xref: /linux/mm/memory.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 
2 // SPDX-License-Identifier: GPL-2.0-only
3 /*
4  *  linux/mm/memory.c
5  *
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  */
8 
9 /*
10  * demand-loading started 01.12.91 - seems it is high on the list of
11  * things wanted, and it should be easy to implement. - Linus
12  */
13 
14 /*
15  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16  * pages started 02.12.91, seems to work. - Linus.
17  *
18  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19  * would have taken more than the 6M I have free, but it worked well as
20  * far as I could see.
21  *
22  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23  */
24 
25 /*
26  * Real VM (paging to/from disk) started 18.12.91. Much more work and
27  * thought has to go into this. Oh, well..
28  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
29  *		Found it. Everything seems to work now.
30  * 20.12.91  -  Ok, making the swap-device changeable like the root.
31  */
32 
33 /*
34  * 05.04.94  -  Multi-page memory management added for v1.1.
35  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
36  *
37  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
38  *		(Gerhard.Wichert@pdb.siemens.de)
39  *
40  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41  */
42 
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/writeback.h>
64 #include <linux/memcontrol.h>
65 #include <linux/mmu_notifier.h>
66 #include <linux/swapops.h>
67 #include <linux/elf.h>
68 #include <linux/gfp.h>
69 #include <linux/migrate.h>
70 #include <linux/string.h>
71 #include <linux/memory-tiers.h>
72 #include <linux/debugfs.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/dax.h>
75 #include <linux/oom.h>
76 #include <linux/numa.h>
77 #include <linux/perf_event.h>
78 #include <linux/ptrace.h>
79 #include <linux/vmalloc.h>
80 #include <linux/sched/sysctl.h>
81 
82 #include <trace/events/kmem.h>
83 
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90 
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94 
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98 
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 	if (!userfaultfd_wp(vmf->vma))
118 		return false;
119 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
120 		return false;
121 
122 	return pte_marker_uffd_wp(vmf->orig_pte);
123 }
124 
125 /*
126  * A number of key systems in x86 including ioremap() rely on the assumption
127  * that high_memory defines the upper bound on direct map memory, then end
128  * of ZONE_NORMAL.
129  */
130 void *high_memory;
131 EXPORT_SYMBOL(high_memory);
132 
133 /*
134  * Randomize the address space (stacks, mmaps, brk, etc.).
135  *
136  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137  *   as ancient (libc5 based) binaries can segfault. )
138  */
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
141 					1;
142 #else
143 					2;
144 #endif
145 
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149 	/*
150 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 	 * some architectures, even if it's performed in hardware. By
152 	 * default, "false" means prefaulted entries will be 'young'.
153 	 */
154 	return false;
155 }
156 #endif
157 
158 static int __init disable_randmaps(char *s)
159 {
160 	randomize_va_space = 0;
161 	return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164 
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167 
168 unsigned long highest_memmap_pfn __read_mostly;
169 
170 /*
171  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172  */
173 static int __init init_zero_pfn(void)
174 {
175 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 	return 0;
177 }
178 early_initcall(init_zero_pfn);
179 
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182 	trace_rss_stat(mm, member);
183 }
184 
185 /*
186  * Note: this doesn't free the actual pages themselves. That
187  * has been handled earlier when unmapping all the memory regions.
188  */
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 			   unsigned long addr)
191 {
192 	pgtable_t token = pmd_pgtable(*pmd);
193 	pmd_clear(pmd);
194 	pte_free_tlb(tlb, token, addr);
195 	mm_dec_nr_ptes(tlb->mm);
196 }
197 
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 				unsigned long addr, unsigned long end,
200 				unsigned long floor, unsigned long ceiling)
201 {
202 	pmd_t *pmd;
203 	unsigned long next;
204 	unsigned long start;
205 
206 	start = addr;
207 	pmd = pmd_offset(pud, addr);
208 	do {
209 		next = pmd_addr_end(addr, end);
210 		if (pmd_none_or_clear_bad(pmd))
211 			continue;
212 		free_pte_range(tlb, pmd, addr);
213 	} while (pmd++, addr = next, addr != end);
214 
215 	start &= PUD_MASK;
216 	if (start < floor)
217 		return;
218 	if (ceiling) {
219 		ceiling &= PUD_MASK;
220 		if (!ceiling)
221 			return;
222 	}
223 	if (end - 1 > ceiling - 1)
224 		return;
225 
226 	pmd = pmd_offset(pud, start);
227 	pud_clear(pud);
228 	pmd_free_tlb(tlb, pmd, start);
229 	mm_dec_nr_pmds(tlb->mm);
230 }
231 
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 				unsigned long addr, unsigned long end,
234 				unsigned long floor, unsigned long ceiling)
235 {
236 	pud_t *pud;
237 	unsigned long next;
238 	unsigned long start;
239 
240 	start = addr;
241 	pud = pud_offset(p4d, addr);
242 	do {
243 		next = pud_addr_end(addr, end);
244 		if (pud_none_or_clear_bad(pud))
245 			continue;
246 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 	} while (pud++, addr = next, addr != end);
248 
249 	start &= P4D_MASK;
250 	if (start < floor)
251 		return;
252 	if (ceiling) {
253 		ceiling &= P4D_MASK;
254 		if (!ceiling)
255 			return;
256 	}
257 	if (end - 1 > ceiling - 1)
258 		return;
259 
260 	pud = pud_offset(p4d, start);
261 	p4d_clear(p4d);
262 	pud_free_tlb(tlb, pud, start);
263 	mm_dec_nr_puds(tlb->mm);
264 }
265 
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 				unsigned long addr, unsigned long end,
268 				unsigned long floor, unsigned long ceiling)
269 {
270 	p4d_t *p4d;
271 	unsigned long next;
272 	unsigned long start;
273 
274 	start = addr;
275 	p4d = p4d_offset(pgd, addr);
276 	do {
277 		next = p4d_addr_end(addr, end);
278 		if (p4d_none_or_clear_bad(p4d))
279 			continue;
280 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 	} while (p4d++, addr = next, addr != end);
282 
283 	start &= PGDIR_MASK;
284 	if (start < floor)
285 		return;
286 	if (ceiling) {
287 		ceiling &= PGDIR_MASK;
288 		if (!ceiling)
289 			return;
290 	}
291 	if (end - 1 > ceiling - 1)
292 		return;
293 
294 	p4d = p4d_offset(pgd, start);
295 	pgd_clear(pgd);
296 	p4d_free_tlb(tlb, p4d, start);
297 }
298 
299 /*
300  * This function frees user-level page tables of a process.
301  */
302 void free_pgd_range(struct mmu_gather *tlb,
303 			unsigned long addr, unsigned long end,
304 			unsigned long floor, unsigned long ceiling)
305 {
306 	pgd_t *pgd;
307 	unsigned long next;
308 
309 	/*
310 	 * The next few lines have given us lots of grief...
311 	 *
312 	 * Why are we testing PMD* at this top level?  Because often
313 	 * there will be no work to do at all, and we'd prefer not to
314 	 * go all the way down to the bottom just to discover that.
315 	 *
316 	 * Why all these "- 1"s?  Because 0 represents both the bottom
317 	 * of the address space and the top of it (using -1 for the
318 	 * top wouldn't help much: the masks would do the wrong thing).
319 	 * The rule is that addr 0 and floor 0 refer to the bottom of
320 	 * the address space, but end 0 and ceiling 0 refer to the top
321 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 	 * that end 0 case should be mythical).
323 	 *
324 	 * Wherever addr is brought up or ceiling brought down, we must
325 	 * be careful to reject "the opposite 0" before it confuses the
326 	 * subsequent tests.  But what about where end is brought down
327 	 * by PMD_SIZE below? no, end can't go down to 0 there.
328 	 *
329 	 * Whereas we round start (addr) and ceiling down, by different
330 	 * masks at different levels, in order to test whether a table
331 	 * now has no other vmas using it, so can be freed, we don't
332 	 * bother to round floor or end up - the tests don't need that.
333 	 */
334 
335 	addr &= PMD_MASK;
336 	if (addr < floor) {
337 		addr += PMD_SIZE;
338 		if (!addr)
339 			return;
340 	}
341 	if (ceiling) {
342 		ceiling &= PMD_MASK;
343 		if (!ceiling)
344 			return;
345 	}
346 	if (end - 1 > ceiling - 1)
347 		end -= PMD_SIZE;
348 	if (addr > end - 1)
349 		return;
350 	/*
351 	 * We add page table cache pages with PAGE_SIZE,
352 	 * (see pte_free_tlb()), flush the tlb if we need
353 	 */
354 	tlb_change_page_size(tlb, PAGE_SIZE);
355 	pgd = pgd_offset(tlb->mm, addr);
356 	do {
357 		next = pgd_addr_end(addr, end);
358 		if (pgd_none_or_clear_bad(pgd))
359 			continue;
360 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 	} while (pgd++, addr = next, addr != end);
362 }
363 
364 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
365 		   struct vm_area_struct *vma, unsigned long floor,
366 		   unsigned long ceiling, bool mm_wr_locked)
367 {
368 	struct unlink_vma_file_batch vb;
369 
370 	do {
371 		unsigned long addr = vma->vm_start;
372 		struct vm_area_struct *next;
373 
374 		/*
375 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376 		 * be 0.  This will underflow and is okay.
377 		 */
378 		next = mas_find(mas, ceiling - 1);
379 		if (unlikely(xa_is_zero(next)))
380 			next = NULL;
381 
382 		/*
383 		 * Hide vma from rmap and truncate_pagecache before freeing
384 		 * pgtables
385 		 */
386 		if (mm_wr_locked)
387 			vma_start_write(vma);
388 		unlink_anon_vmas(vma);
389 
390 		if (is_vm_hugetlb_page(vma)) {
391 			unlink_file_vma(vma);
392 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
393 				floor, next ? next->vm_start : ceiling);
394 		} else {
395 			unlink_file_vma_batch_init(&vb);
396 			unlink_file_vma_batch_add(&vb, vma);
397 
398 			/*
399 			 * Optimization: gather nearby vmas into one call down
400 			 */
401 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
402 			       && !is_vm_hugetlb_page(next)) {
403 				vma = next;
404 				next = mas_find(mas, ceiling - 1);
405 				if (unlikely(xa_is_zero(next)))
406 					next = NULL;
407 				if (mm_wr_locked)
408 					vma_start_write(vma);
409 				unlink_anon_vmas(vma);
410 				unlink_file_vma_batch_add(&vb, vma);
411 			}
412 			unlink_file_vma_batch_final(&vb);
413 			free_pgd_range(tlb, addr, vma->vm_end,
414 				floor, next ? next->vm_start : ceiling);
415 		}
416 		vma = next;
417 	} while (vma);
418 }
419 
420 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
421 {
422 	spinlock_t *ptl = pmd_lock(mm, pmd);
423 
424 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
425 		mm_inc_nr_ptes(mm);
426 		/*
427 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
428 		 * visible before the pte is made visible to other CPUs by being
429 		 * put into page tables.
430 		 *
431 		 * The other side of the story is the pointer chasing in the page
432 		 * table walking code (when walking the page table without locking;
433 		 * ie. most of the time). Fortunately, these data accesses consist
434 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
435 		 * being the notable exception) will already guarantee loads are
436 		 * seen in-order. See the alpha page table accessors for the
437 		 * smp_rmb() barriers in page table walking code.
438 		 */
439 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
440 		pmd_populate(mm, pmd, *pte);
441 		*pte = NULL;
442 	}
443 	spin_unlock(ptl);
444 }
445 
446 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
447 {
448 	pgtable_t new = pte_alloc_one(mm);
449 	if (!new)
450 		return -ENOMEM;
451 
452 	pmd_install(mm, pmd, &new);
453 	if (new)
454 		pte_free(mm, new);
455 	return 0;
456 }
457 
458 int __pte_alloc_kernel(pmd_t *pmd)
459 {
460 	pte_t *new = pte_alloc_one_kernel(&init_mm);
461 	if (!new)
462 		return -ENOMEM;
463 
464 	spin_lock(&init_mm.page_table_lock);
465 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
466 		smp_wmb(); /* See comment in pmd_install() */
467 		pmd_populate_kernel(&init_mm, pmd, new);
468 		new = NULL;
469 	}
470 	spin_unlock(&init_mm.page_table_lock);
471 	if (new)
472 		pte_free_kernel(&init_mm, new);
473 	return 0;
474 }
475 
476 static inline void init_rss_vec(int *rss)
477 {
478 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480 
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483 	int i;
484 
485 	for (i = 0; i < NR_MM_COUNTERS; i++)
486 		if (rss[i])
487 			add_mm_counter(mm, i, rss[i]);
488 }
489 
490 /*
491  * This function is called to print an error when a bad pte
492  * is found. For example, we might have a PFN-mapped pte in
493  * a region that doesn't allow it.
494  *
495  * The calling function must still handle the error.
496  */
497 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
498 			  pte_t pte, struct page *page)
499 {
500 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
501 	p4d_t *p4d = p4d_offset(pgd, addr);
502 	pud_t *pud = pud_offset(p4d, addr);
503 	pmd_t *pmd = pmd_offset(pud, addr);
504 	struct address_space *mapping;
505 	pgoff_t index;
506 	static unsigned long resume;
507 	static unsigned long nr_shown;
508 	static unsigned long nr_unshown;
509 
510 	/*
511 	 * Allow a burst of 60 reports, then keep quiet for that minute;
512 	 * or allow a steady drip of one report per second.
513 	 */
514 	if (nr_shown == 60) {
515 		if (time_before(jiffies, resume)) {
516 			nr_unshown++;
517 			return;
518 		}
519 		if (nr_unshown) {
520 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
521 				 nr_unshown);
522 			nr_unshown = 0;
523 		}
524 		nr_shown = 0;
525 	}
526 	if (nr_shown++ == 0)
527 		resume = jiffies + 60 * HZ;
528 
529 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
530 	index = linear_page_index(vma, addr);
531 
532 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
533 		 current->comm,
534 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
535 	if (page)
536 		dump_page(page, "bad pte");
537 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
538 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
539 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
540 		 vma->vm_file,
541 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
542 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
543 		 mapping ? mapping->a_ops->read_folio : NULL);
544 	dump_stack();
545 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
546 }
547 
548 /*
549  * vm_normal_page -- This function gets the "struct page" associated with a pte.
550  *
551  * "Special" mappings do not wish to be associated with a "struct page" (either
552  * it doesn't exist, or it exists but they don't want to touch it). In this
553  * case, NULL is returned here. "Normal" mappings do have a struct page.
554  *
555  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
556  * pte bit, in which case this function is trivial. Secondly, an architecture
557  * may not have a spare pte bit, which requires a more complicated scheme,
558  * described below.
559  *
560  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
561  * special mapping (even if there are underlying and valid "struct pages").
562  * COWed pages of a VM_PFNMAP are always normal.
563  *
564  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
565  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
566  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
567  * mapping will always honor the rule
568  *
569  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
570  *
571  * And for normal mappings this is false.
572  *
573  * This restricts such mappings to be a linear translation from virtual address
574  * to pfn. To get around this restriction, we allow arbitrary mappings so long
575  * as the vma is not a COW mapping; in that case, we know that all ptes are
576  * special (because none can have been COWed).
577  *
578  *
579  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
580  *
581  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
582  * page" backing, however the difference is that _all_ pages with a struct
583  * page (that is, those where pfn_valid is true) are refcounted and considered
584  * normal pages by the VM. The only exception are zeropages, which are
585  * *never* refcounted.
586  *
587  * The disadvantage is that pages are refcounted (which can be slower and
588  * simply not an option for some PFNMAP users). The advantage is that we
589  * don't have to follow the strict linearity rule of PFNMAP mappings in
590  * order to support COWable mappings.
591  *
592  */
593 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
594 			    pte_t pte)
595 {
596 	unsigned long pfn = pte_pfn(pte);
597 
598 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
599 		if (likely(!pte_special(pte)))
600 			goto check_pfn;
601 		if (vma->vm_ops && vma->vm_ops->find_special_page)
602 			return vma->vm_ops->find_special_page(vma, addr);
603 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604 			return NULL;
605 		if (is_zero_pfn(pfn))
606 			return NULL;
607 		if (pte_devmap(pte))
608 		/*
609 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
610 		 * and will have refcounts incremented on their struct pages
611 		 * when they are inserted into PTEs, thus they are safe to
612 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
613 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
614 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
615 		 */
616 			return NULL;
617 
618 		print_bad_pte(vma, addr, pte, NULL);
619 		return NULL;
620 	}
621 
622 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
623 
624 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
625 		if (vma->vm_flags & VM_MIXEDMAP) {
626 			if (!pfn_valid(pfn))
627 				return NULL;
628 			if (is_zero_pfn(pfn))
629 				return NULL;
630 			goto out;
631 		} else {
632 			unsigned long off;
633 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
634 			if (pfn == vma->vm_pgoff + off)
635 				return NULL;
636 			if (!is_cow_mapping(vma->vm_flags))
637 				return NULL;
638 		}
639 	}
640 
641 	if (is_zero_pfn(pfn))
642 		return NULL;
643 
644 check_pfn:
645 	if (unlikely(pfn > highest_memmap_pfn)) {
646 		print_bad_pte(vma, addr, pte, NULL);
647 		return NULL;
648 	}
649 
650 	/*
651 	 * NOTE! We still have PageReserved() pages in the page tables.
652 	 * eg. VDSO mappings can cause them to exist.
653 	 */
654 out:
655 	VM_WARN_ON_ONCE(is_zero_pfn(pfn));
656 	return pfn_to_page(pfn);
657 }
658 
659 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
660 			    pte_t pte)
661 {
662 	struct page *page = vm_normal_page(vma, addr, pte);
663 
664 	if (page)
665 		return page_folio(page);
666 	return NULL;
667 }
668 
669 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
670 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
671 				pmd_t pmd)
672 {
673 	unsigned long pfn = pmd_pfn(pmd);
674 
675 	/* Currently it's only used for huge pfnmaps */
676 	if (unlikely(pmd_special(pmd)))
677 		return NULL;
678 
679 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
680 		if (vma->vm_flags & VM_MIXEDMAP) {
681 			if (!pfn_valid(pfn))
682 				return NULL;
683 			goto out;
684 		} else {
685 			unsigned long off;
686 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
687 			if (pfn == vma->vm_pgoff + off)
688 				return NULL;
689 			if (!is_cow_mapping(vma->vm_flags))
690 				return NULL;
691 		}
692 	}
693 
694 	if (pmd_devmap(pmd))
695 		return NULL;
696 	if (is_huge_zero_pmd(pmd))
697 		return NULL;
698 	if (unlikely(pfn > highest_memmap_pfn))
699 		return NULL;
700 
701 	/*
702 	 * NOTE! We still have PageReserved() pages in the page tables.
703 	 * eg. VDSO mappings can cause them to exist.
704 	 */
705 out:
706 	return pfn_to_page(pfn);
707 }
708 
709 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
710 				  unsigned long addr, pmd_t pmd)
711 {
712 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
713 
714 	if (page)
715 		return page_folio(page);
716 	return NULL;
717 }
718 #endif
719 
720 static void restore_exclusive_pte(struct vm_area_struct *vma,
721 				  struct page *page, unsigned long address,
722 				  pte_t *ptep)
723 {
724 	struct folio *folio = page_folio(page);
725 	pte_t orig_pte;
726 	pte_t pte;
727 	swp_entry_t entry;
728 
729 	orig_pte = ptep_get(ptep);
730 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
731 	if (pte_swp_soft_dirty(orig_pte))
732 		pte = pte_mksoft_dirty(pte);
733 
734 	entry = pte_to_swp_entry(orig_pte);
735 	if (pte_swp_uffd_wp(orig_pte))
736 		pte = pte_mkuffd_wp(pte);
737 	else if (is_writable_device_exclusive_entry(entry))
738 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
739 
740 	VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
741 					   PageAnonExclusive(page)), folio);
742 
743 	/*
744 	 * No need to take a page reference as one was already
745 	 * created when the swap entry was made.
746 	 */
747 	if (folio_test_anon(folio))
748 		folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
749 	else
750 		/*
751 		 * Currently device exclusive access only supports anonymous
752 		 * memory so the entry shouldn't point to a filebacked page.
753 		 */
754 		WARN_ON_ONCE(1);
755 
756 	set_pte_at(vma->vm_mm, address, ptep, pte);
757 
758 	/*
759 	 * No need to invalidate - it was non-present before. However
760 	 * secondary CPUs may have mappings that need invalidating.
761 	 */
762 	update_mmu_cache(vma, address, ptep);
763 }
764 
765 /*
766  * Tries to restore an exclusive pte if the page lock can be acquired without
767  * sleeping.
768  */
769 static int
770 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
771 			unsigned long addr)
772 {
773 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
774 	struct page *page = pfn_swap_entry_to_page(entry);
775 
776 	if (trylock_page(page)) {
777 		restore_exclusive_pte(vma, page, addr, src_pte);
778 		unlock_page(page);
779 		return 0;
780 	}
781 
782 	return -EBUSY;
783 }
784 
785 /*
786  * copy one vm_area from one task to the other. Assumes the page tables
787  * already present in the new task to be cleared in the whole range
788  * covered by this vma.
789  */
790 
791 static unsigned long
792 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
793 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
794 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
795 {
796 	unsigned long vm_flags = dst_vma->vm_flags;
797 	pte_t orig_pte = ptep_get(src_pte);
798 	pte_t pte = orig_pte;
799 	struct folio *folio;
800 	struct page *page;
801 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
802 
803 	if (likely(!non_swap_entry(entry))) {
804 		if (swap_duplicate(entry) < 0)
805 			return -EIO;
806 
807 		/* make sure dst_mm is on swapoff's mmlist. */
808 		if (unlikely(list_empty(&dst_mm->mmlist))) {
809 			spin_lock(&mmlist_lock);
810 			if (list_empty(&dst_mm->mmlist))
811 				list_add(&dst_mm->mmlist,
812 						&src_mm->mmlist);
813 			spin_unlock(&mmlist_lock);
814 		}
815 		/* Mark the swap entry as shared. */
816 		if (pte_swp_exclusive(orig_pte)) {
817 			pte = pte_swp_clear_exclusive(orig_pte);
818 			set_pte_at(src_mm, addr, src_pte, pte);
819 		}
820 		rss[MM_SWAPENTS]++;
821 	} else if (is_migration_entry(entry)) {
822 		folio = pfn_swap_entry_folio(entry);
823 
824 		rss[mm_counter(folio)]++;
825 
826 		if (!is_readable_migration_entry(entry) &&
827 				is_cow_mapping(vm_flags)) {
828 			/*
829 			 * COW mappings require pages in both parent and child
830 			 * to be set to read. A previously exclusive entry is
831 			 * now shared.
832 			 */
833 			entry = make_readable_migration_entry(
834 							swp_offset(entry));
835 			pte = swp_entry_to_pte(entry);
836 			if (pte_swp_soft_dirty(orig_pte))
837 				pte = pte_swp_mksoft_dirty(pte);
838 			if (pte_swp_uffd_wp(orig_pte))
839 				pte = pte_swp_mkuffd_wp(pte);
840 			set_pte_at(src_mm, addr, src_pte, pte);
841 		}
842 	} else if (is_device_private_entry(entry)) {
843 		page = pfn_swap_entry_to_page(entry);
844 		folio = page_folio(page);
845 
846 		/*
847 		 * Update rss count even for unaddressable pages, as
848 		 * they should treated just like normal pages in this
849 		 * respect.
850 		 *
851 		 * We will likely want to have some new rss counters
852 		 * for unaddressable pages, at some point. But for now
853 		 * keep things as they are.
854 		 */
855 		folio_get(folio);
856 		rss[mm_counter(folio)]++;
857 		/* Cannot fail as these pages cannot get pinned. */
858 		folio_try_dup_anon_rmap_pte(folio, page, src_vma);
859 
860 		/*
861 		 * We do not preserve soft-dirty information, because so
862 		 * far, checkpoint/restore is the only feature that
863 		 * requires that. And checkpoint/restore does not work
864 		 * when a device driver is involved (you cannot easily
865 		 * save and restore device driver state).
866 		 */
867 		if (is_writable_device_private_entry(entry) &&
868 		    is_cow_mapping(vm_flags)) {
869 			entry = make_readable_device_private_entry(
870 							swp_offset(entry));
871 			pte = swp_entry_to_pte(entry);
872 			if (pte_swp_uffd_wp(orig_pte))
873 				pte = pte_swp_mkuffd_wp(pte);
874 			set_pte_at(src_mm, addr, src_pte, pte);
875 		}
876 	} else if (is_device_exclusive_entry(entry)) {
877 		/*
878 		 * Make device exclusive entries present by restoring the
879 		 * original entry then copying as for a present pte. Device
880 		 * exclusive entries currently only support private writable
881 		 * (ie. COW) mappings.
882 		 */
883 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
884 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
885 			return -EBUSY;
886 		return -ENOENT;
887 	} else if (is_pte_marker_entry(entry)) {
888 		pte_marker marker = copy_pte_marker(entry, dst_vma);
889 
890 		if (marker)
891 			set_pte_at(dst_mm, addr, dst_pte,
892 				   make_pte_marker(marker));
893 		return 0;
894 	}
895 	if (!userfaultfd_wp(dst_vma))
896 		pte = pte_swp_clear_uffd_wp(pte);
897 	set_pte_at(dst_mm, addr, dst_pte, pte);
898 	return 0;
899 }
900 
901 /*
902  * Copy a present and normal page.
903  *
904  * NOTE! The usual case is that this isn't required;
905  * instead, the caller can just increase the page refcount
906  * and re-use the pte the traditional way.
907  *
908  * And if we need a pre-allocated page but don't yet have
909  * one, return a negative error to let the preallocation
910  * code know so that it can do so outside the page table
911  * lock.
912  */
913 static inline int
914 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
915 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
916 		  struct folio **prealloc, struct page *page)
917 {
918 	struct folio *new_folio;
919 	pte_t pte;
920 
921 	new_folio = *prealloc;
922 	if (!new_folio)
923 		return -EAGAIN;
924 
925 	/*
926 	 * We have a prealloc page, all good!  Take it
927 	 * over and copy the page & arm it.
928 	 */
929 
930 	if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
931 		return -EHWPOISON;
932 
933 	*prealloc = NULL;
934 	__folio_mark_uptodate(new_folio);
935 	folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
936 	folio_add_lru_vma(new_folio, dst_vma);
937 	rss[MM_ANONPAGES]++;
938 
939 	/* All done, just insert the new page copy in the child */
940 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
941 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
942 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
943 		/* Uffd-wp needs to be delivered to dest pte as well */
944 		pte = pte_mkuffd_wp(pte);
945 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
946 	return 0;
947 }
948 
949 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
950 		struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
951 		pte_t pte, unsigned long addr, int nr)
952 {
953 	struct mm_struct *src_mm = src_vma->vm_mm;
954 
955 	/* If it's a COW mapping, write protect it both processes. */
956 	if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
957 		wrprotect_ptes(src_mm, addr, src_pte, nr);
958 		pte = pte_wrprotect(pte);
959 	}
960 
961 	/* If it's a shared mapping, mark it clean in the child. */
962 	if (src_vma->vm_flags & VM_SHARED)
963 		pte = pte_mkclean(pte);
964 	pte = pte_mkold(pte);
965 
966 	if (!userfaultfd_wp(dst_vma))
967 		pte = pte_clear_uffd_wp(pte);
968 
969 	set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
970 }
971 
972 /*
973  * Copy one present PTE, trying to batch-process subsequent PTEs that map
974  * consecutive pages of the same folio by copying them as well.
