xref: /linux/mm/memory.c (revision 4c0c5bbc89cda1c57ce0fb36d917693396b8b065)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 
81 #include <trace/events/kmem.h>
82 
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89 
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93 
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97 
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101 
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105 
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 
108 /*
109  * A number of key systems in x86 including ioremap() rely on the assumption
110  * that high_memory defines the upper bound on direct map memory, then end
111  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
112  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113  * and ZONE_HIGHMEM.
114  */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117 
118 /*
119  * Randomize the address space (stacks, mmaps, brk, etc.).
120  *
121  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122  *   as ancient (libc5 based) binaries can segfault. )
123  */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126 					1;
127 #else
128 					2;
129 #endif
130 
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134 	/*
135 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 	 * some architectures, even if it's performed in hardware. By
137 	 * default, "false" means prefaulted entries will be 'young'.
138 	 */
139 	return false;
140 }
141 #endif
142 
143 static int __init disable_randmaps(char *s)
144 {
145 	randomize_va_space = 0;
146 	return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149 
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152 
153 unsigned long highest_memmap_pfn __read_mostly;
154 
155 /*
156  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157  */
158 static int __init init_zero_pfn(void)
159 {
160 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
161 	return 0;
162 }
163 early_initcall(init_zero_pfn);
164 
165 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
166 {
167 	trace_rss_stat(mm, member, count);
168 }
169 
170 #if defined(SPLIT_RSS_COUNTING)
171 
172 void sync_mm_rss(struct mm_struct *mm)
173 {
174 	int i;
175 
176 	for (i = 0; i < NR_MM_COUNTERS; i++) {
177 		if (current->rss_stat.count[i]) {
178 			add_mm_counter(mm, i, current->rss_stat.count[i]);
179 			current->rss_stat.count[i] = 0;
180 		}
181 	}
182 	current->rss_stat.events = 0;
183 }
184 
185 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
186 {
187 	struct task_struct *task = current;
188 
189 	if (likely(task->mm == mm))
190 		task->rss_stat.count[member] += val;
191 	else
192 		add_mm_counter(mm, member, val);
193 }
194 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
195 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
196 
197 /* sync counter once per 64 page faults */
198 #define TASK_RSS_EVENTS_THRESH	(64)
199 static void check_sync_rss_stat(struct task_struct *task)
200 {
201 	if (unlikely(task != current))
202 		return;
203 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
204 		sync_mm_rss(task->mm);
205 }
206 #else /* SPLIT_RSS_COUNTING */
207 
208 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
209 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
210 
211 static void check_sync_rss_stat(struct task_struct *task)
212 {
213 }
214 
215 #endif /* SPLIT_RSS_COUNTING */
216 
217 /*
218  * Note: this doesn't free the actual pages themselves. That
219  * has been handled earlier when unmapping all the memory regions.
220  */
221 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
222 			   unsigned long addr)
223 {
224 	pgtable_t token = pmd_pgtable(*pmd);
225 	pmd_clear(pmd);
226 	pte_free_tlb(tlb, token, addr);
227 	mm_dec_nr_ptes(tlb->mm);
228 }
229 
230 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
231 				unsigned long addr, unsigned long end,
232 				unsigned long floor, unsigned long ceiling)
233 {
234 	pmd_t *pmd;
235 	unsigned long next;
236 	unsigned long start;
237 
238 	start = addr;
239 	pmd = pmd_offset(pud, addr);
240 	do {
241 		next = pmd_addr_end(addr, end);
242 		if (pmd_none_or_clear_bad(pmd))
243 			continue;
244 		free_pte_range(tlb, pmd, addr);
245 	} while (pmd++, addr = next, addr != end);
246 
247 	start &= PUD_MASK;
248 	if (start < floor)
249 		return;
250 	if (ceiling) {
251 		ceiling &= PUD_MASK;
252 		if (!ceiling)
253 			return;
254 	}
255 	if (end - 1 > ceiling - 1)
256 		return;
257 
258 	pmd = pmd_offset(pud, start);
259 	pud_clear(pud);
260 	pmd_free_tlb(tlb, pmd, start);
261 	mm_dec_nr_pmds(tlb->mm);
262 }
263 
264 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
265 				unsigned long addr, unsigned long end,
266 				unsigned long floor, unsigned long ceiling)
267 {
268 	pud_t *pud;
269 	unsigned long next;
270 	unsigned long start;
271 
272 	start = addr;
273 	pud = pud_offset(p4d, addr);
274 	do {
275 		next = pud_addr_end(addr, end);
276 		if (pud_none_or_clear_bad(pud))
277 			continue;
278 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
279 	} while (pud++, addr = next, addr != end);
280 
281 	start &= P4D_MASK;
282 	if (start < floor)
283 		return;
284 	if (ceiling) {
285 		ceiling &= P4D_MASK;
286 		if (!ceiling)
287 			return;
288 	}
289 	if (end - 1 > ceiling - 1)
290 		return;
291 
292 	pud = pud_offset(p4d, start);
293 	p4d_clear(p4d);
294 	pud_free_tlb(tlb, pud, start);
295 	mm_dec_nr_puds(tlb->mm);
296 }
297 
298 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
299 				unsigned long addr, unsigned long end,
300 				unsigned long floor, unsigned long ceiling)
301 {
302 	p4d_t *p4d;
303 	unsigned long next;
304 	unsigned long start;
305 
306 	start = addr;
307 	p4d = p4d_offset(pgd, addr);
308 	do {
309 		next = p4d_addr_end(addr, end);
310 		if (p4d_none_or_clear_bad(p4d))
311 			continue;
312 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
313 	} while (p4d++, addr = next, addr != end);
314 
315 	start &= PGDIR_MASK;
316 	if (start < floor)
317 		return;
318 	if (ceiling) {
319 		ceiling &= PGDIR_MASK;
320 		if (!ceiling)
321 			return;
322 	}
323 	if (end - 1 > ceiling - 1)
324 		return;
325 
326 	p4d = p4d_offset(pgd, start);
327 	pgd_clear(pgd);
328 	p4d_free_tlb(tlb, p4d, start);
329 }
330 
331 /*
332  * This function frees user-level page tables of a process.
333  */
334 void free_pgd_range(struct mmu_gather *tlb,
335 			unsigned long addr, unsigned long end,
336 			unsigned long floor, unsigned long ceiling)
337 {
338 	pgd_t *pgd;
339 	unsigned long next;
340 
341 	/*
342 	 * The next few lines have given us lots of grief...
343 	 *
344 	 * Why are we testing PMD* at this top level?  Because often
345 	 * there will be no work to do at all, and we'd prefer not to
346 	 * go all the way down to the bottom just to discover that.
347 	 *
348 	 * Why all these "- 1"s?  Because 0 represents both the bottom
349 	 * of the address space and the top of it (using -1 for the
350 	 * top wouldn't help much: the masks would do the wrong thing).
351 	 * The rule is that addr 0 and floor 0 refer to the bottom of
352 	 * the address space, but end 0 and ceiling 0 refer to the top
353 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
354 	 * that end 0 case should be mythical).
355 	 *
356 	 * Wherever addr is brought up or ceiling brought down, we must
357 	 * be careful to reject "the opposite 0" before it confuses the
358 	 * subsequent tests.  But what about where end is brought down
359 	 * by PMD_SIZE below? no, end can't go down to 0 there.
360 	 *
361 	 * Whereas we round start (addr) and ceiling down, by different
362 	 * masks at different levels, in order to test whether a table
363 	 * now has no other vmas using it, so can be freed, we don't
364 	 * bother to round floor or end up - the tests don't need that.
365 	 */
366 
367 	addr &= PMD_MASK;
368 	if (addr < floor) {
369 		addr += PMD_SIZE;
370 		if (!addr)
371 			return;
372 	}
373 	if (ceiling) {
374 		ceiling &= PMD_MASK;
375 		if (!ceiling)
376 			return;
377 	}
378 	if (end - 1 > ceiling - 1)
379 		end -= PMD_SIZE;
380 	if (addr > end - 1)
381 		return;
382 	/*
383 	 * We add page table cache pages with PAGE_SIZE,
384 	 * (see pte_free_tlb()), flush the tlb if we need
385 	 */
386 	tlb_change_page_size(tlb, PAGE_SIZE);
387 	pgd = pgd_offset(tlb->mm, addr);
388 	do {
389 		next = pgd_addr_end(addr, end);
390 		if (pgd_none_or_clear_bad(pgd))
391 			continue;
392 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
393 	} while (pgd++, addr = next, addr != end);
394 }
395 
396 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
397 		   struct vm_area_struct *vma, unsigned long floor,
398 		   unsigned long ceiling)
399 {
400 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
401 
402 	do {
403 		unsigned long addr = vma->vm_start;
404 		struct vm_area_struct *next;
405 
406 		/*
407 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
408 		 * be 0.  This will underflow and is okay.
409 		 */
410 		next = mas_find(&mas, ceiling - 1);
411 
412 		/*
413 		 * Hide vma from rmap and truncate_pagecache before freeing
414 		 * pgtables
415 		 */
416 		unlink_anon_vmas(vma);
417 		unlink_file_vma(vma);
418 
419 		if (is_vm_hugetlb_page(vma)) {
420 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
421 				floor, next ? next->vm_start : ceiling);
422 		} else {
423 			/*
424 			 * Optimization: gather nearby vmas into one call down
425 			 */
426 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
427 			       && !is_vm_hugetlb_page(next)) {
428 				vma = next;
429 				next = mas_find(&mas, ceiling - 1);
430 				unlink_anon_vmas(vma);
431 				unlink_file_vma(vma);
432 			}
433 			free_pgd_range(tlb, addr, vma->vm_end,
434 				floor, next ? next->vm_start : ceiling);
435 		}
436 		vma = next;
437 	} while (vma);
438 }
439 
440 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
441 {
442 	spinlock_t *ptl = pmd_lock(mm, pmd);
443 
444 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
445 		mm_inc_nr_ptes(mm);
446 		/*
447 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
448 		 * visible before the pte is made visible to other CPUs by being
449 		 * put into page tables.
450 		 *
451 		 * The other side of the story is the pointer chasing in the page
452 		 * table walking code (when walking the page table without locking;
453 		 * ie. most of the time). Fortunately, these data accesses consist
454 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
455 		 * being the notable exception) will already guarantee loads are
456 		 * seen in-order. See the alpha page table accessors for the
457 		 * smp_rmb() barriers in page table walking code.
458 		 */
459 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
460 		pmd_populate(mm, pmd, *pte);
461 		*pte = NULL;
462 	}
463 	spin_unlock(ptl);
464 }
465 
466 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
467 {
468 	pgtable_t new = pte_alloc_one(mm);
469 	if (!new)
470 		return -ENOMEM;
471 
472 	pmd_install(mm, pmd, &new);
473 	if (new)
474 		pte_free(mm, new);
475 	return 0;
476 }
477 
478 int __pte_alloc_kernel(pmd_t *pmd)
479 {
480 	pte_t *new = pte_alloc_one_kernel(&init_mm);
481 	if (!new)
482 		return -ENOMEM;
483 
484 	spin_lock(&init_mm.page_table_lock);
485 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
486 		smp_wmb(); /* See comment in pmd_install() */
487 		pmd_populate_kernel(&init_mm, pmd, new);
488 		new = NULL;
489 	}
490 	spin_unlock(&init_mm.page_table_lock);
491 	if (new)
492 		pte_free_kernel(&init_mm, new);
493 	return 0;
494 }
495 
496 static inline void init_rss_vec(int *rss)
497 {
498 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
499 }
500 
501 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
502 {
503 	int i;
504 
505 	if (current->mm == mm)
506 		sync_mm_rss(mm);
507 	for (i = 0; i < NR_MM_COUNTERS; i++)
508 		if (rss[i])
509 			add_mm_counter(mm, i, rss[i]);
510 }
511 
512 /*
513  * This function is called to print an error when a bad pte
514  * is found. For example, we might have a PFN-mapped pte in
515  * a region that doesn't allow it.
516  *
517  * The calling function must still handle the error.
518  */
519 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520 			  pte_t pte, struct page *page)
521 {
522 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
523 	p4d_t *p4d = p4d_offset(pgd, addr);
524 	pud_t *pud = pud_offset(p4d, addr);
525 	pmd_t *pmd = pmd_offset(pud, addr);
526 	struct address_space *mapping;
527 	pgoff_t index;
528 	static unsigned long resume;
529 	static unsigned long nr_shown;
530 	static unsigned long nr_unshown;
531 
532 	/*
533 	 * Allow a burst of 60 reports, then keep quiet for that minute;
534 	 * or allow a steady drip of one report per second.
535 	 */
536 	if (nr_shown == 60) {
537 		if (time_before(jiffies, resume)) {
538 			nr_unshown++;
539 			return;
540 		}
541 		if (nr_unshown) {
542 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
543 				 nr_unshown);
544 			nr_unshown = 0;
545 		}
546 		nr_shown = 0;
547 	}
548 	if (nr_shown++ == 0)
549 		resume = jiffies + 60 * HZ;
550 
551 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552 	index = linear_page_index(vma, addr);
553 
554 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
555 		 current->comm,
556 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
557 	if (page)
558 		dump_page(page, "bad pte");
559 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
560 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
561 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
562 		 vma->vm_file,
563 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
564 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
565 		 mapping ? mapping->a_ops->read_folio : NULL);
566 	dump_stack();
567 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
568 }
569 
570 /*
571  * vm_normal_page -- This function gets the "struct page" associated with a pte.
572  *
573  * "Special" mappings do not wish to be associated with a "struct page" (either
574  * it doesn't exist, or it exists but they don't want to touch it). In this
575  * case, NULL is returned here. "Normal" mappings do have a struct page.
576  *
577  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578  * pte bit, in which case this function is trivial. Secondly, an architecture
579  * may not have a spare pte bit, which requires a more complicated scheme,
580  * described below.
581  *
582  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583  * special mapping (even if there are underlying and valid "struct pages").
584  * COWed pages of a VM_PFNMAP are always normal.
585  *
586  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
588  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589  * mapping will always honor the rule
590  *
591  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592  *
593  * And for normal mappings this is false.
594  *
595  * This restricts such mappings to be a linear translation from virtual address
596  * to pfn. To get around this restriction, we allow arbitrary mappings so long
597  * as the vma is not a COW mapping; in that case, we know that all ptes are
598  * special (because none can have been COWed).
599  *
600  *
601  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
602  *
603  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604  * page" backing, however the difference is that _all_ pages with a struct
605  * page (that is, those where pfn_valid is true) are refcounted and considered
606  * normal pages by the VM. The disadvantage is that pages are refcounted
607  * (which can be slower and simply not an option for some PFNMAP users). The
608  * advantage is that we don't have to follow the strict linearity rule of
609  * PFNMAP mappings in order to support COWable mappings.
610  *
611  */
612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
613 			    pte_t pte)
614 {
615 	unsigned long pfn = pte_pfn(pte);
616 
617 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
618 		if (likely(!pte_special(pte)))
619 			goto check_pfn;
620 		if (vma->vm_ops && vma->vm_ops->find_special_page)
621 			return vma->vm_ops->find_special_page(vma, addr);
622 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623 			return NULL;
624 		if (is_zero_pfn(pfn))
625 			return NULL;
626 		if (pte_devmap(pte))
627 		/*
628 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
629 		 * and will have refcounts incremented on their struct pages
630 		 * when they are inserted into PTEs, thus they are safe to
631 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
632 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
633 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
634 		 */
635 			return NULL;
636 
637 		print_bad_pte(vma, addr, pte, NULL);
638 		return NULL;
639 	}
640 
641 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
642 
643 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
644 		if (vma->vm_flags & VM_MIXEDMAP) {
645 			if (!pfn_valid(pfn))
646 				return NULL;
647 			goto out;
648 		} else {
649 			unsigned long off;
650 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
651 			if (pfn == vma->vm_pgoff + off)
652 				return NULL;
653 			if (!is_cow_mapping(vma->vm_flags))
654 				return NULL;
655 		}
656 	}
657 
658 	if (is_zero_pfn(pfn))
659 		return NULL;
660 
661 check_pfn:
662 	if (unlikely(pfn > highest_memmap_pfn)) {
663 		print_bad_pte(vma, addr, pte, NULL);
664 		return NULL;
665 	}
666 
667 	/*
668 	 * NOTE! We still have PageReserved() pages in the page tables.
669 	 * eg. VDSO mappings can cause them to exist.
670 	 */
671 out:
672 	return pfn_to_page(pfn);
673 }
674 
675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
676 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
677 				pmd_t pmd)
678 {
679 	unsigned long pfn = pmd_pfn(pmd);
680 
681 	/*
682 	 * There is no pmd_special() but there may be special pmds, e.g.
683 	 * in a direct-access (dax) mapping, so let's just replicate the
684 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
685 	 */
686 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
687 		if (vma->vm_flags & VM_MIXEDMAP) {
688 			if (!pfn_valid(pfn))
689 				return NULL;
690 			goto out;
691 		} else {
692 			unsigned long off;
693 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
694 			if (pfn == vma->vm_pgoff + off)
695 				return NULL;
696 			if (!is_cow_mapping(vma->vm_flags))
697 				return NULL;
698 		}
699 	}
700 
701 	if (pmd_devmap(pmd))
702 		return NULL;
703 	if (is_huge_zero_pmd(pmd))
704 		return NULL;
705 	if (unlikely(pfn > highest_memmap_pfn))
706 		return NULL;
707 
708 	/*
709 	 * NOTE! We still have PageReserved() pages in the page tables.
710 	 * eg. VDSO mappings can cause them to exist.
711 	 */
712 out:
713 	return pfn_to_page(pfn);
714 }
715 #endif
716 
717 static void restore_exclusive_pte(struct vm_area_struct *vma,
718 				  struct page *page, unsigned long address,
719 				  pte_t *ptep)
720 {
721 	pte_t pte;
722 	swp_entry_t entry;
723 
724 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
725 	if (pte_swp_soft_dirty(*ptep))
726 		pte = pte_mksoft_dirty(pte);
727 
728 	entry = pte_to_swp_entry(*ptep);
729 	if (pte_swp_uffd_wp(*ptep))
730 		pte = pte_mkuffd_wp(pte);
731 	else if (is_writable_device_exclusive_entry(entry))
732 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
733 
734 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
735 
736 	/*
737 	 * No need to take a page reference as one was already
738 	 * created when the swap entry was made.
739 	 */
740 	if (PageAnon(page))
741 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
742 	else
743 		/*
744 		 * Currently device exclusive access only supports anonymous
745 		 * memory so the entry shouldn't point to a filebacked page.
746 		 */
747 		WARN_ON_ONCE(1);
748 
749 	set_pte_at(vma->vm_mm, address, ptep, pte);
750 
751 	/*
752 	 * No need to invalidate - it was non-present before. However
753 	 * secondary CPUs may have mappings that need invalidating.
754 	 */
755 	update_mmu_cache(vma, address, ptep);
756 }
757 
758 /*
759  * Tries to restore an exclusive pte if the page lock can be acquired without
760  * sleeping.
761  */
762 static int
763 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
764 			unsigned long addr)
765 {
766 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
767 	struct page *page = pfn_swap_entry_to_page(entry);
768 
769 	if (trylock_page(page)) {
770 		restore_exclusive_pte(vma, page, addr, src_pte);
771 		unlock_page(page);
772 		return 0;
773 	}
774 
775 	return -EBUSY;
776 }
777 
778 /*
779  * copy one vm_area from one task to the other. Assumes the page tables
780  * already present in the new task to be cleared in the whole range
781  * covered by this vma.
782  */
783 
784 static unsigned long
785 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
786 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
787 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
788 {
789 	unsigned long vm_flags = dst_vma->vm_flags;
790 	pte_t pte = *src_pte;
791 	struct page *page;
792 	swp_entry_t entry = pte_to_swp_entry(pte);
793 
794 	if (likely(!non_swap_entry(entry))) {
795 		if (swap_duplicate(entry) < 0)
796 			return -EIO;
797 
798 		/* make sure dst_mm is on swapoff's mmlist. */
799 		if (unlikely(list_empty(&dst_mm->mmlist))) {
800 			spin_lock(&mmlist_lock);
801 			if (list_empty(&dst_mm->mmlist))
802 				list_add(&dst_mm->mmlist,
803 						&src_mm->mmlist);
804 			spin_unlock(&mmlist_lock);
805 		}
806 		/* Mark the swap entry as shared. */
807 		if (pte_swp_exclusive(*src_pte)) {
808 			pte = pte_swp_clear_exclusive(*src_pte);
809 			set_pte_at(src_mm, addr, src_pte, pte);
810 		}
811 		rss[MM_SWAPENTS]++;
812 	} else if (is_migration_entry(entry)) {
813 		page = pfn_swap_entry_to_page(entry);
814 
815 		rss[mm_counter(page)]++;
816 
817 		if (!is_readable_migration_entry(entry) &&
818 				is_cow_mapping(vm_flags)) {
819 			/*
820 			 * COW mappings require pages in both parent and child
821 			 * to be set to read. A previously exclusive entry is
822 			 * now shared.
823 			 */
824 			entry = make_readable_migration_entry(
825 							swp_offset(entry));
826 			pte = swp_entry_to_pte(entry);
827 			if (pte_swp_soft_dirty(*src_pte))
828 				pte = pte_swp_mksoft_dirty(pte);
829 			if (pte_swp_uffd_wp(*src_pte))
830 				pte = pte_swp_mkuffd_wp(pte);
831 			set_pte_at(src_mm, addr, src_pte, pte);
832 		}
833 	} else if (is_device_private_entry(entry)) {
834 		page = pfn_swap_entry_to_page(entry);
835 
836 		/*
837 		 * Update rss count even for unaddressable pages, as
838 		 * they should treated just like normal pages in this
839 		 * respect.
840 		 *
841 		 * We will likely want to have some new rss counters
842 		 * for unaddressable pages, at some point. But for now
843 		 * keep things as they are.
844 		 */
845 		get_page(page);
846 		rss[mm_counter(page)]++;
847 		/* Cannot fail as these pages cannot get pinned. */
848 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
849 
850 		/*
851 		 * We do not preserve soft-dirty information, because so
852 		 * far, checkpoint/restore is the only feature that
853 		 * requires that. And checkpoint/restore does not work
854 		 * when a device driver is involved (you cannot easily
855 		 * save and restore device driver state).
