1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/ksm.h> 53 #include <linux/rmap.h> 54 #include <linux/export.h> 55 #include <linux/delayacct.h> 56 #include <linux/init.h> 57 #include <linux/pfn_t.h> 58 #include <linux/writeback.h> 59 #include <linux/memcontrol.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/kallsyms.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 72 #include <asm/io.h> 73 #include <asm/mmu_context.h> 74 #include <asm/pgalloc.h> 75 #include <linux/uaccess.h> 76 #include <asm/tlb.h> 77 #include <asm/tlbflush.h> 78 #include <asm/pgtable.h> 79 80 #include "internal.h" 81 82 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 83 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 84 #endif 85 86 #ifndef CONFIG_NEED_MULTIPLE_NODES 87 /* use the per-pgdat data instead for discontigmem - mbligh */ 88 unsigned long max_mapnr; 89 EXPORT_SYMBOL(max_mapnr); 90 91 struct page *mem_map; 92 EXPORT_SYMBOL(mem_map); 93 #endif 94 95 /* 96 * A number of key systems in x86 including ioremap() rely on the assumption 97 * that high_memory defines the upper bound on direct map memory, then end 98 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 99 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 100 * and ZONE_HIGHMEM. 101 */ 102 void *high_memory; 103 EXPORT_SYMBOL(high_memory); 104 105 /* 106 * Randomize the address space (stacks, mmaps, brk, etc.). 107 * 108 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 109 * as ancient (libc5 based) binaries can segfault. ) 110 */ 111 int randomize_va_space __read_mostly = 112 #ifdef CONFIG_COMPAT_BRK 113 1; 114 #else 115 2; 116 #endif 117 118 static int __init disable_randmaps(char *s) 119 { 120 randomize_va_space = 0; 121 return 1; 122 } 123 __setup("norandmaps", disable_randmaps); 124 125 unsigned long zero_pfn __read_mostly; 126 EXPORT_SYMBOL(zero_pfn); 127 128 unsigned long highest_memmap_pfn __read_mostly; 129 130 /* 131 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 132 */ 133 static int __init init_zero_pfn(void) 134 { 135 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 136 return 0; 137 } 138 core_initcall(init_zero_pfn); 139 140 141 #if defined(SPLIT_RSS_COUNTING) 142 143 void sync_mm_rss(struct mm_struct *mm) 144 { 145 int i; 146 147 for (i = 0; i < NR_MM_COUNTERS; i++) { 148 if (current->rss_stat.count[i]) { 149 add_mm_counter(mm, i, current->rss_stat.count[i]); 150 current->rss_stat.count[i] = 0; 151 } 152 } 153 current->rss_stat.events = 0; 154 } 155 156 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 157 { 158 struct task_struct *task = current; 159 160 if (likely(task->mm == mm)) 161 task->rss_stat.count[member] += val; 162 else 163 add_mm_counter(mm, member, val); 164 } 165 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 166 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 167 168 /* sync counter once per 64 page faults */ 169 #define TASK_RSS_EVENTS_THRESH (64) 170 static void check_sync_rss_stat(struct task_struct *task) 171 { 172 if (unlikely(task != current)) 173 return; 174 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 175 sync_mm_rss(task->mm); 176 } 177 #else /* SPLIT_RSS_COUNTING */ 178 179 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 180 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 181 182 static void check_sync_rss_stat(struct task_struct *task) 183 { 184 } 185 186 #endif /* SPLIT_RSS_COUNTING */ 187 188 #ifdef HAVE_GENERIC_MMU_GATHER 189 190 static bool tlb_next_batch(struct mmu_gather *tlb) 191 { 192 struct mmu_gather_batch *batch; 193 194 batch = tlb->active; 195 if (batch->next) { 196 tlb->active = batch->next; 197 return true; 198 } 199 200 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 201 return false; 202 203 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 204 if (!batch) 205 return false; 206 207 tlb->batch_count++; 208 batch->next = NULL; 209 batch->nr = 0; 210 batch->max = MAX_GATHER_BATCH; 211 212 tlb->active->next = batch; 213 tlb->active = batch; 214 215 return true; 216 } 217 218 /* tlb_gather_mmu 219 * Called to initialize an (on-stack) mmu_gather structure for page-table 220 * tear-down from @mm. The @fullmm argument is used when @mm is without 221 * users and we're going to destroy the full address space (exit/execve). 222 */ 223 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 224 { 225 tlb->mm = mm; 226 227 /* Is it from 0 to ~0? */ 228 tlb->fullmm = !(start | (end+1)); 229 tlb->need_flush_all = 0; 230 tlb->local.next = NULL; 231 tlb->local.nr = 0; 232 tlb->local.max = ARRAY_SIZE(tlb->__pages); 233 tlb->active = &tlb->local; 234 tlb->batch_count = 0; 235 236 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 237 tlb->batch = NULL; 238 #endif 239 tlb->page_size = 0; 240 241 __tlb_reset_range(tlb); 242 } 243 244 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 245 { 246 if (!tlb->end) 247 return; 248 249 tlb_flush(tlb); 250 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 251 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 252 tlb_table_flush(tlb); 253 #endif 254 __tlb_reset_range(tlb); 255 } 256 257 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 258 { 259 struct mmu_gather_batch *batch; 260 261 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 262 free_pages_and_swap_cache(batch->pages, batch->nr); 263 batch->nr = 0; 264 } 265 tlb->active = &tlb->local; 266 } 267 268 void tlb_flush_mmu(struct mmu_gather *tlb) 269 { 270 tlb_flush_mmu_tlbonly(tlb); 271 tlb_flush_mmu_free(tlb); 272 } 273 274 /* tlb_finish_mmu 275 * Called at the end of the shootdown operation to free up any resources 276 * that were required. 277 */ 278 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 279 { 280 struct mmu_gather_batch *batch, *next; 281 282 tlb_flush_mmu(tlb); 283 284 /* keep the page table cache within bounds */ 285 check_pgt_cache(); 286 287 for (batch = tlb->local.next; batch; batch = next) { 288 next = batch->next; 289 free_pages((unsigned long)batch, 0); 290 } 291 tlb->local.next = NULL; 292 } 293 294 /* __tlb_remove_page 295 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 296 * handling the additional races in SMP caused by other CPUs caching valid 297 * mappings in their TLBs. Returns the number of free page slots left. 298 * When out of page slots we must call tlb_flush_mmu(). 299 *returns true if the caller should flush. 300 */ 301 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) 302 { 303 struct mmu_gather_batch *batch; 304 305 VM_BUG_ON(!tlb->end); 306 VM_WARN_ON(tlb->page_size != page_size); 307 308 batch = tlb->active; 309 /* 310 * Add the page and check if we are full. If so 311 * force a flush. 312 */ 313 batch->pages[batch->nr++] = page; 314 if (batch->nr == batch->max) { 315 if (!tlb_next_batch(tlb)) 316 return true; 317 batch = tlb->active; 318 } 319 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 320 321 return false; 322 } 323 324 #endif /* HAVE_GENERIC_MMU_GATHER */ 325 326 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 327 328 /* 329 * See the comment near struct mmu_table_batch. 330 */ 331 332 static void tlb_remove_table_smp_sync(void *arg) 333 { 334 /* Simply deliver the interrupt */ 335 } 336 337 static void tlb_remove_table_one(void *table) 338 { 339 /* 340 * This isn't an RCU grace period and hence the page-tables cannot be 341 * assumed to be actually RCU-freed. 342 * 343 * It is however sufficient for software page-table walkers that rely on 344 * IRQ disabling. See the comment near struct mmu_table_batch. 345 */ 346 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 347 __tlb_remove_table(table); 348 } 349 350 static void tlb_remove_table_rcu(struct rcu_head *head) 351 { 352 struct mmu_table_batch *batch; 353 int i; 354 355 batch = container_of(head, struct mmu_table_batch, rcu); 356 357 for (i = 0; i < batch->nr; i++) 358 __tlb_remove_table(batch->tables[i]); 359 360 free_page((unsigned long)batch); 361 } 362 363 void tlb_table_flush(struct mmu_gather *tlb) 364 { 365 struct mmu_table_batch **batch = &tlb->batch; 366 367 if (*batch) { 368 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 369 *batch = NULL; 370 } 371 } 372 373 void tlb_remove_table(struct mmu_gather *tlb, void *table) 374 { 375 struct mmu_table_batch **batch = &tlb->batch; 376 377 /* 378 * When there's less then two users of this mm there cannot be a 379 * concurrent page-table walk. 380 */ 381 if (atomic_read(&tlb->mm->mm_users) < 2) { 382 __tlb_remove_table(table); 383 return; 384 } 385 386 if (*batch == NULL) { 387 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 388 if (*batch == NULL) { 389 tlb_remove_table_one(table); 390 return; 391 } 392 (*batch)->nr = 0; 393 } 394 (*batch)->tables[(*batch)->nr++] = table; 395 if ((*batch)->nr == MAX_TABLE_BATCH) 396 tlb_table_flush(tlb); 397 } 398 399 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 400 401 /* 402 * Note: this doesn't free the actual pages themselves. That 403 * has been handled earlier when unmapping all the memory regions. 404 */ 405 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 406 unsigned long addr) 407 { 408 pgtable_t token = pmd_pgtable(*pmd); 409 pmd_clear(pmd); 410 pte_free_tlb(tlb, token, addr); 411 atomic_long_dec(&tlb->mm->nr_ptes); 412 } 413 414 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 415 unsigned long addr, unsigned long end, 416 unsigned long floor, unsigned long ceiling) 417 { 418 pmd_t *pmd; 419 unsigned long next; 420 unsigned long start; 421 422 start = addr; 423 pmd = pmd_offset(pud, addr); 424 do { 425 next = pmd_addr_end(addr, end); 426 if (pmd_none_or_clear_bad(pmd)) 427 continue; 428 free_pte_range(tlb, pmd, addr); 429 } while (pmd++, addr = next, addr != end); 430 431 start &= PUD_MASK; 432 if (start < floor) 433 return; 434 if (ceiling) { 435 ceiling &= PUD_MASK; 436 if (!ceiling) 437 return; 438 } 439 if (end - 1 > ceiling - 1) 440 return; 441 442 pmd = pmd_offset(pud, start); 443 pud_clear(pud); 444 pmd_free_tlb(tlb, pmd, start); 445 mm_dec_nr_pmds(tlb->mm); 446 } 447 448 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 449 unsigned long addr, unsigned long end, 450 unsigned long floor, unsigned long ceiling) 451 { 452 pud_t *pud; 453 unsigned long next; 454 unsigned long start; 455 456 start = addr; 457 pud = pud_offset(p4d, addr); 458 do { 459 next = pud_addr_end(addr, end); 460 if (pud_none_or_clear_bad(pud)) 461 continue; 462 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 463 } while (pud++, addr = next, addr != end); 464 465 start &= P4D_MASK; 466 if (start < floor) 467 return; 468 if (ceiling) { 469 ceiling &= P4D_MASK; 470 if (!ceiling) 471 return; 472 } 473 if (end - 1 > ceiling - 1) 474 return; 475 476 pud = pud_offset(p4d, start); 477 p4d_clear(p4d); 478 pud_free_tlb(tlb, pud, start); 479 } 480 481 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 482 unsigned long addr, unsigned long end, 483 unsigned long floor, unsigned long ceiling) 484 { 485 p4d_t *p4d; 486 unsigned long next; 487 unsigned long start; 488 489 start = addr; 490 p4d = p4d_offset(pgd, addr); 491 do { 492 next = p4d_addr_end(addr, end); 493 if (p4d_none_or_clear_bad(p4d)) 494 continue; 495 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 496 } while (p4d++, addr = next, addr != end); 497 498 start &= PGDIR_MASK; 499 if (start < floor) 500 return; 501 if (ceiling) { 502 ceiling &= PGDIR_MASK; 503 if (!ceiling) 504 return; 505 } 506 if (end - 1 > ceiling - 1) 507 return; 508 509 p4d = p4d_offset(pgd, start); 510 pgd_clear(pgd); 511 p4d_free_tlb(tlb, p4d, start); 512 } 513 514 /* 515 * This function frees user-level page tables of a process. 516 */ 517 void free_pgd_range(struct mmu_gather *tlb, 518 unsigned long addr, unsigned long end, 519 unsigned long floor, unsigned long ceiling) 520 { 521 pgd_t *pgd; 522 unsigned long next; 523 524 /* 525 * The next few lines have given us lots of grief... 526 * 527 * Why are we testing PMD* at this top level? Because often 528 * there will be no work to do at all, and we'd prefer not to 529 * go all the way down to the bottom just to discover that. 530 * 531 * Why all these "- 1"s? Because 0 represents both the bottom 532 * of the address space and the top of it (using -1 for the 533 * top wouldn't help much: the masks would do the wrong thing). 534 * The rule is that addr 0 and floor 0 refer to the bottom of 535 * the address space, but end 0 and ceiling 0 refer to the top 536 * Comparisons need to use "end - 1" and "ceiling - 1" (though 537 * that end 0 case should be mythical). 538 * 539 * Wherever addr is brought up or ceiling brought down, we must 540 * be careful to reject "the opposite 0" before it confuses the 541 * subsequent tests. But what about where end is brought down 542 * by PMD_SIZE below? no, end can't go down to 0 there. 543 * 544 * Whereas we round start (addr) and ceiling down, by different 545 * masks at different levels, in order to test whether a table 546 * now has no other vmas using it, so can be freed, we don't 547 * bother to round floor or end up - the tests don't need that. 548 */ 549 550 addr &= PMD_MASK; 551 if (addr < floor) { 552 addr += PMD_SIZE; 553 if (!addr) 554 return; 555 } 556 if (ceiling) { 557 ceiling &= PMD_MASK; 558 if (!ceiling) 559 return; 560 } 561 if (end - 1 > ceiling - 1) 562 end -= PMD_SIZE; 563 if (addr > end - 1) 564 return; 565 /* 566 * We add page table cache pages with PAGE_SIZE, 567 * (see pte_free_tlb()), flush the tlb if we need 568 */ 569 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 570 pgd = pgd_offset(tlb->mm, addr); 571 do { 572 next = pgd_addr_end(addr, end); 573 if (pgd_none_or_clear_bad(pgd)) 574 continue; 575 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 576 } while (pgd++, addr = next, addr != end); 577 } 578 579 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 580 unsigned long floor, unsigned long ceiling) 581 { 582 while (vma) { 583 struct vm_area_struct *next = vma->vm_next; 584 unsigned long addr = vma->vm_start; 585 586 /* 587 * Hide vma from rmap and truncate_pagecache before freeing 588 * pgtables 589 */ 590 unlink_anon_vmas(vma); 591 unlink_file_vma(vma); 592 593 if (is_vm_hugetlb_page(vma)) { 594 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 595 floor, next ? next->vm_start : ceiling); 596 } else { 597 /* 598 * Optimization: gather nearby vmas into one call down 599 */ 600 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 601 && !is_vm_hugetlb_page(next)) { 602 vma = next; 603 next = vma->vm_next; 604 unlink_anon_vmas(vma); 605 unlink_file_vma(vma); 606 } 607 free_pgd_range(tlb, addr, vma->vm_end, 608 floor, next ? next->vm_start : ceiling); 609 } 610 vma = next; 611 } 612 } 613 614 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 615 { 616 spinlock_t *ptl; 617 pgtable_t new = pte_alloc_one(mm, address); 618 if (!new) 619 return -ENOMEM; 620 621 /* 622 * Ensure all pte setup (eg. pte page lock and page clearing) are 623 * visible before the pte is made visible to other CPUs by being 624 * put into page tables. 625 * 626 * The other side of the story is the pointer chasing in the page 627 * table walking code (when walking the page table without locking; 628 * ie. most of the time). Fortunately, these data accesses consist 629 * of a chain of data-dependent loads, meaning most CPUs (alpha 630 * being the notable exception) will already guarantee loads are 631 * seen in-order. See the alpha page table accessors for the 632 * smp_read_barrier_depends() barriers in page table walking code. 633 */ 634 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 635 636 ptl = pmd_lock(mm, pmd); 637 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 638 atomic_long_inc(&mm->nr_ptes); 639 pmd_populate(mm, pmd, new); 640 new = NULL; 641 } 642 spin_unlock(ptl); 643 if (new) 644 pte_free(mm, new); 645 return 0; 646 } 647 648 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 649 { 650 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 651 if (!new) 652 return -ENOMEM; 653 654 smp_wmb(); /* See comment in __pte_alloc */ 655 656 spin_lock(&init_mm.page_table_lock); 657 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 658 pmd_populate_kernel(&init_mm, pmd, new); 659 new = NULL; 660 } 661 spin_unlock(&init_mm.page_table_lock); 662 if (new) 663 pte_free_kernel(&init_mm, new); 664 return 0; 665 } 666 667 static inline void init_rss_vec(int *rss) 668 { 669 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 670 } 671 672 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 673 { 674 int i; 675 676 if (current->mm == mm) 677 sync_mm_rss(mm); 678 for (i = 0; i < NR_MM_COUNTERS; i++) 679 if (rss[i]) 680 add_mm_counter(mm, i, rss[i]); 681 } 682 683 /* 684 * This function is called to print an error when a bad pte 685 * is found. For example, we might have a PFN-mapped pte in 686 * a region that doesn't allow it. 687 * 688 * The calling function must still handle the error. 