1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/pfn_t.h> 61 #include <linux/writeback.h> 62 #include <linux/memcontrol.h> 63 #include <linux/mmu_notifier.h> 64 #include <linux/swapops.h> 65 #include <linux/elf.h> 66 #include <linux/gfp.h> 67 #include <linux/migrate.h> 68 #include <linux/string.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 #include <linux/fsnotify.h> 80 81 #include <trace/events/kmem.h> 82 83 #include <asm/io.h> 84 #include <asm/mmu_context.h> 85 #include <asm/pgalloc.h> 86 #include <linux/uaccess.h> 87 #include <asm/tlb.h> 88 #include <asm/tlbflush.h> 89 90 #include "pgalloc-track.h" 91 #include "internal.h" 92 #include "swap.h" 93 94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 96 #endif 97 98 #ifndef CONFIG_NUMA 99 unsigned long max_mapnr; 100 EXPORT_SYMBOL(max_mapnr); 101 102 struct page *mem_map; 103 EXPORT_SYMBOL(mem_map); 104 #endif 105 106 static vm_fault_t do_fault(struct vm_fault *vmf); 107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 108 static bool vmf_pte_changed(struct vm_fault *vmf); 109 110 /* 111 * Return true if the original pte was a uffd-wp pte marker (so the pte was 112 * wr-protected). 113 */ 114 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 115 { 116 if (!userfaultfd_wp(vmf->vma)) 117 return false; 118 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 119 return false; 120 121 return pte_marker_uffd_wp(vmf->orig_pte); 122 } 123 124 /* 125 * A number of key systems in x86 including ioremap() rely on the assumption 126 * that high_memory defines the upper bound on direct map memory, then end 127 * of ZONE_NORMAL. 128 */ 129 void *high_memory; 130 EXPORT_SYMBOL(high_memory); 131 132 /* 133 * Randomize the address space (stacks, mmaps, brk, etc.). 134 * 135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 136 * as ancient (libc5 based) binaries can segfault. ) 137 */ 138 int randomize_va_space __read_mostly = 139 #ifdef CONFIG_COMPAT_BRK 140 1; 141 #else 142 2; 143 #endif 144 145 #ifndef arch_wants_old_prefaulted_pte 146 static inline bool arch_wants_old_prefaulted_pte(void) 147 { 148 /* 149 * Transitioning a PTE from 'old' to 'young' can be expensive on 150 * some architectures, even if it's performed in hardware. By 151 * default, "false" means prefaulted entries will be 'young'. 152 */ 153 return false; 154 } 155 #endif 156 157 static int __init disable_randmaps(char *s) 158 { 159 randomize_va_space = 0; 160 return 1; 161 } 162 __setup("norandmaps", disable_randmaps); 163 164 unsigned long zero_pfn __read_mostly; 165 EXPORT_SYMBOL(zero_pfn); 166 167 unsigned long highest_memmap_pfn __read_mostly; 168 169 /* 170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 171 */ 172 static int __init init_zero_pfn(void) 173 { 174 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 175 return 0; 176 } 177 early_initcall(init_zero_pfn); 178 179 void mm_trace_rss_stat(struct mm_struct *mm, int member) 180 { 181 trace_rss_stat(mm, member); 182 } 183 184 /* 185 * Note: this doesn't free the actual pages themselves. That 186 * has been handled earlier when unmapping all the memory regions. 187 */ 188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 189 unsigned long addr) 190 { 191 pgtable_t token = pmd_pgtable(*pmd); 192 pmd_clear(pmd); 193 pte_free_tlb(tlb, token, addr); 194 mm_dec_nr_ptes(tlb->mm); 195 } 196 197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 198 unsigned long addr, unsigned long end, 199 unsigned long floor, unsigned long ceiling) 200 { 201 pmd_t *pmd; 202 unsigned long next; 203 unsigned long start; 204 205 start = addr; 206 pmd = pmd_offset(pud, addr); 207 do { 208 next = pmd_addr_end(addr, end); 209 if (pmd_none_or_clear_bad(pmd)) 210 continue; 211 free_pte_range(tlb, pmd, addr); 212 } while (pmd++, addr = next, addr != end); 213 214 start &= PUD_MASK; 215 if (start < floor) 216 return; 217 if (ceiling) { 218 ceiling &= PUD_MASK; 219 if (!ceiling) 220 return; 221 } 222 if (end - 1 > ceiling - 1) 223 return; 224 225 pmd = pmd_offset(pud, start); 226 pud_clear(pud); 227 pmd_free_tlb(tlb, pmd, start); 228 mm_dec_nr_pmds(tlb->mm); 229 } 230 231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 232 unsigned long addr, unsigned long end, 233 unsigned long floor, unsigned long ceiling) 234 { 235 pud_t *pud; 236 unsigned long next; 237 unsigned long start; 238 239 start = addr; 240 pud = pud_offset(p4d, addr); 241 do { 242 next = pud_addr_end(addr, end); 243 if (pud_none_or_clear_bad(pud)) 244 continue; 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 246 } while (pud++, addr = next, addr != end); 247 248 start &= P4D_MASK; 249 if (start < floor) 250 return; 251 if (ceiling) { 252 ceiling &= P4D_MASK; 253 if (!ceiling) 254 return; 255 } 256 if (end - 1 > ceiling - 1) 257 return; 258 259 pud = pud_offset(p4d, start); 260 p4d_clear(p4d); 261 pud_free_tlb(tlb, pud, start); 262 mm_dec_nr_puds(tlb->mm); 263 } 264 265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 266 unsigned long addr, unsigned long end, 267 unsigned long floor, unsigned long ceiling) 268 { 269 p4d_t *p4d; 270 unsigned long next; 271 unsigned long start; 272 273 start = addr; 274 p4d = p4d_offset(pgd, addr); 275 do { 276 next = p4d_addr_end(addr, end); 277 if (p4d_none_or_clear_bad(p4d)) 278 continue; 279 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 280 } while (p4d++, addr = next, addr != end); 281 282 start &= PGDIR_MASK; 283 if (start < floor) 284 return; 285 if (ceiling) { 286 ceiling &= PGDIR_MASK; 287 if (!ceiling) 288 return; 289 } 290 if (end - 1 > ceiling - 1) 291 return; 292 293 p4d = p4d_offset(pgd, start); 294 pgd_clear(pgd); 295 p4d_free_tlb(tlb, p4d, start); 296 } 297 298 /* 299 * This function frees user-level page tables of a process. 300 */ 301 void free_pgd_range(struct mmu_gather *tlb, 302 unsigned long addr, unsigned long end, 303 unsigned long floor, unsigned long ceiling) 304 { 305 pgd_t *pgd; 306 unsigned long next; 307 308 /* 309 * The next few lines have given us lots of grief... 310 * 311 * Why are we testing PMD* at this top level? Because often 312 * there will be no work to do at all, and we'd prefer not to 313 * go all the way down to the bottom just to discover that. 314 * 315 * Why all these "- 1"s? Because 0 represents both the bottom 316 * of the address space and the top of it (using -1 for the 317 * top wouldn't help much: the masks would do the wrong thing). 318 * The rule is that addr 0 and floor 0 refer to the bottom of 319 * the address space, but end 0 and ceiling 0 refer to the top 320 * Comparisons need to use "end - 1" and "ceiling - 1" (though 321 * that end 0 case should be mythical). 322 * 323 * Wherever addr is brought up or ceiling brought down, we must 324 * be careful to reject "the opposite 0" before it confuses the 325 * subsequent tests. But what about where end is brought down 326 * by PMD_SIZE below? no, end can't go down to 0 there. 327 * 328 * Whereas we round start (addr) and ceiling down, by different 329 * masks at different levels, in order to test whether a table 330 * now has no other vmas using it, so can be freed, we don't 331 * bother to round floor or end up - the tests don't need that. 332 */ 333 334 addr &= PMD_MASK; 335 if (addr < floor) { 336 addr += PMD_SIZE; 337 if (!addr) 338 return; 339 } 340 if (ceiling) { 341 ceiling &= PMD_MASK; 342 if (!ceiling) 343 return; 344 } 345 if (end - 1 > ceiling - 1) 346 end -= PMD_SIZE; 347 if (addr > end - 1) 348 return; 349 /* 350 * We add page table cache pages with PAGE_SIZE, 351 * (see pte_free_tlb()), flush the tlb if we need 352 */ 353 tlb_change_page_size(tlb, PAGE_SIZE); 354 pgd = pgd_offset(tlb->mm, addr); 355 do { 356 next = pgd_addr_end(addr, end); 357 if (pgd_none_or_clear_bad(pgd)) 358 continue; 359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 360 } while (pgd++, addr = next, addr != end); 361 } 362 363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 364 struct vm_area_struct *vma, unsigned long floor, 365 unsigned long ceiling, bool mm_wr_locked) 366 { 367 struct unlink_vma_file_batch vb; 368 369 do { 370 unsigned long addr = vma->vm_start; 371 struct vm_area_struct *next; 372 373 /* 374 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 375 * be 0. This will underflow and is okay. 376 */ 377 next = mas_find(mas, ceiling - 1); 378 if (unlikely(xa_is_zero(next))) 379 next = NULL; 380 381 /* 382 * Hide vma from rmap and truncate_pagecache before freeing 383 * pgtables 384 */ 385 if (mm_wr_locked) 386 vma_start_write(vma); 387 unlink_anon_vmas(vma); 388 389 if (is_vm_hugetlb_page(vma)) { 390 unlink_file_vma(vma); 391 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 392 floor, next ? next->vm_start : ceiling); 393 } else { 394 unlink_file_vma_batch_init(&vb); 395 unlink_file_vma_batch_add(&vb, vma); 396 397 /* 398 * Optimization: gather nearby vmas into one call down 399 */ 400 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 401 && !is_vm_hugetlb_page(next)) { 402 vma = next; 403 next = mas_find(mas, ceiling - 1); 404 if (unlikely(xa_is_zero(next))) 405 next = NULL; 406 if (mm_wr_locked) 407 vma_start_write(vma); 408 unlink_anon_vmas(vma); 409 unlink_file_vma_batch_add(&vb, vma); 410 } 411 unlink_file_vma_batch_final(&vb); 412 free_pgd_range(tlb, addr, vma->vm_end, 413 floor, next ? next->vm_start : ceiling); 414 } 415 vma = next; 416 } while (vma); 417 } 418 419 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 420 { 421 spinlock_t *ptl = pmd_lock(mm, pmd); 422 423 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 424 mm_inc_nr_ptes(mm); 425 /* 426 * Ensure all pte setup (eg. pte page lock and page clearing) are 427 * visible before the pte is made visible to other CPUs by being 428 * put into page tables. 429 * 430 * The other side of the story is the pointer chasing in the page 431 * table walking code (when walking the page table without locking; 432 * ie. most of the time). Fortunately, these data accesses consist 433 * of a chain of data-dependent loads, meaning most CPUs (alpha 434 * being the notable exception) will already guarantee loads are 435 * seen in-order. See the alpha page table accessors for the 436 * smp_rmb() barriers in page table walking code. 437 */ 438 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 439 pmd_populate(mm, pmd, *pte); 440 *pte = NULL; 441 } 442 spin_unlock(ptl); 443 } 444 445 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 446 { 447 pgtable_t new = pte_alloc_one(mm); 448 if (!new) 449 return -ENOMEM; 450 451 pmd_install(mm, pmd, &new); 452 if (new) 453 pte_free(mm, new); 454 return 0; 455 } 456 457 int __pte_alloc_kernel(pmd_t *pmd) 458 { 459 pte_t *new = pte_alloc_one_kernel(&init_mm); 460 if (!new) 461 return -ENOMEM; 462 463 spin_lock(&init_mm.page_table_lock); 464 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 465 smp_wmb(); /* See comment in pmd_install() */ 466 pmd_populate_kernel(&init_mm, pmd, new); 467 new = NULL; 468 } 469 spin_unlock(&init_mm.page_table_lock); 470 if (new) 471 pte_free_kernel(&init_mm, new); 472 return 0; 473 } 474 475 static inline void init_rss_vec(int *rss) 476 { 477 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 478 } 479 480 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 481 { 482 int i; 483 484 for (i = 0; i < NR_MM_COUNTERS; i++) 485 if (rss[i]) 486 add_mm_counter(mm, i, rss[i]); 487 } 488 489 /* 490 * This function is called to print an error when a bad pte 491 * is found. For example, we might have a PFN-mapped pte in 492 * a region that doesn't allow it. 493 * 494 * The calling function must still handle the error. 495 */ 496 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 497 pte_t pte, struct page *page) 498 { 499 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 500 p4d_t *p4d = p4d_offset(pgd, addr); 501 pud_t *pud = pud_offset(p4d, addr); 502 pmd_t *pmd = pmd_offset(pud, addr); 503 struct address_space *mapping; 504 pgoff_t index; 505 static unsigned long resume; 506 static unsigned long nr_shown; 507 static unsigned long nr_unshown; 508 509 /* 510 * Allow a burst of 60 reports, then keep quiet for that minute; 511 * or allow a steady drip of one report per second. 512 */ 513 if (nr_shown == 60) { 514 if (time_before(jiffies, resume)) { 515 nr_unshown++; 516 return; 517 } 518 if (nr_unshown) { 519 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 520 nr_unshown); 521 nr_unshown = 0; 522 } 523 nr_shown = 0; 524 } 525 if (nr_shown++ == 0) 526 resume = jiffies + 60 * HZ; 527 528 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 529 index = linear_page_index(vma, addr); 530 531 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 532 current->comm, 533 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 534 if (page) 535 dump_page(page, "bad pte"); 536 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 537 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 538 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 539 vma->vm_file, 540 vma->vm_ops ? vma->vm_ops->fault : NULL, 541 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 542 mapping ? mapping->a_ops->read_folio : NULL); 543 dump_stack(); 544 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 545 } 546 547 /* 548 * vm_normal_page -- This function gets the "struct page" associated with a pte. 549 * 550 * "Special" mappings do not wish to be associated with a "struct page" (either 551 * it doesn't exist, or it exists but they don't want to touch it). In this 552 * case, NULL is returned here. "Normal" mappings do have a struct page. 553 * 554 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 555 * pte bit, in which case this function is trivial. Secondly, an architecture 556 * may not have a spare pte bit, which requires a more complicated scheme, 557 * described below. 558 * 559 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 560 * special mapping (even if there are underlying and valid "struct pages"). 561 * COWed pages of a VM_PFNMAP are always normal. 562 * 563 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 564 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 565 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 566 * mapping will always honor the rule 567 * 568 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 569 * 570 * And for normal mappings this is false. 571 * 572 * This restricts such mappings to be a linear translation from virtual address 573 * to pfn. To get around this restriction, we allow arbitrary mappings so long 574 * as the vma is not a COW mapping; in that case, we know that all ptes are 575 * special (because none can have been COWed). 576 * 577 * 578 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 579 * 580 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 581 * page" backing, however the difference is that _all_ pages with a struct 582 * page (that is, those where pfn_valid is true) are refcounted and considered 583 * normal pages by the VM. The only exception are zeropages, which are 584 * *never* refcounted. 585 * 586 * The disadvantage is that pages are refcounted (which can be slower and 587 * simply not an option for some PFNMAP users). The advantage is that we 588 * don't have to follow the strict linearity rule of PFNMAP mappings in 589 * order to support COWable mappings. 590 * 591 */ 592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 593 pte_t pte) 594 { 595 unsigned long pfn = pte_pfn(pte); 596 597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 598 if (likely(!pte_special(pte))) 599 goto check_pfn; 600 if (vma->vm_ops && vma->vm_ops->find_special_page) 601 return vma->vm_ops->find_special_page(vma, addr); 602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 603 return NULL; 604 if (is_zero_pfn(pfn)) 605 return NULL; 606 if (pte_devmap(pte)) 607 /* 608 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 609 * and will have refcounts incremented on their struct pages 610 * when they are inserted into PTEs, thus they are safe to 611 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 612 * do not have refcounts. Example of legacy ZONE_DEVICE is 613 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 614 */ 615 return NULL; 616 617 print_bad_pte(vma, addr, pte, NULL); 618 return NULL; 619 } 620 621 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 622 623 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 624 if (vma->vm_flags & VM_MIXEDMAP) { 625 if (!pfn_valid(pfn)) 626 return NULL; 627 if (is_zero_pfn(pfn)) 628 return NULL; 629 goto out; 630 } else { 631 unsigned long off; 632 off = (addr - vma->vm_start) >> PAGE_SHIFT; 633 if (pfn == vma->vm_pgoff + off) 634 return NULL; 635 if (!is_cow_mapping(vma->vm_flags)) 636 return NULL; 637 } 638 } 639 640 if (is_zero_pfn(pfn)) 641 return NULL; 642 643 check_pfn: 644 if (unlikely(pfn > highest_memmap_pfn)) { 645 print_bad_pte(vma, addr, pte, NULL); 646 return NULL; 647 } 648 649 /* 650 * NOTE! We still have PageReserved() pages in the page tables. 651 * eg. VDSO mappings can cause them to exist. 652 */ 653 out: 654 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 655 return pfn_to_page(pfn); 656 } 657 658 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 659 pte_t pte) 660 { 661 struct page *page = vm_normal_page(vma, addr, pte); 662 663 if (page) 664 return page_folio(page); 665 return NULL; 666 } 667 668 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 669 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 670 pmd_t pmd) 671 { 672 unsigned long pfn = pmd_pfn(pmd); 673 674 /* Currently it's only used for huge pfnmaps */ 675 if (unlikely(pmd_special(pmd))) 676 return NULL; 677 678 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 679 if (vma->vm_flags & VM_MIXEDMAP) { 680 if (!pfn_valid(pfn)) 681 return NULL; 682 goto out; 683 } else { 684 unsigned long off; 685 off = (addr - vma->vm_start) >> PAGE_SHIFT; 686 if (pfn == vma->vm_pgoff + off) 687 return NULL; 688 if (!is_cow_mapping(vma->vm_flags)) 689 return NULL; 690 } 691 } 692 693 if (pmd_devmap(pmd)) 694 return NULL; 695 if (is_huge_zero_pmd(pmd)) 696 return NULL; 697 if (unlikely(pfn > highest_memmap_pfn)) 698 return NULL; 699 700 /* 701 * NOTE! We still have PageReserved() pages in the page tables. 702 * eg. VDSO mappings can cause them to exist. 703 */ 704 out: 705 return pfn_to_page(pfn); 706 } 707 708 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 709 unsigned long addr, pmd_t pmd) 710 { 711 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 712 713 if (page) 714 return page_folio(page); 715 return NULL; 716 } 717 #endif 718 719 static void restore_exclusive_pte(struct vm_area_struct *vma, 720 struct page *page, unsigned long address, 721 pte_t *ptep) 722 { 723 struct folio *folio = page_folio(page); 724 pte_t orig_pte; 725 pte_t pte; 726 727 orig_pte = ptep_get(ptep); 728 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 729 if (pte_swp_soft_dirty(orig_pte)) 730 pte = pte_mksoft_dirty(pte); 731 732 if (pte_swp_uffd_wp(orig_pte)) 733 pte = pte_mkuffd_wp(pte); 734 735 if ((vma->vm_flags & VM_WRITE) && 736 can_change_pte_writable(vma, address, pte)) { 737 if (folio_test_dirty(folio)) 738 pte = pte_mkdirty(pte); 739 pte = pte_mkwrite(pte, vma); 740 } 741 742 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) && 743 PageAnonExclusive(page)), folio); 744 set_pte_at(vma->vm_mm, address, ptep, pte); 745 746 /* 747 * No need to invalidate - it was non-present before. However 748 * secondary CPUs may have mappings that need invalidating. 749 */ 750 update_mmu_cache(vma, address, ptep); 751 } 752 753 /* 754 * Tries to restore an exclusive pte if the page lock can be acquired without 755 * sleeping. 756 */ 757 static int 758 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 759 unsigned long addr) 760 { 761 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 762 struct page *page = pfn_swap_entry_to_page(entry); 763 764 if (trylock_page(page)) { 765 restore_exclusive_pte(vma, page, addr, src_pte); 766 unlock_page(page); 767 return 0; 768 } 769 770 return -EBUSY; 771 } 772 773 /* 774 * copy one vm_area from one task to the other. Assumes the page tables 775 * already present in the new task to be cleared in the whole range 776 * covered by this vma. 777 */ 778 779 static unsigned long 780 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 781 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 782 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 783 { 784 unsigned long vm_flags = dst_vma->vm_flags; 785 pte_t orig_pte = ptep_get(src_pte); 786 pte_t pte = orig_pte; 787 struct folio *folio; 788 struct page *page; 789 swp_entry_t entry = pte_to_swp_entry(orig_pte); 790 791 if (likely(!non_swap_entry(entry))) { 792 if (swap_duplicate(entry) < 0) 793 return -EIO; 794 795 /* make sure dst_mm is on swapoff's mmlist. */ 796 if (unlikely(list_empty(&dst_mm->mmlist))) { 797 spin_lock(&mmlist_lock); 798 if (list_empty(&dst_mm->mmlist)) 799 list_add(&dst_mm->mmlist, 800 &src_mm->mmlist); 801 spin_unlock(&mmlist_lock); 802 } 803 /* Mark the swap entry as shared. */ 804 if (pte_swp_exclusive(orig_pte)) { 805 pte = pte_swp_clear_exclusive(orig_pte); 806 set_pte_at(src_mm, addr, src_pte, pte); 807 } 808 rss[MM_SWAPENTS]++; 809 } else if (is_migration_entry(entry)) { 810 folio = pfn_swap_entry_folio(entry); 811 812 rss[mm_counter(folio)]++; 813 814 if (!is_readable_migration_entry(entry) && 815 is_cow_mapping(vm_flags)) { 816 /* 817 * COW mappings require pages in both parent and child 818 * to be set to read. A previously exclusive entry is 819 * now shared. 820 */ 821 entry = make_readable_migration_entry( 822 swp_offset(entry)); 823 pte = swp_entry_to_pte(entry); 824 if (pte_swp_soft_dirty(orig_pte)) 825 pte = pte_swp_mksoft_dirty(pte); 826 if (pte_swp_uffd_wp(orig_pte)) 827 pte = pte_swp_mkuffd_wp(pte); 828 set_pte_at(src_mm, addr, src_pte, pte); 829 } 830 } else if (is_device_private_entry(entry)) { 831 page = pfn_swap_entry_to_page(entry); 832 folio = page_folio(page); 833 834 /* 835 * Update rss count even for unaddressable pages, as 836 * they should treated just like normal pages in this 837 * respect. 838 * 839 * We will likely want to have some new rss counters 840 * for unaddressable pages, at some point. But for now 841 * keep things as they are. 842 */ 843 folio_get(folio); 844 rss[mm_counter(folio)]++; 845 /* Cannot fail as these pages cannot get pinned. */ 846 folio_try_dup_anon_rmap_pte(folio, page, src_vma); 847 848 /* 849 * We do not preserve soft-dirty information, because so 850 * far, checkpoint/restore is the only feature that 851 * requires that. And checkpoint/restore does not work 852 * when a device driver is involved (you cannot easily 853 * save and restore device driver state). 854 */ 855 if (is_writable_device_private_entry(entry) && 856 is_cow_mapping(vm_flags)) { 857 entry = make_readable_device_private_entry( 858 swp_offset(entry)); 859 pte = swp_entry_to_pte(entry); 860 if (pte_swp_uffd_wp(orig_pte)) 861 pte = pte_swp_mkuffd_wp(pte); 862 set_pte_at(src_mm, addr, src_pte, pte); 863 } 864 } else if (is_device_exclusive_entry(entry)) { 865 /* 866 * Make device exclusive entries present by restoring the 867 * original entry then copying as for a present pte. Device 868 * exclusive entries currently only support private writable 869 * (ie. COW) mappings. 870 */ 871 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 872 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 873 return -EBUSY; 874 return -ENOENT; 875 } else if (is_pte_marker_entry(entry)) { 876 pte_marker marker = copy_pte_marker(entry, dst_vma); 877 878 if (marker) 879 set_pte_at(dst_mm, addr, dst_pte, 880 make_pte_marker(marker)); 881 return 0; 882 } 883 if (!userfaultfd_wp(dst_vma)) 884 pte = pte_swp_clear_uffd_wp(pte); 885 set_pte_at(dst_mm, addr, dst_pte, pte); 886 return 0; 887 } 888 889 /* 890 * Copy a present and normal page. 891 * 892 * NOTE! The usual case is that this isn't required; 893 * instead, the caller can just increase the page refcount 894 * and re-use the pte the traditional way. 895 * 896 * And if we need a pre-allocated page but don't yet have 897 * one, return a negative error to let the preallocation 898 * code know so that it can do so outside the page table 899 * lock. 900 */ 901 static inline int 902 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 903 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 904 struct folio **prealloc, struct page *page) 905 { 906 struct folio *new_folio; 907 pte_t pte; 908 909 new_folio = *prealloc; 910 if (!new_folio) 911 return -EAGAIN; 912 913 /* 914 * We have a prealloc page, all good! Take it 915 * over and copy the page & arm it. 916 */ 917 918 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 919 return -EHWPOISON; 920 921 *prealloc = NULL; 922 __folio_mark_uptodate(new_folio); 923 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 924 folio_add_lru_vma(new_folio, dst_vma); 925 rss[MM_ANONPAGES]++; 926 927 /* All done, just insert the new page copy in the child */ 928 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 929 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 930 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 931 /* Uffd-wp needs to be delivered to dest pte as well */ 932 pte = pte_mkuffd_wp(pte); 933 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 934 return 0; 935 } 936 937 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 938 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 939 pte_t pte, unsigned long addr, int nr) 940 { 941 struct mm_struct *src_mm = src_vma->vm_mm; 942 943 /* If it's a COW mapping, write protect it both processes. */ 944 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 945 wrprotect_ptes(src_mm, addr, src_pte, nr); 946 pte = pte_wrprotect(pte); 947 } 948 949 /* If it's a shared mapping, mark it clean in the child. */ 950 if (src_vma->vm_flags & VM_SHARED) 951 pte = pte_mkclean(pte); 952 pte = pte_mkold(pte); 953 954 if (!userfaultfd_wp(dst_vma)) 955 pte = pte_clear_uffd_wp(pte); 956 957 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 958 } 959 960 /* 961 * Copy one present PTE, trying to batch-process subsequent PTEs that map 962 * consecutive pages of the same folio by copying them as well. 963 * 964 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 965 * Otherwise, returns the number of copied PTEs (at least 1). 966 */ 967 static inline int 968 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 969 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 970 int max_nr, int *rss, struct folio **prealloc) 971 { 972 struct page *page; 973 struct folio *folio; 974 bool any_writable; 975 fpb_t flags = 0; 976 int err, nr; 977 978 page = vm_normal_page(src_vma, addr, pte); 979 if (unlikely(!page)) 980 goto copy_pte; 981 982 folio = page_folio(page); 983 984 /* 985 * If we likely have to copy, just don't bother with batching. Make 986 * sure that the common "small folio" case is as fast as possible 987 * by keeping the batching logic separate. 