xref: /linux/mm/memory.c (revision 43b3dfdd04553171488cb11d46d21948b6b90e27)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 #include <linux/net_mm.h>
81 
82 #include <trace/events/kmem.h>
83 
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90 
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94 
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98 
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 		return false;
119 
120 	return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122 
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
127  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
128  * and ZONE_HIGHMEM.
129  */
130 void *high_memory;
131 EXPORT_SYMBOL(high_memory);
132 
133 /*
134  * Randomize the address space (stacks, mmaps, brk, etc.).
135  *
136  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137  *   as ancient (libc5 based) binaries can segfault. )
138  */
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
141 					1;
142 #else
143 					2;
144 #endif
145 
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149 	/*
150 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 	 * some architectures, even if it's performed in hardware. By
152 	 * default, "false" means prefaulted entries will be 'young'.
153 	 */
154 	return false;
155 }
156 #endif
157 
158 static int __init disable_randmaps(char *s)
159 {
160 	randomize_va_space = 0;
161 	return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164 
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167 
168 unsigned long highest_memmap_pfn __read_mostly;
169 
170 /*
171  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172  */
173 static int __init init_zero_pfn(void)
174 {
175 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 	return 0;
177 }
178 early_initcall(init_zero_pfn);
179 
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182 	trace_rss_stat(mm, member);
183 }
184 
185 /*
186  * Note: this doesn't free the actual pages themselves. That
187  * has been handled earlier when unmapping all the memory regions.
188  */
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 			   unsigned long addr)
191 {
192 	pgtable_t token = pmd_pgtable(*pmd);
193 	pmd_clear(pmd);
194 	pte_free_tlb(tlb, token, addr);
195 	mm_dec_nr_ptes(tlb->mm);
196 }
197 
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 				unsigned long addr, unsigned long end,
200 				unsigned long floor, unsigned long ceiling)
201 {
202 	pmd_t *pmd;
203 	unsigned long next;
204 	unsigned long start;
205 
206 	start = addr;
207 	pmd = pmd_offset(pud, addr);
208 	do {
209 		next = pmd_addr_end(addr, end);
210 		if (pmd_none_or_clear_bad(pmd))
211 			continue;
212 		free_pte_range(tlb, pmd, addr);
213 	} while (pmd++, addr = next, addr != end);
214 
215 	start &= PUD_MASK;
216 	if (start < floor)
217 		return;
218 	if (ceiling) {
219 		ceiling &= PUD_MASK;
220 		if (!ceiling)
221 			return;
222 	}
223 	if (end - 1 > ceiling - 1)
224 		return;
225 
226 	pmd = pmd_offset(pud, start);
227 	pud_clear(pud);
228 	pmd_free_tlb(tlb, pmd, start);
229 	mm_dec_nr_pmds(tlb->mm);
230 }
231 
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 				unsigned long addr, unsigned long end,
234 				unsigned long floor, unsigned long ceiling)
235 {
236 	pud_t *pud;
237 	unsigned long next;
238 	unsigned long start;
239 
240 	start = addr;
241 	pud = pud_offset(p4d, addr);
242 	do {
243 		next = pud_addr_end(addr, end);
244 		if (pud_none_or_clear_bad(pud))
245 			continue;
246 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 	} while (pud++, addr = next, addr != end);
248 
249 	start &= P4D_MASK;
250 	if (start < floor)
251 		return;
252 	if (ceiling) {
253 		ceiling &= P4D_MASK;
254 		if (!ceiling)
255 			return;
256 	}
257 	if (end - 1 > ceiling - 1)
258 		return;
259 
260 	pud = pud_offset(p4d, start);
261 	p4d_clear(p4d);
262 	pud_free_tlb(tlb, pud, start);
263 	mm_dec_nr_puds(tlb->mm);
264 }
265 
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 				unsigned long addr, unsigned long end,
268 				unsigned long floor, unsigned long ceiling)
269 {
270 	p4d_t *p4d;
271 	unsigned long next;
272 	unsigned long start;
273 
274 	start = addr;
275 	p4d = p4d_offset(pgd, addr);
276 	do {
277 		next = p4d_addr_end(addr, end);
278 		if (p4d_none_or_clear_bad(p4d))
279 			continue;
280 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 	} while (p4d++, addr = next, addr != end);
282 
283 	start &= PGDIR_MASK;
284 	if (start < floor)
285 		return;
286 	if (ceiling) {
287 		ceiling &= PGDIR_MASK;
288 		if (!ceiling)
289 			return;
290 	}
291 	if (end - 1 > ceiling - 1)
292 		return;
293 
294 	p4d = p4d_offset(pgd, start);
295 	pgd_clear(pgd);
296 	p4d_free_tlb(tlb, p4d, start);
297 }
298 
299 /*
300  * This function frees user-level page tables of a process.
301  */
302 void free_pgd_range(struct mmu_gather *tlb,
303 			unsigned long addr, unsigned long end,
304 			unsigned long floor, unsigned long ceiling)
305 {
306 	pgd_t *pgd;
307 	unsigned long next;
308 
309 	/*
310 	 * The next few lines have given us lots of grief...
311 	 *
312 	 * Why are we testing PMD* at this top level?  Because often
313 	 * there will be no work to do at all, and we'd prefer not to
314 	 * go all the way down to the bottom just to discover that.
315 	 *
316 	 * Why all these "- 1"s?  Because 0 represents both the bottom
317 	 * of the address space and the top of it (using -1 for the
318 	 * top wouldn't help much: the masks would do the wrong thing).
319 	 * The rule is that addr 0 and floor 0 refer to the bottom of
320 	 * the address space, but end 0 and ceiling 0 refer to the top
321 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 	 * that end 0 case should be mythical).
323 	 *
324 	 * Wherever addr is brought up or ceiling brought down, we must
325 	 * be careful to reject "the opposite 0" before it confuses the
326 	 * subsequent tests.  But what about where end is brought down
327 	 * by PMD_SIZE below? no, end can't go down to 0 there.
328 	 *
329 	 * Whereas we round start (addr) and ceiling down, by different
330 	 * masks at different levels, in order to test whether a table
331 	 * now has no other vmas using it, so can be freed, we don't
332 	 * bother to round floor or end up - the tests don't need that.
333 	 */
334 
335 	addr &= PMD_MASK;
336 	if (addr < floor) {
337 		addr += PMD_SIZE;
338 		if (!addr)
339 			return;
340 	}
341 	if (ceiling) {
342 		ceiling &= PMD_MASK;
343 		if (!ceiling)
344 			return;
345 	}
346 	if (end - 1 > ceiling - 1)
347 		end -= PMD_SIZE;
348 	if (addr > end - 1)
349 		return;
350 	/*
351 	 * We add page table cache pages with PAGE_SIZE,
352 	 * (see pte_free_tlb()), flush the tlb if we need
353 	 */
354 	tlb_change_page_size(tlb, PAGE_SIZE);
355 	pgd = pgd_offset(tlb->mm, addr);
356 	do {
357 		next = pgd_addr_end(addr, end);
358 		if (pgd_none_or_clear_bad(pgd))
359 			continue;
360 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 	} while (pgd++, addr = next, addr != end);
362 }
363 
364 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
365 		   struct vm_area_struct *vma, unsigned long floor,
366 		   unsigned long ceiling, bool mm_wr_locked)
367 {
368 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
369 
370 	do {
371 		unsigned long addr = vma->vm_start;
372 		struct vm_area_struct *next;
373 
374 		/*
375 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376 		 * be 0.  This will underflow and is okay.
377 		 */
378 		next = mas_find(&mas, ceiling - 1);
379 
380 		/*
381 		 * Hide vma from rmap and truncate_pagecache before freeing
382 		 * pgtables
383 		 */
384 		if (mm_wr_locked)
385 			vma_start_write(vma);
386 		unlink_anon_vmas(vma);
387 		unlink_file_vma(vma);
388 
389 		if (is_vm_hugetlb_page(vma)) {
390 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 				floor, next ? next->vm_start : ceiling);
392 		} else {
393 			/*
394 			 * Optimization: gather nearby vmas into one call down
395 			 */
396 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
397 			       && !is_vm_hugetlb_page(next)) {
398 				vma = next;
399 				next = mas_find(&mas, ceiling - 1);
400 				if (mm_wr_locked)
401 					vma_start_write(vma);
402 				unlink_anon_vmas(vma);
403 				unlink_file_vma(vma);
404 			}
405 			free_pgd_range(tlb, addr, vma->vm_end,
406 				floor, next ? next->vm_start : ceiling);
407 		}
408 		vma = next;
409 	} while (vma);
410 }
411 
412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
413 {
414 	spinlock_t *ptl = pmd_lock(mm, pmd);
415 
416 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
417 		mm_inc_nr_ptes(mm);
418 		/*
419 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
420 		 * visible before the pte is made visible to other CPUs by being
421 		 * put into page tables.
422 		 *
423 		 * The other side of the story is the pointer chasing in the page
424 		 * table walking code (when walking the page table without locking;
425 		 * ie. most of the time). Fortunately, these data accesses consist
426 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
427 		 * being the notable exception) will already guarantee loads are
428 		 * seen in-order. See the alpha page table accessors for the
429 		 * smp_rmb() barriers in page table walking code.
430 		 */
431 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
432 		pmd_populate(mm, pmd, *pte);
433 		*pte = NULL;
434 	}
435 	spin_unlock(ptl);
436 }
437 
438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
439 {
440 	pgtable_t new = pte_alloc_one(mm);
441 	if (!new)
442 		return -ENOMEM;
443 
444 	pmd_install(mm, pmd, &new);
445 	if (new)
446 		pte_free(mm, new);
447 	return 0;
448 }
449 
450 int __pte_alloc_kernel(pmd_t *pmd)
451 {
452 	pte_t *new = pte_alloc_one_kernel(&init_mm);
453 	if (!new)
454 		return -ENOMEM;
455 
456 	spin_lock(&init_mm.page_table_lock);
457 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
458 		smp_wmb(); /* See comment in pmd_install() */
459 		pmd_populate_kernel(&init_mm, pmd, new);
460 		new = NULL;
461 	}
462 	spin_unlock(&init_mm.page_table_lock);
463 	if (new)
464 		pte_free_kernel(&init_mm, new);
465 	return 0;
466 }
467 
468 static inline void init_rss_vec(int *rss)
469 {
470 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471 }
472 
473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
474 {
475 	int i;
476 
477 	if (current->mm == mm)
478 		sync_mm_rss(mm);
479 	for (i = 0; i < NR_MM_COUNTERS; i++)
480 		if (rss[i])
481 			add_mm_counter(mm, i, rss[i]);
482 }
483 
484 /*
485  * This function is called to print an error when a bad pte
486  * is found. For example, we might have a PFN-mapped pte in
487  * a region that doesn't allow it.
488  *
489  * The calling function must still handle the error.
490  */
491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
492 			  pte_t pte, struct page *page)
493 {
494 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
495 	p4d_t *p4d = p4d_offset(pgd, addr);
496 	pud_t *pud = pud_offset(p4d, addr);
497 	pmd_t *pmd = pmd_offset(pud, addr);
498 	struct address_space *mapping;
499 	pgoff_t index;
500 	static unsigned long resume;
501 	static unsigned long nr_shown;
502 	static unsigned long nr_unshown;
503 
504 	/*
505 	 * Allow a burst of 60 reports, then keep quiet for that minute;
506 	 * or allow a steady drip of one report per second.
507 	 */
508 	if (nr_shown == 60) {
509 		if (time_before(jiffies, resume)) {
510 			nr_unshown++;
511 			return;
512 		}
513 		if (nr_unshown) {
514 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
515 				 nr_unshown);
516 			nr_unshown = 0;
517 		}
518 		nr_shown = 0;
519 	}
520 	if (nr_shown++ == 0)
521 		resume = jiffies + 60 * HZ;
522 
523 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
524 	index = linear_page_index(vma, addr);
525 
526 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
527 		 current->comm,
528 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
529 	if (page)
530 		dump_page(page, "bad pte");
531 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
532 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
533 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
534 		 vma->vm_file,
535 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
536 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
537 		 mapping ? mapping->a_ops->read_folio : NULL);
538 	dump_stack();
539 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
540 }
541 
542 /*
543  * vm_normal_page -- This function gets the "struct page" associated with a pte.
544  *
545  * "Special" mappings do not wish to be associated with a "struct page" (either
546  * it doesn't exist, or it exists but they don't want to touch it). In this
547  * case, NULL is returned here. "Normal" mappings do have a struct page.
548  *
549  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550  * pte bit, in which case this function is trivial. Secondly, an architecture
551  * may not have a spare pte bit, which requires a more complicated scheme,
552  * described below.
553  *
554  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555  * special mapping (even if there are underlying and valid "struct pages").
556  * COWed pages of a VM_PFNMAP are always normal.
557  *
558  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
560  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561  * mapping will always honor the rule
562  *
563  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
564  *
565  * And for normal mappings this is false.
566  *
567  * This restricts such mappings to be a linear translation from virtual address
568  * to pfn. To get around this restriction, we allow arbitrary mappings so long
569  * as the vma is not a COW mapping; in that case, we know that all ptes are
570  * special (because none can have been COWed).
571  *
572  *
573  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
574  *
575  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576  * page" backing, however the difference is that _all_ pages with a struct
577  * page (that is, those where pfn_valid is true) are refcounted and considered
578  * normal pages by the VM. The disadvantage is that pages are refcounted
579  * (which can be slower and simply not an option for some PFNMAP users). The
580  * advantage is that we don't have to follow the strict linearity rule of
581  * PFNMAP mappings in order to support COWable mappings.
582  *
583  */
584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
585 			    pte_t pte)
586 {
587 	unsigned long pfn = pte_pfn(pte);
588 
589 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
590 		if (likely(!pte_special(pte)))
591 			goto check_pfn;
592 		if (vma->vm_ops && vma->vm_ops->find_special_page)
593 			return vma->vm_ops->find_special_page(vma, addr);
594 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
595 			return NULL;
596 		if (is_zero_pfn(pfn))
597 			return NULL;
598 		if (pte_devmap(pte))
599 		/*
600 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
601 		 * and will have refcounts incremented on their struct pages
602 		 * when they are inserted into PTEs, thus they are safe to
603 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
604 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
605 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
606 		 */
607 			return NULL;
608 
609 		print_bad_pte(vma, addr, pte, NULL);
610 		return NULL;
611 	}
612 
613 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614 
615 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 		if (vma->vm_flags & VM_MIXEDMAP) {
617 			if (!pfn_valid(pfn))
618 				return NULL;
619 			goto out;
620 		} else {
621 			unsigned long off;
622 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 			if (pfn == vma->vm_pgoff + off)
624 				return NULL;
625 			if (!is_cow_mapping(vma->vm_flags))
626 				return NULL;
627 		}
628 	}
629 
630 	if (is_zero_pfn(pfn))
631 		return NULL;
632 
633 check_pfn:
634 	if (unlikely(pfn > highest_memmap_pfn)) {
635 		print_bad_pte(vma, addr, pte, NULL);
636 		return NULL;
637 	}
638 
639 	/*
640 	 * NOTE! We still have PageReserved() pages in the page tables.
641 	 * eg. VDSO mappings can cause them to exist.
642 	 */
643 out:
644 	return pfn_to_page(pfn);
645 }
646 
647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
648 			    pte_t pte)
649 {
650 	struct page *page = vm_normal_page(vma, addr, pte);
651 
652 	if (page)
653 		return page_folio(page);
654 	return NULL;
655 }
656 
657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
659 				pmd_t pmd)
660 {
661 	unsigned long pfn = pmd_pfn(pmd);
662 
663 	/*
664 	 * There is no pmd_special() but there may be special pmds, e.g.
665 	 * in a direct-access (dax) mapping, so let's just replicate the
666 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
667 	 */
668 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
669 		if (vma->vm_flags & VM_MIXEDMAP) {
670 			if (!pfn_valid(pfn))
671 				return NULL;
672 			goto out;
673 		} else {
674 			unsigned long off;
675 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
676 			if (pfn == vma->vm_pgoff + off)
677 				return NULL;
678 			if (!is_cow_mapping(vma->vm_flags))
679 				return NULL;
680 		}
681 	}
682 
683 	if (pmd_devmap(pmd))
684 		return NULL;
685 	if (is_huge_zero_pmd(pmd))
686 		return NULL;
687 	if (unlikely(pfn > highest_memmap_pfn))
688 		return NULL;
689 
690 	/*
691 	 * NOTE! We still have PageReserved() pages in the page tables.
692 	 * eg. VDSO mappings can cause them to exist.
693 	 */
694 out:
695 	return pfn_to_page(pfn);
696 }
697 #endif
698 
699 static void restore_exclusive_pte(struct vm_area_struct *vma,
700 				  struct page *page, unsigned long address,
701 				  pte_t *ptep)
702 {
703 	pte_t orig_pte;
704 	pte_t pte;
705 	swp_entry_t entry;
706 
707 	orig_pte = ptep_get(ptep);
708 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
709 	if (pte_swp_soft_dirty(orig_pte))
710 		pte = pte_mksoft_dirty(pte);
711 
712 	entry = pte_to_swp_entry(orig_pte);
713 	if (pte_swp_uffd_wp(orig_pte))
714 		pte = pte_mkuffd_wp(pte);
715 	else if (is_writable_device_exclusive_entry(entry))
716 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
717 
718 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
719 
720 	/*
721 	 * No need to take a page reference as one was already
722 	 * created when the swap entry was made.
723 	 */
724 	if (PageAnon(page))
725 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
726 	else
727 		/*
728 		 * Currently device exclusive access only supports anonymous
729 		 * memory so the entry shouldn't point to a filebacked page.
730 		 */
731 		WARN_ON_ONCE(1);
732 
733 	set_pte_at(vma->vm_mm, address, ptep, pte);
734 
735 	/*
736 	 * No need to invalidate - it was non-present before. However
737 	 * secondary CPUs may have mappings that need invalidating.
738 	 */
739 	update_mmu_cache(vma, address, ptep);
740 }
741 
742 /*
743  * Tries to restore an exclusive pte if the page lock can be acquired without
744  * sleeping.
745  */
746 static int
747 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
748 			unsigned long addr)
749 {
750 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
751 	struct page *page = pfn_swap_entry_to_page(entry);
752 
753 	if (trylock_page(page)) {
754 		restore_exclusive_pte(vma, page, addr, src_pte);
755 		unlock_page(page);
756 		return 0;
757 	}
758 
759 	return -EBUSY;
760 }
761 
762 /*
763  * copy one vm_area from one task to the other. Assumes the page tables
764  * already present in the new task to be cleared in the whole range
765  * covered by this vma.
766  */
767 
768 static unsigned long
769 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
770 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
771 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
772 {
773 	unsigned long vm_flags = dst_vma->vm_flags;
774 	pte_t orig_pte = ptep_get(src_pte);
775 	pte_t pte = orig_pte;
776 	struct page *page;
777 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
778 
779 	if (likely(!non_swap_entry(entry))) {
780 		if (swap_duplicate(entry) < 0)
781 			return -EIO;
782 
783 		/* make sure dst_mm is on swapoff's mmlist. */
784 		if (unlikely(list_empty(&dst_mm->mmlist))) {
785 			spin_lock(&mmlist_lock);
786 			if (list_empty(&dst_mm->mmlist))
787 				list_add(&dst_mm->mmlist,
788 						&src_mm->mmlist);
789 			spin_unlock(&mmlist_lock);
790 		}
791 		/* Mark the swap entry as shared. */
792 		if (pte_swp_exclusive(orig_pte)) {
793 			pte = pte_swp_clear_exclusive(orig_pte);
794 			set_pte_at(src_mm, addr, src_pte, pte);
795 		}
796 		rss[MM_SWAPENTS]++;
797 	} else if (is_migration_entry(entry)) {
798 		page = pfn_swap_entry_to_page(entry);
799 
800 		rss[mm_counter(page)]++;
801 
802 		if (!is_readable_migration_entry(entry) &&
803 				is_cow_mapping(vm_flags)) {
804 			/*
805 			 * COW mappings require pages in both parent and child
806 			 * to be set to read. A previously exclusive entry is
807 			 * now shared.
808 			 */
809 			entry = make_readable_migration_entry(
810 							swp_offset(entry));
811 			pte = swp_entry_to_pte(entry);
812 			if (pte_swp_soft_dirty(orig_pte))
813 				pte = pte_swp_mksoft_dirty(pte);
814 			if (pte_swp_uffd_wp(orig_pte))
815 				pte = pte_swp_mkuffd_wp(pte);
816 			set_pte_at(src_mm, addr, src_pte, pte);
817 		}
818 	} else if (is_device_private_entry(entry)) {
819 		page = pfn_swap_entry_to_page(entry);
820 
821 		/*
822 		 * Update rss count even for unaddressable pages, as
823 		 * they should treated just like normal pages in this
824 		 * respect.
825 		 *
826 		 * We will likely want to have some new rss counters
827 		 * for unaddressable pages, at some point. But for now
828 		 * keep things as they are.
829 		 */
830 		get_page(page);
831 		rss[mm_counter(page)]++;
832 		/* Cannot fail as these pages cannot get pinned. */
833 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
834 
835 		/*
836 		 * We do not preserve soft-dirty information, because so
837 		 * far, checkpoint/restore is the only feature that
838 		 * requires that. And checkpoint/restore does not work
839 		 * when a device driver is involved (you cannot easily
840 		 * save and restore device driver state).
841 		 */
842 		if (is_writable_device_private_entry(entry) &&
843 		    is_cow_mapping(vm_flags)) {
844 			entry = make_readable_device_private_entry(
845 							swp_offset(entry));
846 			pte = swp_entry_to_pte(entry);
847 			if (pte_swp_uffd_wp(orig_pte))
848 				pte = pte_swp_mkuffd_wp(pte);
849 			set_pte_at(src_mm, addr, src_pte, pte);
850 		}
851 	} else if (is_device_exclusive_entry(entry)) {
852 		/*
853 		 * Make device exclusive entries present by restoring the
854 		 * original entry then copying as for a present pte. Device
855 		 * exclusive entries currently only support private writable
856 		 * (ie. COW) mappings.
857 		 */
858 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
859 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
860 			return -EBUSY;
861 		return -ENOENT;
862 	} else if (is_pte_marker_entry(entry)) {
863 		pte_marker marker = copy_pte_marker(entry, dst_vma);
864 
865 		if (marker)
866 			set_pte_at(dst_mm, addr, dst_pte,
867 				   make_pte_marker(marker));
868 		return 0;
869 	}
870 	if (!userfaultfd_wp(dst_vma))
871 		pte = pte_swp_clear_uffd_wp(pte);
872 	set_pte_at(dst_mm, addr, dst_pte, pte);
873 	return 0;
874 }
875 
876 /*
877  * Copy a present and normal page.
878  *
879  * NOTE! The usual case is that this isn't required;
880  * instead, the caller can just increase the page refcount
881  * and re-use the pte the traditional way.
882  *
883  * And if we need a pre-allocated page but don't yet have
884  * one, return a negative error to let the preallocation
885  * code know so that it can do so outside the page table
886  * lock.
