1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/delayacct.h> 51 #include <linux/init.h> 52 #include <linux/writeback.h> 53 54 #include <asm/pgalloc.h> 55 #include <asm/uaccess.h> 56 #include <asm/tlb.h> 57 #include <asm/tlbflush.h> 58 #include <asm/pgtable.h> 59 60 #include <linux/swapops.h> 61 #include <linux/elf.h> 62 63 #ifndef CONFIG_NEED_MULTIPLE_NODES 64 /* use the per-pgdat data instead for discontigmem - mbligh */ 65 unsigned long max_mapnr; 66 struct page *mem_map; 67 68 EXPORT_SYMBOL(max_mapnr); 69 EXPORT_SYMBOL(mem_map); 70 #endif 71 72 unsigned long num_physpages; 73 /* 74 * A number of key systems in x86 including ioremap() rely on the assumption 75 * that high_memory defines the upper bound on direct map memory, then end 76 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 78 * and ZONE_HIGHMEM. 79 */ 80 void * high_memory; 81 82 EXPORT_SYMBOL(num_physpages); 83 EXPORT_SYMBOL(high_memory); 84 85 int randomize_va_space __read_mostly = 1; 86 87 static int __init disable_randmaps(char *s) 88 { 89 randomize_va_space = 0; 90 return 1; 91 } 92 __setup("norandmaps", disable_randmaps); 93 94 95 /* 96 * If a p?d_bad entry is found while walking page tables, report 97 * the error, before resetting entry to p?d_none. Usually (but 98 * very seldom) called out from the p?d_none_or_clear_bad macros. 99 */ 100 101 void pgd_clear_bad(pgd_t *pgd) 102 { 103 pgd_ERROR(*pgd); 104 pgd_clear(pgd); 105 } 106 107 void pud_clear_bad(pud_t *pud) 108 { 109 pud_ERROR(*pud); 110 pud_clear(pud); 111 } 112 113 void pmd_clear_bad(pmd_t *pmd) 114 { 115 pmd_ERROR(*pmd); 116 pmd_clear(pmd); 117 } 118 119 /* 120 * Note: this doesn't free the actual pages themselves. That 121 * has been handled earlier when unmapping all the memory regions. 122 */ 123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 124 { 125 struct page *page = pmd_page(*pmd); 126 pmd_clear(pmd); 127 pte_lock_deinit(page); 128 pte_free_tlb(tlb, page); 129 dec_zone_page_state(page, NR_PAGETABLE); 130 tlb->mm->nr_ptes--; 131 } 132 133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 134 unsigned long addr, unsigned long end, 135 unsigned long floor, unsigned long ceiling) 136 { 137 pmd_t *pmd; 138 unsigned long next; 139 unsigned long start; 140 141 start = addr; 142 pmd = pmd_offset(pud, addr); 143 do { 144 next = pmd_addr_end(addr, end); 145 if (pmd_none_or_clear_bad(pmd)) 146 continue; 147 free_pte_range(tlb, pmd); 148 } while (pmd++, addr = next, addr != end); 149 150 start &= PUD_MASK; 151 if (start < floor) 152 return; 153 if (ceiling) { 154 ceiling &= PUD_MASK; 155 if (!ceiling) 156 return; 157 } 158 if (end - 1 > ceiling - 1) 159 return; 160 161 pmd = pmd_offset(pud, start); 162 pud_clear(pud); 163 pmd_free_tlb(tlb, pmd); 164 } 165 166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 167 unsigned long addr, unsigned long end, 168 unsigned long floor, unsigned long ceiling) 169 { 170 pud_t *pud; 171 unsigned long next; 172 unsigned long start; 173 174 start = addr; 175 pud = pud_offset(pgd, addr); 176 do { 177 next = pud_addr_end(addr, end); 178 if (pud_none_or_clear_bad(pud)) 179 continue; 180 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 181 } while (pud++, addr = next, addr != end); 182 183 start &= PGDIR_MASK; 184 if (start < floor) 185 return; 186 if (ceiling) { 187 ceiling &= PGDIR_MASK; 188 if (!ceiling) 189 return; 190 } 191 if (end - 1 > ceiling - 1) 192 return; 193 194 pud = pud_offset(pgd, start); 195 pgd_clear(pgd); 196 pud_free_tlb(tlb, pud); 197 } 198 199 /* 200 * This function frees user-level page tables of a process. 201 * 202 * Must be called with pagetable lock held. 203 */ 204 void free_pgd_range(struct mmu_gather **tlb, 205 unsigned long addr, unsigned long end, 206 unsigned long floor, unsigned long ceiling) 207 { 208 pgd_t *pgd; 209 unsigned long next; 210 unsigned long start; 211 212 /* 213 * The next few lines have given us lots of grief... 214 * 215 * Why are we testing PMD* at this top level? Because often 216 * there will be no work to do at all, and we'd prefer not to 217 * go all the way down to the bottom just to discover that. 218 * 219 * Why all these "- 1"s? Because 0 represents both the bottom 220 * of the address space and the top of it (using -1 for the 221 * top wouldn't help much: the masks would do the wrong thing). 222 * The rule is that addr 0 and floor 0 refer to the bottom of 223 * the address space, but end 0 and ceiling 0 refer to the top 224 * Comparisons need to use "end - 1" and "ceiling - 1" (though 225 * that end 0 case should be mythical). 226 * 227 * Wherever addr is brought up or ceiling brought down, we must 228 * be careful to reject "the opposite 0" before it confuses the 229 * subsequent tests. But what about where end is brought down 230 * by PMD_SIZE below? no, end can't go down to 0 there. 231 * 232 * Whereas we round start (addr) and ceiling down, by different 233 * masks at different levels, in order to test whether a table 234 * now has no other vmas using it, so can be freed, we don't 235 * bother to round floor or end up - the tests don't need that. 236 */ 237 238 addr &= PMD_MASK; 239 if (addr < floor) { 240 addr += PMD_SIZE; 241 if (!addr) 242 return; 243 } 244 if (ceiling) { 245 ceiling &= PMD_MASK; 246 if (!ceiling) 247 return; 248 } 249 if (end - 1 > ceiling - 1) 250 end -= PMD_SIZE; 251 if (addr > end - 1) 252 return; 253 254 start = addr; 255 pgd = pgd_offset((*tlb)->mm, addr); 256 do { 257 next = pgd_addr_end(addr, end); 258 if (pgd_none_or_clear_bad(pgd)) 259 continue; 260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling); 261 } while (pgd++, addr = next, addr != end); 262 263 if (!(*tlb)->fullmm) 264 flush_tlb_pgtables((*tlb)->mm, start, end); 265 } 266 267 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, 268 unsigned long floor, unsigned long ceiling) 269 { 270 while (vma) { 271 struct vm_area_struct *next = vma->vm_next; 272 unsigned long addr = vma->vm_start; 273 274 /* 275 * Hide vma from rmap and vmtruncate before freeing pgtables 276 */ 277 anon_vma_unlink(vma); 278 unlink_file_vma(vma); 279 280 if (is_vm_hugetlb_page(vma)) { 281 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 282 floor, next? next->vm_start: ceiling); 283 } else { 284 /* 285 * Optimization: gather nearby vmas into one call down 286 */ 287 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 288 && !is_vm_hugetlb_page(next)) { 289 vma = next; 290 next = vma->vm_next; 291 anon_vma_unlink(vma); 292 unlink_file_vma(vma); 293 } 294 free_pgd_range(tlb, addr, vma->vm_end, 295 floor, next? next->vm_start: ceiling); 296 } 297 vma = next; 298 } 299 } 300 301 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 302 { 303 struct page *new = pte_alloc_one(mm, address); 304 if (!new) 305 return -ENOMEM; 306 307 pte_lock_init(new); 308 spin_lock(&mm->page_table_lock); 309 if (pmd_present(*pmd)) { /* Another has populated it */ 310 pte_lock_deinit(new); 311 pte_free(new); 312 } else { 313 mm->nr_ptes++; 314 inc_zone_page_state(new, NR_PAGETABLE); 315 pmd_populate(mm, pmd, new); 316 } 317 spin_unlock(&mm->page_table_lock); 318 return 0; 319 } 320 321 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 322 { 323 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 324 if (!new) 325 return -ENOMEM; 326 327 spin_lock(&init_mm.page_table_lock); 328 if (pmd_present(*pmd)) /* Another has populated it */ 329 pte_free_kernel(new); 330 else 331 pmd_populate_kernel(&init_mm, pmd, new); 332 spin_unlock(&init_mm.page_table_lock); 333 return 0; 334 } 335 336 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 337 { 338 if (file_rss) 339 add_mm_counter(mm, file_rss, file_rss); 340 if (anon_rss) 341 add_mm_counter(mm, anon_rss, anon_rss); 342 } 343 344 /* 345 * This function is called to print an error when a bad pte 346 * is found. For example, we might have a PFN-mapped pte in 347 * a region that doesn't allow it. 348 * 349 * The calling function must still handle the error. 350 */ 351 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) 352 { 353 printk(KERN_ERR "Bad pte = %08llx, process = %s, " 354 "vm_flags = %lx, vaddr = %lx\n", 355 (long long)pte_val(pte), 356 (vma->vm_mm == current->mm ? current->comm : "???"), 357 vma->vm_flags, vaddr); 358 dump_stack(); 359 } 360 361 static inline int is_cow_mapping(unsigned int flags) 362 { 363 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 364 } 365 366 /* 367 * This function gets the "struct page" associated with a pte. 368 * 369 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping 370 * will have each page table entry just pointing to a raw page frame 371 * number, and as far as the VM layer is concerned, those do not have 372 * pages associated with them - even if the PFN might point to memory 373 * that otherwise is perfectly fine and has a "struct page". 374 * 375 * The way we recognize those mappings is through the rules set up 376 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set, 377 * and the vm_pgoff will point to the first PFN mapped: thus every 378 * page that is a raw mapping will always honor the rule 379 * 380 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 381 * 382 * and if that isn't true, the page has been COW'ed (in which case it 383 * _does_ have a "struct page" associated with it even if it is in a 384 * VM_PFNMAP range). 385 */ 386 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 387 { 388 unsigned long pfn = pte_pfn(pte); 389 390 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 391 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; 392 if (pfn == vma->vm_pgoff + off) 393 return NULL; 394 if (!is_cow_mapping(vma->vm_flags)) 395 return NULL; 396 } 397 398 /* 399 * Add some anal sanity checks for now. Eventually, 400 * we should just do "return pfn_to_page(pfn)", but 401 * in the meantime we check that we get a valid pfn, 402 * and that the resulting page looks ok. 403 */ 404 if (unlikely(!pfn_valid(pfn))) { 405 print_bad_pte(vma, pte, addr); 406 return NULL; 407 } 408 409 /* 410 * NOTE! We still have PageReserved() pages in the page 411 * tables. 