xref: /linux/mm/memory.c (revision 4127e13c9302f6892f73793f133ea4b4fffb2964)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
79 #include <linux/fsnotify.h>
80 
81 #include <trace/events/kmem.h>
82 
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89 
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93 
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97 
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101 
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105 
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
109 
110 /*
111  * Return true if the original pte was a uffd-wp pte marker (so the pte was
112  * wr-protected).
113  */
114 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115 {
116 	if (!userfaultfd_wp(vmf->vma))
117 		return false;
118 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
119 		return false;
120 
121 	return pte_marker_uffd_wp(vmf->orig_pte);
122 }
123 
124 /*
125  * A number of key systems in x86 including ioremap() rely on the assumption
126  * that high_memory defines the upper bound on direct map memory, then end
127  * of ZONE_NORMAL.
128  */
129 void *high_memory;
130 EXPORT_SYMBOL(high_memory);
131 
132 /*
133  * Randomize the address space (stacks, mmaps, brk, etc.).
134  *
135  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136  *   as ancient (libc5 based) binaries can segfault. )
137  */
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
140 					1;
141 #else
142 					2;
143 #endif
144 
145 #ifndef arch_wants_old_prefaulted_pte
146 static inline bool arch_wants_old_prefaulted_pte(void)
147 {
148 	/*
149 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 	 * some architectures, even if it's performed in hardware. By
151 	 * default, "false" means prefaulted entries will be 'young'.
152 	 */
153 	return false;
154 }
155 #endif
156 
157 static int __init disable_randmaps(char *s)
158 {
159 	randomize_va_space = 0;
160 	return 1;
161 }
162 __setup("norandmaps", disable_randmaps);
163 
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
166 
167 unsigned long highest_memmap_pfn __read_mostly;
168 
169 /*
170  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171  */
172 static int __init init_zero_pfn(void)
173 {
174 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
175 	return 0;
176 }
177 early_initcall(init_zero_pfn);
178 
179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
180 {
181 	trace_rss_stat(mm, member);
182 }
183 
184 /*
185  * Note: this doesn't free the actual pages themselves. That
186  * has been handled earlier when unmapping all the memory regions.
187  */
188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189 			   unsigned long addr)
190 {
191 	pgtable_t token = pmd_pgtable(*pmd);
192 	pmd_clear(pmd);
193 	pte_free_tlb(tlb, token, addr);
194 	mm_dec_nr_ptes(tlb->mm);
195 }
196 
197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 				unsigned long addr, unsigned long end,
199 				unsigned long floor, unsigned long ceiling)
200 {
201 	pmd_t *pmd;
202 	unsigned long next;
203 	unsigned long start;
204 
205 	start = addr;
206 	pmd = pmd_offset(pud, addr);
207 	do {
208 		next = pmd_addr_end(addr, end);
209 		if (pmd_none_or_clear_bad(pmd))
210 			continue;
211 		free_pte_range(tlb, pmd, addr);
212 	} while (pmd++, addr = next, addr != end);
213 
214 	start &= PUD_MASK;
215 	if (start < floor)
216 		return;
217 	if (ceiling) {
218 		ceiling &= PUD_MASK;
219 		if (!ceiling)
220 			return;
221 	}
222 	if (end - 1 > ceiling - 1)
223 		return;
224 
225 	pmd = pmd_offset(pud, start);
226 	pud_clear(pud);
227 	pmd_free_tlb(tlb, pmd, start);
228 	mm_dec_nr_pmds(tlb->mm);
229 }
230 
231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232 				unsigned long addr, unsigned long end,
233 				unsigned long floor, unsigned long ceiling)
234 {
235 	pud_t *pud;
236 	unsigned long next;
237 	unsigned long start;
238 
239 	start = addr;
240 	pud = pud_offset(p4d, addr);
241 	do {
242 		next = pud_addr_end(addr, end);
243 		if (pud_none_or_clear_bad(pud))
244 			continue;
245 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246 	} while (pud++, addr = next, addr != end);
247 
248 	start &= P4D_MASK;
249 	if (start < floor)
250 		return;
251 	if (ceiling) {
252 		ceiling &= P4D_MASK;
253 		if (!ceiling)
254 			return;
255 	}
256 	if (end - 1 > ceiling - 1)
257 		return;
258 
259 	pud = pud_offset(p4d, start);
260 	p4d_clear(p4d);
261 	pud_free_tlb(tlb, pud, start);
262 	mm_dec_nr_puds(tlb->mm);
263 }
264 
265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 				unsigned long addr, unsigned long end,
267 				unsigned long floor, unsigned long ceiling)
268 {
269 	p4d_t *p4d;
270 	unsigned long next;
271 	unsigned long start;
272 
273 	start = addr;
274 	p4d = p4d_offset(pgd, addr);
275 	do {
276 		next = p4d_addr_end(addr, end);
277 		if (p4d_none_or_clear_bad(p4d))
278 			continue;
279 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 	} while (p4d++, addr = next, addr != end);
281 
282 	start &= PGDIR_MASK;
283 	if (start < floor)
284 		return;
285 	if (ceiling) {
286 		ceiling &= PGDIR_MASK;
287 		if (!ceiling)
288 			return;
289 	}
290 	if (end - 1 > ceiling - 1)
291 		return;
292 
293 	p4d = p4d_offset(pgd, start);
294 	pgd_clear(pgd);
295 	p4d_free_tlb(tlb, p4d, start);
296 }
297 
298 /*
299  * This function frees user-level page tables of a process.
300  */
301 void free_pgd_range(struct mmu_gather *tlb,
302 			unsigned long addr, unsigned long end,
303 			unsigned long floor, unsigned long ceiling)
304 {
305 	pgd_t *pgd;
306 	unsigned long next;
307 
308 	/*
309 	 * The next few lines have given us lots of grief...
310 	 *
311 	 * Why are we testing PMD* at this top level?  Because often
312 	 * there will be no work to do at all, and we'd prefer not to
313 	 * go all the way down to the bottom just to discover that.
314 	 *
315 	 * Why all these "- 1"s?  Because 0 represents both the bottom
316 	 * of the address space and the top of it (using -1 for the
317 	 * top wouldn't help much: the masks would do the wrong thing).
318 	 * The rule is that addr 0 and floor 0 refer to the bottom of
319 	 * the address space, but end 0 and ceiling 0 refer to the top
320 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 	 * that end 0 case should be mythical).
322 	 *
323 	 * Wherever addr is brought up or ceiling brought down, we must
324 	 * be careful to reject "the opposite 0" before it confuses the
325 	 * subsequent tests.  But what about where end is brought down
326 	 * by PMD_SIZE below? no, end can't go down to 0 there.
327 	 *
328 	 * Whereas we round start (addr) and ceiling down, by different
329 	 * masks at different levels, in order to test whether a table
330 	 * now has no other vmas using it, so can be freed, we don't
331 	 * bother to round floor or end up - the tests don't need that.
332 	 */
333 
334 	addr &= PMD_MASK;
335 	if (addr < floor) {
336 		addr += PMD_SIZE;
337 		if (!addr)
338 			return;
339 	}
340 	if (ceiling) {
341 		ceiling &= PMD_MASK;
342 		if (!ceiling)
343 			return;
344 	}
345 	if (end - 1 > ceiling - 1)
346 		end -= PMD_SIZE;
347 	if (addr > end - 1)
348 		return;
349 	/*
350 	 * We add page table cache pages with PAGE_SIZE,
351 	 * (see pte_free_tlb()), flush the tlb if we need
352 	 */
353 	tlb_change_page_size(tlb, PAGE_SIZE);
354 	pgd = pgd_offset(tlb->mm, addr);
355 	do {
356 		next = pgd_addr_end(addr, end);
357 		if (pgd_none_or_clear_bad(pgd))
358 			continue;
359 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360 	} while (pgd++, addr = next, addr != end);
361 }
362 
363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
364 		   struct vm_area_struct *vma, unsigned long floor,
365 		   unsigned long ceiling, bool mm_wr_locked)
366 {
367 	struct unlink_vma_file_batch vb;
368 
369 	do {
370 		unsigned long addr = vma->vm_start;
371 		struct vm_area_struct *next;
372 
373 		/*
374 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
375 		 * be 0.  This will underflow and is okay.
376 		 */
377 		next = mas_find(mas, ceiling - 1);
378 		if (unlikely(xa_is_zero(next)))
379 			next = NULL;
380 
381 		/*
382 		 * Hide vma from rmap and truncate_pagecache before freeing
383 		 * pgtables
384 		 */
385 		if (mm_wr_locked)
386 			vma_start_write(vma);
387 		unlink_anon_vmas(vma);
388 
389 		if (is_vm_hugetlb_page(vma)) {
390 			unlink_file_vma(vma);
391 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
392 				floor, next ? next->vm_start : ceiling);
393 		} else {
394 			unlink_file_vma_batch_init(&vb);
395 			unlink_file_vma_batch_add(&vb, vma);
396 
397 			/*
398 			 * Optimization: gather nearby vmas into one call down
399 			 */
400 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
401 			       && !is_vm_hugetlb_page(next)) {
402 				vma = next;
403 				next = mas_find(mas, ceiling - 1);
404 				if (unlikely(xa_is_zero(next)))
405 					next = NULL;
406 				if (mm_wr_locked)
407 					vma_start_write(vma);
408 				unlink_anon_vmas(vma);
409 				unlink_file_vma_batch_add(&vb, vma);
410 			}
411 			unlink_file_vma_batch_final(&vb);
412 			free_pgd_range(tlb, addr, vma->vm_end,
413 				floor, next ? next->vm_start : ceiling);
414 		}
415 		vma = next;
416 	} while (vma);
417 }
418 
419 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
420 {
421 	spinlock_t *ptl = pmd_lock(mm, pmd);
422 
423 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
424 		mm_inc_nr_ptes(mm);
425 		/*
426 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
427 		 * visible before the pte is made visible to other CPUs by being
428 		 * put into page tables.
429 		 *
430 		 * The other side of the story is the pointer chasing in the page
431 		 * table walking code (when walking the page table without locking;
432 		 * ie. most of the time). Fortunately, these data accesses consist
433 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
434 		 * being the notable exception) will already guarantee loads are
435 		 * seen in-order. See the alpha page table accessors for the
436 		 * smp_rmb() barriers in page table walking code.
437 		 */
438 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
439 		pmd_populate(mm, pmd, *pte);
440 		*pte = NULL;
441 	}
442 	spin_unlock(ptl);
443 }
444 
445 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
446 {
447 	pgtable_t new = pte_alloc_one(mm);
448 	if (!new)
449 		return -ENOMEM;
450 
451 	pmd_install(mm, pmd, &new);
452 	if (new)
453 		pte_free(mm, new);
454 	return 0;
455 }
456 
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459 	pte_t *new = pte_alloc_one_kernel(&init_mm);
460 	if (!new)
461 		return -ENOMEM;
462 
463 	spin_lock(&init_mm.page_table_lock);
464 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
465 		smp_wmb(); /* See comment in pmd_install() */
466 		pmd_populate_kernel(&init_mm, pmd, new);
467 		new = NULL;
468 	}
469 	spin_unlock(&init_mm.page_table_lock);
470 	if (new)
471 		pte_free_kernel(&init_mm, new);
472 	return 0;
473 }
474 
475 static inline void init_rss_vec(int *rss)
476 {
477 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
478 }
479 
480 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
481 {
482 	int i;
483 
484 	for (i = 0; i < NR_MM_COUNTERS; i++)
485 		if (rss[i])
486 			add_mm_counter(mm, i, rss[i]);
487 }
488 
489 /*
490  * This function is called to print an error when a bad pte
491  * is found. For example, we might have a PFN-mapped pte in
492  * a region that doesn't allow it.
493  *
494  * The calling function must still handle the error.
495  */
496 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
497 			  pte_t pte, struct page *page)
498 {
499 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
500 	p4d_t *p4d = p4d_offset(pgd, addr);
501 	pud_t *pud = pud_offset(p4d, addr);
502 	pmd_t *pmd = pmd_offset(pud, addr);
503 	struct address_space *mapping;
504 	pgoff_t index;
505 	static unsigned long resume;
506 	static unsigned long nr_shown;
507 	static unsigned long nr_unshown;
508 
509 	/*
510 	 * Allow a burst of 60 reports, then keep quiet for that minute;
511 	 * or allow a steady drip of one report per second.
512 	 */
513 	if (nr_shown == 60) {
514 		if (time_before(jiffies, resume)) {
515 			nr_unshown++;
516 			return;
517 		}
518 		if (nr_unshown) {
519 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
520 				 nr_unshown);
521 			nr_unshown = 0;
522 		}
523 		nr_shown = 0;
524 	}
525 	if (nr_shown++ == 0)
526 		resume = jiffies + 60 * HZ;
527 
528 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
529 	index = linear_page_index(vma, addr);
530 
531 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
532 		 current->comm,
533 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
534 	if (page)
535 		dump_page(page, "bad pte");
536 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
537 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
538 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
539 		 vma->vm_file,
540 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
541 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
542 		 mapping ? mapping->a_ops->read_folio : NULL);
543 	dump_stack();
544 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
545 }
546 
547 /*
548  * vm_normal_page -- This function gets the "struct page" associated with a pte.
549  *
550  * "Special" mappings do not wish to be associated with a "struct page" (either
551  * it doesn't exist, or it exists but they don't want to touch it). In this
552  * case, NULL is returned here. "Normal" mappings do have a struct page.
553  *
554  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
555  * pte bit, in which case this function is trivial. Secondly, an architecture
556  * may not have a spare pte bit, which requires a more complicated scheme,
557  * described below.
558  *
559  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
560  * special mapping (even if there are underlying and valid "struct pages").
561  * COWed pages of a VM_PFNMAP are always normal.
562  *
563  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
564  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
565  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
566  * mapping will always honor the rule
567  *
568  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
569  *
570  * And for normal mappings this is false.
571  *
572  * This restricts such mappings to be a linear translation from virtual address
573  * to pfn. To get around this restriction, we allow arbitrary mappings so long
574  * as the vma is not a COW mapping; in that case, we know that all ptes are
575  * special (because none can have been COWed).
576  *
577  *
578  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
579  *
580  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
581  * page" backing, however the difference is that _all_ pages with a struct
582  * page (that is, those where pfn_valid is true) are refcounted and considered
583  * normal pages by the VM. The only exception are zeropages, which are
584  * *never* refcounted.
585  *
586  * The disadvantage is that pages are refcounted (which can be slower and
587  * simply not an option for some PFNMAP users). The advantage is that we
588  * don't have to follow the strict linearity rule of PFNMAP mappings in
589  * order to support COWable mappings.
590  *
591  */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 			    pte_t pte)
594 {
595 	unsigned long pfn = pte_pfn(pte);
596 
597 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598 		if (likely(!pte_special(pte)))
599 			goto check_pfn;
600 		if (vma->vm_ops && vma->vm_ops->find_special_page)
601 			return vma->vm_ops->find_special_page(vma, addr);
602 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 			return NULL;
604 		if (is_zero_pfn(pfn))
605 			return NULL;
606 		if (pte_devmap(pte))
607 		/*
608 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
609 		 * and will have refcounts incremented on their struct pages
610 		 * when they are inserted into PTEs, thus they are safe to
611 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
612 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
613 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
614 		 */
615 			return NULL;
616 
617 		print_bad_pte(vma, addr, pte, NULL);
618 		return NULL;
619 	}
620 
621 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
622 
623 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
624 		if (vma->vm_flags & VM_MIXEDMAP) {
625 			if (!pfn_valid(pfn))
626 				return NULL;
627 			if (is_zero_pfn(pfn))
628 				return NULL;
629 			goto out;
630 		} else {
631 			unsigned long off;
632 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
633 			if (pfn == vma->vm_pgoff + off)
634 				return NULL;
635 			if (!is_cow_mapping(vma->vm_flags))
636 				return NULL;
637 		}
638 	}
639 
640 	if (is_zero_pfn(pfn))
641 		return NULL;
642 
643 check_pfn:
644 	if (unlikely(pfn > highest_memmap_pfn)) {
645 		print_bad_pte(vma, addr, pte, NULL);
646 		return NULL;
647 	}
648 
649 	/*
650 	 * NOTE! We still have PageReserved() pages in the page tables.
651 	 * eg. VDSO mappings can cause them to exist.
652 	 */
653 out:
654 	VM_WARN_ON_ONCE(is_zero_pfn(pfn));
655 	return pfn_to_page(pfn);
656 }
657 
658 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
659 			    pte_t pte)
660 {
661 	struct page *page = vm_normal_page(vma, addr, pte);
662 
663 	if (page)
664 		return page_folio(page);
665 	return NULL;
666 }
667 
668 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
669 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
670 				pmd_t pmd)
671 {
672 	unsigned long pfn = pmd_pfn(pmd);
673 
674 	/* Currently it's only used for huge pfnmaps */
675 	if (unlikely(pmd_special(pmd)))
676 		return NULL;
677 
678 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
679 		if (vma->vm_flags & VM_MIXEDMAP) {
680 			if (!pfn_valid(pfn))
681 				return NULL;
682 			goto out;
683 		} else {
684 			unsigned long off;
685 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
686 			if (pfn == vma->vm_pgoff + off)
687 				return NULL;
688 			if (!is_cow_mapping(vma->vm_flags))
689 				return NULL;
690 		}
691 	}
692 
693 	if (pmd_devmap(pmd))
694 		return NULL;
695 	if (is_huge_zero_pmd(pmd))
696 		return NULL;
697 	if (unlikely(pfn > highest_memmap_pfn))
698 		return NULL;
699 
700 	/*
701 	 * NOTE! We still have PageReserved() pages in the page tables.
702 	 * eg. VDSO mappings can cause them to exist.
703 	 */
704 out:
705 	return pfn_to_page(pfn);
706 }
707 
708 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
709 				  unsigned long addr, pmd_t pmd)
710 {
711 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
712 
713 	if (page)
714 		return page_folio(page);
715 	return NULL;
716 }
717 #endif
718 
719 static void restore_exclusive_pte(struct vm_area_struct *vma,
720 				  struct page *page, unsigned long address,
721 				  pte_t *ptep)
722 {
723 	struct folio *folio = page_folio(page);
724 	pte_t orig_pte;
725 	pte_t pte;
726 
727 	orig_pte = ptep_get(ptep);
728 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
729 	if (pte_swp_soft_dirty(orig_pte))
730 		pte = pte_mksoft_dirty(pte);
731 
732 	if (pte_swp_uffd_wp(orig_pte))
733 		pte = pte_mkuffd_wp(pte);
734 
735 	if ((vma->vm_flags & VM_WRITE) &&
736 	    can_change_pte_writable(vma, address, pte)) {
737 		if (folio_test_dirty(folio))
738 			pte = pte_mkdirty(pte);
739 		pte = pte_mkwrite(pte, vma);
740 	}
741 
742 	VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
743 					   PageAnonExclusive(page)), folio);
744 	set_pte_at(vma->vm_mm, address, ptep, pte);
745 
746 	/*
747 	 * No need to invalidate - it was non-present before. However
748 	 * secondary CPUs may have mappings that need invalidating.
749 	 */
750 	update_mmu_cache(vma, address, ptep);
751 }
752 
753 /*
754  * Tries to restore an exclusive pte if the page lock can be acquired without
755  * sleeping.
756  */
757 static int
758 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
759 			unsigned long addr)
760 {
761 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
762 	struct page *page = pfn_swap_entry_to_page(entry);
763 
764 	if (trylock_page(page)) {
765 		restore_exclusive_pte(vma, page, addr, src_pte);
766 		unlock_page(page);
767 		return 0;
768 	}
769 
770 	return -EBUSY;
771 }
772 
773 /*
774  * copy one vm_area from one task to the other. Assumes the page tables
775  * already present in the new task to be cleared in the whole range
776  * covered by this vma.
777  */
778 
779 static unsigned long
780 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
781 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
782 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
783 {
784 	unsigned long vm_flags = dst_vma->vm_flags;
785 	pte_t orig_pte = ptep_get(src_pte);
786 	pte_t pte = orig_pte;
787 	struct folio *folio;
788 	struct page *page;
789 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
790 
791 	if (likely(!non_swap_entry(entry))) {
792 		if (swap_duplicate(entry) < 0)
793 			return -EIO;
794 
795 		/* make sure dst_mm is on swapoff's mmlist. */
796 		if (unlikely(list_empty(&dst_mm->mmlist))) {
797 			spin_lock(&mmlist_lock);
798 			if (list_empty(&dst_mm->mmlist))
799 				list_add(&dst_mm->mmlist,
800 						&src_mm->mmlist);
801 			spin_unlock(&mmlist_lock);
802 		}
803 		/* Mark the swap entry as shared. */
804 		if (pte_swp_exclusive(orig_pte)) {
805 			pte = pte_swp_clear_exclusive(orig_pte);
806 			set_pte_at(src_mm, addr, src_pte, pte);
807 		}
808 		rss[MM_SWAPENTS]++;
809 	} else if (is_migration_entry(entry)) {
810 		folio = pfn_swap_entry_folio(entry);
811 
812 		rss[mm_counter(folio)]++;
813 
814 		if (!is_readable_migration_entry(entry) &&
815 				is_cow_mapping(vm_flags)) {
816 			/*
817 			 * COW mappings require pages in both parent and child
818 			 * to be set to read. A previously exclusive entry is
819 			 * now shared.
820 			 */
821 			entry = make_readable_migration_entry(
822 							swp_offset(entry));
823 			pte = swp_entry_to_pte(entry);
824 			if (pte_swp_soft_dirty(orig_pte))
825 				pte = pte_swp_mksoft_dirty(pte);
826 			if (pte_swp_uffd_wp(orig_pte))
827 				pte = pte_swp_mkuffd_wp(pte);
828 			set_pte_at(src_mm, addr, src_pte, pte);
829 		}
830 	} else if (is_device_private_entry(entry)) {
831 		page = pfn_swap_entry_to_page(entry);
832 		folio = page_folio(page);
833 
834 		/*
835 		 * Update rss count even for unaddressable pages, as
836 		 * they should treated just like normal pages in this
837 		 * respect.
838 		 *
839 		 * We will likely want to have some new rss counters
840 		 * for unaddressable pages, at some point. But for now
841 		 * keep things as they are.
842 		 */
843 		folio_get(folio);
844 		rss[mm_counter(folio)]++;
845 		/* Cannot fail as these pages cannot get pinned. */
846 		folio_try_dup_anon_rmap_pte(folio, page, src_vma);
847 
848 		/*
849 		 * We do not preserve soft-dirty information, because so
850 		 * far, checkpoint/restore is the only feature that
851 		 * requires that. And checkpoint/restore does not work
852 		 * when a device driver is involved (you cannot easily
853 		 * save and restore device driver state).
854 		 */
855 		if (is_writable_device_private_entry(entry) &&
856 		    is_cow_mapping(vm_flags)) {
857 			entry = make_readable_device_private_entry(
858 							swp_offset(entry));
859 			pte = swp_entry_to_pte(entry);
860 			if (pte_swp_uffd_wp(orig_pte))
861 				pte = pte_swp_mkuffd_wp(pte);
862 			set_pte_at(src_mm, addr, src_pte, pte);
863 		}
864 	} else if (is_device_exclusive_entry(entry)) {
865 		/*
866 		 * Make device exclusive entries present by restoring the
867 		 * original entry then copying as for a present pte. Device
868 		 * exclusive entries currently only support private writable
869 		 * (ie. COW) mappings.
870 		 */
871 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
872 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
873 			return -EBUSY;
874 		return -ENOENT;
875 	} else if (is_pte_marker_entry(entry)) {
876 		pte_marker marker = copy_pte_marker(entry, dst_vma);
877 
878 		if (marker)
879 			set_pte_at(dst_mm, addr, dst_pte,
880 				   make_pte_marker(marker));
881 		return 0;
882 	}
883 	if (!userfaultfd_wp(dst_vma))
884 		pte = pte_swp_clear_uffd_wp(pte);
885 	set_pte_at(dst_mm, addr, dst_pte, pte);
886 	return 0;
887 }
888 
889 /*
890  * Copy a present and normal page.
891  *
892  * NOTE! The usual case is that this isn't required;
893  * instead, the caller can just increase the page refcount
894  * and re-use the pte the traditional way.
895  *
896  * And if we need a pre-allocated page but don't yet have
897  * one, return a negative error to let the preallocation
898  * code know so that it can do so outside the page table
899  * lock.
900  */
901 static inline int
902 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
903 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
904 		  struct folio **prealloc, struct page *page)
905 {
906 	struct folio *new_folio;
907 	pte_t pte;
908 
909 	new_folio = *prealloc;
910 	if (!new_folio)
911 		return -EAGAIN;
912 
913 	/*
914 	 * We have a prealloc page, all good!  Take it
915 	 * over and copy the page & arm it.
916 	 */
917 
918 	if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
919 		return -EHWPOISON;
920 
921 	*prealloc = NULL;
922 	__folio_mark_uptodate(new_folio);
923 	folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
924 	folio_add_lru_vma(new_folio, dst_vma);
925 	rss[MM_ANONPAGES]++;
926 
927 	/* All done, just insert the new page copy in the child */
928 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
929 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
930 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
931 		/* Uffd-wp needs to be delivered to dest pte as well */
932 		pte = pte_mkuffd_wp(pte);
933 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
934 	return 0;
935 }
936 
937 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
938 		struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
939 		pte_t pte, unsigned long addr, int nr)
940 {
941 	struct mm_struct *src_mm = src_vma->vm_mm;
942 
943 	/* If it's a COW mapping, write protect it both processes. */
944 	if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
945 		wrprotect_ptes(src_mm, addr, src_pte, nr);
946 		pte = pte_wrprotect(pte);
947 	}
948 
949 	/* If it's a shared mapping, mark it clean in the child. */
950 	if (src_vma->vm_flags & VM_SHARED)
951 		pte = pte_mkclean(pte);
952 	pte = pte_mkold(pte);
953 
954 	if (!userfaultfd_wp(dst_vma))
955 		pte = pte_clear_uffd_wp(pte);
956 
957 	set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
958 }
959 
960 /*
961  * Copy one present PTE, trying to batch-process subsequent PTEs that map
962  * consecutive pages of the same folio by copying them as well.
963  *
964  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
965  * Otherwise, returns the number of copied PTEs (at least 1).
966  */
967 static inline int
968 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
969 		 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
970 		 int max_nr, int *rss, struct folio **prealloc)
971 {
972 	struct page *page;
973 	struct folio *folio;
974 	bool any_writable;
975 	fpb_t flags = 0;
976 	int err, nr;
977 
978 	page = vm_normal_page(src_vma, addr, pte);
979 	if (unlikely(!page))
980 		goto copy_pte;
981 
982 	folio = page_folio(page);
983 
984 	/*
985 	 * If we likely have to copy, just don't bother with batching. Make
986 	 * sure that the common "small folio" case is as fast as possible
987 	 * by keeping the batching logic separate.
988 	 */
989 	if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
990 		if (src_vma->vm_flags & VM_SHARED)
991 			flags |= FPB_IGNORE_DIRTY;
992 		if (!vma_soft_dirty_enabled(src_vma))
993 			flags |= FPB_IGNORE_SOFT_DIRTY;
994 
995 		nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
996 				     &any_writable, NULL, NULL);
997 		folio_ref_add(folio, nr);
998 		if (folio_test_anon(folio)) {
999 			if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1000 								  nr, src_vma))) {
1001 				folio_ref_sub(folio, nr);
1002 				return -EAGAIN;
1003 			}
1004 			rss[MM_ANONPAGES] += nr;
1005 			VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1006 		} else {
1007 			folio_dup_file_rmap_ptes(folio, page, nr);
1008 			rss[mm_counter_file(folio)] += nr;
1009 		}
1010 		if (any_writable)
1011 			pte = pte_mkwrite(pte, src_vma);
1012 		__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1013 				    addr, nr);
1014 		return nr;
1015 	}
1016 
1017 	folio_get(folio);
1018 	if (folio_test_anon(folio)) {
1019 		/*
1020 		 * If this page may have been pinned by the parent process,
1021 		 * copy the page immediately for the child so that we'll always
1022 		 * guarantee the pinned page won't be randomly replaced in the
1023 		 * future.
