1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/module.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 61 #include <asm/io.h> 62 #include <asm/pgalloc.h> 63 #include <asm/uaccess.h> 64 #include <asm/tlb.h> 65 #include <asm/tlbflush.h> 66 #include <asm/pgtable.h> 67 68 #include "internal.h" 69 70 #ifndef CONFIG_NEED_MULTIPLE_NODES 71 /* use the per-pgdat data instead for discontigmem - mbligh */ 72 unsigned long max_mapnr; 73 struct page *mem_map; 74 75 EXPORT_SYMBOL(max_mapnr); 76 EXPORT_SYMBOL(mem_map); 77 #endif 78 79 unsigned long num_physpages; 80 /* 81 * A number of key systems in x86 including ioremap() rely on the assumption 82 * that high_memory defines the upper bound on direct map memory, then end 83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 85 * and ZONE_HIGHMEM. 86 */ 87 void * high_memory; 88 89 EXPORT_SYMBOL(num_physpages); 90 EXPORT_SYMBOL(high_memory); 91 92 /* 93 * Randomize the address space (stacks, mmaps, brk, etc.). 94 * 95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 96 * as ancient (libc5 based) binaries can segfault. ) 97 */ 98 int randomize_va_space __read_mostly = 99 #ifdef CONFIG_COMPAT_BRK 100 1; 101 #else 102 2; 103 #endif 104 105 static int __init disable_randmaps(char *s) 106 { 107 randomize_va_space = 0; 108 return 1; 109 } 110 __setup("norandmaps", disable_randmaps); 111 112 unsigned long zero_pfn __read_mostly; 113 unsigned long highest_memmap_pfn __read_mostly; 114 115 /* 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 117 */ 118 static int __init init_zero_pfn(void) 119 { 120 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 121 return 0; 122 } 123 core_initcall(init_zero_pfn); 124 125 126 #if defined(SPLIT_RSS_COUNTING) 127 128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) 129 { 130 int i; 131 132 for (i = 0; i < NR_MM_COUNTERS; i++) { 133 if (task->rss_stat.count[i]) { 134 add_mm_counter(mm, i, task->rss_stat.count[i]); 135 task->rss_stat.count[i] = 0; 136 } 137 } 138 task->rss_stat.events = 0; 139 } 140 141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 142 { 143 struct task_struct *task = current; 144 145 if (likely(task->mm == mm)) 146 task->rss_stat.count[member] += val; 147 else 148 add_mm_counter(mm, member, val); 149 } 150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 152 153 /* sync counter once per 64 page faults */ 154 #define TASK_RSS_EVENTS_THRESH (64) 155 static void check_sync_rss_stat(struct task_struct *task) 156 { 157 if (unlikely(task != current)) 158 return; 159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 160 __sync_task_rss_stat(task, task->mm); 161 } 162 163 unsigned long get_mm_counter(struct mm_struct *mm, int member) 164 { 165 long val = 0; 166 167 /* 168 * Don't use task->mm here...for avoiding to use task_get_mm().. 169 * The caller must guarantee task->mm is not invalid. 170 */ 171 val = atomic_long_read(&mm->rss_stat.count[member]); 172 /* 173 * counter is updated in asynchronous manner and may go to minus. 174 * But it's never be expected number for users. 175 */ 176 if (val < 0) 177 return 0; 178 return (unsigned long)val; 179 } 180 181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 182 { 183 __sync_task_rss_stat(task, mm); 184 } 185 #else /* SPLIT_RSS_COUNTING */ 186 187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 189 190 static void check_sync_rss_stat(struct task_struct *task) 191 { 192 } 193 194 #endif /* SPLIT_RSS_COUNTING */ 195 196 #ifdef HAVE_GENERIC_MMU_GATHER 197 198 static int tlb_next_batch(struct mmu_gather *tlb) 199 { 200 struct mmu_gather_batch *batch; 201 202 batch = tlb->active; 203 if (batch->next) { 204 tlb->active = batch->next; 205 return 1; 206 } 207 208 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 209 if (!batch) 210 return 0; 211 212 batch->next = NULL; 213 batch->nr = 0; 214 batch->max = MAX_GATHER_BATCH; 215 216 tlb->active->next = batch; 217 tlb->active = batch; 218 219 return 1; 220 } 221 222 /* tlb_gather_mmu 223 * Called to initialize an (on-stack) mmu_gather structure for page-table 224 * tear-down from @mm. The @fullmm argument is used when @mm is without 225 * users and we're going to destroy the full address space (exit/execve). 226 */ 227 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm) 228 { 229 tlb->mm = mm; 230 231 tlb->fullmm = fullmm; 232 tlb->need_flush = 0; 233 tlb->fast_mode = (num_possible_cpus() == 1); 234 tlb->local.next = NULL; 235 tlb->local.nr = 0; 236 tlb->local.max = ARRAY_SIZE(tlb->__pages); 237 tlb->active = &tlb->local; 238 239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 240 tlb->batch = NULL; 241 #endif 242 } 243 244 void tlb_flush_mmu(struct mmu_gather *tlb) 245 { 246 struct mmu_gather_batch *batch; 247 248 if (!tlb->need_flush) 249 return; 250 tlb->need_flush = 0; 251 tlb_flush(tlb); 252 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 253 tlb_table_flush(tlb); 254 #endif 255 256 if (tlb_fast_mode(tlb)) 257 return; 258 259 for (batch = &tlb->local; batch; batch = batch->next) { 260 free_pages_and_swap_cache(batch->pages, batch->nr); 261 batch->nr = 0; 262 } 263 tlb->active = &tlb->local; 264 } 265 266 /* tlb_finish_mmu 267 * Called at the end of the shootdown operation to free up any resources 268 * that were required. 269 */ 270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 271 { 272 struct mmu_gather_batch *batch, *next; 273 274 tlb_flush_mmu(tlb); 275 276 /* keep the page table cache within bounds */ 277 check_pgt_cache(); 278 279 for (batch = tlb->local.next; batch; batch = next) { 280 next = batch->next; 281 free_pages((unsigned long)batch, 0); 282 } 283 tlb->local.next = NULL; 284 } 285 286 /* __tlb_remove_page 287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 288 * handling the additional races in SMP caused by other CPUs caching valid 289 * mappings in their TLBs. Returns the number of free page slots left. 290 * When out of page slots we must call tlb_flush_mmu(). 291 */ 292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 293 { 294 struct mmu_gather_batch *batch; 295 296 tlb->need_flush = 1; 297 298 if (tlb_fast_mode(tlb)) { 299 free_page_and_swap_cache(page); 300 return 1; /* avoid calling tlb_flush_mmu() */ 301 } 302 303 batch = tlb->active; 304 batch->pages[batch->nr++] = page; 305 if (batch->nr == batch->max) { 306 if (!tlb_next_batch(tlb)) 307 return 0; 308 } 309 VM_BUG_ON(batch->nr > batch->max); 310 311 return batch->max - batch->nr; 312 } 313 314 #endif /* HAVE_GENERIC_MMU_GATHER */ 315 316 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 317 318 /* 319 * See the comment near struct mmu_table_batch. 320 */ 321 322 static void tlb_remove_table_smp_sync(void *arg) 323 { 324 /* Simply deliver the interrupt */ 325 } 326 327 static void tlb_remove_table_one(void *table) 328 { 329 /* 330 * This isn't an RCU grace period and hence the page-tables cannot be 331 * assumed to be actually RCU-freed. 332 * 333 * It is however sufficient for software page-table walkers that rely on 334 * IRQ disabling. See the comment near struct mmu_table_batch. 335 */ 336 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 337 __tlb_remove_table(table); 338 } 339 340 static void tlb_remove_table_rcu(struct rcu_head *head) 341 { 342 struct mmu_table_batch *batch; 343 int i; 344 345 batch = container_of(head, struct mmu_table_batch, rcu); 346 347 for (i = 0; i < batch->nr; i++) 348 __tlb_remove_table(batch->tables[i]); 349 350 free_page((unsigned long)batch); 351 } 352 353 void tlb_table_flush(struct mmu_gather *tlb) 354 { 355 struct mmu_table_batch **batch = &tlb->batch; 356 357 if (*batch) { 358 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 359 *batch = NULL; 360 } 361 } 362 363 void tlb_remove_table(struct mmu_gather *tlb, void *table) 364 { 365 struct mmu_table_batch **batch = &tlb->batch; 366 367 tlb->need_flush = 1; 368 369 /* 370 * When there's less then two users of this mm there cannot be a 371 * concurrent page-table walk. 372 */ 373 if (atomic_read(&tlb->mm->mm_users) < 2) { 374 __tlb_remove_table(table); 375 return; 376 } 377 378 if (*batch == NULL) { 379 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 380 if (*batch == NULL) { 381 tlb_remove_table_one(table); 382 return; 383 } 384 (*batch)->nr = 0; 385 } 386 (*batch)->tables[(*batch)->nr++] = table; 387 if ((*batch)->nr == MAX_TABLE_BATCH) 388 tlb_table_flush(tlb); 389 } 390 391 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 392 393 /* 394 * If a p?d_bad entry is found while walking page tables, report 395 * the error, before resetting entry to p?d_none. Usually (but 396 * very seldom) called out from the p?d_none_or_clear_bad macros. 397 */ 398 399 void pgd_clear_bad(pgd_t *pgd) 400 { 401 pgd_ERROR(*pgd); 402 pgd_clear(pgd); 403 } 404 405 void pud_clear_bad(pud_t *pud) 406 { 407 pud_ERROR(*pud); 408 pud_clear(pud); 409 } 410 411 void pmd_clear_bad(pmd_t *pmd) 412 { 413 pmd_ERROR(*pmd); 414 pmd_clear(pmd); 415 } 416 417 /* 418 * Note: this doesn't free the actual pages themselves. That 419 * has been handled earlier when unmapping all the memory regions. 420 */ 421 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 422 unsigned long addr) 423 { 424 pgtable_t token = pmd_pgtable(*pmd); 425 pmd_clear(pmd); 426 pte_free_tlb(tlb, token, addr); 427 tlb->mm->nr_ptes--; 428 } 429 430 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 431 unsigned long addr, unsigned long end, 432 unsigned long floor, unsigned long ceiling) 433 { 434 pmd_t *pmd; 435 unsigned long next; 436 unsigned long start; 437 438 start = addr; 439 pmd = pmd_offset(pud, addr); 440 do { 441 next = pmd_addr_end(addr, end); 442 if (pmd_none_or_clear_bad(pmd)) 443 continue; 444 free_pte_range(tlb, pmd, addr); 445 } while (pmd++, addr = next, addr != end); 446 447 start &= PUD_MASK; 448 if (start < floor) 449 return; 450 if (ceiling) { 451 ceiling &= PUD_MASK; 452 if (!ceiling) 453 return; 454 } 455 if (end - 1 > ceiling - 1) 456 return; 457 458 pmd = pmd_offset(pud, start); 459 pud_clear(pud); 460 pmd_free_tlb(tlb, pmd, start); 461 } 462 463 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 464 unsigned long addr, unsigned long end, 465 unsigned long floor, unsigned long ceiling) 466 { 467 pud_t *pud; 468 unsigned long next; 469 unsigned long start; 470 471 start = addr; 472 pud = pud_offset(pgd, addr); 473 do { 474 next = pud_addr_end(addr, end); 475 if (pud_none_or_clear_bad(pud)) 476 continue; 477 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 478 } while (pud++, addr = next, addr != end); 479 480 start &= PGDIR_MASK; 481 if (start < floor) 482 return; 483 if (ceiling) { 484 ceiling &= PGDIR_MASK; 485 if (!ceiling) 486 return; 487 } 488 if (end - 1 > ceiling - 1) 489 return; 490 491 pud = pud_offset(pgd, start); 492 pgd_clear(pgd); 493 pud_free_tlb(tlb, pud, start); 494 } 495 496 /* 497 * This function frees user-level page tables of a process. 498 * 499 * Must be called with pagetable lock held. 500 */ 501 void free_pgd_range(struct mmu_gather *tlb, 502 unsigned long addr, unsigned long end, 503 unsigned long floor, unsigned long ceiling) 504 { 505 pgd_t *pgd; 506 unsigned long next; 507 508 /* 509 * The next few lines have given us lots of grief... 510 * 511 * Why are we testing PMD* at this top level? Because often 512 * there will be no work to do at all, and we'd prefer not to 513 * go all the way down to the bottom just to discover that. 514 * 515 * Why all these "- 1"s? Because 0 represents both the bottom 516 * of the address space and the top of it (using -1 for the 517 * top wouldn't help much: the masks would do the wrong thing). 518 * The rule is that addr 0 and floor 0 refer to the bottom of 519 * the address space, but end 0 and ceiling 0 refer to the top 520 * Comparisons need to use "end - 1" and "ceiling - 1" (though 521 * that end 0 case should be mythical). 522 * 523 * Wherever addr is brought up or ceiling brought down, we must 524 * be careful to reject "the opposite 0" before it confuses the 525 * subsequent tests. But what about where end is brought down 526 * by PMD_SIZE below? no, end can't go down to 0 there. 527 * 528 * Whereas we round start (addr) and ceiling down, by different 529 * masks at different levels, in order to test whether a table 530 * now has no other vmas using it, so can be freed, we don't 531 * bother to round floor or end up - the tests don't need that. 532 */ 533 534 addr &= PMD_MASK; 535 if (addr < floor) { 536 addr += PMD_SIZE; 537 if (!addr) 538 return; 539 } 540 if (ceiling) { 541 ceiling &= PMD_MASK; 542 if (!ceiling) 543 return; 544 } 545 if (end - 1 > ceiling - 1) 546 end -= PMD_SIZE; 547 if (addr > end - 1) 548 return; 549 550 pgd = pgd_offset(tlb->mm, addr); 551 do { 552 next = pgd_addr_end(addr, end); 553 if (pgd_none_or_clear_bad(pgd)) 554 continue; 555 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 556 } while (pgd++, addr = next, addr != end); 557 } 558 559 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 560 unsigned long floor, unsigned long ceiling) 561 { 562 while (vma) { 563 struct vm_area_struct *next = vma->vm_next; 564 unsigned long addr = vma->vm_start; 565 566 /* 567 * Hide vma from rmap and truncate_pagecache before freeing 568 * pgtables 569 */ 570 unlink_anon_vmas(vma); 571 unlink_file_vma(vma); 572 573 if (is_vm_hugetlb_page(vma)) { 574 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 575 floor, next? next->vm_start: ceiling); 576 } else { 577 /* 578 * Optimization: gather nearby vmas into one call down 579 */ 580 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 581 && !is_vm_hugetlb_page(next)) { 582 vma = next; 583 next = vma->vm_next; 584 unlink_anon_vmas(vma); 585 unlink_file_vma(vma); 586 } 587 free_pgd_range(tlb, addr, vma->vm_end, 588 floor, next? next->vm_start: ceiling); 589 } 590 vma = next; 591 } 592 } 593 594 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 595 pmd_t *pmd, unsigned long address) 596 { 597 pgtable_t new = pte_alloc_one(mm, address); 598 int wait_split_huge_page; 599 if (!new) 600 return -ENOMEM; 601 602 /* 603 * Ensure all pte setup (eg. pte page lock and page clearing) are 604 * visible before the pte is made visible to other CPUs by being 605 * put into page tables. 