1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/pfn_t.h> 61 #include <linux/writeback.h> 62 #include <linux/memcontrol.h> 63 #include <linux/mmu_notifier.h> 64 #include <linux/swapops.h> 65 #include <linux/elf.h> 66 #include <linux/gfp.h> 67 #include <linux/migrate.h> 68 #include <linux/string.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 80 #include <trace/events/kmem.h> 81 82 #include <asm/io.h> 83 #include <asm/mmu_context.h> 84 #include <asm/pgalloc.h> 85 #include <linux/uaccess.h> 86 #include <asm/tlb.h> 87 #include <asm/tlbflush.h> 88 89 #include "pgalloc-track.h" 90 #include "internal.h" 91 #include "swap.h" 92 93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 95 #endif 96 97 #ifndef CONFIG_NUMA 98 unsigned long max_mapnr; 99 EXPORT_SYMBOL(max_mapnr); 100 101 struct page *mem_map; 102 EXPORT_SYMBOL(mem_map); 103 #endif 104 105 static vm_fault_t do_fault(struct vm_fault *vmf); 106 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 107 static bool vmf_pte_changed(struct vm_fault *vmf); 108 109 /* 110 * Return true if the original pte was a uffd-wp pte marker (so the pte was 111 * wr-protected). 112 */ 113 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 114 { 115 if (!userfaultfd_wp(vmf->vma)) 116 return false; 117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 118 return false; 119 120 return pte_marker_uffd_wp(vmf->orig_pte); 121 } 122 123 /* 124 * A number of key systems in x86 including ioremap() rely on the assumption 125 * that high_memory defines the upper bound on direct map memory, then end 126 * of ZONE_NORMAL. 127 */ 128 void *high_memory; 129 EXPORT_SYMBOL(high_memory); 130 131 /* 132 * Randomize the address space (stacks, mmaps, brk, etc.). 133 * 134 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 135 * as ancient (libc5 based) binaries can segfault. ) 136 */ 137 int randomize_va_space __read_mostly = 138 #ifdef CONFIG_COMPAT_BRK 139 1; 140 #else 141 2; 142 #endif 143 144 #ifndef arch_wants_old_prefaulted_pte 145 static inline bool arch_wants_old_prefaulted_pte(void) 146 { 147 /* 148 * Transitioning a PTE from 'old' to 'young' can be expensive on 149 * some architectures, even if it's performed in hardware. By 150 * default, "false" means prefaulted entries will be 'young'. 151 */ 152 return false; 153 } 154 #endif 155 156 static int __init disable_randmaps(char *s) 157 { 158 randomize_va_space = 0; 159 return 1; 160 } 161 __setup("norandmaps", disable_randmaps); 162 163 unsigned long zero_pfn __read_mostly; 164 EXPORT_SYMBOL(zero_pfn); 165 166 unsigned long highest_memmap_pfn __read_mostly; 167 168 /* 169 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 170 */ 171 static int __init init_zero_pfn(void) 172 { 173 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 174 return 0; 175 } 176 early_initcall(init_zero_pfn); 177 178 void mm_trace_rss_stat(struct mm_struct *mm, int member) 179 { 180 trace_rss_stat(mm, member); 181 } 182 183 /* 184 * Note: this doesn't free the actual pages themselves. That 185 * has been handled earlier when unmapping all the memory regions. 186 */ 187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 188 unsigned long addr) 189 { 190 pgtable_t token = pmd_pgtable(*pmd); 191 pmd_clear(pmd); 192 pte_free_tlb(tlb, token, addr); 193 mm_dec_nr_ptes(tlb->mm); 194 } 195 196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 197 unsigned long addr, unsigned long end, 198 unsigned long floor, unsigned long ceiling) 199 { 200 pmd_t *pmd; 201 unsigned long next; 202 unsigned long start; 203 204 start = addr; 205 pmd = pmd_offset(pud, addr); 206 do { 207 next = pmd_addr_end(addr, end); 208 if (pmd_none_or_clear_bad(pmd)) 209 continue; 210 free_pte_range(tlb, pmd, addr); 211 } while (pmd++, addr = next, addr != end); 212 213 start &= PUD_MASK; 214 if (start < floor) 215 return; 216 if (ceiling) { 217 ceiling &= PUD_MASK; 218 if (!ceiling) 219 return; 220 } 221 if (end - 1 > ceiling - 1) 222 return; 223 224 pmd = pmd_offset(pud, start); 225 pud_clear(pud); 226 pmd_free_tlb(tlb, pmd, start); 227 mm_dec_nr_pmds(tlb->mm); 228 } 229 230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 231 unsigned long addr, unsigned long end, 232 unsigned long floor, unsigned long ceiling) 233 { 234 pud_t *pud; 235 unsigned long next; 236 unsigned long start; 237 238 start = addr; 239 pud = pud_offset(p4d, addr); 240 do { 241 next = pud_addr_end(addr, end); 242 if (pud_none_or_clear_bad(pud)) 243 continue; 244 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 245 } while (pud++, addr = next, addr != end); 246 247 start &= P4D_MASK; 248 if (start < floor) 249 return; 250 if (ceiling) { 251 ceiling &= P4D_MASK; 252 if (!ceiling) 253 return; 254 } 255 if (end - 1 > ceiling - 1) 256 return; 257 258 pud = pud_offset(p4d, start); 259 p4d_clear(p4d); 260 pud_free_tlb(tlb, pud, start); 261 mm_dec_nr_puds(tlb->mm); 262 } 263 264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 265 unsigned long addr, unsigned long end, 266 unsigned long floor, unsigned long ceiling) 267 { 268 p4d_t *p4d; 269 unsigned long next; 270 unsigned long start; 271 272 start = addr; 273 p4d = p4d_offset(pgd, addr); 274 do { 275 next = p4d_addr_end(addr, end); 276 if (p4d_none_or_clear_bad(p4d)) 277 continue; 278 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 279 } while (p4d++, addr = next, addr != end); 280 281 start &= PGDIR_MASK; 282 if (start < floor) 283 return; 284 if (ceiling) { 285 ceiling &= PGDIR_MASK; 286 if (!ceiling) 287 return; 288 } 289 if (end - 1 > ceiling - 1) 290 return; 291 292 p4d = p4d_offset(pgd, start); 293 pgd_clear(pgd); 294 p4d_free_tlb(tlb, p4d, start); 295 } 296 297 /* 298 * This function frees user-level page tables of a process. 299 */ 300 void free_pgd_range(struct mmu_gather *tlb, 301 unsigned long addr, unsigned long end, 302 unsigned long floor, unsigned long ceiling) 303 { 304 pgd_t *pgd; 305 unsigned long next; 306 307 /* 308 * The next few lines have given us lots of grief... 309 * 310 * Why are we testing PMD* at this top level? Because often 311 * there will be no work to do at all, and we'd prefer not to 312 * go all the way down to the bottom just to discover that. 313 * 314 * Why all these "- 1"s? Because 0 represents both the bottom 315 * of the address space and the top of it (using -1 for the 316 * top wouldn't help much: the masks would do the wrong thing). 317 * The rule is that addr 0 and floor 0 refer to the bottom of 318 * the address space, but end 0 and ceiling 0 refer to the top 319 * Comparisons need to use "end - 1" and "ceiling - 1" (though 320 * that end 0 case should be mythical). 321 * 322 * Wherever addr is brought up or ceiling brought down, we must 323 * be careful to reject "the opposite 0" before it confuses the 324 * subsequent tests. But what about where end is brought down 325 * by PMD_SIZE below? no, end can't go down to 0 there. 326 * 327 * Whereas we round start (addr) and ceiling down, by different 328 * masks at different levels, in order to test whether a table 329 * now has no other vmas using it, so can be freed, we don't 330 * bother to round floor or end up - the tests don't need that. 331 */ 332 333 addr &= PMD_MASK; 334 if (addr < floor) { 335 addr += PMD_SIZE; 336 if (!addr) 337 return; 338 } 339 if (ceiling) { 340 ceiling &= PMD_MASK; 341 if (!ceiling) 342 return; 343 } 344 if (end - 1 > ceiling - 1) 345 end -= PMD_SIZE; 346 if (addr > end - 1) 347 return; 348 /* 349 * We add page table cache pages with PAGE_SIZE, 350 * (see pte_free_tlb()), flush the tlb if we need 351 */ 352 tlb_change_page_size(tlb, PAGE_SIZE); 353 pgd = pgd_offset(tlb->mm, addr); 354 do { 355 next = pgd_addr_end(addr, end); 356 if (pgd_none_or_clear_bad(pgd)) 357 continue; 358 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 359 } while (pgd++, addr = next, addr != end); 360 } 361 362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 363 struct vm_area_struct *vma, unsigned long floor, 364 unsigned long ceiling, bool mm_wr_locked) 365 { 366 struct unlink_vma_file_batch vb; 367 368 do { 369 unsigned long addr = vma->vm_start; 370 struct vm_area_struct *next; 371 372 /* 373 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 374 * be 0. This will underflow and is okay. 375 */ 376 next = mas_find(mas, ceiling - 1); 377 if (unlikely(xa_is_zero(next))) 378 next = NULL; 379 380 /* 381 * Hide vma from rmap and truncate_pagecache before freeing 382 * pgtables 383 */ 384 if (mm_wr_locked) 385 vma_start_write(vma); 386 unlink_anon_vmas(vma); 387 388 if (is_vm_hugetlb_page(vma)) { 389 unlink_file_vma(vma); 390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 391 floor, next ? next->vm_start : ceiling); 392 } else { 393 unlink_file_vma_batch_init(&vb); 394 unlink_file_vma_batch_add(&vb, vma); 395 396 /* 397 * Optimization: gather nearby vmas into one call down 398 */ 399 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 400 && !is_vm_hugetlb_page(next)) { 401 vma = next; 402 next = mas_find(mas, ceiling - 1); 403 if (unlikely(xa_is_zero(next))) 404 next = NULL; 405 if (mm_wr_locked) 406 vma_start_write(vma); 407 unlink_anon_vmas(vma); 408 unlink_file_vma_batch_add(&vb, vma); 409 } 410 unlink_file_vma_batch_final(&vb); 411 free_pgd_range(tlb, addr, vma->vm_end, 412 floor, next ? next->vm_start : ceiling); 413 } 414 vma = next; 415 } while (vma); 416 } 417 418 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 419 { 420 spinlock_t *ptl = pmd_lock(mm, pmd); 421 422 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 423 mm_inc_nr_ptes(mm); 424 /* 425 * Ensure all pte setup (eg. pte page lock and page clearing) are 426 * visible before the pte is made visible to other CPUs by being 427 * put into page tables. 428 * 429 * The other side of the story is the pointer chasing in the page 430 * table walking code (when walking the page table without locking; 431 * ie. most of the time). Fortunately, these data accesses consist 432 * of a chain of data-dependent loads, meaning most CPUs (alpha 433 * being the notable exception) will already guarantee loads are 434 * seen in-order. See the alpha page table accessors for the 435 * smp_rmb() barriers in page table walking code. 436 */ 437 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 438 pmd_populate(mm, pmd, *pte); 439 *pte = NULL; 440 } 441 spin_unlock(ptl); 442 } 443 444 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 445 { 446 pgtable_t new = pte_alloc_one(mm); 447 if (!new) 448 return -ENOMEM; 449 450 pmd_install(mm, pmd, &new); 451 if (new) 452 pte_free(mm, new); 453 return 0; 454 } 455 456 int __pte_alloc_kernel(pmd_t *pmd) 457 { 458 pte_t *new = pte_alloc_one_kernel(&init_mm); 459 if (!new) 460 return -ENOMEM; 461 462 spin_lock(&init_mm.page_table_lock); 463 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 464 smp_wmb(); /* See comment in pmd_install() */ 465 pmd_populate_kernel(&init_mm, pmd, new); 466 new = NULL; 467 } 468 spin_unlock(&init_mm.page_table_lock); 469 if (new) 470 pte_free_kernel(&init_mm, new); 471 return 0; 472 } 473 474 static inline void init_rss_vec(int *rss) 475 { 476 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 477 } 478 479 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 480 { 481 int i; 482 483 for (i = 0; i < NR_MM_COUNTERS; i++) 484 if (rss[i]) 485 add_mm_counter(mm, i, rss[i]); 486 } 487 488 /* 489 * This function is called to print an error when a bad pte 490 * is found. For example, we might have a PFN-mapped pte in 491 * a region that doesn't allow it. 492 * 493 * The calling function must still handle the error. 494 */ 495 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 496 pte_t pte, struct page *page) 497 { 498 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 499 p4d_t *p4d = p4d_offset(pgd, addr); 500 pud_t *pud = pud_offset(p4d, addr); 501 pmd_t *pmd = pmd_offset(pud, addr); 502 struct address_space *mapping; 503 pgoff_t index; 504 static unsigned long resume; 505 static unsigned long nr_shown; 506 static unsigned long nr_unshown; 507 508 /* 509 * Allow a burst of 60 reports, then keep quiet for that minute; 510 * or allow a steady drip of one report per second. 511 */ 512 if (nr_shown == 60) { 513 if (time_before(jiffies, resume)) { 514 nr_unshown++; 515 return; 516 } 517 if (nr_unshown) { 518 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 519 nr_unshown); 520 nr_unshown = 0; 521 } 522 nr_shown = 0; 523 } 524 if (nr_shown++ == 0) 525 resume = jiffies + 60 * HZ; 526 527 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 528 index = linear_page_index(vma, addr); 529 530 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 531 current->comm, 532 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 533 if (page) 534 dump_page(page, "bad pte"); 535 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 536 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 537 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 538 vma->vm_file, 539 vma->vm_ops ? vma->vm_ops->fault : NULL, 540 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 541 mapping ? mapping->a_ops->read_folio : NULL); 542 dump_stack(); 543 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 544 } 545 546 /* 547 * vm_normal_page -- This function gets the "struct page" associated with a pte. 548 * 549 * "Special" mappings do not wish to be associated with a "struct page" (either 550 * it doesn't exist, or it exists but they don't want to touch it). In this 551 * case, NULL is returned here. "Normal" mappings do have a struct page. 552 * 553 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 554 * pte bit, in which case this function is trivial. Secondly, an architecture 555 * may not have a spare pte bit, which requires a more complicated scheme, 556 * described below. 557 * 558 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 559 * special mapping (even if there are underlying and valid "struct pages"). 560 * COWed pages of a VM_PFNMAP are always normal. 561 * 562 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 563 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 564 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 565 * mapping will always honor the rule 566 * 567 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 568 * 569 * And for normal mappings this is false. 570 * 571 * This restricts such mappings to be a linear translation from virtual address 572 * to pfn. To get around this restriction, we allow arbitrary mappings so long 573 * as the vma is not a COW mapping; in that case, we know that all ptes are 574 * special (because none can have been COWed). 575 * 576 * 577 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 578 * 579 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 580 * page" backing, however the difference is that _all_ pages with a struct 581 * page (that is, those where pfn_valid is true) are refcounted and considered 582 * normal pages by the VM. The only exception are zeropages, which are 583 * *never* refcounted. 584 * 585 * The disadvantage is that pages are refcounted (which can be slower and 586 * simply not an option for some PFNMAP users). The advantage is that we 587 * don't have to follow the strict linearity rule of PFNMAP mappings in 588 * order to support COWable mappings. 589 * 590 */ 591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 592 pte_t pte) 593 { 594 unsigned long pfn = pte_pfn(pte); 595 596 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 597 if (likely(!pte_special(pte))) 598 goto check_pfn; 599 if (vma->vm_ops && vma->vm_ops->find_special_page) 600 return vma->vm_ops->find_special_page(vma, addr); 601 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 602 return NULL; 603 if (is_zero_pfn(pfn)) 604 return NULL; 605 if (pte_devmap(pte)) 606 /* 607 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 608 * and will have refcounts incremented on their struct pages 609 * when they are inserted into PTEs, thus they are safe to 610 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 611 * do not have refcounts. Example of legacy ZONE_DEVICE is 612 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 613 */ 614 return NULL; 615 616 print_bad_pte(vma, addr, pte, NULL); 617 return NULL; 618 } 619 620 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 621 622 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 623 if (vma->vm_flags & VM_MIXEDMAP) { 624 if (!pfn_valid(pfn)) 625 return NULL; 626 if (is_zero_pfn(pfn)) 627 return NULL; 628 goto out; 629 } else { 630 unsigned long off; 631 off = (addr - vma->vm_start) >> PAGE_SHIFT; 632 if (pfn == vma->vm_pgoff + off) 633 return NULL; 634 if (!is_cow_mapping(vma->vm_flags)) 635 return NULL; 636 } 637 } 638 639 if (is_zero_pfn(pfn)) 640 return NULL; 641 642 check_pfn: 643 if (unlikely(pfn > highest_memmap_pfn)) { 644 print_bad_pte(vma, addr, pte, NULL); 645 return NULL; 646 } 647 648 /* 649 * NOTE! We still have PageReserved() pages in the page tables. 650 * eg. VDSO mappings can cause them to exist. 651 */ 652 out: 653 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 654 return pfn_to_page(pfn); 655 } 656 657 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 658 pte_t pte) 659 { 660 struct page *page = vm_normal_page(vma, addr, pte); 661 662 if (page) 663 return page_folio(page); 664 return NULL; 665 } 666 667 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 668 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 669 pmd_t pmd) 670 { 671 unsigned long pfn = pmd_pfn(pmd); 672 673 /* Currently it's only used for huge pfnmaps */ 674 if (unlikely(pmd_special(pmd))) 675 return NULL; 676 677 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 678 if (vma->vm_flags & VM_MIXEDMAP) { 679 if (!pfn_valid(pfn)) 680 return NULL; 681 goto out; 682 } else { 683 unsigned long off; 684 off = (addr - vma->vm_start) >> PAGE_SHIFT; 685 if (pfn == vma->vm_pgoff + off) 686 return NULL; 687 if (!is_cow_mapping(vma->vm_flags)) 688 return NULL; 689 } 690 } 691 692 if (pmd_devmap(pmd)) 693 return NULL; 694 if (is_huge_zero_pmd(pmd)) 695 return NULL; 696 if (unlikely(pfn > highest_memmap_pfn)) 697 return NULL; 698 699 /* 700 * NOTE! We still have PageReserved() pages in the page tables. 701 * eg. VDSO mappings can cause them to exist. 702 */ 703 out: 704 return pfn_to_page(pfn); 705 } 706 707 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 708 unsigned long addr, pmd_t pmd) 709 { 710 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 711 712 if (page) 713 return page_folio(page); 714 return NULL; 715 } 716 #endif 717 718 static void restore_exclusive_pte(struct vm_area_struct *vma, 719 struct page *page, unsigned long address, 720 pte_t *ptep) 721 { 722 struct folio *folio = page_folio(page); 723 pte_t orig_pte; 724 pte_t pte; 725 swp_entry_t entry; 726 727 orig_pte = ptep_get(ptep); 728 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 729 if (pte_swp_soft_dirty(orig_pte)) 730 pte = pte_mksoft_dirty(pte); 731 732 entry = pte_to_swp_entry(orig_pte); 733 if (pte_swp_uffd_wp(orig_pte)) 734 pte = pte_mkuffd_wp(pte); 735 else if (is_writable_device_exclusive_entry(entry)) 736 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 737 738 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) && 739 PageAnonExclusive(page)), folio); 740 741 /* 742 * No need to take a page reference as one was already 743 * created when the swap entry was made. 744 */ 745 if (folio_test_anon(folio)) 746 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE); 747 else 748 /* 749 * Currently device exclusive access only supports anonymous 750 * memory so the entry shouldn't point to a filebacked page. 751 */ 752 WARN_ON_ONCE(1); 753 754 set_pte_at(vma->vm_mm, address, ptep, pte); 755 756 /* 757 * No need to invalidate - it was non-present before. However 758 * secondary CPUs may have mappings that need invalidating. 759 */ 760 update_mmu_cache(vma, address, ptep); 761 } 762 763 /* 764 * Tries to restore an exclusive pte if the page lock can be acquired without 765 * sleeping. 766 */ 767 static int 768 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 769 unsigned long addr) 770 { 771 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 772 struct page *page = pfn_swap_entry_to_page(entry); 773 774 if (trylock_page(page)) { 775 restore_exclusive_pte(vma, page, addr, src_pte); 776 unlock_page(page); 777 return 0; 778 } 779 780 return -EBUSY; 781 } 782 783 /* 784 * copy one vm_area from one task to the other. Assumes the page tables 785 * already present in the new task to be cleared in the whole range 786 * covered by this vma. 787 */ 788 789 static unsigned long 790 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 791 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 792 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 793 { 794 unsigned long vm_flags = dst_vma->vm_flags; 795 pte_t orig_pte = ptep_get(src_pte); 796 pte_t pte = orig_pte; 797 struct folio *folio; 798 struct page *page; 799 swp_entry_t entry = pte_to_swp_entry(orig_pte); 800 801 if (likely(!non_swap_entry(entry))) { 802 if (swap_duplicate(entry) < 0) 803 return -EIO; 804 805 /* make sure dst_mm is on swapoff's mmlist. */ 806 if (unlikely(list_empty(&dst_mm->mmlist))) { 807 spin_lock(&mmlist_lock); 808 if (list_empty(&dst_mm->mmlist)) 809 list_add(&dst_mm->mmlist, 810 &src_mm->mmlist); 811 spin_unlock(&mmlist_lock); 812 } 813 /* Mark the swap entry as shared. */ 814 if (pte_swp_exclusive(orig_pte)) { 815 pte = pte_swp_clear_exclusive(orig_pte); 816 set_pte_at(src_mm, addr, src_pte, pte); 817 } 818 rss[MM_SWAPENTS]++; 819 } else if (is_migration_entry(entry)) { 820 folio = pfn_swap_entry_folio(entry); 821 822 rss[mm_counter(folio)]++; 823 824 if (!is_readable_migration_entry(entry) && 825 is_cow_mapping(vm_flags)) { 826 /* 827 * COW mappings require pages in both parent and child 828 * to be set to read. A previously exclusive entry is 829 * now shared. 830 */ 831 entry = make_readable_migration_entry( 832 swp_offset(entry)); 833 pte = swp_entry_to_pte(entry); 834 if (pte_swp_soft_dirty(orig_pte)) 835 pte = pte_swp_mksoft_dirty(pte); 836 if (pte_swp_uffd_wp(orig_pte)) 837 pte = pte_swp_mkuffd_wp(pte); 838 set_pte_at(src_mm, addr, src_pte, pte); 839 } 840 } else if (is_device_private_entry(entry)) { 841 page = pfn_swap_entry_to_page(entry); 842 folio = page_folio(page); 843 844 /* 845 * Update rss count even for unaddressable pages, as 846 * they should treated just like normal pages in this 847 * respect. 848 * 849 * We will likely want to have some new rss counters 850 * for unaddressable pages, at some point. But for now 851 * keep things as they are. 852 */ 853 folio_get(folio); 854 rss[mm_counter(folio)]++; 855 /* Cannot fail as these pages cannot get pinned. */ 856 folio_try_dup_anon_rmap_pte(folio, page, src_vma); 857 858 /* 859 * We do not preserve soft-dirty information, because so 860 * far, checkpoint/restore is the only feature that 861 * requires that. And checkpoint/restore does not work 862 * when a device driver is involved (you cannot easily 863 * save and restore device driver state). 864 */ 865 if (is_writable_device_private_entry(entry) && 866 is_cow_mapping(vm_flags)) { 867 entry = make_readable_device_private_entry( 868 swp_offset(entry)); 869 pte = swp_entry_to_pte(entry); 870 if (pte_swp_uffd_wp(orig_pte)) 871 pte = pte_swp_mkuffd_wp(pte); 872 set_pte_at(src_mm, addr, src_pte, pte); 873 } 874 } else if (is_device_exclusive_entry(entry)) { 875 /* 876 * Make device exclusive entries present by restoring the 877 * original entry then copying as for a present pte. Device 878 * exclusive entries currently only support private writable 879 * (ie. COW) mappings. 880 */ 881 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 882 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 883 return -EBUSY; 884 return -ENOENT; 885 } else if (is_pte_marker_entry(entry)) { 886 pte_marker marker = copy_pte_marker(entry, dst_vma); 887 888 if (marker) 889 set_pte_at(dst_mm, addr, dst_pte, 890 make_pte_marker(marker)); 891 return 0; 892 } 893 if (!userfaultfd_wp(dst_vma)) 894 pte = pte_swp_clear_uffd_wp(pte); 895 set_pte_at(dst_mm, addr, dst_pte, pte); 896 return 0; 897 } 898 899 /* 900 * Copy a present and normal page. 901 * 902 * NOTE! The usual case is that this isn't required; 903 * instead, the caller can just increase the page refcount 904 * and re-use the pte the traditional way. 905 * 906 * And if we need a pre-allocated page but don't yet have 907 * one, return a negative error to let the preallocation 908 * code know so that it can do so outside the page table 909 * lock. 910 */ 911 static inline int 912 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 913 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 914 struct folio **prealloc, struct page *page) 915 { 916 struct folio *new_folio; 917 pte_t pte; 918 919 new_folio = *prealloc; 920 if (!new_folio) 921 return -EAGAIN; 922 923 /* 924 * We have a prealloc page, all good! Take it 925 * over and copy the page & arm it. 926 */ 927 928 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 929 return -EHWPOISON; 930 931 *prealloc = NULL; 932 __folio_mark_uptodate(new_folio); 933 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 934 folio_add_lru_vma(new_folio, dst_vma); 935 rss[MM_ANONPAGES]++; 936 937 /* All done, just insert the new page copy in the child */ 938 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 939 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 940 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 941 /* Uffd-wp needs to be delivered to dest pte as well */ 942 pte = pte_mkuffd_wp(pte); 943 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 944 return 0; 945 } 946 947 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 948 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 949 pte_t pte, unsigned long addr, int nr) 950 { 951 struct mm_struct *src_mm = src_vma->vm_mm; 952 953 /* If it's a COW mapping, write protect it both processes. */ 954 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 955 wrprotect_ptes(src_mm, addr, src_pte, nr); 956 pte = pte_wrprotect(pte); 957 } 958 959 /* If it's a shared mapping, mark it clean in the child. */ 960 if (src_vma->vm_flags & VM_SHARED) 961 pte = pte_mkclean(pte); 962 pte = pte_mkold(pte); 963 964 if (!userfaultfd_wp(dst_vma)) 965 pte = pte_clear_uffd_wp(pte); 966 967 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 968 } 969 970 /* 971 * Copy one present PTE, trying to batch-process subsequent PTEs that map 972 * consecutive pages of the same folio by copying them as well. 973 * 974 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 975 * Otherwise, returns the number of copied PTEs (at least 1). 