xref: /linux/mm/memory.c (revision 4e4d9c72c946b77f0278988d0bf1207fa1b2cd0f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
79 
80 #include <trace/events/kmem.h>
81 
82 #include <asm/io.h>
83 #include <asm/mmu_context.h>
84 #include <asm/pgalloc.h>
85 #include <linux/uaccess.h>
86 #include <asm/tlb.h>
87 #include <asm/tlbflush.h>
88 
89 #include "pgalloc-track.h"
90 #include "internal.h"
91 #include "swap.h"
92 
93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95 #endif
96 
97 #ifndef CONFIG_NUMA
98 unsigned long max_mapnr;
99 EXPORT_SYMBOL(max_mapnr);
100 
101 struct page *mem_map;
102 EXPORT_SYMBOL(mem_map);
103 #endif
104 
105 static vm_fault_t do_fault(struct vm_fault *vmf);
106 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
107 static bool vmf_pte_changed(struct vm_fault *vmf);
108 
109 /*
110  * Return true if the original pte was a uffd-wp pte marker (so the pte was
111  * wr-protected).
112  */
113 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
114 {
115 	if (!userfaultfd_wp(vmf->vma))
116 		return false;
117 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 		return false;
119 
120 	return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122 
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.
127  */
128 void *high_memory;
129 EXPORT_SYMBOL(high_memory);
130 
131 /*
132  * Randomize the address space (stacks, mmaps, brk, etc.).
133  *
134  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
135  *   as ancient (libc5 based) binaries can segfault. )
136  */
137 int randomize_va_space __read_mostly =
138 #ifdef CONFIG_COMPAT_BRK
139 					1;
140 #else
141 					2;
142 #endif
143 
144 #ifndef arch_wants_old_prefaulted_pte
145 static inline bool arch_wants_old_prefaulted_pte(void)
146 {
147 	/*
148 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
149 	 * some architectures, even if it's performed in hardware. By
150 	 * default, "false" means prefaulted entries will be 'young'.
151 	 */
152 	return false;
153 }
154 #endif
155 
156 static int __init disable_randmaps(char *s)
157 {
158 	randomize_va_space = 0;
159 	return 1;
160 }
161 __setup("norandmaps", disable_randmaps);
162 
163 unsigned long zero_pfn __read_mostly;
164 EXPORT_SYMBOL(zero_pfn);
165 
166 unsigned long highest_memmap_pfn __read_mostly;
167 
168 /*
169  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
170  */
171 static int __init init_zero_pfn(void)
172 {
173 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
174 	return 0;
175 }
176 early_initcall(init_zero_pfn);
177 
178 void mm_trace_rss_stat(struct mm_struct *mm, int member)
179 {
180 	trace_rss_stat(mm, member);
181 }
182 
183 /*
184  * Note: this doesn't free the actual pages themselves. That
185  * has been handled earlier when unmapping all the memory regions.
186  */
187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
188 			   unsigned long addr)
189 {
190 	pgtable_t token = pmd_pgtable(*pmd);
191 	pmd_clear(pmd);
192 	pte_free_tlb(tlb, token, addr);
193 	mm_dec_nr_ptes(tlb->mm);
194 }
195 
196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
197 				unsigned long addr, unsigned long end,
198 				unsigned long floor, unsigned long ceiling)
199 {
200 	pmd_t *pmd;
201 	unsigned long next;
202 	unsigned long start;
203 
204 	start = addr;
205 	pmd = pmd_offset(pud, addr);
206 	do {
207 		next = pmd_addr_end(addr, end);
208 		if (pmd_none_or_clear_bad(pmd))
209 			continue;
210 		free_pte_range(tlb, pmd, addr);
211 	} while (pmd++, addr = next, addr != end);
212 
213 	start &= PUD_MASK;
214 	if (start < floor)
215 		return;
216 	if (ceiling) {
217 		ceiling &= PUD_MASK;
218 		if (!ceiling)
219 			return;
220 	}
221 	if (end - 1 > ceiling - 1)
222 		return;
223 
224 	pmd = pmd_offset(pud, start);
225 	pud_clear(pud);
226 	pmd_free_tlb(tlb, pmd, start);
227 	mm_dec_nr_pmds(tlb->mm);
228 }
229 
230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
231 				unsigned long addr, unsigned long end,
232 				unsigned long floor, unsigned long ceiling)
233 {
234 	pud_t *pud;
235 	unsigned long next;
236 	unsigned long start;
237 
238 	start = addr;
239 	pud = pud_offset(p4d, addr);
240 	do {
241 		next = pud_addr_end(addr, end);
242 		if (pud_none_or_clear_bad(pud))
243 			continue;
244 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
245 	} while (pud++, addr = next, addr != end);
246 
247 	start &= P4D_MASK;
248 	if (start < floor)
249 		return;
250 	if (ceiling) {
251 		ceiling &= P4D_MASK;
252 		if (!ceiling)
253 			return;
254 	}
255 	if (end - 1 > ceiling - 1)
256 		return;
257 
258 	pud = pud_offset(p4d, start);
259 	p4d_clear(p4d);
260 	pud_free_tlb(tlb, pud, start);
261 	mm_dec_nr_puds(tlb->mm);
262 }
263 
264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
265 				unsigned long addr, unsigned long end,
266 				unsigned long floor, unsigned long ceiling)
267 {
268 	p4d_t *p4d;
269 	unsigned long next;
270 	unsigned long start;
271 
272 	start = addr;
273 	p4d = p4d_offset(pgd, addr);
274 	do {
275 		next = p4d_addr_end(addr, end);
276 		if (p4d_none_or_clear_bad(p4d))
277 			continue;
278 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
279 	} while (p4d++, addr = next, addr != end);
280 
281 	start &= PGDIR_MASK;
282 	if (start < floor)
283 		return;
284 	if (ceiling) {
285 		ceiling &= PGDIR_MASK;
286 		if (!ceiling)
287 			return;
288 	}
289 	if (end - 1 > ceiling - 1)
290 		return;
291 
292 	p4d = p4d_offset(pgd, start);
293 	pgd_clear(pgd);
294 	p4d_free_tlb(tlb, p4d, start);
295 }
296 
297 /*
298  * This function frees user-level page tables of a process.
299  */
300 void free_pgd_range(struct mmu_gather *tlb,
301 			unsigned long addr, unsigned long end,
302 			unsigned long floor, unsigned long ceiling)
303 {
304 	pgd_t *pgd;
305 	unsigned long next;
306 
307 	/*
308 	 * The next few lines have given us lots of grief...
309 	 *
310 	 * Why are we testing PMD* at this top level?  Because often
311 	 * there will be no work to do at all, and we'd prefer not to
312 	 * go all the way down to the bottom just to discover that.
313 	 *
314 	 * Why all these "- 1"s?  Because 0 represents both the bottom
315 	 * of the address space and the top of it (using -1 for the
316 	 * top wouldn't help much: the masks would do the wrong thing).
317 	 * The rule is that addr 0 and floor 0 refer to the bottom of
318 	 * the address space, but end 0 and ceiling 0 refer to the top
319 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
320 	 * that end 0 case should be mythical).
321 	 *
322 	 * Wherever addr is brought up or ceiling brought down, we must
323 	 * be careful to reject "the opposite 0" before it confuses the
324 	 * subsequent tests.  But what about where end is brought down
325 	 * by PMD_SIZE below? no, end can't go down to 0 there.
326 	 *
327 	 * Whereas we round start (addr) and ceiling down, by different
328 	 * masks at different levels, in order to test whether a table
329 	 * now has no other vmas using it, so can be freed, we don't
330 	 * bother to round floor or end up - the tests don't need that.
331 	 */
332 
333 	addr &= PMD_MASK;
334 	if (addr < floor) {
335 		addr += PMD_SIZE;
336 		if (!addr)
337 			return;
338 	}
339 	if (ceiling) {
340 		ceiling &= PMD_MASK;
341 		if (!ceiling)
342 			return;
343 	}
344 	if (end - 1 > ceiling - 1)
345 		end -= PMD_SIZE;
346 	if (addr > end - 1)
347 		return;
348 	/*
349 	 * We add page table cache pages with PAGE_SIZE,
350 	 * (see pte_free_tlb()), flush the tlb if we need
351 	 */
352 	tlb_change_page_size(tlb, PAGE_SIZE);
353 	pgd = pgd_offset(tlb->mm, addr);
354 	do {
355 		next = pgd_addr_end(addr, end);
356 		if (pgd_none_or_clear_bad(pgd))
357 			continue;
358 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
359 	} while (pgd++, addr = next, addr != end);
360 }
361 
362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
363 		   struct vm_area_struct *vma, unsigned long floor,
364 		   unsigned long ceiling, bool mm_wr_locked)
365 {
366 	struct unlink_vma_file_batch vb;
367 
368 	do {
369 		unsigned long addr = vma->vm_start;
370 		struct vm_area_struct *next;
371 
372 		/*
373 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 		 * be 0.  This will underflow and is okay.
375 		 */
376 		next = mas_find(mas, ceiling - 1);
377 		if (unlikely(xa_is_zero(next)))
378 			next = NULL;
379 
380 		/*
381 		 * Hide vma from rmap and truncate_pagecache before freeing
382 		 * pgtables
383 		 */
384 		if (mm_wr_locked)
385 			vma_start_write(vma);
386 		unlink_anon_vmas(vma);
387 
388 		if (is_vm_hugetlb_page(vma)) {
389 			unlink_file_vma(vma);
390 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 				floor, next ? next->vm_start : ceiling);
392 		} else {
393 			unlink_file_vma_batch_init(&vb);
394 			unlink_file_vma_batch_add(&vb, vma);
395 
396 			/*
397 			 * Optimization: gather nearby vmas into one call down
398 			 */
399 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
400 			       && !is_vm_hugetlb_page(next)) {
401 				vma = next;
402 				next = mas_find(mas, ceiling - 1);
403 				if (unlikely(xa_is_zero(next)))
404 					next = NULL;
405 				if (mm_wr_locked)
406 					vma_start_write(vma);
407 				unlink_anon_vmas(vma);
408 				unlink_file_vma_batch_add(&vb, vma);
409 			}
410 			unlink_file_vma_batch_final(&vb);
411 			free_pgd_range(tlb, addr, vma->vm_end,
412 				floor, next ? next->vm_start : ceiling);
413 		}
414 		vma = next;
415 	} while (vma);
416 }
417 
418 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
419 {
420 	spinlock_t *ptl = pmd_lock(mm, pmd);
421 
422 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
423 		mm_inc_nr_ptes(mm);
424 		/*
425 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
426 		 * visible before the pte is made visible to other CPUs by being
427 		 * put into page tables.
428 		 *
429 		 * The other side of the story is the pointer chasing in the page
430 		 * table walking code (when walking the page table without locking;
431 		 * ie. most of the time). Fortunately, these data accesses consist
432 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
433 		 * being the notable exception) will already guarantee loads are
434 		 * seen in-order. See the alpha page table accessors for the
435 		 * smp_rmb() barriers in page table walking code.
436 		 */
437 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438 		pmd_populate(mm, pmd, *pte);
439 		*pte = NULL;
440 	}
441 	spin_unlock(ptl);
442 }
443 
444 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
445 {
446 	pgtable_t new = pte_alloc_one(mm);
447 	if (!new)
448 		return -ENOMEM;
449 
450 	pmd_install(mm, pmd, &new);
451 	if (new)
452 		pte_free(mm, new);
453 	return 0;
454 }
455 
456 int __pte_alloc_kernel(pmd_t *pmd)
457 {
458 	pte_t *new = pte_alloc_one_kernel(&init_mm);
459 	if (!new)
460 		return -ENOMEM;
461 
462 	spin_lock(&init_mm.page_table_lock);
463 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
464 		smp_wmb(); /* See comment in pmd_install() */
465 		pmd_populate_kernel(&init_mm, pmd, new);
466 		new = NULL;
467 	}
468 	spin_unlock(&init_mm.page_table_lock);
469 	if (new)
470 		pte_free_kernel(&init_mm, new);
471 	return 0;
472 }
473 
474 static inline void init_rss_vec(int *rss)
475 {
476 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
477 }
478 
479 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
480 {
481 	int i;
482 
483 	for (i = 0; i < NR_MM_COUNTERS; i++)
484 		if (rss[i])
485 			add_mm_counter(mm, i, rss[i]);
486 }
487 
488 /*
489  * This function is called to print an error when a bad pte
490  * is found. For example, we might have a PFN-mapped pte in
491  * a region that doesn't allow it.
492  *
493  * The calling function must still handle the error.
494  */
495 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
496 			  pte_t pte, struct page *page)
497 {
498 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
499 	p4d_t *p4d = p4d_offset(pgd, addr);
500 	pud_t *pud = pud_offset(p4d, addr);
501 	pmd_t *pmd = pmd_offset(pud, addr);
502 	struct address_space *mapping;
503 	pgoff_t index;
504 	static unsigned long resume;
505 	static unsigned long nr_shown;
506 	static unsigned long nr_unshown;
507 
508 	/*
509 	 * Allow a burst of 60 reports, then keep quiet for that minute;
510 	 * or allow a steady drip of one report per second.
511 	 */
512 	if (nr_shown == 60) {
513 		if (time_before(jiffies, resume)) {
514 			nr_unshown++;
515 			return;
516 		}
517 		if (nr_unshown) {
518 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
519 				 nr_unshown);
520 			nr_unshown = 0;
521 		}
522 		nr_shown = 0;
523 	}
524 	if (nr_shown++ == 0)
525 		resume = jiffies + 60 * HZ;
526 
527 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
528 	index = linear_page_index(vma, addr);
529 
530 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
531 		 current->comm,
532 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
533 	if (page)
534 		dump_page(page, "bad pte");
535 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
536 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
537 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
538 		 vma->vm_file,
539 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
540 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
541 		 mapping ? mapping->a_ops->read_folio : NULL);
542 	dump_stack();
543 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
544 }
545 
546 /*
547  * vm_normal_page -- This function gets the "struct page" associated with a pte.
548  *
549  * "Special" mappings do not wish to be associated with a "struct page" (either
550  * it doesn't exist, or it exists but they don't want to touch it). In this
551  * case, NULL is returned here. "Normal" mappings do have a struct page.
552  *
553  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
554  * pte bit, in which case this function is trivial. Secondly, an architecture
555  * may not have a spare pte bit, which requires a more complicated scheme,
556  * described below.
557  *
558  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
559  * special mapping (even if there are underlying and valid "struct pages").
560  * COWed pages of a VM_PFNMAP are always normal.
561  *
562  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
563  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
564  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
565  * mapping will always honor the rule
566  *
567  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
568  *
569  * And for normal mappings this is false.
570  *
571  * This restricts such mappings to be a linear translation from virtual address
572  * to pfn. To get around this restriction, we allow arbitrary mappings so long
573  * as the vma is not a COW mapping; in that case, we know that all ptes are
574  * special (because none can have been COWed).
575  *
576  *
577  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
578  *
579  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
580  * page" backing, however the difference is that _all_ pages with a struct
581  * page (that is, those where pfn_valid is true) are refcounted and considered
582  * normal pages by the VM. The only exception are zeropages, which are
583  * *never* refcounted.
584  *
585  * The disadvantage is that pages are refcounted (which can be slower and
586  * simply not an option for some PFNMAP users). The advantage is that we
587  * don't have to follow the strict linearity rule of PFNMAP mappings in
588  * order to support COWable mappings.
589  *
590  */
591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
592 			    pte_t pte)
593 {
594 	unsigned long pfn = pte_pfn(pte);
595 
596 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
597 		if (likely(!pte_special(pte)))
598 			goto check_pfn;
599 		if (vma->vm_ops && vma->vm_ops->find_special_page)
600 			return vma->vm_ops->find_special_page(vma, addr);
601 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
602 			return NULL;
603 		if (is_zero_pfn(pfn))
604 			return NULL;
605 		if (pte_devmap(pte))
606 		/*
607 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
608 		 * and will have refcounts incremented on their struct pages
609 		 * when they are inserted into PTEs, thus they are safe to
610 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
611 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
612 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
613 		 */
614 			return NULL;
615 
616 		print_bad_pte(vma, addr, pte, NULL);
617 		return NULL;
618 	}
619 
620 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
621 
622 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
623 		if (vma->vm_flags & VM_MIXEDMAP) {
624 			if (!pfn_valid(pfn))
625 				return NULL;
626 			if (is_zero_pfn(pfn))
627 				return NULL;
628 			goto out;
629 		} else {
630 			unsigned long off;
631 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
632 			if (pfn == vma->vm_pgoff + off)
633 				return NULL;
634 			if (!is_cow_mapping(vma->vm_flags))
635 				return NULL;
636 		}
637 	}
638 
639 	if (is_zero_pfn(pfn))
640 		return NULL;
641 
642 check_pfn:
643 	if (unlikely(pfn > highest_memmap_pfn)) {
644 		print_bad_pte(vma, addr, pte, NULL);
645 		return NULL;
646 	}
647 
648 	/*
649 	 * NOTE! We still have PageReserved() pages in the page tables.
650 	 * eg. VDSO mappings can cause them to exist.
651 	 */
652 out:
653 	VM_WARN_ON_ONCE(is_zero_pfn(pfn));
654 	return pfn_to_page(pfn);
655 }
656 
657 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
658 			    pte_t pte)
659 {
660 	struct page *page = vm_normal_page(vma, addr, pte);
661 
662 	if (page)
663 		return page_folio(page);
664 	return NULL;
665 }
666 
667 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
668 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
669 				pmd_t pmd)
670 {
671 	unsigned long pfn = pmd_pfn(pmd);
672 
673 	/* Currently it's only used for huge pfnmaps */
674 	if (unlikely(pmd_special(pmd)))
675 		return NULL;
676 
677 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
678 		if (vma->vm_flags & VM_MIXEDMAP) {
679 			if (!pfn_valid(pfn))
680 				return NULL;
681 			goto out;
682 		} else {
683 			unsigned long off;
684 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
685 			if (pfn == vma->vm_pgoff + off)
686 				return NULL;
687 			if (!is_cow_mapping(vma->vm_flags))
688 				return NULL;
689 		}
690 	}
691 
692 	if (pmd_devmap(pmd))
693 		return NULL;
694 	if (is_huge_zero_pmd(pmd))
695 		return NULL;
696 	if (unlikely(pfn > highest_memmap_pfn))
697 		return NULL;
698 
699 	/*
700 	 * NOTE! We still have PageReserved() pages in the page tables.
701 	 * eg. VDSO mappings can cause them to exist.
702 	 */
703 out:
704 	return pfn_to_page(pfn);
705 }
706 
707 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
708 				  unsigned long addr, pmd_t pmd)
709 {
710 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
711 
712 	if (page)
713 		return page_folio(page);
714 	return NULL;
715 }
716 #endif
717 
718 static void restore_exclusive_pte(struct vm_area_struct *vma,
719 				  struct page *page, unsigned long address,
720 				  pte_t *ptep)
721 {
722 	struct folio *folio = page_folio(page);
723 	pte_t orig_pte;
724 	pte_t pte;
725 	swp_entry_t entry;
726 
727 	orig_pte = ptep_get(ptep);
728 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
729 	if (pte_swp_soft_dirty(orig_pte))
730 		pte = pte_mksoft_dirty(pte);
731 
732 	entry = pte_to_swp_entry(orig_pte);
733 	if (pte_swp_uffd_wp(orig_pte))
734 		pte = pte_mkuffd_wp(pte);
735 	else if (is_writable_device_exclusive_entry(entry))
736 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
737 
738 	VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
739 					   PageAnonExclusive(page)), folio);
740 
741 	/*
742 	 * No need to take a page reference as one was already
743 	 * created when the swap entry was made.
744 	 */
745 	if (folio_test_anon(folio))
746 		folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
747 	else
748 		/*
749 		 * Currently device exclusive access only supports anonymous
750 		 * memory so the entry shouldn't point to a filebacked page.
751 		 */
752 		WARN_ON_ONCE(1);
753 
754 	set_pte_at(vma->vm_mm, address, ptep, pte);
755 
756 	/*
757 	 * No need to invalidate - it was non-present before. However
758 	 * secondary CPUs may have mappings that need invalidating.
759 	 */
760 	update_mmu_cache(vma, address, ptep);
761 }
762 
763 /*
764  * Tries to restore an exclusive pte if the page lock can be acquired without
765  * sleeping.
766  */
767 static int
768 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
769 			unsigned long addr)
770 {
771 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
772 	struct page *page = pfn_swap_entry_to_page(entry);
773 
774 	if (trylock_page(page)) {
775 		restore_exclusive_pte(vma, page, addr, src_pte);
776 		unlock_page(page);
777 		return 0;
778 	}
779 
780 	return -EBUSY;
781 }
782 
783 /*
784  * copy one vm_area from one task to the other. Assumes the page tables
785  * already present in the new task to be cleared in the whole range
786  * covered by this vma.
787  */
788 
789 static unsigned long
790 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
791 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
792 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
793 {
794 	unsigned long vm_flags = dst_vma->vm_flags;
795 	pte_t orig_pte = ptep_get(src_pte);
796 	pte_t pte = orig_pte;
797 	struct folio *folio;
798 	struct page *page;
799 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
800 
801 	if (likely(!non_swap_entry(entry))) {
802 		if (swap_duplicate(entry) < 0)
803 			return -EIO;
804 
805 		/* make sure dst_mm is on swapoff's mmlist. */
806 		if (unlikely(list_empty(&dst_mm->mmlist))) {
807 			spin_lock(&mmlist_lock);
808 			if (list_empty(&dst_mm->mmlist))
809 				list_add(&dst_mm->mmlist,
810 						&src_mm->mmlist);
811 			spin_unlock(&mmlist_lock);
812 		}
813 		/* Mark the swap entry as shared. */
814 		if (pte_swp_exclusive(orig_pte)) {
815 			pte = pte_swp_clear_exclusive(orig_pte);
816 			set_pte_at(src_mm, addr, src_pte, pte);
817 		}
818 		rss[MM_SWAPENTS]++;
819 	} else if (is_migration_entry(entry)) {
820 		folio = pfn_swap_entry_folio(entry);
821 
822 		rss[mm_counter(folio)]++;
823 
824 		if (!is_readable_migration_entry(entry) &&
825 				is_cow_mapping(vm_flags)) {
826 			/*
827 			 * COW mappings require pages in both parent and child
828 			 * to be set to read. A previously exclusive entry is
829 			 * now shared.
830 			 */
831 			entry = make_readable_migration_entry(
832 							swp_offset(entry));
833 			pte = swp_entry_to_pte(entry);
834 			if (pte_swp_soft_dirty(orig_pte))
835 				pte = pte_swp_mksoft_dirty(pte);
836 			if (pte_swp_uffd_wp(orig_pte))
837 				pte = pte_swp_mkuffd_wp(pte);
838 			set_pte_at(src_mm, addr, src_pte, pte);
839 		}
840 	} else if (is_device_private_entry(entry)) {
841 		page = pfn_swap_entry_to_page(entry);
842 		folio = page_folio(page);
843 
844 		/*
845 		 * Update rss count even for unaddressable pages, as
846 		 * they should treated just like normal pages in this
847 		 * respect.
848 		 *
849 		 * We will likely want to have some new rss counters
850 		 * for unaddressable pages, at some point. But for now
851 		 * keep things as they are.
852 		 */
853 		folio_get(folio);
854 		rss[mm_counter(folio)]++;
855 		/* Cannot fail as these pages cannot get pinned. */
856 		folio_try_dup_anon_rmap_pte(folio, page, src_vma);
857 
858 		/*
859 		 * We do not preserve soft-dirty information, because so
860 		 * far, checkpoint/restore is the only feature that
861 		 * requires that. And checkpoint/restore does not work
862 		 * when a device driver is involved (you cannot easily
863 		 * save and restore device driver state).
864 		 */
865 		if (is_writable_device_private_entry(entry) &&
866 		    is_cow_mapping(vm_flags)) {
867 			entry = make_readable_device_private_entry(
868 							swp_offset(entry));
869 			pte = swp_entry_to_pte(entry);
870 			if (pte_swp_uffd_wp(orig_pte))
871 				pte = pte_swp_mkuffd_wp(pte);
872 			set_pte_at(src_mm, addr, src_pte, pte);
873 		}
874 	} else if (is_device_exclusive_entry(entry)) {
875 		/*
876 		 * Make device exclusive entries present by restoring the
877 		 * original entry then copying as for a present pte. Device
878 		 * exclusive entries currently only support private writable
879 		 * (ie. COW) mappings.
880 		 */
881 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
882 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
883 			return -EBUSY;
884 		return -ENOENT;
885 	} else if (is_pte_marker_entry(entry)) {
886 		pte_marker marker = copy_pte_marker(entry, dst_vma);
887 
888 		if (marker)
889 			set_pte_at(dst_mm, addr, dst_pte,
890 				   make_pte_marker(marker));
891 		return 0;
892 	}
893 	if (!userfaultfd_wp(dst_vma))
894 		pte = pte_swp_clear_uffd_wp(pte);
895 	set_pte_at(dst_mm, addr, dst_pte, pte);
896 	return 0;
897 }
898 
899 /*
900  * Copy a present and normal page.
901  *
902  * NOTE! The usual case is that this isn't required;
903  * instead, the caller can just increase the page refcount
904  * and re-use the pte the traditional way.
905  *
906  * And if we need a pre-allocated page but don't yet have
907  * one, return a negative error to let the preallocation
908  * code know so that it can do so outside the page table
909  * lock.
910  */
911 static inline int
912 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
913 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
914 		  struct folio **prealloc, struct page *page)
915 {
916 	struct folio *new_folio;
917 	pte_t pte;
918 
919 	new_folio = *prealloc;
920 	if (!new_folio)
921 		return -EAGAIN;
922 
923 	/*
924 	 * We have a prealloc page, all good!  Take it
925 	 * over and copy the page & arm it.
926 	 */
927 
928 	if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
929 		return -EHWPOISON;
930 
931 	*prealloc = NULL;
932 	__folio_mark_uptodate(new_folio);
933 	folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
934 	folio_add_lru_vma(new_folio, dst_vma);
935 	rss[MM_ANONPAGES]++;
936 
937 	/* All done, just insert the new page copy in the child */
938 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
939 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
940 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
941 		/* Uffd-wp needs to be delivered to dest pte as well */
942 		pte = pte_mkuffd_wp(pte);
943 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
944 	return 0;
945 }
946 
947 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
948 		struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
949 		pte_t pte, unsigned long addr, int nr)
950 {
951 	struct mm_struct *src_mm = src_vma->vm_mm;
952 
953 	/* If it's a COW mapping, write protect it both processes. */
954 	if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
955 		wrprotect_ptes(src_mm, addr, src_pte, nr);
956 		pte = pte_wrprotect(pte);
957 	}
958 
959 	/* If it's a shared mapping, mark it clean in the child. */
960 	if (src_vma->vm_flags & VM_SHARED)
961 		pte = pte_mkclean(pte);
962 	pte = pte_mkold(pte);
963 
964 	if (!userfaultfd_wp(dst_vma))
965 		pte = pte_clear_uffd_wp(pte);
966 
967 	set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
968 }
969 
970 /*
971  * Copy one present PTE, trying to batch-process subsequent PTEs that map
972  * consecutive pages of the same folio by copying them as well.