412 * 413 * The PAGE_ZERO() pages and various VDSO mappings can 414 * cause them to exist. 415 */ 416 return pfn_to_page(pfn); 417 } 418 419 /* 420 * copy one vm_area from one task to the other. Assumes the page tables 421 * already present in the new task to be cleared in the whole range 422 * covered by this vma. 423 */ 424 425 static inline void 426 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 427 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 428 unsigned long addr, int *rss) 429 { 430 unsigned long vm_flags = vma->vm_flags; 431 pte_t pte = *src_pte; 432 struct page *page; 433 434 /* pte contains position in swap or file, so copy. */ 435 if (unlikely(!pte_present(pte))) { 436 if (!pte_file(pte)) { 437 swp_entry_t entry = pte_to_swp_entry(pte); 438 439 swap_duplicate(entry); 440 /* make sure dst_mm is on swapoff's mmlist. */ 441 if (unlikely(list_empty(&dst_mm->mmlist))) { 442 spin_lock(&mmlist_lock); 443 if (list_empty(&dst_mm->mmlist)) 444 list_add(&dst_mm->mmlist, 445 &src_mm->mmlist); 446 spin_unlock(&mmlist_lock); 447 } 448 if (is_write_migration_entry(entry) && 449 is_cow_mapping(vm_flags)) { 450 /* 451 * COW mappings require pages in both parent 452 * and child to be set to read. 453 */ 454 make_migration_entry_read(&entry); 455 pte = swp_entry_to_pte(entry); 456 set_pte_at(src_mm, addr, src_pte, pte); 457 } 458 } 459 goto out_set_pte; 460 } 461 462 /* 463 * If it's a COW mapping, write protect it both 464 * in the parent and the child 465 */ 466 if (is_cow_mapping(vm_flags)) { 467 ptep_set_wrprotect(src_mm, addr, src_pte); 468 pte = pte_wrprotect(pte); 469 } 470 471 /* 472 * If it's a shared mapping, mark it clean in 473 * the child 474 */ 475 if (vm_flags & VM_SHARED) 476 pte = pte_mkclean(pte); 477 pte = pte_mkold(pte); 478 479 page = vm_normal_page(vma, addr, pte); 480 if (page) { 481 get_page(page); 482 page_dup_rmap(page, vma, addr); 483 rss[!!PageAnon(page)]++; 484 } 485 486 out_set_pte: 487 set_pte_at(dst_mm, addr, dst_pte, pte); 488 } 489 490 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 491 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 492 unsigned long addr, unsigned long end) 493 { 494 pte_t *src_pte, *dst_pte; 495 spinlock_t *src_ptl, *dst_ptl; 496 int progress = 0; 497 int rss[2]; 498 499 again: 500 rss[1] = rss[0] = 0; 501 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 502 if (!dst_pte) 503 return -ENOMEM; 504 src_pte = pte_offset_map_nested(src_pmd, addr); 505 src_ptl = pte_lockptr(src_mm, src_pmd); 506 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 507 arch_enter_lazy_mmu_mode(); 508 509 do { 510 /* 511 * We are holding two locks at this point - either of them 512 * could generate latencies in another task on another CPU. 513 */ 514 if (progress >= 32) { 515 progress = 0; 516 if (need_resched() || 517 need_lockbreak(src_ptl) || 518 need_lockbreak(dst_ptl)) 519 break; 520 } 521 if (pte_none(*src_pte)) { 522 progress++; 523 continue; 524 } 525 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 526 progress += 8; 527 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 528 529 arch_leave_lazy_mmu_mode(); 530 spin_unlock(src_ptl); 531 pte_unmap_nested(src_pte - 1); 532 add_mm_rss(dst_mm, rss[0], rss[1]); 533 pte_unmap_unlock(dst_pte - 1, dst_ptl); 534 cond_resched(); 535 if (addr != end) 536 goto again; 537 return 0; 538 } 539 540 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 541 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 542 unsigned long addr, unsigned long end) 543 { 544 pmd_t *src_pmd, *dst_pmd; 545 unsigned long next; 546 547 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 548 if (!dst_pmd) 549 return -ENOMEM; 550 src_pmd = pmd_offset(src_pud, addr); 551 do { 552 next = pmd_addr_end(addr, end); 553 if (pmd_none_or_clear_bad(src_pmd)) 554 continue; 555 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 556 vma, addr, next)) 557 return -ENOMEM; 558 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 559 return 0; 560 } 561 562 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 563 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 564 unsigned long addr, unsigned long end) 565 { 566 pud_t *src_pud, *dst_pud; 567 unsigned long next; 568 569 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 570 if (!dst_pud) 571 return -ENOMEM; 572 src_pud = pud_offset(src_pgd, addr); 573 do { 574 next = pud_addr_end(addr, end); 575 if (pud_none_or_clear_bad(src_pud)) 576 continue; 577 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 578 vma, addr, next)) 579 return -ENOMEM; 580 } while (dst_pud++, src_pud++, addr = next, addr != end); 581 return 0; 582 } 583 584 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 585 struct vm_area_struct *vma) 586 { 587 pgd_t *src_pgd, *dst_pgd; 588 unsigned long next; 589 unsigned long addr = vma->vm_start; 590 unsigned long end = vma->vm_end; 591 592 /* 593 * Don't copy ptes where a page fault will fill them correctly. 594 * Fork becomes much lighter when there are big shared or private 595 * readonly mappings. The tradeoff is that copy_page_range is more 596 * efficient than faulting. 597 */ 598 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 599 if (!vma->anon_vma) 600 return 0; 601 } 602 603 if (is_vm_hugetlb_page(vma)) 604 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 605 606 dst_pgd = pgd_offset(dst_mm, addr); 607 src_pgd = pgd_offset(src_mm, addr); 608 do { 609 next = pgd_addr_end(addr, end); 610 if (pgd_none_or_clear_bad(src_pgd)) 611 continue; 612 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 613 vma, addr, next)) 614 return -ENOMEM; 615 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 616 return 0; 617 } 618 619 static unsigned long zap_pte_range(struct mmu_gather *tlb, 620 struct vm_area_struct *vma, pmd_t *pmd, 621 unsigned long addr, unsigned long end, 622 long *zap_work, struct zap_details *details) 623 { 624 struct mm_struct *mm = tlb->mm; 625 pte_t *pte; 626 spinlock_t *ptl; 627 int file_rss = 0; 628 int anon_rss = 0; 629 630 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 631 arch_enter_lazy_mmu_mode(); 632 do { 633 pte_t ptent = *pte; 634 if (pte_none(ptent)) { 635 (*zap_work)--; 636 continue; 637 } 638 639 (*zap_work) -= PAGE_SIZE; 640 641 if (pte_present(ptent)) { 642 struct page *page; 643 644 page = vm_normal_page(vma, addr, ptent); 645 if (unlikely(details) && page) { 646 /* 647 * unmap_shared_mapping_pages() wants to 648 * invalidate cache without truncating: 649 * unmap shared but keep private pages. 650 */ 651 if (details->check_mapping && 652 details->check_mapping != page->mapping) 653 continue; 654 /* 655 * Each page->index must be checked when 656 * invalidating or truncating nonlinear. 657 */ 658 if (details->nonlinear_vma && 659 (page->index < details->first_index || 660 page->index > details->last_index)) 661 continue; 662 } 663 ptent = ptep_get_and_clear_full(mm, addr, pte, 664 tlb->fullmm); 665 tlb_remove_tlb_entry(tlb, pte, addr); 666 if (unlikely(!page)) 667 continue; 668 if (unlikely(details) && details->nonlinear_vma 669 && linear_page_index(details->nonlinear_vma, 670 addr) != page->index) 671 set_pte_at(mm, addr, pte, 672 pgoff_to_pte(page->index)); 673 if (PageAnon(page)) 674 anon_rss--; 675 else { 676 if (pte_dirty(ptent)) 677 set_page_dirty(page); 678 if (pte_young(ptent)) 679 SetPageReferenced(page); 680 file_rss--; 681 } 682 page_remove_rmap(page, vma); 683 tlb_remove_page(tlb, page); 684 continue; 685 } 686 /* 687 * If details->check_mapping, we leave swap entries; 688 * if details->nonlinear_vma, we leave file entries. 689 */ 690 if (unlikely(details)) 691 continue; 692 if (!pte_file(ptent)) 693 free_swap_and_cache(pte_to_swp_entry(ptent)); 694 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 695 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 696 697 add_mm_rss(mm, file_rss, anon_rss); 698 arch_leave_lazy_mmu_mode(); 699 pte_unmap_unlock(pte - 1, ptl); 700 701 return addr; 702 } 703 704 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 705 struct vm_area_struct *vma, pud_t *pud, 706 unsigned long addr, unsigned long end, 707 long *zap_work, struct zap_details *details) 708 { 709 pmd_t *pmd; 710 unsigned long next; 711 712 pmd = pmd_offset(pud, addr); 713 do { 714 next = pmd_addr_end(addr, end); 715 if (pmd_none_or_clear_bad(pmd)) { 716 (*zap_work)--; 717 continue; 718 } 719 next = zap_pte_range(tlb, vma, pmd, addr, next, 720 zap_work, details); 721 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 722 723 return addr; 724 } 725 726 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 727 struct vm_area_struct *vma, pgd_t *pgd, 728 unsigned long addr, unsigned long end, 729 long *zap_work, struct zap_details *details) 730 { 731 pud_t *pud; 732 unsigned long next; 733 734 pud = pud_offset(pgd, addr); 735 do { 736 next = pud_addr_end(addr, end); 737 if (pud_none_or_clear_bad(pud)) { 738 (*zap_work)--; 739 continue; 740 } 741 next = zap_pmd_range(tlb, vma, pud, addr, next, 742 zap_work, details); 743 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 744 745 return addr; 746 } 747 748 static unsigned long unmap_page_range(struct mmu_gather *tlb, 749 struct vm_area_struct *vma, 750 unsigned long addr, unsigned long end, 751 long *zap_work, struct zap_details *details) 752 { 753 pgd_t *pgd; 754 unsigned long next; 755 756 if (details && !details->check_mapping && !details->nonlinear_vma) 757 details = NULL; 758 759 BUG_ON(addr >= end); 760 tlb_start_vma(tlb, vma); 761 pgd = pgd_offset(vma->vm_mm, addr); 762 do { 763 next = pgd_addr_end(addr, end); 764 if (pgd_none_or_clear_bad(pgd)) { 765 (*zap_work)--; 766 continue; 767 } 768 next = zap_pud_range(tlb, vma, pgd, addr, next, 769 zap_work, details); 770 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 771 tlb_end_vma(tlb, vma); 772 773 return addr; 774 } 775 776 #ifdef CONFIG_PREEMPT 777 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 778 #else 779 /* No preempt: go for improved straight-line efficiency */ 780 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 781 #endif 782 783 /** 784 * unmap_vmas - unmap a range of memory covered by a list of vma's 785 * @tlbp: address of the caller's struct mmu_gather 786 * @vma: the starting vma 787 * @start_addr: virtual address at which to start unmapping 788 * @end_addr: virtual address at which to end unmapping 789 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 790 * @details: details of nonlinear truncation or shared cache invalidation 791 * 792 * Returns the end address of the unmapping (restart addr if interrupted). 