1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 #include <linux/migrate.h> 61 #include <linux/string.h> 62 #include <linux/dma-debug.h> 63 #include <linux/debugfs.h> 64 65 #include <asm/io.h> 66 #include <asm/pgalloc.h> 67 #include <asm/uaccess.h> 68 #include <asm/tlb.h> 69 #include <asm/tlbflush.h> 70 #include <asm/pgtable.h> 71 72 #include "internal.h" 73 74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 76 #endif 77 78 #ifndef CONFIG_NEED_MULTIPLE_NODES 79 /* use the per-pgdat data instead for discontigmem - mbligh */ 80 unsigned long max_mapnr; 81 struct page *mem_map; 82 83 EXPORT_SYMBOL(max_mapnr); 84 EXPORT_SYMBOL(mem_map); 85 #endif 86 87 /* 88 * A number of key systems in x86 including ioremap() rely on the assumption 89 * that high_memory defines the upper bound on direct map memory, then end 90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 92 * and ZONE_HIGHMEM. 93 */ 94 void * high_memory; 95 96 EXPORT_SYMBOL(high_memory); 97 98 /* 99 * Randomize the address space (stacks, mmaps, brk, etc.). 100 * 101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 102 * as ancient (libc5 based) binaries can segfault. ) 103 */ 104 int randomize_va_space __read_mostly = 105 #ifdef CONFIG_COMPAT_BRK 106 1; 107 #else 108 2; 109 #endif 110 111 static int __init disable_randmaps(char *s) 112 { 113 randomize_va_space = 0; 114 return 1; 115 } 116 __setup("norandmaps", disable_randmaps); 117 118 unsigned long zero_pfn __read_mostly; 119 unsigned long highest_memmap_pfn __read_mostly; 120 121 EXPORT_SYMBOL(zero_pfn); 122 123 /* 124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 125 */ 126 static int __init init_zero_pfn(void) 127 { 128 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 129 return 0; 130 } 131 core_initcall(init_zero_pfn); 132 133 134 #if defined(SPLIT_RSS_COUNTING) 135 136 void sync_mm_rss(struct mm_struct *mm) 137 { 138 int i; 139 140 for (i = 0; i < NR_MM_COUNTERS; i++) { 141 if (current->rss_stat.count[i]) { 142 add_mm_counter(mm, i, current->rss_stat.count[i]); 143 current->rss_stat.count[i] = 0; 144 } 145 } 146 current->rss_stat.events = 0; 147 } 148 149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 150 { 151 struct task_struct *task = current; 152 153 if (likely(task->mm == mm)) 154 task->rss_stat.count[member] += val; 155 else 156 add_mm_counter(mm, member, val); 157 } 158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 160 161 /* sync counter once per 64 page faults */ 162 #define TASK_RSS_EVENTS_THRESH (64) 163 static void check_sync_rss_stat(struct task_struct *task) 164 { 165 if (unlikely(task != current)) 166 return; 167 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 168 sync_mm_rss(task->mm); 169 } 170 #else /* SPLIT_RSS_COUNTING */ 171 172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 174 175 static void check_sync_rss_stat(struct task_struct *task) 176 { 177 } 178 179 #endif /* SPLIT_RSS_COUNTING */ 180 181 #ifdef HAVE_GENERIC_MMU_GATHER 182 183 static int tlb_next_batch(struct mmu_gather *tlb) 184 { 185 struct mmu_gather_batch *batch; 186 187 batch = tlb->active; 188 if (batch->next) { 189 tlb->active = batch->next; 190 return 1; 191 } 192 193 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 194 return 0; 195 196 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 197 if (!batch) 198 return 0; 199 200 tlb->batch_count++; 201 batch->next = NULL; 202 batch->nr = 0; 203 batch->max = MAX_GATHER_BATCH; 204 205 tlb->active->next = batch; 206 tlb->active = batch; 207 208 return 1; 209 } 210 211 /* tlb_gather_mmu 212 * Called to initialize an (on-stack) mmu_gather structure for page-table 213 * tear-down from @mm. The @fullmm argument is used when @mm is without 214 * users and we're going to destroy the full address space (exit/execve). 215 */ 216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 217 { 218 tlb->mm = mm; 219 220 /* Is it from 0 to ~0? */ 221 tlb->fullmm = !(start | (end+1)); 222 tlb->need_flush_all = 0; 223 tlb->local.next = NULL; 224 tlb->local.nr = 0; 225 tlb->local.max = ARRAY_SIZE(tlb->__pages); 226 tlb->active = &tlb->local; 227 tlb->batch_count = 0; 228 229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 230 tlb->batch = NULL; 231 #endif 232 233 __tlb_reset_range(tlb); 234 } 235 236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 237 { 238 if (!tlb->end) 239 return; 240 241 tlb_flush(tlb); 242 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 244 tlb_table_flush(tlb); 245 #endif 246 __tlb_reset_range(tlb); 247 } 248 249 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 250 { 251 struct mmu_gather_batch *batch; 252 253 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 254 free_pages_and_swap_cache(batch->pages, batch->nr); 255 batch->nr = 0; 256 } 257 tlb->active = &tlb->local; 258 } 259 260 void tlb_flush_mmu(struct mmu_gather *tlb) 261 { 262 tlb_flush_mmu_tlbonly(tlb); 263 tlb_flush_mmu_free(tlb); 264 } 265 266 /* tlb_finish_mmu 267 * Called at the end of the shootdown operation to free up any resources 268 * that were required. 269 */ 270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 271 { 272 struct mmu_gather_batch *batch, *next; 273 274 tlb_flush_mmu(tlb); 275 276 /* keep the page table cache within bounds */ 277 check_pgt_cache(); 278 279 for (batch = tlb->local.next; batch; batch = next) { 280 next = batch->next; 281 free_pages((unsigned long)batch, 0); 282 } 283 tlb->local.next = NULL; 284 } 285 286 /* __tlb_remove_page 287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 288 * handling the additional races in SMP caused by other CPUs caching valid 289 * mappings in their TLBs. Returns the number of free page slots left. 290 * When out of page slots we must call tlb_flush_mmu(). 291 */ 292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 293 { 294 struct mmu_gather_batch *batch; 295 296 VM_BUG_ON(!tlb->end); 297 298 batch = tlb->active; 299 batch->pages[batch->nr++] = page; 300 if (batch->nr == batch->max) { 301 if (!tlb_next_batch(tlb)) 302 return 0; 303 batch = tlb->active; 304 } 305 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 306 307 return batch->max - batch->nr; 308 } 309 310 #endif /* HAVE_GENERIC_MMU_GATHER */ 311 312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 313 314 /* 315 * See the comment near struct mmu_table_batch. 316 */ 317 318 static void tlb_remove_table_smp_sync(void *arg) 319 { 320 /* Simply deliver the interrupt */ 321 } 322 323 static void tlb_remove_table_one(void *table) 324 { 325 /* 326 * This isn't an RCU grace period and hence the page-tables cannot be 327 * assumed to be actually RCU-freed. 328 * 329 * It is however sufficient for software page-table walkers that rely on 330 * IRQ disabling. See the comment near struct mmu_table_batch. 331 */ 332 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 333 __tlb_remove_table(table); 334 } 335 336 static void tlb_remove_table_rcu(struct rcu_head *head) 337 { 338 struct mmu_table_batch *batch; 339 int i; 340 341 batch = container_of(head, struct mmu_table_batch, rcu); 342 343 for (i = 0; i < batch->nr; i++) 344 __tlb_remove_table(batch->tables[i]); 345 346 free_page((unsigned long)batch); 347 } 348 349 void tlb_table_flush(struct mmu_gather *tlb) 350 { 351 struct mmu_table_batch **batch = &tlb->batch; 352 353 if (*batch) { 354 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 355 *batch = NULL; 356 } 357 } 358 359 void tlb_remove_table(struct mmu_gather *tlb, void *table) 360 { 361 struct mmu_table_batch **batch = &tlb->batch; 362 363 /* 364 * When there's less then two users of this mm there cannot be a 365 * concurrent page-table walk. 366 */ 367 if (atomic_read(&tlb->mm->mm_users) < 2) { 368 __tlb_remove_table(table); 369 return; 370 } 371 372 if (*batch == NULL) { 373 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 374 if (*batch == NULL) { 375 tlb_remove_table_one(table); 376 return; 377 } 378 (*batch)->nr = 0; 379 } 380 (*batch)->tables[(*batch)->nr++] = table; 381 if ((*batch)->nr == MAX_TABLE_BATCH) 382 tlb_table_flush(tlb); 383 } 384 385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 386 387 /* 388 * Note: this doesn't free the actual pages themselves. That 389 * has been handled earlier when unmapping all the memory regions. 390 */ 391 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 392 unsigned long addr) 393 { 394 pgtable_t token = pmd_pgtable(*pmd); 395 pmd_clear(pmd); 396 pte_free_tlb(tlb, token, addr); 397 atomic_long_dec(&tlb->mm->nr_ptes); 398 } 399 400 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 401 unsigned long addr, unsigned long end, 402 unsigned long floor, unsigned long ceiling) 403 { 404 pmd_t *pmd; 405 unsigned long next; 406 unsigned long start; 407 408 start = addr; 409 pmd = pmd_offset(pud, addr); 410 do { 411 next = pmd_addr_end(addr, end); 412 if (pmd_none_or_clear_bad(pmd)) 413 continue; 414 free_pte_range(tlb, pmd, addr); 415 } while (pmd++, addr = next, addr != end); 416 417 start &= PUD_MASK; 418 if (start < floor) 419 return; 420 if (ceiling) { 421 ceiling &= PUD_MASK; 422 if (!ceiling) 423 return; 424 } 425 if (end - 1 > ceiling - 1) 426 return; 427 428 pmd = pmd_offset(pud, start); 429 pud_clear(pud); 430 pmd_free_tlb(tlb, pmd, start); 431 } 432 433 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 434 unsigned long addr, unsigned long end, 435 unsigned long floor, unsigned long ceiling) 436 { 437 pud_t *pud; 438 unsigned long next; 439 unsigned long start; 440 441 start = addr; 442 pud = pud_offset(pgd, addr); 443 do { 444 next = pud_addr_end(addr, end); 445 if (pud_none_or_clear_bad(pud)) 446 continue; 447 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 448 } while (pud++, addr = next, addr != end); 449 450 start &= PGDIR_MASK; 451 if (start < floor) 452 return; 453 if (ceiling) { 454 ceiling &= PGDIR_MASK; 455 if (!ceiling) 456 return; 457 } 458 if (end - 1 > ceiling - 1) 459 return; 460 461 pud = pud_offset(pgd, start); 462 pgd_clear(pgd); 463 pud_free_tlb(tlb, pud, start); 464 } 465 466 /* 467 * This function frees user-level page tables of a process. 468 */ 469 void free_pgd_range(struct mmu_gather *tlb, 470 unsigned long addr, unsigned long end, 471 unsigned long floor, unsigned long ceiling) 472 { 473 pgd_t *pgd; 474 unsigned long next; 475 476 /* 477 * The next few lines have given us lots of grief... 478 * 479 * Why are we testing PMD* at this top level? Because often 480 * there will be no work to do at all, and we'd prefer not to 481 * go all the way down to the bottom just to discover that. 482 * 483 * Why all these "- 1"s? Because 0 represents both the bottom 484 * of the address space and the top of it (using -1 for the 485 * top wouldn't help much: the masks would do the wrong thing). 486 * The rule is that addr 0 and floor 0 refer to the bottom of 487 * the address space, but end 0 and ceiling 0 refer to the top 488 * Comparisons need to use "end - 1" and "ceiling - 1" (though 489 * that end 0 case should be mythical). 490 * 491 * Wherever addr is brought up or ceiling brought down, we must 492 * be careful to reject "the opposite 0" before it confuses the 493 * subsequent tests. But what about where end is brought down 494 * by PMD_SIZE below? no, end can't go down to 0 there. 495 * 496 * Whereas we round start (addr) and ceiling down, by different 497 * masks at different levels, in order to test whether a table 498 * now has no other vmas using it, so can be freed, we don't 499 * bother to round floor or end up - the tests don't need that. 500 */ 501 502 addr &= PMD_MASK; 503 if (addr < floor) { 504 addr += PMD_SIZE; 505 if (!addr) 506 return; 507 } 508 if (ceiling) { 509 ceiling &= PMD_MASK; 510 if (!ceiling) 511 return; 512 } 513 if (end - 1 > ceiling - 1) 514 end -= PMD_SIZE; 515 if (addr > end - 1) 516 return; 517 518 pgd = pgd_offset(tlb->mm, addr); 519 do { 520 next = pgd_addr_end(addr, end); 521 if (pgd_none_or_clear_bad(pgd)) 522 continue; 523 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 524 } while (pgd++, addr = next, addr != end); 525 } 526 527 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 528 unsigned long floor, unsigned long ceiling) 529 { 530 while (vma) { 531 struct vm_area_struct *next = vma->vm_next; 532 unsigned long addr = vma->vm_start; 533 534 /* 535 * Hide vma from rmap and truncate_pagecache before freeing 536 * pgtables 537 */ 538 unlink_anon_vmas(vma); 539 unlink_file_vma(vma); 540 541 if (is_vm_hugetlb_page(vma)) { 542 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 543 floor, next? next->vm_start: ceiling); 544 } else { 545 /* 546 * Optimization: gather nearby vmas into one call down 547 */ 548 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 549 && !is_vm_hugetlb_page(next)) { 550 vma = next; 551 next = vma->vm_next; 552 unlink_anon_vmas(vma); 553 unlink_file_vma(vma); 554 } 555 free_pgd_range(tlb, addr, vma->vm_end, 556 floor, next? next->vm_start: ceiling); 557 } 558 vma = next; 559 } 560 } 561 562 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 563 pmd_t *pmd, unsigned long address) 564 { 565 spinlock_t *ptl; 566 pgtable_t new = pte_alloc_one(mm, address); 567 int wait_split_huge_page; 568 if (!new) 569 return -ENOMEM; 570 571 /* 572 * Ensure all pte setup (eg. pte page lock and page clearing) are 573 * visible before the pte is made visible to other CPUs by being 574 * put into page tables. 