1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/pfn_t.h> 61 #include <linux/writeback.h> 62 #include <linux/memcontrol.h> 63 #include <linux/mmu_notifier.h> 64 #include <linux/swapops.h> 65 #include <linux/elf.h> 66 #include <linux/gfp.h> 67 #include <linux/migrate.h> 68 #include <linux/string.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 #include <linux/fsnotify.h> 80 81 #include <trace/events/kmem.h> 82 83 #include <asm/io.h> 84 #include <asm/mmu_context.h> 85 #include <asm/pgalloc.h> 86 #include <linux/uaccess.h> 87 #include <asm/tlb.h> 88 #include <asm/tlbflush.h> 89 90 #include "pgalloc-track.h" 91 #include "internal.h" 92 #include "swap.h" 93 94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 96 #endif 97 98 #ifndef CONFIG_NUMA 99 unsigned long max_mapnr; 100 EXPORT_SYMBOL(max_mapnr); 101 102 struct page *mem_map; 103 EXPORT_SYMBOL(mem_map); 104 #endif 105 106 static vm_fault_t do_fault(struct vm_fault *vmf); 107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 108 static bool vmf_pte_changed(struct vm_fault *vmf); 109 110 /* 111 * Return true if the original pte was a uffd-wp pte marker (so the pte was 112 * wr-protected). 113 */ 114 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 115 { 116 if (!userfaultfd_wp(vmf->vma)) 117 return false; 118 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 119 return false; 120 121 return pte_marker_uffd_wp(vmf->orig_pte); 122 } 123 124 /* 125 * A number of key systems in x86 including ioremap() rely on the assumption 126 * that high_memory defines the upper bound on direct map memory, then end 127 * of ZONE_NORMAL. 128 */ 129 void *high_memory; 130 EXPORT_SYMBOL(high_memory); 131 132 /* 133 * Randomize the address space (stacks, mmaps, brk, etc.). 134 * 135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 136 * as ancient (libc5 based) binaries can segfault. ) 137 */ 138 int randomize_va_space __read_mostly = 139 #ifdef CONFIG_COMPAT_BRK 140 1; 141 #else 142 2; 143 #endif 144 145 #ifndef arch_wants_old_prefaulted_pte 146 static inline bool arch_wants_old_prefaulted_pte(void) 147 { 148 /* 149 * Transitioning a PTE from 'old' to 'young' can be expensive on 150 * some architectures, even if it's performed in hardware. By 151 * default, "false" means prefaulted entries will be 'young'. 152 */ 153 return false; 154 } 155 #endif 156 157 static int __init disable_randmaps(char *s) 158 { 159 randomize_va_space = 0; 160 return 1; 161 } 162 __setup("norandmaps", disable_randmaps); 163 164 unsigned long zero_pfn __read_mostly; 165 EXPORT_SYMBOL(zero_pfn); 166 167 unsigned long highest_memmap_pfn __read_mostly; 168 169 /* 170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 171 */ 172 static int __init init_zero_pfn(void) 173 { 174 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 175 return 0; 176 } 177 early_initcall(init_zero_pfn); 178 179 void mm_trace_rss_stat(struct mm_struct *mm, int member) 180 { 181 trace_rss_stat(mm, member); 182 } 183 184 /* 185 * Note: this doesn't free the actual pages themselves. That 186 * has been handled earlier when unmapping all the memory regions. 187 */ 188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 189 unsigned long addr) 190 { 191 pgtable_t token = pmd_pgtable(*pmd); 192 pmd_clear(pmd); 193 pte_free_tlb(tlb, token, addr); 194 mm_dec_nr_ptes(tlb->mm); 195 } 196 197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 198 unsigned long addr, unsigned long end, 199 unsigned long floor, unsigned long ceiling) 200 { 201 pmd_t *pmd; 202 unsigned long next; 203 unsigned long start; 204 205 start = addr; 206 pmd = pmd_offset(pud, addr); 207 do { 208 next = pmd_addr_end(addr, end); 209 if (pmd_none_or_clear_bad(pmd)) 210 continue; 211 free_pte_range(tlb, pmd, addr); 212 } while (pmd++, addr = next, addr != end); 213 214 start &= PUD_MASK; 215 if (start < floor) 216 return; 217 if (ceiling) { 218 ceiling &= PUD_MASK; 219 if (!ceiling) 220 return; 221 } 222 if (end - 1 > ceiling - 1) 223 return; 224 225 pmd = pmd_offset(pud, start); 226 pud_clear(pud); 227 pmd_free_tlb(tlb, pmd, start); 228 mm_dec_nr_pmds(tlb->mm); 229 } 230 231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 232 unsigned long addr, unsigned long end, 233 unsigned long floor, unsigned long ceiling) 234 { 235 pud_t *pud; 236 unsigned long next; 237 unsigned long start; 238 239 start = addr; 240 pud = pud_offset(p4d, addr); 241 do { 242 next = pud_addr_end(addr, end); 243 if (pud_none_or_clear_bad(pud)) 244 continue; 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 246 } while (pud++, addr = next, addr != end); 247 248 start &= P4D_MASK; 249 if (start < floor) 250 return; 251 if (ceiling) { 252 ceiling &= P4D_MASK; 253 if (!ceiling) 254 return; 255 } 256 if (end - 1 > ceiling - 1) 257 return; 258 259 pud = pud_offset(p4d, start); 260 p4d_clear(p4d); 261 pud_free_tlb(tlb, pud, start); 262 mm_dec_nr_puds(tlb->mm); 263 } 264 265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 266 unsigned long addr, unsigned long end, 267 unsigned long floor, unsigned long ceiling) 268 { 269 p4d_t *p4d; 270 unsigned long next; 271 unsigned long start; 272 273 start = addr; 274 p4d = p4d_offset(pgd, addr); 275 do { 276 next = p4d_addr_end(addr, end); 277 if (p4d_none_or_clear_bad(p4d)) 278 continue; 279 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 280 } while (p4d++, addr = next, addr != end); 281 282 start &= PGDIR_MASK; 283 if (start < floor) 284 return; 285 if (ceiling) { 286 ceiling &= PGDIR_MASK; 287 if (!ceiling) 288 return; 289 } 290 if (end - 1 > ceiling - 1) 291 return; 292 293 p4d = p4d_offset(pgd, start); 294 pgd_clear(pgd); 295 p4d_free_tlb(tlb, p4d, start); 296 } 297 298 /* 299 * This function frees user-level page tables of a process. 300 */ 301 void free_pgd_range(struct mmu_gather *tlb, 302 unsigned long addr, unsigned long end, 303 unsigned long floor, unsigned long ceiling) 304 { 305 pgd_t *pgd; 306 unsigned long next; 307 308 /* 309 * The next few lines have given us lots of grief... 310 * 311 * Why are we testing PMD* at this top level? Because often 312 * there will be no work to do at all, and we'd prefer not to 313 * go all the way down to the bottom just to discover that. 314 * 315 * Why all these "- 1"s? Because 0 represents both the bottom 316 * of the address space and the top of it (using -1 for the 317 * top wouldn't help much: the masks would do the wrong thing). 318 * The rule is that addr 0 and floor 0 refer to the bottom of 319 * the address space, but end 0 and ceiling 0 refer to the top 320 * Comparisons need to use "end - 1" and "ceiling - 1" (though 321 * that end 0 case should be mythical). 322 * 323 * Wherever addr is brought up or ceiling brought down, we must 324 * be careful to reject "the opposite 0" before it confuses the 325 * subsequent tests. But what about where end is brought down 326 * by PMD_SIZE below? no, end can't go down to 0 there. 327 * 328 * Whereas we round start (addr) and ceiling down, by different 329 * masks at different levels, in order to test whether a table 330 * now has no other vmas using it, so can be freed, we don't 331 * bother to round floor or end up - the tests don't need that. 332 */ 333 334 addr &= PMD_MASK; 335 if (addr < floor) { 336 addr += PMD_SIZE; 337 if (!addr) 338 return; 339 } 340 if (ceiling) { 341 ceiling &= PMD_MASK; 342 if (!ceiling) 343 return; 344 } 345 if (end - 1 > ceiling - 1) 346 end -= PMD_SIZE; 347 if (addr > end - 1) 348 return; 349 /* 350 * We add page table cache pages with PAGE_SIZE, 351 * (see pte_free_tlb()), flush the tlb if we need 352 */ 353 tlb_change_page_size(tlb, PAGE_SIZE); 354 pgd = pgd_offset(tlb->mm, addr); 355 do { 356 next = pgd_addr_end(addr, end); 357 if (pgd_none_or_clear_bad(pgd)) 358 continue; 359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 360 } while (pgd++, addr = next, addr != end); 361 } 362 363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 364 struct vm_area_struct *vma, unsigned long floor, 365 unsigned long ceiling, bool mm_wr_locked) 366 { 367 struct unlink_vma_file_batch vb; 368 369 do { 370 unsigned long addr = vma->vm_start; 371 struct vm_area_struct *next; 372 373 /* 374 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 375 * be 0. This will underflow and is okay. 376 */ 377 next = mas_find(mas, ceiling - 1); 378 if (unlikely(xa_is_zero(next))) 379 next = NULL; 380 381 /* 382 * Hide vma from rmap and truncate_pagecache before freeing 383 * pgtables 384 */ 385 if (mm_wr_locked) 386 vma_start_write(vma); 387 unlink_anon_vmas(vma); 388 389 if (is_vm_hugetlb_page(vma)) { 390 unlink_file_vma(vma); 391 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 392 floor, next ? next->vm_start : ceiling); 393 } else { 394 unlink_file_vma_batch_init(&vb); 395 unlink_file_vma_batch_add(&vb, vma); 396 397 /* 398 * Optimization: gather nearby vmas into one call down 399 */ 400 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 401 && !is_vm_hugetlb_page(next)) { 402 vma = next; 403 next = mas_find(mas, ceiling - 1); 404 if (unlikely(xa_is_zero(next))) 405 next = NULL; 406 if (mm_wr_locked) 407 vma_start_write(vma); 408 unlink_anon_vmas(vma); 409 unlink_file_vma_batch_add(&vb, vma); 410 } 411 unlink_file_vma_batch_final(&vb); 412 free_pgd_range(tlb, addr, vma->vm_end, 413 floor, next ? next->vm_start : ceiling); 414 } 415 vma = next; 416 } while (vma); 417 } 418 419 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 420 { 421 spinlock_t *ptl = pmd_lock(mm, pmd); 422 423 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 424 mm_inc_nr_ptes(mm); 425 /* 426 * Ensure all pte setup (eg. pte page lock and page clearing) are 427 * visible before the pte is made visible to other CPUs by being 428 * put into page tables. 429 * 430 * The other side of the story is the pointer chasing in the page 431 * table walking code (when walking the page table without locking; 432 * ie. most of the time). Fortunately, these data accesses consist 433 * of a chain of data-dependent loads, meaning most CPUs (alpha 434 * being the notable exception) will already guarantee loads are 435 * seen in-order. See the alpha page table accessors for the 436 * smp_rmb() barriers in page table walking code. 437 */ 438 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 439 pmd_populate(mm, pmd, *pte); 440 *pte = NULL; 441 } 442 spin_unlock(ptl); 443 } 444 445 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 446 { 447 pgtable_t new = pte_alloc_one(mm); 448 if (!new) 449 return -ENOMEM; 450 451 pmd_install(mm, pmd, &new); 452 if (new) 453 pte_free(mm, new); 454 return 0; 455 } 456 457 int __pte_alloc_kernel(pmd_t *pmd) 458 { 459 pte_t *new = pte_alloc_one_kernel(&init_mm); 460 if (!new) 461 return -ENOMEM; 462 463 spin_lock(&init_mm.page_table_lock); 464 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 465 smp_wmb(); /* See comment in pmd_install() */ 466 pmd_populate_kernel(&init_mm, pmd, new); 467 new = NULL; 468 } 469 spin_unlock(&init_mm.page_table_lock); 470 if (new) 471 pte_free_kernel(&init_mm, new); 472 return 0; 473 } 474 475 static inline void init_rss_vec(int *rss) 476 { 477 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 478 } 479 480 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 481 { 482 int i; 483 484 for (i = 0; i < NR_MM_COUNTERS; i++) 485 if (rss[i]) 486 add_mm_counter(mm, i, rss[i]); 487 } 488 489 /* 490 * This function is called to print an error when a bad pte 491 * is found. For example, we might have a PFN-mapped pte in 492 * a region that doesn't allow it. 493 * 494 * The calling function must still handle the error. 495 */ 496 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 497 pte_t pte, struct page *page) 498 { 499 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 500 p4d_t *p4d = p4d_offset(pgd, addr); 501 pud_t *pud = pud_offset(p4d, addr); 502 pmd_t *pmd = pmd_offset(pud, addr); 503 struct address_space *mapping; 504 pgoff_t index; 505 static unsigned long resume; 506 static unsigned long nr_shown; 507 static unsigned long nr_unshown; 508 509 /* 510 * Allow a burst of 60 reports, then keep quiet for that minute; 511 * or allow a steady drip of one report per second. 512 */ 513 if (nr_shown == 60) { 514 if (time_before(jiffies, resume)) { 515 nr_unshown++; 516 return; 517 } 518 if (nr_unshown) { 519 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 520 nr_unshown); 521 nr_unshown = 0; 522 } 523 nr_shown = 0; 524 } 525 if (nr_shown++ == 0) 526 resume = jiffies + 60 * HZ; 527 528 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 529 index = linear_page_index(vma, addr); 530 531 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 532 current->comm, 533 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 534 if (page) 535 dump_page(page, "bad pte"); 536 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 537 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 538 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 539 vma->vm_file, 540 vma->vm_ops ? vma->vm_ops->fault : NULL, 541 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 542 mapping ? mapping->a_ops->read_folio : NULL); 543 dump_stack(); 544 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 545 } 546 547 /* 548 * vm_normal_page -- This function gets the "struct page" associated with a pte. 549 * 550 * "Special" mappings do not wish to be associated with a "struct page" (either 551 * it doesn't exist, or it exists but they don't want to touch it). In this 552 * case, NULL is returned here. "Normal" mappings do have a struct page. 553 * 554 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 555 * pte bit, in which case this function is trivial. Secondly, an architecture 556 * may not have a spare pte bit, which requires a more complicated scheme, 557 * described below. 558 * 559 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 560 * special mapping (even if there are underlying and valid "struct pages"). 561 * COWed pages of a VM_PFNMAP are always normal. 562 * 563 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 564 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 565 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 566 * mapping will always honor the rule 567 * 568 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 569 * 570 * And for normal mappings this is false. 571 * 572 * This restricts such mappings to be a linear translation from virtual address 573 * to pfn. To get around this restriction, we allow arbitrary mappings so long 574 * as the vma is not a COW mapping; in that case, we know that all ptes are 575 * special (because none can have been COWed). 576 * 577 * 578 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 579 * 580 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 581 * page" backing, however the difference is that _all_ pages with a struct 582 * page (that is, those where pfn_valid is true) are refcounted and considered 583 * normal pages by the VM. The only exception are zeropages, which are 584 * *never* refcounted. 585 * 586 * The disadvantage is that pages are refcounted (which can be slower and 587 * simply not an option for some PFNMAP users). The advantage is that we 588 * don't have to follow the strict linearity rule of PFNMAP mappings in 589 * order to support COWable mappings. 590 * 591 */ 592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 593 pte_t pte) 594 { 595 unsigned long pfn = pte_pfn(pte); 596 597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 598 if (likely(!pte_special(pte))) 599 goto check_pfn; 600 if (vma->vm_ops && vma->vm_ops->find_special_page) 601 return vma->vm_ops->find_special_page(vma, addr); 602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 603 return NULL; 604 if (is_zero_pfn(pfn)) 605 return NULL; 606 if (pte_devmap(pte)) 607 /* 608 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 609 * and will have refcounts incremented on their struct pages 610 * when they are inserted into PTEs, thus they are safe to 611 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 612 * do not have refcounts. Example of legacy ZONE_DEVICE is 613 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 614 */ 615 return NULL; 616 617 print_bad_pte(vma, addr, pte, NULL); 618 return NULL; 619 } 620 621 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 622 623 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 624 if (vma->vm_flags & VM_MIXEDMAP) { 625 if (!pfn_valid(pfn)) 626 return NULL; 627 if (is_zero_pfn(pfn)) 628 return NULL; 629 goto out; 630 } else { 631 unsigned long off; 632 off = (addr - vma->vm_start) >> PAGE_SHIFT; 633 if (pfn == vma->vm_pgoff + off) 634 return NULL; 635 if (!is_cow_mapping(vma->vm_flags)) 636 return NULL; 637 } 638 } 639 640 if (is_zero_pfn(pfn)) 641 return NULL; 642 643 check_pfn: 644 if (unlikely(pfn > highest_memmap_pfn)) { 645 print_bad_pte(vma, addr, pte, NULL); 646 return NULL; 647 } 648 649 /* 650 * NOTE! We still have PageReserved() pages in the page tables. 651 * eg. VDSO mappings can cause them to exist. 652 */ 653 out: 654 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 655 return pfn_to_page(pfn); 656 } 657 658 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 659 pte_t pte) 660 { 661 struct page *page = vm_normal_page(vma, addr, pte); 662 663 if (page) 664 return page_folio(page); 665 return NULL; 666 } 667 668 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 669 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 670 pmd_t pmd) 671 { 672 unsigned long pfn = pmd_pfn(pmd); 673 674 /* Currently it's only used for huge pfnmaps */ 675 if (unlikely(pmd_special(pmd))) 676 return NULL; 677 678 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 679 if (vma->vm_flags & VM_MIXEDMAP) { 680 if (!pfn_valid(pfn)) 681 return NULL; 682 goto out; 683 } else { 684 unsigned long off; 685 off = (addr - vma->vm_start) >> PAGE_SHIFT; 686 if (pfn == vma->vm_pgoff + off) 687 return NULL; 688 if (!is_cow_mapping(vma->vm_flags)) 689 return NULL; 690 } 691 } 692 693 if (pmd_devmap(pmd)) 694 return NULL; 695 if (is_huge_zero_pmd(pmd)) 696 return NULL; 697 if (unlikely(pfn > highest_memmap_pfn)) 698 return NULL; 699 700 /* 701 * NOTE! We still have PageReserved() pages in the page tables. 702 * eg. VDSO mappings can cause them to exist. 703 */ 704 out: 705 return pfn_to_page(pfn); 706 } 707 708 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 709 unsigned long addr, pmd_t pmd) 710 { 711 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 712 713 if (page) 714 return page_folio(page); 715 return NULL; 716 } 717 #endif 718 719 static void restore_exclusive_pte(struct vm_area_struct *vma, 720 struct page *page, unsigned long address, 721 pte_t *ptep) 722 { 723 struct folio *folio = page_folio(page); 724 pte_t orig_pte; 725 pte_t pte; 726 swp_entry_t entry; 727 728 orig_pte = ptep_get(ptep); 729 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 730 if (pte_swp_soft_dirty(orig_pte)) 731 pte = pte_mksoft_dirty(pte); 732 733 entry = pte_to_swp_entry(orig_pte); 734 if (pte_swp_uffd_wp(orig_pte)) 735 pte = pte_mkuffd_wp(pte); 736 else if (is_writable_device_exclusive_entry(entry)) 737 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 738 739 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) && 740 PageAnonExclusive(page)), folio); 741 742 /* 743 * No need to take a page reference as one was already 744 * created when the swap entry was made. 745 */ 746 if (folio_test_anon(folio)) 747 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE); 748 else 749 /* 750 * Currently device exclusive access only supports anonymous 751 * memory so the entry shouldn't point to a filebacked page. 752 */ 753 WARN_ON_ONCE(1); 754 755 set_pte_at(vma->vm_mm, address, ptep, pte); 756 757 /* 758 * No need to invalidate - it was non-present before. However 759 * secondary CPUs may have mappings that need invalidating. 760 */ 761 update_mmu_cache(vma, address, ptep); 762 } 763 764 /* 765 * Tries to restore an exclusive pte if the page lock can be acquired without 766 * sleeping. 767 */ 768 static int 769 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 770 unsigned long addr) 771 { 772 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 773 struct page *page = pfn_swap_entry_to_page(entry); 774 775 if (trylock_page(page)) { 776 restore_exclusive_pte(vma, page, addr, src_pte); 777 unlock_page(page); 778 return 0; 779 } 780 781 return -EBUSY; 782 } 783 784 /* 785 * copy one vm_area from one task to the other. Assumes the page tables 786 * already present in the new task to be cleared in the whole range 787 * covered by this vma. 788 */ 789 790 static unsigned long 791 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 792 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 793 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 794 { 795 unsigned long vm_flags = dst_vma->vm_flags; 796 pte_t orig_pte = ptep_get(src_pte); 797 pte_t pte = orig_pte; 798 struct folio *folio; 799 struct page *page; 800 swp_entry_t entry = pte_to_swp_entry(orig_pte); 801 802 if (likely(!non_swap_entry(entry))) { 803 if (swap_duplicate(entry) < 0) 804 return -EIO; 805 806 /* make sure dst_mm is on swapoff's mmlist. */ 807 if (unlikely(list_empty(&dst_mm->mmlist))) { 808 spin_lock(&mmlist_lock); 809 if (list_empty(&dst_mm->mmlist)) 810 list_add(&dst_mm->mmlist, 811 &src_mm->mmlist); 812 spin_unlock(&mmlist_lock); 813 } 814 /* Mark the swap entry as shared. */ 815 if (pte_swp_exclusive(orig_pte)) { 816 pte = pte_swp_clear_exclusive(orig_pte); 817 set_pte_at(src_mm, addr, src_pte, pte); 818 } 819 rss[MM_SWAPENTS]++; 820 } else if (is_migration_entry(entry)) { 821 folio = pfn_swap_entry_folio(entry); 822 823 rss[mm_counter(folio)]++; 824 825 if (!is_readable_migration_entry(entry) && 826 is_cow_mapping(vm_flags)) { 827 /* 828 * COW mappings require pages in both parent and child 829 * to be set to read. A previously exclusive entry is 830 * now shared. 831 */ 832 entry = make_readable_migration_entry( 833 swp_offset(entry)); 834 pte = swp_entry_to_pte(entry); 835 if (pte_swp_soft_dirty(orig_pte)) 836 pte = pte_swp_mksoft_dirty(pte); 837 if (pte_swp_uffd_wp(orig_pte)) 838 pte = pte_swp_mkuffd_wp(pte); 839 set_pte_at(src_mm, addr, src_pte, pte); 840 } 841 } else if (is_device_private_entry(entry)) { 842 page = pfn_swap_entry_to_page(entry); 843 folio = page_folio(page); 844 845 /* 846 * Update rss count even for unaddressable pages, as 847 * they should treated just like normal pages in this 848 * respect. 849 * 850 * We will likely want to have some new rss counters 851 * for unaddressable pages, at some point. But for now 852 * keep things as they are. 853 */ 854 folio_get(folio); 855 rss[mm_counter(folio)]++; 856 /* Cannot fail as these pages cannot get pinned. */ 857 folio_try_dup_anon_rmap_pte(folio, page, src_vma); 858 859 /* 860 * We do not preserve soft-dirty information, because so 861 * far, checkpoint/restore is the only feature that 862 * requires that. And checkpoint/restore does not work 863 * when a device driver is involved (you cannot easily 864 * save and restore device driver state). 865 */ 866 if (is_writable_device_private_entry(entry) && 867 is_cow_mapping(vm_flags)) { 868 entry = make_readable_device_private_entry( 869 swp_offset(entry)); 870 pte = swp_entry_to_pte(entry); 871 if (pte_swp_uffd_wp(orig_pte)) 872 pte = pte_swp_mkuffd_wp(pte); 873 set_pte_at(src_mm, addr, src_pte, pte); 874 } 875 } else if (is_device_exclusive_entry(entry)) { 876 /* 877 * Make device exclusive entries present by restoring the 878 * original entry then copying as for a present pte. Device 879 * exclusive entries currently only support private writable 880 * (ie. COW) mappings. 881 */ 882 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 883 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 884 return -EBUSY; 885 return -ENOENT; 886 } else if (is_pte_marker_entry(entry)) { 887 pte_marker marker = copy_pte_marker(entry, dst_vma); 888 889 if (marker) 890 set_pte_at(dst_mm, addr, dst_pte, 891 make_pte_marker(marker)); 892 return 0; 893 } 894 if (!userfaultfd_wp(dst_vma)) 895 pte = pte_swp_clear_uffd_wp(pte); 896 set_pte_at(dst_mm, addr, dst_pte, pte); 897 return 0; 898 } 899 900 /* 901 * Copy a present and normal page. 902 * 903 * NOTE! The usual case is that this isn't required; 904 * instead, the caller can just increase the page refcount 905 * and re-use the pte the traditional way. 906 * 907 * And if we need a pre-allocated page but don't yet have 908 * one, return a negative error to let the preallocation 909 * code know so that it can do so outside the page table 910 * lock. 911 */ 912 static inline int 913 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 914 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 915 struct folio **prealloc, struct page *page) 916 { 917 struct folio *new_folio; 918 pte_t pte; 919 920 new_folio = *prealloc; 921 if (!new_folio) 922 return -EAGAIN; 923 924 /* 925 * We have a prealloc page, all good! Take it 926 * over and copy the page & arm it. 927 */ 928 929 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 930 return -EHWPOISON; 931 932 *prealloc = NULL; 933 __folio_mark_uptodate(new_folio); 934 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 935 folio_add_lru_vma(new_folio, dst_vma); 936 rss[MM_ANONPAGES]++; 937 938 /* All done, just insert the new page copy in the child */ 939 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 940 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 941 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 942 /* Uffd-wp needs to be delivered to dest pte as well */ 943 pte = pte_mkuffd_wp(pte); 944 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 945 return 0; 946 } 947 948 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 949 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 950 pte_t pte, unsigned long addr, int nr) 951 { 952 struct mm_struct *src_mm = src_vma->vm_mm; 953 954 /* If it's a COW mapping, write protect it both processes. */ 955 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 956 wrprotect_ptes(src_mm, addr, src_pte, nr); 957 pte = pte_wrprotect(pte); 958 } 959 960 /* If it's a shared mapping, mark it clean in the child. */ 961 if (src_vma->vm_flags & VM_SHARED) 962 pte = pte_mkclean(pte); 963 pte = pte_mkold(pte); 964 965 if (!userfaultfd_wp(dst_vma)) 966 pte = pte_clear_uffd_wp(pte); 967 968 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 969 } 970 971 /* 972 * Copy one present PTE, trying to batch-process subsequent PTEs that map 973 * consecutive pages of the same folio by copying them as well. 974 * 975 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 976 * Otherwise, returns the number of copied PTEs (at least 1). 