793 * 794 * Unmap all pages in the vma list. 795 * 796 * We aim to not hold locks for too long (for scheduling latency reasons). 797 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 798 * return the ending mmu_gather to the caller. 799 * 800 * Only addresses between `start' and `end' will be unmapped. 801 * 802 * The VMA list must be sorted in ascending virtual address order. 803 * 804 * unmap_vmas() assumes that the caller will flush the whole unmapped address 805 * range after unmap_vmas() returns. So the only responsibility here is to 806 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 807 * drops the lock and schedules. 808 */ 809 unsigned long unmap_vmas(struct mmu_gather **tlbp, 810 struct vm_area_struct *vma, unsigned long start_addr, 811 unsigned long end_addr, unsigned long *nr_accounted, 812 struct zap_details *details) 813 { 814 long zap_work = ZAP_BLOCK_SIZE; 815 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 816 int tlb_start_valid = 0; 817 unsigned long start = start_addr; 818 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 819 int fullmm = (*tlbp)->fullmm; 820 821 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 822 unsigned long end; 823 824 start = max(vma->vm_start, start_addr); 825 if (start >= vma->vm_end) 826 continue; 827 end = min(vma->vm_end, end_addr); 828 if (end <= vma->vm_start) 829 continue; 830 831 if (vma->vm_flags & VM_ACCOUNT) 832 *nr_accounted += (end - start) >> PAGE_SHIFT; 833 834 while (start != end) { 835 if (!tlb_start_valid) { 836 tlb_start = start; 837 tlb_start_valid = 1; 838 } 839 840 if (unlikely(is_vm_hugetlb_page(vma))) { 841 unmap_hugepage_range(vma, start, end); 842 zap_work -= (end - start) / 843 (HPAGE_SIZE / PAGE_SIZE); 844 start = end; 845 } else 846 start = unmap_page_range(*tlbp, vma, 847 start, end, &zap_work, details); 848 849 if (zap_work > 0) { 850 BUG_ON(start != end); 851 break; 852 } 853 854 tlb_finish_mmu(*tlbp, tlb_start, start); 855 856 if (need_resched() || 857 (i_mmap_lock && need_lockbreak(i_mmap_lock))) { 858 if (i_mmap_lock) { 859 *tlbp = NULL; 860 goto out; 861 } 862 cond_resched(); 863 } 864 865 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 866 tlb_start_valid = 0; 867 zap_work = ZAP_BLOCK_SIZE; 868 } 869 } 870 out: 871 return start; /* which is now the end (or restart) address */ 872 } 873 874 /** 875 * zap_page_range - remove user pages in a given range 876 * @vma: vm_area_struct holding the applicable pages 877 * @address: starting address of pages to zap 878 * @size: number of bytes to zap 879 * @details: details of nonlinear truncation or shared cache invalidation 880 */ 881 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 882 unsigned long size, struct zap_details *details) 883 { 884 struct mm_struct *mm = vma->vm_mm; 885 struct mmu_gather *tlb; 886 unsigned long end = address + size; 887 unsigned long nr_accounted = 0; 888 889 lru_add_drain(); 890 tlb = tlb_gather_mmu(mm, 0); 891 update_hiwater_rss(mm); 892 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 893 if (tlb) 894 tlb_finish_mmu(tlb, address, end); 895 return end; 896 } 897 898 /* 899 * Do a quick page-table lookup for a single page. 900 */ 901 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 902 unsigned int flags) 903 { 904 pgd_t *pgd; 905 pud_t *pud; 906 pmd_t *pmd; 907 pte_t *ptep, pte; 908 spinlock_t *ptl; 909 struct page *page; 910 struct mm_struct *mm = vma->vm_mm; 911 912 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 913 if (!IS_ERR(page)) { 914 BUG_ON(flags & FOLL_GET); 915 goto out; 916 } 917 918 page = NULL; 919 pgd = pgd_offset(mm, address); 920 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 921 goto no_page_table; 922 923 pud = pud_offset(pgd, address); 924 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 925 goto no_page_table; 926 927 pmd = pmd_offset(pud, address); 928 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 929 goto no_page_table; 930 931 if (pmd_huge(*pmd)) { 932 BUG_ON(flags & FOLL_GET); 933 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 934 goto out; 935 } 936 937 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 938 if (!ptep) 939 goto out; 940 941 pte = *ptep; 942 if (!pte_present(pte)) 943 goto unlock; 944 if ((flags & FOLL_WRITE) && !pte_write(pte)) 945 goto unlock; 946 page = vm_normal_page(vma, address, pte); 947 if (unlikely(!page)) 948 goto unlock; 949 950 if (flags & FOLL_GET) 951 get_page(page); 952 if (flags & FOLL_TOUCH) { 953 if ((flags & FOLL_WRITE) && 954 !pte_dirty(pte) && !PageDirty(page)) 955 set_page_dirty(page); 956 mark_page_accessed(page); 957 } 958 unlock: 959 pte_unmap_unlock(ptep, ptl); 960 out: 961 return page; 962 963 no_page_table: 964 /* 965 * When core dumping an enormous anonymous area that nobody 966 * has touched so far, we don't want to allocate page tables. 967 */ 968 if (flags & FOLL_ANON) { 969 page = ZERO_PAGE(0); 970 if (flags & FOLL_GET) 971 get_page(page); 972 BUG_ON(flags & FOLL_WRITE); 973 } 974 return page; 975 } 976 977 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 978 unsigned long start, int len, int write, int force, 979 struct page **pages, struct vm_area_struct **vmas) 980 { 981 int i; 982 unsigned int vm_flags; 983 984 /* 985 * Require read or write permissions. 986 * If 'force' is set, we only require the "MAY" flags. 987 */ 988 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 989 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 990 i = 0; 991 992 do { 993 struct vm_area_struct *vma; 994 unsigned int foll_flags; 995 996 vma = find_extend_vma(mm, start); 997 if (!vma && in_gate_area(tsk, start)) { 998 unsigned long pg = start & PAGE_MASK; 999 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1000 pgd_t *pgd; 1001 pud_t *pud; 1002 pmd_t *pmd; 1003 pte_t *pte; 1004 if (write) /* user gate pages are read-only */ 1005 return i ? : -EFAULT; 1006 if (pg > TASK_SIZE) 1007 pgd = pgd_offset_k(pg); 1008 else 1009 pgd = pgd_offset_gate(mm, pg); 1010 BUG_ON(pgd_none(*pgd)); 1011 pud = pud_offset(pgd, pg); 1012 BUG_ON(pud_none(*pud)); 1013 pmd = pmd_offset(pud, pg); 1014 if (pmd_none(*pmd)) 1015 return i ? : -EFAULT; 1016 pte = pte_offset_map(pmd, pg); 1017 if (pte_none(*pte)) { 1018 pte_unmap(pte); 1019 return i ? : -EFAULT; 1020 } 1021 if (pages) { 1022 struct page *page = vm_normal_page(gate_vma, start, *pte); 1023 pages[i] = page; 1024 if (page) 1025 get_page(page); 1026 } 1027 pte_unmap(pte); 1028 if (vmas) 1029 vmas[i] = gate_vma; 1030 i++; 1031 start += PAGE_SIZE; 1032 len--; 1033 continue; 1034 } 1035 1036 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1037 || !(vm_flags & vma->vm_flags)) 1038 return i ? : -EFAULT; 1039 1040 if (is_vm_hugetlb_page(vma)) { 1041 i = follow_hugetlb_page(mm, vma, pages, vmas, 1042 &start, &len, i); 1043 continue; 1044 } 1045 1046 foll_flags = FOLL_TOUCH; 1047 if (pages) 1048 foll_flags |= FOLL_GET; 1049 if (!write && !(vma->vm_flags & VM_LOCKED) && 1050 (!vma->vm_ops || (!vma->vm_ops->nopage && 1051 !vma->vm_ops->fault))) 1052 foll_flags |= FOLL_ANON; 1053 1054 do { 1055 struct page *page; 1056 1057 /* 1058 * If tsk is ooming, cut off its access to large memory 1059 * allocations. It has a pending SIGKILL, but it can't 1060 * be processed until returning to user space. 1061 */ 1062 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) 1063 return -ENOMEM; 1064 1065 if (write) 1066 foll_flags |= FOLL_WRITE; 1067 1068 cond_resched(); 1069 while (!(page = follow_page(vma, start, foll_flags))) { 1070 int ret; 1071 ret = handle_mm_fault(mm, vma, start, 1072 foll_flags & FOLL_WRITE); 1073 if (ret & VM_FAULT_ERROR) { 1074 if (ret & VM_FAULT_OOM) 1075 return i ? i : -ENOMEM; 1076 else if (ret & VM_FAULT_SIGBUS) 1077 return i ? i : -EFAULT; 1078 BUG(); 1079 } 1080 if (ret & VM_FAULT_MAJOR) 1081 tsk->maj_flt++; 1082 else 1083 tsk->min_flt++; 1084 1085 /* 1086 * The VM_FAULT_WRITE bit tells us that 1087 * do_wp_page has broken COW when necessary, 1088 * even if maybe_mkwrite decided not to set 1089 * pte_write. We can thus safely do subsequent 1090 * page lookups as if they were reads. 1091 */ 1092 if (ret & VM_FAULT_WRITE) 1093 foll_flags &= ~FOLL_WRITE; 1094 1095 cond_resched(); 1096 } 1097 if (pages) { 1098 pages[i] = page; 1099 1100 flush_anon_page(vma, page, start); 1101 flush_dcache_page(page); 1102 } 1103 if (vmas) 1104 vmas[i] = vma; 1105 i++; 1106 start += PAGE_SIZE; 1107 len--; 1108 } while (len && start < vma->vm_end); 1109 } while (len); 1110 return i; 1111 } 1112 EXPORT_SYMBOL(get_user_pages); 1113 1114 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) 1115 { 1116 pgd_t * pgd = pgd_offset(mm, addr); 1117 pud_t * pud = pud_alloc(mm, pgd, addr); 1118 if (pud) { 1119 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1120 if (pmd) 1121 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1122 } 1123 return NULL; 1124 } 1125 1126 /* 1127 * This is the old fallback for page remapping. 1128 * 1129 * For historical reasons, it only allows reserved pages. Only 1130 * old drivers should use this, and they needed to mark their 1131 * pages reserved for the old functions anyway. 