1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/module.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 61 #include <asm/io.h> 62 #include <asm/pgalloc.h> 63 #include <asm/uaccess.h> 64 #include <asm/tlb.h> 65 #include <asm/tlbflush.h> 66 #include <asm/pgtable.h> 67 68 #include "internal.h" 69 70 #ifndef CONFIG_NEED_MULTIPLE_NODES 71 /* use the per-pgdat data instead for discontigmem - mbligh */ 72 unsigned long max_mapnr; 73 struct page *mem_map; 74 75 EXPORT_SYMBOL(max_mapnr); 76 EXPORT_SYMBOL(mem_map); 77 #endif 78 79 unsigned long num_physpages; 80 /* 81 * A number of key systems in x86 including ioremap() rely on the assumption 82 * that high_memory defines the upper bound on direct map memory, then end 83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 85 * and ZONE_HIGHMEM. 86 */ 87 void * high_memory; 88 89 EXPORT_SYMBOL(num_physpages); 90 EXPORT_SYMBOL(high_memory); 91 92 /* 93 * Randomize the address space (stacks, mmaps, brk, etc.). 94 * 95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 96 * as ancient (libc5 based) binaries can segfault. ) 97 */ 98 int randomize_va_space __read_mostly = 99 #ifdef CONFIG_COMPAT_BRK 100 1; 101 #else 102 2; 103 #endif 104 105 static int __init disable_randmaps(char *s) 106 { 107 randomize_va_space = 0; 108 return 1; 109 } 110 __setup("norandmaps", disable_randmaps); 111 112 unsigned long zero_pfn __read_mostly; 113 unsigned long highest_memmap_pfn __read_mostly; 114 115 /* 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 117 */ 118 static int __init init_zero_pfn(void) 119 { 120 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 121 return 0; 122 } 123 core_initcall(init_zero_pfn); 124 125 126 #if defined(SPLIT_RSS_COUNTING) 127 128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) 129 { 130 int i; 131 132 for (i = 0; i < NR_MM_COUNTERS; i++) { 133 if (task->rss_stat.count[i]) { 134 add_mm_counter(mm, i, task->rss_stat.count[i]); 135 task->rss_stat.count[i] = 0; 136 } 137 } 138 task->rss_stat.events = 0; 139 } 140 141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 142 { 143 struct task_struct *task = current; 144 145 if (likely(task->mm == mm)) 146 task->rss_stat.count[member] += val; 147 else 148 add_mm_counter(mm, member, val); 149 } 150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 152 153 /* sync counter once per 64 page faults */ 154 #define TASK_RSS_EVENTS_THRESH (64) 155 static void check_sync_rss_stat(struct task_struct *task) 156 { 157 if (unlikely(task != current)) 158 return; 159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 160 __sync_task_rss_stat(task, task->mm); 161 } 162 163 unsigned long get_mm_counter(struct mm_struct *mm, int member) 164 { 165 long val = 0; 166 167 /* 168 * Don't use task->mm here...for avoiding to use task_get_mm().. 169 * The caller must guarantee task->mm is not invalid. 170 */ 171 val = atomic_long_read(&mm->rss_stat.count[member]); 172 /* 173 * counter is updated in asynchronous manner and may go to minus. 174 * But it's never be expected number for users. 175 */ 176 if (val < 0) 177 return 0; 178 return (unsigned long)val; 179 } 180 181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 182 { 183 __sync_task_rss_stat(task, mm); 184 } 185 #else 186 187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 189 190 static void check_sync_rss_stat(struct task_struct *task) 191 { 192 } 193 194 #endif 195 196 /* 197 * If a p?d_bad entry is found while walking page tables, report 198 * the error, before resetting entry to p?d_none. Usually (but 199 * very seldom) called out from the p?d_none_or_clear_bad macros. 200 */ 201 202 void pgd_clear_bad(pgd_t *pgd) 203 { 204 pgd_ERROR(*pgd); 205 pgd_clear(pgd); 206 } 207 208 void pud_clear_bad(pud_t *pud) 209 { 210 pud_ERROR(*pud); 211 pud_clear(pud); 212 } 213 214 void pmd_clear_bad(pmd_t *pmd) 215 { 216 pmd_ERROR(*pmd); 217 pmd_clear(pmd); 218 } 219 220 /* 221 * Note: this doesn't free the actual pages themselves. That 222 * has been handled earlier when unmapping all the memory regions. 223 */ 224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 225 unsigned long addr) 226 { 227 pgtable_t token = pmd_pgtable(*pmd); 228 pmd_clear(pmd); 229 pte_free_tlb(tlb, token, addr); 230 tlb->mm->nr_ptes--; 231 } 232 233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 234 unsigned long addr, unsigned long end, 235 unsigned long floor, unsigned long ceiling) 236 { 237 pmd_t *pmd; 238 unsigned long next; 239 unsigned long start; 240 241 start = addr; 242 pmd = pmd_offset(pud, addr); 243 do { 244 next = pmd_addr_end(addr, end); 245 if (pmd_none_or_clear_bad(pmd)) 246 continue; 247 free_pte_range(tlb, pmd, addr); 248 } while (pmd++, addr = next, addr != end); 249 250 start &= PUD_MASK; 251 if (start < floor) 252 return; 253 if (ceiling) { 254 ceiling &= PUD_MASK; 255 if (!ceiling) 256 return; 257 } 258 if (end - 1 > ceiling - 1) 259 return; 260 261 pmd = pmd_offset(pud, start); 262 pud_clear(pud); 263 pmd_free_tlb(tlb, pmd, start); 264 } 265 266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 pud_t *pud; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 pud = pud_offset(pgd, addr); 276 do { 277 next = pud_addr_end(addr, end); 278 if (pud_none_or_clear_bad(pud)) 279 continue; 280 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 281 } while (pud++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 pud = pud_offset(pgd, start); 295 pgd_clear(pgd); 296 pud_free_tlb(tlb, pud, start); 297 } 298 299 /* 300 * This function frees user-level page tables of a process. 301 * 302 * Must be called with pagetable lock held. 303 */ 304 void free_pgd_range(struct mmu_gather *tlb, 305 unsigned long addr, unsigned long end, 306 unsigned long floor, unsigned long ceiling) 307 { 308 pgd_t *pgd; 309 unsigned long next; 310 311 /* 312 * The next few lines have given us lots of grief... 313 * 314 * Why are we testing PMD* at this top level? Because often 315 * there will be no work to do at all, and we'd prefer not to 316 * go all the way down to the bottom just to discover that. 317 * 318 * Why all these "- 1"s? Because 0 represents both the bottom 319 * of the address space and the top of it (using -1 for the 320 * top wouldn't help much: the masks would do the wrong thing). 321 * The rule is that addr 0 and floor 0 refer to the bottom of 322 * the address space, but end 0 and ceiling 0 refer to the top 323 * Comparisons need to use "end - 1" and "ceiling - 1" (though 324 * that end 0 case should be mythical). 325 * 326 * Wherever addr is brought up or ceiling brought down, we must 327 * be careful to reject "the opposite 0" before it confuses the 328 * subsequent tests. But what about where end is brought down 329 * by PMD_SIZE below? no, end can't go down to 0 there. 330 * 331 * Whereas we round start (addr) and ceiling down, by different 332 * masks at different levels, in order to test whether a table 333 * now has no other vmas using it, so can be freed, we don't 334 * bother to round floor or end up - the tests don't need that. 335 */ 336 337 addr &= PMD_MASK; 338 if (addr < floor) { 339 addr += PMD_SIZE; 340 if (!addr) 341 return; 342 } 343 if (ceiling) { 344 ceiling &= PMD_MASK; 345 if (!ceiling) 346 return; 347 } 348 if (end - 1 > ceiling - 1) 349 end -= PMD_SIZE; 350 if (addr > end - 1) 351 return; 352 353 pgd = pgd_offset(tlb->mm, addr); 354 do { 355 next = pgd_addr_end(addr, end); 356 if (pgd_none_or_clear_bad(pgd)) 357 continue; 358 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 359 } while (pgd++, addr = next, addr != end); 360 } 361 362 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 363 unsigned long floor, unsigned long ceiling) 364 { 365 while (vma) { 366 struct vm_area_struct *next = vma->vm_next; 367 unsigned long addr = vma->vm_start; 368 369 /* 370 * Hide vma from rmap and truncate_pagecache before freeing 371 * pgtables 372 */ 373 unlink_anon_vmas(vma); 374 unlink_file_vma(vma); 375 376 if (is_vm_hugetlb_page(vma)) { 377 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 378 floor, next? next->vm_start: ceiling); 379 } else { 380 /* 381 * Optimization: gather nearby vmas into one call down 382 */ 383 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 384 && !is_vm_hugetlb_page(next)) { 385 vma = next; 386 next = vma->vm_next; 387 unlink_anon_vmas(vma); 388 unlink_file_vma(vma); 389 } 390 free_pgd_range(tlb, addr, vma->vm_end, 391 floor, next? next->vm_start: ceiling); 392 } 393 vma = next; 394 } 395 } 396 397 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 398 pmd_t *pmd, unsigned long address) 399 { 400 pgtable_t new = pte_alloc_one(mm, address); 401 int wait_split_huge_page; 402 if (!new) 403 return -ENOMEM; 404 405 /* 406 * Ensure all pte setup (eg. pte page lock and page clearing) are 407 * visible before the pte is made visible to other CPUs by being 408 * put into page tables. 409 * 410 * The other side of the story is the pointer chasing in the page 411 * table walking code (when walking the page table without locking; 412 * ie. most of the time). Fortunately, these data accesses consist 413 * of a chain of data-dependent loads, meaning most CPUs (alpha 414 * being the notable exception) will already guarantee loads are 415 * seen in-order. See the alpha page table accessors for the 416 * smp_read_barrier_depends() barriers in page table walking code. 417 */ 418 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 419 420 spin_lock(&mm->page_table_lock); 421 wait_split_huge_page = 0; 422 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 423 mm->nr_ptes++; 424 pmd_populate(mm, pmd, new); 425 new = NULL; 426 } else if (unlikely(pmd_trans_splitting(*pmd))) 427 wait_split_huge_page = 1; 428 spin_unlock(&mm->page_table_lock); 429 if (new) 430 pte_free(mm, new); 431 if (wait_split_huge_page) 432 wait_split_huge_page(vma->anon_vma, pmd); 433 return 0; 434 } 435 436 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 437 { 438 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 439 if (!new) 440 return -ENOMEM; 441 442 smp_wmb(); /* See comment in __pte_alloc */ 443 444 spin_lock(&init_mm.page_table_lock); 445 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 446 pmd_populate_kernel(&init_mm, pmd, new); 447 new = NULL; 448 } else 449 VM_BUG_ON(pmd_trans_splitting(*pmd)); 450 spin_unlock(&init_mm.page_table_lock); 451 if (new) 452 pte_free_kernel(&init_mm, new); 453 return 0; 454 } 455 456 static inline void init_rss_vec(int *rss) 457 { 458 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 459 } 460 461 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 462 { 463 int i; 464 465 if (current->mm == mm) 466 sync_mm_rss(current, mm); 467 for (i = 0; i < NR_MM_COUNTERS; i++) 468 if (rss[i]) 469 add_mm_counter(mm, i, rss[i]); 470 } 471 472 /* 473 * This function is called to print an error when a bad pte 474 * is found. For example, we might have a PFN-mapped pte in 475 * a region that doesn't allow it. 476 * 477 * The calling function must still handle the error. 478 */ 479 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 480 pte_t pte, struct page *page) 481 { 482 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 483 pud_t *pud = pud_offset(pgd, addr); 484 pmd_t *pmd = pmd_offset(pud, addr); 485 struct address_space *mapping; 486 pgoff_t index; 487 static unsigned long resume; 488 static unsigned long nr_shown; 489 static unsigned long nr_unshown; 490 491 /* 492 * Allow a burst of 60 reports, then keep quiet for that minute; 493 * or allow a steady drip of one report per second. 494 */ 495 if (nr_shown == 60) { 496 if (time_before(jiffies, resume)) { 497 nr_unshown++; 498 return; 499 } 500 if (nr_unshown) { 501 printk(KERN_ALERT 502 "BUG: Bad page map: %lu messages suppressed\n", 503 nr_unshown); 504 nr_unshown = 0; 505 } 506 nr_shown = 0; 507 } 508 if (nr_shown++ == 0) 509 resume = jiffies + 60 * HZ; 510 511 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 512 index = linear_page_index(vma, addr); 513 514 printk(KERN_ALERT 515 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 516 current->comm, 517 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 518 if (page) 519 dump_page(page); 520 printk(KERN_ALERT 521 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 523 /* 524 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 525 */ 526 if (vma->vm_ops) 527 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 528 (unsigned long)vma->vm_ops->fault); 529 if (vma->vm_file && vma->vm_file->f_op) 530 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 531 (unsigned long)vma->vm_file->f_op->mmap); 532 dump_stack(); 533 add_taint(TAINT_BAD_PAGE); 534 } 535 536 static inline int is_cow_mapping(unsigned int flags) 537 { 538 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 539 } 540 541 #ifndef is_zero_pfn 542 static inline int is_zero_pfn(unsigned long pfn) 543 { 544 return pfn == zero_pfn; 545 } 546 #endif 547 548 #ifndef my_zero_pfn 549 static inline unsigned long my_zero_pfn(unsigned long addr) 550 { 551 return zero_pfn; 552 } 553 #endif 554 555 /* 556 * vm_normal_page -- This function gets the "struct page" associated with a pte. 557 * 558 * "Special" mappings do not wish to be associated with a "struct page" (either 559 * it doesn't exist, or it exists but they don't want to touch it). In this 560 * case, NULL is returned here. "Normal" mappings do have a struct page. 561 * 562 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 563 * pte bit, in which case this function is trivial. Secondly, an architecture 564 * may not have a spare pte bit, which requires a more complicated scheme, 565 * described below. 566 * 567 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 568 * special mapping (even if there are underlying and valid "struct pages"). 569 * COWed pages of a VM_PFNMAP are always normal. 570 * 571 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 572 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 573 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 574 * mapping will always honor the rule 575 * 576 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 577 * 578 * And for normal mappings this is false. 579 * 580 * This restricts such mappings to be a linear translation from virtual address 581 * to pfn. To get around this restriction, we allow arbitrary mappings so long 582 * as the vma is not a COW mapping; in that case, we know that all ptes are 583 * special (because none can have been COWed). 