575 * 576 * The other side of the story is the pointer chasing in the page 577 * table walking code (when walking the page table without locking; 578 * ie. most of the time). Fortunately, these data accesses consist 579 * of a chain of data-dependent loads, meaning most CPUs (alpha 580 * being the notable exception) will already guarantee loads are 581 * seen in-order. See the alpha page table accessors for the 582 * smp_read_barrier_depends() barriers in page table walking code. 583 */ 584 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 585 586 ptl = pmd_lock(mm, pmd); 587 wait_split_huge_page = 0; 588 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 589 atomic_long_inc(&mm->nr_ptes); 590 pmd_populate(mm, pmd, new); 591 new = NULL; 592 } else if (unlikely(pmd_trans_splitting(*pmd))) 593 wait_split_huge_page = 1; 594 spin_unlock(ptl); 595 if (new) 596 pte_free(mm, new); 597 if (wait_split_huge_page) 598 wait_split_huge_page(vma->anon_vma, pmd); 599 return 0; 600 } 601 602 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 603 { 604 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 605 if (!new) 606 return -ENOMEM; 607 608 smp_wmb(); /* See comment in __pte_alloc */ 609 610 spin_lock(&init_mm.page_table_lock); 611 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 612 pmd_populate_kernel(&init_mm, pmd, new); 613 new = NULL; 614 } else 615 VM_BUG_ON(pmd_trans_splitting(*pmd)); 616 spin_unlock(&init_mm.page_table_lock); 617 if (new) 618 pte_free_kernel(&init_mm, new); 619 return 0; 620 } 621 622 static inline void init_rss_vec(int *rss) 623 { 624 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 625 } 626 627 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 628 { 629 int i; 630 631 if (current->mm == mm) 632 sync_mm_rss(mm); 633 for (i = 0; i < NR_MM_COUNTERS; i++) 634 if (rss[i]) 635 add_mm_counter(mm, i, rss[i]); 636 } 637 638 /* 639 * This function is called to print an error when a bad pte 640 * is found. For example, we might have a PFN-mapped pte in 641 * a region that doesn't allow it. 642 * 643 * The calling function must still handle the error. 644 */ 645 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 646 pte_t pte, struct page *page) 647 { 648 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 649 pud_t *pud = pud_offset(pgd, addr); 650 pmd_t *pmd = pmd_offset(pud, addr); 651 struct address_space *mapping; 652 pgoff_t index; 653 static unsigned long resume; 654 static unsigned long nr_shown; 655 static unsigned long nr_unshown; 656 657 /* 658 * Allow a burst of 60 reports, then keep quiet for that minute; 659 * or allow a steady drip of one report per second. 660 */ 661 if (nr_shown == 60) { 662 if (time_before(jiffies, resume)) { 663 nr_unshown++; 664 return; 665 } 666 if (nr_unshown) { 667 printk(KERN_ALERT 668 "BUG: Bad page map: %lu messages suppressed\n", 669 nr_unshown); 670 nr_unshown = 0; 671 } 672 nr_shown = 0; 673 } 674 if (nr_shown++ == 0) 675 resume = jiffies + 60 * HZ; 676 677 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 678 index = linear_page_index(vma, addr); 679 680 printk(KERN_ALERT 681 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 682 current->comm, 683 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 684 if (page) 685 dump_page(page, "bad pte"); 686 printk(KERN_ALERT 687 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 688 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 689 /* 690 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 691 */ 692 if (vma->vm_ops) 693 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n", 694 vma->vm_ops->fault); 695 if (vma->vm_file) 696 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n", 697 vma->vm_file->f_op->mmap); 698 dump_stack(); 699 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 700 } 701 702 /* 703 * vm_normal_page -- This function gets the "struct page" associated with a pte. 704 * 705 * "Special" mappings do not wish to be associated with a "struct page" (either 706 * it doesn't exist, or it exists but they don't want to touch it). In this 707 * case, NULL is returned here. "Normal" mappings do have a struct page. 708 * 709 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 710 * pte bit, in which case this function is trivial. Secondly, an architecture 711 * may not have a spare pte bit, which requires a more complicated scheme, 712 * described below. 713 * 714 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 715 * special mapping (even if there are underlying and valid "struct pages"). 716 * COWed pages of a VM_PFNMAP are always normal. 717 * 718 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 719 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 720 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 721 * mapping will always honor the rule 722 * 723 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 724 * 725 * And for normal mappings this is false. 726 * 727 * This restricts such mappings to be a linear translation from virtual address 728 * to pfn. To get around this restriction, we allow arbitrary mappings so long 729 * as the vma is not a COW mapping; in that case, we know that all ptes are 730 * special (because none can have been COWed). 731 * 732 * 733 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 734 * 735 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 736 * page" backing, however the difference is that _all_ pages with a struct 737 * page (that is, those where pfn_valid is true) are refcounted and considered 738 * normal pages by the VM. The disadvantage is that pages are refcounted 739 * (which can be slower and simply not an option for some PFNMAP users). The 740 * advantage is that we don't have to follow the strict linearity rule of 741 * PFNMAP mappings in order to support COWable mappings. 742 * 743 */ 744 #ifdef __HAVE_ARCH_PTE_SPECIAL 745 # define HAVE_PTE_SPECIAL 1 746 #else 747 # define HAVE_PTE_SPECIAL 0 748 #endif 749 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 750 pte_t pte) 751 { 752 unsigned long pfn = pte_pfn(pte); 753 754 if (HAVE_PTE_SPECIAL) { 755 if (likely(!pte_special(pte))) 756 goto check_pfn; 757 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 758 return NULL; 759 if (!is_zero_pfn(pfn)) 760 print_bad_pte(vma, addr, pte, NULL); 761 return NULL; 762 } 763 764 /* !HAVE_PTE_SPECIAL case follows: */ 765 766 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 767 if (vma->vm_flags & VM_MIXEDMAP) { 768 if (!pfn_valid(pfn)) 769 return NULL; 770 goto out; 771 } else { 772 unsigned long off; 773 off = (addr - vma->vm_start) >> PAGE_SHIFT; 774 if (pfn == vma->vm_pgoff + off) 775 return NULL; 776 if (!is_cow_mapping(vma->vm_flags)) 777 return NULL; 778 } 779 } 780 781 if (is_zero_pfn(pfn)) 782 return NULL; 783 check_pfn: 784 if (unlikely(pfn > highest_memmap_pfn)) { 785 print_bad_pte(vma, addr, pte, NULL); 786 return NULL; 787 } 788 789 /* 790 * NOTE! We still have PageReserved() pages in the page tables. 791 * eg. VDSO mappings can cause them to exist. 792 */ 793 out: 794 return pfn_to_page(pfn); 795 } 796 797 /* 798 * copy one vm_area from one task to the other. Assumes the page tables 799 * already present in the new task to be cleared in the whole range 800 * covered by this vma. 801 */ 802 803 static inline unsigned long 804 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 805 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 806 unsigned long addr, int *rss) 807 { 808 unsigned long vm_flags = vma->vm_flags; 809 pte_t pte = *src_pte; 810 struct page *page; 811 812 /* pte contains position in swap or file, so copy. */ 813 if (unlikely(!pte_present(pte))) { 814 if (!pte_file(pte)) { 815 swp_entry_t entry = pte_to_swp_entry(pte); 816 817 if (likely(!non_swap_entry(entry))) { 818 if (swap_duplicate(entry) < 0) 819 return entry.val; 820 821 /* make sure dst_mm is on swapoff's mmlist. */ 822 if (unlikely(list_empty(&dst_mm->mmlist))) { 823 spin_lock(&mmlist_lock); 824 if (list_empty(&dst_mm->mmlist)) 825 list_add(&dst_mm->mmlist, 826 &src_mm->mmlist); 827 spin_unlock(&mmlist_lock); 828 } 829 rss[MM_SWAPENTS]++; 830 } else if (is_migration_entry(entry)) { 831 page = migration_entry_to_page(entry); 832 833 if (PageAnon(page)) 834 rss[MM_ANONPAGES]++; 835 else 836 rss[MM_FILEPAGES]++; 837 838 if (is_write_migration_entry(entry) && 839 is_cow_mapping(vm_flags)) { 840 /* 841 * COW mappings require pages in both 842 * parent and child to be set to read. 843 */ 844 make_migration_entry_read(&entry); 845 pte = swp_entry_to_pte(entry); 846 if (pte_swp_soft_dirty(*src_pte)) 847 pte = pte_swp_mksoft_dirty(pte); 848 set_pte_at(src_mm, addr, src_pte, pte); 849 } 850 } 851 } 852 goto out_set_pte; 853 } 854 855 /* 856 * If it's a COW mapping, write protect it both 857 * in the parent and the child 858 */ 859 if (is_cow_mapping(vm_flags)) { 860 ptep_set_wrprotect(src_mm, addr, src_pte); 861 pte = pte_wrprotect(pte); 862 } 863 864 /* 865 * If it's a shared mapping, mark it clean in 866 * the child 867 */ 868 if (vm_flags & VM_SHARED) 869 pte = pte_mkclean(pte); 870 pte = pte_mkold(pte); 871 872 page = vm_normal_page(vma, addr, pte); 873 if (page) { 874 get_page(page); 875 page_dup_rmap(page); 876 if (PageAnon(page)) 877 rss[MM_ANONPAGES]++; 878 else 879 rss[MM_FILEPAGES]++; 880 } 881 882 out_set_pte: 883 set_pte_at(dst_mm, addr, dst_pte, pte); 884 return 0; 885 } 886 887 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 888 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 889 unsigned long addr, unsigned long end) 890 { 891 pte_t *orig_src_pte, *orig_dst_pte; 892 pte_t *src_pte, *dst_pte; 893 spinlock_t *src_ptl, *dst_ptl; 894 int progress = 0; 895 int rss[NR_MM_COUNTERS]; 896 swp_entry_t entry = (swp_entry_t){0}; 897 898 again: 899 init_rss_vec(rss); 900 901 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 902 if (!dst_pte) 903 return -ENOMEM; 904 src_pte = pte_offset_map(src_pmd, addr); 905 src_ptl = pte_lockptr(src_mm, src_pmd); 906 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 907 orig_src_pte = src_pte; 908 orig_dst_pte = dst_pte; 909 arch_enter_lazy_mmu_mode(); 910 911 do { 912 /* 913 * We are holding two locks at this point - either of them 914 * could generate latencies in another task on another CPU. 915 */ 916 if (progress >= 32) { 917 progress = 0; 918 if (need_resched() || 919 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 920 break; 921 } 922 if (pte_none(*src_pte)) { 923 progress++; 924 continue; 925 } 926 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 927 vma, addr, rss); 928 if (entry.val) 929 break; 930 progress += 8; 931 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 932 933 arch_leave_lazy_mmu_mode(); 934 spin_unlock(src_ptl); 935 pte_unmap(orig_src_pte); 936 add_mm_rss_vec(dst_mm, rss); 937 pte_unmap_unlock(orig_dst_pte, dst_ptl); 938 cond_resched(); 939 940 if (entry.val) { 941 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 942 return -ENOMEM; 943 progress = 0; 944 } 945 if (addr != end) 946 goto again; 947 return 0; 948 } 949 950 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 951 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 952 unsigned long addr, unsigned long end) 953 { 954 pmd_t *src_pmd, *dst_pmd; 955 unsigned long next; 956 957 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 958 if (!dst_pmd) 959 return -ENOMEM; 960 src_pmd = pmd_offset(src_pud, addr); 961 do { 962 next = pmd_addr_end(addr, end); 963 if (pmd_trans_huge(*src_pmd)) { 964 int err; 965 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 966 err = copy_huge_pmd(dst_mm, src_mm, 967 dst_pmd, src_pmd, addr, vma); 968 if (err == -ENOMEM) 969 return -ENOMEM; 970 if (!err) 971 continue; 972 /* fall through */ 973 } 974 if (pmd_none_or_clear_bad(src_pmd)) 975 continue; 976 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 977 vma, addr, next)) 978 return -ENOMEM; 979 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 980 return 0; 981 } 982 983 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 984 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 985 unsigned long addr, unsigned long end) 986 { 987 pud_t *src_pud, *dst_pud; 988 unsigned long next; 989 990 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 991 if (!dst_pud) 992 return -ENOMEM; 993 src_pud = pud_offset(src_pgd, addr); 994 do { 995 next = pud_addr_end(addr, end); 996 if (pud_none_or_clear_bad(src_pud)) 997 continue; 998 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 999 vma, addr, next)) 1000 return -ENOMEM; 1001 } while (dst_pud++, src_pud++, addr = next, addr != end); 1002 return 0; 1003 } 1004 1005 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1006 struct vm_area_struct *vma) 1007 { 1008 pgd_t *src_pgd, *dst_pgd; 1009 unsigned long next; 1010 unsigned long addr = vma->vm_start; 1011 unsigned long end = vma->vm_end; 1012 unsigned long mmun_start; /* For mmu_notifiers */ 1013 unsigned long mmun_end; /* For mmu_notifiers */ 1014 bool is_cow; 1015 int ret; 1016 1017 /* 1018 * Don't copy ptes where a page fault will fill them correctly. 1019 * Fork becomes much lighter when there are big shared or private 1020 * readonly mappings. The tradeoff is that copy_page_range is more 1021 * efficient than faulting. 1022 */ 1023 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR | 1024 VM_PFNMAP | VM_MIXEDMAP))) { 1025 if (!vma->anon_vma) 1026 return 0; 1027 } 1028 1029 if (is_vm_hugetlb_page(vma)) 1030 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1031 1032 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1033 /* 1034 * We do not free on error cases below as remove_vma 1035 * gets called on error from higher level routine 1036 */ 1037 ret = track_pfn_copy(vma); 1038 if (ret) 1039 return ret; 1040 } 1041 1042 /* 1043 * We need to invalidate the secondary MMU mappings only when 1044 * there could be a permission downgrade on the ptes of the 1045 * parent mm. And a permission downgrade will only happen if 1046 * is_cow_mapping() returns true. 1047 */ 1048 is_cow = is_cow_mapping(vma->vm_flags); 1049 mmun_start = addr; 1050 mmun_end = end; 1051 if (is_cow) 1052 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1053 mmun_end); 1054 1055 ret = 0; 1056 dst_pgd = pgd_offset(dst_mm, addr); 1057 src_pgd = pgd_offset(src_mm, addr); 1058 do { 1059 next = pgd_addr_end(addr, end); 1060 if (pgd_none_or_clear_bad(src_pgd)) 1061 continue; 1062 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1063 vma, addr, next))) { 1064 ret = -ENOMEM; 1065 break; 1066 } 1067 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1068 1069 if (is_cow) 1070 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1071 return ret; 1072 } 1073 1074 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1075 struct vm_area_struct *vma, pmd_t *pmd, 1076 unsigned long addr, unsigned long end, 1077 struct zap_details *details) 1078 { 1079 struct mm_struct *mm = tlb->mm; 1080 int force_flush = 0; 1081 int rss[NR_MM_COUNTERS]; 1082 spinlock_t *ptl; 1083 pte_t *start_pte; 1084 pte_t *pte; 1085 1086 again: 1087 init_rss_vec(rss); 1088 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1089 pte = start_pte; 1090 arch_enter_lazy_mmu_mode(); 1091 do { 1092 pte_t ptent = *pte; 1093 if (pte_none(ptent)) { 1094 continue; 1095 } 1096 1097 if (pte_present(ptent)) { 1098 struct page *page; 1099 1100 page = vm_normal_page(vma, addr, ptent); 1101 if (unlikely(details) && page) { 1102 /* 1103 * unmap_shared_mapping_pages() wants to 1104 * invalidate cache without truncating: 1105 * unmap shared but keep private pages. 