xref: /linux/mm/memory.c (revision 507e190946297c34a27d9366b0661d5e506fdd03)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/export.h>
55 #include <linux/delayacct.h>
56 #include <linux/init.h>
57 #include <linux/pfn_t.h>
58 #include <linux/writeback.h>
59 #include <linux/memcontrol.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/kallsyms.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 
72 #include <asm/io.h>
73 #include <asm/mmu_context.h>
74 #include <asm/pgalloc.h>
75 #include <linux/uaccess.h>
76 #include <asm/tlb.h>
77 #include <asm/tlbflush.h>
78 #include <asm/pgtable.h>
79 
80 #include "internal.h"
81 
82 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
83 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
84 #endif
85 
86 #ifndef CONFIG_NEED_MULTIPLE_NODES
87 /* use the per-pgdat data instead for discontigmem - mbligh */
88 unsigned long max_mapnr;
89 EXPORT_SYMBOL(max_mapnr);
90 
91 struct page *mem_map;
92 EXPORT_SYMBOL(mem_map);
93 #endif
94 
95 /*
96  * A number of key systems in x86 including ioremap() rely on the assumption
97  * that high_memory defines the upper bound on direct map memory, then end
98  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
99  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
100  * and ZONE_HIGHMEM.
101  */
102 void *high_memory;
103 EXPORT_SYMBOL(high_memory);
104 
105 /*
106  * Randomize the address space (stacks, mmaps, brk, etc.).
107  *
108  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
109  *   as ancient (libc5 based) binaries can segfault. )
110  */
111 int randomize_va_space __read_mostly =
112 #ifdef CONFIG_COMPAT_BRK
113 					1;
114 #else
115 					2;
116 #endif
117 
118 static int __init disable_randmaps(char *s)
119 {
120 	randomize_va_space = 0;
121 	return 1;
122 }
123 __setup("norandmaps", disable_randmaps);
124 
125 unsigned long zero_pfn __read_mostly;
126 EXPORT_SYMBOL(zero_pfn);
127 
128 unsigned long highest_memmap_pfn __read_mostly;
129 
130 /*
131  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
132  */
133 static int __init init_zero_pfn(void)
134 {
135 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
136 	return 0;
137 }
138 core_initcall(init_zero_pfn);
139 
140 
141 #if defined(SPLIT_RSS_COUNTING)
142 
143 void sync_mm_rss(struct mm_struct *mm)
144 {
145 	int i;
146 
147 	for (i = 0; i < NR_MM_COUNTERS; i++) {
148 		if (current->rss_stat.count[i]) {
149 			add_mm_counter(mm, i, current->rss_stat.count[i]);
150 			current->rss_stat.count[i] = 0;
151 		}
152 	}
153 	current->rss_stat.events = 0;
154 }
155 
156 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
157 {
158 	struct task_struct *task = current;
159 
160 	if (likely(task->mm == mm))
161 		task->rss_stat.count[member] += val;
162 	else
163 		add_mm_counter(mm, member, val);
164 }
165 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
166 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
167 
168 /* sync counter once per 64 page faults */
169 #define TASK_RSS_EVENTS_THRESH	(64)
170 static void check_sync_rss_stat(struct task_struct *task)
171 {
172 	if (unlikely(task != current))
173 		return;
174 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
175 		sync_mm_rss(task->mm);
176 }
177 #else /* SPLIT_RSS_COUNTING */
178 
179 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
180 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
181 
182 static void check_sync_rss_stat(struct task_struct *task)
183 {
184 }
185 
186 #endif /* SPLIT_RSS_COUNTING */
187 
188 #ifdef HAVE_GENERIC_MMU_GATHER
189 
190 static bool tlb_next_batch(struct mmu_gather *tlb)
191 {
192 	struct mmu_gather_batch *batch;
193 
194 	batch = tlb->active;
195 	if (batch->next) {
196 		tlb->active = batch->next;
197 		return true;
198 	}
199 
200 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
201 		return false;
202 
203 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
204 	if (!batch)
205 		return false;
206 
207 	tlb->batch_count++;
208 	batch->next = NULL;
209 	batch->nr   = 0;
210 	batch->max  = MAX_GATHER_BATCH;
211 
212 	tlb->active->next = batch;
213 	tlb->active = batch;
214 
215 	return true;
216 }
217 
218 /* tlb_gather_mmu
219  *	Called to initialize an (on-stack) mmu_gather structure for page-table
220  *	tear-down from @mm. The @fullmm argument is used when @mm is without
221  *	users and we're going to destroy the full address space (exit/execve).
222  */
223 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
224 {
225 	tlb->mm = mm;
226 
227 	/* Is it from 0 to ~0? */
228 	tlb->fullmm     = !(start | (end+1));
229 	tlb->need_flush_all = 0;
230 	tlb->local.next = NULL;
231 	tlb->local.nr   = 0;
232 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
233 	tlb->active     = &tlb->local;
234 	tlb->batch_count = 0;
235 
236 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
237 	tlb->batch = NULL;
238 #endif
239 	tlb->page_size = 0;
240 
241 	__tlb_reset_range(tlb);
242 }
243 
244 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
245 {
246 	if (!tlb->end)
247 		return;
248 
249 	tlb_flush(tlb);
250 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
251 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
252 	tlb_table_flush(tlb);
253 #endif
254 	__tlb_reset_range(tlb);
255 }
256 
257 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
258 {
259 	struct mmu_gather_batch *batch;
260 
261 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
262 		free_pages_and_swap_cache(batch->pages, batch->nr);
263 		batch->nr = 0;
264 	}
265 	tlb->active = &tlb->local;
266 }
267 
268 void tlb_flush_mmu(struct mmu_gather *tlb)
269 {
270 	tlb_flush_mmu_tlbonly(tlb);
271 	tlb_flush_mmu_free(tlb);
272 }
273 
274 /* tlb_finish_mmu
275  *	Called at the end of the shootdown operation to free up any resources
276  *	that were required.
277  */
278 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
279 {
280 	struct mmu_gather_batch *batch, *next;
281 
282 	tlb_flush_mmu(tlb);
283 
284 	/* keep the page table cache within bounds */
285 	check_pgt_cache();
286 
287 	for (batch = tlb->local.next; batch; batch = next) {
288 		next = batch->next;
289 		free_pages((unsigned long)batch, 0);
290 	}
291 	tlb->local.next = NULL;
292 }
293 
294 /* __tlb_remove_page
295  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
296  *	handling the additional races in SMP caused by other CPUs caching valid
297  *	mappings in their TLBs. Returns the number of free page slots left.
298  *	When out of page slots we must call tlb_flush_mmu().
299  *returns true if the caller should flush.
300  */
301 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
302 {
303 	struct mmu_gather_batch *batch;
304 
305 	VM_BUG_ON(!tlb->end);
306 	VM_WARN_ON(tlb->page_size != page_size);
307 
308 	batch = tlb->active;
309 	/*
310 	 * Add the page and check if we are full. If so
311 	 * force a flush.
312 	 */
313 	batch->pages[batch->nr++] = page;
314 	if (batch->nr == batch->max) {
315 		if (!tlb_next_batch(tlb))
316 			return true;
317 		batch = tlb->active;
318 	}
319 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
320 
321 	return false;
322 }
323 
324 #endif /* HAVE_GENERIC_MMU_GATHER */
325 
326 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
327 
328 /*
329  * See the comment near struct mmu_table_batch.
330  */
331 
332 static void tlb_remove_table_smp_sync(void *arg)
333 {
334 	/* Simply deliver the interrupt */
335 }
336 
337 static void tlb_remove_table_one(void *table)
338 {
339 	/*
340 	 * This isn't an RCU grace period and hence the page-tables cannot be
341 	 * assumed to be actually RCU-freed.
342 	 *
343 	 * It is however sufficient for software page-table walkers that rely on
344 	 * IRQ disabling. See the comment near struct mmu_table_batch.
345 	 */
346 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
347 	__tlb_remove_table(table);
348 }
349 
350 static void tlb_remove_table_rcu(struct rcu_head *head)
351 {
352 	struct mmu_table_batch *batch;
353 	int i;
354 
355 	batch = container_of(head, struct mmu_table_batch, rcu);
356 
357 	for (i = 0; i < batch->nr; i++)
358 		__tlb_remove_table(batch->tables[i]);
359 
360 	free_page((unsigned long)batch);
361 }
362 
363 void tlb_table_flush(struct mmu_gather *tlb)
364 {
365 	struct mmu_table_batch **batch = &tlb->batch;
366 
367 	if (*batch) {
368 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
369 		*batch = NULL;
370 	}
371 }
372 
373 void tlb_remove_table(struct mmu_gather *tlb, void *table)
374 {
375 	struct mmu_table_batch **batch = &tlb->batch;
376 
377 	/*
378 	 * When there's less then two users of this mm there cannot be a
379 	 * concurrent page-table walk.
380 	 */
381 	if (atomic_read(&tlb->mm->mm_users) < 2) {
382 		__tlb_remove_table(table);
383 		return;
384 	}
385 
386 	if (*batch == NULL) {
387 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
388 		if (*batch == NULL) {
389 			tlb_remove_table_one(table);
390 			return;
391 		}
392 		(*batch)->nr = 0;
393 	}
394 	(*batch)->tables[(*batch)->nr++] = table;
395 	if ((*batch)->nr == MAX_TABLE_BATCH)
396 		tlb_table_flush(tlb);
397 }
398 
399 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
400 
401 /*
402  * Note: this doesn't free the actual pages themselves. That
403  * has been handled earlier when unmapping all the memory regions.
404  */
405 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
406 			   unsigned long addr)
407 {
408 	pgtable_t token = pmd_pgtable(*pmd);
409 	pmd_clear(pmd);
410 	pte_free_tlb(tlb, token, addr);
411 	atomic_long_dec(&tlb->mm->nr_ptes);
412 }
413 
414 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
415 				unsigned long addr, unsigned long end,
416 				unsigned long floor, unsigned long ceiling)
417 {
418 	pmd_t *pmd;
419 	unsigned long next;
420 	unsigned long start;
421 
422 	start = addr;
423 	pmd = pmd_offset(pud, addr);
424 	do {
425 		next = pmd_addr_end(addr, end);
426 		if (pmd_none_or_clear_bad(pmd))
427 			continue;
428 		free_pte_range(tlb, pmd, addr);
429 	} while (pmd++, addr = next, addr != end);
430 
431 	start &= PUD_MASK;
432 	if (start < floor)
433 		return;
434 	if (ceiling) {
435 		ceiling &= PUD_MASK;
436 		if (!ceiling)
437 			return;
438 	}
439 	if (end - 1 > ceiling - 1)
440 		return;
441 
442 	pmd = pmd_offset(pud, start);
443 	pud_clear(pud);
444 	pmd_free_tlb(tlb, pmd, start);
445 	mm_dec_nr_pmds(tlb->mm);
446 }
447 
448 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
449 				unsigned long addr, unsigned long end,
450 				unsigned long floor, unsigned long ceiling)
451 {
452 	pud_t *pud;
453 	unsigned long next;
454 	unsigned long start;
455 
456 	start = addr;
457 	pud = pud_offset(p4d, addr);
458 	do {
459 		next = pud_addr_end(addr, end);
460 		if (pud_none_or_clear_bad(pud))
461 			continue;
462 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
463 	} while (pud++, addr = next, addr != end);
464 
465 	start &= P4D_MASK;
466 	if (start < floor)
467 		return;
468 	if (ceiling) {
469 		ceiling &= P4D_MASK;
470 		if (!ceiling)
471 			return;
472 	}
473 	if (end - 1 > ceiling - 1)
474 		return;
475 
476 	pud = pud_offset(p4d, start);
477 	p4d_clear(p4d);
478 	pud_free_tlb(tlb, pud, start);
479 }
480 
481 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
482 				unsigned long addr, unsigned long end,
483 				unsigned long floor, unsigned long ceiling)
484 {
485 	p4d_t *p4d;
486 	unsigned long next;
487 	unsigned long start;
488 
489 	start = addr;
490 	p4d = p4d_offset(pgd, addr);
491 	do {
492 		next = p4d_addr_end(addr, end);
493 		if (p4d_none_or_clear_bad(p4d))
494 			continue;
495 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
496 	} while (p4d++, addr = next, addr != end);
497 
498 	start &= PGDIR_MASK;
499 	if (start < floor)
500 		return;
501 	if (ceiling) {
502 		ceiling &= PGDIR_MASK;
503 		if (!ceiling)
504 			return;
505 	}
506 	if (end - 1 > ceiling - 1)
507 		return;
508 
509 	p4d = p4d_offset(pgd, start);
510 	pgd_clear(pgd);
511 	p4d_free_tlb(tlb, p4d, start);
512 }
513 
514 /*
515  * This function frees user-level page tables of a process.
516  */
517 void free_pgd_range(struct mmu_gather *tlb,
518 			unsigned long addr, unsigned long end,
519 			unsigned long floor, unsigned long ceiling)
520 {
521 	pgd_t *pgd;
522 	unsigned long next;
523 
524 	/*
525 	 * The next few lines have given us lots of grief...
526 	 *
527 	 * Why are we testing PMD* at this top level?  Because often
528 	 * there will be no work to do at all, and we'd prefer not to
529 	 * go all the way down to the bottom just to discover that.
530 	 *
531 	 * Why all these "- 1"s?  Because 0 represents both the bottom
532 	 * of the address space and the top of it (using -1 for the
533 	 * top wouldn't help much: the masks would do the wrong thing).
534 	 * The rule is that addr 0 and floor 0 refer to the bottom of
535 	 * the address space, but end 0 and ceiling 0 refer to the top
536 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
537 	 * that end 0 case should be mythical).
538 	 *
539 	 * Wherever addr is brought up or ceiling brought down, we must
540 	 * be careful to reject "the opposite 0" before it confuses the
541 	 * subsequent tests.  But what about where end is brought down
542 	 * by PMD_SIZE below? no, end can't go down to 0 there.
543 	 *
544 	 * Whereas we round start (addr) and ceiling down, by different
545 	 * masks at different levels, in order to test whether a table
546 	 * now has no other vmas using it, so can be freed, we don't
547 	 * bother to round floor or end up - the tests don't need that.
548 	 */
549 
550 	addr &= PMD_MASK;
551 	if (addr < floor) {
552 		addr += PMD_SIZE;
553 		if (!addr)
554 			return;
555 	}
556 	if (ceiling) {
557 		ceiling &= PMD_MASK;
558 		if (!ceiling)
559 			return;
560 	}
561 	if (end - 1 > ceiling - 1)
562 		end -= PMD_SIZE;
563 	if (addr > end - 1)
564 		return;
565 	/*
566 	 * We add page table cache pages with PAGE_SIZE,
567 	 * (see pte_free_tlb()), flush the tlb if we need
568 	 */
569 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
570 	pgd = pgd_offset(tlb->mm, addr);
571 	do {
572 		next = pgd_addr_end(addr, end);
573 		if (pgd_none_or_clear_bad(pgd))
574 			continue;
575 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
576 	} while (pgd++, addr = next, addr != end);
577 }
578 
579 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
580 		unsigned long floor, unsigned long ceiling)
581 {
582 	while (vma) {
583 		struct vm_area_struct *next = vma->vm_next;
584 		unsigned long addr = vma->vm_start;
585 
586 		/*
587 		 * Hide vma from rmap and truncate_pagecache before freeing
588 		 * pgtables
589 		 */
590 		unlink_anon_vmas(vma);
591 		unlink_file_vma(vma);
592 
593 		if (is_vm_hugetlb_page(vma)) {
594 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
595 				floor, next ? next->vm_start : ceiling);
596 		} else {
597 			/*
598 			 * Optimization: gather nearby vmas into one call down
599 			 */
600 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
601 			       && !is_vm_hugetlb_page(next)) {
602 				vma = next;
603 				next = vma->vm_next;
604 				unlink_anon_vmas(vma);
605 				unlink_file_vma(vma);
606 			}
607 			free_pgd_range(tlb, addr, vma->vm_end,
608 				floor, next ? next->vm_start : ceiling);
609 		}
610 		vma = next;
611 	}
612 }
613 
614 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
615 {
616 	spinlock_t *ptl;
617 	pgtable_t new = pte_alloc_one(mm, address);
618 	if (!new)
619 		return -ENOMEM;
620 
621 	/*
622 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
623 	 * visible before the pte is made visible to other CPUs by being
624 	 * put into page tables.
625 	 *
626 	 * The other side of the story is the pointer chasing in the page
627 	 * table walking code (when walking the page table without locking;
628 	 * ie. most of the time). Fortunately, these data accesses consist
629 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
630 	 * being the notable exception) will already guarantee loads are
631 	 * seen in-order. See the alpha page table accessors for the
632 	 * smp_read_barrier_depends() barriers in page table walking code.
