1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 #include <linux/migrate.h> 61 #include <linux/string.h> 62 #include <linux/dma-debug.h> 63 #include <linux/debugfs.h> 64 65 #include <asm/io.h> 66 #include <asm/pgalloc.h> 67 #include <asm/uaccess.h> 68 #include <asm/tlb.h> 69 #include <asm/tlbflush.h> 70 #include <asm/pgtable.h> 71 72 #include "internal.h" 73 74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 76 #endif 77 78 #ifndef CONFIG_NEED_MULTIPLE_NODES 79 /* use the per-pgdat data instead for discontigmem - mbligh */ 80 unsigned long max_mapnr; 81 struct page *mem_map; 82 83 EXPORT_SYMBOL(max_mapnr); 84 EXPORT_SYMBOL(mem_map); 85 #endif 86 87 /* 88 * A number of key systems in x86 including ioremap() rely on the assumption 89 * that high_memory defines the upper bound on direct map memory, then end 90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 92 * and ZONE_HIGHMEM. 93 */ 94 void * high_memory; 95 96 EXPORT_SYMBOL(high_memory); 97 98 /* 99 * Randomize the address space (stacks, mmaps, brk, etc.). 100 * 101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 102 * as ancient (libc5 based) binaries can segfault. ) 103 */ 104 int randomize_va_space __read_mostly = 105 #ifdef CONFIG_COMPAT_BRK 106 1; 107 #else 108 2; 109 #endif 110 111 static int __init disable_randmaps(char *s) 112 { 113 randomize_va_space = 0; 114 return 1; 115 } 116 __setup("norandmaps", disable_randmaps); 117 118 unsigned long zero_pfn __read_mostly; 119 unsigned long highest_memmap_pfn __read_mostly; 120 121 EXPORT_SYMBOL(zero_pfn); 122 123 /* 124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 125 */ 126 static int __init init_zero_pfn(void) 127 { 128 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 129 return 0; 130 } 131 core_initcall(init_zero_pfn); 132 133 134 #if defined(SPLIT_RSS_COUNTING) 135 136 void sync_mm_rss(struct mm_struct *mm) 137 { 138 int i; 139 140 for (i = 0; i < NR_MM_COUNTERS; i++) { 141 if (current->rss_stat.count[i]) { 142 add_mm_counter(mm, i, current->rss_stat.count[i]); 143 current->rss_stat.count[i] = 0; 144 } 145 } 146 current->rss_stat.events = 0; 147 } 148 149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 150 { 151 struct task_struct *task = current; 152 153 if (likely(task->mm == mm)) 154 task->rss_stat.count[member] += val; 155 else 156 add_mm_counter(mm, member, val); 157 } 158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 160 161 /* sync counter once per 64 page faults */ 162 #define TASK_RSS_EVENTS_THRESH (64) 163 static void check_sync_rss_stat(struct task_struct *task) 164 { 165 if (unlikely(task != current)) 166 return; 167 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 168 sync_mm_rss(task->mm); 169 } 170 #else /* SPLIT_RSS_COUNTING */ 171 172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 174 175 static void check_sync_rss_stat(struct task_struct *task) 176 { 177 } 178 179 #endif /* SPLIT_RSS_COUNTING */ 180 181 #ifdef HAVE_GENERIC_MMU_GATHER 182 183 static int tlb_next_batch(struct mmu_gather *tlb) 184 { 185 struct mmu_gather_batch *batch; 186 187 batch = tlb->active; 188 if (batch->next) { 189 tlb->active = batch->next; 190 return 1; 191 } 192 193 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 194 return 0; 195 196 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 197 if (!batch) 198 return 0; 199 200 tlb->batch_count++; 201 batch->next = NULL; 202 batch->nr = 0; 203 batch->max = MAX_GATHER_BATCH; 204 205 tlb->active->next = batch; 206 tlb->active = batch; 207 208 return 1; 209 } 210 211 /* tlb_gather_mmu 212 * Called to initialize an (on-stack) mmu_gather structure for page-table 213 * tear-down from @mm. The @fullmm argument is used when @mm is without 214 * users and we're going to destroy the full address space (exit/execve). 215 */ 216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 217 { 218 tlb->mm = mm; 219 220 /* Is it from 0 to ~0? */ 221 tlb->fullmm = !(start | (end+1)); 222 tlb->need_flush_all = 0; 223 tlb->start = start; 224 tlb->end = end; 225 tlb->need_flush = 0; 226 tlb->local.next = NULL; 227 tlb->local.nr = 0; 228 tlb->local.max = ARRAY_SIZE(tlb->__pages); 229 tlb->active = &tlb->local; 230 tlb->batch_count = 0; 231 232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 233 tlb->batch = NULL; 234 #endif 235 } 236 237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 238 { 239 tlb->need_flush = 0; 240 tlb_flush(tlb); 241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 242 tlb_table_flush(tlb); 243 #endif 244 } 245 246 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 247 { 248 struct mmu_gather_batch *batch; 249 250 for (batch = &tlb->local; batch; batch = batch->next) { 251 free_pages_and_swap_cache(batch->pages, batch->nr); 252 batch->nr = 0; 253 } 254 tlb->active = &tlb->local; 255 } 256 257 void tlb_flush_mmu(struct mmu_gather *tlb) 258 { 259 if (!tlb->need_flush) 260 return; 261 tlb_flush_mmu_tlbonly(tlb); 262 tlb_flush_mmu_free(tlb); 263 } 264 265 /* tlb_finish_mmu 266 * Called at the end of the shootdown operation to free up any resources 267 * that were required. 268 */ 269 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 270 { 271 struct mmu_gather_batch *batch, *next; 272 273 tlb_flush_mmu(tlb); 274 275 /* keep the page table cache within bounds */ 276 check_pgt_cache(); 277 278 for (batch = tlb->local.next; batch; batch = next) { 279 next = batch->next; 280 free_pages((unsigned long)batch, 0); 281 } 282 tlb->local.next = NULL; 283 } 284 285 /* __tlb_remove_page 286 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 287 * handling the additional races in SMP caused by other CPUs caching valid 288 * mappings in their TLBs. Returns the number of free page slots left. 289 * When out of page slots we must call tlb_flush_mmu(). 290 */ 291 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 292 { 293 struct mmu_gather_batch *batch; 294 295 VM_BUG_ON(!tlb->need_flush); 296 297 batch = tlb->active; 298 batch->pages[batch->nr++] = page; 299 if (batch->nr == batch->max) { 300 if (!tlb_next_batch(tlb)) 301 return 0; 302 batch = tlb->active; 303 } 304 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 305 306 return batch->max - batch->nr; 307 } 308 309 #endif /* HAVE_GENERIC_MMU_GATHER */ 310 311 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 312 313 /* 314 * See the comment near struct mmu_table_batch. 315 */ 316 317 static void tlb_remove_table_smp_sync(void *arg) 318 { 319 /* Simply deliver the interrupt */ 320 } 321 322 static void tlb_remove_table_one(void *table) 323 { 324 /* 325 * This isn't an RCU grace period and hence the page-tables cannot be 326 * assumed to be actually RCU-freed. 327 * 328 * It is however sufficient for software page-table walkers that rely on 329 * IRQ disabling. See the comment near struct mmu_table_batch. 330 */ 331 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 332 __tlb_remove_table(table); 333 } 334 335 static void tlb_remove_table_rcu(struct rcu_head *head) 336 { 337 struct mmu_table_batch *batch; 338 int i; 339 340 batch = container_of(head, struct mmu_table_batch, rcu); 341 342 for (i = 0; i < batch->nr; i++) 343 __tlb_remove_table(batch->tables[i]); 344 345 free_page((unsigned long)batch); 346 } 347 348 void tlb_table_flush(struct mmu_gather *tlb) 349 { 350 struct mmu_table_batch **batch = &tlb->batch; 351 352 if (*batch) { 353 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 354 *batch = NULL; 355 } 356 } 357 358 void tlb_remove_table(struct mmu_gather *tlb, void *table) 359 { 360 struct mmu_table_batch **batch = &tlb->batch; 361 362 tlb->need_flush = 1; 363 364 /* 365 * When there's less then two users of this mm there cannot be a 366 * concurrent page-table walk. 367 */ 368 if (atomic_read(&tlb->mm->mm_users) < 2) { 369 __tlb_remove_table(table); 370 return; 371 } 372 373 if (*batch == NULL) { 374 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 375 if (*batch == NULL) { 376 tlb_remove_table_one(table); 377 return; 378 } 379 (*batch)->nr = 0; 380 } 381 (*batch)->tables[(*batch)->nr++] = table; 382 if ((*batch)->nr == MAX_TABLE_BATCH) 383 tlb_table_flush(tlb); 384 } 385 386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 387 388 /* 389 * Note: this doesn't free the actual pages themselves. That 390 * has been handled earlier when unmapping all the memory regions. 391 */ 392 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 393 unsigned long addr) 394 { 395 pgtable_t token = pmd_pgtable(*pmd); 396 pmd_clear(pmd); 397 pte_free_tlb(tlb, token, addr); 398 atomic_long_dec(&tlb->mm->nr_ptes); 399 } 400 401 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 402 unsigned long addr, unsigned long end, 403 unsigned long floor, unsigned long ceiling) 404 { 405 pmd_t *pmd; 406 unsigned long next; 407 unsigned long start; 408 409 start = addr; 410 pmd = pmd_offset(pud, addr); 411 do { 412 next = pmd_addr_end(addr, end); 413 if (pmd_none_or_clear_bad(pmd)) 414 continue; 415 free_pte_range(tlb, pmd, addr); 416 } while (pmd++, addr = next, addr != end); 417 418 start &= PUD_MASK; 419 if (start < floor) 420 return; 421 if (ceiling) { 422 ceiling &= PUD_MASK; 423 if (!ceiling) 424 return; 425 } 426 if (end - 1 > ceiling - 1) 427 return; 428 429 pmd = pmd_offset(pud, start); 430 pud_clear(pud); 431 pmd_free_tlb(tlb, pmd, start); 432 } 433 434 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 435 unsigned long addr, unsigned long end, 436 unsigned long floor, unsigned long ceiling) 437 { 438 pud_t *pud; 439 unsigned long next; 440 unsigned long start; 441 442 start = addr; 443 pud = pud_offset(pgd, addr); 444 do { 445 next = pud_addr_end(addr, end); 446 if (pud_none_or_clear_bad(pud)) 447 continue; 448 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 449 } while (pud++, addr = next, addr != end); 450 451 start &= PGDIR_MASK; 452 if (start < floor) 453 return; 454 if (ceiling) { 455 ceiling &= PGDIR_MASK; 456 if (!ceiling) 457 return; 458 } 459 if (end - 1 > ceiling - 1) 460 return; 461 462 pud = pud_offset(pgd, start); 463 pgd_clear(pgd); 464 pud_free_tlb(tlb, pud, start); 465 } 466 467 /* 468 * This function frees user-level page tables of a process. 469 */ 470 void free_pgd_range(struct mmu_gather *tlb, 471 unsigned long addr, unsigned long end, 472 unsigned long floor, unsigned long ceiling) 473 { 474 pgd_t *pgd; 475 unsigned long next; 476 477 /* 478 * The next few lines have given us lots of grief... 479 * 480 * Why are we testing PMD* at this top level? Because often 481 * there will be no work to do at all, and we'd prefer not to 482 * go all the way down to the bottom just to discover that. 483 * 484 * Why all these "- 1"s? Because 0 represents both the bottom 485 * of the address space and the top of it (using -1 for the 486 * top wouldn't help much: the masks would do the wrong thing). 487 * The rule is that addr 0 and floor 0 refer to the bottom of 488 * the address space, but end 0 and ceiling 0 refer to the top 489 * Comparisons need to use "end - 1" and "ceiling - 1" (though 490 * that end 0 case should be mythical). 491 * 492 * Wherever addr is brought up or ceiling brought down, we must 493 * be careful to reject "the opposite 0" before it confuses the 494 * subsequent tests. But what about where end is brought down 495 * by PMD_SIZE below? no, end can't go down to 0 there. 496 * 497 * Whereas we round start (addr) and ceiling down, by different 498 * masks at different levels, in order to test whether a table 499 * now has no other vmas using it, so can be freed, we don't 500 * bother to round floor or end up - the tests don't need that. 501 */ 502 503 addr &= PMD_MASK; 504 if (addr < floor) { 505 addr += PMD_SIZE; 506 if (!addr) 507 return; 508 } 509 if (ceiling) { 510 ceiling &= PMD_MASK; 511 if (!ceiling) 512 return; 513 } 514 if (end - 1 > ceiling - 1) 515 end -= PMD_SIZE; 516 if (addr > end - 1) 517 return; 518 519 pgd = pgd_offset(tlb->mm, addr); 520 do { 521 next = pgd_addr_end(addr, end); 522 if (pgd_none_or_clear_bad(pgd)) 523 continue; 524 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 525 } while (pgd++, addr = next, addr != end); 526 } 527 528 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 529 unsigned long floor, unsigned long ceiling) 530 { 531 while (vma) { 532 struct vm_area_struct *next = vma->vm_next; 533 unsigned long addr = vma->vm_start; 534 535 /* 536 * Hide vma from rmap and truncate_pagecache before freeing 537 * pgtables 538 */ 539 unlink_anon_vmas(vma); 540 unlink_file_vma(vma); 541 542 if (is_vm_hugetlb_page(vma)) { 543 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 544 floor, next? next->vm_start: ceiling); 545 } else { 546 /* 547 * Optimization: gather nearby vmas into one call down 548 */ 549 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 550 && !is_vm_hugetlb_page(next)) { 551 vma = next; 552 next = vma->vm_next; 553 unlink_anon_vmas(vma); 554 unlink_file_vma(vma); 555 } 556 free_pgd_range(tlb, addr, vma->vm_end, 557 floor, next? next->vm_start: ceiling); 558 } 559 vma = next; 560 } 561 } 562 563 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 564 pmd_t *pmd, unsigned long address) 565 { 566 spinlock_t *ptl; 567 pgtable_t new = pte_alloc_one(mm, address); 568 int wait_split_huge_page; 569 if (!new) 570 return -ENOMEM; 571 572 /* 573 * Ensure all pte setup (eg. pte page lock and page clearing) are 574 * visible before the pte is made visible to other CPUs by being 575 * put into page tables. 