976 */ 977 static inline int 978 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 979 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 980 int max_nr, int *rss, struct folio **prealloc) 981 { 982 struct page *page; 983 struct folio *folio; 984 bool any_writable; 985 fpb_t flags = 0; 986 int err, nr; 987 988 page = vm_normal_page(src_vma, addr, pte); 989 if (unlikely(!page)) 990 goto copy_pte; 991 992 folio = page_folio(page); 993 994 /* 995 * If we likely have to copy, just don't bother with batching. Make 996 * sure that the common "small folio" case is as fast as possible 997 * by keeping the batching logic separate. 998 */ 999 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1000 if (src_vma->vm_flags & VM_SHARED) 1001 flags |= FPB_IGNORE_DIRTY; 1002 if (!vma_soft_dirty_enabled(src_vma)) 1003 flags |= FPB_IGNORE_SOFT_DIRTY; 1004 1005 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 1006 &any_writable, NULL, NULL); 1007 folio_ref_add(folio, nr); 1008 if (folio_test_anon(folio)) { 1009 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1010 nr, src_vma))) { 1011 folio_ref_sub(folio, nr); 1012 return -EAGAIN; 1013 } 1014 rss[MM_ANONPAGES] += nr; 1015 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1016 } else { 1017 folio_dup_file_rmap_ptes(folio, page, nr); 1018 rss[mm_counter_file(folio)] += nr; 1019 } 1020 if (any_writable) 1021 pte = pte_mkwrite(pte, src_vma); 1022 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1023 addr, nr); 1024 return nr; 1025 } 1026 1027 folio_get(folio); 1028 if (folio_test_anon(folio)) { 1029 /* 1030 * If this page may have been pinned by the parent process, 1031 * copy the page immediately for the child so that we'll always 1032 * guarantee the pinned page won't be randomly replaced in the 1033 * future. 1034 */ 1035 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) { 1036 /* Page may be pinned, we have to copy. */ 1037 folio_put(folio); 1038 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1039 addr, rss, prealloc, page); 1040 return err ? err : 1; 1041 } 1042 rss[MM_ANONPAGES]++; 1043 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1044 } else { 1045 folio_dup_file_rmap_pte(folio, page); 1046 rss[mm_counter_file(folio)]++; 1047 } 1048 1049 copy_pte: 1050 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1051 return 1; 1052 } 1053 1054 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1055 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1056 { 1057 struct folio *new_folio; 1058 1059 if (need_zero) 1060 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1061 else 1062 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1063 1064 if (!new_folio) 1065 return NULL; 1066 1067 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1068 folio_put(new_folio); 1069 return NULL; 1070 } 1071 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1072 1073 return new_folio; 1074 } 1075 1076 static int 1077 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1078 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1079 unsigned long end) 1080 { 1081 struct mm_struct *dst_mm = dst_vma->vm_mm; 1082 struct mm_struct *src_mm = src_vma->vm_mm; 1083 pte_t *orig_src_pte, *orig_dst_pte; 1084 pte_t *src_pte, *dst_pte; 1085 pmd_t dummy_pmdval; 1086 pte_t ptent; 1087 spinlock_t *src_ptl, *dst_ptl; 1088 int progress, max_nr, ret = 0; 1089 int rss[NR_MM_COUNTERS]; 1090 swp_entry_t entry = (swp_entry_t){0}; 1091 struct folio *prealloc = NULL; 1092 int nr; 1093 1094 again: 1095 progress = 0; 1096 init_rss_vec(rss); 1097 1098 /* 1099 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1100 * error handling here, assume that exclusive mmap_lock on dst and src 1101 * protects anon from unexpected THP transitions; with shmem and file 1102 * protected by mmap_lock-less collapse skipping areas with anon_vma 1103 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1104 * can remove such assumptions later, but this is good enough for now. 1105 */ 1106 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1107 if (!dst_pte) { 1108 ret = -ENOMEM; 1109 goto out; 1110 } 1111 1112 /* 1113 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1114 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1115 * the PTE page is stable, and there is no need to get pmdval and do 1116 * pmd_same() check. 1117 */ 1118 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1119 &src_ptl); 1120 if (!src_pte) { 1121 pte_unmap_unlock(dst_pte, dst_ptl); 1122 /* ret == 0 */ 1123 goto out; 1124 } 1125 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1126 orig_src_pte = src_pte; 1127 orig_dst_pte = dst_pte; 1128 arch_enter_lazy_mmu_mode(); 1129 1130 do { 1131 nr = 1; 1132 1133 /* 1134 * We are holding two locks at this point - either of them 1135 * could generate latencies in another task on another CPU. 1136 */ 1137 if (progress >= 32) { 1138 progress = 0; 1139 if (need_resched() || 1140 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1141 break; 1142 } 1143 ptent = ptep_get(src_pte); 1144 if (pte_none(ptent)) { 1145 progress++; 1146 continue; 1147 } 1148 if (unlikely(!pte_present(ptent))) { 1149 ret = copy_nonpresent_pte(dst_mm, src_mm, 1150 dst_pte, src_pte, 1151 dst_vma, src_vma, 1152 addr, rss); 1153 if (ret == -EIO) { 1154 entry = pte_to_swp_entry(ptep_get(src_pte)); 1155 break; 1156 } else if (ret == -EBUSY) { 1157 break; 1158 } else if (!ret) { 1159 progress += 8; 1160 continue; 1161 } 1162 ptent = ptep_get(src_pte); 1163 VM_WARN_ON_ONCE(!pte_present(ptent)); 1164 1165 /* 1166 * Device exclusive entry restored, continue by copying 1167 * the now present pte. 1168 */ 1169 WARN_ON_ONCE(ret != -ENOENT); 1170 } 1171 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1172 max_nr = (end - addr) / PAGE_SIZE; 1173 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1174 ptent, addr, max_nr, rss, &prealloc); 1175 /* 1176 * If we need a pre-allocated page for this pte, drop the 1177 * locks, allocate, and try again. 1178 * If copy failed due to hwpoison in source page, break out. 1179 */ 1180 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1181 break; 1182 if (unlikely(prealloc)) { 1183 /* 1184 * pre-alloc page cannot be reused by next time so as 1185 * to strictly follow mempolicy (e.g., alloc_page_vma() 1186 * will allocate page according to address). This 1187 * could only happen if one pinned pte changed. 1188 */ 1189 folio_put(prealloc); 1190 prealloc = NULL; 1191 } 1192 nr = ret; 1193 progress += 8 * nr; 1194 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1195 addr != end); 1196 1197 arch_leave_lazy_mmu_mode(); 1198 pte_unmap_unlock(orig_src_pte, src_ptl); 1199 add_mm_rss_vec(dst_mm, rss); 1200 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1201 cond_resched(); 1202 1203 if (ret == -EIO) { 1204 VM_WARN_ON_ONCE(!entry.val); 1205 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1206 ret = -ENOMEM; 1207 goto out; 1208 } 1209 entry.val = 0; 1210 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1211 goto out; 1212 } else if (ret == -EAGAIN) { 1213 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1214 if (!prealloc) 1215 return -ENOMEM; 1216 } else if (ret < 0) { 1217 VM_WARN_ON_ONCE(1); 1218 } 1219 1220 /* We've captured and resolved the error. Reset, try again. */ 1221 ret = 0; 1222 1223 if (addr != end) 1224 goto again; 1225 out: 1226 if (unlikely(prealloc)) 1227 folio_put(prealloc); 1228 return ret; 1229 } 1230 1231 static inline int 1232 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1233 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1234 unsigned long end) 1235 { 1236 struct mm_struct *dst_mm = dst_vma->vm_mm; 1237 struct mm_struct *src_mm = src_vma->vm_mm; 1238 pmd_t *src_pmd, *dst_pmd; 1239 unsigned long next; 1240 1241 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1242 if (!dst_pmd) 1243 return -ENOMEM; 1244 src_pmd = pmd_offset(src_pud, addr); 1245 do { 1246 next = pmd_addr_end(addr, end); 1247 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1248 || pmd_devmap(*src_pmd)) { 1249 int err; 1250 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1251 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1252 addr, dst_vma, src_vma); 1253 if (err == -ENOMEM) 1254 return -ENOMEM; 1255 if (!err) 1256 continue; 1257 /* fall through */ 1258 } 1259 if (pmd_none_or_clear_bad(src_pmd)) 1260 continue; 1261 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1262 addr, next)) 1263 return -ENOMEM; 1264 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1265 return 0; 1266 } 1267 1268 static inline int 1269 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1270 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1271 unsigned long end) 1272 { 1273 struct mm_struct *dst_mm = dst_vma->vm_mm; 1274 struct mm_struct *src_mm = src_vma->vm_mm; 1275 pud_t *src_pud, *dst_pud; 1276 unsigned long next; 1277 1278 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1279 if (!dst_pud) 1280 return -ENOMEM; 1281 src_pud = pud_offset(src_p4d, addr); 1282 do { 1283 next = pud_addr_end(addr, end); 1284 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1285 int err; 1286 1287 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1288 err = copy_huge_pud(dst_mm, src_mm, 1289 dst_pud, src_pud, addr, src_vma); 1290 if (err == -ENOMEM) 1291 return -ENOMEM; 1292 if (!err) 1293 continue; 1294 /* fall through */ 1295 } 1296 if (pud_none_or_clear_bad(src_pud)) 1297 continue; 1298 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1299 addr, next)) 1300 return -ENOMEM; 1301 } while (dst_pud++, src_pud++, addr = next, addr != end); 1302 return 0; 1303 } 1304 1305 static inline int 1306 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1307 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1308 unsigned long end) 1309 { 1310 struct mm_struct *dst_mm = dst_vma->vm_mm; 1311 p4d_t *src_p4d, *dst_p4d; 1312 unsigned long next; 1313 1314 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1315 if (!dst_p4d) 1316 return -ENOMEM; 1317 src_p4d = p4d_offset(src_pgd, addr); 1318 do { 1319 next = p4d_addr_end(addr, end); 1320 if (p4d_none_or_clear_bad(src_p4d)) 1321 continue; 1322 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1323 addr, next)) 1324 return -ENOMEM; 1325 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1326 return 0; 1327 } 1328 1329 /* 1330 * Return true if the vma needs to copy the pgtable during this fork(). Return 1331 * false when we can speed up fork() by allowing lazy page faults later until 1332 * when the child accesses the memory range. 1333 */ 1334 static bool 1335 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1336 { 1337 /* 1338 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1339 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1340 * contains uffd-wp protection information, that's something we can't 1341 * retrieve from page cache, and skip copying will lose those info. 1342 */ 1343 if (userfaultfd_wp(dst_vma)) 1344 return true; 1345 1346 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1347 return true; 1348 1349 if (src_vma->anon_vma) 1350 return true; 1351 1352 /* 1353 * Don't copy ptes where a page fault will fill them correctly. Fork 1354 * becomes much lighter when there are big shared or private readonly 1355 * mappings. The tradeoff is that copy_page_range is more efficient 1356 * than faulting. 1357 */ 1358 return false; 1359 } 1360 1361 int 1362 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1363 { 1364 pgd_t *src_pgd, *dst_pgd; 1365 unsigned long next; 1366 unsigned long addr = src_vma->vm_start; 1367 unsigned long end = src_vma->vm_end; 1368 struct mm_struct *dst_mm = dst_vma->vm_mm; 1369 struct mm_struct *src_mm = src_vma->vm_mm; 1370 struct mmu_notifier_range range; 1371 bool is_cow; 1372 int ret; 1373 1374 if (!vma_needs_copy(dst_vma, src_vma)) 1375 return 0; 1376 1377 if (is_vm_hugetlb_page(src_vma)) 1378 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1379 1380 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1381 /* 1382 * We do not free on error cases below as remove_vma 1383 * gets called on error from higher level routine 1384 */ 1385 ret = track_pfn_copy(src_vma); 1386 if (ret) 1387 return ret; 1388 } 1389 1390 /* 1391 * We need to invalidate the secondary MMU mappings only when 1392 * there could be a permission downgrade on the ptes of the 1393 * parent mm. And a permission downgrade will only happen if 1394 * is_cow_mapping() returns true. 1395 */ 1396 is_cow = is_cow_mapping(src_vma->vm_flags); 1397 1398 if (is_cow) { 1399 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1400 0, src_mm, addr, end); 1401 mmu_notifier_invalidate_range_start(&range); 1402 /* 1403 * Disabling preemption is not needed for the write side, as 1404 * the read side doesn't spin, but goes to the mmap_lock. 1405 * 1406 * Use the raw variant of the seqcount_t write API to avoid 1407 * lockdep complaining about preemptibility. 1408 */ 1409 vma_assert_write_locked(src_vma); 1410 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1411 } 1412 1413 ret = 0; 1414 dst_pgd = pgd_offset(dst_mm, addr); 1415 src_pgd = pgd_offset(src_mm, addr); 1416 do { 1417 next = pgd_addr_end(addr, end); 1418 if (pgd_none_or_clear_bad(src_pgd)) 1419 continue; 1420 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1421 addr, next))) { 1422 untrack_pfn_clear(dst_vma); 1423 ret = -ENOMEM; 1424 break; 1425 } 1426 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1427 1428 if (is_cow) { 1429 raw_write_seqcount_end(&src_mm->write_protect_seq); 1430 mmu_notifier_invalidate_range_end(&range); 1431 } 1432 return ret; 1433 } 1434 1435 /* Whether we should zap all COWed (private) pages too */ 1436 static inline bool should_zap_cows(struct zap_details *details) 1437 { 1438 /* By default, zap all pages */ 1439 if (!details) 1440 return true; 1441 1442 /* Or, we zap COWed pages only if the caller wants to */ 1443 return details->even_cows; 1444 } 1445 1446 /* Decides whether we should zap this folio with the folio pointer specified */ 1447 static inline bool should_zap_folio(struct zap_details *details, 1448 struct folio *folio) 1449 { 1450 /* If we can make a decision without *folio.. */ 1451 if (should_zap_cows(details)) 1452 return true; 1453 1454 /* Otherwise we should only zap non-anon folios */ 1455 return !folio_test_anon(folio); 1456 } 1457 1458 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1459 { 1460 if (!details) 1461 return false; 1462 1463 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1464 } 1465 1466 /* 1467 * This function makes sure that we'll replace the none pte with an uffd-wp 1468 * swap special pte marker when necessary. Must be with the pgtable lock held. 1469 */ 1470 static inline void 1471 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1472 unsigned long addr, pte_t *pte, int nr, 1473 struct zap_details *details, pte_t pteval) 1474 { 1475 /* Zap on anonymous always means dropping everything */ 1476 if (vma_is_anonymous(vma)) 1477 return; 1478 1479 if (zap_drop_file_uffd_wp(details)) 1480 return; 1481 1482 for (;;) { 1483 /* the PFN in the PTE is irrelevant. */ 1484 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1485 if (--nr == 0) 1486 break; 1487 pte++; 1488 addr += PAGE_SIZE; 1489 } 1490 } 1491 1492 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1493 struct vm_area_struct *vma, struct folio *folio, 1494 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1495 unsigned long addr, struct zap_details *details, int *rss, 1496 bool *force_flush, bool *force_break) 1497 { 1498 struct mm_struct *mm = tlb->mm; 1499 bool delay_rmap = false; 1500 1501 if (!folio_test_anon(folio)) { 1502 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1503 if (pte_dirty(ptent)) { 1504 folio_mark_dirty(folio); 1505 if (tlb_delay_rmap(tlb)) { 1506 delay_rmap = true; 1507 *force_flush = true; 1508 } 1509 } 1510 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1511 folio_mark_accessed(folio); 1512 rss[mm_counter(folio)] -= nr; 1513 } else { 1514 /* We don't need up-to-date accessed/dirty bits. */ 1515 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1516 rss[MM_ANONPAGES] -= nr; 1517 } 1518 /* Checking a single PTE in a batch is sufficient. */ 1519 arch_check_zapped_pte(vma, ptent); 1520 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1521 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1522 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, 1523 ptent); 1524 1525 if (!delay_rmap) { 1526 folio_remove_rmap_ptes(folio, page, nr, vma); 1527 1528 if (unlikely(folio_mapcount(folio) < 0)) 1529 print_bad_pte(vma, addr, ptent, page); 1530 } 1531 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1532 *force_flush = true; 1533 *force_break = true; 1534 } 1535 } 1536 1537 /* 1538 * Zap or skip at least one present PTE, trying to batch-process subsequent 1539 * PTEs that map consecutive pages of the same folio. 1540 * 1541 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1542 */ 1543 static inline int zap_present_ptes(struct mmu_gather *tlb, 1544 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1545 unsigned int max_nr, unsigned long addr, 1546 struct zap_details *details, int *rss, bool *force_flush, 1547 bool *force_break) 1548 { 1549 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1550 struct mm_struct *mm = tlb->mm; 1551 struct folio *folio; 1552 struct page *page; 1553 int nr; 1554 1555 page = vm_normal_page(vma, addr, ptent); 1556 if (!page) { 1557 /* We don't need up-to-date accessed/dirty bits. */ 1558 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1559 arch_check_zapped_pte(vma, ptent); 1560 tlb_remove_tlb_entry(tlb, pte, addr); 1561 if (userfaultfd_pte_wp(vma, ptent)) 1562 zap_install_uffd_wp_if_needed(vma, addr, pte, 1, 1563 details, ptent); 1564 ksm_might_unmap_zero_page(mm, ptent); 1565 return 1; 1566 } 1567 1568 folio = page_folio(page); 1569 if (unlikely(!should_zap_folio(details, folio))) 1570 return 1; 1571 1572 /* 1573 * Make sure that the common "small folio" case is as fast as possible 1574 * by keeping the batching logic separate. 1575 */ 1576 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1577 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1578 NULL, NULL, NULL); 1579 1580 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1581 addr, details, rss, force_flush, 1582 force_break); 1583 return nr; 1584 } 1585 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1586 details, rss, force_flush, force_break); 1587 return 1; 1588 } 1589 1590 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1591 struct vm_area_struct *vma, pmd_t *pmd, 1592 unsigned long addr, unsigned long end, 1593 struct zap_details *details) 1594 { 1595 bool force_flush = false, force_break = false; 1596 struct mm_struct *mm = tlb->mm; 1597 int rss[NR_MM_COUNTERS]; 1598 spinlock_t *ptl; 1599 pte_t *start_pte; 1600 pte_t *pte; 1601 swp_entry_t entry; 1602 int nr; 1603 1604 tlb_change_page_size(tlb, PAGE_SIZE); 1605 init_rss_vec(rss); 1606 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1607 if (!pte) 1608 return addr; 1609 1610 flush_tlb_batched_pending(mm); 1611 arch_enter_lazy_mmu_mode(); 1612 do { 1613 pte_t ptent = ptep_get(pte); 1614 struct folio *folio; 1615 struct page *page; 1616 int max_nr; 1617 1618 nr = 1; 1619 if (pte_none(ptent)) 1620 continue; 1621 1622 if (need_resched()) 1623 break; 1624 1625 if (pte_present(ptent)) { 1626 max_nr = (end - addr) / PAGE_SIZE; 1627 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr, 1628 addr, details, rss, &force_flush, 1629 &force_break); 1630 if (unlikely(force_break)) { 1631 addr += nr * PAGE_SIZE; 1632 break; 1633 } 1634 continue; 1635 } 1636 1637 entry = pte_to_swp_entry(ptent); 1638 if (is_device_private_entry(entry) || 1639 is_device_exclusive_entry(entry)) { 1640 page = pfn_swap_entry_to_page(entry); 1641 folio = page_folio(page); 1642 if (unlikely(!should_zap_folio(details, folio))) 1643 continue; 1644 /* 1645 * Both device private/exclusive mappings should only 1646 * work with anonymous page so far, so we don't need to 1647 * consider uffd-wp bit when zap. For more information, 1648 * see zap_install_uffd_wp_if_needed(). 1649 */ 1650 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1651 rss[mm_counter(folio)]--; 1652 if (is_device_private_entry(entry)) 1653 folio_remove_rmap_pte(folio, page, vma); 1654 folio_put(folio); 1655 } else if (!non_swap_entry(entry)) { 1656 max_nr = (end - addr) / PAGE_SIZE; 1657 nr = swap_pte_batch(pte, max_nr, ptent); 1658 /* Genuine swap entries, hence a private anon pages */ 1659 if (!should_zap_cows(details)) 1660 continue; 1661 rss[MM_SWAPENTS] -= nr; 1662 free_swap_and_cache_nr(entry, nr); 1663 } else if (is_migration_entry(entry)) { 1664 folio = pfn_swap_entry_folio(entry); 1665 if (!should_zap_folio(details, folio)) 1666 continue; 1667 rss[mm_counter(folio)]--; 1668 } else if (pte_marker_entry_uffd_wp(entry)) { 1669 /* 1670 * For anon: always drop the marker; for file: only 1671 * drop the marker if explicitly requested. 1672 */ 1673 if (!vma_is_anonymous(vma) && 1674 !zap_drop_file_uffd_wp(details)) 1675 continue; 1676 } else if (is_hwpoison_entry(entry) || 1677 is_poisoned_swp_entry(entry)) { 1678 if (!should_zap_cows(details)) 1679 continue; 1680 } else { 1681 /* We should have covered all the swap entry types */ 1682 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1683 WARN_ON_ONCE(1); 1684 } 1685 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1686 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1687 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1688 1689 add_mm_rss_vec(mm, rss); 1690 arch_leave_lazy_mmu_mode(); 1691 1692 /* Do the actual TLB flush before dropping ptl */ 1693 if (force_flush) { 1694 tlb_flush_mmu_tlbonly(tlb); 1695 tlb_flush_rmaps(tlb, vma); 1696 } 1697 pte_unmap_unlock(start_pte, ptl); 1698 1699 /* 1700 * If we forced a TLB flush (either due to running out of 1701 * batch buffers or because we needed to flush dirty TLB 1702 * entries before releasing the ptl), free the batched 1703 * memory too. Come back again if we didn't do everything. 1704 */ 1705 if (force_flush) 1706 tlb_flush_mmu(tlb); 1707 1708 return addr; 1709 } 1710 1711 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1712 struct vm_area_struct *vma, pud_t *pud, 1713 unsigned long addr, unsigned long end, 1714 struct zap_details *details) 1715 { 1716 pmd_t *pmd; 1717 unsigned long next; 1718 1719 pmd = pmd_offset(pud, addr); 1720 do { 1721 next = pmd_addr_end(addr, end); 1722 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1723 if (next - addr != HPAGE_PMD_SIZE) 1724 __split_huge_pmd(vma, pmd, addr, false, NULL); 1725 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1726 addr = next; 1727 continue; 1728 } 1729 /* fall through */ 1730 } else if (details && details->single_folio && 1731 folio_test_pmd_mappable(details->single_folio) && 1732 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1733 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1734 /* 1735 * Take and drop THP pmd lock so that we cannot return 1736 * prematurely, while zap_huge_pmd() has cleared *pmd, 1737 * but not yet decremented compound_mapcount(). 1738 */ 1739 spin_unlock(ptl); 1740 } 1741 if (pmd_none(*pmd)) { 1742 addr = next; 1743 continue; 1744 } 1745 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1746 if (addr != next) 1747 pmd--; 1748 } while (pmd++, cond_resched(), addr != end); 1749 1750 return addr; 1751 } 1752 1753 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1754 struct vm_area_struct *vma, p4d_t *p4d, 1755 unsigned long addr, unsigned long end, 1756 struct zap_details *details) 1757 { 1758 pud_t *pud; 1759 unsigned long next; 1760 1761 pud = pud_offset(p4d, addr); 1762 do { 1763 next = pud_addr_end(addr, end); 1764 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1765 if (next - addr != HPAGE_PUD_SIZE) { 1766 mmap_assert_locked(tlb->mm); 1767 split_huge_pud(vma, pud, addr); 1768 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1769 goto next; 1770 /* fall through */ 1771 } 1772 if (pud_none_or_clear_bad(pud)) 1773 continue; 1774 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1775 next: 1776 cond_resched(); 1777 } while (pud++, addr = next, addr != end); 1778 1779 return addr; 1780 } 1781 1782 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1783 struct vm_area_struct *vma, pgd_t *pgd, 1784 unsigned long addr, unsigned long end, 1785 struct zap_details *details) 1786 { 1787 p4d_t *p4d; 1788 unsigned long next; 1789 1790 p4d = p4d_offset(pgd, addr); 1791 do { 1792 next = p4d_addr_end(addr, end); 1793 if (p4d_none_or_clear_bad(p4d)) 1794 continue; 1795 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1796 } while (p4d++, addr = next, addr != end); 1797 1798 return addr; 1799 } 1800 1801 void unmap_page_range(struct mmu_gather *tlb, 1802 struct vm_area_struct *vma, 1803 unsigned long addr, unsigned long end, 1804 struct zap_details *details) 1805 { 1806 pgd_t *pgd; 1807 unsigned long next; 1808 1809 BUG_ON(addr >= end); 1810 tlb_start_vma(tlb, vma); 1811 pgd = pgd_offset(vma->vm_mm, addr); 1812 do { 1813 next = pgd_addr_end(addr, end); 1814 if (pgd_none_or_clear_bad(pgd)) 1815 continue; 1816 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1817 } while (pgd++, addr = next, addr != end); 1818 tlb_end_vma(tlb, vma); 1819 } 1820 1821 1822 static void unmap_single_vma(struct mmu_gather *tlb, 1823 struct vm_area_struct *vma, unsigned long start_addr, 1824 unsigned long end_addr, 1825 struct zap_details *details, bool mm_wr_locked) 1826 { 1827 unsigned long start = max(vma->vm_start, start_addr); 1828 unsigned long end; 1829 1830 if (start >= vma->vm_end) 1831 return; 1832 end = min(vma->vm_end, end_addr); 1833 if (end <= vma->vm_start) 1834 return; 1835 1836 if (vma->vm_file) 1837 uprobe_munmap(vma, start, end); 1838 1839 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1840 untrack_pfn(vma, 0, 0, mm_wr_locked); 1841 1842 if (start != end) { 1843 if (unlikely(is_vm_hugetlb_page(vma))) { 1844 /* 1845 * It is undesirable to test vma->vm_file as it 1846 * should be non-null for valid hugetlb area. 1847 * However, vm_file will be NULL in the error 1848 * cleanup path of mmap_region. When 1849 * hugetlbfs ->mmap method fails, 1850 * mmap_region() nullifies vma->vm_file 1851 * before calling this function to clean up. 1852 * Since no pte has actually been setup, it is 1853 * safe to do nothing in this case. 1854 */ 1855 if (vma->vm_file) { 1856 zap_flags_t zap_flags = details ? 