1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/module.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 61 #include <asm/io.h> 62 #include <asm/pgalloc.h> 63 #include <asm/uaccess.h> 64 #include <asm/tlb.h> 65 #include <asm/tlbflush.h> 66 #include <asm/pgtable.h> 67 68 #include "internal.h" 69 70 #ifndef CONFIG_NEED_MULTIPLE_NODES 71 /* use the per-pgdat data instead for discontigmem - mbligh */ 72 unsigned long max_mapnr; 73 struct page *mem_map; 74 75 EXPORT_SYMBOL(max_mapnr); 76 EXPORT_SYMBOL(mem_map); 77 #endif 78 79 unsigned long num_physpages; 80 /* 81 * A number of key systems in x86 including ioremap() rely on the assumption 82 * that high_memory defines the upper bound on direct map memory, then end 83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 85 * and ZONE_HIGHMEM. 86 */ 87 void * high_memory; 88 89 EXPORT_SYMBOL(num_physpages); 90 EXPORT_SYMBOL(high_memory); 91 92 /* 93 * Randomize the address space (stacks, mmaps, brk, etc.). 94 * 95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 96 * as ancient (libc5 based) binaries can segfault. ) 97 */ 98 int randomize_va_space __read_mostly = 99 #ifdef CONFIG_COMPAT_BRK 100 1; 101 #else 102 2; 103 #endif 104 105 static int __init disable_randmaps(char *s) 106 { 107 randomize_va_space = 0; 108 return 1; 109 } 110 __setup("norandmaps", disable_randmaps); 111 112 unsigned long zero_pfn __read_mostly; 113 unsigned long highest_memmap_pfn __read_mostly; 114 115 /* 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 117 */ 118 static int __init init_zero_pfn(void) 119 { 120 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 121 return 0; 122 } 123 core_initcall(init_zero_pfn); 124 125 126 #if defined(SPLIT_RSS_COUNTING) 127 128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) 129 { 130 int i; 131 132 for (i = 0; i < NR_MM_COUNTERS; i++) { 133 if (task->rss_stat.count[i]) { 134 add_mm_counter(mm, i, task->rss_stat.count[i]); 135 task->rss_stat.count[i] = 0; 136 } 137 } 138 task->rss_stat.events = 0; 139 } 140 141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 142 { 143 struct task_struct *task = current; 144 145 if (likely(task->mm == mm)) 146 task->rss_stat.count[member] += val; 147 else 148 add_mm_counter(mm, member, val); 149 } 150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 152 153 /* sync counter once per 64 page faults */ 154 #define TASK_RSS_EVENTS_THRESH (64) 155 static void check_sync_rss_stat(struct task_struct *task) 156 { 157 if (unlikely(task != current)) 158 return; 159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 160 __sync_task_rss_stat(task, task->mm); 161 } 162 163 unsigned long get_mm_counter(struct mm_struct *mm, int member) 164 { 165 long val = 0; 166 167 /* 168 * Don't use task->mm here...for avoiding to use task_get_mm().. 169 * The caller must guarantee task->mm is not invalid. 170 */ 171 val = atomic_long_read(&mm->rss_stat.count[member]); 172 /* 173 * counter is updated in asynchronous manner and may go to minus. 174 * But it's never be expected number for users. 175 */ 176 if (val < 0) 177 return 0; 178 return (unsigned long)val; 179 } 180 181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 182 { 183 __sync_task_rss_stat(task, mm); 184 } 185 #else 186 187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 189 190 static void check_sync_rss_stat(struct task_struct *task) 191 { 192 } 193 194 #endif 195 196 /* 197 * If a p?d_bad entry is found while walking page tables, report 198 * the error, before resetting entry to p?d_none. Usually (but 199 * very seldom) called out from the p?d_none_or_clear_bad macros. 200 */ 201 202 void pgd_clear_bad(pgd_t *pgd) 203 { 204 pgd_ERROR(*pgd); 205 pgd_clear(pgd); 206 } 207 208 void pud_clear_bad(pud_t *pud) 209 { 210 pud_ERROR(*pud); 211 pud_clear(pud); 212 } 213 214 void pmd_clear_bad(pmd_t *pmd) 215 { 216 pmd_ERROR(*pmd); 217 pmd_clear(pmd); 218 } 219 220 /* 221 * Note: this doesn't free the actual pages themselves. That 222 * has been handled earlier when unmapping all the memory regions. 223 */ 224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 225 unsigned long addr) 226 { 227 pgtable_t token = pmd_pgtable(*pmd); 228 pmd_clear(pmd); 229 pte_free_tlb(tlb, token, addr); 230 tlb->mm->nr_ptes--; 231 } 232 233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 234 unsigned long addr, unsigned long end, 235 unsigned long floor, unsigned long ceiling) 236 { 237 pmd_t *pmd; 238 unsigned long next; 239 unsigned long start; 240 241 start = addr; 242 pmd = pmd_offset(pud, addr); 243 do { 244 next = pmd_addr_end(addr, end); 245 if (pmd_none_or_clear_bad(pmd)) 246 continue; 247 free_pte_range(tlb, pmd, addr); 248 } while (pmd++, addr = next, addr != end); 249 250 start &= PUD_MASK; 251 if (start < floor) 252 return; 253 if (ceiling) { 254 ceiling &= PUD_MASK; 255 if (!ceiling) 256 return; 257 } 258 if (end - 1 > ceiling - 1) 259 return; 260 261 pmd = pmd_offset(pud, start); 262 pud_clear(pud); 263 pmd_free_tlb(tlb, pmd, start); 264 } 265 266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 pud_t *pud; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 pud = pud_offset(pgd, addr); 276 do { 277 next = pud_addr_end(addr, end); 278 if (pud_none_or_clear_bad(pud)) 279 continue; 280 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 281 } while (pud++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 pud = pud_offset(pgd, start); 295 pgd_clear(pgd); 296 pud_free_tlb(tlb, pud, start); 297 } 298 299 /* 300 * This function frees user-level page tables of a process. 301 * 302 * Must be called with pagetable lock held. 303 */ 304 void free_pgd_range(struct mmu_gather *tlb, 305 unsigned long addr, unsigned long end, 306 unsigned long floor, unsigned long ceiling) 307 { 308 pgd_t *pgd; 309 unsigned long next; 310 311 /* 312 * The next few lines have given us lots of grief... 313 * 314 * Why are we testing PMD* at this top level? Because often 315 * there will be no work to do at all, and we'd prefer not to 316 * go all the way down to the bottom just to discover that. 317 * 318 * Why all these "- 1"s? Because 0 represents both the bottom 319 * of the address space and the top of it (using -1 for the 320 * top wouldn't help much: the masks would do the wrong thing). 321 * The rule is that addr 0 and floor 0 refer to the bottom of 322 * the address space, but end 0 and ceiling 0 refer to the top 323 * Comparisons need to use "end - 1" and "ceiling - 1" (though 324 * that end 0 case should be mythical). 325 * 326 * Wherever addr is brought up or ceiling brought down, we must 327 * be careful to reject "the opposite 0" before it confuses the 328 * subsequent tests. But what about where end is brought down 329 * by PMD_SIZE below? no, end can't go down to 0 there. 330 * 331 * Whereas we round start (addr) and ceiling down, by different 332 * masks at different levels, in order to test whether a table 333 * now has no other vmas using it, so can be freed, we don't 334 * bother to round floor or end up - the tests don't need that. 335 */ 336 337 addr &= PMD_MASK; 338 if (addr < floor) { 339 addr += PMD_SIZE; 340 if (!addr) 341 return; 342 } 343 if (ceiling) { 344 ceiling &= PMD_MASK; 345 if (!ceiling) 346 return; 347 } 348 if (end - 1 > ceiling - 1) 349 end -= PMD_SIZE; 350 if (addr > end - 1) 351 return; 352 353 pgd = pgd_offset(tlb->mm, addr); 354 do { 355 next = pgd_addr_end(addr, end); 356 if (pgd_none_or_clear_bad(pgd)) 357 continue; 358 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 359 } while (pgd++, addr = next, addr != end); 360 } 361 362 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 363 unsigned long floor, unsigned long ceiling) 364 { 365 while (vma) { 366 struct vm_area_struct *next = vma->vm_next; 367 unsigned long addr = vma->vm_start; 368 369 /* 370 * Hide vma from rmap and truncate_pagecache before freeing 371 * pgtables 372 */ 373 unlink_anon_vmas(vma); 374 unlink_file_vma(vma); 375 376 if (is_vm_hugetlb_page(vma)) { 377 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 378 floor, next? next->vm_start: ceiling); 379 } else { 380 /* 381 * Optimization: gather nearby vmas into one call down 382 */ 383 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 384 && !is_vm_hugetlb_page(next)) { 385 vma = next; 386 next = vma->vm_next; 387 unlink_anon_vmas(vma); 388 unlink_file_vma(vma); 389 } 390 free_pgd_range(tlb, addr, vma->vm_end, 391 floor, next? next->vm_start: ceiling); 392 } 393 vma = next; 394 } 395 } 396 397 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 398 pmd_t *pmd, unsigned long address) 399 { 400 pgtable_t new = pte_alloc_one(mm, address); 401 int wait_split_huge_page; 402 if (!new) 403 return -ENOMEM; 404 405 /* 406 * Ensure all pte setup (eg. pte page lock and page clearing) are 407 * visible before the pte is made visible to other CPUs by being 408 * put into page tables. 409 * 410 * The other side of the story is the pointer chasing in the page 411 * table walking code (when walking the page table without locking; 412 * ie. most of the time). Fortunately, these data accesses consist 413 * of a chain of data-dependent loads, meaning most CPUs (alpha 414 * being the notable exception) will already guarantee loads are 415 * seen in-order. See the alpha page table accessors for the 416 * smp_read_barrier_depends() barriers in page table walking code. 417 */ 418 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 419 420 spin_lock(&mm->page_table_lock); 421 wait_split_huge_page = 0; 422 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 423 mm->nr_ptes++; 424 pmd_populate(mm, pmd, new); 425 new = NULL; 426 } else if (unlikely(pmd_trans_splitting(*pmd))) 427 wait_split_huge_page = 1; 428 spin_unlock(&mm->page_table_lock); 429 if (new) 430 pte_free(mm, new); 431 if (wait_split_huge_page) 432 wait_split_huge_page(vma->anon_vma, pmd); 433 return 0; 434 } 435 436 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 437 { 438 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 439 if (!new) 440 return -ENOMEM; 441 442 smp_wmb(); /* See comment in __pte_alloc */ 443 444 spin_lock(&init_mm.page_table_lock); 445 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 446 pmd_populate_kernel(&init_mm, pmd, new); 447 new = NULL; 448 } else 449 VM_BUG_ON(pmd_trans_splitting(*pmd)); 450 spin_unlock(&init_mm.page_table_lock); 451 if (new) 452 pte_free_kernel(&init_mm, new); 453 return 0; 454 } 455 456 static inline void init_rss_vec(int *rss) 457 { 458 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 459 } 460 461 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 462 { 463 int i; 464 465 if (current->mm == mm) 466 sync_mm_rss(current, mm); 467 for (i = 0; i < NR_MM_COUNTERS; i++) 468 if (rss[i]) 469 add_mm_counter(mm, i, rss[i]); 470 } 471 472 /* 473 * This function is called to print an error when a bad pte 474 * is found. For example, we might have a PFN-mapped pte in 475 * a region that doesn't allow it. 476 * 477 * The calling function must still handle the error. 478 */ 479 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 480 pte_t pte, struct page *page) 481 { 482 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 483 pud_t *pud = pud_offset(pgd, addr); 484 pmd_t *pmd = pmd_offset(pud, addr); 485 struct address_space *mapping; 486 pgoff_t index; 487 static unsigned long resume; 488 static unsigned long nr_shown; 489 static unsigned long nr_unshown; 490 491 /* 492 * Allow a burst of 60 reports, then keep quiet for that minute; 493 * or allow a steady drip of one report per second. 494 */ 495 if (nr_shown == 60) { 496 if (time_before(jiffies, resume)) { 497 nr_unshown++; 498 return; 499 } 500 if (nr_unshown) { 501 printk(KERN_ALERT 502 "BUG: Bad page map: %lu messages suppressed\n", 503 nr_unshown); 504 nr_unshown = 0; 505 } 506 nr_shown = 0; 507 } 508 if (nr_shown++ == 0) 509 resume = jiffies + 60 * HZ; 510 511 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 512 index = linear_page_index(vma, addr); 513 514 printk(KERN_ALERT 515 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 516 current->comm, 517 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 518 if (page) 519 dump_page(page); 520 printk(KERN_ALERT 521 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 523 /* 524 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 525 */ 526 if (vma->vm_ops) 527 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 528 (unsigned long)vma->vm_ops->fault); 529 if (vma->vm_file && vma->vm_file->f_op) 530 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 531 (unsigned long)vma->vm_file->f_op->mmap); 532 dump_stack(); 533 add_taint(TAINT_BAD_PAGE); 534 } 535 536 static inline int is_cow_mapping(unsigned int flags) 537 { 538 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 539 } 540 541 #ifndef is_zero_pfn 542 static inline int is_zero_pfn(unsigned long pfn) 543 { 544 return pfn == zero_pfn; 545 } 546 #endif 547 548 #ifndef my_zero_pfn 549 static inline unsigned long my_zero_pfn(unsigned long addr) 550 { 551 return zero_pfn; 552 } 553 #endif 554 555 /* 556 * vm_normal_page -- This function gets the "struct page" associated with a pte. 557 * 558 * "Special" mappings do not wish to be associated with a "struct page" (either 559 * it doesn't exist, or it exists but they don't want to touch it). In this 560 * case, NULL is returned here. "Normal" mappings do have a struct page. 561 * 562 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 563 * pte bit, in which case this function is trivial. Secondly, an architecture 564 * may not have a spare pte bit, which requires a more complicated scheme, 565 * described below. 566 * 567 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 568 * special mapping (even if there are underlying and valid "struct pages"). 569 * COWed pages of a VM_PFNMAP are always normal. 