576 * 577 * The other side of the story is the pointer chasing in the page 578 * table walking code (when walking the page table without locking; 579 * ie. most of the time). Fortunately, these data accesses consist 580 * of a chain of data-dependent loads, meaning most CPUs (alpha 581 * being the notable exception) will already guarantee loads are 582 * seen in-order. See the alpha page table accessors for the 583 * smp_read_barrier_depends() barriers in page table walking code. 584 */ 585 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 586 587 ptl = pmd_lock(mm, pmd); 588 wait_split_huge_page = 0; 589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 590 atomic_long_inc(&mm->nr_ptes); 591 pmd_populate(mm, pmd, new); 592 new = NULL; 593 } else if (unlikely(pmd_trans_splitting(*pmd))) 594 wait_split_huge_page = 1; 595 spin_unlock(ptl); 596 if (new) 597 pte_free(mm, new); 598 if (wait_split_huge_page) 599 wait_split_huge_page(vma->anon_vma, pmd); 600 return 0; 601 } 602 603 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 604 { 605 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 606 if (!new) 607 return -ENOMEM; 608 609 smp_wmb(); /* See comment in __pte_alloc */ 610 611 spin_lock(&init_mm.page_table_lock); 612 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 613 pmd_populate_kernel(&init_mm, pmd, new); 614 new = NULL; 615 } else 616 VM_BUG_ON(pmd_trans_splitting(*pmd)); 617 spin_unlock(&init_mm.page_table_lock); 618 if (new) 619 pte_free_kernel(&init_mm, new); 620 return 0; 621 } 622 623 static inline void init_rss_vec(int *rss) 624 { 625 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 626 } 627 628 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 629 { 630 int i; 631 632 if (current->mm == mm) 633 sync_mm_rss(mm); 634 for (i = 0; i < NR_MM_COUNTERS; i++) 635 if (rss[i]) 636 add_mm_counter(mm, i, rss[i]); 637 } 638 639 /* 640 * This function is called to print an error when a bad pte 641 * is found. For example, we might have a PFN-mapped pte in 642 * a region that doesn't allow it. 643 * 644 * The calling function must still handle the error. 645 */ 646 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 647 pte_t pte, struct page *page) 648 { 649 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 650 pud_t *pud = pud_offset(pgd, addr); 651 pmd_t *pmd = pmd_offset(pud, addr); 652 struct address_space *mapping; 653 pgoff_t index; 654 static unsigned long resume; 655 static unsigned long nr_shown; 656 static unsigned long nr_unshown; 657 658 /* 659 * Allow a burst of 60 reports, then keep quiet for that minute; 660 * or allow a steady drip of one report per second. 661 */ 662 if (nr_shown == 60) { 663 if (time_before(jiffies, resume)) { 664 nr_unshown++; 665 return; 666 } 667 if (nr_unshown) { 668 printk(KERN_ALERT 669 "BUG: Bad page map: %lu messages suppressed\n", 670 nr_unshown); 671 nr_unshown = 0; 672 } 673 nr_shown = 0; 674 } 675 if (nr_shown++ == 0) 676 resume = jiffies + 60 * HZ; 677 678 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 679 index = linear_page_index(vma, addr); 680 681 printk(KERN_ALERT 682 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 683 current->comm, 684 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 685 if (page) 686 dump_page(page, "bad pte"); 687 printk(KERN_ALERT 688 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 689 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 690 /* 691 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 692 */ 693 if (vma->vm_ops) 694 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n", 695 vma->vm_ops->fault); 696 if (vma->vm_file) 697 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n", 698 vma->vm_file->f_op->mmap); 699 dump_stack(); 700 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 701 } 702 703 /* 704 * vm_normal_page -- This function gets the "struct page" associated with a pte. 705 * 706 * "Special" mappings do not wish to be associated with a "struct page" (either 707 * it doesn't exist, or it exists but they don't want to touch it). In this 708 * case, NULL is returned here. "Normal" mappings do have a struct page. 709 * 710 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 711 * pte bit, in which case this function is trivial. Secondly, an architecture 712 * may not have a spare pte bit, which requires a more complicated scheme, 713 * described below. 714 * 715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 716 * special mapping (even if there are underlying and valid "struct pages"). 717 * COWed pages of a VM_PFNMAP are always normal. 718 * 719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 722 * mapping will always honor the rule 723 * 724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 725 * 726 * And for normal mappings this is false. 727 * 728 * This restricts such mappings to be a linear translation from virtual address 729 * to pfn. To get around this restriction, we allow arbitrary mappings so long 730 * as the vma is not a COW mapping; in that case, we know that all ptes are 731 * special (because none can have been COWed). 732 * 733 * 734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 735 * 736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 737 * page" backing, however the difference is that _all_ pages with a struct 738 * page (that is, those where pfn_valid is true) are refcounted and considered 739 * normal pages by the VM. The disadvantage is that pages are refcounted 740 * (which can be slower and simply not an option for some PFNMAP users). The 741 * advantage is that we don't have to follow the strict linearity rule of 742 * PFNMAP mappings in order to support COWable mappings. 743 * 744 */ 745 #ifdef __HAVE_ARCH_PTE_SPECIAL 746 # define HAVE_PTE_SPECIAL 1 747 #else 748 # define HAVE_PTE_SPECIAL 0 749 #endif 750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 751 pte_t pte) 752 { 753 unsigned long pfn = pte_pfn(pte); 754 755 if (HAVE_PTE_SPECIAL) { 756 if (likely(!pte_special(pte))) 757 goto check_pfn; 758 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 759 return NULL; 760 if (!is_zero_pfn(pfn)) 761 print_bad_pte(vma, addr, pte, NULL); 762 return NULL; 763 } 764 765 /* !HAVE_PTE_SPECIAL case follows: */ 766 767 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 768 if (vma->vm_flags & VM_MIXEDMAP) { 769 if (!pfn_valid(pfn)) 770 return NULL; 771 goto out; 772 } else { 773 unsigned long off; 774 off = (addr - vma->vm_start) >> PAGE_SHIFT; 775 if (pfn == vma->vm_pgoff + off) 776 return NULL; 777 if (!is_cow_mapping(vma->vm_flags)) 778 return NULL; 779 } 780 } 781 782 if (is_zero_pfn(pfn)) 783 return NULL; 784 check_pfn: 785 if (unlikely(pfn > highest_memmap_pfn)) { 786 print_bad_pte(vma, addr, pte, NULL); 787 return NULL; 788 } 789 790 /* 791 * NOTE! We still have PageReserved() pages in the page tables. 792 * eg. VDSO mappings can cause them to exist. 793 */ 794 out: 795 return pfn_to_page(pfn); 796 } 797 798 /* 799 * copy one vm_area from one task to the other. Assumes the page tables 800 * already present in the new task to be cleared in the whole range 801 * covered by this vma. 802 */ 803 804 static inline unsigned long 805 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 806 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 807 unsigned long addr, int *rss) 808 { 809 unsigned long vm_flags = vma->vm_flags; 810 pte_t pte = *src_pte; 811 struct page *page; 812 813 /* pte contains position in swap or file, so copy. */ 814 if (unlikely(!pte_present(pte))) { 815 if (!pte_file(pte)) { 816 swp_entry_t entry = pte_to_swp_entry(pte); 817 818 if (swap_duplicate(entry) < 0) 819 return entry.val; 820 821 /* make sure dst_mm is on swapoff's mmlist. */ 822 if (unlikely(list_empty(&dst_mm->mmlist))) { 823 spin_lock(&mmlist_lock); 824 if (list_empty(&dst_mm->mmlist)) 825 list_add(&dst_mm->mmlist, 826 &src_mm->mmlist); 827 spin_unlock(&mmlist_lock); 828 } 829 if (likely(!non_swap_entry(entry))) 830 rss[MM_SWAPENTS]++; 831 else if (is_migration_entry(entry)) { 832 page = migration_entry_to_page(entry); 833 834 if (PageAnon(page)) 835 rss[MM_ANONPAGES]++; 836 else 837 rss[MM_FILEPAGES]++; 838 839 if (is_write_migration_entry(entry) && 840 is_cow_mapping(vm_flags)) { 841 /* 842 * COW mappings require pages in both 843 * parent and child to be set to read. 844 */ 845 make_migration_entry_read(&entry); 846 pte = swp_entry_to_pte(entry); 847 if (pte_swp_soft_dirty(*src_pte)) 848 pte = pte_swp_mksoft_dirty(pte); 849 set_pte_at(src_mm, addr, src_pte, pte); 850 } 851 } 852 } 853 goto out_set_pte; 854 } 855 856 /* 857 * If it's a COW mapping, write protect it both 858 * in the parent and the child 859 */ 860 if (is_cow_mapping(vm_flags)) { 861 ptep_set_wrprotect(src_mm, addr, src_pte); 862 pte = pte_wrprotect(pte); 863 } 864 865 /* 866 * If it's a shared mapping, mark it clean in 867 * the child 868 */ 869 if (vm_flags & VM_SHARED) 870 pte = pte_mkclean(pte); 871 pte = pte_mkold(pte); 872 873 page = vm_normal_page(vma, addr, pte); 874 if (page) { 875 get_page(page); 876 page_dup_rmap(page); 877 if (PageAnon(page)) 878 rss[MM_ANONPAGES]++; 879 else 880 rss[MM_FILEPAGES]++; 881 } 882 883 out_set_pte: 884 set_pte_at(dst_mm, addr, dst_pte, pte); 885 return 0; 886 } 887 888 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 889 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 890 unsigned long addr, unsigned long end) 891 { 892 pte_t *orig_src_pte, *orig_dst_pte; 893 pte_t *src_pte, *dst_pte; 894 spinlock_t *src_ptl, *dst_ptl; 895 int progress = 0; 896 int rss[NR_MM_COUNTERS]; 897 swp_entry_t entry = (swp_entry_t){0}; 898 899 again: 900 init_rss_vec(rss); 901 902 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 903 if (!dst_pte) 904 return -ENOMEM; 905 src_pte = pte_offset_map(src_pmd, addr); 906 src_ptl = pte_lockptr(src_mm, src_pmd); 907 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 908 orig_src_pte = src_pte; 909 orig_dst_pte = dst_pte; 910 arch_enter_lazy_mmu_mode(); 911 912 do { 913 /* 914 * We are holding two locks at this point - either of them 915 * could generate latencies in another task on another CPU. 916 */ 917 if (progress >= 32) { 918 progress = 0; 919 if (need_resched() || 920 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 921 break; 922 } 923 if (pte_none(*src_pte)) { 924 progress++; 925 continue; 926 } 927 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 928 vma, addr, rss); 929 if (entry.val) 930 break; 931 progress += 8; 932 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 933 934 arch_leave_lazy_mmu_mode(); 935 spin_unlock(src_ptl); 936 pte_unmap(orig_src_pte); 937 add_mm_rss_vec(dst_mm, rss); 938 pte_unmap_unlock(orig_dst_pte, dst_ptl); 939 cond_resched(); 940 941 if (entry.val) { 942 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 943 return -ENOMEM; 944 progress = 0; 945 } 946 if (addr != end) 947 goto again; 948 return 0; 949 } 950 951 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 952 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 953 unsigned long addr, unsigned long end) 954 { 955 pmd_t *src_pmd, *dst_pmd; 956 unsigned long next; 957 958 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 959 if (!dst_pmd) 960 return -ENOMEM; 961 src_pmd = pmd_offset(src_pud, addr); 962 do { 963 next = pmd_addr_end(addr, end); 964 if (pmd_trans_huge(*src_pmd)) { 965 int err; 966 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 967 err = copy_huge_pmd(dst_mm, src_mm, 968 dst_pmd, src_pmd, addr, vma); 969 if (err == -ENOMEM) 970 return -ENOMEM; 971 if (!err) 972 continue; 973 /* fall through */ 974 } 975 if (pmd_none_or_clear_bad(src_pmd)) 976 continue; 977 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 978 vma, addr, next)) 979 return -ENOMEM; 980 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 981 return 0; 982 } 983 984 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 985 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 986 unsigned long addr, unsigned long end) 987 { 988 pud_t *src_pud, *dst_pud; 989 unsigned long next; 990 991 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 992 if (!dst_pud) 993 return -ENOMEM; 994 src_pud = pud_offset(src_pgd, addr); 995 do { 996 next = pud_addr_end(addr, end); 997 if (pud_none_or_clear_bad(src_pud)) 998 continue; 999 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1000 vma, addr, next)) 1001 return -ENOMEM; 1002 } while (dst_pud++, src_pud++, addr = next, addr != end); 1003 return 0; 1004 } 1005 1006 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1007 struct vm_area_struct *vma) 1008 { 1009 pgd_t *src_pgd, *dst_pgd; 1010 unsigned long next; 1011 unsigned long addr = vma->vm_start; 1012 unsigned long end = vma->vm_end; 1013 unsigned long mmun_start; /* For mmu_notifiers */ 1014 unsigned long mmun_end; /* For mmu_notifiers */ 1015 bool is_cow; 1016 int ret; 1017 1018 /* 1019 * Don't copy ptes where a page fault will fill them correctly. 1020 * Fork becomes much lighter when there are big shared or private 1021 * readonly mappings. The tradeoff is that copy_page_range is more 1022 * efficient than faulting. 1023 */ 1024 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR | 1025 VM_PFNMAP | VM_MIXEDMAP))) { 1026 if (!vma->anon_vma) 1027 return 0; 1028 } 1029 1030 if (is_vm_hugetlb_page(vma)) 1031 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1032 1033 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1034 /* 1035 * We do not free on error cases below as remove_vma 1036 * gets called on error from higher level routine 1037 */ 1038 ret = track_pfn_copy(vma); 1039 if (ret) 1040 return ret; 1041 } 1042 1043 /* 1044 * We need to invalidate the secondary MMU mappings only when 1045 * there could be a permission downgrade on the ptes of the 1046 * parent mm. And a permission downgrade will only happen if 1047 * is_cow_mapping() returns true. 1048 */ 1049 is_cow = is_cow_mapping(vma->vm_flags); 1050 mmun_start = addr; 1051 mmun_end = end; 1052 if (is_cow) 1053 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1054 mmun_end); 1055 1056 ret = 0; 1057 dst_pgd = pgd_offset(dst_mm, addr); 1058 src_pgd = pgd_offset(src_mm, addr); 1059 do { 1060 next = pgd_addr_end(addr, end); 1061 if (pgd_none_or_clear_bad(src_pgd)) 1062 continue; 1063 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1064 vma, addr, next))) { 1065 ret = -ENOMEM; 1066 break; 1067 } 1068 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1069 1070 if (is_cow) 1071 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1072 return ret; 1073 } 1074 1075 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1076 struct vm_area_struct *vma, pmd_t *pmd, 1077 unsigned long addr, unsigned long end, 1078 struct zap_details *details) 1079 { 1080 struct mm_struct *mm = tlb->mm; 1081 int force_flush = 0; 1082 int rss[NR_MM_COUNTERS]; 1083 spinlock_t *ptl; 1084 pte_t *start_pte; 1085 pte_t *pte; 1086 1087 again: 1088 init_rss_vec(rss); 1089 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1090 pte = start_pte; 1091 arch_enter_lazy_mmu_mode(); 1092 do { 1093 pte_t ptent = *pte; 1094 if (pte_none(ptent)) { 1095 continue; 1096 } 1097 1098 if (pte_present(ptent)) { 1099 struct page *page; 1100 1101 page = vm_normal_page(vma, addr, ptent); 1102 if (unlikely(details) && page) { 1103 /* 1104 * unmap_shared_mapping_pages() wants to 1105 * invalidate cache without truncating: 1106 * unmap shared but keep private pages. 