633 	 */
634 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
635 
636 	ptl = pmd_lock(mm, pmd);
637 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
638 		atomic_long_inc(&mm->nr_ptes);
639 		pmd_populate(mm, pmd, new);
640 		new = NULL;
641 	}
642 	spin_unlock(ptl);
643 	if (new)
644 		pte_free(mm, new);
645 	return 0;
646 }
647 
648 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
649 {
650 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
651 	if (!new)
652 		return -ENOMEM;
653 
654 	smp_wmb(); /* See comment in __pte_alloc */
655 
656 	spin_lock(&init_mm.page_table_lock);
657 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
658 		pmd_populate_kernel(&init_mm, pmd, new);
659 		new = NULL;
660 	}
661 	spin_unlock(&init_mm.page_table_lock);
662 	if (new)
663 		pte_free_kernel(&init_mm, new);
664 	return 0;
665 }
666 
667 static inline void init_rss_vec(int *rss)
668 {
669 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
670 }
671 
672 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
673 {
674 	int i;
675 
676 	if (current->mm == mm)
677 		sync_mm_rss(mm);
678 	for (i = 0; i < NR_MM_COUNTERS; i++)
679 		if (rss[i])
680 			add_mm_counter(mm, i, rss[i]);
681 }
682 
683 /*
684  * This function is called to print an error when a bad pte
685  * is found. For example, we might have a PFN-mapped pte in
686  * a region that doesn't allow it.
687  *
688  * The calling function must still handle the error.
689  */
690 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
691 			  pte_t pte, struct page *page)
692 {
693 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
694 	p4d_t *p4d = p4d_offset(pgd, addr);
695 	pud_t *pud = pud_offset(p4d, addr);
696 	pmd_t *pmd = pmd_offset(pud, addr);
697 	struct address_space *mapping;
698 	pgoff_t index;
699 	static unsigned long resume;
700 	static unsigned long nr_shown;
701 	static unsigned long nr_unshown;
702 
703 	/*
704 	 * Allow a burst of 60 reports, then keep quiet for that minute;
705 	 * or allow a steady drip of one report per second.
706 	 */
707 	if (nr_shown == 60) {
708 		if (time_before(jiffies, resume)) {
709 			nr_unshown++;
710 			return;
711 		}
712 		if (nr_unshown) {
713 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
714 				 nr_unshown);
715 			nr_unshown = 0;
716 		}
717 		nr_shown = 0;
718 	}
719 	if (nr_shown++ == 0)
720 		resume = jiffies + 60 * HZ;
721 
722 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
723 	index = linear_page_index(vma, addr);
724 
725 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
726 		 current->comm,
727 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
728 	if (page)
729 		dump_page(page, "bad pte");
730 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
731 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
732 	/*
733 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
734 	 */
735 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
736 		 vma->vm_file,
737 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
738 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
739 		 mapping ? mapping->a_ops->readpage : NULL);
740 	dump_stack();
741 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
742 }
743 
744 /*
745  * vm_normal_page -- This function gets the "struct page" associated with a pte.
746  *
747  * "Special" mappings do not wish to be associated with a "struct page" (either
748  * it doesn't exist, or it exists but they don't want to touch it). In this
749  * case, NULL is returned here. "Normal" mappings do have a struct page.
750  *
751  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
752  * pte bit, in which case this function is trivial. Secondly, an architecture
753  * may not have a spare pte bit, which requires a more complicated scheme,
754  * described below.
755  *
756  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
757  * special mapping (even if there are underlying and valid "struct pages").
758  * COWed pages of a VM_PFNMAP are always normal.
759  *
760  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
761  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
762  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
763  * mapping will always honor the rule
764  *
765  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
766  *
767  * And for normal mappings this is false.
768  *
769  * This restricts such mappings to be a linear translation from virtual address
770  * to pfn. To get around this restriction, we allow arbitrary mappings so long
771  * as the vma is not a COW mapping; in that case, we know that all ptes are
772  * special (because none can have been COWed).
773  *
774  *
775  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
776  *
777  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
778  * page" backing, however the difference is that _all_ pages with a struct
779  * page (that is, those where pfn_valid is true) are refcounted and considered
780  * normal pages by the VM. The disadvantage is that pages are refcounted
781  * (which can be slower and simply not an option for some PFNMAP users). The
782  * advantage is that we don't have to follow the strict linearity rule of
783  * PFNMAP mappings in order to support COWable mappings.
784  *
785  */
786 #ifdef __HAVE_ARCH_PTE_SPECIAL
787 # define HAVE_PTE_SPECIAL 1
788 #else
789 # define HAVE_PTE_SPECIAL 0
790 #endif
791 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
792 				pte_t pte)
793 {
794 	unsigned long pfn = pte_pfn(pte);
795 
796 	if (HAVE_PTE_SPECIAL) {
797 		if (likely(!pte_special(pte)))
798 			goto check_pfn;
799 		if (vma->vm_ops && vma->vm_ops->find_special_page)
800 			return vma->vm_ops->find_special_page(vma, addr);
801 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
802 			return NULL;
803 		if (!is_zero_pfn(pfn))
804 			print_bad_pte(vma, addr, pte, NULL);
805 		return NULL;
806 	}
807 
808 	/* !HAVE_PTE_SPECIAL case follows: */
809 
810 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
811 		if (vma->vm_flags & VM_MIXEDMAP) {
812 			if (!pfn_valid(pfn))
813 				return NULL;
814 			goto out;
815 		} else {
816 			unsigned long off;
817 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
818 			if (pfn == vma->vm_pgoff + off)
819 				return NULL;
820 			if (!is_cow_mapping(vma->vm_flags))
821 				return NULL;
822 		}
823 	}
824 
825 	if (is_zero_pfn(pfn))
826 		return NULL;
827 check_pfn:
828 	if (unlikely(pfn > highest_memmap_pfn)) {
829 		print_bad_pte(vma, addr, pte, NULL);
830 		return NULL;
831 	}
832 
833 	/*
834 	 * NOTE! We still have PageReserved() pages in the page tables.
835 	 * eg. VDSO mappings can cause them to exist.
836 	 */
837 out:
838 	return pfn_to_page(pfn);
839 }
840 
841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
842 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
843 				pmd_t pmd)
844 {
845 	unsigned long pfn = pmd_pfn(pmd);
846 
847 	/*
848 	 * There is no pmd_special() but there may be special pmds, e.g.
849 	 * in a direct-access (dax) mapping, so let's just replicate the
850 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
851 	 */
852 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
853 		if (vma->vm_flags & VM_MIXEDMAP) {
854 			if (!pfn_valid(pfn))
855 				return NULL;
856 			goto out;
857 		} else {
858 			unsigned long off;
859 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
860 			if (pfn == vma->vm_pgoff + off)
861 				return NULL;
862 			if (!is_cow_mapping(vma->vm_flags))
863 				return NULL;
864 		}
865 	}
866 
867 	if (is_zero_pfn(pfn))
868 		return NULL;
869 	if (unlikely(pfn > highest_memmap_pfn))
870 		return NULL;
871 
872 	/*
873 	 * NOTE! We still have PageReserved() pages in the page tables.
874 	 * eg. VDSO mappings can cause them to exist.
875 	 */
876 out:
877 	return pfn_to_page(pfn);
878 }
879 #endif
880 
881 /*
882  * copy one vm_area from one task to the other. Assumes the page tables
883  * already present in the new task to be cleared in the whole range
884  * covered by this vma.
885  */
886 
887 static inline unsigned long
888 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
889 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
890 		unsigned long addr, int *rss)
891 {
892 	unsigned long vm_flags = vma->vm_flags;
893 	pte_t pte = *src_pte;
894 	struct page *page;
895 
896 	/* pte contains position in swap or file, so copy. */
897 	if (unlikely(!pte_present(pte))) {
898 		swp_entry_t entry = pte_to_swp_entry(pte);
899 
900 		if (likely(!non_swap_entry(entry))) {
901 			if (swap_duplicate(entry) < 0)
902 				return entry.val;
903 
904 			/* make sure dst_mm is on swapoff's mmlist. */
905 			if (unlikely(list_empty(&dst_mm->mmlist))) {
906 				spin_lock(&mmlist_lock);
907 				if (list_empty(&dst_mm->mmlist))
908 					list_add(&dst_mm->mmlist,
909 							&src_mm->mmlist);
910 				spin_unlock(&mmlist_lock);
911 			}
912 			rss[MM_SWAPENTS]++;
913 		} else if (is_migration_entry(entry)) {
914 			page = migration_entry_to_page(entry);
915 
916 			rss[mm_counter(page)]++;
917 
918 			if (is_write_migration_entry(entry) &&
919 					is_cow_mapping(vm_flags)) {
920 				/*
921 				 * COW mappings require pages in both
922 				 * parent and child to be set to read.
923 				 */
924 				make_migration_entry_read(&entry);
925 				pte = swp_entry_to_pte(entry);
926 				if (pte_swp_soft_dirty(*src_pte))
927 					pte = pte_swp_mksoft_dirty(pte);
928 				set_pte_at(src_mm, addr, src_pte, pte);
929 			}
930 		}
931 		goto out_set_pte;
932 	}
933 
934 	/*
935 	 * If it's a COW mapping, write protect it both
936 	 * in the parent and the child
937 	 */
938 	if (is_cow_mapping(vm_flags)) {
939 		ptep_set_wrprotect(src_mm, addr, src_pte);
940 		pte = pte_wrprotect(pte);
941 	}
942 
943 	/*
944 	 * If it's a shared mapping, mark it clean in
945 	 * the child
946 	 */
947 	if (vm_flags & VM_SHARED)
948 		pte = pte_mkclean(pte);
949 	pte = pte_mkold(pte);
950 
951 	page = vm_normal_page(vma, addr, pte);
952 	if (page) {
953 		get_page(page);
954 		page_dup_rmap(page, false);
955 		rss[mm_counter(page)]++;
956 	}
957 
958 out_set_pte:
959 	set_pte_at(dst_mm, addr, dst_pte, pte);
960 	return 0;
961 }
962 
963 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
964 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
965 		   unsigned long addr, unsigned long end)
966 {
967 	pte_t *orig_src_pte, *orig_dst_pte;
968 	pte_t *src_pte, *dst_pte;
969 	spinlock_t *src_ptl, *dst_ptl;
970 	int progress = 0;
971 	int rss[NR_MM_COUNTERS];
972 	swp_entry_t entry = (swp_entry_t){0};
973 
974 again:
975 	init_rss_vec(rss);
976 
977 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
978 	if (!dst_pte)
979 		return -ENOMEM;
980 	src_pte = pte_offset_map(src_pmd, addr);
981 	src_ptl = pte_lockptr(src_mm, src_pmd);
982 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
983 	orig_src_pte = src_pte;
984 	orig_dst_pte = dst_pte;
985 	arch_enter_lazy_mmu_mode();
986 
987 	do {
988 		/*
989 		 * We are holding two locks at this point - either of them
990 		 * could generate latencies in another task on another CPU.
991 		 */
992 		if (progress >= 32) {
993 			progress = 0;
994 			if (need_resched() ||
995 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
996 				break;
997 		}
998 		if (pte_none(*src_pte)) {
999 			progress++;
1000 			continue;
1001 		}
1002 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1003 							vma, addr, rss);
1004 		if (entry.val)
1005 			break;
1006 		progress += 8;
1007 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1008 
1009 	arch_leave_lazy_mmu_mode();
1010 	spin_unlock(src_ptl);
1011 	pte_unmap(orig_src_pte);
1012 	add_mm_rss_vec(dst_mm, rss);
1013 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1014 	cond_resched();
1015 
1016 	if (entry.val) {
1017 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1018 			return -ENOMEM;
1019 		progress = 0;
1020 	}
1021 	if (addr != end)
1022 		goto again;
1023 	return 0;
1024 }
1025 
1026 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1027 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1028 		unsigned long addr, unsigned long end)
1029 {
1030 	pmd_t *src_pmd, *dst_pmd;
1031 	unsigned long next;
1032 
1033 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1034 	if (!dst_pmd)
1035 		return -ENOMEM;
1036 	src_pmd = pmd_offset(src_pud, addr);
1037 	do {
1038 		next = pmd_addr_end(addr, end);
1039 		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1040 			int err;
1041 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1042 			err = copy_huge_pmd(dst_mm, src_mm,
1043 					    dst_pmd, src_pmd, addr, vma);
1044 			if (err == -ENOMEM)
1045 				return -ENOMEM;
1046 			if (!err)
1047 				continue;
1048 			/* fall through */
1049 		}
1050 		if (pmd_none_or_clear_bad(src_pmd))
1051 			continue;
1052 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1053 						vma, addr, next))
1054 			return -ENOMEM;
1055 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1056 	return 0;
1057 }
1058 
1059 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1060 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1061 		unsigned long addr, unsigned long end)
1062 {
1063 	pud_t *src_pud, *dst_pud;
1064 	unsigned long next;
1065 
1066 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1067 	if (!dst_pud)
1068 		return -ENOMEM;
1069 	src_pud = pud_offset(src_p4d, addr);
1070 	do {
1071 		next = pud_addr_end(addr, end);
1072 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1073 			int err;
1074 
1075 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1076 			err = copy_huge_pud(dst_mm, src_mm,
1077 					    dst_pud, src_pud, addr, vma);
1078 			if (err == -ENOMEM)
1079 				return -ENOMEM;
1080 			if (!err)
1081 				continue;
1082 			/* fall through */
1083 		}
1084 		if (pud_none_or_clear_bad(src_pud))
1085 			continue;
1086 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1087 						vma, addr, next))
1088 			return -ENOMEM;
1089 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1090 	return 0;
1091 }
1092 
1093 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1094 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1095 		unsigned long addr, unsigned long end)
1096 {
1097 	p4d_t *src_p4d, *dst_p4d;
1098 	unsigned long next;
1099 
1100 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1101 	if (!dst_p4d)
1102 		return -ENOMEM;
1103 	src_p4d = p4d_offset(src_pgd, addr);
1104 	do {
1105 		next = p4d_addr_end(addr, end);
1106 		if (p4d_none_or_clear_bad(src_p4d))
1107 			continue;
1108 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1109 						vma, addr, next))
1110 			return -ENOMEM;
1111 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1112 	return 0;
1113 }
1114 
1115 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1116 		struct vm_area_struct *vma)
1117 {
1118 	pgd_t *src_pgd, *dst_pgd;
1119 	unsigned long next;
1120 	unsigned long addr = vma->vm_start;
1121 	unsigned long end = vma->vm_end;
1122 	unsigned long mmun_start;	/* For mmu_notifiers */
1123 	unsigned long mmun_end;		/* For mmu_notifiers */
1124 	bool is_cow;
1125 	int ret;
1126 
1127 	/*
1128 	 * Don't copy ptes where a page fault will fill them correctly.
1129 	 * Fork becomes much lighter when there are big shared or private
1130 	 * readonly mappings. The tradeoff is that copy_page_range is more
1131 	 * efficient than faulting.
1132 	 */
1133 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1134 			!vma->anon_vma)
1135 		return 0;
1136 
1137 	if (is_vm_hugetlb_page(vma))
1138 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1139 
1140 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1141 		/*
1142 		 * We do not free on error cases below as remove_vma
1143 		 * gets called on error from higher level routine
1144 		 */
1145 		ret = track_pfn_copy(vma);
1146 		if (ret)
1147 			return ret;
1148 	}
1149 
1150 	/*
1151 	 * We need to invalidate the secondary MMU mappings only when
1152 	 * there could be a permission downgrade on the ptes of the
1153 	 * parent mm. And a permission downgrade will only happen if
1154 	 * is_cow_mapping() returns true.
1155 	 */
1156 	is_cow = is_cow_mapping(vma->vm_flags);
1157 	mmun_start = addr;
1158 	mmun_end   = end;
1159 	if (is_cow)
1160 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1161 						    mmun_end);
1162 
1163 	ret = 0;
1164 	dst_pgd = pgd_offset(dst_mm, addr);
1165 	src_pgd = pgd_offset(src_mm, addr);
1166 	do {
1167 		next = pgd_addr_end(addr, end);
1168 		if (pgd_none_or_clear_bad(src_pgd))
1169 			continue;
1170 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1171 					    vma, addr, next))) {
1172 			ret = -ENOMEM;
1173 			break;
1174 		}
1175 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1176 
1177 	if (is_cow)
1178 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1179 	return ret;
1180 }
1181 
1182 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1183 				struct vm_area_struct *vma, pmd_t *pmd,
1184 				unsigned long addr, unsigned long end,
1185 				struct zap_details *details)
1186 {
1187 	struct mm_struct *mm = tlb->mm;
1188 	int force_flush = 0;
1189 	int rss[NR_MM_COUNTERS];
1190 	spinlock_t *ptl;
1191 	pte_t *start_pte;
1192 	pte_t *pte;
1193 	swp_entry_t entry;
1194 
1195 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1196 again:
1197 	init_rss_vec(rss);
1198 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1199 	pte = start_pte;
1200 	flush_tlb_batched_pending(mm);
1201 	arch_enter_lazy_mmu_mode();
1202 	do {
1203 		pte_t ptent = *pte;
1204 		if (pte_none(ptent))
1205 			continue;
1206 
1207 		if (pte_present(ptent)) {
1208 			struct page *page;
1209 
1210 			page = vm_normal_page(vma, addr, ptent);
1211 			if (unlikely(details) && page) {
1212 				/*
1213 				 * unmap_shared_mapping_pages() wants to
1214 				 * invalidate cache without truncating:
1215 				 * unmap shared but keep private pages.
