1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/memremap.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/export.h> 56 #include <linux/delayacct.h> 57 #include <linux/init.h> 58 #include <linux/pfn_t.h> 59 #include <linux/writeback.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 #include <linux/numa.h> 73 74 #include <asm/io.h> 75 #include <asm/mmu_context.h> 76 #include <asm/pgalloc.h> 77 #include <linux/uaccess.h> 78 #include <asm/tlb.h> 79 #include <asm/tlbflush.h> 80 #include <asm/pgtable.h> 81 82 #include "internal.h" 83 84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 86 #endif 87 88 #ifndef CONFIG_NEED_MULTIPLE_NODES 89 /* use the per-pgdat data instead for discontigmem - mbligh */ 90 unsigned long max_mapnr; 91 EXPORT_SYMBOL(max_mapnr); 92 93 struct page *mem_map; 94 EXPORT_SYMBOL(mem_map); 95 #endif 96 97 /* 98 * A number of key systems in x86 including ioremap() rely on the assumption 99 * that high_memory defines the upper bound on direct map memory, then end 100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 102 * and ZONE_HIGHMEM. 103 */ 104 void *high_memory; 105 EXPORT_SYMBOL(high_memory); 106 107 /* 108 * Randomize the address space (stacks, mmaps, brk, etc.). 109 * 110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 111 * as ancient (libc5 based) binaries can segfault. ) 112 */ 113 int randomize_va_space __read_mostly = 114 #ifdef CONFIG_COMPAT_BRK 115 1; 116 #else 117 2; 118 #endif 119 120 static int __init disable_randmaps(char *s) 121 { 122 randomize_va_space = 0; 123 return 1; 124 } 125 __setup("norandmaps", disable_randmaps); 126 127 unsigned long zero_pfn __read_mostly; 128 EXPORT_SYMBOL(zero_pfn); 129 130 unsigned long highest_memmap_pfn __read_mostly; 131 132 /* 133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 134 */ 135 static int __init init_zero_pfn(void) 136 { 137 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 138 return 0; 139 } 140 core_initcall(init_zero_pfn); 141 142 143 #if defined(SPLIT_RSS_COUNTING) 144 145 void sync_mm_rss(struct mm_struct *mm) 146 { 147 int i; 148 149 for (i = 0; i < NR_MM_COUNTERS; i++) { 150 if (current->rss_stat.count[i]) { 151 add_mm_counter(mm, i, current->rss_stat.count[i]); 152 current->rss_stat.count[i] = 0; 153 } 154 } 155 current->rss_stat.events = 0; 156 } 157 158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 159 { 160 struct task_struct *task = current; 161 162 if (likely(task->mm == mm)) 163 task->rss_stat.count[member] += val; 164 else 165 add_mm_counter(mm, member, val); 166 } 167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 169 170 /* sync counter once per 64 page faults */ 171 #define TASK_RSS_EVENTS_THRESH (64) 172 static void check_sync_rss_stat(struct task_struct *task) 173 { 174 if (unlikely(task != current)) 175 return; 176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 177 sync_mm_rss(task->mm); 178 } 179 #else /* SPLIT_RSS_COUNTING */ 180 181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 183 184 static void check_sync_rss_stat(struct task_struct *task) 185 { 186 } 187 188 #endif /* SPLIT_RSS_COUNTING */ 189 190 /* 191 * Note: this doesn't free the actual pages themselves. That 192 * has been handled earlier when unmapping all the memory regions. 193 */ 194 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 195 unsigned long addr) 196 { 197 pgtable_t token = pmd_pgtable(*pmd); 198 pmd_clear(pmd); 199 pte_free_tlb(tlb, token, addr); 200 mm_dec_nr_ptes(tlb->mm); 201 } 202 203 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 204 unsigned long addr, unsigned long end, 205 unsigned long floor, unsigned long ceiling) 206 { 207 pmd_t *pmd; 208 unsigned long next; 209 unsigned long start; 210 211 start = addr; 212 pmd = pmd_offset(pud, addr); 213 do { 214 next = pmd_addr_end(addr, end); 215 if (pmd_none_or_clear_bad(pmd)) 216 continue; 217 free_pte_range(tlb, pmd, addr); 218 } while (pmd++, addr = next, addr != end); 219 220 start &= PUD_MASK; 221 if (start < floor) 222 return; 223 if (ceiling) { 224 ceiling &= PUD_MASK; 225 if (!ceiling) 226 return; 227 } 228 if (end - 1 > ceiling - 1) 229 return; 230 231 pmd = pmd_offset(pud, start); 232 pud_clear(pud); 233 pmd_free_tlb(tlb, pmd, start); 234 mm_dec_nr_pmds(tlb->mm); 235 } 236 237 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 238 unsigned long addr, unsigned long end, 239 unsigned long floor, unsigned long ceiling) 240 { 241 pud_t *pud; 242 unsigned long next; 243 unsigned long start; 244 245 start = addr; 246 pud = pud_offset(p4d, addr); 247 do { 248 next = pud_addr_end(addr, end); 249 if (pud_none_or_clear_bad(pud)) 250 continue; 251 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 252 } while (pud++, addr = next, addr != end); 253 254 start &= P4D_MASK; 255 if (start < floor) 256 return; 257 if (ceiling) { 258 ceiling &= P4D_MASK; 259 if (!ceiling) 260 return; 261 } 262 if (end - 1 > ceiling - 1) 263 return; 264 265 pud = pud_offset(p4d, start); 266 p4d_clear(p4d); 267 pud_free_tlb(tlb, pud, start); 268 mm_dec_nr_puds(tlb->mm); 269 } 270 271 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 272 unsigned long addr, unsigned long end, 273 unsigned long floor, unsigned long ceiling) 274 { 275 p4d_t *p4d; 276 unsigned long next; 277 unsigned long start; 278 279 start = addr; 280 p4d = p4d_offset(pgd, addr); 281 do { 282 next = p4d_addr_end(addr, end); 283 if (p4d_none_or_clear_bad(p4d)) 284 continue; 285 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 286 } while (p4d++, addr = next, addr != end); 287 288 start &= PGDIR_MASK; 289 if (start < floor) 290 return; 291 if (ceiling) { 292 ceiling &= PGDIR_MASK; 293 if (!ceiling) 294 return; 295 } 296 if (end - 1 > ceiling - 1) 297 return; 298 299 p4d = p4d_offset(pgd, start); 300 pgd_clear(pgd); 301 p4d_free_tlb(tlb, p4d, start); 302 } 303 304 /* 305 * This function frees user-level page tables of a process. 306 */ 307 void free_pgd_range(struct mmu_gather *tlb, 308 unsigned long addr, unsigned long end, 309 unsigned long floor, unsigned long ceiling) 310 { 311 pgd_t *pgd; 312 unsigned long next; 313 314 /* 315 * The next few lines have given us lots of grief... 316 * 317 * Why are we testing PMD* at this top level? Because often 318 * there will be no work to do at all, and we'd prefer not to 319 * go all the way down to the bottom just to discover that. 320 * 321 * Why all these "- 1"s? Because 0 represents both the bottom 322 * of the address space and the top of it (using -1 for the 323 * top wouldn't help much: the masks would do the wrong thing). 324 * The rule is that addr 0 and floor 0 refer to the bottom of 325 * the address space, but end 0 and ceiling 0 refer to the top 326 * Comparisons need to use "end - 1" and "ceiling - 1" (though 327 * that end 0 case should be mythical). 328 * 329 * Wherever addr is brought up or ceiling brought down, we must 330 * be careful to reject "the opposite 0" before it confuses the 331 * subsequent tests. But what about where end is brought down 332 * by PMD_SIZE below? no, end can't go down to 0 there. 333 * 334 * Whereas we round start (addr) and ceiling down, by different 335 * masks at different levels, in order to test whether a table 336 * now has no other vmas using it, so can be freed, we don't 337 * bother to round floor or end up - the tests don't need that. 338 */ 339 340 addr &= PMD_MASK; 341 if (addr < floor) { 342 addr += PMD_SIZE; 343 if (!addr) 344 return; 345 } 346 if (ceiling) { 347 ceiling &= PMD_MASK; 348 if (!ceiling) 349 return; 350 } 351 if (end - 1 > ceiling - 1) 352 end -= PMD_SIZE; 353 if (addr > end - 1) 354 return; 355 /* 356 * We add page table cache pages with PAGE_SIZE, 357 * (see pte_free_tlb()), flush the tlb if we need 358 */ 359 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 360 pgd = pgd_offset(tlb->mm, addr); 361 do { 362 next = pgd_addr_end(addr, end); 363 if (pgd_none_or_clear_bad(pgd)) 364 continue; 365 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 366 } while (pgd++, addr = next, addr != end); 367 } 368 369 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 370 unsigned long floor, unsigned long ceiling) 371 { 372 while (vma) { 373 struct vm_area_struct *next = vma->vm_next; 374 unsigned long addr = vma->vm_start; 375 376 /* 377 * Hide vma from rmap and truncate_pagecache before freeing 378 * pgtables 379 */ 380 unlink_anon_vmas(vma); 381 unlink_file_vma(vma); 382 383 if (is_vm_hugetlb_page(vma)) { 384 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 385 floor, next ? next->vm_start : ceiling); 386 } else { 387 /* 388 * Optimization: gather nearby vmas into one call down 389 */ 390 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 391 && !is_vm_hugetlb_page(next)) { 392 vma = next; 393 next = vma->vm_next; 394 unlink_anon_vmas(vma); 395 unlink_file_vma(vma); 396 } 397 free_pgd_range(tlb, addr, vma->vm_end, 398 floor, next ? next->vm_start : ceiling); 399 } 400 vma = next; 401 } 402 } 403 404 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 405 { 406 spinlock_t *ptl; 407 pgtable_t new = pte_alloc_one(mm); 408 if (!new) 409 return -ENOMEM; 410 411 /* 412 * Ensure all pte setup (eg. pte page lock and page clearing) are 413 * visible before the pte is made visible to other CPUs by being 414 * put into page tables. 415 * 416 * The other side of the story is the pointer chasing in the page 417 * table walking code (when walking the page table without locking; 418 * ie. most of the time). Fortunately, these data accesses consist 419 * of a chain of data-dependent loads, meaning most CPUs (alpha 420 * being the notable exception) will already guarantee loads are 421 * seen in-order. See the alpha page table accessors for the 422 * smp_read_barrier_depends() barriers in page table walking code. 423 */ 424 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 425 426 ptl = pmd_lock(mm, pmd); 427 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 428 mm_inc_nr_ptes(mm); 429 pmd_populate(mm, pmd, new); 430 new = NULL; 431 } 432 spin_unlock(ptl); 433 if (new) 434 pte_free(mm, new); 435 return 0; 436 } 437 438 int __pte_alloc_kernel(pmd_t *pmd) 439 { 440 pte_t *new = pte_alloc_one_kernel(&init_mm); 441 if (!new) 442 return -ENOMEM; 443 444 smp_wmb(); /* See comment in __pte_alloc */ 445 446 spin_lock(&init_mm.page_table_lock); 447 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 448 pmd_populate_kernel(&init_mm, pmd, new); 449 new = NULL; 450 } 451 spin_unlock(&init_mm.page_table_lock); 452 if (new) 453 pte_free_kernel(&init_mm, new); 454 return 0; 455 } 456 457 static inline void init_rss_vec(int *rss) 458 { 459 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 460 } 461 462 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 463 { 464 int i; 465 466 if (current->mm == mm) 467 sync_mm_rss(mm); 468 for (i = 0; i < NR_MM_COUNTERS; i++) 469 if (rss[i]) 470 add_mm_counter(mm, i, rss[i]); 471 } 472 473 /* 474 * This function is called to print an error when a bad pte 475 * is found. For example, we might have a PFN-mapped pte in 476 * a region that doesn't allow it. 477 * 478 * The calling function must still handle the error. 479 */ 480 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 481 pte_t pte, struct page *page) 482 { 483 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 484 p4d_t *p4d = p4d_offset(pgd, addr); 485 pud_t *pud = pud_offset(p4d, addr); 486 pmd_t *pmd = pmd_offset(pud, addr); 487 struct address_space *mapping; 488 pgoff_t index; 489 static unsigned long resume; 490 static unsigned long nr_shown; 491 static unsigned long nr_unshown; 492 493 /* 494 * Allow a burst of 60 reports, then keep quiet for that minute; 495 * or allow a steady drip of one report per second. 496 */ 497 if (nr_shown == 60) { 498 if (time_before(jiffies, resume)) { 499 nr_unshown++; 500 return; 501 } 502 if (nr_unshown) { 503 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 504 nr_unshown); 505 nr_unshown = 0; 506 } 507 nr_shown = 0; 508 } 509 if (nr_shown++ == 0) 510 resume = jiffies + 60 * HZ; 511 512 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 513 index = linear_page_index(vma, addr); 514 515 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 516 current->comm, 517 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 518 if (page) 519 dump_page(page, "bad pte"); 520 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 521 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 522 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 523 vma->vm_file, 524 vma->vm_ops ? vma->vm_ops->fault : NULL, 525 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 526 mapping ? mapping->a_ops->readpage : NULL); 527 dump_stack(); 528 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 529 } 530 531 /* 532 * vm_normal_page -- This function gets the "struct page" associated with a pte. 533 * 534 * "Special" mappings do not wish to be associated with a "struct page" (either 535 * it doesn't exist, or it exists but they don't want to touch it). In this 536 * case, NULL is returned here. "Normal" mappings do have a struct page. 537 * 538 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 539 * pte bit, in which case this function is trivial. Secondly, an architecture 540 * may not have a spare pte bit, which requires a more complicated scheme, 541 * described below. 542 * 543 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 544 * special mapping (even if there are underlying and valid "struct pages"). 545 * COWed pages of a VM_PFNMAP are always normal. 546 * 547 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 548 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 549 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 550 * mapping will always honor the rule 551 * 552 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 553 * 554 * And for normal mappings this is false. 555 * 556 * This restricts such mappings to be a linear translation from virtual address 557 * to pfn. To get around this restriction, we allow arbitrary mappings so long 558 * as the vma is not a COW mapping; in that case, we know that all ptes are 559 * special (because none can have been COWed). 560 * 561 * 562 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 563 * 564 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 565 * page" backing, however the difference is that _all_ pages with a struct 566 * page (that is, those where pfn_valid is true) are refcounted and considered 567 * normal pages by the VM. The disadvantage is that pages are refcounted 568 * (which can be slower and simply not an option for some PFNMAP users). The 569 * advantage is that we don't have to follow the strict linearity rule of 570 * PFNMAP mappings in order to support COWable mappings. 571 * 572 */ 573 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 574 pte_t pte, bool with_public_device) 575 { 576 unsigned long pfn = pte_pfn(pte); 577 578 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 579 if (likely(!pte_special(pte))) 580 goto check_pfn; 581 if (vma->vm_ops && vma->vm_ops->find_special_page) 582 return vma->vm_ops->find_special_page(vma, addr); 583 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 584 return NULL; 585 if (is_zero_pfn(pfn)) 586 return NULL; 587 588 /* 589 * Device public pages are special pages (they are ZONE_DEVICE 590 * pages but different from persistent memory). They behave 591 * allmost like normal pages. The difference is that they are 592 * not on the lru and thus should never be involve with any- 593 * thing that involve lru manipulation (mlock, numa balancing, 594 * ...). 595 * 596 * This is why we still want to return NULL for such page from 597 * vm_normal_page() so that we do not have to special case all 598 * call site of vm_normal_page(). 599 */ 600 if (likely(pfn <= highest_memmap_pfn)) { 601 struct page *page = pfn_to_page(pfn); 602 603 if (is_device_public_page(page)) { 604 if (with_public_device) 605 return page; 606 return NULL; 607 } 608 } 609 610 if (pte_devmap(pte)) 611 return NULL; 612 613 print_bad_pte(vma, addr, pte, NULL); 614 return NULL; 615 } 616 617 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 618 619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 620 if (vma->vm_flags & VM_MIXEDMAP) { 621 if (!pfn_valid(pfn)) 622 return NULL; 623 goto out; 624 } else { 625 unsigned long off; 626 off = (addr - vma->vm_start) >> PAGE_SHIFT; 627 if (pfn == vma->vm_pgoff + off) 628 return NULL; 629 if (!is_cow_mapping(vma->vm_flags)) 630 return NULL; 631 } 632 } 633 634 if (is_zero_pfn(pfn)) 635 return NULL; 636 637 check_pfn: 638 if (unlikely(pfn > highest_memmap_pfn)) { 639 print_bad_pte(vma, addr, pte, NULL); 640 return NULL; 641 } 642 643 /* 644 * NOTE! We still have PageReserved() pages in the page tables. 645 * eg. VDSO mappings can cause them to exist. 