689 */ 690 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 691 pte_t pte, struct page *page) 692 { 693 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 694 p4d_t *p4d = p4d_offset(pgd, addr); 695 pud_t *pud = pud_offset(p4d, addr); 696 pmd_t *pmd = pmd_offset(pud, addr); 697 struct address_space *mapping; 698 pgoff_t index; 699 static unsigned long resume; 700 static unsigned long nr_shown; 701 static unsigned long nr_unshown; 702 703 /* 704 * Allow a burst of 60 reports, then keep quiet for that minute; 705 * or allow a steady drip of one report per second. 706 */ 707 if (nr_shown == 60) { 708 if (time_before(jiffies, resume)) { 709 nr_unshown++; 710 return; 711 } 712 if (nr_unshown) { 713 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 714 nr_unshown); 715 nr_unshown = 0; 716 } 717 nr_shown = 0; 718 } 719 if (nr_shown++ == 0) 720 resume = jiffies + 60 * HZ; 721 722 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 723 index = linear_page_index(vma, addr); 724 725 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 726 current->comm, 727 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 728 if (page) 729 dump_page(page, "bad pte"); 730 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 731 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 732 /* 733 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 734 */ 735 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 736 vma->vm_file, 737 vma->vm_ops ? vma->vm_ops->fault : NULL, 738 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 739 mapping ? mapping->a_ops->readpage : NULL); 740 dump_stack(); 741 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 742 } 743 744 /* 745 * vm_normal_page -- This function gets the "struct page" associated with a pte. 746 * 747 * "Special" mappings do not wish to be associated with a "struct page" (either 748 * it doesn't exist, or it exists but they don't want to touch it). In this 749 * case, NULL is returned here. "Normal" mappings do have a struct page. 750 * 751 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 752 * pte bit, in which case this function is trivial. Secondly, an architecture 753 * may not have a spare pte bit, which requires a more complicated scheme, 754 * described below. 755 * 756 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 757 * special mapping (even if there are underlying and valid "struct pages"). 758 * COWed pages of a VM_PFNMAP are always normal. 759 * 760 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 761 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 762 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 763 * mapping will always honor the rule 764 * 765 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 766 * 767 * And for normal mappings this is false. 768 * 769 * This restricts such mappings to be a linear translation from virtual address 770 * to pfn. To get around this restriction, we allow arbitrary mappings so long 771 * as the vma is not a COW mapping; in that case, we know that all ptes are 772 * special (because none can have been COWed). 773 * 774 * 775 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 776 * 777 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 778 * page" backing, however the difference is that _all_ pages with a struct 779 * page (that is, those where pfn_valid is true) are refcounted and considered 780 * normal pages by the VM. The disadvantage is that pages are refcounted 781 * (which can be slower and simply not an option for some PFNMAP users). The 782 * advantage is that we don't have to follow the strict linearity rule of 783 * PFNMAP mappings in order to support COWable mappings. 784 * 785 */ 786 #ifdef __HAVE_ARCH_PTE_SPECIAL 787 # define HAVE_PTE_SPECIAL 1 788 #else 789 # define HAVE_PTE_SPECIAL 0 790 #endif 791 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 792 pte_t pte) 793 { 794 unsigned long pfn = pte_pfn(pte); 795 796 if (HAVE_PTE_SPECIAL) { 797 if (likely(!pte_special(pte))) 798 goto check_pfn; 799 if (vma->vm_ops && vma->vm_ops->find_special_page) 800 return vma->vm_ops->find_special_page(vma, addr); 801 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 802 return NULL; 803 if (!is_zero_pfn(pfn)) 804 print_bad_pte(vma, addr, pte, NULL); 805 return NULL; 806 } 807 808 /* !HAVE_PTE_SPECIAL case follows: */ 809 810 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 811 if (vma->vm_flags & VM_MIXEDMAP) { 812 if (!pfn_valid(pfn)) 813 return NULL; 814 goto out; 815 } else { 816 unsigned long off; 817 off = (addr - vma->vm_start) >> PAGE_SHIFT; 818 if (pfn == vma->vm_pgoff + off) 819 return NULL; 820 if (!is_cow_mapping(vma->vm_flags)) 821 return NULL; 822 } 823 } 824 825 if (is_zero_pfn(pfn)) 826 return NULL; 827 check_pfn: 828 if (unlikely(pfn > highest_memmap_pfn)) { 829 print_bad_pte(vma, addr, pte, NULL); 830 return NULL; 831 } 832 833 /* 834 * NOTE! We still have PageReserved() pages in the page tables. 835 * eg. VDSO mappings can cause them to exist. 836 */ 837 out: 838 return pfn_to_page(pfn); 839 } 840 841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 842 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 843 pmd_t pmd) 844 { 845 unsigned long pfn = pmd_pfn(pmd); 846 847 /* 848 * There is no pmd_special() but there may be special pmds, e.g. 849 * in a direct-access (dax) mapping, so let's just replicate the 850 * !HAVE_PTE_SPECIAL case from vm_normal_page() here. 851 */ 852 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 853 if (vma->vm_flags & VM_MIXEDMAP) { 854 if (!pfn_valid(pfn)) 855 return NULL; 856 goto out; 857 } else { 858 unsigned long off; 859 off = (addr - vma->vm_start) >> PAGE_SHIFT; 860 if (pfn == vma->vm_pgoff + off) 861 return NULL; 862 if (!is_cow_mapping(vma->vm_flags)) 863 return NULL; 864 } 865 } 866 867 if (is_zero_pfn(pfn)) 868 return NULL; 869 if (unlikely(pfn > highest_memmap_pfn)) 870 return NULL; 871 872 /* 873 * NOTE! We still have PageReserved() pages in the page tables. 874 * eg. VDSO mappings can cause them to exist. 875 */ 876 out: 877 return pfn_to_page(pfn); 878 } 879 #endif 880 881 /* 882 * copy one vm_area from one task to the other. Assumes the page tables 883 * already present in the new task to be cleared in the whole range 884 * covered by this vma. 885 */ 886 887 static inline unsigned long 888 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 889 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 890 unsigned long addr, int *rss) 891 { 892 unsigned long vm_flags = vma->vm_flags; 893 pte_t pte = *src_pte; 894 struct page *page; 895 896 /* pte contains position in swap or file, so copy. */ 897 if (unlikely(!pte_present(pte))) { 898 swp_entry_t entry = pte_to_swp_entry(pte); 899 900 if (likely(!non_swap_entry(entry))) { 901 if (swap_duplicate(entry) < 0) 902 return entry.val; 903 904 /* make sure dst_mm is on swapoff's mmlist. */ 905 if (unlikely(list_empty(&dst_mm->mmlist))) { 906 spin_lock(&mmlist_lock); 907 if (list_empty(&dst_mm->mmlist)) 908 list_add(&dst_mm->mmlist, 909 &src_mm->mmlist); 910 spin_unlock(&mmlist_lock); 911 } 912 rss[MM_SWAPENTS]++; 913 } else if (is_migration_entry(entry)) { 914 page = migration_entry_to_page(entry); 915 916 rss[mm_counter(page)]++; 917 918 if (is_write_migration_entry(entry) && 919 is_cow_mapping(vm_flags)) { 920 /* 921 * COW mappings require pages in both 922 * parent and child to be set to read. 923 */ 924 make_migration_entry_read(&entry); 925 pte = swp_entry_to_pte(entry); 926 if (pte_swp_soft_dirty(*src_pte)) 927 pte = pte_swp_mksoft_dirty(pte); 928 set_pte_at(src_mm, addr, src_pte, pte); 929 } 930 } 931 goto out_set_pte; 932 } 933 934 /* 935 * If it's a COW mapping, write protect it both 936 * in the parent and the child 937 */ 938 if (is_cow_mapping(vm_flags)) { 939 ptep_set_wrprotect(src_mm, addr, src_pte); 940 pte = pte_wrprotect(pte); 941 } 942 943 /* 944 * If it's a shared mapping, mark it clean in 945 * the child 946 */ 947 if (vm_flags & VM_SHARED) 948 pte = pte_mkclean(pte); 949 pte = pte_mkold(pte); 950 951 page = vm_normal_page(vma, addr, pte); 952 if (page) { 953 get_page(page); 954 page_dup_rmap(page, false); 955 rss[mm_counter(page)]++; 956 } 957 958 out_set_pte: 959 set_pte_at(dst_mm, addr, dst_pte, pte); 960 return 0; 961 } 962 963 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 964 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 965 unsigned long addr, unsigned long end) 966 { 967 pte_t *orig_src_pte, *orig_dst_pte; 968 pte_t *src_pte, *dst_pte; 969 spinlock_t *src_ptl, *dst_ptl; 970 int progress = 0; 971 int rss[NR_MM_COUNTERS]; 972 swp_entry_t entry = (swp_entry_t){0}; 973 974 again: 975 init_rss_vec(rss); 976 977 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 978 if (!dst_pte) 979 return -ENOMEM; 980 src_pte = pte_offset_map(src_pmd, addr); 981 src_ptl = pte_lockptr(src_mm, src_pmd); 982 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 983 orig_src_pte = src_pte; 984 orig_dst_pte = dst_pte; 985 arch_enter_lazy_mmu_mode(); 986 987 do { 988 /* 989 * We are holding two locks at this point - either of them 990 * could generate latencies in another task on another CPU. 991 */ 992 if (progress >= 32) { 993 progress = 0; 994 if (need_resched() || 995 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 996 break; 997 } 998 if (pte_none(*src_pte)) { 999 progress++; 1000 continue; 1001 } 1002 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 1003 vma, addr, rss); 1004 if (entry.val) 1005 break; 1006 progress += 8; 1007 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1008 1009 arch_leave_lazy_mmu_mode(); 1010 spin_unlock(src_ptl); 1011 pte_unmap(orig_src_pte); 1012 add_mm_rss_vec(dst_mm, rss); 1013 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1014 cond_resched(); 1015 1016 if (entry.val) { 1017 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 1018 return -ENOMEM; 1019 progress = 0; 1020 } 1021 if (addr != end) 1022 goto again; 1023 return 0; 1024 } 1025 1026 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1027 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 1028 unsigned long addr, unsigned long end) 1029 { 1030 pmd_t *src_pmd, *dst_pmd; 1031 unsigned long next; 1032 1033 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1034 if (!dst_pmd) 1035 return -ENOMEM; 1036 src_pmd = pmd_offset(src_pud, addr); 1037 do { 1038 next = pmd_addr_end(addr, end); 1039 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { 1040 int err; 1041 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 1042 err = copy_huge_pmd(dst_mm, src_mm, 1043 dst_pmd, src_pmd, addr, vma); 1044 if (err == -ENOMEM) 1045 return -ENOMEM; 1046 if (!err) 1047 continue; 1048 /* fall through */ 1049 } 1050 if (pmd_none_or_clear_bad(src_pmd)) 1051 continue; 1052 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1053 vma, addr, next)) 1054 return -ENOMEM; 1055 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1056 return 0; 1057 } 1058 1059 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1060 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 1061 unsigned long addr, unsigned long end) 1062 { 1063 pud_t *src_pud, *dst_pud; 1064 unsigned long next; 1065 1066 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1067 if (!dst_pud) 1068 return -ENOMEM; 1069 src_pud = pud_offset(src_p4d, addr); 1070 do { 1071 next = pud_addr_end(addr, end); 1072 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1073 int err; 1074 1075 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 1076 err = copy_huge_pud(dst_mm, src_mm, 1077 dst_pud, src_pud, addr, vma); 1078 if (err == -ENOMEM) 1079 return -ENOMEM; 1080 if (!err) 1081 continue; 1082 /* fall through */ 1083 } 1084 if (pud_none_or_clear_bad(src_pud)) 1085 continue; 1086 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1087 vma, addr, next)) 1088 return -ENOMEM; 1089 } while (dst_pud++, src_pud++, addr = next, addr != end); 1090 return 0; 1091 } 1092 1093 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1094 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1095 unsigned long addr, unsigned long end) 1096 { 1097 p4d_t *src_p4d, *dst_p4d; 1098 unsigned long next; 1099 1100 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1101 if (!dst_p4d) 1102 return -ENOMEM; 1103 src_p4d = p4d_offset(src_pgd, addr); 1104 do { 1105 next = p4d_addr_end(addr, end); 1106 if (p4d_none_or_clear_bad(src_p4d)) 1107 continue; 1108 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 1109 vma, addr, next)) 1110 return -ENOMEM; 1111 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1112 return 0; 1113 } 1114 1115 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1116 struct vm_area_struct *vma) 1117 { 1118 pgd_t *src_pgd, *dst_pgd; 1119 unsigned long next; 1120 unsigned long addr = vma->vm_start; 1121 unsigned long end = vma->vm_end; 1122 unsigned long mmun_start; /* For mmu_notifiers */ 1123 unsigned long mmun_end; /* For mmu_notifiers */ 1124 bool is_cow; 1125 int ret; 1126 1127 /* 1128 * Don't copy ptes where a page fault will fill them correctly. 1129 * Fork becomes much lighter when there are big shared or private 1130 * readonly mappings. The tradeoff is that copy_page_range is more 1131 * efficient than faulting. 1132 */ 1133 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1134 !vma->anon_vma) 1135 return 0; 1136 1137 if (is_vm_hugetlb_page(vma)) 1138 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1139 1140 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1141 /* 1142 * We do not free on error cases below as remove_vma 1143 * gets called on error from higher level routine 1144 */ 1145 ret = track_pfn_copy(vma); 1146 if (ret) 1147 return ret; 1148 } 1149 1150 /* 1151 * We need to invalidate the secondary MMU mappings only when 1152 * there could be a permission downgrade on the ptes of the 1153 * parent mm. And a permission downgrade will only happen if 1154 * is_cow_mapping() returns true. 1155 */ 1156 is_cow = is_cow_mapping(vma->vm_flags); 1157 mmun_start = addr; 1158 mmun_end = end; 1159 if (is_cow) 1160 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1161 mmun_end); 1162 1163 ret = 0; 1164 dst_pgd = pgd_offset(dst_mm, addr); 1165 src_pgd = pgd_offset(src_mm, addr); 1166 do { 1167 next = pgd_addr_end(addr, end); 1168 if (pgd_none_or_clear_bad(src_pgd)) 1169 continue; 1170 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1171 vma, addr, next))) { 1172 ret = -ENOMEM; 1173 break; 1174 } 1175 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1176 1177 if (is_cow) 1178 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1179 return ret; 1180 } 1181 1182 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1183 struct vm_area_struct *vma, pmd_t *pmd, 1184 unsigned long addr, unsigned long end, 1185 struct zap_details *details) 1186 { 1187 struct mm_struct *mm = tlb->mm; 1188 int force_flush = 0; 1189 int rss[NR_MM_COUNTERS]; 1190 spinlock_t *ptl; 1191 pte_t *start_pte; 1192 pte_t *pte; 1193 swp_entry_t entry; 1194 1195 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1196 again: 1197 init_rss_vec(rss); 1198 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1199 pte = start_pte; 1200 flush_tlb_batched_pending(mm); 1201 arch_enter_lazy_mmu_mode(); 1202 do { 1203 pte_t ptent = *pte; 1204 if (pte_none(ptent)) 1205 continue; 1206 1207 if (pte_present(ptent)) { 1208 struct page *page; 1209 1210 page = vm_normal_page(vma, addr, ptent); 1211 if (unlikely(details) && page) { 1212 /* 1213 * unmap_shared_mapping_pages() wants to 1214 * invalidate cache without truncating: 1215 * unmap shared but keep private pages. 