1 2 // SPDX-License-Identifier: GPL-2.0-only 3 /* 4 * linux/mm/memory.c 5 * 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 */ 8 9 /* 10 * demand-loading started 01.12.91 - seems it is high on the list of 11 * things wanted, and it should be easy to implement. - Linus 12 */ 13 14 /* 15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 16 * pages started 02.12.91, seems to work. - Linus. 17 * 18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 19 * would have taken more than the 6M I have free, but it worked well as 20 * far as I could see. 21 * 22 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 23 */ 24 25 /* 26 * Real VM (paging to/from disk) started 18.12.91. Much more work and 27 * thought has to go into this. Oh, well.. 28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 29 * Found it. Everything seems to work now. 30 * 20.12.91 - Ok, making the swap-device changeable like the root. 31 */ 32 33 /* 34 * 05.04.94 - Multi-page memory management added for v1.1. 35 * Idea by Alex Bligh (alex@cconcepts.co.uk) 36 * 37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 38 * (Gerhard.Wichert@pdb.siemens.de) 39 * 40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 41 */ 42 43 #include <linux/kernel_stat.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/sched/mm.h> 47 #include <linux/sched/coredump.h> 48 #include <linux/sched/numa_balancing.h> 49 #include <linux/sched/task.h> 50 #include <linux/hugetlb.h> 51 #include <linux/mman.h> 52 #include <linux/swap.h> 53 #include <linux/highmem.h> 54 #include <linux/pagemap.h> 55 #include <linux/memremap.h> 56 #include <linux/kmsan.h> 57 #include <linux/ksm.h> 58 #include <linux/rmap.h> 59 #include <linux/export.h> 60 #include <linux/delayacct.h> 61 #include <linux/init.h> 62 #include <linux/pfn_t.h> 63 #include <linux/writeback.h> 64 #include <linux/memcontrol.h> 65 #include <linux/mmu_notifier.h> 66 #include <linux/swapops.h> 67 #include <linux/elf.h> 68 #include <linux/gfp.h> 69 #include <linux/migrate.h> 70 #include <linux/string.h> 71 #include <linux/memory-tiers.h> 72 #include <linux/debugfs.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/dax.h> 75 #include <linux/oom.h> 76 #include <linux/numa.h> 77 #include <linux/perf_event.h> 78 #include <linux/ptrace.h> 79 #include <linux/vmalloc.h> 80 #include <linux/sched/sysctl.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/pgalloc.h> 87 #include <linux/uaccess.h> 88 #include <asm/tlb.h> 89 #include <asm/tlbflush.h> 90 91 #include "pgalloc-track.h" 92 #include "internal.h" 93 #include "swap.h" 94 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 97 #endif 98 99 #ifndef CONFIG_NUMA 100 unsigned long max_mapnr; 101 EXPORT_SYMBOL(max_mapnr); 102 103 struct page *mem_map; 104 EXPORT_SYMBOL(mem_map); 105 #endif 106 107 static vm_fault_t do_fault(struct vm_fault *vmf); 108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 109 static bool vmf_pte_changed(struct vm_fault *vmf); 110 111 /* 112 * Return true if the original pte was a uffd-wp pte marker (so the pte was 113 * wr-protected). 114 */ 115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 116 { 117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 118 return false; 119 120 return pte_marker_uffd_wp(vmf->orig_pte); 121 } 122 123 /* 124 * A number of key systems in x86 including ioremap() rely on the assumption 125 * that high_memory defines the upper bound on direct map memory, then end 126 * of ZONE_NORMAL. 127 */ 128 void *high_memory; 129 EXPORT_SYMBOL(high_memory); 130 131 /* 132 * Randomize the address space (stacks, mmaps, brk, etc.). 133 * 134 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 135 * as ancient (libc5 based) binaries can segfault. ) 136 */ 137 int randomize_va_space __read_mostly = 138 #ifdef CONFIG_COMPAT_BRK 139 1; 140 #else 141 2; 142 #endif 143 144 #ifndef arch_wants_old_prefaulted_pte 145 static inline bool arch_wants_old_prefaulted_pte(void) 146 { 147 /* 148 * Transitioning a PTE from 'old' to 'young' can be expensive on 149 * some architectures, even if it's performed in hardware. By 150 * default, "false" means prefaulted entries will be 'young'. 151 */ 152 return false; 153 } 154 #endif 155 156 static int __init disable_randmaps(char *s) 157 { 158 randomize_va_space = 0; 159 return 1; 160 } 161 __setup("norandmaps", disable_randmaps); 162 163 unsigned long zero_pfn __read_mostly; 164 EXPORT_SYMBOL(zero_pfn); 165 166 unsigned long highest_memmap_pfn __read_mostly; 167 168 /* 169 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 170 */ 171 static int __init init_zero_pfn(void) 172 { 173 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 174 return 0; 175 } 176 early_initcall(init_zero_pfn); 177 178 void mm_trace_rss_stat(struct mm_struct *mm, int member) 179 { 180 trace_rss_stat(mm, member); 181 } 182 183 /* 184 * Note: this doesn't free the actual pages themselves. That 185 * has been handled earlier when unmapping all the memory regions. 186 */ 187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 188 unsigned long addr) 189 { 190 pgtable_t token = pmd_pgtable(*pmd); 191 pmd_clear(pmd); 192 pte_free_tlb(tlb, token, addr); 193 mm_dec_nr_ptes(tlb->mm); 194 } 195 196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 197 unsigned long addr, unsigned long end, 198 unsigned long floor, unsigned long ceiling) 199 { 200 pmd_t *pmd; 201 unsigned long next; 202 unsigned long start; 203 204 start = addr; 205 pmd = pmd_offset(pud, addr); 206 do { 207 next = pmd_addr_end(addr, end); 208 if (pmd_none_or_clear_bad(pmd)) 209 continue; 210 free_pte_range(tlb, pmd, addr); 211 } while (pmd++, addr = next, addr != end); 212 213 start &= PUD_MASK; 214 if (start < floor) 215 return; 216 if (ceiling) { 217 ceiling &= PUD_MASK; 218 if (!ceiling) 219 return; 220 } 221 if (end - 1 > ceiling - 1) 222 return; 223 224 pmd = pmd_offset(pud, start); 225 pud_clear(pud); 226 pmd_free_tlb(tlb, pmd, start); 227 mm_dec_nr_pmds(tlb->mm); 228 } 229 230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 231 unsigned long addr, unsigned long end, 232 unsigned long floor, unsigned long ceiling) 233 { 234 pud_t *pud; 235 unsigned long next; 236 unsigned long start; 237 238 start = addr; 239 pud = pud_offset(p4d, addr); 240 do { 241 next = pud_addr_end(addr, end); 242 if (pud_none_or_clear_bad(pud)) 243 continue; 244 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 245 } while (pud++, addr = next, addr != end); 246 247 start &= P4D_MASK; 248 if (start < floor) 249 return; 250 if (ceiling) { 251 ceiling &= P4D_MASK; 252 if (!ceiling) 253 return; 254 } 255 if (end - 1 > ceiling - 1) 256 return; 257 258 pud = pud_offset(p4d, start); 259 p4d_clear(p4d); 260 pud_free_tlb(tlb, pud, start); 261 mm_dec_nr_puds(tlb->mm); 262 } 263 264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 265 unsigned long addr, unsigned long end, 266 unsigned long floor, unsigned long ceiling) 267 { 268 p4d_t *p4d; 269 unsigned long next; 270 unsigned long start; 271 272 start = addr; 273 p4d = p4d_offset(pgd, addr); 274 do { 275 next = p4d_addr_end(addr, end); 276 if (p4d_none_or_clear_bad(p4d)) 277 continue; 278 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 279 } while (p4d++, addr = next, addr != end); 280 281 start &= PGDIR_MASK; 282 if (start < floor) 283 return; 284 if (ceiling) { 285 ceiling &= PGDIR_MASK; 286 if (!ceiling) 287 return; 288 } 289 if (end - 1 > ceiling - 1) 290 return; 291 292 p4d = p4d_offset(pgd, start); 293 pgd_clear(pgd); 294 p4d_free_tlb(tlb, p4d, start); 295 } 296 297 /* 298 * This function frees user-level page tables of a process. 299 */ 300 void free_pgd_range(struct mmu_gather *tlb, 301 unsigned long addr, unsigned long end, 302 unsigned long floor, unsigned long ceiling) 303 { 304 pgd_t *pgd; 305 unsigned long next; 306 307 /* 308 * The next few lines have given us lots of grief... 309 * 310 * Why are we testing PMD* at this top level? Because often 311 * there will be no work to do at all, and we'd prefer not to 312 * go all the way down to the bottom just to discover that. 313 * 314 * Why all these "- 1"s? Because 0 represents both the bottom 315 * of the address space and the top of it (using -1 for the 316 * top wouldn't help much: the masks would do the wrong thing). 317 * The rule is that addr 0 and floor 0 refer to the bottom of 318 * the address space, but end 0 and ceiling 0 refer to the top 319 * Comparisons need to use "end - 1" and "ceiling - 1" (though 320 * that end 0 case should be mythical). 321 * 322 * Wherever addr is brought up or ceiling brought down, we must 323 * be careful to reject "the opposite 0" before it confuses the 324 * subsequent tests. But what about where end is brought down 325 * by PMD_SIZE below? no, end can't go down to 0 there. 326 * 327 * Whereas we round start (addr) and ceiling down, by different 328 * masks at different levels, in order to test whether a table 329 * now has no other vmas using it, so can be freed, we don't 330 * bother to round floor or end up - the tests don't need that. 331 */ 332 333 addr &= PMD_MASK; 334 if (addr < floor) { 335 addr += PMD_SIZE; 336 if (!addr) 337 return; 338 } 339 if (ceiling) { 340 ceiling &= PMD_MASK; 341 if (!ceiling) 342 return; 343 } 344 if (end - 1 > ceiling - 1) 345 end -= PMD_SIZE; 346 if (addr > end - 1) 347 return; 348 /* 349 * We add page table cache pages with PAGE_SIZE, 350 * (see pte_free_tlb()), flush the tlb if we need 351 */ 352 tlb_change_page_size(tlb, PAGE_SIZE); 353 pgd = pgd_offset(tlb->mm, addr); 354 do { 355 next = pgd_addr_end(addr, end); 356 if (pgd_none_or_clear_bad(pgd)) 357 continue; 358 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 359 } while (pgd++, addr = next, addr != end); 360 } 361 362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 363 struct vm_area_struct *vma, unsigned long floor, 364 unsigned long ceiling, bool mm_wr_locked) 365 { 366 do { 367 unsigned long addr = vma->vm_start; 368 struct vm_area_struct *next; 369 370 /* 371 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 372 * be 0. This will underflow and is okay. 373 */ 374 next = mas_find(mas, ceiling - 1); 375 if (unlikely(xa_is_zero(next))) 376 next = NULL; 377 378 /* 379 * Hide vma from rmap and truncate_pagecache before freeing 380 * pgtables 381 */ 382 if (mm_wr_locked) 383 vma_start_write(vma); 384 unlink_anon_vmas(vma); 385 unlink_file_vma(vma); 386 387 if (is_vm_hugetlb_page(vma)) { 388 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 389 floor, next ? next->vm_start : ceiling); 390 } else { 391 /* 392 * Optimization: gather nearby vmas into one call down 393 */ 394 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 395 && !is_vm_hugetlb_page(next)) { 396 vma = next; 397 next = mas_find(mas, ceiling - 1); 398 if (unlikely(xa_is_zero(next))) 399 next = NULL; 400 if (mm_wr_locked) 401 vma_start_write(vma); 402 unlink_anon_vmas(vma); 403 unlink_file_vma(vma); 404 } 405 free_pgd_range(tlb, addr, vma->vm_end, 406 floor, next ? next->vm_start : ceiling); 407 } 408 vma = next; 409 } while (vma); 410 } 411 412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 413 { 414 spinlock_t *ptl = pmd_lock(mm, pmd); 415 416 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 417 mm_inc_nr_ptes(mm); 418 /* 419 * Ensure all pte setup (eg. pte page lock and page clearing) are 420 * visible before the pte is made visible to other CPUs by being 421 * put into page tables. 422 * 423 * The other side of the story is the pointer chasing in the page 424 * table walking code (when walking the page table without locking; 425 * ie. most of the time). Fortunately, these data accesses consist 426 * of a chain of data-dependent loads, meaning most CPUs (alpha 427 * being the notable exception) will already guarantee loads are 428 * seen in-order. See the alpha page table accessors for the 429 * smp_rmb() barriers in page table walking code. 430 */ 431 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 432 pmd_populate(mm, pmd, *pte); 433 *pte = NULL; 434 } 435 spin_unlock(ptl); 436 } 437 438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 439 { 440 pgtable_t new = pte_alloc_one(mm); 441 if (!new) 442 return -ENOMEM; 443 444 pmd_install(mm, pmd, &new); 445 if (new) 446 pte_free(mm, new); 447 return 0; 448 } 449 450 int __pte_alloc_kernel(pmd_t *pmd) 451 { 452 pte_t *new = pte_alloc_one_kernel(&init_mm); 453 if (!new) 454 return -ENOMEM; 455 456 spin_lock(&init_mm.page_table_lock); 457 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 458 smp_wmb(); /* See comment in pmd_install() */ 459 pmd_populate_kernel(&init_mm, pmd, new); 460 new = NULL; 461 } 462 spin_unlock(&init_mm.page_table_lock); 463 if (new) 464 pte_free_kernel(&init_mm, new); 465 return 0; 466 } 467 468 static inline void init_rss_vec(int *rss) 469 { 470 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 471 } 472 473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 474 { 475 int i; 476 477 for (i = 0; i < NR_MM_COUNTERS; i++) 478 if (rss[i]) 479 add_mm_counter(mm, i, rss[i]); 480 } 481 482 /* 483 * This function is called to print an error when a bad pte 484 * is found. For example, we might have a PFN-mapped pte in 485 * a region that doesn't allow it. 486 * 487 * The calling function must still handle the error. 488 */ 489 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 490 pte_t pte, struct page *page) 491 { 492 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 493 p4d_t *p4d = p4d_offset(pgd, addr); 494 pud_t *pud = pud_offset(p4d, addr); 495 pmd_t *pmd = pmd_offset(pud, addr); 496 struct address_space *mapping; 497 pgoff_t index; 498 static unsigned long resume; 499 static unsigned long nr_shown; 500 static unsigned long nr_unshown; 501 502 /* 503 * Allow a burst of 60 reports, then keep quiet for that minute; 504 * or allow a steady drip of one report per second. 505 */ 506 if (nr_shown == 60) { 507 if (time_before(jiffies, resume)) { 508 nr_unshown++; 509 return; 510 } 511 if (nr_unshown) { 512 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 513 nr_unshown); 514 nr_unshown = 0; 515 } 516 nr_shown = 0; 517 } 518 if (nr_shown++ == 0) 519 resume = jiffies + 60 * HZ; 520 521 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 522 index = linear_page_index(vma, addr); 523 524 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 525 current->comm, 526 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 527 if (page) 528 dump_page(page, "bad pte"); 529 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 530 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 531 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 532 vma->vm_file, 533 vma->vm_ops ? vma->vm_ops->fault : NULL, 534 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 535 mapping ? mapping->a_ops->read_folio : NULL); 536 dump_stack(); 537 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 538 } 539 540 /* 541 * vm_normal_page -- This function gets the "struct page" associated with a pte. 542 * 543 * "Special" mappings do not wish to be associated with a "struct page" (either 544 * it doesn't exist, or it exists but they don't want to touch it). In this 545 * case, NULL is returned here. "Normal" mappings do have a struct page. 546 * 547 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 548 * pte bit, in which case this function is trivial. Secondly, an architecture 549 * may not have a spare pte bit, which requires a more complicated scheme, 550 * described below. 551 * 552 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 553 * special mapping (even if there are underlying and valid "struct pages"). 554 * COWed pages of a VM_PFNMAP are always normal. 555 * 556 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 557 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 558 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 559 * mapping will always honor the rule 560 * 561 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 562 * 563 * And for normal mappings this is false. 564 * 565 * This restricts such mappings to be a linear translation from virtual address 566 * to pfn. To get around this restriction, we allow arbitrary mappings so long 567 * as the vma is not a COW mapping; in that case, we know that all ptes are 568 * special (because none can have been COWed). 569 * 570 * 571 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 572 * 573 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 574 * page" backing, however the difference is that _all_ pages with a struct 575 * page (that is, those where pfn_valid is true) are refcounted and considered 576 * normal pages by the VM. The disadvantage is that pages are refcounted 577 * (which can be slower and simply not an option for some PFNMAP users). The 578 * advantage is that we don't have to follow the strict linearity rule of 579 * PFNMAP mappings in order to support COWable mappings. 580 * 581 */ 582 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 583 pte_t pte) 584 { 585 unsigned long pfn = pte_pfn(pte); 586 587 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 588 if (likely(!pte_special(pte))) 589 goto check_pfn; 590 if (vma->vm_ops && vma->vm_ops->find_special_page) 591 return vma->vm_ops->find_special_page(vma, addr); 592 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 593 return NULL; 594 if (is_zero_pfn(pfn)) 595 return NULL; 596 if (pte_devmap(pte)) 597 /* 598 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 599 * and will have refcounts incremented on their struct pages 600 * when they are inserted into PTEs, thus they are safe to 601 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 602 * do not have refcounts. Example of legacy ZONE_DEVICE is 603 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 604 */ 605 return NULL; 606 607 print_bad_pte(vma, addr, pte, NULL); 608 return NULL; 609 } 610 611 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 612 613 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 614 if (vma->vm_flags & VM_MIXEDMAP) { 615 if (!pfn_valid(pfn)) 616 return NULL; 617 goto out; 618 } else { 619 unsigned long off; 620 off = (addr - vma->vm_start) >> PAGE_SHIFT; 621 if (pfn == vma->vm_pgoff + off) 622 return NULL; 623 if (!is_cow_mapping(vma->vm_flags)) 624 return NULL; 625 } 626 } 627 628 if (is_zero_pfn(pfn)) 629 return NULL; 630 631 check_pfn: 632 if (unlikely(pfn > highest_memmap_pfn)) { 633 print_bad_pte(vma, addr, pte, NULL); 634 return NULL; 635 } 636 637 /* 638 * NOTE! We still have PageReserved() pages in the page tables. 639 * eg. VDSO mappings can cause them to exist. 640 */ 641 out: 642 return pfn_to_page(pfn); 643 } 644 645 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 646 pte_t pte) 647 { 648 struct page *page = vm_normal_page(vma, addr, pte); 649 650 if (page) 651 return page_folio(page); 652 return NULL; 653 } 654 655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 656 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 657 pmd_t pmd) 658 { 659 unsigned long pfn = pmd_pfn(pmd); 660 661 /* 662 * There is no pmd_special() but there may be special pmds, e.g. 663 * in a direct-access (dax) mapping, so let's just replicate the 664 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 665 */ 666 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 667 if (vma->vm_flags & VM_MIXEDMAP) { 668 if (!pfn_valid(pfn)) 669 return NULL; 670 goto out; 671 } else { 672 unsigned long off; 673 off = (addr - vma->vm_start) >> PAGE_SHIFT; 674 if (pfn == vma->vm_pgoff + off) 675 return NULL; 676 if (!is_cow_mapping(vma->vm_flags)) 677 return NULL; 678 } 679 } 680 681 if (pmd_devmap(pmd)) 682 return NULL; 683 if (is_huge_zero_pmd(pmd)) 684 return NULL; 685 if (unlikely(pfn > highest_memmap_pfn)) 686 return NULL; 687 688 /* 689 * NOTE! We still have PageReserved() pages in the page tables. 690 * eg. VDSO mappings can cause them to exist. 691 */ 692 out: 693 return pfn_to_page(pfn); 694 } 695 696 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 697 unsigned long addr, pmd_t pmd) 698 { 699 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 700 701 if (page) 702 return page_folio(page); 703 return NULL; 704 } 705 #endif 706 707 static void restore_exclusive_pte(struct vm_area_struct *vma, 708 struct page *page, unsigned long address, 709 pte_t *ptep) 710 { 711 struct folio *folio = page_folio(page); 712 pte_t orig_pte; 713 pte_t pte; 714 swp_entry_t entry; 715 716 orig_pte = ptep_get(ptep); 717 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 718 if (pte_swp_soft_dirty(orig_pte)) 719 pte = pte_mksoft_dirty(pte); 720 721 entry = pte_to_swp_entry(orig_pte); 722 if (pte_swp_uffd_wp(orig_pte)) 723 pte = pte_mkuffd_wp(pte); 724 else if (is_writable_device_exclusive_entry(entry)) 725 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 726 727 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) && 728 PageAnonExclusive(page)), folio); 729 730 /* 731 * No need to take a page reference as one was already 732 * created when the swap entry was made. 733 */ 734 if (folio_test_anon(folio)) 735 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE); 736 else 737 /* 738 * Currently device exclusive access only supports anonymous 739 * memory so the entry shouldn't point to a filebacked page. 740 */ 741 WARN_ON_ONCE(1); 742 743 set_pte_at(vma->vm_mm, address, ptep, pte); 744 745 /* 746 * No need to invalidate - it was non-present before. However 747 * secondary CPUs may have mappings that need invalidating. 748 */ 749 update_mmu_cache(vma, address, ptep); 750 } 751 752 /* 753 * Tries to restore an exclusive pte if the page lock can be acquired without 754 * sleeping. 755 */ 756 static int 757 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 758 unsigned long addr) 759 { 760 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 761 struct page *page = pfn_swap_entry_to_page(entry); 762 763 if (trylock_page(page)) { 764 restore_exclusive_pte(vma, page, addr, src_pte); 765 unlock_page(page); 766 return 0; 767 } 768 769 return -EBUSY; 770 } 771 772 /* 773 * copy one vm_area from one task to the other. Assumes the page tables 774 * already present in the new task to be cleared in the whole range 775 * covered by this vma. 776 */ 777 778 static unsigned long 779 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 780 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 781 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 782 { 783 unsigned long vm_flags = dst_vma->vm_flags; 784 pte_t orig_pte = ptep_get(src_pte); 785 pte_t pte = orig_pte; 786 struct folio *folio; 787 struct page *page; 788 swp_entry_t entry = pte_to_swp_entry(orig_pte); 789 790 if (likely(!non_swap_entry(entry))) { 791 if (swap_duplicate(entry) < 0) 792 return -EIO; 793 794 /* make sure dst_mm is on swapoff's mmlist. */ 795 if (unlikely(list_empty(&dst_mm->mmlist))) { 796 spin_lock(&mmlist_lock); 797 if (list_empty(&dst_mm->mmlist)) 798 list_add(&dst_mm->mmlist, 799 &src_mm->mmlist); 800 spin_unlock(&mmlist_lock); 801 } 802 /* Mark the swap entry as shared. */ 803 if (pte_swp_exclusive(orig_pte)) { 804 pte = pte_swp_clear_exclusive(orig_pte); 805 set_pte_at(src_mm, addr, src_pte, pte); 806 } 807 rss[MM_SWAPENTS]++; 808 } else if (is_migration_entry(entry)) { 809 page = pfn_swap_entry_to_page(entry); 810 811 rss[mm_counter(page)]++; 812 813 if (!is_readable_migration_entry(entry) && 814 is_cow_mapping(vm_flags)) { 815 /* 816 * COW mappings require pages in both parent and child 817 * to be set to read. A previously exclusive entry is 818 * now shared. 819 */ 820 entry = make_readable_migration_entry( 821 swp_offset(entry)); 822 pte = swp_entry_to_pte(entry); 823 if (pte_swp_soft_dirty(orig_pte)) 824 pte = pte_swp_mksoft_dirty(pte); 825 if (pte_swp_uffd_wp(orig_pte)) 826 pte = pte_swp_mkuffd_wp(pte); 827 set_pte_at(src_mm, addr, src_pte, pte); 828 } 829 } else if (is_device_private_entry(entry)) { 830 page = pfn_swap_entry_to_page(entry); 831 folio = page_folio(page); 832 833 /* 834 * Update rss count even for unaddressable pages, as 835 * they should treated just like normal pages in this 836 * respect. 