1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/dma-debug.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 75 #include <trace/events/kmem.h> 76 77 #include <asm/io.h> 78 #include <asm/mmu_context.h> 79 #include <asm/pgalloc.h> 80 #include <linux/uaccess.h> 81 #include <asm/tlb.h> 82 #include <asm/tlbflush.h> 83 84 #include "internal.h" 85 86 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 87 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 88 #endif 89 90 #ifndef CONFIG_NEED_MULTIPLE_NODES 91 /* use the per-pgdat data instead for discontigmem - mbligh */ 92 unsigned long max_mapnr; 93 EXPORT_SYMBOL(max_mapnr); 94 95 struct page *mem_map; 96 EXPORT_SYMBOL(mem_map); 97 #endif 98 99 /* 100 * A number of key systems in x86 including ioremap() rely on the assumption 101 * that high_memory defines the upper bound on direct map memory, then end 102 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 103 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 104 * and ZONE_HIGHMEM. 105 */ 106 void *high_memory; 107 EXPORT_SYMBOL(high_memory); 108 109 /* 110 * Randomize the address space (stacks, mmaps, brk, etc.). 111 * 112 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 113 * as ancient (libc5 based) binaries can segfault. ) 114 */ 115 int randomize_va_space __read_mostly = 116 #ifdef CONFIG_COMPAT_BRK 117 1; 118 #else 119 2; 120 #endif 121 122 #ifndef arch_faults_on_old_pte 123 static inline bool arch_faults_on_old_pte(void) 124 { 125 /* 126 * Those arches which don't have hw access flag feature need to 127 * implement their own helper. By default, "true" means pagefault 128 * will be hit on old pte. 129 */ 130 return true; 131 } 132 #endif 133 134 static int __init disable_randmaps(char *s) 135 { 136 randomize_va_space = 0; 137 return 1; 138 } 139 __setup("norandmaps", disable_randmaps); 140 141 unsigned long zero_pfn __read_mostly; 142 EXPORT_SYMBOL(zero_pfn); 143 144 unsigned long highest_memmap_pfn __read_mostly; 145 146 /* 147 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 148 */ 149 static int __init init_zero_pfn(void) 150 { 151 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 152 return 0; 153 } 154 core_initcall(init_zero_pfn); 155 156 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 157 { 158 trace_rss_stat(mm, member, count); 159 } 160 161 #if defined(SPLIT_RSS_COUNTING) 162 163 void sync_mm_rss(struct mm_struct *mm) 164 { 165 int i; 166 167 for (i = 0; i < NR_MM_COUNTERS; i++) { 168 if (current->rss_stat.count[i]) { 169 add_mm_counter(mm, i, current->rss_stat.count[i]); 170 current->rss_stat.count[i] = 0; 171 } 172 } 173 current->rss_stat.events = 0; 174 } 175 176 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 177 { 178 struct task_struct *task = current; 179 180 if (likely(task->mm == mm)) 181 task->rss_stat.count[member] += val; 182 else 183 add_mm_counter(mm, member, val); 184 } 185 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 186 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 187 188 /* sync counter once per 64 page faults */ 189 #define TASK_RSS_EVENTS_THRESH (64) 190 static void check_sync_rss_stat(struct task_struct *task) 191 { 192 if (unlikely(task != current)) 193 return; 194 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 195 sync_mm_rss(task->mm); 196 } 197 #else /* SPLIT_RSS_COUNTING */ 198 199 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 200 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 201 202 static void check_sync_rss_stat(struct task_struct *task) 203 { 204 } 205 206 #endif /* SPLIT_RSS_COUNTING */ 207 208 /* 209 * Note: this doesn't free the actual pages themselves. That 210 * has been handled earlier when unmapping all the memory regions. 211 */ 212 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 213 unsigned long addr) 214 { 215 pgtable_t token = pmd_pgtable(*pmd); 216 pmd_clear(pmd); 217 pte_free_tlb(tlb, token, addr); 218 mm_dec_nr_ptes(tlb->mm); 219 } 220 221 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 222 unsigned long addr, unsigned long end, 223 unsigned long floor, unsigned long ceiling) 224 { 225 pmd_t *pmd; 226 unsigned long next; 227 unsigned long start; 228 229 start = addr; 230 pmd = pmd_offset(pud, addr); 231 do { 232 next = pmd_addr_end(addr, end); 233 if (pmd_none_or_clear_bad(pmd)) 234 continue; 235 free_pte_range(tlb, pmd, addr); 236 } while (pmd++, addr = next, addr != end); 237 238 start &= PUD_MASK; 239 if (start < floor) 240 return; 241 if (ceiling) { 242 ceiling &= PUD_MASK; 243 if (!ceiling) 244 return; 245 } 246 if (end - 1 > ceiling - 1) 247 return; 248 249 pmd = pmd_offset(pud, start); 250 pud_clear(pud); 251 pmd_free_tlb(tlb, pmd, start); 252 mm_dec_nr_pmds(tlb->mm); 253 } 254 255 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 256 unsigned long addr, unsigned long end, 257 unsigned long floor, unsigned long ceiling) 258 { 259 pud_t *pud; 260 unsigned long next; 261 unsigned long start; 262 263 start = addr; 264 pud = pud_offset(p4d, addr); 265 do { 266 next = pud_addr_end(addr, end); 267 if (pud_none_or_clear_bad(pud)) 268 continue; 269 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 270 } while (pud++, addr = next, addr != end); 271 272 start &= P4D_MASK; 273 if (start < floor) 274 return; 275 if (ceiling) { 276 ceiling &= P4D_MASK; 277 if (!ceiling) 278 return; 279 } 280 if (end - 1 > ceiling - 1) 281 return; 282 283 pud = pud_offset(p4d, start); 284 p4d_clear(p4d); 285 pud_free_tlb(tlb, pud, start); 286 mm_dec_nr_puds(tlb->mm); 287 } 288 289 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 290 unsigned long addr, unsigned long end, 291 unsigned long floor, unsigned long ceiling) 292 { 293 p4d_t *p4d; 294 unsigned long next; 295 unsigned long start; 296 297 start = addr; 298 p4d = p4d_offset(pgd, addr); 299 do { 300 next = p4d_addr_end(addr, end); 301 if (p4d_none_or_clear_bad(p4d)) 302 continue; 303 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 304 } while (p4d++, addr = next, addr != end); 305 306 start &= PGDIR_MASK; 307 if (start < floor) 308 return; 309 if (ceiling) { 310 ceiling &= PGDIR_MASK; 311 if (!ceiling) 312 return; 313 } 314 if (end - 1 > ceiling - 1) 315 return; 316 317 p4d = p4d_offset(pgd, start); 318 pgd_clear(pgd); 319 p4d_free_tlb(tlb, p4d, start); 320 } 321 322 /* 323 * This function frees user-level page tables of a process. 324 */ 325 void free_pgd_range(struct mmu_gather *tlb, 326 unsigned long addr, unsigned long end, 327 unsigned long floor, unsigned long ceiling) 328 { 329 pgd_t *pgd; 330 unsigned long next; 331 332 /* 333 * The next few lines have given us lots of grief... 334 * 335 * Why are we testing PMD* at this top level? Because often 336 * there will be no work to do at all, and we'd prefer not to 337 * go all the way down to the bottom just to discover that. 338 * 339 * Why all these "- 1"s? Because 0 represents both the bottom 340 * of the address space and the top of it (using -1 for the 341 * top wouldn't help much: the masks would do the wrong thing). 342 * The rule is that addr 0 and floor 0 refer to the bottom of 343 * the address space, but end 0 and ceiling 0 refer to the top 344 * Comparisons need to use "end - 1" and "ceiling - 1" (though 345 * that end 0 case should be mythical). 346 * 347 * Wherever addr is brought up or ceiling brought down, we must 348 * be careful to reject "the opposite 0" before it confuses the 349 * subsequent tests. But what about where end is brought down 350 * by PMD_SIZE below? no, end can't go down to 0 there. 351 * 352 * Whereas we round start (addr) and ceiling down, by different 353 * masks at different levels, in order to test whether a table 354 * now has no other vmas using it, so can be freed, we don't 355 * bother to round floor or end up - the tests don't need that. 356 */ 357 358 addr &= PMD_MASK; 359 if (addr < floor) { 360 addr += PMD_SIZE; 361 if (!addr) 362 return; 363 } 364 if (ceiling) { 365 ceiling &= PMD_MASK; 366 if (!ceiling) 367 return; 368 } 369 if (end - 1 > ceiling - 1) 370 end -= PMD_SIZE; 371 if (addr > end - 1) 372 return; 373 /* 374 * We add page table cache pages with PAGE_SIZE, 375 * (see pte_free_tlb()), flush the tlb if we need 376 */ 377 tlb_change_page_size(tlb, PAGE_SIZE); 378 pgd = pgd_offset(tlb->mm, addr); 379 do { 380 next = pgd_addr_end(addr, end); 381 if (pgd_none_or_clear_bad(pgd)) 382 continue; 383 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 384 } while (pgd++, addr = next, addr != end); 385 } 386 387 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 388 unsigned long floor, unsigned long ceiling) 389 { 390 while (vma) { 391 struct vm_area_struct *next = vma->vm_next; 392 unsigned long addr = vma->vm_start; 393 394 /* 395 * Hide vma from rmap and truncate_pagecache before freeing 396 * pgtables 397 */ 398 unlink_anon_vmas(vma); 399 unlink_file_vma(vma); 400 401 if (is_vm_hugetlb_page(vma)) { 402 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 403 floor, next ? next->vm_start : ceiling); 404 } else { 405 /* 406 * Optimization: gather nearby vmas into one call down 407 */ 408 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 409 && !is_vm_hugetlb_page(next)) { 410 vma = next; 411 next = vma->vm_next; 412 unlink_anon_vmas(vma); 413 unlink_file_vma(vma); 414 } 415 free_pgd_range(tlb, addr, vma->vm_end, 416 floor, next ? next->vm_start : ceiling); 417 } 418 vma = next; 419 } 420 } 421 422 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 423 { 424 spinlock_t *ptl; 425 pgtable_t new = pte_alloc_one(mm); 426 if (!new) 427 return -ENOMEM; 428 429 /* 430 * Ensure all pte setup (eg. pte page lock and page clearing) are 431 * visible before the pte is made visible to other CPUs by being 432 * put into page tables. 433 * 434 * The other side of the story is the pointer chasing in the page 435 * table walking code (when walking the page table without locking; 436 * ie. most of the time). Fortunately, these data accesses consist 437 * of a chain of data-dependent loads, meaning most CPUs (alpha 438 * being the notable exception) will already guarantee loads are 439 * seen in-order. See the alpha page table accessors for the 440 * smp_read_barrier_depends() barriers in page table walking code. 441 */ 442 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 443 444 ptl = pmd_lock(mm, pmd); 445 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 446 mm_inc_nr_ptes(mm); 447 pmd_populate(mm, pmd, new); 448 new = NULL; 449 } 450 spin_unlock(ptl); 451 if (new) 452 pte_free(mm, new); 453 return 0; 454 } 455 456 int __pte_alloc_kernel(pmd_t *pmd) 457 { 458 pte_t *new = pte_alloc_one_kernel(&init_mm); 459 if (!new) 460 return -ENOMEM; 461 462 smp_wmb(); /* See comment in __pte_alloc */ 463 464 spin_lock(&init_mm.page_table_lock); 465 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 466 pmd_populate_kernel(&init_mm, pmd, new); 467 new = NULL; 468 } 469 spin_unlock(&init_mm.page_table_lock); 470 if (new) 471 pte_free_kernel(&init_mm, new); 472 return 0; 473 } 474 475 static inline void init_rss_vec(int *rss) 476 { 477 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 478 } 479 480 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 481 { 482 int i; 483 484 if (current->mm == mm) 485 sync_mm_rss(mm); 486 for (i = 0; i < NR_MM_COUNTERS; i++) 487 if (rss[i]) 488 add_mm_counter(mm, i, rss[i]); 489 } 490 491 /* 492 * This function is called to print an error when a bad pte 493 * is found. For example, we might have a PFN-mapped pte in 494 * a region that doesn't allow it. 495 * 496 * The calling function must still handle the error. 