1132 */ 1133 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot) 1134 { 1135 int retval; 1136 pte_t *pte; 1137 spinlock_t *ptl; 1138 1139 retval = -EINVAL; 1140 if (PageAnon(page)) 1141 goto out; 1142 retval = -ENOMEM; 1143 flush_dcache_page(page); 1144 pte = get_locked_pte(mm, addr, &ptl); 1145 if (!pte) 1146 goto out; 1147 retval = -EBUSY; 1148 if (!pte_none(*pte)) 1149 goto out_unlock; 1150 1151 /* Ok, finally just insert the thing.. */ 1152 get_page(page); 1153 inc_mm_counter(mm, file_rss); 1154 page_add_file_rmap(page); 1155 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1156 1157 retval = 0; 1158 out_unlock: 1159 pte_unmap_unlock(pte, ptl); 1160 out: 1161 return retval; 1162 } 1163 1164 /** 1165 * vm_insert_page - insert single page into user vma 1166 * @vma: user vma to map to 1167 * @addr: target user address of this page 1168 * @page: source kernel page 1169 * 1170 * This allows drivers to insert individual pages they've allocated 1171 * into a user vma. 1172 * 1173 * The page has to be a nice clean _individual_ kernel allocation. 1174 * If you allocate a compound page, you need to have marked it as 1175 * such (__GFP_COMP), or manually just split the page up yourself 1176 * (see split_page()). 1177 * 1178 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1179 * took an arbitrary page protection parameter. This doesn't allow 1180 * that. Your vma protection will have to be set up correctly, which 1181 * means that if you want a shared writable mapping, you'd better 1182 * ask for a shared writable mapping! 1183 * 1184 * The page does not need to be reserved. 1185 */ 1186 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) 1187 { 1188 if (addr < vma->vm_start || addr >= vma->vm_end) 1189 return -EFAULT; 1190 if (!page_count(page)) 1191 return -EINVAL; 1192 vma->vm_flags |= VM_INSERTPAGE; 1193 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot); 1194 } 1195 EXPORT_SYMBOL(vm_insert_page); 1196 1197 /** 1198 * vm_insert_pfn - insert single pfn into user vma 1199 * @vma: user vma to map to 1200 * @addr: target user address of this page 1201 * @pfn: source kernel pfn 1202 * 1203 * Similar to vm_inert_page, this allows drivers to insert individual pages 1204 * they've allocated into a user vma. Same comments apply. 1205 * 1206 * This function should only be called from a vm_ops->fault handler, and 1207 * in that case the handler should return NULL. 1208 */ 1209 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1210 unsigned long pfn) 1211 { 1212 struct mm_struct *mm = vma->vm_mm; 1213 int retval; 1214 pte_t *pte, entry; 1215 spinlock_t *ptl; 1216 1217 BUG_ON(!(vma->vm_flags & VM_PFNMAP)); 1218 BUG_ON(is_cow_mapping(vma->vm_flags)); 1219 1220 retval = -ENOMEM; 1221 pte = get_locked_pte(mm, addr, &ptl); 1222 if (!pte) 1223 goto out; 1224 retval = -EBUSY; 1225 if (!pte_none(*pte)) 1226 goto out_unlock; 1227 1228 /* Ok, finally just insert the thing.. */ 1229 entry = pfn_pte(pfn, vma->vm_page_prot); 1230 set_pte_at(mm, addr, pte, entry); 1231 update_mmu_cache(vma, addr, entry); 1232 1233 retval = 0; 1234 out_unlock: 1235 pte_unmap_unlock(pte, ptl); 1236 1237 out: 1238 return retval; 1239 } 1240 EXPORT_SYMBOL(vm_insert_pfn); 1241 1242 /* 1243 * maps a range of physical memory into the requested pages. the old 1244 * mappings are removed. any references to nonexistent pages results 1245 * in null mappings (currently treated as "copy-on-access") 1246 */ 1247 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1248 unsigned long addr, unsigned long end, 1249 unsigned long pfn, pgprot_t prot) 1250 { 1251 pte_t *pte; 1252 spinlock_t *ptl; 1253 1254 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1255 if (!pte) 1256 return -ENOMEM; 1257 arch_enter_lazy_mmu_mode(); 1258 do { 1259 BUG_ON(!pte_none(*pte)); 1260 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); 1261 pfn++; 1262 } while (pte++, addr += PAGE_SIZE, addr != end); 1263 arch_leave_lazy_mmu_mode(); 1264 pte_unmap_unlock(pte - 1, ptl); 1265 return 0; 1266 } 1267 1268 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1269 unsigned long addr, unsigned long end, 1270 unsigned long pfn, pgprot_t prot) 1271 { 1272 pmd_t *pmd; 1273 unsigned long next; 1274 1275 pfn -= addr >> PAGE_SHIFT; 1276 pmd = pmd_alloc(mm, pud, addr); 1277 if (!pmd) 1278 return -ENOMEM; 1279 do { 1280 next = pmd_addr_end(addr, end); 1281 if (remap_pte_range(mm, pmd, addr, next, 1282 pfn + (addr >> PAGE_SHIFT), prot)) 1283 return -ENOMEM; 1284 } while (pmd++, addr = next, addr != end); 1285 return 0; 1286 } 1287 1288 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1289 unsigned long addr, unsigned long end, 1290 unsigned long pfn, pgprot_t prot) 1291 { 1292 pud_t *pud; 1293 unsigned long next; 1294 1295 pfn -= addr >> PAGE_SHIFT; 1296 pud = pud_alloc(mm, pgd, addr); 1297 if (!pud) 1298 return -ENOMEM; 1299 do { 1300 next = pud_addr_end(addr, end); 1301 if (remap_pmd_range(mm, pud, addr, next, 1302 pfn + (addr >> PAGE_SHIFT), prot)) 1303 return -ENOMEM; 1304 } while (pud++, addr = next, addr != end); 1305 return 0; 1306 } 1307 1308 /** 1309 * remap_pfn_range - remap kernel memory to userspace 1310 * @vma: user vma to map to 1311 * @addr: target user address to start at 1312 * @pfn: physical address of kernel memory 1313 * @size: size of map area 1314 * @prot: page protection flags for this mapping 1315 * 1316 * Note: this is only safe if the mm semaphore is held when called. 1317 */ 1318 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1319 unsigned long pfn, unsigned long size, pgprot_t prot) 1320 { 1321 pgd_t *pgd; 1322 unsigned long next; 1323 unsigned long end = addr + PAGE_ALIGN(size); 1324 struct mm_struct *mm = vma->vm_mm; 1325 int err; 1326 1327 /* 1328 * Physically remapped pages are special. Tell the 1329 * rest of the world about it: 1330 * VM_IO tells people not to look at these pages 1331 * (accesses can have side effects). 1332 * VM_RESERVED is specified all over the place, because 1333 * in 2.4 it kept swapout's vma scan off this vma; but 1334 * in 2.6 the LRU scan won't even find its pages, so this 1335 * flag means no more than count its pages in reserved_vm, 1336 * and omit it from core dump, even when VM_IO turned off. 1337 * VM_PFNMAP tells the core MM that the base pages are just 1338 * raw PFN mappings, and do not have a "struct page" associated 1339 * with them. 1340 * 1341 * There's a horrible special case to handle copy-on-write 1342 * behaviour that some programs depend on. We mark the "original" 1343 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1344 */ 1345 if (is_cow_mapping(vma->vm_flags)) { 1346 if (addr != vma->vm_start || end != vma->vm_end) 1347 return -EINVAL; 1348 vma->vm_pgoff = pfn; 1349 } 1350 1351 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1352 1353 BUG_ON(addr >= end); 1354 pfn -= addr >> PAGE_SHIFT; 1355 pgd = pgd_offset(mm, addr); 1356 flush_cache_range(vma, addr, end); 1357 do { 1358 next = pgd_addr_end(addr, end); 1359 err = remap_pud_range(mm, pgd, addr, next, 1360 pfn + (addr >> PAGE_SHIFT), prot); 1361 if (err) 1362 break; 1363 } while (pgd++, addr = next, addr != end); 1364 return err; 1365 } 1366 EXPORT_SYMBOL(remap_pfn_range); 1367 1368 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1369 unsigned long addr, unsigned long end, 1370 pte_fn_t fn, void *data) 1371 { 1372 pte_t *pte; 1373 int err; 1374 struct page *pmd_page; 1375 spinlock_t *uninitialized_var(ptl); 1376 1377 pte = (mm == &init_mm) ? 1378 pte_alloc_kernel(pmd, addr) : 1379 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1380 if (!pte) 1381 return -ENOMEM; 1382 1383 BUG_ON(pmd_huge(*pmd)); 1384 1385 pmd_page = pmd_page(*pmd); 1386 1387 do { 1388 err = fn(pte, pmd_page, addr, data); 1389 if (err) 1390 break; 1391 } while (pte++, addr += PAGE_SIZE, addr != end); 1392 1393 if (mm != &init_mm) 1394 pte_unmap_unlock(pte-1, ptl); 1395 return err; 1396 } 1397 1398 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1399 unsigned long addr, unsigned long end, 1400 pte_fn_t fn, void *data) 1401 { 1402 pmd_t *pmd; 1403 unsigned long next; 1404 int err; 1405 1406 pmd = pmd_alloc(mm, pud, addr); 1407 if (!pmd) 1408 return -ENOMEM; 1409 do { 1410 next = pmd_addr_end(addr, end); 1411 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1412 if (err) 1413 break; 1414 } while (pmd++, addr = next, addr != end); 1415 return err; 1416 } 1417 1418 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1419 unsigned long addr, unsigned long end, 1420 pte_fn_t fn, void *data) 1421 { 1422 pud_t *pud; 1423 unsigned long next; 1424 int err; 1425 1426 pud = pud_alloc(mm, pgd, addr); 1427 if (!pud) 1428 return -ENOMEM; 1429 do { 1430 next = pud_addr_end(addr, end); 1431 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1432 if (err) 1433 break; 1434 } while (pud++, addr = next, addr != end); 1435 return err; 1436 } 1437 1438 /* 1439 * Scan a region of virtual memory, filling in page tables as necessary 1440 * and calling a provided function on each leaf page table. 1441 */ 1442 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1443 unsigned long size, pte_fn_t fn, void *data) 1444 { 1445 pgd_t *pgd; 1446 unsigned long next; 1447 unsigned long end = addr + size; 1448 int err; 1449 1450 BUG_ON(addr >= end); 1451 pgd = pgd_offset(mm, addr); 1452 do { 1453 next = pgd_addr_end(addr, end); 1454 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1455 if (err) 1456 break; 1457 } while (pgd++, addr = next, addr != end); 1458 return err; 1459 } 1460 EXPORT_SYMBOL_GPL(apply_to_page_range); 1461 1462 /* 1463 * handle_pte_fault chooses page fault handler according to an entry 1464 * which was read non-atomically. Before making any commitment, on 1465 * those architectures or configurations (e.g. i386 with PAE) which 1466 * might give a mix of unmatched parts, do_swap_page and do_file_page 1467 * must check under lock before unmapping the pte and proceeding 1468 * (but do_wp_page is only called after already making such a check; 1469 * and do_anonymous_page and do_no_page can safely check later on). 