856 		 */
857 		if (is_writable_device_private_entry(entry) &&
858 		    is_cow_mapping(vm_flags)) {
859 			entry = make_readable_device_private_entry(
860 							swp_offset(entry));
861 			pte = swp_entry_to_pte(entry);
862 			if (pte_swp_uffd_wp(*src_pte))
863 				pte = pte_swp_mkuffd_wp(pte);
864 			set_pte_at(src_mm, addr, src_pte, pte);
865 		}
866 	} else if (is_device_exclusive_entry(entry)) {
867 		/*
868 		 * Make device exclusive entries present by restoring the
869 		 * original entry then copying as for a present pte. Device
870 		 * exclusive entries currently only support private writable
871 		 * (ie. COW) mappings.
872 		 */
873 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
874 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
875 			return -EBUSY;
876 		return -ENOENT;
877 	} else if (is_pte_marker_entry(entry)) {
878 		/*
879 		 * We're copying the pgtable should only because dst_vma has
880 		 * uffd-wp enabled, do sanity check.
881 		 */
882 		WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
883 		set_pte_at(dst_mm, addr, dst_pte, pte);
884 		return 0;
885 	}
886 	if (!userfaultfd_wp(dst_vma))
887 		pte = pte_swp_clear_uffd_wp(pte);
888 	set_pte_at(dst_mm, addr, dst_pte, pte);
889 	return 0;
890 }
891 
892 /*
893  * Copy a present and normal page.
894  *
895  * NOTE! The usual case is that this isn't required;
896  * instead, the caller can just increase the page refcount
897  * and re-use the pte the traditional way.
898  *
899  * And if we need a pre-allocated page but don't yet have
900  * one, return a negative error to let the preallocation
901  * code know so that it can do so outside the page table
902  * lock.
903  */
904 static inline int
905 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
906 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
907 		  struct page **prealloc, struct page *page)
908 {
909 	struct page *new_page;
910 	pte_t pte;
911 
912 	new_page = *prealloc;
913 	if (!new_page)
914 		return -EAGAIN;
915 
916 	/*
917 	 * We have a prealloc page, all good!  Take it
918 	 * over and copy the page & arm it.
919 	 */
920 	*prealloc = NULL;
921 	copy_user_highpage(new_page, page, addr, src_vma);
922 	__SetPageUptodate(new_page);
923 	page_add_new_anon_rmap(new_page, dst_vma, addr);
924 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
925 	rss[mm_counter(new_page)]++;
926 
927 	/* All done, just insert the new page copy in the child */
928 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
929 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
930 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
931 		/* Uffd-wp needs to be delivered to dest pte as well */
932 		pte = pte_wrprotect(pte_mkuffd_wp(pte));
933 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
934 	return 0;
935 }
936 
937 /*
938  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
939  * is required to copy this pte.
940  */
941 static inline int
942 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
943 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
944 		 struct page **prealloc)
945 {
946 	struct mm_struct *src_mm = src_vma->vm_mm;
947 	unsigned long vm_flags = src_vma->vm_flags;
948 	pte_t pte = *src_pte;
949 	struct page *page;
950 
951 	page = vm_normal_page(src_vma, addr, pte);
952 	if (page && PageAnon(page)) {
953 		/*
954 		 * If this page may have been pinned by the parent process,
955 		 * copy the page immediately for the child so that we'll always
956 		 * guarantee the pinned page won't be randomly replaced in the
957 		 * future.
958 		 */
959 		get_page(page);
960 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
961 			/* Page maybe pinned, we have to copy. */
962 			put_page(page);
963 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
964 						 addr, rss, prealloc, page);
965 		}
966 		rss[mm_counter(page)]++;
967 	} else if (page) {
968 		get_page(page);
969 		page_dup_file_rmap(page, false);
970 		rss[mm_counter(page)]++;
971 	}
972 
973 	/*
974 	 * If it's a COW mapping, write protect it both
975 	 * in the parent and the child
976 	 */
977 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
978 		ptep_set_wrprotect(src_mm, addr, src_pte);
979 		pte = pte_wrprotect(pte);
980 	}
981 	VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
982 
983 	/*
984 	 * If it's a shared mapping, mark it clean in
985 	 * the child
986 	 */
987 	if (vm_flags & VM_SHARED)
988 		pte = pte_mkclean(pte);
989 	pte = pte_mkold(pte);
990 
991 	if (!userfaultfd_wp(dst_vma))
992 		pte = pte_clear_uffd_wp(pte);
993 
994 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
995 	return 0;
996 }
997 
998 static inline struct page *
999 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
1000 		   unsigned long addr)
1001 {
1002 	struct page *new_page;
1003 
1004 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
1005 	if (!new_page)
1006 		return NULL;
1007 
1008 	if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1009 		put_page(new_page);
1010 		return NULL;
1011 	}
1012 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1013 
1014 	return new_page;
1015 }
1016 
1017 static int
1018 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1019 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1020 	       unsigned long end)
1021 {
1022 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1023 	struct mm_struct *src_mm = src_vma->vm_mm;
1024 	pte_t *orig_src_pte, *orig_dst_pte;
1025 	pte_t *src_pte, *dst_pte;
1026 	spinlock_t *src_ptl, *dst_ptl;
1027 	int progress, ret = 0;
1028 	int rss[NR_MM_COUNTERS];
1029 	swp_entry_t entry = (swp_entry_t){0};
1030 	struct page *prealloc = NULL;
1031 
1032 again:
1033 	progress = 0;
1034 	init_rss_vec(rss);
1035 
1036 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1037 	if (!dst_pte) {
1038 		ret = -ENOMEM;
1039 		goto out;
1040 	}
1041 	src_pte = pte_offset_map(src_pmd, addr);
1042 	src_ptl = pte_lockptr(src_mm, src_pmd);
1043 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1044 	orig_src_pte = src_pte;
1045 	orig_dst_pte = dst_pte;
1046 	arch_enter_lazy_mmu_mode();
1047 
1048 	do {
1049 		/*
1050 		 * We are holding two locks at this point - either of them
1051 		 * could generate latencies in another task on another CPU.
1052 		 */
1053 		if (progress >= 32) {
1054 			progress = 0;
1055 			if (need_resched() ||
1056 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1057 				break;
1058 		}
1059 		if (pte_none(*src_pte)) {
1060 			progress++;
1061 			continue;
1062 		}
1063 		if (unlikely(!pte_present(*src_pte))) {
1064 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1065 						  dst_pte, src_pte,
1066 						  dst_vma, src_vma,
1067 						  addr, rss);
1068 			if (ret == -EIO) {
1069 				entry = pte_to_swp_entry(*src_pte);
1070 				break;
1071 			} else if (ret == -EBUSY) {
1072 				break;
1073 			} else if (!ret) {
1074 				progress += 8;
1075 				continue;
1076 			}
1077 
1078 			/*
1079 			 * Device exclusive entry restored, continue by copying
1080 			 * the now present pte.
1081 			 */
1082 			WARN_ON_ONCE(ret != -ENOENT);
1083 		}
1084 		/* copy_present_pte() will clear `*prealloc' if consumed */
1085 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1086 				       addr, rss, &prealloc);
1087 		/*
1088 		 * If we need a pre-allocated page for this pte, drop the
1089 		 * locks, allocate, and try again.
1090 		 */
1091 		if (unlikely(ret == -EAGAIN))
1092 			break;
1093 		if (unlikely(prealloc)) {
1094 			/*
1095 			 * pre-alloc page cannot be reused by next time so as
1096 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1097 			 * will allocate page according to address).  This
1098 			 * could only happen if one pinned pte changed.
1099 			 */
1100 			put_page(prealloc);
1101 			prealloc = NULL;
1102 		}
1103 		progress += 8;
1104 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1105 
1106 	arch_leave_lazy_mmu_mode();
1107 	spin_unlock(src_ptl);
1108 	pte_unmap(orig_src_pte);
1109 	add_mm_rss_vec(dst_mm, rss);
1110 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1111 	cond_resched();
1112 
1113 	if (ret == -EIO) {
1114 		VM_WARN_ON_ONCE(!entry.val);
1115 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1116 			ret = -ENOMEM;
1117 			goto out;
1118 		}
1119 		entry.val = 0;
1120 	} else if (ret == -EBUSY) {
1121 		goto out;
1122 	} else if (ret ==  -EAGAIN) {
1123 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1124 		if (!prealloc)
1125 			return -ENOMEM;
1126 	} else if (ret) {
1127 		VM_WARN_ON_ONCE(1);
1128 	}
1129 
1130 	/* We've captured and resolved the error. Reset, try again. */
1131 	ret = 0;
1132 
1133 	if (addr != end)
1134 		goto again;
1135 out:
1136 	if (unlikely(prealloc))
1137 		put_page(prealloc);
1138 	return ret;
1139 }
1140 
1141 static inline int
1142 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1143 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1144 	       unsigned long end)
1145 {
1146 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1147 	struct mm_struct *src_mm = src_vma->vm_mm;
1148 	pmd_t *src_pmd, *dst_pmd;
1149 	unsigned long next;
1150 
1151 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1152 	if (!dst_pmd)
1153 		return -ENOMEM;
1154 	src_pmd = pmd_offset(src_pud, addr);
1155 	do {
1156 		next = pmd_addr_end(addr, end);
1157 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1158 			|| pmd_devmap(*src_pmd)) {
1159 			int err;
1160 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1161 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1162 					    addr, dst_vma, src_vma);
1163 			if (err == -ENOMEM)
1164 				return -ENOMEM;
1165 			if (!err)
1166 				continue;
1167 			/* fall through */
1168 		}
1169 		if (pmd_none_or_clear_bad(src_pmd))
1170 			continue;
1171 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1172 				   addr, next))
1173 			return -ENOMEM;
1174 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1175 	return 0;
1176 }
1177 
1178 static inline int
1179 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1180 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1181 	       unsigned long end)
1182 {
1183 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1184 	struct mm_struct *src_mm = src_vma->vm_mm;
1185 	pud_t *src_pud, *dst_pud;
1186 	unsigned long next;
1187 
1188 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1189 	if (!dst_pud)
1190 		return -ENOMEM;
1191 	src_pud = pud_offset(src_p4d, addr);
1192 	do {
1193 		next = pud_addr_end(addr, end);
1194 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1195 			int err;
1196 
1197 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1198 			err = copy_huge_pud(dst_mm, src_mm,
1199 					    dst_pud, src_pud, addr, src_vma);
1200 			if (err == -ENOMEM)
1201 				return -ENOMEM;
1202 			if (!err)
1203 				continue;
1204 			/* fall through */
1205 		}
1206 		if (pud_none_or_clear_bad(src_pud))
1207 			continue;
1208 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1209 				   addr, next))
1210 			return -ENOMEM;
1211 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1212 	return 0;
1213 }
1214 
1215 static inline int
1216 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1217 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1218 	       unsigned long end)
1219 {
1220 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1221 	p4d_t *src_p4d, *dst_p4d;
1222 	unsigned long next;
1223 
1224 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1225 	if (!dst_p4d)
1226 		return -ENOMEM;
1227 	src_p4d = p4d_offset(src_pgd, addr);
1228 	do {
1229 		next = p4d_addr_end(addr, end);
1230 		if (p4d_none_or_clear_bad(src_p4d))
1231 			continue;
1232 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1233 				   addr, next))
1234 			return -ENOMEM;
1235 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1236 	return 0;
1237 }
1238 
1239 /*
1240  * Return true if the vma needs to copy the pgtable during this fork().  Return
1241  * false when we can speed up fork() by allowing lazy page faults later until
1242  * when the child accesses the memory range.
1243  */
1244 static bool
1245 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1246 {
1247 	/*
1248 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1249 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1250 	 * contains uffd-wp protection information, that's something we can't
1251 	 * retrieve from page cache, and skip copying will lose those info.
1252 	 */
1253 	if (userfaultfd_wp(dst_vma))
1254 		return true;
1255 
1256 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1257 		return true;
1258 
1259 	if (src_vma->anon_vma)
1260 		return true;
1261 
1262 	/*
1263 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1264 	 * becomes much lighter when there are big shared or private readonly
1265 	 * mappings. The tradeoff is that copy_page_range is more efficient
1266 	 * than faulting.
1267 	 */
1268 	return false;
1269 }
1270 
1271 int
1272 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1273 {
1274 	pgd_t *src_pgd, *dst_pgd;
1275 	unsigned long next;
1276 	unsigned long addr = src_vma->vm_start;
1277 	unsigned long end = src_vma->vm_end;
1278 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1279 	struct mm_struct *src_mm = src_vma->vm_mm;
1280 	struct mmu_notifier_range range;
1281 	bool is_cow;
1282 	int ret;
1283 
1284 	if (!vma_needs_copy(dst_vma, src_vma))
1285 		return 0;
1286 
1287 	if (is_vm_hugetlb_page(src_vma))
1288 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1289 
1290 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1291 		/*
1292 		 * We do not free on error cases below as remove_vma
1293 		 * gets called on error from higher level routine
1294 		 */
1295 		ret = track_pfn_copy(src_vma);
1296 		if (ret)
1297 			return ret;
1298 	}
1299 
1300 	/*
1301 	 * We need to invalidate the secondary MMU mappings only when
1302 	 * there could be a permission downgrade on the ptes of the
1303 	 * parent mm. And a permission downgrade will only happen if
1304 	 * is_cow_mapping() returns true.
1305 	 */
1306 	is_cow = is_cow_mapping(src_vma->vm_flags);
1307 
1308 	if (is_cow) {
1309 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1310 					0, src_vma, src_mm, addr, end);
1311 		mmu_notifier_invalidate_range_start(&range);
1312 		/*
1313 		 * Disabling preemption is not needed for the write side, as
1314 		 * the read side doesn't spin, but goes to the mmap_lock.
1315 		 *
1316 		 * Use the raw variant of the seqcount_t write API to avoid
1317 		 * lockdep complaining about preemptibility.
1318 		 */
1319 		mmap_assert_write_locked(src_mm);
1320 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1321 	}
1322 
1323 	ret = 0;
1324 	dst_pgd = pgd_offset(dst_mm, addr);
1325 	src_pgd = pgd_offset(src_mm, addr);
1326 	do {
1327 		next = pgd_addr_end(addr, end);
1328 		if (pgd_none_or_clear_bad(src_pgd))
1329 			continue;
1330 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1331 					    addr, next))) {
1332 			ret = -ENOMEM;
1333 			break;
1334 		}
1335 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1336 
1337 	if (is_cow) {
1338 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1339 		mmu_notifier_invalidate_range_end(&range);
1340 	}
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Parameter block passed down to zap_pte_range in exceptional cases.
1346  */
1347 struct zap_details {
1348 	struct folio *single_folio;	/* Locked folio to be unmapped */
1349 	bool even_cows;			/* Zap COWed private pages too? */
1350 	zap_flags_t zap_flags;		/* Extra flags for zapping */
1351 };
1352 
1353 /* Whether we should zap all COWed (private) pages too */
1354 static inline bool should_zap_cows(struct zap_details *details)
1355 {
1356 	/* By default, zap all pages */
1357 	if (!details)
1358 		return true;
1359 
1360 	/* Or, we zap COWed pages only if the caller wants to */
1361 	return details->even_cows;
1362 }
1363 
1364 /* Decides whether we should zap this page with the page pointer specified */
1365 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1366 {
1367 	/* If we can make a decision without *page.. */
1368 	if (should_zap_cows(details))
1369 		return true;
1370 
1371 	/* E.g. the caller passes NULL for the case of a zero page */
1372 	if (!page)
1373 		return true;
1374 
1375 	/* Otherwise we should only zap non-anon pages */
1376 	return !PageAnon(page);
1377 }
1378 
1379 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1380 {
1381 	if (!details)
1382 		return false;
1383 
1384 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1385 }
1386 
1387 /*
1388  * This function makes sure that we'll replace the none pte with an uffd-wp
1389  * swap special pte marker when necessary. Must be with the pgtable lock held.
1390  */
1391 static inline void
1392 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1393 			      unsigned long addr, pte_t *pte,
1394 			      struct zap_details *details, pte_t pteval)
1395 {
1396 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1397 	if (zap_drop_file_uffd_wp(details))
1398 		return;
1399 
1400 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1401 #endif
1402 }
1403 
1404 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1405 				struct vm_area_struct *vma, pmd_t *pmd,
1406 				unsigned long addr, unsigned long end,
1407 				struct zap_details *details)
1408 {
1409 	struct mm_struct *mm = tlb->mm;
1410 	int force_flush = 0;
1411 	int rss[NR_MM_COUNTERS];
1412 	spinlock_t *ptl;
1413 	pte_t *start_pte;
1414 	pte_t *pte;
1415 	swp_entry_t entry;
1416 
1417 	tlb_change_page_size(tlb, PAGE_SIZE);
1418 again:
1419 	init_rss_vec(rss);
1420 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1421 	pte = start_pte;
1422 	flush_tlb_batched_pending(mm);
1423 	arch_enter_lazy_mmu_mode();
1424 	do {
1425 		pte_t ptent = *pte;
1426 		struct page *page;
1427 
1428 		if (pte_none(ptent))
1429 			continue;
1430 
1431 		if (need_resched())
1432 			break;
1433 
1434 		if (pte_present(ptent)) {
1435 			page = vm_normal_page(vma, addr, ptent);
1436 			if (unlikely(!should_zap_page(details, page)))
1437 				continue;
1438 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1439 							tlb->fullmm);
1440 			tlb_remove_tlb_entry(tlb, pte, addr);
1441 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1442 						      ptent);
1443 			if (unlikely(!page))
1444 				continue;
1445 
1446 			if (!PageAnon(page)) {
1447 				if (pte_dirty(ptent)) {
1448 					force_flush = 1;
1449 					set_page_dirty(page);
1450 				}
1451 				if (pte_young(ptent) &&
1452 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1453 					mark_page_accessed(page);
1454 			}
1455 			rss[mm_counter(page)]--;
1456 			page_remove_rmap(page, vma, false);
1457 			if (unlikely(page_mapcount(page) < 0))
1458 				print_bad_pte(vma, addr, ptent, page);
1459 			if (unlikely(__tlb_remove_page(tlb, page))) {
1460 				force_flush = 1;
1461 				addr += PAGE_SIZE;
1462 				break;
1463 			}
1464 			continue;
1465 		}
1466 
1467 		entry = pte_to_swp_entry(ptent);
1468 		if (is_device_private_entry(entry) ||
1469 		    is_device_exclusive_entry(entry)) {
1470 			page = pfn_swap_entry_to_page(entry);
1471 			if (unlikely(!should_zap_page(details, page)))
1472 				continue;
1473 			/*
1474 			 * Both device private/exclusive mappings should only
1475 			 * work with anonymous page so far, so we don't need to
1476 			 * consider uffd-wp bit when zap. For more information,
1477 			 * see zap_install_uffd_wp_if_needed().
1478 			 */
1479 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1480 			rss[mm_counter(page)]--;
1481 			if (is_device_private_entry(entry))
1482 				page_remove_rmap(page, vma, false);
1483 			put_page(page);
1484 		} else if (!non_swap_entry(entry)) {
1485 			/* Genuine swap entry, hence a private anon page */
1486 			if (!should_zap_cows(details))
1487 				continue;
1488 			rss[MM_SWAPENTS]--;
1489 			if (unlikely(!free_swap_and_cache(entry)))
1490 				print_bad_pte(vma, addr, ptent, NULL);
1491 		} else if (is_migration_entry(entry)) {
1492 			page = pfn_swap_entry_to_page(entry);
1493 			if (!should_zap_page(details, page))
1494 				continue;
1495 			rss[mm_counter(page)]--;
1496 		} else if (pte_marker_entry_uffd_wp(entry)) {
1497 			/* Only drop the uffd-wp marker if explicitly requested */
1498 			if (!zap_drop_file_uffd_wp(details))
1499 				continue;
1500 		} else if (is_hwpoison_entry(entry) ||
1501 			   is_swapin_error_entry(entry)) {
1502 			if (!should_zap_cows(details))
1503 				continue;
1504 		} else {
1505 			/* We should have covered all the swap entry types */
1506 			WARN_ON_ONCE(1);
1507 		}
1508 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1509 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1510 	} while (pte++, addr += PAGE_SIZE, addr != end);
1511 
1512 	add_mm_rss_vec(mm, rss);
1513 	arch_leave_lazy_mmu_mode();
1514 
1515 	/* Do the actual TLB flush before dropping ptl */
1516 	if (force_flush)
1517 		tlb_flush_mmu_tlbonly(tlb);
1518 	pte_unmap_unlock(start_pte, ptl);
1519 
1520 	/*
1521 	 * If we forced a TLB flush (either due to running out of
1522 	 * batch buffers or because we needed to flush dirty TLB
1523 	 * entries before releasing the ptl), free the batched
1524 	 * memory too. Restart if we didn't do everything.
1525 	 */
1526 	if (force_flush) {
1527 		force_flush = 0;
1528 		tlb_flush_mmu(tlb);
1529 	}
1530 
1531 	if (addr != end) {
1532 		cond_resched();
1533 		goto again;
1534 	}
1535 
1536 	return addr;
1537 }
1538 
1539 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1540 				struct vm_area_struct *vma, pud_t *pud,
1541 				unsigned long addr, unsigned long end,
1542 				struct zap_details *details)
1543 {
1544 	pmd_t *pmd;
1545 	unsigned long next;
1546 
1547 	pmd = pmd_offset(pud, addr);
1548 	do {
1549 		next = pmd_addr_end(addr, end);
1550 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1551 			if (next - addr != HPAGE_PMD_SIZE)
1552 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1553 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1554 				goto next;
1555 			/* fall through */
1556 		} else if (details && details->single_folio &&
1557 			   folio_test_pmd_mappable(details->single_folio) &&
1558 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1559 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1560 			/*
1561 			 * Take and drop THP pmd lock so that we cannot return
1562 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1563 			 * but not yet decremented compound_mapcount().
1564 			 */
1565 			spin_unlock(ptl);
1566 		}
1567 
1568 		/*
1569 		 * Here there can be other concurrent MADV_DONTNEED or
1570 		 * trans huge page faults running, and if the pmd is
1571 		 * none or trans huge it can change under us. This is
1572 		 * because MADV_DONTNEED holds the mmap_lock in read
1573 		 * mode.
