xref: /linux/mm/memory.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71 
72 #include "internal.h"
73 
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77 
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82 
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86 
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95 
96 EXPORT_SYMBOL(high_memory);
97 
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 					1;
107 #else
108 					2;
109 #endif
110 
111 static int __init disable_randmaps(char *s)
112 {
113 	randomize_va_space = 0;
114 	return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117 
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120 
121 EXPORT_SYMBOL(zero_pfn);
122 
123 /*
124  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125  */
126 static int __init init_zero_pfn(void)
127 {
128 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 	return 0;
130 }
131 core_initcall(init_zero_pfn);
132 
133 
134 #if defined(SPLIT_RSS_COUNTING)
135 
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138 	int i;
139 
140 	for (i = 0; i < NR_MM_COUNTERS; i++) {
141 		if (current->rss_stat.count[i]) {
142 			add_mm_counter(mm, i, current->rss_stat.count[i]);
143 			current->rss_stat.count[i] = 0;
144 		}
145 	}
146 	current->rss_stat.events = 0;
147 }
148 
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151 	struct task_struct *task = current;
152 
153 	if (likely(task->mm == mm))
154 		task->rss_stat.count[member] += val;
155 	else
156 		add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160 
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH	(64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165 	if (unlikely(task != current))
166 		return;
167 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168 		sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171 
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174 
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178 
179 #endif /* SPLIT_RSS_COUNTING */
180 
181 #ifdef HAVE_GENERIC_MMU_GATHER
182 
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185 	struct mmu_gather_batch *batch;
186 
187 	batch = tlb->active;
188 	if (batch->next) {
189 		tlb->active = batch->next;
190 		return 1;
191 	}
192 
193 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 		return 0;
195 
196 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 	if (!batch)
198 		return 0;
199 
200 	tlb->batch_count++;
201 	batch->next = NULL;
202 	batch->nr   = 0;
203 	batch->max  = MAX_GATHER_BATCH;
204 
205 	tlb->active->next = batch;
206 	tlb->active = batch;
207 
208 	return 1;
209 }
210 
211 /* tlb_gather_mmu
212  *	Called to initialize an (on-stack) mmu_gather structure for page-table
213  *	tear-down from @mm. The @fullmm argument is used when @mm is without
214  *	users and we're going to destroy the full address space (exit/execve).
215  */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218 	tlb->mm = mm;
219 
220 	/* Is it from 0 to ~0? */
221 	tlb->fullmm     = !(start | (end+1));
222 	tlb->need_flush_all = 0;
223 	tlb->local.next = NULL;
224 	tlb->local.nr   = 0;
225 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226 	tlb->active     = &tlb->local;
227 	tlb->batch_count = 0;
228 
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 	tlb->batch = NULL;
231 #endif
232 
233 	__tlb_reset_range(tlb);
234 }
235 
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 {
238 	if (!tlb->end)
239 		return;
240 
241 	tlb_flush(tlb);
242 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 	tlb_table_flush(tlb);
245 #endif
246 	__tlb_reset_range(tlb);
247 }
248 
249 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
250 {
251 	struct mmu_gather_batch *batch;
252 
253 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
254 		free_pages_and_swap_cache(batch->pages, batch->nr);
255 		batch->nr = 0;
256 	}
257 	tlb->active = &tlb->local;
258 }
259 
260 void tlb_flush_mmu(struct mmu_gather *tlb)
261 {
262 	tlb_flush_mmu_tlbonly(tlb);
263 	tlb_flush_mmu_free(tlb);
264 }
265 
266 /* tlb_finish_mmu
267  *	Called at the end of the shootdown operation to free up any resources
268  *	that were required.
269  */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272 	struct mmu_gather_batch *batch, *next;
273 
274 	tlb_flush_mmu(tlb);
275 
276 	/* keep the page table cache within bounds */
277 	check_pgt_cache();
278 
279 	for (batch = tlb->local.next; batch; batch = next) {
280 		next = batch->next;
281 		free_pages((unsigned long)batch, 0);
282 	}
283 	tlb->local.next = NULL;
284 }
285 
286 /* __tlb_remove_page
287  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288  *	handling the additional races in SMP caused by other CPUs caching valid
289  *	mappings in their TLBs. Returns the number of free page slots left.
290  *	When out of page slots we must call tlb_flush_mmu().
291  */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294 	struct mmu_gather_batch *batch;
295 
296 	VM_BUG_ON(!tlb->end);
297 
298 	batch = tlb->active;
299 	batch->pages[batch->nr++] = page;
300 	if (batch->nr == batch->max) {
301 		if (!tlb_next_batch(tlb))
302 			return 0;
303 		batch = tlb->active;
304 	}
305 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
306 
307 	return batch->max - batch->nr;
308 }
309 
310 #endif /* HAVE_GENERIC_MMU_GATHER */
311 
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
313 
314 /*
315  * See the comment near struct mmu_table_batch.
316  */
317 
318 static void tlb_remove_table_smp_sync(void *arg)
319 {
320 	/* Simply deliver the interrupt */
321 }
322 
323 static void tlb_remove_table_one(void *table)
324 {
325 	/*
326 	 * This isn't an RCU grace period and hence the page-tables cannot be
327 	 * assumed to be actually RCU-freed.
328 	 *
329 	 * It is however sufficient for software page-table walkers that rely on
330 	 * IRQ disabling. See the comment near struct mmu_table_batch.
331 	 */
332 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333 	__tlb_remove_table(table);
334 }
335 
336 static void tlb_remove_table_rcu(struct rcu_head *head)
337 {
338 	struct mmu_table_batch *batch;
339 	int i;
340 
341 	batch = container_of(head, struct mmu_table_batch, rcu);
342 
343 	for (i = 0; i < batch->nr; i++)
344 		__tlb_remove_table(batch->tables[i]);
345 
346 	free_page((unsigned long)batch);
347 }
348 
349 void tlb_table_flush(struct mmu_gather *tlb)
350 {
351 	struct mmu_table_batch **batch = &tlb->batch;
352 
353 	if (*batch) {
354 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355 		*batch = NULL;
356 	}
357 }
358 
359 void tlb_remove_table(struct mmu_gather *tlb, void *table)
360 {
361 	struct mmu_table_batch **batch = &tlb->batch;
362 
363 	/*
364 	 * When there's less then two users of this mm there cannot be a
365 	 * concurrent page-table walk.
366 	 */
367 	if (atomic_read(&tlb->mm->mm_users) < 2) {
368 		__tlb_remove_table(table);
369 		return;
370 	}
371 
372 	if (*batch == NULL) {
373 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374 		if (*batch == NULL) {
375 			tlb_remove_table_one(table);
376 			return;
377 		}
378 		(*batch)->nr = 0;
379 	}
380 	(*batch)->tables[(*batch)->nr++] = table;
381 	if ((*batch)->nr == MAX_TABLE_BATCH)
382 		tlb_table_flush(tlb);
383 }
384 
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
386 
387 /*
388  * Note: this doesn't free the actual pages themselves. That
389  * has been handled earlier when unmapping all the memory regions.
390  */
391 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
392 			   unsigned long addr)
393 {
394 	pgtable_t token = pmd_pgtable(*pmd);
395 	pmd_clear(pmd);
396 	pte_free_tlb(tlb, token, addr);
397 	atomic_long_dec(&tlb->mm->nr_ptes);
398 }
399 
400 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
401 				unsigned long addr, unsigned long end,
402 				unsigned long floor, unsigned long ceiling)
403 {
404 	pmd_t *pmd;
405 	unsigned long next;
406 	unsigned long start;
407 
408 	start = addr;
409 	pmd = pmd_offset(pud, addr);
410 	do {
411 		next = pmd_addr_end(addr, end);
412 		if (pmd_none_or_clear_bad(pmd))
413 			continue;
414 		free_pte_range(tlb, pmd, addr);
415 	} while (pmd++, addr = next, addr != end);
416 
417 	start &= PUD_MASK;
418 	if (start < floor)
419 		return;
420 	if (ceiling) {
421 		ceiling &= PUD_MASK;
422 		if (!ceiling)
423 			return;
424 	}
425 	if (end - 1 > ceiling - 1)
426 		return;
427 
428 	pmd = pmd_offset(pud, start);
429 	pud_clear(pud);
430 	pmd_free_tlb(tlb, pmd, start);
431 }
432 
433 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
434 				unsigned long addr, unsigned long end,
435 				unsigned long floor, unsigned long ceiling)
436 {
437 	pud_t *pud;
438 	unsigned long next;
439 	unsigned long start;
440 
441 	start = addr;
442 	pud = pud_offset(pgd, addr);
443 	do {
444 		next = pud_addr_end(addr, end);
445 		if (pud_none_or_clear_bad(pud))
446 			continue;
447 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
448 	} while (pud++, addr = next, addr != end);
449 
450 	start &= PGDIR_MASK;
451 	if (start < floor)
452 		return;
453 	if (ceiling) {
454 		ceiling &= PGDIR_MASK;
455 		if (!ceiling)
456 			return;
457 	}
458 	if (end - 1 > ceiling - 1)
459 		return;
460 
461 	pud = pud_offset(pgd, start);
462 	pgd_clear(pgd);
463 	pud_free_tlb(tlb, pud, start);
464 }
465 
466 /*
467  * This function frees user-level page tables of a process.
468  */
469 void free_pgd_range(struct mmu_gather *tlb,
470 			unsigned long addr, unsigned long end,
471 			unsigned long floor, unsigned long ceiling)
472 {
473 	pgd_t *pgd;
474 	unsigned long next;
475 
476 	/*
477 	 * The next few lines have given us lots of grief...
478 	 *
479 	 * Why are we testing PMD* at this top level?  Because often
480 	 * there will be no work to do at all, and we'd prefer not to
481 	 * go all the way down to the bottom just to discover that.
482 	 *
483 	 * Why all these "- 1"s?  Because 0 represents both the bottom
484 	 * of the address space and the top of it (using -1 for the
485 	 * top wouldn't help much: the masks would do the wrong thing).
486 	 * The rule is that addr 0 and floor 0 refer to the bottom of
487 	 * the address space, but end 0 and ceiling 0 refer to the top
488 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
489 	 * that end 0 case should be mythical).
490 	 *
491 	 * Wherever addr is brought up or ceiling brought down, we must
492 	 * be careful to reject "the opposite 0" before it confuses the
493 	 * subsequent tests.  But what about where end is brought down
494 	 * by PMD_SIZE below? no, end can't go down to 0 there.
495 	 *
496 	 * Whereas we round start (addr) and ceiling down, by different
497 	 * masks at different levels, in order to test whether a table
498 	 * now has no other vmas using it, so can be freed, we don't
499 	 * bother to round floor or end up - the tests don't need that.
500 	 */
501 
502 	addr &= PMD_MASK;
503 	if (addr < floor) {
504 		addr += PMD_SIZE;
505 		if (!addr)
506 			return;
507 	}
508 	if (ceiling) {
509 		ceiling &= PMD_MASK;
510 		if (!ceiling)
511 			return;
512 	}
513 	if (end - 1 > ceiling - 1)
514 		end -= PMD_SIZE;
515 	if (addr > end - 1)
516 		return;
517 
518 	pgd = pgd_offset(tlb->mm, addr);
519 	do {
520 		next = pgd_addr_end(addr, end);
521 		if (pgd_none_or_clear_bad(pgd))
522 			continue;
523 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
524 	} while (pgd++, addr = next, addr != end);
525 }
526 
527 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
528 		unsigned long floor, unsigned long ceiling)
529 {
530 	while (vma) {
531 		struct vm_area_struct *next = vma->vm_next;
532 		unsigned long addr = vma->vm_start;
533 
534 		/*
535 		 * Hide vma from rmap and truncate_pagecache before freeing
536 		 * pgtables
537 		 */
538 		unlink_anon_vmas(vma);
539 		unlink_file_vma(vma);
540 
541 		if (is_vm_hugetlb_page(vma)) {
542 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
543 				floor, next? next->vm_start: ceiling);
544 		} else {
545 			/*
546 			 * Optimization: gather nearby vmas into one call down
547 			 */
548 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
549 			       && !is_vm_hugetlb_page(next)) {
550 				vma = next;
551 				next = vma->vm_next;
552 				unlink_anon_vmas(vma);
553 				unlink_file_vma(vma);
554 			}
555 			free_pgd_range(tlb, addr, vma->vm_end,
556 				floor, next? next->vm_start: ceiling);
557 		}
558 		vma = next;
559 	}
560 }
561 
562 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
563 		pmd_t *pmd, unsigned long address)
564 {
565 	spinlock_t *ptl;
566 	pgtable_t new = pte_alloc_one(mm, address);
567 	int wait_split_huge_page;
568 	if (!new)
569 		return -ENOMEM;
570 
571 	/*
572 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
573 	 * visible before the pte is made visible to other CPUs by being
574 	 * put into page tables.
575 	 *
576 	 * The other side of the story is the pointer chasing in the page
577 	 * table walking code (when walking the page table without locking;
578 	 * ie. most of the time). Fortunately, these data accesses consist
579 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
580 	 * being the notable exception) will already guarantee loads are
581 	 * seen in-order. See the alpha page table accessors for the
582 	 * smp_read_barrier_depends() barriers in page table walking code.
583 	 */
584 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
585 
586 	ptl = pmd_lock(mm, pmd);
587 	wait_split_huge_page = 0;
588 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
589 		atomic_long_inc(&mm->nr_ptes);
590 		pmd_populate(mm, pmd, new);
591 		new = NULL;
592 	} else if (unlikely(pmd_trans_splitting(*pmd)))
593 		wait_split_huge_page = 1;
594 	spin_unlock(ptl);
595 	if (new)
596 		pte_free(mm, new);
597 	if (wait_split_huge_page)
598 		wait_split_huge_page(vma->anon_vma, pmd);
599 	return 0;
600 }
601 
602 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
603 {
604 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
605 	if (!new)
606 		return -ENOMEM;
607 
608 	smp_wmb(); /* See comment in __pte_alloc */
609 
610 	spin_lock(&init_mm.page_table_lock);
611 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
612 		pmd_populate_kernel(&init_mm, pmd, new);
613 		new = NULL;
614 	} else
615 		VM_BUG_ON(pmd_trans_splitting(*pmd));
616 	spin_unlock(&init_mm.page_table_lock);
617 	if (new)
618 		pte_free_kernel(&init_mm, new);
619 	return 0;
620 }
621 
622 static inline void init_rss_vec(int *rss)
623 {
624 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
625 }
626 
627 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
628 {
629 	int i;
630 
631 	if (current->mm == mm)
632 		sync_mm_rss(mm);
633 	for (i = 0; i < NR_MM_COUNTERS; i++)
634 		if (rss[i])
635 			add_mm_counter(mm, i, rss[i]);
636 }
637 
638 /*
639  * This function is called to print an error when a bad pte
640  * is found. For example, we might have a PFN-mapped pte in
641  * a region that doesn't allow it.
