1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/kmsan.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/export.h> 59 #include <linux/delayacct.h> 60 #include <linux/init.h> 61 #include <linux/pfn_t.h> 62 #include <linux/writeback.h> 63 #include <linux/memcontrol.h> 64 #include <linux/mmu_notifier.h> 65 #include <linux/swapops.h> 66 #include <linux/elf.h> 67 #include <linux/gfp.h> 68 #include <linux/migrate.h> 69 #include <linux/string.h> 70 #include <linux/memory-tiers.h> 71 #include <linux/debugfs.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/dax.h> 74 #include <linux/oom.h> 75 #include <linux/numa.h> 76 #include <linux/perf_event.h> 77 #include <linux/ptrace.h> 78 #include <linux/vmalloc.h> 79 #include <linux/sched/sysctl.h> 80 #include <linux/net_mm.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/pgalloc.h> 87 #include <linux/uaccess.h> 88 #include <asm/tlb.h> 89 #include <asm/tlbflush.h> 90 91 #include "pgalloc-track.h" 92 #include "internal.h" 93 #include "swap.h" 94 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 97 #endif 98 99 #ifndef CONFIG_NUMA 100 unsigned long max_mapnr; 101 EXPORT_SYMBOL(max_mapnr); 102 103 struct page *mem_map; 104 EXPORT_SYMBOL(mem_map); 105 #endif 106 107 static vm_fault_t do_fault(struct vm_fault *vmf); 108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 109 static bool vmf_pte_changed(struct vm_fault *vmf); 110 111 /* 112 * Return true if the original pte was a uffd-wp pte marker (so the pte was 113 * wr-protected). 114 */ 115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 116 { 117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 118 return false; 119 120 return pte_marker_uffd_wp(vmf->orig_pte); 121 } 122 123 /* 124 * A number of key systems in x86 including ioremap() rely on the assumption 125 * that high_memory defines the upper bound on direct map memory, then end 126 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 127 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 128 * and ZONE_HIGHMEM. 129 */ 130 void *high_memory; 131 EXPORT_SYMBOL(high_memory); 132 133 /* 134 * Randomize the address space (stacks, mmaps, brk, etc.). 135 * 136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 137 * as ancient (libc5 based) binaries can segfault. ) 138 */ 139 int randomize_va_space __read_mostly = 140 #ifdef CONFIG_COMPAT_BRK 141 1; 142 #else 143 2; 144 #endif 145 146 #ifndef arch_wants_old_prefaulted_pte 147 static inline bool arch_wants_old_prefaulted_pte(void) 148 { 149 /* 150 * Transitioning a PTE from 'old' to 'young' can be expensive on 151 * some architectures, even if it's performed in hardware. By 152 * default, "false" means prefaulted entries will be 'young'. 153 */ 154 return false; 155 } 156 #endif 157 158 static int __init disable_randmaps(char *s) 159 { 160 randomize_va_space = 0; 161 return 1; 162 } 163 __setup("norandmaps", disable_randmaps); 164 165 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 167 168 unsigned long highest_memmap_pfn __read_mostly; 169 170 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 173 static int __init init_zero_pfn(void) 174 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177 } 178 early_initcall(init_zero_pfn); 179 180 void mm_trace_rss_stat(struct mm_struct *mm, int member) 181 { 182 trace_rss_stat(mm, member); 183 } 184 185 /* 186 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all the memory regions. 188 */ 189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 191 { 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196 } 197 198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long addr, unsigned long end, 200 unsigned long floor, unsigned long ceiling) 201 { 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd)) 211 continue; 212 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != end); 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230 } 231 232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235 { 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud)) 245 continue; 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != end); 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264 } 265 266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d)) 279 continue; 280 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297 } 298 299 /* 300 * This function frees user-level page tables of a process. 301 */ 302 void free_pgd_range(struct mmu_gather *tlb, 303 unsigned long addr, unsigned long end, 304 unsigned long floor, unsigned long ceiling) 305 { 306 pgd_t *pgd; 307 unsigned long next; 308 309 /* 310 * The next few lines have given us lots of grief... 311 * 312 * Why are we testing PMD* at this top level? Because often 313 * there will be no work to do at all, and we'd prefer not to 314 * go all the way down to the bottom just to discover that. 315 * 316 * Why all these "- 1"s? Because 0 represents both the bottom 317 * of the address space and the top of it (using -1 for the 318 * top wouldn't help much: the masks would do the wrong thing). 319 * The rule is that addr 0 and floor 0 refer to the bottom of 320 * the address space, but end 0 and ceiling 0 refer to the top 321 * Comparisons need to use "end - 1" and "ceiling - 1" (though 322 * that end 0 case should be mythical). 323 * 324 * Wherever addr is brought up or ceiling brought down, we must 325 * be careful to reject "the opposite 0" before it confuses the 326 * subsequent tests. But what about where end is brought down 327 * by PMD_SIZE below? no, end can't go down to 0 there. 328 * 329 * Whereas we round start (addr) and ceiling down, by different 330 * masks at different levels, in order to test whether a table 331 * now has no other vmas using it, so can be freed, we don't 332 * bother to round floor or end up - the tests don't need that. 333 */ 334 335 addr &= PMD_MASK; 336 if (addr < floor) { 337 addr += PMD_SIZE; 338 if (!addr) 339 return; 340 } 341 if (ceiling) { 342 ceiling &= PMD_MASK; 343 if (!ceiling) 344 return; 345 } 346 if (end - 1 > ceiling - 1) 347 end -= PMD_SIZE; 348 if (addr > end - 1) 349 return; 350 /* 351 * We add page table cache pages with PAGE_SIZE, 352 * (see pte_free_tlb()), flush the tlb if we need 353 */ 354 tlb_change_page_size(tlb, PAGE_SIZE); 355 pgd = pgd_offset(tlb->mm, addr); 356 do { 357 next = pgd_addr_end(addr, end); 358 if (pgd_none_or_clear_bad(pgd)) 359 continue; 360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 361 } while (pgd++, addr = next, addr != end); 362 } 363 364 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, 365 struct vm_area_struct *vma, unsigned long floor, 366 unsigned long ceiling, bool mm_wr_locked) 367 { 368 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 369 370 do { 371 unsigned long addr = vma->vm_start; 372 struct vm_area_struct *next; 373 374 /* 375 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 376 * be 0. This will underflow and is okay. 377 */ 378 next = mas_find(&mas, ceiling - 1); 379 380 /* 381 * Hide vma from rmap and truncate_pagecache before freeing 382 * pgtables 383 */ 384 if (mm_wr_locked) 385 vma_start_write(vma); 386 unlink_anon_vmas(vma); 387 unlink_file_vma(vma); 388 389 if (is_vm_hugetlb_page(vma)) { 390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 391 floor, next ? next->vm_start : ceiling); 392 } else { 393 /* 394 * Optimization: gather nearby vmas into one call down 395 */ 396 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 397 && !is_vm_hugetlb_page(next)) { 398 vma = next; 399 next = mas_find(&mas, ceiling - 1); 400 if (mm_wr_locked) 401 vma_start_write(vma); 402 unlink_anon_vmas(vma); 403 unlink_file_vma(vma); 404 } 405 free_pgd_range(tlb, addr, vma->vm_end, 406 floor, next ? next->vm_start : ceiling); 407 } 408 vma = next; 409 } while (vma); 410 } 411 412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 413 { 414 spinlock_t *ptl = pmd_lock(mm, pmd); 415 416 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 417 mm_inc_nr_ptes(mm); 418 /* 419 * Ensure all pte setup (eg. pte page lock and page clearing) are 420 * visible before the pte is made visible to other CPUs by being 421 * put into page tables. 422 * 423 * The other side of the story is the pointer chasing in the page 424 * table walking code (when walking the page table without locking; 425 * ie. most of the time). Fortunately, these data accesses consist 426 * of a chain of data-dependent loads, meaning most CPUs (alpha 427 * being the notable exception) will already guarantee loads are 428 * seen in-order. See the alpha page table accessors for the 429 * smp_rmb() barriers in page table walking code. 430 */ 431 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 432 pmd_populate(mm, pmd, *pte); 433 *pte = NULL; 434 } 435 spin_unlock(ptl); 436 } 437 438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 439 { 440 pgtable_t new = pte_alloc_one(mm); 441 if (!new) 442 return -ENOMEM; 443 444 pmd_install(mm, pmd, &new); 445 if (new) 446 pte_free(mm, new); 447 return 0; 448 } 449 450 int __pte_alloc_kernel(pmd_t *pmd) 451 { 452 pte_t *new = pte_alloc_one_kernel(&init_mm); 453 if (!new) 454 return -ENOMEM; 455 456 spin_lock(&init_mm.page_table_lock); 457 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 458 smp_wmb(); /* See comment in pmd_install() */ 459 pmd_populate_kernel(&init_mm, pmd, new); 460 new = NULL; 461 } 462 spin_unlock(&init_mm.page_table_lock); 463 if (new) 464 pte_free_kernel(&init_mm, new); 465 return 0; 466 } 467 468 static inline void init_rss_vec(int *rss) 469 { 470 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 471 } 472 473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 474 { 475 int i; 476 477 if (current->mm == mm) 478 sync_mm_rss(mm); 479 for (i = 0; i < NR_MM_COUNTERS; i++) 480 if (rss[i]) 481 add_mm_counter(mm, i, rss[i]); 482 } 483 484 /* 485 * This function is called to print an error when a bad pte 486 * is found. For example, we might have a PFN-mapped pte in 487 * a region that doesn't allow it. 488 * 489 * The calling function must still handle the error. 490 */ 491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 492 pte_t pte, struct page *page) 493 { 494 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 495 p4d_t *p4d = p4d_offset(pgd, addr); 496 pud_t *pud = pud_offset(p4d, addr); 497 pmd_t *pmd = pmd_offset(pud, addr); 498 struct address_space *mapping; 499 pgoff_t index; 500 static unsigned long resume; 501 static unsigned long nr_shown; 502 static unsigned long nr_unshown; 503 504 /* 505 * Allow a burst of 60 reports, then keep quiet for that minute; 506 * or allow a steady drip of one report per second. 507 */ 508 if (nr_shown == 60) { 509 if (time_before(jiffies, resume)) { 510 nr_unshown++; 511 return; 512 } 513 if (nr_unshown) { 514 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 515 nr_unshown); 516 nr_unshown = 0; 517 } 518 nr_shown = 0; 519 } 520 if (nr_shown++ == 0) 521 resume = jiffies + 60 * HZ; 522 523 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 524 index = linear_page_index(vma, addr); 525 526 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 527 current->comm, 528 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 529 if (page) 530 dump_page(page, "bad pte"); 531 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 532 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 533 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 534 vma->vm_file, 535 vma->vm_ops ? vma->vm_ops->fault : NULL, 536 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 537 mapping ? mapping->a_ops->read_folio : NULL); 538 dump_stack(); 539 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 540 } 541 542 /* 543 * vm_normal_page -- This function gets the "struct page" associated with a pte. 544 * 545 * "Special" mappings do not wish to be associated with a "struct page" (either 546 * it doesn't exist, or it exists but they don't want to touch it). In this 547 * case, NULL is returned here. "Normal" mappings do have a struct page. 548 * 549 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 550 * pte bit, in which case this function is trivial. Secondly, an architecture 551 * may not have a spare pte bit, which requires a more complicated scheme, 552 * described below. 553 * 554 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 555 * special mapping (even if there are underlying and valid "struct pages"). 556 * COWed pages of a VM_PFNMAP are always normal. 557 * 558 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 559 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 560 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 561 * mapping will always honor the rule 562 * 563 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 564 * 565 * And for normal mappings this is false. 566 * 567 * This restricts such mappings to be a linear translation from virtual address 568 * to pfn. To get around this restriction, we allow arbitrary mappings so long 569 * as the vma is not a COW mapping; in that case, we know that all ptes are 570 * special (because none can have been COWed). 571 * 572 * 573 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 574 * 575 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 576 * page" backing, however the difference is that _all_ pages with a struct 577 * page (that is, those where pfn_valid is true) are refcounted and considered 578 * normal pages by the VM. The disadvantage is that pages are refcounted 579 * (which can be slower and simply not an option for some PFNMAP users). The 580 * advantage is that we don't have to follow the strict linearity rule of 581 * PFNMAP mappings in order to support COWable mappings. 582 * 583 */ 584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 585 pte_t pte) 586 { 587 unsigned long pfn = pte_pfn(pte); 588 589 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 590 if (likely(!pte_special(pte))) 591 goto check_pfn; 592 if (vma->vm_ops && vma->vm_ops->find_special_page) 593 return vma->vm_ops->find_special_page(vma, addr); 594 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 595 return NULL; 596 if (is_zero_pfn(pfn)) 597 return NULL; 598 if (pte_devmap(pte)) 599 /* 600 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 601 * and will have refcounts incremented on their struct pages 602 * when they are inserted into PTEs, thus they are safe to 603 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 604 * do not have refcounts. Example of legacy ZONE_DEVICE is 605 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 606 */ 607 return NULL; 608 609 print_bad_pte(vma, addr, pte, NULL); 610 return NULL; 611 } 612 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 614 615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 616 if (vma->vm_flags & VM_MIXEDMAP) { 617 if (!pfn_valid(pfn)) 618 return NULL; 619 goto out; 620 } else { 621 unsigned long off; 622 off = (addr - vma->vm_start) >> PAGE_SHIFT; 623 if (pfn == vma->vm_pgoff + off) 624 return NULL; 625 if (!is_cow_mapping(vma->vm_flags)) 626 return NULL; 627 } 628 } 629 630 if (is_zero_pfn(pfn)) 631 return NULL; 632 633 check_pfn: 634 if (unlikely(pfn > highest_memmap_pfn)) { 635 print_bad_pte(vma, addr, pte, NULL); 636 return NULL; 637 } 638 639 /* 640 * NOTE! We still have PageReserved() pages in the page tables. 641 * eg. VDSO mappings can cause them to exist. 642 */ 643 out: 644 return pfn_to_page(pfn); 645 } 646 647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 648 pte_t pte) 649 { 650 struct page *page = vm_normal_page(vma, addr, pte); 651 652 if (page) 653 return page_folio(page); 654 return NULL; 655 } 656 657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 659 pmd_t pmd) 660 { 661 unsigned long pfn = pmd_pfn(pmd); 662 663 /* 664 * There is no pmd_special() but there may be special pmds, e.g. 665 * in a direct-access (dax) mapping, so let's just replicate the 666 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 667 */ 668 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 669 if (vma->vm_flags & VM_MIXEDMAP) { 670 if (!pfn_valid(pfn)) 671 return NULL; 672 goto out; 673 } else { 674 unsigned long off; 675 off = (addr - vma->vm_start) >> PAGE_SHIFT; 676 if (pfn == vma->vm_pgoff + off) 677 return NULL; 678 if (!is_cow_mapping(vma->vm_flags)) 679 return NULL; 680 } 681 } 682 683 if (pmd_devmap(pmd)) 684 return NULL; 685 if (is_huge_zero_pmd(pmd)) 686 return NULL; 687 if (unlikely(pfn > highest_memmap_pfn)) 688 return NULL; 689 690 /* 691 * NOTE! We still have PageReserved() pages in the page tables. 692 * eg. VDSO mappings can cause them to exist. 693 */ 694 out: 695 return pfn_to_page(pfn); 696 } 697 #endif 698 699 static void restore_exclusive_pte(struct vm_area_struct *vma, 700 struct page *page, unsigned long address, 701 pte_t *ptep) 702 { 703 pte_t orig_pte; 704 pte_t pte; 705 swp_entry_t entry; 706 707 orig_pte = ptep_get(ptep); 708 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 709 if (pte_swp_soft_dirty(orig_pte)) 710 pte = pte_mksoft_dirty(pte); 711 712 entry = pte_to_swp_entry(orig_pte); 713 if (pte_swp_uffd_wp(orig_pte)) 714 pte = pte_mkuffd_wp(pte); 715 else if (is_writable_device_exclusive_entry(entry)) 716 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 717 718 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 719 720 /* 721 * No need to take a page reference as one was already 722 * created when the swap entry was made. 723 */ 724 if (PageAnon(page)) 725 page_add_anon_rmap(page, vma, address, RMAP_NONE); 726 else 727 /* 728 * Currently device exclusive access only supports anonymous 729 * memory so the entry shouldn't point to a filebacked page. 730 */ 731 WARN_ON_ONCE(1); 732 733 set_pte_at(vma->vm_mm, address, ptep, pte); 734 735 /* 736 * No need to invalidate - it was non-present before. However 737 * secondary CPUs may have mappings that need invalidating. 738 */ 739 update_mmu_cache(vma, address, ptep); 740 } 741 742 /* 743 * Tries to restore an exclusive pte if the page lock can be acquired without 744 * sleeping. 745 */ 746 static int 747 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 748 unsigned long addr) 749 { 750 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 751 struct page *page = pfn_swap_entry_to_page(entry); 752 753 if (trylock_page(page)) { 754 restore_exclusive_pte(vma, page, addr, src_pte); 755 unlock_page(page); 756 return 0; 757 } 758 759 return -EBUSY; 760 } 761 762 /* 763 * copy one vm_area from one task to the other. Assumes the page tables 764 * already present in the new task to be cleared in the whole range 765 * covered by this vma. 766 */ 767 768 static unsigned long 769 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 770 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 771 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 772 { 773 unsigned long vm_flags = dst_vma->vm_flags; 774 pte_t orig_pte = ptep_get(src_pte); 775 pte_t pte = orig_pte; 776 struct page *page; 777 swp_entry_t entry = pte_to_swp_entry(orig_pte); 778 779 if (likely(!non_swap_entry(entry))) { 780 if (swap_duplicate(entry) < 0) 781 return -EIO; 782 783 /* make sure dst_mm is on swapoff's mmlist. */ 784 if (unlikely(list_empty(&dst_mm->mmlist))) { 785 spin_lock(&mmlist_lock); 786 if (list_empty(&dst_mm->mmlist)) 787 list_add(&dst_mm->mmlist, 788 &src_mm->mmlist); 789 spin_unlock(&mmlist_lock); 790 } 791 /* Mark the swap entry as shared. */ 792 if (pte_swp_exclusive(orig_pte)) { 793 pte = pte_swp_clear_exclusive(orig_pte); 794 set_pte_at(src_mm, addr, src_pte, pte); 795 } 796 rss[MM_SWAPENTS]++; 797 } else if (is_migration_entry(entry)) { 798 page = pfn_swap_entry_to_page(entry); 799 800 rss[mm_counter(page)]++; 801 802 if (!is_readable_migration_entry(entry) && 803 is_cow_mapping(vm_flags)) { 804 /* 805 * COW mappings require pages in both parent and child 806 * to be set to read. A previously exclusive entry is 807 * now shared. 808 */ 809 entry = make_readable_migration_entry( 810 swp_offset(entry)); 811 pte = swp_entry_to_pte(entry); 812 if (pte_swp_soft_dirty(orig_pte)) 813 pte = pte_swp_mksoft_dirty(pte); 814 if (pte_swp_uffd_wp(orig_pte)) 815 pte = pte_swp_mkuffd_wp(pte); 816 set_pte_at(src_mm, addr, src_pte, pte); 817 } 818 } else if (is_device_private_entry(entry)) { 819 page = pfn_swap_entry_to_page(entry); 820 821 /* 822 * Update rss count even for unaddressable pages, as 823 * they should treated just like normal pages in this 824 * respect. 825 * 826 * We will likely want to have some new rss counters 827 * for unaddressable pages, at some point. But for now 828 * keep things as they are. 829 */ 830 get_page(page); 831 rss[mm_counter(page)]++; 832 /* Cannot fail as these pages cannot get pinned. */ 833 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 834 835 /* 836 * We do not preserve soft-dirty information, because so 837 * far, checkpoint/restore is the only feature that 838 * requires that. And checkpoint/restore does not work 839 * when a device driver is involved (you cannot easily 840 * save and restore device driver state). 841 */ 842 if (is_writable_device_private_entry(entry) && 843 is_cow_mapping(vm_flags)) { 844 entry = make_readable_device_private_entry( 845 swp_offset(entry)); 846 pte = swp_entry_to_pte(entry); 847 if (pte_swp_uffd_wp(orig_pte)) 848 pte = pte_swp_mkuffd_wp(pte); 849 set_pte_at(src_mm, addr, src_pte, pte); 850 } 851 } else if (is_device_exclusive_entry(entry)) { 852 /* 853 * Make device exclusive entries present by restoring the 854 * original entry then copying as for a present pte. Device 855 * exclusive entries currently only support private writable 856 * (ie. COW) mappings. 