497 */ 498 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 499 pte_t pte, struct page *page) 500 { 501 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 502 p4d_t *p4d = p4d_offset(pgd, addr); 503 pud_t *pud = pud_offset(p4d, addr); 504 pmd_t *pmd = pmd_offset(pud, addr); 505 struct address_space *mapping; 506 pgoff_t index; 507 static unsigned long resume; 508 static unsigned long nr_shown; 509 static unsigned long nr_unshown; 510 511 /* 512 * Allow a burst of 60 reports, then keep quiet for that minute; 513 * or allow a steady drip of one report per second. 514 */ 515 if (nr_shown == 60) { 516 if (time_before(jiffies, resume)) { 517 nr_unshown++; 518 return; 519 } 520 if (nr_unshown) { 521 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 522 nr_unshown); 523 nr_unshown = 0; 524 } 525 nr_shown = 0; 526 } 527 if (nr_shown++ == 0) 528 resume = jiffies + 60 * HZ; 529 530 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 531 index = linear_page_index(vma, addr); 532 533 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 534 current->comm, 535 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 536 if (page) 537 dump_page(page, "bad pte"); 538 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 539 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 540 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 541 vma->vm_file, 542 vma->vm_ops ? vma->vm_ops->fault : NULL, 543 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 544 mapping ? mapping->a_ops->readpage : NULL); 545 dump_stack(); 546 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 547 } 548 549 /* 550 * vm_normal_page -- This function gets the "struct page" associated with a pte. 551 * 552 * "Special" mappings do not wish to be associated with a "struct page" (either 553 * it doesn't exist, or it exists but they don't want to touch it). In this 554 * case, NULL is returned here. "Normal" mappings do have a struct page. 555 * 556 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 557 * pte bit, in which case this function is trivial. Secondly, an architecture 558 * may not have a spare pte bit, which requires a more complicated scheme, 559 * described below. 560 * 561 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 562 * special mapping (even if there are underlying and valid "struct pages"). 563 * COWed pages of a VM_PFNMAP are always normal. 564 * 565 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 566 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 567 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 568 * mapping will always honor the rule 569 * 570 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 571 * 572 * And for normal mappings this is false. 573 * 574 * This restricts such mappings to be a linear translation from virtual address 575 * to pfn. To get around this restriction, we allow arbitrary mappings so long 576 * as the vma is not a COW mapping; in that case, we know that all ptes are 577 * special (because none can have been COWed). 578 * 579 * 580 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 581 * 582 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 583 * page" backing, however the difference is that _all_ pages with a struct 584 * page (that is, those where pfn_valid is true) are refcounted and considered 585 * normal pages by the VM. The disadvantage is that pages are refcounted 586 * (which can be slower and simply not an option for some PFNMAP users). The 587 * advantage is that we don't have to follow the strict linearity rule of 588 * PFNMAP mappings in order to support COWable mappings. 589 * 590 */ 591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 592 pte_t pte) 593 { 594 unsigned long pfn = pte_pfn(pte); 595 596 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 597 if (likely(!pte_special(pte))) 598 goto check_pfn; 599 if (vma->vm_ops && vma->vm_ops->find_special_page) 600 return vma->vm_ops->find_special_page(vma, addr); 601 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 602 return NULL; 603 if (is_zero_pfn(pfn)) 604 return NULL; 605 if (pte_devmap(pte)) 606 return NULL; 607 608 print_bad_pte(vma, addr, pte, NULL); 609 return NULL; 610 } 611 612 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 613 614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 615 if (vma->vm_flags & VM_MIXEDMAP) { 616 if (!pfn_valid(pfn)) 617 return NULL; 618 goto out; 619 } else { 620 unsigned long off; 621 off = (addr - vma->vm_start) >> PAGE_SHIFT; 622 if (pfn == vma->vm_pgoff + off) 623 return NULL; 624 if (!is_cow_mapping(vma->vm_flags)) 625 return NULL; 626 } 627 } 628 629 if (is_zero_pfn(pfn)) 630 return NULL; 631 632 check_pfn: 633 if (unlikely(pfn > highest_memmap_pfn)) { 634 print_bad_pte(vma, addr, pte, NULL); 635 return NULL; 636 } 637 638 /* 639 * NOTE! We still have PageReserved() pages in the page tables. 640 * eg. VDSO mappings can cause them to exist. 641 */ 642 out: 643 return pfn_to_page(pfn); 644 } 645 646 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 647 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 648 pmd_t pmd) 649 { 650 unsigned long pfn = pmd_pfn(pmd); 651 652 /* 653 * There is no pmd_special() but there may be special pmds, e.g. 654 * in a direct-access (dax) mapping, so let's just replicate the 655 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 656 */ 657 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 658 if (vma->vm_flags & VM_MIXEDMAP) { 659 if (!pfn_valid(pfn)) 660 return NULL; 661 goto out; 662 } else { 663 unsigned long off; 664 off = (addr - vma->vm_start) >> PAGE_SHIFT; 665 if (pfn == vma->vm_pgoff + off) 666 return NULL; 667 if (!is_cow_mapping(vma->vm_flags)) 668 return NULL; 669 } 670 } 671 672 if (pmd_devmap(pmd)) 673 return NULL; 674 if (is_huge_zero_pmd(pmd)) 675 return NULL; 676 if (unlikely(pfn > highest_memmap_pfn)) 677 return NULL; 678 679 /* 680 * NOTE! We still have PageReserved() pages in the page tables. 681 * eg. VDSO mappings can cause them to exist. 682 */ 683 out: 684 return pfn_to_page(pfn); 685 } 686 #endif 687 688 /* 689 * copy one vm_area from one task to the other. Assumes the page tables 690 * already present in the new task to be cleared in the whole range 691 * covered by this vma. 692 */ 693 694 static inline unsigned long 695 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 696 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 697 unsigned long addr, int *rss) 698 { 699 unsigned long vm_flags = vma->vm_flags; 700 pte_t pte = *src_pte; 701 struct page *page; 702 703 /* pte contains position in swap or file, so copy. */ 704 if (unlikely(!pte_present(pte))) { 705 swp_entry_t entry = pte_to_swp_entry(pte); 706 707 if (likely(!non_swap_entry(entry))) { 708 if (swap_duplicate(entry) < 0) 709 return entry.val; 710 711 /* make sure dst_mm is on swapoff's mmlist. */ 712 if (unlikely(list_empty(&dst_mm->mmlist))) { 713 spin_lock(&mmlist_lock); 714 if (list_empty(&dst_mm->mmlist)) 715 list_add(&dst_mm->mmlist, 716 &src_mm->mmlist); 717 spin_unlock(&mmlist_lock); 718 } 719 rss[MM_SWAPENTS]++; 720 } else if (is_migration_entry(entry)) { 721 page = migration_entry_to_page(entry); 722 723 rss[mm_counter(page)]++; 724 725 if (is_write_migration_entry(entry) && 726 is_cow_mapping(vm_flags)) { 727 /* 728 * COW mappings require pages in both 729 * parent and child to be set to read. 730 */ 731 make_migration_entry_read(&entry); 732 pte = swp_entry_to_pte(entry); 733 if (pte_swp_soft_dirty(*src_pte)) 734 pte = pte_swp_mksoft_dirty(pte); 735 if (pte_swp_uffd_wp(*src_pte)) 736 pte = pte_swp_mkuffd_wp(pte); 737 set_pte_at(src_mm, addr, src_pte, pte); 738 } 739 } else if (is_device_private_entry(entry)) { 740 page = device_private_entry_to_page(entry); 741 742 /* 743 * Update rss count even for unaddressable pages, as 744 * they should treated just like normal pages in this 745 * respect. 746 * 747 * We will likely want to have some new rss counters 748 * for unaddressable pages, at some point. But for now 749 * keep things as they are. 750 */ 751 get_page(page); 752 rss[mm_counter(page)]++; 753 page_dup_rmap(page, false); 754 755 /* 756 * We do not preserve soft-dirty information, because so 757 * far, checkpoint/restore is the only feature that 758 * requires that. And checkpoint/restore does not work 759 * when a device driver is involved (you cannot easily 760 * save and restore device driver state). 761 */ 762 if (is_write_device_private_entry(entry) && 763 is_cow_mapping(vm_flags)) { 764 make_device_private_entry_read(&entry); 765 pte = swp_entry_to_pte(entry); 766 if (pte_swp_uffd_wp(*src_pte)) 767 pte = pte_swp_mkuffd_wp(pte); 768 set_pte_at(src_mm, addr, src_pte, pte); 769 } 770 } 771 goto out_set_pte; 772 } 773 774 /* 775 * If it's a COW mapping, write protect it both 776 * in the parent and the child 777 */ 778 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 779 ptep_set_wrprotect(src_mm, addr, src_pte); 780 pte = pte_wrprotect(pte); 781 } 782 783 /* 784 * If it's a shared mapping, mark it clean in 785 * the child 786 */ 787 if (vm_flags & VM_SHARED) 788 pte = pte_mkclean(pte); 789 pte = pte_mkold(pte); 790 791 /* 792 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 793 * does not have the VM_UFFD_WP, which means that the uffd 794 * fork event is not enabled. 795 */ 796 if (!