975  *
976  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
977  * Otherwise, returns the number of copied PTEs (at least 1).
978  */
979 static inline int
980 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
981 		 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
982 		 int max_nr, int *rss, struct folio **prealloc)
983 {
984 	struct page *page;
985 	struct folio *folio;
986 	bool any_writable;
987 	fpb_t flags = 0;
988 	int err, nr;
989 
990 	page = vm_normal_page(src_vma, addr, pte);
991 	if (unlikely(!page))
992 		goto copy_pte;
993 
994 	folio = page_folio(page);
995 
996 	/*
997 	 * If we likely have to copy, just don't bother with batching. Make
998 	 * sure that the common "small folio" case is as fast as possible
999 	 * by keeping the batching logic separate.
1000 	 */
1001 	if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1002 		if (src_vma->vm_flags & VM_SHARED)
1003 			flags |= FPB_IGNORE_DIRTY;
1004 		if (!vma_soft_dirty_enabled(src_vma))
1005 			flags |= FPB_IGNORE_SOFT_DIRTY;
1006 
1007 		nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1008 				     &any_writable, NULL, NULL);
1009 		folio_ref_add(folio, nr);
1010 		if (folio_test_anon(folio)) {
1011 			if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1012 								  nr, src_vma))) {
1013 				folio_ref_sub(folio, nr);
1014 				return -EAGAIN;
1015 			}
1016 			rss[MM_ANONPAGES] += nr;
1017 			VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1018 		} else {
1019 			folio_dup_file_rmap_ptes(folio, page, nr);
1020 			rss[mm_counter_file(folio)] += nr;
1021 		}
1022 		if (any_writable)
1023 			pte = pte_mkwrite(pte, src_vma);
1024 		__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1025 				    addr, nr);
1026 		return nr;
1027 	}
1028 
1029 	folio_get(folio);
1030 	if (folio_test_anon(folio)) {
1031 		/*
1032 		 * If this page may have been pinned by the parent process,
1033 		 * copy the page immediately for the child so that we'll always
1034 		 * guarantee the pinned page won't be randomly replaced in the
1035 		 * future.
1036 		 */
1037 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1038 			/* Page may be pinned, we have to copy. */
1039 			folio_put(folio);
1040 			err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1041 						addr, rss, prealloc, page);
1042 			return err ? err : 1;
1043 		}
1044 		rss[MM_ANONPAGES]++;
1045 		VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1046 	} else {
1047 		folio_dup_file_rmap_pte(folio, page);
1048 		rss[mm_counter_file(folio)]++;
1049 	}
1050 
1051 copy_pte:
1052 	__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1053 	return 1;
1054 }
1055 
1056 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1057 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1058 {
1059 	struct folio *new_folio;
1060 
1061 	if (need_zero)
1062 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1063 	else
1064 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1065 					    addr, false);
1066 
1067 	if (!new_folio)
1068 		return NULL;
1069 
1070 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1071 		folio_put(new_folio);
1072 		return NULL;
1073 	}
1074 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1075 
1076 	return new_folio;
1077 }
1078 
1079 static int
1080 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1081 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1082 	       unsigned long end)
1083 {
1084 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1085 	struct mm_struct *src_mm = src_vma->vm_mm;
1086 	pte_t *orig_src_pte, *orig_dst_pte;
1087 	pte_t *src_pte, *dst_pte;
1088 	pte_t ptent;
1089 	spinlock_t *src_ptl, *dst_ptl;
1090 	int progress, max_nr, ret = 0;
1091 	int rss[NR_MM_COUNTERS];
1092 	swp_entry_t entry = (swp_entry_t){0};
1093 	struct folio *prealloc = NULL;
1094 	int nr;
1095 
1096 again:
1097 	progress = 0;
1098 	init_rss_vec(rss);
1099 
1100 	/*
1101 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1102 	 * error handling here, assume that exclusive mmap_lock on dst and src
1103 	 * protects anon from unexpected THP transitions; with shmem and file
1104 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1105 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1106 	 * can remove such assumptions later, but this is good enough for now.
1107 	 */
1108 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1109 	if (!dst_pte) {
1110 		ret = -ENOMEM;
1111 		goto out;
1112 	}
1113 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1114 	if (!src_pte) {
1115 		pte_unmap_unlock(dst_pte, dst_ptl);
1116 		/* ret == 0 */
1117 		goto out;
1118 	}
1119 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1120 	orig_src_pte = src_pte;
1121 	orig_dst_pte = dst_pte;
1122 	arch_enter_lazy_mmu_mode();
1123 
1124 	do {
1125 		nr = 1;
1126 
1127 		/*
1128 		 * We are holding two locks at this point - either of them
1129 		 * could generate latencies in another task on another CPU.
1130 		 */
1131 		if (progress >= 32) {
1132 			progress = 0;
1133 			if (need_resched() ||
1134 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1135 				break;
1136 		}
1137 		ptent = ptep_get(src_pte);
1138 		if (pte_none(ptent)) {
1139 			progress++;
1140 			continue;
1141 		}
1142 		if (unlikely(!pte_present(ptent))) {
1143 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1144 						  dst_pte, src_pte,
1145 						  dst_vma, src_vma,
1146 						  addr, rss);
1147 			if (ret == -EIO) {
1148 				entry = pte_to_swp_entry(ptep_get(src_pte));
1149 				break;
1150 			} else if (ret == -EBUSY) {
1151 				break;
1152 			} else if (!ret) {
1153 				progress += 8;
1154 				continue;
1155 			}
1156 			ptent = ptep_get(src_pte);
1157 			VM_WARN_ON_ONCE(!pte_present(ptent));
1158 
1159 			/*
1160 			 * Device exclusive entry restored, continue by copying
1161 			 * the now present pte.
1162 			 */
1163 			WARN_ON_ONCE(ret != -ENOENT);
1164 		}
1165 		/* copy_present_ptes() will clear `*prealloc' if consumed */
1166 		max_nr = (end - addr) / PAGE_SIZE;
1167 		ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1168 					ptent, addr, max_nr, rss, &prealloc);
1169 		/*
1170 		 * If we need a pre-allocated page for this pte, drop the
1171 		 * locks, allocate, and try again.
1172 		 * If copy failed due to hwpoison in source page, break out.
1173 		 */
1174 		if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1175 			break;
1176 		if (unlikely(prealloc)) {
1177 			/*
1178 			 * pre-alloc page cannot be reused by next time so as
1179 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1180 			 * will allocate page according to address).  This
1181 			 * could only happen if one pinned pte changed.
1182 			 */
1183 			folio_put(prealloc);
1184 			prealloc = NULL;
1185 		}
1186 		nr = ret;
1187 		progress += 8 * nr;
1188 	} while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1189 		 addr != end);
1190 
1191 	arch_leave_lazy_mmu_mode();
1192 	pte_unmap_unlock(orig_src_pte, src_ptl);
1193 	add_mm_rss_vec(dst_mm, rss);
1194 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1195 	cond_resched();
1196 
1197 	if (ret == -EIO) {
1198 		VM_WARN_ON_ONCE(!entry.val);
1199 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1200 			ret = -ENOMEM;
1201 			goto out;
1202 		}
1203 		entry.val = 0;
1204 	} else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1205 		goto out;
1206 	} else if (ret ==  -EAGAIN) {
1207 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1208 		if (!prealloc)
1209 			return -ENOMEM;
1210 	} else if (ret < 0) {
1211 		VM_WARN_ON_ONCE(1);
1212 	}
1213 
1214 	/* We've captured and resolved the error. Reset, try again. */
1215 	ret = 0;
1216 
1217 	if (addr != end)
1218 		goto again;
1219 out:
1220 	if (unlikely(prealloc))
1221 		folio_put(prealloc);
1222 	return ret;
1223 }
1224 
1225 static inline int
1226 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1227 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1228 	       unsigned long end)
1229 {
1230 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1231 	struct mm_struct *src_mm = src_vma->vm_mm;
1232 	pmd_t *src_pmd, *dst_pmd;
1233 	unsigned long next;
1234 
1235 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1236 	if (!dst_pmd)
1237 		return -ENOMEM;
1238 	src_pmd = pmd_offset(src_pud, addr);
1239 	do {
1240 		next = pmd_addr_end(addr, end);
1241 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1242 			|| pmd_devmap(*src_pmd)) {
1243 			int err;
1244 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1245 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1246 					    addr, dst_vma, src_vma);
1247 			if (err == -ENOMEM)
1248 				return -ENOMEM;
1249 			if (!err)
1250 				continue;
1251 			/* fall through */
1252 		}
1253 		if (pmd_none_or_clear_bad(src_pmd))
1254 			continue;
1255 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1256 				   addr, next))
1257 			return -ENOMEM;
1258 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1259 	return 0;
1260 }
1261 
1262 static inline int
1263 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1264 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1265 	       unsigned long end)
1266 {
1267 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1268 	struct mm_struct *src_mm = src_vma->vm_mm;
1269 	pud_t *src_pud, *dst_pud;
1270 	unsigned long next;
1271 
1272 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1273 	if (!dst_pud)
1274 		return -ENOMEM;
1275 	src_pud = pud_offset(src_p4d, addr);
1276 	do {
1277 		next = pud_addr_end(addr, end);
1278 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1279 			int err;
1280 
1281 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1282 			err = copy_huge_pud(dst_mm, src_mm,
1283 					    dst_pud, src_pud, addr, src_vma);
1284 			if (err == -ENOMEM)
1285 				return -ENOMEM;
1286 			if (!err)
1287 				continue;
1288 			/* fall through */
1289 		}
1290 		if (pud_none_or_clear_bad(src_pud))
1291 			continue;
1292 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1293 				   addr, next))
1294 			return -ENOMEM;
1295 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1296 	return 0;
1297 }
1298 
1299 static inline int
1300 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1301 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1302 	       unsigned long end)
1303 {
1304 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1305 	p4d_t *src_p4d, *dst_p4d;
1306 	unsigned long next;
1307 
1308 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1309 	if (!dst_p4d)
1310 		return -ENOMEM;
1311 	src_p4d = p4d_offset(src_pgd, addr);
1312 	do {
1313 		next = p4d_addr_end(addr, end);
1314 		if (p4d_none_or_clear_bad(src_p4d))
1315 			continue;
1316 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1317 				   addr, next))
1318 			return -ENOMEM;
1319 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1320 	return 0;
1321 }
1322 
1323 /*
1324  * Return true if the vma needs to copy the pgtable during this fork().  Return
1325  * false when we can speed up fork() by allowing lazy page faults later until
1326  * when the child accesses the memory range.
1327  */
1328 static bool
1329 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1330 {
1331 	/*
1332 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1333 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1334 	 * contains uffd-wp protection information, that's something we can't
1335 	 * retrieve from page cache, and skip copying will lose those info.
1336 	 */
1337 	if (userfaultfd_wp(dst_vma))
1338 		return true;
1339 
1340 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1341 		return true;
1342 
1343 	if (src_vma->anon_vma)
1344 		return true;
1345 
1346 	/*
1347 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1348 	 * becomes much lighter when there are big shared or private readonly
1349 	 * mappings. The tradeoff is that copy_page_range is more efficient
1350 	 * than faulting.
1351 	 */
1352 	return false;
1353 }
1354 
1355 int
1356 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1357 {
1358 	pgd_t *src_pgd, *dst_pgd;
1359 	unsigned long next;
1360 	unsigned long addr = src_vma->vm_start;
1361 	unsigned long end = src_vma->vm_end;
1362 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1363 	struct mm_struct *src_mm = src_vma->vm_mm;
1364 	struct mmu_notifier_range range;
1365 	bool is_cow;
1366 	int ret;
1367 
1368 	if (!vma_needs_copy(dst_vma, src_vma))
1369 		return 0;
1370 
1371 	if (is_vm_hugetlb_page(src_vma))
1372 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1373 
1374 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1375 		/*
1376 		 * We do not free on error cases below as remove_vma
1377 		 * gets called on error from higher level routine
1378 		 */
1379 		ret = track_pfn_copy(src_vma);
1380 		if (ret)
1381 			return ret;
1382 	}
1383 
1384 	/*
1385 	 * We need to invalidate the secondary MMU mappings only when
1386 	 * there could be a permission downgrade on the ptes of the
1387 	 * parent mm. And a permission downgrade will only happen if
1388 	 * is_cow_mapping() returns true.
1389 	 */
1390 	is_cow = is_cow_mapping(src_vma->vm_flags);
1391 
1392 	if (is_cow) {
1393 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1394 					0, src_mm, addr, end);
1395 		mmu_notifier_invalidate_range_start(&range);
1396 		/*
1397 		 * Disabling preemption is not needed for the write side, as
1398 		 * the read side doesn't spin, but goes to the mmap_lock.
1399 		 *
1400 		 * Use the raw variant of the seqcount_t write API to avoid
1401 		 * lockdep complaining about preemptibility.
1402 		 */
1403 		vma_assert_write_locked(src_vma);
1404 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1405 	}
1406 
1407 	ret = 0;
1408 	dst_pgd = pgd_offset(dst_mm, addr);
1409 	src_pgd = pgd_offset(src_mm, addr);
1410 	do {
1411 		next = pgd_addr_end(addr, end);
1412 		if (pgd_none_or_clear_bad(src_pgd))
1413 			continue;
1414 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1415 					    addr, next))) {
1416 			untrack_pfn_clear(dst_vma);
1417 			ret = -ENOMEM;
1418 			break;
1419 		}
1420 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1421 
1422 	if (is_cow) {
1423 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1424 		mmu_notifier_invalidate_range_end(&range);
1425 	}
1426 	return ret;
1427 }
1428 
1429 /* Whether we should zap all COWed (private) pages too */
1430 static inline bool should_zap_cows(struct zap_details *details)
1431 {
1432 	/* By default, zap all pages */
1433 	if (!details)
1434 		return true;
1435 
1436 	/* Or, we zap COWed pages only if the caller wants to */
1437 	return details->even_cows;
1438 }
1439 
1440 /* Decides whether we should zap this folio with the folio pointer specified */
1441 static inline bool should_zap_folio(struct zap_details *details,
1442 				    struct folio *folio)
1443 {
1444 	/* If we can make a decision without *folio.. */
1445 	if (should_zap_cows(details))
1446 		return true;
1447 
1448 	/* Otherwise we should only zap non-anon folios */
1449 	return !folio_test_anon(folio);
1450 }
1451 
1452 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1453 {
1454 	if (!details)
1455 		return false;
1456 
1457 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1458 }
1459 
1460 /*
1461  * This function makes sure that we'll replace the none pte with an uffd-wp
1462  * swap special pte marker when necessary. Must be with the pgtable lock held.
1463  */
1464 static inline void
1465 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1466 			      unsigned long addr, pte_t *pte, int nr,
1467 			      struct zap_details *details, pte_t pteval)
1468 {
1469 	/* Zap on anonymous always means dropping everything */
1470 	if (vma_is_anonymous(vma))
1471 		return;
1472 
1473 	if (zap_drop_file_uffd_wp(details))
1474 		return;
1475 
1476 	for (;;) {
1477 		/* the PFN in the PTE is irrelevant. */
1478 		pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1479 		if (--nr == 0)
1480 			break;
1481 		pte++;
1482 		addr += PAGE_SIZE;
1483 	}
1484 }
1485 
1486 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1487 		struct vm_area_struct *vma, struct folio *folio,
1488 		struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1489 		unsigned long addr, struct zap_details *details, int *rss,
1490 		bool *force_flush, bool *force_break)
1491 {
1492 	struct mm_struct *mm = tlb->mm;
1493 	bool delay_rmap = false;
1494 
1495 	if (!folio_test_anon(folio)) {
1496 		ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1497 		if (pte_dirty(ptent)) {
1498 			folio_mark_dirty(folio);
1499 			if (tlb_delay_rmap(tlb)) {
1500 				delay_rmap = true;
1501 				*force_flush = true;
1502 			}
1503 		}
1504 		if (pte_young(ptent) && likely(vma_has_recency(vma)))
1505 			folio_mark_accessed(folio);
1506 		rss[mm_counter(folio)] -= nr;
1507 	} else {
1508 		/* We don't need up-to-date accessed/dirty bits. */
1509 		clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1510 		rss[MM_ANONPAGES] -= nr;
1511 	}
1512 	/* Checking a single PTE in a batch is sufficient. */
1513 	arch_check_zapped_pte(vma, ptent);
1514 	tlb_remove_tlb_entries(tlb, pte, nr, addr);
1515 	if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1516 		zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1517 					      ptent);
1518 
1519 	if (!delay_rmap) {
1520 		folio_remove_rmap_ptes(folio, page, nr, vma);
1521 
1522 		if (unlikely(folio_mapcount(folio) < 0))
1523 			print_bad_pte(vma, addr, ptent, page);
1524 	}
1525 	if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1526 		*force_flush = true;
1527 		*force_break = true;
1528 	}
1529 }
1530 
1531 /*
1532  * Zap or skip at least one present PTE, trying to batch-process subsequent
1533  * PTEs that map consecutive pages of the same folio.
1534  *
1535  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1536  */
1537 static inline int zap_present_ptes(struct mmu_gather *tlb,
1538 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1539 		unsigned int max_nr, unsigned long addr,
1540 		struct zap_details *details, int *rss, bool *force_flush,
1541 		bool *force_break)
1542 {
1543 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1544 	struct mm_struct *mm = tlb->mm;
1545 	struct folio *folio;
1546 	struct page *page;
1547 	int nr;
1548 
1549 	page = vm_normal_page(vma, addr, ptent);
1550 	if (!page) {
1551 		/* We don't need up-to-date accessed/dirty bits. */
1552 		ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1553 		arch_check_zapped_pte(vma, ptent);
1554 		tlb_remove_tlb_entry(tlb, pte, addr);
1555 		if (userfaultfd_pte_wp(vma, ptent))
1556 			zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1557 						      details, ptent);
1558 		ksm_might_unmap_zero_page(mm, ptent);
1559 		return 1;
1560 	}
1561 
1562 	folio = page_folio(page);
1563 	if (unlikely(!should_zap_folio(details, folio)))
1564 		return 1;
1565 
1566 	/*
1567 	 * Make sure that the common "small folio" case is as fast as possible
1568 	 * by keeping the batching logic separate.
1569 	 */
1570 	if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1571 		nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1572 				     NULL, NULL, NULL);
1573 
1574 		zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1575 				       addr, details, rss, force_flush,
1576 				       force_break);
1577 		return nr;
1578 	}
1579 	zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1580 			       details, rss, force_flush, force_break);
1581 	return 1;
1582 }
1583 
1584 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1585 				struct vm_area_struct *vma, pmd_t *pmd,
1586 				unsigned long addr, unsigned long end,
1587 				struct zap_details *details)
1588 {
1589 	bool force_flush = false, force_break = false;
1590 	struct mm_struct *mm = tlb->mm;
1591 	int rss[NR_MM_COUNTERS];
1592 	spinlock_t *ptl;
1593 	pte_t *start_pte;
1594 	pte_t *pte;
1595 	swp_entry_t entry;
1596 	int nr;
1597 
1598 	tlb_change_page_size(tlb, PAGE_SIZE);
1599 	init_rss_vec(rss);
1600 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1601 	if (!pte)
1602 		return addr;
1603 
1604 	flush_tlb_batched_pending(mm);
1605 	arch_enter_lazy_mmu_mode();
1606 	do {
1607 		pte_t ptent = ptep_get(pte);
1608 		struct folio *folio;
1609 		struct page *page;
1610 		int max_nr;
1611 
1612 		nr = 1;
1613 		if (pte_none(ptent))
1614 			continue;
1615 
1616 		if (need_resched())
1617 			break;
1618 
1619 		if (pte_present(ptent)) {
1620 			max_nr = (end - addr) / PAGE_SIZE;
1621 			nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1622 					      addr, details, rss, &force_flush,
1623 					      &force_break);
1624 			if (unlikely(force_break)) {
1625 				addr += nr * PAGE_SIZE;
1626 				break;
1627 			}
1628 			continue;
1629 		}
1630 
1631 		entry = pte_to_swp_entry(ptent);
1632 		if (is_device_private_entry(entry) ||
1633 		    is_device_exclusive_entry(entry)) {
1634 			page = pfn_swap_entry_to_page(entry);
1635 			folio = page_folio(page);
1636 			if (unlikely(!should_zap_folio(details, folio)))
1637 				continue;
1638 			/*
1639 			 * Both device private/exclusive mappings should only
1640 			 * work with anonymous page so far, so we don't need to
1641 			 * consider uffd-wp bit when zap. For more information,
1642 			 * see zap_install_uffd_wp_if_needed().
1643 			 */
1644 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1645 			rss[mm_counter(folio)]--;
1646 			if (is_device_private_entry(entry))
1647 				folio_remove_rmap_pte(folio, page, vma);
1648 			folio_put(folio);
1649 		} else if (!non_swap_entry(entry)) {
1650 			max_nr = (end - addr) / PAGE_SIZE;
1651 			nr = swap_pte_batch(pte, max_nr, ptent);
1652 			/* Genuine swap entries, hence a private anon pages */
1653 			if (!should_zap_cows(details))
1654 				continue;
1655 			rss[MM_SWAPENTS] -= nr;
1656 			free_swap_and_cache_nr(entry, nr);
1657 		} else if (is_migration_entry(entry)) {
1658 			folio = pfn_swap_entry_folio(entry);
1659 			if (!should_zap_folio(details, folio))
1660 				continue;
1661 			rss[mm_counter(folio)]--;
1662 		} else if (pte_marker_entry_uffd_wp(entry)) {
1663 			/*
1664 			 * For anon: always drop the marker; for file: only
1665 			 * drop the marker if explicitly requested.
1666 			 */
1667 			if (!vma_is_anonymous(vma) &&
1668 			    !zap_drop_file_uffd_wp(details))
1669 				continue;
1670 		} else if (is_hwpoison_entry(entry) ||
1671 			   is_poisoned_swp_entry(entry)) {
1672 			if (!should_zap_cows(details))
1673 				continue;
1674 		} else {
1675 			/* We should have covered all the swap entry types */
1676 			pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1677 			WARN_ON_ONCE(1);
1678 		}
1679 		clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1680 		zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1681 	} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1682 
1683 	add_mm_rss_vec(mm, rss);
1684 	arch_leave_lazy_mmu_mode();
1685 
1686 	/* Do the actual TLB flush before dropping ptl */
1687 	if (force_flush) {
1688 		tlb_flush_mmu_tlbonly(tlb);
1689 		tlb_flush_rmaps(tlb, vma);
1690 	}
1691 	pte_unmap_unlock(start_pte, ptl);
1692 
1693 	/*
1694 	 * If we forced a TLB flush (either due to running out of
1695 	 * batch buffers or because we needed to flush dirty TLB
1696 	 * entries before releasing the ptl), free the batched
1697 	 * memory too. Come back again if we didn't do everything.
1698 	 */
1699 	if (force_flush)
1700 		tlb_flush_mmu(tlb);
1701 
1702 	return addr;
1703 }
1704 
1705 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1706 				struct vm_area_struct *vma, pud_t *pud,
1707 				unsigned long addr, unsigned long end,
1708 				struct zap_details *details)
1709 {
1710 	pmd_t *pmd;
1711 	unsigned long next;
1712 
1713 	pmd = pmd_offset(pud, addr);
1714 	do {
1715 		next = pmd_addr_end(addr, end);
1716 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1717 			if (next - addr != HPAGE_PMD_SIZE)
1718 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1719 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1720 				addr = next;
1721 				continue;
1722 			}
1723 			/* fall through */
1724 		} else if (details && details->single_folio &&
1725 			   folio_test_pmd_mappable(details->single_folio) &&
1726 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1727 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1728 			/*
1729 			 * Take and drop THP pmd lock so that we cannot return
1730 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1731 			 * but not yet decremented compound_mapcount().
1732 			 */
1733 			spin_unlock(ptl);
1734 		}
1735 		if (pmd_none(*pmd)) {
1736 			addr = next;
1737 			continue;
1738 		}
1739 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1740 		if (addr != next)
1741 			pmd--;
1742 	} while (pmd++, cond_resched(), addr != end);
1743 
1744 	return addr;
1745 }
1746 
1747 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1748 				struct vm_area_struct *vma, p4d_t *p4d,
1749 				unsigned long addr, unsigned long end,
1750 				struct zap_details *details)
1751 {
1752 	pud_t *pud;
1753 	unsigned long next;
1754 
1755 	pud = pud_offset(p4d, addr);
1756 	do {
1757 		next = pud_addr_end(addr, end);
1758 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1759 			if (next - addr != HPAGE_PUD_SIZE) {
1760 				mmap_assert_locked(tlb->mm);
1761 				split_huge_pud(vma, pud, addr);
1762 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1763 				goto next;
1764 			/* fall through */
1765 		}
1766 		if (pud_none_or_clear_bad(pud))
1767 			continue;
1768 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1769 next:
1770 		cond_resched();
1771 	} while (pud++, addr = next, addr != end);
1772 
1773 	return addr;
1774 }
1775 
1776 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1777 				struct vm_area_struct *vma, pgd_t *pgd,
1778 				unsigned long addr, unsigned long end,
1779 				struct zap_details *details)
1780 {
1781 	p4d_t *p4d;
1782 	unsigned long next;
1783 
1784 	p4d = p4d_offset(pgd, addr);
1785 	do {
1786 		next = p4d_addr_end(addr, end);
1787 		if (p4d_none_or_clear_bad(p4d))
1788 			continue;
1789 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1790 	} while (p4d++, addr = next, addr != end);
1791 
1792 	return addr;
1793 }
1794 
1795 void unmap_page_range(struct mmu_gather *tlb,
1796 			     struct vm_area_struct *vma,
1797 			     unsigned long addr, unsigned long end,
1798 			     struct zap_details *details)
1799 {
1800 	pgd_t *pgd;
1801 	unsigned long next;
1802 
1803 	BUG_ON(addr >= end);
1804 	tlb_start_vma(tlb, vma);
1805 	pgd = pgd_offset(vma->vm_mm, addr);
1806 	do {
1807 		next = pgd_addr_end(addr, end);
1808 		if (pgd_none_or_clear_bad(pgd))
1809 			continue;
1810 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1811 	} while (pgd++, addr = next, addr != end);
1812 	tlb_end_vma(tlb, vma);
1813 }
1814 
1815 
1816 static void unmap_single_vma(struct mmu_gather *tlb,
1817 		struct vm_area_struct *vma, unsigned long start_addr,
1818 		unsigned long end_addr,
1819 		struct zap_details *details, bool mm_wr_locked)
1820 {
1821 	unsigned long start = max(vma->vm_start, start_addr);
1822 	unsigned long end;
1823 
1824 	if (start >= vma->vm_end)
1825 		return;
1826 	end = min(vma->vm_end, end_addr);
1827 	if (end <= vma->vm_start)
1828 		return;
1829 
1830 	if (vma->vm_file)
1831 		uprobe_munmap(vma, start, end);
1832 
1833 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1834 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1835 
1836 	if (start != end) {
1837 		if (unlikely(is_vm_hugetlb_page(vma))) {
1838 			/*
1839 			 * It is undesirable to test vma->vm_file as it
1840 			 * should be non-null for valid hugetlb area.