977 */ 978 static inline int 979 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 980 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 981 int max_nr, int *rss, struct folio **prealloc) 982 { 983 struct page *page; 984 struct folio *folio; 985 bool any_writable; 986 fpb_t flags = 0; 987 int err, nr; 988 989 page = vm_normal_page(src_vma, addr, pte); 990 if (unlikely(!page)) 991 goto copy_pte; 992 993 folio = page_folio(page); 994 995 /* 996 * If we likely have to copy, just don't bother with batching. Make 997 * sure that the common "small folio" case is as fast as possible 998 * by keeping the batching logic separate. 999 */ 1000 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1001 if (src_vma->vm_flags & VM_SHARED) 1002 flags |= FPB_IGNORE_DIRTY; 1003 if (!vma_soft_dirty_enabled(src_vma)) 1004 flags |= FPB_IGNORE_SOFT_DIRTY; 1005 1006 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 1007 &any_writable, NULL, NULL); 1008 folio_ref_add(folio, nr); 1009 if (folio_test_anon(folio)) { 1010 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1011 nr, src_vma))) { 1012 folio_ref_sub(folio, nr); 1013 return -EAGAIN; 1014 } 1015 rss[MM_ANONPAGES] += nr; 1016 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1017 } else { 1018 folio_dup_file_rmap_ptes(folio, page, nr); 1019 rss[mm_counter_file(folio)] += nr; 1020 } 1021 if (any_writable) 1022 pte = pte_mkwrite(pte, src_vma); 1023 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1024 addr, nr); 1025 return nr; 1026 } 1027 1028 folio_get(folio); 1029 if (folio_test_anon(folio)) { 1030 /* 1031 * If this page may have been pinned by the parent process, 1032 * copy the page immediately for the child so that we'll always 1033 * guarantee the pinned page won't be randomly replaced in the 1034 * future. 1035 */ 1036 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) { 1037 /* Page may be pinned, we have to copy. */ 1038 folio_put(folio); 1039 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1040 addr, rss, prealloc, page); 1041 return err ? err : 1; 1042 } 1043 rss[MM_ANONPAGES]++; 1044 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1045 } else { 1046 folio_dup_file_rmap_pte(folio, page); 1047 rss[mm_counter_file(folio)]++; 1048 } 1049 1050 copy_pte: 1051 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1052 return 1; 1053 } 1054 1055 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1056 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1057 { 1058 struct folio *new_folio; 1059 1060 if (need_zero) 1061 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1062 else 1063 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1064 1065 if (!new_folio) 1066 return NULL; 1067 1068 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1069 folio_put(new_folio); 1070 return NULL; 1071 } 1072 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1073 1074 return new_folio; 1075 } 1076 1077 static int 1078 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1079 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1080 unsigned long end) 1081 { 1082 struct mm_struct *dst_mm = dst_vma->vm_mm; 1083 struct mm_struct *src_mm = src_vma->vm_mm; 1084 pte_t *orig_src_pte, *orig_dst_pte; 1085 pte_t *src_pte, *dst_pte; 1086 pmd_t dummy_pmdval; 1087 pte_t ptent; 1088 spinlock_t *src_ptl, *dst_ptl; 1089 int progress, max_nr, ret = 0; 1090 int rss[NR_MM_COUNTERS]; 1091 swp_entry_t entry = (swp_entry_t){0}; 1092 struct folio *prealloc = NULL; 1093 int nr; 1094 1095 again: 1096 progress = 0; 1097 init_rss_vec(rss); 1098 1099 /* 1100 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1101 * error handling here, assume that exclusive mmap_lock on dst and src 1102 * protects anon from unexpected THP transitions; with shmem and file 1103 * protected by mmap_lock-less collapse skipping areas with anon_vma 1104 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1105 * can remove such assumptions later, but this is good enough for now. 1106 */ 1107 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1108 if (!dst_pte) { 1109 ret = -ENOMEM; 1110 goto out; 1111 } 1112 1113 /* 1114 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1115 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1116 * the PTE page is stable, and there is no need to get pmdval and do 1117 * pmd_same() check. 1118 */ 1119 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1120 &src_ptl); 1121 if (!src_pte) { 1122 pte_unmap_unlock(dst_pte, dst_ptl); 1123 /* ret == 0 */ 1124 goto out; 1125 } 1126 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1127 orig_src_pte = src_pte; 1128 orig_dst_pte = dst_pte; 1129 arch_enter_lazy_mmu_mode(); 1130 1131 do { 1132 nr = 1; 1133 1134 /* 1135 * We are holding two locks at this point - either of them 1136 * could generate latencies in another task on another CPU. 1137 */ 1138 if (progress >= 32) { 1139 progress = 0; 1140 if (need_resched() || 1141 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1142 break; 1143 } 1144 ptent = ptep_get(src_pte); 1145 if (pte_none(ptent)) { 1146 progress++; 1147 continue; 1148 } 1149 if (unlikely(!pte_present(ptent))) { 1150 ret = copy_nonpresent_pte(dst_mm, src_mm, 1151 dst_pte, src_pte, 1152 dst_vma, src_vma, 1153 addr, rss); 1154 if (ret == -EIO) { 1155 entry = pte_to_swp_entry(ptep_get(src_pte)); 1156 break; 1157 } else if (ret == -EBUSY) { 1158 break; 1159 } else if (!ret) { 1160 progress += 8; 1161 continue; 1162 } 1163 ptent = ptep_get(src_pte); 1164 VM_WARN_ON_ONCE(!pte_present(ptent)); 1165 1166 /* 1167 * Device exclusive entry restored, continue by copying 1168 * the now present pte. 1169 */ 1170 WARN_ON_ONCE(ret != -ENOENT); 1171 } 1172 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1173 max_nr = (end - addr) / PAGE_SIZE; 1174 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1175 ptent, addr, max_nr, rss, &prealloc); 1176 /* 1177 * If we need a pre-allocated page for this pte, drop the 1178 * locks, allocate, and try again. 1179 * If copy failed due to hwpoison in source page, break out. 1180 */ 1181 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1182 break; 1183 if (unlikely(prealloc)) { 1184 /* 1185 * pre-alloc page cannot be reused by next time so as 1186 * to strictly follow mempolicy (e.g., alloc_page_vma() 1187 * will allocate page according to address). This 1188 * could only happen if one pinned pte changed. 1189 */ 1190 folio_put(prealloc); 1191 prealloc = NULL; 1192 } 1193 nr = ret; 1194 progress += 8 * nr; 1195 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1196 addr != end); 1197 1198 arch_leave_lazy_mmu_mode(); 1199 pte_unmap_unlock(orig_src_pte, src_ptl); 1200 add_mm_rss_vec(dst_mm, rss); 1201 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1202 cond_resched(); 1203 1204 if (ret == -EIO) { 1205 VM_WARN_ON_ONCE(!entry.val); 1206 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1207 ret = -ENOMEM; 1208 goto out; 1209 } 1210 entry.val = 0; 1211 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1212 goto out; 1213 } else if (ret == -EAGAIN) { 1214 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1215 if (!prealloc) 1216 return -ENOMEM; 1217 } else if (ret < 0) { 1218 VM_WARN_ON_ONCE(1); 1219 } 1220 1221 /* We've captured and resolved the error. Reset, try again. */ 1222 ret = 0; 1223 1224 if (addr != end) 1225 goto again; 1226 out: 1227 if (unlikely(prealloc)) 1228 folio_put(prealloc); 1229 return ret; 1230 } 1231 1232 static inline int 1233 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1234 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1235 unsigned long end) 1236 { 1237 struct mm_struct *dst_mm = dst_vma->vm_mm; 1238 struct mm_struct *src_mm = src_vma->vm_mm; 1239 pmd_t *src_pmd, *dst_pmd; 1240 unsigned long next; 1241 1242 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1243 if (!dst_pmd) 1244 return -ENOMEM; 1245 src_pmd = pmd_offset(src_pud, addr); 1246 do { 1247 next = pmd_addr_end(addr, end); 1248 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1249 || pmd_devmap(*src_pmd)) { 1250 int err; 1251 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1252 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1253 addr, dst_vma, src_vma); 1254 if (err == -ENOMEM) 1255 return -ENOMEM; 1256 if (!err) 1257 continue; 1258 /* fall through */ 1259 } 1260 if (pmd_none_or_clear_bad(src_pmd)) 1261 continue; 1262 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1263 addr, next)) 1264 return -ENOMEM; 1265 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1266 return 0; 1267 } 1268 1269 static inline int 1270 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1271 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1272 unsigned long end) 1273 { 1274 struct mm_struct *dst_mm = dst_vma->vm_mm; 1275 struct mm_struct *src_mm = src_vma->vm_mm; 1276 pud_t *src_pud, *dst_pud; 1277 unsigned long next; 1278 1279 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1280 if (!dst_pud) 1281 return -ENOMEM; 1282 src_pud = pud_offset(src_p4d, addr); 1283 do { 1284 next = pud_addr_end(addr, end); 1285 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1286 int err; 1287 1288 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1289 err = copy_huge_pud(dst_mm, src_mm, 1290 dst_pud, src_pud, addr, src_vma); 1291 if (err == -ENOMEM) 1292 return -ENOMEM; 1293 if (!err) 1294 continue; 1295 /* fall through */ 1296 } 1297 if (pud_none_or_clear_bad(src_pud)) 1298 continue; 1299 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1300 addr, next)) 1301 return -ENOMEM; 1302 } while (dst_pud++, src_pud++, addr = next, addr != end); 1303 return 0; 1304 } 1305 1306 static inline int 1307 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1308 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1309 unsigned long end) 1310 { 1311 struct mm_struct *dst_mm = dst_vma->vm_mm; 1312 p4d_t *src_p4d, *dst_p4d; 1313 unsigned long next; 1314 1315 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1316 if (!dst_p4d) 1317 return -ENOMEM; 1318 src_p4d = p4d_offset(src_pgd, addr); 1319 do { 1320 next = p4d_addr_end(addr, end); 1321 if (p4d_none_or_clear_bad(src_p4d)) 1322 continue; 1323 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1324 addr, next)) 1325 return -ENOMEM; 1326 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1327 return 0; 1328 } 1329 1330 /* 1331 * Return true if the vma needs to copy the pgtable during this fork(). Return 1332 * false when we can speed up fork() by allowing lazy page faults later until 1333 * when the child accesses the memory range. 1334 */ 1335 static bool 1336 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1337 { 1338 /* 1339 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1340 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1341 * contains uffd-wp protection information, that's something we can't 1342 * retrieve from page cache, and skip copying will lose those info. 1343 */ 1344 if (userfaultfd_wp(dst_vma)) 1345 return true; 1346 1347 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1348 return true; 1349 1350 if (src_vma->anon_vma) 1351 return true; 1352 1353 /* 1354 * Don't copy ptes where a page fault will fill them correctly. Fork 1355 * becomes much lighter when there are big shared or private readonly 1356 * mappings. The tradeoff is that copy_page_range is more efficient 1357 * than faulting. 1358 */ 1359 return false; 1360 } 1361 1362 int 1363 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1364 { 1365 pgd_t *src_pgd, *dst_pgd; 1366 unsigned long next; 1367 unsigned long addr = src_vma->vm_start; 1368 unsigned long end = src_vma->vm_end; 1369 struct mm_struct *dst_mm = dst_vma->vm_mm; 1370 struct mm_struct *src_mm = src_vma->vm_mm; 1371 struct mmu_notifier_range range; 1372 bool is_cow; 1373 int ret; 1374 1375 if (!vma_needs_copy(dst_vma, src_vma)) 1376 return 0; 1377 1378 if (is_vm_hugetlb_page(src_vma)) 1379 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1380 1381 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1382 /* 1383 * We do not free on error cases below as remove_vma 1384 * gets called on error from higher level routine 1385 */ 1386 ret = track_pfn_copy(src_vma); 1387 if (ret) 1388 return ret; 1389 } 1390 1391 /* 1392 * We need to invalidate the secondary MMU mappings only when 1393 * there could be a permission downgrade on the ptes of the 1394 * parent mm. And a permission downgrade will only happen if 1395 * is_cow_mapping() returns true. 1396 */ 1397 is_cow = is_cow_mapping(src_vma->vm_flags); 1398 1399 if (is_cow) { 1400 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1401 0, src_mm, addr, end); 1402 mmu_notifier_invalidate_range_start(&range); 1403 /* 1404 * Disabling preemption is not needed for the write side, as 1405 * the read side doesn't spin, but goes to the mmap_lock. 1406 * 1407 * Use the raw variant of the seqcount_t write API to avoid 1408 * lockdep complaining about preemptibility. 1409 */ 1410 vma_assert_write_locked(src_vma); 1411 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1412 } 1413 1414 ret = 0; 1415 dst_pgd = pgd_offset(dst_mm, addr); 1416 src_pgd = pgd_offset(src_mm, addr); 1417 do { 1418 next = pgd_addr_end(addr, end); 1419 if (pgd_none_or_clear_bad(src_pgd)) 1420 continue; 1421 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1422 addr, next))) { 1423 untrack_pfn_clear(dst_vma); 1424 ret = -ENOMEM; 1425 break; 1426 } 1427 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1428 1429 if (is_cow) { 1430 raw_write_seqcount_end(&src_mm->write_protect_seq); 1431 mmu_notifier_invalidate_range_end(&range); 1432 } 1433 return ret; 1434 } 1435 1436 /* Whether we should zap all COWed (private) pages too */ 1437 static inline bool should_zap_cows(struct zap_details *details) 1438 { 1439 /* By default, zap all pages */ 1440 if (!details || details->reclaim_pt) 1441 return true; 1442 1443 /* Or, we zap COWed pages only if the caller wants to */ 1444 return details->even_cows; 1445 } 1446 1447 /* Decides whether we should zap this folio with the folio pointer specified */ 1448 static inline bool should_zap_folio(struct zap_details *details, 1449 struct folio *folio) 1450 { 1451 /* If we can make a decision without *folio.. */ 1452 if (should_zap_cows(details)) 1453 return true; 1454 1455 /* Otherwise we should only zap non-anon folios */ 1456 return !folio_test_anon(folio); 1457 } 1458 1459 static inline bool zap_drop_markers(struct zap_details *details) 1460 { 1461 if (!details) 1462 return false; 1463 1464 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1465 } 1466 1467 /* 1468 * This function makes sure that we'll replace the none pte with an uffd-wp 1469 * swap special pte marker when necessary. Must be with the pgtable lock held. 1470 * 1471 * Returns true if uffd-wp ptes was installed, false otherwise. 1472 */ 1473 static inline bool 1474 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1475 unsigned long addr, pte_t *pte, int nr, 1476 struct zap_details *details, pte_t pteval) 1477 { 1478 bool was_installed = false; 1479 1480 #ifdef CONFIG_PTE_MARKER_UFFD_WP 1481 /* Zap on anonymous always means dropping everything */ 1482 if (vma_is_anonymous(vma)) 1483 return false; 1484 1485 if (zap_drop_markers(details)) 1486 return false; 1487 1488 for (;;) { 1489 /* the PFN in the PTE is irrelevant. */ 1490 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1491 was_installed = true; 1492 if (--nr == 0) 1493 break; 1494 pte++; 1495 addr += PAGE_SIZE; 1496 } 1497 #endif 1498 return was_installed; 1499 } 1500 1501 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1502 struct vm_area_struct *vma, struct folio *folio, 1503 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1504 unsigned long addr, struct zap_details *details, int *rss, 1505 bool *force_flush, bool *force_break, bool *any_skipped) 1506 { 1507 struct mm_struct *mm = tlb->mm; 1508 bool delay_rmap = false; 1509 1510 if (!folio_test_anon(folio)) { 1511 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1512 if (pte_dirty(ptent)) { 1513 folio_mark_dirty(folio); 1514 if (tlb_delay_rmap(tlb)) { 1515 delay_rmap = true; 1516 *force_flush = true; 1517 } 1518 } 1519 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1520 folio_mark_accessed(folio); 1521 rss[mm_counter(folio)] -= nr; 1522 } else { 1523 /* We don't need up-to-date accessed/dirty bits. */ 1524 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1525 rss[MM_ANONPAGES] -= nr; 1526 } 1527 /* Checking a single PTE in a batch is sufficient. */ 1528 arch_check_zapped_pte(vma, ptent); 1529 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1530 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1531 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1532 nr, details, ptent); 1533 1534 if (!delay_rmap) { 1535 folio_remove_rmap_ptes(folio, page, nr, vma); 1536 1537 if (unlikely(folio_mapcount(folio) < 0)) 1538 print_bad_pte(vma, addr, ptent, page); 1539 } 1540 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1541 *force_flush = true; 1542 *force_break = true; 1543 } 1544 } 1545 1546 /* 1547 * Zap or skip at least one present PTE, trying to batch-process subsequent 1548 * PTEs that map consecutive pages of the same folio. 1549 * 1550 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1551 */ 1552 static inline int zap_present_ptes(struct mmu_gather *tlb, 1553 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1554 unsigned int max_nr, unsigned long addr, 1555 struct zap_details *details, int *rss, bool *force_flush, 1556 bool *force_break, bool *any_skipped) 1557 { 1558 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1559 struct mm_struct *mm = tlb->mm; 1560 struct folio *folio; 1561 struct page *page; 1562 int nr; 1563 1564 page = vm_normal_page(vma, addr, ptent); 1565 if (!page) { 1566 /* We don't need up-to-date accessed/dirty bits. */ 1567 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1568 arch_check_zapped_pte(vma, ptent); 1569 tlb_remove_tlb_entry(tlb, pte, addr); 1570 if (userfaultfd_pte_wp(vma, ptent)) 1571 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1572 pte, 1, details, ptent); 1573 ksm_might_unmap_zero_page(mm, ptent); 1574 return 1; 1575 } 1576 1577 folio = page_folio(page); 1578 if (unlikely(!should_zap_folio(details, folio))) { 1579 *any_skipped = true; 1580 return 1; 1581 } 1582 1583 /* 1584 * Make sure that the common "small folio" case is as fast as possible 1585 * by keeping the batching logic separate. 1586 */ 1587 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1588 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1589 NULL, NULL, NULL); 1590 1591 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1592 addr, details, rss, force_flush, 1593 force_break, any_skipped); 1594 return nr; 1595 } 1596 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1597 details, rss, force_flush, force_break, any_skipped); 1598 return 1; 1599 } 1600 1601 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1602 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1603 unsigned int max_nr, unsigned long addr, 1604 struct zap_details *details, int *rss, bool *any_skipped) 1605 { 1606 swp_entry_t entry; 1607 int nr = 1; 1608 1609 *any_skipped = true; 1610 entry = pte_to_swp_entry(ptent); 1611 if (is_device_private_entry(entry) || 1612 is_device_exclusive_entry(entry)) { 1613 struct page *page = pfn_swap_entry_to_page(entry); 1614 struct folio *folio = page_folio(page); 1615 1616 if (unlikely(!should_zap_folio(details, folio))) 1617 return 1; 1618 /* 1619 * Both device private/exclusive mappings should only 1620 * work with anonymous page so far, so we don't need to 1621 * consider uffd-wp bit when zap. For more information, 1622 * see zap_install_uffd_wp_if_needed(). 1623 */ 1624 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1625 rss[mm_counter(folio)]--; 1626 if (is_device_private_entry(entry)) 1627 folio_remove_rmap_pte(folio, page, vma); 1628 folio_put(folio); 1629 } else if (!non_swap_entry(entry)) { 1630 /* Genuine swap entries, hence a private anon pages */ 1631 if (!should_zap_cows(details)) 1632 return 1; 1633 1634 nr = swap_pte_batch(pte, max_nr, ptent); 1635 rss[MM_SWAPENTS] -= nr; 1636 free_swap_and_cache_nr(entry, nr); 1637 } else if (is_migration_entry(entry)) { 1638 struct folio *folio = pfn_swap_entry_folio(entry); 1639 1640 if (!should_zap_folio(details, folio)) 1641 return 1; 1642 rss[mm_counter(folio)]--; 1643 } else if (pte_marker_entry_uffd_wp(entry)) { 1644 /* 1645 * For anon: always drop the marker; for file: only 1646 * drop the marker if explicitly requested. 1647 */ 1648 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1649 return 1; 1650 } else if (is_guard_swp_entry(entry)) { 1651 /* 1652 * Ordinary zapping should not remove guard PTE 1653 * markers. Only do so if we should remove PTE markers 1654 * in general. 1655 */ 1656 if (!zap_drop_markers(details)) 1657 return 1; 1658 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { 1659 if (!should_zap_cows(details)) 1660 return 1; 1661 } else { 1662 /* We should have covered all the swap entry types */ 1663 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1664 WARN_ON_ONCE(1); 1665 } 1666 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1667 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1668 1669 return nr; 1670 } 1671 1672 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1673 struct vm_area_struct *vma, pte_t *pte, 1674 unsigned long addr, unsigned long end, 1675 struct zap_details *details, int *rss, 1676 bool *force_flush, bool *force_break, 1677 bool *any_skipped) 1678 { 1679 pte_t ptent = ptep_get(pte); 1680 int max_nr = (end - addr) / PAGE_SIZE; 1681 int nr = 0; 1682 1683 /* Skip all consecutive none ptes */ 1684 if (pte_none(ptent)) { 1685 for (nr = 1; nr < max_nr; nr++) { 1686 ptent = ptep_get(pte + nr); 1687 if (!pte_none(ptent)) 1688 break; 1689 } 1690 max_nr -= nr; 1691 if (!max_nr) 1692 return nr; 1693 pte += nr; 1694 addr += nr * PAGE_SIZE; 1695 } 1696 1697 if (pte_present(ptent)) 1698 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1699 details, rss, force_flush, force_break, 1700 any_skipped); 1701 else 1702 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1703 details, rss, any_skipped); 1704 1705 return nr; 1706 } 1707 1708 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1709 struct vm_area_struct *vma, pmd_t *pmd, 1710 unsigned long addr, unsigned long end, 1711 struct zap_details *details) 1712 { 1713 bool force_flush = false, force_break = false; 1714 struct mm_struct *mm = tlb->mm; 1715 int rss[NR_MM_COUNTERS]; 1716 spinlock_t *ptl; 1717 pte_t *start_pte; 1718 pte_t *pte; 1719 pmd_t pmdval; 1720 unsigned long start = addr; 1721 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1722 bool direct_reclaim = false; 1723 int nr; 1724 1725 retry: 1726 tlb_change_page_size(tlb, PAGE_SIZE); 1727 init_rss_vec(rss); 1728 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1729 if (!pte) 1730 return addr; 1731 1732 flush_tlb_batched_pending(mm); 1733 arch_enter_lazy_mmu_mode(); 1734 do { 1735 bool any_skipped = false; 1736 1737 if (need_resched()) 1738 break; 1739 1740 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1741 &force_flush, &force_break, &any_skipped); 1742 if (any_skipped) 1743 can_reclaim_pt = false; 1744 if (unlikely(force_break)) { 1745 addr += nr * PAGE_SIZE; 1746 break; 1747 } 1748 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1749 1750 if (can_reclaim_pt && addr == end) 1751 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1752 1753 add_mm_rss_vec(mm, rss); 1754 arch_leave_lazy_mmu_mode(); 1755 1756 /* Do the actual TLB flush before dropping ptl */ 1757 if (force_flush) { 1758 tlb_flush_mmu_tlbonly(tlb); 1759 tlb_flush_rmaps(tlb, vma); 1760 } 1761 pte_unmap_unlock(start_pte, ptl); 1762 1763 /* 1764 * If we forced a TLB flush (either due to running out of 1765 * batch buffers or because we needed to flush dirty TLB 1766 * entries before releasing the ptl), free the batched 1767 * memory too. Come back again if we didn't do everything. 1768 */ 1769 if (force_flush) 1770 tlb_flush_mmu(tlb); 1771 1772 if (addr != end) { 1773 cond_resched(); 1774 force_flush = false; 1775 force_break = false; 1776 goto retry; 1777 } 1778 1779 if (can_reclaim_pt) { 1780 if (direct_reclaim) 1781 free_pte(mm, start, tlb, pmdval); 1782 else 1783 try_to_free_pte(mm, pmd, start, tlb); 1784 } 1785 1786 return addr; 1787 } 1788 1789 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1790 struct vm_area_struct *vma, pud_t *pud, 1791 unsigned long addr, unsigned long end, 1792 struct zap_details *details) 1793 { 1794 pmd_t *pmd; 1795 unsigned long next; 1796 1797 pmd = pmd_offset(pud, addr); 1798 do { 1799 next = pmd_addr_end(addr, end); 1800 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1801 if (next - addr != HPAGE_PMD_SIZE) 1802 __split_huge_pmd(vma, pmd, addr, false, NULL); 1803 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1804 addr = next; 1805 continue; 1806 } 1807 /* fall through */ 1808 } else if (details && details->single_folio && 1809 folio_test_pmd_mappable(details->single_folio) && 1810 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1811 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1812 /* 1813 * Take and drop THP pmd lock so that we cannot return 1814 * prematurely, while zap_huge_pmd() has cleared *pmd, 1815 * but not yet decremented compound_mapcount(). 1816 */ 1817 spin_unlock(ptl); 1818 } 1819 if (pmd_none(*pmd)) { 1820 addr = next; 1821 continue; 1822 } 1823 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1824 if (addr != next) 1825 pmd--; 1826 } while (pmd++, cond_resched(), addr != end); 1827 1828 return addr; 1829 } 1830 1831 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1832 struct vm_area_struct *vma, p4d_t *p4d, 1833 unsigned long addr, unsigned long end, 1834 struct zap_details *details) 1835 { 1836 pud_t *pud; 1837 unsigned long next; 1838 1839 pud = pud_offset(p4d, addr); 1840 do { 1841 next = pud_addr_end(addr, end); 1842 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1843 if (next - addr != HPAGE_PUD_SIZE) { 1844 mmap_assert_locked(tlb->mm); 1845 split_huge_pud(vma, pud, addr); 1846 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1847 goto next; 1848 /* fall through */ 1849 } 1850 if (pud_none_or_clear_bad(pud)) 1851 continue; 1852 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1853 next: 1854 cond_resched(); 1855 } while (pud++, addr = next, addr != end); 1856 1857 return addr; 1858 } 1859 1860 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1861 struct vm_area_struct *vma, pgd_t *pgd, 1862 unsigned long addr, unsigned long end, 1863 struct zap_details *details) 1864 { 1865 p4d_t *p4d; 1866 unsigned long next; 1867 1868 p4d = p4d_offset(pgd, addr); 1869 do { 1870 next = p4d_addr_end(addr, end); 1871 if (p4d_none_or_clear_bad(p4d)) 1872 continue; 1873 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1874 } while (p4d++, addr = next, addr != end); 1875 1876 return addr; 1877 } 1878 1879 void unmap_page_range(struct mmu_gather *tlb, 1880 struct vm_area_struct *vma, 1881 unsigned long addr, unsigned long end, 1882 struct zap_details *details) 1883 { 1884 pgd_t *pgd; 1885 unsigned long next; 1886 1887 BUG_ON(addr >= end); 1888 tlb_start_vma(tlb, vma); 1889 pgd = pgd_offset(vma->vm_mm, addr); 1890 do { 1891 next = pgd_addr_end(addr, end); 1892 if (pgd_none_or_clear_bad(pgd)) 1893 continue; 1894 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1895 } while (pgd++, addr = next, addr != end); 1896 tlb_end_vma(tlb, vma); 1897 } 1898 1899 1900 static void unmap_single_vma(struct mmu_gather *tlb, 1901 struct vm_area_struct *vma, unsigned long start_addr, 1902 unsigned long end_addr, 1903 struct zap_details *details, bool mm_wr_locked) 1904 { 1905 unsigned long start = max(vma->vm_start, start_addr); 1906 unsigned long end; 1907 1908 if (start >= vma->vm_end) 1909 return; 1910 end = min(vma->vm_end, end_addr); 1911 if (end <= vma->vm_start) 1912 return; 1913 1914 if (vma->vm_file) 1915 uprobe_munmap(vma, start, end); 1916 1917 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1918 untrack_pfn(vma, 0, 0, mm_wr_locked); 1919 1920 if (start != end) { 1921 if (unlikely(is_vm_hugetlb_page(vma))) { 1922 /* 1923 * It is undesirable to test vma->vm_file as it 1924 * should be non-null for valid hugetlb area. 1925 * However, vm_file will be NULL in the error 1926 * cleanup path of mmap_region. When 1927 * hugetlbfs ->mmap method fails, 1928 * mmap_region() nullifies vma->vm_file 1929 * before calling this function to clean up. 1930 * Since no pte has actually been setup, it is 1931 * safe to do nothing in this case. 1932 */ 1933 if (vma->vm_file) { 1934 zap_flags_t zap_flags = details ? 