837 * 838 * We will likely want to have some new rss counters 839 * for unaddressable pages, at some point. But for now 840 * keep things as they are. 841 */ 842 folio_get(folio); 843 rss[mm_counter(page)]++; 844 /* Cannot fail as these pages cannot get pinned. */ 845 folio_try_dup_anon_rmap_pte(folio, page, src_vma); 846 847 /* 848 * We do not preserve soft-dirty information, because so 849 * far, checkpoint/restore is the only feature that 850 * requires that. And checkpoint/restore does not work 851 * when a device driver is involved (you cannot easily 852 * save and restore device driver state). 853 */ 854 if (is_writable_device_private_entry(entry) && 855 is_cow_mapping(vm_flags)) { 856 entry = make_readable_device_private_entry( 857 swp_offset(entry)); 858 pte = swp_entry_to_pte(entry); 859 if (pte_swp_uffd_wp(orig_pte)) 860 pte = pte_swp_mkuffd_wp(pte); 861 set_pte_at(src_mm, addr, src_pte, pte); 862 } 863 } else if (is_device_exclusive_entry(entry)) { 864 /* 865 * Make device exclusive entries present by restoring the 866 * original entry then copying as for a present pte. Device 867 * exclusive entries currently only support private writable 868 * (ie. COW) mappings. 869 */ 870 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 871 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 872 return -EBUSY; 873 return -ENOENT; 874 } else if (is_pte_marker_entry(entry)) { 875 pte_marker marker = copy_pte_marker(entry, dst_vma); 876 877 if (marker) 878 set_pte_at(dst_mm, addr, dst_pte, 879 make_pte_marker(marker)); 880 return 0; 881 } 882 if (!userfaultfd_wp(dst_vma)) 883 pte = pte_swp_clear_uffd_wp(pte); 884 set_pte_at(dst_mm, addr, dst_pte, pte); 885 return 0; 886 } 887 888 /* 889 * Copy a present and normal page. 890 * 891 * NOTE! The usual case is that this isn't required; 892 * instead, the caller can just increase the page refcount 893 * and re-use the pte the traditional way. 894 * 895 * And if we need a pre-allocated page but don't yet have 896 * one, return a negative error to let the preallocation 897 * code know so that it can do so outside the page table 898 * lock. 899 */ 900 static inline int 901 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 902 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 903 struct folio **prealloc, struct page *page) 904 { 905 struct folio *new_folio; 906 pte_t pte; 907 908 new_folio = *prealloc; 909 if (!new_folio) 910 return -EAGAIN; 911 912 /* 913 * We have a prealloc page, all good! Take it 914 * over and copy the page & arm it. 915 */ 916 *prealloc = NULL; 917 copy_user_highpage(&new_folio->page, page, addr, src_vma); 918 __folio_mark_uptodate(new_folio); 919 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 920 folio_add_lru_vma(new_folio, dst_vma); 921 rss[MM_ANONPAGES]++; 922 923 /* All done, just insert the new page copy in the child */ 924 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 925 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 926 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 927 /* Uffd-wp needs to be delivered to dest pte as well */ 928 pte = pte_mkuffd_wp(pte); 929 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 930 return 0; 931 } 932 933 /* 934 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 935 * is required to copy this pte. 936 */ 937 static inline int 938 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 939 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 940 struct folio **prealloc) 941 { 942 struct mm_struct *src_mm = src_vma->vm_mm; 943 unsigned long vm_flags = src_vma->vm_flags; 944 pte_t pte = ptep_get(src_pte); 945 struct page *page; 946 struct folio *folio; 947 948 page = vm_normal_page(src_vma, addr, pte); 949 if (page) 950 folio = page_folio(page); 951 if (page && folio_test_anon(folio)) { 952 /* 953 * If this page may have been pinned by the parent process, 954 * copy the page immediately for the child so that we'll always 955 * guarantee the pinned page won't be randomly replaced in the 956 * future. 957 */ 958 folio_get(folio); 959 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) { 960 /* Page may be pinned, we have to copy. */ 961 folio_put(folio); 962 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 963 addr, rss, prealloc, page); 964 } 965 rss[MM_ANONPAGES]++; 966 } else if (page) { 967 folio_get(folio); 968 folio_dup_file_rmap_pte(folio, page); 969 rss[mm_counter_file(page)]++; 970 } 971 972 /* 973 * If it's a COW mapping, write protect it both 974 * in the parent and the child 975 */ 976 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 977 ptep_set_wrprotect(src_mm, addr, src_pte); 978 pte = pte_wrprotect(pte); 979 } 980 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); 981 982 /* 983 * If it's a shared mapping, mark it clean in 984 * the child 985 */ 986 if (vm_flags & VM_SHARED) 987 pte = pte_mkclean(pte); 988 pte = pte_mkold(pte); 989 990 if (!userfaultfd_wp(dst_vma)) 991 pte = pte_clear_uffd_wp(pte); 992 993 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 994 return 0; 995 } 996 997 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 998 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 999 { 1000 struct folio *new_folio; 1001 1002 if (need_zero) 1003 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1004 else 1005 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 1006 addr, false); 1007 1008 if (!new_folio) 1009 return NULL; 1010 1011 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1012 folio_put(new_folio); 1013 return NULL; 1014 } 1015 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1016 1017 return new_folio; 1018 } 1019 1020 static int 1021 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1022 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1023 unsigned long end) 1024 { 1025 struct mm_struct *dst_mm = dst_vma->vm_mm; 1026 struct mm_struct *src_mm = src_vma->vm_mm; 1027 pte_t *orig_src_pte, *orig_dst_pte; 1028 pte_t *src_pte, *dst_pte; 1029 pte_t ptent; 1030 spinlock_t *src_ptl, *dst_ptl; 1031 int progress, ret = 0; 1032 int rss[NR_MM_COUNTERS]; 1033 swp_entry_t entry = (swp_entry_t){0}; 1034 struct folio *prealloc = NULL; 1035 1036 again: 1037 progress = 0; 1038 init_rss_vec(rss); 1039 1040 /* 1041 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1042 * error handling here, assume that exclusive mmap_lock on dst and src 1043 * protects anon from unexpected THP transitions; with shmem and file 1044 * protected by mmap_lock-less collapse skipping areas with anon_vma 1045 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1046 * can remove such assumptions later, but this is good enough for now. 1047 */ 1048 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1049 if (!dst_pte) { 1050 ret = -ENOMEM; 1051 goto out; 1052 } 1053 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1054 if (!src_pte) { 1055 pte_unmap_unlock(dst_pte, dst_ptl); 1056 /* ret == 0 */ 1057 goto out; 1058 } 1059 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1060 orig_src_pte = src_pte; 1061 orig_dst_pte = dst_pte; 1062 arch_enter_lazy_mmu_mode(); 1063 1064 do { 1065 /* 1066 * We are holding two locks at this point - either of them 1067 * could generate latencies in another task on another CPU. 1068 */ 1069 if (progress >= 32) { 1070 progress = 0; 1071 if (need_resched() || 1072 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1073 break; 1074 } 1075 ptent = ptep_get(src_pte); 1076 if (pte_none(ptent)) { 1077 progress++; 1078 continue; 1079 } 1080 if (unlikely(!pte_present(ptent))) { 1081 ret = copy_nonpresent_pte(dst_mm, src_mm, 1082 dst_pte, src_pte, 1083 dst_vma, src_vma, 1084 addr, rss); 1085 if (ret == -EIO) { 1086 entry = pte_to_swp_entry(ptep_get(src_pte)); 1087 break; 1088 } else if (ret == -EBUSY) { 1089 break; 1090 } else if (!ret) { 1091 progress += 8; 1092 continue; 1093 } 1094 1095 /* 1096 * Device exclusive entry restored, continue by copying 1097 * the now present pte. 1098 */ 1099 WARN_ON_ONCE(ret != -ENOENT); 1100 } 1101 /* copy_present_pte() will clear `*prealloc' if consumed */ 1102 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1103 addr, rss, &prealloc); 1104 /* 1105 * If we need a pre-allocated page for this pte, drop the 1106 * locks, allocate, and try again. 1107 */ 1108 if (unlikely(ret == -EAGAIN)) 1109 break; 1110 if (unlikely(prealloc)) { 1111 /* 1112 * pre-alloc page cannot be reused by next time so as 1113 * to strictly follow mempolicy (e.g., alloc_page_vma() 1114 * will allocate page according to address). This 1115 * could only happen if one pinned pte changed. 1116 */ 1117 folio_put(prealloc); 1118 prealloc = NULL; 1119 } 1120 progress += 8; 1121 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1122 1123 arch_leave_lazy_mmu_mode(); 1124 pte_unmap_unlock(orig_src_pte, src_ptl); 1125 add_mm_rss_vec(dst_mm, rss); 1126 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1127 cond_resched(); 1128 1129 if (ret == -EIO) { 1130 VM_WARN_ON_ONCE(!entry.val); 1131 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1132 ret = -ENOMEM; 1133 goto out; 1134 } 1135 entry.val = 0; 1136 } else if (ret == -EBUSY) { 1137 goto out; 1138 } else if (ret == -EAGAIN) { 1139 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1140 if (!prealloc) 1141 return -ENOMEM; 1142 } else if (ret) { 1143 VM_WARN_ON_ONCE(1); 1144 } 1145 1146 /* We've captured and resolved the error. Reset, try again. */ 1147 ret = 0; 1148 1149 if (addr != end) 1150 goto again; 1151 out: 1152 if (unlikely(prealloc)) 1153 folio_put(prealloc); 1154 return ret; 1155 } 1156 1157 static inline int 1158 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1159 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1160 unsigned long end) 1161 { 1162 struct mm_struct *dst_mm = dst_vma->vm_mm; 1163 struct mm_struct *src_mm = src_vma->vm_mm; 1164 pmd_t *src_pmd, *dst_pmd; 1165 unsigned long next; 1166 1167 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1168 if (!dst_pmd) 1169 return -ENOMEM; 1170 src_pmd = pmd_offset(src_pud, addr); 1171 do { 1172 next = pmd_addr_end(addr, end); 1173 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1174 || pmd_devmap(*src_pmd)) { 1175 int err; 1176 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1177 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1178 addr, dst_vma, src_vma); 1179 if (err == -ENOMEM) 1180 return -ENOMEM; 1181 if (!err) 1182 continue; 1183 /* fall through */ 1184 } 1185 if (pmd_none_or_clear_bad(src_pmd)) 1186 continue; 1187 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1188 addr, next)) 1189 return -ENOMEM; 1190 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1191 return 0; 1192 } 1193 1194 static inline int 1195 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1196 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1197 unsigned long end) 1198 { 1199 struct mm_struct *dst_mm = dst_vma->vm_mm; 1200 struct mm_struct *src_mm = src_vma->vm_mm; 1201 pud_t *src_pud, *dst_pud; 1202 unsigned long next; 1203 1204 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1205 if (!dst_pud) 1206 return -ENOMEM; 1207 src_pud = pud_offset(src_p4d, addr); 1208 do { 1209 next = pud_addr_end(addr, end); 1210 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1211 int err; 1212 1213 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1214 err = copy_huge_pud(dst_mm, src_mm, 1215 dst_pud, src_pud, addr, src_vma); 1216 if (err == -ENOMEM) 1217 return -ENOMEM; 1218 if (!err) 1219 continue; 1220 /* fall through */ 1221 } 1222 if (pud_none_or_clear_bad(src_pud)) 1223 continue; 1224 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1225 addr, next)) 1226 return -ENOMEM; 1227 } while (dst_pud++, src_pud++, addr = next, addr != end); 1228 return 0; 1229 } 1230 1231 static inline int 1232 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1233 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1234 unsigned long end) 1235 { 1236 struct mm_struct *dst_mm = dst_vma->vm_mm; 1237 p4d_t *src_p4d, *dst_p4d; 1238 unsigned long next; 1239 1240 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1241 if (!dst_p4d) 1242 return -ENOMEM; 1243 src_p4d = p4d_offset(src_pgd, addr); 1244 do { 1245 next = p4d_addr_end(addr, end); 1246 if (p4d_none_or_clear_bad(src_p4d)) 1247 continue; 1248 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1249 addr, next)) 1250 return -ENOMEM; 1251 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1252 return 0; 1253 } 1254 1255 /* 1256 * Return true if the vma needs to copy the pgtable during this fork(). Return 1257 * false when we can speed up fork() by allowing lazy page faults later until 1258 * when the child accesses the memory range. 1259 */ 1260 static bool 1261 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1262 { 1263 /* 1264 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1265 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1266 * contains uffd-wp protection information, that's something we can't 1267 * retrieve from page cache, and skip copying will lose those info. 1268 */ 1269 if (userfaultfd_wp(dst_vma)) 1270 return true; 1271 1272 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1273 return true; 1274 1275 if (src_vma->anon_vma) 1276 return true; 1277 1278 /* 1279 * Don't copy ptes where a page fault will fill them correctly. Fork 1280 * becomes much lighter when there are big shared or private readonly 1281 * mappings. The tradeoff is that copy_page_range is more efficient 1282 * than faulting. 1283 */ 1284 return false; 1285 } 1286 1287 int 1288 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1289 { 1290 pgd_t *src_pgd, *dst_pgd; 1291 unsigned long next; 1292 unsigned long addr = src_vma->vm_start; 1293 unsigned long end = src_vma->vm_end; 1294 struct mm_struct *dst_mm = dst_vma->vm_mm; 1295 struct mm_struct *src_mm = src_vma->vm_mm; 1296 struct mmu_notifier_range range; 1297 bool is_cow; 1298 int ret; 1299 1300 if (!vma_needs_copy(dst_vma, src_vma)) 1301 return 0; 1302 1303 if (is_vm_hugetlb_page(src_vma)) 1304 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1305 1306 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1307 /* 1308 * We do not free on error cases below as remove_vma 1309 * gets called on error from higher level routine 1310 */ 1311 ret = track_pfn_copy(src_vma); 1312 if (ret) 1313 return ret; 1314 } 1315 1316 /* 1317 * We need to invalidate the secondary MMU mappings only when 1318 * there could be a permission downgrade on the ptes of the 1319 * parent mm. And a permission downgrade will only happen if 1320 * is_cow_mapping() returns true. 1321 */ 1322 is_cow = is_cow_mapping(src_vma->vm_flags); 1323 1324 if (is_cow) { 1325 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1326 0, src_mm, addr, end); 1327 mmu_notifier_invalidate_range_start(&range); 1328 /* 1329 * Disabling preemption is not needed for the write side, as 1330 * the read side doesn't spin, but goes to the mmap_lock. 1331 * 1332 * Use the raw variant of the seqcount_t write API to avoid 1333 * lockdep complaining about preemptibility. 1334 */ 1335 vma_assert_write_locked(src_vma); 1336 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1337 } 1338 1339 ret = 0; 1340 dst_pgd = pgd_offset(dst_mm, addr); 1341 src_pgd = pgd_offset(src_mm, addr); 1342 do { 1343 next = pgd_addr_end(addr, end); 1344 if (pgd_none_or_clear_bad(src_pgd)) 1345 continue; 1346 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1347 addr, next))) { 1348 untrack_pfn_clear(dst_vma); 1349 ret = -ENOMEM; 1350 break; 1351 } 1352 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1353 1354 if (is_cow) { 1355 raw_write_seqcount_end(&src_mm->write_protect_seq); 1356 mmu_notifier_invalidate_range_end(&range); 1357 } 1358 return ret; 1359 } 1360 1361 /* Whether we should zap all COWed (private) pages too */ 1362 static inline bool should_zap_cows(struct zap_details *details) 1363 { 1364 /* By default, zap all pages */ 1365 if (!details) 1366 return true; 1367 1368 /* Or, we zap COWed pages only if the caller wants to */ 1369 return details->even_cows; 1370 } 1371 1372 /* Decides whether we should zap this page with the page pointer specified */ 1373 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1374 { 1375 /* If we can make a decision without *page.. */ 1376 if (should_zap_cows(details)) 1377 return true; 1378 1379 /* E.g. the caller passes NULL for the case of a zero page */ 1380 if (!page) 1381 return true; 1382 1383 /* Otherwise we should only zap non-anon pages */ 1384 return !PageAnon(page); 1385 } 1386 1387 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1388 { 1389 if (!details) 1390 return false; 1391 1392 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1393 } 1394 1395 /* 1396 * This function makes sure that we'll replace the none pte with an uffd-wp 1397 * swap special pte marker when necessary. Must be with the pgtable lock held. 1398 */ 1399 static inline void 1400 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1401 unsigned long addr, pte_t *pte, 1402 struct zap_details *details, pte_t pteval) 1403 { 1404 /* Zap on anonymous always means dropping everything */ 1405 if (vma_is_anonymous(vma)) 1406 return; 1407 1408 if (zap_drop_file_uffd_wp(details)) 1409 return; 1410 1411 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1412 } 1413 1414 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1415 struct vm_area_struct *vma, pmd_t *pmd, 1416 unsigned long addr, unsigned long end, 1417 struct zap_details *details) 1418 { 1419 struct mm_struct *mm = tlb->mm; 1420 int force_flush = 0; 1421 int rss[NR_MM_COUNTERS]; 1422 spinlock_t *ptl; 1423 pte_t *start_pte; 1424 pte_t *pte; 1425 swp_entry_t entry; 1426 1427 tlb_change_page_size(tlb, PAGE_SIZE); 1428 init_rss_vec(rss); 1429 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1430 if (!pte) 1431 return addr; 1432 1433 flush_tlb_batched_pending(mm); 1434 arch_enter_lazy_mmu_mode(); 1435 do { 1436 pte_t ptent = ptep_get(pte); 1437 struct folio *folio; 1438 struct page *page; 1439 1440 if (pte_none(ptent)) 1441 continue; 1442 1443 if (need_resched()) 1444 break; 1445 1446 if (pte_present(ptent)) { 1447 unsigned int delay_rmap; 1448 1449 page = vm_normal_page(vma, addr, ptent); 1450 if (unlikely(!should_zap_page(details, page))) 1451 continue; 1452 ptent = ptep_get_and_clear_full(mm, addr, pte, 1453 tlb->fullmm); 1454 arch_check_zapped_pte(vma, ptent); 1455 tlb_remove_tlb_entry(tlb, pte, addr); 1456 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1457 ptent); 1458 if (unlikely(!page)) { 1459 ksm_might_unmap_zero_page(mm, ptent); 1460 continue; 1461 } 1462 1463 folio = page_folio(page); 1464 delay_rmap = 0; 1465 if (!folio_test_anon(folio)) { 1466 if (pte_dirty(ptent)) { 1467 folio_mark_dirty(folio); 1468 if (tlb_delay_rmap(tlb)) { 1469 delay_rmap = 1; 1470 force_flush = 1; 1471 } 1472 } 1473 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1474 folio_mark_accessed(folio); 1475 } 1476 rss[mm_counter(page)]--; 1477 if (!delay_rmap) { 1478 folio_remove_rmap_pte(folio, page, vma); 1479 if (unlikely(page_mapcount(page) < 0)) 1480 print_bad_pte(vma, addr, ptent, page); 1481 } 1482 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1483 force_flush = 1; 1484 addr += PAGE_SIZE; 1485 break; 1486 } 1487 continue; 1488 } 1489 1490 entry = pte_to_swp_entry(ptent); 1491 if (is_device_private_entry(entry) || 1492 is_device_exclusive_entry(entry)) { 1493 page = pfn_swap_entry_to_page(entry); 1494 folio = page_folio(page); 1495 if (unlikely(!should_zap_page(details, page))) 1496 continue; 1497 /* 1498 * Both device private/exclusive mappings should only 1499 * work with anonymous page so far, so we don't need to 1500 * consider uffd-wp bit when zap. For more information, 1501 * see zap_install_uffd_wp_if_needed(). 1502 */ 1503 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1504 rss[mm_counter(page)]--; 1505 if (is_device_private_entry(entry)) 1506 folio_remove_rmap_pte(folio, page, vma); 1507 folio_put(folio); 1508 } else if (!non_swap_entry(entry)) { 1509 /* Genuine swap entry, hence a private anon page */ 1510 if (!should_zap_cows(details)) 1511 continue; 1512 rss[MM_SWAPENTS]--; 1513 if (unlikely(!free_swap_and_cache(entry))) 1514 print_bad_pte(vma, addr, ptent, NULL); 1515 } else if (is_migration_entry(entry)) { 1516 page = pfn_swap_entry_to_page(entry); 1517 if (!should_zap_page(details, page)) 1518 continue; 1519 rss[mm_counter(page)]--; 1520 } else if (pte_marker_entry_uffd_wp(entry)) { 1521 /* 1522 * For anon: always drop the marker; for file: only 1523 * drop the marker if explicitly requested. 1524 */ 1525 if (!vma_is_anonymous(vma) && 1526 !zap_drop_file_uffd_wp(details)) 1527 continue; 1528 } else if (is_hwpoison_entry(entry) || 1529 is_poisoned_swp_entry(entry)) { 1530 if (!should_zap_cows(details)) 1531 continue; 1532 } else { 1533 /* We should have covered all the swap entry types */ 1534 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1535 WARN_ON_ONCE(1); 1536 } 1537 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1538 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1539 } while (pte++, addr += PAGE_SIZE, addr != end); 1540 1541 add_mm_rss_vec(mm, rss); 1542 arch_leave_lazy_mmu_mode(); 1543 1544 /* Do the actual TLB flush before dropping ptl */ 1545 if (force_flush) { 1546 tlb_flush_mmu_tlbonly(tlb); 1547 tlb_flush_rmaps(tlb, vma); 1548 } 1549 pte_unmap_unlock(start_pte, ptl); 1550 1551 /* 1552 * If we forced a TLB flush (either due to running out of 1553 * batch buffers or because we needed to flush dirty TLB 1554 * entries before releasing the ptl), free the batched 1555 * memory too. Come back again if we didn't do everything. 1556 */ 1557 if (force_flush) 1558 tlb_flush_mmu(tlb); 1559 1560 return addr; 1561 } 1562 1563 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1564 struct vm_area_struct *vma, pud_t *pud, 1565 unsigned long addr, unsigned long end, 1566 struct zap_details *details) 1567 { 1568 pmd_t *pmd; 1569 unsigned long next; 1570 1571 pmd = pmd_offset(pud, addr); 1572 do { 1573 next = pmd_addr_end(addr, end); 1574 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1575 if (next - addr != HPAGE_PMD_SIZE) 1576 __split_huge_pmd(vma, pmd, addr, false, NULL); 1577 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1578 addr = next; 1579 continue; 1580 } 1581 /* fall through */ 1582 } else if (details && details->single_folio && 1583 folio_test_pmd_mappable(details->single_folio) && 1584 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1585 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1586 /* 1587 * Take and drop THP pmd lock so that we cannot return 1588 * prematurely, while zap_huge_pmd() has cleared *pmd, 1589 * but not yet decremented compound_mapcount(). 