1857 details->zap_flags : 0; 1858 __unmap_hugepage_range(tlb, vma, start, end, 1859 NULL, zap_flags); 1860 } 1861 } else 1862 unmap_page_range(tlb, vma, start, end, details); 1863 } 1864 } 1865 1866 /** 1867 * unmap_vmas - unmap a range of memory covered by a list of vma's 1868 * @tlb: address of the caller's struct mmu_gather 1869 * @mas: the maple state 1870 * @vma: the starting vma 1871 * @start_addr: virtual address at which to start unmapping 1872 * @end_addr: virtual address at which to end unmapping 1873 * @tree_end: The maximum index to check 1874 * @mm_wr_locked: lock flag 1875 * 1876 * Unmap all pages in the vma list. 1877 * 1878 * Only addresses between `start' and `end' will be unmapped. 1879 * 1880 * The VMA list must be sorted in ascending virtual address order. 1881 * 1882 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1883 * range after unmap_vmas() returns. So the only responsibility here is to 1884 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1885 * drops the lock and schedules. 1886 */ 1887 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1888 struct vm_area_struct *vma, unsigned long start_addr, 1889 unsigned long end_addr, unsigned long tree_end, 1890 bool mm_wr_locked) 1891 { 1892 struct mmu_notifier_range range; 1893 struct zap_details details = { 1894 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1895 /* Careful - we need to zap private pages too! */ 1896 .even_cows = true, 1897 }; 1898 1899 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1900 start_addr, end_addr); 1901 mmu_notifier_invalidate_range_start(&range); 1902 do { 1903 unsigned long start = start_addr; 1904 unsigned long end = end_addr; 1905 hugetlb_zap_begin(vma, &start, &end); 1906 unmap_single_vma(tlb, vma, start, end, &details, 1907 mm_wr_locked); 1908 hugetlb_zap_end(vma, &details); 1909 vma = mas_find(mas, tree_end - 1); 1910 } while (vma && likely(!xa_is_zero(vma))); 1911 mmu_notifier_invalidate_range_end(&range); 1912 } 1913 1914 /** 1915 * zap_page_range_single - remove user pages in a given range 1916 * @vma: vm_area_struct holding the applicable pages 1917 * @address: starting address of pages to zap 1918 * @size: number of bytes to zap 1919 * @details: details of shared cache invalidation 1920 * 1921 * The range must fit into one VMA. 1922 */ 1923 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1924 unsigned long size, struct zap_details *details) 1925 { 1926 const unsigned long end = address + size; 1927 struct mmu_notifier_range range; 1928 struct mmu_gather tlb; 1929 1930 lru_add_drain(); 1931 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1932 address, end); 1933 hugetlb_zap_begin(vma, &range.start, &range.end); 1934 tlb_gather_mmu(&tlb, vma->vm_mm); 1935 update_hiwater_rss(vma->vm_mm); 1936 mmu_notifier_invalidate_range_start(&range); 1937 /* 1938 * unmap 'address-end' not 'range.start-range.end' as range 1939 * could have been expanded for hugetlb pmd sharing. 1940 */ 1941 unmap_single_vma(&tlb, vma, address, end, details, false); 1942 mmu_notifier_invalidate_range_end(&range); 1943 tlb_finish_mmu(&tlb); 1944 hugetlb_zap_end(vma, details); 1945 } 1946 1947 /** 1948 * zap_vma_ptes - remove ptes mapping the vma 1949 * @vma: vm_area_struct holding ptes to be zapped 1950 * @address: starting address of pages to zap 1951 * @size: number of bytes to zap 1952 * 1953 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1954 * 1955 * The entire address range must be fully contained within the vma. 1956 * 1957 */ 1958 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1959 unsigned long size) 1960 { 1961 if (!range_in_vma(vma, address, address + size) || 1962 !(vma->vm_flags & VM_PFNMAP)) 1963 return; 1964 1965 zap_page_range_single(vma, address, size, NULL); 1966 } 1967 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1968 1969 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1970 { 1971 pgd_t *pgd; 1972 p4d_t *p4d; 1973 pud_t *pud; 1974 pmd_t *pmd; 1975 1976 pgd = pgd_offset(mm, addr); 1977 p4d = p4d_alloc(mm, pgd, addr); 1978 if (!p4d) 1979 return NULL; 1980 pud = pud_alloc(mm, p4d, addr); 1981 if (!pud) 1982 return NULL; 1983 pmd = pmd_alloc(mm, pud, addr); 1984 if (!pmd) 1985 return NULL; 1986 1987 VM_BUG_ON(pmd_trans_huge(*pmd)); 1988 return pmd; 1989 } 1990 1991 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1992 spinlock_t **ptl) 1993 { 1994 pmd_t *pmd = walk_to_pmd(mm, addr); 1995 1996 if (!pmd) 1997 return NULL; 1998 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1999 } 2000 2001 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2002 { 2003 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2004 /* 2005 * Whoever wants to forbid the zeropage after some zeropages 2006 * might already have been mapped has to scan the page tables and 2007 * bail out on any zeropages. Zeropages in COW mappings can 2008 * be unshared using FAULT_FLAG_UNSHARE faults. 2009 */ 2010 if (mm_forbids_zeropage(vma->vm_mm)) 2011 return false; 2012 /* zeropages in COW mappings are common and unproblematic. */ 2013 if (is_cow_mapping(vma->vm_flags)) 2014 return true; 2015 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2016 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2017 return true; 2018 /* 2019 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2020 * find the shared zeropage and longterm-pin it, which would 2021 * be problematic as soon as the zeropage gets replaced by a different 2022 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2023 * now differ to what GUP looked up. FSDAX is incompatible to 2024 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2025 * check_vma_flags). 2026 */ 2027 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2028 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2029 } 2030 2031 static int validate_page_before_insert(struct vm_area_struct *vma, 2032 struct page *page) 2033 { 2034 struct folio *folio = page_folio(page); 2035 2036 if (!folio_ref_count(folio)) 2037 return -EINVAL; 2038 if (unlikely(is_zero_folio(folio))) { 2039 if (!vm_mixed_zeropage_allowed(vma)) 2040 return -EINVAL; 2041 return 0; 2042 } 2043 if (folio_test_anon(folio) || folio_test_slab(folio) || 2044 page_has_type(page)) 2045 return -EINVAL; 2046 flush_dcache_folio(folio); 2047 return 0; 2048 } 2049 2050 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2051 unsigned long addr, struct page *page, pgprot_t prot) 2052 { 2053 struct folio *folio = page_folio(page); 2054 pte_t pteval; 2055 2056 if (!pte_none(ptep_get(pte))) 2057 return -EBUSY; 2058 /* Ok, finally just insert the thing.. */ 2059 pteval = mk_pte(page, prot); 2060 if (unlikely(is_zero_folio(folio))) { 2061 pteval = pte_mkspecial(pteval); 2062 } else { 2063 folio_get(folio); 2064 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2065 folio_add_file_rmap_pte(folio, page, vma); 2066 } 2067 set_pte_at(vma->vm_mm, addr, pte, pteval); 2068 return 0; 2069 } 2070 2071 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2072 struct page *page, pgprot_t prot) 2073 { 2074 int retval; 2075 pte_t *pte; 2076 spinlock_t *ptl; 2077 2078 retval = validate_page_before_insert(vma, page); 2079 if (retval) 2080 goto out; 2081 retval = -ENOMEM; 2082 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2083 if (!pte) 2084 goto out; 2085 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 2086 pte_unmap_unlock(pte, ptl); 2087 out: 2088 return retval; 2089 } 2090 2091 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2092 unsigned long addr, struct page *page, pgprot_t prot) 2093 { 2094 int err; 2095 2096 err = validate_page_before_insert(vma, page); 2097 if (err) 2098 return err; 2099 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 2100 } 2101 2102 /* insert_pages() amortizes the cost of spinlock operations 2103 * when inserting pages in a loop. 2104 */ 2105 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2106 struct page **pages, unsigned long *num, pgprot_t prot) 2107 { 2108 pmd_t *pmd = NULL; 2109 pte_t *start_pte, *pte; 2110 spinlock_t *pte_lock; 2111 struct mm_struct *const mm = vma->vm_mm; 2112 unsigned long curr_page_idx = 0; 2113 unsigned long remaining_pages_total = *num; 2114 unsigned long pages_to_write_in_pmd; 2115 int ret; 2116 more: 2117 ret = -EFAULT; 2118 pmd = walk_to_pmd(mm, addr); 2119 if (!pmd) 2120 goto out; 2121 2122 pages_to_write_in_pmd = min_t(unsigned long, 2123 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2124 2125 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2126 ret = -ENOMEM; 2127 if (pte_alloc(mm, pmd)) 2128 goto out; 2129 2130 while (pages_to_write_in_pmd) { 2131 int pte_idx = 0; 2132 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2133 2134 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2135 if (!start_pte) { 2136 ret = -EFAULT; 2137 goto out; 2138 } 2139 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2140 int err = insert_page_in_batch_locked(vma, pte, 2141 addr, pages[curr_page_idx], prot); 2142 if (unlikely(err)) { 2143 pte_unmap_unlock(start_pte, pte_lock); 2144 ret = err; 2145 remaining_pages_total -= pte_idx; 2146 goto out; 2147 } 2148 addr += PAGE_SIZE; 2149 ++curr_page_idx; 2150 } 2151 pte_unmap_unlock(start_pte, pte_lock); 2152 pages_to_write_in_pmd -= batch_size; 2153 remaining_pages_total -= batch_size; 2154 } 2155 if (remaining_pages_total) 2156 goto more; 2157 ret = 0; 2158 out: 2159 *num = remaining_pages_total; 2160 return ret; 2161 } 2162 2163 /** 2164 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2165 * @vma: user vma to map to 2166 * @addr: target start user address of these pages 2167 * @pages: source kernel pages 2168 * @num: in: number of pages to map. out: number of pages that were *not* 2169 * mapped. (0 means all pages were successfully mapped). 2170 * 2171 * Preferred over vm_insert_page() when inserting multiple pages. 2172 * 2173 * In case of error, we may have mapped a subset of the provided 2174 * pages. It is the caller's responsibility to account for this case. 2175 * 2176 * The same restrictions apply as in vm_insert_page(). 2177 */ 2178 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2179 struct page **pages, unsigned long *num) 2180 { 2181 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2182 2183 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2184 return -EFAULT; 2185 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2186 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2187 BUG_ON(vma->vm_flags & VM_PFNMAP); 2188 vm_flags_set(vma, VM_MIXEDMAP); 2189 } 2190 /* Defer page refcount checking till we're about to map that page. */ 2191 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2192 } 2193 EXPORT_SYMBOL(vm_insert_pages); 2194 2195 /** 2196 * vm_insert_page - insert single page into user vma 2197 * @vma: user vma to map to 2198 * @addr: target user address of this page 2199 * @page: source kernel page 2200 * 2201 * This allows drivers to insert individual pages they've allocated 2202 * into a user vma. The zeropage is supported in some VMAs, 2203 * see vm_mixed_zeropage_allowed(). 2204 * 2205 * The page has to be a nice clean _individual_ kernel allocation. 2206 * If you allocate a compound page, you need to have marked it as 2207 * such (__GFP_COMP), or manually just split the page up yourself 2208 * (see split_page()). 2209 * 2210 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2211 * took an arbitrary page protection parameter. This doesn't allow 2212 * that. Your vma protection will have to be set up correctly, which 2213 * means that if you want a shared writable mapping, you'd better 2214 * ask for a shared writable mapping! 2215 * 2216 * The page does not need to be reserved. 2217 * 2218 * Usually this function is called from f_op->mmap() handler 2219 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2220 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2221 * function from other places, for example from page-fault handler. 2222 * 2223 * Return: %0 on success, negative error code otherwise. 2224 */ 2225 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2226 struct page *page) 2227 { 2228 if (addr < vma->vm_start || addr >= vma->vm_end) 2229 return -EFAULT; 2230 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2231 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2232 BUG_ON(vma->vm_flags & VM_PFNMAP); 2233 vm_flags_set(vma, VM_MIXEDMAP); 2234 } 2235 return insert_page(vma, addr, page, vma->vm_page_prot); 2236 } 2237 EXPORT_SYMBOL(vm_insert_page); 2238 2239 /* 2240 * __vm_map_pages - maps range of kernel pages into user vma 2241 * @vma: user vma to map to 2242 * @pages: pointer to array of source kernel pages 2243 * @num: number of pages in page array 2244 * @offset: user's requested vm_pgoff 2245 * 2246 * This allows drivers to map range of kernel pages into a user vma. 2247 * The zeropage is supported in some VMAs, see 2248 * vm_mixed_zeropage_allowed(). 2249 * 2250 * Return: 0 on success and error code otherwise. 2251 */ 2252 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2253 unsigned long num, unsigned long offset) 2254 { 2255 unsigned long count = vma_pages(vma); 2256 unsigned long uaddr = vma->vm_start; 2257 int ret, i; 2258 2259 /* Fail if the user requested offset is beyond the end of the object */ 2260 if (offset >= num) 2261 return -ENXIO; 2262 2263 /* Fail if the user requested size exceeds available object size */ 2264 if (count > num - offset) 2265 return -ENXIO; 2266 2267 for (i = 0; i < count; i++) { 2268 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2269 if (ret < 0) 2270 return ret; 2271 uaddr += PAGE_SIZE; 2272 } 2273 2274 return 0; 2275 } 2276 2277 /** 2278 * vm_map_pages - maps range of kernel pages starts with non zero offset 2279 * @vma: user vma to map to 2280 * @pages: pointer to array of source kernel pages 2281 * @num: number of pages in page array 2282 * 2283 * Maps an object consisting of @num pages, catering for the user's 2284 * requested vm_pgoff 2285 * 2286 * If we fail to insert any page into the vma, the function will return 2287 * immediately leaving any previously inserted pages present. Callers 2288 * from the mmap handler may immediately return the error as their caller 2289 * will destroy the vma, removing any successfully inserted pages. Other 2290 * callers should make their own arrangements for calling unmap_region(). 2291 * 2292 * Context: Process context. Called by mmap handlers. 2293 * Return: 0 on success and error code otherwise. 2294 */ 2295 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2296 unsigned long num) 2297 { 2298 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2299 } 2300 EXPORT_SYMBOL(vm_map_pages); 2301 2302 /** 2303 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2304 * @vma: user vma to map to 2305 * @pages: pointer to array of source kernel pages 2306 * @num: number of pages in page array 2307 * 2308 * Similar to vm_map_pages(), except that it explicitly sets the offset 2309 * to 0. This function is intended for the drivers that did not consider 2310 * vm_pgoff. 2311 * 2312 * Context: Process context. Called by mmap handlers. 2313 * Return: 0 on success and error code otherwise. 2314 */ 2315 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2316 unsigned long num) 2317 { 2318 return __vm_map_pages(vma, pages, num, 0); 2319 } 2320 EXPORT_SYMBOL(vm_map_pages_zero); 2321 2322 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2323 pfn_t pfn, pgprot_t prot, bool mkwrite) 2324 { 2325 struct mm_struct *mm = vma->vm_mm; 2326 pte_t *pte, entry; 2327 spinlock_t *ptl; 2328 2329 pte = get_locked_pte(mm, addr, &ptl); 2330 if (!pte) 2331 return VM_FAULT_OOM; 2332 entry = ptep_get(pte); 2333 if (!pte_none(entry)) { 2334 if (mkwrite) { 2335 /* 2336 * For read faults on private mappings the PFN passed 2337 * in may not match the PFN we have mapped if the 2338 * mapped PFN is a writeable COW page. In the mkwrite 2339 * case we are creating a writable PTE for a shared 2340 * mapping and we expect the PFNs to match. If they 2341 * don't match, we are likely racing with block 2342 * allocation and mapping invalidation so just skip the 2343 * update. 2344 */ 2345 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2346 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2347 goto out_unlock; 2348 } 2349 entry = pte_mkyoung(entry); 2350 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2351 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2352 update_mmu_cache(vma, addr, pte); 2353 } 2354 goto out_unlock; 2355 } 2356 2357 /* Ok, finally just insert the thing.. */ 2358 if (pfn_t_devmap(pfn)) 2359 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2360 else 2361 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2362 2363 if (mkwrite) { 2364 entry = pte_mkyoung(entry); 2365 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2366 } 2367 2368 set_pte_at(mm, addr, pte, entry); 2369 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2370 2371 out_unlock: 2372 pte_unmap_unlock(pte, ptl); 2373 return VM_FAULT_NOPAGE; 2374 } 2375 2376 /** 2377 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2378 * @vma: user vma to map to 2379 * @addr: target user address of this page 2380 * @pfn: source kernel pfn 2381 * @pgprot: pgprot flags for the inserted page 2382 * 2383 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2384 * to override pgprot on a per-page basis. 2385 * 2386 * This only makes sense for IO mappings, and it makes no sense for 2387 * COW mappings. In general, using multiple vmas is preferable; 2388 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2389 * impractical. 2390 * 2391 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2392 * caching- and encryption bits different than those of @vma->vm_page_prot, 2393 * because the caching- or encryption mode may not be known at mmap() time. 2394 * 2395 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2396 * to set caching and encryption bits for those vmas (except for COW pages). 2397 * This is ensured by core vm only modifying these page table entries using 2398 * functions that don't touch caching- or encryption bits, using pte_modify() 2399 * if needed. (See for example mprotect()). 2400 * 2401 * Also when new page-table entries are created, this is only done using the 2402 * fault() callback, and never using the value of vma->vm_page_prot, 2403 * except for page-table entries that point to anonymous pages as the result 2404 * of COW. 2405 * 2406 * Context: Process context. May allocate using %GFP_KERNEL. 2407 * Return: vm_fault_t value. 2408 */ 2409 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2410 unsigned long pfn, pgprot_t pgprot) 2411 { 2412 /* 2413 * Technically, architectures with pte_special can avoid all these 2414 * restrictions (same for remap_pfn_range). However we would like 2415 * consistency in testing and feature parity among all, so we should 2416 * try to keep these invariants in place for everybody. 2417 */ 2418 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2419 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2420 (VM_PFNMAP|VM_MIXEDMAP)); 2421 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2422 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2423 2424 if (addr < vma->vm_start || addr >= vma->vm_end) 2425 return VM_FAULT_SIGBUS; 2426 2427 if (!pfn_modify_allowed(pfn, pgprot)) 2428 return VM_FAULT_SIGBUS; 2429 2430 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2431 2432 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2433 false); 2434 } 2435 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2436 2437 /** 2438 * vmf_insert_pfn - insert single pfn into user vma 2439 * @vma: user vma to map to 2440 * @addr: target user address of this page 2441 * @pfn: source kernel pfn 2442 * 2443 * Similar to vm_insert_page, this allows drivers to insert individual pages 2444 * they've allocated into a user vma. Same comments apply. 2445 * 2446 * This function should only be called from a vm_ops->fault handler, and 2447 * in that case the handler should return the result of this function. 2448 * 2449 * vma cannot be a COW mapping. 2450 * 2451 * As this is called only for pages that do not currently exist, we 2452 * do not need to flush old virtual caches or the TLB. 2453 * 2454 * Context: Process context. May allocate using %GFP_KERNEL. 2455 * Return: vm_fault_t value. 2456 */ 2457 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2458 unsigned long pfn) 2459 { 2460 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2461 } 2462 EXPORT_SYMBOL(vmf_insert_pfn); 2463 2464 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite) 2465 { 2466 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) && 2467 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2468 return false; 2469 /* these checks mirror the abort conditions in vm_normal_page */ 2470 if (vma->vm_flags & VM_MIXEDMAP) 2471 return true; 2472 if (pfn_t_devmap(pfn)) 2473 return true; 2474 if (pfn_t_special(pfn)) 2475 return true; 2476 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2477 return true; 2478 return false; 2479 } 2480 2481 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2482 unsigned long addr, pfn_t pfn, bool mkwrite) 2483 { 2484 pgprot_t pgprot = vma->vm_page_prot; 2485 int err; 2486 2487 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2488 return VM_FAULT_SIGBUS; 2489 2490 if (addr < vma->vm_start || addr >= vma->vm_end) 2491 return VM_FAULT_SIGBUS; 2492 2493 track_pfn_insert(vma, &pgprot, pfn); 2494 2495 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2496 return VM_FAULT_SIGBUS; 2497 2498 /* 2499 * If we don't have pte special, then we have to use the pfn_valid() 2500 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2501 * refcount the page if pfn_valid is true (hence insert_page rather 2502 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2503 * without pte special, it would there be refcounted as a normal page. 2504 */ 2505 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2506 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2507 struct page *page; 2508 2509 /* 2510 * At this point we are committed to insert_page() 2511 * regardless of whether the caller specified flags that 2512 * result in pfn_t_has_page() == false. 2513 */ 2514 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2515 err = insert_page(vma, addr, page, pgprot); 2516 } else { 2517 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2518 } 2519 2520 if (err == -ENOMEM) 2521 return VM_FAULT_OOM; 2522 if (err < 0 && err != -EBUSY) 2523 return VM_FAULT_SIGBUS; 2524 2525 return VM_FAULT_NOPAGE; 2526 } 2527 2528 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2529 pfn_t pfn) 2530 { 2531 return __vm_insert_mixed(vma, addr, pfn, false); 2532 } 2533 EXPORT_SYMBOL(vmf_insert_mixed); 2534 2535 /* 2536 * If the insertion of PTE failed because someone else already added a 2537 * different entry in the mean time, we treat that as success as we assume 2538 * the same entry was actually inserted. 2539 */ 2540 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2541 unsigned long addr, pfn_t pfn) 2542 { 2543 return __vm_insert_mixed(vma, addr, pfn, true); 2544 } 2545 2546 /* 2547 * maps a range of physical memory into the requested pages. the old 2548 * mappings are removed. any references to nonexistent pages results 2549 * in null mappings (currently treated as "copy-on-access") 2550 */ 2551 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2552 unsigned long addr, unsigned long end, 2553 unsigned long pfn, pgprot_t prot) 2554 { 2555 pte_t *pte, *mapped_pte; 2556 spinlock_t *ptl; 2557 int err = 0; 2558 2559 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2560 if (!pte) 2561 return -ENOMEM; 2562 arch_enter_lazy_mmu_mode(); 2563 do { 2564 BUG_ON(!pte_none(ptep_get(pte))); 2565 if (!pfn_modify_allowed(pfn, prot)) { 2566 err = -EACCES; 2567 break; 2568 } 2569 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2570 pfn++; 2571 } while (pte++, addr += PAGE_SIZE, addr != end); 2572 arch_leave_lazy_mmu_mode(); 2573 pte_unmap_unlock(mapped_pte, ptl); 2574 return err; 2575 } 2576 2577 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2578 unsigned long addr, unsigned long end, 2579 unsigned long pfn, pgprot_t prot) 2580 { 2581 pmd_t *pmd; 2582 unsigned long next; 2583 int err; 2584 2585 pfn -= addr >> PAGE_SHIFT; 2586 pmd = pmd_alloc(mm, pud, addr); 2587 if (!pmd) 2588 return -ENOMEM; 2589 VM_BUG_ON(pmd_trans_huge(*pmd)); 2590 do { 2591 next = pmd_addr_end(addr, end); 2592 err = remap_pte_range(mm, pmd, addr, next, 2593 pfn + (addr >> PAGE_SHIFT), prot); 2594 if (err) 2595 return err; 2596 } while (pmd++, addr = next, addr != end); 2597 return 0; 2598 } 2599 2600 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2601 unsigned long addr, unsigned long end, 2602 unsigned long pfn, pgprot_t prot) 2603 { 2604 pud_t *pud; 2605 unsigned long next; 2606 int err; 2607 2608 pfn -= addr >> PAGE_SHIFT; 2609 pud = pud_alloc(mm, p4d, addr); 2610 if (!pud) 2611 return -ENOMEM; 2612 do { 2613 next = pud_addr_end(addr, end); 2614 err = remap_pmd_range(mm, pud, addr, next, 2615 pfn + (addr >> PAGE_SHIFT), prot); 2616 if (err) 2617 return err; 2618 } while (pud++, addr = next, addr != end); 2619 return 0; 2620 } 2621 2622 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2623 unsigned long addr, unsigned long end, 2624 unsigned long pfn, pgprot_t prot) 2625 { 2626 p4d_t *p4d; 2627 unsigned long next; 2628 int err; 2629 2630 pfn -= addr >> PAGE_SHIFT; 2631 p4d = p4d_alloc(mm, pgd, addr); 2632 if (!p4d) 2633 return -ENOMEM; 2634 do { 2635 next = p4d_addr_end(addr, end); 2636 err = remap_pud_range(mm, p4d, addr, next, 2637 pfn + (addr >> PAGE_SHIFT), prot); 2638 if (err) 2639 return err; 2640 } while (p4d++, addr = next, addr != end); 2641 return 0; 2642 } 2643 2644 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2645 unsigned long pfn, unsigned long size, pgprot_t prot) 2646 { 2647 pgd_t *pgd; 2648 unsigned long next; 2649 unsigned long end = addr + PAGE_ALIGN(size); 2650 struct mm_struct *mm = vma->vm_mm; 2651 int err; 2652 2653 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2654 return -EINVAL; 2655 2656 /* 2657 * Physically remapped pages are special. Tell the 2658 * rest of the world about it: 2659 * VM_IO tells people not to look at these pages 2660 * (accesses can have side effects). 