887  */
888 static inline int
889 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
890 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
891 		  struct folio **prealloc, struct page *page)
892 {
893 	struct folio *new_folio;
894 	pte_t pte;
895 
896 	new_folio = *prealloc;
897 	if (!new_folio)
898 		return -EAGAIN;
899 
900 	/*
901 	 * We have a prealloc page, all good!  Take it
902 	 * over and copy the page & arm it.
903 	 */
904 	*prealloc = NULL;
905 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
906 	__folio_mark_uptodate(new_folio);
907 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
908 	folio_add_lru_vma(new_folio, dst_vma);
909 	rss[MM_ANONPAGES]++;
910 
911 	/* All done, just insert the new page copy in the child */
912 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
913 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
914 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
915 		/* Uffd-wp needs to be delivered to dest pte as well */
916 		pte = pte_mkuffd_wp(pte);
917 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
918 	return 0;
919 }
920 
921 /*
922  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
923  * is required to copy this pte.
924  */
925 static inline int
926 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
927 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
928 		 struct folio **prealloc)
929 {
930 	struct mm_struct *src_mm = src_vma->vm_mm;
931 	unsigned long vm_flags = src_vma->vm_flags;
932 	pte_t pte = ptep_get(src_pte);
933 	struct page *page;
934 	struct folio *folio;
935 
936 	page = vm_normal_page(src_vma, addr, pte);
937 	if (page)
938 		folio = page_folio(page);
939 	if (page && folio_test_anon(folio)) {
940 		/*
941 		 * If this page may have been pinned by the parent process,
942 		 * copy the page immediately for the child so that we'll always
943 		 * guarantee the pinned page won't be randomly replaced in the
944 		 * future.
945 		 */
946 		folio_get(folio);
947 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
948 			/* Page may be pinned, we have to copy. */
949 			folio_put(folio);
950 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
951 						 addr, rss, prealloc, page);
952 		}
953 		rss[MM_ANONPAGES]++;
954 	} else if (page) {
955 		folio_get(folio);
956 		page_dup_file_rmap(page, false);
957 		rss[mm_counter_file(page)]++;
958 	}
959 
960 	/*
961 	 * If it's a COW mapping, write protect it both
962 	 * in the parent and the child
963 	 */
964 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
965 		ptep_set_wrprotect(src_mm, addr, src_pte);
966 		pte = pte_wrprotect(pte);
967 	}
968 	VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
969 
970 	/*
971 	 * If it's a shared mapping, mark it clean in
972 	 * the child
973 	 */
974 	if (vm_flags & VM_SHARED)
975 		pte = pte_mkclean(pte);
976 	pte = pte_mkold(pte);
977 
978 	if (!userfaultfd_wp(dst_vma))
979 		pte = pte_clear_uffd_wp(pte);
980 
981 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
982 	return 0;
983 }
984 
985 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
986 		struct vm_area_struct *vma, unsigned long addr)
987 {
988 	struct folio *new_folio;
989 
990 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
991 	if (!new_folio)
992 		return NULL;
993 
994 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
995 		folio_put(new_folio);
996 		return NULL;
997 	}
998 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
999 
1000 	return new_folio;
1001 }
1002 
1003 static int
1004 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1005 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1006 	       unsigned long end)
1007 {
1008 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1009 	struct mm_struct *src_mm = src_vma->vm_mm;
1010 	pte_t *orig_src_pte, *orig_dst_pte;
1011 	pte_t *src_pte, *dst_pte;
1012 	pte_t ptent;
1013 	spinlock_t *src_ptl, *dst_ptl;
1014 	int progress, ret = 0;
1015 	int rss[NR_MM_COUNTERS];
1016 	swp_entry_t entry = (swp_entry_t){0};
1017 	struct folio *prealloc = NULL;
1018 
1019 again:
1020 	progress = 0;
1021 	init_rss_vec(rss);
1022 
1023 	/*
1024 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1025 	 * error handling here, assume that exclusive mmap_lock on dst and src
1026 	 * protects anon from unexpected THP transitions; with shmem and file
1027 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1028 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1029 	 * can remove such assumptions later, but this is good enough for now.
1030 	 */
1031 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1032 	if (!dst_pte) {
1033 		ret = -ENOMEM;
1034 		goto out;
1035 	}
1036 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1037 	if (!src_pte) {
1038 		pte_unmap_unlock(dst_pte, dst_ptl);
1039 		/* ret == 0 */
1040 		goto out;
1041 	}
1042 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1043 	orig_src_pte = src_pte;
1044 	orig_dst_pte = dst_pte;
1045 	arch_enter_lazy_mmu_mode();
1046 
1047 	do {
1048 		/*
1049 		 * We are holding two locks at this point - either of them
1050 		 * could generate latencies in another task on another CPU.
1051 		 */
1052 		if (progress >= 32) {
1053 			progress = 0;
1054 			if (need_resched() ||
1055 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1056 				break;
1057 		}
1058 		ptent = ptep_get(src_pte);
1059 		if (pte_none(ptent)) {
1060 			progress++;
1061 			continue;
1062 		}
1063 		if (unlikely(!pte_present(ptent))) {
1064 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1065 						  dst_pte, src_pte,
1066 						  dst_vma, src_vma,
1067 						  addr, rss);
1068 			if (ret == -EIO) {
1069 				entry = pte_to_swp_entry(ptep_get(src_pte));
1070 				break;
1071 			} else if (ret == -EBUSY) {
1072 				break;
1073 			} else if (!ret) {
1074 				progress += 8;
1075 				continue;
1076 			}
1077 
1078 			/*
1079 			 * Device exclusive entry restored, continue by copying
1080 			 * the now present pte.
1081 			 */
1082 			WARN_ON_ONCE(ret != -ENOENT);
1083 		}
1084 		/* copy_present_pte() will clear `*prealloc' if consumed */
1085 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1086 				       addr, rss, &prealloc);
1087 		/*
1088 		 * If we need a pre-allocated page for this pte, drop the
1089 		 * locks, allocate, and try again.
1090 		 */
1091 		if (unlikely(ret == -EAGAIN))
1092 			break;
1093 		if (unlikely(prealloc)) {
1094 			/*
1095 			 * pre-alloc page cannot be reused by next time so as
1096 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1097 			 * will allocate page according to address).  This
1098 			 * could only happen if one pinned pte changed.
1099 			 */
1100 			folio_put(prealloc);
1101 			prealloc = NULL;
1102 		}
1103 		progress += 8;
1104 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1105 
1106 	arch_leave_lazy_mmu_mode();
1107 	pte_unmap_unlock(orig_src_pte, src_ptl);
1108 	add_mm_rss_vec(dst_mm, rss);
1109 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1110 	cond_resched();
1111 
1112 	if (ret == -EIO) {
1113 		VM_WARN_ON_ONCE(!entry.val);
1114 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1115 			ret = -ENOMEM;
1116 			goto out;
1117 		}
1118 		entry.val = 0;
1119 	} else if (ret == -EBUSY) {
1120 		goto out;
1121 	} else if (ret ==  -EAGAIN) {
1122 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1123 		if (!prealloc)
1124 			return -ENOMEM;
1125 	} else if (ret) {
1126 		VM_WARN_ON_ONCE(1);
1127 	}
1128 
1129 	/* We've captured and resolved the error. Reset, try again. */
1130 	ret = 0;
1131 
1132 	if (addr != end)
1133 		goto again;
1134 out:
1135 	if (unlikely(prealloc))
1136 		folio_put(prealloc);
1137 	return ret;
1138 }
1139 
1140 static inline int
1141 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1142 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1143 	       unsigned long end)
1144 {
1145 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1146 	struct mm_struct *src_mm = src_vma->vm_mm;
1147 	pmd_t *src_pmd, *dst_pmd;
1148 	unsigned long next;
1149 
1150 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1151 	if (!dst_pmd)
1152 		return -ENOMEM;
1153 	src_pmd = pmd_offset(src_pud, addr);
1154 	do {
1155 		next = pmd_addr_end(addr, end);
1156 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1157 			|| pmd_devmap(*src_pmd)) {
1158 			int err;
1159 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1160 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1161 					    addr, dst_vma, src_vma);
1162 			if (err == -ENOMEM)
1163 				return -ENOMEM;
1164 			if (!err)
1165 				continue;
1166 			/* fall through */
1167 		}
1168 		if (pmd_none_or_clear_bad(src_pmd))
1169 			continue;
1170 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1171 				   addr, next))
1172 			return -ENOMEM;
1173 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1174 	return 0;
1175 }
1176 
1177 static inline int
1178 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1179 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1180 	       unsigned long end)
1181 {
1182 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1183 	struct mm_struct *src_mm = src_vma->vm_mm;
1184 	pud_t *src_pud, *dst_pud;
1185 	unsigned long next;
1186 
1187 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1188 	if (!dst_pud)
1189 		return -ENOMEM;
1190 	src_pud = pud_offset(src_p4d, addr);
1191 	do {
1192 		next = pud_addr_end(addr, end);
1193 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1194 			int err;
1195 
1196 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1197 			err = copy_huge_pud(dst_mm, src_mm,
1198 					    dst_pud, src_pud, addr, src_vma);
1199 			if (err == -ENOMEM)
1200 				return -ENOMEM;
1201 			if (!err)
1202 				continue;
1203 			/* fall through */
1204 		}
1205 		if (pud_none_or_clear_bad(src_pud))
1206 			continue;
1207 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1208 				   addr, next))
1209 			return -ENOMEM;
1210 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1211 	return 0;
1212 }
1213 
1214 static inline int
1215 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1216 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1217 	       unsigned long end)
1218 {
1219 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1220 	p4d_t *src_p4d, *dst_p4d;
1221 	unsigned long next;
1222 
1223 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1224 	if (!dst_p4d)
1225 		return -ENOMEM;
1226 	src_p4d = p4d_offset(src_pgd, addr);
1227 	do {
1228 		next = p4d_addr_end(addr, end);
1229 		if (p4d_none_or_clear_bad(src_p4d))
1230 			continue;
1231 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1232 				   addr, next))
1233 			return -ENOMEM;
1234 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1235 	return 0;
1236 }
1237 
1238 /*
1239  * Return true if the vma needs to copy the pgtable during this fork().  Return
1240  * false when we can speed up fork() by allowing lazy page faults later until
1241  * when the child accesses the memory range.
1242  */
1243 static bool
1244 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1245 {
1246 	/*
1247 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1248 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1249 	 * contains uffd-wp protection information, that's something we can't
1250 	 * retrieve from page cache, and skip copying will lose those info.
1251 	 */
1252 	if (userfaultfd_wp(dst_vma))
1253 		return true;
1254 
1255 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1256 		return true;
1257 
1258 	if (src_vma->anon_vma)
1259 		return true;
1260 
1261 	/*
1262 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1263 	 * becomes much lighter when there are big shared or private readonly
1264 	 * mappings. The tradeoff is that copy_page_range is more efficient
1265 	 * than faulting.
1266 	 */
1267 	return false;
1268 }
1269 
1270 int
1271 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1272 {
1273 	pgd_t *src_pgd, *dst_pgd;
1274 	unsigned long next;
1275 	unsigned long addr = src_vma->vm_start;
1276 	unsigned long end = src_vma->vm_end;
1277 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1278 	struct mm_struct *src_mm = src_vma->vm_mm;
1279 	struct mmu_notifier_range range;
1280 	bool is_cow;
1281 	int ret;
1282 
1283 	if (!vma_needs_copy(dst_vma, src_vma))
1284 		return 0;
1285 
1286 	if (is_vm_hugetlb_page(src_vma))
1287 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1288 
1289 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1290 		/*
1291 		 * We do not free on error cases below as remove_vma
1292 		 * gets called on error from higher level routine
1293 		 */
1294 		ret = track_pfn_copy(src_vma);
1295 		if (ret)
1296 			return ret;
1297 	}
1298 
1299 	/*
1300 	 * We need to invalidate the secondary MMU mappings only when
1301 	 * there could be a permission downgrade on the ptes of the
1302 	 * parent mm. And a permission downgrade will only happen if
1303 	 * is_cow_mapping() returns true.
1304 	 */
1305 	is_cow = is_cow_mapping(src_vma->vm_flags);
1306 
1307 	if (is_cow) {
1308 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1309 					0, src_mm, addr, end);
1310 		mmu_notifier_invalidate_range_start(&range);
1311 		/*
1312 		 * Disabling preemption is not needed for the write side, as
1313 		 * the read side doesn't spin, but goes to the mmap_lock.
1314 		 *
1315 		 * Use the raw variant of the seqcount_t write API to avoid
1316 		 * lockdep complaining about preemptibility.
1317 		 */
1318 		mmap_assert_write_locked(src_mm);
1319 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1320 	}
1321 
1322 	ret = 0;
1323 	dst_pgd = pgd_offset(dst_mm, addr);
1324 	src_pgd = pgd_offset(src_mm, addr);
1325 	do {
1326 		next = pgd_addr_end(addr, end);
1327 		if (pgd_none_or_clear_bad(src_pgd))
1328 			continue;
1329 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1330 					    addr, next))) {
1331 			untrack_pfn_clear(dst_vma);
1332 			ret = -ENOMEM;
1333 			break;
1334 		}
1335 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1336 
1337 	if (is_cow) {
1338 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1339 		mmu_notifier_invalidate_range_end(&range);
1340 	}
1341 	return ret;
1342 }
1343 
1344 /* Whether we should zap all COWed (private) pages too */
1345 static inline bool should_zap_cows(struct zap_details *details)
1346 {
1347 	/* By default, zap all pages */
1348 	if (!details)
1349 		return true;
1350 
1351 	/* Or, we zap COWed pages only if the caller wants to */
1352 	return details->even_cows;
1353 }
1354 
1355 /* Decides whether we should zap this page with the page pointer specified */
1356 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1357 {
1358 	/* If we can make a decision without *page.. */
1359 	if (should_zap_cows(details))
1360 		return true;
1361 
1362 	/* E.g. the caller passes NULL for the case of a zero page */
1363 	if (!page)
1364 		return true;
1365 
1366 	/* Otherwise we should only zap non-anon pages */
1367 	return !PageAnon(page);
1368 }
1369 
1370 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1371 {
1372 	if (!details)
1373 		return false;
1374 
1375 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1376 }
1377 
1378 /*
1379  * This function makes sure that we'll replace the none pte with an uffd-wp
1380  * swap special pte marker when necessary. Must be with the pgtable lock held.
1381  */
1382 static inline void
1383 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1384 			      unsigned long addr, pte_t *pte,
1385 			      struct zap_details *details, pte_t pteval)
1386 {
1387 	/* Zap on anonymous always means dropping everything */
1388 	if (vma_is_anonymous(vma))
1389 		return;
1390 
1391 	if (zap_drop_file_uffd_wp(details))
1392 		return;
1393 
1394 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1395 }
1396 
1397 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1398 				struct vm_area_struct *vma, pmd_t *pmd,
1399 				unsigned long addr, unsigned long end,
1400 				struct zap_details *details)
1401 {
1402 	struct mm_struct *mm = tlb->mm;
1403 	int force_flush = 0;
1404 	int rss[NR_MM_COUNTERS];
1405 	spinlock_t *ptl;
1406 	pte_t *start_pte;
1407 	pte_t *pte;
1408 	swp_entry_t entry;
1409 
1410 	tlb_change_page_size(tlb, PAGE_SIZE);
1411 	init_rss_vec(rss);
1412 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1413 	if (!pte)
1414 		return addr;
1415 
1416 	flush_tlb_batched_pending(mm);
1417 	arch_enter_lazy_mmu_mode();
1418 	do {
1419 		pte_t ptent = ptep_get(pte);
1420 		struct page *page;
1421 
1422 		if (pte_none(ptent))
1423 			continue;
1424 
1425 		if (need_resched())
1426 			break;
1427 
1428 		if (pte_present(ptent)) {
1429 			unsigned int delay_rmap;
1430 
1431 			page = vm_normal_page(vma, addr, ptent);
1432 			if (unlikely(!should_zap_page(details, page)))
1433 				continue;
1434 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1435 							tlb->fullmm);
1436 			tlb_remove_tlb_entry(tlb, pte, addr);
1437 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1438 						      ptent);
1439 			if (unlikely(!page)) {
1440 				ksm_might_unmap_zero_page(mm, ptent);
1441 				continue;
1442 			}
1443 
1444 			delay_rmap = 0;
1445 			if (!PageAnon(page)) {
1446 				if (pte_dirty(ptent)) {
1447 					set_page_dirty(page);
1448 					if (tlb_delay_rmap(tlb)) {
1449 						delay_rmap = 1;
1450 						force_flush = 1;
1451 					}
1452 				}
1453 				if (pte_young(ptent) && likely(vma_has_recency(vma)))
1454 					mark_page_accessed(page);
1455 			}
1456 			rss[mm_counter(page)]--;
1457 			if (!delay_rmap) {
1458 				page_remove_rmap(page, vma, false);
1459 				if (unlikely(page_mapcount(page) < 0))
1460 					print_bad_pte(vma, addr, ptent, page);
1461 			}
1462 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1463 				force_flush = 1;
1464 				addr += PAGE_SIZE;
1465 				break;
1466 			}
1467 			continue;
1468 		}
1469 
1470 		entry = pte_to_swp_entry(ptent);
1471 		if (is_device_private_entry(entry) ||
1472 		    is_device_exclusive_entry(entry)) {
1473 			page = pfn_swap_entry_to_page(entry);
1474 			if (unlikely(!should_zap_page(details, page)))
1475 				continue;
1476 			/*
1477 			 * Both device private/exclusive mappings should only
1478 			 * work with anonymous page so far, so we don't need to
1479 			 * consider uffd-wp bit when zap. For more information,
1480 			 * see zap_install_uffd_wp_if_needed().
1481 			 */
1482 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1483 			rss[mm_counter(page)]--;
1484 			if (is_device_private_entry(entry))
1485 				page_remove_rmap(page, vma, false);
1486 			put_page(page);
1487 		} else if (!non_swap_entry(entry)) {
1488 			/* Genuine swap entry, hence a private anon page */
1489 			if (!should_zap_cows(details))
1490 				continue;
1491 			rss[MM_SWAPENTS]--;
1492 			if (unlikely(!free_swap_and_cache(entry)))
1493 				print_bad_pte(vma, addr, ptent, NULL);
1494 		} else if (is_migration_entry(entry)) {
1495 			page = pfn_swap_entry_to_page(entry);
1496 			if (!should_zap_page(details, page))
1497 				continue;
1498 			rss[mm_counter(page)]--;
1499 		} else if (pte_marker_entry_uffd_wp(entry)) {
1500 			/*
1501 			 * For anon: always drop the marker; for file: only
1502 			 * drop the marker if explicitly requested.
1503 			 */
1504 			if (!vma_is_anonymous(vma) &&
1505 			    !zap_drop_file_uffd_wp(details))
1506 				continue;
1507 		} else if (is_hwpoison_entry(entry) ||
1508 			   is_poisoned_swp_entry(entry)) {
1509 			if (!should_zap_cows(details))
1510 				continue;
1511 		} else {
1512 			/* We should have covered all the swap entry types */
1513 			WARN_ON_ONCE(1);
1514 		}
1515 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1516 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1517 	} while (pte++, addr += PAGE_SIZE, addr != end);
1518 
1519 	add_mm_rss_vec(mm, rss);
1520 	arch_leave_lazy_mmu_mode();
1521 
1522 	/* Do the actual TLB flush before dropping ptl */
1523 	if (force_flush) {
1524 		tlb_flush_mmu_tlbonly(tlb);
1525 		tlb_flush_rmaps(tlb, vma);
1526 	}
1527 	pte_unmap_unlock(start_pte, ptl);
1528 
1529 	/*
1530 	 * If we forced a TLB flush (either due to running out of
1531 	 * batch buffers or because we needed to flush dirty TLB
1532 	 * entries before releasing the ptl), free the batched
1533 	 * memory too. Come back again if we didn't do everything.
1534 	 */
1535 	if (force_flush)
1536 		tlb_flush_mmu(tlb);
1537 
1538 	return addr;
1539 }
1540 
1541 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1542 				struct vm_area_struct *vma, pud_t *pud,
1543 				unsigned long addr, unsigned long end,
1544 				struct zap_details *details)
1545 {
1546 	pmd_t *pmd;
1547 	unsigned long next;
1548 
1549 	pmd = pmd_offset(pud, addr);
1550 	do {
1551 		next = pmd_addr_end(addr, end);
1552 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1553 			if (next - addr != HPAGE_PMD_SIZE)
1554 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1555 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1556 				addr = next;
1557 				continue;
1558 			}
1559 			/* fall through */
1560 		} else if (details && details->single_folio &&
1561 			   folio_test_pmd_mappable(details->single_folio) &&
1562 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1563 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1564 			/*
1565 			 * Take and drop THP pmd lock so that we cannot return
1566 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1567 			 * but not yet decremented compound_mapcount().
1568 			 */
1569 			spin_unlock(ptl);
1570 		}
1571 		if (pmd_none(*pmd)) {
1572 			addr = next;
1573 			continue;
1574 		}
1575 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1576 		if (addr != next)
1577 			pmd--;
1578 	} while (pmd++, cond_resched(), addr != end);
1579 
1580 	return addr;
1581 }
1582 
1583 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1584 				struct vm_area_struct *vma, p4d_t *p4d,
1585 				unsigned long addr, unsigned long end,
1586 				struct zap_details *details)
1587 {
1588 	pud_t *pud;
1589 	unsigned long next;
1590 
1591 	pud = pud_offset(p4d, addr);
1592 	do {
1593 		next = pud_addr_end(addr, end);
1594 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1595 			if (next - addr != HPAGE_PUD_SIZE) {
1596 				mmap_assert_locked(tlb->mm);
1597 				split_huge_pud(vma, pud, addr);
1598 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1599 				goto next;
1600 			/* fall through */
1601 		}
1602 		if (pud_none_or_clear_bad(pud))
1603 			continue;
1604 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1605 next:
1606 		cond_resched();
1607 	} while (pud++, addr = next, addr != end);
1608 
1609 	return addr;
1610 }
1611 
1612 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1613 				struct vm_area_struct *vma, pgd_t *pgd,
1614 				unsigned long addr, unsigned long end,
1615 				struct zap_details *details)
1616 {
1617 	p4d_t *p4d;
1618 	unsigned long next;
1619 
1620 	p4d = p4d_offset(pgd, addr);
1621 	do {
1622 		next = p4d_addr_end(addr, end);
1623 		if (p4d_none_or_clear_bad(p4d))
1624 			continue;
1625 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1626 	} while (p4d++, addr = next, addr != end);
1627 
1628 	return addr;
1629 }
1630 
1631 void unmap_page_range(struct mmu_gather *tlb,
1632 			     struct vm_area_struct *vma,
1633 			     unsigned long addr, unsigned long end,
1634 			     struct zap_details *details)
1635 {
1636 	pgd_t *pgd;
1637 	unsigned long next;
1638 
1639 	BUG_ON(addr >= end);
1640 	tlb_start_vma(tlb, vma);
1641 	pgd = pgd_offset(vma->vm_mm, addr);
1642 	do {
1643 		next = pgd_addr_end(addr, end);
1644 		if (pgd_none_or_clear_bad(pgd))
1645 			continue;
1646 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1647 	} while (pgd++, addr = next, addr != end);
1648 	tlb_end_vma(tlb, vma);
1649 }
1650 
1651 
1652 static void unmap_single_vma(struct mmu_gather *tlb,
1653 		struct vm_area_struct *vma, unsigned long start_addr,
1654 		unsigned long end_addr,
1655 		struct zap_details *details, bool mm_wr_locked)
1656 {
1657 	unsigned long start = max(vma->vm_start, start_addr);
1658 	unsigned long end;
1659 
1660 	if (start >= vma->vm_end)
1661 		return;
1662 	end = min(vma->vm_end, end_addr);
1663 	if (end <= vma->vm_start)
1664 		return;
1665 
1666 	if (vma->vm_file)
1667 		uprobe_munmap(vma, start, end);
1668 
1669 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1670 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1671 
1672 	if (start != end) {
1673 		if (unlikely(is_vm_hugetlb_page(vma))) {
1674 			/*
1675 			 * It is undesirable to test vma->vm_file as it
1676 			 * should be non-null for valid hugetlb area.