1470 */ 1471 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1472 pte_t *page_table, pte_t orig_pte) 1473 { 1474 int same = 1; 1475 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1476 if (sizeof(pte_t) > sizeof(unsigned long)) { 1477 spinlock_t *ptl = pte_lockptr(mm, pmd); 1478 spin_lock(ptl); 1479 same = pte_same(*page_table, orig_pte); 1480 spin_unlock(ptl); 1481 } 1482 #endif 1483 pte_unmap(page_table); 1484 return same; 1485 } 1486 1487 /* 1488 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1489 * servicing faults for write access. In the normal case, do always want 1490 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1491 * that do not have writing enabled, when used by access_process_vm. 1492 */ 1493 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1494 { 1495 if (likely(vma->vm_flags & VM_WRITE)) 1496 pte = pte_mkwrite(pte); 1497 return pte; 1498 } 1499 1500 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1501 { 1502 /* 1503 * If the source page was a PFN mapping, we don't have 1504 * a "struct page" for it. We do a best-effort copy by 1505 * just copying from the original user address. If that 1506 * fails, we just zero-fill it. Live with it. 1507 */ 1508 if (unlikely(!src)) { 1509 void *kaddr = kmap_atomic(dst, KM_USER0); 1510 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1511 1512 /* 1513 * This really shouldn't fail, because the page is there 1514 * in the page tables. But it might just be unreadable, 1515 * in which case we just give up and fill the result with 1516 * zeroes. 1517 */ 1518 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1519 memset(kaddr, 0, PAGE_SIZE); 1520 kunmap_atomic(kaddr, KM_USER0); 1521 flush_dcache_page(dst); 1522 return; 1523 1524 } 1525 copy_user_highpage(dst, src, va, vma); 1526 } 1527 1528 /* 1529 * This routine handles present pages, when users try to write 1530 * to a shared page. It is done by copying the page to a new address 1531 * and decrementing the shared-page counter for the old page. 1532 * 1533 * Note that this routine assumes that the protection checks have been 1534 * done by the caller (the low-level page fault routine in most cases). 1535 * Thus we can safely just mark it writable once we've done any necessary 1536 * COW. 1537 * 1538 * We also mark the page dirty at this point even though the page will 1539 * change only once the write actually happens. This avoids a few races, 1540 * and potentially makes it more efficient. 1541 * 1542 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1543 * but allow concurrent faults), with pte both mapped and locked. 1544 * We return with mmap_sem still held, but pte unmapped and unlocked. 1545 */ 1546 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1547 unsigned long address, pte_t *page_table, pmd_t *pmd, 1548 spinlock_t *ptl, pte_t orig_pte) 1549 { 1550 struct page *old_page, *new_page; 1551 pte_t entry; 1552 int reuse = 0, ret = 0; 1553 int page_mkwrite = 0; 1554 struct page *dirty_page = NULL; 1555 1556 old_page = vm_normal_page(vma, address, orig_pte); 1557 if (!old_page) 1558 goto gotten; 1559 1560 /* 1561 * Take out anonymous pages first, anonymous shared vmas are 1562 * not dirty accountable. 1563 */ 1564 if (PageAnon(old_page)) { 1565 if (!TestSetPageLocked(old_page)) { 1566 reuse = can_share_swap_page(old_page); 1567 unlock_page(old_page); 1568 } 1569 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1570 (VM_WRITE|VM_SHARED))) { 1571 /* 1572 * Only catch write-faults on shared writable pages, 1573 * read-only shared pages can get COWed by 1574 * get_user_pages(.write=1, .force=1). 1575 */ 1576 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 1577 /* 1578 * Notify the address space that the page is about to 1579 * become writable so that it can prohibit this or wait 1580 * for the page to get into an appropriate state. 1581 * 1582 * We do this without the lock held, so that it can 1583 * sleep if it needs to. 1584 */ 1585 page_cache_get(old_page); 1586 pte_unmap_unlock(page_table, ptl); 1587 1588 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) 1589 goto unwritable_page; 1590 1591 /* 1592 * Since we dropped the lock we need to revalidate 1593 * the PTE as someone else may have changed it. If 1594 * they did, we just return, as we can count on the 1595 * MMU to tell us if they didn't also make it writable. 1596 */ 1597 page_table = pte_offset_map_lock(mm, pmd, address, 1598 &ptl); 1599 page_cache_release(old_page); 1600 if (!pte_same(*page_table, orig_pte)) 1601 goto unlock; 1602 1603 page_mkwrite = 1; 1604 } 1605 dirty_page = old_page; 1606 get_page(dirty_page); 1607 reuse = 1; 1608 } 1609 1610 if (reuse) { 1611 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1612 entry = pte_mkyoung(orig_pte); 1613 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1614 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 1615 update_mmu_cache(vma, address, entry); 1616 ret |= VM_FAULT_WRITE; 1617 goto unlock; 1618 } 1619 1620 /* 1621 * Ok, we need to copy. Oh, well.. 1622 */ 1623 page_cache_get(old_page); 1624 gotten: 1625 pte_unmap_unlock(page_table, ptl); 1626 1627 if (unlikely(anon_vma_prepare(vma))) 1628 goto oom; 1629 VM_BUG_ON(old_page == ZERO_PAGE(0)); 1630 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1631 if (!new_page) 1632 goto oom; 1633 cow_user_page(new_page, old_page, address, vma); 1634 1635 /* 1636 * Re-check the pte - we dropped the lock 1637 */ 1638 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1639 if (likely(pte_same(*page_table, orig_pte))) { 1640 if (old_page) { 1641 page_remove_rmap(old_page, vma); 1642 if (!PageAnon(old_page)) { 1643 dec_mm_counter(mm, file_rss); 1644 inc_mm_counter(mm, anon_rss); 1645 } 1646 } else 1647 inc_mm_counter(mm, anon_rss); 1648 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1649 entry = mk_pte(new_page, vma->vm_page_prot); 1650 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1651 /* 1652 * Clear the pte entry and flush it first, before updating the 1653 * pte with the new entry. This will avoid a race condition 1654 * seen in the presence of one thread doing SMC and another 1655 * thread doing COW. 1656 */ 1657 ptep_clear_flush(vma, address, page_table); 1658 set_pte_at(mm, address, page_table, entry); 1659 update_mmu_cache(vma, address, entry); 1660 lru_cache_add_active(new_page); 1661 page_add_new_anon_rmap(new_page, vma, address); 1662 1663 /* Free the old page.. */ 1664 new_page = old_page; 1665 ret |= VM_FAULT_WRITE; 1666 } 1667 if (new_page) 1668 page_cache_release(new_page); 1669 if (old_page) 1670 page_cache_release(old_page); 1671 unlock: 1672 pte_unmap_unlock(page_table, ptl); 1673 if (dirty_page) { 1674 /* 1675 * Yes, Virginia, this is actually required to prevent a race 1676 * with clear_page_dirty_for_io() from clearing the page dirty 1677 * bit after it clear all dirty ptes, but before a racing 1678 * do_wp_page installs a dirty pte. 1679 * 1680 * do_no_page is protected similarly. 1681 */ 1682 wait_on_page_locked(dirty_page); 1683 set_page_dirty_balance(dirty_page, page_mkwrite); 1684 put_page(dirty_page); 1685 } 1686 return ret; 1687 oom: 1688 if (old_page) 1689 page_cache_release(old_page); 1690 return VM_FAULT_OOM; 1691 1692 unwritable_page: 1693 page_cache_release(old_page); 1694 return VM_FAULT_SIGBUS; 1695 } 1696 1697 /* 1698 * Helper functions for unmap_mapping_range(). 1699 * 1700 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 1701 * 1702 * We have to restart searching the prio_tree whenever we drop the lock, 1703 * since the iterator is only valid while the lock is held, and anyway 1704 * a later vma might be split and reinserted earlier while lock dropped. 1705 * 1706 * The list of nonlinear vmas could be handled more efficiently, using 1707 * a placeholder, but handle it in the same way until a need is shown. 1708 * It is important to search the prio_tree before nonlinear list: a vma 1709 * may become nonlinear and be shifted from prio_tree to nonlinear list 1710 * while the lock is dropped; but never shifted from list to prio_tree. 1711 * 1712 * In order to make forward progress despite restarting the search, 1713 * vm_truncate_count is used to mark a vma as now dealt with, so we can 1714 * quickly skip it next time around. Since the prio_tree search only 1715 * shows us those vmas affected by unmapping the range in question, we 1716 * can't efficiently keep all vmas in step with mapping->truncate_count: 1717 * so instead reset them all whenever it wraps back to 0 (then go to 1). 1718 * mapping->truncate_count and vma->vm_truncate_count are protected by 1719 * i_mmap_lock. 1720 * 1721 * In order to make forward progress despite repeatedly restarting some 1722 * large vma, note the restart_addr from unmap_vmas when it breaks out: 1723 * and restart from that address when we reach that vma again. It might 1724 * have been split or merged, shrunk or extended, but never shifted: so 1725 * restart_addr remains valid so long as it remains in the vma's range. 1726 * unmap_mapping_range forces truncate_count to leap over page-aligned 1727 * values so we can save vma's restart_addr in its truncate_count field. 1728 */ 1729 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 1730 1731 static void reset_vma_truncate_counts(struct address_space *mapping) 1732 { 1733 struct vm_area_struct *vma; 1734 struct prio_tree_iter iter; 1735 1736 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 1737 vma->vm_truncate_count = 0; 1738 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1739 vma->vm_truncate_count = 0; 1740 } 1741 1742 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 1743 unsigned long start_addr, unsigned long end_addr, 1744 struct zap_details *details) 1745 { 1746 unsigned long restart_addr; 1747 int need_break; 1748 1749 /* 1750 * files that support invalidating or truncating portions of the 1751 * file from under mmaped areas must have their ->fault function 1752 * return a locked page (and set VM_FAULT_LOCKED in the return). 