2661 * VM_PFNMAP tells the core MM that the base pages are just 2662 * raw PFN mappings, and do not have a "struct page" associated 2663 * with them. 2664 * VM_DONTEXPAND 2665 * Disable vma merging and expanding with mremap(). 2666 * VM_DONTDUMP 2667 * Omit vma from core dump, even when VM_IO turned off. 2668 * 2669 * There's a horrible special case to handle copy-on-write 2670 * behaviour that some programs depend on. We mark the "original" 2671 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2672 * See vm_normal_page() for details. 2673 */ 2674 if (is_cow_mapping(vma->vm_flags)) { 2675 if (addr != vma->vm_start || end != vma->vm_end) 2676 return -EINVAL; 2677 vma->vm_pgoff = pfn; 2678 } 2679 2680 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2681 2682 BUG_ON(addr >= end); 2683 pfn -= addr >> PAGE_SHIFT; 2684 pgd = pgd_offset(mm, addr); 2685 flush_cache_range(vma, addr, end); 2686 do { 2687 next = pgd_addr_end(addr, end); 2688 err = remap_p4d_range(mm, pgd, addr, next, 2689 pfn + (addr >> PAGE_SHIFT), prot); 2690 if (err) 2691 return err; 2692 } while (pgd++, addr = next, addr != end); 2693 2694 return 0; 2695 } 2696 2697 /* 2698 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2699 * must have pre-validated the caching bits of the pgprot_t. 2700 */ 2701 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2702 unsigned long pfn, unsigned long size, pgprot_t prot) 2703 { 2704 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2705 2706 if (!error) 2707 return 0; 2708 2709 /* 2710 * A partial pfn range mapping is dangerous: it does not 2711 * maintain page reference counts, and callers may free 2712 * pages due to the error. So zap it early. 2713 */ 2714 zap_page_range_single(vma, addr, size, NULL); 2715 return error; 2716 } 2717 2718 /** 2719 * remap_pfn_range - remap kernel memory to userspace 2720 * @vma: user vma to map to 2721 * @addr: target page aligned user address to start at 2722 * @pfn: page frame number of kernel physical memory address 2723 * @size: size of mapping area 2724 * @prot: page protection flags for this mapping 2725 * 2726 * Note: this is only safe if the mm semaphore is held when called. 2727 * 2728 * Return: %0 on success, negative error code otherwise. 2729 */ 2730 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2731 unsigned long pfn, unsigned long size, pgprot_t prot) 2732 { 2733 int err; 2734 2735 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2736 if (err) 2737 return -EINVAL; 2738 2739 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2740 if (err) 2741 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2742 return err; 2743 } 2744 EXPORT_SYMBOL(remap_pfn_range); 2745 2746 /** 2747 * vm_iomap_memory - remap memory to userspace 2748 * @vma: user vma to map to 2749 * @start: start of the physical memory to be mapped 2750 * @len: size of area 2751 * 2752 * This is a simplified io_remap_pfn_range() for common driver use. The 2753 * driver just needs to give us the physical memory range to be mapped, 2754 * we'll figure out the rest from the vma information. 2755 * 2756 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2757 * whatever write-combining details or similar. 2758 * 2759 * Return: %0 on success, negative error code otherwise. 2760 */ 2761 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2762 { 2763 unsigned long vm_len, pfn, pages; 2764 2765 /* Check that the physical memory area passed in looks valid */ 2766 if (start + len < start) 2767 return -EINVAL; 2768 /* 2769 * You *really* shouldn't map things that aren't page-aligned, 2770 * but we've historically allowed it because IO memory might 2771 * just have smaller alignment. 2772 */ 2773 len += start & ~PAGE_MASK; 2774 pfn = start >> PAGE_SHIFT; 2775 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2776 if (pfn + pages < pfn) 2777 return -EINVAL; 2778 2779 /* We start the mapping 'vm_pgoff' pages into the area */ 2780 if (vma->vm_pgoff > pages) 2781 return -EINVAL; 2782 pfn += vma->vm_pgoff; 2783 pages -= vma->vm_pgoff; 2784 2785 /* Can we fit all of the mapping? */ 2786 vm_len = vma->vm_end - vma->vm_start; 2787 if (vm_len >> PAGE_SHIFT > pages) 2788 return -EINVAL; 2789 2790 /* Ok, let it rip */ 2791 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2792 } 2793 EXPORT_SYMBOL(vm_iomap_memory); 2794 2795 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2796 unsigned long addr, unsigned long end, 2797 pte_fn_t fn, void *data, bool create, 2798 pgtbl_mod_mask *mask) 2799 { 2800 pte_t *pte, *mapped_pte; 2801 int err = 0; 2802 spinlock_t *ptl; 2803 2804 if (create) { 2805 mapped_pte = pte = (mm == &init_mm) ? 2806 pte_alloc_kernel_track(pmd, addr, mask) : 2807 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2808 if (!pte) 2809 return -ENOMEM; 2810 } else { 2811 mapped_pte = pte = (mm == &init_mm) ? 2812 pte_offset_kernel(pmd, addr) : 2813 pte_offset_map_lock(mm, pmd, addr, &ptl); 2814 if (!pte) 2815 return -EINVAL; 2816 } 2817 2818 arch_enter_lazy_mmu_mode(); 2819 2820 if (fn) { 2821 do { 2822 if (create || !pte_none(ptep_get(pte))) { 2823 err = fn(pte++, addr, data); 2824 if (err) 2825 break; 2826 } 2827 } while (addr += PAGE_SIZE, addr != end); 2828 } 2829 *mask |= PGTBL_PTE_MODIFIED; 2830 2831 arch_leave_lazy_mmu_mode(); 2832 2833 if (mm != &init_mm) 2834 pte_unmap_unlock(mapped_pte, ptl); 2835 return err; 2836 } 2837 2838 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2839 unsigned long addr, unsigned long end, 2840 pte_fn_t fn, void *data, bool create, 2841 pgtbl_mod_mask *mask) 2842 { 2843 pmd_t *pmd; 2844 unsigned long next; 2845 int err = 0; 2846 2847 BUG_ON(pud_leaf(*pud)); 2848 2849 if (create) { 2850 pmd = pmd_alloc_track(mm, pud, addr, mask); 2851 if (!pmd) 2852 return -ENOMEM; 2853 } else { 2854 pmd = pmd_offset(pud, addr); 2855 } 2856 do { 2857 next = pmd_addr_end(addr, end); 2858 if (pmd_none(*pmd) && !create) 2859 continue; 2860 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2861 return -EINVAL; 2862 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2863 if (!create) 2864 continue; 2865 pmd_clear_bad(pmd); 2866 } 2867 err = apply_to_pte_range(mm, pmd, addr, next, 2868 fn, data, create, mask); 2869 if (err) 2870 break; 2871 } while (pmd++, addr = next, addr != end); 2872 2873 return err; 2874 } 2875 2876 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2877 unsigned long addr, unsigned long end, 2878 pte_fn_t fn, void *data, bool create, 2879 pgtbl_mod_mask *mask) 2880 { 2881 pud_t *pud; 2882 unsigned long next; 2883 int err = 0; 2884 2885 if (create) { 2886 pud = pud_alloc_track(mm, p4d, addr, mask); 2887 if (!pud) 2888 return -ENOMEM; 2889 } else { 2890 pud = pud_offset(p4d, addr); 2891 } 2892 do { 2893 next = pud_addr_end(addr, end); 2894 if (pud_none(*pud) && !create) 2895 continue; 2896 if (WARN_ON_ONCE(pud_leaf(*pud))) 2897 return -EINVAL; 2898 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2899 if (!create) 2900 continue; 2901 pud_clear_bad(pud); 2902 } 2903 err = apply_to_pmd_range(mm, pud, addr, next, 2904 fn, data, create, mask); 2905 if (err) 2906 break; 2907 } while (pud++, addr = next, addr != end); 2908 2909 return err; 2910 } 2911 2912 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2913 unsigned long addr, unsigned long end, 2914 pte_fn_t fn, void *data, bool create, 2915 pgtbl_mod_mask *mask) 2916 { 2917 p4d_t *p4d; 2918 unsigned long next; 2919 int err = 0; 2920 2921 if (create) { 2922 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2923 if (!p4d) 2924 return -ENOMEM; 2925 } else { 2926 p4d = p4d_offset(pgd, addr); 2927 } 2928 do { 2929 next = p4d_addr_end(addr, end); 2930 if (p4d_none(*p4d) && !create) 2931 continue; 2932 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2933 return -EINVAL; 2934 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2935 if (!create) 2936 continue; 2937 p4d_clear_bad(p4d); 2938 } 2939 err = apply_to_pud_range(mm, p4d, addr, next, 2940 fn, data, create, mask); 2941 if (err) 2942 break; 2943 } while (p4d++, addr = next, addr != end); 2944 2945 return err; 2946 } 2947 2948 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2949 unsigned long size, pte_fn_t fn, 2950 void *data, bool create) 2951 { 2952 pgd_t *pgd; 2953 unsigned long start = addr, next; 2954 unsigned long end = addr + size; 2955 pgtbl_mod_mask mask = 0; 2956 int err = 0; 2957 2958 if (WARN_ON(addr >= end)) 2959 return -EINVAL; 2960 2961 pgd = pgd_offset(mm, addr); 2962 do { 2963 next = pgd_addr_end(addr, end); 2964 if (pgd_none(*pgd) && !create) 2965 continue; 2966 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2967 return -EINVAL; 2968 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2969 if (!create) 2970 continue; 2971 pgd_clear_bad(pgd); 2972 } 2973 err = apply_to_p4d_range(mm, pgd, addr, next, 2974 fn, data, create, &mask); 2975 if (err) 2976 break; 2977 } while (pgd++, addr = next, addr != end); 2978 2979 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2980 arch_sync_kernel_mappings(start, start + size); 2981 2982 return err; 2983 } 2984 2985 /* 2986 * Scan a region of virtual memory, filling in page tables as necessary 2987 * and calling a provided function on each leaf page table. 2988 */ 2989 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2990 unsigned long size, pte_fn_t fn, void *data) 2991 { 2992 return __apply_to_page_range(mm, addr, size, fn, data, true); 2993 } 2994 EXPORT_SYMBOL_GPL(apply_to_page_range); 2995 2996 /* 2997 * Scan a region of virtual memory, calling a provided function on 2998 * each leaf page table where it exists. 2999 * 3000 * Unlike apply_to_page_range, this does _not_ fill in page tables 3001 * where they are absent. 3002 */ 3003 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3004 unsigned long size, pte_fn_t fn, void *data) 3005 { 3006 return __apply_to_page_range(mm, addr, size, fn, data, false); 3007 } 3008 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 3009 3010 /* 3011 * handle_pte_fault chooses page fault handler according to an entry which was 3012 * read non-atomically. Before making any commitment, on those architectures 3013 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3014 * parts, do_swap_page must check under lock before unmapping the pte and 3015 * proceeding (but do_wp_page is only called after already making such a check; 3016 * and do_anonymous_page can safely check later on). 3017 */ 3018 static inline int pte_unmap_same(struct vm_fault *vmf) 3019 { 3020 int same = 1; 3021 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3022 if (sizeof(pte_t) > sizeof(unsigned long)) { 3023 spin_lock(vmf->ptl); 3024 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3025 spin_unlock(vmf->ptl); 3026 } 3027 #endif 3028 pte_unmap(vmf->pte); 3029 vmf->pte = NULL; 3030 return same; 3031 } 3032 3033 /* 3034 * Return: 3035 * 0: copied succeeded 3036 * -EHWPOISON: copy failed due to hwpoison in source page 3037 * -EAGAIN: copied failed (some other reason) 3038 */ 3039 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3040 struct vm_fault *vmf) 3041 { 3042 int ret; 3043 void *kaddr; 3044 void __user *uaddr; 3045 struct vm_area_struct *vma = vmf->vma; 3046 struct mm_struct *mm = vma->vm_mm; 3047 unsigned long addr = vmf->address; 3048 3049 if (likely(src)) { 3050 if (copy_mc_user_highpage(dst, src, addr, vma)) 3051 return -EHWPOISON; 3052 return 0; 3053 } 3054 3055 /* 3056 * If the source page was a PFN mapping, we don't have 3057 * a "struct page" for it. We do a best-effort copy by 3058 * just copying from the original user address. If that 3059 * fails, we just zero-fill it. Live with it. 3060 */ 3061 kaddr = kmap_local_page(dst); 3062 pagefault_disable(); 3063 uaddr = (void __user *)(addr & PAGE_MASK); 3064 3065 /* 3066 * On architectures with software "accessed" bits, we would 3067 * take a double page fault, so mark it accessed here. 3068 */ 3069 vmf->pte = NULL; 3070 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3071 pte_t entry; 3072 3073 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3074 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3075 /* 3076 * Other thread has already handled the fault 3077 * and update local tlb only 3078 */ 3079 if (vmf->pte) 3080 update_mmu_tlb(vma, addr, vmf->pte); 3081 ret = -EAGAIN; 3082 goto pte_unlock; 3083 } 3084 3085 entry = pte_mkyoung(vmf->orig_pte); 3086 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3087 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3088 } 3089 3090 /* 3091 * This really shouldn't fail, because the page is there 3092 * in the page tables. But it might just be unreadable, 3093 * in which case we just give up and fill the result with 3094 * zeroes. 3095 */ 3096 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3097 if (vmf->pte) 3098 goto warn; 3099 3100 /* Re-validate under PTL if the page is still mapped */ 3101 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3102 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3103 /* The PTE changed under us, update local tlb */ 3104 if (vmf->pte) 3105 update_mmu_tlb(vma, addr, vmf->pte); 3106 ret = -EAGAIN; 3107 goto pte_unlock; 3108 } 3109 3110 /* 3111 * The same page can be mapped back since last copy attempt. 3112 * Try to copy again under PTL. 3113 */ 3114 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3115 /* 3116 * Give a warn in case there can be some obscure 3117 * use-case 3118 */ 3119 warn: 3120 WARN_ON_ONCE(1); 3121 clear_page(kaddr); 3122 } 3123 } 3124 3125 ret = 0; 3126 3127 pte_unlock: 3128 if (vmf->pte) 3129 pte_unmap_unlock(vmf->pte, vmf->ptl); 3130 pagefault_enable(); 3131 kunmap_local(kaddr); 3132 flush_dcache_page(dst); 3133 3134 return ret; 3135 } 3136 3137 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3138 { 3139 struct file *vm_file = vma->vm_file; 3140 3141 if (vm_file) 3142 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3143 3144 /* 3145 * Special mappings (e.g. VDSO) do not have any file so fake 3146 * a default GFP_KERNEL for them. 3147 */ 3148 return GFP_KERNEL; 3149 } 3150 3151 /* 3152 * Notify the address space that the page is about to become writable so that 3153 * it can prohibit this or wait for the page to get into an appropriate state. 3154 * 3155 * We do this without the lock held, so that it can sleep if it needs to. 3156 */ 3157 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3158 { 3159 vm_fault_t ret; 3160 unsigned int old_flags = vmf->flags; 3161 3162 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3163 3164 if (vmf->vma->vm_file && 3165 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3166 return VM_FAULT_SIGBUS; 3167 3168 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3169 /* Restore original flags so that caller is not surprised */ 3170 vmf->flags = old_flags; 3171 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3172 return ret; 3173 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3174 folio_lock(folio); 3175 if (!folio->mapping) { 3176 folio_unlock(folio); 3177 return 0; /* retry */ 3178 } 3179 ret |= VM_FAULT_LOCKED; 3180 } else 3181 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3182 return ret; 3183 } 3184 3185 /* 3186 * Handle dirtying of a page in shared file mapping on a write fault. 3187 * 3188 * The function expects the page to be locked and unlocks it. 3189 */ 3190 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3191 { 3192 struct vm_area_struct *vma = vmf->vma; 3193 struct address_space *mapping; 3194 struct folio *folio = page_folio(vmf->page); 3195 bool dirtied; 3196 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3197 3198 dirtied = folio_mark_dirty(folio); 3199 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3200 /* 3201 * Take a local copy of the address_space - folio.mapping may be zeroed 3202 * by truncate after folio_unlock(). The address_space itself remains 3203 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3204 * release semantics to prevent the compiler from undoing this copying. 3205 */ 3206 mapping = folio_raw_mapping(folio); 3207 folio_unlock(folio); 3208 3209 if (!page_mkwrite) 3210 file_update_time(vma->vm_file); 3211 3212 /* 3213 * Throttle page dirtying rate down to writeback speed. 3214 * 3215 * mapping may be NULL here because some device drivers do not 3216 * set page.mapping but still dirty their pages 3217 * 3218 * Drop the mmap_lock before waiting on IO, if we can. The file 3219 * is pinning the mapping, as per above. 3220 */ 3221 if ((dirtied || page_mkwrite) && mapping) { 3222 struct file *fpin; 3223 3224 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3225 balance_dirty_pages_ratelimited(mapping); 3226 if (fpin) { 3227 fput(fpin); 3228 return VM_FAULT_COMPLETED; 3229 } 3230 } 3231 3232 return 0; 3233 } 3234 3235 /* 3236 * Handle write page faults for pages that can be reused in the current vma 3237 * 3238 * This can happen either due to the mapping being with the VM_SHARED flag, 3239 * or due to us being the last reference standing to the page. In either 3240 * case, all we need to do here is to mark the page as writable and update 3241 * any related book-keeping. 3242 */ 3243 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3244 __releases(vmf->ptl) 3245 { 3246 struct vm_area_struct *vma = vmf->vma; 3247 pte_t entry; 3248 3249 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3250 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3251 3252 if (folio) { 3253 VM_BUG_ON(folio_test_anon(folio) && 3254 !PageAnonExclusive(vmf->page)); 3255 /* 3256 * Clear the folio's cpupid information as the existing 3257 * information potentially belongs to a now completely 3258 * unrelated process. 3259 */ 3260 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3261 } 3262 3263 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3264 entry = pte_mkyoung(vmf->orig_pte); 3265 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3266 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3267 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3268 pte_unmap_unlock(vmf->pte, vmf->ptl); 3269 count_vm_event(PGREUSE); 3270 } 3271 3272 /* 3273 * We could add a bitflag somewhere, but for now, we know that all 3274 * vm_ops that have a ->map_pages have been audited and don't need 3275 * the mmap_lock to be held. 3276 */ 3277 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3278 { 3279 struct vm_area_struct *vma = vmf->vma; 3280 3281 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3282 return 0; 3283 vma_end_read(vma); 3284 return VM_FAULT_RETRY; 3285 } 3286 3287 /** 3288 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3289 * @vmf: The vm_fault descriptor passed from the fault handler. 3290 * 3291 * When preparing to insert an anonymous page into a VMA from a 3292 * fault handler, call this function rather than anon_vma_prepare(). 3293 * If this vma does not already have an associated anon_vma and we are 3294 * only protected by the per-VMA lock, the caller must retry with the 3295 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3296 * determine if this VMA can share its anon_vma, and that's not safe to 3297 * do with only the per-VMA lock held for this VMA. 3298 * 3299 * Return: 0 if fault handling can proceed. Any other value should be 3300 * returned to the caller. 3301 */ 3302 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3303 { 3304 struct vm_area_struct *vma = vmf->vma; 3305 vm_fault_t ret = 0; 3306 3307 if (likely(vma->anon_vma)) 3308 return 0; 3309 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3310 if (!mmap_read_trylock(vma->vm_mm)) 3311 return VM_FAULT_RETRY; 3312 } 3313 if (__anon_vma_prepare(vma)) 3314 ret = VM_FAULT_OOM; 3315 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3316 mmap_read_unlock(vma->vm_mm); 3317 return ret; 3318 } 3319 3320 /* 3321 * Handle the case of a page which we actually need to copy to a new page, 3322 * either due to COW or unsharing. 3323 * 3324 * Called with mmap_lock locked and the old page referenced, but 3325 * without the ptl held. 3326 * 3327 * High level logic flow: 3328 * 3329 * - Allocate a page, copy the content of the old page to the new one. 3330 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3331 * - Take the PTL. If the pte changed, bail out and release the allocated page 3332 * - If the pte is still the way we remember it, update the page table and all 3333 * relevant references. This includes dropping the reference the page-table 3334 * held to the old page, as well as updating the rmap. 3335 * - In any case, unlock the PTL and drop the reference we took to the old page. 3336 */ 3337 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3338 { 3339 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3340 struct vm_area_struct *vma = vmf->vma; 3341 struct mm_struct *mm = vma->vm_mm; 3342 struct folio *old_folio = NULL; 3343 struct folio *new_folio = NULL; 3344 pte_t entry; 3345 int page_copied = 0; 3346 struct mmu_notifier_range range; 3347 vm_fault_t ret; 3348 bool pfn_is_zero; 3349 3350 delayacct_wpcopy_start(); 3351 3352 if (vmf->page) 3353 old_folio = page_folio(vmf->page); 3354 ret = vmf_anon_prepare(vmf); 3355 if (unlikely(ret)) 3356 goto out; 3357 3358 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3359 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3360 if (!new_folio) 3361 goto oom; 3362 3363 if (!pfn_is_zero) { 3364 int err; 3365 3366 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3367 if (err) { 3368 /* 3369 * COW failed, if the fault was solved by other, 3370 * it's fine. If not, userspace would re-fault on 3371 * the same address and we will handle the fault 3372 * from the second attempt. 3373 * The -EHWPOISON case will not be retried. 3374 */ 3375 folio_put(new_folio); 3376 if (old_folio) 3377 folio_put(old_folio); 3378 3379 delayacct_wpcopy_end(); 3380 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3381 } 3382 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3383 } 3384 3385 __folio_mark_uptodate(new_folio); 3386 3387 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3388 vmf->address & PAGE_MASK, 3389 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3390 mmu_notifier_invalidate_range_start(&range); 3391 3392 /* 3393 * Re-check the pte - we dropped the lock 3394 */ 3395 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3396 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3397 if (old_folio) { 3398 if (!folio_test_anon(old_folio)) { 3399 dec_mm_counter(mm, mm_counter_file(old_folio)); 3400 inc_mm_counter(mm, MM_ANONPAGES); 3401 } 3402 } else { 3403 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3404 inc_mm_counter(mm, MM_ANONPAGES); 3405 } 3406 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3407 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3408 entry = pte_sw_mkyoung(entry); 3409 if (unlikely(unshare)) { 3410 if (pte_soft_dirty(vmf->orig_pte)) 3411 entry = pte_mksoft_dirty(entry); 3412 if (pte_uffd_wp(vmf->orig_pte)) 3413 entry = pte_mkuffd_wp(entry); 3414 } else { 3415 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3416 } 3417 3418 /* 3419 * Clear the pte entry and flush it first, before updating the 3420 * pte with the new entry, to keep TLBs on different CPUs in 3421 * sync. This code used to set the new PTE then flush TLBs, but 3422 * that left a window where the new PTE could be loaded into 3423 * some TLBs while the old PTE remains in others. 3424 */ 3425 ptep_clear_flush(vma, vmf->address, vmf->pte); 3426 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3427 folio_add_lru_vma(new_folio, vma); 3428 BUG_ON(unshare && pte_write(entry)); 3429 set_pte_at(mm, vmf->address, vmf->pte, entry); 3430 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3431 if (old_folio) { 3432 /* 3433 * Only after switching the pte to the new page may 3434 * we remove the mapcount here. Otherwise another 3435 * process may come and find the rmap count decremented 3436 * before the pte is switched to the new page, and 3437 * "reuse" the old page writing into it while our pte 3438 * here still points into it and can be read by other 3439 * threads. 3440 * 3441 * The critical issue is to order this 3442 * folio_remove_rmap_pte() with the ptp_clear_flush 3443 * above. Those stores are ordered by (if nothing else,) 3444 * the barrier present in the atomic_add_negative 3445 * in folio_remove_rmap_pte(); 3446 * 3447 * Then the TLB flush in ptep_clear_flush ensures that 3448 * no process can access the old page before the 3449 * decremented mapcount is visible. And the old page 3450 * cannot be reused until after the decremented 3451 * mapcount is visible. So transitively, TLBs to 3452 * old page will be flushed before it can be reused. 3453 */ 3454 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3455 } 3456 3457 /* Free the old page.. */ 3458 new_folio = old_folio; 3459 page_copied = 1; 3460 pte_unmap_unlock(vmf->pte, vmf->ptl); 3461 } else if (vmf->pte) { 3462 update_mmu_tlb(vma, vmf->address, vmf->pte); 3463 pte_unmap_unlock(vmf->pte, vmf->ptl); 3464 } 3465 3466 mmu_notifier_invalidate_range_end(&range); 3467 3468 if (new_folio) 3469 folio_put(new_folio); 3470 if (old_folio) { 3471 if (page_copied) 3472 free_swap_cache(old_folio); 3473 folio_put(old_folio); 3474 } 3475 3476 delayacct_wpcopy_end(); 3477 return 0; 3478 oom: 3479 ret = VM_FAULT_OOM; 3480 out: 3481 if (old_folio) 3482 folio_put(old_folio); 3483 3484 delayacct_wpcopy_end(); 3485 return ret; 3486 } 3487 3488 /** 3489 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3490 * writeable once the page is prepared 3491 * 3492 * @vmf: structure describing the fault 3493 * @folio: the folio of vmf->page 3494 * 3495 * This function handles all that is needed to finish a write page fault in a 3496 * shared mapping due to PTE being read-only once the mapped page is prepared. 3497 * It handles locking of PTE and modifying it. 3498 * 3499 * The function expects the page to be locked or other protection against 3500 * concurrent faults / writeback (such as DAX radix tree locks). 