606 * 607 * The other side of the story is the pointer chasing in the page 608 * table walking code (when walking the page table without locking; 609 * ie. most of the time). Fortunately, these data accesses consist 610 * of a chain of data-dependent loads, meaning most CPUs (alpha 611 * being the notable exception) will already guarantee loads are 612 * seen in-order. See the alpha page table accessors for the 613 * smp_read_barrier_depends() barriers in page table walking code. 614 */ 615 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 616 617 spin_lock(&mm->page_table_lock); 618 wait_split_huge_page = 0; 619 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 620 mm->nr_ptes++; 621 pmd_populate(mm, pmd, new); 622 new = NULL; 623 } else if (unlikely(pmd_trans_splitting(*pmd))) 624 wait_split_huge_page = 1; 625 spin_unlock(&mm->page_table_lock); 626 if (new) 627 pte_free(mm, new); 628 if (wait_split_huge_page) 629 wait_split_huge_page(vma->anon_vma, pmd); 630 return 0; 631 } 632 633 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 634 { 635 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 636 if (!new) 637 return -ENOMEM; 638 639 smp_wmb(); /* See comment in __pte_alloc */ 640 641 spin_lock(&init_mm.page_table_lock); 642 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 643 pmd_populate_kernel(&init_mm, pmd, new); 644 new = NULL; 645 } else 646 VM_BUG_ON(pmd_trans_splitting(*pmd)); 647 spin_unlock(&init_mm.page_table_lock); 648 if (new) 649 pte_free_kernel(&init_mm, new); 650 return 0; 651 } 652 653 static inline void init_rss_vec(int *rss) 654 { 655 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 656 } 657 658 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 659 { 660 int i; 661 662 if (current->mm == mm) 663 sync_mm_rss(current, mm); 664 for (i = 0; i < NR_MM_COUNTERS; i++) 665 if (rss[i]) 666 add_mm_counter(mm, i, rss[i]); 667 } 668 669 /* 670 * This function is called to print an error when a bad pte 671 * is found. For example, we might have a PFN-mapped pte in 672 * a region that doesn't allow it. 673 * 674 * The calling function must still handle the error. 675 */ 676 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 677 pte_t pte, struct page *page) 678 { 679 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 680 pud_t *pud = pud_offset(pgd, addr); 681 pmd_t *pmd = pmd_offset(pud, addr); 682 struct address_space *mapping; 683 pgoff_t index; 684 static unsigned long resume; 685 static unsigned long nr_shown; 686 static unsigned long nr_unshown; 687 688 /* 689 * Allow a burst of 60 reports, then keep quiet for that minute; 690 * or allow a steady drip of one report per second. 691 */ 692 if (nr_shown == 60) { 693 if (time_before(jiffies, resume)) { 694 nr_unshown++; 695 return; 696 } 697 if (nr_unshown) { 698 printk(KERN_ALERT 699 "BUG: Bad page map: %lu messages suppressed\n", 700 nr_unshown); 701 nr_unshown = 0; 702 } 703 nr_shown = 0; 704 } 705 if (nr_shown++ == 0) 706 resume = jiffies + 60 * HZ; 707 708 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 709 index = linear_page_index(vma, addr); 710 711 printk(KERN_ALERT 712 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 713 current->comm, 714 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 715 if (page) 716 dump_page(page); 717 printk(KERN_ALERT 718 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 719 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 720 /* 721 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 722 */ 723 if (vma->vm_ops) 724 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 725 (unsigned long)vma->vm_ops->fault); 726 if (vma->vm_file && vma->vm_file->f_op) 727 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 728 (unsigned long)vma->vm_file->f_op->mmap); 729 dump_stack(); 730 add_taint(TAINT_BAD_PAGE); 731 } 732 733 static inline int is_cow_mapping(vm_flags_t flags) 734 { 735 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 736 } 737 738 #ifndef is_zero_pfn 739 static inline int is_zero_pfn(unsigned long pfn) 740 { 741 return pfn == zero_pfn; 742 } 743 #endif 744 745 #ifndef my_zero_pfn 746 static inline unsigned long my_zero_pfn(unsigned long addr) 747 { 748 return zero_pfn; 749 } 750 #endif 751 752 /* 753 * vm_normal_page -- This function gets the "struct page" associated with a pte. 754 * 755 * "Special" mappings do not wish to be associated with a "struct page" (either 756 * it doesn't exist, or it exists but they don't want to touch it). In this 757 * case, NULL is returned here. "Normal" mappings do have a struct page. 758 * 759 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 760 * pte bit, in which case this function is trivial. Secondly, an architecture 761 * may not have a spare pte bit, which requires a more complicated scheme, 762 * described below. 763 * 764 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 765 * special mapping (even if there are underlying and valid "struct pages"). 766 * COWed pages of a VM_PFNMAP are always normal. 767 * 768 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 769 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 770 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 771 * mapping will always honor the rule 772 * 773 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 774 * 775 * And for normal mappings this is false. 776 * 777 * This restricts such mappings to be a linear translation from virtual address 778 * to pfn. To get around this restriction, we allow arbitrary mappings so long 779 * as the vma is not a COW mapping; in that case, we know that all ptes are 780 * special (because none can have been COWed). 781 * 782 * 783 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 784 * 785 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 786 * page" backing, however the difference is that _all_ pages with a struct 787 * page (that is, those where pfn_valid is true) are refcounted and considered 788 * normal pages by the VM. The disadvantage is that pages are refcounted 789 * (which can be slower and simply not an option for some PFNMAP users). The 790 * advantage is that we don't have to follow the strict linearity rule of 791 * PFNMAP mappings in order to support COWable mappings. 792 * 793 */ 794 #ifdef __HAVE_ARCH_PTE_SPECIAL 795 # define HAVE_PTE_SPECIAL 1 796 #else 797 # define HAVE_PTE_SPECIAL 0 798 #endif 799 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 800 pte_t pte) 801 { 802 unsigned long pfn = pte_pfn(pte); 803 804 if (HAVE_PTE_SPECIAL) { 805 if (likely(!pte_special(pte))) 806 goto check_pfn; 807 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 808 return NULL; 809 if (!is_zero_pfn(pfn)) 810 print_bad_pte(vma, addr, pte, NULL); 811 return NULL; 812 } 813 814 /* !HAVE_PTE_SPECIAL case follows: */ 815 816 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 817 if (vma->vm_flags & VM_MIXEDMAP) { 818 if (!pfn_valid(pfn)) 819 return NULL; 820 goto out; 821 } else { 822 unsigned long off; 823 off = (addr - vma->vm_start) >> PAGE_SHIFT; 824 if (pfn == vma->vm_pgoff + off) 825 return NULL; 826 if (!is_cow_mapping(vma->vm_flags)) 827 return NULL; 828 } 829 } 830 831 if (is_zero_pfn(pfn)) 832 return NULL; 833 check_pfn: 834 if (unlikely(pfn > highest_memmap_pfn)) { 835 print_bad_pte(vma, addr, pte, NULL); 836 return NULL; 837 } 838 839 /* 840 * NOTE! We still have PageReserved() pages in the page tables. 841 * eg. VDSO mappings can cause them to exist. 842 */ 843 out: 844 return pfn_to_page(pfn); 845 } 846 847 /* 848 * copy one vm_area from one task to the other. Assumes the page tables 849 * already present in the new task to be cleared in the whole range 850 * covered by this vma. 851 */ 852 853 static inline unsigned long 854 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 855 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 856 unsigned long addr, int *rss) 857 { 858 unsigned long vm_flags = vma->vm_flags; 859 pte_t pte = *src_pte; 860 struct page *page; 861 862 /* pte contains position in swap or file, so copy. */ 863 if (unlikely(!pte_present(pte))) { 864 if (!pte_file(pte)) { 865 swp_entry_t entry = pte_to_swp_entry(pte); 866 867 if (swap_duplicate(entry) < 0) 868 return entry.val; 869 870 /* make sure dst_mm is on swapoff's mmlist. */ 871 if (unlikely(list_empty(&dst_mm->mmlist))) { 872 spin_lock(&mmlist_lock); 873 if (list_empty(&dst_mm->mmlist)) 874 list_add(&dst_mm->mmlist, 875 &src_mm->mmlist); 876 spin_unlock(&mmlist_lock); 877 } 878 if (likely(!non_swap_entry(entry))) 879 rss[MM_SWAPENTS]++; 880 else if (is_write_migration_entry(entry) && 881 is_cow_mapping(vm_flags)) { 882 /* 883 * COW mappings require pages in both parent 884 * and child to be set to read. 885 */ 886 make_migration_entry_read(&entry); 887 pte = swp_entry_to_pte(entry); 888 set_pte_at(src_mm, addr, src_pte, pte); 889 } 890 } 891 goto out_set_pte; 892 } 893 894 /* 895 * If it's a COW mapping, write protect it both 896 * in the parent and the child 897 */ 898 if (is_cow_mapping(vm_flags)) { 899 ptep_set_wrprotect(src_mm, addr, src_pte); 900 pte = pte_wrprotect(pte); 901 } 902 903 /* 904 * If it's a shared mapping, mark it clean in 905 * the child 906 */ 907 if (vm_flags & VM_SHARED) 908 pte = pte_mkclean(pte); 909 pte = pte_mkold(pte); 910 911 page = vm_normal_page(vma, addr, pte); 912 if (page) { 913 get_page(page); 914 page_dup_rmap(page); 915 if (PageAnon(page)) 916 rss[MM_ANONPAGES]++; 917 else 918 rss[MM_FILEPAGES]++; 919 } 920 921 out_set_pte: 922 set_pte_at(dst_mm, addr, dst_pte, pte); 923 return 0; 924 } 925 926 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 927 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 928 unsigned long addr, unsigned long end) 929 { 930 pte_t *orig_src_pte, *orig_dst_pte; 931 pte_t *src_pte, *dst_pte; 932 spinlock_t *src_ptl, *dst_ptl; 933 int progress = 0; 934 int rss[NR_MM_COUNTERS]; 935 swp_entry_t entry = (swp_entry_t){0}; 936 937 again: 938 init_rss_vec(rss); 939 940 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 941 if (!dst_pte) 942 return -ENOMEM; 943 src_pte = pte_offset_map(src_pmd, addr); 944 src_ptl = pte_lockptr(src_mm, src_pmd); 945 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 946 orig_src_pte = src_pte; 947 orig_dst_pte = dst_pte; 948 arch_enter_lazy_mmu_mode(); 949 950 do { 951 /* 952 * We are holding two locks at this point - either of them 953 * could generate latencies in another task on another CPU. 954 */ 955 if (progress >= 32) { 956 progress = 0; 957 if (need_resched() || 958 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 959 break; 960 } 961 if (pte_none(*src_pte)) { 962 progress++; 963 continue; 964 } 965 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 966 vma, addr, rss); 967 if (entry.val) 968 break; 969 progress += 8; 970 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 971 972 arch_leave_lazy_mmu_mode(); 973 spin_unlock(src_ptl); 974 pte_unmap(orig_src_pte); 975 add_mm_rss_vec(dst_mm, rss); 976 pte_unmap_unlock(orig_dst_pte, dst_ptl); 977 cond_resched(); 978 979 if (entry.val) { 980 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 981 return -ENOMEM; 982 progress = 0; 983 } 984 if (addr != end) 985 goto again; 986 return 0; 987 } 988 989 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 990 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 991 unsigned long addr, unsigned long end) 992 { 993 pmd_t *src_pmd, *dst_pmd; 994 unsigned long next; 995 996 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 997 if (!dst_pmd) 998 return -ENOMEM; 999 src_pmd = pmd_offset(src_pud, addr); 1000 do { 1001 next = pmd_addr_end(addr, end); 1002 if (pmd_trans_huge(*src_pmd)) { 1003 int err; 1004 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 1005 err = copy_huge_pmd(dst_mm, src_mm, 1006 dst_pmd, src_pmd, addr, vma); 1007 if (err == -ENOMEM) 1008 return -ENOMEM; 1009 if (!err) 1010 continue; 1011 /* fall through */ 1012 } 1013 if (pmd_none_or_clear_bad(src_pmd)) 1014 continue; 1015 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1016 vma, addr, next)) 1017 return -ENOMEM; 1018 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1019 return 0; 1020 } 1021 1022 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1023 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1024 unsigned long addr, unsigned long end) 1025 { 1026 pud_t *src_pud, *dst_pud; 1027 unsigned long next; 1028 1029 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1030 if (!dst_pud) 1031 return -ENOMEM; 1032 src_pud = pud_offset(src_pgd, addr); 1033 do { 1034 next = pud_addr_end(addr, end); 1035 if (pud_none_or_clear_bad(src_pud)) 1036 continue; 1037 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1038 vma, addr, next)) 1039 return -ENOMEM; 1040 } while (dst_pud++, src_pud++, addr = next, addr != end); 1041 return 0; 1042 } 1043 1044 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1045 struct vm_area_struct *vma) 1046 { 1047 pgd_t *src_pgd, *dst_pgd; 1048 unsigned long next; 1049 unsigned long addr = vma->vm_start; 1050 unsigned long end = vma->vm_end; 1051 int ret; 1052 1053 /* 1054 * Don't copy ptes where a page fault will fill them correctly. 1055 * Fork becomes much lighter when there are big shared or private 1056 * readonly mappings. The tradeoff is that copy_page_range is more 1057 * efficient than faulting. 1058 */ 1059 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 1060 if (!vma->anon_vma) 1061 return 0; 1062 } 1063 1064 if (is_vm_hugetlb_page(vma)) 1065 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1066 1067 if (unlikely(is_pfn_mapping(vma))) { 1068 /* 1069 * We do not free on error cases below as remove_vma 1070 * gets called on error from higher level routine 1071 */ 1072 ret = track_pfn_vma_copy(vma); 1073 if (ret) 1074 return ret; 1075 } 1076 1077 /* 1078 * We need to invalidate the secondary MMU mappings only when 1079 * there could be a permission downgrade on the ptes of the 1080 * parent mm. And a permission downgrade will only happen if 1081 * is_cow_mapping() returns true. 1082 */ 1083 if (is_cow_mapping(vma->vm_flags)) 1084 mmu_notifier_invalidate_range_start(src_mm, addr, end); 1085 1086 ret = 0; 1087 dst_pgd = pgd_offset(dst_mm, addr); 1088 src_pgd = pgd_offset(src_mm, addr); 1089 do { 1090 next = pgd_addr_end(addr, end); 1091 if (pgd_none_or_clear_bad(src_pgd)) 1092 continue; 1093 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1094 vma, addr, next))) { 1095 ret = -ENOMEM; 1096 break; 1097 } 1098 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1099 1100 if (is_cow_mapping(vma->vm_flags)) 1101 mmu_notifier_invalidate_range_end(src_mm, 1102 vma->vm_start, end); 1103 return ret; 1104 } 1105 1106 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1107 struct vm_area_struct *vma, pmd_t *pmd, 1108 unsigned long addr, unsigned long end, 1109 struct zap_details *details) 1110 { 1111 struct mm_struct *mm = tlb->mm; 1112 int force_flush = 0; 1113 int rss[NR_MM_COUNTERS]; 1114 spinlock_t *ptl; 1115 pte_t *pte; 1116 1117 again: 1118 init_rss_vec(rss); 1119 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1120 arch_enter_lazy_mmu_mode(); 1121 do { 1122 pte_t ptent = *pte; 1123 if (pte_none(ptent)) { 1124 continue; 1125 } 1126 1127 if (pte_present(ptent)) { 1128 struct page *page; 1129 1130 page = vm_normal_page(vma, addr, ptent); 1131 if (unlikely(details) && page) { 1132 /* 1133 * unmap_shared_mapping_pages() wants to 1134 * invalidate cache without truncating: 1135 * unmap shared but keep private pages. 