584 * 585 * 586 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 587 * 588 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 589 * page" backing, however the difference is that _all_ pages with a struct 590 * page (that is, those where pfn_valid is true) are refcounted and considered 591 * normal pages by the VM. The disadvantage is that pages are refcounted 592 * (which can be slower and simply not an option for some PFNMAP users). The 593 * advantage is that we don't have to follow the strict linearity rule of 594 * PFNMAP mappings in order to support COWable mappings. 595 * 596 */ 597 #ifdef __HAVE_ARCH_PTE_SPECIAL 598 # define HAVE_PTE_SPECIAL 1 599 #else 600 # define HAVE_PTE_SPECIAL 0 601 #endif 602 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 603 pte_t pte) 604 { 605 unsigned long pfn = pte_pfn(pte); 606 607 if (HAVE_PTE_SPECIAL) { 608 if (likely(!pte_special(pte))) 609 goto check_pfn; 610 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 611 return NULL; 612 if (!is_zero_pfn(pfn)) 613 print_bad_pte(vma, addr, pte, NULL); 614 return NULL; 615 } 616 617 /* !HAVE_PTE_SPECIAL case follows: */ 618 619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 620 if (vma->vm_flags & VM_MIXEDMAP) { 621 if (!pfn_valid(pfn)) 622 return NULL; 623 goto out; 624 } else { 625 unsigned long off; 626 off = (addr - vma->vm_start) >> PAGE_SHIFT; 627 if (pfn == vma->vm_pgoff + off) 628 return NULL; 629 if (!is_cow_mapping(vma->vm_flags)) 630 return NULL; 631 } 632 } 633 634 if (is_zero_pfn(pfn)) 635 return NULL; 636 check_pfn: 637 if (unlikely(pfn > highest_memmap_pfn)) { 638 print_bad_pte(vma, addr, pte, NULL); 639 return NULL; 640 } 641 642 /* 643 * NOTE! We still have PageReserved() pages in the page tables. 644 * eg. VDSO mappings can cause them to exist. 645 */ 646 out: 647 return pfn_to_page(pfn); 648 } 649 650 /* 651 * copy one vm_area from one task to the other. Assumes the page tables 652 * already present in the new task to be cleared in the whole range 653 * covered by this vma. 654 */ 655 656 static inline unsigned long 657 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 658 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 659 unsigned long addr, int *rss) 660 { 661 unsigned long vm_flags = vma->vm_flags; 662 pte_t pte = *src_pte; 663 struct page *page; 664 665 /* pte contains position in swap or file, so copy. */ 666 if (unlikely(!pte_present(pte))) { 667 if (!pte_file(pte)) { 668 swp_entry_t entry = pte_to_swp_entry(pte); 669 670 if (swap_duplicate(entry) < 0) 671 return entry.val; 672 673 /* make sure dst_mm is on swapoff's mmlist. */ 674 if (unlikely(list_empty(&dst_mm->mmlist))) { 675 spin_lock(&mmlist_lock); 676 if (list_empty(&dst_mm->mmlist)) 677 list_add(&dst_mm->mmlist, 678 &src_mm->mmlist); 679 spin_unlock(&mmlist_lock); 680 } 681 if (likely(!non_swap_entry(entry))) 682 rss[MM_SWAPENTS]++; 683 else if (is_write_migration_entry(entry) && 684 is_cow_mapping(vm_flags)) { 685 /* 686 * COW mappings require pages in both parent 687 * and child to be set to read. 688 */ 689 make_migration_entry_read(&entry); 690 pte = swp_entry_to_pte(entry); 691 set_pte_at(src_mm, addr, src_pte, pte); 692 } 693 } 694 goto out_set_pte; 695 } 696 697 /* 698 * If it's a COW mapping, write protect it both 699 * in the parent and the child 700 */ 701 if (is_cow_mapping(vm_flags)) { 702 ptep_set_wrprotect(src_mm, addr, src_pte); 703 pte = pte_wrprotect(pte); 704 } 705 706 /* 707 * If it's a shared mapping, mark it clean in 708 * the child 709 */ 710 if (vm_flags & VM_SHARED) 711 pte = pte_mkclean(pte); 712 pte = pte_mkold(pte); 713 714 page = vm_normal_page(vma, addr, pte); 715 if (page) { 716 get_page(page); 717 page_dup_rmap(page); 718 if (PageAnon(page)) 719 rss[MM_ANONPAGES]++; 720 else 721 rss[MM_FILEPAGES]++; 722 } 723 724 out_set_pte: 725 set_pte_at(dst_mm, addr, dst_pte, pte); 726 return 0; 727 } 728 729 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 730 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 731 unsigned long addr, unsigned long end) 732 { 733 pte_t *orig_src_pte, *orig_dst_pte; 734 pte_t *src_pte, *dst_pte; 735 spinlock_t *src_ptl, *dst_ptl; 736 int progress = 0; 737 int rss[NR_MM_COUNTERS]; 738 swp_entry_t entry = (swp_entry_t){0}; 739 740 again: 741 init_rss_vec(rss); 742 743 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 744 if (!dst_pte) 745 return -ENOMEM; 746 src_pte = pte_offset_map(src_pmd, addr); 747 src_ptl = pte_lockptr(src_mm, src_pmd); 748 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 749 orig_src_pte = src_pte; 750 orig_dst_pte = dst_pte; 751 arch_enter_lazy_mmu_mode(); 752 753 do { 754 /* 755 * We are holding two locks at this point - either of them 756 * could generate latencies in another task on another CPU. 757 */ 758 if (progress >= 32) { 759 progress = 0; 760 if (need_resched() || 761 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 762 break; 763 } 764 if (pte_none(*src_pte)) { 765 progress++; 766 continue; 767 } 768 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 769 vma, addr, rss); 770 if (entry.val) 771 break; 772 progress += 8; 773 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 774 775 arch_leave_lazy_mmu_mode(); 776 spin_unlock(src_ptl); 777 pte_unmap(orig_src_pte); 778 add_mm_rss_vec(dst_mm, rss); 779 pte_unmap_unlock(orig_dst_pte, dst_ptl); 780 cond_resched(); 781 782 if (entry.val) { 783 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 784 return -ENOMEM; 785 progress = 0; 786 } 787 if (addr != end) 788 goto again; 789 return 0; 790 } 791 792 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 793 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 794 unsigned long addr, unsigned long end) 795 { 796 pmd_t *src_pmd, *dst_pmd; 797 unsigned long next; 798 799 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 800 if (!dst_pmd) 801 return -ENOMEM; 802 src_pmd = pmd_offset(src_pud, addr); 803 do { 804 next = pmd_addr_end(addr, end); 805 if (pmd_trans_huge(*src_pmd)) { 806 int err; 807 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 808 err = copy_huge_pmd(dst_mm, src_mm, 809 dst_pmd, src_pmd, addr, vma); 810 if (err == -ENOMEM) 811 return -ENOMEM; 812 if (!err) 813 continue; 814 /* fall through */ 815 } 816 if (pmd_none_or_clear_bad(src_pmd)) 817 continue; 818 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 819 vma, addr, next)) 820 return -ENOMEM; 821 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 822 return 0; 823 } 824 825 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 826 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 827 unsigned long addr, unsigned long end) 828 { 829 pud_t *src_pud, *dst_pud; 830 unsigned long next; 831 832 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 833 if (!dst_pud) 834 return -ENOMEM; 835 src_pud = pud_offset(src_pgd, addr); 836 do { 837 next = pud_addr_end(addr, end); 838 if (pud_none_or_clear_bad(src_pud)) 839 continue; 840 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 841 vma, addr, next)) 842 return -ENOMEM; 843 } while (dst_pud++, src_pud++, addr = next, addr != end); 844 return 0; 845 } 846 847 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 848 struct vm_area_struct *vma) 849 { 850 pgd_t *src_pgd, *dst_pgd; 851 unsigned long next; 852 unsigned long addr = vma->vm_start; 853 unsigned long end = vma->vm_end; 854 int ret; 855 856 /* 857 * Don't copy ptes where a page fault will fill them correctly. 858 * Fork becomes much lighter when there are big shared or private 859 * readonly mappings. The tradeoff is that copy_page_range is more 860 * efficient than faulting. 861 */ 862 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 863 if (!vma->anon_vma) 864 return 0; 865 } 866 867 if (is_vm_hugetlb_page(vma)) 868 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 869 870 if (unlikely(is_pfn_mapping(vma))) { 871 /* 872 * We do not free on error cases below as remove_vma 873 * gets called on error from higher level routine 874 */ 875 ret = track_pfn_vma_copy(vma); 876 if (ret) 877 return ret; 878 } 879 880 /* 881 * We need to invalidate the secondary MMU mappings only when 882 * there could be a permission downgrade on the ptes of the 883 * parent mm. And a permission downgrade will only happen if 884 * is_cow_mapping() returns true. 885 */ 886 if (is_cow_mapping(vma->vm_flags)) 887 mmu_notifier_invalidate_range_start(src_mm, addr, end); 888 889 ret = 0; 890 dst_pgd = pgd_offset(dst_mm, addr); 891 src_pgd = pgd_offset(src_mm, addr); 892 do { 893 next = pgd_addr_end(addr, end); 894 if (pgd_none_or_clear_bad(src_pgd)) 895 continue; 896 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 897 vma, addr, next))) { 898 ret = -ENOMEM; 899 break; 900 } 901 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 902 903 if (is_cow_mapping(vma->vm_flags)) 904 mmu_notifier_invalidate_range_end(src_mm, 905 vma->vm_start, end); 906 return ret; 907 } 908 909 static unsigned long zap_pte_range(struct mmu_gather *tlb, 910 struct vm_area_struct *vma, pmd_t *pmd, 911 unsigned long addr, unsigned long end, 912 long *zap_work, struct zap_details *details) 913 { 914 struct mm_struct *mm = tlb->mm; 915 pte_t *pte; 916 spinlock_t *ptl; 917 int rss[NR_MM_COUNTERS]; 918 919 init_rss_vec(rss); 920 921 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 922 arch_enter_lazy_mmu_mode(); 923 do { 924 pte_t ptent = *pte; 925 if (pte_none(ptent)) { 926 (*zap_work)--; 927 continue; 928 } 929 930 (*zap_work) -= PAGE_SIZE; 931 932 if (pte_present(ptent)) { 933 struct page *page; 934 935 page = vm_normal_page(vma, addr, ptent); 936 if (unlikely(details) && page) { 937 /* 938 * unmap_shared_mapping_pages() wants to 939 * invalidate cache without truncating: 940 * unmap shared but keep private pages. 941 */ 942 if (details->check_mapping && 943 details->check_mapping != page->mapping) 944 continue; 945 /* 946 * Each page->index must be checked when 947 * invalidating or truncating nonlinear. 948 */ 949 if (details->nonlinear_vma && 950 (page->index < details->first_index || 951 page->index > details->last_index)) 952 continue; 953 } 954 ptent = ptep_get_and_clear_full(mm, addr, pte, 955 tlb->fullmm); 956 tlb_remove_tlb_entry(tlb, pte, addr); 957 if (unlikely(!page)) 958 continue; 959 if (unlikely(details) && details->nonlinear_vma 960 && linear_page_index(details->nonlinear_vma, 961 addr) != page->index) 962 set_pte_at(mm, addr, pte, 963 pgoff_to_pte(page->index)); 964 if (PageAnon(page)) 965 rss[MM_ANONPAGES]--; 966 else { 967 if (pte_dirty(ptent)) 968 set_page_dirty(page); 969 if (pte_young(ptent) && 970 likely(!VM_SequentialReadHint(vma))) 971 mark_page_accessed(page); 972 rss[MM_FILEPAGES]--; 973 } 974 page_remove_rmap(page); 975 if (unlikely(page_mapcount(page) < 0)) 976 print_bad_pte(vma, addr, ptent, page); 977 tlb_remove_page(tlb, page); 978 continue; 979 } 980 /* 981 * If details->check_mapping, we leave swap entries; 982 * if details->nonlinear_vma, we leave file entries. 983 */ 984 if (unlikely(details)) 985 continue; 986 if (pte_file(ptent)) { 987 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 988 print_bad_pte(vma, addr, ptent, NULL); 989 } else { 990 swp_entry_t entry = pte_to_swp_entry(ptent); 991 992 if (!non_swap_entry(entry)) 993 rss[MM_SWAPENTS]--; 994 if (unlikely(!free_swap_and_cache(entry))) 995 print_bad_pte(vma, addr, ptent, NULL); 996 } 997 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 998 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 999 1000 add_mm_rss_vec(mm, rss); 1001 arch_leave_lazy_mmu_mode(); 1002 pte_unmap_unlock(pte - 1, ptl); 1003 1004 return addr; 1005 } 1006 1007 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1008 struct vm_area_struct *vma, pud_t *pud, 1009 unsigned long addr, unsigned long end, 1010 long *zap_work, struct zap_details *details) 1011 { 1012 pmd_t *pmd; 1013 unsigned long next; 1014 1015 pmd = pmd_offset(pud, addr); 1016 do { 1017 next = pmd_addr_end(addr, end); 1018 if (pmd_trans_huge(*pmd)) { 1019 if (next-addr != HPAGE_PMD_SIZE) { 1020 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); 1021 split_huge_page_pmd(vma->vm_mm, pmd); 1022 } else if (zap_huge_pmd(tlb, vma, pmd)) { 1023 (*zap_work)--; 1024 continue; 1025 } 1026 /* fall through */ 1027 } 1028 if (pmd_none_or_clear_bad(pmd)) { 1029 (*zap_work)--; 1030 continue; 1031 } 1032 next = zap_pte_range(tlb, vma, pmd, addr, next, 1033 zap_work, details); 1034 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 1035 1036 return addr; 1037 } 1038 1039 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1040 struct vm_area_struct *vma, pgd_t *pgd, 1041 unsigned long addr, unsigned long end, 1042 long *zap_work, struct zap_details *details) 1043 { 1044 pud_t *pud; 1045 unsigned long next; 1046 1047 pud = pud_offset(pgd, addr); 1048 do { 1049 next = pud_addr_end(addr, end); 1050 if (pud_none_or_clear_bad(pud)) { 1051 (*zap_work)--; 1052 continue; 1053 } 1054 next = zap_pmd_range(tlb, vma, pud, addr, next, 1055 zap_work, details); 1056 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 1057 1058 return addr; 1059 } 1060 1061 static unsigned long unmap_page_range(struct mmu_gather *tlb, 1062 struct vm_area_struct *vma, 1063 unsigned long addr, unsigned long end, 1064 long *zap_work, struct zap_details *details) 1065 { 1066 pgd_t *pgd; 1067 unsigned long next; 1068 1069 if (details && !details->check_mapping && !details->nonlinear_vma) 1070 details = NULL; 1071 1072 BUG_ON(addr >= end); 1073 mem_cgroup_uncharge_start(); 1074 tlb_start_vma(tlb, vma); 1075 pgd = pgd_offset(vma->vm_mm, addr); 1076 do { 1077 next = pgd_addr_end(addr, end); 1078 if (pgd_none_or_clear_bad(pgd)) { 1079 (*zap_work)--; 1080 continue; 1081 } 1082 next = zap_pud_range(tlb, vma, pgd, addr, next, 1083 zap_work, details); 1084 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 1085 tlb_end_vma(tlb, vma); 1086 mem_cgroup_uncharge_end(); 1087 1088 return addr; 1089 } 1090 1091 #ifdef CONFIG_PREEMPT 1092 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 1093 #else 1094 /* No preempt: go for improved straight-line efficiency */ 1095 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 1096 #endif 1097 1098 /** 1099 * unmap_vmas - unmap a range of memory covered by a list of vma's 1100 * @tlbp: address of the caller's struct mmu_gather 1101 * @vma: the starting vma 1102 * @start_addr: virtual address at which to start unmapping 1103 * @end_addr: virtual address at which to end unmapping 1104 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 1105 * @details: details of nonlinear truncation or shared cache invalidation 1106 * 1107 * Returns the end address of the unmapping (restart addr if interrupted). 