570 * 571 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 572 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 573 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 574 * mapping will always honor the rule 575 * 576 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 577 * 578 * And for normal mappings this is false. 579 * 580 * This restricts such mappings to be a linear translation from virtual address 581 * to pfn. To get around this restriction, we allow arbitrary mappings so long 582 * as the vma is not a COW mapping; in that case, we know that all ptes are 583 * special (because none can have been COWed). 584 * 585 * 586 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 587 * 588 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 589 * page" backing, however the difference is that _all_ pages with a struct 590 * page (that is, those where pfn_valid is true) are refcounted and considered 591 * normal pages by the VM. The disadvantage is that pages are refcounted 592 * (which can be slower and simply not an option for some PFNMAP users). The 593 * advantage is that we don't have to follow the strict linearity rule of 594 * PFNMAP mappings in order to support COWable mappings. 595 * 596 */ 597 #ifdef __HAVE_ARCH_PTE_SPECIAL 598 # define HAVE_PTE_SPECIAL 1 599 #else 600 # define HAVE_PTE_SPECIAL 0 601 #endif 602 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 603 pte_t pte) 604 { 605 unsigned long pfn = pte_pfn(pte); 606 607 if (HAVE_PTE_SPECIAL) { 608 if (likely(!pte_special(pte))) 609 goto check_pfn; 610 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 611 return NULL; 612 if (!is_zero_pfn(pfn)) 613 print_bad_pte(vma, addr, pte, NULL); 614 return NULL; 615 } 616 617 /* !HAVE_PTE_SPECIAL case follows: */ 618 619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 620 if (vma->vm_flags & VM_MIXEDMAP) { 621 if (!pfn_valid(pfn)) 622 return NULL; 623 goto out; 624 } else { 625 unsigned long off; 626 off = (addr - vma->vm_start) >> PAGE_SHIFT; 627 if (pfn == vma->vm_pgoff + off) 628 return NULL; 629 if (!is_cow_mapping(vma->vm_flags)) 630 return NULL; 631 } 632 } 633 634 if (is_zero_pfn(pfn)) 635 return NULL; 636 check_pfn: 637 if (unlikely(pfn > highest_memmap_pfn)) { 638 print_bad_pte(vma, addr, pte, NULL); 639 return NULL; 640 } 641 642 /* 643 * NOTE! We still have PageReserved() pages in the page tables. 644 * eg. VDSO mappings can cause them to exist. 645 */ 646 out: 647 return pfn_to_page(pfn); 648 } 649 650 /* 651 * copy one vm_area from one task to the other. Assumes the page tables 652 * already present in the new task to be cleared in the whole range 653 * covered by this vma. 654 */ 655 656 static inline unsigned long 657 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 658 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 659 unsigned long addr, int *rss) 660 { 661 unsigned long vm_flags = vma->vm_flags; 662 pte_t pte = *src_pte; 663 struct page *page; 664 665 /* pte contains position in swap or file, so copy. */ 666 if (unlikely(!pte_present(pte))) { 667 if (!pte_file(pte)) { 668 swp_entry_t entry = pte_to_swp_entry(pte); 669 670 if (swap_duplicate(entry) < 0) 671 return entry.val; 672 673 /* make sure dst_mm is on swapoff's mmlist. */ 674 if (unlikely(list_empty(&dst_mm->mmlist))) { 675 spin_lock(&mmlist_lock); 676 if (list_empty(&dst_mm->mmlist)) 677 list_add(&dst_mm->mmlist, 678 &src_mm->mmlist); 679 spin_unlock(&mmlist_lock); 680 } 681 if (likely(!non_swap_entry(entry))) 682 rss[MM_SWAPENTS]++; 683 else if (is_write_migration_entry(entry) && 684 is_cow_mapping(vm_flags)) { 685 /* 686 * COW mappings require pages in both parent 687 * and child to be set to read. 688 */ 689 make_migration_entry_read(&entry); 690 pte = swp_entry_to_pte(entry); 691 set_pte_at(src_mm, addr, src_pte, pte); 692 } 693 } 694 goto out_set_pte; 695 } 696 697 /* 698 * If it's a COW mapping, write protect it both 699 * in the parent and the child 700 */ 701 if (is_cow_mapping(vm_flags)) { 702 ptep_set_wrprotect(src_mm, addr, src_pte); 703 pte = pte_wrprotect(pte); 704 } 705 706 /* 707 * If it's a shared mapping, mark it clean in 708 * the child 709 */ 710 if (vm_flags & VM_SHARED) 711 pte = pte_mkclean(pte); 712 pte = pte_mkold(pte); 713 714 page = vm_normal_page(vma, addr, pte); 715 if (page) { 716 get_page(page); 717 page_dup_rmap(page); 718 if (PageAnon(page)) 719 rss[MM_ANONPAGES]++; 720 else 721 rss[MM_FILEPAGES]++; 722 } 723 724 out_set_pte: 725 set_pte_at(dst_mm, addr, dst_pte, pte); 726 return 0; 727 } 728 729 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 730 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 731 unsigned long addr, unsigned long end) 732 { 733 pte_t *orig_src_pte, *orig_dst_pte; 734 pte_t *src_pte, *dst_pte; 735 spinlock_t *src_ptl, *dst_ptl; 736 int progress = 0; 737 int rss[NR_MM_COUNTERS]; 738 swp_entry_t entry = (swp_entry_t){0}; 739 740 again: 741 init_rss_vec(rss); 742 743 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 744 if (!dst_pte) 745 return -ENOMEM; 746 src_pte = pte_offset_map(src_pmd, addr); 747 src_ptl = pte_lockptr(src_mm, src_pmd); 748 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 749 orig_src_pte = src_pte; 750 orig_dst_pte = dst_pte; 751 arch_enter_lazy_mmu_mode(); 752 753 do { 754 /* 755 * We are holding two locks at this point - either of them 756 * could generate latencies in another task on another CPU. 757 */ 758 if (progress >= 32) { 759 progress = 0; 760 if (need_resched() || 761 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 762 break; 763 } 764 if (pte_none(*src_pte)) { 765 progress++; 766 continue; 767 } 768 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 769 vma, addr, rss); 770 if (entry.val) 771 break; 772 progress += 8; 773 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 774 775 arch_leave_lazy_mmu_mode(); 776 spin_unlock(src_ptl); 777 pte_unmap(orig_src_pte); 778 add_mm_rss_vec(dst_mm, rss); 779 pte_unmap_unlock(orig_dst_pte, dst_ptl); 780 cond_resched(); 781 782 if (entry.val) { 783 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 784 return -ENOMEM; 785 progress = 0; 786 } 787 if (addr != end) 788 goto again; 789 return 0; 790 } 791 792 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 793 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 794 unsigned long addr, unsigned long end) 795 { 796 pmd_t *src_pmd, *dst_pmd; 797 unsigned long next; 798 799 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 800 if (!dst_pmd) 801 return -ENOMEM; 802 src_pmd = pmd_offset(src_pud, addr); 803 do { 804 next = pmd_addr_end(addr, end); 805 if (pmd_trans_huge(*src_pmd)) { 806 int err; 807 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 808 err = copy_huge_pmd(dst_mm, src_mm, 809 dst_pmd, src_pmd, addr, vma); 810 if (err == -ENOMEM) 811 return -ENOMEM; 812 if (!err) 813 continue; 814 /* fall through */ 815 } 816 if (pmd_none_or_clear_bad(src_pmd)) 817 continue; 818 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 819 vma, addr, next)) 820 return -ENOMEM; 821 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 822 return 0; 823 } 824 825 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 826 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 827 unsigned long addr, unsigned long end) 828 { 829 pud_t *src_pud, *dst_pud; 830 unsigned long next; 831 832 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 833 if (!dst_pud) 834 return -ENOMEM; 835 src_pud = pud_offset(src_pgd, addr); 836 do { 837 next = pud_addr_end(addr, end); 838 if (pud_none_or_clear_bad(src_pud)) 839 continue; 840 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 841 vma, addr, next)) 842 return -ENOMEM; 843 } while (dst_pud++, src_pud++, addr = next, addr != end); 844 return 0; 845 } 846 847 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 848 struct vm_area_struct *vma) 849 { 850 pgd_t *src_pgd, *dst_pgd; 851 unsigned long next; 852 unsigned long addr = vma->vm_start; 853 unsigned long end = vma->vm_end; 854 int ret; 855 856 /* 857 * Don't copy ptes where a page fault will fill them correctly. 858 * Fork becomes much lighter when there are big shared or private 859 * readonly mappings. The tradeoff is that copy_page_range is more 860 * efficient than faulting. 861 */ 862 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 863 if (!vma->anon_vma) 864 return 0; 865 } 866 867 if (is_vm_hugetlb_page(vma)) 868 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 869 870 if (unlikely(is_pfn_mapping(vma))) { 871 /* 872 * We do not free on error cases below as remove_vma 873 * gets called on error from higher level routine 874 */ 875 ret = track_pfn_vma_copy(vma); 876 if (ret) 877 return ret; 878 } 879 880 /* 881 * We need to invalidate the secondary MMU mappings only when 882 * there could be a permission downgrade on the ptes of the 883 * parent mm. And a permission downgrade will only happen if 884 * is_cow_mapping() returns true. 885 */ 886 if (is_cow_mapping(vma->vm_flags)) 887 mmu_notifier_invalidate_range_start(src_mm, addr, end); 888 889 ret = 0; 890 dst_pgd = pgd_offset(dst_mm, addr); 891 src_pgd = pgd_offset(src_mm, addr); 892 do { 893 next = pgd_addr_end(addr, end); 894 if (pgd_none_or_clear_bad(src_pgd)) 895 continue; 896 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 897 vma, addr, next))) { 898 ret = -ENOMEM; 899 break; 900 } 901 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 902 903 if (is_cow_mapping(vma->vm_flags)) 904 mmu_notifier_invalidate_range_end(src_mm, 905 vma->vm_start, end); 906 return ret; 907 } 908 909 static unsigned long zap_pte_range(struct mmu_gather *tlb, 910 struct vm_area_struct *vma, pmd_t *pmd, 911 unsigned long addr, unsigned long end, 912 long *zap_work, struct zap_details *details) 913 { 914 struct mm_struct *mm = tlb->mm; 915 pte_t *pte; 916 spinlock_t *ptl; 917 int rss[NR_MM_COUNTERS]; 918 919 init_rss_vec(rss); 920 921 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 922 arch_enter_lazy_mmu_mode(); 923 do { 924 pte_t ptent = *pte; 925 if (pte_none(ptent)) { 926 (*zap_work)--; 927 continue; 928 } 929 930 (*zap_work) -= PAGE_SIZE; 931 932 if (pte_present(ptent)) { 933 struct page *page; 934 935 page = vm_normal_page(vma, addr, ptent); 936 if (unlikely(details) && page) { 937 /* 938 * unmap_shared_mapping_pages() wants to 939 * invalidate cache without truncating: 940 * unmap shared but keep private pages. 941 */ 942 if (details->check_mapping && 943 details->check_mapping != page->mapping) 944 continue; 945 /* 946 * Each page->index must be checked when 947 * invalidating or truncating nonlinear. 948 */ 949 if (details->nonlinear_vma && 950 (page->index < details->first_index || 951 page->index > details->last_index)) 952 continue; 953 } 954 ptent = ptep_get_and_clear_full(mm, addr, pte, 955 tlb->fullmm); 956 tlb_remove_tlb_entry(tlb, pte, addr); 957 if (unlikely(!page)) 958 continue; 959 if (unlikely(details) && details->nonlinear_vma 960 && linear_page_index(details->nonlinear_vma, 961 addr) != page->index) 962 set_pte_at(mm, addr, pte, 963 pgoff_to_pte(page->index)); 964 if (PageAnon(page)) 965 rss[MM_ANONPAGES]--; 966 else { 967 if (pte_dirty(ptent)) 968 set_page_dirty(page); 969 if (pte_young(ptent) && 970 likely(!VM_SequentialReadHint(vma))) 971 mark_page_accessed(page); 972 rss[MM_FILEPAGES]--; 973 } 974 page_remove_rmap(page); 975 if (unlikely(page_mapcount(page) < 0)) 976 print_bad_pte(vma, addr, ptent, page); 977 tlb_remove_page(tlb, page); 978 continue; 979 } 980 /* 981 * If details->check_mapping, we leave swap entries; 982 * if details->nonlinear_vma, we leave file entries. 983 */ 984 if (unlikely(details)) 985 continue; 986 if (pte_file(ptent)) { 987 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 988 print_bad_pte(vma, addr, ptent, NULL); 989 } else { 990 swp_entry_t entry = pte_to_swp_entry(ptent); 991 992 if (!non_swap_entry(entry)) 993 rss[MM_SWAPENTS]--; 994 if (unlikely(!free_swap_and_cache(entry))) 995 print_bad_pte(vma, addr, ptent, NULL); 996 } 997 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 998 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 999 1000 add_mm_rss_vec(mm, rss); 1001 arch_leave_lazy_mmu_mode(); 1002 pte_unmap_unlock(pte - 1, ptl); 1003 1004 return addr; 1005 } 1006 1007 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1008 struct vm_area_struct *vma, pud_t *pud, 1009 unsigned long addr, unsigned long end, 1010 long *zap_work, struct zap_details *details) 1011 { 1012 pmd_t *pmd; 1013 unsigned long next; 1014 1015 pmd = pmd_offset(pud, addr); 1016 do { 1017 next = pmd_addr_end(addr, end); 1018 if (pmd_trans_huge(*pmd)) { 1019 if (next-addr != HPAGE_PMD_SIZE) { 1020 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); 1021 split_huge_page_pmd(vma->vm_mm, pmd); 1022 } else if (zap_huge_pmd(tlb, vma, pmd)) { 1023 (*zap_work)--; 1024 continue; 1025 } 1026 /* fall through */ 1027 } 1028 if (pmd_none_or_clear_bad(pmd)) { 1029 (*zap_work)--; 1030 continue; 1031 } 1032 next = zap_pte_range(tlb, vma, pmd, addr, next, 1033 zap_work, details); 1034 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 1035 1036 return addr; 1037 } 1038 1039 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1040 struct vm_area_struct *vma, pgd_t *pgd, 1041 unsigned long addr, unsigned long end, 1042 long *zap_work, struct zap_details *details) 1043 { 1044 pud_t *pud; 1045 unsigned long next; 1046 1047 pud = pud_offset(pgd, addr); 1048 do { 1049 next = pud_addr_end(addr, end); 1050 if (pud_none_or_clear_bad(pud)) { 1051 (*zap_work)--; 1052 continue; 1053 } 1054 next = zap_pmd_range(tlb, vma, pud, addr, next, 1055 zap_work, details); 1056 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 1057 1058 return addr; 1059 } 1060 1061 static unsigned long unmap_page_range(struct mmu_gather *tlb, 1062 struct vm_area_struct *vma, 1063 unsigned long addr, unsigned long end, 1064 long *zap_work, struct zap_details *details) 1065 { 1066 pgd_t *pgd; 1067 unsigned long next; 1068 1069 if (details && !details->check_mapping && !details->nonlinear_vma) 1070 details = NULL; 1071 1072 BUG_ON(addr >= end); 1073 mem_cgroup_uncharge_start(); 1074 tlb_start_vma(tlb, vma); 1075 pgd = pgd_offset(vma->vm_mm, addr); 1076 do { 1077 next = pgd_addr_end(addr, end); 1078 if (pgd_none_or_clear_bad(pgd)) { 1079 (*zap_work)--; 1080 continue; 1081 } 1082 next = zap_pud_range(tlb, vma, pgd, addr, next, 1083 zap_work, details); 1084 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 1085 tlb_end_vma(tlb, vma); 1086 mem_cgroup_uncharge_end(); 1087 1088 return addr; 1089 } 1090 1091 #ifdef CONFIG_PREEMPT 1092 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 1093 #else 1094 /* No preempt: go for improved straight-line efficiency */ 1095 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 1096 #endif 1097 1098 /** 1099 * unmap_vmas - unmap a range of memory covered by a list of vma's 1100 * @tlbp: address of the caller's struct mmu_gather 1101 * @vma: the starting vma 1102 * @start_addr: virtual address at which to start unmapping 1103 * @end_addr: virtual address at which to end unmapping 1104 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 1105 * @details: details of nonlinear truncation or shared cache invalidation 1106 * 1107 * Returns the end address of the unmapping (restart addr if interrupted). 