 			}
720 		} else if (is_device_private_entry(entry)) {
721 			page = device_private_entry_to_page(entry);
722 
723 			/*
724 			 * Update rss count even for unaddressable pages, as
725 			 * they should treated just like normal pages in this
726 			 * respect.
727 			 *
728 			 * We will likely want to have some new rss counters
729 			 * for unaddressable pages, at some point. But for now
730 			 * keep things as they are.
731 			 */
732 			get_page(page);
733 			rss[mm_counter(page)]++;
734 			page_dup_rmap(page, false);
735 
736 			/*
737 			 * We do not preserve soft-dirty information, because so
738 			 * far, checkpoint/restore is the only feature that
739 			 * requires that. And checkpoint/restore does not work
740 			 * when a device driver is involved (you cannot easily
741 			 * save and restore device driver state).
742 			 */
743 			if (is_write_device_private_entry(entry) &&
744 			    is_cow_mapping(vm_flags)) {
745 				make_device_private_entry_read(&entry);
746 				pte = swp_entry_to_pte(entry);
747 				set_pte_at(src_mm, addr, src_pte, pte);
748 			}
749 		}
750 		goto out_set_pte;
751 	}
752 
753 	/*
754 	 * If it's a COW mapping, write protect it both
755 	 * in the parent and the child
756 	 */
757 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
758 		ptep_set_wrprotect(src_mm, addr, src_pte);
759 		pte = pte_wrprotect(pte);
760 	}
761 
762 	/*
763 	 * If it's a shared mapping, mark it clean in
764 	 * the child
765 	 */
766 	if (vm_flags & VM_SHARED)
767 		pte = pte_mkclean(pte);
768 	pte = pte_mkold(pte);
769 
770 	page = vm_normal_page(vma, addr, pte);
771 	if (page) {
772 		get_page(page);
773 		page_dup_rmap(page, false);
774 		rss[mm_counter(page)]++;
775 	} else if (pte_devmap(pte)) {
776 		page = pte_page(pte);
777 	}
778 
779 out_set_pte:
780 	set_pte_at(dst_mm, addr, dst_pte, pte);
781 	return 0;
782 }
783 
784 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
785 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
786 		   unsigned long addr, unsigned long end)
787 {
788 	pte_t *orig_src_pte, *orig_dst_pte;
789 	pte_t *src_pte, *dst_pte;
790 	spinlock_t *src_ptl, *dst_ptl;
791 	int progress = 0;
792 	int rss[NR_MM_COUNTERS];
793 	swp_entry_t entry = (swp_entry_t){0};
794 
795 again:
796 	init_rss_vec(rss);
797 
798 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
799 	if (!dst_pte)
800 		return -ENOMEM;
801 	src_pte = pte_offset_map(src_pmd, addr);
802 	src_ptl = pte_lockptr(src_mm, src_pmd);
803 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
804 	orig_src_pte = src_pte;
805 	orig_dst_pte = dst_pte;
806 	arch_enter_lazy_mmu_mode();
807 
808 	do {
809 		/*
810 		 * We are holding two locks at this point - either of them
811 		 * could generate latencies in another task on another CPU.
812 		 */
813 		if (progress >= 32) {
814 			progress = 0;
815 			if (need_resched() ||
816 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
817 				break;
818 		}
819 		if (pte_none(*src_pte)) {
820 			progress++;
821 			continue;
822 		}
823 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
824 							vma, addr, rss);
825 		if (entry.val)
826 			break;
827 		progress += 8;
828 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
829 
830 	arch_leave_lazy_mmu_mode();
831 	spin_unlock(src_ptl);
832 	pte_unmap(orig_src_pte);
833 	add_mm_rss_vec(dst_mm, rss);
834 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
835 	cond_resched();
836 
837 	if (entry.val) {
838 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
839 			return -ENOMEM;
840 		progress = 0;
841 	}
842 	if (addr != end)
843 		goto again;
844 	return 0;
845 }
846 
847 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
849 		unsigned long addr, unsigned long end)
850 {
851 	pmd_t *src_pmd, *dst_pmd;
852 	unsigned long next;
853 
854 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
855 	if (!dst_pmd)
856 		return -ENOMEM;
857 	src_pmd = pmd_offset(src_pud, addr);
858 	do {
859 		next = pmd_addr_end(addr, end);
860 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
861 			|| pmd_devmap(*src_pmd)) {
862 			int err;
863 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
864 			err = copy_huge_pmd(dst_mm, src_mm,
865 					    dst_pmd, src_pmd, addr, vma);
866 			if (err == -ENOMEM)
867 				return -ENOMEM;
868 			if (!err)
869 				continue;
870 			/* fall through */
871 		}
872 		if (pmd_none_or_clear_bad(src_pmd))
873 			continue;
874 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
875 						vma, addr, next))
876 			return -ENOMEM;
877 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
878 	return 0;
879 }
880 
881 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
883 		unsigned long addr, unsigned long end)
884 {
885 	pud_t *src_pud, *dst_pud;
886 	unsigned long next;
887 
888 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
889 	if (!dst_pud)
890 		return -ENOMEM;
891 	src_pud = pud_offset(src_p4d, addr);
892 	do {
893 		next = pud_addr_end(addr, end);
894 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
895 			int err;
896 
897 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
898 			err = copy_huge_pud(dst_mm, src_mm,
899 					    dst_pud, src_pud, addr, vma);
900 			if (err == -ENOMEM)
901 				return -ENOMEM;
902 			if (!err)
903 				continue;
904 			/* fall through */
905 		}
906 		if (pud_none_or_clear_bad(src_pud))
907 			continue;
908 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
909 						vma, addr, next))
910 			return -ENOMEM;
911 	} while (dst_pud++, src_pud++, addr = next, addr != end);
912 	return 0;
913 }
914 
915 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
917 		unsigned long addr, unsigned long end)
918 {
919 	p4d_t *src_p4d, *dst_p4d;
920 	unsigned long next;
921 
922 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
923 	if (!dst_p4d)
924 		return -ENOMEM;
925 	src_p4d = p4d_offset(src_pgd, addr);
926 	do {
927 		next = p4d_addr_end(addr, end);
928 		if (p4d_none_or_clear_bad(src_p4d))
929 			continue;
930 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
931 						vma, addr, next))
932 			return -ENOMEM;
933 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
934 	return 0;
935 }
936 
937 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938 		struct vm_area_struct *vma)
939 {
940 	pgd_t *src_pgd, *dst_pgd;
941 	unsigned long next;
942 	unsigned long addr = vma->vm_start;
943 	unsigned long end = vma->vm_end;
944 	struct mmu_notifier_range range;
945 	bool is_cow;
946 	int ret;
947 
948 	/*
949 	 * Don't copy ptes where a page fault will fill them correctly.
950 	 * Fork becomes much lighter when there are big shared or private
951 	 * readonly mappings. The tradeoff is that copy_page_range is more
952 	 * efficient than faulting.
953 	 */
954 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
955 			!vma->anon_vma)
956 		return 0;
957 
958 	if (is_vm_hugetlb_page(vma))
959 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
960 
961 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
962 		/*
963 		 * We do not free on error cases below as remove_vma
964 		 * gets called on error from higher level routine
965 		 */
966 		ret = track_pfn_copy(vma);
967 		if (ret)
968 			return ret;
969 	}
970 
971 	/*
972 	 * We need to invalidate the secondary MMU mappings only when
973 	 * there could be a permission downgrade on the ptes of the
974 	 * parent mm. And a permission downgrade will only happen if
975 	 * is_cow_mapping() returns true.
976 	 */
977 	is_cow = is_cow_mapping(vma->vm_flags);
978 
979 	if (is_cow) {
980 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
981 					0, vma, src_mm, addr, end);
982 		mmu_notifier_invalidate_range_start(&range);
983 	}
984 
985 	ret = 0;
986 	dst_pgd = pgd_offset(dst_mm, addr);
987 	src_pgd = pgd_offset(src_mm, addr);
988 	do {
989 		next = pgd_addr_end(addr, end);
990 		if (pgd_none_or_clear_bad(src_pgd))
991 			continue;
992 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
993 					    vma, addr, next))) {
994 			ret = -ENOMEM;
995 			break;
996 		}
997 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
998 
999 	if (is_cow)
1000 		mmu_notifier_invalidate_range_end(&range);
1001 	return ret;
1002 }
1003 
1004 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1005 				struct vm_area_struct *vma, pmd_t *pmd,
1006 				unsigned long addr, unsigned long end,
1007 				struct zap_details *details)
1008 {
1009 	struct mm_struct *mm = tlb->mm;
1010 	int force_flush = 0;
1011 	int rss[NR_MM_COUNTERS];
1012 	spinlock_t *ptl;
1013 	pte_t *start_pte;
1014 	pte_t *pte;
1015 	swp_entry_t entry;
1016 
1017 	tlb_change_page_size(tlb, PAGE_SIZE);
1018 again:
1019 	init_rss_vec(rss);
1020 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021 	pte = start_pte;
1022 	flush_tlb_batched_pending(mm);
1023 	arch_enter_lazy_mmu_mode();
1024 	do {
1025 		pte_t ptent = *pte;
1026 		if (pte_none(ptent))
1027 			continue;
1028 
1029 		if (need_resched())
1030 			break;
1031 
1032 		if (pte_present(ptent)) {
1033 			struct page *page;
1034 
1035 			page = vm_normal_page(vma, addr, ptent);
1036 			if (unlikely(details) && page) {
1037 				/*
1038 				 * unmap_shared_mapping_pages() wants to
1039 				 * invalidate cache without truncating:
1040 				 * unmap shared but keep private pages.
1041 				 */
1042 				if (details->check_mapping &&
1043 				    details->check_mapping != page_rmapping(page))
1044 					continue;
1045 			}
1046 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1047 							tlb->fullmm);
1048 			tlb_remove_tlb_entry(tlb, pte, addr);
1049 			if (unlikely(!page))
1050 				continue;
1051 
1052 			if (!PageAnon(page)) {
1053 				if (pte_dirty(ptent)) {
1054 					force_flush = 1;
1055 					set_page_dirty(page);
1056 				}
1057 				if (pte_young(ptent) &&
1058 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1059 					mark_page_accessed(page);
1060 			}
1061 			rss[mm_counter(page)]--;
1062 			page_remove_rmap(page, false);
1063 			if (unlikely(page_mapcount(page) < 0))
1064 				print_bad_pte(vma, addr, ptent, page);
1065 			if (unlikely(__tlb_remove_page(tlb, page))) {
1066 				force_flush = 1;
1067 				addr += PAGE_SIZE;
1068 				break;
1069 			}
1070 			continue;
1071 		}
1072 
1073 		entry = pte_to_swp_entry(ptent);
1074 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1075 			struct page *page = device_private_entry_to_page(entry);
1076 
1077 			if (unlikely(details && details->check_mapping)) {
1078 				/*
1079 				 * unmap_shared_mapping_pages() wants to
1080 				 * invalidate cache without truncating:
1081 				 * unmap shared but keep private pages.
1082 				 */
1083 				if (details->check_mapping !=
1084 				    page_rmapping(page))
1085 					continue;
1086 			}
1087 
1088 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1089 			rss[mm_counter(page)]--;
1090 			page_remove_rmap(page, false);
1091 			put_page(page);
1092 			continue;
1093 		}
1094 
1095 		/* If details->check_mapping, we leave swap entries. */
1096 		if (unlikely(details))
1097 			continue;
1098 
1099 		if (!non_swap_entry(entry))
1100 			rss[MM_SWAPENTS]--;
1101 		else if (is_migration_entry(entry)) {
1102 			struct page *page;
1103 
1104 			page = migration_entry_to_page(entry);
1105 			rss[mm_counter(page)]--;
1106 		}
1107 		if (unlikely(!free_swap_and_cache(entry)))
1108 			print_bad_pte(vma, addr, ptent, NULL);
1109 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1110 	} while (pte++, addr += PAGE_SIZE, addr != end);
1111 
1112 	add_mm_rss_vec(mm, rss);
1113 	arch_leave_lazy_mmu_mode();
1114 
1115 	/* Do the actual TLB flush before dropping ptl */
1116 	if (force_flush)
1117 		tlb_flush_mmu_tlbonly(tlb);
1118 	pte_unmap_unlock(start_pte, ptl);
1119 
1120 	/*
1121 	 * If we forced a TLB flush (either due to running out of
1122 	 * batch buffers or because we needed to flush dirty TLB
1123 	 * entries before releasing the ptl), free the batched
1124 	 * memory too. Restart if we didn't do everything.
1125 	 */
1126 	if (force_flush) {
1127 		force_flush = 0;
1128 		tlb_flush_mmu(tlb);
1129 	}
1130 
1131 	if (addr != end) {
1132 		cond_resched();
1133 		goto again;
1134 	}
1135 
1136 	return addr;
1137 }
1138 
1139 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1140 				struct vm_area_struct *vma, pud_t *pud,
1141 				unsigned long addr, unsigned long end,
1142 				struct zap_details *details)
1143 {
1144 	pmd_t *pmd;
1145 	unsigned long next;
1146 
1147 	pmd = pmd_offset(pud, addr);
1148 	do {
1149 		next = pmd_addr_end(addr, end);
1150 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1151 			if (next - addr != HPAGE_PMD_SIZE)
1152 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1153 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1154 				goto next;
1155 			/* fall through */
1156 		}
1157 		/*
1158 		 * Here there can be other concurrent MADV_DONTNEED or
1159 		 * trans huge page faults running, and if the pmd is
1160 		 * none or trans huge it can change under us. This is
1161 		 * because MADV_DONTNEED holds the mmap_sem in read
1162 		 * mode.
1163 		 */
1164 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1165 			goto next;
1166 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1167 next:
1168 		cond_resched();
1169 	} while (pmd++, addr = next, addr != end);
1170 
1171 	return addr;
1172 }
1173 
1174 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1175 				struct vm_area_struct *vma, p4d_t *p4d,
1176 				unsigned long addr, unsigned long end,
1177 				struct zap_details *details)
1178 {
1179 	pud_t *pud;
1180 	unsigned long next;
1181 
1182 	pud = pud_offset(p4d, addr);
1183 	do {
1184 		next = pud_addr_end(addr, end);
1185 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1186 			if (next - addr != HPAGE_PUD_SIZE) {
1187 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1188 				split_huge_pud(vma, pud, addr);
1189 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1190 				goto next;
1191 			/* fall through */
1192 		}
1193 		if (pud_none_or_clear_bad(pud))
1194 			continue;
1195 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1196 next:
1197 		cond_resched();
1198 	} while (pud++, addr = next, addr != end);
1199 
1200 	return addr;
1201 }
1202 
1203 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1204 				struct vm_area_struct *vma, pgd_t *pgd,
1205 				unsigned long addr, unsigned long end,
1206 				struct zap_details *details)
1207 {
1208 	p4d_t *p4d;
1209 	unsigned long next;
1210 
1211 	p4d = p4d_offset(pgd, addr);
1212 	do {
1213 		next = p4d_addr_end(addr, end);
1214 		if (p4d_none_or_clear_bad(p4d))
1215 			continue;
1216 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1217 	} while (p4d++, addr = next, addr != end);
1218 
1219 	return addr;
1220 }
1221 
1222 void unmap_page_range(struct mmu_gather *tlb,
1223 			     struct vm_area_struct *vma,
1224 			     unsigned long addr, unsigned long end,
1225 			     struct zap_details *details)
1226 {
1227 	pgd_t *pgd;
1228 	unsigned long next;
1229 
1230 	BUG_ON(addr >= end);
1231 	tlb_start_vma(tlb, vma);
1232 	pgd = pgd_offset(vma->vm_mm, addr);
1233 	do {
1234 		next = pgd_addr_end(addr, end);
1235 		if (pgd_none_or_clear_bad(pgd))
1236 			continue;
1237 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1238 	} while (pgd++, addr = next, addr != end);
1239 	tlb_end_vma(tlb, vma);
1240 }
1241 
1242 
1243 static void unmap_single_vma(struct mmu_gather *tlb,
1244 		struct vm_area_struct *vma, unsigned long start_addr,
1245 		unsigned long end_addr,
1246 		struct zap_details *details)
1247 {
1248 	unsigned long start = max(vma->vm_start, start_addr);
1249 	unsigned long end;
1250 
1251 	if (start >= vma->vm_end)
1252 		return;
1253 	end = min(vma->vm_end, end_addr);
1254 	if (end <= vma->vm_start)
1255 		return;
1256 
1257 	if (vma->vm_file)
1258 		uprobe_munmap(vma, start, end);
1259 
1260 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1261 		untrack_pfn(vma, 0, 0);
1262 
1263 	if (start != end) {
1264 		if (unlikely(is_vm_hugetlb_page(vma))) {
1265 			/*
1266 			 * It is undesirable to test vma->vm_file as it
1267 			 * should be non-null for valid hugetlb area.