646 */ 647 out: 648 return pfn_to_page(pfn); 649 } 650 651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 652 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 653 pmd_t pmd) 654 { 655 unsigned long pfn = pmd_pfn(pmd); 656 657 /* 658 * There is no pmd_special() but there may be special pmds, e.g. 659 * in a direct-access (dax) mapping, so let's just replicate the 660 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 661 */ 662 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 663 if (vma->vm_flags & VM_MIXEDMAP) { 664 if (!pfn_valid(pfn)) 665 return NULL; 666 goto out; 667 } else { 668 unsigned long off; 669 off = (addr - vma->vm_start) >> PAGE_SHIFT; 670 if (pfn == vma->vm_pgoff + off) 671 return NULL; 672 if (!is_cow_mapping(vma->vm_flags)) 673 return NULL; 674 } 675 } 676 677 if (pmd_devmap(pmd)) 678 return NULL; 679 if (is_zero_pfn(pfn)) 680 return NULL; 681 if (unlikely(pfn > highest_memmap_pfn)) 682 return NULL; 683 684 /* 685 * NOTE! We still have PageReserved() pages in the page tables. 686 * eg. VDSO mappings can cause them to exist. 687 */ 688 out: 689 return pfn_to_page(pfn); 690 } 691 #endif 692 693 /* 694 * copy one vm_area from one task to the other. Assumes the page tables 695 * already present in the new task to be cleared in the whole range 696 * covered by this vma. 697 */ 698 699 static inline unsigned long 700 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 701 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 702 unsigned long addr, int *rss) 703 { 704 unsigned long vm_flags = vma->vm_flags; 705 pte_t pte = *src_pte; 706 struct page *page; 707 708 /* pte contains position in swap or file, so copy. */ 709 if (unlikely(!pte_present(pte))) { 710 swp_entry_t entry = pte_to_swp_entry(pte); 711 712 if (likely(!non_swap_entry(entry))) { 713 if (swap_duplicate(entry) < 0) 714 return entry.val; 715 716 /* make sure dst_mm is on swapoff's mmlist. */ 717 if (unlikely(list_empty(&dst_mm->mmlist))) { 718 spin_lock(&mmlist_lock); 719 if (list_empty(&dst_mm->mmlist)) 720 list_add(&dst_mm->mmlist, 721 &src_mm->mmlist); 722 spin_unlock(&mmlist_lock); 723 } 724 rss[MM_SWAPENTS]++; 725 } else if (is_migration_entry(entry)) { 726 page = migration_entry_to_page(entry); 727 728 rss[mm_counter(page)]++; 729 730 if (is_write_migration_entry(entry) && 731 is_cow_mapping(vm_flags)) { 732 /* 733 * COW mappings require pages in both 734 * parent and child to be set to read. 735 */ 736 make_migration_entry_read(&entry); 737 pte = swp_entry_to_pte(entry); 738 if (pte_swp_soft_dirty(*src_pte)) 739 pte = pte_swp_mksoft_dirty(pte); 740 set_pte_at(src_mm, addr, src_pte, pte); 741 } 742 } else if (is_device_private_entry(entry)) { 743 page = device_private_entry_to_page(entry); 744 745 /* 746 * Update rss count even for unaddressable pages, as 747 * they should treated just like normal pages in this 748 * respect. 749 * 750 * We will likely want to have some new rss counters 751 * for unaddressable pages, at some point. But for now 752 * keep things as they are. 753 */ 754 get_page(page); 755 rss[mm_counter(page)]++; 756 page_dup_rmap(page, false); 757 758 /* 759 * We do not preserve soft-dirty information, because so 760 * far, checkpoint/restore is the only feature that 761 * requires that. And checkpoint/restore does not work 762 * when a device driver is involved (you cannot easily 763 * save and restore device driver state). 764 */ 765 if (is_write_device_private_entry(entry) && 766 is_cow_mapping(vm_flags)) { 767 make_device_private_entry_read(&entry); 768 pte = swp_entry_to_pte(entry); 769 set_pte_at(src_mm, addr, src_pte, pte); 770 } 771 } 772 goto out_set_pte; 773 } 774 775 /* 776 * If it's a COW mapping, write protect it both 777 * in the parent and the child 778 */ 779 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 780 ptep_set_wrprotect(src_mm, addr, src_pte); 781 pte = pte_wrprotect(pte); 782 } 783 784 /* 785 * If it's a shared mapping, mark it clean in 786 * the child 787 */ 788 if (vm_flags & VM_SHARED) 789 pte = pte_mkclean(pte); 790 pte = pte_mkold(pte); 791 792 page = vm_normal_page(vma, addr, pte); 793 if (page) { 794 get_page(page); 795 page_dup_rmap(page, false); 796 rss[mm_counter(page)]++; 797 } else if (pte_devmap(pte)) { 798 page = pte_page(pte); 799 800 /* 801 * Cache coherent device memory behave like regular page and 802 * not like persistent memory page. For more informations see 803 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 804 */ 805 if (is_device_public_page(page)) { 806 get_page(page); 807 page_dup_rmap(page, false); 808 rss[mm_counter(page)]++; 809 } 810 } 811 812 out_set_pte: 813 set_pte_at(dst_mm, addr, dst_pte, pte); 814 return 0; 815 } 816 817 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 818 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 819 unsigned long addr, unsigned long end) 820 { 821 pte_t *orig_src_pte, *orig_dst_pte; 822 pte_t *src_pte, *dst_pte; 823 spinlock_t *src_ptl, *dst_ptl; 824 int progress = 0; 825 int rss[NR_MM_COUNTERS]; 826 swp_entry_t entry = (swp_entry_t){0}; 827 828 again: 829 init_rss_vec(rss); 830 831 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 832 if (!dst_pte) 833 return -ENOMEM; 834 src_pte = pte_offset_map(src_pmd, addr); 835 src_ptl = pte_lockptr(src_mm, src_pmd); 836 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 837 orig_src_pte = src_pte; 838 orig_dst_pte = dst_pte; 839 arch_enter_lazy_mmu_mode(); 840 841 do { 842 /* 843 * We are holding two locks at this point - either of them 844 * could generate latencies in another task on another CPU. 845 */ 846 if (progress >= 32) { 847 progress = 0; 848 if (need_resched() || 849 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 850 break; 851 } 852 if (pte_none(*src_pte)) { 853 progress++; 854 continue; 855 } 856 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 857 vma, addr, rss); 858 if (entry.val) 859 break; 860 progress += 8; 861 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 862 863 arch_leave_lazy_mmu_mode(); 864 spin_unlock(src_ptl); 865 pte_unmap(orig_src_pte); 866 add_mm_rss_vec(dst_mm, rss); 867 pte_unmap_unlock(orig_dst_pte, dst_ptl); 868 cond_resched(); 869 870 if (entry.val) { 871 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 872 return -ENOMEM; 873 progress = 0; 874 } 875 if (addr != end) 876 goto again; 877 return 0; 878 } 879 880 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 881 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 882 unsigned long addr, unsigned long end) 883 { 884 pmd_t *src_pmd, *dst_pmd; 885 unsigned long next; 886 887 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 888 if (!dst_pmd) 889 return -ENOMEM; 890 src_pmd = pmd_offset(src_pud, addr); 891 do { 892 next = pmd_addr_end(addr, end); 893 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 894 || pmd_devmap(*src_pmd)) { 895 int err; 896 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 897 err = copy_huge_pmd(dst_mm, src_mm, 898 dst_pmd, src_pmd, addr, vma); 899 if (err == -ENOMEM) 900 return -ENOMEM; 901 if (!err) 902 continue; 903 /* fall through */ 904 } 905 if (pmd_none_or_clear_bad(src_pmd)) 906 continue; 907 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 908 vma, addr, next)) 909 return -ENOMEM; 910 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 911 return 0; 912 } 913 914 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 915 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 916 unsigned long addr, unsigned long end) 917 { 918 pud_t *src_pud, *dst_pud; 919 unsigned long next; 920 921 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 922 if (!dst_pud) 923 return -ENOMEM; 924 src_pud = pud_offset(src_p4d, addr); 925 do { 926 next = pud_addr_end(addr, end); 927 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 928 int err; 929 930 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 931 err = copy_huge_pud(dst_mm, src_mm, 932 dst_pud, src_pud, addr, vma); 933 if (err == -ENOMEM) 934 return -ENOMEM; 935 if (!err) 936 continue; 937 /* fall through */ 938 } 939 if (pud_none_or_clear_bad(src_pud)) 940 continue; 941 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 942 vma, addr, next)) 943 return -ENOMEM; 944 } while (dst_pud++, src_pud++, addr = next, addr != end); 945 return 0; 946 } 947 948 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 949 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 950 unsigned long addr, unsigned long end) 951 { 952 p4d_t *src_p4d, *dst_p4d; 953 unsigned long next; 954 955 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 956 if (!dst_p4d) 957 return -ENOMEM; 958 src_p4d = p4d_offset(src_pgd, addr); 959 do { 960 next = p4d_addr_end(addr, end); 961 if (p4d_none_or_clear_bad(src_p4d)) 962 continue; 963 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 964 vma, addr, next)) 965 return -ENOMEM; 966 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 967 return 0; 968 } 969 970 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 971 struct vm_area_struct *vma) 972 { 973 pgd_t *src_pgd, *dst_pgd; 974 unsigned long next; 975 unsigned long addr = vma->vm_start; 976 unsigned long end = vma->vm_end; 977 struct mmu_notifier_range range; 978 bool is_cow; 979 int ret; 980 981 /* 982 * Don't copy ptes where a page fault will fill them correctly. 983 * Fork becomes much lighter when there are big shared or private 984 * readonly mappings. The tradeoff is that copy_page_range is more 985 * efficient than faulting. 986 */ 987 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 988 !vma->anon_vma) 989 return 0; 990 991 if (is_vm_hugetlb_page(vma)) 992 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 993 994 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 995 /* 996 * We do not free on error cases below as remove_vma 997 * gets called on error from higher level routine 998 */ 999 ret = track_pfn_copy(vma); 1000 if (ret) 1001 return ret; 1002 } 1003 1004 /* 1005 * We need to invalidate the secondary MMU mappings only when 1006 * there could be a permission downgrade on the ptes of the 1007 * parent mm. And a permission downgrade will only happen if 1008 * is_cow_mapping() returns true. 1009 */ 1010 is_cow = is_cow_mapping(vma->vm_flags); 1011 1012 if (is_cow) { 1013 mmu_notifier_range_init(&range, src_mm, addr, end); 1014 mmu_notifier_invalidate_range_start(&range); 1015 } 1016 1017 ret = 0; 1018 dst_pgd = pgd_offset(dst_mm, addr); 1019 src_pgd = pgd_offset(src_mm, addr); 1020 do { 1021 next = pgd_addr_end(addr, end); 1022 if (pgd_none_or_clear_bad(src_pgd)) 1023 continue; 1024 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1025 vma, addr, next))) { 1026 ret = -ENOMEM; 1027 break; 1028 } 1029 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1030 1031 if (is_cow) 1032 mmu_notifier_invalidate_range_end(&range); 1033 return ret; 1034 } 1035 1036 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1037 struct vm_area_struct *vma, pmd_t *pmd, 1038 unsigned long addr, unsigned long end, 1039 struct zap_details *details) 1040 { 1041 struct mm_struct *mm = tlb->mm; 1042 int force_flush = 0; 1043 int rss[NR_MM_COUNTERS]; 1044 spinlock_t *ptl; 1045 pte_t *start_pte; 1046 pte_t *pte; 1047 swp_entry_t entry; 1048 1049 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1050 again: 1051 init_rss_vec(rss); 1052 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1053 pte = start_pte; 1054 flush_tlb_batched_pending(mm); 1055 arch_enter_lazy_mmu_mode(); 1056 do { 1057 pte_t ptent = *pte; 1058 if (pte_none(ptent)) 1059 continue; 1060 1061 if (pte_present(ptent)) { 1062 struct page *page; 1063 1064 page = _vm_normal_page(vma, addr, ptent, true); 1065 if (unlikely(details) && page) { 1066 /* 1067 * unmap_shared_mapping_pages() wants to 1068 * invalidate cache without truncating: 1069 * unmap shared but keep private pages. 1070 */ 1071 if (details->check_mapping && 1072 details->check_mapping != page_rmapping(page)) 1073 continue; 1074 } 1075 ptent = ptep_get_and_clear_full(mm, addr, pte, 1076 tlb->fullmm); 1077 tlb_remove_tlb_entry(tlb, pte, addr); 1078 if (unlikely(!page)) 1079 continue; 1080 1081 if (!PageAnon(page)) { 1082 if (pte_dirty(ptent)) { 1083 force_flush = 1; 1084 set_page_dirty(page); 1085 } 1086 if (pte_young(ptent) && 1087 likely(!(vma->vm_flags & VM_SEQ_READ))) 1088 mark_page_accessed(page); 1089 } 1090 rss[mm_counter(page)]--; 1091 page_remove_rmap(page, false); 1092 if (unlikely(page_mapcount(page) < 0)) 1093 print_bad_pte(vma, addr, ptent, page); 1094 if (unlikely(__tlb_remove_page(tlb, page))) { 1095 force_flush = 1; 1096 addr += PAGE_SIZE; 1097 break; 1098 } 1099 continue; 1100 } 1101 1102 entry = pte_to_swp_entry(ptent); 1103 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1104 struct page *page = device_private_entry_to_page(entry); 1105 1106 if (unlikely(details && details->check_mapping)) { 1107 /* 1108 * unmap_shared_mapping_pages() wants to 1109 * invalidate cache without truncating: 1110 * unmap shared but keep private pages. 1111 */ 1112 if (details->check_mapping != 1113 page_rmapping(page)) 1114 continue; 1115 } 1116 1117 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1118 rss[mm_counter(page)]--; 1119 page_remove_rmap(page, false); 1120 put_page(page); 1121 continue; 1122 } 1123 1124 /* If details->check_mapping, we leave swap entries. */ 1125 if (unlikely(details)) 1126 continue; 1127 1128 entry = pte_to_swp_entry(ptent); 1129 if (!non_swap_entry(entry)) 1130 rss[MM_SWAPENTS]--; 1131 else if (is_migration_entry(entry)) { 1132 struct page *page; 1133 1134 page = migration_entry_to_page(entry); 1135 rss[mm_counter(page)]--; 1136 } 1137 if (unlikely(!free_swap_and_cache(entry))) 1138 print_bad_pte(vma, addr, ptent, NULL); 1139 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1140 } while (pte++, addr += PAGE_SIZE, addr != end); 1141 1142 add_mm_rss_vec(mm, rss); 1143 arch_leave_lazy_mmu_mode(); 1144 1145 /* Do the actual TLB flush before dropping ptl */ 1146 if (force_flush) 1147 tlb_flush_mmu_tlbonly(tlb); 1148 pte_unmap_unlock(start_pte, ptl); 1149 1150 /* 1151 * If we forced a TLB flush (either due to running out of 1152 * batch buffers or because we needed to flush dirty TLB 1153 * entries before releasing the ptl), free the batched 1154 * memory too. Restart if we didn't do everything. 1155 */ 1156 if (force_flush) { 1157 force_flush = 0; 1158 tlb_flush_mmu_free(tlb); 1159 if (addr != end) 1160 goto again; 1161 } 1162 1163 return addr; 1164 } 1165 1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1167 struct vm_area_struct *vma, pud_t *pud, 1168 unsigned long addr, unsigned long end, 1169 struct zap_details *details) 1170 { 1171 pmd_t *pmd; 1172 unsigned long next; 1173 1174 pmd = pmd_offset(pud, addr); 1175 do { 1176 next = pmd_addr_end(addr, end); 1177 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1178 if (next - addr != HPAGE_PMD_SIZE) 1179 __split_huge_pmd(vma, pmd, addr, false, NULL); 1180 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1181 goto next; 1182 /* fall through */ 1183 } 1184 /* 1185 * Here there can be other concurrent MADV_DONTNEED or 1186 * trans huge page faults running, and if the pmd is 1187 * none or trans huge it can change under us. This is 1188 * because MADV_DONTNEED holds the mmap_sem in read 1189 * mode. 1190 */ 1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1192 goto next; 1193 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1194 next: 1195 cond_resched(); 1196 } while (pmd++, addr = next, addr != end); 1197 1198 return addr; 1199 } 1200 1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1202 struct vm_area_struct *vma, p4d_t *p4d, 1203 unsigned long addr, unsigned long end, 1204 struct zap_details *details) 1205 { 1206 pud_t *pud; 1207 unsigned long next; 1208 1209 pud = pud_offset(p4d, addr); 1210 do { 1211 next = pud_addr_end(addr, end); 1212 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1213 if (next - addr != HPAGE_PUD_SIZE) { 1214 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1215 split_huge_pud(vma, pud, addr); 1216 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1217 goto next; 1218 /* fall through */ 1219 } 1220 if (pud_none_or_clear_bad(pud)) 1221 continue; 1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1223 next: 1224 cond_resched(); 1225 } while (pud++, addr = next, addr != end); 1226 1227 return addr; 1228 } 1229 1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1231 struct vm_area_struct *vma, pgd_t *pgd, 1232 unsigned long addr, unsigned long end, 1233 struct zap_details *details) 1234 { 1235 p4d_t *p4d; 1236 unsigned long next; 1237 1238 p4d = p4d_offset(pgd, addr); 1239 do { 1240 next = p4d_addr_end(addr, end); 1241 if (p4d_none_or_clear_bad(p4d)) 1242 continue; 1243 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1244 } while (p4d++, addr = next, addr != end); 1245 1246 return addr; 1247 } 1248 1249 void unmap_page_range(struct mmu_gather *tlb, 1250 struct vm_area_struct *vma, 1251 unsigned long addr, unsigned long end, 1252 struct zap_details *details) 1253 { 1254 pgd_t *pgd; 1255 unsigned long next; 1256 1257 BUG_ON(addr >= end); 1258 tlb_start_vma(tlb, vma); 1259 pgd = pgd_offset(vma->vm_mm, addr); 1260 do { 1261 next = pgd_addr_end(addr, end); 1262 if (pgd_none_or_clear_bad(pgd)) 1263 continue; 1264 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1265 } while (pgd++, addr = next, addr != end); 1266 tlb_end_vma(tlb, vma); 1267 } 1268 1269 1270 static void unmap_single_vma(struct mmu_gather *tlb, 1271 struct vm_area_struct *vma, unsigned long start_addr, 1272 unsigned long end_addr, 1273 struct zap_details *details) 1274 { 1275 unsigned long start = max(vma->vm_start, start_addr); 1276 unsigned long end; 1277 1278 if (start >= vma->vm_end) 1279 return; 1280 end = min(vma->vm_end, end_addr); 1281 if (end <= vma->vm_start) 1282 return; 1283 1284 if (vma->vm_file) 1285 uprobe_munmap(vma, start, end); 1286 1287 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1288 untrack_pfn(vma, 0, 0); 1289 1290 if (start != end) { 1291 if (unlikely(is_vm_hugetlb_page(vma))) { 1292 /* 1293 * It is undesirable to test vma->vm_file as it 1294 * should be non-null for valid hugetlb area. 1295 * However, vm_file will be NULL in the error 1296 * cleanup path of mmap_region. When 1297 * hugetlbfs ->mmap method fails, 1298 * mmap_region() nullifies vma->vm_file 1299 * before calling this function to clean up. 1300 * Since no pte has actually been setup, it is 1301 * safe to do nothing in this case. 1302 */ 1303 if (vma->vm_file) { 1304 i_mmap_lock_write(vma->vm_file->f_mapping); 1305 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1306 i_mmap_unlock_write(vma->vm_file->f_mapping); 1307 } 1308 } else 1309 unmap_page_range(tlb, vma, start, end, details); 1310 } 1311 } 1312 1313 /** 1314 * unmap_vmas - unmap a range of memory covered by a list of vma's 1315 * @tlb: address of the caller's struct mmu_gather 1316 * @vma: the starting vma 1317 * @start_addr: virtual address at which to start unmapping 1318 * @end_addr: virtual address at which to end unmapping 1319 * 1320 * Unmap all pages in the vma list. 1321 * 1322 * Only addresses between `start' and `end' will be unmapped. 