1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/init.h> 51 52 #include <asm/pgalloc.h> 53 #include <asm/uaccess.h> 54 #include <asm/tlb.h> 55 #include <asm/tlbflush.h> 56 #include <asm/pgtable.h> 57 58 #include <linux/swapops.h> 59 #include <linux/elf.h> 60 61 #ifndef CONFIG_NEED_MULTIPLE_NODES 62 /* use the per-pgdat data instead for discontigmem - mbligh */ 63 unsigned long max_mapnr; 64 struct page *mem_map; 65 66 EXPORT_SYMBOL(max_mapnr); 67 EXPORT_SYMBOL(mem_map); 68 #endif 69 70 unsigned long num_physpages; 71 /* 72 * A number of key systems in x86 including ioremap() rely on the assumption 73 * that high_memory defines the upper bound on direct map memory, then end 74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 76 * and ZONE_HIGHMEM. 77 */ 78 void * high_memory; 79 unsigned long vmalloc_earlyreserve; 80 81 EXPORT_SYMBOL(num_physpages); 82 EXPORT_SYMBOL(high_memory); 83 EXPORT_SYMBOL(vmalloc_earlyreserve); 84 85 /* 86 * If a p?d_bad entry is found while walking page tables, report 87 * the error, before resetting entry to p?d_none. Usually (but 88 * very seldom) called out from the p?d_none_or_clear_bad macros. 89 */ 90 91 void pgd_clear_bad(pgd_t *pgd) 92 { 93 pgd_ERROR(*pgd); 94 pgd_clear(pgd); 95 } 96 97 void pud_clear_bad(pud_t *pud) 98 { 99 pud_ERROR(*pud); 100 pud_clear(pud); 101 } 102 103 void pmd_clear_bad(pmd_t *pmd) 104 { 105 pmd_ERROR(*pmd); 106 pmd_clear(pmd); 107 } 108 109 /* 110 * Note: this doesn't free the actual pages themselves. That 111 * has been handled earlier when unmapping all the memory regions. 112 */ 113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 114 { 115 struct page *page = pmd_page(*pmd); 116 pmd_clear(pmd); 117 pte_free_tlb(tlb, page); 118 dec_page_state(nr_page_table_pages); 119 tlb->mm->nr_ptes--; 120 } 121 122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 123 unsigned long addr, unsigned long end, 124 unsigned long floor, unsigned long ceiling) 125 { 126 pmd_t *pmd; 127 unsigned long next; 128 unsigned long start; 129 130 start = addr; 131 pmd = pmd_offset(pud, addr); 132 do { 133 next = pmd_addr_end(addr, end); 134 if (pmd_none_or_clear_bad(pmd)) 135 continue; 136 free_pte_range(tlb, pmd); 137 } while (pmd++, addr = next, addr != end); 138 139 start &= PUD_MASK; 140 if (start < floor) 141 return; 142 if (ceiling) { 143 ceiling &= PUD_MASK; 144 if (!ceiling) 145 return; 146 } 147 if (end - 1 > ceiling - 1) 148 return; 149 150 pmd = pmd_offset(pud, start); 151 pud_clear(pud); 152 pmd_free_tlb(tlb, pmd); 153 } 154 155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 156 unsigned long addr, unsigned long end, 157 unsigned long floor, unsigned long ceiling) 158 { 159 pud_t *pud; 160 unsigned long next; 161 unsigned long start; 162 163 start = addr; 164 pud = pud_offset(pgd, addr); 165 do { 166 next = pud_addr_end(addr, end); 167 if (pud_none_or_clear_bad(pud)) 168 continue; 169 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 170 } while (pud++, addr = next, addr != end); 171 172 start &= PGDIR_MASK; 173 if (start < floor) 174 return; 175 if (ceiling) { 176 ceiling &= PGDIR_MASK; 177 if (!ceiling) 178 return; 179 } 180 if (end - 1 > ceiling - 1) 181 return; 182 183 pud = pud_offset(pgd, start); 184 pgd_clear(pgd); 185 pud_free_tlb(tlb, pud); 186 } 187 188 /* 189 * This function frees user-level page tables of a process. 190 * 191 * Must be called with pagetable lock held. 192 */ 193 void free_pgd_range(struct mmu_gather **tlb, 194 unsigned long addr, unsigned long end, 195 unsigned long floor, unsigned long ceiling) 196 { 197 pgd_t *pgd; 198 unsigned long next; 199 unsigned long start; 200 201 /* 202 * The next few lines have given us lots of grief... 203 * 204 * Why are we testing PMD* at this top level? Because often 205 * there will be no work to do at all, and we'd prefer not to 206 * go all the way down to the bottom just to discover that. 207 * 208 * Why all these "- 1"s? Because 0 represents both the bottom 209 * of the address space and the top of it (using -1 for the 210 * top wouldn't help much: the masks would do the wrong thing). 211 * The rule is that addr 0 and floor 0 refer to the bottom of 212 * the address space, but end 0 and ceiling 0 refer to the top 213 * Comparisons need to use "end - 1" and "ceiling - 1" (though 214 * that end 0 case should be mythical). 215 * 216 * Wherever addr is brought up or ceiling brought down, we must 217 * be careful to reject "the opposite 0" before it confuses the 218 * subsequent tests. But what about where end is brought down 219 * by PMD_SIZE below? no, end can't go down to 0 there. 220 * 221 * Whereas we round start (addr) and ceiling down, by different 222 * masks at different levels, in order to test whether a table 223 * now has no other vmas using it, so can be freed, we don't 224 * bother to round floor or end up - the tests don't need that. 225 */ 226 227 addr &= PMD_MASK; 228 if (addr < floor) { 229 addr += PMD_SIZE; 230 if (!addr) 231 return; 232 } 233 if (ceiling) { 234 ceiling &= PMD_MASK; 235 if (!ceiling) 236 return; 237 } 238 if (end - 1 > ceiling - 1) 239 end -= PMD_SIZE; 240 if (addr > end - 1) 241 return; 242 243 start = addr; 244 pgd = pgd_offset((*tlb)->mm, addr); 245 do { 246 next = pgd_addr_end(addr, end); 247 if (pgd_none_or_clear_bad(pgd)) 248 continue; 249 free_pud_range(*tlb, pgd, addr, next, floor, ceiling); 250 } while (pgd++, addr = next, addr != end); 251 252 if (!tlb_is_full_mm(*tlb)) 253 flush_tlb_pgtables((*tlb)->mm, start, end); 254 } 255 256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, 257 unsigned long floor, unsigned long ceiling) 258 { 259 while (vma) { 260 struct vm_area_struct *next = vma->vm_next; 261 unsigned long addr = vma->vm_start; 262 263 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) { 264 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 265 floor, next? next->vm_start: ceiling); 266 } else { 267 /* 268 * Optimization: gather nearby vmas into one call down 269 */ 270 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 271 && !is_hugepage_only_range(vma->vm_mm, next->vm_start, 272 HPAGE_SIZE)) { 273 vma = next; 274 next = vma->vm_next; 275 } 276 free_pgd_range(tlb, addr, vma->vm_end, 277 floor, next? next->vm_start: ceiling); 278 } 279 vma = next; 280 } 281 } 282 283 pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, 284 unsigned long address) 285 { 286 if (!pmd_present(*pmd)) { 287 struct page *new; 288 289 spin_unlock(&mm->page_table_lock); 290 new = pte_alloc_one(mm, address); 291 spin_lock(&mm->page_table_lock); 292 if (!new) 293 return NULL; 294 /* 295 * Because we dropped the lock, we should re-check the 296 * entry, as somebody else could have populated it.. 297 */ 298 if (pmd_present(*pmd)) { 299 pte_free(new); 300 goto out; 301 } 302 mm->nr_ptes++; 303 inc_page_state(nr_page_table_pages); 304 pmd_populate(mm, pmd, new); 305 } 306 out: 307 return pte_offset_map(pmd, address); 308 } 309 310 pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 311 { 312 if (!pmd_present(*pmd)) { 313 pte_t *new; 314 315 spin_unlock(&mm->page_table_lock); 316 new = pte_alloc_one_kernel(mm, address); 317 spin_lock(&mm->page_table_lock); 318 if (!new) 319 return NULL; 320 321 /* 322 * Because we dropped the lock, we should re-check the 323 * entry, as somebody else could have populated it.. 324 */ 325 if (pmd_present(*pmd)) { 326 pte_free_kernel(new); 327 goto out; 328 } 329 pmd_populate_kernel(mm, pmd, new); 330 } 331 out: 332 return pte_offset_kernel(pmd, address); 333 } 334 335 /* 336 * copy one vm_area from one task to the other. Assumes the page tables 337 * already present in the new task to be cleared in the whole range 338 * covered by this vma. 339 * 340 * dst->page_table_lock is held on entry and exit, 341 * but may be dropped within p[mg]d_alloc() and pte_alloc_map(). 