1677 			 * However, vm_file will be NULL in the error
1678 			 * cleanup path of mmap_region. When
1679 			 * hugetlbfs ->mmap method fails,
1680 			 * mmap_region() nullifies vma->vm_file
1681 			 * before calling this function to clean up.
1682 			 * Since no pte has actually been setup, it is
1683 			 * safe to do nothing in this case.
1684 			 */
1685 			if (vma->vm_file) {
1686 				zap_flags_t zap_flags = details ?
1687 				    details->zap_flags : 0;
1688 				__unmap_hugepage_range_final(tlb, vma, start, end,
1689 							     NULL, zap_flags);
1690 			}
1691 		} else
1692 			unmap_page_range(tlb, vma, start, end, details);
1693 	}
1694 }
1695 
1696 /**
1697  * unmap_vmas - unmap a range of memory covered by a list of vma's
1698  * @tlb: address of the caller's struct mmu_gather
1699  * @mt: the maple tree
1700  * @vma: the starting vma
1701  * @start_addr: virtual address at which to start unmapping
1702  * @end_addr: virtual address at which to end unmapping
1703  * @mm_wr_locked: lock flag
1704  *
1705  * Unmap all pages in the vma list.
1706  *
1707  * Only addresses between `start' and `end' will be unmapped.
1708  *
1709  * The VMA list must be sorted in ascending virtual address order.
1710  *
1711  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1712  * range after unmap_vmas() returns.  So the only responsibility here is to
1713  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1714  * drops the lock and schedules.
1715  */
1716 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1717 		struct vm_area_struct *vma, unsigned long start_addr,
1718 		unsigned long end_addr, bool mm_wr_locked)
1719 {
1720 	struct mmu_notifier_range range;
1721 	struct zap_details details = {
1722 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1723 		/* Careful - we need to zap private pages too! */
1724 		.even_cows = true,
1725 	};
1726 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1727 
1728 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1729 				start_addr, end_addr);
1730 	mmu_notifier_invalidate_range_start(&range);
1731 	do {
1732 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1733 				 mm_wr_locked);
1734 	} while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1735 	mmu_notifier_invalidate_range_end(&range);
1736 }
1737 
1738 /**
1739  * zap_page_range_single - remove user pages in a given range
1740  * @vma: vm_area_struct holding the applicable pages
1741  * @address: starting address of pages to zap
1742  * @size: number of bytes to zap
1743  * @details: details of shared cache invalidation
1744  *
1745  * The range must fit into one VMA.
1746  */
1747 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1748 		unsigned long size, struct zap_details *details)
1749 {
1750 	const unsigned long end = address + size;
1751 	struct mmu_notifier_range range;
1752 	struct mmu_gather tlb;
1753 
1754 	lru_add_drain();
1755 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1756 				address, end);
1757 	if (is_vm_hugetlb_page(vma))
1758 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1759 						     &range.end);
1760 	tlb_gather_mmu(&tlb, vma->vm_mm);
1761 	update_hiwater_rss(vma->vm_mm);
1762 	mmu_notifier_invalidate_range_start(&range);
1763 	/*
1764 	 * unmap 'address-end' not 'range.start-range.end' as range
1765 	 * could have been expanded for hugetlb pmd sharing.
1766 	 */
1767 	unmap_single_vma(&tlb, vma, address, end, details, false);
1768 	mmu_notifier_invalidate_range_end(&range);
1769 	tlb_finish_mmu(&tlb);
1770 }
1771 
1772 /**
1773  * zap_vma_ptes - remove ptes mapping the vma
1774  * @vma: vm_area_struct holding ptes to be zapped
1775  * @address: starting address of pages to zap
1776  * @size: number of bytes to zap
1777  *
1778  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1779  *
1780  * The entire address range must be fully contained within the vma.
1781  *
1782  */
1783 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1784 		unsigned long size)
1785 {
1786 	if (!range_in_vma(vma, address, address + size) ||
1787 	    		!(vma->vm_flags & VM_PFNMAP))
1788 		return;
1789 
1790 	zap_page_range_single(vma, address, size, NULL);
1791 }
1792 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1793 
1794 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1795 {
1796 	pgd_t *pgd;
1797 	p4d_t *p4d;
1798 	pud_t *pud;
1799 	pmd_t *pmd;
1800 
1801 	pgd = pgd_offset(mm, addr);
1802 	p4d = p4d_alloc(mm, pgd, addr);
1803 	if (!p4d)
1804 		return NULL;
1805 	pud = pud_alloc(mm, p4d, addr);
1806 	if (!pud)
1807 		return NULL;
1808 	pmd = pmd_alloc(mm, pud, addr);
1809 	if (!pmd)
1810 		return NULL;
1811 
1812 	VM_BUG_ON(pmd_trans_huge(*pmd));
1813 	return pmd;
1814 }
1815 
1816 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1817 			spinlock_t **ptl)
1818 {
1819 	pmd_t *pmd = walk_to_pmd(mm, addr);
1820 
1821 	if (!pmd)
1822 		return NULL;
1823 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1824 }
1825 
1826 static int validate_page_before_insert(struct page *page)
1827 {
1828 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1829 		return -EINVAL;
1830 	flush_dcache_page(page);
1831 	return 0;
1832 }
1833 
1834 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1835 			unsigned long addr, struct page *page, pgprot_t prot)
1836 {
1837 	if (!pte_none(ptep_get(pte)))
1838 		return -EBUSY;
1839 	/* Ok, finally just insert the thing.. */
1840 	get_page(page);
1841 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1842 	page_add_file_rmap(page, vma, false);
1843 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1844 	return 0;
1845 }
1846 
1847 /*
1848  * This is the old fallback for page remapping.
1849  *
1850  * For historical reasons, it only allows reserved pages. Only
1851  * old drivers should use this, and they needed to mark their
1852  * pages reserved for the old functions anyway.
1853  */
1854 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1855 			struct page *page, pgprot_t prot)
1856 {
1857 	int retval;
1858 	pte_t *pte;
1859 	spinlock_t *ptl;
1860 
1861 	retval = validate_page_before_insert(page);
1862 	if (retval)
1863 		goto out;
1864 	retval = -ENOMEM;
1865 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1866 	if (!pte)
1867 		goto out;
1868 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1869 	pte_unmap_unlock(pte, ptl);
1870 out:
1871 	return retval;
1872 }
1873 
1874 #ifdef pte_index
1875 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1876 			unsigned long addr, struct page *page, pgprot_t prot)
1877 {
1878 	int err;
1879 
1880 	if (!page_count(page))
1881 		return -EINVAL;
1882 	err = validate_page_before_insert(page);
1883 	if (err)
1884 		return err;
1885 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1886 }
1887 
1888 /* insert_pages() amortizes the cost of spinlock operations
1889  * when inserting pages in a loop. Arch *must* define pte_index.
1890  */
1891 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1892 			struct page **pages, unsigned long *num, pgprot_t prot)
1893 {
1894 	pmd_t *pmd = NULL;
1895 	pte_t *start_pte, *pte;
1896 	spinlock_t *pte_lock;
1897 	struct mm_struct *const mm = vma->vm_mm;
1898 	unsigned long curr_page_idx = 0;
1899 	unsigned long remaining_pages_total = *num;
1900 	unsigned long pages_to_write_in_pmd;
1901 	int ret;
1902 more:
1903 	ret = -EFAULT;
1904 	pmd = walk_to_pmd(mm, addr);
1905 	if (!pmd)
1906 		goto out;
1907 
1908 	pages_to_write_in_pmd = min_t(unsigned long,
1909 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1910 
1911 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1912 	ret = -ENOMEM;
1913 	if (pte_alloc(mm, pmd))
1914 		goto out;
1915 
1916 	while (pages_to_write_in_pmd) {
1917 		int pte_idx = 0;
1918 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1919 
1920 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1921 		if (!start_pte) {
1922 			ret = -EFAULT;
1923 			goto out;
1924 		}
1925 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1926 			int err = insert_page_in_batch_locked(vma, pte,
1927 				addr, pages[curr_page_idx], prot);
1928 			if (unlikely(err)) {
1929 				pte_unmap_unlock(start_pte, pte_lock);
1930 				ret = err;
1931 				remaining_pages_total -= pte_idx;
1932 				goto out;
1933 			}
1934 			addr += PAGE_SIZE;
1935 			++curr_page_idx;
1936 		}
1937 		pte_unmap_unlock(start_pte, pte_lock);
1938 		pages_to_write_in_pmd -= batch_size;
1939 		remaining_pages_total -= batch_size;
1940 	}
1941 	if (remaining_pages_total)
1942 		goto more;
1943 	ret = 0;
1944 out:
1945 	*num = remaining_pages_total;
1946 	return ret;
1947 }
1948 #endif  /* ifdef pte_index */
1949 
1950 /**
1951  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1952  * @vma: user vma to map to
1953  * @addr: target start user address of these pages
1954  * @pages: source kernel pages
1955  * @num: in: number of pages to map. out: number of pages that were *not*
1956  * mapped. (0 means all pages were successfully mapped).
1957  *
1958  * Preferred over vm_insert_page() when inserting multiple pages.
1959  *
1960  * In case of error, we may have mapped a subset of the provided
1961  * pages. It is the caller's responsibility to account for this case.
1962  *
1963  * The same restrictions apply as in vm_insert_page().
1964  */
1965 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1966 			struct page **pages, unsigned long *num)
1967 {
1968 #ifdef pte_index
1969 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1970 
1971 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1972 		return -EFAULT;
1973 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1974 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1975 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1976 		vm_flags_set(vma, VM_MIXEDMAP);
1977 	}
1978 	/* Defer page refcount checking till we're about to map that page. */
1979 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1980 #else
1981 	unsigned long idx = 0, pgcount = *num;
1982 	int err = -EINVAL;
1983 
1984 	for (; idx < pgcount; ++idx) {
1985 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1986 		if (err)
1987 			break;
1988 	}
1989 	*num = pgcount - idx;
1990 	return err;
1991 #endif  /* ifdef pte_index */
1992 }
1993 EXPORT_SYMBOL(vm_insert_pages);
1994 
1995 /**
1996  * vm_insert_page - insert single page into user vma
1997  * @vma: user vma to map to
1998  * @addr: target user address of this page
1999  * @page: source kernel page
2000  *
2001  * This allows drivers to insert individual pages they've allocated
2002  * into a user vma.
2003  *
2004  * The page has to be a nice clean _individual_ kernel allocation.
2005  * If you allocate a compound page, you need to have marked it as
2006  * such (__GFP_COMP), or manually just split the page up yourself
2007  * (see split_page()).
2008  *
2009  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2010  * took an arbitrary page protection parameter. This doesn't allow
2011  * that. Your vma protection will have to be set up correctly, which
2012  * means that if you want a shared writable mapping, you'd better
2013  * ask for a shared writable mapping!
2014  *
2015  * The page does not need to be reserved.
2016  *
2017  * Usually this function is called from f_op->mmap() handler
2018  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2019  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2020  * function from other places, for example from page-fault handler.
2021  *
2022  * Return: %0 on success, negative error code otherwise.
2023  */
2024 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2025 			struct page *page)
2026 {
2027 	if (addr < vma->vm_start || addr >= vma->vm_end)
2028 		return -EFAULT;
2029 	if (!page_count(page))
2030 		return -EINVAL;
2031 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2032 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2033 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2034 		vm_flags_set(vma, VM_MIXEDMAP);
2035 	}
2036 	return insert_page(vma, addr, page, vma->vm_page_prot);
2037 }
2038 EXPORT_SYMBOL(vm_insert_page);
2039 
2040 /*
2041  * __vm_map_pages - maps range of kernel pages into user vma
2042  * @vma: user vma to map to
2043  * @pages: pointer to array of source kernel pages
2044  * @num: number of pages in page array
2045  * @offset: user's requested vm_pgoff
2046  *
2047  * This allows drivers to map range of kernel pages into a user vma.
2048  *
2049  * Return: 0 on success and error code otherwise.
2050  */
2051 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2052 				unsigned long num, unsigned long offset)
2053 {
2054 	unsigned long count = vma_pages(vma);
2055 	unsigned long uaddr = vma->vm_start;
2056 	int ret, i;
2057 
2058 	/* Fail if the user requested offset is beyond the end of the object */
2059 	if (offset >= num)
2060 		return -ENXIO;
2061 
2062 	/* Fail if the user requested size exceeds available object size */
2063 	if (count > num - offset)
2064 		return -ENXIO;
2065 
2066 	for (i = 0; i < count; i++) {
2067 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2068 		if (ret < 0)
2069 			return ret;
2070 		uaddr += PAGE_SIZE;
2071 	}
2072 
2073 	return 0;
2074 }
2075 
2076 /**
2077  * vm_map_pages - maps range of kernel pages starts with non zero offset
2078  * @vma: user vma to map to
2079  * @pages: pointer to array of source kernel pages
2080  * @num: number of pages in page array
2081  *
2082  * Maps an object consisting of @num pages, catering for the user's
2083  * requested vm_pgoff
2084  *
2085  * If we fail to insert any page into the vma, the function will return
2086  * immediately leaving any previously inserted pages present.  Callers
2087  * from the mmap handler may immediately return the error as their caller
2088  * will destroy the vma, removing any successfully inserted pages. Other
2089  * callers should make their own arrangements for calling unmap_region().
2090  *
2091  * Context: Process context. Called by mmap handlers.
2092  * Return: 0 on success and error code otherwise.
2093  */
2094 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2095 				unsigned long num)
2096 {
2097 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2098 }
2099 EXPORT_SYMBOL(vm_map_pages);
2100 
2101 /**
2102  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2103  * @vma: user vma to map to
2104  * @pages: pointer to array of source kernel pages
2105  * @num: number of pages in page array
2106  *
2107  * Similar to vm_map_pages(), except that it explicitly sets the offset
2108  * to 0. This function is intended for the drivers that did not consider
2109  * vm_pgoff.
2110  *
2111  * Context: Process context. Called by mmap handlers.
2112  * Return: 0 on success and error code otherwise.
2113  */
2114 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2115 				unsigned long num)
2116 {
2117 	return __vm_map_pages(vma, pages, num, 0);
2118 }
2119 EXPORT_SYMBOL(vm_map_pages_zero);
2120 
2121 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2122 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2123 {
2124 	struct mm_struct *mm = vma->vm_mm;
2125 	pte_t *pte, entry;
2126 	spinlock_t *ptl;
2127 
2128 	pte = get_locked_pte(mm, addr, &ptl);
2129 	if (!pte)
2130 		return VM_FAULT_OOM;
2131 	entry = ptep_get(pte);
2132 	if (!pte_none(entry)) {
2133 		if (mkwrite) {
2134 			/*
2135 			 * For read faults on private mappings the PFN passed
2136 			 * in may not match the PFN we have mapped if the
2137 			 * mapped PFN is a writeable COW page.  In the mkwrite
2138 			 * case we are creating a writable PTE for a shared
2139 			 * mapping and we expect the PFNs to match. If they
2140 			 * don't match, we are likely racing with block
2141 			 * allocation and mapping invalidation so just skip the
2142 			 * update.
2143 			 */
2144 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2145 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2146 				goto out_unlock;
2147 			}
2148 			entry = pte_mkyoung(entry);
2149 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2150 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2151 				update_mmu_cache(vma, addr, pte);
2152 		}
2153 		goto out_unlock;
2154 	}
2155 
2156 	/* Ok, finally just insert the thing.. */
2157 	if (pfn_t_devmap(pfn))
2158 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2159 	else
2160 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2161 
2162 	if (mkwrite) {
2163 		entry = pte_mkyoung(entry);
2164 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2165 	}
2166 
2167 	set_pte_at(mm, addr, pte, entry);
2168 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2169 
2170 out_unlock:
2171 	pte_unmap_unlock(pte, ptl);
2172 	return VM_FAULT_NOPAGE;
2173 }
2174 
2175 /**
2176  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2177  * @vma: user vma to map to
2178  * @addr: target user address of this page
2179  * @pfn: source kernel pfn
2180  * @pgprot: pgprot flags for the inserted page
2181  *
2182  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2183  * to override pgprot on a per-page basis.
2184  *
2185  * This only makes sense for IO mappings, and it makes no sense for
2186  * COW mappings.  In general, using multiple vmas is preferable;
2187  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2188  * impractical.
2189  *
2190  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2191  * caching- and encryption bits different than those of @vma->vm_page_prot,
2192  * because the caching- or encryption mode may not be known at mmap() time.
2193  *
2194  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2195  * to set caching and encryption bits for those vmas (except for COW pages).
2196  * This is ensured by core vm only modifying these page table entries using
2197  * functions that don't touch caching- or encryption bits, using pte_modify()
2198  * if needed. (See for example mprotect()).
2199  *
2200  * Also when new page-table entries are created, this is only done using the
2201  * fault() callback, and never using the value of vma->vm_page_prot,
2202  * except for page-table entries that point to anonymous pages as the result
2203  * of COW.
2204  *
2205  * Context: Process context.  May allocate using %GFP_KERNEL.
2206  * Return: vm_fault_t value.
2207  */
2208 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2209 			unsigned long pfn, pgprot_t pgprot)
2210 {
2211 	/*
2212 	 * Technically, architectures with pte_special can avoid all these
2213 	 * restrictions (same for remap_pfn_range).  However we would like
2214 	 * consistency in testing and feature parity among all, so we should
2215 	 * try to keep these invariants in place for everybody.
2216 	 */
2217 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2218 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2219 						(VM_PFNMAP|VM_MIXEDMAP));
2220 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2221 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2222 
2223 	if (addr < vma->vm_start || addr >= vma->vm_end)
2224 		return VM_FAULT_SIGBUS;
2225 
2226 	if (!pfn_modify_allowed(pfn, pgprot))
2227 		return VM_FAULT_SIGBUS;
2228 
2229 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2230 
2231 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2232 			false);
2233 }
2234 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2235 
2236 /**
2237  * vmf_insert_pfn - insert single pfn into user vma
2238  * @vma: user vma to map to
2239  * @addr: target user address of this page
2240  * @pfn: source kernel pfn
2241  *
2242  * Similar to vm_insert_page, this allows drivers to insert individual pages
2243  * they've allocated into a user vma. Same comments apply.
2244  *
2245  * This function should only be called from a vm_ops->fault handler, and
2246  * in that case the handler should return the result of this function.
2247  *
2248  * vma cannot be a COW mapping.
2249  *
2250  * As this is called only for pages that do not currently exist, we
2251  * do not need to flush old virtual caches or the TLB.
2252  *
2253  * Context: Process context.  May allocate using %GFP_KERNEL.
2254  * Return: vm_fault_t value.
2255  */
2256 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2257 			unsigned long pfn)
2258 {
2259 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2260 }
2261 EXPORT_SYMBOL(vmf_insert_pfn);
2262 
2263 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2264 {
2265 	/* these checks mirror the abort conditions in vm_normal_page */
2266 	if (vma->vm_flags & VM_MIXEDMAP)
2267 		return true;
2268 	if (pfn_t_devmap(pfn))
2269 		return true;
2270 	if (pfn_t_special(pfn))
2271 		return true;
2272 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2273 		return true;
2274 	return false;
2275 }
2276 
2277 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2278 		unsigned long addr, pfn_t pfn, bool mkwrite)
2279 {
2280 	pgprot_t pgprot = vma->vm_page_prot;
2281 	int err;
2282 
2283 	BUG_ON(!vm_mixed_ok(vma, pfn));
2284 
2285 	if (addr < vma->vm_start || addr >= vma->vm_end)
2286 		return VM_FAULT_SIGBUS;
2287 
2288 	track_pfn_insert(vma, &pgprot, pfn);
2289 
2290 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2291 		return VM_FAULT_SIGBUS;
2292 
2293 	/*
2294 	 * If we don't have pte special, then we have to use the pfn_valid()
2295 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2296 	 * refcount the page if pfn_valid is true (hence insert_page rather
2297 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2298 	 * without pte special, it would there be refcounted as a normal page.
2299 	 */
2300 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2301 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2302 		struct page *page;
2303 
2304 		/*
2305 		 * At this point we are committed to insert_page()
2306 		 * regardless of whether the caller specified flags that
2307 		 * result in pfn_t_has_page() == false.
2308 		 */
2309 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2310 		err = insert_page(vma, addr, page, pgprot);
2311 	} else {
2312 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2313 	}
2314 
2315 	if (err == -ENOMEM)
2316 		return VM_FAULT_OOM;
2317 	if (err < 0 && err != -EBUSY)
2318 		return VM_FAULT_SIGBUS;
2319 
2320 	return VM_FAULT_NOPAGE;
2321 }
2322 
2323 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2324 		pfn_t pfn)
2325 {
2326 	return __vm_insert_mixed(vma, addr, pfn, false);
2327 }
2328 EXPORT_SYMBOL(vmf_insert_mixed);
2329 
2330 /*
2331  *  If the insertion of PTE failed because someone else already added a
2332  *  different entry in the mean time, we treat that as success as we assume
2333  *  the same entry was actually inserted.