1107 */ 1108 if (details->check_mapping && 1109 details->check_mapping != page->mapping) 1110 continue; 1111 /* 1112 * Each page->index must be checked when 1113 * invalidating or truncating nonlinear. 1114 */ 1115 if (details->nonlinear_vma && 1116 (page->index < details->first_index || 1117 page->index > details->last_index)) 1118 continue; 1119 } 1120 ptent = ptep_get_and_clear_full(mm, addr, pte, 1121 tlb->fullmm); 1122 tlb_remove_tlb_entry(tlb, pte, addr); 1123 if (unlikely(!page)) 1124 continue; 1125 if (unlikely(details) && details->nonlinear_vma 1126 && linear_page_index(details->nonlinear_vma, 1127 addr) != page->index) { 1128 pte_t ptfile = pgoff_to_pte(page->index); 1129 if (pte_soft_dirty(ptent)) 1130 ptfile = pte_file_mksoft_dirty(ptfile); 1131 set_pte_at(mm, addr, pte, ptfile); 1132 } 1133 if (PageAnon(page)) 1134 rss[MM_ANONPAGES]--; 1135 else { 1136 if (pte_dirty(ptent)) { 1137 force_flush = 1; 1138 set_page_dirty(page); 1139 } 1140 if (pte_young(ptent) && 1141 likely(!(vma->vm_flags & VM_SEQ_READ))) 1142 mark_page_accessed(page); 1143 rss[MM_FILEPAGES]--; 1144 } 1145 page_remove_rmap(page); 1146 if (unlikely(page_mapcount(page) < 0)) 1147 print_bad_pte(vma, addr, ptent, page); 1148 if (unlikely(!__tlb_remove_page(tlb, page))) { 1149 force_flush = 1; 1150 break; 1151 } 1152 continue; 1153 } 1154 /* 1155 * If details->check_mapping, we leave swap entries; 1156 * if details->nonlinear_vma, we leave file entries. 1157 */ 1158 if (unlikely(details)) 1159 continue; 1160 if (pte_file(ptent)) { 1161 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1162 print_bad_pte(vma, addr, ptent, NULL); 1163 } else { 1164 swp_entry_t entry = pte_to_swp_entry(ptent); 1165 1166 if (!non_swap_entry(entry)) 1167 rss[MM_SWAPENTS]--; 1168 else if (is_migration_entry(entry)) { 1169 struct page *page; 1170 1171 page = migration_entry_to_page(entry); 1172 1173 if (PageAnon(page)) 1174 rss[MM_ANONPAGES]--; 1175 else 1176 rss[MM_FILEPAGES]--; 1177 } 1178 if (unlikely(!free_swap_and_cache(entry))) 1179 print_bad_pte(vma, addr, ptent, NULL); 1180 } 1181 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1182 } while (pte++, addr += PAGE_SIZE, addr != end); 1183 1184 add_mm_rss_vec(mm, rss); 1185 arch_leave_lazy_mmu_mode(); 1186 1187 /* Do the actual TLB flush before dropping ptl */ 1188 if (force_flush) { 1189 unsigned long old_end; 1190 1191 /* 1192 * Flush the TLB just for the previous segment, 1193 * then update the range to be the remaining 1194 * TLB range. 1195 */ 1196 old_end = tlb->end; 1197 tlb->end = addr; 1198 tlb_flush_mmu_tlbonly(tlb); 1199 tlb->start = addr; 1200 tlb->end = old_end; 1201 } 1202 pte_unmap_unlock(start_pte, ptl); 1203 1204 /* 1205 * If we forced a TLB flush (either due to running out of 1206 * batch buffers or because we needed to flush dirty TLB 1207 * entries before releasing the ptl), free the batched 1208 * memory too. Restart if we didn't do everything. 1209 */ 1210 if (force_flush) { 1211 force_flush = 0; 1212 tlb_flush_mmu_free(tlb); 1213 1214 if (addr != end) 1215 goto again; 1216 } 1217 1218 return addr; 1219 } 1220 1221 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1222 struct vm_area_struct *vma, pud_t *pud, 1223 unsigned long addr, unsigned long end, 1224 struct zap_details *details) 1225 { 1226 pmd_t *pmd; 1227 unsigned long next; 1228 1229 pmd = pmd_offset(pud, addr); 1230 do { 1231 next = pmd_addr_end(addr, end); 1232 if (pmd_trans_huge(*pmd)) { 1233 if (next - addr != HPAGE_PMD_SIZE) { 1234 #ifdef CONFIG_DEBUG_VM 1235 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1236 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1237 __func__, addr, end, 1238 vma->vm_start, 1239 vma->vm_end); 1240 BUG(); 1241 } 1242 #endif 1243 split_huge_page_pmd(vma, addr, pmd); 1244 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1245 goto next; 1246 /* fall through */ 1247 } 1248 /* 1249 * Here there can be other concurrent MADV_DONTNEED or 1250 * trans huge page faults running, and if the pmd is 1251 * none or trans huge it can change under us. This is 1252 * because MADV_DONTNEED holds the mmap_sem in read 1253 * mode. 1254 */ 1255 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1256 goto next; 1257 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1258 next: 1259 cond_resched(); 1260 } while (pmd++, addr = next, addr != end); 1261 1262 return addr; 1263 } 1264 1265 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1266 struct vm_area_struct *vma, pgd_t *pgd, 1267 unsigned long addr, unsigned long end, 1268 struct zap_details *details) 1269 { 1270 pud_t *pud; 1271 unsigned long next; 1272 1273 pud = pud_offset(pgd, addr); 1274 do { 1275 next = pud_addr_end(addr, end); 1276 if (pud_none_or_clear_bad(pud)) 1277 continue; 1278 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1279 } while (pud++, addr = next, addr != end); 1280 1281 return addr; 1282 } 1283 1284 static void unmap_page_range(struct mmu_gather *tlb, 1285 struct vm_area_struct *vma, 1286 unsigned long addr, unsigned long end, 1287 struct zap_details *details) 1288 { 1289 pgd_t *pgd; 1290 unsigned long next; 1291 1292 if (details && !details->check_mapping && !details->nonlinear_vma) 1293 details = NULL; 1294 1295 BUG_ON(addr >= end); 1296 tlb_start_vma(tlb, vma); 1297 pgd = pgd_offset(vma->vm_mm, addr); 1298 do { 1299 next = pgd_addr_end(addr, end); 1300 if (pgd_none_or_clear_bad(pgd)) 1301 continue; 1302 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1303 } while (pgd++, addr = next, addr != end); 1304 tlb_end_vma(tlb, vma); 1305 } 1306 1307 1308 static void unmap_single_vma(struct mmu_gather *tlb, 1309 struct vm_area_struct *vma, unsigned long start_addr, 1310 unsigned long end_addr, 1311 struct zap_details *details) 1312 { 1313 unsigned long start = max(vma->vm_start, start_addr); 1314 unsigned long end; 1315 1316 if (start >= vma->vm_end) 1317 return; 1318 end = min(vma->vm_end, end_addr); 1319 if (end <= vma->vm_start) 1320 return; 1321 1322 if (vma->vm_file) 1323 uprobe_munmap(vma, start, end); 1324 1325 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1326 untrack_pfn(vma, 0, 0); 1327 1328 if (start != end) { 1329 if (unlikely(is_vm_hugetlb_page(vma))) { 1330 /* 1331 * It is undesirable to test vma->vm_file as it 1332 * should be non-null for valid hugetlb area. 1333 * However, vm_file will be NULL in the error 1334 * cleanup path of mmap_region. When 1335 * hugetlbfs ->mmap method fails, 1336 * mmap_region() nullifies vma->vm_file 1337 * before calling this function to clean up. 1338 * Since no pte has actually been setup, it is 1339 * safe to do nothing in this case. 1340 */ 1341 if (vma->vm_file) { 1342 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 1343 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1344 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 1345 } 1346 } else 1347 unmap_page_range(tlb, vma, start, end, details); 1348 } 1349 } 1350 1351 /** 1352 * unmap_vmas - unmap a range of memory covered by a list of vma's 1353 * @tlb: address of the caller's struct mmu_gather 1354 * @vma: the starting vma 1355 * @start_addr: virtual address at which to start unmapping 1356 * @end_addr: virtual address at which to end unmapping 1357 * 1358 * Unmap all pages in the vma list. 1359 * 1360 * Only addresses between `start' and `end' will be unmapped. 1361 * 1362 * The VMA list must be sorted in ascending virtual address order. 1363 * 1364 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1365 * range after unmap_vmas() returns. So the only responsibility here is to 1366 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1367 * drops the lock and schedules. 1368 */ 1369 void unmap_vmas(struct mmu_gather *tlb, 1370 struct vm_area_struct *vma, unsigned long start_addr, 1371 unsigned long end_addr) 1372 { 1373 struct mm_struct *mm = vma->vm_mm; 1374 1375 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1376 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1377 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1378 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1379 } 1380 1381 /** 1382 * zap_page_range - remove user pages in a given range 1383 * @vma: vm_area_struct holding the applicable pages 1384 * @start: starting address of pages to zap 1385 * @size: number of bytes to zap 1386 * @details: details of nonlinear truncation or shared cache invalidation 1387 * 1388 * Caller must protect the VMA list 1389 */ 1390 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1391 unsigned long size, struct zap_details *details) 1392 { 1393 struct mm_struct *mm = vma->vm_mm; 1394 struct mmu_gather tlb; 1395 unsigned long end = start + size; 1396 1397 lru_add_drain(); 1398 tlb_gather_mmu(&tlb, mm, start, end); 1399 update_hiwater_rss(mm); 1400 mmu_notifier_invalidate_range_start(mm, start, end); 1401 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1402 unmap_single_vma(&tlb, vma, start, end, details); 1403 mmu_notifier_invalidate_range_end(mm, start, end); 1404 tlb_finish_mmu(&tlb, start, end); 1405 } 1406 1407 /** 1408 * zap_page_range_single - remove user pages in a given range 1409 * @vma: vm_area_struct holding the applicable pages 1410 * @address: starting address of pages to zap 1411 * @size: number of bytes to zap 1412 * @details: details of nonlinear truncation or shared cache invalidation 1413 * 1414 * The range must fit into one VMA. 1415 */ 1416 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1417 unsigned long size, struct zap_details *details) 1418 { 1419 struct mm_struct *mm = vma->vm_mm; 1420 struct mmu_gather tlb; 1421 unsigned long end = address + size; 1422 1423 lru_add_drain(); 1424 tlb_gather_mmu(&tlb, mm, address, end); 1425 update_hiwater_rss(mm); 1426 mmu_notifier_invalidate_range_start(mm, address, end); 1427 unmap_single_vma(&tlb, vma, address, end, details); 1428 mmu_notifier_invalidate_range_end(mm, address, end); 1429 tlb_finish_mmu(&tlb, address, end); 1430 } 1431 1432 /** 1433 * zap_vma_ptes - remove ptes mapping the vma 1434 * @vma: vm_area_struct holding ptes to be zapped 1435 * @address: starting address of pages to zap 1436 * @size: number of bytes to zap 1437 * 1438 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1439 * 1440 * The entire address range must be fully contained within the vma. 1441 * 1442 * Returns 0 if successful. 1443 */ 1444 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1445 unsigned long size) 1446 { 1447 if (address < vma->vm_start || address + size > vma->vm_end || 1448 !(vma->vm_flags & VM_PFNMAP)) 1449 return -1; 1450 zap_page_range_single(vma, address, size, NULL); 1451 return 0; 1452 } 1453 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1454 1455 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1456 spinlock_t **ptl) 1457 { 1458 pgd_t * pgd = pgd_offset(mm, addr); 1459 pud_t * pud = pud_alloc(mm, pgd, addr); 1460 if (pud) { 1461 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1462 if (pmd) { 1463 VM_BUG_ON(pmd_trans_huge(*pmd)); 1464 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1465 } 1466 } 1467 return NULL; 1468 } 1469 1470 /* 1471 * This is the old fallback for page remapping. 1472 * 1473 * For historical reasons, it only allows reserved pages. Only 1474 * old drivers should use this, and they needed to mark their 1475 * pages reserved for the old functions anyway. 1476 */ 1477 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1478 struct page *page, pgprot_t prot) 1479 { 1480 struct mm_struct *mm = vma->vm_mm; 1481 int retval; 1482 pte_t *pte; 1483 spinlock_t *ptl; 1484 1485 retval = -EINVAL; 1486 if (PageAnon(page)) 1487 goto out; 1488 retval = -ENOMEM; 1489 flush_dcache_page(page); 1490 pte = get_locked_pte(mm, addr, &ptl); 1491 if (!pte) 1492 goto out; 1493 retval = -EBUSY; 1494 if (!pte_none(*pte)) 1495 goto out_unlock; 1496 1497 /* Ok, finally just insert the thing.. */ 1498 get_page(page); 1499 inc_mm_counter_fast(mm, MM_FILEPAGES); 1500 page_add_file_rmap(page); 1501 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1502 1503 retval = 0; 1504 pte_unmap_unlock(pte, ptl); 1505 return retval; 1506 out_unlock: 1507 pte_unmap_unlock(pte, ptl); 1508 out: 1509 return retval; 1510 } 1511 1512 /** 1513 * vm_insert_page - insert single page into user vma 1514 * @vma: user vma to map to 1515 * @addr: target user address of this page 1516 * @page: source kernel page 1517 * 1518 * This allows drivers to insert individual pages they've allocated 1519 * into a user vma. 1520 * 1521 * The page has to be a nice clean _individual_ kernel allocation. 1522 * If you allocate a compound page, you need to have marked it as 1523 * such (__GFP_COMP), or manually just split the page up yourself 1524 * (see split_page()). 1525 * 1526 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1527 * took an arbitrary page protection parameter. This doesn't allow 1528 * that. Your vma protection will have to be set up correctly, which 1529 * means that if you want a shared writable mapping, you'd better 1530 * ask for a shared writable mapping! 1531 * 1532 * The page does not need to be reserved. 