1136 */ 1137 if (details->check_mapping && 1138 details->check_mapping != page->mapping) 1139 continue; 1140 /* 1141 * Each page->index must be checked when 1142 * invalidating or truncating nonlinear. 1143 */ 1144 if (details->nonlinear_vma && 1145 (page->index < details->first_index || 1146 page->index > details->last_index)) 1147 continue; 1148 } 1149 ptent = ptep_get_and_clear_full(mm, addr, pte, 1150 tlb->fullmm); 1151 tlb_remove_tlb_entry(tlb, pte, addr); 1152 if (unlikely(!page)) 1153 continue; 1154 if (unlikely(details) && details->nonlinear_vma 1155 && linear_page_index(details->nonlinear_vma, 1156 addr) != page->index) 1157 set_pte_at(mm, addr, pte, 1158 pgoff_to_pte(page->index)); 1159 if (PageAnon(page)) 1160 rss[MM_ANONPAGES]--; 1161 else { 1162 if (pte_dirty(ptent)) 1163 set_page_dirty(page); 1164 if (pte_young(ptent) && 1165 likely(!VM_SequentialReadHint(vma))) 1166 mark_page_accessed(page); 1167 rss[MM_FILEPAGES]--; 1168 } 1169 page_remove_rmap(page); 1170 if (unlikely(page_mapcount(page) < 0)) 1171 print_bad_pte(vma, addr, ptent, page); 1172 force_flush = !__tlb_remove_page(tlb, page); 1173 if (force_flush) 1174 break; 1175 continue; 1176 } 1177 /* 1178 * If details->check_mapping, we leave swap entries; 1179 * if details->nonlinear_vma, we leave file entries. 1180 */ 1181 if (unlikely(details)) 1182 continue; 1183 if (pte_file(ptent)) { 1184 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1185 print_bad_pte(vma, addr, ptent, NULL); 1186 } else { 1187 swp_entry_t entry = pte_to_swp_entry(ptent); 1188 1189 if (!non_swap_entry(entry)) 1190 rss[MM_SWAPENTS]--; 1191 if (unlikely(!free_swap_and_cache(entry))) 1192 print_bad_pte(vma, addr, ptent, NULL); 1193 } 1194 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1195 } while (pte++, addr += PAGE_SIZE, addr != end); 1196 1197 add_mm_rss_vec(mm, rss); 1198 arch_leave_lazy_mmu_mode(); 1199 pte_unmap_unlock(pte - 1, ptl); 1200 1201 /* 1202 * mmu_gather ran out of room to batch pages, we break out of 1203 * the PTE lock to avoid doing the potential expensive TLB invalidate 1204 * and page-free while holding it. 1205 */ 1206 if (force_flush) { 1207 force_flush = 0; 1208 tlb_flush_mmu(tlb); 1209 if (addr != end) 1210 goto again; 1211 } 1212 1213 return addr; 1214 } 1215 1216 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1217 struct vm_area_struct *vma, pud_t *pud, 1218 unsigned long addr, unsigned long end, 1219 struct zap_details *details) 1220 { 1221 pmd_t *pmd; 1222 unsigned long next; 1223 1224 pmd = pmd_offset(pud, addr); 1225 do { 1226 next = pmd_addr_end(addr, end); 1227 if (pmd_trans_huge(*pmd)) { 1228 if (next-addr != HPAGE_PMD_SIZE) { 1229 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); 1230 split_huge_page_pmd(vma->vm_mm, pmd); 1231 } else if (zap_huge_pmd(tlb, vma, pmd)) 1232 continue; 1233 /* fall through */ 1234 } 1235 if (pmd_none_or_clear_bad(pmd)) 1236 continue; 1237 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1238 cond_resched(); 1239 } while (pmd++, addr = next, addr != end); 1240 1241 return addr; 1242 } 1243 1244 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1245 struct vm_area_struct *vma, pgd_t *pgd, 1246 unsigned long addr, unsigned long end, 1247 struct zap_details *details) 1248 { 1249 pud_t *pud; 1250 unsigned long next; 1251 1252 pud = pud_offset(pgd, addr); 1253 do { 1254 next = pud_addr_end(addr, end); 1255 if (pud_none_or_clear_bad(pud)) 1256 continue; 1257 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1258 } while (pud++, addr = next, addr != end); 1259 1260 return addr; 1261 } 1262 1263 static unsigned long unmap_page_range(struct mmu_gather *tlb, 1264 struct vm_area_struct *vma, 1265 unsigned long addr, unsigned long end, 1266 struct zap_details *details) 1267 { 1268 pgd_t *pgd; 1269 unsigned long next; 1270 1271 if (details && !details->check_mapping && !details->nonlinear_vma) 1272 details = NULL; 1273 1274 BUG_ON(addr >= end); 1275 mem_cgroup_uncharge_start(); 1276 tlb_start_vma(tlb, vma); 1277 pgd = pgd_offset(vma->vm_mm, addr); 1278 do { 1279 next = pgd_addr_end(addr, end); 1280 if (pgd_none_or_clear_bad(pgd)) 1281 continue; 1282 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1283 } while (pgd++, addr = next, addr != end); 1284 tlb_end_vma(tlb, vma); 1285 mem_cgroup_uncharge_end(); 1286 1287 return addr; 1288 } 1289 1290 #ifdef CONFIG_PREEMPT 1291 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 1292 #else 1293 /* No preempt: go for improved straight-line efficiency */ 1294 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 1295 #endif 1296 1297 /** 1298 * unmap_vmas - unmap a range of memory covered by a list of vma's 1299 * @tlbp: address of the caller's struct mmu_gather 1300 * @vma: the starting vma 1301 * @start_addr: virtual address at which to start unmapping 1302 * @end_addr: virtual address at which to end unmapping 1303 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 1304 * @details: details of nonlinear truncation or shared cache invalidation 1305 * 1306 * Returns the end address of the unmapping (restart addr if interrupted). 1307 * 1308 * Unmap all pages in the vma list. 1309 * 1310 * We aim to not hold locks for too long (for scheduling latency reasons). 1311 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 1312 * return the ending mmu_gather to the caller. 1313 * 1314 * Only addresses between `start' and `end' will be unmapped. 1315 * 1316 * The VMA list must be sorted in ascending virtual address order. 1317 * 1318 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1319 * range after unmap_vmas() returns. So the only responsibility here is to 1320 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1321 * drops the lock and schedules. 1322 */ 1323 unsigned long unmap_vmas(struct mmu_gather *tlb, 1324 struct vm_area_struct *vma, unsigned long start_addr, 1325 unsigned long end_addr, unsigned long *nr_accounted, 1326 struct zap_details *details) 1327 { 1328 unsigned long start = start_addr; 1329 struct mm_struct *mm = vma->vm_mm; 1330 1331 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1332 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 1333 unsigned long end; 1334 1335 start = max(vma->vm_start, start_addr); 1336 if (start >= vma->vm_end) 1337 continue; 1338 end = min(vma->vm_end, end_addr); 1339 if (end <= vma->vm_start) 1340 continue; 1341 1342 if (vma->vm_flags & VM_ACCOUNT) 1343 *nr_accounted += (end - start) >> PAGE_SHIFT; 1344 1345 if (unlikely(is_pfn_mapping(vma))) 1346 untrack_pfn_vma(vma, 0, 0); 1347 1348 while (start != end) { 1349 if (unlikely(is_vm_hugetlb_page(vma))) { 1350 /* 1351 * It is undesirable to test vma->vm_file as it 1352 * should be non-null for valid hugetlb area. 1353 * However, vm_file will be NULL in the error 1354 * cleanup path of do_mmap_pgoff. When 1355 * hugetlbfs ->mmap method fails, 1356 * do_mmap_pgoff() nullifies vma->vm_file 1357 * before calling this function to clean up. 1358 * Since no pte has actually been setup, it is 1359 * safe to do nothing in this case. 1360 */ 1361 if (vma->vm_file) 1362 unmap_hugepage_range(vma, start, end, NULL); 1363 1364 start = end; 1365 } else 1366 start = unmap_page_range(tlb, vma, start, end, details); 1367 } 1368 } 1369 1370 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1371 return start; /* which is now the end (or restart) address */ 1372 } 1373 1374 /** 1375 * zap_page_range - remove user pages in a given range 1376 * @vma: vm_area_struct holding the applicable pages 1377 * @address: starting address of pages to zap 1378 * @size: number of bytes to zap 1379 * @details: details of nonlinear truncation or shared cache invalidation 1380 */ 1381 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1382 unsigned long size, struct zap_details *details) 1383 { 1384 struct mm_struct *mm = vma->vm_mm; 1385 struct mmu_gather tlb; 1386 unsigned long end = address + size; 1387 unsigned long nr_accounted = 0; 1388 1389 lru_add_drain(); 1390 tlb_gather_mmu(&tlb, mm, 0); 1391 update_hiwater_rss(mm); 1392 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1393 tlb_finish_mmu(&tlb, address, end); 1394 return end; 1395 } 1396 1397 /** 1398 * zap_vma_ptes - remove ptes mapping the vma 1399 * @vma: vm_area_struct holding ptes to be zapped 1400 * @address: starting address of pages to zap 1401 * @size: number of bytes to zap 1402 * 1403 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1404 * 1405 * The entire address range must be fully contained within the vma. 1406 * 1407 * Returns 0 if successful. 1408 */ 1409 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1410 unsigned long size) 1411 { 1412 if (address < vma->vm_start || address + size > vma->vm_end || 1413 !(vma->vm_flags & VM_PFNMAP)) 1414 return -1; 1415 zap_page_range(vma, address, size, NULL); 1416 return 0; 1417 } 1418 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1419 1420 /** 1421 * follow_page - look up a page descriptor from a user-virtual address 1422 * @vma: vm_area_struct mapping @address 1423 * @address: virtual address to look up 1424 * @flags: flags modifying lookup behaviour 1425 * 1426 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1427 * 1428 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1429 * an error pointer if there is a mapping to something not represented 1430 * by a page descriptor (see also vm_normal_page()). 1431 */ 1432 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1433 unsigned int flags) 1434 { 1435 pgd_t *pgd; 1436 pud_t *pud; 1437 pmd_t *pmd; 1438 pte_t *ptep, pte; 1439 spinlock_t *ptl; 1440 struct page *page; 1441 struct mm_struct *mm = vma->vm_mm; 1442 1443 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1444 if (!IS_ERR(page)) { 1445 BUG_ON(flags & FOLL_GET); 1446 goto out; 1447 } 1448 1449 page = NULL; 1450 pgd = pgd_offset(mm, address); 1451 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1452 goto no_page_table; 1453 1454 pud = pud_offset(pgd, address); 1455 if (pud_none(*pud)) 1456 goto no_page_table; 1457 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1458 BUG_ON(flags & FOLL_GET); 1459 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1460 goto out; 1461 } 1462 if (unlikely(pud_bad(*pud))) 1463 goto no_page_table; 1464 1465 pmd = pmd_offset(pud, address); 1466 if (pmd_none(*pmd)) 1467 goto no_page_table; 1468 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1469 BUG_ON(flags & FOLL_GET); 1470 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1471 goto out; 1472 } 1473 if (pmd_trans_huge(*pmd)) { 1474 if (flags & FOLL_SPLIT) { 1475 split_huge_page_pmd(mm, pmd); 1476 goto split_fallthrough; 1477 } 1478 spin_lock(&mm->page_table_lock); 1479 if (likely(pmd_trans_huge(*pmd))) { 1480 if (unlikely(pmd_trans_splitting(*pmd))) { 1481 spin_unlock(&mm->page_table_lock); 1482 wait_split_huge_page(vma->anon_vma, pmd); 1483 } else { 1484 page = follow_trans_huge_pmd(mm, address, 1485 pmd, flags); 1486 spin_unlock(&mm->page_table_lock); 1487 goto out; 1488 } 1489 } else 1490 spin_unlock(&mm->page_table_lock); 1491 /* fall through */ 1492 } 1493 split_fallthrough: 1494 if (unlikely(pmd_bad(*pmd))) 1495 goto no_page_table; 1496 1497 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1498 1499 pte = *ptep; 1500 if (!pte_present(pte)) 1501 goto no_page; 1502 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1503 goto unlock; 1504 1505 page = vm_normal_page(vma, address, pte); 1506 if (unlikely(!page)) { 1507 if ((flags & FOLL_DUMP) || 1508 !is_zero_pfn(pte_pfn(pte))) 1509 goto bad_page; 1510 page = pte_page(pte); 1511 } 1512 1513 if (flags & FOLL_GET) 1514 get_page(page); 1515 if (flags & FOLL_TOUCH) { 1516 if ((flags & FOLL_WRITE) && 1517 !pte_dirty(pte) && !PageDirty(page)) 1518 set_page_dirty(page); 1519 /* 1520 * pte_mkyoung() would be more correct here, but atomic care 1521 * is needed to avoid losing the dirty bit: it is easier to use 1522 * mark_page_accessed(). 1523 */ 1524 mark_page_accessed(page); 1525 } 1526 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1527 /* 1528 * The preliminary mapping check is mainly to avoid the 1529 * pointless overhead of lock_page on the ZERO_PAGE 1530 * which might bounce very badly if there is contention. 1531 * 1532 * If the page is already locked, we don't need to 1533 * handle it now - vmscan will handle it later if and 1534 * when it attempts to reclaim the page. 1535 */ 1536 if (page->mapping && trylock_page(page)) { 1537 lru_add_drain(); /* push cached pages to LRU */ 1538 /* 1539 * Because we lock page here and migration is 1540 * blocked by the pte's page reference, we need 1541 * only check for file-cache page truncation. 1542 */ 1543 if (page->mapping) 1544 mlock_vma_page(page); 1545 unlock_page(page); 1546 } 1547 } 1548 unlock: 1549 pte_unmap_unlock(ptep, ptl); 1550 out: 1551 return page; 1552 1553 bad_page: 1554 pte_unmap_unlock(ptep, ptl); 1555 return ERR_PTR(-EFAULT); 1556 1557 no_page: 1558 pte_unmap_unlock(ptep, ptl); 1559 if (!pte_none(pte)) 1560 return page; 1561 1562 no_page_table: 1563 /* 1564 * When core dumping an enormous anonymous area that nobody 1565 * has touched so far, we don't want to allocate unnecessary pages or 1566 * page tables. Return error instead of NULL to skip handle_mm_fault, 1567 * then get_dump_page() will return NULL to leave a hole in the dump. 1568 * But we can only make this optimization where a hole would surely 1569 * be zero-filled if handle_mm_fault() actually did handle it. 1570 */ 1571 if ((flags & FOLL_DUMP) && 1572 (!vma->vm_ops || !vma->vm_ops->fault)) 1573 return ERR_PTR(-EFAULT); 1574 return page; 1575 } 1576 1577 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1578 { 1579 return stack_guard_page_start(vma, addr) || 1580 stack_guard_page_end(vma, addr+PAGE_SIZE); 1581 } 1582 1583 /** 1584 * __get_user_pages() - pin user pages in memory 1585 * @tsk: task_struct of target task 1586 * @mm: mm_struct of target mm 1587 * @start: starting user address 1588 * @nr_pages: number of pages from start to pin 1589 * @gup_flags: flags modifying pin behaviour 1590 * @pages: array that receives pointers to the pages pinned. 