1574 		 */
1575 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1576 			goto next;
1577 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1578 next:
1579 		cond_resched();
1580 	} while (pmd++, addr = next, addr != end);
1581 
1582 	return addr;
1583 }
1584 
1585 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1586 				struct vm_area_struct *vma, p4d_t *p4d,
1587 				unsigned long addr, unsigned long end,
1588 				struct zap_details *details)
1589 {
1590 	pud_t *pud;
1591 	unsigned long next;
1592 
1593 	pud = pud_offset(p4d, addr);
1594 	do {
1595 		next = pud_addr_end(addr, end);
1596 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1597 			if (next - addr != HPAGE_PUD_SIZE) {
1598 				mmap_assert_locked(tlb->mm);
1599 				split_huge_pud(vma, pud, addr);
1600 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1601 				goto next;
1602 			/* fall through */
1603 		}
1604 		if (pud_none_or_clear_bad(pud))
1605 			continue;
1606 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1607 next:
1608 		cond_resched();
1609 	} while (pud++, addr = next, addr != end);
1610 
1611 	return addr;
1612 }
1613 
1614 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1615 				struct vm_area_struct *vma, pgd_t *pgd,
1616 				unsigned long addr, unsigned long end,
1617 				struct zap_details *details)
1618 {
1619 	p4d_t *p4d;
1620 	unsigned long next;
1621 
1622 	p4d = p4d_offset(pgd, addr);
1623 	do {
1624 		next = p4d_addr_end(addr, end);
1625 		if (p4d_none_or_clear_bad(p4d))
1626 			continue;
1627 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1628 	} while (p4d++, addr = next, addr != end);
1629 
1630 	return addr;
1631 }
1632 
1633 void unmap_page_range(struct mmu_gather *tlb,
1634 			     struct vm_area_struct *vma,
1635 			     unsigned long addr, unsigned long end,
1636 			     struct zap_details *details)
1637 {
1638 	pgd_t *pgd;
1639 	unsigned long next;
1640 
1641 	BUG_ON(addr >= end);
1642 	tlb_start_vma(tlb, vma);
1643 	pgd = pgd_offset(vma->vm_mm, addr);
1644 	do {
1645 		next = pgd_addr_end(addr, end);
1646 		if (pgd_none_or_clear_bad(pgd))
1647 			continue;
1648 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1649 	} while (pgd++, addr = next, addr != end);
1650 	tlb_end_vma(tlb, vma);
1651 }
1652 
1653 
1654 static void unmap_single_vma(struct mmu_gather *tlb,
1655 		struct vm_area_struct *vma, unsigned long start_addr,
1656 		unsigned long end_addr,
1657 		struct zap_details *details)
1658 {
1659 	unsigned long start = max(vma->vm_start, start_addr);
1660 	unsigned long end;
1661 
1662 	if (start >= vma->vm_end)
1663 		return;
1664 	end = min(vma->vm_end, end_addr);
1665 	if (end <= vma->vm_start)
1666 		return;
1667 
1668 	if (vma->vm_file)
1669 		uprobe_munmap(vma, start, end);
1670 
1671 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1672 		untrack_pfn(vma, 0, 0);
1673 
1674 	if (start != end) {
1675 		if (unlikely(is_vm_hugetlb_page(vma))) {
1676 			/*
1677 			 * It is undesirable to test vma->vm_file as it
1678 			 * should be non-null for valid hugetlb area.
1679 			 * However, vm_file will be NULL in the error
1680 			 * cleanup path of mmap_region. When
1681 			 * hugetlbfs ->mmap method fails,
1682 			 * mmap_region() nullifies vma->vm_file
1683 			 * before calling this function to clean up.
1684 			 * Since no pte has actually been setup, it is
1685 			 * safe to do nothing in this case.
1686 			 */
1687 			if (vma->vm_file) {
1688 				zap_flags_t zap_flags = details ?
1689 				    details->zap_flags : 0;
1690 				__unmap_hugepage_range_final(tlb, vma, start, end,
1691 							     NULL, zap_flags);
1692 			}
1693 		} else
1694 			unmap_page_range(tlb, vma, start, end, details);
1695 	}
1696 }
1697 
1698 /**
1699  * unmap_vmas - unmap a range of memory covered by a list of vma's
1700  * @tlb: address of the caller's struct mmu_gather
1701  * @mt: the maple tree
1702  * @vma: the starting vma
1703  * @start_addr: virtual address at which to start unmapping
1704  * @end_addr: virtual address at which to end unmapping
1705  *
1706  * Unmap all pages in the vma list.
1707  *
1708  * Only addresses between `start' and `end' will be unmapped.
1709  *
1710  * The VMA list must be sorted in ascending virtual address order.
1711  *
1712  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1713  * range after unmap_vmas() returns.  So the only responsibility here is to
1714  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1715  * drops the lock and schedules.
1716  */
1717 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1718 		struct vm_area_struct *vma, unsigned long start_addr,
1719 		unsigned long end_addr)
1720 {
1721 	struct mmu_notifier_range range;
1722 	struct zap_details details = {
1723 		.zap_flags = ZAP_FLAG_DROP_MARKER,
1724 		/* Careful - we need to zap private pages too! */
1725 		.even_cows = true,
1726 	};
1727 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1728 
1729 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1730 				start_addr, end_addr);
1731 	mmu_notifier_invalidate_range_start(&range);
1732 	do {
1733 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1734 	} while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1735 	mmu_notifier_invalidate_range_end(&range);
1736 }
1737 
1738 /**
1739  * zap_page_range - remove user pages in a given range
1740  * @vma: vm_area_struct holding the applicable pages
1741  * @start: starting address of pages to zap
1742  * @size: number of bytes to zap
1743  *
1744  * Caller must protect the VMA list
1745  */
1746 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1747 		unsigned long size)
1748 {
1749 	struct maple_tree *mt = &vma->vm_mm->mm_mt;
1750 	unsigned long end = start + size;
1751 	struct mmu_notifier_range range;
1752 	struct mmu_gather tlb;
1753 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1754 
1755 	lru_add_drain();
1756 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1757 				start, start + size);
1758 	tlb_gather_mmu(&tlb, vma->vm_mm);
1759 	update_hiwater_rss(vma->vm_mm);
1760 	mmu_notifier_invalidate_range_start(&range);
1761 	do {
1762 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1763 	} while ((vma = mas_find(&mas, end - 1)) != NULL);
1764 	mmu_notifier_invalidate_range_end(&range);
1765 	tlb_finish_mmu(&tlb);
1766 }
1767 
1768 /**
1769  * zap_page_range_single - remove user pages in a given range
1770  * @vma: vm_area_struct holding the applicable pages
1771  * @address: starting address of pages to zap
1772  * @size: number of bytes to zap
1773  * @details: details of shared cache invalidation
1774  *
1775  * The range must fit into one VMA.
1776  */
1777 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1778 		unsigned long size, struct zap_details *details)
1779 {
1780 	struct mmu_notifier_range range;
1781 	struct mmu_gather tlb;
1782 
1783 	lru_add_drain();
1784 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1785 				address, address + size);
1786 	tlb_gather_mmu(&tlb, vma->vm_mm);
1787 	update_hiwater_rss(vma->vm_mm);
1788 	mmu_notifier_invalidate_range_start(&range);
1789 	unmap_single_vma(&tlb, vma, address, range.end, details);
1790 	mmu_notifier_invalidate_range_end(&range);
1791 	tlb_finish_mmu(&tlb);
1792 }
1793 
1794 /**
1795  * zap_vma_ptes - remove ptes mapping the vma
1796  * @vma: vm_area_struct holding ptes to be zapped
1797  * @address: starting address of pages to zap
1798  * @size: number of bytes to zap
1799  *
1800  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1801  *
1802  * The entire address range must be fully contained within the vma.
1803  *
1804  */
1805 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1806 		unsigned long size)
1807 {
1808 	if (!range_in_vma(vma, address, address + size) ||
1809 	    		!(vma->vm_flags & VM_PFNMAP))
1810 		return;
1811 
1812 	zap_page_range_single(vma, address, size, NULL);
1813 }
1814 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1815 
1816 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1817 {
1818 	pgd_t *pgd;
1819 	p4d_t *p4d;
1820 	pud_t *pud;
1821 	pmd_t *pmd;
1822 
1823 	pgd = pgd_offset(mm, addr);
1824 	p4d = p4d_alloc(mm, pgd, addr);
1825 	if (!p4d)
1826 		return NULL;
1827 	pud = pud_alloc(mm, p4d, addr);
1828 	if (!pud)
1829 		return NULL;
1830 	pmd = pmd_alloc(mm, pud, addr);
1831 	if (!pmd)
1832 		return NULL;
1833 
1834 	VM_BUG_ON(pmd_trans_huge(*pmd));
1835 	return pmd;
1836 }
1837 
1838 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1839 			spinlock_t **ptl)
1840 {
1841 	pmd_t *pmd = walk_to_pmd(mm, addr);
1842 
1843 	if (!pmd)
1844 		return NULL;
1845 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1846 }
1847 
1848 static int validate_page_before_insert(struct page *page)
1849 {
1850 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1851 		return -EINVAL;
1852 	flush_dcache_page(page);
1853 	return 0;
1854 }
1855 
1856 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1857 			unsigned long addr, struct page *page, pgprot_t prot)
1858 {
1859 	if (!pte_none(*pte))
1860 		return -EBUSY;
1861 	/* Ok, finally just insert the thing.. */
1862 	get_page(page);
1863 	inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1864 	page_add_file_rmap(page, vma, false);
1865 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1866 	return 0;
1867 }
1868 
1869 /*
1870  * This is the old fallback for page remapping.
1871  *
1872  * For historical reasons, it only allows reserved pages. Only
1873  * old drivers should use this, and they needed to mark their
1874  * pages reserved for the old functions anyway.
1875  */
1876 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1877 			struct page *page, pgprot_t prot)
1878 {
1879 	int retval;
1880 	pte_t *pte;
1881 	spinlock_t *ptl;
1882 
1883 	retval = validate_page_before_insert(page);
1884 	if (retval)
1885 		goto out;
1886 	retval = -ENOMEM;
1887 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1888 	if (!pte)
1889 		goto out;
1890 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1891 	pte_unmap_unlock(pte, ptl);
1892 out:
1893 	return retval;
1894 }
1895 
1896 #ifdef pte_index
1897 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1898 			unsigned long addr, struct page *page, pgprot_t prot)
1899 {
1900 	int err;
1901 
1902 	if (!page_count(page))
1903 		return -EINVAL;
1904 	err = validate_page_before_insert(page);
1905 	if (err)
1906 		return err;
1907 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1908 }
1909 
1910 /* insert_pages() amortizes the cost of spinlock operations
1911  * when inserting pages in a loop. Arch *must* define pte_index.
1912  */
1913 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1914 			struct page **pages, unsigned long *num, pgprot_t prot)
1915 {
1916 	pmd_t *pmd = NULL;
1917 	pte_t *start_pte, *pte;
1918 	spinlock_t *pte_lock;
1919 	struct mm_struct *const mm = vma->vm_mm;
1920 	unsigned long curr_page_idx = 0;
1921 	unsigned long remaining_pages_total = *num;
1922 	unsigned long pages_to_write_in_pmd;
1923 	int ret;
1924 more:
1925 	ret = -EFAULT;
1926 	pmd = walk_to_pmd(mm, addr);
1927 	if (!pmd)
1928 		goto out;
1929 
1930 	pages_to_write_in_pmd = min_t(unsigned long,
1931 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1932 
1933 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1934 	ret = -ENOMEM;
1935 	if (pte_alloc(mm, pmd))
1936 		goto out;
1937 
1938 	while (pages_to_write_in_pmd) {
1939 		int pte_idx = 0;
1940 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1941 
1942 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1943 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1944 			int err = insert_page_in_batch_locked(vma, pte,
1945 				addr, pages[curr_page_idx], prot);
1946 			if (unlikely(err)) {
1947 				pte_unmap_unlock(start_pte, pte_lock);
1948 				ret = err;
1949 				remaining_pages_total -= pte_idx;
1950 				goto out;
1951 			}
1952 			addr += PAGE_SIZE;
1953 			++curr_page_idx;
1954 		}
1955 		pte_unmap_unlock(start_pte, pte_lock);
1956 		pages_to_write_in_pmd -= batch_size;
1957 		remaining_pages_total -= batch_size;
1958 	}
1959 	if (remaining_pages_total)
1960 		goto more;
1961 	ret = 0;
1962 out:
1963 	*num = remaining_pages_total;
1964 	return ret;
1965 }
1966 #endif  /* ifdef pte_index */
1967 
1968 /**
1969  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1970  * @vma: user vma to map to
1971  * @addr: target start user address of these pages
1972  * @pages: source kernel pages
1973  * @num: in: number of pages to map. out: number of pages that were *not*
1974  * mapped. (0 means all pages were successfully mapped).
1975  *
1976  * Preferred over vm_insert_page() when inserting multiple pages.
1977  *
1978  * In case of error, we may have mapped a subset of the provided
1979  * pages. It is the caller's responsibility to account for this case.
1980  *
1981  * The same restrictions apply as in vm_insert_page().
1982  */
1983 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1984 			struct page **pages, unsigned long *num)
1985 {
1986 #ifdef pte_index
1987 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1988 
1989 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1990 		return -EFAULT;
1991 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1992 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1993 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1994 		vma->vm_flags |= VM_MIXEDMAP;
1995 	}
1996 	/* Defer page refcount checking till we're about to map that page. */
1997 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1998 #else
1999 	unsigned long idx = 0, pgcount = *num;
2000 	int err = -EINVAL;
2001 
2002 	for (; idx < pgcount; ++idx) {
2003 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
2004 		if (err)
2005 			break;
2006 	}
2007 	*num = pgcount - idx;
2008 	return err;
2009 #endif  /* ifdef pte_index */
2010 }
2011 EXPORT_SYMBOL(vm_insert_pages);
2012 
2013 /**
2014  * vm_insert_page - insert single page into user vma
2015  * @vma: user vma to map to
2016  * @addr: target user address of this page
2017  * @page: source kernel page
2018  *
2019  * This allows drivers to insert individual pages they've allocated
2020  * into a user vma.
2021  *
2022  * The page has to be a nice clean _individual_ kernel allocation.
2023  * If you allocate a compound page, you need to have marked it as
2024  * such (__GFP_COMP), or manually just split the page up yourself
2025  * (see split_page()).
2026  *
2027  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2028  * took an arbitrary page protection parameter. This doesn't allow
2029  * that. Your vma protection will have to be set up correctly, which
2030  * means that if you want a shared writable mapping, you'd better
2031  * ask for a shared writable mapping!
2032  *
2033  * The page does not need to be reserved.
2034  *
2035  * Usually this function is called from f_op->mmap() handler
2036  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2037  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2038  * function from other places, for example from page-fault handler.
2039  *
2040  * Return: %0 on success, negative error code otherwise.
2041  */
2042 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2043 			struct page *page)
2044 {
2045 	if (addr < vma->vm_start || addr >= vma->vm_end)
2046 		return -EFAULT;
2047 	if (!page_count(page))
2048 		return -EINVAL;
2049 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2050 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2051 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2052 		vma->vm_flags |= VM_MIXEDMAP;
2053 	}
2054 	return insert_page(vma, addr, page, vma->vm_page_prot);
2055 }
2056 EXPORT_SYMBOL(vm_insert_page);
2057 
2058 /*
2059  * __vm_map_pages - maps range of kernel pages into user vma
2060  * @vma: user vma to map to
2061  * @pages: pointer to array of source kernel pages
2062  * @num: number of pages in page array
2063  * @offset: user's requested vm_pgoff
2064  *
2065  * This allows drivers to map range of kernel pages into a user vma.
2066  *
2067  * Return: 0 on success and error code otherwise.
2068  */
2069 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2070 				unsigned long num, unsigned long offset)
2071 {
2072 	unsigned long count = vma_pages(vma);
2073 	unsigned long uaddr = vma->vm_start;
2074 	int ret, i;
2075 
2076 	/* Fail if the user requested offset is beyond the end of the object */
2077 	if (offset >= num)
2078 		return -ENXIO;
2079 
2080 	/* Fail if the user requested size exceeds available object size */
2081 	if (count > num - offset)
2082 		return -ENXIO;
2083 
2084 	for (i = 0; i < count; i++) {
2085 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2086 		if (ret < 0)
2087 			return ret;
2088 		uaddr += PAGE_SIZE;
2089 	}
2090 
2091 	return 0;
2092 }
2093 
2094 /**
2095  * vm_map_pages - maps range of kernel pages starts with non zero offset
2096  * @vma: user vma to map to
2097  * @pages: pointer to array of source kernel pages
2098  * @num: number of pages in page array
2099  *
2100  * Maps an object consisting of @num pages, catering for the user's
2101  * requested vm_pgoff
2102  *
2103  * If we fail to insert any page into the vma, the function will return
2104  * immediately leaving any previously inserted pages present.  Callers
2105  * from the mmap handler may immediately return the error as their caller
2106  * will destroy the vma, removing any successfully inserted pages. Other
2107  * callers should make their own arrangements for calling unmap_region().
2108  *
2109  * Context: Process context. Called by mmap handlers.
2110  * Return: 0 on success and error code otherwise.
2111  */
2112 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2113 				unsigned long num)
2114 {
2115 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2116 }
2117 EXPORT_SYMBOL(vm_map_pages);
2118 
2119 /**
2120  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2121  * @vma: user vma to map to
2122  * @pages: pointer to array of source kernel pages
2123  * @num: number of pages in page array
2124  *
2125  * Similar to vm_map_pages(), except that it explicitly sets the offset
2126  * to 0. This function is intended for the drivers that did not consider
2127  * vm_pgoff.
2128  *
2129  * Context: Process context. Called by mmap handlers.
2130  * Return: 0 on success and error code otherwise.
2131  */
2132 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2133 				unsigned long num)
2134 {
2135 	return __vm_map_pages(vma, pages, num, 0);
2136 }
2137 EXPORT_SYMBOL(vm_map_pages_zero);
2138 
2139 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2140 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2141 {
2142 	struct mm_struct *mm = vma->vm_mm;
2143 	pte_t *pte, entry;
2144 	spinlock_t *ptl;
2145 
2146 	pte = get_locked_pte(mm, addr, &ptl);
2147 	if (!pte)
2148 		return VM_FAULT_OOM;
2149 	if (!pte_none(*pte)) {
2150 		if (mkwrite) {
2151 			/*
2152 			 * For read faults on private mappings the PFN passed
2153 			 * in may not match the PFN we have mapped if the
2154 			 * mapped PFN is a writeable COW page.  In the mkwrite
2155 			 * case we are creating a writable PTE for a shared
2156 			 * mapping and we expect the PFNs to match. If they
2157 			 * don't match, we are likely racing with block
2158 			 * allocation and mapping invalidation so just skip the
2159 			 * update.
2160 			 */
2161 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2162 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2163 				goto out_unlock;
2164 			}
2165 			entry = pte_mkyoung(*pte);
2166 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2167 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2168 				update_mmu_cache(vma, addr, pte);
2169 		}
2170 		goto out_unlock;
2171 	}
2172 
2173 	/* Ok, finally just insert the thing.. */
2174 	if (pfn_t_devmap(pfn))
2175 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2176 	else
2177 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2178 
2179 	if (mkwrite) {
2180 		entry = pte_mkyoung(entry);
2181 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2182 	}
2183 
2184 	set_pte_at(mm, addr, pte, entry);
2185 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2186 
2187 out_unlock:
2188 	pte_unmap_unlock(pte, ptl);
2189 	return VM_FAULT_NOPAGE;
2190 }
2191 
2192 /**
2193  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2194  * @vma: user vma to map to
2195  * @addr: target user address of this page
2196  * @pfn: source kernel pfn
2197  * @pgprot: pgprot flags for the inserted page
2198  *
2199  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2200  * to override pgprot on a per-page basis.
2201  *
2202  * This only makes sense for IO mappings, and it makes no sense for
2203  * COW mappings.  In general, using multiple vmas is preferable;
2204  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2205  * impractical.
2206  *
2207  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2208  * a value of @pgprot different from that of @vma->vm_page_prot.
2209  *
2210  * Context: Process context.  May allocate using %GFP_KERNEL.
2211  * Return: vm_fault_t value.
2212  */
2213 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2214 			unsigned long pfn, pgprot_t pgprot)
2215 {
2216 	/*
2217 	 * Technically, architectures with pte_special can avoid all these
2218 	 * restrictions (same for remap_pfn_range).  However we would like
2219 	 * consistency in testing and feature parity among all, so we should
2220 	 * try to keep these invariants in place for everybody.
2221 	 */
2222 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2223 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2224 						(VM_PFNMAP|VM_MIXEDMAP));
2225 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2226 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2227 
2228 	if (addr < vma->vm_start || addr >= vma->vm_end)
2229 		return VM_FAULT_SIGBUS;
2230 
2231 	if (!pfn_modify_allowed(pfn, pgprot))
2232 		return VM_FAULT_SIGBUS;
2233 
2234 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2235 
2236 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2237 			false);
2238 }
2239 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2240 
2241 /**
2242  * vmf_insert_pfn - insert single pfn into user vma
2243  * @vma: user vma to map to
2244  * @addr: target user address of this page
2245  * @pfn: source kernel pfn
2246  *
2247  * Similar to vm_insert_page, this allows drivers to insert individual pages
2248  * they've allocated into a user vma. Same comments apply.
2249  *
2250  * This function should only be called from a vm_ops->fault handler, and
2251  * in that case the handler should return the result of this function.
2252  *
2253  * vma cannot be a COW mapping.
2254  *
2255  * As this is called only for pages that do not currently exist, we
2256  * do not need to flush old virtual caches or the TLB.
2257  *
2258  * Context: Process context.  May allocate using %GFP_KERNEL.
2259  * Return: vm_fault_t value.