1108 * 1109 * Unmap all pages in the vma list. 1110 * 1111 * We aim to not hold locks for too long (for scheduling latency reasons). 1112 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 1113 * return the ending mmu_gather to the caller. 1114 * 1115 * Only addresses between `start' and `end' will be unmapped. 1116 * 1117 * The VMA list must be sorted in ascending virtual address order. 1118 * 1119 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1120 * range after unmap_vmas() returns. So the only responsibility here is to 1121 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1122 * drops the lock and schedules. 1123 */ 1124 unsigned long unmap_vmas(struct mmu_gather **tlbp, 1125 struct vm_area_struct *vma, unsigned long start_addr, 1126 unsigned long end_addr, unsigned long *nr_accounted, 1127 struct zap_details *details) 1128 { 1129 long zap_work = ZAP_BLOCK_SIZE; 1130 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 1131 int tlb_start_valid = 0; 1132 unsigned long start = start_addr; 1133 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 1134 int fullmm = (*tlbp)->fullmm; 1135 struct mm_struct *mm = vma->vm_mm; 1136 1137 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1138 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 1139 unsigned long end; 1140 1141 start = max(vma->vm_start, start_addr); 1142 if (start >= vma->vm_end) 1143 continue; 1144 end = min(vma->vm_end, end_addr); 1145 if (end <= vma->vm_start) 1146 continue; 1147 1148 if (vma->vm_flags & VM_ACCOUNT) 1149 *nr_accounted += (end - start) >> PAGE_SHIFT; 1150 1151 if (unlikely(is_pfn_mapping(vma))) 1152 untrack_pfn_vma(vma, 0, 0); 1153 1154 while (start != end) { 1155 if (!tlb_start_valid) { 1156 tlb_start = start; 1157 tlb_start_valid = 1; 1158 } 1159 1160 if (unlikely(is_vm_hugetlb_page(vma))) { 1161 /* 1162 * It is undesirable to test vma->vm_file as it 1163 * should be non-null for valid hugetlb area. 1164 * However, vm_file will be NULL in the error 1165 * cleanup path of do_mmap_pgoff. When 1166 * hugetlbfs ->mmap method fails, 1167 * do_mmap_pgoff() nullifies vma->vm_file 1168 * before calling this function to clean up. 1169 * Since no pte has actually been setup, it is 1170 * safe to do nothing in this case. 1171 */ 1172 if (vma->vm_file) { 1173 unmap_hugepage_range(vma, start, end, NULL); 1174 zap_work -= (end - start) / 1175 pages_per_huge_page(hstate_vma(vma)); 1176 } 1177 1178 start = end; 1179 } else 1180 start = unmap_page_range(*tlbp, vma, 1181 start, end, &zap_work, details); 1182 1183 if (zap_work > 0) { 1184 BUG_ON(start != end); 1185 break; 1186 } 1187 1188 tlb_finish_mmu(*tlbp, tlb_start, start); 1189 1190 if (need_resched() || 1191 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 1192 if (i_mmap_lock) { 1193 *tlbp = NULL; 1194 goto out; 1195 } 1196 cond_resched(); 1197 } 1198 1199 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 1200 tlb_start_valid = 0; 1201 zap_work = ZAP_BLOCK_SIZE; 1202 } 1203 } 1204 out: 1205 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1206 return start; /* which is now the end (or restart) address */ 1207 } 1208 1209 /** 1210 * zap_page_range - remove user pages in a given range 1211 * @vma: vm_area_struct holding the applicable pages 1212 * @address: starting address of pages to zap 1213 * @size: number of bytes to zap 1214 * @details: details of nonlinear truncation or shared cache invalidation 1215 */ 1216 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1217 unsigned long size, struct zap_details *details) 1218 { 1219 struct mm_struct *mm = vma->vm_mm; 1220 struct mmu_gather *tlb; 1221 unsigned long end = address + size; 1222 unsigned long nr_accounted = 0; 1223 1224 lru_add_drain(); 1225 tlb = tlb_gather_mmu(mm, 0); 1226 update_hiwater_rss(mm); 1227 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1228 if (tlb) 1229 tlb_finish_mmu(tlb, address, end); 1230 return end; 1231 } 1232 1233 /** 1234 * zap_vma_ptes - remove ptes mapping the vma 1235 * @vma: vm_area_struct holding ptes to be zapped 1236 * @address: starting address of pages to zap 1237 * @size: number of bytes to zap 1238 * 1239 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1240 * 1241 * The entire address range must be fully contained within the vma. 1242 * 1243 * Returns 0 if successful. 1244 */ 1245 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1246 unsigned long size) 1247 { 1248 if (address < vma->vm_start || address + size > vma->vm_end || 1249 !(vma->vm_flags & VM_PFNMAP)) 1250 return -1; 1251 zap_page_range(vma, address, size, NULL); 1252 return 0; 1253 } 1254 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1255 1256 /** 1257 * follow_page - look up a page descriptor from a user-virtual address 1258 * @vma: vm_area_struct mapping @address 1259 * @address: virtual address to look up 1260 * @flags: flags modifying lookup behaviour 1261 * 1262 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1263 * 1264 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1265 * an error pointer if there is a mapping to something not represented 1266 * by a page descriptor (see also vm_normal_page()). 1267 */ 1268 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1269 unsigned int flags) 1270 { 1271 pgd_t *pgd; 1272 pud_t *pud; 1273 pmd_t *pmd; 1274 pte_t *ptep, pte; 1275 spinlock_t *ptl; 1276 struct page *page; 1277 struct mm_struct *mm = vma->vm_mm; 1278 1279 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1280 if (!IS_ERR(page)) { 1281 BUG_ON(flags & FOLL_GET); 1282 goto out; 1283 } 1284 1285 page = NULL; 1286 pgd = pgd_offset(mm, address); 1287 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1288 goto no_page_table; 1289 1290 pud = pud_offset(pgd, address); 1291 if (pud_none(*pud)) 1292 goto no_page_table; 1293 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1294 BUG_ON(flags & FOLL_GET); 1295 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1296 goto out; 1297 } 1298 if (unlikely(pud_bad(*pud))) 1299 goto no_page_table; 1300 1301 pmd = pmd_offset(pud, address); 1302 if (pmd_none(*pmd)) 1303 goto no_page_table; 1304 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1305 BUG_ON(flags & FOLL_GET); 1306 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1307 goto out; 1308 } 1309 if (pmd_trans_huge(*pmd)) { 1310 if (flags & FOLL_SPLIT) { 1311 split_huge_page_pmd(mm, pmd); 1312 goto split_fallthrough; 1313 } 1314 spin_lock(&mm->page_table_lock); 1315 if (likely(pmd_trans_huge(*pmd))) { 1316 if (unlikely(pmd_trans_splitting(*pmd))) { 1317 spin_unlock(&mm->page_table_lock); 1318 wait_split_huge_page(vma->anon_vma, pmd); 1319 } else { 1320 page = follow_trans_huge_pmd(mm, address, 1321 pmd, flags); 1322 spin_unlock(&mm->page_table_lock); 1323 goto out; 1324 } 1325 } else 1326 spin_unlock(&mm->page_table_lock); 1327 /* fall through */ 1328 } 1329 split_fallthrough: 1330 if (unlikely(pmd_bad(*pmd))) 1331 goto no_page_table; 1332 1333 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1334 1335 pte = *ptep; 1336 if (!pte_present(pte)) 1337 goto no_page; 1338 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1339 goto unlock; 1340 1341 page = vm_normal_page(vma, address, pte); 1342 if (unlikely(!page)) { 1343 if ((flags & FOLL_DUMP) || 1344 !is_zero_pfn(pte_pfn(pte))) 1345 goto bad_page; 1346 page = pte_page(pte); 1347 } 1348 1349 if (flags & FOLL_GET) 1350 get_page(page); 1351 if (flags & FOLL_TOUCH) { 1352 if ((flags & FOLL_WRITE) && 1353 !pte_dirty(pte) && !PageDirty(page)) 1354 set_page_dirty(page); 1355 /* 1356 * pte_mkyoung() would be more correct here, but atomic care 1357 * is needed to avoid losing the dirty bit: it is easier to use 1358 * mark_page_accessed(). 1359 */ 1360 mark_page_accessed(page); 1361 } 1362 if (flags & FOLL_MLOCK) { 1363 /* 1364 * The preliminary mapping check is mainly to avoid the 1365 * pointless overhead of lock_page on the ZERO_PAGE 1366 * which might bounce very badly if there is contention. 1367 * 1368 * If the page is already locked, we don't need to 1369 * handle it now - vmscan will handle it later if and 1370 * when it attempts to reclaim the page. 1371 */ 1372 if (page->mapping && trylock_page(page)) { 1373 lru_add_drain(); /* push cached pages to LRU */ 1374 /* 1375 * Because we lock page here and migration is 1376 * blocked by the pte's page reference, we need 1377 * only check for file-cache page truncation. 1378 */ 1379 if (page->mapping) 1380 mlock_vma_page(page); 1381 unlock_page(page); 1382 } 1383 } 1384 unlock: 1385 pte_unmap_unlock(ptep, ptl); 1386 out: 1387 return page; 1388 1389 bad_page: 1390 pte_unmap_unlock(ptep, ptl); 1391 return ERR_PTR(-EFAULT); 1392 1393 no_page: 1394 pte_unmap_unlock(ptep, ptl); 1395 if (!pte_none(pte)) 1396 return page; 1397 1398 no_page_table: 1399 /* 1400 * When core dumping an enormous anonymous area that nobody 1401 * has touched so far, we don't want to allocate unnecessary pages or 1402 * page tables. Return error instead of NULL to skip handle_mm_fault, 1403 * then get_dump_page() will return NULL to leave a hole in the dump. 1404 * But we can only make this optimization where a hole would surely 1405 * be zero-filled if handle_mm_fault() actually did handle it. 1406 */ 1407 if ((flags & FOLL_DUMP) && 1408 (!vma->vm_ops || !vma->vm_ops->fault)) 1409 return ERR_PTR(-EFAULT); 1410 return page; 1411 } 1412 1413 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1414 unsigned long start, int nr_pages, unsigned int gup_flags, 1415 struct page **pages, struct vm_area_struct **vmas, 1416 int *nonblocking) 1417 { 1418 int i; 1419 unsigned long vm_flags; 1420 1421 if (nr_pages <= 0) 1422 return 0; 1423 1424 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1425 1426 /* 1427 * Require read or write permissions. 1428 * If FOLL_FORCE is set, we only require the "MAY" flags. 1429 */ 1430 vm_flags = (gup_flags & FOLL_WRITE) ? 1431 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1432 vm_flags &= (gup_flags & FOLL_FORCE) ? 1433 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1434 i = 0; 1435 1436 do { 1437 struct vm_area_struct *vma; 1438 1439 vma = find_extend_vma(mm, start); 1440 if (!vma && in_gate_area(tsk, start)) { 1441 unsigned long pg = start & PAGE_MASK; 1442 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1443 pgd_t *pgd; 1444 pud_t *pud; 1445 pmd_t *pmd; 1446 pte_t *pte; 1447 1448 /* user gate pages are read-only */ 1449 if (gup_flags & FOLL_WRITE) 1450 return i ? : -EFAULT; 1451 if (pg > TASK_SIZE) 1452 pgd = pgd_offset_k(pg); 1453 else 1454 pgd = pgd_offset_gate(mm, pg); 1455 BUG_ON(pgd_none(*pgd)); 1456 pud = pud_offset(pgd, pg); 1457 BUG_ON(pud_none(*pud)); 1458 pmd = pmd_offset(pud, pg); 1459 if (pmd_none(*pmd)) 1460 return i ? : -EFAULT; 1461 VM_BUG_ON(pmd_trans_huge(*pmd)); 1462 pte = pte_offset_map(pmd, pg); 1463 if (pte_none(*pte)) { 1464 pte_unmap(pte); 1465 return i ? : -EFAULT; 1466 } 1467 if (pages) { 1468 struct page *page; 1469 1470 page = vm_normal_page(gate_vma, start, *pte); 1471 if (!page) { 1472 if (!(gup_flags & FOLL_DUMP) && 1473 is_zero_pfn(pte_pfn(*pte))) 1474 page = pte_page(*pte); 1475 else { 1476 pte_unmap(pte); 1477 return i ? : -EFAULT; 1478 } 1479 } 1480 pages[i] = page; 1481 get_page(page); 1482 } 1483 pte_unmap(pte); 1484 if (vmas) 1485 vmas[i] = gate_vma; 1486 i++; 1487 start += PAGE_SIZE; 1488 nr_pages--; 1489 continue; 1490 } 1491 1492 if (!vma || 1493 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1494 !(vm_flags & vma->vm_flags)) 1495 return i ? : -EFAULT; 1496 1497 if (is_vm_hugetlb_page(vma)) { 1498 i = follow_hugetlb_page(mm, vma, pages, vmas, 1499 &start, &nr_pages, i, gup_flags); 1500 continue; 1501 } 1502 1503 do { 1504 struct page *page; 1505 unsigned int foll_flags = gup_flags; 1506 1507 /* 1508 * If we have a pending SIGKILL, don't keep faulting 1509 * pages and potentially allocating memory. 1510 */ 1511 if (unlikely(fatal_signal_pending(current))) 1512 return i ? i : -ERESTARTSYS; 1513 1514 cond_resched(); 1515 while (!(page = follow_page(vma, start, foll_flags))) { 1516 int ret; 1517 unsigned int fault_flags = 0; 1518 1519 if (foll_flags & FOLL_WRITE) 1520 fault_flags |= FAULT_FLAG_WRITE; 1521 if (nonblocking) 1522 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1523 1524 ret = handle_mm_fault(mm, vma, start, 1525 fault_flags); 1526 1527 if (ret & VM_FAULT_ERROR) { 1528 if (ret & VM_FAULT_OOM) 1529 return i ? i : -ENOMEM; 1530 if (ret & 1531 (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE| 1532 VM_FAULT_SIGBUS)) 1533 return i ? i : -EFAULT; 1534 BUG(); 1535 } 1536 if (ret & VM_FAULT_MAJOR) 1537 tsk->maj_flt++; 1538 else 1539 tsk->min_flt++; 1540 1541 if (ret & VM_FAULT_RETRY) { 1542 *nonblocking = 0; 1543 return i; 1544 } 1545 1546 /* 1547 * The VM_FAULT_WRITE bit tells us that 1548 * do_wp_page has broken COW when necessary, 1549 * even if maybe_mkwrite decided not to set 1550 * pte_write. We can thus safely do subsequent 1551 * page lookups as if they were reads. But only 1552 * do so when looping for pte_write is futile: 1553 * in some cases userspace may also be wanting 1554 * to write to the gotten user page, which a 1555 * read fault here might prevent (a readonly 1556 * page might get reCOWed by userspace write). 