3501 * 3502 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3503 * we acquired PTE lock. 3504 */ 3505 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3506 { 3507 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3508 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3509 &vmf->ptl); 3510 if (!vmf->pte) 3511 return VM_FAULT_NOPAGE; 3512 /* 3513 * We might have raced with another page fault while we released the 3514 * pte_offset_map_lock. 3515 */ 3516 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3517 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3518 pte_unmap_unlock(vmf->pte, vmf->ptl); 3519 return VM_FAULT_NOPAGE; 3520 } 3521 wp_page_reuse(vmf, folio); 3522 return 0; 3523 } 3524 3525 /* 3526 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3527 * mapping 3528 */ 3529 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3530 { 3531 struct vm_area_struct *vma = vmf->vma; 3532 3533 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3534 vm_fault_t ret; 3535 3536 pte_unmap_unlock(vmf->pte, vmf->ptl); 3537 ret = vmf_can_call_fault(vmf); 3538 if (ret) 3539 return ret; 3540 3541 vmf->flags |= FAULT_FLAG_MKWRITE; 3542 ret = vma->vm_ops->pfn_mkwrite(vmf); 3543 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3544 return ret; 3545 return finish_mkwrite_fault(vmf, NULL); 3546 } 3547 wp_page_reuse(vmf, NULL); 3548 return 0; 3549 } 3550 3551 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3552 __releases(vmf->ptl) 3553 { 3554 struct vm_area_struct *vma = vmf->vma; 3555 vm_fault_t ret = 0; 3556 3557 folio_get(folio); 3558 3559 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3560 vm_fault_t tmp; 3561 3562 pte_unmap_unlock(vmf->pte, vmf->ptl); 3563 tmp = vmf_can_call_fault(vmf); 3564 if (tmp) { 3565 folio_put(folio); 3566 return tmp; 3567 } 3568 3569 tmp = do_page_mkwrite(vmf, folio); 3570 if (unlikely(!tmp || (tmp & 3571 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3572 folio_put(folio); 3573 return tmp; 3574 } 3575 tmp = finish_mkwrite_fault(vmf, folio); 3576 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3577 folio_unlock(folio); 3578 folio_put(folio); 3579 return tmp; 3580 } 3581 } else { 3582 wp_page_reuse(vmf, folio); 3583 folio_lock(folio); 3584 } 3585 ret |= fault_dirty_shared_page(vmf); 3586 folio_put(folio); 3587 3588 return ret; 3589 } 3590 3591 static bool wp_can_reuse_anon_folio(struct folio *folio, 3592 struct vm_area_struct *vma) 3593 { 3594 /* 3595 * We could currently only reuse a subpage of a large folio if no 3596 * other subpages of the large folios are still mapped. However, 3597 * let's just consistently not reuse subpages even if we could 3598 * reuse in that scenario, and give back a large folio a bit 3599 * sooner. 3600 */ 3601 if (folio_test_large(folio)) 3602 return false; 3603 3604 /* 3605 * We have to verify under folio lock: these early checks are 3606 * just an optimization to avoid locking the folio and freeing 3607 * the swapcache if there is little hope that we can reuse. 3608 * 3609 * KSM doesn't necessarily raise the folio refcount. 3610 */ 3611 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3612 return false; 3613 if (!folio_test_lru(folio)) 3614 /* 3615 * We cannot easily detect+handle references from 3616 * remote LRU caches or references to LRU folios. 3617 */ 3618 lru_add_drain(); 3619 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3620 return false; 3621 if (!folio_trylock(folio)) 3622 return false; 3623 if (folio_test_swapcache(folio)) 3624 folio_free_swap(folio); 3625 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3626 folio_unlock(folio); 3627 return false; 3628 } 3629 /* 3630 * Ok, we've got the only folio reference from our mapping 3631 * and the folio is locked, it's dark out, and we're wearing 3632 * sunglasses. Hit it. 3633 */ 3634 folio_move_anon_rmap(folio, vma); 3635 folio_unlock(folio); 3636 return true; 3637 } 3638 3639 /* 3640 * This routine handles present pages, when 3641 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3642 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3643 * (FAULT_FLAG_UNSHARE) 3644 * 3645 * It is done by copying the page to a new address and decrementing the 3646 * shared-page counter for the old page. 3647 * 3648 * Note that this routine assumes that the protection checks have been 3649 * done by the caller (the low-level page fault routine in most cases). 3650 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3651 * done any necessary COW. 3652 * 3653 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3654 * though the page will change only once the write actually happens. This 3655 * avoids a few races, and potentially makes it more efficient. 3656 * 3657 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3658 * but allow concurrent faults), with pte both mapped and locked. 3659 * We return with mmap_lock still held, but pte unmapped and unlocked. 3660 */ 3661 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3662 __releases(vmf->ptl) 3663 { 3664 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3665 struct vm_area_struct *vma = vmf->vma; 3666 struct folio *folio = NULL; 3667 pte_t pte; 3668 3669 if (likely(!unshare)) { 3670 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3671 if (!userfaultfd_wp_async(vma)) { 3672 pte_unmap_unlock(vmf->pte, vmf->ptl); 3673 return handle_userfault(vmf, VM_UFFD_WP); 3674 } 3675 3676 /* 3677 * Nothing needed (cache flush, TLB invalidations, 3678 * etc.) because we're only removing the uffd-wp bit, 3679 * which is completely invisible to the user. 3680 */ 3681 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3682 3683 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3684 /* 3685 * Update this to be prepared for following up CoW 3686 * handling 3687 */ 3688 vmf->orig_pte = pte; 3689 } 3690 3691 /* 3692 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3693 * is flushed in this case before copying. 3694 */ 3695 if (unlikely(userfaultfd_wp(vmf->vma) && 3696 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3697 flush_tlb_page(vmf->vma, vmf->address); 3698 } 3699 3700 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3701 3702 if (vmf->page) 3703 folio = page_folio(vmf->page); 3704 3705 /* 3706 * Shared mapping: we are guaranteed to have VM_WRITE and 3707 * FAULT_FLAG_WRITE set at this point. 3708 */ 3709 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3710 /* 3711 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3712 * VM_PFNMAP VMA. 3713 * 3714 * We should not cow pages in a shared writeable mapping. 3715 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3716 */ 3717 if (!vmf->page) 3718 return wp_pfn_shared(vmf); 3719 return wp_page_shared(vmf, folio); 3720 } 3721 3722 /* 3723 * Private mapping: create an exclusive anonymous page copy if reuse 3724 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3725 * 3726 * If we encounter a page that is marked exclusive, we must reuse 3727 * the page without further checks. 3728 */ 3729 if (folio && folio_test_anon(folio) && 3730 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3731 if (!PageAnonExclusive(vmf->page)) 3732 SetPageAnonExclusive(vmf->page); 3733 if (unlikely(unshare)) { 3734 pte_unmap_unlock(vmf->pte, vmf->ptl); 3735 return 0; 3736 } 3737 wp_page_reuse(vmf, folio); 3738 return 0; 3739 } 3740 /* 3741 * Ok, we need to copy. Oh, well.. 3742 */ 3743 if (folio) 3744 folio_get(folio); 3745 3746 pte_unmap_unlock(vmf->pte, vmf->ptl); 3747 #ifdef CONFIG_KSM 3748 if (folio && folio_test_ksm(folio)) 3749 count_vm_event(COW_KSM); 3750 #endif 3751 return wp_page_copy(vmf); 3752 } 3753 3754 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3755 unsigned long start_addr, unsigned long end_addr, 3756 struct zap_details *details) 3757 { 3758 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3759 } 3760 3761 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3762 pgoff_t first_index, 3763 pgoff_t last_index, 3764 struct zap_details *details) 3765 { 3766 struct vm_area_struct *vma; 3767 pgoff_t vba, vea, zba, zea; 3768 3769 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3770 vba = vma->vm_pgoff; 3771 vea = vba + vma_pages(vma) - 1; 3772 zba = max(first_index, vba); 3773 zea = min(last_index, vea); 3774 3775 unmap_mapping_range_vma(vma, 3776 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3777 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3778 details); 3779 } 3780 } 3781 3782 /** 3783 * unmap_mapping_folio() - Unmap single folio from processes. 3784 * @folio: The locked folio to be unmapped. 3785 * 3786 * Unmap this folio from any userspace process which still has it mmaped. 3787 * Typically, for efficiency, the range of nearby pages has already been 3788 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3789 * truncation or invalidation holds the lock on a folio, it may find that 3790 * the page has been remapped again: and then uses unmap_mapping_folio() 3791 * to unmap it finally. 3792 */ 3793 void unmap_mapping_folio(struct folio *folio) 3794 { 3795 struct address_space *mapping = folio->mapping; 3796 struct zap_details details = { }; 3797 pgoff_t first_index; 3798 pgoff_t last_index; 3799 3800 VM_BUG_ON(!folio_test_locked(folio)); 3801 3802 first_index = folio->index; 3803 last_index = folio_next_index(folio) - 1; 3804 3805 details.even_cows = false; 3806 details.single_folio = folio; 3807 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3808 3809 i_mmap_lock_read(mapping); 3810 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3811 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3812 last_index, &details); 3813 i_mmap_unlock_read(mapping); 3814 } 3815 3816 /** 3817 * unmap_mapping_pages() - Unmap pages from processes. 3818 * @mapping: The address space containing pages to be unmapped. 3819 * @start: Index of first page to be unmapped. 3820 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3821 * @even_cows: Whether to unmap even private COWed pages. 3822 * 3823 * Unmap the pages in this address space from any userspace process which 3824 * has them mmaped. Generally, you want to remove COWed pages as well when 3825 * a file is being truncated, but not when invalidating pages from the page 3826 * cache. 3827 */ 3828 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3829 pgoff_t nr, bool even_cows) 3830 { 3831 struct zap_details details = { }; 3832 pgoff_t first_index = start; 3833 pgoff_t last_index = start + nr - 1; 3834 3835 details.even_cows = even_cows; 3836 if (last_index < first_index) 3837 last_index = ULONG_MAX; 3838 3839 i_mmap_lock_read(mapping); 3840 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3841 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3842 last_index, &details); 3843 i_mmap_unlock_read(mapping); 3844 } 3845 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3846 3847 /** 3848 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3849 * address_space corresponding to the specified byte range in the underlying 3850 * file. 3851 * 3852 * @mapping: the address space containing mmaps to be unmapped. 3853 * @holebegin: byte in first page to unmap, relative to the start of 3854 * the underlying file. This will be rounded down to a PAGE_SIZE 3855 * boundary. Note that this is different from truncate_pagecache(), which 3856 * must keep the partial page. In contrast, we must get rid of 3857 * partial pages. 3858 * @holelen: size of prospective hole in bytes. This will be rounded 3859 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3860 * end of the file. 3861 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3862 * but 0 when invalidating pagecache, don't throw away private data. 3863 */ 3864 void unmap_mapping_range(struct address_space *mapping, 3865 loff_t const holebegin, loff_t const holelen, int even_cows) 3866 { 3867 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3868 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3869 3870 /* Check for overflow. */ 3871 if (sizeof(holelen) > sizeof(hlen)) { 3872 long long holeend = 3873 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3874 if (holeend & ~(long long)ULONG_MAX) 3875 hlen = ULONG_MAX - hba + 1; 3876 } 3877 3878 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3879 } 3880 EXPORT_SYMBOL(unmap_mapping_range); 3881 3882 /* 3883 * Restore a potential device exclusive pte to a working pte entry 3884 */ 3885 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3886 { 3887 struct folio *folio = page_folio(vmf->page); 3888 struct vm_area_struct *vma = vmf->vma; 3889 struct mmu_notifier_range range; 3890 vm_fault_t ret; 3891 3892 /* 3893 * We need a reference to lock the folio because we don't hold 3894 * the PTL so a racing thread can remove the device-exclusive 3895 * entry and unmap it. If the folio is free the entry must 3896 * have been removed already. If it happens to have already 3897 * been re-allocated after being freed all we do is lock and 3898 * unlock it. 3899 */ 3900 if (!folio_try_get(folio)) 3901 return 0; 3902 3903 ret = folio_lock_or_retry(folio, vmf); 3904 if (ret) { 3905 folio_put(folio); 3906 return ret; 3907 } 3908 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3909 vma->vm_mm, vmf->address & PAGE_MASK, 3910 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3911 mmu_notifier_invalidate_range_start(&range); 3912 3913 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3914 &vmf->ptl); 3915 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3916 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3917 3918 if (vmf->pte) 3919 pte_unmap_unlock(vmf->pte, vmf->ptl); 3920 folio_unlock(folio); 3921 folio_put(folio); 3922 3923 mmu_notifier_invalidate_range_end(&range); 3924 return 0; 3925 } 3926 3927 static inline bool should_try_to_free_swap(struct folio *folio, 3928 struct vm_area_struct *vma, 3929 unsigned int fault_flags) 3930 { 3931 if (!folio_test_swapcache(folio)) 3932 return false; 3933 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3934 folio_test_mlocked(folio)) 3935 return true; 3936 /* 3937 * If we want to map a page that's in the swapcache writable, we 3938 * have to detect via the refcount if we're really the exclusive 3939 * user. Try freeing the swapcache to get rid of the swapcache 3940 * reference only in case it's likely that we'll be the exlusive user. 3941 */ 3942 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3943 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 3944 } 3945 3946 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3947 { 3948 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3949 vmf->address, &vmf->ptl); 3950 if (!vmf->pte) 3951 return 0; 3952 /* 3953 * Be careful so that we will only recover a special uffd-wp pte into a 3954 * none pte. Otherwise it means the pte could have changed, so retry. 3955 * 3956 * This should also cover the case where e.g. the pte changed 3957 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3958 * So is_pte_marker() check is not enough to safely drop the pte. 3959 */ 3960 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3961 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3962 pte_unmap_unlock(vmf->pte, vmf->ptl); 3963 return 0; 3964 } 3965 3966 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3967 { 3968 if (vma_is_anonymous(vmf->vma)) 3969 return do_anonymous_page(vmf); 3970 else 3971 return do_fault(vmf); 3972 } 3973 3974 /* 3975 * This is actually a page-missing access, but with uffd-wp special pte 3976 * installed. It means this pte was wr-protected before being unmapped. 3977 */ 3978 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3979 { 3980 /* 3981 * Just in case there're leftover special ptes even after the region 3982 * got unregistered - we can simply clear them. 3983 */ 3984 if (unlikely(!userfaultfd_wp(vmf->vma))) 3985 return pte_marker_clear(vmf); 3986 3987 return do_pte_missing(vmf); 3988 } 3989 3990 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3991 { 3992 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3993 unsigned long marker = pte_marker_get(entry); 3994 3995 /* 3996 * PTE markers should never be empty. If anything weird happened, 3997 * the best thing to do is to kill the process along with its mm. 3998 */ 3999 if (WARN_ON_ONCE(!marker)) 4000 return VM_FAULT_SIGBUS; 4001 4002 /* Higher priority than uffd-wp when data corrupted */ 4003 if (marker & PTE_MARKER_POISONED) 4004 return VM_FAULT_HWPOISON; 4005 4006 if (pte_marker_entry_uffd_wp(entry)) 4007 return pte_marker_handle_uffd_wp(vmf); 4008 4009 /* This is an unknown pte marker */ 4010 return VM_FAULT_SIGBUS; 4011 } 4012 4013 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4014 { 4015 struct vm_area_struct *vma = vmf->vma; 4016 struct folio *folio; 4017 swp_entry_t entry; 4018 4019 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4020 if (!folio) 4021 return NULL; 4022 4023 entry = pte_to_swp_entry(vmf->orig_pte); 4024 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4025 GFP_KERNEL, entry)) { 4026 folio_put(folio); 4027 return NULL; 4028 } 4029 4030 return folio; 4031 } 4032 4033 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4034 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr) 4035 { 4036 struct swap_info_struct *si = swp_swap_info(entry); 4037 pgoff_t offset = swp_offset(entry); 4038 int i; 4039 4040 /* 4041 * While allocating a large folio and doing swap_read_folio, which is 4042 * the case the being faulted pte doesn't have swapcache. We need to 4043 * ensure all PTEs have no cache as well, otherwise, we might go to 4044 * swap devices while the content is in swapcache. 4045 */ 4046 for (i = 0; i < max_nr; i++) { 4047 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE)) 4048 return i; 4049 } 4050 4051 return i; 4052 } 4053 4054 /* 4055 * Check if the PTEs within a range are contiguous swap entries 4056 * and have consistent swapcache, zeromap. 4057 */ 4058 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4059 { 4060 unsigned long addr; 4061 swp_entry_t entry; 4062 int idx; 4063 pte_t pte; 4064 4065 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4066 idx = (vmf->address - addr) / PAGE_SIZE; 4067 pte = ptep_get(ptep); 4068 4069 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4070 return false; 4071 entry = pte_to_swp_entry(pte); 4072 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4073 return false; 4074 4075 /* 4076 * swap_read_folio() can't handle the case a large folio is hybridly 4077 * from different backends. And they are likely corner cases. Similar 4078 * things might be added once zswap support large folios. 4079 */ 4080 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4081 return false; 4082 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4083 return false; 4084 4085 return true; 4086 } 4087 4088 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4089 unsigned long addr, 4090 unsigned long orders) 4091 { 4092 int order, nr; 4093 4094 order = highest_order(orders); 4095 4096 /* 4097 * To swap in a THP with nr pages, we require that its first swap_offset 4098 * is aligned with that number, as it was when the THP was swapped out. 4099 * This helps filter out most invalid entries. 4100 */ 4101 while (orders) { 4102 nr = 1 << order; 4103 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4104 break; 4105 order = next_order(&orders, order); 4106 } 4107 4108 return orders; 4109 } 4110 4111 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4112 { 4113 struct vm_area_struct *vma = vmf->vma; 4114 unsigned long orders; 4115 struct folio *folio; 4116 unsigned long addr; 4117 swp_entry_t entry; 4118 spinlock_t *ptl; 4119 pte_t *pte; 4120 gfp_t gfp; 4121 int order; 4122 4123 /* 4124 * If uffd is active for the vma we need per-page fault fidelity to 4125 * maintain the uffd semantics. 4126 */ 4127 if (unlikely(userfaultfd_armed(vma))) 4128 goto fallback; 4129 4130 /* 4131 * A large swapped out folio could be partially or fully in zswap. We 4132 * lack handling for such cases, so fallback to swapping in order-0 4133 * folio. 4134 */ 4135 if (!zswap_never_enabled()) 4136 goto fallback; 4137 4138 entry = pte_to_swp_entry(vmf->orig_pte); 4139 /* 4140 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4141 * and suitable for swapping THP. 4142 */ 4143 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4144 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4145 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4146 orders = thp_swap_suitable_orders(swp_offset(entry), 4147 vmf->address, orders); 4148 4149 if (!orders) 4150 goto fallback; 4151 4152 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4153 vmf->address & PMD_MASK, &ptl); 4154 if (unlikely(!pte)) 4155 goto fallback; 4156 4157 /* 4158 * For do_swap_page, find the highest order where the aligned range is 4159 * completely swap entries with contiguous swap offsets. 4160 */ 4161 order = highest_order(orders); 4162 while (orders) { 4163 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4164 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4165 break; 4166 order = next_order(&orders, order); 4167 } 4168 4169 pte_unmap_unlock(pte, ptl); 4170 4171 /* Try allocating the highest of the remaining orders. */ 4172 gfp = vma_thp_gfp_mask(vma); 4173 while (orders) { 4174 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4175 folio = vma_alloc_folio(gfp, order, vma, addr); 4176 if (folio) { 4177 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4178 gfp, entry)) 4179 return folio; 4180 folio_put(folio); 4181 } 4182 order = next_order(&orders, order); 4183 } 4184 4185 fallback: 4186 return __alloc_swap_folio(vmf); 4187 } 4188 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4189 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4190 { 4191 return __alloc_swap_folio(vmf); 4192 } 4193 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4194 4195 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4196 4197 /* 4198 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4199 * but allow concurrent faults), and pte mapped but not yet locked. 4200 * We return with pte unmapped and unlocked. 4201 * 4202 * We return with the mmap_lock locked or unlocked in the same cases 4203 * as does filemap_fault(). 4204 */ 4205 vm_fault_t do_swap_page(struct vm_fault *vmf) 4206 { 4207 struct vm_area_struct *vma = vmf->vma; 4208 struct folio *swapcache, *folio = NULL; 4209 DECLARE_WAITQUEUE(wait, current); 4210 struct page *page; 4211 struct swap_info_struct *si = NULL; 4212 rmap_t rmap_flags = RMAP_NONE; 4213 bool need_clear_cache = false; 4214 bool exclusive = false; 4215 swp_entry_t entry; 4216 pte_t pte; 4217 vm_fault_t ret = 0; 4218 void *shadow = NULL; 4219 int nr_pages; 4220 unsigned long page_idx; 4221 unsigned long address; 4222 pte_t *ptep; 4223 4224 if (!pte_unmap_same(vmf)) 4225 goto out; 4226 4227 entry = pte_to_swp_entry(vmf->orig_pte); 4228 if (unlikely(non_swap_entry(entry))) { 4229 if (is_migration_entry(entry)) { 4230 migration_entry_wait(vma->vm_mm, vmf->pmd, 4231 vmf->address); 4232 } else if (is_device_exclusive_entry(entry)) { 4233 vmf->page = pfn_swap_entry_to_page(entry); 4234 ret = remove_device_exclusive_entry(vmf); 4235 } else if (is_device_private_entry(entry)) { 4236 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4237 /* 4238 * migrate_to_ram is not yet ready to operate 4239 * under VMA lock. 4240 */ 4241 vma_end_read(vma); 4242 ret = VM_FAULT_RETRY; 4243 goto out; 4244 } 4245 4246 vmf->page = pfn_swap_entry_to_page(entry); 4247 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4248 vmf->address, &vmf->ptl); 4249 if (unlikely(!vmf->pte || 4250 !pte_same(ptep_get(vmf->pte), 4251 vmf->orig_pte))) 4252 goto unlock; 4253 4254 /* 4255 * Get a page reference while we know the page can't be 4256 * freed. 4257 */ 4258 get_page(vmf->page); 4259 pte_unmap_unlock(vmf->pte, vmf->ptl); 4260 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 4261 put_page(vmf->page); 4262 } else if (is_hwpoison_entry(entry)) { 4263 ret = VM_FAULT_HWPOISON; 4264 } else if (is_pte_marker_entry(entry)) { 4265 ret = handle_pte_marker(vmf); 4266 } else { 4267 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4268 ret = VM_FAULT_SIGBUS; 4269 } 4270 goto out; 4271 } 4272 4273 /* Prevent swapoff from happening to us. */ 4274 si = get_swap_device(entry); 4275 if (unlikely(!si)) 4276 goto out; 4277 4278 folio = swap_cache_get_folio(entry, vma, vmf->address); 4279 if (folio) 4280 page = folio_file_page(folio, swp_offset(entry)); 4281 swapcache = folio; 4282 4283 if (!folio) { 4284 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4285 __swap_count(entry) == 1) { 4286 /* skip swapcache */ 4287 folio = alloc_swap_folio(vmf); 4288 if (folio) { 4289 __folio_set_locked(folio); 4290 __folio_set_swapbacked(folio); 4291 4292 nr_pages = folio_nr_pages(folio); 4293 if (folio_test_large(folio)) 4294 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4295 /* 4296 * Prevent parallel swapin from proceeding with 4297 * the cache flag. Otherwise, another thread 4298 * may finish swapin first, free the entry, and 4299 * swapout reusing the same entry. It's 4300 * undetectable as pte_same() returns true due 4301 * to entry reuse. 4302 */ 4303 if (swapcache_prepare(entry, nr_pages)) { 4304 /* 4305 * Relax a bit to prevent rapid 4306 * repeated page faults. 4307 */ 4308 add_wait_queue(&swapcache_wq, &wait); 4309 schedule_timeout_uninterruptible(1); 4310 remove_wait_queue(&swapcache_wq, &wait); 4311 goto out_page; 4312 } 4313 need_clear_cache = true; 4314 4315 mem_cgroup_swapin_uncharge_swap(entry, nr_pages); 4316 4317 shadow = get_shadow_from_swap_cache(entry); 4318 if (shadow) 4319 workingset_refault(folio, shadow); 4320 4321 folio_add_lru(folio); 4322 4323 /* To provide entry to swap_read_folio() */ 4324 folio->swap = entry; 4325 swap_read_folio(folio, NULL); 4326 folio->private = NULL; 4327 } 4328 } else { 4329 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4330 vmf); 4331 swapcache = folio; 4332 } 4333 4334 if (!folio) { 4335 /* 4336 * Back out if somebody else faulted in this pte 4337 * while we released the pte lock. 4338 */ 4339 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4340 vmf->address, &vmf->ptl); 4341 if (likely(vmf->pte && 4342 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4343 ret = VM_FAULT_OOM; 4344 goto unlock; 4345 } 4346 4347 /* Had to read the page from swap area: Major fault */ 4348 ret = VM_FAULT_MAJOR; 4349 count_vm_event(PGMAJFAULT); 4350 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4351 page = folio_file_page(folio, swp_offset(entry)); 4352 } else if (PageHWPoison(page)) { 4353 /* 4354 * hwpoisoned dirty swapcache pages are kept for killing 4355 * owner processes (which may be unknown at hwpoison time) 4356 */ 4357 ret = VM_FAULT_HWPOISON; 4358 goto out_release; 4359 } 4360 4361 ret |= folio_lock_or_retry(folio, vmf); 4362 if (ret & VM_FAULT_RETRY) 4363 goto out_release; 4364 4365 if (swapcache) { 4366 /* 4367 * Make sure folio_free_swap() or swapoff did not release the 4368 * swapcache from under us. The page pin, and pte_same test 4369 * below, are not enough to exclude that. Even if it is still 4370 * swapcache, we need to check that the page's swap has not 4371 * changed. 