2260  */
2261 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2262 			unsigned long pfn)
2263 {
2264 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2265 }
2266 EXPORT_SYMBOL(vmf_insert_pfn);
2267 
2268 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2269 {
2270 	/* these checks mirror the abort conditions in vm_normal_page */
2271 	if (vma->vm_flags & VM_MIXEDMAP)
2272 		return true;
2273 	if (pfn_t_devmap(pfn))
2274 		return true;
2275 	if (pfn_t_special(pfn))
2276 		return true;
2277 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2278 		return true;
2279 	return false;
2280 }
2281 
2282 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2283 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2284 		bool mkwrite)
2285 {
2286 	int err;
2287 
2288 	BUG_ON(!vm_mixed_ok(vma, pfn));
2289 
2290 	if (addr < vma->vm_start || addr >= vma->vm_end)
2291 		return VM_FAULT_SIGBUS;
2292 
2293 	track_pfn_insert(vma, &pgprot, pfn);
2294 
2295 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2296 		return VM_FAULT_SIGBUS;
2297 
2298 	/*
2299 	 * If we don't have pte special, then we have to use the pfn_valid()
2300 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2301 	 * refcount the page if pfn_valid is true (hence insert_page rather
2302 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2303 	 * without pte special, it would there be refcounted as a normal page.
2304 	 */
2305 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2306 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2307 		struct page *page;
2308 
2309 		/*
2310 		 * At this point we are committed to insert_page()
2311 		 * regardless of whether the caller specified flags that
2312 		 * result in pfn_t_has_page() == false.
2313 		 */
2314 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2315 		err = insert_page(vma, addr, page, pgprot);
2316 	} else {
2317 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2318 	}
2319 
2320 	if (err == -ENOMEM)
2321 		return VM_FAULT_OOM;
2322 	if (err < 0 && err != -EBUSY)
2323 		return VM_FAULT_SIGBUS;
2324 
2325 	return VM_FAULT_NOPAGE;
2326 }
2327 
2328 /**
2329  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2330  * @vma: user vma to map to
2331  * @addr: target user address of this page
2332  * @pfn: source kernel pfn
2333  * @pgprot: pgprot flags for the inserted page
2334  *
2335  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2336  * to override pgprot on a per-page basis.
2337  *
2338  * Typically this function should be used by drivers to set caching- and
2339  * encryption bits different than those of @vma->vm_page_prot, because
2340  * the caching- or encryption mode may not be known at mmap() time.
2341  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2342  * to set caching and encryption bits for those vmas (except for COW pages).
2343  * This is ensured by core vm only modifying these page table entries using
2344  * functions that don't touch caching- or encryption bits, using pte_modify()
2345  * if needed. (See for example mprotect()).
2346  * Also when new page-table entries are created, this is only done using the
2347  * fault() callback, and never using the value of vma->vm_page_prot,
2348  * except for page-table entries that point to anonymous pages as the result
2349  * of COW.
2350  *
2351  * Context: Process context.  May allocate using %GFP_KERNEL.
2352  * Return: vm_fault_t value.
2353  */
2354 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2355 				 pfn_t pfn, pgprot_t pgprot)
2356 {
2357 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2358 }
2359 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2360 
2361 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2362 		pfn_t pfn)
2363 {
2364 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2365 }
2366 EXPORT_SYMBOL(vmf_insert_mixed);
2367 
2368 /*
2369  *  If the insertion of PTE failed because someone else already added a
2370  *  different entry in the mean time, we treat that as success as we assume
2371  *  the same entry was actually inserted.
2372  */
2373 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2374 		unsigned long addr, pfn_t pfn)
2375 {
2376 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2377 }
2378 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2379 
2380 /*
2381  * maps a range of physical memory into the requested pages. the old
2382  * mappings are removed. any references to nonexistent pages results
2383  * in null mappings (currently treated as "copy-on-access")
2384  */
2385 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2386 			unsigned long addr, unsigned long end,
2387 			unsigned long pfn, pgprot_t prot)
2388 {
2389 	pte_t *pte, *mapped_pte;
2390 	spinlock_t *ptl;
2391 	int err = 0;
2392 
2393 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2394 	if (!pte)
2395 		return -ENOMEM;
2396 	arch_enter_lazy_mmu_mode();
2397 	do {
2398 		BUG_ON(!pte_none(*pte));
2399 		if (!pfn_modify_allowed(pfn, prot)) {
2400 			err = -EACCES;
2401 			break;
2402 		}
2403 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2404 		pfn++;
2405 	} while (pte++, addr += PAGE_SIZE, addr != end);
2406 	arch_leave_lazy_mmu_mode();
2407 	pte_unmap_unlock(mapped_pte, ptl);
2408 	return err;
2409 }
2410 
2411 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2412 			unsigned long addr, unsigned long end,
2413 			unsigned long pfn, pgprot_t prot)
2414 {
2415 	pmd_t *pmd;
2416 	unsigned long next;
2417 	int err;
2418 
2419 	pfn -= addr >> PAGE_SHIFT;
2420 	pmd = pmd_alloc(mm, pud, addr);
2421 	if (!pmd)
2422 		return -ENOMEM;
2423 	VM_BUG_ON(pmd_trans_huge(*pmd));
2424 	do {
2425 		next = pmd_addr_end(addr, end);
2426 		err = remap_pte_range(mm, pmd, addr, next,
2427 				pfn + (addr >> PAGE_SHIFT), prot);
2428 		if (err)
2429 			return err;
2430 	} while (pmd++, addr = next, addr != end);
2431 	return 0;
2432 }
2433 
2434 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2435 			unsigned long addr, unsigned long end,
2436 			unsigned long pfn, pgprot_t prot)
2437 {
2438 	pud_t *pud;
2439 	unsigned long next;
2440 	int err;
2441 
2442 	pfn -= addr >> PAGE_SHIFT;
2443 	pud = pud_alloc(mm, p4d, addr);
2444 	if (!pud)
2445 		return -ENOMEM;
2446 	do {
2447 		next = pud_addr_end(addr, end);
2448 		err = remap_pmd_range(mm, pud, addr, next,
2449 				pfn + (addr >> PAGE_SHIFT), prot);
2450 		if (err)
2451 			return err;
2452 	} while (pud++, addr = next, addr != end);
2453 	return 0;
2454 }
2455 
2456 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2457 			unsigned long addr, unsigned long end,
2458 			unsigned long pfn, pgprot_t prot)
2459 {
2460 	p4d_t *p4d;
2461 	unsigned long next;
2462 	int err;
2463 
2464 	pfn -= addr >> PAGE_SHIFT;
2465 	p4d = p4d_alloc(mm, pgd, addr);
2466 	if (!p4d)
2467 		return -ENOMEM;
2468 	do {
2469 		next = p4d_addr_end(addr, end);
2470 		err = remap_pud_range(mm, p4d, addr, next,
2471 				pfn + (addr >> PAGE_SHIFT), prot);
2472 		if (err)
2473 			return err;
2474 	} while (p4d++, addr = next, addr != end);
2475 	return 0;
2476 }
2477 
2478 /*
2479  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2480  * must have pre-validated the caching bits of the pgprot_t.
2481  */
2482 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2483 		unsigned long pfn, unsigned long size, pgprot_t prot)
2484 {
2485 	pgd_t *pgd;
2486 	unsigned long next;
2487 	unsigned long end = addr + PAGE_ALIGN(size);
2488 	struct mm_struct *mm = vma->vm_mm;
2489 	int err;
2490 
2491 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2492 		return -EINVAL;
2493 
2494 	/*
2495 	 * Physically remapped pages are special. Tell the
2496 	 * rest of the world about it:
2497 	 *   VM_IO tells people not to look at these pages
2498 	 *	(accesses can have side effects).
2499 	 *   VM_PFNMAP tells the core MM that the base pages are just
2500 	 *	raw PFN mappings, and do not have a "struct page" associated
2501 	 *	with them.
2502 	 *   VM_DONTEXPAND
2503 	 *      Disable vma merging and expanding with mremap().
2504 	 *   VM_DONTDUMP
2505 	 *      Omit vma from core dump, even when VM_IO turned off.
2506 	 *
2507 	 * There's a horrible special case to handle copy-on-write
2508 	 * behaviour that some programs depend on. We mark the "original"
2509 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2510 	 * See vm_normal_page() for details.
2511 	 */
2512 	if (is_cow_mapping(vma->vm_flags)) {
2513 		if (addr != vma->vm_start || end != vma->vm_end)
2514 			return -EINVAL;
2515 		vma->vm_pgoff = pfn;
2516 	}
2517 
2518 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2519 
2520 	BUG_ON(addr >= end);
2521 	pfn -= addr >> PAGE_SHIFT;
2522 	pgd = pgd_offset(mm, addr);
2523 	flush_cache_range(vma, addr, end);
2524 	do {
2525 		next = pgd_addr_end(addr, end);
2526 		err = remap_p4d_range(mm, pgd, addr, next,
2527 				pfn + (addr >> PAGE_SHIFT), prot);
2528 		if (err)
2529 			return err;
2530 	} while (pgd++, addr = next, addr != end);
2531 
2532 	return 0;
2533 }
2534 
2535 /**
2536  * remap_pfn_range - remap kernel memory to userspace
2537  * @vma: user vma to map to
2538  * @addr: target page aligned user address to start at
2539  * @pfn: page frame number of kernel physical memory address
2540  * @size: size of mapping area
2541  * @prot: page protection flags for this mapping
2542  *
2543  * Note: this is only safe if the mm semaphore is held when called.
2544  *
2545  * Return: %0 on success, negative error code otherwise.
2546  */
2547 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2548 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2549 {
2550 	int err;
2551 
2552 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2553 	if (err)
2554 		return -EINVAL;
2555 
2556 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2557 	if (err)
2558 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2559 	return err;
2560 }
2561 EXPORT_SYMBOL(remap_pfn_range);
2562 
2563 /**
2564  * vm_iomap_memory - remap memory to userspace
2565  * @vma: user vma to map to
2566  * @start: start of the physical memory to be mapped
2567  * @len: size of area
2568  *
2569  * This is a simplified io_remap_pfn_range() for common driver use. The
2570  * driver just needs to give us the physical memory range to be mapped,
2571  * we'll figure out the rest from the vma information.
2572  *
2573  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2574  * whatever write-combining details or similar.
2575  *
2576  * Return: %0 on success, negative error code otherwise.
2577  */
2578 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2579 {
2580 	unsigned long vm_len, pfn, pages;
2581 
2582 	/* Check that the physical memory area passed in looks valid */
2583 	if (start + len < start)
2584 		return -EINVAL;
2585 	/*
2586 	 * You *really* shouldn't map things that aren't page-aligned,
2587 	 * but we've historically allowed it because IO memory might
2588 	 * just have smaller alignment.
2589 	 */
2590 	len += start & ~PAGE_MASK;
2591 	pfn = start >> PAGE_SHIFT;
2592 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2593 	if (pfn + pages < pfn)
2594 		return -EINVAL;
2595 
2596 	/* We start the mapping 'vm_pgoff' pages into the area */
2597 	if (vma->vm_pgoff > pages)
2598 		return -EINVAL;
2599 	pfn += vma->vm_pgoff;
2600 	pages -= vma->vm_pgoff;
2601 
2602 	/* Can we fit all of the mapping? */
2603 	vm_len = vma->vm_end - vma->vm_start;
2604 	if (vm_len >> PAGE_SHIFT > pages)
2605 		return -EINVAL;
2606 
2607 	/* Ok, let it rip */
2608 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2609 }
2610 EXPORT_SYMBOL(vm_iomap_memory);
2611 
2612 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2613 				     unsigned long addr, unsigned long end,
2614 				     pte_fn_t fn, void *data, bool create,
2615 				     pgtbl_mod_mask *mask)
2616 {
2617 	pte_t *pte, *mapped_pte;
2618 	int err = 0;
2619 	spinlock_t *ptl;
2620 
2621 	if (create) {
2622 		mapped_pte = pte = (mm == &init_mm) ?
2623 			pte_alloc_kernel_track(pmd, addr, mask) :
2624 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2625 		if (!pte)
2626 			return -ENOMEM;
2627 	} else {
2628 		mapped_pte = pte = (mm == &init_mm) ?
2629 			pte_offset_kernel(pmd, addr) :
2630 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2631 	}
2632 
2633 	BUG_ON(pmd_huge(*pmd));
2634 
2635 	arch_enter_lazy_mmu_mode();
2636 
2637 	if (fn) {
2638 		do {
2639 			if (create || !pte_none(*pte)) {
2640 				err = fn(pte++, addr, data);
2641 				if (err)
2642 					break;
2643 			}
2644 		} while (addr += PAGE_SIZE, addr != end);
2645 	}
2646 	*mask |= PGTBL_PTE_MODIFIED;
2647 
2648 	arch_leave_lazy_mmu_mode();
2649 
2650 	if (mm != &init_mm)
2651 		pte_unmap_unlock(mapped_pte, ptl);
2652 	return err;
2653 }
2654 
2655 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2656 				     unsigned long addr, unsigned long end,
2657 				     pte_fn_t fn, void *data, bool create,
2658 				     pgtbl_mod_mask *mask)
2659 {
2660 	pmd_t *pmd;
2661 	unsigned long next;
2662 	int err = 0;
2663 
2664 	BUG_ON(pud_huge(*pud));
2665 
2666 	if (create) {
2667 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2668 		if (!pmd)
2669 			return -ENOMEM;
2670 	} else {
2671 		pmd = pmd_offset(pud, addr);
2672 	}
2673 	do {
2674 		next = pmd_addr_end(addr, end);
2675 		if (pmd_none(*pmd) && !create)
2676 			continue;
2677 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2678 			return -EINVAL;
2679 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2680 			if (!create)
2681 				continue;
2682 			pmd_clear_bad(pmd);
2683 		}
2684 		err = apply_to_pte_range(mm, pmd, addr, next,
2685 					 fn, data, create, mask);
2686 		if (err)
2687 			break;
2688 	} while (pmd++, addr = next, addr != end);
2689 
2690 	return err;
2691 }
2692 
2693 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2694 				     unsigned long addr, unsigned long end,
2695 				     pte_fn_t fn, void *data, bool create,
2696 				     pgtbl_mod_mask *mask)
2697 {
2698 	pud_t *pud;
2699 	unsigned long next;
2700 	int err = 0;
2701 
2702 	if (create) {
2703 		pud = pud_alloc_track(mm, p4d, addr, mask);
2704 		if (!pud)
2705 			return -ENOMEM;
2706 	} else {
2707 		pud = pud_offset(p4d, addr);
2708 	}
2709 	do {
2710 		next = pud_addr_end(addr, end);
2711 		if (pud_none(*pud) && !create)
2712 			continue;
2713 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2714 			return -EINVAL;
2715 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2716 			if (!create)
2717 				continue;
2718 			pud_clear_bad(pud);
2719 		}
2720 		err = apply_to_pmd_range(mm, pud, addr, next,
2721 					 fn, data, create, mask);
2722 		if (err)
2723 			break;
2724 	} while (pud++, addr = next, addr != end);
2725 
2726 	return err;
2727 }
2728 
2729 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2730 				     unsigned long addr, unsigned long end,
2731 				     pte_fn_t fn, void *data, bool create,
2732 				     pgtbl_mod_mask *mask)
2733 {
2734 	p4d_t *p4d;
2735 	unsigned long next;
2736 	int err = 0;
2737 
2738 	if (create) {
2739 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2740 		if (!p4d)
2741 			return -ENOMEM;
2742 	} else {
2743 		p4d = p4d_offset(pgd, addr);
2744 	}
2745 	do {
2746 		next = p4d_addr_end(addr, end);
2747 		if (p4d_none(*p4d) && !create)
2748 			continue;
2749 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2750 			return -EINVAL;
2751 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2752 			if (!create)
2753 				continue;
2754 			p4d_clear_bad(p4d);
2755 		}
2756 		err = apply_to_pud_range(mm, p4d, addr, next,
2757 					 fn, data, create, mask);
2758 		if (err)
2759 			break;
2760 	} while (p4d++, addr = next, addr != end);
2761 
2762 	return err;
2763 }
2764 
2765 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2766 				 unsigned long size, pte_fn_t fn,
2767 				 void *data, bool create)
2768 {
2769 	pgd_t *pgd;
2770 	unsigned long start = addr, next;
2771 	unsigned long end = addr + size;
2772 	pgtbl_mod_mask mask = 0;
2773 	int err = 0;
2774 
2775 	if (WARN_ON(addr >= end))
2776 		return -EINVAL;
2777 
2778 	pgd = pgd_offset(mm, addr);
2779 	do {
2780 		next = pgd_addr_end(addr, end);
2781 		if (pgd_none(*pgd) && !create)
2782 			continue;
2783 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2784 			return -EINVAL;
2785 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2786 			if (!create)
2787 				continue;
2788 			pgd_clear_bad(pgd);
2789 		}
2790 		err = apply_to_p4d_range(mm, pgd, addr, next,
2791 					 fn, data, create, &mask);
2792 		if (err)
2793 			break;
2794 	} while (pgd++, addr = next, addr != end);
2795 
2796 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2797 		arch_sync_kernel_mappings(start, start + size);
2798 
2799 	return err;
2800 }
2801 
2802 /*
2803  * Scan a region of virtual memory, filling in page tables as necessary
2804  * and calling a provided function on each leaf page table.
2805  */
2806 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2807 			unsigned long size, pte_fn_t fn, void *data)
2808 {
2809 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2810 }
2811 EXPORT_SYMBOL_GPL(apply_to_page_range);
2812 
2813 /*
2814  * Scan a region of virtual memory, calling a provided function on
2815  * each leaf page table where it exists.
2816  *
2817  * Unlike apply_to_page_range, this does _not_ fill in page tables
2818  * where they are absent.
2819  */
2820 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2821 				 unsigned long size, pte_fn_t fn, void *data)
2822 {
2823 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2824 }
2825 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2826 
2827 /*
2828  * handle_pte_fault chooses page fault handler according to an entry which was
2829  * read non-atomically.  Before making any commitment, on those architectures
2830  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2831  * parts, do_swap_page must check under lock before unmapping the pte and
2832  * proceeding (but do_wp_page is only called after already making such a check;
2833  * and do_anonymous_page can safely check later on).
2834  */
2835 static inline int pte_unmap_same(struct vm_fault *vmf)
2836 {
2837 	int same = 1;
2838 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2839 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2840 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2841 		spin_lock(ptl);
2842 		same = pte_same(*vmf->pte, vmf->orig_pte);
2843 		spin_unlock(ptl);
2844 	}
2845 #endif
2846 	pte_unmap(vmf->pte);
2847 	vmf->pte = NULL;
2848 	return same;
2849 }
2850 
2851 static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2852 				       struct vm_fault *vmf)
2853 {
2854 	bool ret;
2855 	void *kaddr;
2856 	void __user *uaddr;
2857 	bool locked = false;
2858 	struct vm_area_struct *vma = vmf->vma;
2859 	struct mm_struct *mm = vma->vm_mm;
2860 	unsigned long addr = vmf->address;
2861 
2862 	if (likely(src)) {
2863 		copy_user_highpage(dst, src, addr, vma);
2864 		return true;
2865 	}
2866 
2867 	/*
2868 	 * If the source page was a PFN mapping, we don't have
2869 	 * a "struct page" for it. We do a best-effort copy by
2870 	 * just copying from the original user address. If that
2871 	 * fails, we just zero-fill it. Live with it.
2872 	 */
2873 	kaddr = kmap_atomic(dst);
2874 	uaddr = (void __user *)(addr & PAGE_MASK);
2875 
2876 	/*
2877 	 * On architectures with software "accessed" bits, we would
2878 	 * take a double page fault, so mark it accessed here.
2879 	 */
2880 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2881 		pte_t entry;
2882 
2883 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2884 		locked = true;
2885 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2886 			/*
2887 			 * Other thread has already handled the fault
2888 			 * and update local tlb only
2889 			 */
2890 			update_mmu_tlb(vma, addr, vmf->pte);
2891 			ret = false;
2892 			goto pte_unlock;
2893 		}
2894 
2895 		entry = pte_mkyoung(vmf->orig_pte);
2896 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2897 			update_mmu_cache(vma, addr, vmf->pte);
2898 	}
2899 
2900 	/*
2901 	 * This really shouldn't fail, because the page is there
2902 	 * in the page tables. But it might just be unreadable,
2903 	 * in which case we just give up and fill the result with
2904 	 * zeroes.
2905 	 */
2906 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2907 		if (locked)
2908 			goto warn;
2909 
2910 		/* Re-validate under PTL if the page is still mapped */
2911 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2912 		locked = true;
2913 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2914 			/* The PTE changed under us, update local tlb */
2915 			update_mmu_tlb(vma, addr, vmf->pte);
2916 			ret = false;
2917 			goto pte_unlock;
2918 		}
2919 
2920 		/*
2921 		 * The same page can be mapped back since last copy attempt.
2922 		 * Try to copy again under PTL.
2923 		 */
2924 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2925 			/*
2926 			 * Give a warn in case there can be some obscure
2927 			 * use-case
2928 			 */
2929 warn:
2930 			WARN_ON_ONCE(1);
2931 			clear_page(kaddr);
2932 		}
2933 	}
2934 
2935 	ret = true;
2936 
2937 pte_unlock:
2938 	if (locked)
2939 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2940 	kunmap_atomic(kaddr);
2941 	flush_dcache_page(dst);
2942 
2943 	return ret;
2944 }
2945 
2946 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2947 {
2948 	struct file *vm_file = vma->vm_file;
2949 
2950 	if (vm_file)
2951 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2952 
2953 	/*
2954 	 * Special mappings (e.g. VDSO) do not have any file so fake
2955 	 * a default GFP_KERNEL for them.
2956 	 */
2957 	return GFP_KERNEL;
2958 }
2959 
2960 /*
2961  * Notify the address space that the page is about to become writable so that
2962  * it can prohibit this or wait for the page to get into an appropriate state.
2963  *
2964  * We do this without the lock held, so that it can sleep if it needs to.
2965  */
2966 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2967 {
2968 	vm_fault_t ret;
2969 	struct page *page = vmf->page;
2970 	unsigned int old_flags = vmf->flags;
2971 
2972 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2973 
2974 	if (vmf->vma->vm_file &&
2975 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2976 		return VM_FAULT_SIGBUS;
2977 
2978 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2979 	/* Restore original flags so that caller is not surprised */
2980 	vmf->flags = old_flags;
2981 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2982 		return ret;
2983 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2984 		lock_page(page);
2985 		if (!page->mapping) {
2986 			unlock_page(page);
2987 			return 0; /* retry */
2988 		}
2989 		ret |= VM_FAULT_LOCKED;
2990 	} else
2991 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2992 	return ret;
2993 }
2994 
2995 /*
2996  * Handle dirtying of a page in shared file mapping on a write fault.
2997  *
2998  * The function expects the page to be locked and unlocks it.