973  *
974  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
975  * Otherwise, returns the number of copied PTEs (at least 1).
976  */
977 static inline int
978 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
979 		 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
980 		 int max_nr, int *rss, struct folio **prealloc)
981 {
982 	struct page *page;
983 	struct folio *folio;
984 	bool any_writable;
985 	fpb_t flags = 0;
986 	int err, nr;
987 
988 	page = vm_normal_page(src_vma, addr, pte);
989 	if (unlikely(!page))
990 		goto copy_pte;
991 
992 	folio = page_folio(page);
993 
994 	/*
995 	 * If we likely have to copy, just don't bother with batching. Make
996 	 * sure that the common "small folio" case is as fast as possible
997 	 * by keeping the batching logic separate.
998 	 */
999 	if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1000 		if (src_vma->vm_flags & VM_SHARED)
1001 			flags |= FPB_IGNORE_DIRTY;
1002 		if (!vma_soft_dirty_enabled(src_vma))
1003 			flags |= FPB_IGNORE_SOFT_DIRTY;
1004 
1005 		nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1006 				     &any_writable, NULL, NULL);
1007 		folio_ref_add(folio, nr);
1008 		if (folio_test_anon(folio)) {
1009 			if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1010 								  nr, src_vma))) {
1011 				folio_ref_sub(folio, nr);
1012 				return -EAGAIN;
1013 			}
1014 			rss[MM_ANONPAGES] += nr;
1015 			VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1016 		} else {
1017 			folio_dup_file_rmap_ptes(folio, page, nr);
1018 			rss[mm_counter_file(folio)] += nr;
1019 		}
1020 		if (any_writable)
1021 			pte = pte_mkwrite(pte, src_vma);
1022 		__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1023 				    addr, nr);
1024 		return nr;
1025 	}
1026 
1027 	folio_get(folio);
1028 	if (folio_test_anon(folio)) {
1029 		/*
1030 		 * If this page may have been pinned by the parent process,
1031 		 * copy the page immediately for the child so that we'll always
1032 		 * guarantee the pinned page won't be randomly replaced in the
1033 		 * future.
1034 		 */
1035 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1036 			/* Page may be pinned, we have to copy. */
1037 			folio_put(folio);
1038 			err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1039 						addr, rss, prealloc, page);
1040 			return err ? err : 1;
1041 		}
1042 		rss[MM_ANONPAGES]++;
1043 		VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1044 	} else {
1045 		folio_dup_file_rmap_pte(folio, page);
1046 		rss[mm_counter_file(folio)]++;
1047 	}
1048 
1049 copy_pte:
1050 	__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1051 	return 1;
1052 }
1053 
1054 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1055 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1056 {
1057 	struct folio *new_folio;
1058 
1059 	if (need_zero)
1060 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1061 	else
1062 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1063 
1064 	if (!new_folio)
1065 		return NULL;
1066 
1067 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1068 		folio_put(new_folio);
1069 		return NULL;
1070 	}
1071 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1072 
1073 	return new_folio;
1074 }
1075 
1076 static int
1077 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1078 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079 	       unsigned long end)
1080 {
1081 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1082 	struct mm_struct *src_mm = src_vma->vm_mm;
1083 	pte_t *orig_src_pte, *orig_dst_pte;
1084 	pte_t *src_pte, *dst_pte;
1085 	pmd_t dummy_pmdval;
1086 	pte_t ptent;
1087 	spinlock_t *src_ptl, *dst_ptl;
1088 	int progress, max_nr, ret = 0;
1089 	int rss[NR_MM_COUNTERS];
1090 	swp_entry_t entry = (swp_entry_t){0};
1091 	struct folio *prealloc = NULL;
1092 	int nr;
1093 
1094 again:
1095 	progress = 0;
1096 	init_rss_vec(rss);
1097 
1098 	/*
1099 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1100 	 * error handling here, assume that exclusive mmap_lock on dst and src
1101 	 * protects anon from unexpected THP transitions; with shmem and file
1102 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1103 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1104 	 * can remove such assumptions later, but this is good enough for now.
1105 	 */
1106 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1107 	if (!dst_pte) {
1108 		ret = -ENOMEM;
1109 		goto out;
1110 	}
1111 
1112 	/*
1113 	 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1114 	 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1115 	 * the PTE page is stable, and there is no need to get pmdval and do
1116 	 * pmd_same() check.
1117 	 */
1118 	src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1119 					   &src_ptl);
1120 	if (!src_pte) {
1121 		pte_unmap_unlock(dst_pte, dst_ptl);
1122 		/* ret == 0 */
1123 		goto out;
1124 	}
1125 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1126 	orig_src_pte = src_pte;
1127 	orig_dst_pte = dst_pte;
1128 	arch_enter_lazy_mmu_mode();
1129 
1130 	do {
1131 		nr = 1;
1132 
1133 		/*
1134 		 * We are holding two locks at this point - either of them
1135 		 * could generate latencies in another task on another CPU.
1136 		 */
1137 		if (progress >= 32) {
1138 			progress = 0;
1139 			if (need_resched() ||
1140 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1141 				break;
1142 		}
1143 		ptent = ptep_get(src_pte);
1144 		if (pte_none(ptent)) {
1145 			progress++;
1146 			continue;
1147 		}
1148 		if (unlikely(!pte_present(ptent))) {
1149 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1150 						  dst_pte, src_pte,
1151 						  dst_vma, src_vma,
1152 						  addr, rss);
1153 			if (ret == -EIO) {
1154 				entry = pte_to_swp_entry(ptep_get(src_pte));
1155 				break;
1156 			} else if (ret == -EBUSY) {
1157 				break;
1158 			} else if (!ret) {
1159 				progress += 8;
1160 				continue;
1161 			}
1162 			ptent = ptep_get(src_pte);
1163 			VM_WARN_ON_ONCE(!pte_present(ptent));
1164 
1165 			/*
1166 			 * Device exclusive entry restored, continue by copying
1167 			 * the now present pte.
1168 			 */
1169 			WARN_ON_ONCE(ret != -ENOENT);
1170 		}
1171 		/* copy_present_ptes() will clear `*prealloc' if consumed */
1172 		max_nr = (end - addr) / PAGE_SIZE;
1173 		ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1174 					ptent, addr, max_nr, rss, &prealloc);
1175 		/*
1176 		 * If we need a pre-allocated page for this pte, drop the
1177 		 * locks, allocate, and try again.
1178 		 * If copy failed due to hwpoison in source page, break out.
1179 		 */
1180 		if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1181 			break;
1182 		if (unlikely(prealloc)) {
1183 			/*
1184 			 * pre-alloc page cannot be reused by next time so as
1185 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1186 			 * will allocate page according to address).  This
1187 			 * could only happen if one pinned pte changed.
1188 			 */
1189 			folio_put(prealloc);
1190 			prealloc = NULL;
1191 		}
1192 		nr = ret;
1193 		progress += 8 * nr;
1194 	} while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1195 		 addr != end);
1196 
1197 	arch_leave_lazy_mmu_mode();
1198 	pte_unmap_unlock(orig_src_pte, src_ptl);
1199 	add_mm_rss_vec(dst_mm, rss);
1200 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1201 	cond_resched();
1202 
1203 	if (ret == -EIO) {
1204 		VM_WARN_ON_ONCE(!entry.val);
1205 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1206 			ret = -ENOMEM;
1207 			goto out;
1208 		}
1209 		entry.val = 0;
1210 	} else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1211 		goto out;
1212 	} else if (ret ==  -EAGAIN) {
1213 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1214 		if (!prealloc)
1215 			return -ENOMEM;
1216 	} else if (ret < 0) {
1217 		VM_WARN_ON_ONCE(1);
1218 	}
1219 
1220 	/* We've captured and resolved the error. Reset, try again. */
1221 	ret = 0;
1222 
1223 	if (addr != end)
1224 		goto again;
1225 out:
1226 	if (unlikely(prealloc))
1227 		folio_put(prealloc);
1228 	return ret;
1229 }
1230 
1231 static inline int
1232 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1233 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1234 	       unsigned long end)
1235 {
1236 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1237 	struct mm_struct *src_mm = src_vma->vm_mm;
1238 	pmd_t *src_pmd, *dst_pmd;
1239 	unsigned long next;
1240 
1241 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1242 	if (!dst_pmd)
1243 		return -ENOMEM;
1244 	src_pmd = pmd_offset(src_pud, addr);
1245 	do {
1246 		next = pmd_addr_end(addr, end);
1247 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1248 			|| pmd_devmap(*src_pmd)) {
1249 			int err;
1250 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1251 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1252 					    addr, dst_vma, src_vma);
1253 			if (err == -ENOMEM)
1254 				return -ENOMEM;
1255 			if (!err)
1256 				continue;
1257 			/* fall through */
1258 		}
1259 		if (pmd_none_or_clear_bad(src_pmd))
1260 			continue;
1261 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1262 				   addr, next))
1263 			return -ENOMEM;
1264 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1265 	return 0;
1266 }
1267 
1268 static inline int
1269 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1270 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1271 	       unsigned long end)
1272 {
1273 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1274 	struct mm_struct *src_mm = src_vma->vm_mm;
1275 	pud_t *src_pud, *dst_pud;
1276 	unsigned long next;
1277 
1278 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1279 	if (!dst_pud)
1280 		return -ENOMEM;
1281 	src_pud = pud_offset(src_p4d, addr);
1282 	do {
1283 		next = pud_addr_end(addr, end);
1284 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1285 			int err;
1286 
1287 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1288 			err = copy_huge_pud(dst_mm, src_mm,
1289 					    dst_pud, src_pud, addr, src_vma);
1290 			if (err == -ENOMEM)
1291 				return -ENOMEM;
1292 			if (!err)
1293 				continue;
1294 			/* fall through */
1295 		}
1296 		if (pud_none_or_clear_bad(src_pud))
1297 			continue;
1298 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1299 				   addr, next))
1300 			return -ENOMEM;
1301 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1302 	return 0;
1303 }
1304 
1305 static inline int
1306 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1307 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1308 	       unsigned long end)
1309 {
1310 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1311 	p4d_t *src_p4d, *dst_p4d;
1312 	unsigned long next;
1313 
1314 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1315 	if (!dst_p4d)
1316 		return -ENOMEM;
1317 	src_p4d = p4d_offset(src_pgd, addr);
1318 	do {
1319 		next = p4d_addr_end(addr, end);
1320 		if (p4d_none_or_clear_bad(src_p4d))
1321 			continue;
1322 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1323 				   addr, next))
1324 			return -ENOMEM;
1325 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1326 	return 0;
1327 }
1328 
1329 /*
1330  * Return true if the vma needs to copy the pgtable during this fork().  Return
1331  * false when we can speed up fork() by allowing lazy page faults later until
1332  * when the child accesses the memory range.
1333  */
1334 static bool
1335 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1336 {
1337 	/*
1338 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1339 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1340 	 * contains uffd-wp protection information, that's something we can't
1341 	 * retrieve from page cache, and skip copying will lose those info.
1342 	 */
1343 	if (userfaultfd_wp(dst_vma))
1344 		return true;
1345 
1346 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1347 		return true;
1348 
1349 	if (src_vma->anon_vma)
1350 		return true;
1351 
1352 	/*
1353 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1354 	 * becomes much lighter when there are big shared or private readonly
1355 	 * mappings. The tradeoff is that copy_page_range is more efficient
1356 	 * than faulting.
1357 	 */
1358 	return false;
1359 }
1360 
1361 int
1362 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1363 {
1364 	pgd_t *src_pgd, *dst_pgd;
1365 	unsigned long next;
1366 	unsigned long addr = src_vma->vm_start;
1367 	unsigned long end = src_vma->vm_end;
1368 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1369 	struct mm_struct *src_mm = src_vma->vm_mm;
1370 	struct mmu_notifier_range range;
1371 	bool is_cow;
1372 	int ret;
1373 
1374 	if (!vma_needs_copy(dst_vma, src_vma))
1375 		return 0;
1376 
1377 	if (is_vm_hugetlb_page(src_vma))
1378 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1379 
1380 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1381 		/*
1382 		 * We do not free on error cases below as remove_vma
1383 		 * gets called on error from higher level routine
1384 		 */
1385 		ret = track_pfn_copy(src_vma);
1386 		if (ret)
1387 			return ret;
1388 	}
1389 
1390 	/*
1391 	 * We need to invalidate the secondary MMU mappings only when
1392 	 * there could be a permission downgrade on the ptes of the
1393 	 * parent mm. And a permission downgrade will only happen if
1394 	 * is_cow_mapping() returns true.
1395 	 */
1396 	is_cow = is_cow_mapping(src_vma->vm_flags);
1397 
1398 	if (is_cow) {
1399 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1400 					0, src_mm, addr, end);
1401 		mmu_notifier_invalidate_range_start(&range);
1402 		/*
1403 		 * Disabling preemption is not needed for the write side, as
1404 		 * the read side doesn't spin, but goes to the mmap_lock.
1405 		 *
1406 		 * Use the raw variant of the seqcount_t write API to avoid
1407 		 * lockdep complaining about preemptibility.
1408 		 */
1409 		vma_assert_write_locked(src_vma);
1410 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1411 	}
1412 
1413 	ret = 0;
1414 	dst_pgd = pgd_offset(dst_mm, addr);
1415 	src_pgd = pgd_offset(src_mm, addr);
1416 	do {
1417 		next = pgd_addr_end(addr, end);
1418 		if (pgd_none_or_clear_bad(src_pgd))
1419 			continue;
1420 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1421 					    addr, next))) {
1422 			untrack_pfn_clear(dst_vma);
1423 			ret = -ENOMEM;
1424 			break;
1425 		}
1426 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1427 
1428 	if (is_cow) {
1429 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1430 		mmu_notifier_invalidate_range_end(&range);
1431 	}
1432 	return ret;
1433 }
1434 
1435 /* Whether we should zap all COWed (private) pages too */
1436 static inline bool should_zap_cows(struct zap_details *details)
1437 {
1438 	/* By default, zap all pages */
1439 	if (!details)
1440 		return true;
1441 
1442 	/* Or, we zap COWed pages only if the caller wants to */
1443 	return details->even_cows;
1444 }
1445 
1446 /* Decides whether we should zap this folio with the folio pointer specified */
1447 static inline bool should_zap_folio(struct zap_details *details,
1448 				    struct folio *folio)
1449 {
1450 	/* If we can make a decision without *folio.. */
1451 	if (should_zap_cows(details))
1452 		return true;
1453 
1454 	/* Otherwise we should only zap non-anon folios */
1455 	return !folio_test_anon(folio);
1456 }
1457 
1458 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1459 {
1460 	if (!details)
1461 		return false;
1462 
1463 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1464 }
1465 
1466 /*
1467  * This function makes sure that we'll replace the none pte with an uffd-wp
1468  * swap special pte marker when necessary. Must be with the pgtable lock held.
1469  */
1470 static inline void
1471 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1472 			      unsigned long addr, pte_t *pte, int nr,
1473 			      struct zap_details *details, pte_t pteval)
1474 {
1475 	/* Zap on anonymous always means dropping everything */
1476 	if (vma_is_anonymous(vma))
1477 		return;
1478 
1479 	if (zap_drop_file_uffd_wp(details))
1480 		return;
1481 
1482 	for (;;) {
1483 		/* the PFN in the PTE is irrelevant. */
1484 		pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1485 		if (--nr == 0)
1486 			break;
1487 		pte++;
1488 		addr += PAGE_SIZE;
1489 	}
1490 }
1491 
1492 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1493 		struct vm_area_struct *vma, struct folio *folio,
1494 		struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1495 		unsigned long addr, struct zap_details *details, int *rss,
1496 		bool *force_flush, bool *force_break)
1497 {
1498 	struct mm_struct *mm = tlb->mm;
1499 	bool delay_rmap = false;
1500 
1501 	if (!folio_test_anon(folio)) {
1502 		ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1503 		if (pte_dirty(ptent)) {
1504 			folio_mark_dirty(folio);
1505 			if (tlb_delay_rmap(tlb)) {
1506 				delay_rmap = true;
1507 				*force_flush = true;
1508 			}
1509 		}
1510 		if (pte_young(ptent) && likely(vma_has_recency(vma)))
1511 			folio_mark_accessed(folio);
1512 		rss[mm_counter(folio)] -= nr;
1513 	} else {
1514 		/* We don't need up-to-date accessed/dirty bits. */
1515 		clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1516 		rss[MM_ANONPAGES] -= nr;
1517 	}
1518 	/* Checking a single PTE in a batch is sufficient. */
1519 	arch_check_zapped_pte(vma, ptent);
1520 	tlb_remove_tlb_entries(tlb, pte, nr, addr);
1521 	if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1522 		zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1523 					      ptent);
1524 
1525 	if (!delay_rmap) {
1526 		folio_remove_rmap_ptes(folio, page, nr, vma);
1527 
1528 		if (unlikely(folio_mapcount(folio) < 0))
1529 			print_bad_pte(vma, addr, ptent, page);
1530 	}
1531 	if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1532 		*force_flush = true;
1533 		*force_break = true;
1534 	}
1535 }
1536 
1537 /*
1538  * Zap or skip at least one present PTE, trying to batch-process subsequent
1539  * PTEs that map consecutive pages of the same folio.
1540  *
1541  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1542  */
1543 static inline int zap_present_ptes(struct mmu_gather *tlb,
1544 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1545 		unsigned int max_nr, unsigned long addr,
1546 		struct zap_details *details, int *rss, bool *force_flush,
1547 		bool *force_break)
1548 {
1549 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1550 	struct mm_struct *mm = tlb->mm;
1551 	struct folio *folio;
1552 	struct page *page;
1553 	int nr;
1554 
1555 	page = vm_normal_page(vma, addr, ptent);
1556 	if (!page) {
1557 		/* We don't need up-to-date accessed/dirty bits. */
1558 		ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1559 		arch_check_zapped_pte(vma, ptent);
1560 		tlb_remove_tlb_entry(tlb, pte, addr);
1561 		if (userfaultfd_pte_wp(vma, ptent))
1562 			zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1563 						      details, ptent);
1564 		ksm_might_unmap_zero_page(mm, ptent);
1565 		return 1;
1566 	}
1567 
1568 	folio = page_folio(page);
1569 	if (unlikely(!should_zap_folio(details, folio)))
1570 		return 1;
1571 
1572 	/*
1573 	 * Make sure that the common "small folio" case is as fast as possible
1574 	 * by keeping the batching logic separate.
1575 	 */
1576 	if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1577 		nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1578 				     NULL, NULL, NULL);
1579 
1580 		zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1581 				       addr, details, rss, force_flush,
1582 				       force_break);
1583 		return nr;
1584 	}
1585 	zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1586 			       details, rss, force_flush, force_break);
1587 	return 1;
1588 }
1589 
1590 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1591 				struct vm_area_struct *vma, pmd_t *pmd,
1592 				unsigned long addr, unsigned long end,
1593 				struct zap_details *details)
1594 {
1595 	bool force_flush = false, force_break = false;
1596 	struct mm_struct *mm = tlb->mm;
1597 	int rss[NR_MM_COUNTERS];
1598 	spinlock_t *ptl;
1599 	pte_t *start_pte;
1600 	pte_t *pte;
1601 	swp_entry_t entry;
1602 	int nr;
1603 
1604 	tlb_change_page_size(tlb, PAGE_SIZE);
1605 	init_rss_vec(rss);
1606 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1607 	if (!pte)
1608 		return addr;
1609 
1610 	flush_tlb_batched_pending(mm);
1611 	arch_enter_lazy_mmu_mode();
1612 	do {
1613 		pte_t ptent = ptep_get(pte);
1614 		struct folio *folio;
1615 		struct page *page;
1616 		int max_nr;
1617 
1618 		nr = 1;
1619 		if (pte_none(ptent))
1620 			continue;
1621 
1622 		if (need_resched())
1623 			break;
1624 
1625 		if (pte_present(ptent)) {
1626 			max_nr = (end - addr) / PAGE_SIZE;
1627 			nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1628 					      addr, details, rss, &force_flush,
1629 					      &force_break);
1630 			if (unlikely(force_break)) {
1631 				addr += nr * PAGE_SIZE;
1632 				break;
1633 			}
1634 			continue;
1635 		}
1636 
1637 		entry = pte_to_swp_entry(ptent);
1638 		if (is_device_private_entry(entry) ||
1639 		    is_device_exclusive_entry(entry)) {
1640 			page = pfn_swap_entry_to_page(entry);
1641 			folio = page_folio(page);
1642 			if (unlikely(!should_zap_folio(details, folio)))
1643 				continue;
1644 			/*
1645 			 * Both device private/exclusive mappings should only
1646 			 * work with anonymous page so far, so we don't need to
1647 			 * consider uffd-wp bit when zap. For more information,
1648 			 * see zap_install_uffd_wp_if_needed().
1649 			 */
1650 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1651 			rss[mm_counter(folio)]--;
1652 			if (is_device_private_entry(entry))
1653 				folio_remove_rmap_pte(folio, page, vma);
1654 			folio_put(folio);
1655 		} else if (!non_swap_entry(entry)) {
1656 			max_nr = (end - addr) / PAGE_SIZE;
1657 			nr = swap_pte_batch(pte, max_nr, ptent);
1658 			/* Genuine swap entries, hence a private anon pages */
1659 			if (!should_zap_cows(details))
1660 				continue;
1661 			rss[MM_SWAPENTS] -= nr;
1662 			free_swap_and_cache_nr(entry, nr);
1663 		} else if (is_migration_entry(entry)) {
1664 			folio = pfn_swap_entry_folio(entry);
1665 			if (!should_zap_folio(details, folio))
1666 				continue;
1667 			rss[mm_counter(folio)]--;
1668 		} else if (pte_marker_entry_uffd_wp(entry)) {
1669 			/*
1670 			 * For anon: always drop the marker; for file: only
1671 			 * drop the marker if explicitly requested.
1672 			 */
1673 			if (!vma_is_anonymous(vma) &&
1674 			    !zap_drop_file_uffd_wp(details))
1675 				continue;
1676 		} else if (is_hwpoison_entry(entry) ||
1677 			   is_poisoned_swp_entry(entry)) {
1678 			if (!should_zap_cows(details))
1679 				continue;
1680 		} else {
1681 			/* We should have covered all the swap entry types */
1682 			pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1683 			WARN_ON_ONCE(1);
1684 		}
1685 		clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1686 		zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1687 	} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1688 
1689 	add_mm_rss_vec(mm, rss);
1690 	arch_leave_lazy_mmu_mode();
1691 
1692 	/* Do the actual TLB flush before dropping ptl */
1693 	if (force_flush) {
1694 		tlb_flush_mmu_tlbonly(tlb);
1695 		tlb_flush_rmaps(tlb, vma);
1696 	}
1697 	pte_unmap_unlock(start_pte, ptl);
1698 
1699 	/*
1700 	 * If we forced a TLB flush (either due to running out of
1701 	 * batch buffers or because we needed to flush dirty TLB
1702 	 * entries before releasing the ptl), free the batched
1703 	 * memory too. Come back again if we didn't do everything.
1704 	 */
1705 	if (force_flush)
1706 		tlb_flush_mmu(tlb);
1707 
1708 	return addr;
1709 }
1710 
1711 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1712 				struct vm_area_struct *vma, pud_t *pud,
1713 				unsigned long addr, unsigned long end,
1714 				struct zap_details *details)
1715 {
1716 	pmd_t *pmd;
1717 	unsigned long next;
1718 
1719 	pmd = pmd_offset(pud, addr);
1720 	do {
1721 		next = pmd_addr_end(addr, end);
1722 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1723 			if (next - addr != HPAGE_PMD_SIZE)
1724 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1725 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1726 				addr = next;
1727 				continue;
1728 			}
1729 			/* fall through */
1730 		} else if (details && details->single_folio &&
1731 			   folio_test_pmd_mappable(details->single_folio) &&
1732 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1733 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1734 			/*
1735 			 * Take and drop THP pmd lock so that we cannot return
1736 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1737 			 * but not yet decremented compound_mapcount().
1738 			 */
1739 			spin_unlock(ptl);
1740 		}
1741 		if (pmd_none(*pmd)) {
1742 			addr = next;
1743 			continue;
1744 		}
1745 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1746 		if (addr != next)
1747 			pmd--;
1748 	} while (pmd++, cond_resched(), addr != end);
1749 
1750 	return addr;
1751 }
1752 
1753 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1754 				struct vm_area_struct *vma, p4d_t *p4d,
1755 				unsigned long addr, unsigned long end,
1756 				struct zap_details *details)
1757 {
1758 	pud_t *pud;
1759 	unsigned long next;
1760 
1761 	pud = pud_offset(p4d, addr);
1762 	do {
1763 		next = pud_addr_end(addr, end);
1764 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1765 			if (next - addr != HPAGE_PUD_SIZE) {
1766 				mmap_assert_locked(tlb->mm);
1767 				split_huge_pud(vma, pud, addr);
1768 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1769 				goto next;
1770 			/* fall through */
1771 		}
1772 		if (pud_none_or_clear_bad(pud))
1773 			continue;
1774 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1775 next:
1776 		cond_resched();
1777 	} while (pud++, addr = next, addr != end);
1778 
1779 	return addr;
1780 }
1781 
1782 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1783 				struct vm_area_struct *vma, pgd_t *pgd,
1784 				unsigned long addr, unsigned long end,
1785 				struct zap_details *details)
1786 {
1787 	p4d_t *p4d;
1788 	unsigned long next;
1789 
1790 	p4d = p4d_offset(pgd, addr);
1791 	do {
1792 		next = p4d_addr_end(addr, end);
1793 		if (p4d_none_or_clear_bad(p4d))
1794 			continue;
1795 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1796 	} while (p4d++, addr = next, addr != end);
1797 
1798 	return addr;
1799 }
1800 
1801 void unmap_page_range(struct mmu_gather *tlb,
1802 			     struct vm_area_struct *vma,
1803 			     unsigned long addr, unsigned long end,
1804 			     struct zap_details *details)
1805 {
1806 	pgd_t *pgd;
1807 	unsigned long next;
1808 
1809 	BUG_ON(addr >= end);
1810 	tlb_start_vma(tlb, vma);
1811 	pgd = pgd_offset(vma->vm_mm, addr);
1812 	do {
1813 		next = pgd_addr_end(addr, end);
1814 		if (pgd_none_or_clear_bad(pgd))
1815 			continue;
1816 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1817 	} while (pgd++, addr = next, addr != end);
1818 	tlb_end_vma(tlb, vma);
1819 }
1820 
1821 
1822 static void unmap_single_vma(struct mmu_gather *tlb,
1823 		struct vm_area_struct *vma, unsigned long start_addr,
1824 		unsigned long end_addr,
1825 		struct zap_details *details, bool mm_wr_locked)
1826 {
1827 	unsigned long start = max(vma->vm_start, start_addr);
1828 	unsigned long end;
1829 
1830 	if (start >= vma->vm_end)
1831 		return;
1832 	end = min(vma->vm_end, end_addr);
1833 	if (end <= vma->vm_start)
1834 		return;
1835 
1836 	if (vma->vm_file)
1837 		uprobe_munmap(vma, start, end);
1838 
1839 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1840 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1841 
1842 	if (start != end) {
1843 		if (unlikely(is_vm_hugetlb_page(vma))) {
1844 			/*
1845 			 * It is undesirable to test vma->vm_file as it
1846 			 * should be non-null for valid hugetlb area.