4372 */ 4373 if (unlikely(!folio_test_swapcache(folio) || 4374 page_swap_entry(page).val != entry.val)) 4375 goto out_page; 4376 4377 /* 4378 * KSM sometimes has to copy on read faults, for example, if 4379 * page->index of !PageKSM() pages would be nonlinear inside the 4380 * anon VMA -- PageKSM() is lost on actual swapout. 4381 */ 4382 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4383 if (unlikely(!folio)) { 4384 ret = VM_FAULT_OOM; 4385 folio = swapcache; 4386 goto out_page; 4387 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4388 ret = VM_FAULT_HWPOISON; 4389 folio = swapcache; 4390 goto out_page; 4391 } 4392 if (folio != swapcache) 4393 page = folio_page(folio, 0); 4394 4395 /* 4396 * If we want to map a page that's in the swapcache writable, we 4397 * have to detect via the refcount if we're really the exclusive 4398 * owner. Try removing the extra reference from the local LRU 4399 * caches if required. 4400 */ 4401 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4402 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4403 lru_add_drain(); 4404 } 4405 4406 folio_throttle_swaprate(folio, GFP_KERNEL); 4407 4408 /* 4409 * Back out if somebody else already faulted in this pte. 4410 */ 4411 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4412 &vmf->ptl); 4413 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4414 goto out_nomap; 4415 4416 if (unlikely(!folio_test_uptodate(folio))) { 4417 ret = VM_FAULT_SIGBUS; 4418 goto out_nomap; 4419 } 4420 4421 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4422 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4423 unsigned long nr = folio_nr_pages(folio); 4424 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4425 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4426 pte_t *folio_ptep = vmf->pte - idx; 4427 pte_t folio_pte = ptep_get(folio_ptep); 4428 4429 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4430 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4431 goto out_nomap; 4432 4433 page_idx = idx; 4434 address = folio_start; 4435 ptep = folio_ptep; 4436 goto check_folio; 4437 } 4438 4439 nr_pages = 1; 4440 page_idx = 0; 4441 address = vmf->address; 4442 ptep = vmf->pte; 4443 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4444 int nr = folio_nr_pages(folio); 4445 unsigned long idx = folio_page_idx(folio, page); 4446 unsigned long folio_start = address - idx * PAGE_SIZE; 4447 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4448 pte_t *folio_ptep; 4449 pte_t folio_pte; 4450 4451 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4452 goto check_folio; 4453 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4454 goto check_folio; 4455 4456 folio_ptep = vmf->pte - idx; 4457 folio_pte = ptep_get(folio_ptep); 4458 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4459 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4460 goto check_folio; 4461 4462 page_idx = idx; 4463 address = folio_start; 4464 ptep = folio_ptep; 4465 nr_pages = nr; 4466 entry = folio->swap; 4467 page = &folio->page; 4468 } 4469 4470 check_folio: 4471 /* 4472 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4473 * must never point at an anonymous page in the swapcache that is 4474 * PG_anon_exclusive. Sanity check that this holds and especially, that 4475 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4476 * check after taking the PT lock and making sure that nobody 4477 * concurrently faulted in this page and set PG_anon_exclusive. 4478 */ 4479 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4480 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4481 4482 /* 4483 * Check under PT lock (to protect against concurrent fork() sharing 4484 * the swap entry concurrently) for certainly exclusive pages. 4485 */ 4486 if (!folio_test_ksm(folio)) { 4487 exclusive = pte_swp_exclusive(vmf->orig_pte); 4488 if (folio != swapcache) { 4489 /* 4490 * We have a fresh page that is not exposed to the 4491 * swapcache -> certainly exclusive. 4492 */ 4493 exclusive = true; 4494 } else if (exclusive && folio_test_writeback(folio) && 4495 data_race(si->flags & SWP_STABLE_WRITES)) { 4496 /* 4497 * This is tricky: not all swap backends support 4498 * concurrent page modifications while under writeback. 4499 * 4500 * So if we stumble over such a page in the swapcache 4501 * we must not set the page exclusive, otherwise we can 4502 * map it writable without further checks and modify it 4503 * while still under writeback. 4504 * 4505 * For these problematic swap backends, simply drop the 4506 * exclusive marker: this is perfectly fine as we start 4507 * writeback only if we fully unmapped the page and 4508 * there are no unexpected references on the page after 4509 * unmapping succeeded. After fully unmapped, no 4510 * further GUP references (FOLL_GET and FOLL_PIN) can 4511 * appear, so dropping the exclusive marker and mapping 4512 * it only R/O is fine. 4513 */ 4514 exclusive = false; 4515 } 4516 } 4517 4518 /* 4519 * Some architectures may have to restore extra metadata to the page 4520 * when reading from swap. This metadata may be indexed by swap entry 4521 * so this must be called before swap_free(). 4522 */ 4523 arch_swap_restore(folio_swap(entry, folio), folio); 4524 4525 /* 4526 * Remove the swap entry and conditionally try to free up the swapcache. 4527 * We're already holding a reference on the page but haven't mapped it 4528 * yet. 4529 */ 4530 swap_free_nr(entry, nr_pages); 4531 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4532 folio_free_swap(folio); 4533 4534 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4535 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4536 pte = mk_pte(page, vma->vm_page_prot); 4537 if (pte_swp_soft_dirty(vmf->orig_pte)) 4538 pte = pte_mksoft_dirty(pte); 4539 if (pte_swp_uffd_wp(vmf->orig_pte)) 4540 pte = pte_mkuffd_wp(pte); 4541 4542 /* 4543 * Same logic as in do_wp_page(); however, optimize for pages that are 4544 * certainly not shared either because we just allocated them without 4545 * exposing them to the swapcache or because the swap entry indicates 4546 * exclusivity. 4547 */ 4548 if (!folio_test_ksm(folio) && 4549 (exclusive || folio_ref_count(folio) == 1)) { 4550 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4551 !pte_needs_soft_dirty_wp(vma, pte)) { 4552 pte = pte_mkwrite(pte, vma); 4553 if (vmf->flags & FAULT_FLAG_WRITE) { 4554 pte = pte_mkdirty(pte); 4555 vmf->flags &= ~FAULT_FLAG_WRITE; 4556 } 4557 } 4558 rmap_flags |= RMAP_EXCLUSIVE; 4559 } 4560 folio_ref_add(folio, nr_pages - 1); 4561 flush_icache_pages(vma, page, nr_pages); 4562 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4563 4564 /* ksm created a completely new copy */ 4565 if (unlikely(folio != swapcache && swapcache)) { 4566 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4567 folio_add_lru_vma(folio, vma); 4568 } else if (!folio_test_anon(folio)) { 4569 /* 4570 * We currently only expect small !anon folios which are either 4571 * fully exclusive or fully shared, or new allocated large 4572 * folios which are fully exclusive. If we ever get large 4573 * folios within swapcache here, we have to be careful. 4574 */ 4575 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4576 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4577 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4578 } else { 4579 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4580 rmap_flags); 4581 } 4582 4583 VM_BUG_ON(!folio_test_anon(folio) || 4584 (pte_write(pte) && !PageAnonExclusive(page))); 4585 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4586 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4587 pte, pte, nr_pages); 4588 4589 folio_unlock(folio); 4590 if (folio != swapcache && swapcache) { 4591 /* 4592 * Hold the lock to avoid the swap entry to be reused 4593 * until we take the PT lock for the pte_same() check 4594 * (to avoid false positives from pte_same). For 4595 * further safety release the lock after the swap_free 4596 * so that the swap count won't change under a 4597 * parallel locked swapcache. 4598 */ 4599 folio_unlock(swapcache); 4600 folio_put(swapcache); 4601 } 4602 4603 if (vmf->flags & FAULT_FLAG_WRITE) { 4604 ret |= do_wp_page(vmf); 4605 if (ret & VM_FAULT_ERROR) 4606 ret &= VM_FAULT_ERROR; 4607 goto out; 4608 } 4609 4610 /* No need to invalidate - it was non-present before */ 4611 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4612 unlock: 4613 if (vmf->pte) 4614 pte_unmap_unlock(vmf->pte, vmf->ptl); 4615 out: 4616 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4617 if (need_clear_cache) { 4618 swapcache_clear(si, entry, nr_pages); 4619 if (waitqueue_active(&swapcache_wq)) 4620 wake_up(&swapcache_wq); 4621 } 4622 if (si) 4623 put_swap_device(si); 4624 return ret; 4625 out_nomap: 4626 if (vmf->pte) 4627 pte_unmap_unlock(vmf->pte, vmf->ptl); 4628 out_page: 4629 folio_unlock(folio); 4630 out_release: 4631 folio_put(folio); 4632 if (folio != swapcache && swapcache) { 4633 folio_unlock(swapcache); 4634 folio_put(swapcache); 4635 } 4636 if (need_clear_cache) { 4637 swapcache_clear(si, entry, nr_pages); 4638 if (waitqueue_active(&swapcache_wq)) 4639 wake_up(&swapcache_wq); 4640 } 4641 if (si) 4642 put_swap_device(si); 4643 return ret; 4644 } 4645 4646 static bool pte_range_none(pte_t *pte, int nr_pages) 4647 { 4648 int i; 4649 4650 for (i = 0; i < nr_pages; i++) { 4651 if (!pte_none(ptep_get_lockless(pte + i))) 4652 return false; 4653 } 4654 4655 return true; 4656 } 4657 4658 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4659 { 4660 struct vm_area_struct *vma = vmf->vma; 4661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4662 unsigned long orders; 4663 struct folio *folio; 4664 unsigned long addr; 4665 pte_t *pte; 4666 gfp_t gfp; 4667 int order; 4668 4669 /* 4670 * If uffd is active for the vma we need per-page fault fidelity to 4671 * maintain the uffd semantics. 4672 */ 4673 if (unlikely(userfaultfd_armed(vma))) 4674 goto fallback; 4675 4676 /* 4677 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4678 * for this vma. Then filter out the orders that can't be allocated over 4679 * the faulting address and still be fully contained in the vma. 4680 */ 4681 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4682 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4683 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4684 4685 if (!orders) 4686 goto fallback; 4687 4688 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4689 if (!pte) 4690 return ERR_PTR(-EAGAIN); 4691 4692 /* 4693 * Find the highest order where the aligned range is completely 4694 * pte_none(). Note that all remaining orders will be completely 4695 * pte_none(). 4696 */ 4697 order = highest_order(orders); 4698 while (orders) { 4699 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4700 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4701 break; 4702 order = next_order(&orders, order); 4703 } 4704 4705 pte_unmap(pte); 4706 4707 if (!orders) 4708 goto fallback; 4709 4710 /* Try allocating the highest of the remaining orders. */ 4711 gfp = vma_thp_gfp_mask(vma); 4712 while (orders) { 4713 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4714 folio = vma_alloc_folio(gfp, order, vma, addr); 4715 if (folio) { 4716 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4717 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 4718 folio_put(folio); 4719 goto next; 4720 } 4721 folio_throttle_swaprate(folio, gfp); 4722 /* 4723 * When a folio is not zeroed during allocation 4724 * (__GFP_ZERO not used), folio_zero_user() is used 4725 * to make sure that the page corresponding to the 4726 * faulting address will be hot in the cache after 4727 * zeroing. 4728 */ 4729 if (!alloc_zeroed()) 4730 folio_zero_user(folio, vmf->address); 4731 return folio; 4732 } 4733 next: 4734 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 4735 order = next_order(&orders, order); 4736 } 4737 4738 fallback: 4739 #endif 4740 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4741 } 4742 4743 /* 4744 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4745 * but allow concurrent faults), and pte mapped but not yet locked. 4746 * We return with mmap_lock still held, but pte unmapped and unlocked. 4747 */ 4748 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4749 { 4750 struct vm_area_struct *vma = vmf->vma; 4751 unsigned long addr = vmf->address; 4752 struct folio *folio; 4753 vm_fault_t ret = 0; 4754 int nr_pages = 1; 4755 pte_t entry; 4756 4757 /* File mapping without ->vm_ops ? */ 4758 if (vma->vm_flags & VM_SHARED) 4759 return VM_FAULT_SIGBUS; 4760 4761 /* 4762 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4763 * be distinguished from a transient failure of pte_offset_map(). 4764 */ 4765 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4766 return VM_FAULT_OOM; 4767 4768 /* Use the zero-page for reads */ 4769 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4770 !mm_forbids_zeropage(vma->vm_mm)) { 4771 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4772 vma->vm_page_prot)); 4773 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4774 vmf->address, &vmf->ptl); 4775 if (!vmf->pte) 4776 goto unlock; 4777 if (vmf_pte_changed(vmf)) { 4778 update_mmu_tlb(vma, vmf->address, vmf->pte); 4779 goto unlock; 4780 } 4781 ret = check_stable_address_space(vma->vm_mm); 4782 if (ret) 4783 goto unlock; 4784 /* Deliver the page fault to userland, check inside PT lock */ 4785 if (userfaultfd_missing(vma)) { 4786 pte_unmap_unlock(vmf->pte, vmf->ptl); 4787 return handle_userfault(vmf, VM_UFFD_MISSING); 4788 } 4789 goto setpte; 4790 } 4791 4792 /* Allocate our own private page. */ 4793 ret = vmf_anon_prepare(vmf); 4794 if (ret) 4795 return ret; 4796 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 4797 folio = alloc_anon_folio(vmf); 4798 if (IS_ERR(folio)) 4799 return 0; 4800 if (!folio) 4801 goto oom; 4802 4803 nr_pages = folio_nr_pages(folio); 4804 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4805 4806 /* 4807 * The memory barrier inside __folio_mark_uptodate makes sure that 4808 * preceding stores to the page contents become visible before 4809 * the set_pte_at() write. 4810 */ 4811 __folio_mark_uptodate(folio); 4812 4813 entry = mk_pte(&folio->page, vma->vm_page_prot); 4814 entry = pte_sw_mkyoung(entry); 4815 if (vma->vm_flags & VM_WRITE) 4816 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4817 4818 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 4819 if (!vmf->pte) 4820 goto release; 4821 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 4822 update_mmu_tlb(vma, addr, vmf->pte); 4823 goto release; 4824 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 4825 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 4826 goto release; 4827 } 4828 4829 ret = check_stable_address_space(vma->vm_mm); 4830 if (ret) 4831 goto release; 4832 4833 /* Deliver the page fault to userland, check inside PT lock */ 4834 if (userfaultfd_missing(vma)) { 4835 pte_unmap_unlock(vmf->pte, vmf->ptl); 4836 folio_put(folio); 4837 return handle_userfault(vmf, VM_UFFD_MISSING); 4838 } 4839 4840 folio_ref_add(folio, nr_pages - 1); 4841 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4842 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 4843 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 4844 folio_add_lru_vma(folio, vma); 4845 setpte: 4846 if (vmf_orig_pte_uffd_wp(vmf)) 4847 entry = pte_mkuffd_wp(entry); 4848 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 4849 4850 /* No need to invalidate - it was non-present before */ 4851 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 4852 unlock: 4853 if (vmf->pte) 4854 pte_unmap_unlock(vmf->pte, vmf->ptl); 4855 return ret; 4856 release: 4857 folio_put(folio); 4858 goto unlock; 4859 oom: 4860 return VM_FAULT_OOM; 4861 } 4862 4863 /* 4864 * The mmap_lock must have been held on entry, and may have been 4865 * released depending on flags and vma->vm_ops->fault() return value. 4866 * See filemap_fault() and __lock_page_retry(). 4867 */ 4868 static vm_fault_t __do_fault(struct vm_fault *vmf) 4869 { 4870 struct vm_area_struct *vma = vmf->vma; 4871 struct folio *folio; 4872 vm_fault_t ret; 4873 4874 /* 4875 * Preallocate pte before we take page_lock because this might lead to 4876 * deadlocks for memcg reclaim which waits for pages under writeback: 4877 * lock_page(A) 4878 * SetPageWriteback(A) 4879 * unlock_page(A) 4880 * lock_page(B) 4881 * lock_page(B) 4882 * pte_alloc_one 4883 * shrink_folio_list 4884 * wait_on_page_writeback(A) 4885 * SetPageWriteback(B) 4886 * unlock_page(B) 4887 * # flush A, B to clear the writeback 4888 */ 4889 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4890 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4891 if (!vmf->prealloc_pte) 4892 return VM_FAULT_OOM; 4893 } 4894 4895 ret = vma->vm_ops->fault(vmf); 4896 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4897 VM_FAULT_DONE_COW))) 4898 return ret; 4899 4900 folio = page_folio(vmf->page); 4901 if (unlikely(PageHWPoison(vmf->page))) { 4902 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4903 if (ret & VM_FAULT_LOCKED) { 4904 if (page_mapped(vmf->page)) 4905 unmap_mapping_folio(folio); 4906 /* Retry if a clean folio was removed from the cache. */ 4907 if (mapping_evict_folio(folio->mapping, folio)) 4908 poisonret = VM_FAULT_NOPAGE; 4909 folio_unlock(folio); 4910 } 4911 folio_put(folio); 4912 vmf->page = NULL; 4913 return poisonret; 4914 } 4915 4916 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4917 folio_lock(folio); 4918 else 4919 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 4920 4921 return ret; 4922 } 4923 4924 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4925 static void deposit_prealloc_pte(struct vm_fault *vmf) 4926 { 4927 struct vm_area_struct *vma = vmf->vma; 4928 4929 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4930 /* 4931 * We are going to consume the prealloc table, 4932 * count that as nr_ptes. 4933 */ 4934 mm_inc_nr_ptes(vma->vm_mm); 4935 vmf->prealloc_pte = NULL; 4936 } 4937 4938 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4939 { 4940 struct folio *folio = page_folio(page); 4941 struct vm_area_struct *vma = vmf->vma; 4942 bool write = vmf->flags & FAULT_FLAG_WRITE; 4943 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4944 pmd_t entry; 4945 vm_fault_t ret = VM_FAULT_FALLBACK; 4946 4947 /* 4948 * It is too late to allocate a small folio, we already have a large 4949 * folio in the pagecache: especially s390 KVM cannot tolerate any 4950 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 4951 * PMD mappings if THPs are disabled. 4952 */ 4953 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) 4954 return ret; 4955 4956 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 4957 return ret; 4958 4959 if (folio_order(folio) != HPAGE_PMD_ORDER) 4960 return ret; 4961 page = &folio->page; 4962 4963 /* 4964 * Just backoff if any subpage of a THP is corrupted otherwise 4965 * the corrupted page may mapped by PMD silently to escape the 4966 * check. This kind of THP just can be PTE mapped. Access to 4967 * the corrupted subpage should trigger SIGBUS as expected. 4968 */ 4969 if (unlikely(folio_test_has_hwpoisoned(folio))) 4970 return ret; 4971 4972 /* 4973 * Archs like ppc64 need additional space to store information 4974 * related to pte entry. Use the preallocated table for that. 4975 */ 4976 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4977 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4978 if (!vmf->prealloc_pte) 4979 return VM_FAULT_OOM; 4980 } 4981 4982 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4983 if (unlikely(!pmd_none(*vmf->pmd))) 4984 goto out; 4985 4986 flush_icache_pages(vma, page, HPAGE_PMD_NR); 4987 4988 entry = mk_huge_pmd(page, vma->vm_page_prot); 4989 if (write) 4990 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4991 4992 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 4993 folio_add_file_rmap_pmd(folio, page, vma); 4994 4995 /* 4996 * deposit and withdraw with pmd lock held 4997 */ 4998 if (arch_needs_pgtable_deposit()) 4999 deposit_prealloc_pte(vmf); 5000 5001 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5002 5003 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5004 5005 /* fault is handled */ 5006 ret = 0; 5007 count_vm_event(THP_FILE_MAPPED); 5008 out: 5009 spin_unlock(vmf->ptl); 5010 return ret; 5011 } 5012 #else 5013 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 5014 { 5015 return VM_FAULT_FALLBACK; 5016 } 5017 #endif 5018 5019 /** 5020 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5021 * @vmf: Fault decription. 5022 * @folio: The folio that contains @page. 5023 * @page: The first page to create a PTE for. 5024 * @nr: The number of PTEs to create. 5025 * @addr: The first address to create a PTE for. 5026 */ 5027 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5028 struct page *page, unsigned int nr, unsigned long addr) 5029 { 5030 struct vm_area_struct *vma = vmf->vma; 5031 bool write = vmf->flags & FAULT_FLAG_WRITE; 5032 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5033 pte_t entry; 5034 5035 flush_icache_pages(vma, page, nr); 5036 entry = mk_pte(page, vma->vm_page_prot); 5037 5038 if (prefault && arch_wants_old_prefaulted_pte()) 5039 entry = pte_mkold(entry); 5040 else 5041 entry = pte_sw_mkyoung(entry); 5042 5043 if (write) 5044 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5045 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5046 entry = pte_mkuffd_wp(entry); 5047 /* copy-on-write page */ 5048 if (write && !(vma->vm_flags & VM_SHARED)) { 5049 VM_BUG_ON_FOLIO(nr != 1, folio); 5050 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5051 folio_add_lru_vma(folio, vma); 5052 } else { 5053 folio_add_file_rmap_ptes(folio, page, nr, vma); 5054 } 5055 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5056 5057 /* no need to invalidate: a not-present page won't be cached */ 5058 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5059 } 5060 5061 static bool vmf_pte_changed(struct vm_fault *vmf) 5062 { 5063 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5064 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5065 5066 return !pte_none(ptep_get(vmf->pte)); 5067 } 5068 5069 /** 5070 * finish_fault - finish page fault once we have prepared the page to fault 5071 * 5072 * @vmf: structure describing the fault 5073 * 5074 * This function handles all that is needed to finish a page fault once the 5075 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5076 * given page, adds reverse page mapping, handles memcg charges and LRU 5077 * addition. 5078 * 5079 * The function expects the page to be locked and on success it consumes a 5080 * reference of a page being mapped (for the PTE which maps it). 5081 * 5082 * Return: %0 on success, %VM_FAULT_ code in case of error. 5083 */ 5084 vm_fault_t finish_fault(struct vm_fault *vmf) 5085 { 5086 struct vm_area_struct *vma = vmf->vma; 5087 struct page *page; 5088 struct folio *folio; 5089 vm_fault_t ret; 5090 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5091 !(vma->vm_flags & VM_SHARED); 5092 int type, nr_pages; 5093 unsigned long addr = vmf->address; 5094 5095 /* Did we COW the page? */ 5096 if (is_cow) 5097 page = vmf->cow_page; 5098 else 5099 page = vmf->page; 5100 5101 /* 5102 * check even for read faults because we might have lost our CoWed 5103 * page 5104 */ 5105 if (!(vma->vm_flags & VM_SHARED)) { 5106 ret = check_stable_address_space(vma->vm_mm); 5107 if (ret) 5108 return ret; 5109 } 5110 5111 if (pmd_none(*vmf->pmd)) { 5112 if (PageTransCompound(page)) { 5113 ret = do_set_pmd(vmf, page); 5114 if (ret != VM_FAULT_FALLBACK) 5115 return ret; 5116 } 5117 5118 if (vmf->prealloc_pte) 5119 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5120 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5121 return VM_FAULT_OOM; 5122 } 5123 5124 folio = page_folio(page); 5125 nr_pages = folio_nr_pages(folio); 5126 5127 /* 5128 * Using per-page fault to maintain the uffd semantics, and same 5129 * approach also applies to non-anonymous-shmem faults to avoid 5130 * inflating the RSS of the process. 5131 */ 5132 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) { 5133 nr_pages = 1; 5134 } else if (nr_pages > 1) { 5135 pgoff_t idx = folio_page_idx(folio, page); 5136 /* The page offset of vmf->address within the VMA. */ 5137 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5138 /* The index of the entry in the pagetable for fault page. */ 5139 pgoff_t pte_off = pte_index(vmf->address); 5140 5141 /* 5142 * Fallback to per-page fault in case the folio size in page 5143 * cache beyond the VMA limits and PMD pagetable limits. 5144 */ 5145 if (unlikely(vma_off < idx || 5146 vma_off + (nr_pages - idx) > vma_pages(vma) || 5147 pte_off < idx || 5148 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5149 nr_pages = 1; 5150 } else { 5151 /* Now we can set mappings for the whole large folio. */ 5152 addr = vmf->address - idx * PAGE_SIZE; 5153 page = &folio->page; 5154 } 5155 } 5156 5157 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5158 addr, &vmf->ptl); 5159 if (!vmf->pte) 5160 return VM_FAULT_NOPAGE; 5161 5162 /* Re-check under ptl */ 5163 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5164 update_mmu_tlb(vma, addr, vmf->pte); 5165 ret = VM_FAULT_NOPAGE; 5166 goto unlock; 5167 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5168 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5169 ret = VM_FAULT_NOPAGE; 5170 goto unlock; 5171 } 5172 5173 folio_ref_add(folio, nr_pages - 1); 5174 set_pte_range(vmf, folio, page, nr_pages, addr); 5175 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5176 add_mm_counter(vma->vm_mm, type, nr_pages); 5177 ret = 0; 5178 5179 unlock: 5180 pte_unmap_unlock(vmf->pte, vmf->ptl); 5181 return ret; 5182 } 5183 5184 static unsigned long fault_around_pages __read_mostly = 5185 65536 >> PAGE_SHIFT; 5186 5187 #ifdef CONFIG_DEBUG_FS 5188 static int fault_around_bytes_get(void *data, u64 *val) 5189 { 5190 *val = fault_around_pages << PAGE_SHIFT; 5191 return 0; 5192 } 5193 5194 /* 5195 * fault_around_bytes must be rounded down to the nearest page order as it's 5196 * what do_fault_around() expects to see. 5197 */ 5198 static int fault_around_bytes_set(void *data, u64 val) 5199 { 5200 if (val / PAGE_SIZE > PTRS_PER_PTE) 5201 return -EINVAL; 5202 5203 /* 5204 * The minimum value is 1 page, however this results in no fault-around 5205 * at all. See should_fault_around(). 