2999  */
3000 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3001 {
3002 	struct vm_area_struct *vma = vmf->vma;
3003 	struct address_space *mapping;
3004 	struct page *page = vmf->page;
3005 	bool dirtied;
3006 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3007 
3008 	dirtied = set_page_dirty(page);
3009 	VM_BUG_ON_PAGE(PageAnon(page), page);
3010 	/*
3011 	 * Take a local copy of the address_space - page.mapping may be zeroed
3012 	 * by truncate after unlock_page().   The address_space itself remains
3013 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3014 	 * release semantics to prevent the compiler from undoing this copying.
3015 	 */
3016 	mapping = page_rmapping(page);
3017 	unlock_page(page);
3018 
3019 	if (!page_mkwrite)
3020 		file_update_time(vma->vm_file);
3021 
3022 	/*
3023 	 * Throttle page dirtying rate down to writeback speed.
3024 	 *
3025 	 * mapping may be NULL here because some device drivers do not
3026 	 * set page.mapping but still dirty their pages
3027 	 *
3028 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3029 	 * is pinning the mapping, as per above.
3030 	 */
3031 	if ((dirtied || page_mkwrite) && mapping) {
3032 		struct file *fpin;
3033 
3034 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3035 		balance_dirty_pages_ratelimited(mapping);
3036 		if (fpin) {
3037 			fput(fpin);
3038 			return VM_FAULT_COMPLETED;
3039 		}
3040 	}
3041 
3042 	return 0;
3043 }
3044 
3045 /*
3046  * Handle write page faults for pages that can be reused in the current vma
3047  *
3048  * This can happen either due to the mapping being with the VM_SHARED flag,
3049  * or due to us being the last reference standing to the page. In either
3050  * case, all we need to do here is to mark the page as writable and update
3051  * any related book-keeping.
3052  */
3053 static inline void wp_page_reuse(struct vm_fault *vmf)
3054 	__releases(vmf->ptl)
3055 {
3056 	struct vm_area_struct *vma = vmf->vma;
3057 	struct page *page = vmf->page;
3058 	pte_t entry;
3059 
3060 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3061 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3062 
3063 	/*
3064 	 * Clear the pages cpupid information as the existing
3065 	 * information potentially belongs to a now completely
3066 	 * unrelated process.
3067 	 */
3068 	if (page)
3069 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3070 
3071 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3072 	entry = pte_mkyoung(vmf->orig_pte);
3073 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3074 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3075 		update_mmu_cache(vma, vmf->address, vmf->pte);
3076 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3077 	count_vm_event(PGREUSE);
3078 }
3079 
3080 /*
3081  * Handle the case of a page which we actually need to copy to a new page,
3082  * either due to COW or unsharing.
3083  *
3084  * Called with mmap_lock locked and the old page referenced, but
3085  * without the ptl held.
3086  *
3087  * High level logic flow:
3088  *
3089  * - Allocate a page, copy the content of the old page to the new one.
3090  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3091  * - Take the PTL. If the pte changed, bail out and release the allocated page
3092  * - If the pte is still the way we remember it, update the page table and all
3093  *   relevant references. This includes dropping the reference the page-table
3094  *   held to the old page, as well as updating the rmap.
3095  * - In any case, unlock the PTL and drop the reference we took to the old page.
3096  */
3097 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3098 {
3099 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3100 	struct vm_area_struct *vma = vmf->vma;
3101 	struct mm_struct *mm = vma->vm_mm;
3102 	struct page *old_page = vmf->page;
3103 	struct page *new_page = NULL;
3104 	pte_t entry;
3105 	int page_copied = 0;
3106 	struct mmu_notifier_range range;
3107 
3108 	delayacct_wpcopy_start();
3109 
3110 	if (unlikely(anon_vma_prepare(vma)))
3111 		goto oom;
3112 
3113 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3114 		new_page = alloc_zeroed_user_highpage_movable(vma,
3115 							      vmf->address);
3116 		if (!new_page)
3117 			goto oom;
3118 	} else {
3119 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3120 				vmf->address);
3121 		if (!new_page)
3122 			goto oom;
3123 
3124 		if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3125 			/*
3126 			 * COW failed, if the fault was solved by other,
3127 			 * it's fine. If not, userspace would re-fault on
3128 			 * the same address and we will handle the fault
3129 			 * from the second attempt.
3130 			 */
3131 			put_page(new_page);
3132 			if (old_page)
3133 				put_page(old_page);
3134 
3135 			delayacct_wpcopy_end();
3136 			return 0;
3137 		}
3138 		kmsan_copy_page_meta(new_page, old_page);
3139 	}
3140 
3141 	if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3142 		goto oom_free_new;
3143 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3144 
3145 	__SetPageUptodate(new_page);
3146 
3147 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3148 				vmf->address & PAGE_MASK,
3149 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3150 	mmu_notifier_invalidate_range_start(&range);
3151 
3152 	/*
3153 	 * Re-check the pte - we dropped the lock
3154 	 */
3155 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3156 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3157 		if (old_page) {
3158 			if (!PageAnon(old_page)) {
3159 				dec_mm_counter_fast(mm,
3160 						mm_counter_file(old_page));
3161 				inc_mm_counter_fast(mm, MM_ANONPAGES);
3162 			}
3163 		} else {
3164 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3165 		}
3166 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3167 		entry = mk_pte(new_page, vma->vm_page_prot);
3168 		entry = pte_sw_mkyoung(entry);
3169 		if (unlikely(unshare)) {
3170 			if (pte_soft_dirty(vmf->orig_pte))
3171 				entry = pte_mksoft_dirty(entry);
3172 			if (pte_uffd_wp(vmf->orig_pte))
3173 				entry = pte_mkuffd_wp(entry);
3174 		} else {
3175 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3176 		}
3177 
3178 		/*
3179 		 * Clear the pte entry and flush it first, before updating the
3180 		 * pte with the new entry, to keep TLBs on different CPUs in
3181 		 * sync. This code used to set the new PTE then flush TLBs, but
3182 		 * that left a window where the new PTE could be loaded into
3183 		 * some TLBs while the old PTE remains in others.
3184 		 */
3185 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3186 		page_add_new_anon_rmap(new_page, vma, vmf->address);
3187 		lru_cache_add_inactive_or_unevictable(new_page, vma);
3188 		/*
3189 		 * We call the notify macro here because, when using secondary
3190 		 * mmu page tables (such as kvm shadow page tables), we want the
3191 		 * new page to be mapped directly into the secondary page table.
3192 		 */
3193 		BUG_ON(unshare && pte_write(entry));
3194 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3195 		update_mmu_cache(vma, vmf->address, vmf->pte);
3196 		if (old_page) {
3197 			/*
3198 			 * Only after switching the pte to the new page may
3199 			 * we remove the mapcount here. Otherwise another
3200 			 * process may come and find the rmap count decremented
3201 			 * before the pte is switched to the new page, and
3202 			 * "reuse" the old page writing into it while our pte
3203 			 * here still points into it and can be read by other
3204 			 * threads.
3205 			 *
3206 			 * The critical issue is to order this
3207 			 * page_remove_rmap with the ptp_clear_flush above.
3208 			 * Those stores are ordered by (if nothing else,)
3209 			 * the barrier present in the atomic_add_negative
3210 			 * in page_remove_rmap.
3211 			 *
3212 			 * Then the TLB flush in ptep_clear_flush ensures that
3213 			 * no process can access the old page before the
3214 			 * decremented mapcount is visible. And the old page
3215 			 * cannot be reused until after the decremented
3216 			 * mapcount is visible. So transitively, TLBs to
3217 			 * old page will be flushed before it can be reused.
3218 			 */
3219 			page_remove_rmap(old_page, vma, false);
3220 		}
3221 
3222 		/* Free the old page.. */
3223 		new_page = old_page;
3224 		page_copied = 1;
3225 	} else {
3226 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3227 	}
3228 
3229 	if (new_page)
3230 		put_page(new_page);
3231 
3232 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3233 	/*
3234 	 * No need to double call mmu_notifier->invalidate_range() callback as
3235 	 * the above ptep_clear_flush_notify() did already call it.
3236 	 */
3237 	mmu_notifier_invalidate_range_only_end(&range);
3238 	if (old_page) {
3239 		if (page_copied)
3240 			free_swap_cache(old_page);
3241 		put_page(old_page);
3242 	}
3243 
3244 	delayacct_wpcopy_end();
3245 	return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3246 oom_free_new:
3247 	put_page(new_page);
3248 oom:
3249 	if (old_page)
3250 		put_page(old_page);
3251 
3252 	delayacct_wpcopy_end();
3253 	return VM_FAULT_OOM;
3254 }
3255 
3256 /**
3257  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3258  *			  writeable once the page is prepared
3259  *
3260  * @vmf: structure describing the fault
3261  *
3262  * This function handles all that is needed to finish a write page fault in a
3263  * shared mapping due to PTE being read-only once the mapped page is prepared.
3264  * It handles locking of PTE and modifying it.
3265  *
3266  * The function expects the page to be locked or other protection against
3267  * concurrent faults / writeback (such as DAX radix tree locks).
3268  *
3269  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3270  * we acquired PTE lock.
3271  */
3272 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3273 {
3274 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3275 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3276 				       &vmf->ptl);
3277 	/*
3278 	 * We might have raced with another page fault while we released the
3279 	 * pte_offset_map_lock.
3280 	 */
3281 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3282 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3283 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3284 		return VM_FAULT_NOPAGE;
3285 	}
3286 	wp_page_reuse(vmf);
3287 	return 0;
3288 }
3289 
3290 /*
3291  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3292  * mapping
3293  */
3294 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3295 {
3296 	struct vm_area_struct *vma = vmf->vma;
3297 
3298 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3299 		vm_fault_t ret;
3300 
3301 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3302 		vmf->flags |= FAULT_FLAG_MKWRITE;
3303 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3304 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3305 			return ret;
3306 		return finish_mkwrite_fault(vmf);
3307 	}
3308 	wp_page_reuse(vmf);
3309 	return VM_FAULT_WRITE;
3310 }
3311 
3312 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3313 	__releases(vmf->ptl)
3314 {
3315 	struct vm_area_struct *vma = vmf->vma;
3316 	vm_fault_t ret = VM_FAULT_WRITE;
3317 
3318 	get_page(vmf->page);
3319 
3320 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3321 		vm_fault_t tmp;
3322 
3323 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3324 		tmp = do_page_mkwrite(vmf);
3325 		if (unlikely(!tmp || (tmp &
3326 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3327 			put_page(vmf->page);
3328 			return tmp;
3329 		}
3330 		tmp = finish_mkwrite_fault(vmf);
3331 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3332 			unlock_page(vmf->page);
3333 			put_page(vmf->page);
3334 			return tmp;
3335 		}
3336 	} else {
3337 		wp_page_reuse(vmf);
3338 		lock_page(vmf->page);
3339 	}
3340 	ret |= fault_dirty_shared_page(vmf);
3341 	put_page(vmf->page);
3342 
3343 	return ret;
3344 }
3345 
3346 /*
3347  * This routine handles present pages, when
3348  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3349  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3350  *   (FAULT_FLAG_UNSHARE)
3351  *
3352  * It is done by copying the page to a new address and decrementing the
3353  * shared-page counter for the old page.
3354  *
3355  * Note that this routine assumes that the protection checks have been
3356  * done by the caller (the low-level page fault routine in most cases).
3357  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3358  * done any necessary COW.
3359  *
3360  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3361  * though the page will change only once the write actually happens. This
3362  * avoids a few races, and potentially makes it more efficient.
3363  *
3364  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3365  * but allow concurrent faults), with pte both mapped and locked.
3366  * We return with mmap_lock still held, but pte unmapped and unlocked.
3367  */
3368 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3369 	__releases(vmf->ptl)
3370 {
3371 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3372 	struct vm_area_struct *vma = vmf->vma;
3373 	struct folio *folio;
3374 
3375 	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3376 	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3377 
3378 	if (likely(!unshare)) {
3379 		if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3380 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3381 			return handle_userfault(vmf, VM_UFFD_WP);
3382 		}
3383 
3384 		/*
3385 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3386 		 * is flushed in this case before copying.
3387 		 */
3388 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3389 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3390 			flush_tlb_page(vmf->vma, vmf->address);
3391 	}
3392 
3393 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3394 	if (!vmf->page) {
3395 		if (unlikely(unshare)) {
3396 			/* No anonymous page -> nothing to do. */
3397 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3398 			return 0;
3399 		}
3400 
3401 		/*
3402 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3403 		 * VM_PFNMAP VMA.
3404 		 *
3405 		 * We should not cow pages in a shared writeable mapping.
3406 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3407 		 */
3408 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3409 				     (VM_WRITE|VM_SHARED))
3410 			return wp_pfn_shared(vmf);
3411 
3412 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3413 		return wp_page_copy(vmf);
3414 	}
3415 
3416 	/*
3417 	 * Take out anonymous pages first, anonymous shared vmas are
3418 	 * not dirty accountable.
3419 	 */
3420 	folio = page_folio(vmf->page);
3421 	if (folio_test_anon(folio)) {
3422 		/*
3423 		 * If the page is exclusive to this process we must reuse the
3424 		 * page without further checks.
3425 		 */
3426 		if (PageAnonExclusive(vmf->page))
3427 			goto reuse;
3428 
3429 		/*
3430 		 * We have to verify under folio lock: these early checks are
3431 		 * just an optimization to avoid locking the folio and freeing
3432 		 * the swapcache if there is little hope that we can reuse.
3433 		 *
3434 		 * KSM doesn't necessarily raise the folio refcount.
3435 		 */
3436 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3437 			goto copy;
3438 		if (!folio_test_lru(folio))
3439 			/*
3440 			 * Note: We cannot easily detect+handle references from
3441 			 * remote LRU pagevecs or references to LRU folios.
3442 			 */
3443 			lru_add_drain();
3444 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3445 			goto copy;
3446 		if (!folio_trylock(folio))
3447 			goto copy;
3448 		if (folio_test_swapcache(folio))
3449 			folio_free_swap(folio);
3450 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3451 			folio_unlock(folio);
3452 			goto copy;
3453 		}
3454 		/*
3455 		 * Ok, we've got the only folio reference from our mapping
3456 		 * and the folio is locked, it's dark out, and we're wearing
3457 		 * sunglasses. Hit it.
3458 		 */
3459 		page_move_anon_rmap(vmf->page, vma);
3460 		folio_unlock(folio);
3461 reuse:
3462 		if (unlikely(unshare)) {
3463 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3464 			return 0;
3465 		}
3466 		wp_page_reuse(vmf);
3467 		return VM_FAULT_WRITE;
3468 	} else if (unshare) {
3469 		/* No anonymous page -> nothing to do. */
3470 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3471 		return 0;
3472 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3473 					(VM_WRITE|VM_SHARED))) {
3474 		return wp_page_shared(vmf);
3475 	}
3476 copy:
3477 	/*
3478 	 * Ok, we need to copy. Oh, well..
3479 	 */
3480 	get_page(vmf->page);
3481 
3482 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3483 #ifdef CONFIG_KSM
3484 	if (PageKsm(vmf->page))
3485 		count_vm_event(COW_KSM);
3486 #endif
3487 	return wp_page_copy(vmf);
3488 }
3489 
3490 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3491 		unsigned long start_addr, unsigned long end_addr,
3492 		struct zap_details *details)
3493 {
3494 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3495 }
3496 
3497 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3498 					    pgoff_t first_index,
3499 					    pgoff_t last_index,
3500 					    struct zap_details *details)
3501 {
3502 	struct vm_area_struct *vma;
3503 	pgoff_t vba, vea, zba, zea;
3504 
3505 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3506 		vba = vma->vm_pgoff;
3507 		vea = vba + vma_pages(vma) - 1;
3508 		zba = max(first_index, vba);
3509 		zea = min(last_index, vea);
3510 
3511 		unmap_mapping_range_vma(vma,
3512 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3513 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3514 				details);
3515 	}
3516 }
3517 
3518 /**
3519  * unmap_mapping_folio() - Unmap single folio from processes.
3520  * @folio: The locked folio to be unmapped.
3521  *
3522  * Unmap this folio from any userspace process which still has it mmaped.
3523  * Typically, for efficiency, the range of nearby pages has already been
3524  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3525  * truncation or invalidation holds the lock on a folio, it may find that
3526  * the page has been remapped again: and then uses unmap_mapping_folio()
3527  * to unmap it finally.
3528  */
3529 void unmap_mapping_folio(struct folio *folio)
3530 {
3531 	struct address_space *mapping = folio->mapping;
3532 	struct zap_details details = { };
3533 	pgoff_t	first_index;
3534 	pgoff_t	last_index;
3535 
3536 	VM_BUG_ON(!folio_test_locked(folio));
3537 
3538 	first_index = folio->index;
3539 	last_index = folio->index + folio_nr_pages(folio) - 1;
3540 
3541 	details.even_cows = false;
3542 	details.single_folio = folio;
3543 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3544 
3545 	i_mmap_lock_read(mapping);
3546 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3547 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3548 					 last_index, &details);
3549 	i_mmap_unlock_read(mapping);
3550 }
3551 
3552 /**
3553  * unmap_mapping_pages() - Unmap pages from processes.
3554  * @mapping: The address space containing pages to be unmapped.
3555  * @start: Index of first page to be unmapped.
3556  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3557  * @even_cows: Whether to unmap even private COWed pages.
3558  *
3559  * Unmap the pages in this address space from any userspace process which
3560  * has them mmaped.  Generally, you want to remove COWed pages as well when
3561  * a file is being truncated, but not when invalidating pages from the page
3562  * cache.
3563  */
3564 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3565 		pgoff_t nr, bool even_cows)
3566 {
3567 	struct zap_details details = { };
3568 	pgoff_t	first_index = start;
3569 	pgoff_t	last_index = start + nr - 1;
3570 
3571 	details.even_cows = even_cows;
3572 	if (last_index < first_index)
3573 		last_index = ULONG_MAX;
3574 
3575 	i_mmap_lock_read(mapping);
3576 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3577 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3578 					 last_index, &details);
3579 	i_mmap_unlock_read(mapping);
3580 }
3581 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3582 
3583 /**
3584  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3585  * address_space corresponding to the specified byte range in the underlying
3586  * file.
3587  *
3588  * @mapping: the address space containing mmaps to be unmapped.
3589  * @holebegin: byte in first page to unmap, relative to the start of
3590  * the underlying file.  This will be rounded down to a PAGE_SIZE
3591  * boundary.  Note that this is different from truncate_pagecache(), which
3592  * must keep the partial page.  In contrast, we must get rid of
3593  * partial pages.
3594  * @holelen: size of prospective hole in bytes.  This will be rounded
3595  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3596  * end of the file.
3597  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3598  * but 0 when invalidating pagecache, don't throw away private data.
3599  */
3600 void unmap_mapping_range(struct address_space *mapping,
3601 		loff_t const holebegin, loff_t const holelen, int even_cows)
3602 {
3603 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3604 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3605 
3606 	/* Check for overflow. */
3607 	if (sizeof(holelen) > sizeof(hlen)) {
3608 		long long holeend =
3609 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3610 		if (holeend & ~(long long)ULONG_MAX)
3611 			hlen = ULONG_MAX - hba + 1;
3612 	}
3613 
3614 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3615 }
3616 EXPORT_SYMBOL(unmap_mapping_range);
3617 
3618 /*
3619  * Restore a potential device exclusive pte to a working pte entry
3620  */
3621 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3622 {
3623 	struct folio *folio = page_folio(vmf->page);
3624 	struct vm_area_struct *vma = vmf->vma;
3625 	struct mmu_notifier_range range;
3626 
3627 	if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3628 		return VM_FAULT_RETRY;
3629 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3630 				vma->vm_mm, vmf->address & PAGE_MASK,
3631 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3632 	mmu_notifier_invalidate_range_start(&range);
3633 
3634 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3635 				&vmf->ptl);
3636 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3637 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3638 
3639 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3640 	folio_unlock(folio);
3641 
3642 	mmu_notifier_invalidate_range_end(&range);
3643 	return 0;
3644 }
3645 
3646 static inline bool should_try_to_free_swap(struct folio *folio,
3647 					   struct vm_area_struct *vma,
3648 					   unsigned int fault_flags)
3649 {
3650 	if (!folio_test_swapcache(folio))
3651 		return false;
3652 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3653 	    folio_test_mlocked(folio))
3654 		return true;
3655 	/*
3656 	 * If we want to map a page that's in the swapcache writable, we
3657 	 * have to detect via the refcount if we're really the exclusive
3658 	 * user. Try freeing the swapcache to get rid of the swapcache
3659 	 * reference only in case it's likely that we'll be the exlusive user.
3660 	 */
3661 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3662 		folio_ref_count(folio) == 2;
3663 }
3664 
3665 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3666 {
3667 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3668 				       vmf->address, &vmf->ptl);
3669 	/*
3670 	 * Be careful so that we will only recover a special uffd-wp pte into a
3671 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3672 	 */
3673 	if (is_pte_marker(*vmf->pte))
3674 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3675 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3676 	return 0;
3677 }
3678 
3679 /*
3680  * This is actually a page-missing access, but with uffd-wp special pte
3681  * installed.  It means this pte was wr-protected before being unmapped.
3682  */
3683 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3684 {
3685 	/*
3686 	 * Just in case there're leftover special ptes even after the region
3687 	 * got unregistered - we can simply clear them.  We can also do that
3688 	 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3689 	 * ranges, but it should be more efficient to be done lazily here.
3690 	 */
3691 	if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3692 		return pte_marker_clear(vmf);
3693 
3694 	/* do_fault() can handle pte markers too like none pte */
3695 	return do_fault(vmf);
3696 }
3697 
3698 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3699 {
3700 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3701 	unsigned long marker = pte_marker_get(entry);
3702 
3703 	/*
3704 	 * PTE markers should always be with file-backed memories, and the
3705 	 * marker should never be empty.  If anything weird happened, the best
3706 	 * thing to do is to kill the process along with its mm.
3707 	 */
3708 	if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3709 		return VM_FAULT_SIGBUS;
3710 
3711 	if (pte_marker_entry_uffd_wp(entry))
3712 		return pte_marker_handle_uffd_wp(vmf);
3713 
3714 	/* This is an unknown pte marker */
3715 	return VM_FAULT_SIGBUS;
3716 }
3717 
3718 /*
3719  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3720  * but allow concurrent faults), and pte mapped but not yet locked.
3721  * We return with pte unmapped and unlocked.