1533 * 1534 * Usually this function is called from f_op->mmap() handler 1535 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1536 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1537 * function from other places, for example from page-fault handler. 1538 */ 1539 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1540 struct page *page) 1541 { 1542 if (addr < vma->vm_start || addr >= vma->vm_end) 1543 return -EFAULT; 1544 if (!page_count(page)) 1545 return -EINVAL; 1546 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1547 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1548 BUG_ON(vma->vm_flags & VM_PFNMAP); 1549 vma->vm_flags |= VM_MIXEDMAP; 1550 } 1551 return insert_page(vma, addr, page, vma->vm_page_prot); 1552 } 1553 EXPORT_SYMBOL(vm_insert_page); 1554 1555 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1556 unsigned long pfn, pgprot_t prot) 1557 { 1558 struct mm_struct *mm = vma->vm_mm; 1559 int retval; 1560 pte_t *pte, entry; 1561 spinlock_t *ptl; 1562 1563 retval = -ENOMEM; 1564 pte = get_locked_pte(mm, addr, &ptl); 1565 if (!pte) 1566 goto out; 1567 retval = -EBUSY; 1568 if (!pte_none(*pte)) 1569 goto out_unlock; 1570 1571 /* Ok, finally just insert the thing.. */ 1572 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1573 set_pte_at(mm, addr, pte, entry); 1574 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1575 1576 retval = 0; 1577 out_unlock: 1578 pte_unmap_unlock(pte, ptl); 1579 out: 1580 return retval; 1581 } 1582 1583 /** 1584 * vm_insert_pfn - insert single pfn into user vma 1585 * @vma: user vma to map to 1586 * @addr: target user address of this page 1587 * @pfn: source kernel pfn 1588 * 1589 * Similar to vm_insert_page, this allows drivers to insert individual pages 1590 * they've allocated into a user vma. Same comments apply. 1591 * 1592 * This function should only be called from a vm_ops->fault handler, and 1593 * in that case the handler should return NULL. 1594 * 1595 * vma cannot be a COW mapping. 1596 * 1597 * As this is called only for pages that do not currently exist, we 1598 * do not need to flush old virtual caches or the TLB. 1599 */ 1600 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1601 unsigned long pfn) 1602 { 1603 int ret; 1604 pgprot_t pgprot = vma->vm_page_prot; 1605 /* 1606 * Technically, architectures with pte_special can avoid all these 1607 * restrictions (same for remap_pfn_range). However we would like 1608 * consistency in testing and feature parity among all, so we should 1609 * try to keep these invariants in place for everybody. 1610 */ 1611 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1612 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1613 (VM_PFNMAP|VM_MIXEDMAP)); 1614 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1615 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1616 1617 if (addr < vma->vm_start || addr >= vma->vm_end) 1618 return -EFAULT; 1619 if (track_pfn_insert(vma, &pgprot, pfn)) 1620 return -EINVAL; 1621 1622 ret = insert_pfn(vma, addr, pfn, pgprot); 1623 1624 return ret; 1625 } 1626 EXPORT_SYMBOL(vm_insert_pfn); 1627 1628 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1629 unsigned long pfn) 1630 { 1631 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1632 1633 if (addr < vma->vm_start || addr >= vma->vm_end) 1634 return -EFAULT; 1635 1636 /* 1637 * If we don't have pte special, then we have to use the pfn_valid() 1638 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1639 * refcount the page if pfn_valid is true (hence insert_page rather 1640 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1641 * without pte special, it would there be refcounted as a normal page. 1642 */ 1643 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1644 struct page *page; 1645 1646 page = pfn_to_page(pfn); 1647 return insert_page(vma, addr, page, vma->vm_page_prot); 1648 } 1649 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1650 } 1651 EXPORT_SYMBOL(vm_insert_mixed); 1652 1653 /* 1654 * maps a range of physical memory into the requested pages. the old 1655 * mappings are removed. any references to nonexistent pages results 1656 * in null mappings (currently treated as "copy-on-access") 1657 */ 1658 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1659 unsigned long addr, unsigned long end, 1660 unsigned long pfn, pgprot_t prot) 1661 { 1662 pte_t *pte; 1663 spinlock_t *ptl; 1664 1665 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1666 if (!pte) 1667 return -ENOMEM; 1668 arch_enter_lazy_mmu_mode(); 1669 do { 1670 BUG_ON(!pte_none(*pte)); 1671 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1672 pfn++; 1673 } while (pte++, addr += PAGE_SIZE, addr != end); 1674 arch_leave_lazy_mmu_mode(); 1675 pte_unmap_unlock(pte - 1, ptl); 1676 return 0; 1677 } 1678 1679 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1680 unsigned long addr, unsigned long end, 1681 unsigned long pfn, pgprot_t prot) 1682 { 1683 pmd_t *pmd; 1684 unsigned long next; 1685 1686 pfn -= addr >> PAGE_SHIFT; 1687 pmd = pmd_alloc(mm, pud, addr); 1688 if (!pmd) 1689 return -ENOMEM; 1690 VM_BUG_ON(pmd_trans_huge(*pmd)); 1691 do { 1692 next = pmd_addr_end(addr, end); 1693 if (remap_pte_range(mm, pmd, addr, next, 1694 pfn + (addr >> PAGE_SHIFT), prot)) 1695 return -ENOMEM; 1696 } while (pmd++, addr = next, addr != end); 1697 return 0; 1698 } 1699 1700 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1701 unsigned long addr, unsigned long end, 1702 unsigned long pfn, pgprot_t prot) 1703 { 1704 pud_t *pud; 1705 unsigned long next; 1706 1707 pfn -= addr >> PAGE_SHIFT; 1708 pud = pud_alloc(mm, pgd, addr); 1709 if (!pud) 1710 return -ENOMEM; 1711 do { 1712 next = pud_addr_end(addr, end); 1713 if (remap_pmd_range(mm, pud, addr, next, 1714 pfn + (addr >> PAGE_SHIFT), prot)) 1715 return -ENOMEM; 1716 } while (pud++, addr = next, addr != end); 1717 return 0; 1718 } 1719 1720 /** 1721 * remap_pfn_range - remap kernel memory to userspace 1722 * @vma: user vma to map to 1723 * @addr: target user address to start at 1724 * @pfn: physical address of kernel memory 1725 * @size: size of map area 1726 * @prot: page protection flags for this mapping 1727 * 1728 * Note: this is only safe if the mm semaphore is held when called. 1729 */ 1730 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1731 unsigned long pfn, unsigned long size, pgprot_t prot) 1732 { 1733 pgd_t *pgd; 1734 unsigned long next; 1735 unsigned long end = addr + PAGE_ALIGN(size); 1736 struct mm_struct *mm = vma->vm_mm; 1737 int err; 1738 1739 /* 1740 * Physically remapped pages are special. Tell the 1741 * rest of the world about it: 1742 * VM_IO tells people not to look at these pages 1743 * (accesses can have side effects). 1744 * VM_PFNMAP tells the core MM that the base pages are just 1745 * raw PFN mappings, and do not have a "struct page" associated 1746 * with them. 1747 * VM_DONTEXPAND 1748 * Disable vma merging and expanding with mremap(). 1749 * VM_DONTDUMP 1750 * Omit vma from core dump, even when VM_IO turned off. 1751 * 1752 * There's a horrible special case to handle copy-on-write 1753 * behaviour that some programs depend on. We mark the "original" 1754 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1755 * See vm_normal_page() for details. 1756 */ 1757 if (is_cow_mapping(vma->vm_flags)) { 1758 if (addr != vma->vm_start || end != vma->vm_end) 1759 return -EINVAL; 1760 vma->vm_pgoff = pfn; 1761 } 1762 1763 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 1764 if (err) 1765 return -EINVAL; 1766 1767 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1768 1769 BUG_ON(addr >= end); 1770 pfn -= addr >> PAGE_SHIFT; 1771 pgd = pgd_offset(mm, addr); 1772 flush_cache_range(vma, addr, end); 1773 do { 1774 next = pgd_addr_end(addr, end); 1775 err = remap_pud_range(mm, pgd, addr, next, 1776 pfn + (addr >> PAGE_SHIFT), prot); 1777 if (err) 1778 break; 1779 } while (pgd++, addr = next, addr != end); 1780 1781 if (err) 1782 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 1783 1784 return err; 1785 } 1786 EXPORT_SYMBOL(remap_pfn_range); 1787 1788 /** 1789 * vm_iomap_memory - remap memory to userspace 1790 * @vma: user vma to map to 1791 * @start: start of area 1792 * @len: size of area 1793 * 1794 * This is a simplified io_remap_pfn_range() for common driver use. The 1795 * driver just needs to give us the physical memory range to be mapped, 1796 * we'll figure out the rest from the vma information. 1797 * 1798 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1799 * whatever write-combining details or similar. 1800 */ 1801 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1802 { 1803 unsigned long vm_len, pfn, pages; 1804 1805 /* Check that the physical memory area passed in looks valid */ 1806 if (start + len < start) 1807 return -EINVAL; 1808 /* 1809 * You *really* shouldn't map things that aren't page-aligned, 1810 * but we've historically allowed it because IO memory might 1811 * just have smaller alignment. 1812 */ 1813 len += start & ~PAGE_MASK; 1814 pfn = start >> PAGE_SHIFT; 1815 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1816 if (pfn + pages < pfn) 1817 return -EINVAL; 1818 1819 /* We start the mapping 'vm_pgoff' pages into the area */ 1820 if (vma->vm_pgoff > pages) 1821 return -EINVAL; 1822 pfn += vma->vm_pgoff; 1823 pages -= vma->vm_pgoff; 1824 1825 /* Can we fit all of the mapping? */ 1826 vm_len = vma->vm_end - vma->vm_start; 1827 if (vm_len >> PAGE_SHIFT > pages) 1828 return -EINVAL; 1829 1830 /* Ok, let it rip */ 1831 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1832 } 1833 EXPORT_SYMBOL(vm_iomap_memory); 1834 1835 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1836 unsigned long addr, unsigned long end, 1837 pte_fn_t fn, void *data) 1838 { 1839 pte_t *pte; 1840 int err; 1841 pgtable_t token; 1842 spinlock_t *uninitialized_var(ptl); 1843 1844 pte = (mm == &init_mm) ? 1845 pte_alloc_kernel(pmd, addr) : 1846 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1847 if (!pte) 1848 return -ENOMEM; 1849 1850 BUG_ON(pmd_huge(*pmd)); 1851 1852 arch_enter_lazy_mmu_mode(); 1853 1854 token = pmd_pgtable(*pmd); 1855 1856 do { 1857 err = fn(pte++, token, addr, data); 1858 if (err) 1859 break; 1860 } while (addr += PAGE_SIZE, addr != end); 1861 1862 arch_leave_lazy_mmu_mode(); 1863 1864 if (mm != &init_mm) 1865 pte_unmap_unlock(pte-1, ptl); 1866 return err; 1867 } 1868 1869 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1870 unsigned long addr, unsigned long end, 1871 pte_fn_t fn, void *data) 1872 { 1873 pmd_t *pmd; 1874 unsigned long next; 1875 int err; 1876 1877 BUG_ON(pud_huge(*pud)); 1878 1879 pmd = pmd_alloc(mm, pud, addr); 1880 if (!pmd) 1881 return -ENOMEM; 1882 do { 1883 next = pmd_addr_end(addr, end); 1884 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1885 if (err) 1886 break; 1887 } while (pmd++, addr = next, addr != end); 1888 return err; 1889 } 1890 1891 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1892 unsigned long addr, unsigned long end, 1893 pte_fn_t fn, void *data) 1894 { 1895 pud_t *pud; 1896 unsigned long next; 1897 int err; 1898 1899 pud = pud_alloc(mm, pgd, addr); 1900 if (!pud) 1901 return -ENOMEM; 1902 do { 1903 next = pud_addr_end(addr, end); 1904 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1905 if (err) 1906 break; 1907 } while (pud++, addr = next, addr != end); 1908 return err; 1909 } 1910 1911 /* 1912 * Scan a region of virtual memory, filling in page tables as necessary 1913 * and calling a provided function on each leaf page table. 1914 */ 1915 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1916 unsigned long size, pte_fn_t fn, void *data) 1917 { 1918 pgd_t *pgd; 1919 unsigned long next; 1920 unsigned long end = addr + size; 1921 int err; 1922 1923 BUG_ON(addr >= end); 1924 pgd = pgd_offset(mm, addr); 1925 do { 1926 next = pgd_addr_end(addr, end); 1927 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1928 if (err) 1929 break; 1930 } while (pgd++, addr = next, addr != end); 1931 1932 return err; 1933 } 1934 EXPORT_SYMBOL_GPL(apply_to_page_range); 1935 1936 /* 1937 * handle_pte_fault chooses page fault handler according to an entry 1938 * which was read non-atomically. Before making any commitment, on 1939 * those architectures or configurations (e.g. i386 with PAE) which 1940 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 1941 * must check under lock before unmapping the pte and proceeding 1942 * (but do_wp_page is only called after already making such a check; 1943 * and do_anonymous_page can safely check later on). 1944 */ 1945 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1946 pte_t *page_table, pte_t orig_pte) 1947 { 1948 int same = 1; 1949 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1950 if (sizeof(pte_t) > sizeof(unsigned long)) { 1951 spinlock_t *ptl = pte_lockptr(mm, pmd); 1952 spin_lock(ptl); 1953 same = pte_same(*page_table, orig_pte); 1954 spin_unlock(ptl); 1955 } 1956 #endif 1957 pte_unmap(page_table); 1958 return same; 1959 } 1960 1961 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1962 { 1963 debug_dma_assert_idle(src); 1964 1965 /* 1966 * If the source page was a PFN mapping, we don't have 1967 * a "struct page" for it. We do a best-effort copy by 1968 * just copying from the original user address. If that 1969 * fails, we just zero-fill it. Live with it. 1970 */ 1971 if (unlikely(!src)) { 1972 void *kaddr = kmap_atomic(dst); 1973 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1974 1975 /* 1976 * This really shouldn't fail, because the page is there 1977 * in the page tables. But it might just be unreadable, 1978 * in which case we just give up and fill the result with 1979 * zeroes. 1980 */ 1981 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1982 clear_page(kaddr); 1983 kunmap_atomic(kaddr); 1984 flush_dcache_page(dst); 1985 } else 1986 copy_user_highpage(dst, src, va, vma); 1987 } 1988 1989 /* 1990 * Notify the address space that the page is about to become writable so that 1991 * it can prohibit this or wait for the page to get into an appropriate state. 