1590 */ 1591 spin_unlock(ptl); 1592 } 1593 if (pmd_none(*pmd)) { 1594 addr = next; 1595 continue; 1596 } 1597 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1598 if (addr != next) 1599 pmd--; 1600 } while (pmd++, cond_resched(), addr != end); 1601 1602 return addr; 1603 } 1604 1605 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1606 struct vm_area_struct *vma, p4d_t *p4d, 1607 unsigned long addr, unsigned long end, 1608 struct zap_details *details) 1609 { 1610 pud_t *pud; 1611 unsigned long next; 1612 1613 pud = pud_offset(p4d, addr); 1614 do { 1615 next = pud_addr_end(addr, end); 1616 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1617 if (next - addr != HPAGE_PUD_SIZE) { 1618 mmap_assert_locked(tlb->mm); 1619 split_huge_pud(vma, pud, addr); 1620 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1621 goto next; 1622 /* fall through */ 1623 } 1624 if (pud_none_or_clear_bad(pud)) 1625 continue; 1626 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1627 next: 1628 cond_resched(); 1629 } while (pud++, addr = next, addr != end); 1630 1631 return addr; 1632 } 1633 1634 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1635 struct vm_area_struct *vma, pgd_t *pgd, 1636 unsigned long addr, unsigned long end, 1637 struct zap_details *details) 1638 { 1639 p4d_t *p4d; 1640 unsigned long next; 1641 1642 p4d = p4d_offset(pgd, addr); 1643 do { 1644 next = p4d_addr_end(addr, end); 1645 if (p4d_none_or_clear_bad(p4d)) 1646 continue; 1647 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1648 } while (p4d++, addr = next, addr != end); 1649 1650 return addr; 1651 } 1652 1653 void unmap_page_range(struct mmu_gather *tlb, 1654 struct vm_area_struct *vma, 1655 unsigned long addr, unsigned long end, 1656 struct zap_details *details) 1657 { 1658 pgd_t *pgd; 1659 unsigned long next; 1660 1661 BUG_ON(addr >= end); 1662 tlb_start_vma(tlb, vma); 1663 pgd = pgd_offset(vma->vm_mm, addr); 1664 do { 1665 next = pgd_addr_end(addr, end); 1666 if (pgd_none_or_clear_bad(pgd)) 1667 continue; 1668 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1669 } while (pgd++, addr = next, addr != end); 1670 tlb_end_vma(tlb, vma); 1671 } 1672 1673 1674 static void unmap_single_vma(struct mmu_gather *tlb, 1675 struct vm_area_struct *vma, unsigned long start_addr, 1676 unsigned long end_addr, 1677 struct zap_details *details, bool mm_wr_locked) 1678 { 1679 unsigned long start = max(vma->vm_start, start_addr); 1680 unsigned long end; 1681 1682 if (start >= vma->vm_end) 1683 return; 1684 end = min(vma->vm_end, end_addr); 1685 if (end <= vma->vm_start) 1686 return; 1687 1688 if (vma->vm_file) 1689 uprobe_munmap(vma, start, end); 1690 1691 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1692 untrack_pfn(vma, 0, 0, mm_wr_locked); 1693 1694 if (start != end) { 1695 if (unlikely(is_vm_hugetlb_page(vma))) { 1696 /* 1697 * It is undesirable to test vma->vm_file as it 1698 * should be non-null for valid hugetlb area. 1699 * However, vm_file will be NULL in the error 1700 * cleanup path of mmap_region. When 1701 * hugetlbfs ->mmap method fails, 1702 * mmap_region() nullifies vma->vm_file 1703 * before calling this function to clean up. 1704 * Since no pte has actually been setup, it is 1705 * safe to do nothing in this case. 1706 */ 1707 if (vma->vm_file) { 1708 zap_flags_t zap_flags = details ? 1709 details->zap_flags : 0; 1710 __unmap_hugepage_range(tlb, vma, start, end, 1711 NULL, zap_flags); 1712 } 1713 } else 1714 unmap_page_range(tlb, vma, start, end, details); 1715 } 1716 } 1717 1718 /** 1719 * unmap_vmas - unmap a range of memory covered by a list of vma's 1720 * @tlb: address of the caller's struct mmu_gather 1721 * @mas: the maple state 1722 * @vma: the starting vma 1723 * @start_addr: virtual address at which to start unmapping 1724 * @end_addr: virtual address at which to end unmapping 1725 * @tree_end: The maximum index to check 1726 * @mm_wr_locked: lock flag 1727 * 1728 * Unmap all pages in the vma list. 1729 * 1730 * Only addresses between `start' and `end' will be unmapped. 1731 * 1732 * The VMA list must be sorted in ascending virtual address order. 1733 * 1734 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1735 * range after unmap_vmas() returns. So the only responsibility here is to 1736 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1737 * drops the lock and schedules. 1738 */ 1739 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1740 struct vm_area_struct *vma, unsigned long start_addr, 1741 unsigned long end_addr, unsigned long tree_end, 1742 bool mm_wr_locked) 1743 { 1744 struct mmu_notifier_range range; 1745 struct zap_details details = { 1746 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1747 /* Careful - we need to zap private pages too! */ 1748 .even_cows = true, 1749 }; 1750 1751 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1752 start_addr, end_addr); 1753 mmu_notifier_invalidate_range_start(&range); 1754 do { 1755 unsigned long start = start_addr; 1756 unsigned long end = end_addr; 1757 hugetlb_zap_begin(vma, &start, &end); 1758 unmap_single_vma(tlb, vma, start, end, &details, 1759 mm_wr_locked); 1760 hugetlb_zap_end(vma, &details); 1761 vma = mas_find(mas, tree_end - 1); 1762 } while (vma && likely(!xa_is_zero(vma))); 1763 mmu_notifier_invalidate_range_end(&range); 1764 } 1765 1766 /** 1767 * zap_page_range_single - remove user pages in a given range 1768 * @vma: vm_area_struct holding the applicable pages 1769 * @address: starting address of pages to zap 1770 * @size: number of bytes to zap 1771 * @details: details of shared cache invalidation 1772 * 1773 * The range must fit into one VMA. 1774 */ 1775 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1776 unsigned long size, struct zap_details *details) 1777 { 1778 const unsigned long end = address + size; 1779 struct mmu_notifier_range range; 1780 struct mmu_gather tlb; 1781 1782 lru_add_drain(); 1783 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1784 address, end); 1785 hugetlb_zap_begin(vma, &range.start, &range.end); 1786 tlb_gather_mmu(&tlb, vma->vm_mm); 1787 update_hiwater_rss(vma->vm_mm); 1788 mmu_notifier_invalidate_range_start(&range); 1789 /* 1790 * unmap 'address-end' not 'range.start-range.end' as range 1791 * could have been expanded for hugetlb pmd sharing. 1792 */ 1793 unmap_single_vma(&tlb, vma, address, end, details, false); 1794 mmu_notifier_invalidate_range_end(&range); 1795 tlb_finish_mmu(&tlb); 1796 hugetlb_zap_end(vma, details); 1797 } 1798 1799 /** 1800 * zap_vma_ptes - remove ptes mapping the vma 1801 * @vma: vm_area_struct holding ptes to be zapped 1802 * @address: starting address of pages to zap 1803 * @size: number of bytes to zap 1804 * 1805 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1806 * 1807 * The entire address range must be fully contained within the vma. 1808 * 1809 */ 1810 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1811 unsigned long size) 1812 { 1813 if (!range_in_vma(vma, address, address + size) || 1814 !(vma->vm_flags & VM_PFNMAP)) 1815 return; 1816 1817 zap_page_range_single(vma, address, size, NULL); 1818 } 1819 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1820 1821 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1822 { 1823 pgd_t *pgd; 1824 p4d_t *p4d; 1825 pud_t *pud; 1826 pmd_t *pmd; 1827 1828 pgd = pgd_offset(mm, addr); 1829 p4d = p4d_alloc(mm, pgd, addr); 1830 if (!p4d) 1831 return NULL; 1832 pud = pud_alloc(mm, p4d, addr); 1833 if (!pud) 1834 return NULL; 1835 pmd = pmd_alloc(mm, pud, addr); 1836 if (!pmd) 1837 return NULL; 1838 1839 VM_BUG_ON(pmd_trans_huge(*pmd)); 1840 return pmd; 1841 } 1842 1843 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1844 spinlock_t **ptl) 1845 { 1846 pmd_t *pmd = walk_to_pmd(mm, addr); 1847 1848 if (!pmd) 1849 return NULL; 1850 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1851 } 1852 1853 static int validate_page_before_insert(struct page *page) 1854 { 1855 struct folio *folio = page_folio(page); 1856 1857 if (folio_test_anon(folio) || folio_test_slab(folio) || 1858 page_has_type(page)) 1859 return -EINVAL; 1860 flush_dcache_folio(folio); 1861 return 0; 1862 } 1863 1864 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1865 unsigned long addr, struct page *page, pgprot_t prot) 1866 { 1867 struct folio *folio = page_folio(page); 1868 1869 if (!pte_none(ptep_get(pte))) 1870 return -EBUSY; 1871 /* Ok, finally just insert the thing.. */ 1872 folio_get(folio); 1873 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1874 folio_add_file_rmap_pte(folio, page, vma); 1875 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1876 return 0; 1877 } 1878 1879 /* 1880 * This is the old fallback for page remapping. 1881 * 1882 * For historical reasons, it only allows reserved pages. Only 1883 * old drivers should use this, and they needed to mark their 1884 * pages reserved for the old functions anyway. 1885 */ 1886 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1887 struct page *page, pgprot_t prot) 1888 { 1889 int retval; 1890 pte_t *pte; 1891 spinlock_t *ptl; 1892 1893 retval = validate_page_before_insert(page); 1894 if (retval) 1895 goto out; 1896 retval = -ENOMEM; 1897 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1898 if (!pte) 1899 goto out; 1900 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1901 pte_unmap_unlock(pte, ptl); 1902 out: 1903 return retval; 1904 } 1905 1906 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1907 unsigned long addr, struct page *page, pgprot_t prot) 1908 { 1909 int err; 1910 1911 if (!page_count(page)) 1912 return -EINVAL; 1913 err = validate_page_before_insert(page); 1914 if (err) 1915 return err; 1916 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1917 } 1918 1919 /* insert_pages() amortizes the cost of spinlock operations 1920 * when inserting pages in a loop. 1921 */ 1922 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1923 struct page **pages, unsigned long *num, pgprot_t prot) 1924 { 1925 pmd_t *pmd = NULL; 1926 pte_t *start_pte, *pte; 1927 spinlock_t *pte_lock; 1928 struct mm_struct *const mm = vma->vm_mm; 1929 unsigned long curr_page_idx = 0; 1930 unsigned long remaining_pages_total = *num; 1931 unsigned long pages_to_write_in_pmd; 1932 int ret; 1933 more: 1934 ret = -EFAULT; 1935 pmd = walk_to_pmd(mm, addr); 1936 if (!pmd) 1937 goto out; 1938 1939 pages_to_write_in_pmd = min_t(unsigned long, 1940 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1941 1942 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1943 ret = -ENOMEM; 1944 if (pte_alloc(mm, pmd)) 1945 goto out; 1946 1947 while (pages_to_write_in_pmd) { 1948 int pte_idx = 0; 1949 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1950 1951 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1952 if (!start_pte) { 1953 ret = -EFAULT; 1954 goto out; 1955 } 1956 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1957 int err = insert_page_in_batch_locked(vma, pte, 1958 addr, pages[curr_page_idx], prot); 1959 if (unlikely(err)) { 1960 pte_unmap_unlock(start_pte, pte_lock); 1961 ret = err; 1962 remaining_pages_total -= pte_idx; 1963 goto out; 1964 } 1965 addr += PAGE_SIZE; 1966 ++curr_page_idx; 1967 } 1968 pte_unmap_unlock(start_pte, pte_lock); 1969 pages_to_write_in_pmd -= batch_size; 1970 remaining_pages_total -= batch_size; 1971 } 1972 if (remaining_pages_total) 1973 goto more; 1974 ret = 0; 1975 out: 1976 *num = remaining_pages_total; 1977 return ret; 1978 } 1979 1980 /** 1981 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1982 * @vma: user vma to map to 1983 * @addr: target start user address of these pages 1984 * @pages: source kernel pages 1985 * @num: in: number of pages to map. out: number of pages that were *not* 1986 * mapped. (0 means all pages were successfully mapped). 1987 * 1988 * Preferred over vm_insert_page() when inserting multiple pages. 1989 * 1990 * In case of error, we may have mapped a subset of the provided 1991 * pages. It is the caller's responsibility to account for this case. 1992 * 1993 * The same restrictions apply as in vm_insert_page(). 1994 */ 1995 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1996 struct page **pages, unsigned long *num) 1997 { 1998 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1999 2000 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2001 return -EFAULT; 2002 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2003 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2004 BUG_ON(vma->vm_flags & VM_PFNMAP); 2005 vm_flags_set(vma, VM_MIXEDMAP); 2006 } 2007 /* Defer page refcount checking till we're about to map that page. */ 2008 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2009 } 2010 EXPORT_SYMBOL(vm_insert_pages); 2011 2012 /** 2013 * vm_insert_page - insert single page into user vma 2014 * @vma: user vma to map to 2015 * @addr: target user address of this page 2016 * @page: source kernel page 2017 * 2018 * This allows drivers to insert individual pages they've allocated 2019 * into a user vma. 2020 * 2021 * The page has to be a nice clean _individual_ kernel allocation. 2022 * If you allocate a compound page, you need to have marked it as 2023 * such (__GFP_COMP), or manually just split the page up yourself 2024 * (see split_page()). 2025 * 2026 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2027 * took an arbitrary page protection parameter. This doesn't allow 2028 * that. Your vma protection will have to be set up correctly, which 2029 * means that if you want a shared writable mapping, you'd better 2030 * ask for a shared writable mapping! 2031 * 2032 * The page does not need to be reserved. 2033 * 2034 * Usually this function is called from f_op->mmap() handler 2035 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2036 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2037 * function from other places, for example from page-fault handler. 2038 * 2039 * Return: %0 on success, negative error code otherwise. 2040 */ 2041 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2042 struct page *page) 2043 { 2044 if (addr < vma->vm_start || addr >= vma->vm_end) 2045 return -EFAULT; 2046 if (!page_count(page)) 2047 return -EINVAL; 2048 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2049 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2050 BUG_ON(vma->vm_flags & VM_PFNMAP); 2051 vm_flags_set(vma, VM_MIXEDMAP); 2052 } 2053 return insert_page(vma, addr, page, vma->vm_page_prot); 2054 } 2055 EXPORT_SYMBOL(vm_insert_page); 2056 2057 /* 2058 * __vm_map_pages - maps range of kernel pages into user vma 2059 * @vma: user vma to map to 2060 * @pages: pointer to array of source kernel pages 2061 * @num: number of pages in page array 2062 * @offset: user's requested vm_pgoff 2063 * 2064 * This allows drivers to map range of kernel pages into a user vma. 2065 * 2066 * Return: 0 on success and error code otherwise. 2067 */ 2068 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2069 unsigned long num, unsigned long offset) 2070 { 2071 unsigned long count = vma_pages(vma); 2072 unsigned long uaddr = vma->vm_start; 2073 int ret, i; 2074 2075 /* Fail if the user requested offset is beyond the end of the object */ 2076 if (offset >= num) 2077 return -ENXIO; 2078 2079 /* Fail if the user requested size exceeds available object size */ 2080 if (count > num - offset) 2081 return -ENXIO; 2082 2083 for (i = 0; i < count; i++) { 2084 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2085 if (ret < 0) 2086 return ret; 2087 uaddr += PAGE_SIZE; 2088 } 2089 2090 return 0; 2091 } 2092 2093 /** 2094 * vm_map_pages - maps range of kernel pages starts with non zero offset 2095 * @vma: user vma to map to 2096 * @pages: pointer to array of source kernel pages 2097 * @num: number of pages in page array 2098 * 2099 * Maps an object consisting of @num pages, catering for the user's 2100 * requested vm_pgoff 2101 * 2102 * If we fail to insert any page into the vma, the function will return 2103 * immediately leaving any previously inserted pages present. Callers 2104 * from the mmap handler may immediately return the error as their caller 2105 * will destroy the vma, removing any successfully inserted pages. Other 2106 * callers should make their own arrangements for calling unmap_region(). 2107 * 2108 * Context: Process context. Called by mmap handlers. 2109 * Return: 0 on success and error code otherwise. 2110 */ 2111 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2112 unsigned long num) 2113 { 2114 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2115 } 2116 EXPORT_SYMBOL(vm_map_pages); 2117 2118 /** 2119 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2120 * @vma: user vma to map to 2121 * @pages: pointer to array of source kernel pages 2122 * @num: number of pages in page array 2123 * 2124 * Similar to vm_map_pages(), except that it explicitly sets the offset 2125 * to 0. This function is intended for the drivers that did not consider 2126 * vm_pgoff. 2127 * 2128 * Context: Process context. Called by mmap handlers. 2129 * Return: 0 on success and error code otherwise. 2130 */ 2131 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2132 unsigned long num) 2133 { 2134 return __vm_map_pages(vma, pages, num, 0); 2135 } 2136 EXPORT_SYMBOL(vm_map_pages_zero); 2137 2138 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2139 pfn_t pfn, pgprot_t prot, bool mkwrite) 2140 { 2141 struct mm_struct *mm = vma->vm_mm; 2142 pte_t *pte, entry; 2143 spinlock_t *ptl; 2144 2145 pte = get_locked_pte(mm, addr, &ptl); 2146 if (!pte) 2147 return VM_FAULT_OOM; 2148 entry = ptep_get(pte); 2149 if (!pte_none(entry)) { 2150 if (mkwrite) { 2151 /* 2152 * For read faults on private mappings the PFN passed 2153 * in may not match the PFN we have mapped if the 2154 * mapped PFN is a writeable COW page. In the mkwrite 2155 * case we are creating a writable PTE for a shared 2156 * mapping and we expect the PFNs to match. If they 2157 * don't match, we are likely racing with block 2158 * allocation and mapping invalidation so just skip the 2159 * update. 2160 */ 2161 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2162 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2163 goto out_unlock; 2164 } 2165 entry = pte_mkyoung(entry); 2166 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2167 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2168 update_mmu_cache(vma, addr, pte); 2169 } 2170 goto out_unlock; 2171 } 2172 2173 /* Ok, finally just insert the thing.. */ 2174 if (pfn_t_devmap(pfn)) 2175 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2176 else 2177 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2178 2179 if (mkwrite) { 2180 entry = pte_mkyoung(entry); 2181 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2182 } 2183 2184 set_pte_at(mm, addr, pte, entry); 2185 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2186 2187 out_unlock: 2188 pte_unmap_unlock(pte, ptl); 2189 return VM_FAULT_NOPAGE; 2190 } 2191 2192 /** 2193 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2194 * @vma: user vma to map to 2195 * @addr: target user address of this page 2196 * @pfn: source kernel pfn 2197 * @pgprot: pgprot flags for the inserted page 2198 * 2199 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2200 * to override pgprot on a per-page basis. 2201 * 2202 * This only makes sense for IO mappings, and it makes no sense for 2203 * COW mappings. In general, using multiple vmas is preferable; 2204 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2205 * impractical. 2206 * 2207 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2208 * caching- and encryption bits different than those of @vma->vm_page_prot, 2209 * because the caching- or encryption mode may not be known at mmap() time. 2210 * 2211 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2212 * to set caching and encryption bits for those vmas (except for COW pages). 2213 * This is ensured by core vm only modifying these page table entries using 2214 * functions that don't touch caching- or encryption bits, using pte_modify() 2215 * if needed. (See for example mprotect()). 2216 * 2217 * Also when new page-table entries are created, this is only done using the 2218 * fault() callback, and never using the value of vma->vm_page_prot, 2219 * except for page-table entries that point to anonymous pages as the result 2220 * of COW. 2221 * 2222 * Context: Process context. May allocate using %GFP_KERNEL. 2223 * Return: vm_fault_t value. 2224 */ 2225 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2226 unsigned long pfn, pgprot_t pgprot) 2227 { 2228 /* 2229 * Technically, architectures with pte_special can avoid all these 2230 * restrictions (same for remap_pfn_range). However we would like 2231 * consistency in testing and feature parity among all, so we should 2232 * try to keep these invariants in place for everybody. 2233 */ 2234 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2235 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2236 (VM_PFNMAP|VM_MIXEDMAP)); 2237 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2238 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2239 2240 if (addr < vma->vm_start || addr >= vma->vm_end) 2241 return VM_FAULT_SIGBUS; 2242 2243 if (!pfn_modify_allowed(pfn, pgprot)) 2244 return VM_FAULT_SIGBUS; 2245 2246 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2247 2248 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2249 false); 2250 } 2251 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2252 2253 /** 2254 * vmf_insert_pfn - insert single pfn into user vma 2255 * @vma: user vma to map to 2256 * @addr: target user address of this page 2257 * @pfn: source kernel pfn 2258 * 2259 * Similar to vm_insert_page, this allows drivers to insert individual pages 2260 * they've allocated into a user vma. Same comments apply. 2261 * 2262 * This function should only be called from a vm_ops->fault handler, and 2263 * in that case the handler should return the result of this function. 2264 * 2265 * vma cannot be a COW mapping. 2266 * 2267 * As this is called only for pages that do not currently exist, we 2268 * do not need to flush old virtual caches or the TLB. 2269 * 2270 * Context: Process context. May allocate using %GFP_KERNEL. 2271 * Return: vm_fault_t value. 2272 */ 2273 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2274 unsigned long pfn) 2275 { 2276 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2277 } 2278 EXPORT_SYMBOL(vmf_insert_pfn); 2279 2280 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2281 { 2282 /* these checks mirror the abort conditions in vm_normal_page */ 2283 if (vma->vm_flags & VM_MIXEDMAP) 2284 return true; 2285 if (pfn_t_devmap(pfn)) 2286 return true; 2287 if (pfn_t_special(pfn)) 2288 return true; 2289 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2290 return true; 2291 return false; 2292 } 2293 2294 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2295 unsigned long addr, pfn_t pfn, bool mkwrite) 2296 { 2297 pgprot_t pgprot = vma->vm_page_prot; 2298 int err; 2299 2300 BUG_ON(!vm_mixed_ok(vma, pfn)); 2301 2302 if (addr < vma->vm_start || addr >= vma->vm_end) 2303 return VM_FAULT_SIGBUS; 2304 2305 track_pfn_insert(vma, &pgprot, pfn); 2306 2307 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2308 return VM_FAULT_SIGBUS; 2309 2310 /* 2311 * If we don't have pte special, then we have to use the pfn_valid() 2312 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2313 * refcount the page if pfn_valid is true (hence insert_page rather 2314 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2315 * without pte special, it would there be refcounted as a normal page. 2316 */ 2317 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2318 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2319 struct page *page; 2320 2321 /* 2322 * At this point we are committed to insert_page() 2323 * regardless of whether the caller specified flags that 2324 * result in pfn_t_has_page() == false. 2325 */ 2326 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2327 err = insert_page(vma, addr, page, pgprot); 2328 } else { 2329 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2330 } 2331 2332 if (err == -ENOMEM) 2333 return VM_FAULT_OOM; 2334 if (err < 0 && err != -EBUSY) 2335 return VM_FAULT_SIGBUS; 2336 2337 return VM_FAULT_NOPAGE; 2338 } 2339 2340 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2341 pfn_t pfn) 2342 { 2343 return __vm_insert_mixed(vma, addr, pfn, false); 2344 } 2345 EXPORT_SYMBOL(vmf_insert_mixed); 2346 2347 /* 2348 * If the insertion of PTE failed because someone else already added a 2349 * different entry in the mean time, we treat that as success as we assume 2350 * the same entry was actually inserted. 