1216 */ 1217 if (details->check_mapping && 1218 details->check_mapping != page_rmapping(page)) 1219 continue; 1220 } 1221 ptent = ptep_get_and_clear_full(mm, addr, pte, 1222 tlb->fullmm); 1223 tlb_remove_tlb_entry(tlb, pte, addr); 1224 if (unlikely(!page)) 1225 continue; 1226 1227 if (!PageAnon(page)) { 1228 if (pte_dirty(ptent)) { 1229 force_flush = 1; 1230 set_page_dirty(page); 1231 } 1232 if (pte_young(ptent) && 1233 likely(!(vma->vm_flags & VM_SEQ_READ))) 1234 mark_page_accessed(page); 1235 } 1236 rss[mm_counter(page)]--; 1237 page_remove_rmap(page, false); 1238 if (unlikely(page_mapcount(page) < 0)) 1239 print_bad_pte(vma, addr, ptent, page); 1240 if (unlikely(__tlb_remove_page(tlb, page))) { 1241 force_flush = 1; 1242 addr += PAGE_SIZE; 1243 break; 1244 } 1245 continue; 1246 } 1247 /* If details->check_mapping, we leave swap entries. */ 1248 if (unlikely(details)) 1249 continue; 1250 1251 entry = pte_to_swp_entry(ptent); 1252 if (!non_swap_entry(entry)) 1253 rss[MM_SWAPENTS]--; 1254 else if (is_migration_entry(entry)) { 1255 struct page *page; 1256 1257 page = migration_entry_to_page(entry); 1258 rss[mm_counter(page)]--; 1259 } 1260 if (unlikely(!free_swap_and_cache(entry))) 1261 print_bad_pte(vma, addr, ptent, NULL); 1262 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1263 } while (pte++, addr += PAGE_SIZE, addr != end); 1264 1265 add_mm_rss_vec(mm, rss); 1266 arch_leave_lazy_mmu_mode(); 1267 1268 /* Do the actual TLB flush before dropping ptl */ 1269 if (force_flush) 1270 tlb_flush_mmu_tlbonly(tlb); 1271 pte_unmap_unlock(start_pte, ptl); 1272 1273 /* 1274 * If we forced a TLB flush (either due to running out of 1275 * batch buffers or because we needed to flush dirty TLB 1276 * entries before releasing the ptl), free the batched 1277 * memory too. Restart if we didn't do everything. 1278 */ 1279 if (force_flush) { 1280 force_flush = 0; 1281 tlb_flush_mmu_free(tlb); 1282 if (addr != end) 1283 goto again; 1284 } 1285 1286 return addr; 1287 } 1288 1289 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1290 struct vm_area_struct *vma, pud_t *pud, 1291 unsigned long addr, unsigned long end, 1292 struct zap_details *details) 1293 { 1294 pmd_t *pmd; 1295 unsigned long next; 1296 1297 pmd = pmd_offset(pud, addr); 1298 do { 1299 next = pmd_addr_end(addr, end); 1300 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1301 if (next - addr != HPAGE_PMD_SIZE) { 1302 VM_BUG_ON_VMA(vma_is_anonymous(vma) && 1303 !rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1304 __split_huge_pmd(vma, pmd, addr, false, NULL); 1305 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1306 goto next; 1307 /* fall through */ 1308 } 1309 /* 1310 * Here there can be other concurrent MADV_DONTNEED or 1311 * trans huge page faults running, and if the pmd is 1312 * none or trans huge it can change under us. This is 1313 * because MADV_DONTNEED holds the mmap_sem in read 1314 * mode. 1315 */ 1316 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1317 goto next; 1318 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1319 next: 1320 cond_resched(); 1321 } while (pmd++, addr = next, addr != end); 1322 1323 return addr; 1324 } 1325 1326 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1327 struct vm_area_struct *vma, p4d_t *p4d, 1328 unsigned long addr, unsigned long end, 1329 struct zap_details *details) 1330 { 1331 pud_t *pud; 1332 unsigned long next; 1333 1334 pud = pud_offset(p4d, addr); 1335 do { 1336 next = pud_addr_end(addr, end); 1337 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1338 if (next - addr != HPAGE_PUD_SIZE) { 1339 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1340 split_huge_pud(vma, pud, addr); 1341 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1342 goto next; 1343 /* fall through */ 1344 } 1345 if (pud_none_or_clear_bad(pud)) 1346 continue; 1347 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1348 next: 1349 cond_resched(); 1350 } while (pud++, addr = next, addr != end); 1351 1352 return addr; 1353 } 1354 1355 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1356 struct vm_area_struct *vma, pgd_t *pgd, 1357 unsigned long addr, unsigned long end, 1358 struct zap_details *details) 1359 { 1360 p4d_t *p4d; 1361 unsigned long next; 1362 1363 p4d = p4d_offset(pgd, addr); 1364 do { 1365 next = p4d_addr_end(addr, end); 1366 if (p4d_none_or_clear_bad(p4d)) 1367 continue; 1368 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1369 } while (p4d++, addr = next, addr != end); 1370 1371 return addr; 1372 } 1373 1374 void unmap_page_range(struct mmu_gather *tlb, 1375 struct vm_area_struct *vma, 1376 unsigned long addr, unsigned long end, 1377 struct zap_details *details) 1378 { 1379 pgd_t *pgd; 1380 unsigned long next; 1381 1382 BUG_ON(addr >= end); 1383 tlb_start_vma(tlb, vma); 1384 pgd = pgd_offset(vma->vm_mm, addr); 1385 do { 1386 next = pgd_addr_end(addr, end); 1387 if (pgd_none_or_clear_bad(pgd)) 1388 continue; 1389 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1390 } while (pgd++, addr = next, addr != end); 1391 tlb_end_vma(tlb, vma); 1392 } 1393 1394 1395 static void unmap_single_vma(struct mmu_gather *tlb, 1396 struct vm_area_struct *vma, unsigned long start_addr, 1397 unsigned long end_addr, 1398 struct zap_details *details) 1399 { 1400 unsigned long start = max(vma->vm_start, start_addr); 1401 unsigned long end; 1402 1403 if (start >= vma->vm_end) 1404 return; 1405 end = min(vma->vm_end, end_addr); 1406 if (end <= vma->vm_start) 1407 return; 1408 1409 if (vma->vm_file) 1410 uprobe_munmap(vma, start, end); 1411 1412 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1413 untrack_pfn(vma, 0, 0); 1414 1415 if (start != end) { 1416 if (unlikely(is_vm_hugetlb_page(vma))) { 1417 /* 1418 * It is undesirable to test vma->vm_file as it 1419 * should be non-null for valid hugetlb area. 1420 * However, vm_file will be NULL in the error 1421 * cleanup path of mmap_region. When 1422 * hugetlbfs ->mmap method fails, 1423 * mmap_region() nullifies vma->vm_file 1424 * before calling this function to clean up. 1425 * Since no pte has actually been setup, it is 1426 * safe to do nothing in this case. 1427 */ 1428 if (vma->vm_file) { 1429 i_mmap_lock_write(vma->vm_file->f_mapping); 1430 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1431 i_mmap_unlock_write(vma->vm_file->f_mapping); 1432 } 1433 } else 1434 unmap_page_range(tlb, vma, start, end, details); 1435 } 1436 } 1437 1438 /** 1439 * unmap_vmas - unmap a range of memory covered by a list of vma's 1440 * @tlb: address of the caller's struct mmu_gather 1441 * @vma: the starting vma 1442 * @start_addr: virtual address at which to start unmapping 1443 * @end_addr: virtual address at which to end unmapping 1444 * 1445 * Unmap all pages in the vma list. 1446 * 1447 * Only addresses between `start' and `end' will be unmapped. 1448 * 1449 * The VMA list must be sorted in ascending virtual address order. 1450 * 1451 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1452 * range after unmap_vmas() returns. So the only responsibility here is to 1453 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1454 * drops the lock and schedules. 1455 */ 1456 void unmap_vmas(struct mmu_gather *tlb, 1457 struct vm_area_struct *vma, unsigned long start_addr, 1458 unsigned long end_addr) 1459 { 1460 struct mm_struct *mm = vma->vm_mm; 1461 1462 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1463 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1464 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1465 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1466 } 1467 1468 /** 1469 * zap_page_range - remove user pages in a given range 1470 * @vma: vm_area_struct holding the applicable pages 1471 * @start: starting address of pages to zap 1472 * @size: number of bytes to zap 1473 * 1474 * Caller must protect the VMA list 1475 */ 1476 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1477 unsigned long size) 1478 { 1479 struct mm_struct *mm = vma->vm_mm; 1480 struct mmu_gather tlb; 1481 unsigned long end = start + size; 1482 1483 lru_add_drain(); 1484 tlb_gather_mmu(&tlb, mm, start, end); 1485 update_hiwater_rss(mm); 1486 mmu_notifier_invalidate_range_start(mm, start, end); 1487 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1488 unmap_single_vma(&tlb, vma, start, end, NULL); 1489 mmu_notifier_invalidate_range_end(mm, start, end); 1490 tlb_finish_mmu(&tlb, start, end); 1491 } 1492 1493 /** 1494 * zap_page_range_single - remove user pages in a given range 1495 * @vma: vm_area_struct holding the applicable pages 1496 * @address: starting address of pages to zap 1497 * @size: number of bytes to zap 1498 * @details: details of shared cache invalidation 1499 * 1500 * The range must fit into one VMA. 1501 */ 1502 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1503 unsigned long size, struct zap_details *details) 1504 { 1505 struct mm_struct *mm = vma->vm_mm; 1506 struct mmu_gather tlb; 1507 unsigned long end = address + size; 1508 1509 lru_add_drain(); 1510 tlb_gather_mmu(&tlb, mm, address, end); 1511 update_hiwater_rss(mm); 1512 mmu_notifier_invalidate_range_start(mm, address, end); 1513 unmap_single_vma(&tlb, vma, address, end, details); 1514 mmu_notifier_invalidate_range_end(mm, address, end); 1515 tlb_finish_mmu(&tlb, address, end); 1516 } 1517 1518 /** 1519 * zap_vma_ptes - remove ptes mapping the vma 1520 * @vma: vm_area_struct holding ptes to be zapped 1521 * @address: starting address of pages to zap 1522 * @size: number of bytes to zap 1523 * 1524 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1525 * 1526 * The entire address range must be fully contained within the vma. 1527 * 1528 * Returns 0 if successful. 1529 */ 1530 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1531 unsigned long size) 1532 { 1533 if (address < vma->vm_start || address + size > vma->vm_end || 1534 !(vma->vm_flags & VM_PFNMAP)) 1535 return -1; 1536 zap_page_range_single(vma, address, size, NULL); 1537 return 0; 1538 } 1539 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1540 1541 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1542 spinlock_t **ptl) 1543 { 1544 pgd_t *pgd; 1545 p4d_t *p4d; 1546 pud_t *pud; 1547 pmd_t *pmd; 1548 1549 pgd = pgd_offset(mm, addr); 1550 p4d = p4d_alloc(mm, pgd, addr); 1551 if (!p4d) 1552 return NULL; 1553 pud = pud_alloc(mm, p4d, addr); 1554 if (!pud) 1555 return NULL; 1556 pmd = pmd_alloc(mm, pud, addr); 1557 if (!pmd) 1558 return NULL; 1559 1560 VM_BUG_ON(pmd_trans_huge(*pmd)); 1561 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1562 } 1563 1564 /* 1565 * This is the old fallback for page remapping. 1566 * 1567 * For historical reasons, it only allows reserved pages. Only 1568 * old drivers should use this, and they needed to mark their 1569 * pages reserved for the old functions anyway. 1570 */ 1571 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1572 struct page *page, pgprot_t prot) 1573 { 1574 struct mm_struct *mm = vma->vm_mm; 1575 int retval; 1576 pte_t *pte; 1577 spinlock_t *ptl; 1578 1579 retval = -EINVAL; 1580 if (PageAnon(page)) 1581 goto out; 1582 retval = -ENOMEM; 1583 flush_dcache_page(page); 1584 pte = get_locked_pte(mm, addr, &ptl); 1585 if (!pte) 1586 goto out; 1587 retval = -EBUSY; 1588 if (!pte_none(*pte)) 1589 goto out_unlock; 1590 1591 /* Ok, finally just insert the thing.. */ 1592 get_page(page); 1593 inc_mm_counter_fast(mm, mm_counter_file(page)); 1594 page_add_file_rmap(page, false); 1595 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1596 1597 retval = 0; 1598 pte_unmap_unlock(pte, ptl); 1599 return retval; 1600 out_unlock: 1601 pte_unmap_unlock(pte, ptl); 1602 out: 1603 return retval; 1604 } 1605 1606 /** 1607 * vm_insert_page - insert single page into user vma 1608 * @vma: user vma to map to 1609 * @addr: target user address of this page 1610 * @page: source kernel page 1611 * 1612 * This allows drivers to insert individual pages they've allocated 1613 * into a user vma. 1614 * 1615 * The page has to be a nice clean _individual_ kernel allocation. 1616 * If you allocate a compound page, you need to have marked it as 1617 * such (__GFP_COMP), or manually just split the page up yourself 1618 * (see split_page()). 1619 * 1620 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1621 * took an arbitrary page protection parameter. This doesn't allow 1622 * that. Your vma protection will have to be set up correctly, which 1623 * means that if you want a shared writable mapping, you'd better 1624 * ask for a shared writable mapping! 1625 * 1626 * The page does not need to be reserved. 1627 * 1628 * Usually this function is called from f_op->mmap() handler 1629 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1630 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1631 * function from other places, for example from page-fault handler. 1632 */ 1633 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1634 struct page *page) 1635 { 1636 if (addr < vma->vm_start || addr >= vma->vm_end) 1637 return -EFAULT; 1638 if (!page_count(page)) 1639 return -EINVAL; 1640 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1641 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1642 BUG_ON(vma->vm_flags & VM_PFNMAP); 1643 vma->vm_flags |= VM_MIXEDMAP; 1644 } 1645 return insert_page(vma, addr, page, vma->vm_page_prot); 1646 } 1647 EXPORT_SYMBOL(vm_insert_page); 1648 1649 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1650 pfn_t pfn, pgprot_t prot) 1651 { 1652 struct mm_struct *mm = vma->vm_mm; 1653 int retval; 1654 pte_t *pte, entry; 1655 spinlock_t *ptl; 1656 1657 retval = -ENOMEM; 1658 pte = get_locked_pte(mm, addr, &ptl); 1659 if (!pte) 1660 goto out; 1661 retval = -EBUSY; 1662 if (!pte_none(*pte)) 1663 goto out_unlock; 1664 1665 /* Ok, finally just insert the thing.. */ 1666 if (pfn_t_devmap(pfn)) 1667 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1668 else 1669 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1670 set_pte_at(mm, addr, pte, entry); 1671 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1672 1673 retval = 0; 1674 out_unlock: 1675 pte_unmap_unlock(pte, ptl); 1676 out: 1677 return retval; 1678 } 1679 1680 /** 1681 * vm_insert_pfn - insert single pfn into user vma 1682 * @vma: user vma to map to 1683 * @addr: target user address of this page 1684 * @pfn: source kernel pfn 1685 * 1686 * Similar to vm_insert_page, this allows drivers to insert individual pages 1687 * they've allocated into a user vma. Same comments apply. 1688 * 1689 * This function should only be called from a vm_ops->fault handler, and 1690 * in that case the handler should return NULL. 1691 * 1692 * vma cannot be a COW mapping. 1693 * 1694 * As this is called only for pages that do not currently exist, we 1695 * do not need to flush old virtual caches or the TLB. 1696 */ 1697 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1698 unsigned long pfn) 1699 { 1700 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1701 } 1702 EXPORT_SYMBOL(vm_insert_pfn); 1703 1704 /** 1705 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1706 * @vma: user vma to map to 1707 * @addr: target user address of this page 1708 * @pfn: source kernel pfn 1709 * @pgprot: pgprot flags for the inserted page 1710 * 1711 * This is exactly like vm_insert_pfn, except that it allows drivers to 1712 * to override pgprot on a per-page basis. 1713 * 1714 * This only makes sense for IO mappings, and it makes no sense for 1715 * cow mappings. In general, using multiple vmas is preferable; 1716 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1717 * impractical. 1718 */ 1719 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1720 unsigned long pfn, pgprot_t pgprot) 1721 { 1722 int ret; 1723 /* 1724 * Technically, architectures with pte_special can avoid all these 1725 * restrictions (same for remap_pfn_range). However we would like 1726 * consistency in testing and feature parity among all, so we should 1727 * try to keep these invariants in place for everybody. 