2334  */
2335 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2336 		unsigned long addr, pfn_t pfn)
2337 {
2338 	return __vm_insert_mixed(vma, addr, pfn, true);
2339 }
2340 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2341 
2342 /*
2343  * maps a range of physical memory into the requested pages. the old
2344  * mappings are removed. any references to nonexistent pages results
2345  * in null mappings (currently treated as "copy-on-access")
2346  */
2347 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2348 			unsigned long addr, unsigned long end,
2349 			unsigned long pfn, pgprot_t prot)
2350 {
2351 	pte_t *pte, *mapped_pte;
2352 	spinlock_t *ptl;
2353 	int err = 0;
2354 
2355 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2356 	if (!pte)
2357 		return -ENOMEM;
2358 	arch_enter_lazy_mmu_mode();
2359 	do {
2360 		BUG_ON(!pte_none(ptep_get(pte)));
2361 		if (!pfn_modify_allowed(pfn, prot)) {
2362 			err = -EACCES;
2363 			break;
2364 		}
2365 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2366 		pfn++;
2367 	} while (pte++, addr += PAGE_SIZE, addr != end);
2368 	arch_leave_lazy_mmu_mode();
2369 	pte_unmap_unlock(mapped_pte, ptl);
2370 	return err;
2371 }
2372 
2373 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2374 			unsigned long addr, unsigned long end,
2375 			unsigned long pfn, pgprot_t prot)
2376 {
2377 	pmd_t *pmd;
2378 	unsigned long next;
2379 	int err;
2380 
2381 	pfn -= addr >> PAGE_SHIFT;
2382 	pmd = pmd_alloc(mm, pud, addr);
2383 	if (!pmd)
2384 		return -ENOMEM;
2385 	VM_BUG_ON(pmd_trans_huge(*pmd));
2386 	do {
2387 		next = pmd_addr_end(addr, end);
2388 		err = remap_pte_range(mm, pmd, addr, next,
2389 				pfn + (addr >> PAGE_SHIFT), prot);
2390 		if (err)
2391 			return err;
2392 	} while (pmd++, addr = next, addr != end);
2393 	return 0;
2394 }
2395 
2396 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2397 			unsigned long addr, unsigned long end,
2398 			unsigned long pfn, pgprot_t prot)
2399 {
2400 	pud_t *pud;
2401 	unsigned long next;
2402 	int err;
2403 
2404 	pfn -= addr >> PAGE_SHIFT;
2405 	pud = pud_alloc(mm, p4d, addr);
2406 	if (!pud)
2407 		return -ENOMEM;
2408 	do {
2409 		next = pud_addr_end(addr, end);
2410 		err = remap_pmd_range(mm, pud, addr, next,
2411 				pfn + (addr >> PAGE_SHIFT), prot);
2412 		if (err)
2413 			return err;
2414 	} while (pud++, addr = next, addr != end);
2415 	return 0;
2416 }
2417 
2418 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2419 			unsigned long addr, unsigned long end,
2420 			unsigned long pfn, pgprot_t prot)
2421 {
2422 	p4d_t *p4d;
2423 	unsigned long next;
2424 	int err;
2425 
2426 	pfn -= addr >> PAGE_SHIFT;
2427 	p4d = p4d_alloc(mm, pgd, addr);
2428 	if (!p4d)
2429 		return -ENOMEM;
2430 	do {
2431 		next = p4d_addr_end(addr, end);
2432 		err = remap_pud_range(mm, p4d, addr, next,
2433 				pfn + (addr >> PAGE_SHIFT), prot);
2434 		if (err)
2435 			return err;
2436 	} while (p4d++, addr = next, addr != end);
2437 	return 0;
2438 }
2439 
2440 /*
2441  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2442  * must have pre-validated the caching bits of the pgprot_t.
2443  */
2444 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2445 		unsigned long pfn, unsigned long size, pgprot_t prot)
2446 {
2447 	pgd_t *pgd;
2448 	unsigned long next;
2449 	unsigned long end = addr + PAGE_ALIGN(size);
2450 	struct mm_struct *mm = vma->vm_mm;
2451 	int err;
2452 
2453 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2454 		return -EINVAL;
2455 
2456 	/*
2457 	 * Physically remapped pages are special. Tell the
2458 	 * rest of the world about it:
2459 	 *   VM_IO tells people not to look at these pages
2460 	 *	(accesses can have side effects).
2461 	 *   VM_PFNMAP tells the core MM that the base pages are just
2462 	 *	raw PFN mappings, and do not have a "struct page" associated
2463 	 *	with them.
2464 	 *   VM_DONTEXPAND
2465 	 *      Disable vma merging and expanding with mremap().
2466 	 *   VM_DONTDUMP
2467 	 *      Omit vma from core dump, even when VM_IO turned off.
2468 	 *
2469 	 * There's a horrible special case to handle copy-on-write
2470 	 * behaviour that some programs depend on. We mark the "original"
2471 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2472 	 * See vm_normal_page() for details.
2473 	 */
2474 	if (is_cow_mapping(vma->vm_flags)) {
2475 		if (addr != vma->vm_start || end != vma->vm_end)
2476 			return -EINVAL;
2477 		vma->vm_pgoff = pfn;
2478 	}
2479 
2480 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2481 
2482 	BUG_ON(addr >= end);
2483 	pfn -= addr >> PAGE_SHIFT;
2484 	pgd = pgd_offset(mm, addr);
2485 	flush_cache_range(vma, addr, end);
2486 	do {
2487 		next = pgd_addr_end(addr, end);
2488 		err = remap_p4d_range(mm, pgd, addr, next,
2489 				pfn + (addr >> PAGE_SHIFT), prot);
2490 		if (err)
2491 			return err;
2492 	} while (pgd++, addr = next, addr != end);
2493 
2494 	return 0;
2495 }
2496 
2497 /**
2498  * remap_pfn_range - remap kernel memory to userspace
2499  * @vma: user vma to map to
2500  * @addr: target page aligned user address to start at
2501  * @pfn: page frame number of kernel physical memory address
2502  * @size: size of mapping area
2503  * @prot: page protection flags for this mapping
2504  *
2505  * Note: this is only safe if the mm semaphore is held when called.
2506  *
2507  * Return: %0 on success, negative error code otherwise.
2508  */
2509 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2510 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2511 {
2512 	int err;
2513 
2514 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2515 	if (err)
2516 		return -EINVAL;
2517 
2518 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2519 	if (err)
2520 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2521 	return err;
2522 }
2523 EXPORT_SYMBOL(remap_pfn_range);
2524 
2525 /**
2526  * vm_iomap_memory - remap memory to userspace
2527  * @vma: user vma to map to
2528  * @start: start of the physical memory to be mapped
2529  * @len: size of area
2530  *
2531  * This is a simplified io_remap_pfn_range() for common driver use. The
2532  * driver just needs to give us the physical memory range to be mapped,
2533  * we'll figure out the rest from the vma information.
2534  *
2535  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2536  * whatever write-combining details or similar.
2537  *
2538  * Return: %0 on success, negative error code otherwise.
2539  */
2540 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2541 {
2542 	unsigned long vm_len, pfn, pages;
2543 
2544 	/* Check that the physical memory area passed in looks valid */
2545 	if (start + len < start)
2546 		return -EINVAL;
2547 	/*
2548 	 * You *really* shouldn't map things that aren't page-aligned,
2549 	 * but we've historically allowed it because IO memory might
2550 	 * just have smaller alignment.
2551 	 */
2552 	len += start & ~PAGE_MASK;
2553 	pfn = start >> PAGE_SHIFT;
2554 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2555 	if (pfn + pages < pfn)
2556 		return -EINVAL;
2557 
2558 	/* We start the mapping 'vm_pgoff' pages into the area */
2559 	if (vma->vm_pgoff > pages)
2560 		return -EINVAL;
2561 	pfn += vma->vm_pgoff;
2562 	pages -= vma->vm_pgoff;
2563 
2564 	/* Can we fit all of the mapping? */
2565 	vm_len = vma->vm_end - vma->vm_start;
2566 	if (vm_len >> PAGE_SHIFT > pages)
2567 		return -EINVAL;
2568 
2569 	/* Ok, let it rip */
2570 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2571 }
2572 EXPORT_SYMBOL(vm_iomap_memory);
2573 
2574 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2575 				     unsigned long addr, unsigned long end,
2576 				     pte_fn_t fn, void *data, bool create,
2577 				     pgtbl_mod_mask *mask)
2578 {
2579 	pte_t *pte, *mapped_pte;
2580 	int err = 0;
2581 	spinlock_t *ptl;
2582 
2583 	if (create) {
2584 		mapped_pte = pte = (mm == &init_mm) ?
2585 			pte_alloc_kernel_track(pmd, addr, mask) :
2586 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2587 		if (!pte)
2588 			return -ENOMEM;
2589 	} else {
2590 		mapped_pte = pte = (mm == &init_mm) ?
2591 			pte_offset_kernel(pmd, addr) :
2592 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2593 		if (!pte)
2594 			return -EINVAL;
2595 	}
2596 
2597 	arch_enter_lazy_mmu_mode();
2598 
2599 	if (fn) {
2600 		do {
2601 			if (create || !pte_none(ptep_get(pte))) {
2602 				err = fn(pte++, addr, data);
2603 				if (err)
2604 					break;
2605 			}
2606 		} while (addr += PAGE_SIZE, addr != end);
2607 	}
2608 	*mask |= PGTBL_PTE_MODIFIED;
2609 
2610 	arch_leave_lazy_mmu_mode();
2611 
2612 	if (mm != &init_mm)
2613 		pte_unmap_unlock(mapped_pte, ptl);
2614 	return err;
2615 }
2616 
2617 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2618 				     unsigned long addr, unsigned long end,
2619 				     pte_fn_t fn, void *data, bool create,
2620 				     pgtbl_mod_mask *mask)
2621 {
2622 	pmd_t *pmd;
2623 	unsigned long next;
2624 	int err = 0;
2625 
2626 	BUG_ON(pud_huge(*pud));
2627 
2628 	if (create) {
2629 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2630 		if (!pmd)
2631 			return -ENOMEM;
2632 	} else {
2633 		pmd = pmd_offset(pud, addr);
2634 	}
2635 	do {
2636 		next = pmd_addr_end(addr, end);
2637 		if (pmd_none(*pmd) && !create)
2638 			continue;
2639 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2640 			return -EINVAL;
2641 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2642 			if (!create)
2643 				continue;
2644 			pmd_clear_bad(pmd);
2645 		}
2646 		err = apply_to_pte_range(mm, pmd, addr, next,
2647 					 fn, data, create, mask);
2648 		if (err)
2649 			break;
2650 	} while (pmd++, addr = next, addr != end);
2651 
2652 	return err;
2653 }
2654 
2655 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2656 				     unsigned long addr, unsigned long end,
2657 				     pte_fn_t fn, void *data, bool create,
2658 				     pgtbl_mod_mask *mask)
2659 {
2660 	pud_t *pud;
2661 	unsigned long next;
2662 	int err = 0;
2663 
2664 	if (create) {
2665 		pud = pud_alloc_track(mm, p4d, addr, mask);
2666 		if (!pud)
2667 			return -ENOMEM;
2668 	} else {
2669 		pud = pud_offset(p4d, addr);
2670 	}
2671 	do {
2672 		next = pud_addr_end(addr, end);
2673 		if (pud_none(*pud) && !create)
2674 			continue;
2675 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2676 			return -EINVAL;
2677 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2678 			if (!create)
2679 				continue;
2680 			pud_clear_bad(pud);
2681 		}
2682 		err = apply_to_pmd_range(mm, pud, addr, next,
2683 					 fn, data, create, mask);
2684 		if (err)
2685 			break;
2686 	} while (pud++, addr = next, addr != end);
2687 
2688 	return err;
2689 }
2690 
2691 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2692 				     unsigned long addr, unsigned long end,
2693 				     pte_fn_t fn, void *data, bool create,
2694 				     pgtbl_mod_mask *mask)
2695 {
2696 	p4d_t *p4d;
2697 	unsigned long next;
2698 	int err = 0;
2699 
2700 	if (create) {
2701 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2702 		if (!p4d)
2703 			return -ENOMEM;
2704 	} else {
2705 		p4d = p4d_offset(pgd, addr);
2706 	}
2707 	do {
2708 		next = p4d_addr_end(addr, end);
2709 		if (p4d_none(*p4d) && !create)
2710 			continue;
2711 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2712 			return -EINVAL;
2713 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2714 			if (!create)
2715 				continue;
2716 			p4d_clear_bad(p4d);
2717 		}
2718 		err = apply_to_pud_range(mm, p4d, addr, next,
2719 					 fn, data, create, mask);
2720 		if (err)
2721 			break;
2722 	} while (p4d++, addr = next, addr != end);
2723 
2724 	return err;
2725 }
2726 
2727 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2728 				 unsigned long size, pte_fn_t fn,
2729 				 void *data, bool create)
2730 {
2731 	pgd_t *pgd;
2732 	unsigned long start = addr, next;
2733 	unsigned long end = addr + size;
2734 	pgtbl_mod_mask mask = 0;
2735 	int err = 0;
2736 
2737 	if (WARN_ON(addr >= end))
2738 		return -EINVAL;
2739 
2740 	pgd = pgd_offset(mm, addr);
2741 	do {
2742 		next = pgd_addr_end(addr, end);
2743 		if (pgd_none(*pgd) && !create)
2744 			continue;
2745 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2746 			return -EINVAL;
2747 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2748 			if (!create)
2749 				continue;
2750 			pgd_clear_bad(pgd);
2751 		}
2752 		err = apply_to_p4d_range(mm, pgd, addr, next,
2753 					 fn, data, create, &mask);
2754 		if (err)
2755 			break;
2756 	} while (pgd++, addr = next, addr != end);
2757 
2758 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2759 		arch_sync_kernel_mappings(start, start + size);
2760 
2761 	return err;
2762 }
2763 
2764 /*
2765  * Scan a region of virtual memory, filling in page tables as necessary
2766  * and calling a provided function on each leaf page table.
2767  */
2768 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2769 			unsigned long size, pte_fn_t fn, void *data)
2770 {
2771 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2772 }
2773 EXPORT_SYMBOL_GPL(apply_to_page_range);
2774 
2775 /*
2776  * Scan a region of virtual memory, calling a provided function on
2777  * each leaf page table where it exists.
2778  *
2779  * Unlike apply_to_page_range, this does _not_ fill in page tables
2780  * where they are absent.
2781  */
2782 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2783 				 unsigned long size, pte_fn_t fn, void *data)
2784 {
2785 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2786 }
2787 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2788 
2789 /*
2790  * handle_pte_fault chooses page fault handler according to an entry which was
2791  * read non-atomically.  Before making any commitment, on those architectures
2792  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2793  * parts, do_swap_page must check under lock before unmapping the pte and
2794  * proceeding (but do_wp_page is only called after already making such a check;
2795  * and do_anonymous_page can safely check later on).
2796  */
2797 static inline int pte_unmap_same(struct vm_fault *vmf)
2798 {
2799 	int same = 1;
2800 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2801 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2802 		spin_lock(vmf->ptl);
2803 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2804 		spin_unlock(vmf->ptl);
2805 	}
2806 #endif
2807 	pte_unmap(vmf->pte);
2808 	vmf->pte = NULL;
2809 	return same;
2810 }
2811 
2812 /*
2813  * Return:
2814  *	0:		copied succeeded
2815  *	-EHWPOISON:	copy failed due to hwpoison in source page
2816  *	-EAGAIN:	copied failed (some other reason)
2817  */
2818 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2819 				      struct vm_fault *vmf)
2820 {
2821 	int ret;
2822 	void *kaddr;
2823 	void __user *uaddr;
2824 	struct vm_area_struct *vma = vmf->vma;
2825 	struct mm_struct *mm = vma->vm_mm;
2826 	unsigned long addr = vmf->address;
2827 
2828 	if (likely(src)) {
2829 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2830 			memory_failure_queue(page_to_pfn(src), 0);
2831 			return -EHWPOISON;
2832 		}
2833 		return 0;
2834 	}
2835 
2836 	/*
2837 	 * If the source page was a PFN mapping, we don't have
2838 	 * a "struct page" for it. We do a best-effort copy by
2839 	 * just copying from the original user address. If that
2840 	 * fails, we just zero-fill it. Live with it.
2841 	 */
2842 	kaddr = kmap_atomic(dst);
2843 	uaddr = (void __user *)(addr & PAGE_MASK);
2844 
2845 	/*
2846 	 * On architectures with software "accessed" bits, we would
2847 	 * take a double page fault, so mark it accessed here.
2848 	 */
2849 	vmf->pte = NULL;
2850 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2851 		pte_t entry;
2852 
2853 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2854 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2855 			/*
2856 			 * Other thread has already handled the fault
2857 			 * and update local tlb only
2858 			 */
2859 			if (vmf->pte)
2860 				update_mmu_tlb(vma, addr, vmf->pte);
2861 			ret = -EAGAIN;
2862 			goto pte_unlock;
2863 		}
2864 
2865 		entry = pte_mkyoung(vmf->orig_pte);
2866 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2867 			update_mmu_cache(vma, addr, vmf->pte);
2868 	}
2869 
2870 	/*
2871 	 * This really shouldn't fail, because the page is there
2872 	 * in the page tables. But it might just be unreadable,
2873 	 * in which case we just give up and fill the result with
2874 	 * zeroes.
2875 	 */
2876 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2877 		if (vmf->pte)
2878 			goto warn;
2879 
2880 		/* Re-validate under PTL if the page is still mapped */
2881 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2882 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2883 			/* The PTE changed under us, update local tlb */
2884 			if (vmf->pte)
2885 				update_mmu_tlb(vma, addr, vmf->pte);
2886 			ret = -EAGAIN;
2887 			goto pte_unlock;
2888 		}
2889 
2890 		/*
2891 		 * The same page can be mapped back since last copy attempt.
2892 		 * Try to copy again under PTL.
2893 		 */
2894 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2895 			/*
2896 			 * Give a warn in case there can be some obscure
2897 			 * use-case
2898 			 */
2899 warn:
2900 			WARN_ON_ONCE(1);
2901 			clear_page(kaddr);
2902 		}
2903 	}
2904 
2905 	ret = 0;
2906 
2907 pte_unlock:
2908 	if (vmf->pte)
2909 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2910 	kunmap_atomic(kaddr);
2911 	flush_dcache_page(dst);
2912 
2913 	return ret;
2914 }
2915 
2916 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2917 {
2918 	struct file *vm_file = vma->vm_file;
2919 
2920 	if (vm_file)
2921 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2922 
2923 	/*
2924 	 * Special mappings (e.g. VDSO) do not have any file so fake
2925 	 * a default GFP_KERNEL for them.
2926 	 */
2927 	return GFP_KERNEL;
2928 }
2929 
2930 /*
2931  * Notify the address space that the page is about to become writable so that
2932  * it can prohibit this or wait for the page to get into an appropriate state.
2933  *
2934  * We do this without the lock held, so that it can sleep if it needs to.
2935  */
2936 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2937 {
2938 	vm_fault_t ret;
2939 	unsigned int old_flags = vmf->flags;
2940 
2941 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2942 
2943 	if (vmf->vma->vm_file &&
2944 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2945 		return VM_FAULT_SIGBUS;
2946 
2947 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2948 	/* Restore original flags so that caller is not surprised */
2949 	vmf->flags = old_flags;
2950 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2951 		return ret;
2952 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2953 		folio_lock(folio);
2954 		if (!folio->mapping) {
2955 			folio_unlock(folio);
2956 			return 0; /* retry */
2957 		}
2958 		ret |= VM_FAULT_LOCKED;
2959 	} else
2960 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2961 	return ret;
2962 }
2963 
2964 /*
2965  * Handle dirtying of a page in shared file mapping on a write fault.
2966  *
2967  * The function expects the page to be locked and unlocks it.
2968  */
2969 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2970 {
2971 	struct vm_area_struct *vma = vmf->vma;
2972 	struct address_space *mapping;
2973 	struct folio *folio = page_folio(vmf->page);
2974 	bool dirtied;
2975 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2976 
2977 	dirtied = folio_mark_dirty(folio);
2978 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2979 	/*
2980 	 * Take a local copy of the address_space - folio.mapping may be zeroed
2981 	 * by truncate after folio_unlock().   The address_space itself remains
2982 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
2983 	 * release semantics to prevent the compiler from undoing this copying.
2984 	 */
2985 	mapping = folio_raw_mapping(folio);
2986 	folio_unlock(folio);
2987 
2988 	if (!page_mkwrite)
2989 		file_update_time(vma->vm_file);
2990 
2991 	/*
2992 	 * Throttle page dirtying rate down to writeback speed.
2993 	 *
2994 	 * mapping may be NULL here because some device drivers do not
2995 	 * set page.mapping but still dirty their pages
2996 	 *
2997 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2998 	 * is pinning the mapping, as per above.
2999 	 */
3000 	if ((dirtied || page_mkwrite) && mapping) {
3001 		struct file *fpin;
3002 
3003 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3004 		balance_dirty_pages_ratelimited(mapping);
3005 		if (fpin) {
3006 			fput(fpin);
3007 			return VM_FAULT_COMPLETED;
3008 		}
3009 	}
3010 
3011 	return 0;
3012 }
3013 
3014 /*
3015  * Handle write page faults for pages that can be reused in the current vma
3016  *
3017  * This can happen either due to the mapping being with the VM_SHARED flag,
3018  * or due to us being the last reference standing to the page. In either
3019  * case, all we need to do here is to mark the page as writable and update
3020  * any related book-keeping.
3021  */
3022 static inline void wp_page_reuse(struct vm_fault *vmf)
3023 	__releases(vmf->ptl)
3024 {
3025 	struct vm_area_struct *vma = vmf->vma;
3026 	struct page *page = vmf->page;
3027 	pte_t entry;
3028 
3029 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3030 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3031 
3032 	/*
3033 	 * Clear the pages cpupid information as the existing
3034 	 * information potentially belongs to a now completely
3035 	 * unrelated process.
3036 	 */
3037 	if (page)
3038 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3039 
3040 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3041 	entry = pte_mkyoung(vmf->orig_pte);
3042 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3043 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3044 		update_mmu_cache(vma, vmf->address, vmf->pte);
3045 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3046 	count_vm_event(PGREUSE);
3047 }
3048 
3049 /*
3050  * Handle the case of a page which we actually need to copy to a new page,
3051  * either due to COW or unsharing.
3052  *
3053  * Called with mmap_lock locked and the old page referenced, but
3054  * without the ptl held.
3055  *
3056  * High level logic flow:
3057  *
3058  * - Allocate a page, copy the content of the old page to the new one.
3059  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3060  * - Take the PTL. If the pte changed, bail out and release the allocated page
3061  * - If the pte is still the way we remember it, update the page table and all
3062  *   relevant references. This includes dropping the reference the page-table
3063  *   held to the old page, as well as updating the rmap.
3064  * - In any case, unlock the PTL and drop the reference we took to the old page.
3065  */
3066 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3067 {
3068 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3069 	struct vm_area_struct *vma = vmf->vma;
3070 	struct mm_struct *mm = vma->vm_mm;
3071 	struct folio *old_folio = NULL;
3072 	struct folio *new_folio = NULL;
3073 	pte_t entry;
3074 	int page_copied = 0;
3075 	struct mmu_notifier_range range;
3076 	int ret;
3077 
3078 	delayacct_wpcopy_start();
3079 
3080 	if (vmf->page)
3081 		old_folio = page_folio(vmf->page);
3082 	if (unlikely(anon_vma_prepare(vma)))
3083 		goto oom;
3084 
3085 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3086 		new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3087 		if (!new_folio)
3088 			goto oom;
3089 	} else {
3090 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3091 				vmf->address, false);
3092 		if (!new_folio)
3093 			goto oom;
3094 
3095 		ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3096 		if (ret) {
3097 			/*
3098 			 * COW failed, if the fault was solved by other,
3099 			 * it's fine. If not, userspace would re-fault on
3100 			 * the same address and we will handle the fault
3101 			 * from the second attempt.
3102 			 * The -EHWPOISON case will not be retried.