2351 */ 2352 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2353 unsigned long addr, pfn_t pfn) 2354 { 2355 return __vm_insert_mixed(vma, addr, pfn, true); 2356 } 2357 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2358 2359 /* 2360 * maps a range of physical memory into the requested pages. the old 2361 * mappings are removed. any references to nonexistent pages results 2362 * in null mappings (currently treated as "copy-on-access") 2363 */ 2364 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2365 unsigned long addr, unsigned long end, 2366 unsigned long pfn, pgprot_t prot) 2367 { 2368 pte_t *pte, *mapped_pte; 2369 spinlock_t *ptl; 2370 int err = 0; 2371 2372 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2373 if (!pte) 2374 return -ENOMEM; 2375 arch_enter_lazy_mmu_mode(); 2376 do { 2377 BUG_ON(!pte_none(ptep_get(pte))); 2378 if (!pfn_modify_allowed(pfn, prot)) { 2379 err = -EACCES; 2380 break; 2381 } 2382 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2383 pfn++; 2384 } while (pte++, addr += PAGE_SIZE, addr != end); 2385 arch_leave_lazy_mmu_mode(); 2386 pte_unmap_unlock(mapped_pte, ptl); 2387 return err; 2388 } 2389 2390 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2391 unsigned long addr, unsigned long end, 2392 unsigned long pfn, pgprot_t prot) 2393 { 2394 pmd_t *pmd; 2395 unsigned long next; 2396 int err; 2397 2398 pfn -= addr >> PAGE_SHIFT; 2399 pmd = pmd_alloc(mm, pud, addr); 2400 if (!pmd) 2401 return -ENOMEM; 2402 VM_BUG_ON(pmd_trans_huge(*pmd)); 2403 do { 2404 next = pmd_addr_end(addr, end); 2405 err = remap_pte_range(mm, pmd, addr, next, 2406 pfn + (addr >> PAGE_SHIFT), prot); 2407 if (err) 2408 return err; 2409 } while (pmd++, addr = next, addr != end); 2410 return 0; 2411 } 2412 2413 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2414 unsigned long addr, unsigned long end, 2415 unsigned long pfn, pgprot_t prot) 2416 { 2417 pud_t *pud; 2418 unsigned long next; 2419 int err; 2420 2421 pfn -= addr >> PAGE_SHIFT; 2422 pud = pud_alloc(mm, p4d, addr); 2423 if (!pud) 2424 return -ENOMEM; 2425 do { 2426 next = pud_addr_end(addr, end); 2427 err = remap_pmd_range(mm, pud, addr, next, 2428 pfn + (addr >> PAGE_SHIFT), prot); 2429 if (err) 2430 return err; 2431 } while (pud++, addr = next, addr != end); 2432 return 0; 2433 } 2434 2435 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2436 unsigned long addr, unsigned long end, 2437 unsigned long pfn, pgprot_t prot) 2438 { 2439 p4d_t *p4d; 2440 unsigned long next; 2441 int err; 2442 2443 pfn -= addr >> PAGE_SHIFT; 2444 p4d = p4d_alloc(mm, pgd, addr); 2445 if (!p4d) 2446 return -ENOMEM; 2447 do { 2448 next = p4d_addr_end(addr, end); 2449 err = remap_pud_range(mm, p4d, addr, next, 2450 pfn + (addr >> PAGE_SHIFT), prot); 2451 if (err) 2452 return err; 2453 } while (p4d++, addr = next, addr != end); 2454 return 0; 2455 } 2456 2457 /* 2458 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2459 * must have pre-validated the caching bits of the pgprot_t. 2460 */ 2461 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2462 unsigned long pfn, unsigned long size, pgprot_t prot) 2463 { 2464 pgd_t *pgd; 2465 unsigned long next; 2466 unsigned long end = addr + PAGE_ALIGN(size); 2467 struct mm_struct *mm = vma->vm_mm; 2468 int err; 2469 2470 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2471 return -EINVAL; 2472 2473 /* 2474 * Physically remapped pages are special. Tell the 2475 * rest of the world about it: 2476 * VM_IO tells people not to look at these pages 2477 * (accesses can have side effects). 2478 * VM_PFNMAP tells the core MM that the base pages are just 2479 * raw PFN mappings, and do not have a "struct page" associated 2480 * with them. 2481 * VM_DONTEXPAND 2482 * Disable vma merging and expanding with mremap(). 2483 * VM_DONTDUMP 2484 * Omit vma from core dump, even when VM_IO turned off. 2485 * 2486 * There's a horrible special case to handle copy-on-write 2487 * behaviour that some programs depend on. We mark the "original" 2488 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2489 * See vm_normal_page() for details. 2490 */ 2491 if (is_cow_mapping(vma->vm_flags)) { 2492 if (addr != vma->vm_start || end != vma->vm_end) 2493 return -EINVAL; 2494 vma->vm_pgoff = pfn; 2495 } 2496 2497 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2498 2499 BUG_ON(addr >= end); 2500 pfn -= addr >> PAGE_SHIFT; 2501 pgd = pgd_offset(mm, addr); 2502 flush_cache_range(vma, addr, end); 2503 do { 2504 next = pgd_addr_end(addr, end); 2505 err = remap_p4d_range(mm, pgd, addr, next, 2506 pfn + (addr >> PAGE_SHIFT), prot); 2507 if (err) 2508 return err; 2509 } while (pgd++, addr = next, addr != end); 2510 2511 return 0; 2512 } 2513 2514 /** 2515 * remap_pfn_range - remap kernel memory to userspace 2516 * @vma: user vma to map to 2517 * @addr: target page aligned user address to start at 2518 * @pfn: page frame number of kernel physical memory address 2519 * @size: size of mapping area 2520 * @prot: page protection flags for this mapping 2521 * 2522 * Note: this is only safe if the mm semaphore is held when called. 2523 * 2524 * Return: %0 on success, negative error code otherwise. 2525 */ 2526 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2527 unsigned long pfn, unsigned long size, pgprot_t prot) 2528 { 2529 int err; 2530 2531 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2532 if (err) 2533 return -EINVAL; 2534 2535 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2536 if (err) 2537 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2538 return err; 2539 } 2540 EXPORT_SYMBOL(remap_pfn_range); 2541 2542 /** 2543 * vm_iomap_memory - remap memory to userspace 2544 * @vma: user vma to map to 2545 * @start: start of the physical memory to be mapped 2546 * @len: size of area 2547 * 2548 * This is a simplified io_remap_pfn_range() for common driver use. The 2549 * driver just needs to give us the physical memory range to be mapped, 2550 * we'll figure out the rest from the vma information. 2551 * 2552 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2553 * whatever write-combining details or similar. 2554 * 2555 * Return: %0 on success, negative error code otherwise. 2556 */ 2557 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2558 { 2559 unsigned long vm_len, pfn, pages; 2560 2561 /* Check that the physical memory area passed in looks valid */ 2562 if (start + len < start) 2563 return -EINVAL; 2564 /* 2565 * You *really* shouldn't map things that aren't page-aligned, 2566 * but we've historically allowed it because IO memory might 2567 * just have smaller alignment. 2568 */ 2569 len += start & ~PAGE_MASK; 2570 pfn = start >> PAGE_SHIFT; 2571 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2572 if (pfn + pages < pfn) 2573 return -EINVAL; 2574 2575 /* We start the mapping 'vm_pgoff' pages into the area */ 2576 if (vma->vm_pgoff > pages) 2577 return -EINVAL; 2578 pfn += vma->vm_pgoff; 2579 pages -= vma->vm_pgoff; 2580 2581 /* Can we fit all of the mapping? */ 2582 vm_len = vma->vm_end - vma->vm_start; 2583 if (vm_len >> PAGE_SHIFT > pages) 2584 return -EINVAL; 2585 2586 /* Ok, let it rip */ 2587 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2588 } 2589 EXPORT_SYMBOL(vm_iomap_memory); 2590 2591 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2592 unsigned long addr, unsigned long end, 2593 pte_fn_t fn, void *data, bool create, 2594 pgtbl_mod_mask *mask) 2595 { 2596 pte_t *pte, *mapped_pte; 2597 int err = 0; 2598 spinlock_t *ptl; 2599 2600 if (create) { 2601 mapped_pte = pte = (mm == &init_mm) ? 2602 pte_alloc_kernel_track(pmd, addr, mask) : 2603 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2604 if (!pte) 2605 return -ENOMEM; 2606 } else { 2607 mapped_pte = pte = (mm == &init_mm) ? 2608 pte_offset_kernel(pmd, addr) : 2609 pte_offset_map_lock(mm, pmd, addr, &ptl); 2610 if (!pte) 2611 return -EINVAL; 2612 } 2613 2614 arch_enter_lazy_mmu_mode(); 2615 2616 if (fn) { 2617 do { 2618 if (create || !pte_none(ptep_get(pte))) { 2619 err = fn(pte++, addr, data); 2620 if (err) 2621 break; 2622 } 2623 } while (addr += PAGE_SIZE, addr != end); 2624 } 2625 *mask |= PGTBL_PTE_MODIFIED; 2626 2627 arch_leave_lazy_mmu_mode(); 2628 2629 if (mm != &init_mm) 2630 pte_unmap_unlock(mapped_pte, ptl); 2631 return err; 2632 } 2633 2634 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2635 unsigned long addr, unsigned long end, 2636 pte_fn_t fn, void *data, bool create, 2637 pgtbl_mod_mask *mask) 2638 { 2639 pmd_t *pmd; 2640 unsigned long next; 2641 int err = 0; 2642 2643 BUG_ON(pud_huge(*pud)); 2644 2645 if (create) { 2646 pmd = pmd_alloc_track(mm, pud, addr, mask); 2647 if (!pmd) 2648 return -ENOMEM; 2649 } else { 2650 pmd = pmd_offset(pud, addr); 2651 } 2652 do { 2653 next = pmd_addr_end(addr, end); 2654 if (pmd_none(*pmd) && !create) 2655 continue; 2656 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2657 return -EINVAL; 2658 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2659 if (!create) 2660 continue; 2661 pmd_clear_bad(pmd); 2662 } 2663 err = apply_to_pte_range(mm, pmd, addr, next, 2664 fn, data, create, mask); 2665 if (err) 2666 break; 2667 } while (pmd++, addr = next, addr != end); 2668 2669 return err; 2670 } 2671 2672 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2673 unsigned long addr, unsigned long end, 2674 pte_fn_t fn, void *data, bool create, 2675 pgtbl_mod_mask *mask) 2676 { 2677 pud_t *pud; 2678 unsigned long next; 2679 int err = 0; 2680 2681 if (create) { 2682 pud = pud_alloc_track(mm, p4d, addr, mask); 2683 if (!pud) 2684 return -ENOMEM; 2685 } else { 2686 pud = pud_offset(p4d, addr); 2687 } 2688 do { 2689 next = pud_addr_end(addr, end); 2690 if (pud_none(*pud) && !create) 2691 continue; 2692 if (WARN_ON_ONCE(pud_leaf(*pud))) 2693 return -EINVAL; 2694 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2695 if (!create) 2696 continue; 2697 pud_clear_bad(pud); 2698 } 2699 err = apply_to_pmd_range(mm, pud, addr, next, 2700 fn, data, create, mask); 2701 if (err) 2702 break; 2703 } while (pud++, addr = next, addr != end); 2704 2705 return err; 2706 } 2707 2708 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2709 unsigned long addr, unsigned long end, 2710 pte_fn_t fn, void *data, bool create, 2711 pgtbl_mod_mask *mask) 2712 { 2713 p4d_t *p4d; 2714 unsigned long next; 2715 int err = 0; 2716 2717 if (create) { 2718 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2719 if (!p4d) 2720 return -ENOMEM; 2721 } else { 2722 p4d = p4d_offset(pgd, addr); 2723 } 2724 do { 2725 next = p4d_addr_end(addr, end); 2726 if (p4d_none(*p4d) && !create) 2727 continue; 2728 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2729 return -EINVAL; 2730 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2731 if (!create) 2732 continue; 2733 p4d_clear_bad(p4d); 2734 } 2735 err = apply_to_pud_range(mm, p4d, addr, next, 2736 fn, data, create, mask); 2737 if (err) 2738 break; 2739 } while (p4d++, addr = next, addr != end); 2740 2741 return err; 2742 } 2743 2744 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2745 unsigned long size, pte_fn_t fn, 2746 void *data, bool create) 2747 { 2748 pgd_t *pgd; 2749 unsigned long start = addr, next; 2750 unsigned long end = addr + size; 2751 pgtbl_mod_mask mask = 0; 2752 int err = 0; 2753 2754 if (WARN_ON(addr >= end)) 2755 return -EINVAL; 2756 2757 pgd = pgd_offset(mm, addr); 2758 do { 2759 next = pgd_addr_end(addr, end); 2760 if (pgd_none(*pgd) && !create) 2761 continue; 2762 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2763 return -EINVAL; 2764 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2765 if (!create) 2766 continue; 2767 pgd_clear_bad(pgd); 2768 } 2769 err = apply_to_p4d_range(mm, pgd, addr, next, 2770 fn, data, create, &mask); 2771 if (err) 2772 break; 2773 } while (pgd++, addr = next, addr != end); 2774 2775 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2776 arch_sync_kernel_mappings(start, start + size); 2777 2778 return err; 2779 } 2780 2781 /* 2782 * Scan a region of virtual memory, filling in page tables as necessary 2783 * and calling a provided function on each leaf page table. 2784 */ 2785 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2786 unsigned long size, pte_fn_t fn, void *data) 2787 { 2788 return __apply_to_page_range(mm, addr, size, fn, data, true); 2789 } 2790 EXPORT_SYMBOL_GPL(apply_to_page_range); 2791 2792 /* 2793 * Scan a region of virtual memory, calling a provided function on 2794 * each leaf page table where it exists. 2795 * 2796 * Unlike apply_to_page_range, this does _not_ fill in page tables 2797 * where they are absent. 2798 */ 2799 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2800 unsigned long size, pte_fn_t fn, void *data) 2801 { 2802 return __apply_to_page_range(mm, addr, size, fn, data, false); 2803 } 2804 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2805 2806 /* 2807 * handle_pte_fault chooses page fault handler according to an entry which was 2808 * read non-atomically. Before making any commitment, on those architectures 2809 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2810 * parts, do_swap_page must check under lock before unmapping the pte and 2811 * proceeding (but do_wp_page is only called after already making such a check; 2812 * and do_anonymous_page can safely check later on). 2813 */ 2814 static inline int pte_unmap_same(struct vm_fault *vmf) 2815 { 2816 int same = 1; 2817 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2818 if (sizeof(pte_t) > sizeof(unsigned long)) { 2819 spin_lock(vmf->ptl); 2820 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 2821 spin_unlock(vmf->ptl); 2822 } 2823 #endif 2824 pte_unmap(vmf->pte); 2825 vmf->pte = NULL; 2826 return same; 2827 } 2828 2829 /* 2830 * Return: 2831 * 0: copied succeeded 2832 * -EHWPOISON: copy failed due to hwpoison in source page 2833 * -EAGAIN: copied failed (some other reason) 2834 */ 2835 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2836 struct vm_fault *vmf) 2837 { 2838 int ret; 2839 void *kaddr; 2840 void __user *uaddr; 2841 struct vm_area_struct *vma = vmf->vma; 2842 struct mm_struct *mm = vma->vm_mm; 2843 unsigned long addr = vmf->address; 2844 2845 if (likely(src)) { 2846 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2847 memory_failure_queue(page_to_pfn(src), 0); 2848 return -EHWPOISON; 2849 } 2850 return 0; 2851 } 2852 2853 /* 2854 * If the source page was a PFN mapping, we don't have 2855 * a "struct page" for it. We do a best-effort copy by 2856 * just copying from the original user address. If that 2857 * fails, we just zero-fill it. Live with it. 2858 */ 2859 kaddr = kmap_local_page(dst); 2860 pagefault_disable(); 2861 uaddr = (void __user *)(addr & PAGE_MASK); 2862 2863 /* 2864 * On architectures with software "accessed" bits, we would 2865 * take a double page fault, so mark it accessed here. 2866 */ 2867 vmf->pte = NULL; 2868 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2869 pte_t entry; 2870 2871 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2872 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2873 /* 2874 * Other thread has already handled the fault 2875 * and update local tlb only 2876 */ 2877 if (vmf->pte) 2878 update_mmu_tlb(vma, addr, vmf->pte); 2879 ret = -EAGAIN; 2880 goto pte_unlock; 2881 } 2882 2883 entry = pte_mkyoung(vmf->orig_pte); 2884 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2885 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 2886 } 2887 2888 /* 2889 * This really shouldn't fail, because the page is there 2890 * in the page tables. But it might just be unreadable, 2891 * in which case we just give up and fill the result with 2892 * zeroes. 2893 */ 2894 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2895 if (vmf->pte) 2896 goto warn; 2897 2898 /* Re-validate under PTL if the page is still mapped */ 2899 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2900 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2901 /* The PTE changed under us, update local tlb */ 2902 if (vmf->pte) 2903 update_mmu_tlb(vma, addr, vmf->pte); 2904 ret = -EAGAIN; 2905 goto pte_unlock; 2906 } 2907 2908 /* 2909 * The same page can be mapped back since last copy attempt. 2910 * Try to copy again under PTL. 2911 */ 2912 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2913 /* 2914 * Give a warn in case there can be some obscure 2915 * use-case 2916 */ 2917 warn: 2918 WARN_ON_ONCE(1); 2919 clear_page(kaddr); 2920 } 2921 } 2922 2923 ret = 0; 2924 2925 pte_unlock: 2926 if (vmf->pte) 2927 pte_unmap_unlock(vmf->pte, vmf->ptl); 2928 pagefault_enable(); 2929 kunmap_local(kaddr); 2930 flush_dcache_page(dst); 2931 2932 return ret; 2933 } 2934 2935 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2936 { 2937 struct file *vm_file = vma->vm_file; 2938 2939 if (vm_file) 2940 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2941 2942 /* 2943 * Special mappings (e.g. VDSO) do not have any file so fake 2944 * a default GFP_KERNEL for them. 2945 */ 2946 return GFP_KERNEL; 2947 } 2948 2949 /* 2950 * Notify the address space that the page is about to become writable so that 2951 * it can prohibit this or wait for the page to get into an appropriate state. 2952 * 2953 * We do this without the lock held, so that it can sleep if it needs to. 2954 */ 2955 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 2956 { 2957 vm_fault_t ret; 2958 unsigned int old_flags = vmf->flags; 2959 2960 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2961 2962 if (vmf->vma->vm_file && 2963 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2964 return VM_FAULT_SIGBUS; 2965 2966 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2967 /* Restore original flags so that caller is not surprised */ 2968 vmf->flags = old_flags; 2969 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2970 return ret; 2971 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2972 folio_lock(folio); 2973 if (!folio->mapping) { 2974 folio_unlock(folio); 2975 return 0; /* retry */ 2976 } 2977 ret |= VM_FAULT_LOCKED; 2978 } else 2979 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2980 return ret; 2981 } 2982 2983 /* 2984 * Handle dirtying of a page in shared file mapping on a write fault. 2985 * 2986 * The function expects the page to be locked and unlocks it. 2987 */ 2988 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2989 { 2990 struct vm_area_struct *vma = vmf->vma; 2991 struct address_space *mapping; 2992 struct folio *folio = page_folio(vmf->page); 2993 bool dirtied; 2994 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2995 2996 dirtied = folio_mark_dirty(folio); 2997 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 2998 /* 2999 * Take a local copy of the address_space - folio.mapping may be zeroed 3000 * by truncate after folio_unlock(). The address_space itself remains 3001 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3002 * release semantics to prevent the compiler from undoing this copying. 3003 */ 3004 mapping = folio_raw_mapping(folio); 3005 folio_unlock(folio); 3006 3007 if (!page_mkwrite) 3008 file_update_time(vma->vm_file); 3009 3010 /* 3011 * Throttle page dirtying rate down to writeback speed. 3012 * 3013 * mapping may be NULL here because some device drivers do not 3014 * set page.mapping but still dirty their pages 3015 * 3016 * Drop the mmap_lock before waiting on IO, if we can. The file 3017 * is pinning the mapping, as per above. 3018 */ 3019 if ((dirtied || page_mkwrite) && mapping) { 3020 struct file *fpin; 3021 3022 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3023 balance_dirty_pages_ratelimited(mapping); 3024 if (fpin) { 3025 fput(fpin); 3026 return VM_FAULT_COMPLETED; 3027 } 3028 } 3029 3030 return 0; 3031 } 3032 3033 /* 3034 * Handle write page faults for pages that can be reused in the current vma 3035 * 3036 * This can happen either due to the mapping being with the VM_SHARED flag, 3037 * or due to us being the last reference standing to the page. In either 3038 * case, all we need to do here is to mark the page as writable and update 3039 * any related book-keeping. 3040 */ 3041 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3042 __releases(vmf->ptl) 3043 { 3044 struct vm_area_struct *vma = vmf->vma; 3045 pte_t entry; 3046 3047 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3048 3049 if (folio) { 3050 VM_BUG_ON(folio_test_anon(folio) && 3051 !PageAnonExclusive(vmf->page)); 3052 /* 3053 * Clear the folio's cpupid information as the existing 3054 * information potentially belongs to a now completely 3055 * unrelated process. 3056 */ 3057 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3058 } 3059 3060 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3061 entry = pte_mkyoung(vmf->orig_pte); 3062 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3063 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3064 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3065 pte_unmap_unlock(vmf->pte, vmf->ptl); 3066 count_vm_event(PGREUSE); 3067 } 3068 3069 /* 3070 * We could add a bitflag somewhere, but for now, we know that all 3071 * vm_ops that have a ->map_pages have been audited and don't need 3072 * the mmap_lock to be held. 3073 */ 3074 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3075 { 3076 struct vm_area_struct *vma = vmf->vma; 3077 3078 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3079 return 0; 3080 vma_end_read(vma); 3081 return VM_FAULT_RETRY; 3082 } 3083 3084 static vm_fault_t vmf_anon_prepare(struct vm_fault *vmf) 3085 { 3086 struct vm_area_struct *vma = vmf->vma; 3087 3088 if (likely(vma->anon_vma)) 3089 return 0; 3090 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3091 vma_end_read(vma); 3092 return VM_FAULT_RETRY; 3093 } 3094 if (__anon_vma_prepare(vma)) 3095 return VM_FAULT_OOM; 3096 return 0; 3097 } 3098 3099 /* 3100 * Handle the case of a page which we actually need to copy to a new page, 3101 * either due to COW or unsharing. 3102 * 3103 * Called with mmap_lock locked and the old page referenced, but 3104 * without the ptl held. 3105 * 3106 * High level logic flow: 3107 * 3108 * - Allocate a page, copy the content of the old page to the new one. 3109 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3110 * - Take the PTL. If the pte changed, bail out and release the allocated page 3111 * - If the pte is still the way we remember it, update the page table and all 3112 * relevant references. This includes dropping the reference the page-table 3113 * held to the old page, as well as updating the rmap. 3114 * - In any case, unlock the PTL and drop the reference we took to the old page. 3115 */ 3116 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3117 { 3118 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3119 struct vm_area_struct *vma = vmf->vma; 3120 struct mm_struct *mm = vma->vm_mm; 3121 struct folio *old_folio = NULL; 3122 struct folio *new_folio = NULL; 3123 pte_t entry; 3124 int page_copied = 0; 3125 struct mmu_notifier_range range; 3126 vm_fault_t ret; 3127 bool pfn_is_zero; 3128 3129 delayacct_wpcopy_start(); 3130 3131 if (vmf->page) 3132 old_folio = page_folio(vmf->page); 3133 ret = vmf_anon_prepare(vmf); 3134 if (unlikely(ret)) 3135 goto out; 3136 3137 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3138 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3139 if (!new_folio) 3140 goto oom; 3141 3142 if (!pfn_is_zero) { 3143 int err; 3144 3145 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3146 if (err) { 3147 /* 3148 * COW failed, if the fault was solved by other, 3149 * it's fine. If not, userspace would re-fault on 3150 * the same address and we will handle the fault 3151 * from the second attempt. 3152 * The -EHWPOISON case will not be retried. 