1728 */ 1729 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1730 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1731 (VM_PFNMAP|VM_MIXEDMAP)); 1732 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1733 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1734 1735 if (addr < vma->vm_start || addr >= vma->vm_end) 1736 return -EFAULT; 1737 1738 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1739 1740 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot); 1741 1742 return ret; 1743 } 1744 EXPORT_SYMBOL(vm_insert_pfn_prot); 1745 1746 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1747 pfn_t pfn) 1748 { 1749 pgprot_t pgprot = vma->vm_page_prot; 1750 1751 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1752 1753 if (addr < vma->vm_start || addr >= vma->vm_end) 1754 return -EFAULT; 1755 1756 track_pfn_insert(vma, &pgprot, pfn); 1757 1758 /* 1759 * If we don't have pte special, then we have to use the pfn_valid() 1760 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1761 * refcount the page if pfn_valid is true (hence insert_page rather 1762 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1763 * without pte special, it would there be refcounted as a normal page. 1764 */ 1765 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1766 struct page *page; 1767 1768 /* 1769 * At this point we are committed to insert_page() 1770 * regardless of whether the caller specified flags that 1771 * result in pfn_t_has_page() == false. 1772 */ 1773 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1774 return insert_page(vma, addr, page, pgprot); 1775 } 1776 return insert_pfn(vma, addr, pfn, pgprot); 1777 } 1778 EXPORT_SYMBOL(vm_insert_mixed); 1779 1780 /* 1781 * maps a range of physical memory into the requested pages. the old 1782 * mappings are removed. any references to nonexistent pages results 1783 * in null mappings (currently treated as "copy-on-access") 1784 */ 1785 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1786 unsigned long addr, unsigned long end, 1787 unsigned long pfn, pgprot_t prot) 1788 { 1789 pte_t *pte; 1790 spinlock_t *ptl; 1791 1792 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1793 if (!pte) 1794 return -ENOMEM; 1795 arch_enter_lazy_mmu_mode(); 1796 do { 1797 BUG_ON(!pte_none(*pte)); 1798 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1799 pfn++; 1800 } while (pte++, addr += PAGE_SIZE, addr != end); 1801 arch_leave_lazy_mmu_mode(); 1802 pte_unmap_unlock(pte - 1, ptl); 1803 return 0; 1804 } 1805 1806 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1807 unsigned long addr, unsigned long end, 1808 unsigned long pfn, pgprot_t prot) 1809 { 1810 pmd_t *pmd; 1811 unsigned long next; 1812 1813 pfn -= addr >> PAGE_SHIFT; 1814 pmd = pmd_alloc(mm, pud, addr); 1815 if (!pmd) 1816 return -ENOMEM; 1817 VM_BUG_ON(pmd_trans_huge(*pmd)); 1818 do { 1819 next = pmd_addr_end(addr, end); 1820 if (remap_pte_range(mm, pmd, addr, next, 1821 pfn + (addr >> PAGE_SHIFT), prot)) 1822 return -ENOMEM; 1823 } while (pmd++, addr = next, addr != end); 1824 return 0; 1825 } 1826 1827 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 1828 unsigned long addr, unsigned long end, 1829 unsigned long pfn, pgprot_t prot) 1830 { 1831 pud_t *pud; 1832 unsigned long next; 1833 1834 pfn -= addr >> PAGE_SHIFT; 1835 pud = pud_alloc(mm, p4d, addr); 1836 if (!pud) 1837 return -ENOMEM; 1838 do { 1839 next = pud_addr_end(addr, end); 1840 if (remap_pmd_range(mm, pud, addr, next, 1841 pfn + (addr >> PAGE_SHIFT), prot)) 1842 return -ENOMEM; 1843 } while (pud++, addr = next, addr != end); 1844 return 0; 1845 } 1846 1847 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 1848 unsigned long addr, unsigned long end, 1849 unsigned long pfn, pgprot_t prot) 1850 { 1851 p4d_t *p4d; 1852 unsigned long next; 1853 1854 pfn -= addr >> PAGE_SHIFT; 1855 p4d = p4d_alloc(mm, pgd, addr); 1856 if (!p4d) 1857 return -ENOMEM; 1858 do { 1859 next = p4d_addr_end(addr, end); 1860 if (remap_pud_range(mm, p4d, addr, next, 1861 pfn + (addr >> PAGE_SHIFT), prot)) 1862 return -ENOMEM; 1863 } while (p4d++, addr = next, addr != end); 1864 return 0; 1865 } 1866 1867 /** 1868 * remap_pfn_range - remap kernel memory to userspace 1869 * @vma: user vma to map to 1870 * @addr: target user address to start at 1871 * @pfn: physical address of kernel memory 1872 * @size: size of map area 1873 * @prot: page protection flags for this mapping 1874 * 1875 * Note: this is only safe if the mm semaphore is held when called. 1876 */ 1877 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1878 unsigned long pfn, unsigned long size, pgprot_t prot) 1879 { 1880 pgd_t *pgd; 1881 unsigned long next; 1882 unsigned long end = addr + PAGE_ALIGN(size); 1883 struct mm_struct *mm = vma->vm_mm; 1884 unsigned long remap_pfn = pfn; 1885 int err; 1886 1887 /* 1888 * Physically remapped pages are special. Tell the 1889 * rest of the world about it: 1890 * VM_IO tells people not to look at these pages 1891 * (accesses can have side effects). 1892 * VM_PFNMAP tells the core MM that the base pages are just 1893 * raw PFN mappings, and do not have a "struct page" associated 1894 * with them. 1895 * VM_DONTEXPAND 1896 * Disable vma merging and expanding with mremap(). 1897 * VM_DONTDUMP 1898 * Omit vma from core dump, even when VM_IO turned off. 1899 * 1900 * There's a horrible special case to handle copy-on-write 1901 * behaviour that some programs depend on. We mark the "original" 1902 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1903 * See vm_normal_page() for details. 1904 */ 1905 if (is_cow_mapping(vma->vm_flags)) { 1906 if (addr != vma->vm_start || end != vma->vm_end) 1907 return -EINVAL; 1908 vma->vm_pgoff = pfn; 1909 } 1910 1911 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1912 if (err) 1913 return -EINVAL; 1914 1915 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1916 1917 BUG_ON(addr >= end); 1918 pfn -= addr >> PAGE_SHIFT; 1919 pgd = pgd_offset(mm, addr); 1920 flush_cache_range(vma, addr, end); 1921 do { 1922 next = pgd_addr_end(addr, end); 1923 err = remap_p4d_range(mm, pgd, addr, next, 1924 pfn + (addr >> PAGE_SHIFT), prot); 1925 if (err) 1926 break; 1927 } while (pgd++, addr = next, addr != end); 1928 1929 if (err) 1930 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1931 1932 return err; 1933 } 1934 EXPORT_SYMBOL(remap_pfn_range); 1935 1936 /** 1937 * vm_iomap_memory - remap memory to userspace 1938 * @vma: user vma to map to 1939 * @start: start of area 1940 * @len: size of area 1941 * 1942 * This is a simplified io_remap_pfn_range() for common driver use. The 1943 * driver just needs to give us the physical memory range to be mapped, 1944 * we'll figure out the rest from the vma information. 1945 * 1946 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1947 * whatever write-combining details or similar. 1948 */ 1949 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1950 { 1951 unsigned long vm_len, pfn, pages; 1952 1953 /* Check that the physical memory area passed in looks valid */ 1954 if (start + len < start) 1955 return -EINVAL; 1956 /* 1957 * You *really* shouldn't map things that aren't page-aligned, 1958 * but we've historically allowed it because IO memory might 1959 * just have smaller alignment. 1960 */ 1961 len += start & ~PAGE_MASK; 1962 pfn = start >> PAGE_SHIFT; 1963 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1964 if (pfn + pages < pfn) 1965 return -EINVAL; 1966 1967 /* We start the mapping 'vm_pgoff' pages into the area */ 1968 if (vma->vm_pgoff > pages) 1969 return -EINVAL; 1970 pfn += vma->vm_pgoff; 1971 pages -= vma->vm_pgoff; 1972 1973 /* Can we fit all of the mapping? */ 1974 vm_len = vma->vm_end - vma->vm_start; 1975 if (vm_len >> PAGE_SHIFT > pages) 1976 return -EINVAL; 1977 1978 /* Ok, let it rip */ 1979 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1980 } 1981 EXPORT_SYMBOL(vm_iomap_memory); 1982 1983 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1984 unsigned long addr, unsigned long end, 1985 pte_fn_t fn, void *data) 1986 { 1987 pte_t *pte; 1988 int err; 1989 pgtable_t token; 1990 spinlock_t *uninitialized_var(ptl); 1991 1992 pte = (mm == &init_mm) ? 1993 pte_alloc_kernel(pmd, addr) : 1994 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1995 if (!pte) 1996 return -ENOMEM; 1997 1998 BUG_ON(pmd_huge(*pmd)); 1999 2000 arch_enter_lazy_mmu_mode(); 2001 2002 token = pmd_pgtable(*pmd); 2003 2004 do { 2005 err = fn(pte++, token, addr, data); 2006 if (err) 2007 break; 2008 } while (addr += PAGE_SIZE, addr != end); 2009 2010 arch_leave_lazy_mmu_mode(); 2011 2012 if (mm != &init_mm) 2013 pte_unmap_unlock(pte-1, ptl); 2014 return err; 2015 } 2016 2017 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2018 unsigned long addr, unsigned long end, 2019 pte_fn_t fn, void *data) 2020 { 2021 pmd_t *pmd; 2022 unsigned long next; 2023 int err; 2024 2025 BUG_ON(pud_huge(*pud)); 2026 2027 pmd = pmd_alloc(mm, pud, addr); 2028 if (!pmd) 2029 return -ENOMEM; 2030 do { 2031 next = pmd_addr_end(addr, end); 2032 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2033 if (err) 2034 break; 2035 } while (pmd++, addr = next, addr != end); 2036 return err; 2037 } 2038 2039 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2040 unsigned long addr, unsigned long end, 2041 pte_fn_t fn, void *data) 2042 { 2043 pud_t *pud; 2044 unsigned long next; 2045 int err; 2046 2047 pud = pud_alloc(mm, p4d, addr); 2048 if (!pud) 2049 return -ENOMEM; 2050 do { 2051 next = pud_addr_end(addr, end); 2052 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2053 if (err) 2054 break; 2055 } while (pud++, addr = next, addr != end); 2056 return err; 2057 } 2058 2059 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2060 unsigned long addr, unsigned long end, 2061 pte_fn_t fn, void *data) 2062 { 2063 p4d_t *p4d; 2064 unsigned long next; 2065 int err; 2066 2067 p4d = p4d_alloc(mm, pgd, addr); 2068 if (!p4d) 2069 return -ENOMEM; 2070 do { 2071 next = p4d_addr_end(addr, end); 2072 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2073 if (err) 2074 break; 2075 } while (p4d++, addr = next, addr != end); 2076 return err; 2077 } 2078 2079 /* 2080 * Scan a region of virtual memory, filling in page tables as necessary 2081 * and calling a provided function on each leaf page table. 2082 */ 2083 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2084 unsigned long size, pte_fn_t fn, void *data) 2085 { 2086 pgd_t *pgd; 2087 unsigned long next; 2088 unsigned long end = addr + size; 2089 int err; 2090 2091 if (WARN_ON(addr >= end)) 2092 return -EINVAL; 2093 2094 pgd = pgd_offset(mm, addr); 2095 do { 2096 next = pgd_addr_end(addr, end); 2097 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2098 if (err) 2099 break; 2100 } while (pgd++, addr = next, addr != end); 2101 2102 return err; 2103 } 2104 EXPORT_SYMBOL_GPL(apply_to_page_range); 2105 2106 /* 2107 * handle_pte_fault chooses page fault handler according to an entry which was 2108 * read non-atomically. Before making any commitment, on those architectures 2109 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2110 * parts, do_swap_page must check under lock before unmapping the pte and 2111 * proceeding (but do_wp_page is only called after already making such a check; 2112 * and do_anonymous_page can safely check later on). 2113 */ 2114 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2115 pte_t *page_table, pte_t orig_pte) 2116 { 2117 int same = 1; 2118 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2119 if (sizeof(pte_t) > sizeof(unsigned long)) { 2120 spinlock_t *ptl = pte_lockptr(mm, pmd); 2121 spin_lock(ptl); 2122 same = pte_same(*page_table, orig_pte); 2123 spin_unlock(ptl); 2124 } 2125 #endif 2126 pte_unmap(page_table); 2127 return same; 2128 } 2129 2130 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2131 { 2132 debug_dma_assert_idle(src); 2133 2134 /* 2135 * If the source page was a PFN mapping, we don't have 2136 * a "struct page" for it. We do a best-effort copy by 2137 * just copying from the original user address. If that 2138 * fails, we just zero-fill it. Live with it. 2139 */ 2140 if (unlikely(!src)) { 2141 void *kaddr = kmap_atomic(dst); 2142 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2143 2144 /* 2145 * This really shouldn't fail, because the page is there 2146 * in the page tables. But it might just be unreadable, 2147 * in which case we just give up and fill the result with 2148 * zeroes. 2149 */ 2150 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2151 clear_page(kaddr); 2152 kunmap_atomic(kaddr); 2153 flush_dcache_page(dst); 2154 } else 2155 copy_user_highpage(dst, src, va, vma); 2156 } 2157 2158 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2159 { 2160 struct file *vm_file = vma->vm_file; 2161 2162 if (vm_file) 2163 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2164 2165 /* 2166 * Special mappings (e.g. VDSO) do not have any file so fake 2167 * a default GFP_KERNEL for them. 2168 */ 2169 return GFP_KERNEL; 2170 } 2171 2172 /* 2173 * Notify the address space that the page is about to become writable so that 2174 * it can prohibit this or wait for the page to get into an appropriate state. 2175 * 2176 * We do this without the lock held, so that it can sleep if it needs to. 2177 */ 2178 static int do_page_mkwrite(struct vm_fault *vmf) 2179 { 2180 int ret; 2181 struct page *page = vmf->page; 2182 unsigned int old_flags = vmf->flags; 2183 2184 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2185 2186 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2187 /* Restore original flags so that caller is not surprised */ 2188 vmf->flags = old_flags; 2189 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2190 return ret; 2191 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2192 lock_page(page); 2193 if (!page->mapping) { 2194 unlock_page(page); 2195 return 0; /* retry */ 2196 } 2197 ret |= VM_FAULT_LOCKED; 2198 } else 2199 VM_BUG_ON_PAGE(!PageLocked(page), page); 2200 return ret; 2201 } 2202 2203 /* 2204 * Handle dirtying of a page in shared file mapping on a write fault. 2205 * 2206 * The function expects the page to be locked and unlocks it. 2207 */ 2208 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2209 struct page *page) 2210 { 2211 struct address_space *mapping; 2212 bool dirtied; 2213 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2214 2215 dirtied = set_page_dirty(page); 2216 VM_BUG_ON_PAGE(PageAnon(page), page); 2217 /* 2218 * Take a local copy of the address_space - page.mapping may be zeroed 2219 * by truncate after unlock_page(). The address_space itself remains 2220 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2221 * release semantics to prevent the compiler from undoing this copying. 2222 */ 2223 mapping = page_rmapping(page); 2224 unlock_page(page); 2225 2226 if ((dirtied || page_mkwrite) && mapping) { 2227 /* 2228 * Some device drivers do not set page.mapping 2229 * but still dirty their pages 2230 */ 2231 balance_dirty_pages_ratelimited(mapping); 2232 } 2233 2234 if (!page_mkwrite) 2235 file_update_time(vma->vm_file); 2236 } 2237 2238 /* 2239 * Handle write page faults for pages that can be reused in the current vma 2240 * 2241 * This can happen either due to the mapping being with the VM_SHARED flag, 2242 * or due to us being the last reference standing to the page. In either 2243 * case, all we need to do here is to mark the page as writable and update 2244 * any related book-keeping. 2245 */ 2246 static inline void wp_page_reuse(struct vm_fault *vmf) 2247 __releases(vmf->ptl) 2248 { 2249 struct vm_area_struct *vma = vmf->vma; 2250 struct page *page = vmf->page; 2251 pte_t entry; 2252 /* 2253 * Clear the pages cpupid information as the existing 2254 * information potentially belongs to a now completely 2255 * unrelated process. 