642  *
643  * The calling function must still handle the error.
644  */
645 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
646 			  pte_t pte, struct page *page)
647 {
648 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
649 	pud_t *pud = pud_offset(pgd, addr);
650 	pmd_t *pmd = pmd_offset(pud, addr);
651 	struct address_space *mapping;
652 	pgoff_t index;
653 	static unsigned long resume;
654 	static unsigned long nr_shown;
655 	static unsigned long nr_unshown;
656 
657 	/*
658 	 * Allow a burst of 60 reports, then keep quiet for that minute;
659 	 * or allow a steady drip of one report per second.
660 	 */
661 	if (nr_shown == 60) {
662 		if (time_before(jiffies, resume)) {
663 			nr_unshown++;
664 			return;
665 		}
666 		if (nr_unshown) {
667 			printk(KERN_ALERT
668 				"BUG: Bad page map: %lu messages suppressed\n",
669 				nr_unshown);
670 			nr_unshown = 0;
671 		}
672 		nr_shown = 0;
673 	}
674 	if (nr_shown++ == 0)
675 		resume = jiffies + 60 * HZ;
676 
677 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
678 	index = linear_page_index(vma, addr);
679 
680 	printk(KERN_ALERT
681 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
682 		current->comm,
683 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
684 	if (page)
685 		dump_page(page, "bad pte");
686 	printk(KERN_ALERT
687 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
688 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
689 	/*
690 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
691 	 */
692 	if (vma->vm_ops)
693 		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
694 		       vma->vm_ops->fault);
695 	if (vma->vm_file)
696 		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
697 		       vma->vm_file->f_op->mmap);
698 	dump_stack();
699 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
700 }
701 
702 /*
703  * vm_normal_page -- This function gets the "struct page" associated with a pte.
704  *
705  * "Special" mappings do not wish to be associated with a "struct page" (either
706  * it doesn't exist, or it exists but they don't want to touch it). In this
707  * case, NULL is returned here. "Normal" mappings do have a struct page.
708  *
709  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
710  * pte bit, in which case this function is trivial. Secondly, an architecture
711  * may not have a spare pte bit, which requires a more complicated scheme,
712  * described below.
713  *
714  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
715  * special mapping (even if there are underlying and valid "struct pages").
716  * COWed pages of a VM_PFNMAP are always normal.
717  *
718  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
719  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
720  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
721  * mapping will always honor the rule
722  *
723  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
724  *
725  * And for normal mappings this is false.
726  *
727  * This restricts such mappings to be a linear translation from virtual address
728  * to pfn. To get around this restriction, we allow arbitrary mappings so long
729  * as the vma is not a COW mapping; in that case, we know that all ptes are
730  * special (because none can have been COWed).
731  *
732  *
733  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
734  *
735  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
736  * page" backing, however the difference is that _all_ pages with a struct
737  * page (that is, those where pfn_valid is true) are refcounted and considered
738  * normal pages by the VM. The disadvantage is that pages are refcounted
739  * (which can be slower and simply not an option for some PFNMAP users). The
740  * advantage is that we don't have to follow the strict linearity rule of
741  * PFNMAP mappings in order to support COWable mappings.
742  *
743  */
744 #ifdef __HAVE_ARCH_PTE_SPECIAL
745 # define HAVE_PTE_SPECIAL 1
746 #else
747 # define HAVE_PTE_SPECIAL 0
748 #endif
749 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
750 				pte_t pte)
751 {
752 	unsigned long pfn = pte_pfn(pte);
753 
754 	if (HAVE_PTE_SPECIAL) {
755 		if (likely(!pte_special(pte)))
756 			goto check_pfn;
757 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
758 			return NULL;
759 		if (!is_zero_pfn(pfn))
760 			print_bad_pte(vma, addr, pte, NULL);
761 		return NULL;
762 	}
763 
764 	/* !HAVE_PTE_SPECIAL case follows: */
765 
766 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
767 		if (vma->vm_flags & VM_MIXEDMAP) {
768 			if (!pfn_valid(pfn))
769 				return NULL;
770 			goto out;
771 		} else {
772 			unsigned long off;
773 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
774 			if (pfn == vma->vm_pgoff + off)
775 				return NULL;
776 			if (!is_cow_mapping(vma->vm_flags))
777 				return NULL;
778 		}
779 	}
780 
781 	if (is_zero_pfn(pfn))
782 		return NULL;
783 check_pfn:
784 	if (unlikely(pfn > highest_memmap_pfn)) {
785 		print_bad_pte(vma, addr, pte, NULL);
786 		return NULL;
787 	}
788 
789 	/*
790 	 * NOTE! We still have PageReserved() pages in the page tables.
791 	 * eg. VDSO mappings can cause them to exist.
792 	 */
793 out:
794 	return pfn_to_page(pfn);
795 }
796 
797 /*
798  * copy one vm_area from one task to the other. Assumes the page tables
799  * already present in the new task to be cleared in the whole range
800  * covered by this vma.
801  */
802 
803 static inline unsigned long
804 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
805 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
806 		unsigned long addr, int *rss)
807 {
808 	unsigned long vm_flags = vma->vm_flags;
809 	pte_t pte = *src_pte;
810 	struct page *page;
811 
812 	/* pte contains position in swap or file, so copy. */
813 	if (unlikely(!pte_present(pte))) {
814 		if (!pte_file(pte)) {
815 			swp_entry_t entry = pte_to_swp_entry(pte);
816 
817 			if (likely(!non_swap_entry(entry))) {
818 				if (swap_duplicate(entry) < 0)
819 					return entry.val;
820 
821 				/* make sure dst_mm is on swapoff's mmlist. */
822 				if (unlikely(list_empty(&dst_mm->mmlist))) {
823 					spin_lock(&mmlist_lock);
824 					if (list_empty(&dst_mm->mmlist))
825 						list_add(&dst_mm->mmlist,
826 							 &src_mm->mmlist);
827 					spin_unlock(&mmlist_lock);
828 				}
829 				rss[MM_SWAPENTS]++;
830 			} else if (is_migration_entry(entry)) {
831 				page = migration_entry_to_page(entry);
832 
833 				if (PageAnon(page))
834 					rss[MM_ANONPAGES]++;
835 				else
836 					rss[MM_FILEPAGES]++;
837 
838 				if (is_write_migration_entry(entry) &&
839 				    is_cow_mapping(vm_flags)) {
840 					/*
841 					 * COW mappings require pages in both
842 					 * parent and child to be set to read.
843 					 */
844 					make_migration_entry_read(&entry);
845 					pte = swp_entry_to_pte(entry);
846 					if (pte_swp_soft_dirty(*src_pte))
847 						pte = pte_swp_mksoft_dirty(pte);
848 					set_pte_at(src_mm, addr, src_pte, pte);
849 				}
850 			}
851 		}
852 		goto out_set_pte;
853 	}
854 
855 	/*
856 	 * If it's a COW mapping, write protect it both
857 	 * in the parent and the child
858 	 */
859 	if (is_cow_mapping(vm_flags)) {
860 		ptep_set_wrprotect(src_mm, addr, src_pte);
861 		pte = pte_wrprotect(pte);
862 	}
863 
864 	/*
865 	 * If it's a shared mapping, mark it clean in
866 	 * the child
867 	 */
868 	if (vm_flags & VM_SHARED)
869 		pte = pte_mkclean(pte);
870 	pte = pte_mkold(pte);
871 
872 	page = vm_normal_page(vma, addr, pte);
873 	if (page) {
874 		get_page(page);
875 		page_dup_rmap(page);
876 		if (PageAnon(page))
877 			rss[MM_ANONPAGES]++;
878 		else
879 			rss[MM_FILEPAGES]++;
880 	}
881 
882 out_set_pte:
883 	set_pte_at(dst_mm, addr, dst_pte, pte);
884 	return 0;
885 }
886 
887 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
888 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
889 		   unsigned long addr, unsigned long end)
890 {
891 	pte_t *orig_src_pte, *orig_dst_pte;
892 	pte_t *src_pte, *dst_pte;
893 	spinlock_t *src_ptl, *dst_ptl;
894 	int progress = 0;
895 	int rss[NR_MM_COUNTERS];
896 	swp_entry_t entry = (swp_entry_t){0};
897 
898 again:
899 	init_rss_vec(rss);
900 
901 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
902 	if (!dst_pte)
903 		return -ENOMEM;
904 	src_pte = pte_offset_map(src_pmd, addr);
905 	src_ptl = pte_lockptr(src_mm, src_pmd);
906 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
907 	orig_src_pte = src_pte;
908 	orig_dst_pte = dst_pte;
909 	arch_enter_lazy_mmu_mode();
910 
911 	do {
912 		/*
913 		 * We are holding two locks at this point - either of them
914 		 * could generate latencies in another task on another CPU.
915 		 */
916 		if (progress >= 32) {
917 			progress = 0;
918 			if (need_resched() ||
919 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
920 				break;
921 		}
922 		if (pte_none(*src_pte)) {
923 			progress++;
924 			continue;
925 		}
926 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
927 							vma, addr, rss);
928 		if (entry.val)
929 			break;
930 		progress += 8;
931 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
932 
933 	arch_leave_lazy_mmu_mode();
934 	spin_unlock(src_ptl);
935 	pte_unmap(orig_src_pte);
936 	add_mm_rss_vec(dst_mm, rss);
937 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
938 	cond_resched();
939 
940 	if (entry.val) {
941 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
942 			return -ENOMEM;
943 		progress = 0;
944 	}
945 	if (addr != end)
946 		goto again;
947 	return 0;
948 }
949 
950 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
951 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
952 		unsigned long addr, unsigned long end)
953 {
954 	pmd_t *src_pmd, *dst_pmd;
955 	unsigned long next;
956 
957 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
958 	if (!dst_pmd)
959 		return -ENOMEM;
960 	src_pmd = pmd_offset(src_pud, addr);
961 	do {
962 		next = pmd_addr_end(addr, end);
963 		if (pmd_trans_huge(*src_pmd)) {
964 			int err;
965 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
966 			err = copy_huge_pmd(dst_mm, src_mm,
967 					    dst_pmd, src_pmd, addr, vma);
968 			if (err == -ENOMEM)
969 				return -ENOMEM;
970 			if (!err)
971 				continue;
972 			/* fall through */
973 		}
974 		if (pmd_none_or_clear_bad(src_pmd))
975 			continue;
976 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
977 						vma, addr, next))
978 			return -ENOMEM;
979 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
980 	return 0;
981 }
982 
983 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
984 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
985 		unsigned long addr, unsigned long end)
986 {
987 	pud_t *src_pud, *dst_pud;
988 	unsigned long next;
989 
990 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
991 	if (!dst_pud)
992 		return -ENOMEM;
993 	src_pud = pud_offset(src_pgd, addr);
994 	do {
995 		next = pud_addr_end(addr, end);
996 		if (pud_none_or_clear_bad(src_pud))
997 			continue;
998 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
999 						vma, addr, next))
1000 			return -ENOMEM;
1001 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1002 	return 0;
1003 }
1004 
1005 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1006 		struct vm_area_struct *vma)
1007 {
1008 	pgd_t *src_pgd, *dst_pgd;
1009 	unsigned long next;
1010 	unsigned long addr = vma->vm_start;
1011 	unsigned long end = vma->vm_end;
1012 	unsigned long mmun_start;	/* For mmu_notifiers */
1013 	unsigned long mmun_end;		/* For mmu_notifiers */
1014 	bool is_cow;
1015 	int ret;
1016 
1017 	/*
1018 	 * Don't copy ptes where a page fault will fill them correctly.
1019 	 * Fork becomes much lighter when there are big shared or private
1020 	 * readonly mappings. The tradeoff is that copy_page_range is more
1021 	 * efficient than faulting.
1022 	 */
1023 	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1024 			       VM_PFNMAP | VM_MIXEDMAP))) {
1025 		if (!vma->anon_vma)
1026 			return 0;
1027 	}
1028 
1029 	if (is_vm_hugetlb_page(vma))
1030 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1031 
1032 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1033 		/*
1034 		 * We do not free on error cases below as remove_vma
1035 		 * gets called on error from higher level routine
1036 		 */
1037 		ret = track_pfn_copy(vma);
1038 		if (ret)
1039 			return ret;
1040 	}
1041 
1042 	/*
1043 	 * We need to invalidate the secondary MMU mappings only when
1044 	 * there could be a permission downgrade on the ptes of the
1045 	 * parent mm. And a permission downgrade will only happen if
1046 	 * is_cow_mapping() returns true.
1047 	 */
1048 	is_cow = is_cow_mapping(vma->vm_flags);
1049 	mmun_start = addr;
1050 	mmun_end   = end;
1051 	if (is_cow)
1052 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1053 						    mmun_end);
1054 
1055 	ret = 0;
1056 	dst_pgd = pgd_offset(dst_mm, addr);
1057 	src_pgd = pgd_offset(src_mm, addr);
1058 	do {
1059 		next = pgd_addr_end(addr, end);
1060 		if (pgd_none_or_clear_bad(src_pgd))
1061 			continue;
1062 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1063 					    vma, addr, next))) {
1064 			ret = -ENOMEM;
1065 			break;
1066 		}
1067 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1068 
1069 	if (is_cow)
1070 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1071 	return ret;
1072 }
1073 
1074 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1075 				struct vm_area_struct *vma, pmd_t *pmd,
1076 				unsigned long addr, unsigned long end,
1077 				struct zap_details *details)
1078 {
1079 	struct mm_struct *mm = tlb->mm;
1080 	int force_flush = 0;
1081 	int rss[NR_MM_COUNTERS];
1082 	spinlock_t *ptl;
1083 	pte_t *start_pte;
1084 	pte_t *pte;
1085 
1086 again:
1087 	init_rss_vec(rss);
1088 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1089 	pte = start_pte;
1090 	arch_enter_lazy_mmu_mode();
1091 	do {
1092 		pte_t ptent = *pte;
1093 		if (pte_none(ptent)) {
1094 			continue;
1095 		}
1096 
1097 		if (pte_present(ptent)) {
1098 			struct page *page;
1099 
1100 			page = vm_normal_page(vma, addr, ptent);
1101 			if (unlikely(details) && page) {
1102 				/*
1103 				 * unmap_shared_mapping_pages() wants to
1104 				 * invalidate cache without truncating:
1105 				 * unmap shared but keep private pages.
1106 				 */
1107 				if (details->check_mapping &&
1108 				    details->check_mapping != page->mapping)
1109 					continue;
1110 				/*
1111 				 * Each page->index must be checked when
1112 				 * invalidating or truncating nonlinear.