1935 details->zap_flags : 0; 1936 __unmap_hugepage_range(tlb, vma, start, end, 1937 NULL, zap_flags); 1938 } 1939 } else 1940 unmap_page_range(tlb, vma, start, end, details); 1941 } 1942 } 1943 1944 /** 1945 * unmap_vmas - unmap a range of memory covered by a list of vma's 1946 * @tlb: address of the caller's struct mmu_gather 1947 * @mas: the maple state 1948 * @vma: the starting vma 1949 * @start_addr: virtual address at which to start unmapping 1950 * @end_addr: virtual address at which to end unmapping 1951 * @tree_end: The maximum index to check 1952 * @mm_wr_locked: lock flag 1953 * 1954 * Unmap all pages in the vma list. 1955 * 1956 * Only addresses between `start' and `end' will be unmapped. 1957 * 1958 * The VMA list must be sorted in ascending virtual address order. 1959 * 1960 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1961 * range after unmap_vmas() returns. So the only responsibility here is to 1962 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1963 * drops the lock and schedules. 1964 */ 1965 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1966 struct vm_area_struct *vma, unsigned long start_addr, 1967 unsigned long end_addr, unsigned long tree_end, 1968 bool mm_wr_locked) 1969 { 1970 struct mmu_notifier_range range; 1971 struct zap_details details = { 1972 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1973 /* Careful - we need to zap private pages too! */ 1974 .even_cows = true, 1975 }; 1976 1977 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1978 start_addr, end_addr); 1979 mmu_notifier_invalidate_range_start(&range); 1980 do { 1981 unsigned long start = start_addr; 1982 unsigned long end = end_addr; 1983 hugetlb_zap_begin(vma, &start, &end); 1984 unmap_single_vma(tlb, vma, start, end, &details, 1985 mm_wr_locked); 1986 hugetlb_zap_end(vma, &details); 1987 vma = mas_find(mas, tree_end - 1); 1988 } while (vma && likely(!xa_is_zero(vma))); 1989 mmu_notifier_invalidate_range_end(&range); 1990 } 1991 1992 /** 1993 * zap_page_range_single - remove user pages in a given range 1994 * @vma: vm_area_struct holding the applicable pages 1995 * @address: starting address of pages to zap 1996 * @size: number of bytes to zap 1997 * @details: details of shared cache invalidation 1998 * 1999 * The range must fit into one VMA. 2000 */ 2001 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2002 unsigned long size, struct zap_details *details) 2003 { 2004 const unsigned long end = address + size; 2005 struct mmu_notifier_range range; 2006 struct mmu_gather tlb; 2007 2008 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2009 address, end); 2010 hugetlb_zap_begin(vma, &range.start, &range.end); 2011 tlb_gather_mmu(&tlb, vma->vm_mm); 2012 update_hiwater_rss(vma->vm_mm); 2013 mmu_notifier_invalidate_range_start(&range); 2014 /* 2015 * unmap 'address-end' not 'range.start-range.end' as range 2016 * could have been expanded for hugetlb pmd sharing. 2017 */ 2018 unmap_single_vma(&tlb, vma, address, end, details, false); 2019 mmu_notifier_invalidate_range_end(&range); 2020 tlb_finish_mmu(&tlb); 2021 hugetlb_zap_end(vma, details); 2022 } 2023 2024 /** 2025 * zap_vma_ptes - remove ptes mapping the vma 2026 * @vma: vm_area_struct holding ptes to be zapped 2027 * @address: starting address of pages to zap 2028 * @size: number of bytes to zap 2029 * 2030 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2031 * 2032 * The entire address range must be fully contained within the vma. 2033 * 2034 */ 2035 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2036 unsigned long size) 2037 { 2038 if (!range_in_vma(vma, address, address + size) || 2039 !(vma->vm_flags & VM_PFNMAP)) 2040 return; 2041 2042 zap_page_range_single(vma, address, size, NULL); 2043 } 2044 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2045 2046 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2047 { 2048 pgd_t *pgd; 2049 p4d_t *p4d; 2050 pud_t *pud; 2051 pmd_t *pmd; 2052 2053 pgd = pgd_offset(mm, addr); 2054 p4d = p4d_alloc(mm, pgd, addr); 2055 if (!p4d) 2056 return NULL; 2057 pud = pud_alloc(mm, p4d, addr); 2058 if (!pud) 2059 return NULL; 2060 pmd = pmd_alloc(mm, pud, addr); 2061 if (!pmd) 2062 return NULL; 2063 2064 VM_BUG_ON(pmd_trans_huge(*pmd)); 2065 return pmd; 2066 } 2067 2068 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2069 spinlock_t **ptl) 2070 { 2071 pmd_t *pmd = walk_to_pmd(mm, addr); 2072 2073 if (!pmd) 2074 return NULL; 2075 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2076 } 2077 2078 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2079 { 2080 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2081 /* 2082 * Whoever wants to forbid the zeropage after some zeropages 2083 * might already have been mapped has to scan the page tables and 2084 * bail out on any zeropages. Zeropages in COW mappings can 2085 * be unshared using FAULT_FLAG_UNSHARE faults. 2086 */ 2087 if (mm_forbids_zeropage(vma->vm_mm)) 2088 return false; 2089 /* zeropages in COW mappings are common and unproblematic. */ 2090 if (is_cow_mapping(vma->vm_flags)) 2091 return true; 2092 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2093 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2094 return true; 2095 /* 2096 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2097 * find the shared zeropage and longterm-pin it, which would 2098 * be problematic as soon as the zeropage gets replaced by a different 2099 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2100 * now differ to what GUP looked up. FSDAX is incompatible to 2101 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2102 * check_vma_flags). 2103 */ 2104 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2105 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2106 } 2107 2108 static int validate_page_before_insert(struct vm_area_struct *vma, 2109 struct page *page) 2110 { 2111 struct folio *folio = page_folio(page); 2112 2113 if (!folio_ref_count(folio)) 2114 return -EINVAL; 2115 if (unlikely(is_zero_folio(folio))) { 2116 if (!vm_mixed_zeropage_allowed(vma)) 2117 return -EINVAL; 2118 return 0; 2119 } 2120 if (folio_test_anon(folio) || folio_test_slab(folio) || 2121 page_has_type(page)) 2122 return -EINVAL; 2123 flush_dcache_folio(folio); 2124 return 0; 2125 } 2126 2127 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2128 unsigned long addr, struct page *page, pgprot_t prot) 2129 { 2130 struct folio *folio = page_folio(page); 2131 pte_t pteval; 2132 2133 if (!pte_none(ptep_get(pte))) 2134 return -EBUSY; 2135 /* Ok, finally just insert the thing.. */ 2136 pteval = mk_pte(page, prot); 2137 if (unlikely(is_zero_folio(folio))) { 2138 pteval = pte_mkspecial(pteval); 2139 } else { 2140 folio_get(folio); 2141 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2142 folio_add_file_rmap_pte(folio, page, vma); 2143 } 2144 set_pte_at(vma->vm_mm, addr, pte, pteval); 2145 return 0; 2146 } 2147 2148 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2149 struct page *page, pgprot_t prot) 2150 { 2151 int retval; 2152 pte_t *pte; 2153 spinlock_t *ptl; 2154 2155 retval = validate_page_before_insert(vma, page); 2156 if (retval) 2157 goto out; 2158 retval = -ENOMEM; 2159 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2160 if (!pte) 2161 goto out; 2162 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 2163 pte_unmap_unlock(pte, ptl); 2164 out: 2165 return retval; 2166 } 2167 2168 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2169 unsigned long addr, struct page *page, pgprot_t prot) 2170 { 2171 int err; 2172 2173 err = validate_page_before_insert(vma, page); 2174 if (err) 2175 return err; 2176 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 2177 } 2178 2179 /* insert_pages() amortizes the cost of spinlock operations 2180 * when inserting pages in a loop. 2181 */ 2182 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2183 struct page **pages, unsigned long *num, pgprot_t prot) 2184 { 2185 pmd_t *pmd = NULL; 2186 pte_t *start_pte, *pte; 2187 spinlock_t *pte_lock; 2188 struct mm_struct *const mm = vma->vm_mm; 2189 unsigned long curr_page_idx = 0; 2190 unsigned long remaining_pages_total = *num; 2191 unsigned long pages_to_write_in_pmd; 2192 int ret; 2193 more: 2194 ret = -EFAULT; 2195 pmd = walk_to_pmd(mm, addr); 2196 if (!pmd) 2197 goto out; 2198 2199 pages_to_write_in_pmd = min_t(unsigned long, 2200 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2201 2202 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2203 ret = -ENOMEM; 2204 if (pte_alloc(mm, pmd)) 2205 goto out; 2206 2207 while (pages_to_write_in_pmd) { 2208 int pte_idx = 0; 2209 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2210 2211 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2212 if (!start_pte) { 2213 ret = -EFAULT; 2214 goto out; 2215 } 2216 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2217 int err = insert_page_in_batch_locked(vma, pte, 2218 addr, pages[curr_page_idx], prot); 2219 if (unlikely(err)) { 2220 pte_unmap_unlock(start_pte, pte_lock); 2221 ret = err; 2222 remaining_pages_total -= pte_idx; 2223 goto out; 2224 } 2225 addr += PAGE_SIZE; 2226 ++curr_page_idx; 2227 } 2228 pte_unmap_unlock(start_pte, pte_lock); 2229 pages_to_write_in_pmd -= batch_size; 2230 remaining_pages_total -= batch_size; 2231 } 2232 if (remaining_pages_total) 2233 goto more; 2234 ret = 0; 2235 out: 2236 *num = remaining_pages_total; 2237 return ret; 2238 } 2239 2240 /** 2241 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2242 * @vma: user vma to map to 2243 * @addr: target start user address of these pages 2244 * @pages: source kernel pages 2245 * @num: in: number of pages to map. out: number of pages that were *not* 2246 * mapped. (0 means all pages were successfully mapped). 2247 * 2248 * Preferred over vm_insert_page() when inserting multiple pages. 2249 * 2250 * In case of error, we may have mapped a subset of the provided 2251 * pages. It is the caller's responsibility to account for this case. 2252 * 2253 * The same restrictions apply as in vm_insert_page(). 2254 */ 2255 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2256 struct page **pages, unsigned long *num) 2257 { 2258 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2259 2260 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2261 return -EFAULT; 2262 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2263 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2264 BUG_ON(vma->vm_flags & VM_PFNMAP); 2265 vm_flags_set(vma, VM_MIXEDMAP); 2266 } 2267 /* Defer page refcount checking till we're about to map that page. */ 2268 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2269 } 2270 EXPORT_SYMBOL(vm_insert_pages); 2271 2272 /** 2273 * vm_insert_page - insert single page into user vma 2274 * @vma: user vma to map to 2275 * @addr: target user address of this page 2276 * @page: source kernel page 2277 * 2278 * This allows drivers to insert individual pages they've allocated 2279 * into a user vma. The zeropage is supported in some VMAs, 2280 * see vm_mixed_zeropage_allowed(). 2281 * 2282 * The page has to be a nice clean _individual_ kernel allocation. 2283 * If you allocate a compound page, you need to have marked it as 2284 * such (__GFP_COMP), or manually just split the page up yourself 2285 * (see split_page()). 2286 * 2287 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2288 * took an arbitrary page protection parameter. This doesn't allow 2289 * that. Your vma protection will have to be set up correctly, which 2290 * means that if you want a shared writable mapping, you'd better 2291 * ask for a shared writable mapping! 2292 * 2293 * The page does not need to be reserved. 2294 * 2295 * Usually this function is called from f_op->mmap() handler 2296 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2297 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2298 * function from other places, for example from page-fault handler. 2299 * 2300 * Return: %0 on success, negative error code otherwise. 2301 */ 2302 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2303 struct page *page) 2304 { 2305 if (addr < vma->vm_start || addr >= vma->vm_end) 2306 return -EFAULT; 2307 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2308 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2309 BUG_ON(vma->vm_flags & VM_PFNMAP); 2310 vm_flags_set(vma, VM_MIXEDMAP); 2311 } 2312 return insert_page(vma, addr, page, vma->vm_page_prot); 2313 } 2314 EXPORT_SYMBOL(vm_insert_page); 2315 2316 /* 2317 * __vm_map_pages - maps range of kernel pages into user vma 2318 * @vma: user vma to map to 2319 * @pages: pointer to array of source kernel pages 2320 * @num: number of pages in page array 2321 * @offset: user's requested vm_pgoff 2322 * 2323 * This allows drivers to map range of kernel pages into a user vma. 2324 * The zeropage is supported in some VMAs, see 2325 * vm_mixed_zeropage_allowed(). 2326 * 2327 * Return: 0 on success and error code otherwise. 2328 */ 2329 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2330 unsigned long num, unsigned long offset) 2331 { 2332 unsigned long count = vma_pages(vma); 2333 unsigned long uaddr = vma->vm_start; 2334 int ret, i; 2335 2336 /* Fail if the user requested offset is beyond the end of the object */ 2337 if (offset >= num) 2338 return -ENXIO; 2339 2340 /* Fail if the user requested size exceeds available object size */ 2341 if (count > num - offset) 2342 return -ENXIO; 2343 2344 for (i = 0; i < count; i++) { 2345 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2346 if (ret < 0) 2347 return ret; 2348 uaddr += PAGE_SIZE; 2349 } 2350 2351 return 0; 2352 } 2353 2354 /** 2355 * vm_map_pages - maps range of kernel pages starts with non zero offset 2356 * @vma: user vma to map to 2357 * @pages: pointer to array of source kernel pages 2358 * @num: number of pages in page array 2359 * 2360 * Maps an object consisting of @num pages, catering for the user's 2361 * requested vm_pgoff 2362 * 2363 * If we fail to insert any page into the vma, the function will return 2364 * immediately leaving any previously inserted pages present. Callers 2365 * from the mmap handler may immediately return the error as their caller 2366 * will destroy the vma, removing any successfully inserted pages. Other 2367 * callers should make their own arrangements for calling unmap_region(). 2368 * 2369 * Context: Process context. Called by mmap handlers. 2370 * Return: 0 on success and error code otherwise. 2371 */ 2372 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2373 unsigned long num) 2374 { 2375 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2376 } 2377 EXPORT_SYMBOL(vm_map_pages); 2378 2379 /** 2380 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2381 * @vma: user vma to map to 2382 * @pages: pointer to array of source kernel pages 2383 * @num: number of pages in page array 2384 * 2385 * Similar to vm_map_pages(), except that it explicitly sets the offset 2386 * to 0. This function is intended for the drivers that did not consider 2387 * vm_pgoff. 2388 * 2389 * Context: Process context. Called by mmap handlers. 2390 * Return: 0 on success and error code otherwise. 2391 */ 2392 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2393 unsigned long num) 2394 { 2395 return __vm_map_pages(vma, pages, num, 0); 2396 } 2397 EXPORT_SYMBOL(vm_map_pages_zero); 2398 2399 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2400 pfn_t pfn, pgprot_t prot, bool mkwrite) 2401 { 2402 struct mm_struct *mm = vma->vm_mm; 2403 pte_t *pte, entry; 2404 spinlock_t *ptl; 2405 2406 pte = get_locked_pte(mm, addr, &ptl); 2407 if (!pte) 2408 return VM_FAULT_OOM; 2409 entry = ptep_get(pte); 2410 if (!pte_none(entry)) { 2411 if (mkwrite) { 2412 /* 2413 * For read faults on private mappings the PFN passed 2414 * in may not match the PFN we have mapped if the 2415 * mapped PFN is a writeable COW page. In the mkwrite 2416 * case we are creating a writable PTE for a shared 2417 * mapping and we expect the PFNs to match. If they 2418 * don't match, we are likely racing with block 2419 * allocation and mapping invalidation so just skip the 2420 * update. 2421 */ 2422 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2423 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2424 goto out_unlock; 2425 } 2426 entry = pte_mkyoung(entry); 2427 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2428 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2429 update_mmu_cache(vma, addr, pte); 2430 } 2431 goto out_unlock; 2432 } 2433 2434 /* Ok, finally just insert the thing.. */ 2435 if (pfn_t_devmap(pfn)) 2436 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2437 else 2438 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2439 2440 if (mkwrite) { 2441 entry = pte_mkyoung(entry); 2442 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2443 } 2444 2445 set_pte_at(mm, addr, pte, entry); 2446 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2447 2448 out_unlock: 2449 pte_unmap_unlock(pte, ptl); 2450 return VM_FAULT_NOPAGE; 2451 } 2452 2453 /** 2454 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2455 * @vma: user vma to map to 2456 * @addr: target user address of this page 2457 * @pfn: source kernel pfn 2458 * @pgprot: pgprot flags for the inserted page 2459 * 2460 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2461 * to override pgprot on a per-page basis. 2462 * 2463 * This only makes sense for IO mappings, and it makes no sense for 2464 * COW mappings. In general, using multiple vmas is preferable; 2465 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2466 * impractical. 2467 * 2468 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2469 * caching- and encryption bits different than those of @vma->vm_page_prot, 2470 * because the caching- or encryption mode may not be known at mmap() time. 2471 * 2472 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2473 * to set caching and encryption bits for those vmas (except for COW pages). 2474 * This is ensured by core vm only modifying these page table entries using 2475 * functions that don't touch caching- or encryption bits, using pte_modify() 2476 * if needed. (See for example mprotect()). 2477 * 2478 * Also when new page-table entries are created, this is only done using the 2479 * fault() callback, and never using the value of vma->vm_page_prot, 2480 * except for page-table entries that point to anonymous pages as the result 2481 * of COW. 2482 * 2483 * Context: Process context. May allocate using %GFP_KERNEL. 2484 * Return: vm_fault_t value. 2485 */ 2486 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2487 unsigned long pfn, pgprot_t pgprot) 2488 { 2489 /* 2490 * Technically, architectures with pte_special can avoid all these 2491 * restrictions (same for remap_pfn_range). However we would like 2492 * consistency in testing and feature parity among all, so we should 2493 * try to keep these invariants in place for everybody. 2494 */ 2495 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2496 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2497 (VM_PFNMAP|VM_MIXEDMAP)); 2498 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2499 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2500 2501 if (addr < vma->vm_start || addr >= vma->vm_end) 2502 return VM_FAULT_SIGBUS; 2503 2504 if (!pfn_modify_allowed(pfn, pgprot)) 2505 return VM_FAULT_SIGBUS; 2506 2507 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2508 2509 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2510 false); 2511 } 2512 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2513 2514 /** 2515 * vmf_insert_pfn - insert single pfn into user vma 2516 * @vma: user vma to map to 2517 * @addr: target user address of this page 2518 * @pfn: source kernel pfn 2519 * 2520 * Similar to vm_insert_page, this allows drivers to insert individual pages 2521 * they've allocated into a user vma. Same comments apply. 2522 * 2523 * This function should only be called from a vm_ops->fault handler, and 2524 * in that case the handler should return the result of this function. 2525 * 2526 * vma cannot be a COW mapping. 2527 * 2528 * As this is called only for pages that do not currently exist, we 2529 * do not need to flush old virtual caches or the TLB. 2530 * 2531 * Context: Process context. May allocate using %GFP_KERNEL. 2532 * Return: vm_fault_t value. 2533 */ 2534 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2535 unsigned long pfn) 2536 { 2537 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2538 } 2539 EXPORT_SYMBOL(vmf_insert_pfn); 2540 2541 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite) 2542 { 2543 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) && 2544 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2545 return false; 2546 /* these checks mirror the abort conditions in vm_normal_page */ 2547 if (vma->vm_flags & VM_MIXEDMAP) 2548 return true; 2549 if (pfn_t_devmap(pfn)) 2550 return true; 2551 if (pfn_t_special(pfn)) 2552 return true; 2553 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2554 return true; 2555 return false; 2556 } 2557 2558 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2559 unsigned long addr, pfn_t pfn, bool mkwrite) 2560 { 2561 pgprot_t pgprot = vma->vm_page_prot; 2562 int err; 2563 2564 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2565 return VM_FAULT_SIGBUS; 2566 2567 if (addr < vma->vm_start || addr >= vma->vm_end) 2568 return VM_FAULT_SIGBUS; 2569 2570 track_pfn_insert(vma, &pgprot, pfn); 2571 2572 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2573 return VM_FAULT_SIGBUS; 2574 2575 /* 2576 * If we don't have pte special, then we have to use the pfn_valid() 2577 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2578 * refcount the page if pfn_valid is true (hence insert_page rather 2579 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2580 * without pte special, it would there be refcounted as a normal page. 2581 */ 2582 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2583 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2584 struct page *page; 2585 2586 /* 2587 * At this point we are committed to insert_page() 2588 * regardless of whether the caller specified flags that 2589 * result in pfn_t_has_page() == false. 2590 */ 2591 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2592 err = insert_page(vma, addr, page, pgprot); 2593 } else { 2594 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2595 } 2596 2597 if (err == -ENOMEM) 2598 return VM_FAULT_OOM; 2599 if (err < 0 && err != -EBUSY) 2600 return VM_FAULT_SIGBUS; 2601 2602 return VM_FAULT_NOPAGE; 2603 } 2604 2605 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2606 pfn_t pfn) 2607 { 2608 return __vm_insert_mixed(vma, addr, pfn, false); 2609 } 2610 EXPORT_SYMBOL(vmf_insert_mixed); 2611 2612 /* 2613 * If the insertion of PTE failed because someone else already added a 2614 * different entry in the mean time, we treat that as success as we assume 2615 * the same entry was actually inserted. 2616 */ 2617 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2618 unsigned long addr, pfn_t pfn) 2619 { 2620 return __vm_insert_mixed(vma, addr, pfn, true); 2621 } 2622 2623 /* 2624 * maps a range of physical memory into the requested pages. the old 2625 * mappings are removed. any references to nonexistent pages results 2626 * in null mappings (currently treated as "copy-on-access") 2627 */ 2628 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2629 unsigned long addr, unsigned long end, 2630 unsigned long pfn, pgprot_t prot) 2631 { 2632 pte_t *pte, *mapped_pte; 2633 spinlock_t *ptl; 2634 int err = 0; 2635 2636 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2637 if (!pte) 2638 return -ENOMEM; 2639 arch_enter_lazy_mmu_mode(); 2640 do { 2641 BUG_ON(!pte_none(ptep_get(pte))); 2642 if (!pfn_modify_allowed(pfn, prot)) { 2643 err = -EACCES; 2644 break; 2645 } 2646 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2647 pfn++; 2648 } while (pte++, addr += PAGE_SIZE, addr != end); 2649 arch_leave_lazy_mmu_mode(); 2650 pte_unmap_unlock(mapped_pte, ptl); 2651 return err; 2652 } 2653 2654 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2655 unsigned long addr, unsigned long end, 2656 unsigned long pfn, pgprot_t prot) 2657 { 2658 pmd_t *pmd; 2659 unsigned long next; 2660 int err; 2661 2662 pfn -= addr >> PAGE_SHIFT; 2663 pmd = pmd_alloc(mm, pud, addr); 2664 if (!pmd) 2665 return -ENOMEM; 2666 VM_BUG_ON(pmd_trans_huge(*pmd)); 2667 do { 2668 next = pmd_addr_end(addr, end); 2669 err = remap_pte_range(mm, pmd, addr, next, 2670 pfn + (addr >> PAGE_SHIFT), prot); 2671 if (err) 2672 return err; 2673 } while (pmd++, addr = next, addr != end); 2674 return 0; 2675 } 2676 2677 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2678 unsigned long addr, unsigned long end, 2679 unsigned long pfn, pgprot_t prot) 2680 { 2681 pud_t *pud; 2682 unsigned long next; 2683 int err; 2684 2685 pfn -= addr >> PAGE_SHIFT; 2686 pud = pud_alloc(mm, p4d, addr); 2687 if (!pud) 2688 return -ENOMEM; 2689 do { 2690 next = pud_addr_end(addr, end); 2691 err = remap_pmd_range(mm, pud, addr, next, 2692 pfn + (addr >> PAGE_SHIFT), prot); 2693 if (err) 2694 return err; 2695 } while (pud++, addr = next, addr != end); 2696 return 0; 2697 } 2698 2699 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2700 unsigned long addr, unsigned long end, 2701 unsigned long pfn, pgprot_t prot) 2702 { 2703 p4d_t *p4d; 2704 unsigned long next; 2705 int err; 2706 2707 pfn -= addr >> PAGE_SHIFT; 2708 p4d = p4d_alloc(mm, pgd, addr); 2709 if (!p4d) 2710 return -ENOMEM; 2711 do { 2712 next = p4d_addr_end(addr, end); 2713 err = remap_pud_range(mm, p4d, addr, next, 2714 pfn + (addr >> PAGE_SHIFT), prot); 2715 if (err) 2716 return err; 2717 } while (p4d++, addr = next, addr != end); 2718 return 0; 2719 } 2720 2721 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2722 unsigned long pfn, unsigned long size, pgprot_t prot) 2723 { 2724 pgd_t *pgd; 2725 unsigned long next; 2726 unsigned long end = addr + PAGE_ALIGN(size); 2727 struct mm_struct *mm = vma->vm_mm; 2728 int err; 2729 2730 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2731 return -EINVAL; 2732 2733 /* 2734 * Physically remapped pages are special. Tell the 2735 * rest of the world about it: 2736 * VM_IO tells people not to look at these pages 2737 * (accesses can have side effects). 