1753 * This provides synchronisation against concurrent unmapping here. 1754 */ 1755 1756 again: 1757 restart_addr = vma->vm_truncate_count; 1758 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 1759 start_addr = restart_addr; 1760 if (start_addr >= end_addr) { 1761 /* Top of vma has been split off since last time */ 1762 vma->vm_truncate_count = details->truncate_count; 1763 return 0; 1764 } 1765 } 1766 1767 restart_addr = zap_page_range(vma, start_addr, 1768 end_addr - start_addr, details); 1769 need_break = need_resched() || 1770 need_lockbreak(details->i_mmap_lock); 1771 1772 if (restart_addr >= end_addr) { 1773 /* We have now completed this vma: mark it so */ 1774 vma->vm_truncate_count = details->truncate_count; 1775 if (!need_break) 1776 return 0; 1777 } else { 1778 /* Note restart_addr in vma's truncate_count field */ 1779 vma->vm_truncate_count = restart_addr; 1780 if (!need_break) 1781 goto again; 1782 } 1783 1784 spin_unlock(details->i_mmap_lock); 1785 cond_resched(); 1786 spin_lock(details->i_mmap_lock); 1787 return -EINTR; 1788 } 1789 1790 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 1791 struct zap_details *details) 1792 { 1793 struct vm_area_struct *vma; 1794 struct prio_tree_iter iter; 1795 pgoff_t vba, vea, zba, zea; 1796 1797 restart: 1798 vma_prio_tree_foreach(vma, &iter, root, 1799 details->first_index, details->last_index) { 1800 /* Skip quickly over those we have already dealt with */ 1801 if (vma->vm_truncate_count == details->truncate_count) 1802 continue; 1803 1804 vba = vma->vm_pgoff; 1805 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 1806 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 1807 zba = details->first_index; 1808 if (zba < vba) 1809 zba = vba; 1810 zea = details->last_index; 1811 if (zea > vea) 1812 zea = vea; 1813 1814 if (unmap_mapping_range_vma(vma, 1815 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 1816 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 1817 details) < 0) 1818 goto restart; 1819 } 1820 } 1821 1822 static inline void unmap_mapping_range_list(struct list_head *head, 1823 struct zap_details *details) 1824 { 1825 struct vm_area_struct *vma; 1826 1827 /* 1828 * In nonlinear VMAs there is no correspondence between virtual address 1829 * offset and file offset. So we must perform an exhaustive search 1830 * across *all* the pages in each nonlinear VMA, not just the pages 1831 * whose virtual address lies outside the file truncation point. 1832 */ 1833 restart: 1834 list_for_each_entry(vma, head, shared.vm_set.list) { 1835 /* Skip quickly over those we have already dealt with */ 1836 if (vma->vm_truncate_count == details->truncate_count) 1837 continue; 1838 details->nonlinear_vma = vma; 1839 if (unmap_mapping_range_vma(vma, vma->vm_start, 1840 vma->vm_end, details) < 0) 1841 goto restart; 1842 } 1843 } 1844 1845 /** 1846 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 1847 * @mapping: the address space containing mmaps to be unmapped. 1848 * @holebegin: byte in first page to unmap, relative to the start of 1849 * the underlying file. This will be rounded down to a PAGE_SIZE 1850 * boundary. Note that this is different from vmtruncate(), which 1851 * must keep the partial page. In contrast, we must get rid of 1852 * partial pages. 1853 * @holelen: size of prospective hole in bytes. This will be rounded 1854 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 1855 * end of the file. 1856 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 1857 * but 0 when invalidating pagecache, don't throw away private data. 1858 */ 1859 void unmap_mapping_range(struct address_space *mapping, 1860 loff_t const holebegin, loff_t const holelen, int even_cows) 1861 { 1862 struct zap_details details; 1863 pgoff_t hba = holebegin >> PAGE_SHIFT; 1864 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1865 1866 /* Check for overflow. */ 1867 if (sizeof(holelen) > sizeof(hlen)) { 1868 long long holeend = 1869 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1870 if (holeend & ~(long long)ULONG_MAX) 1871 hlen = ULONG_MAX - hba + 1; 1872 } 1873 1874 details.check_mapping = even_cows? NULL: mapping; 1875 details.nonlinear_vma = NULL; 1876 details.first_index = hba; 1877 details.last_index = hba + hlen - 1; 1878 if (details.last_index < details.first_index) 1879 details.last_index = ULONG_MAX; 1880 details.i_mmap_lock = &mapping->i_mmap_lock; 1881 1882 spin_lock(&mapping->i_mmap_lock); 1883 1884 /* Protect against endless unmapping loops */ 1885 mapping->truncate_count++; 1886 if (unlikely(is_restart_addr(mapping->truncate_count))) { 1887 if (mapping->truncate_count == 0) 1888 reset_vma_truncate_counts(mapping); 1889 mapping->truncate_count++; 1890 } 1891 details.truncate_count = mapping->truncate_count; 1892 1893 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 1894 unmap_mapping_range_tree(&mapping->i_mmap, &details); 1895 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 1896 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 1897 spin_unlock(&mapping->i_mmap_lock); 1898 } 1899 EXPORT_SYMBOL(unmap_mapping_range); 1900 1901 /** 1902 * vmtruncate - unmap mappings "freed" by truncate() syscall 1903 * @inode: inode of the file used 1904 * @offset: file offset to start truncating 1905 * 1906 * NOTE! We have to be ready to update the memory sharing 1907 * between the file and the memory map for a potential last 1908 * incomplete page. Ugly, but necessary. 1909 */ 1910 int vmtruncate(struct inode * inode, loff_t offset) 1911 { 1912 struct address_space *mapping = inode->i_mapping; 1913 unsigned long limit; 1914 1915 if (inode->i_size < offset) 1916 goto do_expand; 1917 /* 1918 * truncation of in-use swapfiles is disallowed - it would cause 1919 * subsequent swapout to scribble on the now-freed blocks. 1920 */ 1921 if (IS_SWAPFILE(inode)) 1922 goto out_busy; 1923 i_size_write(inode, offset); 1924 1925 /* 1926 * unmap_mapping_range is called twice, first simply for efficiency 1927 * so that truncate_inode_pages does fewer single-page unmaps. However 1928 * after this first call, and before truncate_inode_pages finishes, 1929 * it is possible for private pages to be COWed, which remain after 1930 * truncate_inode_pages finishes, hence the second unmap_mapping_range 1931 * call must be made for correctness. 1932 */ 1933 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 1934 truncate_inode_pages(mapping, offset); 1935 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 1936 goto out_truncate; 1937 1938 do_expand: 1939 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1940 if (limit != RLIM_INFINITY && offset > limit) 1941 goto out_sig; 1942 if (offset > inode->i_sb->s_maxbytes) 1943 goto out_big; 1944 i_size_write(inode, offset); 1945 1946 out_truncate: 1947 if (inode->i_op && inode->i_op->truncate) 1948 inode->i_op->truncate(inode); 1949 return 0; 1950 out_sig: 1951 send_sig(SIGXFSZ, current, 0); 1952 out_big: 1953 return -EFBIG; 1954 out_busy: 1955 return -ETXTBSY; 1956 } 1957 EXPORT_SYMBOL(vmtruncate); 1958 1959 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 1960 { 1961 struct address_space *mapping = inode->i_mapping; 1962 1963 /* 1964 * If the underlying filesystem is not going to provide 1965 * a way to truncate a range of blocks (punch a hole) - 1966 * we should return failure right now. 1967 */ 1968 if (!inode->i_op || !inode->i_op->truncate_range) 1969 return -ENOSYS; 1970 1971 mutex_lock(&inode->i_mutex); 1972 down_write(&inode->i_alloc_sem); 1973 unmap_mapping_range(mapping, offset, (end - offset), 1); 1974 truncate_inode_pages_range(mapping, offset, end); 1975 unmap_mapping_range(mapping, offset, (end - offset), 1); 1976 inode->i_op->truncate_range(inode, offset, end); 1977 up_write(&inode->i_alloc_sem); 1978 mutex_unlock(&inode->i_mutex); 1979 1980 return 0; 1981 } 1982 1983 /** 1984 * swapin_readahead - swap in pages in hope we need them soon 1985 * @entry: swap entry of this memory 1986 * @addr: address to start 1987 * @vma: user vma this addresses belong to 1988 * 1989 * Primitive swap readahead code. We simply read an aligned block of 1990 * (1 << page_cluster) entries in the swap area. This method is chosen 1991 * because it doesn't cost us any seek time. We also make sure to queue 1992 * the 'original' request together with the readahead ones... 1993 * 1994 * This has been extended to use the NUMA policies from the mm triggering 1995 * the readahead. 1996 * 1997 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 1998 */ 1999 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) 2000 { 2001 #ifdef CONFIG_NUMA 2002 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; 2003 #endif 2004 int i, num; 2005 struct page *new_page; 2006 unsigned long offset; 2007 2008 /* 2009 * Get the number of handles we should do readahead io to. 2010 */ 2011 num = valid_swaphandles(entry, &offset); 2012 for (i = 0; i < num; offset++, i++) { 2013 /* Ok, do the async read-ahead now */ 2014 new_page = read_swap_cache_async(swp_entry(swp_type(entry), 2015 offset), vma, addr); 2016 if (!new_page) 2017 break; 2018 page_cache_release(new_page); 2019 #ifdef CONFIG_NUMA 2020 /* 2021 * Find the next applicable VMA for the NUMA policy. 2022 */ 2023 addr += PAGE_SIZE; 2024 if (addr == 0) 2025 vma = NULL; 2026 if (vma) { 2027 if (addr >= vma->vm_end) { 2028 vma = next_vma; 2029 next_vma = vma ? vma->vm_next : NULL; 2030 } 2031 if (vma && addr < vma->vm_start) 2032 vma = NULL; 2033 } else { 2034 if (next_vma && addr >= next_vma->vm_start) { 2035 vma = next_vma; 2036 next_vma = vma->vm_next; 2037 } 2038 } 2039 #endif 2040 } 2041 lru_add_drain(); /* Push any new pages onto the LRU now */ 2042 } 2043 2044 /* 2045 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2046 * but allow concurrent faults), and pte mapped but not yet locked. 2047 * We return with mmap_sem still held, but pte unmapped and unlocked. 