1113 				 */
1114 				if (details->nonlinear_vma &&
1115 				    (page->index < details->first_index ||
1116 				     page->index > details->last_index))
1117 					continue;
1118 			}
1119 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1120 							tlb->fullmm);
1121 			tlb_remove_tlb_entry(tlb, pte, addr);
1122 			if (unlikely(!page))
1123 				continue;
1124 			if (unlikely(details) && details->nonlinear_vma
1125 			    && linear_page_index(details->nonlinear_vma,
1126 						addr) != page->index) {
1127 				pte_t ptfile = pgoff_to_pte(page->index);
1128 				if (pte_soft_dirty(ptent))
1129 					ptfile = pte_file_mksoft_dirty(ptfile);
1130 				set_pte_at(mm, addr, pte, ptfile);
1131 			}
1132 			if (PageAnon(page))
1133 				rss[MM_ANONPAGES]--;
1134 			else {
1135 				if (pte_dirty(ptent)) {
1136 					force_flush = 1;
1137 					set_page_dirty(page);
1138 				}
1139 				if (pte_young(ptent) &&
1140 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1141 					mark_page_accessed(page);
1142 				rss[MM_FILEPAGES]--;
1143 			}
1144 			page_remove_rmap(page);
1145 			if (unlikely(page_mapcount(page) < 0))
1146 				print_bad_pte(vma, addr, ptent, page);
1147 			if (unlikely(!__tlb_remove_page(tlb, page))) {
1148 				force_flush = 1;
1149 				addr += PAGE_SIZE;
1150 				break;
1151 			}
1152 			continue;
1153 		}
1154 		/*
1155 		 * If details->check_mapping, we leave swap entries;
1156 		 * if details->nonlinear_vma, we leave file entries.
1157 		 */
1158 		if (unlikely(details))
1159 			continue;
1160 		if (pte_file(ptent)) {
1161 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1162 				print_bad_pte(vma, addr, ptent, NULL);
1163 		} else {
1164 			swp_entry_t entry = pte_to_swp_entry(ptent);
1165 
1166 			if (!non_swap_entry(entry))
1167 				rss[MM_SWAPENTS]--;
1168 			else if (is_migration_entry(entry)) {
1169 				struct page *page;
1170 
1171 				page = migration_entry_to_page(entry);
1172 
1173 				if (PageAnon(page))
1174 					rss[MM_ANONPAGES]--;
1175 				else
1176 					rss[MM_FILEPAGES]--;
1177 			}
1178 			if (unlikely(!free_swap_and_cache(entry)))
1179 				print_bad_pte(vma, addr, ptent, NULL);
1180 		}
1181 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1182 	} while (pte++, addr += PAGE_SIZE, addr != end);
1183 
1184 	add_mm_rss_vec(mm, rss);
1185 	arch_leave_lazy_mmu_mode();
1186 
1187 	/* Do the actual TLB flush before dropping ptl */
1188 	if (force_flush)
1189 		tlb_flush_mmu_tlbonly(tlb);
1190 	pte_unmap_unlock(start_pte, ptl);
1191 
1192 	/*
1193 	 * If we forced a TLB flush (either due to running out of
1194 	 * batch buffers or because we needed to flush dirty TLB
1195 	 * entries before releasing the ptl), free the batched
1196 	 * memory too. Restart if we didn't do everything.
1197 	 */
1198 	if (force_flush) {
1199 		force_flush = 0;
1200 		tlb_flush_mmu_free(tlb);
1201 
1202 		if (addr != end)
1203 			goto again;
1204 	}
1205 
1206 	return addr;
1207 }
1208 
1209 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1210 				struct vm_area_struct *vma, pud_t *pud,
1211 				unsigned long addr, unsigned long end,
1212 				struct zap_details *details)
1213 {
1214 	pmd_t *pmd;
1215 	unsigned long next;
1216 
1217 	pmd = pmd_offset(pud, addr);
1218 	do {
1219 		next = pmd_addr_end(addr, end);
1220 		if (pmd_trans_huge(*pmd)) {
1221 			if (next - addr != HPAGE_PMD_SIZE) {
1222 #ifdef CONFIG_DEBUG_VM
1223 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1224 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1225 						__func__, addr, end,
1226 						vma->vm_start,
1227 						vma->vm_end);
1228 					BUG();
1229 				}
1230 #endif
1231 				split_huge_page_pmd(vma, addr, pmd);
1232 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1233 				goto next;
1234 			/* fall through */
1235 		}
1236 		/*
1237 		 * Here there can be other concurrent MADV_DONTNEED or
1238 		 * trans huge page faults running, and if the pmd is
1239 		 * none or trans huge it can change under us. This is
1240 		 * because MADV_DONTNEED holds the mmap_sem in read
1241 		 * mode.
1242 		 */
1243 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1244 			goto next;
1245 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1246 next:
1247 		cond_resched();
1248 	} while (pmd++, addr = next, addr != end);
1249 
1250 	return addr;
1251 }
1252 
1253 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1254 				struct vm_area_struct *vma, pgd_t *pgd,
1255 				unsigned long addr, unsigned long end,
1256 				struct zap_details *details)
1257 {
1258 	pud_t *pud;
1259 	unsigned long next;
1260 
1261 	pud = pud_offset(pgd, addr);
1262 	do {
1263 		next = pud_addr_end(addr, end);
1264 		if (pud_none_or_clear_bad(pud))
1265 			continue;
1266 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1267 	} while (pud++, addr = next, addr != end);
1268 
1269 	return addr;
1270 }
1271 
1272 static void unmap_page_range(struct mmu_gather *tlb,
1273 			     struct vm_area_struct *vma,
1274 			     unsigned long addr, unsigned long end,
1275 			     struct zap_details *details)
1276 {
1277 	pgd_t *pgd;
1278 	unsigned long next;
1279 
1280 	if (details && !details->check_mapping && !details->nonlinear_vma)
1281 		details = NULL;
1282 
1283 	BUG_ON(addr >= end);
1284 	tlb_start_vma(tlb, vma);
1285 	pgd = pgd_offset(vma->vm_mm, addr);
1286 	do {
1287 		next = pgd_addr_end(addr, end);
1288 		if (pgd_none_or_clear_bad(pgd))
1289 			continue;
1290 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1291 	} while (pgd++, addr = next, addr != end);
1292 	tlb_end_vma(tlb, vma);
1293 }
1294 
1295 
1296 static void unmap_single_vma(struct mmu_gather *tlb,
1297 		struct vm_area_struct *vma, unsigned long start_addr,
1298 		unsigned long end_addr,
1299 		struct zap_details *details)
1300 {
1301 	unsigned long start = max(vma->vm_start, start_addr);
1302 	unsigned long end;
1303 
1304 	if (start >= vma->vm_end)
1305 		return;
1306 	end = min(vma->vm_end, end_addr);
1307 	if (end <= vma->vm_start)
1308 		return;
1309 
1310 	if (vma->vm_file)
1311 		uprobe_munmap(vma, start, end);
1312 
1313 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1314 		untrack_pfn(vma, 0, 0);
1315 
1316 	if (start != end) {
1317 		if (unlikely(is_vm_hugetlb_page(vma))) {
1318 			/*
1319 			 * It is undesirable to test vma->vm_file as it
1320 			 * should be non-null for valid hugetlb area.
1321 			 * However, vm_file will be NULL in the error
1322 			 * cleanup path of mmap_region. When
1323 			 * hugetlbfs ->mmap method fails,
1324 			 * mmap_region() nullifies vma->vm_file
1325 			 * before calling this function to clean up.
1326 			 * Since no pte has actually been setup, it is
1327 			 * safe to do nothing in this case.
1328 			 */
1329 			if (vma->vm_file) {
1330 				i_mmap_lock_write(vma->vm_file->f_mapping);
1331 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1332 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1333 			}
1334 		} else
1335 			unmap_page_range(tlb, vma, start, end, details);
1336 	}
1337 }
1338 
1339 /**
1340  * unmap_vmas - unmap a range of memory covered by a list of vma's
1341  * @tlb: address of the caller's struct mmu_gather
1342  * @vma: the starting vma
1343  * @start_addr: virtual address at which to start unmapping
1344  * @end_addr: virtual address at which to end unmapping
1345  *
1346  * Unmap all pages in the vma list.
1347  *
1348  * Only addresses between `start' and `end' will be unmapped.
1349  *
1350  * The VMA list must be sorted in ascending virtual address order.
1351  *
1352  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1353  * range after unmap_vmas() returns.  So the only responsibility here is to
1354  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1355  * drops the lock and schedules.
1356  */
1357 void unmap_vmas(struct mmu_gather *tlb,
1358 		struct vm_area_struct *vma, unsigned long start_addr,
1359 		unsigned long end_addr)
1360 {
1361 	struct mm_struct *mm = vma->vm_mm;
1362 
1363 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1364 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1365 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1366 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1367 }
1368 
1369 /**
1370  * zap_page_range - remove user pages in a given range
1371  * @vma: vm_area_struct holding the applicable pages
1372  * @start: starting address of pages to zap
1373  * @size: number of bytes to zap
1374  * @details: details of nonlinear truncation or shared cache invalidation
1375  *
1376  * Caller must protect the VMA list
1377  */
1378 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1379 		unsigned long size, struct zap_details *details)
1380 {
1381 	struct mm_struct *mm = vma->vm_mm;
1382 	struct mmu_gather tlb;
1383 	unsigned long end = start + size;
1384 
1385 	lru_add_drain();
1386 	tlb_gather_mmu(&tlb, mm, start, end);
1387 	update_hiwater_rss(mm);
1388 	mmu_notifier_invalidate_range_start(mm, start, end);
1389 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1390 		unmap_single_vma(&tlb, vma, start, end, details);
1391 	mmu_notifier_invalidate_range_end(mm, start, end);
1392 	tlb_finish_mmu(&tlb, start, end);
1393 }
1394 
1395 /**
1396  * zap_page_range_single - remove user pages in a given range
1397  * @vma: vm_area_struct holding the applicable pages
1398  * @address: starting address of pages to zap
1399  * @size: number of bytes to zap
1400  * @details: details of nonlinear truncation or shared cache invalidation
1401  *
1402  * The range must fit into one VMA.
1403  */
1404 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1405 		unsigned long size, struct zap_details *details)
1406 {
1407 	struct mm_struct *mm = vma->vm_mm;
1408 	struct mmu_gather tlb;
1409 	unsigned long end = address + size;
1410 
1411 	lru_add_drain();
1412 	tlb_gather_mmu(&tlb, mm, address, end);
1413 	update_hiwater_rss(mm);
1414 	mmu_notifier_invalidate_range_start(mm, address, end);
1415 	unmap_single_vma(&tlb, vma, address, end, details);
1416 	mmu_notifier_invalidate_range_end(mm, address, end);
1417 	tlb_finish_mmu(&tlb, address, end);
1418 }
1419 
1420 /**
1421  * zap_vma_ptes - remove ptes mapping the vma
1422  * @vma: vm_area_struct holding ptes to be zapped
1423  * @address: starting address of pages to zap
1424  * @size: number of bytes to zap
1425  *
1426  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1427  *
1428  * The entire address range must be fully contained within the vma.
1429  *
1430  * Returns 0 if successful.
1431  */
1432 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1433 		unsigned long size)
1434 {
1435 	if (address < vma->vm_start || address + size > vma->vm_end ||
1436 	    		!(vma->vm_flags & VM_PFNMAP))
1437 		return -1;
1438 	zap_page_range_single(vma, address, size, NULL);
1439 	return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1442 
1443 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1444 			spinlock_t **ptl)
1445 {
1446 	pgd_t * pgd = pgd_offset(mm, addr);
1447 	pud_t * pud = pud_alloc(mm, pgd, addr);
1448 	if (pud) {
1449 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1450 		if (pmd) {
1451 			VM_BUG_ON(pmd_trans_huge(*pmd));
1452 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1453 		}
1454 	}
1455 	return NULL;
1456 }
1457 
1458 /*
1459  * This is the old fallback for page remapping.
1460  *
1461  * For historical reasons, it only allows reserved pages. Only
1462  * old drivers should use this, and they needed to mark their
1463  * pages reserved for the old functions anyway.
1464  */
1465 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1466 			struct page *page, pgprot_t prot)
1467 {
1468 	struct mm_struct *mm = vma->vm_mm;
1469 	int retval;
1470 	pte_t *pte;
1471 	spinlock_t *ptl;
1472 
1473 	retval = -EINVAL;
1474 	if (PageAnon(page))
1475 		goto out;
1476 	retval = -ENOMEM;
1477 	flush_dcache_page(page);
1478 	pte = get_locked_pte(mm, addr, &ptl);
1479 	if (!pte)
1480 		goto out;
1481 	retval = -EBUSY;
1482 	if (!pte_none(*pte))
1483 		goto out_unlock;
1484 
1485 	/* Ok, finally just insert the thing.. */
1486 	get_page(page);
1487 	inc_mm_counter_fast(mm, MM_FILEPAGES);
1488 	page_add_file_rmap(page);
1489 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1490 
1491 	retval = 0;
1492 	pte_unmap_unlock(pte, ptl);
1493 	return retval;
1494 out_unlock:
1495 	pte_unmap_unlock(pte, ptl);
1496 out:
1497 	return retval;
1498 }
1499 
1500 /**
1501  * vm_insert_page - insert single page into user vma
1502  * @vma: user vma to map to
1503  * @addr: target user address of this page
1504  * @page: source kernel page
1505  *
1506  * This allows drivers to insert individual pages they've allocated
1507  * into a user vma.
1508  *
1509  * The page has to be a nice clean _individual_ kernel allocation.
1510  * If you allocate a compound page, you need to have marked it as
1511  * such (__GFP_COMP), or manually just split the page up yourself
1512  * (see split_page()).
1513  *
1514  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1515  * took an arbitrary page protection parameter. This doesn't allow
1516  * that. Your vma protection will have to be set up correctly, which
1517  * means that if you want a shared writable mapping, you'd better
1518  * ask for a shared writable mapping!
1519  *
1520  * The page does not need to be reserved.
1521  *
1522  * Usually this function is called from f_op->mmap() handler
1523  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1524  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1525  * function from other places, for example from page-fault handler.
1526  */
1527 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1528 			struct page *page)
1529 {
1530 	if (addr < vma->vm_start || addr >= vma->vm_end)
1531 		return -EFAULT;
1532 	if (!page_count(page))
1533 		return -EINVAL;
1534 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1535 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1536 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1537 		vma->vm_flags |= VM_MIXEDMAP;
1538 	}
1539 	return insert_page(vma, addr, page, vma->vm_page_prot);
1540 }
1541 EXPORT_SYMBOL(vm_insert_page);
1542 
1543 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1544 			unsigned long pfn, pgprot_t prot)
1545 {
1546 	struct mm_struct *mm = vma->vm_mm;
1547 	int retval;
1548 	pte_t *pte, entry;
1549 	spinlock_t *ptl;
1550 
1551 	retval = -ENOMEM;
1552 	pte = get_locked_pte(mm, addr, &ptl);
1553 	if (!pte)
1554 		goto out;
1555 	retval = -EBUSY;
1556 	if (!pte_none(*pte))
1557 		goto out_unlock;
1558 
1559 	/* Ok, finally just insert the thing.. */
1560 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1561 	set_pte_at(mm, addr, pte, entry);
1562 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1563 
1564 	retval = 0;
1565 out_unlock:
1566 	pte_unmap_unlock(pte, ptl);
1567 out:
1568 	return retval;
1569 }
1570 
1571 /**
1572  * vm_insert_pfn - insert single pfn into user vma
1573  * @vma: user vma to map to
1574  * @addr: target user address of this page
1575  * @pfn: source kernel pfn
1576  *
1577  * Similar to vm_insert_page, this allows drivers to insert individual pages
1578  * they've allocated into a user vma. Same comments apply.