1557 */ 1558 if ((ret & VM_FAULT_WRITE) && 1559 !(vma->vm_flags & VM_WRITE)) 1560 foll_flags &= ~FOLL_WRITE; 1561 1562 cond_resched(); 1563 } 1564 if (IS_ERR(page)) 1565 return i ? i : PTR_ERR(page); 1566 if (pages) { 1567 pages[i] = page; 1568 1569 flush_anon_page(vma, page, start); 1570 flush_dcache_page(page); 1571 } 1572 if (vmas) 1573 vmas[i] = vma; 1574 i++; 1575 start += PAGE_SIZE; 1576 nr_pages--; 1577 } while (nr_pages && start < vma->vm_end); 1578 } while (nr_pages); 1579 return i; 1580 } 1581 1582 /** 1583 * get_user_pages() - pin user pages in memory 1584 * @tsk: task_struct of target task 1585 * @mm: mm_struct of target mm 1586 * @start: starting user address 1587 * @nr_pages: number of pages from start to pin 1588 * @write: whether pages will be written to by the caller 1589 * @force: whether to force write access even if user mapping is 1590 * readonly. This will result in the page being COWed even 1591 * in MAP_SHARED mappings. You do not want this. 1592 * @pages: array that receives pointers to the pages pinned. 1593 * Should be at least nr_pages long. Or NULL, if caller 1594 * only intends to ensure the pages are faulted in. 1595 * @vmas: array of pointers to vmas corresponding to each page. 1596 * Or NULL if the caller does not require them. 1597 * 1598 * Returns number of pages pinned. This may be fewer than the number 1599 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1600 * were pinned, returns -errno. Each page returned must be released 1601 * with a put_page() call when it is finished with. vmas will only 1602 * remain valid while mmap_sem is held. 1603 * 1604 * Must be called with mmap_sem held for read or write. 1605 * 1606 * get_user_pages walks a process's page tables and takes a reference to 1607 * each struct page that each user address corresponds to at a given 1608 * instant. That is, it takes the page that would be accessed if a user 1609 * thread accesses the given user virtual address at that instant. 1610 * 1611 * This does not guarantee that the page exists in the user mappings when 1612 * get_user_pages returns, and there may even be a completely different 1613 * page there in some cases (eg. if mmapped pagecache has been invalidated 1614 * and subsequently re faulted). However it does guarantee that the page 1615 * won't be freed completely. And mostly callers simply care that the page 1616 * contains data that was valid *at some point in time*. Typically, an IO 1617 * or similar operation cannot guarantee anything stronger anyway because 1618 * locks can't be held over the syscall boundary. 1619 * 1620 * If write=0, the page must not be written to. If the page is written to, 1621 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1622 * after the page is finished with, and before put_page is called. 1623 * 1624 * get_user_pages is typically used for fewer-copy IO operations, to get a 1625 * handle on the memory by some means other than accesses via the user virtual 1626 * addresses. The pages may be submitted for DMA to devices or accessed via 1627 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1628 * use the correct cache flushing APIs. 1629 * 1630 * See also get_user_pages_fast, for performance critical applications. 1631 */ 1632 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1633 unsigned long start, int nr_pages, int write, int force, 1634 struct page **pages, struct vm_area_struct **vmas) 1635 { 1636 int flags = FOLL_TOUCH; 1637 1638 if (pages) 1639 flags |= FOLL_GET; 1640 if (write) 1641 flags |= FOLL_WRITE; 1642 if (force) 1643 flags |= FOLL_FORCE; 1644 1645 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 1646 NULL); 1647 } 1648 EXPORT_SYMBOL(get_user_pages); 1649 1650 /** 1651 * get_dump_page() - pin user page in memory while writing it to core dump 1652 * @addr: user address 1653 * 1654 * Returns struct page pointer of user page pinned for dump, 1655 * to be freed afterwards by page_cache_release() or put_page(). 1656 * 1657 * Returns NULL on any kind of failure - a hole must then be inserted into 1658 * the corefile, to preserve alignment with its headers; and also returns 1659 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1660 * allowing a hole to be left in the corefile to save diskspace. 1661 * 1662 * Called without mmap_sem, but after all other threads have been killed. 1663 */ 1664 #ifdef CONFIG_ELF_CORE 1665 struct page *get_dump_page(unsigned long addr) 1666 { 1667 struct vm_area_struct *vma; 1668 struct page *page; 1669 1670 if (__get_user_pages(current, current->mm, addr, 1, 1671 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1672 NULL) < 1) 1673 return NULL; 1674 flush_cache_page(vma, addr, page_to_pfn(page)); 1675 return page; 1676 } 1677 #endif /* CONFIG_ELF_CORE */ 1678 1679 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1680 spinlock_t **ptl) 1681 { 1682 pgd_t * pgd = pgd_offset(mm, addr); 1683 pud_t * pud = pud_alloc(mm, pgd, addr); 1684 if (pud) { 1685 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1686 if (pmd) { 1687 VM_BUG_ON(pmd_trans_huge(*pmd)); 1688 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1689 } 1690 } 1691 return NULL; 1692 } 1693 1694 /* 1695 * This is the old fallback for page remapping. 1696 * 1697 * For historical reasons, it only allows reserved pages. Only 1698 * old drivers should use this, and they needed to mark their 1699 * pages reserved for the old functions anyway. 1700 */ 1701 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1702 struct page *page, pgprot_t prot) 1703 { 1704 struct mm_struct *mm = vma->vm_mm; 1705 int retval; 1706 pte_t *pte; 1707 spinlock_t *ptl; 1708 1709 retval = -EINVAL; 1710 if (PageAnon(page)) 1711 goto out; 1712 retval = -ENOMEM; 1713 flush_dcache_page(page); 1714 pte = get_locked_pte(mm, addr, &ptl); 1715 if (!pte) 1716 goto out; 1717 retval = -EBUSY; 1718 if (!pte_none(*pte)) 1719 goto out_unlock; 1720 1721 /* Ok, finally just insert the thing.. */ 1722 get_page(page); 1723 inc_mm_counter_fast(mm, MM_FILEPAGES); 1724 page_add_file_rmap(page); 1725 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1726 1727 retval = 0; 1728 pte_unmap_unlock(pte, ptl); 1729 return retval; 1730 out_unlock: 1731 pte_unmap_unlock(pte, ptl); 1732 out: 1733 return retval; 1734 } 1735 1736 /** 1737 * vm_insert_page - insert single page into user vma 1738 * @vma: user vma to map to 1739 * @addr: target user address of this page 1740 * @page: source kernel page 1741 * 1742 * This allows drivers to insert individual pages they've allocated 1743 * into a user vma. 1744 * 1745 * The page has to be a nice clean _individual_ kernel allocation. 1746 * If you allocate a compound page, you need to have marked it as 1747 * such (__GFP_COMP), or manually just split the page up yourself 1748 * (see split_page()). 1749 * 1750 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1751 * took an arbitrary page protection parameter. This doesn't allow 1752 * that. Your vma protection will have to be set up correctly, which 1753 * means that if you want a shared writable mapping, you'd better 1754 * ask for a shared writable mapping! 1755 * 1756 * The page does not need to be reserved. 1757 */ 1758 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1759 struct page *page) 1760 { 1761 if (addr < vma->vm_start || addr >= vma->vm_end) 1762 return -EFAULT; 1763 if (!page_count(page)) 1764 return -EINVAL; 1765 vma->vm_flags |= VM_INSERTPAGE; 1766 return insert_page(vma, addr, page, vma->vm_page_prot); 1767 } 1768 EXPORT_SYMBOL(vm_insert_page); 1769 1770 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1771 unsigned long pfn, pgprot_t prot) 1772 { 1773 struct mm_struct *mm = vma->vm_mm; 1774 int retval; 1775 pte_t *pte, entry; 1776 spinlock_t *ptl; 1777 1778 retval = -ENOMEM; 1779 pte = get_locked_pte(mm, addr, &ptl); 1780 if (!pte) 1781 goto out; 1782 retval = -EBUSY; 1783 if (!pte_none(*pte)) 1784 goto out_unlock; 1785 1786 /* Ok, finally just insert the thing.. */ 1787 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1788 set_pte_at(mm, addr, pte, entry); 1789 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1790 1791 retval = 0; 1792 out_unlock: 1793 pte_unmap_unlock(pte, ptl); 1794 out: 1795 return retval; 1796 } 1797 1798 /** 1799 * vm_insert_pfn - insert single pfn into user vma 1800 * @vma: user vma to map to 1801 * @addr: target user address of this page 1802 * @pfn: source kernel pfn 1803 * 1804 * Similar to vm_inert_page, this allows drivers to insert individual pages 1805 * they've allocated into a user vma. Same comments apply. 1806 * 1807 * This function should only be called from a vm_ops->fault handler, and 1808 * in that case the handler should return NULL. 1809 * 1810 * vma cannot be a COW mapping. 1811 * 1812 * As this is called only for pages that do not currently exist, we 1813 * do not need to flush old virtual caches or the TLB. 1814 */ 1815 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1816 unsigned long pfn) 1817 { 1818 int ret; 1819 pgprot_t pgprot = vma->vm_page_prot; 1820 /* 1821 * Technically, architectures with pte_special can avoid all these 1822 * restrictions (same for remap_pfn_range). However we would like 1823 * consistency in testing and feature parity among all, so we should 1824 * try to keep these invariants in place for everybody. 1825 */ 1826 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1827 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1828 (VM_PFNMAP|VM_MIXEDMAP)); 1829 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1830 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1831 1832 if (addr < vma->vm_start || addr >= vma->vm_end) 1833 return -EFAULT; 1834 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 1835 return -EINVAL; 1836 1837 ret = insert_pfn(vma, addr, pfn, pgprot); 1838 1839 if (ret) 1840 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 1841 1842 return ret; 1843 } 1844 EXPORT_SYMBOL(vm_insert_pfn); 1845 1846 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1847 unsigned long pfn) 1848 { 1849 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1850 1851 if (addr < vma->vm_start || addr >= vma->vm_end) 1852 return -EFAULT; 1853 1854 /* 1855 * If we don't have pte special, then we have to use the pfn_valid() 1856 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1857 * refcount the page if pfn_valid is true (hence insert_page rather 1858 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1859 * without pte special, it would there be refcounted as a normal page. 1860 */ 1861 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1862 struct page *page; 1863 1864 page = pfn_to_page(pfn); 1865 return insert_page(vma, addr, page, vma->vm_page_prot); 1866 } 1867 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1868 } 1869 EXPORT_SYMBOL(vm_insert_mixed); 1870 1871 /* 1872 * maps a range of physical memory into the requested pages. the old 1873 * mappings are removed. any references to nonexistent pages results 1874 * in null mappings (currently treated as "copy-on-access") 1875 */ 1876 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1877 unsigned long addr, unsigned long end, 1878 unsigned long pfn, pgprot_t prot) 1879 { 1880 pte_t *pte; 1881 spinlock_t *ptl; 1882 1883 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1884 if (!pte) 1885 return -ENOMEM; 1886 arch_enter_lazy_mmu_mode(); 1887 do { 1888 BUG_ON(!pte_none(*pte)); 1889 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1890 pfn++; 1891 } while (pte++, addr += PAGE_SIZE, addr != end); 1892 arch_leave_lazy_mmu_mode(); 1893 pte_unmap_unlock(pte - 1, ptl); 1894 return 0; 1895 } 1896 1897 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1898 unsigned long addr, unsigned long end, 1899 unsigned long pfn, pgprot_t prot) 1900 { 1901 pmd_t *pmd; 1902 unsigned long next; 1903 1904 pfn -= addr >> PAGE_SHIFT; 1905 pmd = pmd_alloc(mm, pud, addr); 1906 if (!pmd) 1907 return -ENOMEM; 1908 VM_BUG_ON(pmd_trans_huge(*pmd)); 1909 do { 1910 next = pmd_addr_end(addr, end); 1911 if (remap_pte_range(mm, pmd, addr, next, 1912 pfn + (addr >> PAGE_SHIFT), prot)) 1913 return -ENOMEM; 1914 } while (pmd++, addr = next, addr != end); 1915 return 0; 1916 } 1917 1918 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1919 unsigned long addr, unsigned long end, 1920 unsigned long pfn, pgprot_t prot) 1921 { 1922 pud_t *pud; 1923 unsigned long next; 1924 1925 pfn -= addr >> PAGE_SHIFT; 1926 pud = pud_alloc(mm, pgd, addr); 1927 if (!pud) 1928 return -ENOMEM; 1929 do { 1930 next = pud_addr_end(addr, end); 1931 if (remap_pmd_range(mm, pud, addr, next, 1932 pfn + (addr >> PAGE_SHIFT), prot)) 1933 return -ENOMEM; 1934 } while (pud++, addr = next, addr != end); 1935 return 0; 1936 } 1937 1938 /** 1939 * remap_pfn_range - remap kernel memory to userspace 1940 * @vma: user vma to map to 1941 * @addr: target user address to start at 1942 * @pfn: physical address of kernel memory 1943 * @size: size of map area 1944 * @prot: page protection flags for this mapping 1945 * 1946 * Note: this is only safe if the mm semaphore is held when called. 1947 */ 1948 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1949 unsigned long pfn, unsigned long size, pgprot_t prot) 1950 { 1951 pgd_t *pgd; 1952 unsigned long next; 1953 unsigned long end = addr + PAGE_ALIGN(size); 1954 struct mm_struct *mm = vma->vm_mm; 1955 int err; 1956 1957 /* 1958 * Physically remapped pages are special. Tell the 1959 * rest of the world about it: 1960 * VM_IO tells people not to look at these pages 1961 * (accesses can have side effects). 