342 */ 343 344 static inline void 345 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 346 pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags, 347 unsigned long addr) 348 { 349 pte_t pte = *src_pte; 350 struct page *page; 351 unsigned long pfn; 352 353 /* pte contains position in swap or file, so copy. */ 354 if (unlikely(!pte_present(pte))) { 355 if (!pte_file(pte)) { 356 swap_duplicate(pte_to_swp_entry(pte)); 357 /* make sure dst_mm is on swapoff's mmlist. */ 358 if (unlikely(list_empty(&dst_mm->mmlist))) { 359 spin_lock(&mmlist_lock); 360 list_add(&dst_mm->mmlist, &src_mm->mmlist); 361 spin_unlock(&mmlist_lock); 362 } 363 } 364 set_pte_at(dst_mm, addr, dst_pte, pte); 365 return; 366 } 367 368 pfn = pte_pfn(pte); 369 /* the pte points outside of valid memory, the 370 * mapping is assumed to be good, meaningful 371 * and not mapped via rmap - duplicate the 372 * mapping as is. 373 */ 374 page = NULL; 375 if (pfn_valid(pfn)) 376 page = pfn_to_page(pfn); 377 378 if (!page || PageReserved(page)) { 379 set_pte_at(dst_mm, addr, dst_pte, pte); 380 return; 381 } 382 383 /* 384 * If it's a COW mapping, write protect it both 385 * in the parent and the child 386 */ 387 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) { 388 ptep_set_wrprotect(src_mm, addr, src_pte); 389 pte = *src_pte; 390 } 391 392 /* 393 * If it's a shared mapping, mark it clean in 394 * the child 395 */ 396 if (vm_flags & VM_SHARED) 397 pte = pte_mkclean(pte); 398 pte = pte_mkold(pte); 399 get_page(page); 400 inc_mm_counter(dst_mm, rss); 401 if (PageAnon(page)) 402 inc_mm_counter(dst_mm, anon_rss); 403 set_pte_at(dst_mm, addr, dst_pte, pte); 404 page_dup_rmap(page); 405 } 406 407 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 408 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 409 unsigned long addr, unsigned long end) 410 { 411 pte_t *src_pte, *dst_pte; 412 unsigned long vm_flags = vma->vm_flags; 413 int progress; 414 415 again: 416 dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr); 417 if (!dst_pte) 418 return -ENOMEM; 419 src_pte = pte_offset_map_nested(src_pmd, addr); 420 421 progress = 0; 422 spin_lock(&src_mm->page_table_lock); 423 do { 424 /* 425 * We are holding two locks at this point - either of them 426 * could generate latencies in another task on another CPU. 427 */ 428 if (progress >= 32 && (need_resched() || 429 need_lockbreak(&src_mm->page_table_lock) || 430 need_lockbreak(&dst_mm->page_table_lock))) 431 break; 432 if (pte_none(*src_pte)) { 433 progress++; 434 continue; 435 } 436 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr); 437 progress += 8; 438 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 439 spin_unlock(&src_mm->page_table_lock); 440 441 pte_unmap_nested(src_pte - 1); 442 pte_unmap(dst_pte - 1); 443 cond_resched_lock(&dst_mm->page_table_lock); 444 if (addr != end) 445 goto again; 446 return 0; 447 } 448 449 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 450 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 451 unsigned long addr, unsigned long end) 452 { 453 pmd_t *src_pmd, *dst_pmd; 454 unsigned long next; 455 456 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 457 if (!dst_pmd) 458 return -ENOMEM; 459 src_pmd = pmd_offset(src_pud, addr); 460 do { 461 next = pmd_addr_end(addr, end); 462 if (pmd_none_or_clear_bad(src_pmd)) 463 continue; 464 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 465 vma, addr, next)) 466 return -ENOMEM; 467 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 468 return 0; 469 } 470 471 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 472 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 473 unsigned long addr, unsigned long end) 474 { 475 pud_t *src_pud, *dst_pud; 476 unsigned long next; 477 478 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 479 if (!dst_pud) 480 return -ENOMEM; 481 src_pud = pud_offset(src_pgd, addr); 482 do { 483 next = pud_addr_end(addr, end); 484 if (pud_none_or_clear_bad(src_pud)) 485 continue; 486 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 487 vma, addr, next)) 488 return -ENOMEM; 489 } while (dst_pud++, src_pud++, addr = next, addr != end); 490 return 0; 491 } 492 493 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 494 struct vm_area_struct *vma) 495 { 496 pgd_t *src_pgd, *dst_pgd; 497 unsigned long next; 498 unsigned long addr = vma->vm_start; 499 unsigned long end = vma->vm_end; 500 501 /* 502 * Don't copy ptes where a page fault will fill them correctly. 503 * Fork becomes much lighter when there are big shared or private 504 * readonly mappings. The tradeoff is that copy_page_range is more 505 * efficient than faulting. 506 */ 507 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) { 508 if (!vma->anon_vma) 509 return 0; 510 } 511 512 if (is_vm_hugetlb_page(vma)) 513 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 514 515 dst_pgd = pgd_offset(dst_mm, addr); 516 src_pgd = pgd_offset(src_mm, addr); 517 do { 518 next = pgd_addr_end(addr, end); 519 if (pgd_none_or_clear_bad(src_pgd)) 520 continue; 521 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 522 vma, addr, next)) 523 return -ENOMEM; 524 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 525 return 0; 526 } 527 528 static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 529 unsigned long addr, unsigned long end, 530 struct zap_details *details) 531 { 532 pte_t *pte; 533 534 pte = pte_offset_map(pmd, addr); 535 do { 536 pte_t ptent = *pte; 537 if (pte_none(ptent)) 538 continue; 539 if (pte_present(ptent)) { 540 struct page *page = NULL; 541 unsigned long pfn = pte_pfn(ptent); 542 if (pfn_valid(pfn)) { 543 page = pfn_to_page(pfn); 544 if (PageReserved(page)) 545 page = NULL; 546 } 547 if (unlikely(details) && page) { 548 /* 549 * unmap_shared_mapping_pages() wants to 550 * invalidate cache without truncating: 551 * unmap shared but keep private pages. 552 */ 553 if (details->check_mapping && 554 details->check_mapping != page->mapping) 555 continue; 556 /* 557 * Each page->index must be checked when 558 * invalidating or truncating nonlinear. 559 */ 560 if (details->nonlinear_vma && 561 (page->index < details->first_index || 562 page->index > details->last_index)) 563 continue; 564 } 565 ptent = ptep_get_and_clear_full(tlb->mm, addr, pte, 566 tlb->fullmm); 567 tlb_remove_tlb_entry(tlb, pte, addr); 568 if (unlikely(!page)) 569 continue; 570 if (unlikely(details) && details->nonlinear_vma 571 && linear_page_index(details->nonlinear_vma, 572 addr) != page->index) 573 set_pte_at(tlb->mm, addr, pte, 574 pgoff_to_pte(page->index)); 575 if (pte_dirty(ptent)) 576 set_page_dirty(page); 577 if (PageAnon(page)) 578 dec_mm_counter(tlb->mm, anon_rss); 579 else if (pte_young(ptent)) 580 mark_page_accessed(page); 581 tlb->freed++; 582 page_remove_rmap(page); 583 tlb_remove_page(tlb, page); 584 continue; 585 } 586 /* 587 * If details->check_mapping, we leave swap entries; 588 * if details->nonlinear_vma, we leave file entries. 589 */ 590 if (unlikely(details)) 591 continue; 592 if (!pte_file(ptent)) 593 free_swap_and_cache(pte_to_swp_entry(ptent)); 594 pte_clear_full(tlb->mm, addr, pte, tlb->fullmm); 595 } while (pte++, addr += PAGE_SIZE, addr != end); 596 pte_unmap(pte - 1); 597 } 598 599 static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud, 600 unsigned long addr, unsigned long end, 601 struct zap_details *details) 602 { 603 pmd_t *pmd; 604 unsigned long next; 605 606 pmd = pmd_offset(pud, addr); 607 do { 608 next = pmd_addr_end(addr, end); 609 if (pmd_none_or_clear_bad(pmd)) 610 continue; 611 zap_pte_range(tlb, pmd, addr, next, details); 612 } while (pmd++, addr = next, addr != end); 613 } 614 615 static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 616 unsigned long addr, unsigned long end, 617 struct zap_details *details) 618 { 619 pud_t *pud; 620 unsigned long next; 621 622 pud = pud_offset(pgd, addr); 623 do { 624 next = pud_addr_end(addr, end); 625 if (pud_none_or_clear_bad(pud)) 626 continue; 627 zap_pmd_range(tlb, pud, addr, next, details); 628 } while (pud++, addr = next, addr != end); 629 } 630 631 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 632 unsigned long addr, unsigned long end, 633 struct zap_details *details) 634 { 635 pgd_t *pgd; 636 unsigned long next; 637 638 if (details && !details->check_mapping && !details->nonlinear_vma) 639 details = NULL; 640 641 BUG_ON(addr >= end); 642 tlb_start_vma(tlb, vma); 643 pgd = pgd_offset(vma->vm_mm, addr); 644 do { 645 next = pgd_addr_end(addr, end); 646 if (pgd_none_or_clear_bad(pgd)) 647 continue; 648 zap_pud_range(tlb, pgd, addr, next, details); 649 } while (pgd++, addr = next, addr != end); 650 tlb_end_vma(tlb, vma); 651 } 652 653 #ifdef CONFIG_PREEMPT 654 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 655 #else 656 /* No preempt: go for improved straight-line efficiency */ 657 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 658 #endif 659 660 /** 661 * unmap_vmas - unmap a range of memory covered by a list of vma's 662 * @tlbp: address of the caller's struct mmu_gather 663 * @mm: the controlling mm_struct 664 * @vma: the starting vma 665 * @start_addr: virtual address at which to start unmapping 666 * @end_addr: virtual address at which to end unmapping 667 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 668 * @details: details of nonlinear truncation or shared cache invalidation 669 * 670 * Returns the end address of the unmapping (restart addr if interrupted). 