1106 */ 1107 if (details->check_mapping && 1108 details->check_mapping != page->mapping) 1109 continue; 1110 /* 1111 * Each page->index must be checked when 1112 * invalidating or truncating nonlinear. 1113 */ 1114 if (details->nonlinear_vma && 1115 (page->index < details->first_index || 1116 page->index > details->last_index)) 1117 continue; 1118 } 1119 ptent = ptep_get_and_clear_full(mm, addr, pte, 1120 tlb->fullmm); 1121 tlb_remove_tlb_entry(tlb, pte, addr); 1122 if (unlikely(!page)) 1123 continue; 1124 if (unlikely(details) && details->nonlinear_vma 1125 && linear_page_index(details->nonlinear_vma, 1126 addr) != page->index) { 1127 pte_t ptfile = pgoff_to_pte(page->index); 1128 if (pte_soft_dirty(ptent)) 1129 ptfile = pte_file_mksoft_dirty(ptfile); 1130 set_pte_at(mm, addr, pte, ptfile); 1131 } 1132 if (PageAnon(page)) 1133 rss[MM_ANONPAGES]--; 1134 else { 1135 if (pte_dirty(ptent)) { 1136 force_flush = 1; 1137 set_page_dirty(page); 1138 } 1139 if (pte_young(ptent) && 1140 likely(!(vma->vm_flags & VM_SEQ_READ))) 1141 mark_page_accessed(page); 1142 rss[MM_FILEPAGES]--; 1143 } 1144 page_remove_rmap(page); 1145 if (unlikely(page_mapcount(page) < 0)) 1146 print_bad_pte(vma, addr, ptent, page); 1147 if (unlikely(!__tlb_remove_page(tlb, page))) { 1148 force_flush = 1; 1149 addr += PAGE_SIZE; 1150 break; 1151 } 1152 continue; 1153 } 1154 /* 1155 * If details->check_mapping, we leave swap entries; 1156 * if details->nonlinear_vma, we leave file entries. 1157 */ 1158 if (unlikely(details)) 1159 continue; 1160 if (pte_file(ptent)) { 1161 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1162 print_bad_pte(vma, addr, ptent, NULL); 1163 } else { 1164 swp_entry_t entry = pte_to_swp_entry(ptent); 1165 1166 if (!non_swap_entry(entry)) 1167 rss[MM_SWAPENTS]--; 1168 else if (is_migration_entry(entry)) { 1169 struct page *page; 1170 1171 page = migration_entry_to_page(entry); 1172 1173 if (PageAnon(page)) 1174 rss[MM_ANONPAGES]--; 1175 else 1176 rss[MM_FILEPAGES]--; 1177 } 1178 if (unlikely(!free_swap_and_cache(entry))) 1179 print_bad_pte(vma, addr, ptent, NULL); 1180 } 1181 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1182 } while (pte++, addr += PAGE_SIZE, addr != end); 1183 1184 add_mm_rss_vec(mm, rss); 1185 arch_leave_lazy_mmu_mode(); 1186 1187 /* Do the actual TLB flush before dropping ptl */ 1188 if (force_flush) 1189 tlb_flush_mmu_tlbonly(tlb); 1190 pte_unmap_unlock(start_pte, ptl); 1191 1192 /* 1193 * If we forced a TLB flush (either due to running out of 1194 * batch buffers or because we needed to flush dirty TLB 1195 * entries before releasing the ptl), free the batched 1196 * memory too. Restart if we didn't do everything. 1197 */ 1198 if (force_flush) { 1199 force_flush = 0; 1200 tlb_flush_mmu_free(tlb); 1201 1202 if (addr != end) 1203 goto again; 1204 } 1205 1206 return addr; 1207 } 1208 1209 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1210 struct vm_area_struct *vma, pud_t *pud, 1211 unsigned long addr, unsigned long end, 1212 struct zap_details *details) 1213 { 1214 pmd_t *pmd; 1215 unsigned long next; 1216 1217 pmd = pmd_offset(pud, addr); 1218 do { 1219 next = pmd_addr_end(addr, end); 1220 if (pmd_trans_huge(*pmd)) { 1221 if (next - addr != HPAGE_PMD_SIZE) { 1222 #ifdef CONFIG_DEBUG_VM 1223 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1224 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1225 __func__, addr, end, 1226 vma->vm_start, 1227 vma->vm_end); 1228 BUG(); 1229 } 1230 #endif 1231 split_huge_page_pmd(vma, addr, pmd); 1232 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1233 goto next; 1234 /* fall through */ 1235 } 1236 /* 1237 * Here there can be other concurrent MADV_DONTNEED or 1238 * trans huge page faults running, and if the pmd is 1239 * none or trans huge it can change under us. This is 1240 * because MADV_DONTNEED holds the mmap_sem in read 1241 * mode. 1242 */ 1243 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1244 goto next; 1245 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1246 next: 1247 cond_resched(); 1248 } while (pmd++, addr = next, addr != end); 1249 1250 return addr; 1251 } 1252 1253 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1254 struct vm_area_struct *vma, pgd_t *pgd, 1255 unsigned long addr, unsigned long end, 1256 struct zap_details *details) 1257 { 1258 pud_t *pud; 1259 unsigned long next; 1260 1261 pud = pud_offset(pgd, addr); 1262 do { 1263 next = pud_addr_end(addr, end); 1264 if (pud_none_or_clear_bad(pud)) 1265 continue; 1266 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1267 } while (pud++, addr = next, addr != end); 1268 1269 return addr; 1270 } 1271 1272 static void unmap_page_range(struct mmu_gather *tlb, 1273 struct vm_area_struct *vma, 1274 unsigned long addr, unsigned long end, 1275 struct zap_details *details) 1276 { 1277 pgd_t *pgd; 1278 unsigned long next; 1279 1280 if (details && !details->check_mapping && !details->nonlinear_vma) 1281 details = NULL; 1282 1283 BUG_ON(addr >= end); 1284 tlb_start_vma(tlb, vma); 1285 pgd = pgd_offset(vma->vm_mm, addr); 1286 do { 1287 next = pgd_addr_end(addr, end); 1288 if (pgd_none_or_clear_bad(pgd)) 1289 continue; 1290 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1291 } while (pgd++, addr = next, addr != end); 1292 tlb_end_vma(tlb, vma); 1293 } 1294 1295 1296 static void unmap_single_vma(struct mmu_gather *tlb, 1297 struct vm_area_struct *vma, unsigned long start_addr, 1298 unsigned long end_addr, 1299 struct zap_details *details) 1300 { 1301 unsigned long start = max(vma->vm_start, start_addr); 1302 unsigned long end; 1303 1304 if (start >= vma->vm_end) 1305 return; 1306 end = min(vma->vm_end, end_addr); 1307 if (end <= vma->vm_start) 1308 return; 1309 1310 if (vma->vm_file) 1311 uprobe_munmap(vma, start, end); 1312 1313 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1314 untrack_pfn(vma, 0, 0); 1315 1316 if (start != end) { 1317 if (unlikely(is_vm_hugetlb_page(vma))) { 1318 /* 1319 * It is undesirable to test vma->vm_file as it 1320 * should be non-null for valid hugetlb area. 1321 * However, vm_file will be NULL in the error 1322 * cleanup path of mmap_region. When 1323 * hugetlbfs ->mmap method fails, 1324 * mmap_region() nullifies vma->vm_file 1325 * before calling this function to clean up. 1326 * Since no pte has actually been setup, it is 1327 * safe to do nothing in this case. 1328 */ 1329 if (vma->vm_file) { 1330 i_mmap_lock_write(vma->vm_file->f_mapping); 1331 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1332 i_mmap_unlock_write(vma->vm_file->f_mapping); 1333 } 1334 } else 1335 unmap_page_range(tlb, vma, start, end, details); 1336 } 1337 } 1338 1339 /** 1340 * unmap_vmas - unmap a range of memory covered by a list of vma's 1341 * @tlb: address of the caller's struct mmu_gather 1342 * @vma: the starting vma 1343 * @start_addr: virtual address at which to start unmapping 1344 * @end_addr: virtual address at which to end unmapping 1345 * 1346 * Unmap all pages in the vma list. 1347 * 1348 * Only addresses between `start' and `end' will be unmapped. 1349 * 1350 * The VMA list must be sorted in ascending virtual address order. 1351 * 1352 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1353 * range after unmap_vmas() returns. So the only responsibility here is to 1354 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1355 * drops the lock and schedules. 1356 */ 1357 void unmap_vmas(struct mmu_gather *tlb, 1358 struct vm_area_struct *vma, unsigned long start_addr, 1359 unsigned long end_addr) 1360 { 1361 struct mm_struct *mm = vma->vm_mm; 1362 1363 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1364 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1365 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1366 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1367 } 1368 1369 /** 1370 * zap_page_range - remove user pages in a given range 1371 * @vma: vm_area_struct holding the applicable pages 1372 * @start: starting address of pages to zap 1373 * @size: number of bytes to zap 1374 * @details: details of nonlinear truncation or shared cache invalidation 1375 * 1376 * Caller must protect the VMA list 1377 */ 1378 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1379 unsigned long size, struct zap_details *details) 1380 { 1381 struct mm_struct *mm = vma->vm_mm; 1382 struct mmu_gather tlb; 1383 unsigned long end = start + size; 1384 1385 lru_add_drain(); 1386 tlb_gather_mmu(&tlb, mm, start, end); 1387 update_hiwater_rss(mm); 1388 mmu_notifier_invalidate_range_start(mm, start, end); 1389 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1390 unmap_single_vma(&tlb, vma, start, end, details); 1391 mmu_notifier_invalidate_range_end(mm, start, end); 1392 tlb_finish_mmu(&tlb, start, end); 1393 } 1394 1395 /** 1396 * zap_page_range_single - remove user pages in a given range 1397 * @vma: vm_area_struct holding the applicable pages 1398 * @address: starting address of pages to zap 1399 * @size: number of bytes to zap 1400 * @details: details of nonlinear truncation or shared cache invalidation 1401 * 1402 * The range must fit into one VMA. 1403 */ 1404 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1405 unsigned long size, struct zap_details *details) 1406 { 1407 struct mm_struct *mm = vma->vm_mm; 1408 struct mmu_gather tlb; 1409 unsigned long end = address + size; 1410 1411 lru_add_drain(); 1412 tlb_gather_mmu(&tlb, mm, address, end); 1413 update_hiwater_rss(mm); 1414 mmu_notifier_invalidate_range_start(mm, address, end); 1415 unmap_single_vma(&tlb, vma, address, end, details); 1416 mmu_notifier_invalidate_range_end(mm, address, end); 1417 tlb_finish_mmu(&tlb, address, end); 1418 } 1419 1420 /** 1421 * zap_vma_ptes - remove ptes mapping the vma 1422 * @vma: vm_area_struct holding ptes to be zapped 1423 * @address: starting address of pages to zap 1424 * @size: number of bytes to zap 1425 * 1426 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1427 * 1428 * The entire address range must be fully contained within the vma. 1429 * 1430 * Returns 0 if successful. 1431 */ 1432 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1433 unsigned long size) 1434 { 1435 if (address < vma->vm_start || address + size > vma->vm_end || 1436 !(vma->vm_flags & VM_PFNMAP)) 1437 return -1; 1438 zap_page_range_single(vma, address, size, NULL); 1439 return 0; 1440 } 1441 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1442 1443 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1444 spinlock_t **ptl) 1445 { 1446 pgd_t * pgd = pgd_offset(mm, addr); 1447 pud_t * pud = pud_alloc(mm, pgd, addr); 1448 if (pud) { 1449 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1450 if (pmd) { 1451 VM_BUG_ON(pmd_trans_huge(*pmd)); 1452 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1453 } 1454 } 1455 return NULL; 1456 } 1457 1458 /* 1459 * This is the old fallback for page remapping. 1460 * 1461 * For historical reasons, it only allows reserved pages. Only 1462 * old drivers should use this, and they needed to mark their 1463 * pages reserved for the old functions anyway. 1464 */ 1465 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1466 struct page *page, pgprot_t prot) 1467 { 1468 struct mm_struct *mm = vma->vm_mm; 1469 int retval; 1470 pte_t *pte; 1471 spinlock_t *ptl; 1472 1473 retval = -EINVAL; 1474 if (PageAnon(page)) 1475 goto out; 1476 retval = -ENOMEM; 1477 flush_dcache_page(page); 1478 pte = get_locked_pte(mm, addr, &ptl); 1479 if (!pte) 1480 goto out; 1481 retval = -EBUSY; 1482 if (!pte_none(*pte)) 1483 goto out_unlock; 1484 1485 /* Ok, finally just insert the thing.. */ 1486 get_page(page); 1487 inc_mm_counter_fast(mm, MM_FILEPAGES); 1488 page_add_file_rmap(page); 1489 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1490 1491 retval = 0; 1492 pte_unmap_unlock(pte, ptl); 1493 return retval; 1494 out_unlock: 1495 pte_unmap_unlock(pte, ptl); 1496 out: 1497 return retval; 1498 } 1499 1500 /** 1501 * vm_insert_page - insert single page into user vma 1502 * @vma: user vma to map to 1503 * @addr: target user address of this page 1504 * @page: source kernel page 1505 * 1506 * This allows drivers to insert individual pages they've allocated 1507 * into a user vma. 1508 * 1509 * The page has to be a nice clean _individual_ kernel allocation. 1510 * If you allocate a compound page, you need to have marked it as 1511 * such (__GFP_COMP), or manually just split the page up yourself 1512 * (see split_page()). 1513 * 1514 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1515 * took an arbitrary page protection parameter. This doesn't allow 1516 * that. Your vma protection will have to be set up correctly, which 1517 * means that if you want a shared writable mapping, you'd better 1518 * ask for a shared writable mapping! 1519 * 1520 * The page does not need to be reserved. 1521 * 1522 * Usually this function is called from f_op->mmap() handler 1523 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1524 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1525 * function from other places, for example from page-fault handler. 