1962 * VM_RESERVED is specified all over the place, because 1963 * in 2.4 it kept swapout's vma scan off this vma; but 1964 * in 2.6 the LRU scan won't even find its pages, so this 1965 * flag means no more than count its pages in reserved_vm, 1966 * and omit it from core dump, even when VM_IO turned off. 1967 * VM_PFNMAP tells the core MM that the base pages are just 1968 * raw PFN mappings, and do not have a "struct page" associated 1969 * with them. 1970 * 1971 * There's a horrible special case to handle copy-on-write 1972 * behaviour that some programs depend on. We mark the "original" 1973 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1974 */ 1975 if (addr == vma->vm_start && end == vma->vm_end) { 1976 vma->vm_pgoff = pfn; 1977 vma->vm_flags |= VM_PFN_AT_MMAP; 1978 } else if (is_cow_mapping(vma->vm_flags)) 1979 return -EINVAL; 1980 1981 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1982 1983 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 1984 if (err) { 1985 /* 1986 * To indicate that track_pfn related cleanup is not 1987 * needed from higher level routine calling unmap_vmas 1988 */ 1989 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 1990 vma->vm_flags &= ~VM_PFN_AT_MMAP; 1991 return -EINVAL; 1992 } 1993 1994 BUG_ON(addr >= end); 1995 pfn -= addr >> PAGE_SHIFT; 1996 pgd = pgd_offset(mm, addr); 1997 flush_cache_range(vma, addr, end); 1998 do { 1999 next = pgd_addr_end(addr, end); 2000 err = remap_pud_range(mm, pgd, addr, next, 2001 pfn + (addr >> PAGE_SHIFT), prot); 2002 if (err) 2003 break; 2004 } while (pgd++, addr = next, addr != end); 2005 2006 if (err) 2007 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 2008 2009 return err; 2010 } 2011 EXPORT_SYMBOL(remap_pfn_range); 2012 2013 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2014 unsigned long addr, unsigned long end, 2015 pte_fn_t fn, void *data) 2016 { 2017 pte_t *pte; 2018 int err; 2019 pgtable_t token; 2020 spinlock_t *uninitialized_var(ptl); 2021 2022 pte = (mm == &init_mm) ? 2023 pte_alloc_kernel(pmd, addr) : 2024 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2025 if (!pte) 2026 return -ENOMEM; 2027 2028 BUG_ON(pmd_huge(*pmd)); 2029 2030 arch_enter_lazy_mmu_mode(); 2031 2032 token = pmd_pgtable(*pmd); 2033 2034 do { 2035 err = fn(pte++, token, addr, data); 2036 if (err) 2037 break; 2038 } while (addr += PAGE_SIZE, addr != end); 2039 2040 arch_leave_lazy_mmu_mode(); 2041 2042 if (mm != &init_mm) 2043 pte_unmap_unlock(pte-1, ptl); 2044 return err; 2045 } 2046 2047 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2048 unsigned long addr, unsigned long end, 2049 pte_fn_t fn, void *data) 2050 { 2051 pmd_t *pmd; 2052 unsigned long next; 2053 int err; 2054 2055 BUG_ON(pud_huge(*pud)); 2056 2057 pmd = pmd_alloc(mm, pud, addr); 2058 if (!pmd) 2059 return -ENOMEM; 2060 do { 2061 next = pmd_addr_end(addr, end); 2062 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2063 if (err) 2064 break; 2065 } while (pmd++, addr = next, addr != end); 2066 return err; 2067 } 2068 2069 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2070 unsigned long addr, unsigned long end, 2071 pte_fn_t fn, void *data) 2072 { 2073 pud_t *pud; 2074 unsigned long next; 2075 int err; 2076 2077 pud = pud_alloc(mm, pgd, addr); 2078 if (!pud) 2079 return -ENOMEM; 2080 do { 2081 next = pud_addr_end(addr, end); 2082 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2083 if (err) 2084 break; 2085 } while (pud++, addr = next, addr != end); 2086 return err; 2087 } 2088 2089 /* 2090 * Scan a region of virtual memory, filling in page tables as necessary 2091 * and calling a provided function on each leaf page table. 2092 */ 2093 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2094 unsigned long size, pte_fn_t fn, void *data) 2095 { 2096 pgd_t *pgd; 2097 unsigned long next; 2098 unsigned long end = addr + size; 2099 int err; 2100 2101 BUG_ON(addr >= end); 2102 pgd = pgd_offset(mm, addr); 2103 do { 2104 next = pgd_addr_end(addr, end); 2105 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2106 if (err) 2107 break; 2108 } while (pgd++, addr = next, addr != end); 2109 2110 return err; 2111 } 2112 EXPORT_SYMBOL_GPL(apply_to_page_range); 2113 2114 /* 2115 * handle_pte_fault chooses page fault handler according to an entry 2116 * which was read non-atomically. Before making any commitment, on 2117 * those architectures or configurations (e.g. i386 with PAE) which 2118 * might give a mix of unmatched parts, do_swap_page and do_file_page 2119 * must check under lock before unmapping the pte and proceeding 2120 * (but do_wp_page is only called after already making such a check; 2121 * and do_anonymous_page and do_no_page can safely check later on). 2122 */ 2123 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2124 pte_t *page_table, pte_t orig_pte) 2125 { 2126 int same = 1; 2127 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2128 if (sizeof(pte_t) > sizeof(unsigned long)) { 2129 spinlock_t *ptl = pte_lockptr(mm, pmd); 2130 spin_lock(ptl); 2131 same = pte_same(*page_table, orig_pte); 2132 spin_unlock(ptl); 2133 } 2134 #endif 2135 pte_unmap(page_table); 2136 return same; 2137 } 2138 2139 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2140 { 2141 /* 2142 * If the source page was a PFN mapping, we don't have 2143 * a "struct page" for it. We do a best-effort copy by 2144 * just copying from the original user address. If that 2145 * fails, we just zero-fill it. Live with it. 2146 */ 2147 if (unlikely(!src)) { 2148 void *kaddr = kmap_atomic(dst, KM_USER0); 2149 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2150 2151 /* 2152 * This really shouldn't fail, because the page is there 2153 * in the page tables. But it might just be unreadable, 2154 * in which case we just give up and fill the result with 2155 * zeroes. 2156 */ 2157 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2158 clear_page(kaddr); 2159 kunmap_atomic(kaddr, KM_USER0); 2160 flush_dcache_page(dst); 2161 } else 2162 copy_user_highpage(dst, src, va, vma); 2163 } 2164 2165 /* 2166 * This routine handles present pages, when users try to write 2167 * to a shared page. It is done by copying the page to a new address 2168 * and decrementing the shared-page counter for the old page. 2169 * 2170 * Note that this routine assumes that the protection checks have been 2171 * done by the caller (the low-level page fault routine in most cases). 2172 * Thus we can safely just mark it writable once we've done any necessary 2173 * COW. 2174 * 2175 * We also mark the page dirty at this point even though the page will 2176 * change only once the write actually happens. This avoids a few races, 2177 * and potentially makes it more efficient. 2178 * 2179 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2180 * but allow concurrent faults), with pte both mapped and locked. 2181 * We return with mmap_sem still held, but pte unmapped and unlocked. 2182 */ 2183 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2184 unsigned long address, pte_t *page_table, pmd_t *pmd, 2185 spinlock_t *ptl, pte_t orig_pte) 2186 __releases(ptl) 2187 { 2188 struct page *old_page, *new_page; 2189 pte_t entry; 2190 int ret = 0; 2191 int page_mkwrite = 0; 2192 struct page *dirty_page = NULL; 2193 2194 old_page = vm_normal_page(vma, address, orig_pte); 2195 if (!old_page) { 2196 /* 2197 * VM_MIXEDMAP !pfn_valid() case 2198 * 2199 * We should not cow pages in a shared writeable mapping. 2200 * Just mark the pages writable as we can't do any dirty 2201 * accounting on raw pfn maps. 2202 */ 2203 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2204 (VM_WRITE|VM_SHARED)) 2205 goto reuse; 2206 goto gotten; 2207 } 2208 2209 /* 2210 * Take out anonymous pages first, anonymous shared vmas are 2211 * not dirty accountable. 2212 */ 2213 if (PageAnon(old_page) && !PageKsm(old_page)) { 2214 if (!trylock_page(old_page)) { 2215 page_cache_get(old_page); 2216 pte_unmap_unlock(page_table, ptl); 2217 lock_page(old_page); 2218 page_table = pte_offset_map_lock(mm, pmd, address, 2219 &ptl); 2220 if (!pte_same(*page_table, orig_pte)) { 2221 unlock_page(old_page); 2222 goto unlock; 2223 } 2224 page_cache_release(old_page); 2225 } 2226 if (reuse_swap_page(old_page)) { 2227 /* 2228 * The page is all ours. Move it to our anon_vma so 2229 * the rmap code will not search our parent or siblings. 2230 * Protected against the rmap code by the page lock. 2231 */ 2232 page_move_anon_rmap(old_page, vma, address); 2233 unlock_page(old_page); 2234 goto reuse; 2235 } 2236 unlock_page(old_page); 2237 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2238 (VM_WRITE|VM_SHARED))) { 2239 /* 2240 * Only catch write-faults on shared writable pages, 2241 * read-only shared pages can get COWed by 2242 * get_user_pages(.write=1, .force=1). 2243 */ 2244 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2245 struct vm_fault vmf; 2246 int tmp; 2247 2248 vmf.virtual_address = (void __user *)(address & 2249 PAGE_MASK); 2250 vmf.pgoff = old_page->index; 2251 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2252 vmf.page = old_page; 2253 2254 /* 2255 * Notify the address space that the page is about to 2256 * become writable so that it can prohibit this or wait 2257 * for the page to get into an appropriate state. 2258 * 2259 * We do this without the lock held, so that it can 2260 * sleep if it needs to. 2261 */ 2262 page_cache_get(old_page); 2263 pte_unmap_unlock(page_table, ptl); 2264 2265 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2266 if (unlikely(tmp & 2267 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2268 ret = tmp; 2269 goto unwritable_page; 2270 } 2271 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2272 lock_page(old_page); 2273 if (!old_page->mapping) { 2274 ret = 0; /* retry the fault */ 2275 unlock_page(old_page); 2276 goto unwritable_page; 2277 } 2278 } else 2279 VM_BUG_ON(!PageLocked(old_page)); 2280 2281 /* 2282 * Since we dropped the lock we need to revalidate 2283 * the PTE as someone else may have changed it. If 2284 * they did, we just return, as we can count on the 2285 * MMU to tell us if they didn't also make it writable. 2286 */ 2287 page_table = pte_offset_map_lock(mm, pmd, address, 2288 &ptl); 2289 if (!pte_same(*page_table, orig_pte)) { 2290 unlock_page(old_page); 2291 goto unlock; 2292 } 2293 2294 page_mkwrite = 1; 2295 } 2296 dirty_page = old_page; 2297 get_page(dirty_page); 2298 2299 reuse: 2300 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2301 entry = pte_mkyoung(orig_pte); 2302 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2303 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2304 update_mmu_cache(vma, address, page_table); 2305 pte_unmap_unlock(page_table, ptl); 2306 ret |= VM_FAULT_WRITE; 2307 2308 if (!dirty_page) 2309 return ret; 2310 2311 /* 2312 * Yes, Virginia, this is actually required to prevent a race 2313 * with clear_page_dirty_for_io() from clearing the page dirty 2314 * bit after it clear all dirty ptes, but before a racing 2315 * do_wp_page installs a dirty pte. 2316 * 2317 * do_no_page is protected similarly. 2318 */ 2319 if (!page_mkwrite) { 2320 wait_on_page_locked(dirty_page); 2321 set_page_dirty_balance(dirty_page, page_mkwrite); 2322 } 2323 put_page(dirty_page); 2324 if (page_mkwrite) { 2325 struct address_space *mapping = dirty_page->mapping; 2326 2327 set_page_dirty(dirty_page); 2328 unlock_page(dirty_page); 2329 page_cache_release(dirty_page); 2330 if (mapping) { 2331 /* 2332 * Some device drivers do not set page.mapping 2333 * but still dirty their pages 2334 */ 2335 balance_dirty_pages_ratelimited(mapping); 2336 } 2337 } 2338 2339 /* file_update_time outside page_lock */ 2340 if (vma->vm_file) 2341 file_update_time(vma->vm_file); 2342 2343 return ret; 2344 } 2345 2346 /* 2347 * Ok, we need to copy. Oh, well.. 2348 */ 2349 page_cache_get(old_page); 2350 gotten: 2351 pte_unmap_unlock(page_table, ptl); 2352 2353 if (unlikely(anon_vma_prepare(vma))) 2354 goto oom; 2355 2356 if (is_zero_pfn(pte_pfn(orig_pte))) { 2357 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2358 if (!new_page) 2359 goto oom; 2360 } else { 2361 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2362 if (!new_page) 2363 goto oom; 2364 cow_user_page(new_page, old_page, address, vma); 2365 } 2366 __SetPageUptodate(new_page); 2367 2368 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2369 goto oom_free_new; 2370 2371 /* 2372 * Re-check the pte - we dropped the lock 2373 */ 2374 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2375 if (likely(pte_same(*page_table, orig_pte))) { 2376 if (old_page) { 2377 if (!PageAnon(old_page)) { 2378 dec_mm_counter_fast(mm, MM_FILEPAGES); 2379 inc_mm_counter_fast(mm, MM_ANONPAGES); 2380 } 2381 } else 2382 inc_mm_counter_fast(mm, MM_ANONPAGES); 2383 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2384 entry = mk_pte(new_page, vma->vm_page_prot); 2385 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2386 /* 2387 * Clear the pte entry and flush it first, before updating the 2388 * pte with the new entry. This will avoid a race condition 2389 * seen in the presence of one thread doing SMC and another 2390 * thread doing COW. 2391 */ 2392 ptep_clear_flush(vma, address, page_table); 2393 page_add_new_anon_rmap(new_page, vma, address); 2394 /* 2395 * We call the notify macro here because, when using secondary 2396 * mmu page tables (such as kvm shadow page tables), we want the 2397 * new page to be mapped directly into the secondary page table. 2398 */ 2399 set_pte_at_notify(mm, address, page_table, entry); 2400 update_mmu_cache(vma, address, page_table); 2401 if (old_page) { 2402 /* 2403 * Only after switching the pte to the new page may 2404 * we remove the mapcount here. Otherwise another 2405 * process may come and find the rmap count decremented 2406 * before the pte is switched to the new page, and 2407 * "reuse" the old page writing into it while our pte 2408 * here still points into it and can be read by other 2409 * threads. 