1579  *
1580  * This function should only be called from a vm_ops->fault handler, and
1581  * in that case the handler should return NULL.
1582  *
1583  * vma cannot be a COW mapping.
1584  *
1585  * As this is called only for pages that do not currently exist, we
1586  * do not need to flush old virtual caches or the TLB.
1587  */
1588 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1589 			unsigned long pfn)
1590 {
1591 	int ret;
1592 	pgprot_t pgprot = vma->vm_page_prot;
1593 	/*
1594 	 * Technically, architectures with pte_special can avoid all these
1595 	 * restrictions (same for remap_pfn_range).  However we would like
1596 	 * consistency in testing and feature parity among all, so we should
1597 	 * try to keep these invariants in place for everybody.
1598 	 */
1599 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1600 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1601 						(VM_PFNMAP|VM_MIXEDMAP));
1602 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1603 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1604 
1605 	if (addr < vma->vm_start || addr >= vma->vm_end)
1606 		return -EFAULT;
1607 	if (track_pfn_insert(vma, &pgprot, pfn))
1608 		return -EINVAL;
1609 
1610 	ret = insert_pfn(vma, addr, pfn, pgprot);
1611 
1612 	return ret;
1613 }
1614 EXPORT_SYMBOL(vm_insert_pfn);
1615 
1616 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1617 			unsigned long pfn)
1618 {
1619 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1620 
1621 	if (addr < vma->vm_start || addr >= vma->vm_end)
1622 		return -EFAULT;
1623 
1624 	/*
1625 	 * If we don't have pte special, then we have to use the pfn_valid()
1626 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1627 	 * refcount the page if pfn_valid is true (hence insert_page rather
1628 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1629 	 * without pte special, it would there be refcounted as a normal page.
1630 	 */
1631 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1632 		struct page *page;
1633 
1634 		page = pfn_to_page(pfn);
1635 		return insert_page(vma, addr, page, vma->vm_page_prot);
1636 	}
1637 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1638 }
1639 EXPORT_SYMBOL(vm_insert_mixed);
1640 
1641 /*
1642  * maps a range of physical memory into the requested pages. the old
1643  * mappings are removed. any references to nonexistent pages results
1644  * in null mappings (currently treated as "copy-on-access")
1645  */
1646 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1647 			unsigned long addr, unsigned long end,
1648 			unsigned long pfn, pgprot_t prot)
1649 {
1650 	pte_t *pte;
1651 	spinlock_t *ptl;
1652 
1653 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1654 	if (!pte)
1655 		return -ENOMEM;
1656 	arch_enter_lazy_mmu_mode();
1657 	do {
1658 		BUG_ON(!pte_none(*pte));
1659 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1660 		pfn++;
1661 	} while (pte++, addr += PAGE_SIZE, addr != end);
1662 	arch_leave_lazy_mmu_mode();
1663 	pte_unmap_unlock(pte - 1, ptl);
1664 	return 0;
1665 }
1666 
1667 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1668 			unsigned long addr, unsigned long end,
1669 			unsigned long pfn, pgprot_t prot)
1670 {
1671 	pmd_t *pmd;
1672 	unsigned long next;
1673 
1674 	pfn -= addr >> PAGE_SHIFT;
1675 	pmd = pmd_alloc(mm, pud, addr);
1676 	if (!pmd)
1677 		return -ENOMEM;
1678 	VM_BUG_ON(pmd_trans_huge(*pmd));
1679 	do {
1680 		next = pmd_addr_end(addr, end);
1681 		if (remap_pte_range(mm, pmd, addr, next,
1682 				pfn + (addr >> PAGE_SHIFT), prot))
1683 			return -ENOMEM;
1684 	} while (pmd++, addr = next, addr != end);
1685 	return 0;
1686 }
1687 
1688 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1689 			unsigned long addr, unsigned long end,
1690 			unsigned long pfn, pgprot_t prot)
1691 {
1692 	pud_t *pud;
1693 	unsigned long next;
1694 
1695 	pfn -= addr >> PAGE_SHIFT;
1696 	pud = pud_alloc(mm, pgd, addr);
1697 	if (!pud)
1698 		return -ENOMEM;
1699 	do {
1700 		next = pud_addr_end(addr, end);
1701 		if (remap_pmd_range(mm, pud, addr, next,
1702 				pfn + (addr >> PAGE_SHIFT), prot))
1703 			return -ENOMEM;
1704 	} while (pud++, addr = next, addr != end);
1705 	return 0;
1706 }
1707 
1708 /**
1709  * remap_pfn_range - remap kernel memory to userspace
1710  * @vma: user vma to map to
1711  * @addr: target user address to start at
1712  * @pfn: physical address of kernel memory
1713  * @size: size of map area
1714  * @prot: page protection flags for this mapping
1715  *
1716  *  Note: this is only safe if the mm semaphore is held when called.
1717  */
1718 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1719 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1720 {
1721 	pgd_t *pgd;
1722 	unsigned long next;
1723 	unsigned long end = addr + PAGE_ALIGN(size);
1724 	struct mm_struct *mm = vma->vm_mm;
1725 	int err;
1726 
1727 	/*
1728 	 * Physically remapped pages are special. Tell the
1729 	 * rest of the world about it:
1730 	 *   VM_IO tells people not to look at these pages
1731 	 *	(accesses can have side effects).
1732 	 *   VM_PFNMAP tells the core MM that the base pages are just
1733 	 *	raw PFN mappings, and do not have a "struct page" associated
1734 	 *	with them.
1735 	 *   VM_DONTEXPAND
1736 	 *      Disable vma merging and expanding with mremap().
1737 	 *   VM_DONTDUMP
1738 	 *      Omit vma from core dump, even when VM_IO turned off.
1739 	 *
1740 	 * There's a horrible special case to handle copy-on-write
1741 	 * behaviour that some programs depend on. We mark the "original"
1742 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1743 	 * See vm_normal_page() for details.
1744 	 */
1745 	if (is_cow_mapping(vma->vm_flags)) {
1746 		if (addr != vma->vm_start || end != vma->vm_end)
1747 			return -EINVAL;
1748 		vma->vm_pgoff = pfn;
1749 	}
1750 
1751 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1752 	if (err)
1753 		return -EINVAL;
1754 
1755 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1756 
1757 	BUG_ON(addr >= end);
1758 	pfn -= addr >> PAGE_SHIFT;
1759 	pgd = pgd_offset(mm, addr);
1760 	flush_cache_range(vma, addr, end);
1761 	do {
1762 		next = pgd_addr_end(addr, end);
1763 		err = remap_pud_range(mm, pgd, addr, next,
1764 				pfn + (addr >> PAGE_SHIFT), prot);
1765 		if (err)
1766 			break;
1767 	} while (pgd++, addr = next, addr != end);
1768 
1769 	if (err)
1770 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1771 
1772 	return err;
1773 }
1774 EXPORT_SYMBOL(remap_pfn_range);
1775 
1776 /**
1777  * vm_iomap_memory - remap memory to userspace
1778  * @vma: user vma to map to
1779  * @start: start of area
1780  * @len: size of area
1781  *
1782  * This is a simplified io_remap_pfn_range() for common driver use. The
1783  * driver just needs to give us the physical memory range to be mapped,
1784  * we'll figure out the rest from the vma information.
1785  *
1786  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1787  * whatever write-combining details or similar.
1788  */
1789 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1790 {
1791 	unsigned long vm_len, pfn, pages;
1792 
1793 	/* Check that the physical memory area passed in looks valid */
1794 	if (start + len < start)
1795 		return -EINVAL;
1796 	/*
1797 	 * You *really* shouldn't map things that aren't page-aligned,
1798 	 * but we've historically allowed it because IO memory might
1799 	 * just have smaller alignment.
1800 	 */
1801 	len += start & ~PAGE_MASK;
1802 	pfn = start >> PAGE_SHIFT;
1803 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1804 	if (pfn + pages < pfn)
1805 		return -EINVAL;
1806 
1807 	/* We start the mapping 'vm_pgoff' pages into the area */
1808 	if (vma->vm_pgoff > pages)
1809 		return -EINVAL;
1810 	pfn += vma->vm_pgoff;
1811 	pages -= vma->vm_pgoff;
1812 
1813 	/* Can we fit all of the mapping? */
1814 	vm_len = vma->vm_end - vma->vm_start;
1815 	if (vm_len >> PAGE_SHIFT > pages)
1816 		return -EINVAL;
1817 
1818 	/* Ok, let it rip */
1819 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1820 }
1821 EXPORT_SYMBOL(vm_iomap_memory);
1822 
1823 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1824 				     unsigned long addr, unsigned long end,
1825 				     pte_fn_t fn, void *data)
1826 {
1827 	pte_t *pte;
1828 	int err;
1829 	pgtable_t token;
1830 	spinlock_t *uninitialized_var(ptl);
1831 
1832 	pte = (mm == &init_mm) ?
1833 		pte_alloc_kernel(pmd, addr) :
1834 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1835 	if (!pte)
1836 		return -ENOMEM;
1837 
1838 	BUG_ON(pmd_huge(*pmd));
1839 
1840 	arch_enter_lazy_mmu_mode();
1841 
1842 	token = pmd_pgtable(*pmd);
1843 
1844 	do {
1845 		err = fn(pte++, token, addr, data);
1846 		if (err)
1847 			break;
1848 	} while (addr += PAGE_SIZE, addr != end);
1849 
1850 	arch_leave_lazy_mmu_mode();
1851 
1852 	if (mm != &init_mm)
1853 		pte_unmap_unlock(pte-1, ptl);
1854 	return err;
1855 }
1856 
1857 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1858 				     unsigned long addr, unsigned long end,
1859 				     pte_fn_t fn, void *data)
1860 {
1861 	pmd_t *pmd;
1862 	unsigned long next;
1863 	int err;
1864 
1865 	BUG_ON(pud_huge(*pud));
1866 
1867 	pmd = pmd_alloc(mm, pud, addr);
1868 	if (!pmd)
1869 		return -ENOMEM;
1870 	do {
1871 		next = pmd_addr_end(addr, end);
1872 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1873 		if (err)
1874 			break;
1875 	} while (pmd++, addr = next, addr != end);
1876 	return err;
1877 }
1878 
1879 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1880 				     unsigned long addr, unsigned long end,
1881 				     pte_fn_t fn, void *data)
1882 {
1883 	pud_t *pud;
1884 	unsigned long next;
1885 	int err;
1886 
1887 	pud = pud_alloc(mm, pgd, addr);
1888 	if (!pud)
1889 		return -ENOMEM;
1890 	do {
1891 		next = pud_addr_end(addr, end);
1892 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1893 		if (err)
1894 			break;
1895 	} while (pud++, addr = next, addr != end);
1896 	return err;
1897 }
1898 
1899 /*
1900  * Scan a region of virtual memory, filling in page tables as necessary
1901  * and calling a provided function on each leaf page table.
1902  */
1903 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1904 			unsigned long size, pte_fn_t fn, void *data)
1905 {
1906 	pgd_t *pgd;
1907 	unsigned long next;
1908 	unsigned long end = addr + size;
1909 	int err;
1910 
1911 	BUG_ON(addr >= end);
1912 	pgd = pgd_offset(mm, addr);
1913 	do {
1914 		next = pgd_addr_end(addr, end);
1915 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1916 		if (err)
1917 			break;
1918 	} while (pgd++, addr = next, addr != end);
1919 
1920 	return err;
1921 }
1922 EXPORT_SYMBOL_GPL(apply_to_page_range);
1923 
1924 /*
1925  * handle_pte_fault chooses page fault handler according to an entry
1926  * which was read non-atomically.  Before making any commitment, on
1927  * those architectures or configurations (e.g. i386 with PAE) which
1928  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1929  * must check under lock before unmapping the pte and proceeding
1930  * (but do_wp_page is only called after already making such a check;
1931  * and do_anonymous_page can safely check later on).
1932  */
1933 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1934 				pte_t *page_table, pte_t orig_pte)
1935 {
1936 	int same = 1;
1937 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1938 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1939 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1940 		spin_lock(ptl);
1941 		same = pte_same(*page_table, orig_pte);
1942 		spin_unlock(ptl);
1943 	}
1944 #endif
1945 	pte_unmap(page_table);
1946 	return same;
1947 }
1948 
1949 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1950 {
1951 	debug_dma_assert_idle(src);
1952 
1953 	/*
1954 	 * If the source page was a PFN mapping, we don't have
1955 	 * a "struct page" for it. We do a best-effort copy by
1956 	 * just copying from the original user address. If that
1957 	 * fails, we just zero-fill it. Live with it.
1958 	 */
1959 	if (unlikely(!src)) {
1960 		void *kaddr = kmap_atomic(dst);
1961 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1962 
1963 		/*
1964 		 * This really shouldn't fail, because the page is there
1965 		 * in the page tables. But it might just be unreadable,
1966 		 * in which case we just give up and fill the result with
1967 		 * zeroes.
1968 		 */
1969 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1970 			clear_page(kaddr);
1971 		kunmap_atomic(kaddr);
1972 		flush_dcache_page(dst);
1973 	} else
1974 		copy_user_highpage(dst, src, va, vma);
1975 }
1976 
1977 /*
1978  * Notify the address space that the page is about to become writable so that
1979  * it can prohibit this or wait for the page to get into an appropriate state.
1980  *
1981  * We do this without the lock held, so that it can sleep if it needs to.
1982  */
1983 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1984 	       unsigned long address)
1985 {
1986 	struct vm_fault vmf;
1987 	int ret;
1988 
1989 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1990 	vmf.pgoff = page->index;
1991 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1992 	vmf.page = page;
1993 
1994 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1995 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1996 		return ret;
1997 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1998 		lock_page(page);
1999 		if (!page->mapping) {
2000 			unlock_page(page);
2001 			return 0; /* retry */
2002 		}
2003 		ret |= VM_FAULT_LOCKED;
2004 	} else
2005 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2006 	return ret;
2007 }
2008 
2009 /*
2010  * This routine handles present pages, when users try to write
2011  * to a shared page. It is done by copying the page to a new address
2012  * and decrementing the shared-page counter for the old page.