1526 */ 1527 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1528 struct page *page) 1529 { 1530 if (addr < vma->vm_start || addr >= vma->vm_end) 1531 return -EFAULT; 1532 if (!page_count(page)) 1533 return -EINVAL; 1534 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1535 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1536 BUG_ON(vma->vm_flags & VM_PFNMAP); 1537 vma->vm_flags |= VM_MIXEDMAP; 1538 } 1539 return insert_page(vma, addr, page, vma->vm_page_prot); 1540 } 1541 EXPORT_SYMBOL(vm_insert_page); 1542 1543 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1544 unsigned long pfn, pgprot_t prot) 1545 { 1546 struct mm_struct *mm = vma->vm_mm; 1547 int retval; 1548 pte_t *pte, entry; 1549 spinlock_t *ptl; 1550 1551 retval = -ENOMEM; 1552 pte = get_locked_pte(mm, addr, &ptl); 1553 if (!pte) 1554 goto out; 1555 retval = -EBUSY; 1556 if (!pte_none(*pte)) 1557 goto out_unlock; 1558 1559 /* Ok, finally just insert the thing.. */ 1560 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1561 set_pte_at(mm, addr, pte, entry); 1562 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1563 1564 retval = 0; 1565 out_unlock: 1566 pte_unmap_unlock(pte, ptl); 1567 out: 1568 return retval; 1569 } 1570 1571 /** 1572 * vm_insert_pfn - insert single pfn into user vma 1573 * @vma: user vma to map to 1574 * @addr: target user address of this page 1575 * @pfn: source kernel pfn 1576 * 1577 * Similar to vm_insert_page, this allows drivers to insert individual pages 1578 * they've allocated into a user vma. Same comments apply. 1579 * 1580 * This function should only be called from a vm_ops->fault handler, and 1581 * in that case the handler should return NULL. 1582 * 1583 * vma cannot be a COW mapping. 1584 * 1585 * As this is called only for pages that do not currently exist, we 1586 * do not need to flush old virtual caches or the TLB. 1587 */ 1588 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1589 unsigned long pfn) 1590 { 1591 int ret; 1592 pgprot_t pgprot = vma->vm_page_prot; 1593 /* 1594 * Technically, architectures with pte_special can avoid all these 1595 * restrictions (same for remap_pfn_range). However we would like 1596 * consistency in testing and feature parity among all, so we should 1597 * try to keep these invariants in place for everybody. 1598 */ 1599 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1600 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1601 (VM_PFNMAP|VM_MIXEDMAP)); 1602 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1603 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1604 1605 if (addr < vma->vm_start || addr >= vma->vm_end) 1606 return -EFAULT; 1607 if (track_pfn_insert(vma, &pgprot, pfn)) 1608 return -EINVAL; 1609 1610 ret = insert_pfn(vma, addr, pfn, pgprot); 1611 1612 return ret; 1613 } 1614 EXPORT_SYMBOL(vm_insert_pfn); 1615 1616 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1617 unsigned long pfn) 1618 { 1619 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1620 1621 if (addr < vma->vm_start || addr >= vma->vm_end) 1622 return -EFAULT; 1623 1624 /* 1625 * If we don't have pte special, then we have to use the pfn_valid() 1626 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1627 * refcount the page if pfn_valid is true (hence insert_page rather 1628 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1629 * without pte special, it would there be refcounted as a normal page. 1630 */ 1631 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1632 struct page *page; 1633 1634 page = pfn_to_page(pfn); 1635 return insert_page(vma, addr, page, vma->vm_page_prot); 1636 } 1637 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1638 } 1639 EXPORT_SYMBOL(vm_insert_mixed); 1640 1641 /* 1642 * maps a range of physical memory into the requested pages. the old 1643 * mappings are removed. any references to nonexistent pages results 1644 * in null mappings (currently treated as "copy-on-access") 1645 */ 1646 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1647 unsigned long addr, unsigned long end, 1648 unsigned long pfn, pgprot_t prot) 1649 { 1650 pte_t *pte; 1651 spinlock_t *ptl; 1652 1653 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1654 if (!pte) 1655 return -ENOMEM; 1656 arch_enter_lazy_mmu_mode(); 1657 do { 1658 BUG_ON(!pte_none(*pte)); 1659 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1660 pfn++; 1661 } while (pte++, addr += PAGE_SIZE, addr != end); 1662 arch_leave_lazy_mmu_mode(); 1663 pte_unmap_unlock(pte - 1, ptl); 1664 return 0; 1665 } 1666 1667 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1668 unsigned long addr, unsigned long end, 1669 unsigned long pfn, pgprot_t prot) 1670 { 1671 pmd_t *pmd; 1672 unsigned long next; 1673 1674 pfn -= addr >> PAGE_SHIFT; 1675 pmd = pmd_alloc(mm, pud, addr); 1676 if (!pmd) 1677 return -ENOMEM; 1678 VM_BUG_ON(pmd_trans_huge(*pmd)); 1679 do { 1680 next = pmd_addr_end(addr, end); 1681 if (remap_pte_range(mm, pmd, addr, next, 1682 pfn + (addr >> PAGE_SHIFT), prot)) 1683 return -ENOMEM; 1684 } while (pmd++, addr = next, addr != end); 1685 return 0; 1686 } 1687 1688 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1689 unsigned long addr, unsigned long end, 1690 unsigned long pfn, pgprot_t prot) 1691 { 1692 pud_t *pud; 1693 unsigned long next; 1694 1695 pfn -= addr >> PAGE_SHIFT; 1696 pud = pud_alloc(mm, pgd, addr); 1697 if (!pud) 1698 return -ENOMEM; 1699 do { 1700 next = pud_addr_end(addr, end); 1701 if (remap_pmd_range(mm, pud, addr, next, 1702 pfn + (addr >> PAGE_SHIFT), prot)) 1703 return -ENOMEM; 1704 } while (pud++, addr = next, addr != end); 1705 return 0; 1706 } 1707 1708 /** 1709 * remap_pfn_range - remap kernel memory to userspace 1710 * @vma: user vma to map to 1711 * @addr: target user address to start at 1712 * @pfn: physical address of kernel memory 1713 * @size: size of map area 1714 * @prot: page protection flags for this mapping 1715 * 1716 * Note: this is only safe if the mm semaphore is held when called. 1717 */ 1718 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1719 unsigned long pfn, unsigned long size, pgprot_t prot) 1720 { 1721 pgd_t *pgd; 1722 unsigned long next; 1723 unsigned long end = addr + PAGE_ALIGN(size); 1724 struct mm_struct *mm = vma->vm_mm; 1725 int err; 1726 1727 /* 1728 * Physically remapped pages are special. Tell the 1729 * rest of the world about it: 1730 * VM_IO tells people not to look at these pages 1731 * (accesses can have side effects). 1732 * VM_PFNMAP tells the core MM that the base pages are just 1733 * raw PFN mappings, and do not have a "struct page" associated 1734 * with them. 1735 * VM_DONTEXPAND 1736 * Disable vma merging and expanding with mremap(). 1737 * VM_DONTDUMP 1738 * Omit vma from core dump, even when VM_IO turned off. 1739 * 1740 * There's a horrible special case to handle copy-on-write 1741 * behaviour that some programs depend on. We mark the "original" 1742 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1743 * See vm_normal_page() for details. 1744 */ 1745 if (is_cow_mapping(vma->vm_flags)) { 1746 if (addr != vma->vm_start || end != vma->vm_end) 1747 return -EINVAL; 1748 vma->vm_pgoff = pfn; 1749 } 1750 1751 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 1752 if (err) 1753 return -EINVAL; 1754 1755 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1756 1757 BUG_ON(addr >= end); 1758 pfn -= addr >> PAGE_SHIFT; 1759 pgd = pgd_offset(mm, addr); 1760 flush_cache_range(vma, addr, end); 1761 do { 1762 next = pgd_addr_end(addr, end); 1763 err = remap_pud_range(mm, pgd, addr, next, 1764 pfn + (addr >> PAGE_SHIFT), prot); 1765 if (err) 1766 break; 1767 } while (pgd++, addr = next, addr != end); 1768 1769 if (err) 1770 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 1771 1772 return err; 1773 } 1774 EXPORT_SYMBOL(remap_pfn_range); 1775 1776 /** 1777 * vm_iomap_memory - remap memory to userspace 1778 * @vma: user vma to map to 1779 * @start: start of area 1780 * @len: size of area 1781 * 1782 * This is a simplified io_remap_pfn_range() for common driver use. The 1783 * driver just needs to give us the physical memory range to be mapped, 1784 * we'll figure out the rest from the vma information. 1785 * 1786 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1787 * whatever write-combining details or similar. 1788 */ 1789 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1790 { 1791 unsigned long vm_len, pfn, pages; 1792 1793 /* Check that the physical memory area passed in looks valid */ 1794 if (start + len < start) 1795 return -EINVAL; 1796 /* 1797 * You *really* shouldn't map things that aren't page-aligned, 1798 * but we've historically allowed it because IO memory might 1799 * just have smaller alignment. 1800 */ 1801 len += start & ~PAGE_MASK; 1802 pfn = start >> PAGE_SHIFT; 1803 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1804 if (pfn + pages < pfn) 1805 return -EINVAL; 1806 1807 /* We start the mapping 'vm_pgoff' pages into the area */ 1808 if (vma->vm_pgoff > pages) 1809 return -EINVAL; 1810 pfn += vma->vm_pgoff; 1811 pages -= vma->vm_pgoff; 1812 1813 /* Can we fit all of the mapping? */ 1814 vm_len = vma->vm_end - vma->vm_start; 1815 if (vm_len >> PAGE_SHIFT > pages) 1816 return -EINVAL; 1817 1818 /* Ok, let it rip */ 1819 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1820 } 1821 EXPORT_SYMBOL(vm_iomap_memory); 1822 1823 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1824 unsigned long addr, unsigned long end, 1825 pte_fn_t fn, void *data) 1826 { 1827 pte_t *pte; 1828 int err; 1829 pgtable_t token; 1830 spinlock_t *uninitialized_var(ptl); 1831 1832 pte = (mm == &init_mm) ? 1833 pte_alloc_kernel(pmd, addr) : 1834 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1835 if (!pte) 1836 return -ENOMEM; 1837 1838 BUG_ON(pmd_huge(*pmd)); 1839 1840 arch_enter_lazy_mmu_mode(); 1841 1842 token = pmd_pgtable(*pmd); 1843 1844 do { 1845 err = fn(pte++, token, addr, data); 1846 if (err) 1847 break; 1848 } while (addr += PAGE_SIZE, addr != end); 1849 1850 arch_leave_lazy_mmu_mode(); 1851 1852 if (mm != &init_mm) 1853 pte_unmap_unlock(pte-1, ptl); 1854 return err; 1855 } 1856 1857 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1858 unsigned long addr, unsigned long end, 1859 pte_fn_t fn, void *data) 1860 { 1861 pmd_t *pmd; 1862 unsigned long next; 1863 int err; 1864 1865 BUG_ON(pud_huge(*pud)); 1866 1867 pmd = pmd_alloc(mm, pud, addr); 1868 if (!pmd) 1869 return -ENOMEM; 1870 do { 1871 next = pmd_addr_end(addr, end); 1872 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1873 if (err) 1874 break; 1875 } while (pmd++, addr = next, addr != end); 1876 return err; 1877 } 1878 1879 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1880 unsigned long addr, unsigned long end, 1881 pte_fn_t fn, void *data) 1882 { 1883 pud_t *pud; 1884 unsigned long next; 1885 int err; 1886 1887 pud = pud_alloc(mm, pgd, addr); 1888 if (!pud) 1889 return -ENOMEM; 1890 do { 1891 next = pud_addr_end(addr, end); 1892 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1893 if (err) 1894 break; 1895 } while (pud++, addr = next, addr != end); 1896 return err; 1897 } 1898 1899 /* 1900 * Scan a region of virtual memory, filling in page tables as necessary 1901 * and calling a provided function on each leaf page table. 1902 */ 1903 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1904 unsigned long size, pte_fn_t fn, void *data) 1905 { 1906 pgd_t *pgd; 1907 unsigned long next; 1908 unsigned long end = addr + size; 1909 int err; 1910 1911 BUG_ON(addr >= end); 1912 pgd = pgd_offset(mm, addr); 1913 do { 1914 next = pgd_addr_end(addr, end); 1915 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1916 if (err) 1917 break; 1918 } while (pgd++, addr = next, addr != end); 1919 1920 return err; 1921 } 1922 EXPORT_SYMBOL_GPL(apply_to_page_range); 1923 1924 /* 1925 * handle_pte_fault chooses page fault handler according to an entry 1926 * which was read non-atomically. Before making any commitment, on 1927 * those architectures or configurations (e.g. i386 with PAE) which 1928 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 1929 * must check under lock before unmapping the pte and proceeding 1930 * (but do_wp_page is only called after already making such a check; 1931 * and do_anonymous_page can safely check later on). 1932 */ 1933 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1934 pte_t *page_table, pte_t orig_pte) 1935 { 1936 int same = 1; 1937 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1938 if (sizeof(pte_t) > sizeof(unsigned long)) { 1939 spinlock_t *ptl = pte_lockptr(mm, pmd); 1940 spin_lock(ptl); 1941 same = pte_same(*page_table, orig_pte); 1942 spin_unlock(ptl); 1943 } 1944 #endif 1945 pte_unmap(page_table); 1946 return same; 1947 } 1948 1949 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1950 { 1951 debug_dma_assert_idle(src); 1952 1953 /* 1954 * If the source page was a PFN mapping, we don't have 1955 * a "struct page" for it. We do a best-effort copy by 1956 * just copying from the original user address. If that 1957 * fails, we just zero-fill it. Live with it. 1958 */ 1959 if (unlikely(!src)) { 1960 void *kaddr = kmap_atomic(dst); 1961 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1962 1963 /* 1964 * This really shouldn't fail, because the page is there 1965 * in the page tables. But it might just be unreadable, 1966 * in which case we just give up and fill the result with 1967 * zeroes. 1968 */ 1969 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1970 clear_page(kaddr); 1971 kunmap_atomic(kaddr); 1972 flush_dcache_page(dst); 1973 } else 1974 copy_user_highpage(dst, src, va, vma); 1975 } 1976 1977 /* 1978 * Notify the address space that the page is about to become writable so that 1979 * it can prohibit this or wait for the page to get into an appropriate state. 