1847 			 * However, vm_file will be NULL in the error
1848 			 * cleanup path of mmap_region. When
1849 			 * hugetlbfs ->mmap method fails,
1850 			 * mmap_region() nullifies vma->vm_file
1851 			 * before calling this function to clean up.
1852 			 * Since no pte has actually been setup, it is
1853 			 * safe to do nothing in this case.
1854 			 */
1855 			if (vma->vm_file) {
1856 				zap_flags_t zap_flags = details ?
1857 				    details->zap_flags : 0;
1858 				__unmap_hugepage_range(tlb, vma, start, end,
1859 							     NULL, zap_flags);
1860 			}
1861 		} else
1862 			unmap_page_range(tlb, vma, start, end, details);
1863 	}
1864 }
1865 
1866 /**
1867  * unmap_vmas - unmap a range of memory covered by a list of vma's
1868  * @tlb: address of the caller's struct mmu_gather
1869  * @mas: the maple state
1870  * @vma: the starting vma
1871  * @start_addr: virtual address at which to start unmapping
1872  * @end_addr: virtual address at which to end unmapping
1873  * @tree_end: The maximum index to check
1874  * @mm_wr_locked: lock flag
1875  *
1876  * Unmap all pages in the vma list.
1877  *
1878  * Only addresses between `start' and `end' will be unmapped.
1879  *
1880  * The VMA list must be sorted in ascending virtual address order.
1881  *
1882  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1883  * range after unmap_vmas() returns.  So the only responsibility here is to
1884  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1885  * drops the lock and schedules.
1886  */
1887 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1888 		struct vm_area_struct *vma, unsigned long start_addr,
1889 		unsigned long end_addr, unsigned long tree_end,
1890 		bool mm_wr_locked)
1891 {
1892 	struct mmu_notifier_range range;
1893 	struct zap_details details = {
1894 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1895 		/* Careful - we need to zap private pages too! */
1896 		.even_cows = true,
1897 	};
1898 
1899 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1900 				start_addr, end_addr);
1901 	mmu_notifier_invalidate_range_start(&range);
1902 	do {
1903 		unsigned long start = start_addr;
1904 		unsigned long end = end_addr;
1905 		hugetlb_zap_begin(vma, &start, &end);
1906 		unmap_single_vma(tlb, vma, start, end, &details,
1907 				 mm_wr_locked);
1908 		hugetlb_zap_end(vma, &details);
1909 		vma = mas_find(mas, tree_end - 1);
1910 	} while (vma && likely(!xa_is_zero(vma)));
1911 	mmu_notifier_invalidate_range_end(&range);
1912 }
1913 
1914 /**
1915  * zap_page_range_single - remove user pages in a given range
1916  * @vma: vm_area_struct holding the applicable pages
1917  * @address: starting address of pages to zap
1918  * @size: number of bytes to zap
1919  * @details: details of shared cache invalidation
1920  *
1921  * The range must fit into one VMA.
1922  */
1923 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1924 		unsigned long size, struct zap_details *details)
1925 {
1926 	const unsigned long end = address + size;
1927 	struct mmu_notifier_range range;
1928 	struct mmu_gather tlb;
1929 
1930 	lru_add_drain();
1931 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1932 				address, end);
1933 	hugetlb_zap_begin(vma, &range.start, &range.end);
1934 	tlb_gather_mmu(&tlb, vma->vm_mm);
1935 	update_hiwater_rss(vma->vm_mm);
1936 	mmu_notifier_invalidate_range_start(&range);
1937 	/*
1938 	 * unmap 'address-end' not 'range.start-range.end' as range
1939 	 * could have been expanded for hugetlb pmd sharing.
1940 	 */
1941 	unmap_single_vma(&tlb, vma, address, end, details, false);
1942 	mmu_notifier_invalidate_range_end(&range);
1943 	tlb_finish_mmu(&tlb);
1944 	hugetlb_zap_end(vma, details);
1945 }
1946 
1947 /**
1948  * zap_vma_ptes - remove ptes mapping the vma
1949  * @vma: vm_area_struct holding ptes to be zapped
1950  * @address: starting address of pages to zap
1951  * @size: number of bytes to zap
1952  *
1953  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1954  *
1955  * The entire address range must be fully contained within the vma.
1956  *
1957  */
1958 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1959 		unsigned long size)
1960 {
1961 	if (!range_in_vma(vma, address, address + size) ||
1962 	    		!(vma->vm_flags & VM_PFNMAP))
1963 		return;
1964 
1965 	zap_page_range_single(vma, address, size, NULL);
1966 }
1967 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1968 
1969 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1970 {
1971 	pgd_t *pgd;
1972 	p4d_t *p4d;
1973 	pud_t *pud;
1974 	pmd_t *pmd;
1975 
1976 	pgd = pgd_offset(mm, addr);
1977 	p4d = p4d_alloc(mm, pgd, addr);
1978 	if (!p4d)
1979 		return NULL;
1980 	pud = pud_alloc(mm, p4d, addr);
1981 	if (!pud)
1982 		return NULL;
1983 	pmd = pmd_alloc(mm, pud, addr);
1984 	if (!pmd)
1985 		return NULL;
1986 
1987 	VM_BUG_ON(pmd_trans_huge(*pmd));
1988 	return pmd;
1989 }
1990 
1991 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1992 			spinlock_t **ptl)
1993 {
1994 	pmd_t *pmd = walk_to_pmd(mm, addr);
1995 
1996 	if (!pmd)
1997 		return NULL;
1998 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1999 }
2000 
2001 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2002 {
2003 	VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2004 	/*
2005 	 * Whoever wants to forbid the zeropage after some zeropages
2006 	 * might already have been mapped has to scan the page tables and
2007 	 * bail out on any zeropages. Zeropages in COW mappings can
2008 	 * be unshared using FAULT_FLAG_UNSHARE faults.
2009 	 */
2010 	if (mm_forbids_zeropage(vma->vm_mm))
2011 		return false;
2012 	/* zeropages in COW mappings are common and unproblematic. */
2013 	if (is_cow_mapping(vma->vm_flags))
2014 		return true;
2015 	/* Mappings that do not allow for writable PTEs are unproblematic. */
2016 	if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2017 		return true;
2018 	/*
2019 	 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2020 	 * find the shared zeropage and longterm-pin it, which would
2021 	 * be problematic as soon as the zeropage gets replaced by a different
2022 	 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2023 	 * now differ to what GUP looked up. FSDAX is incompatible to
2024 	 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2025 	 * check_vma_flags).
2026 	 */
2027 	return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2028 	       (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2029 }
2030 
2031 static int validate_page_before_insert(struct vm_area_struct *vma,
2032 				       struct page *page)
2033 {
2034 	struct folio *folio = page_folio(page);
2035 
2036 	if (!folio_ref_count(folio))
2037 		return -EINVAL;
2038 	if (unlikely(is_zero_folio(folio))) {
2039 		if (!vm_mixed_zeropage_allowed(vma))
2040 			return -EINVAL;
2041 		return 0;
2042 	}
2043 	if (folio_test_anon(folio) || folio_test_slab(folio) ||
2044 	    page_has_type(page))
2045 		return -EINVAL;
2046 	flush_dcache_folio(folio);
2047 	return 0;
2048 }
2049 
2050 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2051 			unsigned long addr, struct page *page, pgprot_t prot)
2052 {
2053 	struct folio *folio = page_folio(page);
2054 	pte_t pteval;
2055 
2056 	if (!pte_none(ptep_get(pte)))
2057 		return -EBUSY;
2058 	/* Ok, finally just insert the thing.. */
2059 	pteval = mk_pte(page, prot);
2060 	if (unlikely(is_zero_folio(folio))) {
2061 		pteval = pte_mkspecial(pteval);
2062 	} else {
2063 		folio_get(folio);
2064 		inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2065 		folio_add_file_rmap_pte(folio, page, vma);
2066 	}
2067 	set_pte_at(vma->vm_mm, addr, pte, pteval);
2068 	return 0;
2069 }
2070 
2071 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2072 			struct page *page, pgprot_t prot)
2073 {
2074 	int retval;
2075 	pte_t *pte;
2076 	spinlock_t *ptl;
2077 
2078 	retval = validate_page_before_insert(vma, page);
2079 	if (retval)
2080 		goto out;
2081 	retval = -ENOMEM;
2082 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2083 	if (!pte)
2084 		goto out;
2085 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2086 	pte_unmap_unlock(pte, ptl);
2087 out:
2088 	return retval;
2089 }
2090 
2091 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2092 			unsigned long addr, struct page *page, pgprot_t prot)
2093 {
2094 	int err;
2095 
2096 	err = validate_page_before_insert(vma, page);
2097 	if (err)
2098 		return err;
2099 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2100 }
2101 
2102 /* insert_pages() amortizes the cost of spinlock operations
2103  * when inserting pages in a loop.
2104  */
2105 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2106 			struct page **pages, unsigned long *num, pgprot_t prot)
2107 {
2108 	pmd_t *pmd = NULL;
2109 	pte_t *start_pte, *pte;
2110 	spinlock_t *pte_lock;
2111 	struct mm_struct *const mm = vma->vm_mm;
2112 	unsigned long curr_page_idx = 0;
2113 	unsigned long remaining_pages_total = *num;
2114 	unsigned long pages_to_write_in_pmd;
2115 	int ret;
2116 more:
2117 	ret = -EFAULT;
2118 	pmd = walk_to_pmd(mm, addr);
2119 	if (!pmd)
2120 		goto out;
2121 
2122 	pages_to_write_in_pmd = min_t(unsigned long,
2123 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2124 
2125 	/* Allocate the PTE if necessary; takes PMD lock once only. */
2126 	ret = -ENOMEM;
2127 	if (pte_alloc(mm, pmd))
2128 		goto out;
2129 
2130 	while (pages_to_write_in_pmd) {
2131 		int pte_idx = 0;
2132 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2133 
2134 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2135 		if (!start_pte) {
2136 			ret = -EFAULT;
2137 			goto out;
2138 		}
2139 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2140 			int err = insert_page_in_batch_locked(vma, pte,
2141 				addr, pages[curr_page_idx], prot);
2142 			if (unlikely(err)) {
2143 				pte_unmap_unlock(start_pte, pte_lock);
2144 				ret = err;
2145 				remaining_pages_total -= pte_idx;
2146 				goto out;
2147 			}
2148 			addr += PAGE_SIZE;
2149 			++curr_page_idx;
2150 		}
2151 		pte_unmap_unlock(start_pte, pte_lock);
2152 		pages_to_write_in_pmd -= batch_size;
2153 		remaining_pages_total -= batch_size;
2154 	}
2155 	if (remaining_pages_total)
2156 		goto more;
2157 	ret = 0;
2158 out:
2159 	*num = remaining_pages_total;
2160 	return ret;
2161 }
2162 
2163 /**
2164  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2165  * @vma: user vma to map to
2166  * @addr: target start user address of these pages
2167  * @pages: source kernel pages
2168  * @num: in: number of pages to map. out: number of pages that were *not*
2169  * mapped. (0 means all pages were successfully mapped).
2170  *
2171  * Preferred over vm_insert_page() when inserting multiple pages.
2172  *
2173  * In case of error, we may have mapped a subset of the provided
2174  * pages. It is the caller's responsibility to account for this case.
2175  *
2176  * The same restrictions apply as in vm_insert_page().
2177  */
2178 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2179 			struct page **pages, unsigned long *num)
2180 {
2181 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2182 
2183 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2184 		return -EFAULT;
2185 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2186 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2187 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2188 		vm_flags_set(vma, VM_MIXEDMAP);
2189 	}
2190 	/* Defer page refcount checking till we're about to map that page. */
2191 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2192 }
2193 EXPORT_SYMBOL(vm_insert_pages);
2194 
2195 /**
2196  * vm_insert_page - insert single page into user vma
2197  * @vma: user vma to map to
2198  * @addr: target user address of this page
2199  * @page: source kernel page
2200  *
2201  * This allows drivers to insert individual pages they've allocated
2202  * into a user vma. The zeropage is supported in some VMAs,
2203  * see vm_mixed_zeropage_allowed().
2204  *
2205  * The page has to be a nice clean _individual_ kernel allocation.
2206  * If you allocate a compound page, you need to have marked it as
2207  * such (__GFP_COMP), or manually just split the page up yourself
2208  * (see split_page()).
2209  *
2210  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2211  * took an arbitrary page protection parameter. This doesn't allow
2212  * that. Your vma protection will have to be set up correctly, which
2213  * means that if you want a shared writable mapping, you'd better
2214  * ask for a shared writable mapping!
2215  *
2216  * The page does not need to be reserved.
2217  *
2218  * Usually this function is called from f_op->mmap() handler
2219  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2220  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2221  * function from other places, for example from page-fault handler.
2222  *
2223  * Return: %0 on success, negative error code otherwise.
2224  */
2225 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2226 			struct page *page)
2227 {
2228 	if (addr < vma->vm_start || addr >= vma->vm_end)
2229 		return -EFAULT;
2230 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2231 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2232 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2233 		vm_flags_set(vma, VM_MIXEDMAP);
2234 	}
2235 	return insert_page(vma, addr, page, vma->vm_page_prot);
2236 }
2237 EXPORT_SYMBOL(vm_insert_page);
2238 
2239 /*
2240  * __vm_map_pages - maps range of kernel pages into user vma
2241  * @vma: user vma to map to
2242  * @pages: pointer to array of source kernel pages
2243  * @num: number of pages in page array
2244  * @offset: user's requested vm_pgoff
2245  *
2246  * This allows drivers to map range of kernel pages into a user vma.
2247  * The zeropage is supported in some VMAs, see
2248  * vm_mixed_zeropage_allowed().
2249  *
2250  * Return: 0 on success and error code otherwise.
2251  */
2252 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2253 				unsigned long num, unsigned long offset)
2254 {
2255 	unsigned long count = vma_pages(vma);
2256 	unsigned long uaddr = vma->vm_start;
2257 	int ret, i;
2258 
2259 	/* Fail if the user requested offset is beyond the end of the object */
2260 	if (offset >= num)
2261 		return -ENXIO;
2262 
2263 	/* Fail if the user requested size exceeds available object size */
2264 	if (count > num - offset)
2265 		return -ENXIO;
2266 
2267 	for (i = 0; i < count; i++) {
2268 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2269 		if (ret < 0)
2270 			return ret;
2271 		uaddr += PAGE_SIZE;
2272 	}
2273 
2274 	return 0;
2275 }
2276 
2277 /**
2278  * vm_map_pages - maps range of kernel pages starts with non zero offset
2279  * @vma: user vma to map to
2280  * @pages: pointer to array of source kernel pages
2281  * @num: number of pages in page array
2282  *
2283  * Maps an object consisting of @num pages, catering for the user's
2284  * requested vm_pgoff
2285  *
2286  * If we fail to insert any page into the vma, the function will return
2287  * immediately leaving any previously inserted pages present.  Callers
2288  * from the mmap handler may immediately return the error as their caller
2289  * will destroy the vma, removing any successfully inserted pages. Other
2290  * callers should make their own arrangements for calling unmap_region().
2291  *
2292  * Context: Process context. Called by mmap handlers.
2293  * Return: 0 on success and error code otherwise.
2294  */
2295 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2296 				unsigned long num)
2297 {
2298 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2299 }
2300 EXPORT_SYMBOL(vm_map_pages);
2301 
2302 /**
2303  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2304  * @vma: user vma to map to
2305  * @pages: pointer to array of source kernel pages
2306  * @num: number of pages in page array
2307  *
2308  * Similar to vm_map_pages(), except that it explicitly sets the offset
2309  * to 0. This function is intended for the drivers that did not consider
2310  * vm_pgoff.
2311  *
2312  * Context: Process context. Called by mmap handlers.
2313  * Return: 0 on success and error code otherwise.
2314  */
2315 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2316 				unsigned long num)
2317 {
2318 	return __vm_map_pages(vma, pages, num, 0);
2319 }
2320 EXPORT_SYMBOL(vm_map_pages_zero);
2321 
2322 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2323 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2324 {
2325 	struct mm_struct *mm = vma->vm_mm;
2326 	pte_t *pte, entry;
2327 	spinlock_t *ptl;
2328 
2329 	pte = get_locked_pte(mm, addr, &ptl);
2330 	if (!pte)
2331 		return VM_FAULT_OOM;
2332 	entry = ptep_get(pte);
2333 	if (!pte_none(entry)) {
2334 		if (mkwrite) {
2335 			/*
2336 			 * For read faults on private mappings the PFN passed
2337 			 * in may not match the PFN we have mapped if the
2338 			 * mapped PFN is a writeable COW page.  In the mkwrite
2339 			 * case we are creating a writable PTE for a shared
2340 			 * mapping and we expect the PFNs to match. If they
2341 			 * don't match, we are likely racing with block
2342 			 * allocation and mapping invalidation so just skip the
2343 			 * update.
2344 			 */
2345 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2346 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2347 				goto out_unlock;
2348 			}
2349 			entry = pte_mkyoung(entry);
2350 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2351 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2352 				update_mmu_cache(vma, addr, pte);
2353 		}
2354 		goto out_unlock;
2355 	}
2356 
2357 	/* Ok, finally just insert the thing.. */
2358 	if (pfn_t_devmap(pfn))
2359 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2360 	else
2361 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2362 
2363 	if (mkwrite) {
2364 		entry = pte_mkyoung(entry);
2365 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2366 	}
2367 
2368 	set_pte_at(mm, addr, pte, entry);
2369 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2370 
2371 out_unlock:
2372 	pte_unmap_unlock(pte, ptl);
2373 	return VM_FAULT_NOPAGE;
2374 }
2375 
2376 /**
2377  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2378  * @vma: user vma to map to
2379  * @addr: target user address of this page
2380  * @pfn: source kernel pfn
2381  * @pgprot: pgprot flags for the inserted page
2382  *
2383  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2384  * to override pgprot on a per-page basis.
2385  *
2386  * This only makes sense for IO mappings, and it makes no sense for
2387  * COW mappings.  In general, using multiple vmas is preferable;
2388  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2389  * impractical.
2390  *
2391  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2392  * caching- and encryption bits different than those of @vma->vm_page_prot,
2393  * because the caching- or encryption mode may not be known at mmap() time.
2394  *
2395  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2396  * to set caching and encryption bits for those vmas (except for COW pages).
2397  * This is ensured by core vm only modifying these page table entries using
2398  * functions that don't touch caching- or encryption bits, using pte_modify()
2399  * if needed. (See for example mprotect()).
2400  *
2401  * Also when new page-table entries are created, this is only done using the
2402  * fault() callback, and never using the value of vma->vm_page_prot,
2403  * except for page-table entries that point to anonymous pages as the result
2404  * of COW.
2405  *
2406  * Context: Process context.  May allocate using %GFP_KERNEL.
2407  * Return: vm_fault_t value.
2408  */
2409 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2410 			unsigned long pfn, pgprot_t pgprot)
2411 {
2412 	/*
2413 	 * Technically, architectures with pte_special can avoid all these
2414 	 * restrictions (same for remap_pfn_range).  However we would like
2415 	 * consistency in testing and feature parity among all, so we should
2416 	 * try to keep these invariants in place for everybody.
2417 	 */
2418 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2419 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2420 						(VM_PFNMAP|VM_MIXEDMAP));
2421 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2422 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2423 
2424 	if (addr < vma->vm_start || addr >= vma->vm_end)
2425 		return VM_FAULT_SIGBUS;
2426 
2427 	if (!pfn_modify_allowed(pfn, pgprot))
2428 		return VM_FAULT_SIGBUS;
2429 
2430 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2431 
2432 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2433 			false);
2434 }
2435 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2436 
2437 /**
2438  * vmf_insert_pfn - insert single pfn into user vma
2439  * @vma: user vma to map to
2440  * @addr: target user address of this page
2441  * @pfn: source kernel pfn
2442  *
2443  * Similar to vm_insert_page, this allows drivers to insert individual pages
2444  * they've allocated into a user vma. Same comments apply.
2445  *
2446  * This function should only be called from a vm_ops->fault handler, and
2447  * in that case the handler should return the result of this function.
2448  *
2449  * vma cannot be a COW mapping.
2450  *
2451  * As this is called only for pages that do not currently exist, we
2452  * do not need to flush old virtual caches or the TLB.
2453  *
2454  * Context: Process context.  May allocate using %GFP_KERNEL.
2455  * Return: vm_fault_t value.
2456  */
2457 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2458 			unsigned long pfn)
2459 {
2460 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2461 }
2462 EXPORT_SYMBOL(vmf_insert_pfn);
2463 
2464 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2465 {
2466 	if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2467 	    (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2468 		return false;
2469 	/* these checks mirror the abort conditions in vm_normal_page */
2470 	if (vma->vm_flags & VM_MIXEDMAP)
2471 		return true;
2472 	if (pfn_t_devmap(pfn))
2473 		return true;
2474 	if (pfn_t_special(pfn))
2475 		return true;
2476 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2477 		return true;
2478 	return false;
2479 }
2480 
2481 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2482 		unsigned long addr, pfn_t pfn, bool mkwrite)
2483 {
2484 	pgprot_t pgprot = vma->vm_page_prot;
2485 	int err;
2486 
2487 	if (!vm_mixed_ok(vma, pfn, mkwrite))
2488 		return VM_FAULT_SIGBUS;
2489 
2490 	if (addr < vma->vm_start || addr >= vma->vm_end)
2491 		return VM_FAULT_SIGBUS;
2492 
2493 	track_pfn_insert(vma, &pgprot, pfn);
2494 
2495 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2496 		return VM_FAULT_SIGBUS;
2497 
2498 	/*
2499 	 * If we don't have pte special, then we have to use the pfn_valid()
2500 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2501 	 * refcount the page if pfn_valid is true (hence insert_page rather
2502 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2503 	 * without pte special, it would there be refcounted as a normal page.
2504 	 */
2505 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2506 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2507 		struct page *page;
2508 
2509 		/*
2510 		 * At this point we are committed to insert_page()
2511 		 * regardless of whether the caller specified flags that
2512 		 * result in pfn_t_has_page() == false.
2513 		 */
2514 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2515 		err = insert_page(vma, addr, page, pgprot);
2516 	} else {
2517 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2518 	}
2519 
2520 	if (err == -ENOMEM)
2521 		return VM_FAULT_OOM;
2522 	if (err < 0 && err != -EBUSY)
2523 		return VM_FAULT_SIGBUS;
2524 
2525 	return VM_FAULT_NOPAGE;
2526 }
2527 
2528 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2529 		pfn_t pfn)
2530 {
2531 	return __vm_insert_mixed(vma, addr, pfn, false);
2532 }
2533 EXPORT_SYMBOL(vmf_insert_mixed);
2534 
2535 /*
2536  *  If the insertion of PTE failed because someone else already added a
2537  *  different entry in the mean time, we treat that as success as we assume
2538  *  the same entry was actually inserted.
2539  */
2540 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2541 		unsigned long addr, pfn_t pfn)
2542 {
2543 	return __vm_insert_mixed(vma, addr, pfn, true);
2544 }
2545 
2546 /*
2547  * maps a range of physical memory into the requested pages. the old
2548  * mappings are removed. any references to nonexistent pages results
2549  * in null mappings (currently treated as "copy-on-access")
2550  */
2551 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2552 			unsigned long addr, unsigned long end,
2553 			unsigned long pfn, pgprot_t prot)
2554 {
2555 	pte_t *pte, *mapped_pte;
2556 	spinlock_t *ptl;
2557 	int err = 0;
2558 
2559 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2560 	if (!pte)
2561 		return -ENOMEM;
2562 	arch_enter_lazy_mmu_mode();
2563 	do {
2564 		BUG_ON(!pte_none(ptep_get(pte)));
2565 		if (!pfn_modify_allowed(pfn, prot)) {
2566 			err = -EACCES;
2567 			break;
2568 		}
2569 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2570 		pfn++;
2571 	} while (pte++, addr += PAGE_SIZE, addr != end);
2572 	arch_leave_lazy_mmu_mode();
2573 	pte_unmap_unlock(mapped_pte, ptl);
2574 	return err;
2575 }
2576 
2577 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2578 			unsigned long addr, unsigned long end,
2579 			unsigned long pfn, pgprot_t prot)
2580 {
2581 	pmd_t *pmd;
2582 	unsigned long next;
2583 	int err;
2584 
2585 	pfn -= addr >> PAGE_SHIFT;
2586 	pmd = pmd_alloc(mm, pud, addr);
2587 	if (!pmd)
2588 		return -ENOMEM;
2589 	VM_BUG_ON(pmd_trans_huge(*pmd));
2590 	do {
2591 		next = pmd_addr_end(addr, end);
2592 		err = remap_pte_range(mm, pmd, addr, next,
2593 				pfn + (addr >> PAGE_SHIFT), prot);
2594 		if (err)
2595 			return err;
2596 	} while (pmd++, addr = next, addr != end);
2597 	return 0;
2598 }
2599 
2600 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2601 			unsigned long addr, unsigned long end,
2602 			unsigned long pfn, pgprot_t prot)
2603 {
2604 	pud_t *pud;
2605 	unsigned long next;
2606 	int err;
2607 
2608 	pfn -= addr >> PAGE_SHIFT;
2609 	pud = pud_alloc(mm, p4d, addr);
2610 	if (!pud)
2611 		return -ENOMEM;
2612 	do {
2613 		next = pud_addr_end(addr, end);
2614 		err = remap_pmd_range(mm, pud, addr, next,
2615 				pfn + (addr >> PAGE_SHIFT), prot);
2616 		if (err)
2617 			return err;
2618 	} while (pud++, addr = next, addr != end);
2619 	return 0;
2620 }
2621 
2622 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2623 			unsigned long addr, unsigned long end,
2624 			unsigned long pfn, pgprot_t prot)
2625 {
2626 	p4d_t *p4d;
2627 	unsigned long next;
2628 	int err;
2629 
2630 	pfn -= addr >> PAGE_SHIFT;
2631 	p4d = p4d_alloc(mm, pgd, addr);
2632 	if (!p4d)
2633 		return -ENOMEM;
2634 	do {
2635 		next = p4d_addr_end(addr, end);
2636 		err = remap_pud_range(mm, p4d, addr, next,
2637 				pfn + (addr >> PAGE_SHIFT), prot);
2638 		if (err)
2639 			return err;
2640 	} while (p4d++, addr = next, addr != end);
2641 	return 0;
2642 }
2643 
2644 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2645 		unsigned long pfn, unsigned long size, pgprot_t prot)
2646 {
2647 	pgd_t *pgd;
2648 	unsigned long next;
2649 	unsigned long end = addr + PAGE_ALIGN(size);
2650 	struct mm_struct *mm = vma->vm_mm;
2651 	int err;
2652 
2653 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2654 		return -EINVAL;
2655 
2656 	/*
2657 	 * Physically remapped pages are special. Tell the
2658 	 * rest of the world about it:
2659 	 *   VM_IO tells people not to look at these pages
2660 	 *	(accesses can have side effects).