857 */ 858 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 859 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 860 return -EBUSY; 861 return -ENOENT; 862 } else if (is_pte_marker_entry(entry)) { 863 pte_marker marker = copy_pte_marker(entry, dst_vma); 864 865 if (marker) 866 set_pte_at(dst_mm, addr, dst_pte, 867 make_pte_marker(marker)); 868 return 0; 869 } 870 if (!userfaultfd_wp(dst_vma)) 871 pte = pte_swp_clear_uffd_wp(pte); 872 set_pte_at(dst_mm, addr, dst_pte, pte); 873 return 0; 874 } 875 876 /* 877 * Copy a present and normal page. 878 * 879 * NOTE! The usual case is that this isn't required; 880 * instead, the caller can just increase the page refcount 881 * and re-use the pte the traditional way. 882 * 883 * And if we need a pre-allocated page but don't yet have 884 * one, return a negative error to let the preallocation 885 * code know so that it can do so outside the page table 886 * lock. 887 */ 888 static inline int 889 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 890 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 891 struct folio **prealloc, struct page *page) 892 { 893 struct folio *new_folio; 894 pte_t pte; 895 896 new_folio = *prealloc; 897 if (!new_folio) 898 return -EAGAIN; 899 900 /* 901 * We have a prealloc page, all good! Take it 902 * over and copy the page & arm it. 903 */ 904 *prealloc = NULL; 905 copy_user_highpage(&new_folio->page, page, addr, src_vma); 906 __folio_mark_uptodate(new_folio); 907 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 908 folio_add_lru_vma(new_folio, dst_vma); 909 rss[MM_ANONPAGES]++; 910 911 /* All done, just insert the new page copy in the child */ 912 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 913 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 914 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 915 /* Uffd-wp needs to be delivered to dest pte as well */ 916 pte = pte_mkuffd_wp(pte); 917 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 918 return 0; 919 } 920 921 /* 922 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 923 * is required to copy this pte. 924 */ 925 static inline int 926 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 927 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 928 struct folio **prealloc) 929 { 930 struct mm_struct *src_mm = src_vma->vm_mm; 931 unsigned long vm_flags = src_vma->vm_flags; 932 pte_t pte = ptep_get(src_pte); 933 struct page *page; 934 struct folio *folio; 935 936 page = vm_normal_page(src_vma, addr, pte); 937 if (page) 938 folio = page_folio(page); 939 if (page && folio_test_anon(folio)) { 940 /* 941 * If this page may have been pinned by the parent process, 942 * copy the page immediately for the child so that we'll always 943 * guarantee the pinned page won't be randomly replaced in the 944 * future. 945 */ 946 folio_get(folio); 947 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 948 /* Page may be pinned, we have to copy. */ 949 folio_put(folio); 950 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 951 addr, rss, prealloc, page); 952 } 953 rss[MM_ANONPAGES]++; 954 } else if (page) { 955 folio_get(folio); 956 page_dup_file_rmap(page, false); 957 rss[mm_counter_file(page)]++; 958 } 959 960 /* 961 * If it's a COW mapping, write protect it both 962 * in the parent and the child 963 */ 964 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 965 ptep_set_wrprotect(src_mm, addr, src_pte); 966 pte = pte_wrprotect(pte); 967 } 968 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); 969 970 /* 971 * If it's a shared mapping, mark it clean in 972 * the child 973 */ 974 if (vm_flags & VM_SHARED) 975 pte = pte_mkclean(pte); 976 pte = pte_mkold(pte); 977 978 if (!userfaultfd_wp(dst_vma)) 979 pte = pte_clear_uffd_wp(pte); 980 981 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 982 return 0; 983 } 984 985 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, 986 struct vm_area_struct *vma, unsigned long addr) 987 { 988 struct folio *new_folio; 989 990 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 991 if (!new_folio) 992 return NULL; 993 994 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 995 folio_put(new_folio); 996 return NULL; 997 } 998 folio_throttle_swaprate(new_folio, GFP_KERNEL); 999 1000 return new_folio; 1001 } 1002 1003 static int 1004 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1005 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1006 unsigned long end) 1007 { 1008 struct mm_struct *dst_mm = dst_vma->vm_mm; 1009 struct mm_struct *src_mm = src_vma->vm_mm; 1010 pte_t *orig_src_pte, *orig_dst_pte; 1011 pte_t *src_pte, *dst_pte; 1012 pte_t ptent; 1013 spinlock_t *src_ptl, *dst_ptl; 1014 int progress, ret = 0; 1015 int rss[NR_MM_COUNTERS]; 1016 swp_entry_t entry = (swp_entry_t){0}; 1017 struct folio *prealloc = NULL; 1018 1019 again: 1020 progress = 0; 1021 init_rss_vec(rss); 1022 1023 /* 1024 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1025 * error handling here, assume that exclusive mmap_lock on dst and src 1026 * protects anon from unexpected THP transitions; with shmem and file 1027 * protected by mmap_lock-less collapse skipping areas with anon_vma 1028 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1029 * can remove such assumptions later, but this is good enough for now. 1030 */ 1031 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1032 if (!dst_pte) { 1033 ret = -ENOMEM; 1034 goto out; 1035 } 1036 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1037 if (!src_pte) { 1038 pte_unmap_unlock(dst_pte, dst_ptl); 1039 /* ret == 0 */ 1040 goto out; 1041 } 1042 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1043 orig_src_pte = src_pte; 1044 orig_dst_pte = dst_pte; 1045 arch_enter_lazy_mmu_mode(); 1046 1047 do { 1048 /* 1049 * We are holding two locks at this point - either of them 1050 * could generate latencies in another task on another CPU. 1051 */ 1052 if (progress >= 32) { 1053 progress = 0; 1054 if (need_resched() || 1055 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1056 break; 1057 } 1058 ptent = ptep_get(src_pte); 1059 if (pte_none(ptent)) { 1060 progress++; 1061 continue; 1062 } 1063 if (unlikely(!pte_present(ptent))) { 1064 ret = copy_nonpresent_pte(dst_mm, src_mm, 1065 dst_pte, src_pte, 1066 dst_vma, src_vma, 1067 addr, rss); 1068 if (ret == -EIO) { 1069 entry = pte_to_swp_entry(ptep_get(src_pte)); 1070 break; 1071 } else if (ret == -EBUSY) { 1072 break; 1073 } else if (!ret) { 1074 progress += 8; 1075 continue; 1076 } 1077 1078 /* 1079 * Device exclusive entry restored, continue by copying 1080 * the now present pte. 1081 */ 1082 WARN_ON_ONCE(ret != -ENOENT); 1083 } 1084 /* copy_present_pte() will clear `*prealloc' if consumed */ 1085 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1086 addr, rss, &prealloc); 1087 /* 1088 * If we need a pre-allocated page for this pte, drop the 1089 * locks, allocate, and try again. 1090 */ 1091 if (unlikely(ret == -EAGAIN)) 1092 break; 1093 if (unlikely(prealloc)) { 1094 /* 1095 * pre-alloc page cannot be reused by next time so as 1096 * to strictly follow mempolicy (e.g., alloc_page_vma() 1097 * will allocate page according to address). This 1098 * could only happen if one pinned pte changed. 1099 */ 1100 folio_put(prealloc); 1101 prealloc = NULL; 1102 } 1103 progress += 8; 1104 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1105 1106 arch_leave_lazy_mmu_mode(); 1107 pte_unmap_unlock(orig_src_pte, src_ptl); 1108 add_mm_rss_vec(dst_mm, rss); 1109 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1110 cond_resched(); 1111 1112 if (ret == -EIO) { 1113 VM_WARN_ON_ONCE(!entry.val); 1114 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1115 ret = -ENOMEM; 1116 goto out; 1117 } 1118 entry.val = 0; 1119 } else if (ret == -EBUSY) { 1120 goto out; 1121 } else if (ret == -EAGAIN) { 1122 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1123 if (!prealloc) 1124 return -ENOMEM; 1125 } else if (ret) { 1126 VM_WARN_ON_ONCE(1); 1127 } 1128 1129 /* We've captured and resolved the error. Reset, try again. */ 1130 ret = 0; 1131 1132 if (addr != end) 1133 goto again; 1134 out: 1135 if (unlikely(prealloc)) 1136 folio_put(prealloc); 1137 return ret; 1138 } 1139 1140 static inline int 1141 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1142 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1143 unsigned long end) 1144 { 1145 struct mm_struct *dst_mm = dst_vma->vm_mm; 1146 struct mm_struct *src_mm = src_vma->vm_mm; 1147 pmd_t *src_pmd, *dst_pmd; 1148 unsigned long next; 1149 1150 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1151 if (!dst_pmd) 1152 return -ENOMEM; 1153 src_pmd = pmd_offset(src_pud, addr); 1154 do { 1155 next = pmd_addr_end(addr, end); 1156 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1157 || pmd_devmap(*src_pmd)) { 1158 int err; 1159 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1160 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1161 addr, dst_vma, src_vma); 1162 if (err == -ENOMEM) 1163 return -ENOMEM; 1164 if (!err) 1165 continue; 1166 /* fall through */ 1167 } 1168 if (pmd_none_or_clear_bad(src_pmd)) 1169 continue; 1170 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1171 addr, next)) 1172 return -ENOMEM; 1173 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1174 return 0; 1175 } 1176 1177 static inline int 1178 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1179 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1180 unsigned long end) 1181 { 1182 struct mm_struct *dst_mm = dst_vma->vm_mm; 1183 struct mm_struct *src_mm = src_vma->vm_mm; 1184 pud_t *src_pud, *dst_pud; 1185 unsigned long next; 1186 1187 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1188 if (!dst_pud) 1189 return -ENOMEM; 1190 src_pud = pud_offset(src_p4d, addr); 1191 do { 1192 next = pud_addr_end(addr, end); 1193 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1194 int err; 1195 1196 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1197 err = copy_huge_pud(dst_mm, src_mm, 1198 dst_pud, src_pud, addr, src_vma); 1199 if (err == -ENOMEM) 1200 return -ENOMEM; 1201 if (!err) 1202 continue; 1203 /* fall through */ 1204 } 1205 if (pud_none_or_clear_bad(src_pud)) 1206 continue; 1207 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1208 addr, next)) 1209 return -ENOMEM; 1210 } while (dst_pud++, src_pud++, addr = next, addr != end); 1211 return 0; 1212 } 1213 1214 static inline int 1215 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1216 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1217 unsigned long end) 1218 { 1219 struct mm_struct *dst_mm = dst_vma->vm_mm; 1220 p4d_t *src_p4d, *dst_p4d; 1221 unsigned long next; 1222 1223 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1224 if (!dst_p4d) 1225 return -ENOMEM; 1226 src_p4d = p4d_offset(src_pgd, addr); 1227 do { 1228 next = p4d_addr_end(addr, end); 1229 if (p4d_none_or_clear_bad(src_p4d)) 1230 continue; 1231 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1232 addr, next)) 1233 return -ENOMEM; 1234 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1235 return 0; 1236 } 1237 1238 /* 1239 * Return true if the vma needs to copy the pgtable during this fork(). Return 1240 * false when we can speed up fork() by allowing lazy page faults later until 1241 * when the child accesses the memory range. 1242 */ 1243 static bool 1244 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1245 { 1246 /* 1247 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1248 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1249 * contains uffd-wp protection information, that's something we can't 1250 * retrieve from page cache, and skip copying will lose those info. 1251 */ 1252 if (userfaultfd_wp(dst_vma)) 1253 return true; 1254 1255 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1256 return true; 1257 1258 if (src_vma->anon_vma) 1259 return true; 1260 1261 /* 1262 * Don't copy ptes where a page fault will fill them correctly. Fork 1263 * becomes much lighter when there are big shared or private readonly 1264 * mappings. The tradeoff is that copy_page_range is more efficient 1265 * than faulting. 1266 */ 1267 return false; 1268 } 1269 1270 int 1271 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1272 { 1273 pgd_t *src_pgd, *dst_pgd; 1274 unsigned long next; 1275 unsigned long addr = src_vma->vm_start; 1276 unsigned long end = src_vma->vm_end; 1277 struct mm_struct *dst_mm = dst_vma->vm_mm; 1278 struct mm_struct *src_mm = src_vma->vm_mm; 1279 struct mmu_notifier_range range; 1280 bool is_cow; 1281 int ret; 1282 1283 if (!vma_needs_copy(dst_vma, src_vma)) 1284 return 0; 1285 1286 if (is_vm_hugetlb_page(src_vma)) 1287 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1288 1289 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1290 /* 1291 * We do not free on error cases below as remove_vma 1292 * gets called on error from higher level routine 1293 */ 1294 ret = track_pfn_copy(src_vma); 1295 if (ret) 1296 return ret; 1297 } 1298 1299 /* 1300 * We need to invalidate the secondary MMU mappings only when 1301 * there could be a permission downgrade on the ptes of the 1302 * parent mm. And a permission downgrade will only happen if 1303 * is_cow_mapping() returns true. 1304 */ 1305 is_cow = is_cow_mapping(src_vma->vm_flags); 1306 1307 if (is_cow) { 1308 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1309 0, src_mm, addr, end); 1310 mmu_notifier_invalidate_range_start(&range); 1311 /* 1312 * Disabling preemption is not needed for the write side, as 1313 * the read side doesn't spin, but goes to the mmap_lock. 1314 * 1315 * Use the raw variant of the seqcount_t write API to avoid 1316 * lockdep complaining about preemptibility. 1317 */ 1318 mmap_assert_write_locked(src_mm); 1319 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1320 } 1321 1322 ret = 0; 1323 dst_pgd = pgd_offset(dst_mm, addr); 1324 src_pgd = pgd_offset(src_mm, addr); 1325 do { 1326 next = pgd_addr_end(addr, end); 1327 if (pgd_none_or_clear_bad(src_pgd)) 1328 continue; 1329 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1330 addr, next))) { 1331 untrack_pfn_clear(dst_vma); 1332 ret = -ENOMEM; 1333 break; 1334 } 1335 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1336 1337 if (is_cow) { 1338 raw_write_seqcount_end(&src_mm->write_protect_seq); 1339 mmu_notifier_invalidate_range_end(&range); 1340 } 1341 return ret; 1342 } 1343 1344 /* Whether we should zap all COWed (private) pages too */ 1345 static inline bool should_zap_cows(struct zap_details *details) 1346 { 1347 /* By default, zap all pages */ 1348 if (!details) 1349 return true; 1350 1351 /* Or, we zap COWed pages only if the caller wants to */ 1352 return details->even_cows; 1353 } 1354 1355 /* Decides whether we should zap this page with the page pointer specified */ 1356 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1357 { 1358 /* If we can make a decision without *page.. */ 1359 if (should_zap_cows(details)) 1360 return true; 1361 1362 /* E.g. the caller passes NULL for the case of a zero page */ 1363 if (!page) 1364 return true; 1365 1366 /* Otherwise we should only zap non-anon pages */ 1367 return !PageAnon(page); 1368 } 1369 1370 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1371 { 1372 if (!details) 1373 return false; 1374 1375 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1376 } 1377 1378 /* 1379 * This function makes sure that we'll replace the none pte with an uffd-wp 1380 * swap special pte marker when necessary. Must be with the pgtable lock held. 1381 */ 1382 static inline void 1383 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1384 unsigned long addr, pte_t *pte, 1385 struct zap_details *details, pte_t pteval) 1386 { 1387 /* Zap on anonymous always means dropping everything */ 1388 if (vma_is_anonymous(vma)) 1389 return; 1390 1391 if (zap_drop_file_uffd_wp(details)) 1392 return; 1393 1394 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1395 } 1396 1397 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1398 struct vm_area_struct *vma, pmd_t *pmd, 1399 unsigned long addr, unsigned long end, 1400 struct zap_details *details) 1401 { 1402 struct mm_struct *mm = tlb->mm; 1403 int force_flush = 0; 1404 int rss[NR_MM_COUNTERS]; 1405 spinlock_t *ptl; 1406 pte_t *start_pte; 1407 pte_t *pte; 1408 swp_entry_t entry; 1409 1410 tlb_change_page_size(tlb, PAGE_SIZE); 1411 init_rss_vec(rss); 1412 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1413 if (!pte) 1414 return addr; 1415 1416 flush_tlb_batched_pending(mm); 1417 arch_enter_lazy_mmu_mode(); 1418 do { 1419 pte_t ptent = ptep_get(pte); 1420 struct page *page; 1421 1422 if (pte_none(ptent)) 1423 continue; 1424 1425 if (need_resched()) 1426 break; 1427 1428 if (pte_present(ptent)) { 1429 unsigned int delay_rmap; 1430 1431 page = vm_normal_page(vma, addr, ptent); 1432 if (unlikely(!should_zap_page(details, page))) 1433 continue; 1434 ptent = ptep_get_and_clear_full(mm, addr, pte, 1435 tlb->fullmm); 1436 tlb_remove_tlb_entry(tlb, pte, addr); 1437 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1438 ptent); 1439 if (unlikely(!page)) { 1440 ksm_might_unmap_zero_page(mm, ptent); 1441 continue; 1442 } 1443 1444 delay_rmap = 0; 1445 if (!PageAnon(page)) { 1446 if (pte_dirty(ptent)) { 1447 set_page_dirty(page); 1448 if (tlb_delay_rmap(tlb)) { 1449 delay_rmap = 1; 1450 force_flush = 1; 1451 } 1452 } 1453 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1454 mark_page_accessed(page); 1455 } 1456 rss[mm_counter(page)]--; 1457 if (!delay_rmap) { 1458 page_remove_rmap(page, vma, false); 1459 if (unlikely(page_mapcount(page) < 0)) 1460 print_bad_pte(vma, addr, ptent, page); 1461 } 1462 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1463 force_flush = 1; 1464 addr += PAGE_SIZE; 1465 break; 1466 } 1467 continue; 1468 } 1469 1470 entry = pte_to_swp_entry(ptent); 1471 if (is_device_private_entry(entry) || 1472 is_device_exclusive_entry(entry)) { 1473 page = pfn_swap_entry_to_page(entry); 1474 if (unlikely(!should_zap_page(details, page))) 1475 continue; 1476 /* 1477 * Both device private/exclusive mappings should only 1478 * work with anonymous page so far, so we don't need to 1479 * consider uffd-wp bit when zap. For more information, 1480 * see zap_install_uffd_wp_if_needed(). 1481 */ 1482 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1483 rss[mm_counter(page)]--; 1484 if (is_device_private_entry(entry)) 1485 page_remove_rmap(page, vma, false); 1486 put_page(page); 1487 } else if (!non_swap_entry(entry)) { 1488 /* Genuine swap entry, hence a private anon page */ 1489 if (!should_zap_cows(details)) 1490 continue; 1491 rss[MM_SWAPENTS]--; 1492 if (unlikely(!free_swap_and_cache(entry))) 1493 print_bad_pte(vma, addr, ptent, NULL); 1494 } else if (is_migration_entry(entry)) { 1495 page = pfn_swap_entry_to_page(entry); 1496 if (!should_zap_page(details, page)) 1497 continue; 1498 rss[mm_counter(page)]--; 1499 } else if (pte_marker_entry_uffd_wp(entry)) { 1500 /* 1501 * For anon: always drop the marker; for file: only 1502 * drop the marker if explicitly requested. 1503 */ 1504 if (!vma_is_anonymous(vma) && 1505 !zap_drop_file_uffd_wp(details)) 1506 continue; 1507 } else if (is_hwpoison_entry(entry) || 1508 is_poisoned_swp_entry(entry)) { 1509 if (!should_zap_cows(details)) 1510 continue; 1511 } else { 1512 /* We should have covered all the swap entry types */ 1513 WARN_ON_ONCE(1); 1514 } 1515 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1516 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1517 } while (pte++, addr += PAGE_SIZE, addr != end); 1518 1519 add_mm_rss_vec(mm, rss); 1520 arch_leave_lazy_mmu_mode(); 1521 1522 /* Do the actual TLB flush before dropping ptl */ 1523 if (force_flush) { 1524 tlb_flush_mmu_tlbonly(tlb); 1525 tlb_flush_rmaps(tlb, vma); 1526 } 1527 pte_unmap_unlock(start_pte, ptl); 1528 1529 /* 1530 * If we forced a TLB flush (either due to running out of 1531 * batch buffers or because we needed to flush dirty TLB 1532 * entries before releasing the ptl), free the batched 1533 * memory too. Come back again if we didn't do everything. 1534 */ 1535 if (force_flush) 1536 tlb_flush_mmu(tlb); 1537 1538 return addr; 1539 } 1540 1541 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1542 struct vm_area_struct *vma, pud_t *pud, 1543 unsigned long addr, unsigned long end, 1544 struct zap_details *details) 1545 { 1546 pmd_t *pmd; 1547 unsigned long next; 1548 1549 pmd = pmd_offset(pud, addr); 1550 do { 1551 next = pmd_addr_end(addr, end); 1552 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1553 if (next - addr != HPAGE_PMD_SIZE) 1554 __split_huge_pmd(vma, pmd, addr, false, NULL); 1555 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1556 addr = next; 1557 continue; 1558 } 1559 /* fall through */ 1560 } else if (details && details->single_folio && 1561 folio_test_pmd_mappable(details->single_folio) && 1562 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1563 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1564 /* 1565 * Take and drop THP pmd lock so that we cannot return 1566 * prematurely, while zap_huge_pmd() has cleared *pmd, 1567 * but not yet decremented compound_mapcount(). 1568 */ 1569 spin_unlock(ptl); 1570 } 1571 if (pmd_none(*pmd)) { 1572 addr = next; 1573 continue; 1574 } 1575 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1576 if (addr != next) 1577 pmd--; 1578 } while (pmd++, cond_resched(), addr != end); 1579 1580 return addr; 1581 } 1582 1583 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1584 struct vm_area_struct *vma, p4d_t *p4d, 1585 unsigned long addr, unsigned long end, 1586 struct zap_details *details) 1587 { 1588 pud_t *pud; 1589 unsigned long next; 1590 1591 pud = pud_offset(p4d, addr); 1592 do { 1593 next = pud_addr_end(addr, end); 1594 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1595 if (next - addr != HPAGE_PUD_SIZE) { 1596 mmap_assert_locked(tlb->mm); 1597 split_huge_pud(vma, pud, addr); 1598 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1599 goto next; 1600 /* fall through */ 1601 } 1602 if (pud_none_or_clear_bad(pud)) 1603 continue; 1604 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1605 next: 1606 cond_resched(); 1607 } while (pud++, addr = next, addr != end); 1608 1609 return addr; 1610 } 1611 1612 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1613 struct vm_area_struct *vma, pgd_t *pgd, 1614 unsigned long addr, unsigned long end, 1615 struct zap_details *details) 1616 { 1617 p4d_t *p4d; 1618 unsigned long next; 1619 1620 p4d = p4d_offset(pgd, addr); 1621 do { 1622 next = p4d_addr_end(addr, end); 1623 if (p4d_none_or_clear_bad(p4d)) 1624 continue; 1625 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1626 } while (p4d++, addr = next, addr != end); 1627 1628 return addr; 1629 } 1630 1631 void unmap_page_range(struct mmu_gather *tlb, 1632 struct vm_area_struct *vma, 1633 unsigned long addr, unsigned long end, 1634 struct zap_details *details) 1635 { 1636 pgd_t *pgd; 1637 unsigned long next; 1638 1639 BUG_ON(addr >= end); 1640 tlb_start_vma(tlb, vma); 1641 pgd = pgd_offset(vma->vm_mm, addr); 1642 do { 1643 next = pgd_addr_end(addr, end); 1644 if (pgd_none_or_clear_bad(pgd)) 1645 continue; 1646 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1647 } while (pgd++, addr = next, addr != end); 1648 tlb_end_vma(tlb, vma); 1649 } 1650 1651 1652 static void unmap_single_vma(struct mmu_gather *tlb, 1653 struct vm_area_struct *vma, unsigned long start_addr, 1654 unsigned long end_addr, 1655 struct zap_details *details, bool mm_wr_locked) 1656 { 1657 unsigned long start = max(vma->vm_start, start_addr); 1658 unsigned long end; 1659 1660 if (start >= vma->vm_end) 1661 return; 1662 end = min(vma->vm_end, end_addr); 1663 if (end <= vma->vm_start) 1664 return; 1665 1666 if (vma->vm_file) 1667 uprobe_munmap(vma, start, end); 1668 1669 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1670 untrack_pfn(vma, 0, 0, mm_wr_locked); 1671 1672 if (start != end) { 1673 if (unlikely(is_vm_hugetlb_page(vma))) { 1674 /* 1675 * It is undesirable to test vma->vm_file as it 1676 * should be non-null for valid hugetlb area. 1677 * However, vm_file will be NULL in the error 1678 * cleanup path of mmap_region. When 1679 * hugetlbfs ->mmap method fails, 1680 * mmap_region() nullifies vma->vm_file 1681 * before calling this function to clean up. 1682 * Since no pte has actually been setup, it is 1683 * safe to do nothing in this case. 1684 */ 1685 if (vma->vm_file) { 1686 zap_flags_t zap_flags = details ? 