1980 * 1981 * We do this without the lock held, so that it can sleep if it needs to. 1982 */ 1983 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, 1984 unsigned long address) 1985 { 1986 struct vm_fault vmf; 1987 int ret; 1988 1989 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 1990 vmf.pgoff = page->index; 1991 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 1992 vmf.page = page; 1993 1994 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 1995 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 1996 return ret; 1997 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 1998 lock_page(page); 1999 if (!page->mapping) { 2000 unlock_page(page); 2001 return 0; /* retry */ 2002 } 2003 ret |= VM_FAULT_LOCKED; 2004 } else 2005 VM_BUG_ON_PAGE(!PageLocked(page), page); 2006 return ret; 2007 } 2008 2009 /* 2010 * This routine handles present pages, when users try to write 2011 * to a shared page. It is done by copying the page to a new address 2012 * and decrementing the shared-page counter for the old page. 2013 * 2014 * Note that this routine assumes that the protection checks have been 2015 * done by the caller (the low-level page fault routine in most cases). 2016 * Thus we can safely just mark it writable once we've done any necessary 2017 * COW. 2018 * 2019 * We also mark the page dirty at this point even though the page will 2020 * change only once the write actually happens. This avoids a few races, 2021 * and potentially makes it more efficient. 2022 * 2023 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2024 * but allow concurrent faults), with pte both mapped and locked. 2025 * We return with mmap_sem still held, but pte unmapped and unlocked. 2026 */ 2027 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2028 unsigned long address, pte_t *page_table, pmd_t *pmd, 2029 spinlock_t *ptl, pte_t orig_pte) 2030 __releases(ptl) 2031 { 2032 struct page *old_page, *new_page = NULL; 2033 pte_t entry; 2034 int ret = 0; 2035 int page_mkwrite = 0; 2036 struct page *dirty_page = NULL; 2037 unsigned long mmun_start = 0; /* For mmu_notifiers */ 2038 unsigned long mmun_end = 0; /* For mmu_notifiers */ 2039 struct mem_cgroup *memcg; 2040 2041 old_page = vm_normal_page(vma, address, orig_pte); 2042 if (!old_page) { 2043 /* 2044 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2045 * VM_PFNMAP VMA. 2046 * 2047 * We should not cow pages in a shared writeable mapping. 2048 * Just mark the pages writable as we can't do any dirty 2049 * accounting on raw pfn maps. 2050 */ 2051 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2052 (VM_WRITE|VM_SHARED)) 2053 goto reuse; 2054 goto gotten; 2055 } 2056 2057 /* 2058 * Take out anonymous pages first, anonymous shared vmas are 2059 * not dirty accountable. 2060 */ 2061 if (PageAnon(old_page) && !PageKsm(old_page)) { 2062 if (!trylock_page(old_page)) { 2063 page_cache_get(old_page); 2064 pte_unmap_unlock(page_table, ptl); 2065 lock_page(old_page); 2066 page_table = pte_offset_map_lock(mm, pmd, address, 2067 &ptl); 2068 if (!pte_same(*page_table, orig_pte)) { 2069 unlock_page(old_page); 2070 goto unlock; 2071 } 2072 page_cache_release(old_page); 2073 } 2074 if (reuse_swap_page(old_page)) { 2075 /* 2076 * The page is all ours. Move it to our anon_vma so 2077 * the rmap code will not search our parent or siblings. 2078 * Protected against the rmap code by the page lock. 2079 */ 2080 page_move_anon_rmap(old_page, vma, address); 2081 unlock_page(old_page); 2082 goto reuse; 2083 } 2084 unlock_page(old_page); 2085 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2086 (VM_WRITE|VM_SHARED))) { 2087 /* 2088 * Only catch write-faults on shared writable pages, 2089 * read-only shared pages can get COWed by 2090 * get_user_pages(.write=1, .force=1). 2091 */ 2092 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2093 int tmp; 2094 page_cache_get(old_page); 2095 pte_unmap_unlock(page_table, ptl); 2096 tmp = do_page_mkwrite(vma, old_page, address); 2097 if (unlikely(!tmp || (tmp & 2098 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2099 page_cache_release(old_page); 2100 return tmp; 2101 } 2102 /* 2103 * Since we dropped the lock we need to revalidate 2104 * the PTE as someone else may have changed it. If 2105 * they did, we just return, as we can count on the 2106 * MMU to tell us if they didn't also make it writable. 2107 */ 2108 page_table = pte_offset_map_lock(mm, pmd, address, 2109 &ptl); 2110 if (!pte_same(*page_table, orig_pte)) { 2111 unlock_page(old_page); 2112 goto unlock; 2113 } 2114 2115 page_mkwrite = 1; 2116 } 2117 dirty_page = old_page; 2118 get_page(dirty_page); 2119 2120 reuse: 2121 /* 2122 * Clear the pages cpupid information as the existing 2123 * information potentially belongs to a now completely 2124 * unrelated process. 2125 */ 2126 if (old_page) 2127 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1); 2128 2129 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2130 entry = pte_mkyoung(orig_pte); 2131 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2132 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2133 update_mmu_cache(vma, address, page_table); 2134 pte_unmap_unlock(page_table, ptl); 2135 ret |= VM_FAULT_WRITE; 2136 2137 if (!dirty_page) 2138 return ret; 2139 2140 if (!page_mkwrite) { 2141 struct address_space *mapping; 2142 int dirtied; 2143 2144 lock_page(dirty_page); 2145 dirtied = set_page_dirty(dirty_page); 2146 VM_BUG_ON_PAGE(PageAnon(dirty_page), dirty_page); 2147 mapping = dirty_page->mapping; 2148 unlock_page(dirty_page); 2149 2150 if (dirtied && mapping) { 2151 /* 2152 * Some device drivers do not set page.mapping 2153 * but still dirty their pages 2154 */ 2155 balance_dirty_pages_ratelimited(mapping); 2156 } 2157 2158 /* file_update_time outside page_lock */ 2159 if (vma->vm_file) 2160 file_update_time(vma->vm_file); 2161 } 2162 put_page(dirty_page); 2163 if (page_mkwrite) { 2164 struct address_space *mapping = dirty_page->mapping; 2165 2166 set_page_dirty(dirty_page); 2167 unlock_page(dirty_page); 2168 page_cache_release(dirty_page); 2169 if (mapping) { 2170 /* 2171 * Some device drivers do not set page.mapping 2172 * but still dirty their pages 2173 */ 2174 balance_dirty_pages_ratelimited(mapping); 2175 } 2176 } 2177 2178 return ret; 2179 } 2180 2181 /* 2182 * Ok, we need to copy. Oh, well.. 2183 */ 2184 page_cache_get(old_page); 2185 gotten: 2186 pte_unmap_unlock(page_table, ptl); 2187 2188 if (unlikely(anon_vma_prepare(vma))) 2189 goto oom; 2190 2191 if (is_zero_pfn(pte_pfn(orig_pte))) { 2192 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2193 if (!new_page) 2194 goto oom; 2195 } else { 2196 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2197 if (!new_page) 2198 goto oom; 2199 cow_user_page(new_page, old_page, address, vma); 2200 } 2201 __SetPageUptodate(new_page); 2202 2203 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) 2204 goto oom_free_new; 2205 2206 mmun_start = address & PAGE_MASK; 2207 mmun_end = mmun_start + PAGE_SIZE; 2208 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2209 2210 /* 2211 * Re-check the pte - we dropped the lock 2212 */ 2213 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2214 if (likely(pte_same(*page_table, orig_pte))) { 2215 if (old_page) { 2216 if (!PageAnon(old_page)) { 2217 dec_mm_counter_fast(mm, MM_FILEPAGES); 2218 inc_mm_counter_fast(mm, MM_ANONPAGES); 2219 } 2220 } else 2221 inc_mm_counter_fast(mm, MM_ANONPAGES); 2222 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2223 entry = mk_pte(new_page, vma->vm_page_prot); 2224 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2225 /* 2226 * Clear the pte entry and flush it first, before updating the 2227 * pte with the new entry. This will avoid a race condition 2228 * seen in the presence of one thread doing SMC and another 2229 * thread doing COW. 2230 */ 2231 ptep_clear_flush_notify(vma, address, page_table); 2232 page_add_new_anon_rmap(new_page, vma, address); 2233 mem_cgroup_commit_charge(new_page, memcg, false); 2234 lru_cache_add_active_or_unevictable(new_page, vma); 2235 /* 2236 * We call the notify macro here because, when using secondary 2237 * mmu page tables (such as kvm shadow page tables), we want the 2238 * new page to be mapped directly into the secondary page table. 2239 */ 2240 set_pte_at_notify(mm, address, page_table, entry); 2241 update_mmu_cache(vma, address, page_table); 2242 if (old_page) { 2243 /* 2244 * Only after switching the pte to the new page may 2245 * we remove the mapcount here. Otherwise another 2246 * process may come and find the rmap count decremented 2247 * before the pte is switched to the new page, and 2248 * "reuse" the old page writing into it while our pte 2249 * here still points into it and can be read by other 2250 * threads. 2251 * 2252 * The critical issue is to order this 2253 * page_remove_rmap with the ptp_clear_flush above. 2254 * Those stores are ordered by (if nothing else,) 2255 * the barrier present in the atomic_add_negative 2256 * in page_remove_rmap. 2257 * 2258 * Then the TLB flush in ptep_clear_flush ensures that 2259 * no process can access the old page before the 2260 * decremented mapcount is visible. And the old page 2261 * cannot be reused until after the decremented 2262 * mapcount is visible. So transitively, TLBs to 2263 * old page will be flushed before it can be reused. 2264 */ 2265 page_remove_rmap(old_page); 2266 } 2267 2268 /* Free the old page.. */ 2269 new_page = old_page; 2270 ret |= VM_FAULT_WRITE; 2271 } else 2272 mem_cgroup_cancel_charge(new_page, memcg); 2273 2274 if (new_page) 2275 page_cache_release(new_page); 2276 unlock: 2277 pte_unmap_unlock(page_table, ptl); 2278 if (mmun_end > mmun_start) 2279 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2280 if (old_page) { 2281 /* 2282 * Don't let another task, with possibly unlocked vma, 2283 * keep the mlocked page. 2284 */ 2285 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2286 lock_page(old_page); /* LRU manipulation */ 2287 munlock_vma_page(old_page); 2288 unlock_page(old_page); 2289 } 2290 page_cache_release(old_page); 2291 } 2292 return ret; 2293 oom_free_new: 2294 page_cache_release(new_page); 2295 oom: 2296 if (old_page) 2297 page_cache_release(old_page); 2298 return VM_FAULT_OOM; 2299 } 2300 2301 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2302 unsigned long start_addr, unsigned long end_addr, 2303 struct zap_details *details) 2304 { 2305 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2306 } 2307 2308 static inline void unmap_mapping_range_tree(struct rb_root *root, 2309 struct zap_details *details) 2310 { 2311 struct vm_area_struct *vma; 2312 pgoff_t vba, vea, zba, zea; 2313 2314 vma_interval_tree_foreach(vma, root, 2315 details->first_index, details->last_index) { 2316 2317 vba = vma->vm_pgoff; 2318 vea = vba + vma_pages(vma) - 1; 2319 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2320 zba = details->first_index; 2321 if (zba < vba) 2322 zba = vba; 2323 zea = details->last_index; 2324 if (zea > vea) 2325 zea = vea; 2326 2327 unmap_mapping_range_vma(vma, 2328 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2329 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2330 details); 2331 } 2332 } 2333 2334 static inline void unmap_mapping_range_list(struct list_head *head, 2335 struct zap_details *details) 2336 { 2337 struct vm_area_struct *vma; 2338 2339 /* 2340 * In nonlinear VMAs there is no correspondence between virtual address 2341 * offset and file offset. So we must perform an exhaustive search 2342 * across *all* the pages in each nonlinear VMA, not just the pages 2343 * whose virtual address lies outside the file truncation point. 2344 */ 2345 list_for_each_entry(vma, head, shared.nonlinear) { 2346 details->nonlinear_vma = vma; 2347 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2348 } 2349 } 2350 2351 /** 2352 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2353 * @mapping: the address space containing mmaps to be unmapped. 2354 * @holebegin: byte in first page to unmap, relative to the start of 2355 * the underlying file. This will be rounded down to a PAGE_SIZE 2356 * boundary. Note that this is different from truncate_pagecache(), which 2357 * must keep the partial page. In contrast, we must get rid of 2358 * partial pages. 2359 * @holelen: size of prospective hole in bytes. This will be rounded 2360 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2361 * end of the file. 2362 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2363 * but 0 when invalidating pagecache, don't throw away private data. 2364 */ 2365 void unmap_mapping_range(struct address_space *mapping, 2366 loff_t const holebegin, loff_t const holelen, int even_cows) 2367 { 2368 struct zap_details details; 2369 pgoff_t hba = holebegin >> PAGE_SHIFT; 2370 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2371 2372 /* Check for overflow. */ 2373 if (sizeof(holelen) > sizeof(hlen)) { 2374 long long holeend = 2375 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2376 if (holeend & ~(long long)ULONG_MAX) 2377 hlen = ULONG_MAX - hba + 1; 2378 } 2379 2380 details.check_mapping = even_cows? NULL: mapping; 2381 details.nonlinear_vma = NULL; 2382 details.first_index = hba; 2383 details.last_index = hba + hlen - 1; 2384 if (details.last_index < details.first_index) 2385 details.last_index = ULONG_MAX; 2386 2387 2388 i_mmap_lock_write(mapping); 2389 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2390 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2391 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2392 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2393 i_mmap_unlock_write(mapping); 2394 } 2395 EXPORT_SYMBOL(unmap_mapping_range); 2396 2397 /* 2398 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2399 * but allow concurrent faults), and pte mapped but not yet locked. 2400 * We return with pte unmapped and unlocked. 2401 * 2402 * We return with the mmap_sem locked or unlocked in the same cases 2403 * as does filemap_fault(). 