2048 */ 2049 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2050 unsigned long address, pte_t *page_table, pmd_t *pmd, 2051 int write_access, pte_t orig_pte) 2052 { 2053 spinlock_t *ptl; 2054 struct page *page; 2055 swp_entry_t entry; 2056 pte_t pte; 2057 int ret = 0; 2058 2059 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2060 goto out; 2061 2062 entry = pte_to_swp_entry(orig_pte); 2063 if (is_migration_entry(entry)) { 2064 migration_entry_wait(mm, pmd, address); 2065 goto out; 2066 } 2067 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2068 page = lookup_swap_cache(entry); 2069 if (!page) { 2070 grab_swap_token(); /* Contend for token _before_ read-in */ 2071 swapin_readahead(entry, address, vma); 2072 page = read_swap_cache_async(entry, vma, address); 2073 if (!page) { 2074 /* 2075 * Back out if somebody else faulted in this pte 2076 * while we released the pte lock. 2077 */ 2078 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2079 if (likely(pte_same(*page_table, orig_pte))) 2080 ret = VM_FAULT_OOM; 2081 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2082 goto unlock; 2083 } 2084 2085 /* Had to read the page from swap area: Major fault */ 2086 ret = VM_FAULT_MAJOR; 2087 count_vm_event(PGMAJFAULT); 2088 } 2089 2090 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2091 mark_page_accessed(page); 2092 lock_page(page); 2093 2094 /* 2095 * Back out if somebody else already faulted in this pte. 2096 */ 2097 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2098 if (unlikely(!pte_same(*page_table, orig_pte))) 2099 goto out_nomap; 2100 2101 if (unlikely(!PageUptodate(page))) { 2102 ret = VM_FAULT_SIGBUS; 2103 goto out_nomap; 2104 } 2105 2106 /* The page isn't present yet, go ahead with the fault. */ 2107 2108 inc_mm_counter(mm, anon_rss); 2109 pte = mk_pte(page, vma->vm_page_prot); 2110 if (write_access && can_share_swap_page(page)) { 2111 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2112 write_access = 0; 2113 } 2114 2115 flush_icache_page(vma, page); 2116 set_pte_at(mm, address, page_table, pte); 2117 page_add_anon_rmap(page, vma, address); 2118 2119 swap_free(entry); 2120 if (vm_swap_full()) 2121 remove_exclusive_swap_page(page); 2122 unlock_page(page); 2123 2124 if (write_access) { 2125 /* XXX: We could OR the do_wp_page code with this one? */ 2126 if (do_wp_page(mm, vma, address, 2127 page_table, pmd, ptl, pte) & VM_FAULT_OOM) 2128 ret = VM_FAULT_OOM; 2129 goto out; 2130 } 2131 2132 /* No need to invalidate - it was non-present before */ 2133 update_mmu_cache(vma, address, pte); 2134 unlock: 2135 pte_unmap_unlock(page_table, ptl); 2136 out: 2137 return ret; 2138 out_nomap: 2139 pte_unmap_unlock(page_table, ptl); 2140 unlock_page(page); 2141 page_cache_release(page); 2142 return ret; 2143 } 2144 2145 /* 2146 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2147 * but allow concurrent faults), and pte mapped but not yet locked. 2148 * We return with mmap_sem still held, but pte unmapped and unlocked. 2149 */ 2150 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2151 unsigned long address, pte_t *page_table, pmd_t *pmd, 2152 int write_access) 2153 { 2154 struct page *page; 2155 spinlock_t *ptl; 2156 pte_t entry; 2157 2158 /* Allocate our own private page. */ 2159 pte_unmap(page_table); 2160 2161 if (unlikely(anon_vma_prepare(vma))) 2162 goto oom; 2163 page = alloc_zeroed_user_highpage_movable(vma, address); 2164 if (!page) 2165 goto oom; 2166 2167 entry = mk_pte(page, vma->vm_page_prot); 2168 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2169 2170 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2171 if (!pte_none(*page_table)) 2172 goto release; 2173 inc_mm_counter(mm, anon_rss); 2174 lru_cache_add_active(page); 2175 page_add_new_anon_rmap(page, vma, address); 2176 set_pte_at(mm, address, page_table, entry); 2177 2178 /* No need to invalidate - it was non-present before */ 2179 update_mmu_cache(vma, address, entry); 2180 unlock: 2181 pte_unmap_unlock(page_table, ptl); 2182 return 0; 2183 release: 2184 page_cache_release(page); 2185 goto unlock; 2186 oom: 2187 return VM_FAULT_OOM; 2188 } 2189 2190 /* 2191 * __do_fault() tries to create a new page mapping. It aggressively 2192 * tries to share with existing pages, but makes a separate copy if 2193 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2194 * the next page fault. 2195 * 2196 * As this is called only for pages that do not currently exist, we 2197 * do not need to flush old virtual caches or the TLB. 2198 * 2199 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2200 * but allow concurrent faults), and pte neither mapped nor locked. 2201 * We return with mmap_sem still held, but pte unmapped and unlocked. 2202 */ 2203 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2204 unsigned long address, pmd_t *pmd, 2205 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2206 { 2207 pte_t *page_table; 2208 spinlock_t *ptl; 2209 struct page *page; 2210 pte_t entry; 2211 int anon = 0; 2212 struct page *dirty_page = NULL; 2213 struct vm_fault vmf; 2214 int ret; 2215 int page_mkwrite = 0; 2216 2217 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2218 vmf.pgoff = pgoff; 2219 vmf.flags = flags; 2220 vmf.page = NULL; 2221 2222 BUG_ON(vma->vm_flags & VM_PFNMAP); 2223 2224 if (likely(vma->vm_ops->fault)) { 2225 ret = vma->vm_ops->fault(vma, &vmf); 2226 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2227 return ret; 2228 } else { 2229 /* Legacy ->nopage path */ 2230 ret = 0; 2231 vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); 2232 /* no page was available -- either SIGBUS or OOM */ 2233 if (unlikely(vmf.page == NOPAGE_SIGBUS)) 2234 return VM_FAULT_SIGBUS; 2235 else if (unlikely(vmf.page == NOPAGE_OOM)) 2236 return VM_FAULT_OOM; 2237 } 2238 2239 /* 2240 * For consistency in subsequent calls, make the faulted page always 2241 * locked. 2242 */ 2243 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2244 lock_page(vmf.page); 2245 else 2246 VM_BUG_ON(!PageLocked(vmf.page)); 2247 2248 /* 2249 * Should we do an early C-O-W break? 2250 */ 2251 page = vmf.page; 2252 if (flags & FAULT_FLAG_WRITE) { 2253 if (!(vma->vm_flags & VM_SHARED)) { 2254 anon = 1; 2255 if (unlikely(anon_vma_prepare(vma))) { 2256 ret = VM_FAULT_OOM; 2257 goto out; 2258 } 2259 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2260 vma, address); 2261 if (!page) { 2262 ret = VM_FAULT_OOM; 2263 goto out; 2264 } 2265 copy_user_highpage(page, vmf.page, address, vma); 2266 } else { 2267 /* 2268 * If the page will be shareable, see if the backing 2269 * address space wants to know that the page is about 2270 * to become writable 2271 */ 2272 if (vma->vm_ops->page_mkwrite) { 2273 unlock_page(page); 2274 if (vma->vm_ops->page_mkwrite(vma, page) < 0) { 2275 ret = VM_FAULT_SIGBUS; 2276 anon = 1; /* no anon but release vmf.page */ 2277 goto out_unlocked; 2278 } 2279 lock_page(page); 2280 /* 2281 * XXX: this is not quite right (racy vs 2282 * invalidate) to unlock and relock the page 2283 * like this, however a better fix requires 2284 * reworking page_mkwrite locking API, which 2285 * is better done later. 2286 */ 2287 if (!page->mapping) { 2288 ret = 0; 2289 anon = 1; /* no anon but release vmf.page */ 2290 goto out; 2291 } 2292 page_mkwrite = 1; 2293 } 2294 } 2295 2296 } 2297 2298 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2299 2300 /* 2301 * This silly early PAGE_DIRTY setting removes a race 2302 * due to the bad i386 page protection. But it's valid 2303 * for other architectures too. 2304 * 2305 * Note that if write_access is true, we either now have 2306 * an exclusive copy of the page, or this is a shared mapping, 2307 * so we can make it writable and dirty to avoid having to 2308 * handle that later. 2309 */ 2310 /* Only go through if we didn't race with anybody else... */ 2311 if (likely(pte_same(*page_table, orig_pte))) { 2312 flush_icache_page(vma, page); 2313 entry = mk_pte(page, vma->vm_page_prot); 2314 if (flags & FAULT_FLAG_WRITE) 2315 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2316 set_pte_at(mm, address, page_table, entry); 2317 if (anon) { 2318 inc_mm_counter(mm, anon_rss); 2319 lru_cache_add_active(page); 2320 page_add_new_anon_rmap(page, vma, address); 2321 } else { 2322 inc_mm_counter(mm, file_rss); 2323 page_add_file_rmap(page); 2324 if (flags & FAULT_FLAG_WRITE) { 2325 dirty_page = page; 2326 get_page(dirty_page); 2327 } 2328 } 2329 2330 /* no need to invalidate: a not-present page won't be cached */ 2331 update_mmu_cache(vma, address, entry); 2332 } else { 2333 if (anon) 2334 page_cache_release(page); 2335 else 2336 anon = 1; /* no anon but release faulted_page */ 2337 } 2338 2339 pte_unmap_unlock(page_table, ptl); 2340 2341 out: 2342 unlock_page(vmf.page); 2343 out_unlocked: 2344 if (anon) 2345 page_cache_release(vmf.page); 2346 else if (dirty_page) { 2347 set_page_dirty_balance(dirty_page, page_mkwrite); 2348 put_page(dirty_page); 2349 } 2350 2351 return ret; 2352 } 2353 2354 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2355 unsigned long address, pte_t *page_table, pmd_t *pmd, 2356 int write_access, pte_t orig_pte) 2357 { 2358 pgoff_t pgoff = (((address & PAGE_MASK) 2359 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2360 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); 2361 2362 pte_unmap(page_table); 2363 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2364 } 2365 2366 2367 /* 2368 * do_no_pfn() tries to create a new page mapping for a page without 2369 * a struct_page backing it 2370 * 2371 * As this is called only for pages that do not currently exist, we 2372 * do not need to flush old virtual caches or the TLB. 2373 * 2374 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2375 * but allow concurrent faults), and pte mapped but not yet locked. 2376 * We return with mmap_sem still held, but pte unmapped and unlocked. 2377 * 2378 * It is expected that the ->nopfn handler always returns the same pfn 2379 * for a given virtual mapping. 2380 * 2381 * Mark this `noinline' to prevent it from bloating the main pagefault code. 2382 */ 2383 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma, 2384 unsigned long address, pte_t *page_table, pmd_t *pmd, 2385 int write_access) 2386 { 2387 spinlock_t *ptl; 2388 pte_t entry; 2389 unsigned long pfn; 2390 2391 pte_unmap(page_table); 2392 BUG_ON(!