1841 			 * However, vm_file will be NULL in the error
1842 			 * cleanup path of mmap_region. When
1843 			 * hugetlbfs ->mmap method fails,
1844 			 * mmap_region() nullifies vma->vm_file
1845 			 * before calling this function to clean up.
1846 			 * Since no pte has actually been setup, it is
1847 			 * safe to do nothing in this case.
1848 			 */
1849 			if (vma->vm_file) {
1850 				zap_flags_t zap_flags = details ?
1851 				    details->zap_flags : 0;
1852 				__unmap_hugepage_range(tlb, vma, start, end,
1853 							     NULL, zap_flags);
1854 			}
1855 		} else
1856 			unmap_page_range(tlb, vma, start, end, details);
1857 	}
1858 }
1859 
1860 /**
1861  * unmap_vmas - unmap a range of memory covered by a list of vma's
1862  * @tlb: address of the caller's struct mmu_gather
1863  * @mas: the maple state
1864  * @vma: the starting vma
1865  * @start_addr: virtual address at which to start unmapping
1866  * @end_addr: virtual address at which to end unmapping
1867  * @tree_end: The maximum index to check
1868  * @mm_wr_locked: lock flag
1869  *
1870  * Unmap all pages in the vma list.
1871  *
1872  * Only addresses between `start' and `end' will be unmapped.
1873  *
1874  * The VMA list must be sorted in ascending virtual address order.
1875  *
1876  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1877  * range after unmap_vmas() returns.  So the only responsibility here is to
1878  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1879  * drops the lock and schedules.
1880  */
1881 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1882 		struct vm_area_struct *vma, unsigned long start_addr,
1883 		unsigned long end_addr, unsigned long tree_end,
1884 		bool mm_wr_locked)
1885 {
1886 	struct mmu_notifier_range range;
1887 	struct zap_details details = {
1888 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1889 		/* Careful - we need to zap private pages too! */
1890 		.even_cows = true,
1891 	};
1892 
1893 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1894 				start_addr, end_addr);
1895 	mmu_notifier_invalidate_range_start(&range);
1896 	do {
1897 		unsigned long start = start_addr;
1898 		unsigned long end = end_addr;
1899 		hugetlb_zap_begin(vma, &start, &end);
1900 		unmap_single_vma(tlb, vma, start, end, &details,
1901 				 mm_wr_locked);
1902 		hugetlb_zap_end(vma, &details);
1903 		vma = mas_find(mas, tree_end - 1);
1904 	} while (vma && likely(!xa_is_zero(vma)));
1905 	mmu_notifier_invalidate_range_end(&range);
1906 }
1907 
1908 /**
1909  * zap_page_range_single - remove user pages in a given range
1910  * @vma: vm_area_struct holding the applicable pages
1911  * @address: starting address of pages to zap
1912  * @size: number of bytes to zap
1913  * @details: details of shared cache invalidation
1914  *
1915  * The range must fit into one VMA.
1916  */
1917 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1918 		unsigned long size, struct zap_details *details)
1919 {
1920 	const unsigned long end = address + size;
1921 	struct mmu_notifier_range range;
1922 	struct mmu_gather tlb;
1923 
1924 	lru_add_drain();
1925 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1926 				address, end);
1927 	hugetlb_zap_begin(vma, &range.start, &range.end);
1928 	tlb_gather_mmu(&tlb, vma->vm_mm);
1929 	update_hiwater_rss(vma->vm_mm);
1930 	mmu_notifier_invalidate_range_start(&range);
1931 	/*
1932 	 * unmap 'address-end' not 'range.start-range.end' as range
1933 	 * could have been expanded for hugetlb pmd sharing.
1934 	 */
1935 	unmap_single_vma(&tlb, vma, address, end, details, false);
1936 	mmu_notifier_invalidate_range_end(&range);
1937 	tlb_finish_mmu(&tlb);
1938 	hugetlb_zap_end(vma, details);
1939 }
1940 
1941 /**
1942  * zap_vma_ptes - remove ptes mapping the vma
1943  * @vma: vm_area_struct holding ptes to be zapped
1944  * @address: starting address of pages to zap
1945  * @size: number of bytes to zap
1946  *
1947  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1948  *
1949  * The entire address range must be fully contained within the vma.
1950  *
1951  */
1952 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1953 		unsigned long size)
1954 {
1955 	if (!range_in_vma(vma, address, address + size) ||
1956 	    		!(vma->vm_flags & VM_PFNMAP))
1957 		return;
1958 
1959 	zap_page_range_single(vma, address, size, NULL);
1960 }
1961 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1962 
1963 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1964 {
1965 	pgd_t *pgd;
1966 	p4d_t *p4d;
1967 	pud_t *pud;
1968 	pmd_t *pmd;
1969 
1970 	pgd = pgd_offset(mm, addr);
1971 	p4d = p4d_alloc(mm, pgd, addr);
1972 	if (!p4d)
1973 		return NULL;
1974 	pud = pud_alloc(mm, p4d, addr);
1975 	if (!pud)
1976 		return NULL;
1977 	pmd = pmd_alloc(mm, pud, addr);
1978 	if (!pmd)
1979 		return NULL;
1980 
1981 	VM_BUG_ON(pmd_trans_huge(*pmd));
1982 	return pmd;
1983 }
1984 
1985 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1986 			spinlock_t **ptl)
1987 {
1988 	pmd_t *pmd = walk_to_pmd(mm, addr);
1989 
1990 	if (!pmd)
1991 		return NULL;
1992 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1993 }
1994 
1995 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
1996 {
1997 	VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
1998 	/*
1999 	 * Whoever wants to forbid the zeropage after some zeropages
2000 	 * might already have been mapped has to scan the page tables and
2001 	 * bail out on any zeropages. Zeropages in COW mappings can
2002 	 * be unshared using FAULT_FLAG_UNSHARE faults.
2003 	 */
2004 	if (mm_forbids_zeropage(vma->vm_mm))
2005 		return false;
2006 	/* zeropages in COW mappings are common and unproblematic. */
2007 	if (is_cow_mapping(vma->vm_flags))
2008 		return true;
2009 	/* Mappings that do not allow for writable PTEs are unproblematic. */
2010 	if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2011 		return true;
2012 	/*
2013 	 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2014 	 * find the shared zeropage and longterm-pin it, which would
2015 	 * be problematic as soon as the zeropage gets replaced by a different
2016 	 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2017 	 * now differ to what GUP looked up. FSDAX is incompatible to
2018 	 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2019 	 * check_vma_flags).
2020 	 */
2021 	return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2022 	       (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2023 }
2024 
2025 static int validate_page_before_insert(struct vm_area_struct *vma,
2026 				       struct page *page)
2027 {
2028 	struct folio *folio = page_folio(page);
2029 
2030 	if (!folio_ref_count(folio))
2031 		return -EINVAL;
2032 	if (unlikely(is_zero_folio(folio))) {
2033 		if (!vm_mixed_zeropage_allowed(vma))
2034 			return -EINVAL;
2035 		return 0;
2036 	}
2037 	if (folio_test_anon(folio) || folio_test_slab(folio) ||
2038 	    page_has_type(page))
2039 		return -EINVAL;
2040 	flush_dcache_folio(folio);
2041 	return 0;
2042 }
2043 
2044 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2045 			unsigned long addr, struct page *page, pgprot_t prot)
2046 {
2047 	struct folio *folio = page_folio(page);
2048 	pte_t pteval;
2049 
2050 	if (!pte_none(ptep_get(pte)))
2051 		return -EBUSY;
2052 	/* Ok, finally just insert the thing.. */
2053 	pteval = mk_pte(page, prot);
2054 	if (unlikely(is_zero_folio(folio))) {
2055 		pteval = pte_mkspecial(pteval);
2056 	} else {
2057 		folio_get(folio);
2058 		inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2059 		folio_add_file_rmap_pte(folio, page, vma);
2060 	}
2061 	set_pte_at(vma->vm_mm, addr, pte, pteval);
2062 	return 0;
2063 }
2064 
2065 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2066 			struct page *page, pgprot_t prot)
2067 {
2068 	int retval;
2069 	pte_t *pte;
2070 	spinlock_t *ptl;
2071 
2072 	retval = validate_page_before_insert(vma, page);
2073 	if (retval)
2074 		goto out;
2075 	retval = -ENOMEM;
2076 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2077 	if (!pte)
2078 		goto out;
2079 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2080 	pte_unmap_unlock(pte, ptl);
2081 out:
2082 	return retval;
2083 }
2084 
2085 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2086 			unsigned long addr, struct page *page, pgprot_t prot)
2087 {
2088 	int err;
2089 
2090 	err = validate_page_before_insert(vma, page);
2091 	if (err)
2092 		return err;
2093 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2094 }
2095 
2096 /* insert_pages() amortizes the cost of spinlock operations
2097  * when inserting pages in a loop.
2098  */
2099 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2100 			struct page **pages, unsigned long *num, pgprot_t prot)
2101 {
2102 	pmd_t *pmd = NULL;
2103 	pte_t *start_pte, *pte;
2104 	spinlock_t *pte_lock;
2105 	struct mm_struct *const mm = vma->vm_mm;
2106 	unsigned long curr_page_idx = 0;
2107 	unsigned long remaining_pages_total = *num;
2108 	unsigned long pages_to_write_in_pmd;
2109 	int ret;
2110 more:
2111 	ret = -EFAULT;
2112 	pmd = walk_to_pmd(mm, addr);
2113 	if (!pmd)
2114 		goto out;
2115 
2116 	pages_to_write_in_pmd = min_t(unsigned long,
2117 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2118 
2119 	/* Allocate the PTE if necessary; takes PMD lock once only. */
2120 	ret = -ENOMEM;
2121 	if (pte_alloc(mm, pmd))
2122 		goto out;
2123 
2124 	while (pages_to_write_in_pmd) {
2125 		int pte_idx = 0;
2126 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2127 
2128 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2129 		if (!start_pte) {
2130 			ret = -EFAULT;
2131 			goto out;
2132 		}
2133 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2134 			int err = insert_page_in_batch_locked(vma, pte,
2135 				addr, pages[curr_page_idx], prot);
2136 			if (unlikely(err)) {
2137 				pte_unmap_unlock(start_pte, pte_lock);
2138 				ret = err;
2139 				remaining_pages_total -= pte_idx;
2140 				goto out;
2141 			}
2142 			addr += PAGE_SIZE;
2143 			++curr_page_idx;
2144 		}
2145 		pte_unmap_unlock(start_pte, pte_lock);
2146 		pages_to_write_in_pmd -= batch_size;
2147 		remaining_pages_total -= batch_size;
2148 	}
2149 	if (remaining_pages_total)
2150 		goto more;
2151 	ret = 0;
2152 out:
2153 	*num = remaining_pages_total;
2154 	return ret;
2155 }
2156 
2157 /**
2158  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2159  * @vma: user vma to map to
2160  * @addr: target start user address of these pages
2161  * @pages: source kernel pages
2162  * @num: in: number of pages to map. out: number of pages that were *not*
2163  * mapped. (0 means all pages were successfully mapped).
2164  *
2165  * Preferred over vm_insert_page() when inserting multiple pages.
2166  *
2167  * In case of error, we may have mapped a subset of the provided
2168  * pages. It is the caller's responsibility to account for this case.
2169  *
2170  * The same restrictions apply as in vm_insert_page().
2171  */
2172 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2173 			struct page **pages, unsigned long *num)
2174 {
2175 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2176 
2177 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2178 		return -EFAULT;
2179 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2180 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2181 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2182 		vm_flags_set(vma, VM_MIXEDMAP);
2183 	}
2184 	/* Defer page refcount checking till we're about to map that page. */
2185 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2186 }
2187 EXPORT_SYMBOL(vm_insert_pages);
2188 
2189 /**
2190  * vm_insert_page - insert single page into user vma
2191  * @vma: user vma to map to
2192  * @addr: target user address of this page
2193  * @page: source kernel page
2194  *
2195  * This allows drivers to insert individual pages they've allocated
2196  * into a user vma. The zeropage is supported in some VMAs,
2197  * see vm_mixed_zeropage_allowed().
2198  *
2199  * The page has to be a nice clean _individual_ kernel allocation.
2200  * If you allocate a compound page, you need to have marked it as
2201  * such (__GFP_COMP), or manually just split the page up yourself
2202  * (see split_page()).
2203  *
2204  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2205  * took an arbitrary page protection parameter. This doesn't allow
2206  * that. Your vma protection will have to be set up correctly, which
2207  * means that if you want a shared writable mapping, you'd better
2208  * ask for a shared writable mapping!
2209  *
2210  * The page does not need to be reserved.
2211  *
2212  * Usually this function is called from f_op->mmap() handler
2213  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2214  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2215  * function from other places, for example from page-fault handler.
2216  *
2217  * Return: %0 on success, negative error code otherwise.
2218  */
2219 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2220 			struct page *page)
2221 {
2222 	if (addr < vma->vm_start || addr >= vma->vm_end)
2223 		return -EFAULT;
2224 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2225 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2226 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2227 		vm_flags_set(vma, VM_MIXEDMAP);
2228 	}
2229 	return insert_page(vma, addr, page, vma->vm_page_prot);
2230 }
2231 EXPORT_SYMBOL(vm_insert_page);
2232 
2233 /*
2234  * __vm_map_pages - maps range of kernel pages into user vma
2235  * @vma: user vma to map to
2236  * @pages: pointer to array of source kernel pages
2237  * @num: number of pages in page array
2238  * @offset: user's requested vm_pgoff
2239  *
2240  * This allows drivers to map range of kernel pages into a user vma.
2241  * The zeropage is supported in some VMAs, see
2242  * vm_mixed_zeropage_allowed().
2243  *
2244  * Return: 0 on success and error code otherwise.
2245  */
2246 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2247 				unsigned long num, unsigned long offset)
2248 {
2249 	unsigned long count = vma_pages(vma);
2250 	unsigned long uaddr = vma->vm_start;
2251 	int ret, i;
2252 
2253 	/* Fail if the user requested offset is beyond the end of the object */
2254 	if (offset >= num)
2255 		return -ENXIO;
2256 
2257 	/* Fail if the user requested size exceeds available object size */
2258 	if (count > num - offset)
2259 		return -ENXIO;
2260 
2261 	for (i = 0; i < count; i++) {
2262 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2263 		if (ret < 0)
2264 			return ret;
2265 		uaddr += PAGE_SIZE;
2266 	}
2267 
2268 	return 0;
2269 }
2270 
2271 /**
2272  * vm_map_pages - maps range of kernel pages starts with non zero offset
2273  * @vma: user vma to map to
2274  * @pages: pointer to array of source kernel pages
2275  * @num: number of pages in page array
2276  *
2277  * Maps an object consisting of @num pages, catering for the user's
2278  * requested vm_pgoff
2279  *
2280  * If we fail to insert any page into the vma, the function will return
2281  * immediately leaving any previously inserted pages present.  Callers
2282  * from the mmap handler may immediately return the error as their caller
2283  * will destroy the vma, removing any successfully inserted pages. Other
2284  * callers should make their own arrangements for calling unmap_region().
2285  *
2286  * Context: Process context. Called by mmap handlers.
2287  * Return: 0 on success and error code otherwise.
2288  */
2289 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2290 				unsigned long num)
2291 {
2292 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2293 }
2294 EXPORT_SYMBOL(vm_map_pages);
2295 
2296 /**
2297  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2298  * @vma: user vma to map to
2299  * @pages: pointer to array of source kernel pages
2300  * @num: number of pages in page array
2301  *
2302  * Similar to vm_map_pages(), except that it explicitly sets the offset
2303  * to 0. This function is intended for the drivers that did not consider
2304  * vm_pgoff.
2305  *
2306  * Context: Process context. Called by mmap handlers.
2307  * Return: 0 on success and error code otherwise.
2308  */
2309 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2310 				unsigned long num)
2311 {
2312 	return __vm_map_pages(vma, pages, num, 0);
2313 }
2314 EXPORT_SYMBOL(vm_map_pages_zero);
2315 
2316 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2317 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2318 {
2319 	struct mm_struct *mm = vma->vm_mm;
2320 	pte_t *pte, entry;
2321 	spinlock_t *ptl;
2322 
2323 	pte = get_locked_pte(mm, addr, &ptl);
2324 	if (!pte)
2325 		return VM_FAULT_OOM;
2326 	entry = ptep_get(pte);
2327 	if (!pte_none(entry)) {
2328 		if (mkwrite) {
2329 			/*
2330 			 * For read faults on private mappings the PFN passed
2331 			 * in may not match the PFN we have mapped if the
2332 			 * mapped PFN is a writeable COW page.  In the mkwrite
2333 			 * case we are creating a writable PTE for a shared
2334 			 * mapping and we expect the PFNs to match. If they
2335 			 * don't match, we are likely racing with block
2336 			 * allocation and mapping invalidation so just skip the
2337 			 * update.
2338 			 */
2339 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2340 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2341 				goto out_unlock;
2342 			}
2343 			entry = pte_mkyoung(entry);
2344 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2345 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2346 				update_mmu_cache(vma, addr, pte);
2347 		}
2348 		goto out_unlock;
2349 	}
2350 
2351 	/* Ok, finally just insert the thing.. */
2352 	if (pfn_t_devmap(pfn))
2353 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2354 	else
2355 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2356 
2357 	if (mkwrite) {
2358 		entry = pte_mkyoung(entry);
2359 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2360 	}
2361 
2362 	set_pte_at(mm, addr, pte, entry);
2363 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2364 
2365 out_unlock:
2366 	pte_unmap_unlock(pte, ptl);
2367 	return VM_FAULT_NOPAGE;
2368 }
2369 
2370 /**
2371  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2372  * @vma: user vma to map to
2373  * @addr: target user address of this page
2374  * @pfn: source kernel pfn
2375  * @pgprot: pgprot flags for the inserted page
2376  *
2377  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2378  * to override pgprot on a per-page basis.
2379  *
2380  * This only makes sense for IO mappings, and it makes no sense for
2381  * COW mappings.  In general, using multiple vmas is preferable;
2382  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2383  * impractical.
2384  *
2385  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2386  * caching- and encryption bits different than those of @vma->vm_page_prot,
2387  * because the caching- or encryption mode may not be known at mmap() time.
2388  *
2389  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2390  * to set caching and encryption bits for those vmas (except for COW pages).
2391  * This is ensured by core vm only modifying these page table entries using
2392  * functions that don't touch caching- or encryption bits, using pte_modify()
2393  * if needed. (See for example mprotect()).
2394  *
2395  * Also when new page-table entries are created, this is only done using the
2396  * fault() callback, and never using the value of vma->vm_page_prot,
2397  * except for page-table entries that point to anonymous pages as the result
2398  * of COW.
2399  *
2400  * Context: Process context.  May allocate using %GFP_KERNEL.
2401  * Return: vm_fault_t value.
2402  */
2403 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2404 			unsigned long pfn, pgprot_t pgprot)
2405 {
2406 	/*
2407 	 * Technically, architectures with pte_special can avoid all these
2408 	 * restrictions (same for remap_pfn_range).  However we would like
2409 	 * consistency in testing and feature parity among all, so we should
2410 	 * try to keep these invariants in place for everybody.
2411 	 */
2412 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2413 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2414 						(VM_PFNMAP|VM_MIXEDMAP));
2415 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2416 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2417 
2418 	if (addr < vma->vm_start || addr >= vma->vm_end)
2419 		return VM_FAULT_SIGBUS;
2420 
2421 	if (!pfn_modify_allowed(pfn, pgprot))
2422 		return VM_FAULT_SIGBUS;
2423 
2424 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2425 
2426 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2427 			false);
2428 }
2429 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2430 
2431 /**
2432  * vmf_insert_pfn - insert single pfn into user vma
2433  * @vma: user vma to map to
2434  * @addr: target user address of this page
2435  * @pfn: source kernel pfn
2436  *
2437  * Similar to vm_insert_page, this allows drivers to insert individual pages
2438  * they've allocated into a user vma. Same comments apply.
2439  *
2440  * This function should only be called from a vm_ops->fault handler, and
2441  * in that case the handler should return the result of this function.
2442  *
2443  * vma cannot be a COW mapping.
2444  *
2445  * As this is called only for pages that do not currently exist, we
2446  * do not need to flush old virtual caches or the TLB.
2447  *
2448  * Context: Process context.  May allocate using %GFP_KERNEL.
2449  * Return: vm_fault_t value.
2450  */
2451 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2452 			unsigned long pfn)
2453 {
2454 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2455 }
2456 EXPORT_SYMBOL(vmf_insert_pfn);
2457 
2458 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2459 {
2460 	if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2461 	    (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2462 		return false;
2463 	/* these checks mirror the abort conditions in vm_normal_page */
2464 	if (vma->vm_flags & VM_MIXEDMAP)
2465 		return true;
2466 	if (pfn_t_devmap(pfn))
2467 		return true;
2468 	if (pfn_t_special(pfn))
2469 		return true;
2470 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2471 		return true;
2472 	return false;
2473 }
2474 
2475 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2476 		unsigned long addr, pfn_t pfn, bool mkwrite)
2477 {
2478 	pgprot_t pgprot = vma->vm_page_prot;
2479 	int err;
2480 
2481 	if (!vm_mixed_ok(vma, pfn, mkwrite))
2482 		return VM_FAULT_SIGBUS;
2483 
2484 	if (addr < vma->vm_start || addr >= vma->vm_end)
2485 		return VM_FAULT_SIGBUS;
2486 
2487 	track_pfn_insert(vma, &pgprot, pfn);
2488 
2489 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2490 		return VM_FAULT_SIGBUS;
2491 
2492 	/*
2493 	 * If we don't have pte special, then we have to use the pfn_valid()
2494 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2495 	 * refcount the page if pfn_valid is true (hence insert_page rather
2496 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2497 	 * without pte special, it would there be refcounted as a normal page.
2498 	 */
2499 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2500 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2501 		struct page *page;
2502 
2503 		/*
2504 		 * At this point we are committed to insert_page()
2505 		 * regardless of whether the caller specified flags that
2506 		 * result in pfn_t_has_page() == false.
2507 		 */
2508 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2509 		err = insert_page(vma, addr, page, pgprot);
2510 	} else {
2511 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2512 	}
2513 
2514 	if (err == -ENOMEM)
2515 		return VM_FAULT_OOM;
2516 	if (err < 0 && err != -EBUSY)
2517 		return VM_FAULT_SIGBUS;
2518 
2519 	return VM_FAULT_NOPAGE;
2520 }
2521 
2522 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2523 		pfn_t pfn)
2524 {
2525 	return __vm_insert_mixed(vma, addr, pfn, false);
2526 }
2527 EXPORT_SYMBOL(vmf_insert_mixed);
2528 
2529 /*
2530  *  If the insertion of PTE failed because someone else already added a
2531  *  different entry in the mean time, we treat that as success as we assume
2532  *  the same entry was actually inserted.
2533  */
2534 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2535 		unsigned long addr, pfn_t pfn)
2536 {
2537 	return __vm_insert_mixed(vma, addr, pfn, true);
2538 }
2539 
2540 /*
2541  * maps a range of physical memory into the requested pages. the old
2542  * mappings are removed. any references to nonexistent pages results
2543  * in null mappings (currently treated as "copy-on-access")
2544  */
2545 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2546 			unsigned long addr, unsigned long end,
2547 			unsigned long pfn, pgprot_t prot)
2548 {
2549 	pte_t *pte, *mapped_pte;
2550 	spinlock_t *ptl;
2551 	int err = 0;
2552 
2553 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2554 	if (!pte)
2555 		return -ENOMEM;
2556 	arch_enter_lazy_mmu_mode();
2557 	do {
2558 		BUG_ON(!pte_none(ptep_get(pte)));
2559 		if (!pfn_modify_allowed(pfn, prot)) {
2560 			err = -EACCES;
2561 			break;
2562 		}
2563 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2564 		pfn++;
2565 	} while (pte++, addr += PAGE_SIZE, addr != end);
2566 	arch_leave_lazy_mmu_mode();
2567 	pte_unmap_unlock(mapped_pte, ptl);
2568 	return err;
2569 }
2570 
2571 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2572 			unsigned long addr, unsigned long end,
2573 			unsigned long pfn, pgprot_t prot)
2574 {
2575 	pmd_t *pmd;
2576 	unsigned long next;
2577 	int err;
2578 
2579 	pfn -= addr >> PAGE_SHIFT;
2580 	pmd = pmd_alloc(mm, pud, addr);
2581 	if (!pmd)
2582 		return -ENOMEM;
2583 	VM_BUG_ON(pmd_trans_huge(*pmd));
2584 	do {
2585 		next = pmd_addr_end(addr, end);
2586 		err = remap_pte_range(mm, pmd, addr, next,
2587 				pfn + (addr >> PAGE_SHIFT), prot);
2588 		if (err)
2589 			return err;
2590 	} while (pmd++, addr = next, addr != end);
2591 	return 0;
2592 }
2593 
2594 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2595 			unsigned long addr, unsigned long end,
2596 			unsigned long pfn, pgprot_t prot)
2597 {
2598 	pud_t *pud;
2599 	unsigned long next;
2600 	int err;
2601 
2602 	pfn -= addr >> PAGE_SHIFT;
2603 	pud = pud_alloc(mm, p4d, addr);
2604 	if (!pud)
2605 		return -ENOMEM;
2606 	do {
2607 		next = pud_addr_end(addr, end);
2608 		err = remap_pmd_range(mm, pud, addr, next,
2609 				pfn + (addr >> PAGE_SHIFT), prot);
2610 		if (err)
2611 			return err;
2612 	} while (pud++, addr = next, addr != end);
2613 	return 0;
2614 }
2615 
2616 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2617 			unsigned long addr, unsigned long end,
2618 			unsigned long pfn, pgprot_t prot)
2619 {
2620 	p4d_t *p4d;
2621 	unsigned long next;
2622 	int err;
2623 
2624 	pfn -= addr >> PAGE_SHIFT;
2625 	p4d = p4d_alloc(mm, pgd, addr);
2626 	if (!p4d)
2627 		return -ENOMEM;
2628 	do {
2629 		next = p4d_addr_end(addr, end);
2630 		err = remap_pud_range(mm, p4d, addr, next,
2631 				pfn + (addr >> PAGE_SHIFT), prot);
2632 		if (err)
2633 			return err;
2634 	} while (p4d++, addr = next, addr != end);
2635 	return 0;
2636 }
2637 
2638 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2639 		unsigned long pfn, unsigned long size, pgprot_t prot)
2640 {
2641 	pgd_t *pgd;
2642 	unsigned long next;
2643 	unsigned long end = addr + PAGE_ALIGN(size);
2644 	struct mm_struct *mm = vma->vm_mm;
2645 	int err;
2646 
2647 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2648 		return -EINVAL;
2649 
2650 	/*
2651 	 * Physically remapped pages are special. Tell the
2652 	 * rest of the world about it:
2653 	 *   VM_IO tells people not to look at these pages
2654 	 *	(accesses can have side effects).