671 * 672 * Unmap all pages in the vma list. Called under page_table_lock. 673 * 674 * We aim to not hold page_table_lock for too long (for scheduling latency 675 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 676 * return the ending mmu_gather to the caller. 677 * 678 * Only addresses between `start' and `end' will be unmapped. 679 * 680 * The VMA list must be sorted in ascending virtual address order. 681 * 682 * unmap_vmas() assumes that the caller will flush the whole unmapped address 683 * range after unmap_vmas() returns. So the only responsibility here is to 684 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 685 * drops the lock and schedules. 686 */ 687 unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm, 688 struct vm_area_struct *vma, unsigned long start_addr, 689 unsigned long end_addr, unsigned long *nr_accounted, 690 struct zap_details *details) 691 { 692 unsigned long zap_bytes = ZAP_BLOCK_SIZE; 693 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 694 int tlb_start_valid = 0; 695 unsigned long start = start_addr; 696 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 697 int fullmm = tlb_is_full_mm(*tlbp); 698 699 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 700 unsigned long end; 701 702 start = max(vma->vm_start, start_addr); 703 if (start >= vma->vm_end) 704 continue; 705 end = min(vma->vm_end, end_addr); 706 if (end <= vma->vm_start) 707 continue; 708 709 if (vma->vm_flags & VM_ACCOUNT) 710 *nr_accounted += (end - start) >> PAGE_SHIFT; 711 712 while (start != end) { 713 unsigned long block; 714 715 if (!tlb_start_valid) { 716 tlb_start = start; 717 tlb_start_valid = 1; 718 } 719 720 if (is_vm_hugetlb_page(vma)) { 721 block = end - start; 722 unmap_hugepage_range(vma, start, end); 723 } else { 724 block = min(zap_bytes, end - start); 725 unmap_page_range(*tlbp, vma, start, 726 start + block, details); 727 } 728 729 start += block; 730 zap_bytes -= block; 731 if ((long)zap_bytes > 0) 732 continue; 733 734 tlb_finish_mmu(*tlbp, tlb_start, start); 735 736 if (need_resched() || 737 need_lockbreak(&mm->page_table_lock) || 738 (i_mmap_lock && need_lockbreak(i_mmap_lock))) { 739 if (i_mmap_lock) { 740 /* must reset count of rss freed */ 741 *tlbp = tlb_gather_mmu(mm, fullmm); 742 goto out; 743 } 744 spin_unlock(&mm->page_table_lock); 745 cond_resched(); 746 spin_lock(&mm->page_table_lock); 747 } 748 749 *tlbp = tlb_gather_mmu(mm, fullmm); 750 tlb_start_valid = 0; 751 zap_bytes = ZAP_BLOCK_SIZE; 752 } 753 } 754 out: 755 return start; /* which is now the end (or restart) address */ 756 } 757 758 /** 759 * zap_page_range - remove user pages in a given range 760 * @vma: vm_area_struct holding the applicable pages 761 * @address: starting address of pages to zap 762 * @size: number of bytes to zap 763 * @details: details of nonlinear truncation or shared cache invalidation 764 */ 765 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 766 unsigned long size, struct zap_details *details) 767 { 768 struct mm_struct *mm = vma->vm_mm; 769 struct mmu_gather *tlb; 770 unsigned long end = address + size; 771 unsigned long nr_accounted = 0; 772 773 if (is_vm_hugetlb_page(vma)) { 774 zap_hugepage_range(vma, address, size); 775 return end; 776 } 777 778 lru_add_drain(); 779 spin_lock(&mm->page_table_lock); 780 tlb = tlb_gather_mmu(mm, 0); 781 end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details); 782 tlb_finish_mmu(tlb, address, end); 783 spin_unlock(&mm->page_table_lock); 784 return end; 785 } 786 787 /* 788 * Do a quick page-table lookup for a single page. 789 * mm->page_table_lock must be held. 790 */ 791 static struct page *__follow_page(struct mm_struct *mm, unsigned long address, 792 int read, int write, int accessed) 793 { 794 pgd_t *pgd; 795 pud_t *pud; 796 pmd_t *pmd; 797 pte_t *ptep, pte; 798 unsigned long pfn; 799 struct page *page; 800 801 page = follow_huge_addr(mm, address, write); 802 if (! IS_ERR(page)) 803 return page; 804 805 pgd = pgd_offset(mm, address); 806 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 807 goto out; 808 809 pud = pud_offset(pgd, address); 810 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 811 goto out; 812 813 pmd = pmd_offset(pud, address); 814 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 815 goto out; 816 if (pmd_huge(*pmd)) 817 return follow_huge_pmd(mm, address, pmd, write); 818 819 ptep = pte_offset_map(pmd, address); 820 if (!ptep) 821 goto out; 822 823 pte = *ptep; 824 pte_unmap(ptep); 825 if (pte_present(pte)) { 826 if (write && !pte_write(pte)) 827 goto out; 828 if (read && !pte_read(pte)) 829 goto out; 830 pfn = pte_pfn(pte); 831 if (pfn_valid(pfn)) { 832 page = pfn_to_page(pfn); 833 if (accessed) { 834 if (write && !pte_dirty(pte) &&!PageDirty(page)) 835 set_page_dirty(page); 836 mark_page_accessed(page); 837 } 838 return page; 839 } 840 } 841 842 out: 843 return NULL; 844 } 845 846 inline struct page * 847 follow_page(struct mm_struct *mm, unsigned long address, int write) 848 { 849 return __follow_page(mm, address, 0, write, 1); 850 } 851 852 /* 853 * check_user_page_readable() can be called frm niterrupt context by oprofile, 854 * so we need to avoid taking any non-irq-safe locks 855 */ 856 int check_user_page_readable(struct mm_struct *mm, unsigned long address) 857 { 858 return __follow_page(mm, address, 1, 0, 0) != NULL; 859 } 860 EXPORT_SYMBOL(check_user_page_readable); 861 862 static inline int 863 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma, 864 unsigned long address) 865 { 866 pgd_t *pgd; 867 pud_t *pud; 868 pmd_t *pmd; 869 870 /* Check if the vma is for an anonymous mapping. */ 871 if (vma->vm_ops && vma->vm_ops->nopage) 872 return 0; 873 874 /* Check if page directory entry exists. */ 875 pgd = pgd_offset(mm, address); 876 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 877 return 1; 878 879 pud = pud_offset(pgd, address); 880 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 881 return 1; 882 883 /* Check if page middle directory entry exists. */ 884 pmd = pmd_offset(pud, address); 885 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 886 return 1; 887 888 /* There is a pte slot for 'address' in 'mm'. */ 889 return 0; 890 } 891 892 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 893 unsigned long start, int len, int write, int force, 894 struct page **pages, struct vm_area_struct **vmas) 895 { 896 int i; 897 unsigned int flags; 898 899 /* 900 * Require read or write permissions. 901 * If 'force' is set, we only require the "MAY" flags. 902 */ 903 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 904 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 905 i = 0; 906 907 do { 908 struct vm_area_struct * vma; 909 910 vma = find_extend_vma(mm, start); 911 if (!vma && in_gate_area(tsk, start)) { 912 unsigned long pg = start & PAGE_MASK; 913 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 914 pgd_t *pgd; 915 pud_t *pud; 916 pmd_t *pmd; 917 pte_t *pte; 918 if (write) /* user gate pages are read-only */ 919 return i ? : -EFAULT; 920 if (pg > TASK_SIZE) 921 pgd = pgd_offset_k(pg); 922 else 923 pgd = pgd_offset_gate(mm, pg); 924 BUG_ON(pgd_none(*pgd)); 925 pud = pud_offset(pgd, pg); 926 BUG_ON(pud_none(*pud)); 927 pmd = pmd_offset(pud, pg); 928 if (pmd_none(*pmd)) 929 return i ? : -EFAULT; 930 pte = pte_offset_map(pmd, pg); 931 if (pte_none(*pte)) { 932 pte_unmap(pte); 933 return i ? : -EFAULT; 934 } 935 if (pages) { 936 pages[i] = pte_page(*pte); 937 get_page(pages[i]); 938 } 939 pte_unmap(pte); 940 if (vmas) 941 vmas[i] = gate_vma; 942 i++; 943 start += PAGE_SIZE; 944 len--; 945 continue; 946 } 947 948 if (!vma || (vma->vm_flags & VM_IO) 949 || !