3722  *
3723  * We return with the mmap_lock locked or unlocked in the same cases
3724  * as does filemap_fault().
3725  */
3726 vm_fault_t do_swap_page(struct vm_fault *vmf)
3727 {
3728 	struct vm_area_struct *vma = vmf->vma;
3729 	struct folio *swapcache, *folio = NULL;
3730 	struct page *page;
3731 	struct swap_info_struct *si = NULL;
3732 	rmap_t rmap_flags = RMAP_NONE;
3733 	bool exclusive = false;
3734 	swp_entry_t entry;
3735 	pte_t pte;
3736 	int locked;
3737 	vm_fault_t ret = 0;
3738 	void *shadow = NULL;
3739 
3740 	if (!pte_unmap_same(vmf))
3741 		goto out;
3742 
3743 	entry = pte_to_swp_entry(vmf->orig_pte);
3744 	if (unlikely(non_swap_entry(entry))) {
3745 		if (is_migration_entry(entry)) {
3746 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3747 					     vmf->address);
3748 		} else if (is_device_exclusive_entry(entry)) {
3749 			vmf->page = pfn_swap_entry_to_page(entry);
3750 			ret = remove_device_exclusive_entry(vmf);
3751 		} else if (is_device_private_entry(entry)) {
3752 			vmf->page = pfn_swap_entry_to_page(entry);
3753 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3754 					vmf->address, &vmf->ptl);
3755 			if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3756 				spin_unlock(vmf->ptl);
3757 				goto out;
3758 			}
3759 
3760 			/*
3761 			 * Get a page reference while we know the page can't be
3762 			 * freed.
3763 			 */
3764 			get_page(vmf->page);
3765 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3766 			vmf->page->pgmap->ops->migrate_to_ram(vmf);
3767 			put_page(vmf->page);
3768 		} else if (is_hwpoison_entry(entry)) {
3769 			ret = VM_FAULT_HWPOISON;
3770 		} else if (is_swapin_error_entry(entry)) {
3771 			ret = VM_FAULT_SIGBUS;
3772 		} else if (is_pte_marker_entry(entry)) {
3773 			ret = handle_pte_marker(vmf);
3774 		} else {
3775 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3776 			ret = VM_FAULT_SIGBUS;
3777 		}
3778 		goto out;
3779 	}
3780 
3781 	/* Prevent swapoff from happening to us. */
3782 	si = get_swap_device(entry);
3783 	if (unlikely(!si))
3784 		goto out;
3785 
3786 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3787 	if (folio)
3788 		page = folio_file_page(folio, swp_offset(entry));
3789 	swapcache = folio;
3790 
3791 	if (!folio) {
3792 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3793 		    __swap_count(entry) == 1) {
3794 			/* skip swapcache */
3795 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3796 						vma, vmf->address, false);
3797 			page = &folio->page;
3798 			if (folio) {
3799 				__folio_set_locked(folio);
3800 				__folio_set_swapbacked(folio);
3801 
3802 				if (mem_cgroup_swapin_charge_folio(folio,
3803 							vma->vm_mm, GFP_KERNEL,
3804 							entry)) {
3805 					ret = VM_FAULT_OOM;
3806 					goto out_page;
3807 				}
3808 				mem_cgroup_swapin_uncharge_swap(entry);
3809 
3810 				shadow = get_shadow_from_swap_cache(entry);
3811 				if (shadow)
3812 					workingset_refault(folio, shadow);
3813 
3814 				folio_add_lru(folio);
3815 
3816 				/* To provide entry to swap_readpage() */
3817 				folio_set_swap_entry(folio, entry);
3818 				swap_readpage(page, true, NULL);
3819 				folio->private = NULL;
3820 			}
3821 		} else {
3822 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3823 						vmf);
3824 			if (page)
3825 				folio = page_folio(page);
3826 			swapcache = folio;
3827 		}
3828 
3829 		if (!folio) {
3830 			/*
3831 			 * Back out if somebody else faulted in this pte
3832 			 * while we released the pte lock.
3833 			 */
3834 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3835 					vmf->address, &vmf->ptl);
3836 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3837 				ret = VM_FAULT_OOM;
3838 			goto unlock;
3839 		}
3840 
3841 		/* Had to read the page from swap area: Major fault */
3842 		ret = VM_FAULT_MAJOR;
3843 		count_vm_event(PGMAJFAULT);
3844 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3845 	} else if (PageHWPoison(page)) {
3846 		/*
3847 		 * hwpoisoned dirty swapcache pages are kept for killing
3848 		 * owner processes (which may be unknown at hwpoison time)
3849 		 */
3850 		ret = VM_FAULT_HWPOISON;
3851 		goto out_release;
3852 	}
3853 
3854 	locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3855 
3856 	if (!locked) {
3857 		ret |= VM_FAULT_RETRY;
3858 		goto out_release;
3859 	}
3860 
3861 	if (swapcache) {
3862 		/*
3863 		 * Make sure folio_free_swap() or swapoff did not release the
3864 		 * swapcache from under us.  The page pin, and pte_same test
3865 		 * below, are not enough to exclude that.  Even if it is still
3866 		 * swapcache, we need to check that the page's swap has not
3867 		 * changed.
3868 		 */
3869 		if (unlikely(!folio_test_swapcache(folio) ||
3870 			     page_private(page) != entry.val))
3871 			goto out_page;
3872 
3873 		/*
3874 		 * KSM sometimes has to copy on read faults, for example, if
3875 		 * page->index of !PageKSM() pages would be nonlinear inside the
3876 		 * anon VMA -- PageKSM() is lost on actual swapout.
3877 		 */
3878 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3879 		if (unlikely(!page)) {
3880 			ret = VM_FAULT_OOM;
3881 			goto out_page;
3882 		}
3883 		folio = page_folio(page);
3884 
3885 		/*
3886 		 * If we want to map a page that's in the swapcache writable, we
3887 		 * have to detect via the refcount if we're really the exclusive
3888 		 * owner. Try removing the extra reference from the local LRU
3889 		 * pagevecs if required.
3890 		 */
3891 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3892 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3893 			lru_add_drain();
3894 	}
3895 
3896 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3897 
3898 	/*
3899 	 * Back out if somebody else already faulted in this pte.
3900 	 */
3901 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3902 			&vmf->ptl);
3903 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3904 		goto out_nomap;
3905 
3906 	if (unlikely(!folio_test_uptodate(folio))) {
3907 		ret = VM_FAULT_SIGBUS;
3908 		goto out_nomap;
3909 	}
3910 
3911 	/*
3912 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3913 	 * must never point at an anonymous page in the swapcache that is
3914 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3915 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3916 	 * check after taking the PT lock and making sure that nobody
3917 	 * concurrently faulted in this page and set PG_anon_exclusive.
3918 	 */
3919 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3920 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3921 
3922 	/*
3923 	 * Check under PT lock (to protect against concurrent fork() sharing
3924 	 * the swap entry concurrently) for certainly exclusive pages.
3925 	 */
3926 	if (!folio_test_ksm(folio)) {
3927 		/*
3928 		 * Note that pte_swp_exclusive() == false for architectures
3929 		 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3930 		 */
3931 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3932 		if (folio != swapcache) {
3933 			/*
3934 			 * We have a fresh page that is not exposed to the
3935 			 * swapcache -> certainly exclusive.
3936 			 */
3937 			exclusive = true;
3938 		} else if (exclusive && folio_test_writeback(folio) &&
3939 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3940 			/*
3941 			 * This is tricky: not all swap backends support
3942 			 * concurrent page modifications while under writeback.
3943 			 *
3944 			 * So if we stumble over such a page in the swapcache
3945 			 * we must not set the page exclusive, otherwise we can
3946 			 * map it writable without further checks and modify it
3947 			 * while still under writeback.
3948 			 *
3949 			 * For these problematic swap backends, simply drop the
3950 			 * exclusive marker: this is perfectly fine as we start
3951 			 * writeback only if we fully unmapped the page and
3952 			 * there are no unexpected references on the page after
3953 			 * unmapping succeeded. After fully unmapped, no
3954 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3955 			 * appear, so dropping the exclusive marker and mapping
3956 			 * it only R/O is fine.
3957 			 */
3958 			exclusive = false;
3959 		}
3960 	}
3961 
3962 	/*
3963 	 * Remove the swap entry and conditionally try to free up the swapcache.
3964 	 * We're already holding a reference on the page but haven't mapped it
3965 	 * yet.
3966 	 */
3967 	swap_free(entry);
3968 	if (should_try_to_free_swap(folio, vma, vmf->flags))
3969 		folio_free_swap(folio);
3970 
3971 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3972 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3973 	pte = mk_pte(page, vma->vm_page_prot);
3974 
3975 	/*
3976 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3977 	 * certainly not shared either because we just allocated them without
3978 	 * exposing them to the swapcache or because the swap entry indicates
3979 	 * exclusivity.
3980 	 */
3981 	if (!folio_test_ksm(folio) &&
3982 	    (exclusive || folio_ref_count(folio) == 1)) {
3983 		if (vmf->flags & FAULT_FLAG_WRITE) {
3984 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3985 			vmf->flags &= ~FAULT_FLAG_WRITE;
3986 			ret |= VM_FAULT_WRITE;
3987 		}
3988 		rmap_flags |= RMAP_EXCLUSIVE;
3989 	}
3990 	flush_icache_page(vma, page);
3991 	if (pte_swp_soft_dirty(vmf->orig_pte))
3992 		pte = pte_mksoft_dirty(pte);
3993 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3994 		pte = pte_mkuffd_wp(pte);
3995 		pte = pte_wrprotect(pte);
3996 	}
3997 	vmf->orig_pte = pte;
3998 
3999 	/* ksm created a completely new copy */
4000 	if (unlikely(folio != swapcache && swapcache)) {
4001 		page_add_new_anon_rmap(page, vma, vmf->address);
4002 		folio_add_lru_vma(folio, vma);
4003 	} else {
4004 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4005 	}
4006 
4007 	VM_BUG_ON(!folio_test_anon(folio) ||
4008 			(pte_write(pte) && !PageAnonExclusive(page)));
4009 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4010 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4011 
4012 	folio_unlock(folio);
4013 	if (folio != swapcache && swapcache) {
4014 		/*
4015 		 * Hold the lock to avoid the swap entry to be reused
4016 		 * until we take the PT lock for the pte_same() check
4017 		 * (to avoid false positives from pte_same). For
4018 		 * further safety release the lock after the swap_free
4019 		 * so that the swap count won't change under a
4020 		 * parallel locked swapcache.
4021 		 */
4022 		folio_unlock(swapcache);
4023 		folio_put(swapcache);
4024 	}
4025 
4026 	if (vmf->flags & FAULT_FLAG_WRITE) {
4027 		ret |= do_wp_page(vmf);
4028 		if (ret & VM_FAULT_ERROR)
4029 			ret &= VM_FAULT_ERROR;
4030 		goto out;
4031 	}
4032 
4033 	/* No need to invalidate - it was non-present before */
4034 	update_mmu_cache(vma, vmf->address, vmf->pte);
4035 unlock:
4036 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4037 out:
4038 	if (si)
4039 		put_swap_device(si);
4040 	return ret;
4041 out_nomap:
4042 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4043 out_page:
4044 	folio_unlock(folio);
4045 out_release:
4046 	folio_put(folio);
4047 	if (folio != swapcache && swapcache) {
4048 		folio_unlock(swapcache);
4049 		folio_put(swapcache);
4050 	}
4051 	if (si)
4052 		put_swap_device(si);
4053 	return ret;
4054 }
4055 
4056 /*
4057  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4058  * but allow concurrent faults), and pte mapped but not yet locked.
4059  * We return with mmap_lock still held, but pte unmapped and unlocked.
4060  */
4061 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4062 {
4063 	struct vm_area_struct *vma = vmf->vma;
4064 	struct page *page;
4065 	vm_fault_t ret = 0;
4066 	pte_t entry;
4067 
4068 	/* File mapping without ->vm_ops ? */
4069 	if (vma->vm_flags & VM_SHARED)
4070 		return VM_FAULT_SIGBUS;
4071 
4072 	/*
4073 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
4074 	 * pte_offset_map() on pmds where a huge pmd might be created
4075 	 * from a different thread.
4076 	 *
4077 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4078 	 * parallel threads are excluded by other means.
4079 	 *
4080 	 * Here we only have mmap_read_lock(mm).
4081 	 */
4082 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4083 		return VM_FAULT_OOM;
4084 
4085 	/* See comment in handle_pte_fault() */
4086 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
4087 		return 0;
4088 
4089 	/* Use the zero-page for reads */
4090 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4091 			!mm_forbids_zeropage(vma->vm_mm)) {
4092 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4093 						vma->vm_page_prot));
4094 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4095 				vmf->address, &vmf->ptl);
4096 		if (!pte_none(*vmf->pte)) {
4097 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4098 			goto unlock;
4099 		}
4100 		ret = check_stable_address_space(vma->vm_mm);
4101 		if (ret)
4102 			goto unlock;
4103 		/* Deliver the page fault to userland, check inside PT lock */
4104 		if (userfaultfd_missing(vma)) {
4105 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4106 			return handle_userfault(vmf, VM_UFFD_MISSING);
4107 		}
4108 		goto setpte;
4109 	}
4110 
4111 	/* Allocate our own private page. */
4112 	if (unlikely(anon_vma_prepare(vma)))
4113 		goto oom;
4114 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4115 	if (!page)
4116 		goto oom;
4117 
4118 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4119 		goto oom_free_page;
4120 	cgroup_throttle_swaprate(page, GFP_KERNEL);
4121 
4122 	/*
4123 	 * The memory barrier inside __SetPageUptodate makes sure that
4124 	 * preceding stores to the page contents become visible before
4125 	 * the set_pte_at() write.
4126 	 */
4127 	__SetPageUptodate(page);
4128 
4129 	entry = mk_pte(page, vma->vm_page_prot);
4130 	entry = pte_sw_mkyoung(entry);
4131 	if (vma->vm_flags & VM_WRITE)
4132 		entry = pte_mkwrite(pte_mkdirty(entry));
4133 
4134 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4135 			&vmf->ptl);
4136 	if (!pte_none(*vmf->pte)) {
4137 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4138 		goto release;
4139 	}
4140 
4141 	ret = check_stable_address_space(vma->vm_mm);
4142 	if (ret)
4143 		goto release;
4144 
4145 	/* Deliver the page fault to userland, check inside PT lock */
4146 	if (userfaultfd_missing(vma)) {
4147 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4148 		put_page(page);
4149 		return handle_userfault(vmf, VM_UFFD_MISSING);
4150 	}
4151 
4152 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4153 	page_add_new_anon_rmap(page, vma, vmf->address);
4154 	lru_cache_add_inactive_or_unevictable(page, vma);
4155 setpte:
4156 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4157 
4158 	/* No need to invalidate - it was non-present before */
4159 	update_mmu_cache(vma, vmf->address, vmf->pte);
4160 unlock:
4161 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4162 	return ret;
4163 release:
4164 	put_page(page);
4165 	goto unlock;
4166 oom_free_page:
4167 	put_page(page);
4168 oom:
4169 	return VM_FAULT_OOM;
4170 }
4171 
4172 /*
4173  * The mmap_lock must have been held on entry, and may have been
4174  * released depending on flags and vma->vm_ops->fault() return value.
4175  * See filemap_fault() and __lock_page_retry().
4176  */
4177 static vm_fault_t __do_fault(struct vm_fault *vmf)
4178 {
4179 	struct vm_area_struct *vma = vmf->vma;
4180 	vm_fault_t ret;
4181 
4182 	/*
4183 	 * Preallocate pte before we take page_lock because this might lead to
4184 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4185 	 *				lock_page(A)
4186 	 *				SetPageWriteback(A)
4187 	 *				unlock_page(A)
4188 	 * lock_page(B)
4189 	 *				lock_page(B)
4190 	 * pte_alloc_one
4191 	 *   shrink_page_list
4192 	 *     wait_on_page_writeback(A)
4193 	 *				SetPageWriteback(B)
4194 	 *				unlock_page(B)
4195 	 *				# flush A, B to clear the writeback
4196 	 */
4197 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4198 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4199 		if (!vmf->prealloc_pte)
4200 			return VM_FAULT_OOM;
4201 	}
4202 
4203 	ret = vma->vm_ops->fault(vmf);
4204 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4205 			    VM_FAULT_DONE_COW)))
4206 		return ret;
4207 
4208 	if (unlikely(PageHWPoison(vmf->page))) {
4209 		struct page *page = vmf->page;
4210 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4211 		if (ret & VM_FAULT_LOCKED) {
4212 			if (page_mapped(page))
4213 				unmap_mapping_pages(page_mapping(page),
4214 						    page->index, 1, false);
4215 			/* Retry if a clean page was removed from the cache. */
4216 			if (invalidate_inode_page(page))
4217 				poisonret = VM_FAULT_NOPAGE;
4218 			unlock_page(page);
4219 		}
4220 		put_page(page);
4221 		vmf->page = NULL;
4222 		return poisonret;
4223 	}
4224 
4225 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4226 		lock_page(vmf->page);
4227 	else
4228 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4229 
4230 	return ret;
4231 }
4232 
4233 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4234 static void deposit_prealloc_pte(struct vm_fault *vmf)
4235 {
4236 	struct vm_area_struct *vma = vmf->vma;
4237 
4238 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4239 	/*
4240 	 * We are going to consume the prealloc table,
4241 	 * count that as nr_ptes.
4242 	 */
4243 	mm_inc_nr_ptes(vma->vm_mm);
4244 	vmf->prealloc_pte = NULL;
4245 }
4246 
4247 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4248 {
4249 	struct vm_area_struct *vma = vmf->vma;
4250 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4251 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4252 	pmd_t entry;
4253 	int i;
4254 	vm_fault_t ret = VM_FAULT_FALLBACK;
4255 
4256 	if (!transhuge_vma_suitable(vma, haddr))
4257 		return ret;
4258 
4259 	page = compound_head(page);
4260 	if (compound_order(page) != HPAGE_PMD_ORDER)
4261 		return ret;
4262 
4263 	/*
4264 	 * Just backoff if any subpage of a THP is corrupted otherwise
4265 	 * the corrupted page may mapped by PMD silently to escape the
4266 	 * check.  This kind of THP just can be PTE mapped.  Access to
4267 	 * the corrupted subpage should trigger SIGBUS as expected.
4268 	 */
4269 	if (unlikely(PageHasHWPoisoned(page)))
4270 		return ret;
4271 
4272 	/*
4273 	 * Archs like ppc64 need additional space to store information
4274 	 * related to pte entry. Use the preallocated table for that.
4275 	 */
4276 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4277 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4278 		if (!vmf->prealloc_pte)
4279 			return VM_FAULT_OOM;
4280 	}
4281 
4282 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4283 	if (unlikely(!pmd_none(*vmf->pmd)))
4284 		goto out;
4285 
4286 	for (i = 0; i < HPAGE_PMD_NR; i++)
4287 		flush_icache_page(vma, page + i);
4288 
4289 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4290 	if (write)
4291 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4292 
4293 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4294 	page_add_file_rmap(page, vma, true);
4295 
4296 	/*
4297 	 * deposit and withdraw with pmd lock held
4298 	 */
4299 	if (arch_needs_pgtable_deposit())
4300 		deposit_prealloc_pte(vmf);
4301 
4302 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4303 
4304 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4305 
4306 	/* fault is handled */
4307 	ret = 0;
4308 	count_vm_event(THP_FILE_MAPPED);
4309 out:
4310 	spin_unlock(vmf->ptl);
4311 	return ret;
4312 }
4313 #else
4314 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4315 {
4316 	return VM_FAULT_FALLBACK;
4317 }
4318 #endif
4319 
4320 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4321 {
4322 	struct vm_area_struct *vma = vmf->vma;
4323 	bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4324 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4325 	bool prefault = vmf->address != addr;
4326 	pte_t entry;
4327 
4328 	flush_icache_page(vma, page);
4329 	entry = mk_pte(page, vma->vm_page_prot);
4330 
4331 	if (prefault && arch_wants_old_prefaulted_pte())
4332 		entry = pte_mkold(entry);
4333 	else
4334 		entry = pte_sw_mkyoung(entry);
4335 
4336 	if (write)
4337 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4338 	if (unlikely(uffd_wp))
4339 		entry = pte_mkuffd_wp(pte_wrprotect(entry));
4340 	/* copy-on-write page */
4341 	if (write && !(vma->vm_flags & VM_SHARED)) {
4342 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4343 		page_add_new_anon_rmap(page, vma, addr);
4344 		lru_cache_add_inactive_or_unevictable(page, vma);
4345 	} else {
4346 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4347 		page_add_file_rmap(page, vma, false);
4348 	}
4349 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4350 }
4351 
4352 static bool vmf_pte_changed(struct vm_fault *vmf)
4353 {
4354 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4355 		return !pte_same(*vmf->pte, vmf->orig_pte);
4356 
4357 	return !pte_none(*vmf->pte);
4358 }
4359 
4360 /**
4361  * finish_fault - finish page fault once we have prepared the page to fault
4362  *
4363  * @vmf: structure describing the fault
4364  *
4365  * This function handles all that is needed to finish a page fault once the
4366  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4367  * given page, adds reverse page mapping, handles memcg charges and LRU
4368  * addition.
4369  *
4370  * The function expects the page to be locked and on success it consumes a
4371  * reference of a page being mapped (for the PTE which maps it).
4372  *
4373  * Return: %0 on success, %VM_FAULT_ code in case of error.
4374  */
4375 vm_fault_t finish_fault(struct vm_fault *vmf)
4376 {
4377 	struct vm_area_struct *vma = vmf->vma;
4378 	struct page *page;
4379 	vm_fault_t ret;
4380 
4381 	/* Did we COW the page? */
4382 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4383 		page = vmf->cow_page;
4384 	else
4385 		page = vmf->page;
4386 
4387 	/*
4388 	 * check even for read faults because we might have lost our CoWed
4389 	 * page
4390 	 */
4391 	if (!(vma->vm_flags & VM_SHARED)) {
4392 		ret = check_stable_address_space(vma->vm_mm);
4393 		if (ret)
4394 			return ret;
4395 	}
4396 
4397 	if (pmd_none(*vmf->pmd)) {
4398 		if (PageTransCompound(page)) {
4399 			ret = do_set_pmd(vmf, page);
4400 			if (ret != VM_FAULT_FALLBACK)
4401 				return ret;
4402 		}
4403 
4404 		if (vmf->prealloc_pte)
4405 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4406 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4407 			return VM_FAULT_OOM;
4408 	}
4409 
4410 	/*
4411 	 * See comment in handle_pte_fault() for how this scenario happens, we
4412 	 * need to return NOPAGE so that we drop this page.