1323 * 1324 * The VMA list must be sorted in ascending virtual address order. 1325 * 1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1327 * range after unmap_vmas() returns. So the only responsibility here is to 1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1329 * drops the lock and schedules. 1330 */ 1331 void unmap_vmas(struct mmu_gather *tlb, 1332 struct vm_area_struct *vma, unsigned long start_addr, 1333 unsigned long end_addr) 1334 { 1335 struct mmu_notifier_range range; 1336 1337 mmu_notifier_range_init(&range, vma->vm_mm, start_addr, end_addr); 1338 mmu_notifier_invalidate_range_start(&range); 1339 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1340 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1341 mmu_notifier_invalidate_range_end(&range); 1342 } 1343 1344 /** 1345 * zap_page_range - remove user pages in a given range 1346 * @vma: vm_area_struct holding the applicable pages 1347 * @start: starting address of pages to zap 1348 * @size: number of bytes to zap 1349 * 1350 * Caller must protect the VMA list 1351 */ 1352 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1353 unsigned long size) 1354 { 1355 struct mmu_notifier_range range; 1356 struct mmu_gather tlb; 1357 1358 lru_add_drain(); 1359 mmu_notifier_range_init(&range, vma->vm_mm, start, start + size); 1360 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1361 update_hiwater_rss(vma->vm_mm); 1362 mmu_notifier_invalidate_range_start(&range); 1363 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1364 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1365 mmu_notifier_invalidate_range_end(&range); 1366 tlb_finish_mmu(&tlb, start, range.end); 1367 } 1368 1369 /** 1370 * zap_page_range_single - remove user pages in a given range 1371 * @vma: vm_area_struct holding the applicable pages 1372 * @address: starting address of pages to zap 1373 * @size: number of bytes to zap 1374 * @details: details of shared cache invalidation 1375 * 1376 * The range must fit into one VMA. 1377 */ 1378 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1379 unsigned long size, struct zap_details *details) 1380 { 1381 struct mmu_notifier_range range; 1382 struct mmu_gather tlb; 1383 1384 lru_add_drain(); 1385 mmu_notifier_range_init(&range, vma->vm_mm, address, address + size); 1386 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1387 update_hiwater_rss(vma->vm_mm); 1388 mmu_notifier_invalidate_range_start(&range); 1389 unmap_single_vma(&tlb, vma, address, range.end, details); 1390 mmu_notifier_invalidate_range_end(&range); 1391 tlb_finish_mmu(&tlb, address, range.end); 1392 } 1393 1394 /** 1395 * zap_vma_ptes - remove ptes mapping the vma 1396 * @vma: vm_area_struct holding ptes to be zapped 1397 * @address: starting address of pages to zap 1398 * @size: number of bytes to zap 1399 * 1400 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1401 * 1402 * The entire address range must be fully contained within the vma. 1403 * 1404 */ 1405 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1406 unsigned long size) 1407 { 1408 if (address < vma->vm_start || address + size > vma->vm_end || 1409 !(vma->vm_flags & VM_PFNMAP)) 1410 return; 1411 1412 zap_page_range_single(vma, address, size, NULL); 1413 } 1414 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1415 1416 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1417 spinlock_t **ptl) 1418 { 1419 pgd_t *pgd; 1420 p4d_t *p4d; 1421 pud_t *pud; 1422 pmd_t *pmd; 1423 1424 pgd = pgd_offset(mm, addr); 1425 p4d = p4d_alloc(mm, pgd, addr); 1426 if (!p4d) 1427 return NULL; 1428 pud = pud_alloc(mm, p4d, addr); 1429 if (!pud) 1430 return NULL; 1431 pmd = pmd_alloc(mm, pud, addr); 1432 if (!pmd) 1433 return NULL; 1434 1435 VM_BUG_ON(pmd_trans_huge(*pmd)); 1436 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1437 } 1438 1439 /* 1440 * This is the old fallback for page remapping. 1441 * 1442 * For historical reasons, it only allows reserved pages. Only 1443 * old drivers should use this, and they needed to mark their 1444 * pages reserved for the old functions anyway. 1445 */ 1446 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1447 struct page *page, pgprot_t prot) 1448 { 1449 struct mm_struct *mm = vma->vm_mm; 1450 int retval; 1451 pte_t *pte; 1452 spinlock_t *ptl; 1453 1454 retval = -EINVAL; 1455 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1456 goto out; 1457 retval = -ENOMEM; 1458 flush_dcache_page(page); 1459 pte = get_locked_pte(mm, addr, &ptl); 1460 if (!pte) 1461 goto out; 1462 retval = -EBUSY; 1463 if (!pte_none(*pte)) 1464 goto out_unlock; 1465 1466 /* Ok, finally just insert the thing.. */ 1467 get_page(page); 1468 inc_mm_counter_fast(mm, mm_counter_file(page)); 1469 page_add_file_rmap(page, false); 1470 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1471 1472 retval = 0; 1473 pte_unmap_unlock(pte, ptl); 1474 return retval; 1475 out_unlock: 1476 pte_unmap_unlock(pte, ptl); 1477 out: 1478 return retval; 1479 } 1480 1481 /** 1482 * vm_insert_page - insert single page into user vma 1483 * @vma: user vma to map to 1484 * @addr: target user address of this page 1485 * @page: source kernel page 1486 * 1487 * This allows drivers to insert individual pages they've allocated 1488 * into a user vma. 1489 * 1490 * The page has to be a nice clean _individual_ kernel allocation. 1491 * If you allocate a compound page, you need to have marked it as 1492 * such (__GFP_COMP), or manually just split the page up yourself 1493 * (see split_page()). 1494 * 1495 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1496 * took an arbitrary page protection parameter. This doesn't allow 1497 * that. Your vma protection will have to be set up correctly, which 1498 * means that if you want a shared writable mapping, you'd better 1499 * ask for a shared writable mapping! 1500 * 1501 * The page does not need to be reserved. 1502 * 1503 * Usually this function is called from f_op->mmap() handler 1504 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1505 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1506 * function from other places, for example from page-fault handler. 1507 */ 1508 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1509 struct page *page) 1510 { 1511 if (addr < vma->vm_start || addr >= vma->vm_end) 1512 return -EFAULT; 1513 if (!page_count(page)) 1514 return -EINVAL; 1515 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1516 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1517 BUG_ON(vma->vm_flags & VM_PFNMAP); 1518 vma->vm_flags |= VM_MIXEDMAP; 1519 } 1520 return insert_page(vma, addr, page, vma->vm_page_prot); 1521 } 1522 EXPORT_SYMBOL(vm_insert_page); 1523 1524 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1525 pfn_t pfn, pgprot_t prot, bool mkwrite) 1526 { 1527 struct mm_struct *mm = vma->vm_mm; 1528 pte_t *pte, entry; 1529 spinlock_t *ptl; 1530 1531 pte = get_locked_pte(mm, addr, &ptl); 1532 if (!pte) 1533 return VM_FAULT_OOM; 1534 if (!pte_none(*pte)) { 1535 if (mkwrite) { 1536 /* 1537 * For read faults on private mappings the PFN passed 1538 * in may not match the PFN we have mapped if the 1539 * mapped PFN is a writeable COW page. In the mkwrite 1540 * case we are creating a writable PTE for a shared 1541 * mapping and we expect the PFNs to match. If they 1542 * don't match, we are likely racing with block 1543 * allocation and mapping invalidation so just skip the 1544 * update. 1545 */ 1546 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1547 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1548 goto out_unlock; 1549 } 1550 entry = *pte; 1551 goto out_mkwrite; 1552 } else 1553 goto out_unlock; 1554 } 1555 1556 /* Ok, finally just insert the thing.. */ 1557 if (pfn_t_devmap(pfn)) 1558 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1559 else 1560 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1561 1562 out_mkwrite: 1563 if (mkwrite) { 1564 entry = pte_mkyoung(entry); 1565 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1566 } 1567 1568 set_pte_at(mm, addr, pte, entry); 1569 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1570 1571 out_unlock: 1572 pte_unmap_unlock(pte, ptl); 1573 return VM_FAULT_NOPAGE; 1574 } 1575 1576 /** 1577 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1578 * @vma: user vma to map to 1579 * @addr: target user address of this page 1580 * @pfn: source kernel pfn 1581 * @pgprot: pgprot flags for the inserted page 1582 * 1583 * This is exactly like vmf_insert_pfn(), except that it allows drivers to 1584 * to override pgprot on a per-page basis. 1585 * 1586 * This only makes sense for IO mappings, and it makes no sense for 1587 * COW mappings. In general, using multiple vmas is preferable; 1588 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1589 * impractical. 1590 * 1591 * Context: Process context. May allocate using %GFP_KERNEL. 1592 * Return: vm_fault_t value. 1593 */ 1594 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1595 unsigned long pfn, pgprot_t pgprot) 1596 { 1597 /* 1598 * Technically, architectures with pte_special can avoid all these 1599 * restrictions (same for remap_pfn_range). However we would like 1600 * consistency in testing and feature parity among all, so we should 1601 * try to keep these invariants in place for everybody. 1602 */ 1603 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1604 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1605 (VM_PFNMAP|VM_MIXEDMAP)); 1606 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1607 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1608 1609 if (addr < vma->vm_start || addr >= vma->vm_end) 1610 return VM_FAULT_SIGBUS; 1611 1612 if (!pfn_modify_allowed(pfn, pgprot)) 1613 return VM_FAULT_SIGBUS; 1614 1615 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1616 1617 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1618 false); 1619 } 1620 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1621 1622 /** 1623 * vmf_insert_pfn - insert single pfn into user vma 1624 * @vma: user vma to map to 1625 * @addr: target user address of this page 1626 * @pfn: source kernel pfn 1627 * 1628 * Similar to vm_insert_page, this allows drivers to insert individual pages 1629 * they've allocated into a user vma. Same comments apply. 1630 * 1631 * This function should only be called from a vm_ops->fault handler, and 1632 * in that case the handler should return the result of this function. 1633 * 1634 * vma cannot be a COW mapping. 1635 * 1636 * As this is called only for pages that do not currently exist, we 1637 * do not need to flush old virtual caches or the TLB. 1638 * 1639 * Context: Process context. May allocate using %GFP_KERNEL. 1640 * Return: vm_fault_t value. 1641 */ 1642 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1643 unsigned long pfn) 1644 { 1645 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1646 } 1647 EXPORT_SYMBOL(vmf_insert_pfn); 1648 1649 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1650 { 1651 /* these checks mirror the abort conditions in vm_normal_page */ 1652 if (vma->vm_flags & VM_MIXEDMAP) 1653 return true; 1654 if (pfn_t_devmap(pfn)) 1655 return true; 1656 if (pfn_t_special(pfn)) 1657 return true; 1658 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1659 return true; 1660 return false; 1661 } 1662 1663 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1664 unsigned long addr, pfn_t pfn, bool mkwrite) 1665 { 1666 pgprot_t pgprot = vma->vm_page_prot; 1667 int err; 1668 1669 BUG_ON(!vm_mixed_ok(vma, pfn)); 1670 1671 if (addr < vma->vm_start || addr >= vma->vm_end) 1672 return VM_FAULT_SIGBUS; 1673 1674 track_pfn_insert(vma, &pgprot, pfn); 1675 1676 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1677 return VM_FAULT_SIGBUS; 1678 1679 /* 1680 * If we don't have pte special, then we have to use the pfn_valid() 1681 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1682 * refcount the page if pfn_valid is true (hence insert_page rather 1683 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1684 * without pte special, it would there be refcounted as a normal page. 1685 */ 1686 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1687 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1688 struct page *page; 1689 1690 /* 1691 * At this point we are committed to insert_page() 1692 * regardless of whether the caller specified flags that 1693 * result in pfn_t_has_page() == false. 1694 */ 1695 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1696 err = insert_page(vma, addr, page, pgprot); 1697 } else { 1698 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1699 } 1700 1701 if (err == -ENOMEM) 1702 return VM_FAULT_OOM; 1703 if (err < 0 && err != -EBUSY) 1704 return VM_FAULT_SIGBUS; 1705 1706 return VM_FAULT_NOPAGE; 1707 } 1708 1709 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1710 pfn_t pfn) 1711 { 1712 return __vm_insert_mixed(vma, addr, pfn, false); 1713 } 1714 EXPORT_SYMBOL(vmf_insert_mixed); 1715 1716 /* 1717 * If the insertion of PTE failed because someone else already added a 1718 * different entry in the mean time, we treat that as success as we assume 1719 * the same entry was actually inserted. 1720 */ 1721 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1722 unsigned long addr, pfn_t pfn) 1723 { 1724 return __vm_insert_mixed(vma, addr, pfn, true); 1725 } 1726 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1727 1728 /* 1729 * maps a range of physical memory into the requested pages. the old 1730 * mappings are removed. any references to nonexistent pages results 1731 * in null mappings (currently treated as "copy-on-access") 1732 */ 1733 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1734 unsigned long addr, unsigned long end, 1735 unsigned long pfn, pgprot_t prot) 1736 { 1737 pte_t *pte; 1738 spinlock_t *ptl; 1739 int err = 0; 1740 1741 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1742 if (!pte) 1743 return -ENOMEM; 1744 arch_enter_lazy_mmu_mode(); 1745 do { 1746 BUG_ON(!pte_none(*pte)); 1747 if (!pfn_modify_allowed(pfn, prot)) { 1748 err = -EACCES; 1749 break; 1750 } 1751 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1752 pfn++; 1753 } while (pte++, addr += PAGE_SIZE, addr != end); 1754 arch_leave_lazy_mmu_mode(); 1755 pte_unmap_unlock(pte - 1, ptl); 1756 return err; 1757 } 1758 1759 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1760 unsigned long addr, unsigned long end, 1761 unsigned long pfn, pgprot_t prot) 1762 { 1763 pmd_t *pmd; 1764 unsigned long next; 1765 int err; 1766 1767 pfn -= addr >> PAGE_SHIFT; 1768 pmd = pmd_alloc(mm, pud, addr); 1769 if (!pmd) 1770 return -ENOMEM; 1771 VM_BUG_ON(pmd_trans_huge(*pmd)); 1772 do { 1773 next = pmd_addr_end(addr, end); 1774 err = remap_pte_range(mm, pmd, addr, next, 1775 pfn + (addr >> PAGE_SHIFT), prot); 1776 if (err) 1777 return err; 1778 } while (pmd++, addr = next, addr != end); 1779 return 0; 1780 } 1781 1782 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 1783 unsigned long addr, unsigned long end, 1784 unsigned long pfn, pgprot_t prot) 1785 { 1786 pud_t *pud; 1787 unsigned long next; 1788 int err; 1789 1790 pfn -= addr >> PAGE_SHIFT; 1791 pud = pud_alloc(mm, p4d, addr); 1792 if (!pud) 1793 return -ENOMEM; 1794 do { 1795 next = pud_addr_end(addr, end); 1796 err = remap_pmd_range(mm, pud, addr, next, 1797 pfn + (addr >> PAGE_SHIFT), prot); 1798 if (err) 1799 return err; 1800 } while (pud++, addr = next, addr != end); 1801 return 0; 1802 } 1803 1804 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 1805 unsigned long addr, unsigned long end, 1806 unsigned long pfn, pgprot_t prot) 1807 { 1808 p4d_t *p4d; 1809 unsigned long next; 1810 int err; 1811 1812 pfn -= addr >> PAGE_SHIFT; 1813 p4d = p4d_alloc(mm, pgd, addr); 1814 if (!p4d) 1815 return -ENOMEM; 1816 do { 1817 next = p4d_addr_end(addr, end); 1818 err = remap_pud_range(mm, p4d, addr, next, 1819 pfn + (addr >> PAGE_SHIFT), prot); 1820 if (err) 1821 return err; 1822 } while (p4d++, addr = next, addr != end); 1823 return 0; 1824 } 1825 1826 /** 1827 * remap_pfn_range - remap kernel memory to userspace 1828 * @vma: user vma to map to 1829 * @addr: target user address to start at 1830 * @pfn: physical address of kernel memory 1831 * @size: size of map area 1832 * @prot: page protection flags for this mapping 1833 * 1834 * Note: this is only safe if the mm semaphore is held when called. 