(vm_flags & VM_UFFD_WP)) 797 pte = pte_clear_uffd_wp(pte); 798 799 page = vm_normal_page(vma, addr, pte); 800 if (page) { 801 get_page(page); 802 page_dup_rmap(page, false); 803 rss[mm_counter(page)]++; 804 } 805 806 out_set_pte: 807 set_pte_at(dst_mm, addr, dst_pte, pte); 808 return 0; 809 } 810 811 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 812 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 813 unsigned long addr, unsigned long end) 814 { 815 pte_t *orig_src_pte, *orig_dst_pte; 816 pte_t *src_pte, *dst_pte; 817 spinlock_t *src_ptl, *dst_ptl; 818 int progress = 0; 819 int rss[NR_MM_COUNTERS]; 820 swp_entry_t entry = (swp_entry_t){0}; 821 822 again: 823 init_rss_vec(rss); 824 825 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 826 if (!dst_pte) 827 return -ENOMEM; 828 src_pte = pte_offset_map(src_pmd, addr); 829 src_ptl = pte_lockptr(src_mm, src_pmd); 830 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 831 orig_src_pte = src_pte; 832 orig_dst_pte = dst_pte; 833 arch_enter_lazy_mmu_mode(); 834 835 do { 836 /* 837 * We are holding two locks at this point - either of them 838 * could generate latencies in another task on another CPU. 839 */ 840 if (progress >= 32) { 841 progress = 0; 842 if (need_resched() || 843 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 844 break; 845 } 846 if (pte_none(*src_pte)) { 847 progress++; 848 continue; 849 } 850 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 851 vma, addr, rss); 852 if (entry.val) 853 break; 854 progress += 8; 855 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 856 857 arch_leave_lazy_mmu_mode(); 858 spin_unlock(src_ptl); 859 pte_unmap(orig_src_pte); 860 add_mm_rss_vec(dst_mm, rss); 861 pte_unmap_unlock(orig_dst_pte, dst_ptl); 862 cond_resched(); 863 864 if (entry.val) { 865 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 866 return -ENOMEM; 867 progress = 0; 868 } 869 if (addr != end) 870 goto again; 871 return 0; 872 } 873 874 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 875 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 876 unsigned long addr, unsigned long end) 877 { 878 pmd_t *src_pmd, *dst_pmd; 879 unsigned long next; 880 881 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 882 if (!dst_pmd) 883 return -ENOMEM; 884 src_pmd = pmd_offset(src_pud, addr); 885 do { 886 next = pmd_addr_end(addr, end); 887 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 888 || pmd_devmap(*src_pmd)) { 889 int err; 890 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 891 err = copy_huge_pmd(dst_mm, src_mm, 892 dst_pmd, src_pmd, addr, vma); 893 if (err == -ENOMEM) 894 return -ENOMEM; 895 if (!err) 896 continue; 897 /* fall through */ 898 } 899 if (pmd_none_or_clear_bad(src_pmd)) 900 continue; 901 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 902 vma, addr, next)) 903 return -ENOMEM; 904 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 905 return 0; 906 } 907 908 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 909 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 910 unsigned long addr, unsigned long end) 911 { 912 pud_t *src_pud, *dst_pud; 913 unsigned long next; 914 915 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 916 if (!dst_pud) 917 return -ENOMEM; 918 src_pud = pud_offset(src_p4d, addr); 919 do { 920 next = pud_addr_end(addr, end); 921 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 922 int err; 923 924 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 925 err = copy_huge_pud(dst_mm, src_mm, 926 dst_pud, src_pud, addr, vma); 927 if (err == -ENOMEM) 928 return -ENOMEM; 929 if (!err) 930 continue; 931 /* fall through */ 932 } 933 if (pud_none_or_clear_bad(src_pud)) 934 continue; 935 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 936 vma, addr, next)) 937 return -ENOMEM; 938 } while (dst_pud++, src_pud++, addr = next, addr != end); 939 return 0; 940 } 941 942 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 943 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 944 unsigned long addr, unsigned long end) 945 { 946 p4d_t *src_p4d, *dst_p4d; 947 unsigned long next; 948 949 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 950 if (!dst_p4d) 951 return -ENOMEM; 952 src_p4d = p4d_offset(src_pgd, addr); 953 do { 954 next = p4d_addr_end(addr, end); 955 if (p4d_none_or_clear_bad(src_p4d)) 956 continue; 957 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 958 vma, addr, next)) 959 return -ENOMEM; 960 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 961 return 0; 962 } 963 964 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 965 struct vm_area_struct *vma) 966 { 967 pgd_t *src_pgd, *dst_pgd; 968 unsigned long next; 969 unsigned long addr = vma->vm_start; 970 unsigned long end = vma->vm_end; 971 struct mmu_notifier_range range; 972 bool is_cow; 973 int ret; 974 975 /* 976 * Don't copy ptes where a page fault will fill them correctly. 977 * Fork becomes much lighter when there are big shared or private 978 * readonly mappings. The tradeoff is that copy_page_range is more 979 * efficient than faulting. 980 */ 981 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 982 !vma->anon_vma) 983 return 0; 984 985 if (is_vm_hugetlb_page(vma)) 986 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 987 988 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 989 /* 990 * We do not free on error cases below as remove_vma 991 * gets called on error from higher level routine 992 */ 993 ret = track_pfn_copy(vma); 994 if (ret) 995 return ret; 996 } 997 998 /* 999 * We need to invalidate the secondary MMU mappings only when 1000 * there could be a permission downgrade on the ptes of the 1001 * parent mm. And a permission downgrade will only happen if 1002 * is_cow_mapping() returns true. 1003 */ 1004 is_cow = is_cow_mapping(vma->vm_flags); 1005 1006 if (is_cow) { 1007 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1008 0, vma, src_mm, addr, end); 1009 mmu_notifier_invalidate_range_start(&range); 1010 } 1011 1012 ret = 0; 1013 dst_pgd = pgd_offset(dst_mm, addr); 1014 src_pgd = pgd_offset(src_mm, addr); 1015 do { 1016 next = pgd_addr_end(addr, end); 1017 if (pgd_none_or_clear_bad(src_pgd)) 1018 continue; 1019 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1020 vma, addr, next))) { 1021 ret = -ENOMEM; 1022 break; 1023 } 1024 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1025 1026 if (is_cow) 1027 mmu_notifier_invalidate_range_end(&range); 1028 return ret; 1029 } 1030 1031 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1032 struct vm_area_struct *vma, pmd_t *pmd, 1033 unsigned long addr, unsigned long end, 1034 struct zap_details *details) 1035 { 1036 struct mm_struct *mm = tlb->mm; 1037 int force_flush = 0; 1038 int rss[NR_MM_COUNTERS]; 1039 spinlock_t *ptl; 1040 pte_t *start_pte; 1041 pte_t *pte; 1042 swp_entry_t entry; 1043 1044 tlb_change_page_size(tlb, PAGE_SIZE); 1045 again: 1046 init_rss_vec(rss); 1047 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1048 pte = start_pte; 1049 flush_tlb_batched_pending(mm); 1050 arch_enter_lazy_mmu_mode(); 1051 do { 1052 pte_t ptent = *pte; 1053 if (pte_none(ptent)) 1054 continue; 1055 1056 if (need_resched()) 1057 break; 1058 1059 if (pte_present(ptent)) { 1060 struct page *page; 1061 1062 page = vm_normal_page(vma, addr, ptent); 1063 if (unlikely(details) && page) { 1064 /* 1065 * unmap_shared_mapping_pages() wants to 1066 * invalidate cache without truncating: 1067 * unmap shared but keep private pages. 1068 */ 1069 if (details->check_mapping && 1070 details->check_mapping != page_rmapping(page)) 1071 continue; 1072 } 1073 ptent = ptep_get_and_clear_full(mm, addr, pte, 1074 tlb->fullmm); 1075 tlb_remove_tlb_entry(tlb, pte, addr); 1076 if (unlikely(!page)) 1077 continue; 1078 1079 if (!PageAnon(page)) { 1080 if (pte_dirty(ptent)) { 1081 force_flush = 1; 1082 set_page_dirty(page); 1083 } 1084 if (pte_young(ptent) && 1085 likely(!(vma->vm_flags & VM_SEQ_READ))) 1086 mark_page_accessed(page); 1087 } 1088 rss[mm_counter(page)]--; 1089 page_remove_rmap(page, false); 1090 if (unlikely(page_mapcount(page) < 0)) 1091 print_bad_pte(vma, addr, ptent, page); 1092 if (unlikely(__tlb_remove_page(tlb, page))) { 1093 force_flush = 1; 1094 addr += PAGE_SIZE; 1095 break; 1096 } 1097 continue; 1098 } 1099 1100 entry = pte_to_swp_entry(ptent); 1101 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1102 struct page *page = device_private_entry_to_page(entry); 1103 1104 if (unlikely(details && details->check_mapping)) { 1105 /* 1106 * unmap_shared_mapping_pages() wants to 1107 * invalidate cache without truncating: 1108 * unmap shared but keep private pages. 1109 */ 1110 if (details->check_mapping != 1111 page_rmapping(page)) 1112 continue; 1113 } 1114 1115 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1116 rss[mm_counter(page)]--; 1117 page_remove_rmap(page, false); 1118 put_page(page); 1119 continue; 1120 } 1121 1122 /* If details->check_mapping, we leave swap entries. */ 1123 if (unlikely(details)) 1124 continue; 1125 1126 if (!non_swap_entry(entry)) 1127 rss[MM_SWAPENTS]--; 1128 else if (is_migration_entry(entry)) { 1129 struct page *page; 1130 1131 page = migration_entry_to_page(entry); 1132 rss[mm_counter(page)]--; 1133 } 1134 if (unlikely(!free_swap_and_cache(entry))) 1135 print_bad_pte(vma, addr, ptent, NULL); 1136 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1137 } while (pte++, addr += PAGE_SIZE, addr != end); 1138 1139 add_mm_rss_vec(mm, rss); 1140 arch_leave_lazy_mmu_mode(); 1141 1142 /* Do the actual TLB flush before dropping ptl */ 1143 if (force_flush) 1144 tlb_flush_mmu_tlbonly(tlb); 1145 pte_unmap_unlock(start_pte, ptl); 1146 1147 /* 1148 * If we forced a TLB flush (either due to running out of 1149 * batch buffers or because we needed to flush dirty TLB 1150 * entries before releasing the ptl), free the batched 1151 * memory too. Restart if we didn't do everything. 1152 */ 1153 if (force_flush) { 1154 force_flush = 0; 1155 tlb_flush_mmu(tlb); 1156 } 1157 1158 if (addr != end) { 1159 cond_resched(); 1160 goto again; 1161 } 1162 1163 return addr; 1164 } 1165 1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1167 struct vm_area_struct *vma, pud_t *pud, 1168 unsigned long addr, unsigned long end, 1169 struct zap_details *details) 1170 { 1171 pmd_t *pmd; 1172 unsigned long next; 1173 1174 pmd = pmd_offset(pud, addr); 1175 do { 1176 next = pmd_addr_end(addr, end); 1177 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1178 if (next - addr != HPAGE_PMD_SIZE) 1179 __split_huge_pmd(vma, pmd, addr, false, NULL); 1180 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1181 goto next; 1182 /* fall through */ 1183 } 1184 /* 1185 * Here there can be other concurrent MADV_DONTNEED or 1186 * trans huge page faults running, and if the pmd is 1187 * none or trans huge it can change under us. This is 1188 * because MADV_DONTNEED holds the mmap_lock in read 1189 * mode. 1190 */ 1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1192 goto next; 1193 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1194 next: 1195 cond_resched(); 1196 } while (pmd++, addr = next, addr != end); 1197 1198 return addr; 1199 } 1200 1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1202 struct vm_area_struct *vma, p4d_t *p4d, 1203 unsigned long addr, unsigned long end, 1204 struct zap_details *details) 1205 { 1206 pud_t *pud; 1207 unsigned long next; 1208 1209 pud = pud_offset(p4d, addr); 1210 do { 1211 next = pud_addr_end(addr, end); 1212 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1213 if (next - addr != HPAGE_PUD_SIZE) { 1214 mmap_assert_locked(tlb->mm); 1215 split_huge_pud(vma, pud, addr); 1216 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1217 goto next; 1218 /* fall through */ 1219 } 1220 if (pud_none_or_clear_bad(pud)) 1221 continue; 1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1223 next: 1224 cond_resched(); 1225 } while (pud++, addr = next, addr != end); 1226 1227 return addr; 1228 } 1229 1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1231 struct vm_area_struct *vma, pgd_t *pgd, 1232 unsigned long addr, unsigned long end, 1233 struct zap_details *details) 1234 { 1235 p4d_t *p4d; 1236 unsigned long next; 1237 1238 p4d = p4d_offset(pgd, addr); 1239 do { 1240 next = p4d_addr_end(addr, end); 1241 if (p4d_none_or_clear_bad(p4d)) 1242 continue; 1243 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1244 } while (p4d++, addr = next, addr != end); 1245 1246 return addr; 1247 } 1248 1249 void unmap_page_range(struct mmu_gather *tlb, 1250 struct vm_area_struct *vma, 1251 unsigned long addr, unsigned long end, 1252 struct zap_details *details) 1253 { 1254 pgd_t *pgd; 1255 unsigned long next; 1256 1257 BUG_ON(addr >= end); 1258 