988 */ 989 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 990 if (src_vma->vm_flags & VM_SHARED) 991 flags |= FPB_IGNORE_DIRTY; 992 if (!vma_soft_dirty_enabled(src_vma)) 993 flags |= FPB_IGNORE_SOFT_DIRTY; 994 995 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 996 &any_writable, NULL, NULL); 997 folio_ref_add(folio, nr); 998 if (folio_test_anon(folio)) { 999 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1000 nr, src_vma))) { 1001 folio_ref_sub(folio, nr); 1002 return -EAGAIN; 1003 } 1004 rss[MM_ANONPAGES] += nr; 1005 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1006 } else { 1007 folio_dup_file_rmap_ptes(folio, page, nr); 1008 rss[mm_counter_file(folio)] += nr; 1009 } 1010 if (any_writable) 1011 pte = pte_mkwrite(pte, src_vma); 1012 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1013 addr, nr); 1014 return nr; 1015 } 1016 1017 folio_get(folio); 1018 if (folio_test_anon(folio)) { 1019 /* 1020 * If this page may have been pinned by the parent process, 1021 * copy the page immediately for the child so that we'll always 1022 * guarantee the pinned page won't be randomly replaced in the 1023 * future. 1024 */ 1025 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) { 1026 /* Page may be pinned, we have to copy. */ 1027 folio_put(folio); 1028 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1029 addr, rss, prealloc, page); 1030 return err ? err : 1; 1031 } 1032 rss[MM_ANONPAGES]++; 1033 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1034 } else { 1035 folio_dup_file_rmap_pte(folio, page); 1036 rss[mm_counter_file(folio)]++; 1037 } 1038 1039 copy_pte: 1040 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1041 return 1; 1042 } 1043 1044 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1045 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1046 { 1047 struct folio *new_folio; 1048 1049 if (need_zero) 1050 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1051 else 1052 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1053 1054 if (!new_folio) 1055 return NULL; 1056 1057 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1058 folio_put(new_folio); 1059 return NULL; 1060 } 1061 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1062 1063 return new_folio; 1064 } 1065 1066 static int 1067 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1068 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1069 unsigned long end) 1070 { 1071 struct mm_struct *dst_mm = dst_vma->vm_mm; 1072 struct mm_struct *src_mm = src_vma->vm_mm; 1073 pte_t *orig_src_pte, *orig_dst_pte; 1074 pte_t *src_pte, *dst_pte; 1075 pmd_t dummy_pmdval; 1076 pte_t ptent; 1077 spinlock_t *src_ptl, *dst_ptl; 1078 int progress, max_nr, ret = 0; 1079 int rss[NR_MM_COUNTERS]; 1080 swp_entry_t entry = (swp_entry_t){0}; 1081 struct folio *prealloc = NULL; 1082 int nr; 1083 1084 again: 1085 progress = 0; 1086 init_rss_vec(rss); 1087 1088 /* 1089 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1090 * error handling here, assume that exclusive mmap_lock on dst and src 1091 * protects anon from unexpected THP transitions; with shmem and file 1092 * protected by mmap_lock-less collapse skipping areas with anon_vma 1093 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1094 * can remove such assumptions later, but this is good enough for now. 1095 */ 1096 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1097 if (!dst_pte) { 1098 ret = -ENOMEM; 1099 goto out; 1100 } 1101 1102 /* 1103 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1104 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1105 * the PTE page is stable, and there is no need to get pmdval and do 1106 * pmd_same() check. 1107 */ 1108 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1109 &src_ptl); 1110 if (!src_pte) { 1111 pte_unmap_unlock(dst_pte, dst_ptl); 1112 /* ret == 0 */ 1113 goto out; 1114 } 1115 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1116 orig_src_pte = src_pte; 1117 orig_dst_pte = dst_pte; 1118 arch_enter_lazy_mmu_mode(); 1119 1120 do { 1121 nr = 1; 1122 1123 /* 1124 * We are holding two locks at this point - either of them 1125 * could generate latencies in another task on another CPU. 1126 */ 1127 if (progress >= 32) { 1128 progress = 0; 1129 if (need_resched() || 1130 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1131 break; 1132 } 1133 ptent = ptep_get(src_pte); 1134 if (pte_none(ptent)) { 1135 progress++; 1136 continue; 1137 } 1138 if (unlikely(!pte_present(ptent))) { 1139 ret = copy_nonpresent_pte(dst_mm, src_mm, 1140 dst_pte, src_pte, 1141 dst_vma, src_vma, 1142 addr, rss); 1143 if (ret == -EIO) { 1144 entry = pte_to_swp_entry(ptep_get(src_pte)); 1145 break; 1146 } else if (ret == -EBUSY) { 1147 break; 1148 } else if (!ret) { 1149 progress += 8; 1150 continue; 1151 } 1152 ptent = ptep_get(src_pte); 1153 VM_WARN_ON_ONCE(!pte_present(ptent)); 1154 1155 /* 1156 * Device exclusive entry restored, continue by copying 1157 * the now present pte. 1158 */ 1159 WARN_ON_ONCE(ret != -ENOENT); 1160 } 1161 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1162 max_nr = (end - addr) / PAGE_SIZE; 1163 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1164 ptent, addr, max_nr, rss, &prealloc); 1165 /* 1166 * If we need a pre-allocated page for this pte, drop the 1167 * locks, allocate, and try again. 1168 * If copy failed due to hwpoison in source page, break out. 1169 */ 1170 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1171 break; 1172 if (unlikely(prealloc)) { 1173 /* 1174 * pre-alloc page cannot be reused by next time so as 1175 * to strictly follow mempolicy (e.g., alloc_page_vma() 1176 * will allocate page according to address). This 1177 * could only happen if one pinned pte changed. 1178 */ 1179 folio_put(prealloc); 1180 prealloc = NULL; 1181 } 1182 nr = ret; 1183 progress += 8 * nr; 1184 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1185 addr != end); 1186 1187 arch_leave_lazy_mmu_mode(); 1188 pte_unmap_unlock(orig_src_pte, src_ptl); 1189 add_mm_rss_vec(dst_mm, rss); 1190 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1191 cond_resched(); 1192 1193 if (ret == -EIO) { 1194 VM_WARN_ON_ONCE(!entry.val); 1195 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1196 ret = -ENOMEM; 1197 goto out; 1198 } 1199 entry.val = 0; 1200 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1201 goto out; 1202 } else if (ret == -EAGAIN) { 1203 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1204 if (!prealloc) 1205 return -ENOMEM; 1206 } else if (ret < 0) { 1207 VM_WARN_ON_ONCE(1); 1208 } 1209 1210 /* We've captured and resolved the error. Reset, try again. */ 1211 ret = 0; 1212 1213 if (addr != end) 1214 goto again; 1215 out: 1216 if (unlikely(prealloc)) 1217 folio_put(prealloc); 1218 return ret; 1219 } 1220 1221 static inline int 1222 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1223 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1224 unsigned long end) 1225 { 1226 struct mm_struct *dst_mm = dst_vma->vm_mm; 1227 struct mm_struct *src_mm = src_vma->vm_mm; 1228 pmd_t *src_pmd, *dst_pmd; 1229 unsigned long next; 1230 1231 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1232 if (!dst_pmd) 1233 return -ENOMEM; 1234 src_pmd = pmd_offset(src_pud, addr); 1235 do { 1236 next = pmd_addr_end(addr, end); 1237 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1238 || pmd_devmap(*src_pmd)) { 1239 int err; 1240 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1241 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1242 addr, dst_vma, src_vma); 1243 if (err == -ENOMEM) 1244 return -ENOMEM; 1245 if (!err) 1246 continue; 1247 /* fall through */ 1248 } 1249 if (pmd_none_or_clear_bad(src_pmd)) 1250 continue; 1251 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1252 addr, next)) 1253 return -ENOMEM; 1254 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1255 return 0; 1256 } 1257 1258 static inline int 1259 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1260 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1261 unsigned long end) 1262 { 1263 struct mm_struct *dst_mm = dst_vma->vm_mm; 1264 struct mm_struct *src_mm = src_vma->vm_mm; 1265 pud_t *src_pud, *dst_pud; 1266 unsigned long next; 1267 1268 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1269 if (!dst_pud) 1270 return -ENOMEM; 1271 src_pud = pud_offset(src_p4d, addr); 1272 do { 1273 next = pud_addr_end(addr, end); 1274 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1275 int err; 1276 1277 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1278 err = copy_huge_pud(dst_mm, src_mm, 1279 dst_pud, src_pud, addr, src_vma); 1280 if (err == -ENOMEM) 1281 return -ENOMEM; 1282 if (!err) 1283 continue; 1284 /* fall through */ 1285 } 1286 if (pud_none_or_clear_bad(src_pud)) 1287 continue; 1288 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1289 addr, next)) 1290 return -ENOMEM; 1291 } while (dst_pud++, src_pud++, addr = next, addr != end); 1292 return 0; 1293 } 1294 1295 static inline int 1296 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1297 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1298 unsigned long end) 1299 { 1300 struct mm_struct *dst_mm = dst_vma->vm_mm; 1301 p4d_t *src_p4d, *dst_p4d; 1302 unsigned long next; 1303 1304 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1305 if (!dst_p4d) 1306 return -ENOMEM; 1307 src_p4d = p4d_offset(src_pgd, addr); 1308 do { 1309 next = p4d_addr_end(addr, end); 1310 if (p4d_none_or_clear_bad(src_p4d)) 1311 continue; 1312 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1313 addr, next)) 1314 return -ENOMEM; 1315 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1316 return 0; 1317 } 1318 1319 /* 1320 * Return true if the vma needs to copy the pgtable during this fork(). Return 1321 * false when we can speed up fork() by allowing lazy page faults later until 1322 * when the child accesses the memory range. 1323 */ 1324 static bool 1325 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1326 { 1327 /* 1328 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1329 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1330 * contains uffd-wp protection information, that's something we can't 1331 * retrieve from page cache, and skip copying will lose those info. 1332 */ 1333 if (userfaultfd_wp(dst_vma)) 1334 return true; 1335 1336 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1337 return true; 1338 1339 if (src_vma->anon_vma) 1340 return true; 1341 1342 /* 1343 * Don't copy ptes where a page fault will fill them correctly. Fork 1344 * becomes much lighter when there are big shared or private readonly 1345 * mappings. The tradeoff is that copy_page_range is more efficient 1346 * than faulting. 1347 */ 1348 return false; 1349 } 1350 1351 int 1352 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1353 { 1354 pgd_t *src_pgd, *dst_pgd; 1355 unsigned long next; 1356 unsigned long addr = src_vma->vm_start; 1357 unsigned long end = src_vma->vm_end; 1358 struct mm_struct *dst_mm = dst_vma->vm_mm; 1359 struct mm_struct *src_mm = src_vma->vm_mm; 1360 struct mmu_notifier_range range; 1361 bool is_cow; 1362 int ret; 1363 1364 if (!vma_needs_copy(dst_vma, src_vma)) 1365 return 0; 1366 1367 if (is_vm_hugetlb_page(src_vma)) 1368 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1369 1370 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1371 /* 1372 * We do not free on error cases below as remove_vma 1373 * gets called on error from higher level routine 1374 */ 1375 ret = track_pfn_copy(src_vma); 1376 if (ret) 1377 return ret; 1378 } 1379 1380 /* 1381 * We need to invalidate the secondary MMU mappings only when 1382 * there could be a permission downgrade on the ptes of the 1383 * parent mm. And a permission downgrade will only happen if 1384 * is_cow_mapping() returns true. 1385 */ 1386 is_cow = is_cow_mapping(src_vma->vm_flags); 1387 1388 if (is_cow) { 1389 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1390 0, src_mm, addr, end); 1391 mmu_notifier_invalidate_range_start(&range); 1392 /* 1393 * Disabling preemption is not needed for the write side, as 1394 * the read side doesn't spin, but goes to the mmap_lock. 1395 * 1396 * Use the raw variant of the seqcount_t write API to avoid 1397 * lockdep complaining about preemptibility. 1398 */ 1399 vma_assert_write_locked(src_vma); 1400 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1401 } 1402 1403 ret = 0; 1404 dst_pgd = pgd_offset(dst_mm, addr); 1405 src_pgd = pgd_offset(src_mm, addr); 1406 do { 1407 next = pgd_addr_end(addr, end); 1408 if (pgd_none_or_clear_bad(src_pgd)) 1409 continue; 1410 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1411 addr, next))) { 1412 untrack_pfn_clear(dst_vma); 1413 ret = -ENOMEM; 1414 break; 1415 } 1416 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1417 1418 if (is_cow) { 1419 raw_write_seqcount_end(&src_mm->write_protect_seq); 1420 mmu_notifier_invalidate_range_end(&range); 1421 } 1422 return ret; 1423 } 1424 1425 /* Whether we should zap all COWed (private) pages too */ 1426 static inline bool should_zap_cows(struct zap_details *details) 1427 { 1428 /* By default, zap all pages */ 1429 if (!details || details->reclaim_pt) 1430 return true; 1431 1432 /* Or, we zap COWed pages only if the caller wants to */ 1433 return details->even_cows; 1434 } 1435 1436 /* Decides whether we should zap this folio with the folio pointer specified */ 1437 static inline bool should_zap_folio(struct zap_details *details, 1438 struct folio *folio) 1439 { 1440 /* If we can make a decision without *folio.. */ 1441 if (should_zap_cows(details)) 1442 return true; 1443 1444 /* Otherwise we should only zap non-anon folios */ 1445 return !folio_test_anon(folio); 1446 } 1447 1448 static inline bool zap_drop_markers(struct zap_details *details) 1449 { 1450 if (!details) 1451 return false; 1452 1453 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1454 } 1455 1456 /* 1457 * This function makes sure that we'll replace the none pte with an uffd-wp 1458 * swap special pte marker when necessary. Must be with the pgtable lock held. 1459 * 1460 * Returns true if uffd-wp ptes was installed, false otherwise. 1461 */ 1462 static inline bool 1463 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1464 unsigned long addr, pte_t *pte, int nr, 1465 struct zap_details *details, pte_t pteval) 1466 { 1467 bool was_installed = false; 1468 1469 #ifdef CONFIG_PTE_MARKER_UFFD_WP 1470 /* Zap on anonymous always means dropping everything */ 1471 if (vma_is_anonymous(vma)) 1472 return false; 1473 1474 if (zap_drop_markers(details)) 1475 return false; 1476 1477 for (;;) { 1478 /* the PFN in the PTE is irrelevant. */ 1479 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1480 was_installed = true; 1481 if (--nr == 0) 1482 break; 1483 pte++; 1484 addr += PAGE_SIZE; 1485 } 1486 #endif 1487 return was_installed; 1488 } 1489 1490 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1491 struct vm_area_struct *vma, struct folio *folio, 1492 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1493 unsigned long addr, struct zap_details *details, int *rss, 1494 bool *force_flush, bool *force_break, bool *any_skipped) 1495 { 1496 struct mm_struct *mm = tlb->mm; 1497 bool delay_rmap = false; 1498 1499 if (!folio_test_anon(folio)) { 1500 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1501 if (pte_dirty(ptent)) { 1502 folio_mark_dirty(folio); 1503 if (tlb_delay_rmap(tlb)) { 1504 delay_rmap = true; 1505 *force_flush = true; 1506 } 1507 } 1508 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1509 folio_mark_accessed(folio); 1510 rss[mm_counter(folio)] -= nr; 1511 } else { 1512 /* We don't need up-to-date accessed/dirty bits. */ 1513 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1514 rss[MM_ANONPAGES] -= nr; 1515 } 1516 /* Checking a single PTE in a batch is sufficient. */ 1517 arch_check_zapped_pte(vma, ptent); 1518 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1519 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1520 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1521 nr, details, ptent); 1522 1523 if (!delay_rmap) { 1524 folio_remove_rmap_ptes(folio, page, nr, vma); 1525 1526 if (unlikely(folio_mapcount(folio) < 0)) 1527 print_bad_pte(vma, addr, ptent, page); 1528 } 1529 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1530 *force_flush = true; 1531 *force_break = true; 1532 } 1533 } 1534 1535 /* 1536 * Zap or skip at least one present PTE, trying to batch-process subsequent 1537 * PTEs that map consecutive pages of the same folio. 1538 * 1539 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1540 */ 1541 static inline int zap_present_ptes(struct mmu_gather *tlb, 1542 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1543 unsigned int max_nr, unsigned long addr, 1544 struct zap_details *details, int *rss, bool *force_flush, 1545 bool *force_break, bool *any_skipped) 1546 { 1547 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1548 struct mm_struct *mm = tlb->mm; 1549 struct folio *folio; 1550 struct page *page; 1551 int nr; 1552 1553 page = vm_normal_page(vma, addr, ptent); 1554 if (!page) { 1555 /* We don't need up-to-date accessed/dirty bits. */ 1556 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1557 arch_check_zapped_pte(vma, ptent); 1558 tlb_remove_tlb_entry(tlb, pte, addr); 1559 if (userfaultfd_pte_wp(vma, ptent)) 1560 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1561 pte, 1, details, ptent); 1562 ksm_might_unmap_zero_page(mm, ptent); 1563 return 1; 1564 } 1565 1566 folio = page_folio(page); 1567 if (unlikely(!should_zap_folio(details, folio))) { 1568 *any_skipped = true; 1569 return 1; 1570 } 1571 1572 /* 1573 * Make sure that the common "small folio" case is as fast as possible 1574 * by keeping the batching logic separate. 1575 */ 1576 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1577 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1578 NULL, NULL, NULL); 1579 1580 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1581 addr, details, rss, force_flush, 1582 force_break, any_skipped); 1583 return nr; 1584 } 1585 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1586 details, rss, force_flush, force_break, any_skipped); 1587 return 1; 1588 } 1589 1590 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1591 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1592 unsigned int max_nr, unsigned long addr, 1593 struct zap_details *details, int *rss, bool *any_skipped) 1594 { 1595 swp_entry_t entry; 1596 int nr = 1; 1597 1598 *any_skipped = true; 1599 entry = pte_to_swp_entry(ptent); 1600 if (is_device_private_entry(entry) || 1601 is_device_exclusive_entry(entry)) { 1602 struct page *page = pfn_swap_entry_to_page(entry); 1603 struct folio *folio = page_folio(page); 1604 1605 if (unlikely(!should_zap_folio(details, folio))) 1606 return 1; 1607 /* 1608 * Both device private/exclusive mappings should only 1609 * work with anonymous page so far, so we don't need to 1610 * consider uffd-wp bit when zap. For more information, 1611 * see zap_install_uffd_wp_if_needed(). 1612 */ 1613 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1614 rss[mm_counter(folio)]--; 1615 folio_remove_rmap_pte(folio, page, vma); 1616 folio_put(folio); 1617 } else if (!non_swap_entry(entry)) { 1618 /* Genuine swap entries, hence a private anon pages */ 1619 if (!should_zap_cows(details)) 1620 return 1; 1621 1622 nr = swap_pte_batch(pte, max_nr, ptent); 1623 rss[MM_SWAPENTS] -= nr; 1624 free_swap_and_cache_nr(entry, nr); 1625 } else if (is_migration_entry(entry)) { 1626 struct folio *folio = pfn_swap_entry_folio(entry); 1627 1628 if (!should_zap_folio(details, folio)) 1629 return 1; 1630 rss[mm_counter(folio)]--; 1631 } else if (pte_marker_entry_uffd_wp(entry)) { 1632 /* 1633 * For anon: always drop the marker; for file: only 1634 * drop the marker if explicitly requested. 1635 */ 1636 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1637 return 1; 1638 } else if (is_guard_swp_entry(entry)) { 1639 /* 1640 * Ordinary zapping should not remove guard PTE 1641 * markers. Only do so if we should remove PTE markers 1642 * in general. 1643 */ 1644 if (!zap_drop_markers(details)) 1645 return 1; 1646 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { 1647 if (!should_zap_cows(details)) 1648 return 1; 1649 } else { 1650 /* We should have covered all the swap entry types */ 1651 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1652 WARN_ON_ONCE(1); 1653 } 1654 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1655 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1656 1657 return nr; 1658 } 1659 1660 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1661 struct vm_area_struct *vma, pte_t *pte, 1662 unsigned long addr, unsigned long end, 1663 struct zap_details *details, int *rss, 1664 bool *force_flush, bool *force_break, 1665 bool *any_skipped) 1666 { 1667 pte_t ptent = ptep_get(pte); 1668 int max_nr = (end - addr) / PAGE_SIZE; 1669 int nr = 0; 1670 1671 /* Skip all consecutive none ptes */ 1672 if (pte_none(ptent)) { 1673 for (nr = 1; nr < max_nr; nr++) { 1674 ptent = ptep_get(pte + nr); 1675 if (!pte_none(ptent)) 1676 break; 1677 } 1678 max_nr -= nr; 1679 if (!max_nr) 1680 return nr; 1681 pte += nr; 1682 addr += nr * PAGE_SIZE; 1683 } 1684 1685 if (pte_present(ptent)) 1686 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1687 details, rss, force_flush, force_break, 1688 any_skipped); 1689 else 1690 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1691 details, rss, any_skipped); 1692 1693 return nr; 1694 } 1695 1696 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1697 struct vm_area_struct *vma, pmd_t *pmd, 1698 unsigned long addr, unsigned long end, 1699 struct zap_details *details) 1700 { 1701 bool force_flush = false, force_break = false; 1702 struct mm_struct *mm = tlb->mm; 1703 int rss[NR_MM_COUNTERS]; 1704 spinlock_t *ptl; 1705 pte_t *start_pte; 1706 pte_t *pte; 1707 pmd_t pmdval; 1708 unsigned long start = addr; 1709 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1710 bool direct_reclaim = true; 1711 int nr; 1712 1713 retry: 1714 tlb_change_page_size(tlb, PAGE_SIZE); 1715 init_rss_vec(rss); 1716 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1717 if (!pte) 1718 return addr; 1719 1720 flush_tlb_batched_pending(mm); 1721 arch_enter_lazy_mmu_mode(); 1722 do { 1723 bool any_skipped = false; 1724 1725 if (need_resched()) { 1726 direct_reclaim = false; 1727 break; 1728 } 1729 1730 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1731 &force_flush, &force_break, &any_skipped); 1732 if (any_skipped) 1733 can_reclaim_pt = false; 1734 if (unlikely(force_break)) { 1735 addr += nr * PAGE_SIZE; 1736 direct_reclaim = false; 1737 break; 1738 } 1739 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1740 1741 /* 1742 * Fast path: try to hold the pmd lock and unmap the PTE page. 1743 * 1744 * If the pte lock was released midway (retry case), or if the attempt 1745 * to hold the pmd lock failed, then we need to recheck all pte entries 1746 * to ensure they are still none, thereby preventing the pte entries 1747 * from being repopulated by another thread. 1748 */ 1749 if (can_reclaim_pt && direct_reclaim && addr == end) 1750 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1751 1752 add_mm_rss_vec(mm, rss); 1753 arch_leave_lazy_mmu_mode(); 1754 1755 /* Do the actual TLB flush before dropping ptl */ 1756 if (force_flush) { 1757 tlb_flush_mmu_tlbonly(tlb); 1758 tlb_flush_rmaps(tlb, vma); 1759 } 1760 pte_unmap_unlock(start_pte, ptl); 1761 1762 /* 1763 * If we forced a TLB flush (either due to running out of 1764 * batch buffers or because we needed to flush dirty TLB 1765 * entries before releasing the ptl), free the batched 1766 * memory too. Come back again if we didn't do everything. 1767 */ 1768 if (force_flush) 1769 tlb_flush_mmu(tlb); 1770 1771 if (addr != end) { 1772 cond_resched(); 1773 force_flush = false; 1774 force_break = false; 1775 goto retry; 1776 } 1777 1778 if (can_reclaim_pt) { 1779 if (direct_reclaim) 1780 free_pte(mm, start, tlb, pmdval); 1781 else 1782 try_to_free_pte(mm, pmd, start, tlb); 1783 } 1784 1785 return addr; 1786 } 1787 1788 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1789 struct vm_area_struct *vma, pud_t *pud, 1790 unsigned long addr, unsigned long end, 1791 struct zap_details *details) 1792 { 1793 pmd_t *pmd; 1794 unsigned long next; 1795 1796 pmd = pmd_offset(pud, addr); 1797 do { 1798 next = pmd_addr_end(addr, end); 1799 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1800 if (next - addr != HPAGE_PMD_SIZE) 1801 __split_huge_pmd(vma, pmd, addr, false, NULL); 1802 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1803 addr = next; 1804 continue; 1805 } 1806 /* fall through */ 1807 } else if (details && details->single_folio && 1808 folio_test_pmd_mappable(details->single_folio) && 1809 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1810 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1811 /* 1812 * Take and drop THP pmd lock so that we cannot return 1813 * prematurely, while zap_huge_pmd() has cleared *pmd, 1814 * but not yet decremented compound_mapcount(). 1815 */ 1816 spin_unlock(ptl); 1817 } 1818 if (pmd_none(*pmd)) { 1819 addr = next; 1820 continue; 1821 } 1822 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1823 if (addr != next) 1824 pmd--; 1825 } while (pmd++, cond_resched(), addr != end); 1826 1827 return addr; 1828 } 1829 1830 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1831 struct vm_area_struct *vma, p4d_t *p4d, 1832 unsigned long addr, unsigned long end, 1833 struct zap_details *details) 1834 { 1835 pud_t *pud; 1836 unsigned long next; 1837 1838 pud = pud_offset(p4d, addr); 1839 do { 1840 next = pud_addr_end(addr, end); 1841 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1842 if (next - addr != HPAGE_PUD_SIZE) { 1843 mmap_assert_locked(tlb->mm); 1844 split_huge_pud(vma, pud, addr); 1845 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1846 goto next; 1847 /* fall through */ 1848 } 1849 if (pud_none_or_clear_bad(pud)) 1850 continue; 1851 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1852 next: 1853 cond_resched(); 1854 } while (pud++, addr = next, addr != end); 1855 1856 return addr; 1857 } 1858 1859 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1860 struct vm_area_struct *vma, pgd_t *pgd, 1861 unsigned long addr, unsigned long end, 1862 struct zap_details *details) 1863 { 1864 p4d_t *p4d; 1865 unsigned long next; 1866 1867 p4d = p4d_offset(pgd, addr); 1868 do { 1869 next = p4d_addr_end(addr, end); 1870 if (p4d_none_or_clear_bad(p4d)) 1871 continue; 1872 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1873 } while (p4d++, addr = next, addr != end); 1874 1875 return addr; 1876 } 1877 1878 void unmap_page_range(struct mmu_gather *tlb, 1879 struct vm_area_struct *vma, 1880 unsigned long addr, unsigned long end, 1881 struct zap_details *details) 1882 { 1883 pgd_t *pgd; 1884 unsigned long next; 1885 1886 BUG_ON(addr >= end); 1887 tlb_start_vma(tlb, vma); 1888 pgd = pgd_offset(vma->vm_mm, addr); 1889 do { 1890 next = pgd_addr_end(addr, end); 1891 if (pgd_none_or_clear_bad(pgd)) 1892 continue; 1893 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1894 } while (pgd++, addr = next, addr != end); 1895 tlb_end_vma(tlb, vma); 1896 } 1897 1898 1899 static void unmap_single_vma(struct mmu_gather *tlb, 1900 struct vm_area_struct *vma, unsigned long start_addr, 1901 unsigned long end_addr, 1902 struct zap_details *details, bool mm_wr_locked) 1903 { 1904 unsigned long start = max(vma->vm_start, start_addr); 1905 unsigned long end; 1906 1907 if (start >= vma->vm_end) 1908 return; 1909 end = min(vma->vm_end, end_addr); 1910 if (end <= vma->vm_start) 1911 return; 1912 1913 if (vma->vm_file) 1914 uprobe_munmap(vma, start, end); 1915 1916 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1917 untrack_pfn(vma, 0, 0, mm_wr_locked); 1918 1919 if (start != end) { 1920 if (unlikely(is_vm_hugetlb_page(vma))) { 1921 /* 1922 * It is undesirable to test vma->vm_file as it 1923 * should be non-null for valid hugetlb area. 1924 * However, vm_file will be NULL in the error 1925 * cleanup path of mmap_region. When 1926 * hugetlbfs ->mmap method fails, 1927 * mmap_region() nullifies vma->vm_file 1928 * before calling this function to clean up. 1929 * Since no pte has actually been setup, it is 1930 * safe to do nothing in this case. 1931 */ 1932 if (vma->vm_file) { 1933 zap_flags_t zap_flags = details ? 