(flags & vma->vm_flags)) 950 return i ? : -EFAULT; 951 952 if (is_vm_hugetlb_page(vma)) { 953 i = follow_hugetlb_page(mm, vma, pages, vmas, 954 &start, &len, i); 955 continue; 956 } 957 spin_lock(&mm->page_table_lock); 958 do { 959 int write_access = write; 960 struct page *page; 961 962 cond_resched_lock(&mm->page_table_lock); 963 while (!(page = follow_page(mm, start, write_access))) { 964 int ret; 965 966 /* 967 * Shortcut for anonymous pages. We don't want 968 * to force the creation of pages tables for 969 * insanely big anonymously mapped areas that 970 * nobody touched so far. This is important 971 * for doing a core dump for these mappings. 972 */ 973 if (!write && untouched_anonymous_page(mm,vma,start)) { 974 page = ZERO_PAGE(start); 975 break; 976 } 977 spin_unlock(&mm->page_table_lock); 978 ret = __handle_mm_fault(mm, vma, start, write_access); 979 980 /* 981 * The VM_FAULT_WRITE bit tells us that do_wp_page has 982 * broken COW when necessary, even if maybe_mkwrite 983 * decided not to set pte_write. We can thus safely do 984 * subsequent page lookups as if they were reads. 985 */ 986 if (ret & VM_FAULT_WRITE) 987 write_access = 0; 988 989 switch (ret & ~VM_FAULT_WRITE) { 990 case VM_FAULT_MINOR: 991 tsk->min_flt++; 992 break; 993 case VM_FAULT_MAJOR: 994 tsk->maj_flt++; 995 break; 996 case VM_FAULT_SIGBUS: 997 return i ? i : -EFAULT; 998 case VM_FAULT_OOM: 999 return i ? i : -ENOMEM; 1000 default: 1001 BUG(); 1002 } 1003 spin_lock(&mm->page_table_lock); 1004 } 1005 if (pages) { 1006 pages[i] = page; 1007 flush_dcache_page(page); 1008 if (!PageReserved(page)) 1009 page_cache_get(page); 1010 } 1011 if (vmas) 1012 vmas[i] = vma; 1013 i++; 1014 start += PAGE_SIZE; 1015 len--; 1016 } while (len && start < vma->vm_end); 1017 spin_unlock(&mm->page_table_lock); 1018 } while (len); 1019 return i; 1020 } 1021 EXPORT_SYMBOL(get_user_pages); 1022 1023 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1024 unsigned long addr, unsigned long end, pgprot_t prot) 1025 { 1026 pte_t *pte; 1027 1028 pte = pte_alloc_map(mm, pmd, addr); 1029 if (!pte) 1030 return -ENOMEM; 1031 do { 1032 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot)); 1033 BUG_ON(!pte_none(*pte)); 1034 set_pte_at(mm, addr, pte, zero_pte); 1035 } while (pte++, addr += PAGE_SIZE, addr != end); 1036 pte_unmap(pte - 1); 1037 return 0; 1038 } 1039 1040 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, 1041 unsigned long addr, unsigned long end, pgprot_t prot) 1042 { 1043 pmd_t *pmd; 1044 unsigned long next; 1045 1046 pmd = pmd_alloc(mm, pud, addr); 1047 if (!pmd) 1048 return -ENOMEM; 1049 do { 1050 next = pmd_addr_end(addr, end); 1051 if (zeromap_pte_range(mm, pmd, addr, next, prot)) 1052 return -ENOMEM; 1053 } while (pmd++, addr = next, addr != end); 1054 return 0; 1055 } 1056 1057 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1058 unsigned long addr, unsigned long end, pgprot_t prot) 1059 { 1060 pud_t *pud; 1061 unsigned long next; 1062 1063 pud = pud_alloc(mm, pgd, addr); 1064 if (!pud) 1065 return -ENOMEM; 1066 do { 1067 next = pud_addr_end(addr, end); 1068 if (zeromap_pmd_range(mm, pud, addr, next, prot)) 1069 return -ENOMEM; 1070 } while (pud++, addr = next, addr != end); 1071 return 0; 1072 } 1073 1074 int zeromap_page_range(struct vm_area_struct *vma, 1075 unsigned long addr, unsigned long size, pgprot_t prot) 1076 { 1077 pgd_t *pgd; 1078 unsigned long next; 1079 unsigned long end = addr + size; 1080 struct mm_struct *mm = vma->vm_mm; 1081 int err; 1082 1083 BUG_ON(addr >= end); 1084 pgd = pgd_offset(mm, addr); 1085 flush_cache_range(vma, addr, end); 1086 spin_lock(&mm->page_table_lock); 1087 do { 1088 next = pgd_addr_end(addr, end); 1089 err = zeromap_pud_range(mm, pgd, addr, next, prot); 1090 if (err) 1091 break; 1092 } while (pgd++, addr = next, addr != end); 1093 spin_unlock(&mm->page_table_lock); 1094 return err; 1095 } 1096 1097 /* 1098 * maps a range of physical memory into the requested pages. the old 1099 * mappings are removed. any references to nonexistent pages results 1100 * in null mappings (currently treated as "copy-on-access") 1101 */ 1102 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1103 unsigned long addr, unsigned long end, 1104 unsigned long pfn, pgprot_t prot) 1105 { 1106 pte_t *pte; 1107 1108 pte = pte_alloc_map(mm, pmd, addr); 1109 if (!pte) 1110 return -ENOMEM; 1111 do { 1112 BUG_ON(!pte_none(*pte)); 1113 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn))) 1114 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); 1115 pfn++; 1116 } while (pte++, addr += PAGE_SIZE, addr != end); 1117 pte_unmap(pte - 1); 1118 return 0; 1119 } 1120 1121 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1122 unsigned long addr, unsigned long end, 1123 unsigned long pfn, pgprot_t prot) 1124 { 1125 pmd_t *pmd; 1126 unsigned long next; 1127 1128 pfn -= addr >> PAGE_SHIFT; 1129 pmd = pmd_alloc(mm, pud, addr); 1130 if (!pmd) 1131 return -ENOMEM; 1132 do { 1133 next = pmd_addr_end(addr, end); 1134 if (remap_pte_range(mm, pmd, addr, next, 1135 pfn + (addr >> PAGE_SHIFT), prot)) 1136 return -ENOMEM; 1137 } while (pmd++, addr = next, addr != end); 1138 return 0; 1139 } 1140 1141 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1142 unsigned long addr, unsigned long end, 1143 unsigned long pfn, pgprot_t prot) 1144 { 1145 pud_t *pud; 1146 unsigned long next; 1147 1148 pfn -= addr >> PAGE_SHIFT; 1149 pud = pud_alloc(mm, pgd, addr); 1150 if (!pud) 1151 return -ENOMEM; 1152 do { 1153 next = pud_addr_end(addr, end); 1154 if (remap_pmd_range(mm, pud, addr, next, 1155 pfn + (addr >> PAGE_SHIFT), prot)) 1156 return -ENOMEM; 1157 } while (pud++, addr = next, addr != end); 1158 return 0; 1159 } 1160 1161 /* Note: this is only safe if the mm semaphore is held when called. */ 1162 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1163 unsigned long pfn, unsigned long size, pgprot_t prot) 1164 { 1165 pgd_t *pgd; 1166 unsigned long next; 1167 unsigned long end = addr + PAGE_ALIGN(size); 1168 struct mm_struct *mm = vma->vm_mm; 1169 int err; 1170 1171 /* 1172 * Physically remapped pages are special. Tell the 1173 * rest of the world about it: 1174 * VM_IO tells people not to look at these pages 1175 * (accesses can have side effects). 1176 * VM_RESERVED tells swapout not to try to touch 1177 * this region. 1178 */ 1179 vma->vm_flags |= VM_IO | VM_RESERVED; 1180 1181 BUG_ON(addr >= end); 1182 pfn -= addr >> PAGE_SHIFT; 1183 pgd = pgd_offset(mm, addr); 1184 flush_cache_range(vma, addr, end); 1185 spin_lock(&mm->page_table_lock); 1186 do { 1187 next = pgd_addr_end(addr, end); 1188 err = remap_pud_range(mm, pgd, addr, next, 1189 pfn + (addr >> PAGE_SHIFT), prot); 1190 if (err) 1191 break; 1192 } while (pgd++, addr = next, addr != end); 1193 spin_unlock(&mm->page_table_lock); 1194 return err; 1195 } 1196 EXPORT_SYMBOL(remap_pfn_range); 1197 1198 /* 1199 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1200 * servicing faults for write access. In the normal case, do always want 1201 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1202 * that do not have writing enabled, when used by access_process_vm. 1203 */ 1204 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1205 { 1206 if (likely(vma->vm_flags & VM_WRITE)) 1207 pte = pte_mkwrite(pte); 1208 return pte; 1209 } 1210 1211 /* 1212 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock 1213 */ 1214 static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, 1215 pte_t *page_table) 1216 { 1217 pte_t entry; 1218 1219 entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)), 1220 vma); 1221 ptep_establish(vma, address, page_table, entry); 1222 update_mmu_cache(vma, address, entry); 1223 lazy_mmu_prot_update(entry); 1224 } 1225 1226 /* 1227 * This routine handles present pages, when users try to write 1228 * to a shared page. It is done by copying the page to a new address 1229 * and decrementing the shared-page counter for the old page. 1230 * 1231 * Goto-purists beware: the only reason for goto's here is that it results 1232 * in better assembly code.. The "default" path will see no jumps at all. 1233 * 1234 * Note that this routine assumes that the protection checks have been 1235 * done by the caller (the low-level page fault routine in most cases). 