1835 */ 1836 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1837 unsigned long pfn, unsigned long size, pgprot_t prot) 1838 { 1839 pgd_t *pgd; 1840 unsigned long next; 1841 unsigned long end = addr + PAGE_ALIGN(size); 1842 struct mm_struct *mm = vma->vm_mm; 1843 unsigned long remap_pfn = pfn; 1844 int err; 1845 1846 /* 1847 * Physically remapped pages are special. Tell the 1848 * rest of the world about it: 1849 * VM_IO tells people not to look at these pages 1850 * (accesses can have side effects). 1851 * VM_PFNMAP tells the core MM that the base pages are just 1852 * raw PFN mappings, and do not have a "struct page" associated 1853 * with them. 1854 * VM_DONTEXPAND 1855 * Disable vma merging and expanding with mremap(). 1856 * VM_DONTDUMP 1857 * Omit vma from core dump, even when VM_IO turned off. 1858 * 1859 * There's a horrible special case to handle copy-on-write 1860 * behaviour that some programs depend on. We mark the "original" 1861 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1862 * See vm_normal_page() for details. 1863 */ 1864 if (is_cow_mapping(vma->vm_flags)) { 1865 if (addr != vma->vm_start || end != vma->vm_end) 1866 return -EINVAL; 1867 vma->vm_pgoff = pfn; 1868 } 1869 1870 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1871 if (err) 1872 return -EINVAL; 1873 1874 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1875 1876 BUG_ON(addr >= end); 1877 pfn -= addr >> PAGE_SHIFT; 1878 pgd = pgd_offset(mm, addr); 1879 flush_cache_range(vma, addr, end); 1880 do { 1881 next = pgd_addr_end(addr, end); 1882 err = remap_p4d_range(mm, pgd, addr, next, 1883 pfn + (addr >> PAGE_SHIFT), prot); 1884 if (err) 1885 break; 1886 } while (pgd++, addr = next, addr != end); 1887 1888 if (err) 1889 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1890 1891 return err; 1892 } 1893 EXPORT_SYMBOL(remap_pfn_range); 1894 1895 /** 1896 * vm_iomap_memory - remap memory to userspace 1897 * @vma: user vma to map to 1898 * @start: start of area 1899 * @len: size of area 1900 * 1901 * This is a simplified io_remap_pfn_range() for common driver use. The 1902 * driver just needs to give us the physical memory range to be mapped, 1903 * we'll figure out the rest from the vma information. 1904 * 1905 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1906 * whatever write-combining details or similar. 1907 */ 1908 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1909 { 1910 unsigned long vm_len, pfn, pages; 1911 1912 /* Check that the physical memory area passed in looks valid */ 1913 if (start + len < start) 1914 return -EINVAL; 1915 /* 1916 * You *really* shouldn't map things that aren't page-aligned, 1917 * but we've historically allowed it because IO memory might 1918 * just have smaller alignment. 1919 */ 1920 len += start & ~PAGE_MASK; 1921 pfn = start >> PAGE_SHIFT; 1922 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1923 if (pfn + pages < pfn) 1924 return -EINVAL; 1925 1926 /* We start the mapping 'vm_pgoff' pages into the area */ 1927 if (vma->vm_pgoff > pages) 1928 return -EINVAL; 1929 pfn += vma->vm_pgoff; 1930 pages -= vma->vm_pgoff; 1931 1932 /* Can we fit all of the mapping? */ 1933 vm_len = vma->vm_end - vma->vm_start; 1934 if (vm_len >> PAGE_SHIFT > pages) 1935 return -EINVAL; 1936 1937 /* Ok, let it rip */ 1938 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1939 } 1940 EXPORT_SYMBOL(vm_iomap_memory); 1941 1942 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1943 unsigned long addr, unsigned long end, 1944 pte_fn_t fn, void *data) 1945 { 1946 pte_t *pte; 1947 int err; 1948 pgtable_t token; 1949 spinlock_t *uninitialized_var(ptl); 1950 1951 pte = (mm == &init_mm) ? 1952 pte_alloc_kernel(pmd, addr) : 1953 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1954 if (!pte) 1955 return -ENOMEM; 1956 1957 BUG_ON(pmd_huge(*pmd)); 1958 1959 arch_enter_lazy_mmu_mode(); 1960 1961 token = pmd_pgtable(*pmd); 1962 1963 do { 1964 err = fn(pte++, token, addr, data); 1965 if (err) 1966 break; 1967 } while (addr += PAGE_SIZE, addr != end); 1968 1969 arch_leave_lazy_mmu_mode(); 1970 1971 if (mm != &init_mm) 1972 pte_unmap_unlock(pte-1, ptl); 1973 return err; 1974 } 1975 1976 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1977 unsigned long addr, unsigned long end, 1978 pte_fn_t fn, void *data) 1979 { 1980 pmd_t *pmd; 1981 unsigned long next; 1982 int err; 1983 1984 BUG_ON(pud_huge(*pud)); 1985 1986 pmd = pmd_alloc(mm, pud, addr); 1987 if (!pmd) 1988 return -ENOMEM; 1989 do { 1990 next = pmd_addr_end(addr, end); 1991 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1992 if (err) 1993 break; 1994 } while (pmd++, addr = next, addr != end); 1995 return err; 1996 } 1997 1998 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 1999 unsigned long addr, unsigned long end, 2000 pte_fn_t fn, void *data) 2001 { 2002 pud_t *pud; 2003 unsigned long next; 2004 int err; 2005 2006 pud = pud_alloc(mm, p4d, addr); 2007 if (!pud) 2008 return -ENOMEM; 2009 do { 2010 next = pud_addr_end(addr, end); 2011 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2012 if (err) 2013 break; 2014 } while (pud++, addr = next, addr != end); 2015 return err; 2016 } 2017 2018 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2019 unsigned long addr, unsigned long end, 2020 pte_fn_t fn, void *data) 2021 { 2022 p4d_t *p4d; 2023 unsigned long next; 2024 int err; 2025 2026 p4d = p4d_alloc(mm, pgd, addr); 2027 if (!p4d) 2028 return -ENOMEM; 2029 do { 2030 next = p4d_addr_end(addr, end); 2031 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2032 if (err) 2033 break; 2034 } while (p4d++, addr = next, addr != end); 2035 return err; 2036 } 2037 2038 /* 2039 * Scan a region of virtual memory, filling in page tables as necessary 2040 * and calling a provided function on each leaf page table. 2041 */ 2042 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2043 unsigned long size, pte_fn_t fn, void *data) 2044 { 2045 pgd_t *pgd; 2046 unsigned long next; 2047 unsigned long end = addr + size; 2048 int err; 2049 2050 if (WARN_ON(addr >= end)) 2051 return -EINVAL; 2052 2053 pgd = pgd_offset(mm, addr); 2054 do { 2055 next = pgd_addr_end(addr, end); 2056 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2057 if (err) 2058 break; 2059 } while (pgd++, addr = next, addr != end); 2060 2061 return err; 2062 } 2063 EXPORT_SYMBOL_GPL(apply_to_page_range); 2064 2065 /* 2066 * handle_pte_fault chooses page fault handler according to an entry which was 2067 * read non-atomically. Before making any commitment, on those architectures 2068 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2069 * parts, do_swap_page must check under lock before unmapping the pte and 2070 * proceeding (but do_wp_page is only called after already making such a check; 2071 * and do_anonymous_page can safely check later on). 2072 */ 2073 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2074 pte_t *page_table, pte_t orig_pte) 2075 { 2076 int same = 1; 2077 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2078 if (sizeof(pte_t) > sizeof(unsigned long)) { 2079 spinlock_t *ptl = pte_lockptr(mm, pmd); 2080 spin_lock(ptl); 2081 same = pte_same(*page_table, orig_pte); 2082 spin_unlock(ptl); 2083 } 2084 #endif 2085 pte_unmap(page_table); 2086 return same; 2087 } 2088 2089 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2090 { 2091 debug_dma_assert_idle(src); 2092 2093 /* 2094 * If the source page was a PFN mapping, we don't have 2095 * a "struct page" for it. We do a best-effort copy by 2096 * just copying from the original user address. If that 2097 * fails, we just zero-fill it. Live with it. 2098 */ 2099 if (unlikely(!src)) { 2100 void *kaddr = kmap_atomic(dst); 2101 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2102 2103 /* 2104 * This really shouldn't fail, because the page is there 2105 * in the page tables. But it might just be unreadable, 2106 * in which case we just give up and fill the result with 2107 * zeroes. 2108 */ 2109 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2110 clear_page(kaddr); 2111 kunmap_atomic(kaddr); 2112 flush_dcache_page(dst); 2113 } else 2114 copy_user_highpage(dst, src, va, vma); 2115 } 2116 2117 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2118 { 2119 struct file *vm_file = vma->vm_file; 2120 2121 if (vm_file) 2122 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2123 2124 /* 2125 * Special mappings (e.g. VDSO) do not have any file so fake 2126 * a default GFP_KERNEL for them. 2127 */ 2128 return GFP_KERNEL; 2129 } 2130 2131 /* 2132 * Notify the address space that the page is about to become writable so that 2133 * it can prohibit this or wait for the page to get into an appropriate state. 2134 * 2135 * We do this without the lock held, so that it can sleep if it needs to. 2136 */ 2137 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2138 { 2139 vm_fault_t ret; 2140 struct page *page = vmf->page; 2141 unsigned int old_flags = vmf->flags; 2142 2143 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2144 2145 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2146 /* Restore original flags so that caller is not surprised */ 2147 vmf->flags = old_flags; 2148 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2149 return ret; 2150 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2151 lock_page(page); 2152 if (!page->mapping) { 2153 unlock_page(page); 2154 return 0; /* retry */ 2155 } 2156 ret |= VM_FAULT_LOCKED; 2157 } else 2158 VM_BUG_ON_PAGE(!PageLocked(page), page); 2159 return ret; 2160 } 2161 2162 /* 2163 * Handle dirtying of a page in shared file mapping on a write fault. 2164 * 2165 * The function expects the page to be locked and unlocks it. 2166 */ 2167 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2168 struct page *page) 2169 { 2170 struct address_space *mapping; 2171 bool dirtied; 2172 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2173 2174 dirtied = set_page_dirty(page); 2175 VM_BUG_ON_PAGE(PageAnon(page), page); 2176 /* 2177 * Take a local copy of the address_space - page.mapping may be zeroed 2178 * by truncate after unlock_page(). The address_space itself remains 2179 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2180 * release semantics to prevent the compiler from undoing this copying. 2181 */ 2182 mapping = page_rmapping(page); 2183 unlock_page(page); 2184 2185 if ((dirtied || page_mkwrite) && mapping) { 2186 /* 2187 * Some device drivers do not set page.mapping 2188 * but still dirty their pages 2189 */ 2190 balance_dirty_pages_ratelimited(mapping); 2191 } 2192 2193 if (!page_mkwrite) 2194 file_update_time(vma->vm_file); 2195 } 2196 2197 /* 2198 * Handle write page faults for pages that can be reused in the current vma 2199 * 2200 * This can happen either due to the mapping being with the VM_SHARED flag, 2201 * or due to us being the last reference standing to the page. In either 2202 * case, all we need to do here is to mark the page as writable and update 2203 * any related book-keeping. 2204 */ 2205 static inline void wp_page_reuse(struct vm_fault *vmf) 2206 __releases(vmf->ptl) 2207 { 2208 struct vm_area_struct *vma = vmf->vma; 2209 struct page *page = vmf->page; 2210 pte_t entry; 2211 /* 2212 * Clear the pages cpupid information as the existing 2213 * information potentially belongs to a now completely 2214 * unrelated process. 2215 */ 2216 if (page) 2217 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2218 2219 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2220 entry = pte_mkyoung(vmf->orig_pte); 2221 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2222 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2223 update_mmu_cache(vma, vmf->address, vmf->pte); 2224 pte_unmap_unlock(vmf->pte, vmf->ptl); 2225 } 2226 2227 /* 2228 * Handle the case of a page which we actually need to copy to a new page. 2229 * 2230 * Called with mmap_sem locked and the old page referenced, but 2231 * without the ptl held. 2232 * 2233 * High level logic flow: 2234 * 2235 * - Allocate a page, copy the content of the old page to the new one. 2236 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2237 * - Take the PTL. If the pte changed, bail out and release the allocated page 2238 * - If the pte is still the way we remember it, update the page table and all 2239 * relevant references. This includes dropping the reference the page-table 2240 * held to the old page, as well as updating the rmap. 2241 * - In any case, unlock the PTL and drop the reference we took to the old page. 2242 */ 2243 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2244 { 2245 struct vm_area_struct *vma = vmf->vma; 2246 struct mm_struct *mm = vma->vm_mm; 2247 struct page *old_page = vmf->page; 2248 struct page *new_page = NULL; 2249 pte_t entry; 2250 int page_copied = 0; 2251 struct mem_cgroup *memcg; 2252 struct mmu_notifier_range range; 2253 2254 if (unlikely(anon_vma_prepare(vma))) 2255 goto oom; 2256 2257 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2258 new_page = alloc_zeroed_user_highpage_movable(vma, 2259 vmf->address); 2260 if (!new_page) 2261 goto oom; 2262 } else { 2263 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2264 vmf->address); 2265 if (!new_page) 2266 goto oom; 2267 cow_user_page(new_page, old_page, vmf->address, vma); 2268 } 2269 2270 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2271 goto oom_free_new; 2272 2273 __SetPageUptodate(new_page); 2274 2275 mmu_notifier_range_init(&range, mm, vmf->address & PAGE_MASK, 2276 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2277 mmu_notifier_invalidate_range_start(&range); 2278 2279 /* 2280 * Re-check the pte - we dropped the lock 2281 */ 2282 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2283 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2284 if (old_page) { 2285 if (!PageAnon(old_page)) { 2286 dec_mm_counter_fast(mm, 2287 mm_counter_file(old_page)); 2288 inc_mm_counter_fast(mm, MM_ANONPAGES); 2289 } 2290 } else { 2291 inc_mm_counter_fast(mm, MM_ANONPAGES); 2292 } 2293 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2294 entry = mk_pte(new_page, vma->vm_page_prot); 2295 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2296 /* 2297 * Clear the pte entry and flush it first, before updating the 2298 * pte with the new entry. This will avoid a race condition 2299 * seen in the presence of one thread doing SMC and another 2300 * thread doing COW. 2301 */ 2302 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2303 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2304 mem_cgroup_commit_charge(new_page, memcg, false, false); 2305 lru_cache_add_active_or_unevictable(new_page, vma); 2306 /* 2307 * We call the notify macro here because, when using secondary 2308 * mmu page tables (such as kvm shadow page tables), we want the 2309 * new page to be mapped directly into the secondary page table. 2310 */ 2311 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2312 update_mmu_cache(vma, vmf->address, vmf->pte); 2313 if (old_page) { 2314 /* 2315 * Only after switching the pte to the new page may 2316 * we remove the mapcount here. Otherwise another 2317 * process may come and find the rmap count decremented 2318 * before the pte is switched to the new page, and 2319 * "reuse" the old page writing into it while our pte 2320 * here still points into it and can be read by other 2321 * threads. 2322 * 2323 * The critical issue is to order this 2324 * page_remove_rmap with the ptp_clear_flush above. 2325 * Those stores are ordered by (if nothing else,) 2326 * the barrier present in the atomic_add_negative 2327 * in page_remove_rmap. 2328 * 2329 * Then the TLB flush in ptep_clear_flush ensures that 2330 * no process can access the old page before the 2331 * decremented mapcount is visible. And the old page 2332 * cannot be reused until after the decremented 2333 * mapcount is visible. So transitively, TLBs to 2334 * old page will be flushed before it can be reused. 