1024 		 */
1025 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1026 			/* Page may be pinned, we have to copy. */
1027 			folio_put(folio);
1028 			err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1029 						addr, rss, prealloc, page);
1030 			return err ? err : 1;
1031 		}
1032 		rss[MM_ANONPAGES]++;
1033 		VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1034 	} else {
1035 		folio_dup_file_rmap_pte(folio, page);
1036 		rss[mm_counter_file(folio)]++;
1037 	}
1038 
1039 copy_pte:
1040 	__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1041 	return 1;
1042 }
1043 
1044 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1045 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1046 {
1047 	struct folio *new_folio;
1048 
1049 	if (need_zero)
1050 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1051 	else
1052 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1053 
1054 	if (!new_folio)
1055 		return NULL;
1056 
1057 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1058 		folio_put(new_folio);
1059 		return NULL;
1060 	}
1061 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1062 
1063 	return new_folio;
1064 }
1065 
1066 static int
1067 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1068 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1069 	       unsigned long end)
1070 {
1071 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1072 	struct mm_struct *src_mm = src_vma->vm_mm;
1073 	pte_t *orig_src_pte, *orig_dst_pte;
1074 	pte_t *src_pte, *dst_pte;
1075 	pmd_t dummy_pmdval;
1076 	pte_t ptent;
1077 	spinlock_t *src_ptl, *dst_ptl;
1078 	int progress, max_nr, ret = 0;
1079 	int rss[NR_MM_COUNTERS];
1080 	swp_entry_t entry = (swp_entry_t){0};
1081 	struct folio *prealloc = NULL;
1082 	int nr;
1083 
1084 again:
1085 	progress = 0;
1086 	init_rss_vec(rss);
1087 
1088 	/*
1089 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1090 	 * error handling here, assume that exclusive mmap_lock on dst and src
1091 	 * protects anon from unexpected THP transitions; with shmem and file
1092 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1093 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1094 	 * can remove such assumptions later, but this is good enough for now.
1095 	 */
1096 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1097 	if (!dst_pte) {
1098 		ret = -ENOMEM;
1099 		goto out;
1100 	}
1101 
1102 	/*
1103 	 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1104 	 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1105 	 * the PTE page is stable, and there is no need to get pmdval and do
1106 	 * pmd_same() check.
1107 	 */
1108 	src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1109 					   &src_ptl);
1110 	if (!src_pte) {
1111 		pte_unmap_unlock(dst_pte, dst_ptl);
1112 		/* ret == 0 */
1113 		goto out;
1114 	}
1115 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1116 	orig_src_pte = src_pte;
1117 	orig_dst_pte = dst_pte;
1118 	arch_enter_lazy_mmu_mode();
1119 
1120 	do {
1121 		nr = 1;
1122 
1123 		/*
1124 		 * We are holding two locks at this point - either of them
1125 		 * could generate latencies in another task on another CPU.
1126 		 */
1127 		if (progress >= 32) {
1128 			progress = 0;
1129 			if (need_resched() ||
1130 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1131 				break;
1132 		}
1133 		ptent = ptep_get(src_pte);
1134 		if (pte_none(ptent)) {
1135 			progress++;
1136 			continue;
1137 		}
1138 		if (unlikely(!pte_present(ptent))) {
1139 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1140 						  dst_pte, src_pte,
1141 						  dst_vma, src_vma,
1142 						  addr, rss);
1143 			if (ret == -EIO) {
1144 				entry = pte_to_swp_entry(ptep_get(src_pte));
1145 				break;
1146 			} else if (ret == -EBUSY) {
1147 				break;
1148 			} else if (!ret) {
1149 				progress += 8;
1150 				continue;
1151 			}
1152 			ptent = ptep_get(src_pte);
1153 			VM_WARN_ON_ONCE(!pte_present(ptent));
1154 
1155 			/*
1156 			 * Device exclusive entry restored, continue by copying
1157 			 * the now present pte.
1158 			 */
1159 			WARN_ON_ONCE(ret != -ENOENT);
1160 		}
1161 		/* copy_present_ptes() will clear `*prealloc' if consumed */
1162 		max_nr = (end - addr) / PAGE_SIZE;
1163 		ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1164 					ptent, addr, max_nr, rss, &prealloc);
1165 		/*
1166 		 * If we need a pre-allocated page for this pte, drop the
1167 		 * locks, allocate, and try again.
1168 		 * If copy failed due to hwpoison in source page, break out.
1169 		 */
1170 		if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1171 			break;
1172 		if (unlikely(prealloc)) {
1173 			/*
1174 			 * pre-alloc page cannot be reused by next time so as
1175 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1176 			 * will allocate page according to address).  This
1177 			 * could only happen if one pinned pte changed.
1178 			 */
1179 			folio_put(prealloc);
1180 			prealloc = NULL;
1181 		}
1182 		nr = ret;
1183 		progress += 8 * nr;
1184 	} while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1185 		 addr != end);
1186 
1187 	arch_leave_lazy_mmu_mode();
1188 	pte_unmap_unlock(orig_src_pte, src_ptl);
1189 	add_mm_rss_vec(dst_mm, rss);
1190 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1191 	cond_resched();
1192 
1193 	if (ret == -EIO) {
1194 		VM_WARN_ON_ONCE(!entry.val);
1195 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1196 			ret = -ENOMEM;
1197 			goto out;
1198 		}
1199 		entry.val = 0;
1200 	} else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1201 		goto out;
1202 	} else if (ret ==  -EAGAIN) {
1203 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1204 		if (!prealloc)
1205 			return -ENOMEM;
1206 	} else if (ret < 0) {
1207 		VM_WARN_ON_ONCE(1);
1208 	}
1209 
1210 	/* We've captured and resolved the error. Reset, try again. */
1211 	ret = 0;
1212 
1213 	if (addr != end)
1214 		goto again;
1215 out:
1216 	if (unlikely(prealloc))
1217 		folio_put(prealloc);
1218 	return ret;
1219 }
1220 
1221 static inline int
1222 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1223 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1224 	       unsigned long end)
1225 {
1226 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1227 	struct mm_struct *src_mm = src_vma->vm_mm;
1228 	pmd_t *src_pmd, *dst_pmd;
1229 	unsigned long next;
1230 
1231 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1232 	if (!dst_pmd)
1233 		return -ENOMEM;
1234 	src_pmd = pmd_offset(src_pud, addr);
1235 	do {
1236 		next = pmd_addr_end(addr, end);
1237 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1238 			|| pmd_devmap(*src_pmd)) {
1239 			int err;
1240 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1241 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1242 					    addr, dst_vma, src_vma);
1243 			if (err == -ENOMEM)
1244 				return -ENOMEM;
1245 			if (!err)
1246 				continue;
1247 			/* fall through */
1248 		}
1249 		if (pmd_none_or_clear_bad(src_pmd))
1250 			continue;
1251 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1252 				   addr, next))
1253 			return -ENOMEM;
1254 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1255 	return 0;
1256 }
1257 
1258 static inline int
1259 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1260 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1261 	       unsigned long end)
1262 {
1263 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1264 	struct mm_struct *src_mm = src_vma->vm_mm;
1265 	pud_t *src_pud, *dst_pud;
1266 	unsigned long next;
1267 
1268 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1269 	if (!dst_pud)
1270 		return -ENOMEM;
1271 	src_pud = pud_offset(src_p4d, addr);
1272 	do {
1273 		next = pud_addr_end(addr, end);
1274 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1275 			int err;
1276 
1277 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1278 			err = copy_huge_pud(dst_mm, src_mm,
1279 					    dst_pud, src_pud, addr, src_vma);
1280 			if (err == -ENOMEM)
1281 				return -ENOMEM;
1282 			if (!err)
1283 				continue;
1284 			/* fall through */
1285 		}
1286 		if (pud_none_or_clear_bad(src_pud))
1287 			continue;
1288 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1289 				   addr, next))
1290 			return -ENOMEM;
1291 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1292 	return 0;
1293 }
1294 
1295 static inline int
1296 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1297 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1298 	       unsigned long end)
1299 {
1300 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1301 	p4d_t *src_p4d, *dst_p4d;
1302 	unsigned long next;
1303 
1304 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1305 	if (!dst_p4d)
1306 		return -ENOMEM;
1307 	src_p4d = p4d_offset(src_pgd, addr);
1308 	do {
1309 		next = p4d_addr_end(addr, end);
1310 		if (p4d_none_or_clear_bad(src_p4d))
1311 			continue;
1312 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1313 				   addr, next))
1314 			return -ENOMEM;
1315 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1316 	return 0;
1317 }
1318 
1319 /*
1320  * Return true if the vma needs to copy the pgtable during this fork().  Return
1321  * false when we can speed up fork() by allowing lazy page faults later until
1322  * when the child accesses the memory range.
1323  */
1324 static bool
1325 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1326 {
1327 	/*
1328 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1329 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1330 	 * contains uffd-wp protection information, that's something we can't
1331 	 * retrieve from page cache, and skip copying will lose those info.
1332 	 */
1333 	if (userfaultfd_wp(dst_vma))
1334 		return true;
1335 
1336 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1337 		return true;
1338 
1339 	if (src_vma->anon_vma)
1340 		return true;
1341 
1342 	/*
1343 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1344 	 * becomes much lighter when there are big shared or private readonly
1345 	 * mappings. The tradeoff is that copy_page_range is more efficient
1346 	 * than faulting.
1347 	 */
1348 	return false;
1349 }
1350 
1351 int
1352 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1353 {
1354 	pgd_t *src_pgd, *dst_pgd;
1355 	unsigned long next;
1356 	unsigned long addr = src_vma->vm_start;
1357 	unsigned long end = src_vma->vm_end;
1358 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1359 	struct mm_struct *src_mm = src_vma->vm_mm;
1360 	struct mmu_notifier_range range;
1361 	bool is_cow;
1362 	int ret;
1363 
1364 	if (!vma_needs_copy(dst_vma, src_vma))
1365 		return 0;
1366 
1367 	if (is_vm_hugetlb_page(src_vma))
1368 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1369 
1370 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1371 		/*
1372 		 * We do not free on error cases below as remove_vma
1373 		 * gets called on error from higher level routine
1374 		 */
1375 		ret = track_pfn_copy(src_vma);
1376 		if (ret)
1377 			return ret;
1378 	}
1379 
1380 	/*
1381 	 * We need to invalidate the secondary MMU mappings only when
1382 	 * there could be a permission downgrade on the ptes of the
1383 	 * parent mm. And a permission downgrade will only happen if
1384 	 * is_cow_mapping() returns true.
1385 	 */
1386 	is_cow = is_cow_mapping(src_vma->vm_flags);
1387 
1388 	if (is_cow) {
1389 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1390 					0, src_mm, addr, end);
1391 		mmu_notifier_invalidate_range_start(&range);
1392 		/*
1393 		 * Disabling preemption is not needed for the write side, as
1394 		 * the read side doesn't spin, but goes to the mmap_lock.
1395 		 *
1396 		 * Use the raw variant of the seqcount_t write API to avoid
1397 		 * lockdep complaining about preemptibility.
1398 		 */
1399 		vma_assert_write_locked(src_vma);
1400 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1401 	}
1402 
1403 	ret = 0;
1404 	dst_pgd = pgd_offset(dst_mm, addr);
1405 	src_pgd = pgd_offset(src_mm, addr);
1406 	do {
1407 		next = pgd_addr_end(addr, end);
1408 		if (pgd_none_or_clear_bad(src_pgd))
1409 			continue;
1410 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1411 					    addr, next))) {
1412 			untrack_pfn_clear(dst_vma);
1413 			ret = -ENOMEM;
1414 			break;
1415 		}
1416 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1417 
1418 	if (is_cow) {
1419 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1420 		mmu_notifier_invalidate_range_end(&range);
1421 	}
1422 	return ret;
1423 }
1424 
1425 /* Whether we should zap all COWed (private) pages too */
1426 static inline bool should_zap_cows(struct zap_details *details)
1427 {
1428 	/* By default, zap all pages */
1429 	if (!details || details->reclaim_pt)
1430 		return true;
1431 
1432 	/* Or, we zap COWed pages only if the caller wants to */
1433 	return details->even_cows;
1434 }
1435 
1436 /* Decides whether we should zap this folio with the folio pointer specified */
1437 static inline bool should_zap_folio(struct zap_details *details,
1438 				    struct folio *folio)
1439 {
1440 	/* If we can make a decision without *folio.. */
1441 	if (should_zap_cows(details))
1442 		return true;
1443 
1444 	/* Otherwise we should only zap non-anon folios */
1445 	return !folio_test_anon(folio);
1446 }
1447 
1448 static inline bool zap_drop_markers(struct zap_details *details)
1449 {
1450 	if (!details)
1451 		return false;
1452 
1453 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1454 }
1455 
1456 /*
1457  * This function makes sure that we'll replace the none pte with an uffd-wp
1458  * swap special pte marker when necessary. Must be with the pgtable lock held.
1459  *
1460  * Returns true if uffd-wp ptes was installed, false otherwise.
1461  */
1462 static inline bool
1463 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1464 			      unsigned long addr, pte_t *pte, int nr,
1465 			      struct zap_details *details, pte_t pteval)
1466 {
1467 	bool was_installed = false;
1468 
1469 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1470 	/* Zap on anonymous always means dropping everything */
1471 	if (vma_is_anonymous(vma))
1472 		return false;
1473 
1474 	if (zap_drop_markers(details))
1475 		return false;
1476 
1477 	for (;;) {
1478 		/* the PFN in the PTE is irrelevant. */
1479 		if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval))
1480 			was_installed = true;
1481 		if (--nr == 0)
1482 			break;
1483 		pte++;
1484 		addr += PAGE_SIZE;
1485 	}
1486 #endif
1487 	return was_installed;
1488 }
1489 
1490 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1491 		struct vm_area_struct *vma, struct folio *folio,
1492 		struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1493 		unsigned long addr, struct zap_details *details, int *rss,
1494 		bool *force_flush, bool *force_break, bool *any_skipped)
1495 {
1496 	struct mm_struct *mm = tlb->mm;
1497 	bool delay_rmap = false;
1498 
1499 	if (!folio_test_anon(folio)) {
1500 		ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1501 		if (pte_dirty(ptent)) {
1502 			folio_mark_dirty(folio);
1503 			if (tlb_delay_rmap(tlb)) {
1504 				delay_rmap = true;
1505 				*force_flush = true;
1506 			}
1507 		}
1508 		if (pte_young(ptent) && likely(vma_has_recency(vma)))
1509 			folio_mark_accessed(folio);
1510 		rss[mm_counter(folio)] -= nr;
1511 	} else {
1512 		/* We don't need up-to-date accessed/dirty bits. */
1513 		clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1514 		rss[MM_ANONPAGES] -= nr;
1515 	}
1516 	/* Checking a single PTE in a batch is sufficient. */
1517 	arch_check_zapped_pte(vma, ptent);
1518 	tlb_remove_tlb_entries(tlb, pte, nr, addr);
1519 	if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1520 		*any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte,
1521 							     nr, details, ptent);
1522 
1523 	if (!delay_rmap) {
1524 		folio_remove_rmap_ptes(folio, page, nr, vma);
1525 
1526 		if (unlikely(folio_mapcount(folio) < 0))
1527 			print_bad_pte(vma, addr, ptent, page);
1528 	}
1529 	if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1530 		*force_flush = true;
1531 		*force_break = true;
1532 	}
1533 }
1534 
1535 /*
1536  * Zap or skip at least one present PTE, trying to batch-process subsequent
1537  * PTEs that map consecutive pages of the same folio.
1538  *
1539  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1540  */
1541 static inline int zap_present_ptes(struct mmu_gather *tlb,
1542 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1543 		unsigned int max_nr, unsigned long addr,
1544 		struct zap_details *details, int *rss, bool *force_flush,
1545 		bool *force_break, bool *any_skipped)
1546 {
1547 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1548 	struct mm_struct *mm = tlb->mm;
1549 	struct folio *folio;
1550 	struct page *page;
1551 	int nr;
1552 
1553 	page = vm_normal_page(vma, addr, ptent);
1554 	if (!page) {
1555 		/* We don't need up-to-date accessed/dirty bits. */
1556 		ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1557 		arch_check_zapped_pte(vma, ptent);
1558 		tlb_remove_tlb_entry(tlb, pte, addr);
1559 		if (userfaultfd_pte_wp(vma, ptent))
1560 			*any_skipped = zap_install_uffd_wp_if_needed(vma, addr,
1561 						pte, 1, details, ptent);
1562 		ksm_might_unmap_zero_page(mm, ptent);
1563 		return 1;
1564 	}
1565 
1566 	folio = page_folio(page);
1567 	if (unlikely(!should_zap_folio(details, folio))) {
1568 		*any_skipped = true;
1569 		return 1;
1570 	}
1571 
1572 	/*
1573 	 * Make sure that the common "small folio" case is as fast as possible
1574 	 * by keeping the batching logic separate.
1575 	 */
1576 	if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1577 		nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1578 				     NULL, NULL, NULL);
1579 
1580 		zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1581 				       addr, details, rss, force_flush,
1582 				       force_break, any_skipped);
1583 		return nr;
1584 	}
1585 	zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1586 			       details, rss, force_flush, force_break, any_skipped);
1587 	return 1;
1588 }
1589 
1590 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb,
1591 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1592 		unsigned int max_nr, unsigned long addr,
1593 		struct zap_details *details, int *rss, bool *any_skipped)
1594 {
1595 	swp_entry_t entry;
1596 	int nr = 1;
1597 
1598 	*any_skipped = true;
1599 	entry = pte_to_swp_entry(ptent);
1600 	if (is_device_private_entry(entry) ||
1601 		is_device_exclusive_entry(entry)) {
1602 		struct page *page = pfn_swap_entry_to_page(entry);
1603 		struct folio *folio = page_folio(page);
1604 
1605 		if (unlikely(!should_zap_folio(details, folio)))
1606 			return 1;
1607 		/*
1608 		 * Both device private/exclusive mappings should only
1609 		 * work with anonymous page so far, so we don't need to
1610 		 * consider uffd-wp bit when zap. For more information,
1611 		 * see zap_install_uffd_wp_if_needed().
1612 		 */
1613 		WARN_ON_ONCE(!vma_is_anonymous(vma));
1614 		rss[mm_counter(folio)]--;
1615 		folio_remove_rmap_pte(folio, page, vma);
1616 		folio_put(folio);
1617 	} else if (!non_swap_entry(entry)) {
1618 		/* Genuine swap entries, hence a private anon pages */
1619 		if (!should_zap_cows(details))
1620 			return 1;
1621 
1622 		nr = swap_pte_batch(pte, max_nr, ptent);
1623 		rss[MM_SWAPENTS] -= nr;
1624 		free_swap_and_cache_nr(entry, nr);
1625 	} else if (is_migration_entry(entry)) {
1626 		struct folio *folio = pfn_swap_entry_folio(entry);
1627 
1628 		if (!should_zap_folio(details, folio))
1629 			return 1;
1630 		rss[mm_counter(folio)]--;
1631 	} else if (pte_marker_entry_uffd_wp(entry)) {
1632 		/*
1633 		 * For anon: always drop the marker; for file: only
1634 		 * drop the marker if explicitly requested.
1635 		 */
1636 		if (!vma_is_anonymous(vma) && !zap_drop_markers(details))
1637 			return 1;
1638 	} else if (is_guard_swp_entry(entry)) {
1639 		/*
1640 		 * Ordinary zapping should not remove guard PTE
1641 		 * markers. Only do so if we should remove PTE markers
1642 		 * in general.
1643 		 */
1644 		if (!zap_drop_markers(details))
1645 			return 1;
1646 	} else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) {
1647 		if (!should_zap_cows(details))
1648 			return 1;
1649 	} else {
1650 		/* We should have covered all the swap entry types */
1651 		pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1652 		WARN_ON_ONCE(1);
1653 	}
1654 	clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm);
1655 	*any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1656 
1657 	return nr;
1658 }
1659 
1660 static inline int do_zap_pte_range(struct mmu_gather *tlb,
1661 				   struct vm_area_struct *vma, pte_t *pte,
1662 				   unsigned long addr, unsigned long end,
1663 				   struct zap_details *details, int *rss,
1664 				   bool *force_flush, bool *force_break,
1665 				   bool *any_skipped)
1666 {
1667 	pte_t ptent = ptep_get(pte);
1668 	int max_nr = (end - addr) / PAGE_SIZE;
1669 	int nr = 0;
1670 
1671 	/* Skip all consecutive none ptes */
1672 	if (pte_none(ptent)) {
1673 		for (nr = 1; nr < max_nr; nr++) {
1674 			ptent = ptep_get(pte + nr);
1675 			if (!pte_none(ptent))
1676 				break;
1677 		}
1678 		max_nr -= nr;
1679 		if (!max_nr)
1680 			return nr;
1681 		pte += nr;
1682 		addr += nr * PAGE_SIZE;
1683 	}
1684 
1685 	if (pte_present(ptent))
1686 		nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr,
1687 				       details, rss, force_flush, force_break,
1688 				       any_skipped);
1689 	else
1690 		nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr,
1691 					  details, rss, any_skipped);
1692 
1693 	return nr;
1694 }
1695 
1696 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1697 				struct vm_area_struct *vma, pmd_t *pmd,
1698 				unsigned long addr, unsigned long end,
1699 				struct zap_details *details)
1700 {
1701 	bool force_flush = false, force_break = false;
1702 	struct mm_struct *mm = tlb->mm;
1703 	int rss[NR_MM_COUNTERS];
1704 	spinlock_t *ptl;
1705 	pte_t *start_pte;
1706 	pte_t *pte;
1707 	pmd_t pmdval;
1708 	unsigned long start = addr;
1709 	bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details);
1710 	bool direct_reclaim = true;
1711 	int nr;
1712 
1713 retry:
1714 	tlb_change_page_size(tlb, PAGE_SIZE);
1715 	init_rss_vec(rss);
1716 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1717 	if (!pte)
1718 		return addr;
1719 
1720 	flush_tlb_batched_pending(mm);
1721 	arch_enter_lazy_mmu_mode();
1722 	do {
1723 		bool any_skipped = false;
1724 
1725 		if (need_resched()) {
1726 			direct_reclaim = false;
1727 			break;
1728 		}
1729 
1730 		nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
1731 				      &force_flush, &force_break, &any_skipped);
1732 		if (any_skipped)
1733 			can_reclaim_pt = false;
1734 		if (unlikely(force_break)) {
1735 			addr += nr * PAGE_SIZE;
1736 			direct_reclaim = false;
1737 			break;
1738 		}
1739 	} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1740 
1741 	/*
1742 	 * Fast path: try to hold the pmd lock and unmap the PTE page.
1743 	 *
1744 	 * If the pte lock was released midway (retry case), or if the attempt
1745 	 * to hold the pmd lock failed, then we need to recheck all pte entries
1746 	 * to ensure they are still none, thereby preventing the pte entries
1747 	 * from being repopulated by another thread.
1748 	 */
1749 	if (can_reclaim_pt && direct_reclaim && addr == end)
1750 		direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval);
1751 
1752 	add_mm_rss_vec(mm, rss);
1753 	arch_leave_lazy_mmu_mode();
1754 
1755 	/* Do the actual TLB flush before dropping ptl */
1756 	if (force_flush) {
1757 		tlb_flush_mmu_tlbonly(tlb);
1758 		tlb_flush_rmaps(tlb, vma);
1759 	}
1760 	pte_unmap_unlock(start_pte, ptl);
1761 
1762 	/*
1763 	 * If we forced a TLB flush (either due to running out of
1764 	 * batch buffers or because we needed to flush dirty TLB
1765 	 * entries before releasing the ptl), free the batched
1766 	 * memory too. Come back again if we didn't do everything.
1767 	 */
1768 	if (force_flush)
1769 		tlb_flush_mmu(tlb);
1770 
1771 	if (addr != end) {
1772 		cond_resched();
1773 		force_flush = false;
1774 		force_break = false;
1775 		goto retry;
1776 	}
1777 
1778 	if (can_reclaim_pt) {
1779 		if (direct_reclaim)
1780 			free_pte(mm, start, tlb, pmdval);
1781 		else
1782 			try_to_free_pte(mm, pmd, start, tlb);
1783 	}
1784 
1785 	return addr;
1786 }
1787 
1788 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1789 				struct vm_area_struct *vma, pud_t *pud,
1790 				unsigned long addr, unsigned long end,
1791 				struct zap_details *details)
1792 {
1793 	pmd_t *pmd;
1794 	unsigned long next;
1795 
1796 	pmd = pmd_offset(pud, addr);
1797 	do {
1798 		next = pmd_addr_end(addr, end);
1799 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1800 			if (next - addr != HPAGE_PMD_SIZE)
1801 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1802 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1803 				addr = next;
1804 				continue;
1805 			}
1806 			/* fall through */
1807 		} else if (details && details->single_folio &&
1808 			   folio_test_pmd_mappable(details->single_folio) &&
1809 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1810 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1811 			/*
1812 			 * Take and drop THP pmd lock so that we cannot return
1813 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1814 			 * but not yet decremented compound_mapcount().
1815 			 */
1816 			spin_unlock(ptl);
1817 		}
1818 		if (pmd_none(*pmd)) {
1819 			addr = next;
1820 			continue;
1821 		}
1822 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1823 		if (addr != next)
1824 			pmd--;
1825 	} while (pmd++, cond_resched(), addr != end);
1826 
1827 	return addr;
1828 }
1829 
1830 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1831 				struct vm_area_struct *vma, p4d_t *p4d,
1832 				unsigned long addr, unsigned long end,
1833 				struct zap_details *details)
1834 {
1835 	pud_t *pud;
1836 	unsigned long next;
1837 
1838 	pud = pud_offset(p4d, addr);
1839 	do {
1840 		next = pud_addr_end(addr, end);
1841 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1842 			if (next - addr != HPAGE_PUD_SIZE) {
1843 				mmap_assert_locked(tlb->mm);
1844 				split_huge_pud(vma, pud, addr);
1845 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1846 				goto next;
1847 			/* fall through */
1848 		}
1849 		if (pud_none_or_clear_bad(pud))
1850 			continue;
1851 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1852 next:
1853 		cond_resched();
1854 	} while (pud++, addr = next, addr != end);
1855 
1856 	return addr;
1857 }
1858 
1859 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1860 				struct vm_area_struct *vma, pgd_t *pgd,
1861 				unsigned long addr, unsigned long end,
1862 				struct zap_details *details)
1863 {
1864 	p4d_t *p4d;
1865 	unsigned long next;
1866 
1867 	p4d = p4d_offset(pgd, addr);
1868 	do {
1869 		next = p4d_addr_end(addr, end);
1870 		if (p4d_none_or_clear_bad(p4d))
1871 			continue;
1872 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1873 	} while (p4d++, addr = next, addr != end);
1874 
1875 	return addr;
1876 }
1877 
1878 void unmap_page_range(struct mmu_gather *tlb,
1879 			     struct vm_area_struct *vma,
1880 			     unsigned long addr, unsigned long end,
1881 			     struct zap_details *details)
1882 {
1883 	pgd_t *pgd;
1884 	unsigned long next;
1885 
1886 	BUG_ON(addr >= end);
1887 	tlb_start_vma(tlb, vma);
1888 	pgd = pgd_offset(vma->vm_mm, addr);
1889 	do {
1890 		next = pgd_addr_end(addr, end);
1891 		if (pgd_none_or_clear_bad(pgd))
1892 			continue;
1893 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1894 	} while (pgd++, addr = next, addr != end);
1895 	tlb_end_vma(tlb, vma);
1896 }
1897 
1898 
1899 static void unmap_single_vma(struct mmu_gather *tlb,
1900 		struct vm_area_struct *vma, unsigned long start_addr,
1901 		unsigned long end_addr,
1902 		struct zap_details *details, bool mm_wr_locked)
1903 {
1904 	unsigned long start = max(vma->vm_start, start_addr);
1905 	unsigned long end;
1906 
1907 	if (start >= vma->vm_end)
1908 		return;
1909 	end = min(vma->vm_end, end_addr);
1910 	if (end <= vma->vm_start)
1911 		return;
1912 
1913 	if (vma->vm_file)
1914 		uprobe_munmap(vma, start, end);
1915 
1916 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1917 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1918 
1919 	if (start != end) {
1920 		if (unlikely(is_vm_hugetlb_page(vma))) {
1921 			/*
1922 			 * It is undesirable to test vma->vm_file as it
1923 			 * should be non-null for valid hugetlb area.