2661 	 *   VM_PFNMAP tells the core MM that the base pages are just
2662 	 *	raw PFN mappings, and do not have a "struct page" associated
2663 	 *	with them.
2664 	 *   VM_DONTEXPAND
2665 	 *      Disable vma merging and expanding with mremap().
2666 	 *   VM_DONTDUMP
2667 	 *      Omit vma from core dump, even when VM_IO turned off.
2668 	 *
2669 	 * There's a horrible special case to handle copy-on-write
2670 	 * behaviour that some programs depend on. We mark the "original"
2671 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2672 	 * See vm_normal_page() for details.
2673 	 */
2674 	if (is_cow_mapping(vma->vm_flags)) {
2675 		if (addr != vma->vm_start || end != vma->vm_end)
2676 			return -EINVAL;
2677 		vma->vm_pgoff = pfn;
2678 	}
2679 
2680 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2681 
2682 	BUG_ON(addr >= end);
2683 	pfn -= addr >> PAGE_SHIFT;
2684 	pgd = pgd_offset(mm, addr);
2685 	flush_cache_range(vma, addr, end);
2686 	do {
2687 		next = pgd_addr_end(addr, end);
2688 		err = remap_p4d_range(mm, pgd, addr, next,
2689 				pfn + (addr >> PAGE_SHIFT), prot);
2690 		if (err)
2691 			return err;
2692 	} while (pgd++, addr = next, addr != end);
2693 
2694 	return 0;
2695 }
2696 
2697 /*
2698  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2699  * must have pre-validated the caching bits of the pgprot_t.
2700  */
2701 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2702 		unsigned long pfn, unsigned long size, pgprot_t prot)
2703 {
2704 	int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2705 
2706 	if (!error)
2707 		return 0;
2708 
2709 	/*
2710 	 * A partial pfn range mapping is dangerous: it does not
2711 	 * maintain page reference counts, and callers may free
2712 	 * pages due to the error. So zap it early.
2713 	 */
2714 	zap_page_range_single(vma, addr, size, NULL);
2715 	return error;
2716 }
2717 
2718 /**
2719  * remap_pfn_range - remap kernel memory to userspace
2720  * @vma: user vma to map to
2721  * @addr: target page aligned user address to start at
2722  * @pfn: page frame number of kernel physical memory address
2723  * @size: size of mapping area
2724  * @prot: page protection flags for this mapping
2725  *
2726  * Note: this is only safe if the mm semaphore is held when called.
2727  *
2728  * Return: %0 on success, negative error code otherwise.
2729  */
2730 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2731 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2732 {
2733 	int err;
2734 
2735 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2736 	if (err)
2737 		return -EINVAL;
2738 
2739 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2740 	if (err)
2741 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2742 	return err;
2743 }
2744 EXPORT_SYMBOL(remap_pfn_range);
2745 
2746 /**
2747  * vm_iomap_memory - remap memory to userspace
2748  * @vma: user vma to map to
2749  * @start: start of the physical memory to be mapped
2750  * @len: size of area
2751  *
2752  * This is a simplified io_remap_pfn_range() for common driver use. The
2753  * driver just needs to give us the physical memory range to be mapped,
2754  * we'll figure out the rest from the vma information.
2755  *
2756  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2757  * whatever write-combining details or similar.
2758  *
2759  * Return: %0 on success, negative error code otherwise.
2760  */
2761 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2762 {
2763 	unsigned long vm_len, pfn, pages;
2764 
2765 	/* Check that the physical memory area passed in looks valid */
2766 	if (start + len < start)
2767 		return -EINVAL;
2768 	/*
2769 	 * You *really* shouldn't map things that aren't page-aligned,
2770 	 * but we've historically allowed it because IO memory might
2771 	 * just have smaller alignment.
2772 	 */
2773 	len += start & ~PAGE_MASK;
2774 	pfn = start >> PAGE_SHIFT;
2775 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2776 	if (pfn + pages < pfn)
2777 		return -EINVAL;
2778 
2779 	/* We start the mapping 'vm_pgoff' pages into the area */
2780 	if (vma->vm_pgoff > pages)
2781 		return -EINVAL;
2782 	pfn += vma->vm_pgoff;
2783 	pages -= vma->vm_pgoff;
2784 
2785 	/* Can we fit all of the mapping? */
2786 	vm_len = vma->vm_end - vma->vm_start;
2787 	if (vm_len >> PAGE_SHIFT > pages)
2788 		return -EINVAL;
2789 
2790 	/* Ok, let it rip */
2791 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2792 }
2793 EXPORT_SYMBOL(vm_iomap_memory);
2794 
2795 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2796 				     unsigned long addr, unsigned long end,
2797 				     pte_fn_t fn, void *data, bool create,
2798 				     pgtbl_mod_mask *mask)
2799 {
2800 	pte_t *pte, *mapped_pte;
2801 	int err = 0;
2802 	spinlock_t *ptl;
2803 
2804 	if (create) {
2805 		mapped_pte = pte = (mm == &init_mm) ?
2806 			pte_alloc_kernel_track(pmd, addr, mask) :
2807 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2808 		if (!pte)
2809 			return -ENOMEM;
2810 	} else {
2811 		mapped_pte = pte = (mm == &init_mm) ?
2812 			pte_offset_kernel(pmd, addr) :
2813 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2814 		if (!pte)
2815 			return -EINVAL;
2816 	}
2817 
2818 	arch_enter_lazy_mmu_mode();
2819 
2820 	if (fn) {
2821 		do {
2822 			if (create || !pte_none(ptep_get(pte))) {
2823 				err = fn(pte++, addr, data);
2824 				if (err)
2825 					break;
2826 			}
2827 		} while (addr += PAGE_SIZE, addr != end);
2828 	}
2829 	*mask |= PGTBL_PTE_MODIFIED;
2830 
2831 	arch_leave_lazy_mmu_mode();
2832 
2833 	if (mm != &init_mm)
2834 		pte_unmap_unlock(mapped_pte, ptl);
2835 	return err;
2836 }
2837 
2838 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2839 				     unsigned long addr, unsigned long end,
2840 				     pte_fn_t fn, void *data, bool create,
2841 				     pgtbl_mod_mask *mask)
2842 {
2843 	pmd_t *pmd;
2844 	unsigned long next;
2845 	int err = 0;
2846 
2847 	BUG_ON(pud_leaf(*pud));
2848 
2849 	if (create) {
2850 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2851 		if (!pmd)
2852 			return -ENOMEM;
2853 	} else {
2854 		pmd = pmd_offset(pud, addr);
2855 	}
2856 	do {
2857 		next = pmd_addr_end(addr, end);
2858 		if (pmd_none(*pmd) && !create)
2859 			continue;
2860 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2861 			return -EINVAL;
2862 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2863 			if (!create)
2864 				continue;
2865 			pmd_clear_bad(pmd);
2866 		}
2867 		err = apply_to_pte_range(mm, pmd, addr, next,
2868 					 fn, data, create, mask);
2869 		if (err)
2870 			break;
2871 	} while (pmd++, addr = next, addr != end);
2872 
2873 	return err;
2874 }
2875 
2876 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2877 				     unsigned long addr, unsigned long end,
2878 				     pte_fn_t fn, void *data, bool create,
2879 				     pgtbl_mod_mask *mask)
2880 {
2881 	pud_t *pud;
2882 	unsigned long next;
2883 	int err = 0;
2884 
2885 	if (create) {
2886 		pud = pud_alloc_track(mm, p4d, addr, mask);
2887 		if (!pud)
2888 			return -ENOMEM;
2889 	} else {
2890 		pud = pud_offset(p4d, addr);
2891 	}
2892 	do {
2893 		next = pud_addr_end(addr, end);
2894 		if (pud_none(*pud) && !create)
2895 			continue;
2896 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2897 			return -EINVAL;
2898 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2899 			if (!create)
2900 				continue;
2901 			pud_clear_bad(pud);
2902 		}
2903 		err = apply_to_pmd_range(mm, pud, addr, next,
2904 					 fn, data, create, mask);
2905 		if (err)
2906 			break;
2907 	} while (pud++, addr = next, addr != end);
2908 
2909 	return err;
2910 }
2911 
2912 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2913 				     unsigned long addr, unsigned long end,
2914 				     pte_fn_t fn, void *data, bool create,
2915 				     pgtbl_mod_mask *mask)
2916 {
2917 	p4d_t *p4d;
2918 	unsigned long next;
2919 	int err = 0;
2920 
2921 	if (create) {
2922 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2923 		if (!p4d)
2924 			return -ENOMEM;
2925 	} else {
2926 		p4d = p4d_offset(pgd, addr);
2927 	}
2928 	do {
2929 		next = p4d_addr_end(addr, end);
2930 		if (p4d_none(*p4d) && !create)
2931 			continue;
2932 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2933 			return -EINVAL;
2934 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2935 			if (!create)
2936 				continue;
2937 			p4d_clear_bad(p4d);
2938 		}
2939 		err = apply_to_pud_range(mm, p4d, addr, next,
2940 					 fn, data, create, mask);
2941 		if (err)
2942 			break;
2943 	} while (p4d++, addr = next, addr != end);
2944 
2945 	return err;
2946 }
2947 
2948 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2949 				 unsigned long size, pte_fn_t fn,
2950 				 void *data, bool create)
2951 {
2952 	pgd_t *pgd;
2953 	unsigned long start = addr, next;
2954 	unsigned long end = addr + size;
2955 	pgtbl_mod_mask mask = 0;
2956 	int err = 0;
2957 
2958 	if (WARN_ON(addr >= end))
2959 		return -EINVAL;
2960 
2961 	pgd = pgd_offset(mm, addr);
2962 	do {
2963 		next = pgd_addr_end(addr, end);
2964 		if (pgd_none(*pgd) && !create)
2965 			continue;
2966 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2967 			return -EINVAL;
2968 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2969 			if (!create)
2970 				continue;
2971 			pgd_clear_bad(pgd);
2972 		}
2973 		err = apply_to_p4d_range(mm, pgd, addr, next,
2974 					 fn, data, create, &mask);
2975 		if (err)
2976 			break;
2977 	} while (pgd++, addr = next, addr != end);
2978 
2979 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2980 		arch_sync_kernel_mappings(start, start + size);
2981 
2982 	return err;
2983 }
2984 
2985 /*
2986  * Scan a region of virtual memory, filling in page tables as necessary
2987  * and calling a provided function on each leaf page table.
2988  */
2989 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2990 			unsigned long size, pte_fn_t fn, void *data)
2991 {
2992 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2993 }
2994 EXPORT_SYMBOL_GPL(apply_to_page_range);
2995 
2996 /*
2997  * Scan a region of virtual memory, calling a provided function on
2998  * each leaf page table where it exists.
2999  *
3000  * Unlike apply_to_page_range, this does _not_ fill in page tables
3001  * where they are absent.
3002  */
3003 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3004 				 unsigned long size, pte_fn_t fn, void *data)
3005 {
3006 	return __apply_to_page_range(mm, addr, size, fn, data, false);
3007 }
3008 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
3009 
3010 /*
3011  * handle_pte_fault chooses page fault handler according to an entry which was
3012  * read non-atomically.  Before making any commitment, on those architectures
3013  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3014  * parts, do_swap_page must check under lock before unmapping the pte and
3015  * proceeding (but do_wp_page is only called after already making such a check;
3016  * and do_anonymous_page can safely check later on).
3017  */
3018 static inline int pte_unmap_same(struct vm_fault *vmf)
3019 {
3020 	int same = 1;
3021 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3022 	if (sizeof(pte_t) > sizeof(unsigned long)) {
3023 		spin_lock(vmf->ptl);
3024 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3025 		spin_unlock(vmf->ptl);
3026 	}
3027 #endif
3028 	pte_unmap(vmf->pte);
3029 	vmf->pte = NULL;
3030 	return same;
3031 }
3032 
3033 /*
3034  * Return:
3035  *	0:		copied succeeded
3036  *	-EHWPOISON:	copy failed due to hwpoison in source page
3037  *	-EAGAIN:	copied failed (some other reason)
3038  */
3039 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3040 				      struct vm_fault *vmf)
3041 {
3042 	int ret;
3043 	void *kaddr;
3044 	void __user *uaddr;
3045 	struct vm_area_struct *vma = vmf->vma;
3046 	struct mm_struct *mm = vma->vm_mm;
3047 	unsigned long addr = vmf->address;
3048 
3049 	if (likely(src)) {
3050 		if (copy_mc_user_highpage(dst, src, addr, vma))
3051 			return -EHWPOISON;
3052 		return 0;
3053 	}
3054 
3055 	/*
3056 	 * If the source page was a PFN mapping, we don't have
3057 	 * a "struct page" for it. We do a best-effort copy by
3058 	 * just copying from the original user address. If that
3059 	 * fails, we just zero-fill it. Live with it.
3060 	 */
3061 	kaddr = kmap_local_page(dst);
3062 	pagefault_disable();
3063 	uaddr = (void __user *)(addr & PAGE_MASK);
3064 
3065 	/*
3066 	 * On architectures with software "accessed" bits, we would
3067 	 * take a double page fault, so mark it accessed here.
3068 	 */
3069 	vmf->pte = NULL;
3070 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3071 		pte_t entry;
3072 
3073 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3074 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3075 			/*
3076 			 * Other thread has already handled the fault
3077 			 * and update local tlb only
3078 			 */
3079 			if (vmf->pte)
3080 				update_mmu_tlb(vma, addr, vmf->pte);
3081 			ret = -EAGAIN;
3082 			goto pte_unlock;
3083 		}
3084 
3085 		entry = pte_mkyoung(vmf->orig_pte);
3086 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3087 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3088 	}
3089 
3090 	/*
3091 	 * This really shouldn't fail, because the page is there
3092 	 * in the page tables. But it might just be unreadable,
3093 	 * in which case we just give up and fill the result with
3094 	 * zeroes.
3095 	 */
3096 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3097 		if (vmf->pte)
3098 			goto warn;
3099 
3100 		/* Re-validate under PTL if the page is still mapped */
3101 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3102 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3103 			/* The PTE changed under us, update local tlb */
3104 			if (vmf->pte)
3105 				update_mmu_tlb(vma, addr, vmf->pte);
3106 			ret = -EAGAIN;
3107 			goto pte_unlock;
3108 		}
3109 
3110 		/*
3111 		 * The same page can be mapped back since last copy attempt.
3112 		 * Try to copy again under PTL.
3113 		 */
3114 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3115 			/*
3116 			 * Give a warn in case there can be some obscure
3117 			 * use-case
3118 			 */
3119 warn:
3120 			WARN_ON_ONCE(1);
3121 			clear_page(kaddr);
3122 		}
3123 	}
3124 
3125 	ret = 0;
3126 
3127 pte_unlock:
3128 	if (vmf->pte)
3129 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3130 	pagefault_enable();
3131 	kunmap_local(kaddr);
3132 	flush_dcache_page(dst);
3133 
3134 	return ret;
3135 }
3136 
3137 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3138 {
3139 	struct file *vm_file = vma->vm_file;
3140 
3141 	if (vm_file)
3142 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3143 
3144 	/*
3145 	 * Special mappings (e.g. VDSO) do not have any file so fake
3146 	 * a default GFP_KERNEL for them.
3147 	 */
3148 	return GFP_KERNEL;
3149 }
3150 
3151 /*
3152  * Notify the address space that the page is about to become writable so that
3153  * it can prohibit this or wait for the page to get into an appropriate state.
3154  *
3155  * We do this without the lock held, so that it can sleep if it needs to.
3156  */
3157 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3158 {
3159 	vm_fault_t ret;
3160 	unsigned int old_flags = vmf->flags;
3161 
3162 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3163 
3164 	if (vmf->vma->vm_file &&
3165 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3166 		return VM_FAULT_SIGBUS;
3167 
3168 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3169 	/* Restore original flags so that caller is not surprised */
3170 	vmf->flags = old_flags;
3171 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3172 		return ret;
3173 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3174 		folio_lock(folio);
3175 		if (!folio->mapping) {
3176 			folio_unlock(folio);
3177 			return 0; /* retry */
3178 		}
3179 		ret |= VM_FAULT_LOCKED;
3180 	} else
3181 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3182 	return ret;
3183 }
3184 
3185 /*
3186  * Handle dirtying of a page in shared file mapping on a write fault.
3187  *
3188  * The function expects the page to be locked and unlocks it.
3189  */
3190 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3191 {
3192 	struct vm_area_struct *vma = vmf->vma;
3193 	struct address_space *mapping;
3194 	struct folio *folio = page_folio(vmf->page);
3195 	bool dirtied;
3196 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3197 
3198 	dirtied = folio_mark_dirty(folio);
3199 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3200 	/*
3201 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3202 	 * by truncate after folio_unlock().   The address_space itself remains
3203 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3204 	 * release semantics to prevent the compiler from undoing this copying.
3205 	 */
3206 	mapping = folio_raw_mapping(folio);
3207 	folio_unlock(folio);
3208 
3209 	if (!page_mkwrite)
3210 		file_update_time(vma->vm_file);
3211 
3212 	/*
3213 	 * Throttle page dirtying rate down to writeback speed.
3214 	 *
3215 	 * mapping may be NULL here because some device drivers do not
3216 	 * set page.mapping but still dirty their pages
3217 	 *
3218 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3219 	 * is pinning the mapping, as per above.
3220 	 */
3221 	if ((dirtied || page_mkwrite) && mapping) {
3222 		struct file *fpin;
3223 
3224 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3225 		balance_dirty_pages_ratelimited(mapping);
3226 		if (fpin) {
3227 			fput(fpin);
3228 			return VM_FAULT_COMPLETED;
3229 		}
3230 	}
3231 
3232 	return 0;
3233 }
3234 
3235 /*
3236  * Handle write page faults for pages that can be reused in the current vma
3237  *
3238  * This can happen either due to the mapping being with the VM_SHARED flag,
3239  * or due to us being the last reference standing to the page. In either
3240  * case, all we need to do here is to mark the page as writable and update
3241  * any related book-keeping.
3242  */
3243 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3244 	__releases(vmf->ptl)
3245 {
3246 	struct vm_area_struct *vma = vmf->vma;
3247 	pte_t entry;
3248 
3249 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3250 	VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3251 
3252 	if (folio) {
3253 		VM_BUG_ON(folio_test_anon(folio) &&
3254 			  !PageAnonExclusive(vmf->page));
3255 		/*
3256 		 * Clear the folio's cpupid information as the existing
3257 		 * information potentially belongs to a now completely
3258 		 * unrelated process.
3259 		 */
3260 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3261 	}
3262 
3263 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3264 	entry = pte_mkyoung(vmf->orig_pte);
3265 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3266 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3267 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3268 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3269 	count_vm_event(PGREUSE);
3270 }
3271 
3272 /*
3273  * We could add a bitflag somewhere, but for now, we know that all
3274  * vm_ops that have a ->map_pages have been audited and don't need
3275  * the mmap_lock to be held.
3276  */
3277 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3278 {
3279 	struct vm_area_struct *vma = vmf->vma;
3280 
3281 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3282 		return 0;
3283 	vma_end_read(vma);
3284 	return VM_FAULT_RETRY;
3285 }
3286 
3287 /**
3288  * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3289  * @vmf: The vm_fault descriptor passed from the fault handler.
3290  *
3291  * When preparing to insert an anonymous page into a VMA from a
3292  * fault handler, call this function rather than anon_vma_prepare().
3293  * If this vma does not already have an associated anon_vma and we are
3294  * only protected by the per-VMA lock, the caller must retry with the
3295  * mmap_lock held.  __anon_vma_prepare() will look at adjacent VMAs to
3296  * determine if this VMA can share its anon_vma, and that's not safe to
3297  * do with only the per-VMA lock held for this VMA.
3298  *
3299  * Return: 0 if fault handling can proceed.  Any other value should be
3300  * returned to the caller.
3301  */
3302 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3303 {
3304 	struct vm_area_struct *vma = vmf->vma;
3305 	vm_fault_t ret = 0;
3306 
3307 	if (likely(vma->anon_vma))
3308 		return 0;
3309 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3310 		if (!mmap_read_trylock(vma->vm_mm))
3311 			return VM_FAULT_RETRY;
3312 	}
3313 	if (__anon_vma_prepare(vma))
3314 		ret = VM_FAULT_OOM;
3315 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3316 		mmap_read_unlock(vma->vm_mm);
3317 	return ret;
3318 }
3319 
3320 /*
3321  * Handle the case of a page which we actually need to copy to a new page,
3322  * either due to COW or unsharing.
3323  *
3324  * Called with mmap_lock locked and the old page referenced, but
3325  * without the ptl held.
3326  *
3327  * High level logic flow:
3328  *
3329  * - Allocate a page, copy the content of the old page to the new one.
3330  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3331  * - Take the PTL. If the pte changed, bail out and release the allocated page
3332  * - If the pte is still the way we remember it, update the page table and all
3333  *   relevant references. This includes dropping the reference the page-table
3334  *   held to the old page, as well as updating the rmap.
3335  * - In any case, unlock the PTL and drop the reference we took to the old page.
3336  */
3337 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3338 {
3339 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3340 	struct vm_area_struct *vma = vmf->vma;
3341 	struct mm_struct *mm = vma->vm_mm;
3342 	struct folio *old_folio = NULL;
3343 	struct folio *new_folio = NULL;
3344 	pte_t entry;
3345 	int page_copied = 0;
3346 	struct mmu_notifier_range range;
3347 	vm_fault_t ret;
3348 	bool pfn_is_zero;
3349 
3350 	delayacct_wpcopy_start();
3351 
3352 	if (vmf->page)
3353 		old_folio = page_folio(vmf->page);
3354 	ret = vmf_anon_prepare(vmf);
3355 	if (unlikely(ret))
3356 		goto out;
3357 
3358 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3359 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3360 	if (!new_folio)
3361 		goto oom;
3362 
3363 	if (!pfn_is_zero) {
3364 		int err;
3365 
3366 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3367 		if (err) {
3368 			/*
3369 			 * COW failed, if the fault was solved by other,
3370 			 * it's fine. If not, userspace would re-fault on
3371 			 * the same address and we will handle the fault
3372 			 * from the second attempt.
3373 			 * The -EHWPOISON case will not be retried.
3374 			 */
3375 			folio_put(new_folio);
3376 			if (old_folio)
3377 				folio_put(old_folio);
3378 
3379 			delayacct_wpcopy_end();
3380 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3381 		}
3382 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3383 	}
3384 
3385 	__folio_mark_uptodate(new_folio);
3386 
3387 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3388 				vmf->address & PAGE_MASK,
3389 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3390 	mmu_notifier_invalidate_range_start(&range);
3391 
3392 	/*
3393 	 * Re-check the pte - we dropped the lock
3394 	 */
3395 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3396 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3397 		if (old_folio) {
3398 			if (!folio_test_anon(old_folio)) {
3399 				dec_mm_counter(mm, mm_counter_file(old_folio));
3400 				inc_mm_counter(mm, MM_ANONPAGES);
3401 			}
3402 		} else {
3403 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3404 			inc_mm_counter(mm, MM_ANONPAGES);
3405 		}
3406 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3407 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3408 		entry = pte_sw_mkyoung(entry);
3409 		if (unlikely(unshare)) {
3410 			if (pte_soft_dirty(vmf->orig_pte))
3411 				entry = pte_mksoft_dirty(entry);
3412 			if (pte_uffd_wp(vmf->orig_pte))
3413 				entry = pte_mkuffd_wp(entry);
3414 		} else {
3415 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3416 		}
3417 
3418 		/*
3419 		 * Clear the pte entry and flush it first, before updating the
3420 		 * pte with the new entry, to keep TLBs on different CPUs in
3421 		 * sync. This code used to set the new PTE then flush TLBs, but
3422 		 * that left a window where the new PTE could be loaded into
3423 		 * some TLBs while the old PTE remains in others.
3424 		 */
3425 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3426 		folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3427 		folio_add_lru_vma(new_folio, vma);
3428 		BUG_ON(unshare && pte_write(entry));
3429 		set_pte_at(mm, vmf->address, vmf->pte, entry);
3430 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3431 		if (old_folio) {
3432 			/*
3433 			 * Only after switching the pte to the new page may
3434 			 * we remove the mapcount here. Otherwise another
3435 			 * process may come and find the rmap count decremented
3436 			 * before the pte is switched to the new page, and
3437 			 * "reuse" the old page writing into it while our pte
3438 			 * here still points into it and can be read by other
3439 			 * threads.
3440 			 *
3441 			 * The critical issue is to order this
3442 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3443 			 * above. Those stores are ordered by (if nothing else,)
3444 			 * the barrier present in the atomic_add_negative
3445 			 * in folio_remove_rmap_pte();
3446 			 *
3447 			 * Then the TLB flush in ptep_clear_flush ensures that
3448 			 * no process can access the old page before the
3449 			 * decremented mapcount is visible. And the old page
3450 			 * cannot be reused until after the decremented
3451 			 * mapcount is visible. So transitively, TLBs to
3452 			 * old page will be flushed before it can be reused.
3453 			 */
3454 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3455 		}
3456 
3457 		/* Free the old page.. */
3458 		new_folio = old_folio;
3459 		page_copied = 1;
3460 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3461 	} else if (vmf->pte) {
3462 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3463 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3464 	}
3465 
3466 	mmu_notifier_invalidate_range_end(&range);
3467 
3468 	if (new_folio)
3469 		folio_put(new_folio);
3470 	if (old_folio) {
3471 		if (page_copied)
3472 			free_swap_cache(old_folio);
3473 		folio_put(old_folio);
3474 	}
3475 
3476 	delayacct_wpcopy_end();
3477 	return 0;
3478 oom:
3479 	ret = VM_FAULT_OOM;
3480 out:
3481 	if (old_folio)
3482 		folio_put(old_folio);
3483 
3484 	delayacct_wpcopy_end();
3485 	return ret;
3486 }
3487 
3488 /**
3489  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3490  *			  writeable once the page is prepared
3491  *
3492  * @vmf: structure describing the fault
3493  * @folio: the folio of vmf->page
3494  *
3495  * This function handles all that is needed to finish a write page fault in a
3496  * shared mapping due to PTE being read-only once the mapped page is prepared.
3497  * It handles locking of PTE and modifying it.
3498  *
3499  * The function expects the page to be locked or other protection against
3500  * concurrent faults / writeback (such as DAX radix tree locks).
3501  *
3502  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3503  * we acquired PTE lock.
3504  */
3505 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3506 {
3507 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3508 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3509 				       &vmf->ptl);
3510 	if (!vmf->pte)
3511 		return VM_FAULT_NOPAGE;
3512 	/*
3513 	 * We might have raced with another page fault while we released the
3514 	 * pte_offset_map_lock.