1934 details->zap_flags : 0; 1935 __unmap_hugepage_range(tlb, vma, start, end, 1936 NULL, zap_flags); 1937 } 1938 } else 1939 unmap_page_range(tlb, vma, start, end, details); 1940 } 1941 } 1942 1943 /** 1944 * unmap_vmas - unmap a range of memory covered by a list of vma's 1945 * @tlb: address of the caller's struct mmu_gather 1946 * @mas: the maple state 1947 * @vma: the starting vma 1948 * @start_addr: virtual address at which to start unmapping 1949 * @end_addr: virtual address at which to end unmapping 1950 * @tree_end: The maximum index to check 1951 * @mm_wr_locked: lock flag 1952 * 1953 * Unmap all pages in the vma list. 1954 * 1955 * Only addresses between `start' and `end' will be unmapped. 1956 * 1957 * The VMA list must be sorted in ascending virtual address order. 1958 * 1959 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1960 * range after unmap_vmas() returns. So the only responsibility here is to 1961 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1962 * drops the lock and schedules. 1963 */ 1964 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1965 struct vm_area_struct *vma, unsigned long start_addr, 1966 unsigned long end_addr, unsigned long tree_end, 1967 bool mm_wr_locked) 1968 { 1969 struct mmu_notifier_range range; 1970 struct zap_details details = { 1971 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1972 /* Careful - we need to zap private pages too! */ 1973 .even_cows = true, 1974 }; 1975 1976 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1977 start_addr, end_addr); 1978 mmu_notifier_invalidate_range_start(&range); 1979 do { 1980 unsigned long start = start_addr; 1981 unsigned long end = end_addr; 1982 hugetlb_zap_begin(vma, &start, &end); 1983 unmap_single_vma(tlb, vma, start, end, &details, 1984 mm_wr_locked); 1985 hugetlb_zap_end(vma, &details); 1986 vma = mas_find(mas, tree_end - 1); 1987 } while (vma && likely(!xa_is_zero(vma))); 1988 mmu_notifier_invalidate_range_end(&range); 1989 } 1990 1991 /** 1992 * zap_page_range_single - remove user pages in a given range 1993 * @vma: vm_area_struct holding the applicable pages 1994 * @address: starting address of pages to zap 1995 * @size: number of bytes to zap 1996 * @details: details of shared cache invalidation 1997 * 1998 * The range must fit into one VMA. 1999 */ 2000 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2001 unsigned long size, struct zap_details *details) 2002 { 2003 const unsigned long end = address + size; 2004 struct mmu_notifier_range range; 2005 struct mmu_gather tlb; 2006 2007 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2008 address, end); 2009 hugetlb_zap_begin(vma, &range.start, &range.end); 2010 tlb_gather_mmu(&tlb, vma->vm_mm); 2011 update_hiwater_rss(vma->vm_mm); 2012 mmu_notifier_invalidate_range_start(&range); 2013 /* 2014 * unmap 'address-end' not 'range.start-range.end' as range 2015 * could have been expanded for hugetlb pmd sharing. 2016 */ 2017 unmap_single_vma(&tlb, vma, address, end, details, false); 2018 mmu_notifier_invalidate_range_end(&range); 2019 tlb_finish_mmu(&tlb); 2020 hugetlb_zap_end(vma, details); 2021 } 2022 2023 /** 2024 * zap_vma_ptes - remove ptes mapping the vma 2025 * @vma: vm_area_struct holding ptes to be zapped 2026 * @address: starting address of pages to zap 2027 * @size: number of bytes to zap 2028 * 2029 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2030 * 2031 * The entire address range must be fully contained within the vma. 2032 * 2033 */ 2034 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2035 unsigned long size) 2036 { 2037 if (!range_in_vma(vma, address, address + size) || 2038 !(vma->vm_flags & VM_PFNMAP)) 2039 return; 2040 2041 zap_page_range_single(vma, address, size, NULL); 2042 } 2043 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2044 2045 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2046 { 2047 pgd_t *pgd; 2048 p4d_t *p4d; 2049 pud_t *pud; 2050 pmd_t *pmd; 2051 2052 pgd = pgd_offset(mm, addr); 2053 p4d = p4d_alloc(mm, pgd, addr); 2054 if (!p4d) 2055 return NULL; 2056 pud = pud_alloc(mm, p4d, addr); 2057 if (!pud) 2058 return NULL; 2059 pmd = pmd_alloc(mm, pud, addr); 2060 if (!pmd) 2061 return NULL; 2062 2063 VM_BUG_ON(pmd_trans_huge(*pmd)); 2064 return pmd; 2065 } 2066 2067 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2068 spinlock_t **ptl) 2069 { 2070 pmd_t *pmd = walk_to_pmd(mm, addr); 2071 2072 if (!pmd) 2073 return NULL; 2074 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2075 } 2076 2077 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2078 { 2079 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2080 /* 2081 * Whoever wants to forbid the zeropage after some zeropages 2082 * might already have been mapped has to scan the page tables and 2083 * bail out on any zeropages. Zeropages in COW mappings can 2084 * be unshared using FAULT_FLAG_UNSHARE faults. 2085 */ 2086 if (mm_forbids_zeropage(vma->vm_mm)) 2087 return false; 2088 /* zeropages in COW mappings are common and unproblematic. */ 2089 if (is_cow_mapping(vma->vm_flags)) 2090 return true; 2091 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2092 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2093 return true; 2094 /* 2095 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2096 * find the shared zeropage and longterm-pin it, which would 2097 * be problematic as soon as the zeropage gets replaced by a different 2098 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2099 * now differ to what GUP looked up. FSDAX is incompatible to 2100 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2101 * check_vma_flags). 2102 */ 2103 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2104 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2105 } 2106 2107 static int validate_page_before_insert(struct vm_area_struct *vma, 2108 struct page *page) 2109 { 2110 struct folio *folio = page_folio(page); 2111 2112 if (!folio_ref_count(folio)) 2113 return -EINVAL; 2114 if (unlikely(is_zero_folio(folio))) { 2115 if (!vm_mixed_zeropage_allowed(vma)) 2116 return -EINVAL; 2117 return 0; 2118 } 2119 if (folio_test_anon(folio) || folio_test_slab(folio) || 2120 page_has_type(page)) 2121 return -EINVAL; 2122 flush_dcache_folio(folio); 2123 return 0; 2124 } 2125 2126 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2127 unsigned long addr, struct page *page, pgprot_t prot) 2128 { 2129 struct folio *folio = page_folio(page); 2130 pte_t pteval; 2131 2132 if (!pte_none(ptep_get(pte))) 2133 return -EBUSY; 2134 /* Ok, finally just insert the thing.. */ 2135 pteval = mk_pte(page, prot); 2136 if (unlikely(is_zero_folio(folio))) { 2137 pteval = pte_mkspecial(pteval); 2138 } else { 2139 folio_get(folio); 2140 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2141 folio_add_file_rmap_pte(folio, page, vma); 2142 } 2143 set_pte_at(vma->vm_mm, addr, pte, pteval); 2144 return 0; 2145 } 2146 2147 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2148 struct page *page, pgprot_t prot) 2149 { 2150 int retval; 2151 pte_t *pte; 2152 spinlock_t *ptl; 2153 2154 retval = validate_page_before_insert(vma, page); 2155 if (retval) 2156 goto out; 2157 retval = -ENOMEM; 2158 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2159 if (!pte) 2160 goto out; 2161 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 2162 pte_unmap_unlock(pte, ptl); 2163 out: 2164 return retval; 2165 } 2166 2167 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2168 unsigned long addr, struct page *page, pgprot_t prot) 2169 { 2170 int err; 2171 2172 err = validate_page_before_insert(vma, page); 2173 if (err) 2174 return err; 2175 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 2176 } 2177 2178 /* insert_pages() amortizes the cost of spinlock operations 2179 * when inserting pages in a loop. 2180 */ 2181 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2182 struct page **pages, unsigned long *num, pgprot_t prot) 2183 { 2184 pmd_t *pmd = NULL; 2185 pte_t *start_pte, *pte; 2186 spinlock_t *pte_lock; 2187 struct mm_struct *const mm = vma->vm_mm; 2188 unsigned long curr_page_idx = 0; 2189 unsigned long remaining_pages_total = *num; 2190 unsigned long pages_to_write_in_pmd; 2191 int ret; 2192 more: 2193 ret = -EFAULT; 2194 pmd = walk_to_pmd(mm, addr); 2195 if (!pmd) 2196 goto out; 2197 2198 pages_to_write_in_pmd = min_t(unsigned long, 2199 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2200 2201 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2202 ret = -ENOMEM; 2203 if (pte_alloc(mm, pmd)) 2204 goto out; 2205 2206 while (pages_to_write_in_pmd) { 2207 int pte_idx = 0; 2208 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2209 2210 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2211 if (!start_pte) { 2212 ret = -EFAULT; 2213 goto out; 2214 } 2215 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2216 int err = insert_page_in_batch_locked(vma, pte, 2217 addr, pages[curr_page_idx], prot); 2218 if (unlikely(err)) { 2219 pte_unmap_unlock(start_pte, pte_lock); 2220 ret = err; 2221 remaining_pages_total -= pte_idx; 2222 goto out; 2223 } 2224 addr += PAGE_SIZE; 2225 ++curr_page_idx; 2226 } 2227 pte_unmap_unlock(start_pte, pte_lock); 2228 pages_to_write_in_pmd -= batch_size; 2229 remaining_pages_total -= batch_size; 2230 } 2231 if (remaining_pages_total) 2232 goto more; 2233 ret = 0; 2234 out: 2235 *num = remaining_pages_total; 2236 return ret; 2237 } 2238 2239 /** 2240 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2241 * @vma: user vma to map to 2242 * @addr: target start user address of these pages 2243 * @pages: source kernel pages 2244 * @num: in: number of pages to map. out: number of pages that were *not* 2245 * mapped. (0 means all pages were successfully mapped). 2246 * 2247 * Preferred over vm_insert_page() when inserting multiple pages. 2248 * 2249 * In case of error, we may have mapped a subset of the provided 2250 * pages. It is the caller's responsibility to account for this case. 2251 * 2252 * The same restrictions apply as in vm_insert_page(). 2253 */ 2254 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2255 struct page **pages, unsigned long *num) 2256 { 2257 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2258 2259 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2260 return -EFAULT; 2261 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2262 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2263 BUG_ON(vma->vm_flags & VM_PFNMAP); 2264 vm_flags_set(vma, VM_MIXEDMAP); 2265 } 2266 /* Defer page refcount checking till we're about to map that page. */ 2267 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2268 } 2269 EXPORT_SYMBOL(vm_insert_pages); 2270 2271 /** 2272 * vm_insert_page - insert single page into user vma 2273 * @vma: user vma to map to 2274 * @addr: target user address of this page 2275 * @page: source kernel page 2276 * 2277 * This allows drivers to insert individual pages they've allocated 2278 * into a user vma. The zeropage is supported in some VMAs, 2279 * see vm_mixed_zeropage_allowed(). 2280 * 2281 * The page has to be a nice clean _individual_ kernel allocation. 2282 * If you allocate a compound page, you need to have marked it as 2283 * such (__GFP_COMP), or manually just split the page up yourself 2284 * (see split_page()). 2285 * 2286 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2287 * took an arbitrary page protection parameter. This doesn't allow 2288 * that. Your vma protection will have to be set up correctly, which 2289 * means that if you want a shared writable mapping, you'd better 2290 * ask for a shared writable mapping! 2291 * 2292 * The page does not need to be reserved. 2293 * 2294 * Usually this function is called from f_op->mmap() handler 2295 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2296 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2297 * function from other places, for example from page-fault handler. 2298 * 2299 * Return: %0 on success, negative error code otherwise. 2300 */ 2301 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2302 struct page *page) 2303 { 2304 if (addr < vma->vm_start || addr >= vma->vm_end) 2305 return -EFAULT; 2306 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2307 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2308 BUG_ON(vma->vm_flags & VM_PFNMAP); 2309 vm_flags_set(vma, VM_MIXEDMAP); 2310 } 2311 return insert_page(vma, addr, page, vma->vm_page_prot); 2312 } 2313 EXPORT_SYMBOL(vm_insert_page); 2314 2315 /* 2316 * __vm_map_pages - maps range of kernel pages into user vma 2317 * @vma: user vma to map to 2318 * @pages: pointer to array of source kernel pages 2319 * @num: number of pages in page array 2320 * @offset: user's requested vm_pgoff 2321 * 2322 * This allows drivers to map range of kernel pages into a user vma. 2323 * The zeropage is supported in some VMAs, see 2324 * vm_mixed_zeropage_allowed(). 2325 * 2326 * Return: 0 on success and error code otherwise. 2327 */ 2328 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2329 unsigned long num, unsigned long offset) 2330 { 2331 unsigned long count = vma_pages(vma); 2332 unsigned long uaddr = vma->vm_start; 2333 int ret, i; 2334 2335 /* Fail if the user requested offset is beyond the end of the object */ 2336 if (offset >= num) 2337 return -ENXIO; 2338 2339 /* Fail if the user requested size exceeds available object size */ 2340 if (count > num - offset) 2341 return -ENXIO; 2342 2343 for (i = 0; i < count; i++) { 2344 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2345 if (ret < 0) 2346 return ret; 2347 uaddr += PAGE_SIZE; 2348 } 2349 2350 return 0; 2351 } 2352 2353 /** 2354 * vm_map_pages - maps range of kernel pages starts with non zero offset 2355 * @vma: user vma to map to 2356 * @pages: pointer to array of source kernel pages 2357 * @num: number of pages in page array 2358 * 2359 * Maps an object consisting of @num pages, catering for the user's 2360 * requested vm_pgoff 2361 * 2362 * If we fail to insert any page into the vma, the function will return 2363 * immediately leaving any previously inserted pages present. Callers 2364 * from the mmap handler may immediately return the error as their caller 2365 * will destroy the vma, removing any successfully inserted pages. Other 2366 * callers should make their own arrangements for calling unmap_region(). 2367 * 2368 * Context: Process context. Called by mmap handlers. 2369 * Return: 0 on success and error code otherwise. 2370 */ 2371 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2372 unsigned long num) 2373 { 2374 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2375 } 2376 EXPORT_SYMBOL(vm_map_pages); 2377 2378 /** 2379 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2380 * @vma: user vma to map to 2381 * @pages: pointer to array of source kernel pages 2382 * @num: number of pages in page array 2383 * 2384 * Similar to vm_map_pages(), except that it explicitly sets the offset 2385 * to 0. This function is intended for the drivers that did not consider 2386 * vm_pgoff. 2387 * 2388 * Context: Process context. Called by mmap handlers. 2389 * Return: 0 on success and error code otherwise. 2390 */ 2391 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2392 unsigned long num) 2393 { 2394 return __vm_map_pages(vma, pages, num, 0); 2395 } 2396 EXPORT_SYMBOL(vm_map_pages_zero); 2397 2398 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2399 pfn_t pfn, pgprot_t prot, bool mkwrite) 2400 { 2401 struct mm_struct *mm = vma->vm_mm; 2402 pte_t *pte, entry; 2403 spinlock_t *ptl; 2404 2405 pte = get_locked_pte(mm, addr, &ptl); 2406 if (!pte) 2407 return VM_FAULT_OOM; 2408 entry = ptep_get(pte); 2409 if (!pte_none(entry)) { 2410 if (mkwrite) { 2411 /* 2412 * For read faults on private mappings the PFN passed 2413 * in may not match the PFN we have mapped if the 2414 * mapped PFN is a writeable COW page. In the mkwrite 2415 * case we are creating a writable PTE for a shared 2416 * mapping and we expect the PFNs to match. If they 2417 * don't match, we are likely racing with block 2418 * allocation and mapping invalidation so just skip the 2419 * update. 2420 */ 2421 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2422 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2423 goto out_unlock; 2424 } 2425 entry = pte_mkyoung(entry); 2426 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2427 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2428 update_mmu_cache(vma, addr, pte); 2429 } 2430 goto out_unlock; 2431 } 2432 2433 /* Ok, finally just insert the thing.. */ 2434 if (pfn_t_devmap(pfn)) 2435 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2436 else 2437 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2438 2439 if (mkwrite) { 2440 entry = pte_mkyoung(entry); 2441 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2442 } 2443 2444 set_pte_at(mm, addr, pte, entry); 2445 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2446 2447 out_unlock: 2448 pte_unmap_unlock(pte, ptl); 2449 return VM_FAULT_NOPAGE; 2450 } 2451 2452 /** 2453 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2454 * @vma: user vma to map to 2455 * @addr: target user address of this page 2456 * @pfn: source kernel pfn 2457 * @pgprot: pgprot flags for the inserted page 2458 * 2459 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2460 * to override pgprot on a per-page basis. 2461 * 2462 * This only makes sense for IO mappings, and it makes no sense for 2463 * COW mappings. In general, using multiple vmas is preferable; 2464 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2465 * impractical. 2466 * 2467 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2468 * caching- and encryption bits different than those of @vma->vm_page_prot, 2469 * because the caching- or encryption mode may not be known at mmap() time. 2470 * 2471 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2472 * to set caching and encryption bits for those vmas (except for COW pages). 2473 * This is ensured by core vm only modifying these page table entries using 2474 * functions that don't touch caching- or encryption bits, using pte_modify() 2475 * if needed. (See for example mprotect()). 2476 * 2477 * Also when new page-table entries are created, this is only done using the 2478 * fault() callback, and never using the value of vma->vm_page_prot, 2479 * except for page-table entries that point to anonymous pages as the result 2480 * of COW. 2481 * 2482 * Context: Process context. May allocate using %GFP_KERNEL. 2483 * Return: vm_fault_t value. 2484 */ 2485 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2486 unsigned long pfn, pgprot_t pgprot) 2487 { 2488 /* 2489 * Technically, architectures with pte_special can avoid all these 2490 * restrictions (same for remap_pfn_range). However we would like 2491 * consistency in testing and feature parity among all, so we should 2492 * try to keep these invariants in place for everybody. 2493 */ 2494 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2495 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2496 (VM_PFNMAP|VM_MIXEDMAP)); 2497 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2498 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2499 2500 if (addr < vma->vm_start || addr >= vma->vm_end) 2501 return VM_FAULT_SIGBUS; 2502 2503 if (!pfn_modify_allowed(pfn, pgprot)) 2504 return VM_FAULT_SIGBUS; 2505 2506 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2507 2508 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2509 false); 2510 } 2511 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2512 2513 /** 2514 * vmf_insert_pfn - insert single pfn into user vma 2515 * @vma: user vma to map to 2516 * @addr: target user address of this page 2517 * @pfn: source kernel pfn 2518 * 2519 * Similar to vm_insert_page, this allows drivers to insert individual pages 2520 * they've allocated into a user vma. Same comments apply. 2521 * 2522 * This function should only be called from a vm_ops->fault handler, and 2523 * in that case the handler should return the result of this function. 2524 * 2525 * vma cannot be a COW mapping. 2526 * 2527 * As this is called only for pages that do not currently exist, we 2528 * do not need to flush old virtual caches or the TLB. 2529 * 2530 * Context: Process context. May allocate using %GFP_KERNEL. 2531 * Return: vm_fault_t value. 2532 */ 2533 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2534 unsigned long pfn) 2535 { 2536 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2537 } 2538 EXPORT_SYMBOL(vmf_insert_pfn); 2539 2540 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite) 2541 { 2542 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) && 2543 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2544 return false; 2545 /* these checks mirror the abort conditions in vm_normal_page */ 2546 if (vma->vm_flags & VM_MIXEDMAP) 2547 return true; 2548 if (pfn_t_devmap(pfn)) 2549 return true; 2550 if (pfn_t_special(pfn)) 2551 return true; 2552 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2553 return true; 2554 return false; 2555 } 2556 2557 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2558 unsigned long addr, pfn_t pfn, bool mkwrite) 2559 { 2560 pgprot_t pgprot = vma->vm_page_prot; 2561 int err; 2562 2563 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2564 return VM_FAULT_SIGBUS; 2565 2566 if (addr < vma->vm_start || addr >= vma->vm_end) 2567 return VM_FAULT_SIGBUS; 2568 2569 track_pfn_insert(vma, &pgprot, pfn); 2570 2571 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2572 return VM_FAULT_SIGBUS; 2573 2574 /* 2575 * If we don't have pte special, then we have to use the pfn_valid() 2576 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2577 * refcount the page if pfn_valid is true (hence insert_page rather 2578 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2579 * without pte special, it would there be refcounted as a normal page. 2580 */ 2581 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2582 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2583 struct page *page; 2584 2585 /* 2586 * At this point we are committed to insert_page() 2587 * regardless of whether the caller specified flags that 2588 * result in pfn_t_has_page() == false. 2589 */ 2590 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2591 err = insert_page(vma, addr, page, pgprot); 2592 } else { 2593 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2594 } 2595 2596 if (err == -ENOMEM) 2597 return VM_FAULT_OOM; 2598 if (err < 0 && err != -EBUSY) 2599 return VM_FAULT_SIGBUS; 2600 2601 return VM_FAULT_NOPAGE; 2602 } 2603 2604 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2605 pfn_t pfn) 2606 { 2607 return __vm_insert_mixed(vma, addr, pfn, false); 2608 } 2609 EXPORT_SYMBOL(vmf_insert_mixed); 2610 2611 /* 2612 * If the insertion of PTE failed because someone else already added a 2613 * different entry in the mean time, we treat that as success as we assume 2614 * the same entry was actually inserted. 2615 */ 2616 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2617 unsigned long addr, pfn_t pfn) 2618 { 2619 return __vm_insert_mixed(vma, addr, pfn, true); 2620 } 2621 2622 /* 2623 * maps a range of physical memory into the requested pages. the old 2624 * mappings are removed. any references to nonexistent pages results 2625 * in null mappings (currently treated as "copy-on-access") 2626 */ 2627 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2628 unsigned long addr, unsigned long end, 2629 unsigned long pfn, pgprot_t prot) 2630 { 2631 pte_t *pte, *mapped_pte; 2632 spinlock_t *ptl; 2633 int err = 0; 2634 2635 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2636 if (!pte) 2637 return -ENOMEM; 2638 arch_enter_lazy_mmu_mode(); 2639 do { 2640 BUG_ON(!pte_none(ptep_get(pte))); 2641 if (!pfn_modify_allowed(pfn, prot)) { 2642 err = -EACCES; 2643 break; 2644 } 2645 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2646 pfn++; 2647 } while (pte++, addr += PAGE_SIZE, addr != end); 2648 arch_leave_lazy_mmu_mode(); 2649 pte_unmap_unlock(mapped_pte, ptl); 2650 return err; 2651 } 2652 2653 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2654 unsigned long addr, unsigned long end, 2655 unsigned long pfn, pgprot_t prot) 2656 { 2657 pmd_t *pmd; 2658 unsigned long next; 2659 int err; 2660 2661 pfn -= addr >> PAGE_SHIFT; 2662 pmd = pmd_alloc(mm, pud, addr); 2663 if (!pmd) 2664 return -ENOMEM; 2665 VM_BUG_ON(pmd_trans_huge(*pmd)); 2666 do { 2667 next = pmd_addr_end(addr, end); 2668 err = remap_pte_range(mm, pmd, addr, next, 2669 pfn + (addr >> PAGE_SHIFT), prot); 2670 if (err) 2671 return err; 2672 } while (pmd++, addr = next, addr != end); 2673 return 0; 2674 } 2675 2676 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2677 unsigned long addr, unsigned long end, 2678 unsigned long pfn, pgprot_t prot) 2679 { 2680 pud_t *pud; 2681 unsigned long next; 2682 int err; 2683 2684 pfn -= addr >> PAGE_SHIFT; 2685 pud = pud_alloc(mm, p4d, addr); 2686 if (!pud) 2687 return -ENOMEM; 2688 do { 2689 next = pud_addr_end(addr, end); 2690 err = remap_pmd_range(mm, pud, addr, next, 2691 pfn + (addr >> PAGE_SHIFT), prot); 2692 if (err) 2693 return err; 2694 } while (pud++, addr = next, addr != end); 2695 return 0; 2696 } 2697 2698 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2699 unsigned long addr, unsigned long end, 2700 unsigned long pfn, pgprot_t prot) 2701 { 2702 p4d_t *p4d; 2703 unsigned long next; 2704 int err; 2705 2706 pfn -= addr >> PAGE_SHIFT; 2707 p4d = p4d_alloc(mm, pgd, addr); 2708 if (!p4d) 2709 return -ENOMEM; 2710 do { 2711 next = p4d_addr_end(addr, end); 2712 err = remap_pud_range(mm, p4d, addr, next, 2713 pfn + (addr >> PAGE_SHIFT), prot); 2714 if (err) 2715 return err; 2716 } while (p4d++, addr = next, addr != end); 2717 return 0; 2718 } 2719 2720 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2721 unsigned long pfn, unsigned long size, pgprot_t prot) 2722 { 2723 pgd_t *pgd; 2724 unsigned long next; 2725 unsigned long end = addr + PAGE_ALIGN(size); 2726 struct mm_struct *mm = vma->vm_mm; 2727 int err; 2728 2729 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2730 return -EINVAL; 2731 2732 /* 2733 * Physically remapped pages are special. Tell the 2734 * rest of the world about it: 2735 * VM_IO tells people not to look at these pages 2736 * (accesses can have side effects). 