1924 			 * However, vm_file will be NULL in the error
1925 			 * cleanup path of mmap_region. When
1926 			 * hugetlbfs ->mmap method fails,
1927 			 * mmap_region() nullifies vma->vm_file
1928 			 * before calling this function to clean up.
1929 			 * Since no pte has actually been setup, it is
1930 			 * safe to do nothing in this case.
1931 			 */
1932 			if (vma->vm_file) {
1933 				zap_flags_t zap_flags = details ?
1934 				    details->zap_flags : 0;
1935 				__unmap_hugepage_range(tlb, vma, start, end,
1936 							     NULL, zap_flags);
1937 			}
1938 		} else
1939 			unmap_page_range(tlb, vma, start, end, details);
1940 	}
1941 }
1942 
1943 /**
1944  * unmap_vmas - unmap a range of memory covered by a list of vma's
1945  * @tlb: address of the caller's struct mmu_gather
1946  * @mas: the maple state
1947  * @vma: the starting vma
1948  * @start_addr: virtual address at which to start unmapping
1949  * @end_addr: virtual address at which to end unmapping
1950  * @tree_end: The maximum index to check
1951  * @mm_wr_locked: lock flag
1952  *
1953  * Unmap all pages in the vma list.
1954  *
1955  * Only addresses between `start' and `end' will be unmapped.
1956  *
1957  * The VMA list must be sorted in ascending virtual address order.
1958  *
1959  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1960  * range after unmap_vmas() returns.  So the only responsibility here is to
1961  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1962  * drops the lock and schedules.
1963  */
1964 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1965 		struct vm_area_struct *vma, unsigned long start_addr,
1966 		unsigned long end_addr, unsigned long tree_end,
1967 		bool mm_wr_locked)
1968 {
1969 	struct mmu_notifier_range range;
1970 	struct zap_details details = {
1971 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1972 		/* Careful - we need to zap private pages too! */
1973 		.even_cows = true,
1974 	};
1975 
1976 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1977 				start_addr, end_addr);
1978 	mmu_notifier_invalidate_range_start(&range);
1979 	do {
1980 		unsigned long start = start_addr;
1981 		unsigned long end = end_addr;
1982 		hugetlb_zap_begin(vma, &start, &end);
1983 		unmap_single_vma(tlb, vma, start, end, &details,
1984 				 mm_wr_locked);
1985 		hugetlb_zap_end(vma, &details);
1986 		vma = mas_find(mas, tree_end - 1);
1987 	} while (vma && likely(!xa_is_zero(vma)));
1988 	mmu_notifier_invalidate_range_end(&range);
1989 }
1990 
1991 /**
1992  * zap_page_range_single - remove user pages in a given range
1993  * @vma: vm_area_struct holding the applicable pages
1994  * @address: starting address of pages to zap
1995  * @size: number of bytes to zap
1996  * @details: details of shared cache invalidation
1997  *
1998  * The range must fit into one VMA.
1999  */
2000 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2001 		unsigned long size, struct zap_details *details)
2002 {
2003 	const unsigned long end = address + size;
2004 	struct mmu_notifier_range range;
2005 	struct mmu_gather tlb;
2006 
2007 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2008 				address, end);
2009 	hugetlb_zap_begin(vma, &range.start, &range.end);
2010 	tlb_gather_mmu(&tlb, vma->vm_mm);
2011 	update_hiwater_rss(vma->vm_mm);
2012 	mmu_notifier_invalidate_range_start(&range);
2013 	/*
2014 	 * unmap 'address-end' not 'range.start-range.end' as range
2015 	 * could have been expanded for hugetlb pmd sharing.
2016 	 */
2017 	unmap_single_vma(&tlb, vma, address, end, details, false);
2018 	mmu_notifier_invalidate_range_end(&range);
2019 	tlb_finish_mmu(&tlb);
2020 	hugetlb_zap_end(vma, details);
2021 }
2022 
2023 /**
2024  * zap_vma_ptes - remove ptes mapping the vma
2025  * @vma: vm_area_struct holding ptes to be zapped
2026  * @address: starting address of pages to zap
2027  * @size: number of bytes to zap
2028  *
2029  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
2030  *
2031  * The entire address range must be fully contained within the vma.
2032  *
2033  */
2034 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2035 		unsigned long size)
2036 {
2037 	if (!range_in_vma(vma, address, address + size) ||
2038 	    		!(vma->vm_flags & VM_PFNMAP))
2039 		return;
2040 
2041 	zap_page_range_single(vma, address, size, NULL);
2042 }
2043 EXPORT_SYMBOL_GPL(zap_vma_ptes);
2044 
2045 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
2046 {
2047 	pgd_t *pgd;
2048 	p4d_t *p4d;
2049 	pud_t *pud;
2050 	pmd_t *pmd;
2051 
2052 	pgd = pgd_offset(mm, addr);
2053 	p4d = p4d_alloc(mm, pgd, addr);
2054 	if (!p4d)
2055 		return NULL;
2056 	pud = pud_alloc(mm, p4d, addr);
2057 	if (!pud)
2058 		return NULL;
2059 	pmd = pmd_alloc(mm, pud, addr);
2060 	if (!pmd)
2061 		return NULL;
2062 
2063 	VM_BUG_ON(pmd_trans_huge(*pmd));
2064 	return pmd;
2065 }
2066 
2067 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2068 			spinlock_t **ptl)
2069 {
2070 	pmd_t *pmd = walk_to_pmd(mm, addr);
2071 
2072 	if (!pmd)
2073 		return NULL;
2074 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
2075 }
2076 
2077 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2078 {
2079 	VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2080 	/*
2081 	 * Whoever wants to forbid the zeropage after some zeropages
2082 	 * might already have been mapped has to scan the page tables and
2083 	 * bail out on any zeropages. Zeropages in COW mappings can
2084 	 * be unshared using FAULT_FLAG_UNSHARE faults.
2085 	 */
2086 	if (mm_forbids_zeropage(vma->vm_mm))
2087 		return false;
2088 	/* zeropages in COW mappings are common and unproblematic. */
2089 	if (is_cow_mapping(vma->vm_flags))
2090 		return true;
2091 	/* Mappings that do not allow for writable PTEs are unproblematic. */
2092 	if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2093 		return true;
2094 	/*
2095 	 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2096 	 * find the shared zeropage and longterm-pin it, which would
2097 	 * be problematic as soon as the zeropage gets replaced by a different
2098 	 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2099 	 * now differ to what GUP looked up. FSDAX is incompatible to
2100 	 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2101 	 * check_vma_flags).
2102 	 */
2103 	return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2104 	       (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2105 }
2106 
2107 static int validate_page_before_insert(struct vm_area_struct *vma,
2108 				       struct page *page)
2109 {
2110 	struct folio *folio = page_folio(page);
2111 
2112 	if (!folio_ref_count(folio))
2113 		return -EINVAL;
2114 	if (unlikely(is_zero_folio(folio))) {
2115 		if (!vm_mixed_zeropage_allowed(vma))
2116 			return -EINVAL;
2117 		return 0;
2118 	}
2119 	if (folio_test_anon(folio) || folio_test_slab(folio) ||
2120 	    page_has_type(page))
2121 		return -EINVAL;
2122 	flush_dcache_folio(folio);
2123 	return 0;
2124 }
2125 
2126 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2127 			unsigned long addr, struct page *page, pgprot_t prot)
2128 {
2129 	struct folio *folio = page_folio(page);
2130 	pte_t pteval;
2131 
2132 	if (!pte_none(ptep_get(pte)))
2133 		return -EBUSY;
2134 	/* Ok, finally just insert the thing.. */
2135 	pteval = mk_pte(page, prot);
2136 	if (unlikely(is_zero_folio(folio))) {
2137 		pteval = pte_mkspecial(pteval);
2138 	} else {
2139 		folio_get(folio);
2140 		inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2141 		folio_add_file_rmap_pte(folio, page, vma);
2142 	}
2143 	set_pte_at(vma->vm_mm, addr, pte, pteval);
2144 	return 0;
2145 }
2146 
2147 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2148 			struct page *page, pgprot_t prot)
2149 {
2150 	int retval;
2151 	pte_t *pte;
2152 	spinlock_t *ptl;
2153 
2154 	retval = validate_page_before_insert(vma, page);
2155 	if (retval)
2156 		goto out;
2157 	retval = -ENOMEM;
2158 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2159 	if (!pte)
2160 		goto out;
2161 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2162 	pte_unmap_unlock(pte, ptl);
2163 out:
2164 	return retval;
2165 }
2166 
2167 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2168 			unsigned long addr, struct page *page, pgprot_t prot)
2169 {
2170 	int err;
2171 
2172 	err = validate_page_before_insert(vma, page);
2173 	if (err)
2174 		return err;
2175 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2176 }
2177 
2178 /* insert_pages() amortizes the cost of spinlock operations
2179  * when inserting pages in a loop.
2180  */
2181 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2182 			struct page **pages, unsigned long *num, pgprot_t prot)
2183 {
2184 	pmd_t *pmd = NULL;
2185 	pte_t *start_pte, *pte;
2186 	spinlock_t *pte_lock;
2187 	struct mm_struct *const mm = vma->vm_mm;
2188 	unsigned long curr_page_idx = 0;
2189 	unsigned long remaining_pages_total = *num;
2190 	unsigned long pages_to_write_in_pmd;
2191 	int ret;
2192 more:
2193 	ret = -EFAULT;
2194 	pmd = walk_to_pmd(mm, addr);
2195 	if (!pmd)
2196 		goto out;
2197 
2198 	pages_to_write_in_pmd = min_t(unsigned long,
2199 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2200 
2201 	/* Allocate the PTE if necessary; takes PMD lock once only. */
2202 	ret = -ENOMEM;
2203 	if (pte_alloc(mm, pmd))
2204 		goto out;
2205 
2206 	while (pages_to_write_in_pmd) {
2207 		int pte_idx = 0;
2208 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2209 
2210 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2211 		if (!start_pte) {
2212 			ret = -EFAULT;
2213 			goto out;
2214 		}
2215 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2216 			int err = insert_page_in_batch_locked(vma, pte,
2217 				addr, pages[curr_page_idx], prot);
2218 			if (unlikely(err)) {
2219 				pte_unmap_unlock(start_pte, pte_lock);
2220 				ret = err;
2221 				remaining_pages_total -= pte_idx;
2222 				goto out;
2223 			}
2224 			addr += PAGE_SIZE;
2225 			++curr_page_idx;
2226 		}
2227 		pte_unmap_unlock(start_pte, pte_lock);
2228 		pages_to_write_in_pmd -= batch_size;
2229 		remaining_pages_total -= batch_size;
2230 	}
2231 	if (remaining_pages_total)
2232 		goto more;
2233 	ret = 0;
2234 out:
2235 	*num = remaining_pages_total;
2236 	return ret;
2237 }
2238 
2239 /**
2240  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2241  * @vma: user vma to map to
2242  * @addr: target start user address of these pages
2243  * @pages: source kernel pages
2244  * @num: in: number of pages to map. out: number of pages that were *not*
2245  * mapped. (0 means all pages were successfully mapped).
2246  *
2247  * Preferred over vm_insert_page() when inserting multiple pages.
2248  *
2249  * In case of error, we may have mapped a subset of the provided
2250  * pages. It is the caller's responsibility to account for this case.
2251  *
2252  * The same restrictions apply as in vm_insert_page().
2253  */
2254 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2255 			struct page **pages, unsigned long *num)
2256 {
2257 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2258 
2259 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2260 		return -EFAULT;
2261 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2262 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2263 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2264 		vm_flags_set(vma, VM_MIXEDMAP);
2265 	}
2266 	/* Defer page refcount checking till we're about to map that page. */
2267 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2268 }
2269 EXPORT_SYMBOL(vm_insert_pages);
2270 
2271 /**
2272  * vm_insert_page - insert single page into user vma
2273  * @vma: user vma to map to
2274  * @addr: target user address of this page
2275  * @page: source kernel page
2276  *
2277  * This allows drivers to insert individual pages they've allocated
2278  * into a user vma. The zeropage is supported in some VMAs,
2279  * see vm_mixed_zeropage_allowed().
2280  *
2281  * The page has to be a nice clean _individual_ kernel allocation.
2282  * If you allocate a compound page, you need to have marked it as
2283  * such (__GFP_COMP), or manually just split the page up yourself
2284  * (see split_page()).
2285  *
2286  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2287  * took an arbitrary page protection parameter. This doesn't allow
2288  * that. Your vma protection will have to be set up correctly, which
2289  * means that if you want a shared writable mapping, you'd better
2290  * ask for a shared writable mapping!
2291  *
2292  * The page does not need to be reserved.
2293  *
2294  * Usually this function is called from f_op->mmap() handler
2295  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2296  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2297  * function from other places, for example from page-fault handler.
2298  *
2299  * Return: %0 on success, negative error code otherwise.
2300  */
2301 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2302 			struct page *page)
2303 {
2304 	if (addr < vma->vm_start || addr >= vma->vm_end)
2305 		return -EFAULT;
2306 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2307 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2308 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2309 		vm_flags_set(vma, VM_MIXEDMAP);
2310 	}
2311 	return insert_page(vma, addr, page, vma->vm_page_prot);
2312 }
2313 EXPORT_SYMBOL(vm_insert_page);
2314 
2315 /*
2316  * __vm_map_pages - maps range of kernel pages into user vma
2317  * @vma: user vma to map to
2318  * @pages: pointer to array of source kernel pages
2319  * @num: number of pages in page array
2320  * @offset: user's requested vm_pgoff
2321  *
2322  * This allows drivers to map range of kernel pages into a user vma.
2323  * The zeropage is supported in some VMAs, see
2324  * vm_mixed_zeropage_allowed().
2325  *
2326  * Return: 0 on success and error code otherwise.
2327  */
2328 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2329 				unsigned long num, unsigned long offset)
2330 {
2331 	unsigned long count = vma_pages(vma);
2332 	unsigned long uaddr = vma->vm_start;
2333 	int ret, i;
2334 
2335 	/* Fail if the user requested offset is beyond the end of the object */
2336 	if (offset >= num)
2337 		return -ENXIO;
2338 
2339 	/* Fail if the user requested size exceeds available object size */
2340 	if (count > num - offset)
2341 		return -ENXIO;
2342 
2343 	for (i = 0; i < count; i++) {
2344 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2345 		if (ret < 0)
2346 			return ret;
2347 		uaddr += PAGE_SIZE;
2348 	}
2349 
2350 	return 0;
2351 }
2352 
2353 /**
2354  * vm_map_pages - maps range of kernel pages starts with non zero offset
2355  * @vma: user vma to map to
2356  * @pages: pointer to array of source kernel pages
2357  * @num: number of pages in page array
2358  *
2359  * Maps an object consisting of @num pages, catering for the user's
2360  * requested vm_pgoff
2361  *
2362  * If we fail to insert any page into the vma, the function will return
2363  * immediately leaving any previously inserted pages present.  Callers
2364  * from the mmap handler may immediately return the error as their caller
2365  * will destroy the vma, removing any successfully inserted pages. Other
2366  * callers should make their own arrangements for calling unmap_region().
2367  *
2368  * Context: Process context. Called by mmap handlers.
2369  * Return: 0 on success and error code otherwise.
2370  */
2371 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2372 				unsigned long num)
2373 {
2374 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2375 }
2376 EXPORT_SYMBOL(vm_map_pages);
2377 
2378 /**
2379  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2380  * @vma: user vma to map to
2381  * @pages: pointer to array of source kernel pages
2382  * @num: number of pages in page array
2383  *
2384  * Similar to vm_map_pages(), except that it explicitly sets the offset
2385  * to 0. This function is intended for the drivers that did not consider
2386  * vm_pgoff.
2387  *
2388  * Context: Process context. Called by mmap handlers.
2389  * Return: 0 on success and error code otherwise.
2390  */
2391 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2392 				unsigned long num)
2393 {
2394 	return __vm_map_pages(vma, pages, num, 0);
2395 }
2396 EXPORT_SYMBOL(vm_map_pages_zero);
2397 
2398 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2399 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2400 {
2401 	struct mm_struct *mm = vma->vm_mm;
2402 	pte_t *pte, entry;
2403 	spinlock_t *ptl;
2404 
2405 	pte = get_locked_pte(mm, addr, &ptl);
2406 	if (!pte)
2407 		return VM_FAULT_OOM;
2408 	entry = ptep_get(pte);
2409 	if (!pte_none(entry)) {
2410 		if (mkwrite) {
2411 			/*
2412 			 * For read faults on private mappings the PFN passed
2413 			 * in may not match the PFN we have mapped if the
2414 			 * mapped PFN is a writeable COW page.  In the mkwrite
2415 			 * case we are creating a writable PTE for a shared
2416 			 * mapping and we expect the PFNs to match. If they
2417 			 * don't match, we are likely racing with block
2418 			 * allocation and mapping invalidation so just skip the
2419 			 * update.
2420 			 */
2421 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2422 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2423 				goto out_unlock;
2424 			}
2425 			entry = pte_mkyoung(entry);
2426 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2427 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2428 				update_mmu_cache(vma, addr, pte);
2429 		}
2430 		goto out_unlock;
2431 	}
2432 
2433 	/* Ok, finally just insert the thing.. */
2434 	if (pfn_t_devmap(pfn))
2435 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2436 	else
2437 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2438 
2439 	if (mkwrite) {
2440 		entry = pte_mkyoung(entry);
2441 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2442 	}
2443 
2444 	set_pte_at(mm, addr, pte, entry);
2445 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2446 
2447 out_unlock:
2448 	pte_unmap_unlock(pte, ptl);
2449 	return VM_FAULT_NOPAGE;
2450 }
2451 
2452 /**
2453  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2454  * @vma: user vma to map to
2455  * @addr: target user address of this page
2456  * @pfn: source kernel pfn
2457  * @pgprot: pgprot flags for the inserted page
2458  *
2459  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2460  * to override pgprot on a per-page basis.
2461  *
2462  * This only makes sense for IO mappings, and it makes no sense for
2463  * COW mappings.  In general, using multiple vmas is preferable;
2464  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2465  * impractical.
2466  *
2467  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2468  * caching- and encryption bits different than those of @vma->vm_page_prot,
2469  * because the caching- or encryption mode may not be known at mmap() time.
2470  *
2471  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2472  * to set caching and encryption bits for those vmas (except for COW pages).
2473  * This is ensured by core vm only modifying these page table entries using
2474  * functions that don't touch caching- or encryption bits, using pte_modify()
2475  * if needed. (See for example mprotect()).
2476  *
2477  * Also when new page-table entries are created, this is only done using the
2478  * fault() callback, and never using the value of vma->vm_page_prot,
2479  * except for page-table entries that point to anonymous pages as the result
2480  * of COW.
2481  *
2482  * Context: Process context.  May allocate using %GFP_KERNEL.
2483  * Return: vm_fault_t value.
2484  */
2485 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2486 			unsigned long pfn, pgprot_t pgprot)
2487 {
2488 	/*
2489 	 * Technically, architectures with pte_special can avoid all these
2490 	 * restrictions (same for remap_pfn_range).  However we would like
2491 	 * consistency in testing and feature parity among all, so we should
2492 	 * try to keep these invariants in place for everybody.
2493 	 */
2494 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2495 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2496 						(VM_PFNMAP|VM_MIXEDMAP));
2497 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2498 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2499 
2500 	if (addr < vma->vm_start || addr >= vma->vm_end)
2501 		return VM_FAULT_SIGBUS;
2502 
2503 	if (!pfn_modify_allowed(pfn, pgprot))
2504 		return VM_FAULT_SIGBUS;
2505 
2506 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2507 
2508 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2509 			false);
2510 }
2511 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2512 
2513 /**
2514  * vmf_insert_pfn - insert single pfn into user vma
2515  * @vma: user vma to map to
2516  * @addr: target user address of this page
2517  * @pfn: source kernel pfn
2518  *
2519  * Similar to vm_insert_page, this allows drivers to insert individual pages
2520  * they've allocated into a user vma. Same comments apply.
2521  *
2522  * This function should only be called from a vm_ops->fault handler, and
2523  * in that case the handler should return the result of this function.
2524  *
2525  * vma cannot be a COW mapping.
2526  *
2527  * As this is called only for pages that do not currently exist, we
2528  * do not need to flush old virtual caches or the TLB.
2529  *
2530  * Context: Process context.  May allocate using %GFP_KERNEL.
2531  * Return: vm_fault_t value.
2532  */
2533 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2534 			unsigned long pfn)
2535 {
2536 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2537 }
2538 EXPORT_SYMBOL(vmf_insert_pfn);
2539 
2540 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2541 {
2542 	if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2543 	    (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2544 		return false;
2545 	/* these checks mirror the abort conditions in vm_normal_page */
2546 	if (vma->vm_flags & VM_MIXEDMAP)
2547 		return true;
2548 	if (pfn_t_devmap(pfn))
2549 		return true;
2550 	if (pfn_t_special(pfn))
2551 		return true;
2552 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2553 		return true;
2554 	return false;
2555 }
2556 
2557 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2558 		unsigned long addr, pfn_t pfn, bool mkwrite)
2559 {
2560 	pgprot_t pgprot = vma->vm_page_prot;
2561 	int err;
2562 
2563 	if (!vm_mixed_ok(vma, pfn, mkwrite))
2564 		return VM_FAULT_SIGBUS;
2565 
2566 	if (addr < vma->vm_start || addr >= vma->vm_end)
2567 		return VM_FAULT_SIGBUS;
2568 
2569 	track_pfn_insert(vma, &pgprot, pfn);
2570 
2571 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2572 		return VM_FAULT_SIGBUS;
2573 
2574 	/*
2575 	 * If we don't have pte special, then we have to use the pfn_valid()
2576 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2577 	 * refcount the page if pfn_valid is true (hence insert_page rather
2578 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2579 	 * without pte special, it would there be refcounted as a normal page.
2580 	 */
2581 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2582 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2583 		struct page *page;
2584 
2585 		/*
2586 		 * At this point we are committed to insert_page()
2587 		 * regardless of whether the caller specified flags that
2588 		 * result in pfn_t_has_page() == false.
2589 		 */
2590 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2591 		err = insert_page(vma, addr, page, pgprot);
2592 	} else {
2593 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2594 	}
2595 
2596 	if (err == -ENOMEM)
2597 		return VM_FAULT_OOM;
2598 	if (err < 0 && err != -EBUSY)
2599 		return VM_FAULT_SIGBUS;
2600 
2601 	return VM_FAULT_NOPAGE;
2602 }
2603 
2604 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2605 		pfn_t pfn)
2606 {
2607 	return __vm_insert_mixed(vma, addr, pfn, false);
2608 }
2609 EXPORT_SYMBOL(vmf_insert_mixed);
2610 
2611 /*
2612  *  If the insertion of PTE failed because someone else already added a
2613  *  different entry in the mean time, we treat that as success as we assume
2614  *  the same entry was actually inserted.
2615  */
2616 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2617 		unsigned long addr, pfn_t pfn)
2618 {
2619 	return __vm_insert_mixed(vma, addr, pfn, true);
2620 }
2621 
2622 /*
2623  * maps a range of physical memory into the requested pages. the old
2624  * mappings are removed. any references to nonexistent pages results
2625  * in null mappings (currently treated as "copy-on-access")
2626  */
2627 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2628 			unsigned long addr, unsigned long end,
2629 			unsigned long pfn, pgprot_t prot)
2630 {
2631 	pte_t *pte, *mapped_pte;
2632 	spinlock_t *ptl;
2633 	int err = 0;
2634 
2635 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2636 	if (!pte)
2637 		return -ENOMEM;
2638 	arch_enter_lazy_mmu_mode();
2639 	do {
2640 		BUG_ON(!pte_none(ptep_get(pte)));
2641 		if (!pfn_modify_allowed(pfn, prot)) {
2642 			err = -EACCES;
2643 			break;
2644 		}
2645 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2646 		pfn++;
2647 	} while (pte++, addr += PAGE_SIZE, addr != end);
2648 	arch_leave_lazy_mmu_mode();
2649 	pte_unmap_unlock(mapped_pte, ptl);
2650 	return err;
2651 }
2652 
2653 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2654 			unsigned long addr, unsigned long end,
2655 			unsigned long pfn, pgprot_t prot)
2656 {
2657 	pmd_t *pmd;
2658 	unsigned long next;
2659 	int err;
2660 
2661 	pfn -= addr >> PAGE_SHIFT;
2662 	pmd = pmd_alloc(mm, pud, addr);
2663 	if (!pmd)
2664 		return -ENOMEM;
2665 	VM_BUG_ON(pmd_trans_huge(*pmd));
2666 	do {
2667 		next = pmd_addr_end(addr, end);
2668 		err = remap_pte_range(mm, pmd, addr, next,
2669 				pfn + (addr >> PAGE_SHIFT), prot);
2670 		if (err)
2671 			return err;
2672 	} while (pmd++, addr = next, addr != end);
2673 	return 0;
2674 }
2675 
2676 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2677 			unsigned long addr, unsigned long end,
2678 			unsigned long pfn, pgprot_t prot)
2679 {
2680 	pud_t *pud;
2681 	unsigned long next;
2682 	int err;
2683 
2684 	pfn -= addr >> PAGE_SHIFT;
2685 	pud = pud_alloc(mm, p4d, addr);
2686 	if (!pud)
2687 		return -ENOMEM;
2688 	do {
2689 		next = pud_addr_end(addr, end);
2690 		err = remap_pmd_range(mm, pud, addr, next,
2691 				pfn + (addr >> PAGE_SHIFT), prot);
2692 		if (err)
2693 			return err;
2694 	} while (pud++, addr = next, addr != end);
2695 	return 0;
2696 }
2697 
2698 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2699 			unsigned long addr, unsigned long end,
2700 			unsigned long pfn, pgprot_t prot)
2701 {
2702 	p4d_t *p4d;
2703 	unsigned long next;
2704 	int err;
2705 
2706 	pfn -= addr >> PAGE_SHIFT;
2707 	p4d = p4d_alloc(mm, pgd, addr);
2708 	if (!p4d)
2709 		return -ENOMEM;
2710 	do {
2711 		next = p4d_addr_end(addr, end);
2712 		err = remap_pud_range(mm, p4d, addr, next,
2713 				pfn + (addr >> PAGE_SHIFT), prot);
2714 		if (err)
2715 			return err;
2716 	} while (p4d++, addr = next, addr != end);
2717 	return 0;
2718 }
2719 
2720 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2721 		unsigned long pfn, unsigned long size, pgprot_t prot)
2722 {
2723 	pgd_t *pgd;
2724 	unsigned long next;
2725 	unsigned long end = addr + PAGE_ALIGN(size);
2726 	struct mm_struct *mm = vma->vm_mm;
2727 	int err;
2728 
2729 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2730 		return -EINVAL;
2731 
2732 	/*
2733 	 * Physically remapped pages are special. Tell the
2734 	 * rest of the world about it:
2735 	 *   VM_IO tells people not to look at these pages
2736 	 *	(accesses can have side effects).
2737 	 *   VM_PFNMAP tells the core MM that the base pages are just
2738 	 *	raw PFN mappings, and do not have a "struct page" associated
2739 	 *	with them.
2740 	 *   VM_DONTEXPAND
2741 	 *      Disable vma merging and expanding with mremap().
2742 	 *   VM_DONTDUMP
2743 	 *      Omit vma from core dump, even when VM_IO turned off.
2744 	 *
2745 	 * There's a horrible special case to handle copy-on-write
2746 	 * behaviour that some programs depend on. We mark the "original"
2747 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2748 	 * See vm_normal_page() for details.