2738 * VM_PFNMAP tells the core MM that the base pages are just 2739 * raw PFN mappings, and do not have a "struct page" associated 2740 * with them. 2741 * VM_DONTEXPAND 2742 * Disable vma merging and expanding with mremap(). 2743 * VM_DONTDUMP 2744 * Omit vma from core dump, even when VM_IO turned off. 2745 * 2746 * There's a horrible special case to handle copy-on-write 2747 * behaviour that some programs depend on. We mark the "original" 2748 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2749 * See vm_normal_page() for details. 2750 */ 2751 if (is_cow_mapping(vma->vm_flags)) { 2752 if (addr != vma->vm_start || end != vma->vm_end) 2753 return -EINVAL; 2754 vma->vm_pgoff = pfn; 2755 } 2756 2757 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2758 2759 BUG_ON(addr >= end); 2760 pfn -= addr >> PAGE_SHIFT; 2761 pgd = pgd_offset(mm, addr); 2762 flush_cache_range(vma, addr, end); 2763 do { 2764 next = pgd_addr_end(addr, end); 2765 err = remap_p4d_range(mm, pgd, addr, next, 2766 pfn + (addr >> PAGE_SHIFT), prot); 2767 if (err) 2768 return err; 2769 } while (pgd++, addr = next, addr != end); 2770 2771 return 0; 2772 } 2773 2774 /* 2775 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2776 * must have pre-validated the caching bits of the pgprot_t. 2777 */ 2778 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2779 unsigned long pfn, unsigned long size, pgprot_t prot) 2780 { 2781 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2782 2783 if (!error) 2784 return 0; 2785 2786 /* 2787 * A partial pfn range mapping is dangerous: it does not 2788 * maintain page reference counts, and callers may free 2789 * pages due to the error. So zap it early. 2790 */ 2791 zap_page_range_single(vma, addr, size, NULL); 2792 return error; 2793 } 2794 2795 /** 2796 * remap_pfn_range - remap kernel memory to userspace 2797 * @vma: user vma to map to 2798 * @addr: target page aligned user address to start at 2799 * @pfn: page frame number of kernel physical memory address 2800 * @size: size of mapping area 2801 * @prot: page protection flags for this mapping 2802 * 2803 * Note: this is only safe if the mm semaphore is held when called. 2804 * 2805 * Return: %0 on success, negative error code otherwise. 2806 */ 2807 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2808 unsigned long pfn, unsigned long size, pgprot_t prot) 2809 { 2810 int err; 2811 2812 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2813 if (err) 2814 return -EINVAL; 2815 2816 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2817 if (err) 2818 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2819 return err; 2820 } 2821 EXPORT_SYMBOL(remap_pfn_range); 2822 2823 /** 2824 * vm_iomap_memory - remap memory to userspace 2825 * @vma: user vma to map to 2826 * @start: start of the physical memory to be mapped 2827 * @len: size of area 2828 * 2829 * This is a simplified io_remap_pfn_range() for common driver use. The 2830 * driver just needs to give us the physical memory range to be mapped, 2831 * we'll figure out the rest from the vma information. 2832 * 2833 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2834 * whatever write-combining details or similar. 2835 * 2836 * Return: %0 on success, negative error code otherwise. 2837 */ 2838 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2839 { 2840 unsigned long vm_len, pfn, pages; 2841 2842 /* Check that the physical memory area passed in looks valid */ 2843 if (start + len < start) 2844 return -EINVAL; 2845 /* 2846 * You *really* shouldn't map things that aren't page-aligned, 2847 * but we've historically allowed it because IO memory might 2848 * just have smaller alignment. 2849 */ 2850 len += start & ~PAGE_MASK; 2851 pfn = start >> PAGE_SHIFT; 2852 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2853 if (pfn + pages < pfn) 2854 return -EINVAL; 2855 2856 /* We start the mapping 'vm_pgoff' pages into the area */ 2857 if (vma->vm_pgoff > pages) 2858 return -EINVAL; 2859 pfn += vma->vm_pgoff; 2860 pages -= vma->vm_pgoff; 2861 2862 /* Can we fit all of the mapping? */ 2863 vm_len = vma->vm_end - vma->vm_start; 2864 if (vm_len >> PAGE_SHIFT > pages) 2865 return -EINVAL; 2866 2867 /* Ok, let it rip */ 2868 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2869 } 2870 EXPORT_SYMBOL(vm_iomap_memory); 2871 2872 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2873 unsigned long addr, unsigned long end, 2874 pte_fn_t fn, void *data, bool create, 2875 pgtbl_mod_mask *mask) 2876 { 2877 pte_t *pte, *mapped_pte; 2878 int err = 0; 2879 spinlock_t *ptl; 2880 2881 if (create) { 2882 mapped_pte = pte = (mm == &init_mm) ? 2883 pte_alloc_kernel_track(pmd, addr, mask) : 2884 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2885 if (!pte) 2886 return -ENOMEM; 2887 } else { 2888 mapped_pte = pte = (mm == &init_mm) ? 2889 pte_offset_kernel(pmd, addr) : 2890 pte_offset_map_lock(mm, pmd, addr, &ptl); 2891 if (!pte) 2892 return -EINVAL; 2893 } 2894 2895 arch_enter_lazy_mmu_mode(); 2896 2897 if (fn) { 2898 do { 2899 if (create || !pte_none(ptep_get(pte))) { 2900 err = fn(pte++, addr, data); 2901 if (err) 2902 break; 2903 } 2904 } while (addr += PAGE_SIZE, addr != end); 2905 } 2906 *mask |= PGTBL_PTE_MODIFIED; 2907 2908 arch_leave_lazy_mmu_mode(); 2909 2910 if (mm != &init_mm) 2911 pte_unmap_unlock(mapped_pte, ptl); 2912 return err; 2913 } 2914 2915 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2916 unsigned long addr, unsigned long end, 2917 pte_fn_t fn, void *data, bool create, 2918 pgtbl_mod_mask *mask) 2919 { 2920 pmd_t *pmd; 2921 unsigned long next; 2922 int err = 0; 2923 2924 BUG_ON(pud_leaf(*pud)); 2925 2926 if (create) { 2927 pmd = pmd_alloc_track(mm, pud, addr, mask); 2928 if (!pmd) 2929 return -ENOMEM; 2930 } else { 2931 pmd = pmd_offset(pud, addr); 2932 } 2933 do { 2934 next = pmd_addr_end(addr, end); 2935 if (pmd_none(*pmd) && !create) 2936 continue; 2937 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2938 return -EINVAL; 2939 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2940 if (!create) 2941 continue; 2942 pmd_clear_bad(pmd); 2943 } 2944 err = apply_to_pte_range(mm, pmd, addr, next, 2945 fn, data, create, mask); 2946 if (err) 2947 break; 2948 } while (pmd++, addr = next, addr != end); 2949 2950 return err; 2951 } 2952 2953 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2954 unsigned long addr, unsigned long end, 2955 pte_fn_t fn, void *data, bool create, 2956 pgtbl_mod_mask *mask) 2957 { 2958 pud_t *pud; 2959 unsigned long next; 2960 int err = 0; 2961 2962 if (create) { 2963 pud = pud_alloc_track(mm, p4d, addr, mask); 2964 if (!pud) 2965 return -ENOMEM; 2966 } else { 2967 pud = pud_offset(p4d, addr); 2968 } 2969 do { 2970 next = pud_addr_end(addr, end); 2971 if (pud_none(*pud) && !create) 2972 continue; 2973 if (WARN_ON_ONCE(pud_leaf(*pud))) 2974 return -EINVAL; 2975 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2976 if (!create) 2977 continue; 2978 pud_clear_bad(pud); 2979 } 2980 err = apply_to_pmd_range(mm, pud, addr, next, 2981 fn, data, create, mask); 2982 if (err) 2983 break; 2984 } while (pud++, addr = next, addr != end); 2985 2986 return err; 2987 } 2988 2989 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2990 unsigned long addr, unsigned long end, 2991 pte_fn_t fn, void *data, bool create, 2992 pgtbl_mod_mask *mask) 2993 { 2994 p4d_t *p4d; 2995 unsigned long next; 2996 int err = 0; 2997 2998 if (create) { 2999 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3000 if (!p4d) 3001 return -ENOMEM; 3002 } else { 3003 p4d = p4d_offset(pgd, addr); 3004 } 3005 do { 3006 next = p4d_addr_end(addr, end); 3007 if (p4d_none(*p4d) && !create) 3008 continue; 3009 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3010 return -EINVAL; 3011 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3012 if (!create) 3013 continue; 3014 p4d_clear_bad(p4d); 3015 } 3016 err = apply_to_pud_range(mm, p4d, addr, next, 3017 fn, data, create, mask); 3018 if (err) 3019 break; 3020 } while (p4d++, addr = next, addr != end); 3021 3022 return err; 3023 } 3024 3025 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3026 unsigned long size, pte_fn_t fn, 3027 void *data, bool create) 3028 { 3029 pgd_t *pgd; 3030 unsigned long start = addr, next; 3031 unsigned long end = addr + size; 3032 pgtbl_mod_mask mask = 0; 3033 int err = 0; 3034 3035 if (WARN_ON(addr >= end)) 3036 return -EINVAL; 3037 3038 pgd = pgd_offset(mm, addr); 3039 do { 3040 next = pgd_addr_end(addr, end); 3041 if (pgd_none(*pgd) && !create) 3042 continue; 3043 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 3044 return -EINVAL; 3045 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3046 if (!create) 3047 continue; 3048 pgd_clear_bad(pgd); 3049 } 3050 err = apply_to_p4d_range(mm, pgd, addr, next, 3051 fn, data, create, &mask); 3052 if (err) 3053 break; 3054 } while (pgd++, addr = next, addr != end); 3055 3056 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3057 arch_sync_kernel_mappings(start, start + size); 3058 3059 return err; 3060 } 3061 3062 /* 3063 * Scan a region of virtual memory, filling in page tables as necessary 3064 * and calling a provided function on each leaf page table. 3065 */ 3066 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3067 unsigned long size, pte_fn_t fn, void *data) 3068 { 3069 return __apply_to_page_range(mm, addr, size, fn, data, true); 3070 } 3071 EXPORT_SYMBOL_GPL(apply_to_page_range); 3072 3073 /* 3074 * Scan a region of virtual memory, calling a provided function on 3075 * each leaf page table where it exists. 3076 * 3077 * Unlike apply_to_page_range, this does _not_ fill in page tables 3078 * where they are absent. 3079 */ 3080 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3081 unsigned long size, pte_fn_t fn, void *data) 3082 { 3083 return __apply_to_page_range(mm, addr, size, fn, data, false); 3084 } 3085 3086 /* 3087 * handle_pte_fault chooses page fault handler according to an entry which was 3088 * read non-atomically. Before making any commitment, on those architectures 3089 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3090 * parts, do_swap_page must check under lock before unmapping the pte and 3091 * proceeding (but do_wp_page is only called after already making such a check; 3092 * and do_anonymous_page can safely check later on). 3093 */ 3094 static inline int pte_unmap_same(struct vm_fault *vmf) 3095 { 3096 int same = 1; 3097 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3098 if (sizeof(pte_t) > sizeof(unsigned long)) { 3099 spin_lock(vmf->ptl); 3100 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3101 spin_unlock(vmf->ptl); 3102 } 3103 #endif 3104 pte_unmap(vmf->pte); 3105 vmf->pte = NULL; 3106 return same; 3107 } 3108 3109 /* 3110 * Return: 3111 * 0: copied succeeded 3112 * -EHWPOISON: copy failed due to hwpoison in source page 3113 * -EAGAIN: copied failed (some other reason) 3114 */ 3115 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3116 struct vm_fault *vmf) 3117 { 3118 int ret; 3119 void *kaddr; 3120 void __user *uaddr; 3121 struct vm_area_struct *vma = vmf->vma; 3122 struct mm_struct *mm = vma->vm_mm; 3123 unsigned long addr = vmf->address; 3124 3125 if (likely(src)) { 3126 if (copy_mc_user_highpage(dst, src, addr, vma)) 3127 return -EHWPOISON; 3128 return 0; 3129 } 3130 3131 /* 3132 * If the source page was a PFN mapping, we don't have 3133 * a "struct page" for it. We do a best-effort copy by 3134 * just copying from the original user address. If that 3135 * fails, we just zero-fill it. Live with it. 3136 */ 3137 kaddr = kmap_local_page(dst); 3138 pagefault_disable(); 3139 uaddr = (void __user *)(addr & PAGE_MASK); 3140 3141 /* 3142 * On architectures with software "accessed" bits, we would 3143 * take a double page fault, so mark it accessed here. 3144 */ 3145 vmf->pte = NULL; 3146 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3147 pte_t entry; 3148 3149 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3150 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3151 /* 3152 * Other thread has already handled the fault 3153 * and update local tlb only 3154 */ 3155 if (vmf->pte) 3156 update_mmu_tlb(vma, addr, vmf->pte); 3157 ret = -EAGAIN; 3158 goto pte_unlock; 3159 } 3160 3161 entry = pte_mkyoung(vmf->orig_pte); 3162 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3163 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3164 } 3165 3166 /* 3167 * This really shouldn't fail, because the page is there 3168 * in the page tables. But it might just be unreadable, 3169 * in which case we just give up and fill the result with 3170 * zeroes. 3171 */ 3172 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3173 if (vmf->pte) 3174 goto warn; 3175 3176 /* Re-validate under PTL if the page is still mapped */ 3177 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3178 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3179 /* The PTE changed under us, update local tlb */ 3180 if (vmf->pte) 3181 update_mmu_tlb(vma, addr, vmf->pte); 3182 ret = -EAGAIN; 3183 goto pte_unlock; 3184 } 3185 3186 /* 3187 * The same page can be mapped back since last copy attempt. 3188 * Try to copy again under PTL. 3189 */ 3190 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3191 /* 3192 * Give a warn in case there can be some obscure 3193 * use-case 3194 */ 3195 warn: 3196 WARN_ON_ONCE(1); 3197 clear_page(kaddr); 3198 } 3199 } 3200 3201 ret = 0; 3202 3203 pte_unlock: 3204 if (vmf->pte) 3205 pte_unmap_unlock(vmf->pte, vmf->ptl); 3206 pagefault_enable(); 3207 kunmap_local(kaddr); 3208 flush_dcache_page(dst); 3209 3210 return ret; 3211 } 3212 3213 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3214 { 3215 struct file *vm_file = vma->vm_file; 3216 3217 if (vm_file) 3218 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3219 3220 /* 3221 * Special mappings (e.g. VDSO) do not have any file so fake 3222 * a default GFP_KERNEL for them. 3223 */ 3224 return GFP_KERNEL; 3225 } 3226 3227 /* 3228 * Notify the address space that the page is about to become writable so that 3229 * it can prohibit this or wait for the page to get into an appropriate state. 3230 * 3231 * We do this without the lock held, so that it can sleep if it needs to. 3232 */ 3233 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3234 { 3235 vm_fault_t ret; 3236 unsigned int old_flags = vmf->flags; 3237 3238 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3239 3240 if (vmf->vma->vm_file && 3241 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3242 return VM_FAULT_SIGBUS; 3243 3244 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3245 /* Restore original flags so that caller is not surprised */ 3246 vmf->flags = old_flags; 3247 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3248 return ret; 3249 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3250 folio_lock(folio); 3251 if (!folio->mapping) { 3252 folio_unlock(folio); 3253 return 0; /* retry */ 3254 } 3255 ret |= VM_FAULT_LOCKED; 3256 } else 3257 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3258 return ret; 3259 } 3260 3261 /* 3262 * Handle dirtying of a page in shared file mapping on a write fault. 3263 * 3264 * The function expects the page to be locked and unlocks it. 3265 */ 3266 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3267 { 3268 struct vm_area_struct *vma = vmf->vma; 3269 struct address_space *mapping; 3270 struct folio *folio = page_folio(vmf->page); 3271 bool dirtied; 3272 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3273 3274 dirtied = folio_mark_dirty(folio); 3275 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3276 /* 3277 * Take a local copy of the address_space - folio.mapping may be zeroed 3278 * by truncate after folio_unlock(). The address_space itself remains 3279 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3280 * release semantics to prevent the compiler from undoing this copying. 3281 */ 3282 mapping = folio_raw_mapping(folio); 3283 folio_unlock(folio); 3284 3285 if (!page_mkwrite) 3286 file_update_time(vma->vm_file); 3287 3288 /* 3289 * Throttle page dirtying rate down to writeback speed. 3290 * 3291 * mapping may be NULL here because some device drivers do not 3292 * set page.mapping but still dirty their pages 3293 * 3294 * Drop the mmap_lock before waiting on IO, if we can. The file 3295 * is pinning the mapping, as per above. 3296 */ 3297 if ((dirtied || page_mkwrite) && mapping) { 3298 struct file *fpin; 3299 3300 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3301 balance_dirty_pages_ratelimited(mapping); 3302 if (fpin) { 3303 fput(fpin); 3304 return VM_FAULT_COMPLETED; 3305 } 3306 } 3307 3308 return 0; 3309 } 3310 3311 /* 3312 * Handle write page faults for pages that can be reused in the current vma 3313 * 3314 * This can happen either due to the mapping being with the VM_SHARED flag, 3315 * or due to us being the last reference standing to the page. In either 3316 * case, all we need to do here is to mark the page as writable and update 3317 * any related book-keeping. 3318 */ 3319 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3320 __releases(vmf->ptl) 3321 { 3322 struct vm_area_struct *vma = vmf->vma; 3323 pte_t entry; 3324 3325 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3326 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3327 3328 if (folio) { 3329 VM_BUG_ON(folio_test_anon(folio) && 3330 !PageAnonExclusive(vmf->page)); 3331 /* 3332 * Clear the folio's cpupid information as the existing 3333 * information potentially belongs to a now completely 3334 * unrelated process. 3335 */ 3336 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3337 } 3338 3339 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3340 entry = pte_mkyoung(vmf->orig_pte); 3341 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3342 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3343 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3344 pte_unmap_unlock(vmf->pte, vmf->ptl); 3345 count_vm_event(PGREUSE); 3346 } 3347 3348 /* 3349 * We could add a bitflag somewhere, but for now, we know that all 3350 * vm_ops that have a ->map_pages have been audited and don't need 3351 * the mmap_lock to be held. 3352 */ 3353 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3354 { 3355 struct vm_area_struct *vma = vmf->vma; 3356 3357 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3358 return 0; 3359 vma_end_read(vma); 3360 return VM_FAULT_RETRY; 3361 } 3362 3363 /** 3364 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3365 * @vmf: The vm_fault descriptor passed from the fault handler. 3366 * 3367 * When preparing to insert an anonymous page into a VMA from a 3368 * fault handler, call this function rather than anon_vma_prepare(). 3369 * If this vma does not already have an associated anon_vma and we are 3370 * only protected by the per-VMA lock, the caller must retry with the 3371 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3372 * determine if this VMA can share its anon_vma, and that's not safe to 3373 * do with only the per-VMA lock held for this VMA. 3374 * 3375 * Return: 0 if fault handling can proceed. Any other value should be 3376 * returned to the caller. 3377 */ 3378 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3379 { 3380 struct vm_area_struct *vma = vmf->vma; 3381 vm_fault_t ret = 0; 3382 3383 if (likely(vma->anon_vma)) 3384 return 0; 3385 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3386 if (!mmap_read_trylock(vma->vm_mm)) 3387 return VM_FAULT_RETRY; 3388 } 3389 if (__anon_vma_prepare(vma)) 3390 ret = VM_FAULT_OOM; 3391 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3392 mmap_read_unlock(vma->vm_mm); 3393 return ret; 3394 } 3395 3396 /* 3397 * Handle the case of a page which we actually need to copy to a new page, 3398 * either due to COW or unsharing. 3399 * 3400 * Called with mmap_lock locked and the old page referenced, but 3401 * without the ptl held. 3402 * 3403 * High level logic flow: 3404 * 3405 * - Allocate a page, copy the content of the old page to the new one. 3406 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3407 * - Take the PTL. If the pte changed, bail out and release the allocated page 3408 * - If the pte is still the way we remember it, update the page table and all 3409 * relevant references. This includes dropping the reference the page-table 3410 * held to the old page, as well as updating the rmap. 3411 * - In any case, unlock the PTL and drop the reference we took to the old page. 3412 */ 3413 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3414 { 3415 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3416 struct vm_area_struct *vma = vmf->vma; 3417 struct mm_struct *mm = vma->vm_mm; 3418 struct folio *old_folio = NULL; 3419 struct folio *new_folio = NULL; 3420 pte_t entry; 3421 int page_copied = 0; 3422 struct mmu_notifier_range range; 3423 vm_fault_t ret; 3424 bool pfn_is_zero; 3425 3426 delayacct_wpcopy_start(); 3427 3428 if (vmf->page) 3429 old_folio = page_folio(vmf->page); 3430 ret = vmf_anon_prepare(vmf); 3431 if (unlikely(ret)) 3432 goto out; 3433 3434 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3435 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3436 if (!new_folio) 3437 goto oom; 3438 3439 if (!pfn_is_zero) { 3440 int err; 3441 3442 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3443 if (err) { 3444 /* 3445 * COW failed, if the fault was solved by other, 3446 * it's fine. If not, userspace would re-fault on 3447 * the same address and we will handle the fault 3448 * from the second attempt. 3449 * The -EHWPOISON case will not be retried. 3450 */ 3451 folio_put(new_folio); 3452 if (old_folio) 3453 folio_put(old_folio); 3454 3455 delayacct_wpcopy_end(); 3456 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3457 } 3458 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3459 } 3460 3461 __folio_mark_uptodate(new_folio); 3462 3463 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3464 vmf->address & PAGE_MASK, 3465 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3466 mmu_notifier_invalidate_range_start(&range); 3467 3468 /* 3469 * Re-check the pte - we dropped the lock 3470 */ 3471 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3472 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3473 if (old_folio) { 3474 if (!folio_test_anon(old_folio)) { 3475 dec_mm_counter(mm, mm_counter_file(old_folio)); 3476 inc_mm_counter(mm, MM_ANONPAGES); 3477 } 3478 } else { 3479 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3480 inc_mm_counter(mm, MM_ANONPAGES); 3481 } 3482 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3483 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3484 entry = pte_sw_mkyoung(entry); 3485 if (unlikely(unshare)) { 3486 if (pte_soft_dirty(vmf->orig_pte)) 3487 entry = pte_mksoft_dirty(entry); 3488 if (pte_uffd_wp(vmf->orig_pte)) 3489 entry = pte_mkuffd_wp(entry); 3490 } else { 3491 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3492 } 3493 3494 /* 3495 * Clear the pte entry and flush it first, before updating the 3496 * pte with the new entry, to keep TLBs on different CPUs in 3497 * sync. This code used to set the new PTE then flush TLBs, but 3498 * that left a window where the new PTE could be loaded into 3499 * some TLBs while the old PTE remains in others. 3500 */ 3501 ptep_clear_flush(vma, vmf->address, vmf->pte); 3502 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3503 folio_add_lru_vma(new_folio, vma); 3504 BUG_ON(unshare && pte_write(entry)); 3505 set_pte_at(mm, vmf->address, vmf->pte, entry); 3506 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3507 if (old_folio) { 3508 /* 3509 * Only after switching the pte to the new page may 3510 * we remove the mapcount here. Otherwise another 3511 * process may come and find the rmap count decremented 3512 * before the pte is switched to the new page, and 3513 * "reuse" the old page writing into it while our pte 3514 * here still points into it and can be read by other 3515 * threads. 3516 * 3517 * The critical issue is to order this 3518 * folio_remove_rmap_pte() with the ptp_clear_flush 3519 * above. Those stores are ordered by (if nothing else,) 3520 * the barrier present in the atomic_add_negative 3521 * in folio_remove_rmap_pte(); 3522 * 3523 * Then the TLB flush in ptep_clear_flush ensures that 3524 * no process can access the old page before the 3525 * decremented mapcount is visible. And the old page 3526 * cannot be reused until after the decremented 3527 * mapcount is visible. So transitively, TLBs to 3528 * old page will be flushed before it can be reused. 3529 */ 3530 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3531 } 3532 3533 /* Free the old page.. */ 3534 new_folio = old_folio; 3535 page_copied = 1; 3536 pte_unmap_unlock(vmf->pte, vmf->ptl); 3537 } else if (vmf->pte) { 3538 update_mmu_tlb(vma, vmf->address, vmf->pte); 3539 pte_unmap_unlock(vmf->pte, vmf->ptl); 3540 } 3541 3542 mmu_notifier_invalidate_range_end(&range); 3543 3544 if (new_folio) 3545 folio_put(new_folio); 3546 if (old_folio) { 3547 if (page_copied) 3548 free_swap_cache(old_folio); 3549 folio_put(old_folio); 3550 } 3551 3552 delayacct_wpcopy_end(); 3553 return 0; 3554 oom: 3555 ret = VM_FAULT_OOM; 3556 out: 3557 if (old_folio) 3558 folio_put(old_folio); 3559 3560 delayacct_wpcopy_end(); 3561 return ret; 3562 } 3563 3564 /** 3565 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3566 * writeable once the page is prepared 3567 * 3568 * @vmf: structure describing the fault 3569 * @folio: the folio of vmf->page 3570 * 3571 * This function handles all that is needed to finish a write page fault in a 3572 * shared mapping due to PTE being read-only once the mapped page is prepared. 3573 * It handles locking of PTE and modifying it. 3574 * 3575 * The function expects the page to be locked or other protection against 3576 * concurrent faults / writeback (such as DAX radix tree locks). 