2335 */ 2336 page_remove_rmap(old_page, false); 2337 } 2338 2339 /* Free the old page.. */ 2340 new_page = old_page; 2341 page_copied = 1; 2342 } else { 2343 mem_cgroup_cancel_charge(new_page, memcg, false); 2344 } 2345 2346 if (new_page) 2347 put_page(new_page); 2348 2349 pte_unmap_unlock(vmf->pte, vmf->ptl); 2350 /* 2351 * No need to double call mmu_notifier->invalidate_range() callback as 2352 * the above ptep_clear_flush_notify() did already call it. 2353 */ 2354 mmu_notifier_invalidate_range_only_end(&range); 2355 if (old_page) { 2356 /* 2357 * Don't let another task, with possibly unlocked vma, 2358 * keep the mlocked page. 2359 */ 2360 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2361 lock_page(old_page); /* LRU manipulation */ 2362 if (PageMlocked(old_page)) 2363 munlock_vma_page(old_page); 2364 unlock_page(old_page); 2365 } 2366 put_page(old_page); 2367 } 2368 return page_copied ? VM_FAULT_WRITE : 0; 2369 oom_free_new: 2370 put_page(new_page); 2371 oom: 2372 if (old_page) 2373 put_page(old_page); 2374 return VM_FAULT_OOM; 2375 } 2376 2377 /** 2378 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2379 * writeable once the page is prepared 2380 * 2381 * @vmf: structure describing the fault 2382 * 2383 * This function handles all that is needed to finish a write page fault in a 2384 * shared mapping due to PTE being read-only once the mapped page is prepared. 2385 * It handles locking of PTE and modifying it. The function returns 2386 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE 2387 * lock. 2388 * 2389 * The function expects the page to be locked or other protection against 2390 * concurrent faults / writeback (such as DAX radix tree locks). 2391 */ 2392 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2393 { 2394 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2395 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2396 &vmf->ptl); 2397 /* 2398 * We might have raced with another page fault while we released the 2399 * pte_offset_map_lock. 2400 */ 2401 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2402 pte_unmap_unlock(vmf->pte, vmf->ptl); 2403 return VM_FAULT_NOPAGE; 2404 } 2405 wp_page_reuse(vmf); 2406 return 0; 2407 } 2408 2409 /* 2410 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2411 * mapping 2412 */ 2413 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2414 { 2415 struct vm_area_struct *vma = vmf->vma; 2416 2417 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2418 vm_fault_t ret; 2419 2420 pte_unmap_unlock(vmf->pte, vmf->ptl); 2421 vmf->flags |= FAULT_FLAG_MKWRITE; 2422 ret = vma->vm_ops->pfn_mkwrite(vmf); 2423 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2424 return ret; 2425 return finish_mkwrite_fault(vmf); 2426 } 2427 wp_page_reuse(vmf); 2428 return VM_FAULT_WRITE; 2429 } 2430 2431 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2432 __releases(vmf->ptl) 2433 { 2434 struct vm_area_struct *vma = vmf->vma; 2435 2436 get_page(vmf->page); 2437 2438 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2439 vm_fault_t tmp; 2440 2441 pte_unmap_unlock(vmf->pte, vmf->ptl); 2442 tmp = do_page_mkwrite(vmf); 2443 if (unlikely(!tmp || (tmp & 2444 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2445 put_page(vmf->page); 2446 return tmp; 2447 } 2448 tmp = finish_mkwrite_fault(vmf); 2449 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2450 unlock_page(vmf->page); 2451 put_page(vmf->page); 2452 return tmp; 2453 } 2454 } else { 2455 wp_page_reuse(vmf); 2456 lock_page(vmf->page); 2457 } 2458 fault_dirty_shared_page(vma, vmf->page); 2459 put_page(vmf->page); 2460 2461 return VM_FAULT_WRITE; 2462 } 2463 2464 /* 2465 * This routine handles present pages, when users try to write 2466 * to a shared page. It is done by copying the page to a new address 2467 * and decrementing the shared-page counter for the old page. 2468 * 2469 * Note that this routine assumes that the protection checks have been 2470 * done by the caller (the low-level page fault routine in most cases). 2471 * Thus we can safely just mark it writable once we've done any necessary 2472 * COW. 2473 * 2474 * We also mark the page dirty at this point even though the page will 2475 * change only once the write actually happens. This avoids a few races, 2476 * and potentially makes it more efficient. 2477 * 2478 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2479 * but allow concurrent faults), with pte both mapped and locked. 2480 * We return with mmap_sem still held, but pte unmapped and unlocked. 2481 */ 2482 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2483 __releases(vmf->ptl) 2484 { 2485 struct vm_area_struct *vma = vmf->vma; 2486 2487 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2488 if (!vmf->page) { 2489 /* 2490 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2491 * VM_PFNMAP VMA. 2492 * 2493 * We should not cow pages in a shared writeable mapping. 2494 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2495 */ 2496 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2497 (VM_WRITE|VM_SHARED)) 2498 return wp_pfn_shared(vmf); 2499 2500 pte_unmap_unlock(vmf->pte, vmf->ptl); 2501 return wp_page_copy(vmf); 2502 } 2503 2504 /* 2505 * Take out anonymous pages first, anonymous shared vmas are 2506 * not dirty accountable. 2507 */ 2508 if (PageAnon(vmf->page)) { 2509 int total_map_swapcount; 2510 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) || 2511 page_count(vmf->page) != 1)) 2512 goto copy; 2513 if (!trylock_page(vmf->page)) { 2514 get_page(vmf->page); 2515 pte_unmap_unlock(vmf->pte, vmf->ptl); 2516 lock_page(vmf->page); 2517 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2518 vmf->address, &vmf->ptl); 2519 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2520 unlock_page(vmf->page); 2521 pte_unmap_unlock(vmf->pte, vmf->ptl); 2522 put_page(vmf->page); 2523 return 0; 2524 } 2525 put_page(vmf->page); 2526 } 2527 if (PageKsm(vmf->page)) { 2528 bool reused = reuse_ksm_page(vmf->page, vmf->vma, 2529 vmf->address); 2530 unlock_page(vmf->page); 2531 if (!reused) 2532 goto copy; 2533 wp_page_reuse(vmf); 2534 return VM_FAULT_WRITE; 2535 } 2536 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2537 if (total_map_swapcount == 1) { 2538 /* 2539 * The page is all ours. Move it to 2540 * our anon_vma so the rmap code will 2541 * not search our parent or siblings. 2542 * Protected against the rmap code by 2543 * the page lock. 2544 */ 2545 page_move_anon_rmap(vmf->page, vma); 2546 } 2547 unlock_page(vmf->page); 2548 wp_page_reuse(vmf); 2549 return VM_FAULT_WRITE; 2550 } 2551 unlock_page(vmf->page); 2552 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2553 (VM_WRITE|VM_SHARED))) { 2554 return wp_page_shared(vmf); 2555 } 2556 copy: 2557 /* 2558 * Ok, we need to copy. Oh, well.. 2559 */ 2560 get_page(vmf->page); 2561 2562 pte_unmap_unlock(vmf->pte, vmf->ptl); 2563 return wp_page_copy(vmf); 2564 } 2565 2566 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2567 unsigned long start_addr, unsigned long end_addr, 2568 struct zap_details *details) 2569 { 2570 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2571 } 2572 2573 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2574 struct zap_details *details) 2575 { 2576 struct vm_area_struct *vma; 2577 pgoff_t vba, vea, zba, zea; 2578 2579 vma_interval_tree_foreach(vma, root, 2580 details->first_index, details->last_index) { 2581 2582 vba = vma->vm_pgoff; 2583 vea = vba + vma_pages(vma) - 1; 2584 zba = details->first_index; 2585 if (zba < vba) 2586 zba = vba; 2587 zea = details->last_index; 2588 if (zea > vea) 2589 zea = vea; 2590 2591 unmap_mapping_range_vma(vma, 2592 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2593 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2594 details); 2595 } 2596 } 2597 2598 /** 2599 * unmap_mapping_pages() - Unmap pages from processes. 2600 * @mapping: The address space containing pages to be unmapped. 2601 * @start: Index of first page to be unmapped. 2602 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2603 * @even_cows: Whether to unmap even private COWed pages. 2604 * 2605 * Unmap the pages in this address space from any userspace process which 2606 * has them mmaped. Generally, you want to remove COWed pages as well when 2607 * a file is being truncated, but not when invalidating pages from the page 2608 * cache. 2609 */ 2610 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2611 pgoff_t nr, bool even_cows) 2612 { 2613 struct zap_details details = { }; 2614 2615 details.check_mapping = even_cows ? NULL : mapping; 2616 details.first_index = start; 2617 details.last_index = start + nr - 1; 2618 if (details.last_index < details.first_index) 2619 details.last_index = ULONG_MAX; 2620 2621 i_mmap_lock_write(mapping); 2622 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2623 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2624 i_mmap_unlock_write(mapping); 2625 } 2626 2627 /** 2628 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2629 * address_space corresponding to the specified byte range in the underlying 2630 * file. 2631 * 2632 * @mapping: the address space containing mmaps to be unmapped. 2633 * @holebegin: byte in first page to unmap, relative to the start of 2634 * the underlying file. This will be rounded down to a PAGE_SIZE 2635 * boundary. Note that this is different from truncate_pagecache(), which 2636 * must keep the partial page. In contrast, we must get rid of 2637 * partial pages. 2638 * @holelen: size of prospective hole in bytes. This will be rounded 2639 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2640 * end of the file. 2641 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2642 * but 0 when invalidating pagecache, don't throw away private data. 2643 */ 2644 void unmap_mapping_range(struct address_space *mapping, 2645 loff_t const holebegin, loff_t const holelen, int even_cows) 2646 { 2647 pgoff_t hba = holebegin >> PAGE_SHIFT; 2648 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2649 2650 /* Check for overflow. */ 2651 if (sizeof(holelen) > sizeof(hlen)) { 2652 long long holeend = 2653 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2654 if (holeend & ~(long long)ULONG_MAX) 2655 hlen = ULONG_MAX - hba + 1; 2656 } 2657 2658 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2659 } 2660 EXPORT_SYMBOL(unmap_mapping_range); 2661 2662 /* 2663 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2664 * but allow concurrent faults), and pte mapped but not yet locked. 2665 * We return with pte unmapped and unlocked. 2666 * 2667 * We return with the mmap_sem locked or unlocked in the same cases 2668 * as does filemap_fault(). 2669 */ 2670 vm_fault_t do_swap_page(struct vm_fault *vmf) 2671 { 2672 struct vm_area_struct *vma = vmf->vma; 2673 struct page *page = NULL, *swapcache; 2674 struct mem_cgroup *memcg; 2675 swp_entry_t entry; 2676 pte_t pte; 2677 int locked; 2678 int exclusive = 0; 2679 vm_fault_t ret = 0; 2680 2681 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2682 goto out; 2683 2684 entry = pte_to_swp_entry(vmf->orig_pte); 2685 if (unlikely(non_swap_entry(entry))) { 2686 if (is_migration_entry(entry)) { 2687 migration_entry_wait(vma->vm_mm, vmf->pmd, 2688 vmf->address); 2689 } else if (is_device_private_entry(entry)) { 2690 /* 2691 * For un-addressable device memory we call the pgmap 2692 * fault handler callback. The callback must migrate 2693 * the page back to some CPU accessible page. 2694 */ 2695 ret = device_private_entry_fault(vma, vmf->address, entry, 2696 vmf->flags, vmf->pmd); 2697 } else if (is_hwpoison_entry(entry)) { 2698 ret = VM_FAULT_HWPOISON; 2699 } else { 2700 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2701 ret = VM_FAULT_SIGBUS; 2702 } 2703 goto out; 2704 } 2705 2706 2707 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2708 page = lookup_swap_cache(entry, vma, vmf->address); 2709 swapcache = page; 2710 2711 if (!page) { 2712 struct swap_info_struct *si = swp_swap_info(entry); 2713 2714 if (si->flags & SWP_SYNCHRONOUS_IO && 2715 __swap_count(si, entry) == 1) { 2716 /* skip swapcache */ 2717 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2718 vmf->address); 2719 if (page) { 2720 __SetPageLocked(page); 2721 __SetPageSwapBacked(page); 2722 set_page_private(page, entry.val); 2723 lru_cache_add_anon(page); 2724 swap_readpage(page, true); 2725 } 2726 } else { 2727 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2728 vmf); 2729 swapcache = page; 2730 } 2731 2732 if (!page) { 2733 /* 2734 * Back out if somebody else faulted in this pte 2735 * while we released the pte lock. 2736 */ 2737 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2738 vmf->address, &vmf->ptl); 2739 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2740 ret = VM_FAULT_OOM; 2741 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2742 goto unlock; 2743 } 2744 2745 /* Had to read the page from swap area: Major fault */ 2746 ret = VM_FAULT_MAJOR; 2747 count_vm_event(PGMAJFAULT); 2748 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2749 } else if (PageHWPoison(page)) { 2750 /* 2751 * hwpoisoned dirty swapcache pages are kept for killing 2752 * owner processes (which may be unknown at hwpoison time) 2753 */ 2754 ret = VM_FAULT_HWPOISON; 2755 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2756 goto out_release; 2757 } 2758 2759 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2760 2761 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2762 if (!locked) { 2763 ret |= VM_FAULT_RETRY; 2764 goto out_release; 2765 } 2766 2767 /* 2768 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2769 * release the swapcache from under us. The page pin, and pte_same 2770 * test below, are not enough to exclude that. Even if it is still 2771 * swapcache, we need to check that the page's swap has not changed. 2772 */ 2773 if (unlikely((!PageSwapCache(page) || 2774 page_private(page) != entry.val)) && swapcache) 2775 goto out_page; 2776 2777 page = ksm_might_need_to_copy(page, vma, vmf->address); 2778 if (unlikely(!page)) { 2779 ret = VM_FAULT_OOM; 2780 page = swapcache; 2781 goto out_page; 2782 } 2783 2784 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 2785 &memcg, false)) { 2786 ret = VM_FAULT_OOM; 2787 goto out_page; 2788 } 2789 2790 /* 2791 * Back out if somebody else already faulted in this pte. 2792 */ 2793 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2794 &vmf->ptl); 2795 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2796 goto out_nomap; 2797 2798 if (unlikely(!PageUptodate(page))) { 2799 ret = VM_FAULT_SIGBUS; 2800 goto out_nomap; 2801 } 2802 2803 /* 2804 * The page isn't present yet, go ahead with the fault. 2805 * 2806 * Be careful about the sequence of operations here. 2807 * To get its accounting right, reuse_swap_page() must be called 2808 * while the page is counted on swap but not yet in mapcount i.e. 2809 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2810 * must be called after the swap_free(), or it will never succeed. 2811 */ 2812 2813 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2814 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2815 pte = mk_pte(page, vma->vm_page_prot); 2816 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2817 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2818 vmf->flags &= ~FAULT_FLAG_WRITE; 2819 ret |= VM_FAULT_WRITE; 2820 exclusive = RMAP_EXCLUSIVE; 2821 } 2822 flush_icache_page(vma, page); 2823 if (pte_swp_soft_dirty(vmf->orig_pte)) 2824 pte = pte_mksoft_dirty(pte); 2825 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2826 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 2827 vmf->orig_pte = pte; 2828 2829 /* ksm created a completely new copy */ 2830 if (unlikely(page != swapcache && swapcache)) { 2831 page_add_new_anon_rmap(page, vma, vmf->address, false); 2832 mem_cgroup_commit_charge(page, memcg, false, false); 2833 lru_cache_add_active_or_unevictable(page, vma); 2834 } else { 2835 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 2836 mem_cgroup_commit_charge(page, memcg, true, false); 2837 activate_page(page); 2838 } 2839 2840 swap_free(entry); 2841 if (mem_cgroup_swap_full(page) || 2842 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2843 try_to_free_swap(page); 2844 unlock_page(page); 2845 if (page != swapcache && swapcache) { 2846 /* 2847 * Hold the lock to avoid the swap entry to be reused 2848 * until we take the PT lock for the pte_same() check 2849 * (to avoid false positives from pte_same). For 2850 * further safety release the lock after the swap_free 2851 * so that the swap count won't change under a 2852 * parallel locked swapcache. 