1268 			 * However, vm_file will be NULL in the error
1269 			 * cleanup path of mmap_region. When
1270 			 * hugetlbfs ->mmap method fails,
1271 			 * mmap_region() nullifies vma->vm_file
1272 			 * before calling this function to clean up.
1273 			 * Since no pte has actually been setup, it is
1274 			 * safe to do nothing in this case.
1275 			 */
1276 			if (vma->vm_file) {
1277 				i_mmap_lock_write(vma->vm_file->f_mapping);
1278 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1279 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1280 			}
1281 		} else
1282 			unmap_page_range(tlb, vma, start, end, details);
1283 	}
1284 }
1285 
1286 /**
1287  * unmap_vmas - unmap a range of memory covered by a list of vma's
1288  * @tlb: address of the caller's struct mmu_gather
1289  * @vma: the starting vma
1290  * @start_addr: virtual address at which to start unmapping
1291  * @end_addr: virtual address at which to end unmapping
1292  *
1293  * Unmap all pages in the vma list.
1294  *
1295  * Only addresses between `start' and `end' will be unmapped.
1296  *
1297  * The VMA list must be sorted in ascending virtual address order.
1298  *
1299  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1300  * range after unmap_vmas() returns.  So the only responsibility here is to
1301  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1302  * drops the lock and schedules.
1303  */
1304 void unmap_vmas(struct mmu_gather *tlb,
1305 		struct vm_area_struct *vma, unsigned long start_addr,
1306 		unsigned long end_addr)
1307 {
1308 	struct mmu_notifier_range range;
1309 
1310 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1311 				start_addr, end_addr);
1312 	mmu_notifier_invalidate_range_start(&range);
1313 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1314 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1315 	mmu_notifier_invalidate_range_end(&range);
1316 }
1317 
1318 /**
1319  * zap_page_range - remove user pages in a given range
1320  * @vma: vm_area_struct holding the applicable pages
1321  * @start: starting address of pages to zap
1322  * @size: number of bytes to zap
1323  *
1324  * Caller must protect the VMA list
1325  */
1326 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1327 		unsigned long size)
1328 {
1329 	struct mmu_notifier_range range;
1330 	struct mmu_gather tlb;
1331 
1332 	lru_add_drain();
1333 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1334 				start, start + size);
1335 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1336 	update_hiwater_rss(vma->vm_mm);
1337 	mmu_notifier_invalidate_range_start(&range);
1338 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1339 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1340 	mmu_notifier_invalidate_range_end(&range);
1341 	tlb_finish_mmu(&tlb, start, range.end);
1342 }
1343 
1344 /**
1345  * zap_page_range_single - remove user pages in a given range
1346  * @vma: vm_area_struct holding the applicable pages
1347  * @address: starting address of pages to zap
1348  * @size: number of bytes to zap
1349  * @details: details of shared cache invalidation
1350  *
1351  * The range must fit into one VMA.
1352  */
1353 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1354 		unsigned long size, struct zap_details *details)
1355 {
1356 	struct mmu_notifier_range range;
1357 	struct mmu_gather tlb;
1358 
1359 	lru_add_drain();
1360 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1361 				address, address + size);
1362 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1363 	update_hiwater_rss(vma->vm_mm);
1364 	mmu_notifier_invalidate_range_start(&range);
1365 	unmap_single_vma(&tlb, vma, address, range.end, details);
1366 	mmu_notifier_invalidate_range_end(&range);
1367 	tlb_finish_mmu(&tlb, address, range.end);
1368 }
1369 
1370 /**
1371  * zap_vma_ptes - remove ptes mapping the vma
1372  * @vma: vm_area_struct holding ptes to be zapped
1373  * @address: starting address of pages to zap
1374  * @size: number of bytes to zap
1375  *
1376  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1377  *
1378  * The entire address range must be fully contained within the vma.
1379  *
1380  */
1381 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1382 		unsigned long size)
1383 {
1384 	if (address < vma->vm_start || address + size > vma->vm_end ||
1385 	    		!(vma->vm_flags & VM_PFNMAP))
1386 		return;
1387 
1388 	zap_page_range_single(vma, address, size, NULL);
1389 }
1390 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1391 
1392 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1393 			spinlock_t **ptl)
1394 {
1395 	pgd_t *pgd;
1396 	p4d_t *p4d;
1397 	pud_t *pud;
1398 	pmd_t *pmd;
1399 
1400 	pgd = pgd_offset(mm, addr);
1401 	p4d = p4d_alloc(mm, pgd, addr);
1402 	if (!p4d)
1403 		return NULL;
1404 	pud = pud_alloc(mm, p4d, addr);
1405 	if (!pud)
1406 		return NULL;
1407 	pmd = pmd_alloc(mm, pud, addr);
1408 	if (!pmd)
1409 		return NULL;
1410 
1411 	VM_BUG_ON(pmd_trans_huge(*pmd));
1412 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1413 }
1414 
1415 /*
1416  * This is the old fallback for page remapping.
1417  *
1418  * For historical reasons, it only allows reserved pages. Only
1419  * old drivers should use this, and they needed to mark their
1420  * pages reserved for the old functions anyway.
1421  */
1422 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1423 			struct page *page, pgprot_t prot)
1424 {
1425 	struct mm_struct *mm = vma->vm_mm;
1426 	int retval;
1427 	pte_t *pte;
1428 	spinlock_t *ptl;
1429 
1430 	retval = -EINVAL;
1431 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1432 		goto out;
1433 	retval = -ENOMEM;
1434 	flush_dcache_page(page);
1435 	pte = get_locked_pte(mm, addr, &ptl);
1436 	if (!pte)
1437 		goto out;
1438 	retval = -EBUSY;
1439 	if (!pte_none(*pte))
1440 		goto out_unlock;
1441 
1442 	/* Ok, finally just insert the thing.. */
1443 	get_page(page);
1444 	inc_mm_counter_fast(mm, mm_counter_file(page));
1445 	page_add_file_rmap(page, false);
1446 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1447 
1448 	retval = 0;
1449 out_unlock:
1450 	pte_unmap_unlock(pte, ptl);
1451 out:
1452 	return retval;
1453 }
1454 
1455 /**
1456  * vm_insert_page - insert single page into user vma
1457  * @vma: user vma to map to
1458  * @addr: target user address of this page
1459  * @page: source kernel page
1460  *
1461  * This allows drivers to insert individual pages they've allocated
1462  * into a user vma.
1463  *
1464  * The page has to be a nice clean _individual_ kernel allocation.
1465  * If you allocate a compound page, you need to have marked it as
1466  * such (__GFP_COMP), or manually just split the page up yourself
1467  * (see split_page()).
1468  *
1469  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1470  * took an arbitrary page protection parameter. This doesn't allow
1471  * that. Your vma protection will have to be set up correctly, which
1472  * means that if you want a shared writable mapping, you'd better
1473  * ask for a shared writable mapping!
1474  *
1475  * The page does not need to be reserved.
1476  *
1477  * Usually this function is called from f_op->mmap() handler
1478  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1479  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1480  * function from other places, for example from page-fault handler.
1481  *
1482  * Return: %0 on success, negative error code otherwise.
1483  */
1484 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1485 			struct page *page)
1486 {
1487 	if (addr < vma->vm_start || addr >= vma->vm_end)
1488 		return -EFAULT;
1489 	if (!page_count(page))
1490 		return -EINVAL;
1491 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1492 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1493 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1494 		vma->vm_flags |= VM_MIXEDMAP;
1495 	}
1496 	return insert_page(vma, addr, page, vma->vm_page_prot);
1497 }
1498 EXPORT_SYMBOL(vm_insert_page);
1499 
1500 /*
1501  * __vm_map_pages - maps range of kernel pages into user vma
1502  * @vma: user vma to map to
1503  * @pages: pointer to array of source kernel pages
1504  * @num: number of pages in page array
1505  * @offset: user's requested vm_pgoff
1506  *
1507  * This allows drivers to map range of kernel pages into a user vma.
1508  *
1509  * Return: 0 on success and error code otherwise.
1510  */
1511 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1512 				unsigned long num, unsigned long offset)
1513 {
1514 	unsigned long count = vma_pages(vma);
1515 	unsigned long uaddr = vma->vm_start;
1516 	int ret, i;
1517 
1518 	/* Fail if the user requested offset is beyond the end of the object */
1519 	if (offset >= num)
1520 		return -ENXIO;
1521 
1522 	/* Fail if the user requested size exceeds available object size */
1523 	if (count > num - offset)
1524 		return -ENXIO;
1525 
1526 	for (i = 0; i < count; i++) {
1527 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1528 		if (ret < 0)
1529 			return ret;
1530 		uaddr += PAGE_SIZE;
1531 	}
1532 
1533 	return 0;
1534 }
1535 
1536 /**
1537  * vm_map_pages - maps range of kernel pages starts with non zero offset
1538  * @vma: user vma to map to
1539  * @pages: pointer to array of source kernel pages
1540  * @num: number of pages in page array
1541  *
1542  * Maps an object consisting of @num pages, catering for the user's
1543  * requested vm_pgoff
1544  *
1545  * If we fail to insert any page into the vma, the function will return
1546  * immediately leaving any previously inserted pages present.  Callers
1547  * from the mmap handler may immediately return the error as their caller
1548  * will destroy the vma, removing any successfully inserted pages. Other
1549  * callers should make their own arrangements for calling unmap_region().
1550  *
1551  * Context: Process context. Called by mmap handlers.
1552  * Return: 0 on success and error code otherwise.
1553  */
1554 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1555 				unsigned long num)
1556 {
1557 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1558 }
1559 EXPORT_SYMBOL(vm_map_pages);
1560 
1561 /**
1562  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1563  * @vma: user vma to map to
1564  * @pages: pointer to array of source kernel pages
1565  * @num: number of pages in page array
1566  *
1567  * Similar to vm_map_pages(), except that it explicitly sets the offset
1568  * to 0. This function is intended for the drivers that did not consider
1569  * vm_pgoff.
1570  *
1571  * Context: Process context. Called by mmap handlers.
1572  * Return: 0 on success and error code otherwise.
1573  */
1574 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1575 				unsigned long num)
1576 {
1577 	return __vm_map_pages(vma, pages, num, 0);
1578 }
1579 EXPORT_SYMBOL(vm_map_pages_zero);
1580 
1581 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1582 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1583 {
1584 	struct mm_struct *mm = vma->vm_mm;
1585 	pte_t *pte, entry;
1586 	spinlock_t *ptl;
1587 
1588 	pte = get_locked_pte(mm, addr, &ptl);
1589 	if (!pte)
1590 		return VM_FAULT_OOM;
1591 	if (!pte_none(*pte)) {
1592 		if (mkwrite) {
1593 			/*
1594 			 * For read faults on private mappings the PFN passed
1595 			 * in may not match the PFN we have mapped if the
1596 			 * mapped PFN is a writeable COW page.  In the mkwrite
1597 			 * case we are creating a writable PTE for a shared
1598 			 * mapping and we expect the PFNs to match. If they
1599 			 * don't match, we are likely racing with block
1600 			 * allocation and mapping invalidation so just skip the
1601 			 * update.
1602 			 */
1603 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1604 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1605 				goto out_unlock;
1606 			}
1607 			entry = pte_mkyoung(*pte);
1608 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1609 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1610 				update_mmu_cache(vma, addr, pte);
1611 		}
1612 		goto out_unlock;
1613 	}
1614 
1615 	/* Ok, finally just insert the thing.. */
1616 	if (pfn_t_devmap(pfn))
1617 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1618 	else
1619 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1620 
1621 	if (mkwrite) {
1622 		entry = pte_mkyoung(entry);
1623 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1624 	}
1625 
1626 	set_pte_at(mm, addr, pte, entry);
1627 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1628 
1629 out_unlock:
1630 	pte_unmap_unlock(pte, ptl);
1631 	return VM_FAULT_NOPAGE;
1632 }
1633 
1634 /**
1635  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1636  * @vma: user vma to map to
1637  * @addr: target user address of this page
1638  * @pfn: source kernel pfn
1639  * @pgprot: pgprot flags for the inserted page
1640  *
1641  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1642  * to override pgprot on a per-page basis.
1643  *
1644  * This only makes sense for IO mappings, and it makes no sense for
1645  * COW mappings.  In general, using multiple vmas is preferable;
1646  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1647  * impractical.
1648  *
1649  * Context: Process context.  May allocate using %GFP_KERNEL.
1650  * Return: vm_fault_t value.
1651  */
1652 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1653 			unsigned long pfn, pgprot_t pgprot)
1654 {
1655 	/*
1656 	 * Technically, architectures with pte_special can avoid all these
1657 	 * restrictions (same for remap_pfn_range).  However we would like
1658 	 * consistency in testing and feature parity among all, so we should
1659 	 * try to keep these invariants in place for everybody.
1660 	 */
1661 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1662 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1663 						(VM_PFNMAP|VM_MIXEDMAP));
1664 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1665 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1666 
1667 	if (addr < vma->vm_start || addr >= vma->vm_end)
1668 		return VM_FAULT_SIGBUS;
1669 
1670 	if (!pfn_modify_allowed(pfn, pgprot))
1671 		return VM_FAULT_SIGBUS;
1672 
1673 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1674 
1675 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1676 			false);
1677 }
1678 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1679 
1680 /**
1681  * vmf_insert_pfn - insert single pfn into user vma
1682  * @vma: user vma to map to
1683  * @addr: target user address of this page
1684  * @pfn: source kernel pfn
1685  *
1686  * Similar to vm_insert_page, this allows drivers to insert individual pages
1687  * they've allocated into a user vma. Same comments apply.
1688  *
1689  * This function should only be called from a vm_ops->fault handler, and
1690  * in that case the handler should return the result of this function.
1691  *
1692  * vma cannot be a COW mapping.
1693  *
1694  * As this is called only for pages that do not currently exist, we
1695  * do not need to flush old virtual caches or the TLB.
1696  *
1697  * Context: Process context.  May allocate using %GFP_KERNEL.
1698  * Return: vm_fault_t value.