2655 	 *   VM_PFNMAP tells the core MM that the base pages are just
2656 	 *	raw PFN mappings, and do not have a "struct page" associated
2657 	 *	with them.
2658 	 *   VM_DONTEXPAND
2659 	 *      Disable vma merging and expanding with mremap().
2660 	 *   VM_DONTDUMP
2661 	 *      Omit vma from core dump, even when VM_IO turned off.
2662 	 *
2663 	 * There's a horrible special case to handle copy-on-write
2664 	 * behaviour that some programs depend on. We mark the "original"
2665 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2666 	 * See vm_normal_page() for details.
2667 	 */
2668 	if (is_cow_mapping(vma->vm_flags)) {
2669 		if (addr != vma->vm_start || end != vma->vm_end)
2670 			return -EINVAL;
2671 		vma->vm_pgoff = pfn;
2672 	}
2673 
2674 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2675 
2676 	BUG_ON(addr >= end);
2677 	pfn -= addr >> PAGE_SHIFT;
2678 	pgd = pgd_offset(mm, addr);
2679 	flush_cache_range(vma, addr, end);
2680 	do {
2681 		next = pgd_addr_end(addr, end);
2682 		err = remap_p4d_range(mm, pgd, addr, next,
2683 				pfn + (addr >> PAGE_SHIFT), prot);
2684 		if (err)
2685 			return err;
2686 	} while (pgd++, addr = next, addr != end);
2687 
2688 	return 0;
2689 }
2690 
2691 /*
2692  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2693  * must have pre-validated the caching bits of the pgprot_t.
2694  */
2695 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2696 		unsigned long pfn, unsigned long size, pgprot_t prot)
2697 {
2698 	int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2699 
2700 	if (!error)
2701 		return 0;
2702 
2703 	/*
2704 	 * A partial pfn range mapping is dangerous: it does not
2705 	 * maintain page reference counts, and callers may free
2706 	 * pages due to the error. So zap it early.
2707 	 */
2708 	zap_page_range_single(vma, addr, size, NULL);
2709 	return error;
2710 }
2711 
2712 /**
2713  * remap_pfn_range - remap kernel memory to userspace
2714  * @vma: user vma to map to
2715  * @addr: target page aligned user address to start at
2716  * @pfn: page frame number of kernel physical memory address
2717  * @size: size of mapping area
2718  * @prot: page protection flags for this mapping
2719  *
2720  * Note: this is only safe if the mm semaphore is held when called.
2721  *
2722  * Return: %0 on success, negative error code otherwise.
2723  */
2724 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2725 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2726 {
2727 	int err;
2728 
2729 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2730 	if (err)
2731 		return -EINVAL;
2732 
2733 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2734 	if (err)
2735 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2736 	return err;
2737 }
2738 EXPORT_SYMBOL(remap_pfn_range);
2739 
2740 /**
2741  * vm_iomap_memory - remap memory to userspace
2742  * @vma: user vma to map to
2743  * @start: start of the physical memory to be mapped
2744  * @len: size of area
2745  *
2746  * This is a simplified io_remap_pfn_range() for common driver use. The
2747  * driver just needs to give us the physical memory range to be mapped,
2748  * we'll figure out the rest from the vma information.
2749  *
2750  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2751  * whatever write-combining details or similar.
2752  *
2753  * Return: %0 on success, negative error code otherwise.
2754  */
2755 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2756 {
2757 	unsigned long vm_len, pfn, pages;
2758 
2759 	/* Check that the physical memory area passed in looks valid */
2760 	if (start + len < start)
2761 		return -EINVAL;
2762 	/*
2763 	 * You *really* shouldn't map things that aren't page-aligned,
2764 	 * but we've historically allowed it because IO memory might
2765 	 * just have smaller alignment.
2766 	 */
2767 	len += start & ~PAGE_MASK;
2768 	pfn = start >> PAGE_SHIFT;
2769 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2770 	if (pfn + pages < pfn)
2771 		return -EINVAL;
2772 
2773 	/* We start the mapping 'vm_pgoff' pages into the area */
2774 	if (vma->vm_pgoff > pages)
2775 		return -EINVAL;
2776 	pfn += vma->vm_pgoff;
2777 	pages -= vma->vm_pgoff;
2778 
2779 	/* Can we fit all of the mapping? */
2780 	vm_len = vma->vm_end - vma->vm_start;
2781 	if (vm_len >> PAGE_SHIFT > pages)
2782 		return -EINVAL;
2783 
2784 	/* Ok, let it rip */
2785 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2786 }
2787 EXPORT_SYMBOL(vm_iomap_memory);
2788 
2789 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2790 				     unsigned long addr, unsigned long end,
2791 				     pte_fn_t fn, void *data, bool create,
2792 				     pgtbl_mod_mask *mask)
2793 {
2794 	pte_t *pte, *mapped_pte;
2795 	int err = 0;
2796 	spinlock_t *ptl;
2797 
2798 	if (create) {
2799 		mapped_pte = pte = (mm == &init_mm) ?
2800 			pte_alloc_kernel_track(pmd, addr, mask) :
2801 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2802 		if (!pte)
2803 			return -ENOMEM;
2804 	} else {
2805 		mapped_pte = pte = (mm == &init_mm) ?
2806 			pte_offset_kernel(pmd, addr) :
2807 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2808 		if (!pte)
2809 			return -EINVAL;
2810 	}
2811 
2812 	arch_enter_lazy_mmu_mode();
2813 
2814 	if (fn) {
2815 		do {
2816 			if (create || !pte_none(ptep_get(pte))) {
2817 				err = fn(pte++, addr, data);
2818 				if (err)
2819 					break;
2820 			}
2821 		} while (addr += PAGE_SIZE, addr != end);
2822 	}
2823 	*mask |= PGTBL_PTE_MODIFIED;
2824 
2825 	arch_leave_lazy_mmu_mode();
2826 
2827 	if (mm != &init_mm)
2828 		pte_unmap_unlock(mapped_pte, ptl);
2829 	return err;
2830 }
2831 
2832 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2833 				     unsigned long addr, unsigned long end,
2834 				     pte_fn_t fn, void *data, bool create,
2835 				     pgtbl_mod_mask *mask)
2836 {
2837 	pmd_t *pmd;
2838 	unsigned long next;
2839 	int err = 0;
2840 
2841 	BUG_ON(pud_leaf(*pud));
2842 
2843 	if (create) {
2844 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2845 		if (!pmd)
2846 			return -ENOMEM;
2847 	} else {
2848 		pmd = pmd_offset(pud, addr);
2849 	}
2850 	do {
2851 		next = pmd_addr_end(addr, end);
2852 		if (pmd_none(*pmd) && !create)
2853 			continue;
2854 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2855 			return -EINVAL;
2856 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2857 			if (!create)
2858 				continue;
2859 			pmd_clear_bad(pmd);
2860 		}
2861 		err = apply_to_pte_range(mm, pmd, addr, next,
2862 					 fn, data, create, mask);
2863 		if (err)
2864 			break;
2865 	} while (pmd++, addr = next, addr != end);
2866 
2867 	return err;
2868 }
2869 
2870 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2871 				     unsigned long addr, unsigned long end,
2872 				     pte_fn_t fn, void *data, bool create,
2873 				     pgtbl_mod_mask *mask)
2874 {
2875 	pud_t *pud;
2876 	unsigned long next;
2877 	int err = 0;
2878 
2879 	if (create) {
2880 		pud = pud_alloc_track(mm, p4d, addr, mask);
2881 		if (!pud)
2882 			return -ENOMEM;
2883 	} else {
2884 		pud = pud_offset(p4d, addr);
2885 	}
2886 	do {
2887 		next = pud_addr_end(addr, end);
2888 		if (pud_none(*pud) && !create)
2889 			continue;
2890 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2891 			return -EINVAL;
2892 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2893 			if (!create)
2894 				continue;
2895 			pud_clear_bad(pud);
2896 		}
2897 		err = apply_to_pmd_range(mm, pud, addr, next,
2898 					 fn, data, create, mask);
2899 		if (err)
2900 			break;
2901 	} while (pud++, addr = next, addr != end);
2902 
2903 	return err;
2904 }
2905 
2906 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2907 				     unsigned long addr, unsigned long end,
2908 				     pte_fn_t fn, void *data, bool create,
2909 				     pgtbl_mod_mask *mask)
2910 {
2911 	p4d_t *p4d;
2912 	unsigned long next;
2913 	int err = 0;
2914 
2915 	if (create) {
2916 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2917 		if (!p4d)
2918 			return -ENOMEM;
2919 	} else {
2920 		p4d = p4d_offset(pgd, addr);
2921 	}
2922 	do {
2923 		next = p4d_addr_end(addr, end);
2924 		if (p4d_none(*p4d) && !create)
2925 			continue;
2926 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2927 			return -EINVAL;
2928 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2929 			if (!create)
2930 				continue;
2931 			p4d_clear_bad(p4d);
2932 		}
2933 		err = apply_to_pud_range(mm, p4d, addr, next,
2934 					 fn, data, create, mask);
2935 		if (err)
2936 			break;
2937 	} while (p4d++, addr = next, addr != end);
2938 
2939 	return err;
2940 }
2941 
2942 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2943 				 unsigned long size, pte_fn_t fn,
2944 				 void *data, bool create)
2945 {
2946 	pgd_t *pgd;
2947 	unsigned long start = addr, next;
2948 	unsigned long end = addr + size;
2949 	pgtbl_mod_mask mask = 0;
2950 	int err = 0;
2951 
2952 	if (WARN_ON(addr >= end))
2953 		return -EINVAL;
2954 
2955 	pgd = pgd_offset(mm, addr);
2956 	do {
2957 		next = pgd_addr_end(addr, end);
2958 		if (pgd_none(*pgd) && !create)
2959 			continue;
2960 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2961 			return -EINVAL;
2962 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2963 			if (!create)
2964 				continue;
2965 			pgd_clear_bad(pgd);
2966 		}
2967 		err = apply_to_p4d_range(mm, pgd, addr, next,
2968 					 fn, data, create, &mask);
2969 		if (err)
2970 			break;
2971 	} while (pgd++, addr = next, addr != end);
2972 
2973 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2974 		arch_sync_kernel_mappings(start, start + size);
2975 
2976 	return err;
2977 }
2978 
2979 /*
2980  * Scan a region of virtual memory, filling in page tables as necessary
2981  * and calling a provided function on each leaf page table.
2982  */
2983 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2984 			unsigned long size, pte_fn_t fn, void *data)
2985 {
2986 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2987 }
2988 EXPORT_SYMBOL_GPL(apply_to_page_range);
2989 
2990 /*
2991  * Scan a region of virtual memory, calling a provided function on
2992  * each leaf page table where it exists.
2993  *
2994  * Unlike apply_to_page_range, this does _not_ fill in page tables
2995  * where they are absent.
2996  */
2997 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2998 				 unsigned long size, pte_fn_t fn, void *data)
2999 {
3000 	return __apply_to_page_range(mm, addr, size, fn, data, false);
3001 }
3002 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
3003 
3004 /*
3005  * handle_pte_fault chooses page fault handler according to an entry which was
3006  * read non-atomically.  Before making any commitment, on those architectures
3007  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3008  * parts, do_swap_page must check under lock before unmapping the pte and
3009  * proceeding (but do_wp_page is only called after already making such a check;
3010  * and do_anonymous_page can safely check later on).
3011  */
3012 static inline int pte_unmap_same(struct vm_fault *vmf)
3013 {
3014 	int same = 1;
3015 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3016 	if (sizeof(pte_t) > sizeof(unsigned long)) {
3017 		spin_lock(vmf->ptl);
3018 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3019 		spin_unlock(vmf->ptl);
3020 	}
3021 #endif
3022 	pte_unmap(vmf->pte);
3023 	vmf->pte = NULL;
3024 	return same;
3025 }
3026 
3027 /*
3028  * Return:
3029  *	0:		copied succeeded
3030  *	-EHWPOISON:	copy failed due to hwpoison in source page
3031  *	-EAGAIN:	copied failed (some other reason)
3032  */
3033 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3034 				      struct vm_fault *vmf)
3035 {
3036 	int ret;
3037 	void *kaddr;
3038 	void __user *uaddr;
3039 	struct vm_area_struct *vma = vmf->vma;
3040 	struct mm_struct *mm = vma->vm_mm;
3041 	unsigned long addr = vmf->address;
3042 
3043 	if (likely(src)) {
3044 		if (copy_mc_user_highpage(dst, src, addr, vma))
3045 			return -EHWPOISON;
3046 		return 0;
3047 	}
3048 
3049 	/*
3050 	 * If the source page was a PFN mapping, we don't have
3051 	 * a "struct page" for it. We do a best-effort copy by
3052 	 * just copying from the original user address. If that
3053 	 * fails, we just zero-fill it. Live with it.
3054 	 */
3055 	kaddr = kmap_local_page(dst);
3056 	pagefault_disable();
3057 	uaddr = (void __user *)(addr & PAGE_MASK);
3058 
3059 	/*
3060 	 * On architectures with software "accessed" bits, we would
3061 	 * take a double page fault, so mark it accessed here.
3062 	 */
3063 	vmf->pte = NULL;
3064 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3065 		pte_t entry;
3066 
3067 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3068 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3069 			/*
3070 			 * Other thread has already handled the fault
3071 			 * and update local tlb only
3072 			 */
3073 			if (vmf->pte)
3074 				update_mmu_tlb(vma, addr, vmf->pte);
3075 			ret = -EAGAIN;
3076 			goto pte_unlock;
3077 		}
3078 
3079 		entry = pte_mkyoung(vmf->orig_pte);
3080 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3081 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3082 	}
3083 
3084 	/*
3085 	 * This really shouldn't fail, because the page is there
3086 	 * in the page tables. But it might just be unreadable,
3087 	 * in which case we just give up and fill the result with
3088 	 * zeroes.
3089 	 */
3090 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3091 		if (vmf->pte)
3092 			goto warn;
3093 
3094 		/* Re-validate under PTL if the page is still mapped */
3095 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3096 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3097 			/* The PTE changed under us, update local tlb */
3098 			if (vmf->pte)
3099 				update_mmu_tlb(vma, addr, vmf->pte);
3100 			ret = -EAGAIN;
3101 			goto pte_unlock;
3102 		}
3103 
3104 		/*
3105 		 * The same page can be mapped back since last copy attempt.
3106 		 * Try to copy again under PTL.
3107 		 */
3108 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3109 			/*
3110 			 * Give a warn in case there can be some obscure
3111 			 * use-case
3112 			 */
3113 warn:
3114 			WARN_ON_ONCE(1);
3115 			clear_page(kaddr);
3116 		}
3117 	}
3118 
3119 	ret = 0;
3120 
3121 pte_unlock:
3122 	if (vmf->pte)
3123 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3124 	pagefault_enable();
3125 	kunmap_local(kaddr);
3126 	flush_dcache_page(dst);
3127 
3128 	return ret;
3129 }
3130 
3131 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3132 {
3133 	struct file *vm_file = vma->vm_file;
3134 
3135 	if (vm_file)
3136 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3137 
3138 	/*
3139 	 * Special mappings (e.g. VDSO) do not have any file so fake
3140 	 * a default GFP_KERNEL for them.
3141 	 */
3142 	return GFP_KERNEL;
3143 }
3144 
3145 /*
3146  * Notify the address space that the page is about to become writable so that
3147  * it can prohibit this or wait for the page to get into an appropriate state.
3148  *
3149  * We do this without the lock held, so that it can sleep if it needs to.
3150  */
3151 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3152 {
3153 	vm_fault_t ret;
3154 	unsigned int old_flags = vmf->flags;
3155 
3156 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3157 
3158 	if (vmf->vma->vm_file &&
3159 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3160 		return VM_FAULT_SIGBUS;
3161 
3162 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3163 	/* Restore original flags so that caller is not surprised */
3164 	vmf->flags = old_flags;
3165 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3166 		return ret;
3167 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3168 		folio_lock(folio);
3169 		if (!folio->mapping) {
3170 			folio_unlock(folio);
3171 			return 0; /* retry */
3172 		}
3173 		ret |= VM_FAULT_LOCKED;
3174 	} else
3175 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3176 	return ret;
3177 }
3178 
3179 /*
3180  * Handle dirtying of a page in shared file mapping on a write fault.
3181  *
3182  * The function expects the page to be locked and unlocks it.
3183  */
3184 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3185 {
3186 	struct vm_area_struct *vma = vmf->vma;
3187 	struct address_space *mapping;
3188 	struct folio *folio = page_folio(vmf->page);
3189 	bool dirtied;
3190 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3191 
3192 	dirtied = folio_mark_dirty(folio);
3193 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3194 	/*
3195 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3196 	 * by truncate after folio_unlock().   The address_space itself remains
3197 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3198 	 * release semantics to prevent the compiler from undoing this copying.
3199 	 */
3200 	mapping = folio_raw_mapping(folio);
3201 	folio_unlock(folio);
3202 
3203 	if (!page_mkwrite)
3204 		file_update_time(vma->vm_file);
3205 
3206 	/*
3207 	 * Throttle page dirtying rate down to writeback speed.
3208 	 *
3209 	 * mapping may be NULL here because some device drivers do not
3210 	 * set page.mapping but still dirty their pages
3211 	 *
3212 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3213 	 * is pinning the mapping, as per above.
3214 	 */
3215 	if ((dirtied || page_mkwrite) && mapping) {
3216 		struct file *fpin;
3217 
3218 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3219 		balance_dirty_pages_ratelimited(mapping);
3220 		if (fpin) {
3221 			fput(fpin);
3222 			return VM_FAULT_COMPLETED;
3223 		}
3224 	}
3225 
3226 	return 0;
3227 }
3228 
3229 /*
3230  * Handle write page faults for pages that can be reused in the current vma
3231  *
3232  * This can happen either due to the mapping being with the VM_SHARED flag,
3233  * or due to us being the last reference standing to the page. In either
3234  * case, all we need to do here is to mark the page as writable and update
3235  * any related book-keeping.
3236  */
3237 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3238 	__releases(vmf->ptl)
3239 {
3240 	struct vm_area_struct *vma = vmf->vma;
3241 	pte_t entry;
3242 
3243 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3244 	VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3245 
3246 	if (folio) {
3247 		VM_BUG_ON(folio_test_anon(folio) &&
3248 			  !PageAnonExclusive(vmf->page));
3249 		/*
3250 		 * Clear the folio's cpupid information as the existing
3251 		 * information potentially belongs to a now completely
3252 		 * unrelated process.
3253 		 */
3254 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3255 	}
3256 
3257 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3258 	entry = pte_mkyoung(vmf->orig_pte);
3259 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3260 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3261 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3262 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3263 	count_vm_event(PGREUSE);
3264 }
3265 
3266 /*
3267  * We could add a bitflag somewhere, but for now, we know that all
3268  * vm_ops that have a ->map_pages have been audited and don't need
3269  * the mmap_lock to be held.
3270  */
3271 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3272 {
3273 	struct vm_area_struct *vma = vmf->vma;
3274 
3275 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3276 		return 0;
3277 	vma_end_read(vma);
3278 	return VM_FAULT_RETRY;
3279 }
3280 
3281 /**
3282  * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3283  * @vmf: The vm_fault descriptor passed from the fault handler.
3284  *
3285  * When preparing to insert an anonymous page into a VMA from a
3286  * fault handler, call this function rather than anon_vma_prepare().
3287  * If this vma does not already have an associated anon_vma and we are
3288  * only protected by the per-VMA lock, the caller must retry with the
3289  * mmap_lock held.  __anon_vma_prepare() will look at adjacent VMAs to
3290  * determine if this VMA can share its anon_vma, and that's not safe to
3291  * do with only the per-VMA lock held for this VMA.
3292  *
3293  * Return: 0 if fault handling can proceed.  Any other value should be
3294  * returned to the caller.
3295  */
3296 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3297 {
3298 	struct vm_area_struct *vma = vmf->vma;
3299 	vm_fault_t ret = 0;
3300 
3301 	if (likely(vma->anon_vma))
3302 		return 0;
3303 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3304 		if (!mmap_read_trylock(vma->vm_mm))
3305 			return VM_FAULT_RETRY;
3306 	}
3307 	if (__anon_vma_prepare(vma))
3308 		ret = VM_FAULT_OOM;
3309 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3310 		mmap_read_unlock(vma->vm_mm);
3311 	return ret;
3312 }
3313 
3314 /*
3315  * Handle the case of a page which we actually need to copy to a new page,
3316  * either due to COW or unsharing.
3317  *
3318  * Called with mmap_lock locked and the old page referenced, but
3319  * without the ptl held.
3320  *
3321  * High level logic flow:
3322  *
3323  * - Allocate a page, copy the content of the old page to the new one.
3324  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3325  * - Take the PTL. If the pte changed, bail out and release the allocated page
3326  * - If the pte is still the way we remember it, update the page table and all
3327  *   relevant references. This includes dropping the reference the page-table
3328  *   held to the old page, as well as updating the rmap.
3329  * - In any case, unlock the PTL and drop the reference we took to the old page.
3330  */
3331 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3332 {
3333 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3334 	struct vm_area_struct *vma = vmf->vma;
3335 	struct mm_struct *mm = vma->vm_mm;
3336 	struct folio *old_folio = NULL;
3337 	struct folio *new_folio = NULL;
3338 	pte_t entry;
3339 	int page_copied = 0;
3340 	struct mmu_notifier_range range;
3341 	vm_fault_t ret;
3342 	bool pfn_is_zero;
3343 
3344 	delayacct_wpcopy_start();
3345 
3346 	if (vmf->page)
3347 		old_folio = page_folio(vmf->page);
3348 	ret = vmf_anon_prepare(vmf);
3349 	if (unlikely(ret))
3350 		goto out;
3351 
3352 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3353 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3354 	if (!new_folio)
3355 		goto oom;
3356 
3357 	if (!pfn_is_zero) {
3358 		int err;
3359 
3360 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3361 		if (err) {
3362 			/*
3363 			 * COW failed, if the fault was solved by other,
3364 			 * it's fine. If not, userspace would re-fault on
3365 			 * the same address and we will handle the fault
3366 			 * from the second attempt.
3367 			 * The -EHWPOISON case will not be retried.
3368 			 */
3369 			folio_put(new_folio);
3370 			if (old_folio)
3371 				folio_put(old_folio);
3372 
3373 			delayacct_wpcopy_end();
3374 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3375 		}
3376 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3377 	}
3378 
3379 	__folio_mark_uptodate(new_folio);
3380 
3381 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3382 				vmf->address & PAGE_MASK,
3383 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3384 	mmu_notifier_invalidate_range_start(&range);
3385 
3386 	/*
3387 	 * Re-check the pte - we dropped the lock
3388 	 */
3389 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3390 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3391 		if (old_folio) {
3392 			if (!folio_test_anon(old_folio)) {
3393 				dec_mm_counter(mm, mm_counter_file(old_folio));
3394 				inc_mm_counter(mm, MM_ANONPAGES);
3395 			}
3396 		} else {
3397 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3398 			inc_mm_counter(mm, MM_ANONPAGES);
3399 		}
3400 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3401 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3402 		entry = pte_sw_mkyoung(entry);
3403 		if (unlikely(unshare)) {
3404 			if (pte_soft_dirty(vmf->orig_pte))
3405 				entry = pte_mksoft_dirty(entry);
3406 			if (pte_uffd_wp(vmf->orig_pte))
3407 				entry = pte_mkuffd_wp(entry);
3408 		} else {
3409 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3410 		}
3411 
3412 		/*
3413 		 * Clear the pte entry and flush it first, before updating the
3414 		 * pte with the new entry, to keep TLBs on different CPUs in
3415 		 * sync. This code used to set the new PTE then flush TLBs, but
3416 		 * that left a window where the new PTE could be loaded into
3417 		 * some TLBs while the old PTE remains in others.
3418 		 */
3419 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3420 		folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3421 		folio_add_lru_vma(new_folio, vma);
3422 		BUG_ON(unshare && pte_write(entry));
3423 		set_pte_at(mm, vmf->address, vmf->pte, entry);
3424 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3425 		if (old_folio) {
3426 			/*
3427 			 * Only after switching the pte to the new page may
3428 			 * we remove the mapcount here. Otherwise another
3429 			 * process may come and find the rmap count decremented
3430 			 * before the pte is switched to the new page, and
3431 			 * "reuse" the old page writing into it while our pte
3432 			 * here still points into it and can be read by other
3433 			 * threads.
3434 			 *
3435 			 * The critical issue is to order this
3436 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3437 			 * above. Those stores are ordered by (if nothing else,)
3438 			 * the barrier present in the atomic_add_negative
3439 			 * in folio_remove_rmap_pte();
3440 			 *
3441 			 * Then the TLB flush in ptep_clear_flush ensures that
3442 			 * no process can access the old page before the
3443 			 * decremented mapcount is visible. And the old page
3444 			 * cannot be reused until after the decremented
3445 			 * mapcount is visible. So transitively, TLBs to
3446 			 * old page will be flushed before it can be reused.
3447 			 */
3448 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3449 		}
3450 
3451 		/* Free the old page.. */
3452 		new_folio = old_folio;
3453 		page_copied = 1;
3454 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3455 	} else if (vmf->pte) {
3456 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3457 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3458 	}
3459 
3460 	mmu_notifier_invalidate_range_end(&range);
3461 
3462 	if (new_folio)
3463 		folio_put(new_folio);
3464 	if (old_folio) {
3465 		if (page_copied)
3466 			free_swap_cache(old_folio);
3467 		folio_put(old_folio);
3468 	}
3469 
3470 	delayacct_wpcopy_end();
3471 	return 0;
3472 oom:
3473 	ret = VM_FAULT_OOM;
3474 out:
3475 	if (old_folio)
3476 		folio_put(old_folio);
3477 
3478 	delayacct_wpcopy_end();
3479 	return ret;
3480 }
3481 
3482 /**
3483  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3484  *			  writeable once the page is prepared
3485  *
3486  * @vmf: structure describing the fault
3487  * @folio: the folio of vmf->page
3488  *
3489  * This function handles all that is needed to finish a write page fault in a
3490  * shared mapping due to PTE being read-only once the mapped page is prepared.
3491  * It handles locking of PTE and modifying it.