1236 * Thus we can safely just mark it writable once we've done any necessary 1237 * COW. 1238 * 1239 * We also mark the page dirty at this point even though the page will 1240 * change only once the write actually happens. This avoids a few races, 1241 * and potentially makes it more efficient. 1242 * 1243 * We hold the mm semaphore and the page_table_lock on entry and exit 1244 * with the page_table_lock released. 1245 */ 1246 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma, 1247 unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte) 1248 { 1249 struct page *old_page, *new_page; 1250 unsigned long pfn = pte_pfn(pte); 1251 pte_t entry; 1252 int ret; 1253 1254 if (unlikely(!pfn_valid(pfn))) { 1255 /* 1256 * This should really halt the system so it can be debugged or 1257 * at least the kernel stops what it's doing before it corrupts 1258 * data, but for the moment just pretend this is OOM. 1259 */ 1260 pte_unmap(page_table); 1261 printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n", 1262 address); 1263 spin_unlock(&mm->page_table_lock); 1264 return VM_FAULT_OOM; 1265 } 1266 old_page = pfn_to_page(pfn); 1267 1268 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) { 1269 int reuse = can_share_swap_page(old_page); 1270 unlock_page(old_page); 1271 if (reuse) { 1272 flush_cache_page(vma, address, pfn); 1273 entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)), 1274 vma); 1275 ptep_set_access_flags(vma, address, page_table, entry, 1); 1276 update_mmu_cache(vma, address, entry); 1277 lazy_mmu_prot_update(entry); 1278 pte_unmap(page_table); 1279 spin_unlock(&mm->page_table_lock); 1280 return VM_FAULT_MINOR|VM_FAULT_WRITE; 1281 } 1282 } 1283 pte_unmap(page_table); 1284 1285 /* 1286 * Ok, we need to copy. Oh, well.. 1287 */ 1288 if (!PageReserved(old_page)) 1289 page_cache_get(old_page); 1290 spin_unlock(&mm->page_table_lock); 1291 1292 if (unlikely(anon_vma_prepare(vma))) 1293 goto no_new_page; 1294 if (old_page == ZERO_PAGE(address)) { 1295 new_page = alloc_zeroed_user_highpage(vma, address); 1296 if (!new_page) 1297 goto no_new_page; 1298 } else { 1299 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); 1300 if (!new_page) 1301 goto no_new_page; 1302 copy_user_highpage(new_page, old_page, address); 1303 } 1304 /* 1305 * Re-check the pte - we dropped the lock 1306 */ 1307 ret = VM_FAULT_MINOR; 1308 spin_lock(&mm->page_table_lock); 1309 page_table = pte_offset_map(pmd, address); 1310 if (likely(pte_same(*page_table, pte))) { 1311 if (PageAnon(old_page)) 1312 dec_mm_counter(mm, anon_rss); 1313 if (PageReserved(old_page)) 1314 inc_mm_counter(mm, rss); 1315 else 1316 page_remove_rmap(old_page); 1317 flush_cache_page(vma, address, pfn); 1318 break_cow(vma, new_page, address, page_table); 1319 lru_cache_add_active(new_page); 1320 page_add_anon_rmap(new_page, vma, address); 1321 1322 /* Free the old page.. */ 1323 new_page = old_page; 1324 ret |= VM_FAULT_WRITE; 1325 } 1326 pte_unmap(page_table); 1327 page_cache_release(new_page); 1328 page_cache_release(old_page); 1329 spin_unlock(&mm->page_table_lock); 1330 return ret; 1331 1332 no_new_page: 1333 page_cache_release(old_page); 1334 return VM_FAULT_OOM; 1335 } 1336 1337 /* 1338 * Helper functions for unmap_mapping_range(). 1339 * 1340 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 1341 * 1342 * We have to restart searching the prio_tree whenever we drop the lock, 1343 * since the iterator is only valid while the lock is held, and anyway 1344 * a later vma might be split and reinserted earlier while lock dropped. 1345 * 1346 * The list of nonlinear vmas could be handled more efficiently, using 1347 * a placeholder, but handle it in the same way until a need is shown. 1348 * It is important to search the prio_tree before nonlinear list: a vma 1349 * may become nonlinear and be shifted from prio_tree to nonlinear list 1350 * while the lock is dropped; but never shifted from list to prio_tree. 1351 * 1352 * In order to make forward progress despite restarting the search, 1353 * vm_truncate_count is used to mark a vma as now dealt with, so we can 1354 * quickly skip it next time around. Since the prio_tree search only 1355 * shows us those vmas affected by unmapping the range in question, we 1356 * can't efficiently keep all vmas in step with mapping->truncate_count: 1357 * so instead reset them all whenever it wraps back to 0 (then go to 1). 1358 * mapping->truncate_count and vma->vm_truncate_count are protected by 1359 * i_mmap_lock. 1360 * 1361 * In order to make forward progress despite repeatedly restarting some 1362 * large vma, note the restart_addr from unmap_vmas when it breaks out: 1363 * and restart from that address when we reach that vma again. It might 1364 * have been split or merged, shrunk or extended, but never shifted: so 1365 * restart_addr remains valid so long as it remains in the vma's range. 1366 * unmap_mapping_range forces truncate_count to leap over page-aligned 1367 * values so we can save vma's restart_addr in its truncate_count field. 1368 */ 1369 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 1370 1371 static void reset_vma_truncate_counts(struct address_space *mapping) 1372 { 1373 struct vm_area_struct *vma; 1374 struct prio_tree_iter iter; 1375 1376 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 1377 vma->vm_truncate_count = 0; 1378 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1379 vma->vm_truncate_count = 0; 1380 } 1381 1382 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 1383 unsigned long start_addr, unsigned long end_addr, 1384 struct zap_details *details) 1385 { 1386 unsigned long restart_addr; 1387 int need_break; 1388 1389 again: 1390 restart_addr = vma->vm_truncate_count; 1391 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 1392 start_addr = restart_addr; 1393 if (start_addr >= end_addr) { 1394 /* Top of vma has been split off since last time */ 1395 vma->vm_truncate_count = details->truncate_count; 1396 return 0; 1397 } 1398 } 1399 1400 restart_addr = zap_page_range(vma, start_addr, 1401 end_addr - start_addr, details); 1402 1403 /* 1404 * We cannot rely on the break test in unmap_vmas: 1405 * on the one hand, we don't want to restart our loop 1406 * just because that broke out for the page_table_lock; 1407 * on the other hand, it does no test when vma is small. 1408 */ 1409 need_break = need_resched() || 1410 need_lockbreak(details->i_mmap_lock); 1411 1412 if (restart_addr >= end_addr) { 1413 /* We have now completed this vma: mark it so */ 1414 vma->vm_truncate_count = details->truncate_count; 1415 if (!need_break) 1416 return 0; 1417 } else { 1418 /* Note restart_addr in vma's truncate_count field */ 1419 vma->vm_truncate_count = restart_addr; 1420 if (!need_break) 1421 goto again; 1422 } 1423 1424 spin_unlock(details->i_mmap_lock); 1425 cond_resched(); 1426 spin_lock(details->i_mmap_lock); 1427 return -EINTR; 1428 } 1429 1430 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 1431 struct zap_details *details) 1432 { 1433 struct vm_area_struct *vma; 1434 struct prio_tree_iter iter; 1435 pgoff_t vba, vea, zba, zea; 1436 1437 restart: 1438 vma_prio_tree_foreach(vma, &iter, root, 1439 details->first_index, details->last_index) { 1440 /* Skip quickly over those we have already dealt with */ 1441 if (vma->vm_truncate_count == details->truncate_count) 1442 continue; 1443 1444 vba = vma->vm_pgoff; 1445 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 1446 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 1447 zba = details->first_index; 1448 if (zba < vba) 1449 zba = vba; 1450 zea = details->last_index; 1451 if (zea > vea) 1452 zea = vea; 1453 1454 if (unmap_mapping_range_vma(vma, 1455 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 1456 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 1457 details) < 0) 1458 goto restart; 1459 } 1460 } 1461 1462 static inline void unmap_mapping_range_list(struct list_head *head, 1463 struct zap_details *details) 1464 { 1465 struct vm_area_struct *vma; 1466 1467 /* 1468 * In nonlinear VMAs there is no correspondence between virtual address 1469 * offset and file offset. So we must perform an exhaustive search 1470 * across *all* the pages in each nonlinear VMA, not just the pages 1471 * whose virtual address lies outside the file truncation point. 