1699  */
1700 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1701 			unsigned long pfn)
1702 {
1703 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1704 }
1705 EXPORT_SYMBOL(vmf_insert_pfn);
1706 
1707 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1708 {
1709 	/* these checks mirror the abort conditions in vm_normal_page */
1710 	if (vma->vm_flags & VM_MIXEDMAP)
1711 		return true;
1712 	if (pfn_t_devmap(pfn))
1713 		return true;
1714 	if (pfn_t_special(pfn))
1715 		return true;
1716 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1717 		return true;
1718 	return false;
1719 }
1720 
1721 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1722 		unsigned long addr, pfn_t pfn, bool mkwrite)
1723 {
1724 	pgprot_t pgprot = vma->vm_page_prot;
1725 	int err;
1726 
1727 	BUG_ON(!vm_mixed_ok(vma, pfn));
1728 
1729 	if (addr < vma->vm_start || addr >= vma->vm_end)
1730 		return VM_FAULT_SIGBUS;
1731 
1732 	track_pfn_insert(vma, &pgprot, pfn);
1733 
1734 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1735 		return VM_FAULT_SIGBUS;
1736 
1737 	/*
1738 	 * If we don't have pte special, then we have to use the pfn_valid()
1739 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1740 	 * refcount the page if pfn_valid is true (hence insert_page rather
1741 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1742 	 * without pte special, it would there be refcounted as a normal page.
1743 	 */
1744 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1745 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1746 		struct page *page;
1747 
1748 		/*
1749 		 * At this point we are committed to insert_page()
1750 		 * regardless of whether the caller specified flags that
1751 		 * result in pfn_t_has_page() == false.
1752 		 */
1753 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1754 		err = insert_page(vma, addr, page, pgprot);
1755 	} else {
1756 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1757 	}
1758 
1759 	if (err == -ENOMEM)
1760 		return VM_FAULT_OOM;
1761 	if (err < 0 && err != -EBUSY)
1762 		return VM_FAULT_SIGBUS;
1763 
1764 	return VM_FAULT_NOPAGE;
1765 }
1766 
1767 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1768 		pfn_t pfn)
1769 {
1770 	return __vm_insert_mixed(vma, addr, pfn, false);
1771 }
1772 EXPORT_SYMBOL(vmf_insert_mixed);
1773 
1774 /*
1775  *  If the insertion of PTE failed because someone else already added a
1776  *  different entry in the mean time, we treat that as success as we assume
1777  *  the same entry was actually inserted.
1778  */
1779 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1780 		unsigned long addr, pfn_t pfn)
1781 {
1782 	return __vm_insert_mixed(vma, addr, pfn, true);
1783 }
1784 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1785 
1786 /*
1787  * maps a range of physical memory into the requested pages. the old
1788  * mappings are removed. any references to nonexistent pages results
1789  * in null mappings (currently treated as "copy-on-access")
1790  */
1791 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1792 			unsigned long addr, unsigned long end,
1793 			unsigned long pfn, pgprot_t prot)
1794 {
1795 	pte_t *pte;
1796 	spinlock_t *ptl;
1797 	int err = 0;
1798 
1799 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1800 	if (!pte)
1801 		return -ENOMEM;
1802 	arch_enter_lazy_mmu_mode();
1803 	do {
1804 		BUG_ON(!pte_none(*pte));
1805 		if (!pfn_modify_allowed(pfn, prot)) {
1806 			err = -EACCES;
1807 			break;
1808 		}
1809 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1810 		pfn++;
1811 	} while (pte++, addr += PAGE_SIZE, addr != end);
1812 	arch_leave_lazy_mmu_mode();
1813 	pte_unmap_unlock(pte - 1, ptl);
1814 	return err;
1815 }
1816 
1817 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1818 			unsigned long addr, unsigned long end,
1819 			unsigned long pfn, pgprot_t prot)
1820 {
1821 	pmd_t *pmd;
1822 	unsigned long next;
1823 	int err;
1824 
1825 	pfn -= addr >> PAGE_SHIFT;
1826 	pmd = pmd_alloc(mm, pud, addr);
1827 	if (!pmd)
1828 		return -ENOMEM;
1829 	VM_BUG_ON(pmd_trans_huge(*pmd));
1830 	do {
1831 		next = pmd_addr_end(addr, end);
1832 		err = remap_pte_range(mm, pmd, addr, next,
1833 				pfn + (addr >> PAGE_SHIFT), prot);
1834 		if (err)
1835 			return err;
1836 	} while (pmd++, addr = next, addr != end);
1837 	return 0;
1838 }
1839 
1840 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1841 			unsigned long addr, unsigned long end,
1842 			unsigned long pfn, pgprot_t prot)
1843 {
1844 	pud_t *pud;
1845 	unsigned long next;
1846 	int err;
1847 
1848 	pfn -= addr >> PAGE_SHIFT;
1849 	pud = pud_alloc(mm, p4d, addr);
1850 	if (!pud)
1851 		return -ENOMEM;
1852 	do {
1853 		next = pud_addr_end(addr, end);
1854 		err = remap_pmd_range(mm, pud, addr, next,
1855 				pfn + (addr >> PAGE_SHIFT), prot);
1856 		if (err)
1857 			return err;
1858 	} while (pud++, addr = next, addr != end);
1859 	return 0;
1860 }
1861 
1862 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1863 			unsigned long addr, unsigned long end,
1864 			unsigned long pfn, pgprot_t prot)
1865 {
1866 	p4d_t *p4d;
1867 	unsigned long next;
1868 	int err;
1869 
1870 	pfn -= addr >> PAGE_SHIFT;
1871 	p4d = p4d_alloc(mm, pgd, addr);
1872 	if (!p4d)
1873 		return -ENOMEM;
1874 	do {
1875 		next = p4d_addr_end(addr, end);
1876 		err = remap_pud_range(mm, p4d, addr, next,
1877 				pfn + (addr >> PAGE_SHIFT), prot);
1878 		if (err)
1879 			return err;
1880 	} while (p4d++, addr = next, addr != end);
1881 	return 0;
1882 }
1883 
1884 /**
1885  * remap_pfn_range - remap kernel memory to userspace
1886  * @vma: user vma to map to
1887  * @addr: target user address to start at
1888  * @pfn: physical address of kernel memory
1889  * @size: size of map area
1890  * @prot: page protection flags for this mapping
1891  *
1892  * Note: this is only safe if the mm semaphore is held when called.
1893  *
1894  * Return: %0 on success, negative error code otherwise.
1895  */
1896 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1897 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1898 {
1899 	pgd_t *pgd;
1900 	unsigned long next;
1901 	unsigned long end = addr + PAGE_ALIGN(size);
1902 	struct mm_struct *mm = vma->vm_mm;
1903 	unsigned long remap_pfn = pfn;
1904 	int err;
1905 
1906 	/*
1907 	 * Physically remapped pages are special. Tell the
1908 	 * rest of the world about it:
1909 	 *   VM_IO tells people not to look at these pages
1910 	 *	(accesses can have side effects).
1911 	 *   VM_PFNMAP tells the core MM that the base pages are just
1912 	 *	raw PFN mappings, and do not have a "struct page" associated
1913 	 *	with them.
1914 	 *   VM_DONTEXPAND
1915 	 *      Disable vma merging and expanding with mremap().
1916 	 *   VM_DONTDUMP
1917 	 *      Omit vma from core dump, even when VM_IO turned off.
1918 	 *
1919 	 * There's a horrible special case to handle copy-on-write
1920 	 * behaviour that some programs depend on. We mark the "original"
1921 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1922 	 * See vm_normal_page() for details.
1923 	 */
1924 	if (is_cow_mapping(vma->vm_flags)) {
1925 		if (addr != vma->vm_start || end != vma->vm_end)
1926 			return -EINVAL;
1927 		vma->vm_pgoff = pfn;
1928 	}
1929 
1930 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1931 	if (err)
1932 		return -EINVAL;
1933 
1934 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1935 
1936 	BUG_ON(addr >= end);
1937 	pfn -= addr >> PAGE_SHIFT;
1938 	pgd = pgd_offset(mm, addr);
1939 	flush_cache_range(vma, addr, end);
1940 	do {
1941 		next = pgd_addr_end(addr, end);
1942 		err = remap_p4d_range(mm, pgd, addr, next,
1943 				pfn + (addr >> PAGE_SHIFT), prot);
1944 		if (err)
1945 			break;
1946 	} while (pgd++, addr = next, addr != end);
1947 
1948 	if (err)
1949 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1950 
1951 	return err;
1952 }
1953 EXPORT_SYMBOL(remap_pfn_range);
1954 
1955 /**
1956  * vm_iomap_memory - remap memory to userspace
1957  * @vma: user vma to map to
1958  * @start: start of area
1959  * @len: size of area
1960  *
1961  * This is a simplified io_remap_pfn_range() for common driver use. The
1962  * driver just needs to give us the physical memory range to be mapped,
1963  * we'll figure out the rest from the vma information.
1964  *
1965  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1966  * whatever write-combining details or similar.
1967  *
1968  * Return: %0 on success, negative error code otherwise.
1969  */
1970 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1971 {
1972 	unsigned long vm_len, pfn, pages;
1973 
1974 	/* Check that the physical memory area passed in looks valid */
1975 	if (start + len < start)
1976 		return -EINVAL;
1977 	/*
1978 	 * You *really* shouldn't map things that aren't page-aligned,
1979 	 * but we've historically allowed it because IO memory might
1980 	 * just have smaller alignment.
1981 	 */
1982 	len += start & ~PAGE_MASK;
1983 	pfn = start >> PAGE_SHIFT;
1984 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1985 	if (pfn + pages < pfn)
1986 		return -EINVAL;
1987 
1988 	/* We start the mapping 'vm_pgoff' pages into the area */
1989 	if (vma->vm_pgoff > pages)
1990 		return -EINVAL;
1991 	pfn += vma->vm_pgoff;
1992 	pages -= vma->vm_pgoff;
1993 
1994 	/* Can we fit all of the mapping? */
1995 	vm_len = vma->vm_end - vma->vm_start;
1996 	if (vm_len >> PAGE_SHIFT > pages)
1997 		return -EINVAL;
1998 
1999 	/* Ok, let it rip */
2000 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2001 }
2002 EXPORT_SYMBOL(vm_iomap_memory);
2003 
2004 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2005 				     unsigned long addr, unsigned long end,
2006 				     pte_fn_t fn, void *data)
2007 {
2008 	pte_t *pte;
2009 	int err;
2010 	spinlock_t *uninitialized_var(ptl);
2011 
2012 	pte = (mm == &init_mm) ?
2013 		pte_alloc_kernel(pmd, addr) :
2014 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2015 	if (!pte)
2016 		return -ENOMEM;
2017 
2018 	BUG_ON(pmd_huge(*pmd));
2019 
2020 	arch_enter_lazy_mmu_mode();
2021 
2022 	do {
2023 		err = fn(pte++, addr, data);
2024 		if (err)
2025 			break;
2026 	} while (addr += PAGE_SIZE, addr != end);
2027 
2028 	arch_leave_lazy_mmu_mode();
2029 
2030 	if (mm != &init_mm)
2031 		pte_unmap_unlock(pte-1, ptl);
2032 	return err;
2033 }
2034 
2035 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2036 				     unsigned long addr, unsigned long end,
2037 				     pte_fn_t fn, void *data)
2038 {
2039 	pmd_t *pmd;
2040 	unsigned long next;
2041 	int err;
2042 
2043 	BUG_ON(pud_huge(*pud));
2044 
2045 	pmd = pmd_alloc(mm, pud, addr);
2046 	if (!pmd)
2047 		return -ENOMEM;
2048 	do {
2049 		next = pmd_addr_end(addr, end);
2050 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2051 		if (err)
2052 			break;
2053 	} while (pmd++, addr = next, addr != end);
2054 	return err;
2055 }
2056 
2057 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2058 				     unsigned long addr, unsigned long end,
2059 				     pte_fn_t fn, void *data)
2060 {
2061 	pud_t *pud;
2062 	unsigned long next;
2063 	int err;
2064 
2065 	pud = pud_alloc(mm, p4d, addr);
2066 	if (!pud)
2067 		return -ENOMEM;
2068 	do {
2069 		next = pud_addr_end(addr, end);
2070 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2071 		if (err)
2072 			break;
2073 	} while (pud++, addr = next, addr != end);
2074 	return err;
2075 }
2076 
2077 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2078 				     unsigned long addr, unsigned long end,
2079 				     pte_fn_t fn, void *data)
2080 {
2081 	p4d_t *p4d;
2082 	unsigned long next;
2083 	int err;
2084 
2085 	p4d = p4d_alloc(mm, pgd, addr);
2086 	if (!p4d)
2087 		return -ENOMEM;
2088 	do {
2089 		next = p4d_addr_end(addr, end);
2090 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2091 		if (err)
2092 			break;
2093 	} while (p4d++, addr = next, addr != end);
2094 	return err;
2095 }
2096 
2097 /*
2098  * Scan a region of virtual memory, filling in page tables as necessary
2099  * and calling a provided function on each leaf page table.
2100  */
2101 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2102 			unsigned long size, pte_fn_t fn, void *data)
2103 {
2104 	pgd_t *pgd;
2105 	unsigned long next;
2106 	unsigned long end = addr + size;
2107 	int err;
2108 
2109 	if (WARN_ON(addr >= end))
2110 		return -EINVAL;
2111 
2112 	pgd = pgd_offset(mm, addr);
2113 	do {
2114 		next = pgd_addr_end(addr, end);
2115 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2116 		if (err)
2117 			break;
2118 	} while (pgd++, addr = next, addr != end);
2119 
2120 	return err;
2121 }
2122 EXPORT_SYMBOL_GPL(apply_to_page_range);
2123 
2124 /*
2125  * handle_pte_fault chooses page fault handler according to an entry which was
2126  * read non-atomically.  Before making any commitment, on those architectures
2127  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2128  * parts, do_swap_page must check under lock before unmapping the pte and
2129  * proceeding (but do_wp_page is only called after already making such a check;
2130  * and do_anonymous_page can safely check later on).
2131  */
2132 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2133 				pte_t *page_table, pte_t orig_pte)
2134 {
2135 	int same = 1;
2136 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2137 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2138 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2139 		spin_lock(ptl);
2140 		same = pte_same(*page_table, orig_pte);
2141 		spin_unlock(ptl);
2142 	}
2143 #endif
2144 	pte_unmap(page_table);
2145 	return same;
2146 }
2147 
2148 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2149 {
2150 	debug_dma_assert_idle(src);
2151 
2152 	/*
2153 	 * If the source page was a PFN mapping, we don't have
2154 	 * a "struct page" for it. We do a best-effort copy by
2155 	 * just copying from the original user address. If that
2156 	 * fails, we just zero-fill it. Live with it.
2157 	 */
2158 	if (unlikely(!src)) {
2159 		void *kaddr = kmap_atomic(dst);
2160 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2161 
2162 		/*
2163 		 * This really shouldn't fail, because the page is there
2164 		 * in the page tables. But it might just be unreadable,
2165 		 * in which case we just give up and fill the result with
2166 		 * zeroes.
2167 		 */
2168 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2169 			clear_page(kaddr);
2170 		kunmap_atomic(kaddr);
2171 		flush_dcache_page(dst);
2172 	} else
2173 		copy_user_highpage(dst, src, va, vma);
2174 }
2175 
2176 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2177 {
2178 	struct file *vm_file = vma->vm_file;
2179 
2180 	if (vm_file)
2181 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2182 
2183 	/*
2184 	 * Special mappings (e.g. VDSO) do not have any file so fake
2185 	 * a default GFP_KERNEL for them.