1687 details->zap_flags : 0; 1688 __unmap_hugepage_range_final(tlb, vma, start, end, 1689 NULL, zap_flags); 1690 } 1691 } else 1692 unmap_page_range(tlb, vma, start, end, details); 1693 } 1694 } 1695 1696 /** 1697 * unmap_vmas - unmap a range of memory covered by a list of vma's 1698 * @tlb: address of the caller's struct mmu_gather 1699 * @mt: the maple tree 1700 * @vma: the starting vma 1701 * @start_addr: virtual address at which to start unmapping 1702 * @end_addr: virtual address at which to end unmapping 1703 * @mm_wr_locked: lock flag 1704 * 1705 * Unmap all pages in the vma list. 1706 * 1707 * Only addresses between `start' and `end' will be unmapped. 1708 * 1709 * The VMA list must be sorted in ascending virtual address order. 1710 * 1711 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1712 * range after unmap_vmas() returns. So the only responsibility here is to 1713 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1714 * drops the lock and schedules. 1715 */ 1716 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 1717 struct vm_area_struct *vma, unsigned long start_addr, 1718 unsigned long end_addr, bool mm_wr_locked) 1719 { 1720 struct mmu_notifier_range range; 1721 struct zap_details details = { 1722 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1723 /* Careful - we need to zap private pages too! */ 1724 .even_cows = true, 1725 }; 1726 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 1727 1728 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1729 start_addr, end_addr); 1730 mmu_notifier_invalidate_range_start(&range); 1731 do { 1732 unmap_single_vma(tlb, vma, start_addr, end_addr, &details, 1733 mm_wr_locked); 1734 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL); 1735 mmu_notifier_invalidate_range_end(&range); 1736 } 1737 1738 /** 1739 * zap_page_range_single - remove user pages in a given range 1740 * @vma: vm_area_struct holding the applicable pages 1741 * @address: starting address of pages to zap 1742 * @size: number of bytes to zap 1743 * @details: details of shared cache invalidation 1744 * 1745 * The range must fit into one VMA. 1746 */ 1747 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1748 unsigned long size, struct zap_details *details) 1749 { 1750 const unsigned long end = address + size; 1751 struct mmu_notifier_range range; 1752 struct mmu_gather tlb; 1753 1754 lru_add_drain(); 1755 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1756 address, end); 1757 if (is_vm_hugetlb_page(vma)) 1758 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1759 &range.end); 1760 tlb_gather_mmu(&tlb, vma->vm_mm); 1761 update_hiwater_rss(vma->vm_mm); 1762 mmu_notifier_invalidate_range_start(&range); 1763 /* 1764 * unmap 'address-end' not 'range.start-range.end' as range 1765 * could have been expanded for hugetlb pmd sharing. 1766 */ 1767 unmap_single_vma(&tlb, vma, address, end, details, false); 1768 mmu_notifier_invalidate_range_end(&range); 1769 tlb_finish_mmu(&tlb); 1770 } 1771 1772 /** 1773 * zap_vma_ptes - remove ptes mapping the vma 1774 * @vma: vm_area_struct holding ptes to be zapped 1775 * @address: starting address of pages to zap 1776 * @size: number of bytes to zap 1777 * 1778 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1779 * 1780 * The entire address range must be fully contained within the vma. 1781 * 1782 */ 1783 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1784 unsigned long size) 1785 { 1786 if (!range_in_vma(vma, address, address + size) || 1787 !(vma->vm_flags & VM_PFNMAP)) 1788 return; 1789 1790 zap_page_range_single(vma, address, size, NULL); 1791 } 1792 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1793 1794 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1795 { 1796 pgd_t *pgd; 1797 p4d_t *p4d; 1798 pud_t *pud; 1799 pmd_t *pmd; 1800 1801 pgd = pgd_offset(mm, addr); 1802 p4d = p4d_alloc(mm, pgd, addr); 1803 if (!p4d) 1804 return NULL; 1805 pud = pud_alloc(mm, p4d, addr); 1806 if (!pud) 1807 return NULL; 1808 pmd = pmd_alloc(mm, pud, addr); 1809 if (!pmd) 1810 return NULL; 1811 1812 VM_BUG_ON(pmd_trans_huge(*pmd)); 1813 return pmd; 1814 } 1815 1816 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1817 spinlock_t **ptl) 1818 { 1819 pmd_t *pmd = walk_to_pmd(mm, addr); 1820 1821 if (!pmd) 1822 return NULL; 1823 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1824 } 1825 1826 static int validate_page_before_insert(struct page *page) 1827 { 1828 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1829 return -EINVAL; 1830 flush_dcache_page(page); 1831 return 0; 1832 } 1833 1834 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1835 unsigned long addr, struct page *page, pgprot_t prot) 1836 { 1837 if (!pte_none(ptep_get(pte))) 1838 return -EBUSY; 1839 /* Ok, finally just insert the thing.. */ 1840 get_page(page); 1841 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1842 page_add_file_rmap(page, vma, false); 1843 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1844 return 0; 1845 } 1846 1847 /* 1848 * This is the old fallback for page remapping. 1849 * 1850 * For historical reasons, it only allows reserved pages. Only 1851 * old drivers should use this, and they needed to mark their 1852 * pages reserved for the old functions anyway. 1853 */ 1854 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1855 struct page *page, pgprot_t prot) 1856 { 1857 int retval; 1858 pte_t *pte; 1859 spinlock_t *ptl; 1860 1861 retval = validate_page_before_insert(page); 1862 if (retval) 1863 goto out; 1864 retval = -ENOMEM; 1865 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1866 if (!pte) 1867 goto out; 1868 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1869 pte_unmap_unlock(pte, ptl); 1870 out: 1871 return retval; 1872 } 1873 1874 #ifdef pte_index 1875 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1876 unsigned long addr, struct page *page, pgprot_t prot) 1877 { 1878 int err; 1879 1880 if (!page_count(page)) 1881 return -EINVAL; 1882 err = validate_page_before_insert(page); 1883 if (err) 1884 return err; 1885 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1886 } 1887 1888 /* insert_pages() amortizes the cost of spinlock operations 1889 * when inserting pages in a loop. Arch *must* define pte_index. 1890 */ 1891 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1892 struct page **pages, unsigned long *num, pgprot_t prot) 1893 { 1894 pmd_t *pmd = NULL; 1895 pte_t *start_pte, *pte; 1896 spinlock_t *pte_lock; 1897 struct mm_struct *const mm = vma->vm_mm; 1898 unsigned long curr_page_idx = 0; 1899 unsigned long remaining_pages_total = *num; 1900 unsigned long pages_to_write_in_pmd; 1901 int ret; 1902 more: 1903 ret = -EFAULT; 1904 pmd = walk_to_pmd(mm, addr); 1905 if (!pmd) 1906 goto out; 1907 1908 pages_to_write_in_pmd = min_t(unsigned long, 1909 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1910 1911 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1912 ret = -ENOMEM; 1913 if (pte_alloc(mm, pmd)) 1914 goto out; 1915 1916 while (pages_to_write_in_pmd) { 1917 int pte_idx = 0; 1918 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1919 1920 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1921 if (!start_pte) { 1922 ret = -EFAULT; 1923 goto out; 1924 } 1925 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1926 int err = insert_page_in_batch_locked(vma, pte, 1927 addr, pages[curr_page_idx], prot); 1928 if (unlikely(err)) { 1929 pte_unmap_unlock(start_pte, pte_lock); 1930 ret = err; 1931 remaining_pages_total -= pte_idx; 1932 goto out; 1933 } 1934 addr += PAGE_SIZE; 1935 ++curr_page_idx; 1936 } 1937 pte_unmap_unlock(start_pte, pte_lock); 1938 pages_to_write_in_pmd -= batch_size; 1939 remaining_pages_total -= batch_size; 1940 } 1941 if (remaining_pages_total) 1942 goto more; 1943 ret = 0; 1944 out: 1945 *num = remaining_pages_total; 1946 return ret; 1947 } 1948 #endif /* ifdef pte_index */ 1949 1950 /** 1951 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1952 * @vma: user vma to map to 1953 * @addr: target start user address of these pages 1954 * @pages: source kernel pages 1955 * @num: in: number of pages to map. out: number of pages that were *not* 1956 * mapped. (0 means all pages were successfully mapped). 1957 * 1958 * Preferred over vm_insert_page() when inserting multiple pages. 1959 * 1960 * In case of error, we may have mapped a subset of the provided 1961 * pages. It is the caller's responsibility to account for this case. 1962 * 1963 * The same restrictions apply as in vm_insert_page(). 1964 */ 1965 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1966 struct page **pages, unsigned long *num) 1967 { 1968 #ifdef pte_index 1969 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1970 1971 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1972 return -EFAULT; 1973 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1974 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1975 BUG_ON(vma->vm_flags & VM_PFNMAP); 1976 vm_flags_set(vma, VM_MIXEDMAP); 1977 } 1978 /* Defer page refcount checking till we're about to map that page. */ 1979 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1980 #else 1981 unsigned long idx = 0, pgcount = *num; 1982 int err = -EINVAL; 1983 1984 for (; idx < pgcount; ++idx) { 1985 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1986 if (err) 1987 break; 1988 } 1989 *num = pgcount - idx; 1990 return err; 1991 #endif /* ifdef pte_index */ 1992 } 1993 EXPORT_SYMBOL(vm_insert_pages); 1994 1995 /** 1996 * vm_insert_page - insert single page into user vma 1997 * @vma: user vma to map to 1998 * @addr: target user address of this page 1999 * @page: source kernel page 2000 * 2001 * This allows drivers to insert individual pages they've allocated 2002 * into a user vma. 2003 * 2004 * The page has to be a nice clean _individual_ kernel allocation. 2005 * If you allocate a compound page, you need to have marked it as 2006 * such (__GFP_COMP), or manually just split the page up yourself 2007 * (see split_page()). 2008 * 2009 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2010 * took an arbitrary page protection parameter. This doesn't allow 2011 * that. Your vma protection will have to be set up correctly, which 2012 * means that if you want a shared writable mapping, you'd better 2013 * ask for a shared writable mapping! 2014 * 2015 * The page does not need to be reserved. 2016 * 2017 * Usually this function is called from f_op->mmap() handler 2018 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2019 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2020 * function from other places, for example from page-fault handler. 2021 * 2022 * Return: %0 on success, negative error code otherwise. 2023 */ 2024 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2025 struct page *page) 2026 { 2027 if (addr < vma->vm_start || addr >= vma->vm_end) 2028 return -EFAULT; 2029 if (!page_count(page)) 2030 return -EINVAL; 2031 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2032 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2033 BUG_ON(vma->vm_flags & VM_PFNMAP); 2034 vm_flags_set(vma, VM_MIXEDMAP); 2035 } 2036 return insert_page(vma, addr, page, vma->vm_page_prot); 2037 } 2038 EXPORT_SYMBOL(vm_insert_page); 2039 2040 /* 2041 * __vm_map_pages - maps range of kernel pages into user vma 2042 * @vma: user vma to map to 2043 * @pages: pointer to array of source kernel pages 2044 * @num: number of pages in page array 2045 * @offset: user's requested vm_pgoff 2046 * 2047 * This allows drivers to map range of kernel pages into a user vma. 2048 * 2049 * Return: 0 on success and error code otherwise. 2050 */ 2051 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2052 unsigned long num, unsigned long offset) 2053 { 2054 unsigned long count = vma_pages(vma); 2055 unsigned long uaddr = vma->vm_start; 2056 int ret, i; 2057 2058 /* Fail if the user requested offset is beyond the end of the object */ 2059 if (offset >= num) 2060 return -ENXIO; 2061 2062 /* Fail if the user requested size exceeds available object size */ 2063 if (count > num - offset) 2064 return -ENXIO; 2065 2066 for (i = 0; i < count; i++) { 2067 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2068 if (ret < 0) 2069 return ret; 2070 uaddr += PAGE_SIZE; 2071 } 2072 2073 return 0; 2074 } 2075 2076 /** 2077 * vm_map_pages - maps range of kernel pages starts with non zero offset 2078 * @vma: user vma to map to 2079 * @pages: pointer to array of source kernel pages 2080 * @num: number of pages in page array 2081 * 2082 * Maps an object consisting of @num pages, catering for the user's 2083 * requested vm_pgoff 2084 * 2085 * If we fail to insert any page into the vma, the function will return 2086 * immediately leaving any previously inserted pages present. Callers 2087 * from the mmap handler may immediately return the error as their caller 2088 * will destroy the vma, removing any successfully inserted pages. Other 2089 * callers should make their own arrangements for calling unmap_region(). 2090 * 2091 * Context: Process context. Called by mmap handlers. 2092 * Return: 0 on success and error code otherwise. 2093 */ 2094 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2095 unsigned long num) 2096 { 2097 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2098 } 2099 EXPORT_SYMBOL(vm_map_pages); 2100 2101 /** 2102 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2103 * @vma: user vma to map to 2104 * @pages: pointer to array of source kernel pages 2105 * @num: number of pages in page array 2106 * 2107 * Similar to vm_map_pages(), except that it explicitly sets the offset 2108 * to 0. This function is intended for the drivers that did not consider 2109 * vm_pgoff. 2110 * 2111 * Context: Process context. Called by mmap handlers. 2112 * Return: 0 on success and error code otherwise. 2113 */ 2114 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2115 unsigned long num) 2116 { 2117 return __vm_map_pages(vma, pages, num, 0); 2118 } 2119 EXPORT_SYMBOL(vm_map_pages_zero); 2120 2121 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2122 pfn_t pfn, pgprot_t prot, bool mkwrite) 2123 { 2124 struct mm_struct *mm = vma->vm_mm; 2125 pte_t *pte, entry; 2126 spinlock_t *ptl; 2127 2128 pte = get_locked_pte(mm, addr, &ptl); 2129 if (!pte) 2130 return VM_FAULT_OOM; 2131 entry = ptep_get(pte); 2132 if (!pte_none(entry)) { 2133 if (mkwrite) { 2134 /* 2135 * For read faults on private mappings the PFN passed 2136 * in may not match the PFN we have mapped if the 2137 * mapped PFN is a writeable COW page. In the mkwrite 2138 * case we are creating a writable PTE for a shared 2139 * mapping and we expect the PFNs to match. If they 2140 * don't match, we are likely racing with block 2141 * allocation and mapping invalidation so just skip the 2142 * update. 2143 */ 2144 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2145 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2146 goto out_unlock; 2147 } 2148 entry = pte_mkyoung(entry); 2149 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2150 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2151 update_mmu_cache(vma, addr, pte); 2152 } 2153 goto out_unlock; 2154 } 2155 2156 /* Ok, finally just insert the thing.. */ 2157 if (pfn_t_devmap(pfn)) 2158 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2159 else 2160 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2161 2162 if (mkwrite) { 2163 entry = pte_mkyoung(entry); 2164 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2165 } 2166 2167 set_pte_at(mm, addr, pte, entry); 2168 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2169 2170 out_unlock: 2171 pte_unmap_unlock(pte, ptl); 2172 return VM_FAULT_NOPAGE; 2173 } 2174 2175 /** 2176 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2177 * @vma: user vma to map to 2178 * @addr: target user address of this page 2179 * @pfn: source kernel pfn 2180 * @pgprot: pgprot flags for the inserted page 2181 * 2182 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2183 * to override pgprot on a per-page basis. 2184 * 2185 * This only makes sense for IO mappings, and it makes no sense for 2186 * COW mappings. In general, using multiple vmas is preferable; 2187 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2188 * impractical. 2189 * 2190 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2191 * caching- and encryption bits different than those of @vma->vm_page_prot, 2192 * because the caching- or encryption mode may not be known at mmap() time. 2193 * 2194 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2195 * to set caching and encryption bits for those vmas (except for COW pages). 2196 * This is ensured by core vm only modifying these page table entries using 2197 * functions that don't touch caching- or encryption bits, using pte_modify() 2198 * if needed. (See for example mprotect()). 2199 * 2200 * Also when new page-table entries are created, this is only done using the 2201 * fault() callback, and never using the value of vma->vm_page_prot, 2202 * except for page-table entries that point to anonymous pages as the result 2203 * of COW. 2204 * 2205 * Context: Process context. May allocate using %GFP_KERNEL. 2206 * Return: vm_fault_t value. 2207 */ 2208 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2209 unsigned long pfn, pgprot_t pgprot) 2210 { 2211 /* 2212 * Technically, architectures with pte_special can avoid all these 2213 * restrictions (same for remap_pfn_range). However we would like 2214 * consistency in testing and feature parity among all, so we should 2215 * try to keep these invariants in place for everybody. 2216 */ 2217 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2218 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2219 (VM_PFNMAP|VM_MIXEDMAP)); 2220 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2221 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2222 2223 if (addr < vma->vm_start || addr >= vma->vm_end) 2224 return VM_FAULT_SIGBUS; 2225 2226 if (!pfn_modify_allowed(pfn, pgprot)) 2227 return VM_FAULT_SIGBUS; 2228 2229 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2230 2231 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2232 false); 2233 } 2234 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2235 2236 /** 2237 * vmf_insert_pfn - insert single pfn into user vma 2238 * @vma: user vma to map to 2239 * @addr: target user address of this page 2240 * @pfn: source kernel pfn 2241 * 2242 * Similar to vm_insert_page, this allows drivers to insert individual pages 2243 * they've allocated into a user vma. Same comments apply. 2244 * 2245 * This function should only be called from a vm_ops->fault handler, and 2246 * in that case the handler should return the result of this function. 2247 * 2248 * vma cannot be a COW mapping. 2249 * 2250 * As this is called only for pages that do not currently exist, we 2251 * do not need to flush old virtual caches or the TLB. 2252 * 2253 * Context: Process context. May allocate using %GFP_KERNEL. 2254 * Return: vm_fault_t value. 2255 */ 2256 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2257 unsigned long pfn) 2258 { 2259 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2260 } 2261 EXPORT_SYMBOL(vmf_insert_pfn); 2262 2263 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2264 { 2265 /* these checks mirror the abort conditions in vm_normal_page */ 2266 if (vma->vm_flags & VM_MIXEDMAP) 2267 return true; 2268 if (pfn_t_devmap(pfn)) 2269 return true; 2270 if (pfn_t_special(pfn)) 2271 return true; 2272 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2273 return true; 2274 return false; 2275 } 2276 2277 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2278 unsigned long addr, pfn_t pfn, bool mkwrite) 2279 { 2280 pgprot_t pgprot = vma->vm_page_prot; 2281 int err; 2282 2283 BUG_ON(!vm_mixed_ok(vma, pfn)); 2284 2285 if (addr < vma->vm_start || addr >= vma->vm_end) 2286 return VM_FAULT_SIGBUS; 2287 2288 track_pfn_insert(vma, &pgprot, pfn); 2289 2290 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2291 return VM_FAULT_SIGBUS; 2292 2293 /* 2294 * If we don't have pte special, then we have to use the pfn_valid() 2295 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2296 * refcount the page if pfn_valid is true (hence insert_page rather 2297 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2298 * without pte special, it would there be refcounted as a normal page. 2299 */ 2300 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2301 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2302 struct page *page; 2303 2304 /* 2305 * At this point we are committed to insert_page() 2306 * regardless of whether the caller specified flags that 2307 * result in pfn_t_has_page() == false. 2308 */ 2309 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2310 err = insert_page(vma, addr, page, pgprot); 2311 } else { 2312 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2313 } 2314 2315 if (err == -ENOMEM) 2316 return VM_FAULT_OOM; 2317 if (err < 0 && err != -EBUSY) 2318 return VM_FAULT_SIGBUS; 2319 2320 return VM_FAULT_NOPAGE; 2321 } 2322 2323 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2324 pfn_t pfn) 2325 { 2326 return __vm_insert_mixed(vma, addr, pfn, false); 2327 } 2328 EXPORT_SYMBOL(vmf_insert_mixed); 2329 2330 /* 2331 * If the insertion of PTE failed because someone else already added a 2332 * different entry in the mean time, we treat that as success as we assume 2333 * the same entry was actually inserted. 