3153 */ 3154 folio_put(new_folio); 3155 if (old_folio) 3156 folio_put(old_folio); 3157 3158 delayacct_wpcopy_end(); 3159 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3160 } 3161 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3162 } 3163 3164 __folio_mark_uptodate(new_folio); 3165 3166 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3167 vmf->address & PAGE_MASK, 3168 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3169 mmu_notifier_invalidate_range_start(&range); 3170 3171 /* 3172 * Re-check the pte - we dropped the lock 3173 */ 3174 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3175 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3176 if (old_folio) { 3177 if (!folio_test_anon(old_folio)) { 3178 dec_mm_counter(mm, mm_counter_file(&old_folio->page)); 3179 inc_mm_counter(mm, MM_ANONPAGES); 3180 } 3181 } else { 3182 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3183 inc_mm_counter(mm, MM_ANONPAGES); 3184 } 3185 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3186 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3187 entry = pte_sw_mkyoung(entry); 3188 if (unlikely(unshare)) { 3189 if (pte_soft_dirty(vmf->orig_pte)) 3190 entry = pte_mksoft_dirty(entry); 3191 if (pte_uffd_wp(vmf->orig_pte)) 3192 entry = pte_mkuffd_wp(entry); 3193 } else { 3194 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3195 } 3196 3197 /* 3198 * Clear the pte entry and flush it first, before updating the 3199 * pte with the new entry, to keep TLBs on different CPUs in 3200 * sync. This code used to set the new PTE then flush TLBs, but 3201 * that left a window where the new PTE could be loaded into 3202 * some TLBs while the old PTE remains in others. 3203 */ 3204 ptep_clear_flush(vma, vmf->address, vmf->pte); 3205 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3206 folio_add_lru_vma(new_folio, vma); 3207 /* 3208 * We call the notify macro here because, when using secondary 3209 * mmu page tables (such as kvm shadow page tables), we want the 3210 * new page to be mapped directly into the secondary page table. 3211 */ 3212 BUG_ON(unshare && pte_write(entry)); 3213 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3214 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3215 if (old_folio) { 3216 /* 3217 * Only after switching the pte to the new page may 3218 * we remove the mapcount here. Otherwise another 3219 * process may come and find the rmap count decremented 3220 * before the pte is switched to the new page, and 3221 * "reuse" the old page writing into it while our pte 3222 * here still points into it and can be read by other 3223 * threads. 3224 * 3225 * The critical issue is to order this 3226 * folio_remove_rmap_pte() with the ptp_clear_flush 3227 * above. Those stores are ordered by (if nothing else,) 3228 * the barrier present in the atomic_add_negative 3229 * in folio_remove_rmap_pte(); 3230 * 3231 * Then the TLB flush in ptep_clear_flush ensures that 3232 * no process can access the old page before the 3233 * decremented mapcount is visible. And the old page 3234 * cannot be reused until after the decremented 3235 * mapcount is visible. So transitively, TLBs to 3236 * old page will be flushed before it can be reused. 3237 */ 3238 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3239 } 3240 3241 /* Free the old page.. */ 3242 new_folio = old_folio; 3243 page_copied = 1; 3244 pte_unmap_unlock(vmf->pte, vmf->ptl); 3245 } else if (vmf->pte) { 3246 update_mmu_tlb(vma, vmf->address, vmf->pte); 3247 pte_unmap_unlock(vmf->pte, vmf->ptl); 3248 } 3249 3250 mmu_notifier_invalidate_range_end(&range); 3251 3252 if (new_folio) 3253 folio_put(new_folio); 3254 if (old_folio) { 3255 if (page_copied) 3256 free_swap_cache(&old_folio->page); 3257 folio_put(old_folio); 3258 } 3259 3260 delayacct_wpcopy_end(); 3261 return 0; 3262 oom: 3263 ret = VM_FAULT_OOM; 3264 out: 3265 if (old_folio) 3266 folio_put(old_folio); 3267 3268 delayacct_wpcopy_end(); 3269 return ret; 3270 } 3271 3272 /** 3273 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3274 * writeable once the page is prepared 3275 * 3276 * @vmf: structure describing the fault 3277 * @folio: the folio of vmf->page 3278 * 3279 * This function handles all that is needed to finish a write page fault in a 3280 * shared mapping due to PTE being read-only once the mapped page is prepared. 3281 * It handles locking of PTE and modifying it. 3282 * 3283 * The function expects the page to be locked or other protection against 3284 * concurrent faults / writeback (such as DAX radix tree locks). 3285 * 3286 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3287 * we acquired PTE lock. 3288 */ 3289 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3290 { 3291 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3292 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3293 &vmf->ptl); 3294 if (!vmf->pte) 3295 return VM_FAULT_NOPAGE; 3296 /* 3297 * We might have raced with another page fault while we released the 3298 * pte_offset_map_lock. 3299 */ 3300 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3301 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3302 pte_unmap_unlock(vmf->pte, vmf->ptl); 3303 return VM_FAULT_NOPAGE; 3304 } 3305 wp_page_reuse(vmf, folio); 3306 return 0; 3307 } 3308 3309 /* 3310 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3311 * mapping 3312 */ 3313 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3314 { 3315 struct vm_area_struct *vma = vmf->vma; 3316 3317 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3318 vm_fault_t ret; 3319 3320 pte_unmap_unlock(vmf->pte, vmf->ptl); 3321 ret = vmf_can_call_fault(vmf); 3322 if (ret) 3323 return ret; 3324 3325 vmf->flags |= FAULT_FLAG_MKWRITE; 3326 ret = vma->vm_ops->pfn_mkwrite(vmf); 3327 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3328 return ret; 3329 return finish_mkwrite_fault(vmf, NULL); 3330 } 3331 wp_page_reuse(vmf, NULL); 3332 return 0; 3333 } 3334 3335 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3336 __releases(vmf->ptl) 3337 { 3338 struct vm_area_struct *vma = vmf->vma; 3339 vm_fault_t ret = 0; 3340 3341 folio_get(folio); 3342 3343 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3344 vm_fault_t tmp; 3345 3346 pte_unmap_unlock(vmf->pte, vmf->ptl); 3347 tmp = vmf_can_call_fault(vmf); 3348 if (tmp) { 3349 folio_put(folio); 3350 return tmp; 3351 } 3352 3353 tmp = do_page_mkwrite(vmf, folio); 3354 if (unlikely(!tmp || (tmp & 3355 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3356 folio_put(folio); 3357 return tmp; 3358 } 3359 tmp = finish_mkwrite_fault(vmf, folio); 3360 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3361 folio_unlock(folio); 3362 folio_put(folio); 3363 return tmp; 3364 } 3365 } else { 3366 wp_page_reuse(vmf, folio); 3367 folio_lock(folio); 3368 } 3369 ret |= fault_dirty_shared_page(vmf); 3370 folio_put(folio); 3371 3372 return ret; 3373 } 3374 3375 static bool wp_can_reuse_anon_folio(struct folio *folio, 3376 struct vm_area_struct *vma) 3377 { 3378 /* 3379 * We have to verify under folio lock: these early checks are 3380 * just an optimization to avoid locking the folio and freeing 3381 * the swapcache if there is little hope that we can reuse. 3382 * 3383 * KSM doesn't necessarily raise the folio refcount. 3384 */ 3385 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3386 return false; 3387 if (!folio_test_lru(folio)) 3388 /* 3389 * We cannot easily detect+handle references from 3390 * remote LRU caches or references to LRU folios. 3391 */ 3392 lru_add_drain(); 3393 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3394 return false; 3395 if (!folio_trylock(folio)) 3396 return false; 3397 if (folio_test_swapcache(folio)) 3398 folio_free_swap(folio); 3399 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3400 folio_unlock(folio); 3401 return false; 3402 } 3403 /* 3404 * Ok, we've got the only folio reference from our mapping 3405 * and the folio is locked, it's dark out, and we're wearing 3406 * sunglasses. Hit it. 3407 */ 3408 folio_move_anon_rmap(folio, vma); 3409 folio_unlock(folio); 3410 return true; 3411 } 3412 3413 /* 3414 * This routine handles present pages, when 3415 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3416 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3417 * (FAULT_FLAG_UNSHARE) 3418 * 3419 * It is done by copying the page to a new address and decrementing the 3420 * shared-page counter for the old page. 3421 * 3422 * Note that this routine assumes that the protection checks have been 3423 * done by the caller (the low-level page fault routine in most cases). 3424 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3425 * done any necessary COW. 3426 * 3427 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3428 * though the page will change only once the write actually happens. This 3429 * avoids a few races, and potentially makes it more efficient. 3430 * 3431 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3432 * but allow concurrent faults), with pte both mapped and locked. 3433 * We return with mmap_lock still held, but pte unmapped and unlocked. 3434 */ 3435 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3436 __releases(vmf->ptl) 3437 { 3438 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3439 struct vm_area_struct *vma = vmf->vma; 3440 struct folio *folio = NULL; 3441 pte_t pte; 3442 3443 if (likely(!unshare)) { 3444 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3445 if (!userfaultfd_wp_async(vma)) { 3446 pte_unmap_unlock(vmf->pte, vmf->ptl); 3447 return handle_userfault(vmf, VM_UFFD_WP); 3448 } 3449 3450 /* 3451 * Nothing needed (cache flush, TLB invalidations, 3452 * etc.) because we're only removing the uffd-wp bit, 3453 * which is completely invisible to the user. 3454 */ 3455 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3456 3457 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3458 /* 3459 * Update this to be prepared for following up CoW 3460 * handling 3461 */ 3462 vmf->orig_pte = pte; 3463 } 3464 3465 /* 3466 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3467 * is flushed in this case before copying. 3468 */ 3469 if (unlikely(userfaultfd_wp(vmf->vma) && 3470 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3471 flush_tlb_page(vmf->vma, vmf->address); 3472 } 3473 3474 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3475 3476 if (vmf->page) 3477 folio = page_folio(vmf->page); 3478 3479 /* 3480 * Shared mapping: we are guaranteed to have VM_WRITE and 3481 * FAULT_FLAG_WRITE set at this point. 3482 */ 3483 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3484 /* 3485 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3486 * VM_PFNMAP VMA. 3487 * 3488 * We should not cow pages in a shared writeable mapping. 3489 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3490 */ 3491 if (!vmf->page) 3492 return wp_pfn_shared(vmf); 3493 return wp_page_shared(vmf, folio); 3494 } 3495 3496 /* 3497 * Private mapping: create an exclusive anonymous page copy if reuse 3498 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3499 * 3500 * If we encounter a page that is marked exclusive, we must reuse 3501 * the page without further checks. 3502 */ 3503 if (folio && folio_test_anon(folio) && 3504 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3505 if (!PageAnonExclusive(vmf->page)) 3506 SetPageAnonExclusive(vmf->page); 3507 if (unlikely(unshare)) { 3508 pte_unmap_unlock(vmf->pte, vmf->ptl); 3509 return 0; 3510 } 3511 wp_page_reuse(vmf, folio); 3512 return 0; 3513 } 3514 /* 3515 * Ok, we need to copy. Oh, well.. 3516 */ 3517 if (folio) 3518 folio_get(folio); 3519 3520 pte_unmap_unlock(vmf->pte, vmf->ptl); 3521 #ifdef CONFIG_KSM 3522 if (folio && folio_test_ksm(folio)) 3523 count_vm_event(COW_KSM); 3524 #endif 3525 return wp_page_copy(vmf); 3526 } 3527 3528 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3529 unsigned long start_addr, unsigned long end_addr, 3530 struct zap_details *details) 3531 { 3532 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3533 } 3534 3535 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3536 pgoff_t first_index, 3537 pgoff_t last_index, 3538 struct zap_details *details) 3539 { 3540 struct vm_area_struct *vma; 3541 pgoff_t vba, vea, zba, zea; 3542 3543 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3544 vba = vma->vm_pgoff; 3545 vea = vba + vma_pages(vma) - 1; 3546 zba = max(first_index, vba); 3547 zea = min(last_index, vea); 3548 3549 unmap_mapping_range_vma(vma, 3550 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3551 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3552 details); 3553 } 3554 } 3555 3556 /** 3557 * unmap_mapping_folio() - Unmap single folio from processes. 3558 * @folio: The locked folio to be unmapped. 3559 * 3560 * Unmap this folio from any userspace process which still has it mmaped. 3561 * Typically, for efficiency, the range of nearby pages has already been 3562 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3563 * truncation or invalidation holds the lock on a folio, it may find that 3564 * the page has been remapped again: and then uses unmap_mapping_folio() 3565 * to unmap it finally. 3566 */ 3567 void unmap_mapping_folio(struct folio *folio) 3568 { 3569 struct address_space *mapping = folio->mapping; 3570 struct zap_details details = { }; 3571 pgoff_t first_index; 3572 pgoff_t last_index; 3573 3574 VM_BUG_ON(!folio_test_locked(folio)); 3575 3576 first_index = folio->index; 3577 last_index = folio_next_index(folio) - 1; 3578 3579 details.even_cows = false; 3580 details.single_folio = folio; 3581 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3582 3583 i_mmap_lock_read(mapping); 3584 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3585 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3586 last_index, &details); 3587 i_mmap_unlock_read(mapping); 3588 } 3589 3590 /** 3591 * unmap_mapping_pages() - Unmap pages from processes. 3592 * @mapping: The address space containing pages to be unmapped. 3593 * @start: Index of first page to be unmapped. 3594 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3595 * @even_cows: Whether to unmap even private COWed pages. 3596 * 3597 * Unmap the pages in this address space from any userspace process which 3598 * has them mmaped. Generally, you want to remove COWed pages as well when 3599 * a file is being truncated, but not when invalidating pages from the page 3600 * cache. 3601 */ 3602 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3603 pgoff_t nr, bool even_cows) 3604 { 3605 struct zap_details details = { }; 3606 pgoff_t first_index = start; 3607 pgoff_t last_index = start + nr - 1; 3608 3609 details.even_cows = even_cows; 3610 if (last_index < first_index) 3611 last_index = ULONG_MAX; 3612 3613 i_mmap_lock_read(mapping); 3614 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3615 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3616 last_index, &details); 3617 i_mmap_unlock_read(mapping); 3618 } 3619 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3620 3621 /** 3622 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3623 * address_space corresponding to the specified byte range in the underlying 3624 * file. 3625 * 3626 * @mapping: the address space containing mmaps to be unmapped. 3627 * @holebegin: byte in first page to unmap, relative to the start of 3628 * the underlying file. This will be rounded down to a PAGE_SIZE 3629 * boundary. Note that this is different from truncate_pagecache(), which 3630 * must keep the partial page. In contrast, we must get rid of 3631 * partial pages. 3632 * @holelen: size of prospective hole in bytes. This will be rounded 3633 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3634 * end of the file. 3635 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3636 * but 0 when invalidating pagecache, don't throw away private data. 3637 */ 3638 void unmap_mapping_range(struct address_space *mapping, 3639 loff_t const holebegin, loff_t const holelen, int even_cows) 3640 { 3641 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3642 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3643 3644 /* Check for overflow. */ 3645 if (sizeof(holelen) > sizeof(hlen)) { 3646 long long holeend = 3647 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3648 if (holeend & ~(long long)ULONG_MAX) 3649 hlen = ULONG_MAX - hba + 1; 3650 } 3651 3652 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3653 } 3654 EXPORT_SYMBOL(unmap_mapping_range); 3655 3656 /* 3657 * Restore a potential device exclusive pte to a working pte entry 3658 */ 3659 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3660 { 3661 struct folio *folio = page_folio(vmf->page); 3662 struct vm_area_struct *vma = vmf->vma; 3663 struct mmu_notifier_range range; 3664 vm_fault_t ret; 3665 3666 /* 3667 * We need a reference to lock the folio because we don't hold 3668 * the PTL so a racing thread can remove the device-exclusive 3669 * entry and unmap it. If the folio is free the entry must 3670 * have been removed already. If it happens to have already 3671 * been re-allocated after being freed all we do is lock and 3672 * unlock it. 3673 */ 3674 if (!folio_try_get(folio)) 3675 return 0; 3676 3677 ret = folio_lock_or_retry(folio, vmf); 3678 if (ret) { 3679 folio_put(folio); 3680 return ret; 3681 } 3682 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3683 vma->vm_mm, vmf->address & PAGE_MASK, 3684 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3685 mmu_notifier_invalidate_range_start(&range); 3686 3687 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3688 &vmf->ptl); 3689 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3690 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3691 3692 if (vmf->pte) 3693 pte_unmap_unlock(vmf->pte, vmf->ptl); 3694 folio_unlock(folio); 3695 folio_put(folio); 3696 3697 mmu_notifier_invalidate_range_end(&range); 3698 return 0; 3699 } 3700 3701 static inline bool should_try_to_free_swap(struct folio *folio, 3702 struct vm_area_struct *vma, 3703 unsigned int fault_flags) 3704 { 3705 if (!folio_test_swapcache(folio)) 3706 return false; 3707 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3708 folio_test_mlocked(folio)) 3709 return true; 3710 /* 3711 * If we want to map a page that's in the swapcache writable, we 3712 * have to detect via the refcount if we're really the exclusive 3713 * user. Try freeing the swapcache to get rid of the swapcache 3714 * reference only in case it's likely that we'll be the exlusive user. 3715 */ 3716 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3717 folio_ref_count(folio) == 2; 3718 } 3719 3720 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3721 { 3722 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3723 vmf->address, &vmf->ptl); 3724 if (!vmf->pte) 3725 return 0; 3726 /* 3727 * Be careful so that we will only recover a special uffd-wp pte into a 3728 * none pte. Otherwise it means the pte could have changed, so retry. 3729 * 3730 * This should also cover the case where e.g. the pte changed 3731 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3732 * So is_pte_marker() check is not enough to safely drop the pte. 3733 */ 3734 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3735 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3736 pte_unmap_unlock(vmf->pte, vmf->ptl); 3737 return 0; 3738 } 3739 3740 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3741 { 3742 if (vma_is_anonymous(vmf->vma)) 3743 return do_anonymous_page(vmf); 3744 else 3745 return do_fault(vmf); 3746 } 3747 3748 /* 3749 * This is actually a page-missing access, but with uffd-wp special pte 3750 * installed. It means this pte was wr-protected before being unmapped. 3751 */ 3752 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3753 { 3754 /* 3755 * Just in case there're leftover special ptes even after the region 3756 * got unregistered - we can simply clear them. 3757 */ 3758 if (unlikely(!userfaultfd_wp(vmf->vma))) 3759 return pte_marker_clear(vmf); 3760 3761 return do_pte_missing(vmf); 3762 } 3763 3764 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3765 { 3766 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3767 unsigned long marker = pte_marker_get(entry); 3768 3769 /* 3770 * PTE markers should never be empty. If anything weird happened, 3771 * the best thing to do is to kill the process along with its mm. 3772 */ 3773 if (WARN_ON_ONCE(!marker)) 3774 return VM_FAULT_SIGBUS; 3775 3776 /* Higher priority than uffd-wp when data corrupted */ 3777 if (marker & PTE_MARKER_POISONED) 3778 return VM_FAULT_HWPOISON; 3779 3780 if (pte_marker_entry_uffd_wp(entry)) 3781 return pte_marker_handle_uffd_wp(vmf); 3782 3783 /* This is an unknown pte marker */ 3784 return VM_FAULT_SIGBUS; 3785 } 3786 3787 /* 3788 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3789 * but allow concurrent faults), and pte mapped but not yet locked. 3790 * We return with pte unmapped and unlocked. 3791 * 3792 * We return with the mmap_lock locked or unlocked in the same cases 3793 * as does filemap_fault(). 3794 */ 3795 vm_fault_t do_swap_page(struct vm_fault *vmf) 3796 { 3797 struct vm_area_struct *vma = vmf->vma; 3798 struct folio *swapcache, *folio = NULL; 3799 struct page *page; 3800 struct swap_info_struct *si = NULL; 3801 rmap_t rmap_flags = RMAP_NONE; 3802 bool exclusive = false; 3803 swp_entry_t entry; 3804 pte_t pte; 3805 vm_fault_t ret = 0; 3806 void *shadow = NULL; 3807 3808 if (!pte_unmap_same(vmf)) 3809 goto out; 3810 3811 entry = pte_to_swp_entry(vmf->orig_pte); 3812 if (unlikely(non_swap_entry(entry))) { 3813 if (is_migration_entry(entry)) { 3814 migration_entry_wait(vma->vm_mm, vmf->pmd, 3815 vmf->address); 3816 } else if (is_device_exclusive_entry(entry)) { 3817 vmf->page = pfn_swap_entry_to_page(entry); 3818 ret = remove_device_exclusive_entry(vmf); 3819 } else if (is_device_private_entry(entry)) { 3820 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3821 /* 3822 * migrate_to_ram is not yet ready to operate 3823 * under VMA lock. 3824 */ 3825 vma_end_read(vma); 3826 ret = VM_FAULT_RETRY; 3827 goto out; 3828 } 3829 3830 vmf->page = pfn_swap_entry_to_page(entry); 3831 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3832 vmf->address, &vmf->ptl); 3833 if (unlikely(!vmf->pte || 3834 !pte_same(ptep_get(vmf->pte), 3835 vmf->orig_pte))) 3836 goto unlock; 3837 3838 /* 3839 * Get a page reference while we know the page can't be 3840 * freed. 3841 */ 3842 get_page(vmf->page); 3843 pte_unmap_unlock(vmf->pte, vmf->ptl); 3844 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3845 put_page(vmf->page); 3846 } else if (is_hwpoison_entry(entry)) { 3847 ret = VM_FAULT_HWPOISON; 3848 } else if (is_pte_marker_entry(entry)) { 3849 ret = handle_pte_marker(vmf); 3850 } else { 3851 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3852 ret = VM_FAULT_SIGBUS; 3853 } 3854 goto out; 3855 } 3856 3857 /* Prevent swapoff from happening to us. */ 3858 si = get_swap_device(entry); 3859 if (unlikely(!si)) 3860 goto out; 3861 3862 folio = swap_cache_get_folio(entry, vma, vmf->address); 3863 if (folio) 3864 page = folio_file_page(folio, swp_offset(entry)); 3865 swapcache = folio; 3866 3867 if (!folio) { 3868 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3869 __swap_count(entry) == 1) { 3870 /* skip swapcache */ 3871 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3872 vma, vmf->address, false); 3873 page = &folio->page; 3874 if (folio) { 3875 __folio_set_locked(folio); 3876 __folio_set_swapbacked(folio); 3877 3878 if (mem_cgroup_swapin_charge_folio(folio, 3879 vma->vm_mm, GFP_KERNEL, 3880 entry)) { 3881 ret = VM_FAULT_OOM; 3882 goto out_page; 3883 } 3884 mem_cgroup_swapin_uncharge_swap(entry); 3885 3886 shadow = get_shadow_from_swap_cache(entry); 3887 if (shadow) 3888 workingset_refault(folio, shadow); 3889 3890 folio_add_lru(folio); 3891 3892 /* To provide entry to swap_read_folio() */ 3893 folio->swap = entry; 3894 swap_read_folio(folio, true, NULL); 3895 folio->private = NULL; 3896 } 3897 } else { 3898 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3899 vmf); 3900 if (page) 3901 folio = page_folio(page); 3902 swapcache = folio; 3903 } 3904 3905 if (!folio) { 3906 /* 3907 * Back out if somebody else faulted in this pte 3908 * while we released the pte lock. 3909 */ 3910 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3911 vmf->address, &vmf->ptl); 3912 if (likely(vmf->pte && 3913 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3914 ret = VM_FAULT_OOM; 3915 goto unlock; 3916 } 3917 3918 /* Had to read the page from swap area: Major fault */ 3919 ret = VM_FAULT_MAJOR; 3920 count_vm_event(PGMAJFAULT); 3921 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3922 } else if (PageHWPoison(page)) { 3923 /* 3924 * hwpoisoned dirty swapcache pages are kept for killing 3925 * owner processes (which may be unknown at hwpoison time) 3926 */ 3927 ret = VM_FAULT_HWPOISON; 3928 goto out_release; 3929 } 3930 3931 ret |= folio_lock_or_retry(folio, vmf); 3932 if (ret & VM_FAULT_RETRY) 3933 goto out_release; 3934 3935 if (swapcache) { 3936 /* 3937 * Make sure folio_free_swap() or swapoff did not release the 3938 * swapcache from under us. The page pin, and pte_same test 3939 * below, are not enough to exclude that. Even if it is still 3940 * swapcache, we need to check that the page's swap has not 3941 * changed. 