1591 * Should be at least nr_pages long. Or NULL, if caller 1592 * only intends to ensure the pages are faulted in. 1593 * @vmas: array of pointers to vmas corresponding to each page. 1594 * Or NULL if the caller does not require them. 1595 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1596 * 1597 * Returns number of pages pinned. This may be fewer than the number 1598 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1599 * were pinned, returns -errno. Each page returned must be released 1600 * with a put_page() call when it is finished with. vmas will only 1601 * remain valid while mmap_sem is held. 1602 * 1603 * Must be called with mmap_sem held for read or write. 1604 * 1605 * __get_user_pages walks a process's page tables and takes a reference to 1606 * each struct page that each user address corresponds to at a given 1607 * instant. That is, it takes the page that would be accessed if a user 1608 * thread accesses the given user virtual address at that instant. 1609 * 1610 * This does not guarantee that the page exists in the user mappings when 1611 * __get_user_pages returns, and there may even be a completely different 1612 * page there in some cases (eg. if mmapped pagecache has been invalidated 1613 * and subsequently re faulted). However it does guarantee that the page 1614 * won't be freed completely. And mostly callers simply care that the page 1615 * contains data that was valid *at some point in time*. Typically, an IO 1616 * or similar operation cannot guarantee anything stronger anyway because 1617 * locks can't be held over the syscall boundary. 1618 * 1619 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1620 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1621 * appropriate) must be called after the page is finished with, and 1622 * before put_page is called. 1623 * 1624 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1625 * or mmap_sem contention, and if waiting is needed to pin all pages, 1626 * *@nonblocking will be set to 0. 1627 * 1628 * In most cases, get_user_pages or get_user_pages_fast should be used 1629 * instead of __get_user_pages. __get_user_pages should be used only if 1630 * you need some special @gup_flags. 1631 */ 1632 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1633 unsigned long start, int nr_pages, unsigned int gup_flags, 1634 struct page **pages, struct vm_area_struct **vmas, 1635 int *nonblocking) 1636 { 1637 int i; 1638 unsigned long vm_flags; 1639 1640 if (nr_pages <= 0) 1641 return 0; 1642 1643 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1644 1645 /* 1646 * Require read or write permissions. 1647 * If FOLL_FORCE is set, we only require the "MAY" flags. 1648 */ 1649 vm_flags = (gup_flags & FOLL_WRITE) ? 1650 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1651 vm_flags &= (gup_flags & FOLL_FORCE) ? 1652 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1653 i = 0; 1654 1655 do { 1656 struct vm_area_struct *vma; 1657 1658 vma = find_extend_vma(mm, start); 1659 if (!vma && in_gate_area(mm, start)) { 1660 unsigned long pg = start & PAGE_MASK; 1661 pgd_t *pgd; 1662 pud_t *pud; 1663 pmd_t *pmd; 1664 pte_t *pte; 1665 1666 /* user gate pages are read-only */ 1667 if (gup_flags & FOLL_WRITE) 1668 return i ? : -EFAULT; 1669 if (pg > TASK_SIZE) 1670 pgd = pgd_offset_k(pg); 1671 else 1672 pgd = pgd_offset_gate(mm, pg); 1673 BUG_ON(pgd_none(*pgd)); 1674 pud = pud_offset(pgd, pg); 1675 BUG_ON(pud_none(*pud)); 1676 pmd = pmd_offset(pud, pg); 1677 if (pmd_none(*pmd)) 1678 return i ? : -EFAULT; 1679 VM_BUG_ON(pmd_trans_huge(*pmd)); 1680 pte = pte_offset_map(pmd, pg); 1681 if (pte_none(*pte)) { 1682 pte_unmap(pte); 1683 return i ? : -EFAULT; 1684 } 1685 vma = get_gate_vma(mm); 1686 if (pages) { 1687 struct page *page; 1688 1689 page = vm_normal_page(vma, start, *pte); 1690 if (!page) { 1691 if (!(gup_flags & FOLL_DUMP) && 1692 is_zero_pfn(pte_pfn(*pte))) 1693 page = pte_page(*pte); 1694 else { 1695 pte_unmap(pte); 1696 return i ? : -EFAULT; 1697 } 1698 } 1699 pages[i] = page; 1700 get_page(page); 1701 } 1702 pte_unmap(pte); 1703 goto next_page; 1704 } 1705 1706 if (!vma || 1707 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1708 !(vm_flags & vma->vm_flags)) 1709 return i ? : -EFAULT; 1710 1711 if (is_vm_hugetlb_page(vma)) { 1712 i = follow_hugetlb_page(mm, vma, pages, vmas, 1713 &start, &nr_pages, i, gup_flags); 1714 continue; 1715 } 1716 1717 do { 1718 struct page *page; 1719 unsigned int foll_flags = gup_flags; 1720 1721 /* 1722 * If we have a pending SIGKILL, don't keep faulting 1723 * pages and potentially allocating memory. 1724 */ 1725 if (unlikely(fatal_signal_pending(current))) 1726 return i ? i : -ERESTARTSYS; 1727 1728 cond_resched(); 1729 while (!(page = follow_page(vma, start, foll_flags))) { 1730 int ret; 1731 unsigned int fault_flags = 0; 1732 1733 /* For mlock, just skip the stack guard page. */ 1734 if (foll_flags & FOLL_MLOCK) { 1735 if (stack_guard_page(vma, start)) 1736 goto next_page; 1737 } 1738 if (foll_flags & FOLL_WRITE) 1739 fault_flags |= FAULT_FLAG_WRITE; 1740 if (nonblocking) 1741 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1742 if (foll_flags & FOLL_NOWAIT) 1743 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1744 1745 ret = handle_mm_fault(mm, vma, start, 1746 fault_flags); 1747 1748 if (ret & VM_FAULT_ERROR) { 1749 if (ret & VM_FAULT_OOM) 1750 return i ? i : -ENOMEM; 1751 if (ret & (VM_FAULT_HWPOISON | 1752 VM_FAULT_HWPOISON_LARGE)) { 1753 if (i) 1754 return i; 1755 else if (gup_flags & FOLL_HWPOISON) 1756 return -EHWPOISON; 1757 else 1758 return -EFAULT; 1759 } 1760 if (ret & VM_FAULT_SIGBUS) 1761 return i ? i : -EFAULT; 1762 BUG(); 1763 } 1764 1765 if (tsk) { 1766 if (ret & VM_FAULT_MAJOR) 1767 tsk->maj_flt++; 1768 else 1769 tsk->min_flt++; 1770 } 1771 1772 if (ret & VM_FAULT_RETRY) { 1773 if (nonblocking) 1774 *nonblocking = 0; 1775 return i; 1776 } 1777 1778 /* 1779 * The VM_FAULT_WRITE bit tells us that 1780 * do_wp_page has broken COW when necessary, 1781 * even if maybe_mkwrite decided not to set 1782 * pte_write. We can thus safely do subsequent 1783 * page lookups as if they were reads. But only 1784 * do so when looping for pte_write is futile: 1785 * in some cases userspace may also be wanting 1786 * to write to the gotten user page, which a 1787 * read fault here might prevent (a readonly 1788 * page might get reCOWed by userspace write). 1789 */ 1790 if ((ret & VM_FAULT_WRITE) && 1791 !(vma->vm_flags & VM_WRITE)) 1792 foll_flags &= ~FOLL_WRITE; 1793 1794 cond_resched(); 1795 } 1796 if (IS_ERR(page)) 1797 return i ? i : PTR_ERR(page); 1798 if (pages) { 1799 pages[i] = page; 1800 1801 flush_anon_page(vma, page, start); 1802 flush_dcache_page(page); 1803 } 1804 next_page: 1805 if (vmas) 1806 vmas[i] = vma; 1807 i++; 1808 start += PAGE_SIZE; 1809 nr_pages--; 1810 } while (nr_pages && start < vma->vm_end); 1811 } while (nr_pages); 1812 return i; 1813 } 1814 EXPORT_SYMBOL(__get_user_pages); 1815 1816 /** 1817 * get_user_pages() - pin user pages in memory 1818 * @tsk: the task_struct to use for page fault accounting, or 1819 * NULL if faults are not to be recorded. 1820 * @mm: mm_struct of target mm 1821 * @start: starting user address 1822 * @nr_pages: number of pages from start to pin 1823 * @write: whether pages will be written to by the caller 1824 * @force: whether to force write access even if user mapping is 1825 * readonly. This will result in the page being COWed even 1826 * in MAP_SHARED mappings. You do not want this. 1827 * @pages: array that receives pointers to the pages pinned. 1828 * Should be at least nr_pages long. Or NULL, if caller 1829 * only intends to ensure the pages are faulted in. 1830 * @vmas: array of pointers to vmas corresponding to each page. 1831 * Or NULL if the caller does not require them. 1832 * 1833 * Returns number of pages pinned. This may be fewer than the number 1834 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1835 * were pinned, returns -errno. Each page returned must be released 1836 * with a put_page() call when it is finished with. vmas will only 1837 * remain valid while mmap_sem is held. 1838 * 1839 * Must be called with mmap_sem held for read or write. 1840 * 1841 * get_user_pages walks a process's page tables and takes a reference to 1842 * each struct page that each user address corresponds to at a given 1843 * instant. That is, it takes the page that would be accessed if a user 1844 * thread accesses the given user virtual address at that instant. 1845 * 1846 * This does not guarantee that the page exists in the user mappings when 1847 * get_user_pages returns, and there may even be a completely different 1848 * page there in some cases (eg. if mmapped pagecache has been invalidated 1849 * and subsequently re faulted). However it does guarantee that the page 1850 * won't be freed completely. And mostly callers simply care that the page 1851 * contains data that was valid *at some point in time*. Typically, an IO 1852 * or similar operation cannot guarantee anything stronger anyway because 1853 * locks can't be held over the syscall boundary. 1854 * 1855 * If write=0, the page must not be written to. If the page is written to, 1856 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1857 * after the page is finished with, and before put_page is called. 1858 * 1859 * get_user_pages is typically used for fewer-copy IO operations, to get a 1860 * handle on the memory by some means other than accesses via the user virtual 1861 * addresses. The pages may be submitted for DMA to devices or accessed via 1862 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1863 * use the correct cache flushing APIs. 1864 * 1865 * See also get_user_pages_fast, for performance critical applications. 1866 */ 1867 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1868 unsigned long start, int nr_pages, int write, int force, 1869 struct page **pages, struct vm_area_struct **vmas) 1870 { 1871 int flags = FOLL_TOUCH; 1872 1873 if (pages) 1874 flags |= FOLL_GET; 1875 if (write) 1876 flags |= FOLL_WRITE; 1877 if (force) 1878 flags |= FOLL_FORCE; 1879 1880 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 1881 NULL); 1882 } 1883 EXPORT_SYMBOL(get_user_pages); 1884 1885 /** 1886 * get_dump_page() - pin user page in memory while writing it to core dump 1887 * @addr: user address 1888 * 1889 * Returns struct page pointer of user page pinned for dump, 1890 * to be freed afterwards by page_cache_release() or put_page(). 1891 * 1892 * Returns NULL on any kind of failure - a hole must then be inserted into 1893 * the corefile, to preserve alignment with its headers; and also returns 1894 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1895 * allowing a hole to be left in the corefile to save diskspace. 1896 * 1897 * Called without mmap_sem, but after all other threads have been killed. 1898 */ 1899 #ifdef CONFIG_ELF_CORE 1900 struct page *get_dump_page(unsigned long addr) 1901 { 1902 struct vm_area_struct *vma; 1903 struct page *page; 1904 1905 if (__get_user_pages(current, current->mm, addr, 1, 1906 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1907 NULL) < 1) 1908 return NULL; 1909 flush_cache_page(vma, addr, page_to_pfn(page)); 1910 return page; 1911 } 1912 #endif /* CONFIG_ELF_CORE */ 1913 1914 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1915 spinlock_t **ptl) 1916 { 1917 pgd_t * pgd = pgd_offset(mm, addr); 1918 pud_t * pud = pud_alloc(mm, pgd, addr); 1919 if (pud) { 1920 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1921 if (pmd) { 1922 VM_BUG_ON(pmd_trans_huge(*pmd)); 1923 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1924 } 1925 } 1926 return NULL; 1927 } 1928 1929 /* 1930 * This is the old fallback for page remapping. 1931 * 1932 * For historical reasons, it only allows reserved pages. Only 1933 * old drivers should use this, and they needed to mark their 1934 * pages reserved for the old functions anyway. 1935 */ 1936 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1937 struct page *page, pgprot_t prot) 1938 { 1939 struct mm_struct *mm = vma->vm_mm; 1940 int retval; 1941 pte_t *pte; 1942 spinlock_t *ptl; 1943 1944 retval = -EINVAL; 1945 if (PageAnon(page)) 1946 goto out; 1947 retval = -ENOMEM; 1948 flush_dcache_page(page); 1949 pte = get_locked_pte(mm, addr, &ptl); 1950 if (!pte) 1951 goto out; 1952 retval = -EBUSY; 1953 if (!pte_none(*pte)) 1954 goto out_unlock; 1955 1956 /* Ok, finally just insert the thing.. */ 1957 get_page(page); 1958 inc_mm_counter_fast(mm, MM_FILEPAGES); 1959 page_add_file_rmap(page); 1960 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1961 1962 retval = 0; 1963 pte_unmap_unlock(pte, ptl); 1964 return retval; 1965 out_unlock: 1966 pte_unmap_unlock(pte, ptl); 1967 out: 1968 return retval; 1969 } 1970 1971 /** 1972 * vm_insert_page - insert single page into user vma 1973 * @vma: user vma to map to 1974 * @addr: target user address of this page 1975 * @page: source kernel page 1976 * 1977 * This allows drivers to insert individual pages they've allocated 1978 * into a user vma. 1979 * 1980 * The page has to be a nice clean _individual_ kernel allocation. 1981 * If you allocate a compound page, you need to have marked it as 1982 * such (__GFP_COMP), or manually just split the page up yourself 1983 * (see split_page()). 1984 * 1985 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1986 * took an arbitrary page protection parameter. This doesn't allow 1987 * that. Your vma protection will have to be set up correctly, which 1988 * means that if you want a shared writable mapping, you'd better 1989 * ask for a shared writable mapping! 1990 * 1991 * The page does not need to be reserved. 1992 */ 1993 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1994 struct page *page) 1995 { 1996 if (addr < vma->vm_start || addr >= vma->vm_end) 1997 return -EFAULT; 1998 if (!page_count(page)) 1999 return -EINVAL; 2000 vma->vm_flags |= VM_INSERTPAGE; 2001 return insert_page(vma, addr, page, vma->vm_page_prot); 2002 } 2003 EXPORT_SYMBOL(vm_insert_page); 2004 2005 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2006 unsigned long pfn, pgprot_t prot) 2007 { 2008 struct mm_struct *mm = vma->vm_mm; 2009 int retval; 2010 pte_t *pte, entry; 2011 spinlock_t *ptl; 2012 2013 retval = -ENOMEM; 2014 pte = get_locked_pte(mm, addr, &ptl); 2015 if (!pte) 2016 goto out; 2017 retval = -EBUSY; 2018 if (!pte_none(*pte)) 2019 goto out_unlock; 2020 2021 /* Ok, finally just insert the thing.. */ 2022 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2023 set_pte_at(mm, addr, pte, entry); 2024 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2025 2026 retval = 0; 2027 out_unlock: 2028 pte_unmap_unlock(pte, ptl); 2029 out: 2030 return retval; 2031 } 2032 2033 /** 2034 * vm_insert_pfn - insert single pfn into user vma 2035 * @vma: user vma to map to 2036 * @addr: target user address of this page 2037 * @pfn: source kernel pfn 2038 * 2039 * Similar to vm_inert_page, this allows drivers to insert individual pages 2040 * they've allocated into a user vma. Same comments apply. 