3492  *
3493  * The function expects the page to be locked or other protection against
3494  * concurrent faults / writeback (such as DAX radix tree locks).
3495  *
3496  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3497  * we acquired PTE lock.
3498  */
3499 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3500 {
3501 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3502 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3503 				       &vmf->ptl);
3504 	if (!vmf->pte)
3505 		return VM_FAULT_NOPAGE;
3506 	/*
3507 	 * We might have raced with another page fault while we released the
3508 	 * pte_offset_map_lock.
3509 	 */
3510 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3511 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3512 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3513 		return VM_FAULT_NOPAGE;
3514 	}
3515 	wp_page_reuse(vmf, folio);
3516 	return 0;
3517 }
3518 
3519 /*
3520  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3521  * mapping
3522  */
3523 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3524 {
3525 	struct vm_area_struct *vma = vmf->vma;
3526 
3527 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3528 		vm_fault_t ret;
3529 
3530 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3531 		ret = vmf_can_call_fault(vmf);
3532 		if (ret)
3533 			return ret;
3534 
3535 		vmf->flags |= FAULT_FLAG_MKWRITE;
3536 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3537 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3538 			return ret;
3539 		return finish_mkwrite_fault(vmf, NULL);
3540 	}
3541 	wp_page_reuse(vmf, NULL);
3542 	return 0;
3543 }
3544 
3545 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3546 	__releases(vmf->ptl)
3547 {
3548 	struct vm_area_struct *vma = vmf->vma;
3549 	vm_fault_t ret = 0;
3550 
3551 	folio_get(folio);
3552 
3553 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3554 		vm_fault_t tmp;
3555 
3556 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3557 		tmp = vmf_can_call_fault(vmf);
3558 		if (tmp) {
3559 			folio_put(folio);
3560 			return tmp;
3561 		}
3562 
3563 		tmp = do_page_mkwrite(vmf, folio);
3564 		if (unlikely(!tmp || (tmp &
3565 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3566 			folio_put(folio);
3567 			return tmp;
3568 		}
3569 		tmp = finish_mkwrite_fault(vmf, folio);
3570 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3571 			folio_unlock(folio);
3572 			folio_put(folio);
3573 			return tmp;
3574 		}
3575 	} else {
3576 		wp_page_reuse(vmf, folio);
3577 		folio_lock(folio);
3578 	}
3579 	ret |= fault_dirty_shared_page(vmf);
3580 	folio_put(folio);
3581 
3582 	return ret;
3583 }
3584 
3585 static bool wp_can_reuse_anon_folio(struct folio *folio,
3586 				    struct vm_area_struct *vma)
3587 {
3588 	/*
3589 	 * We could currently only reuse a subpage of a large folio if no
3590 	 * other subpages of the large folios are still mapped. However,
3591 	 * let's just consistently not reuse subpages even if we could
3592 	 * reuse in that scenario, and give back a large folio a bit
3593 	 * sooner.
3594 	 */
3595 	if (folio_test_large(folio))
3596 		return false;
3597 
3598 	/*
3599 	 * We have to verify under folio lock: these early checks are
3600 	 * just an optimization to avoid locking the folio and freeing
3601 	 * the swapcache if there is little hope that we can reuse.
3602 	 *
3603 	 * KSM doesn't necessarily raise the folio refcount.
3604 	 */
3605 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3606 		return false;
3607 	if (!folio_test_lru(folio))
3608 		/*
3609 		 * We cannot easily detect+handle references from
3610 		 * remote LRU caches or references to LRU folios.
3611 		 */
3612 		lru_add_drain();
3613 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3614 		return false;
3615 	if (!folio_trylock(folio))
3616 		return false;
3617 	if (folio_test_swapcache(folio))
3618 		folio_free_swap(folio);
3619 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3620 		folio_unlock(folio);
3621 		return false;
3622 	}
3623 	/*
3624 	 * Ok, we've got the only folio reference from our mapping
3625 	 * and the folio is locked, it's dark out, and we're wearing
3626 	 * sunglasses. Hit it.
3627 	 */
3628 	folio_move_anon_rmap(folio, vma);
3629 	folio_unlock(folio);
3630 	return true;
3631 }
3632 
3633 /*
3634  * This routine handles present pages, when
3635  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3636  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3637  *   (FAULT_FLAG_UNSHARE)
3638  *
3639  * It is done by copying the page to a new address and decrementing the
3640  * shared-page counter for the old page.
3641  *
3642  * Note that this routine assumes that the protection checks have been
3643  * done by the caller (the low-level page fault routine in most cases).
3644  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3645  * done any necessary COW.
3646  *
3647  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3648  * though the page will change only once the write actually happens. This
3649  * avoids a few races, and potentially makes it more efficient.
3650  *
3651  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3652  * but allow concurrent faults), with pte both mapped and locked.
3653  * We return with mmap_lock still held, but pte unmapped and unlocked.
3654  */
3655 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3656 	__releases(vmf->ptl)
3657 {
3658 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3659 	struct vm_area_struct *vma = vmf->vma;
3660 	struct folio *folio = NULL;
3661 	pte_t pte;
3662 
3663 	if (likely(!unshare)) {
3664 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3665 			if (!userfaultfd_wp_async(vma)) {
3666 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3667 				return handle_userfault(vmf, VM_UFFD_WP);
3668 			}
3669 
3670 			/*
3671 			 * Nothing needed (cache flush, TLB invalidations,
3672 			 * etc.) because we're only removing the uffd-wp bit,
3673 			 * which is completely invisible to the user.
3674 			 */
3675 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3676 
3677 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3678 			/*
3679 			 * Update this to be prepared for following up CoW
3680 			 * handling
3681 			 */
3682 			vmf->orig_pte = pte;
3683 		}
3684 
3685 		/*
3686 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3687 		 * is flushed in this case before copying.
3688 		 */
3689 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3690 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3691 			flush_tlb_page(vmf->vma, vmf->address);
3692 	}
3693 
3694 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3695 
3696 	if (vmf->page)
3697 		folio = page_folio(vmf->page);
3698 
3699 	/*
3700 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3701 	 * FAULT_FLAG_WRITE set at this point.
3702 	 */
3703 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3704 		/*
3705 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3706 		 * VM_PFNMAP VMA.
3707 		 *
3708 		 * We should not cow pages in a shared writeable mapping.
3709 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3710 		 */
3711 		if (!vmf->page)
3712 			return wp_pfn_shared(vmf);
3713 		return wp_page_shared(vmf, folio);
3714 	}
3715 
3716 	/*
3717 	 * Private mapping: create an exclusive anonymous page copy if reuse
3718 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3719 	 *
3720 	 * If we encounter a page that is marked exclusive, we must reuse
3721 	 * the page without further checks.
3722 	 */
3723 	if (folio && folio_test_anon(folio) &&
3724 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3725 		if (!PageAnonExclusive(vmf->page))
3726 			SetPageAnonExclusive(vmf->page);
3727 		if (unlikely(unshare)) {
3728 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3729 			return 0;
3730 		}
3731 		wp_page_reuse(vmf, folio);
3732 		return 0;
3733 	}
3734 	/*
3735 	 * Ok, we need to copy. Oh, well..
3736 	 */
3737 	if (folio)
3738 		folio_get(folio);
3739 
3740 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3741 #ifdef CONFIG_KSM
3742 	if (folio && folio_test_ksm(folio))
3743 		count_vm_event(COW_KSM);
3744 #endif
3745 	return wp_page_copy(vmf);
3746 }
3747 
3748 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3749 		unsigned long start_addr, unsigned long end_addr,
3750 		struct zap_details *details)
3751 {
3752 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3753 }
3754 
3755 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3756 					    pgoff_t first_index,
3757 					    pgoff_t last_index,
3758 					    struct zap_details *details)
3759 {
3760 	struct vm_area_struct *vma;
3761 	pgoff_t vba, vea, zba, zea;
3762 
3763 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3764 		vba = vma->vm_pgoff;
3765 		vea = vba + vma_pages(vma) - 1;
3766 		zba = max(first_index, vba);
3767 		zea = min(last_index, vea);
3768 
3769 		unmap_mapping_range_vma(vma,
3770 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3771 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3772 				details);
3773 	}
3774 }
3775 
3776 /**
3777  * unmap_mapping_folio() - Unmap single folio from processes.
3778  * @folio: The locked folio to be unmapped.
3779  *
3780  * Unmap this folio from any userspace process which still has it mmaped.
3781  * Typically, for efficiency, the range of nearby pages has already been
3782  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3783  * truncation or invalidation holds the lock on a folio, it may find that
3784  * the page has been remapped again: and then uses unmap_mapping_folio()
3785  * to unmap it finally.
3786  */
3787 void unmap_mapping_folio(struct folio *folio)
3788 {
3789 	struct address_space *mapping = folio->mapping;
3790 	struct zap_details details = { };
3791 	pgoff_t	first_index;
3792 	pgoff_t	last_index;
3793 
3794 	VM_BUG_ON(!folio_test_locked(folio));
3795 
3796 	first_index = folio->index;
3797 	last_index = folio_next_index(folio) - 1;
3798 
3799 	details.even_cows = false;
3800 	details.single_folio = folio;
3801 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3802 
3803 	i_mmap_lock_read(mapping);
3804 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3805 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3806 					 last_index, &details);
3807 	i_mmap_unlock_read(mapping);
3808 }
3809 
3810 /**
3811  * unmap_mapping_pages() - Unmap pages from processes.
3812  * @mapping: The address space containing pages to be unmapped.
3813  * @start: Index of first page to be unmapped.
3814  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3815  * @even_cows: Whether to unmap even private COWed pages.
3816  *
3817  * Unmap the pages in this address space from any userspace process which
3818  * has them mmaped.  Generally, you want to remove COWed pages as well when
3819  * a file is being truncated, but not when invalidating pages from the page
3820  * cache.
3821  */
3822 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3823 		pgoff_t nr, bool even_cows)
3824 {
3825 	struct zap_details details = { };
3826 	pgoff_t	first_index = start;
3827 	pgoff_t	last_index = start + nr - 1;
3828 
3829 	details.even_cows = even_cows;
3830 	if (last_index < first_index)
3831 		last_index = ULONG_MAX;
3832 
3833 	i_mmap_lock_read(mapping);
3834 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3835 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3836 					 last_index, &details);
3837 	i_mmap_unlock_read(mapping);
3838 }
3839 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3840 
3841 /**
3842  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3843  * address_space corresponding to the specified byte range in the underlying
3844  * file.
3845  *
3846  * @mapping: the address space containing mmaps to be unmapped.
3847  * @holebegin: byte in first page to unmap, relative to the start of
3848  * the underlying file.  This will be rounded down to a PAGE_SIZE
3849  * boundary.  Note that this is different from truncate_pagecache(), which
3850  * must keep the partial page.  In contrast, we must get rid of
3851  * partial pages.
3852  * @holelen: size of prospective hole in bytes.  This will be rounded
3853  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3854  * end of the file.
3855  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3856  * but 0 when invalidating pagecache, don't throw away private data.
3857  */
3858 void unmap_mapping_range(struct address_space *mapping,
3859 		loff_t const holebegin, loff_t const holelen, int even_cows)
3860 {
3861 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3862 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3863 
3864 	/* Check for overflow. */
3865 	if (sizeof(holelen) > sizeof(hlen)) {
3866 		long long holeend =
3867 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3868 		if (holeend & ~(long long)ULONG_MAX)
3869 			hlen = ULONG_MAX - hba + 1;
3870 	}
3871 
3872 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3873 }
3874 EXPORT_SYMBOL(unmap_mapping_range);
3875 
3876 /*
3877  * Restore a potential device exclusive pte to a working pte entry
3878  */
3879 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3880 {
3881 	struct folio *folio = page_folio(vmf->page);
3882 	struct vm_area_struct *vma = vmf->vma;
3883 	struct mmu_notifier_range range;
3884 	vm_fault_t ret;
3885 
3886 	/*
3887 	 * We need a reference to lock the folio because we don't hold
3888 	 * the PTL so a racing thread can remove the device-exclusive
3889 	 * entry and unmap it. If the folio is free the entry must
3890 	 * have been removed already. If it happens to have already
3891 	 * been re-allocated after being freed all we do is lock and
3892 	 * unlock it.
3893 	 */
3894 	if (!folio_try_get(folio))
3895 		return 0;
3896 
3897 	ret = folio_lock_or_retry(folio, vmf);
3898 	if (ret) {
3899 		folio_put(folio);
3900 		return ret;
3901 	}
3902 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3903 				vma->vm_mm, vmf->address & PAGE_MASK,
3904 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3905 	mmu_notifier_invalidate_range_start(&range);
3906 
3907 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3908 				&vmf->ptl);
3909 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3910 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3911 
3912 	if (vmf->pte)
3913 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3914 	folio_unlock(folio);
3915 	folio_put(folio);
3916 
3917 	mmu_notifier_invalidate_range_end(&range);
3918 	return 0;
3919 }
3920 
3921 static inline bool should_try_to_free_swap(struct folio *folio,
3922 					   struct vm_area_struct *vma,
3923 					   unsigned int fault_flags)
3924 {
3925 	if (!folio_test_swapcache(folio))
3926 		return false;
3927 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3928 	    folio_test_mlocked(folio))
3929 		return true;
3930 	/*
3931 	 * If we want to map a page that's in the swapcache writable, we
3932 	 * have to detect via the refcount if we're really the exclusive
3933 	 * user. Try freeing the swapcache to get rid of the swapcache
3934 	 * reference only in case it's likely that we'll be the exlusive user.
3935 	 */
3936 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3937 		folio_ref_count(folio) == (1 + folio_nr_pages(folio));
3938 }
3939 
3940 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3941 {
3942 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3943 				       vmf->address, &vmf->ptl);
3944 	if (!vmf->pte)
3945 		return 0;
3946 	/*
3947 	 * Be careful so that we will only recover a special uffd-wp pte into a
3948 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3949 	 *
3950 	 * This should also cover the case where e.g. the pte changed
3951 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3952 	 * So is_pte_marker() check is not enough to safely drop the pte.
3953 	 */
3954 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3955 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3956 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3957 	return 0;
3958 }
3959 
3960 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3961 {
3962 	if (vma_is_anonymous(vmf->vma))
3963 		return do_anonymous_page(vmf);
3964 	else
3965 		return do_fault(vmf);
3966 }
3967 
3968 /*
3969  * This is actually a page-missing access, but with uffd-wp special pte
3970  * installed.  It means this pte was wr-protected before being unmapped.
3971  */
3972 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3973 {
3974 	/*
3975 	 * Just in case there're leftover special ptes even after the region
3976 	 * got unregistered - we can simply clear them.
3977 	 */
3978 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3979 		return pte_marker_clear(vmf);
3980 
3981 	return do_pte_missing(vmf);
3982 }
3983 
3984 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3985 {
3986 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3987 	unsigned long marker = pte_marker_get(entry);
3988 
3989 	/*
3990 	 * PTE markers should never be empty.  If anything weird happened,
3991 	 * the best thing to do is to kill the process along with its mm.
3992 	 */
3993 	if (WARN_ON_ONCE(!marker))
3994 		return VM_FAULT_SIGBUS;
3995 
3996 	/* Higher priority than uffd-wp when data corrupted */
3997 	if (marker & PTE_MARKER_POISONED)
3998 		return VM_FAULT_HWPOISON;
3999 
4000 	if (pte_marker_entry_uffd_wp(entry))
4001 		return pte_marker_handle_uffd_wp(vmf);
4002 
4003 	/* This is an unknown pte marker */
4004 	return VM_FAULT_SIGBUS;
4005 }
4006 
4007 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4008 {
4009 	struct vm_area_struct *vma = vmf->vma;
4010 	struct folio *folio;
4011 	swp_entry_t entry;
4012 
4013 	folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
4014 				vmf->address, false);
4015 	if (!folio)
4016 		return NULL;
4017 
4018 	entry = pte_to_swp_entry(vmf->orig_pte);
4019 	if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4020 					   GFP_KERNEL, entry)) {
4021 		folio_put(folio);
4022 		return NULL;
4023 	}
4024 
4025 	return folio;
4026 }
4027 
4028 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4029 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
4030 {
4031 	struct swap_info_struct *si = swp_swap_info(entry);
4032 	pgoff_t offset = swp_offset(entry);
4033 	int i;
4034 
4035 	/*
4036 	 * While allocating a large folio and doing swap_read_folio, which is
4037 	 * the case the being faulted pte doesn't have swapcache. We need to
4038 	 * ensure all PTEs have no cache as well, otherwise, we might go to
4039 	 * swap devices while the content is in swapcache.
4040 	 */
4041 	for (i = 0; i < max_nr; i++) {
4042 		if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
4043 			return i;
4044 	}
4045 
4046 	return i;
4047 }
4048 
4049 /*
4050  * Check if the PTEs within a range are contiguous swap entries
4051  * and have consistent swapcache, zeromap.
4052  */
4053 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4054 {
4055 	unsigned long addr;
4056 	swp_entry_t entry;
4057 	int idx;
4058 	pte_t pte;
4059 
4060 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4061 	idx = (vmf->address - addr) / PAGE_SIZE;
4062 	pte = ptep_get(ptep);
4063 
4064 	if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4065 		return false;
4066 	entry = pte_to_swp_entry(pte);
4067 	if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4068 		return false;
4069 
4070 	/*
4071 	 * swap_read_folio() can't handle the case a large folio is hybridly
4072 	 * from different backends. And they are likely corner cases. Similar
4073 	 * things might be added once zswap support large folios.
4074 	 */
4075 	if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4076 		return false;
4077 	if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4078 		return false;
4079 
4080 	return true;
4081 }
4082 
4083 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4084 						     unsigned long addr,
4085 						     unsigned long orders)
4086 {
4087 	int order, nr;
4088 
4089 	order = highest_order(orders);
4090 
4091 	/*
4092 	 * To swap in a THP with nr pages, we require that its first swap_offset
4093 	 * is aligned with that number, as it was when the THP was swapped out.
4094 	 * This helps filter out most invalid entries.
4095 	 */
4096 	while (orders) {
4097 		nr = 1 << order;
4098 		if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4099 			break;
4100 		order = next_order(&orders, order);
4101 	}
4102 
4103 	return orders;
4104 }
4105 
4106 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4107 {
4108 	struct vm_area_struct *vma = vmf->vma;
4109 	unsigned long orders;
4110 	struct folio *folio;
4111 	unsigned long addr;
4112 	swp_entry_t entry;
4113 	spinlock_t *ptl;
4114 	pte_t *pte;
4115 	gfp_t gfp;
4116 	int order;
4117 
4118 	/*
4119 	 * If uffd is active for the vma we need per-page fault fidelity to
4120 	 * maintain the uffd semantics.
4121 	 */
4122 	if (unlikely(userfaultfd_armed(vma)))
4123 		goto fallback;
4124 
4125 	/*
4126 	 * A large swapped out folio could be partially or fully in zswap. We
4127 	 * lack handling for such cases, so fallback to swapping in order-0
4128 	 * folio.
4129 	 */
4130 	if (!zswap_never_enabled())
4131 		goto fallback;
4132 
4133 	entry = pte_to_swp_entry(vmf->orig_pte);
4134 	/*
4135 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4136 	 * and suitable for swapping THP.
4137 	 */
4138 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4139 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4140 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4141 	orders = thp_swap_suitable_orders(swp_offset(entry),
4142 					  vmf->address, orders);
4143 
4144 	if (!orders)
4145 		goto fallback;
4146 
4147 	pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4148 				  vmf->address & PMD_MASK, &ptl);
4149 	if (unlikely(!pte))
4150 		goto fallback;
4151 
4152 	/*
4153 	 * For do_swap_page, find the highest order where the aligned range is
4154 	 * completely swap entries with contiguous swap offsets.
4155 	 */
4156 	order = highest_order(orders);
4157 	while (orders) {
4158 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4159 		if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4160 			break;
4161 		order = next_order(&orders, order);
4162 	}
4163 
4164 	pte_unmap_unlock(pte, ptl);
4165 
4166 	/* Try allocating the highest of the remaining orders. */
4167 	gfp = vma_thp_gfp_mask(vma);
4168 	while (orders) {
4169 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4170 		folio = vma_alloc_folio(gfp, order, vma, addr, true);
4171 		if (folio) {
4172 			if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4173 							    gfp, entry))
4174 				return folio;
4175 			folio_put(folio);
4176 		}
4177 		order = next_order(&orders, order);
4178 	}
4179 
4180 fallback:
4181 	return __alloc_swap_folio(vmf);
4182 }
4183 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4184 static inline bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4185 {
4186 	return false;
4187 }
4188 
4189 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4190 {
4191 	return __alloc_swap_folio(vmf);
4192 }
4193 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4194 
4195 /*
4196  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4197  * but allow concurrent faults), and pte mapped but not yet locked.
4198  * We return with pte unmapped and unlocked.
4199  *
4200  * We return with the mmap_lock locked or unlocked in the same cases
4201  * as does filemap_fault().
4202  */
4203 vm_fault_t do_swap_page(struct vm_fault *vmf)
4204 {
4205 	struct vm_area_struct *vma = vmf->vma;
4206 	struct folio *swapcache, *folio = NULL;
4207 	struct page *page;
4208 	struct swap_info_struct *si = NULL;
4209 	rmap_t rmap_flags = RMAP_NONE;
4210 	bool need_clear_cache = false;
4211 	bool exclusive = false;
4212 	swp_entry_t entry;
4213 	pte_t pte;
4214 	vm_fault_t ret = 0;
4215 	void *shadow = NULL;
4216 	int nr_pages;
4217 	unsigned long page_idx;
4218 	unsigned long address;
4219 	pte_t *ptep;
4220 
4221 	if (!pte_unmap_same(vmf))
4222 		goto out;
4223 
4224 	entry = pte_to_swp_entry(vmf->orig_pte);
4225 	if (unlikely(non_swap_entry(entry))) {
4226 		if (is_migration_entry(entry)) {
4227 			migration_entry_wait(vma->vm_mm, vmf->pmd,
4228 					     vmf->address);
4229 		} else if (is_device_exclusive_entry(entry)) {
4230 			vmf->page = pfn_swap_entry_to_page(entry);
4231 			ret = remove_device_exclusive_entry(vmf);
4232 		} else if (is_device_private_entry(entry)) {
4233 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4234 				/*
4235 				 * migrate_to_ram is not yet ready to operate
4236 				 * under VMA lock.
4237 				 */
4238 				vma_end_read(vma);
4239 				ret = VM_FAULT_RETRY;
4240 				goto out;
4241 			}
4242 
4243 			vmf->page = pfn_swap_entry_to_page(entry);
4244 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4245 					vmf->address, &vmf->ptl);
4246 			if (unlikely(!vmf->pte ||
4247 				     !pte_same(ptep_get(vmf->pte),
4248 							vmf->orig_pte)))
4249 				goto unlock;
4250 
4251 			/*
4252 			 * Get a page reference while we know the page can't be
4253 			 * freed.
4254 			 */
4255 			get_page(vmf->page);
4256 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4257 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4258 			put_page(vmf->page);
4259 		} else if (is_hwpoison_entry(entry)) {
4260 			ret = VM_FAULT_HWPOISON;
4261 		} else if (is_pte_marker_entry(entry)) {
4262 			ret = handle_pte_marker(vmf);
4263 		} else {
4264 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4265 			ret = VM_FAULT_SIGBUS;
4266 		}
4267 		goto out;
4268 	}
4269 
4270 	/* Prevent swapoff from happening to us. */
4271 	si = get_swap_device(entry);
4272 	if (unlikely(!si))
4273 		goto out;
4274 
4275 	folio = swap_cache_get_folio(entry, vma, vmf->address);
4276 	if (folio)
4277 		page = folio_file_page(folio, swp_offset(entry));
4278 	swapcache = folio;
4279 
4280 	if (!folio) {
4281 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4282 		    __swap_count(entry) == 1) {
4283 			/* skip swapcache */
4284 			folio = alloc_swap_folio(vmf);
4285 			if (folio) {
4286 				__folio_set_locked(folio);
4287 				__folio_set_swapbacked(folio);
4288 
4289 				nr_pages = folio_nr_pages(folio);
4290 				if (folio_test_large(folio))
4291 					entry.val = ALIGN_DOWN(entry.val, nr_pages);
4292 				/*
4293 				 * Prevent parallel swapin from proceeding with
4294 				 * the cache flag. Otherwise, another thread
4295 				 * may finish swapin first, free the entry, and
4296 				 * swapout reusing the same entry. It's
4297 				 * undetectable as pte_same() returns true due
4298 				 * to entry reuse.
4299 				 */
4300 				if (swapcache_prepare(entry, nr_pages)) {
4301 					/*
4302 					 * Relax a bit to prevent rapid
4303 					 * repeated page faults.
4304 					 */
4305 					schedule_timeout_uninterruptible(1);
4306 					goto out_page;
4307 				}
4308 				need_clear_cache = true;
4309 
4310 				mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
4311 
4312 				shadow = get_shadow_from_swap_cache(entry);
4313 				if (shadow)
4314 					workingset_refault(folio, shadow);
4315 
4316 				folio_add_lru(folio);
4317 
4318 				/* To provide entry to swap_read_folio() */
4319 				folio->swap = entry;
4320 				swap_read_folio(folio, NULL);
4321 				folio->private = NULL;
4322 			}
4323 		} else {
4324 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4325 						vmf);
4326 			swapcache = folio;
4327 		}
4328 
4329 		if (!folio) {
4330 			/*
4331 			 * Back out if somebody else faulted in this pte
4332 			 * while we released the pte lock.
4333 			 */
4334 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4335 					vmf->address, &vmf->ptl);
4336 			if (likely(vmf->pte &&
4337 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4338 				ret = VM_FAULT_OOM;
4339 			goto unlock;
4340 		}
4341 
4342 		/* Had to read the page from swap area: Major fault */
4343 		ret = VM_FAULT_MAJOR;
4344 		count_vm_event(PGMAJFAULT);
4345 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4346 		page = folio_file_page(folio, swp_offset(entry));
4347 	} else if (PageHWPoison(page)) {
4348 		/*
4349 		 * hwpoisoned dirty swapcache pages are kept for killing
4350 		 * owner processes (which may be unknown at hwpoison time)
4351 		 */
4352 		ret = VM_FAULT_HWPOISON;
4353 		goto out_release;
4354 	}
4355 
4356 	ret |= folio_lock_or_retry(folio, vmf);
4357 	if (ret & VM_FAULT_RETRY)
4358 		goto out_release;
4359 
4360 	if (swapcache) {
4361 		/*
4362 		 * Make sure folio_free_swap() or swapoff did not release the
4363 		 * swapcache from under us.  The page pin, and pte_same test
4364 		 * below, are not enough to exclude that.  Even if it is still
4365 		 * swapcache, we need to check that the page's swap has not
4366 		 * changed.