2410 * 2411 * The critical issue is to order this 2412 * page_remove_rmap with the ptp_clear_flush above. 2413 * Those stores are ordered by (if nothing else,) 2414 * the barrier present in the atomic_add_negative 2415 * in page_remove_rmap. 2416 * 2417 * Then the TLB flush in ptep_clear_flush ensures that 2418 * no process can access the old page before the 2419 * decremented mapcount is visible. And the old page 2420 * cannot be reused until after the decremented 2421 * mapcount is visible. So transitively, TLBs to 2422 * old page will be flushed before it can be reused. 2423 */ 2424 page_remove_rmap(old_page); 2425 } 2426 2427 /* Free the old page.. */ 2428 new_page = old_page; 2429 ret |= VM_FAULT_WRITE; 2430 } else 2431 mem_cgroup_uncharge_page(new_page); 2432 2433 if (new_page) 2434 page_cache_release(new_page); 2435 unlock: 2436 pte_unmap_unlock(page_table, ptl); 2437 if (old_page) { 2438 /* 2439 * Don't let another task, with possibly unlocked vma, 2440 * keep the mlocked page. 2441 */ 2442 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2443 lock_page(old_page); /* LRU manipulation */ 2444 munlock_vma_page(old_page); 2445 unlock_page(old_page); 2446 } 2447 page_cache_release(old_page); 2448 } 2449 return ret; 2450 oom_free_new: 2451 page_cache_release(new_page); 2452 oom: 2453 if (old_page) { 2454 if (page_mkwrite) { 2455 unlock_page(old_page); 2456 page_cache_release(old_page); 2457 } 2458 page_cache_release(old_page); 2459 } 2460 return VM_FAULT_OOM; 2461 2462 unwritable_page: 2463 page_cache_release(old_page); 2464 return ret; 2465 } 2466 2467 /* 2468 * Helper functions for unmap_mapping_range(). 2469 * 2470 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 2471 * 2472 * We have to restart searching the prio_tree whenever we drop the lock, 2473 * since the iterator is only valid while the lock is held, and anyway 2474 * a later vma might be split and reinserted earlier while lock dropped. 2475 * 2476 * The list of nonlinear vmas could be handled more efficiently, using 2477 * a placeholder, but handle it in the same way until a need is shown. 2478 * It is important to search the prio_tree before nonlinear list: a vma 2479 * may become nonlinear and be shifted from prio_tree to nonlinear list 2480 * while the lock is dropped; but never shifted from list to prio_tree. 2481 * 2482 * In order to make forward progress despite restarting the search, 2483 * vm_truncate_count is used to mark a vma as now dealt with, so we can 2484 * quickly skip it next time around. Since the prio_tree search only 2485 * shows us those vmas affected by unmapping the range in question, we 2486 * can't efficiently keep all vmas in step with mapping->truncate_count: 2487 * so instead reset them all whenever it wraps back to 0 (then go to 1). 2488 * mapping->truncate_count and vma->vm_truncate_count are protected by 2489 * i_mmap_lock. 2490 * 2491 * In order to make forward progress despite repeatedly restarting some 2492 * large vma, note the restart_addr from unmap_vmas when it breaks out: 2493 * and restart from that address when we reach that vma again. It might 2494 * have been split or merged, shrunk or extended, but never shifted: so 2495 * restart_addr remains valid so long as it remains in the vma's range. 2496 * unmap_mapping_range forces truncate_count to leap over page-aligned 2497 * values so we can save vma's restart_addr in its truncate_count field. 2498 */ 2499 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 2500 2501 static void reset_vma_truncate_counts(struct address_space *mapping) 2502 { 2503 struct vm_area_struct *vma; 2504 struct prio_tree_iter iter; 2505 2506 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2507 vma->vm_truncate_count = 0; 2508 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2509 vma->vm_truncate_count = 0; 2510 } 2511 2512 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2513 unsigned long start_addr, unsigned long end_addr, 2514 struct zap_details *details) 2515 { 2516 unsigned long restart_addr; 2517 int need_break; 2518 2519 /* 2520 * files that support invalidating or truncating portions of the 2521 * file from under mmaped areas must have their ->fault function 2522 * return a locked page (and set VM_FAULT_LOCKED in the return). 2523 * This provides synchronisation against concurrent unmapping here. 2524 */ 2525 2526 again: 2527 restart_addr = vma->vm_truncate_count; 2528 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2529 start_addr = restart_addr; 2530 if (start_addr >= end_addr) { 2531 /* Top of vma has been split off since last time */ 2532 vma->vm_truncate_count = details->truncate_count; 2533 return 0; 2534 } 2535 } 2536 2537 restart_addr = zap_page_range(vma, start_addr, 2538 end_addr - start_addr, details); 2539 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2540 2541 if (restart_addr >= end_addr) { 2542 /* We have now completed this vma: mark it so */ 2543 vma->vm_truncate_count = details->truncate_count; 2544 if (!need_break) 2545 return 0; 2546 } else { 2547 /* Note restart_addr in vma's truncate_count field */ 2548 vma->vm_truncate_count = restart_addr; 2549 if (!need_break) 2550 goto again; 2551 } 2552 2553 spin_unlock(details->i_mmap_lock); 2554 cond_resched(); 2555 spin_lock(details->i_mmap_lock); 2556 return -EINTR; 2557 } 2558 2559 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2560 struct zap_details *details) 2561 { 2562 struct vm_area_struct *vma; 2563 struct prio_tree_iter iter; 2564 pgoff_t vba, vea, zba, zea; 2565 2566 restart: 2567 vma_prio_tree_foreach(vma, &iter, root, 2568 details->first_index, details->last_index) { 2569 /* Skip quickly over those we have already dealt with */ 2570 if (vma->vm_truncate_count == details->truncate_count) 2571 continue; 2572 2573 vba = vma->vm_pgoff; 2574 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2575 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2576 zba = details->first_index; 2577 if (zba < vba) 2578 zba = vba; 2579 zea = details->last_index; 2580 if (zea > vea) 2581 zea = vea; 2582 2583 if (unmap_mapping_range_vma(vma, 2584 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2585 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2586 details) < 0) 2587 goto restart; 2588 } 2589 } 2590 2591 static inline void unmap_mapping_range_list(struct list_head *head, 2592 struct zap_details *details) 2593 { 2594 struct vm_area_struct *vma; 2595 2596 /* 2597 * In nonlinear VMAs there is no correspondence between virtual address 2598 * offset and file offset. So we must perform an exhaustive search 2599 * across *all* the pages in each nonlinear VMA, not just the pages 2600 * whose virtual address lies outside the file truncation point. 2601 */ 2602 restart: 2603 list_for_each_entry(vma, head, shared.vm_set.list) { 2604 /* Skip quickly over those we have already dealt with */ 2605 if (vma->vm_truncate_count == details->truncate_count) 2606 continue; 2607 details->nonlinear_vma = vma; 2608 if (unmap_mapping_range_vma(vma, vma->vm_start, 2609 vma->vm_end, details) < 0) 2610 goto restart; 2611 } 2612 } 2613 2614 /** 2615 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2616 * @mapping: the address space containing mmaps to be unmapped. 2617 * @holebegin: byte in first page to unmap, relative to the start of 2618 * the underlying file. This will be rounded down to a PAGE_SIZE 2619 * boundary. Note that this is different from truncate_pagecache(), which 2620 * must keep the partial page. In contrast, we must get rid of 2621 * partial pages. 2622 * @holelen: size of prospective hole in bytes. This will be rounded 2623 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2624 * end of the file. 2625 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2626 * but 0 when invalidating pagecache, don't throw away private data. 2627 */ 2628 void unmap_mapping_range(struct address_space *mapping, 2629 loff_t const holebegin, loff_t const holelen, int even_cows) 2630 { 2631 struct zap_details details; 2632 pgoff_t hba = holebegin >> PAGE_SHIFT; 2633 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2634 2635 /* Check for overflow. */ 2636 if (sizeof(holelen) > sizeof(hlen)) { 2637 long long holeend = 2638 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2639 if (holeend & ~(long long)ULONG_MAX) 2640 hlen = ULONG_MAX - hba + 1; 2641 } 2642 2643 details.check_mapping = even_cows? NULL: mapping; 2644 details.nonlinear_vma = NULL; 2645 details.first_index = hba; 2646 details.last_index = hba + hlen - 1; 2647 if (details.last_index < details.first_index) 2648 details.last_index = ULONG_MAX; 2649 details.i_mmap_lock = &mapping->i_mmap_lock; 2650 2651 spin_lock(&mapping->i_mmap_lock); 2652 2653 /* Protect against endless unmapping loops */ 2654 mapping->truncate_count++; 2655 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2656 if (mapping->truncate_count == 0) 2657 reset_vma_truncate_counts(mapping); 2658 mapping->truncate_count++; 2659 } 2660 details.truncate_count = mapping->truncate_count; 2661 2662 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2663 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2664 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2665 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2666 spin_unlock(&mapping->i_mmap_lock); 2667 } 2668 EXPORT_SYMBOL(unmap_mapping_range); 2669 2670 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2671 { 2672 struct address_space *mapping = inode->i_mapping; 2673 2674 /* 2675 * If the underlying filesystem is not going to provide 2676 * a way to truncate a range of blocks (punch a hole) - 2677 * we should return failure right now. 2678 */ 2679 if (!inode->i_op->truncate_range) 2680 return -ENOSYS; 2681 2682 mutex_lock(&inode->i_mutex); 2683 down_write(&inode->i_alloc_sem); 2684 unmap_mapping_range(mapping, offset, (end - offset), 1); 2685 truncate_inode_pages_range(mapping, offset, end); 2686 unmap_mapping_range(mapping, offset, (end - offset), 1); 2687 inode->i_op->truncate_range(inode, offset, end); 2688 up_write(&inode->i_alloc_sem); 2689 mutex_unlock(&inode->i_mutex); 2690 2691 return 0; 2692 } 2693 2694 /* 2695 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2696 * but allow concurrent faults), and pte mapped but not yet locked. 2697 * We return with mmap_sem still held, but pte unmapped and unlocked. 2698 */ 2699 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2700 unsigned long address, pte_t *page_table, pmd_t *pmd, 2701 unsigned int flags, pte_t orig_pte) 2702 { 2703 spinlock_t *ptl; 2704 struct page *page, *swapcache = NULL; 2705 swp_entry_t entry; 2706 pte_t pte; 2707 int locked; 2708 struct mem_cgroup *ptr = NULL; 2709 int exclusive = 0; 2710 int ret = 0; 2711 2712 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2713 goto out; 2714 2715 entry = pte_to_swp_entry(orig_pte); 2716 if (unlikely(non_swap_entry(entry))) { 2717 if (is_migration_entry(entry)) { 2718 migration_entry_wait(mm, pmd, address); 2719 } else if (is_hwpoison_entry(entry)) { 2720 ret = VM_FAULT_HWPOISON; 2721 } else { 2722 print_bad_pte(vma, address, orig_pte, NULL); 2723 ret = VM_FAULT_SIGBUS; 2724 } 2725 goto out; 2726 } 2727 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2728 page = lookup_swap_cache(entry); 2729 if (!page) { 2730 grab_swap_token(mm); /* Contend for token _before_ read-in */ 2731 page = swapin_readahead(entry, 2732 GFP_HIGHUSER_MOVABLE, vma, address); 2733 if (!page) { 2734 /* 2735 * Back out if somebody else faulted in this pte 2736 * while we released the pte lock. 2737 */ 2738 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2739 if (likely(pte_same(*page_table, orig_pte))) 2740 ret = VM_FAULT_OOM; 2741 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2742 goto unlock; 2743 } 2744 2745 /* Had to read the page from swap area: Major fault */ 2746 ret = VM_FAULT_MAJOR; 2747 count_vm_event(PGMAJFAULT); 2748 } else if (PageHWPoison(page)) { 2749 /* 2750 * hwpoisoned dirty swapcache pages are kept for killing 2751 * owner processes (which may be unknown at hwpoison time) 2752 */ 2753 ret = VM_FAULT_HWPOISON; 2754 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2755 goto out_release; 2756 } 2757 2758 locked = lock_page_or_retry(page, mm, flags); 2759 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2760 if (!locked) { 2761 ret |= VM_FAULT_RETRY; 2762 goto out_release; 2763 } 2764 2765 /* 2766 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2767 * release the swapcache from under us. The page pin, and pte_same 2768 * test below, are not enough to exclude that. Even if it is still 2769 * swapcache, we need to check that the page's swap has not changed. 2770 */ 2771 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2772 goto out_page; 2773 2774 if (ksm_might_need_to_copy(page, vma, address)) { 2775 swapcache = page; 2776 page = ksm_does_need_to_copy(page, vma, address); 2777 2778 if (unlikely(!page)) { 2779 ret = VM_FAULT_OOM; 2780 page = swapcache; 2781 swapcache = NULL; 2782 goto out_page; 2783 } 2784 } 2785 2786 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2787 ret = VM_FAULT_OOM; 2788 goto out_page; 2789 } 2790 2791 /* 2792 * Back out if somebody else already faulted in this pte. 2793 */ 2794 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2795 if (unlikely(!pte_same(*page_table, orig_pte))) 2796 goto out_nomap; 2797 2798 if (unlikely(!PageUptodate(page))) { 2799 ret = VM_FAULT_SIGBUS; 2800 goto out_nomap; 2801 } 2802 2803 /* 2804 * The page isn't present yet, go ahead with the fault. 2805 * 2806 * Be careful about the sequence of operations here. 2807 * To get its accounting right, reuse_swap_page() must be called 2808 * while the page is counted on swap but not yet in mapcount i.e. 2809 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2810 * must be called after the swap_free(), or it will never succeed. 