(vma->vm_flags & VM_PFNMAP)); 2393 BUG_ON(is_cow_mapping(vma->vm_flags)); 2394 2395 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK); 2396 if (unlikely(pfn == NOPFN_OOM)) 2397 return VM_FAULT_OOM; 2398 else if (unlikely(pfn == NOPFN_SIGBUS)) 2399 return VM_FAULT_SIGBUS; 2400 else if (unlikely(pfn == NOPFN_REFAULT)) 2401 return 0; 2402 2403 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2404 2405 /* Only go through if we didn't race with anybody else... */ 2406 if (pte_none(*page_table)) { 2407 entry = pfn_pte(pfn, vma->vm_page_prot); 2408 if (write_access) 2409 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2410 set_pte_at(mm, address, page_table, entry); 2411 } 2412 pte_unmap_unlock(page_table, ptl); 2413 return 0; 2414 } 2415 2416 /* 2417 * Fault of a previously existing named mapping. Repopulate the pte 2418 * from the encoded file_pte if possible. This enables swappable 2419 * nonlinear vmas. 2420 * 2421 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2422 * but allow concurrent faults), and pte mapped but not yet locked. 2423 * We return with mmap_sem still held, but pte unmapped and unlocked. 2424 */ 2425 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2426 unsigned long address, pte_t *page_table, pmd_t *pmd, 2427 int write_access, pte_t orig_pte) 2428 { 2429 unsigned int flags = FAULT_FLAG_NONLINEAR | 2430 (write_access ? FAULT_FLAG_WRITE : 0); 2431 pgoff_t pgoff; 2432 2433 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2434 return 0; 2435 2436 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) || 2437 !(vma->vm_flags & VM_CAN_NONLINEAR))) { 2438 /* 2439 * Page table corrupted: show pte and kill process. 2440 */ 2441 print_bad_pte(vma, orig_pte, address); 2442 return VM_FAULT_OOM; 2443 } 2444 2445 pgoff = pte_to_pgoff(orig_pte); 2446 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2447 } 2448 2449 /* 2450 * These routines also need to handle stuff like marking pages dirty 2451 * and/or accessed for architectures that don't do it in hardware (most 2452 * RISC architectures). The early dirtying is also good on the i386. 2453 * 2454 * There is also a hook called "update_mmu_cache()" that architectures 2455 * with external mmu caches can use to update those (ie the Sparc or 2456 * PowerPC hashed page tables that act as extended TLBs). 2457 * 2458 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2459 * but allow concurrent faults), and pte mapped but not yet locked. 2460 * We return with mmap_sem still held, but pte unmapped and unlocked. 2461 */ 2462 static inline int handle_pte_fault(struct mm_struct *mm, 2463 struct vm_area_struct *vma, unsigned long address, 2464 pte_t *pte, pmd_t *pmd, int write_access) 2465 { 2466 pte_t entry; 2467 spinlock_t *ptl; 2468 2469 entry = *pte; 2470 if (!pte_present(entry)) { 2471 if (pte_none(entry)) { 2472 if (vma->vm_ops) { 2473 if (vma->vm_ops->fault || vma->vm_ops->nopage) 2474 return do_linear_fault(mm, vma, address, 2475 pte, pmd, write_access, entry); 2476 if (unlikely(vma->vm_ops->nopfn)) 2477 return do_no_pfn(mm, vma, address, pte, 2478 pmd, write_access); 2479 } 2480 return do_anonymous_page(mm, vma, address, 2481 pte, pmd, write_access); 2482 } 2483 if (pte_file(entry)) 2484 return do_nonlinear_fault(mm, vma, address, 2485 pte, pmd, write_access, entry); 2486 return do_swap_page(mm, vma, address, 2487 pte, pmd, write_access, entry); 2488 } 2489 2490 ptl = pte_lockptr(mm, pmd); 2491 spin_lock(ptl); 2492 if (unlikely(!pte_same(*pte, entry))) 2493 goto unlock; 2494 if (write_access) { 2495 if (!pte_write(entry)) 2496 return do_wp_page(mm, vma, address, 2497 pte, pmd, ptl, entry); 2498 entry = pte_mkdirty(entry); 2499 } 2500 entry = pte_mkyoung(entry); 2501 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { 2502 update_mmu_cache(vma, address, entry); 2503 } else { 2504 /* 2505 * This is needed only for protection faults but the arch code 2506 * is not yet telling us if this is a protection fault or not. 2507 * This still avoids useless tlb flushes for .text page faults 2508 * with threads. 2509 */ 2510 if (write_access) 2511 flush_tlb_page(vma, address); 2512 } 2513 unlock: 2514 pte_unmap_unlock(pte, ptl); 2515 return 0; 2516 } 2517 2518 /* 2519 * By the time we get here, we already hold the mm semaphore 2520 */ 2521 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2522 unsigned long address, int write_access) 2523 { 2524 pgd_t *pgd; 2525 pud_t *pud; 2526 pmd_t *pmd; 2527 pte_t *pte; 2528 2529 __set_current_state(TASK_RUNNING); 2530 2531 count_vm_event(PGFAULT); 2532 2533 if (unlikely(is_vm_hugetlb_page(vma))) 2534 return hugetlb_fault(mm, vma, address, write_access); 2535 2536 pgd = pgd_offset(mm, address); 2537 pud = pud_alloc(mm, pgd, address); 2538 if (!pud) 2539 return VM_FAULT_OOM; 2540 pmd = pmd_alloc(mm, pud, address); 2541 if (!pmd) 2542 return VM_FAULT_OOM; 2543 pte = pte_alloc_map(mm, pmd, address); 2544 if (!pte) 2545 return VM_FAULT_OOM; 2546 2547 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2548 } 2549 2550 #ifndef __PAGETABLE_PUD_FOLDED 2551 /* 2552 * Allocate page upper directory. 2553 * We've already handled the fast-path in-line. 2554 */ 2555 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2556 { 2557 pud_t *new = pud_alloc_one(mm, address); 2558 if (!new) 2559 return -ENOMEM; 2560 2561 spin_lock(&mm->page_table_lock); 2562 if (pgd_present(*pgd)) /* Another has populated it */ 2563 pud_free(new); 2564 else 2565 pgd_populate(mm, pgd, new); 2566 spin_unlock(&mm->page_table_lock); 2567 return 0; 2568 } 2569 #endif /* __PAGETABLE_PUD_FOLDED */ 2570 2571 #ifndef __PAGETABLE_PMD_FOLDED 2572 /* 2573 * Allocate page middle directory. 2574 * We've already handled the fast-path in-line. 2575 */ 2576 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2577 { 2578 pmd_t *new = pmd_alloc_one(mm, address); 2579 if (!new) 2580 return -ENOMEM; 2581 2582 spin_lock(&mm->page_table_lock); 2583 #ifndef __ARCH_HAS_4LEVEL_HACK 2584 if (pud_present(*pud)) /* Another has populated it */ 2585 pmd_free(new); 2586 else 2587 pud_populate(mm, pud, new); 2588 #else 2589 if (pgd_present(*pud)) /* Another has populated it */ 2590 pmd_free(new); 2591 else 2592 pgd_populate(mm, pud, new); 2593 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2594 spin_unlock(&mm->page_table_lock); 2595 return 0; 2596 } 2597 #endif /* __PAGETABLE_PMD_FOLDED */ 2598 2599 int make_pages_present(unsigned long addr, unsigned long end) 2600 { 2601 int ret, len, write; 2602 struct vm_area_struct * vma; 2603 2604 vma = find_vma(current->mm, addr); 2605 if (!vma) 2606 return -1; 2607 write = (vma->vm_flags & VM_WRITE) != 0; 2608 BUG_ON(addr >= end); 2609 BUG_ON(end > vma->vm_end); 2610 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 2611 ret = get_user_pages(current, current->mm, addr, 2612 len, write, 0, NULL, NULL); 2613 if (ret < 0) 2614 return ret; 2615 return ret == len ? 0 : -1; 2616 } 2617 2618 /* 2619 * Map a vmalloc()-space virtual address to the physical page. 2620 */ 2621 struct page * vmalloc_to_page(void * vmalloc_addr) 2622 { 2623 unsigned long addr = (unsigned long) vmalloc_addr; 2624 struct page *page = NULL; 2625 pgd_t *pgd = pgd_offset_k(addr); 2626 pud_t *pud; 2627 pmd_t *pmd; 2628 pte_t *ptep, pte; 2629 2630 if (!pgd_none(*pgd)) { 2631 pud = pud_offset(pgd, addr); 2632 if (!pud_none(*pud)) { 2633 pmd = pmd_offset(pud, addr); 2634 if (!pmd_none(*pmd)) { 2635 ptep = pte_offset_map(pmd, addr); 2636 pte = *ptep; 2637 if (pte_present(pte)) 2638 page = pte_page(pte); 2639 pte_unmap(ptep); 2640 } 2641 } 2642 } 2643 return page; 2644 } 2645 2646 EXPORT_SYMBOL(vmalloc_to_page); 2647 2648 /* 2649 * Map a vmalloc()-space virtual address to the physical page frame number. 2650 */ 2651 unsigned long vmalloc_to_pfn(void * vmalloc_addr) 2652 { 2653 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 2654 } 2655 2656 EXPORT_SYMBOL(vmalloc_to_pfn); 2657 2658 #if !defined(__HAVE_ARCH_GATE_AREA) 2659 2660 #if defined(AT_SYSINFO_EHDR) 2661 static struct vm_area_struct gate_vma; 2662 2663 static int __init gate_vma_init(void) 2664 { 2665 gate_vma.vm_mm = NULL; 2666 gate_vma.vm_start = FIXADDR_USER_START; 2667 gate_vma.vm_end = FIXADDR_USER_END; 2668 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 2669 gate_vma.vm_page_prot = __P101; 2670 /* 2671 * Make sure the vDSO gets into every core dump. 2672 * Dumping its contents makes post-mortem fully interpretable later 2673 * without matching up the same kernel and hardware config to see 2674 * what PC values meant. 2675 */ 2676 gate_vma.vm_flags |= VM_ALWAYSDUMP; 2677 return 0; 2678 } 2679 __initcall(gate_vma_init); 2680 #endif 2681 2682 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2683 { 2684 #ifdef AT_SYSINFO_EHDR 2685 return &gate_vma; 2686 #else 2687 return NULL; 2688 #endif 2689 } 2690 2691 int in_gate_area_no_task(unsigned long addr) 2692 { 2693 #ifdef AT_SYSINFO_EHDR 2694 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2695 return 1; 2696 #endif 2697 return 0; 2698 } 2699 2700 #endif /* __HAVE_ARCH_GATE_AREA */ 2701 2702 /* 2703 * Access another process' address space. 2704 * Source/target buffer must be kernel space, 2705 * Do not walk the page table directly, use get_user_pages 2706 */ 2707 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 2708 { 2709 struct mm_struct *mm; 2710 struct vm_area_struct *vma; 2711 struct page *page; 2712 void *old_buf = buf; 2713 2714 mm = get_task_mm(tsk); 2715 if (!mm) 2716 return 0; 2717 2718 down_read(&mm->mmap_sem); 2719 /* ignore errors, just check how much was sucessfully transfered */ 2720 while (len) { 2721 int bytes, ret, offset; 2722 void *maddr; 2723 2724 ret = get_user_pages(tsk, mm, addr, 1, 2725 write, 1, &page, &vma); 2726 if (ret <= 0) 2727 break; 2728 2729 bytes = len; 2730 offset = addr & (PAGE_SIZE-1); 2731 if (bytes > PAGE_SIZE-offset) 2732 bytes = PAGE_SIZE-offset; 2733 2734 maddr = kmap(page); 2735 if (write) { 2736 copy_to_user_page(vma, page, addr, 2737 maddr + offset, buf, bytes); 2738 set_page_dirty_lock(page); 2739 } else { 2740 copy_from_user_page(vma, page, addr, 2741 buf, maddr + offset, bytes); 2742 } 2743 kunmap(page); 2744 page_cache_release(page); 2745 len -= bytes; 2746 buf += bytes; 2747 addr += bytes; 2748 } 2749 up_read(&mm->mmap_sem); 2750 mmput(mm); 2751 2752 return buf - old_buf; 2753 } 2754 EXPORT_SYMBOL_GPL(access_process_vm); 2755