2404 */ 2405 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2406 unsigned long address, pte_t *page_table, pmd_t *pmd, 2407 unsigned int flags, pte_t orig_pte) 2408 { 2409 spinlock_t *ptl; 2410 struct page *page, *swapcache; 2411 struct mem_cgroup *memcg; 2412 swp_entry_t entry; 2413 pte_t pte; 2414 int locked; 2415 int exclusive = 0; 2416 int ret = 0; 2417 2418 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2419 goto out; 2420 2421 entry = pte_to_swp_entry(orig_pte); 2422 if (unlikely(non_swap_entry(entry))) { 2423 if (is_migration_entry(entry)) { 2424 migration_entry_wait(mm, pmd, address); 2425 } else if (is_hwpoison_entry(entry)) { 2426 ret = VM_FAULT_HWPOISON; 2427 } else { 2428 print_bad_pte(vma, address, orig_pte, NULL); 2429 ret = VM_FAULT_SIGBUS; 2430 } 2431 goto out; 2432 } 2433 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2434 page = lookup_swap_cache(entry); 2435 if (!page) { 2436 page = swapin_readahead(entry, 2437 GFP_HIGHUSER_MOVABLE, vma, address); 2438 if (!page) { 2439 /* 2440 * Back out if somebody else faulted in this pte 2441 * while we released the pte lock. 2442 */ 2443 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2444 if (likely(pte_same(*page_table, orig_pte))) 2445 ret = VM_FAULT_OOM; 2446 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2447 goto unlock; 2448 } 2449 2450 /* Had to read the page from swap area: Major fault */ 2451 ret = VM_FAULT_MAJOR; 2452 count_vm_event(PGMAJFAULT); 2453 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2454 } else if (PageHWPoison(page)) { 2455 /* 2456 * hwpoisoned dirty swapcache pages are kept for killing 2457 * owner processes (which may be unknown at hwpoison time) 2458 */ 2459 ret = VM_FAULT_HWPOISON; 2460 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2461 swapcache = page; 2462 goto out_release; 2463 } 2464 2465 swapcache = page; 2466 locked = lock_page_or_retry(page, mm, flags); 2467 2468 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2469 if (!locked) { 2470 ret |= VM_FAULT_RETRY; 2471 goto out_release; 2472 } 2473 2474 /* 2475 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2476 * release the swapcache from under us. The page pin, and pte_same 2477 * test below, are not enough to exclude that. Even if it is still 2478 * swapcache, we need to check that the page's swap has not changed. 2479 */ 2480 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2481 goto out_page; 2482 2483 page = ksm_might_need_to_copy(page, vma, address); 2484 if (unlikely(!page)) { 2485 ret = VM_FAULT_OOM; 2486 page = swapcache; 2487 goto out_page; 2488 } 2489 2490 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) { 2491 ret = VM_FAULT_OOM; 2492 goto out_page; 2493 } 2494 2495 /* 2496 * Back out if somebody else already faulted in this pte. 2497 */ 2498 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2499 if (unlikely(!pte_same(*page_table, orig_pte))) 2500 goto out_nomap; 2501 2502 if (unlikely(!PageUptodate(page))) { 2503 ret = VM_FAULT_SIGBUS; 2504 goto out_nomap; 2505 } 2506 2507 /* 2508 * The page isn't present yet, go ahead with the fault. 2509 * 2510 * Be careful about the sequence of operations here. 2511 * To get its accounting right, reuse_swap_page() must be called 2512 * while the page is counted on swap but not yet in mapcount i.e. 2513 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2514 * must be called after the swap_free(), or it will never succeed. 2515 */ 2516 2517 inc_mm_counter_fast(mm, MM_ANONPAGES); 2518 dec_mm_counter_fast(mm, MM_SWAPENTS); 2519 pte = mk_pte(page, vma->vm_page_prot); 2520 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2521 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2522 flags &= ~FAULT_FLAG_WRITE; 2523 ret |= VM_FAULT_WRITE; 2524 exclusive = 1; 2525 } 2526 flush_icache_page(vma, page); 2527 if (pte_swp_soft_dirty(orig_pte)) 2528 pte = pte_mksoft_dirty(pte); 2529 set_pte_at(mm, address, page_table, pte); 2530 if (page == swapcache) { 2531 do_page_add_anon_rmap(page, vma, address, exclusive); 2532 mem_cgroup_commit_charge(page, memcg, true); 2533 } else { /* ksm created a completely new copy */ 2534 page_add_new_anon_rmap(page, vma, address); 2535 mem_cgroup_commit_charge(page, memcg, false); 2536 lru_cache_add_active_or_unevictable(page, vma); 2537 } 2538 2539 swap_free(entry); 2540 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2541 try_to_free_swap(page); 2542 unlock_page(page); 2543 if (page != swapcache) { 2544 /* 2545 * Hold the lock to avoid the swap entry to be reused 2546 * until we take the PT lock for the pte_same() check 2547 * (to avoid false positives from pte_same). For 2548 * further safety release the lock after the swap_free 2549 * so that the swap count won't change under a 2550 * parallel locked swapcache. 2551 */ 2552 unlock_page(swapcache); 2553 page_cache_release(swapcache); 2554 } 2555 2556 if (flags & FAULT_FLAG_WRITE) { 2557 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2558 if (ret & VM_FAULT_ERROR) 2559 ret &= VM_FAULT_ERROR; 2560 goto out; 2561 } 2562 2563 /* No need to invalidate - it was non-present before */ 2564 update_mmu_cache(vma, address, page_table); 2565 unlock: 2566 pte_unmap_unlock(page_table, ptl); 2567 out: 2568 return ret; 2569 out_nomap: 2570 mem_cgroup_cancel_charge(page, memcg); 2571 pte_unmap_unlock(page_table, ptl); 2572 out_page: 2573 unlock_page(page); 2574 out_release: 2575 page_cache_release(page); 2576 if (page != swapcache) { 2577 unlock_page(swapcache); 2578 page_cache_release(swapcache); 2579 } 2580 return ret; 2581 } 2582 2583 /* 2584 * This is like a special single-page "expand_{down|up}wards()", 2585 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2586 * doesn't hit another vma. 2587 */ 2588 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2589 { 2590 address &= PAGE_MASK; 2591 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2592 struct vm_area_struct *prev = vma->vm_prev; 2593 2594 /* 2595 * Is there a mapping abutting this one below? 2596 * 2597 * That's only ok if it's the same stack mapping 2598 * that has gotten split.. 2599 */ 2600 if (prev && prev->vm_end == address) 2601 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2602 2603 return expand_downwards(vma, address - PAGE_SIZE); 2604 } 2605 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2606 struct vm_area_struct *next = vma->vm_next; 2607 2608 /* As VM_GROWSDOWN but s/below/above/ */ 2609 if (next && next->vm_start == address + PAGE_SIZE) 2610 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2611 2612 return expand_upwards(vma, address + PAGE_SIZE); 2613 } 2614 return 0; 2615 } 2616 2617 /* 2618 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2619 * but allow concurrent faults), and pte mapped but not yet locked. 2620 * We return with mmap_sem still held, but pte unmapped and unlocked. 2621 */ 2622 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2623 unsigned long address, pte_t *page_table, pmd_t *pmd, 2624 unsigned int flags) 2625 { 2626 struct mem_cgroup *memcg; 2627 struct page *page; 2628 spinlock_t *ptl; 2629 pte_t entry; 2630 2631 pte_unmap(page_table); 2632 2633 /* Check if we need to add a guard page to the stack */ 2634 if (check_stack_guard_page(vma, address) < 0) 2635 return VM_FAULT_SIGSEGV; 2636 2637 /* Use the zero-page for reads */ 2638 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) { 2639 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2640 vma->vm_page_prot)); 2641 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2642 if (!pte_none(*page_table)) 2643 goto unlock; 2644 goto setpte; 2645 } 2646 2647 /* Allocate our own private page. */ 2648 if (unlikely(anon_vma_prepare(vma))) 2649 goto oom; 2650 page = alloc_zeroed_user_highpage_movable(vma, address); 2651 if (!page) 2652 goto oom; 2653 /* 2654 * The memory barrier inside __SetPageUptodate makes sure that 2655 * preceeding stores to the page contents become visible before 2656 * the set_pte_at() write. 2657 */ 2658 __SetPageUptodate(page); 2659 2660 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) 2661 goto oom_free_page; 2662 2663 entry = mk_pte(page, vma->vm_page_prot); 2664 if (vma->vm_flags & VM_WRITE) 2665 entry = pte_mkwrite(pte_mkdirty(entry)); 2666 2667 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2668 if (!pte_none(*page_table)) 2669 goto release; 2670 2671 inc_mm_counter_fast(mm, MM_ANONPAGES); 2672 page_add_new_anon_rmap(page, vma, address); 2673 mem_cgroup_commit_charge(page, memcg, false); 2674 lru_cache_add_active_or_unevictable(page, vma); 2675 setpte: 2676 set_pte_at(mm, address, page_table, entry); 2677 2678 /* No need to invalidate - it was non-present before */ 2679 update_mmu_cache(vma, address, page_table); 2680 unlock: 2681 pte_unmap_unlock(page_table, ptl); 2682 return 0; 2683 release: 2684 mem_cgroup_cancel_charge(page, memcg); 2685 page_cache_release(page); 2686 goto unlock; 2687 oom_free_page: 2688 page_cache_release(page); 2689 oom: 2690 return VM_FAULT_OOM; 2691 } 2692 2693 /* 2694 * The mmap_sem must have been held on entry, and may have been 2695 * released depending on flags and vma->vm_ops->fault() return value. 2696 * See filemap_fault() and __lock_page_retry(). 2697 */ 2698 static int __do_fault(struct vm_area_struct *vma, unsigned long address, 2699 pgoff_t pgoff, unsigned int flags, struct page **page) 2700 { 2701 struct vm_fault vmf; 2702 int ret; 2703 2704 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2705 vmf.pgoff = pgoff; 2706 vmf.flags = flags; 2707 vmf.page = NULL; 2708 2709 ret = vma->vm_ops->fault(vma, &vmf); 2710 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2711 return ret; 2712 2713 if (unlikely(PageHWPoison(vmf.page))) { 2714 if (ret & VM_FAULT_LOCKED) 2715 unlock_page(vmf.page); 2716 page_cache_release(vmf.page); 2717 return VM_FAULT_HWPOISON; 2718 } 2719 2720 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2721 lock_page(vmf.page); 2722 else 2723 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 2724 2725 *page = vmf.page; 2726 return ret; 2727 } 2728 2729 /** 2730 * do_set_pte - setup new PTE entry for given page and add reverse page mapping. 2731 * 2732 * @vma: virtual memory area 2733 * @address: user virtual address 2734 * @page: page to map 2735 * @pte: pointer to target page table entry 2736 * @write: true, if new entry is writable 2737 * @anon: true, if it's anonymous page 2738 * 2739 * Caller must hold page table lock relevant for @pte. 2740 * 2741 * Target users are page handler itself and implementations of 2742 * vm_ops->map_pages. 2743 */ 2744 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 2745 struct page *page, pte_t *pte, bool write, bool anon) 2746 { 2747 pte_t entry; 2748 2749 flush_icache_page(vma, page); 2750 entry = mk_pte(page, vma->vm_page_prot); 2751 if (write) 2752 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2753 else if (pte_file(*pte) && pte_file_soft_dirty(*pte)) 2754 entry = pte_mksoft_dirty(entry); 2755 if (anon) { 2756 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2757 page_add_new_anon_rmap(page, vma, address); 2758 } else { 2759 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES); 2760 page_add_file_rmap(page); 2761 } 2762 set_pte_at(vma->vm_mm, address, pte, entry); 2763 2764 /* no need to invalidate: a not-present page won't be cached */ 2765 update_mmu_cache(vma, address, pte); 2766 } 2767 2768 static unsigned long fault_around_bytes __read_mostly = 2769 rounddown_pow_of_two(65536); 2770 2771 #ifdef CONFIG_DEBUG_FS 2772 static int fault_around_bytes_get(void *data, u64 *val) 2773 { 2774 *val = fault_around_bytes; 2775 return 0; 2776 } 2777 2778 /* 2779 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 2780 * rounded down to nearest page order. It's what do_fault_around() expects to 2781 * see. 2782 */ 2783 static int fault_around_bytes_set(void *data, u64 val) 2784 { 2785 if (val / PAGE_SIZE > PTRS_PER_PTE) 2786 return -EINVAL; 2787 if (val > PAGE_SIZE) 2788 fault_around_bytes = rounddown_pow_of_two(val); 2789 else 2790 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 2791 return 0; 2792 } 2793 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 2794 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 2795 2796 static int __init fault_around_debugfs(void) 2797 { 2798 void *ret; 2799 2800 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 2801 &fault_around_bytes_fops); 2802 if (!ret) 2803 pr_warn("Failed to create fault_around_bytes in debugfs"); 2804 return 0; 2805 } 2806 late_initcall(fault_around_debugfs); 2807 #endif 2808 2809 /* 2810 * do_fault_around() tries to map few pages around the fault address. The hope 2811 * is that the pages will be needed soon and this will lower the number of 2812 * faults to handle. 2813 * 2814 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 2815 * not ready to be mapped: not up-to-date, locked, etc. 2816 * 2817 * This function is called with the page table lock taken. In the split ptlock 2818 * case the page table lock only protects only those entries which belong to 2819 * the page table corresponding to the fault address. 2820 * 2821 * This function doesn't cross the VMA boundaries, in order to call map_pages() 2822 * only once. 2823 * 2824 * fault_around_pages() defines how many pages we'll try to map. 2825 * do_fault_around() expects it to return a power of two less than or equal to 2826 * PTRS_PER_PTE. 2827 * 2828 * The virtual address of the area that we map is naturally aligned to the 2829 * fault_around_pages() value (and therefore to page order). This way it's 2830 * easier to guarantee that we don't cross page table boundaries. 2831 */ 2832 static void do_fault_around(struct vm_area_struct *vma, unsigned long address, 2833 pte_t *pte, pgoff_t pgoff, unsigned int flags) 2834 { 2835 unsigned long start_addr, nr_pages, mask; 2836 pgoff_t max_pgoff; 2837 struct vm_fault vmf; 2838 int off; 2839 2840 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT; 2841 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 2842 2843 start_addr = max(address & mask, vma->vm_start); 2844 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 2845 pte -= off; 2846 pgoff -= off; 2847 2848 /* 2849 * max_pgoff is either end of page table or end of vma 2850 * or fault_around_pages() from pgoff, depending what is nearest. 