2041 * 2042 * This function should only be called from a vm_ops->fault handler, and 2043 * in that case the handler should return NULL. 2044 * 2045 * vma cannot be a COW mapping. 2046 * 2047 * As this is called only for pages that do not currently exist, we 2048 * do not need to flush old virtual caches or the TLB. 2049 */ 2050 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2051 unsigned long pfn) 2052 { 2053 int ret; 2054 pgprot_t pgprot = vma->vm_page_prot; 2055 /* 2056 * Technically, architectures with pte_special can avoid all these 2057 * restrictions (same for remap_pfn_range). However we would like 2058 * consistency in testing and feature parity among all, so we should 2059 * try to keep these invariants in place for everybody. 2060 */ 2061 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2062 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2063 (VM_PFNMAP|VM_MIXEDMAP)); 2064 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2065 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2066 2067 if (addr < vma->vm_start || addr >= vma->vm_end) 2068 return -EFAULT; 2069 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 2070 return -EINVAL; 2071 2072 ret = insert_pfn(vma, addr, pfn, pgprot); 2073 2074 if (ret) 2075 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 2076 2077 return ret; 2078 } 2079 EXPORT_SYMBOL(vm_insert_pfn); 2080 2081 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2082 unsigned long pfn) 2083 { 2084 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 2085 2086 if (addr < vma->vm_start || addr >= vma->vm_end) 2087 return -EFAULT; 2088 2089 /* 2090 * If we don't have pte special, then we have to use the pfn_valid() 2091 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2092 * refcount the page if pfn_valid is true (hence insert_page rather 2093 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2094 * without pte special, it would there be refcounted as a normal page. 2095 */ 2096 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 2097 struct page *page; 2098 2099 page = pfn_to_page(pfn); 2100 return insert_page(vma, addr, page, vma->vm_page_prot); 2101 } 2102 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 2103 } 2104 EXPORT_SYMBOL(vm_insert_mixed); 2105 2106 /* 2107 * maps a range of physical memory into the requested pages. the old 2108 * mappings are removed. any references to nonexistent pages results 2109 * in null mappings (currently treated as "copy-on-access") 2110 */ 2111 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2112 unsigned long addr, unsigned long end, 2113 unsigned long pfn, pgprot_t prot) 2114 { 2115 pte_t *pte; 2116 spinlock_t *ptl; 2117 2118 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2119 if (!pte) 2120 return -ENOMEM; 2121 arch_enter_lazy_mmu_mode(); 2122 do { 2123 BUG_ON(!pte_none(*pte)); 2124 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2125 pfn++; 2126 } while (pte++, addr += PAGE_SIZE, addr != end); 2127 arch_leave_lazy_mmu_mode(); 2128 pte_unmap_unlock(pte - 1, ptl); 2129 return 0; 2130 } 2131 2132 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2133 unsigned long addr, unsigned long end, 2134 unsigned long pfn, pgprot_t prot) 2135 { 2136 pmd_t *pmd; 2137 unsigned long next; 2138 2139 pfn -= addr >> PAGE_SHIFT; 2140 pmd = pmd_alloc(mm, pud, addr); 2141 if (!pmd) 2142 return -ENOMEM; 2143 VM_BUG_ON(pmd_trans_huge(*pmd)); 2144 do { 2145 next = pmd_addr_end(addr, end); 2146 if (remap_pte_range(mm, pmd, addr, next, 2147 pfn + (addr >> PAGE_SHIFT), prot)) 2148 return -ENOMEM; 2149 } while (pmd++, addr = next, addr != end); 2150 return 0; 2151 } 2152 2153 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 2154 unsigned long addr, unsigned long end, 2155 unsigned long pfn, pgprot_t prot) 2156 { 2157 pud_t *pud; 2158 unsigned long next; 2159 2160 pfn -= addr >> PAGE_SHIFT; 2161 pud = pud_alloc(mm, pgd, addr); 2162 if (!pud) 2163 return -ENOMEM; 2164 do { 2165 next = pud_addr_end(addr, end); 2166 if (remap_pmd_range(mm, pud, addr, next, 2167 pfn + (addr >> PAGE_SHIFT), prot)) 2168 return -ENOMEM; 2169 } while (pud++, addr = next, addr != end); 2170 return 0; 2171 } 2172 2173 /** 2174 * remap_pfn_range - remap kernel memory to userspace 2175 * @vma: user vma to map to 2176 * @addr: target user address to start at 2177 * @pfn: physical address of kernel memory 2178 * @size: size of map area 2179 * @prot: page protection flags for this mapping 2180 * 2181 * Note: this is only safe if the mm semaphore is held when called. 2182 */ 2183 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2184 unsigned long pfn, unsigned long size, pgprot_t prot) 2185 { 2186 pgd_t *pgd; 2187 unsigned long next; 2188 unsigned long end = addr + PAGE_ALIGN(size); 2189 struct mm_struct *mm = vma->vm_mm; 2190 int err; 2191 2192 /* 2193 * Physically remapped pages are special. Tell the 2194 * rest of the world about it: 2195 * VM_IO tells people not to look at these pages 2196 * (accesses can have side effects). 2197 * VM_RESERVED is specified all over the place, because 2198 * in 2.4 it kept swapout's vma scan off this vma; but 2199 * in 2.6 the LRU scan won't even find its pages, so this 2200 * flag means no more than count its pages in reserved_vm, 2201 * and omit it from core dump, even when VM_IO turned off. 2202 * VM_PFNMAP tells the core MM that the base pages are just 2203 * raw PFN mappings, and do not have a "struct page" associated 2204 * with them. 2205 * 2206 * There's a horrible special case to handle copy-on-write 2207 * behaviour that some programs depend on. We mark the "original" 2208 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2209 */ 2210 if (addr == vma->vm_start && end == vma->vm_end) { 2211 vma->vm_pgoff = pfn; 2212 vma->vm_flags |= VM_PFN_AT_MMAP; 2213 } else if (is_cow_mapping(vma->vm_flags)) 2214 return -EINVAL; 2215 2216 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 2217 2218 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 2219 if (err) { 2220 /* 2221 * To indicate that track_pfn related cleanup is not 2222 * needed from higher level routine calling unmap_vmas 2223 */ 2224 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 2225 vma->vm_flags &= ~VM_PFN_AT_MMAP; 2226 return -EINVAL; 2227 } 2228 2229 BUG_ON(addr >= end); 2230 pfn -= addr >> PAGE_SHIFT; 2231 pgd = pgd_offset(mm, addr); 2232 flush_cache_range(vma, addr, end); 2233 do { 2234 next = pgd_addr_end(addr, end); 2235 err = remap_pud_range(mm, pgd, addr, next, 2236 pfn + (addr >> PAGE_SHIFT), prot); 2237 if (err) 2238 break; 2239 } while (pgd++, addr = next, addr != end); 2240 2241 if (err) 2242 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 2243 2244 return err; 2245 } 2246 EXPORT_SYMBOL(remap_pfn_range); 2247 2248 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2249 unsigned long addr, unsigned long end, 2250 pte_fn_t fn, void *data) 2251 { 2252 pte_t *pte; 2253 int err; 2254 pgtable_t token; 2255 spinlock_t *uninitialized_var(ptl); 2256 2257 pte = (mm == &init_mm) ? 2258 pte_alloc_kernel(pmd, addr) : 2259 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2260 if (!pte) 2261 return -ENOMEM; 2262 2263 BUG_ON(pmd_huge(*pmd)); 2264 2265 arch_enter_lazy_mmu_mode(); 2266 2267 token = pmd_pgtable(*pmd); 2268 2269 do { 2270 err = fn(pte++, token, addr, data); 2271 if (err) 2272 break; 2273 } while (addr += PAGE_SIZE, addr != end); 2274 2275 arch_leave_lazy_mmu_mode(); 2276 2277 if (mm != &init_mm) 2278 pte_unmap_unlock(pte-1, ptl); 2279 return err; 2280 } 2281 2282 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2283 unsigned long addr, unsigned long end, 2284 pte_fn_t fn, void *data) 2285 { 2286 pmd_t *pmd; 2287 unsigned long next; 2288 int err; 2289 2290 BUG_ON(pud_huge(*pud)); 2291 2292 pmd = pmd_alloc(mm, pud, addr); 2293 if (!pmd) 2294 return -ENOMEM; 2295 do { 2296 next = pmd_addr_end(addr, end); 2297 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2298 if (err) 2299 break; 2300 } while (pmd++, addr = next, addr != end); 2301 return err; 2302 } 2303 2304 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2305 unsigned long addr, unsigned long end, 2306 pte_fn_t fn, void *data) 2307 { 2308 pud_t *pud; 2309 unsigned long next; 2310 int err; 2311 2312 pud = pud_alloc(mm, pgd, addr); 2313 if (!pud) 2314 return -ENOMEM; 2315 do { 2316 next = pud_addr_end(addr, end); 2317 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2318 if (err) 2319 break; 2320 } while (pud++, addr = next, addr != end); 2321 return err; 2322 } 2323 2324 /* 2325 * Scan a region of virtual memory, filling in page tables as necessary 2326 * and calling a provided function on each leaf page table. 2327 */ 2328 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2329 unsigned long size, pte_fn_t fn, void *data) 2330 { 2331 pgd_t *pgd; 2332 unsigned long next; 2333 unsigned long end = addr + size; 2334 int err; 2335 2336 BUG_ON(addr >= end); 2337 pgd = pgd_offset(mm, addr); 2338 do { 2339 next = pgd_addr_end(addr, end); 2340 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2341 if (err) 2342 break; 2343 } while (pgd++, addr = next, addr != end); 2344 2345 return err; 2346 } 2347 EXPORT_SYMBOL_GPL(apply_to_page_range); 2348 2349 /* 2350 * handle_pte_fault chooses page fault handler according to an entry 2351 * which was read non-atomically. Before making any commitment, on 2352 * those architectures or configurations (e.g. i386 with PAE) which 2353 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2354 * must check under lock before unmapping the pte and proceeding 2355 * (but do_wp_page is only called after already making such a check; 2356 * and do_anonymous_page can safely check later on). 2357 */ 2358 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2359 pte_t *page_table, pte_t orig_pte) 2360 { 2361 int same = 1; 2362 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2363 if (sizeof(pte_t) > sizeof(unsigned long)) { 2364 spinlock_t *ptl = pte_lockptr(mm, pmd); 2365 spin_lock(ptl); 2366 same = pte_same(*page_table, orig_pte); 2367 spin_unlock(ptl); 2368 } 2369 #endif 2370 pte_unmap(page_table); 2371 return same; 2372 } 2373 2374 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2375 { 2376 /* 2377 * If the source page was a PFN mapping, we don't have 2378 * a "struct page" for it. We do a best-effort copy by 2379 * just copying from the original user address. If that 2380 * fails, we just zero-fill it. Live with it. 2381 */ 2382 if (unlikely(!src)) { 2383 void *kaddr = kmap_atomic(dst, KM_USER0); 2384 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2385 2386 /* 2387 * This really shouldn't fail, because the page is there 2388 * in the page tables. But it might just be unreadable, 2389 * in which case we just give up and fill the result with 2390 * zeroes. 2391 */ 2392 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2393 clear_page(kaddr); 2394 kunmap_atomic(kaddr, KM_USER0); 2395 flush_dcache_page(dst); 2396 } else 2397 copy_user_highpage(dst, src, va, vma); 2398 } 2399 2400 /* 2401 * This routine handles present pages, when users try to write 2402 * to a shared page. It is done by copying the page to a new address 2403 * and decrementing the shared-page counter for the old page. 2404 * 2405 * Note that this routine assumes that the protection checks have been 2406 * done by the caller (the low-level page fault routine in most cases). 2407 * Thus we can safely just mark it writable once we've done any necessary 2408 * COW. 2409 * 2410 * We also mark the page dirty at this point even though the page will 2411 * change only once the write actually happens. This avoids a few races, 2412 * and potentially makes it more efficient. 2413 * 2414 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2415 * but allow concurrent faults), with pte both mapped and locked. 2416 * We return with mmap_sem still held, but pte unmapped and unlocked. 2417 */ 2418 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2419 unsigned long address, pte_t *page_table, pmd_t *pmd, 2420 spinlock_t *ptl, pte_t orig_pte) 2421 __releases(ptl) 2422 { 2423 struct page *old_page, *new_page; 2424 pte_t entry; 2425 int ret = 0; 2426 int page_mkwrite = 0; 2427 struct page *dirty_page = NULL; 2428 2429 old_page = vm_normal_page(vma, address, orig_pte); 2430 if (!old_page) { 2431 /* 2432 * VM_MIXEDMAP !pfn_valid() case 2433 * 2434 * We should not cow pages in a shared writeable mapping. 2435 * Just mark the pages writable as we can't do any dirty 2436 * accounting on raw pfn maps. 2437 */ 2438 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2439 (VM_WRITE|VM_SHARED)) 2440 goto reuse; 2441 goto gotten; 2442 } 2443 2444 /* 2445 * Take out anonymous pages first, anonymous shared vmas are 2446 * not dirty accountable. 2447 */ 2448 if (PageAnon(old_page) && !PageKsm(old_page)) { 2449 if (!trylock_page(old_page)) { 2450 page_cache_get(old_page); 2451 pte_unmap_unlock(page_table, ptl); 2452 lock_page(old_page); 2453 page_table = pte_offset_map_lock(mm, pmd, address, 2454 &ptl); 2455 if (!pte_same(*page_table, orig_pte)) { 2456 unlock_page(old_page); 2457 goto unlock; 2458 } 2459 page_cache_release(old_page); 2460 } 2461 if (reuse_swap_page(old_page)) { 2462 /* 2463 * The page is all ours. Move it to our anon_vma so 2464 * the rmap code will not search our parent or siblings. 2465 * Protected against the rmap code by the page lock. 2466 */ 2467 page_move_anon_rmap(old_page, vma, address); 2468 unlock_page(old_page); 2469 goto reuse; 2470 } 2471 unlock_page(old_page); 2472 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2473 (VM_WRITE|VM_SHARED))) { 2474 /* 2475 * Only catch write-faults on shared writable pages, 2476 * read-only shared pages can get COWed by 2477 * get_user_pages(.write=1, .force=1). 