3942 */ 3943 if (unlikely(!folio_test_swapcache(folio) || 3944 page_swap_entry(page).val != entry.val)) 3945 goto out_page; 3946 3947 /* 3948 * KSM sometimes has to copy on read faults, for example, if 3949 * page->index of !PageKSM() pages would be nonlinear inside the 3950 * anon VMA -- PageKSM() is lost on actual swapout. 3951 */ 3952 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 3953 if (unlikely(!folio)) { 3954 ret = VM_FAULT_OOM; 3955 folio = swapcache; 3956 goto out_page; 3957 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 3958 ret = VM_FAULT_HWPOISON; 3959 folio = swapcache; 3960 goto out_page; 3961 } 3962 if (folio != swapcache) 3963 page = folio_page(folio, 0); 3964 3965 /* 3966 * If we want to map a page that's in the swapcache writable, we 3967 * have to detect via the refcount if we're really the exclusive 3968 * owner. Try removing the extra reference from the local LRU 3969 * caches if required. 3970 */ 3971 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3972 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3973 lru_add_drain(); 3974 } 3975 3976 folio_throttle_swaprate(folio, GFP_KERNEL); 3977 3978 /* 3979 * Back out if somebody else already faulted in this pte. 3980 */ 3981 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3982 &vmf->ptl); 3983 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3984 goto out_nomap; 3985 3986 if (unlikely(!folio_test_uptodate(folio))) { 3987 ret = VM_FAULT_SIGBUS; 3988 goto out_nomap; 3989 } 3990 3991 /* 3992 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3993 * must never point at an anonymous page in the swapcache that is 3994 * PG_anon_exclusive. Sanity check that this holds and especially, that 3995 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3996 * check after taking the PT lock and making sure that nobody 3997 * concurrently faulted in this page and set PG_anon_exclusive. 3998 */ 3999 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4000 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4001 4002 /* 4003 * Check under PT lock (to protect against concurrent fork() sharing 4004 * the swap entry concurrently) for certainly exclusive pages. 4005 */ 4006 if (!folio_test_ksm(folio)) { 4007 exclusive = pte_swp_exclusive(vmf->orig_pte); 4008 if (folio != swapcache) { 4009 /* 4010 * We have a fresh page that is not exposed to the 4011 * swapcache -> certainly exclusive. 4012 */ 4013 exclusive = true; 4014 } else if (exclusive && folio_test_writeback(folio) && 4015 data_race(si->flags & SWP_STABLE_WRITES)) { 4016 /* 4017 * This is tricky: not all swap backends support 4018 * concurrent page modifications while under writeback. 4019 * 4020 * So if we stumble over such a page in the swapcache 4021 * we must not set the page exclusive, otherwise we can 4022 * map it writable without further checks and modify it 4023 * while still under writeback. 4024 * 4025 * For these problematic swap backends, simply drop the 4026 * exclusive marker: this is perfectly fine as we start 4027 * writeback only if we fully unmapped the page and 4028 * there are no unexpected references on the page after 4029 * unmapping succeeded. After fully unmapped, no 4030 * further GUP references (FOLL_GET and FOLL_PIN) can 4031 * appear, so dropping the exclusive marker and mapping 4032 * it only R/O is fine. 4033 */ 4034 exclusive = false; 4035 } 4036 } 4037 4038 /* 4039 * Some architectures may have to restore extra metadata to the page 4040 * when reading from swap. This metadata may be indexed by swap entry 4041 * so this must be called before swap_free(). 4042 */ 4043 arch_swap_restore(entry, folio); 4044 4045 /* 4046 * Remove the swap entry and conditionally try to free up the swapcache. 4047 * We're already holding a reference on the page but haven't mapped it 4048 * yet. 4049 */ 4050 swap_free(entry); 4051 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4052 folio_free_swap(folio); 4053 4054 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4055 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 4056 pte = mk_pte(page, vma->vm_page_prot); 4057 4058 /* 4059 * Same logic as in do_wp_page(); however, optimize for pages that are 4060 * certainly not shared either because we just allocated them without 4061 * exposing them to the swapcache or because the swap entry indicates 4062 * exclusivity. 4063 */ 4064 if (!folio_test_ksm(folio) && 4065 (exclusive || folio_ref_count(folio) == 1)) { 4066 if (vmf->flags & FAULT_FLAG_WRITE) { 4067 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 4068 vmf->flags &= ~FAULT_FLAG_WRITE; 4069 } 4070 rmap_flags |= RMAP_EXCLUSIVE; 4071 } 4072 flush_icache_page(vma, page); 4073 if (pte_swp_soft_dirty(vmf->orig_pte)) 4074 pte = pte_mksoft_dirty(pte); 4075 if (pte_swp_uffd_wp(vmf->orig_pte)) 4076 pte = pte_mkuffd_wp(pte); 4077 vmf->orig_pte = pte; 4078 4079 /* ksm created a completely new copy */ 4080 if (unlikely(folio != swapcache && swapcache)) { 4081 folio_add_new_anon_rmap(folio, vma, vmf->address); 4082 folio_add_lru_vma(folio, vma); 4083 } else { 4084 folio_add_anon_rmap_pte(folio, page, vma, vmf->address, 4085 rmap_flags); 4086 } 4087 4088 VM_BUG_ON(!folio_test_anon(folio) || 4089 (pte_write(pte) && !PageAnonExclusive(page))); 4090 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4091 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 4092 4093 folio_unlock(folio); 4094 if (folio != swapcache && swapcache) { 4095 /* 4096 * Hold the lock to avoid the swap entry to be reused 4097 * until we take the PT lock for the pte_same() check 4098 * (to avoid false positives from pte_same). For 4099 * further safety release the lock after the swap_free 4100 * so that the swap count won't change under a 4101 * parallel locked swapcache. 4102 */ 4103 folio_unlock(swapcache); 4104 folio_put(swapcache); 4105 } 4106 4107 if (vmf->flags & FAULT_FLAG_WRITE) { 4108 ret |= do_wp_page(vmf); 4109 if (ret & VM_FAULT_ERROR) 4110 ret &= VM_FAULT_ERROR; 4111 goto out; 4112 } 4113 4114 /* No need to invalidate - it was non-present before */ 4115 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4116 unlock: 4117 if (vmf->pte) 4118 pte_unmap_unlock(vmf->pte, vmf->ptl); 4119 out: 4120 if (si) 4121 put_swap_device(si); 4122 return ret; 4123 out_nomap: 4124 if (vmf->pte) 4125 pte_unmap_unlock(vmf->pte, vmf->ptl); 4126 out_page: 4127 folio_unlock(folio); 4128 out_release: 4129 folio_put(folio); 4130 if (folio != swapcache && swapcache) { 4131 folio_unlock(swapcache); 4132 folio_put(swapcache); 4133 } 4134 if (si) 4135 put_swap_device(si); 4136 return ret; 4137 } 4138 4139 static bool pte_range_none(pte_t *pte, int nr_pages) 4140 { 4141 int i; 4142 4143 for (i = 0; i < nr_pages; i++) { 4144 if (!pte_none(ptep_get_lockless(pte + i))) 4145 return false; 4146 } 4147 4148 return true; 4149 } 4150 4151 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4152 { 4153 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4154 struct vm_area_struct *vma = vmf->vma; 4155 unsigned long orders; 4156 struct folio *folio; 4157 unsigned long addr; 4158 pte_t *pte; 4159 gfp_t gfp; 4160 int order; 4161 4162 /* 4163 * If uffd is active for the vma we need per-page fault fidelity to 4164 * maintain the uffd semantics. 4165 */ 4166 if (unlikely(userfaultfd_armed(vma))) 4167 goto fallback; 4168 4169 /* 4170 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4171 * for this vma. Then filter out the orders that can't be allocated over 4172 * the faulting address and still be fully contained in the vma. 4173 */ 4174 orders = thp_vma_allowable_orders(vma, vma->vm_flags, false, true, true, 4175 BIT(PMD_ORDER) - 1); 4176 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4177 4178 if (!orders) 4179 goto fallback; 4180 4181 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4182 if (!pte) 4183 return ERR_PTR(-EAGAIN); 4184 4185 /* 4186 * Find the highest order where the aligned range is completely 4187 * pte_none(). Note that all remaining orders will be completely 4188 * pte_none(). 4189 */ 4190 order = highest_order(orders); 4191 while (orders) { 4192 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4193 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4194 break; 4195 order = next_order(&orders, order); 4196 } 4197 4198 pte_unmap(pte); 4199 4200 /* Try allocating the highest of the remaining orders. */ 4201 gfp = vma_thp_gfp_mask(vma); 4202 while (orders) { 4203 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4204 folio = vma_alloc_folio(gfp, order, vma, addr, true); 4205 if (folio) { 4206 clear_huge_page(&folio->page, vmf->address, 1 << order); 4207 return folio; 4208 } 4209 order = next_order(&orders, order); 4210 } 4211 4212 fallback: 4213 #endif 4214 return vma_alloc_zeroed_movable_folio(vmf->vma, vmf->address); 4215 } 4216 4217 /* 4218 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4219 * but allow concurrent faults), and pte mapped but not yet locked. 4220 * We return with mmap_lock still held, but pte unmapped and unlocked. 4221 */ 4222 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4223 { 4224 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4225 struct vm_area_struct *vma = vmf->vma; 4226 unsigned long addr = vmf->address; 4227 struct folio *folio; 4228 vm_fault_t ret = 0; 4229 int nr_pages = 1; 4230 pte_t entry; 4231 int i; 4232 4233 /* File mapping without ->vm_ops ? */ 4234 if (vma->vm_flags & VM_SHARED) 4235 return VM_FAULT_SIGBUS; 4236 4237 /* 4238 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4239 * be distinguished from a transient failure of pte_offset_map(). 4240 */ 4241 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4242 return VM_FAULT_OOM; 4243 4244 /* Use the zero-page for reads */ 4245 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4246 !mm_forbids_zeropage(vma->vm_mm)) { 4247 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4248 vma->vm_page_prot)); 4249 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4250 vmf->address, &vmf->ptl); 4251 if (!vmf->pte) 4252 goto unlock; 4253 if (vmf_pte_changed(vmf)) { 4254 update_mmu_tlb(vma, vmf->address, vmf->pte); 4255 goto unlock; 4256 } 4257 ret = check_stable_address_space(vma->vm_mm); 4258 if (ret) 4259 goto unlock; 4260 /* Deliver the page fault to userland, check inside PT lock */ 4261 if (userfaultfd_missing(vma)) { 4262 pte_unmap_unlock(vmf->pte, vmf->ptl); 4263 return handle_userfault(vmf, VM_UFFD_MISSING); 4264 } 4265 goto setpte; 4266 } 4267 4268 /* Allocate our own private page. */ 4269 if (unlikely(anon_vma_prepare(vma))) 4270 goto oom; 4271 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 4272 folio = alloc_anon_folio(vmf); 4273 if (IS_ERR(folio)) 4274 return 0; 4275 if (!folio) 4276 goto oom; 4277 4278 nr_pages = folio_nr_pages(folio); 4279 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4280 4281 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 4282 goto oom_free_page; 4283 folio_throttle_swaprate(folio, GFP_KERNEL); 4284 4285 /* 4286 * The memory barrier inside __folio_mark_uptodate makes sure that 4287 * preceding stores to the page contents become visible before 4288 * the set_pte_at() write. 4289 */ 4290 __folio_mark_uptodate(folio); 4291 4292 entry = mk_pte(&folio->page, vma->vm_page_prot); 4293 entry = pte_sw_mkyoung(entry); 4294 if (vma->vm_flags & VM_WRITE) 4295 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4296 4297 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 4298 if (!vmf->pte) 4299 goto release; 4300 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 4301 update_mmu_tlb(vma, addr, vmf->pte); 4302 goto release; 4303 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 4304 for (i = 0; i < nr_pages; i++) 4305 update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i); 4306 goto release; 4307 } 4308 4309 ret = check_stable_address_space(vma->vm_mm); 4310 if (ret) 4311 goto release; 4312 4313 /* Deliver the page fault to userland, check inside PT lock */ 4314 if (userfaultfd_missing(vma)) { 4315 pte_unmap_unlock(vmf->pte, vmf->ptl); 4316 folio_put(folio); 4317 return handle_userfault(vmf, VM_UFFD_MISSING); 4318 } 4319 4320 folio_ref_add(folio, nr_pages - 1); 4321 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4322 folio_add_new_anon_rmap(folio, vma, addr); 4323 folio_add_lru_vma(folio, vma); 4324 setpte: 4325 if (uffd_wp) 4326 entry = pte_mkuffd_wp(entry); 4327 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 4328 4329 /* No need to invalidate - it was non-present before */ 4330 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 4331 unlock: 4332 if (vmf->pte) 4333 pte_unmap_unlock(vmf->pte, vmf->ptl); 4334 return ret; 4335 release: 4336 folio_put(folio); 4337 goto unlock; 4338 oom_free_page: 4339 folio_put(folio); 4340 oom: 4341 return VM_FAULT_OOM; 4342 } 4343 4344 /* 4345 * The mmap_lock must have been held on entry, and may have been 4346 * released depending on flags and vma->vm_ops->fault() return value. 4347 * See filemap_fault() and __lock_page_retry(). 4348 */ 4349 static vm_fault_t __do_fault(struct vm_fault *vmf) 4350 { 4351 struct vm_area_struct *vma = vmf->vma; 4352 struct folio *folio; 4353 vm_fault_t ret; 4354 4355 /* 4356 * Preallocate pte before we take page_lock because this might lead to 4357 * deadlocks for memcg reclaim which waits for pages under writeback: 4358 * lock_page(A) 4359 * SetPageWriteback(A) 4360 * unlock_page(A) 4361 * lock_page(B) 4362 * lock_page(B) 4363 * pte_alloc_one 4364 * shrink_page_list 4365 * wait_on_page_writeback(A) 4366 * SetPageWriteback(B) 4367 * unlock_page(B) 4368 * # flush A, B to clear the writeback 4369 */ 4370 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4371 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4372 if (!vmf->prealloc_pte) 4373 return VM_FAULT_OOM; 4374 } 4375 4376 ret = vma->vm_ops->fault(vmf); 4377 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4378 VM_FAULT_DONE_COW))) 4379 return ret; 4380 4381 folio = page_folio(vmf->page); 4382 if (unlikely(PageHWPoison(vmf->page))) { 4383 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4384 if (ret & VM_FAULT_LOCKED) { 4385 if (page_mapped(vmf->page)) 4386 unmap_mapping_folio(folio); 4387 /* Retry if a clean folio was removed from the cache. */ 4388 if (mapping_evict_folio(folio->mapping, folio)) 4389 poisonret = VM_FAULT_NOPAGE; 4390 folio_unlock(folio); 4391 } 4392 folio_put(folio); 4393 vmf->page = NULL; 4394 return poisonret; 4395 } 4396 4397 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4398 folio_lock(folio); 4399 else 4400 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 4401 4402 return ret; 4403 } 4404 4405 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4406 static void deposit_prealloc_pte(struct vm_fault *vmf) 4407 { 4408 struct vm_area_struct *vma = vmf->vma; 4409 4410 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4411 /* 4412 * We are going to consume the prealloc table, 4413 * count that as nr_ptes. 4414 */ 4415 mm_inc_nr_ptes(vma->vm_mm); 4416 vmf->prealloc_pte = NULL; 4417 } 4418 4419 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4420 { 4421 struct folio *folio = page_folio(page); 4422 struct vm_area_struct *vma = vmf->vma; 4423 bool write = vmf->flags & FAULT_FLAG_WRITE; 4424 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4425 pmd_t entry; 4426 vm_fault_t ret = VM_FAULT_FALLBACK; 4427 4428 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 4429 return ret; 4430 4431 if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER) 4432 return ret; 4433 4434 /* 4435 * Just backoff if any subpage of a THP is corrupted otherwise 4436 * the corrupted page may mapped by PMD silently to escape the 4437 * check. This kind of THP just can be PTE mapped. Access to 4438 * the corrupted subpage should trigger SIGBUS as expected. 4439 */ 4440 if (unlikely(folio_test_has_hwpoisoned(folio))) 4441 return ret; 4442 4443 /* 4444 * Archs like ppc64 need additional space to store information 4445 * related to pte entry. Use the preallocated table for that. 4446 */ 4447 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4448 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4449 if (!vmf->prealloc_pte) 4450 return VM_FAULT_OOM; 4451 } 4452 4453 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4454 if (unlikely(!pmd_none(*vmf->pmd))) 4455 goto out; 4456 4457 flush_icache_pages(vma, page, HPAGE_PMD_NR); 4458 4459 entry = mk_huge_pmd(page, vma->vm_page_prot); 4460 if (write) 4461 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4462 4463 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4464 folio_add_file_rmap_pmd(folio, page, vma); 4465 4466 /* 4467 * deposit and withdraw with pmd lock held 4468 */ 4469 if (arch_needs_pgtable_deposit()) 4470 deposit_prealloc_pte(vmf); 4471 4472 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4473 4474 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4475 4476 /* fault is handled */ 4477 ret = 0; 4478 count_vm_event(THP_FILE_MAPPED); 4479 out: 4480 spin_unlock(vmf->ptl); 4481 return ret; 4482 } 4483 #else 4484 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4485 { 4486 return VM_FAULT_FALLBACK; 4487 } 4488 #endif 4489 4490 /** 4491 * set_pte_range - Set a range of PTEs to point to pages in a folio. 4492 * @vmf: Fault decription. 4493 * @folio: The folio that contains @page. 4494 * @page: The first page to create a PTE for. 4495 * @nr: The number of PTEs to create. 4496 * @addr: The first address to create a PTE for. 4497 */ 4498 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 4499 struct page *page, unsigned int nr, unsigned long addr) 4500 { 4501 struct vm_area_struct *vma = vmf->vma; 4502 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4503 bool write = vmf->flags & FAULT_FLAG_WRITE; 4504 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE); 4505 pte_t entry; 4506 4507 flush_icache_pages(vma, page, nr); 4508 entry = mk_pte(page, vma->vm_page_prot); 4509 4510 if (prefault && arch_wants_old_prefaulted_pte()) 4511 entry = pte_mkold(entry); 4512 else 4513 entry = pte_sw_mkyoung(entry); 4514 4515 if (write) 4516 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4517 if (unlikely(uffd_wp)) 4518 entry = pte_mkuffd_wp(entry); 4519 /* copy-on-write page */ 4520 if (write && !(vma->vm_flags & VM_SHARED)) { 4521 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr); 4522 VM_BUG_ON_FOLIO(nr != 1, folio); 4523 folio_add_new_anon_rmap(folio, vma, addr); 4524 folio_add_lru_vma(folio, vma); 4525 } else { 4526 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr); 4527 folio_add_file_rmap_ptes(folio, page, nr, vma); 4528 } 4529 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 4530 4531 /* no need to invalidate: a not-present page won't be cached */ 4532 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 4533 } 4534 4535 static bool vmf_pte_changed(struct vm_fault *vmf) 4536 { 4537 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4538 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4539 4540 return !pte_none(ptep_get(vmf->pte)); 4541 } 4542 4543 /** 4544 * finish_fault - finish page fault once we have prepared the page to fault 4545 * 4546 * @vmf: structure describing the fault 4547 * 4548 * This function handles all that is needed to finish a page fault once the 4549 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4550 * given page, adds reverse page mapping, handles memcg charges and LRU 4551 * addition. 4552 * 4553 * The function expects the page to be locked and on success it consumes a 4554 * reference of a page being mapped (for the PTE which maps it). 4555 * 4556 * Return: %0 on success, %VM_FAULT_ code in case of error. 4557 */ 4558 vm_fault_t finish_fault(struct vm_fault *vmf) 4559 { 4560 struct vm_area_struct *vma = vmf->vma; 4561 struct page *page; 4562 vm_fault_t ret; 4563 4564 /* Did we COW the page? */ 4565 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4566 page = vmf->cow_page; 4567 else 4568 page = vmf->page; 4569 4570 /* 4571 * check even for read faults because we might have lost our CoWed 4572 * page 4573 */ 4574 if (!(vma->vm_flags & VM_SHARED)) { 4575 ret = check_stable_address_space(vma->vm_mm); 4576 if (ret) 4577 return ret; 4578 } 4579 4580 if (pmd_none(*vmf->pmd)) { 4581 if (PageTransCompound(page)) { 4582 ret = do_set_pmd(vmf, page); 4583 if (ret != VM_FAULT_FALLBACK) 4584 return ret; 4585 } 4586 4587 if (vmf->prealloc_pte) 4588 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4589 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4590 return VM_FAULT_OOM; 4591 } 4592 4593 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4594 vmf->address, &vmf->ptl); 4595 if (!vmf->pte) 4596 return VM_FAULT_NOPAGE; 4597 4598 /* Re-check under ptl */ 4599 if (likely(!vmf_pte_changed(vmf))) { 4600 struct folio *folio = page_folio(page); 4601 4602 set_pte_range(vmf, folio, page, 1, vmf->address); 4603 ret = 0; 4604 } else { 4605 update_mmu_tlb(vma, vmf->address, vmf->pte); 4606 ret = VM_FAULT_NOPAGE; 4607 } 4608 4609 pte_unmap_unlock(vmf->pte, vmf->ptl); 4610 return ret; 4611 } 4612 4613 static unsigned long fault_around_pages __read_mostly = 4614 65536 >> PAGE_SHIFT; 4615 4616 #ifdef CONFIG_DEBUG_FS 4617 static int fault_around_bytes_get(void *data, u64 *val) 4618 { 4619 *val = fault_around_pages << PAGE_SHIFT; 4620 return 0; 4621 } 4622 4623 /* 4624 * fault_around_bytes must be rounded down to the nearest page order as it's 4625 * what do_fault_around() expects to see. 4626 */ 4627 static int fault_around_bytes_set(void *data, u64 val) 4628 { 4629 if (val / PAGE_SIZE > PTRS_PER_PTE) 4630 return -EINVAL; 4631 4632 /* 4633 * The minimum value is 1 page, however this results in no fault-around 4634 * at all. See should_fault_around(). 4635 */ 4636 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL); 4637 4638 return 0; 4639 } 4640 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4641 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4642 4643 static int __init fault_around_debugfs(void) 4644 { 4645 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4646 &fault_around_bytes_fops); 4647 return 0; 4648 } 4649 late_initcall(fault_around_debugfs); 4650 #endif 4651 4652 /* 4653 * do_fault_around() tries to map few pages around the fault address. The hope 4654 * is that the pages will be needed soon and this will lower the number of 4655 * faults to handle. 