3515 	 */
3516 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3517 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3518 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3519 		return VM_FAULT_NOPAGE;
3520 	}
3521 	wp_page_reuse(vmf, folio);
3522 	return 0;
3523 }
3524 
3525 /*
3526  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3527  * mapping
3528  */
3529 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3530 {
3531 	struct vm_area_struct *vma = vmf->vma;
3532 
3533 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3534 		vm_fault_t ret;
3535 
3536 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3537 		ret = vmf_can_call_fault(vmf);
3538 		if (ret)
3539 			return ret;
3540 
3541 		vmf->flags |= FAULT_FLAG_MKWRITE;
3542 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3543 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3544 			return ret;
3545 		return finish_mkwrite_fault(vmf, NULL);
3546 	}
3547 	wp_page_reuse(vmf, NULL);
3548 	return 0;
3549 }
3550 
3551 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3552 	__releases(vmf->ptl)
3553 {
3554 	struct vm_area_struct *vma = vmf->vma;
3555 	vm_fault_t ret = 0;
3556 
3557 	folio_get(folio);
3558 
3559 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3560 		vm_fault_t tmp;
3561 
3562 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3563 		tmp = vmf_can_call_fault(vmf);
3564 		if (tmp) {
3565 			folio_put(folio);
3566 			return tmp;
3567 		}
3568 
3569 		tmp = do_page_mkwrite(vmf, folio);
3570 		if (unlikely(!tmp || (tmp &
3571 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3572 			folio_put(folio);
3573 			return tmp;
3574 		}
3575 		tmp = finish_mkwrite_fault(vmf, folio);
3576 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3577 			folio_unlock(folio);
3578 			folio_put(folio);
3579 			return tmp;
3580 		}
3581 	} else {
3582 		wp_page_reuse(vmf, folio);
3583 		folio_lock(folio);
3584 	}
3585 	ret |= fault_dirty_shared_page(vmf);
3586 	folio_put(folio);
3587 
3588 	return ret;
3589 }
3590 
3591 static bool wp_can_reuse_anon_folio(struct folio *folio,
3592 				    struct vm_area_struct *vma)
3593 {
3594 	/*
3595 	 * We could currently only reuse a subpage of a large folio if no
3596 	 * other subpages of the large folios are still mapped. However,
3597 	 * let's just consistently not reuse subpages even if we could
3598 	 * reuse in that scenario, and give back a large folio a bit
3599 	 * sooner.
3600 	 */
3601 	if (folio_test_large(folio))
3602 		return false;
3603 
3604 	/*
3605 	 * We have to verify under folio lock: these early checks are
3606 	 * just an optimization to avoid locking the folio and freeing
3607 	 * the swapcache if there is little hope that we can reuse.
3608 	 *
3609 	 * KSM doesn't necessarily raise the folio refcount.
3610 	 */
3611 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3612 		return false;
3613 	if (!folio_test_lru(folio))
3614 		/*
3615 		 * We cannot easily detect+handle references from
3616 		 * remote LRU caches or references to LRU folios.
3617 		 */
3618 		lru_add_drain();
3619 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3620 		return false;
3621 	if (!folio_trylock(folio))
3622 		return false;
3623 	if (folio_test_swapcache(folio))
3624 		folio_free_swap(folio);
3625 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3626 		folio_unlock(folio);
3627 		return false;
3628 	}
3629 	/*
3630 	 * Ok, we've got the only folio reference from our mapping
3631 	 * and the folio is locked, it's dark out, and we're wearing
3632 	 * sunglasses. Hit it.
3633 	 */
3634 	folio_move_anon_rmap(folio, vma);
3635 	folio_unlock(folio);
3636 	return true;
3637 }
3638 
3639 /*
3640  * This routine handles present pages, when
3641  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3642  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3643  *   (FAULT_FLAG_UNSHARE)
3644  *
3645  * It is done by copying the page to a new address and decrementing the
3646  * shared-page counter for the old page.
3647  *
3648  * Note that this routine assumes that the protection checks have been
3649  * done by the caller (the low-level page fault routine in most cases).
3650  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3651  * done any necessary COW.
3652  *
3653  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3654  * though the page will change only once the write actually happens. This
3655  * avoids a few races, and potentially makes it more efficient.
3656  *
3657  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3658  * but allow concurrent faults), with pte both mapped and locked.
3659  * We return with mmap_lock still held, but pte unmapped and unlocked.
3660  */
3661 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3662 	__releases(vmf->ptl)
3663 {
3664 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3665 	struct vm_area_struct *vma = vmf->vma;
3666 	struct folio *folio = NULL;
3667 	pte_t pte;
3668 
3669 	if (likely(!unshare)) {
3670 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3671 			if (!userfaultfd_wp_async(vma)) {
3672 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3673 				return handle_userfault(vmf, VM_UFFD_WP);
3674 			}
3675 
3676 			/*
3677 			 * Nothing needed (cache flush, TLB invalidations,
3678 			 * etc.) because we're only removing the uffd-wp bit,
3679 			 * which is completely invisible to the user.
3680 			 */
3681 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3682 
3683 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3684 			/*
3685 			 * Update this to be prepared for following up CoW
3686 			 * handling
3687 			 */
3688 			vmf->orig_pte = pte;
3689 		}
3690 
3691 		/*
3692 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3693 		 * is flushed in this case before copying.
3694 		 */
3695 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3696 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3697 			flush_tlb_page(vmf->vma, vmf->address);
3698 	}
3699 
3700 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3701 
3702 	if (vmf->page)
3703 		folio = page_folio(vmf->page);
3704 
3705 	/*
3706 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3707 	 * FAULT_FLAG_WRITE set at this point.
3708 	 */
3709 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3710 		/*
3711 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3712 		 * VM_PFNMAP VMA.
3713 		 *
3714 		 * We should not cow pages in a shared writeable mapping.
3715 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3716 		 */
3717 		if (!vmf->page)
3718 			return wp_pfn_shared(vmf);
3719 		return wp_page_shared(vmf, folio);
3720 	}
3721 
3722 	/*
3723 	 * Private mapping: create an exclusive anonymous page copy if reuse
3724 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3725 	 *
3726 	 * If we encounter a page that is marked exclusive, we must reuse
3727 	 * the page without further checks.
3728 	 */
3729 	if (folio && folio_test_anon(folio) &&
3730 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3731 		if (!PageAnonExclusive(vmf->page))
3732 			SetPageAnonExclusive(vmf->page);
3733 		if (unlikely(unshare)) {
3734 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3735 			return 0;
3736 		}
3737 		wp_page_reuse(vmf, folio);
3738 		return 0;
3739 	}
3740 	/*
3741 	 * Ok, we need to copy. Oh, well..
3742 	 */
3743 	if (folio)
3744 		folio_get(folio);
3745 
3746 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3747 #ifdef CONFIG_KSM
3748 	if (folio && folio_test_ksm(folio))
3749 		count_vm_event(COW_KSM);
3750 #endif
3751 	return wp_page_copy(vmf);
3752 }
3753 
3754 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3755 		unsigned long start_addr, unsigned long end_addr,
3756 		struct zap_details *details)
3757 {
3758 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3759 }
3760 
3761 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3762 					    pgoff_t first_index,
3763 					    pgoff_t last_index,
3764 					    struct zap_details *details)
3765 {
3766 	struct vm_area_struct *vma;
3767 	pgoff_t vba, vea, zba, zea;
3768 
3769 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3770 		vba = vma->vm_pgoff;
3771 		vea = vba + vma_pages(vma) - 1;
3772 		zba = max(first_index, vba);
3773 		zea = min(last_index, vea);
3774 
3775 		unmap_mapping_range_vma(vma,
3776 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3777 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3778 				details);
3779 	}
3780 }
3781 
3782 /**
3783  * unmap_mapping_folio() - Unmap single folio from processes.
3784  * @folio: The locked folio to be unmapped.
3785  *
3786  * Unmap this folio from any userspace process which still has it mmaped.
3787  * Typically, for efficiency, the range of nearby pages has already been
3788  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3789  * truncation or invalidation holds the lock on a folio, it may find that
3790  * the page has been remapped again: and then uses unmap_mapping_folio()
3791  * to unmap it finally.
3792  */
3793 void unmap_mapping_folio(struct folio *folio)
3794 {
3795 	struct address_space *mapping = folio->mapping;
3796 	struct zap_details details = { };
3797 	pgoff_t	first_index;
3798 	pgoff_t	last_index;
3799 
3800 	VM_BUG_ON(!folio_test_locked(folio));
3801 
3802 	first_index = folio->index;
3803 	last_index = folio_next_index(folio) - 1;
3804 
3805 	details.even_cows = false;
3806 	details.single_folio = folio;
3807 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3808 
3809 	i_mmap_lock_read(mapping);
3810 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3811 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3812 					 last_index, &details);
3813 	i_mmap_unlock_read(mapping);
3814 }
3815 
3816 /**
3817  * unmap_mapping_pages() - Unmap pages from processes.
3818  * @mapping: The address space containing pages to be unmapped.
3819  * @start: Index of first page to be unmapped.
3820  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3821  * @even_cows: Whether to unmap even private COWed pages.
3822  *
3823  * Unmap the pages in this address space from any userspace process which
3824  * has them mmaped.  Generally, you want to remove COWed pages as well when
3825  * a file is being truncated, but not when invalidating pages from the page
3826  * cache.
3827  */
3828 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3829 		pgoff_t nr, bool even_cows)
3830 {
3831 	struct zap_details details = { };
3832 	pgoff_t	first_index = start;
3833 	pgoff_t	last_index = start + nr - 1;
3834 
3835 	details.even_cows = even_cows;
3836 	if (last_index < first_index)
3837 		last_index = ULONG_MAX;
3838 
3839 	i_mmap_lock_read(mapping);
3840 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3841 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3842 					 last_index, &details);
3843 	i_mmap_unlock_read(mapping);
3844 }
3845 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3846 
3847 /**
3848  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3849  * address_space corresponding to the specified byte range in the underlying
3850  * file.
3851  *
3852  * @mapping: the address space containing mmaps to be unmapped.
3853  * @holebegin: byte in first page to unmap, relative to the start of
3854  * the underlying file.  This will be rounded down to a PAGE_SIZE
3855  * boundary.  Note that this is different from truncate_pagecache(), which
3856  * must keep the partial page.  In contrast, we must get rid of
3857  * partial pages.
3858  * @holelen: size of prospective hole in bytes.  This will be rounded
3859  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3860  * end of the file.
3861  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3862  * but 0 when invalidating pagecache, don't throw away private data.
3863  */
3864 void unmap_mapping_range(struct address_space *mapping,
3865 		loff_t const holebegin, loff_t const holelen, int even_cows)
3866 {
3867 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3868 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3869 
3870 	/* Check for overflow. */
3871 	if (sizeof(holelen) > sizeof(hlen)) {
3872 		long long holeend =
3873 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3874 		if (holeend & ~(long long)ULONG_MAX)
3875 			hlen = ULONG_MAX - hba + 1;
3876 	}
3877 
3878 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3879 }
3880 EXPORT_SYMBOL(unmap_mapping_range);
3881 
3882 /*
3883  * Restore a potential device exclusive pte to a working pte entry
3884  */
3885 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3886 {
3887 	struct folio *folio = page_folio(vmf->page);
3888 	struct vm_area_struct *vma = vmf->vma;
3889 	struct mmu_notifier_range range;
3890 	vm_fault_t ret;
3891 
3892 	/*
3893 	 * We need a reference to lock the folio because we don't hold
3894 	 * the PTL so a racing thread can remove the device-exclusive
3895 	 * entry and unmap it. If the folio is free the entry must
3896 	 * have been removed already. If it happens to have already
3897 	 * been re-allocated after being freed all we do is lock and
3898 	 * unlock it.
3899 	 */
3900 	if (!folio_try_get(folio))
3901 		return 0;
3902 
3903 	ret = folio_lock_or_retry(folio, vmf);
3904 	if (ret) {
3905 		folio_put(folio);
3906 		return ret;
3907 	}
3908 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3909 				vma->vm_mm, vmf->address & PAGE_MASK,
3910 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3911 	mmu_notifier_invalidate_range_start(&range);
3912 
3913 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3914 				&vmf->ptl);
3915 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3916 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3917 
3918 	if (vmf->pte)
3919 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3920 	folio_unlock(folio);
3921 	folio_put(folio);
3922 
3923 	mmu_notifier_invalidate_range_end(&range);
3924 	return 0;
3925 }
3926 
3927 static inline bool should_try_to_free_swap(struct folio *folio,
3928 					   struct vm_area_struct *vma,
3929 					   unsigned int fault_flags)
3930 {
3931 	if (!folio_test_swapcache(folio))
3932 		return false;
3933 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3934 	    folio_test_mlocked(folio))
3935 		return true;
3936 	/*
3937 	 * If we want to map a page that's in the swapcache writable, we
3938 	 * have to detect via the refcount if we're really the exclusive
3939 	 * user. Try freeing the swapcache to get rid of the swapcache
3940 	 * reference only in case it's likely that we'll be the exlusive user.
3941 	 */
3942 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3943 		folio_ref_count(folio) == (1 + folio_nr_pages(folio));
3944 }
3945 
3946 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3947 {
3948 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3949 				       vmf->address, &vmf->ptl);
3950 	if (!vmf->pte)
3951 		return 0;
3952 	/*
3953 	 * Be careful so that we will only recover a special uffd-wp pte into a
3954 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3955 	 *
3956 	 * This should also cover the case where e.g. the pte changed
3957 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3958 	 * So is_pte_marker() check is not enough to safely drop the pte.
3959 	 */
3960 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3961 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3962 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3963 	return 0;
3964 }
3965 
3966 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3967 {
3968 	if (vma_is_anonymous(vmf->vma))
3969 		return do_anonymous_page(vmf);
3970 	else
3971 		return do_fault(vmf);
3972 }
3973 
3974 /*
3975  * This is actually a page-missing access, but with uffd-wp special pte
3976  * installed.  It means this pte was wr-protected before being unmapped.
3977  */
3978 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3979 {
3980 	/*
3981 	 * Just in case there're leftover special ptes even after the region
3982 	 * got unregistered - we can simply clear them.
3983 	 */
3984 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3985 		return pte_marker_clear(vmf);
3986 
3987 	return do_pte_missing(vmf);
3988 }
3989 
3990 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3991 {
3992 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3993 	unsigned long marker = pte_marker_get(entry);
3994 
3995 	/*
3996 	 * PTE markers should never be empty.  If anything weird happened,
3997 	 * the best thing to do is to kill the process along with its mm.
3998 	 */
3999 	if (WARN_ON_ONCE(!marker))
4000 		return VM_FAULT_SIGBUS;
4001 
4002 	/* Higher priority than uffd-wp when data corrupted */
4003 	if (marker & PTE_MARKER_POISONED)
4004 		return VM_FAULT_HWPOISON;
4005 
4006 	if (pte_marker_entry_uffd_wp(entry))
4007 		return pte_marker_handle_uffd_wp(vmf);
4008 
4009 	/* This is an unknown pte marker */
4010 	return VM_FAULT_SIGBUS;
4011 }
4012 
4013 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4014 {
4015 	struct vm_area_struct *vma = vmf->vma;
4016 	struct folio *folio;
4017 	swp_entry_t entry;
4018 
4019 	folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4020 	if (!folio)
4021 		return NULL;
4022 
4023 	entry = pte_to_swp_entry(vmf->orig_pte);
4024 	if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4025 					   GFP_KERNEL, entry)) {
4026 		folio_put(folio);
4027 		return NULL;
4028 	}
4029 
4030 	return folio;
4031 }
4032 
4033 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4034 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
4035 {
4036 	struct swap_info_struct *si = swp_swap_info(entry);
4037 	pgoff_t offset = swp_offset(entry);
4038 	int i;
4039 
4040 	/*
4041 	 * While allocating a large folio and doing swap_read_folio, which is
4042 	 * the case the being faulted pte doesn't have swapcache. We need to
4043 	 * ensure all PTEs have no cache as well, otherwise, we might go to
4044 	 * swap devices while the content is in swapcache.
4045 	 */
4046 	for (i = 0; i < max_nr; i++) {
4047 		if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
4048 			return i;
4049 	}
4050 
4051 	return i;
4052 }
4053 
4054 /*
4055  * Check if the PTEs within a range are contiguous swap entries
4056  * and have consistent swapcache, zeromap.
4057  */
4058 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4059 {
4060 	unsigned long addr;
4061 	swp_entry_t entry;
4062 	int idx;
4063 	pte_t pte;
4064 
4065 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4066 	idx = (vmf->address - addr) / PAGE_SIZE;
4067 	pte = ptep_get(ptep);
4068 
4069 	if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4070 		return false;
4071 	entry = pte_to_swp_entry(pte);
4072 	if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4073 		return false;
4074 
4075 	/*
4076 	 * swap_read_folio() can't handle the case a large folio is hybridly
4077 	 * from different backends. And they are likely corner cases. Similar
4078 	 * things might be added once zswap support large folios.
4079 	 */
4080 	if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4081 		return false;
4082 	if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4083 		return false;
4084 
4085 	return true;
4086 }
4087 
4088 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4089 						     unsigned long addr,
4090 						     unsigned long orders)
4091 {
4092 	int order, nr;
4093 
4094 	order = highest_order(orders);
4095 
4096 	/*
4097 	 * To swap in a THP with nr pages, we require that its first swap_offset
4098 	 * is aligned with that number, as it was when the THP was swapped out.
4099 	 * This helps filter out most invalid entries.
4100 	 */
4101 	while (orders) {
4102 		nr = 1 << order;
4103 		if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4104 			break;
4105 		order = next_order(&orders, order);
4106 	}
4107 
4108 	return orders;
4109 }
4110 
4111 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4112 {
4113 	struct vm_area_struct *vma = vmf->vma;
4114 	unsigned long orders;
4115 	struct folio *folio;
4116 	unsigned long addr;
4117 	swp_entry_t entry;
4118 	spinlock_t *ptl;
4119 	pte_t *pte;
4120 	gfp_t gfp;
4121 	int order;
4122 
4123 	/*
4124 	 * If uffd is active for the vma we need per-page fault fidelity to
4125 	 * maintain the uffd semantics.
4126 	 */
4127 	if (unlikely(userfaultfd_armed(vma)))
4128 		goto fallback;
4129 
4130 	/*
4131 	 * A large swapped out folio could be partially or fully in zswap. We
4132 	 * lack handling for such cases, so fallback to swapping in order-0
4133 	 * folio.
4134 	 */
4135 	if (!zswap_never_enabled())
4136 		goto fallback;
4137 
4138 	entry = pte_to_swp_entry(vmf->orig_pte);
4139 	/*
4140 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4141 	 * and suitable for swapping THP.
4142 	 */
4143 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4144 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4145 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4146 	orders = thp_swap_suitable_orders(swp_offset(entry),
4147 					  vmf->address, orders);
4148 
4149 	if (!orders)
4150 		goto fallback;
4151 
4152 	pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4153 				  vmf->address & PMD_MASK, &ptl);
4154 	if (unlikely(!pte))
4155 		goto fallback;
4156 
4157 	/*
4158 	 * For do_swap_page, find the highest order where the aligned range is
4159 	 * completely swap entries with contiguous swap offsets.
4160 	 */
4161 	order = highest_order(orders);
4162 	while (orders) {
4163 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4164 		if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4165 			break;
4166 		order = next_order(&orders, order);
4167 	}
4168 
4169 	pte_unmap_unlock(pte, ptl);
4170 
4171 	/* Try allocating the highest of the remaining orders. */
4172 	gfp = vma_thp_gfp_mask(vma);
4173 	while (orders) {
4174 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4175 		folio = vma_alloc_folio(gfp, order, vma, addr);
4176 		if (folio) {
4177 			if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4178 							    gfp, entry))
4179 				return folio;
4180 			folio_put(folio);
4181 		}
4182 		order = next_order(&orders, order);
4183 	}
4184 
4185 fallback:
4186 	return __alloc_swap_folio(vmf);
4187 }
4188 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4189 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4190 {
4191 	return __alloc_swap_folio(vmf);
4192 }
4193 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4194 
4195 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4196 
4197 /*
4198  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4199  * but allow concurrent faults), and pte mapped but not yet locked.
4200  * We return with pte unmapped and unlocked.
4201  *
4202  * We return with the mmap_lock locked or unlocked in the same cases
4203  * as does filemap_fault().
4204  */
4205 vm_fault_t do_swap_page(struct vm_fault *vmf)
4206 {
4207 	struct vm_area_struct *vma = vmf->vma;
4208 	struct folio *swapcache, *folio = NULL;
4209 	DECLARE_WAITQUEUE(wait, current);
4210 	struct page *page;
4211 	struct swap_info_struct *si = NULL;
4212 	rmap_t rmap_flags = RMAP_NONE;
4213 	bool need_clear_cache = false;
4214 	bool exclusive = false;
4215 	swp_entry_t entry;
4216 	pte_t pte;
4217 	vm_fault_t ret = 0;
4218 	void *shadow = NULL;
4219 	int nr_pages;
4220 	unsigned long page_idx;
4221 	unsigned long address;
4222 	pte_t *ptep;
4223 
4224 	if (!pte_unmap_same(vmf))
4225 		goto out;
4226 
4227 	entry = pte_to_swp_entry(vmf->orig_pte);
4228 	if (unlikely(non_swap_entry(entry))) {
4229 		if (is_migration_entry(entry)) {
4230 			migration_entry_wait(vma->vm_mm, vmf->pmd,
4231 					     vmf->address);
4232 		} else if (is_device_exclusive_entry(entry)) {
4233 			vmf->page = pfn_swap_entry_to_page(entry);
4234 			ret = remove_device_exclusive_entry(vmf);
4235 		} else if (is_device_private_entry(entry)) {
4236 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4237 				/*
4238 				 * migrate_to_ram is not yet ready to operate
4239 				 * under VMA lock.
4240 				 */
4241 				vma_end_read(vma);
4242 				ret = VM_FAULT_RETRY;
4243 				goto out;
4244 			}
4245 
4246 			vmf->page = pfn_swap_entry_to_page(entry);
4247 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4248 					vmf->address, &vmf->ptl);
4249 			if (unlikely(!vmf->pte ||
4250 				     !pte_same(ptep_get(vmf->pte),
4251 							vmf->orig_pte)))
4252 				goto unlock;
4253 
4254 			/*
4255 			 * Get a page reference while we know the page can't be
4256 			 * freed.
4257 			 */
4258 			get_page(vmf->page);
4259 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4260 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4261 			put_page(vmf->page);
4262 		} else if (is_hwpoison_entry(entry)) {
4263 			ret = VM_FAULT_HWPOISON;
4264 		} else if (is_pte_marker_entry(entry)) {
4265 			ret = handle_pte_marker(vmf);
4266 		} else {
4267 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4268 			ret = VM_FAULT_SIGBUS;
4269 		}
4270 		goto out;
4271 	}
4272 
4273 	/* Prevent swapoff from happening to us. */
4274 	si = get_swap_device(entry);
4275 	if (unlikely(!si))
4276 		goto out;
4277 
4278 	folio = swap_cache_get_folio(entry, vma, vmf->address);
4279 	if (folio)
4280 		page = folio_file_page(folio, swp_offset(entry));
4281 	swapcache = folio;
4282 
4283 	if (!folio) {
4284 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4285 		    __swap_count(entry) == 1) {
4286 			/* skip swapcache */
4287 			folio = alloc_swap_folio(vmf);
4288 			if (folio) {
4289 				__folio_set_locked(folio);
4290 				__folio_set_swapbacked(folio);
4291 
4292 				nr_pages = folio_nr_pages(folio);
4293 				if (folio_test_large(folio))
4294 					entry.val = ALIGN_DOWN(entry.val, nr_pages);
4295 				/*
4296 				 * Prevent parallel swapin from proceeding with
4297 				 * the cache flag. Otherwise, another thread
4298 				 * may finish swapin first, free the entry, and
4299 				 * swapout reusing the same entry. It's
4300 				 * undetectable as pte_same() returns true due
4301 				 * to entry reuse.
4302 				 */
4303 				if (swapcache_prepare(entry, nr_pages)) {
4304 					/*
4305 					 * Relax a bit to prevent rapid
4306 					 * repeated page faults.
4307 					 */
4308 					add_wait_queue(&swapcache_wq, &wait);
4309 					schedule_timeout_uninterruptible(1);
4310 					remove_wait_queue(&swapcache_wq, &wait);
4311 					goto out_page;
4312 				}
4313 				need_clear_cache = true;
4314 
4315 				mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
4316 
4317 				shadow = get_shadow_from_swap_cache(entry);
4318 				if (shadow)
4319 					workingset_refault(folio, shadow);
4320 
4321 				folio_add_lru(folio);
4322 
4323 				/* To provide entry to swap_read_folio() */
4324 				folio->swap = entry;
4325 				swap_read_folio(folio, NULL);
4326 				folio->private = NULL;
4327 			}
4328 		} else {
4329 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4330 						vmf);
4331 			swapcache = folio;
4332 		}
4333 
4334 		if (!folio) {
4335 			/*
4336 			 * Back out if somebody else faulted in this pte
4337 			 * while we released the pte lock.
4338 			 */
4339 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4340 					vmf->address, &vmf->ptl);
4341 			if (likely(vmf->pte &&
4342 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4343 				ret = VM_FAULT_OOM;
4344 			goto unlock;
4345 		}
4346 
4347 		/* Had to read the page from swap area: Major fault */
4348 		ret = VM_FAULT_MAJOR;
4349 		count_vm_event(PGMAJFAULT);
4350 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4351 		page = folio_file_page(folio, swp_offset(entry));
4352 	} else if (PageHWPoison(page)) {
4353 		/*
4354 		 * hwpoisoned dirty swapcache pages are kept for killing
4355 		 * owner processes (which may be unknown at hwpoison time)
4356 		 */
4357 		ret = VM_FAULT_HWPOISON;
4358 		goto out_release;
4359 	}
4360 
4361 	ret |= folio_lock_or_retry(folio, vmf);
4362 	if (ret & VM_FAULT_RETRY)
4363 		goto out_release;
4364 
4365 	if (swapcache) {
4366 		/*
4367 		 * Make sure folio_free_swap() or swapoff did not release the
4368 		 * swapcache from under us.  The page pin, and pte_same test
4369 		 * below, are not enough to exclude that.  Even if it is still
4370 		 * swapcache, we need to check that the page's swap has not
4371 		 * changed.
4372 		 */
4373 		if (unlikely(!folio_test_swapcache(folio) ||
4374 			     page_swap_entry(page).val != entry.val))
4375 			goto out_page;
4376 
4377 		/*
4378 		 * KSM sometimes has to copy on read faults, for example, if
4379 		 * page->index of !PageKSM() pages would be nonlinear inside the
4380 		 * anon VMA -- PageKSM() is lost on actual swapout.
4381 		 */
4382 		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4383 		if (unlikely(!folio)) {
4384 			ret = VM_FAULT_OOM;
4385 			folio = swapcache;
4386 			goto out_page;
4387 		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4388 			ret = VM_FAULT_HWPOISON;
4389 			folio = swapcache;
4390 			goto out_page;
4391 		}
4392 		if (folio != swapcache)
4393 			page = folio_page(folio, 0);
4394 
4395 		/*
4396 		 * If we want to map a page that's in the swapcache writable, we
4397 		 * have to detect via the refcount if we're really the exclusive
4398 		 * owner. Try removing the extra reference from the local LRU
4399 		 * caches if required.