1216 				 */
1217 				if (details->check_mapping &&
1218 				    details->check_mapping != page_rmapping(page))
1219 					continue;
1220 			}
1221 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1222 							tlb->fullmm);
1223 			tlb_remove_tlb_entry(tlb, pte, addr);
1224 			if (unlikely(!page))
1225 				continue;
1226 
1227 			if (!PageAnon(page)) {
1228 				if (pte_dirty(ptent)) {
1229 					force_flush = 1;
1230 					set_page_dirty(page);
1231 				}
1232 				if (pte_young(ptent) &&
1233 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1234 					mark_page_accessed(page);
1235 			}
1236 			rss[mm_counter(page)]--;
1237 			page_remove_rmap(page, false);
1238 			if (unlikely(page_mapcount(page) < 0))
1239 				print_bad_pte(vma, addr, ptent, page);
1240 			if (unlikely(__tlb_remove_page(tlb, page))) {
1241 				force_flush = 1;
1242 				addr += PAGE_SIZE;
1243 				break;
1244 			}
1245 			continue;
1246 		}
1247 		/* If details->check_mapping, we leave swap entries. */
1248 		if (unlikely(details))
1249 			continue;
1250 
1251 		entry = pte_to_swp_entry(ptent);
1252 		if (!non_swap_entry(entry))
1253 			rss[MM_SWAPENTS]--;
1254 		else if (is_migration_entry(entry)) {
1255 			struct page *page;
1256 
1257 			page = migration_entry_to_page(entry);
1258 			rss[mm_counter(page)]--;
1259 		}
1260 		if (unlikely(!free_swap_and_cache(entry)))
1261 			print_bad_pte(vma, addr, ptent, NULL);
1262 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1263 	} while (pte++, addr += PAGE_SIZE, addr != end);
1264 
1265 	add_mm_rss_vec(mm, rss);
1266 	arch_leave_lazy_mmu_mode();
1267 
1268 	/* Do the actual TLB flush before dropping ptl */
1269 	if (force_flush)
1270 		tlb_flush_mmu_tlbonly(tlb);
1271 	pte_unmap_unlock(start_pte, ptl);
1272 
1273 	/*
1274 	 * If we forced a TLB flush (either due to running out of
1275 	 * batch buffers or because we needed to flush dirty TLB
1276 	 * entries before releasing the ptl), free the batched
1277 	 * memory too. Restart if we didn't do everything.
1278 	 */
1279 	if (force_flush) {
1280 		force_flush = 0;
1281 		tlb_flush_mmu_free(tlb);
1282 		if (addr != end)
1283 			goto again;
1284 	}
1285 
1286 	return addr;
1287 }
1288 
1289 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1290 				struct vm_area_struct *vma, pud_t *pud,
1291 				unsigned long addr, unsigned long end,
1292 				struct zap_details *details)
1293 {
1294 	pmd_t *pmd;
1295 	unsigned long next;
1296 
1297 	pmd = pmd_offset(pud, addr);
1298 	do {
1299 		next = pmd_addr_end(addr, end);
1300 		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1301 			if (next - addr != HPAGE_PMD_SIZE) {
1302 				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1303 				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1304 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1305 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1306 				goto next;
1307 			/* fall through */
1308 		}
1309 		/*
1310 		 * Here there can be other concurrent MADV_DONTNEED or
1311 		 * trans huge page faults running, and if the pmd is
1312 		 * none or trans huge it can change under us. This is
1313 		 * because MADV_DONTNEED holds the mmap_sem in read
1314 		 * mode.
1315 		 */
1316 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1317 			goto next;
1318 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1319 next:
1320 		cond_resched();
1321 	} while (pmd++, addr = next, addr != end);
1322 
1323 	return addr;
1324 }
1325 
1326 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1327 				struct vm_area_struct *vma, p4d_t *p4d,
1328 				unsigned long addr, unsigned long end,
1329 				struct zap_details *details)
1330 {
1331 	pud_t *pud;
1332 	unsigned long next;
1333 
1334 	pud = pud_offset(p4d, addr);
1335 	do {
1336 		next = pud_addr_end(addr, end);
1337 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1338 			if (next - addr != HPAGE_PUD_SIZE) {
1339 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1340 				split_huge_pud(vma, pud, addr);
1341 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1342 				goto next;
1343 			/* fall through */
1344 		}
1345 		if (pud_none_or_clear_bad(pud))
1346 			continue;
1347 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1348 next:
1349 		cond_resched();
1350 	} while (pud++, addr = next, addr != end);
1351 
1352 	return addr;
1353 }
1354 
1355 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1356 				struct vm_area_struct *vma, pgd_t *pgd,
1357 				unsigned long addr, unsigned long end,
1358 				struct zap_details *details)
1359 {
1360 	p4d_t *p4d;
1361 	unsigned long next;
1362 
1363 	p4d = p4d_offset(pgd, addr);
1364 	do {
1365 		next = p4d_addr_end(addr, end);
1366 		if (p4d_none_or_clear_bad(p4d))
1367 			continue;
1368 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1369 	} while (p4d++, addr = next, addr != end);
1370 
1371 	return addr;
1372 }
1373 
1374 void unmap_page_range(struct mmu_gather *tlb,
1375 			     struct vm_area_struct *vma,
1376 			     unsigned long addr, unsigned long end,
1377 			     struct zap_details *details)
1378 {
1379 	pgd_t *pgd;
1380 	unsigned long next;
1381 
1382 	BUG_ON(addr >= end);
1383 	tlb_start_vma(tlb, vma);
1384 	pgd = pgd_offset(vma->vm_mm, addr);
1385 	do {
1386 		next = pgd_addr_end(addr, end);
1387 		if (pgd_none_or_clear_bad(pgd))
1388 			continue;
1389 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1390 	} while (pgd++, addr = next, addr != end);
1391 	tlb_end_vma(tlb, vma);
1392 }
1393 
1394 
1395 static void unmap_single_vma(struct mmu_gather *tlb,
1396 		struct vm_area_struct *vma, unsigned long start_addr,
1397 		unsigned long end_addr,
1398 		struct zap_details *details)
1399 {
1400 	unsigned long start = max(vma->vm_start, start_addr);
1401 	unsigned long end;
1402 
1403 	if (start >= vma->vm_end)
1404 		return;
1405 	end = min(vma->vm_end, end_addr);
1406 	if (end <= vma->vm_start)
1407 		return;
1408 
1409 	if (vma->vm_file)
1410 		uprobe_munmap(vma, start, end);
1411 
1412 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1413 		untrack_pfn(vma, 0, 0);
1414 
1415 	if (start != end) {
1416 		if (unlikely(is_vm_hugetlb_page(vma))) {
1417 			/*
1418 			 * It is undesirable to test vma->vm_file as it
1419 			 * should be non-null for valid hugetlb area.
1420 			 * However, vm_file will be NULL in the error
1421 			 * cleanup path of mmap_region. When
1422 			 * hugetlbfs ->mmap method fails,
1423 			 * mmap_region() nullifies vma->vm_file
1424 			 * before calling this function to clean up.
1425 			 * Since no pte has actually been setup, it is
1426 			 * safe to do nothing in this case.
1427 			 */
1428 			if (vma->vm_file) {
1429 				i_mmap_lock_write(vma->vm_file->f_mapping);
1430 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1431 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1432 			}
1433 		} else
1434 			unmap_page_range(tlb, vma, start, end, details);
1435 	}
1436 }
1437 
1438 /**
1439  * unmap_vmas - unmap a range of memory covered by a list of vma's
1440  * @tlb: address of the caller's struct mmu_gather
1441  * @vma: the starting vma
1442  * @start_addr: virtual address at which to start unmapping
1443  * @end_addr: virtual address at which to end unmapping
1444  *
1445  * Unmap all pages in the vma list.
1446  *
1447  * Only addresses between `start' and `end' will be unmapped.
1448  *
1449  * The VMA list must be sorted in ascending virtual address order.
1450  *
1451  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1452  * range after unmap_vmas() returns.  So the only responsibility here is to
1453  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1454  * drops the lock and schedules.
1455  */
1456 void unmap_vmas(struct mmu_gather *tlb,
1457 		struct vm_area_struct *vma, unsigned long start_addr,
1458 		unsigned long end_addr)
1459 {
1460 	struct mm_struct *mm = vma->vm_mm;
1461 
1462 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1463 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1464 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1465 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1466 }
1467 
1468 /**
1469  * zap_page_range - remove user pages in a given range
1470  * @vma: vm_area_struct holding the applicable pages
1471  * @start: starting address of pages to zap
1472  * @size: number of bytes to zap
1473  *
1474  * Caller must protect the VMA list
1475  */
1476 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1477 		unsigned long size)
1478 {
1479 	struct mm_struct *mm = vma->vm_mm;
1480 	struct mmu_gather tlb;
1481 	unsigned long end = start + size;
1482 
1483 	lru_add_drain();
1484 	tlb_gather_mmu(&tlb, mm, start, end);
1485 	update_hiwater_rss(mm);
1486 	mmu_notifier_invalidate_range_start(mm, start, end);
1487 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1488 		unmap_single_vma(&tlb, vma, start, end, NULL);
1489 	mmu_notifier_invalidate_range_end(mm, start, end);
1490 	tlb_finish_mmu(&tlb, start, end);
1491 }
1492 
1493 /**
1494  * zap_page_range_single - remove user pages in a given range
1495  * @vma: vm_area_struct holding the applicable pages
1496  * @address: starting address of pages to zap
1497  * @size: number of bytes to zap
1498  * @details: details of shared cache invalidation
1499  *
1500  * The range must fit into one VMA.
1501  */
1502 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1503 		unsigned long size, struct zap_details *details)
1504 {
1505 	struct mm_struct *mm = vma->vm_mm;
1506 	struct mmu_gather tlb;
1507 	unsigned long end = address + size;
1508 
1509 	lru_add_drain();
1510 	tlb_gather_mmu(&tlb, mm, address, end);
1511 	update_hiwater_rss(mm);
1512 	mmu_notifier_invalidate_range_start(mm, address, end);
1513 	unmap_single_vma(&tlb, vma, address, end, details);
1514 	mmu_notifier_invalidate_range_end(mm, address, end);
1515 	tlb_finish_mmu(&tlb, address, end);
1516 }
1517 
1518 /**
1519  * zap_vma_ptes - remove ptes mapping the vma
1520  * @vma: vm_area_struct holding ptes to be zapped
1521  * @address: starting address of pages to zap
1522  * @size: number of bytes to zap
1523  *
1524  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1525  *
1526  * The entire address range must be fully contained within the vma.
1527  *
1528  * Returns 0 if successful.
1529  */
1530 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1531 		unsigned long size)
1532 {
1533 	if (address < vma->vm_start || address + size > vma->vm_end ||
1534 	    		!(vma->vm_flags & VM_PFNMAP))
1535 		return -1;
1536 	zap_page_range_single(vma, address, size, NULL);
1537 	return 0;
1538 }
1539 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1540 
1541 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1542 			spinlock_t **ptl)
1543 {
1544 	pgd_t *pgd;
1545 	p4d_t *p4d;
1546 	pud_t *pud;
1547 	pmd_t *pmd;
1548 
1549 	pgd = pgd_offset(mm, addr);
1550 	p4d = p4d_alloc(mm, pgd, addr);
1551 	if (!p4d)
1552 		return NULL;
1553 	pud = pud_alloc(mm, p4d, addr);
1554 	if (!pud)
1555 		return NULL;
1556 	pmd = pmd_alloc(mm, pud, addr);
1557 	if (!pmd)
1558 		return NULL;
1559 
1560 	VM_BUG_ON(pmd_trans_huge(*pmd));
1561 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1562 }
1563 
1564 /*
1565  * This is the old fallback for page remapping.
1566  *
1567  * For historical reasons, it only allows reserved pages. Only
1568  * old drivers should use this, and they needed to mark their
1569  * pages reserved for the old functions anyway.
1570  */
1571 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1572 			struct page *page, pgprot_t prot)
1573 {
1574 	struct mm_struct *mm = vma->vm_mm;
1575 	int retval;
1576 	pte_t *pte;
1577 	spinlock_t *ptl;
1578 
1579 	retval = -EINVAL;
1580 	if (PageAnon(page))
1581 		goto out;
1582 	retval = -ENOMEM;
1583 	flush_dcache_page(page);
1584 	pte = get_locked_pte(mm, addr, &ptl);
1585 	if (!pte)
1586 		goto out;
1587 	retval = -EBUSY;
1588 	if (!pte_none(*pte))
1589 		goto out_unlock;
1590 
1591 	/* Ok, finally just insert the thing.. */
1592 	get_page(page);
1593 	inc_mm_counter_fast(mm, mm_counter_file(page));
1594 	page_add_file_rmap(page, false);
1595 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1596 
1597 	retval = 0;
1598 	pte_unmap_unlock(pte, ptl);
1599 	return retval;
1600 out_unlock:
1601 	pte_unmap_unlock(pte, ptl);
1602 out:
1603 	return retval;
1604 }
1605 
1606 /**
1607  * vm_insert_page - insert single page into user vma
1608  * @vma: user vma to map to
1609  * @addr: target user address of this page
1610  * @page: source kernel page
1611  *
1612  * This allows drivers to insert individual pages they've allocated
1613  * into a user vma.
1614  *
1615  * The page has to be a nice clean _individual_ kernel allocation.
1616  * If you allocate a compound page, you need to have marked it as
1617  * such (__GFP_COMP), or manually just split the page up yourself
1618  * (see split_page()).
1619  *
1620  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1621  * took an arbitrary page protection parameter. This doesn't allow
1622  * that. Your vma protection will have to be set up correctly, which
1623  * means that if you want a shared writable mapping, you'd better
1624  * ask for a shared writable mapping!
1625  *
1626  * The page does not need to be reserved.
1627  *
1628  * Usually this function is called from f_op->mmap() handler
1629  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1630  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1631  * function from other places, for example from page-fault handler.
1632  */
1633 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1634 			struct page *page)
1635 {
1636 	if (addr < vma->vm_start || addr >= vma->vm_end)
1637 		return -EFAULT;
1638 	if (!page_count(page))
1639 		return -EINVAL;
1640 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1641 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1642 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1643 		vma->vm_flags |= VM_MIXEDMAP;
1644 	}
1645 	return insert_page(vma, addr, page, vma->vm_page_prot);
1646 }
1647 EXPORT_SYMBOL(vm_insert_page);
1648 
1649 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1650 			pfn_t pfn, pgprot_t prot)
1651 {
1652 	struct mm_struct *mm = vma->vm_mm;
1653 	int retval;
1654 	pte_t *pte, entry;
1655 	spinlock_t *ptl;
1656 
1657 	retval = -ENOMEM;
1658 	pte = get_locked_pte(mm, addr, &ptl);
1659 	if (!pte)
1660 		goto out;
1661 	retval = -EBUSY;
1662 	if (!pte_none(*pte))
1663 		goto out_unlock;
1664 
1665 	/* Ok, finally just insert the thing.. */
1666 	if (pfn_t_devmap(pfn))
1667 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1668 	else
1669 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1670 	set_pte_at(mm, addr, pte, entry);
1671 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1672 
1673 	retval = 0;
1674 out_unlock:
1675 	pte_unmap_unlock(pte, ptl);
1676 out:
1677 	return retval;
1678 }
1679 
1680 /**
1681  * vm_insert_pfn - insert single pfn into user vma
1682  * @vma: user vma to map to
1683  * @addr: target user address of this page
1684  * @pfn: source kernel pfn
1685  *
1686  * Similar to vm_insert_page, this allows drivers to insert individual pages
1687  * they've allocated into a user vma. Same comments apply.
1688  *
1689  * This function should only be called from a vm_ops->fault handler, and
1690  * in that case the handler should return NULL.
1691  *
1692  * vma cannot be a COW mapping.
1693  *
1694  * As this is called only for pages that do not currently exist, we
1695  * do not need to flush old virtual caches or the TLB.
1696  */
1697 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1698 			unsigned long pfn)
1699 {
1700 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1701 }
1702 EXPORT_SYMBOL(vm_insert_pfn);
1703 
1704 /**
1705  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1706  * @vma: user vma to map to
1707  * @addr: target user address of this page
1708  * @pfn: source kernel pfn
1709  * @pgprot: pgprot flags for the inserted page
1710  *
1711  * This is exactly like vm_insert_pfn, except that it allows drivers to
1712  * to override pgprot on a per-page basis.
1713  *
1714  * This only makes sense for IO mappings, and it makes no sense for
1715  * cow mappings.  In general, using multiple vmas is preferable;
1716  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1717  * impractical.