1108 * 1109 * Unmap all pages in the vma list. 1110 * 1111 * We aim to not hold locks for too long (for scheduling latency reasons). 1112 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 1113 * return the ending mmu_gather to the caller. 1114 * 1115 * Only addresses between `start' and `end' will be unmapped. 1116 * 1117 * The VMA list must be sorted in ascending virtual address order. 1118 * 1119 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1120 * range after unmap_vmas() returns. So the only responsibility here is to 1121 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1122 * drops the lock and schedules. 1123 */ 1124 unsigned long unmap_vmas(struct mmu_gather **tlbp, 1125 struct vm_area_struct *vma, unsigned long start_addr, 1126 unsigned long end_addr, unsigned long *nr_accounted, 1127 struct zap_details *details) 1128 { 1129 long zap_work = ZAP_BLOCK_SIZE; 1130 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 1131 int tlb_start_valid = 0; 1132 unsigned long start = start_addr; 1133 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 1134 int fullmm = (*tlbp)->fullmm; 1135 struct mm_struct *mm = vma->vm_mm; 1136 1137 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1138 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 1139 unsigned long end; 1140 1141 start = max(vma->vm_start, start_addr); 1142 if (start >= vma->vm_end) 1143 continue; 1144 end = min(vma->vm_end, end_addr); 1145 if (end <= vma->vm_start) 1146 continue; 1147 1148 if (vma->vm_flags & VM_ACCOUNT) 1149 *nr_accounted += (end - start) >> PAGE_SHIFT; 1150 1151 if (unlikely(is_pfn_mapping(vma))) 1152 untrack_pfn_vma(vma, 0, 0); 1153 1154 while (start != end) { 1155 if (!tlb_start_valid) { 1156 tlb_start = start; 1157 tlb_start_valid = 1; 1158 } 1159 1160 if (unlikely(is_vm_hugetlb_page(vma))) { 1161 /* 1162 * It is undesirable to test vma->vm_file as it 1163 * should be non-null for valid hugetlb area. 1164 * However, vm_file will be NULL in the error 1165 * cleanup path of do_mmap_pgoff. When 1166 * hugetlbfs ->mmap method fails, 1167 * do_mmap_pgoff() nullifies vma->vm_file 1168 * before calling this function to clean up. 1169 * Since no pte has actually been setup, it is 1170 * safe to do nothing in this case. 1171 */ 1172 if (vma->vm_file) { 1173 unmap_hugepage_range(vma, start, end, NULL); 1174 zap_work -= (end - start) / 1175 pages_per_huge_page(hstate_vma(vma)); 1176 } 1177 1178 start = end; 1179 } else 1180 start = unmap_page_range(*tlbp, vma, 1181 start, end, &zap_work, details); 1182 1183 if (zap_work > 0) { 1184 BUG_ON(start != end); 1185 break; 1186 } 1187 1188 tlb_finish_mmu(*tlbp, tlb_start, start); 1189 1190 if (need_resched() || 1191 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 1192 if (i_mmap_lock) { 1193 *tlbp = NULL; 1194 goto out; 1195 } 1196 cond_resched(); 1197 } 1198 1199 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 1200 tlb_start_valid = 0; 1201 zap_work = ZAP_BLOCK_SIZE; 1202 } 1203 } 1204 out: 1205 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1206 return start; /* which is now the end (or restart) address */ 1207 } 1208 1209 /** 1210 * zap_page_range - remove user pages in a given range 1211 * @vma: vm_area_struct holding the applicable pages 1212 * @address: starting address of pages to zap 1213 * @size: number of bytes to zap 1214 * @details: details of nonlinear truncation or shared cache invalidation 1215 */ 1216 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1217 unsigned long size, struct zap_details *details) 1218 { 1219 struct mm_struct *mm = vma->vm_mm; 1220 struct mmu_gather *tlb; 1221 unsigned long end = address + size; 1222 unsigned long nr_accounted = 0; 1223 1224 lru_add_drain(); 1225 tlb = tlb_gather_mmu(mm, 0); 1226 update_hiwater_rss(mm); 1227 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1228 if (tlb) 1229 tlb_finish_mmu(tlb, address, end); 1230 return end; 1231 } 1232 1233 /** 1234 * zap_vma_ptes - remove ptes mapping the vma 1235 * @vma: vm_area_struct holding ptes to be zapped 1236 * @address: starting address of pages to zap 1237 * @size: number of bytes to zap 1238 * 1239 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1240 * 1241 * The entire address range must be fully contained within the vma. 1242 * 1243 * Returns 0 if successful. 1244 */ 1245 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1246 unsigned long size) 1247 { 1248 if (address < vma->vm_start || address + size > vma->vm_end || 1249 !(vma->vm_flags & VM_PFNMAP)) 1250 return -1; 1251 zap_page_range(vma, address, size, NULL); 1252 return 0; 1253 } 1254 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1255 1256 /** 1257 * follow_page - look up a page descriptor from a user-virtual address 1258 * @vma: vm_area_struct mapping @address 1259 * @address: virtual address to look up 1260 * @flags: flags modifying lookup behaviour 1261 * 1262 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1263 * 1264 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1265 * an error pointer if there is a mapping to something not represented 1266 * by a page descriptor (see also vm_normal_page()). 1267 */ 1268 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1269 unsigned int flags) 1270 { 1271 pgd_t *pgd; 1272 pud_t *pud; 1273 pmd_t *pmd; 1274 pte_t *ptep, pte; 1275 spinlock_t *ptl; 1276 struct page *page; 1277 struct mm_struct *mm = vma->vm_mm; 1278 1279 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1280 if (!IS_ERR(page)) { 1281 BUG_ON(flags & FOLL_GET); 1282 goto out; 1283 } 1284 1285 page = NULL; 1286 pgd = pgd_offset(mm, address); 1287 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1288 goto no_page_table; 1289 1290 pud = pud_offset(pgd, address); 1291 if (pud_none(*pud)) 1292 goto no_page_table; 1293 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1294 BUG_ON(flags & FOLL_GET); 1295 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1296 goto out; 1297 } 1298 if (unlikely(pud_bad(*pud))) 1299 goto no_page_table; 1300 1301 pmd = pmd_offset(pud, address); 1302 if (pmd_none(*pmd)) 1303 goto no_page_table; 1304 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1305 BUG_ON(flags & FOLL_GET); 1306 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1307 goto out; 1308 } 1309 if (pmd_trans_huge(*pmd)) { 1310 if (flags & FOLL_SPLIT) { 1311 split_huge_page_pmd(mm, pmd); 1312 goto split_fallthrough; 1313 } 1314 spin_lock(&mm->page_table_lock); 1315 if (likely(pmd_trans_huge(*pmd))) { 1316 if (unlikely(pmd_trans_splitting(*pmd))) { 1317 spin_unlock(&mm->page_table_lock); 1318 wait_split_huge_page(vma->anon_vma, pmd); 1319 } else { 1320 page = follow_trans_huge_pmd(mm, address, 1321 pmd, flags); 1322 spin_unlock(&mm->page_table_lock); 1323 goto out; 1324 } 1325 } else 1326 spin_unlock(&mm->page_table_lock); 1327 /* fall through */ 1328 } 1329 split_fallthrough: 1330 if (unlikely(pmd_bad(*pmd))) 1331 goto no_page_table; 1332 1333 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1334 1335 pte = *ptep; 1336 if (!pte_present(pte)) 1337 goto no_page; 1338 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1339 goto unlock; 1340 1341 page = vm_normal_page(vma, address, pte); 1342 if (unlikely(!page)) { 1343 if ((flags & FOLL_DUMP) || 1344 !is_zero_pfn(pte_pfn(pte))) 1345 goto bad_page; 1346 page = pte_page(pte); 1347 } 1348 1349 if (flags & FOLL_GET) 1350 get_page(page); 1351 if (flags & FOLL_TOUCH) { 1352 if ((flags & FOLL_WRITE) && 1353 !pte_dirty(pte) && !PageDirty(page)) 1354 set_page_dirty(page); 1355 /* 1356 * pte_mkyoung() would be more correct here, but atomic care 1357 * is needed to avoid losing the dirty bit: it is easier to use 1358 * mark_page_accessed(). 1359 */ 1360 mark_page_accessed(page); 1361 } 1362 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1363 /* 1364 * The preliminary mapping check is mainly to avoid the 1365 * pointless overhead of lock_page on the ZERO_PAGE 1366 * which might bounce very badly if there is contention. 1367 * 1368 * If the page is already locked, we don't need to 1369 * handle it now - vmscan will handle it later if and 1370 * when it attempts to reclaim the page. 1371 */ 1372 if (page->mapping && trylock_page(page)) { 1373 lru_add_drain(); /* push cached pages to LRU */ 1374 /* 1375 * Because we lock page here and migration is 1376 * blocked by the pte's page reference, we need 1377 * only check for file-cache page truncation. 1378 */ 1379 if (page->mapping) 1380 mlock_vma_page(page); 1381 unlock_page(page); 1382 } 1383 } 1384 unlock: 1385 pte_unmap_unlock(ptep, ptl); 1386 out: 1387 return page; 1388 1389 bad_page: 1390 pte_unmap_unlock(ptep, ptl); 1391 return ERR_PTR(-EFAULT); 1392 1393 no_page: 1394 pte_unmap_unlock(ptep, ptl); 1395 if (!pte_none(pte)) 1396 return page; 1397 1398 no_page_table: 1399 /* 1400 * When core dumping an enormous anonymous area that nobody 1401 * has touched so far, we don't want to allocate unnecessary pages or 1402 * page tables. Return error instead of NULL to skip handle_mm_fault, 1403 * then get_dump_page() will return NULL to leave a hole in the dump. 1404 * But we can only make this optimization where a hole would surely 1405 * be zero-filled if handle_mm_fault() actually did handle it. 1406 */ 1407 if ((flags & FOLL_DUMP) && 1408 (!vma->vm_ops || !vma->vm_ops->fault)) 1409 return ERR_PTR(-EFAULT); 1410 return page; 1411 } 1412 1413 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1414 { 1415 return stack_guard_page_start(vma, addr) || 1416 stack_guard_page_end(vma, addr+PAGE_SIZE); 1417 } 1418 1419 /** 1420 * __get_user_pages() - pin user pages in memory 1421 * @tsk: task_struct of target task 1422 * @mm: mm_struct of target mm 1423 * @start: starting user address 1424 * @nr_pages: number of pages from start to pin 1425 * @gup_flags: flags modifying pin behaviour 1426 * @pages: array that receives pointers to the pages pinned. 1427 * Should be at least nr_pages long. Or NULL, if caller 1428 * only intends to ensure the pages are faulted in. 1429 * @vmas: array of pointers to vmas corresponding to each page. 1430 * Or NULL if the caller does not require them. 1431 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1432 * 1433 * Returns number of pages pinned. This may be fewer than the number 1434 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1435 * were pinned, returns -errno. Each page returned must be released 1436 * with a put_page() call when it is finished with. vmas will only 1437 * remain valid while mmap_sem is held. 1438 * 1439 * Must be called with mmap_sem held for read or write. 1440 * 1441 * __get_user_pages walks a process's page tables and takes a reference to 1442 * each struct page that each user address corresponds to at a given 1443 * instant. That is, it takes the page that would be accessed if a user 1444 * thread accesses the given user virtual address at that instant. 1445 * 1446 * This does not guarantee that the page exists in the user mappings when 1447 * __get_user_pages returns, and there may even be a completely different 1448 * page there in some cases (eg. if mmapped pagecache has been invalidated 1449 * and subsequently re faulted). However it does guarantee that the page 1450 * won't be freed completely. And mostly callers simply care that the page 1451 * contains data that was valid *at some point in time*. Typically, an IO 1452 * or similar operation cannot guarantee anything stronger anyway because 1453 * locks can't be held over the syscall boundary. 1454 * 1455 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1456 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1457 * appropriate) must be called after the page is finished with, and 1458 * before put_page is called. 1459 * 1460 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1461 * or mmap_sem contention, and if waiting is needed to pin all pages, 1462 * *@nonblocking will be set to 0. 1463 * 1464 * In most cases, get_user_pages or get_user_pages_fast should be used 1465 * instead of __get_user_pages. __get_user_pages should be used only if 1466 * you need some special @gup_flags. 1467 */ 1468 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1469 unsigned long start, int nr_pages, unsigned int gup_flags, 1470 struct page **pages, struct vm_area_struct **vmas, 1471 int *nonblocking) 1472 { 1473 int i; 1474 unsigned long vm_flags; 1475 1476 if (nr_pages <= 0) 1477 return 0; 1478 1479 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1480 1481 /* 1482 * Require read or write permissions. 1483 * If FOLL_FORCE is set, we only require the "MAY" flags. 1484 */ 1485 vm_flags = (gup_flags & FOLL_WRITE) ? 1486 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1487 vm_flags &= (gup_flags & FOLL_FORCE) ? 1488 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1489 i = 0; 1490 1491 do { 1492 struct vm_area_struct *vma; 1493 1494 vma = find_extend_vma(mm, start); 1495 if (!vma && in_gate_area(mm, start)) { 1496 unsigned long pg = start & PAGE_MASK; 1497 pgd_t *pgd; 1498 pud_t *pud; 1499 pmd_t *pmd; 1500 pte_t *pte; 1501 1502 /* user gate pages are read-only */ 1503 if (gup_flags & FOLL_WRITE) 1504 return i ? : -EFAULT; 1505 if (pg > TASK_SIZE) 1506 pgd = pgd_offset_k(pg); 1507 else 1508 pgd = pgd_offset_gate(mm, pg); 1509 BUG_ON(pgd_none(*pgd)); 1510 pud = pud_offset(pgd, pg); 1511 BUG_ON(pud_none(*pud)); 1512 pmd = pmd_offset(pud, pg); 1513 if (pmd_none(*pmd)) 1514 return i ? : -EFAULT; 1515 VM_BUG_ON(pmd_trans_huge(*pmd)); 1516 pte = pte_offset_map(pmd, pg); 1517 if (pte_none(*pte)) { 1518 pte_unmap(pte); 1519 return i ? : -EFAULT; 1520 } 1521 vma = get_gate_vma(mm); 1522 if (pages) { 1523 struct page *page; 1524 1525 page = vm_normal_page(vma, start, *pte); 1526 if (!page) { 1527 if (!(gup_flags & FOLL_DUMP) && 1528 is_zero_pfn(pte_pfn(*pte))) 1529 page = pte_page(*pte); 1530 else { 1531 pte_unmap(pte); 1532 return i ? : -EFAULT; 1533 } 1534 } 1535 pages[i] = page; 1536 get_page(page); 1537 } 1538 pte_unmap(pte); 1539 goto next_page; 1540 } 1541 1542 if (!vma || 1543 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1544 !(vm_flags & vma->vm_flags)) 1545 return i ? : -EFAULT; 1546 1547 if (is_vm_hugetlb_page(vma)) { 1548 i = follow_hugetlb_page(mm, vma, pages, vmas, 1549 &start, &nr_pages, i, gup_flags); 1550 continue; 1551 } 1552 1553 do { 1554 struct page *page; 1555 unsigned int foll_flags = gup_flags; 1556 1557 /* 1558 * If we have a pending SIGKILL, don't keep faulting 1559 * pages and potentially allocating memory. 