2256 */ 2257 if (page) 2258 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2259 2260 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2261 entry = pte_mkyoung(vmf->orig_pte); 2262 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2263 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2264 update_mmu_cache(vma, vmf->address, vmf->pte); 2265 pte_unmap_unlock(vmf->pte, vmf->ptl); 2266 } 2267 2268 /* 2269 * Handle the case of a page which we actually need to copy to a new page. 2270 * 2271 * Called with mmap_sem locked and the old page referenced, but 2272 * without the ptl held. 2273 * 2274 * High level logic flow: 2275 * 2276 * - Allocate a page, copy the content of the old page to the new one. 2277 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2278 * - Take the PTL. If the pte changed, bail out and release the allocated page 2279 * - If the pte is still the way we remember it, update the page table and all 2280 * relevant references. This includes dropping the reference the page-table 2281 * held to the old page, as well as updating the rmap. 2282 * - In any case, unlock the PTL and drop the reference we took to the old page. 2283 */ 2284 static int wp_page_copy(struct vm_fault *vmf) 2285 { 2286 struct vm_area_struct *vma = vmf->vma; 2287 struct mm_struct *mm = vma->vm_mm; 2288 struct page *old_page = vmf->page; 2289 struct page *new_page = NULL; 2290 pte_t entry; 2291 int page_copied = 0; 2292 const unsigned long mmun_start = vmf->address & PAGE_MASK; 2293 const unsigned long mmun_end = mmun_start + PAGE_SIZE; 2294 struct mem_cgroup *memcg; 2295 2296 if (unlikely(anon_vma_prepare(vma))) 2297 goto oom; 2298 2299 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2300 new_page = alloc_zeroed_user_highpage_movable(vma, 2301 vmf->address); 2302 if (!new_page) 2303 goto oom; 2304 } else { 2305 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2306 vmf->address); 2307 if (!new_page) 2308 goto oom; 2309 cow_user_page(new_page, old_page, vmf->address, vma); 2310 } 2311 2312 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) 2313 goto oom_free_new; 2314 2315 __SetPageUptodate(new_page); 2316 2317 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2318 2319 /* 2320 * Re-check the pte - we dropped the lock 2321 */ 2322 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2323 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2324 if (old_page) { 2325 if (!PageAnon(old_page)) { 2326 dec_mm_counter_fast(mm, 2327 mm_counter_file(old_page)); 2328 inc_mm_counter_fast(mm, MM_ANONPAGES); 2329 } 2330 } else { 2331 inc_mm_counter_fast(mm, MM_ANONPAGES); 2332 } 2333 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2334 entry = mk_pte(new_page, vma->vm_page_prot); 2335 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2336 /* 2337 * Clear the pte entry and flush it first, before updating the 2338 * pte with the new entry. This will avoid a race condition 2339 * seen in the presence of one thread doing SMC and another 2340 * thread doing COW. 2341 */ 2342 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2343 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2344 mem_cgroup_commit_charge(new_page, memcg, false, false); 2345 lru_cache_add_active_or_unevictable(new_page, vma); 2346 /* 2347 * We call the notify macro here because, when using secondary 2348 * mmu page tables (such as kvm shadow page tables), we want the 2349 * new page to be mapped directly into the secondary page table. 2350 */ 2351 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2352 update_mmu_cache(vma, vmf->address, vmf->pte); 2353 if (old_page) { 2354 /* 2355 * Only after switching the pte to the new page may 2356 * we remove the mapcount here. Otherwise another 2357 * process may come and find the rmap count decremented 2358 * before the pte is switched to the new page, and 2359 * "reuse" the old page writing into it while our pte 2360 * here still points into it and can be read by other 2361 * threads. 2362 * 2363 * The critical issue is to order this 2364 * page_remove_rmap with the ptp_clear_flush above. 2365 * Those stores are ordered by (if nothing else,) 2366 * the barrier present in the atomic_add_negative 2367 * in page_remove_rmap. 2368 * 2369 * Then the TLB flush in ptep_clear_flush ensures that 2370 * no process can access the old page before the 2371 * decremented mapcount is visible. And the old page 2372 * cannot be reused until after the decremented 2373 * mapcount is visible. So transitively, TLBs to 2374 * old page will be flushed before it can be reused. 2375 */ 2376 page_remove_rmap(old_page, false); 2377 } 2378 2379 /* Free the old page.. */ 2380 new_page = old_page; 2381 page_copied = 1; 2382 } else { 2383 mem_cgroup_cancel_charge(new_page, memcg, false); 2384 } 2385 2386 if (new_page) 2387 put_page(new_page); 2388 2389 pte_unmap_unlock(vmf->pte, vmf->ptl); 2390 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2391 if (old_page) { 2392 /* 2393 * Don't let another task, with possibly unlocked vma, 2394 * keep the mlocked page. 2395 */ 2396 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2397 lock_page(old_page); /* LRU manipulation */ 2398 if (PageMlocked(old_page)) 2399 munlock_vma_page(old_page); 2400 unlock_page(old_page); 2401 } 2402 put_page(old_page); 2403 } 2404 return page_copied ? VM_FAULT_WRITE : 0; 2405 oom_free_new: 2406 put_page(new_page); 2407 oom: 2408 if (old_page) 2409 put_page(old_page); 2410 return VM_FAULT_OOM; 2411 } 2412 2413 /** 2414 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2415 * writeable once the page is prepared 2416 * 2417 * @vmf: structure describing the fault 2418 * 2419 * This function handles all that is needed to finish a write page fault in a 2420 * shared mapping due to PTE being read-only once the mapped page is prepared. 2421 * It handles locking of PTE and modifying it. The function returns 2422 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE 2423 * lock. 2424 * 2425 * The function expects the page to be locked or other protection against 2426 * concurrent faults / writeback (such as DAX radix tree locks). 2427 */ 2428 int finish_mkwrite_fault(struct vm_fault *vmf) 2429 { 2430 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2431 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2432 &vmf->ptl); 2433 /* 2434 * We might have raced with another page fault while we released the 2435 * pte_offset_map_lock. 2436 */ 2437 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2438 pte_unmap_unlock(vmf->pte, vmf->ptl); 2439 return VM_FAULT_NOPAGE; 2440 } 2441 wp_page_reuse(vmf); 2442 return 0; 2443 } 2444 2445 /* 2446 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2447 * mapping 2448 */ 2449 static int wp_pfn_shared(struct vm_fault *vmf) 2450 { 2451 struct vm_area_struct *vma = vmf->vma; 2452 2453 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2454 int ret; 2455 2456 pte_unmap_unlock(vmf->pte, vmf->ptl); 2457 vmf->flags |= FAULT_FLAG_MKWRITE; 2458 ret = vma->vm_ops->pfn_mkwrite(vmf); 2459 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2460 return ret; 2461 return finish_mkwrite_fault(vmf); 2462 } 2463 wp_page_reuse(vmf); 2464 return VM_FAULT_WRITE; 2465 } 2466 2467 static int wp_page_shared(struct vm_fault *vmf) 2468 __releases(vmf->ptl) 2469 { 2470 struct vm_area_struct *vma = vmf->vma; 2471 2472 get_page(vmf->page); 2473 2474 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2475 int tmp; 2476 2477 pte_unmap_unlock(vmf->pte, vmf->ptl); 2478 tmp = do_page_mkwrite(vmf); 2479 if (unlikely(!tmp || (tmp & 2480 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2481 put_page(vmf->page); 2482 return tmp; 2483 } 2484 tmp = finish_mkwrite_fault(vmf); 2485 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2486 unlock_page(vmf->page); 2487 put_page(vmf->page); 2488 return tmp; 2489 } 2490 } else { 2491 wp_page_reuse(vmf); 2492 lock_page(vmf->page); 2493 } 2494 fault_dirty_shared_page(vma, vmf->page); 2495 put_page(vmf->page); 2496 2497 return VM_FAULT_WRITE; 2498 } 2499 2500 /* 2501 * This routine handles present pages, when users try to write 2502 * to a shared page. It is done by copying the page to a new address 2503 * and decrementing the shared-page counter for the old page. 2504 * 2505 * Note that this routine assumes that the protection checks have been 2506 * done by the caller (the low-level page fault routine in most cases). 2507 * Thus we can safely just mark it writable once we've done any necessary 2508 * COW. 2509 * 2510 * We also mark the page dirty at this point even though the page will 2511 * change only once the write actually happens. This avoids a few races, 2512 * and potentially makes it more efficient. 2513 * 2514 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2515 * but allow concurrent faults), with pte both mapped and locked. 2516 * We return with mmap_sem still held, but pte unmapped and unlocked. 2517 */ 2518 static int do_wp_page(struct vm_fault *vmf) 2519 __releases(vmf->ptl) 2520 { 2521 struct vm_area_struct *vma = vmf->vma; 2522 2523 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2524 if (!vmf->page) { 2525 /* 2526 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2527 * VM_PFNMAP VMA. 2528 * 2529 * We should not cow pages in a shared writeable mapping. 2530 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2531 */ 2532 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2533 (VM_WRITE|VM_SHARED)) 2534 return wp_pfn_shared(vmf); 2535 2536 pte_unmap_unlock(vmf->pte, vmf->ptl); 2537 return wp_page_copy(vmf); 2538 } 2539 2540 /* 2541 * Take out anonymous pages first, anonymous shared vmas are 2542 * not dirty accountable. 2543 */ 2544 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { 2545 int total_mapcount; 2546 if (!trylock_page(vmf->page)) { 2547 get_page(vmf->page); 2548 pte_unmap_unlock(vmf->pte, vmf->ptl); 2549 lock_page(vmf->page); 2550 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2551 vmf->address, &vmf->ptl); 2552 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2553 unlock_page(vmf->page); 2554 pte_unmap_unlock(vmf->pte, vmf->ptl); 2555 put_page(vmf->page); 2556 return 0; 2557 } 2558 put_page(vmf->page); 2559 } 2560 if (reuse_swap_page(vmf->page, &total_mapcount)) { 2561 if (total_mapcount == 1) { 2562 /* 2563 * The page is all ours. Move it to 2564 * our anon_vma so the rmap code will 2565 * not search our parent or siblings. 2566 * Protected against the rmap code by 2567 * the page lock. 2568 */ 2569 page_move_anon_rmap(vmf->page, vma); 2570 } 2571 unlock_page(vmf->page); 2572 wp_page_reuse(vmf); 2573 return VM_FAULT_WRITE; 2574 } 2575 unlock_page(vmf->page); 2576 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2577 (VM_WRITE|VM_SHARED))) { 2578 return wp_page_shared(vmf); 2579 } 2580 2581 /* 2582 * Ok, we need to copy. Oh, well.. 2583 */ 2584 get_page(vmf->page); 2585 2586 pte_unmap_unlock(vmf->pte, vmf->ptl); 2587 return wp_page_copy(vmf); 2588 } 2589 2590 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2591 unsigned long start_addr, unsigned long end_addr, 2592 struct zap_details *details) 2593 { 2594 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2595 } 2596 2597 static inline void unmap_mapping_range_tree(struct rb_root *root, 2598 struct zap_details *details) 2599 { 2600 struct vm_area_struct *vma; 2601 pgoff_t vba, vea, zba, zea; 2602 2603 vma_interval_tree_foreach(vma, root, 2604 details->first_index, details->last_index) { 2605 2606 vba = vma->vm_pgoff; 2607 vea = vba + vma_pages(vma) - 1; 2608 zba = details->first_index; 2609 if (zba < vba) 2610 zba = vba; 2611 zea = details->last_index; 2612 if (zea > vea) 2613 zea = vea; 2614 2615 unmap_mapping_range_vma(vma, 2616 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2617 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2618 details); 2619 } 2620 } 2621 2622 /** 2623 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2624 * address_space corresponding to the specified page range in the underlying 2625 * file. 2626 * 2627 * @mapping: the address space containing mmaps to be unmapped. 2628 * @holebegin: byte in first page to unmap, relative to the start of 2629 * the underlying file. This will be rounded down to a PAGE_SIZE 2630 * boundary. Note that this is different from truncate_pagecache(), which 2631 * must keep the partial page. In contrast, we must get rid of 2632 * partial pages. 2633 * @holelen: size of prospective hole in bytes. This will be rounded 2634 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2635 * end of the file. 2636 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2637 * but 0 when invalidating pagecache, don't throw away private data. 2638 */ 2639 void unmap_mapping_range(struct address_space *mapping, 2640 loff_t const holebegin, loff_t const holelen, int even_cows) 2641 { 2642 struct zap_details details = { }; 2643 pgoff_t hba = holebegin >> PAGE_SHIFT; 2644 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2645 2646 /* Check for overflow. */ 2647 if (sizeof(holelen) > sizeof(hlen)) { 2648 long long holeend = 2649 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2650 if (holeend & ~(long long)ULONG_MAX) 2651 hlen = ULONG_MAX - hba + 1; 2652 } 2653 2654 details.check_mapping = even_cows ? NULL : mapping; 2655 details.first_index = hba; 2656 details.last_index = hba + hlen - 1; 2657 if (details.last_index < details.first_index) 2658 details.last_index = ULONG_MAX; 2659 2660 i_mmap_lock_write(mapping); 2661 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2662 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2663 i_mmap_unlock_write(mapping); 2664 } 2665 EXPORT_SYMBOL(unmap_mapping_range); 2666 2667 /* 2668 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2669 * but allow concurrent faults), and pte mapped but not yet locked. 2670 * We return with pte unmapped and unlocked. 2671 * 2672 * We return with the mmap_sem locked or unlocked in the same cases 2673 * as does filemap_fault(). 2674 */ 2675 int do_swap_page(struct vm_fault *vmf) 2676 { 2677 struct vm_area_struct *vma = vmf->vma; 2678 struct page *page, *swapcache; 2679 struct mem_cgroup *memcg; 2680 swp_entry_t entry; 2681 pte_t pte; 2682 int locked; 2683 int exclusive = 0; 2684 int ret = 0; 2685 2686 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2687 goto out; 2688 2689 entry = pte_to_swp_entry(vmf->orig_pte); 2690 if (unlikely(non_swap_entry(entry))) { 2691 if (is_migration_entry(entry)) { 2692 migration_entry_wait(vma->vm_mm, vmf->pmd, 2693 vmf->address); 2694 } else if (is_hwpoison_entry(entry)) { 2695 ret = VM_FAULT_HWPOISON; 2696 } else { 2697 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2698 ret = VM_FAULT_SIGBUS; 2699 } 2700 goto out; 2701 } 2702 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2703 page = lookup_swap_cache(entry); 2704 if (!page) { 2705 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma, 2706 vmf->address); 2707 if (!page) { 2708 /* 2709 * Back out if somebody else faulted in this pte 2710 * while we released the pte lock. 2711 */ 2712 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2713 vmf->address, &vmf->ptl); 2714 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2715 ret = VM_FAULT_OOM; 2716 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2717 goto unlock; 2718 } 2719 2720 /* Had to read the page from swap area: Major fault */ 2721 ret = VM_FAULT_MAJOR; 2722 count_vm_event(PGMAJFAULT); 2723 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2724 } else if (PageHWPoison(page)) { 2725 /* 2726 * hwpoisoned dirty swapcache pages are kept for killing 2727 * owner processes (which may be unknown at hwpoison time) 2728 */ 2729 ret = VM_FAULT_HWPOISON; 2730 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2731 swapcache = page; 2732 goto out_release; 2733 } 2734 2735 swapcache = page; 2736 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2737 2738 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2739 if (!locked) { 2740 ret |= VM_FAULT_RETRY; 2741 goto out_release; 2742 } 2743 2744 /* 2745 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2746 * release the swapcache from under us. The page pin, and pte_same 2747 * test below, are not enough to exclude that. Even if it is still 2748 * swapcache, we need to check that the page's swap has not changed. 2749 */ 2750 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2751 goto out_page; 2752 2753 page = ksm_might_need_to_copy(page, vma, vmf->address); 2754 if (unlikely(!page)) { 2755 ret = VM_FAULT_OOM; 2756 page = swapcache; 2757 goto out_page; 2758 } 2759 2760 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 2761 &memcg, false)) { 2762 ret = VM_FAULT_OOM; 2763 goto out_page; 2764 } 2765 2766 /* 2767 * Back out if somebody else already faulted in this pte. 2768 */ 2769 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2770 &vmf->ptl); 2771 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2772 goto out_nomap; 2773 2774 if (unlikely(!PageUptodate(page))) { 2775 ret = VM_FAULT_SIGBUS; 2776 goto out_nomap; 2777 } 2778 2779 /* 2780 * The page isn't present yet, go ahead with the fault. 