2013  *
2014  * Note that this routine assumes that the protection checks have been
2015  * done by the caller (the low-level page fault routine in most cases).
2016  * Thus we can safely just mark it writable once we've done any necessary
2017  * COW.
2018  *
2019  * We also mark the page dirty at this point even though the page will
2020  * change only once the write actually happens. This avoids a few races,
2021  * and potentially makes it more efficient.
2022  *
2023  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2024  * but allow concurrent faults), with pte both mapped and locked.
2025  * We return with mmap_sem still held, but pte unmapped and unlocked.
2026  */
2027 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2028 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2029 		spinlock_t *ptl, pte_t orig_pte)
2030 	__releases(ptl)
2031 {
2032 	struct page *old_page, *new_page = NULL;
2033 	pte_t entry;
2034 	int ret = 0;
2035 	int page_mkwrite = 0;
2036 	struct page *dirty_page = NULL;
2037 	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2038 	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2039 	struct mem_cgroup *memcg;
2040 
2041 	old_page = vm_normal_page(vma, address, orig_pte);
2042 	if (!old_page) {
2043 		/*
2044 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2045 		 * VM_PFNMAP VMA.
2046 		 *
2047 		 * We should not cow pages in a shared writeable mapping.
2048 		 * Just mark the pages writable as we can't do any dirty
2049 		 * accounting on raw pfn maps.
2050 		 */
2051 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2052 				     (VM_WRITE|VM_SHARED))
2053 			goto reuse;
2054 		goto gotten;
2055 	}
2056 
2057 	/*
2058 	 * Take out anonymous pages first, anonymous shared vmas are
2059 	 * not dirty accountable.
2060 	 */
2061 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2062 		if (!trylock_page(old_page)) {
2063 			page_cache_get(old_page);
2064 			pte_unmap_unlock(page_table, ptl);
2065 			lock_page(old_page);
2066 			page_table = pte_offset_map_lock(mm, pmd, address,
2067 							 &ptl);
2068 			if (!pte_same(*page_table, orig_pte)) {
2069 				unlock_page(old_page);
2070 				goto unlock;
2071 			}
2072 			page_cache_release(old_page);
2073 		}
2074 		if (reuse_swap_page(old_page)) {
2075 			/*
2076 			 * The page is all ours.  Move it to our anon_vma so
2077 			 * the rmap code will not search our parent or siblings.
2078 			 * Protected against the rmap code by the page lock.
2079 			 */
2080 			page_move_anon_rmap(old_page, vma, address);
2081 			unlock_page(old_page);
2082 			goto reuse;
2083 		}
2084 		unlock_page(old_page);
2085 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2086 					(VM_WRITE|VM_SHARED))) {
2087 		/*
2088 		 * Only catch write-faults on shared writable pages,
2089 		 * read-only shared pages can get COWed by
2090 		 * get_user_pages(.write=1, .force=1).
2091 		 */
2092 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2093 			int tmp;
2094 			page_cache_get(old_page);
2095 			pte_unmap_unlock(page_table, ptl);
2096 			tmp = do_page_mkwrite(vma, old_page, address);
2097 			if (unlikely(!tmp || (tmp &
2098 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2099 				page_cache_release(old_page);
2100 				return tmp;
2101 			}
2102 			/*
2103 			 * Since we dropped the lock we need to revalidate
2104 			 * the PTE as someone else may have changed it.  If
2105 			 * they did, we just return, as we can count on the
2106 			 * MMU to tell us if they didn't also make it writable.
2107 			 */
2108 			page_table = pte_offset_map_lock(mm, pmd, address,
2109 							 &ptl);
2110 			if (!pte_same(*page_table, orig_pte)) {
2111 				unlock_page(old_page);
2112 				goto unlock;
2113 			}
2114 
2115 			page_mkwrite = 1;
2116 		}
2117 		dirty_page = old_page;
2118 		get_page(dirty_page);
2119 
2120 reuse:
2121 		/*
2122 		 * Clear the pages cpupid information as the existing
2123 		 * information potentially belongs to a now completely
2124 		 * unrelated process.
2125 		 */
2126 		if (old_page)
2127 			page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2128 
2129 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2130 		entry = pte_mkyoung(orig_pte);
2131 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2132 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2133 			update_mmu_cache(vma, address, page_table);
2134 		pte_unmap_unlock(page_table, ptl);
2135 		ret |= VM_FAULT_WRITE;
2136 
2137 		if (!dirty_page)
2138 			return ret;
2139 
2140 		if (!page_mkwrite) {
2141 			struct address_space *mapping;
2142 			int dirtied;
2143 
2144 			lock_page(dirty_page);
2145 			dirtied = set_page_dirty(dirty_page);
2146 			VM_BUG_ON_PAGE(PageAnon(dirty_page), dirty_page);
2147 			mapping = dirty_page->mapping;
2148 			unlock_page(dirty_page);
2149 
2150 			if (dirtied && mapping) {
2151 				/*
2152 				 * Some device drivers do not set page.mapping
2153 				 * but still dirty their pages
2154 				 */
2155 				balance_dirty_pages_ratelimited(mapping);
2156 			}
2157 
2158 			/* file_update_time outside page_lock */
2159 			if (vma->vm_file)
2160 				file_update_time(vma->vm_file);
2161 		}
2162 		put_page(dirty_page);
2163 		if (page_mkwrite) {
2164 			struct address_space *mapping = dirty_page->mapping;
2165 
2166 			set_page_dirty(dirty_page);
2167 			unlock_page(dirty_page);
2168 			page_cache_release(dirty_page);
2169 			if (mapping)	{
2170 				/*
2171 				 * Some device drivers do not set page.mapping
2172 				 * but still dirty their pages
2173 				 */
2174 				balance_dirty_pages_ratelimited(mapping);
2175 			}
2176 		}
2177 
2178 		return ret;
2179 	}
2180 
2181 	/*
2182 	 * Ok, we need to copy. Oh, well..
2183 	 */
2184 	page_cache_get(old_page);
2185 gotten:
2186 	pte_unmap_unlock(page_table, ptl);
2187 
2188 	if (unlikely(anon_vma_prepare(vma)))
2189 		goto oom;
2190 
2191 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2192 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2193 		if (!new_page)
2194 			goto oom;
2195 	} else {
2196 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2197 		if (!new_page)
2198 			goto oom;
2199 		cow_user_page(new_page, old_page, address, vma);
2200 	}
2201 	__SetPageUptodate(new_page);
2202 
2203 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2204 		goto oom_free_new;
2205 
2206 	mmun_start  = address & PAGE_MASK;
2207 	mmun_end    = mmun_start + PAGE_SIZE;
2208 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2209 
2210 	/*
2211 	 * Re-check the pte - we dropped the lock
2212 	 */
2213 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2214 	if (likely(pte_same(*page_table, orig_pte))) {
2215 		if (old_page) {
2216 			if (!PageAnon(old_page)) {
2217 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2218 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2219 			}
2220 		} else
2221 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2222 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2223 		entry = mk_pte(new_page, vma->vm_page_prot);
2224 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2225 		/*
2226 		 * Clear the pte entry and flush it first, before updating the
2227 		 * pte with the new entry. This will avoid a race condition
2228 		 * seen in the presence of one thread doing SMC and another
2229 		 * thread doing COW.
2230 		 */
2231 		ptep_clear_flush_notify(vma, address, page_table);
2232 		page_add_new_anon_rmap(new_page, vma, address);
2233 		mem_cgroup_commit_charge(new_page, memcg, false);
2234 		lru_cache_add_active_or_unevictable(new_page, vma);
2235 		/*
2236 		 * We call the notify macro here because, when using secondary
2237 		 * mmu page tables (such as kvm shadow page tables), we want the
2238 		 * new page to be mapped directly into the secondary page table.
2239 		 */
2240 		set_pte_at_notify(mm, address, page_table, entry);
2241 		update_mmu_cache(vma, address, page_table);
2242 		if (old_page) {
2243 			/*
2244 			 * Only after switching the pte to the new page may
2245 			 * we remove the mapcount here. Otherwise another
2246 			 * process may come and find the rmap count decremented
2247 			 * before the pte is switched to the new page, and
2248 			 * "reuse" the old page writing into it while our pte
2249 			 * here still points into it and can be read by other
2250 			 * threads.
2251 			 *
2252 			 * The critical issue is to order this
2253 			 * page_remove_rmap with the ptp_clear_flush above.
2254 			 * Those stores are ordered by (if nothing else,)
2255 			 * the barrier present in the atomic_add_negative
2256 			 * in page_remove_rmap.
2257 			 *
2258 			 * Then the TLB flush in ptep_clear_flush ensures that
2259 			 * no process can access the old page before the
2260 			 * decremented mapcount is visible. And the old page
2261 			 * cannot be reused until after the decremented
2262 			 * mapcount is visible. So transitively, TLBs to
2263 			 * old page will be flushed before it can be reused.
2264 			 */
2265 			page_remove_rmap(old_page);
2266 		}
2267 
2268 		/* Free the old page.. */
2269 		new_page = old_page;
2270 		ret |= VM_FAULT_WRITE;
2271 	} else
2272 		mem_cgroup_cancel_charge(new_page, memcg);
2273 
2274 	if (new_page)
2275 		page_cache_release(new_page);
2276 unlock:
2277 	pte_unmap_unlock(page_table, ptl);
2278 	if (mmun_end > mmun_start)
2279 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2280 	if (old_page) {
2281 		/*
2282 		 * Don't let another task, with possibly unlocked vma,
2283 		 * keep the mlocked page.
2284 		 */
2285 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2286 			lock_page(old_page);	/* LRU manipulation */
2287 			munlock_vma_page(old_page);
2288 			unlock_page(old_page);
2289 		}
2290 		page_cache_release(old_page);
2291 	}
2292 	return ret;
2293 oom_free_new:
2294 	page_cache_release(new_page);
2295 oom:
2296 	if (old_page)
2297 		page_cache_release(old_page);
2298 	return VM_FAULT_OOM;
2299 }
2300 
2301 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2302 		unsigned long start_addr, unsigned long end_addr,
2303 		struct zap_details *details)
2304 {
2305 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2306 }
2307 
2308 static inline void unmap_mapping_range_tree(struct rb_root *root,
2309 					    struct zap_details *details)
2310 {
2311 	struct vm_area_struct *vma;
2312 	pgoff_t vba, vea, zba, zea;
2313 
2314 	vma_interval_tree_foreach(vma, root,
2315 			details->first_index, details->last_index) {
2316 
2317 		vba = vma->vm_pgoff;
2318 		vea = vba + vma_pages(vma) - 1;
2319 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2320 		zba = details->first_index;
2321 		if (zba < vba)
2322 			zba = vba;
2323 		zea = details->last_index;
2324 		if (zea > vea)
2325 			zea = vea;
2326 
2327 		unmap_mapping_range_vma(vma,
2328 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2329 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2330 				details);
2331 	}
2332 }
2333 
2334 static inline void unmap_mapping_range_list(struct list_head *head,
2335 					    struct zap_details *details)
2336 {
2337 	struct vm_area_struct *vma;
2338 
2339 	/*
2340 	 * In nonlinear VMAs there is no correspondence between virtual address
2341 	 * offset and file offset.  So we must perform an exhaustive search
2342 	 * across *all* the pages in each nonlinear VMA, not just the pages
2343 	 * whose virtual address lies outside the file truncation point.
2344 	 */
2345 	list_for_each_entry(vma, head, shared.nonlinear) {
2346 		details->nonlinear_vma = vma;
2347 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2348 	}
2349 }
2350 
2351 /**
2352  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2353  * @mapping: the address space containing mmaps to be unmapped.
2354  * @holebegin: byte in first page to unmap, relative to the start of
2355  * the underlying file.  This will be rounded down to a PAGE_SIZE
2356  * boundary.  Note that this is different from truncate_pagecache(), which
2357  * must keep the partial page.  In contrast, we must get rid of
2358  * partial pages.
2359  * @holelen: size of prospective hole in bytes.  This will be rounded
2360  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2361  * end of the file.
2362  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2363  * but 0 when invalidating pagecache, don't throw away private data.
2364  */
2365 void unmap_mapping_range(struct address_space *mapping,
2366 		loff_t const holebegin, loff_t const holelen, int even_cows)
2367 {
2368 	struct zap_details details;
2369 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2370 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2371 
2372 	/* Check for overflow. */
2373 	if (sizeof(holelen) > sizeof(hlen)) {
2374 		long long holeend =
2375 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2376 		if (holeend & ~(long long)ULONG_MAX)
2377 			hlen = ULONG_MAX - hba + 1;
2378 	}
2379 
2380 	details.check_mapping = even_cows? NULL: mapping;
2381 	details.nonlinear_vma = NULL;
2382 	details.first_index = hba;
2383 	details.last_index = hba + hlen - 1;
2384 	if (details.last_index < details.first_index)
2385 		details.last_index = ULONG_MAX;
2386 
2387 
2388 	i_mmap_lock_write(mapping);
2389 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2390 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2391 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2392 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2393 	i_mmap_unlock_write(mapping);
2394 }
2395 EXPORT_SYMBOL(unmap_mapping_range);
2396 
2397 /*
2398  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2399  * but allow concurrent faults), and pte mapped but not yet locked.
2400  * We return with pte unmapped and unlocked.
2401  *
2402  * We return with the mmap_sem locked or unlocked in the same cases
2403  * as does filemap_fault().
2404  */
2405 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2406 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2407 		unsigned int flags, pte_t orig_pte)
2408 {
2409 	spinlock_t *ptl;
2410 	struct page *page, *swapcache;
2411 	struct mem_cgroup *memcg;
2412 	swp_entry_t entry;
2413 	pte_t pte;
2414 	int locked;
2415 	int exclusive = 0;
2416 	int ret = 0;
2417 
2418 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2419 		goto out;
2420 
2421 	entry = pte_to_swp_entry(orig_pte);
2422 	if (unlikely(non_swap_entry(entry))) {
2423 		if (is_migration_entry(entry)) {
2424 			migration_entry_wait(mm, pmd, address);
2425 		} else if (is_hwpoison_entry(entry)) {
2426 			ret = VM_FAULT_HWPOISON;
2427 		} else {
2428 			print_bad_pte(vma, address, orig_pte, NULL);
2429 			ret = VM_FAULT_SIGBUS;
2430 		}
2431 		goto out;
2432 	}
2433 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2434 	page = lookup_swap_cache(entry);
2435 	if (!page) {
2436 		page = swapin_readahead(entry,
2437 					GFP_HIGHUSER_MOVABLE, vma, address);
2438 		if (!page) {
2439 			/*
2440 			 * Back out if somebody else faulted in this pte
2441 			 * while we released the pte lock.