2737 * VM_PFNMAP tells the core MM that the base pages are just 2738 * raw PFN mappings, and do not have a "struct page" associated 2739 * with them. 2740 * VM_DONTEXPAND 2741 * Disable vma merging and expanding with mremap(). 2742 * VM_DONTDUMP 2743 * Omit vma from core dump, even when VM_IO turned off. 2744 * 2745 * There's a horrible special case to handle copy-on-write 2746 * behaviour that some programs depend on. We mark the "original" 2747 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2748 * See vm_normal_page() for details. 2749 */ 2750 if (is_cow_mapping(vma->vm_flags)) { 2751 if (addr != vma->vm_start || end != vma->vm_end) 2752 return -EINVAL; 2753 vma->vm_pgoff = pfn; 2754 } 2755 2756 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2757 2758 BUG_ON(addr >= end); 2759 pfn -= addr >> PAGE_SHIFT; 2760 pgd = pgd_offset(mm, addr); 2761 flush_cache_range(vma, addr, end); 2762 do { 2763 next = pgd_addr_end(addr, end); 2764 err = remap_p4d_range(mm, pgd, addr, next, 2765 pfn + (addr >> PAGE_SHIFT), prot); 2766 if (err) 2767 return err; 2768 } while (pgd++, addr = next, addr != end); 2769 2770 return 0; 2771 } 2772 2773 /* 2774 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2775 * must have pre-validated the caching bits of the pgprot_t. 2776 */ 2777 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2778 unsigned long pfn, unsigned long size, pgprot_t prot) 2779 { 2780 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2781 2782 if (!error) 2783 return 0; 2784 2785 /* 2786 * A partial pfn range mapping is dangerous: it does not 2787 * maintain page reference counts, and callers may free 2788 * pages due to the error. So zap it early. 2789 */ 2790 zap_page_range_single(vma, addr, size, NULL); 2791 return error; 2792 } 2793 2794 /** 2795 * remap_pfn_range - remap kernel memory to userspace 2796 * @vma: user vma to map to 2797 * @addr: target page aligned user address to start at 2798 * @pfn: page frame number of kernel physical memory address 2799 * @size: size of mapping area 2800 * @prot: page protection flags for this mapping 2801 * 2802 * Note: this is only safe if the mm semaphore is held when called. 2803 * 2804 * Return: %0 on success, negative error code otherwise. 2805 */ 2806 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2807 unsigned long pfn, unsigned long size, pgprot_t prot) 2808 { 2809 int err; 2810 2811 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2812 if (err) 2813 return -EINVAL; 2814 2815 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2816 if (err) 2817 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2818 return err; 2819 } 2820 EXPORT_SYMBOL(remap_pfn_range); 2821 2822 /** 2823 * vm_iomap_memory - remap memory to userspace 2824 * @vma: user vma to map to 2825 * @start: start of the physical memory to be mapped 2826 * @len: size of area 2827 * 2828 * This is a simplified io_remap_pfn_range() for common driver use. The 2829 * driver just needs to give us the physical memory range to be mapped, 2830 * we'll figure out the rest from the vma information. 2831 * 2832 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2833 * whatever write-combining details or similar. 2834 * 2835 * Return: %0 on success, negative error code otherwise. 2836 */ 2837 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2838 { 2839 unsigned long vm_len, pfn, pages; 2840 2841 /* Check that the physical memory area passed in looks valid */ 2842 if (start + len < start) 2843 return -EINVAL; 2844 /* 2845 * You *really* shouldn't map things that aren't page-aligned, 2846 * but we've historically allowed it because IO memory might 2847 * just have smaller alignment. 2848 */ 2849 len += start & ~PAGE_MASK; 2850 pfn = start >> PAGE_SHIFT; 2851 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2852 if (pfn + pages < pfn) 2853 return -EINVAL; 2854 2855 /* We start the mapping 'vm_pgoff' pages into the area */ 2856 if (vma->vm_pgoff > pages) 2857 return -EINVAL; 2858 pfn += vma->vm_pgoff; 2859 pages -= vma->vm_pgoff; 2860 2861 /* Can we fit all of the mapping? */ 2862 vm_len = vma->vm_end - vma->vm_start; 2863 if (vm_len >> PAGE_SHIFT > pages) 2864 return -EINVAL; 2865 2866 /* Ok, let it rip */ 2867 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2868 } 2869 EXPORT_SYMBOL(vm_iomap_memory); 2870 2871 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2872 unsigned long addr, unsigned long end, 2873 pte_fn_t fn, void *data, bool create, 2874 pgtbl_mod_mask *mask) 2875 { 2876 pte_t *pte, *mapped_pte; 2877 int err = 0; 2878 spinlock_t *ptl; 2879 2880 if (create) { 2881 mapped_pte = pte = (mm == &init_mm) ? 2882 pte_alloc_kernel_track(pmd, addr, mask) : 2883 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2884 if (!pte) 2885 return -ENOMEM; 2886 } else { 2887 mapped_pte = pte = (mm == &init_mm) ? 2888 pte_offset_kernel(pmd, addr) : 2889 pte_offset_map_lock(mm, pmd, addr, &ptl); 2890 if (!pte) 2891 return -EINVAL; 2892 } 2893 2894 arch_enter_lazy_mmu_mode(); 2895 2896 if (fn) { 2897 do { 2898 if (create || !pte_none(ptep_get(pte))) { 2899 err = fn(pte++, addr, data); 2900 if (err) 2901 break; 2902 } 2903 } while (addr += PAGE_SIZE, addr != end); 2904 } 2905 *mask |= PGTBL_PTE_MODIFIED; 2906 2907 arch_leave_lazy_mmu_mode(); 2908 2909 if (mm != &init_mm) 2910 pte_unmap_unlock(mapped_pte, ptl); 2911 return err; 2912 } 2913 2914 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2915 unsigned long addr, unsigned long end, 2916 pte_fn_t fn, void *data, bool create, 2917 pgtbl_mod_mask *mask) 2918 { 2919 pmd_t *pmd; 2920 unsigned long next; 2921 int err = 0; 2922 2923 BUG_ON(pud_leaf(*pud)); 2924 2925 if (create) { 2926 pmd = pmd_alloc_track(mm, pud, addr, mask); 2927 if (!pmd) 2928 return -ENOMEM; 2929 } else { 2930 pmd = pmd_offset(pud, addr); 2931 } 2932 do { 2933 next = pmd_addr_end(addr, end); 2934 if (pmd_none(*pmd) && !create) 2935 continue; 2936 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2937 return -EINVAL; 2938 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2939 if (!create) 2940 continue; 2941 pmd_clear_bad(pmd); 2942 } 2943 err = apply_to_pte_range(mm, pmd, addr, next, 2944 fn, data, create, mask); 2945 if (err) 2946 break; 2947 } while (pmd++, addr = next, addr != end); 2948 2949 return err; 2950 } 2951 2952 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2953 unsigned long addr, unsigned long end, 2954 pte_fn_t fn, void *data, bool create, 2955 pgtbl_mod_mask *mask) 2956 { 2957 pud_t *pud; 2958 unsigned long next; 2959 int err = 0; 2960 2961 if (create) { 2962 pud = pud_alloc_track(mm, p4d, addr, mask); 2963 if (!pud) 2964 return -ENOMEM; 2965 } else { 2966 pud = pud_offset(p4d, addr); 2967 } 2968 do { 2969 next = pud_addr_end(addr, end); 2970 if (pud_none(*pud) && !create) 2971 continue; 2972 if (WARN_ON_ONCE(pud_leaf(*pud))) 2973 return -EINVAL; 2974 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2975 if (!create) 2976 continue; 2977 pud_clear_bad(pud); 2978 } 2979 err = apply_to_pmd_range(mm, pud, addr, next, 2980 fn, data, create, mask); 2981 if (err) 2982 break; 2983 } while (pud++, addr = next, addr != end); 2984 2985 return err; 2986 } 2987 2988 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2989 unsigned long addr, unsigned long end, 2990 pte_fn_t fn, void *data, bool create, 2991 pgtbl_mod_mask *mask) 2992 { 2993 p4d_t *p4d; 2994 unsigned long next; 2995 int err = 0; 2996 2997 if (create) { 2998 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2999 if (!p4d) 3000 return -ENOMEM; 3001 } else { 3002 p4d = p4d_offset(pgd, addr); 3003 } 3004 do { 3005 next = p4d_addr_end(addr, end); 3006 if (p4d_none(*p4d) && !create) 3007 continue; 3008 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3009 return -EINVAL; 3010 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3011 if (!create) 3012 continue; 3013 p4d_clear_bad(p4d); 3014 } 3015 err = apply_to_pud_range(mm, p4d, addr, next, 3016 fn, data, create, mask); 3017 if (err) 3018 break; 3019 } while (p4d++, addr = next, addr != end); 3020 3021 return err; 3022 } 3023 3024 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3025 unsigned long size, pte_fn_t fn, 3026 void *data, bool create) 3027 { 3028 pgd_t *pgd; 3029 unsigned long start = addr, next; 3030 unsigned long end = addr + size; 3031 pgtbl_mod_mask mask = 0; 3032 int err = 0; 3033 3034 if (WARN_ON(addr >= end)) 3035 return -EINVAL; 3036 3037 pgd = pgd_offset(mm, addr); 3038 do { 3039 next = pgd_addr_end(addr, end); 3040 if (pgd_none(*pgd) && !create) 3041 continue; 3042 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3043 err = -EINVAL; 3044 break; 3045 } 3046 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3047 if (!create) 3048 continue; 3049 pgd_clear_bad(pgd); 3050 } 3051 err = apply_to_p4d_range(mm, pgd, addr, next, 3052 fn, data, create, &mask); 3053 if (err) 3054 break; 3055 } while (pgd++, addr = next, addr != end); 3056 3057 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3058 arch_sync_kernel_mappings(start, start + size); 3059 3060 return err; 3061 } 3062 3063 /* 3064 * Scan a region of virtual memory, filling in page tables as necessary 3065 * and calling a provided function on each leaf page table. 3066 */ 3067 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3068 unsigned long size, pte_fn_t fn, void *data) 3069 { 3070 return __apply_to_page_range(mm, addr, size, fn, data, true); 3071 } 3072 EXPORT_SYMBOL_GPL(apply_to_page_range); 3073 3074 /* 3075 * Scan a region of virtual memory, calling a provided function on 3076 * each leaf page table where it exists. 3077 * 3078 * Unlike apply_to_page_range, this does _not_ fill in page tables 3079 * where they are absent. 3080 */ 3081 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3082 unsigned long size, pte_fn_t fn, void *data) 3083 { 3084 return __apply_to_page_range(mm, addr, size, fn, data, false); 3085 } 3086 3087 /* 3088 * handle_pte_fault chooses page fault handler according to an entry which was 3089 * read non-atomically. Before making any commitment, on those architectures 3090 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3091 * parts, do_swap_page must check under lock before unmapping the pte and 3092 * proceeding (but do_wp_page is only called after already making such a check; 3093 * and do_anonymous_page can safely check later on). 3094 */ 3095 static inline int pte_unmap_same(struct vm_fault *vmf) 3096 { 3097 int same = 1; 3098 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3099 if (sizeof(pte_t) > sizeof(unsigned long)) { 3100 spin_lock(vmf->ptl); 3101 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3102 spin_unlock(vmf->ptl); 3103 } 3104 #endif 3105 pte_unmap(vmf->pte); 3106 vmf->pte = NULL; 3107 return same; 3108 } 3109 3110 /* 3111 * Return: 3112 * 0: copied succeeded 3113 * -EHWPOISON: copy failed due to hwpoison in source page 3114 * -EAGAIN: copied failed (some other reason) 3115 */ 3116 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3117 struct vm_fault *vmf) 3118 { 3119 int ret; 3120 void *kaddr; 3121 void __user *uaddr; 3122 struct vm_area_struct *vma = vmf->vma; 3123 struct mm_struct *mm = vma->vm_mm; 3124 unsigned long addr = vmf->address; 3125 3126 if (likely(src)) { 3127 if (copy_mc_user_highpage(dst, src, addr, vma)) 3128 return -EHWPOISON; 3129 return 0; 3130 } 3131 3132 /* 3133 * If the source page was a PFN mapping, we don't have 3134 * a "struct page" for it. We do a best-effort copy by 3135 * just copying from the original user address. If that 3136 * fails, we just zero-fill it. Live with it. 3137 */ 3138 kaddr = kmap_local_page(dst); 3139 pagefault_disable(); 3140 uaddr = (void __user *)(addr & PAGE_MASK); 3141 3142 /* 3143 * On architectures with software "accessed" bits, we would 3144 * take a double page fault, so mark it accessed here. 3145 */ 3146 vmf->pte = NULL; 3147 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3148 pte_t entry; 3149 3150 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3151 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3152 /* 3153 * Other thread has already handled the fault 3154 * and update local tlb only 3155 */ 3156 if (vmf->pte) 3157 update_mmu_tlb(vma, addr, vmf->pte); 3158 ret = -EAGAIN; 3159 goto pte_unlock; 3160 } 3161 3162 entry = pte_mkyoung(vmf->orig_pte); 3163 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3164 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3165 } 3166 3167 /* 3168 * This really shouldn't fail, because the page is there 3169 * in the page tables. But it might just be unreadable, 3170 * in which case we just give up and fill the result with 3171 * zeroes. 3172 */ 3173 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3174 if (vmf->pte) 3175 goto warn; 3176 3177 /* Re-validate under PTL if the page is still mapped */ 3178 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3179 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3180 /* The PTE changed under us, update local tlb */ 3181 if (vmf->pte) 3182 update_mmu_tlb(vma, addr, vmf->pte); 3183 ret = -EAGAIN; 3184 goto pte_unlock; 3185 } 3186 3187 /* 3188 * The same page can be mapped back since last copy attempt. 3189 * Try to copy again under PTL. 3190 */ 3191 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3192 /* 3193 * Give a warn in case there can be some obscure 3194 * use-case 3195 */ 3196 warn: 3197 WARN_ON_ONCE(1); 3198 clear_page(kaddr); 3199 } 3200 } 3201 3202 ret = 0; 3203 3204 pte_unlock: 3205 if (vmf->pte) 3206 pte_unmap_unlock(vmf->pte, vmf->ptl); 3207 pagefault_enable(); 3208 kunmap_local(kaddr); 3209 flush_dcache_page(dst); 3210 3211 return ret; 3212 } 3213 3214 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3215 { 3216 struct file *vm_file = vma->vm_file; 3217 3218 if (vm_file) 3219 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3220 3221 /* 3222 * Special mappings (e.g. VDSO) do not have any file so fake 3223 * a default GFP_KERNEL for them. 3224 */ 3225 return GFP_KERNEL; 3226 } 3227 3228 /* 3229 * Notify the address space that the page is about to become writable so that 3230 * it can prohibit this or wait for the page to get into an appropriate state. 3231 * 3232 * We do this without the lock held, so that it can sleep if it needs to. 3233 */ 3234 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3235 { 3236 vm_fault_t ret; 3237 unsigned int old_flags = vmf->flags; 3238 3239 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3240 3241 if (vmf->vma->vm_file && 3242 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3243 return VM_FAULT_SIGBUS; 3244 3245 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3246 /* Restore original flags so that caller is not surprised */ 3247 vmf->flags = old_flags; 3248 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3249 return ret; 3250 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3251 folio_lock(folio); 3252 if (!folio->mapping) { 3253 folio_unlock(folio); 3254 return 0; /* retry */ 3255 } 3256 ret |= VM_FAULT_LOCKED; 3257 } else 3258 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3259 return ret; 3260 } 3261 3262 /* 3263 * Handle dirtying of a page in shared file mapping on a write fault. 3264 * 3265 * The function expects the page to be locked and unlocks it. 3266 */ 3267 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3268 { 3269 struct vm_area_struct *vma = vmf->vma; 3270 struct address_space *mapping; 3271 struct folio *folio = page_folio(vmf->page); 3272 bool dirtied; 3273 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3274 3275 dirtied = folio_mark_dirty(folio); 3276 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3277 /* 3278 * Take a local copy of the address_space - folio.mapping may be zeroed 3279 * by truncate after folio_unlock(). The address_space itself remains 3280 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3281 * release semantics to prevent the compiler from undoing this copying. 3282 */ 3283 mapping = folio_raw_mapping(folio); 3284 folio_unlock(folio); 3285 3286 if (!page_mkwrite) 3287 file_update_time(vma->vm_file); 3288 3289 /* 3290 * Throttle page dirtying rate down to writeback speed. 3291 * 3292 * mapping may be NULL here because some device drivers do not 3293 * set page.mapping but still dirty their pages 3294 * 3295 * Drop the mmap_lock before waiting on IO, if we can. The file 3296 * is pinning the mapping, as per above. 3297 */ 3298 if ((dirtied || page_mkwrite) && mapping) { 3299 struct file *fpin; 3300 3301 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3302 balance_dirty_pages_ratelimited(mapping); 3303 if (fpin) { 3304 fput(fpin); 3305 return VM_FAULT_COMPLETED; 3306 } 3307 } 3308 3309 return 0; 3310 } 3311 3312 /* 3313 * Handle write page faults for pages that can be reused in the current vma 3314 * 3315 * This can happen either due to the mapping being with the VM_SHARED flag, 3316 * or due to us being the last reference standing to the page. In either 3317 * case, all we need to do here is to mark the page as writable and update 3318 * any related book-keeping. 3319 */ 3320 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3321 __releases(vmf->ptl) 3322 { 3323 struct vm_area_struct *vma = vmf->vma; 3324 pte_t entry; 3325 3326 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3327 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3328 3329 if (folio) { 3330 VM_BUG_ON(folio_test_anon(folio) && 3331 !PageAnonExclusive(vmf->page)); 3332 /* 3333 * Clear the folio's cpupid information as the existing 3334 * information potentially belongs to a now completely 3335 * unrelated process. 3336 */ 3337 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3338 } 3339 3340 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3341 entry = pte_mkyoung(vmf->orig_pte); 3342 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3343 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3344 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3345 pte_unmap_unlock(vmf->pte, vmf->ptl); 3346 count_vm_event(PGREUSE); 3347 } 3348 3349 /* 3350 * We could add a bitflag somewhere, but for now, we know that all 3351 * vm_ops that have a ->map_pages have been audited and don't need 3352 * the mmap_lock to be held. 3353 */ 3354 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3355 { 3356 struct vm_area_struct *vma = vmf->vma; 3357 3358 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3359 return 0; 3360 vma_end_read(vma); 3361 return VM_FAULT_RETRY; 3362 } 3363 3364 /** 3365 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3366 * @vmf: The vm_fault descriptor passed from the fault handler. 3367 * 3368 * When preparing to insert an anonymous page into a VMA from a 3369 * fault handler, call this function rather than anon_vma_prepare(). 3370 * If this vma does not already have an associated anon_vma and we are 3371 * only protected by the per-VMA lock, the caller must retry with the 3372 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3373 * determine if this VMA can share its anon_vma, and that's not safe to 3374 * do with only the per-VMA lock held for this VMA. 3375 * 3376 * Return: 0 if fault handling can proceed. Any other value should be 3377 * returned to the caller. 3378 */ 3379 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3380 { 3381 struct vm_area_struct *vma = vmf->vma; 3382 vm_fault_t ret = 0; 3383 3384 if (likely(vma->anon_vma)) 3385 return 0; 3386 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3387 if (!mmap_read_trylock(vma->vm_mm)) 3388 return VM_FAULT_RETRY; 3389 } 3390 if (__anon_vma_prepare(vma)) 3391 ret = VM_FAULT_OOM; 3392 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3393 mmap_read_unlock(vma->vm_mm); 3394 return ret; 3395 } 3396 3397 /* 3398 * Handle the case of a page which we actually need to copy to a new page, 3399 * either due to COW or unsharing. 3400 * 3401 * Called with mmap_lock locked and the old page referenced, but 3402 * without the ptl held. 3403 * 3404 * High level logic flow: 3405 * 3406 * - Allocate a page, copy the content of the old page to the new one. 3407 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3408 * - Take the PTL. If the pte changed, bail out and release the allocated page 3409 * - If the pte is still the way we remember it, update the page table and all 3410 * relevant references. This includes dropping the reference the page-table 3411 * held to the old page, as well as updating the rmap. 3412 * - In any case, unlock the PTL and drop the reference we took to the old page. 3413 */ 3414 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3415 { 3416 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3417 struct vm_area_struct *vma = vmf->vma; 3418 struct mm_struct *mm = vma->vm_mm; 3419 struct folio *old_folio = NULL; 3420 struct folio *new_folio = NULL; 3421 pte_t entry; 3422 int page_copied = 0; 3423 struct mmu_notifier_range range; 3424 vm_fault_t ret; 3425 bool pfn_is_zero; 3426 3427 delayacct_wpcopy_start(); 3428 3429 if (vmf->page) 3430 old_folio = page_folio(vmf->page); 3431 ret = vmf_anon_prepare(vmf); 3432 if (unlikely(ret)) 3433 goto out; 3434 3435 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3436 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3437 if (!new_folio) 3438 goto oom; 3439 3440 if (!pfn_is_zero) { 3441 int err; 3442 3443 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3444 if (err) { 3445 /* 3446 * COW failed, if the fault was solved by other, 3447 * it's fine. If not, userspace would re-fault on 3448 * the same address and we will handle the fault 3449 * from the second attempt. 3450 * The -EHWPOISON case will not be retried. 3451 */ 3452 folio_put(new_folio); 3453 if (old_folio) 3454 folio_put(old_folio); 3455 3456 delayacct_wpcopy_end(); 3457 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3458 } 3459 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3460 } 3461 3462 __folio_mark_uptodate(new_folio); 3463 3464 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3465 vmf->address & PAGE_MASK, 3466 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3467 mmu_notifier_invalidate_range_start(&range); 3468 3469 /* 3470 * Re-check the pte - we dropped the lock 3471 */ 3472 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3473 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3474 if (old_folio) { 3475 if (!folio_test_anon(old_folio)) { 3476 dec_mm_counter(mm, mm_counter_file(old_folio)); 3477 inc_mm_counter(mm, MM_ANONPAGES); 3478 } 3479 } else { 3480 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3481 inc_mm_counter(mm, MM_ANONPAGES); 3482 } 3483 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3484 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3485 entry = pte_sw_mkyoung(entry); 3486 if (unlikely(unshare)) { 3487 if (pte_soft_dirty(vmf->orig_pte)) 3488 entry = pte_mksoft_dirty(entry); 3489 if (pte_uffd_wp(vmf->orig_pte)) 3490 entry = pte_mkuffd_wp(entry); 3491 } else { 3492 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3493 } 3494 3495 /* 3496 * Clear the pte entry and flush it first, before updating the 3497 * pte with the new entry, to keep TLBs on different CPUs in 3498 * sync. This code used to set the new PTE then flush TLBs, but 3499 * that left a window where the new PTE could be loaded into 3500 * some TLBs while the old PTE remains in others. 3501 */ 3502 ptep_clear_flush(vma, vmf->address, vmf->pte); 3503 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3504 folio_add_lru_vma(new_folio, vma); 3505 BUG_ON(unshare && pte_write(entry)); 3506 set_pte_at(mm, vmf->address, vmf->pte, entry); 3507 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3508 if (old_folio) { 3509 /* 3510 * Only after switching the pte to the new page may 3511 * we remove the mapcount here. Otherwise another 3512 * process may come and find the rmap count decremented 3513 * before the pte is switched to the new page, and 3514 * "reuse" the old page writing into it while our pte 3515 * here still points into it and can be read by other 3516 * threads. 3517 * 3518 * The critical issue is to order this 3519 * folio_remove_rmap_pte() with the ptp_clear_flush 3520 * above. Those stores are ordered by (if nothing else,) 3521 * the barrier present in the atomic_add_negative 3522 * in folio_remove_rmap_pte(); 3523 * 3524 * Then the TLB flush in ptep_clear_flush ensures that 3525 * no process can access the old page before the 3526 * decremented mapcount is visible. And the old page 3527 * cannot be reused until after the decremented 3528 * mapcount is visible. So transitively, TLBs to 3529 * old page will be flushed before it can be reused. 3530 */ 3531 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3532 } 3533 3534 /* Free the old page.. */ 3535 new_folio = old_folio; 3536 page_copied = 1; 3537 pte_unmap_unlock(vmf->pte, vmf->ptl); 3538 } else if (vmf->pte) { 3539 update_mmu_tlb(vma, vmf->address, vmf->pte); 3540 pte_unmap_unlock(vmf->pte, vmf->ptl); 3541 } 3542 3543 mmu_notifier_invalidate_range_end(&range); 3544 3545 if (new_folio) 3546 folio_put(new_folio); 3547 if (old_folio) { 3548 if (page_copied) 3549 free_swap_cache(old_folio); 3550 folio_put(old_folio); 3551 } 3552 3553 delayacct_wpcopy_end(); 3554 return 0; 3555 oom: 3556 ret = VM_FAULT_OOM; 3557 out: 3558 if (old_folio) 3559 folio_put(old_folio); 3560 3561 delayacct_wpcopy_end(); 3562 return ret; 3563 } 3564 3565 /** 3566 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3567 * writeable once the page is prepared 3568 * 3569 * @vmf: structure describing the fault 3570 * @folio: the folio of vmf->page 3571 * 3572 * This function handles all that is needed to finish a write page fault in a 3573 * shared mapping due to PTE being read-only once the mapped page is prepared. 3574 * It handles locking of PTE and modifying it. 3575 * 3576 * The function expects the page to be locked or other protection against 3577 * concurrent faults / writeback (such as DAX radix tree locks). 3578 * 3579 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3580 * we acquired PTE lock. 3581 */ 3582 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3583 { 3584 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3585 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3586 &vmf->ptl); 3587 if (!vmf->pte) 3588 return VM_FAULT_NOPAGE; 3589 /* 3590 * We might have raced with another page fault while we released the 3591 * pte_offset_map_lock. 3592 */ 3593 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3594 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3595 pte_unmap_unlock(vmf->pte, vmf->ptl); 3596 return VM_FAULT_NOPAGE; 3597 } 3598 wp_page_reuse(vmf, folio); 3599 return 0; 3600 } 3601 3602 /* 3603 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3604 * mapping 3605 */ 3606 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3607 { 3608 struct vm_area_struct *vma = vmf->vma; 3609 3610 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3611 vm_fault_t ret; 3612 3613 pte_unmap_unlock(vmf->pte, vmf->ptl); 3614 ret = vmf_can_call_fault(vmf); 3615 if (ret) 3616 return ret; 3617 3618 vmf->flags |= FAULT_FLAG_MKWRITE; 3619 ret = vma->vm_ops->pfn_mkwrite(vmf); 3620 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3621 return ret; 3622 return finish_mkwrite_fault(vmf, NULL); 3623 } 3624 wp_page_reuse(vmf, NULL); 3625 return 0; 3626 } 3627 3628 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3629 __releases(vmf->ptl) 3630 { 3631 struct vm_area_struct *vma = vmf->vma; 3632 vm_fault_t ret = 0; 3633 3634 folio_get(folio); 3635 3636 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3637 vm_fault_t tmp; 3638 3639 pte_unmap_unlock(vmf->pte, vmf->ptl); 3640 tmp = vmf_can_call_fault(vmf); 3641 if (tmp) { 3642 folio_put(folio); 3643 return tmp; 3644 } 3645 3646 tmp = do_page_mkwrite(vmf, folio); 3647 if (unlikely(!tmp || (tmp & 3648 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3649 folio_put(folio); 3650 return tmp; 3651 } 3652 tmp = finish_mkwrite_fault(vmf, folio); 3653 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3654 folio_unlock(folio); 3655 folio_put(folio); 3656 return tmp; 3657 } 3658 } else { 3659 wp_page_reuse(vmf, folio); 3660 folio_lock(folio); 3661 } 3662 ret |= fault_dirty_shared_page(vmf); 3663 folio_put(folio); 3664 3665 return ret; 3666 } 3667 3668 static bool wp_can_reuse_anon_folio(struct folio *folio, 3669 struct vm_area_struct *vma) 3670 { 3671 /* 3672 * We could currently only reuse a subpage of a large folio if no 3673 * other subpages of the large folios are still mapped. However, 3674 * let's just consistently not reuse subpages even if we could 3675 * reuse in that scenario, and give back a large folio a bit 3676 * sooner. 