4413 	 */
4414 	if (pmd_devmap_trans_unstable(vmf->pmd))
4415 		return VM_FAULT_NOPAGE;
4416 
4417 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4418 				      vmf->address, &vmf->ptl);
4419 
4420 	/* Re-check under ptl */
4421 	if (likely(!vmf_pte_changed(vmf))) {
4422 		do_set_pte(vmf, page, vmf->address);
4423 
4424 		/* no need to invalidate: a not-present page won't be cached */
4425 		update_mmu_cache(vma, vmf->address, vmf->pte);
4426 
4427 		ret = 0;
4428 	} else {
4429 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4430 		ret = VM_FAULT_NOPAGE;
4431 	}
4432 
4433 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4434 	return ret;
4435 }
4436 
4437 static unsigned long fault_around_bytes __read_mostly =
4438 	rounddown_pow_of_two(65536);
4439 
4440 #ifdef CONFIG_DEBUG_FS
4441 static int fault_around_bytes_get(void *data, u64 *val)
4442 {
4443 	*val = fault_around_bytes;
4444 	return 0;
4445 }
4446 
4447 /*
4448  * fault_around_bytes must be rounded down to the nearest page order as it's
4449  * what do_fault_around() expects to see.
4450  */
4451 static int fault_around_bytes_set(void *data, u64 val)
4452 {
4453 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4454 		return -EINVAL;
4455 	if (val > PAGE_SIZE)
4456 		fault_around_bytes = rounddown_pow_of_two(val);
4457 	else
4458 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4459 	return 0;
4460 }
4461 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4462 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4463 
4464 static int __init fault_around_debugfs(void)
4465 {
4466 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4467 				   &fault_around_bytes_fops);
4468 	return 0;
4469 }
4470 late_initcall(fault_around_debugfs);
4471 #endif
4472 
4473 /*
4474  * do_fault_around() tries to map few pages around the fault address. The hope
4475  * is that the pages will be needed soon and this will lower the number of
4476  * faults to handle.
4477  *
4478  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4479  * not ready to be mapped: not up-to-date, locked, etc.
4480  *
4481  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4482  * only once.
4483  *
4484  * fault_around_bytes defines how many bytes we'll try to map.
4485  * do_fault_around() expects it to be set to a power of two less than or equal
4486  * to PTRS_PER_PTE.
4487  *
4488  * The virtual address of the area that we map is naturally aligned to
4489  * fault_around_bytes rounded down to the machine page size
4490  * (and therefore to page order).  This way it's easier to guarantee
4491  * that we don't cross page table boundaries.
4492  */
4493 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4494 {
4495 	unsigned long address = vmf->address, nr_pages, mask;
4496 	pgoff_t start_pgoff = vmf->pgoff;
4497 	pgoff_t end_pgoff;
4498 	int off;
4499 
4500 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4501 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4502 
4503 	address = max(address & mask, vmf->vma->vm_start);
4504 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4505 	start_pgoff -= off;
4506 
4507 	/*
4508 	 *  end_pgoff is either the end of the page table, the end of
4509 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4510 	 */
4511 	end_pgoff = start_pgoff -
4512 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4513 		PTRS_PER_PTE - 1;
4514 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4515 			start_pgoff + nr_pages - 1);
4516 
4517 	if (pmd_none(*vmf->pmd)) {
4518 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4519 		if (!vmf->prealloc_pte)
4520 			return VM_FAULT_OOM;
4521 	}
4522 
4523 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4524 }
4525 
4526 /* Return true if we should do read fault-around, false otherwise */
4527 static inline bool should_fault_around(struct vm_fault *vmf)
4528 {
4529 	/* No ->map_pages?  No way to fault around... */
4530 	if (!vmf->vma->vm_ops->map_pages)
4531 		return false;
4532 
4533 	if (uffd_disable_fault_around(vmf->vma))
4534 		return false;
4535 
4536 	return fault_around_bytes >> PAGE_SHIFT > 1;
4537 }
4538 
4539 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4540 {
4541 	vm_fault_t ret = 0;
4542 
4543 	/*
4544 	 * Let's call ->map_pages() first and use ->fault() as fallback
4545 	 * if page by the offset is not ready to be mapped (cold cache or
4546 	 * something).
4547 	 */
4548 	if (should_fault_around(vmf)) {
4549 		ret = do_fault_around(vmf);
4550 		if (ret)
4551 			return ret;
4552 	}
4553 
4554 	ret = __do_fault(vmf);
4555 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4556 		return ret;
4557 
4558 	ret |= finish_fault(vmf);
4559 	unlock_page(vmf->page);
4560 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4561 		put_page(vmf->page);
4562 	return ret;
4563 }
4564 
4565 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4566 {
4567 	struct vm_area_struct *vma = vmf->vma;
4568 	vm_fault_t ret;
4569 
4570 	if (unlikely(anon_vma_prepare(vma)))
4571 		return VM_FAULT_OOM;
4572 
4573 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4574 	if (!vmf->cow_page)
4575 		return VM_FAULT_OOM;
4576 
4577 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4578 				GFP_KERNEL)) {
4579 		put_page(vmf->cow_page);
4580 		return VM_FAULT_OOM;
4581 	}
4582 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4583 
4584 	ret = __do_fault(vmf);
4585 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4586 		goto uncharge_out;
4587 	if (ret & VM_FAULT_DONE_COW)
4588 		return ret;
4589 
4590 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4591 	__SetPageUptodate(vmf->cow_page);
4592 
4593 	ret |= finish_fault(vmf);
4594 	unlock_page(vmf->page);
4595 	put_page(vmf->page);
4596 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4597 		goto uncharge_out;
4598 	return ret;
4599 uncharge_out:
4600 	put_page(vmf->cow_page);
4601 	return ret;
4602 }
4603 
4604 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4605 {
4606 	struct vm_area_struct *vma = vmf->vma;
4607 	vm_fault_t ret, tmp;
4608 
4609 	ret = __do_fault(vmf);
4610 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4611 		return ret;
4612 
4613 	/*
4614 	 * Check if the backing address space wants to know that the page is
4615 	 * about to become writable
4616 	 */
4617 	if (vma->vm_ops->page_mkwrite) {
4618 		unlock_page(vmf->page);
4619 		tmp = do_page_mkwrite(vmf);
4620 		if (unlikely(!tmp ||
4621 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4622 			put_page(vmf->page);
4623 			return tmp;
4624 		}
4625 	}
4626 
4627 	ret |= finish_fault(vmf);
4628 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4629 					VM_FAULT_RETRY))) {
4630 		unlock_page(vmf->page);
4631 		put_page(vmf->page);
4632 		return ret;
4633 	}
4634 
4635 	ret |= fault_dirty_shared_page(vmf);
4636 	return ret;
4637 }
4638 
4639 /*
4640  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4641  * but allow concurrent faults).
4642  * The mmap_lock may have been released depending on flags and our
4643  * return value.  See filemap_fault() and __folio_lock_or_retry().
4644  * If mmap_lock is released, vma may become invalid (for example
4645  * by other thread calling munmap()).
4646  */
4647 static vm_fault_t do_fault(struct vm_fault *vmf)
4648 {
4649 	struct vm_area_struct *vma = vmf->vma;
4650 	struct mm_struct *vm_mm = vma->vm_mm;
4651 	vm_fault_t ret;
4652 
4653 	/*
4654 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4655 	 */
4656 	if (!vma->vm_ops->fault) {
4657 		/*
4658 		 * If we find a migration pmd entry or a none pmd entry, which
4659 		 * should never happen, return SIGBUS
4660 		 */
4661 		if (unlikely(!pmd_present(*vmf->pmd)))
4662 			ret = VM_FAULT_SIGBUS;
4663 		else {
4664 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4665 						       vmf->pmd,
4666 						       vmf->address,
4667 						       &vmf->ptl);
4668 			/*
4669 			 * Make sure this is not a temporary clearing of pte
4670 			 * by holding ptl and checking again. A R/M/W update
4671 			 * of pte involves: take ptl, clearing the pte so that
4672 			 * we don't have concurrent modification by hardware
4673 			 * followed by an update.
4674 			 */
4675 			if (unlikely(pte_none(*vmf->pte)))
4676 				ret = VM_FAULT_SIGBUS;
4677 			else
4678 				ret = VM_FAULT_NOPAGE;
4679 
4680 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4681 		}
4682 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4683 		ret = do_read_fault(vmf);
4684 	else if (!(vma->vm_flags & VM_SHARED))
4685 		ret = do_cow_fault(vmf);
4686 	else
4687 		ret = do_shared_fault(vmf);
4688 
4689 	/* preallocated pagetable is unused: free it */
4690 	if (vmf->prealloc_pte) {
4691 		pte_free(vm_mm, vmf->prealloc_pte);
4692 		vmf->prealloc_pte = NULL;
4693 	}
4694 	return ret;
4695 }
4696 
4697 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4698 		      unsigned long addr, int page_nid, int *flags)
4699 {
4700 	get_page(page);
4701 
4702 	count_vm_numa_event(NUMA_HINT_FAULTS);
4703 	if (page_nid == numa_node_id()) {
4704 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4705 		*flags |= TNF_FAULT_LOCAL;
4706 	}
4707 
4708 	return mpol_misplaced(page, vma, addr);
4709 }
4710 
4711 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4712 {
4713 	struct vm_area_struct *vma = vmf->vma;
4714 	struct page *page = NULL;
4715 	int page_nid = NUMA_NO_NODE;
4716 	int last_cpupid;
4717 	int target_nid;
4718 	pte_t pte, old_pte;
4719 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4720 	int flags = 0;
4721 
4722 	/*
4723 	 * The "pte" at this point cannot be used safely without
4724 	 * validation through pte_unmap_same(). It's of NUMA type but
4725 	 * the pfn may be screwed if the read is non atomic.
4726 	 */
4727 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4728 	spin_lock(vmf->ptl);
4729 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4730 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4731 		goto out;
4732 	}
4733 
4734 	/* Get the normal PTE  */
4735 	old_pte = ptep_get(vmf->pte);
4736 	pte = pte_modify(old_pte, vma->vm_page_prot);
4737 
4738 	page = vm_normal_page(vma, vmf->address, pte);
4739 	if (!page || is_zone_device_page(page))
4740 		goto out_map;
4741 
4742 	/* TODO: handle PTE-mapped THP */
4743 	if (PageCompound(page))
4744 		goto out_map;
4745 
4746 	/*
4747 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4748 	 * much anyway since they can be in shared cache state. This misses
4749 	 * the case where a mapping is writable but the process never writes
4750 	 * to it but pte_write gets cleared during protection updates and
4751 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4752 	 * background writeback, dirty balancing and application behaviour.
4753 	 */
4754 	if (!was_writable)
4755 		flags |= TNF_NO_GROUP;
4756 
4757 	/*
4758 	 * Flag if the page is shared between multiple address spaces. This
4759 	 * is later used when determining whether to group tasks together
4760 	 */
4761 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4762 		flags |= TNF_SHARED;
4763 
4764 	page_nid = page_to_nid(page);
4765 	/*
4766 	 * For memory tiering mode, cpupid of slow memory page is used
4767 	 * to record page access time.  So use default value.
4768 	 */
4769 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4770 	    !node_is_toptier(page_nid))
4771 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4772 	else
4773 		last_cpupid = page_cpupid_last(page);
4774 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4775 			&flags);
4776 	if (target_nid == NUMA_NO_NODE) {
4777 		put_page(page);
4778 		goto out_map;
4779 	}
4780 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4781 
4782 	/* Migrate to the requested node */
4783 	if (migrate_misplaced_page(page, vma, target_nid)) {
4784 		page_nid = target_nid;
4785 		flags |= TNF_MIGRATED;
4786 	} else {
4787 		flags |= TNF_MIGRATE_FAIL;
4788 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4789 		spin_lock(vmf->ptl);
4790 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4791 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4792 			goto out;
4793 		}
4794 		goto out_map;
4795 	}
4796 
4797 out:
4798 	if (page_nid != NUMA_NO_NODE)
4799 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4800 	return 0;
4801 out_map:
4802 	/*
4803 	 * Make it present again, depending on how arch implements
4804 	 * non-accessible ptes, some can allow access by kernel mode.
4805 	 */
4806 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4807 	pte = pte_modify(old_pte, vma->vm_page_prot);
4808 	pte = pte_mkyoung(pte);
4809 	if (was_writable)
4810 		pte = pte_mkwrite(pte);
4811 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4812 	update_mmu_cache(vma, vmf->address, vmf->pte);
4813 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4814 	goto out;
4815 }
4816 
4817 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4818 {
4819 	if (vma_is_anonymous(vmf->vma))
4820 		return do_huge_pmd_anonymous_page(vmf);
4821 	if (vmf->vma->vm_ops->huge_fault)
4822 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4823 	return VM_FAULT_FALLBACK;
4824 }
4825 
4826 /* `inline' is required to avoid gcc 4.1.2 build error */
4827 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4828 {
4829 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4830 
4831 	if (vma_is_anonymous(vmf->vma)) {
4832 		if (likely(!unshare) &&
4833 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4834 			return handle_userfault(vmf, VM_UFFD_WP);
4835 		return do_huge_pmd_wp_page(vmf);
4836 	}
4837 	if (vmf->vma->vm_ops->huge_fault) {
4838 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4839 
4840 		if (!(ret & VM_FAULT_FALLBACK))
4841 			return ret;
4842 	}
4843 
4844 	/* COW or write-notify handled on pte level: split pmd. */
4845 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4846 
4847 	return VM_FAULT_FALLBACK;
4848 }
4849 
4850 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4851 {
4852 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4853 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4854 	/* No support for anonymous transparent PUD pages yet */
4855 	if (vma_is_anonymous(vmf->vma))
4856 		return VM_FAULT_FALLBACK;
4857 	if (vmf->vma->vm_ops->huge_fault)
4858 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4859 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4860 	return VM_FAULT_FALLBACK;
4861 }
4862 
4863 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4864 {
4865 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4866 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4867 	/* No support for anonymous transparent PUD pages yet */
4868 	if (vma_is_anonymous(vmf->vma))
4869 		goto split;
4870 	if (vmf->vma->vm_ops->huge_fault) {
4871 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4872 
4873 		if (!(ret & VM_FAULT_FALLBACK))
4874 			return ret;
4875 	}
4876 split:
4877 	/* COW or write-notify not handled on PUD level: split pud.*/
4878 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4879 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4880 	return VM_FAULT_FALLBACK;
4881 }
4882 
4883 /*
4884  * These routines also need to handle stuff like marking pages dirty
4885  * and/or accessed for architectures that don't do it in hardware (most
4886  * RISC architectures).  The early dirtying is also good on the i386.
4887  *
4888  * There is also a hook called "update_mmu_cache()" that architectures
4889  * with external mmu caches can use to update those (ie the Sparc or
4890  * PowerPC hashed page tables that act as extended TLBs).
4891  *
4892  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4893  * concurrent faults).
4894  *
4895  * The mmap_lock may have been released depending on flags and our return value.
4896  * See filemap_fault() and __folio_lock_or_retry().
4897  */
4898 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4899 {
4900 	pte_t entry;
4901 
4902 	if (unlikely(pmd_none(*vmf->pmd))) {
4903 		/*
4904 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4905 		 * want to allocate huge page, and if we expose page table
4906 		 * for an instant, it will be difficult to retract from
4907 		 * concurrent faults and from rmap lookups.
4908 		 */
4909 		vmf->pte = NULL;
4910 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4911 	} else {
4912 		/*
4913 		 * If a huge pmd materialized under us just retry later.  Use
4914 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4915 		 * of pmd_trans_huge() to ensure the pmd didn't become
4916 		 * pmd_trans_huge under us and then back to pmd_none, as a
4917 		 * result of MADV_DONTNEED running immediately after a huge pmd
4918 		 * fault in a different thread of this mm, in turn leading to a
4919 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4920 		 * that it is a regular pmd that we can walk with
4921 		 * pte_offset_map() and we can do that through an atomic read
4922 		 * in C, which is what pmd_trans_unstable() provides.
4923 		 */
4924 		if (pmd_devmap_trans_unstable(vmf->pmd))
4925 			return 0;
4926 		/*
4927 		 * A regular pmd is established and it can't morph into a huge
4928 		 * pmd from under us anymore at this point because we hold the
4929 		 * mmap_lock read mode and khugepaged takes it in write mode.
4930 		 * So now it's safe to run pte_offset_map().
4931 		 */
4932 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4933 		vmf->orig_pte = *vmf->pte;
4934 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4935 
4936 		/*
4937 		 * some architectures can have larger ptes than wordsize,
4938 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4939 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4940 		 * accesses.  The code below just needs a consistent view
4941 		 * for the ifs and we later double check anyway with the
4942 		 * ptl lock held. So here a barrier will do.
4943 		 */
4944 		barrier();
4945 		if (pte_none(vmf->orig_pte)) {
4946 			pte_unmap(vmf->pte);
4947 			vmf->pte = NULL;
4948 		}
4949 	}
4950 
4951 	if (!vmf->pte) {
4952 		if (vma_is_anonymous(vmf->vma))
4953 			return do_anonymous_page(vmf);
4954 		else
4955 			return do_fault(vmf);
4956 	}
4957 
4958 	if (!pte_present(vmf->orig_pte))
4959 		return do_swap_page(vmf);
4960 
4961 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4962 		return do_numa_page(vmf);
4963 
4964 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4965 	spin_lock(vmf->ptl);
4966 	entry = vmf->orig_pte;
4967 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4968 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4969 		goto unlock;
4970 	}
4971 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4972 		if (!pte_write(entry))
4973 			return do_wp_page(vmf);
4974 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4975 			entry = pte_mkdirty(entry);
4976 	}
4977 	entry = pte_mkyoung(entry);
4978 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4979 				vmf->flags & FAULT_FLAG_WRITE)) {
4980 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4981 	} else {
4982 		/* Skip spurious TLB flush for retried page fault */
4983 		if (vmf->flags & FAULT_FLAG_TRIED)
4984 			goto unlock;
4985 		/*
4986 		 * This is needed only for protection faults but the arch code
4987 		 * is not yet telling us if this is a protection fault or not.
4988 		 * This still avoids useless tlb flushes for .text page faults
4989 		 * with threads.
4990 		 */
4991 		if (vmf->flags & FAULT_FLAG_WRITE)
4992 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4993 	}
4994 unlock:
4995 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4996 	return 0;
4997 }
4998 
4999 /*
5000  * By the time we get here, we already hold the mm semaphore
5001  *
5002  * The mmap_lock may have been released depending on flags and our
5003  * return value.  See filemap_fault() and __folio_lock_or_retry().
5004  */
5005 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5006 		unsigned long address, unsigned int flags)
5007 {
5008 	struct vm_fault vmf = {
5009 		.vma = vma,
5010 		.address = address & PAGE_MASK,
5011 		.real_address = address,
5012 		.flags = flags,
5013 		.pgoff = linear_page_index(vma, address),
5014 		.gfp_mask = __get_fault_gfp_mask(vma),
5015 	};
5016 	struct mm_struct *mm = vma->vm_mm;
5017 	unsigned long vm_flags = vma->vm_flags;
5018 	pgd_t *pgd;
5019 	p4d_t *p4d;
5020 	vm_fault_t ret;
5021 
5022 	pgd = pgd_offset(mm, address);
5023 	p4d = p4d_alloc(mm, pgd, address);
5024 	if (!p4d)
5025 		return VM_FAULT_OOM;
5026 
5027 	vmf.pud = pud_alloc(mm, p4d, address);
5028 	if (!vmf.pud)
5029 		return VM_FAULT_OOM;
5030 retry_pud:
5031 	if (pud_none(*vmf.pud) &&
5032 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5033 		ret = create_huge_pud(&vmf);
5034 		if (!(ret & VM_FAULT_FALLBACK))
5035 			return ret;
5036 	} else {
5037 		pud_t orig_pud = *vmf.pud;
5038 
5039 		barrier();
5040 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5041 
5042 			/*
5043 			 * TODO once we support anonymous PUDs: NUMA case and
5044 			 * FAULT_FLAG_UNSHARE handling.
5045 			 */
5046 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5047 				ret = wp_huge_pud(&vmf, orig_pud);
5048 				if (!(ret & VM_FAULT_FALLBACK))
5049 					return ret;
5050 			} else {
5051 				huge_pud_set_accessed(&vmf, orig_pud);
5052 				return 0;
5053 			}
5054 		}
5055 	}
5056 
5057 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5058 	if (!vmf.pmd)
5059 		return VM_FAULT_OOM;
5060 
5061 	/* Huge pud page fault raced with pmd_alloc? */
5062 	if (pud_trans_unstable(vmf.pud))
5063 		goto retry_pud;
5064 
5065 	if (pmd_none(*vmf.pmd) &&
5066 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5067 		ret = create_huge_pmd(&vmf);
5068 		if (!(ret & VM_FAULT_FALLBACK))
5069 			return ret;
5070 	} else {
5071 		vmf.orig_pmd = *vmf.pmd;
5072 
5073 		barrier();
5074 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5075 			VM_BUG_ON(thp_migration_supported() &&
5076 					  !is_pmd_migration_entry(vmf.orig_pmd));
5077 			if (is_pmd_migration_entry(vmf.orig_pmd))
5078 				pmd_migration_entry_wait(mm, vmf.pmd);
5079 			return 0;
5080 		}
5081 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5082 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5083 				return do_huge_pmd_numa_page(&vmf);
5084 
5085 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5086 			    !pmd_write(vmf.orig_pmd)) {
5087 				ret = wp_huge_pmd(&vmf);
5088 				if (!(ret & VM_FAULT_FALLBACK))
5089 					return ret;
5090 			} else {
5091 				huge_pmd_set_accessed(&vmf);
5092 				return 0;
5093 			}
5094 		}
5095 	}
5096 
5097 	return handle_pte_fault(&vmf);
5098 }
5099 
5100 /**
5101  * mm_account_fault - Do page fault accounting
5102  *
5103  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5104  *        of perf event counters, but we'll still do the per-task accounting to
5105  *        the task who triggered this page fault.