3103 			 */
3104 			folio_put(new_folio);
3105 			if (old_folio)
3106 				folio_put(old_folio);
3107 
3108 			delayacct_wpcopy_end();
3109 			return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3110 		}
3111 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3112 	}
3113 
3114 	if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3115 		goto oom_free_new;
3116 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
3117 
3118 	__folio_mark_uptodate(new_folio);
3119 
3120 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3121 				vmf->address & PAGE_MASK,
3122 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3123 	mmu_notifier_invalidate_range_start(&range);
3124 
3125 	/*
3126 	 * Re-check the pte - we dropped the lock
3127 	 */
3128 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3129 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3130 		if (old_folio) {
3131 			if (!folio_test_anon(old_folio)) {
3132 				dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3133 				inc_mm_counter(mm, MM_ANONPAGES);
3134 			}
3135 		} else {
3136 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3137 			inc_mm_counter(mm, MM_ANONPAGES);
3138 		}
3139 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3140 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3141 		entry = pte_sw_mkyoung(entry);
3142 		if (unlikely(unshare)) {
3143 			if (pte_soft_dirty(vmf->orig_pte))
3144 				entry = pte_mksoft_dirty(entry);
3145 			if (pte_uffd_wp(vmf->orig_pte))
3146 				entry = pte_mkuffd_wp(entry);
3147 		} else {
3148 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3149 		}
3150 
3151 		/*
3152 		 * Clear the pte entry and flush it first, before updating the
3153 		 * pte with the new entry, to keep TLBs on different CPUs in
3154 		 * sync. This code used to set the new PTE then flush TLBs, but
3155 		 * that left a window where the new PTE could be loaded into
3156 		 * some TLBs while the old PTE remains in others.
3157 		 */
3158 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3159 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3160 		folio_add_lru_vma(new_folio, vma);
3161 		/*
3162 		 * We call the notify macro here because, when using secondary
3163 		 * mmu page tables (such as kvm shadow page tables), we want the
3164 		 * new page to be mapped directly into the secondary page table.
3165 		 */
3166 		BUG_ON(unshare && pte_write(entry));
3167 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3168 		update_mmu_cache(vma, vmf->address, vmf->pte);
3169 		if (old_folio) {
3170 			/*
3171 			 * Only after switching the pte to the new page may
3172 			 * we remove the mapcount here. Otherwise another
3173 			 * process may come and find the rmap count decremented
3174 			 * before the pte is switched to the new page, and
3175 			 * "reuse" the old page writing into it while our pte
3176 			 * here still points into it and can be read by other
3177 			 * threads.
3178 			 *
3179 			 * The critical issue is to order this
3180 			 * page_remove_rmap with the ptp_clear_flush above.
3181 			 * Those stores are ordered by (if nothing else,)
3182 			 * the barrier present in the atomic_add_negative
3183 			 * in page_remove_rmap.
3184 			 *
3185 			 * Then the TLB flush in ptep_clear_flush ensures that
3186 			 * no process can access the old page before the
3187 			 * decremented mapcount is visible. And the old page
3188 			 * cannot be reused until after the decremented
3189 			 * mapcount is visible. So transitively, TLBs to
3190 			 * old page will be flushed before it can be reused.
3191 			 */
3192 			page_remove_rmap(vmf->page, vma, false);
3193 		}
3194 
3195 		/* Free the old page.. */
3196 		new_folio = old_folio;
3197 		page_copied = 1;
3198 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3199 	} else if (vmf->pte) {
3200 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3201 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3202 	}
3203 
3204 	/*
3205 	 * No need to double call mmu_notifier->invalidate_range() callback as
3206 	 * the above ptep_clear_flush_notify() did already call it.
3207 	 */
3208 	mmu_notifier_invalidate_range_only_end(&range);
3209 
3210 	if (new_folio)
3211 		folio_put(new_folio);
3212 	if (old_folio) {
3213 		if (page_copied)
3214 			free_swap_cache(&old_folio->page);
3215 		folio_put(old_folio);
3216 	}
3217 
3218 	delayacct_wpcopy_end();
3219 	return 0;
3220 oom_free_new:
3221 	folio_put(new_folio);
3222 oom:
3223 	if (old_folio)
3224 		folio_put(old_folio);
3225 
3226 	delayacct_wpcopy_end();
3227 	return VM_FAULT_OOM;
3228 }
3229 
3230 /**
3231  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3232  *			  writeable once the page is prepared
3233  *
3234  * @vmf: structure describing the fault
3235  *
3236  * This function handles all that is needed to finish a write page fault in a
3237  * shared mapping due to PTE being read-only once the mapped page is prepared.
3238  * It handles locking of PTE and modifying it.
3239  *
3240  * The function expects the page to be locked or other protection against
3241  * concurrent faults / writeback (such as DAX radix tree locks).
3242  *
3243  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3244  * we acquired PTE lock.
3245  */
3246 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3247 {
3248 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3249 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3250 				       &vmf->ptl);
3251 	if (!vmf->pte)
3252 		return VM_FAULT_NOPAGE;
3253 	/*
3254 	 * We might have raced with another page fault while we released the
3255 	 * pte_offset_map_lock.
3256 	 */
3257 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3258 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3259 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3260 		return VM_FAULT_NOPAGE;
3261 	}
3262 	wp_page_reuse(vmf);
3263 	return 0;
3264 }
3265 
3266 /*
3267  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3268  * mapping
3269  */
3270 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3271 {
3272 	struct vm_area_struct *vma = vmf->vma;
3273 
3274 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3275 		vm_fault_t ret;
3276 
3277 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3278 		vmf->flags |= FAULT_FLAG_MKWRITE;
3279 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3280 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3281 			return ret;
3282 		return finish_mkwrite_fault(vmf);
3283 	}
3284 	wp_page_reuse(vmf);
3285 	return 0;
3286 }
3287 
3288 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3289 	__releases(vmf->ptl)
3290 {
3291 	struct vm_area_struct *vma = vmf->vma;
3292 	vm_fault_t ret = 0;
3293 
3294 	folio_get(folio);
3295 
3296 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3297 		vm_fault_t tmp;
3298 
3299 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3300 		tmp = do_page_mkwrite(vmf, folio);
3301 		if (unlikely(!tmp || (tmp &
3302 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3303 			folio_put(folio);
3304 			return tmp;
3305 		}
3306 		tmp = finish_mkwrite_fault(vmf);
3307 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3308 			folio_unlock(folio);
3309 			folio_put(folio);
3310 			return tmp;
3311 		}
3312 	} else {
3313 		wp_page_reuse(vmf);
3314 		folio_lock(folio);
3315 	}
3316 	ret |= fault_dirty_shared_page(vmf);
3317 	folio_put(folio);
3318 
3319 	return ret;
3320 }
3321 
3322 /*
3323  * This routine handles present pages, when
3324  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3325  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3326  *   (FAULT_FLAG_UNSHARE)
3327  *
3328  * It is done by copying the page to a new address and decrementing the
3329  * shared-page counter for the old page.
3330  *
3331  * Note that this routine assumes that the protection checks have been
3332  * done by the caller (the low-level page fault routine in most cases).
3333  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3334  * done any necessary COW.
3335  *
3336  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3337  * though the page will change only once the write actually happens. This
3338  * avoids a few races, and potentially makes it more efficient.
3339  *
3340  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3341  * but allow concurrent faults), with pte both mapped and locked.
3342  * We return with mmap_lock still held, but pte unmapped and unlocked.
3343  */
3344 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3345 	__releases(vmf->ptl)
3346 {
3347 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3348 	struct vm_area_struct *vma = vmf->vma;
3349 	struct folio *folio = NULL;
3350 
3351 	if (likely(!unshare)) {
3352 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3353 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3354 			return handle_userfault(vmf, VM_UFFD_WP);
3355 		}
3356 
3357 		/*
3358 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3359 		 * is flushed in this case before copying.
3360 		 */
3361 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3362 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3363 			flush_tlb_page(vmf->vma, vmf->address);
3364 	}
3365 
3366 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3367 
3368 	if (vmf->page)
3369 		folio = page_folio(vmf->page);
3370 
3371 	/*
3372 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3373 	 * FAULT_FLAG_WRITE set at this point.
3374 	 */
3375 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3376 		/*
3377 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3378 		 * VM_PFNMAP VMA.
3379 		 *
3380 		 * We should not cow pages in a shared writeable mapping.
3381 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3382 		 */
3383 		if (!vmf->page)
3384 			return wp_pfn_shared(vmf);
3385 		return wp_page_shared(vmf, folio);
3386 	}
3387 
3388 	/*
3389 	 * Private mapping: create an exclusive anonymous page copy if reuse
3390 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3391 	 */
3392 	if (folio && folio_test_anon(folio)) {
3393 		/*
3394 		 * If the page is exclusive to this process we must reuse the
3395 		 * page without further checks.
3396 		 */
3397 		if (PageAnonExclusive(vmf->page))
3398 			goto reuse;
3399 
3400 		/*
3401 		 * We have to verify under folio lock: these early checks are
3402 		 * just an optimization to avoid locking the folio and freeing
3403 		 * the swapcache if there is little hope that we can reuse.
3404 		 *
3405 		 * KSM doesn't necessarily raise the folio refcount.
3406 		 */
3407 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3408 			goto copy;
3409 		if (!folio_test_lru(folio))
3410 			/*
3411 			 * We cannot easily detect+handle references from
3412 			 * remote LRU caches or references to LRU folios.
3413 			 */
3414 			lru_add_drain();
3415 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3416 			goto copy;
3417 		if (!folio_trylock(folio))
3418 			goto copy;
3419 		if (folio_test_swapcache(folio))
3420 			folio_free_swap(folio);
3421 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3422 			folio_unlock(folio);
3423 			goto copy;
3424 		}
3425 		/*
3426 		 * Ok, we've got the only folio reference from our mapping
3427 		 * and the folio is locked, it's dark out, and we're wearing
3428 		 * sunglasses. Hit it.
3429 		 */
3430 		page_move_anon_rmap(vmf->page, vma);
3431 		folio_unlock(folio);
3432 reuse:
3433 		if (unlikely(unshare)) {
3434 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3435 			return 0;
3436 		}
3437 		wp_page_reuse(vmf);
3438 		return 0;
3439 	}
3440 copy:
3441 	/*
3442 	 * Ok, we need to copy. Oh, well..
3443 	 */
3444 	if (folio)
3445 		folio_get(folio);
3446 
3447 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3448 #ifdef CONFIG_KSM
3449 	if (folio && folio_test_ksm(folio))
3450 		count_vm_event(COW_KSM);
3451 #endif
3452 	return wp_page_copy(vmf);
3453 }
3454 
3455 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3456 		unsigned long start_addr, unsigned long end_addr,
3457 		struct zap_details *details)
3458 {
3459 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3460 }
3461 
3462 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3463 					    pgoff_t first_index,
3464 					    pgoff_t last_index,
3465 					    struct zap_details *details)
3466 {
3467 	struct vm_area_struct *vma;
3468 	pgoff_t vba, vea, zba, zea;
3469 
3470 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3471 		vba = vma->vm_pgoff;
3472 		vea = vba + vma_pages(vma) - 1;
3473 		zba = max(first_index, vba);
3474 		zea = min(last_index, vea);
3475 
3476 		unmap_mapping_range_vma(vma,
3477 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3478 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3479 				details);
3480 	}
3481 }
3482 
3483 /**
3484  * unmap_mapping_folio() - Unmap single folio from processes.
3485  * @folio: The locked folio to be unmapped.
3486  *
3487  * Unmap this folio from any userspace process which still has it mmaped.
3488  * Typically, for efficiency, the range of nearby pages has already been
3489  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3490  * truncation or invalidation holds the lock on a folio, it may find that
3491  * the page has been remapped again: and then uses unmap_mapping_folio()
3492  * to unmap it finally.
3493  */
3494 void unmap_mapping_folio(struct folio *folio)
3495 {
3496 	struct address_space *mapping = folio->mapping;
3497 	struct zap_details details = { };
3498 	pgoff_t	first_index;
3499 	pgoff_t	last_index;
3500 
3501 	VM_BUG_ON(!folio_test_locked(folio));
3502 
3503 	first_index = folio->index;
3504 	last_index = folio_next_index(folio) - 1;
3505 
3506 	details.even_cows = false;
3507 	details.single_folio = folio;
3508 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3509 
3510 	i_mmap_lock_read(mapping);
3511 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3512 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3513 					 last_index, &details);
3514 	i_mmap_unlock_read(mapping);
3515 }
3516 
3517 /**
3518  * unmap_mapping_pages() - Unmap pages from processes.
3519  * @mapping: The address space containing pages to be unmapped.
3520  * @start: Index of first page to be unmapped.
3521  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3522  * @even_cows: Whether to unmap even private COWed pages.
3523  *
3524  * Unmap the pages in this address space from any userspace process which
3525  * has them mmaped.  Generally, you want to remove COWed pages as well when
3526  * a file is being truncated, but not when invalidating pages from the page
3527  * cache.
3528  */
3529 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3530 		pgoff_t nr, bool even_cows)
3531 {
3532 	struct zap_details details = { };
3533 	pgoff_t	first_index = start;
3534 	pgoff_t	last_index = start + nr - 1;
3535 
3536 	details.even_cows = even_cows;
3537 	if (last_index < first_index)
3538 		last_index = ULONG_MAX;
3539 
3540 	i_mmap_lock_read(mapping);
3541 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3542 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3543 					 last_index, &details);
3544 	i_mmap_unlock_read(mapping);
3545 }
3546 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3547 
3548 /**
3549  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3550  * address_space corresponding to the specified byte range in the underlying
3551  * file.
3552  *
3553  * @mapping: the address space containing mmaps to be unmapped.
3554  * @holebegin: byte in first page to unmap, relative to the start of
3555  * the underlying file.  This will be rounded down to a PAGE_SIZE
3556  * boundary.  Note that this is different from truncate_pagecache(), which
3557  * must keep the partial page.  In contrast, we must get rid of
3558  * partial pages.
3559  * @holelen: size of prospective hole in bytes.  This will be rounded
3560  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3561  * end of the file.
3562  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3563  * but 0 when invalidating pagecache, don't throw away private data.
3564  */
3565 void unmap_mapping_range(struct address_space *mapping,
3566 		loff_t const holebegin, loff_t const holelen, int even_cows)
3567 {
3568 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3569 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3570 
3571 	/* Check for overflow. */
3572 	if (sizeof(holelen) > sizeof(hlen)) {
3573 		long long holeend =
3574 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3575 		if (holeend & ~(long long)ULONG_MAX)
3576 			hlen = ULONG_MAX - hba + 1;
3577 	}
3578 
3579 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3580 }
3581 EXPORT_SYMBOL(unmap_mapping_range);
3582 
3583 /*
3584  * Restore a potential device exclusive pte to a working pte entry
3585  */
3586 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3587 {
3588 	struct folio *folio = page_folio(vmf->page);
3589 	struct vm_area_struct *vma = vmf->vma;
3590 	struct mmu_notifier_range range;
3591 
3592 	/*
3593 	 * We need a reference to lock the folio because we don't hold
3594 	 * the PTL so a racing thread can remove the device-exclusive
3595 	 * entry and unmap it. If the folio is free the entry must
3596 	 * have been removed already. If it happens to have already
3597 	 * been re-allocated after being freed all we do is lock and
3598 	 * unlock it.
3599 	 */
3600 	if (!folio_try_get(folio))
3601 		return 0;
3602 
3603 	if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3604 		folio_put(folio);
3605 		return VM_FAULT_RETRY;
3606 	}
3607 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3608 				vma->vm_mm, vmf->address & PAGE_MASK,
3609 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3610 	mmu_notifier_invalidate_range_start(&range);
3611 
3612 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3613 				&vmf->ptl);
3614 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3615 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3616 
3617 	if (vmf->pte)
3618 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3619 	folio_unlock(folio);
3620 	folio_put(folio);
3621 
3622 	mmu_notifier_invalidate_range_end(&range);
3623 	return 0;
3624 }
3625 
3626 static inline bool should_try_to_free_swap(struct folio *folio,
3627 					   struct vm_area_struct *vma,
3628 					   unsigned int fault_flags)
3629 {
3630 	if (!folio_test_swapcache(folio))
3631 		return false;
3632 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3633 	    folio_test_mlocked(folio))
3634 		return true;
3635 	/*
3636 	 * If we want to map a page that's in the swapcache writable, we
3637 	 * have to detect via the refcount if we're really the exclusive
3638 	 * user. Try freeing the swapcache to get rid of the swapcache
3639 	 * reference only in case it's likely that we'll be the exlusive user.
3640 	 */
3641 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3642 		folio_ref_count(folio) == 2;
3643 }
3644 
3645 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3646 {
3647 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3648 				       vmf->address, &vmf->ptl);
3649 	if (!vmf->pte)
3650 		return 0;
3651 	/*
3652 	 * Be careful so that we will only recover a special uffd-wp pte into a
3653 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3654 	 *
3655 	 * This should also cover the case where e.g. the pte changed
3656 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3657 	 * So is_pte_marker() check is not enough to safely drop the pte.
3658 	 */
3659 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3660 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3661 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3662 	return 0;
3663 }
3664 
3665 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3666 {
3667 	if (vma_is_anonymous(vmf->vma))
3668 		return do_anonymous_page(vmf);
3669 	else
3670 		return do_fault(vmf);
3671 }
3672 
3673 /*
3674  * This is actually a page-missing access, but with uffd-wp special pte
3675  * installed.  It means this pte was wr-protected before being unmapped.
3676  */
3677 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3678 {
3679 	/*
3680 	 * Just in case there're leftover special ptes even after the region
3681 	 * got unregistered - we can simply clear them.
3682 	 */
3683 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3684 		return pte_marker_clear(vmf);
3685 
3686 	return do_pte_missing(vmf);
3687 }
3688 
3689 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3690 {
3691 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3692 	unsigned long marker = pte_marker_get(entry);
3693 
3694 	/*
3695 	 * PTE markers should never be empty.  If anything weird happened,
3696 	 * the best thing to do is to kill the process along with its mm.
3697 	 */
3698 	if (WARN_ON_ONCE(!marker))
3699 		return VM_FAULT_SIGBUS;
3700 
3701 	/* Higher priority than uffd-wp when data corrupted */
3702 	if (marker & PTE_MARKER_POISONED)
3703 		return VM_FAULT_HWPOISON;
3704 
3705 	if (pte_marker_entry_uffd_wp(entry))
3706 		return pte_marker_handle_uffd_wp(vmf);
3707 
3708 	/* This is an unknown pte marker */
3709 	return VM_FAULT_SIGBUS;
3710 }
3711 
3712 /*
3713  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3714  * but allow concurrent faults), and pte mapped but not yet locked.
3715  * We return with pte unmapped and unlocked.
3716  *
3717  * We return with the mmap_lock locked or unlocked in the same cases
3718  * as does filemap_fault().
3719  */
3720 vm_fault_t do_swap_page(struct vm_fault *vmf)
3721 {
3722 	struct vm_area_struct *vma = vmf->vma;
3723 	struct folio *swapcache, *folio = NULL;
3724 	struct page *page;
3725 	struct swap_info_struct *si = NULL;
3726 	rmap_t rmap_flags = RMAP_NONE;
3727 	bool exclusive = false;
3728 	swp_entry_t entry;
3729 	pte_t pte;
3730 	int locked;
3731 	vm_fault_t ret = 0;
3732 	void *shadow = NULL;
3733 
3734 	if (!pte_unmap_same(vmf))
3735 		goto out;
3736 
3737 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3738 		ret = VM_FAULT_RETRY;
3739 		goto out;
3740 	}
3741 
3742 	entry = pte_to_swp_entry(vmf->orig_pte);
3743 	if (unlikely(non_swap_entry(entry))) {
3744 		if (is_migration_entry(entry)) {
3745 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3746 					     vmf->address);
3747 		} else if (is_device_exclusive_entry(entry)) {
3748 			vmf->page = pfn_swap_entry_to_page(entry);
3749 			ret = remove_device_exclusive_entry(vmf);
3750 		} else if (is_device_private_entry(entry)) {
3751 			vmf->page = pfn_swap_entry_to_page(entry);
3752 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3753 					vmf->address, &vmf->ptl);
3754 			if (unlikely(!vmf->pte ||
3755 				     !pte_same(ptep_get(vmf->pte),
3756 							vmf->orig_pte)))
3757 				goto unlock;
3758 
3759 			/*
3760 			 * Get a page reference while we know the page can't be
3761 			 * freed.
3762 			 */
3763 			get_page(vmf->page);
3764 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3765 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3766 			put_page(vmf->page);
3767 		} else if (is_hwpoison_entry(entry)) {
3768 			ret = VM_FAULT_HWPOISON;
3769 		} else if (is_pte_marker_entry(entry)) {
3770 			ret = handle_pte_marker(vmf);
3771 		} else {
3772 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3773 			ret = VM_FAULT_SIGBUS;
3774 		}
3775 		goto out;
3776 	}
3777 
3778 	/* Prevent swapoff from happening to us. */
3779 	si = get_swap_device(entry);
3780 	if (unlikely(!si))
3781 		goto out;
3782 
3783 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3784 	if (folio)
3785 		page = folio_file_page(folio, swp_offset(entry));
3786 	swapcache = folio;
3787 
3788 	if (!folio) {
3789 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3790 		    __swap_count(entry) == 1) {
3791 			/* skip swapcache */
3792 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3793 						vma, vmf->address, false);
3794 			page = &folio->page;
3795 			if (folio) {
3796 				__folio_set_locked(folio);
3797 				__folio_set_swapbacked(folio);
3798 
3799 				if (mem_cgroup_swapin_charge_folio(folio,
3800 							vma->vm_mm, GFP_KERNEL,
3801 							entry)) {
3802 					ret = VM_FAULT_OOM;
3803 					goto out_page;
3804 				}
3805 				mem_cgroup_swapin_uncharge_swap(entry);
3806 
3807 				shadow = get_shadow_from_swap_cache(entry);
3808 				if (shadow)
3809 					workingset_refault(folio, shadow);
3810 
3811 				folio_add_lru(folio);
3812 
3813 				/* To provide entry to swap_readpage() */
3814 				folio_set_swap_entry(folio, entry);
3815 				swap_readpage(page, true, NULL);
3816 				folio->private = NULL;
3817 			}
3818 		} else {
3819 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3820 						vmf);
3821 			if (page)
3822 				folio = page_folio(page);
3823 			swapcache = folio;
3824 		}
3825 
3826 		if (!folio) {
3827 			/*
3828 			 * Back out if somebody else faulted in this pte
3829 			 * while we released the pte lock.
3830 			 */
3831 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3832 					vmf->address, &vmf->ptl);
3833 			if (likely(vmf->pte &&
3834 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3835 				ret = VM_FAULT_OOM;
3836 			goto unlock;
3837 		}
3838 
3839 		/* Had to read the page from swap area: Major fault */
3840 		ret = VM_FAULT_MAJOR;
3841 		count_vm_event(PGMAJFAULT);
3842 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3843 	} else if (PageHWPoison(page)) {
3844 		/*
3845 		 * hwpoisoned dirty swapcache pages are kept for killing
3846 		 * owner processes (which may be unknown at hwpoison time)
3847 		 */
3848 		ret = VM_FAULT_HWPOISON;
3849 		goto out_release;
3850 	}
3851 
3852 	locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3853 
3854 	if (!locked) {
3855 		ret |= VM_FAULT_RETRY;
3856 		goto out_release;
3857 	}
3858 
3859 	if (swapcache) {
3860 		/*
3861 		 * Make sure folio_free_swap() or swapoff did not release the
3862 		 * swapcache from under us.  The page pin, and pte_same test
3863 		 * below, are not enough to exclude that.  Even if it is still
3864 		 * swapcache, we need to check that the page's swap has not
3865 		 * changed.