3677 */ 3678 if (folio_test_large(folio)) 3679 return false; 3680 3681 /* 3682 * We have to verify under folio lock: these early checks are 3683 * just an optimization to avoid locking the folio and freeing 3684 * the swapcache if there is little hope that we can reuse. 3685 * 3686 * KSM doesn't necessarily raise the folio refcount. 3687 */ 3688 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3689 return false; 3690 if (!folio_test_lru(folio)) 3691 /* 3692 * We cannot easily detect+handle references from 3693 * remote LRU caches or references to LRU folios. 3694 */ 3695 lru_add_drain(); 3696 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3697 return false; 3698 if (!folio_trylock(folio)) 3699 return false; 3700 if (folio_test_swapcache(folio)) 3701 folio_free_swap(folio); 3702 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3703 folio_unlock(folio); 3704 return false; 3705 } 3706 /* 3707 * Ok, we've got the only folio reference from our mapping 3708 * and the folio is locked, it's dark out, and we're wearing 3709 * sunglasses. Hit it. 3710 */ 3711 folio_move_anon_rmap(folio, vma); 3712 folio_unlock(folio); 3713 return true; 3714 } 3715 3716 /* 3717 * This routine handles present pages, when 3718 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3719 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3720 * (FAULT_FLAG_UNSHARE) 3721 * 3722 * It is done by copying the page to a new address and decrementing the 3723 * shared-page counter for the old page. 3724 * 3725 * Note that this routine assumes that the protection checks have been 3726 * done by the caller (the low-level page fault routine in most cases). 3727 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3728 * done any necessary COW. 3729 * 3730 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3731 * though the page will change only once the write actually happens. This 3732 * avoids a few races, and potentially makes it more efficient. 3733 * 3734 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3735 * but allow concurrent faults), with pte both mapped and locked. 3736 * We return with mmap_lock still held, but pte unmapped and unlocked. 3737 */ 3738 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3739 __releases(vmf->ptl) 3740 { 3741 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3742 struct vm_area_struct *vma = vmf->vma; 3743 struct folio *folio = NULL; 3744 pte_t pte; 3745 3746 if (likely(!unshare)) { 3747 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3748 if (!userfaultfd_wp_async(vma)) { 3749 pte_unmap_unlock(vmf->pte, vmf->ptl); 3750 return handle_userfault(vmf, VM_UFFD_WP); 3751 } 3752 3753 /* 3754 * Nothing needed (cache flush, TLB invalidations, 3755 * etc.) because we're only removing the uffd-wp bit, 3756 * which is completely invisible to the user. 3757 */ 3758 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3759 3760 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3761 /* 3762 * Update this to be prepared for following up CoW 3763 * handling 3764 */ 3765 vmf->orig_pte = pte; 3766 } 3767 3768 /* 3769 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3770 * is flushed in this case before copying. 3771 */ 3772 if (unlikely(userfaultfd_wp(vmf->vma) && 3773 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3774 flush_tlb_page(vmf->vma, vmf->address); 3775 } 3776 3777 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3778 3779 if (vmf->page) 3780 folio = page_folio(vmf->page); 3781 3782 /* 3783 * Shared mapping: we are guaranteed to have VM_WRITE and 3784 * FAULT_FLAG_WRITE set at this point. 3785 */ 3786 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3787 /* 3788 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3789 * VM_PFNMAP VMA. 3790 * 3791 * We should not cow pages in a shared writeable mapping. 3792 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3793 */ 3794 if (!vmf->page) 3795 return wp_pfn_shared(vmf); 3796 return wp_page_shared(vmf, folio); 3797 } 3798 3799 /* 3800 * Private mapping: create an exclusive anonymous page copy if reuse 3801 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3802 * 3803 * If we encounter a page that is marked exclusive, we must reuse 3804 * the page without further checks. 3805 */ 3806 if (folio && folio_test_anon(folio) && 3807 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3808 if (!PageAnonExclusive(vmf->page)) 3809 SetPageAnonExclusive(vmf->page); 3810 if (unlikely(unshare)) { 3811 pte_unmap_unlock(vmf->pte, vmf->ptl); 3812 return 0; 3813 } 3814 wp_page_reuse(vmf, folio); 3815 return 0; 3816 } 3817 /* 3818 * Ok, we need to copy. Oh, well.. 3819 */ 3820 if (folio) 3821 folio_get(folio); 3822 3823 pte_unmap_unlock(vmf->pte, vmf->ptl); 3824 #ifdef CONFIG_KSM 3825 if (folio && folio_test_ksm(folio)) 3826 count_vm_event(COW_KSM); 3827 #endif 3828 return wp_page_copy(vmf); 3829 } 3830 3831 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3832 unsigned long start_addr, unsigned long end_addr, 3833 struct zap_details *details) 3834 { 3835 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3836 } 3837 3838 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3839 pgoff_t first_index, 3840 pgoff_t last_index, 3841 struct zap_details *details) 3842 { 3843 struct vm_area_struct *vma; 3844 pgoff_t vba, vea, zba, zea; 3845 3846 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3847 vba = vma->vm_pgoff; 3848 vea = vba + vma_pages(vma) - 1; 3849 zba = max(first_index, vba); 3850 zea = min(last_index, vea); 3851 3852 unmap_mapping_range_vma(vma, 3853 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3854 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3855 details); 3856 } 3857 } 3858 3859 /** 3860 * unmap_mapping_folio() - Unmap single folio from processes. 3861 * @folio: The locked folio to be unmapped. 3862 * 3863 * Unmap this folio from any userspace process which still has it mmaped. 3864 * Typically, for efficiency, the range of nearby pages has already been 3865 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3866 * truncation or invalidation holds the lock on a folio, it may find that 3867 * the page has been remapped again: and then uses unmap_mapping_folio() 3868 * to unmap it finally. 3869 */ 3870 void unmap_mapping_folio(struct folio *folio) 3871 { 3872 struct address_space *mapping = folio->mapping; 3873 struct zap_details details = { }; 3874 pgoff_t first_index; 3875 pgoff_t last_index; 3876 3877 VM_BUG_ON(!folio_test_locked(folio)); 3878 3879 first_index = folio->index; 3880 last_index = folio_next_index(folio) - 1; 3881 3882 details.even_cows = false; 3883 details.single_folio = folio; 3884 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3885 3886 i_mmap_lock_read(mapping); 3887 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3888 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3889 last_index, &details); 3890 i_mmap_unlock_read(mapping); 3891 } 3892 3893 /** 3894 * unmap_mapping_pages() - Unmap pages from processes. 3895 * @mapping: The address space containing pages to be unmapped. 3896 * @start: Index of first page to be unmapped. 3897 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3898 * @even_cows: Whether to unmap even private COWed pages. 3899 * 3900 * Unmap the pages in this address space from any userspace process which 3901 * has them mmaped. Generally, you want to remove COWed pages as well when 3902 * a file is being truncated, but not when invalidating pages from the page 3903 * cache. 3904 */ 3905 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3906 pgoff_t nr, bool even_cows) 3907 { 3908 struct zap_details details = { }; 3909 pgoff_t first_index = start; 3910 pgoff_t last_index = start + nr - 1; 3911 3912 details.even_cows = even_cows; 3913 if (last_index < first_index) 3914 last_index = ULONG_MAX; 3915 3916 i_mmap_lock_read(mapping); 3917 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3918 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3919 last_index, &details); 3920 i_mmap_unlock_read(mapping); 3921 } 3922 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3923 3924 /** 3925 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3926 * address_space corresponding to the specified byte range in the underlying 3927 * file. 3928 * 3929 * @mapping: the address space containing mmaps to be unmapped. 3930 * @holebegin: byte in first page to unmap, relative to the start of 3931 * the underlying file. This will be rounded down to a PAGE_SIZE 3932 * boundary. Note that this is different from truncate_pagecache(), which 3933 * must keep the partial page. In contrast, we must get rid of 3934 * partial pages. 3935 * @holelen: size of prospective hole in bytes. This will be rounded 3936 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3937 * end of the file. 3938 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3939 * but 0 when invalidating pagecache, don't throw away private data. 3940 */ 3941 void unmap_mapping_range(struct address_space *mapping, 3942 loff_t const holebegin, loff_t const holelen, int even_cows) 3943 { 3944 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3945 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3946 3947 /* Check for overflow. */ 3948 if (sizeof(holelen) > sizeof(hlen)) { 3949 long long holeend = 3950 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3951 if (holeend & ~(long long)ULONG_MAX) 3952 hlen = ULONG_MAX - hba + 1; 3953 } 3954 3955 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3956 } 3957 EXPORT_SYMBOL(unmap_mapping_range); 3958 3959 /* 3960 * Restore a potential device exclusive pte to a working pte entry 3961 */ 3962 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3963 { 3964 struct folio *folio = page_folio(vmf->page); 3965 struct vm_area_struct *vma = vmf->vma; 3966 struct mmu_notifier_range range; 3967 vm_fault_t ret; 3968 3969 /* 3970 * We need a reference to lock the folio because we don't hold 3971 * the PTL so a racing thread can remove the device-exclusive 3972 * entry and unmap it. If the folio is free the entry must 3973 * have been removed already. If it happens to have already 3974 * been re-allocated after being freed all we do is lock and 3975 * unlock it. 3976 */ 3977 if (!folio_try_get(folio)) 3978 return 0; 3979 3980 ret = folio_lock_or_retry(folio, vmf); 3981 if (ret) { 3982 folio_put(folio); 3983 return ret; 3984 } 3985 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3986 vma->vm_mm, vmf->address & PAGE_MASK, 3987 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3988 mmu_notifier_invalidate_range_start(&range); 3989 3990 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3991 &vmf->ptl); 3992 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3993 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3994 3995 if (vmf->pte) 3996 pte_unmap_unlock(vmf->pte, vmf->ptl); 3997 folio_unlock(folio); 3998 folio_put(folio); 3999 4000 mmu_notifier_invalidate_range_end(&range); 4001 return 0; 4002 } 4003 4004 static inline bool should_try_to_free_swap(struct folio *folio, 4005 struct vm_area_struct *vma, 4006 unsigned int fault_flags) 4007 { 4008 if (!folio_test_swapcache(folio)) 4009 return false; 4010 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4011 folio_test_mlocked(folio)) 4012 return true; 4013 /* 4014 * If we want to map a page that's in the swapcache writable, we 4015 * have to detect via the refcount if we're really the exclusive 4016 * user. Try freeing the swapcache to get rid of the swapcache 4017 * reference only in case it's likely that we'll be the exlusive user. 4018 */ 4019 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4020 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4021 } 4022 4023 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4024 { 4025 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4026 vmf->address, &vmf->ptl); 4027 if (!vmf->pte) 4028 return 0; 4029 /* 4030 * Be careful so that we will only recover a special uffd-wp pte into a 4031 * none pte. Otherwise it means the pte could have changed, so retry. 4032 * 4033 * This should also cover the case where e.g. the pte changed 4034 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4035 * So is_pte_marker() check is not enough to safely drop the pte. 4036 */ 4037 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4038 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4039 pte_unmap_unlock(vmf->pte, vmf->ptl); 4040 return 0; 4041 } 4042 4043 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4044 { 4045 if (vma_is_anonymous(vmf->vma)) 4046 return do_anonymous_page(vmf); 4047 else 4048 return do_fault(vmf); 4049 } 4050 4051 /* 4052 * This is actually a page-missing access, but with uffd-wp special pte 4053 * installed. It means this pte was wr-protected before being unmapped. 4054 */ 4055 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4056 { 4057 /* 4058 * Just in case there're leftover special ptes even after the region 4059 * got unregistered - we can simply clear them. 4060 */ 4061 if (unlikely(!userfaultfd_wp(vmf->vma))) 4062 return pte_marker_clear(vmf); 4063 4064 return do_pte_missing(vmf); 4065 } 4066 4067 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4068 { 4069 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4070 unsigned long marker = pte_marker_get(entry); 4071 4072 /* 4073 * PTE markers should never be empty. If anything weird happened, 4074 * the best thing to do is to kill the process along with its mm. 4075 */ 4076 if (WARN_ON_ONCE(!marker)) 4077 return VM_FAULT_SIGBUS; 4078 4079 /* Higher priority than uffd-wp when data corrupted */ 4080 if (marker & PTE_MARKER_POISONED) 4081 return VM_FAULT_HWPOISON; 4082 4083 /* Hitting a guard page is always a fatal condition. */ 4084 if (marker & PTE_MARKER_GUARD) 4085 return VM_FAULT_SIGSEGV; 4086 4087 if (pte_marker_entry_uffd_wp(entry)) 4088 return pte_marker_handle_uffd_wp(vmf); 4089 4090 /* This is an unknown pte marker */ 4091 return VM_FAULT_SIGBUS; 4092 } 4093 4094 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4095 { 4096 struct vm_area_struct *vma = vmf->vma; 4097 struct folio *folio; 4098 swp_entry_t entry; 4099 4100 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4101 if (!folio) 4102 return NULL; 4103 4104 entry = pte_to_swp_entry(vmf->orig_pte); 4105 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4106 GFP_KERNEL, entry)) { 4107 folio_put(folio); 4108 return NULL; 4109 } 4110 4111 return folio; 4112 } 4113 4114 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4115 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr) 4116 { 4117 struct swap_info_struct *si = swp_swap_info(entry); 4118 pgoff_t offset = swp_offset(entry); 4119 int i; 4120 4121 /* 4122 * While allocating a large folio and doing swap_read_folio, which is 4123 * the case the being faulted pte doesn't have swapcache. We need to 4124 * ensure all PTEs have no cache as well, otherwise, we might go to 4125 * swap devices while the content is in swapcache. 4126 */ 4127 for (i = 0; i < max_nr; i++) { 4128 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE)) 4129 return i; 4130 } 4131 4132 return i; 4133 } 4134 4135 /* 4136 * Check if the PTEs within a range are contiguous swap entries 4137 * and have consistent swapcache, zeromap. 4138 */ 4139 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4140 { 4141 unsigned long addr; 4142 swp_entry_t entry; 4143 int idx; 4144 pte_t pte; 4145 4146 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4147 idx = (vmf->address - addr) / PAGE_SIZE; 4148 pte = ptep_get(ptep); 4149 4150 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4151 return false; 4152 entry = pte_to_swp_entry(pte); 4153 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4154 return false; 4155 4156 /* 4157 * swap_read_folio() can't handle the case a large folio is hybridly 4158 * from different backends. And they are likely corner cases. Similar 4159 * things might be added once zswap support large folios. 4160 */ 4161 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4162 return false; 4163 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4164 return false; 4165 4166 return true; 4167 } 4168 4169 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4170 unsigned long addr, 4171 unsigned long orders) 4172 { 4173 int order, nr; 4174 4175 order = highest_order(orders); 4176 4177 /* 4178 * To swap in a THP with nr pages, we require that its first swap_offset 4179 * is aligned with that number, as it was when the THP was swapped out. 4180 * This helps filter out most invalid entries. 4181 */ 4182 while (orders) { 4183 nr = 1 << order; 4184 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4185 break; 4186 order = next_order(&orders, order); 4187 } 4188 4189 return orders; 4190 } 4191 4192 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4193 { 4194 struct vm_area_struct *vma = vmf->vma; 4195 unsigned long orders; 4196 struct folio *folio; 4197 unsigned long addr; 4198 swp_entry_t entry; 4199 spinlock_t *ptl; 4200 pte_t *pte; 4201 gfp_t gfp; 4202 int order; 4203 4204 /* 4205 * If uffd is active for the vma we need per-page fault fidelity to 4206 * maintain the uffd semantics. 4207 */ 4208 if (unlikely(userfaultfd_armed(vma))) 4209 goto fallback; 4210 4211 /* 4212 * A large swapped out folio could be partially or fully in zswap. We 4213 * lack handling for such cases, so fallback to swapping in order-0 4214 * folio. 4215 */ 4216 if (!zswap_never_enabled()) 4217 goto fallback; 4218 4219 entry = pte_to_swp_entry(vmf->orig_pte); 4220 /* 4221 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4222 * and suitable for swapping THP. 4223 */ 4224 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4225 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4226 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4227 orders = thp_swap_suitable_orders(swp_offset(entry), 4228 vmf->address, orders); 4229 4230 if (!orders) 4231 goto fallback; 4232 4233 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4234 vmf->address & PMD_MASK, &ptl); 4235 if (unlikely(!pte)) 4236 goto fallback; 4237 4238 /* 4239 * For do_swap_page, find the highest order where the aligned range is 4240 * completely swap entries with contiguous swap offsets. 4241 */ 4242 order = highest_order(orders); 4243 while (orders) { 4244 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4245 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4246 break; 4247 order = next_order(&orders, order); 4248 } 4249 4250 pte_unmap_unlock(pte, ptl); 4251 4252 /* Try allocating the highest of the remaining orders. */ 4253 gfp = vma_thp_gfp_mask(vma); 4254 while (orders) { 4255 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4256 folio = vma_alloc_folio(gfp, order, vma, addr); 4257 if (folio) { 4258 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4259 gfp, entry)) 4260 return folio; 4261 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4262 folio_put(folio); 4263 } 4264 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4265 order = next_order(&orders, order); 4266 } 4267 4268 fallback: 4269 return __alloc_swap_folio(vmf); 4270 } 4271 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4272 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4273 { 4274 return __alloc_swap_folio(vmf); 4275 } 4276 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4277 4278 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4279 4280 /* 4281 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4282 * but allow concurrent faults), and pte mapped but not yet locked. 4283 * We return with pte unmapped and unlocked. 4284 * 4285 * We return with the mmap_lock locked or unlocked in the same cases 4286 * as does filemap_fault(). 4287 */ 4288 vm_fault_t do_swap_page(struct vm_fault *vmf) 4289 { 4290 struct vm_area_struct *vma = vmf->vma; 4291 struct folio *swapcache, *folio = NULL; 4292 DECLARE_WAITQUEUE(wait, current); 4293 struct page *page; 4294 struct swap_info_struct *si = NULL; 4295 rmap_t rmap_flags = RMAP_NONE; 4296 bool need_clear_cache = false; 4297 bool exclusive = false; 4298 swp_entry_t entry; 4299 pte_t pte; 4300 vm_fault_t ret = 0; 4301 void *shadow = NULL; 4302 int nr_pages; 4303 unsigned long page_idx; 4304 unsigned long address; 4305 pte_t *ptep; 4306 4307 if (!pte_unmap_same(vmf)) 4308 goto out; 4309 4310 entry = pte_to_swp_entry(vmf->orig_pte); 4311 if (unlikely(non_swap_entry(entry))) { 4312 if (is_migration_entry(entry)) { 4313 migration_entry_wait(vma->vm_mm, vmf->pmd, 4314 vmf->address); 4315 } else if (is_device_exclusive_entry(entry)) { 4316 vmf->page = pfn_swap_entry_to_page(entry); 4317 ret = remove_device_exclusive_entry(vmf); 4318 } else if (is_device_private_entry(entry)) { 4319 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4320 /* 4321 * migrate_to_ram is not yet ready to operate 4322 * under VMA lock. 4323 */ 4324 vma_end_read(vma); 4325 ret = VM_FAULT_RETRY; 4326 goto out; 4327 } 4328 4329 vmf->page = pfn_swap_entry_to_page(entry); 4330 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4331 vmf->address, &vmf->ptl); 4332 if (unlikely(!vmf->pte || 4333 !pte_same(ptep_get(vmf->pte), 4334 vmf->orig_pte))) 4335 goto unlock; 4336 4337 /* 4338 * Get a page reference while we know the page can't be 4339 * freed. 4340 */ 4341 get_page(vmf->page); 4342 pte_unmap_unlock(vmf->pte, vmf->ptl); 4343 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 4344 put_page(vmf->page); 4345 } else if (is_hwpoison_entry(entry)) { 4346 ret = VM_FAULT_HWPOISON; 4347 } else if (is_pte_marker_entry(entry)) { 4348 ret = handle_pte_marker(vmf); 4349 } else { 4350 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4351 ret = VM_FAULT_SIGBUS; 4352 } 4353 goto out; 4354 } 4355 4356 /* Prevent swapoff from happening to us. */ 4357 si = get_swap_device(entry); 4358 if (unlikely(!si)) 4359 goto out; 4360 4361 folio = swap_cache_get_folio(entry, vma, vmf->address); 4362 if (folio) 4363 page = folio_file_page(folio, swp_offset(entry)); 4364 swapcache = folio; 4365 4366 if (!folio) { 4367 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4368 __swap_count(entry) == 1) { 4369 /* skip swapcache */ 4370 folio = alloc_swap_folio(vmf); 4371 if (folio) { 4372 __folio_set_locked(folio); 4373 __folio_set_swapbacked(folio); 4374 4375 nr_pages = folio_nr_pages(folio); 4376 if (folio_test_large(folio)) 4377 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4378 /* 4379 * Prevent parallel swapin from proceeding with 4380 * the cache flag. Otherwise, another thread 4381 * may finish swapin first, free the entry, and 4382 * swapout reusing the same entry. It's 4383 * undetectable as pte_same() returns true due 4384 * to entry reuse. 4385 */ 4386 if (swapcache_prepare(entry, nr_pages)) { 4387 /* 4388 * Relax a bit to prevent rapid 4389 * repeated page faults. 4390 */ 4391 add_wait_queue(&swapcache_wq, &wait); 4392 schedule_timeout_uninterruptible(1); 4393 remove_wait_queue(&swapcache_wq, &wait); 4394 goto out_page; 4395 } 4396 need_clear_cache = true; 4397 4398 memcg1_swapin(entry, nr_pages); 4399 4400 shadow = get_shadow_from_swap_cache(entry); 4401 if (shadow) 4402 workingset_refault(folio, shadow); 4403 4404 folio_add_lru(folio); 4405 4406 /* To provide entry to swap_read_folio() */ 4407 folio->swap = entry; 4408 swap_read_folio(folio, NULL); 4409 folio->private = NULL; 4410 } 4411 } else { 4412 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4413 vmf); 4414 swapcache = folio; 4415 } 4416 4417 if (!folio) { 4418 /* 4419 * Back out if somebody else faulted in this pte 4420 * while we released the pte lock. 4421 */ 4422 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4423 vmf->address, &vmf->ptl); 4424 if (likely(vmf->pte && 4425 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4426 ret = VM_FAULT_OOM; 4427 goto unlock; 4428 } 4429 4430 /* Had to read the page from swap area: Major fault */ 4431 ret = VM_FAULT_MAJOR; 4432 count_vm_event(PGMAJFAULT); 4433 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4434 page = folio_file_page(folio, swp_offset(entry)); 4435 } else if (PageHWPoison(page)) { 4436 /* 4437 * hwpoisoned dirty swapcache pages are kept for killing 4438 * owner processes (which may be unknown at hwpoison time) 4439 */ 4440 ret = VM_FAULT_HWPOISON; 4441 goto out_release; 4442 } 4443 4444 ret |= folio_lock_or_retry(folio, vmf); 4445 if (ret & VM_FAULT_RETRY) 4446 goto out_release; 4447 4448 if (swapcache) { 4449 /* 4450 * Make sure folio_free_swap() or swapoff did not release the 4451 * swapcache from under us. The page pin, and pte_same test 4452 * below, are not enough to exclude that. Even if it is still 4453 * swapcache, we need to check that the page's swap has not 4454 * changed. 4455 */ 4456 if (unlikely(!folio_test_swapcache(folio) || 4457 page_swap_entry(page).val != entry.val)) 4458 goto out_page; 4459 4460 /* 4461 * KSM sometimes has to copy on read faults, for example, if 4462 * page->index of !PageKSM() pages would be nonlinear inside the 4463 * anon VMA -- PageKSM() is lost on actual swapout. 4464 */ 4465 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4466 if (unlikely(!folio)) { 4467 ret = VM_FAULT_OOM; 4468 folio = swapcache; 4469 goto out_page; 4470 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4471 ret = VM_FAULT_HWPOISON; 4472 folio = swapcache; 4473 goto out_page; 4474 } 4475 if (folio != swapcache) 4476 page = folio_page(folio, 0); 4477 4478 /* 4479 * If we want to map a page that's in the swapcache writable, we 4480 * have to detect via the refcount if we're really the exclusive 4481 * owner. Try removing the extra reference from the local LRU 4482 * caches if required. 