1560 */ 1561 if (unlikely(fatal_signal_pending(current))) 1562 return i ? i : -ERESTARTSYS; 1563 1564 cond_resched(); 1565 while (!(page = follow_page(vma, start, foll_flags))) { 1566 int ret; 1567 unsigned int fault_flags = 0; 1568 1569 /* For mlock, just skip the stack guard page. */ 1570 if (foll_flags & FOLL_MLOCK) { 1571 if (stack_guard_page(vma, start)) 1572 goto next_page; 1573 } 1574 if (foll_flags & FOLL_WRITE) 1575 fault_flags |= FAULT_FLAG_WRITE; 1576 if (nonblocking) 1577 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1578 if (foll_flags & FOLL_NOWAIT) 1579 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1580 1581 ret = handle_mm_fault(mm, vma, start, 1582 fault_flags); 1583 1584 if (ret & VM_FAULT_ERROR) { 1585 if (ret & VM_FAULT_OOM) 1586 return i ? i : -ENOMEM; 1587 if (ret & (VM_FAULT_HWPOISON | 1588 VM_FAULT_HWPOISON_LARGE)) { 1589 if (i) 1590 return i; 1591 else if (gup_flags & FOLL_HWPOISON) 1592 return -EHWPOISON; 1593 else 1594 return -EFAULT; 1595 } 1596 if (ret & VM_FAULT_SIGBUS) 1597 return i ? i : -EFAULT; 1598 BUG(); 1599 } 1600 1601 if (tsk) { 1602 if (ret & VM_FAULT_MAJOR) 1603 tsk->maj_flt++; 1604 else 1605 tsk->min_flt++; 1606 } 1607 1608 if (ret & VM_FAULT_RETRY) { 1609 if (nonblocking) 1610 *nonblocking = 0; 1611 return i; 1612 } 1613 1614 /* 1615 * The VM_FAULT_WRITE bit tells us that 1616 * do_wp_page has broken COW when necessary, 1617 * even if maybe_mkwrite decided not to set 1618 * pte_write. We can thus safely do subsequent 1619 * page lookups as if they were reads. But only 1620 * do so when looping for pte_write is futile: 1621 * in some cases userspace may also be wanting 1622 * to write to the gotten user page, which a 1623 * read fault here might prevent (a readonly 1624 * page might get reCOWed by userspace write). 1625 */ 1626 if ((ret & VM_FAULT_WRITE) && 1627 !(vma->vm_flags & VM_WRITE)) 1628 foll_flags &= ~FOLL_WRITE; 1629 1630 cond_resched(); 1631 } 1632 if (IS_ERR(page)) 1633 return i ? i : PTR_ERR(page); 1634 if (pages) { 1635 pages[i] = page; 1636 1637 flush_anon_page(vma, page, start); 1638 flush_dcache_page(page); 1639 } 1640 next_page: 1641 if (vmas) 1642 vmas[i] = vma; 1643 i++; 1644 start += PAGE_SIZE; 1645 nr_pages--; 1646 } while (nr_pages && start < vma->vm_end); 1647 } while (nr_pages); 1648 return i; 1649 } 1650 EXPORT_SYMBOL(__get_user_pages); 1651 1652 /** 1653 * get_user_pages() - pin user pages in memory 1654 * @tsk: the task_struct to use for page fault accounting, or 1655 * NULL if faults are not to be recorded. 1656 * @mm: mm_struct of target mm 1657 * @start: starting user address 1658 * @nr_pages: number of pages from start to pin 1659 * @write: whether pages will be written to by the caller 1660 * @force: whether to force write access even if user mapping is 1661 * readonly. This will result in the page being COWed even 1662 * in MAP_SHARED mappings. You do not want this. 1663 * @pages: array that receives pointers to the pages pinned. 1664 * Should be at least nr_pages long. Or NULL, if caller 1665 * only intends to ensure the pages are faulted in. 1666 * @vmas: array of pointers to vmas corresponding to each page. 1667 * Or NULL if the caller does not require them. 1668 * 1669 * Returns number of pages pinned. This may be fewer than the number 1670 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1671 * were pinned, returns -errno. Each page returned must be released 1672 * with a put_page() call when it is finished with. vmas will only 1673 * remain valid while mmap_sem is held. 1674 * 1675 * Must be called with mmap_sem held for read or write. 1676 * 1677 * get_user_pages walks a process's page tables and takes a reference to 1678 * each struct page that each user address corresponds to at a given 1679 * instant. That is, it takes the page that would be accessed if a user 1680 * thread accesses the given user virtual address at that instant. 1681 * 1682 * This does not guarantee that the page exists in the user mappings when 1683 * get_user_pages returns, and there may even be a completely different 1684 * page there in some cases (eg. if mmapped pagecache has been invalidated 1685 * and subsequently re faulted). However it does guarantee that the page 1686 * won't be freed completely. And mostly callers simply care that the page 1687 * contains data that was valid *at some point in time*. Typically, an IO 1688 * or similar operation cannot guarantee anything stronger anyway because 1689 * locks can't be held over the syscall boundary. 1690 * 1691 * If write=0, the page must not be written to. If the page is written to, 1692 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1693 * after the page is finished with, and before put_page is called. 1694 * 1695 * get_user_pages is typically used for fewer-copy IO operations, to get a 1696 * handle on the memory by some means other than accesses via the user virtual 1697 * addresses. The pages may be submitted for DMA to devices or accessed via 1698 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1699 * use the correct cache flushing APIs. 1700 * 1701 * See also get_user_pages_fast, for performance critical applications. 1702 */ 1703 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1704 unsigned long start, int nr_pages, int write, int force, 1705 struct page **pages, struct vm_area_struct **vmas) 1706 { 1707 int flags = FOLL_TOUCH; 1708 1709 if (pages) 1710 flags |= FOLL_GET; 1711 if (write) 1712 flags |= FOLL_WRITE; 1713 if (force) 1714 flags |= FOLL_FORCE; 1715 1716 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 1717 NULL); 1718 } 1719 EXPORT_SYMBOL(get_user_pages); 1720 1721 /** 1722 * get_dump_page() - pin user page in memory while writing it to core dump 1723 * @addr: user address 1724 * 1725 * Returns struct page pointer of user page pinned for dump, 1726 * to be freed afterwards by page_cache_release() or put_page(). 1727 * 1728 * Returns NULL on any kind of failure - a hole must then be inserted into 1729 * the corefile, to preserve alignment with its headers; and also returns 1730 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1731 * allowing a hole to be left in the corefile to save diskspace. 1732 * 1733 * Called without mmap_sem, but after all other threads have been killed. 1734 */ 1735 #ifdef CONFIG_ELF_CORE 1736 struct page *get_dump_page(unsigned long addr) 1737 { 1738 struct vm_area_struct *vma; 1739 struct page *page; 1740 1741 if (__get_user_pages(current, current->mm, addr, 1, 1742 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1743 NULL) < 1) 1744 return NULL; 1745 flush_cache_page(vma, addr, page_to_pfn(page)); 1746 return page; 1747 } 1748 #endif /* CONFIG_ELF_CORE */ 1749 1750 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1751 spinlock_t **ptl) 1752 { 1753 pgd_t * pgd = pgd_offset(mm, addr); 1754 pud_t * pud = pud_alloc(mm, pgd, addr); 1755 if (pud) { 1756 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1757 if (pmd) { 1758 VM_BUG_ON(pmd_trans_huge(*pmd)); 1759 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1760 } 1761 } 1762 return NULL; 1763 } 1764 1765 /* 1766 * This is the old fallback for page remapping. 1767 * 1768 * For historical reasons, it only allows reserved pages. Only 1769 * old drivers should use this, and they needed to mark their 1770 * pages reserved for the old functions anyway. 1771 */ 1772 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1773 struct page *page, pgprot_t prot) 1774 { 1775 struct mm_struct *mm = vma->vm_mm; 1776 int retval; 1777 pte_t *pte; 1778 spinlock_t *ptl; 1779 1780 retval = -EINVAL; 1781 if (PageAnon(page)) 1782 goto out; 1783 retval = -ENOMEM; 1784 flush_dcache_page(page); 1785 pte = get_locked_pte(mm, addr, &ptl); 1786 if (!pte) 1787 goto out; 1788 retval = -EBUSY; 1789 if (!pte_none(*pte)) 1790 goto out_unlock; 1791 1792 /* Ok, finally just insert the thing.. */ 1793 get_page(page); 1794 inc_mm_counter_fast(mm, MM_FILEPAGES); 1795 page_add_file_rmap(page); 1796 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1797 1798 retval = 0; 1799 pte_unmap_unlock(pte, ptl); 1800 return retval; 1801 out_unlock: 1802 pte_unmap_unlock(pte, ptl); 1803 out: 1804 return retval; 1805 } 1806 1807 /** 1808 * vm_insert_page - insert single page into user vma 1809 * @vma: user vma to map to 1810 * @addr: target user address of this page 1811 * @page: source kernel page 1812 * 1813 * This allows drivers to insert individual pages they've allocated 1814 * into a user vma. 1815 * 1816 * The page has to be a nice clean _individual_ kernel allocation. 1817 * If you allocate a compound page, you need to have marked it as 1818 * such (__GFP_COMP), or manually just split the page up yourself 1819 * (see split_page()). 1820 * 1821 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1822 * took an arbitrary page protection parameter. This doesn't allow 1823 * that. Your vma protection will have to be set up correctly, which 1824 * means that if you want a shared writable mapping, you'd better 1825 * ask for a shared writable mapping! 1826 * 1827 * The page does not need to be reserved. 1828 */ 1829 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1830 struct page *page) 1831 { 1832 if (addr < vma->vm_start || addr >= vma->vm_end) 1833 return -EFAULT; 1834 if (!page_count(page)) 1835 return -EINVAL; 1836 vma->vm_flags |= VM_INSERTPAGE; 1837 return insert_page(vma, addr, page, vma->vm_page_prot); 1838 } 1839 EXPORT_SYMBOL(vm_insert_page); 1840 1841 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1842 unsigned long pfn, pgprot_t prot) 1843 { 1844 struct mm_struct *mm = vma->vm_mm; 1845 int retval; 1846 pte_t *pte, entry; 1847 spinlock_t *ptl; 1848 1849 retval = -ENOMEM; 1850 pte = get_locked_pte(mm, addr, &ptl); 1851 if (!pte) 1852 goto out; 1853 retval = -EBUSY; 1854 if (!pte_none(*pte)) 1855 goto out_unlock; 1856 1857 /* Ok, finally just insert the thing.. */ 1858 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1859 set_pte_at(mm, addr, pte, entry); 1860 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1861 1862 retval = 0; 1863 out_unlock: 1864 pte_unmap_unlock(pte, ptl); 1865 out: 1866 return retval; 1867 } 1868 1869 /** 1870 * vm_insert_pfn - insert single pfn into user vma 1871 * @vma: user vma to map to 1872 * @addr: target user address of this page 1873 * @pfn: source kernel pfn 1874 * 1875 * Similar to vm_inert_page, this allows drivers to insert individual pages 1876 * they've allocated into a user vma. Same comments apply. 1877 * 1878 * This function should only be called from a vm_ops->fault handler, and 1879 * in that case the handler should return NULL. 1880 * 1881 * vma cannot be a COW mapping. 1882 * 1883 * As this is called only for pages that do not currently exist, we 1884 * do not need to flush old virtual caches or the TLB. 1885 */ 1886 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1887 unsigned long pfn) 1888 { 1889 int ret; 1890 pgprot_t pgprot = vma->vm_page_prot; 1891 /* 1892 * Technically, architectures with pte_special can avoid all these 1893 * restrictions (same for remap_pfn_range). However we would like 1894 * consistency in testing and feature parity among all, so we should 1895 * try to keep these invariants in place for everybody. 1896 */ 1897 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1898 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1899 (VM_PFNMAP|VM_MIXEDMAP)); 1900 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1901 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1902 1903 if (addr < vma->vm_start || addr >= vma->vm_end) 1904 return -EFAULT; 1905 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 1906 return -EINVAL; 1907 1908 ret = insert_pfn(vma, addr, pfn, pgprot); 1909 1910 if (ret) 1911 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 1912 1913 return ret; 1914 } 1915 EXPORT_SYMBOL(vm_insert_pfn); 1916 1917 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1918 unsigned long pfn) 1919 { 1920 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1921 1922 if (addr < vma->vm_start || addr >= vma->vm_end) 1923 return -EFAULT; 1924 1925 /* 1926 * If we don't have pte special, then we have to use the pfn_valid() 1927 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1928 * refcount the page if pfn_valid is true (hence insert_page rather 1929 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1930 * without pte special, it would there be refcounted as a normal page. 1931 */ 1932 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1933 struct page *page; 1934 1935 page = pfn_to_page(pfn); 1936 return insert_page(vma, addr, page, vma->vm_page_prot); 1937 } 1938 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1939 } 1940 EXPORT_SYMBOL(vm_insert_mixed); 1941 1942 /* 1943 * maps a range of physical memory into the requested pages. the old 1944 * mappings are removed. any references to nonexistent pages results 1945 * in null mappings (currently treated as "copy-on-access") 1946 */ 1947 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1948 unsigned long addr, unsigned long end, 1949 unsigned long pfn, pgprot_t prot) 1950 { 1951 pte_t *pte; 1952 spinlock_t *ptl; 1953 1954 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1955 if (!pte) 1956 return -ENOMEM; 1957 arch_enter_lazy_mmu_mode(); 1958 do { 1959 BUG_ON(!pte_none(*pte)); 1960 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1961 pfn++; 1962 } while (pte++, addr += PAGE_SIZE, addr != end); 1963 arch_leave_lazy_mmu_mode(); 1964 pte_unmap_unlock(pte - 1, ptl); 1965 return 0; 1966 } 1967 1968 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1969 unsigned long addr, unsigned long end, 1970 unsigned long pfn, pgprot_t prot) 1971 { 1972 pmd_t *pmd; 1973 unsigned long next; 1974 1975 pfn -= addr >> PAGE_SHIFT; 1976 pmd = pmd_alloc(mm, pud, addr); 1977 if (!pmd) 1978 return -ENOMEM; 1979 VM_BUG_ON(pmd_trans_huge(*pmd)); 1980 do { 1981 next = pmd_addr_end(addr, end); 1982 if (remap_pte_range(mm, pmd, addr, next, 1983 pfn + (addr >> PAGE_SHIFT), prot)) 1984 return -ENOMEM; 1985 } while (pmd++, addr = next, addr != end); 1986 return 0; 1987 } 1988 1989 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1990 unsigned long addr, unsigned long end, 1991 unsigned long pfn, pgprot_t prot) 1992 { 1993 pud_t *pud; 1994 unsigned long next; 1995 1996 pfn -= addr >> PAGE_SHIFT; 1997 pud = pud_alloc(mm, pgd, addr); 1998 if (!pud) 1999 return -ENOMEM; 2000 do { 2001 next = pud_addr_end(addr, end); 2002 if (remap_pmd_range(mm, pud, addr, next, 2003 pfn + (addr >> PAGE_SHIFT), prot)) 2004 return -ENOMEM; 2005 } while (pud++, addr = next, addr != end); 2006 return 0; 2007 } 2008 2009 /** 2010 * remap_pfn_range - remap kernel memory to userspace 2011 * @vma: user vma to map to 2012 * @addr: target user address to start at 2013 * @pfn: physical address of kernel memory 2014 * @size: size of map area 2015 * @prot: page protection flags for this mapping 2016 * 2017 * Note: this is only safe if the mm semaphore is held when called. 