1472 */ 1473 restart: 1474 list_for_each_entry(vma, head, shared.vm_set.list) { 1475 /* Skip quickly over those we have already dealt with */ 1476 if (vma->vm_truncate_count == details->truncate_count) 1477 continue; 1478 details->nonlinear_vma = vma; 1479 if (unmap_mapping_range_vma(vma, vma->vm_start, 1480 vma->vm_end, details) < 0) 1481 goto restart; 1482 } 1483 } 1484 1485 /** 1486 * unmap_mapping_range - unmap the portion of all mmaps 1487 * in the specified address_space corresponding to the specified 1488 * page range in the underlying file. 1489 * @mapping: the address space containing mmaps to be unmapped. 1490 * @holebegin: byte in first page to unmap, relative to the start of 1491 * the underlying file. This will be rounded down to a PAGE_SIZE 1492 * boundary. Note that this is different from vmtruncate(), which 1493 * must keep the partial page. In contrast, we must get rid of 1494 * partial pages. 1495 * @holelen: size of prospective hole in bytes. This will be rounded 1496 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 1497 * end of the file. 1498 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 1499 * but 0 when invalidating pagecache, don't throw away private data. 1500 */ 1501 void unmap_mapping_range(struct address_space *mapping, 1502 loff_t const holebegin, loff_t const holelen, int even_cows) 1503 { 1504 struct zap_details details; 1505 pgoff_t hba = holebegin >> PAGE_SHIFT; 1506 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1507 1508 /* Check for overflow. */ 1509 if (sizeof(holelen) > sizeof(hlen)) { 1510 long long holeend = 1511 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1512 if (holeend & ~(long long)ULONG_MAX) 1513 hlen = ULONG_MAX - hba + 1; 1514 } 1515 1516 details.check_mapping = even_cows? NULL: mapping; 1517 details.nonlinear_vma = NULL; 1518 details.first_index = hba; 1519 details.last_index = hba + hlen - 1; 1520 if (details.last_index < details.first_index) 1521 details.last_index = ULONG_MAX; 1522 details.i_mmap_lock = &mapping->i_mmap_lock; 1523 1524 spin_lock(&mapping->i_mmap_lock); 1525 1526 /* serialize i_size write against truncate_count write */ 1527 smp_wmb(); 1528 /* Protect against page faults, and endless unmapping loops */ 1529 mapping->truncate_count++; 1530 /* 1531 * For archs where spin_lock has inclusive semantics like ia64 1532 * this smp_mb() will prevent to read pagetable contents 1533 * before the truncate_count increment is visible to 1534 * other cpus. 1535 */ 1536 smp_mb(); 1537 if (unlikely(is_restart_addr(mapping->truncate_count))) { 1538 if (mapping->truncate_count == 0) 1539 reset_vma_truncate_counts(mapping); 1540 mapping->truncate_count++; 1541 } 1542 details.truncate_count = mapping->truncate_count; 1543 1544 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 1545 unmap_mapping_range_tree(&mapping->i_mmap, &details); 1546 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 1547 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 1548 spin_unlock(&mapping->i_mmap_lock); 1549 } 1550 EXPORT_SYMBOL(unmap_mapping_range); 1551 1552 /* 1553 * Handle all mappings that got truncated by a "truncate()" 1554 * system call. 1555 * 1556 * NOTE! We have to be ready to update the memory sharing 1557 * between the file and the memory map for a potential last 1558 * incomplete page. Ugly, but necessary. 1559 */ 1560 int vmtruncate(struct inode * inode, loff_t offset) 1561 { 1562 struct address_space *mapping = inode->i_mapping; 1563 unsigned long limit; 1564 1565 if (inode->i_size < offset) 1566 goto do_expand; 1567 /* 1568 * truncation of in-use swapfiles is disallowed - it would cause 1569 * subsequent swapout to scribble on the now-freed blocks. 1570 */ 1571 if (IS_SWAPFILE(inode)) 1572 goto out_busy; 1573 i_size_write(inode, offset); 1574 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 1575 truncate_inode_pages(mapping, offset); 1576 goto out_truncate; 1577 1578 do_expand: 1579 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1580 if (limit != RLIM_INFINITY && offset > limit) 1581 goto out_sig; 1582 if (offset > inode->i_sb->s_maxbytes) 1583 goto out_big; 1584 i_size_write(inode, offset); 1585 1586 out_truncate: 1587 if (inode->i_op && inode->i_op->truncate) 1588 inode->i_op->truncate(inode); 1589 return 0; 1590 out_sig: 1591 send_sig(SIGXFSZ, current, 0); 1592 out_big: 1593 return -EFBIG; 1594 out_busy: 1595 return -ETXTBSY; 1596 } 1597 1598 EXPORT_SYMBOL(vmtruncate); 1599 1600 /* 1601 * Primitive swap readahead code. We simply read an aligned block of 1602 * (1 << page_cluster) entries in the swap area. This method is chosen 1603 * because it doesn't cost us any seek time. We also make sure to queue 1604 * the 'original' request together with the readahead ones... 1605 * 1606 * This has been extended to use the NUMA policies from the mm triggering 1607 * the readahead. 1608 * 1609 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 1610 */ 1611 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) 1612 { 1613 #ifdef CONFIG_NUMA 1614 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; 1615 #endif 1616 int i, num; 1617 struct page *new_page; 1618 unsigned long offset; 1619 1620 /* 1621 * Get the number of handles we should do readahead io to. 1622 */ 1623 num = valid_swaphandles(entry, &offset); 1624 for (i = 0; i < num; offset++, i++) { 1625 /* Ok, do the async read-ahead now */ 1626 new_page = read_swap_cache_async(swp_entry(swp_type(entry), 1627 offset), vma, addr); 1628 if (!new_page) 1629 break; 1630 page_cache_release(new_page); 1631 #ifdef CONFIG_NUMA 1632 /* 1633 * Find the next applicable VMA for the NUMA policy. 1634 */ 1635 addr += PAGE_SIZE; 1636 if (addr == 0) 1637 vma = NULL; 1638 if (vma) { 1639 if (addr >= vma->vm_end) { 1640 vma = next_vma; 1641 next_vma = vma ? vma->vm_next : NULL; 1642 } 1643 if (vma && addr < vma->vm_start) 1644 vma = NULL; 1645 } else { 1646 if (next_vma && addr >= next_vma->vm_start) { 1647 vma = next_vma; 1648 next_vma = vma->vm_next; 1649 } 1650 } 1651 #endif 1652 } 1653 lru_add_drain(); /* Push any new pages onto the LRU now */ 1654 } 1655 1656 /* 1657 * We hold the mm semaphore and the page_table_lock on entry and 1658 * should release the pagetable lock on exit.. 1659 */ 1660 static int do_swap_page(struct mm_struct * mm, 1661 struct vm_area_struct * vma, unsigned long address, 1662 pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access) 1663 { 1664 struct page *page; 1665 swp_entry_t entry = pte_to_swp_entry(orig_pte); 1666 pte_t pte; 1667 int ret = VM_FAULT_MINOR; 1668 1669 pte_unmap(page_table); 1670 spin_unlock(&mm->page_table_lock); 1671 page = lookup_swap_cache(entry); 1672 if (!page) { 1673 swapin_readahead(entry, address, vma); 1674 page = read_swap_cache_async(entry, vma, address); 1675 if (!page) { 1676 /* 1677 * Back out if somebody else faulted in this pte while 1678 * we released the page table lock. 1679 */ 1680 spin_lock(&mm->page_table_lock); 1681 page_table = pte_offset_map(pmd, address); 1682 if (likely(pte_same(*page_table, orig_pte))) 1683 ret = VM_FAULT_OOM; 1684 else 1685 ret = VM_FAULT_MINOR; 1686 pte_unmap(page_table); 1687 spin_unlock(&mm->page_table_lock); 1688 goto out; 1689 } 1690 1691 /* Had to read the page from swap area: Major fault */ 1692 ret = VM_FAULT_MAJOR; 