2851 */ 2852 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 2853 PTRS_PER_PTE - 1; 2854 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1, 2855 pgoff + nr_pages - 1); 2856 2857 /* Check if it makes any sense to call ->map_pages */ 2858 while (!pte_none(*pte)) { 2859 if (++pgoff > max_pgoff) 2860 return; 2861 start_addr += PAGE_SIZE; 2862 if (start_addr >= vma->vm_end) 2863 return; 2864 pte++; 2865 } 2866 2867 vmf.virtual_address = (void __user *) start_addr; 2868 vmf.pte = pte; 2869 vmf.pgoff = pgoff; 2870 vmf.max_pgoff = max_pgoff; 2871 vmf.flags = flags; 2872 vma->vm_ops->map_pages(vma, &vmf); 2873 } 2874 2875 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2876 unsigned long address, pmd_t *pmd, 2877 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2878 { 2879 struct page *fault_page; 2880 spinlock_t *ptl; 2881 pte_t *pte; 2882 int ret = 0; 2883 2884 /* 2885 * Let's call ->map_pages() first and use ->fault() as fallback 2886 * if page by the offset is not ready to be mapped (cold cache or 2887 * something). 2888 */ 2889 if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) && 2890 fault_around_bytes >> PAGE_SHIFT > 1) { 2891 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2892 do_fault_around(vma, address, pte, pgoff, flags); 2893 if (!pte_same(*pte, orig_pte)) 2894 goto unlock_out; 2895 pte_unmap_unlock(pte, ptl); 2896 } 2897 2898 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2899 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2900 return ret; 2901 2902 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2903 if (unlikely(!pte_same(*pte, orig_pte))) { 2904 pte_unmap_unlock(pte, ptl); 2905 unlock_page(fault_page); 2906 page_cache_release(fault_page); 2907 return ret; 2908 } 2909 do_set_pte(vma, address, fault_page, pte, false, false); 2910 unlock_page(fault_page); 2911 unlock_out: 2912 pte_unmap_unlock(pte, ptl); 2913 return ret; 2914 } 2915 2916 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2917 unsigned long address, pmd_t *pmd, 2918 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2919 { 2920 struct page *fault_page, *new_page; 2921 struct mem_cgroup *memcg; 2922 spinlock_t *ptl; 2923 pte_t *pte; 2924 int ret; 2925 2926 if (unlikely(anon_vma_prepare(vma))) 2927 return VM_FAULT_OOM; 2928 2929 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2930 if (!new_page) 2931 return VM_FAULT_OOM; 2932 2933 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) { 2934 page_cache_release(new_page); 2935 return VM_FAULT_OOM; 2936 } 2937 2938 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2939 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2940 goto uncharge_out; 2941 2942 copy_user_highpage(new_page, fault_page, address, vma); 2943 __SetPageUptodate(new_page); 2944 2945 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2946 if (unlikely(!pte_same(*pte, orig_pte))) { 2947 pte_unmap_unlock(pte, ptl); 2948 unlock_page(fault_page); 2949 page_cache_release(fault_page); 2950 goto uncharge_out; 2951 } 2952 do_set_pte(vma, address, new_page, pte, true, true); 2953 mem_cgroup_commit_charge(new_page, memcg, false); 2954 lru_cache_add_active_or_unevictable(new_page, vma); 2955 pte_unmap_unlock(pte, ptl); 2956 unlock_page(fault_page); 2957 page_cache_release(fault_page); 2958 return ret; 2959 uncharge_out: 2960 mem_cgroup_cancel_charge(new_page, memcg); 2961 page_cache_release(new_page); 2962 return ret; 2963 } 2964 2965 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2966 unsigned long address, pmd_t *pmd, 2967 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2968 { 2969 struct page *fault_page; 2970 struct address_space *mapping; 2971 spinlock_t *ptl; 2972 pte_t *pte; 2973 int dirtied = 0; 2974 int ret, tmp; 2975 2976 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2977 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2978 return ret; 2979 2980 /* 2981 * Check if the backing address space wants to know that the page is 2982 * about to become writable 2983 */ 2984 if (vma->vm_ops->page_mkwrite) { 2985 unlock_page(fault_page); 2986 tmp = do_page_mkwrite(vma, fault_page, address); 2987 if (unlikely(!tmp || 2988 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2989 page_cache_release(fault_page); 2990 return tmp; 2991 } 2992 } 2993 2994 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2995 if (unlikely(!pte_same(*pte, orig_pte))) { 2996 pte_unmap_unlock(pte, ptl); 2997 unlock_page(fault_page); 2998 page_cache_release(fault_page); 2999 return ret; 3000 } 3001 do_set_pte(vma, address, fault_page, pte, true, false); 3002 pte_unmap_unlock(pte, ptl); 3003 3004 if (set_page_dirty(fault_page)) 3005 dirtied = 1; 3006 /* 3007 * Take a local copy of the address_space - page.mapping may be zeroed 3008 * by truncate after unlock_page(). The address_space itself remains 3009 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 3010 * release semantics to prevent the compiler from undoing this copying. 3011 */ 3012 mapping = fault_page->mapping; 3013 unlock_page(fault_page); 3014 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { 3015 /* 3016 * Some device drivers do not set page.mapping but still 3017 * dirty their pages 3018 */ 3019 balance_dirty_pages_ratelimited(mapping); 3020 } 3021 3022 /* file_update_time outside page_lock */ 3023 if (vma->vm_file && !vma->vm_ops->page_mkwrite) 3024 file_update_time(vma->vm_file); 3025 3026 return ret; 3027 } 3028 3029 /* 3030 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3031 * but allow concurrent faults). 3032 * The mmap_sem may have been released depending on flags and our 3033 * return value. See filemap_fault() and __lock_page_or_retry(). 3034 */ 3035 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3036 unsigned long address, pte_t *page_table, pmd_t *pmd, 3037 unsigned int flags, pte_t orig_pte) 3038 { 3039 pgoff_t pgoff = (((address & PAGE_MASK) 3040 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3041 3042 pte_unmap(page_table); 3043 if (!(flags & FAULT_FLAG_WRITE)) 3044 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3045 orig_pte); 3046 if (!(vma->vm_flags & VM_SHARED)) 3047 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3048 orig_pte); 3049 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3050 } 3051 3052 /* 3053 * Fault of a previously existing named mapping. Repopulate the pte 3054 * from the encoded file_pte if possible. This enables swappable 3055 * nonlinear vmas. 3056 * 3057 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3058 * but allow concurrent faults), and pte mapped but not yet locked. 3059 * We return with pte unmapped and unlocked. 3060 * The mmap_sem may have been released depending on flags and our 3061 * return value. See filemap_fault() and __lock_page_or_retry(). 3062 */ 3063 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3064 unsigned long address, pte_t *page_table, pmd_t *pmd, 3065 unsigned int flags, pte_t orig_pte) 3066 { 3067 pgoff_t pgoff; 3068 3069 flags |= FAULT_FLAG_NONLINEAR; 3070 3071 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3072 return 0; 3073 3074 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3075 /* 3076 * Page table corrupted: show pte and kill process. 3077 */ 3078 print_bad_pte(vma, address, orig_pte, NULL); 3079 return VM_FAULT_SIGBUS; 3080 } 3081 3082 pgoff = pte_to_pgoff(orig_pte); 3083 if (!(flags & FAULT_FLAG_WRITE)) 3084 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3085 orig_pte); 3086 if (!(vma->vm_flags & VM_SHARED)) 3087 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3088 orig_pte); 3089 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3090 } 3091 3092 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3093 unsigned long addr, int page_nid, 3094 int *flags) 3095 { 3096 get_page(page); 3097 3098 count_vm_numa_event(NUMA_HINT_FAULTS); 3099 if (page_nid == numa_node_id()) { 3100 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3101 *flags |= TNF_FAULT_LOCAL; 3102 } 3103 3104 return mpol_misplaced(page, vma, addr); 3105 } 3106 3107 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3108 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3109 { 3110 struct page *page = NULL; 3111 spinlock_t *ptl; 3112 int page_nid = -1; 3113 int last_cpupid; 3114 int target_nid; 3115 bool migrated = false; 3116 int flags = 0; 3117 3118 /* 3119 * The "pte" at this point cannot be used safely without 3120 * validation through pte_unmap_same(). It's of NUMA type but 3121 * the pfn may be screwed if the read is non atomic. 3122 * 3123 * ptep_modify_prot_start is not called as this is clearing 3124 * the _PAGE_NUMA bit and it is not really expected that there 3125 * would be concurrent hardware modifications to the PTE. 3126 */ 3127 ptl = pte_lockptr(mm, pmd); 3128 spin_lock(ptl); 3129 if (unlikely(!pte_same(*ptep, pte))) { 3130 pte_unmap_unlock(ptep, ptl); 3131 goto out; 3132 } 3133 3134 pte = pte_mknonnuma(pte); 3135 set_pte_at(mm, addr, ptep, pte); 3136 update_mmu_cache(vma, addr, ptep); 3137 3138 page = vm_normal_page(vma, addr, pte); 3139 if (!page) { 3140 pte_unmap_unlock(ptep, ptl); 3141 return 0; 3142 } 3143 BUG_ON(is_zero_pfn(page_to_pfn(page))); 3144 3145 /* 3146 * Avoid grouping on DSO/COW pages in specific and RO pages 3147 * in general, RO pages shouldn't hurt as much anyway since 3148 * they can be in shared cache state. 3149 */ 3150 if (!pte_write(pte)) 3151 flags |= TNF_NO_GROUP; 3152 3153 /* 3154 * Flag if the page is shared between multiple address spaces. This 3155 * is later used when determining whether to group tasks together 3156 */ 3157 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3158 flags |= TNF_SHARED; 3159 3160 last_cpupid = page_cpupid_last(page); 3161 page_nid = page_to_nid(page); 3162 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3163 pte_unmap_unlock(ptep, ptl); 3164 if (target_nid == -1) { 3165 put_page(page); 3166 goto out; 3167 } 3168 3169 /* Migrate to the requested node */ 3170 migrated = migrate_misplaced_page(page, vma, target_nid); 3171 if (migrated) { 3172 page_nid = target_nid; 3173 flags |= TNF_MIGRATED; 3174 } 3175 3176 out: 3177 if (page_nid != -1) 3178 task_numa_fault(last_cpupid, page_nid, 1, flags); 3179 return 0; 3180 } 3181 3182 /* 3183 * These routines also need to handle stuff like marking pages dirty 3184 * and/or accessed for architectures that don't do it in hardware (most 3185 * RISC architectures). The early dirtying is also good on the i386. 3186 * 3187 * There is also a hook called "update_mmu_cache()" that architectures 3188 * with external mmu caches can use to update those (ie the Sparc or 3189 * PowerPC hashed page tables that act as extended TLBs). 3190 * 3191 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3192 * but allow concurrent faults), and pte mapped but not yet locked. 3193 * We return with pte unmapped and unlocked. 3194 * 3195 * The mmap_sem may have been released depending on flags and our 3196 * return value. See filemap_fault() and __lock_page_or_retry(). 3197 */ 3198 static int handle_pte_fault(struct mm_struct *mm, 3199 struct vm_area_struct *vma, unsigned long address, 3200 pte_t *pte, pmd_t *pmd, unsigned int flags) 3201 { 3202 pte_t entry; 3203 spinlock_t *ptl; 3204 3205 /* 3206 * some architectures can have larger ptes than wordsize, 3207 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y, 3208 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses. 3209 * The code below just needs a consistent view for the ifs and 3210 * we later double check anyway with the ptl lock held. So here 3211 * a barrier will do. 3212 */ 3213 entry = *pte; 3214 barrier(); 3215 if (!pte_present(entry)) { 3216 if (pte_none(entry)) { 3217 if (vma->vm_ops) { 3218 if (likely(vma->vm_ops->fault)) 3219 return do_linear_fault(mm, vma, address, 3220 pte, pmd, flags, entry); 3221 } 3222 return do_anonymous_page(mm, vma, address, 3223 pte, pmd, flags); 3224 } 3225 if (pte_file(entry)) 3226 return do_nonlinear_fault(mm, vma, address, 3227 pte, pmd, flags, entry); 3228 return do_swap_page(mm, vma, address, 3229 pte, pmd, flags, entry); 3230 } 3231 3232 if (pte_numa(entry)) 3233 return do_numa_page(mm, vma, address, entry, pte, pmd); 3234 3235 ptl = pte_lockptr(mm, pmd); 3236 spin_lock(ptl); 3237 if (unlikely(!pte_same(*pte, entry))) 3238 goto unlock; 3239 if (flags & FAULT_FLAG_WRITE) { 3240 if (!pte_write(entry)) 3241 return do_wp_page(mm, vma, address, 3242 pte, pmd, ptl, entry); 3243 entry = pte_mkdirty(entry); 3244 } 3245 entry = pte_mkyoung(entry); 3246 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3247 update_mmu_cache(vma, address, pte); 3248 } else { 3249 /* 3250 * This is needed only for protection faults but the arch code 3251 * is not yet telling us if this is a protection fault or not. 3252 * This still avoids useless tlb flushes for .text page faults 3253 * with threads. 3254 */ 3255 if (flags & FAULT_FLAG_WRITE) 3256 flush_tlb_fix_spurious_fault(vma, address); 3257 } 3258 unlock: 3259 pte_unmap_unlock(pte, ptl); 3260 return 0; 3261 } 3262 3263 /* 3264 * By the time we get here, we already hold the mm semaphore 3265 * 3266 * The mmap_sem may have been released depending on flags and our 3267 * return value. See filemap_fault() and __lock_page_or_retry(). 3268 */ 3269 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3270 unsigned long address, unsigned int flags) 3271 { 3272 pgd_t *pgd; 3273 pud_t *pud; 3274 pmd_t *pmd; 3275 pte_t *pte; 3276 3277 if (unlikely(is_vm_hugetlb_page(vma))) 3278 return hugetlb_fault(mm, vma, address, flags); 3279 3280 pgd = pgd_offset(mm, address); 3281 pud = pud_alloc(mm, pgd, address); 3282 if (!pud) 3283 return VM_FAULT_OOM; 3284 pmd = pmd_alloc(mm, pud, address); 3285 if (!pmd) 3286 return VM_FAULT_OOM; 3287 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3288 int ret = VM_FAULT_FALLBACK; 3289 if (!vma->vm_ops) 3290 ret = do_huge_pmd_anonymous_page(mm, vma, address, 3291 pmd, flags); 3292 if (!(ret & VM_FAULT_FALLBACK)) 3293 return ret; 3294 } else { 3295 pmd_t orig_pmd = *pmd; 3296 int ret; 3297 3298 barrier(); 3299 if (pmd_trans_huge(orig_pmd)) { 3300 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3301 3302 /* 3303 * If the pmd is splitting, return and retry the 3304 * the fault. Alternative: wait until the split 3305 * is done, and goto retry. 3306 */ 3307 if (pmd_trans_splitting(orig_pmd)) 3308 return 0; 3309 3310 if (pmd_numa(orig_pmd)) 3311 return do_huge_pmd_numa_page(mm, vma, address, 3312 orig_pmd, pmd); 3313 3314 if (dirty && !pmd_write(orig_pmd)) { 3315 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3316 orig_pmd); 3317 if (!