2781 * 2782 * Be careful about the sequence of operations here. 2783 * To get its accounting right, reuse_swap_page() must be called 2784 * while the page is counted on swap but not yet in mapcount i.e. 2785 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2786 * must be called after the swap_free(), or it will never succeed. 2787 */ 2788 2789 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2790 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2791 pte = mk_pte(page, vma->vm_page_prot); 2792 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2793 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2794 vmf->flags &= ~FAULT_FLAG_WRITE; 2795 ret |= VM_FAULT_WRITE; 2796 exclusive = RMAP_EXCLUSIVE; 2797 } 2798 flush_icache_page(vma, page); 2799 if (pte_swp_soft_dirty(vmf->orig_pte)) 2800 pte = pte_mksoft_dirty(pte); 2801 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2802 vmf->orig_pte = pte; 2803 if (page == swapcache) { 2804 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 2805 mem_cgroup_commit_charge(page, memcg, true, false); 2806 activate_page(page); 2807 } else { /* ksm created a completely new copy */ 2808 page_add_new_anon_rmap(page, vma, vmf->address, false); 2809 mem_cgroup_commit_charge(page, memcg, false, false); 2810 lru_cache_add_active_or_unevictable(page, vma); 2811 } 2812 2813 swap_free(entry); 2814 if (mem_cgroup_swap_full(page) || 2815 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2816 try_to_free_swap(page); 2817 unlock_page(page); 2818 if (page != swapcache) { 2819 /* 2820 * Hold the lock to avoid the swap entry to be reused 2821 * until we take the PT lock for the pte_same() check 2822 * (to avoid false positives from pte_same). For 2823 * further safety release the lock after the swap_free 2824 * so that the swap count won't change under a 2825 * parallel locked swapcache. 2826 */ 2827 unlock_page(swapcache); 2828 put_page(swapcache); 2829 } 2830 2831 if (vmf->flags & FAULT_FLAG_WRITE) { 2832 ret |= do_wp_page(vmf); 2833 if (ret & VM_FAULT_ERROR) 2834 ret &= VM_FAULT_ERROR; 2835 goto out; 2836 } 2837 2838 /* No need to invalidate - it was non-present before */ 2839 update_mmu_cache(vma, vmf->address, vmf->pte); 2840 unlock: 2841 pte_unmap_unlock(vmf->pte, vmf->ptl); 2842 out: 2843 return ret; 2844 out_nomap: 2845 mem_cgroup_cancel_charge(page, memcg, false); 2846 pte_unmap_unlock(vmf->pte, vmf->ptl); 2847 out_page: 2848 unlock_page(page); 2849 out_release: 2850 put_page(page); 2851 if (page != swapcache) { 2852 unlock_page(swapcache); 2853 put_page(swapcache); 2854 } 2855 return ret; 2856 } 2857 2858 /* 2859 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2860 * but allow concurrent faults), and pte mapped but not yet locked. 2861 * We return with mmap_sem still held, but pte unmapped and unlocked. 2862 */ 2863 static int do_anonymous_page(struct vm_fault *vmf) 2864 { 2865 struct vm_area_struct *vma = vmf->vma; 2866 struct mem_cgroup *memcg; 2867 struct page *page; 2868 pte_t entry; 2869 2870 /* File mapping without ->vm_ops ? */ 2871 if (vma->vm_flags & VM_SHARED) 2872 return VM_FAULT_SIGBUS; 2873 2874 /* 2875 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2876 * pte_offset_map() on pmds where a huge pmd might be created 2877 * from a different thread. 2878 * 2879 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2880 * parallel threads are excluded by other means. 2881 * 2882 * Here we only have down_read(mmap_sem). 2883 */ 2884 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address)) 2885 return VM_FAULT_OOM; 2886 2887 /* See the comment in pte_alloc_one_map() */ 2888 if (unlikely(pmd_trans_unstable(vmf->pmd))) 2889 return 0; 2890 2891 /* Use the zero-page for reads */ 2892 if (!(vmf->flags & FAULT_FLAG_WRITE) && 2893 !mm_forbids_zeropage(vma->vm_mm)) { 2894 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 2895 vma->vm_page_prot)); 2896 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2897 vmf->address, &vmf->ptl); 2898 if (!pte_none(*vmf->pte)) 2899 goto unlock; 2900 /* Deliver the page fault to userland, check inside PT lock */ 2901 if (userfaultfd_missing(vma)) { 2902 pte_unmap_unlock(vmf->pte, vmf->ptl); 2903 return handle_userfault(vmf, VM_UFFD_MISSING); 2904 } 2905 goto setpte; 2906 } 2907 2908 /* Allocate our own private page. */ 2909 if (unlikely(anon_vma_prepare(vma))) 2910 goto oom; 2911 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 2912 if (!page) 2913 goto oom; 2914 2915 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2916 goto oom_free_page; 2917 2918 /* 2919 * The memory barrier inside __SetPageUptodate makes sure that 2920 * preceeding stores to the page contents become visible before 2921 * the set_pte_at() write. 2922 */ 2923 __SetPageUptodate(page); 2924 2925 entry = mk_pte(page, vma->vm_page_prot); 2926 if (vma->vm_flags & VM_WRITE) 2927 entry = pte_mkwrite(pte_mkdirty(entry)); 2928 2929 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2930 &vmf->ptl); 2931 if (!pte_none(*vmf->pte)) 2932 goto release; 2933 2934 /* Deliver the page fault to userland, check inside PT lock */ 2935 if (userfaultfd_missing(vma)) { 2936 pte_unmap_unlock(vmf->pte, vmf->ptl); 2937 mem_cgroup_cancel_charge(page, memcg, false); 2938 put_page(page); 2939 return handle_userfault(vmf, VM_UFFD_MISSING); 2940 } 2941 2942 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2943 page_add_new_anon_rmap(page, vma, vmf->address, false); 2944 mem_cgroup_commit_charge(page, memcg, false, false); 2945 lru_cache_add_active_or_unevictable(page, vma); 2946 setpte: 2947 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 2948 2949 /* No need to invalidate - it was non-present before */ 2950 update_mmu_cache(vma, vmf->address, vmf->pte); 2951 unlock: 2952 pte_unmap_unlock(vmf->pte, vmf->ptl); 2953 return 0; 2954 release: 2955 mem_cgroup_cancel_charge(page, memcg, false); 2956 put_page(page); 2957 goto unlock; 2958 oom_free_page: 2959 put_page(page); 2960 oom: 2961 return VM_FAULT_OOM; 2962 } 2963 2964 /* 2965 * The mmap_sem must have been held on entry, and may have been 2966 * released depending on flags and vma->vm_ops->fault() return value. 2967 * See filemap_fault() and __lock_page_retry(). 2968 */ 2969 static int __do_fault(struct vm_fault *vmf) 2970 { 2971 struct vm_area_struct *vma = vmf->vma; 2972 int ret; 2973 2974 ret = vma->vm_ops->fault(vmf); 2975 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 2976 VM_FAULT_DONE_COW))) 2977 return ret; 2978 2979 if (unlikely(PageHWPoison(vmf->page))) { 2980 if (ret & VM_FAULT_LOCKED) 2981 unlock_page(vmf->page); 2982 put_page(vmf->page); 2983 vmf->page = NULL; 2984 return VM_FAULT_HWPOISON; 2985 } 2986 2987 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2988 lock_page(vmf->page); 2989 else 2990 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 2991 2992 return ret; 2993 } 2994 2995 /* 2996 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 2997 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 2998 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 2999 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3000 */ 3001 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3002 { 3003 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3004 } 3005 3006 static int pte_alloc_one_map(struct vm_fault *vmf) 3007 { 3008 struct vm_area_struct *vma = vmf->vma; 3009 3010 if (!pmd_none(*vmf->pmd)) 3011 goto map_pte; 3012 if (vmf->prealloc_pte) { 3013 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3014 if (unlikely(!pmd_none(*vmf->pmd))) { 3015 spin_unlock(vmf->ptl); 3016 goto map_pte; 3017 } 3018 3019 atomic_long_inc(&vma->vm_mm->nr_ptes); 3020 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3021 spin_unlock(vmf->ptl); 3022 vmf->prealloc_pte = NULL; 3023 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) { 3024 return VM_FAULT_OOM; 3025 } 3026 map_pte: 3027 /* 3028 * If a huge pmd materialized under us just retry later. Use 3029 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3030 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3031 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3032 * running immediately after a huge pmd fault in a different thread of 3033 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3034 * All we have to ensure is that it is a regular pmd that we can walk 3035 * with pte_offset_map() and we can do that through an atomic read in 3036 * C, which is what pmd_trans_unstable() provides. 3037 */ 3038 if (pmd_devmap_trans_unstable(vmf->pmd)) 3039 return VM_FAULT_NOPAGE; 3040 3041 /* 3042 * At this point we know that our vmf->pmd points to a page of ptes 3043 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3044 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3045 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3046 * be valid and we will re-check to make sure the vmf->pte isn't 3047 * pte_none() under vmf->ptl protection when we return to 3048 * alloc_set_pte(). 3049 */ 3050 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3051 &vmf->ptl); 3052 return 0; 3053 } 3054 3055 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3056 3057 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3058 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3059 unsigned long haddr) 3060 { 3061 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3062 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3063 return false; 3064 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3065 return false; 3066 return true; 3067 } 3068 3069 static void deposit_prealloc_pte(struct vm_fault *vmf) 3070 { 3071 struct vm_area_struct *vma = vmf->vma; 3072 3073 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3074 /* 3075 * We are going to consume the prealloc table, 3076 * count that as nr_ptes. 3077 */ 3078 atomic_long_inc(&vma->vm_mm->nr_ptes); 3079 vmf->prealloc_pte = NULL; 3080 } 3081 3082 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3083 { 3084 struct vm_area_struct *vma = vmf->vma; 3085 bool write = vmf->flags & FAULT_FLAG_WRITE; 3086 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3087 pmd_t entry; 3088 int i, ret; 3089 3090 if (!transhuge_vma_suitable(vma, haddr)) 3091 return VM_FAULT_FALLBACK; 3092 3093 ret = VM_FAULT_FALLBACK; 3094 page = compound_head(page); 3095 3096 /* 3097 * Archs like ppc64 need additonal space to store information 3098 * related to pte entry. Use the preallocated table for that. 3099 */ 3100 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3101 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address); 3102 if (!vmf->prealloc_pte) 3103 return VM_FAULT_OOM; 3104 smp_wmb(); /* See comment in __pte_alloc() */ 3105 } 3106 3107 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3108 if (unlikely(!pmd_none(*vmf->pmd))) 3109 goto out; 3110 3111 for (i = 0; i < HPAGE_PMD_NR; i++) 3112 flush_icache_page(vma, page + i); 3113 3114 entry = mk_huge_pmd(page, vma->vm_page_prot); 3115 if (write) 3116 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3117 3118 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR); 3119 page_add_file_rmap(page, true); 3120 /* 3121 * deposit and withdraw with pmd lock held 3122 */ 3123 if (arch_needs_pgtable_deposit()) 3124 deposit_prealloc_pte(vmf); 3125 3126 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3127 3128 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3129 3130 /* fault is handled */ 3131 ret = 0; 3132 count_vm_event(THP_FILE_MAPPED); 3133 out: 3134 spin_unlock(vmf->ptl); 3135 return ret; 3136 } 3137 #else 3138 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3139 { 3140 BUILD_BUG(); 3141 return 0; 3142 } 3143 #endif 3144 3145 /** 3146 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3147 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3148 * 3149 * @vmf: fault environment 3150 * @memcg: memcg to charge page (only for private mappings) 3151 * @page: page to map 3152 * 3153 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3154 * return. 3155 * 3156 * Target users are page handler itself and implementations of 3157 * vm_ops->map_pages. 3158 */ 3159 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3160 struct page *page) 3161 { 3162 struct vm_area_struct *vma = vmf->vma; 3163 bool write = vmf->flags & FAULT_FLAG_WRITE; 3164 pte_t entry; 3165 int ret; 3166 3167 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3168 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3169 /* THP on COW? */ 3170 VM_BUG_ON_PAGE(memcg, page); 3171 3172 ret = do_set_pmd(vmf, page); 3173 if (ret != VM_FAULT_FALLBACK) 3174 return ret; 3175 } 3176 3177 if (!vmf->pte) { 3178 ret = pte_alloc_one_map(vmf); 3179 if (ret) 3180 return ret; 3181 } 3182 3183 /* Re-check under ptl */ 3184 if (unlikely(!pte_none(*vmf->pte))) 3185 return VM_FAULT_NOPAGE; 3186 3187 flush_icache_page(vma, page); 3188 entry = mk_pte(page, vma->vm_page_prot); 3189 if (write) 3190 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3191 /* copy-on-write page */ 3192 if (write && !(vma->vm_flags & VM_SHARED)) { 3193 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3194 page_add_new_anon_rmap(page, vma, vmf->address, false); 3195 mem_cgroup_commit_charge(page, memcg, false, false); 3196 lru_cache_add_active_or_unevictable(page, vma); 3197 } else { 3198 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3199 page_add_file_rmap(page, false); 3200 } 3201 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3202 3203 /* no need to invalidate: a not-present page won't be cached */ 3204 update_mmu_cache(vma, vmf->address, vmf->pte); 3205 3206 return 0; 3207 } 3208 3209 3210 /** 3211 * finish_fault - finish page fault once we have prepared the page to fault 3212 * 3213 * @vmf: structure describing the fault 3214 * 3215 * This function handles all that is needed to finish a page fault once the 3216 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3217 * given page, adds reverse page mapping, handles memcg charges and LRU 3218 * addition. The function returns 0 on success, VM_FAULT_ code in case of 3219 * error. 3220 * 3221 * The function expects the page to be locked and on success it consumes a 3222 * reference of a page being mapped (for the PTE which maps it). 3223 */ 3224 int finish_fault(struct vm_fault *vmf) 3225 { 3226 struct page *page; 3227 int ret; 3228 3229 /* Did we COW the page? */ 3230 if ((vmf->flags & FAULT_FLAG_WRITE) && 3231 !(vmf->vma->vm_flags & VM_SHARED)) 3232 page = vmf->cow_page; 3233 else 3234 page = vmf->page; 3235 ret = alloc_set_pte(vmf, vmf->memcg, page); 3236 if (vmf->pte) 3237 pte_unmap_unlock(vmf->pte, vmf->ptl); 3238 return ret; 3239 } 3240 3241 static unsigned long fault_around_bytes __read_mostly = 3242 rounddown_pow_of_two(65536); 3243 3244 #ifdef CONFIG_DEBUG_FS 3245 static int fault_around_bytes_get(void *data, u64 *val) 3246 { 3247 *val = fault_around_bytes; 3248 return 0; 3249 } 3250 3251 /* 3252 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 3253 * rounded down to nearest page order. It's what do_fault_around() expects to 3254 * see. 3255 */ 3256 static int fault_around_bytes_set(void *data, u64 val) 3257 { 3258 if (val / PAGE_SIZE > PTRS_PER_PTE) 3259 return -EINVAL; 3260 if (val > PAGE_SIZE) 3261 fault_around_bytes = rounddown_pow_of_two(val); 3262 else 3263 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3264 return 0; 3265 } 3266 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3267 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3268 3269 static int __init fault_around_debugfs(void) 3270 { 3271 void *ret; 3272 3273 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3274 &fault_around_bytes_fops); 3275 if (!ret) 3276 pr_warn("Failed to create fault_around_bytes in debugfs"); 3277 return 0; 3278 } 3279 late_initcall(fault_around_debugfs); 3280 #endif 3281 3282 /* 3283 * do_fault_around() tries to map few pages around the fault address. The hope 3284 * is that the pages will be needed soon and this will lower the number of 3285 * faults to handle. 3286 * 3287 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3288 * not ready to be mapped: not up-to-date, locked, etc. 3289 * 3290 * This function is called with the page table lock taken. In the split ptlock 3291 * case the page table lock only protects only those entries which belong to 3292 * the page table corresponding to the fault address. 