1693 inc_page_state(pgmajfault); 1694 grab_swap_token(); 1695 } 1696 1697 mark_page_accessed(page); 1698 lock_page(page); 1699 1700 /* 1701 * Back out if somebody else faulted in this pte while we 1702 * released the page table lock. 1703 */ 1704 spin_lock(&mm->page_table_lock); 1705 page_table = pte_offset_map(pmd, address); 1706 if (unlikely(!pte_same(*page_table, orig_pte))) { 1707 ret = VM_FAULT_MINOR; 1708 goto out_nomap; 1709 } 1710 1711 if (unlikely(!PageUptodate(page))) { 1712 ret = VM_FAULT_SIGBUS; 1713 goto out_nomap; 1714 } 1715 1716 /* The page isn't present yet, go ahead with the fault. */ 1717 1718 inc_mm_counter(mm, rss); 1719 pte = mk_pte(page, vma->vm_page_prot); 1720 if (write_access && can_share_swap_page(page)) { 1721 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 1722 write_access = 0; 1723 } 1724 1725 flush_icache_page(vma, page); 1726 set_pte_at(mm, address, page_table, pte); 1727 page_add_anon_rmap(page, vma, address); 1728 1729 swap_free(entry); 1730 if (vm_swap_full()) 1731 remove_exclusive_swap_page(page); 1732 unlock_page(page); 1733 1734 if (write_access) { 1735 if (do_wp_page(mm, vma, address, 1736 page_table, pmd, pte) == VM_FAULT_OOM) 1737 ret = VM_FAULT_OOM; 1738 goto out; 1739 } 1740 1741 /* No need to invalidate - it was non-present before */ 1742 update_mmu_cache(vma, address, pte); 1743 lazy_mmu_prot_update(pte); 1744 pte_unmap(page_table); 1745 spin_unlock(&mm->page_table_lock); 1746 out: 1747 return ret; 1748 out_nomap: 1749 pte_unmap(page_table); 1750 spin_unlock(&mm->page_table_lock); 1751 unlock_page(page); 1752 page_cache_release(page); 1753 goto out; 1754 } 1755 1756 /* 1757 * We are called with the MM semaphore and page_table_lock 1758 * spinlock held to protect against concurrent faults in 1759 * multithreaded programs. 1760 */ 1761 static int 1762 do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 1763 pte_t *page_table, pmd_t *pmd, int write_access, 1764 unsigned long addr) 1765 { 1766 pte_t entry; 1767 struct page * page = ZERO_PAGE(addr); 1768 1769 /* Read-only mapping of ZERO_PAGE. */ 1770 entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot)); 1771 1772 /* ..except if it's a write access */ 1773 if (write_access) { 1774 /* Allocate our own private page. */ 1775 pte_unmap(page_table); 1776 spin_unlock(&mm->page_table_lock); 1777 1778 if (unlikely(anon_vma_prepare(vma))) 1779 goto no_mem; 1780 page = alloc_zeroed_user_highpage(vma, addr); 1781 if (!page) 1782 goto no_mem; 1783 1784 spin_lock(&mm->page_table_lock); 1785 page_table = pte_offset_map(pmd, addr); 1786 1787 if (!pte_none(*page_table)) { 1788 pte_unmap(page_table); 1789 page_cache_release(page); 1790 spin_unlock(&mm->page_table_lock); 1791 goto out; 1792 } 1793 inc_mm_counter(mm, rss); 1794 entry = maybe_mkwrite(pte_mkdirty(mk_pte(page, 1795 vma->vm_page_prot)), 1796 vma); 1797 lru_cache_add_active(page); 1798 SetPageReferenced(page); 1799 page_add_anon_rmap(page, vma, addr); 1800 } 1801 1802 set_pte_at(mm, addr, page_table, entry); 1803 pte_unmap(page_table); 1804 1805 /* No need to invalidate - it was non-present before */ 1806 update_mmu_cache(vma, addr, entry); 1807 lazy_mmu_prot_update(entry); 1808 spin_unlock(&mm->page_table_lock); 1809 out: 1810 return VM_FAULT_MINOR; 1811 no_mem: 1812 return VM_FAULT_OOM; 1813 } 1814 1815 /* 1816 * do_no_page() tries to create a new page mapping. It aggressively 1817 * tries to share with existing pages, but makes a separate copy if 1818 * the "write_access" parameter is true in order to avoid the next 1819 * page fault. 1820 * 1821 * As this is called only for pages that do not currently exist, we 1822 * do not need to flush old virtual caches or the TLB. 1823 * 1824 * This is called with the MM semaphore held and the page table 1825 * spinlock held. Exit with the spinlock released. 1826 */ 1827 static int 1828 do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 1829 unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd) 1830 { 1831 struct page * new_page; 1832 struct address_space *mapping = NULL; 1833 pte_t entry; 1834 unsigned int sequence = 0; 1835 int ret = VM_FAULT_MINOR; 1836 int anon = 0; 1837 1838 if (!vma->vm_ops || !vma->vm_ops->nopage) 1839 return do_anonymous_page(mm, vma, page_table, 1840 pmd, write_access, address); 1841 pte_unmap(page_table); 1842 spin_unlock(&mm->page_table_lock); 1843 1844 if (vma->vm_file) { 1845 mapping = vma->vm_file->f_mapping; 1846 sequence = mapping->truncate_count; 1847 smp_rmb(); /* serializes i_size against truncate_count */ 1848 } 1849 retry: 1850 cond_resched(); 1851 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); 1852 /* 1853 * No smp_rmb is needed here as long as there's a full 1854 * spin_lock/unlock sequence inside the ->nopage callback 1855 * (for the pagecache lookup) that acts as an implicit 1856 * smp_mb() and prevents the i_size read to happen 1857 * after the next truncate_count read. 1858 */ 1859 1860 /* no page was available -- either SIGBUS or OOM */ 1861 if (new_page == NOPAGE_SIGBUS) 1862 return VM_FAULT_SIGBUS; 1863 if (new_page == NOPAGE_OOM) 1864 return VM_FAULT_OOM; 1865 1866 /* 1867 * Should we do an early C-O-W break? 1868 */ 1869 if (write_access && !(vma->vm_flags & VM_SHARED)) { 1870 struct page *page; 1871 1872 if (unlikely(anon_vma_prepare(vma))) 1873 goto oom; 1874 page = alloc_page_vma(GFP_HIGHUSER, vma, address); 1875 if (!page) 1876 goto oom; 1877 copy_user_highpage(page, new_page, address); 1878 page_cache_release(new_page); 1879 new_page = page; 1880 anon = 1; 1881 } 1882 1883 spin_lock(&mm->page_table_lock); 1884 /* 1885 * For a file-backed vma, someone could have truncated or otherwise 1886 * invalidated this page. If unmap_mapping_range got called, 1887 * retry getting the page. 1888 */ 1889 if (mapping && unlikely(sequence != mapping->truncate_count)) { 1890 sequence = mapping->truncate_count; 1891 spin_unlock(&mm->page_table_lock); 1892 page_cache_release(new_page); 1893 goto retry; 1894 } 1895 page_table = pte_offset_map(pmd, address); 1896 1897 /* 1898 * This silly early PAGE_DIRTY setting removes a race 1899 * due to the bad i386 page protection. But it's valid 1900 * for other architectures too. 1901 * 1902 * Note that if write_access is true, we either now have 1903 * an exclusive copy of the page, or this is a shared mapping, 1904 * so we can make it writable and dirty to avoid having to 1905 * handle that later. 1906 */ 1907 /* Only go through if we didn't race with anybody else... */ 1908 if (pte_none(*page_table)) { 1909 if (!PageReserved(new_page)) 1910 inc_mm_counter(mm, rss); 1911 1912 flush_icache_page(vma, new_page); 1913 entry = mk_pte(new_page, vma->vm_page_prot); 1914 if (write_access) 1915 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1916 set_pte_at(mm, address, page_table, entry); 1917 if (anon) { 1918 lru_cache_add_active(new_page); 1919 page_add_anon_rmap(new_page, vma, address); 1920 } else 1921 page_add_file_rmap(new_page); 1922 pte_unmap(page_table); 1923 } else { 1924 /* One of our sibling threads was faster, back out. */ 1925 pte_unmap(page_table); 1926 page_cache_release(new_page); 1927 spin_unlock(&mm->page_table_lock); 1928 goto out; 1929 } 1930 1931 /* no need to invalidate: a not-present page shouldn't be cached */ 1932 update_mmu_cache(vma, address, entry); 1933 lazy_mmu_prot_update(entry); 1934 spin_unlock(&mm->page_table_lock); 1935 out: 1936 return ret; 1937 oom: 1938 page_cache_release(new_page); 1939 ret = VM_FAULT_OOM; 1940 goto out; 1941 } 1942 1943 /* 1944 * Fault of a previously existing named mapping. Repopulate the pte 1945 * from the encoded file_pte if possible. This enables swappable 1946 * nonlinear vmas. 1947 */ 1948 static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma, 1949 unsigned long address, int write_access, pte_t *pte, pmd_t *pmd) 1950 { 1951 unsigned long pgoff; 1952 int err; 1953 1954 BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage); 1955 /* 1956 * Fall back to the linear mapping if the fs does not support 1957 * ->populate: 1958 */ 1959 if (!vma->vm_ops->populate || 1960 (write_access && !