2334 */ 2335 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2336 unsigned long addr, pfn_t pfn) 2337 { 2338 return __vm_insert_mixed(vma, addr, pfn, true); 2339 } 2340 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2341 2342 /* 2343 * maps a range of physical memory into the requested pages. the old 2344 * mappings are removed. any references to nonexistent pages results 2345 * in null mappings (currently treated as "copy-on-access") 2346 */ 2347 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2348 unsigned long addr, unsigned long end, 2349 unsigned long pfn, pgprot_t prot) 2350 { 2351 pte_t *pte, *mapped_pte; 2352 spinlock_t *ptl; 2353 int err = 0; 2354 2355 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2356 if (!pte) 2357 return -ENOMEM; 2358 arch_enter_lazy_mmu_mode(); 2359 do { 2360 BUG_ON(!pte_none(ptep_get(pte))); 2361 if (!pfn_modify_allowed(pfn, prot)) { 2362 err = -EACCES; 2363 break; 2364 } 2365 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2366 pfn++; 2367 } while (pte++, addr += PAGE_SIZE, addr != end); 2368 arch_leave_lazy_mmu_mode(); 2369 pte_unmap_unlock(mapped_pte, ptl); 2370 return err; 2371 } 2372 2373 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2374 unsigned long addr, unsigned long end, 2375 unsigned long pfn, pgprot_t prot) 2376 { 2377 pmd_t *pmd; 2378 unsigned long next; 2379 int err; 2380 2381 pfn -= addr >> PAGE_SHIFT; 2382 pmd = pmd_alloc(mm, pud, addr); 2383 if (!pmd) 2384 return -ENOMEM; 2385 VM_BUG_ON(pmd_trans_huge(*pmd)); 2386 do { 2387 next = pmd_addr_end(addr, end); 2388 err = remap_pte_range(mm, pmd, addr, next, 2389 pfn + (addr >> PAGE_SHIFT), prot); 2390 if (err) 2391 return err; 2392 } while (pmd++, addr = next, addr != end); 2393 return 0; 2394 } 2395 2396 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2397 unsigned long addr, unsigned long end, 2398 unsigned long pfn, pgprot_t prot) 2399 { 2400 pud_t *pud; 2401 unsigned long next; 2402 int err; 2403 2404 pfn -= addr >> PAGE_SHIFT; 2405 pud = pud_alloc(mm, p4d, addr); 2406 if (!pud) 2407 return -ENOMEM; 2408 do { 2409 next = pud_addr_end(addr, end); 2410 err = remap_pmd_range(mm, pud, addr, next, 2411 pfn + (addr >> PAGE_SHIFT), prot); 2412 if (err) 2413 return err; 2414 } while (pud++, addr = next, addr != end); 2415 return 0; 2416 } 2417 2418 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2419 unsigned long addr, unsigned long end, 2420 unsigned long pfn, pgprot_t prot) 2421 { 2422 p4d_t *p4d; 2423 unsigned long next; 2424 int err; 2425 2426 pfn -= addr >> PAGE_SHIFT; 2427 p4d = p4d_alloc(mm, pgd, addr); 2428 if (!p4d) 2429 return -ENOMEM; 2430 do { 2431 next = p4d_addr_end(addr, end); 2432 err = remap_pud_range(mm, p4d, addr, next, 2433 pfn + (addr >> PAGE_SHIFT), prot); 2434 if (err) 2435 return err; 2436 } while (p4d++, addr = next, addr != end); 2437 return 0; 2438 } 2439 2440 /* 2441 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2442 * must have pre-validated the caching bits of the pgprot_t. 2443 */ 2444 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2445 unsigned long pfn, unsigned long size, pgprot_t prot) 2446 { 2447 pgd_t *pgd; 2448 unsigned long next; 2449 unsigned long end = addr + PAGE_ALIGN(size); 2450 struct mm_struct *mm = vma->vm_mm; 2451 int err; 2452 2453 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2454 return -EINVAL; 2455 2456 /* 2457 * Physically remapped pages are special. Tell the 2458 * rest of the world about it: 2459 * VM_IO tells people not to look at these pages 2460 * (accesses can have side effects). 2461 * VM_PFNMAP tells the core MM that the base pages are just 2462 * raw PFN mappings, and do not have a "struct page" associated 2463 * with them. 2464 * VM_DONTEXPAND 2465 * Disable vma merging and expanding with mremap(). 2466 * VM_DONTDUMP 2467 * Omit vma from core dump, even when VM_IO turned off. 2468 * 2469 * There's a horrible special case to handle copy-on-write 2470 * behaviour that some programs depend on. We mark the "original" 2471 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2472 * See vm_normal_page() for details. 2473 */ 2474 if (is_cow_mapping(vma->vm_flags)) { 2475 if (addr != vma->vm_start || end != vma->vm_end) 2476 return -EINVAL; 2477 vma->vm_pgoff = pfn; 2478 } 2479 2480 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2481 2482 BUG_ON(addr >= end); 2483 pfn -= addr >> PAGE_SHIFT; 2484 pgd = pgd_offset(mm, addr); 2485 flush_cache_range(vma, addr, end); 2486 do { 2487 next = pgd_addr_end(addr, end); 2488 err = remap_p4d_range(mm, pgd, addr, next, 2489 pfn + (addr >> PAGE_SHIFT), prot); 2490 if (err) 2491 return err; 2492 } while (pgd++, addr = next, addr != end); 2493 2494 return 0; 2495 } 2496 2497 /** 2498 * remap_pfn_range - remap kernel memory to userspace 2499 * @vma: user vma to map to 2500 * @addr: target page aligned user address to start at 2501 * @pfn: page frame number of kernel physical memory address 2502 * @size: size of mapping area 2503 * @prot: page protection flags for this mapping 2504 * 2505 * Note: this is only safe if the mm semaphore is held when called. 2506 * 2507 * Return: %0 on success, negative error code otherwise. 2508 */ 2509 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2510 unsigned long pfn, unsigned long size, pgprot_t prot) 2511 { 2512 int err; 2513 2514 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2515 if (err) 2516 return -EINVAL; 2517 2518 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2519 if (err) 2520 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2521 return err; 2522 } 2523 EXPORT_SYMBOL(remap_pfn_range); 2524 2525 /** 2526 * vm_iomap_memory - remap memory to userspace 2527 * @vma: user vma to map to 2528 * @start: start of the physical memory to be mapped 2529 * @len: size of area 2530 * 2531 * This is a simplified io_remap_pfn_range() for common driver use. The 2532 * driver just needs to give us the physical memory range to be mapped, 2533 * we'll figure out the rest from the vma information. 2534 * 2535 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2536 * whatever write-combining details or similar. 2537 * 2538 * Return: %0 on success, negative error code otherwise. 2539 */ 2540 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2541 { 2542 unsigned long vm_len, pfn, pages; 2543 2544 /* Check that the physical memory area passed in looks valid */ 2545 if (start + len < start) 2546 return -EINVAL; 2547 /* 2548 * You *really* shouldn't map things that aren't page-aligned, 2549 * but we've historically allowed it because IO memory might 2550 * just have smaller alignment. 2551 */ 2552 len += start & ~PAGE_MASK; 2553 pfn = start >> PAGE_SHIFT; 2554 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2555 if (pfn + pages < pfn) 2556 return -EINVAL; 2557 2558 /* We start the mapping 'vm_pgoff' pages into the area */ 2559 if (vma->vm_pgoff > pages) 2560 return -EINVAL; 2561 pfn += vma->vm_pgoff; 2562 pages -= vma->vm_pgoff; 2563 2564 /* Can we fit all of the mapping? */ 2565 vm_len = vma->vm_end - vma->vm_start; 2566 if (vm_len >> PAGE_SHIFT > pages) 2567 return -EINVAL; 2568 2569 /* Ok, let it rip */ 2570 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2571 } 2572 EXPORT_SYMBOL(vm_iomap_memory); 2573 2574 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2575 unsigned long addr, unsigned long end, 2576 pte_fn_t fn, void *data, bool create, 2577 pgtbl_mod_mask *mask) 2578 { 2579 pte_t *pte, *mapped_pte; 2580 int err = 0; 2581 spinlock_t *ptl; 2582 2583 if (create) { 2584 mapped_pte = pte = (mm == &init_mm) ? 2585 pte_alloc_kernel_track(pmd, addr, mask) : 2586 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2587 if (!pte) 2588 return -ENOMEM; 2589 } else { 2590 mapped_pte = pte = (mm == &init_mm) ? 2591 pte_offset_kernel(pmd, addr) : 2592 pte_offset_map_lock(mm, pmd, addr, &ptl); 2593 if (!pte) 2594 return -EINVAL; 2595 } 2596 2597 arch_enter_lazy_mmu_mode(); 2598 2599 if (fn) { 2600 do { 2601 if (create || !pte_none(ptep_get(pte))) { 2602 err = fn(pte++, addr, data); 2603 if (err) 2604 break; 2605 } 2606 } while (addr += PAGE_SIZE, addr != end); 2607 } 2608 *mask |= PGTBL_PTE_MODIFIED; 2609 2610 arch_leave_lazy_mmu_mode(); 2611 2612 if (mm != &init_mm) 2613 pte_unmap_unlock(mapped_pte, ptl); 2614 return err; 2615 } 2616 2617 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2618 unsigned long addr, unsigned long end, 2619 pte_fn_t fn, void *data, bool create, 2620 pgtbl_mod_mask *mask) 2621 { 2622 pmd_t *pmd; 2623 unsigned long next; 2624 int err = 0; 2625 2626 BUG_ON(pud_huge(*pud)); 2627 2628 if (create) { 2629 pmd = pmd_alloc_track(mm, pud, addr, mask); 2630 if (!pmd) 2631 return -ENOMEM; 2632 } else { 2633 pmd = pmd_offset(pud, addr); 2634 } 2635 do { 2636 next = pmd_addr_end(addr, end); 2637 if (pmd_none(*pmd) && !create) 2638 continue; 2639 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2640 return -EINVAL; 2641 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2642 if (!create) 2643 continue; 2644 pmd_clear_bad(pmd); 2645 } 2646 err = apply_to_pte_range(mm, pmd, addr, next, 2647 fn, data, create, mask); 2648 if (err) 2649 break; 2650 } while (pmd++, addr = next, addr != end); 2651 2652 return err; 2653 } 2654 2655 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2656 unsigned long addr, unsigned long end, 2657 pte_fn_t fn, void *data, bool create, 2658 pgtbl_mod_mask *mask) 2659 { 2660 pud_t *pud; 2661 unsigned long next; 2662 int err = 0; 2663 2664 if (create) { 2665 pud = pud_alloc_track(mm, p4d, addr, mask); 2666 if (!pud) 2667 return -ENOMEM; 2668 } else { 2669 pud = pud_offset(p4d, addr); 2670 } 2671 do { 2672 next = pud_addr_end(addr, end); 2673 if (pud_none(*pud) && !create) 2674 continue; 2675 if (WARN_ON_ONCE(pud_leaf(*pud))) 2676 return -EINVAL; 2677 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2678 if (!create) 2679 continue; 2680 pud_clear_bad(pud); 2681 } 2682 err = apply_to_pmd_range(mm, pud, addr, next, 2683 fn, data, create, mask); 2684 if (err) 2685 break; 2686 } while (pud++, addr = next, addr != end); 2687 2688 return err; 2689 } 2690 2691 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2692 unsigned long addr, unsigned long end, 2693 pte_fn_t fn, void *data, bool create, 2694 pgtbl_mod_mask *mask) 2695 { 2696 p4d_t *p4d; 2697 unsigned long next; 2698 int err = 0; 2699 2700 if (create) { 2701 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2702 if (!p4d) 2703 return -ENOMEM; 2704 } else { 2705 p4d = p4d_offset(pgd, addr); 2706 } 2707 do { 2708 next = p4d_addr_end(addr, end); 2709 if (p4d_none(*p4d) && !create) 2710 continue; 2711 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2712 return -EINVAL; 2713 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2714 if (!create) 2715 continue; 2716 p4d_clear_bad(p4d); 2717 } 2718 err = apply_to_pud_range(mm, p4d, addr, next, 2719 fn, data, create, mask); 2720 if (err) 2721 break; 2722 } while (p4d++, addr = next, addr != end); 2723 2724 return err; 2725 } 2726 2727 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2728 unsigned long size, pte_fn_t fn, 2729 void *data, bool create) 2730 { 2731 pgd_t *pgd; 2732 unsigned long start = addr, next; 2733 unsigned long end = addr + size; 2734 pgtbl_mod_mask mask = 0; 2735 int err = 0; 2736 2737 if (WARN_ON(addr >= end)) 2738 return -EINVAL; 2739 2740 pgd = pgd_offset(mm, addr); 2741 do { 2742 next = pgd_addr_end(addr, end); 2743 if (pgd_none(*pgd) && !create) 2744 continue; 2745 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2746 return -EINVAL; 2747 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2748 if (!create) 2749 continue; 2750 pgd_clear_bad(pgd); 2751 } 2752 err = apply_to_p4d_range(mm, pgd, addr, next, 2753 fn, data, create, &mask); 2754 if (err) 2755 break; 2756 } while (pgd++, addr = next, addr != end); 2757 2758 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2759 arch_sync_kernel_mappings(start, start + size); 2760 2761 return err; 2762 } 2763 2764 /* 2765 * Scan a region of virtual memory, filling in page tables as necessary 2766 * and calling a provided function on each leaf page table. 2767 */ 2768 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2769 unsigned long size, pte_fn_t fn, void *data) 2770 { 2771 return __apply_to_page_range(mm, addr, size, fn, data, true); 2772 } 2773 EXPORT_SYMBOL_GPL(apply_to_page_range); 2774 2775 /* 2776 * Scan a region of virtual memory, calling a provided function on 2777 * each leaf page table where it exists. 2778 * 2779 * Unlike apply_to_page_range, this does _not_ fill in page tables 2780 * where they are absent. 2781 */ 2782 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2783 unsigned long size, pte_fn_t fn, void *data) 2784 { 2785 return __apply_to_page_range(mm, addr, size, fn, data, false); 2786 } 2787 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2788 2789 /* 2790 * handle_pte_fault chooses page fault handler according to an entry which was 2791 * read non-atomically. Before making any commitment, on those architectures 2792 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2793 * parts, do_swap_page must check under lock before unmapping the pte and 2794 * proceeding (but do_wp_page is only called after already making such a check; 2795 * and do_anonymous_page can safely check later on). 2796 */ 2797 static inline int pte_unmap_same(struct vm_fault *vmf) 2798 { 2799 int same = 1; 2800 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2801 if (sizeof(pte_t) > sizeof(unsigned long)) { 2802 spin_lock(vmf->ptl); 2803 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 2804 spin_unlock(vmf->ptl); 2805 } 2806 #endif 2807 pte_unmap(vmf->pte); 2808 vmf->pte = NULL; 2809 return same; 2810 } 2811 2812 /* 2813 * Return: 2814 * 0: copied succeeded 2815 * -EHWPOISON: copy failed due to hwpoison in source page 2816 * -EAGAIN: copied failed (some other reason) 2817 */ 2818 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2819 struct vm_fault *vmf) 2820 { 2821 int ret; 2822 void *kaddr; 2823 void __user *uaddr; 2824 struct vm_area_struct *vma = vmf->vma; 2825 struct mm_struct *mm = vma->vm_mm; 2826 unsigned long addr = vmf->address; 2827 2828 if (likely(src)) { 2829 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2830 memory_failure_queue(page_to_pfn(src), 0); 2831 return -EHWPOISON; 2832 } 2833 return 0; 2834 } 2835 2836 /* 2837 * If the source page was a PFN mapping, we don't have 2838 * a "struct page" for it. We do a best-effort copy by 2839 * just copying from the original user address. If that 2840 * fails, we just zero-fill it. Live with it. 2841 */ 2842 kaddr = kmap_atomic(dst); 2843 uaddr = (void __user *)(addr & PAGE_MASK); 2844 2845 /* 2846 * On architectures with software "accessed" bits, we would 2847 * take a double page fault, so mark it accessed here. 2848 */ 2849 vmf->pte = NULL; 2850 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2851 pte_t entry; 2852 2853 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2854 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2855 /* 2856 * Other thread has already handled the fault 2857 * and update local tlb only 2858 */ 2859 if (vmf->pte) 2860 update_mmu_tlb(vma, addr, vmf->pte); 2861 ret = -EAGAIN; 2862 goto pte_unlock; 2863 } 2864 2865 entry = pte_mkyoung(vmf->orig_pte); 2866 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2867 update_mmu_cache(vma, addr, vmf->pte); 2868 } 2869 2870 /* 2871 * This really shouldn't fail, because the page is there 2872 * in the page tables. But it might just be unreadable, 2873 * in which case we just give up and fill the result with 2874 * zeroes. 2875 */ 2876 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2877 if (vmf->pte) 2878 goto warn; 2879 2880 /* Re-validate under PTL if the page is still mapped */ 2881 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2882 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2883 /* The PTE changed under us, update local tlb */ 2884 if (vmf->pte) 2885 update_mmu_tlb(vma, addr, vmf->pte); 2886 ret = -EAGAIN; 2887 goto pte_unlock; 2888 } 2889 2890 /* 2891 * The same page can be mapped back since last copy attempt. 2892 * Try to copy again under PTL. 2893 */ 2894 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2895 /* 2896 * Give a warn in case there can be some obscure 2897 * use-case 2898 */ 2899 warn: 2900 WARN_ON_ONCE(1); 2901 clear_page(kaddr); 2902 } 2903 } 2904 2905 ret = 0; 2906 2907 pte_unlock: 2908 if (vmf->pte) 2909 pte_unmap_unlock(vmf->pte, vmf->ptl); 2910 kunmap_atomic(kaddr); 2911 flush_dcache_page(dst); 2912 2913 return ret; 2914 } 2915 2916 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2917 { 2918 struct file *vm_file = vma->vm_file; 2919 2920 if (vm_file) 2921 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2922 2923 /* 2924 * Special mappings (e.g. VDSO) do not have any file so fake 2925 * a default GFP_KERNEL for them. 2926 */ 2927 return GFP_KERNEL; 2928 } 2929 2930 /* 2931 * Notify the address space that the page is about to become writable so that 2932 * it can prohibit this or wait for the page to get into an appropriate state. 2933 * 2934 * We do this without the lock held, so that it can sleep if it needs to. 2935 */ 2936 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 2937 { 2938 vm_fault_t ret; 2939 unsigned int old_flags = vmf->flags; 2940 2941 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2942 2943 if (vmf->vma->vm_file && 2944 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2945 return VM_FAULT_SIGBUS; 2946 2947 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2948 /* Restore original flags so that caller is not surprised */ 2949 vmf->flags = old_flags; 2950 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2951 return ret; 2952 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2953 folio_lock(folio); 2954 if (!folio->mapping) { 2955 folio_unlock(folio); 2956 return 0; /* retry */ 2957 } 2958 ret |= VM_FAULT_LOCKED; 2959 } else 2960 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2961 return ret; 2962 } 2963 2964 /* 2965 * Handle dirtying of a page in shared file mapping on a write fault. 2966 * 2967 * The function expects the page to be locked and unlocks it. 2968 */ 2969 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2970 { 2971 struct vm_area_struct *vma = vmf->vma; 2972 struct address_space *mapping; 2973 struct folio *folio = page_folio(vmf->page); 2974 bool dirtied; 2975 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2976 2977 dirtied = folio_mark_dirty(folio); 2978 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 2979 /* 2980 * Take a local copy of the address_space - folio.mapping may be zeroed 2981 * by truncate after folio_unlock(). The address_space itself remains 2982 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 2983 * release semantics to prevent the compiler from undoing this copying. 2984 */ 2985 mapping = folio_raw_mapping(folio); 2986 folio_unlock(folio); 2987 2988 if (!page_mkwrite) 2989 file_update_time(vma->vm_file); 2990 2991 /* 2992 * Throttle page dirtying rate down to writeback speed. 2993 * 2994 * mapping may be NULL here because some device drivers do not 2995 * set page.mapping but still dirty their pages 2996 * 2997 * Drop the mmap_lock before waiting on IO, if we can. The file 2998 * is pinning the mapping, as per above. 2999 */ 3000 if ((dirtied || page_mkwrite) && mapping) { 3001 struct file *fpin; 3002 3003 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3004 balance_dirty_pages_ratelimited(mapping); 3005 if (fpin) { 3006 fput(fpin); 3007 return VM_FAULT_COMPLETED; 3008 } 3009 } 3010 3011 return 0; 3012 } 3013 3014 /* 3015 * Handle write page faults for pages that can be reused in the current vma 3016 * 3017 * This can happen either due to the mapping being with the VM_SHARED flag, 3018 * or due to us being the last reference standing to the page. In either 3019 * case, all we need to do here is to mark the page as writable and update 3020 * any related book-keeping. 3021 */ 3022 static inline void wp_page_reuse(struct vm_fault *vmf) 3023 __releases(vmf->ptl) 3024 { 3025 struct vm_area_struct *vma = vmf->vma; 3026 struct page *page = vmf->page; 3027 pte_t entry; 3028 3029 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3030 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); 3031 3032 /* 3033 * Clear the pages cpupid information as the existing 3034 * information potentially belongs to a now completely 3035 * unrelated process. 3036 */ 3037 if (page) 3038 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3039 3040 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3041 entry = pte_mkyoung(vmf->orig_pte); 3042 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3043 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3044 update_mmu_cache(vma, vmf->address, vmf->pte); 3045 pte_unmap_unlock(vmf->pte, vmf->ptl); 3046 count_vm_event(PGREUSE); 3047 } 3048 3049 /* 3050 * Handle the case of a page which we actually need to copy to a new page, 3051 * either due to COW or unsharing. 3052 * 3053 * Called with mmap_lock locked and the old page referenced, but 3054 * without the ptl held. 3055 * 3056 * High level logic flow: 3057 * 3058 * - Allocate a page, copy the content of the old page to the new one. 3059 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3060 * - Take the PTL. If the pte changed, bail out and release the allocated page 3061 * - If the pte is still the way we remember it, update the page table and all 3062 * relevant references. This includes dropping the reference the page-table 3063 * held to the old page, as well as updating the rmap. 3064 * - In any case, unlock the PTL and drop the reference we took to the old page. 3065 */ 3066 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3067 { 3068 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3069 struct vm_area_struct *vma = vmf->vma; 3070 struct mm_struct *mm = vma->vm_mm; 3071 struct folio *old_folio = NULL; 3072 struct folio *new_folio = NULL; 3073 pte_t entry; 3074 int page_copied = 0; 3075 struct mmu_notifier_range range; 3076 int ret; 3077 3078 delayacct_wpcopy_start(); 3079 3080 if (vmf->page) 3081 old_folio = page_folio(vmf->page); 3082 if (unlikely(anon_vma_prepare(vma))) 3083 goto oom; 3084 3085 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3086 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 3087 if (!new_folio) 3088 goto oom; 3089 } else { 3090 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 3091 vmf->address, false); 3092 if (!new_folio) 3093 goto oom; 3094 3095 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3096 if (ret) { 3097 /* 3098 * COW failed, if the fault was solved by other, 3099 * it's fine. If not, userspace would re-fault on 3100 * the same address and we will handle the fault 3101 * from the second attempt. 3102 * The -EHWPOISON case will not be retried. 