4400 		 */
4401 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4402 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
4403 			lru_add_drain();
4404 	}
4405 
4406 	folio_throttle_swaprate(folio, GFP_KERNEL);
4407 
4408 	/*
4409 	 * Back out if somebody else already faulted in this pte.
4410 	 */
4411 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4412 			&vmf->ptl);
4413 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4414 		goto out_nomap;
4415 
4416 	if (unlikely(!folio_test_uptodate(folio))) {
4417 		ret = VM_FAULT_SIGBUS;
4418 		goto out_nomap;
4419 	}
4420 
4421 	/* allocated large folios for SWP_SYNCHRONOUS_IO */
4422 	if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4423 		unsigned long nr = folio_nr_pages(folio);
4424 		unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4425 		unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4426 		pte_t *folio_ptep = vmf->pte - idx;
4427 		pte_t folio_pte = ptep_get(folio_ptep);
4428 
4429 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4430 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4431 			goto out_nomap;
4432 
4433 		page_idx = idx;
4434 		address = folio_start;
4435 		ptep = folio_ptep;
4436 		goto check_folio;
4437 	}
4438 
4439 	nr_pages = 1;
4440 	page_idx = 0;
4441 	address = vmf->address;
4442 	ptep = vmf->pte;
4443 	if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4444 		int nr = folio_nr_pages(folio);
4445 		unsigned long idx = folio_page_idx(folio, page);
4446 		unsigned long folio_start = address - idx * PAGE_SIZE;
4447 		unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4448 		pte_t *folio_ptep;
4449 		pte_t folio_pte;
4450 
4451 		if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4452 			goto check_folio;
4453 		if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4454 			goto check_folio;
4455 
4456 		folio_ptep = vmf->pte - idx;
4457 		folio_pte = ptep_get(folio_ptep);
4458 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4459 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4460 			goto check_folio;
4461 
4462 		page_idx = idx;
4463 		address = folio_start;
4464 		ptep = folio_ptep;
4465 		nr_pages = nr;
4466 		entry = folio->swap;
4467 		page = &folio->page;
4468 	}
4469 
4470 check_folio:
4471 	/*
4472 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4473 	 * must never point at an anonymous page in the swapcache that is
4474 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4475 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4476 	 * check after taking the PT lock and making sure that nobody
4477 	 * concurrently faulted in this page and set PG_anon_exclusive.
4478 	 */
4479 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4480 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4481 
4482 	/*
4483 	 * Check under PT lock (to protect against concurrent fork() sharing
4484 	 * the swap entry concurrently) for certainly exclusive pages.
4485 	 */
4486 	if (!folio_test_ksm(folio)) {
4487 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4488 		if (folio != swapcache) {
4489 			/*
4490 			 * We have a fresh page that is not exposed to the
4491 			 * swapcache -> certainly exclusive.
4492 			 */
4493 			exclusive = true;
4494 		} else if (exclusive && folio_test_writeback(folio) &&
4495 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4496 			/*
4497 			 * This is tricky: not all swap backends support
4498 			 * concurrent page modifications while under writeback.
4499 			 *
4500 			 * So if we stumble over such a page in the swapcache
4501 			 * we must not set the page exclusive, otherwise we can
4502 			 * map it writable without further checks and modify it
4503 			 * while still under writeback.
4504 			 *
4505 			 * For these problematic swap backends, simply drop the
4506 			 * exclusive marker: this is perfectly fine as we start
4507 			 * writeback only if we fully unmapped the page and
4508 			 * there are no unexpected references on the page after
4509 			 * unmapping succeeded. After fully unmapped, no
4510 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4511 			 * appear, so dropping the exclusive marker and mapping
4512 			 * it only R/O is fine.
4513 			 */
4514 			exclusive = false;
4515 		}
4516 	}
4517 
4518 	/*
4519 	 * Some architectures may have to restore extra metadata to the page
4520 	 * when reading from swap. This metadata may be indexed by swap entry
4521 	 * so this must be called before swap_free().
4522 	 */
4523 	arch_swap_restore(folio_swap(entry, folio), folio);
4524 
4525 	/*
4526 	 * Remove the swap entry and conditionally try to free up the swapcache.
4527 	 * We're already holding a reference on the page but haven't mapped it
4528 	 * yet.
4529 	 */
4530 	swap_free_nr(entry, nr_pages);
4531 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4532 		folio_free_swap(folio);
4533 
4534 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4535 	add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4536 	pte = mk_pte(page, vma->vm_page_prot);
4537 	if (pte_swp_soft_dirty(vmf->orig_pte))
4538 		pte = pte_mksoft_dirty(pte);
4539 	if (pte_swp_uffd_wp(vmf->orig_pte))
4540 		pte = pte_mkuffd_wp(pte);
4541 
4542 	/*
4543 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4544 	 * certainly not shared either because we just allocated them without
4545 	 * exposing them to the swapcache or because the swap entry indicates
4546 	 * exclusivity.
4547 	 */
4548 	if (!folio_test_ksm(folio) &&
4549 	    (exclusive || folio_ref_count(folio) == 1)) {
4550 		if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4551 		    !pte_needs_soft_dirty_wp(vma, pte)) {
4552 			pte = pte_mkwrite(pte, vma);
4553 			if (vmf->flags & FAULT_FLAG_WRITE) {
4554 				pte = pte_mkdirty(pte);
4555 				vmf->flags &= ~FAULT_FLAG_WRITE;
4556 			}
4557 		}
4558 		rmap_flags |= RMAP_EXCLUSIVE;
4559 	}
4560 	folio_ref_add(folio, nr_pages - 1);
4561 	flush_icache_pages(vma, page, nr_pages);
4562 	vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4563 
4564 	/* ksm created a completely new copy */
4565 	if (unlikely(folio != swapcache && swapcache)) {
4566 		folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4567 		folio_add_lru_vma(folio, vma);
4568 	} else if (!folio_test_anon(folio)) {
4569 		/*
4570 		 * We currently only expect small !anon folios which are either
4571 		 * fully exclusive or fully shared, or new allocated large
4572 		 * folios which are fully exclusive. If we ever get large
4573 		 * folios within swapcache here, we have to be careful.
4574 		 */
4575 		VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4576 		VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4577 		folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4578 	} else {
4579 		folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4580 					rmap_flags);
4581 	}
4582 
4583 	VM_BUG_ON(!folio_test_anon(folio) ||
4584 			(pte_write(pte) && !PageAnonExclusive(page)));
4585 	set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4586 	arch_do_swap_page_nr(vma->vm_mm, vma, address,
4587 			pte, pte, nr_pages);
4588 
4589 	folio_unlock(folio);
4590 	if (folio != swapcache && swapcache) {
4591 		/*
4592 		 * Hold the lock to avoid the swap entry to be reused
4593 		 * until we take the PT lock for the pte_same() check
4594 		 * (to avoid false positives from pte_same). For
4595 		 * further safety release the lock after the swap_free
4596 		 * so that the swap count won't change under a
4597 		 * parallel locked swapcache.
4598 		 */
4599 		folio_unlock(swapcache);
4600 		folio_put(swapcache);
4601 	}
4602 
4603 	if (vmf->flags & FAULT_FLAG_WRITE) {
4604 		ret |= do_wp_page(vmf);
4605 		if (ret & VM_FAULT_ERROR)
4606 			ret &= VM_FAULT_ERROR;
4607 		goto out;
4608 	}
4609 
4610 	/* No need to invalidate - it was non-present before */
4611 	update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4612 unlock:
4613 	if (vmf->pte)
4614 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4615 out:
4616 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4617 	if (need_clear_cache) {
4618 		swapcache_clear(si, entry, nr_pages);
4619 		if (waitqueue_active(&swapcache_wq))
4620 			wake_up(&swapcache_wq);
4621 	}
4622 	if (si)
4623 		put_swap_device(si);
4624 	return ret;
4625 out_nomap:
4626 	if (vmf->pte)
4627 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4628 out_page:
4629 	folio_unlock(folio);
4630 out_release:
4631 	folio_put(folio);
4632 	if (folio != swapcache && swapcache) {
4633 		folio_unlock(swapcache);
4634 		folio_put(swapcache);
4635 	}
4636 	if (need_clear_cache) {
4637 		swapcache_clear(si, entry, nr_pages);
4638 		if (waitqueue_active(&swapcache_wq))
4639 			wake_up(&swapcache_wq);
4640 	}
4641 	if (si)
4642 		put_swap_device(si);
4643 	return ret;
4644 }
4645 
4646 static bool pte_range_none(pte_t *pte, int nr_pages)
4647 {
4648 	int i;
4649 
4650 	for (i = 0; i < nr_pages; i++) {
4651 		if (!pte_none(ptep_get_lockless(pte + i)))
4652 			return false;
4653 	}
4654 
4655 	return true;
4656 }
4657 
4658 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4659 {
4660 	struct vm_area_struct *vma = vmf->vma;
4661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4662 	unsigned long orders;
4663 	struct folio *folio;
4664 	unsigned long addr;
4665 	pte_t *pte;
4666 	gfp_t gfp;
4667 	int order;
4668 
4669 	/*
4670 	 * If uffd is active for the vma we need per-page fault fidelity to
4671 	 * maintain the uffd semantics.
4672 	 */
4673 	if (unlikely(userfaultfd_armed(vma)))
4674 		goto fallback;
4675 
4676 	/*
4677 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4678 	 * for this vma. Then filter out the orders that can't be allocated over
4679 	 * the faulting address and still be fully contained in the vma.
4680 	 */
4681 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4682 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4683 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4684 
4685 	if (!orders)
4686 		goto fallback;
4687 
4688 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4689 	if (!pte)
4690 		return ERR_PTR(-EAGAIN);
4691 
4692 	/*
4693 	 * Find the highest order where the aligned range is completely
4694 	 * pte_none(). Note that all remaining orders will be completely
4695 	 * pte_none().
4696 	 */
4697 	order = highest_order(orders);
4698 	while (orders) {
4699 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4700 		if (pte_range_none(pte + pte_index(addr), 1 << order))
4701 			break;
4702 		order = next_order(&orders, order);
4703 	}
4704 
4705 	pte_unmap(pte);
4706 
4707 	if (!orders)
4708 		goto fallback;
4709 
4710 	/* Try allocating the highest of the remaining orders. */
4711 	gfp = vma_thp_gfp_mask(vma);
4712 	while (orders) {
4713 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4714 		folio = vma_alloc_folio(gfp, order, vma, addr);
4715 		if (folio) {
4716 			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4717 				count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4718 				folio_put(folio);
4719 				goto next;
4720 			}
4721 			folio_throttle_swaprate(folio, gfp);
4722 			/*
4723 			 * When a folio is not zeroed during allocation
4724 			 * (__GFP_ZERO not used), folio_zero_user() is used
4725 			 * to make sure that the page corresponding to the
4726 			 * faulting address will be hot in the cache after
4727 			 * zeroing.
4728 			 */
4729 			if (!alloc_zeroed())
4730 				folio_zero_user(folio, vmf->address);
4731 			return folio;
4732 		}
4733 next:
4734 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4735 		order = next_order(&orders, order);
4736 	}
4737 
4738 fallback:
4739 #endif
4740 	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4741 }
4742 
4743 /*
4744  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4745  * but allow concurrent faults), and pte mapped but not yet locked.
4746  * We return with mmap_lock still held, but pte unmapped and unlocked.
4747  */
4748 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4749 {
4750 	struct vm_area_struct *vma = vmf->vma;
4751 	unsigned long addr = vmf->address;
4752 	struct folio *folio;
4753 	vm_fault_t ret = 0;
4754 	int nr_pages = 1;
4755 	pte_t entry;
4756 
4757 	/* File mapping without ->vm_ops ? */
4758 	if (vma->vm_flags & VM_SHARED)
4759 		return VM_FAULT_SIGBUS;
4760 
4761 	/*
4762 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4763 	 * be distinguished from a transient failure of pte_offset_map().
4764 	 */
4765 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4766 		return VM_FAULT_OOM;
4767 
4768 	/* Use the zero-page for reads */
4769 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4770 			!mm_forbids_zeropage(vma->vm_mm)) {
4771 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4772 						vma->vm_page_prot));
4773 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4774 				vmf->address, &vmf->ptl);
4775 		if (!vmf->pte)
4776 			goto unlock;
4777 		if (vmf_pte_changed(vmf)) {
4778 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4779 			goto unlock;
4780 		}
4781 		ret = check_stable_address_space(vma->vm_mm);
4782 		if (ret)
4783 			goto unlock;
4784 		/* Deliver the page fault to userland, check inside PT lock */
4785 		if (userfaultfd_missing(vma)) {
4786 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4787 			return handle_userfault(vmf, VM_UFFD_MISSING);
4788 		}
4789 		goto setpte;
4790 	}
4791 
4792 	/* Allocate our own private page. */
4793 	ret = vmf_anon_prepare(vmf);
4794 	if (ret)
4795 		return ret;
4796 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4797 	folio = alloc_anon_folio(vmf);
4798 	if (IS_ERR(folio))
4799 		return 0;
4800 	if (!folio)
4801 		goto oom;
4802 
4803 	nr_pages = folio_nr_pages(folio);
4804 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4805 
4806 	/*
4807 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4808 	 * preceding stores to the page contents become visible before
4809 	 * the set_pte_at() write.
4810 	 */
4811 	__folio_mark_uptodate(folio);
4812 
4813 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4814 	entry = pte_sw_mkyoung(entry);
4815 	if (vma->vm_flags & VM_WRITE)
4816 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4817 
4818 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4819 	if (!vmf->pte)
4820 		goto release;
4821 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4822 		update_mmu_tlb(vma, addr, vmf->pte);
4823 		goto release;
4824 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4825 		update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4826 		goto release;
4827 	}
4828 
4829 	ret = check_stable_address_space(vma->vm_mm);
4830 	if (ret)
4831 		goto release;
4832 
4833 	/* Deliver the page fault to userland, check inside PT lock */
4834 	if (userfaultfd_missing(vma)) {
4835 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4836 		folio_put(folio);
4837 		return handle_userfault(vmf, VM_UFFD_MISSING);
4838 	}
4839 
4840 	folio_ref_add(folio, nr_pages - 1);
4841 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4842 	count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4843 	folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4844 	folio_add_lru_vma(folio, vma);
4845 setpte:
4846 	if (vmf_orig_pte_uffd_wp(vmf))
4847 		entry = pte_mkuffd_wp(entry);
4848 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4849 
4850 	/* No need to invalidate - it was non-present before */
4851 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4852 unlock:
4853 	if (vmf->pte)
4854 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4855 	return ret;
4856 release:
4857 	folio_put(folio);
4858 	goto unlock;
4859 oom:
4860 	return VM_FAULT_OOM;
4861 }
4862 
4863 /*
4864  * The mmap_lock must have been held on entry, and may have been
4865  * released depending on flags and vma->vm_ops->fault() return value.
4866  * See filemap_fault() and __lock_page_retry().
4867  */
4868 static vm_fault_t __do_fault(struct vm_fault *vmf)
4869 {
4870 	struct vm_area_struct *vma = vmf->vma;
4871 	struct folio *folio;
4872 	vm_fault_t ret;
4873 
4874 	/*
4875 	 * Preallocate pte before we take page_lock because this might lead to
4876 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4877 	 *				lock_page(A)
4878 	 *				SetPageWriteback(A)
4879 	 *				unlock_page(A)
4880 	 * lock_page(B)
4881 	 *				lock_page(B)
4882 	 * pte_alloc_one
4883 	 *   shrink_folio_list
4884 	 *     wait_on_page_writeback(A)
4885 	 *				SetPageWriteback(B)
4886 	 *				unlock_page(B)
4887 	 *				# flush A, B to clear the writeback
4888 	 */
4889 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4890 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4891 		if (!vmf->prealloc_pte)
4892 			return VM_FAULT_OOM;
4893 	}
4894 
4895 	ret = vma->vm_ops->fault(vmf);
4896 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4897 			    VM_FAULT_DONE_COW)))
4898 		return ret;
4899 
4900 	folio = page_folio(vmf->page);
4901 	if (unlikely(PageHWPoison(vmf->page))) {
4902 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4903 		if (ret & VM_FAULT_LOCKED) {
4904 			if (page_mapped(vmf->page))
4905 				unmap_mapping_folio(folio);
4906 			/* Retry if a clean folio was removed from the cache. */
4907 			if (mapping_evict_folio(folio->mapping, folio))
4908 				poisonret = VM_FAULT_NOPAGE;
4909 			folio_unlock(folio);
4910 		}
4911 		folio_put(folio);
4912 		vmf->page = NULL;
4913 		return poisonret;
4914 	}
4915 
4916 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4917 		folio_lock(folio);
4918 	else
4919 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4920 
4921 	return ret;
4922 }
4923 
4924 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4925 static void deposit_prealloc_pte(struct vm_fault *vmf)
4926 {
4927 	struct vm_area_struct *vma = vmf->vma;
4928 
4929 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4930 	/*
4931 	 * We are going to consume the prealloc table,
4932 	 * count that as nr_ptes.
4933 	 */
4934 	mm_inc_nr_ptes(vma->vm_mm);
4935 	vmf->prealloc_pte = NULL;
4936 }
4937 
4938 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4939 {
4940 	struct folio *folio = page_folio(page);
4941 	struct vm_area_struct *vma = vmf->vma;
4942 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4943 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4944 	pmd_t entry;
4945 	vm_fault_t ret = VM_FAULT_FALLBACK;
4946 
4947 	/*
4948 	 * It is too late to allocate a small folio, we already have a large
4949 	 * folio in the pagecache: especially s390 KVM cannot tolerate any
4950 	 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
4951 	 * PMD mappings if THPs are disabled.
4952 	 */
4953 	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
4954 		return ret;
4955 
4956 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4957 		return ret;
4958 
4959 	if (folio_order(folio) != HPAGE_PMD_ORDER)
4960 		return ret;
4961 	page = &folio->page;
4962 
4963 	/*
4964 	 * Just backoff if any subpage of a THP is corrupted otherwise
4965 	 * the corrupted page may mapped by PMD silently to escape the
4966 	 * check.  This kind of THP just can be PTE mapped.  Access to
4967 	 * the corrupted subpage should trigger SIGBUS as expected.
4968 	 */
4969 	if (unlikely(folio_test_has_hwpoisoned(folio)))
4970 		return ret;
4971 
4972 	/*
4973 	 * Archs like ppc64 need additional space to store information
4974 	 * related to pte entry. Use the preallocated table for that.
4975 	 */
4976 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4977 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4978 		if (!vmf->prealloc_pte)
4979 			return VM_FAULT_OOM;
4980 	}
4981 
4982 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4983 	if (unlikely(!pmd_none(*vmf->pmd)))
4984 		goto out;
4985 
4986 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
4987 
4988 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4989 	if (write)
4990 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4991 
4992 	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4993 	folio_add_file_rmap_pmd(folio, page, vma);
4994 
4995 	/*
4996 	 * deposit and withdraw with pmd lock held
4997 	 */
4998 	if (arch_needs_pgtable_deposit())
4999 		deposit_prealloc_pte(vmf);
5000 
5001 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5002 
5003 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5004 
5005 	/* fault is handled */
5006 	ret = 0;
5007 	count_vm_event(THP_FILE_MAPPED);
5008 out:
5009 	spin_unlock(vmf->ptl);
5010 	return ret;
5011 }
5012 #else
5013 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5014 {
5015 	return VM_FAULT_FALLBACK;
5016 }
5017 #endif
5018 
5019 /**
5020  * set_pte_range - Set a range of PTEs to point to pages in a folio.
5021  * @vmf: Fault decription.
5022  * @folio: The folio that contains @page.
5023  * @page: The first page to create a PTE for.
5024  * @nr: The number of PTEs to create.
5025  * @addr: The first address to create a PTE for.
5026  */
5027 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5028 		struct page *page, unsigned int nr, unsigned long addr)
5029 {
5030 	struct vm_area_struct *vma = vmf->vma;
5031 	bool write = vmf->flags & FAULT_FLAG_WRITE;
5032 	bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5033 	pte_t entry;
5034 
5035 	flush_icache_pages(vma, page, nr);
5036 	entry = mk_pte(page, vma->vm_page_prot);
5037 
5038 	if (prefault && arch_wants_old_prefaulted_pte())
5039 		entry = pte_mkold(entry);
5040 	else
5041 		entry = pte_sw_mkyoung(entry);
5042 
5043 	if (write)
5044 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5045 	if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5046 		entry = pte_mkuffd_wp(entry);
5047 	/* copy-on-write page */
5048 	if (write && !(vma->vm_flags & VM_SHARED)) {
5049 		VM_BUG_ON_FOLIO(nr != 1, folio);
5050 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5051 		folio_add_lru_vma(folio, vma);
5052 	} else {
5053 		folio_add_file_rmap_ptes(folio, page, nr, vma);
5054 	}
5055 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5056 
5057 	/* no need to invalidate: a not-present page won't be cached */
5058 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5059 }
5060 
5061 static bool vmf_pte_changed(struct vm_fault *vmf)
5062 {
5063 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5064 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5065 
5066 	return !pte_none(ptep_get(vmf->pte));
5067 }
5068 
5069 /**
5070  * finish_fault - finish page fault once we have prepared the page to fault
5071  *
5072  * @vmf: structure describing the fault
5073  *
5074  * This function handles all that is needed to finish a page fault once the
5075  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5076  * given page, adds reverse page mapping, handles memcg charges and LRU
5077  * addition.
5078  *
5079  * The function expects the page to be locked and on success it consumes a
5080  * reference of a page being mapped (for the PTE which maps it).
5081  *
5082  * Return: %0 on success, %VM_FAULT_ code in case of error.
5083  */
5084 vm_fault_t finish_fault(struct vm_fault *vmf)
5085 {
5086 	struct vm_area_struct *vma = vmf->vma;
5087 	struct page *page;
5088 	struct folio *folio;
5089 	vm_fault_t ret;
5090 	bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5091 		      !(vma->vm_flags & VM_SHARED);
5092 	int type, nr_pages;
5093 	unsigned long addr = vmf->address;
5094 
5095 	/* Did we COW the page? */
5096 	if (is_cow)
5097 		page = vmf->cow_page;
5098 	else
5099 		page = vmf->page;
5100 
5101 	/*
5102 	 * check even for read faults because we might have lost our CoWed
5103 	 * page
5104 	 */
5105 	if (!(vma->vm_flags & VM_SHARED)) {
5106 		ret = check_stable_address_space(vma->vm_mm);
5107 		if (ret)
5108 			return ret;
5109 	}
5110 
5111 	if (pmd_none(*vmf->pmd)) {
5112 		if (PageTransCompound(page)) {
5113 			ret = do_set_pmd(vmf, page);
5114 			if (ret != VM_FAULT_FALLBACK)
5115 				return ret;
5116 		}
5117 
5118 		if (vmf->prealloc_pte)
5119 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5120 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5121 			return VM_FAULT_OOM;
5122 	}
5123 
5124 	folio = page_folio(page);
5125 	nr_pages = folio_nr_pages(folio);
5126 
5127 	/*
5128 	 * Using per-page fault to maintain the uffd semantics, and same
5129 	 * approach also applies to non-anonymous-shmem faults to avoid
5130 	 * inflating the RSS of the process.
5131 	 */
5132 	if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) {
5133 		nr_pages = 1;
5134 	} else if (nr_pages > 1) {
5135 		pgoff_t idx = folio_page_idx(folio, page);
5136 		/* The page offset of vmf->address within the VMA. */
5137 		pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5138 		/* The index of the entry in the pagetable for fault page. */
5139 		pgoff_t pte_off = pte_index(vmf->address);
5140 
5141 		/*
5142 		 * Fallback to per-page fault in case the folio size in page
5143 		 * cache beyond the VMA limits and PMD pagetable limits.
5144 		 */
5145 		if (unlikely(vma_off < idx ||
5146 			    vma_off + (nr_pages - idx) > vma_pages(vma) ||
5147 			    pte_off < idx ||
5148 			    pte_off + (nr_pages - idx)  > PTRS_PER_PTE)) {
5149 			nr_pages = 1;
5150 		} else {
5151 			/* Now we can set mappings for the whole large folio. */
5152 			addr = vmf->address - idx * PAGE_SIZE;
5153 			page = &folio->page;
5154 		}
5155 	}
5156 
5157 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5158 				       addr, &vmf->ptl);
5159 	if (!vmf->pte)
5160 		return VM_FAULT_NOPAGE;
5161 
5162 	/* Re-check under ptl */
5163 	if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5164 		update_mmu_tlb(vma, addr, vmf->pte);
5165 		ret = VM_FAULT_NOPAGE;
5166 		goto unlock;
5167 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5168 		update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5169 		ret = VM_FAULT_NOPAGE;
5170 		goto unlock;
5171 	}
5172 
5173 	folio_ref_add(folio, nr_pages - 1);
5174 	set_pte_range(vmf, folio, page, nr_pages, addr);
5175 	type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5176 	add_mm_counter(vma->vm_mm, type, nr_pages);
5177 	ret = 0;
5178 
5179 unlock:
5180 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5181 	return ret;
5182 }
5183 
5184 static unsigned long fault_around_pages __read_mostly =
5185 	65536 >> PAGE_SHIFT;
5186 
5187 #ifdef CONFIG_DEBUG_FS
5188 static int fault_around_bytes_get(void *data, u64 *val)
5189 {
5190 	*val = fault_around_pages << PAGE_SHIFT;
5191 	return 0;
5192 }
5193 
5194 /*
5195  * fault_around_bytes must be rounded down to the nearest page order as it's
5196  * what do_fault_around() expects to see.
5197  */
5198 static int fault_around_bytes_set(void *data, u64 val)
5199 {
5200 	if (val / PAGE_SIZE > PTRS_PER_PTE)
5201 		return -EINVAL;
5202 
5203 	/*
5204 	 * The minimum value is 1 page, however this results in no fault-around
5205 	 * at all. See should_fault_around().
5206 	 */
5207 	val = max(val, PAGE_SIZE);
5208 	fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5209 
5210 	return 0;
5211 }
5212 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5213 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5214 
5215 static int __init fault_around_debugfs(void)
5216 {
5217 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5218 				   &fault_around_bytes_fops);
5219 	return 0;
5220 }
5221 late_initcall(fault_around_debugfs);
5222 #endif
5223 
5224 /*
5225  * do_fault_around() tries to map few pages around the fault address. The hope
5226  * is that the pages will be needed soon and this will lower the number of
5227  * faults to handle.
5228  *
5229  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5230  * not ready to be mapped: not up-to-date, locked, etc.
5231  *
5232  * This function doesn't cross VMA or page table boundaries, in order to call
5233  * map_pages() and acquire a PTE lock only once.
5234  *
5235  * fault_around_pages defines how many pages we'll try to map.
5236  * do_fault_around() expects it to be set to a power of two less than or equal
5237  * to PTRS_PER_PTE.
5238  *
5239  * The virtual address of the area that we map is naturally aligned to
5240  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5241  * (and therefore to page order).  This way it's easier to guarantee
5242  * that we don't cross page table boundaries.