2478 */ 2479 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2480 struct vm_fault vmf; 2481 int tmp; 2482 2483 vmf.virtual_address = (void __user *)(address & 2484 PAGE_MASK); 2485 vmf.pgoff = old_page->index; 2486 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2487 vmf.page = old_page; 2488 2489 /* 2490 * Notify the address space that the page is about to 2491 * become writable so that it can prohibit this or wait 2492 * for the page to get into an appropriate state. 2493 * 2494 * We do this without the lock held, so that it can 2495 * sleep if it needs to. 2496 */ 2497 page_cache_get(old_page); 2498 pte_unmap_unlock(page_table, ptl); 2499 2500 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2501 if (unlikely(tmp & 2502 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2503 ret = tmp; 2504 goto unwritable_page; 2505 } 2506 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2507 lock_page(old_page); 2508 if (!old_page->mapping) { 2509 ret = 0; /* retry the fault */ 2510 unlock_page(old_page); 2511 goto unwritable_page; 2512 } 2513 } else 2514 VM_BUG_ON(!PageLocked(old_page)); 2515 2516 /* 2517 * Since we dropped the lock we need to revalidate 2518 * the PTE as someone else may have changed it. If 2519 * they did, we just return, as we can count on the 2520 * MMU to tell us if they didn't also make it writable. 2521 */ 2522 page_table = pte_offset_map_lock(mm, pmd, address, 2523 &ptl); 2524 if (!pte_same(*page_table, orig_pte)) { 2525 unlock_page(old_page); 2526 goto unlock; 2527 } 2528 2529 page_mkwrite = 1; 2530 } 2531 dirty_page = old_page; 2532 get_page(dirty_page); 2533 2534 reuse: 2535 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2536 entry = pte_mkyoung(orig_pte); 2537 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2538 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2539 update_mmu_cache(vma, address, page_table); 2540 pte_unmap_unlock(page_table, ptl); 2541 ret |= VM_FAULT_WRITE; 2542 2543 if (!dirty_page) 2544 return ret; 2545 2546 /* 2547 * Yes, Virginia, this is actually required to prevent a race 2548 * with clear_page_dirty_for_io() from clearing the page dirty 2549 * bit after it clear all dirty ptes, but before a racing 2550 * do_wp_page installs a dirty pte. 2551 * 2552 * __do_fault is protected similarly. 2553 */ 2554 if (!page_mkwrite) { 2555 wait_on_page_locked(dirty_page); 2556 set_page_dirty_balance(dirty_page, page_mkwrite); 2557 } 2558 put_page(dirty_page); 2559 if (page_mkwrite) { 2560 struct address_space *mapping = dirty_page->mapping; 2561 2562 set_page_dirty(dirty_page); 2563 unlock_page(dirty_page); 2564 page_cache_release(dirty_page); 2565 if (mapping) { 2566 /* 2567 * Some device drivers do not set page.mapping 2568 * but still dirty their pages 2569 */ 2570 balance_dirty_pages_ratelimited(mapping); 2571 } 2572 } 2573 2574 /* file_update_time outside page_lock */ 2575 if (vma->vm_file) 2576 file_update_time(vma->vm_file); 2577 2578 return ret; 2579 } 2580 2581 /* 2582 * Ok, we need to copy. Oh, well.. 2583 */ 2584 page_cache_get(old_page); 2585 gotten: 2586 pte_unmap_unlock(page_table, ptl); 2587 2588 if (unlikely(anon_vma_prepare(vma))) 2589 goto oom; 2590 2591 if (is_zero_pfn(pte_pfn(orig_pte))) { 2592 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2593 if (!new_page) 2594 goto oom; 2595 } else { 2596 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2597 if (!new_page) 2598 goto oom; 2599 cow_user_page(new_page, old_page, address, vma); 2600 } 2601 __SetPageUptodate(new_page); 2602 2603 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2604 goto oom_free_new; 2605 2606 /* 2607 * Re-check the pte - we dropped the lock 2608 */ 2609 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2610 if (likely(pte_same(*page_table, orig_pte))) { 2611 if (old_page) { 2612 if (!PageAnon(old_page)) { 2613 dec_mm_counter_fast(mm, MM_FILEPAGES); 2614 inc_mm_counter_fast(mm, MM_ANONPAGES); 2615 } 2616 } else 2617 inc_mm_counter_fast(mm, MM_ANONPAGES); 2618 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2619 entry = mk_pte(new_page, vma->vm_page_prot); 2620 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2621 /* 2622 * Clear the pte entry and flush it first, before updating the 2623 * pte with the new entry. This will avoid a race condition 2624 * seen in the presence of one thread doing SMC and another 2625 * thread doing COW. 2626 */ 2627 ptep_clear_flush(vma, address, page_table); 2628 page_add_new_anon_rmap(new_page, vma, address); 2629 /* 2630 * We call the notify macro here because, when using secondary 2631 * mmu page tables (such as kvm shadow page tables), we want the 2632 * new page to be mapped directly into the secondary page table. 2633 */ 2634 set_pte_at_notify(mm, address, page_table, entry); 2635 update_mmu_cache(vma, address, page_table); 2636 if (old_page) { 2637 /* 2638 * Only after switching the pte to the new page may 2639 * we remove the mapcount here. Otherwise another 2640 * process may come and find the rmap count decremented 2641 * before the pte is switched to the new page, and 2642 * "reuse" the old page writing into it while our pte 2643 * here still points into it and can be read by other 2644 * threads. 2645 * 2646 * The critical issue is to order this 2647 * page_remove_rmap with the ptp_clear_flush above. 2648 * Those stores are ordered by (if nothing else,) 2649 * the barrier present in the atomic_add_negative 2650 * in page_remove_rmap. 2651 * 2652 * Then the TLB flush in ptep_clear_flush ensures that 2653 * no process can access the old page before the 2654 * decremented mapcount is visible. And the old page 2655 * cannot be reused until after the decremented 2656 * mapcount is visible. So transitively, TLBs to 2657 * old page will be flushed before it can be reused. 2658 */ 2659 page_remove_rmap(old_page); 2660 } 2661 2662 /* Free the old page.. */ 2663 new_page = old_page; 2664 ret |= VM_FAULT_WRITE; 2665 } else 2666 mem_cgroup_uncharge_page(new_page); 2667 2668 if (new_page) 2669 page_cache_release(new_page); 2670 unlock: 2671 pte_unmap_unlock(page_table, ptl); 2672 if (old_page) { 2673 /* 2674 * Don't let another task, with possibly unlocked vma, 2675 * keep the mlocked page. 2676 */ 2677 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2678 lock_page(old_page); /* LRU manipulation */ 2679 munlock_vma_page(old_page); 2680 unlock_page(old_page); 2681 } 2682 page_cache_release(old_page); 2683 } 2684 return ret; 2685 oom_free_new: 2686 page_cache_release(new_page); 2687 oom: 2688 if (old_page) { 2689 if (page_mkwrite) { 2690 unlock_page(old_page); 2691 page_cache_release(old_page); 2692 } 2693 page_cache_release(old_page); 2694 } 2695 return VM_FAULT_OOM; 2696 2697 unwritable_page: 2698 page_cache_release(old_page); 2699 return ret; 2700 } 2701 2702 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2703 unsigned long start_addr, unsigned long end_addr, 2704 struct zap_details *details) 2705 { 2706 zap_page_range(vma, start_addr, end_addr - start_addr, details); 2707 } 2708 2709 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2710 struct zap_details *details) 2711 { 2712 struct vm_area_struct *vma; 2713 struct prio_tree_iter iter; 2714 pgoff_t vba, vea, zba, zea; 2715 2716 vma_prio_tree_foreach(vma, &iter, root, 2717 details->first_index, details->last_index) { 2718 2719 vba = vma->vm_pgoff; 2720 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2721 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2722 zba = details->first_index; 2723 if (zba < vba) 2724 zba = vba; 2725 zea = details->last_index; 2726 if (zea > vea) 2727 zea = vea; 2728 2729 unmap_mapping_range_vma(vma, 2730 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2731 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2732 details); 2733 } 2734 } 2735 2736 static inline void unmap_mapping_range_list(struct list_head *head, 2737 struct zap_details *details) 2738 { 2739 struct vm_area_struct *vma; 2740 2741 /* 2742 * In nonlinear VMAs there is no correspondence between virtual address 2743 * offset and file offset. So we must perform an exhaustive search 2744 * across *all* the pages in each nonlinear VMA, not just the pages 2745 * whose virtual address lies outside the file truncation point. 2746 */ 2747 list_for_each_entry(vma, head, shared.vm_set.list) { 2748 details->nonlinear_vma = vma; 2749 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2750 } 2751 } 2752 2753 /** 2754 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2755 * @mapping: the address space containing mmaps to be unmapped. 2756 * @holebegin: byte in first page to unmap, relative to the start of 2757 * the underlying file. This will be rounded down to a PAGE_SIZE 2758 * boundary. Note that this is different from truncate_pagecache(), which 2759 * must keep the partial page. In contrast, we must get rid of 2760 * partial pages. 2761 * @holelen: size of prospective hole in bytes. This will be rounded 2762 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2763 * end of the file. 2764 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2765 * but 0 when invalidating pagecache, don't throw away private data. 2766 */ 2767 void unmap_mapping_range(struct address_space *mapping, 2768 loff_t const holebegin, loff_t const holelen, int even_cows) 2769 { 2770 struct zap_details details; 2771 pgoff_t hba = holebegin >> PAGE_SHIFT; 2772 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2773 2774 /* Check for overflow. */ 2775 if (sizeof(holelen) > sizeof(hlen)) { 2776 long long holeend = 2777 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2778 if (holeend & ~(long long)ULONG_MAX) 2779 hlen = ULONG_MAX - hba + 1; 2780 } 2781 2782 details.check_mapping = even_cows? NULL: mapping; 2783 details.nonlinear_vma = NULL; 2784 details.first_index = hba; 2785 details.last_index = hba + hlen - 1; 2786 if (details.last_index < details.first_index) 2787 details.last_index = ULONG_MAX; 2788 2789 2790 mutex_lock(&mapping->i_mmap_mutex); 2791 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2792 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2793 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2794 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2795 mutex_unlock(&mapping->i_mmap_mutex); 2796 } 2797 EXPORT_SYMBOL(unmap_mapping_range); 2798 2799 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2800 { 2801 struct address_space *mapping = inode->i_mapping; 2802 2803 /* 2804 * If the underlying filesystem is not going to provide 2805 * a way to truncate a range of blocks (punch a hole) - 2806 * we should return failure right now. 2807 */ 2808 if (!inode->i_op->truncate_range) 2809 return -ENOSYS; 2810 2811 mutex_lock(&inode->i_mutex); 2812 down_write(&inode->i_alloc_sem); 2813 unmap_mapping_range(mapping, offset, (end - offset), 1); 2814 truncate_inode_pages_range(mapping, offset, end); 2815 unmap_mapping_range(mapping, offset, (end - offset), 1); 2816 inode->i_op->truncate_range(inode, offset, end); 2817 up_write(&inode->i_alloc_sem); 2818 mutex_unlock(&inode->i_mutex); 2819 2820 return 0; 2821 } 2822 2823 /* 2824 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2825 * but allow concurrent faults), and pte mapped but not yet locked. 2826 * We return with mmap_sem still held, but pte unmapped and unlocked. 2827 */ 2828 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2829 unsigned long address, pte_t *page_table, pmd_t *pmd, 2830 unsigned int flags, pte_t orig_pte) 2831 { 2832 spinlock_t *ptl; 2833 struct page *page, *swapcache = NULL; 2834 swp_entry_t entry; 2835 pte_t pte; 2836 int locked; 2837 struct mem_cgroup *ptr; 2838 int exclusive = 0; 2839 int ret = 0; 2840 2841 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2842 goto out; 2843 2844 entry = pte_to_swp_entry(orig_pte); 2845 if (unlikely(non_swap_entry(entry))) { 2846 if (is_migration_entry(entry)) { 2847 migration_entry_wait(mm, pmd, address); 2848 } else if (is_hwpoison_entry(entry)) { 2849 ret = VM_FAULT_HWPOISON; 2850 } else { 2851 print_bad_pte(vma, address, orig_pte, NULL); 2852 ret = VM_FAULT_SIGBUS; 2853 } 2854 goto out; 2855 } 2856 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2857 page = lookup_swap_cache(entry); 2858 if (!page) { 2859 grab_swap_token(mm); /* Contend for token _before_ read-in */ 2860 page = swapin_readahead(entry, 2861 GFP_HIGHUSER_MOVABLE, vma, address); 2862 if (!page) { 2863 /* 2864 * Back out if somebody else faulted in this pte 2865 * while we released the pte lock. 2866 */ 2867 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2868 if (likely(pte_same(*page_table, orig_pte))) 2869 ret = VM_FAULT_OOM; 2870 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2871 goto unlock; 2872 } 2873 2874 /* Had to read the page from swap area: Major fault */ 2875 ret = VM_FAULT_MAJOR; 2876 count_vm_event(PGMAJFAULT); 2877 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2878 } else if (PageHWPoison(page)) { 2879 /* 2880 * hwpoisoned dirty swapcache pages are kept for killing 2881 * owner processes (which may be unknown at hwpoison time) 2882 */ 2883 ret = VM_FAULT_HWPOISON; 2884 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2885 goto out_release; 2886 } 2887 2888 locked = lock_page_or_retry(page, mm, flags); 2889 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2890 if (!locked) { 2891 ret |= VM_FAULT_RETRY; 2892 goto out_release; 2893 } 2894 2895 /* 2896 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2897 * release the swapcache from under us. The page pin, and pte_same 2898 * test below, are not enough to exclude that. Even if it is still 2899 * swapcache, we need to check that the page's swap has not changed. 2900 */ 2901 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2902 goto out_page; 2903 2904 if (ksm_might_need_to_copy(page, vma, address)) { 2905 swapcache = page; 2906 page = ksm_does_need_to_copy(page, vma, address); 2907 2908 if (unlikely(!page)) { 2909 ret = VM_FAULT_OOM; 2910 page = swapcache; 2911 swapcache = NULL; 2912 goto out_page; 2913 } 2914 } 2915 2916 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2917 ret = VM_FAULT_OOM; 2918 goto out_page; 2919 } 2920 2921 /* 2922 * Back out if somebody else already faulted in this pte. 2923 */ 2924 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2925 if (unlikely(!pte_same(*page_table, orig_pte))) 2926 goto out_nomap; 2927 2928 if (unlikely(!PageUptodate(page))) { 2929 ret = VM_FAULT_SIGBUS; 2930 goto out_nomap; 2931 } 2932 2933 /* 2934 * The page isn't present yet, go ahead with the fault. 2935 * 2936 * Be careful about the sequence of operations here. 2937 * To get its accounting right, reuse_swap_page() must be called 2938 * while the page is counted on swap but not yet in mapcount i.e. 2939 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2940 * must be called after the swap_free(), or it will never succeed. 