2749 	 */
2750 	if (is_cow_mapping(vma->vm_flags)) {
2751 		if (addr != vma->vm_start || end != vma->vm_end)
2752 			return -EINVAL;
2753 		vma->vm_pgoff = pfn;
2754 	}
2755 
2756 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2757 
2758 	BUG_ON(addr >= end);
2759 	pfn -= addr >> PAGE_SHIFT;
2760 	pgd = pgd_offset(mm, addr);
2761 	flush_cache_range(vma, addr, end);
2762 	do {
2763 		next = pgd_addr_end(addr, end);
2764 		err = remap_p4d_range(mm, pgd, addr, next,
2765 				pfn + (addr >> PAGE_SHIFT), prot);
2766 		if (err)
2767 			return err;
2768 	} while (pgd++, addr = next, addr != end);
2769 
2770 	return 0;
2771 }
2772 
2773 /*
2774  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2775  * must have pre-validated the caching bits of the pgprot_t.
2776  */
2777 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2778 		unsigned long pfn, unsigned long size, pgprot_t prot)
2779 {
2780 	int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2781 
2782 	if (!error)
2783 		return 0;
2784 
2785 	/*
2786 	 * A partial pfn range mapping is dangerous: it does not
2787 	 * maintain page reference counts, and callers may free
2788 	 * pages due to the error. So zap it early.
2789 	 */
2790 	zap_page_range_single(vma, addr, size, NULL);
2791 	return error;
2792 }
2793 
2794 /**
2795  * remap_pfn_range - remap kernel memory to userspace
2796  * @vma: user vma to map to
2797  * @addr: target page aligned user address to start at
2798  * @pfn: page frame number of kernel physical memory address
2799  * @size: size of mapping area
2800  * @prot: page protection flags for this mapping
2801  *
2802  * Note: this is only safe if the mm semaphore is held when called.
2803  *
2804  * Return: %0 on success, negative error code otherwise.
2805  */
2806 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2807 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2808 {
2809 	int err;
2810 
2811 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2812 	if (err)
2813 		return -EINVAL;
2814 
2815 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2816 	if (err)
2817 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2818 	return err;
2819 }
2820 EXPORT_SYMBOL(remap_pfn_range);
2821 
2822 /**
2823  * vm_iomap_memory - remap memory to userspace
2824  * @vma: user vma to map to
2825  * @start: start of the physical memory to be mapped
2826  * @len: size of area
2827  *
2828  * This is a simplified io_remap_pfn_range() for common driver use. The
2829  * driver just needs to give us the physical memory range to be mapped,
2830  * we'll figure out the rest from the vma information.
2831  *
2832  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2833  * whatever write-combining details or similar.
2834  *
2835  * Return: %0 on success, negative error code otherwise.
2836  */
2837 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2838 {
2839 	unsigned long vm_len, pfn, pages;
2840 
2841 	/* Check that the physical memory area passed in looks valid */
2842 	if (start + len < start)
2843 		return -EINVAL;
2844 	/*
2845 	 * You *really* shouldn't map things that aren't page-aligned,
2846 	 * but we've historically allowed it because IO memory might
2847 	 * just have smaller alignment.
2848 	 */
2849 	len += start & ~PAGE_MASK;
2850 	pfn = start >> PAGE_SHIFT;
2851 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2852 	if (pfn + pages < pfn)
2853 		return -EINVAL;
2854 
2855 	/* We start the mapping 'vm_pgoff' pages into the area */
2856 	if (vma->vm_pgoff > pages)
2857 		return -EINVAL;
2858 	pfn += vma->vm_pgoff;
2859 	pages -= vma->vm_pgoff;
2860 
2861 	/* Can we fit all of the mapping? */
2862 	vm_len = vma->vm_end - vma->vm_start;
2863 	if (vm_len >> PAGE_SHIFT > pages)
2864 		return -EINVAL;
2865 
2866 	/* Ok, let it rip */
2867 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2868 }
2869 EXPORT_SYMBOL(vm_iomap_memory);
2870 
2871 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2872 				     unsigned long addr, unsigned long end,
2873 				     pte_fn_t fn, void *data, bool create,
2874 				     pgtbl_mod_mask *mask)
2875 {
2876 	pte_t *pte, *mapped_pte;
2877 	int err = 0;
2878 	spinlock_t *ptl;
2879 
2880 	if (create) {
2881 		mapped_pte = pte = (mm == &init_mm) ?
2882 			pte_alloc_kernel_track(pmd, addr, mask) :
2883 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2884 		if (!pte)
2885 			return -ENOMEM;
2886 	} else {
2887 		mapped_pte = pte = (mm == &init_mm) ?
2888 			pte_offset_kernel(pmd, addr) :
2889 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2890 		if (!pte)
2891 			return -EINVAL;
2892 	}
2893 
2894 	arch_enter_lazy_mmu_mode();
2895 
2896 	if (fn) {
2897 		do {
2898 			if (create || !pte_none(ptep_get(pte))) {
2899 				err = fn(pte++, addr, data);
2900 				if (err)
2901 					break;
2902 			}
2903 		} while (addr += PAGE_SIZE, addr != end);
2904 	}
2905 	*mask |= PGTBL_PTE_MODIFIED;
2906 
2907 	arch_leave_lazy_mmu_mode();
2908 
2909 	if (mm != &init_mm)
2910 		pte_unmap_unlock(mapped_pte, ptl);
2911 	return err;
2912 }
2913 
2914 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2915 				     unsigned long addr, unsigned long end,
2916 				     pte_fn_t fn, void *data, bool create,
2917 				     pgtbl_mod_mask *mask)
2918 {
2919 	pmd_t *pmd;
2920 	unsigned long next;
2921 	int err = 0;
2922 
2923 	BUG_ON(pud_leaf(*pud));
2924 
2925 	if (create) {
2926 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2927 		if (!pmd)
2928 			return -ENOMEM;
2929 	} else {
2930 		pmd = pmd_offset(pud, addr);
2931 	}
2932 	do {
2933 		next = pmd_addr_end(addr, end);
2934 		if (pmd_none(*pmd) && !create)
2935 			continue;
2936 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2937 			return -EINVAL;
2938 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2939 			if (!create)
2940 				continue;
2941 			pmd_clear_bad(pmd);
2942 		}
2943 		err = apply_to_pte_range(mm, pmd, addr, next,
2944 					 fn, data, create, mask);
2945 		if (err)
2946 			break;
2947 	} while (pmd++, addr = next, addr != end);
2948 
2949 	return err;
2950 }
2951 
2952 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2953 				     unsigned long addr, unsigned long end,
2954 				     pte_fn_t fn, void *data, bool create,
2955 				     pgtbl_mod_mask *mask)
2956 {
2957 	pud_t *pud;
2958 	unsigned long next;
2959 	int err = 0;
2960 
2961 	if (create) {
2962 		pud = pud_alloc_track(mm, p4d, addr, mask);
2963 		if (!pud)
2964 			return -ENOMEM;
2965 	} else {
2966 		pud = pud_offset(p4d, addr);
2967 	}
2968 	do {
2969 		next = pud_addr_end(addr, end);
2970 		if (pud_none(*pud) && !create)
2971 			continue;
2972 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2973 			return -EINVAL;
2974 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2975 			if (!create)
2976 				continue;
2977 			pud_clear_bad(pud);
2978 		}
2979 		err = apply_to_pmd_range(mm, pud, addr, next,
2980 					 fn, data, create, mask);
2981 		if (err)
2982 			break;
2983 	} while (pud++, addr = next, addr != end);
2984 
2985 	return err;
2986 }
2987 
2988 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2989 				     unsigned long addr, unsigned long end,
2990 				     pte_fn_t fn, void *data, bool create,
2991 				     pgtbl_mod_mask *mask)
2992 {
2993 	p4d_t *p4d;
2994 	unsigned long next;
2995 	int err = 0;
2996 
2997 	if (create) {
2998 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2999 		if (!p4d)
3000 			return -ENOMEM;
3001 	} else {
3002 		p4d = p4d_offset(pgd, addr);
3003 	}
3004 	do {
3005 		next = p4d_addr_end(addr, end);
3006 		if (p4d_none(*p4d) && !create)
3007 			continue;
3008 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
3009 			return -EINVAL;
3010 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
3011 			if (!create)
3012 				continue;
3013 			p4d_clear_bad(p4d);
3014 		}
3015 		err = apply_to_pud_range(mm, p4d, addr, next,
3016 					 fn, data, create, mask);
3017 		if (err)
3018 			break;
3019 	} while (p4d++, addr = next, addr != end);
3020 
3021 	return err;
3022 }
3023 
3024 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3025 				 unsigned long size, pte_fn_t fn,
3026 				 void *data, bool create)
3027 {
3028 	pgd_t *pgd;
3029 	unsigned long start = addr, next;
3030 	unsigned long end = addr + size;
3031 	pgtbl_mod_mask mask = 0;
3032 	int err = 0;
3033 
3034 	if (WARN_ON(addr >= end))
3035 		return -EINVAL;
3036 
3037 	pgd = pgd_offset(mm, addr);
3038 	do {
3039 		next = pgd_addr_end(addr, end);
3040 		if (pgd_none(*pgd) && !create)
3041 			continue;
3042 		if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
3043 			err = -EINVAL;
3044 			break;
3045 		}
3046 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
3047 			if (!create)
3048 				continue;
3049 			pgd_clear_bad(pgd);
3050 		}
3051 		err = apply_to_p4d_range(mm, pgd, addr, next,
3052 					 fn, data, create, &mask);
3053 		if (err)
3054 			break;
3055 	} while (pgd++, addr = next, addr != end);
3056 
3057 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
3058 		arch_sync_kernel_mappings(start, start + size);
3059 
3060 	return err;
3061 }
3062 
3063 /*
3064  * Scan a region of virtual memory, filling in page tables as necessary
3065  * and calling a provided function on each leaf page table.
3066  */
3067 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3068 			unsigned long size, pte_fn_t fn, void *data)
3069 {
3070 	return __apply_to_page_range(mm, addr, size, fn, data, true);
3071 }
3072 EXPORT_SYMBOL_GPL(apply_to_page_range);
3073 
3074 /*
3075  * Scan a region of virtual memory, calling a provided function on
3076  * each leaf page table where it exists.
3077  *
3078  * Unlike apply_to_page_range, this does _not_ fill in page tables
3079  * where they are absent.
3080  */
3081 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3082 				 unsigned long size, pte_fn_t fn, void *data)
3083 {
3084 	return __apply_to_page_range(mm, addr, size, fn, data, false);
3085 }
3086 
3087 /*
3088  * handle_pte_fault chooses page fault handler according to an entry which was
3089  * read non-atomically.  Before making any commitment, on those architectures
3090  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3091  * parts, do_swap_page must check under lock before unmapping the pte and
3092  * proceeding (but do_wp_page is only called after already making such a check;
3093  * and do_anonymous_page can safely check later on).
3094  */
3095 static inline int pte_unmap_same(struct vm_fault *vmf)
3096 {
3097 	int same = 1;
3098 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3099 	if (sizeof(pte_t) > sizeof(unsigned long)) {
3100 		spin_lock(vmf->ptl);
3101 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3102 		spin_unlock(vmf->ptl);
3103 	}
3104 #endif
3105 	pte_unmap(vmf->pte);
3106 	vmf->pte = NULL;
3107 	return same;
3108 }
3109 
3110 /*
3111  * Return:
3112  *	0:		copied succeeded
3113  *	-EHWPOISON:	copy failed due to hwpoison in source page
3114  *	-EAGAIN:	copied failed (some other reason)
3115  */
3116 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3117 				      struct vm_fault *vmf)
3118 {
3119 	int ret;
3120 	void *kaddr;
3121 	void __user *uaddr;
3122 	struct vm_area_struct *vma = vmf->vma;
3123 	struct mm_struct *mm = vma->vm_mm;
3124 	unsigned long addr = vmf->address;
3125 
3126 	if (likely(src)) {
3127 		if (copy_mc_user_highpage(dst, src, addr, vma))
3128 			return -EHWPOISON;
3129 		return 0;
3130 	}
3131 
3132 	/*
3133 	 * If the source page was a PFN mapping, we don't have
3134 	 * a "struct page" for it. We do a best-effort copy by
3135 	 * just copying from the original user address. If that
3136 	 * fails, we just zero-fill it. Live with it.
3137 	 */
3138 	kaddr = kmap_local_page(dst);
3139 	pagefault_disable();
3140 	uaddr = (void __user *)(addr & PAGE_MASK);
3141 
3142 	/*
3143 	 * On architectures with software "accessed" bits, we would
3144 	 * take a double page fault, so mark it accessed here.
3145 	 */
3146 	vmf->pte = NULL;
3147 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3148 		pte_t entry;
3149 
3150 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3151 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3152 			/*
3153 			 * Other thread has already handled the fault
3154 			 * and update local tlb only
3155 			 */
3156 			if (vmf->pte)
3157 				update_mmu_tlb(vma, addr, vmf->pte);
3158 			ret = -EAGAIN;
3159 			goto pte_unlock;
3160 		}
3161 
3162 		entry = pte_mkyoung(vmf->orig_pte);
3163 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3164 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3165 	}
3166 
3167 	/*
3168 	 * This really shouldn't fail, because the page is there
3169 	 * in the page tables. But it might just be unreadable,
3170 	 * in which case we just give up and fill the result with
3171 	 * zeroes.
3172 	 */
3173 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3174 		if (vmf->pte)
3175 			goto warn;
3176 
3177 		/* Re-validate under PTL if the page is still mapped */
3178 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3179 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3180 			/* The PTE changed under us, update local tlb */
3181 			if (vmf->pte)
3182 				update_mmu_tlb(vma, addr, vmf->pte);
3183 			ret = -EAGAIN;
3184 			goto pte_unlock;
3185 		}
3186 
3187 		/*
3188 		 * The same page can be mapped back since last copy attempt.
3189 		 * Try to copy again under PTL.
3190 		 */
3191 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3192 			/*
3193 			 * Give a warn in case there can be some obscure
3194 			 * use-case
3195 			 */
3196 warn:
3197 			WARN_ON_ONCE(1);
3198 			clear_page(kaddr);
3199 		}
3200 	}
3201 
3202 	ret = 0;
3203 
3204 pte_unlock:
3205 	if (vmf->pte)
3206 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3207 	pagefault_enable();
3208 	kunmap_local(kaddr);
3209 	flush_dcache_page(dst);
3210 
3211 	return ret;
3212 }
3213 
3214 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3215 {
3216 	struct file *vm_file = vma->vm_file;
3217 
3218 	if (vm_file)
3219 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3220 
3221 	/*
3222 	 * Special mappings (e.g. VDSO) do not have any file so fake
3223 	 * a default GFP_KERNEL for them.
3224 	 */
3225 	return GFP_KERNEL;
3226 }
3227 
3228 /*
3229  * Notify the address space that the page is about to become writable so that
3230  * it can prohibit this or wait for the page to get into an appropriate state.
3231  *
3232  * We do this without the lock held, so that it can sleep if it needs to.
3233  */
3234 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3235 {
3236 	vm_fault_t ret;
3237 	unsigned int old_flags = vmf->flags;
3238 
3239 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3240 
3241 	if (vmf->vma->vm_file &&
3242 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3243 		return VM_FAULT_SIGBUS;
3244 
3245 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3246 	/* Restore original flags so that caller is not surprised */
3247 	vmf->flags = old_flags;
3248 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3249 		return ret;
3250 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3251 		folio_lock(folio);
3252 		if (!folio->mapping) {
3253 			folio_unlock(folio);
3254 			return 0; /* retry */
3255 		}
3256 		ret |= VM_FAULT_LOCKED;
3257 	} else
3258 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3259 	return ret;
3260 }
3261 
3262 /*
3263  * Handle dirtying of a page in shared file mapping on a write fault.
3264  *
3265  * The function expects the page to be locked and unlocks it.
3266  */
3267 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3268 {
3269 	struct vm_area_struct *vma = vmf->vma;
3270 	struct address_space *mapping;
3271 	struct folio *folio = page_folio(vmf->page);
3272 	bool dirtied;
3273 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3274 
3275 	dirtied = folio_mark_dirty(folio);
3276 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3277 	/*
3278 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3279 	 * by truncate after folio_unlock().   The address_space itself remains
3280 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3281 	 * release semantics to prevent the compiler from undoing this copying.
3282 	 */
3283 	mapping = folio_raw_mapping(folio);
3284 	folio_unlock(folio);
3285 
3286 	if (!page_mkwrite)
3287 		file_update_time(vma->vm_file);
3288 
3289 	/*
3290 	 * Throttle page dirtying rate down to writeback speed.
3291 	 *
3292 	 * mapping may be NULL here because some device drivers do not
3293 	 * set page.mapping but still dirty their pages
3294 	 *
3295 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3296 	 * is pinning the mapping, as per above.
3297 	 */
3298 	if ((dirtied || page_mkwrite) && mapping) {
3299 		struct file *fpin;
3300 
3301 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3302 		balance_dirty_pages_ratelimited(mapping);
3303 		if (fpin) {
3304 			fput(fpin);
3305 			return VM_FAULT_COMPLETED;
3306 		}
3307 	}
3308 
3309 	return 0;
3310 }
3311 
3312 /*
3313  * Handle write page faults for pages that can be reused in the current vma
3314  *
3315  * This can happen either due to the mapping being with the VM_SHARED flag,
3316  * or due to us being the last reference standing to the page. In either
3317  * case, all we need to do here is to mark the page as writable and update
3318  * any related book-keeping.
3319  */
3320 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3321 	__releases(vmf->ptl)
3322 {
3323 	struct vm_area_struct *vma = vmf->vma;
3324 	pte_t entry;
3325 
3326 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3327 	VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3328 
3329 	if (folio) {
3330 		VM_BUG_ON(folio_test_anon(folio) &&
3331 			  !PageAnonExclusive(vmf->page));
3332 		/*
3333 		 * Clear the folio's cpupid information as the existing
3334 		 * information potentially belongs to a now completely
3335 		 * unrelated process.
3336 		 */
3337 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3338 	}
3339 
3340 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3341 	entry = pte_mkyoung(vmf->orig_pte);
3342 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3343 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3344 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3345 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3346 	count_vm_event(PGREUSE);
3347 }
3348 
3349 /*
3350  * We could add a bitflag somewhere, but for now, we know that all
3351  * vm_ops that have a ->map_pages have been audited and don't need
3352  * the mmap_lock to be held.
3353  */
3354 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3355 {
3356 	struct vm_area_struct *vma = vmf->vma;
3357 
3358 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3359 		return 0;
3360 	vma_end_read(vma);
3361 	return VM_FAULT_RETRY;
3362 }
3363 
3364 /**
3365  * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3366  * @vmf: The vm_fault descriptor passed from the fault handler.
3367  *
3368  * When preparing to insert an anonymous page into a VMA from a
3369  * fault handler, call this function rather than anon_vma_prepare().
3370  * If this vma does not already have an associated anon_vma and we are
3371  * only protected by the per-VMA lock, the caller must retry with the
3372  * mmap_lock held.  __anon_vma_prepare() will look at adjacent VMAs to
3373  * determine if this VMA can share its anon_vma, and that's not safe to
3374  * do with only the per-VMA lock held for this VMA.
3375  *
3376  * Return: 0 if fault handling can proceed.  Any other value should be
3377  * returned to the caller.
3378  */
3379 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3380 {
3381 	struct vm_area_struct *vma = vmf->vma;
3382 	vm_fault_t ret = 0;
3383 
3384 	if (likely(vma->anon_vma))
3385 		return 0;
3386 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3387 		if (!mmap_read_trylock(vma->vm_mm))
3388 			return VM_FAULT_RETRY;
3389 	}
3390 	if (__anon_vma_prepare(vma))
3391 		ret = VM_FAULT_OOM;
3392 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3393 		mmap_read_unlock(vma->vm_mm);
3394 	return ret;
3395 }
3396 
3397 /*
3398  * Handle the case of a page which we actually need to copy to a new page,
3399  * either due to COW or unsharing.
3400  *
3401  * Called with mmap_lock locked and the old page referenced, but
3402  * without the ptl held.
3403  *
3404  * High level logic flow:
3405  *
3406  * - Allocate a page, copy the content of the old page to the new one.
3407  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3408  * - Take the PTL. If the pte changed, bail out and release the allocated page
3409  * - If the pte is still the way we remember it, update the page table and all
3410  *   relevant references. This includes dropping the reference the page-table
3411  *   held to the old page, as well as updating the rmap.
3412  * - In any case, unlock the PTL and drop the reference we took to the old page.
3413  */
3414 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3415 {
3416 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3417 	struct vm_area_struct *vma = vmf->vma;
3418 	struct mm_struct *mm = vma->vm_mm;
3419 	struct folio *old_folio = NULL;
3420 	struct folio *new_folio = NULL;
3421 	pte_t entry;
3422 	int page_copied = 0;
3423 	struct mmu_notifier_range range;
3424 	vm_fault_t ret;
3425 	bool pfn_is_zero;
3426 
3427 	delayacct_wpcopy_start();
3428 
3429 	if (vmf->page)
3430 		old_folio = page_folio(vmf->page);
3431 	ret = vmf_anon_prepare(vmf);
3432 	if (unlikely(ret))
3433 		goto out;
3434 
3435 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3436 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3437 	if (!new_folio)
3438 		goto oom;
3439 
3440 	if (!pfn_is_zero) {
3441 		int err;
3442 
3443 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3444 		if (err) {
3445 			/*
3446 			 * COW failed, if the fault was solved by other,
3447 			 * it's fine. If not, userspace would re-fault on
3448 			 * the same address and we will handle the fault
3449 			 * from the second attempt.
3450 			 * The -EHWPOISON case will not be retried.
3451 			 */
3452 			folio_put(new_folio);
3453 			if (old_folio)
3454 				folio_put(old_folio);
3455 
3456 			delayacct_wpcopy_end();
3457 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3458 		}
3459 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3460 	}
3461 
3462 	__folio_mark_uptodate(new_folio);
3463 
3464 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3465 				vmf->address & PAGE_MASK,
3466 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3467 	mmu_notifier_invalidate_range_start(&range);
3468 
3469 	/*
3470 	 * Re-check the pte - we dropped the lock
3471 	 */
3472 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3473 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3474 		if (old_folio) {
3475 			if (!folio_test_anon(old_folio)) {
3476 				dec_mm_counter(mm, mm_counter_file(old_folio));
3477 				inc_mm_counter(mm, MM_ANONPAGES);
3478 			}
3479 		} else {
3480 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3481 			inc_mm_counter(mm, MM_ANONPAGES);
3482 		}
3483 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3484 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3485 		entry = pte_sw_mkyoung(entry);
3486 		if (unlikely(unshare)) {
3487 			if (pte_soft_dirty(vmf->orig_pte))
3488 				entry = pte_mksoft_dirty(entry);
3489 			if (pte_uffd_wp(vmf->orig_pte))
3490 				entry = pte_mkuffd_wp(entry);
3491 		} else {
3492 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3493 		}
3494 
3495 		/*
3496 		 * Clear the pte entry and flush it first, before updating the
3497 		 * pte with the new entry, to keep TLBs on different CPUs in
3498 		 * sync. This code used to set the new PTE then flush TLBs, but
3499 		 * that left a window where the new PTE could be loaded into
3500 		 * some TLBs while the old PTE remains in others.
3501 		 */
3502 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3503 		folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3504 		folio_add_lru_vma(new_folio, vma);
3505 		BUG_ON(unshare && pte_write(entry));
3506 		set_pte_at(mm, vmf->address, vmf->pte, entry);
3507 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3508 		if (old_folio) {
3509 			/*
3510 			 * Only after switching the pte to the new page may
3511 			 * we remove the mapcount here. Otherwise another
3512 			 * process may come and find the rmap count decremented
3513 			 * before the pte is switched to the new page, and
3514 			 * "reuse" the old page writing into it while our pte
3515 			 * here still points into it and can be read by other
3516 			 * threads.
3517 			 *
3518 			 * The critical issue is to order this
3519 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3520 			 * above. Those stores are ordered by (if nothing else,)
3521 			 * the barrier present in the atomic_add_negative
3522 			 * in folio_remove_rmap_pte();
3523 			 *
3524 			 * Then the TLB flush in ptep_clear_flush ensures that
3525 			 * no process can access the old page before the
3526 			 * decremented mapcount is visible. And the old page
3527 			 * cannot be reused until after the decremented
3528 			 * mapcount is visible. So transitively, TLBs to
3529 			 * old page will be flushed before it can be reused.
3530 			 */
3531 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3532 		}
3533 
3534 		/* Free the old page.. */
3535 		new_folio = old_folio;
3536 		page_copied = 1;
3537 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3538 	} else if (vmf->pte) {
3539 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3540 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3541 	}
3542 
3543 	mmu_notifier_invalidate_range_end(&range);
3544 
3545 	if (new_folio)
3546 		folio_put(new_folio);
3547 	if (old_folio) {
3548 		if (page_copied)
3549 			free_swap_cache(old_folio);
3550 		folio_put(old_folio);
3551 	}
3552 
3553 	delayacct_wpcopy_end();
3554 	return 0;
3555 oom:
3556 	ret = VM_FAULT_OOM;
3557 out:
3558 	if (old_folio)
3559 		folio_put(old_folio);
3560 
3561 	delayacct_wpcopy_end();
3562 	return ret;
3563 }
3564 
3565 /**
3566  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3567  *			  writeable once the page is prepared
3568  *
3569  * @vmf: structure describing the fault
3570  * @folio: the folio of vmf->page
3571  *
3572  * This function handles all that is needed to finish a write page fault in a
3573  * shared mapping due to PTE being read-only once the mapped page is prepared.
3574  * It handles locking of PTE and modifying it.
3575  *
3576  * The function expects the page to be locked or other protection against
3577  * concurrent faults / writeback (such as DAX radix tree locks).
3578  *
3579  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3580  * we acquired PTE lock.
3581  */
3582 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3583 {
3584 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3585 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3586 				       &vmf->ptl);
3587 	if (!vmf->pte)
3588 		return VM_FAULT_NOPAGE;
3589 	/*
3590 	 * We might have raced with another page fault while we released the
3591 	 * pte_offset_map_lock.
3592 	 */
3593 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3594 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3595 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3596 		return VM_FAULT_NOPAGE;
3597 	}
3598 	wp_page_reuse(vmf, folio);
3599 	return 0;
3600 }
3601 
3602 /*
3603  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3604  * mapping
3605  */
3606 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3607 {
3608 	struct vm_area_struct *vma = vmf->vma;
3609 
3610 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3611 		vm_fault_t ret;
3612 
3613 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3614 		ret = vmf_can_call_fault(vmf);
3615 		if (ret)
3616 			return ret;
3617 
3618 		vmf->flags |= FAULT_FLAG_MKWRITE;
3619 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3620 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3621 			return ret;
3622 		return finish_mkwrite_fault(vmf, NULL);
3623 	}
3624 	wp_page_reuse(vmf, NULL);
3625 	return 0;
3626 }
3627 
3628 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3629 	__releases(vmf->ptl)
3630 {
3631 	struct vm_area_struct *vma = vmf->vma;
3632 	vm_fault_t ret = 0;
3633 
3634 	folio_get(folio);
3635 
3636 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3637 		vm_fault_t tmp;
3638 
3639 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3640 		tmp = vmf_can_call_fault(vmf);
3641 		if (tmp) {
3642 			folio_put(folio);
3643 			return tmp;
3644 		}
3645 
3646 		tmp = do_page_mkwrite(vmf, folio);
3647 		if (unlikely(!tmp || (tmp &
3648 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3649 			folio_put(folio);
3650 			return tmp;
3651 		}
3652 		tmp = finish_mkwrite_fault(vmf, folio);
3653 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3654 			folio_unlock(folio);
3655 			folio_put(folio);
3656 			return tmp;
3657 		}
3658 	} else {
3659 		wp_page_reuse(vmf, folio);
3660 		folio_lock(folio);
3661 	}
3662 	ret |= fault_dirty_shared_page(vmf);
3663 	folio_put(folio);
3664 
3665 	return ret;
3666 }
3667 
3668 static bool wp_can_reuse_anon_folio(struct folio *folio,
3669 				    struct vm_area_struct *vma)
3670 {
3671 	/*
3672 	 * We could currently only reuse a subpage of a large folio if no
3673 	 * other subpages of the large folios are still mapped. However,
3674 	 * let's just consistently not reuse subpages even if we could
3675 	 * reuse in that scenario, and give back a large folio a bit
3676 	 * sooner.