3577 * 3578 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3579 * we acquired PTE lock. 3580 */ 3581 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3582 { 3583 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3584 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3585 &vmf->ptl); 3586 if (!vmf->pte) 3587 return VM_FAULT_NOPAGE; 3588 /* 3589 * We might have raced with another page fault while we released the 3590 * pte_offset_map_lock. 3591 */ 3592 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3593 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3594 pte_unmap_unlock(vmf->pte, vmf->ptl); 3595 return VM_FAULT_NOPAGE; 3596 } 3597 wp_page_reuse(vmf, folio); 3598 return 0; 3599 } 3600 3601 /* 3602 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3603 * mapping 3604 */ 3605 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3606 { 3607 struct vm_area_struct *vma = vmf->vma; 3608 3609 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3610 vm_fault_t ret; 3611 3612 pte_unmap_unlock(vmf->pte, vmf->ptl); 3613 ret = vmf_can_call_fault(vmf); 3614 if (ret) 3615 return ret; 3616 3617 vmf->flags |= FAULT_FLAG_MKWRITE; 3618 ret = vma->vm_ops->pfn_mkwrite(vmf); 3619 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3620 return ret; 3621 return finish_mkwrite_fault(vmf, NULL); 3622 } 3623 wp_page_reuse(vmf, NULL); 3624 return 0; 3625 } 3626 3627 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3628 __releases(vmf->ptl) 3629 { 3630 struct vm_area_struct *vma = vmf->vma; 3631 vm_fault_t ret = 0; 3632 3633 folio_get(folio); 3634 3635 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3636 vm_fault_t tmp; 3637 3638 pte_unmap_unlock(vmf->pte, vmf->ptl); 3639 tmp = vmf_can_call_fault(vmf); 3640 if (tmp) { 3641 folio_put(folio); 3642 return tmp; 3643 } 3644 3645 tmp = do_page_mkwrite(vmf, folio); 3646 if (unlikely(!tmp || (tmp & 3647 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3648 folio_put(folio); 3649 return tmp; 3650 } 3651 tmp = finish_mkwrite_fault(vmf, folio); 3652 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3653 folio_unlock(folio); 3654 folio_put(folio); 3655 return tmp; 3656 } 3657 } else { 3658 wp_page_reuse(vmf, folio); 3659 folio_lock(folio); 3660 } 3661 ret |= fault_dirty_shared_page(vmf); 3662 folio_put(folio); 3663 3664 return ret; 3665 } 3666 3667 static bool wp_can_reuse_anon_folio(struct folio *folio, 3668 struct vm_area_struct *vma) 3669 { 3670 /* 3671 * We could currently only reuse a subpage of a large folio if no 3672 * other subpages of the large folios are still mapped. However, 3673 * let's just consistently not reuse subpages even if we could 3674 * reuse in that scenario, and give back a large folio a bit 3675 * sooner. 3676 */ 3677 if (folio_test_large(folio)) 3678 return false; 3679 3680 /* 3681 * We have to verify under folio lock: these early checks are 3682 * just an optimization to avoid locking the folio and freeing 3683 * the swapcache if there is little hope that we can reuse. 3684 * 3685 * KSM doesn't necessarily raise the folio refcount. 3686 */ 3687 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3688 return false; 3689 if (!folio_test_lru(folio)) 3690 /* 3691 * We cannot easily detect+handle references from 3692 * remote LRU caches or references to LRU folios. 3693 */ 3694 lru_add_drain(); 3695 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3696 return false; 3697 if (!folio_trylock(folio)) 3698 return false; 3699 if (folio_test_swapcache(folio)) 3700 folio_free_swap(folio); 3701 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3702 folio_unlock(folio); 3703 return false; 3704 } 3705 /* 3706 * Ok, we've got the only folio reference from our mapping 3707 * and the folio is locked, it's dark out, and we're wearing 3708 * sunglasses. Hit it. 3709 */ 3710 folio_move_anon_rmap(folio, vma); 3711 folio_unlock(folio); 3712 return true; 3713 } 3714 3715 /* 3716 * This routine handles present pages, when 3717 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3718 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3719 * (FAULT_FLAG_UNSHARE) 3720 * 3721 * It is done by copying the page to a new address and decrementing the 3722 * shared-page counter for the old page. 3723 * 3724 * Note that this routine assumes that the protection checks have been 3725 * done by the caller (the low-level page fault routine in most cases). 3726 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3727 * done any necessary COW. 3728 * 3729 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3730 * though the page will change only once the write actually happens. This 3731 * avoids a few races, and potentially makes it more efficient. 3732 * 3733 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3734 * but allow concurrent faults), with pte both mapped and locked. 3735 * We return with mmap_lock still held, but pte unmapped and unlocked. 3736 */ 3737 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3738 __releases(vmf->ptl) 3739 { 3740 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3741 struct vm_area_struct *vma = vmf->vma; 3742 struct folio *folio = NULL; 3743 pte_t pte; 3744 3745 if (likely(!unshare)) { 3746 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3747 if (!userfaultfd_wp_async(vma)) { 3748 pte_unmap_unlock(vmf->pte, vmf->ptl); 3749 return handle_userfault(vmf, VM_UFFD_WP); 3750 } 3751 3752 /* 3753 * Nothing needed (cache flush, TLB invalidations, 3754 * etc.) because we're only removing the uffd-wp bit, 3755 * which is completely invisible to the user. 3756 */ 3757 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3758 3759 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3760 /* 3761 * Update this to be prepared for following up CoW 3762 * handling 3763 */ 3764 vmf->orig_pte = pte; 3765 } 3766 3767 /* 3768 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3769 * is flushed in this case before copying. 3770 */ 3771 if (unlikely(userfaultfd_wp(vmf->vma) && 3772 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3773 flush_tlb_page(vmf->vma, vmf->address); 3774 } 3775 3776 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3777 3778 if (vmf->page) 3779 folio = page_folio(vmf->page); 3780 3781 /* 3782 * Shared mapping: we are guaranteed to have VM_WRITE and 3783 * FAULT_FLAG_WRITE set at this point. 3784 */ 3785 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3786 /* 3787 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3788 * VM_PFNMAP VMA. 3789 * 3790 * We should not cow pages in a shared writeable mapping. 3791 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3792 */ 3793 if (!vmf->page) 3794 return wp_pfn_shared(vmf); 3795 return wp_page_shared(vmf, folio); 3796 } 3797 3798 /* 3799 * Private mapping: create an exclusive anonymous page copy if reuse 3800 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3801 * 3802 * If we encounter a page that is marked exclusive, we must reuse 3803 * the page without further checks. 3804 */ 3805 if (folio && folio_test_anon(folio) && 3806 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3807 if (!PageAnonExclusive(vmf->page)) 3808 SetPageAnonExclusive(vmf->page); 3809 if (unlikely(unshare)) { 3810 pte_unmap_unlock(vmf->pte, vmf->ptl); 3811 return 0; 3812 } 3813 wp_page_reuse(vmf, folio); 3814 return 0; 3815 } 3816 /* 3817 * Ok, we need to copy. Oh, well.. 3818 */ 3819 if (folio) 3820 folio_get(folio); 3821 3822 pte_unmap_unlock(vmf->pte, vmf->ptl); 3823 #ifdef CONFIG_KSM 3824 if (folio && folio_test_ksm(folio)) 3825 count_vm_event(COW_KSM); 3826 #endif 3827 return wp_page_copy(vmf); 3828 } 3829 3830 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3831 unsigned long start_addr, unsigned long end_addr, 3832 struct zap_details *details) 3833 { 3834 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3835 } 3836 3837 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3838 pgoff_t first_index, 3839 pgoff_t last_index, 3840 struct zap_details *details) 3841 { 3842 struct vm_area_struct *vma; 3843 pgoff_t vba, vea, zba, zea; 3844 3845 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3846 vba = vma->vm_pgoff; 3847 vea = vba + vma_pages(vma) - 1; 3848 zba = max(first_index, vba); 3849 zea = min(last_index, vea); 3850 3851 unmap_mapping_range_vma(vma, 3852 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3853 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3854 details); 3855 } 3856 } 3857 3858 /** 3859 * unmap_mapping_folio() - Unmap single folio from processes. 3860 * @folio: The locked folio to be unmapped. 3861 * 3862 * Unmap this folio from any userspace process which still has it mmaped. 3863 * Typically, for efficiency, the range of nearby pages has already been 3864 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3865 * truncation or invalidation holds the lock on a folio, it may find that 3866 * the page has been remapped again: and then uses unmap_mapping_folio() 3867 * to unmap it finally. 3868 */ 3869 void unmap_mapping_folio(struct folio *folio) 3870 { 3871 struct address_space *mapping = folio->mapping; 3872 struct zap_details details = { }; 3873 pgoff_t first_index; 3874 pgoff_t last_index; 3875 3876 VM_BUG_ON(!folio_test_locked(folio)); 3877 3878 first_index = folio->index; 3879 last_index = folio_next_index(folio) - 1; 3880 3881 details.even_cows = false; 3882 details.single_folio = folio; 3883 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3884 3885 i_mmap_lock_read(mapping); 3886 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3887 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3888 last_index, &details); 3889 i_mmap_unlock_read(mapping); 3890 } 3891 3892 /** 3893 * unmap_mapping_pages() - Unmap pages from processes. 3894 * @mapping: The address space containing pages to be unmapped. 3895 * @start: Index of first page to be unmapped. 3896 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3897 * @even_cows: Whether to unmap even private COWed pages. 3898 * 3899 * Unmap the pages in this address space from any userspace process which 3900 * has them mmaped. Generally, you want to remove COWed pages as well when 3901 * a file is being truncated, but not when invalidating pages from the page 3902 * cache. 3903 */ 3904 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3905 pgoff_t nr, bool even_cows) 3906 { 3907 struct zap_details details = { }; 3908 pgoff_t first_index = start; 3909 pgoff_t last_index = start + nr - 1; 3910 3911 details.even_cows = even_cows; 3912 if (last_index < first_index) 3913 last_index = ULONG_MAX; 3914 3915 i_mmap_lock_read(mapping); 3916 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3917 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3918 last_index, &details); 3919 i_mmap_unlock_read(mapping); 3920 } 3921 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3922 3923 /** 3924 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3925 * address_space corresponding to the specified byte range in the underlying 3926 * file. 3927 * 3928 * @mapping: the address space containing mmaps to be unmapped. 3929 * @holebegin: byte in first page to unmap, relative to the start of 3930 * the underlying file. This will be rounded down to a PAGE_SIZE 3931 * boundary. Note that this is different from truncate_pagecache(), which 3932 * must keep the partial page. In contrast, we must get rid of 3933 * partial pages. 3934 * @holelen: size of prospective hole in bytes. This will be rounded 3935 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3936 * end of the file. 3937 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3938 * but 0 when invalidating pagecache, don't throw away private data. 3939 */ 3940 void unmap_mapping_range(struct address_space *mapping, 3941 loff_t const holebegin, loff_t const holelen, int even_cows) 3942 { 3943 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3944 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3945 3946 /* Check for overflow. */ 3947 if (sizeof(holelen) > sizeof(hlen)) { 3948 long long holeend = 3949 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3950 if (holeend & ~(long long)ULONG_MAX) 3951 hlen = ULONG_MAX - hba + 1; 3952 } 3953 3954 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3955 } 3956 EXPORT_SYMBOL(unmap_mapping_range); 3957 3958 /* 3959 * Restore a potential device exclusive pte to a working pte entry 3960 */ 3961 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3962 { 3963 struct folio *folio = page_folio(vmf->page); 3964 struct vm_area_struct *vma = vmf->vma; 3965 struct mmu_notifier_range range; 3966 vm_fault_t ret; 3967 3968 /* 3969 * We need a reference to lock the folio because we don't hold 3970 * the PTL so a racing thread can remove the device-exclusive 3971 * entry and unmap it. If the folio is free the entry must 3972 * have been removed already. If it happens to have already 3973 * been re-allocated after being freed all we do is lock and 3974 * unlock it. 3975 */ 3976 if (!folio_try_get(folio)) 3977 return 0; 3978 3979 ret = folio_lock_or_retry(folio, vmf); 3980 if (ret) { 3981 folio_put(folio); 3982 return ret; 3983 } 3984 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3985 vma->vm_mm, vmf->address & PAGE_MASK, 3986 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3987 mmu_notifier_invalidate_range_start(&range); 3988 3989 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3990 &vmf->ptl); 3991 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3992 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3993 3994 if (vmf->pte) 3995 pte_unmap_unlock(vmf->pte, vmf->ptl); 3996 folio_unlock(folio); 3997 folio_put(folio); 3998 3999 mmu_notifier_invalidate_range_end(&range); 4000 return 0; 4001 } 4002 4003 static inline bool should_try_to_free_swap(struct folio *folio, 4004 struct vm_area_struct *vma, 4005 unsigned int fault_flags) 4006 { 4007 if (!folio_test_swapcache(folio)) 4008 return false; 4009 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4010 folio_test_mlocked(folio)) 4011 return true; 4012 /* 4013 * If we want to map a page that's in the swapcache writable, we 4014 * have to detect via the refcount if we're really the exclusive 4015 * user. Try freeing the swapcache to get rid of the swapcache 4016 * reference only in case it's likely that we'll be the exlusive user. 4017 */ 4018 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4019 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4020 } 4021 4022 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4023 { 4024 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4025 vmf->address, &vmf->ptl); 4026 if (!vmf->pte) 4027 return 0; 4028 /* 4029 * Be careful so that we will only recover a special uffd-wp pte into a 4030 * none pte. Otherwise it means the pte could have changed, so retry. 4031 * 4032 * This should also cover the case where e.g. the pte changed 4033 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4034 * So is_pte_marker() check is not enough to safely drop the pte. 4035 */ 4036 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4037 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4038 pte_unmap_unlock(vmf->pte, vmf->ptl); 4039 return 0; 4040 } 4041 4042 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4043 { 4044 if (vma_is_anonymous(vmf->vma)) 4045 return do_anonymous_page(vmf); 4046 else 4047 return do_fault(vmf); 4048 } 4049 4050 /* 4051 * This is actually a page-missing access, but with uffd-wp special pte 4052 * installed. It means this pte was wr-protected before being unmapped. 4053 */ 4054 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4055 { 4056 /* 4057 * Just in case there're leftover special ptes even after the region 4058 * got unregistered - we can simply clear them. 4059 */ 4060 if (unlikely(!userfaultfd_wp(vmf->vma))) 4061 return pte_marker_clear(vmf); 4062 4063 return do_pte_missing(vmf); 4064 } 4065 4066 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4067 { 4068 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4069 unsigned long marker = pte_marker_get(entry); 4070 4071 /* 4072 * PTE markers should never be empty. If anything weird happened, 4073 * the best thing to do is to kill the process along with its mm. 4074 */ 4075 if (WARN_ON_ONCE(!marker)) 4076 return VM_FAULT_SIGBUS; 4077 4078 /* Higher priority than uffd-wp when data corrupted */ 4079 if (marker & PTE_MARKER_POISONED) 4080 return VM_FAULT_HWPOISON; 4081 4082 /* Hitting a guard page is always a fatal condition. */ 4083 if (marker & PTE_MARKER_GUARD) 4084 return VM_FAULT_SIGSEGV; 4085 4086 if (pte_marker_entry_uffd_wp(entry)) 4087 return pte_marker_handle_uffd_wp(vmf); 4088 4089 /* This is an unknown pte marker */ 4090 return VM_FAULT_SIGBUS; 4091 } 4092 4093 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4094 { 4095 struct vm_area_struct *vma = vmf->vma; 4096 struct folio *folio; 4097 swp_entry_t entry; 4098 4099 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4100 if (!folio) 4101 return NULL; 4102 4103 entry = pte_to_swp_entry(vmf->orig_pte); 4104 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4105 GFP_KERNEL, entry)) { 4106 folio_put(folio); 4107 return NULL; 4108 } 4109 4110 return folio; 4111 } 4112 4113 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4114 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr) 4115 { 4116 struct swap_info_struct *si = swp_swap_info(entry); 4117 pgoff_t offset = swp_offset(entry); 4118 int i; 4119 4120 /* 4121 * While allocating a large folio and doing swap_read_folio, which is 4122 * the case the being faulted pte doesn't have swapcache. We need to 4123 * ensure all PTEs have no cache as well, otherwise, we might go to 4124 * swap devices while the content is in swapcache. 4125 */ 4126 for (i = 0; i < max_nr; i++) { 4127 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE)) 4128 return i; 4129 } 4130 4131 return i; 4132 } 4133 4134 /* 4135 * Check if the PTEs within a range are contiguous swap entries 4136 * and have consistent swapcache, zeromap. 4137 */ 4138 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4139 { 4140 unsigned long addr; 4141 swp_entry_t entry; 4142 int idx; 4143 pte_t pte; 4144 4145 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4146 idx = (vmf->address - addr) / PAGE_SIZE; 4147 pte = ptep_get(ptep); 4148 4149 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4150 return false; 4151 entry = pte_to_swp_entry(pte); 4152 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4153 return false; 4154 4155 /* 4156 * swap_read_folio() can't handle the case a large folio is hybridly 4157 * from different backends. And they are likely corner cases. Similar 4158 * things might be added once zswap support large folios. 4159 */ 4160 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4161 return false; 4162 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4163 return false; 4164 4165 return true; 4166 } 4167 4168 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4169 unsigned long addr, 4170 unsigned long orders) 4171 { 4172 int order, nr; 4173 4174 order = highest_order(orders); 4175 4176 /* 4177 * To swap in a THP with nr pages, we require that its first swap_offset 4178 * is aligned with that number, as it was when the THP was swapped out. 4179 * This helps filter out most invalid entries. 4180 */ 4181 while (orders) { 4182 nr = 1 << order; 4183 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4184 break; 4185 order = next_order(&orders, order); 4186 } 4187 4188 return orders; 4189 } 4190 4191 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4192 { 4193 struct vm_area_struct *vma = vmf->vma; 4194 unsigned long orders; 4195 struct folio *folio; 4196 unsigned long addr; 4197 swp_entry_t entry; 4198 spinlock_t *ptl; 4199 pte_t *pte; 4200 gfp_t gfp; 4201 int order; 4202 4203 /* 4204 * If uffd is active for the vma we need per-page fault fidelity to 4205 * maintain the uffd semantics. 4206 */ 4207 if (unlikely(userfaultfd_armed(vma))) 4208 goto fallback; 4209 4210 /* 4211 * A large swapped out folio could be partially or fully in zswap. We 4212 * lack handling for such cases, so fallback to swapping in order-0 4213 * folio. 4214 */ 4215 if (!zswap_never_enabled()) 4216 goto fallback; 4217 4218 entry = pte_to_swp_entry(vmf->orig_pte); 4219 /* 4220 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4221 * and suitable for swapping THP. 4222 */ 4223 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4224 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4225 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4226 orders = thp_swap_suitable_orders(swp_offset(entry), 4227 vmf->address, orders); 4228 4229 if (!orders) 4230 goto fallback; 4231 4232 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4233 vmf->address & PMD_MASK, &ptl); 4234 if (unlikely(!pte)) 4235 goto fallback; 4236 4237 /* 4238 * For do_swap_page, find the highest order where the aligned range is 4239 * completely swap entries with contiguous swap offsets. 4240 */ 4241 order = highest_order(orders); 4242 while (orders) { 4243 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4244 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4245 break; 4246 order = next_order(&orders, order); 4247 } 4248 4249 pte_unmap_unlock(pte, ptl); 4250 4251 /* Try allocating the highest of the remaining orders. */ 4252 gfp = vma_thp_gfp_mask(vma); 4253 while (orders) { 4254 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4255 folio = vma_alloc_folio(gfp, order, vma, addr); 4256 if (folio) { 4257 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4258 gfp, entry)) 4259 return folio; 4260 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4261 folio_put(folio); 4262 } 4263 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4264 order = next_order(&orders, order); 4265 } 4266 4267 fallback: 4268 return __alloc_swap_folio(vmf); 4269 } 4270 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4271 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4272 { 4273 return __alloc_swap_folio(vmf); 4274 } 4275 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4276 4277 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4278 4279 /* 4280 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4281 * but allow concurrent faults), and pte mapped but not yet locked. 4282 * We return with pte unmapped and unlocked. 4283 * 4284 * We return with the mmap_lock locked or unlocked in the same cases 4285 * as does filemap_fault(). 4286 */ 4287 vm_fault_t do_swap_page(struct vm_fault *vmf) 4288 { 4289 struct vm_area_struct *vma = vmf->vma; 4290 struct folio *swapcache, *folio = NULL; 4291 DECLARE_WAITQUEUE(wait, current); 4292 struct page *page; 4293 struct swap_info_struct *si = NULL; 4294 rmap_t rmap_flags = RMAP_NONE; 4295 bool need_clear_cache = false; 4296 bool exclusive = false; 4297 swp_entry_t entry; 4298 pte_t pte; 4299 vm_fault_t ret = 0; 4300 void *shadow = NULL; 4301 int nr_pages; 4302 unsigned long page_idx; 4303 unsigned long address; 4304 pte_t *ptep; 4305 4306 if (!pte_unmap_same(vmf)) 4307 goto out; 4308 4309 entry = pte_to_swp_entry(vmf->orig_pte); 4310 if (unlikely(non_swap_entry(entry))) { 4311 if (is_migration_entry(entry)) { 4312 migration_entry_wait(vma->vm_mm, vmf->pmd, 4313 vmf->address); 4314 } else if (is_device_exclusive_entry(entry)) { 4315 vmf->page = pfn_swap_entry_to_page(entry); 4316 ret = remove_device_exclusive_entry(vmf); 4317 } else if (is_device_private_entry(entry)) { 4318 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4319 /* 4320 * migrate_to_ram is not yet ready to operate 4321 * under VMA lock. 4322 */ 4323 vma_end_read(vma); 4324 ret = VM_FAULT_RETRY; 4325 goto out; 4326 } 4327 4328 vmf->page = pfn_swap_entry_to_page(entry); 4329 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4330 vmf->address, &vmf->ptl); 4331 if (unlikely(!vmf->pte || 4332 !pte_same(ptep_get(vmf->pte), 4333 vmf->orig_pte))) 4334 goto unlock; 4335 4336 /* 4337 * Get a page reference while we know the page can't be 4338 * freed. 4339 */ 4340 get_page(vmf->page); 4341 pte_unmap_unlock(vmf->pte, vmf->ptl); 4342 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 4343 put_page(vmf->page); 4344 } else if (is_hwpoison_entry(entry)) { 4345 ret = VM_FAULT_HWPOISON; 4346 } else if (is_pte_marker_entry(entry)) { 4347 ret = handle_pte_marker(vmf); 4348 } else { 4349 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4350 ret = VM_FAULT_SIGBUS; 4351 } 4352 goto out; 4353 } 4354 4355 /* Prevent swapoff from happening to us. */ 4356 si = get_swap_device(entry); 4357 if (unlikely(!si)) 4358 goto out; 4359 4360 folio = swap_cache_get_folio(entry, vma, vmf->address); 4361 if (folio) 4362 page = folio_file_page(folio, swp_offset(entry)); 4363 swapcache = folio; 4364 4365 if (!folio) { 4366 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4367 __swap_count(entry) == 1) { 4368 /* skip swapcache */ 4369 folio = alloc_swap_folio(vmf); 4370 if (folio) { 4371 __folio_set_locked(folio); 4372 __folio_set_swapbacked(folio); 4373 4374 nr_pages = folio_nr_pages(folio); 4375 if (folio_test_large(folio)) 4376 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4377 /* 4378 * Prevent parallel swapin from proceeding with 4379 * the cache flag. Otherwise, another thread 4380 * may finish swapin first, free the entry, and 4381 * swapout reusing the same entry. It's 4382 * undetectable as pte_same() returns true due 4383 * to entry reuse. 4384 */ 4385 if (swapcache_prepare(entry, nr_pages)) { 4386 /* 4387 * Relax a bit to prevent rapid 4388 * repeated page faults. 4389 */ 4390 add_wait_queue(&swapcache_wq, &wait); 4391 schedule_timeout_uninterruptible(1); 4392 remove_wait_queue(&swapcache_wq, &wait); 4393 goto out_page; 4394 } 4395 need_clear_cache = true; 4396 4397 mem_cgroup_swapin_uncharge_swap(entry, nr_pages); 4398 4399 shadow = get_shadow_from_swap_cache(entry); 4400 if (shadow) 4401 workingset_refault(folio, shadow); 4402 4403 folio_add_lru(folio); 4404 4405 /* To provide entry to swap_read_folio() */ 4406 folio->swap = entry; 4407 swap_read_folio(folio, NULL); 4408 folio->private = NULL; 4409 } 4410 } else { 4411 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4412 vmf); 4413 swapcache = folio; 4414 } 4415 4416 if (!folio) { 4417 /* 4418 * Back out if somebody else faulted in this pte 4419 * while we released the pte lock. 4420 */ 4421 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4422 vmf->address, &vmf->ptl); 4423 if (likely(vmf->pte && 4424 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4425 ret = VM_FAULT_OOM; 4426 goto unlock; 4427 } 4428 4429 /* Had to read the page from swap area: Major fault */ 4430 ret = VM_FAULT_MAJOR; 4431 count_vm_event(PGMAJFAULT); 4432 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4433 page = folio_file_page(folio, swp_offset(entry)); 4434 } else if (PageHWPoison(page)) { 4435 /* 4436 * hwpoisoned dirty swapcache pages are kept for killing 4437 * owner processes (which may be unknown at hwpoison time) 4438 */ 4439 ret = VM_FAULT_HWPOISON; 4440 goto out_release; 4441 } 4442 4443 ret |= folio_lock_or_retry(folio, vmf); 4444 if (ret & VM_FAULT_RETRY) 4445 goto out_release; 4446 4447 if (swapcache) { 4448 /* 4449 * Make sure folio_free_swap() or swapoff did not release the 4450 * swapcache from under us. The page pin, and pte_same test 4451 * below, are not enough to exclude that. Even if it is still 4452 * swapcache, we need to check that the page's swap has not 4453 * changed. 