2811 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2812 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2813 * in page->private. In this case, a record in swap_cgroup is silently 2814 * discarded at swap_free(). 2815 */ 2816 2817 inc_mm_counter_fast(mm, MM_ANONPAGES); 2818 dec_mm_counter_fast(mm, MM_SWAPENTS); 2819 pte = mk_pte(page, vma->vm_page_prot); 2820 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2821 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2822 flags &= ~FAULT_FLAG_WRITE; 2823 ret |= VM_FAULT_WRITE; 2824 exclusive = 1; 2825 } 2826 flush_icache_page(vma, page); 2827 set_pte_at(mm, address, page_table, pte); 2828 do_page_add_anon_rmap(page, vma, address, exclusive); 2829 /* It's better to call commit-charge after rmap is established */ 2830 mem_cgroup_commit_charge_swapin(page, ptr); 2831 2832 swap_free(entry); 2833 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2834 try_to_free_swap(page); 2835 unlock_page(page); 2836 if (swapcache) { 2837 /* 2838 * Hold the lock to avoid the swap entry to be reused 2839 * until we take the PT lock for the pte_same() check 2840 * (to avoid false positives from pte_same). For 2841 * further safety release the lock after the swap_free 2842 * so that the swap count won't change under a 2843 * parallel locked swapcache. 2844 */ 2845 unlock_page(swapcache); 2846 page_cache_release(swapcache); 2847 } 2848 2849 if (flags & FAULT_FLAG_WRITE) { 2850 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2851 if (ret & VM_FAULT_ERROR) 2852 ret &= VM_FAULT_ERROR; 2853 goto out; 2854 } 2855 2856 /* No need to invalidate - it was non-present before */ 2857 update_mmu_cache(vma, address, page_table); 2858 unlock: 2859 pte_unmap_unlock(page_table, ptl); 2860 out: 2861 return ret; 2862 out_nomap: 2863 mem_cgroup_cancel_charge_swapin(ptr); 2864 pte_unmap_unlock(page_table, ptl); 2865 out_page: 2866 unlock_page(page); 2867 out_release: 2868 page_cache_release(page); 2869 if (swapcache) { 2870 unlock_page(swapcache); 2871 page_cache_release(swapcache); 2872 } 2873 return ret; 2874 } 2875 2876 /* 2877 * This is like a special single-page "expand_{down|up}wards()", 2878 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2879 * doesn't hit another vma. 2880 */ 2881 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2882 { 2883 address &= PAGE_MASK; 2884 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2885 struct vm_area_struct *prev = vma->vm_prev; 2886 2887 /* 2888 * Is there a mapping abutting this one below? 2889 * 2890 * That's only ok if it's the same stack mapping 2891 * that has gotten split.. 2892 */ 2893 if (prev && prev->vm_end == address) 2894 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2895 2896 expand_stack(vma, address - PAGE_SIZE); 2897 } 2898 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2899 struct vm_area_struct *next = vma->vm_next; 2900 2901 /* As VM_GROWSDOWN but s/below/above/ */ 2902 if (next && next->vm_start == address + PAGE_SIZE) 2903 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2904 2905 expand_upwards(vma, address + PAGE_SIZE); 2906 } 2907 return 0; 2908 } 2909 2910 /* 2911 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2912 * but allow concurrent faults), and pte mapped but not yet locked. 2913 * We return with mmap_sem still held, but pte unmapped and unlocked. 2914 */ 2915 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2916 unsigned long address, pte_t *page_table, pmd_t *pmd, 2917 unsigned int flags) 2918 { 2919 struct page *page; 2920 spinlock_t *ptl; 2921 pte_t entry; 2922 2923 pte_unmap(page_table); 2924 2925 /* Check if we need to add a guard page to the stack */ 2926 if (check_stack_guard_page(vma, address) < 0) 2927 return VM_FAULT_SIGBUS; 2928 2929 /* Use the zero-page for reads */ 2930 if (!(flags & FAULT_FLAG_WRITE)) { 2931 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2932 vma->vm_page_prot)); 2933 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2934 if (!pte_none(*page_table)) 2935 goto unlock; 2936 goto setpte; 2937 } 2938 2939 /* Allocate our own private page. */ 2940 if (unlikely(anon_vma_prepare(vma))) 2941 goto oom; 2942 page = alloc_zeroed_user_highpage_movable(vma, address); 2943 if (!page) 2944 goto oom; 2945 __SetPageUptodate(page); 2946 2947 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 2948 goto oom_free_page; 2949 2950 entry = mk_pte(page, vma->vm_page_prot); 2951 if (vma->vm_flags & VM_WRITE) 2952 entry = pte_mkwrite(pte_mkdirty(entry)); 2953 2954 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2955 if (!pte_none(*page_table)) 2956 goto release; 2957 2958 inc_mm_counter_fast(mm, MM_ANONPAGES); 2959 page_add_new_anon_rmap(page, vma, address); 2960 setpte: 2961 set_pte_at(mm, address, page_table, entry); 2962 2963 /* No need to invalidate - it was non-present before */ 2964 update_mmu_cache(vma, address, page_table); 2965 unlock: 2966 pte_unmap_unlock(page_table, ptl); 2967 return 0; 2968 release: 2969 mem_cgroup_uncharge_page(page); 2970 page_cache_release(page); 2971 goto unlock; 2972 oom_free_page: 2973 page_cache_release(page); 2974 oom: 2975 return VM_FAULT_OOM; 2976 } 2977 2978 /* 2979 * __do_fault() tries to create a new page mapping. It aggressively 2980 * tries to share with existing pages, but makes a separate copy if 2981 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2982 * the next page fault. 2983 * 2984 * As this is called only for pages that do not currently exist, we 2985 * do not need to flush old virtual caches or the TLB. 2986 * 2987 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2988 * but allow concurrent faults), and pte neither mapped nor locked. 2989 * We return with mmap_sem still held, but pte unmapped and unlocked. 2990 */ 2991 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2992 unsigned long address, pmd_t *pmd, 2993 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2994 { 2995 pte_t *page_table; 2996 spinlock_t *ptl; 2997 struct page *page; 2998 pte_t entry; 2999 int anon = 0; 3000 int charged = 0; 3001 struct page *dirty_page = NULL; 3002 struct vm_fault vmf; 3003 int ret; 3004 int page_mkwrite = 0; 3005 3006 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3007 vmf.pgoff = pgoff; 3008 vmf.flags = flags; 3009 vmf.page = NULL; 3010 3011 ret = vma->vm_ops->fault(vma, &vmf); 3012 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3013 VM_FAULT_RETRY))) 3014 return ret; 3015 3016 if (unlikely(PageHWPoison(vmf.page))) { 3017 if (ret & VM_FAULT_LOCKED) 3018 unlock_page(vmf.page); 3019 return VM_FAULT_HWPOISON; 3020 } 3021 3022 /* 3023 * For consistency in subsequent calls, make the faulted page always 3024 * locked. 3025 */ 3026 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3027 lock_page(vmf.page); 3028 else 3029 VM_BUG_ON(!PageLocked(vmf.page)); 3030 3031 /* 3032 * Should we do an early C-O-W break? 3033 */ 3034 page = vmf.page; 3035 if (flags & FAULT_FLAG_WRITE) { 3036 if (!(vma->vm_flags & VM_SHARED)) { 3037 anon = 1; 3038 if (unlikely(anon_vma_prepare(vma))) { 3039 ret = VM_FAULT_OOM; 3040 goto out; 3041 } 3042 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 3043 vma, address); 3044 if (!page) { 3045 ret = VM_FAULT_OOM; 3046 goto out; 3047 } 3048 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 3049 ret = VM_FAULT_OOM; 3050 page_cache_release(page); 3051 goto out; 3052 } 3053 charged = 1; 3054 copy_user_highpage(page, vmf.page, address, vma); 3055 __SetPageUptodate(page); 3056 } else { 3057 /* 3058 * If the page will be shareable, see if the backing 3059 * address space wants to know that the page is about 3060 * to become writable 3061 */ 3062 if (vma->vm_ops->page_mkwrite) { 3063 int tmp; 3064 3065 unlock_page(page); 3066 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3067 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3068 if (unlikely(tmp & 3069 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3070 ret = tmp; 3071 goto unwritable_page; 3072 } 3073 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3074 lock_page(page); 3075 if (!page->mapping) { 3076 ret = 0; /* retry the fault */ 3077 unlock_page(page); 3078 goto unwritable_page; 3079 } 3080 } else 3081 VM_BUG_ON(!PageLocked(page)); 3082 page_mkwrite = 1; 3083 } 3084 } 3085 3086 } 3087 3088 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3089 3090 /* 3091 * This silly early PAGE_DIRTY setting removes a race 3092 * due to the bad i386 page protection. But it's valid 3093 * for other architectures too. 3094 * 3095 * Note that if FAULT_FLAG_WRITE is set, we either now have 3096 * an exclusive copy of the page, or this is a shared mapping, 3097 * so we can make it writable and dirty to avoid having to 3098 * handle that later. 3099 */ 3100 /* Only go through if we didn't race with anybody else... */ 3101 if (likely(pte_same(*page_table, orig_pte))) { 3102 flush_icache_page(vma, page); 3103 entry = mk_pte(page, vma->vm_page_prot); 3104 if (flags & FAULT_FLAG_WRITE) 3105 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3106 if (anon) { 3107 inc_mm_counter_fast(mm, MM_ANONPAGES); 3108 page_add_new_anon_rmap(page, vma, address); 3109 } else { 3110 inc_mm_counter_fast(mm, MM_FILEPAGES); 3111 page_add_file_rmap(page); 3112 if (flags & FAULT_FLAG_WRITE) { 3113 dirty_page = page; 3114 get_page(dirty_page); 3115 } 3116 } 3117 set_pte_at(mm, address, page_table, entry); 3118 3119 /* no need to invalidate: a not-present page won't be cached */ 3120 update_mmu_cache(vma, address, page_table); 3121 } else { 3122 if (charged) 3123 mem_cgroup_uncharge_page(page); 3124 if (anon) 3125 page_cache_release(page); 3126 else 3127 anon = 1; /* no anon but release faulted_page */ 3128 } 3129 3130 pte_unmap_unlock(page_table, ptl); 3131 3132 out: 3133 if (dirty_page) { 3134 struct address_space *mapping = page->mapping; 3135 3136 if (set_page_dirty(dirty_page)) 3137 page_mkwrite = 1; 3138 unlock_page(dirty_page); 3139 put_page(dirty_page); 3140 if (page_mkwrite && mapping) { 3141 /* 3142 * Some device drivers do not set page.mapping but still 3143 * dirty their pages 3144 */ 3145 balance_dirty_pages_ratelimited(mapping); 3146 } 3147 3148 /* file_update_time outside page_lock */ 3149 if (vma->vm_file) 3150 file_update_time(vma->vm_file); 3151 } else { 3152 unlock_page(vmf.page); 3153 if (anon) 3154 page_cache_release(vmf.page); 3155 } 3156 3157 return ret; 3158 3159 unwritable_page: 3160 page_cache_release(page); 3161 return ret; 3162 } 3163 3164 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3165 unsigned long address, pte_t *page_table, pmd_t *pmd, 3166 unsigned int flags, pte_t orig_pte) 3167 { 3168 pgoff_t pgoff = (((address & PAGE_MASK) 3169 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3170 3171 pte_unmap(page_table); 3172 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3173 } 3174 3175 /* 3176 * Fault of a previously existing named mapping. Repopulate the pte 3177 * from the encoded file_pte if possible. This enables swappable 3178 * nonlinear vmas. 3179 * 3180 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3181 * but allow concurrent faults), and pte mapped but not yet locked. 3182 * We return with mmap_sem still held, but pte unmapped and unlocked. 3183 */ 3184 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3185 unsigned long address, pte_t *page_table, pmd_t *pmd, 3186 unsigned int flags, pte_t orig_pte) 3187 { 3188 pgoff_t pgoff; 3189 3190 flags |= FAULT_FLAG_NONLINEAR; 3191 3192 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3193 return 0; 3194 3195 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3196 /* 3197 * Page table corrupted: show pte and kill process. 3198 */ 3199 print_bad_pte(vma, address, orig_pte, NULL); 3200 return VM_FAULT_SIGBUS; 3201 } 3202 3203 pgoff = pte_to_pgoff(orig_pte); 3204 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3205 } 3206 3207 /* 3208 * These routines also need to handle stuff like marking pages dirty 3209 * and/or accessed for architectures that don't do it in hardware (most 3210 * RISC architectures). The early dirtying is also good on the i386. 3211 * 3212 * There is also a hook called "update_mmu_cache()" that architectures 3213 * with external mmu caches can use to update those (ie the Sparc or 3214 * PowerPC hashed page tables that act as extended TLBs). 3215 * 3216 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3217 * but allow concurrent faults), and pte mapped but not yet locked. 3218 * We return with mmap_sem still held, but pte unmapped and unlocked. 3219 */ 3220 int handle_pte_fault(struct mm_struct *mm, 3221 struct vm_area_struct *vma, unsigned long address, 3222 pte_t *pte, pmd_t *pmd, unsigned int flags) 3223 { 3224 pte_t entry; 3225 spinlock_t *ptl; 3226 3227 entry = *pte; 3228 if (!pte_present(entry)) { 3229 if (pte_none(entry)) { 3230 if (vma->vm_ops) { 3231 if (likely(vma->vm_ops->fault)) 3232 return do_linear_fault(mm, vma, address, 3233 pte, pmd, flags, entry); 3234 } 3235 return do_anonymous_page(mm, vma, address, 3236 pte, pmd, flags); 3237 } 3238 if (pte_file(entry)) 3239 return do_nonlinear_fault(mm, vma, address, 3240 pte, pmd, flags, entry); 3241 return do_swap_page(mm, vma, address, 3242 pte, pmd, flags, entry); 3243 } 3244 3245 ptl = pte_lockptr(mm, pmd); 3246 spin_lock(ptl); 3247 if (unlikely(!pte_same(*pte, entry))) 3248 goto unlock; 3249 if (flags & FAULT_FLAG_WRITE) { 3250 if (!pte_write(entry)) 3251 return do_wp_page(mm, vma, address, 3252 pte, pmd, ptl, entry); 3253 entry = pte_mkdirty(entry); 3254 } 3255 entry = pte_mkyoung(entry); 3256 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3257 update_mmu_cache(vma, address, pte); 3258 } else { 3259 /* 3260 * This is needed only for protection faults but the arch code 3261 * is not yet telling us if this is a protection fault or not. 3262 * This still avoids useless tlb flushes for .text page faults 3263 * with threads. 