2941 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2942 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2943 * in page->private. In this case, a record in swap_cgroup is silently 2944 * discarded at swap_free(). 2945 */ 2946 2947 inc_mm_counter_fast(mm, MM_ANONPAGES); 2948 dec_mm_counter_fast(mm, MM_SWAPENTS); 2949 pte = mk_pte(page, vma->vm_page_prot); 2950 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2951 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2952 flags &= ~FAULT_FLAG_WRITE; 2953 ret |= VM_FAULT_WRITE; 2954 exclusive = 1; 2955 } 2956 flush_icache_page(vma, page); 2957 set_pte_at(mm, address, page_table, pte); 2958 do_page_add_anon_rmap(page, vma, address, exclusive); 2959 /* It's better to call commit-charge after rmap is established */ 2960 mem_cgroup_commit_charge_swapin(page, ptr); 2961 2962 swap_free(entry); 2963 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2964 try_to_free_swap(page); 2965 unlock_page(page); 2966 if (swapcache) { 2967 /* 2968 * Hold the lock to avoid the swap entry to be reused 2969 * until we take the PT lock for the pte_same() check 2970 * (to avoid false positives from pte_same). For 2971 * further safety release the lock after the swap_free 2972 * so that the swap count won't change under a 2973 * parallel locked swapcache. 2974 */ 2975 unlock_page(swapcache); 2976 page_cache_release(swapcache); 2977 } 2978 2979 if (flags & FAULT_FLAG_WRITE) { 2980 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2981 if (ret & VM_FAULT_ERROR) 2982 ret &= VM_FAULT_ERROR; 2983 goto out; 2984 } 2985 2986 /* No need to invalidate - it was non-present before */ 2987 update_mmu_cache(vma, address, page_table); 2988 unlock: 2989 pte_unmap_unlock(page_table, ptl); 2990 out: 2991 return ret; 2992 out_nomap: 2993 mem_cgroup_cancel_charge_swapin(ptr); 2994 pte_unmap_unlock(page_table, ptl); 2995 out_page: 2996 unlock_page(page); 2997 out_release: 2998 page_cache_release(page); 2999 if (swapcache) { 3000 unlock_page(swapcache); 3001 page_cache_release(swapcache); 3002 } 3003 return ret; 3004 } 3005 3006 /* 3007 * This is like a special single-page "expand_{down|up}wards()", 3008 * except we must first make sure that 'address{-|+}PAGE_SIZE' 3009 * doesn't hit another vma. 3010 */ 3011 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 3012 { 3013 address &= PAGE_MASK; 3014 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 3015 struct vm_area_struct *prev = vma->vm_prev; 3016 3017 /* 3018 * Is there a mapping abutting this one below? 3019 * 3020 * That's only ok if it's the same stack mapping 3021 * that has gotten split.. 3022 */ 3023 if (prev && prev->vm_end == address) 3024 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 3025 3026 expand_downwards(vma, address - PAGE_SIZE); 3027 } 3028 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 3029 struct vm_area_struct *next = vma->vm_next; 3030 3031 /* As VM_GROWSDOWN but s/below/above/ */ 3032 if (next && next->vm_start == address + PAGE_SIZE) 3033 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 3034 3035 expand_upwards(vma, address + PAGE_SIZE); 3036 } 3037 return 0; 3038 } 3039 3040 /* 3041 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3042 * but allow concurrent faults), and pte mapped but not yet locked. 3043 * We return with mmap_sem still held, but pte unmapped and unlocked. 3044 */ 3045 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 3046 unsigned long address, pte_t *page_table, pmd_t *pmd, 3047 unsigned int flags) 3048 { 3049 struct page *page; 3050 spinlock_t *ptl; 3051 pte_t entry; 3052 3053 pte_unmap(page_table); 3054 3055 /* Check if we need to add a guard page to the stack */ 3056 if (check_stack_guard_page(vma, address) < 0) 3057 return VM_FAULT_SIGBUS; 3058 3059 /* Use the zero-page for reads */ 3060 if (!(flags & FAULT_FLAG_WRITE)) { 3061 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3062 vma->vm_page_prot)); 3063 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3064 if (!pte_none(*page_table)) 3065 goto unlock; 3066 goto setpte; 3067 } 3068 3069 /* Allocate our own private page. */ 3070 if (unlikely(anon_vma_prepare(vma))) 3071 goto oom; 3072 page = alloc_zeroed_user_highpage_movable(vma, address); 3073 if (!page) 3074 goto oom; 3075 __SetPageUptodate(page); 3076 3077 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3078 goto oom_free_page; 3079 3080 entry = mk_pte(page, vma->vm_page_prot); 3081 if (vma->vm_flags & VM_WRITE) 3082 entry = pte_mkwrite(pte_mkdirty(entry)); 3083 3084 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3085 if (!pte_none(*page_table)) 3086 goto release; 3087 3088 inc_mm_counter_fast(mm, MM_ANONPAGES); 3089 page_add_new_anon_rmap(page, vma, address); 3090 setpte: 3091 set_pte_at(mm, address, page_table, entry); 3092 3093 /* No need to invalidate - it was non-present before */ 3094 update_mmu_cache(vma, address, page_table); 3095 unlock: 3096 pte_unmap_unlock(page_table, ptl); 3097 return 0; 3098 release: 3099 mem_cgroup_uncharge_page(page); 3100 page_cache_release(page); 3101 goto unlock; 3102 oom_free_page: 3103 page_cache_release(page); 3104 oom: 3105 return VM_FAULT_OOM; 3106 } 3107 3108 /* 3109 * __do_fault() tries to create a new page mapping. It aggressively 3110 * tries to share with existing pages, but makes a separate copy if 3111 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3112 * the next page fault. 3113 * 3114 * As this is called only for pages that do not currently exist, we 3115 * do not need to flush old virtual caches or the TLB. 3116 * 3117 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3118 * but allow concurrent faults), and pte neither mapped nor locked. 3119 * We return with mmap_sem still held, but pte unmapped and unlocked. 3120 */ 3121 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3122 unsigned long address, pmd_t *pmd, 3123 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3124 { 3125 pte_t *page_table; 3126 spinlock_t *ptl; 3127 struct page *page; 3128 pte_t entry; 3129 int anon = 0; 3130 int charged = 0; 3131 struct page *dirty_page = NULL; 3132 struct vm_fault vmf; 3133 int ret; 3134 int page_mkwrite = 0; 3135 3136 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3137 vmf.pgoff = pgoff; 3138 vmf.flags = flags; 3139 vmf.page = NULL; 3140 3141 ret = vma->vm_ops->fault(vma, &vmf); 3142 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3143 VM_FAULT_RETRY))) 3144 return ret; 3145 3146 if (unlikely(PageHWPoison(vmf.page))) { 3147 if (ret & VM_FAULT_LOCKED) 3148 unlock_page(vmf.page); 3149 return VM_FAULT_HWPOISON; 3150 } 3151 3152 /* 3153 * For consistency in subsequent calls, make the faulted page always 3154 * locked. 3155 */ 3156 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3157 lock_page(vmf.page); 3158 else 3159 VM_BUG_ON(!PageLocked(vmf.page)); 3160 3161 /* 3162 * Should we do an early C-O-W break? 3163 */ 3164 page = vmf.page; 3165 if (flags & FAULT_FLAG_WRITE) { 3166 if (!(vma->vm_flags & VM_SHARED)) { 3167 anon = 1; 3168 if (unlikely(anon_vma_prepare(vma))) { 3169 ret = VM_FAULT_OOM; 3170 goto out; 3171 } 3172 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 3173 vma, address); 3174 if (!page) { 3175 ret = VM_FAULT_OOM; 3176 goto out; 3177 } 3178 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 3179 ret = VM_FAULT_OOM; 3180 page_cache_release(page); 3181 goto out; 3182 } 3183 charged = 1; 3184 copy_user_highpage(page, vmf.page, address, vma); 3185 __SetPageUptodate(page); 3186 } else { 3187 /* 3188 * If the page will be shareable, see if the backing 3189 * address space wants to know that the page is about 3190 * to become writable 3191 */ 3192 if (vma->vm_ops->page_mkwrite) { 3193 int tmp; 3194 3195 unlock_page(page); 3196 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3197 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3198 if (unlikely(tmp & 3199 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3200 ret = tmp; 3201 goto unwritable_page; 3202 } 3203 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3204 lock_page(page); 3205 if (!page->mapping) { 3206 ret = 0; /* retry the fault */ 3207 unlock_page(page); 3208 goto unwritable_page; 3209 } 3210 } else 3211 VM_BUG_ON(!PageLocked(page)); 3212 page_mkwrite = 1; 3213 } 3214 } 3215 3216 } 3217 3218 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3219 3220 /* 3221 * This silly early PAGE_DIRTY setting removes a race 3222 * due to the bad i386 page protection. But it's valid 3223 * for other architectures too. 3224 * 3225 * Note that if FAULT_FLAG_WRITE is set, we either now have 3226 * an exclusive copy of the page, or this is a shared mapping, 3227 * so we can make it writable and dirty to avoid having to 3228 * handle that later. 3229 */ 3230 /* Only go through if we didn't race with anybody else... */ 3231 if (likely(pte_same(*page_table, orig_pte))) { 3232 flush_icache_page(vma, page); 3233 entry = mk_pte(page, vma->vm_page_prot); 3234 if (flags & FAULT_FLAG_WRITE) 3235 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3236 if (anon) { 3237 inc_mm_counter_fast(mm, MM_ANONPAGES); 3238 page_add_new_anon_rmap(page, vma, address); 3239 } else { 3240 inc_mm_counter_fast(mm, MM_FILEPAGES); 3241 page_add_file_rmap(page); 3242 if (flags & FAULT_FLAG_WRITE) { 3243 dirty_page = page; 3244 get_page(dirty_page); 3245 } 3246 } 3247 set_pte_at(mm, address, page_table, entry); 3248 3249 /* no need to invalidate: a not-present page won't be cached */ 3250 update_mmu_cache(vma, address, page_table); 3251 } else { 3252 if (charged) 3253 mem_cgroup_uncharge_page(page); 3254 if (anon) 3255 page_cache_release(page); 3256 else 3257 anon = 1; /* no anon but release faulted_page */ 3258 } 3259 3260 pte_unmap_unlock(page_table, ptl); 3261 3262 out: 3263 if (dirty_page) { 3264 struct address_space *mapping = page->mapping; 3265 3266 if (set_page_dirty(dirty_page)) 3267 page_mkwrite = 1; 3268 unlock_page(dirty_page); 3269 put_page(dirty_page); 3270 if (page_mkwrite && mapping) { 3271 /* 3272 * Some device drivers do not set page.mapping but still 3273 * dirty their pages 3274 */ 3275 balance_dirty_pages_ratelimited(mapping); 3276 } 3277 3278 /* file_update_time outside page_lock */ 3279 if (vma->vm_file) 3280 file_update_time(vma->vm_file); 3281 } else { 3282 unlock_page(vmf.page); 3283 if (anon) 3284 page_cache_release(vmf.page); 3285 } 3286 3287 return ret; 3288 3289 unwritable_page: 3290 page_cache_release(page); 3291 return ret; 3292 } 3293 3294 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3295 unsigned long address, pte_t *page_table, pmd_t *pmd, 3296 unsigned int flags, pte_t orig_pte) 3297 { 3298 pgoff_t pgoff = (((address & PAGE_MASK) 3299 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3300 3301 pte_unmap(page_table); 3302 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3303 } 3304 3305 /* 3306 * Fault of a previously existing named mapping. Repopulate the pte 3307 * from the encoded file_pte if possible. This enables swappable 3308 * nonlinear vmas. 3309 * 3310 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3311 * but allow concurrent faults), and pte mapped but not yet locked. 3312 * We return with mmap_sem still held, but pte unmapped and unlocked. 3313 */ 3314 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3315 unsigned long address, pte_t *page_table, pmd_t *pmd, 3316 unsigned int flags, pte_t orig_pte) 3317 { 3318 pgoff_t pgoff; 3319 3320 flags |= FAULT_FLAG_NONLINEAR; 3321 3322 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3323 return 0; 3324 3325 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3326 /* 3327 * Page table corrupted: show pte and kill process. 3328 */ 3329 print_bad_pte(vma, address, orig_pte, NULL); 3330 return VM_FAULT_SIGBUS; 3331 } 3332 3333 pgoff = pte_to_pgoff(orig_pte); 3334 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3335 } 3336 3337 /* 3338 * These routines also need to handle stuff like marking pages dirty 3339 * and/or accessed for architectures that don't do it in hardware (most 3340 * RISC architectures). The early dirtying is also good on the i386. 3341 * 3342 * There is also a hook called "update_mmu_cache()" that architectures 3343 * with external mmu caches can use to update those (ie the Sparc or 3344 * PowerPC hashed page tables that act as extended TLBs). 3345 * 3346 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3347 * but allow concurrent faults), and pte mapped but not yet locked. 3348 * We return with mmap_sem still held, but pte unmapped and unlocked. 3349 */ 3350 int handle_pte_fault(struct mm_struct *mm, 3351 struct vm_area_struct *vma, unsigned long address, 3352 pte_t *pte, pmd_t *pmd, unsigned int flags) 3353 { 3354 pte_t entry; 3355 spinlock_t *ptl; 3356 3357 entry = *pte; 3358 if (!pte_present(entry)) { 3359 if (pte_none(entry)) { 3360 if (vma->vm_ops) { 3361 if (likely(vma->vm_ops->fault)) 3362 return do_linear_fault(mm, vma, address, 3363 pte, pmd, flags, entry); 3364 } 3365 return do_anonymous_page(mm, vma, address, 3366 pte, pmd, flags); 3367 } 3368 if (pte_file(entry)) 3369 return do_nonlinear_fault(mm, vma, address, 3370 pte, pmd, flags, entry); 3371 return do_swap_page(mm, vma, address, 3372 pte, pmd, flags, entry); 3373 } 3374 3375 ptl = pte_lockptr(mm, pmd); 3376 spin_lock(ptl); 3377 if (unlikely(!pte_same(*pte, entry))) 3378 goto unlock; 3379 if (flags & FAULT_FLAG_WRITE) { 3380 if (!pte_write(entry)) 3381 return do_wp_page(mm, vma, address, 3382 pte, pmd, ptl, entry); 3383 entry = pte_mkdirty(entry); 3384 } 3385 entry = pte_mkyoung(entry); 3386 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3387 update_mmu_cache(vma, address, pte); 3388 } else { 3389 /* 3390 * This is needed only for protection faults but the arch code 3391 * is not yet telling us if this is a protection fault or not. 3392 * This still avoids useless tlb flushes for .text page faults 3393 * with threads. 