1718  */
1719 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1720 			unsigned long pfn, pgprot_t pgprot)
1721 {
1722 	int ret;
1723 	/*
1724 	 * Technically, architectures with pte_special can avoid all these
1725 	 * restrictions (same for remap_pfn_range).  However we would like
1726 	 * consistency in testing and feature parity among all, so we should
1727 	 * try to keep these invariants in place for everybody.
1728 	 */
1729 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1730 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1731 						(VM_PFNMAP|VM_MIXEDMAP));
1732 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1733 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1734 
1735 	if (addr < vma->vm_start || addr >= vma->vm_end)
1736 		return -EFAULT;
1737 
1738 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1739 
1740 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1741 
1742 	return ret;
1743 }
1744 EXPORT_SYMBOL(vm_insert_pfn_prot);
1745 
1746 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1747 			pfn_t pfn)
1748 {
1749 	pgprot_t pgprot = vma->vm_page_prot;
1750 
1751 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1752 
1753 	if (addr < vma->vm_start || addr >= vma->vm_end)
1754 		return -EFAULT;
1755 
1756 	track_pfn_insert(vma, &pgprot, pfn);
1757 
1758 	/*
1759 	 * If we don't have pte special, then we have to use the pfn_valid()
1760 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1761 	 * refcount the page if pfn_valid is true (hence insert_page rather
1762 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1763 	 * without pte special, it would there be refcounted as a normal page.
1764 	 */
1765 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1766 		struct page *page;
1767 
1768 		/*
1769 		 * At this point we are committed to insert_page()
1770 		 * regardless of whether the caller specified flags that
1771 		 * result in pfn_t_has_page() == false.
1772 		 */
1773 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1774 		return insert_page(vma, addr, page, pgprot);
1775 	}
1776 	return insert_pfn(vma, addr, pfn, pgprot);
1777 }
1778 EXPORT_SYMBOL(vm_insert_mixed);
1779 
1780 /*
1781  * maps a range of physical memory into the requested pages. the old
1782  * mappings are removed. any references to nonexistent pages results
1783  * in null mappings (currently treated as "copy-on-access")
1784  */
1785 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1786 			unsigned long addr, unsigned long end,
1787 			unsigned long pfn, pgprot_t prot)
1788 {
1789 	pte_t *pte;
1790 	spinlock_t *ptl;
1791 
1792 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1793 	if (!pte)
1794 		return -ENOMEM;
1795 	arch_enter_lazy_mmu_mode();
1796 	do {
1797 		BUG_ON(!pte_none(*pte));
1798 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1799 		pfn++;
1800 	} while (pte++, addr += PAGE_SIZE, addr != end);
1801 	arch_leave_lazy_mmu_mode();
1802 	pte_unmap_unlock(pte - 1, ptl);
1803 	return 0;
1804 }
1805 
1806 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1807 			unsigned long addr, unsigned long end,
1808 			unsigned long pfn, pgprot_t prot)
1809 {
1810 	pmd_t *pmd;
1811 	unsigned long next;
1812 
1813 	pfn -= addr >> PAGE_SHIFT;
1814 	pmd = pmd_alloc(mm, pud, addr);
1815 	if (!pmd)
1816 		return -ENOMEM;
1817 	VM_BUG_ON(pmd_trans_huge(*pmd));
1818 	do {
1819 		next = pmd_addr_end(addr, end);
1820 		if (remap_pte_range(mm, pmd, addr, next,
1821 				pfn + (addr >> PAGE_SHIFT), prot))
1822 			return -ENOMEM;
1823 	} while (pmd++, addr = next, addr != end);
1824 	return 0;
1825 }
1826 
1827 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1828 			unsigned long addr, unsigned long end,
1829 			unsigned long pfn, pgprot_t prot)
1830 {
1831 	pud_t *pud;
1832 	unsigned long next;
1833 
1834 	pfn -= addr >> PAGE_SHIFT;
1835 	pud = pud_alloc(mm, p4d, addr);
1836 	if (!pud)
1837 		return -ENOMEM;
1838 	do {
1839 		next = pud_addr_end(addr, end);
1840 		if (remap_pmd_range(mm, pud, addr, next,
1841 				pfn + (addr >> PAGE_SHIFT), prot))
1842 			return -ENOMEM;
1843 	} while (pud++, addr = next, addr != end);
1844 	return 0;
1845 }
1846 
1847 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1848 			unsigned long addr, unsigned long end,
1849 			unsigned long pfn, pgprot_t prot)
1850 {
1851 	p4d_t *p4d;
1852 	unsigned long next;
1853 
1854 	pfn -= addr >> PAGE_SHIFT;
1855 	p4d = p4d_alloc(mm, pgd, addr);
1856 	if (!p4d)
1857 		return -ENOMEM;
1858 	do {
1859 		next = p4d_addr_end(addr, end);
1860 		if (remap_pud_range(mm, p4d, addr, next,
1861 				pfn + (addr >> PAGE_SHIFT), prot))
1862 			return -ENOMEM;
1863 	} while (p4d++, addr = next, addr != end);
1864 	return 0;
1865 }
1866 
1867 /**
1868  * remap_pfn_range - remap kernel memory to userspace
1869  * @vma: user vma to map to
1870  * @addr: target user address to start at
1871  * @pfn: physical address of kernel memory
1872  * @size: size of map area
1873  * @prot: page protection flags for this mapping
1874  *
1875  *  Note: this is only safe if the mm semaphore is held when called.
1876  */
1877 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1878 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1879 {
1880 	pgd_t *pgd;
1881 	unsigned long next;
1882 	unsigned long end = addr + PAGE_ALIGN(size);
1883 	struct mm_struct *mm = vma->vm_mm;
1884 	unsigned long remap_pfn = pfn;
1885 	int err;
1886 
1887 	/*
1888 	 * Physically remapped pages are special. Tell the
1889 	 * rest of the world about it:
1890 	 *   VM_IO tells people not to look at these pages
1891 	 *	(accesses can have side effects).
1892 	 *   VM_PFNMAP tells the core MM that the base pages are just
1893 	 *	raw PFN mappings, and do not have a "struct page" associated
1894 	 *	with them.
1895 	 *   VM_DONTEXPAND
1896 	 *      Disable vma merging and expanding with mremap().
1897 	 *   VM_DONTDUMP
1898 	 *      Omit vma from core dump, even when VM_IO turned off.
1899 	 *
1900 	 * There's a horrible special case to handle copy-on-write
1901 	 * behaviour that some programs depend on. We mark the "original"
1902 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1903 	 * See vm_normal_page() for details.
1904 	 */
1905 	if (is_cow_mapping(vma->vm_flags)) {
1906 		if (addr != vma->vm_start || end != vma->vm_end)
1907 			return -EINVAL;
1908 		vma->vm_pgoff = pfn;
1909 	}
1910 
1911 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1912 	if (err)
1913 		return -EINVAL;
1914 
1915 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1916 
1917 	BUG_ON(addr >= end);
1918 	pfn -= addr >> PAGE_SHIFT;
1919 	pgd = pgd_offset(mm, addr);
1920 	flush_cache_range(vma, addr, end);
1921 	do {
1922 		next = pgd_addr_end(addr, end);
1923 		err = remap_p4d_range(mm, pgd, addr, next,
1924 				pfn + (addr >> PAGE_SHIFT), prot);
1925 		if (err)
1926 			break;
1927 	} while (pgd++, addr = next, addr != end);
1928 
1929 	if (err)
1930 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1931 
1932 	return err;
1933 }
1934 EXPORT_SYMBOL(remap_pfn_range);
1935 
1936 /**
1937  * vm_iomap_memory - remap memory to userspace
1938  * @vma: user vma to map to
1939  * @start: start of area
1940  * @len: size of area
1941  *
1942  * This is a simplified io_remap_pfn_range() for common driver use. The
1943  * driver just needs to give us the physical memory range to be mapped,
1944  * we'll figure out the rest from the vma information.
1945  *
1946  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1947  * whatever write-combining details or similar.
1948  */
1949 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1950 {
1951 	unsigned long vm_len, pfn, pages;
1952 
1953 	/* Check that the physical memory area passed in looks valid */
1954 	if (start + len < start)
1955 		return -EINVAL;
1956 	/*
1957 	 * You *really* shouldn't map things that aren't page-aligned,
1958 	 * but we've historically allowed it because IO memory might
1959 	 * just have smaller alignment.
1960 	 */
1961 	len += start & ~PAGE_MASK;
1962 	pfn = start >> PAGE_SHIFT;
1963 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1964 	if (pfn + pages < pfn)
1965 		return -EINVAL;
1966 
1967 	/* We start the mapping 'vm_pgoff' pages into the area */
1968 	if (vma->vm_pgoff > pages)
1969 		return -EINVAL;
1970 	pfn += vma->vm_pgoff;
1971 	pages -= vma->vm_pgoff;
1972 
1973 	/* Can we fit all of the mapping? */
1974 	vm_len = vma->vm_end - vma->vm_start;
1975 	if (vm_len >> PAGE_SHIFT > pages)
1976 		return -EINVAL;
1977 
1978 	/* Ok, let it rip */
1979 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1980 }
1981 EXPORT_SYMBOL(vm_iomap_memory);
1982 
1983 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1984 				     unsigned long addr, unsigned long end,
1985 				     pte_fn_t fn, void *data)
1986 {
1987 	pte_t *pte;
1988 	int err;
1989 	pgtable_t token;
1990 	spinlock_t *uninitialized_var(ptl);
1991 
1992 	pte = (mm == &init_mm) ?
1993 		pte_alloc_kernel(pmd, addr) :
1994 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1995 	if (!pte)
1996 		return -ENOMEM;
1997 
1998 	BUG_ON(pmd_huge(*pmd));
1999 
2000 	arch_enter_lazy_mmu_mode();
2001 
2002 	token = pmd_pgtable(*pmd);
2003 
2004 	do {
2005 		err = fn(pte++, token, addr, data);
2006 		if (err)
2007 			break;
2008 	} while (addr += PAGE_SIZE, addr != end);
2009 
2010 	arch_leave_lazy_mmu_mode();
2011 
2012 	if (mm != &init_mm)
2013 		pte_unmap_unlock(pte-1, ptl);
2014 	return err;
2015 }
2016 
2017 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2018 				     unsigned long addr, unsigned long end,
2019 				     pte_fn_t fn, void *data)
2020 {
2021 	pmd_t *pmd;
2022 	unsigned long next;
2023 	int err;
2024 
2025 	BUG_ON(pud_huge(*pud));
2026 
2027 	pmd = pmd_alloc(mm, pud, addr);
2028 	if (!pmd)
2029 		return -ENOMEM;
2030 	do {
2031 		next = pmd_addr_end(addr, end);
2032 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2033 		if (err)
2034 			break;
2035 	} while (pmd++, addr = next, addr != end);
2036 	return err;
2037 }
2038 
2039 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2040 				     unsigned long addr, unsigned long end,
2041 				     pte_fn_t fn, void *data)
2042 {
2043 	pud_t *pud;
2044 	unsigned long next;
2045 	int err;
2046 
2047 	pud = pud_alloc(mm, p4d, addr);
2048 	if (!pud)
2049 		return -ENOMEM;
2050 	do {
2051 		next = pud_addr_end(addr, end);
2052 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2053 		if (err)
2054 			break;
2055 	} while (pud++, addr = next, addr != end);
2056 	return err;
2057 }
2058 
2059 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2060 				     unsigned long addr, unsigned long end,
2061 				     pte_fn_t fn, void *data)
2062 {
2063 	p4d_t *p4d;
2064 	unsigned long next;
2065 	int err;
2066 
2067 	p4d = p4d_alloc(mm, pgd, addr);
2068 	if (!p4d)
2069 		return -ENOMEM;
2070 	do {
2071 		next = p4d_addr_end(addr, end);
2072 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2073 		if (err)
2074 			break;
2075 	} while (p4d++, addr = next, addr != end);
2076 	return err;
2077 }
2078 
2079 /*
2080  * Scan a region of virtual memory, filling in page tables as necessary
2081  * and calling a provided function on each leaf page table.
2082  */
2083 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2084 			unsigned long size, pte_fn_t fn, void *data)
2085 {
2086 	pgd_t *pgd;
2087 	unsigned long next;
2088 	unsigned long end = addr + size;
2089 	int err;
2090 
2091 	if (WARN_ON(addr >= end))
2092 		return -EINVAL;
2093 
2094 	pgd = pgd_offset(mm, addr);
2095 	do {
2096 		next = pgd_addr_end(addr, end);
2097 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2098 		if (err)
2099 			break;
2100 	} while (pgd++, addr = next, addr != end);
2101 
2102 	return err;
2103 }
2104 EXPORT_SYMBOL_GPL(apply_to_page_range);
2105 
2106 /*
2107  * handle_pte_fault chooses page fault handler according to an entry which was
2108  * read non-atomically.  Before making any commitment, on those architectures
2109  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2110  * parts, do_swap_page must check under lock before unmapping the pte and
2111  * proceeding (but do_wp_page is only called after already making such a check;
2112  * and do_anonymous_page can safely check later on).
2113  */
2114 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2115 				pte_t *page_table, pte_t orig_pte)
2116 {
2117 	int same = 1;
2118 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2119 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2120 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2121 		spin_lock(ptl);
2122 		same = pte_same(*page_table, orig_pte);
2123 		spin_unlock(ptl);
2124 	}
2125 #endif
2126 	pte_unmap(page_table);
2127 	return same;
2128 }
2129 
2130 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2131 {
2132 	debug_dma_assert_idle(src);
2133 
2134 	/*
2135 	 * If the source page was a PFN mapping, we don't have
2136 	 * a "struct page" for it. We do a best-effort copy by
2137 	 * just copying from the original user address. If that
2138 	 * fails, we just zero-fill it. Live with it.
2139 	 */
2140 	if (unlikely(!src)) {
2141 		void *kaddr = kmap_atomic(dst);
2142 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2143 
2144 		/*
2145 		 * This really shouldn't fail, because the page is there
2146 		 * in the page tables. But it might just be unreadable,
2147 		 * in which case we just give up and fill the result with
2148 		 * zeroes.
2149 		 */
2150 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2151 			clear_page(kaddr);
2152 		kunmap_atomic(kaddr);
2153 		flush_dcache_page(dst);
2154 	} else
2155 		copy_user_highpage(dst, src, va, vma);
2156 }
2157 
2158 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2159 {
2160 	struct file *vm_file = vma->vm_file;
2161 
2162 	if (vm_file)
2163 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2164 
2165 	/*
2166 	 * Special mappings (e.g. VDSO) do not have any file so fake
2167 	 * a default GFP_KERNEL for them.
2168 	 */
2169 	return GFP_KERNEL;
2170 }
2171 
2172 /*
2173  * Notify the address space that the page is about to become writable so that
2174  * it can prohibit this or wait for the page to get into an appropriate state.
2175  *
2176  * We do this without the lock held, so that it can sleep if it needs to.
2177  */
2178 static int do_page_mkwrite(struct vm_fault *vmf)
2179 {
2180 	int ret;
2181 	struct page *page = vmf->page;
2182 	unsigned int old_flags = vmf->flags;
2183 
2184 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2185 
2186 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2187 	/* Restore original flags so that caller is not surprised */
2188 	vmf->flags = old_flags;
2189 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2190 		return ret;
2191 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2192 		lock_page(page);
2193 		if (!page->mapping) {
2194 			unlock_page(page);
2195 			return 0; /* retry */
2196 		}
2197 		ret |= VM_FAULT_LOCKED;
2198 	} else
2199 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2200 	return ret;
2201 }
2202 
2203 /*
2204  * Handle dirtying of a page in shared file mapping on a write fault.
2205  *
2206  * The function expects the page to be locked and unlocks it.
2207  */
2208 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2209 				    struct page *page)
2210 {
2211 	struct address_space *mapping;
2212 	bool dirtied;
2213 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2214 
2215 	dirtied = set_page_dirty(page);
2216 	VM_BUG_ON_PAGE(PageAnon(page), page);
2217 	/*
2218 	 * Take a local copy of the address_space - page.mapping may be zeroed
2219 	 * by truncate after unlock_page().   The address_space itself remains
2220 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2221 	 * release semantics to prevent the compiler from undoing this copying.
2222 	 */
2223 	mapping = page_rmapping(page);
2224 	unlock_page(page);
2225 
2226 	if ((dirtied || page_mkwrite) && mapping) {
2227 		/*
2228 		 * Some device drivers do not set page.mapping
2229 		 * but still dirty their pages
2230 		 */
2231 		balance_dirty_pages_ratelimited(mapping);
2232 	}
2233 
2234 	if (!page_mkwrite)
2235 		file_update_time(vma->vm_file);
2236 }
2237 
2238 /*
2239  * Handle write page faults for pages that can be reused in the current vma
2240  *
2241  * This can happen either due to the mapping being with the VM_SHARED flag,
2242  * or due to us being the last reference standing to the page. In either
2243  * case, all we need to do here is to mark the page as writable and update
2244  * any related book-keeping.