4483 */ 4484 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4485 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4486 lru_add_drain(); 4487 } 4488 4489 folio_throttle_swaprate(folio, GFP_KERNEL); 4490 4491 /* 4492 * Back out if somebody else already faulted in this pte. 4493 */ 4494 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4495 &vmf->ptl); 4496 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4497 goto out_nomap; 4498 4499 if (unlikely(!folio_test_uptodate(folio))) { 4500 ret = VM_FAULT_SIGBUS; 4501 goto out_nomap; 4502 } 4503 4504 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4505 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4506 unsigned long nr = folio_nr_pages(folio); 4507 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4508 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4509 pte_t *folio_ptep = vmf->pte - idx; 4510 pte_t folio_pte = ptep_get(folio_ptep); 4511 4512 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4513 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4514 goto out_nomap; 4515 4516 page_idx = idx; 4517 address = folio_start; 4518 ptep = folio_ptep; 4519 goto check_folio; 4520 } 4521 4522 nr_pages = 1; 4523 page_idx = 0; 4524 address = vmf->address; 4525 ptep = vmf->pte; 4526 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4527 int nr = folio_nr_pages(folio); 4528 unsigned long idx = folio_page_idx(folio, page); 4529 unsigned long folio_start = address - idx * PAGE_SIZE; 4530 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4531 pte_t *folio_ptep; 4532 pte_t folio_pte; 4533 4534 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4535 goto check_folio; 4536 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4537 goto check_folio; 4538 4539 folio_ptep = vmf->pte - idx; 4540 folio_pte = ptep_get(folio_ptep); 4541 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4542 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4543 goto check_folio; 4544 4545 page_idx = idx; 4546 address = folio_start; 4547 ptep = folio_ptep; 4548 nr_pages = nr; 4549 entry = folio->swap; 4550 page = &folio->page; 4551 } 4552 4553 check_folio: 4554 /* 4555 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4556 * must never point at an anonymous page in the swapcache that is 4557 * PG_anon_exclusive. Sanity check that this holds and especially, that 4558 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4559 * check after taking the PT lock and making sure that nobody 4560 * concurrently faulted in this page and set PG_anon_exclusive. 4561 */ 4562 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4563 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4564 4565 /* 4566 * Check under PT lock (to protect against concurrent fork() sharing 4567 * the swap entry concurrently) for certainly exclusive pages. 4568 */ 4569 if (!folio_test_ksm(folio)) { 4570 exclusive = pte_swp_exclusive(vmf->orig_pte); 4571 if (folio != swapcache) { 4572 /* 4573 * We have a fresh page that is not exposed to the 4574 * swapcache -> certainly exclusive. 4575 */ 4576 exclusive = true; 4577 } else if (exclusive && folio_test_writeback(folio) && 4578 data_race(si->flags & SWP_STABLE_WRITES)) { 4579 /* 4580 * This is tricky: not all swap backends support 4581 * concurrent page modifications while under writeback. 4582 * 4583 * So if we stumble over such a page in the swapcache 4584 * we must not set the page exclusive, otherwise we can 4585 * map it writable without further checks and modify it 4586 * while still under writeback. 4587 * 4588 * For these problematic swap backends, simply drop the 4589 * exclusive marker: this is perfectly fine as we start 4590 * writeback only if we fully unmapped the page and 4591 * there are no unexpected references on the page after 4592 * unmapping succeeded. After fully unmapped, no 4593 * further GUP references (FOLL_GET and FOLL_PIN) can 4594 * appear, so dropping the exclusive marker and mapping 4595 * it only R/O is fine. 4596 */ 4597 exclusive = false; 4598 } 4599 } 4600 4601 /* 4602 * Some architectures may have to restore extra metadata to the page 4603 * when reading from swap. This metadata may be indexed by swap entry 4604 * so this must be called before swap_free(). 4605 */ 4606 arch_swap_restore(folio_swap(entry, folio), folio); 4607 4608 /* 4609 * Remove the swap entry and conditionally try to free up the swapcache. 4610 * We're already holding a reference on the page but haven't mapped it 4611 * yet. 4612 */ 4613 swap_free_nr(entry, nr_pages); 4614 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4615 folio_free_swap(folio); 4616 4617 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4618 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4619 pte = mk_pte(page, vma->vm_page_prot); 4620 if (pte_swp_soft_dirty(vmf->orig_pte)) 4621 pte = pte_mksoft_dirty(pte); 4622 if (pte_swp_uffd_wp(vmf->orig_pte)) 4623 pte = pte_mkuffd_wp(pte); 4624 4625 /* 4626 * Same logic as in do_wp_page(); however, optimize for pages that are 4627 * certainly not shared either because we just allocated them without 4628 * exposing them to the swapcache or because the swap entry indicates 4629 * exclusivity. 4630 */ 4631 if (!folio_test_ksm(folio) && 4632 (exclusive || folio_ref_count(folio) == 1)) { 4633 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4634 !pte_needs_soft_dirty_wp(vma, pte)) { 4635 pte = pte_mkwrite(pte, vma); 4636 if (vmf->flags & FAULT_FLAG_WRITE) { 4637 pte = pte_mkdirty(pte); 4638 vmf->flags &= ~FAULT_FLAG_WRITE; 4639 } 4640 } 4641 rmap_flags |= RMAP_EXCLUSIVE; 4642 } 4643 folio_ref_add(folio, nr_pages - 1); 4644 flush_icache_pages(vma, page, nr_pages); 4645 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4646 4647 /* ksm created a completely new copy */ 4648 if (unlikely(folio != swapcache && swapcache)) { 4649 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4650 folio_add_lru_vma(folio, vma); 4651 } else if (!folio_test_anon(folio)) { 4652 /* 4653 * We currently only expect small !anon folios which are either 4654 * fully exclusive or fully shared, or new allocated large 4655 * folios which are fully exclusive. If we ever get large 4656 * folios within swapcache here, we have to be careful. 4657 */ 4658 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4659 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4660 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4661 } else { 4662 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4663 rmap_flags); 4664 } 4665 4666 VM_BUG_ON(!folio_test_anon(folio) || 4667 (pte_write(pte) && !PageAnonExclusive(page))); 4668 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4669 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4670 pte, pte, nr_pages); 4671 4672 folio_unlock(folio); 4673 if (folio != swapcache && swapcache) { 4674 /* 4675 * Hold the lock to avoid the swap entry to be reused 4676 * until we take the PT lock for the pte_same() check 4677 * (to avoid false positives from pte_same). For 4678 * further safety release the lock after the swap_free 4679 * so that the swap count won't change under a 4680 * parallel locked swapcache. 4681 */ 4682 folio_unlock(swapcache); 4683 folio_put(swapcache); 4684 } 4685 4686 if (vmf->flags & FAULT_FLAG_WRITE) { 4687 ret |= do_wp_page(vmf); 4688 if (ret & VM_FAULT_ERROR) 4689 ret &= VM_FAULT_ERROR; 4690 goto out; 4691 } 4692 4693 /* No need to invalidate - it was non-present before */ 4694 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4695 unlock: 4696 if (vmf->pte) 4697 pte_unmap_unlock(vmf->pte, vmf->ptl); 4698 out: 4699 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4700 if (need_clear_cache) { 4701 swapcache_clear(si, entry, nr_pages); 4702 if (waitqueue_active(&swapcache_wq)) 4703 wake_up(&swapcache_wq); 4704 } 4705 if (si) 4706 put_swap_device(si); 4707 return ret; 4708 out_nomap: 4709 if (vmf->pte) 4710 pte_unmap_unlock(vmf->pte, vmf->ptl); 4711 out_page: 4712 folio_unlock(folio); 4713 out_release: 4714 folio_put(folio); 4715 if (folio != swapcache && swapcache) { 4716 folio_unlock(swapcache); 4717 folio_put(swapcache); 4718 } 4719 if (need_clear_cache) { 4720 swapcache_clear(si, entry, nr_pages); 4721 if (waitqueue_active(&swapcache_wq)) 4722 wake_up(&swapcache_wq); 4723 } 4724 if (si) 4725 put_swap_device(si); 4726 return ret; 4727 } 4728 4729 static bool pte_range_none(pte_t *pte, int nr_pages) 4730 { 4731 int i; 4732 4733 for (i = 0; i < nr_pages; i++) { 4734 if (!pte_none(ptep_get_lockless(pte + i))) 4735 return false; 4736 } 4737 4738 return true; 4739 } 4740 4741 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4742 { 4743 struct vm_area_struct *vma = vmf->vma; 4744 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4745 unsigned long orders; 4746 struct folio *folio; 4747 unsigned long addr; 4748 pte_t *pte; 4749 gfp_t gfp; 4750 int order; 4751 4752 /* 4753 * If uffd is active for the vma we need per-page fault fidelity to 4754 * maintain the uffd semantics. 4755 */ 4756 if (unlikely(userfaultfd_armed(vma))) 4757 goto fallback; 4758 4759 /* 4760 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4761 * for this vma. Then filter out the orders that can't be allocated over 4762 * the faulting address and still be fully contained in the vma. 4763 */ 4764 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4765 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4766 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4767 4768 if (!orders) 4769 goto fallback; 4770 4771 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4772 if (!pte) 4773 return ERR_PTR(-EAGAIN); 4774 4775 /* 4776 * Find the highest order where the aligned range is completely 4777 * pte_none(). Note that all remaining orders will be completely 4778 * pte_none(). 4779 */ 4780 order = highest_order(orders); 4781 while (orders) { 4782 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4783 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4784 break; 4785 order = next_order(&orders, order); 4786 } 4787 4788 pte_unmap(pte); 4789 4790 if (!orders) 4791 goto fallback; 4792 4793 /* Try allocating the highest of the remaining orders. */ 4794 gfp = vma_thp_gfp_mask(vma); 4795 while (orders) { 4796 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4797 folio = vma_alloc_folio(gfp, order, vma, addr); 4798 if (folio) { 4799 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4800 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 4801 folio_put(folio); 4802 goto next; 4803 } 4804 folio_throttle_swaprate(folio, gfp); 4805 /* 4806 * When a folio is not zeroed during allocation 4807 * (__GFP_ZERO not used) or user folios require special 4808 * handling, folio_zero_user() is used to make sure 4809 * that the page corresponding to the faulting address 4810 * will be hot in the cache after zeroing. 4811 */ 4812 if (user_alloc_needs_zeroing()) 4813 folio_zero_user(folio, vmf->address); 4814 return folio; 4815 } 4816 next: 4817 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 4818 order = next_order(&orders, order); 4819 } 4820 4821 fallback: 4822 #endif 4823 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4824 } 4825 4826 /* 4827 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4828 * but allow concurrent faults), and pte mapped but not yet locked. 4829 * We return with mmap_lock still held, but pte unmapped and unlocked. 4830 */ 4831 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4832 { 4833 struct vm_area_struct *vma = vmf->vma; 4834 unsigned long addr = vmf->address; 4835 struct folio *folio; 4836 vm_fault_t ret = 0; 4837 int nr_pages = 1; 4838 pte_t entry; 4839 4840 /* File mapping without ->vm_ops ? */ 4841 if (vma->vm_flags & VM_SHARED) 4842 return VM_FAULT_SIGBUS; 4843 4844 /* 4845 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4846 * be distinguished from a transient failure of pte_offset_map(). 4847 */ 4848 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4849 return VM_FAULT_OOM; 4850 4851 /* Use the zero-page for reads */ 4852 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4853 !mm_forbids_zeropage(vma->vm_mm)) { 4854 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4855 vma->vm_page_prot)); 4856 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4857 vmf->address, &vmf->ptl); 4858 if (!vmf->pte) 4859 goto unlock; 4860 if (vmf_pte_changed(vmf)) { 4861 update_mmu_tlb(vma, vmf->address, vmf->pte); 4862 goto unlock; 4863 } 4864 ret = check_stable_address_space(vma->vm_mm); 4865 if (ret) 4866 goto unlock; 4867 /* Deliver the page fault to userland, check inside PT lock */ 4868 if (userfaultfd_missing(vma)) { 4869 pte_unmap_unlock(vmf->pte, vmf->ptl); 4870 return handle_userfault(vmf, VM_UFFD_MISSING); 4871 } 4872 goto setpte; 4873 } 4874 4875 /* Allocate our own private page. */ 4876 ret = vmf_anon_prepare(vmf); 4877 if (ret) 4878 return ret; 4879 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 4880 folio = alloc_anon_folio(vmf); 4881 if (IS_ERR(folio)) 4882 return 0; 4883 if (!folio) 4884 goto oom; 4885 4886 nr_pages = folio_nr_pages(folio); 4887 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4888 4889 /* 4890 * The memory barrier inside __folio_mark_uptodate makes sure that 4891 * preceding stores to the page contents become visible before 4892 * the set_pte_at() write. 4893 */ 4894 __folio_mark_uptodate(folio); 4895 4896 entry = mk_pte(&folio->page, vma->vm_page_prot); 4897 entry = pte_sw_mkyoung(entry); 4898 if (vma->vm_flags & VM_WRITE) 4899 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4900 4901 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 4902 if (!vmf->pte) 4903 goto release; 4904 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 4905 update_mmu_tlb(vma, addr, vmf->pte); 4906 goto release; 4907 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 4908 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 4909 goto release; 4910 } 4911 4912 ret = check_stable_address_space(vma->vm_mm); 4913 if (ret) 4914 goto release; 4915 4916 /* Deliver the page fault to userland, check inside PT lock */ 4917 if (userfaultfd_missing(vma)) { 4918 pte_unmap_unlock(vmf->pte, vmf->ptl); 4919 folio_put(folio); 4920 return handle_userfault(vmf, VM_UFFD_MISSING); 4921 } 4922 4923 folio_ref_add(folio, nr_pages - 1); 4924 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4925 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 4926 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 4927 folio_add_lru_vma(folio, vma); 4928 setpte: 4929 if (vmf_orig_pte_uffd_wp(vmf)) 4930 entry = pte_mkuffd_wp(entry); 4931 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 4932 4933 /* No need to invalidate - it was non-present before */ 4934 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 4935 unlock: 4936 if (vmf->pte) 4937 pte_unmap_unlock(vmf->pte, vmf->ptl); 4938 return ret; 4939 release: 4940 folio_put(folio); 4941 goto unlock; 4942 oom: 4943 return VM_FAULT_OOM; 4944 } 4945 4946 /* 4947 * The mmap_lock must have been held on entry, and may have been 4948 * released depending on flags and vma->vm_ops->fault() return value. 4949 * See filemap_fault() and __lock_page_retry(). 4950 */ 4951 static vm_fault_t __do_fault(struct vm_fault *vmf) 4952 { 4953 struct vm_area_struct *vma = vmf->vma; 4954 struct folio *folio; 4955 vm_fault_t ret; 4956 4957 /* 4958 * Preallocate pte before we take page_lock because this might lead to 4959 * deadlocks for memcg reclaim which waits for pages under writeback: 4960 * lock_page(A) 4961 * SetPageWriteback(A) 4962 * unlock_page(A) 4963 * lock_page(B) 4964 * lock_page(B) 4965 * pte_alloc_one 4966 * shrink_folio_list 4967 * wait_on_page_writeback(A) 4968 * SetPageWriteback(B) 4969 * unlock_page(B) 4970 * # flush A, B to clear the writeback 4971 */ 4972 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4973 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4974 if (!vmf->prealloc_pte) 4975 return VM_FAULT_OOM; 4976 } 4977 4978 ret = vma->vm_ops->fault(vmf); 4979 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4980 VM_FAULT_DONE_COW))) 4981 return ret; 4982 4983 folio = page_folio(vmf->page); 4984 if (unlikely(PageHWPoison(vmf->page))) { 4985 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4986 if (ret & VM_FAULT_LOCKED) { 4987 if (page_mapped(vmf->page)) 4988 unmap_mapping_folio(folio); 4989 /* Retry if a clean folio was removed from the cache. */ 4990 if (mapping_evict_folio(folio->mapping, folio)) 4991 poisonret = VM_FAULT_NOPAGE; 4992 folio_unlock(folio); 4993 } 4994 folio_put(folio); 4995 vmf->page = NULL; 4996 return poisonret; 4997 } 4998 4999 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5000 folio_lock(folio); 5001 else 5002 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5003 5004 return ret; 5005 } 5006 5007 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5008 static void deposit_prealloc_pte(struct vm_fault *vmf) 5009 { 5010 struct vm_area_struct *vma = vmf->vma; 5011 5012 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5013 /* 5014 * We are going to consume the prealloc table, 5015 * count that as nr_ptes. 5016 */ 5017 mm_inc_nr_ptes(vma->vm_mm); 5018 vmf->prealloc_pte = NULL; 5019 } 5020 5021 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 5022 { 5023 struct folio *folio = page_folio(page); 5024 struct vm_area_struct *vma = vmf->vma; 5025 bool write = vmf->flags & FAULT_FLAG_WRITE; 5026 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5027 pmd_t entry; 5028 vm_fault_t ret = VM_FAULT_FALLBACK; 5029 5030 /* 5031 * It is too late to allocate a small folio, we already have a large 5032 * folio in the pagecache: especially s390 KVM cannot tolerate any 5033 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5034 * PMD mappings if THPs are disabled. 5035 */ 5036 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) 5037 return ret; 5038 5039 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5040 return ret; 5041 5042 if (folio_order(folio) != HPAGE_PMD_ORDER) 5043 return ret; 5044 page = &folio->page; 5045 5046 /* 5047 * Just backoff if any subpage of a THP is corrupted otherwise 5048 * the corrupted page may mapped by PMD silently to escape the 5049 * check. This kind of THP just can be PTE mapped. Access to 5050 * the corrupted subpage should trigger SIGBUS as expected. 5051 */ 5052 if (unlikely(folio_test_has_hwpoisoned(folio))) 5053 return ret; 5054 5055 /* 5056 * Archs like ppc64 need additional space to store information 5057 * related to pte entry. Use the preallocated table for that. 5058 */ 5059 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5060 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5061 if (!vmf->prealloc_pte) 5062 return VM_FAULT_OOM; 5063 } 5064 5065 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5066 if (unlikely(!pmd_none(*vmf->pmd))) 5067 goto out; 5068 5069 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5070 5071 entry = mk_huge_pmd(page, vma->vm_page_prot); 5072 if (write) 5073 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5074 5075 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5076 folio_add_file_rmap_pmd(folio, page, vma); 5077 5078 /* 5079 * deposit and withdraw with pmd lock held 5080 */ 5081 if (arch_needs_pgtable_deposit()) 5082 deposit_prealloc_pte(vmf); 5083 5084 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5085 5086 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5087 5088 /* fault is handled */ 5089 ret = 0; 5090 count_vm_event(THP_FILE_MAPPED); 5091 out: 5092 spin_unlock(vmf->ptl); 5093 return ret; 5094 } 5095 #else 5096 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 5097 { 5098 return VM_FAULT_FALLBACK; 5099 } 5100 #endif 5101 5102 /** 5103 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5104 * @vmf: Fault decription. 5105 * @folio: The folio that contains @page. 5106 * @page: The first page to create a PTE for. 5107 * @nr: The number of PTEs to create. 5108 * @addr: The first address to create a PTE for. 5109 */ 5110 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5111 struct page *page, unsigned int nr, unsigned long addr) 5112 { 5113 struct vm_area_struct *vma = vmf->vma; 5114 bool write = vmf->flags & FAULT_FLAG_WRITE; 5115 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5116 pte_t entry; 5117 5118 flush_icache_pages(vma, page, nr); 5119 entry = mk_pte(page, vma->vm_page_prot); 5120 5121 if (prefault && arch_wants_old_prefaulted_pte()) 5122 entry = pte_mkold(entry); 5123 else 5124 entry = pte_sw_mkyoung(entry); 5125 5126 if (write) 5127 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5128 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5129 entry = pte_mkuffd_wp(entry); 5130 /* copy-on-write page */ 5131 if (write && !(vma->vm_flags & VM_SHARED)) { 5132 VM_BUG_ON_FOLIO(nr != 1, folio); 5133 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5134 folio_add_lru_vma(folio, vma); 5135 } else { 5136 folio_add_file_rmap_ptes(folio, page, nr, vma); 5137 } 5138 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5139 5140 /* no need to invalidate: a not-present page won't be cached */ 5141 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5142 } 5143 5144 static bool vmf_pte_changed(struct vm_fault *vmf) 5145 { 5146 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5147 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5148 5149 return !pte_none(ptep_get(vmf->pte)); 5150 } 5151 5152 /** 5153 * finish_fault - finish page fault once we have prepared the page to fault 5154 * 5155 * @vmf: structure describing the fault 5156 * 5157 * This function handles all that is needed to finish a page fault once the 5158 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5159 * given page, adds reverse page mapping, handles memcg charges and LRU 5160 * addition. 5161 * 5162 * The function expects the page to be locked and on success it consumes a 5163 * reference of a page being mapped (for the PTE which maps it). 5164 * 5165 * Return: %0 on success, %VM_FAULT_ code in case of error. 5166 */ 5167 vm_fault_t finish_fault(struct vm_fault *vmf) 5168 { 5169 struct vm_area_struct *vma = vmf->vma; 5170 struct page *page; 5171 struct folio *folio; 5172 vm_fault_t ret; 5173 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5174 !(vma->vm_flags & VM_SHARED); 5175 int type, nr_pages; 5176 unsigned long addr; 5177 bool needs_fallback = false; 5178 5179 fallback: 5180 addr = vmf->address; 5181 5182 /* Did we COW the page? */ 5183 if (is_cow) 5184 page = vmf->cow_page; 5185 else 5186 page = vmf->page; 5187 5188 /* 5189 * check even for read faults because we might have lost our CoWed 5190 * page 5191 */ 5192 if (!(vma->vm_flags & VM_SHARED)) { 5193 ret = check_stable_address_space(vma->vm_mm); 5194 if (ret) 5195 return ret; 5196 } 5197 5198 if (pmd_none(*vmf->pmd)) { 5199 if (PageTransCompound(page)) { 5200 ret = do_set_pmd(vmf, page); 5201 if (ret != VM_FAULT_FALLBACK) 5202 return ret; 5203 } 5204 5205 if (vmf->prealloc_pte) 5206 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5207 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5208 return VM_FAULT_OOM; 5209 } 5210 5211 folio = page_folio(page); 5212 nr_pages = folio_nr_pages(folio); 5213 5214 /* 5215 * Using per-page fault to maintain the uffd semantics, and same 5216 * approach also applies to non-anonymous-shmem faults to avoid 5217 * inflating the RSS of the process. 5218 */ 5219 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) || 5220 unlikely(needs_fallback)) { 5221 nr_pages = 1; 5222 } else if (nr_pages > 1) { 5223 pgoff_t idx = folio_page_idx(folio, page); 5224 /* The page offset of vmf->address within the VMA. */ 5225 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5226 /* The index of the entry in the pagetable for fault page. */ 5227 pgoff_t pte_off = pte_index(vmf->address); 5228 5229 /* 5230 * Fallback to per-page fault in case the folio size in page 5231 * cache beyond the VMA limits and PMD pagetable limits. 5232 */ 5233 if (unlikely(vma_off < idx || 5234 vma_off + (nr_pages - idx) > vma_pages(vma) || 5235 pte_off < idx || 5236 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5237 nr_pages = 1; 5238 } else { 5239 /* Now we can set mappings for the whole large folio. */ 5240 addr = vmf->address - idx * PAGE_SIZE; 5241 page = &folio->page; 5242 } 5243 } 5244 5245 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5246 addr, &vmf->ptl); 5247 if (!vmf->pte) 5248 return VM_FAULT_NOPAGE; 5249 5250 /* Re-check under ptl */ 5251 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5252 update_mmu_tlb(vma, addr, vmf->pte); 5253 ret = VM_FAULT_NOPAGE; 5254 goto unlock; 5255 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5256 needs_fallback = true; 5257 pte_unmap_unlock(vmf->pte, vmf->ptl); 5258 goto fallback; 5259 } 5260 5261 folio_ref_add(folio, nr_pages - 1); 5262 set_pte_range(vmf, folio, page, nr_pages, addr); 5263 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5264 add_mm_counter(vma->vm_mm, type, nr_pages); 5265 ret = 0; 5266 5267 unlock: 5268 pte_unmap_unlock(vmf->pte, vmf->ptl); 5269 return ret; 5270 } 5271 5272 static unsigned long fault_around_pages __read_mostly = 5273 65536 >> PAGE_SHIFT; 5274 5275 #ifdef CONFIG_DEBUG_FS 5276 static int fault_around_bytes_get(void *data, u64 *val) 5277 { 5278 *val = fault_around_pages << PAGE_SHIFT; 5279 return 0; 5280 } 5281 5282 /* 5283 * fault_around_bytes must be rounded down to the nearest page order as it's 5284 * what do_fault_around() expects to see. 5285 */ 5286 static int fault_around_bytes_set(void *data, u64 val) 5287 { 5288 if (val / PAGE_SIZE > PTRS_PER_PTE) 5289 return -EINVAL; 5290 5291 /* 5292 * The minimum value is 1 page, however this results in no fault-around 5293 * at all. See should_fault_around(). 5294 */ 5295 val = max(val, PAGE_SIZE); 5296 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5297 5298 return 0; 5299 } 5300 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5301 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5302 5303 static int __init fault_around_debugfs(void) 5304 { 5305 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5306 &fault_around_bytes_fops); 5307 return 0; 5308 } 5309 late_initcall(fault_around_debugfs); 5310 #endif 5311 5312 /* 5313 * do_fault_around() tries to map few pages around the fault address. The hope 5314 * is that the pages will be needed soon and this will lower the number of 5315 * faults to handle. 5316 * 5317 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5318 * not ready to be mapped: not up-to-date, locked, etc. 5319 * 5320 * This function doesn't cross VMA or page table boundaries, in order to call 5321 * map_pages() and acquire a PTE lock only once. 5322 * 5323 * fault_around_pages defines how many pages we'll try to map. 5324 * do_fault_around() expects it to be set to a power of two less than or equal 5325 * to PTRS_PER_PTE. 5326 * 5327 * The virtual address of the area that we map is naturally aligned to 5328 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5329 * (and therefore to page order). This way it's easier to guarantee 5330 * that we don't cross page table boundaries. 