2018 */ 2019 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2020 unsigned long pfn, unsigned long size, pgprot_t prot) 2021 { 2022 pgd_t *pgd; 2023 unsigned long next; 2024 unsigned long end = addr + PAGE_ALIGN(size); 2025 struct mm_struct *mm = vma->vm_mm; 2026 int err; 2027 2028 /* 2029 * Physically remapped pages are special. Tell the 2030 * rest of the world about it: 2031 * VM_IO tells people not to look at these pages 2032 * (accesses can have side effects). 2033 * VM_RESERVED is specified all over the place, because 2034 * in 2.4 it kept swapout's vma scan off this vma; but 2035 * in 2.6 the LRU scan won't even find its pages, so this 2036 * flag means no more than count its pages in reserved_vm, 2037 * and omit it from core dump, even when VM_IO turned off. 2038 * VM_PFNMAP tells the core MM that the base pages are just 2039 * raw PFN mappings, and do not have a "struct page" associated 2040 * with them. 2041 * 2042 * There's a horrible special case to handle copy-on-write 2043 * behaviour that some programs depend on. We mark the "original" 2044 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2045 */ 2046 if (addr == vma->vm_start && end == vma->vm_end) { 2047 vma->vm_pgoff = pfn; 2048 vma->vm_flags |= VM_PFN_AT_MMAP; 2049 } else if (is_cow_mapping(vma->vm_flags)) 2050 return -EINVAL; 2051 2052 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 2053 2054 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 2055 if (err) { 2056 /* 2057 * To indicate that track_pfn related cleanup is not 2058 * needed from higher level routine calling unmap_vmas 2059 */ 2060 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 2061 vma->vm_flags &= ~VM_PFN_AT_MMAP; 2062 return -EINVAL; 2063 } 2064 2065 BUG_ON(addr >= end); 2066 pfn -= addr >> PAGE_SHIFT; 2067 pgd = pgd_offset(mm, addr); 2068 flush_cache_range(vma, addr, end); 2069 do { 2070 next = pgd_addr_end(addr, end); 2071 err = remap_pud_range(mm, pgd, addr, next, 2072 pfn + (addr >> PAGE_SHIFT), prot); 2073 if (err) 2074 break; 2075 } while (pgd++, addr = next, addr != end); 2076 2077 if (err) 2078 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 2079 2080 return err; 2081 } 2082 EXPORT_SYMBOL(remap_pfn_range); 2083 2084 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2085 unsigned long addr, unsigned long end, 2086 pte_fn_t fn, void *data) 2087 { 2088 pte_t *pte; 2089 int err; 2090 pgtable_t token; 2091 spinlock_t *uninitialized_var(ptl); 2092 2093 pte = (mm == &init_mm) ? 2094 pte_alloc_kernel(pmd, addr) : 2095 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2096 if (!pte) 2097 return -ENOMEM; 2098 2099 BUG_ON(pmd_huge(*pmd)); 2100 2101 arch_enter_lazy_mmu_mode(); 2102 2103 token = pmd_pgtable(*pmd); 2104 2105 do { 2106 err = fn(pte++, token, addr, data); 2107 if (err) 2108 break; 2109 } while (addr += PAGE_SIZE, addr != end); 2110 2111 arch_leave_lazy_mmu_mode(); 2112 2113 if (mm != &init_mm) 2114 pte_unmap_unlock(pte-1, ptl); 2115 return err; 2116 } 2117 2118 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2119 unsigned long addr, unsigned long end, 2120 pte_fn_t fn, void *data) 2121 { 2122 pmd_t *pmd; 2123 unsigned long next; 2124 int err; 2125 2126 BUG_ON(pud_huge(*pud)); 2127 2128 pmd = pmd_alloc(mm, pud, addr); 2129 if (!pmd) 2130 return -ENOMEM; 2131 do { 2132 next = pmd_addr_end(addr, end); 2133 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2134 if (err) 2135 break; 2136 } while (pmd++, addr = next, addr != end); 2137 return err; 2138 } 2139 2140 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2141 unsigned long addr, unsigned long end, 2142 pte_fn_t fn, void *data) 2143 { 2144 pud_t *pud; 2145 unsigned long next; 2146 int err; 2147 2148 pud = pud_alloc(mm, pgd, addr); 2149 if (!pud) 2150 return -ENOMEM; 2151 do { 2152 next = pud_addr_end(addr, end); 2153 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2154 if (err) 2155 break; 2156 } while (pud++, addr = next, addr != end); 2157 return err; 2158 } 2159 2160 /* 2161 * Scan a region of virtual memory, filling in page tables as necessary 2162 * and calling a provided function on each leaf page table. 2163 */ 2164 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2165 unsigned long size, pte_fn_t fn, void *data) 2166 { 2167 pgd_t *pgd; 2168 unsigned long next; 2169 unsigned long end = addr + size; 2170 int err; 2171 2172 BUG_ON(addr >= end); 2173 pgd = pgd_offset(mm, addr); 2174 do { 2175 next = pgd_addr_end(addr, end); 2176 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2177 if (err) 2178 break; 2179 } while (pgd++, addr = next, addr != end); 2180 2181 return err; 2182 } 2183 EXPORT_SYMBOL_GPL(apply_to_page_range); 2184 2185 /* 2186 * handle_pte_fault chooses page fault handler according to an entry 2187 * which was read non-atomically. Before making any commitment, on 2188 * those architectures or configurations (e.g. i386 with PAE) which 2189 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2190 * must check under lock before unmapping the pte and proceeding 2191 * (but do_wp_page is only called after already making such a check; 2192 * and do_anonymous_page can safely check later on). 2193 */ 2194 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2195 pte_t *page_table, pte_t orig_pte) 2196 { 2197 int same = 1; 2198 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2199 if (sizeof(pte_t) > sizeof(unsigned long)) { 2200 spinlock_t *ptl = pte_lockptr(mm, pmd); 2201 spin_lock(ptl); 2202 same = pte_same(*page_table, orig_pte); 2203 spin_unlock(ptl); 2204 } 2205 #endif 2206 pte_unmap(page_table); 2207 return same; 2208 } 2209 2210 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2211 { 2212 /* 2213 * If the source page was a PFN mapping, we don't have 2214 * a "struct page" for it. We do a best-effort copy by 2215 * just copying from the original user address. If that 2216 * fails, we just zero-fill it. Live with it. 2217 */ 2218 if (unlikely(!src)) { 2219 void *kaddr = kmap_atomic(dst, KM_USER0); 2220 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2221 2222 /* 2223 * This really shouldn't fail, because the page is there 2224 * in the page tables. But it might just be unreadable, 2225 * in which case we just give up and fill the result with 2226 * zeroes. 2227 */ 2228 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2229 clear_page(kaddr); 2230 kunmap_atomic(kaddr, KM_USER0); 2231 flush_dcache_page(dst); 2232 } else 2233 copy_user_highpage(dst, src, va, vma); 2234 } 2235 2236 /* 2237 * This routine handles present pages, when users try to write 2238 * to a shared page. It is done by copying the page to a new address 2239 * and decrementing the shared-page counter for the old page. 2240 * 2241 * Note that this routine assumes that the protection checks have been 2242 * done by the caller (the low-level page fault routine in most cases). 2243 * Thus we can safely just mark it writable once we've done any necessary 2244 * COW. 2245 * 2246 * We also mark the page dirty at this point even though the page will 2247 * change only once the write actually happens. This avoids a few races, 2248 * and potentially makes it more efficient. 2249 * 2250 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2251 * but allow concurrent faults), with pte both mapped and locked. 2252 * We return with mmap_sem still held, but pte unmapped and unlocked. 2253 */ 2254 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2255 unsigned long address, pte_t *page_table, pmd_t *pmd, 2256 spinlock_t *ptl, pte_t orig_pte) 2257 __releases(ptl) 2258 { 2259 struct page *old_page, *new_page; 2260 pte_t entry; 2261 int ret = 0; 2262 int page_mkwrite = 0; 2263 struct page *dirty_page = NULL; 2264 2265 old_page = vm_normal_page(vma, address, orig_pte); 2266 if (!old_page) { 2267 /* 2268 * VM_MIXEDMAP !pfn_valid() case 2269 * 2270 * We should not cow pages in a shared writeable mapping. 2271 * Just mark the pages writable as we can't do any dirty 2272 * accounting on raw pfn maps. 2273 */ 2274 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2275 (VM_WRITE|VM_SHARED)) 2276 goto reuse; 2277 goto gotten; 2278 } 2279 2280 /* 2281 * Take out anonymous pages first, anonymous shared vmas are 2282 * not dirty accountable. 2283 */ 2284 if (PageAnon(old_page) && !PageKsm(old_page)) { 2285 if (!trylock_page(old_page)) { 2286 page_cache_get(old_page); 2287 pte_unmap_unlock(page_table, ptl); 2288 lock_page(old_page); 2289 page_table = pte_offset_map_lock(mm, pmd, address, 2290 &ptl); 2291 if (!pte_same(*page_table, orig_pte)) { 2292 unlock_page(old_page); 2293 goto unlock; 2294 } 2295 page_cache_release(old_page); 2296 } 2297 if (reuse_swap_page(old_page)) { 2298 /* 2299 * The page is all ours. Move it to our anon_vma so 2300 * the rmap code will not search our parent or siblings. 2301 * Protected against the rmap code by the page lock. 2302 */ 2303 page_move_anon_rmap(old_page, vma, address); 2304 unlock_page(old_page); 2305 goto reuse; 2306 } 2307 unlock_page(old_page); 2308 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2309 (VM_WRITE|VM_SHARED))) { 2310 /* 2311 * Only catch write-faults on shared writable pages, 2312 * read-only shared pages can get COWed by 2313 * get_user_pages(.write=1, .force=1). 2314 */ 2315 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2316 struct vm_fault vmf; 2317 int tmp; 2318 2319 vmf.virtual_address = (void __user *)(address & 2320 PAGE_MASK); 2321 vmf.pgoff = old_page->index; 2322 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2323 vmf.page = old_page; 2324 2325 /* 2326 * Notify the address space that the page is about to 2327 * become writable so that it can prohibit this or wait 2328 * for the page to get into an appropriate state. 2329 * 2330 * We do this without the lock held, so that it can 2331 * sleep if it needs to. 2332 */ 2333 page_cache_get(old_page); 2334 pte_unmap_unlock(page_table, ptl); 2335 2336 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2337 if (unlikely(tmp & 2338 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2339 ret = tmp; 2340 goto unwritable_page; 2341 } 2342 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2343 lock_page(old_page); 2344 if (!old_page->mapping) { 2345 ret = 0; /* retry the fault */ 2346 unlock_page(old_page); 2347 goto unwritable_page; 2348 } 2349 } else 2350 VM_BUG_ON(!PageLocked(old_page)); 2351 2352 /* 2353 * Since we dropped the lock we need to revalidate 2354 * the PTE as someone else may have changed it. If 2355 * they did, we just return, as we can count on the 2356 * MMU to tell us if they didn't also make it writable. 2357 */ 2358 page_table = pte_offset_map_lock(mm, pmd, address, 2359 &ptl); 2360 if (!pte_same(*page_table, orig_pte)) { 2361 unlock_page(old_page); 2362 goto unlock; 2363 } 2364 2365 page_mkwrite = 1; 2366 } 2367 dirty_page = old_page; 2368 get_page(dirty_page); 2369 2370 reuse: 2371 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2372 entry = pte_mkyoung(orig_pte); 2373 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2374 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2375 update_mmu_cache(vma, address, page_table); 2376 pte_unmap_unlock(page_table, ptl); 2377 ret |= VM_FAULT_WRITE; 2378 2379 if (!dirty_page) 2380 return ret; 2381 2382 /* 2383 * Yes, Virginia, this is actually required to prevent a race 2384 * with clear_page_dirty_for_io() from clearing the page dirty 2385 * bit after it clear all dirty ptes, but before a racing 2386 * do_wp_page installs a dirty pte. 2387 * 2388 * __do_fault is protected similarly. 2389 */ 2390 if (!page_mkwrite) { 2391 wait_on_page_locked(dirty_page); 2392 set_page_dirty_balance(dirty_page, page_mkwrite); 2393 } 2394 put_page(dirty_page); 2395 if (page_mkwrite) { 2396 struct address_space *mapping = dirty_page->mapping; 2397 2398 set_page_dirty(dirty_page); 2399 unlock_page(dirty_page); 2400 page_cache_release(dirty_page); 2401 if (mapping) { 2402 /* 2403 * Some device drivers do not set page.mapping 2404 * but still dirty their pages 2405 */ 2406 balance_dirty_pages_ratelimited(mapping); 2407 } 2408 } 2409 2410 /* file_update_time outside page_lock */ 2411 if (vma->vm_file) 2412 file_update_time(vma->vm_file); 2413 2414 return ret; 2415 } 2416 2417 /* 2418 * Ok, we need to copy. Oh, well.. 2419 */ 2420 page_cache_get(old_page); 2421 gotten: 2422 pte_unmap_unlock(page_table, ptl); 2423 2424 if (unlikely(anon_vma_prepare(vma))) 2425 goto oom; 2426 2427 if (is_zero_pfn(pte_pfn(orig_pte))) { 2428 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2429 if (!new_page) 2430 goto oom; 2431 } else { 2432 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2433 if (!new_page) 2434 goto oom; 2435 cow_user_page(new_page, old_page, address, vma); 2436 } 2437 __SetPageUptodate(new_page); 2438 2439 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2440 goto oom_free_new; 2441 2442 /* 2443 * Re-check the pte - we dropped the lock 2444 */ 2445 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2446 if (likely(pte_same(*page_table, orig_pte))) { 2447 if (old_page) { 2448 if (!PageAnon(old_page)) { 2449 dec_mm_counter_fast(mm, MM_FILEPAGES); 2450 inc_mm_counter_fast(mm, MM_ANONPAGES); 2451 } 2452 } else 2453 inc_mm_counter_fast(mm, MM_ANONPAGES); 2454 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2455 entry = mk_pte(new_page, vma->vm_page_prot); 2456 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2457 /* 2458 * Clear the pte entry and flush it first, before updating the 2459 * pte with the new entry. This will avoid a race condition 2460 * seen in the presence of one thread doing SMC and another 2461 * thread doing COW. 2462 */ 2463 ptep_clear_flush(vma, address, page_table); 2464 page_add_new_anon_rmap(new_page, vma, address); 2465 /* 2466 * We call the notify macro here because, when using secondary 2467 * mmu page tables (such as kvm shadow page tables), we want the 2468 * new page to be mapped directly into the secondary page table. 