5206 */ 5207 val = max(val, PAGE_SIZE); 5208 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5209 5210 return 0; 5211 } 5212 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5213 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5214 5215 static int __init fault_around_debugfs(void) 5216 { 5217 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5218 &fault_around_bytes_fops); 5219 return 0; 5220 } 5221 late_initcall(fault_around_debugfs); 5222 #endif 5223 5224 /* 5225 * do_fault_around() tries to map few pages around the fault address. The hope 5226 * is that the pages will be needed soon and this will lower the number of 5227 * faults to handle. 5228 * 5229 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5230 * not ready to be mapped: not up-to-date, locked, etc. 5231 * 5232 * This function doesn't cross VMA or page table boundaries, in order to call 5233 * map_pages() and acquire a PTE lock only once. 5234 * 5235 * fault_around_pages defines how many pages we'll try to map. 5236 * do_fault_around() expects it to be set to a power of two less than or equal 5237 * to PTRS_PER_PTE. 5238 * 5239 * The virtual address of the area that we map is naturally aligned to 5240 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5241 * (and therefore to page order). This way it's easier to guarantee 5242 * that we don't cross page table boundaries. 5243 */ 5244 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5245 { 5246 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5247 pgoff_t pte_off = pte_index(vmf->address); 5248 /* The page offset of vmf->address within the VMA. */ 5249 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5250 pgoff_t from_pte, to_pte; 5251 vm_fault_t ret; 5252 5253 /* The PTE offset of the start address, clamped to the VMA. */ 5254 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5255 pte_off - min(pte_off, vma_off)); 5256 5257 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5258 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5259 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5260 5261 if (pmd_none(*vmf->pmd)) { 5262 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5263 if (!vmf->prealloc_pte) 5264 return VM_FAULT_OOM; 5265 } 5266 5267 rcu_read_lock(); 5268 ret = vmf->vma->vm_ops->map_pages(vmf, 5269 vmf->pgoff + from_pte - pte_off, 5270 vmf->pgoff + to_pte - pte_off); 5271 rcu_read_unlock(); 5272 5273 return ret; 5274 } 5275 5276 /* Return true if we should do read fault-around, false otherwise */ 5277 static inline bool should_fault_around(struct vm_fault *vmf) 5278 { 5279 /* No ->map_pages? No way to fault around... */ 5280 if (!vmf->vma->vm_ops->map_pages) 5281 return false; 5282 5283 if (uffd_disable_fault_around(vmf->vma)) 5284 return false; 5285 5286 /* A single page implies no faulting 'around' at all. */ 5287 return fault_around_pages > 1; 5288 } 5289 5290 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5291 { 5292 vm_fault_t ret = 0; 5293 struct folio *folio; 5294 5295 /* 5296 * Let's call ->map_pages() first and use ->fault() as fallback 5297 * if page by the offset is not ready to be mapped (cold cache or 5298 * something). 5299 */ 5300 if (should_fault_around(vmf)) { 5301 ret = do_fault_around(vmf); 5302 if (ret) 5303 return ret; 5304 } 5305 5306 ret = vmf_can_call_fault(vmf); 5307 if (ret) 5308 return ret; 5309 5310 ret = __do_fault(vmf); 5311 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5312 return ret; 5313 5314 ret |= finish_fault(vmf); 5315 folio = page_folio(vmf->page); 5316 folio_unlock(folio); 5317 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5318 folio_put(folio); 5319 return ret; 5320 } 5321 5322 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5323 { 5324 struct vm_area_struct *vma = vmf->vma; 5325 struct folio *folio; 5326 vm_fault_t ret; 5327 5328 ret = vmf_can_call_fault(vmf); 5329 if (!ret) 5330 ret = vmf_anon_prepare(vmf); 5331 if (ret) 5332 return ret; 5333 5334 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5335 if (!folio) 5336 return VM_FAULT_OOM; 5337 5338 vmf->cow_page = &folio->page; 5339 5340 ret = __do_fault(vmf); 5341 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5342 goto uncharge_out; 5343 if (ret & VM_FAULT_DONE_COW) 5344 return ret; 5345 5346 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5347 ret = VM_FAULT_HWPOISON; 5348 goto unlock; 5349 } 5350 __folio_mark_uptodate(folio); 5351 5352 ret |= finish_fault(vmf); 5353 unlock: 5354 unlock_page(vmf->page); 5355 put_page(vmf->page); 5356 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5357 goto uncharge_out; 5358 return ret; 5359 uncharge_out: 5360 folio_put(folio); 5361 return ret; 5362 } 5363 5364 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5365 { 5366 struct vm_area_struct *vma = vmf->vma; 5367 vm_fault_t ret, tmp; 5368 struct folio *folio; 5369 5370 ret = vmf_can_call_fault(vmf); 5371 if (ret) 5372 return ret; 5373 5374 ret = __do_fault(vmf); 5375 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5376 return ret; 5377 5378 folio = page_folio(vmf->page); 5379 5380 /* 5381 * Check if the backing address space wants to know that the page is 5382 * about to become writable 5383 */ 5384 if (vma->vm_ops->page_mkwrite) { 5385 folio_unlock(folio); 5386 tmp = do_page_mkwrite(vmf, folio); 5387 if (unlikely(!tmp || 5388 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5389 folio_put(folio); 5390 return tmp; 5391 } 5392 } 5393 5394 ret |= finish_fault(vmf); 5395 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5396 VM_FAULT_RETRY))) { 5397 folio_unlock(folio); 5398 folio_put(folio); 5399 return ret; 5400 } 5401 5402 ret |= fault_dirty_shared_page(vmf); 5403 return ret; 5404 } 5405 5406 /* 5407 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5408 * but allow concurrent faults). 5409 * The mmap_lock may have been released depending on flags and our 5410 * return value. See filemap_fault() and __folio_lock_or_retry(). 5411 * If mmap_lock is released, vma may become invalid (for example 5412 * by other thread calling munmap()). 5413 */ 5414 static vm_fault_t do_fault(struct vm_fault *vmf) 5415 { 5416 struct vm_area_struct *vma = vmf->vma; 5417 struct mm_struct *vm_mm = vma->vm_mm; 5418 vm_fault_t ret; 5419 5420 /* 5421 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5422 */ 5423 if (!vma->vm_ops->fault) { 5424 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5425 vmf->address, &vmf->ptl); 5426 if (unlikely(!vmf->pte)) 5427 ret = VM_FAULT_SIGBUS; 5428 else { 5429 /* 5430 * Make sure this is not a temporary clearing of pte 5431 * by holding ptl and checking again. A R/M/W update 5432 * of pte involves: take ptl, clearing the pte so that 5433 * we don't have concurrent modification by hardware 5434 * followed by an update. 5435 */ 5436 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5437 ret = VM_FAULT_SIGBUS; 5438 else 5439 ret = VM_FAULT_NOPAGE; 5440 5441 pte_unmap_unlock(vmf->pte, vmf->ptl); 5442 } 5443 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5444 ret = do_read_fault(vmf); 5445 else if (!(vma->vm_flags & VM_SHARED)) 5446 ret = do_cow_fault(vmf); 5447 else 5448 ret = do_shared_fault(vmf); 5449 5450 /* preallocated pagetable is unused: free it */ 5451 if (vmf->prealloc_pte) { 5452 pte_free(vm_mm, vmf->prealloc_pte); 5453 vmf->prealloc_pte = NULL; 5454 } 5455 return ret; 5456 } 5457 5458 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5459 unsigned long addr, int *flags, 5460 bool writable, int *last_cpupid) 5461 { 5462 struct vm_area_struct *vma = vmf->vma; 5463 5464 /* 5465 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5466 * much anyway since they can be in shared cache state. This misses 5467 * the case where a mapping is writable but the process never writes 5468 * to it but pte_write gets cleared during protection updates and 5469 * pte_dirty has unpredictable behaviour between PTE scan updates, 5470 * background writeback, dirty balancing and application behaviour. 5471 */ 5472 if (!writable) 5473 *flags |= TNF_NO_GROUP; 5474 5475 /* 5476 * Flag if the folio is shared between multiple address spaces. This 5477 * is later used when determining whether to group tasks together 5478 */ 5479 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5480 *flags |= TNF_SHARED; 5481 /* 5482 * For memory tiering mode, cpupid of slow memory page is used 5483 * to record page access time. So use default value. 5484 */ 5485 if (folio_use_access_time(folio)) 5486 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5487 else 5488 *last_cpupid = folio_last_cpupid(folio); 5489 5490 /* Record the current PID acceesing VMA */ 5491 vma_set_access_pid_bit(vma); 5492 5493 count_vm_numa_event(NUMA_HINT_FAULTS); 5494 #ifdef CONFIG_NUMA_BALANCING 5495 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5496 #endif 5497 if (folio_nid(folio) == numa_node_id()) { 5498 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5499 *flags |= TNF_FAULT_LOCAL; 5500 } 5501 5502 return mpol_misplaced(folio, vmf, addr); 5503 } 5504 5505 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5506 unsigned long fault_addr, pte_t *fault_pte, 5507 bool writable) 5508 { 5509 pte_t pte, old_pte; 5510 5511 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5512 pte = pte_modify(old_pte, vma->vm_page_prot); 5513 pte = pte_mkyoung(pte); 5514 if (writable) 5515 pte = pte_mkwrite(pte, vma); 5516 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5517 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5518 } 5519 5520 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5521 struct folio *folio, pte_t fault_pte, 5522 bool ignore_writable, bool pte_write_upgrade) 5523 { 5524 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5525 unsigned long start, end, addr = vmf->address; 5526 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5527 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5528 pte_t *start_ptep; 5529 5530 /* Stay within the VMA and within the page table. */ 5531 start = max3(addr_start, pt_start, vma->vm_start); 5532 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5533 vma->vm_end); 5534 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5535 5536 /* Restore all PTEs' mapping of the large folio */ 5537 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5538 pte_t ptent = ptep_get(start_ptep); 5539 bool writable = false; 5540 5541 if (!pte_present(ptent) || !pte_protnone(ptent)) 5542 continue; 5543 5544 if (pfn_folio(pte_pfn(ptent)) != folio) 5545 continue; 5546 5547 if (!ignore_writable) { 5548 ptent = pte_modify(ptent, vma->vm_page_prot); 5549 writable = pte_write(ptent); 5550 if (!writable && pte_write_upgrade && 5551 can_change_pte_writable(vma, addr, ptent)) 5552 writable = true; 5553 } 5554 5555 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5556 } 5557 } 5558 5559 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5560 { 5561 struct vm_area_struct *vma = vmf->vma; 5562 struct folio *folio = NULL; 5563 int nid = NUMA_NO_NODE; 5564 bool writable = false, ignore_writable = false; 5565 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5566 int last_cpupid; 5567 int target_nid; 5568 pte_t pte, old_pte; 5569 int flags = 0, nr_pages; 5570 5571 /* 5572 * The pte cannot be used safely until we verify, while holding the page 5573 * table lock, that its contents have not changed during fault handling. 5574 */ 5575 spin_lock(vmf->ptl); 5576 /* Read the live PTE from the page tables: */ 5577 old_pte = ptep_get(vmf->pte); 5578 5579 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5580 pte_unmap_unlock(vmf->pte, vmf->ptl); 5581 return 0; 5582 } 5583 5584 pte = pte_modify(old_pte, vma->vm_page_prot); 5585 5586 /* 5587 * Detect now whether the PTE could be writable; this information 5588 * is only valid while holding the PT lock. 5589 */ 5590 writable = pte_write(pte); 5591 if (!writable && pte_write_upgrade && 5592 can_change_pte_writable(vma, vmf->address, pte)) 5593 writable = true; 5594 5595 folio = vm_normal_folio(vma, vmf->address, pte); 5596 if (!folio || folio_is_zone_device(folio)) 5597 goto out_map; 5598 5599 nid = folio_nid(folio); 5600 nr_pages = folio_nr_pages(folio); 5601 5602 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5603 writable, &last_cpupid); 5604 if (target_nid == NUMA_NO_NODE) 5605 goto out_map; 5606 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5607 flags |= TNF_MIGRATE_FAIL; 5608 goto out_map; 5609 } 5610 /* The folio is isolated and isolation code holds a folio reference. */ 5611 pte_unmap_unlock(vmf->pte, vmf->ptl); 5612 writable = false; 5613 ignore_writable = true; 5614 5615 /* Migrate to the requested node */ 5616 if (!migrate_misplaced_folio(folio, vma, target_nid)) { 5617 nid = target_nid; 5618 flags |= TNF_MIGRATED; 5619 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5620 return 0; 5621 } 5622 5623 flags |= TNF_MIGRATE_FAIL; 5624 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5625 vmf->address, &vmf->ptl); 5626 if (unlikely(!vmf->pte)) 5627 return 0; 5628 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5629 pte_unmap_unlock(vmf->pte, vmf->ptl); 5630 return 0; 5631 } 5632 out_map: 5633 /* 5634 * Make it present again, depending on how arch implements 5635 * non-accessible ptes, some can allow access by kernel mode. 5636 */ 5637 if (folio && folio_test_large(folio)) 5638 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5639 pte_write_upgrade); 5640 else 5641 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5642 writable); 5643 pte_unmap_unlock(vmf->pte, vmf->ptl); 5644 5645 if (nid != NUMA_NO_NODE) 5646 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5647 return 0; 5648 } 5649 5650 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5651 { 5652 struct vm_area_struct *vma = vmf->vma; 5653 if (vma_is_anonymous(vma)) 5654 return do_huge_pmd_anonymous_page(vmf); 5655 if (vma->vm_ops->huge_fault) 5656 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5657 return VM_FAULT_FALLBACK; 5658 } 5659 5660 /* `inline' is required to avoid gcc 4.1.2 build error */ 5661 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5662 { 5663 struct vm_area_struct *vma = vmf->vma; 5664 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5665 vm_fault_t ret; 5666 5667 if (vma_is_anonymous(vma)) { 5668 if (likely(!unshare) && 5669 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5670 if (userfaultfd_wp_async(vmf->vma)) 5671 goto split; 5672 return handle_userfault(vmf, VM_UFFD_WP); 5673 } 5674 return do_huge_pmd_wp_page(vmf); 5675 } 5676 5677 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5678 if (vma->vm_ops->huge_fault) { 5679 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5680 if (!(ret & VM_FAULT_FALLBACK)) 5681 return ret; 5682 } 5683 } 5684 5685 split: 5686 /* COW or write-notify handled on pte level: split pmd. */ 5687 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5688 5689 return VM_FAULT_FALLBACK; 5690 } 5691 5692 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5693 { 5694 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5695 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5696 struct vm_area_struct *vma = vmf->vma; 5697 /* No support for anonymous transparent PUD pages yet */ 5698 if (vma_is_anonymous(vma)) 5699 return VM_FAULT_FALLBACK; 5700 if (vma->vm_ops->huge_fault) 5701 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5702 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5703 return VM_FAULT_FALLBACK; 5704 } 5705 5706 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5707 { 5708 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5709 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5710 struct vm_area_struct *vma = vmf->vma; 5711 vm_fault_t ret; 5712 5713 /* No support for anonymous transparent PUD pages yet */ 5714 if (vma_is_anonymous(vma)) 5715 goto split; 5716 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5717 if (vma->vm_ops->huge_fault) { 5718 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5719 if (!(ret & VM_FAULT_FALLBACK)) 5720 return ret; 5721 } 5722 } 5723 split: 5724 /* COW or write-notify not handled on PUD level: split pud.*/ 5725 __split_huge_pud(vma, vmf->pud, vmf->address); 5726 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5727 return VM_FAULT_FALLBACK; 5728 } 5729 5730 /* 5731 * These routines also need to handle stuff like marking pages dirty 5732 * and/or accessed for architectures that don't do it in hardware (most 5733 * RISC architectures). The early dirtying is also good on the i386. 5734 * 5735 * There is also a hook called "update_mmu_cache()" that architectures 5736 * with external mmu caches can use to update those (ie the Sparc or 5737 * PowerPC hashed page tables that act as extended TLBs). 5738 * 5739 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5740 * concurrent faults). 5741 * 5742 * The mmap_lock may have been released depending on flags and our return value. 5743 * See filemap_fault() and __folio_lock_or_retry(). 5744 */ 5745 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5746 { 5747 pte_t entry; 5748 5749 if (unlikely(pmd_none(*vmf->pmd))) { 5750 /* 5751 * Leave __pte_alloc() until later: because vm_ops->fault may 5752 * want to allocate huge page, and if we expose page table 5753 * for an instant, it will be difficult to retract from 5754 * concurrent faults and from rmap lookups. 5755 */ 5756 vmf->pte = NULL; 5757 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5758 } else { 5759 pmd_t dummy_pmdval; 5760 5761 /* 5762 * A regular pmd is established and it can't morph into a huge 5763 * pmd by anon khugepaged, since that takes mmap_lock in write 5764 * mode; but shmem or file collapse to THP could still morph 5765 * it into a huge pmd: just retry later if so. 5766 * 5767 * Use the maywrite version to indicate that vmf->pte may be 5768 * modified, but since we will use pte_same() to detect the 5769 * change of the !pte_none() entry, there is no need to recheck 5770 * the pmdval. Here we chooes to pass a dummy variable instead 5771 * of NULL, which helps new user think about why this place is 5772 * special. 5773 */ 5774 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 5775 vmf->address, &dummy_pmdval, 5776 &vmf->ptl); 5777 if (unlikely(!vmf->pte)) 5778 return 0; 5779 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5780 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5781 5782 if (pte_none(vmf->orig_pte)) { 5783 pte_unmap(vmf->pte); 5784 vmf->pte = NULL; 5785 } 5786 } 5787 5788 if (!vmf->pte) 5789 return do_pte_missing(vmf); 5790 5791 if (!pte_present(vmf->orig_pte)) 5792 return do_swap_page(vmf); 5793 5794 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5795 return do_numa_page(vmf); 5796 5797 spin_lock(vmf->ptl); 5798 entry = vmf->orig_pte; 5799 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5800 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5801 goto unlock; 5802 } 5803 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5804 if (!pte_write(entry)) 5805 return do_wp_page(vmf); 5806 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5807 entry = pte_mkdirty(entry); 5808 } 5809 entry = pte_mkyoung(entry); 5810 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5811 vmf->flags & FAULT_FLAG_WRITE)) { 5812 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5813 vmf->pte, 1); 5814 } else { 5815 /* Skip spurious TLB flush for retried page fault */ 5816 if (vmf->flags & FAULT_FLAG_TRIED) 5817 goto unlock; 5818 /* 5819 * This is needed only for protection faults but the arch code 5820 * is not yet telling us if this is a protection fault or not. 5821 * This still avoids useless tlb flushes for .text page faults 5822 * with threads. 5823 */ 5824 if (vmf->flags & FAULT_FLAG_WRITE) 5825 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5826 vmf->pte); 5827 } 5828 unlock: 5829 pte_unmap_unlock(vmf->pte, vmf->ptl); 5830 return 0; 5831 } 5832 5833 /* 5834 * On entry, we hold either the VMA lock or the mmap_lock 5835 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5836 * the result, the mmap_lock is not held on exit. See filemap_fault() 5837 * and __folio_lock_or_retry(). 5838 */ 5839 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5840 unsigned long address, unsigned int flags) 5841 { 5842 struct vm_fault vmf = { 5843 .vma = vma, 5844 .address = address & PAGE_MASK, 5845 .real_address = address, 5846 .flags = flags, 5847 .pgoff = linear_page_index(vma, address), 5848 .gfp_mask = __get_fault_gfp_mask(vma), 5849 }; 5850 struct mm_struct *mm = vma->vm_mm; 5851 unsigned long vm_flags = vma->vm_flags; 5852 pgd_t *pgd; 5853 p4d_t *p4d; 5854 vm_fault_t ret; 5855 5856 pgd = pgd_offset(mm, address); 5857 p4d = p4d_alloc(mm, pgd, address); 5858 if (!p4d) 5859 return VM_FAULT_OOM; 5860 5861 vmf.pud = pud_alloc(mm, p4d, address); 5862 if (!vmf.pud) 5863 return VM_FAULT_OOM; 5864 retry_pud: 5865 if (pud_none(*vmf.pud) && 5866 thp_vma_allowable_order(vma, vm_flags, 5867 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 5868 ret = create_huge_pud(&vmf); 5869 if (!(ret & VM_FAULT_FALLBACK)) 5870 return ret; 5871 } else { 5872 pud_t orig_pud = *vmf.pud; 5873 5874 barrier(); 5875 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5876 5877 /* 5878 * TODO once we support anonymous PUDs: NUMA case and 5879 * FAULT_FLAG_UNSHARE handling. 5880 */ 5881 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5882 ret = wp_huge_pud(&vmf, orig_pud); 5883 if (!(ret & VM_FAULT_FALLBACK)) 5884 return ret; 5885 } else { 5886 huge_pud_set_accessed(&vmf, orig_pud); 5887 return 0; 5888 } 5889 } 5890 } 5891 5892 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5893 if (!vmf.pmd) 5894 return VM_FAULT_OOM; 5895 5896 /* Huge pud page fault raced with pmd_alloc? */ 5897 if (pud_trans_unstable(vmf.pud)) 5898 goto retry_pud; 5899 5900 if (pmd_none(*vmf.pmd) && 5901 thp_vma_allowable_order(vma, vm_flags, 5902 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 5903 ret = create_huge_pmd(&vmf); 5904 if (!(ret & VM_FAULT_FALLBACK)) 5905 return ret; 5906 } else { 5907 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5908 5909 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5910 VM_BUG_ON(thp_migration_supported() && 5911 !is_pmd_migration_entry(vmf.orig_pmd)); 5912 if (is_pmd_migration_entry(vmf.orig_pmd)) 5913 pmd_migration_entry_wait(mm, vmf.pmd); 5914 return 0; 5915 } 5916 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5917 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5918 return do_huge_pmd_numa_page(&vmf); 5919 5920 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5921 !pmd_write(vmf.orig_pmd)) { 5922 ret = wp_huge_pmd(&vmf); 5923 if (!(ret & VM_FAULT_FALLBACK)) 5924 return ret; 5925 } else { 5926 huge_pmd_set_accessed(&vmf); 5927 return 0; 5928 } 5929 } 5930 } 5931 5932 return handle_pte_fault(&vmf); 5933 } 5934 5935 /** 5936 * mm_account_fault - Do page fault accounting 5937 * @mm: mm from which memcg should be extracted. It can be NULL. 5938 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5939 * of perf event counters, but we'll still do the per-task accounting to 5940 * the task who triggered this page fault. 5941 * @address: the faulted address. 5942 * @flags: the fault flags. 5943 * @ret: the fault retcode. 5944 * 5945 * This will take care of most of the page fault accounting. Meanwhile, it 5946 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5947 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5948 * still be in per-arch page fault handlers at the entry of page fault. 5949 */ 5950 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5951 unsigned long address, unsigned int flags, 5952 vm_fault_t ret) 5953 { 5954 bool major; 5955 5956 /* Incomplete faults will be accounted upon completion. */ 5957 if (ret & VM_FAULT_RETRY) 5958 return; 5959 5960 /* 5961 * To preserve the behavior of older kernels, PGFAULT counters record 5962 * both successful and failed faults, as opposed to perf counters, 5963 * which ignore failed cases. 5964 */ 5965 count_vm_event(PGFAULT); 5966 count_memcg_event_mm(mm, PGFAULT); 5967 5968 /* 5969 * Do not account for unsuccessful faults (e.g. when the address wasn't 5970 * valid). That includes arch_vma_access_permitted() failing before 5971 * reaching here. So this is not a "this many hardware page faults" 5972 * counter. We should use the hw profiling for that. 5973 */ 5974 if (ret & VM_FAULT_ERROR) 5975 return; 5976 5977 /* 5978 * We define the fault as a major fault when the final successful fault 5979 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5980 * handle it immediately previously). 5981 */ 5982 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5983 5984 if (major) 5985 current->maj_flt++; 5986 else 5987 current->min_flt++; 5988 5989 /* 5990 * If the fault is done for GUP, regs will be NULL. We only do the 5991 * accounting for the per thread fault counters who triggered the 5992 * fault, and we skip the perf event updates. 5993 */ 5994 if (!regs) 5995 return; 5996 5997 if (major) 5998 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5999 else 6000 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6001 } 6002 6003 #ifdef CONFIG_LRU_GEN 6004 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6005 { 6006 /* the LRU algorithm only applies to accesses with recency */ 6007 current->in_lru_fault = vma_has_recency(vma); 6008 } 6009 6010 static void lru_gen_exit_fault(void) 6011 { 6012 current->in_lru_fault = false; 6013 } 6014 #else 6015 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6016 { 6017 } 6018 6019 static void lru_gen_exit_fault(void) 6020 { 6021 } 6022 #endif /* CONFIG_LRU_GEN */ 6023 6024 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6025 unsigned int *flags) 6026 { 6027 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6028 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6029 return VM_FAULT_SIGSEGV; 6030 /* 6031 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6032 * just treat it like an ordinary read-fault otherwise. 