1992 * 1993 * We do this without the lock held, so that it can sleep if it needs to. 1994 */ 1995 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, 1996 unsigned long address) 1997 { 1998 struct vm_fault vmf; 1999 int ret; 2000 2001 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2002 vmf.pgoff = page->index; 2003 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2004 vmf.page = page; 2005 2006 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 2007 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2008 return ret; 2009 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2010 lock_page(page); 2011 if (!page->mapping) { 2012 unlock_page(page); 2013 return 0; /* retry */ 2014 } 2015 ret |= VM_FAULT_LOCKED; 2016 } else 2017 VM_BUG_ON_PAGE(!PageLocked(page), page); 2018 return ret; 2019 } 2020 2021 /* 2022 * This routine handles present pages, when users try to write 2023 * to a shared page. It is done by copying the page to a new address 2024 * and decrementing the shared-page counter for the old page. 2025 * 2026 * Note that this routine assumes that the protection checks have been 2027 * done by the caller (the low-level page fault routine in most cases). 2028 * Thus we can safely just mark it writable once we've done any necessary 2029 * COW. 2030 * 2031 * We also mark the page dirty at this point even though the page will 2032 * change only once the write actually happens. This avoids a few races, 2033 * and potentially makes it more efficient. 2034 * 2035 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2036 * but allow concurrent faults), with pte both mapped and locked. 2037 * We return with mmap_sem still held, but pte unmapped and unlocked. 2038 */ 2039 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2040 unsigned long address, pte_t *page_table, pmd_t *pmd, 2041 spinlock_t *ptl, pte_t orig_pte) 2042 __releases(ptl) 2043 { 2044 struct page *old_page, *new_page = NULL; 2045 pte_t entry; 2046 int ret = 0; 2047 int page_mkwrite = 0; 2048 struct page *dirty_page = NULL; 2049 unsigned long mmun_start = 0; /* For mmu_notifiers */ 2050 unsigned long mmun_end = 0; /* For mmu_notifiers */ 2051 struct mem_cgroup *memcg; 2052 2053 old_page = vm_normal_page(vma, address, orig_pte); 2054 if (!old_page) { 2055 /* 2056 * VM_MIXEDMAP !pfn_valid() case 2057 * 2058 * We should not cow pages in a shared writeable mapping. 2059 * Just mark the pages writable as we can't do any dirty 2060 * accounting on raw pfn maps. 2061 */ 2062 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2063 (VM_WRITE|VM_SHARED)) 2064 goto reuse; 2065 goto gotten; 2066 } 2067 2068 /* 2069 * Take out anonymous pages first, anonymous shared vmas are 2070 * not dirty accountable. 2071 */ 2072 if (PageAnon(old_page) && !PageKsm(old_page)) { 2073 if (!trylock_page(old_page)) { 2074 page_cache_get(old_page); 2075 pte_unmap_unlock(page_table, ptl); 2076 lock_page(old_page); 2077 page_table = pte_offset_map_lock(mm, pmd, address, 2078 &ptl); 2079 if (!pte_same(*page_table, orig_pte)) { 2080 unlock_page(old_page); 2081 goto unlock; 2082 } 2083 page_cache_release(old_page); 2084 } 2085 if (reuse_swap_page(old_page)) { 2086 /* 2087 * The page is all ours. Move it to our anon_vma so 2088 * the rmap code will not search our parent or siblings. 2089 * Protected against the rmap code by the page lock. 2090 */ 2091 page_move_anon_rmap(old_page, vma, address); 2092 unlock_page(old_page); 2093 goto reuse; 2094 } 2095 unlock_page(old_page); 2096 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2097 (VM_WRITE|VM_SHARED))) { 2098 /* 2099 * Only catch write-faults on shared writable pages, 2100 * read-only shared pages can get COWed by 2101 * get_user_pages(.write=1, .force=1). 2102 */ 2103 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2104 int tmp; 2105 page_cache_get(old_page); 2106 pte_unmap_unlock(page_table, ptl); 2107 tmp = do_page_mkwrite(vma, old_page, address); 2108 if (unlikely(!tmp || (tmp & 2109 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2110 page_cache_release(old_page); 2111 return tmp; 2112 } 2113 /* 2114 * Since we dropped the lock we need to revalidate 2115 * the PTE as someone else may have changed it. If 2116 * they did, we just return, as we can count on the 2117 * MMU to tell us if they didn't also make it writable. 2118 */ 2119 page_table = pte_offset_map_lock(mm, pmd, address, 2120 &ptl); 2121 if (!pte_same(*page_table, orig_pte)) { 2122 unlock_page(old_page); 2123 goto unlock; 2124 } 2125 2126 page_mkwrite = 1; 2127 } 2128 dirty_page = old_page; 2129 get_page(dirty_page); 2130 2131 reuse: 2132 /* 2133 * Clear the pages cpupid information as the existing 2134 * information potentially belongs to a now completely 2135 * unrelated process. 2136 */ 2137 if (old_page) 2138 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1); 2139 2140 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2141 entry = pte_mkyoung(orig_pte); 2142 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2143 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2144 update_mmu_cache(vma, address, page_table); 2145 pte_unmap_unlock(page_table, ptl); 2146 ret |= VM_FAULT_WRITE; 2147 2148 if (!dirty_page) 2149 return ret; 2150 2151 /* 2152 * Yes, Virginia, this is actually required to prevent a race 2153 * with clear_page_dirty_for_io() from clearing the page dirty 2154 * bit after it clear all dirty ptes, but before a racing 2155 * do_wp_page installs a dirty pte. 2156 * 2157 * do_shared_fault is protected similarly. 2158 */ 2159 if (!page_mkwrite) { 2160 wait_on_page_locked(dirty_page); 2161 set_page_dirty_balance(dirty_page); 2162 /* file_update_time outside page_lock */ 2163 if (vma->vm_file) 2164 file_update_time(vma->vm_file); 2165 } 2166 put_page(dirty_page); 2167 if (page_mkwrite) { 2168 struct address_space *mapping = dirty_page->mapping; 2169 2170 set_page_dirty(dirty_page); 2171 unlock_page(dirty_page); 2172 page_cache_release(dirty_page); 2173 if (mapping) { 2174 /* 2175 * Some device drivers do not set page.mapping 2176 * but still dirty their pages 2177 */ 2178 balance_dirty_pages_ratelimited(mapping); 2179 } 2180 } 2181 2182 return ret; 2183 } 2184 2185 /* 2186 * Ok, we need to copy. Oh, well.. 2187 */ 2188 page_cache_get(old_page); 2189 gotten: 2190 pte_unmap_unlock(page_table, ptl); 2191 2192 if (unlikely(anon_vma_prepare(vma))) 2193 goto oom; 2194 2195 if (is_zero_pfn(pte_pfn(orig_pte))) { 2196 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2197 if (!new_page) 2198 goto oom; 2199 } else { 2200 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2201 if (!new_page) 2202 goto oom; 2203 cow_user_page(new_page, old_page, address, vma); 2204 } 2205 __SetPageUptodate(new_page); 2206 2207 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) 2208 goto oom_free_new; 2209 2210 mmun_start = address & PAGE_MASK; 2211 mmun_end = mmun_start + PAGE_SIZE; 2212 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2213 2214 /* 2215 * Re-check the pte - we dropped the lock 2216 */ 2217 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2218 if (likely(pte_same(*page_table, orig_pte))) { 2219 if (old_page) { 2220 if (!PageAnon(old_page)) { 2221 dec_mm_counter_fast(mm, MM_FILEPAGES); 2222 inc_mm_counter_fast(mm, MM_ANONPAGES); 2223 } 2224 } else 2225 inc_mm_counter_fast(mm, MM_ANONPAGES); 2226 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2227 entry = mk_pte(new_page, vma->vm_page_prot); 2228 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2229 /* 2230 * Clear the pte entry and flush it first, before updating the 2231 * pte with the new entry. This will avoid a race condition 2232 * seen in the presence of one thread doing SMC and another 2233 * thread doing COW. 2234 */ 2235 ptep_clear_flush(vma, address, page_table); 2236 page_add_new_anon_rmap(new_page, vma, address); 2237 mem_cgroup_commit_charge(new_page, memcg, false); 2238 lru_cache_add_active_or_unevictable(new_page, vma); 2239 /* 2240 * We call the notify macro here because, when using secondary 2241 * mmu page tables (such as kvm shadow page tables), we want the 2242 * new page to be mapped directly into the secondary page table. 2243 */ 2244 set_pte_at_notify(mm, address, page_table, entry); 2245 update_mmu_cache(vma, address, page_table); 2246 if (old_page) { 2247 /* 2248 * Only after switching the pte to the new page may 2249 * we remove the mapcount here. Otherwise another 2250 * process may come and find the rmap count decremented 2251 * before the pte is switched to the new page, and 2252 * "reuse" the old page writing into it while our pte 2253 * here still points into it and can be read by other 2254 * threads. 2255 * 2256 * The critical issue is to order this 2257 * page_remove_rmap with the ptp_clear_flush above. 2258 * Those stores are ordered by (if nothing else,) 2259 * the barrier present in the atomic_add_negative 2260 * in page_remove_rmap. 2261 * 2262 * Then the TLB flush in ptep_clear_flush ensures that 2263 * no process can access the old page before the 2264 * decremented mapcount is visible. And the old page 2265 * cannot be reused until after the decremented 2266 * mapcount is visible. So transitively, TLBs to 2267 * old page will be flushed before it can be reused. 2268 */ 2269 page_remove_rmap(old_page); 2270 } 2271 2272 /* Free the old page.. */ 2273 new_page = old_page; 2274 ret |= VM_FAULT_WRITE; 2275 } else 2276 mem_cgroup_cancel_charge(new_page, memcg); 2277 2278 if (new_page) 2279 page_cache_release(new_page); 2280 unlock: 2281 pte_unmap_unlock(page_table, ptl); 2282 if (mmun_end > mmun_start) 2283 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2284 if (old_page) { 2285 /* 2286 * Don't let another task, with possibly unlocked vma, 2287 * keep the mlocked page. 2288 */ 2289 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2290 lock_page(old_page); /* LRU manipulation */ 2291 munlock_vma_page(old_page); 2292 unlock_page(old_page); 2293 } 2294 page_cache_release(old_page); 2295 } 2296 return ret; 2297 oom_free_new: 2298 page_cache_release(new_page); 2299 oom: 2300 if (old_page) 2301 page_cache_release(old_page); 2302 return VM_FAULT_OOM; 2303 } 2304 2305 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2306 unsigned long start_addr, unsigned long end_addr, 2307 struct zap_details *details) 2308 { 2309 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2310 } 2311 2312 static inline void unmap_mapping_range_tree(struct rb_root *root, 2313 struct zap_details *details) 2314 { 2315 struct vm_area_struct *vma; 2316 pgoff_t vba, vea, zba, zea; 2317 2318 vma_interval_tree_foreach(vma, root, 2319 details->first_index, details->last_index) { 2320 2321 vba = vma->vm_pgoff; 2322 vea = vba + vma_pages(vma) - 1; 2323 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2324 zba = details->first_index; 2325 if (zba < vba) 2326 zba = vba; 2327 zea = details->last_index; 2328 if (zea > vea) 2329 zea = vea; 2330 2331 unmap_mapping_range_vma(vma, 2332 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2333 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2334 details); 2335 } 2336 } 2337 2338 static inline void unmap_mapping_range_list(struct list_head *head, 2339 struct zap_details *details) 2340 { 2341 struct vm_area_struct *vma; 2342 2343 /* 2344 * In nonlinear VMAs there is no correspondence between virtual address 2345 * offset and file offset. So we must perform an exhaustive search 2346 * across *all* the pages in each nonlinear VMA, not just the pages 2347 * whose virtual address lies outside the file truncation point. 2348 */ 2349 list_for_each_entry(vma, head, shared.nonlinear) { 2350 details->nonlinear_vma = vma; 2351 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2352 } 2353 } 2354 2355 /** 2356 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2357 * @mapping: the address space containing mmaps to be unmapped. 2358 * @holebegin: byte in first page to unmap, relative to the start of 2359 * the underlying file. This will be rounded down to a PAGE_SIZE 2360 * boundary. Note that this is different from truncate_pagecache(), which 2361 * must keep the partial page. In contrast, we must get rid of 2362 * partial pages. 2363 * @holelen: size of prospective hole in bytes. This will be rounded 2364 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2365 * end of the file. 2366 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2367 * but 0 when invalidating pagecache, don't throw away private data. 2368 */ 2369 void unmap_mapping_range(struct address_space *mapping, 2370 loff_t const holebegin, loff_t const holelen, int even_cows) 2371 { 2372 struct zap_details details; 2373 pgoff_t hba = holebegin >> PAGE_SHIFT; 2374 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2375 2376 /* Check for overflow. */ 2377 if (sizeof(holelen) > sizeof(hlen)) { 2378 long long holeend = 2379 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2380 if (holeend & ~(long long)ULONG_MAX) 2381 hlen = ULONG_MAX - hba + 1; 2382 } 2383 2384 details.check_mapping = even_cows? NULL: mapping; 2385 details.nonlinear_vma = NULL; 2386 details.first_index = hba; 2387 details.last_index = hba + hlen - 1; 2388 if (details.last_index < details.first_index) 2389 details.last_index = ULONG_MAX; 2390 2391 2392 mutex_lock(&mapping->i_mmap_mutex); 2393 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2394 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2395 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2396 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2397 mutex_unlock(&mapping->i_mmap_mutex); 2398 } 2399 EXPORT_SYMBOL(unmap_mapping_range); 2400 2401 /* 2402 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2403 * but allow concurrent faults), and pte mapped but not yet locked. 2404 * We return with pte unmapped and unlocked. 2405 * 2406 * We return with the mmap_sem locked or unlocked in the same cases 2407 * as does filemap_fault(). 