4656 * 4657 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4658 * not ready to be mapped: not up-to-date, locked, etc. 4659 * 4660 * This function doesn't cross VMA or page table boundaries, in order to call 4661 * map_pages() and acquire a PTE lock only once. 4662 * 4663 * fault_around_pages defines how many pages we'll try to map. 4664 * do_fault_around() expects it to be set to a power of two less than or equal 4665 * to PTRS_PER_PTE. 4666 * 4667 * The virtual address of the area that we map is naturally aligned to 4668 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4669 * (and therefore to page order). This way it's easier to guarantee 4670 * that we don't cross page table boundaries. 4671 */ 4672 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4673 { 4674 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4675 pgoff_t pte_off = pte_index(vmf->address); 4676 /* The page offset of vmf->address within the VMA. */ 4677 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4678 pgoff_t from_pte, to_pte; 4679 vm_fault_t ret; 4680 4681 /* The PTE offset of the start address, clamped to the VMA. */ 4682 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4683 pte_off - min(pte_off, vma_off)); 4684 4685 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4686 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4687 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4688 4689 if (pmd_none(*vmf->pmd)) { 4690 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4691 if (!vmf->prealloc_pte) 4692 return VM_FAULT_OOM; 4693 } 4694 4695 rcu_read_lock(); 4696 ret = vmf->vma->vm_ops->map_pages(vmf, 4697 vmf->pgoff + from_pte - pte_off, 4698 vmf->pgoff + to_pte - pte_off); 4699 rcu_read_unlock(); 4700 4701 return ret; 4702 } 4703 4704 /* Return true if we should do read fault-around, false otherwise */ 4705 static inline bool should_fault_around(struct vm_fault *vmf) 4706 { 4707 /* No ->map_pages? No way to fault around... */ 4708 if (!vmf->vma->vm_ops->map_pages) 4709 return false; 4710 4711 if (uffd_disable_fault_around(vmf->vma)) 4712 return false; 4713 4714 /* A single page implies no faulting 'around' at all. */ 4715 return fault_around_pages > 1; 4716 } 4717 4718 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4719 { 4720 vm_fault_t ret = 0; 4721 struct folio *folio; 4722 4723 /* 4724 * Let's call ->map_pages() first and use ->fault() as fallback 4725 * if page by the offset is not ready to be mapped (cold cache or 4726 * something). 4727 */ 4728 if (should_fault_around(vmf)) { 4729 ret = do_fault_around(vmf); 4730 if (ret) 4731 return ret; 4732 } 4733 4734 ret = vmf_can_call_fault(vmf); 4735 if (ret) 4736 return ret; 4737 4738 ret = __do_fault(vmf); 4739 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4740 return ret; 4741 4742 ret |= finish_fault(vmf); 4743 folio = page_folio(vmf->page); 4744 folio_unlock(folio); 4745 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4746 folio_put(folio); 4747 return ret; 4748 } 4749 4750 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4751 { 4752 struct vm_area_struct *vma = vmf->vma; 4753 struct folio *folio; 4754 vm_fault_t ret; 4755 4756 ret = vmf_can_call_fault(vmf); 4757 if (!ret) 4758 ret = vmf_anon_prepare(vmf); 4759 if (ret) 4760 return ret; 4761 4762 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 4763 if (!folio) 4764 return VM_FAULT_OOM; 4765 4766 vmf->cow_page = &folio->page; 4767 4768 ret = __do_fault(vmf); 4769 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4770 goto uncharge_out; 4771 if (ret & VM_FAULT_DONE_COW) 4772 return ret; 4773 4774 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4775 __folio_mark_uptodate(folio); 4776 4777 ret |= finish_fault(vmf); 4778 unlock_page(vmf->page); 4779 put_page(vmf->page); 4780 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4781 goto uncharge_out; 4782 return ret; 4783 uncharge_out: 4784 folio_put(folio); 4785 return ret; 4786 } 4787 4788 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4789 { 4790 struct vm_area_struct *vma = vmf->vma; 4791 vm_fault_t ret, tmp; 4792 struct folio *folio; 4793 4794 ret = vmf_can_call_fault(vmf); 4795 if (ret) 4796 return ret; 4797 4798 ret = __do_fault(vmf); 4799 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4800 return ret; 4801 4802 folio = page_folio(vmf->page); 4803 4804 /* 4805 * Check if the backing address space wants to know that the page is 4806 * about to become writable 4807 */ 4808 if (vma->vm_ops->page_mkwrite) { 4809 folio_unlock(folio); 4810 tmp = do_page_mkwrite(vmf, folio); 4811 if (unlikely(!tmp || 4812 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4813 folio_put(folio); 4814 return tmp; 4815 } 4816 } 4817 4818 ret |= finish_fault(vmf); 4819 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4820 VM_FAULT_RETRY))) { 4821 folio_unlock(folio); 4822 folio_put(folio); 4823 return ret; 4824 } 4825 4826 ret |= fault_dirty_shared_page(vmf); 4827 return ret; 4828 } 4829 4830 /* 4831 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4832 * but allow concurrent faults). 4833 * The mmap_lock may have been released depending on flags and our 4834 * return value. See filemap_fault() and __folio_lock_or_retry(). 4835 * If mmap_lock is released, vma may become invalid (for example 4836 * by other thread calling munmap()). 4837 */ 4838 static vm_fault_t do_fault(struct vm_fault *vmf) 4839 { 4840 struct vm_area_struct *vma = vmf->vma; 4841 struct mm_struct *vm_mm = vma->vm_mm; 4842 vm_fault_t ret; 4843 4844 /* 4845 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4846 */ 4847 if (!vma->vm_ops->fault) { 4848 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4849 vmf->address, &vmf->ptl); 4850 if (unlikely(!vmf->pte)) 4851 ret = VM_FAULT_SIGBUS; 4852 else { 4853 /* 4854 * Make sure this is not a temporary clearing of pte 4855 * by holding ptl and checking again. A R/M/W update 4856 * of pte involves: take ptl, clearing the pte so that 4857 * we don't have concurrent modification by hardware 4858 * followed by an update. 4859 */ 4860 if (unlikely(pte_none(ptep_get(vmf->pte)))) 4861 ret = VM_FAULT_SIGBUS; 4862 else 4863 ret = VM_FAULT_NOPAGE; 4864 4865 pte_unmap_unlock(vmf->pte, vmf->ptl); 4866 } 4867 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4868 ret = do_read_fault(vmf); 4869 else if (!(vma->vm_flags & VM_SHARED)) 4870 ret = do_cow_fault(vmf); 4871 else 4872 ret = do_shared_fault(vmf); 4873 4874 /* preallocated pagetable is unused: free it */ 4875 if (vmf->prealloc_pte) { 4876 pte_free(vm_mm, vmf->prealloc_pte); 4877 vmf->prealloc_pte = NULL; 4878 } 4879 return ret; 4880 } 4881 4882 int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma, 4883 unsigned long addr, int page_nid, int *flags) 4884 { 4885 folio_get(folio); 4886 4887 /* Record the current PID acceesing VMA */ 4888 vma_set_access_pid_bit(vma); 4889 4890 count_vm_numa_event(NUMA_HINT_FAULTS); 4891 if (page_nid == numa_node_id()) { 4892 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4893 *flags |= TNF_FAULT_LOCAL; 4894 } 4895 4896 return mpol_misplaced(folio, vma, addr); 4897 } 4898 4899 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4900 { 4901 struct vm_area_struct *vma = vmf->vma; 4902 struct folio *folio = NULL; 4903 int nid = NUMA_NO_NODE; 4904 bool writable = false; 4905 int last_cpupid; 4906 int target_nid; 4907 pte_t pte, old_pte; 4908 int flags = 0; 4909 4910 /* 4911 * The "pte" at this point cannot be used safely without 4912 * validation through pte_unmap_same(). It's of NUMA type but 4913 * the pfn may be screwed if the read is non atomic. 4914 */ 4915 spin_lock(vmf->ptl); 4916 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4917 pte_unmap_unlock(vmf->pte, vmf->ptl); 4918 goto out; 4919 } 4920 4921 /* Get the normal PTE */ 4922 old_pte = ptep_get(vmf->pte); 4923 pte = pte_modify(old_pte, vma->vm_page_prot); 4924 4925 /* 4926 * Detect now whether the PTE could be writable; this information 4927 * is only valid while holding the PT lock. 4928 */ 4929 writable = pte_write(pte); 4930 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4931 can_change_pte_writable(vma, vmf->address, pte)) 4932 writable = true; 4933 4934 folio = vm_normal_folio(vma, vmf->address, pte); 4935 if (!folio || folio_is_zone_device(folio)) 4936 goto out_map; 4937 4938 /* TODO: handle PTE-mapped THP */ 4939 if (folio_test_large(folio)) 4940 goto out_map; 4941 4942 /* 4943 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4944 * much anyway since they can be in shared cache state. This misses 4945 * the case where a mapping is writable but the process never writes 4946 * to it but pte_write gets cleared during protection updates and 4947 * pte_dirty has unpredictable behaviour between PTE scan updates, 4948 * background writeback, dirty balancing and application behaviour. 4949 */ 4950 if (!writable) 4951 flags |= TNF_NO_GROUP; 4952 4953 /* 4954 * Flag if the folio is shared between multiple address spaces. This 4955 * is later used when determining whether to group tasks together 4956 */ 4957 if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED)) 4958 flags |= TNF_SHARED; 4959 4960 nid = folio_nid(folio); 4961 /* 4962 * For memory tiering mode, cpupid of slow memory page is used 4963 * to record page access time. So use default value. 4964 */ 4965 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4966 !node_is_toptier(nid)) 4967 last_cpupid = (-1 & LAST_CPUPID_MASK); 4968 else 4969 last_cpupid = folio_last_cpupid(folio); 4970 target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags); 4971 if (target_nid == NUMA_NO_NODE) { 4972 folio_put(folio); 4973 goto out_map; 4974 } 4975 pte_unmap_unlock(vmf->pte, vmf->ptl); 4976 writable = false; 4977 4978 /* Migrate to the requested node */ 4979 if (migrate_misplaced_folio(folio, vma, target_nid)) { 4980 nid = target_nid; 4981 flags |= TNF_MIGRATED; 4982 } else { 4983 flags |= TNF_MIGRATE_FAIL; 4984 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4985 vmf->address, &vmf->ptl); 4986 if (unlikely(!vmf->pte)) 4987 goto out; 4988 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4989 pte_unmap_unlock(vmf->pte, vmf->ptl); 4990 goto out; 4991 } 4992 goto out_map; 4993 } 4994 4995 out: 4996 if (nid != NUMA_NO_NODE) 4997 task_numa_fault(last_cpupid, nid, 1, flags); 4998 return 0; 4999 out_map: 5000 /* 5001 * Make it present again, depending on how arch implements 5002 * non-accessible ptes, some can allow access by kernel mode. 5003 */ 5004 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 5005 pte = pte_modify(old_pte, vma->vm_page_prot); 5006 pte = pte_mkyoung(pte); 5007 if (writable) 5008 pte = pte_mkwrite(pte, vma); 5009 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 5010 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 5011 pte_unmap_unlock(vmf->pte, vmf->ptl); 5012 goto out; 5013 } 5014 5015 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5016 { 5017 struct vm_area_struct *vma = vmf->vma; 5018 if (vma_is_anonymous(vma)) 5019 return do_huge_pmd_anonymous_page(vmf); 5020 if (vma->vm_ops->huge_fault) 5021 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5022 return VM_FAULT_FALLBACK; 5023 } 5024 5025 /* `inline' is required to avoid gcc 4.1.2 build error */ 5026 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5027 { 5028 struct vm_area_struct *vma = vmf->vma; 5029 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5030 vm_fault_t ret; 5031 5032 if (vma_is_anonymous(vma)) { 5033 if (likely(!unshare) && 5034 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5035 if (userfaultfd_wp_async(vmf->vma)) 5036 goto split; 5037 return handle_userfault(vmf, VM_UFFD_WP); 5038 } 5039 return do_huge_pmd_wp_page(vmf); 5040 } 5041 5042 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5043 if (vma->vm_ops->huge_fault) { 5044 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5045 if (!(ret & VM_FAULT_FALLBACK)) 5046 return ret; 5047 } 5048 } 5049 5050 split: 5051 /* COW or write-notify handled on pte level: split pmd. */ 5052 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5053 5054 return VM_FAULT_FALLBACK; 5055 } 5056 5057 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5058 { 5059 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5060 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5061 struct vm_area_struct *vma = vmf->vma; 5062 /* No support for anonymous transparent PUD pages yet */ 5063 if (vma_is_anonymous(vma)) 5064 return VM_FAULT_FALLBACK; 5065 if (vma->vm_ops->huge_fault) 5066 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5067 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5068 return VM_FAULT_FALLBACK; 5069 } 5070 5071 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5072 { 5073 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5074 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5075 struct vm_area_struct *vma = vmf->vma; 5076 vm_fault_t ret; 5077 5078 /* No support for anonymous transparent PUD pages yet */ 5079 if (vma_is_anonymous(vma)) 5080 goto split; 5081 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5082 if (vma->vm_ops->huge_fault) { 5083 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5084 if (!(ret & VM_FAULT_FALLBACK)) 5085 return ret; 5086 } 5087 } 5088 split: 5089 /* COW or write-notify not handled on PUD level: split pud.*/ 5090 __split_huge_pud(vma, vmf->pud, vmf->address); 5091 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5092 return VM_FAULT_FALLBACK; 5093 } 5094 5095 /* 5096 * These routines also need to handle stuff like marking pages dirty 5097 * and/or accessed for architectures that don't do it in hardware (most 5098 * RISC architectures). The early dirtying is also good on the i386. 5099 * 5100 * There is also a hook called "update_mmu_cache()" that architectures 5101 * with external mmu caches can use to update those (ie the Sparc or 5102 * PowerPC hashed page tables that act as extended TLBs). 5103 * 5104 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5105 * concurrent faults). 5106 * 5107 * The mmap_lock may have been released depending on flags and our return value. 5108 * See filemap_fault() and __folio_lock_or_retry(). 5109 */ 5110 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5111 { 5112 pte_t entry; 5113 5114 if (unlikely(pmd_none(*vmf->pmd))) { 5115 /* 5116 * Leave __pte_alloc() until later: because vm_ops->fault may 5117 * want to allocate huge page, and if we expose page table 5118 * for an instant, it will be difficult to retract from 5119 * concurrent faults and from rmap lookups. 5120 */ 5121 vmf->pte = NULL; 5122 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5123 } else { 5124 /* 5125 * A regular pmd is established and it can't morph into a huge 5126 * pmd by anon khugepaged, since that takes mmap_lock in write 5127 * mode; but shmem or file collapse to THP could still morph 5128 * it into a huge pmd: just retry later if so. 5129 */ 5130 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 5131 vmf->address, &vmf->ptl); 5132 if (unlikely(!vmf->pte)) 5133 return 0; 5134 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5135 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5136 5137 if (pte_none(vmf->orig_pte)) { 5138 pte_unmap(vmf->pte); 5139 vmf->pte = NULL; 5140 } 5141 } 5142 5143 if (!vmf->pte) 5144 return do_pte_missing(vmf); 5145 5146 if (!pte_present(vmf->orig_pte)) 5147 return do_swap_page(vmf); 5148 5149 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5150 return do_numa_page(vmf); 5151 5152 spin_lock(vmf->ptl); 5153 entry = vmf->orig_pte; 5154 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5155 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5156 goto unlock; 5157 } 5158 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5159 if (!pte_write(entry)) 5160 return do_wp_page(vmf); 5161 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5162 entry = pte_mkdirty(entry); 5163 } 5164 entry = pte_mkyoung(entry); 5165 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5166 vmf->flags & FAULT_FLAG_WRITE)) { 5167 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5168 vmf->pte, 1); 5169 } else { 5170 /* Skip spurious TLB flush for retried page fault */ 5171 if (vmf->flags & FAULT_FLAG_TRIED) 5172 goto unlock; 5173 /* 5174 * This is needed only for protection faults but the arch code 5175 * is not yet telling us if this is a protection fault or not. 5176 * This still avoids useless tlb flushes for .text page faults 5177 * with threads. 5178 */ 5179 if (vmf->flags & FAULT_FLAG_WRITE) 5180 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5181 vmf->pte); 5182 } 5183 unlock: 5184 pte_unmap_unlock(vmf->pte, vmf->ptl); 5185 return 0; 5186 } 5187 5188 /* 5189 * On entry, we hold either the VMA lock or the mmap_lock 5190 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5191 * the result, the mmap_lock is not held on exit. See filemap_fault() 5192 * and __folio_lock_or_retry(). 5193 */ 5194 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5195 unsigned long address, unsigned int flags) 5196 { 5197 struct vm_fault vmf = { 5198 .vma = vma, 5199 .address = address & PAGE_MASK, 5200 .real_address = address, 5201 .flags = flags, 5202 .pgoff = linear_page_index(vma, address), 5203 .gfp_mask = __get_fault_gfp_mask(vma), 5204 }; 5205 struct mm_struct *mm = vma->vm_mm; 5206 unsigned long vm_flags = vma->vm_flags; 5207 pgd_t *pgd; 5208 p4d_t *p4d; 5209 vm_fault_t ret; 5210 5211 pgd = pgd_offset(mm, address); 5212 p4d = p4d_alloc(mm, pgd, address); 5213 if (!p4d) 5214 return VM_FAULT_OOM; 5215 5216 vmf.pud = pud_alloc(mm, p4d, address); 5217 if (!vmf.pud) 5218 return VM_FAULT_OOM; 5219 retry_pud: 5220 if (pud_none(*vmf.pud) && 5221 thp_vma_allowable_order(vma, vm_flags, false, true, true, PUD_ORDER)) { 5222 ret = create_huge_pud(&vmf); 5223 if (!(ret & VM_FAULT_FALLBACK)) 5224 return ret; 5225 } else { 5226 pud_t orig_pud = *vmf.pud; 5227 5228 barrier(); 5229 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5230 5231 /* 5232 * TODO once we support anonymous PUDs: NUMA case and 5233 * FAULT_FLAG_UNSHARE handling. 5234 */ 5235 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5236 ret = wp_huge_pud(&vmf, orig_pud); 5237 if (!(ret & VM_FAULT_FALLBACK)) 5238 return ret; 5239 } else { 5240 huge_pud_set_accessed(&vmf, orig_pud); 5241 return 0; 5242 } 5243 } 5244 } 5245 5246 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5247 if (!vmf.pmd) 5248 return VM_FAULT_OOM; 5249 5250 /* Huge pud page fault raced with pmd_alloc? */ 5251 if (pud_trans_unstable(vmf.pud)) 5252 goto retry_pud; 5253 5254 if (pmd_none(*vmf.pmd) && 5255 thp_vma_allowable_order(vma, vm_flags, false, true, true, PMD_ORDER)) { 5256 ret = create_huge_pmd(&vmf); 5257 if (!(ret & VM_FAULT_FALLBACK)) 5258 return ret; 5259 } else { 5260 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5261 5262 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5263 VM_BUG_ON(thp_migration_supported() && 5264 !is_pmd_migration_entry(vmf.orig_pmd)); 5265 if (is_pmd_migration_entry(vmf.orig_pmd)) 5266 pmd_migration_entry_wait(mm, vmf.pmd); 5267 return 0; 5268 } 5269 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5270 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5271 return do_huge_pmd_numa_page(&vmf); 5272 5273 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5274 !pmd_write(vmf.orig_pmd)) { 5275 ret = wp_huge_pmd(&vmf); 5276 if (!(ret & VM_FAULT_FALLBACK)) 5277 return ret; 5278 } else { 5279 huge_pmd_set_accessed(&vmf); 5280 return 0; 5281 } 5282 } 5283 } 5284 5285 return handle_pte_fault(&vmf); 5286 } 5287 5288 /** 5289 * mm_account_fault - Do page fault accounting 5290 * @mm: mm from which memcg should be extracted. It can be NULL. 5291 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5292 * of perf event counters, but we'll still do the per-task accounting to 5293 * the task who triggered this page fault. 5294 * @address: the faulted address. 5295 * @flags: the fault flags. 5296 * @ret: the fault retcode. 5297 * 5298 * This will take care of most of the page fault accounting. Meanwhile, it 5299 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5300 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5301 * still be in per-arch page fault handlers at the entry of page fault. 5302 */ 5303 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5304 unsigned long address, unsigned int flags, 5305 vm_fault_t ret) 5306 { 5307 bool major; 5308 5309 /* Incomplete faults will be accounted upon completion. */ 5310 if (ret & VM_FAULT_RETRY) 5311 return; 5312 5313 /* 5314 * To preserve the behavior of older kernels, PGFAULT counters record 5315 * both successful and failed faults, as opposed to perf counters, 5316 * which ignore failed cases. 5317 */ 5318 count_vm_event(PGFAULT); 5319 count_memcg_event_mm(mm, PGFAULT); 5320 5321 /* 5322 * Do not account for unsuccessful faults (e.g. when the address wasn't 5323 * valid). That includes arch_vma_access_permitted() failing before 5324 * reaching here. So this is not a "this many hardware page faults" 5325 * counter. We should use the hw profiling for that. 5326 */ 5327 if (ret & VM_FAULT_ERROR) 5328 return; 5329 5330 /* 5331 * We define the fault as a major fault when the final successful fault 5332 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5333 * handle it immediately previously). 5334 */ 5335 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5336 5337 if (major) 5338 current->maj_flt++; 5339 else 5340 current->min_flt++; 5341 5342 /* 5343 * If the fault is done for GUP, regs will be NULL. We only do the 5344 * accounting for the per thread fault counters who triggered the 5345 * fault, and we skip the perf event updates. 5346 */ 5347 if (!regs) 5348 return; 5349 5350 if (major) 5351 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5352 else 5353 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5354 } 5355 5356 #ifdef CONFIG_LRU_GEN 5357 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5358 { 5359 /* the LRU algorithm only applies to accesses with recency */ 5360 current->in_lru_fault = vma_has_recency(vma); 5361 } 5362 5363 static void lru_gen_exit_fault(void) 5364 { 5365 current->in_lru_fault = false; 5366 } 5367 #else 5368 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5369 { 5370 } 5371 5372 static void lru_gen_exit_fault(void) 5373 { 5374 } 5375 #endif /* CONFIG_LRU_GEN */ 5376 5377 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5378 unsigned int *flags) 5379 { 5380 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5381 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5382 return VM_FAULT_SIGSEGV; 5383 /* 5384 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5385 * just treat it like an ordinary read-fault otherwise. 5386 */ 5387 if (!is_cow_mapping(vma->vm_flags)) 5388 *flags &= ~FAULT_FLAG_UNSHARE; 5389 } else if (*flags & FAULT_FLAG_WRITE) { 5390 /* Write faults on read-only mappings are impossible ... */ 5391 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5392 return VM_FAULT_SIGSEGV; 5393 /* ... and FOLL_FORCE only applies to COW mappings. */ 5394 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5395 !is_cow_mapping(vma->vm_flags))) 5396 return VM_FAULT_SIGSEGV; 5397 } 5398 #ifdef CONFIG_PER_VMA_LOCK 5399 /* 5400 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 5401 * the assumption that lock is dropped on VM_FAULT_RETRY. 5402 */ 5403 if (WARN_ON_ONCE((*flags & 5404 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 5405 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 5406 return VM_FAULT_SIGSEGV; 5407 #endif 5408 5409 return 0; 5410 } 5411 5412 /* 5413 * By the time we get here, we already hold the mm semaphore 5414 * 5415 * The mmap_lock may have been released depending on flags and our 5416 * return value. See filemap_fault() and __folio_lock_or_retry(). 