3677 	 */
3678 	if (folio_test_large(folio))
3679 		return false;
3680 
3681 	/*
3682 	 * We have to verify under folio lock: these early checks are
3683 	 * just an optimization to avoid locking the folio and freeing
3684 	 * the swapcache if there is little hope that we can reuse.
3685 	 *
3686 	 * KSM doesn't necessarily raise the folio refcount.
3687 	 */
3688 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3689 		return false;
3690 	if (!folio_test_lru(folio))
3691 		/*
3692 		 * We cannot easily detect+handle references from
3693 		 * remote LRU caches or references to LRU folios.
3694 		 */
3695 		lru_add_drain();
3696 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3697 		return false;
3698 	if (!folio_trylock(folio))
3699 		return false;
3700 	if (folio_test_swapcache(folio))
3701 		folio_free_swap(folio);
3702 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3703 		folio_unlock(folio);
3704 		return false;
3705 	}
3706 	/*
3707 	 * Ok, we've got the only folio reference from our mapping
3708 	 * and the folio is locked, it's dark out, and we're wearing
3709 	 * sunglasses. Hit it.
3710 	 */
3711 	folio_move_anon_rmap(folio, vma);
3712 	folio_unlock(folio);
3713 	return true;
3714 }
3715 
3716 /*
3717  * This routine handles present pages, when
3718  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3719  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3720  *   (FAULT_FLAG_UNSHARE)
3721  *
3722  * It is done by copying the page to a new address and decrementing the
3723  * shared-page counter for the old page.
3724  *
3725  * Note that this routine assumes that the protection checks have been
3726  * done by the caller (the low-level page fault routine in most cases).
3727  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3728  * done any necessary COW.
3729  *
3730  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3731  * though the page will change only once the write actually happens. This
3732  * avoids a few races, and potentially makes it more efficient.
3733  *
3734  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3735  * but allow concurrent faults), with pte both mapped and locked.
3736  * We return with mmap_lock still held, but pte unmapped and unlocked.
3737  */
3738 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3739 	__releases(vmf->ptl)
3740 {
3741 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3742 	struct vm_area_struct *vma = vmf->vma;
3743 	struct folio *folio = NULL;
3744 	pte_t pte;
3745 
3746 	if (likely(!unshare)) {
3747 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3748 			if (!userfaultfd_wp_async(vma)) {
3749 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3750 				return handle_userfault(vmf, VM_UFFD_WP);
3751 			}
3752 
3753 			/*
3754 			 * Nothing needed (cache flush, TLB invalidations,
3755 			 * etc.) because we're only removing the uffd-wp bit,
3756 			 * which is completely invisible to the user.
3757 			 */
3758 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3759 
3760 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3761 			/*
3762 			 * Update this to be prepared for following up CoW
3763 			 * handling
3764 			 */
3765 			vmf->orig_pte = pte;
3766 		}
3767 
3768 		/*
3769 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3770 		 * is flushed in this case before copying.
3771 		 */
3772 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3773 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3774 			flush_tlb_page(vmf->vma, vmf->address);
3775 	}
3776 
3777 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3778 
3779 	if (vmf->page)
3780 		folio = page_folio(vmf->page);
3781 
3782 	/*
3783 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3784 	 * FAULT_FLAG_WRITE set at this point.
3785 	 */
3786 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3787 		/*
3788 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3789 		 * VM_PFNMAP VMA.
3790 		 *
3791 		 * We should not cow pages in a shared writeable mapping.
3792 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3793 		 */
3794 		if (!vmf->page)
3795 			return wp_pfn_shared(vmf);
3796 		return wp_page_shared(vmf, folio);
3797 	}
3798 
3799 	/*
3800 	 * Private mapping: create an exclusive anonymous page copy if reuse
3801 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3802 	 *
3803 	 * If we encounter a page that is marked exclusive, we must reuse
3804 	 * the page without further checks.
3805 	 */
3806 	if (folio && folio_test_anon(folio) &&
3807 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3808 		if (!PageAnonExclusive(vmf->page))
3809 			SetPageAnonExclusive(vmf->page);
3810 		if (unlikely(unshare)) {
3811 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3812 			return 0;
3813 		}
3814 		wp_page_reuse(vmf, folio);
3815 		return 0;
3816 	}
3817 	/*
3818 	 * Ok, we need to copy. Oh, well..
3819 	 */
3820 	if (folio)
3821 		folio_get(folio);
3822 
3823 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3824 #ifdef CONFIG_KSM
3825 	if (folio && folio_test_ksm(folio))
3826 		count_vm_event(COW_KSM);
3827 #endif
3828 	return wp_page_copy(vmf);
3829 }
3830 
3831 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3832 		unsigned long start_addr, unsigned long end_addr,
3833 		struct zap_details *details)
3834 {
3835 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3836 }
3837 
3838 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3839 					    pgoff_t first_index,
3840 					    pgoff_t last_index,
3841 					    struct zap_details *details)
3842 {
3843 	struct vm_area_struct *vma;
3844 	pgoff_t vba, vea, zba, zea;
3845 
3846 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3847 		vba = vma->vm_pgoff;
3848 		vea = vba + vma_pages(vma) - 1;
3849 		zba = max(first_index, vba);
3850 		zea = min(last_index, vea);
3851 
3852 		unmap_mapping_range_vma(vma,
3853 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3854 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3855 				details);
3856 	}
3857 }
3858 
3859 /**
3860  * unmap_mapping_folio() - Unmap single folio from processes.
3861  * @folio: The locked folio to be unmapped.
3862  *
3863  * Unmap this folio from any userspace process which still has it mmaped.
3864  * Typically, for efficiency, the range of nearby pages has already been
3865  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3866  * truncation or invalidation holds the lock on a folio, it may find that
3867  * the page has been remapped again: and then uses unmap_mapping_folio()
3868  * to unmap it finally.
3869  */
3870 void unmap_mapping_folio(struct folio *folio)
3871 {
3872 	struct address_space *mapping = folio->mapping;
3873 	struct zap_details details = { };
3874 	pgoff_t	first_index;
3875 	pgoff_t	last_index;
3876 
3877 	VM_BUG_ON(!folio_test_locked(folio));
3878 
3879 	first_index = folio->index;
3880 	last_index = folio_next_index(folio) - 1;
3881 
3882 	details.even_cows = false;
3883 	details.single_folio = folio;
3884 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3885 
3886 	i_mmap_lock_read(mapping);
3887 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3888 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3889 					 last_index, &details);
3890 	i_mmap_unlock_read(mapping);
3891 }
3892 
3893 /**
3894  * unmap_mapping_pages() - Unmap pages from processes.
3895  * @mapping: The address space containing pages to be unmapped.
3896  * @start: Index of first page to be unmapped.
3897  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3898  * @even_cows: Whether to unmap even private COWed pages.
3899  *
3900  * Unmap the pages in this address space from any userspace process which
3901  * has them mmaped.  Generally, you want to remove COWed pages as well when
3902  * a file is being truncated, but not when invalidating pages from the page
3903  * cache.
3904  */
3905 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3906 		pgoff_t nr, bool even_cows)
3907 {
3908 	struct zap_details details = { };
3909 	pgoff_t	first_index = start;
3910 	pgoff_t	last_index = start + nr - 1;
3911 
3912 	details.even_cows = even_cows;
3913 	if (last_index < first_index)
3914 		last_index = ULONG_MAX;
3915 
3916 	i_mmap_lock_read(mapping);
3917 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3918 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3919 					 last_index, &details);
3920 	i_mmap_unlock_read(mapping);
3921 }
3922 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3923 
3924 /**
3925  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3926  * address_space corresponding to the specified byte range in the underlying
3927  * file.
3928  *
3929  * @mapping: the address space containing mmaps to be unmapped.
3930  * @holebegin: byte in first page to unmap, relative to the start of
3931  * the underlying file.  This will be rounded down to a PAGE_SIZE
3932  * boundary.  Note that this is different from truncate_pagecache(), which
3933  * must keep the partial page.  In contrast, we must get rid of
3934  * partial pages.
3935  * @holelen: size of prospective hole in bytes.  This will be rounded
3936  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3937  * end of the file.
3938  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3939  * but 0 when invalidating pagecache, don't throw away private data.
3940  */
3941 void unmap_mapping_range(struct address_space *mapping,
3942 		loff_t const holebegin, loff_t const holelen, int even_cows)
3943 {
3944 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3945 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3946 
3947 	/* Check for overflow. */
3948 	if (sizeof(holelen) > sizeof(hlen)) {
3949 		long long holeend =
3950 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3951 		if (holeend & ~(long long)ULONG_MAX)
3952 			hlen = ULONG_MAX - hba + 1;
3953 	}
3954 
3955 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3956 }
3957 EXPORT_SYMBOL(unmap_mapping_range);
3958 
3959 /*
3960  * Restore a potential device exclusive pte to a working pte entry
3961  */
3962 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3963 {
3964 	struct folio *folio = page_folio(vmf->page);
3965 	struct vm_area_struct *vma = vmf->vma;
3966 	struct mmu_notifier_range range;
3967 	vm_fault_t ret;
3968 
3969 	/*
3970 	 * We need a reference to lock the folio because we don't hold
3971 	 * the PTL so a racing thread can remove the device-exclusive
3972 	 * entry and unmap it. If the folio is free the entry must
3973 	 * have been removed already. If it happens to have already
3974 	 * been re-allocated after being freed all we do is lock and
3975 	 * unlock it.
3976 	 */
3977 	if (!folio_try_get(folio))
3978 		return 0;
3979 
3980 	ret = folio_lock_or_retry(folio, vmf);
3981 	if (ret) {
3982 		folio_put(folio);
3983 		return ret;
3984 	}
3985 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3986 				vma->vm_mm, vmf->address & PAGE_MASK,
3987 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3988 	mmu_notifier_invalidate_range_start(&range);
3989 
3990 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3991 				&vmf->ptl);
3992 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3993 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3994 
3995 	if (vmf->pte)
3996 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3997 	folio_unlock(folio);
3998 	folio_put(folio);
3999 
4000 	mmu_notifier_invalidate_range_end(&range);
4001 	return 0;
4002 }
4003 
4004 static inline bool should_try_to_free_swap(struct folio *folio,
4005 					   struct vm_area_struct *vma,
4006 					   unsigned int fault_flags)
4007 {
4008 	if (!folio_test_swapcache(folio))
4009 		return false;
4010 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
4011 	    folio_test_mlocked(folio))
4012 		return true;
4013 	/*
4014 	 * If we want to map a page that's in the swapcache writable, we
4015 	 * have to detect via the refcount if we're really the exclusive
4016 	 * user. Try freeing the swapcache to get rid of the swapcache
4017 	 * reference only in case it's likely that we'll be the exlusive user.
4018 	 */
4019 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
4020 		folio_ref_count(folio) == (1 + folio_nr_pages(folio));
4021 }
4022 
4023 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
4024 {
4025 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4026 				       vmf->address, &vmf->ptl);
4027 	if (!vmf->pte)
4028 		return 0;
4029 	/*
4030 	 * Be careful so that we will only recover a special uffd-wp pte into a
4031 	 * none pte.  Otherwise it means the pte could have changed, so retry.
4032 	 *
4033 	 * This should also cover the case where e.g. the pte changed
4034 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
4035 	 * So is_pte_marker() check is not enough to safely drop the pte.
4036 	 */
4037 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
4038 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
4039 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4040 	return 0;
4041 }
4042 
4043 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
4044 {
4045 	if (vma_is_anonymous(vmf->vma))
4046 		return do_anonymous_page(vmf);
4047 	else
4048 		return do_fault(vmf);
4049 }
4050 
4051 /*
4052  * This is actually a page-missing access, but with uffd-wp special pte
4053  * installed.  It means this pte was wr-protected before being unmapped.
4054  */
4055 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
4056 {
4057 	/*
4058 	 * Just in case there're leftover special ptes even after the region
4059 	 * got unregistered - we can simply clear them.
4060 	 */
4061 	if (unlikely(!userfaultfd_wp(vmf->vma)))
4062 		return pte_marker_clear(vmf);
4063 
4064 	return do_pte_missing(vmf);
4065 }
4066 
4067 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4068 {
4069 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
4070 	unsigned long marker = pte_marker_get(entry);
4071 
4072 	/*
4073 	 * PTE markers should never be empty.  If anything weird happened,
4074 	 * the best thing to do is to kill the process along with its mm.
4075 	 */
4076 	if (WARN_ON_ONCE(!marker))
4077 		return VM_FAULT_SIGBUS;
4078 
4079 	/* Higher priority than uffd-wp when data corrupted */
4080 	if (marker & PTE_MARKER_POISONED)
4081 		return VM_FAULT_HWPOISON;
4082 
4083 	/* Hitting a guard page is always a fatal condition. */
4084 	if (marker & PTE_MARKER_GUARD)
4085 		return VM_FAULT_SIGSEGV;
4086 
4087 	if (pte_marker_entry_uffd_wp(entry))
4088 		return pte_marker_handle_uffd_wp(vmf);
4089 
4090 	/* This is an unknown pte marker */
4091 	return VM_FAULT_SIGBUS;
4092 }
4093 
4094 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4095 {
4096 	struct vm_area_struct *vma = vmf->vma;
4097 	struct folio *folio;
4098 	swp_entry_t entry;
4099 
4100 	folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4101 	if (!folio)
4102 		return NULL;
4103 
4104 	entry = pte_to_swp_entry(vmf->orig_pte);
4105 	if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4106 					   GFP_KERNEL, entry)) {
4107 		folio_put(folio);
4108 		return NULL;
4109 	}
4110 
4111 	return folio;
4112 }
4113 
4114 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4115 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
4116 {
4117 	struct swap_info_struct *si = swp_swap_info(entry);
4118 	pgoff_t offset = swp_offset(entry);
4119 	int i;
4120 
4121 	/*
4122 	 * While allocating a large folio and doing swap_read_folio, which is
4123 	 * the case the being faulted pte doesn't have swapcache. We need to
4124 	 * ensure all PTEs have no cache as well, otherwise, we might go to
4125 	 * swap devices while the content is in swapcache.
4126 	 */
4127 	for (i = 0; i < max_nr; i++) {
4128 		if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
4129 			return i;
4130 	}
4131 
4132 	return i;
4133 }
4134 
4135 /*
4136  * Check if the PTEs within a range are contiguous swap entries
4137  * and have consistent swapcache, zeromap.
4138  */
4139 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4140 {
4141 	unsigned long addr;
4142 	swp_entry_t entry;
4143 	int idx;
4144 	pte_t pte;
4145 
4146 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4147 	idx = (vmf->address - addr) / PAGE_SIZE;
4148 	pte = ptep_get(ptep);
4149 
4150 	if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4151 		return false;
4152 	entry = pte_to_swp_entry(pte);
4153 	if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4154 		return false;
4155 
4156 	/*
4157 	 * swap_read_folio() can't handle the case a large folio is hybridly
4158 	 * from different backends. And they are likely corner cases. Similar
4159 	 * things might be added once zswap support large folios.
4160 	 */
4161 	if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4162 		return false;
4163 	if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4164 		return false;
4165 
4166 	return true;
4167 }
4168 
4169 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4170 						     unsigned long addr,
4171 						     unsigned long orders)
4172 {
4173 	int order, nr;
4174 
4175 	order = highest_order(orders);
4176 
4177 	/*
4178 	 * To swap in a THP with nr pages, we require that its first swap_offset
4179 	 * is aligned with that number, as it was when the THP was swapped out.
4180 	 * This helps filter out most invalid entries.
4181 	 */
4182 	while (orders) {
4183 		nr = 1 << order;
4184 		if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4185 			break;
4186 		order = next_order(&orders, order);
4187 	}
4188 
4189 	return orders;
4190 }
4191 
4192 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4193 {
4194 	struct vm_area_struct *vma = vmf->vma;
4195 	unsigned long orders;
4196 	struct folio *folio;
4197 	unsigned long addr;
4198 	swp_entry_t entry;
4199 	spinlock_t *ptl;
4200 	pte_t *pte;
4201 	gfp_t gfp;
4202 	int order;
4203 
4204 	/*
4205 	 * If uffd is active for the vma we need per-page fault fidelity to
4206 	 * maintain the uffd semantics.
4207 	 */
4208 	if (unlikely(userfaultfd_armed(vma)))
4209 		goto fallback;
4210 
4211 	/*
4212 	 * A large swapped out folio could be partially or fully in zswap. We
4213 	 * lack handling for such cases, so fallback to swapping in order-0
4214 	 * folio.
4215 	 */
4216 	if (!zswap_never_enabled())
4217 		goto fallback;
4218 
4219 	entry = pte_to_swp_entry(vmf->orig_pte);
4220 	/*
4221 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4222 	 * and suitable for swapping THP.
4223 	 */
4224 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4225 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4226 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4227 	orders = thp_swap_suitable_orders(swp_offset(entry),
4228 					  vmf->address, orders);
4229 
4230 	if (!orders)
4231 		goto fallback;
4232 
4233 	pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4234 				  vmf->address & PMD_MASK, &ptl);
4235 	if (unlikely(!pte))
4236 		goto fallback;
4237 
4238 	/*
4239 	 * For do_swap_page, find the highest order where the aligned range is
4240 	 * completely swap entries with contiguous swap offsets.
4241 	 */
4242 	order = highest_order(orders);
4243 	while (orders) {
4244 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4245 		if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4246 			break;
4247 		order = next_order(&orders, order);
4248 	}
4249 
4250 	pte_unmap_unlock(pte, ptl);
4251 
4252 	/* Try allocating the highest of the remaining orders. */
4253 	gfp = vma_thp_gfp_mask(vma);
4254 	while (orders) {
4255 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4256 		folio = vma_alloc_folio(gfp, order, vma, addr);
4257 		if (folio) {
4258 			if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4259 							    gfp, entry))
4260 				return folio;
4261 			count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
4262 			folio_put(folio);
4263 		}
4264 		count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK);
4265 		order = next_order(&orders, order);
4266 	}
4267 
4268 fallback:
4269 	return __alloc_swap_folio(vmf);
4270 }
4271 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4272 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4273 {
4274 	return __alloc_swap_folio(vmf);
4275 }
4276 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4277 
4278 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4279 
4280 /*
4281  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4282  * but allow concurrent faults), and pte mapped but not yet locked.
4283  * We return with pte unmapped and unlocked.
4284  *
4285  * We return with the mmap_lock locked or unlocked in the same cases
4286  * as does filemap_fault().
4287  */
4288 vm_fault_t do_swap_page(struct vm_fault *vmf)
4289 {
4290 	struct vm_area_struct *vma = vmf->vma;
4291 	struct folio *swapcache, *folio = NULL;
4292 	DECLARE_WAITQUEUE(wait, current);
4293 	struct page *page;
4294 	struct swap_info_struct *si = NULL;
4295 	rmap_t rmap_flags = RMAP_NONE;
4296 	bool need_clear_cache = false;
4297 	bool exclusive = false;
4298 	swp_entry_t entry;
4299 	pte_t pte;
4300 	vm_fault_t ret = 0;
4301 	void *shadow = NULL;
4302 	int nr_pages;
4303 	unsigned long page_idx;
4304 	unsigned long address;
4305 	pte_t *ptep;
4306 
4307 	if (!pte_unmap_same(vmf))
4308 		goto out;
4309 
4310 	entry = pte_to_swp_entry(vmf->orig_pte);
4311 	if (unlikely(non_swap_entry(entry))) {
4312 		if (is_migration_entry(entry)) {
4313 			migration_entry_wait(vma->vm_mm, vmf->pmd,
4314 					     vmf->address);
4315 		} else if (is_device_exclusive_entry(entry)) {
4316 			vmf->page = pfn_swap_entry_to_page(entry);
4317 			ret = remove_device_exclusive_entry(vmf);
4318 		} else if (is_device_private_entry(entry)) {
4319 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4320 				/*
4321 				 * migrate_to_ram is not yet ready to operate
4322 				 * under VMA lock.
4323 				 */
4324 				vma_end_read(vma);
4325 				ret = VM_FAULT_RETRY;
4326 				goto out;
4327 			}
4328 
4329 			vmf->page = pfn_swap_entry_to_page(entry);
4330 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4331 					vmf->address, &vmf->ptl);
4332 			if (unlikely(!vmf->pte ||
4333 				     !pte_same(ptep_get(vmf->pte),
4334 							vmf->orig_pte)))
4335 				goto unlock;
4336 
4337 			/*
4338 			 * Get a page reference while we know the page can't be
4339 			 * freed.
4340 			 */
4341 			get_page(vmf->page);
4342 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4343 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4344 			put_page(vmf->page);
4345 		} else if (is_hwpoison_entry(entry)) {
4346 			ret = VM_FAULT_HWPOISON;
4347 		} else if (is_pte_marker_entry(entry)) {
4348 			ret = handle_pte_marker(vmf);
4349 		} else {
4350 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4351 			ret = VM_FAULT_SIGBUS;
4352 		}
4353 		goto out;
4354 	}
4355 
4356 	/* Prevent swapoff from happening to us. */
4357 	si = get_swap_device(entry);
4358 	if (unlikely(!si))
4359 		goto out;
4360 
4361 	folio = swap_cache_get_folio(entry, vma, vmf->address);
4362 	if (folio)
4363 		page = folio_file_page(folio, swp_offset(entry));
4364 	swapcache = folio;
4365 
4366 	if (!folio) {
4367 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4368 		    __swap_count(entry) == 1) {
4369 			/* skip swapcache */
4370 			folio = alloc_swap_folio(vmf);
4371 			if (folio) {
4372 				__folio_set_locked(folio);
4373 				__folio_set_swapbacked(folio);
4374 
4375 				nr_pages = folio_nr_pages(folio);
4376 				if (folio_test_large(folio))
4377 					entry.val = ALIGN_DOWN(entry.val, nr_pages);
4378 				/*
4379 				 * Prevent parallel swapin from proceeding with
4380 				 * the cache flag. Otherwise, another thread
4381 				 * may finish swapin first, free the entry, and
4382 				 * swapout reusing the same entry. It's
4383 				 * undetectable as pte_same() returns true due
4384 				 * to entry reuse.
4385 				 */
4386 				if (swapcache_prepare(entry, nr_pages)) {
4387 					/*
4388 					 * Relax a bit to prevent rapid
4389 					 * repeated page faults.
4390 					 */
4391 					add_wait_queue(&swapcache_wq, &wait);
4392 					schedule_timeout_uninterruptible(1);
4393 					remove_wait_queue(&swapcache_wq, &wait);
4394 					goto out_page;
4395 				}
4396 				need_clear_cache = true;
4397 
4398 				memcg1_swapin(entry, nr_pages);
4399 
4400 				shadow = get_shadow_from_swap_cache(entry);
4401 				if (shadow)
4402 					workingset_refault(folio, shadow);
4403 
4404 				folio_add_lru(folio);
4405 
4406 				/* To provide entry to swap_read_folio() */
4407 				folio->swap = entry;
4408 				swap_read_folio(folio, NULL);
4409 				folio->private = NULL;
4410 			}
4411 		} else {
4412 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4413 						vmf);
4414 			swapcache = folio;
4415 		}
4416 
4417 		if (!folio) {
4418 			/*
4419 			 * Back out if somebody else faulted in this pte
4420 			 * while we released the pte lock.
4421 			 */
4422 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4423 					vmf->address, &vmf->ptl);
4424 			if (likely(vmf->pte &&
4425 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4426 				ret = VM_FAULT_OOM;
4427 			goto unlock;
4428 		}
4429 
4430 		/* Had to read the page from swap area: Major fault */
4431 		ret = VM_FAULT_MAJOR;
4432 		count_vm_event(PGMAJFAULT);
4433 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4434 		page = folio_file_page(folio, swp_offset(entry));
4435 	} else if (PageHWPoison(page)) {
4436 		/*
4437 		 * hwpoisoned dirty swapcache pages are kept for killing
4438 		 * owner processes (which may be unknown at hwpoison time)
4439 		 */
4440 		ret = VM_FAULT_HWPOISON;
4441 		goto out_release;
4442 	}
4443 
4444 	ret |= folio_lock_or_retry(folio, vmf);
4445 	if (ret & VM_FAULT_RETRY)
4446 		goto out_release;
4447 
4448 	if (swapcache) {
4449 		/*
4450 		 * Make sure folio_free_swap() or swapoff did not release the
4451 		 * swapcache from under us.  The page pin, and pte_same test
4452 		 * below, are not enough to exclude that.  Even if it is still
4453 		 * swapcache, we need to check that the page's swap has not
4454 		 * changed.
4455 		 */
4456 		if (unlikely(!folio_test_swapcache(folio) ||
4457 			     page_swap_entry(page).val != entry.val))
4458 			goto out_page;
4459 
4460 		/*
4461 		 * KSM sometimes has to copy on read faults, for example, if
4462 		 * page->index of !PageKSM() pages would be nonlinear inside the
4463 		 * anon VMA -- PageKSM() is lost on actual swapout.
4464 		 */
4465 		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4466 		if (unlikely(!folio)) {
4467 			ret = VM_FAULT_OOM;
4468 			folio = swapcache;
4469 			goto out_page;
4470 		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4471 			ret = VM_FAULT_HWPOISON;
4472 			folio = swapcache;
4473 			goto out_page;
4474 		}
4475 		if (folio != swapcache)
4476 			page = folio_page(folio, 0);
4477 
4478 		/*
4479 		 * If we want to map a page that's in the swapcache writable, we
4480 		 * have to detect via the refcount if we're really the exclusive
4481 		 * owner. Try removing the extra reference from the local LRU
4482 		 * caches if required.
4483 		 */
4484 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4485 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
4486 			lru_add_drain();
4487 	}
4488 
4489 	folio_throttle_swaprate(folio, GFP_KERNEL);
4490 
4491 	/*
4492 	 * Back out if somebody else already faulted in this pte.
4493 	 */
4494 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4495 			&vmf->ptl);
4496 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4497 		goto out_nomap;
4498 
4499 	if (unlikely(!folio_test_uptodate(folio))) {
4500 		ret = VM_FAULT_SIGBUS;
4501 		goto out_nomap;
4502 	}
4503 
4504 	/* allocated large folios for SWP_SYNCHRONOUS_IO */
4505 	if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4506 		unsigned long nr = folio_nr_pages(folio);
4507 		unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4508 		unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4509 		pte_t *folio_ptep = vmf->pte - idx;
4510 		pte_t folio_pte = ptep_get(folio_ptep);
4511 
4512 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4513 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4514 			goto out_nomap;
4515 
4516 		page_idx = idx;
4517 		address = folio_start;
4518 		ptep = folio_ptep;
4519 		goto check_folio;
4520 	}
4521 
4522 	nr_pages = 1;
4523 	page_idx = 0;
4524 	address = vmf->address;
4525 	ptep = vmf->pte;
4526 	if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4527 		int nr = folio_nr_pages(folio);
4528 		unsigned long idx = folio_page_idx(folio, page);
4529 		unsigned long folio_start = address - idx * PAGE_SIZE;
4530 		unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4531 		pte_t *folio_ptep;
4532 		pte_t folio_pte;
4533 
4534 		if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4535 			goto check_folio;
4536 		if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4537 			goto check_folio;
4538 
4539 		folio_ptep = vmf->pte - idx;
4540 		folio_pte = ptep_get(folio_ptep);
4541 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4542 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4543 			goto check_folio;
4544 
4545 		page_idx = idx;
4546 		address = folio_start;
4547 		ptep = folio_ptep;
4548 		nr_pages = nr;
4549 		entry = folio->swap;
4550 		page = &folio->page;
4551 	}
4552 
4553 check_folio:
4554 	/*
4555 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4556 	 * must never point at an anonymous page in the swapcache that is
4557 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4558 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4559 	 * check after taking the PT lock and making sure that nobody
4560 	 * concurrently faulted in this page and set PG_anon_exclusive.