2408 */ 2409 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2410 unsigned long address, pte_t *page_table, pmd_t *pmd, 2411 unsigned int flags, pte_t orig_pte) 2412 { 2413 spinlock_t *ptl; 2414 struct page *page, *swapcache; 2415 struct mem_cgroup *memcg; 2416 swp_entry_t entry; 2417 pte_t pte; 2418 int locked; 2419 int exclusive = 0; 2420 int ret = 0; 2421 2422 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2423 goto out; 2424 2425 entry = pte_to_swp_entry(orig_pte); 2426 if (unlikely(non_swap_entry(entry))) { 2427 if (is_migration_entry(entry)) { 2428 migration_entry_wait(mm, pmd, address); 2429 } else if (is_hwpoison_entry(entry)) { 2430 ret = VM_FAULT_HWPOISON; 2431 } else { 2432 print_bad_pte(vma, address, orig_pte, NULL); 2433 ret = VM_FAULT_SIGBUS; 2434 } 2435 goto out; 2436 } 2437 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2438 page = lookup_swap_cache(entry); 2439 if (!page) { 2440 page = swapin_readahead(entry, 2441 GFP_HIGHUSER_MOVABLE, vma, address); 2442 if (!page) { 2443 /* 2444 * Back out if somebody else faulted in this pte 2445 * while we released the pte lock. 2446 */ 2447 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2448 if (likely(pte_same(*page_table, orig_pte))) 2449 ret = VM_FAULT_OOM; 2450 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2451 goto unlock; 2452 } 2453 2454 /* Had to read the page from swap area: Major fault */ 2455 ret = VM_FAULT_MAJOR; 2456 count_vm_event(PGMAJFAULT); 2457 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2458 } else if (PageHWPoison(page)) { 2459 /* 2460 * hwpoisoned dirty swapcache pages are kept for killing 2461 * owner processes (which may be unknown at hwpoison time) 2462 */ 2463 ret = VM_FAULT_HWPOISON; 2464 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2465 swapcache = page; 2466 goto out_release; 2467 } 2468 2469 swapcache = page; 2470 locked = lock_page_or_retry(page, mm, flags); 2471 2472 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2473 if (!locked) { 2474 ret |= VM_FAULT_RETRY; 2475 goto out_release; 2476 } 2477 2478 /* 2479 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2480 * release the swapcache from under us. The page pin, and pte_same 2481 * test below, are not enough to exclude that. Even if it is still 2482 * swapcache, we need to check that the page's swap has not changed. 2483 */ 2484 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2485 goto out_page; 2486 2487 page = ksm_might_need_to_copy(page, vma, address); 2488 if (unlikely(!page)) { 2489 ret = VM_FAULT_OOM; 2490 page = swapcache; 2491 goto out_page; 2492 } 2493 2494 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) { 2495 ret = VM_FAULT_OOM; 2496 goto out_page; 2497 } 2498 2499 /* 2500 * Back out if somebody else already faulted in this pte. 2501 */ 2502 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2503 if (unlikely(!pte_same(*page_table, orig_pte))) 2504 goto out_nomap; 2505 2506 if (unlikely(!PageUptodate(page))) { 2507 ret = VM_FAULT_SIGBUS; 2508 goto out_nomap; 2509 } 2510 2511 /* 2512 * The page isn't present yet, go ahead with the fault. 2513 * 2514 * Be careful about the sequence of operations here. 2515 * To get its accounting right, reuse_swap_page() must be called 2516 * while the page is counted on swap but not yet in mapcount i.e. 2517 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2518 * must be called after the swap_free(), or it will never succeed. 2519 */ 2520 2521 inc_mm_counter_fast(mm, MM_ANONPAGES); 2522 dec_mm_counter_fast(mm, MM_SWAPENTS); 2523 pte = mk_pte(page, vma->vm_page_prot); 2524 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2525 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2526 flags &= ~FAULT_FLAG_WRITE; 2527 ret |= VM_FAULT_WRITE; 2528 exclusive = 1; 2529 } 2530 flush_icache_page(vma, page); 2531 if (pte_swp_soft_dirty(orig_pte)) 2532 pte = pte_mksoft_dirty(pte); 2533 set_pte_at(mm, address, page_table, pte); 2534 if (page == swapcache) { 2535 do_page_add_anon_rmap(page, vma, address, exclusive); 2536 mem_cgroup_commit_charge(page, memcg, true); 2537 } else { /* ksm created a completely new copy */ 2538 page_add_new_anon_rmap(page, vma, address); 2539 mem_cgroup_commit_charge(page, memcg, false); 2540 lru_cache_add_active_or_unevictable(page, vma); 2541 } 2542 2543 swap_free(entry); 2544 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2545 try_to_free_swap(page); 2546 unlock_page(page); 2547 if (page != swapcache) { 2548 /* 2549 * Hold the lock to avoid the swap entry to be reused 2550 * until we take the PT lock for the pte_same() check 2551 * (to avoid false positives from pte_same). For 2552 * further safety release the lock after the swap_free 2553 * so that the swap count won't change under a 2554 * parallel locked swapcache. 2555 */ 2556 unlock_page(swapcache); 2557 page_cache_release(swapcache); 2558 } 2559 2560 if (flags & FAULT_FLAG_WRITE) { 2561 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2562 if (ret & VM_FAULT_ERROR) 2563 ret &= VM_FAULT_ERROR; 2564 goto out; 2565 } 2566 2567 /* No need to invalidate - it was non-present before */ 2568 update_mmu_cache(vma, address, page_table); 2569 unlock: 2570 pte_unmap_unlock(page_table, ptl); 2571 out: 2572 return ret; 2573 out_nomap: 2574 mem_cgroup_cancel_charge(page, memcg); 2575 pte_unmap_unlock(page_table, ptl); 2576 out_page: 2577 unlock_page(page); 2578 out_release: 2579 page_cache_release(page); 2580 if (page != swapcache) { 2581 unlock_page(swapcache); 2582 page_cache_release(swapcache); 2583 } 2584 return ret; 2585 } 2586 2587 /* 2588 * This is like a special single-page "expand_{down|up}wards()", 2589 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2590 * doesn't hit another vma. 2591 */ 2592 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2593 { 2594 address &= PAGE_MASK; 2595 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2596 struct vm_area_struct *prev = vma->vm_prev; 2597 2598 /* 2599 * Is there a mapping abutting this one below? 2600 * 2601 * That's only ok if it's the same stack mapping 2602 * that has gotten split.. 2603 */ 2604 if (prev && prev->vm_end == address) 2605 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2606 2607 expand_downwards(vma, address - PAGE_SIZE); 2608 } 2609 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2610 struct vm_area_struct *next = vma->vm_next; 2611 2612 /* As VM_GROWSDOWN but s/below/above/ */ 2613 if (next && next->vm_start == address + PAGE_SIZE) 2614 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2615 2616 expand_upwards(vma, address + PAGE_SIZE); 2617 } 2618 return 0; 2619 } 2620 2621 /* 2622 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2623 * but allow concurrent faults), and pte mapped but not yet locked. 2624 * We return with mmap_sem still held, but pte unmapped and unlocked. 2625 */ 2626 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2627 unsigned long address, pte_t *page_table, pmd_t *pmd, 2628 unsigned int flags) 2629 { 2630 struct mem_cgroup *memcg; 2631 struct page *page; 2632 spinlock_t *ptl; 2633 pte_t entry; 2634 2635 pte_unmap(page_table); 2636 2637 /* Check if we need to add a guard page to the stack */ 2638 if (check_stack_guard_page(vma, address) < 0) 2639 return VM_FAULT_SIGBUS; 2640 2641 /* Use the zero-page for reads */ 2642 if (!(flags & FAULT_FLAG_WRITE)) { 2643 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2644 vma->vm_page_prot)); 2645 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2646 if (!pte_none(*page_table)) 2647 goto unlock; 2648 goto setpte; 2649 } 2650 2651 /* Allocate our own private page. */ 2652 if (unlikely(anon_vma_prepare(vma))) 2653 goto oom; 2654 page = alloc_zeroed_user_highpage_movable(vma, address); 2655 if (!page) 2656 goto oom; 2657 /* 2658 * The memory barrier inside __SetPageUptodate makes sure that 2659 * preceeding stores to the page contents become visible before 2660 * the set_pte_at() write. 2661 */ 2662 __SetPageUptodate(page); 2663 2664 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) 2665 goto oom_free_page; 2666 2667 entry = mk_pte(page, vma->vm_page_prot); 2668 if (vma->vm_flags & VM_WRITE) 2669 entry = pte_mkwrite(pte_mkdirty(entry)); 2670 2671 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2672 if (!pte_none(*page_table)) 2673 goto release; 2674 2675 inc_mm_counter_fast(mm, MM_ANONPAGES); 2676 page_add_new_anon_rmap(page, vma, address); 2677 mem_cgroup_commit_charge(page, memcg, false); 2678 lru_cache_add_active_or_unevictable(page, vma); 2679 setpte: 2680 set_pte_at(mm, address, page_table, entry); 2681 2682 /* No need to invalidate - it was non-present before */ 2683 update_mmu_cache(vma, address, page_table); 2684 unlock: 2685 pte_unmap_unlock(page_table, ptl); 2686 return 0; 2687 release: 2688 mem_cgroup_cancel_charge(page, memcg); 2689 page_cache_release(page); 2690 goto unlock; 2691 oom_free_page: 2692 page_cache_release(page); 2693 oom: 2694 return VM_FAULT_OOM; 2695 } 2696 2697 /* 2698 * The mmap_sem must have been held on entry, and may have been 2699 * released depending on flags and vma->vm_ops->fault() return value. 2700 * See filemap_fault() and __lock_page_retry(). 2701 */ 2702 static int __do_fault(struct vm_area_struct *vma, unsigned long address, 2703 pgoff_t pgoff, unsigned int flags, struct page **page) 2704 { 2705 struct vm_fault vmf; 2706 int ret; 2707 2708 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2709 vmf.pgoff = pgoff; 2710 vmf.flags = flags; 2711 vmf.page = NULL; 2712 2713 ret = vma->vm_ops->fault(vma, &vmf); 2714 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2715 return ret; 2716 2717 if (unlikely(PageHWPoison(vmf.page))) { 2718 if (ret & VM_FAULT_LOCKED) 2719 unlock_page(vmf.page); 2720 page_cache_release(vmf.page); 2721 return VM_FAULT_HWPOISON; 2722 } 2723 2724 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2725 lock_page(vmf.page); 2726 else 2727 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 2728 2729 *page = vmf.page; 2730 return ret; 2731 } 2732 2733 /** 2734 * do_set_pte - setup new PTE entry for given page and add reverse page mapping. 2735 * 2736 * @vma: virtual memory area 2737 * @address: user virtual address 2738 * @page: page to map 2739 * @pte: pointer to target page table entry 2740 * @write: true, if new entry is writable 2741 * @anon: true, if it's anonymous page 2742 * 2743 * Caller must hold page table lock relevant for @pte. 2744 * 2745 * Target users are page handler itself and implementations of 2746 * vm_ops->map_pages. 2747 */ 2748 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 2749 struct page *page, pte_t *pte, bool write, bool anon) 2750 { 2751 pte_t entry; 2752 2753 flush_icache_page(vma, page); 2754 entry = mk_pte(page, vma->vm_page_prot); 2755 if (write) 2756 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2757 else if (pte_file(*pte) && pte_file_soft_dirty(*pte)) 2758 entry = pte_mksoft_dirty(entry); 2759 if (anon) { 2760 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2761 page_add_new_anon_rmap(page, vma, address); 2762 } else { 2763 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES); 2764 page_add_file_rmap(page); 2765 } 2766 set_pte_at(vma->vm_mm, address, pte, entry); 2767 2768 /* no need to invalidate: a not-present page won't be cached */ 2769 update_mmu_cache(vma, address, pte); 2770 } 2771 2772 static unsigned long fault_around_bytes __read_mostly = 2773 rounddown_pow_of_two(65536); 2774 2775 #ifdef CONFIG_DEBUG_FS 2776 static int fault_around_bytes_get(void *data, u64 *val) 2777 { 2778 *val = fault_around_bytes; 2779 return 0; 2780 } 2781 2782 /* 2783 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 2784 * rounded down to nearest page order. It's what do_fault_around() expects to 2785 * see. 2786 */ 2787 static int fault_around_bytes_set(void *data, u64 val) 2788 { 2789 if (val / PAGE_SIZE > PTRS_PER_PTE) 2790 return -EINVAL; 2791 if (val > PAGE_SIZE) 2792 fault_around_bytes = rounddown_pow_of_two(val); 2793 else 2794 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 2795 return 0; 2796 } 2797 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 2798 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 2799 2800 static int __init fault_around_debugfs(void) 2801 { 2802 void *ret; 2803 2804 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 2805 &fault_around_bytes_fops); 2806 if (!ret) 2807 pr_warn("Failed to create fault_around_bytes in debugfs"); 2808 return 0; 2809 } 2810 late_initcall(fault_around_debugfs); 2811 #endif 2812 2813 /* 2814 * do_fault_around() tries to map few pages around the fault address. The hope 2815 * is that the pages will be needed soon and this will lower the number of 2816 * faults to handle. 2817 * 2818 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 2819 * not ready to be mapped: not up-to-date, locked, etc. 2820 * 2821 * This function is called with the page table lock taken. In the split ptlock 2822 * case the page table lock only protects only those entries which belong to 2823 * the page table corresponding to the fault address. 2824 * 2825 * This function doesn't cross the VMA boundaries, in order to call map_pages() 2826 * only once. 2827 * 2828 * fault_around_pages() defines how many pages we'll try to map. 2829 * do_fault_around() expects it to return a power of two less than or equal to 2830 * PTRS_PER_PTE. 2831 * 2832 * The virtual address of the area that we map is naturally aligned to the 2833 * fault_around_pages() value (and therefore to page order). This way it's 2834 * easier to guarantee that we don't cross page table boundaries. 2835 */ 2836 static void do_fault_around(struct vm_area_struct *vma, unsigned long address, 2837 pte_t *pte, pgoff_t pgoff, unsigned int flags) 2838 { 2839 unsigned long start_addr, nr_pages, mask; 2840 pgoff_t max_pgoff; 2841 struct vm_fault vmf; 2842 int off; 2843 2844 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT; 2845 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 2846 2847 start_addr = max(address & mask, vma->vm_start); 2848 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 2849 pte -= off; 2850 pgoff -= off; 2851 2852 /* 2853 * max_pgoff is either end of page table or end of vma 2854 * or fault_around_pages() from pgoff, depending what is nearest. 