3293 * 3294 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3295 * only once. 3296 * 3297 * fault_around_pages() defines how many pages we'll try to map. 3298 * do_fault_around() expects it to return a power of two less than or equal to 3299 * PTRS_PER_PTE. 3300 * 3301 * The virtual address of the area that we map is naturally aligned to the 3302 * fault_around_pages() value (and therefore to page order). This way it's 3303 * easier to guarantee that we don't cross page table boundaries. 3304 */ 3305 static int do_fault_around(struct vm_fault *vmf) 3306 { 3307 unsigned long address = vmf->address, nr_pages, mask; 3308 pgoff_t start_pgoff = vmf->pgoff; 3309 pgoff_t end_pgoff; 3310 int off, ret = 0; 3311 3312 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3313 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3314 3315 vmf->address = max(address & mask, vmf->vma->vm_start); 3316 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3317 start_pgoff -= off; 3318 3319 /* 3320 * end_pgoff is either end of page table or end of vma 3321 * or fault_around_pages() from start_pgoff, depending what is nearest. 3322 */ 3323 end_pgoff = start_pgoff - 3324 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3325 PTRS_PER_PTE - 1; 3326 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3327 start_pgoff + nr_pages - 1); 3328 3329 if (pmd_none(*vmf->pmd)) { 3330 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm, 3331 vmf->address); 3332 if (!vmf->prealloc_pte) 3333 goto out; 3334 smp_wmb(); /* See comment in __pte_alloc() */ 3335 } 3336 3337 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3338 3339 /* Huge page is mapped? Page fault is solved */ 3340 if (pmd_trans_huge(*vmf->pmd)) { 3341 ret = VM_FAULT_NOPAGE; 3342 goto out; 3343 } 3344 3345 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3346 if (!vmf->pte) 3347 goto out; 3348 3349 /* check if the page fault is solved */ 3350 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3351 if (!pte_none(*vmf->pte)) 3352 ret = VM_FAULT_NOPAGE; 3353 pte_unmap_unlock(vmf->pte, vmf->ptl); 3354 out: 3355 vmf->address = address; 3356 vmf->pte = NULL; 3357 return ret; 3358 } 3359 3360 static int do_read_fault(struct vm_fault *vmf) 3361 { 3362 struct vm_area_struct *vma = vmf->vma; 3363 int ret = 0; 3364 3365 /* 3366 * Let's call ->map_pages() first and use ->fault() as fallback 3367 * if page by the offset is not ready to be mapped (cold cache or 3368 * something). 3369 */ 3370 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3371 ret = do_fault_around(vmf); 3372 if (ret) 3373 return ret; 3374 } 3375 3376 ret = __do_fault(vmf); 3377 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3378 return ret; 3379 3380 ret |= finish_fault(vmf); 3381 unlock_page(vmf->page); 3382 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3383 put_page(vmf->page); 3384 return ret; 3385 } 3386 3387 static int do_cow_fault(struct vm_fault *vmf) 3388 { 3389 struct vm_area_struct *vma = vmf->vma; 3390 int ret; 3391 3392 if (unlikely(anon_vma_prepare(vma))) 3393 return VM_FAULT_OOM; 3394 3395 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3396 if (!vmf->cow_page) 3397 return VM_FAULT_OOM; 3398 3399 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3400 &vmf->memcg, false)) { 3401 put_page(vmf->cow_page); 3402 return VM_FAULT_OOM; 3403 } 3404 3405 ret = __do_fault(vmf); 3406 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3407 goto uncharge_out; 3408 if (ret & VM_FAULT_DONE_COW) 3409 return ret; 3410 3411 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3412 __SetPageUptodate(vmf->cow_page); 3413 3414 ret |= finish_fault(vmf); 3415 unlock_page(vmf->page); 3416 put_page(vmf->page); 3417 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3418 goto uncharge_out; 3419 return ret; 3420 uncharge_out: 3421 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3422 put_page(vmf->cow_page); 3423 return ret; 3424 } 3425 3426 static int do_shared_fault(struct vm_fault *vmf) 3427 { 3428 struct vm_area_struct *vma = vmf->vma; 3429 int ret, tmp; 3430 3431 ret = __do_fault(vmf); 3432 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3433 return ret; 3434 3435 /* 3436 * Check if the backing address space wants to know that the page is 3437 * about to become writable 3438 */ 3439 if (vma->vm_ops->page_mkwrite) { 3440 unlock_page(vmf->page); 3441 tmp = do_page_mkwrite(vmf); 3442 if (unlikely(!tmp || 3443 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3444 put_page(vmf->page); 3445 return tmp; 3446 } 3447 } 3448 3449 ret |= finish_fault(vmf); 3450 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3451 VM_FAULT_RETRY))) { 3452 unlock_page(vmf->page); 3453 put_page(vmf->page); 3454 return ret; 3455 } 3456 3457 fault_dirty_shared_page(vma, vmf->page); 3458 return ret; 3459 } 3460 3461 /* 3462 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3463 * but allow concurrent faults). 3464 * The mmap_sem may have been released depending on flags and our 3465 * return value. See filemap_fault() and __lock_page_or_retry(). 3466 */ 3467 static int do_fault(struct vm_fault *vmf) 3468 { 3469 struct vm_area_struct *vma = vmf->vma; 3470 int ret; 3471 3472 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3473 if (!vma->vm_ops->fault) 3474 ret = VM_FAULT_SIGBUS; 3475 else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3476 ret = do_read_fault(vmf); 3477 else if (!(vma->vm_flags & VM_SHARED)) 3478 ret = do_cow_fault(vmf); 3479 else 3480 ret = do_shared_fault(vmf); 3481 3482 /* preallocated pagetable is unused: free it */ 3483 if (vmf->prealloc_pte) { 3484 pte_free(vma->vm_mm, vmf->prealloc_pte); 3485 vmf->prealloc_pte = NULL; 3486 } 3487 return ret; 3488 } 3489 3490 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3491 unsigned long addr, int page_nid, 3492 int *flags) 3493 { 3494 get_page(page); 3495 3496 count_vm_numa_event(NUMA_HINT_FAULTS); 3497 if (page_nid == numa_node_id()) { 3498 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3499 *flags |= TNF_FAULT_LOCAL; 3500 } 3501 3502 return mpol_misplaced(page, vma, addr); 3503 } 3504 3505 static int do_numa_page(struct vm_fault *vmf) 3506 { 3507 struct vm_area_struct *vma = vmf->vma; 3508 struct page *page = NULL; 3509 int page_nid = -1; 3510 int last_cpupid; 3511 int target_nid; 3512 bool migrated = false; 3513 pte_t pte; 3514 bool was_writable = pte_savedwrite(vmf->orig_pte); 3515 int flags = 0; 3516 3517 /* 3518 * The "pte" at this point cannot be used safely without 3519 * validation through pte_unmap_same(). It's of NUMA type but 3520 * the pfn may be screwed if the read is non atomic. 3521 */ 3522 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3523 spin_lock(vmf->ptl); 3524 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3525 pte_unmap_unlock(vmf->pte, vmf->ptl); 3526 goto out; 3527 } 3528 3529 /* 3530 * Make it present again, Depending on how arch implementes non 3531 * accessible ptes, some can allow access by kernel mode. 3532 */ 3533 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte); 3534 pte = pte_modify(pte, vma->vm_page_prot); 3535 pte = pte_mkyoung(pte); 3536 if (was_writable) 3537 pte = pte_mkwrite(pte); 3538 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte); 3539 update_mmu_cache(vma, vmf->address, vmf->pte); 3540 3541 page = vm_normal_page(vma, vmf->address, pte); 3542 if (!page) { 3543 pte_unmap_unlock(vmf->pte, vmf->ptl); 3544 return 0; 3545 } 3546 3547 /* TODO: handle PTE-mapped THP */ 3548 if (PageCompound(page)) { 3549 pte_unmap_unlock(vmf->pte, vmf->ptl); 3550 return 0; 3551 } 3552 3553 /* 3554 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3555 * much anyway since they can be in shared cache state. This misses 3556 * the case where a mapping is writable but the process never writes 3557 * to it but pte_write gets cleared during protection updates and 3558 * pte_dirty has unpredictable behaviour between PTE scan updates, 3559 * background writeback, dirty balancing and application behaviour. 3560 */ 3561 if (!pte_write(pte)) 3562 flags |= TNF_NO_GROUP; 3563 3564 /* 3565 * Flag if the page is shared between multiple address spaces. This 3566 * is later used when determining whether to group tasks together 3567 */ 3568 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3569 flags |= TNF_SHARED; 3570 3571 last_cpupid = page_cpupid_last(page); 3572 page_nid = page_to_nid(page); 3573 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3574 &flags); 3575 pte_unmap_unlock(vmf->pte, vmf->ptl); 3576 if (target_nid == -1) { 3577 put_page(page); 3578 goto out; 3579 } 3580 3581 /* Migrate to the requested node */ 3582 migrated = migrate_misplaced_page(page, vma, target_nid); 3583 if (migrated) { 3584 page_nid = target_nid; 3585 flags |= TNF_MIGRATED; 3586 } else 3587 flags |= TNF_MIGRATE_FAIL; 3588 3589 out: 3590 if (page_nid != -1) 3591 task_numa_fault(last_cpupid, page_nid, 1, flags); 3592 return 0; 3593 } 3594 3595 static inline int create_huge_pmd(struct vm_fault *vmf) 3596 { 3597 if (vma_is_anonymous(vmf->vma)) 3598 return do_huge_pmd_anonymous_page(vmf); 3599 if (vmf->vma->vm_ops->huge_fault) 3600 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3601 return VM_FAULT_FALLBACK; 3602 } 3603 3604 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3605 { 3606 if (vma_is_anonymous(vmf->vma)) 3607 return do_huge_pmd_wp_page(vmf, orig_pmd); 3608 if (vmf->vma->vm_ops->huge_fault) 3609 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3610 3611 /* COW handled on pte level: split pmd */ 3612 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3613 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3614 3615 return VM_FAULT_FALLBACK; 3616 } 3617 3618 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3619 { 3620 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3621 } 3622 3623 static int create_huge_pud(struct vm_fault *vmf) 3624 { 3625 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3626 /* No support for anonymous transparent PUD pages yet */ 3627 if (vma_is_anonymous(vmf->vma)) 3628 return VM_FAULT_FALLBACK; 3629 if (vmf->vma->vm_ops->huge_fault) 3630 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3631 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3632 return VM_FAULT_FALLBACK; 3633 } 3634 3635 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3636 { 3637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3638 /* No support for anonymous transparent PUD pages yet */ 3639 if (vma_is_anonymous(vmf->vma)) 3640 return VM_FAULT_FALLBACK; 3641 if (vmf->vma->vm_ops->huge_fault) 3642 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3643 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3644 return VM_FAULT_FALLBACK; 3645 } 3646 3647 /* 3648 * These routines also need to handle stuff like marking pages dirty 3649 * and/or accessed for architectures that don't do it in hardware (most 3650 * RISC architectures). The early dirtying is also good on the i386. 3651 * 3652 * There is also a hook called "update_mmu_cache()" that architectures 3653 * with external mmu caches can use to update those (ie the Sparc or 3654 * PowerPC hashed page tables that act as extended TLBs). 3655 * 3656 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3657 * concurrent faults). 3658 * 3659 * The mmap_sem may have been released depending on flags and our return value. 3660 * See filemap_fault() and __lock_page_or_retry(). 3661 */ 3662 static int handle_pte_fault(struct vm_fault *vmf) 3663 { 3664 pte_t entry; 3665 3666 if (unlikely(pmd_none(*vmf->pmd))) { 3667 /* 3668 * Leave __pte_alloc() until later: because vm_ops->fault may 3669 * want to allocate huge page, and if we expose page table 3670 * for an instant, it will be difficult to retract from 3671 * concurrent faults and from rmap lookups. 3672 */ 3673 vmf->pte = NULL; 3674 } else { 3675 /* See comment in pte_alloc_one_map() */ 3676 if (pmd_devmap_trans_unstable(vmf->pmd)) 3677 return 0; 3678 /* 3679 * A regular pmd is established and it can't morph into a huge 3680 * pmd from under us anymore at this point because we hold the 3681 * mmap_sem read mode and khugepaged takes it in write mode. 3682 * So now it's safe to run pte_offset_map(). 3683 */ 3684 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3685 vmf->orig_pte = *vmf->pte; 3686 3687 /* 3688 * some architectures can have larger ptes than wordsize, 3689 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3690 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee 3691 * atomic accesses. The code below just needs a consistent 3692 * view for the ifs and we later double check anyway with the 3693 * ptl lock held. So here a barrier will do. 3694 */ 3695 barrier(); 3696 if (pte_none(vmf->orig_pte)) { 3697 pte_unmap(vmf->pte); 3698 vmf->pte = NULL; 3699 } 3700 } 3701 3702 if (!vmf->pte) { 3703 if (vma_is_anonymous(vmf->vma)) 3704 return do_anonymous_page(vmf); 3705 else 3706 return do_fault(vmf); 3707 } 3708 3709 if (!pte_present(vmf->orig_pte)) 3710 return do_swap_page(vmf); 3711 3712 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3713 return do_numa_page(vmf); 3714 3715 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3716 spin_lock(vmf->ptl); 3717 entry = vmf->orig_pte; 3718 if (unlikely(!pte_same(*vmf->pte, entry))) 3719 goto unlock; 3720 if (vmf->flags & FAULT_FLAG_WRITE) { 3721 if (!pte_write(entry)) 3722 return do_wp_page(vmf); 3723 entry = pte_mkdirty(entry); 3724 } 3725 entry = pte_mkyoung(entry); 3726 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3727 vmf->flags & FAULT_FLAG_WRITE)) { 3728 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3729 } else { 3730 /* 3731 * This is needed only for protection faults but the arch code 3732 * is not yet telling us if this is a protection fault or not. 3733 * This still avoids useless tlb flushes for .text page faults 3734 * with threads. 3735 */ 3736 if (vmf->flags & FAULT_FLAG_WRITE) 3737 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 3738 } 3739 unlock: 3740 pte_unmap_unlock(vmf->pte, vmf->ptl); 3741 return 0; 3742 } 3743 3744 /* 3745 * By the time we get here, we already hold the mm semaphore 3746 * 3747 * The mmap_sem may have been released depending on flags and our 3748 * return value. See filemap_fault() and __lock_page_or_retry(). 3749 */ 3750 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3751 unsigned int flags) 3752 { 3753 struct vm_fault vmf = { 3754 .vma = vma, 3755 .address = address & PAGE_MASK, 3756 .flags = flags, 3757 .pgoff = linear_page_index(vma, address), 3758 .gfp_mask = __get_fault_gfp_mask(vma), 3759 }; 3760 struct mm_struct *mm = vma->vm_mm; 3761 pgd_t *pgd; 3762 p4d_t *p4d; 3763 int ret; 3764 3765 pgd = pgd_offset(mm, address); 3766 p4d = p4d_alloc(mm, pgd, address); 3767 if (!p4d) 3768 return VM_FAULT_OOM; 3769 3770 vmf.pud = pud_alloc(mm, p4d, address); 3771 if (!vmf.pud) 3772 return VM_FAULT_OOM; 3773 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) { 3774 ret = create_huge_pud(&vmf); 3775 if (!(ret & VM_FAULT_FALLBACK)) 3776 return ret; 3777 } else { 3778 pud_t orig_pud = *vmf.pud; 3779 3780 barrier(); 3781 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 3782 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3783 3784 /* NUMA case for anonymous PUDs would go here */ 3785 3786 if (dirty && !pud_write(orig_pud)) { 3787 ret = wp_huge_pud(&vmf, orig_pud); 3788 if (!(ret & VM_FAULT_FALLBACK)) 3789 return ret; 3790 } else { 3791 huge_pud_set_accessed(&vmf, orig_pud); 3792 return 0; 3793 } 3794 } 3795 } 3796 3797 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 3798 if (!vmf.pmd) 3799 return VM_FAULT_OOM; 3800 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { 3801 ret = create_huge_pmd(&vmf); 3802 if (!(ret & VM_FAULT_FALLBACK)) 3803 return ret; 3804 } else { 3805 pmd_t orig_pmd = *vmf.pmd; 3806 3807 barrier(); 3808 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3809 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 3810 return do_huge_pmd_numa_page(&vmf, orig_pmd); 3811 3812 if ((vmf.flags & FAULT_FLAG_WRITE) && 3813 !pmd_write(orig_pmd)) { 3814 ret = wp_huge_pmd(&vmf, orig_pmd); 3815 if (!