2186 	 */
2187 	return GFP_KERNEL;
2188 }
2189 
2190 /*
2191  * Notify the address space that the page is about to become writable so that
2192  * it can prohibit this or wait for the page to get into an appropriate state.
2193  *
2194  * We do this without the lock held, so that it can sleep if it needs to.
2195  */
2196 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2197 {
2198 	vm_fault_t ret;
2199 	struct page *page = vmf->page;
2200 	unsigned int old_flags = vmf->flags;
2201 
2202 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2203 
2204 	if (vmf->vma->vm_file &&
2205 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2206 		return VM_FAULT_SIGBUS;
2207 
2208 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2209 	/* Restore original flags so that caller is not surprised */
2210 	vmf->flags = old_flags;
2211 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2212 		return ret;
2213 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2214 		lock_page(page);
2215 		if (!page->mapping) {
2216 			unlock_page(page);
2217 			return 0; /* retry */
2218 		}
2219 		ret |= VM_FAULT_LOCKED;
2220 	} else
2221 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2222 	return ret;
2223 }
2224 
2225 /*
2226  * Handle dirtying of a page in shared file mapping on a write fault.
2227  *
2228  * The function expects the page to be locked and unlocks it.
2229  */
2230 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2231 				    struct page *page)
2232 {
2233 	struct address_space *mapping;
2234 	bool dirtied;
2235 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2236 
2237 	dirtied = set_page_dirty(page);
2238 	VM_BUG_ON_PAGE(PageAnon(page), page);
2239 	/*
2240 	 * Take a local copy of the address_space - page.mapping may be zeroed
2241 	 * by truncate after unlock_page().   The address_space itself remains
2242 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2243 	 * release semantics to prevent the compiler from undoing this copying.
2244 	 */
2245 	mapping = page_rmapping(page);
2246 	unlock_page(page);
2247 
2248 	if ((dirtied || page_mkwrite) && mapping) {
2249 		/*
2250 		 * Some device drivers do not set page.mapping
2251 		 * but still dirty their pages
2252 		 */
2253 		balance_dirty_pages_ratelimited(mapping);
2254 	}
2255 
2256 	if (!page_mkwrite)
2257 		file_update_time(vma->vm_file);
2258 }
2259 
2260 /*
2261  * Handle write page faults for pages that can be reused in the current vma
2262  *
2263  * This can happen either due to the mapping being with the VM_SHARED flag,
2264  * or due to us being the last reference standing to the page. In either
2265  * case, all we need to do here is to mark the page as writable and update
2266  * any related book-keeping.
2267  */
2268 static inline void wp_page_reuse(struct vm_fault *vmf)
2269 	__releases(vmf->ptl)
2270 {
2271 	struct vm_area_struct *vma = vmf->vma;
2272 	struct page *page = vmf->page;
2273 	pte_t entry;
2274 	/*
2275 	 * Clear the pages cpupid information as the existing
2276 	 * information potentially belongs to a now completely
2277 	 * unrelated process.
2278 	 */
2279 	if (page)
2280 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2281 
2282 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2283 	entry = pte_mkyoung(vmf->orig_pte);
2284 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2285 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2286 		update_mmu_cache(vma, vmf->address, vmf->pte);
2287 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2288 }
2289 
2290 /*
2291  * Handle the case of a page which we actually need to copy to a new page.
2292  *
2293  * Called with mmap_sem locked and the old page referenced, but
2294  * without the ptl held.
2295  *
2296  * High level logic flow:
2297  *
2298  * - Allocate a page, copy the content of the old page to the new one.
2299  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2300  * - Take the PTL. If the pte changed, bail out and release the allocated page
2301  * - If the pte is still the way we remember it, update the page table and all
2302  *   relevant references. This includes dropping the reference the page-table
2303  *   held to the old page, as well as updating the rmap.
2304  * - In any case, unlock the PTL and drop the reference we took to the old page.
2305  */
2306 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2307 {
2308 	struct vm_area_struct *vma = vmf->vma;
2309 	struct mm_struct *mm = vma->vm_mm;
2310 	struct page *old_page = vmf->page;
2311 	struct page *new_page = NULL;
2312 	pte_t entry;
2313 	int page_copied = 0;
2314 	struct mem_cgroup *memcg;
2315 	struct mmu_notifier_range range;
2316 
2317 	if (unlikely(anon_vma_prepare(vma)))
2318 		goto oom;
2319 
2320 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2321 		new_page = alloc_zeroed_user_highpage_movable(vma,
2322 							      vmf->address);
2323 		if (!new_page)
2324 			goto oom;
2325 	} else {
2326 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2327 				vmf->address);
2328 		if (!new_page)
2329 			goto oom;
2330 		cow_user_page(new_page, old_page, vmf->address, vma);
2331 	}
2332 
2333 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2334 		goto oom_free_new;
2335 
2336 	__SetPageUptodate(new_page);
2337 
2338 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2339 				vmf->address & PAGE_MASK,
2340 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2341 	mmu_notifier_invalidate_range_start(&range);
2342 
2343 	/*
2344 	 * Re-check the pte - we dropped the lock
2345 	 */
2346 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2347 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2348 		if (old_page) {
2349 			if (!PageAnon(old_page)) {
2350 				dec_mm_counter_fast(mm,
2351 						mm_counter_file(old_page));
2352 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2353 			}
2354 		} else {
2355 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2356 		}
2357 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2358 		entry = mk_pte(new_page, vma->vm_page_prot);
2359 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2360 		/*
2361 		 * Clear the pte entry and flush it first, before updating the
2362 		 * pte with the new entry. This will avoid a race condition
2363 		 * seen in the presence of one thread doing SMC and another
2364 		 * thread doing COW.
2365 		 */
2366 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2367 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2368 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2369 		lru_cache_add_active_or_unevictable(new_page, vma);
2370 		/*
2371 		 * We call the notify macro here because, when using secondary
2372 		 * mmu page tables (such as kvm shadow page tables), we want the
2373 		 * new page to be mapped directly into the secondary page table.
2374 		 */
2375 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2376 		update_mmu_cache(vma, vmf->address, vmf->pte);
2377 		if (old_page) {
2378 			/*
2379 			 * Only after switching the pte to the new page may
2380 			 * we remove the mapcount here. Otherwise another
2381 			 * process may come and find the rmap count decremented
2382 			 * before the pte is switched to the new page, and
2383 			 * "reuse" the old page writing into it while our pte
2384 			 * here still points into it and can be read by other
2385 			 * threads.
2386 			 *
2387 			 * The critical issue is to order this
2388 			 * page_remove_rmap with the ptp_clear_flush above.
2389 			 * Those stores are ordered by (if nothing else,)
2390 			 * the barrier present in the atomic_add_negative
2391 			 * in page_remove_rmap.
2392 			 *
2393 			 * Then the TLB flush in ptep_clear_flush ensures that
2394 			 * no process can access the old page before the
2395 			 * decremented mapcount is visible. And the old page
2396 			 * cannot be reused until after the decremented
2397 			 * mapcount is visible. So transitively, TLBs to
2398 			 * old page will be flushed before it can be reused.
2399 			 */
2400 			page_remove_rmap(old_page, false);
2401 		}
2402 
2403 		/* Free the old page.. */
2404 		new_page = old_page;
2405 		page_copied = 1;
2406 	} else {
2407 		mem_cgroup_cancel_charge(new_page, memcg, false);
2408 	}
2409 
2410 	if (new_page)
2411 		put_page(new_page);
2412 
2413 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2414 	/*
2415 	 * No need to double call mmu_notifier->invalidate_range() callback as
2416 	 * the above ptep_clear_flush_notify() did already call it.
2417 	 */
2418 	mmu_notifier_invalidate_range_only_end(&range);
2419 	if (old_page) {
2420 		/*
2421 		 * Don't let another task, with possibly unlocked vma,
2422 		 * keep the mlocked page.
2423 		 */
2424 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2425 			lock_page(old_page);	/* LRU manipulation */
2426 			if (PageMlocked(old_page))
2427 				munlock_vma_page(old_page);
2428 			unlock_page(old_page);
2429 		}
2430 		put_page(old_page);
2431 	}
2432 	return page_copied ? VM_FAULT_WRITE : 0;
2433 oom_free_new:
2434 	put_page(new_page);
2435 oom:
2436 	if (old_page)
2437 		put_page(old_page);
2438 	return VM_FAULT_OOM;
2439 }
2440 
2441 /**
2442  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2443  *			  writeable once the page is prepared
2444  *
2445  * @vmf: structure describing the fault
2446  *
2447  * This function handles all that is needed to finish a write page fault in a
2448  * shared mapping due to PTE being read-only once the mapped page is prepared.
2449  * It handles locking of PTE and modifying it.
2450  *
2451  * The function expects the page to be locked or other protection against
2452  * concurrent faults / writeback (such as DAX radix tree locks).
2453  *
2454  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2455  * we acquired PTE lock.
2456  */
2457 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2458 {
2459 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2460 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2461 				       &vmf->ptl);
2462 	/*
2463 	 * We might have raced with another page fault while we released the
2464 	 * pte_offset_map_lock.
2465 	 */
2466 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2467 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2468 		return VM_FAULT_NOPAGE;
2469 	}
2470 	wp_page_reuse(vmf);
2471 	return 0;
2472 }
2473 
2474 /*
2475  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2476  * mapping
2477  */
2478 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2479 {
2480 	struct vm_area_struct *vma = vmf->vma;
2481 
2482 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2483 		vm_fault_t ret;
2484 
2485 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2486 		vmf->flags |= FAULT_FLAG_MKWRITE;
2487 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2488 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2489 			return ret;
2490 		return finish_mkwrite_fault(vmf);
2491 	}
2492 	wp_page_reuse(vmf);
2493 	return VM_FAULT_WRITE;
2494 }
2495 
2496 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2497 	__releases(vmf->ptl)
2498 {
2499 	struct vm_area_struct *vma = vmf->vma;
2500 
2501 	get_page(vmf->page);
2502 
2503 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2504 		vm_fault_t tmp;
2505 
2506 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2507 		tmp = do_page_mkwrite(vmf);
2508 		if (unlikely(!tmp || (tmp &
2509 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2510 			put_page(vmf->page);
2511 			return tmp;
2512 		}
2513 		tmp = finish_mkwrite_fault(vmf);
2514 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2515 			unlock_page(vmf->page);
2516 			put_page(vmf->page);
2517 			return tmp;
2518 		}
2519 	} else {
2520 		wp_page_reuse(vmf);
2521 		lock_page(vmf->page);
2522 	}
2523 	fault_dirty_shared_page(vma, vmf->page);
2524 	put_page(vmf->page);
2525 
2526 	return VM_FAULT_WRITE;
2527 }
2528 
2529 /*
2530  * This routine handles present pages, when users try to write
2531  * to a shared page. It is done by copying the page to a new address
2532  * and decrementing the shared-page counter for the old page.
2533  *
2534  * Note that this routine assumes that the protection checks have been
2535  * done by the caller (the low-level page fault routine in most cases).
2536  * Thus we can safely just mark it writable once we've done any necessary
2537  * COW.
2538  *
2539  * We also mark the page dirty at this point even though the page will
2540  * change only once the write actually happens. This avoids a few races,
2541  * and potentially makes it more efficient.
2542  *
2543  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544  * but allow concurrent faults), with pte both mapped and locked.
2545  * We return with mmap_sem still held, but pte unmapped and unlocked.
2546  */
2547 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2548 	__releases(vmf->ptl)
2549 {
2550 	struct vm_area_struct *vma = vmf->vma;
2551 
2552 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2553 	if (!vmf->page) {
2554 		/*
2555 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2556 		 * VM_PFNMAP VMA.
2557 		 *
2558 		 * We should not cow pages in a shared writeable mapping.
2559 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2560 		 */
2561 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2562 				     (VM_WRITE|VM_SHARED))
2563 			return wp_pfn_shared(vmf);
2564 
2565 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2566 		return wp_page_copy(vmf);
2567 	}
2568 
2569 	/*
2570 	 * Take out anonymous pages first, anonymous shared vmas are
2571 	 * not dirty accountable.
2572 	 */
2573 	if (PageAnon(vmf->page)) {
2574 		int total_map_swapcount;
2575 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2576 					   page_count(vmf->page) != 1))
2577 			goto copy;
2578 		if (!trylock_page(vmf->page)) {
2579 			get_page(vmf->page);
2580 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2581 			lock_page(vmf->page);
2582 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2583 					vmf->address, &vmf->ptl);
2584 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2585 				unlock_page(vmf->page);
2586 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2587 				put_page(vmf->page);
2588 				return 0;
2589 			}
2590 			put_page(vmf->page);
2591 		}
2592 		if (PageKsm(vmf->page)) {
2593 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2594 						     vmf->address);
2595 			unlock_page(vmf->page);
2596 			if (!reused)
2597 				goto copy;
2598 			wp_page_reuse(vmf);
2599 			return VM_FAULT_WRITE;
2600 		}
2601 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2602 			if (total_map_swapcount == 1) {
2603 				/*
2604 				 * The page is all ours. Move it to
2605 				 * our anon_vma so the rmap code will
2606 				 * not search our parent or siblings.
2607 				 * Protected against the rmap code by
2608 				 * the page lock.
2609 				 */
2610 				page_move_anon_rmap(vmf->page, vma);
2611 			}
2612 			unlock_page(vmf->page);
2613 			wp_page_reuse(vmf);
2614 			return VM_FAULT_WRITE;
2615 		}
2616 		unlock_page(vmf->page);
2617 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2618 					(VM_WRITE|VM_SHARED))) {
2619 		return wp_page_shared(vmf);
2620 	}
2621 copy:
2622 	/*
2623 	 * Ok, we need to copy. Oh, well..
2624 	 */
2625 	get_page(vmf->page);
2626 
2627 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2628 	return wp_page_copy(vmf);
2629 }
2630 
2631 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2632 		unsigned long start_addr, unsigned long end_addr,
2633 		struct zap_details *details)
2634 {
2635 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2636 }
2637 
2638 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2639 					    struct zap_details *details)
2640 {
2641 	struct vm_area_struct *vma;
2642 	pgoff_t vba, vea, zba, zea;
2643 
2644 	vma_interval_tree_foreach(vma, root,
2645 			details->first_index, details->last_index) {
2646 
2647 		vba = vma->vm_pgoff;
2648 		vea = vba + vma_pages(vma) - 1;
2649 		zba = details->first_index;
2650 		if (zba < vba)
2651 			zba = vba;
2652 		zea = details->last_index;
2653 		if (zea > vea)
2654 			zea = vea;
2655 
2656 		unmap_mapping_range_vma(vma,
2657 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2658 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2659 				details);
2660 	}
2661 }
2662 
2663 /**
2664  * unmap_mapping_pages() - Unmap pages from processes.
2665  * @mapping: The address space containing pages to be unmapped.
2666  * @start: Index of first page to be unmapped.
2667  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2668  * @even_cows: Whether to unmap even private COWed pages.
2669  *
2670  * Unmap the pages in this address space from any userspace process which
2671  * has them mmaped.  Generally, you want to remove COWed pages as well when
2672  * a file is being truncated, but not when invalidating pages from the page
2673  * cache.