2855 */ 2856 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 2857 PTRS_PER_PTE - 1; 2858 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1, 2859 pgoff + nr_pages - 1); 2860 2861 /* Check if it makes any sense to call ->map_pages */ 2862 while (!pte_none(*pte)) { 2863 if (++pgoff > max_pgoff) 2864 return; 2865 start_addr += PAGE_SIZE; 2866 if (start_addr >= vma->vm_end) 2867 return; 2868 pte++; 2869 } 2870 2871 vmf.virtual_address = (void __user *) start_addr; 2872 vmf.pte = pte; 2873 vmf.pgoff = pgoff; 2874 vmf.max_pgoff = max_pgoff; 2875 vmf.flags = flags; 2876 vma->vm_ops->map_pages(vma, &vmf); 2877 } 2878 2879 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2880 unsigned long address, pmd_t *pmd, 2881 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2882 { 2883 struct page *fault_page; 2884 spinlock_t *ptl; 2885 pte_t *pte; 2886 int ret = 0; 2887 2888 /* 2889 * Let's call ->map_pages() first and use ->fault() as fallback 2890 * if page by the offset is not ready to be mapped (cold cache or 2891 * something). 2892 */ 2893 if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) && 2894 fault_around_bytes >> PAGE_SHIFT > 1) { 2895 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2896 do_fault_around(vma, address, pte, pgoff, flags); 2897 if (!pte_same(*pte, orig_pte)) 2898 goto unlock_out; 2899 pte_unmap_unlock(pte, ptl); 2900 } 2901 2902 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2903 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2904 return ret; 2905 2906 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2907 if (unlikely(!pte_same(*pte, orig_pte))) { 2908 pte_unmap_unlock(pte, ptl); 2909 unlock_page(fault_page); 2910 page_cache_release(fault_page); 2911 return ret; 2912 } 2913 do_set_pte(vma, address, fault_page, pte, false, false); 2914 unlock_page(fault_page); 2915 unlock_out: 2916 pte_unmap_unlock(pte, ptl); 2917 return ret; 2918 } 2919 2920 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2921 unsigned long address, pmd_t *pmd, 2922 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2923 { 2924 struct page *fault_page, *new_page; 2925 struct mem_cgroup *memcg; 2926 spinlock_t *ptl; 2927 pte_t *pte; 2928 int ret; 2929 2930 if (unlikely(anon_vma_prepare(vma))) 2931 return VM_FAULT_OOM; 2932 2933 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2934 if (!new_page) 2935 return VM_FAULT_OOM; 2936 2937 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) { 2938 page_cache_release(new_page); 2939 return VM_FAULT_OOM; 2940 } 2941 2942 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2943 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2944 goto uncharge_out; 2945 2946 copy_user_highpage(new_page, fault_page, address, vma); 2947 __SetPageUptodate(new_page); 2948 2949 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2950 if (unlikely(!pte_same(*pte, orig_pte))) { 2951 pte_unmap_unlock(pte, ptl); 2952 unlock_page(fault_page); 2953 page_cache_release(fault_page); 2954 goto uncharge_out; 2955 } 2956 do_set_pte(vma, address, new_page, pte, true, true); 2957 mem_cgroup_commit_charge(new_page, memcg, false); 2958 lru_cache_add_active_or_unevictable(new_page, vma); 2959 pte_unmap_unlock(pte, ptl); 2960 unlock_page(fault_page); 2961 page_cache_release(fault_page); 2962 return ret; 2963 uncharge_out: 2964 mem_cgroup_cancel_charge(new_page, memcg); 2965 page_cache_release(new_page); 2966 return ret; 2967 } 2968 2969 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2970 unsigned long address, pmd_t *pmd, 2971 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2972 { 2973 struct page *fault_page; 2974 struct address_space *mapping; 2975 spinlock_t *ptl; 2976 pte_t *pte; 2977 int dirtied = 0; 2978 int ret, tmp; 2979 2980 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2981 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2982 return ret; 2983 2984 /* 2985 * Check if the backing address space wants to know that the page is 2986 * about to become writable 2987 */ 2988 if (vma->vm_ops->page_mkwrite) { 2989 unlock_page(fault_page); 2990 tmp = do_page_mkwrite(vma, fault_page, address); 2991 if (unlikely(!tmp || 2992 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2993 page_cache_release(fault_page); 2994 return tmp; 2995 } 2996 } 2997 2998 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2999 if (unlikely(!pte_same(*pte, orig_pte))) { 3000 pte_unmap_unlock(pte, ptl); 3001 unlock_page(fault_page); 3002 page_cache_release(fault_page); 3003 return ret; 3004 } 3005 do_set_pte(vma, address, fault_page, pte, true, false); 3006 pte_unmap_unlock(pte, ptl); 3007 3008 if (set_page_dirty(fault_page)) 3009 dirtied = 1; 3010 mapping = fault_page->mapping; 3011 unlock_page(fault_page); 3012 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { 3013 /* 3014 * Some device drivers do not set page.mapping but still 3015 * dirty their pages 3016 */ 3017 balance_dirty_pages_ratelimited(mapping); 3018 } 3019 3020 /* file_update_time outside page_lock */ 3021 if (vma->vm_file && !vma->vm_ops->page_mkwrite) 3022 file_update_time(vma->vm_file); 3023 3024 return ret; 3025 } 3026 3027 /* 3028 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3029 * but allow concurrent faults). 3030 * The mmap_sem may have been released depending on flags and our 3031 * return value. See filemap_fault() and __lock_page_or_retry(). 3032 */ 3033 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3034 unsigned long address, pte_t *page_table, pmd_t *pmd, 3035 unsigned int flags, pte_t orig_pte) 3036 { 3037 pgoff_t pgoff = (((address & PAGE_MASK) 3038 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3039 3040 pte_unmap(page_table); 3041 if (!(flags & FAULT_FLAG_WRITE)) 3042 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3043 orig_pte); 3044 if (!(vma->vm_flags & VM_SHARED)) 3045 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3046 orig_pte); 3047 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3048 } 3049 3050 /* 3051 * Fault of a previously existing named mapping. Repopulate the pte 3052 * from the encoded file_pte if possible. This enables swappable 3053 * nonlinear vmas. 3054 * 3055 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3056 * but allow concurrent faults), and pte mapped but not yet locked. 3057 * We return with pte unmapped and unlocked. 3058 * The mmap_sem may have been released depending on flags and our 3059 * return value. See filemap_fault() and __lock_page_or_retry(). 3060 */ 3061 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3062 unsigned long address, pte_t *page_table, pmd_t *pmd, 3063 unsigned int flags, pte_t orig_pte) 3064 { 3065 pgoff_t pgoff; 3066 3067 flags |= FAULT_FLAG_NONLINEAR; 3068 3069 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3070 return 0; 3071 3072 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3073 /* 3074 * Page table corrupted: show pte and kill process. 3075 */ 3076 print_bad_pte(vma, address, orig_pte, NULL); 3077 return VM_FAULT_SIGBUS; 3078 } 3079 3080 pgoff = pte_to_pgoff(orig_pte); 3081 if (!(flags & FAULT_FLAG_WRITE)) 3082 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3083 orig_pte); 3084 if (!(vma->vm_flags & VM_SHARED)) 3085 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3086 orig_pte); 3087 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3088 } 3089 3090 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3091 unsigned long addr, int page_nid, 3092 int *flags) 3093 { 3094 get_page(page); 3095 3096 count_vm_numa_event(NUMA_HINT_FAULTS); 3097 if (page_nid == numa_node_id()) { 3098 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3099 *flags |= TNF_FAULT_LOCAL; 3100 } 3101 3102 return mpol_misplaced(page, vma, addr); 3103 } 3104 3105 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3106 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3107 { 3108 struct page *page = NULL; 3109 spinlock_t *ptl; 3110 int page_nid = -1; 3111 int last_cpupid; 3112 int target_nid; 3113 bool migrated = false; 3114 int flags = 0; 3115 3116 /* 3117 * The "pte" at this point cannot be used safely without 3118 * validation through pte_unmap_same(). It's of NUMA type but 3119 * the pfn may be screwed if the read is non atomic. 3120 * 3121 * ptep_modify_prot_start is not called as this is clearing 3122 * the _PAGE_NUMA bit and it is not really expected that there 3123 * would be concurrent hardware modifications to the PTE. 3124 */ 3125 ptl = pte_lockptr(mm, pmd); 3126 spin_lock(ptl); 3127 if (unlikely(!pte_same(*ptep, pte))) { 3128 pte_unmap_unlock(ptep, ptl); 3129 goto out; 3130 } 3131 3132 pte = pte_mknonnuma(pte); 3133 set_pte_at(mm, addr, ptep, pte); 3134 update_mmu_cache(vma, addr, ptep); 3135 3136 page = vm_normal_page(vma, addr, pte); 3137 if (!page) { 3138 pte_unmap_unlock(ptep, ptl); 3139 return 0; 3140 } 3141 BUG_ON(is_zero_pfn(page_to_pfn(page))); 3142 3143 /* 3144 * Avoid grouping on DSO/COW pages in specific and RO pages 3145 * in general, RO pages shouldn't hurt as much anyway since 3146 * they can be in shared cache state. 3147 */ 3148 if (!pte_write(pte)) 3149 flags |= TNF_NO_GROUP; 3150 3151 /* 3152 * Flag if the page is shared between multiple address spaces. This 3153 * is later used when determining whether to group tasks together 3154 */ 3155 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3156 flags |= TNF_SHARED; 3157 3158 last_cpupid = page_cpupid_last(page); 3159 page_nid = page_to_nid(page); 3160 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3161 pte_unmap_unlock(ptep, ptl); 3162 if (target_nid == -1) { 3163 put_page(page); 3164 goto out; 3165 } 3166 3167 /* Migrate to the requested node */ 3168 migrated = migrate_misplaced_page(page, vma, target_nid); 3169 if (migrated) { 3170 page_nid = target_nid; 3171 flags |= TNF_MIGRATED; 3172 } 3173 3174 out: 3175 if (page_nid != -1) 3176 task_numa_fault(last_cpupid, page_nid, 1, flags); 3177 return 0; 3178 } 3179 3180 /* 3181 * These routines also need to handle stuff like marking pages dirty 3182 * and/or accessed for architectures that don't do it in hardware (most 3183 * RISC architectures). The early dirtying is also good on the i386. 3184 * 3185 * There is also a hook called "update_mmu_cache()" that architectures 3186 * with external mmu caches can use to update those (ie the Sparc or 3187 * PowerPC hashed page tables that act as extended TLBs). 3188 * 3189 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3190 * but allow concurrent faults), and pte mapped but not yet locked. 3191 * We return with pte unmapped and unlocked. 3192 * 3193 * The mmap_sem may have been released depending on flags and our 3194 * return value. See filemap_fault() and __lock_page_or_retry(). 3195 */ 3196 static int handle_pte_fault(struct mm_struct *mm, 3197 struct vm_area_struct *vma, unsigned long address, 3198 pte_t *pte, pmd_t *pmd, unsigned int flags) 3199 { 3200 pte_t entry; 3201 spinlock_t *ptl; 3202 3203 entry = ACCESS_ONCE(*pte); 3204 if (!pte_present(entry)) { 3205 if (pte_none(entry)) { 3206 if (vma->vm_ops) { 3207 if (likely(vma->vm_ops->fault)) 3208 return do_linear_fault(mm, vma, address, 3209 pte, pmd, flags, entry); 3210 } 3211 return do_anonymous_page(mm, vma, address, 3212 pte, pmd, flags); 3213 } 3214 if (pte_file(entry)) 3215 return do_nonlinear_fault(mm, vma, address, 3216 pte, pmd, flags, entry); 3217 return do_swap_page(mm, vma, address, 3218 pte, pmd, flags, entry); 3219 } 3220 3221 if (pte_numa(entry)) 3222 return do_numa_page(mm, vma, address, entry, pte, pmd); 3223 3224 ptl = pte_lockptr(mm, pmd); 3225 spin_lock(ptl); 3226 if (unlikely(!pte_same(*pte, entry))) 3227 goto unlock; 3228 if (flags & FAULT_FLAG_WRITE) { 3229 if (!pte_write(entry)) 3230 return do_wp_page(mm, vma, address, 3231 pte, pmd, ptl, entry); 3232 entry = pte_mkdirty(entry); 3233 } 3234 entry = pte_mkyoung(entry); 3235 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3236 update_mmu_cache(vma, address, pte); 3237 } else { 3238 /* 3239 * This is needed only for protection faults but the arch code 3240 * is not yet telling us if this is a protection fault or not. 3241 * This still avoids useless tlb flushes for .text page faults 3242 * with threads. 3243 */ 3244 if (flags & FAULT_FLAG_WRITE) 3245 flush_tlb_fix_spurious_fault(vma, address); 3246 } 3247 unlock: 3248 pte_unmap_unlock(pte, ptl); 3249 return 0; 3250 } 3251 3252 /* 3253 * By the time we get here, we already hold the mm semaphore 3254 * 3255 * The mmap_sem may have been released depending on flags and our 3256 * return value. See filemap_fault() and __lock_page_or_retry(). 3257 */ 3258 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3259 unsigned long address, unsigned int flags) 3260 { 3261 pgd_t *pgd; 3262 pud_t *pud; 3263 pmd_t *pmd; 3264 pte_t *pte; 3265 3266 if (unlikely(is_vm_hugetlb_page(vma))) 3267 return hugetlb_fault(mm, vma, address, flags); 3268 3269 pgd = pgd_offset(mm, address); 3270 pud = pud_alloc(mm, pgd, address); 3271 if (!pud) 3272 return VM_FAULT_OOM; 3273 pmd = pmd_alloc(mm, pud, address); 3274 if (!pmd) 3275 return VM_FAULT_OOM; 3276 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3277 int ret = VM_FAULT_FALLBACK; 3278 if (!vma->vm_ops) 3279 ret = do_huge_pmd_anonymous_page(mm, vma, address, 3280 pmd, flags); 3281 if (!(ret & VM_FAULT_FALLBACK)) 3282 return ret; 3283 } else { 3284 pmd_t orig_pmd = *pmd; 3285 int ret; 3286 3287 barrier(); 3288 if (pmd_trans_huge(orig_pmd)) { 3289 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3290 3291 /* 3292 * If the pmd is splitting, return and retry the 3293 * the fault. Alternative: wait until the split 3294 * is done, and goto retry. 3295 */ 3296 if (pmd_trans_splitting(orig_pmd)) 3297 return 0; 3298 3299 if (pmd_numa(orig_pmd)) 3300 return do_huge_pmd_numa_page(mm, vma, address, 3301 orig_pmd, pmd); 3302 3303 if (dirty && !pmd_write(orig_pmd)) { 3304 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3305 orig_pmd); 3306 if (!