4367 		 */
4368 		if (unlikely(!folio_test_swapcache(folio) ||
4369 			     page_swap_entry(page).val != entry.val))
4370 			goto out_page;
4371 
4372 		/*
4373 		 * KSM sometimes has to copy on read faults, for example, if
4374 		 * page->index of !PageKSM() pages would be nonlinear inside the
4375 		 * anon VMA -- PageKSM() is lost on actual swapout.
4376 		 */
4377 		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4378 		if (unlikely(!folio)) {
4379 			ret = VM_FAULT_OOM;
4380 			folio = swapcache;
4381 			goto out_page;
4382 		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4383 			ret = VM_FAULT_HWPOISON;
4384 			folio = swapcache;
4385 			goto out_page;
4386 		}
4387 		if (folio != swapcache)
4388 			page = folio_page(folio, 0);
4389 
4390 		/*
4391 		 * If we want to map a page that's in the swapcache writable, we
4392 		 * have to detect via the refcount if we're really the exclusive
4393 		 * owner. Try removing the extra reference from the local LRU
4394 		 * caches if required.
4395 		 */
4396 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4397 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
4398 			lru_add_drain();
4399 	}
4400 
4401 	folio_throttle_swaprate(folio, GFP_KERNEL);
4402 
4403 	/*
4404 	 * Back out if somebody else already faulted in this pte.
4405 	 */
4406 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4407 			&vmf->ptl);
4408 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4409 		goto out_nomap;
4410 
4411 	if (unlikely(!folio_test_uptodate(folio))) {
4412 		ret = VM_FAULT_SIGBUS;
4413 		goto out_nomap;
4414 	}
4415 
4416 	/* allocated large folios for SWP_SYNCHRONOUS_IO */
4417 	if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4418 		unsigned long nr = folio_nr_pages(folio);
4419 		unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4420 		unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4421 		pte_t *folio_ptep = vmf->pte - idx;
4422 		pte_t folio_pte = ptep_get(folio_ptep);
4423 
4424 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4425 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4426 			goto out_nomap;
4427 
4428 		page_idx = idx;
4429 		address = folio_start;
4430 		ptep = folio_ptep;
4431 		goto check_folio;
4432 	}
4433 
4434 	nr_pages = 1;
4435 	page_idx = 0;
4436 	address = vmf->address;
4437 	ptep = vmf->pte;
4438 	if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4439 		int nr = folio_nr_pages(folio);
4440 		unsigned long idx = folio_page_idx(folio, page);
4441 		unsigned long folio_start = address - idx * PAGE_SIZE;
4442 		unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4443 		pte_t *folio_ptep;
4444 		pte_t folio_pte;
4445 
4446 		if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4447 			goto check_folio;
4448 		if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4449 			goto check_folio;
4450 
4451 		folio_ptep = vmf->pte - idx;
4452 		folio_pte = ptep_get(folio_ptep);
4453 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4454 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4455 			goto check_folio;
4456 
4457 		page_idx = idx;
4458 		address = folio_start;
4459 		ptep = folio_ptep;
4460 		nr_pages = nr;
4461 		entry = folio->swap;
4462 		page = &folio->page;
4463 	}
4464 
4465 check_folio:
4466 	/*
4467 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4468 	 * must never point at an anonymous page in the swapcache that is
4469 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4470 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4471 	 * check after taking the PT lock and making sure that nobody
4472 	 * concurrently faulted in this page and set PG_anon_exclusive.
4473 	 */
4474 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4475 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4476 
4477 	/*
4478 	 * Check under PT lock (to protect against concurrent fork() sharing
4479 	 * the swap entry concurrently) for certainly exclusive pages.
4480 	 */
4481 	if (!folio_test_ksm(folio)) {
4482 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4483 		if (folio != swapcache) {
4484 			/*
4485 			 * We have a fresh page that is not exposed to the
4486 			 * swapcache -> certainly exclusive.
4487 			 */
4488 			exclusive = true;
4489 		} else if (exclusive && folio_test_writeback(folio) &&
4490 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4491 			/*
4492 			 * This is tricky: not all swap backends support
4493 			 * concurrent page modifications while under writeback.
4494 			 *
4495 			 * So if we stumble over such a page in the swapcache
4496 			 * we must not set the page exclusive, otherwise we can
4497 			 * map it writable without further checks and modify it
4498 			 * while still under writeback.
4499 			 *
4500 			 * For these problematic swap backends, simply drop the
4501 			 * exclusive marker: this is perfectly fine as we start
4502 			 * writeback only if we fully unmapped the page and
4503 			 * there are no unexpected references on the page after
4504 			 * unmapping succeeded. After fully unmapped, no
4505 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4506 			 * appear, so dropping the exclusive marker and mapping
4507 			 * it only R/O is fine.
4508 			 */
4509 			exclusive = false;
4510 		}
4511 	}
4512 
4513 	/*
4514 	 * Some architectures may have to restore extra metadata to the page
4515 	 * when reading from swap. This metadata may be indexed by swap entry
4516 	 * so this must be called before swap_free().
4517 	 */
4518 	arch_swap_restore(folio_swap(entry, folio), folio);
4519 
4520 	/*
4521 	 * Remove the swap entry and conditionally try to free up the swapcache.
4522 	 * We're already holding a reference on the page but haven't mapped it
4523 	 * yet.
4524 	 */
4525 	swap_free_nr(entry, nr_pages);
4526 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4527 		folio_free_swap(folio);
4528 
4529 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4530 	add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4531 	pte = mk_pte(page, vma->vm_page_prot);
4532 	if (pte_swp_soft_dirty(vmf->orig_pte))
4533 		pte = pte_mksoft_dirty(pte);
4534 	if (pte_swp_uffd_wp(vmf->orig_pte))
4535 		pte = pte_mkuffd_wp(pte);
4536 
4537 	/*
4538 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4539 	 * certainly not shared either because we just allocated them without
4540 	 * exposing them to the swapcache or because the swap entry indicates
4541 	 * exclusivity.
4542 	 */
4543 	if (!folio_test_ksm(folio) &&
4544 	    (exclusive || folio_ref_count(folio) == 1)) {
4545 		if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4546 		    !pte_needs_soft_dirty_wp(vma, pte)) {
4547 			pte = pte_mkwrite(pte, vma);
4548 			if (vmf->flags & FAULT_FLAG_WRITE) {
4549 				pte = pte_mkdirty(pte);
4550 				vmf->flags &= ~FAULT_FLAG_WRITE;
4551 			}
4552 		}
4553 		rmap_flags |= RMAP_EXCLUSIVE;
4554 	}
4555 	folio_ref_add(folio, nr_pages - 1);
4556 	flush_icache_pages(vma, page, nr_pages);
4557 	vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4558 
4559 	/* ksm created a completely new copy */
4560 	if (unlikely(folio != swapcache && swapcache)) {
4561 		folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4562 		folio_add_lru_vma(folio, vma);
4563 	} else if (!folio_test_anon(folio)) {
4564 		/*
4565 		 * We currently only expect small !anon folios which are either
4566 		 * fully exclusive or fully shared, or new allocated large
4567 		 * folios which are fully exclusive. If we ever get large
4568 		 * folios within swapcache here, we have to be careful.
4569 		 */
4570 		VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4571 		VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4572 		folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4573 	} else {
4574 		folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4575 					rmap_flags);
4576 	}
4577 
4578 	VM_BUG_ON(!folio_test_anon(folio) ||
4579 			(pte_write(pte) && !PageAnonExclusive(page)));
4580 	set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4581 	arch_do_swap_page_nr(vma->vm_mm, vma, address,
4582 			pte, pte, nr_pages);
4583 
4584 	folio_unlock(folio);
4585 	if (folio != swapcache && swapcache) {
4586 		/*
4587 		 * Hold the lock to avoid the swap entry to be reused
4588 		 * until we take the PT lock for the pte_same() check
4589 		 * (to avoid false positives from pte_same). For
4590 		 * further safety release the lock after the swap_free
4591 		 * so that the swap count won't change under a
4592 		 * parallel locked swapcache.
4593 		 */
4594 		folio_unlock(swapcache);
4595 		folio_put(swapcache);
4596 	}
4597 
4598 	if (vmf->flags & FAULT_FLAG_WRITE) {
4599 		ret |= do_wp_page(vmf);
4600 		if (ret & VM_FAULT_ERROR)
4601 			ret &= VM_FAULT_ERROR;
4602 		goto out;
4603 	}
4604 
4605 	/* No need to invalidate - it was non-present before */
4606 	update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4607 unlock:
4608 	if (vmf->pte)
4609 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4610 out:
4611 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4612 	if (need_clear_cache)
4613 		swapcache_clear(si, entry, nr_pages);
4614 	if (si)
4615 		put_swap_device(si);
4616 	return ret;
4617 out_nomap:
4618 	if (vmf->pte)
4619 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4620 out_page:
4621 	folio_unlock(folio);
4622 out_release:
4623 	folio_put(folio);
4624 	if (folio != swapcache && swapcache) {
4625 		folio_unlock(swapcache);
4626 		folio_put(swapcache);
4627 	}
4628 	if (need_clear_cache)
4629 		swapcache_clear(si, entry, nr_pages);
4630 	if (si)
4631 		put_swap_device(si);
4632 	return ret;
4633 }
4634 
4635 static bool pte_range_none(pte_t *pte, int nr_pages)
4636 {
4637 	int i;
4638 
4639 	for (i = 0; i < nr_pages; i++) {
4640 		if (!pte_none(ptep_get_lockless(pte + i)))
4641 			return false;
4642 	}
4643 
4644 	return true;
4645 }
4646 
4647 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4648 {
4649 	struct vm_area_struct *vma = vmf->vma;
4650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4651 	unsigned long orders;
4652 	struct folio *folio;
4653 	unsigned long addr;
4654 	pte_t *pte;
4655 	gfp_t gfp;
4656 	int order;
4657 
4658 	/*
4659 	 * If uffd is active for the vma we need per-page fault fidelity to
4660 	 * maintain the uffd semantics.
4661 	 */
4662 	if (unlikely(userfaultfd_armed(vma)))
4663 		goto fallback;
4664 
4665 	/*
4666 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4667 	 * for this vma. Then filter out the orders that can't be allocated over
4668 	 * the faulting address and still be fully contained in the vma.
4669 	 */
4670 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4671 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4672 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4673 
4674 	if (!orders)
4675 		goto fallback;
4676 
4677 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4678 	if (!pte)
4679 		return ERR_PTR(-EAGAIN);
4680 
4681 	/*
4682 	 * Find the highest order where the aligned range is completely
4683 	 * pte_none(). Note that all remaining orders will be completely
4684 	 * pte_none().
4685 	 */
4686 	order = highest_order(orders);
4687 	while (orders) {
4688 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4689 		if (pte_range_none(pte + pte_index(addr), 1 << order))
4690 			break;
4691 		order = next_order(&orders, order);
4692 	}
4693 
4694 	pte_unmap(pte);
4695 
4696 	if (!orders)
4697 		goto fallback;
4698 
4699 	/* Try allocating the highest of the remaining orders. */
4700 	gfp = vma_thp_gfp_mask(vma);
4701 	while (orders) {
4702 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4703 		folio = vma_alloc_folio(gfp, order, vma, addr, true);
4704 		if (folio) {
4705 			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4706 				count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4707 				folio_put(folio);
4708 				goto next;
4709 			}
4710 			folio_throttle_swaprate(folio, gfp);
4711 			folio_zero_user(folio, vmf->address);
4712 			return folio;
4713 		}
4714 next:
4715 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4716 		order = next_order(&orders, order);
4717 	}
4718 
4719 fallback:
4720 #endif
4721 	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4722 }
4723 
4724 /*
4725  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4726  * but allow concurrent faults), and pte mapped but not yet locked.
4727  * We return with mmap_lock still held, but pte unmapped and unlocked.
4728  */
4729 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4730 {
4731 	struct vm_area_struct *vma = vmf->vma;
4732 	unsigned long addr = vmf->address;
4733 	struct folio *folio;
4734 	vm_fault_t ret = 0;
4735 	int nr_pages = 1;
4736 	pte_t entry;
4737 
4738 	/* File mapping without ->vm_ops ? */
4739 	if (vma->vm_flags & VM_SHARED)
4740 		return VM_FAULT_SIGBUS;
4741 
4742 	/*
4743 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4744 	 * be distinguished from a transient failure of pte_offset_map().
4745 	 */
4746 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4747 		return VM_FAULT_OOM;
4748 
4749 	/* Use the zero-page for reads */
4750 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4751 			!mm_forbids_zeropage(vma->vm_mm)) {
4752 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4753 						vma->vm_page_prot));
4754 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4755 				vmf->address, &vmf->ptl);
4756 		if (!vmf->pte)
4757 			goto unlock;
4758 		if (vmf_pte_changed(vmf)) {
4759 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4760 			goto unlock;
4761 		}
4762 		ret = check_stable_address_space(vma->vm_mm);
4763 		if (ret)
4764 			goto unlock;
4765 		/* Deliver the page fault to userland, check inside PT lock */
4766 		if (userfaultfd_missing(vma)) {
4767 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4768 			return handle_userfault(vmf, VM_UFFD_MISSING);
4769 		}
4770 		goto setpte;
4771 	}
4772 
4773 	/* Allocate our own private page. */
4774 	ret = vmf_anon_prepare(vmf);
4775 	if (ret)
4776 		return ret;
4777 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4778 	folio = alloc_anon_folio(vmf);
4779 	if (IS_ERR(folio))
4780 		return 0;
4781 	if (!folio)
4782 		goto oom;
4783 
4784 	nr_pages = folio_nr_pages(folio);
4785 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4786 
4787 	/*
4788 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4789 	 * preceding stores to the page contents become visible before
4790 	 * the set_pte_at() write.
4791 	 */
4792 	__folio_mark_uptodate(folio);
4793 
4794 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4795 	entry = pte_sw_mkyoung(entry);
4796 	if (vma->vm_flags & VM_WRITE)
4797 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4798 
4799 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4800 	if (!vmf->pte)
4801 		goto release;
4802 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4803 		update_mmu_tlb(vma, addr, vmf->pte);
4804 		goto release;
4805 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4806 		update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4807 		goto release;
4808 	}
4809 
4810 	ret = check_stable_address_space(vma->vm_mm);
4811 	if (ret)
4812 		goto release;
4813 
4814 	/* Deliver the page fault to userland, check inside PT lock */
4815 	if (userfaultfd_missing(vma)) {
4816 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4817 		folio_put(folio);
4818 		return handle_userfault(vmf, VM_UFFD_MISSING);
4819 	}
4820 
4821 	folio_ref_add(folio, nr_pages - 1);
4822 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4823 	count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4824 	folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4825 	folio_add_lru_vma(folio, vma);
4826 setpte:
4827 	if (vmf_orig_pte_uffd_wp(vmf))
4828 		entry = pte_mkuffd_wp(entry);
4829 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4830 
4831 	/* No need to invalidate - it was non-present before */
4832 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4833 unlock:
4834 	if (vmf->pte)
4835 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4836 	return ret;
4837 release:
4838 	folio_put(folio);
4839 	goto unlock;
4840 oom:
4841 	return VM_FAULT_OOM;
4842 }
4843 
4844 /*
4845  * The mmap_lock must have been held on entry, and may have been
4846  * released depending on flags and vma->vm_ops->fault() return value.
4847  * See filemap_fault() and __lock_page_retry().
4848  */
4849 static vm_fault_t __do_fault(struct vm_fault *vmf)
4850 {
4851 	struct vm_area_struct *vma = vmf->vma;
4852 	struct folio *folio;
4853 	vm_fault_t ret;
4854 
4855 	/*
4856 	 * Preallocate pte before we take page_lock because this might lead to
4857 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4858 	 *				lock_page(A)
4859 	 *				SetPageWriteback(A)
4860 	 *				unlock_page(A)
4861 	 * lock_page(B)
4862 	 *				lock_page(B)
4863 	 * pte_alloc_one
4864 	 *   shrink_folio_list
4865 	 *     wait_on_page_writeback(A)
4866 	 *				SetPageWriteback(B)
4867 	 *				unlock_page(B)
4868 	 *				# flush A, B to clear the writeback
4869 	 */
4870 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4871 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4872 		if (!vmf->prealloc_pte)
4873 			return VM_FAULT_OOM;
4874 	}
4875 
4876 	ret = vma->vm_ops->fault(vmf);
4877 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4878 			    VM_FAULT_DONE_COW)))
4879 		return ret;
4880 
4881 	folio = page_folio(vmf->page);
4882 	if (unlikely(PageHWPoison(vmf->page))) {
4883 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4884 		if (ret & VM_FAULT_LOCKED) {
4885 			if (page_mapped(vmf->page))
4886 				unmap_mapping_folio(folio);
4887 			/* Retry if a clean folio was removed from the cache. */
4888 			if (mapping_evict_folio(folio->mapping, folio))
4889 				poisonret = VM_FAULT_NOPAGE;
4890 			folio_unlock(folio);
4891 		}
4892 		folio_put(folio);
4893 		vmf->page = NULL;
4894 		return poisonret;
4895 	}
4896 
4897 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4898 		folio_lock(folio);
4899 	else
4900 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4901 
4902 	return ret;
4903 }
4904 
4905 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4906 static void deposit_prealloc_pte(struct vm_fault *vmf)
4907 {
4908 	struct vm_area_struct *vma = vmf->vma;
4909 
4910 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4911 	/*
4912 	 * We are going to consume the prealloc table,
4913 	 * count that as nr_ptes.
4914 	 */
4915 	mm_inc_nr_ptes(vma->vm_mm);
4916 	vmf->prealloc_pte = NULL;
4917 }
4918 
4919 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4920 {
4921 	struct folio *folio = page_folio(page);
4922 	struct vm_area_struct *vma = vmf->vma;
4923 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4924 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4925 	pmd_t entry;
4926 	vm_fault_t ret = VM_FAULT_FALLBACK;
4927 
4928 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4929 		return ret;
4930 
4931 	if (folio_order(folio) != HPAGE_PMD_ORDER)
4932 		return ret;
4933 	page = &folio->page;
4934 
4935 	/*
4936 	 * Just backoff if any subpage of a THP is corrupted otherwise
4937 	 * the corrupted page may mapped by PMD silently to escape the
4938 	 * check.  This kind of THP just can be PTE mapped.  Access to
4939 	 * the corrupted subpage should trigger SIGBUS as expected.
4940 	 */
4941 	if (unlikely(folio_test_has_hwpoisoned(folio)))
4942 		return ret;
4943 
4944 	/*
4945 	 * Archs like ppc64 need additional space to store information
4946 	 * related to pte entry. Use the preallocated table for that.
4947 	 */
4948 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4949 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4950 		if (!vmf->prealloc_pte)
4951 			return VM_FAULT_OOM;
4952 	}
4953 
4954 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4955 	if (unlikely(!pmd_none(*vmf->pmd)))
4956 		goto out;
4957 
4958 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
4959 
4960 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4961 	if (write)
4962 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4963 
4964 	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4965 	folio_add_file_rmap_pmd(folio, page, vma);
4966 
4967 	/*
4968 	 * deposit and withdraw with pmd lock held
4969 	 */
4970 	if (arch_needs_pgtable_deposit())
4971 		deposit_prealloc_pte(vmf);
4972 
4973 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4974 
4975 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4976 
4977 	/* fault is handled */
4978 	ret = 0;
4979 	count_vm_event(THP_FILE_MAPPED);
4980 out:
4981 	spin_unlock(vmf->ptl);
4982 	return ret;
4983 }
4984 #else
4985 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4986 {
4987 	return VM_FAULT_FALLBACK;
4988 }
4989 #endif
4990 
4991 /**
4992  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4993  * @vmf: Fault decription.
4994  * @folio: The folio that contains @page.
4995  * @page: The first page to create a PTE for.
4996  * @nr: The number of PTEs to create.
4997  * @addr: The first address to create a PTE for.
4998  */
4999 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5000 		struct page *page, unsigned int nr, unsigned long addr)
5001 {
5002 	struct vm_area_struct *vma = vmf->vma;
5003 	bool write = vmf->flags & FAULT_FLAG_WRITE;
5004 	bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5005 	pte_t entry;
5006 
5007 	flush_icache_pages(vma, page, nr);
5008 	entry = mk_pte(page, vma->vm_page_prot);
5009 
5010 	if (prefault && arch_wants_old_prefaulted_pte())
5011 		entry = pte_mkold(entry);
5012 	else
5013 		entry = pte_sw_mkyoung(entry);
5014 
5015 	if (write)
5016 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5017 	if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5018 		entry = pte_mkuffd_wp(entry);
5019 	/* copy-on-write page */
5020 	if (write && !(vma->vm_flags & VM_SHARED)) {
5021 		VM_BUG_ON_FOLIO(nr != 1, folio);
5022 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5023 		folio_add_lru_vma(folio, vma);
5024 	} else {
5025 		folio_add_file_rmap_ptes(folio, page, nr, vma);
5026 	}
5027 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5028 
5029 	/* no need to invalidate: a not-present page won't be cached */
5030 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5031 }
5032 
5033 static bool vmf_pte_changed(struct vm_fault *vmf)
5034 {
5035 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5036 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5037 
5038 	return !pte_none(ptep_get(vmf->pte));
5039 }
5040 
5041 /**
5042  * finish_fault - finish page fault once we have prepared the page to fault
5043  *
5044  * @vmf: structure describing the fault
5045  *
5046  * This function handles all that is needed to finish a page fault once the
5047  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5048  * given page, adds reverse page mapping, handles memcg charges and LRU
5049  * addition.
5050  *
5051  * The function expects the page to be locked and on success it consumes a
5052  * reference of a page being mapped (for the PTE which maps it).
5053  *
5054  * Return: %0 on success, %VM_FAULT_ code in case of error.
5055  */
5056 vm_fault_t finish_fault(struct vm_fault *vmf)
5057 {
5058 	struct vm_area_struct *vma = vmf->vma;
5059 	struct page *page;
5060 	struct folio *folio;
5061 	vm_fault_t ret;
5062 	bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5063 		      !(vma->vm_flags & VM_SHARED);
5064 	int type, nr_pages;
5065 	unsigned long addr = vmf->address;
5066 
5067 	/* Did we COW the page? */
5068 	if (is_cow)
5069 		page = vmf->cow_page;
5070 	else
5071 		page = vmf->page;
5072 
5073 	/*
5074 	 * check even for read faults because we might have lost our CoWed
5075 	 * page
5076 	 */
5077 	if (!(vma->vm_flags & VM_SHARED)) {
5078 		ret = check_stable_address_space(vma->vm_mm);
5079 		if (ret)
5080 			return ret;
5081 	}
5082 
5083 	if (pmd_none(*vmf->pmd)) {
5084 		if (PageTransCompound(page)) {
5085 			ret = do_set_pmd(vmf, page);
5086 			if (ret != VM_FAULT_FALLBACK)
5087 				return ret;
5088 		}
5089 
5090 		if (vmf->prealloc_pte)
5091 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5092 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5093 			return VM_FAULT_OOM;
5094 	}
5095 
5096 	folio = page_folio(page);
5097 	nr_pages = folio_nr_pages(folio);
5098 
5099 	/*
5100 	 * Using per-page fault to maintain the uffd semantics, and same
5101 	 * approach also applies to non-anonymous-shmem faults to avoid
5102 	 * inflating the RSS of the process.
5103 	 */
5104 	if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) {
5105 		nr_pages = 1;
5106 	} else if (nr_pages > 1) {
5107 		pgoff_t idx = folio_page_idx(folio, page);
5108 		/* The page offset of vmf->address within the VMA. */
5109 		pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5110 		/* The index of the entry in the pagetable for fault page. */
5111 		pgoff_t pte_off = pte_index(vmf->address);
5112 
5113 		/*
5114 		 * Fallback to per-page fault in case the folio size in page
5115 		 * cache beyond the VMA limits and PMD pagetable limits.
5116 		 */
5117 		if (unlikely(vma_off < idx ||
5118 			    vma_off + (nr_pages - idx) > vma_pages(vma) ||
5119 			    pte_off < idx ||
5120 			    pte_off + (nr_pages - idx)  > PTRS_PER_PTE)) {
5121 			nr_pages = 1;
5122 		} else {
5123 			/* Now we can set mappings for the whole large folio. */
5124 			addr = vmf->address - idx * PAGE_SIZE;
5125 			page = &folio->page;
5126 		}
5127 	}
5128 
5129 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5130 				       addr, &vmf->ptl);
5131 	if (!vmf->pte)
5132 		return VM_FAULT_NOPAGE;
5133 
5134 	/* Re-check under ptl */
5135 	if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5136 		update_mmu_tlb(vma, addr, vmf->pte);
5137 		ret = VM_FAULT_NOPAGE;
5138 		goto unlock;
5139 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5140 		update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5141 		ret = VM_FAULT_NOPAGE;
5142 		goto unlock;
5143 	}
5144 
5145 	folio_ref_add(folio, nr_pages - 1);
5146 	set_pte_range(vmf, folio, page, nr_pages, addr);
5147 	type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5148 	add_mm_counter(vma->vm_mm, type, nr_pages);
5149 	ret = 0;
5150 
5151 unlock:
5152 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5153 	return ret;
5154 }
5155 
5156 static unsigned long fault_around_pages __read_mostly =
5157 	65536 >> PAGE_SHIFT;
5158 
5159 #ifdef CONFIG_DEBUG_FS
5160 static int fault_around_bytes_get(void *data, u64 *val)
5161 {
5162 	*val = fault_around_pages << PAGE_SHIFT;
5163 	return 0;
5164 }
5165 
5166 /*
5167  * fault_around_bytes must be rounded down to the nearest page order as it's
5168  * what do_fault_around() expects to see.
5169  */
5170 static int fault_around_bytes_set(void *data, u64 val)
5171 {
5172 	if (val / PAGE_SIZE > PTRS_PER_PTE)
5173 		return -EINVAL;
5174 
5175 	/*
5176 	 * The minimum value is 1 page, however this results in no fault-around
5177 	 * at all. See should_fault_around().
5178 	 */
5179 	val = max(val, PAGE_SIZE);
5180 	fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5181 
5182 	return 0;
5183 }
5184 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5185 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5186 
5187 static int __init fault_around_debugfs(void)
5188 {
5189 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5190 				   &fault_around_bytes_fops);
5191 	return 0;
5192 }
5193 late_initcall(fault_around_debugfs);
5194 #endif
5195 
5196 /*
5197  * do_fault_around() tries to map few pages around the fault address. The hope
5198  * is that the pages will be needed soon and this will lower the number of
5199  * faults to handle.
5200  *
5201  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5202  * not ready to be mapped: not up-to-date, locked, etc.
5203  *
5204  * This function doesn't cross VMA or page table boundaries, in order to call
5205  * map_pages() and acquire a PTE lock only once.
5206  *
5207  * fault_around_pages defines how many pages we'll try to map.
5208  * do_fault_around() expects it to be set to a power of two less than or equal
5209  * to PTRS_PER_PTE.
5210  *
5211  * The virtual address of the area that we map is naturally aligned to
5212  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5213  * (and therefore to page order).  This way it's easier to guarantee
5214  * that we don't cross page table boundaries.