2674  */
2675 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2676 		pgoff_t nr, bool even_cows)
2677 {
2678 	struct zap_details details = { };
2679 
2680 	details.check_mapping = even_cows ? NULL : mapping;
2681 	details.first_index = start;
2682 	details.last_index = start + nr - 1;
2683 	if (details.last_index < details.first_index)
2684 		details.last_index = ULONG_MAX;
2685 
2686 	i_mmap_lock_write(mapping);
2687 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2688 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2689 	i_mmap_unlock_write(mapping);
2690 }
2691 
2692 /**
2693  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2694  * address_space corresponding to the specified byte range in the underlying
2695  * file.
2696  *
2697  * @mapping: the address space containing mmaps to be unmapped.
2698  * @holebegin: byte in first page to unmap, relative to the start of
2699  * the underlying file.  This will be rounded down to a PAGE_SIZE
2700  * boundary.  Note that this is different from truncate_pagecache(), which
2701  * must keep the partial page.  In contrast, we must get rid of
2702  * partial pages.
2703  * @holelen: size of prospective hole in bytes.  This will be rounded
2704  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2705  * end of the file.
2706  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2707  * but 0 when invalidating pagecache, don't throw away private data.
2708  */
2709 void unmap_mapping_range(struct address_space *mapping,
2710 		loff_t const holebegin, loff_t const holelen, int even_cows)
2711 {
2712 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2713 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2714 
2715 	/* Check for overflow. */
2716 	if (sizeof(holelen) > sizeof(hlen)) {
2717 		long long holeend =
2718 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2719 		if (holeend & ~(long long)ULONG_MAX)
2720 			hlen = ULONG_MAX - hba + 1;
2721 	}
2722 
2723 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2724 }
2725 EXPORT_SYMBOL(unmap_mapping_range);
2726 
2727 /*
2728  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2729  * but allow concurrent faults), and pte mapped but not yet locked.
2730  * We return with pte unmapped and unlocked.
2731  *
2732  * We return with the mmap_sem locked or unlocked in the same cases
2733  * as does filemap_fault().
2734  */
2735 vm_fault_t do_swap_page(struct vm_fault *vmf)
2736 {
2737 	struct vm_area_struct *vma = vmf->vma;
2738 	struct page *page = NULL, *swapcache;
2739 	struct mem_cgroup *memcg;
2740 	swp_entry_t entry;
2741 	pte_t pte;
2742 	int locked;
2743 	int exclusive = 0;
2744 	vm_fault_t ret = 0;
2745 
2746 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2747 		goto out;
2748 
2749 	entry = pte_to_swp_entry(vmf->orig_pte);
2750 	if (unlikely(non_swap_entry(entry))) {
2751 		if (is_migration_entry(entry)) {
2752 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2753 					     vmf->address);
2754 		} else if (is_device_private_entry(entry)) {
2755 			vmf->page = device_private_entry_to_page(entry);
2756 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2757 		} else if (is_hwpoison_entry(entry)) {
2758 			ret = VM_FAULT_HWPOISON;
2759 		} else {
2760 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2761 			ret = VM_FAULT_SIGBUS;
2762 		}
2763 		goto out;
2764 	}
2765 
2766 
2767 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2768 	page = lookup_swap_cache(entry, vma, vmf->address);
2769 	swapcache = page;
2770 
2771 	if (!page) {
2772 		struct swap_info_struct *si = swp_swap_info(entry);
2773 
2774 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2775 				__swap_count(entry) == 1) {
2776 			/* skip swapcache */
2777 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2778 							vmf->address);
2779 			if (page) {
2780 				__SetPageLocked(page);
2781 				__SetPageSwapBacked(page);
2782 				set_page_private(page, entry.val);
2783 				lru_cache_add_anon(page);
2784 				swap_readpage(page, true);
2785 			}
2786 		} else {
2787 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2788 						vmf);
2789 			swapcache = page;
2790 		}
2791 
2792 		if (!page) {
2793 			/*
2794 			 * Back out if somebody else faulted in this pte
2795 			 * while we released the pte lock.
2796 			 */
2797 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2798 					vmf->address, &vmf->ptl);
2799 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2800 				ret = VM_FAULT_OOM;
2801 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2802 			goto unlock;
2803 		}
2804 
2805 		/* Had to read the page from swap area: Major fault */
2806 		ret = VM_FAULT_MAJOR;
2807 		count_vm_event(PGMAJFAULT);
2808 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2809 	} else if (PageHWPoison(page)) {
2810 		/*
2811 		 * hwpoisoned dirty swapcache pages are kept for killing
2812 		 * owner processes (which may be unknown at hwpoison time)
2813 		 */
2814 		ret = VM_FAULT_HWPOISON;
2815 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2816 		goto out_release;
2817 	}
2818 
2819 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2820 
2821 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2822 	if (!locked) {
2823 		ret |= VM_FAULT_RETRY;
2824 		goto out_release;
2825 	}
2826 
2827 	/*
2828 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2829 	 * release the swapcache from under us.  The page pin, and pte_same
2830 	 * test below, are not enough to exclude that.  Even if it is still
2831 	 * swapcache, we need to check that the page's swap has not changed.
2832 	 */
2833 	if (unlikely((!PageSwapCache(page) ||
2834 			page_private(page) != entry.val)) && swapcache)
2835 		goto out_page;
2836 
2837 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2838 	if (unlikely(!page)) {
2839 		ret = VM_FAULT_OOM;
2840 		page = swapcache;
2841 		goto out_page;
2842 	}
2843 
2844 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2845 					&memcg, false)) {
2846 		ret = VM_FAULT_OOM;
2847 		goto out_page;
2848 	}
2849 
2850 	/*
2851 	 * Back out if somebody else already faulted in this pte.
2852 	 */
2853 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2854 			&vmf->ptl);
2855 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2856 		goto out_nomap;
2857 
2858 	if (unlikely(!PageUptodate(page))) {
2859 		ret = VM_FAULT_SIGBUS;
2860 		goto out_nomap;
2861 	}
2862 
2863 	/*
2864 	 * The page isn't present yet, go ahead with the fault.
2865 	 *
2866 	 * Be careful about the sequence of operations here.
2867 	 * To get its accounting right, reuse_swap_page() must be called
2868 	 * while the page is counted on swap but not yet in mapcount i.e.
2869 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2870 	 * must be called after the swap_free(), or it will never succeed.
2871 	 */
2872 
2873 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2874 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2875 	pte = mk_pte(page, vma->vm_page_prot);
2876 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2877 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2878 		vmf->flags &= ~FAULT_FLAG_WRITE;
2879 		ret |= VM_FAULT_WRITE;
2880 		exclusive = RMAP_EXCLUSIVE;
2881 	}
2882 	flush_icache_page(vma, page);
2883 	if (pte_swp_soft_dirty(vmf->orig_pte))
2884 		pte = pte_mksoft_dirty(pte);
2885 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2886 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2887 	vmf->orig_pte = pte;
2888 
2889 	/* ksm created a completely new copy */
2890 	if (unlikely(page != swapcache && swapcache)) {
2891 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2892 		mem_cgroup_commit_charge(page, memcg, false, false);
2893 		lru_cache_add_active_or_unevictable(page, vma);
2894 	} else {
2895 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2896 		mem_cgroup_commit_charge(page, memcg, true, false);
2897 		activate_page(page);
2898 	}
2899 
2900 	swap_free(entry);
2901 	if (mem_cgroup_swap_full(page) ||
2902 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2903 		try_to_free_swap(page);
2904 	unlock_page(page);
2905 	if (page != swapcache && swapcache) {
2906 		/*
2907 		 * Hold the lock to avoid the swap entry to be reused
2908 		 * until we take the PT lock for the pte_same() check
2909 		 * (to avoid false positives from pte_same). For
2910 		 * further safety release the lock after the swap_free
2911 		 * so that the swap count won't change under a
2912 		 * parallel locked swapcache.
2913 		 */
2914 		unlock_page(swapcache);
2915 		put_page(swapcache);
2916 	}
2917 
2918 	if (vmf->flags & FAULT_FLAG_WRITE) {
2919 		ret |= do_wp_page(vmf);
2920 		if (ret & VM_FAULT_ERROR)
2921 			ret &= VM_FAULT_ERROR;
2922 		goto out;
2923 	}
2924 
2925 	/* No need to invalidate - it was non-present before */
2926 	update_mmu_cache(vma, vmf->address, vmf->pte);
2927 unlock:
2928 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2929 out:
2930 	return ret;
2931 out_nomap:
2932 	mem_cgroup_cancel_charge(page, memcg, false);
2933 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2934 out_page:
2935 	unlock_page(page);
2936 out_release:
2937 	put_page(page);
2938 	if (page != swapcache && swapcache) {
2939 		unlock_page(swapcache);
2940 		put_page(swapcache);
2941 	}
2942 	return ret;
2943 }
2944 
2945 /*
2946  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2947  * but allow concurrent faults), and pte mapped but not yet locked.
2948  * We return with mmap_sem still held, but pte unmapped and unlocked.
2949  */
2950 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2951 {
2952 	struct vm_area_struct *vma = vmf->vma;
2953 	struct mem_cgroup *memcg;
2954 	struct page *page;
2955 	vm_fault_t ret = 0;
2956 	pte_t entry;
2957 
2958 	/* File mapping without ->vm_ops ? */
2959 	if (vma->vm_flags & VM_SHARED)
2960 		return VM_FAULT_SIGBUS;
2961 
2962 	/*
2963 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2964 	 * pte_offset_map() on pmds where a huge pmd might be created
2965 	 * from a different thread.
2966 	 *
2967 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2968 	 * parallel threads are excluded by other means.
2969 	 *
2970 	 * Here we only have down_read(mmap_sem).
2971 	 */
2972 	if (pte_alloc(vma->vm_mm, vmf->pmd))
2973 		return VM_FAULT_OOM;
2974 
2975 	/* See the comment in pte_alloc_one_map() */
2976 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2977 		return 0;
2978 
2979 	/* Use the zero-page for reads */
2980 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2981 			!mm_forbids_zeropage(vma->vm_mm)) {
2982 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2983 						vma->vm_page_prot));
2984 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2985 				vmf->address, &vmf->ptl);
2986 		if (!pte_none(*vmf->pte))
2987 			goto unlock;
2988 		ret = check_stable_address_space(vma->vm_mm);
2989 		if (ret)
2990 			goto unlock;
2991 		/* Deliver the page fault to userland, check inside PT lock */
2992 		if (userfaultfd_missing(vma)) {
2993 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2994 			return handle_userfault(vmf, VM_UFFD_MISSING);
2995 		}
2996 		goto setpte;
2997 	}
2998 
2999 	/* Allocate our own private page. */
3000 	if (unlikely(anon_vma_prepare(vma)))
3001 		goto oom;
3002 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3003 	if (!page)
3004 		goto oom;
3005 
3006 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3007 					false))
3008 		goto oom_free_page;
3009 
3010 	/*
3011 	 * The memory barrier inside __SetPageUptodate makes sure that
3012 	 * preceeding stores to the page contents become visible before
3013 	 * the set_pte_at() write.
3014 	 */
3015 	__SetPageUptodate(page);
3016 
3017 	entry = mk_pte(page, vma->vm_page_prot);
3018 	if (vma->vm_flags & VM_WRITE)
3019 		entry = pte_mkwrite(pte_mkdirty(entry));
3020 
3021 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3022 			&vmf->ptl);
3023 	if (!pte_none(*vmf->pte))
3024 		goto release;
3025 
3026 	ret = check_stable_address_space(vma->vm_mm);
3027 	if (ret)
3028 		goto release;
3029 
3030 	/* Deliver the page fault to userland, check inside PT lock */
3031 	if (userfaultfd_missing(vma)) {
3032 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3033 		mem_cgroup_cancel_charge(page, memcg, false);
3034 		put_page(page);
3035 		return handle_userfault(vmf, VM_UFFD_MISSING);
3036 	}
3037 
3038 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3039 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3040 	mem_cgroup_commit_charge(page, memcg, false, false);
3041 	lru_cache_add_active_or_unevictable(page, vma);
3042 setpte:
3043 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3044 
3045 	/* No need to invalidate - it was non-present before */
3046 	update_mmu_cache(vma, vmf->address, vmf->pte);
3047 unlock:
3048 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3049 	return ret;
3050 release:
3051 	mem_cgroup_cancel_charge(page, memcg, false);
3052 	put_page(page);
3053 	goto unlock;
3054 oom_free_page:
3055 	put_page(page);
3056 oom:
3057 	return VM_FAULT_OOM;
3058 }
3059 
3060 /*
3061  * The mmap_sem must have been held on entry, and may have been
3062  * released depending on flags and vma->vm_ops->fault() return value.
3063  * See filemap_fault() and __lock_page_retry().
3064  */
3065 static vm_fault_t __do_fault(struct vm_fault *vmf)
3066 {
3067 	struct vm_area_struct *vma = vmf->vma;
3068 	vm_fault_t ret;
3069 
3070 	/*
3071 	 * Preallocate pte before we take page_lock because this might lead to
3072 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3073 	 *				lock_page(A)
3074 	 *				SetPageWriteback(A)
3075 	 *				unlock_page(A)
3076 	 * lock_page(B)
3077 	 *				lock_page(B)
3078 	 * pte_alloc_pne
3079 	 *   shrink_page_list
3080 	 *     wait_on_page_writeback(A)
3081 	 *				SetPageWriteback(B)
3082 	 *				unlock_page(B)
3083 	 *				# flush A, B to clear the writeback
3084 	 */
3085 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3086 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3087 		if (!vmf->prealloc_pte)
3088 			return VM_FAULT_OOM;
3089 		smp_wmb(); /* See comment in __pte_alloc() */
3090 	}
3091 
3092 	ret = vma->vm_ops->fault(vmf);
3093 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3094 			    VM_FAULT_DONE_COW)))
3095 		return ret;
3096 
3097 	if (unlikely(PageHWPoison(vmf->page))) {
3098 		if (ret & VM_FAULT_LOCKED)
3099 			unlock_page(vmf->page);
3100 		put_page(vmf->page);
3101 		vmf->page = NULL;
3102 		return VM_FAULT_HWPOISON;
3103 	}
3104 
3105 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3106 		lock_page(vmf->page);
3107 	else
3108 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3109 
3110 	return ret;
3111 }
3112 
3113 /*
3114  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3115  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3116  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3117  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3118  */
3119 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3120 {
3121 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3122 }
3123 
3124 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3125 {
3126 	struct vm_area_struct *vma = vmf->vma;
3127 
3128 	if (!pmd_none(*vmf->pmd))
3129 		goto map_pte;
3130 	if (vmf->prealloc_pte) {
3131 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3132 		if (unlikely(!pmd_none(*vmf->pmd))) {
3133 			spin_unlock(vmf->ptl);
3134 			goto map_pte;
3135 		}
3136 
3137 		mm_inc_nr_ptes(vma->vm_mm);
3138 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3139 		spin_unlock(vmf->ptl);
3140 		vmf->prealloc_pte = NULL;
3141 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3142 		return VM_FAULT_OOM;
3143 	}
3144 map_pte:
3145 	/*
3146 	 * If a huge pmd materialized under us just retry later.  Use
3147 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3148 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3149 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3150 	 * running immediately after a huge pmd fault in a different thread of
3151 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3152 	 * All we have to ensure is that it is a regular pmd that we can walk
3153 	 * with pte_offset_map() and we can do that through an atomic read in
3154 	 * C, which is what pmd_trans_unstable() provides.