5243  */
5244 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5245 {
5246 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5247 	pgoff_t pte_off = pte_index(vmf->address);
5248 	/* The page offset of vmf->address within the VMA. */
5249 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5250 	pgoff_t from_pte, to_pte;
5251 	vm_fault_t ret;
5252 
5253 	/* The PTE offset of the start address, clamped to the VMA. */
5254 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5255 		       pte_off - min(pte_off, vma_off));
5256 
5257 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
5258 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5259 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5260 
5261 	if (pmd_none(*vmf->pmd)) {
5262 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5263 		if (!vmf->prealloc_pte)
5264 			return VM_FAULT_OOM;
5265 	}
5266 
5267 	rcu_read_lock();
5268 	ret = vmf->vma->vm_ops->map_pages(vmf,
5269 			vmf->pgoff + from_pte - pte_off,
5270 			vmf->pgoff + to_pte - pte_off);
5271 	rcu_read_unlock();
5272 
5273 	return ret;
5274 }
5275 
5276 /* Return true if we should do read fault-around, false otherwise */
5277 static inline bool should_fault_around(struct vm_fault *vmf)
5278 {
5279 	/* No ->map_pages?  No way to fault around... */
5280 	if (!vmf->vma->vm_ops->map_pages)
5281 		return false;
5282 
5283 	if (uffd_disable_fault_around(vmf->vma))
5284 		return false;
5285 
5286 	/* A single page implies no faulting 'around' at all. */
5287 	return fault_around_pages > 1;
5288 }
5289 
5290 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5291 {
5292 	vm_fault_t ret = 0;
5293 	struct folio *folio;
5294 
5295 	/*
5296 	 * Let's call ->map_pages() first and use ->fault() as fallback
5297 	 * if page by the offset is not ready to be mapped (cold cache or
5298 	 * something).
5299 	 */
5300 	if (should_fault_around(vmf)) {
5301 		ret = do_fault_around(vmf);
5302 		if (ret)
5303 			return ret;
5304 	}
5305 
5306 	ret = vmf_can_call_fault(vmf);
5307 	if (ret)
5308 		return ret;
5309 
5310 	ret = __do_fault(vmf);
5311 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5312 		return ret;
5313 
5314 	ret |= finish_fault(vmf);
5315 	folio = page_folio(vmf->page);
5316 	folio_unlock(folio);
5317 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5318 		folio_put(folio);
5319 	return ret;
5320 }
5321 
5322 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5323 {
5324 	struct vm_area_struct *vma = vmf->vma;
5325 	struct folio *folio;
5326 	vm_fault_t ret;
5327 
5328 	ret = vmf_can_call_fault(vmf);
5329 	if (!ret)
5330 		ret = vmf_anon_prepare(vmf);
5331 	if (ret)
5332 		return ret;
5333 
5334 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5335 	if (!folio)
5336 		return VM_FAULT_OOM;
5337 
5338 	vmf->cow_page = &folio->page;
5339 
5340 	ret = __do_fault(vmf);
5341 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5342 		goto uncharge_out;
5343 	if (ret & VM_FAULT_DONE_COW)
5344 		return ret;
5345 
5346 	if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5347 		ret = VM_FAULT_HWPOISON;
5348 		goto unlock;
5349 	}
5350 	__folio_mark_uptodate(folio);
5351 
5352 	ret |= finish_fault(vmf);
5353 unlock:
5354 	unlock_page(vmf->page);
5355 	put_page(vmf->page);
5356 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5357 		goto uncharge_out;
5358 	return ret;
5359 uncharge_out:
5360 	folio_put(folio);
5361 	return ret;
5362 }
5363 
5364 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5365 {
5366 	struct vm_area_struct *vma = vmf->vma;
5367 	vm_fault_t ret, tmp;
5368 	struct folio *folio;
5369 
5370 	ret = vmf_can_call_fault(vmf);
5371 	if (ret)
5372 		return ret;
5373 
5374 	ret = __do_fault(vmf);
5375 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5376 		return ret;
5377 
5378 	folio = page_folio(vmf->page);
5379 
5380 	/*
5381 	 * Check if the backing address space wants to know that the page is
5382 	 * about to become writable
5383 	 */
5384 	if (vma->vm_ops->page_mkwrite) {
5385 		folio_unlock(folio);
5386 		tmp = do_page_mkwrite(vmf, folio);
5387 		if (unlikely(!tmp ||
5388 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5389 			folio_put(folio);
5390 			return tmp;
5391 		}
5392 	}
5393 
5394 	ret |= finish_fault(vmf);
5395 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5396 					VM_FAULT_RETRY))) {
5397 		folio_unlock(folio);
5398 		folio_put(folio);
5399 		return ret;
5400 	}
5401 
5402 	ret |= fault_dirty_shared_page(vmf);
5403 	return ret;
5404 }
5405 
5406 /*
5407  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5408  * but allow concurrent faults).
5409  * The mmap_lock may have been released depending on flags and our
5410  * return value.  See filemap_fault() and __folio_lock_or_retry().
5411  * If mmap_lock is released, vma may become invalid (for example
5412  * by other thread calling munmap()).
5413  */
5414 static vm_fault_t do_fault(struct vm_fault *vmf)
5415 {
5416 	struct vm_area_struct *vma = vmf->vma;
5417 	struct mm_struct *vm_mm = vma->vm_mm;
5418 	vm_fault_t ret;
5419 
5420 	/*
5421 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5422 	 */
5423 	if (!vma->vm_ops->fault) {
5424 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5425 					       vmf->address, &vmf->ptl);
5426 		if (unlikely(!vmf->pte))
5427 			ret = VM_FAULT_SIGBUS;
5428 		else {
5429 			/*
5430 			 * Make sure this is not a temporary clearing of pte
5431 			 * by holding ptl and checking again. A R/M/W update
5432 			 * of pte involves: take ptl, clearing the pte so that
5433 			 * we don't have concurrent modification by hardware
5434 			 * followed by an update.
5435 			 */
5436 			if (unlikely(pte_none(ptep_get(vmf->pte))))
5437 				ret = VM_FAULT_SIGBUS;
5438 			else
5439 				ret = VM_FAULT_NOPAGE;
5440 
5441 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5442 		}
5443 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
5444 		ret = do_read_fault(vmf);
5445 	else if (!(vma->vm_flags & VM_SHARED))
5446 		ret = do_cow_fault(vmf);
5447 	else
5448 		ret = do_shared_fault(vmf);
5449 
5450 	/* preallocated pagetable is unused: free it */
5451 	if (vmf->prealloc_pte) {
5452 		pte_free(vm_mm, vmf->prealloc_pte);
5453 		vmf->prealloc_pte = NULL;
5454 	}
5455 	return ret;
5456 }
5457 
5458 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5459 		      unsigned long addr, int *flags,
5460 		      bool writable, int *last_cpupid)
5461 {
5462 	struct vm_area_struct *vma = vmf->vma;
5463 
5464 	/*
5465 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5466 	 * much anyway since they can be in shared cache state. This misses
5467 	 * the case where a mapping is writable but the process never writes
5468 	 * to it but pte_write gets cleared during protection updates and
5469 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
5470 	 * background writeback, dirty balancing and application behaviour.
5471 	 */
5472 	if (!writable)
5473 		*flags |= TNF_NO_GROUP;
5474 
5475 	/*
5476 	 * Flag if the folio is shared between multiple address spaces. This
5477 	 * is later used when determining whether to group tasks together
5478 	 */
5479 	if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5480 		*flags |= TNF_SHARED;
5481 	/*
5482 	 * For memory tiering mode, cpupid of slow memory page is used
5483 	 * to record page access time.  So use default value.
5484 	 */
5485 	if (folio_use_access_time(folio))
5486 		*last_cpupid = (-1 & LAST_CPUPID_MASK);
5487 	else
5488 		*last_cpupid = folio_last_cpupid(folio);
5489 
5490 	/* Record the current PID acceesing VMA */
5491 	vma_set_access_pid_bit(vma);
5492 
5493 	count_vm_numa_event(NUMA_HINT_FAULTS);
5494 #ifdef CONFIG_NUMA_BALANCING
5495 	count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5496 #endif
5497 	if (folio_nid(folio) == numa_node_id()) {
5498 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5499 		*flags |= TNF_FAULT_LOCAL;
5500 	}
5501 
5502 	return mpol_misplaced(folio, vmf, addr);
5503 }
5504 
5505 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5506 					unsigned long fault_addr, pte_t *fault_pte,
5507 					bool writable)
5508 {
5509 	pte_t pte, old_pte;
5510 
5511 	old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5512 	pte = pte_modify(old_pte, vma->vm_page_prot);
5513 	pte = pte_mkyoung(pte);
5514 	if (writable)
5515 		pte = pte_mkwrite(pte, vma);
5516 	ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5517 	update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5518 }
5519 
5520 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5521 				       struct folio *folio, pte_t fault_pte,
5522 				       bool ignore_writable, bool pte_write_upgrade)
5523 {
5524 	int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5525 	unsigned long start, end, addr = vmf->address;
5526 	unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5527 	unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5528 	pte_t *start_ptep;
5529 
5530 	/* Stay within the VMA and within the page table. */
5531 	start = max3(addr_start, pt_start, vma->vm_start);
5532 	end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5533 		   vma->vm_end);
5534 	start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5535 
5536 	/* Restore all PTEs' mapping of the large folio */
5537 	for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5538 		pte_t ptent = ptep_get(start_ptep);
5539 		bool writable = false;
5540 
5541 		if (!pte_present(ptent) || !pte_protnone(ptent))
5542 			continue;
5543 
5544 		if (pfn_folio(pte_pfn(ptent)) != folio)
5545 			continue;
5546 
5547 		if (!ignore_writable) {
5548 			ptent = pte_modify(ptent, vma->vm_page_prot);
5549 			writable = pte_write(ptent);
5550 			if (!writable && pte_write_upgrade &&
5551 			    can_change_pte_writable(vma, addr, ptent))
5552 				writable = true;
5553 		}
5554 
5555 		numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5556 	}
5557 }
5558 
5559 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5560 {
5561 	struct vm_area_struct *vma = vmf->vma;
5562 	struct folio *folio = NULL;
5563 	int nid = NUMA_NO_NODE;
5564 	bool writable = false, ignore_writable = false;
5565 	bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5566 	int last_cpupid;
5567 	int target_nid;
5568 	pte_t pte, old_pte;
5569 	int flags = 0, nr_pages;
5570 
5571 	/*
5572 	 * The pte cannot be used safely until we verify, while holding the page
5573 	 * table lock, that its contents have not changed during fault handling.
5574 	 */
5575 	spin_lock(vmf->ptl);
5576 	/* Read the live PTE from the page tables: */
5577 	old_pte = ptep_get(vmf->pte);
5578 
5579 	if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5580 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5581 		return 0;
5582 	}
5583 
5584 	pte = pte_modify(old_pte, vma->vm_page_prot);
5585 
5586 	/*
5587 	 * Detect now whether the PTE could be writable; this information
5588 	 * is only valid while holding the PT lock.
5589 	 */
5590 	writable = pte_write(pte);
5591 	if (!writable && pte_write_upgrade &&
5592 	    can_change_pte_writable(vma, vmf->address, pte))
5593 		writable = true;
5594 
5595 	folio = vm_normal_folio(vma, vmf->address, pte);
5596 	if (!folio || folio_is_zone_device(folio))
5597 		goto out_map;
5598 
5599 	nid = folio_nid(folio);
5600 	nr_pages = folio_nr_pages(folio);
5601 
5602 	target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5603 					writable, &last_cpupid);
5604 	if (target_nid == NUMA_NO_NODE)
5605 		goto out_map;
5606 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5607 		flags |= TNF_MIGRATE_FAIL;
5608 		goto out_map;
5609 	}
5610 	/* The folio is isolated and isolation code holds a folio reference. */
5611 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5612 	writable = false;
5613 	ignore_writable = true;
5614 
5615 	/* Migrate to the requested node */
5616 	if (!migrate_misplaced_folio(folio, vma, target_nid)) {
5617 		nid = target_nid;
5618 		flags |= TNF_MIGRATED;
5619 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5620 		return 0;
5621 	}
5622 
5623 	flags |= TNF_MIGRATE_FAIL;
5624 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5625 				       vmf->address, &vmf->ptl);
5626 	if (unlikely(!vmf->pte))
5627 		return 0;
5628 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5629 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5630 		return 0;
5631 	}
5632 out_map:
5633 	/*
5634 	 * Make it present again, depending on how arch implements
5635 	 * non-accessible ptes, some can allow access by kernel mode.
5636 	 */
5637 	if (folio && folio_test_large(folio))
5638 		numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5639 					   pte_write_upgrade);
5640 	else
5641 		numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5642 					    writable);
5643 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5644 
5645 	if (nid != NUMA_NO_NODE)
5646 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5647 	return 0;
5648 }
5649 
5650 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5651 {
5652 	struct vm_area_struct *vma = vmf->vma;
5653 	if (vma_is_anonymous(vma))
5654 		return do_huge_pmd_anonymous_page(vmf);
5655 	if (vma->vm_ops->huge_fault)
5656 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5657 	return VM_FAULT_FALLBACK;
5658 }
5659 
5660 /* `inline' is required to avoid gcc 4.1.2 build error */
5661 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5662 {
5663 	struct vm_area_struct *vma = vmf->vma;
5664 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5665 	vm_fault_t ret;
5666 
5667 	if (vma_is_anonymous(vma)) {
5668 		if (likely(!unshare) &&
5669 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5670 			if (userfaultfd_wp_async(vmf->vma))
5671 				goto split;
5672 			return handle_userfault(vmf, VM_UFFD_WP);
5673 		}
5674 		return do_huge_pmd_wp_page(vmf);
5675 	}
5676 
5677 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5678 		if (vma->vm_ops->huge_fault) {
5679 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5680 			if (!(ret & VM_FAULT_FALLBACK))
5681 				return ret;
5682 		}
5683 	}
5684 
5685 split:
5686 	/* COW or write-notify handled on pte level: split pmd. */
5687 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5688 
5689 	return VM_FAULT_FALLBACK;
5690 }
5691 
5692 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5693 {
5694 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5695 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5696 	struct vm_area_struct *vma = vmf->vma;
5697 	/* No support for anonymous transparent PUD pages yet */
5698 	if (vma_is_anonymous(vma))
5699 		return VM_FAULT_FALLBACK;
5700 	if (vma->vm_ops->huge_fault)
5701 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5702 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5703 	return VM_FAULT_FALLBACK;
5704 }
5705 
5706 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5707 {
5708 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5709 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5710 	struct vm_area_struct *vma = vmf->vma;
5711 	vm_fault_t ret;
5712 
5713 	/* No support for anonymous transparent PUD pages yet */
5714 	if (vma_is_anonymous(vma))
5715 		goto split;
5716 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5717 		if (vma->vm_ops->huge_fault) {
5718 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5719 			if (!(ret & VM_FAULT_FALLBACK))
5720 				return ret;
5721 		}
5722 	}
5723 split:
5724 	/* COW or write-notify not handled on PUD level: split pud.*/
5725 	__split_huge_pud(vma, vmf->pud, vmf->address);
5726 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5727 	return VM_FAULT_FALLBACK;
5728 }
5729 
5730 /*
5731  * These routines also need to handle stuff like marking pages dirty
5732  * and/or accessed for architectures that don't do it in hardware (most
5733  * RISC architectures).  The early dirtying is also good on the i386.
5734  *
5735  * There is also a hook called "update_mmu_cache()" that architectures
5736  * with external mmu caches can use to update those (ie the Sparc or
5737  * PowerPC hashed page tables that act as extended TLBs).
5738  *
5739  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5740  * concurrent faults).
5741  *
5742  * The mmap_lock may have been released depending on flags and our return value.
5743  * See filemap_fault() and __folio_lock_or_retry().
5744  */
5745 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5746 {
5747 	pte_t entry;
5748 
5749 	if (unlikely(pmd_none(*vmf->pmd))) {
5750 		/*
5751 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5752 		 * want to allocate huge page, and if we expose page table
5753 		 * for an instant, it will be difficult to retract from
5754 		 * concurrent faults and from rmap lookups.
5755 		 */
5756 		vmf->pte = NULL;
5757 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5758 	} else {
5759 		pmd_t dummy_pmdval;
5760 
5761 		/*
5762 		 * A regular pmd is established and it can't morph into a huge
5763 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5764 		 * mode; but shmem or file collapse to THP could still morph
5765 		 * it into a huge pmd: just retry later if so.
5766 		 *
5767 		 * Use the maywrite version to indicate that vmf->pte may be
5768 		 * modified, but since we will use pte_same() to detect the
5769 		 * change of the !pte_none() entry, there is no need to recheck
5770 		 * the pmdval. Here we chooes to pass a dummy variable instead
5771 		 * of NULL, which helps new user think about why this place is
5772 		 * special.
5773 		 */
5774 		vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
5775 						    vmf->address, &dummy_pmdval,
5776 						    &vmf->ptl);
5777 		if (unlikely(!vmf->pte))
5778 			return 0;
5779 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5780 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5781 
5782 		if (pte_none(vmf->orig_pte)) {
5783 			pte_unmap(vmf->pte);
5784 			vmf->pte = NULL;
5785 		}
5786 	}
5787 
5788 	if (!vmf->pte)
5789 		return do_pte_missing(vmf);
5790 
5791 	if (!pte_present(vmf->orig_pte))
5792 		return do_swap_page(vmf);
5793 
5794 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5795 		return do_numa_page(vmf);
5796 
5797 	spin_lock(vmf->ptl);
5798 	entry = vmf->orig_pte;
5799 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5800 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5801 		goto unlock;
5802 	}
5803 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5804 		if (!pte_write(entry))
5805 			return do_wp_page(vmf);
5806 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5807 			entry = pte_mkdirty(entry);
5808 	}
5809 	entry = pte_mkyoung(entry);
5810 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5811 				vmf->flags & FAULT_FLAG_WRITE)) {
5812 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5813 				vmf->pte, 1);
5814 	} else {
5815 		/* Skip spurious TLB flush for retried page fault */
5816 		if (vmf->flags & FAULT_FLAG_TRIED)
5817 			goto unlock;
5818 		/*
5819 		 * This is needed only for protection faults but the arch code
5820 		 * is not yet telling us if this is a protection fault or not.
5821 		 * This still avoids useless tlb flushes for .text page faults
5822 		 * with threads.
5823 		 */
5824 		if (vmf->flags & FAULT_FLAG_WRITE)
5825 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5826 						     vmf->pte);
5827 	}
5828 unlock:
5829 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5830 	return 0;
5831 }
5832 
5833 /*
5834  * On entry, we hold either the VMA lock or the mmap_lock
5835  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5836  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5837  * and __folio_lock_or_retry().
5838  */
5839 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5840 		unsigned long address, unsigned int flags)
5841 {
5842 	struct vm_fault vmf = {
5843 		.vma = vma,
5844 		.address = address & PAGE_MASK,
5845 		.real_address = address,
5846 		.flags = flags,
5847 		.pgoff = linear_page_index(vma, address),
5848 		.gfp_mask = __get_fault_gfp_mask(vma),
5849 	};
5850 	struct mm_struct *mm = vma->vm_mm;
5851 	unsigned long vm_flags = vma->vm_flags;
5852 	pgd_t *pgd;
5853 	p4d_t *p4d;
5854 	vm_fault_t ret;
5855 
5856 	pgd = pgd_offset(mm, address);
5857 	p4d = p4d_alloc(mm, pgd, address);
5858 	if (!p4d)
5859 		return VM_FAULT_OOM;
5860 
5861 	vmf.pud = pud_alloc(mm, p4d, address);
5862 	if (!vmf.pud)
5863 		return VM_FAULT_OOM;
5864 retry_pud:
5865 	if (pud_none(*vmf.pud) &&
5866 	    thp_vma_allowable_order(vma, vm_flags,
5867 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5868 		ret = create_huge_pud(&vmf);
5869 		if (!(ret & VM_FAULT_FALLBACK))
5870 			return ret;
5871 	} else {
5872 		pud_t orig_pud = *vmf.pud;
5873 
5874 		barrier();
5875 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5876 
5877 			/*
5878 			 * TODO once we support anonymous PUDs: NUMA case and
5879 			 * FAULT_FLAG_UNSHARE handling.
5880 			 */
5881 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5882 				ret = wp_huge_pud(&vmf, orig_pud);
5883 				if (!(ret & VM_FAULT_FALLBACK))
5884 					return ret;
5885 			} else {
5886 				huge_pud_set_accessed(&vmf, orig_pud);
5887 				return 0;
5888 			}
5889 		}
5890 	}
5891 
5892 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5893 	if (!vmf.pmd)
5894 		return VM_FAULT_OOM;
5895 
5896 	/* Huge pud page fault raced with pmd_alloc? */
5897 	if (pud_trans_unstable(vmf.pud))
5898 		goto retry_pud;
5899 
5900 	if (pmd_none(*vmf.pmd) &&
5901 	    thp_vma_allowable_order(vma, vm_flags,
5902 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5903 		ret = create_huge_pmd(&vmf);
5904 		if (!(ret & VM_FAULT_FALLBACK))
5905 			return ret;
5906 	} else {
5907 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5908 
5909 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5910 			VM_BUG_ON(thp_migration_supported() &&
5911 					  !is_pmd_migration_entry(vmf.orig_pmd));
5912 			if (is_pmd_migration_entry(vmf.orig_pmd))
5913 				pmd_migration_entry_wait(mm, vmf.pmd);
5914 			return 0;
5915 		}
5916 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5917 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5918 				return do_huge_pmd_numa_page(&vmf);
5919 
5920 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5921 			    !pmd_write(vmf.orig_pmd)) {
5922 				ret = wp_huge_pmd(&vmf);
5923 				if (!(ret & VM_FAULT_FALLBACK))
5924 					return ret;
5925 			} else {
5926 				huge_pmd_set_accessed(&vmf);
5927 				return 0;
5928 			}
5929 		}
5930 	}
5931 
5932 	return handle_pte_fault(&vmf);
5933 }
5934 
5935 /**
5936  * mm_account_fault - Do page fault accounting
5937  * @mm: mm from which memcg should be extracted. It can be NULL.
5938  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5939  *        of perf event counters, but we'll still do the per-task accounting to
5940  *        the task who triggered this page fault.
5941  * @address: the faulted address.
5942  * @flags: the fault flags.
5943  * @ret: the fault retcode.
5944  *
5945  * This will take care of most of the page fault accounting.  Meanwhile, it
5946  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5947  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5948  * still be in per-arch page fault handlers at the entry of page fault.
5949  */
5950 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5951 				    unsigned long address, unsigned int flags,
5952 				    vm_fault_t ret)
5953 {
5954 	bool major;
5955 
5956 	/* Incomplete faults will be accounted upon completion. */
5957 	if (ret & VM_FAULT_RETRY)
5958 		return;
5959 
5960 	/*
5961 	 * To preserve the behavior of older kernels, PGFAULT counters record
5962 	 * both successful and failed faults, as opposed to perf counters,
5963 	 * which ignore failed cases.
5964 	 */
5965 	count_vm_event(PGFAULT);
5966 	count_memcg_event_mm(mm, PGFAULT);
5967 
5968 	/*
5969 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5970 	 * valid).  That includes arch_vma_access_permitted() failing before
5971 	 * reaching here. So this is not a "this many hardware page faults"
5972 	 * counter.  We should use the hw profiling for that.
5973 	 */
5974 	if (ret & VM_FAULT_ERROR)
5975 		return;
5976 
5977 	/*
5978 	 * We define the fault as a major fault when the final successful fault
5979 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5980 	 * handle it immediately previously).
5981 	 */
5982 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5983 
5984 	if (major)
5985 		current->maj_flt++;
5986 	else
5987 		current->min_flt++;
5988 
5989 	/*
5990 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5991 	 * accounting for the per thread fault counters who triggered the
5992 	 * fault, and we skip the perf event updates.
5993 	 */
5994 	if (!regs)
5995 		return;
5996 
5997 	if (major)
5998 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5999 	else
6000 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6001 }
6002 
6003 #ifdef CONFIG_LRU_GEN
6004 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6005 {
6006 	/* the LRU algorithm only applies to accesses with recency */
6007 	current->in_lru_fault = vma_has_recency(vma);
6008 }
6009 
6010 static void lru_gen_exit_fault(void)
6011 {
6012 	current->in_lru_fault = false;
6013 }
6014 #else
6015 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6016 {
6017 }
6018 
6019 static void lru_gen_exit_fault(void)
6020 {
6021 }
6022 #endif /* CONFIG_LRU_GEN */
6023 
6024 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6025 				       unsigned int *flags)
6026 {
6027 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6028 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6029 			return VM_FAULT_SIGSEGV;
6030 		/*
6031 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6032 		 * just treat it like an ordinary read-fault otherwise.
6033 		 */
6034 		if (!is_cow_mapping(vma->vm_flags))
6035 			*flags &= ~FAULT_FLAG_UNSHARE;
6036 	} else if (*flags & FAULT_FLAG_WRITE) {
6037 		/* Write faults on read-only mappings are impossible ... */
6038 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6039 			return VM_FAULT_SIGSEGV;
6040 		/* ... and FOLL_FORCE only applies to COW mappings. */
6041 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6042 				 !is_cow_mapping(vma->vm_flags)))
6043 			return VM_FAULT_SIGSEGV;
6044 	}
6045 #ifdef CONFIG_PER_VMA_LOCK
6046 	/*
6047 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6048 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
6049 	 */
6050 	if (WARN_ON_ONCE((*flags &
6051 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6052 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6053 		return VM_FAULT_SIGSEGV;
6054 #endif
6055 
6056 	return 0;
6057 }
6058 
6059 /*
6060  * By the time we get here, we already hold the mm semaphore
6061  *
6062  * The mmap_lock may have been released depending on flags and our
6063  * return value.  See filemap_fault() and __folio_lock_or_retry().
6064  */
6065 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6066 			   unsigned int flags, struct pt_regs *regs)
6067 {
6068 	/* If the fault handler drops the mmap_lock, vma may be freed */
6069 	struct mm_struct *mm = vma->vm_mm;
6070 	vm_fault_t ret;
6071 	bool is_droppable;
6072 
6073 	__set_current_state(TASK_RUNNING);
6074 
6075 	ret = sanitize_fault_flags(vma, &flags);
6076 	if (ret)
6077 		goto out;
6078 
6079 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6080 					    flags & FAULT_FLAG_INSTRUCTION,
6081 					    flags & FAULT_FLAG_REMOTE)) {
6082 		ret = VM_FAULT_SIGSEGV;
6083 		goto out;
6084 	}
6085 
6086 	is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6087 
6088 	/*
6089 	 * Enable the memcg OOM handling for faults triggered in user
6090 	 * space.  Kernel faults are handled more gracefully.
6091 	 */
6092 	if (flags & FAULT_FLAG_USER)
6093 		mem_cgroup_enter_user_fault();
6094 
6095 	lru_gen_enter_fault(vma);
6096 
6097 	if (unlikely(is_vm_hugetlb_page(vma)))
6098 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6099 	else
6100 		ret = __handle_mm_fault(vma, address, flags);
6101 
6102 	/*
6103 	 * Warning: It is no longer safe to dereference vma-> after this point,
6104 	 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6105 	 * vma might be destroyed from underneath us.