2442 			 */
2443 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2444 			if (likely(pte_same(*page_table, orig_pte)))
2445 				ret = VM_FAULT_OOM;
2446 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2447 			goto unlock;
2448 		}
2449 
2450 		/* Had to read the page from swap area: Major fault */
2451 		ret = VM_FAULT_MAJOR;
2452 		count_vm_event(PGMAJFAULT);
2453 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2454 	} else if (PageHWPoison(page)) {
2455 		/*
2456 		 * hwpoisoned dirty swapcache pages are kept for killing
2457 		 * owner processes (which may be unknown at hwpoison time)
2458 		 */
2459 		ret = VM_FAULT_HWPOISON;
2460 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2461 		swapcache = page;
2462 		goto out_release;
2463 	}
2464 
2465 	swapcache = page;
2466 	locked = lock_page_or_retry(page, mm, flags);
2467 
2468 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2469 	if (!locked) {
2470 		ret |= VM_FAULT_RETRY;
2471 		goto out_release;
2472 	}
2473 
2474 	/*
2475 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2476 	 * release the swapcache from under us.  The page pin, and pte_same
2477 	 * test below, are not enough to exclude that.  Even if it is still
2478 	 * swapcache, we need to check that the page's swap has not changed.
2479 	 */
2480 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2481 		goto out_page;
2482 
2483 	page = ksm_might_need_to_copy(page, vma, address);
2484 	if (unlikely(!page)) {
2485 		ret = VM_FAULT_OOM;
2486 		page = swapcache;
2487 		goto out_page;
2488 	}
2489 
2490 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2491 		ret = VM_FAULT_OOM;
2492 		goto out_page;
2493 	}
2494 
2495 	/*
2496 	 * Back out if somebody else already faulted in this pte.
2497 	 */
2498 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2499 	if (unlikely(!pte_same(*page_table, orig_pte)))
2500 		goto out_nomap;
2501 
2502 	if (unlikely(!PageUptodate(page))) {
2503 		ret = VM_FAULT_SIGBUS;
2504 		goto out_nomap;
2505 	}
2506 
2507 	/*
2508 	 * The page isn't present yet, go ahead with the fault.
2509 	 *
2510 	 * Be careful about the sequence of operations here.
2511 	 * To get its accounting right, reuse_swap_page() must be called
2512 	 * while the page is counted on swap but not yet in mapcount i.e.
2513 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2514 	 * must be called after the swap_free(), or it will never succeed.
2515 	 */
2516 
2517 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2518 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2519 	pte = mk_pte(page, vma->vm_page_prot);
2520 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2521 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2522 		flags &= ~FAULT_FLAG_WRITE;
2523 		ret |= VM_FAULT_WRITE;
2524 		exclusive = 1;
2525 	}
2526 	flush_icache_page(vma, page);
2527 	if (pte_swp_soft_dirty(orig_pte))
2528 		pte = pte_mksoft_dirty(pte);
2529 	set_pte_at(mm, address, page_table, pte);
2530 	if (page == swapcache) {
2531 		do_page_add_anon_rmap(page, vma, address, exclusive);
2532 		mem_cgroup_commit_charge(page, memcg, true);
2533 	} else { /* ksm created a completely new copy */
2534 		page_add_new_anon_rmap(page, vma, address);
2535 		mem_cgroup_commit_charge(page, memcg, false);
2536 		lru_cache_add_active_or_unevictable(page, vma);
2537 	}
2538 
2539 	swap_free(entry);
2540 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2541 		try_to_free_swap(page);
2542 	unlock_page(page);
2543 	if (page != swapcache) {
2544 		/*
2545 		 * Hold the lock to avoid the swap entry to be reused
2546 		 * until we take the PT lock for the pte_same() check
2547 		 * (to avoid false positives from pte_same). For
2548 		 * further safety release the lock after the swap_free
2549 		 * so that the swap count won't change under a
2550 		 * parallel locked swapcache.
2551 		 */
2552 		unlock_page(swapcache);
2553 		page_cache_release(swapcache);
2554 	}
2555 
2556 	if (flags & FAULT_FLAG_WRITE) {
2557 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2558 		if (ret & VM_FAULT_ERROR)
2559 			ret &= VM_FAULT_ERROR;
2560 		goto out;
2561 	}
2562 
2563 	/* No need to invalidate - it was non-present before */
2564 	update_mmu_cache(vma, address, page_table);
2565 unlock:
2566 	pte_unmap_unlock(page_table, ptl);
2567 out:
2568 	return ret;
2569 out_nomap:
2570 	mem_cgroup_cancel_charge(page, memcg);
2571 	pte_unmap_unlock(page_table, ptl);
2572 out_page:
2573 	unlock_page(page);
2574 out_release:
2575 	page_cache_release(page);
2576 	if (page != swapcache) {
2577 		unlock_page(swapcache);
2578 		page_cache_release(swapcache);
2579 	}
2580 	return ret;
2581 }
2582 
2583 /*
2584  * This is like a special single-page "expand_{down|up}wards()",
2585  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2586  * doesn't hit another vma.
2587  */
2588 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2589 {
2590 	address &= PAGE_MASK;
2591 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2592 		struct vm_area_struct *prev = vma->vm_prev;
2593 
2594 		/*
2595 		 * Is there a mapping abutting this one below?
2596 		 *
2597 		 * That's only ok if it's the same stack mapping
2598 		 * that has gotten split..
2599 		 */
2600 		if (prev && prev->vm_end == address)
2601 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2602 
2603 		return expand_downwards(vma, address - PAGE_SIZE);
2604 	}
2605 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2606 		struct vm_area_struct *next = vma->vm_next;
2607 
2608 		/* As VM_GROWSDOWN but s/below/above/ */
2609 		if (next && next->vm_start == address + PAGE_SIZE)
2610 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2611 
2612 		return expand_upwards(vma, address + PAGE_SIZE);
2613 	}
2614 	return 0;
2615 }
2616 
2617 /*
2618  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2619  * but allow concurrent faults), and pte mapped but not yet locked.
2620  * We return with mmap_sem still held, but pte unmapped and unlocked.
2621  */
2622 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2623 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2624 		unsigned int flags)
2625 {
2626 	struct mem_cgroup *memcg;
2627 	struct page *page;
2628 	spinlock_t *ptl;
2629 	pte_t entry;
2630 
2631 	pte_unmap(page_table);
2632 
2633 	/* Check if we need to add a guard page to the stack */
2634 	if (check_stack_guard_page(vma, address) < 0)
2635 		return VM_FAULT_SIGSEGV;
2636 
2637 	/* Use the zero-page for reads */
2638 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2639 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2640 						vma->vm_page_prot));
2641 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2642 		if (!pte_none(*page_table))
2643 			goto unlock;
2644 		goto setpte;
2645 	}
2646 
2647 	/* Allocate our own private page. */
2648 	if (unlikely(anon_vma_prepare(vma)))
2649 		goto oom;
2650 	page = alloc_zeroed_user_highpage_movable(vma, address);
2651 	if (!page)
2652 		goto oom;
2653 	/*
2654 	 * The memory barrier inside __SetPageUptodate makes sure that
2655 	 * preceeding stores to the page contents become visible before
2656 	 * the set_pte_at() write.
2657 	 */
2658 	__SetPageUptodate(page);
2659 
2660 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2661 		goto oom_free_page;
2662 
2663 	entry = mk_pte(page, vma->vm_page_prot);
2664 	if (vma->vm_flags & VM_WRITE)
2665 		entry = pte_mkwrite(pte_mkdirty(entry));
2666 
2667 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2668 	if (!pte_none(*page_table))
2669 		goto release;
2670 
2671 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2672 	page_add_new_anon_rmap(page, vma, address);
2673 	mem_cgroup_commit_charge(page, memcg, false);
2674 	lru_cache_add_active_or_unevictable(page, vma);
2675 setpte:
2676 	set_pte_at(mm, address, page_table, entry);
2677 
2678 	/* No need to invalidate - it was non-present before */
2679 	update_mmu_cache(vma, address, page_table);
2680 unlock:
2681 	pte_unmap_unlock(page_table, ptl);
2682 	return 0;
2683 release:
2684 	mem_cgroup_cancel_charge(page, memcg);
2685 	page_cache_release(page);
2686 	goto unlock;
2687 oom_free_page:
2688 	page_cache_release(page);
2689 oom:
2690 	return VM_FAULT_OOM;
2691 }
2692 
2693 /*
2694  * The mmap_sem must have been held on entry, and may have been
2695  * released depending on flags and vma->vm_ops->fault() return value.
2696  * See filemap_fault() and __lock_page_retry().
2697  */
2698 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2699 		pgoff_t pgoff, unsigned int flags, struct page **page)
2700 {
2701 	struct vm_fault vmf;
2702 	int ret;
2703 
2704 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2705 	vmf.pgoff = pgoff;
2706 	vmf.flags = flags;
2707 	vmf.page = NULL;
2708 
2709 	ret = vma->vm_ops->fault(vma, &vmf);
2710 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2711 		return ret;
2712 
2713 	if (unlikely(PageHWPoison(vmf.page))) {
2714 		if (ret & VM_FAULT_LOCKED)
2715 			unlock_page(vmf.page);
2716 		page_cache_release(vmf.page);
2717 		return VM_FAULT_HWPOISON;
2718 	}
2719 
2720 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2721 		lock_page(vmf.page);
2722 	else
2723 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2724 
2725 	*page = vmf.page;
2726 	return ret;
2727 }
2728 
2729 /**
2730  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2731  *
2732  * @vma: virtual memory area
2733  * @address: user virtual address
2734  * @page: page to map
2735  * @pte: pointer to target page table entry
2736  * @write: true, if new entry is writable
2737  * @anon: true, if it's anonymous page
2738  *
2739  * Caller must hold page table lock relevant for @pte.
2740  *
2741  * Target users are page handler itself and implementations of
2742  * vm_ops->map_pages.
2743  */
2744 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2745 		struct page *page, pte_t *pte, bool write, bool anon)
2746 {
2747 	pte_t entry;
2748 
2749 	flush_icache_page(vma, page);
2750 	entry = mk_pte(page, vma->vm_page_prot);
2751 	if (write)
2752 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2753 	else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2754 		entry = pte_mksoft_dirty(entry);
2755 	if (anon) {
2756 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2757 		page_add_new_anon_rmap(page, vma, address);
2758 	} else {
2759 		inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2760 		page_add_file_rmap(page);
2761 	}
2762 	set_pte_at(vma->vm_mm, address, pte, entry);
2763 
2764 	/* no need to invalidate: a not-present page won't be cached */
2765 	update_mmu_cache(vma, address, pte);
2766 }
2767 
2768 static unsigned long fault_around_bytes __read_mostly =
2769 	rounddown_pow_of_two(65536);
2770 
2771 #ifdef CONFIG_DEBUG_FS
2772 static int fault_around_bytes_get(void *data, u64 *val)
2773 {
2774 	*val = fault_around_bytes;
2775 	return 0;
2776 }
2777 
2778 /*
2779  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2780  * rounded down to nearest page order. It's what do_fault_around() expects to
2781  * see.
2782  */
2783 static int fault_around_bytes_set(void *data, u64 val)
2784 {
2785 	if (val / PAGE_SIZE > PTRS_PER_PTE)
2786 		return -EINVAL;
2787 	if (val > PAGE_SIZE)
2788 		fault_around_bytes = rounddown_pow_of_two(val);
2789 	else
2790 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2791 	return 0;
2792 }
2793 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2794 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2795 
2796 static int __init fault_around_debugfs(void)
2797 {
2798 	void *ret;
2799 
2800 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2801 			&fault_around_bytes_fops);
2802 	if (!ret)
2803 		pr_warn("Failed to create fault_around_bytes in debugfs");
2804 	return 0;
2805 }
2806 late_initcall(fault_around_debugfs);
2807 #endif
2808 
2809 /*
2810  * do_fault_around() tries to map few pages around the fault address. The hope
2811  * is that the pages will be needed soon and this will lower the number of
2812  * faults to handle.
2813  *
2814  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2815  * not ready to be mapped: not up-to-date, locked, etc.
2816  *
2817  * This function is called with the page table lock taken. In the split ptlock
2818  * case the page table lock only protects only those entries which belong to
2819  * the page table corresponding to the fault address.
2820  *
2821  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2822  * only once.
2823  *
2824  * fault_around_pages() defines how many pages we'll try to map.
2825  * do_fault_around() expects it to return a power of two less than or equal to
2826  * PTRS_PER_PTE.
2827  *
2828  * The virtual address of the area that we map is naturally aligned to the
2829  * fault_around_pages() value (and therefore to page order).  This way it's
2830  * easier to guarantee that we don't cross page table boundaries.
2831  */
2832 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2833 		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2834 {
2835 	unsigned long start_addr, nr_pages, mask;
2836 	pgoff_t max_pgoff;
2837 	struct vm_fault vmf;
2838 	int off;
2839 
2840 	nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2841 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2842 
2843 	start_addr = max(address & mask, vma->vm_start);
2844 	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2845 	pte -= off;
2846 	pgoff -= off;
2847 
2848 	/*
2849 	 *  max_pgoff is either end of page table or end of vma
2850 	 *  or fault_around_pages() from pgoff, depending what is nearest.
2851 	 */
2852 	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2853 		PTRS_PER_PTE - 1;
2854 	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2855 			pgoff + nr_pages - 1);
2856 
2857 	/* Check if it makes any sense to call ->map_pages */
2858 	while (!pte_none(*pte)) {
2859 		if (++pgoff > max_pgoff)
2860 			return;
2861 		start_addr += PAGE_SIZE;
2862 		if (start_addr >= vma->vm_end)
2863 			return;
2864 		pte++;
2865 	}
2866 
2867 	vmf.virtual_address = (void __user *) start_addr;
2868 	vmf.pte = pte;
2869 	vmf.pgoff = pgoff;
2870 	vmf.max_pgoff = max_pgoff;
2871 	vmf.flags = flags;
2872 	vma->vm_ops->map_pages(vma, &vmf);
2873 }
2874 
2875 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2876 		unsigned long address, pmd_t *pmd,
2877 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2878 {
2879 	struct page *fault_page;
2880 	spinlock_t *ptl;
2881 	pte_t *pte;
2882 	int ret = 0;
2883 
2884 	/*
2885 	 * Let's call ->map_pages() first and use ->fault() as fallback
2886 	 * if page by the offset is not ready to be mapped (cold cache or
2887 	 * something).