5331 */ 5332 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5333 { 5334 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5335 pgoff_t pte_off = pte_index(vmf->address); 5336 /* The page offset of vmf->address within the VMA. */ 5337 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5338 pgoff_t from_pte, to_pte; 5339 vm_fault_t ret; 5340 5341 /* The PTE offset of the start address, clamped to the VMA. */ 5342 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5343 pte_off - min(pte_off, vma_off)); 5344 5345 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5346 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5347 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5348 5349 if (pmd_none(*vmf->pmd)) { 5350 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5351 if (!vmf->prealloc_pte) 5352 return VM_FAULT_OOM; 5353 } 5354 5355 rcu_read_lock(); 5356 ret = vmf->vma->vm_ops->map_pages(vmf, 5357 vmf->pgoff + from_pte - pte_off, 5358 vmf->pgoff + to_pte - pte_off); 5359 rcu_read_unlock(); 5360 5361 return ret; 5362 } 5363 5364 /* Return true if we should do read fault-around, false otherwise */ 5365 static inline bool should_fault_around(struct vm_fault *vmf) 5366 { 5367 /* No ->map_pages? No way to fault around... */ 5368 if (!vmf->vma->vm_ops->map_pages) 5369 return false; 5370 5371 if (uffd_disable_fault_around(vmf->vma)) 5372 return false; 5373 5374 /* A single page implies no faulting 'around' at all. */ 5375 return fault_around_pages > 1; 5376 } 5377 5378 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5379 { 5380 vm_fault_t ret = 0; 5381 struct folio *folio; 5382 5383 /* 5384 * Let's call ->map_pages() first and use ->fault() as fallback 5385 * if page by the offset is not ready to be mapped (cold cache or 5386 * something). 5387 */ 5388 if (should_fault_around(vmf)) { 5389 ret = do_fault_around(vmf); 5390 if (ret) 5391 return ret; 5392 } 5393 5394 ret = vmf_can_call_fault(vmf); 5395 if (ret) 5396 return ret; 5397 5398 ret = __do_fault(vmf); 5399 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5400 return ret; 5401 5402 ret |= finish_fault(vmf); 5403 folio = page_folio(vmf->page); 5404 folio_unlock(folio); 5405 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5406 folio_put(folio); 5407 return ret; 5408 } 5409 5410 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5411 { 5412 struct vm_area_struct *vma = vmf->vma; 5413 struct folio *folio; 5414 vm_fault_t ret; 5415 5416 ret = vmf_can_call_fault(vmf); 5417 if (!ret) 5418 ret = vmf_anon_prepare(vmf); 5419 if (ret) 5420 return ret; 5421 5422 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5423 if (!folio) 5424 return VM_FAULT_OOM; 5425 5426 vmf->cow_page = &folio->page; 5427 5428 ret = __do_fault(vmf); 5429 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5430 goto uncharge_out; 5431 if (ret & VM_FAULT_DONE_COW) 5432 return ret; 5433 5434 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5435 ret = VM_FAULT_HWPOISON; 5436 goto unlock; 5437 } 5438 __folio_mark_uptodate(folio); 5439 5440 ret |= finish_fault(vmf); 5441 unlock: 5442 unlock_page(vmf->page); 5443 put_page(vmf->page); 5444 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5445 goto uncharge_out; 5446 return ret; 5447 uncharge_out: 5448 folio_put(folio); 5449 return ret; 5450 } 5451 5452 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5453 { 5454 struct vm_area_struct *vma = vmf->vma; 5455 vm_fault_t ret, tmp; 5456 struct folio *folio; 5457 5458 ret = vmf_can_call_fault(vmf); 5459 if (ret) 5460 return ret; 5461 5462 ret = __do_fault(vmf); 5463 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5464 return ret; 5465 5466 folio = page_folio(vmf->page); 5467 5468 /* 5469 * Check if the backing address space wants to know that the page is 5470 * about to become writable 5471 */ 5472 if (vma->vm_ops->page_mkwrite) { 5473 folio_unlock(folio); 5474 tmp = do_page_mkwrite(vmf, folio); 5475 if (unlikely(!tmp || 5476 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5477 folio_put(folio); 5478 return tmp; 5479 } 5480 } 5481 5482 ret |= finish_fault(vmf); 5483 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5484 VM_FAULT_RETRY))) { 5485 folio_unlock(folio); 5486 folio_put(folio); 5487 return ret; 5488 } 5489 5490 ret |= fault_dirty_shared_page(vmf); 5491 return ret; 5492 } 5493 5494 /* 5495 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5496 * but allow concurrent faults). 5497 * The mmap_lock may have been released depending on flags and our 5498 * return value. See filemap_fault() and __folio_lock_or_retry(). 5499 * If mmap_lock is released, vma may become invalid (for example 5500 * by other thread calling munmap()). 5501 */ 5502 static vm_fault_t do_fault(struct vm_fault *vmf) 5503 { 5504 struct vm_area_struct *vma = vmf->vma; 5505 struct mm_struct *vm_mm = vma->vm_mm; 5506 vm_fault_t ret; 5507 5508 /* 5509 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5510 */ 5511 if (!vma->vm_ops->fault) { 5512 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5513 vmf->address, &vmf->ptl); 5514 if (unlikely(!vmf->pte)) 5515 ret = VM_FAULT_SIGBUS; 5516 else { 5517 /* 5518 * Make sure this is not a temporary clearing of pte 5519 * by holding ptl and checking again. A R/M/W update 5520 * of pte involves: take ptl, clearing the pte so that 5521 * we don't have concurrent modification by hardware 5522 * followed by an update. 5523 */ 5524 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5525 ret = VM_FAULT_SIGBUS; 5526 else 5527 ret = VM_FAULT_NOPAGE; 5528 5529 pte_unmap_unlock(vmf->pte, vmf->ptl); 5530 } 5531 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5532 ret = do_read_fault(vmf); 5533 else if (!(vma->vm_flags & VM_SHARED)) 5534 ret = do_cow_fault(vmf); 5535 else 5536 ret = do_shared_fault(vmf); 5537 5538 /* preallocated pagetable is unused: free it */ 5539 if (vmf->prealloc_pte) { 5540 pte_free(vm_mm, vmf->prealloc_pte); 5541 vmf->prealloc_pte = NULL; 5542 } 5543 return ret; 5544 } 5545 5546 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5547 unsigned long addr, int *flags, 5548 bool writable, int *last_cpupid) 5549 { 5550 struct vm_area_struct *vma = vmf->vma; 5551 5552 /* 5553 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5554 * much anyway since they can be in shared cache state. This misses 5555 * the case where a mapping is writable but the process never writes 5556 * to it but pte_write gets cleared during protection updates and 5557 * pte_dirty has unpredictable behaviour between PTE scan updates, 5558 * background writeback, dirty balancing and application behaviour. 5559 */ 5560 if (!writable) 5561 *flags |= TNF_NO_GROUP; 5562 5563 /* 5564 * Flag if the folio is shared between multiple address spaces. This 5565 * is later used when determining whether to group tasks together 5566 */ 5567 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5568 *flags |= TNF_SHARED; 5569 /* 5570 * For memory tiering mode, cpupid of slow memory page is used 5571 * to record page access time. So use default value. 5572 */ 5573 if (folio_use_access_time(folio)) 5574 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5575 else 5576 *last_cpupid = folio_last_cpupid(folio); 5577 5578 /* Record the current PID acceesing VMA */ 5579 vma_set_access_pid_bit(vma); 5580 5581 count_vm_numa_event(NUMA_HINT_FAULTS); 5582 #ifdef CONFIG_NUMA_BALANCING 5583 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5584 #endif 5585 if (folio_nid(folio) == numa_node_id()) { 5586 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5587 *flags |= TNF_FAULT_LOCAL; 5588 } 5589 5590 return mpol_misplaced(folio, vmf, addr); 5591 } 5592 5593 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5594 unsigned long fault_addr, pte_t *fault_pte, 5595 bool writable) 5596 { 5597 pte_t pte, old_pte; 5598 5599 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5600 pte = pte_modify(old_pte, vma->vm_page_prot); 5601 pte = pte_mkyoung(pte); 5602 if (writable) 5603 pte = pte_mkwrite(pte, vma); 5604 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5605 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5606 } 5607 5608 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5609 struct folio *folio, pte_t fault_pte, 5610 bool ignore_writable, bool pte_write_upgrade) 5611 { 5612 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5613 unsigned long start, end, addr = vmf->address; 5614 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5615 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5616 pte_t *start_ptep; 5617 5618 /* Stay within the VMA and within the page table. */ 5619 start = max3(addr_start, pt_start, vma->vm_start); 5620 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5621 vma->vm_end); 5622 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5623 5624 /* Restore all PTEs' mapping of the large folio */ 5625 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5626 pte_t ptent = ptep_get(start_ptep); 5627 bool writable = false; 5628 5629 if (!pte_present(ptent) || !pte_protnone(ptent)) 5630 continue; 5631 5632 if (pfn_folio(pte_pfn(ptent)) != folio) 5633 continue; 5634 5635 if (!ignore_writable) { 5636 ptent = pte_modify(ptent, vma->vm_page_prot); 5637 writable = pte_write(ptent); 5638 if (!writable && pte_write_upgrade && 5639 can_change_pte_writable(vma, addr, ptent)) 5640 writable = true; 5641 } 5642 5643 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5644 } 5645 } 5646 5647 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5648 { 5649 struct vm_area_struct *vma = vmf->vma; 5650 struct folio *folio = NULL; 5651 int nid = NUMA_NO_NODE; 5652 bool writable = false, ignore_writable = false; 5653 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5654 int last_cpupid; 5655 int target_nid; 5656 pte_t pte, old_pte; 5657 int flags = 0, nr_pages; 5658 5659 /* 5660 * The pte cannot be used safely until we verify, while holding the page 5661 * table lock, that its contents have not changed during fault handling. 5662 */ 5663 spin_lock(vmf->ptl); 5664 /* Read the live PTE from the page tables: */ 5665 old_pte = ptep_get(vmf->pte); 5666 5667 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5668 pte_unmap_unlock(vmf->pte, vmf->ptl); 5669 return 0; 5670 } 5671 5672 pte = pte_modify(old_pte, vma->vm_page_prot); 5673 5674 /* 5675 * Detect now whether the PTE could be writable; this information 5676 * is only valid while holding the PT lock. 5677 */ 5678 writable = pte_write(pte); 5679 if (!writable && pte_write_upgrade && 5680 can_change_pte_writable(vma, vmf->address, pte)) 5681 writable = true; 5682 5683 folio = vm_normal_folio(vma, vmf->address, pte); 5684 if (!folio || folio_is_zone_device(folio)) 5685 goto out_map; 5686 5687 nid = folio_nid(folio); 5688 nr_pages = folio_nr_pages(folio); 5689 5690 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5691 writable, &last_cpupid); 5692 if (target_nid == NUMA_NO_NODE) 5693 goto out_map; 5694 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5695 flags |= TNF_MIGRATE_FAIL; 5696 goto out_map; 5697 } 5698 /* The folio is isolated and isolation code holds a folio reference. */ 5699 pte_unmap_unlock(vmf->pte, vmf->ptl); 5700 writable = false; 5701 ignore_writable = true; 5702 5703 /* Migrate to the requested node */ 5704 if (!migrate_misplaced_folio(folio, target_nid)) { 5705 nid = target_nid; 5706 flags |= TNF_MIGRATED; 5707 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5708 return 0; 5709 } 5710 5711 flags |= TNF_MIGRATE_FAIL; 5712 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5713 vmf->address, &vmf->ptl); 5714 if (unlikely(!vmf->pte)) 5715 return 0; 5716 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5717 pte_unmap_unlock(vmf->pte, vmf->ptl); 5718 return 0; 5719 } 5720 out_map: 5721 /* 5722 * Make it present again, depending on how arch implements 5723 * non-accessible ptes, some can allow access by kernel mode. 5724 */ 5725 if (folio && folio_test_large(folio)) 5726 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5727 pte_write_upgrade); 5728 else 5729 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5730 writable); 5731 pte_unmap_unlock(vmf->pte, vmf->ptl); 5732 5733 if (nid != NUMA_NO_NODE) 5734 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5735 return 0; 5736 } 5737 5738 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5739 { 5740 struct vm_area_struct *vma = vmf->vma; 5741 5742 if (vma_is_anonymous(vma)) 5743 return do_huge_pmd_anonymous_page(vmf); 5744 /* 5745 * Currently we just emit PAGE_SIZE for our fault events, so don't allow 5746 * a huge fault if we have a pre content watch on this file. This would 5747 * be trivial to support, but there would need to be tests to ensure 5748 * this works properly and those don't exist currently. 5749 */ 5750 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode))) 5751 return VM_FAULT_FALLBACK; 5752 if (vma->vm_ops->huge_fault) 5753 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5754 return VM_FAULT_FALLBACK; 5755 } 5756 5757 /* `inline' is required to avoid gcc 4.1.2 build error */ 5758 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5759 { 5760 struct vm_area_struct *vma = vmf->vma; 5761 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5762 vm_fault_t ret; 5763 5764 if (vma_is_anonymous(vma)) { 5765 if (likely(!unshare) && 5766 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5767 if (userfaultfd_wp_async(vmf->vma)) 5768 goto split; 5769 return handle_userfault(vmf, VM_UFFD_WP); 5770 } 5771 return do_huge_pmd_wp_page(vmf); 5772 } 5773 5774 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5775 /* See comment in create_huge_pmd. */ 5776 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode))) 5777 goto split; 5778 if (vma->vm_ops->huge_fault) { 5779 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5780 if (!(ret & VM_FAULT_FALLBACK)) 5781 return ret; 5782 } 5783 } 5784 5785 split: 5786 /* COW or write-notify handled on pte level: split pmd. */ 5787 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5788 5789 return VM_FAULT_FALLBACK; 5790 } 5791 5792 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5793 { 5794 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5795 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5796 struct vm_area_struct *vma = vmf->vma; 5797 /* No support for anonymous transparent PUD pages yet */ 5798 if (vma_is_anonymous(vma)) 5799 return VM_FAULT_FALLBACK; 5800 /* See comment in create_huge_pmd. */ 5801 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode))) 5802 return VM_FAULT_FALLBACK; 5803 if (vma->vm_ops->huge_fault) 5804 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5805 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5806 return VM_FAULT_FALLBACK; 5807 } 5808 5809 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5810 { 5811 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5812 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5813 struct vm_area_struct *vma = vmf->vma; 5814 vm_fault_t ret; 5815 5816 /* No support for anonymous transparent PUD pages yet */ 5817 if (vma_is_anonymous(vma)) 5818 goto split; 5819 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5820 /* See comment in create_huge_pmd. */ 5821 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode))) 5822 goto split; 5823 if (vma->vm_ops->huge_fault) { 5824 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5825 if (!(ret & VM_FAULT_FALLBACK)) 5826 return ret; 5827 } 5828 } 5829 split: 5830 /* COW or write-notify not handled on PUD level: split pud.*/ 5831 __split_huge_pud(vma, vmf->pud, vmf->address); 5832 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5833 return VM_FAULT_FALLBACK; 5834 } 5835 5836 /* 5837 * These routines also need to handle stuff like marking pages dirty 5838 * and/or accessed for architectures that don't do it in hardware (most 5839 * RISC architectures). The early dirtying is also good on the i386. 5840 * 5841 * There is also a hook called "update_mmu_cache()" that architectures 5842 * with external mmu caches can use to update those (ie the Sparc or 5843 * PowerPC hashed page tables that act as extended TLBs). 5844 * 5845 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5846 * concurrent faults). 5847 * 5848 * The mmap_lock may have been released depending on flags and our return value. 5849 * See filemap_fault() and __folio_lock_or_retry(). 5850 */ 5851 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5852 { 5853 pte_t entry; 5854 5855 if (unlikely(pmd_none(*vmf->pmd))) { 5856 /* 5857 * Leave __pte_alloc() until later: because vm_ops->fault may 5858 * want to allocate huge page, and if we expose page table 5859 * for an instant, it will be difficult to retract from 5860 * concurrent faults and from rmap lookups. 5861 */ 5862 vmf->pte = NULL; 5863 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5864 } else { 5865 pmd_t dummy_pmdval; 5866 5867 /* 5868 * A regular pmd is established and it can't morph into a huge 5869 * pmd by anon khugepaged, since that takes mmap_lock in write 5870 * mode; but shmem or file collapse to THP could still morph 5871 * it into a huge pmd: just retry later if so. 5872 * 5873 * Use the maywrite version to indicate that vmf->pte may be 5874 * modified, but since we will use pte_same() to detect the 5875 * change of the !pte_none() entry, there is no need to recheck 5876 * the pmdval. Here we chooes to pass a dummy variable instead 5877 * of NULL, which helps new user think about why this place is 5878 * special. 5879 */ 5880 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 5881 vmf->address, &dummy_pmdval, 5882 &vmf->ptl); 5883 if (unlikely(!vmf->pte)) 5884 return 0; 5885 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5886 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5887 5888 if (pte_none(vmf->orig_pte)) { 5889 pte_unmap(vmf->pte); 5890 vmf->pte = NULL; 5891 } 5892 } 5893 5894 if (!vmf->pte) 5895 return do_pte_missing(vmf); 5896 5897 if (!pte_present(vmf->orig_pte)) 5898 return do_swap_page(vmf); 5899 5900 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5901 return do_numa_page(vmf); 5902 5903 spin_lock(vmf->ptl); 5904 entry = vmf->orig_pte; 5905 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5906 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5907 goto unlock; 5908 } 5909 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5910 if (!pte_write(entry)) 5911 return do_wp_page(vmf); 5912 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5913 entry = pte_mkdirty(entry); 5914 } 5915 entry = pte_mkyoung(entry); 5916 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5917 vmf->flags & FAULT_FLAG_WRITE)) { 5918 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5919 vmf->pte, 1); 5920 } else { 5921 /* Skip spurious TLB flush for retried page fault */ 5922 if (vmf->flags & FAULT_FLAG_TRIED) 5923 goto unlock; 5924 /* 5925 * This is needed only for protection faults but the arch code 5926 * is not yet telling us if this is a protection fault or not. 5927 * This still avoids useless tlb flushes for .text page faults 5928 * with threads. 5929 */ 5930 if (vmf->flags & FAULT_FLAG_WRITE) 5931 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5932 vmf->pte); 5933 } 5934 unlock: 5935 pte_unmap_unlock(vmf->pte, vmf->ptl); 5936 return 0; 5937 } 5938 5939 /* 5940 * On entry, we hold either the VMA lock or the mmap_lock 5941 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5942 * the result, the mmap_lock is not held on exit. See filemap_fault() 5943 * and __folio_lock_or_retry(). 5944 */ 5945 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5946 unsigned long address, unsigned int flags) 5947 { 5948 struct vm_fault vmf = { 5949 .vma = vma, 5950 .address = address & PAGE_MASK, 5951 .real_address = address, 5952 .flags = flags, 5953 .pgoff = linear_page_index(vma, address), 5954 .gfp_mask = __get_fault_gfp_mask(vma), 5955 }; 5956 struct mm_struct *mm = vma->vm_mm; 5957 unsigned long vm_flags = vma->vm_flags; 5958 pgd_t *pgd; 5959 p4d_t *p4d; 5960 vm_fault_t ret; 5961 5962 pgd = pgd_offset(mm, address); 5963 p4d = p4d_alloc(mm, pgd, address); 5964 if (!p4d) 5965 return VM_FAULT_OOM; 5966 5967 vmf.pud = pud_alloc(mm, p4d, address); 5968 if (!vmf.pud) 5969 return VM_FAULT_OOM; 5970 retry_pud: 5971 if (pud_none(*vmf.pud) && 5972 thp_vma_allowable_order(vma, vm_flags, 5973 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 5974 ret = create_huge_pud(&vmf); 5975 if (!(ret & VM_FAULT_FALLBACK)) 5976 return ret; 5977 } else { 5978 pud_t orig_pud = *vmf.pud; 5979 5980 barrier(); 5981 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5982 5983 /* 5984 * TODO once we support anonymous PUDs: NUMA case and 5985 * FAULT_FLAG_UNSHARE handling. 5986 */ 5987 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5988 ret = wp_huge_pud(&vmf, orig_pud); 5989 if (!(ret & VM_FAULT_FALLBACK)) 5990 return ret; 5991 } else { 5992 huge_pud_set_accessed(&vmf, orig_pud); 5993 return 0; 5994 } 5995 } 5996 } 5997 5998 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5999 if (!vmf.pmd) 6000 return VM_FAULT_OOM; 6001 6002 /* Huge pud page fault raced with pmd_alloc? */ 6003 if (pud_trans_unstable(vmf.pud)) 6004 goto retry_pud; 6005 6006 if (pmd_none(*vmf.pmd) && 6007 thp_vma_allowable_order(vma, vm_flags, 6008 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 6009 ret = create_huge_pmd(&vmf); 6010 if (!(ret & VM_FAULT_FALLBACK)) 6011 return ret; 6012 } else { 6013 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6014 6015 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 6016 VM_BUG_ON(thp_migration_supported() && 6017 !is_pmd_migration_entry(vmf.orig_pmd)); 6018 if (is_pmd_migration_entry(vmf.orig_pmd)) 6019 pmd_migration_entry_wait(mm, vmf.pmd); 6020 return 0; 6021 } 6022 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 6023 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6024 return do_huge_pmd_numa_page(&vmf); 6025 6026 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6027 !pmd_write(vmf.orig_pmd)) { 6028 ret = wp_huge_pmd(&vmf); 6029 if (!(ret & VM_FAULT_FALLBACK)) 6030 return ret; 6031 } else { 6032 huge_pmd_set_accessed(&vmf); 6033 return 0; 6034 } 6035 } 6036 } 6037 6038 return handle_pte_fault(&vmf); 6039 } 6040 6041 /** 6042 * mm_account_fault - Do page fault accounting 6043 * @mm: mm from which memcg should be extracted. It can be NULL. 6044 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6045 * of perf event counters, but we'll still do the per-task accounting to 6046 * the task who triggered this page fault. 6047 * @address: the faulted address. 6048 * @flags: the fault flags. 6049 * @ret: the fault retcode. 6050 * 6051 * This will take care of most of the page fault accounting. Meanwhile, it 6052 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6053 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6054 * still be in per-arch page fault handlers at the entry of page fault. 6055 */ 6056 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6057 unsigned long address, unsigned int flags, 6058 vm_fault_t ret) 6059 { 6060 bool major; 6061 6062 /* Incomplete faults will be accounted upon completion. */ 6063 if (ret & VM_FAULT_RETRY) 6064 return; 6065 6066 /* 6067 * To preserve the behavior of older kernels, PGFAULT counters record 6068 * both successful and failed faults, as opposed to perf counters, 6069 * which ignore failed cases. 6070 */ 6071 count_vm_event(PGFAULT); 6072 count_memcg_event_mm(mm, PGFAULT); 6073 6074 /* 6075 * Do not account for unsuccessful faults (e.g. when the address wasn't 6076 * valid). That includes arch_vma_access_permitted() failing before 6077 * reaching here. So this is not a "this many hardware page faults" 6078 * counter. We should use the hw profiling for that. 6079 */ 6080 if (ret & VM_FAULT_ERROR) 6081 return; 6082 6083 /* 6084 * We define the fault as a major fault when the final successful fault 6085 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6086 * handle it immediately previously). 6087 */ 6088 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6089 6090 if (major) 6091 current->maj_flt++; 6092 else 6093 current->min_flt++; 6094 6095 /* 6096 * If the fault is done for GUP, regs will be NULL. We only do the 6097 * accounting for the per thread fault counters who triggered the 6098 * fault, and we skip the perf event updates. 6099 */ 6100 if (!regs) 6101 return; 6102 6103 if (major) 6104 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6105 else 6106 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6107 } 6108 6109 #ifdef CONFIG_LRU_GEN 6110 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6111 { 6112 /* the LRU algorithm only applies to accesses with recency */ 6113 current->in_lru_fault = vma_has_recency(vma); 6114 } 6115 6116 static void lru_gen_exit_fault(void) 6117 { 6118 current->in_lru_fault = false; 6119 } 6120 #else 6121 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6122 { 6123 } 6124 6125 static void lru_gen_exit_fault(void) 6126 { 6127 } 6128 #endif /* CONFIG_LRU_GEN */ 6129 6130 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6131 unsigned int *flags) 6132 { 6133 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6134 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6135 return VM_FAULT_SIGSEGV; 6136 /* 6137 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6138 * just treat it like an ordinary read-fault otherwise. 6139 */ 6140 if (!is_cow_mapping(vma->vm_flags)) 6141 *flags &= ~FAULT_FLAG_UNSHARE; 6142 } else if (*flags & FAULT_FLAG_WRITE) { 6143 /* Write faults on read-only mappings are impossible ... */ 6144 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6145 return VM_FAULT_SIGSEGV; 6146 /* ... and FOLL_FORCE only applies to COW mappings. */ 6147 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6148 !is_cow_mapping(vma->vm_flags))) 6149 return VM_FAULT_SIGSEGV; 6150 } 6151 #ifdef CONFIG_PER_VMA_LOCK 6152 /* 6153 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6154 * the assumption that lock is dropped on VM_FAULT_RETRY. 6155 */ 6156 if (WARN_ON_ONCE((*flags & 6157 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6158 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6159 return VM_FAULT_SIGSEGV; 6160 #endif 6161 6162 return 0; 6163 } 6164 6165 /* 6166 * By the time we get here, we already hold either the VMA lock or the 6167 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6168 * 6169 * The mmap_lock may have been released depending on flags and our 6170 * return value. See filemap_fault() and __folio_lock_or_retry(). 6171 */ 6172 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6173 unsigned int flags, struct pt_regs *regs) 6174 { 6175 /* If the fault handler drops the mmap_lock, vma may be freed */ 6176 struct mm_struct *mm = vma->vm_mm; 6177 vm_fault_t ret; 6178 bool is_droppable; 6179 6180 __set_current_state(TASK_RUNNING); 6181 6182 ret = sanitize_fault_flags(vma, &flags); 6183 if (ret) 6184 goto out; 6185 6186 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6187 flags & FAULT_FLAG_INSTRUCTION, 6188 flags & FAULT_FLAG_REMOTE)) { 6189 ret = VM_FAULT_SIGSEGV; 6190 goto out; 6191 } 6192 6193 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6194 6195 /* 6196 * Enable the memcg OOM handling for faults triggered in user 6197 * space. Kernel faults are handled more gracefully. 6198 */ 6199 if (flags & FAULT_FLAG_USER) 6200 mem_cgroup_enter_user_fault(); 6201 6202 lru_gen_enter_fault(vma); 6203 6204 if (unlikely(is_vm_hugetlb_page(vma))) 6205 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6206 else 6207 ret = __handle_mm_fault(vma, address, flags); 6208 6209 /* 6210 * Warning: It is no longer safe to dereference vma-> after this point, 6211 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6212 * vma might be destroyed from underneath us. 6213 */ 6214 6215 lru_gen_exit_fault(); 6216 6217 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6218 if (is_droppable) 6219 ret &= ~VM_FAULT_OOM; 6220 6221 if (flags & FAULT_FLAG_USER) { 6222 mem_cgroup_exit_user_fault(); 6223 /* 6224 * The task may have entered a memcg OOM situation but 6225 * if the allocation error was handled gracefully (no 6226 * VM_FAULT_OOM), there is no need to kill anything. 