tlb_start_vma(tlb, vma); 1259 pgd = pgd_offset(vma->vm_mm, addr); 1260 do { 1261 next = pgd_addr_end(addr, end); 1262 if (pgd_none_or_clear_bad(pgd)) 1263 continue; 1264 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1265 } while (pgd++, addr = next, addr != end); 1266 tlb_end_vma(tlb, vma); 1267 } 1268 1269 1270 static void unmap_single_vma(struct mmu_gather *tlb, 1271 struct vm_area_struct *vma, unsigned long start_addr, 1272 unsigned long end_addr, 1273 struct zap_details *details) 1274 { 1275 unsigned long start = max(vma->vm_start, start_addr); 1276 unsigned long end; 1277 1278 if (start >= vma->vm_end) 1279 return; 1280 end = min(vma->vm_end, end_addr); 1281 if (end <= vma->vm_start) 1282 return; 1283 1284 if (vma->vm_file) 1285 uprobe_munmap(vma, start, end); 1286 1287 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1288 untrack_pfn(vma, 0, 0); 1289 1290 if (start != end) { 1291 if (unlikely(is_vm_hugetlb_page(vma))) { 1292 /* 1293 * It is undesirable to test vma->vm_file as it 1294 * should be non-null for valid hugetlb area. 1295 * However, vm_file will be NULL in the error 1296 * cleanup path of mmap_region. When 1297 * hugetlbfs ->mmap method fails, 1298 * mmap_region() nullifies vma->vm_file 1299 * before calling this function to clean up. 1300 * Since no pte has actually been setup, it is 1301 * safe to do nothing in this case. 1302 */ 1303 if (vma->vm_file) { 1304 i_mmap_lock_write(vma->vm_file->f_mapping); 1305 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1306 i_mmap_unlock_write(vma->vm_file->f_mapping); 1307 } 1308 } else 1309 unmap_page_range(tlb, vma, start, end, details); 1310 } 1311 } 1312 1313 /** 1314 * unmap_vmas - unmap a range of memory covered by a list of vma's 1315 * @tlb: address of the caller's struct mmu_gather 1316 * @vma: the starting vma 1317 * @start_addr: virtual address at which to start unmapping 1318 * @end_addr: virtual address at which to end unmapping 1319 * 1320 * Unmap all pages in the vma list. 1321 * 1322 * Only addresses between `start' and `end' will be unmapped. 1323 * 1324 * The VMA list must be sorted in ascending virtual address order. 1325 * 1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1327 * range after unmap_vmas() returns. So the only responsibility here is to 1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1329 * drops the lock and schedules. 1330 */ 1331 void unmap_vmas(struct mmu_gather *tlb, 1332 struct vm_area_struct *vma, unsigned long start_addr, 1333 unsigned long end_addr) 1334 { 1335 struct mmu_notifier_range range; 1336 1337 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1338 start_addr, end_addr); 1339 mmu_notifier_invalidate_range_start(&range); 1340 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1341 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1342 mmu_notifier_invalidate_range_end(&range); 1343 } 1344 1345 /** 1346 * zap_page_range - remove user pages in a given range 1347 * @vma: vm_area_struct holding the applicable pages 1348 * @start: starting address of pages to zap 1349 * @size: number of bytes to zap 1350 * 1351 * Caller must protect the VMA list 1352 */ 1353 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1354 unsigned long size) 1355 { 1356 struct mmu_notifier_range range; 1357 struct mmu_gather tlb; 1358 1359 lru_add_drain(); 1360 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1361 start, start + size); 1362 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1363 update_hiwater_rss(vma->vm_mm); 1364 mmu_notifier_invalidate_range_start(&range); 1365 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1366 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1367 mmu_notifier_invalidate_range_end(&range); 1368 tlb_finish_mmu(&tlb, start, range.end); 1369 } 1370 1371 /** 1372 * zap_page_range_single - remove user pages in a given range 1373 * @vma: vm_area_struct holding the applicable pages 1374 * @address: starting address of pages to zap 1375 * @size: number of bytes to zap 1376 * @details: details of shared cache invalidation 1377 * 1378 * The range must fit into one VMA. 1379 */ 1380 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1381 unsigned long size, struct zap_details *details) 1382 { 1383 struct mmu_notifier_range range; 1384 struct mmu_gather tlb; 1385 1386 lru_add_drain(); 1387 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1388 address, address + size); 1389 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1390 update_hiwater_rss(vma->vm_mm); 1391 mmu_notifier_invalidate_range_start(&range); 1392 unmap_single_vma(&tlb, vma, address, range.end, details); 1393 mmu_notifier_invalidate_range_end(&range); 1394 tlb_finish_mmu(&tlb, address, range.end); 1395 } 1396 1397 /** 1398 * zap_vma_ptes - remove ptes mapping the vma 1399 * @vma: vm_area_struct holding ptes to be zapped 1400 * @address: starting address of pages to zap 1401 * @size: number of bytes to zap 1402 * 1403 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1404 * 1405 * The entire address range must be fully contained within the vma. 1406 * 1407 */ 1408 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1409 unsigned long size) 1410 { 1411 if (address < vma->vm_start || address + size > vma->vm_end || 1412 !(vma->vm_flags & VM_PFNMAP)) 1413 return; 1414 1415 zap_page_range_single(vma, address, size, NULL); 1416 } 1417 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1418 1419 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1420 { 1421 pgd_t *pgd; 1422 p4d_t *p4d; 1423 pud_t *pud; 1424 pmd_t *pmd; 1425 1426 pgd = pgd_offset(mm, addr); 1427 p4d = p4d_alloc(mm, pgd, addr); 1428 if (!p4d) 1429 return NULL; 1430 pud = pud_alloc(mm, p4d, addr); 1431 if (!pud) 1432 return NULL; 1433 pmd = pmd_alloc(mm, pud, addr); 1434 if (!pmd) 1435 return NULL; 1436 1437 VM_BUG_ON(pmd_trans_huge(*pmd)); 1438 return pmd; 1439 } 1440 1441 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1442 spinlock_t **ptl) 1443 { 1444 pmd_t *pmd = walk_to_pmd(mm, addr); 1445 1446 if (!pmd) 1447 return NULL; 1448 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1449 } 1450 1451 static int validate_page_before_insert(struct page *page) 1452 { 1453 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1454 return -EINVAL; 1455 flush_dcache_page(page); 1456 return 0; 1457 } 1458 1459 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 1460 unsigned long addr, struct page *page, pgprot_t prot) 1461 { 1462 if (!pte_none(*pte)) 1463 return -EBUSY; 1464 /* Ok, finally just insert the thing.. */ 1465 get_page(page); 1466 inc_mm_counter_fast(mm, mm_counter_file(page)); 1467 page_add_file_rmap(page, false); 1468 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1469 return 0; 1470 } 1471 1472 /* 1473 * This is the old fallback for page remapping. 1474 * 1475 * For historical reasons, it only allows reserved pages. Only 1476 * old drivers should use this, and they needed to mark their 1477 * pages reserved for the old functions anyway. 1478 */ 1479 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1480 struct page *page, pgprot_t prot) 1481 { 1482 struct mm_struct *mm = vma->vm_mm; 1483 int retval; 1484 pte_t *pte; 1485 spinlock_t *ptl; 1486 1487 retval = validate_page_before_insert(page); 1488 if (retval) 1489 goto out; 1490 retval = -ENOMEM; 1491 pte = get_locked_pte(mm, addr, &ptl); 1492 if (!pte) 1493 goto out; 1494 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 1495 pte_unmap_unlock(pte, ptl); 1496 out: 1497 return retval; 1498 } 1499 1500 #ifdef pte_index 1501 static int insert_page_in_batch_locked(struct mm_struct *mm, pmd_t *pmd, 1502 unsigned long addr, struct page *page, pgprot_t prot) 1503 { 1504 int err; 1505 1506 if (!page_count(page)) 1507 return -EINVAL; 1508 err = validate_page_before_insert(page); 1509 return err ? err : insert_page_into_pte_locked( 1510 mm, pte_offset_map(pmd, addr), addr, page, prot); 1511 } 1512 1513 /* insert_pages() amortizes the cost of spinlock operations 1514 * when inserting pages in a loop. Arch *must* define pte_index. 1515 */ 1516 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1517 struct page **pages, unsigned long *num, pgprot_t prot) 1518 { 1519 pmd_t *pmd = NULL; 1520 spinlock_t *pte_lock = NULL; 1521 struct mm_struct *const mm = vma->vm_mm; 1522 unsigned long curr_page_idx = 0; 1523 unsigned long remaining_pages_total = *num; 1524 unsigned long pages_to_write_in_pmd; 1525 int ret; 1526 more: 1527 ret = -EFAULT; 1528 pmd = walk_to_pmd(mm, addr); 1529 if (!pmd) 1530 goto out; 1531 1532 pages_to_write_in_pmd = min_t(unsigned long, 1533 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1534 1535 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1536 ret = -ENOMEM; 1537 if (pte_alloc(mm, pmd)) 1538 goto out; 1539 pte_lock = pte_lockptr(mm, pmd); 1540 1541 while (pages_to_write_in_pmd) { 1542 int pte_idx = 0; 1543 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1544 1545 spin_lock(pte_lock); 1546 for (; pte_idx < batch_size; ++pte_idx) { 1547 int err = insert_page_in_batch_locked(mm, pmd, 1548 addr, pages[curr_page_idx], prot); 1549 if (unlikely(err)) { 1550 spin_unlock(pte_lock); 1551 ret = err; 1552 remaining_pages_total -= pte_idx; 1553 goto out; 1554 } 1555 addr += PAGE_SIZE; 1556 ++curr_page_idx; 1557 } 1558 spin_unlock(pte_lock); 1559 pages_to_write_in_pmd -= batch_size; 1560 remaining_pages_total -= batch_size; 1561 } 1562 if (remaining_pages_total) 1563 goto more; 1564 ret = 0; 1565 out: 1566 *num = remaining_pages_total; 1567 return ret; 1568 } 1569 #endif /* ifdef pte_index */ 1570 1571 /** 1572 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1573 * @vma: user vma to map to 1574 * @addr: target start user address of these pages 1575 * @pages: source kernel pages 1576 * @num: in: number of pages to map. out: number of pages that were *not* 1577 * mapped. (0 means all pages were successfully mapped). 1578 * 1579 * Preferred over vm_insert_page() when inserting multiple pages. 1580 * 1581 * In case of error, we may have mapped a subset of the provided 1582 * pages. It is the caller's responsibility to account for this case. 1583 * 1584 * The same restrictions apply as in vm_insert_page(). 1585 */ 1586 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1587 struct page **pages, unsigned long *num) 1588 { 1589 #ifdef pte_index 1590 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1591 1592 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1593 return -EFAULT; 1594 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1595 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1596 BUG_ON(vma->vm_flags & VM_PFNMAP); 1597 vma->vm_flags |= VM_MIXEDMAP; 1598 } 1599 /* Defer page refcount checking till we're about to map that page. */ 1600 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1601 #else 1602 unsigned long idx = 0, pgcount = *num; 1603 int err; 1604 1605 for (; idx < pgcount; ++idx) { 1606 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1607 if (err) 1608 break; 1609 } 1610 *num = pgcount - idx; 1611 return err; 1612 #endif /* ifdef pte_index */ 1613 } 1614 EXPORT_SYMBOL(vm_insert_pages); 1615 1616 /** 1617 * vm_insert_page - insert single page into user vma 1618 * @vma: user vma to map to 1619 * @addr: target user address of this page 1620 * @page: source kernel page 1621 * 1622 * This allows drivers to insert individual pages they've allocated 1623 * into a user vma. 1624 * 1625 * The page has to be a nice clean _individual_ kernel allocation. 