2888 	 */
2889 	if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2890 	    fault_around_bytes >> PAGE_SHIFT > 1) {
2891 		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2892 		do_fault_around(vma, address, pte, pgoff, flags);
2893 		if (!pte_same(*pte, orig_pte))
2894 			goto unlock_out;
2895 		pte_unmap_unlock(pte, ptl);
2896 	}
2897 
2898 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2899 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2900 		return ret;
2901 
2902 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2903 	if (unlikely(!pte_same(*pte, orig_pte))) {
2904 		pte_unmap_unlock(pte, ptl);
2905 		unlock_page(fault_page);
2906 		page_cache_release(fault_page);
2907 		return ret;
2908 	}
2909 	do_set_pte(vma, address, fault_page, pte, false, false);
2910 	unlock_page(fault_page);
2911 unlock_out:
2912 	pte_unmap_unlock(pte, ptl);
2913 	return ret;
2914 }
2915 
2916 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2917 		unsigned long address, pmd_t *pmd,
2918 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2919 {
2920 	struct page *fault_page, *new_page;
2921 	struct mem_cgroup *memcg;
2922 	spinlock_t *ptl;
2923 	pte_t *pte;
2924 	int ret;
2925 
2926 	if (unlikely(anon_vma_prepare(vma)))
2927 		return VM_FAULT_OOM;
2928 
2929 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2930 	if (!new_page)
2931 		return VM_FAULT_OOM;
2932 
2933 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2934 		page_cache_release(new_page);
2935 		return VM_FAULT_OOM;
2936 	}
2937 
2938 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2939 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2940 		goto uncharge_out;
2941 
2942 	copy_user_highpage(new_page, fault_page, address, vma);
2943 	__SetPageUptodate(new_page);
2944 
2945 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2946 	if (unlikely(!pte_same(*pte, orig_pte))) {
2947 		pte_unmap_unlock(pte, ptl);
2948 		unlock_page(fault_page);
2949 		page_cache_release(fault_page);
2950 		goto uncharge_out;
2951 	}
2952 	do_set_pte(vma, address, new_page, pte, true, true);
2953 	mem_cgroup_commit_charge(new_page, memcg, false);
2954 	lru_cache_add_active_or_unevictable(new_page, vma);
2955 	pte_unmap_unlock(pte, ptl);
2956 	unlock_page(fault_page);
2957 	page_cache_release(fault_page);
2958 	return ret;
2959 uncharge_out:
2960 	mem_cgroup_cancel_charge(new_page, memcg);
2961 	page_cache_release(new_page);
2962 	return ret;
2963 }
2964 
2965 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2966 		unsigned long address, pmd_t *pmd,
2967 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2968 {
2969 	struct page *fault_page;
2970 	struct address_space *mapping;
2971 	spinlock_t *ptl;
2972 	pte_t *pte;
2973 	int dirtied = 0;
2974 	int ret, tmp;
2975 
2976 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2977 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2978 		return ret;
2979 
2980 	/*
2981 	 * Check if the backing address space wants to know that the page is
2982 	 * about to become writable
2983 	 */
2984 	if (vma->vm_ops->page_mkwrite) {
2985 		unlock_page(fault_page);
2986 		tmp = do_page_mkwrite(vma, fault_page, address);
2987 		if (unlikely(!tmp ||
2988 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2989 			page_cache_release(fault_page);
2990 			return tmp;
2991 		}
2992 	}
2993 
2994 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2995 	if (unlikely(!pte_same(*pte, orig_pte))) {
2996 		pte_unmap_unlock(pte, ptl);
2997 		unlock_page(fault_page);
2998 		page_cache_release(fault_page);
2999 		return ret;
3000 	}
3001 	do_set_pte(vma, address, fault_page, pte, true, false);
3002 	pte_unmap_unlock(pte, ptl);
3003 
3004 	if (set_page_dirty(fault_page))
3005 		dirtied = 1;
3006 	/*
3007 	 * Take a local copy of the address_space - page.mapping may be zeroed
3008 	 * by truncate after unlock_page().   The address_space itself remains
3009 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3010 	 * release semantics to prevent the compiler from undoing this copying.
3011 	 */
3012 	mapping = fault_page->mapping;
3013 	unlock_page(fault_page);
3014 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3015 		/*
3016 		 * Some device drivers do not set page.mapping but still
3017 		 * dirty their pages
3018 		 */
3019 		balance_dirty_pages_ratelimited(mapping);
3020 	}
3021 
3022 	/* file_update_time outside page_lock */
3023 	if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3024 		file_update_time(vma->vm_file);
3025 
3026 	return ret;
3027 }
3028 
3029 /*
3030  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3031  * but allow concurrent faults).
3032  * The mmap_sem may have been released depending on flags and our
3033  * return value.  See filemap_fault() and __lock_page_or_retry().
3034  */
3035 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3036 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3037 		unsigned int flags, pte_t orig_pte)
3038 {
3039 	pgoff_t pgoff = (((address & PAGE_MASK)
3040 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3041 
3042 	pte_unmap(page_table);
3043 	if (!(flags & FAULT_FLAG_WRITE))
3044 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3045 				orig_pte);
3046 	if (!(vma->vm_flags & VM_SHARED))
3047 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3048 				orig_pte);
3049 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3050 }
3051 
3052 /*
3053  * Fault of a previously existing named mapping. Repopulate the pte
3054  * from the encoded file_pte if possible. This enables swappable
3055  * nonlinear vmas.
3056  *
3057  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3058  * but allow concurrent faults), and pte mapped but not yet locked.
3059  * We return with pte unmapped and unlocked.
3060  * The mmap_sem may have been released depending on flags and our
3061  * return value.  See filemap_fault() and __lock_page_or_retry().
3062  */
3063 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3064 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3065 		unsigned int flags, pte_t orig_pte)
3066 {
3067 	pgoff_t pgoff;
3068 
3069 	flags |= FAULT_FLAG_NONLINEAR;
3070 
3071 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3072 		return 0;
3073 
3074 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3075 		/*
3076 		 * Page table corrupted: show pte and kill process.
3077 		 */
3078 		print_bad_pte(vma, address, orig_pte, NULL);
3079 		return VM_FAULT_SIGBUS;
3080 	}
3081 
3082 	pgoff = pte_to_pgoff(orig_pte);
3083 	if (!(flags & FAULT_FLAG_WRITE))
3084 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3085 				orig_pte);
3086 	if (!(vma->vm_flags & VM_SHARED))
3087 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3088 				orig_pte);
3089 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3090 }
3091 
3092 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3093 				unsigned long addr, int page_nid,
3094 				int *flags)
3095 {
3096 	get_page(page);
3097 
3098 	count_vm_numa_event(NUMA_HINT_FAULTS);
3099 	if (page_nid == numa_node_id()) {
3100 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3101 		*flags |= TNF_FAULT_LOCAL;
3102 	}
3103 
3104 	return mpol_misplaced(page, vma, addr);
3105 }
3106 
3107 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3108 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3109 {
3110 	struct page *page = NULL;
3111 	spinlock_t *ptl;
3112 	int page_nid = -1;
3113 	int last_cpupid;
3114 	int target_nid;
3115 	bool migrated = false;
3116 	int flags = 0;
3117 
3118 	/*
3119 	* The "pte" at this point cannot be used safely without
3120 	* validation through pte_unmap_same(). It's of NUMA type but
3121 	* the pfn may be screwed if the read is non atomic.
3122 	*
3123 	* ptep_modify_prot_start is not called as this is clearing
3124 	* the _PAGE_NUMA bit and it is not really expected that there
3125 	* would be concurrent hardware modifications to the PTE.
3126 	*/
3127 	ptl = pte_lockptr(mm, pmd);
3128 	spin_lock(ptl);
3129 	if (unlikely(!pte_same(*ptep, pte))) {
3130 		pte_unmap_unlock(ptep, ptl);
3131 		goto out;
3132 	}
3133 
3134 	pte = pte_mknonnuma(pte);
3135 	set_pte_at(mm, addr, ptep, pte);
3136 	update_mmu_cache(vma, addr, ptep);
3137 
3138 	page = vm_normal_page(vma, addr, pte);
3139 	if (!page) {
3140 		pte_unmap_unlock(ptep, ptl);
3141 		return 0;
3142 	}
3143 	BUG_ON(is_zero_pfn(page_to_pfn(page)));
3144 
3145 	/*
3146 	 * Avoid grouping on DSO/COW pages in specific and RO pages
3147 	 * in general, RO pages shouldn't hurt as much anyway since
3148 	 * they can be in shared cache state.
3149 	 */
3150 	if (!pte_write(pte))
3151 		flags |= TNF_NO_GROUP;
3152 
3153 	/*
3154 	 * Flag if the page is shared between multiple address spaces. This
3155 	 * is later used when determining whether to group tasks together
3156 	 */
3157 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3158 		flags |= TNF_SHARED;
3159 
3160 	last_cpupid = page_cpupid_last(page);
3161 	page_nid = page_to_nid(page);
3162 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3163 	pte_unmap_unlock(ptep, ptl);
3164 	if (target_nid == -1) {
3165 		put_page(page);
3166 		goto out;
3167 	}
3168 
3169 	/* Migrate to the requested node */
3170 	migrated = migrate_misplaced_page(page, vma, target_nid);
3171 	if (migrated) {
3172 		page_nid = target_nid;
3173 		flags |= TNF_MIGRATED;
3174 	}
3175 
3176 out:
3177 	if (page_nid != -1)
3178 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3179 	return 0;
3180 }
3181 
3182 /*
3183  * These routines also need to handle stuff like marking pages dirty
3184  * and/or accessed for architectures that don't do it in hardware (most
3185  * RISC architectures).  The early dirtying is also good on the i386.
3186  *
3187  * There is also a hook called "update_mmu_cache()" that architectures
3188  * with external mmu caches can use to update those (ie the Sparc or
3189  * PowerPC hashed page tables that act as extended TLBs).
3190  *
3191  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3192  * but allow concurrent faults), and pte mapped but not yet locked.
3193  * We return with pte unmapped and unlocked.
3194  *
3195  * The mmap_sem may have been released depending on flags and our
3196  * return value.  See filemap_fault() and __lock_page_or_retry().
3197  */
3198 static int handle_pte_fault(struct mm_struct *mm,
3199 		     struct vm_area_struct *vma, unsigned long address,
3200 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3201 {
3202 	pte_t entry;
3203 	spinlock_t *ptl;
3204 
3205 	/*
3206 	 * some architectures can have larger ptes than wordsize,
3207 	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3208 	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3209 	 * The code below just needs a consistent view for the ifs and
3210 	 * we later double check anyway with the ptl lock held. So here
3211 	 * a barrier will do.
3212 	 */
3213 	entry = *pte;
3214 	barrier();
3215 	if (!pte_present(entry)) {
3216 		if (pte_none(entry)) {
3217 			if (vma->vm_ops) {
3218 				if (likely(vma->vm_ops->fault))
3219 					return do_linear_fault(mm, vma, address,
3220 						pte, pmd, flags, entry);
3221 			}
3222 			return do_anonymous_page(mm, vma, address,
3223 						 pte, pmd, flags);
3224 		}
3225 		if (pte_file(entry))
3226 			return do_nonlinear_fault(mm, vma, address,
3227 					pte, pmd, flags, entry);
3228 		return do_swap_page(mm, vma, address,
3229 					pte, pmd, flags, entry);
3230 	}
3231 
3232 	if (pte_numa(entry))
3233 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3234 
3235 	ptl = pte_lockptr(mm, pmd);
3236 	spin_lock(ptl);
3237 	if (unlikely(!pte_same(*pte, entry)))
3238 		goto unlock;
3239 	if (flags & FAULT_FLAG_WRITE) {
3240 		if (!pte_write(entry))
3241 			return do_wp_page(mm, vma, address,
3242 					pte, pmd, ptl, entry);
3243 		entry = pte_mkdirty(entry);
3244 	}
3245 	entry = pte_mkyoung(entry);
3246 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3247 		update_mmu_cache(vma, address, pte);
3248 	} else {
3249 		/*
3250 		 * This is needed only for protection faults but the arch code
3251 		 * is not yet telling us if this is a protection fault or not.
3252 		 * This still avoids useless tlb flushes for .text page faults
3253 		 * with threads.
3254 		 */
3255 		if (flags & FAULT_FLAG_WRITE)
3256 			flush_tlb_fix_spurious_fault(vma, address);
3257 	}
3258 unlock:
3259 	pte_unmap_unlock(pte, ptl);
3260 	return 0;
3261 }
3262 
3263 /*
3264  * By the time we get here, we already hold the mm semaphore
3265  *
3266  * The mmap_sem may have been released depending on flags and our
3267  * return value.  See filemap_fault() and __lock_page_or_retry().
3268  */
3269 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3270 			     unsigned long address, unsigned int flags)
3271 {
3272 	pgd_t *pgd;
3273 	pud_t *pud;
3274 	pmd_t *pmd;
3275 	pte_t *pte;
3276 
3277 	if (unlikely(is_vm_hugetlb_page(vma)))
3278 		return hugetlb_fault(mm, vma, address, flags);
3279 
3280 	pgd = pgd_offset(mm, address);
3281 	pud = pud_alloc(mm, pgd, address);
3282 	if (!pud)
3283 		return VM_FAULT_OOM;
3284 	pmd = pmd_alloc(mm, pud, address);
3285 	if (!pmd)
3286 		return VM_FAULT_OOM;
3287 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3288 		int ret = VM_FAULT_FALLBACK;
3289 		if (!vma->vm_ops)
3290 			ret = do_huge_pmd_anonymous_page(mm, vma, address,
3291 					pmd, flags);
3292 		if (!(ret & VM_FAULT_FALLBACK))
3293 			return ret;
3294 	} else {
3295 		pmd_t orig_pmd = *pmd;
3296 		int ret;
3297 
3298 		barrier();
3299 		if (pmd_trans_huge(orig_pmd)) {
3300 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3301 
3302 			/*
3303 			 * If the pmd is splitting, return and retry the
3304 			 * the fault.  Alternative: wait until the split
3305 			 * is done, and goto retry.
3306 			 */
3307 			if (pmd_trans_splitting(orig_pmd))
3308 				return 0;
3309 
3310 			if (pmd_numa(orig_pmd))
3311 				return do_huge_pmd_numa_page(mm, vma, address,
3312 							     orig_pmd, pmd);
3313 
3314 			if (dirty && !pmd_write(orig_pmd)) {
3315 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3316 							  orig_pmd);
3317 				if (!(ret & VM_FAULT_FALLBACK))
3318 					return ret;
3319 			} else {
3320 				huge_pmd_set_accessed(mm, vma, address, pmd,
3321 						      orig_pmd, dirty);
3322 				return 0;
3323 			}
3324 		}
3325 	}
3326 
3327 	/*
3328 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3329 	 * run pte_offset_map on the pmd, if an huge pmd could
3330 	 * materialize from under us from a different thread.
3331 	 */
3332 	if (unlikely(pmd_none(*pmd)) &&
3333 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3334 		return VM_FAULT_OOM;
3335 	/* if an huge pmd materialized from under us just retry later */
3336 	if (unlikely(pmd_trans_huge(*pmd)))
3337 		return 0;
3338 	/*
3339 	 * A regular pmd is established and it can't morph into a huge pmd
3340 	 * from under us anymore at this point because we hold the mmap_sem
3341 	 * read mode and khugepaged takes it in write mode. So now it's
3342 	 * safe to run pte_offset_map().