4454 */ 4455 if (unlikely(!folio_test_swapcache(folio) || 4456 page_swap_entry(page).val != entry.val)) 4457 goto out_page; 4458 4459 /* 4460 * KSM sometimes has to copy on read faults, for example, if 4461 * page->index of !PageKSM() pages would be nonlinear inside the 4462 * anon VMA -- PageKSM() is lost on actual swapout. 4463 */ 4464 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4465 if (unlikely(!folio)) { 4466 ret = VM_FAULT_OOM; 4467 folio = swapcache; 4468 goto out_page; 4469 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4470 ret = VM_FAULT_HWPOISON; 4471 folio = swapcache; 4472 goto out_page; 4473 } 4474 if (folio != swapcache) 4475 page = folio_page(folio, 0); 4476 4477 /* 4478 * If we want to map a page that's in the swapcache writable, we 4479 * have to detect via the refcount if we're really the exclusive 4480 * owner. Try removing the extra reference from the local LRU 4481 * caches if required. 4482 */ 4483 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4484 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4485 lru_add_drain(); 4486 } 4487 4488 folio_throttle_swaprate(folio, GFP_KERNEL); 4489 4490 /* 4491 * Back out if somebody else already faulted in this pte. 4492 */ 4493 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4494 &vmf->ptl); 4495 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4496 goto out_nomap; 4497 4498 if (unlikely(!folio_test_uptodate(folio))) { 4499 ret = VM_FAULT_SIGBUS; 4500 goto out_nomap; 4501 } 4502 4503 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4504 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4505 unsigned long nr = folio_nr_pages(folio); 4506 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4507 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4508 pte_t *folio_ptep = vmf->pte - idx; 4509 pte_t folio_pte = ptep_get(folio_ptep); 4510 4511 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4512 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4513 goto out_nomap; 4514 4515 page_idx = idx; 4516 address = folio_start; 4517 ptep = folio_ptep; 4518 goto check_folio; 4519 } 4520 4521 nr_pages = 1; 4522 page_idx = 0; 4523 address = vmf->address; 4524 ptep = vmf->pte; 4525 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4526 int nr = folio_nr_pages(folio); 4527 unsigned long idx = folio_page_idx(folio, page); 4528 unsigned long folio_start = address - idx * PAGE_SIZE; 4529 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4530 pte_t *folio_ptep; 4531 pte_t folio_pte; 4532 4533 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4534 goto check_folio; 4535 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4536 goto check_folio; 4537 4538 folio_ptep = vmf->pte - idx; 4539 folio_pte = ptep_get(folio_ptep); 4540 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4541 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4542 goto check_folio; 4543 4544 page_idx = idx; 4545 address = folio_start; 4546 ptep = folio_ptep; 4547 nr_pages = nr; 4548 entry = folio->swap; 4549 page = &folio->page; 4550 } 4551 4552 check_folio: 4553 /* 4554 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4555 * must never point at an anonymous page in the swapcache that is 4556 * PG_anon_exclusive. Sanity check that this holds and especially, that 4557 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4558 * check after taking the PT lock and making sure that nobody 4559 * concurrently faulted in this page and set PG_anon_exclusive. 4560 */ 4561 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4562 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4563 4564 /* 4565 * Check under PT lock (to protect against concurrent fork() sharing 4566 * the swap entry concurrently) for certainly exclusive pages. 4567 */ 4568 if (!folio_test_ksm(folio)) { 4569 exclusive = pte_swp_exclusive(vmf->orig_pte); 4570 if (folio != swapcache) { 4571 /* 4572 * We have a fresh page that is not exposed to the 4573 * swapcache -> certainly exclusive. 4574 */ 4575 exclusive = true; 4576 } else if (exclusive && folio_test_writeback(folio) && 4577 data_race(si->flags & SWP_STABLE_WRITES)) { 4578 /* 4579 * This is tricky: not all swap backends support 4580 * concurrent page modifications while under writeback. 4581 * 4582 * So if we stumble over such a page in the swapcache 4583 * we must not set the page exclusive, otherwise we can 4584 * map it writable without further checks and modify it 4585 * while still under writeback. 4586 * 4587 * For these problematic swap backends, simply drop the 4588 * exclusive marker: this is perfectly fine as we start 4589 * writeback only if we fully unmapped the page and 4590 * there are no unexpected references on the page after 4591 * unmapping succeeded. After fully unmapped, no 4592 * further GUP references (FOLL_GET and FOLL_PIN) can 4593 * appear, so dropping the exclusive marker and mapping 4594 * it only R/O is fine. 4595 */ 4596 exclusive = false; 4597 } 4598 } 4599 4600 /* 4601 * Some architectures may have to restore extra metadata to the page 4602 * when reading from swap. This metadata may be indexed by swap entry 4603 * so this must be called before swap_free(). 4604 */ 4605 arch_swap_restore(folio_swap(entry, folio), folio); 4606 4607 /* 4608 * Remove the swap entry and conditionally try to free up the swapcache. 4609 * We're already holding a reference on the page but haven't mapped it 4610 * yet. 4611 */ 4612 swap_free_nr(entry, nr_pages); 4613 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4614 folio_free_swap(folio); 4615 4616 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4617 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4618 pte = mk_pte(page, vma->vm_page_prot); 4619 if (pte_swp_soft_dirty(vmf->orig_pte)) 4620 pte = pte_mksoft_dirty(pte); 4621 if (pte_swp_uffd_wp(vmf->orig_pte)) 4622 pte = pte_mkuffd_wp(pte); 4623 4624 /* 4625 * Same logic as in do_wp_page(); however, optimize for pages that are 4626 * certainly not shared either because we just allocated them without 4627 * exposing them to the swapcache or because the swap entry indicates 4628 * exclusivity. 4629 */ 4630 if (!folio_test_ksm(folio) && 4631 (exclusive || folio_ref_count(folio) == 1)) { 4632 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4633 !pte_needs_soft_dirty_wp(vma, pte)) { 4634 pte = pte_mkwrite(pte, vma); 4635 if (vmf->flags & FAULT_FLAG_WRITE) { 4636 pte = pte_mkdirty(pte); 4637 vmf->flags &= ~FAULT_FLAG_WRITE; 4638 } 4639 } 4640 rmap_flags |= RMAP_EXCLUSIVE; 4641 } 4642 folio_ref_add(folio, nr_pages - 1); 4643 flush_icache_pages(vma, page, nr_pages); 4644 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4645 4646 /* ksm created a completely new copy */ 4647 if (unlikely(folio != swapcache && swapcache)) { 4648 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4649 folio_add_lru_vma(folio, vma); 4650 } else if (!folio_test_anon(folio)) { 4651 /* 4652 * We currently only expect small !anon folios which are either 4653 * fully exclusive or fully shared, or new allocated large 4654 * folios which are fully exclusive. If we ever get large 4655 * folios within swapcache here, we have to be careful. 4656 */ 4657 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4658 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4659 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4660 } else { 4661 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4662 rmap_flags); 4663 } 4664 4665 VM_BUG_ON(!folio_test_anon(folio) || 4666 (pte_write(pte) && !PageAnonExclusive(page))); 4667 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4668 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4669 pte, pte, nr_pages); 4670 4671 folio_unlock(folio); 4672 if (folio != swapcache && swapcache) { 4673 /* 4674 * Hold the lock to avoid the swap entry to be reused 4675 * until we take the PT lock for the pte_same() check 4676 * (to avoid false positives from pte_same). For 4677 * further safety release the lock after the swap_free 4678 * so that the swap count won't change under a 4679 * parallel locked swapcache. 4680 */ 4681 folio_unlock(swapcache); 4682 folio_put(swapcache); 4683 } 4684 4685 if (vmf->flags & FAULT_FLAG_WRITE) { 4686 ret |= do_wp_page(vmf); 4687 if (ret & VM_FAULT_ERROR) 4688 ret &= VM_FAULT_ERROR; 4689 goto out; 4690 } 4691 4692 /* No need to invalidate - it was non-present before */ 4693 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4694 unlock: 4695 if (vmf->pte) 4696 pte_unmap_unlock(vmf->pte, vmf->ptl); 4697 out: 4698 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4699 if (need_clear_cache) { 4700 swapcache_clear(si, entry, nr_pages); 4701 if (waitqueue_active(&swapcache_wq)) 4702 wake_up(&swapcache_wq); 4703 } 4704 if (si) 4705 put_swap_device(si); 4706 return ret; 4707 out_nomap: 4708 if (vmf->pte) 4709 pte_unmap_unlock(vmf->pte, vmf->ptl); 4710 out_page: 4711 folio_unlock(folio); 4712 out_release: 4713 folio_put(folio); 4714 if (folio != swapcache && swapcache) { 4715 folio_unlock(swapcache); 4716 folio_put(swapcache); 4717 } 4718 if (need_clear_cache) { 4719 swapcache_clear(si, entry, nr_pages); 4720 if (waitqueue_active(&swapcache_wq)) 4721 wake_up(&swapcache_wq); 4722 } 4723 if (si) 4724 put_swap_device(si); 4725 return ret; 4726 } 4727 4728 static bool pte_range_none(pte_t *pte, int nr_pages) 4729 { 4730 int i; 4731 4732 for (i = 0; i < nr_pages; i++) { 4733 if (!pte_none(ptep_get_lockless(pte + i))) 4734 return false; 4735 } 4736 4737 return true; 4738 } 4739 4740 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4741 { 4742 struct vm_area_struct *vma = vmf->vma; 4743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4744 unsigned long orders; 4745 struct folio *folio; 4746 unsigned long addr; 4747 pte_t *pte; 4748 gfp_t gfp; 4749 int order; 4750 4751 /* 4752 * If uffd is active for the vma we need per-page fault fidelity to 4753 * maintain the uffd semantics. 4754 */ 4755 if (unlikely(userfaultfd_armed(vma))) 4756 goto fallback; 4757 4758 /* 4759 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4760 * for this vma. Then filter out the orders that can't be allocated over 4761 * the faulting address and still be fully contained in the vma. 4762 */ 4763 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4764 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4765 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4766 4767 if (!orders) 4768 goto fallback; 4769 4770 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4771 if (!pte) 4772 return ERR_PTR(-EAGAIN); 4773 4774 /* 4775 * Find the highest order where the aligned range is completely 4776 * pte_none(). Note that all remaining orders will be completely 4777 * pte_none(). 4778 */ 4779 order = highest_order(orders); 4780 while (orders) { 4781 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4782 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4783 break; 4784 order = next_order(&orders, order); 4785 } 4786 4787 pte_unmap(pte); 4788 4789 if (!orders) 4790 goto fallback; 4791 4792 /* Try allocating the highest of the remaining orders. */ 4793 gfp = vma_thp_gfp_mask(vma); 4794 while (orders) { 4795 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4796 folio = vma_alloc_folio(gfp, order, vma, addr); 4797 if (folio) { 4798 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4799 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 4800 folio_put(folio); 4801 goto next; 4802 } 4803 folio_throttle_swaprate(folio, gfp); 4804 /* 4805 * When a folio is not zeroed during allocation 4806 * (__GFP_ZERO not used) or user folios require special 4807 * handling, folio_zero_user() is used to make sure 4808 * that the page corresponding to the faulting address 4809 * will be hot in the cache after zeroing. 4810 */ 4811 if (user_alloc_needs_zeroing()) 4812 folio_zero_user(folio, vmf->address); 4813 return folio; 4814 } 4815 next: 4816 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 4817 order = next_order(&orders, order); 4818 } 4819 4820 fallback: 4821 #endif 4822 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4823 } 4824 4825 /* 4826 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4827 * but allow concurrent faults), and pte mapped but not yet locked. 4828 * We return with mmap_lock still held, but pte unmapped and unlocked. 4829 */ 4830 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4831 { 4832 struct vm_area_struct *vma = vmf->vma; 4833 unsigned long addr = vmf->address; 4834 struct folio *folio; 4835 vm_fault_t ret = 0; 4836 int nr_pages = 1; 4837 pte_t entry; 4838 4839 /* File mapping without ->vm_ops ? */ 4840 if (vma->vm_flags & VM_SHARED) 4841 return VM_FAULT_SIGBUS; 4842 4843 /* 4844 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4845 * be distinguished from a transient failure of pte_offset_map(). 4846 */ 4847 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4848 return VM_FAULT_OOM; 4849 4850 /* Use the zero-page for reads */ 4851 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4852 !mm_forbids_zeropage(vma->vm_mm)) { 4853 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4854 vma->vm_page_prot)); 4855 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4856 vmf->address, &vmf->ptl); 4857 if (!vmf->pte) 4858 goto unlock; 4859 if (vmf_pte_changed(vmf)) { 4860 update_mmu_tlb(vma, vmf->address, vmf->pte); 4861 goto unlock; 4862 } 4863 ret = check_stable_address_space(vma->vm_mm); 4864 if (ret) 4865 goto unlock; 4866 /* Deliver the page fault to userland, check inside PT lock */ 4867 if (userfaultfd_missing(vma)) { 4868 pte_unmap_unlock(vmf->pte, vmf->ptl); 4869 return handle_userfault(vmf, VM_UFFD_MISSING); 4870 } 4871 goto setpte; 4872 } 4873 4874 /* Allocate our own private page. */ 4875 ret = vmf_anon_prepare(vmf); 4876 if (ret) 4877 return ret; 4878 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 4879 folio = alloc_anon_folio(vmf); 4880 if (IS_ERR(folio)) 4881 return 0; 4882 if (!folio) 4883 goto oom; 4884 4885 nr_pages = folio_nr_pages(folio); 4886 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4887 4888 /* 4889 * The memory barrier inside __folio_mark_uptodate makes sure that 4890 * preceding stores to the page contents become visible before 4891 * the set_pte_at() write. 4892 */ 4893 __folio_mark_uptodate(folio); 4894 4895 entry = mk_pte(&folio->page, vma->vm_page_prot); 4896 entry = pte_sw_mkyoung(entry); 4897 if (vma->vm_flags & VM_WRITE) 4898 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4899 4900 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 4901 if (!vmf->pte) 4902 goto release; 4903 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 4904 update_mmu_tlb(vma, addr, vmf->pte); 4905 goto release; 4906 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 4907 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 4908 goto release; 4909 } 4910 4911 ret = check_stable_address_space(vma->vm_mm); 4912 if (ret) 4913 goto release; 4914 4915 /* Deliver the page fault to userland, check inside PT lock */ 4916 if (userfaultfd_missing(vma)) { 4917 pte_unmap_unlock(vmf->pte, vmf->ptl); 4918 folio_put(folio); 4919 return handle_userfault(vmf, VM_UFFD_MISSING); 4920 } 4921 4922 folio_ref_add(folio, nr_pages - 1); 4923 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4924 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 4925 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 4926 folio_add_lru_vma(folio, vma); 4927 setpte: 4928 if (vmf_orig_pte_uffd_wp(vmf)) 4929 entry = pte_mkuffd_wp(entry); 4930 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 4931 4932 /* No need to invalidate - it was non-present before */ 4933 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 4934 unlock: 4935 if (vmf->pte) 4936 pte_unmap_unlock(vmf->pte, vmf->ptl); 4937 return ret; 4938 release: 4939 folio_put(folio); 4940 goto unlock; 4941 oom: 4942 return VM_FAULT_OOM; 4943 } 4944 4945 /* 4946 * The mmap_lock must have been held on entry, and may have been 4947 * released depending on flags and vma->vm_ops->fault() return value. 4948 * See filemap_fault() and __lock_page_retry(). 4949 */ 4950 static vm_fault_t __do_fault(struct vm_fault *vmf) 4951 { 4952 struct vm_area_struct *vma = vmf->vma; 4953 struct folio *folio; 4954 vm_fault_t ret; 4955 4956 /* 4957 * Preallocate pte before we take page_lock because this might lead to 4958 * deadlocks for memcg reclaim which waits for pages under writeback: 4959 * lock_page(A) 4960 * SetPageWriteback(A) 4961 * unlock_page(A) 4962 * lock_page(B) 4963 * lock_page(B) 4964 * pte_alloc_one 4965 * shrink_folio_list 4966 * wait_on_page_writeback(A) 4967 * SetPageWriteback(B) 4968 * unlock_page(B) 4969 * # flush A, B to clear the writeback 4970 */ 4971 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4972 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4973 if (!vmf->prealloc_pte) 4974 return VM_FAULT_OOM; 4975 } 4976 4977 ret = vma->vm_ops->fault(vmf); 4978 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4979 VM_FAULT_DONE_COW))) 4980 return ret; 4981 4982 folio = page_folio(vmf->page); 4983 if (unlikely(PageHWPoison(vmf->page))) { 4984 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4985 if (ret & VM_FAULT_LOCKED) { 4986 if (page_mapped(vmf->page)) 4987 unmap_mapping_folio(folio); 4988 /* Retry if a clean folio was removed from the cache. */ 4989 if (mapping_evict_folio(folio->mapping, folio)) 4990 poisonret = VM_FAULT_NOPAGE; 4991 folio_unlock(folio); 4992 } 4993 folio_put(folio); 4994 vmf->page = NULL; 4995 return poisonret; 4996 } 4997 4998 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4999 folio_lock(folio); 5000 else 5001 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5002 5003 return ret; 5004 } 5005 5006 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5007 static void deposit_prealloc_pte(struct vm_fault *vmf) 5008 { 5009 struct vm_area_struct *vma = vmf->vma; 5010 5011 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5012 /* 5013 * We are going to consume the prealloc table, 5014 * count that as nr_ptes. 5015 */ 5016 mm_inc_nr_ptes(vma->vm_mm); 5017 vmf->prealloc_pte = NULL; 5018 } 5019 5020 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 5021 { 5022 struct folio *folio = page_folio(page); 5023 struct vm_area_struct *vma = vmf->vma; 5024 bool write = vmf->flags & FAULT_FLAG_WRITE; 5025 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5026 pmd_t entry; 5027 vm_fault_t ret = VM_FAULT_FALLBACK; 5028 5029 /* 5030 * It is too late to allocate a small folio, we already have a large 5031 * folio in the pagecache: especially s390 KVM cannot tolerate any 5032 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5033 * PMD mappings if THPs are disabled. 5034 */ 5035 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) 5036 return ret; 5037 5038 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5039 return ret; 5040 5041 if (folio_order(folio) != HPAGE_PMD_ORDER) 5042 return ret; 5043 page = &folio->page; 5044 5045 /* 5046 * Just backoff if any subpage of a THP is corrupted otherwise 5047 * the corrupted page may mapped by PMD silently to escape the 5048 * check. This kind of THP just can be PTE mapped. Access to 5049 * the corrupted subpage should trigger SIGBUS as expected. 5050 */ 5051 if (unlikely(folio_test_has_hwpoisoned(folio))) 5052 return ret; 5053 5054 /* 5055 * Archs like ppc64 need additional space to store information 5056 * related to pte entry. Use the preallocated table for that. 5057 */ 5058 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5059 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5060 if (!vmf->prealloc_pte) 5061 return VM_FAULT_OOM; 5062 } 5063 5064 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5065 if (unlikely(!pmd_none(*vmf->pmd))) 5066 goto out; 5067 5068 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5069 5070 entry = mk_huge_pmd(page, vma->vm_page_prot); 5071 if (write) 5072 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5073 5074 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5075 folio_add_file_rmap_pmd(folio, page, vma); 5076 5077 /* 5078 * deposit and withdraw with pmd lock held 5079 */ 5080 if (arch_needs_pgtable_deposit()) 5081 deposit_prealloc_pte(vmf); 5082 5083 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5084 5085 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5086 5087 /* fault is handled */ 5088 ret = 0; 5089 count_vm_event(THP_FILE_MAPPED); 5090 out: 5091 spin_unlock(vmf->ptl); 5092 return ret; 5093 } 5094 #else 5095 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 5096 { 5097 return VM_FAULT_FALLBACK; 5098 } 5099 #endif 5100 5101 /** 5102 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5103 * @vmf: Fault decription. 5104 * @folio: The folio that contains @page. 5105 * @page: The first page to create a PTE for. 5106 * @nr: The number of PTEs to create. 5107 * @addr: The first address to create a PTE for. 5108 */ 5109 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5110 struct page *page, unsigned int nr, unsigned long addr) 5111 { 5112 struct vm_area_struct *vma = vmf->vma; 5113 bool write = vmf->flags & FAULT_FLAG_WRITE; 5114 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5115 pte_t entry; 5116 5117 flush_icache_pages(vma, page, nr); 5118 entry = mk_pte(page, vma->vm_page_prot); 5119 5120 if (prefault && arch_wants_old_prefaulted_pte()) 5121 entry = pte_mkold(entry); 5122 else 5123 entry = pte_sw_mkyoung(entry); 5124 5125 if (write) 5126 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5127 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5128 entry = pte_mkuffd_wp(entry); 5129 /* copy-on-write page */ 5130 if (write && !(vma->vm_flags & VM_SHARED)) { 5131 VM_BUG_ON_FOLIO(nr != 1, folio); 5132 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5133 folio_add_lru_vma(folio, vma); 5134 } else { 5135 folio_add_file_rmap_ptes(folio, page, nr, vma); 5136 } 5137 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5138 5139 /* no need to invalidate: a not-present page won't be cached */ 5140 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5141 } 5142 5143 static bool vmf_pte_changed(struct vm_fault *vmf) 5144 { 5145 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5146 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5147 5148 return !pte_none(ptep_get(vmf->pte)); 5149 } 5150 5151 /** 5152 * finish_fault - finish page fault once we have prepared the page to fault 5153 * 5154 * @vmf: structure describing the fault 5155 * 5156 * This function handles all that is needed to finish a page fault once the 5157 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5158 * given page, adds reverse page mapping, handles memcg charges and LRU 5159 * addition. 5160 * 5161 * The function expects the page to be locked and on success it consumes a 5162 * reference of a page being mapped (for the PTE which maps it). 5163 * 5164 * Return: %0 on success, %VM_FAULT_ code in case of error. 5165 */ 5166 vm_fault_t finish_fault(struct vm_fault *vmf) 5167 { 5168 struct vm_area_struct *vma = vmf->vma; 5169 struct page *page; 5170 struct folio *folio; 5171 vm_fault_t ret; 5172 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5173 !(vma->vm_flags & VM_SHARED); 5174 int type, nr_pages; 5175 unsigned long addr = vmf->address; 5176 5177 /* Did we COW the page? */ 5178 if (is_cow) 5179 page = vmf->cow_page; 5180 else 5181 page = vmf->page; 5182 5183 /* 5184 * check even for read faults because we might have lost our CoWed 5185 * page 5186 */ 5187 if (!(vma->vm_flags & VM_SHARED)) { 5188 ret = check_stable_address_space(vma->vm_mm); 5189 if (ret) 5190 return ret; 5191 } 5192 5193 if (pmd_none(*vmf->pmd)) { 5194 if (PageTransCompound(page)) { 5195 ret = do_set_pmd(vmf, page); 5196 if (ret != VM_FAULT_FALLBACK) 5197 return ret; 5198 } 5199 5200 if (vmf->prealloc_pte) 5201 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5202 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5203 return VM_FAULT_OOM; 5204 } 5205 5206 folio = page_folio(page); 5207 nr_pages = folio_nr_pages(folio); 5208 5209 /* 5210 * Using per-page fault to maintain the uffd semantics, and same 5211 * approach also applies to non-anonymous-shmem faults to avoid 5212 * inflating the RSS of the process. 5213 */ 5214 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) { 5215 nr_pages = 1; 5216 } else if (nr_pages > 1) { 5217 pgoff_t idx = folio_page_idx(folio, page); 5218 /* The page offset of vmf->address within the VMA. */ 5219 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5220 /* The index of the entry in the pagetable for fault page. */ 5221 pgoff_t pte_off = pte_index(vmf->address); 5222 5223 /* 5224 * Fallback to per-page fault in case the folio size in page 5225 * cache beyond the VMA limits and PMD pagetable limits. 5226 */ 5227 if (unlikely(vma_off < idx || 5228 vma_off + (nr_pages - idx) > vma_pages(vma) || 5229 pte_off < idx || 5230 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5231 nr_pages = 1; 5232 } else { 5233 /* Now we can set mappings for the whole large folio. */ 5234 addr = vmf->address - idx * PAGE_SIZE; 5235 page = &folio->page; 5236 } 5237 } 5238 5239 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5240 addr, &vmf->ptl); 5241 if (!vmf->pte) 5242 return VM_FAULT_NOPAGE; 5243 5244 /* Re-check under ptl */ 5245 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5246 update_mmu_tlb(vma, addr, vmf->pte); 5247 ret = VM_FAULT_NOPAGE; 5248 goto unlock; 5249 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5250 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5251 ret = VM_FAULT_NOPAGE; 5252 goto unlock; 5253 } 5254 5255 folio_ref_add(folio, nr_pages - 1); 5256 set_pte_range(vmf, folio, page, nr_pages, addr); 5257 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5258 add_mm_counter(vma->vm_mm, type, nr_pages); 5259 ret = 0; 5260 5261 unlock: 5262 pte_unmap_unlock(vmf->pte, vmf->ptl); 5263 return ret; 5264 } 5265 5266 static unsigned long fault_around_pages __read_mostly = 5267 65536 >> PAGE_SHIFT; 5268 5269 #ifdef CONFIG_DEBUG_FS 5270 static int fault_around_bytes_get(void *data, u64 *val) 5271 { 5272 *val = fault_around_pages << PAGE_SHIFT; 5273 return 0; 5274 } 5275 5276 /* 5277 * fault_around_bytes must be rounded down to the nearest page order as it's 5278 * what do_fault_around() expects to see. 5279 */ 5280 static int fault_around_bytes_set(void *data, u64 val) 5281 { 5282 if (val / PAGE_SIZE > PTRS_PER_PTE) 5283 return -EINVAL; 5284 5285 /* 5286 * The minimum value is 1 page, however this results in no fault-around 5287 * at all. See should_fault_around(). 