1626 * If you allocate a compound page, you need to have marked it as 1627 * such (__GFP_COMP), or manually just split the page up yourself 1628 * (see split_page()). 1629 * 1630 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1631 * took an arbitrary page protection parameter. This doesn't allow 1632 * that. Your vma protection will have to be set up correctly, which 1633 * means that if you want a shared writable mapping, you'd better 1634 * ask for a shared writable mapping! 1635 * 1636 * The page does not need to be reserved. 1637 * 1638 * Usually this function is called from f_op->mmap() handler 1639 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1640 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1641 * function from other places, for example from page-fault handler. 1642 * 1643 * Return: %0 on success, negative error code otherwise. 1644 */ 1645 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1646 struct page *page) 1647 { 1648 if (addr < vma->vm_start || addr >= vma->vm_end) 1649 return -EFAULT; 1650 if (!page_count(page)) 1651 return -EINVAL; 1652 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1653 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1654 BUG_ON(vma->vm_flags & VM_PFNMAP); 1655 vma->vm_flags |= VM_MIXEDMAP; 1656 } 1657 return insert_page(vma, addr, page, vma->vm_page_prot); 1658 } 1659 EXPORT_SYMBOL(vm_insert_page); 1660 1661 /* 1662 * __vm_map_pages - maps range of kernel pages into user vma 1663 * @vma: user vma to map to 1664 * @pages: pointer to array of source kernel pages 1665 * @num: number of pages in page array 1666 * @offset: user's requested vm_pgoff 1667 * 1668 * This allows drivers to map range of kernel pages into a user vma. 1669 * 1670 * Return: 0 on success and error code otherwise. 1671 */ 1672 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1673 unsigned long num, unsigned long offset) 1674 { 1675 unsigned long count = vma_pages(vma); 1676 unsigned long uaddr = vma->vm_start; 1677 int ret, i; 1678 1679 /* Fail if the user requested offset is beyond the end of the object */ 1680 if (offset >= num) 1681 return -ENXIO; 1682 1683 /* Fail if the user requested size exceeds available object size */ 1684 if (count > num - offset) 1685 return -ENXIO; 1686 1687 for (i = 0; i < count; i++) { 1688 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1689 if (ret < 0) 1690 return ret; 1691 uaddr += PAGE_SIZE; 1692 } 1693 1694 return 0; 1695 } 1696 1697 /** 1698 * vm_map_pages - maps range of kernel pages starts with non zero offset 1699 * @vma: user vma to map to 1700 * @pages: pointer to array of source kernel pages 1701 * @num: number of pages in page array 1702 * 1703 * Maps an object consisting of @num pages, catering for the user's 1704 * requested vm_pgoff 1705 * 1706 * If we fail to insert any page into the vma, the function will return 1707 * immediately leaving any previously inserted pages present. Callers 1708 * from the mmap handler may immediately return the error as their caller 1709 * will destroy the vma, removing any successfully inserted pages. Other 1710 * callers should make their own arrangements for calling unmap_region(). 1711 * 1712 * Context: Process context. Called by mmap handlers. 1713 * Return: 0 on success and error code otherwise. 1714 */ 1715 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1716 unsigned long num) 1717 { 1718 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1719 } 1720 EXPORT_SYMBOL(vm_map_pages); 1721 1722 /** 1723 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1724 * @vma: user vma to map to 1725 * @pages: pointer to array of source kernel pages 1726 * @num: number of pages in page array 1727 * 1728 * Similar to vm_map_pages(), except that it explicitly sets the offset 1729 * to 0. This function is intended for the drivers that did not consider 1730 * vm_pgoff. 1731 * 1732 * Context: Process context. Called by mmap handlers. 1733 * Return: 0 on success and error code otherwise. 1734 */ 1735 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1736 unsigned long num) 1737 { 1738 return __vm_map_pages(vma, pages, num, 0); 1739 } 1740 EXPORT_SYMBOL(vm_map_pages_zero); 1741 1742 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1743 pfn_t pfn, pgprot_t prot, bool mkwrite) 1744 { 1745 struct mm_struct *mm = vma->vm_mm; 1746 pte_t *pte, entry; 1747 spinlock_t *ptl; 1748 1749 pte = get_locked_pte(mm, addr, &ptl); 1750 if (!pte) 1751 return VM_FAULT_OOM; 1752 if (!pte_none(*pte)) { 1753 if (mkwrite) { 1754 /* 1755 * For read faults on private mappings the PFN passed 1756 * in may not match the PFN we have mapped if the 1757 * mapped PFN is a writeable COW page. In the mkwrite 1758 * case we are creating a writable PTE for a shared 1759 * mapping and we expect the PFNs to match. If they 1760 * don't match, we are likely racing with block 1761 * allocation and mapping invalidation so just skip the 1762 * update. 1763 */ 1764 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1765 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1766 goto out_unlock; 1767 } 1768 entry = pte_mkyoung(*pte); 1769 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1770 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1771 update_mmu_cache(vma, addr, pte); 1772 } 1773 goto out_unlock; 1774 } 1775 1776 /* Ok, finally just insert the thing.. */ 1777 if (pfn_t_devmap(pfn)) 1778 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1779 else 1780 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1781 1782 if (mkwrite) { 1783 entry = pte_mkyoung(entry); 1784 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1785 } 1786 1787 set_pte_at(mm, addr, pte, entry); 1788 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1789 1790 out_unlock: 1791 pte_unmap_unlock(pte, ptl); 1792 return VM_FAULT_NOPAGE; 1793 } 1794 1795 /** 1796 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1797 * @vma: user vma to map to 1798 * @addr: target user address of this page 1799 * @pfn: source kernel pfn 1800 * @pgprot: pgprot flags for the inserted page 1801 * 1802 * This is exactly like vmf_insert_pfn(), except that it allows drivers to 1803 * to override pgprot on a per-page basis. 1804 * 1805 * This only makes sense for IO mappings, and it makes no sense for 1806 * COW mappings. In general, using multiple vmas is preferable; 1807 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1808 * impractical. 1809 * 1810 * See vmf_insert_mixed_prot() for a discussion of the implication of using 1811 * a value of @pgprot different from that of @vma->vm_page_prot. 1812 * 1813 * Context: Process context. May allocate using %GFP_KERNEL. 1814 * Return: vm_fault_t value. 1815 */ 1816 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1817 unsigned long pfn, pgprot_t pgprot) 1818 { 1819 /* 1820 * Technically, architectures with pte_special can avoid all these 1821 * restrictions (same for remap_pfn_range). However we would like 1822 * consistency in testing and feature parity among all, so we should 1823 * try to keep these invariants in place for everybody. 1824 */ 1825 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1826 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1827 (VM_PFNMAP|VM_MIXEDMAP)); 1828 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1829 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1830 1831 if (addr < vma->vm_start || addr >= vma->vm_end) 1832 return VM_FAULT_SIGBUS; 1833 1834 if (!pfn_modify_allowed(pfn, pgprot)) 1835 return VM_FAULT_SIGBUS; 1836 1837 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1838 1839 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1840 false); 1841 } 1842 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1843 1844 /** 1845 * vmf_insert_pfn - insert single pfn into user vma 1846 * @vma: user vma to map to 1847 * @addr: target user address of this page 1848 * @pfn: source kernel pfn 1849 * 1850 * Similar to vm_insert_page, this allows drivers to insert individual pages 1851 * they've allocated into a user vma. Same comments apply. 1852 * 1853 * This function should only be called from a vm_ops->fault handler, and 1854 * in that case the handler should return the result of this function. 1855 * 1856 * vma cannot be a COW mapping. 1857 * 1858 * As this is called only for pages that do not currently exist, we 1859 * do not need to flush old virtual caches or the TLB. 1860 * 1861 * Context: Process context. May allocate using %GFP_KERNEL. 1862 * Return: vm_fault_t value. 1863 */ 1864 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1865 unsigned long pfn) 1866 { 1867 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1868 } 1869 EXPORT_SYMBOL(vmf_insert_pfn); 1870 1871 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1872 { 1873 /* these checks mirror the abort conditions in vm_normal_page */ 1874 if (vma->vm_flags & VM_MIXEDMAP) 1875 return true; 1876 if (pfn_t_devmap(pfn)) 1877 return true; 1878 if (pfn_t_special(pfn)) 1879 return true; 1880 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1881 return true; 1882 return false; 1883 } 1884 1885 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1886 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 1887 bool mkwrite) 1888 { 1889 int err; 1890 1891 BUG_ON(!vm_mixed_ok(vma, pfn)); 1892 1893 if (addr < vma->vm_start || addr >= vma->vm_end) 1894 return VM_FAULT_SIGBUS; 1895 1896 track_pfn_insert(vma, &pgprot, pfn); 1897 1898 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1899 return VM_FAULT_SIGBUS; 1900 1901 /* 1902 * If we don't have pte special, then we have to use the pfn_valid() 1903 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1904 * refcount the page if pfn_valid is true (hence insert_page rather 1905 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1906 * without pte special, it would there be refcounted as a normal page. 1907 */ 1908 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1909 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1910 struct page *page; 1911 1912 /* 1913 * At this point we are committed to insert_page() 1914 * regardless of whether the caller specified flags that 1915 * result in pfn_t_has_page() == false. 1916 */ 1917 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1918 err = insert_page(vma, addr, page, pgprot); 1919 } else { 1920 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1921 } 1922 1923 if (err == -ENOMEM) 1924 return VM_FAULT_OOM; 1925 if (err < 0 && err != -EBUSY) 1926 return VM_FAULT_SIGBUS; 1927 1928 return VM_FAULT_NOPAGE; 1929 } 1930 1931 /** 1932 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 1933 * @vma: user vma to map to 1934 * @addr: target user address of this page 1935 * @pfn: source kernel pfn 1936 * @pgprot: pgprot flags for the inserted page 1937 * 1938 * This is exactly like vmf_insert_mixed(), except that it allows drivers to 1939 * to override pgprot on a per-page basis. 