3155 	 */
3156 	if (pmd_devmap_trans_unstable(vmf->pmd))
3157 		return VM_FAULT_NOPAGE;
3158 
3159 	/*
3160 	 * At this point we know that our vmf->pmd points to a page of ptes
3161 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3162 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3163 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3164 	 * be valid and we will re-check to make sure the vmf->pte isn't
3165 	 * pte_none() under vmf->ptl protection when we return to
3166 	 * alloc_set_pte().
3167 	 */
3168 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3169 			&vmf->ptl);
3170 	return 0;
3171 }
3172 
3173 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3174 static void deposit_prealloc_pte(struct vm_fault *vmf)
3175 {
3176 	struct vm_area_struct *vma = vmf->vma;
3177 
3178 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3179 	/*
3180 	 * We are going to consume the prealloc table,
3181 	 * count that as nr_ptes.
3182 	 */
3183 	mm_inc_nr_ptes(vma->vm_mm);
3184 	vmf->prealloc_pte = NULL;
3185 }
3186 
3187 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3188 {
3189 	struct vm_area_struct *vma = vmf->vma;
3190 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3191 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3192 	pmd_t entry;
3193 	int i;
3194 	vm_fault_t ret;
3195 
3196 	if (!transhuge_vma_suitable(vma, haddr))
3197 		return VM_FAULT_FALLBACK;
3198 
3199 	ret = VM_FAULT_FALLBACK;
3200 	page = compound_head(page);
3201 
3202 	/*
3203 	 * Archs like ppc64 need additonal space to store information
3204 	 * related to pte entry. Use the preallocated table for that.
3205 	 */
3206 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3207 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3208 		if (!vmf->prealloc_pte)
3209 			return VM_FAULT_OOM;
3210 		smp_wmb(); /* See comment in __pte_alloc() */
3211 	}
3212 
3213 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3214 	if (unlikely(!pmd_none(*vmf->pmd)))
3215 		goto out;
3216 
3217 	for (i = 0; i < HPAGE_PMD_NR; i++)
3218 		flush_icache_page(vma, page + i);
3219 
3220 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3221 	if (write)
3222 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3223 
3224 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3225 	page_add_file_rmap(page, true);
3226 	/*
3227 	 * deposit and withdraw with pmd lock held
3228 	 */
3229 	if (arch_needs_pgtable_deposit())
3230 		deposit_prealloc_pte(vmf);
3231 
3232 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3233 
3234 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3235 
3236 	/* fault is handled */
3237 	ret = 0;
3238 	count_vm_event(THP_FILE_MAPPED);
3239 out:
3240 	spin_unlock(vmf->ptl);
3241 	return ret;
3242 }
3243 #else
3244 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3245 {
3246 	BUILD_BUG();
3247 	return 0;
3248 }
3249 #endif
3250 
3251 /**
3252  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3253  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3254  *
3255  * @vmf: fault environment
3256  * @memcg: memcg to charge page (only for private mappings)
3257  * @page: page to map
3258  *
3259  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3260  * return.
3261  *
3262  * Target users are page handler itself and implementations of
3263  * vm_ops->map_pages.
3264  *
3265  * Return: %0 on success, %VM_FAULT_ code in case of error.
3266  */
3267 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3268 		struct page *page)
3269 {
3270 	struct vm_area_struct *vma = vmf->vma;
3271 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3272 	pte_t entry;
3273 	vm_fault_t ret;
3274 
3275 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3276 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3277 		/* THP on COW? */
3278 		VM_BUG_ON_PAGE(memcg, page);
3279 
3280 		ret = do_set_pmd(vmf, page);
3281 		if (ret != VM_FAULT_FALLBACK)
3282 			return ret;
3283 	}
3284 
3285 	if (!vmf->pte) {
3286 		ret = pte_alloc_one_map(vmf);
3287 		if (ret)
3288 			return ret;
3289 	}
3290 
3291 	/* Re-check under ptl */
3292 	if (unlikely(!pte_none(*vmf->pte)))
3293 		return VM_FAULT_NOPAGE;
3294 
3295 	flush_icache_page(vma, page);
3296 	entry = mk_pte(page, vma->vm_page_prot);
3297 	if (write)
3298 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3299 	/* copy-on-write page */
3300 	if (write && !(vma->vm_flags & VM_SHARED)) {
3301 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3302 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3303 		mem_cgroup_commit_charge(page, memcg, false, false);
3304 		lru_cache_add_active_or_unevictable(page, vma);
3305 	} else {
3306 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3307 		page_add_file_rmap(page, false);
3308 	}
3309 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3310 
3311 	/* no need to invalidate: a not-present page won't be cached */
3312 	update_mmu_cache(vma, vmf->address, vmf->pte);
3313 
3314 	return 0;
3315 }
3316 
3317 
3318 /**
3319  * finish_fault - finish page fault once we have prepared the page to fault
3320  *
3321  * @vmf: structure describing the fault
3322  *
3323  * This function handles all that is needed to finish a page fault once the
3324  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3325  * given page, adds reverse page mapping, handles memcg charges and LRU
3326  * addition.
3327  *
3328  * The function expects the page to be locked and on success it consumes a
3329  * reference of a page being mapped (for the PTE which maps it).
3330  *
3331  * Return: %0 on success, %VM_FAULT_ code in case of error.
3332  */
3333 vm_fault_t finish_fault(struct vm_fault *vmf)
3334 {
3335 	struct page *page;
3336 	vm_fault_t ret = 0;
3337 
3338 	/* Did we COW the page? */
3339 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3340 	    !(vmf->vma->vm_flags & VM_SHARED))
3341 		page = vmf->cow_page;
3342 	else
3343 		page = vmf->page;
3344 
3345 	/*
3346 	 * check even for read faults because we might have lost our CoWed
3347 	 * page
3348 	 */
3349 	if (!(vmf->vma->vm_flags & VM_SHARED))
3350 		ret = check_stable_address_space(vmf->vma->vm_mm);
3351 	if (!ret)
3352 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3353 	if (vmf->pte)
3354 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3355 	return ret;
3356 }
3357 
3358 static unsigned long fault_around_bytes __read_mostly =
3359 	rounddown_pow_of_two(65536);
3360 
3361 #ifdef CONFIG_DEBUG_FS
3362 static int fault_around_bytes_get(void *data, u64 *val)
3363 {
3364 	*val = fault_around_bytes;
3365 	return 0;
3366 }
3367 
3368 /*
3369  * fault_around_bytes must be rounded down to the nearest page order as it's
3370  * what do_fault_around() expects to see.
3371  */
3372 static int fault_around_bytes_set(void *data, u64 val)
3373 {
3374 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3375 		return -EINVAL;
3376 	if (val > PAGE_SIZE)
3377 		fault_around_bytes = rounddown_pow_of_two(val);
3378 	else
3379 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3380 	return 0;
3381 }
3382 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3383 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3384 
3385 static int __init fault_around_debugfs(void)
3386 {
3387 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3388 				   &fault_around_bytes_fops);
3389 	return 0;
3390 }
3391 late_initcall(fault_around_debugfs);
3392 #endif
3393 
3394 /*
3395  * do_fault_around() tries to map few pages around the fault address. The hope
3396  * is that the pages will be needed soon and this will lower the number of
3397  * faults to handle.
3398  *
3399  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3400  * not ready to be mapped: not up-to-date, locked, etc.
3401  *
3402  * This function is called with the page table lock taken. In the split ptlock
3403  * case the page table lock only protects only those entries which belong to
3404  * the page table corresponding to the fault address.
3405  *
3406  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3407  * only once.
3408  *
3409  * fault_around_bytes defines how many bytes we'll try to map.
3410  * do_fault_around() expects it to be set to a power of two less than or equal
3411  * to PTRS_PER_PTE.
3412  *
3413  * The virtual address of the area that we map is naturally aligned to
3414  * fault_around_bytes rounded down to the machine page size
3415  * (and therefore to page order).  This way it's easier to guarantee
3416  * that we don't cross page table boundaries.
3417  */
3418 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3419 {
3420 	unsigned long address = vmf->address, nr_pages, mask;
3421 	pgoff_t start_pgoff = vmf->pgoff;
3422 	pgoff_t end_pgoff;
3423 	int off;
3424 	vm_fault_t ret = 0;
3425 
3426 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3427 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3428 
3429 	vmf->address = max(address & mask, vmf->vma->vm_start);
3430 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3431 	start_pgoff -= off;
3432 
3433 	/*
3434 	 *  end_pgoff is either the end of the page table, the end of
3435 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3436 	 */
3437 	end_pgoff = start_pgoff -
3438 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3439 		PTRS_PER_PTE - 1;
3440 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3441 			start_pgoff + nr_pages - 1);
3442 
3443 	if (pmd_none(*vmf->pmd)) {
3444 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3445 		if (!vmf->prealloc_pte)
3446 			goto out;
3447 		smp_wmb(); /* See comment in __pte_alloc() */
3448 	}
3449 
3450 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3451 
3452 	/* Huge page is mapped? Page fault is solved */
3453 	if (pmd_trans_huge(*vmf->pmd)) {
3454 		ret = VM_FAULT_NOPAGE;
3455 		goto out;
3456 	}
3457 
3458 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3459 	if (!vmf->pte)
3460 		goto out;
3461 
3462 	/* check if the page fault is solved */
3463 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3464 	if (!pte_none(*vmf->pte))
3465 		ret = VM_FAULT_NOPAGE;
3466 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3467 out:
3468 	vmf->address = address;
3469 	vmf->pte = NULL;
3470 	return ret;
3471 }
3472 
3473 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3474 {
3475 	struct vm_area_struct *vma = vmf->vma;
3476 	vm_fault_t ret = 0;
3477 
3478 	/*
3479 	 * Let's call ->map_pages() first and use ->fault() as fallback
3480 	 * if page by the offset is not ready to be mapped (cold cache or
3481 	 * something).
3482 	 */
3483 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3484 		ret = do_fault_around(vmf);
3485 		if (ret)
3486 			return ret;
3487 	}
3488 
3489 	ret = __do_fault(vmf);
3490 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3491 		return ret;
3492 
3493 	ret |= finish_fault(vmf);
3494 	unlock_page(vmf->page);
3495 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3496 		put_page(vmf->page);
3497 	return ret;
3498 }
3499 
3500 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3501 {
3502 	struct vm_area_struct *vma = vmf->vma;
3503 	vm_fault_t ret;
3504 
3505 	if (unlikely(anon_vma_prepare(vma)))
3506 		return VM_FAULT_OOM;
3507 
3508 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3509 	if (!vmf->cow_page)
3510 		return VM_FAULT_OOM;
3511 
3512 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3513 				&vmf->memcg, false)) {
3514 		put_page(vmf->cow_page);
3515 		return VM_FAULT_OOM;
3516 	}
3517 
3518 	ret = __do_fault(vmf);
3519 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3520 		goto uncharge_out;
3521 	if (ret & VM_FAULT_DONE_COW)
3522 		return ret;
3523 
3524 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3525 	__SetPageUptodate(vmf->cow_page);
3526 
3527 	ret |= finish_fault(vmf);
3528 	unlock_page(vmf->page);
3529 	put_page(vmf->page);
3530 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3531 		goto uncharge_out;
3532 	return ret;
3533 uncharge_out:
3534 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3535 	put_page(vmf->cow_page);
3536 	return ret;
3537 }
3538 
3539 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3540 {
3541 	struct vm_area_struct *vma = vmf->vma;
3542 	vm_fault_t ret, tmp;
3543 
3544 	ret = __do_fault(vmf);
3545 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3546 		return ret;
3547 
3548 	/*
3549 	 * Check if the backing address space wants to know that the page is
3550 	 * about to become writable
3551 	 */
3552 	if (vma->vm_ops->page_mkwrite) {
3553 		unlock_page(vmf->page);
3554 		tmp = do_page_mkwrite(vmf);
3555 		if (unlikely(!tmp ||
3556 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3557 			put_page(vmf->page);
3558 			return tmp;
3559 		}
3560 	}
3561 
3562 	ret |= finish_fault(vmf);
3563 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3564 					VM_FAULT_RETRY))) {
3565 		unlock_page(vmf->page);
3566 		put_page(vmf->page);
3567 		return ret;
3568 	}
3569 
3570 	fault_dirty_shared_page(vma, vmf->page);
3571 	return ret;
3572 }
3573 
3574 /*
3575  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3576  * but allow concurrent faults).
3577  * The mmap_sem may have been released depending on flags and our
3578  * return value.  See filemap_fault() and __lock_page_or_retry().
3579  * If mmap_sem is released, vma may become invalid (for example
3580  * by other thread calling munmap()).
3581  */
3582 static vm_fault_t do_fault(struct vm_fault *vmf)
3583 {
3584 	struct vm_area_struct *vma = vmf->vma;
3585 	struct mm_struct *vm_mm = vma->vm_mm;
3586 	vm_fault_t ret;
3587 
3588 	/*
3589 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3590 	 */
3591 	if (!vma->vm_ops->fault) {
3592 		/*
3593 		 * If we find a migration pmd entry or a none pmd entry, which
3594 		 * should never happen, return SIGBUS
3595 		 */
3596 		if (unlikely(!pmd_present(*vmf->pmd)))
3597 			ret = VM_FAULT_SIGBUS;
3598 		else {
3599 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3600 						       vmf->pmd,
3601 						       vmf->address,
3602 						       &vmf->ptl);
3603 			/*
3604 			 * Make sure this is not a temporary clearing of pte
3605 			 * by holding ptl and checking again. A R/M/W update
3606 			 * of pte involves: take ptl, clearing the pte so that
3607 			 * we don't have concurrent modification by hardware
3608 			 * followed by an update.
3609 			 */
3610 			if (unlikely(pte_none(*vmf->pte)))
3611 				ret = VM_FAULT_SIGBUS;
3612 			else
3613 				ret = VM_FAULT_NOPAGE;
3614 
3615 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3616 		}
3617 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3618 		ret = do_read_fault(vmf);
3619 	else if (!(vma->vm_flags & VM_SHARED))
3620 		ret = do_cow_fault(vmf);
3621 	else
3622 		ret = do_shared_fault(vmf);
3623 
3624 	/* preallocated pagetable is unused: free it */
3625 	if (vmf->prealloc_pte) {
3626 		pte_free(vm_mm, vmf->prealloc_pte);
3627 		vmf->prealloc_pte = NULL;
3628 	}
3629 	return ret;
3630 }
3631 
3632 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3633 				unsigned long addr, int page_nid,
3634 				int *flags)
3635 {
3636 	get_page(page);
3637 
3638 	count_vm_numa_event(NUMA_HINT_FAULTS);
3639 	if (page_nid == numa_node_id()) {
3640 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3641 		*flags |= TNF_FAULT_LOCAL;
3642 	}
3643 
3644 	return mpol_misplaced(page, vma, addr);
3645 }
3646 
3647 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3648 {
3649 	struct vm_area_struct *vma = vmf->vma;
3650 	struct page *page = NULL;
3651 	int page_nid = NUMA_NO_NODE;
3652 	int last_cpupid;
3653 	int target_nid;
3654 	bool migrated = false;
3655 	pte_t pte, old_pte;
3656 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3657 	int flags = 0;
3658 
3659 	/*
3660 	 * The "pte" at this point cannot be used safely without
3661 	 * validation through pte_unmap_same(). It's of NUMA type but
3662 	 * the pfn may be screwed if the read is non atomic.