2245  */
2246 static inline void wp_page_reuse(struct vm_fault *vmf)
2247 	__releases(vmf->ptl)
2248 {
2249 	struct vm_area_struct *vma = vmf->vma;
2250 	struct page *page = vmf->page;
2251 	pte_t entry;
2252 	/*
2253 	 * Clear the pages cpupid information as the existing
2254 	 * information potentially belongs to a now completely
2255 	 * unrelated process.
2256 	 */
2257 	if (page)
2258 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2259 
2260 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2261 	entry = pte_mkyoung(vmf->orig_pte);
2262 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2263 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2264 		update_mmu_cache(vma, vmf->address, vmf->pte);
2265 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2266 }
2267 
2268 /*
2269  * Handle the case of a page which we actually need to copy to a new page.
2270  *
2271  * Called with mmap_sem locked and the old page referenced, but
2272  * without the ptl held.
2273  *
2274  * High level logic flow:
2275  *
2276  * - Allocate a page, copy the content of the old page to the new one.
2277  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2278  * - Take the PTL. If the pte changed, bail out and release the allocated page
2279  * - If the pte is still the way we remember it, update the page table and all
2280  *   relevant references. This includes dropping the reference the page-table
2281  *   held to the old page, as well as updating the rmap.
2282  * - In any case, unlock the PTL and drop the reference we took to the old page.
2283  */
2284 static int wp_page_copy(struct vm_fault *vmf)
2285 {
2286 	struct vm_area_struct *vma = vmf->vma;
2287 	struct mm_struct *mm = vma->vm_mm;
2288 	struct page *old_page = vmf->page;
2289 	struct page *new_page = NULL;
2290 	pte_t entry;
2291 	int page_copied = 0;
2292 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2293 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2294 	struct mem_cgroup *memcg;
2295 
2296 	if (unlikely(anon_vma_prepare(vma)))
2297 		goto oom;
2298 
2299 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2300 		new_page = alloc_zeroed_user_highpage_movable(vma,
2301 							      vmf->address);
2302 		if (!new_page)
2303 			goto oom;
2304 	} else {
2305 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2306 				vmf->address);
2307 		if (!new_page)
2308 			goto oom;
2309 		cow_user_page(new_page, old_page, vmf->address, vma);
2310 	}
2311 
2312 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2313 		goto oom_free_new;
2314 
2315 	__SetPageUptodate(new_page);
2316 
2317 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2318 
2319 	/*
2320 	 * Re-check the pte - we dropped the lock
2321 	 */
2322 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2323 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2324 		if (old_page) {
2325 			if (!PageAnon(old_page)) {
2326 				dec_mm_counter_fast(mm,
2327 						mm_counter_file(old_page));
2328 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2329 			}
2330 		} else {
2331 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2332 		}
2333 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2334 		entry = mk_pte(new_page, vma->vm_page_prot);
2335 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2336 		/*
2337 		 * Clear the pte entry and flush it first, before updating the
2338 		 * pte with the new entry. This will avoid a race condition
2339 		 * seen in the presence of one thread doing SMC and another
2340 		 * thread doing COW.
2341 		 */
2342 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2343 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2344 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2345 		lru_cache_add_active_or_unevictable(new_page, vma);
2346 		/*
2347 		 * We call the notify macro here because, when using secondary
2348 		 * mmu page tables (such as kvm shadow page tables), we want the
2349 		 * new page to be mapped directly into the secondary page table.
2350 		 */
2351 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2352 		update_mmu_cache(vma, vmf->address, vmf->pte);
2353 		if (old_page) {
2354 			/*
2355 			 * Only after switching the pte to the new page may
2356 			 * we remove the mapcount here. Otherwise another
2357 			 * process may come and find the rmap count decremented
2358 			 * before the pte is switched to the new page, and
2359 			 * "reuse" the old page writing into it while our pte
2360 			 * here still points into it and can be read by other
2361 			 * threads.
2362 			 *
2363 			 * The critical issue is to order this
2364 			 * page_remove_rmap with the ptp_clear_flush above.
2365 			 * Those stores are ordered by (if nothing else,)
2366 			 * the barrier present in the atomic_add_negative
2367 			 * in page_remove_rmap.
2368 			 *
2369 			 * Then the TLB flush in ptep_clear_flush ensures that
2370 			 * no process can access the old page before the
2371 			 * decremented mapcount is visible. And the old page
2372 			 * cannot be reused until after the decremented
2373 			 * mapcount is visible. So transitively, TLBs to
2374 			 * old page will be flushed before it can be reused.
2375 			 */
2376 			page_remove_rmap(old_page, false);
2377 		}
2378 
2379 		/* Free the old page.. */
2380 		new_page = old_page;
2381 		page_copied = 1;
2382 	} else {
2383 		mem_cgroup_cancel_charge(new_page, memcg, false);
2384 	}
2385 
2386 	if (new_page)
2387 		put_page(new_page);
2388 
2389 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2390 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2391 	if (old_page) {
2392 		/*
2393 		 * Don't let another task, with possibly unlocked vma,
2394 		 * keep the mlocked page.
2395 		 */
2396 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2397 			lock_page(old_page);	/* LRU manipulation */
2398 			if (PageMlocked(old_page))
2399 				munlock_vma_page(old_page);
2400 			unlock_page(old_page);
2401 		}
2402 		put_page(old_page);
2403 	}
2404 	return page_copied ? VM_FAULT_WRITE : 0;
2405 oom_free_new:
2406 	put_page(new_page);
2407 oom:
2408 	if (old_page)
2409 		put_page(old_page);
2410 	return VM_FAULT_OOM;
2411 }
2412 
2413 /**
2414  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2415  *			  writeable once the page is prepared
2416  *
2417  * @vmf: structure describing the fault
2418  *
2419  * This function handles all that is needed to finish a write page fault in a
2420  * shared mapping due to PTE being read-only once the mapped page is prepared.
2421  * It handles locking of PTE and modifying it. The function returns
2422  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2423  * lock.
2424  *
2425  * The function expects the page to be locked or other protection against
2426  * concurrent faults / writeback (such as DAX radix tree locks).
2427  */
2428 int finish_mkwrite_fault(struct vm_fault *vmf)
2429 {
2430 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2431 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2432 				       &vmf->ptl);
2433 	/*
2434 	 * We might have raced with another page fault while we released the
2435 	 * pte_offset_map_lock.
2436 	 */
2437 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2438 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2439 		return VM_FAULT_NOPAGE;
2440 	}
2441 	wp_page_reuse(vmf);
2442 	return 0;
2443 }
2444 
2445 /*
2446  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2447  * mapping
2448  */
2449 static int wp_pfn_shared(struct vm_fault *vmf)
2450 {
2451 	struct vm_area_struct *vma = vmf->vma;
2452 
2453 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2454 		int ret;
2455 
2456 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2457 		vmf->flags |= FAULT_FLAG_MKWRITE;
2458 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2459 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2460 			return ret;
2461 		return finish_mkwrite_fault(vmf);
2462 	}
2463 	wp_page_reuse(vmf);
2464 	return VM_FAULT_WRITE;
2465 }
2466 
2467 static int wp_page_shared(struct vm_fault *vmf)
2468 	__releases(vmf->ptl)
2469 {
2470 	struct vm_area_struct *vma = vmf->vma;
2471 
2472 	get_page(vmf->page);
2473 
2474 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2475 		int tmp;
2476 
2477 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2478 		tmp = do_page_mkwrite(vmf);
2479 		if (unlikely(!tmp || (tmp &
2480 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2481 			put_page(vmf->page);
2482 			return tmp;
2483 		}
2484 		tmp = finish_mkwrite_fault(vmf);
2485 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2486 			unlock_page(vmf->page);
2487 			put_page(vmf->page);
2488 			return tmp;
2489 		}
2490 	} else {
2491 		wp_page_reuse(vmf);
2492 		lock_page(vmf->page);
2493 	}
2494 	fault_dirty_shared_page(vma, vmf->page);
2495 	put_page(vmf->page);
2496 
2497 	return VM_FAULT_WRITE;
2498 }
2499 
2500 /*
2501  * This routine handles present pages, when users try to write
2502  * to a shared page. It is done by copying the page to a new address
2503  * and decrementing the shared-page counter for the old page.
2504  *
2505  * Note that this routine assumes that the protection checks have been
2506  * done by the caller (the low-level page fault routine in most cases).
2507  * Thus we can safely just mark it writable once we've done any necessary
2508  * COW.
2509  *
2510  * We also mark the page dirty at this point even though the page will
2511  * change only once the write actually happens. This avoids a few races,
2512  * and potentially makes it more efficient.
2513  *
2514  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2515  * but allow concurrent faults), with pte both mapped and locked.
2516  * We return with mmap_sem still held, but pte unmapped and unlocked.
2517  */
2518 static int do_wp_page(struct vm_fault *vmf)
2519 	__releases(vmf->ptl)
2520 {
2521 	struct vm_area_struct *vma = vmf->vma;
2522 
2523 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2524 	if (!vmf->page) {
2525 		/*
2526 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2527 		 * VM_PFNMAP VMA.
2528 		 *
2529 		 * We should not cow pages in a shared writeable mapping.
2530 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2531 		 */
2532 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2533 				     (VM_WRITE|VM_SHARED))
2534 			return wp_pfn_shared(vmf);
2535 
2536 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2537 		return wp_page_copy(vmf);
2538 	}
2539 
2540 	/*
2541 	 * Take out anonymous pages first, anonymous shared vmas are
2542 	 * not dirty accountable.
2543 	 */
2544 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2545 		int total_mapcount;
2546 		if (!trylock_page(vmf->page)) {
2547 			get_page(vmf->page);
2548 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2549 			lock_page(vmf->page);
2550 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2551 					vmf->address, &vmf->ptl);
2552 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2553 				unlock_page(vmf->page);
2554 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2555 				put_page(vmf->page);
2556 				return 0;
2557 			}
2558 			put_page(vmf->page);
2559 		}
2560 		if (reuse_swap_page(vmf->page, &total_mapcount)) {
2561 			if (total_mapcount == 1) {
2562 				/*
2563 				 * The page is all ours. Move it to
2564 				 * our anon_vma so the rmap code will
2565 				 * not search our parent or siblings.
2566 				 * Protected against the rmap code by
2567 				 * the page lock.
2568 				 */
2569 				page_move_anon_rmap(vmf->page, vma);
2570 			}
2571 			unlock_page(vmf->page);
2572 			wp_page_reuse(vmf);
2573 			return VM_FAULT_WRITE;
2574 		}
2575 		unlock_page(vmf->page);
2576 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2577 					(VM_WRITE|VM_SHARED))) {
2578 		return wp_page_shared(vmf);
2579 	}
2580 
2581 	/*
2582 	 * Ok, we need to copy. Oh, well..
2583 	 */
2584 	get_page(vmf->page);
2585 
2586 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2587 	return wp_page_copy(vmf);
2588 }
2589 
2590 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2591 		unsigned long start_addr, unsigned long end_addr,
2592 		struct zap_details *details)
2593 {
2594 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2595 }
2596 
2597 static inline void unmap_mapping_range_tree(struct rb_root *root,
2598 					    struct zap_details *details)
2599 {
2600 	struct vm_area_struct *vma;
2601 	pgoff_t vba, vea, zba, zea;
2602 
2603 	vma_interval_tree_foreach(vma, root,
2604 			details->first_index, details->last_index) {
2605 
2606 		vba = vma->vm_pgoff;
2607 		vea = vba + vma_pages(vma) - 1;
2608 		zba = details->first_index;
2609 		if (zba < vba)
2610 			zba = vba;
2611 		zea = details->last_index;
2612 		if (zea > vea)
2613 			zea = vea;
2614 
2615 		unmap_mapping_range_vma(vma,
2616 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2617 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2618 				details);
2619 	}
2620 }
2621 
2622 /**
2623  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2624  * address_space corresponding to the specified page range in the underlying
2625  * file.
2626  *
2627  * @mapping: the address space containing mmaps to be unmapped.
2628  * @holebegin: byte in first page to unmap, relative to the start of
2629  * the underlying file.  This will be rounded down to a PAGE_SIZE
2630  * boundary.  Note that this is different from truncate_pagecache(), which
2631  * must keep the partial page.  In contrast, we must get rid of
2632  * partial pages.
2633  * @holelen: size of prospective hole in bytes.  This will be rounded
2634  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2635  * end of the file.
2636  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2637  * but 0 when invalidating pagecache, don't throw away private data.
2638  */
2639 void unmap_mapping_range(struct address_space *mapping,
2640 		loff_t const holebegin, loff_t const holelen, int even_cows)
2641 {
2642 	struct zap_details details = { };
2643 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2644 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2645 
2646 	/* Check for overflow. */
2647 	if (sizeof(holelen) > sizeof(hlen)) {
2648 		long long holeend =
2649 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2650 		if (holeend & ~(long long)ULONG_MAX)
2651 			hlen = ULONG_MAX - hba + 1;
2652 	}
2653 
2654 	details.check_mapping = even_cows ? NULL : mapping;
2655 	details.first_index = hba;
2656 	details.last_index = hba + hlen - 1;
2657 	if (details.last_index < details.first_index)
2658 		details.last_index = ULONG_MAX;
2659 
2660 	i_mmap_lock_write(mapping);
2661 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2662 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2663 	i_mmap_unlock_write(mapping);
2664 }
2665 EXPORT_SYMBOL(unmap_mapping_range);
2666 
2667 /*
2668  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2669  * but allow concurrent faults), and pte mapped but not yet locked.
2670  * We return with pte unmapped and unlocked.
2671  *
2672  * We return with the mmap_sem locked or unlocked in the same cases
2673  * as does filemap_fault().
2674  */
2675 int do_swap_page(struct vm_fault *vmf)
2676 {
2677 	struct vm_area_struct *vma = vmf->vma;
2678 	struct page *page, *swapcache;
2679 	struct mem_cgroup *memcg;
2680 	swp_entry_t entry;
2681 	pte_t pte;
2682 	int locked;
2683 	int exclusive = 0;
2684 	int ret = 0;
2685 
2686 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2687 		goto out;
2688 
2689 	entry = pte_to_swp_entry(vmf->orig_pte);
2690 	if (unlikely(non_swap_entry(entry))) {
2691 		if (is_migration_entry(entry)) {
2692 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2693 					     vmf->address);
2694 		} else if (is_hwpoison_entry(entry)) {
2695 			ret = VM_FAULT_HWPOISON;
2696 		} else {
2697 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2698 			ret = VM_FAULT_SIGBUS;
2699 		}
2700 		goto out;
2701 	}
2702 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2703 	page = lookup_swap_cache(entry);
2704 	if (!page) {
2705 		page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2706 					vmf->address);
2707 		if (!page) {
2708 			/*
2709 			 * Back out if somebody else faulted in this pte
2710 			 * while we released the pte lock.
2711 			 */
2712 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2713 					vmf->address, &vmf->ptl);
2714 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2715 				ret = VM_FAULT_OOM;
2716 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2717 			goto unlock;
2718 		}
2719 
2720 		/* Had to read the page from swap area: Major fault */
2721 		ret = VM_FAULT_MAJOR;
2722 		count_vm_event(PGMAJFAULT);
2723 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2724 	} else if (PageHWPoison(page)) {
2725 		/*
2726 		 * hwpoisoned dirty swapcache pages are kept for killing
2727 		 * owner processes (which may be unknown at hwpoison time)
2728 		 */
2729 		ret = VM_FAULT_HWPOISON;
2730 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2731 		swapcache = page;
2732 		goto out_release;
2733 	}
2734 
2735 	swapcache = page;
2736 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2737 
2738 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2739 	if (!locked) {
2740 		ret |= VM_FAULT_RETRY;
2741 		goto out_release;
2742 	}
2743 
2744 	/*
2745 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2746 	 * release the swapcache from under us.  The page pin, and pte_same
2747 	 * test below, are not enough to exclude that.  Even if it is still
2748 	 * swapcache, we need to check that the page's swap has not changed.
2749 	 */
2750 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2751 		goto out_page;
2752 
2753 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2754 	if (unlikely(!page)) {
2755 		ret = VM_FAULT_OOM;
2756 		page = swapcache;
2757 		goto out_page;
2758 	}
2759 
2760 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2761 				&memcg, false)) {
2762 		ret = VM_FAULT_OOM;
2763 		goto out_page;
2764 	}
2765 
2766 	/*
2767 	 * Back out if somebody else already faulted in this pte.
2768 	 */
2769 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2770 			&vmf->ptl);
2771 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2772 		goto out_nomap;
2773 
2774 	if (unlikely(!PageUptodate(page))) {
2775 		ret = VM_FAULT_SIGBUS;
2776 		goto out_nomap;
2777 	}
2778 
2779 	/*
2780 	 * The page isn't present yet, go ahead with the fault.