(ret & VM_FAULT_FALLBACK)) 3307 return ret; 3308 } else { 3309 huge_pmd_set_accessed(mm, vma, address, pmd, 3310 orig_pmd, dirty); 3311 return 0; 3312 } 3313 } 3314 } 3315 3316 /* 3317 * Use __pte_alloc instead of pte_alloc_map, because we can't 3318 * run pte_offset_map on the pmd, if an huge pmd could 3319 * materialize from under us from a different thread. 3320 */ 3321 if (unlikely(pmd_none(*pmd)) && 3322 unlikely(__pte_alloc(mm, vma, pmd, address))) 3323 return VM_FAULT_OOM; 3324 /* if an huge pmd materialized from under us just retry later */ 3325 if (unlikely(pmd_trans_huge(*pmd))) 3326 return 0; 3327 /* 3328 * A regular pmd is established and it can't morph into a huge pmd 3329 * from under us anymore at this point because we hold the mmap_sem 3330 * read mode and khugepaged takes it in write mode. So now it's 3331 * safe to run pte_offset_map(). 3332 */ 3333 pte = pte_offset_map(pmd, address); 3334 3335 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3336 } 3337 3338 /* 3339 * By the time we get here, we already hold the mm semaphore 3340 * 3341 * The mmap_sem may have been released depending on flags and our 3342 * return value. See filemap_fault() and __lock_page_or_retry(). 3343 */ 3344 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3345 unsigned long address, unsigned int flags) 3346 { 3347 int ret; 3348 3349 __set_current_state(TASK_RUNNING); 3350 3351 count_vm_event(PGFAULT); 3352 mem_cgroup_count_vm_event(mm, PGFAULT); 3353 3354 /* do counter updates before entering really critical section. */ 3355 check_sync_rss_stat(current); 3356 3357 /* 3358 * Enable the memcg OOM handling for faults triggered in user 3359 * space. Kernel faults are handled more gracefully. 3360 */ 3361 if (flags & FAULT_FLAG_USER) 3362 mem_cgroup_oom_enable(); 3363 3364 ret = __handle_mm_fault(mm, vma, address, flags); 3365 3366 if (flags & FAULT_FLAG_USER) { 3367 mem_cgroup_oom_disable(); 3368 /* 3369 * The task may have entered a memcg OOM situation but 3370 * if the allocation error was handled gracefully (no 3371 * VM_FAULT_OOM), there is no need to kill anything. 3372 * Just clean up the OOM state peacefully. 3373 */ 3374 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3375 mem_cgroup_oom_synchronize(false); 3376 } 3377 3378 return ret; 3379 } 3380 3381 #ifndef __PAGETABLE_PUD_FOLDED 3382 /* 3383 * Allocate page upper directory. 3384 * We've already handled the fast-path in-line. 3385 */ 3386 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3387 { 3388 pud_t *new = pud_alloc_one(mm, address); 3389 if (!new) 3390 return -ENOMEM; 3391 3392 smp_wmb(); /* See comment in __pte_alloc */ 3393 3394 spin_lock(&mm->page_table_lock); 3395 if (pgd_present(*pgd)) /* Another has populated it */ 3396 pud_free(mm, new); 3397 else 3398 pgd_populate(mm, pgd, new); 3399 spin_unlock(&mm->page_table_lock); 3400 return 0; 3401 } 3402 #endif /* __PAGETABLE_PUD_FOLDED */ 3403 3404 #ifndef __PAGETABLE_PMD_FOLDED 3405 /* 3406 * Allocate page middle directory. 3407 * We've already handled the fast-path in-line. 3408 */ 3409 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3410 { 3411 pmd_t *new = pmd_alloc_one(mm, address); 3412 if (!new) 3413 return -ENOMEM; 3414 3415 smp_wmb(); /* See comment in __pte_alloc */ 3416 3417 spin_lock(&mm->page_table_lock); 3418 #ifndef __ARCH_HAS_4LEVEL_HACK 3419 if (pud_present(*pud)) /* Another has populated it */ 3420 pmd_free(mm, new); 3421 else 3422 pud_populate(mm, pud, new); 3423 #else 3424 if (pgd_present(*pud)) /* Another has populated it */ 3425 pmd_free(mm, new); 3426 else 3427 pgd_populate(mm, pud, new); 3428 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3429 spin_unlock(&mm->page_table_lock); 3430 return 0; 3431 } 3432 #endif /* __PAGETABLE_PMD_FOLDED */ 3433 3434 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3435 pte_t **ptepp, spinlock_t **ptlp) 3436 { 3437 pgd_t *pgd; 3438 pud_t *pud; 3439 pmd_t *pmd; 3440 pte_t *ptep; 3441 3442 pgd = pgd_offset(mm, address); 3443 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3444 goto out; 3445 3446 pud = pud_offset(pgd, address); 3447 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3448 goto out; 3449 3450 pmd = pmd_offset(pud, address); 3451 VM_BUG_ON(pmd_trans_huge(*pmd)); 3452 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3453 goto out; 3454 3455 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3456 if (pmd_huge(*pmd)) 3457 goto out; 3458 3459 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3460 if (!ptep) 3461 goto out; 3462 if (!pte_present(*ptep)) 3463 goto unlock; 3464 *ptepp = ptep; 3465 return 0; 3466 unlock: 3467 pte_unmap_unlock(ptep, *ptlp); 3468 out: 3469 return -EINVAL; 3470 } 3471 3472 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3473 pte_t **ptepp, spinlock_t **ptlp) 3474 { 3475 int res; 3476 3477 /* (void) is needed to make gcc happy */ 3478 (void) __cond_lock(*ptlp, 3479 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3480 return res; 3481 } 3482 3483 /** 3484 * follow_pfn - look up PFN at a user virtual address 3485 * @vma: memory mapping 3486 * @address: user virtual address 3487 * @pfn: location to store found PFN 3488 * 3489 * Only IO mappings and raw PFN mappings are allowed. 3490 * 3491 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3492 */ 3493 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3494 unsigned long *pfn) 3495 { 3496 int ret = -EINVAL; 3497 spinlock_t *ptl; 3498 pte_t *ptep; 3499 3500 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3501 return ret; 3502 3503 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3504 if (ret) 3505 return ret; 3506 *pfn = pte_pfn(*ptep); 3507 pte_unmap_unlock(ptep, ptl); 3508 return 0; 3509 } 3510 EXPORT_SYMBOL(follow_pfn); 3511 3512 #ifdef CONFIG_HAVE_IOREMAP_PROT 3513 int follow_phys(struct vm_area_struct *vma, 3514 unsigned long address, unsigned int flags, 3515 unsigned long *prot, resource_size_t *phys) 3516 { 3517 int ret = -EINVAL; 3518 pte_t *ptep, pte; 3519 spinlock_t *ptl; 3520 3521 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3522 goto out; 3523 3524 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3525 goto out; 3526 pte = *ptep; 3527 3528 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3529 goto unlock; 3530 3531 *prot = pgprot_val(pte_pgprot(pte)); 3532 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3533 3534 ret = 0; 3535 unlock: 3536 pte_unmap_unlock(ptep, ptl); 3537 out: 3538 return ret; 3539 } 3540 3541 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3542 void *buf, int len, int write) 3543 { 3544 resource_size_t phys_addr; 3545 unsigned long prot = 0; 3546 void __iomem *maddr; 3547 int offset = addr & (PAGE_SIZE-1); 3548 3549 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3550 return -EINVAL; 3551 3552 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3553 if (write) 3554 memcpy_toio(maddr + offset, buf, len); 3555 else 3556 memcpy_fromio(buf, maddr + offset, len); 3557 iounmap(maddr); 3558 3559 return len; 3560 } 3561 EXPORT_SYMBOL_GPL(generic_access_phys); 3562 #endif 3563 3564 /* 3565 * Access another process' address space as given in mm. If non-NULL, use the 3566 * given task for page fault accounting. 3567 */ 3568 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3569 unsigned long addr, void *buf, int len, int write) 3570 { 3571 struct vm_area_struct *vma; 3572 void *old_buf = buf; 3573 3574 down_read(&mm->mmap_sem); 3575 /* ignore errors, just check how much was successfully transferred */ 3576 while (len) { 3577 int bytes, ret, offset; 3578 void *maddr; 3579 struct page *page = NULL; 3580 3581 ret = get_user_pages(tsk, mm, addr, 1, 3582 write, 1, &page, &vma); 3583 if (ret <= 0) { 3584 #ifndef CONFIG_HAVE_IOREMAP_PROT 3585 break; 3586 #else 3587 /* 3588 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3589 * we can access using slightly different code. 3590 */ 3591 vma = find_vma(mm, addr); 3592 if (!vma || vma->vm_start > addr) 3593 break; 3594 if (vma->vm_ops && vma->vm_ops->access) 3595 ret = vma->vm_ops->access(vma, addr, buf, 3596 len, write); 3597 if (ret <= 0) 3598 break; 3599 bytes = ret; 3600 #endif 3601 } else { 3602 bytes = len; 3603 offset = addr & (PAGE_SIZE-1); 3604 if (bytes > PAGE_SIZE-offset) 3605 bytes = PAGE_SIZE-offset; 3606 3607 maddr = kmap(page); 3608 if (write) { 3609 copy_to_user_page(vma, page, addr, 3610 maddr + offset, buf, bytes); 3611 set_page_dirty_lock(page); 3612 } else { 3613 copy_from_user_page(vma, page, addr, 3614 buf, maddr + offset, bytes); 3615 } 3616 kunmap(page); 3617 page_cache_release(page); 3618 } 3619 len -= bytes; 3620 buf += bytes; 3621 addr += bytes; 3622 } 3623 up_read(&mm->mmap_sem); 3624 3625 return buf - old_buf; 3626 } 3627 3628 /** 3629 * access_remote_vm - access another process' address space 3630 * @mm: the mm_struct of the target address space 3631 * @addr: start address to access 3632 * @buf: source or destination buffer 3633 * @len: number of bytes to transfer 3634 * @write: whether the access is a write 3635 * 3636 * The caller must hold a reference on @mm. 3637 */ 3638 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3639 void *buf, int len, int write) 3640 { 3641 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3642 } 3643 3644 /* 3645 * Access another process' address space. 3646 * Source/target buffer must be kernel space, 3647 * Do not walk the page table directly, use get_user_pages 3648 */ 3649 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3650 void *buf, int len, int write) 3651 { 3652 struct mm_struct *mm; 3653 int ret; 3654 3655 mm = get_task_mm(tsk); 3656 if (!mm) 3657 return 0; 3658 3659 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3660 mmput(mm); 3661 3662 return ret; 3663 } 3664 3665 /* 3666 * Print the name of a VMA. 3667 */ 3668 void print_vma_addr(char *prefix, unsigned long ip) 3669 { 3670 struct mm_struct *mm = current->mm; 3671 struct vm_area_struct *vma; 3672 3673 /* 3674 * Do not print if we are in atomic 3675 * contexts (in exception stacks, etc.): 3676 */ 3677 if (preempt_count()) 3678 return; 3679 3680 down_read(&mm->mmap_sem); 3681 vma = find_vma(mm, ip); 3682 if (vma && vma->vm_file) { 3683 struct file *f = vma->vm_file; 3684 char *buf = (char *)__get_free_page(GFP_KERNEL); 3685 if (buf) { 3686 char *p; 3687 3688 p = d_path(&f->f_path, buf, PAGE_SIZE); 3689 if (IS_ERR(p)) 3690 p = "?"; 3691 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 3692 vma->vm_start, 3693 vma->vm_end - vma->vm_start); 3694 free_page((unsigned long)buf); 3695 } 3696 } 3697 up_read(&mm->mmap_sem); 3698 } 3699 3700 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3701 void might_fault(void) 3702 { 3703 /* 3704 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3705 * holding the mmap_sem, this is safe because kernel memory doesn't 3706 * get paged out, therefore we'll never actually fault, and the 3707 * below annotations will generate false positives. 3708 */ 3709 if (segment_eq(get_fs(), KERNEL_DS)) 3710 return; 3711 3712 /* 3713 * it would be nicer only to annotate paths which are not under 3714 * pagefault_disable, however that requires a larger audit and 3715 * providing helpers like get_user_atomic. 3716 */ 3717 if (in_atomic()) 3718 return; 3719 3720 __might_sleep(__FILE__, __LINE__, 0); 3721 3722 if (current->mm) 3723 might_lock_read(¤t->mm->mmap_sem); 3724 } 3725 EXPORT_SYMBOL(might_fault); 3726 #endif 3727 3728 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3729 static void clear_gigantic_page(struct page *page, 3730 unsigned long addr, 3731 unsigned int pages_per_huge_page) 3732 { 3733 int i; 3734 struct page *p = page; 3735 3736 might_sleep(); 3737 for (i = 0; i < pages_per_huge_page; 3738 i++, p = mem_map_next(p, page, i)) { 3739 cond_resched(); 3740 clear_user_highpage(p, addr + i * PAGE_SIZE); 3741 } 3742 } 3743 void clear_huge_page(struct page *page, 3744 unsigned long addr, unsigned int pages_per_huge_page) 3745 { 3746 int i; 3747 3748 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3749 clear_gigantic_page(page, addr, pages_per_huge_page); 3750 return; 3751 } 3752 3753 might_sleep(); 3754 for (i = 0; i < pages_per_huge_page; i++) { 3755 cond_resched(); 3756 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3757 } 3758 } 3759 3760 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3761 unsigned long addr, 3762 struct vm_area_struct *vma, 3763 unsigned int pages_per_huge_page) 3764 { 3765 int i; 3766 struct page *dst_base = dst; 3767 struct page *src_base = src; 3768 3769 for (i = 0; i < pages_per_huge_page; ) { 3770 cond_resched(); 3771 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3772 3773 i++; 3774 dst = mem_map_next(dst, dst_base, i); 3775 src = mem_map_next(src, src_base, i); 3776 } 3777 } 3778 3779 void copy_user_huge_page(struct page *dst, struct page *src, 3780 unsigned long addr, struct vm_area_struct *vma, 3781 unsigned int pages_per_huge_page) 3782 { 3783 int i; 3784 3785 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3786 copy_user_gigantic_page(dst, src, addr, vma, 3787 pages_per_huge_page); 3788 return; 3789 } 3790 3791 might_sleep(); 3792 for (i = 0; i < pages_per_huge_page; i++) { 3793 cond_resched(); 3794 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3795 } 3796 } 3797 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3798 3799 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 3800 3801 static struct kmem_cache *page_ptl_cachep; 3802 3803 void __init ptlock_cache_init(void) 3804 { 3805 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 3806 SLAB_PANIC, NULL); 3807 } 3808 3809 bool ptlock_alloc(struct page *page) 3810 { 3811 spinlock_t *ptl; 3812 3813 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 3814 if (!ptl) 3815 return false; 3816 page->ptl = ptl; 3817 return true; 3818 } 3819 3820 void ptlock_free(struct page *page) 3821 { 3822 kmem_cache_free(page_ptl_cachep, page->ptl); 3823 } 3824 #endif 3825