3663 	 */
3664 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3665 	spin_lock(vmf->ptl);
3666 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3667 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3668 		goto out;
3669 	}
3670 
3671 	/*
3672 	 * Make it present again, Depending on how arch implementes non
3673 	 * accessible ptes, some can allow access by kernel mode.
3674 	 */
3675 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3676 	pte = pte_modify(old_pte, vma->vm_page_prot);
3677 	pte = pte_mkyoung(pte);
3678 	if (was_writable)
3679 		pte = pte_mkwrite(pte);
3680 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3681 	update_mmu_cache(vma, vmf->address, vmf->pte);
3682 
3683 	page = vm_normal_page(vma, vmf->address, pte);
3684 	if (!page) {
3685 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3686 		return 0;
3687 	}
3688 
3689 	/* TODO: handle PTE-mapped THP */
3690 	if (PageCompound(page)) {
3691 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3692 		return 0;
3693 	}
3694 
3695 	/*
3696 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3697 	 * much anyway since they can be in shared cache state. This misses
3698 	 * the case where a mapping is writable but the process never writes
3699 	 * to it but pte_write gets cleared during protection updates and
3700 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3701 	 * background writeback, dirty balancing and application behaviour.
3702 	 */
3703 	if (!pte_write(pte))
3704 		flags |= TNF_NO_GROUP;
3705 
3706 	/*
3707 	 * Flag if the page is shared between multiple address spaces. This
3708 	 * is later used when determining whether to group tasks together
3709 	 */
3710 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3711 		flags |= TNF_SHARED;
3712 
3713 	last_cpupid = page_cpupid_last(page);
3714 	page_nid = page_to_nid(page);
3715 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3716 			&flags);
3717 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3718 	if (target_nid == NUMA_NO_NODE) {
3719 		put_page(page);
3720 		goto out;
3721 	}
3722 
3723 	/* Migrate to the requested node */
3724 	migrated = migrate_misplaced_page(page, vma, target_nid);
3725 	if (migrated) {
3726 		page_nid = target_nid;
3727 		flags |= TNF_MIGRATED;
3728 	} else
3729 		flags |= TNF_MIGRATE_FAIL;
3730 
3731 out:
3732 	if (page_nid != NUMA_NO_NODE)
3733 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3734 	return 0;
3735 }
3736 
3737 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3738 {
3739 	if (vma_is_anonymous(vmf->vma))
3740 		return do_huge_pmd_anonymous_page(vmf);
3741 	if (vmf->vma->vm_ops->huge_fault)
3742 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3743 	return VM_FAULT_FALLBACK;
3744 }
3745 
3746 /* `inline' is required to avoid gcc 4.1.2 build error */
3747 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3748 {
3749 	if (vma_is_anonymous(vmf->vma))
3750 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3751 	if (vmf->vma->vm_ops->huge_fault)
3752 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3753 
3754 	/* COW handled on pte level: split pmd */
3755 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3756 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3757 
3758 	return VM_FAULT_FALLBACK;
3759 }
3760 
3761 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3762 {
3763 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3764 }
3765 
3766 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3767 {
3768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3769 	/* No support for anonymous transparent PUD pages yet */
3770 	if (vma_is_anonymous(vmf->vma))
3771 		return VM_FAULT_FALLBACK;
3772 	if (vmf->vma->vm_ops->huge_fault)
3773 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3774 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3775 	return VM_FAULT_FALLBACK;
3776 }
3777 
3778 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3779 {
3780 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3781 	/* No support for anonymous transparent PUD pages yet */
3782 	if (vma_is_anonymous(vmf->vma))
3783 		return VM_FAULT_FALLBACK;
3784 	if (vmf->vma->vm_ops->huge_fault)
3785 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3786 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3787 	return VM_FAULT_FALLBACK;
3788 }
3789 
3790 /*
3791  * These routines also need to handle stuff like marking pages dirty
3792  * and/or accessed for architectures that don't do it in hardware (most
3793  * RISC architectures).  The early dirtying is also good on the i386.
3794  *
3795  * There is also a hook called "update_mmu_cache()" that architectures
3796  * with external mmu caches can use to update those (ie the Sparc or
3797  * PowerPC hashed page tables that act as extended TLBs).
3798  *
3799  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3800  * concurrent faults).
3801  *
3802  * The mmap_sem may have been released depending on flags and our return value.
3803  * See filemap_fault() and __lock_page_or_retry().
3804  */
3805 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3806 {
3807 	pte_t entry;
3808 
3809 	if (unlikely(pmd_none(*vmf->pmd))) {
3810 		/*
3811 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3812 		 * want to allocate huge page, and if we expose page table
3813 		 * for an instant, it will be difficult to retract from
3814 		 * concurrent faults and from rmap lookups.
3815 		 */
3816 		vmf->pte = NULL;
3817 	} else {
3818 		/* See comment in pte_alloc_one_map() */
3819 		if (pmd_devmap_trans_unstable(vmf->pmd))
3820 			return 0;
3821 		/*
3822 		 * A regular pmd is established and it can't morph into a huge
3823 		 * pmd from under us anymore at this point because we hold the
3824 		 * mmap_sem read mode and khugepaged takes it in write mode.
3825 		 * So now it's safe to run pte_offset_map().
3826 		 */
3827 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3828 		vmf->orig_pte = *vmf->pte;
3829 
3830 		/*
3831 		 * some architectures can have larger ptes than wordsize,
3832 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3833 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3834 		 * accesses.  The code below just needs a consistent view
3835 		 * for the ifs and we later double check anyway with the
3836 		 * ptl lock held. So here a barrier will do.
3837 		 */
3838 		barrier();
3839 		if (pte_none(vmf->orig_pte)) {
3840 			pte_unmap(vmf->pte);
3841 			vmf->pte = NULL;
3842 		}
3843 	}
3844 
3845 	if (!vmf->pte) {
3846 		if (vma_is_anonymous(vmf->vma))
3847 			return do_anonymous_page(vmf);
3848 		else
3849 			return do_fault(vmf);
3850 	}
3851 
3852 	if (!pte_present(vmf->orig_pte))
3853 		return do_swap_page(vmf);
3854 
3855 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3856 		return do_numa_page(vmf);
3857 
3858 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3859 	spin_lock(vmf->ptl);
3860 	entry = vmf->orig_pte;
3861 	if (unlikely(!pte_same(*vmf->pte, entry)))
3862 		goto unlock;
3863 	if (vmf->flags & FAULT_FLAG_WRITE) {
3864 		if (!pte_write(entry))
3865 			return do_wp_page(vmf);
3866 		entry = pte_mkdirty(entry);
3867 	}
3868 	entry = pte_mkyoung(entry);
3869 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3870 				vmf->flags & FAULT_FLAG_WRITE)) {
3871 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3872 	} else {
3873 		/*
3874 		 * This is needed only for protection faults but the arch code
3875 		 * is not yet telling us if this is a protection fault or not.
3876 		 * This still avoids useless tlb flushes for .text page faults
3877 		 * with threads.
3878 		 */
3879 		if (vmf->flags & FAULT_FLAG_WRITE)
3880 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3881 	}
3882 unlock:
3883 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3884 	return 0;
3885 }
3886 
3887 /*
3888  * By the time we get here, we already hold the mm semaphore
3889  *
3890  * The mmap_sem may have been released depending on flags and our
3891  * return value.  See filemap_fault() and __lock_page_or_retry().
3892  */
3893 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3894 		unsigned long address, unsigned int flags)
3895 {
3896 	struct vm_fault vmf = {
3897 		.vma = vma,
3898 		.address = address & PAGE_MASK,
3899 		.flags = flags,
3900 		.pgoff = linear_page_index(vma, address),
3901 		.gfp_mask = __get_fault_gfp_mask(vma),
3902 	};
3903 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
3904 	struct mm_struct *mm = vma->vm_mm;
3905 	pgd_t *pgd;
3906 	p4d_t *p4d;
3907 	vm_fault_t ret;
3908 
3909 	pgd = pgd_offset(mm, address);
3910 	p4d = p4d_alloc(mm, pgd, address);
3911 	if (!p4d)
3912 		return VM_FAULT_OOM;
3913 
3914 	vmf.pud = pud_alloc(mm, p4d, address);
3915 	if (!vmf.pud)
3916 		return VM_FAULT_OOM;
3917 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3918 		ret = create_huge_pud(&vmf);
3919 		if (!(ret & VM_FAULT_FALLBACK))
3920 			return ret;
3921 	} else {
3922 		pud_t orig_pud = *vmf.pud;
3923 
3924 		barrier();
3925 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3926 
3927 			/* NUMA case for anonymous PUDs would go here */
3928 
3929 			if (dirty && !pud_write(orig_pud)) {
3930 				ret = wp_huge_pud(&vmf, orig_pud);
3931 				if (!(ret & VM_FAULT_FALLBACK))
3932 					return ret;
3933 			} else {
3934 				huge_pud_set_accessed(&vmf, orig_pud);
3935 				return 0;
3936 			}
3937 		}
3938 	}
3939 
3940 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3941 	if (!vmf.pmd)
3942 		return VM_FAULT_OOM;
3943 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3944 		ret = create_huge_pmd(&vmf);
3945 		if (!(ret & VM_FAULT_FALLBACK))
3946 			return ret;
3947 	} else {
3948 		pmd_t orig_pmd = *vmf.pmd;
3949 
3950 		barrier();
3951 		if (unlikely(is_swap_pmd(orig_pmd))) {
3952 			VM_BUG_ON(thp_migration_supported() &&
3953 					  !is_pmd_migration_entry(orig_pmd));
3954 			if (is_pmd_migration_entry(orig_pmd))
3955 				pmd_migration_entry_wait(mm, vmf.pmd);
3956 			return 0;
3957 		}
3958 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3959 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3960 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3961 
3962 			if (dirty && !pmd_write(orig_pmd)) {
3963 				ret = wp_huge_pmd(&vmf, orig_pmd);
3964 				if (!(ret & VM_FAULT_FALLBACK))
3965 					return ret;
3966 			} else {
3967 				huge_pmd_set_accessed(&vmf, orig_pmd);
3968 				return 0;
3969 			}
3970 		}
3971 	}
3972 
3973 	return handle_pte_fault(&vmf);
3974 }
3975 
3976 /*
3977  * By the time we get here, we already hold the mm semaphore
3978  *
3979  * The mmap_sem may have been released depending on flags and our
3980  * return value.  See filemap_fault() and __lock_page_or_retry().
3981  */
3982 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3983 		unsigned int flags)
3984 {
3985 	vm_fault_t ret;
3986 
3987 	__set_current_state(TASK_RUNNING);
3988 
3989 	count_vm_event(PGFAULT);
3990 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
3991 
3992 	/* do counter updates before entering really critical section. */
3993 	check_sync_rss_stat(current);
3994 
3995 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3996 					    flags & FAULT_FLAG_INSTRUCTION,
3997 					    flags & FAULT_FLAG_REMOTE))
3998 		return VM_FAULT_SIGSEGV;
3999 
4000 	/*
4001 	 * Enable the memcg OOM handling for faults triggered in user
4002 	 * space.  Kernel faults are handled more gracefully.
4003 	 */
4004 	if (flags & FAULT_FLAG_USER)
4005 		mem_cgroup_enter_user_fault();
4006 
4007 	if (unlikely(is_vm_hugetlb_page(vma)))
4008 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4009 	else
4010 		ret = __handle_mm_fault(vma, address, flags);
4011 
4012 	if (flags & FAULT_FLAG_USER) {
4013 		mem_cgroup_exit_user_fault();
4014 		/*
4015 		 * The task may have entered a memcg OOM situation but
4016 		 * if the allocation error was handled gracefully (no
4017 		 * VM_FAULT_OOM), there is no need to kill anything.
4018 		 * Just clean up the OOM state peacefully.
4019 		 */
4020 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4021 			mem_cgroup_oom_synchronize(false);
4022 	}
4023 
4024 	return ret;
4025 }
4026 EXPORT_SYMBOL_GPL(handle_mm_fault);
4027 
4028 #ifndef __PAGETABLE_P4D_FOLDED
4029 /*
4030  * Allocate p4d page table.
4031  * We've already handled the fast-path in-line.
4032  */
4033 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4034 {
4035 	p4d_t *new = p4d_alloc_one(mm, address);
4036 	if (!new)
4037 		return -ENOMEM;
4038 
4039 	smp_wmb(); /* See comment in __pte_alloc */
4040 
4041 	spin_lock(&mm->page_table_lock);
4042 	if (pgd_present(*pgd))		/* Another has populated it */
4043 		p4d_free(mm, new);
4044 	else
4045 		pgd_populate(mm, pgd, new);
4046 	spin_unlock(&mm->page_table_lock);
4047 	return 0;
4048 }
4049 #endif /* __PAGETABLE_P4D_FOLDED */
4050 
4051 #ifndef __PAGETABLE_PUD_FOLDED
4052 /*
4053  * Allocate page upper directory.
4054  * We've already handled the fast-path in-line.
4055  */
4056 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4057 {
4058 	pud_t *new = pud_alloc_one(mm, address);
4059 	if (!new)
4060 		return -ENOMEM;
4061 
4062 	smp_wmb(); /* See comment in __pte_alloc */
4063 
4064 	spin_lock(&mm->page_table_lock);
4065 #ifndef __ARCH_HAS_5LEVEL_HACK
4066 	if (!p4d_present(*p4d)) {
4067 		mm_inc_nr_puds(mm);
4068 		p4d_populate(mm, p4d, new);
4069 	} else	/* Another has populated it */
4070 		pud_free(mm, new);
4071 #else
4072 	if (!pgd_present(*p4d)) {
4073 		mm_inc_nr_puds(mm);
4074 		pgd_populate(mm, p4d, new);
4075 	} else	/* Another has populated it */
4076 		pud_free(mm, new);
4077 #endif /* __ARCH_HAS_5LEVEL_HACK */
4078 	spin_unlock(&mm->page_table_lock);
4079 	return 0;
4080 }
4081 #endif /* __PAGETABLE_PUD_FOLDED */
4082 
4083 #ifndef __PAGETABLE_PMD_FOLDED
4084 /*
4085  * Allocate page middle directory.
4086  * We've already handled the fast-path in-line.