3866 		 */
3867 		if (unlikely(!folio_test_swapcache(folio) ||
3868 			     page_private(page) != entry.val))
3869 			goto out_page;
3870 
3871 		/*
3872 		 * KSM sometimes has to copy on read faults, for example, if
3873 		 * page->index of !PageKSM() pages would be nonlinear inside the
3874 		 * anon VMA -- PageKSM() is lost on actual swapout.
3875 		 */
3876 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3877 		if (unlikely(!page)) {
3878 			ret = VM_FAULT_OOM;
3879 			goto out_page;
3880 		} else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3881 			ret = VM_FAULT_HWPOISON;
3882 			goto out_page;
3883 		}
3884 		folio = page_folio(page);
3885 
3886 		/*
3887 		 * If we want to map a page that's in the swapcache writable, we
3888 		 * have to detect via the refcount if we're really the exclusive
3889 		 * owner. Try removing the extra reference from the local LRU
3890 		 * caches if required.
3891 		 */
3892 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3893 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3894 			lru_add_drain();
3895 	}
3896 
3897 	folio_throttle_swaprate(folio, GFP_KERNEL);
3898 
3899 	/*
3900 	 * Back out if somebody else already faulted in this pte.
3901 	 */
3902 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3903 			&vmf->ptl);
3904 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3905 		goto out_nomap;
3906 
3907 	if (unlikely(!folio_test_uptodate(folio))) {
3908 		ret = VM_FAULT_SIGBUS;
3909 		goto out_nomap;
3910 	}
3911 
3912 	/*
3913 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3914 	 * must never point at an anonymous page in the swapcache that is
3915 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3916 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3917 	 * check after taking the PT lock and making sure that nobody
3918 	 * concurrently faulted in this page and set PG_anon_exclusive.
3919 	 */
3920 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3921 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3922 
3923 	/*
3924 	 * Check under PT lock (to protect against concurrent fork() sharing
3925 	 * the swap entry concurrently) for certainly exclusive pages.
3926 	 */
3927 	if (!folio_test_ksm(folio)) {
3928 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3929 		if (folio != swapcache) {
3930 			/*
3931 			 * We have a fresh page that is not exposed to the
3932 			 * swapcache -> certainly exclusive.
3933 			 */
3934 			exclusive = true;
3935 		} else if (exclusive && folio_test_writeback(folio) &&
3936 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3937 			/*
3938 			 * This is tricky: not all swap backends support
3939 			 * concurrent page modifications while under writeback.
3940 			 *
3941 			 * So if we stumble over such a page in the swapcache
3942 			 * we must not set the page exclusive, otherwise we can
3943 			 * map it writable without further checks and modify it
3944 			 * while still under writeback.
3945 			 *
3946 			 * For these problematic swap backends, simply drop the
3947 			 * exclusive marker: this is perfectly fine as we start
3948 			 * writeback only if we fully unmapped the page and
3949 			 * there are no unexpected references on the page after
3950 			 * unmapping succeeded. After fully unmapped, no
3951 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3952 			 * appear, so dropping the exclusive marker and mapping
3953 			 * it only R/O is fine.
3954 			 */
3955 			exclusive = false;
3956 		}
3957 	}
3958 
3959 	/*
3960 	 * Some architectures may have to restore extra metadata to the page
3961 	 * when reading from swap. This metadata may be indexed by swap entry
3962 	 * so this must be called before swap_free().
3963 	 */
3964 	arch_swap_restore(entry, folio);
3965 
3966 	/*
3967 	 * Remove the swap entry and conditionally try to free up the swapcache.
3968 	 * We're already holding a reference on the page but haven't mapped it
3969 	 * yet.
3970 	 */
3971 	swap_free(entry);
3972 	if (should_try_to_free_swap(folio, vma, vmf->flags))
3973 		folio_free_swap(folio);
3974 
3975 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3976 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3977 	pte = mk_pte(page, vma->vm_page_prot);
3978 
3979 	/*
3980 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3981 	 * certainly not shared either because we just allocated them without
3982 	 * exposing them to the swapcache or because the swap entry indicates
3983 	 * exclusivity.
3984 	 */
3985 	if (!folio_test_ksm(folio) &&
3986 	    (exclusive || folio_ref_count(folio) == 1)) {
3987 		if (vmf->flags & FAULT_FLAG_WRITE) {
3988 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3989 			vmf->flags &= ~FAULT_FLAG_WRITE;
3990 		}
3991 		rmap_flags |= RMAP_EXCLUSIVE;
3992 	}
3993 	flush_icache_page(vma, page);
3994 	if (pte_swp_soft_dirty(vmf->orig_pte))
3995 		pte = pte_mksoft_dirty(pte);
3996 	if (pte_swp_uffd_wp(vmf->orig_pte))
3997 		pte = pte_mkuffd_wp(pte);
3998 	vmf->orig_pte = pte;
3999 
4000 	/* ksm created a completely new copy */
4001 	if (unlikely(folio != swapcache && swapcache)) {
4002 		page_add_new_anon_rmap(page, vma, vmf->address);
4003 		folio_add_lru_vma(folio, vma);
4004 	} else {
4005 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4006 	}
4007 
4008 	VM_BUG_ON(!folio_test_anon(folio) ||
4009 			(pte_write(pte) && !PageAnonExclusive(page)));
4010 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4011 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4012 
4013 	folio_unlock(folio);
4014 	if (folio != swapcache && swapcache) {
4015 		/*
4016 		 * Hold the lock to avoid the swap entry to be reused
4017 		 * until we take the PT lock for the pte_same() check
4018 		 * (to avoid false positives from pte_same). For
4019 		 * further safety release the lock after the swap_free
4020 		 * so that the swap count won't change under a
4021 		 * parallel locked swapcache.
4022 		 */
4023 		folio_unlock(swapcache);
4024 		folio_put(swapcache);
4025 	}
4026 
4027 	if (vmf->flags & FAULT_FLAG_WRITE) {
4028 		ret |= do_wp_page(vmf);
4029 		if (ret & VM_FAULT_ERROR)
4030 			ret &= VM_FAULT_ERROR;
4031 		goto out;
4032 	}
4033 
4034 	/* No need to invalidate - it was non-present before */
4035 	update_mmu_cache(vma, vmf->address, vmf->pte);
4036 unlock:
4037 	if (vmf->pte)
4038 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4039 out:
4040 	if (si)
4041 		put_swap_device(si);
4042 	return ret;
4043 out_nomap:
4044 	if (vmf->pte)
4045 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4046 out_page:
4047 	folio_unlock(folio);
4048 out_release:
4049 	folio_put(folio);
4050 	if (folio != swapcache && swapcache) {
4051 		folio_unlock(swapcache);
4052 		folio_put(swapcache);
4053 	}
4054 	if (si)
4055 		put_swap_device(si);
4056 	return ret;
4057 }
4058 
4059 /*
4060  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4061  * but allow concurrent faults), and pte mapped but not yet locked.
4062  * We return with mmap_lock still held, but pte unmapped and unlocked.
4063  */
4064 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4065 {
4066 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4067 	struct vm_area_struct *vma = vmf->vma;
4068 	struct folio *folio;
4069 	vm_fault_t ret = 0;
4070 	pte_t entry;
4071 
4072 	/* File mapping without ->vm_ops ? */
4073 	if (vma->vm_flags & VM_SHARED)
4074 		return VM_FAULT_SIGBUS;
4075 
4076 	/*
4077 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4078 	 * be distinguished from a transient failure of pte_offset_map().
4079 	 */
4080 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4081 		return VM_FAULT_OOM;
4082 
4083 	/* Use the zero-page for reads */
4084 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4085 			!mm_forbids_zeropage(vma->vm_mm)) {
4086 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4087 						vma->vm_page_prot));
4088 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4089 				vmf->address, &vmf->ptl);
4090 		if (!vmf->pte)
4091 			goto unlock;
4092 		if (vmf_pte_changed(vmf)) {
4093 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4094 			goto unlock;
4095 		}
4096 		ret = check_stable_address_space(vma->vm_mm);
4097 		if (ret)
4098 			goto unlock;
4099 		/* Deliver the page fault to userland, check inside PT lock */
4100 		if (userfaultfd_missing(vma)) {
4101 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4102 			return handle_userfault(vmf, VM_UFFD_MISSING);
4103 		}
4104 		goto setpte;
4105 	}
4106 
4107 	/* Allocate our own private page. */
4108 	if (unlikely(anon_vma_prepare(vma)))
4109 		goto oom;
4110 	folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4111 	if (!folio)
4112 		goto oom;
4113 
4114 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4115 		goto oom_free_page;
4116 	folio_throttle_swaprate(folio, GFP_KERNEL);
4117 
4118 	/*
4119 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4120 	 * preceding stores to the page contents become visible before
4121 	 * the set_pte_at() write.
4122 	 */
4123 	__folio_mark_uptodate(folio);
4124 
4125 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4126 	entry = pte_sw_mkyoung(entry);
4127 	if (vma->vm_flags & VM_WRITE)
4128 		entry = pte_mkwrite(pte_mkdirty(entry));
4129 
4130 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4131 			&vmf->ptl);
4132 	if (!vmf->pte)
4133 		goto release;
4134 	if (vmf_pte_changed(vmf)) {
4135 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4136 		goto release;
4137 	}
4138 
4139 	ret = check_stable_address_space(vma->vm_mm);
4140 	if (ret)
4141 		goto release;
4142 
4143 	/* Deliver the page fault to userland, check inside PT lock */
4144 	if (userfaultfd_missing(vma)) {
4145 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4146 		folio_put(folio);
4147 		return handle_userfault(vmf, VM_UFFD_MISSING);
4148 	}
4149 
4150 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4151 	folio_add_new_anon_rmap(folio, vma, vmf->address);
4152 	folio_add_lru_vma(folio, vma);
4153 setpte:
4154 	if (uffd_wp)
4155 		entry = pte_mkuffd_wp(entry);
4156 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4157 
4158 	/* No need to invalidate - it was non-present before */
4159 	update_mmu_cache(vma, vmf->address, vmf->pte);
4160 unlock:
4161 	if (vmf->pte)
4162 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4163 	return ret;
4164 release:
4165 	folio_put(folio);
4166 	goto unlock;
4167 oom_free_page:
4168 	folio_put(folio);
4169 oom:
4170 	return VM_FAULT_OOM;
4171 }
4172 
4173 /*
4174  * The mmap_lock must have been held on entry, and may have been
4175  * released depending on flags and vma->vm_ops->fault() return value.
4176  * See filemap_fault() and __lock_page_retry().
4177  */
4178 static vm_fault_t __do_fault(struct vm_fault *vmf)
4179 {
4180 	struct vm_area_struct *vma = vmf->vma;
4181 	vm_fault_t ret;
4182 
4183 	/*
4184 	 * Preallocate pte before we take page_lock because this might lead to
4185 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4186 	 *				lock_page(A)
4187 	 *				SetPageWriteback(A)
4188 	 *				unlock_page(A)
4189 	 * lock_page(B)
4190 	 *				lock_page(B)
4191 	 * pte_alloc_one
4192 	 *   shrink_page_list
4193 	 *     wait_on_page_writeback(A)
4194 	 *				SetPageWriteback(B)
4195 	 *				unlock_page(B)
4196 	 *				# flush A, B to clear the writeback
4197 	 */
4198 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4199 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4200 		if (!vmf->prealloc_pte)
4201 			return VM_FAULT_OOM;
4202 	}
4203 
4204 	ret = vma->vm_ops->fault(vmf);
4205 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4206 			    VM_FAULT_DONE_COW)))
4207 		return ret;
4208 
4209 	if (unlikely(PageHWPoison(vmf->page))) {
4210 		struct page *page = vmf->page;
4211 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4212 		if (ret & VM_FAULT_LOCKED) {
4213 			if (page_mapped(page))
4214 				unmap_mapping_pages(page_mapping(page),
4215 						    page->index, 1, false);
4216 			/* Retry if a clean page was removed from the cache. */
4217 			if (invalidate_inode_page(page))
4218 				poisonret = VM_FAULT_NOPAGE;
4219 			unlock_page(page);
4220 		}
4221 		put_page(page);
4222 		vmf->page = NULL;
4223 		return poisonret;
4224 	}
4225 
4226 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4227 		lock_page(vmf->page);
4228 	else
4229 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4230 
4231 	return ret;
4232 }
4233 
4234 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4235 static void deposit_prealloc_pte(struct vm_fault *vmf)
4236 {
4237 	struct vm_area_struct *vma = vmf->vma;
4238 
4239 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4240 	/*
4241 	 * We are going to consume the prealloc table,
4242 	 * count that as nr_ptes.
4243 	 */
4244 	mm_inc_nr_ptes(vma->vm_mm);
4245 	vmf->prealloc_pte = NULL;
4246 }
4247 
4248 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4249 {
4250 	struct vm_area_struct *vma = vmf->vma;
4251 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4252 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4253 	pmd_t entry;
4254 	int i;
4255 	vm_fault_t ret = VM_FAULT_FALLBACK;
4256 
4257 	if (!transhuge_vma_suitable(vma, haddr))
4258 		return ret;
4259 
4260 	page = compound_head(page);
4261 	if (compound_order(page) != HPAGE_PMD_ORDER)
4262 		return ret;
4263 
4264 	/*
4265 	 * Just backoff if any subpage of a THP is corrupted otherwise
4266 	 * the corrupted page may mapped by PMD silently to escape the
4267 	 * check.  This kind of THP just can be PTE mapped.  Access to
4268 	 * the corrupted subpage should trigger SIGBUS as expected.
4269 	 */
4270 	if (unlikely(PageHasHWPoisoned(page)))
4271 		return ret;
4272 
4273 	/*
4274 	 * Archs like ppc64 need additional space to store information
4275 	 * related to pte entry. Use the preallocated table for that.
4276 	 */
4277 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4278 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4279 		if (!vmf->prealloc_pte)
4280 			return VM_FAULT_OOM;
4281 	}
4282 
4283 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4284 	if (unlikely(!pmd_none(*vmf->pmd)))
4285 		goto out;
4286 
4287 	for (i = 0; i < HPAGE_PMD_NR; i++)
4288 		flush_icache_page(vma, page + i);
4289 
4290 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4291 	if (write)
4292 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4293 
4294 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4295 	page_add_file_rmap(page, vma, true);
4296 
4297 	/*
4298 	 * deposit and withdraw with pmd lock held
4299 	 */
4300 	if (arch_needs_pgtable_deposit())
4301 		deposit_prealloc_pte(vmf);
4302 
4303 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4304 
4305 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4306 
4307 	/* fault is handled */
4308 	ret = 0;
4309 	count_vm_event(THP_FILE_MAPPED);
4310 out:
4311 	spin_unlock(vmf->ptl);
4312 	return ret;
4313 }
4314 #else
4315 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4316 {
4317 	return VM_FAULT_FALLBACK;
4318 }
4319 #endif
4320 
4321 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4322 {
4323 	struct vm_area_struct *vma = vmf->vma;
4324 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4325 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4326 	bool prefault = vmf->address != addr;
4327 	pte_t entry;
4328 
4329 	flush_icache_page(vma, page);
4330 	entry = mk_pte(page, vma->vm_page_prot);
4331 
4332 	if (prefault && arch_wants_old_prefaulted_pte())
4333 		entry = pte_mkold(entry);
4334 	else
4335 		entry = pte_sw_mkyoung(entry);
4336 
4337 	if (write)
4338 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4339 	if (unlikely(uffd_wp))
4340 		entry = pte_mkuffd_wp(entry);
4341 	/* copy-on-write page */
4342 	if (write && !(vma->vm_flags & VM_SHARED)) {
4343 		inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4344 		page_add_new_anon_rmap(page, vma, addr);
4345 		lru_cache_add_inactive_or_unevictable(page, vma);
4346 	} else {
4347 		inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4348 		page_add_file_rmap(page, vma, false);
4349 	}
4350 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4351 }
4352 
4353 static bool vmf_pte_changed(struct vm_fault *vmf)
4354 {
4355 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4356 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4357 
4358 	return !pte_none(ptep_get(vmf->pte));
4359 }
4360 
4361 /**
4362  * finish_fault - finish page fault once we have prepared the page to fault
4363  *
4364  * @vmf: structure describing the fault
4365  *
4366  * This function handles all that is needed to finish a page fault once the
4367  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4368  * given page, adds reverse page mapping, handles memcg charges and LRU
4369  * addition.
4370  *
4371  * The function expects the page to be locked and on success it consumes a
4372  * reference of a page being mapped (for the PTE which maps it).
4373  *
4374  * Return: %0 on success, %VM_FAULT_ code in case of error.
4375  */
4376 vm_fault_t finish_fault(struct vm_fault *vmf)
4377 {
4378 	struct vm_area_struct *vma = vmf->vma;
4379 	struct page *page;
4380 	vm_fault_t ret;
4381 
4382 	/* Did we COW the page? */
4383 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4384 		page = vmf->cow_page;
4385 	else
4386 		page = vmf->page;
4387 
4388 	/*
4389 	 * check even for read faults because we might have lost our CoWed
4390 	 * page
4391 	 */
4392 	if (!(vma->vm_flags & VM_SHARED)) {
4393 		ret = check_stable_address_space(vma->vm_mm);
4394 		if (ret)
4395 			return ret;
4396 	}
4397 
4398 	if (pmd_none(*vmf->pmd)) {
4399 		if (PageTransCompound(page)) {
4400 			ret = do_set_pmd(vmf, page);
4401 			if (ret != VM_FAULT_FALLBACK)
4402 				return ret;
4403 		}
4404 
4405 		if (vmf->prealloc_pte)
4406 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4407 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4408 			return VM_FAULT_OOM;
4409 	}
4410 
4411 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4412 				      vmf->address, &vmf->ptl);
4413 	if (!vmf->pte)
4414 		return VM_FAULT_NOPAGE;
4415 
4416 	/* Re-check under ptl */
4417 	if (likely(!vmf_pte_changed(vmf))) {
4418 		do_set_pte(vmf, page, vmf->address);
4419 
4420 		/* no need to invalidate: a not-present page won't be cached */
4421 		update_mmu_cache(vma, vmf->address, vmf->pte);
4422 
4423 		ret = 0;
4424 	} else {
4425 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4426 		ret = VM_FAULT_NOPAGE;
4427 	}
4428 
4429 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4430 	return ret;
4431 }
4432 
4433 static unsigned long fault_around_pages __read_mostly =
4434 	65536 >> PAGE_SHIFT;
4435 
4436 #ifdef CONFIG_DEBUG_FS
4437 static int fault_around_bytes_get(void *data, u64 *val)
4438 {
4439 	*val = fault_around_pages << PAGE_SHIFT;
4440 	return 0;
4441 }
4442 
4443 /*
4444  * fault_around_bytes must be rounded down to the nearest page order as it's
4445  * what do_fault_around() expects to see.
4446  */
4447 static int fault_around_bytes_set(void *data, u64 val)
4448 {
4449 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4450 		return -EINVAL;
4451 
4452 	/*
4453 	 * The minimum value is 1 page, however this results in no fault-around
4454 	 * at all. See should_fault_around().
4455 	 */
4456 	fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4457 
4458 	return 0;
4459 }
4460 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4461 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4462 
4463 static int __init fault_around_debugfs(void)
4464 {
4465 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4466 				   &fault_around_bytes_fops);
4467 	return 0;
4468 }
4469 late_initcall(fault_around_debugfs);
4470 #endif
4471 
4472 /*
4473  * do_fault_around() tries to map few pages around the fault address. The hope
4474  * is that the pages will be needed soon and this will lower the number of
4475  * faults to handle.
4476  *
4477  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4478  * not ready to be mapped: not up-to-date, locked, etc.
4479  *
4480  * This function doesn't cross VMA or page table boundaries, in order to call
4481  * map_pages() and acquire a PTE lock only once.
4482  *
4483  * fault_around_pages defines how many pages we'll try to map.
4484  * do_fault_around() expects it to be set to a power of two less than or equal
4485  * to PTRS_PER_PTE.
4486  *
4487  * The virtual address of the area that we map is naturally aligned to
4488  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4489  * (and therefore to page order).  This way it's easier to guarantee
4490  * that we don't cross page table boundaries.
4491  */
4492 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4493 {
4494 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4495 	pgoff_t pte_off = pte_index(vmf->address);
4496 	/* The page offset of vmf->address within the VMA. */
4497 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4498 	pgoff_t from_pte, to_pte;
4499 	vm_fault_t ret;
4500 
4501 	/* The PTE offset of the start address, clamped to the VMA. */
4502 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4503 		       pte_off - min(pte_off, vma_off));
4504 
4505 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4506 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4507 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4508 
4509 	if (pmd_none(*vmf->pmd)) {
4510 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4511 		if (!vmf->prealloc_pte)
4512 			return VM_FAULT_OOM;
4513 	}
4514 
4515 	rcu_read_lock();
4516 	ret = vmf->vma->vm_ops->map_pages(vmf,
4517 			vmf->pgoff + from_pte - pte_off,
4518 			vmf->pgoff + to_pte - pte_off);
4519 	rcu_read_unlock();
4520 
4521 	return ret;
4522 }
4523 
4524 /* Return true if we should do read fault-around, false otherwise */
4525 static inline bool should_fault_around(struct vm_fault *vmf)
4526 {
4527 	/* No ->map_pages?  No way to fault around... */
4528 	if (!vmf->vma->vm_ops->map_pages)
4529 		return false;
4530 
4531 	if (uffd_disable_fault_around(vmf->vma))
4532 		return false;
4533 
4534 	/* A single page implies no faulting 'around' at all. */
4535 	return fault_around_pages > 1;
4536 }
4537 
4538 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4539 {
4540 	vm_fault_t ret = 0;
4541 	struct folio *folio;
4542 
4543 	/*
4544 	 * Let's call ->map_pages() first and use ->fault() as fallback
4545 	 * if page by the offset is not ready to be mapped (cold cache or
4546 	 * something).