5288 */ 5289 val = max(val, PAGE_SIZE); 5290 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5291 5292 return 0; 5293 } 5294 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5295 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5296 5297 static int __init fault_around_debugfs(void) 5298 { 5299 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5300 &fault_around_bytes_fops); 5301 return 0; 5302 } 5303 late_initcall(fault_around_debugfs); 5304 #endif 5305 5306 /* 5307 * do_fault_around() tries to map few pages around the fault address. The hope 5308 * is that the pages will be needed soon and this will lower the number of 5309 * faults to handle. 5310 * 5311 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5312 * not ready to be mapped: not up-to-date, locked, etc. 5313 * 5314 * This function doesn't cross VMA or page table boundaries, in order to call 5315 * map_pages() and acquire a PTE lock only once. 5316 * 5317 * fault_around_pages defines how many pages we'll try to map. 5318 * do_fault_around() expects it to be set to a power of two less than or equal 5319 * to PTRS_PER_PTE. 5320 * 5321 * The virtual address of the area that we map is naturally aligned to 5322 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5323 * (and therefore to page order). This way it's easier to guarantee 5324 * that we don't cross page table boundaries. 5325 */ 5326 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5327 { 5328 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5329 pgoff_t pte_off = pte_index(vmf->address); 5330 /* The page offset of vmf->address within the VMA. */ 5331 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5332 pgoff_t from_pte, to_pte; 5333 vm_fault_t ret; 5334 5335 /* The PTE offset of the start address, clamped to the VMA. */ 5336 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5337 pte_off - min(pte_off, vma_off)); 5338 5339 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5340 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5341 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5342 5343 if (pmd_none(*vmf->pmd)) { 5344 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5345 if (!vmf->prealloc_pte) 5346 return VM_FAULT_OOM; 5347 } 5348 5349 rcu_read_lock(); 5350 ret = vmf->vma->vm_ops->map_pages(vmf, 5351 vmf->pgoff + from_pte - pte_off, 5352 vmf->pgoff + to_pte - pte_off); 5353 rcu_read_unlock(); 5354 5355 return ret; 5356 } 5357 5358 /* Return true if we should do read fault-around, false otherwise */ 5359 static inline bool should_fault_around(struct vm_fault *vmf) 5360 { 5361 /* No ->map_pages? No way to fault around... */ 5362 if (!vmf->vma->vm_ops->map_pages) 5363 return false; 5364 5365 if (uffd_disable_fault_around(vmf->vma)) 5366 return false; 5367 5368 /* A single page implies no faulting 'around' at all. */ 5369 return fault_around_pages > 1; 5370 } 5371 5372 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5373 { 5374 vm_fault_t ret = 0; 5375 struct folio *folio; 5376 5377 /* 5378 * Let's call ->map_pages() first and use ->fault() as fallback 5379 * if page by the offset is not ready to be mapped (cold cache or 5380 * something). 5381 */ 5382 if (should_fault_around(vmf)) { 5383 ret = do_fault_around(vmf); 5384 if (ret) 5385 return ret; 5386 } 5387 5388 ret = vmf_can_call_fault(vmf); 5389 if (ret) 5390 return ret; 5391 5392 ret = __do_fault(vmf); 5393 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5394 return ret; 5395 5396 ret |= finish_fault(vmf); 5397 folio = page_folio(vmf->page); 5398 folio_unlock(folio); 5399 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5400 folio_put(folio); 5401 return ret; 5402 } 5403 5404 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5405 { 5406 struct vm_area_struct *vma = vmf->vma; 5407 struct folio *folio; 5408 vm_fault_t ret; 5409 5410 ret = vmf_can_call_fault(vmf); 5411 if (!ret) 5412 ret = vmf_anon_prepare(vmf); 5413 if (ret) 5414 return ret; 5415 5416 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5417 if (!folio) 5418 return VM_FAULT_OOM; 5419 5420 vmf->cow_page = &folio->page; 5421 5422 ret = __do_fault(vmf); 5423 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5424 goto uncharge_out; 5425 if (ret & VM_FAULT_DONE_COW) 5426 return ret; 5427 5428 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5429 ret = VM_FAULT_HWPOISON; 5430 goto unlock; 5431 } 5432 __folio_mark_uptodate(folio); 5433 5434 ret |= finish_fault(vmf); 5435 unlock: 5436 unlock_page(vmf->page); 5437 put_page(vmf->page); 5438 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5439 goto uncharge_out; 5440 return ret; 5441 uncharge_out: 5442 folio_put(folio); 5443 return ret; 5444 } 5445 5446 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5447 { 5448 struct vm_area_struct *vma = vmf->vma; 5449 vm_fault_t ret, tmp; 5450 struct folio *folio; 5451 5452 ret = vmf_can_call_fault(vmf); 5453 if (ret) 5454 return ret; 5455 5456 ret = __do_fault(vmf); 5457 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5458 return ret; 5459 5460 folio = page_folio(vmf->page); 5461 5462 /* 5463 * Check if the backing address space wants to know that the page is 5464 * about to become writable 5465 */ 5466 if (vma->vm_ops->page_mkwrite) { 5467 folio_unlock(folio); 5468 tmp = do_page_mkwrite(vmf, folio); 5469 if (unlikely(!tmp || 5470 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5471 folio_put(folio); 5472 return tmp; 5473 } 5474 } 5475 5476 ret |= finish_fault(vmf); 5477 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5478 VM_FAULT_RETRY))) { 5479 folio_unlock(folio); 5480 folio_put(folio); 5481 return ret; 5482 } 5483 5484 ret |= fault_dirty_shared_page(vmf); 5485 return ret; 5486 } 5487 5488 /* 5489 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5490 * but allow concurrent faults). 5491 * The mmap_lock may have been released depending on flags and our 5492 * return value. See filemap_fault() and __folio_lock_or_retry(). 5493 * If mmap_lock is released, vma may become invalid (for example 5494 * by other thread calling munmap()). 5495 */ 5496 static vm_fault_t do_fault(struct vm_fault *vmf) 5497 { 5498 struct vm_area_struct *vma = vmf->vma; 5499 struct mm_struct *vm_mm = vma->vm_mm; 5500 vm_fault_t ret; 5501 5502 /* 5503 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5504 */ 5505 if (!vma->vm_ops->fault) { 5506 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5507 vmf->address, &vmf->ptl); 5508 if (unlikely(!vmf->pte)) 5509 ret = VM_FAULT_SIGBUS; 5510 else { 5511 /* 5512 * Make sure this is not a temporary clearing of pte 5513 * by holding ptl and checking again. A R/M/W update 5514 * of pte involves: take ptl, clearing the pte so that 5515 * we don't have concurrent modification by hardware 5516 * followed by an update. 5517 */ 5518 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5519 ret = VM_FAULT_SIGBUS; 5520 else 5521 ret = VM_FAULT_NOPAGE; 5522 5523 pte_unmap_unlock(vmf->pte, vmf->ptl); 5524 } 5525 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5526 ret = do_read_fault(vmf); 5527 else if (!(vma->vm_flags & VM_SHARED)) 5528 ret = do_cow_fault(vmf); 5529 else 5530 ret = do_shared_fault(vmf); 5531 5532 /* preallocated pagetable is unused: free it */ 5533 if (vmf->prealloc_pte) { 5534 pte_free(vm_mm, vmf->prealloc_pte); 5535 vmf->prealloc_pte = NULL; 5536 } 5537 return ret; 5538 } 5539 5540 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5541 unsigned long addr, int *flags, 5542 bool writable, int *last_cpupid) 5543 { 5544 struct vm_area_struct *vma = vmf->vma; 5545 5546 /* 5547 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5548 * much anyway since they can be in shared cache state. This misses 5549 * the case where a mapping is writable but the process never writes 5550 * to it but pte_write gets cleared during protection updates and 5551 * pte_dirty has unpredictable behaviour between PTE scan updates, 5552 * background writeback, dirty balancing and application behaviour. 5553 */ 5554 if (!writable) 5555 *flags |= TNF_NO_GROUP; 5556 5557 /* 5558 * Flag if the folio is shared between multiple address spaces. This 5559 * is later used when determining whether to group tasks together 5560 */ 5561 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5562 *flags |= TNF_SHARED; 5563 /* 5564 * For memory tiering mode, cpupid of slow memory page is used 5565 * to record page access time. So use default value. 5566 */ 5567 if (folio_use_access_time(folio)) 5568 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5569 else 5570 *last_cpupid = folio_last_cpupid(folio); 5571 5572 /* Record the current PID acceesing VMA */ 5573 vma_set_access_pid_bit(vma); 5574 5575 count_vm_numa_event(NUMA_HINT_FAULTS); 5576 #ifdef CONFIG_NUMA_BALANCING 5577 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5578 #endif 5579 if (folio_nid(folio) == numa_node_id()) { 5580 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5581 *flags |= TNF_FAULT_LOCAL; 5582 } 5583 5584 return mpol_misplaced(folio, vmf, addr); 5585 } 5586 5587 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5588 unsigned long fault_addr, pte_t *fault_pte, 5589 bool writable) 5590 { 5591 pte_t pte, old_pte; 5592 5593 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5594 pte = pte_modify(old_pte, vma->vm_page_prot); 5595 pte = pte_mkyoung(pte); 5596 if (writable) 5597 pte = pte_mkwrite(pte, vma); 5598 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5599 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5600 } 5601 5602 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5603 struct folio *folio, pte_t fault_pte, 5604 bool ignore_writable, bool pte_write_upgrade) 5605 { 5606 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5607 unsigned long start, end, addr = vmf->address; 5608 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5609 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5610 pte_t *start_ptep; 5611 5612 /* Stay within the VMA and within the page table. */ 5613 start = max3(addr_start, pt_start, vma->vm_start); 5614 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5615 vma->vm_end); 5616 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5617 5618 /* Restore all PTEs' mapping of the large folio */ 5619 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5620 pte_t ptent = ptep_get(start_ptep); 5621 bool writable = false; 5622 5623 if (!pte_present(ptent) || !pte_protnone(ptent)) 5624 continue; 5625 5626 if (pfn_folio(pte_pfn(ptent)) != folio) 5627 continue; 5628 5629 if (!ignore_writable) { 5630 ptent = pte_modify(ptent, vma->vm_page_prot); 5631 writable = pte_write(ptent); 5632 if (!writable && pte_write_upgrade && 5633 can_change_pte_writable(vma, addr, ptent)) 5634 writable = true; 5635 } 5636 5637 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5638 } 5639 } 5640 5641 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5642 { 5643 struct vm_area_struct *vma = vmf->vma; 5644 struct folio *folio = NULL; 5645 int nid = NUMA_NO_NODE; 5646 bool writable = false, ignore_writable = false; 5647 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5648 int last_cpupid; 5649 int target_nid; 5650 pte_t pte, old_pte; 5651 int flags = 0, nr_pages; 5652 5653 /* 5654 * The pte cannot be used safely until we verify, while holding the page 5655 * table lock, that its contents have not changed during fault handling. 5656 */ 5657 spin_lock(vmf->ptl); 5658 /* Read the live PTE from the page tables: */ 5659 old_pte = ptep_get(vmf->pte); 5660 5661 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5662 pte_unmap_unlock(vmf->pte, vmf->ptl); 5663 return 0; 5664 } 5665 5666 pte = pte_modify(old_pte, vma->vm_page_prot); 5667 5668 /* 5669 * Detect now whether the PTE could be writable; this information 5670 * is only valid while holding the PT lock. 5671 */ 5672 writable = pte_write(pte); 5673 if (!writable && pte_write_upgrade && 5674 can_change_pte_writable(vma, vmf->address, pte)) 5675 writable = true; 5676 5677 folio = vm_normal_folio(vma, vmf->address, pte); 5678 if (!folio || folio_is_zone_device(folio)) 5679 goto out_map; 5680 5681 nid = folio_nid(folio); 5682 nr_pages = folio_nr_pages(folio); 5683 5684 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5685 writable, &last_cpupid); 5686 if (target_nid == NUMA_NO_NODE) 5687 goto out_map; 5688 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5689 flags |= TNF_MIGRATE_FAIL; 5690 goto out_map; 5691 } 5692 /* The folio is isolated and isolation code holds a folio reference. */ 5693 pte_unmap_unlock(vmf->pte, vmf->ptl); 5694 writable = false; 5695 ignore_writable = true; 5696 5697 /* Migrate to the requested node */ 5698 if (!migrate_misplaced_folio(folio, target_nid)) { 5699 nid = target_nid; 5700 flags |= TNF_MIGRATED; 5701 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5702 return 0; 5703 } 5704 5705 flags |= TNF_MIGRATE_FAIL; 5706 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5707 vmf->address, &vmf->ptl); 5708 if (unlikely(!vmf->pte)) 5709 return 0; 5710 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5711 pte_unmap_unlock(vmf->pte, vmf->ptl); 5712 return 0; 5713 } 5714 out_map: 5715 /* 5716 * Make it present again, depending on how arch implements 5717 * non-accessible ptes, some can allow access by kernel mode. 5718 */ 5719 if (folio && folio_test_large(folio)) 5720 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5721 pte_write_upgrade); 5722 else 5723 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5724 writable); 5725 pte_unmap_unlock(vmf->pte, vmf->ptl); 5726 5727 if (nid != NUMA_NO_NODE) 5728 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5729 return 0; 5730 } 5731 5732 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5733 { 5734 struct vm_area_struct *vma = vmf->vma; 5735 5736 if (vma_is_anonymous(vma)) 5737 return do_huge_pmd_anonymous_page(vmf); 5738 /* 5739 * Currently we just emit PAGE_SIZE for our fault events, so don't allow 5740 * a huge fault if we have a pre content watch on this file. This would 5741 * be trivial to support, but there would need to be tests to ensure 5742 * this works properly and those don't exist currently. 5743 */ 5744 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode))) 5745 return VM_FAULT_FALLBACK; 5746 if (vma->vm_ops->huge_fault) 5747 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5748 return VM_FAULT_FALLBACK; 5749 } 5750 5751 /* `inline' is required to avoid gcc 4.1.2 build error */ 5752 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5753 { 5754 struct vm_area_struct *vma = vmf->vma; 5755 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5756 vm_fault_t ret; 5757 5758 if (vma_is_anonymous(vma)) { 5759 if (likely(!unshare) && 5760 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5761 if (userfaultfd_wp_async(vmf->vma)) 5762 goto split; 5763 return handle_userfault(vmf, VM_UFFD_WP); 5764 } 5765 return do_huge_pmd_wp_page(vmf); 5766 } 5767 5768 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5769 /* See comment in create_huge_pmd. */ 5770 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode))) 5771 goto split; 5772 if (vma->vm_ops->huge_fault) { 5773 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5774 if (!(ret & VM_FAULT_FALLBACK)) 5775 return ret; 5776 } 5777 } 5778 5779 split: 5780 /* COW or write-notify handled on pte level: split pmd. */ 5781 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5782 5783 return VM_FAULT_FALLBACK; 5784 } 5785 5786 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5787 { 5788 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5789 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5790 struct vm_area_struct *vma = vmf->vma; 5791 /* No support for anonymous transparent PUD pages yet */ 5792 if (vma_is_anonymous(vma)) 5793 return VM_FAULT_FALLBACK; 5794 /* See comment in create_huge_pmd. */ 5795 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode))) 5796 return VM_FAULT_FALLBACK; 5797 if (vma->vm_ops->huge_fault) 5798 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5799 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5800 return VM_FAULT_FALLBACK; 5801 } 5802 5803 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5804 { 5805 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5806 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5807 struct vm_area_struct *vma = vmf->vma; 5808 vm_fault_t ret; 5809 5810 /* No support for anonymous transparent PUD pages yet */ 5811 if (vma_is_anonymous(vma)) 5812 goto split; 5813 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5814 /* See comment in create_huge_pmd. */ 5815 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode))) 5816 goto split; 5817 if (vma->vm_ops->huge_fault) { 5818 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5819 if (!(ret & VM_FAULT_FALLBACK)) 5820 return ret; 5821 } 5822 } 5823 split: 5824 /* COW or write-notify not handled on PUD level: split pud.*/ 5825 __split_huge_pud(vma, vmf->pud, vmf->address); 5826 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5827 return VM_FAULT_FALLBACK; 5828 } 5829 5830 /* 5831 * These routines also need to handle stuff like marking pages dirty 5832 * and/or accessed for architectures that don't do it in hardware (most 5833 * RISC architectures). The early dirtying is also good on the i386. 5834 * 5835 * There is also a hook called "update_mmu_cache()" that architectures 5836 * with external mmu caches can use to update those (ie the Sparc or 5837 * PowerPC hashed page tables that act as extended TLBs). 5838 * 5839 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5840 * concurrent faults). 5841 * 5842 * The mmap_lock may have been released depending on flags and our return value. 5843 * See filemap_fault() and __folio_lock_or_retry(). 5844 */ 5845 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5846 { 5847 pte_t entry; 5848 5849 if (unlikely(pmd_none(*vmf->pmd))) { 5850 /* 5851 * Leave __pte_alloc() until later: because vm_ops->fault may 5852 * want to allocate huge page, and if we expose page table 5853 * for an instant, it will be difficult to retract from 5854 * concurrent faults and from rmap lookups. 5855 */ 5856 vmf->pte = NULL; 5857 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5858 } else { 5859 pmd_t dummy_pmdval; 5860 5861 /* 5862 * A regular pmd is established and it can't morph into a huge 5863 * pmd by anon khugepaged, since that takes mmap_lock in write 5864 * mode; but shmem or file collapse to THP could still morph 5865 * it into a huge pmd: just retry later if so. 5866 * 5867 * Use the maywrite version to indicate that vmf->pte may be 5868 * modified, but since we will use pte_same() to detect the 5869 * change of the !pte_none() entry, there is no need to recheck 5870 * the pmdval. Here we chooes to pass a dummy variable instead 5871 * of NULL, which helps new user think about why this place is 5872 * special. 5873 */ 5874 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 5875 vmf->address, &dummy_pmdval, 5876 &vmf->ptl); 5877 if (unlikely(!vmf->pte)) 5878 return 0; 5879 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5880 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5881 5882 if (pte_none(vmf->orig_pte)) { 5883 pte_unmap(vmf->pte); 5884 vmf->pte = NULL; 5885 } 5886 } 5887 5888 if (!vmf->pte) 5889 return do_pte_missing(vmf); 5890 5891 if (!pte_present(vmf->orig_pte)) 5892 return do_swap_page(vmf); 5893 5894 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5895 return do_numa_page(vmf); 5896 5897 spin_lock(vmf->ptl); 5898 entry = vmf->orig_pte; 5899 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5900 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5901 goto unlock; 5902 } 5903 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5904 if (!pte_write(entry)) 5905 return do_wp_page(vmf); 5906 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5907 entry = pte_mkdirty(entry); 5908 } 5909 entry = pte_mkyoung(entry); 5910 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5911 vmf->flags & FAULT_FLAG_WRITE)) { 5912 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5913 vmf->pte, 1); 5914 } else { 5915 /* Skip spurious TLB flush for retried page fault */ 5916 if (vmf->flags & FAULT_FLAG_TRIED) 5917 goto unlock; 5918 /* 5919 * This is needed only for protection faults but the arch code 5920 * is not yet telling us if this is a protection fault or not. 5921 * This still avoids useless tlb flushes for .text page faults 5922 * with threads. 5923 */ 5924 if (vmf->flags & FAULT_FLAG_WRITE) 5925 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5926 vmf->pte); 5927 } 5928 unlock: 5929 pte_unmap_unlock(vmf->pte, vmf->ptl); 5930 return 0; 5931 } 5932 5933 /* 5934 * On entry, we hold either the VMA lock or the mmap_lock 5935 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5936 * the result, the mmap_lock is not held on exit. See filemap_fault() 5937 * and __folio_lock_or_retry(). 5938 */ 5939 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5940 unsigned long address, unsigned int flags) 5941 { 5942 struct vm_fault vmf = { 5943 .vma = vma, 5944 .address = address & PAGE_MASK, 5945 .real_address = address, 5946 .flags = flags, 5947 .pgoff = linear_page_index(vma, address), 5948 .gfp_mask = __get_fault_gfp_mask(vma), 5949 }; 5950 struct mm_struct *mm = vma->vm_mm; 5951 unsigned long vm_flags = vma->vm_flags; 5952 pgd_t *pgd; 5953 p4d_t *p4d; 5954 vm_fault_t ret; 5955 5956 pgd = pgd_offset(mm, address); 5957 p4d = p4d_alloc(mm, pgd, address); 5958 if (!p4d) 5959 return VM_FAULT_OOM; 5960 5961 vmf.pud = pud_alloc(mm, p4d, address); 5962 if (!vmf.pud) 5963 return VM_FAULT_OOM; 5964 retry_pud: 5965 if (pud_none(*vmf.pud) && 5966 thp_vma_allowable_order(vma, vm_flags, 5967 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 5968 ret = create_huge_pud(&vmf); 5969 if (!(ret & VM_FAULT_FALLBACK)) 5970 return ret; 5971 } else { 5972 pud_t orig_pud = *vmf.pud; 5973 5974 barrier(); 5975 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5976 5977 /* 5978 * TODO once we support anonymous PUDs: NUMA case and 5979 * FAULT_FLAG_UNSHARE handling. 5980 */ 5981 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5982 ret = wp_huge_pud(&vmf, orig_pud); 5983 if (!(ret & VM_FAULT_FALLBACK)) 5984 return ret; 5985 } else { 5986 huge_pud_set_accessed(&vmf, orig_pud); 5987 return 0; 5988 } 5989 } 5990 } 5991 5992 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5993 if (!vmf.pmd) 5994 return VM_FAULT_OOM; 5995 5996 /* Huge pud page fault raced with pmd_alloc? */ 5997 if (pud_trans_unstable(vmf.pud)) 5998 goto retry_pud; 5999 6000 if (pmd_none(*vmf.pmd) && 6001 thp_vma_allowable_order(vma, vm_flags, 6002 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 6003 ret = create_huge_pmd(&vmf); 6004 if (!(ret & VM_FAULT_FALLBACK)) 6005 return ret; 6006 } else { 6007 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6008 6009 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 6010 VM_BUG_ON(thp_migration_supported() && 6011 !is_pmd_migration_entry(vmf.orig_pmd)); 6012 if (is_pmd_migration_entry(vmf.orig_pmd)) 6013 pmd_migration_entry_wait(mm, vmf.pmd); 6014 return 0; 6015 } 6016 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 6017 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6018 return do_huge_pmd_numa_page(&vmf); 6019 6020 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6021 !pmd_write(vmf.orig_pmd)) { 6022 ret = wp_huge_pmd(&vmf); 6023 if (!(ret & VM_FAULT_FALLBACK)) 6024 return ret; 6025 } else { 6026 huge_pmd_set_accessed(&vmf); 6027 return 0; 6028 } 6029 } 6030 } 6031 6032 return handle_pte_fault(&vmf); 6033 } 6034 6035 /** 6036 * mm_account_fault - Do page fault accounting 6037 * @mm: mm from which memcg should be extracted. It can be NULL. 6038 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6039 * of perf event counters, but we'll still do the per-task accounting to 6040 * the task who triggered this page fault. 6041 * @address: the faulted address. 6042 * @flags: the fault flags. 6043 * @ret: the fault retcode. 6044 * 6045 * This will take care of most of the page fault accounting. Meanwhile, it 6046 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6047 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6048 * still be in per-arch page fault handlers at the entry of page fault. 6049 */ 6050 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6051 unsigned long address, unsigned int flags, 6052 vm_fault_t ret) 6053 { 6054 bool major; 6055 6056 /* Incomplete faults will be accounted upon completion. */ 6057 if (ret & VM_FAULT_RETRY) 6058 return; 6059 6060 /* 6061 * To preserve the behavior of older kernels, PGFAULT counters record 6062 * both successful and failed faults, as opposed to perf counters, 6063 * which ignore failed cases. 6064 */ 6065 count_vm_event(PGFAULT); 6066 count_memcg_event_mm(mm, PGFAULT); 6067 6068 /* 6069 * Do not account for unsuccessful faults (e.g. when the address wasn't 6070 * valid). That includes arch_vma_access_permitted() failing before 6071 * reaching here. So this is not a "this many hardware page faults" 6072 * counter. We should use the hw profiling for that. 6073 */ 6074 if (ret & VM_FAULT_ERROR) 6075 return; 6076 6077 /* 6078 * We define the fault as a major fault when the final successful fault 6079 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6080 * handle it immediately previously). 6081 */ 6082 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6083 6084 if (major) 6085 current->maj_flt++; 6086 else 6087 current->min_flt++; 6088 6089 /* 6090 * If the fault is done for GUP, regs will be NULL. We only do the 6091 * accounting for the per thread fault counters who triggered the 6092 * fault, and we skip the perf event updates. 6093 */ 6094 if (!regs) 6095 return; 6096 6097 if (major) 6098 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6099 else 6100 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6101 } 6102 6103 #ifdef CONFIG_LRU_GEN 6104 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6105 { 6106 /* the LRU algorithm only applies to accesses with recency */ 6107 current->in_lru_fault = vma_has_recency(vma); 6108 } 6109 6110 static void lru_gen_exit_fault(void) 6111 { 6112 current->in_lru_fault = false; 6113 } 6114 #else 6115 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6116 { 6117 } 6118 6119 static void lru_gen_exit_fault(void) 6120 { 6121 } 6122 #endif /* CONFIG_LRU_GEN */ 6123 6124 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6125 unsigned int *flags) 6126 { 6127 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6128 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6129 return VM_FAULT_SIGSEGV; 6130 /* 6131 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6132 * just treat it like an ordinary read-fault otherwise. 