1940 * 1941 * Typically this function should be used by drivers to set caching- and 1942 * encryption bits different than those of @vma->vm_page_prot, because 1943 * the caching- or encryption mode may not be known at mmap() time. 1944 * This is ok as long as @vma->vm_page_prot is not used by the core vm 1945 * to set caching and encryption bits for those vmas (except for COW pages). 1946 * This is ensured by core vm only modifying these page table entries using 1947 * functions that don't touch caching- or encryption bits, using pte_modify() 1948 * if needed. (See for example mprotect()). 1949 * Also when new page-table entries are created, this is only done using the 1950 * fault() callback, and never using the value of vma->vm_page_prot, 1951 * except for page-table entries that point to anonymous pages as the result 1952 * of COW. 1953 * 1954 * Context: Process context. May allocate using %GFP_KERNEL. 1955 * Return: vm_fault_t value. 1956 */ 1957 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 1958 pfn_t pfn, pgprot_t pgprot) 1959 { 1960 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 1961 } 1962 EXPORT_SYMBOL(vmf_insert_mixed_prot); 1963 1964 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1965 pfn_t pfn) 1966 { 1967 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 1968 } 1969 EXPORT_SYMBOL(vmf_insert_mixed); 1970 1971 /* 1972 * If the insertion of PTE failed because someone else already added a 1973 * different entry in the mean time, we treat that as success as we assume 1974 * the same entry was actually inserted. 1975 */ 1976 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1977 unsigned long addr, pfn_t pfn) 1978 { 1979 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 1980 } 1981 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1982 1983 /* 1984 * maps a range of physical memory into the requested pages. the old 1985 * mappings are removed. any references to nonexistent pages results 1986 * in null mappings (currently treated as "copy-on-access") 1987 */ 1988 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1989 unsigned long addr, unsigned long end, 1990 unsigned long pfn, pgprot_t prot) 1991 { 1992 pte_t *pte; 1993 spinlock_t *ptl; 1994 int err = 0; 1995 1996 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1997 if (!pte) 1998 return -ENOMEM; 1999 arch_enter_lazy_mmu_mode(); 2000 do { 2001 BUG_ON(!pte_none(*pte)); 2002 if (!pfn_modify_allowed(pfn, prot)) { 2003 err = -EACCES; 2004 break; 2005 } 2006 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2007 pfn++; 2008 } while (pte++, addr += PAGE_SIZE, addr != end); 2009 arch_leave_lazy_mmu_mode(); 2010 pte_unmap_unlock(pte - 1, ptl); 2011 return err; 2012 } 2013 2014 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2015 unsigned long addr, unsigned long end, 2016 unsigned long pfn, pgprot_t prot) 2017 { 2018 pmd_t *pmd; 2019 unsigned long next; 2020 int err; 2021 2022 pfn -= addr >> PAGE_SHIFT; 2023 pmd = pmd_alloc(mm, pud, addr); 2024 if (!pmd) 2025 return -ENOMEM; 2026 VM_BUG_ON(pmd_trans_huge(*pmd)); 2027 do { 2028 next = pmd_addr_end(addr, end); 2029 err = remap_pte_range(mm, pmd, addr, next, 2030 pfn + (addr >> PAGE_SHIFT), prot); 2031 if (err) 2032 return err; 2033 } while (pmd++, addr = next, addr != end); 2034 return 0; 2035 } 2036 2037 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2038 unsigned long addr, unsigned long end, 2039 unsigned long pfn, pgprot_t prot) 2040 { 2041 pud_t *pud; 2042 unsigned long next; 2043 int err; 2044 2045 pfn -= addr >> PAGE_SHIFT; 2046 pud = pud_alloc(mm, p4d, addr); 2047 if (!pud) 2048 return -ENOMEM; 2049 do { 2050 next = pud_addr_end(addr, end); 2051 err = remap_pmd_range(mm, pud, addr, next, 2052 pfn + (addr >> PAGE_SHIFT), prot); 2053 if (err) 2054 return err; 2055 } while (pud++, addr = next, addr != end); 2056 return 0; 2057 } 2058 2059 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2060 unsigned long addr, unsigned long end, 2061 unsigned long pfn, pgprot_t prot) 2062 { 2063 p4d_t *p4d; 2064 unsigned long next; 2065 int err; 2066 2067 pfn -= addr >> PAGE_SHIFT; 2068 p4d = p4d_alloc(mm, pgd, addr); 2069 if (!p4d) 2070 return -ENOMEM; 2071 do { 2072 next = p4d_addr_end(addr, end); 2073 err = remap_pud_range(mm, p4d, addr, next, 2074 pfn + (addr >> PAGE_SHIFT), prot); 2075 if (err) 2076 return err; 2077 } while (p4d++, addr = next, addr != end); 2078 return 0; 2079 } 2080 2081 /** 2082 * remap_pfn_range - remap kernel memory to userspace 2083 * @vma: user vma to map to 2084 * @addr: target user address to start at 2085 * @pfn: page frame number of kernel physical memory address 2086 * @size: size of mapping area 2087 * @prot: page protection flags for this mapping 2088 * 2089 * Note: this is only safe if the mm semaphore is held when called. 2090 * 2091 * Return: %0 on success, negative error code otherwise. 2092 */ 2093 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2094 unsigned long pfn, unsigned long size, pgprot_t prot) 2095 { 2096 pgd_t *pgd; 2097 unsigned long next; 2098 unsigned long end = addr + PAGE_ALIGN(size); 2099 struct mm_struct *mm = vma->vm_mm; 2100 unsigned long remap_pfn = pfn; 2101 int err; 2102 2103 /* 2104 * Physically remapped pages are special. Tell the 2105 * rest of the world about it: 2106 * VM_IO tells people not to look at these pages 2107 * (accesses can have side effects). 2108 * VM_PFNMAP tells the core MM that the base pages are just 2109 * raw PFN mappings, and do not have a "struct page" associated 2110 * with them. 2111 * VM_DONTEXPAND 2112 * Disable vma merging and expanding with mremap(). 2113 * VM_DONTDUMP 2114 * Omit vma from core dump, even when VM_IO turned off. 2115 * 2116 * There's a horrible special case to handle copy-on-write 2117 * behaviour that some programs depend on. We mark the "original" 2118 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2119 * See vm_normal_page() for details. 2120 */ 2121 if (is_cow_mapping(vma->vm_flags)) { 2122 if (addr != vma->vm_start || end != vma->vm_end) 2123 return -EINVAL; 2124 vma->vm_pgoff = pfn; 2125 } 2126 2127 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2128 if (err) 2129 return -EINVAL; 2130 2131 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2132 2133 BUG_ON(addr >= end); 2134 pfn -= addr >> PAGE_SHIFT; 2135 pgd = pgd_offset(mm, addr); 2136 flush_cache_range(vma, addr, end); 2137 do { 2138 next = pgd_addr_end(addr, end); 2139 err = remap_p4d_range(mm, pgd, addr, next, 2140 pfn + (addr >> PAGE_SHIFT), prot); 2141 if (err) 2142 break; 2143 } while (pgd++, addr = next, addr != end); 2144 2145 if (err) 2146 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2147 2148 return err; 2149 } 2150 EXPORT_SYMBOL(remap_pfn_range); 2151 2152 /** 2153 * vm_iomap_memory - remap memory to userspace 2154 * @vma: user vma to map to 2155 * @start: start of the physical memory to be mapped 2156 * @len: size of area 2157 * 2158 * This is a simplified io_remap_pfn_range() for common driver use. The 2159 * driver just needs to give us the physical memory range to be mapped, 2160 * we'll figure out the rest from the vma information. 2161 * 2162 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2163 * whatever write-combining details or similar. 2164 * 2165 * Return: %0 on success, negative error code otherwise. 2166 */ 2167 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2168 { 2169 unsigned long vm_len, pfn, pages; 2170 2171 /* Check that the physical memory area passed in looks valid */ 2172 if (start + len < start) 2173 return -EINVAL; 2174 /* 2175 * You *really* shouldn't map things that aren't page-aligned, 2176 * but we've historically allowed it because IO memory might 2177 * just have smaller alignment. 2178 */ 2179 len += start & ~PAGE_MASK; 2180 pfn = start >> PAGE_SHIFT; 2181 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2182 if (pfn + pages < pfn) 2183 return -EINVAL; 2184 2185 /* We start the mapping 'vm_pgoff' pages into the area */ 2186 if (vma->vm_pgoff > pages) 2187 return -EINVAL; 2188 pfn += vma->vm_pgoff; 2189 pages -= vma->vm_pgoff; 2190 2191 /* Can we fit all of the mapping? */ 2192 vm_len = vma->vm_end - vma->vm_start; 2193 if (vm_len >> PAGE_SHIFT > pages) 2194 return -EINVAL; 2195 2196 /* Ok, let it rip */ 2197 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2198 } 2199 EXPORT_SYMBOL(vm_iomap_memory); 2200 2201 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2202 unsigned long addr, unsigned long end, 2203 pte_fn_t fn, void *data, bool create) 2204 { 2205 pte_t *pte; 2206 int err = 0; 2207 spinlock_t *uninitialized_var(ptl); 2208 2209 if (create) { 2210 pte = (mm == &init_mm) ? 2211 pte_alloc_kernel(pmd, addr) : 2212 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2213 if (!pte) 2214 return -ENOMEM; 2215 } else { 2216 pte = (mm == &init_mm) ? 2217 pte_offset_kernel(pmd, addr) : 2218 pte_offset_map_lock(mm, pmd, addr, &ptl); 2219 } 2220 2221 BUG_ON(pmd_huge(*pmd)); 2222 2223 arch_enter_lazy_mmu_mode(); 2224 2225 do { 2226 if (create || !pte_none(*pte)) { 2227 err = fn(pte++, addr, data); 2228 if (err) 2229 break; 2230 } 2231 } while (addr += PAGE_SIZE, addr != end); 2232 2233 arch_leave_lazy_mmu_mode(); 2234 2235 if (mm != &init_mm) 2236 pte_unmap_unlock(pte-1, ptl); 2237 return err; 2238 } 2239 2240 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2241 unsigned long addr, unsigned long end, 2242 pte_fn_t fn, void *data, bool create) 2243 { 2244 pmd_t *pmd; 2245 unsigned long next; 2246 int err = 0; 2247 2248 BUG_ON(pud_huge(*pud)); 2249 2250 if (create) { 2251 pmd = pmd_alloc(mm, pud, addr); 2252 if (!pmd) 2253 return -ENOMEM; 2254 } else { 2255 pmd = pmd_offset(pud, addr); 2256 } 2257 do { 2258 next = pmd_addr_end(addr, end); 2259 if (create || !pmd_none_or_clear_bad(pmd)) { 2260 err = apply_to_pte_range(mm, pmd, addr, next, fn, data, 2261 create); 2262 if (err) 2263 break; 2264 } 2265 } while (pmd++, addr = next, addr != end); 2266 return err; 2267 } 2268 2269 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2270 unsigned long addr, unsigned long end, 2271 pte_fn_t fn, void *data, bool create) 2272 { 2273 pud_t *pud; 2274 unsigned long next; 2275 int err = 0; 2276 2277 if (create) { 2278 pud = pud_alloc(mm, p4d, addr); 2279 if (!pud) 2280 return -ENOMEM; 2281 } else { 2282 pud = pud_offset(p4d, addr); 2283 } 2284 do { 2285 next = pud_addr_end(addr, end); 2286 if (create || !pud_none_or_clear_bad(pud)) { 2287 err = apply_to_pmd_range(mm, pud, addr, next, fn, data, 2288 create); 2289 if (err) 2290 break; 2291 } 2292 } while (pud++, addr = next, addr != end); 2293 return err; 2294 } 2295 2296 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2297 unsigned long addr, unsigned long end, 2298 pte_fn_t fn, void *data, bool create) 2299 { 2300 p4d_t *p4d; 2301 unsigned long next; 2302 int err = 0; 2303 2304 if (create) { 2305 p4d = p4d_alloc(mm, pgd, addr); 2306 if (!p4d) 2307 return -ENOMEM; 2308 } else { 2309 p4d = p4d_offset(pgd, addr); 2310 } 2311 do { 2312 next = p4d_addr_end(addr, end); 2313 if (create || !p4d_none_or_clear_bad(p4d)) { 2314 err = apply_to_pud_range(mm, p4d, addr, next, fn, data, 2315 create); 2316 if (err) 2317 break; 2318 } 2319 } while (p4d++, addr = next, addr != end); 2320 return err; 2321 } 2322 2323 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2324 unsigned long size, pte_fn_t fn, 2325 void *data, bool create) 2326 { 2327 pgd_t *pgd; 2328 unsigned long next; 2329 unsigned long end = addr + size; 2330 int err = 0; 2331 2332 if (WARN_ON(addr >= end)) 2333 return -EINVAL; 2334 2335 pgd = pgd_offset(mm, addr); 2336 do { 2337 next = pgd_addr_end(addr, end); 2338 if (!create && pgd_none_or_clear_bad(pgd)) 2339 continue; 2340 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create); 2341 if (err) 2342 break; 2343 } while (pgd++, addr = next, addr != end); 2344 2345 return err; 2346 } 2347 2348 /* 2349 * Scan a region of virtual memory, filling in page tables as necessary 2350 * and calling a provided function on each leaf page table. 