6227 * Just clean up the OOM state peacefully. 6228 */ 6229 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6230 mem_cgroup_oom_synchronize(false); 6231 } 6232 out: 6233 mm_account_fault(mm, regs, address, flags, ret); 6234 6235 return ret; 6236 } 6237 EXPORT_SYMBOL_GPL(handle_mm_fault); 6238 6239 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 6240 #include <linux/extable.h> 6241 6242 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6243 { 6244 if (likely(mmap_read_trylock(mm))) 6245 return true; 6246 6247 if (regs && !user_mode(regs)) { 6248 unsigned long ip = exception_ip(regs); 6249 if (!search_exception_tables(ip)) 6250 return false; 6251 } 6252 6253 return !mmap_read_lock_killable(mm); 6254 } 6255 6256 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 6257 { 6258 /* 6259 * We don't have this operation yet. 6260 * 6261 * It should be easy enough to do: it's basically a 6262 * atomic_long_try_cmpxchg_acquire() 6263 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 6264 * it also needs the proper lockdep magic etc. 6265 */ 6266 return false; 6267 } 6268 6269 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6270 { 6271 mmap_read_unlock(mm); 6272 if (regs && !user_mode(regs)) { 6273 unsigned long ip = exception_ip(regs); 6274 if (!search_exception_tables(ip)) 6275 return false; 6276 } 6277 return !mmap_write_lock_killable(mm); 6278 } 6279 6280 /* 6281 * Helper for page fault handling. 6282 * 6283 * This is kind of equivalent to "mmap_read_lock()" followed 6284 * by "find_extend_vma()", except it's a lot more careful about 6285 * the locking (and will drop the lock on failure). 6286 * 6287 * For example, if we have a kernel bug that causes a page 6288 * fault, we don't want to just use mmap_read_lock() to get 6289 * the mm lock, because that would deadlock if the bug were 6290 * to happen while we're holding the mm lock for writing. 6291 * 6292 * So this checks the exception tables on kernel faults in 6293 * order to only do this all for instructions that are actually 6294 * expected to fault. 6295 * 6296 * We can also actually take the mm lock for writing if we 6297 * need to extend the vma, which helps the VM layer a lot. 6298 */ 6299 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 6300 unsigned long addr, struct pt_regs *regs) 6301 { 6302 struct vm_area_struct *vma; 6303 6304 if (!get_mmap_lock_carefully(mm, regs)) 6305 return NULL; 6306 6307 vma = find_vma(mm, addr); 6308 if (likely(vma && (vma->vm_start <= addr))) 6309 return vma; 6310 6311 /* 6312 * Well, dang. We might still be successful, but only 6313 * if we can extend a vma to do so. 6314 */ 6315 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 6316 mmap_read_unlock(mm); 6317 return NULL; 6318 } 6319 6320 /* 6321 * We can try to upgrade the mmap lock atomically, 6322 * in which case we can continue to use the vma 6323 * we already looked up. 6324 * 6325 * Otherwise we'll have to drop the mmap lock and 6326 * re-take it, and also look up the vma again, 6327 * re-checking it. 6328 */ 6329 if (!mmap_upgrade_trylock(mm)) { 6330 if (!upgrade_mmap_lock_carefully(mm, regs)) 6331 return NULL; 6332 6333 vma = find_vma(mm, addr); 6334 if (!vma) 6335 goto fail; 6336 if (vma->vm_start <= addr) 6337 goto success; 6338 if (!(vma->vm_flags & VM_GROWSDOWN)) 6339 goto fail; 6340 } 6341 6342 if (expand_stack_locked(vma, addr)) 6343 goto fail; 6344 6345 success: 6346 mmap_write_downgrade(mm); 6347 return vma; 6348 6349 fail: 6350 mmap_write_unlock(mm); 6351 return NULL; 6352 } 6353 #endif 6354 6355 #ifdef CONFIG_PER_VMA_LOCK 6356 static inline bool __vma_enter_locked(struct vm_area_struct *vma, bool detaching) 6357 { 6358 unsigned int tgt_refcnt = VMA_LOCK_OFFSET; 6359 6360 /* Additional refcnt if the vma is attached. */ 6361 if (!detaching) 6362 tgt_refcnt++; 6363 6364 /* 6365 * If vma is detached then only vma_mark_attached() can raise the 6366 * vm_refcnt. mmap_write_lock prevents racing with vma_mark_attached(). 6367 */ 6368 if (!refcount_add_not_zero(VMA_LOCK_OFFSET, &vma->vm_refcnt)) 6369 return false; 6370 6371 rwsem_acquire(&vma->vmlock_dep_map, 0, 0, _RET_IP_); 6372 rcuwait_wait_event(&vma->vm_mm->vma_writer_wait, 6373 refcount_read(&vma->vm_refcnt) == tgt_refcnt, 6374 TASK_UNINTERRUPTIBLE); 6375 lock_acquired(&vma->vmlock_dep_map, _RET_IP_); 6376 6377 return true; 6378 } 6379 6380 static inline void __vma_exit_locked(struct vm_area_struct *vma, bool *detached) 6381 { 6382 *detached = refcount_sub_and_test(VMA_LOCK_OFFSET, &vma->vm_refcnt); 6383 rwsem_release(&vma->vmlock_dep_map, _RET_IP_); 6384 } 6385 6386 void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq) 6387 { 6388 bool locked; 6389 6390 /* 6391 * __vma_enter_locked() returns false immediately if the vma is not 6392 * attached, otherwise it waits until refcnt is indicating that vma 6393 * is attached with no readers. 6394 */ 6395 locked = __vma_enter_locked(vma, false); 6396 6397 /* 6398 * We should use WRITE_ONCE() here because we can have concurrent reads 6399 * from the early lockless pessimistic check in vma_start_read(). 6400 * We don't really care about the correctness of that early check, but 6401 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 6402 */ 6403 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 6404 6405 if (locked) { 6406 bool detached; 6407 6408 __vma_exit_locked(vma, &detached); 6409 WARN_ON_ONCE(detached); /* vma should remain attached */ 6410 } 6411 } 6412 EXPORT_SYMBOL_GPL(__vma_start_write); 6413 6414 void vma_mark_detached(struct vm_area_struct *vma) 6415 { 6416 vma_assert_write_locked(vma); 6417 vma_assert_attached(vma); 6418 6419 /* 6420 * We are the only writer, so no need to use vma_refcount_put(). 6421 * The condition below is unlikely because the vma has been already 6422 * write-locked and readers can increment vm_refcnt only temporarily 6423 * before they check vm_lock_seq, realize the vma is locked and drop 6424 * back the vm_refcnt. That is a narrow window for observing a raised 6425 * vm_refcnt. 6426 */ 6427 if (unlikely(!refcount_dec_and_test(&vma->vm_refcnt))) { 6428 /* Wait until vma is detached with no readers. */ 6429 if (__vma_enter_locked(vma, true)) { 6430 bool detached; 6431 6432 __vma_exit_locked(vma, &detached); 6433 WARN_ON_ONCE(!detached); 6434 } 6435 } 6436 } 6437 6438 /* 6439 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 6440 * stable and not isolated. If the VMA is not found or is being modified the 6441 * function returns NULL. 6442 */ 6443 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 6444 unsigned long address) 6445 { 6446 MA_STATE(mas, &mm->mm_mt, address, address); 6447 struct vm_area_struct *vma; 6448 6449 rcu_read_lock(); 6450 retry: 6451 vma = mas_walk(&mas); 6452 if (!vma) 6453 goto inval; 6454 6455 vma = vma_start_read(mm, vma); 6456 if (IS_ERR_OR_NULL(vma)) { 6457 /* Check if the VMA got isolated after we found it */ 6458 if (PTR_ERR(vma) == -EAGAIN) { 6459 count_vm_vma_lock_event(VMA_LOCK_MISS); 6460 /* The area was replaced with another one */ 6461 goto retry; 6462 } 6463 6464 /* Failed to lock the VMA */ 6465 goto inval; 6466 } 6467 /* 6468 * At this point, we have a stable reference to a VMA: The VMA is 6469 * locked and we know it hasn't already been isolated. 6470 * From here on, we can access the VMA without worrying about which 6471 * fields are accessible for RCU readers. 6472 */ 6473 6474 /* Check if the vma we locked is the right one. */ 6475 if (unlikely(vma->vm_mm != mm || 6476 address < vma->vm_start || address >= vma->vm_end)) 6477 goto inval_end_read; 6478 6479 rcu_read_unlock(); 6480 return vma; 6481 6482 inval_end_read: 6483 vma_end_read(vma); 6484 inval: 6485 rcu_read_unlock(); 6486 count_vm_vma_lock_event(VMA_LOCK_ABORT); 6487 return NULL; 6488 } 6489 #endif /* CONFIG_PER_VMA_LOCK */ 6490 6491 #ifndef __PAGETABLE_P4D_FOLDED 6492 /* 6493 * Allocate p4d page table. 6494 * We've already handled the fast-path in-line. 6495 */ 6496 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6497 { 6498 p4d_t *new = p4d_alloc_one(mm, address); 6499 if (!new) 6500 return -ENOMEM; 6501 6502 spin_lock(&mm->page_table_lock); 6503 if (pgd_present(*pgd)) { /* Another has populated it */ 6504 p4d_free(mm, new); 6505 } else { 6506 smp_wmb(); /* See comment in pmd_install() */ 6507 pgd_populate(mm, pgd, new); 6508 } 6509 spin_unlock(&mm->page_table_lock); 6510 return 0; 6511 } 6512 #endif /* __PAGETABLE_P4D_FOLDED */ 6513 6514 #ifndef __PAGETABLE_PUD_FOLDED 6515 /* 6516 * Allocate page upper directory. 6517 * We've already handled the fast-path in-line. 6518 */ 6519 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6520 { 6521 pud_t *new = pud_alloc_one(mm, address); 6522 if (!new) 6523 return -ENOMEM; 6524 6525 spin_lock(&mm->page_table_lock); 6526 if (!p4d_present(*p4d)) { 6527 mm_inc_nr_puds(mm); 6528 smp_wmb(); /* See comment in pmd_install() */ 6529 p4d_populate(mm, p4d, new); 6530 } else /* Another has populated it */ 6531 pud_free(mm, new); 6532 spin_unlock(&mm->page_table_lock); 6533 return 0; 6534 } 6535 #endif /* __PAGETABLE_PUD_FOLDED */ 6536 6537 #ifndef __PAGETABLE_PMD_FOLDED 6538 /* 6539 * Allocate page middle directory. 6540 * We've already handled the fast-path in-line. 6541 */ 6542 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6543 { 6544 spinlock_t *ptl; 6545 pmd_t *new = pmd_alloc_one(mm, address); 6546 if (!new) 6547 return -ENOMEM; 6548 6549 ptl = pud_lock(mm, pud); 6550 if (!pud_present(*pud)) { 6551 mm_inc_nr_pmds(mm); 6552 smp_wmb(); /* See comment in pmd_install() */ 6553 pud_populate(mm, pud, new); 6554 } else { /* Another has populated it */ 6555 pmd_free(mm, new); 6556 } 6557 spin_unlock(ptl); 6558 return 0; 6559 } 6560 #endif /* __PAGETABLE_PMD_FOLDED */ 6561 6562 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6563 spinlock_t *lock, pte_t *ptep, 6564 pgprot_t pgprot, unsigned long pfn_base, 6565 unsigned long addr_mask, bool writable, 6566 bool special) 6567 { 6568 args->lock = lock; 6569 args->ptep = ptep; 6570 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6571 args->pgprot = pgprot; 6572 args->writable = writable; 6573 args->special = special; 6574 } 6575 6576 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6577 { 6578 #ifdef CONFIG_LOCKDEP 6579 struct file *file = vma->vm_file; 6580 struct address_space *mapping = file ? file->f_mapping : NULL; 6581 6582 if (mapping) 6583 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6584 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6585 else 6586 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6587 #endif 6588 } 6589 6590 /** 6591 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6592 * @args: Pointer to struct @follow_pfnmap_args 6593 * 6594 * The caller needs to setup args->vma and args->address to point to the 6595 * virtual address as the target of such lookup. On a successful return, 6596 * the results will be put into other output fields. 6597 * 6598 * After the caller finished using the fields, the caller must invoke 6599 * another follow_pfnmap_end() to proper releases the locks and resources 6600 * of such look up request. 6601 * 6602 * During the start() and end() calls, the results in @args will be valid 6603 * as proper locks will be held. After the end() is called, all the fields 6604 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6605 * use of such information after end() may require proper synchronizations 6606 * by the caller with page table updates, otherwise it can create a 6607 * security bug. 6608 * 6609 * If the PTE maps a refcounted page, callers are responsible to protect 6610 * against invalidation with MMU notifiers; otherwise access to the PFN at 6611 * a later point in time can trigger use-after-free. 6612 * 6613 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6614 * should be taken for read, and the mmap semaphore cannot be released 6615 * before the end() is invoked. 6616 * 6617 * This function must not be used to modify PTE content. 6618 * 6619 * Return: zero on success, negative otherwise. 6620 */ 6621 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6622 { 6623 struct vm_area_struct *vma = args->vma; 6624 unsigned long address = args->address; 6625 struct mm_struct *mm = vma->vm_mm; 6626 spinlock_t *lock; 6627 pgd_t *pgdp; 6628 p4d_t *p4dp, p4d; 6629 pud_t *pudp, pud; 6630 pmd_t *pmdp, pmd; 6631 pte_t *ptep, pte; 6632 6633 pfnmap_lockdep_assert(vma); 6634 6635 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6636 goto out; 6637 6638 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6639 goto out; 6640 retry: 6641 pgdp = pgd_offset(mm, address); 6642 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6643 goto out; 6644 6645 p4dp = p4d_offset(pgdp, address); 6646 p4d = READ_ONCE(*p4dp); 6647 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6648 goto out; 6649 6650 pudp = pud_offset(p4dp, address); 6651 pud = READ_ONCE(*pudp); 6652 if (pud_none(pud)) 6653 goto out; 6654 if (pud_leaf(pud)) { 6655 lock = pud_lock(mm, pudp); 6656 if (!unlikely(pud_leaf(pud))) { 6657 spin_unlock(lock); 6658 goto retry; 6659 } 6660 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6661 pud_pfn(pud), PUD_MASK, pud_write(pud), 6662 pud_special(pud)); 6663 return 0; 6664 } 6665 6666 pmdp = pmd_offset(pudp, address); 6667 pmd = pmdp_get_lockless(pmdp); 6668 if (pmd_leaf(pmd)) { 6669 lock = pmd_lock(mm, pmdp); 6670 if (!unlikely(pmd_leaf(pmd))) { 6671 spin_unlock(lock); 6672 goto retry; 6673 } 6674 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6675 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6676 pmd_special(pmd)); 6677 return 0; 6678 } 6679 6680 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6681 if (!ptep) 6682 goto out; 6683 pte = ptep_get(ptep); 6684 if (!pte_present(pte)) 6685 goto unlock; 6686 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6687 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6688 pte_special(pte)); 6689 return 0; 6690 unlock: 6691 pte_unmap_unlock(ptep, lock); 6692 out: 6693 return -EINVAL; 6694 } 6695 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6696 6697 /** 6698 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6699 * @args: Pointer to struct @follow_pfnmap_args 6700 * 6701 * Must be used in pair of follow_pfnmap_start(). See the start() function 6702 * above for more information. 6703 */ 6704 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6705 { 6706 if (args->lock) 6707 spin_unlock(args->lock); 6708 if (args->ptep) 6709 pte_unmap(args->ptep); 6710 } 6711 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6712 6713 #ifdef CONFIG_HAVE_IOREMAP_PROT 6714 /** 6715 * generic_access_phys - generic implementation for iomem mmap access 6716 * @vma: the vma to access 6717 * @addr: userspace address, not relative offset within @vma 6718 * @buf: buffer to read/write 6719 * @len: length of transfer 6720 * @write: set to FOLL_WRITE when writing, otherwise reading 6721 * 6722 * This is a generic implementation for &vm_operations_struct.access for an 6723 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6724 * not page based. 6725 */ 6726 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6727 void *buf, int len, int write) 6728 { 6729 resource_size_t phys_addr; 6730 pgprot_t prot = __pgprot(0); 6731 void __iomem *maddr; 6732 int offset = offset_in_page(addr); 6733 int ret = -EINVAL; 6734 bool writable; 6735 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6736 6737 retry: 6738 if (follow_pfnmap_start(&args)) 6739 return -EINVAL; 6740 prot = args.pgprot; 6741 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6742 writable = args.writable; 6743 follow_pfnmap_end(&args); 6744 6745 if ((write & FOLL_WRITE) && !writable) 6746 return -EINVAL; 6747 6748 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6749 if (!maddr) 6750 return -ENOMEM; 6751 6752 if (follow_pfnmap_start(&args)) 6753 goto out_unmap; 6754 6755 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || 6756 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6757 (writable != args.writable)) { 6758 follow_pfnmap_end(&args); 6759 iounmap(maddr); 6760 goto retry; 6761 } 6762 6763 if (write) 6764 memcpy_toio(maddr + offset, buf, len); 6765 else 6766 memcpy_fromio(buf, maddr + offset, len); 6767 ret = len; 6768 follow_pfnmap_end(&args); 6769 out_unmap: 6770 iounmap(maddr); 6771 6772 return ret; 6773 } 6774 EXPORT_SYMBOL_GPL(generic_access_phys); 6775 #endif 6776 6777 /* 6778 * Access another process' address space as given in mm. 6779 */ 6780 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6781 void *buf, int len, unsigned int gup_flags) 6782 { 6783 void *old_buf = buf; 6784 int write = gup_flags & FOLL_WRITE; 6785 6786 if (mmap_read_lock_killable(mm)) 6787 return 0; 6788 6789 /* Untag the address before looking up the VMA */ 6790 addr = untagged_addr_remote(mm, addr); 6791 6792 /* Avoid triggering the temporary warning in __get_user_pages */ 6793 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6794 return 0; 6795 6796 /* ignore errors, just check how much was successfully transferred */ 6797 while (len) { 6798 int bytes, offset; 6799 void *maddr; 6800 struct vm_area_struct *vma = NULL; 6801 struct page *page = get_user_page_vma_remote(mm, addr, 6802 gup_flags, &vma); 6803 6804 if (IS_ERR(page)) { 6805 /* We might need to expand the stack to access it */ 6806 vma = vma_lookup(mm, addr); 6807 if (!vma) { 6808 vma = expand_stack(mm, addr); 6809 6810 /* mmap_lock was dropped on failure */ 6811 if (!vma) 6812 return buf - old_buf; 6813 6814 /* Try again if stack expansion worked */ 6815 continue; 6816 } 6817 6818 /* 6819 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6820 * we can access using slightly different code. 6821 */ 6822 bytes = 0; 6823 #ifdef CONFIG_HAVE_IOREMAP_PROT 6824 if (vma->vm_ops && vma->vm_ops->access) 6825 bytes = vma->vm_ops->access(vma, addr, buf, 6826 len, write); 6827 #endif 6828 if (bytes <= 0) 6829 break; 6830 } else { 6831 bytes = len; 6832 offset = addr & (PAGE_SIZE-1); 6833 if (bytes > PAGE_SIZE-offset) 6834 bytes = PAGE_SIZE-offset; 6835 6836 maddr = kmap_local_page(page); 6837 if (write) { 6838 copy_to_user_page(vma, page, addr, 6839 maddr + offset, buf, bytes); 6840 set_page_dirty_lock(page); 6841 } else { 6842 copy_from_user_page(vma, page, addr, 6843 buf, maddr + offset, bytes); 6844 } 6845 unmap_and_put_page(page, maddr); 6846 } 6847 len -= bytes; 6848 buf += bytes; 6849 addr += bytes; 6850 } 6851 mmap_read_unlock(mm); 6852 6853 return buf - old_buf; 6854 } 6855 6856 /** 6857 * access_remote_vm - access another process' address space 6858 * @mm: the mm_struct of the target address space 6859 * @addr: start address to access 6860 * @buf: source or destination buffer 6861 * @len: number of bytes to transfer 6862 * @gup_flags: flags modifying lookup behaviour 6863 * 6864 * The caller must hold a reference on @mm. 6865 * 6866 * Return: number of bytes copied from source to destination. 6867 */ 6868 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6869 void *buf, int len, unsigned int gup_flags) 6870 { 6871 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6872 } 6873 6874 /* 6875 * Access another process' address space. 6876 * Source/target buffer must be kernel space, 6877 * Do not walk the page table directly, use get_user_pages 6878 */ 6879 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6880 void *buf, int len, unsigned int gup_flags) 6881 { 6882 struct mm_struct *mm; 6883 int ret; 6884 6885 mm = get_task_mm(tsk); 6886 if (!mm) 6887 return 0; 6888 6889 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6890 6891 mmput(mm); 6892 6893 return ret; 6894 } 6895 EXPORT_SYMBOL_GPL(access_process_vm); 6896 6897 /* 6898 * Print the name of a VMA. 6899 */ 6900 void print_vma_addr(char *prefix, unsigned long ip) 6901 { 6902 struct mm_struct *mm = current->mm; 6903 struct vm_area_struct *vma; 6904 6905 /* 6906 * we might be running from an atomic context so we cannot sleep 6907 */ 6908 if (!mmap_read_trylock(mm)) 6909 return; 6910 6911 vma = vma_lookup(mm, ip); 6912 if (vma && vma->vm_file) { 6913 struct file *f = vma->vm_file; 6914 ip -= vma->vm_start; 6915 ip += vma->vm_pgoff << PAGE_SHIFT; 6916 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 6917 vma->vm_start, 6918 vma->vm_end - vma->vm_start); 6919 } 6920 mmap_read_unlock(mm); 6921 } 6922 6923 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6924 void __might_fault(const char *file, int line) 6925 { 6926 if (pagefault_disabled()) 6927 return; 6928 __might_sleep(file, line); 6929 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6930 if (current->mm) 6931 might_lock_read(¤t->mm->mmap_lock); 6932 #endif 6933 } 6934 EXPORT_SYMBOL(__might_fault); 6935 #endif 6936 6937 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6938 /* 6939 * Process all subpages of the specified huge page with the specified 6940 * operation. The target subpage will be processed last to keep its 6941 * cache lines hot. 6942 */ 6943 static inline int process_huge_page( 6944 unsigned long addr_hint, unsigned int nr_pages, 6945 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6946 void *arg) 6947 { 6948 int i, n, base, l, ret; 6949 unsigned long addr = addr_hint & 6950 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 6951 6952 /* Process target subpage last to keep its cache lines hot */ 6953 might_sleep(); 6954 n = (addr_hint - addr) / PAGE_SIZE; 6955 if (2 * n <= nr_pages) { 6956 /* If target subpage in first half of huge page */ 6957 base = 0; 6958 l = n; 6959 /* Process subpages at the end of huge page */ 6960 for (i = nr_pages - 1; i >= 2 * n; i--) { 6961 cond_resched(); 6962 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6963 if (ret) 6964 return ret; 6965 } 6966 } else { 6967 /* If target subpage in second half of huge page */ 6968 base = nr_pages - 2 * (nr_pages - n); 6969 l = nr_pages - n; 6970 /* Process subpages at the begin of huge page */ 6971 for (i = 0; i < base; i++) { 6972 cond_resched(); 6973 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6974 if (ret) 6975 return ret; 6976 } 6977 } 6978 /* 6979 * Process remaining subpages in left-right-left-right pattern 6980 * towards the target subpage 6981 */ 6982 for (i = 0; i < l; i++) { 6983 int left_idx = base + i; 6984 int right_idx = base + 2 * l - 1 - i; 6985 6986 cond_resched(); 6987 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6988 if (ret) 6989 return ret; 6990 cond_resched(); 6991 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6992 if (ret) 6993 return ret; 6994 } 6995 return 0; 6996 } 6997 6998 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 6999 unsigned int nr_pages) 7000 { 7001 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7002 int i; 7003 7004 might_sleep(); 7005 for (i = 0; i < nr_pages; i++) { 7006 cond_resched(); 7007 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 7008 } 7009 } 7010 7011 static int clear_subpage(unsigned long addr, int idx, void *arg) 7012 { 7013 struct folio *folio = arg; 7014 7015 clear_user_highpage(folio_page(folio, idx), addr); 7016 return 0; 7017 } 7018 7019 /** 7020 * folio_zero_user - Zero a folio which will be mapped to userspace. 7021 * @folio: The folio to zero. 7022 * @addr_hint: The address will be accessed or the base address if uncelar. 7023 */ 7024 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7025 { 7026 unsigned int nr_pages = folio_nr_pages(folio); 7027 7028 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7029 clear_gigantic_page(folio, addr_hint, nr_pages); 7030 else 7031 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 7032 } 7033 7034 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7035 unsigned long addr_hint, 7036 struct vm_area_struct *vma, 7037 unsigned int nr_pages) 7038 { 7039 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7040 struct page *dst_page; 7041 struct page *src_page; 7042 int i; 7043 7044 for (i = 0; i < nr_pages; i++) { 7045 dst_page = folio_page(dst, i); 7046 src_page = folio_page(src, i); 7047 7048 cond_resched(); 7049 if (copy_mc_user_highpage(dst_page, src_page, 7050 addr + i*PAGE_SIZE, vma)) 7051 return -EHWPOISON; 7052 } 7053 return 0; 7054 } 7055 7056 struct copy_subpage_arg { 7057 struct folio *dst; 7058 struct folio *src; 7059 struct vm_area_struct *vma; 7060 }; 7061 7062 static int copy_subpage(unsigned long addr, int idx, void *arg) 7063 { 7064 struct copy_subpage_arg *copy_arg = arg; 7065 struct page *dst = folio_page(copy_arg->dst, idx); 7066 struct page *src = folio_page(copy_arg->src, idx); 7067 7068 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7069 return -EHWPOISON; 7070 return 0; 7071 } 7072 7073 int copy_user_large_folio(struct folio *dst, struct folio *src, 7074 unsigned long addr_hint, struct vm_area_struct *vma) 7075 { 7076 unsigned int nr_pages = folio_nr_pages(dst); 7077 struct copy_subpage_arg arg = { 7078 .dst = dst, 7079 .src = src, 7080 .vma = vma, 7081 }; 7082 7083 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7084 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7085 7086 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7087 } 7088 7089 long copy_folio_from_user(struct folio *dst_folio, 7090 const void __user *usr_src, 7091 bool allow_pagefault) 7092 { 7093 void *kaddr; 7094 unsigned long i, rc = 0; 7095 unsigned int nr_pages = folio_nr_pages(dst_folio); 7096 unsigned long ret_val = nr_pages * PAGE_SIZE; 7097 struct page *subpage; 7098 7099 for (i = 0; i < nr_pages; i++) { 7100 subpage = folio_page(dst_folio, i); 7101 kaddr = kmap_local_page(subpage); 7102 if (!allow_pagefault) 7103 pagefault_disable(); 7104 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7105 if (!allow_pagefault) 7106 pagefault_enable(); 7107 kunmap_local(kaddr); 7108 7109 ret_val -= (PAGE_SIZE - rc); 7110 if (rc) 7111 break; 7112 7113 flush_dcache_page(subpage); 7114 7115 cond_resched(); 7116 } 7117 return ret_val; 7118 } 7119 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7120 7121 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7122 7123 static struct kmem_cache *page_ptl_cachep; 7124 7125 void __init ptlock_cache_init(void) 7126 { 7127 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7128 SLAB_PANIC, NULL); 7129 } 7130 7131 bool ptlock_alloc(struct ptdesc *ptdesc) 7132 { 7133 spinlock_t *ptl; 7134 7135 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7136 if (!ptl) 7137 return false; 7138 ptdesc->ptl = ptl; 7139 return true; 7140 } 7141 7142 void ptlock_free(struct ptdesc *ptdesc) 7143 { 7144 if (ptdesc->ptl) 7145 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7146 } 7147 #endif 7148 7149 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7150 { 7151 if (is_vm_hugetlb_page(vma)) 7152 hugetlb_vma_lock_read(vma); 7153 } 7154 7155 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7156 { 7157 if (is_vm_hugetlb_page(vma)) 7158 hugetlb_vma_unlock_read(vma); 7159 } 7160