2469 */ 2470 set_pte_at_notify(mm, address, page_table, entry); 2471 update_mmu_cache(vma, address, page_table); 2472 if (old_page) { 2473 /* 2474 * Only after switching the pte to the new page may 2475 * we remove the mapcount here. Otherwise another 2476 * process may come and find the rmap count decremented 2477 * before the pte is switched to the new page, and 2478 * "reuse" the old page writing into it while our pte 2479 * here still points into it and can be read by other 2480 * threads. 2481 * 2482 * The critical issue is to order this 2483 * page_remove_rmap with the ptp_clear_flush above. 2484 * Those stores are ordered by (if nothing else,) 2485 * the barrier present in the atomic_add_negative 2486 * in page_remove_rmap. 2487 * 2488 * Then the TLB flush in ptep_clear_flush ensures that 2489 * no process can access the old page before the 2490 * decremented mapcount is visible. And the old page 2491 * cannot be reused until after the decremented 2492 * mapcount is visible. So transitively, TLBs to 2493 * old page will be flushed before it can be reused. 2494 */ 2495 page_remove_rmap(old_page); 2496 } 2497 2498 /* Free the old page.. */ 2499 new_page = old_page; 2500 ret |= VM_FAULT_WRITE; 2501 } else 2502 mem_cgroup_uncharge_page(new_page); 2503 2504 if (new_page) 2505 page_cache_release(new_page); 2506 unlock: 2507 pte_unmap_unlock(page_table, ptl); 2508 if (old_page) { 2509 /* 2510 * Don't let another task, with possibly unlocked vma, 2511 * keep the mlocked page. 2512 */ 2513 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2514 lock_page(old_page); /* LRU manipulation */ 2515 munlock_vma_page(old_page); 2516 unlock_page(old_page); 2517 } 2518 page_cache_release(old_page); 2519 } 2520 return ret; 2521 oom_free_new: 2522 page_cache_release(new_page); 2523 oom: 2524 if (old_page) { 2525 if (page_mkwrite) { 2526 unlock_page(old_page); 2527 page_cache_release(old_page); 2528 } 2529 page_cache_release(old_page); 2530 } 2531 return VM_FAULT_OOM; 2532 2533 unwritable_page: 2534 page_cache_release(old_page); 2535 return ret; 2536 } 2537 2538 /* 2539 * Helper functions for unmap_mapping_range(). 2540 * 2541 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 2542 * 2543 * We have to restart searching the prio_tree whenever we drop the lock, 2544 * since the iterator is only valid while the lock is held, and anyway 2545 * a later vma might be split and reinserted earlier while lock dropped. 2546 * 2547 * The list of nonlinear vmas could be handled more efficiently, using 2548 * a placeholder, but handle it in the same way until a need is shown. 2549 * It is important to search the prio_tree before nonlinear list: a vma 2550 * may become nonlinear and be shifted from prio_tree to nonlinear list 2551 * while the lock is dropped; but never shifted from list to prio_tree. 2552 * 2553 * In order to make forward progress despite restarting the search, 2554 * vm_truncate_count is used to mark a vma as now dealt with, so we can 2555 * quickly skip it next time around. Since the prio_tree search only 2556 * shows us those vmas affected by unmapping the range in question, we 2557 * can't efficiently keep all vmas in step with mapping->truncate_count: 2558 * so instead reset them all whenever it wraps back to 0 (then go to 1). 2559 * mapping->truncate_count and vma->vm_truncate_count are protected by 2560 * i_mmap_lock. 2561 * 2562 * In order to make forward progress despite repeatedly restarting some 2563 * large vma, note the restart_addr from unmap_vmas when it breaks out: 2564 * and restart from that address when we reach that vma again. It might 2565 * have been split or merged, shrunk or extended, but never shifted: so 2566 * restart_addr remains valid so long as it remains in the vma's range. 2567 * unmap_mapping_range forces truncate_count to leap over page-aligned 2568 * values so we can save vma's restart_addr in its truncate_count field. 2569 */ 2570 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 2571 2572 static void reset_vma_truncate_counts(struct address_space *mapping) 2573 { 2574 struct vm_area_struct *vma; 2575 struct prio_tree_iter iter; 2576 2577 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2578 vma->vm_truncate_count = 0; 2579 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2580 vma->vm_truncate_count = 0; 2581 } 2582 2583 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2584 unsigned long start_addr, unsigned long end_addr, 2585 struct zap_details *details) 2586 { 2587 unsigned long restart_addr; 2588 int need_break; 2589 2590 /* 2591 * files that support invalidating or truncating portions of the 2592 * file from under mmaped areas must have their ->fault function 2593 * return a locked page (and set VM_FAULT_LOCKED in the return). 2594 * This provides synchronisation against concurrent unmapping here. 2595 */ 2596 2597 again: 2598 restart_addr = vma->vm_truncate_count; 2599 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2600 start_addr = restart_addr; 2601 if (start_addr >= end_addr) { 2602 /* Top of vma has been split off since last time */ 2603 vma->vm_truncate_count = details->truncate_count; 2604 return 0; 2605 } 2606 } 2607 2608 restart_addr = zap_page_range(vma, start_addr, 2609 end_addr - start_addr, details); 2610 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2611 2612 if (restart_addr >= end_addr) { 2613 /* We have now completed this vma: mark it so */ 2614 vma->vm_truncate_count = details->truncate_count; 2615 if (!need_break) 2616 return 0; 2617 } else { 2618 /* Note restart_addr in vma's truncate_count field */ 2619 vma->vm_truncate_count = restart_addr; 2620 if (!need_break) 2621 goto again; 2622 } 2623 2624 spin_unlock(details->i_mmap_lock); 2625 cond_resched(); 2626 spin_lock(details->i_mmap_lock); 2627 return -EINTR; 2628 } 2629 2630 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2631 struct zap_details *details) 2632 { 2633 struct vm_area_struct *vma; 2634 struct prio_tree_iter iter; 2635 pgoff_t vba, vea, zba, zea; 2636 2637 restart: 2638 vma_prio_tree_foreach(vma, &iter, root, 2639 details->first_index, details->last_index) { 2640 /* Skip quickly over those we have already dealt with */ 2641 if (vma->vm_truncate_count == details->truncate_count) 2642 continue; 2643 2644 vba = vma->vm_pgoff; 2645 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2646 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2647 zba = details->first_index; 2648 if (zba < vba) 2649 zba = vba; 2650 zea = details->last_index; 2651 if (zea > vea) 2652 zea = vea; 2653 2654 if (unmap_mapping_range_vma(vma, 2655 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2656 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2657 details) < 0) 2658 goto restart; 2659 } 2660 } 2661 2662 static inline void unmap_mapping_range_list(struct list_head *head, 2663 struct zap_details *details) 2664 { 2665 struct vm_area_struct *vma; 2666 2667 /* 2668 * In nonlinear VMAs there is no correspondence between virtual address 2669 * offset and file offset. So we must perform an exhaustive search 2670 * across *all* the pages in each nonlinear VMA, not just the pages 2671 * whose virtual address lies outside the file truncation point. 2672 */ 2673 restart: 2674 list_for_each_entry(vma, head, shared.vm_set.list) { 2675 /* Skip quickly over those we have already dealt with */ 2676 if (vma->vm_truncate_count == details->truncate_count) 2677 continue; 2678 details->nonlinear_vma = vma; 2679 if (unmap_mapping_range_vma(vma, vma->vm_start, 2680 vma->vm_end, details) < 0) 2681 goto restart; 2682 } 2683 } 2684 2685 /** 2686 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2687 * @mapping: the address space containing mmaps to be unmapped. 2688 * @holebegin: byte in first page to unmap, relative to the start of 2689 * the underlying file. This will be rounded down to a PAGE_SIZE 2690 * boundary. Note that this is different from truncate_pagecache(), which 2691 * must keep the partial page. In contrast, we must get rid of 2692 * partial pages. 2693 * @holelen: size of prospective hole in bytes. This will be rounded 2694 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2695 * end of the file. 2696 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2697 * but 0 when invalidating pagecache, don't throw away private data. 2698 */ 2699 void unmap_mapping_range(struct address_space *mapping, 2700 loff_t const holebegin, loff_t const holelen, int even_cows) 2701 { 2702 struct zap_details details; 2703 pgoff_t hba = holebegin >> PAGE_SHIFT; 2704 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2705 2706 /* Check for overflow. */ 2707 if (sizeof(holelen) > sizeof(hlen)) { 2708 long long holeend = 2709 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2710 if (holeend & ~(long long)ULONG_MAX) 2711 hlen = ULONG_MAX - hba + 1; 2712 } 2713 2714 details.check_mapping = even_cows? NULL: mapping; 2715 details.nonlinear_vma = NULL; 2716 details.first_index = hba; 2717 details.last_index = hba + hlen - 1; 2718 if (details.last_index < details.first_index) 2719 details.last_index = ULONG_MAX; 2720 details.i_mmap_lock = &mapping->i_mmap_lock; 2721 2722 mutex_lock(&mapping->unmap_mutex); 2723 spin_lock(&mapping->i_mmap_lock); 2724 2725 /* Protect against endless unmapping loops */ 2726 mapping->truncate_count++; 2727 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2728 if (mapping->truncate_count == 0) 2729 reset_vma_truncate_counts(mapping); 2730 mapping->truncate_count++; 2731 } 2732 details.truncate_count = mapping->truncate_count; 2733 2734 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2735 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2736 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2737 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2738 spin_unlock(&mapping->i_mmap_lock); 2739 mutex_unlock(&mapping->unmap_mutex); 2740 } 2741 EXPORT_SYMBOL(unmap_mapping_range); 2742 2743 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2744 { 2745 struct address_space *mapping = inode->i_mapping; 2746 2747 /* 2748 * If the underlying filesystem is not going to provide 2749 * a way to truncate a range of blocks (punch a hole) - 2750 * we should return failure right now. 2751 */ 2752 if (!inode->i_op->truncate_range) 2753 return -ENOSYS; 2754 2755 mutex_lock(&inode->i_mutex); 2756 down_write(&inode->i_alloc_sem); 2757 unmap_mapping_range(mapping, offset, (end - offset), 1); 2758 truncate_inode_pages_range(mapping, offset, end); 2759 unmap_mapping_range(mapping, offset, (end - offset), 1); 2760 inode->i_op->truncate_range(inode, offset, end); 2761 up_write(&inode->i_alloc_sem); 2762 mutex_unlock(&inode->i_mutex); 2763 2764 return 0; 2765 } 2766 2767 /* 2768 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2769 * but allow concurrent faults), and pte mapped but not yet locked. 2770 * We return with mmap_sem still held, but pte unmapped and unlocked. 2771 */ 2772 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2773 unsigned long address, pte_t *page_table, pmd_t *pmd, 2774 unsigned int flags, pte_t orig_pte) 2775 { 2776 spinlock_t *ptl; 2777 struct page *page, *swapcache = NULL; 2778 swp_entry_t entry; 2779 pte_t pte; 2780 int locked; 2781 struct mem_cgroup *ptr; 2782 int exclusive = 0; 2783 int ret = 0; 2784 2785 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2786 goto out; 2787 2788 entry = pte_to_swp_entry(orig_pte); 2789 if (unlikely(non_swap_entry(entry))) { 2790 if (is_migration_entry(entry)) { 2791 migration_entry_wait(mm, pmd, address); 2792 } else if (is_hwpoison_entry(entry)) { 2793 ret = VM_FAULT_HWPOISON; 2794 } else { 2795 print_bad_pte(vma, address, orig_pte, NULL); 2796 ret = VM_FAULT_SIGBUS; 2797 } 2798 goto out; 2799 } 2800 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2801 page = lookup_swap_cache(entry); 2802 if (!page) { 2803 grab_swap_token(mm); /* Contend for token _before_ read-in */ 2804 page = swapin_readahead(entry, 2805 GFP_HIGHUSER_MOVABLE, vma, address); 2806 if (!page) { 2807 /* 2808 * Back out if somebody else faulted in this pte 2809 * while we released the pte lock. 2810 */ 2811 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2812 if (likely(pte_same(*page_table, orig_pte))) 2813 ret = VM_FAULT_OOM; 2814 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2815 goto unlock; 2816 } 2817 2818 /* Had to read the page from swap area: Major fault */ 2819 ret = VM_FAULT_MAJOR; 2820 count_vm_event(PGMAJFAULT); 2821 } else if (PageHWPoison(page)) { 2822 /* 2823 * hwpoisoned dirty swapcache pages are kept for killing 2824 * owner processes (which may be unknown at hwpoison time) 2825 */ 2826 ret = VM_FAULT_HWPOISON; 2827 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2828 goto out_release; 2829 } 2830 2831 locked = lock_page_or_retry(page, mm, flags); 2832 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2833 if (!locked) { 2834 ret |= VM_FAULT_RETRY; 2835 goto out_release; 2836 } 2837 2838 /* 2839 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2840 * release the swapcache from under us. The page pin, and pte_same 2841 * test below, are not enough to exclude that. Even if it is still 2842 * swapcache, we need to check that the page's swap has not changed. 2843 */ 2844 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2845 goto out_page; 2846 2847 if (ksm_might_need_to_copy(page, vma, address)) { 2848 swapcache = page; 2849 page = ksm_does_need_to_copy(page, vma, address); 2850 2851 if (unlikely(!page)) { 2852 ret = VM_FAULT_OOM; 2853 page = swapcache; 2854 swapcache = NULL; 2855 goto out_page; 2856 } 2857 } 2858 2859 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2860 ret = VM_FAULT_OOM; 2861 goto out_page; 2862 } 2863 2864 /* 2865 * Back out if somebody else already faulted in this pte. 2866 */ 2867 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2868 if (unlikely(!pte_same(*page_table, orig_pte))) 2869 goto out_nomap; 2870 2871 if (unlikely(!PageUptodate(page))) { 2872 ret = VM_FAULT_SIGBUS; 2873 goto out_nomap; 2874 } 2875 2876 /* 2877 * The page isn't present yet, go ahead with the fault. 2878 * 2879 * Be careful about the sequence of operations here. 2880 * To get its accounting right, reuse_swap_page() must be called 2881 * while the page is counted on swap but not yet in mapcount i.e. 2882 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2883 * must be called after the swap_free(), or it will never succeed. 