4547 	 */
4548 	if (should_fault_around(vmf)) {
4549 		ret = do_fault_around(vmf);
4550 		if (ret)
4551 			return ret;
4552 	}
4553 
4554 	ret = __do_fault(vmf);
4555 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4556 		return ret;
4557 
4558 	ret |= finish_fault(vmf);
4559 	folio = page_folio(vmf->page);
4560 	folio_unlock(folio);
4561 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4562 		folio_put(folio);
4563 	return ret;
4564 }
4565 
4566 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4567 {
4568 	struct vm_area_struct *vma = vmf->vma;
4569 	vm_fault_t ret;
4570 
4571 	if (unlikely(anon_vma_prepare(vma)))
4572 		return VM_FAULT_OOM;
4573 
4574 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4575 	if (!vmf->cow_page)
4576 		return VM_FAULT_OOM;
4577 
4578 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4579 				GFP_KERNEL)) {
4580 		put_page(vmf->cow_page);
4581 		return VM_FAULT_OOM;
4582 	}
4583 	folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4584 
4585 	ret = __do_fault(vmf);
4586 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4587 		goto uncharge_out;
4588 	if (ret & VM_FAULT_DONE_COW)
4589 		return ret;
4590 
4591 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4592 	__SetPageUptodate(vmf->cow_page);
4593 
4594 	ret |= finish_fault(vmf);
4595 	unlock_page(vmf->page);
4596 	put_page(vmf->page);
4597 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4598 		goto uncharge_out;
4599 	return ret;
4600 uncharge_out:
4601 	put_page(vmf->cow_page);
4602 	return ret;
4603 }
4604 
4605 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4606 {
4607 	struct vm_area_struct *vma = vmf->vma;
4608 	vm_fault_t ret, tmp;
4609 	struct folio *folio;
4610 
4611 	ret = __do_fault(vmf);
4612 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4613 		return ret;
4614 
4615 	folio = page_folio(vmf->page);
4616 
4617 	/*
4618 	 * Check if the backing address space wants to know that the page is
4619 	 * about to become writable
4620 	 */
4621 	if (vma->vm_ops->page_mkwrite) {
4622 		folio_unlock(folio);
4623 		tmp = do_page_mkwrite(vmf, folio);
4624 		if (unlikely(!tmp ||
4625 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4626 			folio_put(folio);
4627 			return tmp;
4628 		}
4629 	}
4630 
4631 	ret |= finish_fault(vmf);
4632 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4633 					VM_FAULT_RETRY))) {
4634 		folio_unlock(folio);
4635 		folio_put(folio);
4636 		return ret;
4637 	}
4638 
4639 	ret |= fault_dirty_shared_page(vmf);
4640 	return ret;
4641 }
4642 
4643 /*
4644  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4645  * but allow concurrent faults).
4646  * The mmap_lock may have been released depending on flags and our
4647  * return value.  See filemap_fault() and __folio_lock_or_retry().
4648  * If mmap_lock is released, vma may become invalid (for example
4649  * by other thread calling munmap()).
4650  */
4651 static vm_fault_t do_fault(struct vm_fault *vmf)
4652 {
4653 	struct vm_area_struct *vma = vmf->vma;
4654 	struct mm_struct *vm_mm = vma->vm_mm;
4655 	vm_fault_t ret;
4656 
4657 	/*
4658 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4659 	 */
4660 	if (!vma->vm_ops->fault) {
4661 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4662 					       vmf->address, &vmf->ptl);
4663 		if (unlikely(!vmf->pte))
4664 			ret = VM_FAULT_SIGBUS;
4665 		else {
4666 			/*
4667 			 * Make sure this is not a temporary clearing of pte
4668 			 * by holding ptl and checking again. A R/M/W update
4669 			 * of pte involves: take ptl, clearing the pte so that
4670 			 * we don't have concurrent modification by hardware
4671 			 * followed by an update.
4672 			 */
4673 			if (unlikely(pte_none(ptep_get(vmf->pte))))
4674 				ret = VM_FAULT_SIGBUS;
4675 			else
4676 				ret = VM_FAULT_NOPAGE;
4677 
4678 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4679 		}
4680 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4681 		ret = do_read_fault(vmf);
4682 	else if (!(vma->vm_flags & VM_SHARED))
4683 		ret = do_cow_fault(vmf);
4684 	else
4685 		ret = do_shared_fault(vmf);
4686 
4687 	/* preallocated pagetable is unused: free it */
4688 	if (vmf->prealloc_pte) {
4689 		pte_free(vm_mm, vmf->prealloc_pte);
4690 		vmf->prealloc_pte = NULL;
4691 	}
4692 	return ret;
4693 }
4694 
4695 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4696 		      unsigned long addr, int page_nid, int *flags)
4697 {
4698 	get_page(page);
4699 
4700 	/* Record the current PID acceesing VMA */
4701 	vma_set_access_pid_bit(vma);
4702 
4703 	count_vm_numa_event(NUMA_HINT_FAULTS);
4704 	if (page_nid == numa_node_id()) {
4705 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4706 		*flags |= TNF_FAULT_LOCAL;
4707 	}
4708 
4709 	return mpol_misplaced(page, vma, addr);
4710 }
4711 
4712 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4713 {
4714 	struct vm_area_struct *vma = vmf->vma;
4715 	struct page *page = NULL;
4716 	int page_nid = NUMA_NO_NODE;
4717 	bool writable = false;
4718 	int last_cpupid;
4719 	int target_nid;
4720 	pte_t pte, old_pte;
4721 	int flags = 0;
4722 
4723 	/*
4724 	 * The "pte" at this point cannot be used safely without
4725 	 * validation through pte_unmap_same(). It's of NUMA type but
4726 	 * the pfn may be screwed if the read is non atomic.
4727 	 */
4728 	spin_lock(vmf->ptl);
4729 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4730 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4731 		goto out;
4732 	}
4733 
4734 	/* Get the normal PTE  */
4735 	old_pte = ptep_get(vmf->pte);
4736 	pte = pte_modify(old_pte, vma->vm_page_prot);
4737 
4738 	/*
4739 	 * Detect now whether the PTE could be writable; this information
4740 	 * is only valid while holding the PT lock.
4741 	 */
4742 	writable = pte_write(pte);
4743 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4744 	    can_change_pte_writable(vma, vmf->address, pte))
4745 		writable = true;
4746 
4747 	page = vm_normal_page(vma, vmf->address, pte);
4748 	if (!page || is_zone_device_page(page))
4749 		goto out_map;
4750 
4751 	/* TODO: handle PTE-mapped THP */
4752 	if (PageCompound(page))
4753 		goto out_map;
4754 
4755 	/*
4756 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4757 	 * much anyway since they can be in shared cache state. This misses
4758 	 * the case where a mapping is writable but the process never writes
4759 	 * to it but pte_write gets cleared during protection updates and
4760 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4761 	 * background writeback, dirty balancing and application behaviour.
4762 	 */
4763 	if (!writable)
4764 		flags |= TNF_NO_GROUP;
4765 
4766 	/*
4767 	 * Flag if the page is shared between multiple address spaces. This
4768 	 * is later used when determining whether to group tasks together
4769 	 */
4770 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4771 		flags |= TNF_SHARED;
4772 
4773 	page_nid = page_to_nid(page);
4774 	/*
4775 	 * For memory tiering mode, cpupid of slow memory page is used
4776 	 * to record page access time.  So use default value.
4777 	 */
4778 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4779 	    !node_is_toptier(page_nid))
4780 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4781 	else
4782 		last_cpupid = page_cpupid_last(page);
4783 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4784 			&flags);
4785 	if (target_nid == NUMA_NO_NODE) {
4786 		put_page(page);
4787 		goto out_map;
4788 	}
4789 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4790 	writable = false;
4791 
4792 	/* Migrate to the requested node */
4793 	if (migrate_misplaced_page(page, vma, target_nid)) {
4794 		page_nid = target_nid;
4795 		flags |= TNF_MIGRATED;
4796 	} else {
4797 		flags |= TNF_MIGRATE_FAIL;
4798 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4799 					       vmf->address, &vmf->ptl);
4800 		if (unlikely(!vmf->pte))
4801 			goto out;
4802 		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4803 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4804 			goto out;
4805 		}
4806 		goto out_map;
4807 	}
4808 
4809 out:
4810 	if (page_nid != NUMA_NO_NODE)
4811 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4812 	return 0;
4813 out_map:
4814 	/*
4815 	 * Make it present again, depending on how arch implements
4816 	 * non-accessible ptes, some can allow access by kernel mode.
4817 	 */
4818 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4819 	pte = pte_modify(old_pte, vma->vm_page_prot);
4820 	pte = pte_mkyoung(pte);
4821 	if (writable)
4822 		pte = pte_mkwrite(pte);
4823 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4824 	update_mmu_cache(vma, vmf->address, vmf->pte);
4825 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4826 	goto out;
4827 }
4828 
4829 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4830 {
4831 	if (vma_is_anonymous(vmf->vma))
4832 		return do_huge_pmd_anonymous_page(vmf);
4833 	if (vmf->vma->vm_ops->huge_fault)
4834 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4835 	return VM_FAULT_FALLBACK;
4836 }
4837 
4838 /* `inline' is required to avoid gcc 4.1.2 build error */
4839 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4840 {
4841 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4842 	vm_fault_t ret;
4843 
4844 	if (vma_is_anonymous(vmf->vma)) {
4845 		if (likely(!unshare) &&
4846 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4847 			return handle_userfault(vmf, VM_UFFD_WP);
4848 		return do_huge_pmd_wp_page(vmf);
4849 	}
4850 
4851 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4852 		if (vmf->vma->vm_ops->huge_fault) {
4853 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4854 			if (!(ret & VM_FAULT_FALLBACK))
4855 				return ret;
4856 		}
4857 	}
4858 
4859 	/* COW or write-notify handled on pte level: split pmd. */
4860 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4861 
4862 	return VM_FAULT_FALLBACK;
4863 }
4864 
4865 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4866 {
4867 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4868 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4869 	/* No support for anonymous transparent PUD pages yet */
4870 	if (vma_is_anonymous(vmf->vma))
4871 		return VM_FAULT_FALLBACK;
4872 	if (vmf->vma->vm_ops->huge_fault)
4873 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4874 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4875 	return VM_FAULT_FALLBACK;
4876 }
4877 
4878 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4879 {
4880 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4881 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4882 	vm_fault_t ret;
4883 
4884 	/* No support for anonymous transparent PUD pages yet */
4885 	if (vma_is_anonymous(vmf->vma))
4886 		goto split;
4887 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4888 		if (vmf->vma->vm_ops->huge_fault) {
4889 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4890 			if (!(ret & VM_FAULT_FALLBACK))
4891 				return ret;
4892 		}
4893 	}
4894 split:
4895 	/* COW or write-notify not handled on PUD level: split pud.*/
4896 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4897 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4898 	return VM_FAULT_FALLBACK;
4899 }
4900 
4901 /*
4902  * These routines also need to handle stuff like marking pages dirty
4903  * and/or accessed for architectures that don't do it in hardware (most
4904  * RISC architectures).  The early dirtying is also good on the i386.
4905  *
4906  * There is also a hook called "update_mmu_cache()" that architectures
4907  * with external mmu caches can use to update those (ie the Sparc or
4908  * PowerPC hashed page tables that act as extended TLBs).
4909  *
4910  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4911  * concurrent faults).
4912  *
4913  * The mmap_lock may have been released depending on flags and our return value.
4914  * See filemap_fault() and __folio_lock_or_retry().
4915  */
4916 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4917 {
4918 	pte_t entry;
4919 
4920 	if (unlikely(pmd_none(*vmf->pmd))) {
4921 		/*
4922 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4923 		 * want to allocate huge page, and if we expose page table
4924 		 * for an instant, it will be difficult to retract from
4925 		 * concurrent faults and from rmap lookups.
4926 		 */
4927 		vmf->pte = NULL;
4928 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4929 	} else {
4930 		/*
4931 		 * A regular pmd is established and it can't morph into a huge
4932 		 * pmd by anon khugepaged, since that takes mmap_lock in write
4933 		 * mode; but shmem or file collapse to THP could still morph
4934 		 * it into a huge pmd: just retry later if so.
4935 		 */
4936 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4937 						 vmf->address, &vmf->ptl);
4938 		if (unlikely(!vmf->pte))
4939 			return 0;
4940 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
4941 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4942 
4943 		if (pte_none(vmf->orig_pte)) {
4944 			pte_unmap(vmf->pte);
4945 			vmf->pte = NULL;
4946 		}
4947 	}
4948 
4949 	if (!vmf->pte)
4950 		return do_pte_missing(vmf);
4951 
4952 	if (!pte_present(vmf->orig_pte))
4953 		return do_swap_page(vmf);
4954 
4955 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4956 		return do_numa_page(vmf);
4957 
4958 	spin_lock(vmf->ptl);
4959 	entry = vmf->orig_pte;
4960 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
4961 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4962 		goto unlock;
4963 	}
4964 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4965 		if (!pte_write(entry))
4966 			return do_wp_page(vmf);
4967 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4968 			entry = pte_mkdirty(entry);
4969 	}
4970 	entry = pte_mkyoung(entry);
4971 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4972 				vmf->flags & FAULT_FLAG_WRITE)) {
4973 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4974 	} else {
4975 		/* Skip spurious TLB flush for retried page fault */
4976 		if (vmf->flags & FAULT_FLAG_TRIED)
4977 			goto unlock;
4978 		/*
4979 		 * This is needed only for protection faults but the arch code
4980 		 * is not yet telling us if this is a protection fault or not.
4981 		 * This still avoids useless tlb flushes for .text page faults
4982 		 * with threads.
4983 		 */
4984 		if (vmf->flags & FAULT_FLAG_WRITE)
4985 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4986 						     vmf->pte);
4987 	}
4988 unlock:
4989 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4990 	return 0;
4991 }
4992 
4993 /*
4994  * By the time we get here, we already hold the mm semaphore
4995  *
4996  * The mmap_lock may have been released depending on flags and our
4997  * return value.  See filemap_fault() and __folio_lock_or_retry().
4998  */
4999 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5000 		unsigned long address, unsigned int flags)
5001 {
5002 	struct vm_fault vmf = {
5003 		.vma = vma,
5004 		.address = address & PAGE_MASK,
5005 		.real_address = address,
5006 		.flags = flags,
5007 		.pgoff = linear_page_index(vma, address),
5008 		.gfp_mask = __get_fault_gfp_mask(vma),
5009 	};
5010 	struct mm_struct *mm = vma->vm_mm;
5011 	unsigned long vm_flags = vma->vm_flags;
5012 	pgd_t *pgd;
5013 	p4d_t *p4d;
5014 	vm_fault_t ret;
5015 
5016 	pgd = pgd_offset(mm, address);
5017 	p4d = p4d_alloc(mm, pgd, address);
5018 	if (!p4d)
5019 		return VM_FAULT_OOM;
5020 
5021 	vmf.pud = pud_alloc(mm, p4d, address);
5022 	if (!vmf.pud)
5023 		return VM_FAULT_OOM;
5024 retry_pud:
5025 	if (pud_none(*vmf.pud) &&
5026 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5027 		ret = create_huge_pud(&vmf);
5028 		if (!(ret & VM_FAULT_FALLBACK))
5029 			return ret;
5030 	} else {
5031 		pud_t orig_pud = *vmf.pud;
5032 
5033 		barrier();
5034 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5035 
5036 			/*
5037 			 * TODO once we support anonymous PUDs: NUMA case and
5038 			 * FAULT_FLAG_UNSHARE handling.
5039 			 */
5040 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5041 				ret = wp_huge_pud(&vmf, orig_pud);
5042 				if (!(ret & VM_FAULT_FALLBACK))
5043 					return ret;
5044 			} else {
5045 				huge_pud_set_accessed(&vmf, orig_pud);
5046 				return 0;
5047 			}
5048 		}
5049 	}
5050 
5051 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5052 	if (!vmf.pmd)
5053 		return VM_FAULT_OOM;
5054 
5055 	/* Huge pud page fault raced with pmd_alloc? */
5056 	if (pud_trans_unstable(vmf.pud))
5057 		goto retry_pud;
5058 
5059 	if (pmd_none(*vmf.pmd) &&
5060 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5061 		ret = create_huge_pmd(&vmf);
5062 		if (!(ret & VM_FAULT_FALLBACK))
5063 			return ret;
5064 	} else {
5065 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5066 
5067 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5068 			VM_BUG_ON(thp_migration_supported() &&
5069 					  !is_pmd_migration_entry(vmf.orig_pmd));
5070 			if (is_pmd_migration_entry(vmf.orig_pmd))
5071 				pmd_migration_entry_wait(mm, vmf.pmd);
5072 			return 0;
5073 		}
5074 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5075 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5076 				return do_huge_pmd_numa_page(&vmf);
5077 
5078 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5079 			    !pmd_write(vmf.orig_pmd)) {
5080 				ret = wp_huge_pmd(&vmf);
5081 				if (!(ret & VM_FAULT_FALLBACK))
5082 					return ret;
5083 			} else {
5084 				huge_pmd_set_accessed(&vmf);
5085 				return 0;
5086 			}
5087 		}
5088 	}
5089 
5090 	return handle_pte_fault(&vmf);
5091 }
5092 
5093 /**
5094  * mm_account_fault - Do page fault accounting
5095  * @mm: mm from which memcg should be extracted. It can be NULL.
5096  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5097  *        of perf event counters, but we'll still do the per-task accounting to
5098  *        the task who triggered this page fault.
5099  * @address: the faulted address.
5100  * @flags: the fault flags.
5101  * @ret: the fault retcode.
5102  *
5103  * This will take care of most of the page fault accounting.  Meanwhile, it
5104  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5105  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5106  * still be in per-arch page fault handlers at the entry of page fault.
5107  */
5108 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5109 				    unsigned long address, unsigned int flags,
5110 				    vm_fault_t ret)
5111 {
5112 	bool major;
5113 
5114 	/* Incomplete faults will be accounted upon completion. */
5115 	if (ret & VM_FAULT_RETRY)
5116 		return;
5117 
5118 	/*
5119 	 * To preserve the behavior of older kernels, PGFAULT counters record
5120 	 * both successful and failed faults, as opposed to perf counters,
5121 	 * which ignore failed cases.
5122 	 */
5123 	count_vm_event(PGFAULT);
5124 	count_memcg_event_mm(mm, PGFAULT);
5125 
5126 	/*
5127 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5128 	 * valid).  That includes arch_vma_access_permitted() failing before
5129 	 * reaching here. So this is not a "this many hardware page faults"
5130 	 * counter.  We should use the hw profiling for that.
5131 	 */
5132 	if (ret & VM_FAULT_ERROR)
5133 		return;
5134 
5135 	/*
5136 	 * We define the fault as a major fault when the final successful fault
5137 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5138 	 * handle it immediately previously).
5139 	 */
5140 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5141 
5142 	if (major)
5143 		current->maj_flt++;
5144 	else
5145 		current->min_flt++;
5146 
5147 	/*
5148 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5149 	 * accounting for the per thread fault counters who triggered the
5150 	 * fault, and we skip the perf event updates.
5151 	 */
5152 	if (!regs)
5153 		return;
5154 
5155 	if (major)
5156 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5157 	else
5158 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5159 }
5160 
5161 #ifdef CONFIG_LRU_GEN
5162 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5163 {
5164 	/* the LRU algorithm only applies to accesses with recency */
5165 	current->in_lru_fault = vma_has_recency(vma);
5166 }
5167 
5168 static void lru_gen_exit_fault(void)
5169 {
5170 	current->in_lru_fault = false;
5171 }
5172 #else
5173 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5174 {
5175 }
5176 
5177 static void lru_gen_exit_fault(void)
5178 {
5179 }
5180 #endif /* CONFIG_LRU_GEN */
5181 
5182 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5183 				       unsigned int *flags)
5184 {
5185 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5186 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5187 			return VM_FAULT_SIGSEGV;
5188 		/*
5189 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5190 		 * just treat it like an ordinary read-fault otherwise.
5191 		 */
5192 		if (!is_cow_mapping(vma->vm_flags))
5193 			*flags &= ~FAULT_FLAG_UNSHARE;
5194 	} else if (*flags & FAULT_FLAG_WRITE) {
5195 		/* Write faults on read-only mappings are impossible ... */
5196 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5197 			return VM_FAULT_SIGSEGV;
5198 		/* ... and FOLL_FORCE only applies to COW mappings. */
5199 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5200 				 !is_cow_mapping(vma->vm_flags)))
5201 			return VM_FAULT_SIGSEGV;
5202 	}
5203 	return 0;
5204 }
5205 
5206 /*
5207  * By the time we get here, we already hold the mm semaphore
5208  *
5209  * The mmap_lock may have been released depending on flags and our
5210  * return value.  See filemap_fault() and __folio_lock_or_retry().
5211  */
5212 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5213 			   unsigned int flags, struct pt_regs *regs)
5214 {
5215 	/* If the fault handler drops the mmap_lock, vma may be freed */
5216 	struct mm_struct *mm = vma->vm_mm;
5217 	vm_fault_t ret;
5218 
5219 	__set_current_state(TASK_RUNNING);
5220 
5221 	ret = sanitize_fault_flags(vma, &flags);
5222 	if (ret)
5223 		goto out;
5224 
5225 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5226 					    flags & FAULT_FLAG_INSTRUCTION,
5227 					    flags & FAULT_FLAG_REMOTE)) {
5228 		ret = VM_FAULT_SIGSEGV;
5229 		goto out;
5230 	}
5231 
5232 	/*
5233 	 * Enable the memcg OOM handling for faults triggered in user
5234 	 * space.  Kernel faults are handled more gracefully.
5235 	 */
5236 	if (flags & FAULT_FLAG_USER)
5237 		mem_cgroup_enter_user_fault();
5238 
5239 	lru_gen_enter_fault(vma);
5240 
5241 	if (unlikely(is_vm_hugetlb_page(vma)))
5242 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5243 	else
5244 		ret = __handle_mm_fault(vma, address, flags);
5245 
5246 	lru_gen_exit_fault();
5247 
5248 	if (flags & FAULT_FLAG_USER) {
5249 		mem_cgroup_exit_user_fault();
5250 		/*
5251 		 * The task may have entered a memcg OOM situation but
5252 		 * if the allocation error was handled gracefully (no
5253 		 * VM_FAULT_OOM), there is no need to kill anything.
5254 		 * Just clean up the OOM state peacefully.
5255 		 */
5256 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5257 			mem_cgroup_oom_synchronize(false);
5258 	}
5259 out:
5260 	mm_account_fault(mm, regs, address, flags, ret);
5261 
5262 	return ret;
5263 }
5264 EXPORT_SYMBOL_GPL(handle_mm_fault);
5265 
5266 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5267 #include <linux/extable.h>
5268 
5269 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5270 {
5271 	/* Even if this succeeds, make it clear we *might* have slept */
5272 	if (likely(mmap_read_trylock(mm))) {
5273 		might_sleep();
5274 		return true;
5275 	}
5276 
5277 	if (regs && !user_mode(regs)) {
5278 		unsigned long ip = instruction_pointer(regs);
5279 		if (!search_exception_tables(ip))
5280 			return false;
5281 	}
5282 
5283 	return !mmap_read_lock_killable(mm);
5284 }
5285 
5286 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5287 {
5288 	/*
5289 	 * We don't have this operation yet.
5290 	 *
5291 	 * It should be easy enough to do: it's basically a
5292 	 *    atomic_long_try_cmpxchg_acquire()
5293 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5294 	 * it also needs the proper lockdep magic etc.
5295 	 */
5296 	return false;
5297 }
5298 
5299 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5300 {
5301 	mmap_read_unlock(mm);
5302 	if (regs && !user_mode(regs)) {
5303 		unsigned long ip = instruction_pointer(regs);
5304 		if (!search_exception_tables(ip))
5305 			return false;
5306 	}
5307 	return !mmap_write_lock_killable(mm);
5308 }
5309 
5310 /*
5311  * Helper for page fault handling.
5312  *
5313  * This is kind of equivalend to "mmap_read_lock()" followed
5314  * by "find_extend_vma()", except it's a lot more careful about
5315  * the locking (and will drop the lock on failure).
5316  *
5317  * For example, if we have a kernel bug that causes a page
5318  * fault, we don't want to just use mmap_read_lock() to get
5319  * the mm lock, because that would deadlock if the bug were
5320  * to happen while we're holding the mm lock for writing.