3343 	 */
3344 	pte = pte_offset_map(pmd, address);
3345 
3346 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3347 }
3348 
3349 /*
3350  * By the time we get here, we already hold the mm semaphore
3351  *
3352  * The mmap_sem may have been released depending on flags and our
3353  * return value.  See filemap_fault() and __lock_page_or_retry().
3354  */
3355 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3356 		    unsigned long address, unsigned int flags)
3357 {
3358 	int ret;
3359 
3360 	__set_current_state(TASK_RUNNING);
3361 
3362 	count_vm_event(PGFAULT);
3363 	mem_cgroup_count_vm_event(mm, PGFAULT);
3364 
3365 	/* do counter updates before entering really critical section. */
3366 	check_sync_rss_stat(current);
3367 
3368 	/*
3369 	 * Enable the memcg OOM handling for faults triggered in user
3370 	 * space.  Kernel faults are handled more gracefully.
3371 	 */
3372 	if (flags & FAULT_FLAG_USER)
3373 		mem_cgroup_oom_enable();
3374 
3375 	ret = __handle_mm_fault(mm, vma, address, flags);
3376 
3377 	if (flags & FAULT_FLAG_USER) {
3378 		mem_cgroup_oom_disable();
3379                 /*
3380                  * The task may have entered a memcg OOM situation but
3381                  * if the allocation error was handled gracefully (no
3382                  * VM_FAULT_OOM), there is no need to kill anything.
3383                  * Just clean up the OOM state peacefully.
3384                  */
3385                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3386                         mem_cgroup_oom_synchronize(false);
3387 	}
3388 
3389 	return ret;
3390 }
3391 EXPORT_SYMBOL_GPL(handle_mm_fault);
3392 
3393 #ifndef __PAGETABLE_PUD_FOLDED
3394 /*
3395  * Allocate page upper directory.
3396  * We've already handled the fast-path in-line.
3397  */
3398 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3399 {
3400 	pud_t *new = pud_alloc_one(mm, address);
3401 	if (!new)
3402 		return -ENOMEM;
3403 
3404 	smp_wmb(); /* See comment in __pte_alloc */
3405 
3406 	spin_lock(&mm->page_table_lock);
3407 	if (pgd_present(*pgd))		/* Another has populated it */
3408 		pud_free(mm, new);
3409 	else
3410 		pgd_populate(mm, pgd, new);
3411 	spin_unlock(&mm->page_table_lock);
3412 	return 0;
3413 }
3414 #endif /* __PAGETABLE_PUD_FOLDED */
3415 
3416 #ifndef __PAGETABLE_PMD_FOLDED
3417 /*
3418  * Allocate page middle directory.
3419  * We've already handled the fast-path in-line.
3420  */
3421 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3422 {
3423 	pmd_t *new = pmd_alloc_one(mm, address);
3424 	if (!new)
3425 		return -ENOMEM;
3426 
3427 	smp_wmb(); /* See comment in __pte_alloc */
3428 
3429 	spin_lock(&mm->page_table_lock);
3430 #ifndef __ARCH_HAS_4LEVEL_HACK
3431 	if (pud_present(*pud))		/* Another has populated it */
3432 		pmd_free(mm, new);
3433 	else
3434 		pud_populate(mm, pud, new);
3435 #else
3436 	if (pgd_present(*pud))		/* Another has populated it */
3437 		pmd_free(mm, new);
3438 	else
3439 		pgd_populate(mm, pud, new);
3440 #endif /* __ARCH_HAS_4LEVEL_HACK */
3441 	spin_unlock(&mm->page_table_lock);
3442 	return 0;
3443 }
3444 #endif /* __PAGETABLE_PMD_FOLDED */
3445 
3446 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3447 		pte_t **ptepp, spinlock_t **ptlp)
3448 {
3449 	pgd_t *pgd;
3450 	pud_t *pud;
3451 	pmd_t *pmd;
3452 	pte_t *ptep;
3453 
3454 	pgd = pgd_offset(mm, address);
3455 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3456 		goto out;
3457 
3458 	pud = pud_offset(pgd, address);
3459 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3460 		goto out;
3461 
3462 	pmd = pmd_offset(pud, address);
3463 	VM_BUG_ON(pmd_trans_huge(*pmd));
3464 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3465 		goto out;
3466 
3467 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3468 	if (pmd_huge(*pmd))
3469 		goto out;
3470 
3471 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3472 	if (!ptep)
3473 		goto out;
3474 	if (!pte_present(*ptep))
3475 		goto unlock;
3476 	*ptepp = ptep;
3477 	return 0;
3478 unlock:
3479 	pte_unmap_unlock(ptep, *ptlp);
3480 out:
3481 	return -EINVAL;
3482 }
3483 
3484 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3485 			     pte_t **ptepp, spinlock_t **ptlp)
3486 {
3487 	int res;
3488 
3489 	/* (void) is needed to make gcc happy */
3490 	(void) __cond_lock(*ptlp,
3491 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3492 	return res;
3493 }
3494 
3495 /**
3496  * follow_pfn - look up PFN at a user virtual address
3497  * @vma: memory mapping
3498  * @address: user virtual address
3499  * @pfn: location to store found PFN
3500  *
3501  * Only IO mappings and raw PFN mappings are allowed.
3502  *
3503  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3504  */
3505 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3506 	unsigned long *pfn)
3507 {
3508 	int ret = -EINVAL;
3509 	spinlock_t *ptl;
3510 	pte_t *ptep;
3511 
3512 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3513 		return ret;
3514 
3515 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3516 	if (ret)
3517 		return ret;
3518 	*pfn = pte_pfn(*ptep);
3519 	pte_unmap_unlock(ptep, ptl);
3520 	return 0;
3521 }
3522 EXPORT_SYMBOL(follow_pfn);
3523 
3524 #ifdef CONFIG_HAVE_IOREMAP_PROT
3525 int follow_phys(struct vm_area_struct *vma,
3526 		unsigned long address, unsigned int flags,
3527 		unsigned long *prot, resource_size_t *phys)
3528 {
3529 	int ret = -EINVAL;
3530 	pte_t *ptep, pte;
3531 	spinlock_t *ptl;
3532 
3533 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3534 		goto out;
3535 
3536 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3537 		goto out;
3538 	pte = *ptep;
3539 
3540 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3541 		goto unlock;
3542 
3543 	*prot = pgprot_val(pte_pgprot(pte));
3544 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3545 
3546 	ret = 0;
3547 unlock:
3548 	pte_unmap_unlock(ptep, ptl);
3549 out:
3550 	return ret;
3551 }
3552 
3553 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3554 			void *buf, int len, int write)
3555 {
3556 	resource_size_t phys_addr;
3557 	unsigned long prot = 0;
3558 	void __iomem *maddr;
3559 	int offset = addr & (PAGE_SIZE-1);
3560 
3561 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3562 		return -EINVAL;
3563 
3564 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3565 	if (write)
3566 		memcpy_toio(maddr + offset, buf, len);
3567 	else
3568 		memcpy_fromio(buf, maddr + offset, len);
3569 	iounmap(maddr);
3570 
3571 	return len;
3572 }
3573 EXPORT_SYMBOL_GPL(generic_access_phys);
3574 #endif
3575 
3576 /*
3577  * Access another process' address space as given in mm.  If non-NULL, use the
3578  * given task for page fault accounting.
3579  */
3580 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3581 		unsigned long addr, void *buf, int len, int write)
3582 {
3583 	struct vm_area_struct *vma;
3584 	void *old_buf = buf;
3585 
3586 	down_read(&mm->mmap_sem);
3587 	/* ignore errors, just check how much was successfully transferred */
3588 	while (len) {
3589 		int bytes, ret, offset;
3590 		void *maddr;
3591 		struct page *page = NULL;
3592 
3593 		ret = get_user_pages(tsk, mm, addr, 1,
3594 				write, 1, &page, &vma);
3595 		if (ret <= 0) {
3596 #ifndef CONFIG_HAVE_IOREMAP_PROT
3597 			break;
3598 #else
3599 			/*
3600 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3601 			 * we can access using slightly different code.
3602 			 */
3603 			vma = find_vma(mm, addr);
3604 			if (!vma || vma->vm_start > addr)
3605 				break;
3606 			if (vma->vm_ops && vma->vm_ops->access)
3607 				ret = vma->vm_ops->access(vma, addr, buf,
3608 							  len, write);
3609 			if (ret <= 0)
3610 				break;
3611 			bytes = ret;
3612 #endif
3613 		} else {
3614 			bytes = len;
3615 			offset = addr & (PAGE_SIZE-1);
3616 			if (bytes > PAGE_SIZE-offset)
3617 				bytes = PAGE_SIZE-offset;
3618 
3619 			maddr = kmap(page);
3620 			if (write) {
3621 				copy_to_user_page(vma, page, addr,
3622 						  maddr + offset, buf, bytes);
3623 				set_page_dirty_lock(page);
3624 			} else {
3625 				copy_from_user_page(vma, page, addr,
3626 						    buf, maddr + offset, bytes);
3627 			}
3628 			kunmap(page);
3629 			page_cache_release(page);
3630 		}
3631 		len -= bytes;
3632 		buf += bytes;
3633 		addr += bytes;
3634 	}
3635 	up_read(&mm->mmap_sem);
3636 
3637 	return buf - old_buf;
3638 }
3639 
3640 /**
3641  * access_remote_vm - access another process' address space
3642  * @mm:		the mm_struct of the target address space
3643  * @addr:	start address to access
3644  * @buf:	source or destination buffer
3645  * @len:	number of bytes to transfer
3646  * @write:	whether the access is a write
3647  *
3648  * The caller must hold a reference on @mm.
3649  */
3650 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3651 		void *buf, int len, int write)
3652 {
3653 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3654 }
3655 
3656 /*
3657  * Access another process' address space.
3658  * Source/target buffer must be kernel space,
3659  * Do not walk the page table directly, use get_user_pages
3660  */
3661 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3662 		void *buf, int len, int write)
3663 {
3664 	struct mm_struct *mm;
3665 	int ret;
3666 
3667 	mm = get_task_mm(tsk);
3668 	if (!mm)
3669 		return 0;
3670 
3671 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3672 	mmput(mm);
3673 
3674 	return ret;
3675 }
3676 
3677 /*
3678  * Print the name of a VMA.
3679  */
3680 void print_vma_addr(char *prefix, unsigned long ip)
3681 {
3682 	struct mm_struct *mm = current->mm;
3683 	struct vm_area_struct *vma;
3684 
3685 	/*
3686 	 * Do not print if we are in atomic
3687 	 * contexts (in exception stacks, etc.):
3688 	 */
3689 	if (preempt_count())
3690 		return;
3691 
3692 	down_read(&mm->mmap_sem);
3693 	vma = find_vma(mm, ip);
3694 	if (vma && vma->vm_file) {
3695 		struct file *f = vma->vm_file;
3696 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3697 		if (buf) {
3698 			char *p;
3699 
3700 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3701 			if (IS_ERR(p))
3702 				p = "?";
3703 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3704 					vma->vm_start,
3705 					vma->vm_end - vma->vm_start);
3706 			free_page((unsigned long)buf);
3707 		}
3708 	}
3709 	up_read(&mm->mmap_sem);
3710 }
3711 
3712 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3713 void might_fault(void)
3714 {
3715 	/*
3716 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3717 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3718 	 * get paged out, therefore we'll never actually fault, and the
3719 	 * below annotations will generate false positives.
3720 	 */
3721 	if (segment_eq(get_fs(), KERNEL_DS))
3722 		return;
3723 
3724 	/*
3725 	 * it would be nicer only to annotate paths which are not under
3726 	 * pagefault_disable, however that requires a larger audit and
3727 	 * providing helpers like get_user_atomic.
3728 	 */
3729 	if (in_atomic())
3730 		return;
3731 
3732 	__might_sleep(__FILE__, __LINE__, 0);
3733 
3734 	if (current->mm)
3735 		might_lock_read(&current->mm->mmap_sem);
3736 }
3737 EXPORT_SYMBOL(might_fault);
3738 #endif
3739 
3740 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3741 static void clear_gigantic_page(struct page *page,
3742 				unsigned long addr,
3743 				unsigned int pages_per_huge_page)
3744 {
3745 	int i;
3746 	struct page *p = page;
3747 
3748 	might_sleep();
3749 	for (i = 0; i < pages_per_huge_page;
3750 	     i++, p = mem_map_next(p, page, i)) {
3751 		cond_resched();
3752 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3753 	}
3754 }
3755 void clear_huge_page(struct page *page,
3756 		     unsigned long addr, unsigned int pages_per_huge_page)
3757 {
3758 	int i;
3759 
3760 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3761 		clear_gigantic_page(page, addr, pages_per_huge_page);
3762 		return;
3763 	}
3764 
3765 	might_sleep();
3766 	for (i = 0; i < pages_per_huge_page; i++) {
3767 		cond_resched();
3768 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3769 	}
3770 }
3771 
3772 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3773 				    unsigned long addr,
3774 				    struct vm_area_struct *vma,
3775 				    unsigned int pages_per_huge_page)
3776 {
3777 	int i;
3778 	struct page *dst_base = dst;
3779 	struct page *src_base = src;
3780 
3781 	for (i = 0; i < pages_per_huge_page; ) {
3782 		cond_resched();
3783 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3784 
3785 		i++;
3786 		dst = mem_map_next(dst, dst_base, i);
3787 		src = mem_map_next(src, src_base, i);
3788 	}
3789 }
3790 
3791 void copy_user_huge_page(struct page *dst, struct page *src,
3792 			 unsigned long addr, struct vm_area_struct *vma,
3793 			 unsigned int pages_per_huge_page)
3794 {
3795 	int i;
3796 
3797 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3798 		copy_user_gigantic_page(dst, src, addr, vma,
3799 					pages_per_huge_page);
3800 		return;
3801 	}
3802 
3803 	might_sleep();
3804 	for (i = 0; i < pages_per_huge_page; i++) {
3805 		cond_resched();
3806 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3807 	}
3808 }
3809 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3810 
3811 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3812 
3813 static struct kmem_cache *page_ptl_cachep;
3814 
3815 void __init ptlock_cache_init(void)
3816 {
3817 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3818 			SLAB_PANIC, NULL);
3819 }
3820 
3821 bool ptlock_alloc(struct page *page)
3822 {
3823 	spinlock_t *ptl;
3824 
3825 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3826 	if (!ptl)
3827 		return false;
3828 	page->ptl = ptl;
3829 	return true;
3830 }
3831 
3832 void ptlock_free(struct page *page)
3833 {
3834 	kmem_cache_free(page_ptl_cachep, page->ptl);
3835 }
3836 #endif
3837