2781 	 *
2782 	 * Be careful about the sequence of operations here.
2783 	 * To get its accounting right, reuse_swap_page() must be called
2784 	 * while the page is counted on swap but not yet in mapcount i.e.
2785 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2786 	 * must be called after the swap_free(), or it will never succeed.
2787 	 */
2788 
2789 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2790 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2791 	pte = mk_pte(page, vma->vm_page_prot);
2792 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2793 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2794 		vmf->flags &= ~FAULT_FLAG_WRITE;
2795 		ret |= VM_FAULT_WRITE;
2796 		exclusive = RMAP_EXCLUSIVE;
2797 	}
2798 	flush_icache_page(vma, page);
2799 	if (pte_swp_soft_dirty(vmf->orig_pte))
2800 		pte = pte_mksoft_dirty(pte);
2801 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2802 	vmf->orig_pte = pte;
2803 	if (page == swapcache) {
2804 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2805 		mem_cgroup_commit_charge(page, memcg, true, false);
2806 		activate_page(page);
2807 	} else { /* ksm created a completely new copy */
2808 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2809 		mem_cgroup_commit_charge(page, memcg, false, false);
2810 		lru_cache_add_active_or_unevictable(page, vma);
2811 	}
2812 
2813 	swap_free(entry);
2814 	if (mem_cgroup_swap_full(page) ||
2815 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2816 		try_to_free_swap(page);
2817 	unlock_page(page);
2818 	if (page != swapcache) {
2819 		/*
2820 		 * Hold the lock to avoid the swap entry to be reused
2821 		 * until we take the PT lock for the pte_same() check
2822 		 * (to avoid false positives from pte_same). For
2823 		 * further safety release the lock after the swap_free
2824 		 * so that the swap count won't change under a
2825 		 * parallel locked swapcache.
2826 		 */
2827 		unlock_page(swapcache);
2828 		put_page(swapcache);
2829 	}
2830 
2831 	if (vmf->flags & FAULT_FLAG_WRITE) {
2832 		ret |= do_wp_page(vmf);
2833 		if (ret & VM_FAULT_ERROR)
2834 			ret &= VM_FAULT_ERROR;
2835 		goto out;
2836 	}
2837 
2838 	/* No need to invalidate - it was non-present before */
2839 	update_mmu_cache(vma, vmf->address, vmf->pte);
2840 unlock:
2841 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2842 out:
2843 	return ret;
2844 out_nomap:
2845 	mem_cgroup_cancel_charge(page, memcg, false);
2846 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2847 out_page:
2848 	unlock_page(page);
2849 out_release:
2850 	put_page(page);
2851 	if (page != swapcache) {
2852 		unlock_page(swapcache);
2853 		put_page(swapcache);
2854 	}
2855 	return ret;
2856 }
2857 
2858 /*
2859  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2860  * but allow concurrent faults), and pte mapped but not yet locked.
2861  * We return with mmap_sem still held, but pte unmapped and unlocked.
2862  */
2863 static int do_anonymous_page(struct vm_fault *vmf)
2864 {
2865 	struct vm_area_struct *vma = vmf->vma;
2866 	struct mem_cgroup *memcg;
2867 	struct page *page;
2868 	pte_t entry;
2869 
2870 	/* File mapping without ->vm_ops ? */
2871 	if (vma->vm_flags & VM_SHARED)
2872 		return VM_FAULT_SIGBUS;
2873 
2874 	/*
2875 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2876 	 * pte_offset_map() on pmds where a huge pmd might be created
2877 	 * from a different thread.
2878 	 *
2879 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2880 	 * parallel threads are excluded by other means.
2881 	 *
2882 	 * Here we only have down_read(mmap_sem).
2883 	 */
2884 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2885 		return VM_FAULT_OOM;
2886 
2887 	/* See the comment in pte_alloc_one_map() */
2888 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2889 		return 0;
2890 
2891 	/* Use the zero-page for reads */
2892 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2893 			!mm_forbids_zeropage(vma->vm_mm)) {
2894 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2895 						vma->vm_page_prot));
2896 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2897 				vmf->address, &vmf->ptl);
2898 		if (!pte_none(*vmf->pte))
2899 			goto unlock;
2900 		/* Deliver the page fault to userland, check inside PT lock */
2901 		if (userfaultfd_missing(vma)) {
2902 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2903 			return handle_userfault(vmf, VM_UFFD_MISSING);
2904 		}
2905 		goto setpte;
2906 	}
2907 
2908 	/* Allocate our own private page. */
2909 	if (unlikely(anon_vma_prepare(vma)))
2910 		goto oom;
2911 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2912 	if (!page)
2913 		goto oom;
2914 
2915 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2916 		goto oom_free_page;
2917 
2918 	/*
2919 	 * The memory barrier inside __SetPageUptodate makes sure that
2920 	 * preceeding stores to the page contents become visible before
2921 	 * the set_pte_at() write.
2922 	 */
2923 	__SetPageUptodate(page);
2924 
2925 	entry = mk_pte(page, vma->vm_page_prot);
2926 	if (vma->vm_flags & VM_WRITE)
2927 		entry = pte_mkwrite(pte_mkdirty(entry));
2928 
2929 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2930 			&vmf->ptl);
2931 	if (!pte_none(*vmf->pte))
2932 		goto release;
2933 
2934 	/* Deliver the page fault to userland, check inside PT lock */
2935 	if (userfaultfd_missing(vma)) {
2936 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2937 		mem_cgroup_cancel_charge(page, memcg, false);
2938 		put_page(page);
2939 		return handle_userfault(vmf, VM_UFFD_MISSING);
2940 	}
2941 
2942 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2943 	page_add_new_anon_rmap(page, vma, vmf->address, false);
2944 	mem_cgroup_commit_charge(page, memcg, false, false);
2945 	lru_cache_add_active_or_unevictable(page, vma);
2946 setpte:
2947 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2948 
2949 	/* No need to invalidate - it was non-present before */
2950 	update_mmu_cache(vma, vmf->address, vmf->pte);
2951 unlock:
2952 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2953 	return 0;
2954 release:
2955 	mem_cgroup_cancel_charge(page, memcg, false);
2956 	put_page(page);
2957 	goto unlock;
2958 oom_free_page:
2959 	put_page(page);
2960 oom:
2961 	return VM_FAULT_OOM;
2962 }
2963 
2964 /*
2965  * The mmap_sem must have been held on entry, and may have been
2966  * released depending on flags and vma->vm_ops->fault() return value.
2967  * See filemap_fault() and __lock_page_retry().
2968  */
2969 static int __do_fault(struct vm_fault *vmf)
2970 {
2971 	struct vm_area_struct *vma = vmf->vma;
2972 	int ret;
2973 
2974 	ret = vma->vm_ops->fault(vmf);
2975 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2976 			    VM_FAULT_DONE_COW)))
2977 		return ret;
2978 
2979 	if (unlikely(PageHWPoison(vmf->page))) {
2980 		if (ret & VM_FAULT_LOCKED)
2981 			unlock_page(vmf->page);
2982 		put_page(vmf->page);
2983 		vmf->page = NULL;
2984 		return VM_FAULT_HWPOISON;
2985 	}
2986 
2987 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2988 		lock_page(vmf->page);
2989 	else
2990 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
2991 
2992 	return ret;
2993 }
2994 
2995 /*
2996  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
2997  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
2998  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
2999  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3000  */
3001 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3002 {
3003 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3004 }
3005 
3006 static int pte_alloc_one_map(struct vm_fault *vmf)
3007 {
3008 	struct vm_area_struct *vma = vmf->vma;
3009 
3010 	if (!pmd_none(*vmf->pmd))
3011 		goto map_pte;
3012 	if (vmf->prealloc_pte) {
3013 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3014 		if (unlikely(!pmd_none(*vmf->pmd))) {
3015 			spin_unlock(vmf->ptl);
3016 			goto map_pte;
3017 		}
3018 
3019 		atomic_long_inc(&vma->vm_mm->nr_ptes);
3020 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3021 		spin_unlock(vmf->ptl);
3022 		vmf->prealloc_pte = NULL;
3023 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3024 		return VM_FAULT_OOM;
3025 	}
3026 map_pte:
3027 	/*
3028 	 * If a huge pmd materialized under us just retry later.  Use
3029 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3030 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3031 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3032 	 * running immediately after a huge pmd fault in a different thread of
3033 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3034 	 * All we have to ensure is that it is a regular pmd that we can walk
3035 	 * with pte_offset_map() and we can do that through an atomic read in
3036 	 * C, which is what pmd_trans_unstable() provides.
3037 	 */
3038 	if (pmd_devmap_trans_unstable(vmf->pmd))
3039 		return VM_FAULT_NOPAGE;
3040 
3041 	/*
3042 	 * At this point we know that our vmf->pmd points to a page of ptes
3043 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3044 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3045 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3046 	 * be valid and we will re-check to make sure the vmf->pte isn't
3047 	 * pte_none() under vmf->ptl protection when we return to
3048 	 * alloc_set_pte().
3049 	 */
3050 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3051 			&vmf->ptl);
3052 	return 0;
3053 }
3054 
3055 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3056 
3057 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3058 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3059 		unsigned long haddr)
3060 {
3061 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3062 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3063 		return false;
3064 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3065 		return false;
3066 	return true;
3067 }
3068 
3069 static void deposit_prealloc_pte(struct vm_fault *vmf)
3070 {
3071 	struct vm_area_struct *vma = vmf->vma;
3072 
3073 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3074 	/*
3075 	 * We are going to consume the prealloc table,
3076 	 * count that as nr_ptes.
3077 	 */
3078 	atomic_long_inc(&vma->vm_mm->nr_ptes);
3079 	vmf->prealloc_pte = NULL;
3080 }
3081 
3082 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3083 {
3084 	struct vm_area_struct *vma = vmf->vma;
3085 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3086 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3087 	pmd_t entry;
3088 	int i, ret;
3089 
3090 	if (!transhuge_vma_suitable(vma, haddr))
3091 		return VM_FAULT_FALLBACK;
3092 
3093 	ret = VM_FAULT_FALLBACK;
3094 	page = compound_head(page);
3095 
3096 	/*
3097 	 * Archs like ppc64 need additonal space to store information
3098 	 * related to pte entry. Use the preallocated table for that.
3099 	 */
3100 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3101 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3102 		if (!vmf->prealloc_pte)
3103 			return VM_FAULT_OOM;
3104 		smp_wmb(); /* See comment in __pte_alloc() */
3105 	}
3106 
3107 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3108 	if (unlikely(!pmd_none(*vmf->pmd)))
3109 		goto out;
3110 
3111 	for (i = 0; i < HPAGE_PMD_NR; i++)
3112 		flush_icache_page(vma, page + i);
3113 
3114 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3115 	if (write)
3116 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3117 
3118 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3119 	page_add_file_rmap(page, true);
3120 	/*
3121 	 * deposit and withdraw with pmd lock held
3122 	 */
3123 	if (arch_needs_pgtable_deposit())
3124 		deposit_prealloc_pte(vmf);
3125 
3126 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3127 
3128 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3129 
3130 	/* fault is handled */
3131 	ret = 0;
3132 	count_vm_event(THP_FILE_MAPPED);
3133 out:
3134 	spin_unlock(vmf->ptl);
3135 	return ret;
3136 }
3137 #else
3138 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3139 {
3140 	BUILD_BUG();
3141 	return 0;
3142 }
3143 #endif
3144 
3145 /**
3146  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3147  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3148  *
3149  * @vmf: fault environment
3150  * @memcg: memcg to charge page (only for private mappings)
3151  * @page: page to map
3152  *
3153  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3154  * return.
3155  *
3156  * Target users are page handler itself and implementations of
3157  * vm_ops->map_pages.
3158  */
3159 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3160 		struct page *page)
3161 {
3162 	struct vm_area_struct *vma = vmf->vma;
3163 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3164 	pte_t entry;
3165 	int ret;
3166 
3167 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3168 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3169 		/* THP on COW? */
3170 		VM_BUG_ON_PAGE(memcg, page);
3171 
3172 		ret = do_set_pmd(vmf, page);
3173 		if (ret != VM_FAULT_FALLBACK)
3174 			return ret;
3175 	}
3176 
3177 	if (!vmf->pte) {
3178 		ret = pte_alloc_one_map(vmf);
3179 		if (ret)
3180 			return ret;
3181 	}
3182 
3183 	/* Re-check under ptl */
3184 	if (unlikely(!pte_none(*vmf->pte)))
3185 		return VM_FAULT_NOPAGE;
3186 
3187 	flush_icache_page(vma, page);
3188 	entry = mk_pte(page, vma->vm_page_prot);
3189 	if (write)
3190 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3191 	/* copy-on-write page */
3192 	if (write && !(vma->vm_flags & VM_SHARED)) {
3193 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3194 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3195 		mem_cgroup_commit_charge(page, memcg, false, false);
3196 		lru_cache_add_active_or_unevictable(page, vma);
3197 	} else {
3198 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3199 		page_add_file_rmap(page, false);
3200 	}
3201 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3202 
3203 	/* no need to invalidate: a not-present page won't be cached */
3204 	update_mmu_cache(vma, vmf->address, vmf->pte);
3205 
3206 	return 0;
3207 }
3208 
3209 
3210 /**
3211  * finish_fault - finish page fault once we have prepared the page to fault
3212  *
3213  * @vmf: structure describing the fault
3214  *
3215  * This function handles all that is needed to finish a page fault once the
3216  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3217  * given page, adds reverse page mapping, handles memcg charges and LRU
3218  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3219  * error.
3220  *
3221  * The function expects the page to be locked and on success it consumes a
3222  * reference of a page being mapped (for the PTE which maps it).
3223  */
3224 int finish_fault(struct vm_fault *vmf)
3225 {
3226 	struct page *page;
3227 	int ret;
3228 
3229 	/* Did we COW the page? */
3230 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3231 	    !(vmf->vma->vm_flags & VM_SHARED))
3232 		page = vmf->cow_page;
3233 	else
3234 		page = vmf->page;
3235 	ret = alloc_set_pte(vmf, vmf->memcg, page);
3236 	if (vmf->pte)
3237 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3238 	return ret;
3239 }
3240 
3241 static unsigned long fault_around_bytes __read_mostly =
3242 	rounddown_pow_of_two(65536);
3243 
3244 #ifdef CONFIG_DEBUG_FS
3245 static int fault_around_bytes_get(void *data, u64 *val)
3246 {
3247 	*val = fault_around_bytes;
3248 	return 0;
3249 }
3250 
3251 /*
3252  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3253  * rounded down to nearest page order. It's what do_fault_around() expects to
3254  * see.
3255  */
3256 static int fault_around_bytes_set(void *data, u64 val)
3257 {
3258 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3259 		return -EINVAL;
3260 	if (val > PAGE_SIZE)
3261 		fault_around_bytes = rounddown_pow_of_two(val);
3262 	else
3263 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3264 	return 0;
3265 }
3266 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3267 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3268 
3269 static int __init fault_around_debugfs(void)
3270 {
3271 	void *ret;
3272 
3273 	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3274 			&fault_around_bytes_fops);
3275 	if (!ret)
3276 		pr_warn("Failed to create fault_around_bytes in debugfs");
3277 	return 0;
3278 }
3279 late_initcall(fault_around_debugfs);
3280 #endif
3281 
3282 /*
3283  * do_fault_around() tries to map few pages around the fault address. The hope
3284  * is that the pages will be needed soon and this will lower the number of
3285  * faults to handle.
3286  *
3287  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3288  * not ready to be mapped: not up-to-date, locked, etc.
3289  *
3290  * This function is called with the page table lock taken. In the split ptlock
3291  * case the page table lock only protects only those entries which belong to
3292  * the page table corresponding to the fault address.
3293  *
3294  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3295  * only once.
3296  *
3297  * fault_around_pages() defines how many pages we'll try to map.
3298  * do_fault_around() expects it to return a power of two less than or equal to
3299  * PTRS_PER_PTE.
3300  *
3301  * The virtual address of the area that we map is naturally aligned to the
3302  * fault_around_pages() value (and therefore to page order).  This way it's
3303  * easier to guarantee that we don't cross page table boundaries.
3304  */
3305 static int do_fault_around(struct vm_fault *vmf)
3306 {
3307 	unsigned long address = vmf->address, nr_pages, mask;
3308 	pgoff_t start_pgoff = vmf->pgoff;
3309 	pgoff_t end_pgoff;
3310 	int off, ret = 0;
3311 
3312 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3313 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3314 
3315 	vmf->address = max(address & mask, vmf->vma->vm_start);
3316 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3317 	start_pgoff -= off;
3318 
3319 	/*
3320 	 *  end_pgoff is either end of page table or end of vma
3321 	 *  or fault_around_pages() from start_pgoff, depending what is nearest.