5321  *
5322  * So this checks the exception tables on kernel faults in
5323  * order to only do this all for instructions that are actually
5324  * expected to fault.
5325  *
5326  * We can also actually take the mm lock for writing if we
5327  * need to extend the vma, which helps the VM layer a lot.
5328  */
5329 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5330 			unsigned long addr, struct pt_regs *regs)
5331 {
5332 	struct vm_area_struct *vma;
5333 
5334 	if (!get_mmap_lock_carefully(mm, regs))
5335 		return NULL;
5336 
5337 	vma = find_vma(mm, addr);
5338 	if (likely(vma && (vma->vm_start <= addr)))
5339 		return vma;
5340 
5341 	/*
5342 	 * Well, dang. We might still be successful, but only
5343 	 * if we can extend a vma to do so.
5344 	 */
5345 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5346 		mmap_read_unlock(mm);
5347 		return NULL;
5348 	}
5349 
5350 	/*
5351 	 * We can try to upgrade the mmap lock atomically,
5352 	 * in which case we can continue to use the vma
5353 	 * we already looked up.
5354 	 *
5355 	 * Otherwise we'll have to drop the mmap lock and
5356 	 * re-take it, and also look up the vma again,
5357 	 * re-checking it.
5358 	 */
5359 	if (!mmap_upgrade_trylock(mm)) {
5360 		if (!upgrade_mmap_lock_carefully(mm, regs))
5361 			return NULL;
5362 
5363 		vma = find_vma(mm, addr);
5364 		if (!vma)
5365 			goto fail;
5366 		if (vma->vm_start <= addr)
5367 			goto success;
5368 		if (!(vma->vm_flags & VM_GROWSDOWN))
5369 			goto fail;
5370 	}
5371 
5372 	if (expand_stack_locked(vma, addr))
5373 		goto fail;
5374 
5375 success:
5376 	mmap_write_downgrade(mm);
5377 	return vma;
5378 
5379 fail:
5380 	mmap_write_unlock(mm);
5381 	return NULL;
5382 }
5383 #endif
5384 
5385 #ifdef CONFIG_PER_VMA_LOCK
5386 /*
5387  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5388  * stable and not isolated. If the VMA is not found or is being modified the
5389  * function returns NULL.
5390  */
5391 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5392 					  unsigned long address)
5393 {
5394 	MA_STATE(mas, &mm->mm_mt, address, address);
5395 	struct vm_area_struct *vma;
5396 
5397 	rcu_read_lock();
5398 retry:
5399 	vma = mas_walk(&mas);
5400 	if (!vma)
5401 		goto inval;
5402 
5403 	/* Only anonymous and tcp vmas are supported for now */
5404 	if (!vma_is_anonymous(vma) && !vma_is_tcp(vma))
5405 		goto inval;
5406 
5407 	if (!vma_start_read(vma))
5408 		goto inval;
5409 
5410 	/*
5411 	 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5412 	 * This check must happen after vma_start_read(); otherwise, a
5413 	 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5414 	 * from its anon_vma.
5415 	 */
5416 	if (unlikely(!vma->anon_vma && !vma_is_tcp(vma)))
5417 		goto inval_end_read;
5418 
5419 	/*
5420 	 * Due to the possibility of userfault handler dropping mmap_lock, avoid
5421 	 * it for now and fall back to page fault handling under mmap_lock.
5422 	 */
5423 	if (userfaultfd_armed(vma))
5424 		goto inval_end_read;
5425 
5426 	/* Check since vm_start/vm_end might change before we lock the VMA */
5427 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5428 		goto inval_end_read;
5429 
5430 	/* Check if the VMA got isolated after we found it */
5431 	if (vma->detached) {
5432 		vma_end_read(vma);
5433 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5434 		/* The area was replaced with another one */
5435 		goto retry;
5436 	}
5437 
5438 	rcu_read_unlock();
5439 	return vma;
5440 
5441 inval_end_read:
5442 	vma_end_read(vma);
5443 inval:
5444 	rcu_read_unlock();
5445 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5446 	return NULL;
5447 }
5448 #endif /* CONFIG_PER_VMA_LOCK */
5449 
5450 #ifndef __PAGETABLE_P4D_FOLDED
5451 /*
5452  * Allocate p4d page table.
5453  * We've already handled the fast-path in-line.
5454  */
5455 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5456 {
5457 	p4d_t *new = p4d_alloc_one(mm, address);
5458 	if (!new)
5459 		return -ENOMEM;
5460 
5461 	spin_lock(&mm->page_table_lock);
5462 	if (pgd_present(*pgd)) {	/* Another has populated it */
5463 		p4d_free(mm, new);
5464 	} else {
5465 		smp_wmb(); /* See comment in pmd_install() */
5466 		pgd_populate(mm, pgd, new);
5467 	}
5468 	spin_unlock(&mm->page_table_lock);
5469 	return 0;
5470 }
5471 #endif /* __PAGETABLE_P4D_FOLDED */
5472 
5473 #ifndef __PAGETABLE_PUD_FOLDED
5474 /*
5475  * Allocate page upper directory.
5476  * We've already handled the fast-path in-line.
5477  */
5478 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5479 {
5480 	pud_t *new = pud_alloc_one(mm, address);
5481 	if (!new)
5482 		return -ENOMEM;
5483 
5484 	spin_lock(&mm->page_table_lock);
5485 	if (!p4d_present(*p4d)) {
5486 		mm_inc_nr_puds(mm);
5487 		smp_wmb(); /* See comment in pmd_install() */
5488 		p4d_populate(mm, p4d, new);
5489 	} else	/* Another has populated it */
5490 		pud_free(mm, new);
5491 	spin_unlock(&mm->page_table_lock);
5492 	return 0;
5493 }
5494 #endif /* __PAGETABLE_PUD_FOLDED */
5495 
5496 #ifndef __PAGETABLE_PMD_FOLDED
5497 /*
5498  * Allocate page middle directory.
5499  * We've already handled the fast-path in-line.
5500  */
5501 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5502 {
5503 	spinlock_t *ptl;
5504 	pmd_t *new = pmd_alloc_one(mm, address);
5505 	if (!new)
5506 		return -ENOMEM;
5507 
5508 	ptl = pud_lock(mm, pud);
5509 	if (!pud_present(*pud)) {
5510 		mm_inc_nr_pmds(mm);
5511 		smp_wmb(); /* See comment in pmd_install() */
5512 		pud_populate(mm, pud, new);
5513 	} else {	/* Another has populated it */
5514 		pmd_free(mm, new);
5515 	}
5516 	spin_unlock(ptl);
5517 	return 0;
5518 }
5519 #endif /* __PAGETABLE_PMD_FOLDED */
5520 
5521 /**
5522  * follow_pte - look up PTE at a user virtual address
5523  * @mm: the mm_struct of the target address space
5524  * @address: user virtual address
5525  * @ptepp: location to store found PTE
5526  * @ptlp: location to store the lock for the PTE
5527  *
5528  * On a successful return, the pointer to the PTE is stored in @ptepp;
5529  * the corresponding lock is taken and its location is stored in @ptlp.
5530  * The contents of the PTE are only stable until @ptlp is released;
5531  * any further use, if any, must be protected against invalidation
5532  * with MMU notifiers.
5533  *
5534  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5535  * should be taken for read.
5536  *
5537  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5538  * it is not a good general-purpose API.
5539  *
5540  * Return: zero on success, -ve otherwise.
5541  */
5542 int follow_pte(struct mm_struct *mm, unsigned long address,
5543 	       pte_t **ptepp, spinlock_t **ptlp)
5544 {
5545 	pgd_t *pgd;
5546 	p4d_t *p4d;
5547 	pud_t *pud;
5548 	pmd_t *pmd;
5549 	pte_t *ptep;
5550 
5551 	pgd = pgd_offset(mm, address);
5552 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5553 		goto out;
5554 
5555 	p4d = p4d_offset(pgd, address);
5556 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5557 		goto out;
5558 
5559 	pud = pud_offset(p4d, address);
5560 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5561 		goto out;
5562 
5563 	pmd = pmd_offset(pud, address);
5564 	VM_BUG_ON(pmd_trans_huge(*pmd));
5565 
5566 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5567 	if (!ptep)
5568 		goto out;
5569 	if (!pte_present(ptep_get(ptep)))
5570 		goto unlock;
5571 	*ptepp = ptep;
5572 	return 0;
5573 unlock:
5574 	pte_unmap_unlock(ptep, *ptlp);
5575 out:
5576 	return -EINVAL;
5577 }
5578 EXPORT_SYMBOL_GPL(follow_pte);
5579 
5580 /**
5581  * follow_pfn - look up PFN at a user virtual address
5582  * @vma: memory mapping
5583  * @address: user virtual address
5584  * @pfn: location to store found PFN
5585  *
5586  * Only IO mappings and raw PFN mappings are allowed.
5587  *
5588  * This function does not allow the caller to read the permissions
5589  * of the PTE.  Do not use it.
5590  *
5591  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5592  */
5593 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5594 	unsigned long *pfn)
5595 {
5596 	int ret = -EINVAL;
5597 	spinlock_t *ptl;
5598 	pte_t *ptep;
5599 
5600 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5601 		return ret;
5602 
5603 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5604 	if (ret)
5605 		return ret;
5606 	*pfn = pte_pfn(ptep_get(ptep));
5607 	pte_unmap_unlock(ptep, ptl);
5608 	return 0;
5609 }
5610 EXPORT_SYMBOL(follow_pfn);
5611 
5612 #ifdef CONFIG_HAVE_IOREMAP_PROT
5613 int follow_phys(struct vm_area_struct *vma,
5614 		unsigned long address, unsigned int flags,
5615 		unsigned long *prot, resource_size_t *phys)
5616 {
5617 	int ret = -EINVAL;
5618 	pte_t *ptep, pte;
5619 	spinlock_t *ptl;
5620 
5621 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5622 		goto out;
5623 
5624 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5625 		goto out;
5626 	pte = ptep_get(ptep);
5627 
5628 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5629 		goto unlock;
5630 
5631 	*prot = pgprot_val(pte_pgprot(pte));
5632 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5633 
5634 	ret = 0;
5635 unlock:
5636 	pte_unmap_unlock(ptep, ptl);
5637 out:
5638 	return ret;
5639 }
5640 
5641 /**
5642  * generic_access_phys - generic implementation for iomem mmap access
5643  * @vma: the vma to access
5644  * @addr: userspace address, not relative offset within @vma
5645  * @buf: buffer to read/write
5646  * @len: length of transfer
5647  * @write: set to FOLL_WRITE when writing, otherwise reading
5648  *
5649  * This is a generic implementation for &vm_operations_struct.access for an
5650  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5651  * not page based.
5652  */
5653 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5654 			void *buf, int len, int write)
5655 {
5656 	resource_size_t phys_addr;
5657 	unsigned long prot = 0;
5658 	void __iomem *maddr;
5659 	pte_t *ptep, pte;
5660 	spinlock_t *ptl;
5661 	int offset = offset_in_page(addr);
5662 	int ret = -EINVAL;
5663 
5664 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5665 		return -EINVAL;
5666 
5667 retry:
5668 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5669 		return -EINVAL;
5670 	pte = ptep_get(ptep);
5671 	pte_unmap_unlock(ptep, ptl);
5672 
5673 	prot = pgprot_val(pte_pgprot(pte));
5674 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5675 
5676 	if ((write & FOLL_WRITE) && !pte_write(pte))
5677 		return -EINVAL;
5678 
5679 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5680 	if (!maddr)
5681 		return -ENOMEM;
5682 
5683 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5684 		goto out_unmap;
5685 
5686 	if (!pte_same(pte, ptep_get(ptep))) {
5687 		pte_unmap_unlock(ptep, ptl);
5688 		iounmap(maddr);
5689 
5690 		goto retry;
5691 	}
5692 
5693 	if (write)
5694 		memcpy_toio(maddr + offset, buf, len);
5695 	else
5696 		memcpy_fromio(buf, maddr + offset, len);
5697 	ret = len;
5698 	pte_unmap_unlock(ptep, ptl);
5699 out_unmap:
5700 	iounmap(maddr);
5701 
5702 	return ret;
5703 }
5704 EXPORT_SYMBOL_GPL(generic_access_phys);
5705 #endif
5706 
5707 /*
5708  * Access another process' address space as given in mm.
5709  */
5710 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5711 		       int len, unsigned int gup_flags)
5712 {
5713 	void *old_buf = buf;
5714 	int write = gup_flags & FOLL_WRITE;
5715 
5716 	if (mmap_read_lock_killable(mm))
5717 		return 0;
5718 
5719 	/* Avoid triggering the temporary warning in __get_user_pages */
5720 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5721 		return 0;
5722 
5723 	/* ignore errors, just check how much was successfully transferred */
5724 	while (len) {
5725 		int bytes, offset;
5726 		void *maddr;
5727 		struct vm_area_struct *vma = NULL;
5728 		struct page *page = get_user_page_vma_remote(mm, addr,
5729 							     gup_flags, &vma);
5730 
5731 		if (IS_ERR_OR_NULL(page)) {
5732 			/* We might need to expand the stack to access it */
5733 			vma = vma_lookup(mm, addr);
5734 			if (!vma) {
5735 				vma = expand_stack(mm, addr);
5736 
5737 				/* mmap_lock was dropped on failure */
5738 				if (!vma)
5739 					return buf - old_buf;
5740 
5741 				/* Try again if stack expansion worked */
5742 				continue;
5743 			}
5744 
5745 
5746 			/*
5747 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5748 			 * we can access using slightly different code.
5749 			 */
5750 			bytes = 0;
5751 #ifdef CONFIG_HAVE_IOREMAP_PROT
5752 			if (vma->vm_ops && vma->vm_ops->access)
5753 				bytes = vma->vm_ops->access(vma, addr, buf,
5754 							    len, write);
5755 #endif
5756 			if (bytes <= 0)
5757 				break;
5758 		} else {
5759 			bytes = len;
5760 			offset = addr & (PAGE_SIZE-1);
5761 			if (bytes > PAGE_SIZE-offset)
5762 				bytes = PAGE_SIZE-offset;
5763 
5764 			maddr = kmap(page);
5765 			if (write) {
5766 				copy_to_user_page(vma, page, addr,
5767 						  maddr + offset, buf, bytes);
5768 				set_page_dirty_lock(page);
5769 			} else {
5770 				copy_from_user_page(vma, page, addr,
5771 						    buf, maddr + offset, bytes);
5772 			}
5773 			kunmap(page);
5774 			put_page(page);
5775 		}
5776 		len -= bytes;
5777 		buf += bytes;
5778 		addr += bytes;
5779 	}
5780 	mmap_read_unlock(mm);
5781 
5782 	return buf - old_buf;
5783 }
5784 
5785 /**
5786  * access_remote_vm - access another process' address space
5787  * @mm:		the mm_struct of the target address space
5788  * @addr:	start address to access
5789  * @buf:	source or destination buffer
5790  * @len:	number of bytes to transfer
5791  * @gup_flags:	flags modifying lookup behaviour
5792  *
5793  * The caller must hold a reference on @mm.
5794  *
5795  * Return: number of bytes copied from source to destination.
5796  */
5797 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5798 		void *buf, int len, unsigned int gup_flags)
5799 {
5800 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5801 }
5802 
5803 /*
5804  * Access another process' address space.
5805  * Source/target buffer must be kernel space,
5806  * Do not walk the page table directly, use get_user_pages
5807  */
5808 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5809 		void *buf, int len, unsigned int gup_flags)
5810 {
5811 	struct mm_struct *mm;
5812 	int ret;
5813 
5814 	mm = get_task_mm(tsk);
5815 	if (!mm)
5816 		return 0;
5817 
5818 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5819 
5820 	mmput(mm);
5821 
5822 	return ret;
5823 }
5824 EXPORT_SYMBOL_GPL(access_process_vm);
5825 
5826 /*
5827  * Print the name of a VMA.
5828  */
5829 void print_vma_addr(char *prefix, unsigned long ip)
5830 {
5831 	struct mm_struct *mm = current->mm;
5832 	struct vm_area_struct *vma;
5833 
5834 	/*
5835 	 * we might be running from an atomic context so we cannot sleep
5836 	 */
5837 	if (!mmap_read_trylock(mm))
5838 		return;
5839 
5840 	vma = find_vma(mm, ip);
5841 	if (vma && vma->vm_file) {
5842 		struct file *f = vma->vm_file;
5843 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5844 		if (buf) {
5845 			char *p;
5846 
5847 			p = file_path(f, buf, PAGE_SIZE);
5848 			if (IS_ERR(p))
5849 				p = "?";
5850 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5851 					vma->vm_start,
5852 					vma->vm_end - vma->vm_start);
5853 			free_page((unsigned long)buf);
5854 		}
5855 	}
5856 	mmap_read_unlock(mm);
5857 }
5858 
5859 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5860 void __might_fault(const char *file, int line)
5861 {
5862 	if (pagefault_disabled())
5863 		return;
5864 	__might_sleep(file, line);
5865 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5866 	if (current->mm)
5867 		might_lock_read(&current->mm->mmap_lock);
5868 #endif
5869 }
5870 EXPORT_SYMBOL(__might_fault);
5871 #endif
5872 
5873 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5874 /*
5875  * Process all subpages of the specified huge page with the specified
5876  * operation.  The target subpage will be processed last to keep its
5877  * cache lines hot.
5878  */
5879 static inline int process_huge_page(
5880 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5881 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
5882 	void *arg)
5883 {
5884 	int i, n, base, l, ret;
5885 	unsigned long addr = addr_hint &
5886 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5887 
5888 	/* Process target subpage last to keep its cache lines hot */
5889 	might_sleep();
5890 	n = (addr_hint - addr) / PAGE_SIZE;
5891 	if (2 * n <= pages_per_huge_page) {
5892 		/* If target subpage in first half of huge page */
5893 		base = 0;
5894 		l = n;
5895 		/* Process subpages at the end of huge page */
5896 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5897 			cond_resched();
5898 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5899 			if (ret)
5900 				return ret;
5901 		}
5902 	} else {
5903 		/* If target subpage in second half of huge page */
5904 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5905 		l = pages_per_huge_page - n;
5906 		/* Process subpages at the begin of huge page */
5907 		for (i = 0; i < base; i++) {
5908 			cond_resched();
5909 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5910 			if (ret)
5911 				return ret;
5912 		}
5913 	}
5914 	/*
5915 	 * Process remaining subpages in left-right-left-right pattern
5916 	 * towards the target subpage
5917 	 */
5918 	for (i = 0; i < l; i++) {
5919 		int left_idx = base + i;
5920 		int right_idx = base + 2 * l - 1 - i;
5921 
5922 		cond_resched();
5923 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5924 		if (ret)
5925 			return ret;
5926 		cond_resched();
5927 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5928 		if (ret)
5929 			return ret;
5930 	}
5931 	return 0;
5932 }
5933 
5934 static void clear_gigantic_page(struct page *page,
5935 				unsigned long addr,
5936 				unsigned int pages_per_huge_page)
5937 {
5938 	int i;
5939 	struct page *p;
5940 
5941 	might_sleep();
5942 	for (i = 0; i < pages_per_huge_page; i++) {
5943 		p = nth_page(page, i);
5944 		cond_resched();
5945 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5946 	}
5947 }
5948 
5949 static int clear_subpage(unsigned long addr, int idx, void *arg)
5950 {
5951 	struct page *page = arg;
5952 
5953 	clear_user_highpage(page + idx, addr);
5954 	return 0;
5955 }
5956 
5957 void clear_huge_page(struct page *page,
5958 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5959 {
5960 	unsigned long addr = addr_hint &
5961 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5962 
5963 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5964 		clear_gigantic_page(page, addr, pages_per_huge_page);
5965 		return;
5966 	}
5967 
5968 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5969 }
5970 
5971 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
5972 				     unsigned long addr,
5973 				     struct vm_area_struct *vma,
5974 				     unsigned int pages_per_huge_page)
5975 {
5976 	int i;
5977 	struct page *dst_page;
5978 	struct page *src_page;
5979 
5980 	for (i = 0; i < pages_per_huge_page; i++) {
5981 		dst_page = folio_page(dst, i);
5982 		src_page = folio_page(src, i);
5983 
5984 		cond_resched();
5985 		if (copy_mc_user_highpage(dst_page, src_page,
5986 					  addr + i*PAGE_SIZE, vma)) {
5987 			memory_failure_queue(page_to_pfn(src_page), 0);
5988 			return -EHWPOISON;
5989 		}
5990 	}
5991 	return 0;
5992 }
5993 
5994 struct copy_subpage_arg {
5995 	struct page *dst;
5996 	struct page *src;
5997 	struct vm_area_struct *vma;
5998 };
5999 
6000 static int copy_subpage(unsigned long addr, int idx, void *arg)
6001 {
6002 	struct copy_subpage_arg *copy_arg = arg;
6003 
6004 	if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6005 				  addr, copy_arg->vma)) {
6006 		memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6007 		return -EHWPOISON;
6008 	}
6009 	return 0;
6010 }
6011 
6012 int copy_user_large_folio(struct folio *dst, struct folio *src,
6013 			  unsigned long addr_hint, struct vm_area_struct *vma)
6014 {
6015 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6016 	unsigned long addr = addr_hint &
6017 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6018 	struct copy_subpage_arg arg = {
6019 		.dst = &dst->page,
6020 		.src = &src->page,
6021 		.vma = vma,
6022 	};
6023 
6024 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6025 		return copy_user_gigantic_page(dst, src, addr, vma,
6026 					       pages_per_huge_page);
6027 
6028 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6029 }
6030 
6031 long copy_folio_from_user(struct folio *dst_folio,
6032 			   const void __user *usr_src,
6033 			   bool allow_pagefault)
6034 {
6035 	void *kaddr;
6036 	unsigned long i, rc = 0;
6037 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6038 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6039 	struct page *subpage;
6040 
6041 	for (i = 0; i < nr_pages; i++) {
6042 		subpage = folio_page(dst_folio, i);
6043 		kaddr = kmap_local_page(subpage);
6044 		if (!allow_pagefault)
6045 			pagefault_disable();
6046 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6047 		if (!allow_pagefault)
6048 			pagefault_enable();
6049 		kunmap_local(kaddr);
6050 
6051 		ret_val -= (PAGE_SIZE - rc);
6052 		if (rc)
6053 			break;
6054 
6055 		flush_dcache_page(subpage);
6056 
6057 		cond_resched();
6058 	}
6059 	return ret_val;
6060 }
6061 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6062 
6063 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6064 
6065 static struct kmem_cache *page_ptl_cachep;
6066 
6067 void __init ptlock_cache_init(void)
6068 {
6069 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6070 			SLAB_PANIC, NULL);
6071 }
6072 
6073 bool ptlock_alloc(struct page *page)
6074 {
6075 	spinlock_t *ptl;
6076 
6077 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6078 	if (!ptl)
6079 		return false;
6080 	page->ptl = ptl;
6081 	return true;
6082 }
6083 
6084 void ptlock_free(struct page *page)
6085 {
6086 	kmem_cache_free(page_ptl_cachep, page->ptl);
6087 }
6088 #endif
6089