6133 */ 6134 if (!is_cow_mapping(vma->vm_flags)) 6135 *flags &= ~FAULT_FLAG_UNSHARE; 6136 } else if (*flags & FAULT_FLAG_WRITE) { 6137 /* Write faults on read-only mappings are impossible ... */ 6138 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6139 return VM_FAULT_SIGSEGV; 6140 /* ... and FOLL_FORCE only applies to COW mappings. */ 6141 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6142 !is_cow_mapping(vma->vm_flags))) 6143 return VM_FAULT_SIGSEGV; 6144 } 6145 #ifdef CONFIG_PER_VMA_LOCK 6146 /* 6147 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6148 * the assumption that lock is dropped on VM_FAULT_RETRY. 6149 */ 6150 if (WARN_ON_ONCE((*flags & 6151 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6152 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6153 return VM_FAULT_SIGSEGV; 6154 #endif 6155 6156 return 0; 6157 } 6158 6159 /* 6160 * By the time we get here, we already hold either the VMA lock or the 6161 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6162 * 6163 * The mmap_lock may have been released depending on flags and our 6164 * return value. See filemap_fault() and __folio_lock_or_retry(). 6165 */ 6166 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6167 unsigned int flags, struct pt_regs *regs) 6168 { 6169 /* If the fault handler drops the mmap_lock, vma may be freed */ 6170 struct mm_struct *mm = vma->vm_mm; 6171 vm_fault_t ret; 6172 bool is_droppable; 6173 6174 __set_current_state(TASK_RUNNING); 6175 6176 ret = sanitize_fault_flags(vma, &flags); 6177 if (ret) 6178 goto out; 6179 6180 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6181 flags & FAULT_FLAG_INSTRUCTION, 6182 flags & FAULT_FLAG_REMOTE)) { 6183 ret = VM_FAULT_SIGSEGV; 6184 goto out; 6185 } 6186 6187 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6188 6189 /* 6190 * Enable the memcg OOM handling for faults triggered in user 6191 * space. Kernel faults are handled more gracefully. 6192 */ 6193 if (flags & FAULT_FLAG_USER) 6194 mem_cgroup_enter_user_fault(); 6195 6196 lru_gen_enter_fault(vma); 6197 6198 if (unlikely(is_vm_hugetlb_page(vma))) 6199 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6200 else 6201 ret = __handle_mm_fault(vma, address, flags); 6202 6203 /* 6204 * Warning: It is no longer safe to dereference vma-> after this point, 6205 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6206 * vma might be destroyed from underneath us. 6207 */ 6208 6209 lru_gen_exit_fault(); 6210 6211 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6212 if (is_droppable) 6213 ret &= ~VM_FAULT_OOM; 6214 6215 if (flags & FAULT_FLAG_USER) { 6216 mem_cgroup_exit_user_fault(); 6217 /* 6218 * The task may have entered a memcg OOM situation but 6219 * if the allocation error was handled gracefully (no 6220 * VM_FAULT_OOM), there is no need to kill anything. 6221 * Just clean up the OOM state peacefully. 6222 */ 6223 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6224 mem_cgroup_oom_synchronize(false); 6225 } 6226 out: 6227 mm_account_fault(mm, regs, address, flags, ret); 6228 6229 return ret; 6230 } 6231 EXPORT_SYMBOL_GPL(handle_mm_fault); 6232 6233 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 6234 #include <linux/extable.h> 6235 6236 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6237 { 6238 if (likely(mmap_read_trylock(mm))) 6239 return true; 6240 6241 if (regs && !user_mode(regs)) { 6242 unsigned long ip = exception_ip(regs); 6243 if (!search_exception_tables(ip)) 6244 return false; 6245 } 6246 6247 return !mmap_read_lock_killable(mm); 6248 } 6249 6250 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 6251 { 6252 /* 6253 * We don't have this operation yet. 6254 * 6255 * It should be easy enough to do: it's basically a 6256 * atomic_long_try_cmpxchg_acquire() 6257 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 6258 * it also needs the proper lockdep magic etc. 6259 */ 6260 return false; 6261 } 6262 6263 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6264 { 6265 mmap_read_unlock(mm); 6266 if (regs && !user_mode(regs)) { 6267 unsigned long ip = exception_ip(regs); 6268 if (!search_exception_tables(ip)) 6269 return false; 6270 } 6271 return !mmap_write_lock_killable(mm); 6272 } 6273 6274 /* 6275 * Helper for page fault handling. 6276 * 6277 * This is kind of equivalent to "mmap_read_lock()" followed 6278 * by "find_extend_vma()", except it's a lot more careful about 6279 * the locking (and will drop the lock on failure). 6280 * 6281 * For example, if we have a kernel bug that causes a page 6282 * fault, we don't want to just use mmap_read_lock() to get 6283 * the mm lock, because that would deadlock if the bug were 6284 * to happen while we're holding the mm lock for writing. 6285 * 6286 * So this checks the exception tables on kernel faults in 6287 * order to only do this all for instructions that are actually 6288 * expected to fault. 6289 * 6290 * We can also actually take the mm lock for writing if we 6291 * need to extend the vma, which helps the VM layer a lot. 6292 */ 6293 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 6294 unsigned long addr, struct pt_regs *regs) 6295 { 6296 struct vm_area_struct *vma; 6297 6298 if (!get_mmap_lock_carefully(mm, regs)) 6299 return NULL; 6300 6301 vma = find_vma(mm, addr); 6302 if (likely(vma && (vma->vm_start <= addr))) 6303 return vma; 6304 6305 /* 6306 * Well, dang. We might still be successful, but only 6307 * if we can extend a vma to do so. 6308 */ 6309 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 6310 mmap_read_unlock(mm); 6311 return NULL; 6312 } 6313 6314 /* 6315 * We can try to upgrade the mmap lock atomically, 6316 * in which case we can continue to use the vma 6317 * we already looked up. 6318 * 6319 * Otherwise we'll have to drop the mmap lock and 6320 * re-take it, and also look up the vma again, 6321 * re-checking it. 6322 */ 6323 if (!mmap_upgrade_trylock(mm)) { 6324 if (!upgrade_mmap_lock_carefully(mm, regs)) 6325 return NULL; 6326 6327 vma = find_vma(mm, addr); 6328 if (!vma) 6329 goto fail; 6330 if (vma->vm_start <= addr) 6331 goto success; 6332 if (!(vma->vm_flags & VM_GROWSDOWN)) 6333 goto fail; 6334 } 6335 6336 if (expand_stack_locked(vma, addr)) 6337 goto fail; 6338 6339 success: 6340 mmap_write_downgrade(mm); 6341 return vma; 6342 6343 fail: 6344 mmap_write_unlock(mm); 6345 return NULL; 6346 } 6347 #endif 6348 6349 #ifdef CONFIG_PER_VMA_LOCK 6350 /* 6351 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 6352 * stable and not isolated. If the VMA is not found or is being modified the 6353 * function returns NULL. 6354 */ 6355 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 6356 unsigned long address) 6357 { 6358 MA_STATE(mas, &mm->mm_mt, address, address); 6359 struct vm_area_struct *vma; 6360 6361 rcu_read_lock(); 6362 retry: 6363 vma = mas_walk(&mas); 6364 if (!vma) 6365 goto inval; 6366 6367 if (!vma_start_read(vma)) 6368 goto inval; 6369 6370 /* Check if the VMA got isolated after we found it */ 6371 if (vma->detached) { 6372 vma_end_read(vma); 6373 count_vm_vma_lock_event(VMA_LOCK_MISS); 6374 /* The area was replaced with another one */ 6375 goto retry; 6376 } 6377 /* 6378 * At this point, we have a stable reference to a VMA: The VMA is 6379 * locked and we know it hasn't already been isolated. 6380 * From here on, we can access the VMA without worrying about which 6381 * fields are accessible for RCU readers. 6382 */ 6383 6384 /* Check since vm_start/vm_end might change before we lock the VMA */ 6385 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6386 goto inval_end_read; 6387 6388 rcu_read_unlock(); 6389 return vma; 6390 6391 inval_end_read: 6392 vma_end_read(vma); 6393 inval: 6394 rcu_read_unlock(); 6395 count_vm_vma_lock_event(VMA_LOCK_ABORT); 6396 return NULL; 6397 } 6398 #endif /* CONFIG_PER_VMA_LOCK */ 6399 6400 #ifndef __PAGETABLE_P4D_FOLDED 6401 /* 6402 * Allocate p4d page table. 6403 * We've already handled the fast-path in-line. 6404 */ 6405 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6406 { 6407 p4d_t *new = p4d_alloc_one(mm, address); 6408 if (!new) 6409 return -ENOMEM; 6410 6411 spin_lock(&mm->page_table_lock); 6412 if (pgd_present(*pgd)) { /* Another has populated it */ 6413 p4d_free(mm, new); 6414 } else { 6415 smp_wmb(); /* See comment in pmd_install() */ 6416 pgd_populate(mm, pgd, new); 6417 } 6418 spin_unlock(&mm->page_table_lock); 6419 return 0; 6420 } 6421 #endif /* __PAGETABLE_P4D_FOLDED */ 6422 6423 #ifndef __PAGETABLE_PUD_FOLDED 6424 /* 6425 * Allocate page upper directory. 6426 * We've already handled the fast-path in-line. 6427 */ 6428 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6429 { 6430 pud_t *new = pud_alloc_one(mm, address); 6431 if (!new) 6432 return -ENOMEM; 6433 6434 spin_lock(&mm->page_table_lock); 6435 if (!p4d_present(*p4d)) { 6436 mm_inc_nr_puds(mm); 6437 smp_wmb(); /* See comment in pmd_install() */ 6438 p4d_populate(mm, p4d, new); 6439 } else /* Another has populated it */ 6440 pud_free(mm, new); 6441 spin_unlock(&mm->page_table_lock); 6442 return 0; 6443 } 6444 #endif /* __PAGETABLE_PUD_FOLDED */ 6445 6446 #ifndef __PAGETABLE_PMD_FOLDED 6447 /* 6448 * Allocate page middle directory. 6449 * We've already handled the fast-path in-line. 6450 */ 6451 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6452 { 6453 spinlock_t *ptl; 6454 pmd_t *new = pmd_alloc_one(mm, address); 6455 if (!new) 6456 return -ENOMEM; 6457 6458 ptl = pud_lock(mm, pud); 6459 if (!pud_present(*pud)) { 6460 mm_inc_nr_pmds(mm); 6461 smp_wmb(); /* See comment in pmd_install() */ 6462 pud_populate(mm, pud, new); 6463 } else { /* Another has populated it */ 6464 pmd_free(mm, new); 6465 } 6466 spin_unlock(ptl); 6467 return 0; 6468 } 6469 #endif /* __PAGETABLE_PMD_FOLDED */ 6470 6471 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6472 spinlock_t *lock, pte_t *ptep, 6473 pgprot_t pgprot, unsigned long pfn_base, 6474 unsigned long addr_mask, bool writable, 6475 bool special) 6476 { 6477 args->lock = lock; 6478 args->ptep = ptep; 6479 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6480 args->pgprot = pgprot; 6481 args->writable = writable; 6482 args->special = special; 6483 } 6484 6485 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6486 { 6487 #ifdef CONFIG_LOCKDEP 6488 struct file *file = vma->vm_file; 6489 struct address_space *mapping = file ? file->f_mapping : NULL; 6490 6491 if (mapping) 6492 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6493 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6494 else 6495 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6496 #endif 6497 } 6498 6499 /** 6500 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6501 * @args: Pointer to struct @follow_pfnmap_args 6502 * 6503 * The caller needs to setup args->vma and args->address to point to the 6504 * virtual address as the target of such lookup. On a successful return, 6505 * the results will be put into other output fields. 6506 * 6507 * After the caller finished using the fields, the caller must invoke 6508 * another follow_pfnmap_end() to proper releases the locks and resources 6509 * of such look up request. 6510 * 6511 * During the start() and end() calls, the results in @args will be valid 6512 * as proper locks will be held. After the end() is called, all the fields 6513 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6514 * use of such information after end() may require proper synchronizations 6515 * by the caller with page table updates, otherwise it can create a 6516 * security bug. 6517 * 6518 * If the PTE maps a refcounted page, callers are responsible to protect 6519 * against invalidation with MMU notifiers; otherwise access to the PFN at 6520 * a later point in time can trigger use-after-free. 6521 * 6522 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6523 * should be taken for read, and the mmap semaphore cannot be released 6524 * before the end() is invoked. 6525 * 6526 * This function must not be used to modify PTE content. 6527 * 6528 * Return: zero on success, negative otherwise. 6529 */ 6530 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6531 { 6532 struct vm_area_struct *vma = args->vma; 6533 unsigned long address = args->address; 6534 struct mm_struct *mm = vma->vm_mm; 6535 spinlock_t *lock; 6536 pgd_t *pgdp; 6537 p4d_t *p4dp, p4d; 6538 pud_t *pudp, pud; 6539 pmd_t *pmdp, pmd; 6540 pte_t *ptep, pte; 6541 6542 pfnmap_lockdep_assert(vma); 6543 6544 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6545 goto out; 6546 6547 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6548 goto out; 6549 retry: 6550 pgdp = pgd_offset(mm, address); 6551 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6552 goto out; 6553 6554 p4dp = p4d_offset(pgdp, address); 6555 p4d = READ_ONCE(*p4dp); 6556 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6557 goto out; 6558 6559 pudp = pud_offset(p4dp, address); 6560 pud = READ_ONCE(*pudp); 6561 if (pud_none(pud)) 6562 goto out; 6563 if (pud_leaf(pud)) { 6564 lock = pud_lock(mm, pudp); 6565 if (!unlikely(pud_leaf(pud))) { 6566 spin_unlock(lock); 6567 goto retry; 6568 } 6569 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6570 pud_pfn(pud), PUD_MASK, pud_write(pud), 6571 pud_special(pud)); 6572 return 0; 6573 } 6574 6575 pmdp = pmd_offset(pudp, address); 6576 pmd = pmdp_get_lockless(pmdp); 6577 if (pmd_leaf(pmd)) { 6578 lock = pmd_lock(mm, pmdp); 6579 if (!unlikely(pmd_leaf(pmd))) { 6580 spin_unlock(lock); 6581 goto retry; 6582 } 6583 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6584 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6585 pmd_special(pmd)); 6586 return 0; 6587 } 6588 6589 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6590 if (!ptep) 6591 goto out; 6592 pte = ptep_get(ptep); 6593 if (!pte_present(pte)) 6594 goto unlock; 6595 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6596 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6597 pte_special(pte)); 6598 return 0; 6599 unlock: 6600 pte_unmap_unlock(ptep, lock); 6601 out: 6602 return -EINVAL; 6603 } 6604 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6605 6606 /** 6607 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6608 * @args: Pointer to struct @follow_pfnmap_args 6609 * 6610 * Must be used in pair of follow_pfnmap_start(). See the start() function 6611 * above for more information. 6612 */ 6613 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6614 { 6615 if (args->lock) 6616 spin_unlock(args->lock); 6617 if (args->ptep) 6618 pte_unmap(args->ptep); 6619 } 6620 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6621 6622 #ifdef CONFIG_HAVE_IOREMAP_PROT 6623 /** 6624 * generic_access_phys - generic implementation for iomem mmap access 6625 * @vma: the vma to access 6626 * @addr: userspace address, not relative offset within @vma 6627 * @buf: buffer to read/write 6628 * @len: length of transfer 6629 * @write: set to FOLL_WRITE when writing, otherwise reading 6630 * 6631 * This is a generic implementation for &vm_operations_struct.access for an 6632 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6633 * not page based. 6634 */ 6635 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6636 void *buf, int len, int write) 6637 { 6638 resource_size_t phys_addr; 6639 unsigned long prot = 0; 6640 void __iomem *maddr; 6641 int offset = offset_in_page(addr); 6642 int ret = -EINVAL; 6643 bool writable; 6644 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6645 6646 retry: 6647 if (follow_pfnmap_start(&args)) 6648 return -EINVAL; 6649 prot = pgprot_val(args.pgprot); 6650 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6651 writable = args.writable; 6652 follow_pfnmap_end(&args); 6653 6654 if ((write & FOLL_WRITE) && !writable) 6655 return -EINVAL; 6656 6657 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6658 if (!maddr) 6659 return -ENOMEM; 6660 6661 if (follow_pfnmap_start(&args)) 6662 goto out_unmap; 6663 6664 if ((prot != pgprot_val(args.pgprot)) || 6665 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6666 (writable != args.writable)) { 6667 follow_pfnmap_end(&args); 6668 iounmap(maddr); 6669 goto retry; 6670 } 6671 6672 if (write) 6673 memcpy_toio(maddr + offset, buf, len); 6674 else 6675 memcpy_fromio(buf, maddr + offset, len); 6676 ret = len; 6677 follow_pfnmap_end(&args); 6678 out_unmap: 6679 iounmap(maddr); 6680 6681 return ret; 6682 } 6683 EXPORT_SYMBOL_GPL(generic_access_phys); 6684 #endif 6685 6686 /* 6687 * Access another process' address space as given in mm. 6688 */ 6689 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6690 void *buf, int len, unsigned int gup_flags) 6691 { 6692 void *old_buf = buf; 6693 int write = gup_flags & FOLL_WRITE; 6694 6695 if (mmap_read_lock_killable(mm)) 6696 return 0; 6697 6698 /* Untag the address before looking up the VMA */ 6699 addr = untagged_addr_remote(mm, addr); 6700 6701 /* Avoid triggering the temporary warning in __get_user_pages */ 6702 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6703 return 0; 6704 6705 /* ignore errors, just check how much was successfully transferred */ 6706 while (len) { 6707 int bytes, offset; 6708 void *maddr; 6709 struct vm_area_struct *vma = NULL; 6710 struct page *page = get_user_page_vma_remote(mm, addr, 6711 gup_flags, &vma); 6712 6713 if (IS_ERR(page)) { 6714 /* We might need to expand the stack to access it */ 6715 vma = vma_lookup(mm, addr); 6716 if (!vma) { 6717 vma = expand_stack(mm, addr); 6718 6719 /* mmap_lock was dropped on failure */ 6720 if (!vma) 6721 return buf - old_buf; 6722 6723 /* Try again if stack expansion worked */ 6724 continue; 6725 } 6726 6727 /* 6728 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6729 * we can access using slightly different code. 6730 */ 6731 bytes = 0; 6732 #ifdef CONFIG_HAVE_IOREMAP_PROT 6733 if (vma->vm_ops && vma->vm_ops->access) 6734 bytes = vma->vm_ops->access(vma, addr, buf, 6735 len, write); 6736 #endif 6737 if (bytes <= 0) 6738 break; 6739 } else { 6740 bytes = len; 6741 offset = addr & (PAGE_SIZE-1); 6742 if (bytes > PAGE_SIZE-offset) 6743 bytes = PAGE_SIZE-offset; 6744 6745 maddr = kmap_local_page(page); 6746 if (write) { 6747 copy_to_user_page(vma, page, addr, 6748 maddr + offset, buf, bytes); 6749 set_page_dirty_lock(page); 6750 } else { 6751 copy_from_user_page(vma, page, addr, 6752 buf, maddr + offset, bytes); 6753 } 6754 unmap_and_put_page(page, maddr); 6755 } 6756 len -= bytes; 6757 buf += bytes; 6758 addr += bytes; 6759 } 6760 mmap_read_unlock(mm); 6761 6762 return buf - old_buf; 6763 } 6764 6765 /** 6766 * access_remote_vm - access another process' address space 6767 * @mm: the mm_struct of the target address space 6768 * @addr: start address to access 6769 * @buf: source or destination buffer 6770 * @len: number of bytes to transfer 6771 * @gup_flags: flags modifying lookup behaviour 6772 * 6773 * The caller must hold a reference on @mm. 6774 * 6775 * Return: number of bytes copied from source to destination. 6776 */ 6777 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6778 void *buf, int len, unsigned int gup_flags) 6779 { 6780 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6781 } 6782 6783 /* 6784 * Access another process' address space. 6785 * Source/target buffer must be kernel space, 6786 * Do not walk the page table directly, use get_user_pages 6787 */ 6788 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6789 void *buf, int len, unsigned int gup_flags) 6790 { 6791 struct mm_struct *mm; 6792 int ret; 6793 6794 mm = get_task_mm(tsk); 6795 if (!mm) 6796 return 0; 6797 6798 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6799 6800 mmput(mm); 6801 6802 return ret; 6803 } 6804 EXPORT_SYMBOL_GPL(access_process_vm); 6805 6806 /* 6807 * Print the name of a VMA. 6808 */ 6809 void print_vma_addr(char *prefix, unsigned long ip) 6810 { 6811 struct mm_struct *mm = current->mm; 6812 struct vm_area_struct *vma; 6813 6814 /* 6815 * we might be running from an atomic context so we cannot sleep 6816 */ 6817 if (!mmap_read_trylock(mm)) 6818 return; 6819 6820 vma = vma_lookup(mm, ip); 6821 if (vma && vma->vm_file) { 6822 struct file *f = vma->vm_file; 6823 ip -= vma->vm_start; 6824 ip += vma->vm_pgoff << PAGE_SHIFT; 6825 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 6826 vma->vm_start, 6827 vma->vm_end - vma->vm_start); 6828 } 6829 mmap_read_unlock(mm); 6830 } 6831 6832 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6833 void __might_fault(const char *file, int line) 6834 { 6835 if (pagefault_disabled()) 6836 return; 6837 __might_sleep(file, line); 6838 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6839 if (current->mm) 6840 might_lock_read(¤t->mm->mmap_lock); 6841 #endif 6842 } 6843 EXPORT_SYMBOL(__might_fault); 6844 #endif 6845 6846 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6847 /* 6848 * Process all subpages of the specified huge page with the specified 6849 * operation. The target subpage will be processed last to keep its 6850 * cache lines hot. 6851 */ 6852 static inline int process_huge_page( 6853 unsigned long addr_hint, unsigned int nr_pages, 6854 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6855 void *arg) 6856 { 6857 int i, n, base, l, ret; 6858 unsigned long addr = addr_hint & 6859 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 6860 6861 /* Process target subpage last to keep its cache lines hot */ 6862 might_sleep(); 6863 n = (addr_hint - addr) / PAGE_SIZE; 6864 if (2 * n <= nr_pages) { 6865 /* If target subpage in first half of huge page */ 6866 base = 0; 6867 l = n; 6868 /* Process subpages at the end of huge page */ 6869 for (i = nr_pages - 1; i >= 2 * n; i--) { 6870 cond_resched(); 6871 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6872 if (ret) 6873 return ret; 6874 } 6875 } else { 6876 /* If target subpage in second half of huge page */ 6877 base = nr_pages - 2 * (nr_pages - n); 6878 l = nr_pages - n; 6879 /* Process subpages at the begin of huge page */ 6880 for (i = 0; i < base; i++) { 6881 cond_resched(); 6882 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6883 if (ret) 6884 return ret; 6885 } 6886 } 6887 /* 6888 * Process remaining subpages in left-right-left-right pattern 6889 * towards the target subpage 6890 */ 6891 for (i = 0; i < l; i++) { 6892 int left_idx = base + i; 6893 int right_idx = base + 2 * l - 1 - i; 6894 6895 cond_resched(); 6896 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6897 if (ret) 6898 return ret; 6899 cond_resched(); 6900 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6901 if (ret) 6902 return ret; 6903 } 6904 return 0; 6905 } 6906 6907 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 6908 unsigned int nr_pages) 6909 { 6910 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 6911 int i; 6912 6913 might_sleep(); 6914 for (i = 0; i < nr_pages; i++) { 6915 cond_resched(); 6916 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 6917 } 6918 } 6919 6920 static int clear_subpage(unsigned long addr, int idx, void *arg) 6921 { 6922 struct folio *folio = arg; 6923 6924 clear_user_highpage(folio_page(folio, idx), addr); 6925 return 0; 6926 } 6927 6928 /** 6929 * folio_zero_user - Zero a folio which will be mapped to userspace. 6930 * @folio: The folio to zero. 6931 * @addr_hint: The address will be accessed or the base address if uncelar. 6932 */ 6933 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 6934 { 6935 unsigned int nr_pages = folio_nr_pages(folio); 6936 6937 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 6938 clear_gigantic_page(folio, addr_hint, nr_pages); 6939 else 6940 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 6941 } 6942 6943 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6944 unsigned long addr_hint, 6945 struct vm_area_struct *vma, 6946 unsigned int nr_pages) 6947 { 6948 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 6949 struct page *dst_page; 6950 struct page *src_page; 6951 int i; 6952 6953 for (i = 0; i < nr_pages; i++) { 6954 dst_page = folio_page(dst, i); 6955 src_page = folio_page(src, i); 6956 6957 cond_resched(); 6958 if (copy_mc_user_highpage(dst_page, src_page, 6959 addr + i*PAGE_SIZE, vma)) 6960 return -EHWPOISON; 6961 } 6962 return 0; 6963 } 6964 6965 struct copy_subpage_arg { 6966 struct folio *dst; 6967 struct folio *src; 6968 struct vm_area_struct *vma; 6969 }; 6970 6971 static int copy_subpage(unsigned long addr, int idx, void *arg) 6972 { 6973 struct copy_subpage_arg *copy_arg = arg; 6974 struct page *dst = folio_page(copy_arg->dst, idx); 6975 struct page *src = folio_page(copy_arg->src, idx); 6976 6977 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 6978 return -EHWPOISON; 6979 return 0; 6980 } 6981 6982 int copy_user_large_folio(struct folio *dst, struct folio *src, 6983 unsigned long addr_hint, struct vm_area_struct *vma) 6984 { 6985 unsigned int nr_pages = folio_nr_pages(dst); 6986 struct copy_subpage_arg arg = { 6987 .dst = dst, 6988 .src = src, 6989 .vma = vma, 6990 }; 6991 6992 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 6993 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 6994 6995 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 6996 } 6997 6998 long copy_folio_from_user(struct folio *dst_folio, 6999 const void __user *usr_src, 7000 bool allow_pagefault) 7001 { 7002 void *kaddr; 7003 unsigned long i, rc = 0; 7004 unsigned int nr_pages = folio_nr_pages(dst_folio); 7005 unsigned long ret_val = nr_pages * PAGE_SIZE; 7006 struct page *subpage; 7007 7008 for (i = 0; i < nr_pages; i++) { 7009 subpage = folio_page(dst_folio, i); 7010 kaddr = kmap_local_page(subpage); 7011 if (!allow_pagefault) 7012 pagefault_disable(); 7013 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7014 if (!allow_pagefault) 7015 pagefault_enable(); 7016 kunmap_local(kaddr); 7017 7018 ret_val -= (PAGE_SIZE - rc); 7019 if (rc) 7020 break; 7021 7022 flush_dcache_page(subpage); 7023 7024 cond_resched(); 7025 } 7026 return ret_val; 7027 } 7028 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7029 7030 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7031 7032 static struct kmem_cache *page_ptl_cachep; 7033 7034 void __init ptlock_cache_init(void) 7035 { 7036 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7037 SLAB_PANIC, NULL); 7038 } 7039 7040 bool ptlock_alloc(struct ptdesc *ptdesc) 7041 { 7042 spinlock_t *ptl; 7043 7044 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7045 if (!ptl) 7046 return false; 7047 ptdesc->ptl = ptl; 7048 return true; 7049 } 7050 7051 void ptlock_free(struct ptdesc *ptdesc) 7052 { 7053 if (ptdesc->ptl) 7054 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7055 } 7056 #endif 7057 7058 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7059 { 7060 if (is_vm_hugetlb_page(vma)) 7061 hugetlb_vma_lock_read(vma); 7062 } 7063 7064 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7065 { 7066 if (is_vm_hugetlb_page(vma)) 7067 hugetlb_vma_unlock_read(vma); 7068 } 7069