3322 	 */
3323 	end_pgoff = start_pgoff -
3324 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3325 		PTRS_PER_PTE - 1;
3326 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3327 			start_pgoff + nr_pages - 1);
3328 
3329 	if (pmd_none(*vmf->pmd)) {
3330 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3331 						  vmf->address);
3332 		if (!vmf->prealloc_pte)
3333 			goto out;
3334 		smp_wmb(); /* See comment in __pte_alloc() */
3335 	}
3336 
3337 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3338 
3339 	/* Huge page is mapped? Page fault is solved */
3340 	if (pmd_trans_huge(*vmf->pmd)) {
3341 		ret = VM_FAULT_NOPAGE;
3342 		goto out;
3343 	}
3344 
3345 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3346 	if (!vmf->pte)
3347 		goto out;
3348 
3349 	/* check if the page fault is solved */
3350 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3351 	if (!pte_none(*vmf->pte))
3352 		ret = VM_FAULT_NOPAGE;
3353 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3354 out:
3355 	vmf->address = address;
3356 	vmf->pte = NULL;
3357 	return ret;
3358 }
3359 
3360 static int do_read_fault(struct vm_fault *vmf)
3361 {
3362 	struct vm_area_struct *vma = vmf->vma;
3363 	int ret = 0;
3364 
3365 	/*
3366 	 * Let's call ->map_pages() first and use ->fault() as fallback
3367 	 * if page by the offset is not ready to be mapped (cold cache or
3368 	 * something).
3369 	 */
3370 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3371 		ret = do_fault_around(vmf);
3372 		if (ret)
3373 			return ret;
3374 	}
3375 
3376 	ret = __do_fault(vmf);
3377 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3378 		return ret;
3379 
3380 	ret |= finish_fault(vmf);
3381 	unlock_page(vmf->page);
3382 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3383 		put_page(vmf->page);
3384 	return ret;
3385 }
3386 
3387 static int do_cow_fault(struct vm_fault *vmf)
3388 {
3389 	struct vm_area_struct *vma = vmf->vma;
3390 	int ret;
3391 
3392 	if (unlikely(anon_vma_prepare(vma)))
3393 		return VM_FAULT_OOM;
3394 
3395 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3396 	if (!vmf->cow_page)
3397 		return VM_FAULT_OOM;
3398 
3399 	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3400 				&vmf->memcg, false)) {
3401 		put_page(vmf->cow_page);
3402 		return VM_FAULT_OOM;
3403 	}
3404 
3405 	ret = __do_fault(vmf);
3406 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3407 		goto uncharge_out;
3408 	if (ret & VM_FAULT_DONE_COW)
3409 		return ret;
3410 
3411 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3412 	__SetPageUptodate(vmf->cow_page);
3413 
3414 	ret |= finish_fault(vmf);
3415 	unlock_page(vmf->page);
3416 	put_page(vmf->page);
3417 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3418 		goto uncharge_out;
3419 	return ret;
3420 uncharge_out:
3421 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3422 	put_page(vmf->cow_page);
3423 	return ret;
3424 }
3425 
3426 static int do_shared_fault(struct vm_fault *vmf)
3427 {
3428 	struct vm_area_struct *vma = vmf->vma;
3429 	int ret, tmp;
3430 
3431 	ret = __do_fault(vmf);
3432 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3433 		return ret;
3434 
3435 	/*
3436 	 * Check if the backing address space wants to know that the page is
3437 	 * about to become writable
3438 	 */
3439 	if (vma->vm_ops->page_mkwrite) {
3440 		unlock_page(vmf->page);
3441 		tmp = do_page_mkwrite(vmf);
3442 		if (unlikely(!tmp ||
3443 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3444 			put_page(vmf->page);
3445 			return tmp;
3446 		}
3447 	}
3448 
3449 	ret |= finish_fault(vmf);
3450 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3451 					VM_FAULT_RETRY))) {
3452 		unlock_page(vmf->page);
3453 		put_page(vmf->page);
3454 		return ret;
3455 	}
3456 
3457 	fault_dirty_shared_page(vma, vmf->page);
3458 	return ret;
3459 }
3460 
3461 /*
3462  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3463  * but allow concurrent faults).
3464  * The mmap_sem may have been released depending on flags and our
3465  * return value.  See filemap_fault() and __lock_page_or_retry().
3466  */
3467 static int do_fault(struct vm_fault *vmf)
3468 {
3469 	struct vm_area_struct *vma = vmf->vma;
3470 	int ret;
3471 
3472 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3473 	if (!vma->vm_ops->fault)
3474 		ret = VM_FAULT_SIGBUS;
3475 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3476 		ret = do_read_fault(vmf);
3477 	else if (!(vma->vm_flags & VM_SHARED))
3478 		ret = do_cow_fault(vmf);
3479 	else
3480 		ret = do_shared_fault(vmf);
3481 
3482 	/* preallocated pagetable is unused: free it */
3483 	if (vmf->prealloc_pte) {
3484 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3485 		vmf->prealloc_pte = NULL;
3486 	}
3487 	return ret;
3488 }
3489 
3490 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3491 				unsigned long addr, int page_nid,
3492 				int *flags)
3493 {
3494 	get_page(page);
3495 
3496 	count_vm_numa_event(NUMA_HINT_FAULTS);
3497 	if (page_nid == numa_node_id()) {
3498 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3499 		*flags |= TNF_FAULT_LOCAL;
3500 	}
3501 
3502 	return mpol_misplaced(page, vma, addr);
3503 }
3504 
3505 static int do_numa_page(struct vm_fault *vmf)
3506 {
3507 	struct vm_area_struct *vma = vmf->vma;
3508 	struct page *page = NULL;
3509 	int page_nid = -1;
3510 	int last_cpupid;
3511 	int target_nid;
3512 	bool migrated = false;
3513 	pte_t pte;
3514 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3515 	int flags = 0;
3516 
3517 	/*
3518 	 * The "pte" at this point cannot be used safely without
3519 	 * validation through pte_unmap_same(). It's of NUMA type but
3520 	 * the pfn may be screwed if the read is non atomic.
3521 	 */
3522 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3523 	spin_lock(vmf->ptl);
3524 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3525 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3526 		goto out;
3527 	}
3528 
3529 	/*
3530 	 * Make it present again, Depending on how arch implementes non
3531 	 * accessible ptes, some can allow access by kernel mode.
3532 	 */
3533 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3534 	pte = pte_modify(pte, vma->vm_page_prot);
3535 	pte = pte_mkyoung(pte);
3536 	if (was_writable)
3537 		pte = pte_mkwrite(pte);
3538 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3539 	update_mmu_cache(vma, vmf->address, vmf->pte);
3540 
3541 	page = vm_normal_page(vma, vmf->address, pte);
3542 	if (!page) {
3543 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3544 		return 0;
3545 	}
3546 
3547 	/* TODO: handle PTE-mapped THP */
3548 	if (PageCompound(page)) {
3549 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3550 		return 0;
3551 	}
3552 
3553 	/*
3554 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3555 	 * much anyway since they can be in shared cache state. This misses
3556 	 * the case where a mapping is writable but the process never writes
3557 	 * to it but pte_write gets cleared during protection updates and
3558 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3559 	 * background writeback, dirty balancing and application behaviour.
3560 	 */
3561 	if (!pte_write(pte))
3562 		flags |= TNF_NO_GROUP;
3563 
3564 	/*
3565 	 * Flag if the page is shared between multiple address spaces. This
3566 	 * is later used when determining whether to group tasks together
3567 	 */
3568 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3569 		flags |= TNF_SHARED;
3570 
3571 	last_cpupid = page_cpupid_last(page);
3572 	page_nid = page_to_nid(page);
3573 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3574 			&flags);
3575 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3576 	if (target_nid == -1) {
3577 		put_page(page);
3578 		goto out;
3579 	}
3580 
3581 	/* Migrate to the requested node */
3582 	migrated = migrate_misplaced_page(page, vma, target_nid);
3583 	if (migrated) {
3584 		page_nid = target_nid;
3585 		flags |= TNF_MIGRATED;
3586 	} else
3587 		flags |= TNF_MIGRATE_FAIL;
3588 
3589 out:
3590 	if (page_nid != -1)
3591 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3592 	return 0;
3593 }
3594 
3595 static inline int create_huge_pmd(struct vm_fault *vmf)
3596 {
3597 	if (vma_is_anonymous(vmf->vma))
3598 		return do_huge_pmd_anonymous_page(vmf);
3599 	if (vmf->vma->vm_ops->huge_fault)
3600 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3601 	return VM_FAULT_FALLBACK;
3602 }
3603 
3604 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3605 {
3606 	if (vma_is_anonymous(vmf->vma))
3607 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3608 	if (vmf->vma->vm_ops->huge_fault)
3609 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3610 
3611 	/* COW handled on pte level: split pmd */
3612 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3613 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3614 
3615 	return VM_FAULT_FALLBACK;
3616 }
3617 
3618 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3619 {
3620 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3621 }
3622 
3623 static int create_huge_pud(struct vm_fault *vmf)
3624 {
3625 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3626 	/* No support for anonymous transparent PUD pages yet */
3627 	if (vma_is_anonymous(vmf->vma))
3628 		return VM_FAULT_FALLBACK;
3629 	if (vmf->vma->vm_ops->huge_fault)
3630 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3631 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3632 	return VM_FAULT_FALLBACK;
3633 }
3634 
3635 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3636 {
3637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3638 	/* No support for anonymous transparent PUD pages yet */
3639 	if (vma_is_anonymous(vmf->vma))
3640 		return VM_FAULT_FALLBACK;
3641 	if (vmf->vma->vm_ops->huge_fault)
3642 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3643 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3644 	return VM_FAULT_FALLBACK;
3645 }
3646 
3647 /*
3648  * These routines also need to handle stuff like marking pages dirty
3649  * and/or accessed for architectures that don't do it in hardware (most
3650  * RISC architectures).  The early dirtying is also good on the i386.
3651  *
3652  * There is also a hook called "update_mmu_cache()" that architectures
3653  * with external mmu caches can use to update those (ie the Sparc or
3654  * PowerPC hashed page tables that act as extended TLBs).
3655  *
3656  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3657  * concurrent faults).
3658  *
3659  * The mmap_sem may have been released depending on flags and our return value.
3660  * See filemap_fault() and __lock_page_or_retry().
3661  */
3662 static int handle_pte_fault(struct vm_fault *vmf)
3663 {
3664 	pte_t entry;
3665 
3666 	if (unlikely(pmd_none(*vmf->pmd))) {
3667 		/*
3668 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3669 		 * want to allocate huge page, and if we expose page table
3670 		 * for an instant, it will be difficult to retract from
3671 		 * concurrent faults and from rmap lookups.
3672 		 */
3673 		vmf->pte = NULL;
3674 	} else {
3675 		/* See comment in pte_alloc_one_map() */
3676 		if (pmd_devmap_trans_unstable(vmf->pmd))
3677 			return 0;
3678 		/*
3679 		 * A regular pmd is established and it can't morph into a huge
3680 		 * pmd from under us anymore at this point because we hold the
3681 		 * mmap_sem read mode and khugepaged takes it in write mode.
3682 		 * So now it's safe to run pte_offset_map().
3683 		 */
3684 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3685 		vmf->orig_pte = *vmf->pte;
3686 
3687 		/*
3688 		 * some architectures can have larger ptes than wordsize,
3689 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3690 		 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3691 		 * atomic accesses.  The code below just needs a consistent
3692 		 * view for the ifs and we later double check anyway with the
3693 		 * ptl lock held. So here a barrier will do.
3694 		 */
3695 		barrier();
3696 		if (pte_none(vmf->orig_pte)) {
3697 			pte_unmap(vmf->pte);
3698 			vmf->pte = NULL;
3699 		}
3700 	}
3701 
3702 	if (!vmf->pte) {
3703 		if (vma_is_anonymous(vmf->vma))
3704 			return do_anonymous_page(vmf);
3705 		else
3706 			return do_fault(vmf);
3707 	}
3708 
3709 	if (!pte_present(vmf->orig_pte))
3710 		return do_swap_page(vmf);
3711 
3712 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3713 		return do_numa_page(vmf);
3714 
3715 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3716 	spin_lock(vmf->ptl);
3717 	entry = vmf->orig_pte;
3718 	if (unlikely(!pte_same(*vmf->pte, entry)))
3719 		goto unlock;
3720 	if (vmf->flags & FAULT_FLAG_WRITE) {
3721 		if (!pte_write(entry))
3722 			return do_wp_page(vmf);
3723 		entry = pte_mkdirty(entry);
3724 	}
3725 	entry = pte_mkyoung(entry);
3726 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3727 				vmf->flags & FAULT_FLAG_WRITE)) {
3728 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3729 	} else {
3730 		/*
3731 		 * This is needed only for protection faults but the arch code
3732 		 * is not yet telling us if this is a protection fault or not.
3733 		 * This still avoids useless tlb flushes for .text page faults
3734 		 * with threads.
3735 		 */
3736 		if (vmf->flags & FAULT_FLAG_WRITE)
3737 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3738 	}
3739 unlock:
3740 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3741 	return 0;
3742 }
3743 
3744 /*
3745  * By the time we get here, we already hold the mm semaphore
3746  *
3747  * The mmap_sem may have been released depending on flags and our
3748  * return value.  See filemap_fault() and __lock_page_or_retry().
3749  */
3750 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3751 		unsigned int flags)
3752 {
3753 	struct vm_fault vmf = {
3754 		.vma = vma,
3755 		.address = address & PAGE_MASK,
3756 		.flags = flags,
3757 		.pgoff = linear_page_index(vma, address),
3758 		.gfp_mask = __get_fault_gfp_mask(vma),
3759 	};
3760 	struct mm_struct *mm = vma->vm_mm;
3761 	pgd_t *pgd;
3762 	p4d_t *p4d;
3763 	int ret;
3764 
3765 	pgd = pgd_offset(mm, address);
3766 	p4d = p4d_alloc(mm, pgd, address);
3767 	if (!p4d)
3768 		return VM_FAULT_OOM;
3769 
3770 	vmf.pud = pud_alloc(mm, p4d, address);
3771 	if (!vmf.pud)
3772 		return VM_FAULT_OOM;
3773 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3774 		ret = create_huge_pud(&vmf);
3775 		if (!(ret & VM_FAULT_FALLBACK))
3776 			return ret;
3777 	} else {
3778 		pud_t orig_pud = *vmf.pud;
3779 
3780 		barrier();
3781 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3782 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3783 
3784 			/* NUMA case for anonymous PUDs would go here */
3785 
3786 			if (dirty && !pud_write(orig_pud)) {
3787 				ret = wp_huge_pud(&vmf, orig_pud);
3788 				if (!(ret & VM_FAULT_FALLBACK))
3789 					return ret;
3790 			} else {
3791 				huge_pud_set_accessed(&vmf, orig_pud);
3792 				return 0;
3793 			}
3794 		}
3795 	}
3796 
3797 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3798 	if (!vmf.pmd)
3799 		return VM_FAULT_OOM;
3800 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3801 		ret = create_huge_pmd(&vmf);
3802 		if (!(ret & VM_FAULT_FALLBACK))
3803 			return ret;
3804 	} else {
3805 		pmd_t orig_pmd = *vmf.pmd;
3806 
3807 		barrier();
3808 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3809 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3810 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3811 
3812 			if ((vmf.flags & FAULT_FLAG_WRITE) &&
3813 					!pmd_write(orig_pmd)) {
3814 				ret = wp_huge_pmd(&vmf, orig_pmd);
3815 				if (!(ret & VM_FAULT_FALLBACK))
3816 					return ret;
3817 			} else {
3818 				huge_pmd_set_accessed(&vmf, orig_pmd);
3819 				return 0;
3820 			}
3821 		}
3822 	}
3823 
3824 	return handle_pte_fault(&vmf);
3825 }
3826 
3827 /*
3828  * By the time we get here, we already hold the mm semaphore
3829  *
3830  * The mmap_sem may have been released depending on flags and our
3831  * return value.  See filemap_fault() and __lock_page_or_retry().
3832  */
3833 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3834 		unsigned int flags)
3835 {
3836 	int ret;
3837 
3838 	__set_current_state(TASK_RUNNING);
3839 
3840 	count_vm_event(PGFAULT);
3841 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
3842 
3843 	/* do counter updates before entering really critical section. */
3844 	check_sync_rss_stat(current);
3845 
3846 	/*
3847 	 * Enable the memcg OOM handling for faults triggered in user
3848 	 * space.  Kernel faults are handled more gracefully.
3849 	 */
3850 	if (flags & FAULT_FLAG_USER)
3851 		mem_cgroup_oom_enable();
3852 
3853 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3854 					    flags & FAULT_FLAG_INSTRUCTION,
3855 					    flags & FAULT_FLAG_REMOTE))
3856 		return VM_FAULT_SIGSEGV;
3857 
3858 	if (unlikely(is_vm_hugetlb_page(vma)))
3859 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3860 	else
3861 		ret = __handle_mm_fault(vma, address, flags);
3862 
3863 	if (flags & FAULT_FLAG_USER) {
3864 		mem_cgroup_oom_disable();
3865 		/*
3866 		 * The task may have entered a memcg OOM situation but
3867 		 * if the allocation error was handled gracefully (no
3868 		 * VM_FAULT_OOM), there is no need to kill anything.