(ret & VM_FAULT_FALLBACK)) 3318 return ret; 3319 } else { 3320 huge_pmd_set_accessed(mm, vma, address, pmd, 3321 orig_pmd, dirty); 3322 return 0; 3323 } 3324 } 3325 } 3326 3327 /* 3328 * Use __pte_alloc instead of pte_alloc_map, because we can't 3329 * run pte_offset_map on the pmd, if an huge pmd could 3330 * materialize from under us from a different thread. 3331 */ 3332 if (unlikely(pmd_none(*pmd)) && 3333 unlikely(__pte_alloc(mm, vma, pmd, address))) 3334 return VM_FAULT_OOM; 3335 /* if an huge pmd materialized from under us just retry later */ 3336 if (unlikely(pmd_trans_huge(*pmd))) 3337 return 0; 3338 /* 3339 * A regular pmd is established and it can't morph into a huge pmd 3340 * from under us anymore at this point because we hold the mmap_sem 3341 * read mode and khugepaged takes it in write mode. So now it's 3342 * safe to run pte_offset_map(). 3343 */ 3344 pte = pte_offset_map(pmd, address); 3345 3346 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3347 } 3348 3349 /* 3350 * By the time we get here, we already hold the mm semaphore 3351 * 3352 * The mmap_sem may have been released depending on flags and our 3353 * return value. See filemap_fault() and __lock_page_or_retry(). 3354 */ 3355 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3356 unsigned long address, unsigned int flags) 3357 { 3358 int ret; 3359 3360 __set_current_state(TASK_RUNNING); 3361 3362 count_vm_event(PGFAULT); 3363 mem_cgroup_count_vm_event(mm, PGFAULT); 3364 3365 /* do counter updates before entering really critical section. */ 3366 check_sync_rss_stat(current); 3367 3368 /* 3369 * Enable the memcg OOM handling for faults triggered in user 3370 * space. Kernel faults are handled more gracefully. 3371 */ 3372 if (flags & FAULT_FLAG_USER) 3373 mem_cgroup_oom_enable(); 3374 3375 ret = __handle_mm_fault(mm, vma, address, flags); 3376 3377 if (flags & FAULT_FLAG_USER) { 3378 mem_cgroup_oom_disable(); 3379 /* 3380 * The task may have entered a memcg OOM situation but 3381 * if the allocation error was handled gracefully (no 3382 * VM_FAULT_OOM), there is no need to kill anything. 3383 * Just clean up the OOM state peacefully. 3384 */ 3385 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3386 mem_cgroup_oom_synchronize(false); 3387 } 3388 3389 return ret; 3390 } 3391 EXPORT_SYMBOL_GPL(handle_mm_fault); 3392 3393 #ifndef __PAGETABLE_PUD_FOLDED 3394 /* 3395 * Allocate page upper directory. 3396 * We've already handled the fast-path in-line. 3397 */ 3398 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3399 { 3400 pud_t *new = pud_alloc_one(mm, address); 3401 if (!new) 3402 return -ENOMEM; 3403 3404 smp_wmb(); /* See comment in __pte_alloc */ 3405 3406 spin_lock(&mm->page_table_lock); 3407 if (pgd_present(*pgd)) /* Another has populated it */ 3408 pud_free(mm, new); 3409 else 3410 pgd_populate(mm, pgd, new); 3411 spin_unlock(&mm->page_table_lock); 3412 return 0; 3413 } 3414 #endif /* __PAGETABLE_PUD_FOLDED */ 3415 3416 #ifndef __PAGETABLE_PMD_FOLDED 3417 /* 3418 * Allocate page middle directory. 3419 * We've already handled the fast-path in-line. 3420 */ 3421 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3422 { 3423 pmd_t *new = pmd_alloc_one(mm, address); 3424 if (!new) 3425 return -ENOMEM; 3426 3427 smp_wmb(); /* See comment in __pte_alloc */ 3428 3429 spin_lock(&mm->page_table_lock); 3430 #ifndef __ARCH_HAS_4LEVEL_HACK 3431 if (pud_present(*pud)) /* Another has populated it */ 3432 pmd_free(mm, new); 3433 else 3434 pud_populate(mm, pud, new); 3435 #else 3436 if (pgd_present(*pud)) /* Another has populated it */ 3437 pmd_free(mm, new); 3438 else 3439 pgd_populate(mm, pud, new); 3440 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3441 spin_unlock(&mm->page_table_lock); 3442 return 0; 3443 } 3444 #endif /* __PAGETABLE_PMD_FOLDED */ 3445 3446 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3447 pte_t **ptepp, spinlock_t **ptlp) 3448 { 3449 pgd_t *pgd; 3450 pud_t *pud; 3451 pmd_t *pmd; 3452 pte_t *ptep; 3453 3454 pgd = pgd_offset(mm, address); 3455 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3456 goto out; 3457 3458 pud = pud_offset(pgd, address); 3459 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3460 goto out; 3461 3462 pmd = pmd_offset(pud, address); 3463 VM_BUG_ON(pmd_trans_huge(*pmd)); 3464 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3465 goto out; 3466 3467 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3468 if (pmd_huge(*pmd)) 3469 goto out; 3470 3471 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3472 if (!ptep) 3473 goto out; 3474 if (!pte_present(*ptep)) 3475 goto unlock; 3476 *ptepp = ptep; 3477 return 0; 3478 unlock: 3479 pte_unmap_unlock(ptep, *ptlp); 3480 out: 3481 return -EINVAL; 3482 } 3483 3484 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3485 pte_t **ptepp, spinlock_t **ptlp) 3486 { 3487 int res; 3488 3489 /* (void) is needed to make gcc happy */ 3490 (void) __cond_lock(*ptlp, 3491 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3492 return res; 3493 } 3494 3495 /** 3496 * follow_pfn - look up PFN at a user virtual address 3497 * @vma: memory mapping 3498 * @address: user virtual address 3499 * @pfn: location to store found PFN 3500 * 3501 * Only IO mappings and raw PFN mappings are allowed. 3502 * 3503 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3504 */ 3505 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3506 unsigned long *pfn) 3507 { 3508 int ret = -EINVAL; 3509 spinlock_t *ptl; 3510 pte_t *ptep; 3511 3512 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3513 return ret; 3514 3515 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3516 if (ret) 3517 return ret; 3518 *pfn = pte_pfn(*ptep); 3519 pte_unmap_unlock(ptep, ptl); 3520 return 0; 3521 } 3522 EXPORT_SYMBOL(follow_pfn); 3523 3524 #ifdef CONFIG_HAVE_IOREMAP_PROT 3525 int follow_phys(struct vm_area_struct *vma, 3526 unsigned long address, unsigned int flags, 3527 unsigned long *prot, resource_size_t *phys) 3528 { 3529 int ret = -EINVAL; 3530 pte_t *ptep, pte; 3531 spinlock_t *ptl; 3532 3533 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3534 goto out; 3535 3536 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3537 goto out; 3538 pte = *ptep; 3539 3540 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3541 goto unlock; 3542 3543 *prot = pgprot_val(pte_pgprot(pte)); 3544 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3545 3546 ret = 0; 3547 unlock: 3548 pte_unmap_unlock(ptep, ptl); 3549 out: 3550 return ret; 3551 } 3552 3553 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3554 void *buf, int len, int write) 3555 { 3556 resource_size_t phys_addr; 3557 unsigned long prot = 0; 3558 void __iomem *maddr; 3559 int offset = addr & (PAGE_SIZE-1); 3560 3561 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3562 return -EINVAL; 3563 3564 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3565 if (write) 3566 memcpy_toio(maddr + offset, buf, len); 3567 else 3568 memcpy_fromio(buf, maddr + offset, len); 3569 iounmap(maddr); 3570 3571 return len; 3572 } 3573 EXPORT_SYMBOL_GPL(generic_access_phys); 3574 #endif 3575 3576 /* 3577 * Access another process' address space as given in mm. If non-NULL, use the 3578 * given task for page fault accounting. 3579 */ 3580 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3581 unsigned long addr, void *buf, int len, int write) 3582 { 3583 struct vm_area_struct *vma; 3584 void *old_buf = buf; 3585 3586 down_read(&mm->mmap_sem); 3587 /* ignore errors, just check how much was successfully transferred */ 3588 while (len) { 3589 int bytes, ret, offset; 3590 void *maddr; 3591 struct page *page = NULL; 3592 3593 ret = get_user_pages(tsk, mm, addr, 1, 3594 write, 1, &page, &vma); 3595 if (ret <= 0) { 3596 #ifndef CONFIG_HAVE_IOREMAP_PROT 3597 break; 3598 #else 3599 /* 3600 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3601 * we can access using slightly different code. 3602 */ 3603 vma = find_vma(mm, addr); 3604 if (!vma || vma->vm_start > addr) 3605 break; 3606 if (vma->vm_ops && vma->vm_ops->access) 3607 ret = vma->vm_ops->access(vma, addr, buf, 3608 len, write); 3609 if (ret <= 0) 3610 break; 3611 bytes = ret; 3612 #endif 3613 } else { 3614 bytes = len; 3615 offset = addr & (PAGE_SIZE-1); 3616 if (bytes > PAGE_SIZE-offset) 3617 bytes = PAGE_SIZE-offset; 3618 3619 maddr = kmap(page); 3620 if (write) { 3621 copy_to_user_page(vma, page, addr, 3622 maddr + offset, buf, bytes); 3623 set_page_dirty_lock(page); 3624 } else { 3625 copy_from_user_page(vma, page, addr, 3626 buf, maddr + offset, bytes); 3627 } 3628 kunmap(page); 3629 page_cache_release(page); 3630 } 3631 len -= bytes; 3632 buf += bytes; 3633 addr += bytes; 3634 } 3635 up_read(&mm->mmap_sem); 3636 3637 return buf - old_buf; 3638 } 3639 3640 /** 3641 * access_remote_vm - access another process' address space 3642 * @mm: the mm_struct of the target address space 3643 * @addr: start address to access 3644 * @buf: source or destination buffer 3645 * @len: number of bytes to transfer 3646 * @write: whether the access is a write 3647 * 3648 * The caller must hold a reference on @mm. 3649 */ 3650 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3651 void *buf, int len, int write) 3652 { 3653 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3654 } 3655 3656 /* 3657 * Access another process' address space. 3658 * Source/target buffer must be kernel space, 3659 * Do not walk the page table directly, use get_user_pages 3660 */ 3661 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3662 void *buf, int len, int write) 3663 { 3664 struct mm_struct *mm; 3665 int ret; 3666 3667 mm = get_task_mm(tsk); 3668 if (!mm) 3669 return 0; 3670 3671 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3672 mmput(mm); 3673 3674 return ret; 3675 } 3676 3677 /* 3678 * Print the name of a VMA. 3679 */ 3680 void print_vma_addr(char *prefix, unsigned long ip) 3681 { 3682 struct mm_struct *mm = current->mm; 3683 struct vm_area_struct *vma; 3684 3685 /* 3686 * Do not print if we are in atomic 3687 * contexts (in exception stacks, etc.): 3688 */ 3689 if (preempt_count()) 3690 return; 3691 3692 down_read(&mm->mmap_sem); 3693 vma = find_vma(mm, ip); 3694 if (vma && vma->vm_file) { 3695 struct file *f = vma->vm_file; 3696 char *buf = (char *)__get_free_page(GFP_KERNEL); 3697 if (buf) { 3698 char *p; 3699 3700 p = d_path(&f->f_path, buf, PAGE_SIZE); 3701 if (IS_ERR(p)) 3702 p = "?"; 3703 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 3704 vma->vm_start, 3705 vma->vm_end - vma->vm_start); 3706 free_page((unsigned long)buf); 3707 } 3708 } 3709 up_read(&mm->mmap_sem); 3710 } 3711 3712 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3713 void might_fault(void) 3714 { 3715 /* 3716 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3717 * holding the mmap_sem, this is safe because kernel memory doesn't 3718 * get paged out, therefore we'll never actually fault, and the 3719 * below annotations will generate false positives. 3720 */ 3721 if (segment_eq(get_fs(), KERNEL_DS)) 3722 return; 3723 3724 /* 3725 * it would be nicer only to annotate paths which are not under 3726 * pagefault_disable, however that requires a larger audit and 3727 * providing helpers like get_user_atomic. 3728 */ 3729 if (in_atomic()) 3730 return; 3731 3732 __might_sleep(__FILE__, __LINE__, 0); 3733 3734 if (current->mm) 3735 might_lock_read(¤t->mm->mmap_sem); 3736 } 3737 EXPORT_SYMBOL(might_fault); 3738 #endif 3739 3740 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3741 static void clear_gigantic_page(struct page *page, 3742 unsigned long addr, 3743 unsigned int pages_per_huge_page) 3744 { 3745 int i; 3746 struct page *p = page; 3747 3748 might_sleep(); 3749 for (i = 0; i < pages_per_huge_page; 3750 i++, p = mem_map_next(p, page, i)) { 3751 cond_resched(); 3752 clear_user_highpage(p, addr + i * PAGE_SIZE); 3753 } 3754 } 3755 void clear_huge_page(struct page *page, 3756 unsigned long addr, unsigned int pages_per_huge_page) 3757 { 3758 int i; 3759 3760 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3761 clear_gigantic_page(page, addr, pages_per_huge_page); 3762 return; 3763 } 3764 3765 might_sleep(); 3766 for (i = 0; i < pages_per_huge_page; i++) { 3767 cond_resched(); 3768 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3769 } 3770 } 3771 3772 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3773 unsigned long addr, 3774 struct vm_area_struct *vma, 3775 unsigned int pages_per_huge_page) 3776 { 3777 int i; 3778 struct page *dst_base = dst; 3779 struct page *src_base = src; 3780 3781 for (i = 0; i < pages_per_huge_page; ) { 3782 cond_resched(); 3783 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3784 3785 i++; 3786 dst = mem_map_next(dst, dst_base, i); 3787 src = mem_map_next(src, src_base, i); 3788 } 3789 } 3790 3791 void copy_user_huge_page(struct page *dst, struct page *src, 3792 unsigned long addr, struct vm_area_struct *vma, 3793 unsigned int pages_per_huge_page) 3794 { 3795 int i; 3796 3797 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3798 copy_user_gigantic_page(dst, src, addr, vma, 3799 pages_per_huge_page); 3800 return; 3801 } 3802 3803 might_sleep(); 3804 for (i = 0; i < pages_per_huge_page; i++) { 3805 cond_resched(); 3806 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3807 } 3808 } 3809 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3810 3811 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 3812 3813 static struct kmem_cache *page_ptl_cachep; 3814 3815 void __init ptlock_cache_init(void) 3816 { 3817 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 3818 SLAB_PANIC, NULL); 3819 } 3820 3821 bool ptlock_alloc(struct page *page) 3822 { 3823 spinlock_t *ptl; 3824 3825 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 3826 if (!ptl) 3827 return false; 3828 page->ptl = ptl; 3829 return true; 3830 } 3831 3832 void ptlock_free(struct page *page) 3833 { 3834 kmem_cache_free(page_ptl_cachep, page->ptl); 3835 } 3836 #endif 3837