5215  */
5216 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5217 {
5218 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5219 	pgoff_t pte_off = pte_index(vmf->address);
5220 	/* The page offset of vmf->address within the VMA. */
5221 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5222 	pgoff_t from_pte, to_pte;
5223 	vm_fault_t ret;
5224 
5225 	/* The PTE offset of the start address, clamped to the VMA. */
5226 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5227 		       pte_off - min(pte_off, vma_off));
5228 
5229 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
5230 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5231 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5232 
5233 	if (pmd_none(*vmf->pmd)) {
5234 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5235 		if (!vmf->prealloc_pte)
5236 			return VM_FAULT_OOM;
5237 	}
5238 
5239 	rcu_read_lock();
5240 	ret = vmf->vma->vm_ops->map_pages(vmf,
5241 			vmf->pgoff + from_pte - pte_off,
5242 			vmf->pgoff + to_pte - pte_off);
5243 	rcu_read_unlock();
5244 
5245 	return ret;
5246 }
5247 
5248 /* Return true if we should do read fault-around, false otherwise */
5249 static inline bool should_fault_around(struct vm_fault *vmf)
5250 {
5251 	/* No ->map_pages?  No way to fault around... */
5252 	if (!vmf->vma->vm_ops->map_pages)
5253 		return false;
5254 
5255 	if (uffd_disable_fault_around(vmf->vma))
5256 		return false;
5257 
5258 	/* A single page implies no faulting 'around' at all. */
5259 	return fault_around_pages > 1;
5260 }
5261 
5262 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5263 {
5264 	vm_fault_t ret = 0;
5265 	struct folio *folio;
5266 
5267 	/*
5268 	 * Let's call ->map_pages() first and use ->fault() as fallback
5269 	 * if page by the offset is not ready to be mapped (cold cache or
5270 	 * something).
5271 	 */
5272 	if (should_fault_around(vmf)) {
5273 		ret = do_fault_around(vmf);
5274 		if (ret)
5275 			return ret;
5276 	}
5277 
5278 	ret = vmf_can_call_fault(vmf);
5279 	if (ret)
5280 		return ret;
5281 
5282 	ret = __do_fault(vmf);
5283 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5284 		return ret;
5285 
5286 	ret |= finish_fault(vmf);
5287 	folio = page_folio(vmf->page);
5288 	folio_unlock(folio);
5289 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5290 		folio_put(folio);
5291 	return ret;
5292 }
5293 
5294 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5295 {
5296 	struct vm_area_struct *vma = vmf->vma;
5297 	struct folio *folio;
5298 	vm_fault_t ret;
5299 
5300 	ret = vmf_can_call_fault(vmf);
5301 	if (!ret)
5302 		ret = vmf_anon_prepare(vmf);
5303 	if (ret)
5304 		return ret;
5305 
5306 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5307 	if (!folio)
5308 		return VM_FAULT_OOM;
5309 
5310 	vmf->cow_page = &folio->page;
5311 
5312 	ret = __do_fault(vmf);
5313 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5314 		goto uncharge_out;
5315 	if (ret & VM_FAULT_DONE_COW)
5316 		return ret;
5317 
5318 	if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5319 		ret = VM_FAULT_HWPOISON;
5320 		goto unlock;
5321 	}
5322 	__folio_mark_uptodate(folio);
5323 
5324 	ret |= finish_fault(vmf);
5325 unlock:
5326 	unlock_page(vmf->page);
5327 	put_page(vmf->page);
5328 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5329 		goto uncharge_out;
5330 	return ret;
5331 uncharge_out:
5332 	folio_put(folio);
5333 	return ret;
5334 }
5335 
5336 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5337 {
5338 	struct vm_area_struct *vma = vmf->vma;
5339 	vm_fault_t ret, tmp;
5340 	struct folio *folio;
5341 
5342 	ret = vmf_can_call_fault(vmf);
5343 	if (ret)
5344 		return ret;
5345 
5346 	ret = __do_fault(vmf);
5347 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5348 		return ret;
5349 
5350 	folio = page_folio(vmf->page);
5351 
5352 	/*
5353 	 * Check if the backing address space wants to know that the page is
5354 	 * about to become writable
5355 	 */
5356 	if (vma->vm_ops->page_mkwrite) {
5357 		folio_unlock(folio);
5358 		tmp = do_page_mkwrite(vmf, folio);
5359 		if (unlikely(!tmp ||
5360 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5361 			folio_put(folio);
5362 			return tmp;
5363 		}
5364 	}
5365 
5366 	ret |= finish_fault(vmf);
5367 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5368 					VM_FAULT_RETRY))) {
5369 		folio_unlock(folio);
5370 		folio_put(folio);
5371 		return ret;
5372 	}
5373 
5374 	ret |= fault_dirty_shared_page(vmf);
5375 	return ret;
5376 }
5377 
5378 /*
5379  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5380  * but allow concurrent faults).
5381  * The mmap_lock may have been released depending on flags and our
5382  * return value.  See filemap_fault() and __folio_lock_or_retry().
5383  * If mmap_lock is released, vma may become invalid (for example
5384  * by other thread calling munmap()).
5385  */
5386 static vm_fault_t do_fault(struct vm_fault *vmf)
5387 {
5388 	struct vm_area_struct *vma = vmf->vma;
5389 	struct mm_struct *vm_mm = vma->vm_mm;
5390 	vm_fault_t ret;
5391 
5392 	/*
5393 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5394 	 */
5395 	if (!vma->vm_ops->fault) {
5396 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5397 					       vmf->address, &vmf->ptl);
5398 		if (unlikely(!vmf->pte))
5399 			ret = VM_FAULT_SIGBUS;
5400 		else {
5401 			/*
5402 			 * Make sure this is not a temporary clearing of pte
5403 			 * by holding ptl and checking again. A R/M/W update
5404 			 * of pte involves: take ptl, clearing the pte so that
5405 			 * we don't have concurrent modification by hardware
5406 			 * followed by an update.
5407 			 */
5408 			if (unlikely(pte_none(ptep_get(vmf->pte))))
5409 				ret = VM_FAULT_SIGBUS;
5410 			else
5411 				ret = VM_FAULT_NOPAGE;
5412 
5413 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5414 		}
5415 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
5416 		ret = do_read_fault(vmf);
5417 	else if (!(vma->vm_flags & VM_SHARED))
5418 		ret = do_cow_fault(vmf);
5419 	else
5420 		ret = do_shared_fault(vmf);
5421 
5422 	/* preallocated pagetable is unused: free it */
5423 	if (vmf->prealloc_pte) {
5424 		pte_free(vm_mm, vmf->prealloc_pte);
5425 		vmf->prealloc_pte = NULL;
5426 	}
5427 	return ret;
5428 }
5429 
5430 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5431 		      unsigned long addr, int *flags,
5432 		      bool writable, int *last_cpupid)
5433 {
5434 	struct vm_area_struct *vma = vmf->vma;
5435 
5436 	/*
5437 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5438 	 * much anyway since they can be in shared cache state. This misses
5439 	 * the case where a mapping is writable but the process never writes
5440 	 * to it but pte_write gets cleared during protection updates and
5441 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
5442 	 * background writeback, dirty balancing and application behaviour.
5443 	 */
5444 	if (!writable)
5445 		*flags |= TNF_NO_GROUP;
5446 
5447 	/*
5448 	 * Flag if the folio is shared between multiple address spaces. This
5449 	 * is later used when determining whether to group tasks together
5450 	 */
5451 	if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5452 		*flags |= TNF_SHARED;
5453 	/*
5454 	 * For memory tiering mode, cpupid of slow memory page is used
5455 	 * to record page access time.  So use default value.
5456 	 */
5457 	if (folio_use_access_time(folio))
5458 		*last_cpupid = (-1 & LAST_CPUPID_MASK);
5459 	else
5460 		*last_cpupid = folio_last_cpupid(folio);
5461 
5462 	/* Record the current PID acceesing VMA */
5463 	vma_set_access_pid_bit(vma);
5464 
5465 	count_vm_numa_event(NUMA_HINT_FAULTS);
5466 #ifdef CONFIG_NUMA_BALANCING
5467 	count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5468 #endif
5469 	if (folio_nid(folio) == numa_node_id()) {
5470 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5471 		*flags |= TNF_FAULT_LOCAL;
5472 	}
5473 
5474 	return mpol_misplaced(folio, vmf, addr);
5475 }
5476 
5477 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5478 					unsigned long fault_addr, pte_t *fault_pte,
5479 					bool writable)
5480 {
5481 	pte_t pte, old_pte;
5482 
5483 	old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5484 	pte = pte_modify(old_pte, vma->vm_page_prot);
5485 	pte = pte_mkyoung(pte);
5486 	if (writable)
5487 		pte = pte_mkwrite(pte, vma);
5488 	ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5489 	update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5490 }
5491 
5492 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5493 				       struct folio *folio, pte_t fault_pte,
5494 				       bool ignore_writable, bool pte_write_upgrade)
5495 {
5496 	int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5497 	unsigned long start, end, addr = vmf->address;
5498 	unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5499 	unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5500 	pte_t *start_ptep;
5501 
5502 	/* Stay within the VMA and within the page table. */
5503 	start = max3(addr_start, pt_start, vma->vm_start);
5504 	end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5505 		   vma->vm_end);
5506 	start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5507 
5508 	/* Restore all PTEs' mapping of the large folio */
5509 	for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5510 		pte_t ptent = ptep_get(start_ptep);
5511 		bool writable = false;
5512 
5513 		if (!pte_present(ptent) || !pte_protnone(ptent))
5514 			continue;
5515 
5516 		if (pfn_folio(pte_pfn(ptent)) != folio)
5517 			continue;
5518 
5519 		if (!ignore_writable) {
5520 			ptent = pte_modify(ptent, vma->vm_page_prot);
5521 			writable = pte_write(ptent);
5522 			if (!writable && pte_write_upgrade &&
5523 			    can_change_pte_writable(vma, addr, ptent))
5524 				writable = true;
5525 		}
5526 
5527 		numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5528 	}
5529 }
5530 
5531 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5532 {
5533 	struct vm_area_struct *vma = vmf->vma;
5534 	struct folio *folio = NULL;
5535 	int nid = NUMA_NO_NODE;
5536 	bool writable = false, ignore_writable = false;
5537 	bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5538 	int last_cpupid;
5539 	int target_nid;
5540 	pte_t pte, old_pte;
5541 	int flags = 0, nr_pages;
5542 
5543 	/*
5544 	 * The pte cannot be used safely until we verify, while holding the page
5545 	 * table lock, that its contents have not changed during fault handling.
5546 	 */
5547 	spin_lock(vmf->ptl);
5548 	/* Read the live PTE from the page tables: */
5549 	old_pte = ptep_get(vmf->pte);
5550 
5551 	if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5552 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5553 		return 0;
5554 	}
5555 
5556 	pte = pte_modify(old_pte, vma->vm_page_prot);
5557 
5558 	/*
5559 	 * Detect now whether the PTE could be writable; this information
5560 	 * is only valid while holding the PT lock.
5561 	 */
5562 	writable = pte_write(pte);
5563 	if (!writable && pte_write_upgrade &&
5564 	    can_change_pte_writable(vma, vmf->address, pte))
5565 		writable = true;
5566 
5567 	folio = vm_normal_folio(vma, vmf->address, pte);
5568 	if (!folio || folio_is_zone_device(folio))
5569 		goto out_map;
5570 
5571 	nid = folio_nid(folio);
5572 	nr_pages = folio_nr_pages(folio);
5573 
5574 	target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5575 					writable, &last_cpupid);
5576 	if (target_nid == NUMA_NO_NODE)
5577 		goto out_map;
5578 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5579 		flags |= TNF_MIGRATE_FAIL;
5580 		goto out_map;
5581 	}
5582 	/* The folio is isolated and isolation code holds a folio reference. */
5583 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5584 	writable = false;
5585 	ignore_writable = true;
5586 
5587 	/* Migrate to the requested node */
5588 	if (!migrate_misplaced_folio(folio, vma, target_nid)) {
5589 		nid = target_nid;
5590 		flags |= TNF_MIGRATED;
5591 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5592 		return 0;
5593 	}
5594 
5595 	flags |= TNF_MIGRATE_FAIL;
5596 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5597 				       vmf->address, &vmf->ptl);
5598 	if (unlikely(!vmf->pte))
5599 		return 0;
5600 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5601 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5602 		return 0;
5603 	}
5604 out_map:
5605 	/*
5606 	 * Make it present again, depending on how arch implements
5607 	 * non-accessible ptes, some can allow access by kernel mode.
5608 	 */
5609 	if (folio && folio_test_large(folio))
5610 		numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5611 					   pte_write_upgrade);
5612 	else
5613 		numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5614 					    writable);
5615 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5616 
5617 	if (nid != NUMA_NO_NODE)
5618 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5619 	return 0;
5620 }
5621 
5622 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5623 {
5624 	struct vm_area_struct *vma = vmf->vma;
5625 	if (vma_is_anonymous(vma))
5626 		return do_huge_pmd_anonymous_page(vmf);
5627 	if (vma->vm_ops->huge_fault)
5628 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5629 	return VM_FAULT_FALLBACK;
5630 }
5631 
5632 /* `inline' is required to avoid gcc 4.1.2 build error */
5633 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5634 {
5635 	struct vm_area_struct *vma = vmf->vma;
5636 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5637 	vm_fault_t ret;
5638 
5639 	if (vma_is_anonymous(vma)) {
5640 		if (likely(!unshare) &&
5641 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5642 			if (userfaultfd_wp_async(vmf->vma))
5643 				goto split;
5644 			return handle_userfault(vmf, VM_UFFD_WP);
5645 		}
5646 		return do_huge_pmd_wp_page(vmf);
5647 	}
5648 
5649 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5650 		if (vma->vm_ops->huge_fault) {
5651 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5652 			if (!(ret & VM_FAULT_FALLBACK))
5653 				return ret;
5654 		}
5655 	}
5656 
5657 split:
5658 	/* COW or write-notify handled on pte level: split pmd. */
5659 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5660 
5661 	return VM_FAULT_FALLBACK;
5662 }
5663 
5664 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5665 {
5666 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5667 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5668 	struct vm_area_struct *vma = vmf->vma;
5669 	/* No support for anonymous transparent PUD pages yet */
5670 	if (vma_is_anonymous(vma))
5671 		return VM_FAULT_FALLBACK;
5672 	if (vma->vm_ops->huge_fault)
5673 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5674 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5675 	return VM_FAULT_FALLBACK;
5676 }
5677 
5678 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5679 {
5680 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5681 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5682 	struct vm_area_struct *vma = vmf->vma;
5683 	vm_fault_t ret;
5684 
5685 	/* No support for anonymous transparent PUD pages yet */
5686 	if (vma_is_anonymous(vma))
5687 		goto split;
5688 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5689 		if (vma->vm_ops->huge_fault) {
5690 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5691 			if (!(ret & VM_FAULT_FALLBACK))
5692 				return ret;
5693 		}
5694 	}
5695 split:
5696 	/* COW or write-notify not handled on PUD level: split pud.*/
5697 	__split_huge_pud(vma, vmf->pud, vmf->address);
5698 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5699 	return VM_FAULT_FALLBACK;
5700 }
5701 
5702 /*
5703  * These routines also need to handle stuff like marking pages dirty
5704  * and/or accessed for architectures that don't do it in hardware (most
5705  * RISC architectures).  The early dirtying is also good on the i386.
5706  *
5707  * There is also a hook called "update_mmu_cache()" that architectures
5708  * with external mmu caches can use to update those (ie the Sparc or
5709  * PowerPC hashed page tables that act as extended TLBs).
5710  *
5711  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5712  * concurrent faults).
5713  *
5714  * The mmap_lock may have been released depending on flags and our return value.
5715  * See filemap_fault() and __folio_lock_or_retry().
5716  */
5717 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5718 {
5719 	pte_t entry;
5720 
5721 	if (unlikely(pmd_none(*vmf->pmd))) {
5722 		/*
5723 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5724 		 * want to allocate huge page, and if we expose page table
5725 		 * for an instant, it will be difficult to retract from
5726 		 * concurrent faults and from rmap lookups.
5727 		 */
5728 		vmf->pte = NULL;
5729 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5730 	} else {
5731 		/*
5732 		 * A regular pmd is established and it can't morph into a huge
5733 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5734 		 * mode; but shmem or file collapse to THP could still morph
5735 		 * it into a huge pmd: just retry later if so.
5736 		 */
5737 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5738 						 vmf->address, &vmf->ptl);
5739 		if (unlikely(!vmf->pte))
5740 			return 0;
5741 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5742 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5743 
5744 		if (pte_none(vmf->orig_pte)) {
5745 			pte_unmap(vmf->pte);
5746 			vmf->pte = NULL;
5747 		}
5748 	}
5749 
5750 	if (!vmf->pte)
5751 		return do_pte_missing(vmf);
5752 
5753 	if (!pte_present(vmf->orig_pte))
5754 		return do_swap_page(vmf);
5755 
5756 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5757 		return do_numa_page(vmf);
5758 
5759 	spin_lock(vmf->ptl);
5760 	entry = vmf->orig_pte;
5761 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5762 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5763 		goto unlock;
5764 	}
5765 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5766 		if (!pte_write(entry))
5767 			return do_wp_page(vmf);
5768 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5769 			entry = pte_mkdirty(entry);
5770 	}
5771 	entry = pte_mkyoung(entry);
5772 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5773 				vmf->flags & FAULT_FLAG_WRITE)) {
5774 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5775 				vmf->pte, 1);
5776 	} else {
5777 		/* Skip spurious TLB flush for retried page fault */
5778 		if (vmf->flags & FAULT_FLAG_TRIED)
5779 			goto unlock;
5780 		/*
5781 		 * This is needed only for protection faults but the arch code
5782 		 * is not yet telling us if this is a protection fault or not.
5783 		 * This still avoids useless tlb flushes for .text page faults
5784 		 * with threads.
5785 		 */
5786 		if (vmf->flags & FAULT_FLAG_WRITE)
5787 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5788 						     vmf->pte);
5789 	}
5790 unlock:
5791 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5792 	return 0;
5793 }
5794 
5795 /*
5796  * On entry, we hold either the VMA lock or the mmap_lock
5797  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5798  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5799  * and __folio_lock_or_retry().
5800  */
5801 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5802 		unsigned long address, unsigned int flags)
5803 {
5804 	struct vm_fault vmf = {
5805 		.vma = vma,
5806 		.address = address & PAGE_MASK,
5807 		.real_address = address,
5808 		.flags = flags,
5809 		.pgoff = linear_page_index(vma, address),
5810 		.gfp_mask = __get_fault_gfp_mask(vma),
5811 	};
5812 	struct mm_struct *mm = vma->vm_mm;
5813 	unsigned long vm_flags = vma->vm_flags;
5814 	pgd_t *pgd;
5815 	p4d_t *p4d;
5816 	vm_fault_t ret;
5817 
5818 	pgd = pgd_offset(mm, address);
5819 	p4d = p4d_alloc(mm, pgd, address);
5820 	if (!p4d)
5821 		return VM_FAULT_OOM;
5822 
5823 	vmf.pud = pud_alloc(mm, p4d, address);
5824 	if (!vmf.pud)
5825 		return VM_FAULT_OOM;
5826 retry_pud:
5827 	if (pud_none(*vmf.pud) &&
5828 	    thp_vma_allowable_order(vma, vm_flags,
5829 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5830 		ret = create_huge_pud(&vmf);
5831 		if (!(ret & VM_FAULT_FALLBACK))
5832 			return ret;
5833 	} else {
5834 		pud_t orig_pud = *vmf.pud;
5835 
5836 		barrier();
5837 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5838 
5839 			/*
5840 			 * TODO once we support anonymous PUDs: NUMA case and
5841 			 * FAULT_FLAG_UNSHARE handling.
5842 			 */
5843 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5844 				ret = wp_huge_pud(&vmf, orig_pud);
5845 				if (!(ret & VM_FAULT_FALLBACK))
5846 					return ret;
5847 			} else {
5848 				huge_pud_set_accessed(&vmf, orig_pud);
5849 				return 0;
5850 			}
5851 		}
5852 	}
5853 
5854 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5855 	if (!vmf.pmd)
5856 		return VM_FAULT_OOM;
5857 
5858 	/* Huge pud page fault raced with pmd_alloc? */
5859 	if (pud_trans_unstable(vmf.pud))
5860 		goto retry_pud;
5861 
5862 	if (pmd_none(*vmf.pmd) &&
5863 	    thp_vma_allowable_order(vma, vm_flags,
5864 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5865 		ret = create_huge_pmd(&vmf);
5866 		if (!(ret & VM_FAULT_FALLBACK))
5867 			return ret;
5868 	} else {
5869 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5870 
5871 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5872 			VM_BUG_ON(thp_migration_supported() &&
5873 					  !is_pmd_migration_entry(vmf.orig_pmd));
5874 			if (is_pmd_migration_entry(vmf.orig_pmd))
5875 				pmd_migration_entry_wait(mm, vmf.pmd);
5876 			return 0;
5877 		}
5878 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5879 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5880 				return do_huge_pmd_numa_page(&vmf);
5881 
5882 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5883 			    !pmd_write(vmf.orig_pmd)) {
5884 				ret = wp_huge_pmd(&vmf);
5885 				if (!(ret & VM_FAULT_FALLBACK))
5886 					return ret;
5887 			} else {
5888 				huge_pmd_set_accessed(&vmf);
5889 				return 0;
5890 			}
5891 		}
5892 	}
5893 
5894 	return handle_pte_fault(&vmf);
5895 }
5896 
5897 /**
5898  * mm_account_fault - Do page fault accounting
5899  * @mm: mm from which memcg should be extracted. It can be NULL.
5900  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5901  *        of perf event counters, but we'll still do the per-task accounting to
5902  *        the task who triggered this page fault.
5903  * @address: the faulted address.
5904  * @flags: the fault flags.
5905  * @ret: the fault retcode.
5906  *
5907  * This will take care of most of the page fault accounting.  Meanwhile, it
5908  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5909  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5910  * still be in per-arch page fault handlers at the entry of page fault.
5911  */
5912 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5913 				    unsigned long address, unsigned int flags,
5914 				    vm_fault_t ret)
5915 {
5916 	bool major;
5917 
5918 	/* Incomplete faults will be accounted upon completion. */
5919 	if (ret & VM_FAULT_RETRY)
5920 		return;
5921 
5922 	/*
5923 	 * To preserve the behavior of older kernels, PGFAULT counters record
5924 	 * both successful and failed faults, as opposed to perf counters,
5925 	 * which ignore failed cases.
5926 	 */
5927 	count_vm_event(PGFAULT);
5928 	count_memcg_event_mm(mm, PGFAULT);
5929 
5930 	/*
5931 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5932 	 * valid).  That includes arch_vma_access_permitted() failing before
5933 	 * reaching here. So this is not a "this many hardware page faults"
5934 	 * counter.  We should use the hw profiling for that.
5935 	 */
5936 	if (ret & VM_FAULT_ERROR)
5937 		return;
5938 
5939 	/*
5940 	 * We define the fault as a major fault when the final successful fault
5941 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5942 	 * handle it immediately previously).
5943 	 */
5944 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5945 
5946 	if (major)
5947 		current->maj_flt++;
5948 	else
5949 		current->min_flt++;
5950 
5951 	/*
5952 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5953 	 * accounting for the per thread fault counters who triggered the
5954 	 * fault, and we skip the perf event updates.
5955 	 */
5956 	if (!regs)
5957 		return;
5958 
5959 	if (major)
5960 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5961 	else
5962 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5963 }
5964 
5965 #ifdef CONFIG_LRU_GEN
5966 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5967 {
5968 	/* the LRU algorithm only applies to accesses with recency */
5969 	current->in_lru_fault = vma_has_recency(vma);
5970 }
5971 
5972 static void lru_gen_exit_fault(void)
5973 {
5974 	current->in_lru_fault = false;
5975 }
5976 #else
5977 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5978 {
5979 }
5980 
5981 static void lru_gen_exit_fault(void)
5982 {
5983 }
5984 #endif /* CONFIG_LRU_GEN */
5985 
5986 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5987 				       unsigned int *flags)
5988 {
5989 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5990 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5991 			return VM_FAULT_SIGSEGV;
5992 		/*
5993 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5994 		 * just treat it like an ordinary read-fault otherwise.
5995 		 */
5996 		if (!is_cow_mapping(vma->vm_flags))
5997 			*flags &= ~FAULT_FLAG_UNSHARE;
5998 	} else if (*flags & FAULT_FLAG_WRITE) {
5999 		/* Write faults on read-only mappings are impossible ... */
6000 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6001 			return VM_FAULT_SIGSEGV;
6002 		/* ... and FOLL_FORCE only applies to COW mappings. */
6003 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6004 				 !is_cow_mapping(vma->vm_flags)))
6005 			return VM_FAULT_SIGSEGV;
6006 	}
6007 #ifdef CONFIG_PER_VMA_LOCK
6008 	/*
6009 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6010 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
6011 	 */
6012 	if (WARN_ON_ONCE((*flags &
6013 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6014 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6015 		return VM_FAULT_SIGSEGV;
6016 #endif
6017 
6018 	return 0;
6019 }
6020 
6021 /*
6022  * By the time we get here, we already hold the mm semaphore
6023  *
6024  * The mmap_lock may have been released depending on flags and our
6025  * return value.  See filemap_fault() and __folio_lock_or_retry().
6026  */
6027 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6028 			   unsigned int flags, struct pt_regs *regs)
6029 {
6030 	/* If the fault handler drops the mmap_lock, vma may be freed */
6031 	struct mm_struct *mm = vma->vm_mm;
6032 	vm_fault_t ret;
6033 	bool is_droppable;
6034 
6035 	__set_current_state(TASK_RUNNING);
6036 
6037 	ret = sanitize_fault_flags(vma, &flags);
6038 	if (ret)
6039 		goto out;
6040 
6041 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6042 					    flags & FAULT_FLAG_INSTRUCTION,
6043 					    flags & FAULT_FLAG_REMOTE)) {
6044 		ret = VM_FAULT_SIGSEGV;
6045 		goto out;
6046 	}
6047 
6048 	is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6049 
6050 	/*
6051 	 * Enable the memcg OOM handling for faults triggered in user
6052 	 * space.  Kernel faults are handled more gracefully.
6053 	 */
6054 	if (flags & FAULT_FLAG_USER)
6055 		mem_cgroup_enter_user_fault();
6056 
6057 	lru_gen_enter_fault(vma);
6058 
6059 	if (unlikely(is_vm_hugetlb_page(vma)))
6060 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6061 	else
6062 		ret = __handle_mm_fault(vma, address, flags);
6063 
6064 	/*
6065 	 * Warning: It is no longer safe to dereference vma-> after this point,
6066 	 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6067 	 * vma might be destroyed from underneath us.