2351 */ 2352 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2353 unsigned long size, pte_fn_t fn, void *data) 2354 { 2355 return __apply_to_page_range(mm, addr, size, fn, data, true); 2356 } 2357 EXPORT_SYMBOL_GPL(apply_to_page_range); 2358 2359 /* 2360 * Scan a region of virtual memory, calling a provided function on 2361 * each leaf page table where it exists. 2362 * 2363 * Unlike apply_to_page_range, this does _not_ fill in page tables 2364 * where they are absent. 2365 */ 2366 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2367 unsigned long size, pte_fn_t fn, void *data) 2368 { 2369 return __apply_to_page_range(mm, addr, size, fn, data, false); 2370 } 2371 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2372 2373 /* 2374 * handle_pte_fault chooses page fault handler according to an entry which was 2375 * read non-atomically. Before making any commitment, on those architectures 2376 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2377 * parts, do_swap_page must check under lock before unmapping the pte and 2378 * proceeding (but do_wp_page is only called after already making such a check; 2379 * and do_anonymous_page can safely check later on). 2380 */ 2381 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2382 pte_t *page_table, pte_t orig_pte) 2383 { 2384 int same = 1; 2385 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2386 if (sizeof(pte_t) > sizeof(unsigned long)) { 2387 spinlock_t *ptl = pte_lockptr(mm, pmd); 2388 spin_lock(ptl); 2389 same = pte_same(*page_table, orig_pte); 2390 spin_unlock(ptl); 2391 } 2392 #endif 2393 pte_unmap(page_table); 2394 return same; 2395 } 2396 2397 static inline bool cow_user_page(struct page *dst, struct page *src, 2398 struct vm_fault *vmf) 2399 { 2400 bool ret; 2401 void *kaddr; 2402 void __user *uaddr; 2403 bool locked = false; 2404 struct vm_area_struct *vma = vmf->vma; 2405 struct mm_struct *mm = vma->vm_mm; 2406 unsigned long addr = vmf->address; 2407 2408 debug_dma_assert_idle(src); 2409 2410 if (likely(src)) { 2411 copy_user_highpage(dst, src, addr, vma); 2412 return true; 2413 } 2414 2415 /* 2416 * If the source page was a PFN mapping, we don't have 2417 * a "struct page" for it. We do a best-effort copy by 2418 * just copying from the original user address. If that 2419 * fails, we just zero-fill it. Live with it. 2420 */ 2421 kaddr = kmap_atomic(dst); 2422 uaddr = (void __user *)(addr & PAGE_MASK); 2423 2424 /* 2425 * On architectures with software "accessed" bits, we would 2426 * take a double page fault, so mark it accessed here. 2427 */ 2428 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2429 pte_t entry; 2430 2431 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2432 locked = true; 2433 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2434 /* 2435 * Other thread has already handled the fault 2436 * and update local tlb only 2437 */ 2438 update_mmu_tlb(vma, addr, vmf->pte); 2439 ret = false; 2440 goto pte_unlock; 2441 } 2442 2443 entry = pte_mkyoung(vmf->orig_pte); 2444 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2445 update_mmu_cache(vma, addr, vmf->pte); 2446 } 2447 2448 /* 2449 * This really shouldn't fail, because the page is there 2450 * in the page tables. But it might just be unreadable, 2451 * in which case we just give up and fill the result with 2452 * zeroes. 2453 */ 2454 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2455 if (locked) 2456 goto warn; 2457 2458 /* Re-validate under PTL if the page is still mapped */ 2459 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2460 locked = true; 2461 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2462 /* The PTE changed under us, update local tlb */ 2463 update_mmu_tlb(vma, addr, vmf->pte); 2464 ret = false; 2465 goto pte_unlock; 2466 } 2467 2468 /* 2469 * The same page can be mapped back since last copy attempt. 2470 * Try to copy again under PTL. 2471 */ 2472 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2473 /* 2474 * Give a warn in case there can be some obscure 2475 * use-case 2476 */ 2477 warn: 2478 WARN_ON_ONCE(1); 2479 clear_page(kaddr); 2480 } 2481 } 2482 2483 ret = true; 2484 2485 pte_unlock: 2486 if (locked) 2487 pte_unmap_unlock(vmf->pte, vmf->ptl); 2488 kunmap_atomic(kaddr); 2489 flush_dcache_page(dst); 2490 2491 return ret; 2492 } 2493 2494 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2495 { 2496 struct file *vm_file = vma->vm_file; 2497 2498 if (vm_file) 2499 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2500 2501 /* 2502 * Special mappings (e.g. VDSO) do not have any file so fake 2503 * a default GFP_KERNEL for them. 2504 */ 2505 return GFP_KERNEL; 2506 } 2507 2508 /* 2509 * Notify the address space that the page is about to become writable so that 2510 * it can prohibit this or wait for the page to get into an appropriate state. 2511 * 2512 * We do this without the lock held, so that it can sleep if it needs to. 2513 */ 2514 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2515 { 2516 vm_fault_t ret; 2517 struct page *page = vmf->page; 2518 unsigned int old_flags = vmf->flags; 2519 2520 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2521 2522 if (vmf->vma->vm_file && 2523 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2524 return VM_FAULT_SIGBUS; 2525 2526 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2527 /* Restore original flags so that caller is not surprised */ 2528 vmf->flags = old_flags; 2529 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2530 return ret; 2531 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2532 lock_page(page); 2533 if (!page->mapping) { 2534 unlock_page(page); 2535 return 0; /* retry */ 2536 } 2537 ret |= VM_FAULT_LOCKED; 2538 } else 2539 VM_BUG_ON_PAGE(!PageLocked(page), page); 2540 return ret; 2541 } 2542 2543 /* 2544 * Handle dirtying of a page in shared file mapping on a write fault. 2545 * 2546 * The function expects the page to be locked and unlocks it. 2547 */ 2548 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2549 { 2550 struct vm_area_struct *vma = vmf->vma; 2551 struct address_space *mapping; 2552 struct page *page = vmf->page; 2553 bool dirtied; 2554 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2555 2556 dirtied = set_page_dirty(page); 2557 VM_BUG_ON_PAGE(PageAnon(page), page); 2558 /* 2559 * Take a local copy of the address_space - page.mapping may be zeroed 2560 * by truncate after unlock_page(). The address_space itself remains 2561 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2562 * release semantics to prevent the compiler from undoing this copying. 2563 */ 2564 mapping = page_rmapping(page); 2565 unlock_page(page); 2566 2567 if (!page_mkwrite) 2568 file_update_time(vma->vm_file); 2569 2570 /* 2571 * Throttle page dirtying rate down to writeback speed. 2572 * 2573 * mapping may be NULL here because some device drivers do not 2574 * set page.mapping but still dirty their pages 2575 * 2576 * Drop the mmap_lock before waiting on IO, if we can. The file 2577 * is pinning the mapping, as per above. 2578 */ 2579 if ((dirtied || page_mkwrite) && mapping) { 2580 struct file *fpin; 2581 2582 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2583 balance_dirty_pages_ratelimited(mapping); 2584 if (fpin) { 2585 fput(fpin); 2586 return VM_FAULT_RETRY; 2587 } 2588 } 2589 2590 return 0; 2591 } 2592 2593 /* 2594 * Handle write page faults for pages that can be reused in the current vma 2595 * 2596 * This can happen either due to the mapping being with the VM_SHARED flag, 2597 * or due to us being the last reference standing to the page. In either 2598 * case, all we need to do here is to mark the page as writable and update 2599 * any related book-keeping. 2600 */ 2601 static inline void wp_page_reuse(struct vm_fault *vmf) 2602 __releases(vmf->ptl) 2603 { 2604 struct vm_area_struct *vma = vmf->vma; 2605 struct page *page = vmf->page; 2606 pte_t entry; 2607 /* 2608 * Clear the pages cpupid information as the existing 2609 * information potentially belongs to a now completely 2610 * unrelated process. 2611 */ 2612 if (page) 2613 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2614 2615 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2616 entry = pte_mkyoung(vmf->orig_pte); 2617 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2618 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2619 update_mmu_cache(vma, vmf->address, vmf->pte); 2620 pte_unmap_unlock(vmf->pte, vmf->ptl); 2621 } 2622 2623 /* 2624 * Handle the case of a page which we actually need to copy to a new page. 2625 * 2626 * Called with mmap_lock locked and the old page referenced, but 2627 * without the ptl held. 2628 * 2629 * High level logic flow: 2630 * 2631 * - Allocate a page, copy the content of the old page to the new one. 2632 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2633 * - Take the PTL. If the pte changed, bail out and release the allocated page 2634 * - If the pte is still the way we remember it, update the page table and all 2635 * relevant references. This includes dropping the reference the page-table 2636 * held to the old page, as well as updating the rmap. 2637 * - In any case, unlock the PTL and drop the reference we took to the old page. 2638 */ 2639 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2640 { 2641 struct vm_area_struct *vma = vmf->vma; 2642 struct mm_struct *mm = vma->vm_mm; 2643 struct page *old_page = vmf->page; 2644 struct page *new_page = NULL; 2645 pte_t entry; 2646 int page_copied = 0; 2647 struct mmu_notifier_range range; 2648 2649 if (unlikely(anon_vma_prepare(vma))) 2650 goto oom; 2651 2652 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2653 new_page = alloc_zeroed_user_highpage_movable(vma, 2654 vmf->address); 2655 if (!new_page) 2656 goto oom; 2657 } else { 2658 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2659 vmf->address); 2660 if (!new_page) 2661 goto oom; 2662 2663 if (!cow_user_page(new_page, old_page, vmf)) { 2664 /* 2665 * COW failed, if the fault was solved by other, 2666 * it's fine. If not, userspace would re-fault on 2667 * the same address and we will handle the fault 2668 * from the second attempt. 