2884 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2885 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2886 * in page->private. In this case, a record in swap_cgroup is silently 2887 * discarded at swap_free(). 2888 */ 2889 2890 inc_mm_counter_fast(mm, MM_ANONPAGES); 2891 dec_mm_counter_fast(mm, MM_SWAPENTS); 2892 pte = mk_pte(page, vma->vm_page_prot); 2893 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2894 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2895 flags &= ~FAULT_FLAG_WRITE; 2896 ret |= VM_FAULT_WRITE; 2897 exclusive = 1; 2898 } 2899 flush_icache_page(vma, page); 2900 set_pte_at(mm, address, page_table, pte); 2901 do_page_add_anon_rmap(page, vma, address, exclusive); 2902 /* It's better to call commit-charge after rmap is established */ 2903 mem_cgroup_commit_charge_swapin(page, ptr); 2904 2905 swap_free(entry); 2906 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2907 try_to_free_swap(page); 2908 unlock_page(page); 2909 if (swapcache) { 2910 /* 2911 * Hold the lock to avoid the swap entry to be reused 2912 * until we take the PT lock for the pte_same() check 2913 * (to avoid false positives from pte_same). For 2914 * further safety release the lock after the swap_free 2915 * so that the swap count won't change under a 2916 * parallel locked swapcache. 2917 */ 2918 unlock_page(swapcache); 2919 page_cache_release(swapcache); 2920 } 2921 2922 if (flags & FAULT_FLAG_WRITE) { 2923 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2924 if (ret & VM_FAULT_ERROR) 2925 ret &= VM_FAULT_ERROR; 2926 goto out; 2927 } 2928 2929 /* No need to invalidate - it was non-present before */ 2930 update_mmu_cache(vma, address, page_table); 2931 unlock: 2932 pte_unmap_unlock(page_table, ptl); 2933 out: 2934 return ret; 2935 out_nomap: 2936 mem_cgroup_cancel_charge_swapin(ptr); 2937 pte_unmap_unlock(page_table, ptl); 2938 out_page: 2939 unlock_page(page); 2940 out_release: 2941 page_cache_release(page); 2942 if (swapcache) { 2943 unlock_page(swapcache); 2944 page_cache_release(swapcache); 2945 } 2946 return ret; 2947 } 2948 2949 /* 2950 * This is like a special single-page "expand_{down|up}wards()", 2951 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2952 * doesn't hit another vma. 2953 */ 2954 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2955 { 2956 address &= PAGE_MASK; 2957 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2958 struct vm_area_struct *prev = vma->vm_prev; 2959 2960 /* 2961 * Is there a mapping abutting this one below? 2962 * 2963 * That's only ok if it's the same stack mapping 2964 * that has gotten split.. 2965 */ 2966 if (prev && prev->vm_end == address) 2967 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2968 2969 expand_stack(vma, address - PAGE_SIZE); 2970 } 2971 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2972 struct vm_area_struct *next = vma->vm_next; 2973 2974 /* As VM_GROWSDOWN but s/below/above/ */ 2975 if (next && next->vm_start == address + PAGE_SIZE) 2976 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2977 2978 expand_upwards(vma, address + PAGE_SIZE); 2979 } 2980 return 0; 2981 } 2982 2983 /* 2984 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2985 * but allow concurrent faults), and pte mapped but not yet locked. 2986 * We return with mmap_sem still held, but pte unmapped and unlocked. 2987 */ 2988 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2989 unsigned long address, pte_t *page_table, pmd_t *pmd, 2990 unsigned int flags) 2991 { 2992 struct page *page; 2993 spinlock_t *ptl; 2994 pte_t entry; 2995 2996 pte_unmap(page_table); 2997 2998 /* Check if we need to add a guard page to the stack */ 2999 if (check_stack_guard_page(vma, address) < 0) 3000 return VM_FAULT_SIGBUS; 3001 3002 /* Use the zero-page for reads */ 3003 if (!(flags & FAULT_FLAG_WRITE)) { 3004 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3005 vma->vm_page_prot)); 3006 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3007 if (!pte_none(*page_table)) 3008 goto unlock; 3009 goto setpte; 3010 } 3011 3012 /* Allocate our own private page. */ 3013 if (unlikely(anon_vma_prepare(vma))) 3014 goto oom; 3015 page = alloc_zeroed_user_highpage_movable(vma, address); 3016 if (!page) 3017 goto oom; 3018 __SetPageUptodate(page); 3019 3020 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3021 goto oom_free_page; 3022 3023 entry = mk_pte(page, vma->vm_page_prot); 3024 if (vma->vm_flags & VM_WRITE) 3025 entry = pte_mkwrite(pte_mkdirty(entry)); 3026 3027 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3028 if (!pte_none(*page_table)) 3029 goto release; 3030 3031 inc_mm_counter_fast(mm, MM_ANONPAGES); 3032 page_add_new_anon_rmap(page, vma, address); 3033 setpte: 3034 set_pte_at(mm, address, page_table, entry); 3035 3036 /* No need to invalidate - it was non-present before */ 3037 update_mmu_cache(vma, address, page_table); 3038 unlock: 3039 pte_unmap_unlock(page_table, ptl); 3040 return 0; 3041 release: 3042 mem_cgroup_uncharge_page(page); 3043 page_cache_release(page); 3044 goto unlock; 3045 oom_free_page: 3046 page_cache_release(page); 3047 oom: 3048 return VM_FAULT_OOM; 3049 } 3050 3051 /* 3052 * __do_fault() tries to create a new page mapping. It aggressively 3053 * tries to share with existing pages, but makes a separate copy if 3054 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3055 * the next page fault. 3056 * 3057 * As this is called only for pages that do not currently exist, we 3058 * do not need to flush old virtual caches or the TLB. 3059 * 3060 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3061 * but allow concurrent faults), and pte neither mapped nor locked. 3062 * We return with mmap_sem still held, but pte unmapped and unlocked. 3063 */ 3064 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3065 unsigned long address, pmd_t *pmd, 3066 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3067 { 3068 pte_t *page_table; 3069 spinlock_t *ptl; 3070 struct page *page; 3071 pte_t entry; 3072 int anon = 0; 3073 int charged = 0; 3074 struct page *dirty_page = NULL; 3075 struct vm_fault vmf; 3076 int ret; 3077 int page_mkwrite = 0; 3078 3079 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3080 vmf.pgoff = pgoff; 3081 vmf.flags = flags; 3082 vmf.page = NULL; 3083 3084 ret = vma->vm_ops->fault(vma, &vmf); 3085 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3086 VM_FAULT_RETRY))) 3087 return ret; 3088 3089 if (unlikely(PageHWPoison(vmf.page))) { 3090 if (ret & VM_FAULT_LOCKED) 3091 unlock_page(vmf.page); 3092 return VM_FAULT_HWPOISON; 3093 } 3094 3095 /* 3096 * For consistency in subsequent calls, make the faulted page always 3097 * locked. 3098 */ 3099 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3100 lock_page(vmf.page); 3101 else 3102 VM_BUG_ON(!PageLocked(vmf.page)); 3103 3104 /* 3105 * Should we do an early C-O-W break? 3106 */ 3107 page = vmf.page; 3108 if (flags & FAULT_FLAG_WRITE) { 3109 if (!(vma->vm_flags & VM_SHARED)) { 3110 anon = 1; 3111 if (unlikely(anon_vma_prepare(vma))) { 3112 ret = VM_FAULT_OOM; 3113 goto out; 3114 } 3115 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 3116 vma, address); 3117 if (!page) { 3118 ret = VM_FAULT_OOM; 3119 goto out; 3120 } 3121 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 3122 ret = VM_FAULT_OOM; 3123 page_cache_release(page); 3124 goto out; 3125 } 3126 charged = 1; 3127 copy_user_highpage(page, vmf.page, address, vma); 3128 __SetPageUptodate(page); 3129 } else { 3130 /* 3131 * If the page will be shareable, see if the backing 3132 * address space wants to know that the page is about 3133 * to become writable 3134 */ 3135 if (vma->vm_ops->page_mkwrite) { 3136 int tmp; 3137 3138 unlock_page(page); 3139 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3140 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3141 if (unlikely(tmp & 3142 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3143 ret = tmp; 3144 goto unwritable_page; 3145 } 3146 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3147 lock_page(page); 3148 if (!page->mapping) { 3149 ret = 0; /* retry the fault */ 3150 unlock_page(page); 3151 goto unwritable_page; 3152 } 3153 } else 3154 VM_BUG_ON(!PageLocked(page)); 3155 page_mkwrite = 1; 3156 } 3157 } 3158 3159 } 3160 3161 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3162 3163 /* 3164 * This silly early PAGE_DIRTY setting removes a race 3165 * due to the bad i386 page protection. But it's valid 3166 * for other architectures too. 3167 * 3168 * Note that if FAULT_FLAG_WRITE is set, we either now have 3169 * an exclusive copy of the page, or this is a shared mapping, 3170 * so we can make it writable and dirty to avoid having to 3171 * handle that later. 3172 */ 3173 /* Only go through if we didn't race with anybody else... */ 3174 if (likely(pte_same(*page_table, orig_pte))) { 3175 flush_icache_page(vma, page); 3176 entry = mk_pte(page, vma->vm_page_prot); 3177 if (flags & FAULT_FLAG_WRITE) 3178 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3179 if (anon) { 3180 inc_mm_counter_fast(mm, MM_ANONPAGES); 3181 page_add_new_anon_rmap(page, vma, address); 3182 } else { 3183 inc_mm_counter_fast(mm, MM_FILEPAGES); 3184 page_add_file_rmap(page); 3185 if (flags & FAULT_FLAG_WRITE) { 3186 dirty_page = page; 3187 get_page(dirty_page); 3188 } 3189 } 3190 set_pte_at(mm, address, page_table, entry); 3191 3192 /* no need to invalidate: a not-present page won't be cached */ 3193 update_mmu_cache(vma, address, page_table); 3194 } else { 3195 if (charged) 3196 mem_cgroup_uncharge_page(page); 3197 if (anon) 3198 page_cache_release(page); 3199 else 3200 anon = 1; /* no anon but release faulted_page */ 3201 } 3202 3203 pte_unmap_unlock(page_table, ptl); 3204 3205 out: 3206 if (dirty_page) { 3207 struct address_space *mapping = page->mapping; 3208 3209 if (set_page_dirty(dirty_page)) 3210 page_mkwrite = 1; 3211 unlock_page(dirty_page); 3212 put_page(dirty_page); 3213 if (page_mkwrite && mapping) { 3214 /* 3215 * Some device drivers do not set page.mapping but still 3216 * dirty their pages 3217 */ 3218 balance_dirty_pages_ratelimited(mapping); 3219 } 3220 3221 /* file_update_time outside page_lock */ 3222 if (vma->vm_file) 3223 file_update_time(vma->vm_file); 3224 } else { 3225 unlock_page(vmf.page); 3226 if (anon) 3227 page_cache_release(vmf.page); 3228 } 3229 3230 return ret; 3231 3232 unwritable_page: 3233 page_cache_release(page); 3234 return ret; 3235 } 3236 3237 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3238 unsigned long address, pte_t *page_table, pmd_t *pmd, 3239 unsigned int flags, pte_t orig_pte) 3240 { 3241 pgoff_t pgoff = (((address & PAGE_MASK) 3242 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3243 3244 pte_unmap(page_table); 3245 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3246 } 3247 3248 /* 3249 * Fault of a previously existing named mapping. Repopulate the pte 3250 * from the encoded file_pte if possible. This enables swappable 3251 * nonlinear vmas. 3252 * 3253 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3254 * but allow concurrent faults), and pte mapped but not yet locked. 3255 * We return with mmap_sem still held, but pte unmapped and unlocked. 3256 */ 3257 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3258 unsigned long address, pte_t *page_table, pmd_t *pmd, 3259 unsigned int flags, pte_t orig_pte) 3260 { 3261 pgoff_t pgoff; 3262 3263 flags |= FAULT_FLAG_NONLINEAR; 3264 3265 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3266 return 0; 3267 3268 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3269 /* 3270 * Page table corrupted: show pte and kill process. 3271 */ 3272 print_bad_pte(vma, address, orig_pte, NULL); 3273 return VM_FAULT_SIGBUS; 3274 } 3275 3276 pgoff = pte_to_pgoff(orig_pte); 3277 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3278 } 3279 3280 /* 3281 * These routines also need to handle stuff like marking pages dirty 3282 * and/or accessed for architectures that don't do it in hardware (most 3283 * RISC architectures). The early dirtying is also good on the i386. 3284 * 3285 * There is also a hook called "update_mmu_cache()" that architectures 3286 * with external mmu caches can use to update those (ie the Sparc or 3287 * PowerPC hashed page tables that act as extended TLBs). 3288 * 3289 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3290 * but allow concurrent faults), and pte mapped but not yet locked. 3291 * We return with mmap_sem still held, but pte unmapped and unlocked. 3292 */ 3293 int handle_pte_fault(struct mm_struct *mm, 3294 struct vm_area_struct *vma, unsigned long address, 3295 pte_t *pte, pmd_t *pmd, unsigned int flags) 3296 { 3297 pte_t entry; 3298 spinlock_t *ptl; 3299 3300 entry = *pte; 3301 if (!pte_present(entry)) { 3302 if (pte_none(entry)) { 3303 if (vma->vm_ops) { 3304 if (likely(vma->vm_ops->fault)) 3305 return do_linear_fault(mm, vma, address, 3306 pte, pmd, flags, entry); 3307 } 3308 return do_anonymous_page(mm, vma, address, 3309 pte, pmd, flags); 3310 } 3311 if (pte_file(entry)) 3312 return do_nonlinear_fault(mm, vma, address, 3313 pte, pmd, flags, entry); 3314 return do_swap_page(mm, vma, address, 3315 pte, pmd, flags, entry); 3316 } 3317 3318 ptl = pte_lockptr(mm, pmd); 3319 spin_lock(ptl); 3320 if (unlikely(!pte_same(*pte, entry))) 3321 goto unlock; 3322 if (flags & FAULT_FLAG_WRITE) { 3323 if (!pte_write(entry)) 3324 return do_wp_page(mm, vma, address, 3325 pte, pmd, ptl, entry); 3326 entry = pte_mkdirty(entry); 3327 } 3328 entry = pte_mkyoung(entry); 3329 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3330 update_mmu_cache(vma, address, pte); 3331 } else { 3332 /* 3333 * This is needed only for protection faults but the arch code 3334 * is not yet telling us if this is a protection fault or not. 3335 * This still avoids useless tlb flushes for .text page faults 3336 * with threads. 