3264 */ 3265 if (flags & FAULT_FLAG_WRITE) 3266 flush_tlb_fix_spurious_fault(vma, address); 3267 } 3268 unlock: 3269 pte_unmap_unlock(pte, ptl); 3270 return 0; 3271 } 3272 3273 /* 3274 * By the time we get here, we already hold the mm semaphore 3275 */ 3276 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3277 unsigned long address, unsigned int flags) 3278 { 3279 pgd_t *pgd; 3280 pud_t *pud; 3281 pmd_t *pmd; 3282 pte_t *pte; 3283 3284 __set_current_state(TASK_RUNNING); 3285 3286 count_vm_event(PGFAULT); 3287 3288 /* do counter updates before entering really critical section. */ 3289 check_sync_rss_stat(current); 3290 3291 if (unlikely(is_vm_hugetlb_page(vma))) 3292 return hugetlb_fault(mm, vma, address, flags); 3293 3294 pgd = pgd_offset(mm, address); 3295 pud = pud_alloc(mm, pgd, address); 3296 if (!pud) 3297 return VM_FAULT_OOM; 3298 pmd = pmd_alloc(mm, pud, address); 3299 if (!pmd) 3300 return VM_FAULT_OOM; 3301 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3302 if (!vma->vm_ops) 3303 return do_huge_pmd_anonymous_page(mm, vma, address, 3304 pmd, flags); 3305 } else { 3306 pmd_t orig_pmd = *pmd; 3307 barrier(); 3308 if (pmd_trans_huge(orig_pmd)) { 3309 if (flags & FAULT_FLAG_WRITE && 3310 !pmd_write(orig_pmd) && 3311 !pmd_trans_splitting(orig_pmd)) 3312 return do_huge_pmd_wp_page(mm, vma, address, 3313 pmd, orig_pmd); 3314 return 0; 3315 } 3316 } 3317 3318 /* 3319 * Use __pte_alloc instead of pte_alloc_map, because we can't 3320 * run pte_offset_map on the pmd, if an huge pmd could 3321 * materialize from under us from a different thread. 3322 */ 3323 if (unlikely(__pte_alloc(mm, vma, pmd, address))) 3324 return VM_FAULT_OOM; 3325 /* if an huge pmd materialized from under us just retry later */ 3326 if (unlikely(pmd_trans_huge(*pmd))) 3327 return 0; 3328 /* 3329 * A regular pmd is established and it can't morph into a huge pmd 3330 * from under us anymore at this point because we hold the mmap_sem 3331 * read mode and khugepaged takes it in write mode. So now it's 3332 * safe to run pte_offset_map(). 3333 */ 3334 pte = pte_offset_map(pmd, address); 3335 3336 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3337 } 3338 3339 #ifndef __PAGETABLE_PUD_FOLDED 3340 /* 3341 * Allocate page upper directory. 3342 * We've already handled the fast-path in-line. 3343 */ 3344 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3345 { 3346 pud_t *new = pud_alloc_one(mm, address); 3347 if (!new) 3348 return -ENOMEM; 3349 3350 smp_wmb(); /* See comment in __pte_alloc */ 3351 3352 spin_lock(&mm->page_table_lock); 3353 if (pgd_present(*pgd)) /* Another has populated it */ 3354 pud_free(mm, new); 3355 else 3356 pgd_populate(mm, pgd, new); 3357 spin_unlock(&mm->page_table_lock); 3358 return 0; 3359 } 3360 #endif /* __PAGETABLE_PUD_FOLDED */ 3361 3362 #ifndef __PAGETABLE_PMD_FOLDED 3363 /* 3364 * Allocate page middle directory. 3365 * We've already handled the fast-path in-line. 3366 */ 3367 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3368 { 3369 pmd_t *new = pmd_alloc_one(mm, address); 3370 if (!new) 3371 return -ENOMEM; 3372 3373 smp_wmb(); /* See comment in __pte_alloc */ 3374 3375 spin_lock(&mm->page_table_lock); 3376 #ifndef __ARCH_HAS_4LEVEL_HACK 3377 if (pud_present(*pud)) /* Another has populated it */ 3378 pmd_free(mm, new); 3379 else 3380 pud_populate(mm, pud, new); 3381 #else 3382 if (pgd_present(*pud)) /* Another has populated it */ 3383 pmd_free(mm, new); 3384 else 3385 pgd_populate(mm, pud, new); 3386 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3387 spin_unlock(&mm->page_table_lock); 3388 return 0; 3389 } 3390 #endif /* __PAGETABLE_PMD_FOLDED */ 3391 3392 int make_pages_present(unsigned long addr, unsigned long end) 3393 { 3394 int ret, len, write; 3395 struct vm_area_struct * vma; 3396 3397 vma = find_vma(current->mm, addr); 3398 if (!vma) 3399 return -ENOMEM; 3400 /* 3401 * We want to touch writable mappings with a write fault in order 3402 * to break COW, except for shared mappings because these don't COW 3403 * and we would not want to dirty them for nothing. 3404 */ 3405 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE; 3406 BUG_ON(addr >= end); 3407 BUG_ON(end > vma->vm_end); 3408 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3409 ret = get_user_pages(current, current->mm, addr, 3410 len, write, 0, NULL, NULL); 3411 if (ret < 0) 3412 return ret; 3413 return ret == len ? 0 : -EFAULT; 3414 } 3415 3416 #if !defined(__HAVE_ARCH_GATE_AREA) 3417 3418 #if defined(AT_SYSINFO_EHDR) 3419 static struct vm_area_struct gate_vma; 3420 3421 static int __init gate_vma_init(void) 3422 { 3423 gate_vma.vm_mm = NULL; 3424 gate_vma.vm_start = FIXADDR_USER_START; 3425 gate_vma.vm_end = FIXADDR_USER_END; 3426 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3427 gate_vma.vm_page_prot = __P101; 3428 /* 3429 * Make sure the vDSO gets into every core dump. 3430 * Dumping its contents makes post-mortem fully interpretable later 3431 * without matching up the same kernel and hardware config to see 3432 * what PC values meant. 3433 */ 3434 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3435 return 0; 3436 } 3437 __initcall(gate_vma_init); 3438 #endif 3439 3440 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 3441 { 3442 #ifdef AT_SYSINFO_EHDR 3443 return &gate_vma; 3444 #else 3445 return NULL; 3446 #endif 3447 } 3448 3449 int in_gate_area_no_task(unsigned long addr) 3450 { 3451 #ifdef AT_SYSINFO_EHDR 3452 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3453 return 1; 3454 #endif 3455 return 0; 3456 } 3457 3458 #endif /* __HAVE_ARCH_GATE_AREA */ 3459 3460 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3461 pte_t **ptepp, spinlock_t **ptlp) 3462 { 3463 pgd_t *pgd; 3464 pud_t *pud; 3465 pmd_t *pmd; 3466 pte_t *ptep; 3467 3468 pgd = pgd_offset(mm, address); 3469 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3470 goto out; 3471 3472 pud = pud_offset(pgd, address); 3473 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3474 goto out; 3475 3476 pmd = pmd_offset(pud, address); 3477 VM_BUG_ON(pmd_trans_huge(*pmd)); 3478 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3479 goto out; 3480 3481 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3482 if (pmd_huge(*pmd)) 3483 goto out; 3484 3485 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3486 if (!ptep) 3487 goto out; 3488 if (!pte_present(*ptep)) 3489 goto unlock; 3490 *ptepp = ptep; 3491 return 0; 3492 unlock: 3493 pte_unmap_unlock(ptep, *ptlp); 3494 out: 3495 return -EINVAL; 3496 } 3497 3498 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3499 pte_t **ptepp, spinlock_t **ptlp) 3500 { 3501 int res; 3502 3503 /* (void) is needed to make gcc happy */ 3504 (void) __cond_lock(*ptlp, 3505 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3506 return res; 3507 } 3508 3509 /** 3510 * follow_pfn - look up PFN at a user virtual address 3511 * @vma: memory mapping 3512 * @address: user virtual address 3513 * @pfn: location to store found PFN 3514 * 3515 * Only IO mappings and raw PFN mappings are allowed. 3516 * 3517 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3518 */ 3519 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3520 unsigned long *pfn) 3521 { 3522 int ret = -EINVAL; 3523 spinlock_t *ptl; 3524 pte_t *ptep; 3525 3526 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3527 return ret; 3528 3529 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3530 if (ret) 3531 return ret; 3532 *pfn = pte_pfn(*ptep); 3533 pte_unmap_unlock(ptep, ptl); 3534 return 0; 3535 } 3536 EXPORT_SYMBOL(follow_pfn); 3537 3538 #ifdef CONFIG_HAVE_IOREMAP_PROT 3539 int follow_phys(struct vm_area_struct *vma, 3540 unsigned long address, unsigned int flags, 3541 unsigned long *prot, resource_size_t *phys) 3542 { 3543 int ret = -EINVAL; 3544 pte_t *ptep, pte; 3545 spinlock_t *ptl; 3546 3547 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3548 goto out; 3549 3550 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3551 goto out; 3552 pte = *ptep; 3553 3554 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3555 goto unlock; 3556 3557 *prot = pgprot_val(pte_pgprot(pte)); 3558 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3559 3560 ret = 0; 3561 unlock: 3562 pte_unmap_unlock(ptep, ptl); 3563 out: 3564 return ret; 3565 } 3566 3567 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3568 void *buf, int len, int write) 3569 { 3570 resource_size_t phys_addr; 3571 unsigned long prot = 0; 3572 void __iomem *maddr; 3573 int offset = addr & (PAGE_SIZE-1); 3574 3575 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3576 return -EINVAL; 3577 3578 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3579 if (write) 3580 memcpy_toio(maddr + offset, buf, len); 3581 else 3582 memcpy_fromio(buf, maddr + offset, len); 3583 iounmap(maddr); 3584 3585 return len; 3586 } 3587 #endif 3588 3589 /* 3590 * Access another process' address space. 3591 * Source/target buffer must be kernel space, 3592 * Do not walk the page table directly, use get_user_pages 3593 */ 3594 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 3595 { 3596 struct mm_struct *mm; 3597 struct vm_area_struct *vma; 3598 void *old_buf = buf; 3599 3600 mm = get_task_mm(tsk); 3601 if (!mm) 3602 return 0; 3603 3604 down_read(&mm->mmap_sem); 3605 /* ignore errors, just check how much was successfully transferred */ 3606 while (len) { 3607 int bytes, ret, offset; 3608 void *maddr; 3609 struct page *page = NULL; 3610 3611 ret = get_user_pages(tsk, mm, addr, 1, 3612 write, 1, &page, &vma); 3613 if (ret <= 0) { 3614 /* 3615 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3616 * we can access using slightly different code. 3617 */ 3618 #ifdef CONFIG_HAVE_IOREMAP_PROT 3619 vma = find_vma(mm, addr); 3620 if (!vma) 3621 break; 3622 if (vma->vm_ops && vma->vm_ops->access) 3623 ret = vma->vm_ops->access(vma, addr, buf, 3624 len, write); 3625 if (ret <= 0) 3626 #endif 3627 break; 3628 bytes = ret; 3629 } else { 3630 bytes = len; 3631 offset = addr & (PAGE_SIZE-1); 3632 if (bytes > PAGE_SIZE-offset) 3633 bytes = PAGE_SIZE-offset; 3634 3635 maddr = kmap(page); 3636 if (write) { 3637 copy_to_user_page(vma, page, addr, 3638 maddr + offset, buf, bytes); 3639 set_page_dirty_lock(page); 3640 } else { 3641 copy_from_user_page(vma, page, addr, 3642 buf, maddr + offset, bytes); 3643 } 3644 kunmap(page); 3645 page_cache_release(page); 3646 } 3647 len -= bytes; 3648 buf += bytes; 3649 addr += bytes; 3650 } 3651 up_read(&mm->mmap_sem); 3652 mmput(mm); 3653 3654 return buf - old_buf; 3655 } 3656 3657 /* 3658 * Print the name of a VMA. 3659 */ 3660 void print_vma_addr(char *prefix, unsigned long ip) 3661 { 3662 struct mm_struct *mm = current->mm; 3663 struct vm_area_struct *vma; 3664 3665 /* 3666 * Do not print if we are in atomic 3667 * contexts (in exception stacks, etc.): 3668 */ 3669 if (preempt_count()) 3670 return; 3671 3672 down_read(&mm->mmap_sem); 3673 vma = find_vma(mm, ip); 3674 if (vma && vma->vm_file) { 3675 struct file *f = vma->vm_file; 3676 char *buf = (char *)__get_free_page(GFP_KERNEL); 3677 if (buf) { 3678 char *p, *s; 3679 3680 p = d_path(&f->f_path, buf, PAGE_SIZE); 3681 if (IS_ERR(p)) 3682 p = "?"; 3683 s = strrchr(p, '/'); 3684 if (s) 3685 p = s+1; 3686 printk("%s%s[%lx+%lx]", prefix, p, 3687 vma->vm_start, 3688 vma->vm_end - vma->vm_start); 3689 free_page((unsigned long)buf); 3690 } 3691 } 3692 up_read(¤t->mm->mmap_sem); 3693 } 3694 3695 #ifdef CONFIG_PROVE_LOCKING 3696 void might_fault(void) 3697 { 3698 /* 3699 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3700 * holding the mmap_sem, this is safe because kernel memory doesn't 3701 * get paged out, therefore we'll never actually fault, and the 3702 * below annotations will generate false positives. 3703 */ 3704 if (segment_eq(get_fs(), KERNEL_DS)) 3705 return; 3706 3707 might_sleep(); 3708 /* 3709 * it would be nicer only to annotate paths which are not under 3710 * pagefault_disable, however that requires a larger audit and 3711 * providing helpers like get_user_atomic. 3712 */ 3713 if (!in_atomic() && current->mm) 3714 might_lock_read(¤t->mm->mmap_sem); 3715 } 3716 EXPORT_SYMBOL(might_fault); 3717 #endif 3718 3719 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3720 static void clear_gigantic_page(struct page *page, 3721 unsigned long addr, 3722 unsigned int pages_per_huge_page) 3723 { 3724 int i; 3725 struct page *p = page; 3726 3727 might_sleep(); 3728 for (i = 0; i < pages_per_huge_page; 3729 i++, p = mem_map_next(p, page, i)) { 3730 cond_resched(); 3731 clear_user_highpage(p, addr + i * PAGE_SIZE); 3732 } 3733 } 3734 void clear_huge_page(struct page *page, 3735 unsigned long addr, unsigned int pages_per_huge_page) 3736 { 3737 int i; 3738 3739 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3740 clear_gigantic_page(page, addr, pages_per_huge_page); 3741 return; 3742 } 3743 3744 might_sleep(); 3745 for (i = 0; i < pages_per_huge_page; i++) { 3746 cond_resched(); 3747 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3748 } 3749 } 3750 3751 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3752 unsigned long addr, 3753 struct vm_area_struct *vma, 3754 unsigned int pages_per_huge_page) 3755 { 3756 int i; 3757 struct page *dst_base = dst; 3758 struct page *src_base = src; 3759 3760 for (i = 0; i < pages_per_huge_page; ) { 3761 cond_resched(); 3762 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3763 3764 i++; 3765 dst = mem_map_next(dst, dst_base, i); 3766 src = mem_map_next(src, src_base, i); 3767 } 3768 } 3769 3770 void copy_user_huge_page(struct page *dst, struct page *src, 3771 unsigned long addr, struct vm_area_struct *vma, 3772 unsigned int pages_per_huge_page) 3773 { 3774 int i; 3775 3776 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3777 copy_user_gigantic_page(dst, src, addr, vma, 3778 pages_per_huge_page); 3779 return; 3780 } 3781 3782 might_sleep(); 3783 for (i = 0; i < pages_per_huge_page; i++) { 3784 cond_resched(); 3785 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3786 } 3787 } 3788 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3789