4561 	 */
4562 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4563 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4564 
4565 	/*
4566 	 * Check under PT lock (to protect against concurrent fork() sharing
4567 	 * the swap entry concurrently) for certainly exclusive pages.
4568 	 */
4569 	if (!folio_test_ksm(folio)) {
4570 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4571 		if (folio != swapcache) {
4572 			/*
4573 			 * We have a fresh page that is not exposed to the
4574 			 * swapcache -> certainly exclusive.
4575 			 */
4576 			exclusive = true;
4577 		} else if (exclusive && folio_test_writeback(folio) &&
4578 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4579 			/*
4580 			 * This is tricky: not all swap backends support
4581 			 * concurrent page modifications while under writeback.
4582 			 *
4583 			 * So if we stumble over such a page in the swapcache
4584 			 * we must not set the page exclusive, otherwise we can
4585 			 * map it writable without further checks and modify it
4586 			 * while still under writeback.
4587 			 *
4588 			 * For these problematic swap backends, simply drop the
4589 			 * exclusive marker: this is perfectly fine as we start
4590 			 * writeback only if we fully unmapped the page and
4591 			 * there are no unexpected references on the page after
4592 			 * unmapping succeeded. After fully unmapped, no
4593 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4594 			 * appear, so dropping the exclusive marker and mapping
4595 			 * it only R/O is fine.
4596 			 */
4597 			exclusive = false;
4598 		}
4599 	}
4600 
4601 	/*
4602 	 * Some architectures may have to restore extra metadata to the page
4603 	 * when reading from swap. This metadata may be indexed by swap entry
4604 	 * so this must be called before swap_free().
4605 	 */
4606 	arch_swap_restore(folio_swap(entry, folio), folio);
4607 
4608 	/*
4609 	 * Remove the swap entry and conditionally try to free up the swapcache.
4610 	 * We're already holding a reference on the page but haven't mapped it
4611 	 * yet.
4612 	 */
4613 	swap_free_nr(entry, nr_pages);
4614 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4615 		folio_free_swap(folio);
4616 
4617 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4618 	add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4619 	pte = mk_pte(page, vma->vm_page_prot);
4620 	if (pte_swp_soft_dirty(vmf->orig_pte))
4621 		pte = pte_mksoft_dirty(pte);
4622 	if (pte_swp_uffd_wp(vmf->orig_pte))
4623 		pte = pte_mkuffd_wp(pte);
4624 
4625 	/*
4626 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4627 	 * certainly not shared either because we just allocated them without
4628 	 * exposing them to the swapcache or because the swap entry indicates
4629 	 * exclusivity.
4630 	 */
4631 	if (!folio_test_ksm(folio) &&
4632 	    (exclusive || folio_ref_count(folio) == 1)) {
4633 		if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4634 		    !pte_needs_soft_dirty_wp(vma, pte)) {
4635 			pte = pte_mkwrite(pte, vma);
4636 			if (vmf->flags & FAULT_FLAG_WRITE) {
4637 				pte = pte_mkdirty(pte);
4638 				vmf->flags &= ~FAULT_FLAG_WRITE;
4639 			}
4640 		}
4641 		rmap_flags |= RMAP_EXCLUSIVE;
4642 	}
4643 	folio_ref_add(folio, nr_pages - 1);
4644 	flush_icache_pages(vma, page, nr_pages);
4645 	vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4646 
4647 	/* ksm created a completely new copy */
4648 	if (unlikely(folio != swapcache && swapcache)) {
4649 		folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4650 		folio_add_lru_vma(folio, vma);
4651 	} else if (!folio_test_anon(folio)) {
4652 		/*
4653 		 * We currently only expect small !anon folios which are either
4654 		 * fully exclusive or fully shared, or new allocated large
4655 		 * folios which are fully exclusive. If we ever get large
4656 		 * folios within swapcache here, we have to be careful.
4657 		 */
4658 		VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4659 		VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4660 		folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4661 	} else {
4662 		folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4663 					rmap_flags);
4664 	}
4665 
4666 	VM_BUG_ON(!folio_test_anon(folio) ||
4667 			(pte_write(pte) && !PageAnonExclusive(page)));
4668 	set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4669 	arch_do_swap_page_nr(vma->vm_mm, vma, address,
4670 			pte, pte, nr_pages);
4671 
4672 	folio_unlock(folio);
4673 	if (folio != swapcache && swapcache) {
4674 		/*
4675 		 * Hold the lock to avoid the swap entry to be reused
4676 		 * until we take the PT lock for the pte_same() check
4677 		 * (to avoid false positives from pte_same). For
4678 		 * further safety release the lock after the swap_free
4679 		 * so that the swap count won't change under a
4680 		 * parallel locked swapcache.
4681 		 */
4682 		folio_unlock(swapcache);
4683 		folio_put(swapcache);
4684 	}
4685 
4686 	if (vmf->flags & FAULT_FLAG_WRITE) {
4687 		ret |= do_wp_page(vmf);
4688 		if (ret & VM_FAULT_ERROR)
4689 			ret &= VM_FAULT_ERROR;
4690 		goto out;
4691 	}
4692 
4693 	/* No need to invalidate - it was non-present before */
4694 	update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4695 unlock:
4696 	if (vmf->pte)
4697 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4698 out:
4699 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4700 	if (need_clear_cache) {
4701 		swapcache_clear(si, entry, nr_pages);
4702 		if (waitqueue_active(&swapcache_wq))
4703 			wake_up(&swapcache_wq);
4704 	}
4705 	if (si)
4706 		put_swap_device(si);
4707 	return ret;
4708 out_nomap:
4709 	if (vmf->pte)
4710 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4711 out_page:
4712 	folio_unlock(folio);
4713 out_release:
4714 	folio_put(folio);
4715 	if (folio != swapcache && swapcache) {
4716 		folio_unlock(swapcache);
4717 		folio_put(swapcache);
4718 	}
4719 	if (need_clear_cache) {
4720 		swapcache_clear(si, entry, nr_pages);
4721 		if (waitqueue_active(&swapcache_wq))
4722 			wake_up(&swapcache_wq);
4723 	}
4724 	if (si)
4725 		put_swap_device(si);
4726 	return ret;
4727 }
4728 
4729 static bool pte_range_none(pte_t *pte, int nr_pages)
4730 {
4731 	int i;
4732 
4733 	for (i = 0; i < nr_pages; i++) {
4734 		if (!pte_none(ptep_get_lockless(pte + i)))
4735 			return false;
4736 	}
4737 
4738 	return true;
4739 }
4740 
4741 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4742 {
4743 	struct vm_area_struct *vma = vmf->vma;
4744 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4745 	unsigned long orders;
4746 	struct folio *folio;
4747 	unsigned long addr;
4748 	pte_t *pte;
4749 	gfp_t gfp;
4750 	int order;
4751 
4752 	/*
4753 	 * If uffd is active for the vma we need per-page fault fidelity to
4754 	 * maintain the uffd semantics.
4755 	 */
4756 	if (unlikely(userfaultfd_armed(vma)))
4757 		goto fallback;
4758 
4759 	/*
4760 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4761 	 * for this vma. Then filter out the orders that can't be allocated over
4762 	 * the faulting address and still be fully contained in the vma.
4763 	 */
4764 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4765 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4766 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4767 
4768 	if (!orders)
4769 		goto fallback;
4770 
4771 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4772 	if (!pte)
4773 		return ERR_PTR(-EAGAIN);
4774 
4775 	/*
4776 	 * Find the highest order where the aligned range is completely
4777 	 * pte_none(). Note that all remaining orders will be completely
4778 	 * pte_none().
4779 	 */
4780 	order = highest_order(orders);
4781 	while (orders) {
4782 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4783 		if (pte_range_none(pte + pte_index(addr), 1 << order))
4784 			break;
4785 		order = next_order(&orders, order);
4786 	}
4787 
4788 	pte_unmap(pte);
4789 
4790 	if (!orders)
4791 		goto fallback;
4792 
4793 	/* Try allocating the highest of the remaining orders. */
4794 	gfp = vma_thp_gfp_mask(vma);
4795 	while (orders) {
4796 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4797 		folio = vma_alloc_folio(gfp, order, vma, addr);
4798 		if (folio) {
4799 			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4800 				count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4801 				folio_put(folio);
4802 				goto next;
4803 			}
4804 			folio_throttle_swaprate(folio, gfp);
4805 			/*
4806 			 * When a folio is not zeroed during allocation
4807 			 * (__GFP_ZERO not used) or user folios require special
4808 			 * handling, folio_zero_user() is used to make sure
4809 			 * that the page corresponding to the faulting address
4810 			 * will be hot in the cache after zeroing.
4811 			 */
4812 			if (user_alloc_needs_zeroing())
4813 				folio_zero_user(folio, vmf->address);
4814 			return folio;
4815 		}
4816 next:
4817 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4818 		order = next_order(&orders, order);
4819 	}
4820 
4821 fallback:
4822 #endif
4823 	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4824 }
4825 
4826 /*
4827  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4828  * but allow concurrent faults), and pte mapped but not yet locked.
4829  * We return with mmap_lock still held, but pte unmapped and unlocked.
4830  */
4831 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4832 {
4833 	struct vm_area_struct *vma = vmf->vma;
4834 	unsigned long addr = vmf->address;
4835 	struct folio *folio;
4836 	vm_fault_t ret = 0;
4837 	int nr_pages = 1;
4838 	pte_t entry;
4839 
4840 	/* File mapping without ->vm_ops ? */
4841 	if (vma->vm_flags & VM_SHARED)
4842 		return VM_FAULT_SIGBUS;
4843 
4844 	/*
4845 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4846 	 * be distinguished from a transient failure of pte_offset_map().
4847 	 */
4848 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4849 		return VM_FAULT_OOM;
4850 
4851 	/* Use the zero-page for reads */
4852 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4853 			!mm_forbids_zeropage(vma->vm_mm)) {
4854 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4855 						vma->vm_page_prot));
4856 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4857 				vmf->address, &vmf->ptl);
4858 		if (!vmf->pte)
4859 			goto unlock;
4860 		if (vmf_pte_changed(vmf)) {
4861 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4862 			goto unlock;
4863 		}
4864 		ret = check_stable_address_space(vma->vm_mm);
4865 		if (ret)
4866 			goto unlock;
4867 		/* Deliver the page fault to userland, check inside PT lock */
4868 		if (userfaultfd_missing(vma)) {
4869 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4870 			return handle_userfault(vmf, VM_UFFD_MISSING);
4871 		}
4872 		goto setpte;
4873 	}
4874 
4875 	/* Allocate our own private page. */
4876 	ret = vmf_anon_prepare(vmf);
4877 	if (ret)
4878 		return ret;
4879 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4880 	folio = alloc_anon_folio(vmf);
4881 	if (IS_ERR(folio))
4882 		return 0;
4883 	if (!folio)
4884 		goto oom;
4885 
4886 	nr_pages = folio_nr_pages(folio);
4887 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4888 
4889 	/*
4890 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4891 	 * preceding stores to the page contents become visible before
4892 	 * the set_pte_at() write.
4893 	 */
4894 	__folio_mark_uptodate(folio);
4895 
4896 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4897 	entry = pte_sw_mkyoung(entry);
4898 	if (vma->vm_flags & VM_WRITE)
4899 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4900 
4901 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4902 	if (!vmf->pte)
4903 		goto release;
4904 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4905 		update_mmu_tlb(vma, addr, vmf->pte);
4906 		goto release;
4907 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4908 		update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4909 		goto release;
4910 	}
4911 
4912 	ret = check_stable_address_space(vma->vm_mm);
4913 	if (ret)
4914 		goto release;
4915 
4916 	/* Deliver the page fault to userland, check inside PT lock */
4917 	if (userfaultfd_missing(vma)) {
4918 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4919 		folio_put(folio);
4920 		return handle_userfault(vmf, VM_UFFD_MISSING);
4921 	}
4922 
4923 	folio_ref_add(folio, nr_pages - 1);
4924 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4925 	count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4926 	folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4927 	folio_add_lru_vma(folio, vma);
4928 setpte:
4929 	if (vmf_orig_pte_uffd_wp(vmf))
4930 		entry = pte_mkuffd_wp(entry);
4931 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4932 
4933 	/* No need to invalidate - it was non-present before */
4934 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4935 unlock:
4936 	if (vmf->pte)
4937 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4938 	return ret;
4939 release:
4940 	folio_put(folio);
4941 	goto unlock;
4942 oom:
4943 	return VM_FAULT_OOM;
4944 }
4945 
4946 /*
4947  * The mmap_lock must have been held on entry, and may have been
4948  * released depending on flags and vma->vm_ops->fault() return value.
4949  * See filemap_fault() and __lock_page_retry().
4950  */
4951 static vm_fault_t __do_fault(struct vm_fault *vmf)
4952 {
4953 	struct vm_area_struct *vma = vmf->vma;
4954 	struct folio *folio;
4955 	vm_fault_t ret;
4956 
4957 	/*
4958 	 * Preallocate pte before we take page_lock because this might lead to
4959 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4960 	 *				lock_page(A)
4961 	 *				SetPageWriteback(A)
4962 	 *				unlock_page(A)
4963 	 * lock_page(B)
4964 	 *				lock_page(B)
4965 	 * pte_alloc_one
4966 	 *   shrink_folio_list
4967 	 *     wait_on_page_writeback(A)
4968 	 *				SetPageWriteback(B)
4969 	 *				unlock_page(B)
4970 	 *				# flush A, B to clear the writeback
4971 	 */
4972 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4973 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4974 		if (!vmf->prealloc_pte)
4975 			return VM_FAULT_OOM;
4976 	}
4977 
4978 	ret = vma->vm_ops->fault(vmf);
4979 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4980 			    VM_FAULT_DONE_COW)))
4981 		return ret;
4982 
4983 	folio = page_folio(vmf->page);
4984 	if (unlikely(PageHWPoison(vmf->page))) {
4985 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4986 		if (ret & VM_FAULT_LOCKED) {
4987 			if (page_mapped(vmf->page))
4988 				unmap_mapping_folio(folio);
4989 			/* Retry if a clean folio was removed from the cache. */
4990 			if (mapping_evict_folio(folio->mapping, folio))
4991 				poisonret = VM_FAULT_NOPAGE;
4992 			folio_unlock(folio);
4993 		}
4994 		folio_put(folio);
4995 		vmf->page = NULL;
4996 		return poisonret;
4997 	}
4998 
4999 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
5000 		folio_lock(folio);
5001 	else
5002 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
5003 
5004 	return ret;
5005 }
5006 
5007 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5008 static void deposit_prealloc_pte(struct vm_fault *vmf)
5009 {
5010 	struct vm_area_struct *vma = vmf->vma;
5011 
5012 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
5013 	/*
5014 	 * We are going to consume the prealloc table,
5015 	 * count that as nr_ptes.
5016 	 */
5017 	mm_inc_nr_ptes(vma->vm_mm);
5018 	vmf->prealloc_pte = NULL;
5019 }
5020 
5021 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5022 {
5023 	struct folio *folio = page_folio(page);
5024 	struct vm_area_struct *vma = vmf->vma;
5025 	bool write = vmf->flags & FAULT_FLAG_WRITE;
5026 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
5027 	pmd_t entry;
5028 	vm_fault_t ret = VM_FAULT_FALLBACK;
5029 
5030 	/*
5031 	 * It is too late to allocate a small folio, we already have a large
5032 	 * folio in the pagecache: especially s390 KVM cannot tolerate any
5033 	 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
5034 	 * PMD mappings if THPs are disabled.
5035 	 */
5036 	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
5037 		return ret;
5038 
5039 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
5040 		return ret;
5041 
5042 	if (folio_order(folio) != HPAGE_PMD_ORDER)
5043 		return ret;
5044 	page = &folio->page;
5045 
5046 	/*
5047 	 * Just backoff if any subpage of a THP is corrupted otherwise
5048 	 * the corrupted page may mapped by PMD silently to escape the
5049 	 * check.  This kind of THP just can be PTE mapped.  Access to
5050 	 * the corrupted subpage should trigger SIGBUS as expected.
5051 	 */
5052 	if (unlikely(folio_test_has_hwpoisoned(folio)))
5053 		return ret;
5054 
5055 	/*
5056 	 * Archs like ppc64 need additional space to store information
5057 	 * related to pte entry. Use the preallocated table for that.
5058 	 */
5059 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
5060 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5061 		if (!vmf->prealloc_pte)
5062 			return VM_FAULT_OOM;
5063 	}
5064 
5065 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
5066 	if (unlikely(!pmd_none(*vmf->pmd)))
5067 		goto out;
5068 
5069 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
5070 
5071 	entry = mk_huge_pmd(page, vma->vm_page_prot);
5072 	if (write)
5073 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5074 
5075 	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5076 	folio_add_file_rmap_pmd(folio, page, vma);
5077 
5078 	/*
5079 	 * deposit and withdraw with pmd lock held
5080 	 */
5081 	if (arch_needs_pgtable_deposit())
5082 		deposit_prealloc_pte(vmf);
5083 
5084 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5085 
5086 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5087 
5088 	/* fault is handled */
5089 	ret = 0;
5090 	count_vm_event(THP_FILE_MAPPED);
5091 out:
5092 	spin_unlock(vmf->ptl);
5093 	return ret;
5094 }
5095 #else
5096 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5097 {
5098 	return VM_FAULT_FALLBACK;
5099 }
5100 #endif
5101 
5102 /**
5103  * set_pte_range - Set a range of PTEs to point to pages in a folio.
5104  * @vmf: Fault decription.
5105  * @folio: The folio that contains @page.
5106  * @page: The first page to create a PTE for.
5107  * @nr: The number of PTEs to create.
5108  * @addr: The first address to create a PTE for.
5109  */
5110 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5111 		struct page *page, unsigned int nr, unsigned long addr)
5112 {
5113 	struct vm_area_struct *vma = vmf->vma;
5114 	bool write = vmf->flags & FAULT_FLAG_WRITE;
5115 	bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5116 	pte_t entry;
5117 
5118 	flush_icache_pages(vma, page, nr);
5119 	entry = mk_pte(page, vma->vm_page_prot);
5120 
5121 	if (prefault && arch_wants_old_prefaulted_pte())
5122 		entry = pte_mkold(entry);
5123 	else
5124 		entry = pte_sw_mkyoung(entry);
5125 
5126 	if (write)
5127 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5128 	if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5129 		entry = pte_mkuffd_wp(entry);
5130 	/* copy-on-write page */
5131 	if (write && !(vma->vm_flags & VM_SHARED)) {
5132 		VM_BUG_ON_FOLIO(nr != 1, folio);
5133 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5134 		folio_add_lru_vma(folio, vma);
5135 	} else {
5136 		folio_add_file_rmap_ptes(folio, page, nr, vma);
5137 	}
5138 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5139 
5140 	/* no need to invalidate: a not-present page won't be cached */
5141 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5142 }
5143 
5144 static bool vmf_pte_changed(struct vm_fault *vmf)
5145 {
5146 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5147 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5148 
5149 	return !pte_none(ptep_get(vmf->pte));
5150 }
5151 
5152 /**
5153  * finish_fault - finish page fault once we have prepared the page to fault
5154  *
5155  * @vmf: structure describing the fault
5156  *
5157  * This function handles all that is needed to finish a page fault once the
5158  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5159  * given page, adds reverse page mapping, handles memcg charges and LRU
5160  * addition.
5161  *
5162  * The function expects the page to be locked and on success it consumes a
5163  * reference of a page being mapped (for the PTE which maps it).
5164  *
5165  * Return: %0 on success, %VM_FAULT_ code in case of error.
5166  */
5167 vm_fault_t finish_fault(struct vm_fault *vmf)
5168 {
5169 	struct vm_area_struct *vma = vmf->vma;
5170 	struct page *page;
5171 	struct folio *folio;
5172 	vm_fault_t ret;
5173 	bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5174 		      !(vma->vm_flags & VM_SHARED);
5175 	int type, nr_pages;
5176 	unsigned long addr;
5177 	bool needs_fallback = false;
5178 
5179 fallback:
5180 	addr = vmf->address;
5181 
5182 	/* Did we COW the page? */
5183 	if (is_cow)
5184 		page = vmf->cow_page;
5185 	else
5186 		page = vmf->page;
5187 
5188 	/*
5189 	 * check even for read faults because we might have lost our CoWed
5190 	 * page
5191 	 */
5192 	if (!(vma->vm_flags & VM_SHARED)) {
5193 		ret = check_stable_address_space(vma->vm_mm);
5194 		if (ret)
5195 			return ret;
5196 	}
5197 
5198 	if (pmd_none(*vmf->pmd)) {
5199 		if (PageTransCompound(page)) {
5200 			ret = do_set_pmd(vmf, page);
5201 			if (ret != VM_FAULT_FALLBACK)
5202 				return ret;
5203 		}
5204 
5205 		if (vmf->prealloc_pte)
5206 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5207 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5208 			return VM_FAULT_OOM;
5209 	}
5210 
5211 	folio = page_folio(page);
5212 	nr_pages = folio_nr_pages(folio);
5213 
5214 	/*
5215 	 * Using per-page fault to maintain the uffd semantics, and same
5216 	 * approach also applies to non-anonymous-shmem faults to avoid
5217 	 * inflating the RSS of the process.
5218 	 */
5219 	if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) ||
5220 	    unlikely(needs_fallback)) {
5221 		nr_pages = 1;
5222 	} else if (nr_pages > 1) {
5223 		pgoff_t idx = folio_page_idx(folio, page);
5224 		/* The page offset of vmf->address within the VMA. */
5225 		pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5226 		/* The index of the entry in the pagetable for fault page. */
5227 		pgoff_t pte_off = pte_index(vmf->address);
5228 
5229 		/*
5230 		 * Fallback to per-page fault in case the folio size in page
5231 		 * cache beyond the VMA limits and PMD pagetable limits.
5232 		 */
5233 		if (unlikely(vma_off < idx ||
5234 			    vma_off + (nr_pages - idx) > vma_pages(vma) ||
5235 			    pte_off < idx ||
5236 			    pte_off + (nr_pages - idx)  > PTRS_PER_PTE)) {
5237 			nr_pages = 1;
5238 		} else {
5239 			/* Now we can set mappings for the whole large folio. */
5240 			addr = vmf->address - idx * PAGE_SIZE;
5241 			page = &folio->page;
5242 		}
5243 	}
5244 
5245 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5246 				       addr, &vmf->ptl);
5247 	if (!vmf->pte)
5248 		return VM_FAULT_NOPAGE;
5249 
5250 	/* Re-check under ptl */
5251 	if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5252 		update_mmu_tlb(vma, addr, vmf->pte);
5253 		ret = VM_FAULT_NOPAGE;
5254 		goto unlock;
5255 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5256 		needs_fallback = true;
5257 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5258 		goto fallback;
5259 	}
5260 
5261 	folio_ref_add(folio, nr_pages - 1);
5262 	set_pte_range(vmf, folio, page, nr_pages, addr);
5263 	type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5264 	add_mm_counter(vma->vm_mm, type, nr_pages);
5265 	ret = 0;
5266 
5267 unlock:
5268 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5269 	return ret;
5270 }
5271 
5272 static unsigned long fault_around_pages __read_mostly =
5273 	65536 >> PAGE_SHIFT;
5274 
5275 #ifdef CONFIG_DEBUG_FS
5276 static int fault_around_bytes_get(void *data, u64 *val)
5277 {
5278 	*val = fault_around_pages << PAGE_SHIFT;
5279 	return 0;
5280 }
5281 
5282 /*
5283  * fault_around_bytes must be rounded down to the nearest page order as it's
5284  * what do_fault_around() expects to see.
5285  */
5286 static int fault_around_bytes_set(void *data, u64 val)
5287 {
5288 	if (val / PAGE_SIZE > PTRS_PER_PTE)
5289 		return -EINVAL;
5290 
5291 	/*
5292 	 * The minimum value is 1 page, however this results in no fault-around
5293 	 * at all. See should_fault_around().
5294 	 */
5295 	val = max(val, PAGE_SIZE);
5296 	fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5297 
5298 	return 0;
5299 }
5300 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5301 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5302 
5303 static int __init fault_around_debugfs(void)
5304 {
5305 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5306 				   &fault_around_bytes_fops);
5307 	return 0;
5308 }
5309 late_initcall(fault_around_debugfs);
5310 #endif
5311 
5312 /*
5313  * do_fault_around() tries to map few pages around the fault address. The hope
5314  * is that the pages will be needed soon and this will lower the number of
5315  * faults to handle.
5316  *
5317  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5318  * not ready to be mapped: not up-to-date, locked, etc.
5319  *
5320  * This function doesn't cross VMA or page table boundaries, in order to call
5321  * map_pages() and acquire a PTE lock only once.
5322  *
5323  * fault_around_pages defines how many pages we'll try to map.
5324  * do_fault_around() expects it to be set to a power of two less than or equal
5325  * to PTRS_PER_PTE.
5326  *
5327  * The virtual address of the area that we map is naturally aligned to
5328  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5329  * (and therefore to page order).  This way it's easier to guarantee
5330  * that we don't cross page table boundaries.
5331  */
5332 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5333 {
5334 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5335 	pgoff_t pte_off = pte_index(vmf->address);
5336 	/* The page offset of vmf->address within the VMA. */
5337 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5338 	pgoff_t from_pte, to_pte;
5339 	vm_fault_t ret;
5340 
5341 	/* The PTE offset of the start address, clamped to the VMA. */
5342 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5343 		       pte_off - min(pte_off, vma_off));
5344 
5345 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
5346 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5347 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5348 
5349 	if (pmd_none(*vmf->pmd)) {
5350 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5351 		if (!vmf->prealloc_pte)
5352 			return VM_FAULT_OOM;
5353 	}
5354 
5355 	rcu_read_lock();
5356 	ret = vmf->vma->vm_ops->map_pages(vmf,
5357 			vmf->pgoff + from_pte - pte_off,
5358 			vmf->pgoff + to_pte - pte_off);
5359 	rcu_read_unlock();
5360 
5361 	return ret;
5362 }
5363 
5364 /* Return true if we should do read fault-around, false otherwise */
5365 static inline bool should_fault_around(struct vm_fault *vmf)
5366 {
5367 	/* No ->map_pages?  No way to fault around... */
5368 	if (!vmf->vma->vm_ops->map_pages)
5369 		return false;
5370 
5371 	if (uffd_disable_fault_around(vmf->vma))
5372 		return false;
5373 
5374 	/* A single page implies no faulting 'around' at all. */
5375 	return fault_around_pages > 1;
5376 }
5377 
5378 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5379 {
5380 	vm_fault_t ret = 0;
5381 	struct folio *folio;
5382 
5383 	/*
5384 	 * Let's call ->map_pages() first and use ->fault() as fallback
5385 	 * if page by the offset is not ready to be mapped (cold cache or
5386 	 * something).