3103 */ 3104 folio_put(new_folio); 3105 if (old_folio) 3106 folio_put(old_folio); 3107 3108 delayacct_wpcopy_end(); 3109 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3110 } 3111 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3112 } 3113 3114 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) 3115 goto oom_free_new; 3116 folio_throttle_swaprate(new_folio, GFP_KERNEL); 3117 3118 __folio_mark_uptodate(new_folio); 3119 3120 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3121 vmf->address & PAGE_MASK, 3122 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3123 mmu_notifier_invalidate_range_start(&range); 3124 3125 /* 3126 * Re-check the pte - we dropped the lock 3127 */ 3128 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3129 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3130 if (old_folio) { 3131 if (!folio_test_anon(old_folio)) { 3132 dec_mm_counter(mm, mm_counter_file(&old_folio->page)); 3133 inc_mm_counter(mm, MM_ANONPAGES); 3134 } 3135 } else { 3136 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3137 inc_mm_counter(mm, MM_ANONPAGES); 3138 } 3139 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3140 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3141 entry = pte_sw_mkyoung(entry); 3142 if (unlikely(unshare)) { 3143 if (pte_soft_dirty(vmf->orig_pte)) 3144 entry = pte_mksoft_dirty(entry); 3145 if (pte_uffd_wp(vmf->orig_pte)) 3146 entry = pte_mkuffd_wp(entry); 3147 } else { 3148 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3149 } 3150 3151 /* 3152 * Clear the pte entry and flush it first, before updating the 3153 * pte with the new entry, to keep TLBs on different CPUs in 3154 * sync. This code used to set the new PTE then flush TLBs, but 3155 * that left a window where the new PTE could be loaded into 3156 * some TLBs while the old PTE remains in others. 3157 */ 3158 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3159 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3160 folio_add_lru_vma(new_folio, vma); 3161 /* 3162 * We call the notify macro here because, when using secondary 3163 * mmu page tables (such as kvm shadow page tables), we want the 3164 * new page to be mapped directly into the secondary page table. 3165 */ 3166 BUG_ON(unshare && pte_write(entry)); 3167 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3168 update_mmu_cache(vma, vmf->address, vmf->pte); 3169 if (old_folio) { 3170 /* 3171 * Only after switching the pte to the new page may 3172 * we remove the mapcount here. Otherwise another 3173 * process may come and find the rmap count decremented 3174 * before the pte is switched to the new page, and 3175 * "reuse" the old page writing into it while our pte 3176 * here still points into it and can be read by other 3177 * threads. 3178 * 3179 * The critical issue is to order this 3180 * page_remove_rmap with the ptp_clear_flush above. 3181 * Those stores are ordered by (if nothing else,) 3182 * the barrier present in the atomic_add_negative 3183 * in page_remove_rmap. 3184 * 3185 * Then the TLB flush in ptep_clear_flush ensures that 3186 * no process can access the old page before the 3187 * decremented mapcount is visible. And the old page 3188 * cannot be reused until after the decremented 3189 * mapcount is visible. So transitively, TLBs to 3190 * old page will be flushed before it can be reused. 3191 */ 3192 page_remove_rmap(vmf->page, vma, false); 3193 } 3194 3195 /* Free the old page.. */ 3196 new_folio = old_folio; 3197 page_copied = 1; 3198 pte_unmap_unlock(vmf->pte, vmf->ptl); 3199 } else if (vmf->pte) { 3200 update_mmu_tlb(vma, vmf->address, vmf->pte); 3201 pte_unmap_unlock(vmf->pte, vmf->ptl); 3202 } 3203 3204 /* 3205 * No need to double call mmu_notifier->invalidate_range() callback as 3206 * the above ptep_clear_flush_notify() did already call it. 3207 */ 3208 mmu_notifier_invalidate_range_only_end(&range); 3209 3210 if (new_folio) 3211 folio_put(new_folio); 3212 if (old_folio) { 3213 if (page_copied) 3214 free_swap_cache(&old_folio->page); 3215 folio_put(old_folio); 3216 } 3217 3218 delayacct_wpcopy_end(); 3219 return 0; 3220 oom_free_new: 3221 folio_put(new_folio); 3222 oom: 3223 if (old_folio) 3224 folio_put(old_folio); 3225 3226 delayacct_wpcopy_end(); 3227 return VM_FAULT_OOM; 3228 } 3229 3230 /** 3231 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3232 * writeable once the page is prepared 3233 * 3234 * @vmf: structure describing the fault 3235 * 3236 * This function handles all that is needed to finish a write page fault in a 3237 * shared mapping due to PTE being read-only once the mapped page is prepared. 3238 * It handles locking of PTE and modifying it. 3239 * 3240 * The function expects the page to be locked or other protection against 3241 * concurrent faults / writeback (such as DAX radix tree locks). 3242 * 3243 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3244 * we acquired PTE lock. 3245 */ 3246 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3247 { 3248 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3249 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3250 &vmf->ptl); 3251 if (!vmf->pte) 3252 return VM_FAULT_NOPAGE; 3253 /* 3254 * We might have raced with another page fault while we released the 3255 * pte_offset_map_lock. 3256 */ 3257 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3258 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3259 pte_unmap_unlock(vmf->pte, vmf->ptl); 3260 return VM_FAULT_NOPAGE; 3261 } 3262 wp_page_reuse(vmf); 3263 return 0; 3264 } 3265 3266 /* 3267 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3268 * mapping 3269 */ 3270 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3271 { 3272 struct vm_area_struct *vma = vmf->vma; 3273 3274 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3275 vm_fault_t ret; 3276 3277 pte_unmap_unlock(vmf->pte, vmf->ptl); 3278 vmf->flags |= FAULT_FLAG_MKWRITE; 3279 ret = vma->vm_ops->pfn_mkwrite(vmf); 3280 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3281 return ret; 3282 return finish_mkwrite_fault(vmf); 3283 } 3284 wp_page_reuse(vmf); 3285 return 0; 3286 } 3287 3288 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3289 __releases(vmf->ptl) 3290 { 3291 struct vm_area_struct *vma = vmf->vma; 3292 vm_fault_t ret = 0; 3293 3294 folio_get(folio); 3295 3296 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3297 vm_fault_t tmp; 3298 3299 pte_unmap_unlock(vmf->pte, vmf->ptl); 3300 tmp = do_page_mkwrite(vmf, folio); 3301 if (unlikely(!tmp || (tmp & 3302 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3303 folio_put(folio); 3304 return tmp; 3305 } 3306 tmp = finish_mkwrite_fault(vmf); 3307 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3308 folio_unlock(folio); 3309 folio_put(folio); 3310 return tmp; 3311 } 3312 } else { 3313 wp_page_reuse(vmf); 3314 folio_lock(folio); 3315 } 3316 ret |= fault_dirty_shared_page(vmf); 3317 folio_put(folio); 3318 3319 return ret; 3320 } 3321 3322 /* 3323 * This routine handles present pages, when 3324 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3325 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3326 * (FAULT_FLAG_UNSHARE) 3327 * 3328 * It is done by copying the page to a new address and decrementing the 3329 * shared-page counter for the old page. 3330 * 3331 * Note that this routine assumes that the protection checks have been 3332 * done by the caller (the low-level page fault routine in most cases). 3333 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3334 * done any necessary COW. 3335 * 3336 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3337 * though the page will change only once the write actually happens. This 3338 * avoids a few races, and potentially makes it more efficient. 3339 * 3340 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3341 * but allow concurrent faults), with pte both mapped and locked. 3342 * We return with mmap_lock still held, but pte unmapped and unlocked. 3343 */ 3344 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3345 __releases(vmf->ptl) 3346 { 3347 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3348 struct vm_area_struct *vma = vmf->vma; 3349 struct folio *folio = NULL; 3350 3351 if (likely(!unshare)) { 3352 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3353 pte_unmap_unlock(vmf->pte, vmf->ptl); 3354 return handle_userfault(vmf, VM_UFFD_WP); 3355 } 3356 3357 /* 3358 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3359 * is flushed in this case before copying. 3360 */ 3361 if (unlikely(userfaultfd_wp(vmf->vma) && 3362 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3363 flush_tlb_page(vmf->vma, vmf->address); 3364 } 3365 3366 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3367 3368 if (vmf->page) 3369 folio = page_folio(vmf->page); 3370 3371 /* 3372 * Shared mapping: we are guaranteed to have VM_WRITE and 3373 * FAULT_FLAG_WRITE set at this point. 3374 */ 3375 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3376 /* 3377 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3378 * VM_PFNMAP VMA. 3379 * 3380 * We should not cow pages in a shared writeable mapping. 3381 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3382 */ 3383 if (!vmf->page) 3384 return wp_pfn_shared(vmf); 3385 return wp_page_shared(vmf, folio); 3386 } 3387 3388 /* 3389 * Private mapping: create an exclusive anonymous page copy if reuse 3390 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3391 */ 3392 if (folio && folio_test_anon(folio)) { 3393 /* 3394 * If the page is exclusive to this process we must reuse the 3395 * page without further checks. 3396 */ 3397 if (PageAnonExclusive(vmf->page)) 3398 goto reuse; 3399 3400 /* 3401 * We have to verify under folio lock: these early checks are 3402 * just an optimization to avoid locking the folio and freeing 3403 * the swapcache if there is little hope that we can reuse. 3404 * 3405 * KSM doesn't necessarily raise the folio refcount. 3406 */ 3407 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3408 goto copy; 3409 if (!folio_test_lru(folio)) 3410 /* 3411 * We cannot easily detect+handle references from 3412 * remote LRU caches or references to LRU folios. 3413 */ 3414 lru_add_drain(); 3415 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3416 goto copy; 3417 if (!folio_trylock(folio)) 3418 goto copy; 3419 if (folio_test_swapcache(folio)) 3420 folio_free_swap(folio); 3421 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3422 folio_unlock(folio); 3423 goto copy; 3424 } 3425 /* 3426 * Ok, we've got the only folio reference from our mapping 3427 * and the folio is locked, it's dark out, and we're wearing 3428 * sunglasses. Hit it. 3429 */ 3430 page_move_anon_rmap(vmf->page, vma); 3431 folio_unlock(folio); 3432 reuse: 3433 if (unlikely(unshare)) { 3434 pte_unmap_unlock(vmf->pte, vmf->ptl); 3435 return 0; 3436 } 3437 wp_page_reuse(vmf); 3438 return 0; 3439 } 3440 copy: 3441 /* 3442 * Ok, we need to copy. Oh, well.. 3443 */ 3444 if (folio) 3445 folio_get(folio); 3446 3447 pte_unmap_unlock(vmf->pte, vmf->ptl); 3448 #ifdef CONFIG_KSM 3449 if (folio && folio_test_ksm(folio)) 3450 count_vm_event(COW_KSM); 3451 #endif 3452 return wp_page_copy(vmf); 3453 } 3454 3455 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3456 unsigned long start_addr, unsigned long end_addr, 3457 struct zap_details *details) 3458 { 3459 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3460 } 3461 3462 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3463 pgoff_t first_index, 3464 pgoff_t last_index, 3465 struct zap_details *details) 3466 { 3467 struct vm_area_struct *vma; 3468 pgoff_t vba, vea, zba, zea; 3469 3470 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3471 vba = vma->vm_pgoff; 3472 vea = vba + vma_pages(vma) - 1; 3473 zba = max(first_index, vba); 3474 zea = min(last_index, vea); 3475 3476 unmap_mapping_range_vma(vma, 3477 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3478 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3479 details); 3480 } 3481 } 3482 3483 /** 3484 * unmap_mapping_folio() - Unmap single folio from processes. 3485 * @folio: The locked folio to be unmapped. 3486 * 3487 * Unmap this folio from any userspace process which still has it mmaped. 3488 * Typically, for efficiency, the range of nearby pages has already been 3489 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3490 * truncation or invalidation holds the lock on a folio, it may find that 3491 * the page has been remapped again: and then uses unmap_mapping_folio() 3492 * to unmap it finally. 3493 */ 3494 void unmap_mapping_folio(struct folio *folio) 3495 { 3496 struct address_space *mapping = folio->mapping; 3497 struct zap_details details = { }; 3498 pgoff_t first_index; 3499 pgoff_t last_index; 3500 3501 VM_BUG_ON(!folio_test_locked(folio)); 3502 3503 first_index = folio->index; 3504 last_index = folio_next_index(folio) - 1; 3505 3506 details.even_cows = false; 3507 details.single_folio = folio; 3508 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3509 3510 i_mmap_lock_read(mapping); 3511 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3512 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3513 last_index, &details); 3514 i_mmap_unlock_read(mapping); 3515 } 3516 3517 /** 3518 * unmap_mapping_pages() - Unmap pages from processes. 3519 * @mapping: The address space containing pages to be unmapped. 3520 * @start: Index of first page to be unmapped. 3521 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3522 * @even_cows: Whether to unmap even private COWed pages. 3523 * 3524 * Unmap the pages in this address space from any userspace process which 3525 * has them mmaped. Generally, you want to remove COWed pages as well when 3526 * a file is being truncated, but not when invalidating pages from the page 3527 * cache. 3528 */ 3529 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3530 pgoff_t nr, bool even_cows) 3531 { 3532 struct zap_details details = { }; 3533 pgoff_t first_index = start; 3534 pgoff_t last_index = start + nr - 1; 3535 3536 details.even_cows = even_cows; 3537 if (last_index < first_index) 3538 last_index = ULONG_MAX; 3539 3540 i_mmap_lock_read(mapping); 3541 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3542 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3543 last_index, &details); 3544 i_mmap_unlock_read(mapping); 3545 } 3546 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3547 3548 /** 3549 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3550 * address_space corresponding to the specified byte range in the underlying 3551 * file. 3552 * 3553 * @mapping: the address space containing mmaps to be unmapped. 3554 * @holebegin: byte in first page to unmap, relative to the start of 3555 * the underlying file. This will be rounded down to a PAGE_SIZE 3556 * boundary. Note that this is different from truncate_pagecache(), which 3557 * must keep the partial page. In contrast, we must get rid of 3558 * partial pages. 3559 * @holelen: size of prospective hole in bytes. This will be rounded 3560 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3561 * end of the file. 3562 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3563 * but 0 when invalidating pagecache, don't throw away private data. 3564 */ 3565 void unmap_mapping_range(struct address_space *mapping, 3566 loff_t const holebegin, loff_t const holelen, int even_cows) 3567 { 3568 pgoff_t hba = holebegin >> PAGE_SHIFT; 3569 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3570 3571 /* Check for overflow. */ 3572 if (sizeof(holelen) > sizeof(hlen)) { 3573 long long holeend = 3574 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3575 if (holeend & ~(long long)ULONG_MAX) 3576 hlen = ULONG_MAX - hba + 1; 3577 } 3578 3579 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3580 } 3581 EXPORT_SYMBOL(unmap_mapping_range); 3582 3583 /* 3584 * Restore a potential device exclusive pte to a working pte entry 3585 */ 3586 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3587 { 3588 struct folio *folio = page_folio(vmf->page); 3589 struct vm_area_struct *vma = vmf->vma; 3590 struct mmu_notifier_range range; 3591 3592 /* 3593 * We need a reference to lock the folio because we don't hold 3594 * the PTL so a racing thread can remove the device-exclusive 3595 * entry and unmap it. If the folio is free the entry must 3596 * have been removed already. If it happens to have already 3597 * been re-allocated after being freed all we do is lock and 3598 * unlock it. 3599 */ 3600 if (!folio_try_get(folio)) 3601 return 0; 3602 3603 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) { 3604 folio_put(folio); 3605 return VM_FAULT_RETRY; 3606 } 3607 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3608 vma->vm_mm, vmf->address & PAGE_MASK, 3609 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3610 mmu_notifier_invalidate_range_start(&range); 3611 3612 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3613 &vmf->ptl); 3614 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3615 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3616 3617 if (vmf->pte) 3618 pte_unmap_unlock(vmf->pte, vmf->ptl); 3619 folio_unlock(folio); 3620 folio_put(folio); 3621 3622 mmu_notifier_invalidate_range_end(&range); 3623 return 0; 3624 } 3625 3626 static inline bool should_try_to_free_swap(struct folio *folio, 3627 struct vm_area_struct *vma, 3628 unsigned int fault_flags) 3629 { 3630 if (!folio_test_swapcache(folio)) 3631 return false; 3632 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3633 folio_test_mlocked(folio)) 3634 return true; 3635 /* 3636 * If we want to map a page that's in the swapcache writable, we 3637 * have to detect via the refcount if we're really the exclusive 3638 * user. Try freeing the swapcache to get rid of the swapcache 3639 * reference only in case it's likely that we'll be the exlusive user. 3640 */ 3641 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3642 folio_ref_count(folio) == 2; 3643 } 3644 3645 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3646 { 3647 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3648 vmf->address, &vmf->ptl); 3649 if (!vmf->pte) 3650 return 0; 3651 /* 3652 * Be careful so that we will only recover a special uffd-wp pte into a 3653 * none pte. Otherwise it means the pte could have changed, so retry. 3654 * 3655 * This should also cover the case where e.g. the pte changed 3656 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3657 * So is_pte_marker() check is not enough to safely drop the pte. 3658 */ 3659 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3660 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3661 pte_unmap_unlock(vmf->pte, vmf->ptl); 3662 return 0; 3663 } 3664 3665 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3666 { 3667 if (vma_is_anonymous(vmf->vma)) 3668 return do_anonymous_page(vmf); 3669 else 3670 return do_fault(vmf); 3671 } 3672 3673 /* 3674 * This is actually a page-missing access, but with uffd-wp special pte 3675 * installed. It means this pte was wr-protected before being unmapped. 3676 */ 3677 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3678 { 3679 /* 3680 * Just in case there're leftover special ptes even after the region 3681 * got unregistered - we can simply clear them. 3682 */ 3683 if (unlikely(!userfaultfd_wp(vmf->vma))) 3684 return pte_marker_clear(vmf); 3685 3686 return do_pte_missing(vmf); 3687 } 3688 3689 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3690 { 3691 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3692 unsigned long marker = pte_marker_get(entry); 3693 3694 /* 3695 * PTE markers should never be empty. If anything weird happened, 3696 * the best thing to do is to kill the process along with its mm. 3697 */ 3698 if (WARN_ON_ONCE(!marker)) 3699 return VM_FAULT_SIGBUS; 3700 3701 /* Higher priority than uffd-wp when data corrupted */ 3702 if (marker & PTE_MARKER_POISONED) 3703 return VM_FAULT_HWPOISON; 3704 3705 if (pte_marker_entry_uffd_wp(entry)) 3706 return pte_marker_handle_uffd_wp(vmf); 3707 3708 /* This is an unknown pte marker */ 3709 return VM_FAULT_SIGBUS; 3710 } 3711 3712 /* 3713 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3714 * but allow concurrent faults), and pte mapped but not yet locked. 3715 * We return with pte unmapped and unlocked. 3716 * 3717 * We return with the mmap_lock locked or unlocked in the same cases 3718 * as does filemap_fault(). 3719 */ 3720 vm_fault_t do_swap_page(struct vm_fault *vmf) 3721 { 3722 struct vm_area_struct *vma = vmf->vma; 3723 struct folio *swapcache, *folio = NULL; 3724 struct page *page; 3725 struct swap_info_struct *si = NULL; 3726 rmap_t rmap_flags = RMAP_NONE; 3727 bool exclusive = false; 3728 swp_entry_t entry; 3729 pte_t pte; 3730 int locked; 3731 vm_fault_t ret = 0; 3732 void *shadow = NULL; 3733 3734 if (!pte_unmap_same(vmf)) 3735 goto out; 3736 3737 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3738 ret = VM_FAULT_RETRY; 3739 goto out; 3740 } 3741 3742 entry = pte_to_swp_entry(vmf->orig_pte); 3743 if (unlikely(non_swap_entry(entry))) { 3744 if (is_migration_entry(entry)) { 3745 migration_entry_wait(vma->vm_mm, vmf->pmd, 3746 vmf->address); 3747 } else if (is_device_exclusive_entry(entry)) { 3748 vmf->page = pfn_swap_entry_to_page(entry); 3749 ret = remove_device_exclusive_entry(vmf); 3750 } else if (is_device_private_entry(entry)) { 3751 vmf->page = pfn_swap_entry_to_page(entry); 3752 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3753 vmf->address, &vmf->ptl); 3754 if (unlikely(!vmf->pte || 3755 !pte_same(ptep_get(vmf->pte), 3756 vmf->orig_pte))) 3757 goto unlock; 3758 3759 /* 3760 * Get a page reference while we know the page can't be 3761 * freed. 