6068 	 */
6069 
6070 	lru_gen_exit_fault();
6071 
6072 	/* If the mapping is droppable, then errors due to OOM aren't fatal. */
6073 	if (is_droppable)
6074 		ret &= ~VM_FAULT_OOM;
6075 
6076 	if (flags & FAULT_FLAG_USER) {
6077 		mem_cgroup_exit_user_fault();
6078 		/*
6079 		 * The task may have entered a memcg OOM situation but
6080 		 * if the allocation error was handled gracefully (no
6081 		 * VM_FAULT_OOM), there is no need to kill anything.
6082 		 * Just clean up the OOM state peacefully.
6083 		 */
6084 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6085 			mem_cgroup_oom_synchronize(false);
6086 	}
6087 out:
6088 	mm_account_fault(mm, regs, address, flags, ret);
6089 
6090 	return ret;
6091 }
6092 EXPORT_SYMBOL_GPL(handle_mm_fault);
6093 
6094 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6095 #include <linux/extable.h>
6096 
6097 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6098 {
6099 	if (likely(mmap_read_trylock(mm)))
6100 		return true;
6101 
6102 	if (regs && !user_mode(regs)) {
6103 		unsigned long ip = exception_ip(regs);
6104 		if (!search_exception_tables(ip))
6105 			return false;
6106 	}
6107 
6108 	return !mmap_read_lock_killable(mm);
6109 }
6110 
6111 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
6112 {
6113 	/*
6114 	 * We don't have this operation yet.
6115 	 *
6116 	 * It should be easy enough to do: it's basically a
6117 	 *    atomic_long_try_cmpxchg_acquire()
6118 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6119 	 * it also needs the proper lockdep magic etc.
6120 	 */
6121 	return false;
6122 }
6123 
6124 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6125 {
6126 	mmap_read_unlock(mm);
6127 	if (regs && !user_mode(regs)) {
6128 		unsigned long ip = exception_ip(regs);
6129 		if (!search_exception_tables(ip))
6130 			return false;
6131 	}
6132 	return !mmap_write_lock_killable(mm);
6133 }
6134 
6135 /*
6136  * Helper for page fault handling.
6137  *
6138  * This is kind of equivalend to "mmap_read_lock()" followed
6139  * by "find_extend_vma()", except it's a lot more careful about
6140  * the locking (and will drop the lock on failure).
6141  *
6142  * For example, if we have a kernel bug that causes a page
6143  * fault, we don't want to just use mmap_read_lock() to get
6144  * the mm lock, because that would deadlock if the bug were
6145  * to happen while we're holding the mm lock for writing.
6146  *
6147  * So this checks the exception tables on kernel faults in
6148  * order to only do this all for instructions that are actually
6149  * expected to fault.
6150  *
6151  * We can also actually take the mm lock for writing if we
6152  * need to extend the vma, which helps the VM layer a lot.
6153  */
6154 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
6155 			unsigned long addr, struct pt_regs *regs)
6156 {
6157 	struct vm_area_struct *vma;
6158 
6159 	if (!get_mmap_lock_carefully(mm, regs))
6160 		return NULL;
6161 
6162 	vma = find_vma(mm, addr);
6163 	if (likely(vma && (vma->vm_start <= addr)))
6164 		return vma;
6165 
6166 	/*
6167 	 * Well, dang. We might still be successful, but only
6168 	 * if we can extend a vma to do so.
6169 	 */
6170 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
6171 		mmap_read_unlock(mm);
6172 		return NULL;
6173 	}
6174 
6175 	/*
6176 	 * We can try to upgrade the mmap lock atomically,
6177 	 * in which case we can continue to use the vma
6178 	 * we already looked up.
6179 	 *
6180 	 * Otherwise we'll have to drop the mmap lock and
6181 	 * re-take it, and also look up the vma again,
6182 	 * re-checking it.
6183 	 */
6184 	if (!mmap_upgrade_trylock(mm)) {
6185 		if (!upgrade_mmap_lock_carefully(mm, regs))
6186 			return NULL;
6187 
6188 		vma = find_vma(mm, addr);
6189 		if (!vma)
6190 			goto fail;
6191 		if (vma->vm_start <= addr)
6192 			goto success;
6193 		if (!(vma->vm_flags & VM_GROWSDOWN))
6194 			goto fail;
6195 	}
6196 
6197 	if (expand_stack_locked(vma, addr))
6198 		goto fail;
6199 
6200 success:
6201 	mmap_write_downgrade(mm);
6202 	return vma;
6203 
6204 fail:
6205 	mmap_write_unlock(mm);
6206 	return NULL;
6207 }
6208 #endif
6209 
6210 #ifdef CONFIG_PER_VMA_LOCK
6211 /*
6212  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6213  * stable and not isolated. If the VMA is not found or is being modified the
6214  * function returns NULL.
6215  */
6216 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6217 					  unsigned long address)
6218 {
6219 	MA_STATE(mas, &mm->mm_mt, address, address);
6220 	struct vm_area_struct *vma;
6221 
6222 	rcu_read_lock();
6223 retry:
6224 	vma = mas_walk(&mas);
6225 	if (!vma)
6226 		goto inval;
6227 
6228 	if (!vma_start_read(vma))
6229 		goto inval;
6230 
6231 	/* Check if the VMA got isolated after we found it */
6232 	if (vma->detached) {
6233 		vma_end_read(vma);
6234 		count_vm_vma_lock_event(VMA_LOCK_MISS);
6235 		/* The area was replaced with another one */
6236 		goto retry;
6237 	}
6238 	/*
6239 	 * At this point, we have a stable reference to a VMA: The VMA is
6240 	 * locked and we know it hasn't already been isolated.
6241 	 * From here on, we can access the VMA without worrying about which
6242 	 * fields are accessible for RCU readers.
6243 	 */
6244 
6245 	/* Check since vm_start/vm_end might change before we lock the VMA */
6246 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6247 		goto inval_end_read;
6248 
6249 	rcu_read_unlock();
6250 	return vma;
6251 
6252 inval_end_read:
6253 	vma_end_read(vma);
6254 inval:
6255 	rcu_read_unlock();
6256 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
6257 	return NULL;
6258 }
6259 #endif /* CONFIG_PER_VMA_LOCK */
6260 
6261 #ifndef __PAGETABLE_P4D_FOLDED
6262 /*
6263  * Allocate p4d page table.
6264  * We've already handled the fast-path in-line.
6265  */
6266 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6267 {
6268 	p4d_t *new = p4d_alloc_one(mm, address);
6269 	if (!new)
6270 		return -ENOMEM;
6271 
6272 	spin_lock(&mm->page_table_lock);
6273 	if (pgd_present(*pgd)) {	/* Another has populated it */
6274 		p4d_free(mm, new);
6275 	} else {
6276 		smp_wmb(); /* See comment in pmd_install() */
6277 		pgd_populate(mm, pgd, new);
6278 	}
6279 	spin_unlock(&mm->page_table_lock);
6280 	return 0;
6281 }
6282 #endif /* __PAGETABLE_P4D_FOLDED */
6283 
6284 #ifndef __PAGETABLE_PUD_FOLDED
6285 /*
6286  * Allocate page upper directory.
6287  * We've already handled the fast-path in-line.
6288  */
6289 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6290 {
6291 	pud_t *new = pud_alloc_one(mm, address);
6292 	if (!new)
6293 		return -ENOMEM;
6294 
6295 	spin_lock(&mm->page_table_lock);
6296 	if (!p4d_present(*p4d)) {
6297 		mm_inc_nr_puds(mm);
6298 		smp_wmb(); /* See comment in pmd_install() */
6299 		p4d_populate(mm, p4d, new);
6300 	} else	/* Another has populated it */
6301 		pud_free(mm, new);
6302 	spin_unlock(&mm->page_table_lock);
6303 	return 0;
6304 }
6305 #endif /* __PAGETABLE_PUD_FOLDED */
6306 
6307 #ifndef __PAGETABLE_PMD_FOLDED
6308 /*
6309  * Allocate page middle directory.
6310  * We've already handled the fast-path in-line.
6311  */
6312 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6313 {
6314 	spinlock_t *ptl;
6315 	pmd_t *new = pmd_alloc_one(mm, address);
6316 	if (!new)
6317 		return -ENOMEM;
6318 
6319 	ptl = pud_lock(mm, pud);
6320 	if (!pud_present(*pud)) {
6321 		mm_inc_nr_pmds(mm);
6322 		smp_wmb(); /* See comment in pmd_install() */
6323 		pud_populate(mm, pud, new);
6324 	} else {	/* Another has populated it */
6325 		pmd_free(mm, new);
6326 	}
6327 	spin_unlock(ptl);
6328 	return 0;
6329 }
6330 #endif /* __PAGETABLE_PMD_FOLDED */
6331 
6332 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6333 				     spinlock_t *lock, pte_t *ptep,
6334 				     pgprot_t pgprot, unsigned long pfn_base,
6335 				     unsigned long addr_mask, bool writable,
6336 				     bool special)
6337 {
6338 	args->lock = lock;
6339 	args->ptep = ptep;
6340 	args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6341 	args->pgprot = pgprot;
6342 	args->writable = writable;
6343 	args->special = special;
6344 }
6345 
6346 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6347 {
6348 #ifdef CONFIG_LOCKDEP
6349 	struct address_space *mapping = vma->vm_file->f_mapping;
6350 
6351 	if (mapping)
6352 		lockdep_assert(lockdep_is_held(&vma->vm_file->f_mapping->i_mmap_rwsem) ||
6353 			       lockdep_is_held(&vma->vm_mm->mmap_lock));
6354 	else
6355 		lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6356 #endif
6357 }
6358 
6359 /**
6360  * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6361  * @args: Pointer to struct @follow_pfnmap_args
6362  *
6363  * The caller needs to setup args->vma and args->address to point to the
6364  * virtual address as the target of such lookup.  On a successful return,
6365  * the results will be put into other output fields.
6366  *
6367  * After the caller finished using the fields, the caller must invoke
6368  * another follow_pfnmap_end() to proper releases the locks and resources
6369  * of such look up request.
6370  *
6371  * During the start() and end() calls, the results in @args will be valid
6372  * as proper locks will be held.  After the end() is called, all the fields
6373  * in @follow_pfnmap_args will be invalid to be further accessed.  Further
6374  * use of such information after end() may require proper synchronizations
6375  * by the caller with page table updates, otherwise it can create a
6376  * security bug.
6377  *
6378  * If the PTE maps a refcounted page, callers are responsible to protect
6379  * against invalidation with MMU notifiers; otherwise access to the PFN at
6380  * a later point in time can trigger use-after-free.
6381  *
6382  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
6383  * should be taken for read, and the mmap semaphore cannot be released
6384  * before the end() is invoked.
6385  *
6386  * This function must not be used to modify PTE content.
6387  *
6388  * Return: zero on success, negative otherwise.
6389  */
6390 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6391 {
6392 	struct vm_area_struct *vma = args->vma;
6393 	unsigned long address = args->address;
6394 	struct mm_struct *mm = vma->vm_mm;
6395 	spinlock_t *lock;
6396 	pgd_t *pgdp;
6397 	p4d_t *p4dp, p4d;
6398 	pud_t *pudp, pud;
6399 	pmd_t *pmdp, pmd;
6400 	pte_t *ptep, pte;
6401 
6402 	pfnmap_lockdep_assert(vma);
6403 
6404 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6405 		goto out;
6406 
6407 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6408 		goto out;
6409 retry:
6410 	pgdp = pgd_offset(mm, address);
6411 	if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6412 		goto out;
6413 
6414 	p4dp = p4d_offset(pgdp, address);
6415 	p4d = READ_ONCE(*p4dp);
6416 	if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6417 		goto out;
6418 
6419 	pudp = pud_offset(p4dp, address);
6420 	pud = READ_ONCE(*pudp);
6421 	if (pud_none(pud))
6422 		goto out;
6423 	if (pud_leaf(pud)) {
6424 		lock = pud_lock(mm, pudp);
6425 		if (!unlikely(pud_leaf(pud))) {
6426 			spin_unlock(lock);
6427 			goto retry;
6428 		}
6429 		pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6430 				  pud_pfn(pud), PUD_MASK, pud_write(pud),
6431 				  pud_special(pud));
6432 		return 0;
6433 	}
6434 
6435 	pmdp = pmd_offset(pudp, address);
6436 	pmd = pmdp_get_lockless(pmdp);
6437 	if (pmd_leaf(pmd)) {
6438 		lock = pmd_lock(mm, pmdp);
6439 		if (!unlikely(pmd_leaf(pmd))) {
6440 			spin_unlock(lock);
6441 			goto retry;
6442 		}
6443 		pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6444 				  pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6445 				  pmd_special(pmd));
6446 		return 0;
6447 	}
6448 
6449 	ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6450 	if (!ptep)
6451 		goto out;
6452 	pte = ptep_get(ptep);
6453 	if (!pte_present(pte))
6454 		goto unlock;
6455 	pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6456 			  pte_pfn(pte), PAGE_MASK, pte_write(pte),
6457 			  pte_special(pte));
6458 	return 0;
6459 unlock:
6460 	pte_unmap_unlock(ptep, lock);
6461 out:
6462 	return -EINVAL;
6463 }
6464 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6465 
6466 /**
6467  * follow_pfnmap_end(): End a follow_pfnmap_start() process
6468  * @args: Pointer to struct @follow_pfnmap_args
6469  *
6470  * Must be used in pair of follow_pfnmap_start().  See the start() function
6471  * above for more information.
6472  */
6473 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6474 {
6475 	if (args->lock)
6476 		spin_unlock(args->lock);
6477 	if (args->ptep)
6478 		pte_unmap(args->ptep);
6479 }
6480 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6481 
6482 #ifdef CONFIG_HAVE_IOREMAP_PROT
6483 /**
6484  * generic_access_phys - generic implementation for iomem mmap access
6485  * @vma: the vma to access
6486  * @addr: userspace address, not relative offset within @vma
6487  * @buf: buffer to read/write
6488  * @len: length of transfer
6489  * @write: set to FOLL_WRITE when writing, otherwise reading
6490  *
6491  * This is a generic implementation for &vm_operations_struct.access for an
6492  * iomem mapping. This callback is used by access_process_vm() when the @vma is
6493  * not page based.
6494  */
6495 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6496 			void *buf, int len, int write)
6497 {
6498 	resource_size_t phys_addr;
6499 	unsigned long prot = 0;
6500 	void __iomem *maddr;
6501 	int offset = offset_in_page(addr);
6502 	int ret = -EINVAL;
6503 	bool writable;
6504 	struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6505 
6506 retry:
6507 	if (follow_pfnmap_start(&args))
6508 		return -EINVAL;
6509 	prot = pgprot_val(args.pgprot);
6510 	phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6511 	writable = args.writable;
6512 	follow_pfnmap_end(&args);
6513 
6514 	if ((write & FOLL_WRITE) && !writable)
6515 		return -EINVAL;
6516 
6517 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6518 	if (!maddr)
6519 		return -ENOMEM;
6520 
6521 	if (follow_pfnmap_start(&args))
6522 		goto out_unmap;
6523 
6524 	if ((prot != pgprot_val(args.pgprot)) ||
6525 	    (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6526 	    (writable != args.writable)) {
6527 		follow_pfnmap_end(&args);
6528 		iounmap(maddr);
6529 		goto retry;
6530 	}
6531 
6532 	if (write)
6533 		memcpy_toio(maddr + offset, buf, len);
6534 	else
6535 		memcpy_fromio(buf, maddr + offset, len);
6536 	ret = len;
6537 	follow_pfnmap_end(&args);
6538 out_unmap:
6539 	iounmap(maddr);
6540 
6541 	return ret;
6542 }
6543 EXPORT_SYMBOL_GPL(generic_access_phys);
6544 #endif
6545 
6546 /*
6547  * Access another process' address space as given in mm.
6548  */
6549 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6550 			      void *buf, int len, unsigned int gup_flags)
6551 {
6552 	void *old_buf = buf;
6553 	int write = gup_flags & FOLL_WRITE;
6554 
6555 	if (mmap_read_lock_killable(mm))
6556 		return 0;
6557 
6558 	/* Untag the address before looking up the VMA */
6559 	addr = untagged_addr_remote(mm, addr);
6560 
6561 	/* Avoid triggering the temporary warning in __get_user_pages */
6562 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6563 		return 0;
6564 
6565 	/* ignore errors, just check how much was successfully transferred */
6566 	while (len) {
6567 		int bytes, offset;
6568 		void *maddr;
6569 		struct vm_area_struct *vma = NULL;
6570 		struct page *page = get_user_page_vma_remote(mm, addr,
6571 							     gup_flags, &vma);
6572 
6573 		if (IS_ERR(page)) {
6574 			/* We might need to expand the stack to access it */
6575 			vma = vma_lookup(mm, addr);
6576 			if (!vma) {
6577 				vma = expand_stack(mm, addr);
6578 
6579 				/* mmap_lock was dropped on failure */
6580 				if (!vma)
6581 					return buf - old_buf;
6582 
6583 				/* Try again if stack expansion worked */
6584 				continue;
6585 			}
6586 
6587 			/*
6588 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6589 			 * we can access using slightly different code.
6590 			 */
6591 			bytes = 0;
6592 #ifdef CONFIG_HAVE_IOREMAP_PROT
6593 			if (vma->vm_ops && vma->vm_ops->access)
6594 				bytes = vma->vm_ops->access(vma, addr, buf,
6595 							    len, write);
6596 #endif
6597 			if (bytes <= 0)
6598 				break;
6599 		} else {
6600 			bytes = len;
6601 			offset = addr & (PAGE_SIZE-1);
6602 			if (bytes > PAGE_SIZE-offset)
6603 				bytes = PAGE_SIZE-offset;
6604 
6605 			maddr = kmap_local_page(page);
6606 			if (write) {
6607 				copy_to_user_page(vma, page, addr,
6608 						  maddr + offset, buf, bytes);
6609 				set_page_dirty_lock(page);
6610 			} else {
6611 				copy_from_user_page(vma, page, addr,
6612 						    buf, maddr + offset, bytes);
6613 			}
6614 			unmap_and_put_page(page, maddr);
6615 		}
6616 		len -= bytes;
6617 		buf += bytes;
6618 		addr += bytes;
6619 	}
6620 	mmap_read_unlock(mm);
6621 
6622 	return buf - old_buf;
6623 }
6624 
6625 /**
6626  * access_remote_vm - access another process' address space
6627  * @mm:		the mm_struct of the target address space
6628  * @addr:	start address to access
6629  * @buf:	source or destination buffer
6630  * @len:	number of bytes to transfer
6631  * @gup_flags:	flags modifying lookup behaviour
6632  *
6633  * The caller must hold a reference on @mm.
6634  *
6635  * Return: number of bytes copied from source to destination.
6636  */
6637 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6638 		void *buf, int len, unsigned int gup_flags)
6639 {
6640 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6641 }
6642 
6643 /*
6644  * Access another process' address space.
6645  * Source/target buffer must be kernel space,
6646  * Do not walk the page table directly, use get_user_pages
6647  */
6648 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6649 		void *buf, int len, unsigned int gup_flags)
6650 {
6651 	struct mm_struct *mm;
6652 	int ret;
6653 
6654 	mm = get_task_mm(tsk);
6655 	if (!mm)
6656 		return 0;
6657 
6658 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6659 
6660 	mmput(mm);
6661 
6662 	return ret;
6663 }
6664 EXPORT_SYMBOL_GPL(access_process_vm);
6665 
6666 /*
6667  * Print the name of a VMA.
6668  */
6669 void print_vma_addr(char *prefix, unsigned long ip)
6670 {
6671 	struct mm_struct *mm = current->mm;
6672 	struct vm_area_struct *vma;
6673 
6674 	/*
6675 	 * we might be running from an atomic context so we cannot sleep
6676 	 */
6677 	if (!mmap_read_trylock(mm))
6678 		return;
6679 
6680 	vma = vma_lookup(mm, ip);
6681 	if (vma && vma->vm_file) {
6682 		struct file *f = vma->vm_file;
6683 		ip -= vma->vm_start;
6684 		ip += vma->vm_pgoff << PAGE_SHIFT;
6685 		printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6686 				vma->vm_start,
6687 				vma->vm_end - vma->vm_start);
6688 	}
6689 	mmap_read_unlock(mm);
6690 }
6691 
6692 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6693 void __might_fault(const char *file, int line)
6694 {
6695 	if (pagefault_disabled())
6696 		return;
6697 	__might_sleep(file, line);
6698 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6699 	if (current->mm)
6700 		might_lock_read(&current->mm->mmap_lock);
6701 #endif
6702 }
6703 EXPORT_SYMBOL(__might_fault);
6704 #endif
6705 
6706 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6707 /*
6708  * Process all subpages of the specified huge page with the specified
6709  * operation.  The target subpage will be processed last to keep its
6710  * cache lines hot.
6711  */
6712 static inline int process_huge_page(
6713 	unsigned long addr_hint, unsigned int nr_pages,
6714 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
6715 	void *arg)
6716 {
6717 	int i, n, base, l, ret;
6718 	unsigned long addr = addr_hint &
6719 		~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6720 
6721 	/* Process target subpage last to keep its cache lines hot */
6722 	might_sleep();
6723 	n = (addr_hint - addr) / PAGE_SIZE;
6724 	if (2 * n <= nr_pages) {
6725 		/* If target subpage in first half of huge page */
6726 		base = 0;
6727 		l = n;
6728 		/* Process subpages at the end of huge page */
6729 		for (i = nr_pages - 1; i >= 2 * n; i--) {
6730 			cond_resched();
6731 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6732 			if (ret)
6733 				return ret;
6734 		}
6735 	} else {
6736 		/* If target subpage in second half of huge page */
6737 		base = nr_pages - 2 * (nr_pages - n);
6738 		l = nr_pages - n;
6739 		/* Process subpages at the begin of huge page */
6740 		for (i = 0; i < base; i++) {
6741 			cond_resched();
6742 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6743 			if (ret)
6744 				return ret;
6745 		}
6746 	}
6747 	/*
6748 	 * Process remaining subpages in left-right-left-right pattern
6749 	 * towards the target subpage
6750 	 */
6751 	for (i = 0; i < l; i++) {
6752 		int left_idx = base + i;
6753 		int right_idx = base + 2 * l - 1 - i;
6754 
6755 		cond_resched();
6756 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6757 		if (ret)
6758 			return ret;
6759 		cond_resched();
6760 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6761 		if (ret)
6762 			return ret;
6763 	}
6764 	return 0;
6765 }
6766 
6767 static void clear_gigantic_page(struct folio *folio, unsigned long addr,
6768 				unsigned int nr_pages)
6769 {
6770 	int i;
6771 
6772 	might_sleep();
6773 	for (i = 0; i < nr_pages; i++) {
6774 		cond_resched();
6775 		clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6776 	}
6777 }
6778 
6779 static int clear_subpage(unsigned long addr, int idx, void *arg)
6780 {
6781 	struct folio *folio = arg;
6782 
6783 	clear_user_highpage(folio_page(folio, idx), addr);
6784 	return 0;
6785 }
6786 
6787 /**
6788  * folio_zero_user - Zero a folio which will be mapped to userspace.
6789  * @folio: The folio to zero.
6790  * @addr_hint: The address will be accessed or the base address if uncelar.
6791  */
6792 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6793 {
6794 	unsigned int nr_pages = folio_nr_pages(folio);
6795 
6796 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6797 		clear_gigantic_page(folio, addr_hint, nr_pages);
6798 	else
6799 		process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6800 }
6801 
6802 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6803 				   unsigned long addr,
6804 				   struct vm_area_struct *vma,
6805 				   unsigned int nr_pages)
6806 {
6807 	int i;
6808 	struct page *dst_page;
6809 	struct page *src_page;
6810 
6811 	for (i = 0; i < nr_pages; i++) {
6812 		dst_page = folio_page(dst, i);
6813 		src_page = folio_page(src, i);
6814 
6815 		cond_resched();
6816 		if (copy_mc_user_highpage(dst_page, src_page,
6817 					  addr + i*PAGE_SIZE, vma))
6818 			return -EHWPOISON;
6819 	}
6820 	return 0;
6821 }
6822 
6823 struct copy_subpage_arg {
6824 	struct folio *dst;
6825 	struct folio *src;
6826 	struct vm_area_struct *vma;
6827 };
6828 
6829 static int copy_subpage(unsigned long addr, int idx, void *arg)
6830 {
6831 	struct copy_subpage_arg *copy_arg = arg;
6832 	struct page *dst = folio_page(copy_arg->dst, idx);
6833 	struct page *src = folio_page(copy_arg->src, idx);
6834 
6835 	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6836 		return -EHWPOISON;
6837 	return 0;
6838 }
6839 
6840 int copy_user_large_folio(struct folio *dst, struct folio *src,
6841 			  unsigned long addr_hint, struct vm_area_struct *vma)
6842 {
6843 	unsigned int nr_pages = folio_nr_pages(dst);
6844 	struct copy_subpage_arg arg = {
6845 		.dst = dst,
6846 		.src = src,
6847 		.vma = vma,
6848 	};
6849 
6850 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6851 		return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6852 
6853 	return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6854 }
6855 
6856 long copy_folio_from_user(struct folio *dst_folio,
6857 			   const void __user *usr_src,
6858 			   bool allow_pagefault)
6859 {
6860 	void *kaddr;
6861 	unsigned long i, rc = 0;
6862 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6863 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6864 	struct page *subpage;
6865 
6866 	for (i = 0; i < nr_pages; i++) {
6867 		subpage = folio_page(dst_folio, i);
6868 		kaddr = kmap_local_page(subpage);
6869 		if (!allow_pagefault)
6870 			pagefault_disable();
6871 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6872 		if (!allow_pagefault)
6873 			pagefault_enable();
6874 		kunmap_local(kaddr);
6875 
6876 		ret_val -= (PAGE_SIZE - rc);
6877 		if (rc)
6878 			break;
6879 
6880 		flush_dcache_page(subpage);
6881 
6882 		cond_resched();
6883 	}
6884 	return ret_val;
6885 }
6886 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6887 
6888 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
6889 
6890 static struct kmem_cache *page_ptl_cachep;
6891 
6892 void __init ptlock_cache_init(void)
6893 {
6894 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6895 			SLAB_PANIC, NULL);
6896 }
6897 
6898 bool ptlock_alloc(struct ptdesc *ptdesc)
6899 {
6900 	spinlock_t *ptl;
6901 
6902 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6903 	if (!ptl)
6904 		return false;
6905 	ptdesc->ptl = ptl;
6906 	return true;
6907 }
6908 
6909 void ptlock_free(struct ptdesc *ptdesc)
6910 {
6911 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6912 }
6913 #endif
6914 
6915 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6916 {
6917 	if (is_vm_hugetlb_page(vma))
6918 		hugetlb_vma_lock_read(vma);
6919 }
6920 
6921 void vma_pgtable_walk_end(struct vm_area_struct *vma)
6922 {
6923 	if (is_vm_hugetlb_page(vma))
6924 		hugetlb_vma_unlock_read(vma);
6925 }
6926