5387 	 */
5388 	if (should_fault_around(vmf)) {
5389 		ret = do_fault_around(vmf);
5390 		if (ret)
5391 			return ret;
5392 	}
5393 
5394 	ret = vmf_can_call_fault(vmf);
5395 	if (ret)
5396 		return ret;
5397 
5398 	ret = __do_fault(vmf);
5399 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5400 		return ret;
5401 
5402 	ret |= finish_fault(vmf);
5403 	folio = page_folio(vmf->page);
5404 	folio_unlock(folio);
5405 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5406 		folio_put(folio);
5407 	return ret;
5408 }
5409 
5410 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5411 {
5412 	struct vm_area_struct *vma = vmf->vma;
5413 	struct folio *folio;
5414 	vm_fault_t ret;
5415 
5416 	ret = vmf_can_call_fault(vmf);
5417 	if (!ret)
5418 		ret = vmf_anon_prepare(vmf);
5419 	if (ret)
5420 		return ret;
5421 
5422 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5423 	if (!folio)
5424 		return VM_FAULT_OOM;
5425 
5426 	vmf->cow_page = &folio->page;
5427 
5428 	ret = __do_fault(vmf);
5429 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5430 		goto uncharge_out;
5431 	if (ret & VM_FAULT_DONE_COW)
5432 		return ret;
5433 
5434 	if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5435 		ret = VM_FAULT_HWPOISON;
5436 		goto unlock;
5437 	}
5438 	__folio_mark_uptodate(folio);
5439 
5440 	ret |= finish_fault(vmf);
5441 unlock:
5442 	unlock_page(vmf->page);
5443 	put_page(vmf->page);
5444 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5445 		goto uncharge_out;
5446 	return ret;
5447 uncharge_out:
5448 	folio_put(folio);
5449 	return ret;
5450 }
5451 
5452 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5453 {
5454 	struct vm_area_struct *vma = vmf->vma;
5455 	vm_fault_t ret, tmp;
5456 	struct folio *folio;
5457 
5458 	ret = vmf_can_call_fault(vmf);
5459 	if (ret)
5460 		return ret;
5461 
5462 	ret = __do_fault(vmf);
5463 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5464 		return ret;
5465 
5466 	folio = page_folio(vmf->page);
5467 
5468 	/*
5469 	 * Check if the backing address space wants to know that the page is
5470 	 * about to become writable
5471 	 */
5472 	if (vma->vm_ops->page_mkwrite) {
5473 		folio_unlock(folio);
5474 		tmp = do_page_mkwrite(vmf, folio);
5475 		if (unlikely(!tmp ||
5476 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5477 			folio_put(folio);
5478 			return tmp;
5479 		}
5480 	}
5481 
5482 	ret |= finish_fault(vmf);
5483 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5484 					VM_FAULT_RETRY))) {
5485 		folio_unlock(folio);
5486 		folio_put(folio);
5487 		return ret;
5488 	}
5489 
5490 	ret |= fault_dirty_shared_page(vmf);
5491 	return ret;
5492 }
5493 
5494 /*
5495  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5496  * but allow concurrent faults).
5497  * The mmap_lock may have been released depending on flags and our
5498  * return value.  See filemap_fault() and __folio_lock_or_retry().
5499  * If mmap_lock is released, vma may become invalid (for example
5500  * by other thread calling munmap()).
5501  */
5502 static vm_fault_t do_fault(struct vm_fault *vmf)
5503 {
5504 	struct vm_area_struct *vma = vmf->vma;
5505 	struct mm_struct *vm_mm = vma->vm_mm;
5506 	vm_fault_t ret;
5507 
5508 	/*
5509 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5510 	 */
5511 	if (!vma->vm_ops->fault) {
5512 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5513 					       vmf->address, &vmf->ptl);
5514 		if (unlikely(!vmf->pte))
5515 			ret = VM_FAULT_SIGBUS;
5516 		else {
5517 			/*
5518 			 * Make sure this is not a temporary clearing of pte
5519 			 * by holding ptl and checking again. A R/M/W update
5520 			 * of pte involves: take ptl, clearing the pte so that
5521 			 * we don't have concurrent modification by hardware
5522 			 * followed by an update.
5523 			 */
5524 			if (unlikely(pte_none(ptep_get(vmf->pte))))
5525 				ret = VM_FAULT_SIGBUS;
5526 			else
5527 				ret = VM_FAULT_NOPAGE;
5528 
5529 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5530 		}
5531 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
5532 		ret = do_read_fault(vmf);
5533 	else if (!(vma->vm_flags & VM_SHARED))
5534 		ret = do_cow_fault(vmf);
5535 	else
5536 		ret = do_shared_fault(vmf);
5537 
5538 	/* preallocated pagetable is unused: free it */
5539 	if (vmf->prealloc_pte) {
5540 		pte_free(vm_mm, vmf->prealloc_pte);
5541 		vmf->prealloc_pte = NULL;
5542 	}
5543 	return ret;
5544 }
5545 
5546 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5547 		      unsigned long addr, int *flags,
5548 		      bool writable, int *last_cpupid)
5549 {
5550 	struct vm_area_struct *vma = vmf->vma;
5551 
5552 	/*
5553 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5554 	 * much anyway since they can be in shared cache state. This misses
5555 	 * the case where a mapping is writable but the process never writes
5556 	 * to it but pte_write gets cleared during protection updates and
5557 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
5558 	 * background writeback, dirty balancing and application behaviour.
5559 	 */
5560 	if (!writable)
5561 		*flags |= TNF_NO_GROUP;
5562 
5563 	/*
5564 	 * Flag if the folio is shared between multiple address spaces. This
5565 	 * is later used when determining whether to group tasks together
5566 	 */
5567 	if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5568 		*flags |= TNF_SHARED;
5569 	/*
5570 	 * For memory tiering mode, cpupid of slow memory page is used
5571 	 * to record page access time.  So use default value.
5572 	 */
5573 	if (folio_use_access_time(folio))
5574 		*last_cpupid = (-1 & LAST_CPUPID_MASK);
5575 	else
5576 		*last_cpupid = folio_last_cpupid(folio);
5577 
5578 	/* Record the current PID acceesing VMA */
5579 	vma_set_access_pid_bit(vma);
5580 
5581 	count_vm_numa_event(NUMA_HINT_FAULTS);
5582 #ifdef CONFIG_NUMA_BALANCING
5583 	count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5584 #endif
5585 	if (folio_nid(folio) == numa_node_id()) {
5586 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5587 		*flags |= TNF_FAULT_LOCAL;
5588 	}
5589 
5590 	return mpol_misplaced(folio, vmf, addr);
5591 }
5592 
5593 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5594 					unsigned long fault_addr, pte_t *fault_pte,
5595 					bool writable)
5596 {
5597 	pte_t pte, old_pte;
5598 
5599 	old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5600 	pte = pte_modify(old_pte, vma->vm_page_prot);
5601 	pte = pte_mkyoung(pte);
5602 	if (writable)
5603 		pte = pte_mkwrite(pte, vma);
5604 	ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5605 	update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5606 }
5607 
5608 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5609 				       struct folio *folio, pte_t fault_pte,
5610 				       bool ignore_writable, bool pte_write_upgrade)
5611 {
5612 	int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5613 	unsigned long start, end, addr = vmf->address;
5614 	unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5615 	unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5616 	pte_t *start_ptep;
5617 
5618 	/* Stay within the VMA and within the page table. */
5619 	start = max3(addr_start, pt_start, vma->vm_start);
5620 	end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5621 		   vma->vm_end);
5622 	start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5623 
5624 	/* Restore all PTEs' mapping of the large folio */
5625 	for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5626 		pte_t ptent = ptep_get(start_ptep);
5627 		bool writable = false;
5628 
5629 		if (!pte_present(ptent) || !pte_protnone(ptent))
5630 			continue;
5631 
5632 		if (pfn_folio(pte_pfn(ptent)) != folio)
5633 			continue;
5634 
5635 		if (!ignore_writable) {
5636 			ptent = pte_modify(ptent, vma->vm_page_prot);
5637 			writable = pte_write(ptent);
5638 			if (!writable && pte_write_upgrade &&
5639 			    can_change_pte_writable(vma, addr, ptent))
5640 				writable = true;
5641 		}
5642 
5643 		numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5644 	}
5645 }
5646 
5647 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5648 {
5649 	struct vm_area_struct *vma = vmf->vma;
5650 	struct folio *folio = NULL;
5651 	int nid = NUMA_NO_NODE;
5652 	bool writable = false, ignore_writable = false;
5653 	bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5654 	int last_cpupid;
5655 	int target_nid;
5656 	pte_t pte, old_pte;
5657 	int flags = 0, nr_pages;
5658 
5659 	/*
5660 	 * The pte cannot be used safely until we verify, while holding the page
5661 	 * table lock, that its contents have not changed during fault handling.
5662 	 */
5663 	spin_lock(vmf->ptl);
5664 	/* Read the live PTE from the page tables: */
5665 	old_pte = ptep_get(vmf->pte);
5666 
5667 	if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5668 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5669 		return 0;
5670 	}
5671 
5672 	pte = pte_modify(old_pte, vma->vm_page_prot);
5673 
5674 	/*
5675 	 * Detect now whether the PTE could be writable; this information
5676 	 * is only valid while holding the PT lock.
5677 	 */
5678 	writable = pte_write(pte);
5679 	if (!writable && pte_write_upgrade &&
5680 	    can_change_pte_writable(vma, vmf->address, pte))
5681 		writable = true;
5682 
5683 	folio = vm_normal_folio(vma, vmf->address, pte);
5684 	if (!folio || folio_is_zone_device(folio))
5685 		goto out_map;
5686 
5687 	nid = folio_nid(folio);
5688 	nr_pages = folio_nr_pages(folio);
5689 
5690 	target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5691 					writable, &last_cpupid);
5692 	if (target_nid == NUMA_NO_NODE)
5693 		goto out_map;
5694 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5695 		flags |= TNF_MIGRATE_FAIL;
5696 		goto out_map;
5697 	}
5698 	/* The folio is isolated and isolation code holds a folio reference. */
5699 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5700 	writable = false;
5701 	ignore_writable = true;
5702 
5703 	/* Migrate to the requested node */
5704 	if (!migrate_misplaced_folio(folio, target_nid)) {
5705 		nid = target_nid;
5706 		flags |= TNF_MIGRATED;
5707 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5708 		return 0;
5709 	}
5710 
5711 	flags |= TNF_MIGRATE_FAIL;
5712 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5713 				       vmf->address, &vmf->ptl);
5714 	if (unlikely(!vmf->pte))
5715 		return 0;
5716 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5717 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5718 		return 0;
5719 	}
5720 out_map:
5721 	/*
5722 	 * Make it present again, depending on how arch implements
5723 	 * non-accessible ptes, some can allow access by kernel mode.
5724 	 */
5725 	if (folio && folio_test_large(folio))
5726 		numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5727 					   pte_write_upgrade);
5728 	else
5729 		numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5730 					    writable);
5731 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5732 
5733 	if (nid != NUMA_NO_NODE)
5734 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5735 	return 0;
5736 }
5737 
5738 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5739 {
5740 	struct vm_area_struct *vma = vmf->vma;
5741 
5742 	if (vma_is_anonymous(vma))
5743 		return do_huge_pmd_anonymous_page(vmf);
5744 	/*
5745 	 * Currently we just emit PAGE_SIZE for our fault events, so don't allow
5746 	 * a huge fault if we have a pre content watch on this file.  This would
5747 	 * be trivial to support, but there would need to be tests to ensure
5748 	 * this works properly and those don't exist currently.
5749 	 */
5750 	if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode)))
5751 		return VM_FAULT_FALLBACK;
5752 	if (vma->vm_ops->huge_fault)
5753 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5754 	return VM_FAULT_FALLBACK;
5755 }
5756 
5757 /* `inline' is required to avoid gcc 4.1.2 build error */
5758 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5759 {
5760 	struct vm_area_struct *vma = vmf->vma;
5761 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5762 	vm_fault_t ret;
5763 
5764 	if (vma_is_anonymous(vma)) {
5765 		if (likely(!unshare) &&
5766 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5767 			if (userfaultfd_wp_async(vmf->vma))
5768 				goto split;
5769 			return handle_userfault(vmf, VM_UFFD_WP);
5770 		}
5771 		return do_huge_pmd_wp_page(vmf);
5772 	}
5773 
5774 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5775 		/* See comment in create_huge_pmd. */
5776 		if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode)))
5777 			goto split;
5778 		if (vma->vm_ops->huge_fault) {
5779 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5780 			if (!(ret & VM_FAULT_FALLBACK))
5781 				return ret;
5782 		}
5783 	}
5784 
5785 split:
5786 	/* COW or write-notify handled on pte level: split pmd. */
5787 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5788 
5789 	return VM_FAULT_FALLBACK;
5790 }
5791 
5792 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5793 {
5794 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5795 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5796 	struct vm_area_struct *vma = vmf->vma;
5797 	/* No support for anonymous transparent PUD pages yet */
5798 	if (vma_is_anonymous(vma))
5799 		return VM_FAULT_FALLBACK;
5800 	/* See comment in create_huge_pmd. */
5801 	if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode)))
5802 		return VM_FAULT_FALLBACK;
5803 	if (vma->vm_ops->huge_fault)
5804 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5805 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5806 	return VM_FAULT_FALLBACK;
5807 }
5808 
5809 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5810 {
5811 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5812 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5813 	struct vm_area_struct *vma = vmf->vma;
5814 	vm_fault_t ret;
5815 
5816 	/* No support for anonymous transparent PUD pages yet */
5817 	if (vma_is_anonymous(vma))
5818 		goto split;
5819 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5820 		/* See comment in create_huge_pmd. */
5821 		if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode)))
5822 			goto split;
5823 		if (vma->vm_ops->huge_fault) {
5824 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5825 			if (!(ret & VM_FAULT_FALLBACK))
5826 				return ret;
5827 		}
5828 	}
5829 split:
5830 	/* COW or write-notify not handled on PUD level: split pud.*/
5831 	__split_huge_pud(vma, vmf->pud, vmf->address);
5832 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5833 	return VM_FAULT_FALLBACK;
5834 }
5835 
5836 /*
5837  * These routines also need to handle stuff like marking pages dirty
5838  * and/or accessed for architectures that don't do it in hardware (most
5839  * RISC architectures).  The early dirtying is also good on the i386.
5840  *
5841  * There is also a hook called "update_mmu_cache()" that architectures
5842  * with external mmu caches can use to update those (ie the Sparc or
5843  * PowerPC hashed page tables that act as extended TLBs).
5844  *
5845  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5846  * concurrent faults).
5847  *
5848  * The mmap_lock may have been released depending on flags and our return value.
5849  * See filemap_fault() and __folio_lock_or_retry().
5850  */
5851 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5852 {
5853 	pte_t entry;
5854 
5855 	if (unlikely(pmd_none(*vmf->pmd))) {
5856 		/*
5857 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5858 		 * want to allocate huge page, and if we expose page table
5859 		 * for an instant, it will be difficult to retract from
5860 		 * concurrent faults and from rmap lookups.
5861 		 */
5862 		vmf->pte = NULL;
5863 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5864 	} else {
5865 		pmd_t dummy_pmdval;
5866 
5867 		/*
5868 		 * A regular pmd is established and it can't morph into a huge
5869 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5870 		 * mode; but shmem or file collapse to THP could still morph
5871 		 * it into a huge pmd: just retry later if so.
5872 		 *
5873 		 * Use the maywrite version to indicate that vmf->pte may be
5874 		 * modified, but since we will use pte_same() to detect the
5875 		 * change of the !pte_none() entry, there is no need to recheck
5876 		 * the pmdval. Here we chooes to pass a dummy variable instead
5877 		 * of NULL, which helps new user think about why this place is
5878 		 * special.
5879 		 */
5880 		vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
5881 						    vmf->address, &dummy_pmdval,
5882 						    &vmf->ptl);
5883 		if (unlikely(!vmf->pte))
5884 			return 0;
5885 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5886 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5887 
5888 		if (pte_none(vmf->orig_pte)) {
5889 			pte_unmap(vmf->pte);
5890 			vmf->pte = NULL;
5891 		}
5892 	}
5893 
5894 	if (!vmf->pte)
5895 		return do_pte_missing(vmf);
5896 
5897 	if (!pte_present(vmf->orig_pte))
5898 		return do_swap_page(vmf);
5899 
5900 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5901 		return do_numa_page(vmf);
5902 
5903 	spin_lock(vmf->ptl);
5904 	entry = vmf->orig_pte;
5905 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5906 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5907 		goto unlock;
5908 	}
5909 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5910 		if (!pte_write(entry))
5911 			return do_wp_page(vmf);
5912 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5913 			entry = pte_mkdirty(entry);
5914 	}
5915 	entry = pte_mkyoung(entry);
5916 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5917 				vmf->flags & FAULT_FLAG_WRITE)) {
5918 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5919 				vmf->pte, 1);
5920 	} else {
5921 		/* Skip spurious TLB flush for retried page fault */
5922 		if (vmf->flags & FAULT_FLAG_TRIED)
5923 			goto unlock;
5924 		/*
5925 		 * This is needed only for protection faults but the arch code
5926 		 * is not yet telling us if this is a protection fault or not.
5927 		 * This still avoids useless tlb flushes for .text page faults
5928 		 * with threads.
5929 		 */
5930 		if (vmf->flags & FAULT_FLAG_WRITE)
5931 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5932 						     vmf->pte);
5933 	}
5934 unlock:
5935 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5936 	return 0;
5937 }
5938 
5939 /*
5940  * On entry, we hold either the VMA lock or the mmap_lock
5941  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5942  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5943  * and __folio_lock_or_retry().
5944  */
5945 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5946 		unsigned long address, unsigned int flags)
5947 {
5948 	struct vm_fault vmf = {
5949 		.vma = vma,
5950 		.address = address & PAGE_MASK,
5951 		.real_address = address,
5952 		.flags = flags,
5953 		.pgoff = linear_page_index(vma, address),
5954 		.gfp_mask = __get_fault_gfp_mask(vma),
5955 	};
5956 	struct mm_struct *mm = vma->vm_mm;
5957 	unsigned long vm_flags = vma->vm_flags;
5958 	pgd_t *pgd;
5959 	p4d_t *p4d;
5960 	vm_fault_t ret;
5961 
5962 	pgd = pgd_offset(mm, address);
5963 	p4d = p4d_alloc(mm, pgd, address);
5964 	if (!p4d)
5965 		return VM_FAULT_OOM;
5966 
5967 	vmf.pud = pud_alloc(mm, p4d, address);
5968 	if (!vmf.pud)
5969 		return VM_FAULT_OOM;
5970 retry_pud:
5971 	if (pud_none(*vmf.pud) &&
5972 	    thp_vma_allowable_order(vma, vm_flags,
5973 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5974 		ret = create_huge_pud(&vmf);
5975 		if (!(ret & VM_FAULT_FALLBACK))
5976 			return ret;
5977 	} else {
5978 		pud_t orig_pud = *vmf.pud;
5979 
5980 		barrier();
5981 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5982 
5983 			/*
5984 			 * TODO once we support anonymous PUDs: NUMA case and
5985 			 * FAULT_FLAG_UNSHARE handling.
5986 			 */
5987 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5988 				ret = wp_huge_pud(&vmf, orig_pud);
5989 				if (!(ret & VM_FAULT_FALLBACK))
5990 					return ret;
5991 			} else {
5992 				huge_pud_set_accessed(&vmf, orig_pud);
5993 				return 0;
5994 			}
5995 		}
5996 	}
5997 
5998 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5999 	if (!vmf.pmd)
6000 		return VM_FAULT_OOM;
6001 
6002 	/* Huge pud page fault raced with pmd_alloc? */
6003 	if (pud_trans_unstable(vmf.pud))
6004 		goto retry_pud;
6005 
6006 	if (pmd_none(*vmf.pmd) &&
6007 	    thp_vma_allowable_order(vma, vm_flags,
6008 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
6009 		ret = create_huge_pmd(&vmf);
6010 		if (!(ret & VM_FAULT_FALLBACK))
6011 			return ret;
6012 	} else {
6013 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
6014 
6015 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
6016 			VM_BUG_ON(thp_migration_supported() &&
6017 					  !is_pmd_migration_entry(vmf.orig_pmd));
6018 			if (is_pmd_migration_entry(vmf.orig_pmd))
6019 				pmd_migration_entry_wait(mm, vmf.pmd);
6020 			return 0;
6021 		}
6022 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
6023 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
6024 				return do_huge_pmd_numa_page(&vmf);
6025 
6026 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6027 			    !pmd_write(vmf.orig_pmd)) {
6028 				ret = wp_huge_pmd(&vmf);
6029 				if (!(ret & VM_FAULT_FALLBACK))
6030 					return ret;
6031 			} else {
6032 				huge_pmd_set_accessed(&vmf);
6033 				return 0;
6034 			}
6035 		}
6036 	}
6037 
6038 	return handle_pte_fault(&vmf);
6039 }
6040 
6041 /**
6042  * mm_account_fault - Do page fault accounting
6043  * @mm: mm from which memcg should be extracted. It can be NULL.
6044  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
6045  *        of perf event counters, but we'll still do the per-task accounting to
6046  *        the task who triggered this page fault.
6047  * @address: the faulted address.
6048  * @flags: the fault flags.
6049  * @ret: the fault retcode.
6050  *
6051  * This will take care of most of the page fault accounting.  Meanwhile, it
6052  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
6053  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
6054  * still be in per-arch page fault handlers at the entry of page fault.
6055  */
6056 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
6057 				    unsigned long address, unsigned int flags,
6058 				    vm_fault_t ret)
6059 {
6060 	bool major;
6061 
6062 	/* Incomplete faults will be accounted upon completion. */
6063 	if (ret & VM_FAULT_RETRY)
6064 		return;
6065 
6066 	/*
6067 	 * To preserve the behavior of older kernels, PGFAULT counters record
6068 	 * both successful and failed faults, as opposed to perf counters,
6069 	 * which ignore failed cases.
6070 	 */
6071 	count_vm_event(PGFAULT);
6072 	count_memcg_event_mm(mm, PGFAULT);
6073 
6074 	/*
6075 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
6076 	 * valid).  That includes arch_vma_access_permitted() failing before
6077 	 * reaching here. So this is not a "this many hardware page faults"
6078 	 * counter.  We should use the hw profiling for that.
6079 	 */
6080 	if (ret & VM_FAULT_ERROR)
6081 		return;
6082 
6083 	/*
6084 	 * We define the fault as a major fault when the final successful fault
6085 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6086 	 * handle it immediately previously).
6087 	 */
6088 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6089 
6090 	if (major)
6091 		current->maj_flt++;
6092 	else
6093 		current->min_flt++;
6094 
6095 	/*
6096 	 * If the fault is done for GUP, regs will be NULL.  We only do the
6097 	 * accounting for the per thread fault counters who triggered the
6098 	 * fault, and we skip the perf event updates.
6099 	 */
6100 	if (!regs)
6101 		return;
6102 
6103 	if (major)
6104 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6105 	else
6106 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6107 }
6108 
6109 #ifdef CONFIG_LRU_GEN
6110 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6111 {
6112 	/* the LRU algorithm only applies to accesses with recency */
6113 	current->in_lru_fault = vma_has_recency(vma);
6114 }
6115 
6116 static void lru_gen_exit_fault(void)
6117 {
6118 	current->in_lru_fault = false;
6119 }
6120 #else
6121 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6122 {
6123 }
6124 
6125 static void lru_gen_exit_fault(void)
6126 {
6127 }
6128 #endif /* CONFIG_LRU_GEN */
6129 
6130 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6131 				       unsigned int *flags)
6132 {
6133 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6134 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6135 			return VM_FAULT_SIGSEGV;
6136 		/*
6137 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6138 		 * just treat it like an ordinary read-fault otherwise.
6139 		 */
6140 		if (!is_cow_mapping(vma->vm_flags))
6141 			*flags &= ~FAULT_FLAG_UNSHARE;
6142 	} else if (*flags & FAULT_FLAG_WRITE) {
6143 		/* Write faults on read-only mappings are impossible ... */
6144 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6145 			return VM_FAULT_SIGSEGV;
6146 		/* ... and FOLL_FORCE only applies to COW mappings. */
6147 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6148 				 !is_cow_mapping(vma->vm_flags)))
6149 			return VM_FAULT_SIGSEGV;
6150 	}
6151 #ifdef CONFIG_PER_VMA_LOCK
6152 	/*
6153 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6154 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
6155 	 */
6156 	if (WARN_ON_ONCE((*flags &
6157 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6158 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6159 		return VM_FAULT_SIGSEGV;
6160 #endif
6161 
6162 	return 0;
6163 }
6164 
6165 /*
6166  * By the time we get here, we already hold either the VMA lock or the
6167  * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
6168  *
6169  * The mmap_lock may have been released depending on flags and our
6170  * return value.  See filemap_fault() and __folio_lock_or_retry().
6171  */
6172 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6173 			   unsigned int flags, struct pt_regs *regs)
6174 {
6175 	/* If the fault handler drops the mmap_lock, vma may be freed */
6176 	struct mm_struct *mm = vma->vm_mm;
6177 	vm_fault_t ret;
6178 	bool is_droppable;
6179 
6180 	__set_current_state(TASK_RUNNING);
6181 
6182 	ret = sanitize_fault_flags(vma, &flags);
6183 	if (ret)
6184 		goto out;
6185 
6186 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6187 					    flags & FAULT_FLAG_INSTRUCTION,
6188 					    flags & FAULT_FLAG_REMOTE)) {
6189 		ret = VM_FAULT_SIGSEGV;
6190 		goto out;
6191 	}
6192 
6193 	is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6194 
6195 	/*
6196 	 * Enable the memcg OOM handling for faults triggered in user
6197 	 * space.  Kernel faults are handled more gracefully.
6198 	 */
6199 	if (flags & FAULT_FLAG_USER)
6200 		mem_cgroup_enter_user_fault();
6201 
6202 	lru_gen_enter_fault(vma);
6203 
6204 	if (unlikely(is_vm_hugetlb_page(vma)))
6205 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6206 	else
6207 		ret = __handle_mm_fault(vma, address, flags);
6208 
6209 	/*
6210 	 * Warning: It is no longer safe to dereference vma-> after this point,
6211 	 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6212 	 * vma might be destroyed from underneath us.
6213 	 */
6214 
6215 	lru_gen_exit_fault();
6216 
6217 	/* If the mapping is droppable, then errors due to OOM aren't fatal. */
6218 	if (is_droppable)
6219 		ret &= ~VM_FAULT_OOM;
6220 
6221 	if (flags & FAULT_FLAG_USER) {
6222 		mem_cgroup_exit_user_fault();
6223 		/*
6224 		 * The task may have entered a memcg OOM situation but
6225 		 * if the allocation error was handled gracefully (no
6226 		 * VM_FAULT_OOM), there is no need to kill anything.
6227 		 * Just clean up the OOM state peacefully.
6228 		 */
6229 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6230 			mem_cgroup_oom_synchronize(false);
6231 	}
6232 out:
6233 	mm_account_fault(mm, regs, address, flags, ret);
6234 
6235 	return ret;
6236 }
6237 EXPORT_SYMBOL_GPL(handle_mm_fault);
6238 
6239 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6240 #include <linux/extable.h>
6241 
6242 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6243 {
6244 	if (likely(mmap_read_trylock(mm)))
6245 		return true;
6246 
6247 	if (regs && !user_mode(regs)) {
6248 		unsigned long ip = exception_ip(regs);
6249 		if (!search_exception_tables(ip))
6250 			return false;
6251 	}
6252 
6253 	return !mmap_read_lock_killable(mm);
6254 }
6255 
6256 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
6257 {
6258 	/*
6259 	 * We don't have this operation yet.
6260 	 *
6261 	 * It should be easy enough to do: it's basically a
6262 	 *    atomic_long_try_cmpxchg_acquire()
6263 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6264 	 * it also needs the proper lockdep magic etc.
6265 	 */
6266 	return false;
6267 }
6268 
6269 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6270 {
6271 	mmap_read_unlock(mm);
6272 	if (regs && !user_mode(regs)) {
6273 		unsigned long ip = exception_ip(regs);
6274 		if (!search_exception_tables(ip))
6275 			return false;
6276 	}
6277 	return !mmap_write_lock_killable(mm);
6278 }
6279 
6280 /*
6281  * Helper for page fault handling.
6282  *
6283  * This is kind of equivalent to "mmap_read_lock()" followed
6284  * by "find_extend_vma()", except it's a lot more careful about
6285  * the locking (and will drop the lock on failure).
6286  *
6287  * For example, if we have a kernel bug that causes a page
6288  * fault, we don't want to just use mmap_read_lock() to get
6289  * the mm lock, because that would deadlock if the bug were
6290  * to happen while we're holding the mm lock for writing.
6291  *
6292  * So this checks the exception tables on kernel faults in
6293  * order to only do this all for instructions that are actually
6294  * expected to fault.