3762 */ 3763 get_page(vmf->page); 3764 pte_unmap_unlock(vmf->pte, vmf->ptl); 3765 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3766 put_page(vmf->page); 3767 } else if (is_hwpoison_entry(entry)) { 3768 ret = VM_FAULT_HWPOISON; 3769 } else if (is_pte_marker_entry(entry)) { 3770 ret = handle_pte_marker(vmf); 3771 } else { 3772 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3773 ret = VM_FAULT_SIGBUS; 3774 } 3775 goto out; 3776 } 3777 3778 /* Prevent swapoff from happening to us. */ 3779 si = get_swap_device(entry); 3780 if (unlikely(!si)) 3781 goto out; 3782 3783 folio = swap_cache_get_folio(entry, vma, vmf->address); 3784 if (folio) 3785 page = folio_file_page(folio, swp_offset(entry)); 3786 swapcache = folio; 3787 3788 if (!folio) { 3789 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3790 __swap_count(entry) == 1) { 3791 /* skip swapcache */ 3792 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3793 vma, vmf->address, false); 3794 page = &folio->page; 3795 if (folio) { 3796 __folio_set_locked(folio); 3797 __folio_set_swapbacked(folio); 3798 3799 if (mem_cgroup_swapin_charge_folio(folio, 3800 vma->vm_mm, GFP_KERNEL, 3801 entry)) { 3802 ret = VM_FAULT_OOM; 3803 goto out_page; 3804 } 3805 mem_cgroup_swapin_uncharge_swap(entry); 3806 3807 shadow = get_shadow_from_swap_cache(entry); 3808 if (shadow) 3809 workingset_refault(folio, shadow); 3810 3811 folio_add_lru(folio); 3812 3813 /* To provide entry to swap_readpage() */ 3814 folio_set_swap_entry(folio, entry); 3815 swap_readpage(page, true, NULL); 3816 folio->private = NULL; 3817 } 3818 } else { 3819 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3820 vmf); 3821 if (page) 3822 folio = page_folio(page); 3823 swapcache = folio; 3824 } 3825 3826 if (!folio) { 3827 /* 3828 * Back out if somebody else faulted in this pte 3829 * while we released the pte lock. 3830 */ 3831 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3832 vmf->address, &vmf->ptl); 3833 if (likely(vmf->pte && 3834 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3835 ret = VM_FAULT_OOM; 3836 goto unlock; 3837 } 3838 3839 /* Had to read the page from swap area: Major fault */ 3840 ret = VM_FAULT_MAJOR; 3841 count_vm_event(PGMAJFAULT); 3842 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3843 } else if (PageHWPoison(page)) { 3844 /* 3845 * hwpoisoned dirty swapcache pages are kept for killing 3846 * owner processes (which may be unknown at hwpoison time) 3847 */ 3848 ret = VM_FAULT_HWPOISON; 3849 goto out_release; 3850 } 3851 3852 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags); 3853 3854 if (!locked) { 3855 ret |= VM_FAULT_RETRY; 3856 goto out_release; 3857 } 3858 3859 if (swapcache) { 3860 /* 3861 * Make sure folio_free_swap() or swapoff did not release the 3862 * swapcache from under us. The page pin, and pte_same test 3863 * below, are not enough to exclude that. Even if it is still 3864 * swapcache, we need to check that the page's swap has not 3865 * changed. 3866 */ 3867 if (unlikely(!folio_test_swapcache(folio) || 3868 page_private(page) != entry.val)) 3869 goto out_page; 3870 3871 /* 3872 * KSM sometimes has to copy on read faults, for example, if 3873 * page->index of !PageKSM() pages would be nonlinear inside the 3874 * anon VMA -- PageKSM() is lost on actual swapout. 3875 */ 3876 page = ksm_might_need_to_copy(page, vma, vmf->address); 3877 if (unlikely(!page)) { 3878 ret = VM_FAULT_OOM; 3879 goto out_page; 3880 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) { 3881 ret = VM_FAULT_HWPOISON; 3882 goto out_page; 3883 } 3884 folio = page_folio(page); 3885 3886 /* 3887 * If we want to map a page that's in the swapcache writable, we 3888 * have to detect via the refcount if we're really the exclusive 3889 * owner. Try removing the extra reference from the local LRU 3890 * caches if required. 3891 */ 3892 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3893 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3894 lru_add_drain(); 3895 } 3896 3897 folio_throttle_swaprate(folio, GFP_KERNEL); 3898 3899 /* 3900 * Back out if somebody else already faulted in this pte. 3901 */ 3902 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3903 &vmf->ptl); 3904 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3905 goto out_nomap; 3906 3907 if (unlikely(!folio_test_uptodate(folio))) { 3908 ret = VM_FAULT_SIGBUS; 3909 goto out_nomap; 3910 } 3911 3912 /* 3913 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3914 * must never point at an anonymous page in the swapcache that is 3915 * PG_anon_exclusive. Sanity check that this holds and especially, that 3916 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3917 * check after taking the PT lock and making sure that nobody 3918 * concurrently faulted in this page and set PG_anon_exclusive. 3919 */ 3920 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3921 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3922 3923 /* 3924 * Check under PT lock (to protect against concurrent fork() sharing 3925 * the swap entry concurrently) for certainly exclusive pages. 3926 */ 3927 if (!folio_test_ksm(folio)) { 3928 exclusive = pte_swp_exclusive(vmf->orig_pte); 3929 if (folio != swapcache) { 3930 /* 3931 * We have a fresh page that is not exposed to the 3932 * swapcache -> certainly exclusive. 3933 */ 3934 exclusive = true; 3935 } else if (exclusive && folio_test_writeback(folio) && 3936 data_race(si->flags & SWP_STABLE_WRITES)) { 3937 /* 3938 * This is tricky: not all swap backends support 3939 * concurrent page modifications while under writeback. 3940 * 3941 * So if we stumble over such a page in the swapcache 3942 * we must not set the page exclusive, otherwise we can 3943 * map it writable without further checks and modify it 3944 * while still under writeback. 3945 * 3946 * For these problematic swap backends, simply drop the 3947 * exclusive marker: this is perfectly fine as we start 3948 * writeback only if we fully unmapped the page and 3949 * there are no unexpected references on the page after 3950 * unmapping succeeded. After fully unmapped, no 3951 * further GUP references (FOLL_GET and FOLL_PIN) can 3952 * appear, so dropping the exclusive marker and mapping 3953 * it only R/O is fine. 3954 */ 3955 exclusive = false; 3956 } 3957 } 3958 3959 /* 3960 * Some architectures may have to restore extra metadata to the page 3961 * when reading from swap. This metadata may be indexed by swap entry 3962 * so this must be called before swap_free(). 3963 */ 3964 arch_swap_restore(entry, folio); 3965 3966 /* 3967 * Remove the swap entry and conditionally try to free up the swapcache. 3968 * We're already holding a reference on the page but haven't mapped it 3969 * yet. 3970 */ 3971 swap_free(entry); 3972 if (should_try_to_free_swap(folio, vma, vmf->flags)) 3973 folio_free_swap(folio); 3974 3975 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 3976 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 3977 pte = mk_pte(page, vma->vm_page_prot); 3978 3979 /* 3980 * Same logic as in do_wp_page(); however, optimize for pages that are 3981 * certainly not shared either because we just allocated them without 3982 * exposing them to the swapcache or because the swap entry indicates 3983 * exclusivity. 3984 */ 3985 if (!folio_test_ksm(folio) && 3986 (exclusive || folio_ref_count(folio) == 1)) { 3987 if (vmf->flags & FAULT_FLAG_WRITE) { 3988 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3989 vmf->flags &= ~FAULT_FLAG_WRITE; 3990 } 3991 rmap_flags |= RMAP_EXCLUSIVE; 3992 } 3993 flush_icache_page(vma, page); 3994 if (pte_swp_soft_dirty(vmf->orig_pte)) 3995 pte = pte_mksoft_dirty(pte); 3996 if (pte_swp_uffd_wp(vmf->orig_pte)) 3997 pte = pte_mkuffd_wp(pte); 3998 vmf->orig_pte = pte; 3999 4000 /* ksm created a completely new copy */ 4001 if (unlikely(folio != swapcache && swapcache)) { 4002 page_add_new_anon_rmap(page, vma, vmf->address); 4003 folio_add_lru_vma(folio, vma); 4004 } else { 4005 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 4006 } 4007 4008 VM_BUG_ON(!folio_test_anon(folio) || 4009 (pte_write(pte) && !PageAnonExclusive(page))); 4010 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4011 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 4012 4013 folio_unlock(folio); 4014 if (folio != swapcache && swapcache) { 4015 /* 4016 * Hold the lock to avoid the swap entry to be reused 4017 * until we take the PT lock for the pte_same() check 4018 * (to avoid false positives from pte_same). For 4019 * further safety release the lock after the swap_free 4020 * so that the swap count won't change under a 4021 * parallel locked swapcache. 4022 */ 4023 folio_unlock(swapcache); 4024 folio_put(swapcache); 4025 } 4026 4027 if (vmf->flags & FAULT_FLAG_WRITE) { 4028 ret |= do_wp_page(vmf); 4029 if (ret & VM_FAULT_ERROR) 4030 ret &= VM_FAULT_ERROR; 4031 goto out; 4032 } 4033 4034 /* No need to invalidate - it was non-present before */ 4035 update_mmu_cache(vma, vmf->address, vmf->pte); 4036 unlock: 4037 if (vmf->pte) 4038 pte_unmap_unlock(vmf->pte, vmf->ptl); 4039 out: 4040 if (si) 4041 put_swap_device(si); 4042 return ret; 4043 out_nomap: 4044 if (vmf->pte) 4045 pte_unmap_unlock(vmf->pte, vmf->ptl); 4046 out_page: 4047 folio_unlock(folio); 4048 out_release: 4049 folio_put(folio); 4050 if (folio != swapcache && swapcache) { 4051 folio_unlock(swapcache); 4052 folio_put(swapcache); 4053 } 4054 if (si) 4055 put_swap_device(si); 4056 return ret; 4057 } 4058 4059 /* 4060 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4061 * but allow concurrent faults), and pte mapped but not yet locked. 4062 * We return with mmap_lock still held, but pte unmapped and unlocked. 4063 */ 4064 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4065 { 4066 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4067 struct vm_area_struct *vma = vmf->vma; 4068 struct folio *folio; 4069 vm_fault_t ret = 0; 4070 pte_t entry; 4071 4072 /* File mapping without ->vm_ops ? */ 4073 if (vma->vm_flags & VM_SHARED) 4074 return VM_FAULT_SIGBUS; 4075 4076 /* 4077 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4078 * be distinguished from a transient failure of pte_offset_map(). 4079 */ 4080 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4081 return VM_FAULT_OOM; 4082 4083 /* Use the zero-page for reads */ 4084 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4085 !mm_forbids_zeropage(vma->vm_mm)) { 4086 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4087 vma->vm_page_prot)); 4088 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4089 vmf->address, &vmf->ptl); 4090 if (!vmf->pte) 4091 goto unlock; 4092 if (vmf_pte_changed(vmf)) { 4093 update_mmu_tlb(vma, vmf->address, vmf->pte); 4094 goto unlock; 4095 } 4096 ret = check_stable_address_space(vma->vm_mm); 4097 if (ret) 4098 goto unlock; 4099 /* Deliver the page fault to userland, check inside PT lock */ 4100 if (userfaultfd_missing(vma)) { 4101 pte_unmap_unlock(vmf->pte, vmf->ptl); 4102 return handle_userfault(vmf, VM_UFFD_MISSING); 4103 } 4104 goto setpte; 4105 } 4106 4107 /* Allocate our own private page. */ 4108 if (unlikely(anon_vma_prepare(vma))) 4109 goto oom; 4110 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 4111 if (!folio) 4112 goto oom; 4113 4114 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 4115 goto oom_free_page; 4116 folio_throttle_swaprate(folio, GFP_KERNEL); 4117 4118 /* 4119 * The memory barrier inside __folio_mark_uptodate makes sure that 4120 * preceding stores to the page contents become visible before 4121 * the set_pte_at() write. 4122 */ 4123 __folio_mark_uptodate(folio); 4124 4125 entry = mk_pte(&folio->page, vma->vm_page_prot); 4126 entry = pte_sw_mkyoung(entry); 4127 if (vma->vm_flags & VM_WRITE) 4128 entry = pte_mkwrite(pte_mkdirty(entry)); 4129 4130 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4131 &vmf->ptl); 4132 if (!vmf->pte) 4133 goto release; 4134 if (vmf_pte_changed(vmf)) { 4135 update_mmu_tlb(vma, vmf->address, vmf->pte); 4136 goto release; 4137 } 4138 4139 ret = check_stable_address_space(vma->vm_mm); 4140 if (ret) 4141 goto release; 4142 4143 /* Deliver the page fault to userland, check inside PT lock */ 4144 if (userfaultfd_missing(vma)) { 4145 pte_unmap_unlock(vmf->pte, vmf->ptl); 4146 folio_put(folio); 4147 return handle_userfault(vmf, VM_UFFD_MISSING); 4148 } 4149 4150 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4151 folio_add_new_anon_rmap(folio, vma, vmf->address); 4152 folio_add_lru_vma(folio, vma); 4153 setpte: 4154 if (uffd_wp) 4155 entry = pte_mkuffd_wp(entry); 4156 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4157 4158 /* No need to invalidate - it was non-present before */ 4159 update_mmu_cache(vma, vmf->address, vmf->pte); 4160 unlock: 4161 if (vmf->pte) 4162 pte_unmap_unlock(vmf->pte, vmf->ptl); 4163 return ret; 4164 release: 4165 folio_put(folio); 4166 goto unlock; 4167 oom_free_page: 4168 folio_put(folio); 4169 oom: 4170 return VM_FAULT_OOM; 4171 } 4172 4173 /* 4174 * The mmap_lock must have been held on entry, and may have been 4175 * released depending on flags and vma->vm_ops->fault() return value. 4176 * See filemap_fault() and __lock_page_retry(). 4177 */ 4178 static vm_fault_t __do_fault(struct vm_fault *vmf) 4179 { 4180 struct vm_area_struct *vma = vmf->vma; 4181 vm_fault_t ret; 4182 4183 /* 4184 * Preallocate pte before we take page_lock because this might lead to 4185 * deadlocks for memcg reclaim which waits for pages under writeback: 4186 * lock_page(A) 4187 * SetPageWriteback(A) 4188 * unlock_page(A) 4189 * lock_page(B) 4190 * lock_page(B) 4191 * pte_alloc_one 4192 * shrink_page_list 4193 * wait_on_page_writeback(A) 4194 * SetPageWriteback(B) 4195 * unlock_page(B) 4196 * # flush A, B to clear the writeback 4197 */ 4198 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4199 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4200 if (!vmf->prealloc_pte) 4201 return VM_FAULT_OOM; 4202 } 4203 4204 ret = vma->vm_ops->fault(vmf); 4205 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4206 VM_FAULT_DONE_COW))) 4207 return ret; 4208 4209 if (unlikely(PageHWPoison(vmf->page))) { 4210 struct page *page = vmf->page; 4211 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4212 if (ret & VM_FAULT_LOCKED) { 4213 if (page_mapped(page)) 4214 unmap_mapping_pages(page_mapping(page), 4215 page->index, 1, false); 4216 /* Retry if a clean page was removed from the cache. */ 4217 if (invalidate_inode_page(page)) 4218 poisonret = VM_FAULT_NOPAGE; 4219 unlock_page(page); 4220 } 4221 put_page(page); 4222 vmf->page = NULL; 4223 return poisonret; 4224 } 4225 4226 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4227 lock_page(vmf->page); 4228 else 4229 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4230 4231 return ret; 4232 } 4233 4234 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4235 static void deposit_prealloc_pte(struct vm_fault *vmf) 4236 { 4237 struct vm_area_struct *vma = vmf->vma; 4238 4239 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4240 /* 4241 * We are going to consume the prealloc table, 4242 * count that as nr_ptes. 4243 */ 4244 mm_inc_nr_ptes(vma->vm_mm); 4245 vmf->prealloc_pte = NULL; 4246 } 4247 4248 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4249 { 4250 struct vm_area_struct *vma = vmf->vma; 4251 bool write = vmf->flags & FAULT_FLAG_WRITE; 4252 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4253 pmd_t entry; 4254 int i; 4255 vm_fault_t ret = VM_FAULT_FALLBACK; 4256 4257 if (!transhuge_vma_suitable(vma, haddr)) 4258 return ret; 4259 4260 page = compound_head(page); 4261 if (compound_order(page) != HPAGE_PMD_ORDER) 4262 return ret; 4263 4264 /* 4265 * Just backoff if any subpage of a THP is corrupted otherwise 4266 * the corrupted page may mapped by PMD silently to escape the 4267 * check. This kind of THP just can be PTE mapped. Access to 4268 * the corrupted subpage should trigger SIGBUS as expected. 4269 */ 4270 if (unlikely(PageHasHWPoisoned(page))) 4271 return ret; 4272 4273 /* 4274 * Archs like ppc64 need additional space to store information 4275 * related to pte entry. Use the preallocated table for that. 4276 */ 4277 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4278 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4279 if (!vmf->prealloc_pte) 4280 return VM_FAULT_OOM; 4281 } 4282 4283 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4284 if (unlikely(!pmd_none(*vmf->pmd))) 4285 goto out; 4286 4287 for (i = 0; i < HPAGE_PMD_NR; i++) 4288 flush_icache_page(vma, page + i); 4289 4290 entry = mk_huge_pmd(page, vma->vm_page_prot); 4291 if (write) 4292 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4293 4294 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4295 page_add_file_rmap(page, vma, true); 4296 4297 /* 4298 * deposit and withdraw with pmd lock held 4299 */ 4300 if (arch_needs_pgtable_deposit()) 4301 deposit_prealloc_pte(vmf); 4302 4303 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4304 4305 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4306 4307 /* fault is handled */ 4308 ret = 0; 4309 count_vm_event(THP_FILE_MAPPED); 4310 out: 4311 spin_unlock(vmf->ptl); 4312 return ret; 4313 } 4314 #else 4315 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4316 { 4317 return VM_FAULT_FALLBACK; 4318 } 4319 #endif 4320 4321 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 4322 { 4323 struct vm_area_struct *vma = vmf->vma; 4324 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4325 bool write = vmf->flags & FAULT_FLAG_WRITE; 4326 bool prefault = vmf->address != addr; 4327 pte_t entry; 4328 4329 flush_icache_page(vma, page); 4330 entry = mk_pte(page, vma->vm_page_prot); 4331 4332 if (prefault && arch_wants_old_prefaulted_pte()) 4333 entry = pte_mkold(entry); 4334 else 4335 entry = pte_sw_mkyoung(entry); 4336 4337 if (write) 4338 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4339 if (unlikely(uffd_wp)) 4340 entry = pte_mkuffd_wp(entry); 4341 /* copy-on-write page */ 4342 if (write && !(vma->vm_flags & VM_SHARED)) { 4343 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4344 page_add_new_anon_rmap(page, vma, addr); 4345 lru_cache_add_inactive_or_unevictable(page, vma); 4346 } else { 4347 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 4348 page_add_file_rmap(page, vma, false); 4349 } 4350 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 4351 } 4352 4353 static bool vmf_pte_changed(struct vm_fault *vmf) 4354 { 4355 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4356 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4357 4358 return !pte_none(ptep_get(vmf->pte)); 4359 } 4360 4361 /** 4362 * finish_fault - finish page fault once we have prepared the page to fault 4363 * 4364 * @vmf: structure describing the fault 4365 * 4366 * This function handles all that is needed to finish a page fault once the 4367 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4368 * given page, adds reverse page mapping, handles memcg charges and LRU 4369 * addition. 4370 * 4371 * The function expects the page to be locked and on success it consumes a 4372 * reference of a page being mapped (for the PTE which maps it). 4373 * 4374 * Return: %0 on success, %VM_FAULT_ code in case of error. 4375 */ 4376 vm_fault_t finish_fault(struct vm_fault *vmf) 4377 { 4378 struct vm_area_struct *vma = vmf->vma; 4379 struct page *page; 4380 vm_fault_t ret; 4381 4382 /* Did we COW the page? */ 4383 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4384 page = vmf->cow_page; 4385 else 4386 page = vmf->page; 4387 4388 /* 4389 * check even for read faults because we might have lost our CoWed 4390 * page 4391 */ 4392 if (!(vma->vm_flags & VM_SHARED)) { 4393 ret = check_stable_address_space(vma->vm_mm); 4394 if (ret) 4395 return ret; 4396 } 4397 4398 if (pmd_none(*vmf->pmd)) { 4399 if (PageTransCompound(page)) { 4400 ret = do_set_pmd(vmf, page); 4401 if (ret != VM_FAULT_FALLBACK) 4402 return ret; 4403 } 4404 4405 if (vmf->prealloc_pte) 4406 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4407 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4408 return VM_FAULT_OOM; 4409 } 4410 4411 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4412 vmf->address, &vmf->ptl); 4413 if (!vmf->pte) 4414 return VM_FAULT_NOPAGE; 4415 4416 /* Re-check under ptl */ 4417 if (likely(!vmf_pte_changed(vmf))) { 4418 do_set_pte(vmf, page, vmf->address); 4419 4420 /* no need to invalidate: a not-present page won't be cached */ 4421 update_mmu_cache(vma, vmf->address, vmf->pte); 4422 4423 ret = 0; 4424 } else { 4425 update_mmu_tlb(vma, vmf->address, vmf->pte); 4426 ret = VM_FAULT_NOPAGE; 4427 } 4428 4429 pte_unmap_unlock(vmf->pte, vmf->ptl); 4430 return ret; 4431 } 4432 4433 static unsigned long fault_around_pages __read_mostly = 4434 65536 >> PAGE_SHIFT; 4435 4436 #ifdef CONFIG_DEBUG_FS 4437 static int fault_around_bytes_get(void *data, u64 *val) 4438 { 4439 *val = fault_around_pages << PAGE_SHIFT; 4440 return 0; 4441 } 4442 4443 /* 4444 * fault_around_bytes must be rounded down to the nearest page order as it's 4445 * what do_fault_around() expects to see. 4446 */ 4447 static int fault_around_bytes_set(void *data, u64 val) 4448 { 4449 if (val / PAGE_SIZE > PTRS_PER_PTE) 4450 return -EINVAL; 4451 4452 /* 4453 * The minimum value is 1 page, however this results in no fault-around 4454 * at all. See should_fault_around(). 4455 */ 4456 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL); 4457 4458 return 0; 4459 } 4460 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4461 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4462 4463 static int __init fault_around_debugfs(void) 4464 { 4465 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4466 &fault_around_bytes_fops); 4467 return 0; 4468 } 4469 late_initcall(fault_around_debugfs); 4470 #endif 4471 4472 /* 4473 * do_fault_around() tries to map few pages around the fault address. The hope 4474 * is that the pages will be needed soon and this will lower the number of 4475 * faults to handle. 4476 * 4477 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4478 * not ready to be mapped: not up-to-date, locked, etc. 4479 * 4480 * This function doesn't cross VMA or page table boundaries, in order to call 4481 * map_pages() and acquire a PTE lock only once. 4482 * 4483 * fault_around_pages defines how many pages we'll try to map. 4484 * do_fault_around() expects it to be set to a power of two less than or equal 4485 * to PTRS_PER_PTE. 4486 * 4487 * The virtual address of the area that we map is naturally aligned to 4488 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4489 * (and therefore to page order). This way it's easier to guarantee 4490 * that we don't cross page table boundaries. 4491 */ 4492 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4493 { 4494 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4495 pgoff_t pte_off = pte_index(vmf->address); 4496 /* The page offset of vmf->address within the VMA. */ 4497 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4498 pgoff_t from_pte, to_pte; 4499 vm_fault_t ret; 4500 4501 /* The PTE offset of the start address, clamped to the VMA. */ 4502 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4503 pte_off - min(pte_off, vma_off)); 4504 4505 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4506 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4507 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4508 4509 if (pmd_none(*vmf->pmd)) { 4510 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4511 if (!vmf->prealloc_pte) 4512 return VM_FAULT_OOM; 4513 } 4514 4515 rcu_read_lock(); 4516 ret = vmf->vma->vm_ops->map_pages(vmf, 4517 vmf->pgoff + from_pte - pte_off, 4518 vmf->pgoff + to_pte - pte_off); 4519 rcu_read_unlock(); 4520 4521 return ret; 4522 } 4523 4524 /* Return true if we should do read fault-around, false otherwise */ 4525 static inline bool should_fault_around(struct vm_fault *vmf) 4526 { 4527 /* No ->map_pages? No way to fault around... */ 4528 if (!vmf->vma->vm_ops->map_pages) 4529 return false; 4530 4531 if (uffd_disable_fault_around(vmf->vma)) 4532 return false; 4533 4534 /* A single page implies no faulting 'around' at all. */ 4535 return fault_around_pages > 1; 4536 } 4537 4538 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4539 { 4540 vm_fault_t ret = 0; 4541 struct folio *folio; 4542 4543 /* 4544 * Let's call ->map_pages() first and use ->fault() as fallback 4545 * if page by the offset is not ready to be mapped (cold cache or 4546 * something). 