6033 */ 6034 if (!is_cow_mapping(vma->vm_flags)) 6035 *flags &= ~FAULT_FLAG_UNSHARE; 6036 } else if (*flags & FAULT_FLAG_WRITE) { 6037 /* Write faults on read-only mappings are impossible ... */ 6038 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6039 return VM_FAULT_SIGSEGV; 6040 /* ... and FOLL_FORCE only applies to COW mappings. */ 6041 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6042 !is_cow_mapping(vma->vm_flags))) 6043 return VM_FAULT_SIGSEGV; 6044 } 6045 #ifdef CONFIG_PER_VMA_LOCK 6046 /* 6047 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6048 * the assumption that lock is dropped on VM_FAULT_RETRY. 6049 */ 6050 if (WARN_ON_ONCE((*flags & 6051 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6052 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6053 return VM_FAULT_SIGSEGV; 6054 #endif 6055 6056 return 0; 6057 } 6058 6059 /* 6060 * By the time we get here, we already hold the mm semaphore 6061 * 6062 * The mmap_lock may have been released depending on flags and our 6063 * return value. See filemap_fault() and __folio_lock_or_retry(). 6064 */ 6065 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6066 unsigned int flags, struct pt_regs *regs) 6067 { 6068 /* If the fault handler drops the mmap_lock, vma may be freed */ 6069 struct mm_struct *mm = vma->vm_mm; 6070 vm_fault_t ret; 6071 bool is_droppable; 6072 6073 __set_current_state(TASK_RUNNING); 6074 6075 ret = sanitize_fault_flags(vma, &flags); 6076 if (ret) 6077 goto out; 6078 6079 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6080 flags & FAULT_FLAG_INSTRUCTION, 6081 flags & FAULT_FLAG_REMOTE)) { 6082 ret = VM_FAULT_SIGSEGV; 6083 goto out; 6084 } 6085 6086 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6087 6088 /* 6089 * Enable the memcg OOM handling for faults triggered in user 6090 * space. Kernel faults are handled more gracefully. 6091 */ 6092 if (flags & FAULT_FLAG_USER) 6093 mem_cgroup_enter_user_fault(); 6094 6095 lru_gen_enter_fault(vma); 6096 6097 if (unlikely(is_vm_hugetlb_page(vma))) 6098 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6099 else 6100 ret = __handle_mm_fault(vma, address, flags); 6101 6102 /* 6103 * Warning: It is no longer safe to dereference vma-> after this point, 6104 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6105 * vma might be destroyed from underneath us. 6106 */ 6107 6108 lru_gen_exit_fault(); 6109 6110 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6111 if (is_droppable) 6112 ret &= ~VM_FAULT_OOM; 6113 6114 if (flags & FAULT_FLAG_USER) { 6115 mem_cgroup_exit_user_fault(); 6116 /* 6117 * The task may have entered a memcg OOM situation but 6118 * if the allocation error was handled gracefully (no 6119 * VM_FAULT_OOM), there is no need to kill anything. 6120 * Just clean up the OOM state peacefully. 6121 */ 6122 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6123 mem_cgroup_oom_synchronize(false); 6124 } 6125 out: 6126 mm_account_fault(mm, regs, address, flags, ret); 6127 6128 return ret; 6129 } 6130 EXPORT_SYMBOL_GPL(handle_mm_fault); 6131 6132 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 6133 #include <linux/extable.h> 6134 6135 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6136 { 6137 if (likely(mmap_read_trylock(mm))) 6138 return true; 6139 6140 if (regs && !user_mode(regs)) { 6141 unsigned long ip = exception_ip(regs); 6142 if (!search_exception_tables(ip)) 6143 return false; 6144 } 6145 6146 return !mmap_read_lock_killable(mm); 6147 } 6148 6149 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 6150 { 6151 /* 6152 * We don't have this operation yet. 6153 * 6154 * It should be easy enough to do: it's basically a 6155 * atomic_long_try_cmpxchg_acquire() 6156 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 6157 * it also needs the proper lockdep magic etc. 6158 */ 6159 return false; 6160 } 6161 6162 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6163 { 6164 mmap_read_unlock(mm); 6165 if (regs && !user_mode(regs)) { 6166 unsigned long ip = exception_ip(regs); 6167 if (!search_exception_tables(ip)) 6168 return false; 6169 } 6170 return !mmap_write_lock_killable(mm); 6171 } 6172 6173 /* 6174 * Helper for page fault handling. 6175 * 6176 * This is kind of equivalend to "mmap_read_lock()" followed 6177 * by "find_extend_vma()", except it's a lot more careful about 6178 * the locking (and will drop the lock on failure). 6179 * 6180 * For example, if we have a kernel bug that causes a page 6181 * fault, we don't want to just use mmap_read_lock() to get 6182 * the mm lock, because that would deadlock if the bug were 6183 * to happen while we're holding the mm lock for writing. 6184 * 6185 * So this checks the exception tables on kernel faults in 6186 * order to only do this all for instructions that are actually 6187 * expected to fault. 6188 * 6189 * We can also actually take the mm lock for writing if we 6190 * need to extend the vma, which helps the VM layer a lot. 6191 */ 6192 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 6193 unsigned long addr, struct pt_regs *regs) 6194 { 6195 struct vm_area_struct *vma; 6196 6197 if (!get_mmap_lock_carefully(mm, regs)) 6198 return NULL; 6199 6200 vma = find_vma(mm, addr); 6201 if (likely(vma && (vma->vm_start <= addr))) 6202 return vma; 6203 6204 /* 6205 * Well, dang. We might still be successful, but only 6206 * if we can extend a vma to do so. 6207 */ 6208 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 6209 mmap_read_unlock(mm); 6210 return NULL; 6211 } 6212 6213 /* 6214 * We can try to upgrade the mmap lock atomically, 6215 * in which case we can continue to use the vma 6216 * we already looked up. 6217 * 6218 * Otherwise we'll have to drop the mmap lock and 6219 * re-take it, and also look up the vma again, 6220 * re-checking it. 6221 */ 6222 if (!mmap_upgrade_trylock(mm)) { 6223 if (!upgrade_mmap_lock_carefully(mm, regs)) 6224 return NULL; 6225 6226 vma = find_vma(mm, addr); 6227 if (!vma) 6228 goto fail; 6229 if (vma->vm_start <= addr) 6230 goto success; 6231 if (!(vma->vm_flags & VM_GROWSDOWN)) 6232 goto fail; 6233 } 6234 6235 if (expand_stack_locked(vma, addr)) 6236 goto fail; 6237 6238 success: 6239 mmap_write_downgrade(mm); 6240 return vma; 6241 6242 fail: 6243 mmap_write_unlock(mm); 6244 return NULL; 6245 } 6246 #endif 6247 6248 #ifdef CONFIG_PER_VMA_LOCK 6249 /* 6250 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 6251 * stable and not isolated. If the VMA is not found or is being modified the 6252 * function returns NULL. 6253 */ 6254 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 6255 unsigned long address) 6256 { 6257 MA_STATE(mas, &mm->mm_mt, address, address); 6258 struct vm_area_struct *vma; 6259 6260 rcu_read_lock(); 6261 retry: 6262 vma = mas_walk(&mas); 6263 if (!vma) 6264 goto inval; 6265 6266 if (!vma_start_read(vma)) 6267 goto inval; 6268 6269 /* Check if the VMA got isolated after we found it */ 6270 if (vma->detached) { 6271 vma_end_read(vma); 6272 count_vm_vma_lock_event(VMA_LOCK_MISS); 6273 /* The area was replaced with another one */ 6274 goto retry; 6275 } 6276 /* 6277 * At this point, we have a stable reference to a VMA: The VMA is 6278 * locked and we know it hasn't already been isolated. 6279 * From here on, we can access the VMA without worrying about which 6280 * fields are accessible for RCU readers. 6281 */ 6282 6283 /* Check since vm_start/vm_end might change before we lock the VMA */ 6284 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6285 goto inval_end_read; 6286 6287 rcu_read_unlock(); 6288 return vma; 6289 6290 inval_end_read: 6291 vma_end_read(vma); 6292 inval: 6293 rcu_read_unlock(); 6294 count_vm_vma_lock_event(VMA_LOCK_ABORT); 6295 return NULL; 6296 } 6297 #endif /* CONFIG_PER_VMA_LOCK */ 6298 6299 #ifndef __PAGETABLE_P4D_FOLDED 6300 /* 6301 * Allocate p4d page table. 6302 * We've already handled the fast-path in-line. 6303 */ 6304 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6305 { 6306 p4d_t *new = p4d_alloc_one(mm, address); 6307 if (!new) 6308 return -ENOMEM; 6309 6310 spin_lock(&mm->page_table_lock); 6311 if (pgd_present(*pgd)) { /* Another has populated it */ 6312 p4d_free(mm, new); 6313 } else { 6314 smp_wmb(); /* See comment in pmd_install() */ 6315 pgd_populate(mm, pgd, new); 6316 } 6317 spin_unlock(&mm->page_table_lock); 6318 return 0; 6319 } 6320 #endif /* __PAGETABLE_P4D_FOLDED */ 6321 6322 #ifndef __PAGETABLE_PUD_FOLDED 6323 /* 6324 * Allocate page upper directory. 6325 * We've already handled the fast-path in-line. 6326 */ 6327 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6328 { 6329 pud_t *new = pud_alloc_one(mm, address); 6330 if (!new) 6331 return -ENOMEM; 6332 6333 spin_lock(&mm->page_table_lock); 6334 if (!p4d_present(*p4d)) { 6335 mm_inc_nr_puds(mm); 6336 smp_wmb(); /* See comment in pmd_install() */ 6337 p4d_populate(mm, p4d, new); 6338 } else /* Another has populated it */ 6339 pud_free(mm, new); 6340 spin_unlock(&mm->page_table_lock); 6341 return 0; 6342 } 6343 #endif /* __PAGETABLE_PUD_FOLDED */ 6344 6345 #ifndef __PAGETABLE_PMD_FOLDED 6346 /* 6347 * Allocate page middle directory. 6348 * We've already handled the fast-path in-line. 6349 */ 6350 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6351 { 6352 spinlock_t *ptl; 6353 pmd_t *new = pmd_alloc_one(mm, address); 6354 if (!new) 6355 return -ENOMEM; 6356 6357 ptl = pud_lock(mm, pud); 6358 if (!pud_present(*pud)) { 6359 mm_inc_nr_pmds(mm); 6360 smp_wmb(); /* See comment in pmd_install() */ 6361 pud_populate(mm, pud, new); 6362 } else { /* Another has populated it */ 6363 pmd_free(mm, new); 6364 } 6365 spin_unlock(ptl); 6366 return 0; 6367 } 6368 #endif /* __PAGETABLE_PMD_FOLDED */ 6369 6370 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6371 spinlock_t *lock, pte_t *ptep, 6372 pgprot_t pgprot, unsigned long pfn_base, 6373 unsigned long addr_mask, bool writable, 6374 bool special) 6375 { 6376 args->lock = lock; 6377 args->ptep = ptep; 6378 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6379 args->pgprot = pgprot; 6380 args->writable = writable; 6381 args->special = special; 6382 } 6383 6384 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6385 { 6386 #ifdef CONFIG_LOCKDEP 6387 struct file *file = vma->vm_file; 6388 struct address_space *mapping = file ? file->f_mapping : NULL; 6389 6390 if (mapping) 6391 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6392 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6393 else 6394 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6395 #endif 6396 } 6397 6398 /** 6399 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6400 * @args: Pointer to struct @follow_pfnmap_args 6401 * 6402 * The caller needs to setup args->vma and args->address to point to the 6403 * virtual address as the target of such lookup. On a successful return, 6404 * the results will be put into other output fields. 6405 * 6406 * After the caller finished using the fields, the caller must invoke 6407 * another follow_pfnmap_end() to proper releases the locks and resources 6408 * of such look up request. 6409 * 6410 * During the start() and end() calls, the results in @args will be valid 6411 * as proper locks will be held. After the end() is called, all the fields 6412 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6413 * use of such information after end() may require proper synchronizations 6414 * by the caller with page table updates, otherwise it can create a 6415 * security bug. 6416 * 6417 * If the PTE maps a refcounted page, callers are responsible to protect 6418 * against invalidation with MMU notifiers; otherwise access to the PFN at 6419 * a later point in time can trigger use-after-free. 6420 * 6421 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6422 * should be taken for read, and the mmap semaphore cannot be released 6423 * before the end() is invoked. 6424 * 6425 * This function must not be used to modify PTE content. 6426 * 6427 * Return: zero on success, negative otherwise. 6428 */ 6429 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6430 { 6431 struct vm_area_struct *vma = args->vma; 6432 unsigned long address = args->address; 6433 struct mm_struct *mm = vma->vm_mm; 6434 spinlock_t *lock; 6435 pgd_t *pgdp; 6436 p4d_t *p4dp, p4d; 6437 pud_t *pudp, pud; 6438 pmd_t *pmdp, pmd; 6439 pte_t *ptep, pte; 6440 6441 pfnmap_lockdep_assert(vma); 6442 6443 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6444 goto out; 6445 6446 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6447 goto out; 6448 retry: 6449 pgdp = pgd_offset(mm, address); 6450 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6451 goto out; 6452 6453 p4dp = p4d_offset(pgdp, address); 6454 p4d = READ_ONCE(*p4dp); 6455 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6456 goto out; 6457 6458 pudp = pud_offset(p4dp, address); 6459 pud = READ_ONCE(*pudp); 6460 if (pud_none(pud)) 6461 goto out; 6462 if (pud_leaf(pud)) { 6463 lock = pud_lock(mm, pudp); 6464 if (!unlikely(pud_leaf(pud))) { 6465 spin_unlock(lock); 6466 goto retry; 6467 } 6468 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6469 pud_pfn(pud), PUD_MASK, pud_write(pud), 6470 pud_special(pud)); 6471 return 0; 6472 } 6473 6474 pmdp = pmd_offset(pudp, address); 6475 pmd = pmdp_get_lockless(pmdp); 6476 if (pmd_leaf(pmd)) { 6477 lock = pmd_lock(mm, pmdp); 6478 if (!unlikely(pmd_leaf(pmd))) { 6479 spin_unlock(lock); 6480 goto retry; 6481 } 6482 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6483 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6484 pmd_special(pmd)); 6485 return 0; 6486 } 6487 6488 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6489 if (!ptep) 6490 goto out; 6491 pte = ptep_get(ptep); 6492 if (!pte_present(pte)) 6493 goto unlock; 6494 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6495 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6496 pte_special(pte)); 6497 return 0; 6498 unlock: 6499 pte_unmap_unlock(ptep, lock); 6500 out: 6501 return -EINVAL; 6502 } 6503 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6504 6505 /** 6506 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6507 * @args: Pointer to struct @follow_pfnmap_args 6508 * 6509 * Must be used in pair of follow_pfnmap_start(). See the start() function 6510 * above for more information. 6511 */ 6512 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6513 { 6514 if (args->lock) 6515 spin_unlock(args->lock); 6516 if (args->ptep) 6517 pte_unmap(args->ptep); 6518 } 6519 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6520 6521 #ifdef CONFIG_HAVE_IOREMAP_PROT 6522 /** 6523 * generic_access_phys - generic implementation for iomem mmap access 6524 * @vma: the vma to access 6525 * @addr: userspace address, not relative offset within @vma 6526 * @buf: buffer to read/write 6527 * @len: length of transfer 6528 * @write: set to FOLL_WRITE when writing, otherwise reading 6529 * 6530 * This is a generic implementation for &vm_operations_struct.access for an 6531 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6532 * not page based. 6533 */ 6534 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6535 void *buf, int len, int write) 6536 { 6537 resource_size_t phys_addr; 6538 unsigned long prot = 0; 6539 void __iomem *maddr; 6540 int offset = offset_in_page(addr); 6541 int ret = -EINVAL; 6542 bool writable; 6543 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6544 6545 retry: 6546 if (follow_pfnmap_start(&args)) 6547 return -EINVAL; 6548 prot = pgprot_val(args.pgprot); 6549 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6550 writable = args.writable; 6551 follow_pfnmap_end(&args); 6552 6553 if ((write & FOLL_WRITE) && !writable) 6554 return -EINVAL; 6555 6556 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6557 if (!maddr) 6558 return -ENOMEM; 6559 6560 if (follow_pfnmap_start(&args)) 6561 goto out_unmap; 6562 6563 if ((prot != pgprot_val(args.pgprot)) || 6564 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6565 (writable != args.writable)) { 6566 follow_pfnmap_end(&args); 6567 iounmap(maddr); 6568 goto retry; 6569 } 6570 6571 if (write) 6572 memcpy_toio(maddr + offset, buf, len); 6573 else 6574 memcpy_fromio(buf, maddr + offset, len); 6575 ret = len; 6576 follow_pfnmap_end(&args); 6577 out_unmap: 6578 iounmap(maddr); 6579 6580 return ret; 6581 } 6582 EXPORT_SYMBOL_GPL(generic_access_phys); 6583 #endif 6584 6585 /* 6586 * Access another process' address space as given in mm. 6587 */ 6588 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6589 void *buf, int len, unsigned int gup_flags) 6590 { 6591 void *old_buf = buf; 6592 int write = gup_flags & FOLL_WRITE; 6593 6594 if (mmap_read_lock_killable(mm)) 6595 return 0; 6596 6597 /* Untag the address before looking up the VMA */ 6598 addr = untagged_addr_remote(mm, addr); 6599 6600 /* Avoid triggering the temporary warning in __get_user_pages */ 6601 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6602 return 0; 6603 6604 /* ignore errors, just check how much was successfully transferred */ 6605 while (len) { 6606 int bytes, offset; 6607 void *maddr; 6608 struct vm_area_struct *vma = NULL; 6609 struct page *page = get_user_page_vma_remote(mm, addr, 6610 gup_flags, &vma); 6611 6612 if (IS_ERR(page)) { 6613 /* We might need to expand the stack to access it */ 6614 vma = vma_lookup(mm, addr); 6615 if (!vma) { 6616 vma = expand_stack(mm, addr); 6617 6618 /* mmap_lock was dropped on failure */ 6619 if (!vma) 6620 return buf - old_buf; 6621 6622 /* Try again if stack expansion worked */ 6623 continue; 6624 } 6625 6626 /* 6627 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6628 * we can access using slightly different code. 6629 */ 6630 bytes = 0; 6631 #ifdef CONFIG_HAVE_IOREMAP_PROT 6632 if (vma->vm_ops && vma->vm_ops->access) 6633 bytes = vma->vm_ops->access(vma, addr, buf, 6634 len, write); 6635 #endif 6636 if (bytes <= 0) 6637 break; 6638 } else { 6639 bytes = len; 6640 offset = addr & (PAGE_SIZE-1); 6641 if (bytes > PAGE_SIZE-offset) 6642 bytes = PAGE_SIZE-offset; 6643 6644 maddr = kmap_local_page(page); 6645 if (write) { 6646 copy_to_user_page(vma, page, addr, 6647 maddr + offset, buf, bytes); 6648 set_page_dirty_lock(page); 6649 } else { 6650 copy_from_user_page(vma, page, addr, 6651 buf, maddr + offset, bytes); 6652 } 6653 unmap_and_put_page(page, maddr); 6654 } 6655 len -= bytes; 6656 buf += bytes; 6657 addr += bytes; 6658 } 6659 mmap_read_unlock(mm); 6660 6661 return buf - old_buf; 6662 } 6663 6664 /** 6665 * access_remote_vm - access another process' address space 6666 * @mm: the mm_struct of the target address space 6667 * @addr: start address to access 6668 * @buf: source or destination buffer 6669 * @len: number of bytes to transfer 6670 * @gup_flags: flags modifying lookup behaviour 6671 * 6672 * The caller must hold a reference on @mm. 6673 * 6674 * Return: number of bytes copied from source to destination. 6675 */ 6676 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6677 void *buf, int len, unsigned int gup_flags) 6678 { 6679 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6680 } 6681 6682 /* 6683 * Access another process' address space. 6684 * Source/target buffer must be kernel space, 6685 * Do not walk the page table directly, use get_user_pages 6686 */ 6687 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6688 void *buf, int len, unsigned int gup_flags) 6689 { 6690 struct mm_struct *mm; 6691 int ret; 6692 6693 mm = get_task_mm(tsk); 6694 if (!mm) 6695 return 0; 6696 6697 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6698 6699 mmput(mm); 6700 6701 return ret; 6702 } 6703 EXPORT_SYMBOL_GPL(access_process_vm); 6704 6705 /* 6706 * Print the name of a VMA. 6707 */ 6708 void print_vma_addr(char *prefix, unsigned long ip) 6709 { 6710 struct mm_struct *mm = current->mm; 6711 struct vm_area_struct *vma; 6712 6713 /* 6714 * we might be running from an atomic context so we cannot sleep 6715 */ 6716 if (!mmap_read_trylock(mm)) 6717 return; 6718 6719 vma = vma_lookup(mm, ip); 6720 if (vma && vma->vm_file) { 6721 struct file *f = vma->vm_file; 6722 ip -= vma->vm_start; 6723 ip += vma->vm_pgoff << PAGE_SHIFT; 6724 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 6725 vma->vm_start, 6726 vma->vm_end - vma->vm_start); 6727 } 6728 mmap_read_unlock(mm); 6729 } 6730 6731 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6732 void __might_fault(const char *file, int line) 6733 { 6734 if (pagefault_disabled()) 6735 return; 6736 __might_sleep(file, line); 6737 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6738 if (current->mm) 6739 might_lock_read(¤t->mm->mmap_lock); 6740 #endif 6741 } 6742 EXPORT_SYMBOL(__might_fault); 6743 #endif 6744 6745 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6746 /* 6747 * Process all subpages of the specified huge page with the specified 6748 * operation. The target subpage will be processed last to keep its 6749 * cache lines hot. 6750 */ 6751 static inline int process_huge_page( 6752 unsigned long addr_hint, unsigned int nr_pages, 6753 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6754 void *arg) 6755 { 6756 int i, n, base, l, ret; 6757 unsigned long addr = addr_hint & 6758 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 6759 6760 /* Process target subpage last to keep its cache lines hot */ 6761 might_sleep(); 6762 n = (addr_hint - addr) / PAGE_SIZE; 6763 if (2 * n <= nr_pages) { 6764 /* If target subpage in first half of huge page */ 6765 base = 0; 6766 l = n; 6767 /* Process subpages at the end of huge page */ 6768 for (i = nr_pages - 1; i >= 2 * n; i--) { 6769 cond_resched(); 6770 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6771 if (ret) 6772 return ret; 6773 } 6774 } else { 6775 /* If target subpage in second half of huge page */ 6776 base = nr_pages - 2 * (nr_pages - n); 6777 l = nr_pages - n; 6778 /* Process subpages at the begin of huge page */ 6779 for (i = 0; i < base; i++) { 6780 cond_resched(); 6781 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6782 if (ret) 6783 return ret; 6784 } 6785 } 6786 /* 6787 * Process remaining subpages in left-right-left-right pattern 6788 * towards the target subpage 6789 */ 6790 for (i = 0; i < l; i++) { 6791 int left_idx = base + i; 6792 int right_idx = base + 2 * l - 1 - i; 6793 6794 cond_resched(); 6795 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6796 if (ret) 6797 return ret; 6798 cond_resched(); 6799 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6800 if (ret) 6801 return ret; 6802 } 6803 return 0; 6804 } 6805 6806 static void clear_gigantic_page(struct folio *folio, unsigned long addr, 6807 unsigned int nr_pages) 6808 { 6809 int i; 6810 6811 might_sleep(); 6812 for (i = 0; i < nr_pages; i++) { 6813 cond_resched(); 6814 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 6815 } 6816 } 6817 6818 static int clear_subpage(unsigned long addr, int idx, void *arg) 6819 { 6820 struct folio *folio = arg; 6821 6822 clear_user_highpage(folio_page(folio, idx), addr); 6823 return 0; 6824 } 6825 6826 /** 6827 * folio_zero_user - Zero a folio which will be mapped to userspace. 6828 * @folio: The folio to zero. 6829 * @addr_hint: The address will be accessed or the base address if uncelar. 6830 */ 6831 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 6832 { 6833 unsigned int nr_pages = folio_nr_pages(folio); 6834 6835 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 6836 clear_gigantic_page(folio, addr_hint, nr_pages); 6837 else 6838 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 6839 } 6840 6841 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6842 unsigned long addr, 6843 struct vm_area_struct *vma, 6844 unsigned int nr_pages) 6845 { 6846 int i; 6847 struct page *dst_page; 6848 struct page *src_page; 6849 6850 for (i = 0; i < nr_pages; i++) { 6851 dst_page = folio_page(dst, i); 6852 src_page = folio_page(src, i); 6853 6854 cond_resched(); 6855 if (copy_mc_user_highpage(dst_page, src_page, 6856 addr + i*PAGE_SIZE, vma)) 6857 return -EHWPOISON; 6858 } 6859 return 0; 6860 } 6861 6862 struct copy_subpage_arg { 6863 struct folio *dst; 6864 struct folio *src; 6865 struct vm_area_struct *vma; 6866 }; 6867 6868 static int copy_subpage(unsigned long addr, int idx, void *arg) 6869 { 6870 struct copy_subpage_arg *copy_arg = arg; 6871 struct page *dst = folio_page(copy_arg->dst, idx); 6872 struct page *src = folio_page(copy_arg->src, idx); 6873 6874 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 6875 return -EHWPOISON; 6876 return 0; 6877 } 6878 6879 int copy_user_large_folio(struct folio *dst, struct folio *src, 6880 unsigned long addr_hint, struct vm_area_struct *vma) 6881 { 6882 unsigned int nr_pages = folio_nr_pages(dst); 6883 struct copy_subpage_arg arg = { 6884 .dst = dst, 6885 .src = src, 6886 .vma = vma, 6887 }; 6888 6889 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 6890 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 6891 6892 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 6893 } 6894 6895 long copy_folio_from_user(struct folio *dst_folio, 6896 const void __user *usr_src, 6897 bool allow_pagefault) 6898 { 6899 void *kaddr; 6900 unsigned long i, rc = 0; 6901 unsigned int nr_pages = folio_nr_pages(dst_folio); 6902 unsigned long ret_val = nr_pages * PAGE_SIZE; 6903 struct page *subpage; 6904 6905 for (i = 0; i < nr_pages; i++) { 6906 subpage = folio_page(dst_folio, i); 6907 kaddr = kmap_local_page(subpage); 6908 if (!allow_pagefault) 6909 pagefault_disable(); 6910 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6911 if (!allow_pagefault) 6912 pagefault_enable(); 6913 kunmap_local(kaddr); 6914 6915 ret_val -= (PAGE_SIZE - rc); 6916 if (rc) 6917 break; 6918 6919 flush_dcache_page(subpage); 6920 6921 cond_resched(); 6922 } 6923 return ret_val; 6924 } 6925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6926 6927 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 6928 6929 static struct kmem_cache *page_ptl_cachep; 6930 6931 void __init ptlock_cache_init(void) 6932 { 6933 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6934 SLAB_PANIC, NULL); 6935 } 6936 6937 bool ptlock_alloc(struct ptdesc *ptdesc) 6938 { 6939 spinlock_t *ptl; 6940 6941 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6942 if (!ptl) 6943 return false; 6944 ptdesc->ptl = ptl; 6945 return true; 6946 } 6947 6948 void ptlock_free(struct ptdesc *ptdesc) 6949 { 6950 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 6951 } 6952 #endif 6953 6954 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 6955 { 6956 if (is_vm_hugetlb_page(vma)) 6957 hugetlb_vma_lock_read(vma); 6958 } 6959 6960 void vma_pgtable_walk_end(struct vm_area_struct *vma) 6961 { 6962 if (is_vm_hugetlb_page(vma)) 6963 hugetlb_vma_unlock_read(vma); 6964 } 6965