5106  * @address: the faulted address.
5107  * @flags: the fault flags.
5108  * @ret: the fault retcode.
5109  *
5110  * This will take care of most of the page fault accounting.  Meanwhile, it
5111  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5112  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5113  * still be in per-arch page fault handlers at the entry of page fault.
5114  */
5115 static inline void mm_account_fault(struct pt_regs *regs,
5116 				    unsigned long address, unsigned int flags,
5117 				    vm_fault_t ret)
5118 {
5119 	bool major;
5120 
5121 	/*
5122 	 * We don't do accounting for some specific faults:
5123 	 *
5124 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5125 	 *   includes arch_vma_access_permitted() failing before reaching here.
5126 	 *   So this is not a "this many hardware page faults" counter.  We
5127 	 *   should use the hw profiling for that.
5128 	 *
5129 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5130 	 *   once they're completed.
5131 	 */
5132 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5133 		return;
5134 
5135 	/*
5136 	 * We define the fault as a major fault when the final successful fault
5137 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5138 	 * handle it immediately previously).
5139 	 */
5140 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5141 
5142 	if (major)
5143 		current->maj_flt++;
5144 	else
5145 		current->min_flt++;
5146 
5147 	/*
5148 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5149 	 * accounting for the per thread fault counters who triggered the
5150 	 * fault, and we skip the perf event updates.
5151 	 */
5152 	if (!regs)
5153 		return;
5154 
5155 	if (major)
5156 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5157 	else
5158 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5159 }
5160 
5161 #ifdef CONFIG_LRU_GEN
5162 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5163 {
5164 	/* the LRU algorithm doesn't apply to sequential or random reads */
5165 	current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5166 }
5167 
5168 static void lru_gen_exit_fault(void)
5169 {
5170 	current->in_lru_fault = false;
5171 }
5172 #else
5173 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5174 {
5175 }
5176 
5177 static void lru_gen_exit_fault(void)
5178 {
5179 }
5180 #endif /* CONFIG_LRU_GEN */
5181 
5182 /*
5183  * By the time we get here, we already hold the mm semaphore
5184  *
5185  * The mmap_lock may have been released depending on flags and our
5186  * return value.  See filemap_fault() and __folio_lock_or_retry().
5187  */
5188 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5189 			   unsigned int flags, struct pt_regs *regs)
5190 {
5191 	vm_fault_t ret;
5192 
5193 	__set_current_state(TASK_RUNNING);
5194 
5195 	count_vm_event(PGFAULT);
5196 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
5197 
5198 	/* do counter updates before entering really critical section. */
5199 	check_sync_rss_stat(current);
5200 
5201 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5202 					    flags & FAULT_FLAG_INSTRUCTION,
5203 					    flags & FAULT_FLAG_REMOTE))
5204 		return VM_FAULT_SIGSEGV;
5205 
5206 	/*
5207 	 * Enable the memcg OOM handling for faults triggered in user
5208 	 * space.  Kernel faults are handled more gracefully.
5209 	 */
5210 	if (flags & FAULT_FLAG_USER)
5211 		mem_cgroup_enter_user_fault();
5212 
5213 	lru_gen_enter_fault(vma);
5214 
5215 	if (unlikely(is_vm_hugetlb_page(vma)))
5216 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5217 	else
5218 		ret = __handle_mm_fault(vma, address, flags);
5219 
5220 	lru_gen_exit_fault();
5221 
5222 	if (flags & FAULT_FLAG_USER) {
5223 		mem_cgroup_exit_user_fault();
5224 		/*
5225 		 * The task may have entered a memcg OOM situation but
5226 		 * if the allocation error was handled gracefully (no
5227 		 * VM_FAULT_OOM), there is no need to kill anything.
5228 		 * Just clean up the OOM state peacefully.
5229 		 */
5230 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5231 			mem_cgroup_oom_synchronize(false);
5232 	}
5233 
5234 	mm_account_fault(regs, address, flags, ret);
5235 
5236 	return ret;
5237 }
5238 EXPORT_SYMBOL_GPL(handle_mm_fault);
5239 
5240 #ifndef __PAGETABLE_P4D_FOLDED
5241 /*
5242  * Allocate p4d page table.
5243  * We've already handled the fast-path in-line.
5244  */
5245 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5246 {
5247 	p4d_t *new = p4d_alloc_one(mm, address);
5248 	if (!new)
5249 		return -ENOMEM;
5250 
5251 	spin_lock(&mm->page_table_lock);
5252 	if (pgd_present(*pgd)) {	/* Another has populated it */
5253 		p4d_free(mm, new);
5254 	} else {
5255 		smp_wmb(); /* See comment in pmd_install() */
5256 		pgd_populate(mm, pgd, new);
5257 	}
5258 	spin_unlock(&mm->page_table_lock);
5259 	return 0;
5260 }
5261 #endif /* __PAGETABLE_P4D_FOLDED */
5262 
5263 #ifndef __PAGETABLE_PUD_FOLDED
5264 /*
5265  * Allocate page upper directory.
5266  * We've already handled the fast-path in-line.
5267  */
5268 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5269 {
5270 	pud_t *new = pud_alloc_one(mm, address);
5271 	if (!new)
5272 		return -ENOMEM;
5273 
5274 	spin_lock(&mm->page_table_lock);
5275 	if (!p4d_present(*p4d)) {
5276 		mm_inc_nr_puds(mm);
5277 		smp_wmb(); /* See comment in pmd_install() */
5278 		p4d_populate(mm, p4d, new);
5279 	} else	/* Another has populated it */
5280 		pud_free(mm, new);
5281 	spin_unlock(&mm->page_table_lock);
5282 	return 0;
5283 }
5284 #endif /* __PAGETABLE_PUD_FOLDED */
5285 
5286 #ifndef __PAGETABLE_PMD_FOLDED
5287 /*
5288  * Allocate page middle directory.
5289  * We've already handled the fast-path in-line.
5290  */
5291 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5292 {
5293 	spinlock_t *ptl;
5294 	pmd_t *new = pmd_alloc_one(mm, address);
5295 	if (!new)
5296 		return -ENOMEM;
5297 
5298 	ptl = pud_lock(mm, pud);
5299 	if (!pud_present(*pud)) {
5300 		mm_inc_nr_pmds(mm);
5301 		smp_wmb(); /* See comment in pmd_install() */
5302 		pud_populate(mm, pud, new);
5303 	} else {	/* Another has populated it */
5304 		pmd_free(mm, new);
5305 	}
5306 	spin_unlock(ptl);
5307 	return 0;
5308 }
5309 #endif /* __PAGETABLE_PMD_FOLDED */
5310 
5311 /**
5312  * follow_pte - look up PTE at a user virtual address
5313  * @mm: the mm_struct of the target address space
5314  * @address: user virtual address
5315  * @ptepp: location to store found PTE
5316  * @ptlp: location to store the lock for the PTE
5317  *
5318  * On a successful return, the pointer to the PTE is stored in @ptepp;
5319  * the corresponding lock is taken and its location is stored in @ptlp.
5320  * The contents of the PTE are only stable until @ptlp is released;
5321  * any further use, if any, must be protected against invalidation
5322  * with MMU notifiers.
5323  *
5324  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5325  * should be taken for read.
5326  *
5327  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5328  * it is not a good general-purpose API.
5329  *
5330  * Return: zero on success, -ve otherwise.
5331  */
5332 int follow_pte(struct mm_struct *mm, unsigned long address,
5333 	       pte_t **ptepp, spinlock_t **ptlp)
5334 {
5335 	pgd_t *pgd;
5336 	p4d_t *p4d;
5337 	pud_t *pud;
5338 	pmd_t *pmd;
5339 	pte_t *ptep;
5340 
5341 	pgd = pgd_offset(mm, address);
5342 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5343 		goto out;
5344 
5345 	p4d = p4d_offset(pgd, address);
5346 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5347 		goto out;
5348 
5349 	pud = pud_offset(p4d, address);
5350 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5351 		goto out;
5352 
5353 	pmd = pmd_offset(pud, address);
5354 	VM_BUG_ON(pmd_trans_huge(*pmd));
5355 
5356 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5357 		goto out;
5358 
5359 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5360 	if (!pte_present(*ptep))
5361 		goto unlock;
5362 	*ptepp = ptep;
5363 	return 0;
5364 unlock:
5365 	pte_unmap_unlock(ptep, *ptlp);
5366 out:
5367 	return -EINVAL;
5368 }
5369 EXPORT_SYMBOL_GPL(follow_pte);
5370 
5371 /**
5372  * follow_pfn - look up PFN at a user virtual address
5373  * @vma: memory mapping
5374  * @address: user virtual address
5375  * @pfn: location to store found PFN
5376  *
5377  * Only IO mappings and raw PFN mappings are allowed.
5378  *
5379  * This function does not allow the caller to read the permissions
5380  * of the PTE.  Do not use it.
5381  *
5382  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5383  */
5384 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5385 	unsigned long *pfn)
5386 {
5387 	int ret = -EINVAL;
5388 	spinlock_t *ptl;
5389 	pte_t *ptep;
5390 
5391 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5392 		return ret;
5393 
5394 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5395 	if (ret)
5396 		return ret;
5397 	*pfn = pte_pfn(*ptep);
5398 	pte_unmap_unlock(ptep, ptl);
5399 	return 0;
5400 }
5401 EXPORT_SYMBOL(follow_pfn);
5402 
5403 #ifdef CONFIG_HAVE_IOREMAP_PROT
5404 int follow_phys(struct vm_area_struct *vma,
5405 		unsigned long address, unsigned int flags,
5406 		unsigned long *prot, resource_size_t *phys)
5407 {
5408 	int ret = -EINVAL;
5409 	pte_t *ptep, pte;
5410 	spinlock_t *ptl;
5411 
5412 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5413 		goto out;
5414 
5415 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5416 		goto out;
5417 	pte = *ptep;
5418 
5419 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5420 		goto unlock;
5421 
5422 	*prot = pgprot_val(pte_pgprot(pte));
5423 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5424 
5425 	ret = 0;
5426 unlock:
5427 	pte_unmap_unlock(ptep, ptl);
5428 out:
5429 	return ret;
5430 }
5431 
5432 /**
5433  * generic_access_phys - generic implementation for iomem mmap access
5434  * @vma: the vma to access
5435  * @addr: userspace address, not relative offset within @vma
5436  * @buf: buffer to read/write
5437  * @len: length of transfer
5438  * @write: set to FOLL_WRITE when writing, otherwise reading
5439  *
5440  * This is a generic implementation for &vm_operations_struct.access for an
5441  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5442  * not page based.
5443  */
5444 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5445 			void *buf, int len, int write)
5446 {
5447 	resource_size_t phys_addr;
5448 	unsigned long prot = 0;
5449 	void __iomem *maddr;
5450 	pte_t *ptep, pte;
5451 	spinlock_t *ptl;
5452 	int offset = offset_in_page(addr);
5453 	int ret = -EINVAL;
5454 
5455 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5456 		return -EINVAL;
5457 
5458 retry:
5459 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5460 		return -EINVAL;
5461 	pte = *ptep;
5462 	pte_unmap_unlock(ptep, ptl);
5463 
5464 	prot = pgprot_val(pte_pgprot(pte));
5465 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5466 
5467 	if ((write & FOLL_WRITE) && !pte_write(pte))
5468 		return -EINVAL;
5469 
5470 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5471 	if (!maddr)
5472 		return -ENOMEM;
5473 
5474 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5475 		goto out_unmap;
5476 
5477 	if (!pte_same(pte, *ptep)) {
5478 		pte_unmap_unlock(ptep, ptl);
5479 		iounmap(maddr);
5480 
5481 		goto retry;
5482 	}
5483 
5484 	if (write)
5485 		memcpy_toio(maddr + offset, buf, len);
5486 	else
5487 		memcpy_fromio(buf, maddr + offset, len);
5488 	ret = len;
5489 	pte_unmap_unlock(ptep, ptl);
5490 out_unmap:
5491 	iounmap(maddr);
5492 
5493 	return ret;
5494 }
5495 EXPORT_SYMBOL_GPL(generic_access_phys);
5496 #endif
5497 
5498 /*
5499  * Access another process' address space as given in mm.
5500  */
5501 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5502 		       int len, unsigned int gup_flags)
5503 {
5504 	struct vm_area_struct *vma;
5505 	void *old_buf = buf;
5506 	int write = gup_flags & FOLL_WRITE;
5507 
5508 	if (mmap_read_lock_killable(mm))
5509 		return 0;
5510 
5511 	/* ignore errors, just check how much was successfully transferred */
5512 	while (len) {
5513 		int bytes, ret, offset;
5514 		void *maddr;
5515 		struct page *page = NULL;
5516 
5517 		ret = get_user_pages_remote(mm, addr, 1,
5518 				gup_flags, &page, &vma, NULL);
5519 		if (ret <= 0) {
5520 #ifndef CONFIG_HAVE_IOREMAP_PROT
5521 			break;
5522 #else
5523 			/*
5524 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5525 			 * we can access using slightly different code.
5526 			 */
5527 			vma = vma_lookup(mm, addr);
5528 			if (!vma)
5529 				break;
5530 			if (vma->vm_ops && vma->vm_ops->access)
5531 				ret = vma->vm_ops->access(vma, addr, buf,
5532 							  len, write);
5533 			if (ret <= 0)
5534 				break;
5535 			bytes = ret;
5536 #endif
5537 		} else {
5538 			bytes = len;
5539 			offset = addr & (PAGE_SIZE-1);
5540 			if (bytes > PAGE_SIZE-offset)
5541 				bytes = PAGE_SIZE-offset;
5542 
5543 			maddr = kmap(page);
5544 			if (write) {
5545 				copy_to_user_page(vma, page, addr,
5546 						  maddr + offset, buf, bytes);
5547 				set_page_dirty_lock(page);
5548 			} else {
5549 				copy_from_user_page(vma, page, addr,
5550 						    buf, maddr + offset, bytes);
5551 			}
5552 			kunmap(page);
5553 			put_page(page);
5554 		}
5555 		len -= bytes;
5556 		buf += bytes;
5557 		addr += bytes;
5558 	}
5559 	mmap_read_unlock(mm);
5560 
5561 	return buf - old_buf;
5562 }
5563 
5564 /**
5565  * access_remote_vm - access another process' address space
5566  * @mm:		the mm_struct of the target address space
5567  * @addr:	start address to access
5568  * @buf:	source or destination buffer
5569  * @len:	number of bytes to transfer
5570  * @gup_flags:	flags modifying lookup behaviour
5571  *
5572  * The caller must hold a reference on @mm.
5573  *
5574  * Return: number of bytes copied from source to destination.
5575  */
5576 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5577 		void *buf, int len, unsigned int gup_flags)
5578 {
5579 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5580 }
5581 
5582 /*
5583  * Access another process' address space.
5584  * Source/target buffer must be kernel space,
5585  * Do not walk the page table directly, use get_user_pages
5586  */
5587 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5588 		void *buf, int len, unsigned int gup_flags)
5589 {
5590 	struct mm_struct *mm;
5591 	int ret;
5592 
5593 	mm = get_task_mm(tsk);
5594 	if (!mm)
5595 		return 0;
5596 
5597 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5598 
5599 	mmput(mm);
5600 
5601 	return ret;
5602 }
5603 EXPORT_SYMBOL_GPL(access_process_vm);
5604 
5605 /*
5606  * Print the name of a VMA.
5607  */
5608 void print_vma_addr(char *prefix, unsigned long ip)
5609 {
5610 	struct mm_struct *mm = current->mm;
5611 	struct vm_area_struct *vma;
5612 
5613 	/*
5614 	 * we might be running from an atomic context so we cannot sleep
5615 	 */
5616 	if (!mmap_read_trylock(mm))
5617 		return;
5618 
5619 	vma = find_vma(mm, ip);
5620 	if (vma && vma->vm_file) {
5621 		struct file *f = vma->vm_file;
5622 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5623 		if (buf) {
5624 			char *p;
5625 
5626 			p = file_path(f, buf, PAGE_SIZE);
5627 			if (IS_ERR(p))
5628 				p = "?";
5629 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5630 					vma->vm_start,
5631 					vma->vm_end - vma->vm_start);
5632 			free_page((unsigned long)buf);
5633 		}
5634 	}
5635 	mmap_read_unlock(mm);
5636 }
5637 
5638 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5639 void __might_fault(const char *file, int line)
5640 {
5641 	if (pagefault_disabled())
5642 		return;
5643 	__might_sleep(file, line);
5644 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5645 	if (current->mm)
5646 		might_lock_read(&current->mm->mmap_lock);
5647 #endif
5648 }
5649 EXPORT_SYMBOL(__might_fault);
5650 #endif
5651 
5652 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5653 /*
5654  * Process all subpages of the specified huge page with the specified
5655  * operation.  The target subpage will be processed last to keep its
5656  * cache lines hot.
5657  */
5658 static inline void process_huge_page(
5659 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5660 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5661 	void *arg)
5662 {
5663 	int i, n, base, l;
5664 	unsigned long addr = addr_hint &
5665 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5666 
5667 	/* Process target subpage last to keep its cache lines hot */
5668 	might_sleep();
5669 	n = (addr_hint - addr) / PAGE_SIZE;
5670 	if (2 * n <= pages_per_huge_page) {
5671 		/* If target subpage in first half of huge page */
5672 		base = 0;
5673 		l = n;
5674 		/* Process subpages at the end of huge page */
5675 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5676 			cond_resched();
5677 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5678 		}
5679 	} else {
5680 		/* If target subpage in second half of huge page */
5681 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5682 		l = pages_per_huge_page - n;
5683 		/* Process subpages at the begin of huge page */
5684 		for (i = 0; i < base; i++) {
5685 			cond_resched();
5686 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5687 		}
5688 	}
5689 	/*
5690 	 * Process remaining subpages in left-right-left-right pattern
5691 	 * towards the target subpage
5692 	 */
5693 	for (i = 0; i < l; i++) {
5694 		int left_idx = base + i;
5695 		int right_idx = base + 2 * l - 1 - i;
5696 
5697 		cond_resched();
5698 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5699 		cond_resched();
5700 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5701 	}
5702 }
5703 
5704 static void clear_gigantic_page(struct page *page,
5705 				unsigned long addr,
5706 				unsigned int pages_per_huge_page)
5707 {
5708 	int i;
5709 	struct page *p;
5710 
5711 	might_sleep();
5712 	for (i = 0; i < pages_per_huge_page; i++) {
5713 		p = nth_page(page, i);
5714 		cond_resched();
5715 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5716 	}
5717 }
5718 
5719 static void clear_subpage(unsigned long addr, int idx, void *arg)
5720 {
5721 	struct page *page = arg;
5722 
5723 	clear_user_highpage(page + idx, addr);
5724 }
5725 
5726 void clear_huge_page(struct page *page,
5727 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5728 {
5729 	unsigned long addr = addr_hint &
5730 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5731 
5732 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5733 		clear_gigantic_page(page, addr, pages_per_huge_page);
5734 		return;
5735 	}
5736 
5737 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5738 }
5739 
5740 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5741 				    unsigned long addr,
5742 				    struct vm_area_struct *vma,
5743 				    unsigned int pages_per_huge_page)
5744 {
5745 	int i;
5746 	struct page *dst_base = dst;
5747 	struct page *src_base = src;
5748 
5749 	for (i = 0; i < pages_per_huge_page; i++) {
5750 		dst = nth_page(dst_base, i);
5751 		src = nth_page(src_base, i);
5752 
5753 		cond_resched();
5754 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5755 	}
5756 }
5757 
5758 struct copy_subpage_arg {
5759 	struct page *dst;
5760 	struct page *src;
5761 	struct vm_area_struct *vma;
5762 };
5763 
5764 static void copy_subpage(unsigned long addr, int idx, void *arg)
5765 {
5766 	struct copy_subpage_arg *copy_arg = arg;
5767 
5768 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5769 			   addr, copy_arg->vma);
5770 }
5771 
5772 void copy_user_huge_page(struct page *dst, struct page *src,
5773 			 unsigned long addr_hint, struct vm_area_struct *vma,
5774 			 unsigned int pages_per_huge_page)
5775 {
5776 	unsigned long addr = addr_hint &
5777 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5778 	struct copy_subpage_arg arg = {
5779 		.dst = dst,
5780 		.src = src,
5781 		.vma = vma,
5782 	};
5783 
5784 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5785 		copy_user_gigantic_page(dst, src, addr, vma,
5786 					pages_per_huge_page);
5787 		return;
5788 	}
5789 
5790 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5791 }
5792 
5793 long copy_huge_page_from_user(struct page *dst_page,
5794 				const void __user *usr_src,
5795 				unsigned int pages_per_huge_page,
5796 				bool allow_pagefault)
5797 {
5798 	void *page_kaddr;
5799 	unsigned long i, rc = 0;
5800 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5801 	struct page *subpage;
5802 
5803 	for (i = 0; i < pages_per_huge_page; i++) {
5804 		subpage = nth_page(dst_page, i);
5805 		if (allow_pagefault)
5806 			page_kaddr = kmap(subpage);
5807 		else
5808 			page_kaddr = kmap_atomic(subpage);
5809 		rc = copy_from_user(page_kaddr,
5810 				usr_src + i * PAGE_SIZE, PAGE_SIZE);
5811 		if (allow_pagefault)
5812 			kunmap(subpage);
5813 		else
5814 			kunmap_atomic(page_kaddr);
5815 
5816 		ret_val -= (PAGE_SIZE - rc);
5817 		if (rc)
5818 			break;
5819 
5820 		flush_dcache_page(subpage);
5821 
5822 		cond_resched();
5823 	}
5824 	return ret_val;
5825 }
5826 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5827 
5828 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5829 
5830 static struct kmem_cache *page_ptl_cachep;
5831 
5832 void __init ptlock_cache_init(void)
5833 {
5834 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5835 			SLAB_PANIC, NULL);
5836 }
5837 
5838 bool ptlock_alloc(struct page *page)
5839 {
5840 	spinlock_t *ptl;
5841 
5842 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5843 	if (!ptl)
5844 		return false;
5845 	page->ptl = ptl;
5846 	return true;
5847 }
5848 
5849 void ptlock_free(struct page *page)
5850 {
5851 	kmem_cache_free(page_ptl_cachep, page->ptl);
5852 }
5853 #endif
5854