4087  */
4088 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4089 {
4090 	spinlock_t *ptl;
4091 	pmd_t *new = pmd_alloc_one(mm, address);
4092 	if (!new)
4093 		return -ENOMEM;
4094 
4095 	smp_wmb(); /* See comment in __pte_alloc */
4096 
4097 	ptl = pud_lock(mm, pud);
4098 #ifndef __ARCH_HAS_4LEVEL_HACK
4099 	if (!pud_present(*pud)) {
4100 		mm_inc_nr_pmds(mm);
4101 		pud_populate(mm, pud, new);
4102 	} else	/* Another has populated it */
4103 		pmd_free(mm, new);
4104 #else
4105 	if (!pgd_present(*pud)) {
4106 		mm_inc_nr_pmds(mm);
4107 		pgd_populate(mm, pud, new);
4108 	} else /* Another has populated it */
4109 		pmd_free(mm, new);
4110 #endif /* __ARCH_HAS_4LEVEL_HACK */
4111 	spin_unlock(ptl);
4112 	return 0;
4113 }
4114 #endif /* __PAGETABLE_PMD_FOLDED */
4115 
4116 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4117 			    struct mmu_notifier_range *range,
4118 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4119 {
4120 	pgd_t *pgd;
4121 	p4d_t *p4d;
4122 	pud_t *pud;
4123 	pmd_t *pmd;
4124 	pte_t *ptep;
4125 
4126 	pgd = pgd_offset(mm, address);
4127 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4128 		goto out;
4129 
4130 	p4d = p4d_offset(pgd, address);
4131 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4132 		goto out;
4133 
4134 	pud = pud_offset(p4d, address);
4135 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4136 		goto out;
4137 
4138 	pmd = pmd_offset(pud, address);
4139 	VM_BUG_ON(pmd_trans_huge(*pmd));
4140 
4141 	if (pmd_huge(*pmd)) {
4142 		if (!pmdpp)
4143 			goto out;
4144 
4145 		if (range) {
4146 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4147 						NULL, mm, address & PMD_MASK,
4148 						(address & PMD_MASK) + PMD_SIZE);
4149 			mmu_notifier_invalidate_range_start(range);
4150 		}
4151 		*ptlp = pmd_lock(mm, pmd);
4152 		if (pmd_huge(*pmd)) {
4153 			*pmdpp = pmd;
4154 			return 0;
4155 		}
4156 		spin_unlock(*ptlp);
4157 		if (range)
4158 			mmu_notifier_invalidate_range_end(range);
4159 	}
4160 
4161 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4162 		goto out;
4163 
4164 	if (range) {
4165 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4166 					address & PAGE_MASK,
4167 					(address & PAGE_MASK) + PAGE_SIZE);
4168 		mmu_notifier_invalidate_range_start(range);
4169 	}
4170 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4171 	if (!pte_present(*ptep))
4172 		goto unlock;
4173 	*ptepp = ptep;
4174 	return 0;
4175 unlock:
4176 	pte_unmap_unlock(ptep, *ptlp);
4177 	if (range)
4178 		mmu_notifier_invalidate_range_end(range);
4179 out:
4180 	return -EINVAL;
4181 }
4182 
4183 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4184 			     pte_t **ptepp, spinlock_t **ptlp)
4185 {
4186 	int res;
4187 
4188 	/* (void) is needed to make gcc happy */
4189 	(void) __cond_lock(*ptlp,
4190 			   !(res = __follow_pte_pmd(mm, address, NULL,
4191 						    ptepp, NULL, ptlp)));
4192 	return res;
4193 }
4194 
4195 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4196 		   struct mmu_notifier_range *range,
4197 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4198 {
4199 	int res;
4200 
4201 	/* (void) is needed to make gcc happy */
4202 	(void) __cond_lock(*ptlp,
4203 			   !(res = __follow_pte_pmd(mm, address, range,
4204 						    ptepp, pmdpp, ptlp)));
4205 	return res;
4206 }
4207 EXPORT_SYMBOL(follow_pte_pmd);
4208 
4209 /**
4210  * follow_pfn - look up PFN at a user virtual address
4211  * @vma: memory mapping
4212  * @address: user virtual address
4213  * @pfn: location to store found PFN
4214  *
4215  * Only IO mappings and raw PFN mappings are allowed.
4216  *
4217  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4218  */
4219 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4220 	unsigned long *pfn)
4221 {
4222 	int ret = -EINVAL;
4223 	spinlock_t *ptl;
4224 	pte_t *ptep;
4225 
4226 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4227 		return ret;
4228 
4229 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4230 	if (ret)
4231 		return ret;
4232 	*pfn = pte_pfn(*ptep);
4233 	pte_unmap_unlock(ptep, ptl);
4234 	return 0;
4235 }
4236 EXPORT_SYMBOL(follow_pfn);
4237 
4238 #ifdef CONFIG_HAVE_IOREMAP_PROT
4239 int follow_phys(struct vm_area_struct *vma,
4240 		unsigned long address, unsigned int flags,
4241 		unsigned long *prot, resource_size_t *phys)
4242 {
4243 	int ret = -EINVAL;
4244 	pte_t *ptep, pte;
4245 	spinlock_t *ptl;
4246 
4247 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4248 		goto out;
4249 
4250 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4251 		goto out;
4252 	pte = *ptep;
4253 
4254 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4255 		goto unlock;
4256 
4257 	*prot = pgprot_val(pte_pgprot(pte));
4258 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4259 
4260 	ret = 0;
4261 unlock:
4262 	pte_unmap_unlock(ptep, ptl);
4263 out:
4264 	return ret;
4265 }
4266 
4267 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4268 			void *buf, int len, int write)
4269 {
4270 	resource_size_t phys_addr;
4271 	unsigned long prot = 0;
4272 	void __iomem *maddr;
4273 	int offset = addr & (PAGE_SIZE-1);
4274 
4275 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4276 		return -EINVAL;
4277 
4278 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4279 	if (!maddr)
4280 		return -ENOMEM;
4281 
4282 	if (write)
4283 		memcpy_toio(maddr + offset, buf, len);
4284 	else
4285 		memcpy_fromio(buf, maddr + offset, len);
4286 	iounmap(maddr);
4287 
4288 	return len;
4289 }
4290 EXPORT_SYMBOL_GPL(generic_access_phys);
4291 #endif
4292 
4293 /*
4294  * Access another process' address space as given in mm.  If non-NULL, use the
4295  * given task for page fault accounting.
4296  */
4297 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4298 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4299 {
4300 	struct vm_area_struct *vma;
4301 	void *old_buf = buf;
4302 	int write = gup_flags & FOLL_WRITE;
4303 
4304 	if (down_read_killable(&mm->mmap_sem))
4305 		return 0;
4306 
4307 	/* ignore errors, just check how much was successfully transferred */
4308 	while (len) {
4309 		int bytes, ret, offset;
4310 		void *maddr;
4311 		struct page *page = NULL;
4312 
4313 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4314 				gup_flags, &page, &vma, NULL);
4315 		if (ret <= 0) {
4316 #ifndef CONFIG_HAVE_IOREMAP_PROT
4317 			break;
4318 #else
4319 			/*
4320 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4321 			 * we can access using slightly different code.
4322 			 */
4323 			vma = find_vma(mm, addr);
4324 			if (!vma || vma->vm_start > addr)
4325 				break;
4326 			if (vma->vm_ops && vma->vm_ops->access)
4327 				ret = vma->vm_ops->access(vma, addr, buf,
4328 							  len, write);
4329 			if (ret <= 0)
4330 				break;
4331 			bytes = ret;
4332 #endif
4333 		} else {
4334 			bytes = len;
4335 			offset = addr & (PAGE_SIZE-1);
4336 			if (bytes > PAGE_SIZE-offset)
4337 				bytes = PAGE_SIZE-offset;
4338 
4339 			maddr = kmap(page);
4340 			if (write) {
4341 				copy_to_user_page(vma, page, addr,
4342 						  maddr + offset, buf, bytes);
4343 				set_page_dirty_lock(page);
4344 			} else {
4345 				copy_from_user_page(vma, page, addr,
4346 						    buf, maddr + offset, bytes);
4347 			}
4348 			kunmap(page);
4349 			put_page(page);
4350 		}
4351 		len -= bytes;
4352 		buf += bytes;
4353 		addr += bytes;
4354 	}
4355 	up_read(&mm->mmap_sem);
4356 
4357 	return buf - old_buf;
4358 }
4359 
4360 /**
4361  * access_remote_vm - access another process' address space
4362  * @mm:		the mm_struct of the target address space
4363  * @addr:	start address to access
4364  * @buf:	source or destination buffer
4365  * @len:	number of bytes to transfer
4366  * @gup_flags:	flags modifying lookup behaviour
4367  *
4368  * The caller must hold a reference on @mm.
4369  *
4370  * Return: number of bytes copied from source to destination.
4371  */
4372 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4373 		void *buf, int len, unsigned int gup_flags)
4374 {
4375 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4376 }
4377 
4378 /*
4379  * Access another process' address space.
4380  * Source/target buffer must be kernel space,
4381  * Do not walk the page table directly, use get_user_pages
4382  */
4383 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4384 		void *buf, int len, unsigned int gup_flags)
4385 {
4386 	struct mm_struct *mm;
4387 	int ret;
4388 
4389 	mm = get_task_mm(tsk);
4390 	if (!mm)
4391 		return 0;
4392 
4393 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4394 
4395 	mmput(mm);
4396 
4397 	return ret;
4398 }
4399 EXPORT_SYMBOL_GPL(access_process_vm);
4400 
4401 /*
4402  * Print the name of a VMA.
4403  */
4404 void print_vma_addr(char *prefix, unsigned long ip)
4405 {
4406 	struct mm_struct *mm = current->mm;
4407 	struct vm_area_struct *vma;
4408 
4409 	/*
4410 	 * we might be running from an atomic context so we cannot sleep
4411 	 */
4412 	if (!down_read_trylock(&mm->mmap_sem))
4413 		return;
4414 
4415 	vma = find_vma(mm, ip);
4416 	if (vma && vma->vm_file) {
4417 		struct file *f = vma->vm_file;
4418 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4419 		if (buf) {
4420 			char *p;
4421 
4422 			p = file_path(f, buf, PAGE_SIZE);
4423 			if (IS_ERR(p))
4424 				p = "?";
4425 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4426 					vma->vm_start,
4427 					vma->vm_end - vma->vm_start);
4428 			free_page((unsigned long)buf);
4429 		}
4430 	}
4431 	up_read(&mm->mmap_sem);
4432 }
4433 
4434 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4435 void __might_fault(const char *file, int line)
4436 {
4437 	/*
4438 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4439 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4440 	 * get paged out, therefore we'll never actually fault, and the
4441 	 * below annotations will generate false positives.
4442 	 */
4443 	if (uaccess_kernel())
4444 		return;
4445 	if (pagefault_disabled())
4446 		return;
4447 	__might_sleep(file, line, 0);
4448 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4449 	if (current->mm)
4450 		might_lock_read(&current->mm->mmap_sem);
4451 #endif
4452 }
4453 EXPORT_SYMBOL(__might_fault);
4454 #endif
4455 
4456 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4457 /*
4458  * Process all subpages of the specified huge page with the specified
4459  * operation.  The target subpage will be processed last to keep its
4460  * cache lines hot.
4461  */
4462 static inline void process_huge_page(
4463 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4464 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4465 	void *arg)
4466 {
4467 	int i, n, base, l;
4468 	unsigned long addr = addr_hint &
4469 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4470 
4471 	/* Process target subpage last to keep its cache lines hot */
4472 	might_sleep();
4473 	n = (addr_hint - addr) / PAGE_SIZE;
4474 	if (2 * n <= pages_per_huge_page) {
4475 		/* If target subpage in first half of huge page */
4476 		base = 0;
4477 		l = n;
4478 		/* Process subpages at the end of huge page */
4479 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4480 			cond_resched();
4481 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4482 		}
4483 	} else {
4484 		/* If target subpage in second half of huge page */
4485 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4486 		l = pages_per_huge_page - n;
4487 		/* Process subpages at the begin of huge page */
4488 		for (i = 0; i < base; i++) {
4489 			cond_resched();
4490 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4491 		}
4492 	}
4493 	/*
4494 	 * Process remaining subpages in left-right-left-right pattern
4495 	 * towards the target subpage
4496 	 */
4497 	for (i = 0; i < l; i++) {
4498 		int left_idx = base + i;
4499 		int right_idx = base + 2 * l - 1 - i;
4500 
4501 		cond_resched();
4502 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4503 		cond_resched();
4504 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4505 	}
4506 }
4507 
4508 static void clear_gigantic_page(struct page *page,
4509 				unsigned long addr,
4510 				unsigned int pages_per_huge_page)
4511 {
4512 	int i;
4513 	struct page *p = page;
4514 
4515 	might_sleep();
4516 	for (i = 0; i < pages_per_huge_page;
4517 	     i++, p = mem_map_next(p, page, i)) {
4518 		cond_resched();
4519 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4520 	}
4521 }
4522 
4523 static void clear_subpage(unsigned long addr, int idx, void *arg)
4524 {
4525 	struct page *page = arg;
4526 
4527 	clear_user_highpage(page + idx, addr);
4528 }
4529 
4530 void clear_huge_page(struct page *page,
4531 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4532 {
4533 	unsigned long addr = addr_hint &
4534 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4535 
4536 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4537 		clear_gigantic_page(page, addr, pages_per_huge_page);
4538 		return;
4539 	}
4540 
4541 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4542 }
4543 
4544 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4545 				    unsigned long addr,
4546 				    struct vm_area_struct *vma,
4547 				    unsigned int pages_per_huge_page)
4548 {
4549 	int i;
4550 	struct page *dst_base = dst;
4551 	struct page *src_base = src;
4552 
4553 	for (i = 0; i < pages_per_huge_page; ) {
4554 		cond_resched();
4555 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4556 
4557 		i++;
4558 		dst = mem_map_next(dst, dst_base, i);
4559 		src = mem_map_next(src, src_base, i);
4560 	}
4561 }
4562 
4563 struct copy_subpage_arg {
4564 	struct page *dst;
4565 	struct page *src;
4566 	struct vm_area_struct *vma;
4567 };
4568 
4569 static void copy_subpage(unsigned long addr, int idx, void *arg)
4570 {
4571 	struct copy_subpage_arg *copy_arg = arg;
4572 
4573 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4574 			   addr, copy_arg->vma);
4575 }
4576 
4577 void copy_user_huge_page(struct page *dst, struct page *src,
4578 			 unsigned long addr_hint, struct vm_area_struct *vma,
4579 			 unsigned int pages_per_huge_page)
4580 {
4581 	unsigned long addr = addr_hint &
4582 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4583 	struct copy_subpage_arg arg = {
4584 		.dst = dst,
4585 		.src = src,
4586 		.vma = vma,
4587 	};
4588 
4589 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4590 		copy_user_gigantic_page(dst, src, addr, vma,
4591 					pages_per_huge_page);
4592 		return;
4593 	}
4594 
4595 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4596 }
4597 
4598 long copy_huge_page_from_user(struct page *dst_page,
4599 				const void __user *usr_src,
4600 				unsigned int pages_per_huge_page,
4601 				bool allow_pagefault)
4602 {
4603 	void *src = (void *)usr_src;
4604 	void *page_kaddr;
4605 	unsigned long i, rc = 0;
4606 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4607 
4608 	for (i = 0; i < pages_per_huge_page; i++) {
4609 		if (allow_pagefault)
4610 			page_kaddr = kmap(dst_page + i);
4611 		else
4612 			page_kaddr = kmap_atomic(dst_page + i);
4613 		rc = copy_from_user(page_kaddr,
4614 				(const void __user *)(src + i * PAGE_SIZE),
4615 				PAGE_SIZE);
4616 		if (allow_pagefault)
4617 			kunmap(dst_page + i);
4618 		else
4619 			kunmap_atomic(page_kaddr);
4620 
4621 		ret_val -= (PAGE_SIZE - rc);
4622 		if (rc)
4623 			break;
4624 
4625 		cond_resched();
4626 	}
4627 	return ret_val;
4628 }
4629 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4630 
4631 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4632 
4633 static struct kmem_cache *page_ptl_cachep;
4634 
4635 void __init ptlock_cache_init(void)
4636 {
4637 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4638 			SLAB_PANIC, NULL);
4639 }
4640 
4641 bool ptlock_alloc(struct page *page)
4642 {
4643 	spinlock_t *ptl;
4644 
4645 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4646 	if (!ptl)
4647 		return false;
4648 	page->ptl = ptl;
4649 	return true;
4650 }
4651 
4652 void ptlock_free(struct page *page)
4653 {
4654 	kmem_cache_free(page_ptl_cachep, page->ptl);
4655 }
4656 #endif
4657