2853 */ 2854 unlock_page(swapcache); 2855 put_page(swapcache); 2856 } 2857 2858 if (vmf->flags & FAULT_FLAG_WRITE) { 2859 ret |= do_wp_page(vmf); 2860 if (ret & VM_FAULT_ERROR) 2861 ret &= VM_FAULT_ERROR; 2862 goto out; 2863 } 2864 2865 /* No need to invalidate - it was non-present before */ 2866 update_mmu_cache(vma, vmf->address, vmf->pte); 2867 unlock: 2868 pte_unmap_unlock(vmf->pte, vmf->ptl); 2869 out: 2870 return ret; 2871 out_nomap: 2872 mem_cgroup_cancel_charge(page, memcg, false); 2873 pte_unmap_unlock(vmf->pte, vmf->ptl); 2874 out_page: 2875 unlock_page(page); 2876 out_release: 2877 put_page(page); 2878 if (page != swapcache && swapcache) { 2879 unlock_page(swapcache); 2880 put_page(swapcache); 2881 } 2882 return ret; 2883 } 2884 2885 /* 2886 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2887 * but allow concurrent faults), and pte mapped but not yet locked. 2888 * We return with mmap_sem still held, but pte unmapped and unlocked. 2889 */ 2890 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 2891 { 2892 struct vm_area_struct *vma = vmf->vma; 2893 struct mem_cgroup *memcg; 2894 struct page *page; 2895 vm_fault_t ret = 0; 2896 pte_t entry; 2897 2898 /* File mapping without ->vm_ops ? */ 2899 if (vma->vm_flags & VM_SHARED) 2900 return VM_FAULT_SIGBUS; 2901 2902 /* 2903 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2904 * pte_offset_map() on pmds where a huge pmd might be created 2905 * from a different thread. 2906 * 2907 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2908 * parallel threads are excluded by other means. 2909 * 2910 * Here we only have down_read(mmap_sem). 2911 */ 2912 if (pte_alloc(vma->vm_mm, vmf->pmd)) 2913 return VM_FAULT_OOM; 2914 2915 /* See the comment in pte_alloc_one_map() */ 2916 if (unlikely(pmd_trans_unstable(vmf->pmd))) 2917 return 0; 2918 2919 /* Use the zero-page for reads */ 2920 if (!(vmf->flags & FAULT_FLAG_WRITE) && 2921 !mm_forbids_zeropage(vma->vm_mm)) { 2922 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 2923 vma->vm_page_prot)); 2924 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2925 vmf->address, &vmf->ptl); 2926 if (!pte_none(*vmf->pte)) 2927 goto unlock; 2928 ret = check_stable_address_space(vma->vm_mm); 2929 if (ret) 2930 goto unlock; 2931 /* Deliver the page fault to userland, check inside PT lock */ 2932 if (userfaultfd_missing(vma)) { 2933 pte_unmap_unlock(vmf->pte, vmf->ptl); 2934 return handle_userfault(vmf, VM_UFFD_MISSING); 2935 } 2936 goto setpte; 2937 } 2938 2939 /* Allocate our own private page. */ 2940 if (unlikely(anon_vma_prepare(vma))) 2941 goto oom; 2942 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 2943 if (!page) 2944 goto oom; 2945 2946 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 2947 false)) 2948 goto oom_free_page; 2949 2950 /* 2951 * The memory barrier inside __SetPageUptodate makes sure that 2952 * preceeding stores to the page contents become visible before 2953 * the set_pte_at() write. 2954 */ 2955 __SetPageUptodate(page); 2956 2957 entry = mk_pte(page, vma->vm_page_prot); 2958 if (vma->vm_flags & VM_WRITE) 2959 entry = pte_mkwrite(pte_mkdirty(entry)); 2960 2961 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2962 &vmf->ptl); 2963 if (!pte_none(*vmf->pte)) 2964 goto release; 2965 2966 ret = check_stable_address_space(vma->vm_mm); 2967 if (ret) 2968 goto release; 2969 2970 /* Deliver the page fault to userland, check inside PT lock */ 2971 if (userfaultfd_missing(vma)) { 2972 pte_unmap_unlock(vmf->pte, vmf->ptl); 2973 mem_cgroup_cancel_charge(page, memcg, false); 2974 put_page(page); 2975 return handle_userfault(vmf, VM_UFFD_MISSING); 2976 } 2977 2978 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2979 page_add_new_anon_rmap(page, vma, vmf->address, false); 2980 mem_cgroup_commit_charge(page, memcg, false, false); 2981 lru_cache_add_active_or_unevictable(page, vma); 2982 setpte: 2983 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 2984 2985 /* No need to invalidate - it was non-present before */ 2986 update_mmu_cache(vma, vmf->address, vmf->pte); 2987 unlock: 2988 pte_unmap_unlock(vmf->pte, vmf->ptl); 2989 return ret; 2990 release: 2991 mem_cgroup_cancel_charge(page, memcg, false); 2992 put_page(page); 2993 goto unlock; 2994 oom_free_page: 2995 put_page(page); 2996 oom: 2997 return VM_FAULT_OOM; 2998 } 2999 3000 /* 3001 * The mmap_sem must have been held on entry, and may have been 3002 * released depending on flags and vma->vm_ops->fault() return value. 3003 * See filemap_fault() and __lock_page_retry(). 3004 */ 3005 static vm_fault_t __do_fault(struct vm_fault *vmf) 3006 { 3007 struct vm_area_struct *vma = vmf->vma; 3008 vm_fault_t ret; 3009 3010 /* 3011 * Preallocate pte before we take page_lock because this might lead to 3012 * deadlocks for memcg reclaim which waits for pages under writeback: 3013 * lock_page(A) 3014 * SetPageWriteback(A) 3015 * unlock_page(A) 3016 * lock_page(B) 3017 * lock_page(B) 3018 * pte_alloc_pne 3019 * shrink_page_list 3020 * wait_on_page_writeback(A) 3021 * SetPageWriteback(B) 3022 * unlock_page(B) 3023 * # flush A, B to clear the writeback 3024 */ 3025 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3026 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3027 if (!vmf->prealloc_pte) 3028 return VM_FAULT_OOM; 3029 smp_wmb(); /* See comment in __pte_alloc() */ 3030 } 3031 3032 ret = vma->vm_ops->fault(vmf); 3033 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3034 VM_FAULT_DONE_COW))) 3035 return ret; 3036 3037 if (unlikely(PageHWPoison(vmf->page))) { 3038 if (ret & VM_FAULT_LOCKED) 3039 unlock_page(vmf->page); 3040 put_page(vmf->page); 3041 vmf->page = NULL; 3042 return VM_FAULT_HWPOISON; 3043 } 3044 3045 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3046 lock_page(vmf->page); 3047 else 3048 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3049 3050 return ret; 3051 } 3052 3053 /* 3054 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3055 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3056 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3057 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3058 */ 3059 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3060 { 3061 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3062 } 3063 3064 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3065 { 3066 struct vm_area_struct *vma = vmf->vma; 3067 3068 if (!pmd_none(*vmf->pmd)) 3069 goto map_pte; 3070 if (vmf->prealloc_pte) { 3071 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3072 if (unlikely(!pmd_none(*vmf->pmd))) { 3073 spin_unlock(vmf->ptl); 3074 goto map_pte; 3075 } 3076 3077 mm_inc_nr_ptes(vma->vm_mm); 3078 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3079 spin_unlock(vmf->ptl); 3080 vmf->prealloc_pte = NULL; 3081 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3082 return VM_FAULT_OOM; 3083 } 3084 map_pte: 3085 /* 3086 * If a huge pmd materialized under us just retry later. Use 3087 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3088 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3089 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3090 * running immediately after a huge pmd fault in a different thread of 3091 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3092 * All we have to ensure is that it is a regular pmd that we can walk 3093 * with pte_offset_map() and we can do that through an atomic read in 3094 * C, which is what pmd_trans_unstable() provides. 3095 */ 3096 if (pmd_devmap_trans_unstable(vmf->pmd)) 3097 return VM_FAULT_NOPAGE; 3098 3099 /* 3100 * At this point we know that our vmf->pmd points to a page of ptes 3101 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3102 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3103 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3104 * be valid and we will re-check to make sure the vmf->pte isn't 3105 * pte_none() under vmf->ptl protection when we return to 3106 * alloc_set_pte(). 3107 */ 3108 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3109 &vmf->ptl); 3110 return 0; 3111 } 3112 3113 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3114 3115 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3116 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3117 unsigned long haddr) 3118 { 3119 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3120 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3121 return false; 3122 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3123 return false; 3124 return true; 3125 } 3126 3127 static void deposit_prealloc_pte(struct vm_fault *vmf) 3128 { 3129 struct vm_area_struct *vma = vmf->vma; 3130 3131 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3132 /* 3133 * We are going to consume the prealloc table, 3134 * count that as nr_ptes. 3135 */ 3136 mm_inc_nr_ptes(vma->vm_mm); 3137 vmf->prealloc_pte = NULL; 3138 } 3139 3140 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3141 { 3142 struct vm_area_struct *vma = vmf->vma; 3143 bool write = vmf->flags & FAULT_FLAG_WRITE; 3144 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3145 pmd_t entry; 3146 int i; 3147 vm_fault_t ret; 3148 3149 if (!transhuge_vma_suitable(vma, haddr)) 3150 return VM_FAULT_FALLBACK; 3151 3152 ret = VM_FAULT_FALLBACK; 3153 page = compound_head(page); 3154 3155 /* 3156 * Archs like ppc64 need additonal space to store information 3157 * related to pte entry. Use the preallocated table for that. 3158 */ 3159 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3160 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3161 if (!vmf->prealloc_pte) 3162 return VM_FAULT_OOM; 3163 smp_wmb(); /* See comment in __pte_alloc() */ 3164 } 3165 3166 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3167 if (unlikely(!pmd_none(*vmf->pmd))) 3168 goto out; 3169 3170 for (i = 0; i < HPAGE_PMD_NR; i++) 3171 flush_icache_page(vma, page + i); 3172 3173 entry = mk_huge_pmd(page, vma->vm_page_prot); 3174 if (write) 3175 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3176 3177 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3178 page_add_file_rmap(page, true); 3179 /* 3180 * deposit and withdraw with pmd lock held 3181 */ 3182 if (arch_needs_pgtable_deposit()) 3183 deposit_prealloc_pte(vmf); 3184 3185 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3186 3187 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3188 3189 /* fault is handled */ 3190 ret = 0; 3191 count_vm_event(THP_FILE_MAPPED); 3192 out: 3193 spin_unlock(vmf->ptl); 3194 return ret; 3195 } 3196 #else 3197 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3198 { 3199 BUILD_BUG(); 3200 return 0; 3201 } 3202 #endif 3203 3204 /** 3205 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3206 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3207 * 3208 * @vmf: fault environment 3209 * @memcg: memcg to charge page (only for private mappings) 3210 * @page: page to map 3211 * 3212 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3213 * return. 3214 * 3215 * Target users are page handler itself and implementations of 3216 * vm_ops->map_pages. 3217 */ 3218 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3219 struct page *page) 3220 { 3221 struct vm_area_struct *vma = vmf->vma; 3222 bool write = vmf->flags & FAULT_FLAG_WRITE; 3223 pte_t entry; 3224 vm_fault_t ret; 3225 3226 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3227 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3228 /* THP on COW? */ 3229 VM_BUG_ON_PAGE(memcg, page); 3230 3231 ret = do_set_pmd(vmf, page); 3232 if (ret != VM_FAULT_FALLBACK) 3233 return ret; 3234 } 3235 3236 if (!vmf->pte) { 3237 ret = pte_alloc_one_map(vmf); 3238 if (ret) 3239 return ret; 3240 } 3241 3242 /* Re-check under ptl */ 3243 if (unlikely(!pte_none(*vmf->pte))) 3244 return VM_FAULT_NOPAGE; 3245 3246 flush_icache_page(vma, page); 3247 entry = mk_pte(page, vma->vm_page_prot); 3248 if (write) 3249 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3250 /* copy-on-write page */ 3251 if (write && !(vma->vm_flags & VM_SHARED)) { 3252 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3253 page_add_new_anon_rmap(page, vma, vmf->address, false); 3254 mem_cgroup_commit_charge(page, memcg, false, false); 3255 lru_cache_add_active_or_unevictable(page, vma); 3256 } else { 3257 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3258 page_add_file_rmap(page, false); 3259 } 3260 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3261 3262 /* no need to invalidate: a not-present page won't be cached */ 3263 update_mmu_cache(vma, vmf->address, vmf->pte); 3264 3265 return 0; 3266 } 3267 3268 3269 /** 3270 * finish_fault - finish page fault once we have prepared the page to fault 3271 * 3272 * @vmf: structure describing the fault 3273 * 3274 * This function handles all that is needed to finish a page fault once the 3275 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3276 * given page, adds reverse page mapping, handles memcg charges and LRU 3277 * addition. The function returns 0 on success, VM_FAULT_ code in case of 3278 * error. 3279 * 3280 * The function expects the page to be locked and on success it consumes a 3281 * reference of a page being mapped (for the PTE which maps it). 3282 */ 3283 vm_fault_t finish_fault(struct vm_fault *vmf) 3284 { 3285 struct page *page; 3286 vm_fault_t ret = 0; 3287 3288 /* Did we COW the page? */ 3289 if ((vmf->flags & FAULT_FLAG_WRITE) && 3290 !(vmf->vma->vm_flags & VM_SHARED)) 3291 page = vmf->cow_page; 3292 else 3293 page = vmf->page; 3294 3295 /* 3296 * check even for read faults because we might have lost our CoWed 3297 * page 3298 */ 3299 if (!(vmf->vma->vm_flags & VM_SHARED)) 3300 ret = check_stable_address_space(vmf->vma->vm_mm); 3301 if (!ret) 3302 ret = alloc_set_pte(vmf, vmf->memcg, page); 3303 if (vmf->pte) 3304 pte_unmap_unlock(vmf->pte, vmf->ptl); 3305 return ret; 3306 } 3307 3308 static unsigned long fault_around_bytes __read_mostly = 3309 rounddown_pow_of_two(65536); 3310 3311 #ifdef CONFIG_DEBUG_FS 3312 static int fault_around_bytes_get(void *data, u64 *val) 3313 { 3314 *val = fault_around_bytes; 3315 return 0; 3316 } 3317 3318 /* 3319 * fault_around_bytes must be rounded down to the nearest page order as it's 3320 * what do_fault_around() expects to see. 3321 */ 3322 static int fault_around_bytes_set(void *data, u64 val) 3323 { 3324 if (val / PAGE_SIZE > PTRS_PER_PTE) 3325 return -EINVAL; 3326 if (val > PAGE_SIZE) 3327 fault_around_bytes = rounddown_pow_of_two(val); 3328 else 3329 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3330 return 0; 3331 } 3332 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3333 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3334 3335 static int __init fault_around_debugfs(void) 3336 { 3337 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3338 &fault_around_bytes_fops); 3339 return 0; 3340 } 3341 late_initcall(fault_around_debugfs); 3342 #endif 3343 3344 /* 3345 * do_fault_around() tries to map few pages around the fault address. The hope 3346 * is that the pages will be needed soon and this will lower the number of 3347 * faults to handle. 3348 * 3349 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3350 * not ready to be mapped: not up-to-date, locked, etc. 3351 * 3352 * This function is called with the page table lock taken. In the split ptlock 3353 * case the page table lock only protects only those entries which belong to 3354 * the page table corresponding to the fault address. 3355 * 3356 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3357 * only once. 3358 * 3359 * fault_around_bytes defines how many bytes we'll try to map. 3360 * do_fault_around() expects it to be set to a power of two less than or equal 3361 * to PTRS_PER_PTE. 3362 * 3363 * The virtual address of the area that we map is naturally aligned to 3364 * fault_around_bytes rounded down to the machine page size 3365 * (and therefore to page order). This way it's easier to guarantee 3366 * that we don't cross page table boundaries. 3367 */ 3368 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3369 { 3370 unsigned long address = vmf->address, nr_pages, mask; 3371 pgoff_t start_pgoff = vmf->pgoff; 3372 pgoff_t end_pgoff; 3373 int off; 3374 vm_fault_t ret = 0; 3375 3376 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3377 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3378 3379 vmf->address = max(address & mask, vmf->vma->vm_start); 3380 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3381 start_pgoff -= off; 3382 3383 /* 3384 * end_pgoff is either the end of the page table, the end of 3385 * the vma or nr_pages from start_pgoff, depending what is nearest. 3386 */ 3387 end_pgoff = start_pgoff - 3388 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3389 PTRS_PER_PTE - 1; 3390 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3391 start_pgoff + nr_pages - 1); 3392 3393 if (pmd_none(*vmf->pmd)) { 3394 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3395 if (!vmf->prealloc_pte) 3396 goto out; 3397 smp_wmb(); /* See comment in __pte_alloc() */ 3398 } 3399 3400 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3401 3402 /* Huge page is mapped? Page fault is solved */ 3403 if (pmd_trans_huge(*vmf->pmd)) { 3404 ret = VM_FAULT_NOPAGE; 3405 goto out; 3406 } 3407 3408 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3409 if (!vmf->pte) 3410 goto out; 3411 3412 /* check if the page fault is solved */ 3413 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3414 if (!pte_none(*vmf->pte)) 3415 ret = VM_FAULT_NOPAGE; 3416 pte_unmap_unlock(vmf->pte, vmf->ptl); 3417 out: 3418 vmf->address = address; 3419 vmf->pte = NULL; 3420 return ret; 3421 } 3422 3423 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3424 { 3425 struct vm_area_struct *vma = vmf->vma; 3426 vm_fault_t ret = 0; 3427 3428 /* 3429 * Let's call ->map_pages() first and use ->fault() as fallback 3430 * if page by the offset is not ready to be mapped (cold cache or 3431 * something). 