3337 */ 3338 if (flags & FAULT_FLAG_WRITE) 3339 flush_tlb_fix_spurious_fault(vma, address); 3340 } 3341 unlock: 3342 pte_unmap_unlock(pte, ptl); 3343 return 0; 3344 } 3345 3346 /* 3347 * By the time we get here, we already hold the mm semaphore 3348 */ 3349 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3350 unsigned long address, unsigned int flags) 3351 { 3352 pgd_t *pgd; 3353 pud_t *pud; 3354 pmd_t *pmd; 3355 pte_t *pte; 3356 3357 __set_current_state(TASK_RUNNING); 3358 3359 count_vm_event(PGFAULT); 3360 3361 /* do counter updates before entering really critical section. */ 3362 check_sync_rss_stat(current); 3363 3364 if (unlikely(is_vm_hugetlb_page(vma))) 3365 return hugetlb_fault(mm, vma, address, flags); 3366 3367 pgd = pgd_offset(mm, address); 3368 pud = pud_alloc(mm, pgd, address); 3369 if (!pud) 3370 return VM_FAULT_OOM; 3371 pmd = pmd_alloc(mm, pud, address); 3372 if (!pmd) 3373 return VM_FAULT_OOM; 3374 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3375 if (!vma->vm_ops) 3376 return do_huge_pmd_anonymous_page(mm, vma, address, 3377 pmd, flags); 3378 } else { 3379 pmd_t orig_pmd = *pmd; 3380 barrier(); 3381 if (pmd_trans_huge(orig_pmd)) { 3382 if (flags & FAULT_FLAG_WRITE && 3383 !pmd_write(orig_pmd) && 3384 !pmd_trans_splitting(orig_pmd)) 3385 return do_huge_pmd_wp_page(mm, vma, address, 3386 pmd, orig_pmd); 3387 return 0; 3388 } 3389 } 3390 3391 /* 3392 * Use __pte_alloc instead of pte_alloc_map, because we can't 3393 * run pte_offset_map on the pmd, if an huge pmd could 3394 * materialize from under us from a different thread. 3395 */ 3396 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address)) 3397 return VM_FAULT_OOM; 3398 /* if an huge pmd materialized from under us just retry later */ 3399 if (unlikely(pmd_trans_huge(*pmd))) 3400 return 0; 3401 /* 3402 * A regular pmd is established and it can't morph into a huge pmd 3403 * from under us anymore at this point because we hold the mmap_sem 3404 * read mode and khugepaged takes it in write mode. So now it's 3405 * safe to run pte_offset_map(). 3406 */ 3407 pte = pte_offset_map(pmd, address); 3408 3409 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3410 } 3411 3412 #ifndef __PAGETABLE_PUD_FOLDED 3413 /* 3414 * Allocate page upper directory. 3415 * We've already handled the fast-path in-line. 3416 */ 3417 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3418 { 3419 pud_t *new = pud_alloc_one(mm, address); 3420 if (!new) 3421 return -ENOMEM; 3422 3423 smp_wmb(); /* See comment in __pte_alloc */ 3424 3425 spin_lock(&mm->page_table_lock); 3426 if (pgd_present(*pgd)) /* Another has populated it */ 3427 pud_free(mm, new); 3428 else 3429 pgd_populate(mm, pgd, new); 3430 spin_unlock(&mm->page_table_lock); 3431 return 0; 3432 } 3433 #endif /* __PAGETABLE_PUD_FOLDED */ 3434 3435 #ifndef __PAGETABLE_PMD_FOLDED 3436 /* 3437 * Allocate page middle directory. 3438 * We've already handled the fast-path in-line. 3439 */ 3440 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3441 { 3442 pmd_t *new = pmd_alloc_one(mm, address); 3443 if (!new) 3444 return -ENOMEM; 3445 3446 smp_wmb(); /* See comment in __pte_alloc */ 3447 3448 spin_lock(&mm->page_table_lock); 3449 #ifndef __ARCH_HAS_4LEVEL_HACK 3450 if (pud_present(*pud)) /* Another has populated it */ 3451 pmd_free(mm, new); 3452 else 3453 pud_populate(mm, pud, new); 3454 #else 3455 if (pgd_present(*pud)) /* Another has populated it */ 3456 pmd_free(mm, new); 3457 else 3458 pgd_populate(mm, pud, new); 3459 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3460 spin_unlock(&mm->page_table_lock); 3461 return 0; 3462 } 3463 #endif /* __PAGETABLE_PMD_FOLDED */ 3464 3465 int make_pages_present(unsigned long addr, unsigned long end) 3466 { 3467 int ret, len, write; 3468 struct vm_area_struct * vma; 3469 3470 vma = find_vma(current->mm, addr); 3471 if (!vma) 3472 return -ENOMEM; 3473 /* 3474 * We want to touch writable mappings with a write fault in order 3475 * to break COW, except for shared mappings because these don't COW 3476 * and we would not want to dirty them for nothing. 3477 */ 3478 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE; 3479 BUG_ON(addr >= end); 3480 BUG_ON(end > vma->vm_end); 3481 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3482 ret = get_user_pages(current, current->mm, addr, 3483 len, write, 0, NULL, NULL); 3484 if (ret < 0) 3485 return ret; 3486 return ret == len ? 0 : -EFAULT; 3487 } 3488 3489 #if !defined(__HAVE_ARCH_GATE_AREA) 3490 3491 #if defined(AT_SYSINFO_EHDR) 3492 static struct vm_area_struct gate_vma; 3493 3494 static int __init gate_vma_init(void) 3495 { 3496 gate_vma.vm_mm = NULL; 3497 gate_vma.vm_start = FIXADDR_USER_START; 3498 gate_vma.vm_end = FIXADDR_USER_END; 3499 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3500 gate_vma.vm_page_prot = __P101; 3501 /* 3502 * Make sure the vDSO gets into every core dump. 3503 * Dumping its contents makes post-mortem fully interpretable later 3504 * without matching up the same kernel and hardware config to see 3505 * what PC values meant. 3506 */ 3507 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3508 return 0; 3509 } 3510 __initcall(gate_vma_init); 3511 #endif 3512 3513 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3514 { 3515 #ifdef AT_SYSINFO_EHDR 3516 return &gate_vma; 3517 #else 3518 return NULL; 3519 #endif 3520 } 3521 3522 int in_gate_area_no_mm(unsigned long addr) 3523 { 3524 #ifdef AT_SYSINFO_EHDR 3525 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3526 return 1; 3527 #endif 3528 return 0; 3529 } 3530 3531 #endif /* __HAVE_ARCH_GATE_AREA */ 3532 3533 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3534 pte_t **ptepp, spinlock_t **ptlp) 3535 { 3536 pgd_t *pgd; 3537 pud_t *pud; 3538 pmd_t *pmd; 3539 pte_t *ptep; 3540 3541 pgd = pgd_offset(mm, address); 3542 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3543 goto out; 3544 3545 pud = pud_offset(pgd, address); 3546 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3547 goto out; 3548 3549 pmd = pmd_offset(pud, address); 3550 VM_BUG_ON(pmd_trans_huge(*pmd)); 3551 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3552 goto out; 3553 3554 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3555 if (pmd_huge(*pmd)) 3556 goto out; 3557 3558 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3559 if (!ptep) 3560 goto out; 3561 if (!pte_present(*ptep)) 3562 goto unlock; 3563 *ptepp = ptep; 3564 return 0; 3565 unlock: 3566 pte_unmap_unlock(ptep, *ptlp); 3567 out: 3568 return -EINVAL; 3569 } 3570 3571 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3572 pte_t **ptepp, spinlock_t **ptlp) 3573 { 3574 int res; 3575 3576 /* (void) is needed to make gcc happy */ 3577 (void) __cond_lock(*ptlp, 3578 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3579 return res; 3580 } 3581 3582 /** 3583 * follow_pfn - look up PFN at a user virtual address 3584 * @vma: memory mapping 3585 * @address: user virtual address 3586 * @pfn: location to store found PFN 3587 * 3588 * Only IO mappings and raw PFN mappings are allowed. 3589 * 3590 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3591 */ 3592 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3593 unsigned long *pfn) 3594 { 3595 int ret = -EINVAL; 3596 spinlock_t *ptl; 3597 pte_t *ptep; 3598 3599 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3600 return ret; 3601 3602 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3603 if (ret) 3604 return ret; 3605 *pfn = pte_pfn(*ptep); 3606 pte_unmap_unlock(ptep, ptl); 3607 return 0; 3608 } 3609 EXPORT_SYMBOL(follow_pfn); 3610 3611 #ifdef CONFIG_HAVE_IOREMAP_PROT 3612 int follow_phys(struct vm_area_struct *vma, 3613 unsigned long address, unsigned int flags, 3614 unsigned long *prot, resource_size_t *phys) 3615 { 3616 int ret = -EINVAL; 3617 pte_t *ptep, pte; 3618 spinlock_t *ptl; 3619 3620 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3621 goto out; 3622 3623 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3624 goto out; 3625 pte = *ptep; 3626 3627 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3628 goto unlock; 3629 3630 *prot = pgprot_val(pte_pgprot(pte)); 3631 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3632 3633 ret = 0; 3634 unlock: 3635 pte_unmap_unlock(ptep, ptl); 3636 out: 3637 return ret; 3638 } 3639 3640 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3641 void *buf, int len, int write) 3642 { 3643 resource_size_t phys_addr; 3644 unsigned long prot = 0; 3645 void __iomem *maddr; 3646 int offset = addr & (PAGE_SIZE-1); 3647 3648 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3649 return -EINVAL; 3650 3651 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3652 if (write) 3653 memcpy_toio(maddr + offset, buf, len); 3654 else 3655 memcpy_fromio(buf, maddr + offset, len); 3656 iounmap(maddr); 3657 3658 return len; 3659 } 3660 #endif 3661 3662 /* 3663 * Access another process' address space as given in mm. If non-NULL, use the 3664 * given task for page fault accounting. 3665 */ 3666 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3667 unsigned long addr, void *buf, int len, int write) 3668 { 3669 struct vm_area_struct *vma; 3670 void *old_buf = buf; 3671 3672 down_read(&mm->mmap_sem); 3673 /* ignore errors, just check how much was successfully transferred */ 3674 while (len) { 3675 int bytes, ret, offset; 3676 void *maddr; 3677 struct page *page = NULL; 3678 3679 ret = get_user_pages(tsk, mm, addr, 1, 3680 write, 1, &page, &vma); 3681 if (ret <= 0) { 3682 /* 3683 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3684 * we can access using slightly different code. 3685 */ 3686 #ifdef CONFIG_HAVE_IOREMAP_PROT 3687 vma = find_vma(mm, addr); 3688 if (!vma || vma->vm_start > addr) 3689 break; 3690 if (vma->vm_ops && vma->vm_ops->access) 3691 ret = vma->vm_ops->access(vma, addr, buf, 3692 len, write); 3693 if (ret <= 0) 3694 #endif 3695 break; 3696 bytes = ret; 3697 } else { 3698 bytes = len; 3699 offset = addr & (PAGE_SIZE-1); 3700 if (bytes > PAGE_SIZE-offset) 3701 bytes = PAGE_SIZE-offset; 3702 3703 maddr = kmap(page); 3704 if (write) { 3705 copy_to_user_page(vma, page, addr, 3706 maddr + offset, buf, bytes); 3707 set_page_dirty_lock(page); 3708 } else { 3709 copy_from_user_page(vma, page, addr, 3710 buf, maddr + offset, bytes); 3711 } 3712 kunmap(page); 3713 page_cache_release(page); 3714 } 3715 len -= bytes; 3716 buf += bytes; 3717 addr += bytes; 3718 } 3719 up_read(&mm->mmap_sem); 3720 3721 return buf - old_buf; 3722 } 3723 3724 /** 3725 * access_remote_vm - access another process' address space 3726 * @mm: the mm_struct of the target address space 3727 * @addr: start address to access 3728 * @buf: source or destination buffer 3729 * @len: number of bytes to transfer 3730 * @write: whether the access is a write 3731 * 3732 * The caller must hold a reference on @mm. 3733 */ 3734 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3735 void *buf, int len, int write) 3736 { 3737 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3738 } 3739 3740 /* 3741 * Access another process' address space. 3742 * Source/target buffer must be kernel space, 3743 * Do not walk the page table directly, use get_user_pages 3744 */ 3745 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3746 void *buf, int len, int write) 3747 { 3748 struct mm_struct *mm; 3749 int ret; 3750 3751 mm = get_task_mm(tsk); 3752 if (!mm) 3753 return 0; 3754 3755 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3756 mmput(mm); 3757 3758 return ret; 3759 } 3760 3761 /* 3762 * Print the name of a VMA. 3763 */ 3764 void print_vma_addr(char *prefix, unsigned long ip) 3765 { 3766 struct mm_struct *mm = current->mm; 3767 struct vm_area_struct *vma; 3768 3769 /* 3770 * Do not print if we are in atomic 3771 * contexts (in exception stacks, etc.): 3772 */ 3773 if (preempt_count()) 3774 return; 3775 3776 down_read(&mm->mmap_sem); 3777 vma = find_vma(mm, ip); 3778 if (vma && vma->vm_file) { 3779 struct file *f = vma->vm_file; 3780 char *buf = (char *)__get_free_page(GFP_KERNEL); 3781 if (buf) { 3782 char *p, *s; 3783 3784 p = d_path(&f->f_path, buf, PAGE_SIZE); 3785 if (IS_ERR(p)) 3786 p = "?"; 3787 s = strrchr(p, '/'); 3788 if (s) 3789 p = s+1; 3790 printk("%s%s[%lx+%lx]", prefix, p, 3791 vma->vm_start, 3792 vma->vm_end - vma->vm_start); 3793 free_page((unsigned long)buf); 3794 } 3795 } 3796 up_read(¤t->mm->mmap_sem); 3797 } 3798 3799 #ifdef CONFIG_PROVE_LOCKING 3800 void might_fault(void) 3801 { 3802 /* 3803 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3804 * holding the mmap_sem, this is safe because kernel memory doesn't 3805 * get paged out, therefore we'll never actually fault, and the 3806 * below annotations will generate false positives. 3807 */ 3808 if (segment_eq(get_fs(), KERNEL_DS)) 3809 return; 3810 3811 might_sleep(); 3812 /* 3813 * it would be nicer only to annotate paths which are not under 3814 * pagefault_disable, however that requires a larger audit and 3815 * providing helpers like get_user_atomic. 3816 */ 3817 if (!in_atomic() && current->mm) 3818 might_lock_read(¤t->mm->mmap_sem); 3819 } 3820 EXPORT_SYMBOL(might_fault); 3821 #endif 3822 3823 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3824 static void clear_gigantic_page(struct page *page, 3825 unsigned long addr, 3826 unsigned int pages_per_huge_page) 3827 { 3828 int i; 3829 struct page *p = page; 3830 3831 might_sleep(); 3832 for (i = 0; i < pages_per_huge_page; 3833 i++, p = mem_map_next(p, page, i)) { 3834 cond_resched(); 3835 clear_user_highpage(p, addr + i * PAGE_SIZE); 3836 } 3837 } 3838 void clear_huge_page(struct page *page, 3839 unsigned long addr, unsigned int pages_per_huge_page) 3840 { 3841 int i; 3842 3843 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3844 clear_gigantic_page(page, addr, pages_per_huge_page); 3845 return; 3846 } 3847 3848 might_sleep(); 3849 for (i = 0; i < pages_per_huge_page; i++) { 3850 cond_resched(); 3851 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3852 } 3853 } 3854 3855 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3856 unsigned long addr, 3857 struct vm_area_struct *vma, 3858 unsigned int pages_per_huge_page) 3859 { 3860 int i; 3861 struct page *dst_base = dst; 3862 struct page *src_base = src; 3863 3864 for (i = 0; i < pages_per_huge_page; ) { 3865 cond_resched(); 3866 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3867 3868 i++; 3869 dst = mem_map_next(dst, dst_base, i); 3870 src = mem_map_next(src, src_base, i); 3871 } 3872 } 3873 3874 void copy_user_huge_page(struct page *dst, struct page *src, 3875 unsigned long addr, struct vm_area_struct *vma, 3876 unsigned int pages_per_huge_page) 3877 { 3878 int i; 3879 3880 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3881 copy_user_gigantic_page(dst, src, addr, vma, 3882 pages_per_huge_page); 3883 return; 3884 } 3885 3886 might_sleep(); 3887 for (i = 0; i < pages_per_huge_page; i++) { 3888 cond_resched(); 3889 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3890 } 3891 } 3892 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3893