(vma->vm_flags & VM_SHARED))) { 1961 pte_clear(mm, address, pte); 1962 return do_no_page(mm, vma, address, write_access, pte, pmd); 1963 } 1964 1965 pgoff = pte_to_pgoff(*pte); 1966 1967 pte_unmap(pte); 1968 spin_unlock(&mm->page_table_lock); 1969 1970 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0); 1971 if (err == -ENOMEM) 1972 return VM_FAULT_OOM; 1973 if (err) 1974 return VM_FAULT_SIGBUS; 1975 return VM_FAULT_MAJOR; 1976 } 1977 1978 /* 1979 * These routines also need to handle stuff like marking pages dirty 1980 * and/or accessed for architectures that don't do it in hardware (most 1981 * RISC architectures). The early dirtying is also good on the i386. 1982 * 1983 * There is also a hook called "update_mmu_cache()" that architectures 1984 * with external mmu caches can use to update those (ie the Sparc or 1985 * PowerPC hashed page tables that act as extended TLBs). 1986 * 1987 * Note the "page_table_lock". It is to protect against kswapd removing 1988 * pages from under us. Note that kswapd only ever _removes_ pages, never 1989 * adds them. As such, once we have noticed that the page is not present, 1990 * we can drop the lock early. 1991 * 1992 * The adding of pages is protected by the MM semaphore (which we hold), 1993 * so we don't need to worry about a page being suddenly been added into 1994 * our VM. 1995 * 1996 * We enter with the pagetable spinlock held, we are supposed to 1997 * release it when done. 1998 */ 1999 static inline int handle_pte_fault(struct mm_struct *mm, 2000 struct vm_area_struct * vma, unsigned long address, 2001 int write_access, pte_t *pte, pmd_t *pmd) 2002 { 2003 pte_t entry; 2004 2005 entry = *pte; 2006 if (!pte_present(entry)) { 2007 /* 2008 * If it truly wasn't present, we know that kswapd 2009 * and the PTE updates will not touch it later. So 2010 * drop the lock. 2011 */ 2012 if (pte_none(entry)) 2013 return do_no_page(mm, vma, address, write_access, pte, pmd); 2014 if (pte_file(entry)) 2015 return do_file_page(mm, vma, address, write_access, pte, pmd); 2016 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access); 2017 } 2018 2019 if (write_access) { 2020 if (!pte_write(entry)) 2021 return do_wp_page(mm, vma, address, pte, pmd, entry); 2022 entry = pte_mkdirty(entry); 2023 } 2024 entry = pte_mkyoung(entry); 2025 ptep_set_access_flags(vma, address, pte, entry, write_access); 2026 update_mmu_cache(vma, address, entry); 2027 lazy_mmu_prot_update(entry); 2028 pte_unmap(pte); 2029 spin_unlock(&mm->page_table_lock); 2030 return VM_FAULT_MINOR; 2031 } 2032 2033 /* 2034 * By the time we get here, we already hold the mm semaphore 2035 */ 2036 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma, 2037 unsigned long address, int write_access) 2038 { 2039 pgd_t *pgd; 2040 pud_t *pud; 2041 pmd_t *pmd; 2042 pte_t *pte; 2043 2044 __set_current_state(TASK_RUNNING); 2045 2046 inc_page_state(pgfault); 2047 2048 if (is_vm_hugetlb_page(vma)) 2049 return VM_FAULT_SIGBUS; /* mapping truncation does this. */ 2050 2051 /* 2052 * We need the page table lock to synchronize with kswapd 2053 * and the SMP-safe atomic PTE updates. 2054 */ 2055 pgd = pgd_offset(mm, address); 2056 spin_lock(&mm->page_table_lock); 2057 2058 pud = pud_alloc(mm, pgd, address); 2059 if (!pud) 2060 goto oom; 2061 2062 pmd = pmd_alloc(mm, pud, address); 2063 if (!pmd) 2064 goto oom; 2065 2066 pte = pte_alloc_map(mm, pmd, address); 2067 if (!pte) 2068 goto oom; 2069 2070 return handle_pte_fault(mm, vma, address, write_access, pte, pmd); 2071 2072 oom: 2073 spin_unlock(&mm->page_table_lock); 2074 return VM_FAULT_OOM; 2075 } 2076 2077 #ifndef __PAGETABLE_PUD_FOLDED 2078 /* 2079 * Allocate page upper directory. 2080 * 2081 * We've already handled the fast-path in-line, and we own the 2082 * page table lock. 2083 */ 2084 pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2085 { 2086 pud_t *new; 2087 2088 spin_unlock(&mm->page_table_lock); 2089 new = pud_alloc_one(mm, address); 2090 spin_lock(&mm->page_table_lock); 2091 if (!new) 2092 return NULL; 2093 2094 /* 2095 * Because we dropped the lock, we should re-check the 2096 * entry, as somebody else could have populated it.. 2097 */ 2098 if (pgd_present(*pgd)) { 2099 pud_free(new); 2100 goto out; 2101 } 2102 pgd_populate(mm, pgd, new); 2103 out: 2104 return pud_offset(pgd, address); 2105 } 2106 #endif /* __PAGETABLE_PUD_FOLDED */ 2107 2108 #ifndef __PAGETABLE_PMD_FOLDED 2109 /* 2110 * Allocate page middle directory. 2111 * 2112 * We've already handled the fast-path in-line, and we own the 2113 * page table lock. 2114 */ 2115 pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2116 { 2117 pmd_t *new; 2118 2119 spin_unlock(&mm->page_table_lock); 2120 new = pmd_alloc_one(mm, address); 2121 spin_lock(&mm->page_table_lock); 2122 if (!new) 2123 return NULL; 2124 2125 /* 2126 * Because we dropped the lock, we should re-check the 2127 * entry, as somebody else could have populated it.. 2128 */ 2129 #ifndef __ARCH_HAS_4LEVEL_HACK 2130 if (pud_present(*pud)) { 2131 pmd_free(new); 2132 goto out; 2133 } 2134 pud_populate(mm, pud, new); 2135 #else 2136 if (pgd_present(*pud)) { 2137 pmd_free(new); 2138 goto out; 2139 } 2140 pgd_populate(mm, pud, new); 2141 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2142 2143 out: 2144 return pmd_offset(pud, address); 2145 } 2146 #endif /* __PAGETABLE_PMD_FOLDED */ 2147 2148 int make_pages_present(unsigned long addr, unsigned long end) 2149 { 2150 int ret, len, write; 2151 struct vm_area_struct * vma; 2152 2153 vma = find_vma(current->mm, addr); 2154 if (!vma) 2155 return -1; 2156 write = (vma->vm_flags & VM_WRITE) != 0; 2157 if (addr >= end) 2158 BUG(); 2159 if (end > vma->vm_end) 2160 BUG(); 2161 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; 2162 ret = get_user_pages(current, current->mm, addr, 2163 len, write, 0, NULL, NULL); 2164 if (ret < 0) 2165 return ret; 2166 return ret == len ? 0 : -1; 2167 } 2168 2169 /* 2170 * Map a vmalloc()-space virtual address to the physical page. 2171 */ 2172 struct page * vmalloc_to_page(void * vmalloc_addr) 2173 { 2174 unsigned long addr = (unsigned long) vmalloc_addr; 2175 struct page *page = NULL; 2176 pgd_t *pgd = pgd_offset_k(addr); 2177 pud_t *pud; 2178 pmd_t *pmd; 2179 pte_t *ptep, pte; 2180 2181 if (!pgd_none(*pgd)) { 2182 pud = pud_offset(pgd, addr); 2183 if (!pud_none(*pud)) { 2184 pmd = pmd_offset(pud, addr); 2185 if (!pmd_none(*pmd)) { 2186 ptep = pte_offset_map(pmd, addr); 2187 pte = *ptep; 2188 if (pte_present(pte)) 2189 page = pte_page(pte); 2190 pte_unmap(ptep); 2191 } 2192 } 2193 } 2194 return page; 2195 } 2196 2197 EXPORT_SYMBOL(vmalloc_to_page); 2198 2199 /* 2200 * Map a vmalloc()-space virtual address to the physical page frame number. 2201 */ 2202 unsigned long vmalloc_to_pfn(void * vmalloc_addr) 2203 { 2204 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 2205 } 2206 2207 EXPORT_SYMBOL(vmalloc_to_pfn); 2208 2209 /* 2210 * update_mem_hiwater 2211 * - update per process rss and vm high water data 2212 */ 2213 void update_mem_hiwater(struct task_struct *tsk) 2214 { 2215 if (tsk->mm) { 2216 unsigned long rss = get_mm_counter(tsk->mm, rss); 2217 2218 if (tsk->mm->hiwater_rss < rss) 2219 tsk->mm->hiwater_rss = rss; 2220 if (tsk->mm->hiwater_vm < tsk->mm->total_vm) 2221 tsk->mm->hiwater_vm = tsk->mm->total_vm; 2222 } 2223 } 2224 2225 #if !defined(__HAVE_ARCH_GATE_AREA) 2226 2227 #if defined(AT_SYSINFO_EHDR) 2228 static struct vm_area_struct gate_vma; 2229 2230 static int __init gate_vma_init(void) 2231 { 2232 gate_vma.vm_mm = NULL; 2233 gate_vma.vm_start = FIXADDR_USER_START; 2234 gate_vma.vm_end = FIXADDR_USER_END; 2235 gate_vma.vm_page_prot = PAGE_READONLY; 2236 gate_vma.vm_flags = 0; 2237 return 0; 2238 } 2239 __initcall(gate_vma_init); 2240 #endif 2241 2242 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2243 { 2244 #ifdef AT_SYSINFO_EHDR 2245 return &gate_vma; 2246 #else 2247 return NULL; 2248 #endif 2249 } 2250 2251 int in_gate_area_no_task(unsigned long addr) 2252 { 2253 #ifdef AT_SYSINFO_EHDR 2254 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2255 return 1; 2256 #endif 2257 return 0; 2258 } 2259 2260 #endif /* __HAVE_ARCH_GATE_AREA */ 2261