3432 */ 3433 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3434 ret = do_fault_around(vmf); 3435 if (ret) 3436 return ret; 3437 } 3438 3439 ret = __do_fault(vmf); 3440 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3441 return ret; 3442 3443 ret |= finish_fault(vmf); 3444 unlock_page(vmf->page); 3445 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3446 put_page(vmf->page); 3447 return ret; 3448 } 3449 3450 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3451 { 3452 struct vm_area_struct *vma = vmf->vma; 3453 vm_fault_t ret; 3454 3455 if (unlikely(anon_vma_prepare(vma))) 3456 return VM_FAULT_OOM; 3457 3458 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3459 if (!vmf->cow_page) 3460 return VM_FAULT_OOM; 3461 3462 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3463 &vmf->memcg, false)) { 3464 put_page(vmf->cow_page); 3465 return VM_FAULT_OOM; 3466 } 3467 3468 ret = __do_fault(vmf); 3469 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3470 goto uncharge_out; 3471 if (ret & VM_FAULT_DONE_COW) 3472 return ret; 3473 3474 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3475 __SetPageUptodate(vmf->cow_page); 3476 3477 ret |= finish_fault(vmf); 3478 unlock_page(vmf->page); 3479 put_page(vmf->page); 3480 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3481 goto uncharge_out; 3482 return ret; 3483 uncharge_out: 3484 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3485 put_page(vmf->cow_page); 3486 return ret; 3487 } 3488 3489 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3490 { 3491 struct vm_area_struct *vma = vmf->vma; 3492 vm_fault_t ret, tmp; 3493 3494 ret = __do_fault(vmf); 3495 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3496 return ret; 3497 3498 /* 3499 * Check if the backing address space wants to know that the page is 3500 * about to become writable 3501 */ 3502 if (vma->vm_ops->page_mkwrite) { 3503 unlock_page(vmf->page); 3504 tmp = do_page_mkwrite(vmf); 3505 if (unlikely(!tmp || 3506 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3507 put_page(vmf->page); 3508 return tmp; 3509 } 3510 } 3511 3512 ret |= finish_fault(vmf); 3513 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3514 VM_FAULT_RETRY))) { 3515 unlock_page(vmf->page); 3516 put_page(vmf->page); 3517 return ret; 3518 } 3519 3520 fault_dirty_shared_page(vma, vmf->page); 3521 return ret; 3522 } 3523 3524 /* 3525 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3526 * but allow concurrent faults). 3527 * The mmap_sem may have been released depending on flags and our 3528 * return value. See filemap_fault() and __lock_page_or_retry(). 3529 */ 3530 static vm_fault_t do_fault(struct vm_fault *vmf) 3531 { 3532 struct vm_area_struct *vma = vmf->vma; 3533 vm_fault_t ret; 3534 3535 /* 3536 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3537 */ 3538 if (!vma->vm_ops->fault) { 3539 /* 3540 * If we find a migration pmd entry or a none pmd entry, which 3541 * should never happen, return SIGBUS 3542 */ 3543 if (unlikely(!pmd_present(*vmf->pmd))) 3544 ret = VM_FAULT_SIGBUS; 3545 else { 3546 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3547 vmf->pmd, 3548 vmf->address, 3549 &vmf->ptl); 3550 /* 3551 * Make sure this is not a temporary clearing of pte 3552 * by holding ptl and checking again. A R/M/W update 3553 * of pte involves: take ptl, clearing the pte so that 3554 * we don't have concurrent modification by hardware 3555 * followed by an update. 3556 */ 3557 if (unlikely(pte_none(*vmf->pte))) 3558 ret = VM_FAULT_SIGBUS; 3559 else 3560 ret = VM_FAULT_NOPAGE; 3561 3562 pte_unmap_unlock(vmf->pte, vmf->ptl); 3563 } 3564 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3565 ret = do_read_fault(vmf); 3566 else if (!(vma->vm_flags & VM_SHARED)) 3567 ret = do_cow_fault(vmf); 3568 else 3569 ret = do_shared_fault(vmf); 3570 3571 /* preallocated pagetable is unused: free it */ 3572 if (vmf->prealloc_pte) { 3573 pte_free(vma->vm_mm, vmf->prealloc_pte); 3574 vmf->prealloc_pte = NULL; 3575 } 3576 return ret; 3577 } 3578 3579 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3580 unsigned long addr, int page_nid, 3581 int *flags) 3582 { 3583 get_page(page); 3584 3585 count_vm_numa_event(NUMA_HINT_FAULTS); 3586 if (page_nid == numa_node_id()) { 3587 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3588 *flags |= TNF_FAULT_LOCAL; 3589 } 3590 3591 return mpol_misplaced(page, vma, addr); 3592 } 3593 3594 static vm_fault_t do_numa_page(struct vm_fault *vmf) 3595 { 3596 struct vm_area_struct *vma = vmf->vma; 3597 struct page *page = NULL; 3598 int page_nid = NUMA_NO_NODE; 3599 int last_cpupid; 3600 int target_nid; 3601 bool migrated = false; 3602 pte_t pte, old_pte; 3603 bool was_writable = pte_savedwrite(vmf->orig_pte); 3604 int flags = 0; 3605 3606 /* 3607 * The "pte" at this point cannot be used safely without 3608 * validation through pte_unmap_same(). It's of NUMA type but 3609 * the pfn may be screwed if the read is non atomic. 3610 */ 3611 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3612 spin_lock(vmf->ptl); 3613 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3614 pte_unmap_unlock(vmf->pte, vmf->ptl); 3615 goto out; 3616 } 3617 3618 /* 3619 * Make it present again, Depending on how arch implementes non 3620 * accessible ptes, some can allow access by kernel mode. 3621 */ 3622 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 3623 pte = pte_modify(old_pte, vma->vm_page_prot); 3624 pte = pte_mkyoung(pte); 3625 if (was_writable) 3626 pte = pte_mkwrite(pte); 3627 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 3628 update_mmu_cache(vma, vmf->address, vmf->pte); 3629 3630 page = vm_normal_page(vma, vmf->address, pte); 3631 if (!page) { 3632 pte_unmap_unlock(vmf->pte, vmf->ptl); 3633 return 0; 3634 } 3635 3636 /* TODO: handle PTE-mapped THP */ 3637 if (PageCompound(page)) { 3638 pte_unmap_unlock(vmf->pte, vmf->ptl); 3639 return 0; 3640 } 3641 3642 /* 3643 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3644 * much anyway since they can be in shared cache state. This misses 3645 * the case where a mapping is writable but the process never writes 3646 * to it but pte_write gets cleared during protection updates and 3647 * pte_dirty has unpredictable behaviour between PTE scan updates, 3648 * background writeback, dirty balancing and application behaviour. 3649 */ 3650 if (!pte_write(pte)) 3651 flags |= TNF_NO_GROUP; 3652 3653 /* 3654 * Flag if the page is shared between multiple address spaces. This 3655 * is later used when determining whether to group tasks together 3656 */ 3657 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3658 flags |= TNF_SHARED; 3659 3660 last_cpupid = page_cpupid_last(page); 3661 page_nid = page_to_nid(page); 3662 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3663 &flags); 3664 pte_unmap_unlock(vmf->pte, vmf->ptl); 3665 if (target_nid == NUMA_NO_NODE) { 3666 put_page(page); 3667 goto out; 3668 } 3669 3670 /* Migrate to the requested node */ 3671 migrated = migrate_misplaced_page(page, vma, target_nid); 3672 if (migrated) { 3673 page_nid = target_nid; 3674 flags |= TNF_MIGRATED; 3675 } else 3676 flags |= TNF_MIGRATE_FAIL; 3677 3678 out: 3679 if (page_nid != NUMA_NO_NODE) 3680 task_numa_fault(last_cpupid, page_nid, 1, flags); 3681 return 0; 3682 } 3683 3684 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 3685 { 3686 if (vma_is_anonymous(vmf->vma)) 3687 return do_huge_pmd_anonymous_page(vmf); 3688 if (vmf->vma->vm_ops->huge_fault) 3689 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3690 return VM_FAULT_FALLBACK; 3691 } 3692 3693 /* `inline' is required to avoid gcc 4.1.2 build error */ 3694 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3695 { 3696 if (vma_is_anonymous(vmf->vma)) 3697 return do_huge_pmd_wp_page(vmf, orig_pmd); 3698 if (vmf->vma->vm_ops->huge_fault) 3699 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3700 3701 /* COW handled on pte level: split pmd */ 3702 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3703 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3704 3705 return VM_FAULT_FALLBACK; 3706 } 3707 3708 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3709 { 3710 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3711 } 3712 3713 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 3714 { 3715 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3716 /* No support for anonymous transparent PUD pages yet */ 3717 if (vma_is_anonymous(vmf->vma)) 3718 return VM_FAULT_FALLBACK; 3719 if (vmf->vma->vm_ops->huge_fault) 3720 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3721 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3722 return VM_FAULT_FALLBACK; 3723 } 3724 3725 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3726 { 3727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3728 /* No support for anonymous transparent PUD pages yet */ 3729 if (vma_is_anonymous(vmf->vma)) 3730 return VM_FAULT_FALLBACK; 3731 if (vmf->vma->vm_ops->huge_fault) 3732 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3733 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3734 return VM_FAULT_FALLBACK; 3735 } 3736 3737 /* 3738 * These routines also need to handle stuff like marking pages dirty 3739 * and/or accessed for architectures that don't do it in hardware (most 3740 * RISC architectures). The early dirtying is also good on the i386. 3741 * 3742 * There is also a hook called "update_mmu_cache()" that architectures 3743 * with external mmu caches can use to update those (ie the Sparc or 3744 * PowerPC hashed page tables that act as extended TLBs). 3745 * 3746 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3747 * concurrent faults). 3748 * 3749 * The mmap_sem may have been released depending on flags and our return value. 3750 * See filemap_fault() and __lock_page_or_retry(). 3751 */ 3752 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 3753 { 3754 pte_t entry; 3755 3756 if (unlikely(pmd_none(*vmf->pmd))) { 3757 /* 3758 * Leave __pte_alloc() until later: because vm_ops->fault may 3759 * want to allocate huge page, and if we expose page table 3760 * for an instant, it will be difficult to retract from 3761 * concurrent faults and from rmap lookups. 3762 */ 3763 vmf->pte = NULL; 3764 } else { 3765 /* See comment in pte_alloc_one_map() */ 3766 if (pmd_devmap_trans_unstable(vmf->pmd)) 3767 return 0; 3768 /* 3769 * A regular pmd is established and it can't morph into a huge 3770 * pmd from under us anymore at this point because we hold the 3771 * mmap_sem read mode and khugepaged takes it in write mode. 3772 * So now it's safe to run pte_offset_map(). 3773 */ 3774 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3775 vmf->orig_pte = *vmf->pte; 3776 3777 /* 3778 * some architectures can have larger ptes than wordsize, 3779 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3780 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3781 * accesses. The code below just needs a consistent view 3782 * for the ifs and we later double check anyway with the 3783 * ptl lock held. So here a barrier will do. 3784 */ 3785 barrier(); 3786 if (pte_none(vmf->orig_pte)) { 3787 pte_unmap(vmf->pte); 3788 vmf->pte = NULL; 3789 } 3790 } 3791 3792 if (!vmf->pte) { 3793 if (vma_is_anonymous(vmf->vma)) 3794 return do_anonymous_page(vmf); 3795 else 3796 return do_fault(vmf); 3797 } 3798 3799 if (!pte_present(vmf->orig_pte)) 3800 return do_swap_page(vmf); 3801 3802 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3803 return do_numa_page(vmf); 3804 3805 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3806 spin_lock(vmf->ptl); 3807 entry = vmf->orig_pte; 3808 if (unlikely(!pte_same(*vmf->pte, entry))) 3809 goto unlock; 3810 if (vmf->flags & FAULT_FLAG_WRITE) { 3811 if (!pte_write(entry)) 3812 return do_wp_page(vmf); 3813 entry = pte_mkdirty(entry); 3814 } 3815 entry = pte_mkyoung(entry); 3816 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3817 vmf->flags & FAULT_FLAG_WRITE)) { 3818 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3819 } else { 3820 /* 3821 * This is needed only for protection faults but the arch code 3822 * is not yet telling us if this is a protection fault or not. 3823 * This still avoids useless tlb flushes for .text page faults 3824 * with threads. 3825 */ 3826 if (vmf->flags & FAULT_FLAG_WRITE) 3827 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 3828 } 3829 unlock: 3830 pte_unmap_unlock(vmf->pte, vmf->ptl); 3831 return 0; 3832 } 3833 3834 /* 3835 * By the time we get here, we already hold the mm semaphore 3836 * 3837 * The mmap_sem may have been released depending on flags and our 3838 * return value. See filemap_fault() and __lock_page_or_retry(). 3839 */ 3840 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 3841 unsigned long address, unsigned int flags) 3842 { 3843 struct vm_fault vmf = { 3844 .vma = vma, 3845 .address = address & PAGE_MASK, 3846 .flags = flags, 3847 .pgoff = linear_page_index(vma, address), 3848 .gfp_mask = __get_fault_gfp_mask(vma), 3849 }; 3850 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3851 struct mm_struct *mm = vma->vm_mm; 3852 pgd_t *pgd; 3853 p4d_t *p4d; 3854 vm_fault_t ret; 3855 3856 pgd = pgd_offset(mm, address); 3857 p4d = p4d_alloc(mm, pgd, address); 3858 if (!p4d) 3859 return VM_FAULT_OOM; 3860 3861 vmf.pud = pud_alloc(mm, p4d, address); 3862 if (!vmf.pud) 3863 return VM_FAULT_OOM; 3864 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 3865 ret = create_huge_pud(&vmf); 3866 if (!(ret & VM_FAULT_FALLBACK)) 3867 return ret; 3868 } else { 3869 pud_t orig_pud = *vmf.pud; 3870 3871 barrier(); 3872 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 3873 3874 /* NUMA case for anonymous PUDs would go here */ 3875 3876 if (dirty && !pud_write(orig_pud)) { 3877 ret = wp_huge_pud(&vmf, orig_pud); 3878 if (!(ret & VM_FAULT_FALLBACK)) 3879 return ret; 3880 } else { 3881 huge_pud_set_accessed(&vmf, orig_pud); 3882 return 0; 3883 } 3884 } 3885 } 3886 3887 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 3888 if (!vmf.pmd) 3889 return VM_FAULT_OOM; 3890 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 3891 ret = create_huge_pmd(&vmf); 3892 if (!(ret & VM_FAULT_FALLBACK)) 3893 return ret; 3894 } else { 3895 pmd_t orig_pmd = *vmf.pmd; 3896 3897 barrier(); 3898 if (unlikely(is_swap_pmd(orig_pmd))) { 3899 VM_BUG_ON(thp_migration_supported() && 3900 !is_pmd_migration_entry(orig_pmd)); 3901 if (is_pmd_migration_entry(orig_pmd)) 3902 pmd_migration_entry_wait(mm, vmf.pmd); 3903 return 0; 3904 } 3905 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3906 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 3907 return do_huge_pmd_numa_page(&vmf, orig_pmd); 3908 3909 if (dirty && !pmd_write(orig_pmd)) { 3910 ret = wp_huge_pmd(&vmf, orig_pmd); 3911 if (!(ret & VM_FAULT_FALLBACK)) 3912 return ret; 3913 } else { 3914 huge_pmd_set_accessed(&vmf, orig_pmd); 3915 return 0; 3916 } 3917 } 3918 } 3919 3920 return handle_pte_fault(&vmf); 3921 } 3922 3923 /* 3924 * By the time we get here, we already hold the mm semaphore 3925 * 3926 * The mmap_sem may have been released depending on flags and our 3927 * return value. See filemap_fault() and __lock_page_or_retry(). 3928 */ 3929 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3930 unsigned int flags) 3931 { 3932 vm_fault_t ret; 3933 3934 __set_current_state(TASK_RUNNING); 3935 3936 count_vm_event(PGFAULT); 3937 count_memcg_event_mm(vma->vm_mm, PGFAULT); 3938 3939 /* do counter updates before entering really critical section. */ 3940 check_sync_rss_stat(current); 3941 3942 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 3943 flags & FAULT_FLAG_INSTRUCTION, 3944 flags & FAULT_FLAG_REMOTE)) 3945 return VM_FAULT_SIGSEGV; 3946 3947 /* 3948 * Enable the memcg OOM handling for faults triggered in user 3949 * space. Kernel faults are handled more gracefully. 3950 */ 3951 if (flags & FAULT_FLAG_USER) 3952 mem_cgroup_enter_user_fault(); 3953 3954 if (unlikely(is_vm_hugetlb_page(vma))) 3955 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 3956 else 3957 ret = __handle_mm_fault(vma, address, flags); 3958 3959 if (flags & FAULT_FLAG_USER) { 3960 mem_cgroup_exit_user_fault(); 3961 /* 3962 * The task may have entered a memcg OOM situation but 3963 * if the allocation error was handled gracefully (no 3964 * VM_FAULT_OOM), there is no need to kill anything. 3965 * Just clean up the OOM state peacefully. 