4547 */ 4548 if (should_fault_around(vmf)) { 4549 ret = do_fault_around(vmf); 4550 if (ret) 4551 return ret; 4552 } 4553 4554 ret = __do_fault(vmf); 4555 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4556 return ret; 4557 4558 ret |= finish_fault(vmf); 4559 folio = page_folio(vmf->page); 4560 folio_unlock(folio); 4561 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4562 folio_put(folio); 4563 return ret; 4564 } 4565 4566 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4567 { 4568 struct vm_area_struct *vma = vmf->vma; 4569 vm_fault_t ret; 4570 4571 if (unlikely(anon_vma_prepare(vma))) 4572 return VM_FAULT_OOM; 4573 4574 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4575 if (!vmf->cow_page) 4576 return VM_FAULT_OOM; 4577 4578 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4579 GFP_KERNEL)) { 4580 put_page(vmf->cow_page); 4581 return VM_FAULT_OOM; 4582 } 4583 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL); 4584 4585 ret = __do_fault(vmf); 4586 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4587 goto uncharge_out; 4588 if (ret & VM_FAULT_DONE_COW) 4589 return ret; 4590 4591 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4592 __SetPageUptodate(vmf->cow_page); 4593 4594 ret |= finish_fault(vmf); 4595 unlock_page(vmf->page); 4596 put_page(vmf->page); 4597 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4598 goto uncharge_out; 4599 return ret; 4600 uncharge_out: 4601 put_page(vmf->cow_page); 4602 return ret; 4603 } 4604 4605 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4606 { 4607 struct vm_area_struct *vma = vmf->vma; 4608 vm_fault_t ret, tmp; 4609 struct folio *folio; 4610 4611 ret = __do_fault(vmf); 4612 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4613 return ret; 4614 4615 folio = page_folio(vmf->page); 4616 4617 /* 4618 * Check if the backing address space wants to know that the page is 4619 * about to become writable 4620 */ 4621 if (vma->vm_ops->page_mkwrite) { 4622 folio_unlock(folio); 4623 tmp = do_page_mkwrite(vmf, folio); 4624 if (unlikely(!tmp || 4625 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4626 folio_put(folio); 4627 return tmp; 4628 } 4629 } 4630 4631 ret |= finish_fault(vmf); 4632 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4633 VM_FAULT_RETRY))) { 4634 folio_unlock(folio); 4635 folio_put(folio); 4636 return ret; 4637 } 4638 4639 ret |= fault_dirty_shared_page(vmf); 4640 return ret; 4641 } 4642 4643 /* 4644 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4645 * but allow concurrent faults). 4646 * The mmap_lock may have been released depending on flags and our 4647 * return value. See filemap_fault() and __folio_lock_or_retry(). 4648 * If mmap_lock is released, vma may become invalid (for example 4649 * by other thread calling munmap()). 4650 */ 4651 static vm_fault_t do_fault(struct vm_fault *vmf) 4652 { 4653 struct vm_area_struct *vma = vmf->vma; 4654 struct mm_struct *vm_mm = vma->vm_mm; 4655 vm_fault_t ret; 4656 4657 /* 4658 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4659 */ 4660 if (!vma->vm_ops->fault) { 4661 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4662 vmf->address, &vmf->ptl); 4663 if (unlikely(!vmf->pte)) 4664 ret = VM_FAULT_SIGBUS; 4665 else { 4666 /* 4667 * Make sure this is not a temporary clearing of pte 4668 * by holding ptl and checking again. A R/M/W update 4669 * of pte involves: take ptl, clearing the pte so that 4670 * we don't have concurrent modification by hardware 4671 * followed by an update. 4672 */ 4673 if (unlikely(pte_none(ptep_get(vmf->pte)))) 4674 ret = VM_FAULT_SIGBUS; 4675 else 4676 ret = VM_FAULT_NOPAGE; 4677 4678 pte_unmap_unlock(vmf->pte, vmf->ptl); 4679 } 4680 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4681 ret = do_read_fault(vmf); 4682 else if (!(vma->vm_flags & VM_SHARED)) 4683 ret = do_cow_fault(vmf); 4684 else 4685 ret = do_shared_fault(vmf); 4686 4687 /* preallocated pagetable is unused: free it */ 4688 if (vmf->prealloc_pte) { 4689 pte_free(vm_mm, vmf->prealloc_pte); 4690 vmf->prealloc_pte = NULL; 4691 } 4692 return ret; 4693 } 4694 4695 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4696 unsigned long addr, int page_nid, int *flags) 4697 { 4698 get_page(page); 4699 4700 /* Record the current PID acceesing VMA */ 4701 vma_set_access_pid_bit(vma); 4702 4703 count_vm_numa_event(NUMA_HINT_FAULTS); 4704 if (page_nid == numa_node_id()) { 4705 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4706 *flags |= TNF_FAULT_LOCAL; 4707 } 4708 4709 return mpol_misplaced(page, vma, addr); 4710 } 4711 4712 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4713 { 4714 struct vm_area_struct *vma = vmf->vma; 4715 struct page *page = NULL; 4716 int page_nid = NUMA_NO_NODE; 4717 bool writable = false; 4718 int last_cpupid; 4719 int target_nid; 4720 pte_t pte, old_pte; 4721 int flags = 0; 4722 4723 /* 4724 * The "pte" at this point cannot be used safely without 4725 * validation through pte_unmap_same(). It's of NUMA type but 4726 * the pfn may be screwed if the read is non atomic. 4727 */ 4728 spin_lock(vmf->ptl); 4729 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4730 pte_unmap_unlock(vmf->pte, vmf->ptl); 4731 goto out; 4732 } 4733 4734 /* Get the normal PTE */ 4735 old_pte = ptep_get(vmf->pte); 4736 pte = pte_modify(old_pte, vma->vm_page_prot); 4737 4738 /* 4739 * Detect now whether the PTE could be writable; this information 4740 * is only valid while holding the PT lock. 4741 */ 4742 writable = pte_write(pte); 4743 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4744 can_change_pte_writable(vma, vmf->address, pte)) 4745 writable = true; 4746 4747 page = vm_normal_page(vma, vmf->address, pte); 4748 if (!page || is_zone_device_page(page)) 4749 goto out_map; 4750 4751 /* TODO: handle PTE-mapped THP */ 4752 if (PageCompound(page)) 4753 goto out_map; 4754 4755 /* 4756 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4757 * much anyway since they can be in shared cache state. This misses 4758 * the case where a mapping is writable but the process never writes 4759 * to it but pte_write gets cleared during protection updates and 4760 * pte_dirty has unpredictable behaviour between PTE scan updates, 4761 * background writeback, dirty balancing and application behaviour. 4762 */ 4763 if (!writable) 4764 flags |= TNF_NO_GROUP; 4765 4766 /* 4767 * Flag if the page is shared between multiple address spaces. This 4768 * is later used when determining whether to group tasks together 4769 */ 4770 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4771 flags |= TNF_SHARED; 4772 4773 page_nid = page_to_nid(page); 4774 /* 4775 * For memory tiering mode, cpupid of slow memory page is used 4776 * to record page access time. So use default value. 4777 */ 4778 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4779 !node_is_toptier(page_nid)) 4780 last_cpupid = (-1 & LAST_CPUPID_MASK); 4781 else 4782 last_cpupid = page_cpupid_last(page); 4783 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4784 &flags); 4785 if (target_nid == NUMA_NO_NODE) { 4786 put_page(page); 4787 goto out_map; 4788 } 4789 pte_unmap_unlock(vmf->pte, vmf->ptl); 4790 writable = false; 4791 4792 /* Migrate to the requested node */ 4793 if (migrate_misplaced_page(page, vma, target_nid)) { 4794 page_nid = target_nid; 4795 flags |= TNF_MIGRATED; 4796 } else { 4797 flags |= TNF_MIGRATE_FAIL; 4798 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4799 vmf->address, &vmf->ptl); 4800 if (unlikely(!vmf->pte)) 4801 goto out; 4802 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4803 pte_unmap_unlock(vmf->pte, vmf->ptl); 4804 goto out; 4805 } 4806 goto out_map; 4807 } 4808 4809 out: 4810 if (page_nid != NUMA_NO_NODE) 4811 task_numa_fault(last_cpupid, page_nid, 1, flags); 4812 return 0; 4813 out_map: 4814 /* 4815 * Make it present again, depending on how arch implements 4816 * non-accessible ptes, some can allow access by kernel mode. 4817 */ 4818 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4819 pte = pte_modify(old_pte, vma->vm_page_prot); 4820 pte = pte_mkyoung(pte); 4821 if (writable) 4822 pte = pte_mkwrite(pte); 4823 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4824 update_mmu_cache(vma, vmf->address, vmf->pte); 4825 pte_unmap_unlock(vmf->pte, vmf->ptl); 4826 goto out; 4827 } 4828 4829 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4830 { 4831 if (vma_is_anonymous(vmf->vma)) 4832 return do_huge_pmd_anonymous_page(vmf); 4833 if (vmf->vma->vm_ops->huge_fault) 4834 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4835 return VM_FAULT_FALLBACK; 4836 } 4837 4838 /* `inline' is required to avoid gcc 4.1.2 build error */ 4839 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4840 { 4841 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4842 vm_fault_t ret; 4843 4844 if (vma_is_anonymous(vmf->vma)) { 4845 if (likely(!unshare) && 4846 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) 4847 return handle_userfault(vmf, VM_UFFD_WP); 4848 return do_huge_pmd_wp_page(vmf); 4849 } 4850 4851 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4852 if (vmf->vma->vm_ops->huge_fault) { 4853 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4854 if (!(ret & VM_FAULT_FALLBACK)) 4855 return ret; 4856 } 4857 } 4858 4859 /* COW or write-notify handled on pte level: split pmd. */ 4860 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4861 4862 return VM_FAULT_FALLBACK; 4863 } 4864 4865 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4866 { 4867 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4868 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4869 /* No support for anonymous transparent PUD pages yet */ 4870 if (vma_is_anonymous(vmf->vma)) 4871 return VM_FAULT_FALLBACK; 4872 if (vmf->vma->vm_ops->huge_fault) 4873 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4874 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4875 return VM_FAULT_FALLBACK; 4876 } 4877 4878 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4879 { 4880 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4881 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4882 vm_fault_t ret; 4883 4884 /* No support for anonymous transparent PUD pages yet */ 4885 if (vma_is_anonymous(vmf->vma)) 4886 goto split; 4887 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4888 if (vmf->vma->vm_ops->huge_fault) { 4889 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4890 if (!(ret & VM_FAULT_FALLBACK)) 4891 return ret; 4892 } 4893 } 4894 split: 4895 /* COW or write-notify not handled on PUD level: split pud.*/ 4896 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4897 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4898 return VM_FAULT_FALLBACK; 4899 } 4900 4901 /* 4902 * These routines also need to handle stuff like marking pages dirty 4903 * and/or accessed for architectures that don't do it in hardware (most 4904 * RISC architectures). The early dirtying is also good on the i386. 4905 * 4906 * There is also a hook called "update_mmu_cache()" that architectures 4907 * with external mmu caches can use to update those (ie the Sparc or 4908 * PowerPC hashed page tables that act as extended TLBs). 4909 * 4910 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4911 * concurrent faults). 4912 * 4913 * The mmap_lock may have been released depending on flags and our return value. 4914 * See filemap_fault() and __folio_lock_or_retry(). 4915 */ 4916 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4917 { 4918 pte_t entry; 4919 4920 if (unlikely(pmd_none(*vmf->pmd))) { 4921 /* 4922 * Leave __pte_alloc() until later: because vm_ops->fault may 4923 * want to allocate huge page, and if we expose page table 4924 * for an instant, it will be difficult to retract from 4925 * concurrent faults and from rmap lookups. 4926 */ 4927 vmf->pte = NULL; 4928 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 4929 } else { 4930 /* 4931 * A regular pmd is established and it can't morph into a huge 4932 * pmd by anon khugepaged, since that takes mmap_lock in write 4933 * mode; but shmem or file collapse to THP could still morph 4934 * it into a huge pmd: just retry later if so. 4935 */ 4936 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 4937 vmf->address, &vmf->ptl); 4938 if (unlikely(!vmf->pte)) 4939 return 0; 4940 vmf->orig_pte = ptep_get_lockless(vmf->pte); 4941 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 4942 4943 if (pte_none(vmf->orig_pte)) { 4944 pte_unmap(vmf->pte); 4945 vmf->pte = NULL; 4946 } 4947 } 4948 4949 if (!vmf->pte) 4950 return do_pte_missing(vmf); 4951 4952 if (!pte_present(vmf->orig_pte)) 4953 return do_swap_page(vmf); 4954 4955 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4956 return do_numa_page(vmf); 4957 4958 spin_lock(vmf->ptl); 4959 entry = vmf->orig_pte; 4960 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 4961 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4962 goto unlock; 4963 } 4964 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 4965 if (!pte_write(entry)) 4966 return do_wp_page(vmf); 4967 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 4968 entry = pte_mkdirty(entry); 4969 } 4970 entry = pte_mkyoung(entry); 4971 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4972 vmf->flags & FAULT_FLAG_WRITE)) { 4973 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4974 } else { 4975 /* Skip spurious TLB flush for retried page fault */ 4976 if (vmf->flags & FAULT_FLAG_TRIED) 4977 goto unlock; 4978 /* 4979 * This is needed only for protection faults but the arch code 4980 * is not yet telling us if this is a protection fault or not. 4981 * This still avoids useless tlb flushes for .text page faults 4982 * with threads. 4983 */ 4984 if (vmf->flags & FAULT_FLAG_WRITE) 4985 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 4986 vmf->pte); 4987 } 4988 unlock: 4989 pte_unmap_unlock(vmf->pte, vmf->ptl); 4990 return 0; 4991 } 4992 4993 /* 4994 * By the time we get here, we already hold the mm semaphore 4995 * 4996 * The mmap_lock may have been released depending on flags and our 4997 * return value. See filemap_fault() and __folio_lock_or_retry(). 4998 */ 4999 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5000 unsigned long address, unsigned int flags) 5001 { 5002 struct vm_fault vmf = { 5003 .vma = vma, 5004 .address = address & PAGE_MASK, 5005 .real_address = address, 5006 .flags = flags, 5007 .pgoff = linear_page_index(vma, address), 5008 .gfp_mask = __get_fault_gfp_mask(vma), 5009 }; 5010 struct mm_struct *mm = vma->vm_mm; 5011 unsigned long vm_flags = vma->vm_flags; 5012 pgd_t *pgd; 5013 p4d_t *p4d; 5014 vm_fault_t ret; 5015 5016 pgd = pgd_offset(mm, address); 5017 p4d = p4d_alloc(mm, pgd, address); 5018 if (!p4d) 5019 return VM_FAULT_OOM; 5020 5021 vmf.pud = pud_alloc(mm, p4d, address); 5022 if (!vmf.pud) 5023 return VM_FAULT_OOM; 5024 retry_pud: 5025 if (pud_none(*vmf.pud) && 5026 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5027 ret = create_huge_pud(&vmf); 5028 if (!(ret & VM_FAULT_FALLBACK)) 5029 return ret; 5030 } else { 5031 pud_t orig_pud = *vmf.pud; 5032 5033 barrier(); 5034 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5035 5036 /* 5037 * TODO once we support anonymous PUDs: NUMA case and 5038 * FAULT_FLAG_UNSHARE handling. 5039 */ 5040 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5041 ret = wp_huge_pud(&vmf, orig_pud); 5042 if (!(ret & VM_FAULT_FALLBACK)) 5043 return ret; 5044 } else { 5045 huge_pud_set_accessed(&vmf, orig_pud); 5046 return 0; 5047 } 5048 } 5049 } 5050 5051 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5052 if (!vmf.pmd) 5053 return VM_FAULT_OOM; 5054 5055 /* Huge pud page fault raced with pmd_alloc? */ 5056 if (pud_trans_unstable(vmf.pud)) 5057 goto retry_pud; 5058 5059 if (pmd_none(*vmf.pmd) && 5060 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5061 ret = create_huge_pmd(&vmf); 5062 if (!(ret & VM_FAULT_FALLBACK)) 5063 return ret; 5064 } else { 5065 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5066 5067 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5068 VM_BUG_ON(thp_migration_supported() && 5069 !is_pmd_migration_entry(vmf.orig_pmd)); 5070 if (is_pmd_migration_entry(vmf.orig_pmd)) 5071 pmd_migration_entry_wait(mm, vmf.pmd); 5072 return 0; 5073 } 5074 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5075 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5076 return do_huge_pmd_numa_page(&vmf); 5077 5078 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5079 !pmd_write(vmf.orig_pmd)) { 5080 ret = wp_huge_pmd(&vmf); 5081 if (!(ret & VM_FAULT_FALLBACK)) 5082 return ret; 5083 } else { 5084 huge_pmd_set_accessed(&vmf); 5085 return 0; 5086 } 5087 } 5088 } 5089 5090 return handle_pte_fault(&vmf); 5091 } 5092 5093 /** 5094 * mm_account_fault - Do page fault accounting 5095 * @mm: mm from which memcg should be extracted. It can be NULL. 5096 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5097 * of perf event counters, but we'll still do the per-task accounting to 5098 * the task who triggered this page fault. 5099 * @address: the faulted address. 5100 * @flags: the fault flags. 5101 * @ret: the fault retcode. 5102 * 5103 * This will take care of most of the page fault accounting. Meanwhile, it 5104 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5105 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5106 * still be in per-arch page fault handlers at the entry of page fault. 5107 */ 5108 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5109 unsigned long address, unsigned int flags, 5110 vm_fault_t ret) 5111 { 5112 bool major; 5113 5114 /* Incomplete faults will be accounted upon completion. */ 5115 if (ret & VM_FAULT_RETRY) 5116 return; 5117 5118 /* 5119 * To preserve the behavior of older kernels, PGFAULT counters record 5120 * both successful and failed faults, as opposed to perf counters, 5121 * which ignore failed cases. 5122 */ 5123 count_vm_event(PGFAULT); 5124 count_memcg_event_mm(mm, PGFAULT); 5125 5126 /* 5127 * Do not account for unsuccessful faults (e.g. when the address wasn't 5128 * valid). That includes arch_vma_access_permitted() failing before 5129 * reaching here. So this is not a "this many hardware page faults" 5130 * counter. We should use the hw profiling for that. 5131 */ 5132 if (ret & VM_FAULT_ERROR) 5133 return; 5134 5135 /* 5136 * We define the fault as a major fault when the final successful fault 5137 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5138 * handle it immediately previously). 5139 */ 5140 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5141 5142 if (major) 5143 current->maj_flt++; 5144 else 5145 current->min_flt++; 5146 5147 /* 5148 * If the fault is done for GUP, regs will be NULL. We only do the 5149 * accounting for the per thread fault counters who triggered the 5150 * fault, and we skip the perf event updates. 5151 */ 5152 if (!regs) 5153 return; 5154 5155 if (major) 5156 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5157 else 5158 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5159 } 5160 5161 #ifdef CONFIG_LRU_GEN 5162 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5163 { 5164 /* the LRU algorithm only applies to accesses with recency */ 5165 current->in_lru_fault = vma_has_recency(vma); 5166 } 5167 5168 static void lru_gen_exit_fault(void) 5169 { 5170 current->in_lru_fault = false; 5171 } 5172 #else 5173 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5174 { 5175 } 5176 5177 static void lru_gen_exit_fault(void) 5178 { 5179 } 5180 #endif /* CONFIG_LRU_GEN */ 5181 5182 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5183 unsigned int *flags) 5184 { 5185 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5186 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5187 return VM_FAULT_SIGSEGV; 5188 /* 5189 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5190 * just treat it like an ordinary read-fault otherwise. 5191 */ 5192 if (!is_cow_mapping(vma->vm_flags)) 5193 *flags &= ~FAULT_FLAG_UNSHARE; 5194 } else if (*flags & FAULT_FLAG_WRITE) { 5195 /* Write faults on read-only mappings are impossible ... */ 5196 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5197 return VM_FAULT_SIGSEGV; 5198 /* ... and FOLL_FORCE only applies to COW mappings. */ 5199 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5200 !is_cow_mapping(vma->vm_flags))) 5201 return VM_FAULT_SIGSEGV; 5202 } 5203 return 0; 5204 } 5205 5206 /* 5207 * By the time we get here, we already hold the mm semaphore 5208 * 5209 * The mmap_lock may have been released depending on flags and our 5210 * return value. See filemap_fault() and __folio_lock_or_retry(). 5211 */ 5212 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5213 unsigned int flags, struct pt_regs *regs) 5214 { 5215 /* If the fault handler drops the mmap_lock, vma may be freed */ 5216 struct mm_struct *mm = vma->vm_mm; 5217 vm_fault_t ret; 5218 5219 __set_current_state(TASK_RUNNING); 5220 5221 ret = sanitize_fault_flags(vma, &flags); 5222 if (ret) 5223 goto out; 5224 5225 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5226 flags & FAULT_FLAG_INSTRUCTION, 5227 flags & FAULT_FLAG_REMOTE)) { 5228 ret = VM_FAULT_SIGSEGV; 5229 goto out; 5230 } 5231 5232 /* 5233 * Enable the memcg OOM handling for faults triggered in user 5234 * space. Kernel faults are handled more gracefully. 5235 */ 5236 if (flags & FAULT_FLAG_USER) 5237 mem_cgroup_enter_user_fault(); 5238 5239 lru_gen_enter_fault(vma); 5240 5241 if (unlikely(is_vm_hugetlb_page(vma))) 5242 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5243 else 5244 ret = __handle_mm_fault(vma, address, flags); 5245 5246 lru_gen_exit_fault(); 5247 5248 if (flags & FAULT_FLAG_USER) { 5249 mem_cgroup_exit_user_fault(); 5250 /* 5251 * The task may have entered a memcg OOM situation but 5252 * if the allocation error was handled gracefully (no 5253 * VM_FAULT_OOM), there is no need to kill anything. 5254 * Just clean up the OOM state peacefully. 