(ret & VM_FAULT_FALLBACK)) 3816 return ret; 3817 } else { 3818 huge_pmd_set_accessed(&vmf, orig_pmd); 3819 return 0; 3820 } 3821 } 3822 } 3823 3824 return handle_pte_fault(&vmf); 3825 } 3826 3827 /* 3828 * By the time we get here, we already hold the mm semaphore 3829 * 3830 * The mmap_sem may have been released depending on flags and our 3831 * return value. See filemap_fault() and __lock_page_or_retry(). 3832 */ 3833 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3834 unsigned int flags) 3835 { 3836 int ret; 3837 3838 __set_current_state(TASK_RUNNING); 3839 3840 count_vm_event(PGFAULT); 3841 count_memcg_event_mm(vma->vm_mm, PGFAULT); 3842 3843 /* do counter updates before entering really critical section. */ 3844 check_sync_rss_stat(current); 3845 3846 /* 3847 * Enable the memcg OOM handling for faults triggered in user 3848 * space. Kernel faults are handled more gracefully. 3849 */ 3850 if (flags & FAULT_FLAG_USER) 3851 mem_cgroup_oom_enable(); 3852 3853 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 3854 flags & FAULT_FLAG_INSTRUCTION, 3855 flags & FAULT_FLAG_REMOTE)) 3856 return VM_FAULT_SIGSEGV; 3857 3858 if (unlikely(is_vm_hugetlb_page(vma))) 3859 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 3860 else 3861 ret = __handle_mm_fault(vma, address, flags); 3862 3863 if (flags & FAULT_FLAG_USER) { 3864 mem_cgroup_oom_disable(); 3865 /* 3866 * The task may have entered a memcg OOM situation but 3867 * if the allocation error was handled gracefully (no 3868 * VM_FAULT_OOM), there is no need to kill anything. 3869 * Just clean up the OOM state peacefully. 3870 */ 3871 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3872 mem_cgroup_oom_synchronize(false); 3873 } 3874 3875 /* 3876 * This mm has been already reaped by the oom reaper and so the 3877 * refault cannot be trusted in general. Anonymous refaults would 3878 * lose data and give a zero page instead e.g. This is especially 3879 * problem for use_mm() because regular tasks will just die and 3880 * the corrupted data will not be visible anywhere while kthread 3881 * will outlive the oom victim and potentially propagate the date 3882 * further. 3883 */ 3884 if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR) 3885 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags))) 3886 ret = VM_FAULT_SIGBUS; 3887 3888 return ret; 3889 } 3890 EXPORT_SYMBOL_GPL(handle_mm_fault); 3891 3892 #ifndef __PAGETABLE_P4D_FOLDED 3893 /* 3894 * Allocate p4d page table. 3895 * We've already handled the fast-path in-line. 3896 */ 3897 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3898 { 3899 p4d_t *new = p4d_alloc_one(mm, address); 3900 if (!new) 3901 return -ENOMEM; 3902 3903 smp_wmb(); /* See comment in __pte_alloc */ 3904 3905 spin_lock(&mm->page_table_lock); 3906 if (pgd_present(*pgd)) /* Another has populated it */ 3907 p4d_free(mm, new); 3908 else 3909 pgd_populate(mm, pgd, new); 3910 spin_unlock(&mm->page_table_lock); 3911 return 0; 3912 } 3913 #endif /* __PAGETABLE_P4D_FOLDED */ 3914 3915 #ifndef __PAGETABLE_PUD_FOLDED 3916 /* 3917 * Allocate page upper directory. 3918 * We've already handled the fast-path in-line. 3919 */ 3920 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 3921 { 3922 pud_t *new = pud_alloc_one(mm, address); 3923 if (!new) 3924 return -ENOMEM; 3925 3926 smp_wmb(); /* See comment in __pte_alloc */ 3927 3928 spin_lock(&mm->page_table_lock); 3929 #ifndef __ARCH_HAS_5LEVEL_HACK 3930 if (p4d_present(*p4d)) /* Another has populated it */ 3931 pud_free(mm, new); 3932 else 3933 p4d_populate(mm, p4d, new); 3934 #else 3935 if (pgd_present(*p4d)) /* Another has populated it */ 3936 pud_free(mm, new); 3937 else 3938 pgd_populate(mm, p4d, new); 3939 #endif /* __ARCH_HAS_5LEVEL_HACK */ 3940 spin_unlock(&mm->page_table_lock); 3941 return 0; 3942 } 3943 #endif /* __PAGETABLE_PUD_FOLDED */ 3944 3945 #ifndef __PAGETABLE_PMD_FOLDED 3946 /* 3947 * Allocate page middle directory. 3948 * We've already handled the fast-path in-line. 3949 */ 3950 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3951 { 3952 spinlock_t *ptl; 3953 pmd_t *new = pmd_alloc_one(mm, address); 3954 if (!new) 3955 return -ENOMEM; 3956 3957 smp_wmb(); /* See comment in __pte_alloc */ 3958 3959 ptl = pud_lock(mm, pud); 3960 #ifndef __ARCH_HAS_4LEVEL_HACK 3961 if (!pud_present(*pud)) { 3962 mm_inc_nr_pmds(mm); 3963 pud_populate(mm, pud, new); 3964 } else /* Another has populated it */ 3965 pmd_free(mm, new); 3966 #else 3967 if (!pgd_present(*pud)) { 3968 mm_inc_nr_pmds(mm); 3969 pgd_populate(mm, pud, new); 3970 } else /* Another has populated it */ 3971 pmd_free(mm, new); 3972 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3973 spin_unlock(ptl); 3974 return 0; 3975 } 3976 #endif /* __PAGETABLE_PMD_FOLDED */ 3977 3978 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 3979 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 3980 { 3981 pgd_t *pgd; 3982 p4d_t *p4d; 3983 pud_t *pud; 3984 pmd_t *pmd; 3985 pte_t *ptep; 3986 3987 pgd = pgd_offset(mm, address); 3988 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3989 goto out; 3990 3991 p4d = p4d_offset(pgd, address); 3992 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 3993 goto out; 3994 3995 pud = pud_offset(p4d, address); 3996 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3997 goto out; 3998 3999 pmd = pmd_offset(pud, address); 4000 VM_BUG_ON(pmd_trans_huge(*pmd)); 4001 4002 if (pmd_huge(*pmd)) { 4003 if (!pmdpp) 4004 goto out; 4005 4006 *ptlp = pmd_lock(mm, pmd); 4007 if (pmd_huge(*pmd)) { 4008 *pmdpp = pmd; 4009 return 0; 4010 } 4011 spin_unlock(*ptlp); 4012 } 4013 4014 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4015 goto out; 4016 4017 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4018 if (!pte_present(*ptep)) 4019 goto unlock; 4020 *ptepp = ptep; 4021 return 0; 4022 unlock: 4023 pte_unmap_unlock(ptep, *ptlp); 4024 out: 4025 return -EINVAL; 4026 } 4027 4028 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4029 pte_t **ptepp, spinlock_t **ptlp) 4030 { 4031 int res; 4032 4033 /* (void) is needed to make gcc happy */ 4034 (void) __cond_lock(*ptlp, 4035 !(res = __follow_pte_pmd(mm, address, ptepp, NULL, 4036 ptlp))); 4037 return res; 4038 } 4039 4040 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4041 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4042 { 4043 int res; 4044 4045 /* (void) is needed to make gcc happy */ 4046 (void) __cond_lock(*ptlp, 4047 !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp, 4048 ptlp))); 4049 return res; 4050 } 4051 EXPORT_SYMBOL(follow_pte_pmd); 4052 4053 /** 4054 * follow_pfn - look up PFN at a user virtual address 4055 * @vma: memory mapping 4056 * @address: user virtual address 4057 * @pfn: location to store found PFN 4058 * 4059 * Only IO mappings and raw PFN mappings are allowed. 4060 * 4061 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4062 */ 4063 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4064 unsigned long *pfn) 4065 { 4066 int ret = -EINVAL; 4067 spinlock_t *ptl; 4068 pte_t *ptep; 4069 4070 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4071 return ret; 4072 4073 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4074 if (ret) 4075 return ret; 4076 *pfn = pte_pfn(*ptep); 4077 pte_unmap_unlock(ptep, ptl); 4078 return 0; 4079 } 4080 EXPORT_SYMBOL(follow_pfn); 4081 4082 #ifdef CONFIG_HAVE_IOREMAP_PROT 4083 int follow_phys(struct vm_area_struct *vma, 4084 unsigned long address, unsigned int flags, 4085 unsigned long *prot, resource_size_t *phys) 4086 { 4087 int ret = -EINVAL; 4088 pte_t *ptep, pte; 4089 spinlock_t *ptl; 4090 4091 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4092 goto out; 4093 4094 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4095 goto out; 4096 pte = *ptep; 4097 4098 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4099 goto unlock; 4100 4101 *prot = pgprot_val(pte_pgprot(pte)); 4102 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4103 4104 ret = 0; 4105 unlock: 4106 pte_unmap_unlock(ptep, ptl); 4107 out: 4108 return ret; 4109 } 4110 4111 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4112 void *buf, int len, int write) 4113 { 4114 resource_size_t phys_addr; 4115 unsigned long prot = 0; 4116 void __iomem *maddr; 4117 int offset = addr & (PAGE_SIZE-1); 4118 4119 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4120 return -EINVAL; 4121 4122 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4123 if (write) 4124 memcpy_toio(maddr + offset, buf, len); 4125 else 4126 memcpy_fromio(buf, maddr + offset, len); 4127 iounmap(maddr); 4128 4129 return len; 4130 } 4131 EXPORT_SYMBOL_GPL(generic_access_phys); 4132 #endif 4133 4134 /* 4135 * Access another process' address space as given in mm. If non-NULL, use the 4136 * given task for page fault accounting. 4137 */ 4138 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4139 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4140 { 4141 struct vm_area_struct *vma; 4142 void *old_buf = buf; 4143 int write = gup_flags & FOLL_WRITE; 4144 4145 down_read(&mm->mmap_sem); 4146 /* ignore errors, just check how much was successfully transferred */ 4147 while (len) { 4148 int bytes, ret, offset; 4149 void *maddr; 4150 struct page *page = NULL; 4151 4152 ret = get_user_pages_remote(tsk, mm, addr, 1, 4153 gup_flags, &page, &vma, NULL); 4154 if (ret <= 0) { 4155 #ifndef CONFIG_HAVE_IOREMAP_PROT 4156 break; 4157 #else 4158 /* 4159 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4160 * we can access using slightly different code. 4161 */ 4162 vma = find_vma(mm, addr); 4163 if (!vma || vma->vm_start > addr) 4164 break; 4165 if (vma->vm_ops && vma->vm_ops->access) 4166 ret = vma->vm_ops->access(vma, addr, buf, 4167 len, write); 4168 if (ret <= 0) 4169 break; 4170 bytes = ret; 4171 #endif 4172 } else { 4173 bytes = len; 4174 offset = addr & (PAGE_SIZE-1); 4175 if (bytes > PAGE_SIZE-offset) 4176 bytes = PAGE_SIZE-offset; 4177 4178 maddr = kmap(page); 4179 if (write) { 4180 copy_to_user_page(vma, page, addr, 4181 maddr + offset, buf, bytes); 4182 set_page_dirty_lock(page); 4183 } else { 4184 copy_from_user_page(vma, page, addr, 4185 buf, maddr + offset, bytes); 4186 } 4187 kunmap(page); 4188 put_page(page); 4189 } 4190 len -= bytes; 4191 buf += bytes; 4192 addr += bytes; 4193 } 4194 up_read(&mm->mmap_sem); 4195 4196 return buf - old_buf; 4197 } 4198 4199 /** 4200 * access_remote_vm - access another process' address space 4201 * @mm: the mm_struct of the target address space 4202 * @addr: start address to access 4203 * @buf: source or destination buffer 4204 * @len: number of bytes to transfer 4205 * @gup_flags: flags modifying lookup behaviour 4206 * 4207 * The caller must hold a reference on @mm. 4208 */ 4209 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4210 void *buf, int len, unsigned int gup_flags) 4211 { 4212 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4213 } 4214 4215 /* 4216 * Access another process' address space. 4217 * Source/target buffer must be kernel space, 4218 * Do not walk the page table directly, use get_user_pages 4219 */ 4220 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4221 void *buf, int len, unsigned int gup_flags) 4222 { 4223 struct mm_struct *mm; 4224 int ret; 4225 4226 mm = get_task_mm(tsk); 4227 if (!mm) 4228 return 0; 4229 4230 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4231 4232 mmput(mm); 4233 4234 return ret; 4235 } 4236 EXPORT_SYMBOL_GPL(access_process_vm); 4237 4238 /* 4239 * Print the name of a VMA. 4240 */ 4241 void print_vma_addr(char *prefix, unsigned long ip) 4242 { 4243 struct mm_struct *mm = current->mm; 4244 struct vm_area_struct *vma; 4245 4246 /* 4247 * Do not print if we are in atomic 4248 * contexts (in exception stacks, etc.): 4249 */ 4250 if (preempt_count()) 4251 return; 4252 4253 down_read(&mm->mmap_sem); 4254 vma = find_vma(mm, ip); 4255 if (vma && vma->vm_file) { 4256 struct file *f = vma->vm_file; 4257 char *buf = (char *)__get_free_page(GFP_KERNEL); 4258 if (buf) { 4259 char *p; 4260 4261 p = file_path(f, buf, PAGE_SIZE); 4262 if (IS_ERR(p)) 4263 p = "?"; 4264 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4265 vma->vm_start, 4266 vma->vm_end - vma->vm_start); 4267 free_page((unsigned long)buf); 4268 } 4269 } 4270 up_read(&mm->mmap_sem); 4271 } 4272 4273 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4274 void __might_fault(const char *file, int line) 4275 { 4276 /* 4277 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4278 * holding the mmap_sem, this is safe because kernel memory doesn't 4279 * get paged out, therefore we'll never actually fault, and the 4280 * below annotations will generate false positives. 4281 */ 4282 if (uaccess_kernel()) 4283 return; 4284 if (pagefault_disabled()) 4285 return; 4286 __might_sleep(file, line, 0); 4287 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4288 if (current->mm) 4289 might_lock_read(¤t->mm->mmap_sem); 4290 #endif 4291 } 4292 EXPORT_SYMBOL(__might_fault); 4293 #endif 4294 4295 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4296 static void clear_gigantic_page(struct page *page, 4297 unsigned long addr, 4298 unsigned int pages_per_huge_page) 4299 { 4300 int i; 4301 struct page *p = page; 4302 4303 might_sleep(); 4304 for (i = 0; i < pages_per_huge_page; 4305 i++, p = mem_map_next(p, page, i)) { 4306 cond_resched(); 4307 clear_user_highpage(p, addr + i * PAGE_SIZE); 4308 } 4309 } 4310 void clear_huge_page(struct page *page, 4311 unsigned long addr, unsigned int pages_per_huge_page) 4312 { 4313 int i; 4314 4315 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4316 clear_gigantic_page(page, addr, pages_per_huge_page); 4317 return; 4318 } 4319 4320 might_sleep(); 4321 for (i = 0; i < pages_per_huge_page; i++) { 4322 cond_resched(); 4323 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4324 } 4325 } 4326 4327 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4328 unsigned long addr, 4329 struct vm_area_struct *vma, 4330 unsigned int pages_per_huge_page) 4331 { 4332 int i; 4333 struct page *dst_base = dst; 4334 struct page *src_base = src; 4335 4336 for (i = 0; i < pages_per_huge_page; ) { 4337 cond_resched(); 4338 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4339 4340 i++; 4341 dst = mem_map_next(dst, dst_base, i); 4342 src = mem_map_next(src, src_base, i); 4343 } 4344 } 4345 4346 void copy_user_huge_page(struct page *dst, struct page *src, 4347 unsigned long addr, struct vm_area_struct *vma, 4348 unsigned int pages_per_huge_page) 4349 { 4350 int i; 4351 4352 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4353 copy_user_gigantic_page(dst, src, addr, vma, 4354 pages_per_huge_page); 4355 return; 4356 } 4357 4358 might_sleep(); 4359 for (i = 0; i < pages_per_huge_page; i++) { 4360 cond_resched(); 4361 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4362 } 4363 } 4364 4365 long copy_huge_page_from_user(struct page *dst_page, 4366 const void __user *usr_src, 4367 unsigned int pages_per_huge_page, 4368 bool allow_pagefault) 4369 { 4370 void *src = (void *)usr_src; 4371 void *page_kaddr; 4372 unsigned long i, rc = 0; 4373 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4374 4375 for (i = 0; i < pages_per_huge_page; i++) { 4376 if (allow_pagefault) 4377 page_kaddr = kmap(dst_page + i); 4378 else 4379 page_kaddr = kmap_atomic(dst_page + i); 4380 rc = copy_from_user(page_kaddr, 4381 (const void __user *)(src + i * PAGE_SIZE), 4382 PAGE_SIZE); 4383 if (allow_pagefault) 4384 kunmap(dst_page + i); 4385 else 4386 kunmap_atomic(page_kaddr); 4387 4388 ret_val -= (PAGE_SIZE - rc); 4389 if (rc) 4390 break; 4391 4392 cond_resched(); 4393 } 4394 return ret_val; 4395 } 4396 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4397 4398 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4399 4400 static struct kmem_cache *page_ptl_cachep; 4401 4402 void __init ptlock_cache_init(void) 4403 { 4404 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4405 SLAB_PANIC, NULL); 4406 } 4407 4408 bool ptlock_alloc(struct page *page) 4409 { 4410 spinlock_t *ptl; 4411 4412 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4413 if (!ptl) 4414 return false; 4415 page->ptl = ptl; 4416 return true; 4417 } 4418 4419 void ptlock_free(struct page *page) 4420 { 4421 kmem_cache_free(page_ptl_cachep, page->ptl); 4422 } 4423 #endif 4424