3966 */ 3967 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3968 mem_cgroup_oom_synchronize(false); 3969 } 3970 3971 return ret; 3972 } 3973 EXPORT_SYMBOL_GPL(handle_mm_fault); 3974 3975 #ifndef __PAGETABLE_P4D_FOLDED 3976 /* 3977 * Allocate p4d page table. 3978 * We've already handled the fast-path in-line. 3979 */ 3980 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3981 { 3982 p4d_t *new = p4d_alloc_one(mm, address); 3983 if (!new) 3984 return -ENOMEM; 3985 3986 smp_wmb(); /* See comment in __pte_alloc */ 3987 3988 spin_lock(&mm->page_table_lock); 3989 if (pgd_present(*pgd)) /* Another has populated it */ 3990 p4d_free(mm, new); 3991 else 3992 pgd_populate(mm, pgd, new); 3993 spin_unlock(&mm->page_table_lock); 3994 return 0; 3995 } 3996 #endif /* __PAGETABLE_P4D_FOLDED */ 3997 3998 #ifndef __PAGETABLE_PUD_FOLDED 3999 /* 4000 * Allocate page upper directory. 4001 * We've already handled the fast-path in-line. 4002 */ 4003 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4004 { 4005 pud_t *new = pud_alloc_one(mm, address); 4006 if (!new) 4007 return -ENOMEM; 4008 4009 smp_wmb(); /* See comment in __pte_alloc */ 4010 4011 spin_lock(&mm->page_table_lock); 4012 #ifndef __ARCH_HAS_5LEVEL_HACK 4013 if (!p4d_present(*p4d)) { 4014 mm_inc_nr_puds(mm); 4015 p4d_populate(mm, p4d, new); 4016 } else /* Another has populated it */ 4017 pud_free(mm, new); 4018 #else 4019 if (!pgd_present(*p4d)) { 4020 mm_inc_nr_puds(mm); 4021 pgd_populate(mm, p4d, new); 4022 } else /* Another has populated it */ 4023 pud_free(mm, new); 4024 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4025 spin_unlock(&mm->page_table_lock); 4026 return 0; 4027 } 4028 #endif /* __PAGETABLE_PUD_FOLDED */ 4029 4030 #ifndef __PAGETABLE_PMD_FOLDED 4031 /* 4032 * Allocate page middle directory. 4033 * We've already handled the fast-path in-line. 4034 */ 4035 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4036 { 4037 spinlock_t *ptl; 4038 pmd_t *new = pmd_alloc_one(mm, address); 4039 if (!new) 4040 return -ENOMEM; 4041 4042 smp_wmb(); /* See comment in __pte_alloc */ 4043 4044 ptl = pud_lock(mm, pud); 4045 #ifndef __ARCH_HAS_4LEVEL_HACK 4046 if (!pud_present(*pud)) { 4047 mm_inc_nr_pmds(mm); 4048 pud_populate(mm, pud, new); 4049 } else /* Another has populated it */ 4050 pmd_free(mm, new); 4051 #else 4052 if (!pgd_present(*pud)) { 4053 mm_inc_nr_pmds(mm); 4054 pgd_populate(mm, pud, new); 4055 } else /* Another has populated it */ 4056 pmd_free(mm, new); 4057 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4058 spin_unlock(ptl); 4059 return 0; 4060 } 4061 #endif /* __PAGETABLE_PMD_FOLDED */ 4062 4063 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4064 struct mmu_notifier_range *range, 4065 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4066 { 4067 pgd_t *pgd; 4068 p4d_t *p4d; 4069 pud_t *pud; 4070 pmd_t *pmd; 4071 pte_t *ptep; 4072 4073 pgd = pgd_offset(mm, address); 4074 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4075 goto out; 4076 4077 p4d = p4d_offset(pgd, address); 4078 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4079 goto out; 4080 4081 pud = pud_offset(p4d, address); 4082 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4083 goto out; 4084 4085 pmd = pmd_offset(pud, address); 4086 VM_BUG_ON(pmd_trans_huge(*pmd)); 4087 4088 if (pmd_huge(*pmd)) { 4089 if (!pmdpp) 4090 goto out; 4091 4092 if (range) { 4093 mmu_notifier_range_init(range, mm, address & PMD_MASK, 4094 (address & PMD_MASK) + PMD_SIZE); 4095 mmu_notifier_invalidate_range_start(range); 4096 } 4097 *ptlp = pmd_lock(mm, pmd); 4098 if (pmd_huge(*pmd)) { 4099 *pmdpp = pmd; 4100 return 0; 4101 } 4102 spin_unlock(*ptlp); 4103 if (range) 4104 mmu_notifier_invalidate_range_end(range); 4105 } 4106 4107 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4108 goto out; 4109 4110 if (range) { 4111 mmu_notifier_range_init(range, mm, address & PAGE_MASK, 4112 (address & PAGE_MASK) + PAGE_SIZE); 4113 mmu_notifier_invalidate_range_start(range); 4114 } 4115 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4116 if (!pte_present(*ptep)) 4117 goto unlock; 4118 *ptepp = ptep; 4119 return 0; 4120 unlock: 4121 pte_unmap_unlock(ptep, *ptlp); 4122 if (range) 4123 mmu_notifier_invalidate_range_end(range); 4124 out: 4125 return -EINVAL; 4126 } 4127 4128 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4129 pte_t **ptepp, spinlock_t **ptlp) 4130 { 4131 int res; 4132 4133 /* (void) is needed to make gcc happy */ 4134 (void) __cond_lock(*ptlp, 4135 !(res = __follow_pte_pmd(mm, address, NULL, 4136 ptepp, NULL, ptlp))); 4137 return res; 4138 } 4139 4140 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4141 struct mmu_notifier_range *range, 4142 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4143 { 4144 int res; 4145 4146 /* (void) is needed to make gcc happy */ 4147 (void) __cond_lock(*ptlp, 4148 !(res = __follow_pte_pmd(mm, address, range, 4149 ptepp, pmdpp, ptlp))); 4150 return res; 4151 } 4152 EXPORT_SYMBOL(follow_pte_pmd); 4153 4154 /** 4155 * follow_pfn - look up PFN at a user virtual address 4156 * @vma: memory mapping 4157 * @address: user virtual address 4158 * @pfn: location to store found PFN 4159 * 4160 * Only IO mappings and raw PFN mappings are allowed. 4161 * 4162 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4163 */ 4164 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4165 unsigned long *pfn) 4166 { 4167 int ret = -EINVAL; 4168 spinlock_t *ptl; 4169 pte_t *ptep; 4170 4171 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4172 return ret; 4173 4174 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4175 if (ret) 4176 return ret; 4177 *pfn = pte_pfn(*ptep); 4178 pte_unmap_unlock(ptep, ptl); 4179 return 0; 4180 } 4181 EXPORT_SYMBOL(follow_pfn); 4182 4183 #ifdef CONFIG_HAVE_IOREMAP_PROT 4184 int follow_phys(struct vm_area_struct *vma, 4185 unsigned long address, unsigned int flags, 4186 unsigned long *prot, resource_size_t *phys) 4187 { 4188 int ret = -EINVAL; 4189 pte_t *ptep, pte; 4190 spinlock_t *ptl; 4191 4192 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4193 goto out; 4194 4195 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4196 goto out; 4197 pte = *ptep; 4198 4199 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4200 goto unlock; 4201 4202 *prot = pgprot_val(pte_pgprot(pte)); 4203 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4204 4205 ret = 0; 4206 unlock: 4207 pte_unmap_unlock(ptep, ptl); 4208 out: 4209 return ret; 4210 } 4211 4212 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4213 void *buf, int len, int write) 4214 { 4215 resource_size_t phys_addr; 4216 unsigned long prot = 0; 4217 void __iomem *maddr; 4218 int offset = addr & (PAGE_SIZE-1); 4219 4220 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4221 return -EINVAL; 4222 4223 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4224 if (!maddr) 4225 return -ENOMEM; 4226 4227 if (write) 4228 memcpy_toio(maddr + offset, buf, len); 4229 else 4230 memcpy_fromio(buf, maddr + offset, len); 4231 iounmap(maddr); 4232 4233 return len; 4234 } 4235 EXPORT_SYMBOL_GPL(generic_access_phys); 4236 #endif 4237 4238 /* 4239 * Access another process' address space as given in mm. If non-NULL, use the 4240 * given task for page fault accounting. 4241 */ 4242 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4243 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4244 { 4245 struct vm_area_struct *vma; 4246 void *old_buf = buf; 4247 int write = gup_flags & FOLL_WRITE; 4248 4249 down_read(&mm->mmap_sem); 4250 /* ignore errors, just check how much was successfully transferred */ 4251 while (len) { 4252 int bytes, ret, offset; 4253 void *maddr; 4254 struct page *page = NULL; 4255 4256 ret = get_user_pages_remote(tsk, mm, addr, 1, 4257 gup_flags, &page, &vma, NULL); 4258 if (ret <= 0) { 4259 #ifndef CONFIG_HAVE_IOREMAP_PROT 4260 break; 4261 #else 4262 /* 4263 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4264 * we can access using slightly different code. 4265 */ 4266 vma = find_vma(mm, addr); 4267 if (!vma || vma->vm_start > addr) 4268 break; 4269 if (vma->vm_ops && vma->vm_ops->access) 4270 ret = vma->vm_ops->access(vma, addr, buf, 4271 len, write); 4272 if (ret <= 0) 4273 break; 4274 bytes = ret; 4275 #endif 4276 } else { 4277 bytes = len; 4278 offset = addr & (PAGE_SIZE-1); 4279 if (bytes > PAGE_SIZE-offset) 4280 bytes = PAGE_SIZE-offset; 4281 4282 maddr = kmap(page); 4283 if (write) { 4284 copy_to_user_page(vma, page, addr, 4285 maddr + offset, buf, bytes); 4286 set_page_dirty_lock(page); 4287 } else { 4288 copy_from_user_page(vma, page, addr, 4289 buf, maddr + offset, bytes); 4290 } 4291 kunmap(page); 4292 put_page(page); 4293 } 4294 len -= bytes; 4295 buf += bytes; 4296 addr += bytes; 4297 } 4298 up_read(&mm->mmap_sem); 4299 4300 return buf - old_buf; 4301 } 4302 4303 /** 4304 * access_remote_vm - access another process' address space 4305 * @mm: the mm_struct of the target address space 4306 * @addr: start address to access 4307 * @buf: source or destination buffer 4308 * @len: number of bytes to transfer 4309 * @gup_flags: flags modifying lookup behaviour 4310 * 4311 * The caller must hold a reference on @mm. 4312 */ 4313 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4314 void *buf, int len, unsigned int gup_flags) 4315 { 4316 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4317 } 4318 4319 /* 4320 * Access another process' address space. 4321 * Source/target buffer must be kernel space, 4322 * Do not walk the page table directly, use get_user_pages 4323 */ 4324 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4325 void *buf, int len, unsigned int gup_flags) 4326 { 4327 struct mm_struct *mm; 4328 int ret; 4329 4330 mm = get_task_mm(tsk); 4331 if (!mm) 4332 return 0; 4333 4334 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4335 4336 mmput(mm); 4337 4338 return ret; 4339 } 4340 EXPORT_SYMBOL_GPL(access_process_vm); 4341 4342 /* 4343 * Print the name of a VMA. 4344 */ 4345 void print_vma_addr(char *prefix, unsigned long ip) 4346 { 4347 struct mm_struct *mm = current->mm; 4348 struct vm_area_struct *vma; 4349 4350 /* 4351 * we might be running from an atomic context so we cannot sleep 4352 */ 4353 if (!down_read_trylock(&mm->mmap_sem)) 4354 return; 4355 4356 vma = find_vma(mm, ip); 4357 if (vma && vma->vm_file) { 4358 struct file *f = vma->vm_file; 4359 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4360 if (buf) { 4361 char *p; 4362 4363 p = file_path(f, buf, PAGE_SIZE); 4364 if (IS_ERR(p)) 4365 p = "?"; 4366 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4367 vma->vm_start, 4368 vma->vm_end - vma->vm_start); 4369 free_page((unsigned long)buf); 4370 } 4371 } 4372 up_read(&mm->mmap_sem); 4373 } 4374 4375 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4376 void __might_fault(const char *file, int line) 4377 { 4378 /* 4379 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4380 * holding the mmap_sem, this is safe because kernel memory doesn't 4381 * get paged out, therefore we'll never actually fault, and the 4382 * below annotations will generate false positives. 4383 */ 4384 if (uaccess_kernel()) 4385 return; 4386 if (pagefault_disabled()) 4387 return; 4388 __might_sleep(file, line, 0); 4389 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4390 if (current->mm) 4391 might_lock_read(¤t->mm->mmap_sem); 4392 #endif 4393 } 4394 EXPORT_SYMBOL(__might_fault); 4395 #endif 4396 4397 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4398 /* 4399 * Process all subpages of the specified huge page with the specified 4400 * operation. The target subpage will be processed last to keep its 4401 * cache lines hot. 4402 */ 4403 static inline void process_huge_page( 4404 unsigned long addr_hint, unsigned int pages_per_huge_page, 4405 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4406 void *arg) 4407 { 4408 int i, n, base, l; 4409 unsigned long addr = addr_hint & 4410 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4411 4412 /* Process target subpage last to keep its cache lines hot */ 4413 might_sleep(); 4414 n = (addr_hint - addr) / PAGE_SIZE; 4415 if (2 * n <= pages_per_huge_page) { 4416 /* If target subpage in first half of huge page */ 4417 base = 0; 4418 l = n; 4419 /* Process subpages at the end of huge page */ 4420 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4421 cond_resched(); 4422 process_subpage(addr + i * PAGE_SIZE, i, arg); 4423 } 4424 } else { 4425 /* If target subpage in second half of huge page */ 4426 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4427 l = pages_per_huge_page - n; 4428 /* Process subpages at the begin of huge page */ 4429 for (i = 0; i < base; i++) { 4430 cond_resched(); 4431 process_subpage(addr + i * PAGE_SIZE, i, arg); 4432 } 4433 } 4434 /* 4435 * Process remaining subpages in left-right-left-right pattern 4436 * towards the target subpage 4437 */ 4438 for (i = 0; i < l; i++) { 4439 int left_idx = base + i; 4440 int right_idx = base + 2 * l - 1 - i; 4441 4442 cond_resched(); 4443 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4444 cond_resched(); 4445 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4446 } 4447 } 4448 4449 static void clear_gigantic_page(struct page *page, 4450 unsigned long addr, 4451 unsigned int pages_per_huge_page) 4452 { 4453 int i; 4454 struct page *p = page; 4455 4456 might_sleep(); 4457 for (i = 0; i < pages_per_huge_page; 4458 i++, p = mem_map_next(p, page, i)) { 4459 cond_resched(); 4460 clear_user_highpage(p, addr + i * PAGE_SIZE); 4461 } 4462 } 4463 4464 static void clear_subpage(unsigned long addr, int idx, void *arg) 4465 { 4466 struct page *page = arg; 4467 4468 clear_user_highpage(page + idx, addr); 4469 } 4470 4471 void clear_huge_page(struct page *page, 4472 unsigned long addr_hint, unsigned int pages_per_huge_page) 4473 { 4474 unsigned long addr = addr_hint & 4475 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4476 4477 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4478 clear_gigantic_page(page, addr, pages_per_huge_page); 4479 return; 4480 } 4481 4482 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4483 } 4484 4485 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4486 unsigned long addr, 4487 struct vm_area_struct *vma, 4488 unsigned int pages_per_huge_page) 4489 { 4490 int i; 4491 struct page *dst_base = dst; 4492 struct page *src_base = src; 4493 4494 for (i = 0; i < pages_per_huge_page; ) { 4495 cond_resched(); 4496 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4497 4498 i++; 4499 dst = mem_map_next(dst, dst_base, i); 4500 src = mem_map_next(src, src_base, i); 4501 } 4502 } 4503 4504 struct copy_subpage_arg { 4505 struct page *dst; 4506 struct page *src; 4507 struct vm_area_struct *vma; 4508 }; 4509 4510 static void copy_subpage(unsigned long addr, int idx, void *arg) 4511 { 4512 struct copy_subpage_arg *copy_arg = arg; 4513 4514 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4515 addr, copy_arg->vma); 4516 } 4517 4518 void copy_user_huge_page(struct page *dst, struct page *src, 4519 unsigned long addr_hint, struct vm_area_struct *vma, 4520 unsigned int pages_per_huge_page) 4521 { 4522 unsigned long addr = addr_hint & 4523 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4524 struct copy_subpage_arg arg = { 4525 .dst = dst, 4526 .src = src, 4527 .vma = vma, 4528 }; 4529 4530 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4531 copy_user_gigantic_page(dst, src, addr, vma, 4532 pages_per_huge_page); 4533 return; 4534 } 4535 4536 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4537 } 4538 4539 long copy_huge_page_from_user(struct page *dst_page, 4540 const void __user *usr_src, 4541 unsigned int pages_per_huge_page, 4542 bool allow_pagefault) 4543 { 4544 void *src = (void *)usr_src; 4545 void *page_kaddr; 4546 unsigned long i, rc = 0; 4547 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4548 4549 for (i = 0; i < pages_per_huge_page; i++) { 4550 if (allow_pagefault) 4551 page_kaddr = kmap(dst_page + i); 4552 else 4553 page_kaddr = kmap_atomic(dst_page + i); 4554 rc = copy_from_user(page_kaddr, 4555 (const void __user *)(src + i * PAGE_SIZE), 4556 PAGE_SIZE); 4557 if (allow_pagefault) 4558 kunmap(dst_page + i); 4559 else 4560 kunmap_atomic(page_kaddr); 4561 4562 ret_val -= (PAGE_SIZE - rc); 4563 if (rc) 4564 break; 4565 4566 cond_resched(); 4567 } 4568 return ret_val; 4569 } 4570 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4571 4572 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4573 4574 static struct kmem_cache *page_ptl_cachep; 4575 4576 void __init ptlock_cache_init(void) 4577 { 4578 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4579 SLAB_PANIC, NULL); 4580 } 4581 4582 bool ptlock_alloc(struct page *page) 4583 { 4584 spinlock_t *ptl; 4585 4586 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4587 if (!ptl) 4588 return false; 4589 page->ptl = ptl; 4590 return true; 4591 } 4592 4593 void ptlock_free(struct page *page) 4594 { 4595 kmem_cache_free(page_ptl_cachep, page->ptl); 4596 } 4597 #endif 4598