5255 */ 5256 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5257 mem_cgroup_oom_synchronize(false); 5258 } 5259 out: 5260 mm_account_fault(mm, regs, address, flags, ret); 5261 5262 return ret; 5263 } 5264 EXPORT_SYMBOL_GPL(handle_mm_fault); 5265 5266 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 5267 #include <linux/extable.h> 5268 5269 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5270 { 5271 /* Even if this succeeds, make it clear we *might* have slept */ 5272 if (likely(mmap_read_trylock(mm))) { 5273 might_sleep(); 5274 return true; 5275 } 5276 5277 if (regs && !user_mode(regs)) { 5278 unsigned long ip = instruction_pointer(regs); 5279 if (!search_exception_tables(ip)) 5280 return false; 5281 } 5282 5283 return !mmap_read_lock_killable(mm); 5284 } 5285 5286 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 5287 { 5288 /* 5289 * We don't have this operation yet. 5290 * 5291 * It should be easy enough to do: it's basically a 5292 * atomic_long_try_cmpxchg_acquire() 5293 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 5294 * it also needs the proper lockdep magic etc. 5295 */ 5296 return false; 5297 } 5298 5299 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5300 { 5301 mmap_read_unlock(mm); 5302 if (regs && !user_mode(regs)) { 5303 unsigned long ip = instruction_pointer(regs); 5304 if (!search_exception_tables(ip)) 5305 return false; 5306 } 5307 return !mmap_write_lock_killable(mm); 5308 } 5309 5310 /* 5311 * Helper for page fault handling. 5312 * 5313 * This is kind of equivalend to "mmap_read_lock()" followed 5314 * by "find_extend_vma()", except it's a lot more careful about 5315 * the locking (and will drop the lock on failure). 5316 * 5317 * For example, if we have a kernel bug that causes a page 5318 * fault, we don't want to just use mmap_read_lock() to get 5319 * the mm lock, because that would deadlock if the bug were 5320 * to happen while we're holding the mm lock for writing. 5321 * 5322 * So this checks the exception tables on kernel faults in 5323 * order to only do this all for instructions that are actually 5324 * expected to fault. 5325 * 5326 * We can also actually take the mm lock for writing if we 5327 * need to extend the vma, which helps the VM layer a lot. 5328 */ 5329 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 5330 unsigned long addr, struct pt_regs *regs) 5331 { 5332 struct vm_area_struct *vma; 5333 5334 if (!get_mmap_lock_carefully(mm, regs)) 5335 return NULL; 5336 5337 vma = find_vma(mm, addr); 5338 if (likely(vma && (vma->vm_start <= addr))) 5339 return vma; 5340 5341 /* 5342 * Well, dang. We might still be successful, but only 5343 * if we can extend a vma to do so. 5344 */ 5345 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 5346 mmap_read_unlock(mm); 5347 return NULL; 5348 } 5349 5350 /* 5351 * We can try to upgrade the mmap lock atomically, 5352 * in which case we can continue to use the vma 5353 * we already looked up. 5354 * 5355 * Otherwise we'll have to drop the mmap lock and 5356 * re-take it, and also look up the vma again, 5357 * re-checking it. 5358 */ 5359 if (!mmap_upgrade_trylock(mm)) { 5360 if (!upgrade_mmap_lock_carefully(mm, regs)) 5361 return NULL; 5362 5363 vma = find_vma(mm, addr); 5364 if (!vma) 5365 goto fail; 5366 if (vma->vm_start <= addr) 5367 goto success; 5368 if (!(vma->vm_flags & VM_GROWSDOWN)) 5369 goto fail; 5370 } 5371 5372 if (expand_stack_locked(vma, addr)) 5373 goto fail; 5374 5375 success: 5376 mmap_write_downgrade(mm); 5377 return vma; 5378 5379 fail: 5380 mmap_write_unlock(mm); 5381 return NULL; 5382 } 5383 #endif 5384 5385 #ifdef CONFIG_PER_VMA_LOCK 5386 /* 5387 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5388 * stable and not isolated. If the VMA is not found or is being modified the 5389 * function returns NULL. 5390 */ 5391 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5392 unsigned long address) 5393 { 5394 MA_STATE(mas, &mm->mm_mt, address, address); 5395 struct vm_area_struct *vma; 5396 5397 rcu_read_lock(); 5398 retry: 5399 vma = mas_walk(&mas); 5400 if (!vma) 5401 goto inval; 5402 5403 /* Only anonymous and tcp vmas are supported for now */ 5404 if (!vma_is_anonymous(vma) && !vma_is_tcp(vma)) 5405 goto inval; 5406 5407 if (!vma_start_read(vma)) 5408 goto inval; 5409 5410 /* 5411 * find_mergeable_anon_vma uses adjacent vmas which are not locked. 5412 * This check must happen after vma_start_read(); otherwise, a 5413 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA 5414 * from its anon_vma. 5415 */ 5416 if (unlikely(!vma->anon_vma && !vma_is_tcp(vma))) 5417 goto inval_end_read; 5418 5419 /* 5420 * Due to the possibility of userfault handler dropping mmap_lock, avoid 5421 * it for now and fall back to page fault handling under mmap_lock. 5422 */ 5423 if (userfaultfd_armed(vma)) 5424 goto inval_end_read; 5425 5426 /* Check since vm_start/vm_end might change before we lock the VMA */ 5427 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 5428 goto inval_end_read; 5429 5430 /* Check if the VMA got isolated after we found it */ 5431 if (vma->detached) { 5432 vma_end_read(vma); 5433 count_vm_vma_lock_event(VMA_LOCK_MISS); 5434 /* The area was replaced with another one */ 5435 goto retry; 5436 } 5437 5438 rcu_read_unlock(); 5439 return vma; 5440 5441 inval_end_read: 5442 vma_end_read(vma); 5443 inval: 5444 rcu_read_unlock(); 5445 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5446 return NULL; 5447 } 5448 #endif /* CONFIG_PER_VMA_LOCK */ 5449 5450 #ifndef __PAGETABLE_P4D_FOLDED 5451 /* 5452 * Allocate p4d page table. 5453 * We've already handled the fast-path in-line. 5454 */ 5455 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5456 { 5457 p4d_t *new = p4d_alloc_one(mm, address); 5458 if (!new) 5459 return -ENOMEM; 5460 5461 spin_lock(&mm->page_table_lock); 5462 if (pgd_present(*pgd)) { /* Another has populated it */ 5463 p4d_free(mm, new); 5464 } else { 5465 smp_wmb(); /* See comment in pmd_install() */ 5466 pgd_populate(mm, pgd, new); 5467 } 5468 spin_unlock(&mm->page_table_lock); 5469 return 0; 5470 } 5471 #endif /* __PAGETABLE_P4D_FOLDED */ 5472 5473 #ifndef __PAGETABLE_PUD_FOLDED 5474 /* 5475 * Allocate page upper directory. 5476 * We've already handled the fast-path in-line. 5477 */ 5478 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5479 { 5480 pud_t *new = pud_alloc_one(mm, address); 5481 if (!new) 5482 return -ENOMEM; 5483 5484 spin_lock(&mm->page_table_lock); 5485 if (!p4d_present(*p4d)) { 5486 mm_inc_nr_puds(mm); 5487 smp_wmb(); /* See comment in pmd_install() */ 5488 p4d_populate(mm, p4d, new); 5489 } else /* Another has populated it */ 5490 pud_free(mm, new); 5491 spin_unlock(&mm->page_table_lock); 5492 return 0; 5493 } 5494 #endif /* __PAGETABLE_PUD_FOLDED */ 5495 5496 #ifndef __PAGETABLE_PMD_FOLDED 5497 /* 5498 * Allocate page middle directory. 5499 * We've already handled the fast-path in-line. 5500 */ 5501 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5502 { 5503 spinlock_t *ptl; 5504 pmd_t *new = pmd_alloc_one(mm, address); 5505 if (!new) 5506 return -ENOMEM; 5507 5508 ptl = pud_lock(mm, pud); 5509 if (!pud_present(*pud)) { 5510 mm_inc_nr_pmds(mm); 5511 smp_wmb(); /* See comment in pmd_install() */ 5512 pud_populate(mm, pud, new); 5513 } else { /* Another has populated it */ 5514 pmd_free(mm, new); 5515 } 5516 spin_unlock(ptl); 5517 return 0; 5518 } 5519 #endif /* __PAGETABLE_PMD_FOLDED */ 5520 5521 /** 5522 * follow_pte - look up PTE at a user virtual address 5523 * @mm: the mm_struct of the target address space 5524 * @address: user virtual address 5525 * @ptepp: location to store found PTE 5526 * @ptlp: location to store the lock for the PTE 5527 * 5528 * On a successful return, the pointer to the PTE is stored in @ptepp; 5529 * the corresponding lock is taken and its location is stored in @ptlp. 5530 * The contents of the PTE are only stable until @ptlp is released; 5531 * any further use, if any, must be protected against invalidation 5532 * with MMU notifiers. 5533 * 5534 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5535 * should be taken for read. 5536 * 5537 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5538 * it is not a good general-purpose API. 5539 * 5540 * Return: zero on success, -ve otherwise. 5541 */ 5542 int follow_pte(struct mm_struct *mm, unsigned long address, 5543 pte_t **ptepp, spinlock_t **ptlp) 5544 { 5545 pgd_t *pgd; 5546 p4d_t *p4d; 5547 pud_t *pud; 5548 pmd_t *pmd; 5549 pte_t *ptep; 5550 5551 pgd = pgd_offset(mm, address); 5552 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5553 goto out; 5554 5555 p4d = p4d_offset(pgd, address); 5556 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5557 goto out; 5558 5559 pud = pud_offset(p4d, address); 5560 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5561 goto out; 5562 5563 pmd = pmd_offset(pud, address); 5564 VM_BUG_ON(pmd_trans_huge(*pmd)); 5565 5566 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5567 if (!ptep) 5568 goto out; 5569 if (!pte_present(ptep_get(ptep))) 5570 goto unlock; 5571 *ptepp = ptep; 5572 return 0; 5573 unlock: 5574 pte_unmap_unlock(ptep, *ptlp); 5575 out: 5576 return -EINVAL; 5577 } 5578 EXPORT_SYMBOL_GPL(follow_pte); 5579 5580 /** 5581 * follow_pfn - look up PFN at a user virtual address 5582 * @vma: memory mapping 5583 * @address: user virtual address 5584 * @pfn: location to store found PFN 5585 * 5586 * Only IO mappings and raw PFN mappings are allowed. 5587 * 5588 * This function does not allow the caller to read the permissions 5589 * of the PTE. Do not use it. 5590 * 5591 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5592 */ 5593 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5594 unsigned long *pfn) 5595 { 5596 int ret = -EINVAL; 5597 spinlock_t *ptl; 5598 pte_t *ptep; 5599 5600 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5601 return ret; 5602 5603 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5604 if (ret) 5605 return ret; 5606 *pfn = pte_pfn(ptep_get(ptep)); 5607 pte_unmap_unlock(ptep, ptl); 5608 return 0; 5609 } 5610 EXPORT_SYMBOL(follow_pfn); 5611 5612 #ifdef CONFIG_HAVE_IOREMAP_PROT 5613 int follow_phys(struct vm_area_struct *vma, 5614 unsigned long address, unsigned int flags, 5615 unsigned long *prot, resource_size_t *phys) 5616 { 5617 int ret = -EINVAL; 5618 pte_t *ptep, pte; 5619 spinlock_t *ptl; 5620 5621 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5622 goto out; 5623 5624 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5625 goto out; 5626 pte = ptep_get(ptep); 5627 5628 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5629 goto unlock; 5630 5631 *prot = pgprot_val(pte_pgprot(pte)); 5632 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5633 5634 ret = 0; 5635 unlock: 5636 pte_unmap_unlock(ptep, ptl); 5637 out: 5638 return ret; 5639 } 5640 5641 /** 5642 * generic_access_phys - generic implementation for iomem mmap access 5643 * @vma: the vma to access 5644 * @addr: userspace address, not relative offset within @vma 5645 * @buf: buffer to read/write 5646 * @len: length of transfer 5647 * @write: set to FOLL_WRITE when writing, otherwise reading 5648 * 5649 * This is a generic implementation for &vm_operations_struct.access for an 5650 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5651 * not page based. 5652 */ 5653 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5654 void *buf, int len, int write) 5655 { 5656 resource_size_t phys_addr; 5657 unsigned long prot = 0; 5658 void __iomem *maddr; 5659 pte_t *ptep, pte; 5660 spinlock_t *ptl; 5661 int offset = offset_in_page(addr); 5662 int ret = -EINVAL; 5663 5664 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5665 return -EINVAL; 5666 5667 retry: 5668 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5669 return -EINVAL; 5670 pte = ptep_get(ptep); 5671 pte_unmap_unlock(ptep, ptl); 5672 5673 prot = pgprot_val(pte_pgprot(pte)); 5674 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5675 5676 if ((write & FOLL_WRITE) && !pte_write(pte)) 5677 return -EINVAL; 5678 5679 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5680 if (!maddr) 5681 return -ENOMEM; 5682 5683 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5684 goto out_unmap; 5685 5686 if (!pte_same(pte, ptep_get(ptep))) { 5687 pte_unmap_unlock(ptep, ptl); 5688 iounmap(maddr); 5689 5690 goto retry; 5691 } 5692 5693 if (write) 5694 memcpy_toio(maddr + offset, buf, len); 5695 else 5696 memcpy_fromio(buf, maddr + offset, len); 5697 ret = len; 5698 pte_unmap_unlock(ptep, ptl); 5699 out_unmap: 5700 iounmap(maddr); 5701 5702 return ret; 5703 } 5704 EXPORT_SYMBOL_GPL(generic_access_phys); 5705 #endif 5706 5707 /* 5708 * Access another process' address space as given in mm. 5709 */ 5710 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5711 int len, unsigned int gup_flags) 5712 { 5713 void *old_buf = buf; 5714 int write = gup_flags & FOLL_WRITE; 5715 5716 if (mmap_read_lock_killable(mm)) 5717 return 0; 5718 5719 /* Avoid triggering the temporary warning in __get_user_pages */ 5720 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 5721 return 0; 5722 5723 /* ignore errors, just check how much was successfully transferred */ 5724 while (len) { 5725 int bytes, offset; 5726 void *maddr; 5727 struct vm_area_struct *vma = NULL; 5728 struct page *page = get_user_page_vma_remote(mm, addr, 5729 gup_flags, &vma); 5730 5731 if (IS_ERR_OR_NULL(page)) { 5732 /* We might need to expand the stack to access it */ 5733 vma = vma_lookup(mm, addr); 5734 if (!vma) { 5735 vma = expand_stack(mm, addr); 5736 5737 /* mmap_lock was dropped on failure */ 5738 if (!vma) 5739 return buf - old_buf; 5740 5741 /* Try again if stack expansion worked */ 5742 continue; 5743 } 5744 5745 5746 /* 5747 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5748 * we can access using slightly different code. 5749 */ 5750 bytes = 0; 5751 #ifdef CONFIG_HAVE_IOREMAP_PROT 5752 if (vma->vm_ops && vma->vm_ops->access) 5753 bytes = vma->vm_ops->access(vma, addr, buf, 5754 len, write); 5755 #endif 5756 if (bytes <= 0) 5757 break; 5758 } else { 5759 bytes = len; 5760 offset = addr & (PAGE_SIZE-1); 5761 if (bytes > PAGE_SIZE-offset) 5762 bytes = PAGE_SIZE-offset; 5763 5764 maddr = kmap(page); 5765 if (write) { 5766 copy_to_user_page(vma, page, addr, 5767 maddr + offset, buf, bytes); 5768 set_page_dirty_lock(page); 5769 } else { 5770 copy_from_user_page(vma, page, addr, 5771 buf, maddr + offset, bytes); 5772 } 5773 kunmap(page); 5774 put_page(page); 5775 } 5776 len -= bytes; 5777 buf += bytes; 5778 addr += bytes; 5779 } 5780 mmap_read_unlock(mm); 5781 5782 return buf - old_buf; 5783 } 5784 5785 /** 5786 * access_remote_vm - access another process' address space 5787 * @mm: the mm_struct of the target address space 5788 * @addr: start address to access 5789 * @buf: source or destination buffer 5790 * @len: number of bytes to transfer 5791 * @gup_flags: flags modifying lookup behaviour 5792 * 5793 * The caller must hold a reference on @mm. 5794 * 5795 * Return: number of bytes copied from source to destination. 5796 */ 5797 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5798 void *buf, int len, unsigned int gup_flags) 5799 { 5800 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5801 } 5802 5803 /* 5804 * Access another process' address space. 5805 * Source/target buffer must be kernel space, 5806 * Do not walk the page table directly, use get_user_pages 5807 */ 5808 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5809 void *buf, int len, unsigned int gup_flags) 5810 { 5811 struct mm_struct *mm; 5812 int ret; 5813 5814 mm = get_task_mm(tsk); 5815 if (!mm) 5816 return 0; 5817 5818 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5819 5820 mmput(mm); 5821 5822 return ret; 5823 } 5824 EXPORT_SYMBOL_GPL(access_process_vm); 5825 5826 /* 5827 * Print the name of a VMA. 5828 */ 5829 void print_vma_addr(char *prefix, unsigned long ip) 5830 { 5831 struct mm_struct *mm = current->mm; 5832 struct vm_area_struct *vma; 5833 5834 /* 5835 * we might be running from an atomic context so we cannot sleep 5836 */ 5837 if (!mmap_read_trylock(mm)) 5838 return; 5839 5840 vma = find_vma(mm, ip); 5841 if (vma && vma->vm_file) { 5842 struct file *f = vma->vm_file; 5843 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5844 if (buf) { 5845 char *p; 5846 5847 p = file_path(f, buf, PAGE_SIZE); 5848 if (IS_ERR(p)) 5849 p = "?"; 5850 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5851 vma->vm_start, 5852 vma->vm_end - vma->vm_start); 5853 free_page((unsigned long)buf); 5854 } 5855 } 5856 mmap_read_unlock(mm); 5857 } 5858 5859 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5860 void __might_fault(const char *file, int line) 5861 { 5862 if (pagefault_disabled()) 5863 return; 5864 __might_sleep(file, line); 5865 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5866 if (current->mm) 5867 might_lock_read(¤t->mm->mmap_lock); 5868 #endif 5869 } 5870 EXPORT_SYMBOL(__might_fault); 5871 #endif 5872 5873 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5874 /* 5875 * Process all subpages of the specified huge page with the specified 5876 * operation. The target subpage will be processed last to keep its 5877 * cache lines hot. 5878 */ 5879 static inline int process_huge_page( 5880 unsigned long addr_hint, unsigned int pages_per_huge_page, 5881 int (*process_subpage)(unsigned long addr, int idx, void *arg), 5882 void *arg) 5883 { 5884 int i, n, base, l, ret; 5885 unsigned long addr = addr_hint & 5886 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5887 5888 /* Process target subpage last to keep its cache lines hot */ 5889 might_sleep(); 5890 n = (addr_hint - addr) / PAGE_SIZE; 5891 if (2 * n <= pages_per_huge_page) { 5892 /* If target subpage in first half of huge page */ 5893 base = 0; 5894 l = n; 5895 /* Process subpages at the end of huge page */ 5896 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5897 cond_resched(); 5898 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5899 if (ret) 5900 return ret; 5901 } 5902 } else { 5903 /* If target subpage in second half of huge page */ 5904 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5905 l = pages_per_huge_page - n; 5906 /* Process subpages at the begin of huge page */ 5907 for (i = 0; i < base; i++) { 5908 cond_resched(); 5909 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5910 if (ret) 5911 return ret; 5912 } 5913 } 5914 /* 5915 * Process remaining subpages in left-right-left-right pattern 5916 * towards the target subpage 5917 */ 5918 for (i = 0; i < l; i++) { 5919 int left_idx = base + i; 5920 int right_idx = base + 2 * l - 1 - i; 5921 5922 cond_resched(); 5923 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5924 if (ret) 5925 return ret; 5926 cond_resched(); 5927 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5928 if (ret) 5929 return ret; 5930 } 5931 return 0; 5932 } 5933 5934 static void clear_gigantic_page(struct page *page, 5935 unsigned long addr, 5936 unsigned int pages_per_huge_page) 5937 { 5938 int i; 5939 struct page *p; 5940 5941 might_sleep(); 5942 for (i = 0; i < pages_per_huge_page; i++) { 5943 p = nth_page(page, i); 5944 cond_resched(); 5945 clear_user_highpage(p, addr + i * PAGE_SIZE); 5946 } 5947 } 5948 5949 static int clear_subpage(unsigned long addr, int idx, void *arg) 5950 { 5951 struct page *page = arg; 5952 5953 clear_user_highpage(page + idx, addr); 5954 return 0; 5955 } 5956 5957 void clear_huge_page(struct page *page, 5958 unsigned long addr_hint, unsigned int pages_per_huge_page) 5959 { 5960 unsigned long addr = addr_hint & 5961 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5962 5963 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5964 clear_gigantic_page(page, addr, pages_per_huge_page); 5965 return; 5966 } 5967 5968 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5969 } 5970 5971 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 5972 unsigned long addr, 5973 struct vm_area_struct *vma, 5974 unsigned int pages_per_huge_page) 5975 { 5976 int i; 5977 struct page *dst_page; 5978 struct page *src_page; 5979 5980 for (i = 0; i < pages_per_huge_page; i++) { 5981 dst_page = folio_page(dst, i); 5982 src_page = folio_page(src, i); 5983 5984 cond_resched(); 5985 if (copy_mc_user_highpage(dst_page, src_page, 5986 addr + i*PAGE_SIZE, vma)) { 5987 memory_failure_queue(page_to_pfn(src_page), 0); 5988 return -EHWPOISON; 5989 } 5990 } 5991 return 0; 5992 } 5993 5994 struct copy_subpage_arg { 5995 struct page *dst; 5996 struct page *src; 5997 struct vm_area_struct *vma; 5998 }; 5999 6000 static int copy_subpage(unsigned long addr, int idx, void *arg) 6001 { 6002 struct copy_subpage_arg *copy_arg = arg; 6003 6004 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 6005 addr, copy_arg->vma)) { 6006 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0); 6007 return -EHWPOISON; 6008 } 6009 return 0; 6010 } 6011 6012 int copy_user_large_folio(struct folio *dst, struct folio *src, 6013 unsigned long addr_hint, struct vm_area_struct *vma) 6014 { 6015 unsigned int pages_per_huge_page = folio_nr_pages(dst); 6016 unsigned long addr = addr_hint & 6017 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6018 struct copy_subpage_arg arg = { 6019 .dst = &dst->page, 6020 .src = &src->page, 6021 .vma = vma, 6022 }; 6023 6024 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 6025 return copy_user_gigantic_page(dst, src, addr, vma, 6026 pages_per_huge_page); 6027 6028 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 6029 } 6030 6031 long copy_folio_from_user(struct folio *dst_folio, 6032 const void __user *usr_src, 6033 bool allow_pagefault) 6034 { 6035 void *kaddr; 6036 unsigned long i, rc = 0; 6037 unsigned int nr_pages = folio_nr_pages(dst_folio); 6038 unsigned long ret_val = nr_pages * PAGE_SIZE; 6039 struct page *subpage; 6040 6041 for (i = 0; i < nr_pages; i++) { 6042 subpage = folio_page(dst_folio, i); 6043 kaddr = kmap_local_page(subpage); 6044 if (!allow_pagefault) 6045 pagefault_disable(); 6046 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6047 if (!allow_pagefault) 6048 pagefault_enable(); 6049 kunmap_local(kaddr); 6050 6051 ret_val -= (PAGE_SIZE - rc); 6052 if (rc) 6053 break; 6054 6055 flush_dcache_page(subpage); 6056 6057 cond_resched(); 6058 } 6059 return ret_val; 6060 } 6061 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6062 6063 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6064 6065 static struct kmem_cache *page_ptl_cachep; 6066 6067 void __init ptlock_cache_init(void) 6068 { 6069 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6070 SLAB_PANIC, NULL); 6071 } 6072 6073 bool ptlock_alloc(struct page *page) 6074 { 6075 spinlock_t *ptl; 6076 6077 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6078 if (!ptl) 6079 return false; 6080 page->ptl = ptl; 6081 return true; 6082 } 6083 6084 void ptlock_free(struct page *page) 6085 { 6086 kmem_cache_free(page_ptl_cachep, page->ptl); 6087 } 6088 #endif 6089