6106 	 */
6107 
6108 	lru_gen_exit_fault();
6109 
6110 	/* If the mapping is droppable, then errors due to OOM aren't fatal. */
6111 	if (is_droppable)
6112 		ret &= ~VM_FAULT_OOM;
6113 
6114 	if (flags & FAULT_FLAG_USER) {
6115 		mem_cgroup_exit_user_fault();
6116 		/*
6117 		 * The task may have entered a memcg OOM situation but
6118 		 * if the allocation error was handled gracefully (no
6119 		 * VM_FAULT_OOM), there is no need to kill anything.
6120 		 * Just clean up the OOM state peacefully.
6121 		 */
6122 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6123 			mem_cgroup_oom_synchronize(false);
6124 	}
6125 out:
6126 	mm_account_fault(mm, regs, address, flags, ret);
6127 
6128 	return ret;
6129 }
6130 EXPORT_SYMBOL_GPL(handle_mm_fault);
6131 
6132 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6133 #include <linux/extable.h>
6134 
6135 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6136 {
6137 	if (likely(mmap_read_trylock(mm)))
6138 		return true;
6139 
6140 	if (regs && !user_mode(regs)) {
6141 		unsigned long ip = exception_ip(regs);
6142 		if (!search_exception_tables(ip))
6143 			return false;
6144 	}
6145 
6146 	return !mmap_read_lock_killable(mm);
6147 }
6148 
6149 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
6150 {
6151 	/*
6152 	 * We don't have this operation yet.
6153 	 *
6154 	 * It should be easy enough to do: it's basically a
6155 	 *    atomic_long_try_cmpxchg_acquire()
6156 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6157 	 * it also needs the proper lockdep magic etc.
6158 	 */
6159 	return false;
6160 }
6161 
6162 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6163 {
6164 	mmap_read_unlock(mm);
6165 	if (regs && !user_mode(regs)) {
6166 		unsigned long ip = exception_ip(regs);
6167 		if (!search_exception_tables(ip))
6168 			return false;
6169 	}
6170 	return !mmap_write_lock_killable(mm);
6171 }
6172 
6173 /*
6174  * Helper for page fault handling.
6175  *
6176  * This is kind of equivalend to "mmap_read_lock()" followed
6177  * by "find_extend_vma()", except it's a lot more careful about
6178  * the locking (and will drop the lock on failure).
6179  *
6180  * For example, if we have a kernel bug that causes a page
6181  * fault, we don't want to just use mmap_read_lock() to get
6182  * the mm lock, because that would deadlock if the bug were
6183  * to happen while we're holding the mm lock for writing.
6184  *
6185  * So this checks the exception tables on kernel faults in
6186  * order to only do this all for instructions that are actually
6187  * expected to fault.
6188  *
6189  * We can also actually take the mm lock for writing if we
6190  * need to extend the vma, which helps the VM layer a lot.
6191  */
6192 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
6193 			unsigned long addr, struct pt_regs *regs)
6194 {
6195 	struct vm_area_struct *vma;
6196 
6197 	if (!get_mmap_lock_carefully(mm, regs))
6198 		return NULL;
6199 
6200 	vma = find_vma(mm, addr);
6201 	if (likely(vma && (vma->vm_start <= addr)))
6202 		return vma;
6203 
6204 	/*
6205 	 * Well, dang. We might still be successful, but only
6206 	 * if we can extend a vma to do so.
6207 	 */
6208 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
6209 		mmap_read_unlock(mm);
6210 		return NULL;
6211 	}
6212 
6213 	/*
6214 	 * We can try to upgrade the mmap lock atomically,
6215 	 * in which case we can continue to use the vma
6216 	 * we already looked up.
6217 	 *
6218 	 * Otherwise we'll have to drop the mmap lock and
6219 	 * re-take it, and also look up the vma again,
6220 	 * re-checking it.
6221 	 */
6222 	if (!mmap_upgrade_trylock(mm)) {
6223 		if (!upgrade_mmap_lock_carefully(mm, regs))
6224 			return NULL;
6225 
6226 		vma = find_vma(mm, addr);
6227 		if (!vma)
6228 			goto fail;
6229 		if (vma->vm_start <= addr)
6230 			goto success;
6231 		if (!(vma->vm_flags & VM_GROWSDOWN))
6232 			goto fail;
6233 	}
6234 
6235 	if (expand_stack_locked(vma, addr))
6236 		goto fail;
6237 
6238 success:
6239 	mmap_write_downgrade(mm);
6240 	return vma;
6241 
6242 fail:
6243 	mmap_write_unlock(mm);
6244 	return NULL;
6245 }
6246 #endif
6247 
6248 #ifdef CONFIG_PER_VMA_LOCK
6249 /*
6250  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6251  * stable and not isolated. If the VMA is not found or is being modified the
6252  * function returns NULL.
6253  */
6254 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6255 					  unsigned long address)
6256 {
6257 	MA_STATE(mas, &mm->mm_mt, address, address);
6258 	struct vm_area_struct *vma;
6259 
6260 	rcu_read_lock();
6261 retry:
6262 	vma = mas_walk(&mas);
6263 	if (!vma)
6264 		goto inval;
6265 
6266 	if (!vma_start_read(vma))
6267 		goto inval;
6268 
6269 	/* Check if the VMA got isolated after we found it */
6270 	if (vma->detached) {
6271 		vma_end_read(vma);
6272 		count_vm_vma_lock_event(VMA_LOCK_MISS);
6273 		/* The area was replaced with another one */
6274 		goto retry;
6275 	}
6276 	/*
6277 	 * At this point, we have a stable reference to a VMA: The VMA is
6278 	 * locked and we know it hasn't already been isolated.
6279 	 * From here on, we can access the VMA without worrying about which
6280 	 * fields are accessible for RCU readers.
6281 	 */
6282 
6283 	/* Check since vm_start/vm_end might change before we lock the VMA */
6284 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6285 		goto inval_end_read;
6286 
6287 	rcu_read_unlock();
6288 	return vma;
6289 
6290 inval_end_read:
6291 	vma_end_read(vma);
6292 inval:
6293 	rcu_read_unlock();
6294 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
6295 	return NULL;
6296 }
6297 #endif /* CONFIG_PER_VMA_LOCK */
6298 
6299 #ifndef __PAGETABLE_P4D_FOLDED
6300 /*
6301  * Allocate p4d page table.
6302  * We've already handled the fast-path in-line.
6303  */
6304 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6305 {
6306 	p4d_t *new = p4d_alloc_one(mm, address);
6307 	if (!new)
6308 		return -ENOMEM;
6309 
6310 	spin_lock(&mm->page_table_lock);
6311 	if (pgd_present(*pgd)) {	/* Another has populated it */
6312 		p4d_free(mm, new);
6313 	} else {
6314 		smp_wmb(); /* See comment in pmd_install() */
6315 		pgd_populate(mm, pgd, new);
6316 	}
6317 	spin_unlock(&mm->page_table_lock);
6318 	return 0;
6319 }
6320 #endif /* __PAGETABLE_P4D_FOLDED */
6321 
6322 #ifndef __PAGETABLE_PUD_FOLDED
6323 /*
6324  * Allocate page upper directory.
6325  * We've already handled the fast-path in-line.
6326  */
6327 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6328 {
6329 	pud_t *new = pud_alloc_one(mm, address);
6330 	if (!new)
6331 		return -ENOMEM;
6332 
6333 	spin_lock(&mm->page_table_lock);
6334 	if (!p4d_present(*p4d)) {
6335 		mm_inc_nr_puds(mm);
6336 		smp_wmb(); /* See comment in pmd_install() */
6337 		p4d_populate(mm, p4d, new);
6338 	} else	/* Another has populated it */
6339 		pud_free(mm, new);
6340 	spin_unlock(&mm->page_table_lock);
6341 	return 0;
6342 }
6343 #endif /* __PAGETABLE_PUD_FOLDED */
6344 
6345 #ifndef __PAGETABLE_PMD_FOLDED
6346 /*
6347  * Allocate page middle directory.
6348  * We've already handled the fast-path in-line.
6349  */
6350 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6351 {
6352 	spinlock_t *ptl;
6353 	pmd_t *new = pmd_alloc_one(mm, address);
6354 	if (!new)
6355 		return -ENOMEM;
6356 
6357 	ptl = pud_lock(mm, pud);
6358 	if (!pud_present(*pud)) {
6359 		mm_inc_nr_pmds(mm);
6360 		smp_wmb(); /* See comment in pmd_install() */
6361 		pud_populate(mm, pud, new);
6362 	} else {	/* Another has populated it */
6363 		pmd_free(mm, new);
6364 	}
6365 	spin_unlock(ptl);
6366 	return 0;
6367 }
6368 #endif /* __PAGETABLE_PMD_FOLDED */
6369 
6370 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6371 				     spinlock_t *lock, pte_t *ptep,
6372 				     pgprot_t pgprot, unsigned long pfn_base,
6373 				     unsigned long addr_mask, bool writable,
6374 				     bool special)
6375 {
6376 	args->lock = lock;
6377 	args->ptep = ptep;
6378 	args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6379 	args->pgprot = pgprot;
6380 	args->writable = writable;
6381 	args->special = special;
6382 }
6383 
6384 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6385 {
6386 #ifdef CONFIG_LOCKDEP
6387 	struct file *file = vma->vm_file;
6388 	struct address_space *mapping = file ? file->f_mapping : NULL;
6389 
6390 	if (mapping)
6391 		lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6392 			       lockdep_is_held(&vma->vm_mm->mmap_lock));
6393 	else
6394 		lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6395 #endif
6396 }
6397 
6398 /**
6399  * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6400  * @args: Pointer to struct @follow_pfnmap_args
6401  *
6402  * The caller needs to setup args->vma and args->address to point to the
6403  * virtual address as the target of such lookup.  On a successful return,
6404  * the results will be put into other output fields.
6405  *
6406  * After the caller finished using the fields, the caller must invoke
6407  * another follow_pfnmap_end() to proper releases the locks and resources
6408  * of such look up request.
6409  *
6410  * During the start() and end() calls, the results in @args will be valid
6411  * as proper locks will be held.  After the end() is called, all the fields
6412  * in @follow_pfnmap_args will be invalid to be further accessed.  Further
6413  * use of such information after end() may require proper synchronizations
6414  * by the caller with page table updates, otherwise it can create a
6415  * security bug.
6416  *
6417  * If the PTE maps a refcounted page, callers are responsible to protect
6418  * against invalidation with MMU notifiers; otherwise access to the PFN at
6419  * a later point in time can trigger use-after-free.
6420  *
6421  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
6422  * should be taken for read, and the mmap semaphore cannot be released
6423  * before the end() is invoked.
6424  *
6425  * This function must not be used to modify PTE content.
6426  *
6427  * Return: zero on success, negative otherwise.
6428  */
6429 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6430 {
6431 	struct vm_area_struct *vma = args->vma;
6432 	unsigned long address = args->address;
6433 	struct mm_struct *mm = vma->vm_mm;
6434 	spinlock_t *lock;
6435 	pgd_t *pgdp;
6436 	p4d_t *p4dp, p4d;
6437 	pud_t *pudp, pud;
6438 	pmd_t *pmdp, pmd;
6439 	pte_t *ptep, pte;
6440 
6441 	pfnmap_lockdep_assert(vma);
6442 
6443 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6444 		goto out;
6445 
6446 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6447 		goto out;
6448 retry:
6449 	pgdp = pgd_offset(mm, address);
6450 	if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6451 		goto out;
6452 
6453 	p4dp = p4d_offset(pgdp, address);
6454 	p4d = READ_ONCE(*p4dp);
6455 	if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6456 		goto out;
6457 
6458 	pudp = pud_offset(p4dp, address);
6459 	pud = READ_ONCE(*pudp);
6460 	if (pud_none(pud))
6461 		goto out;
6462 	if (pud_leaf(pud)) {
6463 		lock = pud_lock(mm, pudp);
6464 		if (!unlikely(pud_leaf(pud))) {
6465 			spin_unlock(lock);
6466 			goto retry;
6467 		}
6468 		pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6469 				  pud_pfn(pud), PUD_MASK, pud_write(pud),
6470 				  pud_special(pud));
6471 		return 0;
6472 	}
6473 
6474 	pmdp = pmd_offset(pudp, address);
6475 	pmd = pmdp_get_lockless(pmdp);
6476 	if (pmd_leaf(pmd)) {
6477 		lock = pmd_lock(mm, pmdp);
6478 		if (!unlikely(pmd_leaf(pmd))) {
6479 			spin_unlock(lock);
6480 			goto retry;
6481 		}
6482 		pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6483 				  pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6484 				  pmd_special(pmd));
6485 		return 0;
6486 	}
6487 
6488 	ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6489 	if (!ptep)
6490 		goto out;
6491 	pte = ptep_get(ptep);
6492 	if (!pte_present(pte))
6493 		goto unlock;
6494 	pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6495 			  pte_pfn(pte), PAGE_MASK, pte_write(pte),
6496 			  pte_special(pte));
6497 	return 0;
6498 unlock:
6499 	pte_unmap_unlock(ptep, lock);
6500 out:
6501 	return -EINVAL;
6502 }
6503 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6504 
6505 /**
6506  * follow_pfnmap_end(): End a follow_pfnmap_start() process
6507  * @args: Pointer to struct @follow_pfnmap_args
6508  *
6509  * Must be used in pair of follow_pfnmap_start().  See the start() function
6510  * above for more information.
6511  */
6512 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6513 {
6514 	if (args->lock)
6515 		spin_unlock(args->lock);
6516 	if (args->ptep)
6517 		pte_unmap(args->ptep);
6518 }
6519 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6520 
6521 #ifdef CONFIG_HAVE_IOREMAP_PROT
6522 /**
6523  * generic_access_phys - generic implementation for iomem mmap access
6524  * @vma: the vma to access
6525  * @addr: userspace address, not relative offset within @vma
6526  * @buf: buffer to read/write
6527  * @len: length of transfer
6528  * @write: set to FOLL_WRITE when writing, otherwise reading
6529  *
6530  * This is a generic implementation for &vm_operations_struct.access for an
6531  * iomem mapping. This callback is used by access_process_vm() when the @vma is
6532  * not page based.
6533  */
6534 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6535 			void *buf, int len, int write)
6536 {
6537 	resource_size_t phys_addr;
6538 	unsigned long prot = 0;
6539 	void __iomem *maddr;
6540 	int offset = offset_in_page(addr);
6541 	int ret = -EINVAL;
6542 	bool writable;
6543 	struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6544 
6545 retry:
6546 	if (follow_pfnmap_start(&args))
6547 		return -EINVAL;
6548 	prot = pgprot_val(args.pgprot);
6549 	phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6550 	writable = args.writable;
6551 	follow_pfnmap_end(&args);
6552 
6553 	if ((write & FOLL_WRITE) && !writable)
6554 		return -EINVAL;
6555 
6556 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6557 	if (!maddr)
6558 		return -ENOMEM;
6559 
6560 	if (follow_pfnmap_start(&args))
6561 		goto out_unmap;
6562 
6563 	if ((prot != pgprot_val(args.pgprot)) ||
6564 	    (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6565 	    (writable != args.writable)) {
6566 		follow_pfnmap_end(&args);
6567 		iounmap(maddr);
6568 		goto retry;
6569 	}
6570 
6571 	if (write)
6572 		memcpy_toio(maddr + offset, buf, len);
6573 	else
6574 		memcpy_fromio(buf, maddr + offset, len);
6575 	ret = len;
6576 	follow_pfnmap_end(&args);
6577 out_unmap:
6578 	iounmap(maddr);
6579 
6580 	return ret;
6581 }
6582 EXPORT_SYMBOL_GPL(generic_access_phys);
6583 #endif
6584 
6585 /*
6586  * Access another process' address space as given in mm.
6587  */
6588 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6589 			      void *buf, int len, unsigned int gup_flags)
6590 {
6591 	void *old_buf = buf;
6592 	int write = gup_flags & FOLL_WRITE;
6593 
6594 	if (mmap_read_lock_killable(mm))
6595 		return 0;
6596 
6597 	/* Untag the address before looking up the VMA */
6598 	addr = untagged_addr_remote(mm, addr);
6599 
6600 	/* Avoid triggering the temporary warning in __get_user_pages */
6601 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6602 		return 0;
6603 
6604 	/* ignore errors, just check how much was successfully transferred */
6605 	while (len) {
6606 		int bytes, offset;
6607 		void *maddr;
6608 		struct vm_area_struct *vma = NULL;
6609 		struct page *page = get_user_page_vma_remote(mm, addr,
6610 							     gup_flags, &vma);
6611 
6612 		if (IS_ERR(page)) {
6613 			/* We might need to expand the stack to access it */
6614 			vma = vma_lookup(mm, addr);
6615 			if (!vma) {
6616 				vma = expand_stack(mm, addr);
6617 
6618 				/* mmap_lock was dropped on failure */
6619 				if (!vma)
6620 					return buf - old_buf;
6621 
6622 				/* Try again if stack expansion worked */
6623 				continue;
6624 			}
6625 
6626 			/*
6627 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6628 			 * we can access using slightly different code.
6629 			 */
6630 			bytes = 0;
6631 #ifdef CONFIG_HAVE_IOREMAP_PROT
6632 			if (vma->vm_ops && vma->vm_ops->access)
6633 				bytes = vma->vm_ops->access(vma, addr, buf,
6634 							    len, write);
6635 #endif
6636 			if (bytes <= 0)
6637 				break;
6638 		} else {
6639 			bytes = len;
6640 			offset = addr & (PAGE_SIZE-1);
6641 			if (bytes > PAGE_SIZE-offset)
6642 				bytes = PAGE_SIZE-offset;
6643 
6644 			maddr = kmap_local_page(page);
6645 			if (write) {
6646 				copy_to_user_page(vma, page, addr,
6647 						  maddr + offset, buf, bytes);
6648 				set_page_dirty_lock(page);
6649 			} else {
6650 				copy_from_user_page(vma, page, addr,
6651 						    buf, maddr + offset, bytes);
6652 			}
6653 			unmap_and_put_page(page, maddr);
6654 		}
6655 		len -= bytes;
6656 		buf += bytes;
6657 		addr += bytes;
6658 	}
6659 	mmap_read_unlock(mm);
6660 
6661 	return buf - old_buf;
6662 }
6663 
6664 /**
6665  * access_remote_vm - access another process' address space
6666  * @mm:		the mm_struct of the target address space
6667  * @addr:	start address to access
6668  * @buf:	source or destination buffer
6669  * @len:	number of bytes to transfer
6670  * @gup_flags:	flags modifying lookup behaviour
6671  *
6672  * The caller must hold a reference on @mm.
6673  *
6674  * Return: number of bytes copied from source to destination.
6675  */
6676 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6677 		void *buf, int len, unsigned int gup_flags)
6678 {
6679 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6680 }
6681 
6682 /*
6683  * Access another process' address space.
6684  * Source/target buffer must be kernel space,
6685  * Do not walk the page table directly, use get_user_pages
6686  */
6687 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6688 		void *buf, int len, unsigned int gup_flags)
6689 {
6690 	struct mm_struct *mm;
6691 	int ret;
6692 
6693 	mm = get_task_mm(tsk);
6694 	if (!mm)
6695 		return 0;
6696 
6697 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6698 
6699 	mmput(mm);
6700 
6701 	return ret;
6702 }
6703 EXPORT_SYMBOL_GPL(access_process_vm);
6704 
6705 /*
6706  * Print the name of a VMA.
6707  */
6708 void print_vma_addr(char *prefix, unsigned long ip)
6709 {
6710 	struct mm_struct *mm = current->mm;
6711 	struct vm_area_struct *vma;
6712 
6713 	/*
6714 	 * we might be running from an atomic context so we cannot sleep
6715 	 */
6716 	if (!mmap_read_trylock(mm))
6717 		return;
6718 
6719 	vma = vma_lookup(mm, ip);
6720 	if (vma && vma->vm_file) {
6721 		struct file *f = vma->vm_file;
6722 		ip -= vma->vm_start;
6723 		ip += vma->vm_pgoff << PAGE_SHIFT;
6724 		printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6725 				vma->vm_start,
6726 				vma->vm_end - vma->vm_start);
6727 	}
6728 	mmap_read_unlock(mm);
6729 }
6730 
6731 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6732 void __might_fault(const char *file, int line)
6733 {
6734 	if (pagefault_disabled())
6735 		return;
6736 	__might_sleep(file, line);
6737 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6738 	if (current->mm)
6739 		might_lock_read(&current->mm->mmap_lock);
6740 #endif
6741 }
6742 EXPORT_SYMBOL(__might_fault);
6743 #endif
6744 
6745 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6746 /*
6747  * Process all subpages of the specified huge page with the specified
6748  * operation.  The target subpage will be processed last to keep its
6749  * cache lines hot.
6750  */
6751 static inline int process_huge_page(
6752 	unsigned long addr_hint, unsigned int nr_pages,
6753 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
6754 	void *arg)
6755 {
6756 	int i, n, base, l, ret;
6757 	unsigned long addr = addr_hint &
6758 		~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6759 
6760 	/* Process target subpage last to keep its cache lines hot */
6761 	might_sleep();
6762 	n = (addr_hint - addr) / PAGE_SIZE;
6763 	if (2 * n <= nr_pages) {
6764 		/* If target subpage in first half of huge page */
6765 		base = 0;
6766 		l = n;
6767 		/* Process subpages at the end of huge page */
6768 		for (i = nr_pages - 1; i >= 2 * n; i--) {
6769 			cond_resched();
6770 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6771 			if (ret)
6772 				return ret;
6773 		}
6774 	} else {
6775 		/* If target subpage in second half of huge page */
6776 		base = nr_pages - 2 * (nr_pages - n);
6777 		l = nr_pages - n;
6778 		/* Process subpages at the begin of huge page */
6779 		for (i = 0; i < base; i++) {
6780 			cond_resched();
6781 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6782 			if (ret)
6783 				return ret;
6784 		}
6785 	}
6786 	/*
6787 	 * Process remaining subpages in left-right-left-right pattern
6788 	 * towards the target subpage
6789 	 */
6790 	for (i = 0; i < l; i++) {
6791 		int left_idx = base + i;
6792 		int right_idx = base + 2 * l - 1 - i;
6793 
6794 		cond_resched();
6795 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6796 		if (ret)
6797 			return ret;
6798 		cond_resched();
6799 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6800 		if (ret)
6801 			return ret;
6802 	}
6803 	return 0;
6804 }
6805 
6806 static void clear_gigantic_page(struct folio *folio, unsigned long addr,
6807 				unsigned int nr_pages)
6808 {
6809 	int i;
6810 
6811 	might_sleep();
6812 	for (i = 0; i < nr_pages; i++) {
6813 		cond_resched();
6814 		clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6815 	}
6816 }
6817 
6818 static int clear_subpage(unsigned long addr, int idx, void *arg)
6819 {
6820 	struct folio *folio = arg;
6821 
6822 	clear_user_highpage(folio_page(folio, idx), addr);
6823 	return 0;
6824 }
6825 
6826 /**
6827  * folio_zero_user - Zero a folio which will be mapped to userspace.
6828  * @folio: The folio to zero.
6829  * @addr_hint: The address will be accessed or the base address if uncelar.
6830  */
6831 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6832 {
6833 	unsigned int nr_pages = folio_nr_pages(folio);
6834 
6835 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6836 		clear_gigantic_page(folio, addr_hint, nr_pages);
6837 	else
6838 		process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6839 }
6840 
6841 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6842 				   unsigned long addr,
6843 				   struct vm_area_struct *vma,
6844 				   unsigned int nr_pages)
6845 {
6846 	int i;
6847 	struct page *dst_page;
6848 	struct page *src_page;
6849 
6850 	for (i = 0; i < nr_pages; i++) {
6851 		dst_page = folio_page(dst, i);
6852 		src_page = folio_page(src, i);
6853 
6854 		cond_resched();
6855 		if (copy_mc_user_highpage(dst_page, src_page,
6856 					  addr + i*PAGE_SIZE, vma))
6857 			return -EHWPOISON;
6858 	}
6859 	return 0;
6860 }
6861 
6862 struct copy_subpage_arg {
6863 	struct folio *dst;
6864 	struct folio *src;
6865 	struct vm_area_struct *vma;
6866 };
6867 
6868 static int copy_subpage(unsigned long addr, int idx, void *arg)
6869 {
6870 	struct copy_subpage_arg *copy_arg = arg;
6871 	struct page *dst = folio_page(copy_arg->dst, idx);
6872 	struct page *src = folio_page(copy_arg->src, idx);
6873 
6874 	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6875 		return -EHWPOISON;
6876 	return 0;
6877 }
6878 
6879 int copy_user_large_folio(struct folio *dst, struct folio *src,
6880 			  unsigned long addr_hint, struct vm_area_struct *vma)
6881 {
6882 	unsigned int nr_pages = folio_nr_pages(dst);
6883 	struct copy_subpage_arg arg = {
6884 		.dst = dst,
6885 		.src = src,
6886 		.vma = vma,
6887 	};
6888 
6889 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6890 		return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6891 
6892 	return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6893 }
6894 
6895 long copy_folio_from_user(struct folio *dst_folio,
6896 			   const void __user *usr_src,
6897 			   bool allow_pagefault)
6898 {
6899 	void *kaddr;
6900 	unsigned long i, rc = 0;
6901 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6902 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6903 	struct page *subpage;
6904 
6905 	for (i = 0; i < nr_pages; i++) {
6906 		subpage = folio_page(dst_folio, i);
6907 		kaddr = kmap_local_page(subpage);
6908 		if (!allow_pagefault)
6909 			pagefault_disable();
6910 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6911 		if (!allow_pagefault)
6912 			pagefault_enable();
6913 		kunmap_local(kaddr);
6914 
6915 		ret_val -= (PAGE_SIZE - rc);
6916 		if (rc)
6917 			break;
6918 
6919 		flush_dcache_page(subpage);
6920 
6921 		cond_resched();
6922 	}
6923 	return ret_val;
6924 }
6925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6926 
6927 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
6928 
6929 static struct kmem_cache *page_ptl_cachep;
6930 
6931 void __init ptlock_cache_init(void)
6932 {
6933 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6934 			SLAB_PANIC, NULL);
6935 }
6936 
6937 bool ptlock_alloc(struct ptdesc *ptdesc)
6938 {
6939 	spinlock_t *ptl;
6940 
6941 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6942 	if (!ptl)
6943 		return false;
6944 	ptdesc->ptl = ptl;
6945 	return true;
6946 }
6947 
6948 void ptlock_free(struct ptdesc *ptdesc)
6949 {
6950 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6951 }
6952 #endif
6953 
6954 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6955 {
6956 	if (is_vm_hugetlb_page(vma))
6957 		hugetlb_vma_lock_read(vma);
6958 }
6959 
6960 void vma_pgtable_walk_end(struct vm_area_struct *vma)
6961 {
6962 	if (is_vm_hugetlb_page(vma))
6963 		hugetlb_vma_unlock_read(vma);
6964 }
6965