6295  *
6296  * We can also actually take the mm lock for writing if we
6297  * need to extend the vma, which helps the VM layer a lot.
6298  */
6299 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
6300 			unsigned long addr, struct pt_regs *regs)
6301 {
6302 	struct vm_area_struct *vma;
6303 
6304 	if (!get_mmap_lock_carefully(mm, regs))
6305 		return NULL;
6306 
6307 	vma = find_vma(mm, addr);
6308 	if (likely(vma && (vma->vm_start <= addr)))
6309 		return vma;
6310 
6311 	/*
6312 	 * Well, dang. We might still be successful, but only
6313 	 * if we can extend a vma to do so.
6314 	 */
6315 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
6316 		mmap_read_unlock(mm);
6317 		return NULL;
6318 	}
6319 
6320 	/*
6321 	 * We can try to upgrade the mmap lock atomically,
6322 	 * in which case we can continue to use the vma
6323 	 * we already looked up.
6324 	 *
6325 	 * Otherwise we'll have to drop the mmap lock and
6326 	 * re-take it, and also look up the vma again,
6327 	 * re-checking it.
6328 	 */
6329 	if (!mmap_upgrade_trylock(mm)) {
6330 		if (!upgrade_mmap_lock_carefully(mm, regs))
6331 			return NULL;
6332 
6333 		vma = find_vma(mm, addr);
6334 		if (!vma)
6335 			goto fail;
6336 		if (vma->vm_start <= addr)
6337 			goto success;
6338 		if (!(vma->vm_flags & VM_GROWSDOWN))
6339 			goto fail;
6340 	}
6341 
6342 	if (expand_stack_locked(vma, addr))
6343 		goto fail;
6344 
6345 success:
6346 	mmap_write_downgrade(mm);
6347 	return vma;
6348 
6349 fail:
6350 	mmap_write_unlock(mm);
6351 	return NULL;
6352 }
6353 #endif
6354 
6355 #ifdef CONFIG_PER_VMA_LOCK
6356 static inline bool __vma_enter_locked(struct vm_area_struct *vma, bool detaching)
6357 {
6358 	unsigned int tgt_refcnt = VMA_LOCK_OFFSET;
6359 
6360 	/* Additional refcnt if the vma is attached. */
6361 	if (!detaching)
6362 		tgt_refcnt++;
6363 
6364 	/*
6365 	 * If vma is detached then only vma_mark_attached() can raise the
6366 	 * vm_refcnt. mmap_write_lock prevents racing with vma_mark_attached().
6367 	 */
6368 	if (!refcount_add_not_zero(VMA_LOCK_OFFSET, &vma->vm_refcnt))
6369 		return false;
6370 
6371 	rwsem_acquire(&vma->vmlock_dep_map, 0, 0, _RET_IP_);
6372 	rcuwait_wait_event(&vma->vm_mm->vma_writer_wait,
6373 		   refcount_read(&vma->vm_refcnt) == tgt_refcnt,
6374 		   TASK_UNINTERRUPTIBLE);
6375 	lock_acquired(&vma->vmlock_dep_map, _RET_IP_);
6376 
6377 	return true;
6378 }
6379 
6380 static inline void __vma_exit_locked(struct vm_area_struct *vma, bool *detached)
6381 {
6382 	*detached = refcount_sub_and_test(VMA_LOCK_OFFSET, &vma->vm_refcnt);
6383 	rwsem_release(&vma->vmlock_dep_map, _RET_IP_);
6384 }
6385 
6386 void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq)
6387 {
6388 	bool locked;
6389 
6390 	/*
6391 	 * __vma_enter_locked() returns false immediately if the vma is not
6392 	 * attached, otherwise it waits until refcnt is indicating that vma
6393 	 * is attached with no readers.
6394 	 */
6395 	locked = __vma_enter_locked(vma, false);
6396 
6397 	/*
6398 	 * We should use WRITE_ONCE() here because we can have concurrent reads
6399 	 * from the early lockless pessimistic check in vma_start_read().
6400 	 * We don't really care about the correctness of that early check, but
6401 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
6402 	 */
6403 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
6404 
6405 	if (locked) {
6406 		bool detached;
6407 
6408 		__vma_exit_locked(vma, &detached);
6409 		WARN_ON_ONCE(detached); /* vma should remain attached */
6410 	}
6411 }
6412 EXPORT_SYMBOL_GPL(__vma_start_write);
6413 
6414 void vma_mark_detached(struct vm_area_struct *vma)
6415 {
6416 	vma_assert_write_locked(vma);
6417 	vma_assert_attached(vma);
6418 
6419 	/*
6420 	 * We are the only writer, so no need to use vma_refcount_put().
6421 	 * The condition below is unlikely because the vma has been already
6422 	 * write-locked and readers can increment vm_refcnt only temporarily
6423 	 * before they check vm_lock_seq, realize the vma is locked and drop
6424 	 * back the vm_refcnt. That is a narrow window for observing a raised
6425 	 * vm_refcnt.
6426 	 */
6427 	if (unlikely(!refcount_dec_and_test(&vma->vm_refcnt))) {
6428 		/* Wait until vma is detached with no readers. */
6429 		if (__vma_enter_locked(vma, true)) {
6430 			bool detached;
6431 
6432 			__vma_exit_locked(vma, &detached);
6433 			WARN_ON_ONCE(!detached);
6434 		}
6435 	}
6436 }
6437 
6438 /*
6439  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6440  * stable and not isolated. If the VMA is not found or is being modified the
6441  * function returns NULL.
6442  */
6443 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6444 					  unsigned long address)
6445 {
6446 	MA_STATE(mas, &mm->mm_mt, address, address);
6447 	struct vm_area_struct *vma;
6448 
6449 	rcu_read_lock();
6450 retry:
6451 	vma = mas_walk(&mas);
6452 	if (!vma)
6453 		goto inval;
6454 
6455 	vma = vma_start_read(mm, vma);
6456 	if (IS_ERR_OR_NULL(vma)) {
6457 		/* Check if the VMA got isolated after we found it */
6458 		if (PTR_ERR(vma) == -EAGAIN) {
6459 			count_vm_vma_lock_event(VMA_LOCK_MISS);
6460 			/* The area was replaced with another one */
6461 			goto retry;
6462 		}
6463 
6464 		/* Failed to lock the VMA */
6465 		goto inval;
6466 	}
6467 	/*
6468 	 * At this point, we have a stable reference to a VMA: The VMA is
6469 	 * locked and we know it hasn't already been isolated.
6470 	 * From here on, we can access the VMA without worrying about which
6471 	 * fields are accessible for RCU readers.
6472 	 */
6473 
6474 	/* Check if the vma we locked is the right one. */
6475 	if (unlikely(vma->vm_mm != mm ||
6476 		     address < vma->vm_start || address >= vma->vm_end))
6477 		goto inval_end_read;
6478 
6479 	rcu_read_unlock();
6480 	return vma;
6481 
6482 inval_end_read:
6483 	vma_end_read(vma);
6484 inval:
6485 	rcu_read_unlock();
6486 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
6487 	return NULL;
6488 }
6489 #endif /* CONFIG_PER_VMA_LOCK */
6490 
6491 #ifndef __PAGETABLE_P4D_FOLDED
6492 /*
6493  * Allocate p4d page table.
6494  * We've already handled the fast-path in-line.
6495  */
6496 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6497 {
6498 	p4d_t *new = p4d_alloc_one(mm, address);
6499 	if (!new)
6500 		return -ENOMEM;
6501 
6502 	spin_lock(&mm->page_table_lock);
6503 	if (pgd_present(*pgd)) {	/* Another has populated it */
6504 		p4d_free(mm, new);
6505 	} else {
6506 		smp_wmb(); /* See comment in pmd_install() */
6507 		pgd_populate(mm, pgd, new);
6508 	}
6509 	spin_unlock(&mm->page_table_lock);
6510 	return 0;
6511 }
6512 #endif /* __PAGETABLE_P4D_FOLDED */
6513 
6514 #ifndef __PAGETABLE_PUD_FOLDED
6515 /*
6516  * Allocate page upper directory.
6517  * We've already handled the fast-path in-line.
6518  */
6519 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6520 {
6521 	pud_t *new = pud_alloc_one(mm, address);
6522 	if (!new)
6523 		return -ENOMEM;
6524 
6525 	spin_lock(&mm->page_table_lock);
6526 	if (!p4d_present(*p4d)) {
6527 		mm_inc_nr_puds(mm);
6528 		smp_wmb(); /* See comment in pmd_install() */
6529 		p4d_populate(mm, p4d, new);
6530 	} else	/* Another has populated it */
6531 		pud_free(mm, new);
6532 	spin_unlock(&mm->page_table_lock);
6533 	return 0;
6534 }
6535 #endif /* __PAGETABLE_PUD_FOLDED */
6536 
6537 #ifndef __PAGETABLE_PMD_FOLDED
6538 /*
6539  * Allocate page middle directory.
6540  * We've already handled the fast-path in-line.
6541  */
6542 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6543 {
6544 	spinlock_t *ptl;
6545 	pmd_t *new = pmd_alloc_one(mm, address);
6546 	if (!new)
6547 		return -ENOMEM;
6548 
6549 	ptl = pud_lock(mm, pud);
6550 	if (!pud_present(*pud)) {
6551 		mm_inc_nr_pmds(mm);
6552 		smp_wmb(); /* See comment in pmd_install() */
6553 		pud_populate(mm, pud, new);
6554 	} else {	/* Another has populated it */
6555 		pmd_free(mm, new);
6556 	}
6557 	spin_unlock(ptl);
6558 	return 0;
6559 }
6560 #endif /* __PAGETABLE_PMD_FOLDED */
6561 
6562 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6563 				     spinlock_t *lock, pte_t *ptep,
6564 				     pgprot_t pgprot, unsigned long pfn_base,
6565 				     unsigned long addr_mask, bool writable,
6566 				     bool special)
6567 {
6568 	args->lock = lock;
6569 	args->ptep = ptep;
6570 	args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6571 	args->pgprot = pgprot;
6572 	args->writable = writable;
6573 	args->special = special;
6574 }
6575 
6576 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6577 {
6578 #ifdef CONFIG_LOCKDEP
6579 	struct file *file = vma->vm_file;
6580 	struct address_space *mapping = file ? file->f_mapping : NULL;
6581 
6582 	if (mapping)
6583 		lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6584 			       lockdep_is_held(&vma->vm_mm->mmap_lock));
6585 	else
6586 		lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6587 #endif
6588 }
6589 
6590 /**
6591  * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6592  * @args: Pointer to struct @follow_pfnmap_args
6593  *
6594  * The caller needs to setup args->vma and args->address to point to the
6595  * virtual address as the target of such lookup.  On a successful return,
6596  * the results will be put into other output fields.
6597  *
6598  * After the caller finished using the fields, the caller must invoke
6599  * another follow_pfnmap_end() to proper releases the locks and resources
6600  * of such look up request.
6601  *
6602  * During the start() and end() calls, the results in @args will be valid
6603  * as proper locks will be held.  After the end() is called, all the fields
6604  * in @follow_pfnmap_args will be invalid to be further accessed.  Further
6605  * use of such information after end() may require proper synchronizations
6606  * by the caller with page table updates, otherwise it can create a
6607  * security bug.
6608  *
6609  * If the PTE maps a refcounted page, callers are responsible to protect
6610  * against invalidation with MMU notifiers; otherwise access to the PFN at
6611  * a later point in time can trigger use-after-free.
6612  *
6613  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
6614  * should be taken for read, and the mmap semaphore cannot be released
6615  * before the end() is invoked.
6616  *
6617  * This function must not be used to modify PTE content.
6618  *
6619  * Return: zero on success, negative otherwise.
6620  */
6621 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6622 {
6623 	struct vm_area_struct *vma = args->vma;
6624 	unsigned long address = args->address;
6625 	struct mm_struct *mm = vma->vm_mm;
6626 	spinlock_t *lock;
6627 	pgd_t *pgdp;
6628 	p4d_t *p4dp, p4d;
6629 	pud_t *pudp, pud;
6630 	pmd_t *pmdp, pmd;
6631 	pte_t *ptep, pte;
6632 
6633 	pfnmap_lockdep_assert(vma);
6634 
6635 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6636 		goto out;
6637 
6638 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6639 		goto out;
6640 retry:
6641 	pgdp = pgd_offset(mm, address);
6642 	if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6643 		goto out;
6644 
6645 	p4dp = p4d_offset(pgdp, address);
6646 	p4d = READ_ONCE(*p4dp);
6647 	if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6648 		goto out;
6649 
6650 	pudp = pud_offset(p4dp, address);
6651 	pud = READ_ONCE(*pudp);
6652 	if (pud_none(pud))
6653 		goto out;
6654 	if (pud_leaf(pud)) {
6655 		lock = pud_lock(mm, pudp);
6656 		if (!unlikely(pud_leaf(pud))) {
6657 			spin_unlock(lock);
6658 			goto retry;
6659 		}
6660 		pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6661 				  pud_pfn(pud), PUD_MASK, pud_write(pud),
6662 				  pud_special(pud));
6663 		return 0;
6664 	}
6665 
6666 	pmdp = pmd_offset(pudp, address);
6667 	pmd = pmdp_get_lockless(pmdp);
6668 	if (pmd_leaf(pmd)) {
6669 		lock = pmd_lock(mm, pmdp);
6670 		if (!unlikely(pmd_leaf(pmd))) {
6671 			spin_unlock(lock);
6672 			goto retry;
6673 		}
6674 		pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6675 				  pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6676 				  pmd_special(pmd));
6677 		return 0;
6678 	}
6679 
6680 	ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6681 	if (!ptep)
6682 		goto out;
6683 	pte = ptep_get(ptep);
6684 	if (!pte_present(pte))
6685 		goto unlock;
6686 	pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6687 			  pte_pfn(pte), PAGE_MASK, pte_write(pte),
6688 			  pte_special(pte));
6689 	return 0;
6690 unlock:
6691 	pte_unmap_unlock(ptep, lock);
6692 out:
6693 	return -EINVAL;
6694 }
6695 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6696 
6697 /**
6698  * follow_pfnmap_end(): End a follow_pfnmap_start() process
6699  * @args: Pointer to struct @follow_pfnmap_args
6700  *
6701  * Must be used in pair of follow_pfnmap_start().  See the start() function
6702  * above for more information.
6703  */
6704 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6705 {
6706 	if (args->lock)
6707 		spin_unlock(args->lock);
6708 	if (args->ptep)
6709 		pte_unmap(args->ptep);
6710 }
6711 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6712 
6713 #ifdef CONFIG_HAVE_IOREMAP_PROT
6714 /**
6715  * generic_access_phys - generic implementation for iomem mmap access
6716  * @vma: the vma to access
6717  * @addr: userspace address, not relative offset within @vma
6718  * @buf: buffer to read/write
6719  * @len: length of transfer
6720  * @write: set to FOLL_WRITE when writing, otherwise reading
6721  *
6722  * This is a generic implementation for &vm_operations_struct.access for an
6723  * iomem mapping. This callback is used by access_process_vm() when the @vma is
6724  * not page based.
6725  */
6726 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6727 			void *buf, int len, int write)
6728 {
6729 	resource_size_t phys_addr;
6730 	pgprot_t prot = __pgprot(0);
6731 	void __iomem *maddr;
6732 	int offset = offset_in_page(addr);
6733 	int ret = -EINVAL;
6734 	bool writable;
6735 	struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6736 
6737 retry:
6738 	if (follow_pfnmap_start(&args))
6739 		return -EINVAL;
6740 	prot = args.pgprot;
6741 	phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6742 	writable = args.writable;
6743 	follow_pfnmap_end(&args);
6744 
6745 	if ((write & FOLL_WRITE) && !writable)
6746 		return -EINVAL;
6747 
6748 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6749 	if (!maddr)
6750 		return -ENOMEM;
6751 
6752 	if (follow_pfnmap_start(&args))
6753 		goto out_unmap;
6754 
6755 	if ((pgprot_val(prot) != pgprot_val(args.pgprot)) ||
6756 	    (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6757 	    (writable != args.writable)) {
6758 		follow_pfnmap_end(&args);
6759 		iounmap(maddr);
6760 		goto retry;
6761 	}
6762 
6763 	if (write)
6764 		memcpy_toio(maddr + offset, buf, len);
6765 	else
6766 		memcpy_fromio(buf, maddr + offset, len);
6767 	ret = len;
6768 	follow_pfnmap_end(&args);
6769 out_unmap:
6770 	iounmap(maddr);
6771 
6772 	return ret;
6773 }
6774 EXPORT_SYMBOL_GPL(generic_access_phys);
6775 #endif
6776 
6777 /*
6778  * Access another process' address space as given in mm.
6779  */
6780 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6781 			      void *buf, int len, unsigned int gup_flags)
6782 {
6783 	void *old_buf = buf;
6784 	int write = gup_flags & FOLL_WRITE;
6785 
6786 	if (mmap_read_lock_killable(mm))
6787 		return 0;
6788 
6789 	/* Untag the address before looking up the VMA */
6790 	addr = untagged_addr_remote(mm, addr);
6791 
6792 	/* Avoid triggering the temporary warning in __get_user_pages */
6793 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6794 		return 0;
6795 
6796 	/* ignore errors, just check how much was successfully transferred */
6797 	while (len) {
6798 		int bytes, offset;
6799 		void *maddr;
6800 		struct vm_area_struct *vma = NULL;
6801 		struct page *page = get_user_page_vma_remote(mm, addr,
6802 							     gup_flags, &vma);
6803 
6804 		if (IS_ERR(page)) {
6805 			/* We might need to expand the stack to access it */
6806 			vma = vma_lookup(mm, addr);
6807 			if (!vma) {
6808 				vma = expand_stack(mm, addr);
6809 
6810 				/* mmap_lock was dropped on failure */
6811 				if (!vma)
6812 					return buf - old_buf;
6813 
6814 				/* Try again if stack expansion worked */
6815 				continue;
6816 			}
6817 
6818 			/*
6819 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6820 			 * we can access using slightly different code.
6821 			 */
6822 			bytes = 0;
6823 #ifdef CONFIG_HAVE_IOREMAP_PROT
6824 			if (vma->vm_ops && vma->vm_ops->access)
6825 				bytes = vma->vm_ops->access(vma, addr, buf,
6826 							    len, write);
6827 #endif
6828 			if (bytes <= 0)
6829 				break;
6830 		} else {
6831 			bytes = len;
6832 			offset = addr & (PAGE_SIZE-1);
6833 			if (bytes > PAGE_SIZE-offset)
6834 				bytes = PAGE_SIZE-offset;
6835 
6836 			maddr = kmap_local_page(page);
6837 			if (write) {
6838 				copy_to_user_page(vma, page, addr,
6839 						  maddr + offset, buf, bytes);
6840 				set_page_dirty_lock(page);
6841 			} else {
6842 				copy_from_user_page(vma, page, addr,
6843 						    buf, maddr + offset, bytes);
6844 			}
6845 			unmap_and_put_page(page, maddr);
6846 		}
6847 		len -= bytes;
6848 		buf += bytes;
6849 		addr += bytes;
6850 	}
6851 	mmap_read_unlock(mm);
6852 
6853 	return buf - old_buf;
6854 }
6855 
6856 /**
6857  * access_remote_vm - access another process' address space
6858  * @mm:		the mm_struct of the target address space
6859  * @addr:	start address to access
6860  * @buf:	source or destination buffer
6861  * @len:	number of bytes to transfer
6862  * @gup_flags:	flags modifying lookup behaviour
6863  *
6864  * The caller must hold a reference on @mm.
6865  *
6866  * Return: number of bytes copied from source to destination.
6867  */
6868 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6869 		void *buf, int len, unsigned int gup_flags)
6870 {
6871 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6872 }
6873 
6874 /*
6875  * Access another process' address space.
6876  * Source/target buffer must be kernel space,
6877  * Do not walk the page table directly, use get_user_pages
6878  */
6879 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6880 		void *buf, int len, unsigned int gup_flags)
6881 {
6882 	struct mm_struct *mm;
6883 	int ret;
6884 
6885 	mm = get_task_mm(tsk);
6886 	if (!mm)
6887 		return 0;
6888 
6889 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6890 
6891 	mmput(mm);
6892 
6893 	return ret;
6894 }
6895 EXPORT_SYMBOL_GPL(access_process_vm);
6896 
6897 /*
6898  * Print the name of a VMA.
6899  */
6900 void print_vma_addr(char *prefix, unsigned long ip)
6901 {
6902 	struct mm_struct *mm = current->mm;
6903 	struct vm_area_struct *vma;
6904 
6905 	/*
6906 	 * we might be running from an atomic context so we cannot sleep
6907 	 */
6908 	if (!mmap_read_trylock(mm))
6909 		return;
6910 
6911 	vma = vma_lookup(mm, ip);
6912 	if (vma && vma->vm_file) {
6913 		struct file *f = vma->vm_file;
6914 		ip -= vma->vm_start;
6915 		ip += vma->vm_pgoff << PAGE_SHIFT;
6916 		printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6917 				vma->vm_start,
6918 				vma->vm_end - vma->vm_start);
6919 	}
6920 	mmap_read_unlock(mm);
6921 }
6922 
6923 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6924 void __might_fault(const char *file, int line)
6925 {
6926 	if (pagefault_disabled())
6927 		return;
6928 	__might_sleep(file, line);
6929 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6930 	if (current->mm)
6931 		might_lock_read(&current->mm->mmap_lock);
6932 #endif
6933 }
6934 EXPORT_SYMBOL(__might_fault);
6935 #endif
6936 
6937 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6938 /*
6939  * Process all subpages of the specified huge page with the specified
6940  * operation.  The target subpage will be processed last to keep its
6941  * cache lines hot.
6942  */
6943 static inline int process_huge_page(
6944 	unsigned long addr_hint, unsigned int nr_pages,
6945 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
6946 	void *arg)
6947 {
6948 	int i, n, base, l, ret;
6949 	unsigned long addr = addr_hint &
6950 		~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6951 
6952 	/* Process target subpage last to keep its cache lines hot */
6953 	might_sleep();
6954 	n = (addr_hint - addr) / PAGE_SIZE;
6955 	if (2 * n <= nr_pages) {
6956 		/* If target subpage in first half of huge page */
6957 		base = 0;
6958 		l = n;
6959 		/* Process subpages at the end of huge page */
6960 		for (i = nr_pages - 1; i >= 2 * n; i--) {
6961 			cond_resched();
6962 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6963 			if (ret)
6964 				return ret;
6965 		}
6966 	} else {
6967 		/* If target subpage in second half of huge page */
6968 		base = nr_pages - 2 * (nr_pages - n);
6969 		l = nr_pages - n;
6970 		/* Process subpages at the begin of huge page */
6971 		for (i = 0; i < base; i++) {
6972 			cond_resched();
6973 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6974 			if (ret)
6975 				return ret;
6976 		}
6977 	}
6978 	/*
6979 	 * Process remaining subpages in left-right-left-right pattern
6980 	 * towards the target subpage
6981 	 */
6982 	for (i = 0; i < l; i++) {
6983 		int left_idx = base + i;
6984 		int right_idx = base + 2 * l - 1 - i;
6985 
6986 		cond_resched();
6987 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6988 		if (ret)
6989 			return ret;
6990 		cond_resched();
6991 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6992 		if (ret)
6993 			return ret;
6994 	}
6995 	return 0;
6996 }
6997 
6998 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
6999 				unsigned int nr_pages)
7000 {
7001 	unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
7002 	int i;
7003 
7004 	might_sleep();
7005 	for (i = 0; i < nr_pages; i++) {
7006 		cond_resched();
7007 		clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
7008 	}
7009 }
7010 
7011 static int clear_subpage(unsigned long addr, int idx, void *arg)
7012 {
7013 	struct folio *folio = arg;
7014 
7015 	clear_user_highpage(folio_page(folio, idx), addr);
7016 	return 0;
7017 }
7018 
7019 /**
7020  * folio_zero_user - Zero a folio which will be mapped to userspace.
7021  * @folio: The folio to zero.
7022  * @addr_hint: The address will be accessed or the base address if uncelar.
7023  */
7024 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
7025 {
7026 	unsigned int nr_pages = folio_nr_pages(folio);
7027 
7028 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7029 		clear_gigantic_page(folio, addr_hint, nr_pages);
7030 	else
7031 		process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
7032 }
7033 
7034 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
7035 				   unsigned long addr_hint,
7036 				   struct vm_area_struct *vma,
7037 				   unsigned int nr_pages)
7038 {
7039 	unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
7040 	struct page *dst_page;
7041 	struct page *src_page;
7042 	int i;
7043 
7044 	for (i = 0; i < nr_pages; i++) {
7045 		dst_page = folio_page(dst, i);
7046 		src_page = folio_page(src, i);
7047 
7048 		cond_resched();
7049 		if (copy_mc_user_highpage(dst_page, src_page,
7050 					  addr + i*PAGE_SIZE, vma))
7051 			return -EHWPOISON;
7052 	}
7053 	return 0;
7054 }
7055 
7056 struct copy_subpage_arg {
7057 	struct folio *dst;
7058 	struct folio *src;
7059 	struct vm_area_struct *vma;
7060 };
7061 
7062 static int copy_subpage(unsigned long addr, int idx, void *arg)
7063 {
7064 	struct copy_subpage_arg *copy_arg = arg;
7065 	struct page *dst = folio_page(copy_arg->dst, idx);
7066 	struct page *src = folio_page(copy_arg->src, idx);
7067 
7068 	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
7069 		return -EHWPOISON;
7070 	return 0;
7071 }
7072 
7073 int copy_user_large_folio(struct folio *dst, struct folio *src,
7074 			  unsigned long addr_hint, struct vm_area_struct *vma)
7075 {
7076 	unsigned int nr_pages = folio_nr_pages(dst);
7077 	struct copy_subpage_arg arg = {
7078 		.dst = dst,
7079 		.src = src,
7080 		.vma = vma,
7081 	};
7082 
7083 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7084 		return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
7085 
7086 	return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
7087 }
7088 
7089 long copy_folio_from_user(struct folio *dst_folio,
7090 			   const void __user *usr_src,
7091 			   bool allow_pagefault)
7092 {
7093 	void *kaddr;
7094 	unsigned long i, rc = 0;
7095 	unsigned int nr_pages = folio_nr_pages(dst_folio);
7096 	unsigned long ret_val = nr_pages * PAGE_SIZE;
7097 	struct page *subpage;
7098 
7099 	for (i = 0; i < nr_pages; i++) {
7100 		subpage = folio_page(dst_folio, i);
7101 		kaddr = kmap_local_page(subpage);
7102 		if (!allow_pagefault)
7103 			pagefault_disable();
7104 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
7105 		if (!allow_pagefault)
7106 			pagefault_enable();
7107 		kunmap_local(kaddr);
7108 
7109 		ret_val -= (PAGE_SIZE - rc);
7110 		if (rc)
7111 			break;
7112 
7113 		flush_dcache_page(subpage);
7114 
7115 		cond_resched();
7116 	}
7117 	return ret_val;
7118 }
7119 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7120 
7121 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7122 
7123 static struct kmem_cache *page_ptl_cachep;
7124 
7125 void __init ptlock_cache_init(void)
7126 {
7127 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
7128 			SLAB_PANIC, NULL);
7129 }
7130 
7131 bool ptlock_alloc(struct ptdesc *ptdesc)
7132 {
7133 	spinlock_t *ptl;
7134 
7135 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
7136 	if (!ptl)
7137 		return false;
7138 	ptdesc->ptl = ptl;
7139 	return true;
7140 }
7141 
7142 void ptlock_free(struct ptdesc *ptdesc)
7143 {
7144 	if (ptdesc->ptl)
7145 		kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
7146 }
7147 #endif
7148 
7149 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
7150 {
7151 	if (is_vm_hugetlb_page(vma))
7152 		hugetlb_vma_lock_read(vma);
7153 }
7154 
7155 void vma_pgtable_walk_end(struct vm_area_struct *vma)
7156 {
7157 	if (is_vm_hugetlb_page(vma))
7158 		hugetlb_vma_unlock_read(vma);
7159 }
7160