5417 */ 5418 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5419 unsigned int flags, struct pt_regs *regs) 5420 { 5421 /* If the fault handler drops the mmap_lock, vma may be freed */ 5422 struct mm_struct *mm = vma->vm_mm; 5423 vm_fault_t ret; 5424 5425 __set_current_state(TASK_RUNNING); 5426 5427 ret = sanitize_fault_flags(vma, &flags); 5428 if (ret) 5429 goto out; 5430 5431 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5432 flags & FAULT_FLAG_INSTRUCTION, 5433 flags & FAULT_FLAG_REMOTE)) { 5434 ret = VM_FAULT_SIGSEGV; 5435 goto out; 5436 } 5437 5438 /* 5439 * Enable the memcg OOM handling for faults triggered in user 5440 * space. Kernel faults are handled more gracefully. 5441 */ 5442 if (flags & FAULT_FLAG_USER) 5443 mem_cgroup_enter_user_fault(); 5444 5445 lru_gen_enter_fault(vma); 5446 5447 if (unlikely(is_vm_hugetlb_page(vma))) 5448 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5449 else 5450 ret = __handle_mm_fault(vma, address, flags); 5451 5452 lru_gen_exit_fault(); 5453 5454 if (flags & FAULT_FLAG_USER) { 5455 mem_cgroup_exit_user_fault(); 5456 /* 5457 * The task may have entered a memcg OOM situation but 5458 * if the allocation error was handled gracefully (no 5459 * VM_FAULT_OOM), there is no need to kill anything. 5460 * Just clean up the OOM state peacefully. 5461 */ 5462 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5463 mem_cgroup_oom_synchronize(false); 5464 } 5465 out: 5466 mm_account_fault(mm, regs, address, flags, ret); 5467 5468 return ret; 5469 } 5470 EXPORT_SYMBOL_GPL(handle_mm_fault); 5471 5472 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 5473 #include <linux/extable.h> 5474 5475 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5476 { 5477 if (likely(mmap_read_trylock(mm))) 5478 return true; 5479 5480 if (regs && !user_mode(regs)) { 5481 unsigned long ip = exception_ip(regs); 5482 if (!search_exception_tables(ip)) 5483 return false; 5484 } 5485 5486 return !mmap_read_lock_killable(mm); 5487 } 5488 5489 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 5490 { 5491 /* 5492 * We don't have this operation yet. 5493 * 5494 * It should be easy enough to do: it's basically a 5495 * atomic_long_try_cmpxchg_acquire() 5496 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 5497 * it also needs the proper lockdep magic etc. 5498 */ 5499 return false; 5500 } 5501 5502 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5503 { 5504 mmap_read_unlock(mm); 5505 if (regs && !user_mode(regs)) { 5506 unsigned long ip = exception_ip(regs); 5507 if (!search_exception_tables(ip)) 5508 return false; 5509 } 5510 return !mmap_write_lock_killable(mm); 5511 } 5512 5513 /* 5514 * Helper for page fault handling. 5515 * 5516 * This is kind of equivalend to "mmap_read_lock()" followed 5517 * by "find_extend_vma()", except it's a lot more careful about 5518 * the locking (and will drop the lock on failure). 5519 * 5520 * For example, if we have a kernel bug that causes a page 5521 * fault, we don't want to just use mmap_read_lock() to get 5522 * the mm lock, because that would deadlock if the bug were 5523 * to happen while we're holding the mm lock for writing. 5524 * 5525 * So this checks the exception tables on kernel faults in 5526 * order to only do this all for instructions that are actually 5527 * expected to fault. 5528 * 5529 * We can also actually take the mm lock for writing if we 5530 * need to extend the vma, which helps the VM layer a lot. 5531 */ 5532 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 5533 unsigned long addr, struct pt_regs *regs) 5534 { 5535 struct vm_area_struct *vma; 5536 5537 if (!get_mmap_lock_carefully(mm, regs)) 5538 return NULL; 5539 5540 vma = find_vma(mm, addr); 5541 if (likely(vma && (vma->vm_start <= addr))) 5542 return vma; 5543 5544 /* 5545 * Well, dang. We might still be successful, but only 5546 * if we can extend a vma to do so. 5547 */ 5548 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 5549 mmap_read_unlock(mm); 5550 return NULL; 5551 } 5552 5553 /* 5554 * We can try to upgrade the mmap lock atomically, 5555 * in which case we can continue to use the vma 5556 * we already looked up. 5557 * 5558 * Otherwise we'll have to drop the mmap lock and 5559 * re-take it, and also look up the vma again, 5560 * re-checking it. 5561 */ 5562 if (!mmap_upgrade_trylock(mm)) { 5563 if (!upgrade_mmap_lock_carefully(mm, regs)) 5564 return NULL; 5565 5566 vma = find_vma(mm, addr); 5567 if (!vma) 5568 goto fail; 5569 if (vma->vm_start <= addr) 5570 goto success; 5571 if (!(vma->vm_flags & VM_GROWSDOWN)) 5572 goto fail; 5573 } 5574 5575 if (expand_stack_locked(vma, addr)) 5576 goto fail; 5577 5578 success: 5579 mmap_write_downgrade(mm); 5580 return vma; 5581 5582 fail: 5583 mmap_write_unlock(mm); 5584 return NULL; 5585 } 5586 #endif 5587 5588 #ifdef CONFIG_PER_VMA_LOCK 5589 /* 5590 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5591 * stable and not isolated. If the VMA is not found or is being modified the 5592 * function returns NULL. 5593 */ 5594 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5595 unsigned long address) 5596 { 5597 MA_STATE(mas, &mm->mm_mt, address, address); 5598 struct vm_area_struct *vma; 5599 5600 rcu_read_lock(); 5601 retry: 5602 vma = mas_walk(&mas); 5603 if (!vma) 5604 goto inval; 5605 5606 if (!vma_start_read(vma)) 5607 goto inval; 5608 5609 /* 5610 * find_mergeable_anon_vma uses adjacent vmas which are not locked. 5611 * This check must happen after vma_start_read(); otherwise, a 5612 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA 5613 * from its anon_vma. 5614 */ 5615 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) 5616 goto inval_end_read; 5617 5618 /* Check since vm_start/vm_end might change before we lock the VMA */ 5619 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 5620 goto inval_end_read; 5621 5622 /* Check if the VMA got isolated after we found it */ 5623 if (vma->detached) { 5624 vma_end_read(vma); 5625 count_vm_vma_lock_event(VMA_LOCK_MISS); 5626 /* The area was replaced with another one */ 5627 goto retry; 5628 } 5629 5630 rcu_read_unlock(); 5631 return vma; 5632 5633 inval_end_read: 5634 vma_end_read(vma); 5635 inval: 5636 rcu_read_unlock(); 5637 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5638 return NULL; 5639 } 5640 #endif /* CONFIG_PER_VMA_LOCK */ 5641 5642 #ifndef __PAGETABLE_P4D_FOLDED 5643 /* 5644 * Allocate p4d page table. 5645 * We've already handled the fast-path in-line. 5646 */ 5647 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5648 { 5649 p4d_t *new = p4d_alloc_one(mm, address); 5650 if (!new) 5651 return -ENOMEM; 5652 5653 spin_lock(&mm->page_table_lock); 5654 if (pgd_present(*pgd)) { /* Another has populated it */ 5655 p4d_free(mm, new); 5656 } else { 5657 smp_wmb(); /* See comment in pmd_install() */ 5658 pgd_populate(mm, pgd, new); 5659 } 5660 spin_unlock(&mm->page_table_lock); 5661 return 0; 5662 } 5663 #endif /* __PAGETABLE_P4D_FOLDED */ 5664 5665 #ifndef __PAGETABLE_PUD_FOLDED 5666 /* 5667 * Allocate page upper directory. 5668 * We've already handled the fast-path in-line. 5669 */ 5670 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5671 { 5672 pud_t *new = pud_alloc_one(mm, address); 5673 if (!new) 5674 return -ENOMEM; 5675 5676 spin_lock(&mm->page_table_lock); 5677 if (!p4d_present(*p4d)) { 5678 mm_inc_nr_puds(mm); 5679 smp_wmb(); /* See comment in pmd_install() */ 5680 p4d_populate(mm, p4d, new); 5681 } else /* Another has populated it */ 5682 pud_free(mm, new); 5683 spin_unlock(&mm->page_table_lock); 5684 return 0; 5685 } 5686 #endif /* __PAGETABLE_PUD_FOLDED */ 5687 5688 #ifndef __PAGETABLE_PMD_FOLDED 5689 /* 5690 * Allocate page middle directory. 5691 * We've already handled the fast-path in-line. 5692 */ 5693 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5694 { 5695 spinlock_t *ptl; 5696 pmd_t *new = pmd_alloc_one(mm, address); 5697 if (!new) 5698 return -ENOMEM; 5699 5700 ptl = pud_lock(mm, pud); 5701 if (!pud_present(*pud)) { 5702 mm_inc_nr_pmds(mm); 5703 smp_wmb(); /* See comment in pmd_install() */ 5704 pud_populate(mm, pud, new); 5705 } else { /* Another has populated it */ 5706 pmd_free(mm, new); 5707 } 5708 spin_unlock(ptl); 5709 return 0; 5710 } 5711 #endif /* __PAGETABLE_PMD_FOLDED */ 5712 5713 /** 5714 * follow_pte - look up PTE at a user virtual address 5715 * @mm: the mm_struct of the target address space 5716 * @address: user virtual address 5717 * @ptepp: location to store found PTE 5718 * @ptlp: location to store the lock for the PTE 5719 * 5720 * On a successful return, the pointer to the PTE is stored in @ptepp; 5721 * the corresponding lock is taken and its location is stored in @ptlp. 5722 * The contents of the PTE are only stable until @ptlp is released; 5723 * any further use, if any, must be protected against invalidation 5724 * with MMU notifiers. 5725 * 5726 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5727 * should be taken for read. 5728 * 5729 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5730 * it is not a good general-purpose API. 5731 * 5732 * Return: zero on success, -ve otherwise. 5733 */ 5734 int follow_pte(struct mm_struct *mm, unsigned long address, 5735 pte_t **ptepp, spinlock_t **ptlp) 5736 { 5737 pgd_t *pgd; 5738 p4d_t *p4d; 5739 pud_t *pud; 5740 pmd_t *pmd; 5741 pte_t *ptep; 5742 5743 pgd = pgd_offset(mm, address); 5744 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5745 goto out; 5746 5747 p4d = p4d_offset(pgd, address); 5748 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5749 goto out; 5750 5751 pud = pud_offset(p4d, address); 5752 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5753 goto out; 5754 5755 pmd = pmd_offset(pud, address); 5756 VM_BUG_ON(pmd_trans_huge(*pmd)); 5757 5758 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5759 if (!ptep) 5760 goto out; 5761 if (!pte_present(ptep_get(ptep))) 5762 goto unlock; 5763 *ptepp = ptep; 5764 return 0; 5765 unlock: 5766 pte_unmap_unlock(ptep, *ptlp); 5767 out: 5768 return -EINVAL; 5769 } 5770 EXPORT_SYMBOL_GPL(follow_pte); 5771 5772 /** 5773 * follow_pfn - look up PFN at a user virtual address 5774 * @vma: memory mapping 5775 * @address: user virtual address 5776 * @pfn: location to store found PFN 5777 * 5778 * Only IO mappings and raw PFN mappings are allowed. 5779 * 5780 * This function does not allow the caller to read the permissions 5781 * of the PTE. Do not use it. 5782 * 5783 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5784 */ 5785 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5786 unsigned long *pfn) 5787 { 5788 int ret = -EINVAL; 5789 spinlock_t *ptl; 5790 pte_t *ptep; 5791 5792 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5793 return ret; 5794 5795 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5796 if (ret) 5797 return ret; 5798 *pfn = pte_pfn(ptep_get(ptep)); 5799 pte_unmap_unlock(ptep, ptl); 5800 return 0; 5801 } 5802 EXPORT_SYMBOL(follow_pfn); 5803 5804 #ifdef CONFIG_HAVE_IOREMAP_PROT 5805 int follow_phys(struct vm_area_struct *vma, 5806 unsigned long address, unsigned int flags, 5807 unsigned long *prot, resource_size_t *phys) 5808 { 5809 int ret = -EINVAL; 5810 pte_t *ptep, pte; 5811 spinlock_t *ptl; 5812 5813 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5814 goto out; 5815 5816 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5817 goto out; 5818 pte = ptep_get(ptep); 5819 5820 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5821 goto unlock; 5822 5823 *prot = pgprot_val(pte_pgprot(pte)); 5824 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5825 5826 ret = 0; 5827 unlock: 5828 pte_unmap_unlock(ptep, ptl); 5829 out: 5830 return ret; 5831 } 5832 5833 /** 5834 * generic_access_phys - generic implementation for iomem mmap access 5835 * @vma: the vma to access 5836 * @addr: userspace address, not relative offset within @vma 5837 * @buf: buffer to read/write 5838 * @len: length of transfer 5839 * @write: set to FOLL_WRITE when writing, otherwise reading 5840 * 5841 * This is a generic implementation for &vm_operations_struct.access for an 5842 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5843 * not page based. 5844 */ 5845 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5846 void *buf, int len, int write) 5847 { 5848 resource_size_t phys_addr; 5849 unsigned long prot = 0; 5850 void __iomem *maddr; 5851 pte_t *ptep, pte; 5852 spinlock_t *ptl; 5853 int offset = offset_in_page(addr); 5854 int ret = -EINVAL; 5855 5856 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5857 return -EINVAL; 5858 5859 retry: 5860 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5861 return -EINVAL; 5862 pte = ptep_get(ptep); 5863 pte_unmap_unlock(ptep, ptl); 5864 5865 prot = pgprot_val(pte_pgprot(pte)); 5866 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5867 5868 if ((write & FOLL_WRITE) && !pte_write(pte)) 5869 return -EINVAL; 5870 5871 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5872 if (!maddr) 5873 return -ENOMEM; 5874 5875 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5876 goto out_unmap; 5877 5878 if (!pte_same(pte, ptep_get(ptep))) { 5879 pte_unmap_unlock(ptep, ptl); 5880 iounmap(maddr); 5881 5882 goto retry; 5883 } 5884 5885 if (write) 5886 memcpy_toio(maddr + offset, buf, len); 5887 else 5888 memcpy_fromio(buf, maddr + offset, len); 5889 ret = len; 5890 pte_unmap_unlock(ptep, ptl); 5891 out_unmap: 5892 iounmap(maddr); 5893 5894 return ret; 5895 } 5896 EXPORT_SYMBOL_GPL(generic_access_phys); 5897 #endif 5898 5899 /* 5900 * Access another process' address space as given in mm. 5901 */ 5902 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 5903 void *buf, int len, unsigned int gup_flags) 5904 { 5905 void *old_buf = buf; 5906 int write = gup_flags & FOLL_WRITE; 5907 5908 if (mmap_read_lock_killable(mm)) 5909 return 0; 5910 5911 /* Untag the address before looking up the VMA */ 5912 addr = untagged_addr_remote(mm, addr); 5913 5914 /* Avoid triggering the temporary warning in __get_user_pages */ 5915 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 5916 return 0; 5917 5918 /* ignore errors, just check how much was successfully transferred */ 5919 while (len) { 5920 int bytes, offset; 5921 void *maddr; 5922 struct vm_area_struct *vma = NULL; 5923 struct page *page = get_user_page_vma_remote(mm, addr, 5924 gup_flags, &vma); 5925 5926 if (IS_ERR(page)) { 5927 /* We might need to expand the stack to access it */ 5928 vma = vma_lookup(mm, addr); 5929 if (!vma) { 5930 vma = expand_stack(mm, addr); 5931 5932 /* mmap_lock was dropped on failure */ 5933 if (!vma) 5934 return buf - old_buf; 5935 5936 /* Try again if stack expansion worked */ 5937 continue; 5938 } 5939 5940 /* 5941 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5942 * we can access using slightly different code. 5943 */ 5944 bytes = 0; 5945 #ifdef CONFIG_HAVE_IOREMAP_PROT 5946 if (vma->vm_ops && vma->vm_ops->access) 5947 bytes = vma->vm_ops->access(vma, addr, buf, 5948 len, write); 5949 #endif 5950 if (bytes <= 0) 5951 break; 5952 } else { 5953 bytes = len; 5954 offset = addr & (PAGE_SIZE-1); 5955 if (bytes > PAGE_SIZE-offset) 5956 bytes = PAGE_SIZE-offset; 5957 5958 maddr = kmap_local_page(page); 5959 if (write) { 5960 copy_to_user_page(vma, page, addr, 5961 maddr + offset, buf, bytes); 5962 set_page_dirty_lock(page); 5963 } else { 5964 copy_from_user_page(vma, page, addr, 5965 buf, maddr + offset, bytes); 5966 } 5967 unmap_and_put_page(page, maddr); 5968 } 5969 len -= bytes; 5970 buf += bytes; 5971 addr += bytes; 5972 } 5973 mmap_read_unlock(mm); 5974 5975 return buf - old_buf; 5976 } 5977 5978 /** 5979 * access_remote_vm - access another process' address space 5980 * @mm: the mm_struct of the target address space 5981 * @addr: start address to access 5982 * @buf: source or destination buffer 5983 * @len: number of bytes to transfer 5984 * @gup_flags: flags modifying lookup behaviour 5985 * 5986 * The caller must hold a reference on @mm. 5987 * 5988 * Return: number of bytes copied from source to destination. 5989 */ 5990 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5991 void *buf, int len, unsigned int gup_flags) 5992 { 5993 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5994 } 5995 5996 /* 5997 * Access another process' address space. 5998 * Source/target buffer must be kernel space, 5999 * Do not walk the page table directly, use get_user_pages 6000 */ 6001 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6002 void *buf, int len, unsigned int gup_flags) 6003 { 6004 struct mm_struct *mm; 6005 int ret; 6006 6007 mm = get_task_mm(tsk); 6008 if (!mm) 6009 return 0; 6010 6011 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6012 6013 mmput(mm); 6014 6015 return ret; 6016 } 6017 EXPORT_SYMBOL_GPL(access_process_vm); 6018 6019 /* 6020 * Print the name of a VMA. 6021 */ 6022 void print_vma_addr(char *prefix, unsigned long ip) 6023 { 6024 struct mm_struct *mm = current->mm; 6025 struct vm_area_struct *vma; 6026 6027 /* 6028 * we might be running from an atomic context so we cannot sleep 6029 */ 6030 if (!mmap_read_trylock(mm)) 6031 return; 6032 6033 vma = find_vma(mm, ip); 6034 if (vma && vma->vm_file) { 6035 struct file *f = vma->vm_file; 6036 char *buf = (char *)__get_free_page(GFP_NOWAIT); 6037 if (buf) { 6038 char *p; 6039 6040 p = file_path(f, buf, PAGE_SIZE); 6041 if (IS_ERR(p)) 6042 p = "?"; 6043 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 6044 vma->vm_start, 6045 vma->vm_end - vma->vm_start); 6046 free_page((unsigned long)buf); 6047 } 6048 } 6049 mmap_read_unlock(mm); 6050 } 6051 6052 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6053 void __might_fault(const char *file, int line) 6054 { 6055 if (pagefault_disabled()) 6056 return; 6057 __might_sleep(file, line); 6058 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6059 if (current->mm) 6060 might_lock_read(¤t->mm->mmap_lock); 6061 #endif 6062 } 6063 EXPORT_SYMBOL(__might_fault); 6064 #endif 6065 6066 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6067 /* 6068 * Process all subpages of the specified huge page with the specified 6069 * operation. The target subpage will be processed last to keep its 6070 * cache lines hot. 6071 */ 6072 static inline int process_huge_page( 6073 unsigned long addr_hint, unsigned int pages_per_huge_page, 6074 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6075 void *arg) 6076 { 6077 int i, n, base, l, ret; 6078 unsigned long addr = addr_hint & 6079 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6080 6081 /* Process target subpage last to keep its cache lines hot */ 6082 might_sleep(); 6083 n = (addr_hint - addr) / PAGE_SIZE; 6084 if (2 * n <= pages_per_huge_page) { 6085 /* If target subpage in first half of huge page */ 6086 base = 0; 6087 l = n; 6088 /* Process subpages at the end of huge page */ 6089 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 6090 cond_resched(); 6091 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6092 if (ret) 6093 return ret; 6094 } 6095 } else { 6096 /* If target subpage in second half of huge page */ 6097 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 6098 l = pages_per_huge_page - n; 6099 /* Process subpages at the begin of huge page */ 6100 for (i = 0; i < base; i++) { 6101 cond_resched(); 6102 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6103 if (ret) 6104 return ret; 6105 } 6106 } 6107 /* 6108 * Process remaining subpages in left-right-left-right pattern 6109 * towards the target subpage 6110 */ 6111 for (i = 0; i < l; i++) { 6112 int left_idx = base + i; 6113 int right_idx = base + 2 * l - 1 - i; 6114 6115 cond_resched(); 6116 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6117 if (ret) 6118 return ret; 6119 cond_resched(); 6120 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6121 if (ret) 6122 return ret; 6123 } 6124 return 0; 6125 } 6126 6127 static void clear_gigantic_page(struct page *page, 6128 unsigned long addr, 6129 unsigned int pages_per_huge_page) 6130 { 6131 int i; 6132 struct page *p; 6133 6134 might_sleep(); 6135 for (i = 0; i < pages_per_huge_page; i++) { 6136 p = nth_page(page, i); 6137 cond_resched(); 6138 clear_user_highpage(p, addr + i * PAGE_SIZE); 6139 } 6140 } 6141 6142 static int clear_subpage(unsigned long addr, int idx, void *arg) 6143 { 6144 struct page *page = arg; 6145 6146 clear_user_highpage(page + idx, addr); 6147 return 0; 6148 } 6149 6150 void clear_huge_page(struct page *page, 6151 unsigned long addr_hint, unsigned int pages_per_huge_page) 6152 { 6153 unsigned long addr = addr_hint & 6154 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6155 6156 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 6157 clear_gigantic_page(page, addr, pages_per_huge_page); 6158 return; 6159 } 6160 6161 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 6162 } 6163 6164 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6165 unsigned long addr, 6166 struct vm_area_struct *vma, 6167 unsigned int pages_per_huge_page) 6168 { 6169 int i; 6170 struct page *dst_page; 6171 struct page *src_page; 6172 6173 for (i = 0; i < pages_per_huge_page; i++) { 6174 dst_page = folio_page(dst, i); 6175 src_page = folio_page(src, i); 6176 6177 cond_resched(); 6178 if (copy_mc_user_highpage(dst_page, src_page, 6179 addr + i*PAGE_SIZE, vma)) { 6180 memory_failure_queue(page_to_pfn(src_page), 0); 6181 return -EHWPOISON; 6182 } 6183 } 6184 return 0; 6185 } 6186 6187 struct copy_subpage_arg { 6188 struct page *dst; 6189 struct page *src; 6190 struct vm_area_struct *vma; 6191 }; 6192 6193 static int copy_subpage(unsigned long addr, int idx, void *arg) 6194 { 6195 struct copy_subpage_arg *copy_arg = arg; 6196 6197 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 6198 addr, copy_arg->vma)) { 6199 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0); 6200 return -EHWPOISON; 6201 } 6202 return 0; 6203 } 6204 6205 int copy_user_large_folio(struct folio *dst, struct folio *src, 6206 unsigned long addr_hint, struct vm_area_struct *vma) 6207 { 6208 unsigned int pages_per_huge_page = folio_nr_pages(dst); 6209 unsigned long addr = addr_hint & 6210 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6211 struct copy_subpage_arg arg = { 6212 .dst = &dst->page, 6213 .src = &src->page, 6214 .vma = vma, 6215 }; 6216 6217 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 6218 return copy_user_gigantic_page(dst, src, addr, vma, 6219 pages_per_huge_page); 6220 6221 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 6222 } 6223 6224 long copy_folio_from_user(struct folio *dst_folio, 6225 const void __user *usr_src, 6226 bool allow_pagefault) 6227 { 6228 void *kaddr; 6229 unsigned long i, rc = 0; 6230 unsigned int nr_pages = folio_nr_pages(dst_folio); 6231 unsigned long ret_val = nr_pages * PAGE_SIZE; 6232 struct page *subpage; 6233 6234 for (i = 0; i < nr_pages; i++) { 6235 subpage = folio_page(dst_folio, i); 6236 kaddr = kmap_local_page(subpage); 6237 if (!allow_pagefault) 6238 pagefault_disable(); 6239 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6240 if (!allow_pagefault) 6241 pagefault_enable(); 6242 kunmap_local(kaddr); 6243 6244 ret_val -= (PAGE_SIZE - rc); 6245 if (rc) 6246 break; 6247 6248 flush_dcache_page(subpage); 6249 6250 cond_resched(); 6251 } 6252 return ret_val; 6253 } 6254 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6255 6256 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6257 6258 static struct kmem_cache *page_ptl_cachep; 6259 6260 void __init ptlock_cache_init(void) 6261 { 6262 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6263 SLAB_PANIC, NULL); 6264 } 6265 6266 bool ptlock_alloc(struct ptdesc *ptdesc) 6267 { 6268 spinlock_t *ptl; 6269 6270 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6271 if (!ptl) 6272 return false; 6273 ptdesc->ptl = ptl; 6274 return true; 6275 } 6276 6277 void ptlock_free(struct ptdesc *ptdesc) 6278 { 6279 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 6280 } 6281 #endif 6282