3394 */ 3395 if (flags & FAULT_FLAG_WRITE) 3396 flush_tlb_fix_spurious_fault(vma, address); 3397 } 3398 unlock: 3399 pte_unmap_unlock(pte, ptl); 3400 return 0; 3401 } 3402 3403 /* 3404 * By the time we get here, we already hold the mm semaphore 3405 */ 3406 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3407 unsigned long address, unsigned int flags) 3408 { 3409 pgd_t *pgd; 3410 pud_t *pud; 3411 pmd_t *pmd; 3412 pte_t *pte; 3413 3414 __set_current_state(TASK_RUNNING); 3415 3416 count_vm_event(PGFAULT); 3417 mem_cgroup_count_vm_event(mm, PGFAULT); 3418 3419 /* do counter updates before entering really critical section. */ 3420 check_sync_rss_stat(current); 3421 3422 if (unlikely(is_vm_hugetlb_page(vma))) 3423 return hugetlb_fault(mm, vma, address, flags); 3424 3425 pgd = pgd_offset(mm, address); 3426 pud = pud_alloc(mm, pgd, address); 3427 if (!pud) 3428 return VM_FAULT_OOM; 3429 pmd = pmd_alloc(mm, pud, address); 3430 if (!pmd) 3431 return VM_FAULT_OOM; 3432 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3433 if (!vma->vm_ops) 3434 return do_huge_pmd_anonymous_page(mm, vma, address, 3435 pmd, flags); 3436 } else { 3437 pmd_t orig_pmd = *pmd; 3438 barrier(); 3439 if (pmd_trans_huge(orig_pmd)) { 3440 if (flags & FAULT_FLAG_WRITE && 3441 !pmd_write(orig_pmd) && 3442 !pmd_trans_splitting(orig_pmd)) 3443 return do_huge_pmd_wp_page(mm, vma, address, 3444 pmd, orig_pmd); 3445 return 0; 3446 } 3447 } 3448 3449 /* 3450 * Use __pte_alloc instead of pte_alloc_map, because we can't 3451 * run pte_offset_map on the pmd, if an huge pmd could 3452 * materialize from under us from a different thread. 3453 */ 3454 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address)) 3455 return VM_FAULT_OOM; 3456 /* if an huge pmd materialized from under us just retry later */ 3457 if (unlikely(pmd_trans_huge(*pmd))) 3458 return 0; 3459 /* 3460 * A regular pmd is established and it can't morph into a huge pmd 3461 * from under us anymore at this point because we hold the mmap_sem 3462 * read mode and khugepaged takes it in write mode. So now it's 3463 * safe to run pte_offset_map(). 3464 */ 3465 pte = pte_offset_map(pmd, address); 3466 3467 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3468 } 3469 3470 #ifndef __PAGETABLE_PUD_FOLDED 3471 /* 3472 * Allocate page upper directory. 3473 * We've already handled the fast-path in-line. 3474 */ 3475 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3476 { 3477 pud_t *new = pud_alloc_one(mm, address); 3478 if (!new) 3479 return -ENOMEM; 3480 3481 smp_wmb(); /* See comment in __pte_alloc */ 3482 3483 spin_lock(&mm->page_table_lock); 3484 if (pgd_present(*pgd)) /* Another has populated it */ 3485 pud_free(mm, new); 3486 else 3487 pgd_populate(mm, pgd, new); 3488 spin_unlock(&mm->page_table_lock); 3489 return 0; 3490 } 3491 #endif /* __PAGETABLE_PUD_FOLDED */ 3492 3493 #ifndef __PAGETABLE_PMD_FOLDED 3494 /* 3495 * Allocate page middle directory. 3496 * We've already handled the fast-path in-line. 3497 */ 3498 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3499 { 3500 pmd_t *new = pmd_alloc_one(mm, address); 3501 if (!new) 3502 return -ENOMEM; 3503 3504 smp_wmb(); /* See comment in __pte_alloc */ 3505 3506 spin_lock(&mm->page_table_lock); 3507 #ifndef __ARCH_HAS_4LEVEL_HACK 3508 if (pud_present(*pud)) /* Another has populated it */ 3509 pmd_free(mm, new); 3510 else 3511 pud_populate(mm, pud, new); 3512 #else 3513 if (pgd_present(*pud)) /* Another has populated it */ 3514 pmd_free(mm, new); 3515 else 3516 pgd_populate(mm, pud, new); 3517 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3518 spin_unlock(&mm->page_table_lock); 3519 return 0; 3520 } 3521 #endif /* __PAGETABLE_PMD_FOLDED */ 3522 3523 int make_pages_present(unsigned long addr, unsigned long end) 3524 { 3525 int ret, len, write; 3526 struct vm_area_struct * vma; 3527 3528 vma = find_vma(current->mm, addr); 3529 if (!vma) 3530 return -ENOMEM; 3531 /* 3532 * We want to touch writable mappings with a write fault in order 3533 * to break COW, except for shared mappings because these don't COW 3534 * and we would not want to dirty them for nothing. 3535 */ 3536 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE; 3537 BUG_ON(addr >= end); 3538 BUG_ON(end > vma->vm_end); 3539 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3540 ret = get_user_pages(current, current->mm, addr, 3541 len, write, 0, NULL, NULL); 3542 if (ret < 0) 3543 return ret; 3544 return ret == len ? 0 : -EFAULT; 3545 } 3546 3547 #if !defined(__HAVE_ARCH_GATE_AREA) 3548 3549 #if defined(AT_SYSINFO_EHDR) 3550 static struct vm_area_struct gate_vma; 3551 3552 static int __init gate_vma_init(void) 3553 { 3554 gate_vma.vm_mm = NULL; 3555 gate_vma.vm_start = FIXADDR_USER_START; 3556 gate_vma.vm_end = FIXADDR_USER_END; 3557 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3558 gate_vma.vm_page_prot = __P101; 3559 /* 3560 * Make sure the vDSO gets into every core dump. 3561 * Dumping its contents makes post-mortem fully interpretable later 3562 * without matching up the same kernel and hardware config to see 3563 * what PC values meant. 3564 */ 3565 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3566 return 0; 3567 } 3568 __initcall(gate_vma_init); 3569 #endif 3570 3571 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3572 { 3573 #ifdef AT_SYSINFO_EHDR 3574 return &gate_vma; 3575 #else 3576 return NULL; 3577 #endif 3578 } 3579 3580 int in_gate_area_no_mm(unsigned long addr) 3581 { 3582 #ifdef AT_SYSINFO_EHDR 3583 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3584 return 1; 3585 #endif 3586 return 0; 3587 } 3588 3589 #endif /* __HAVE_ARCH_GATE_AREA */ 3590 3591 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3592 pte_t **ptepp, spinlock_t **ptlp) 3593 { 3594 pgd_t *pgd; 3595 pud_t *pud; 3596 pmd_t *pmd; 3597 pte_t *ptep; 3598 3599 pgd = pgd_offset(mm, address); 3600 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3601 goto out; 3602 3603 pud = pud_offset(pgd, address); 3604 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3605 goto out; 3606 3607 pmd = pmd_offset(pud, address); 3608 VM_BUG_ON(pmd_trans_huge(*pmd)); 3609 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3610 goto out; 3611 3612 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3613 if (pmd_huge(*pmd)) 3614 goto out; 3615 3616 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3617 if (!ptep) 3618 goto out; 3619 if (!pte_present(*ptep)) 3620 goto unlock; 3621 *ptepp = ptep; 3622 return 0; 3623 unlock: 3624 pte_unmap_unlock(ptep, *ptlp); 3625 out: 3626 return -EINVAL; 3627 } 3628 3629 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3630 pte_t **ptepp, spinlock_t **ptlp) 3631 { 3632 int res; 3633 3634 /* (void) is needed to make gcc happy */ 3635 (void) __cond_lock(*ptlp, 3636 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3637 return res; 3638 } 3639 3640 /** 3641 * follow_pfn - look up PFN at a user virtual address 3642 * @vma: memory mapping 3643 * @address: user virtual address 3644 * @pfn: location to store found PFN 3645 * 3646 * Only IO mappings and raw PFN mappings are allowed. 3647 * 3648 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3649 */ 3650 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3651 unsigned long *pfn) 3652 { 3653 int ret = -EINVAL; 3654 spinlock_t *ptl; 3655 pte_t *ptep; 3656 3657 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3658 return ret; 3659 3660 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3661 if (ret) 3662 return ret; 3663 *pfn = pte_pfn(*ptep); 3664 pte_unmap_unlock(ptep, ptl); 3665 return 0; 3666 } 3667 EXPORT_SYMBOL(follow_pfn); 3668 3669 #ifdef CONFIG_HAVE_IOREMAP_PROT 3670 int follow_phys(struct vm_area_struct *vma, 3671 unsigned long address, unsigned int flags, 3672 unsigned long *prot, resource_size_t *phys) 3673 { 3674 int ret = -EINVAL; 3675 pte_t *ptep, pte; 3676 spinlock_t *ptl; 3677 3678 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3679 goto out; 3680 3681 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3682 goto out; 3683 pte = *ptep; 3684 3685 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3686 goto unlock; 3687 3688 *prot = pgprot_val(pte_pgprot(pte)); 3689 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3690 3691 ret = 0; 3692 unlock: 3693 pte_unmap_unlock(ptep, ptl); 3694 out: 3695 return ret; 3696 } 3697 3698 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3699 void *buf, int len, int write) 3700 { 3701 resource_size_t phys_addr; 3702 unsigned long prot = 0; 3703 void __iomem *maddr; 3704 int offset = addr & (PAGE_SIZE-1); 3705 3706 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3707 return -EINVAL; 3708 3709 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3710 if (write) 3711 memcpy_toio(maddr + offset, buf, len); 3712 else 3713 memcpy_fromio(buf, maddr + offset, len); 3714 iounmap(maddr); 3715 3716 return len; 3717 } 3718 #endif 3719 3720 /* 3721 * Access another process' address space as given in mm. If non-NULL, use the 3722 * given task for page fault accounting. 3723 */ 3724 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3725 unsigned long addr, void *buf, int len, int write) 3726 { 3727 struct vm_area_struct *vma; 3728 void *old_buf = buf; 3729 3730 down_read(&mm->mmap_sem); 3731 /* ignore errors, just check how much was successfully transferred */ 3732 while (len) { 3733 int bytes, ret, offset; 3734 void *maddr; 3735 struct page *page = NULL; 3736 3737 ret = get_user_pages(tsk, mm, addr, 1, 3738 write, 1, &page, &vma); 3739 if (ret <= 0) { 3740 /* 3741 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3742 * we can access using slightly different code. 3743 */ 3744 #ifdef CONFIG_HAVE_IOREMAP_PROT 3745 vma = find_vma(mm, addr); 3746 if (!vma || vma->vm_start > addr) 3747 break; 3748 if (vma->vm_ops && vma->vm_ops->access) 3749 ret = vma->vm_ops->access(vma, addr, buf, 3750 len, write); 3751 if (ret <= 0) 3752 #endif 3753 break; 3754 bytes = ret; 3755 } else { 3756 bytes = len; 3757 offset = addr & (PAGE_SIZE-1); 3758 if (bytes > PAGE_SIZE-offset) 3759 bytes = PAGE_SIZE-offset; 3760 3761 maddr = kmap(page); 3762 if (write) { 3763 copy_to_user_page(vma, page, addr, 3764 maddr + offset, buf, bytes); 3765 set_page_dirty_lock(page); 3766 } else { 3767 copy_from_user_page(vma, page, addr, 3768 buf, maddr + offset, bytes); 3769 } 3770 kunmap(page); 3771 page_cache_release(page); 3772 } 3773 len -= bytes; 3774 buf += bytes; 3775 addr += bytes; 3776 } 3777 up_read(&mm->mmap_sem); 3778 3779 return buf - old_buf; 3780 } 3781 3782 /** 3783 * access_remote_vm - access another process' address space 3784 * @mm: the mm_struct of the target address space 3785 * @addr: start address to access 3786 * @buf: source or destination buffer 3787 * @len: number of bytes to transfer 3788 * @write: whether the access is a write 3789 * 3790 * The caller must hold a reference on @mm. 3791 */ 3792 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3793 void *buf, int len, int write) 3794 { 3795 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3796 } 3797 3798 /* 3799 * Access another process' address space. 3800 * Source/target buffer must be kernel space, 3801 * Do not walk the page table directly, use get_user_pages 3802 */ 3803 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3804 void *buf, int len, int write) 3805 { 3806 struct mm_struct *mm; 3807 int ret; 3808 3809 mm = get_task_mm(tsk); 3810 if (!mm) 3811 return 0; 3812 3813 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3814 mmput(mm); 3815 3816 return ret; 3817 } 3818 3819 /* 3820 * Print the name of a VMA. 3821 */ 3822 void print_vma_addr(char *prefix, unsigned long ip) 3823 { 3824 struct mm_struct *mm = current->mm; 3825 struct vm_area_struct *vma; 3826 3827 /* 3828 * Do not print if we are in atomic 3829 * contexts (in exception stacks, etc.): 3830 */ 3831 if (preempt_count()) 3832 return; 3833 3834 down_read(&mm->mmap_sem); 3835 vma = find_vma(mm, ip); 3836 if (vma && vma->vm_file) { 3837 struct file *f = vma->vm_file; 3838 char *buf = (char *)__get_free_page(GFP_KERNEL); 3839 if (buf) { 3840 char *p, *s; 3841 3842 p = d_path(&f->f_path, buf, PAGE_SIZE); 3843 if (IS_ERR(p)) 3844 p = "?"; 3845 s = strrchr(p, '/'); 3846 if (s) 3847 p = s+1; 3848 printk("%s%s[%lx+%lx]", prefix, p, 3849 vma->vm_start, 3850 vma->vm_end - vma->vm_start); 3851 free_page((unsigned long)buf); 3852 } 3853 } 3854 up_read(¤t->mm->mmap_sem); 3855 } 3856 3857 #ifdef CONFIG_PROVE_LOCKING 3858 void might_fault(void) 3859 { 3860 /* 3861 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3862 * holding the mmap_sem, this is safe because kernel memory doesn't 3863 * get paged out, therefore we'll never actually fault, and the 3864 * below annotations will generate false positives. 3865 */ 3866 if (segment_eq(get_fs(), KERNEL_DS)) 3867 return; 3868 3869 might_sleep(); 3870 /* 3871 * it would be nicer only to annotate paths which are not under 3872 * pagefault_disable, however that requires a larger audit and 3873 * providing helpers like get_user_atomic. 3874 */ 3875 if (!in_atomic() && current->mm) 3876 might_lock_read(¤t->mm->mmap_sem); 3877 } 3878 EXPORT_SYMBOL(might_fault); 3879 #endif 3880 3881 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3882 static void clear_gigantic_page(struct page *page, 3883 unsigned long addr, 3884 unsigned int pages_per_huge_page) 3885 { 3886 int i; 3887 struct page *p = page; 3888 3889 might_sleep(); 3890 for (i = 0; i < pages_per_huge_page; 3891 i++, p = mem_map_next(p, page, i)) { 3892 cond_resched(); 3893 clear_user_highpage(p, addr + i * PAGE_SIZE); 3894 } 3895 } 3896 void clear_huge_page(struct page *page, 3897 unsigned long addr, unsigned int pages_per_huge_page) 3898 { 3899 int i; 3900 3901 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3902 clear_gigantic_page(page, addr, pages_per_huge_page); 3903 return; 3904 } 3905 3906 might_sleep(); 3907 for (i = 0; i < pages_per_huge_page; i++) { 3908 cond_resched(); 3909 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3910 } 3911 } 3912 3913 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3914 unsigned long addr, 3915 struct vm_area_struct *vma, 3916 unsigned int pages_per_huge_page) 3917 { 3918 int i; 3919 struct page *dst_base = dst; 3920 struct page *src_base = src; 3921 3922 for (i = 0; i < pages_per_huge_page; ) { 3923 cond_resched(); 3924 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3925 3926 i++; 3927 dst = mem_map_next(dst, dst_base, i); 3928 src = mem_map_next(src, src_base, i); 3929 } 3930 } 3931 3932 void copy_user_huge_page(struct page *dst, struct page *src, 3933 unsigned long addr, struct vm_area_struct *vma, 3934 unsigned int pages_per_huge_page) 3935 { 3936 int i; 3937 3938 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3939 copy_user_gigantic_page(dst, src, addr, vma, 3940 pages_per_huge_page); 3941 return; 3942 } 3943 3944 might_sleep(); 3945 for (i = 0; i < pages_per_huge_page; i++) { 3946 cond_resched(); 3947 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3948 } 3949 } 3950 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3951