3869 		 * Just clean up the OOM state peacefully.
3870 		 */
3871 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3872 			mem_cgroup_oom_synchronize(false);
3873 	}
3874 
3875 	/*
3876 	 * This mm has been already reaped by the oom reaper and so the
3877 	 * refault cannot be trusted in general. Anonymous refaults would
3878 	 * lose data and give a zero page instead e.g. This is especially
3879 	 * problem for use_mm() because regular tasks will just die and
3880 	 * the corrupted data will not be visible anywhere while kthread
3881 	 * will outlive the oom victim and potentially propagate the date
3882 	 * further.
3883 	 */
3884 	if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3885 				&& test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3886 		ret = VM_FAULT_SIGBUS;
3887 
3888 	return ret;
3889 }
3890 EXPORT_SYMBOL_GPL(handle_mm_fault);
3891 
3892 #ifndef __PAGETABLE_P4D_FOLDED
3893 /*
3894  * Allocate p4d page table.
3895  * We've already handled the fast-path in-line.
3896  */
3897 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3898 {
3899 	p4d_t *new = p4d_alloc_one(mm, address);
3900 	if (!new)
3901 		return -ENOMEM;
3902 
3903 	smp_wmb(); /* See comment in __pte_alloc */
3904 
3905 	spin_lock(&mm->page_table_lock);
3906 	if (pgd_present(*pgd))		/* Another has populated it */
3907 		p4d_free(mm, new);
3908 	else
3909 		pgd_populate(mm, pgd, new);
3910 	spin_unlock(&mm->page_table_lock);
3911 	return 0;
3912 }
3913 #endif /* __PAGETABLE_P4D_FOLDED */
3914 
3915 #ifndef __PAGETABLE_PUD_FOLDED
3916 /*
3917  * Allocate page upper directory.
3918  * We've already handled the fast-path in-line.
3919  */
3920 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3921 {
3922 	pud_t *new = pud_alloc_one(mm, address);
3923 	if (!new)
3924 		return -ENOMEM;
3925 
3926 	smp_wmb(); /* See comment in __pte_alloc */
3927 
3928 	spin_lock(&mm->page_table_lock);
3929 #ifndef __ARCH_HAS_5LEVEL_HACK
3930 	if (p4d_present(*p4d))		/* Another has populated it */
3931 		pud_free(mm, new);
3932 	else
3933 		p4d_populate(mm, p4d, new);
3934 #else
3935 	if (pgd_present(*p4d))		/* Another has populated it */
3936 		pud_free(mm, new);
3937 	else
3938 		pgd_populate(mm, p4d, new);
3939 #endif /* __ARCH_HAS_5LEVEL_HACK */
3940 	spin_unlock(&mm->page_table_lock);
3941 	return 0;
3942 }
3943 #endif /* __PAGETABLE_PUD_FOLDED */
3944 
3945 #ifndef __PAGETABLE_PMD_FOLDED
3946 /*
3947  * Allocate page middle directory.
3948  * We've already handled the fast-path in-line.
3949  */
3950 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3951 {
3952 	spinlock_t *ptl;
3953 	pmd_t *new = pmd_alloc_one(mm, address);
3954 	if (!new)
3955 		return -ENOMEM;
3956 
3957 	smp_wmb(); /* See comment in __pte_alloc */
3958 
3959 	ptl = pud_lock(mm, pud);
3960 #ifndef __ARCH_HAS_4LEVEL_HACK
3961 	if (!pud_present(*pud)) {
3962 		mm_inc_nr_pmds(mm);
3963 		pud_populate(mm, pud, new);
3964 	} else	/* Another has populated it */
3965 		pmd_free(mm, new);
3966 #else
3967 	if (!pgd_present(*pud)) {
3968 		mm_inc_nr_pmds(mm);
3969 		pgd_populate(mm, pud, new);
3970 	} else /* Another has populated it */
3971 		pmd_free(mm, new);
3972 #endif /* __ARCH_HAS_4LEVEL_HACK */
3973 	spin_unlock(ptl);
3974 	return 0;
3975 }
3976 #endif /* __PAGETABLE_PMD_FOLDED */
3977 
3978 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3979 		pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3980 {
3981 	pgd_t *pgd;
3982 	p4d_t *p4d;
3983 	pud_t *pud;
3984 	pmd_t *pmd;
3985 	pte_t *ptep;
3986 
3987 	pgd = pgd_offset(mm, address);
3988 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3989 		goto out;
3990 
3991 	p4d = p4d_offset(pgd, address);
3992 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
3993 		goto out;
3994 
3995 	pud = pud_offset(p4d, address);
3996 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3997 		goto out;
3998 
3999 	pmd = pmd_offset(pud, address);
4000 	VM_BUG_ON(pmd_trans_huge(*pmd));
4001 
4002 	if (pmd_huge(*pmd)) {
4003 		if (!pmdpp)
4004 			goto out;
4005 
4006 		*ptlp = pmd_lock(mm, pmd);
4007 		if (pmd_huge(*pmd)) {
4008 			*pmdpp = pmd;
4009 			return 0;
4010 		}
4011 		spin_unlock(*ptlp);
4012 	}
4013 
4014 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4015 		goto out;
4016 
4017 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4018 	if (!pte_present(*ptep))
4019 		goto unlock;
4020 	*ptepp = ptep;
4021 	return 0;
4022 unlock:
4023 	pte_unmap_unlock(ptep, *ptlp);
4024 out:
4025 	return -EINVAL;
4026 }
4027 
4028 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4029 			     pte_t **ptepp, spinlock_t **ptlp)
4030 {
4031 	int res;
4032 
4033 	/* (void) is needed to make gcc happy */
4034 	(void) __cond_lock(*ptlp,
4035 			   !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
4036 					   ptlp)));
4037 	return res;
4038 }
4039 
4040 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4041 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4042 {
4043 	int res;
4044 
4045 	/* (void) is needed to make gcc happy */
4046 	(void) __cond_lock(*ptlp,
4047 			   !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
4048 					   ptlp)));
4049 	return res;
4050 }
4051 EXPORT_SYMBOL(follow_pte_pmd);
4052 
4053 /**
4054  * follow_pfn - look up PFN at a user virtual address
4055  * @vma: memory mapping
4056  * @address: user virtual address
4057  * @pfn: location to store found PFN
4058  *
4059  * Only IO mappings and raw PFN mappings are allowed.
4060  *
4061  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4062  */
4063 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4064 	unsigned long *pfn)
4065 {
4066 	int ret = -EINVAL;
4067 	spinlock_t *ptl;
4068 	pte_t *ptep;
4069 
4070 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4071 		return ret;
4072 
4073 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4074 	if (ret)
4075 		return ret;
4076 	*pfn = pte_pfn(*ptep);
4077 	pte_unmap_unlock(ptep, ptl);
4078 	return 0;
4079 }
4080 EXPORT_SYMBOL(follow_pfn);
4081 
4082 #ifdef CONFIG_HAVE_IOREMAP_PROT
4083 int follow_phys(struct vm_area_struct *vma,
4084 		unsigned long address, unsigned int flags,
4085 		unsigned long *prot, resource_size_t *phys)
4086 {
4087 	int ret = -EINVAL;
4088 	pte_t *ptep, pte;
4089 	spinlock_t *ptl;
4090 
4091 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4092 		goto out;
4093 
4094 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4095 		goto out;
4096 	pte = *ptep;
4097 
4098 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4099 		goto unlock;
4100 
4101 	*prot = pgprot_val(pte_pgprot(pte));
4102 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4103 
4104 	ret = 0;
4105 unlock:
4106 	pte_unmap_unlock(ptep, ptl);
4107 out:
4108 	return ret;
4109 }
4110 
4111 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4112 			void *buf, int len, int write)
4113 {
4114 	resource_size_t phys_addr;
4115 	unsigned long prot = 0;
4116 	void __iomem *maddr;
4117 	int offset = addr & (PAGE_SIZE-1);
4118 
4119 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4120 		return -EINVAL;
4121 
4122 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4123 	if (write)
4124 		memcpy_toio(maddr + offset, buf, len);
4125 	else
4126 		memcpy_fromio(buf, maddr + offset, len);
4127 	iounmap(maddr);
4128 
4129 	return len;
4130 }
4131 EXPORT_SYMBOL_GPL(generic_access_phys);
4132 #endif
4133 
4134 /*
4135  * Access another process' address space as given in mm.  If non-NULL, use the
4136  * given task for page fault accounting.
4137  */
4138 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4139 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4140 {
4141 	struct vm_area_struct *vma;
4142 	void *old_buf = buf;
4143 	int write = gup_flags & FOLL_WRITE;
4144 
4145 	down_read(&mm->mmap_sem);
4146 	/* ignore errors, just check how much was successfully transferred */
4147 	while (len) {
4148 		int bytes, ret, offset;
4149 		void *maddr;
4150 		struct page *page = NULL;
4151 
4152 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4153 				gup_flags, &page, &vma, NULL);
4154 		if (ret <= 0) {
4155 #ifndef CONFIG_HAVE_IOREMAP_PROT
4156 			break;
4157 #else
4158 			/*
4159 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4160 			 * we can access using slightly different code.
4161 			 */
4162 			vma = find_vma(mm, addr);
4163 			if (!vma || vma->vm_start > addr)
4164 				break;
4165 			if (vma->vm_ops && vma->vm_ops->access)
4166 				ret = vma->vm_ops->access(vma, addr, buf,
4167 							  len, write);
4168 			if (ret <= 0)
4169 				break;
4170 			bytes = ret;
4171 #endif
4172 		} else {
4173 			bytes = len;
4174 			offset = addr & (PAGE_SIZE-1);
4175 			if (bytes > PAGE_SIZE-offset)
4176 				bytes = PAGE_SIZE-offset;
4177 
4178 			maddr = kmap(page);
4179 			if (write) {
4180 				copy_to_user_page(vma, page, addr,
4181 						  maddr + offset, buf, bytes);
4182 				set_page_dirty_lock(page);
4183 			} else {
4184 				copy_from_user_page(vma, page, addr,
4185 						    buf, maddr + offset, bytes);
4186 			}
4187 			kunmap(page);
4188 			put_page(page);
4189 		}
4190 		len -= bytes;
4191 		buf += bytes;
4192 		addr += bytes;
4193 	}
4194 	up_read(&mm->mmap_sem);
4195 
4196 	return buf - old_buf;
4197 }
4198 
4199 /**
4200  * access_remote_vm - access another process' address space
4201  * @mm:		the mm_struct of the target address space
4202  * @addr:	start address to access
4203  * @buf:	source or destination buffer
4204  * @len:	number of bytes to transfer
4205  * @gup_flags:	flags modifying lookup behaviour
4206  *
4207  * The caller must hold a reference on @mm.
4208  */
4209 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4210 		void *buf, int len, unsigned int gup_flags)
4211 {
4212 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4213 }
4214 
4215 /*
4216  * Access another process' address space.
4217  * Source/target buffer must be kernel space,
4218  * Do not walk the page table directly, use get_user_pages
4219  */
4220 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4221 		void *buf, int len, unsigned int gup_flags)
4222 {
4223 	struct mm_struct *mm;
4224 	int ret;
4225 
4226 	mm = get_task_mm(tsk);
4227 	if (!mm)
4228 		return 0;
4229 
4230 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4231 
4232 	mmput(mm);
4233 
4234 	return ret;
4235 }
4236 EXPORT_SYMBOL_GPL(access_process_vm);
4237 
4238 /*
4239  * Print the name of a VMA.
4240  */
4241 void print_vma_addr(char *prefix, unsigned long ip)
4242 {
4243 	struct mm_struct *mm = current->mm;
4244 	struct vm_area_struct *vma;
4245 
4246 	/*
4247 	 * Do not print if we are in atomic
4248 	 * contexts (in exception stacks, etc.):
4249 	 */
4250 	if (preempt_count())
4251 		return;
4252 
4253 	down_read(&mm->mmap_sem);
4254 	vma = find_vma(mm, ip);
4255 	if (vma && vma->vm_file) {
4256 		struct file *f = vma->vm_file;
4257 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4258 		if (buf) {
4259 			char *p;
4260 
4261 			p = file_path(f, buf, PAGE_SIZE);
4262 			if (IS_ERR(p))
4263 				p = "?";
4264 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4265 					vma->vm_start,
4266 					vma->vm_end - vma->vm_start);
4267 			free_page((unsigned long)buf);
4268 		}
4269 	}
4270 	up_read(&mm->mmap_sem);
4271 }
4272 
4273 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4274 void __might_fault(const char *file, int line)
4275 {
4276 	/*
4277 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4278 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4279 	 * get paged out, therefore we'll never actually fault, and the
4280 	 * below annotations will generate false positives.
4281 	 */
4282 	if (uaccess_kernel())
4283 		return;
4284 	if (pagefault_disabled())
4285 		return;
4286 	__might_sleep(file, line, 0);
4287 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4288 	if (current->mm)
4289 		might_lock_read(&current->mm->mmap_sem);
4290 #endif
4291 }
4292 EXPORT_SYMBOL(__might_fault);
4293 #endif
4294 
4295 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4296 static void clear_gigantic_page(struct page *page,
4297 				unsigned long addr,
4298 				unsigned int pages_per_huge_page)
4299 {
4300 	int i;
4301 	struct page *p = page;
4302 
4303 	might_sleep();
4304 	for (i = 0; i < pages_per_huge_page;
4305 	     i++, p = mem_map_next(p, page, i)) {
4306 		cond_resched();
4307 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4308 	}
4309 }
4310 void clear_huge_page(struct page *page,
4311 		     unsigned long addr, unsigned int pages_per_huge_page)
4312 {
4313 	int i;
4314 
4315 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4316 		clear_gigantic_page(page, addr, pages_per_huge_page);
4317 		return;
4318 	}
4319 
4320 	might_sleep();
4321 	for (i = 0; i < pages_per_huge_page; i++) {
4322 		cond_resched();
4323 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4324 	}
4325 }
4326 
4327 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4328 				    unsigned long addr,
4329 				    struct vm_area_struct *vma,
4330 				    unsigned int pages_per_huge_page)
4331 {
4332 	int i;
4333 	struct page *dst_base = dst;
4334 	struct page *src_base = src;
4335 
4336 	for (i = 0; i < pages_per_huge_page; ) {
4337 		cond_resched();
4338 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4339 
4340 		i++;
4341 		dst = mem_map_next(dst, dst_base, i);
4342 		src = mem_map_next(src, src_base, i);
4343 	}
4344 }
4345 
4346 void copy_user_huge_page(struct page *dst, struct page *src,
4347 			 unsigned long addr, struct vm_area_struct *vma,
4348 			 unsigned int pages_per_huge_page)
4349 {
4350 	int i;
4351 
4352 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4353 		copy_user_gigantic_page(dst, src, addr, vma,
4354 					pages_per_huge_page);
4355 		return;
4356 	}
4357 
4358 	might_sleep();
4359 	for (i = 0; i < pages_per_huge_page; i++) {
4360 		cond_resched();
4361 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4362 	}
4363 }
4364 
4365 long copy_huge_page_from_user(struct page *dst_page,
4366 				const void __user *usr_src,
4367 				unsigned int pages_per_huge_page,
4368 				bool allow_pagefault)
4369 {
4370 	void *src = (void *)usr_src;
4371 	void *page_kaddr;
4372 	unsigned long i, rc = 0;
4373 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4374 
4375 	for (i = 0; i < pages_per_huge_page; i++) {
4376 		if (allow_pagefault)
4377 			page_kaddr = kmap(dst_page + i);
4378 		else
4379 			page_kaddr = kmap_atomic(dst_page + i);
4380 		rc = copy_from_user(page_kaddr,
4381 				(const void __user *)(src + i * PAGE_SIZE),
4382 				PAGE_SIZE);
4383 		if (allow_pagefault)
4384 			kunmap(dst_page + i);
4385 		else
4386 			kunmap_atomic(page_kaddr);
4387 
4388 		ret_val -= (PAGE_SIZE - rc);
4389 		if (rc)
4390 			break;
4391 
4392 		cond_resched();
4393 	}
4394 	return ret_val;
4395 }
4396 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4397 
4398 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4399 
4400 static struct kmem_cache *page_ptl_cachep;
4401 
4402 void __init ptlock_cache_init(void)
4403 {
4404 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4405 			SLAB_PANIC, NULL);
4406 }
4407 
4408 bool ptlock_alloc(struct page *page)
4409 {
4410 	spinlock_t *ptl;
4411 
4412 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4413 	if (!ptl)
4414 		return false;
4415 	page->ptl = ptl;
4416 	return true;
4417 }
4418 
4419 void ptlock_free(struct page *page)
4420 {
4421 	kmem_cache_free(page_ptl_cachep, page->ptl);
4422 }
4423 #endif
4424