2669 */ 2670 put_page(new_page); 2671 if (old_page) 2672 put_page(old_page); 2673 return 0; 2674 } 2675 } 2676 2677 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 2678 goto oom_free_new; 2679 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 2680 2681 __SetPageUptodate(new_page); 2682 2683 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2684 vmf->address & PAGE_MASK, 2685 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2686 mmu_notifier_invalidate_range_start(&range); 2687 2688 /* 2689 * Re-check the pte - we dropped the lock 2690 */ 2691 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2692 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2693 if (old_page) { 2694 if (!PageAnon(old_page)) { 2695 dec_mm_counter_fast(mm, 2696 mm_counter_file(old_page)); 2697 inc_mm_counter_fast(mm, MM_ANONPAGES); 2698 } 2699 } else { 2700 inc_mm_counter_fast(mm, MM_ANONPAGES); 2701 } 2702 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2703 entry = mk_pte(new_page, vma->vm_page_prot); 2704 entry = pte_sw_mkyoung(entry); 2705 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2706 /* 2707 * Clear the pte entry and flush it first, before updating the 2708 * pte with the new entry. This will avoid a race condition 2709 * seen in the presence of one thread doing SMC and another 2710 * thread doing COW. 2711 */ 2712 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2713 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2714 lru_cache_add_active_or_unevictable(new_page, vma); 2715 /* 2716 * We call the notify macro here because, when using secondary 2717 * mmu page tables (such as kvm shadow page tables), we want the 2718 * new page to be mapped directly into the secondary page table. 2719 */ 2720 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2721 update_mmu_cache(vma, vmf->address, vmf->pte); 2722 if (old_page) { 2723 /* 2724 * Only after switching the pte to the new page may 2725 * we remove the mapcount here. Otherwise another 2726 * process may come and find the rmap count decremented 2727 * before the pte is switched to the new page, and 2728 * "reuse" the old page writing into it while our pte 2729 * here still points into it and can be read by other 2730 * threads. 2731 * 2732 * The critical issue is to order this 2733 * page_remove_rmap with the ptp_clear_flush above. 2734 * Those stores are ordered by (if nothing else,) 2735 * the barrier present in the atomic_add_negative 2736 * in page_remove_rmap. 2737 * 2738 * Then the TLB flush in ptep_clear_flush ensures that 2739 * no process can access the old page before the 2740 * decremented mapcount is visible. And the old page 2741 * cannot be reused until after the decremented 2742 * mapcount is visible. So transitively, TLBs to 2743 * old page will be flushed before it can be reused. 2744 */ 2745 page_remove_rmap(old_page, false); 2746 } 2747 2748 /* Free the old page.. */ 2749 new_page = old_page; 2750 page_copied = 1; 2751 } else { 2752 update_mmu_tlb(vma, vmf->address, vmf->pte); 2753 } 2754 2755 if (new_page) 2756 put_page(new_page); 2757 2758 pte_unmap_unlock(vmf->pte, vmf->ptl); 2759 /* 2760 * No need to double call mmu_notifier->invalidate_range() callback as 2761 * the above ptep_clear_flush_notify() did already call it. 2762 */ 2763 mmu_notifier_invalidate_range_only_end(&range); 2764 if (old_page) { 2765 /* 2766 * Don't let another task, with possibly unlocked vma, 2767 * keep the mlocked page. 2768 */ 2769 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2770 lock_page(old_page); /* LRU manipulation */ 2771 if (PageMlocked(old_page)) 2772 munlock_vma_page(old_page); 2773 unlock_page(old_page); 2774 } 2775 put_page(old_page); 2776 } 2777 return page_copied ? VM_FAULT_WRITE : 0; 2778 oom_free_new: 2779 put_page(new_page); 2780 oom: 2781 if (old_page) 2782 put_page(old_page); 2783 return VM_FAULT_OOM; 2784 } 2785 2786 /** 2787 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2788 * writeable once the page is prepared 2789 * 2790 * @vmf: structure describing the fault 2791 * 2792 * This function handles all that is needed to finish a write page fault in a 2793 * shared mapping due to PTE being read-only once the mapped page is prepared. 2794 * It handles locking of PTE and modifying it. 2795 * 2796 * The function expects the page to be locked or other protection against 2797 * concurrent faults / writeback (such as DAX radix tree locks). 2798 * 2799 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2800 * we acquired PTE lock. 2801 */ 2802 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2803 { 2804 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2805 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2806 &vmf->ptl); 2807 /* 2808 * We might have raced with another page fault while we released the 2809 * pte_offset_map_lock. 2810 */ 2811 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2812 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 2813 pte_unmap_unlock(vmf->pte, vmf->ptl); 2814 return VM_FAULT_NOPAGE; 2815 } 2816 wp_page_reuse(vmf); 2817 return 0; 2818 } 2819 2820 /* 2821 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2822 * mapping 2823 */ 2824 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2825 { 2826 struct vm_area_struct *vma = vmf->vma; 2827 2828 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2829 vm_fault_t ret; 2830 2831 pte_unmap_unlock(vmf->pte, vmf->ptl); 2832 vmf->flags |= FAULT_FLAG_MKWRITE; 2833 ret = vma->vm_ops->pfn_mkwrite(vmf); 2834 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2835 return ret; 2836 return finish_mkwrite_fault(vmf); 2837 } 2838 wp_page_reuse(vmf); 2839 return VM_FAULT_WRITE; 2840 } 2841 2842 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2843 __releases(vmf->ptl) 2844 { 2845 struct vm_area_struct *vma = vmf->vma; 2846 vm_fault_t ret = VM_FAULT_WRITE; 2847 2848 get_page(vmf->page); 2849 2850 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2851 vm_fault_t tmp; 2852 2853 pte_unmap_unlock(vmf->pte, vmf->ptl); 2854 tmp = do_page_mkwrite(vmf); 2855 if (unlikely(!tmp || (tmp & 2856 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2857 put_page(vmf->page); 2858 return tmp; 2859 } 2860 tmp = finish_mkwrite_fault(vmf); 2861 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2862 unlock_page(vmf->page); 2863 put_page(vmf->page); 2864 return tmp; 2865 } 2866 } else { 2867 wp_page_reuse(vmf); 2868 lock_page(vmf->page); 2869 } 2870 ret |= fault_dirty_shared_page(vmf); 2871 put_page(vmf->page); 2872 2873 return ret; 2874 } 2875 2876 /* 2877 * This routine handles present pages, when users try to write 2878 * to a shared page. It is done by copying the page to a new address 2879 * and decrementing the shared-page counter for the old page. 2880 * 2881 * Note that this routine assumes that the protection checks have been 2882 * done by the caller (the low-level page fault routine in most cases). 2883 * Thus we can safely just mark it writable once we've done any necessary 2884 * COW. 2885 * 2886 * We also mark the page dirty at this point even though the page will 2887 * change only once the write actually happens. This avoids a few races, 2888 * and potentially makes it more efficient. 2889 * 2890 * We enter with non-exclusive mmap_lock (to exclude vma changes, 2891 * but allow concurrent faults), with pte both mapped and locked. 2892 * We return with mmap_lock still held, but pte unmapped and unlocked. 2893 */ 2894 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2895 __releases(vmf->ptl) 2896 { 2897 struct vm_area_struct *vma = vmf->vma; 2898 2899 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 2900 pte_unmap_unlock(vmf->pte, vmf->ptl); 2901 return handle_userfault(vmf, VM_UFFD_WP); 2902 } 2903 2904 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2905 if (!vmf->page) { 2906 /* 2907 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2908 * VM_PFNMAP VMA. 2909 * 2910 * We should not cow pages in a shared writeable mapping. 2911 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2912 */ 2913 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2914 (VM_WRITE|VM_SHARED)) 2915 return wp_pfn_shared(vmf); 2916 2917 pte_unmap_unlock(vmf->pte, vmf->ptl); 2918 return wp_page_copy(vmf); 2919 } 2920 2921 /* 2922 * Take out anonymous pages first, anonymous shared vmas are 2923 * not dirty accountable. 2924 */ 2925 if (PageAnon(vmf->page)) { 2926 int total_map_swapcount; 2927 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) || 2928 page_count(vmf->page) != 1)) 2929 goto copy; 2930 if (!trylock_page(vmf->page)) { 2931 get_page(vmf->page); 2932 pte_unmap_unlock(vmf->pte, vmf->ptl); 2933 lock_page(vmf->page); 2934 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2935 vmf->address, &vmf->ptl); 2936 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2937 update_mmu_tlb(vma, vmf->address, vmf->pte); 2938 unlock_page(vmf->page); 2939 pte_unmap_unlock(vmf->pte, vmf->ptl); 2940 put_page(vmf->page); 2941 return 0; 2942 } 2943 put_page(vmf->page); 2944 } 2945 if (PageKsm(vmf->page)) { 2946 bool reused = reuse_ksm_page(vmf->page, vmf->vma, 2947 vmf->address); 2948 unlock_page(vmf->page); 2949 if (!reused) 2950 goto copy; 2951 wp_page_reuse(vmf); 2952 return VM_FAULT_WRITE; 2953 } 2954 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2955 if (total_map_swapcount == 1) { 2956 /* 2957 * The page is all ours. Move it to 2958 * our anon_vma so the rmap code will 2959 * not search our parent or siblings. 2960 * Protected against the rmap code by 2961 * the page lock. 2962 */ 2963 page_move_anon_rmap(vmf->page, vma); 2964 } 2965 unlock_page(vmf->page); 2966 wp_page_reuse(vmf); 2967 return VM_FAULT_WRITE; 2968 } 2969 unlock_page(vmf->page); 2970 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2971 (VM_WRITE|VM_SHARED))) { 2972 return wp_page_shared(vmf); 2973 } 2974 copy: 2975 /* 2976 * Ok, we need to copy. Oh, well.. 2977 */ 2978 get_page(vmf->page); 2979 2980 pte_unmap_unlock(vmf->pte, vmf->ptl); 2981 return wp_page_copy(vmf); 2982 } 2983 2984 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2985 unsigned long start_addr, unsigned long end_addr, 2986 struct zap_details *details) 2987 { 2988 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2989 } 2990 2991 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2992 struct zap_details *details) 2993 { 2994 struct vm_area_struct *vma; 2995 pgoff_t vba, vea, zba, zea; 2996 2997 vma_interval_tree_foreach(vma, root, 2998 details->first_index, details->last_index) { 2999 3000 vba = vma->vm_pgoff; 3001 vea = vba + vma_pages(vma) - 1; 3002 zba = details->first_index; 3003 if (zba < vba) 3004 zba = vba; 3005 zea = details->last_index; 3006 if (zea > vea) 3007 zea = vea; 3008 3009 unmap_mapping_range_vma(vma, 3010 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3011 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3012 details); 3013 } 3014 } 3015 3016 /** 3017 * unmap_mapping_pages() - Unmap pages from processes. 3018 * @mapping: The address space containing pages to be unmapped. 3019 * @start: Index of first page to be unmapped. 3020 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3021 * @even_cows: Whether to unmap even private COWed pages. 3022 * 3023 * Unmap the pages in this address space from any userspace process which 3024 * has them mmaped. Generally, you want to remove COWed pages as well when 3025 * a file is being truncated, but not when invalidating pages from the page 3026 * cache. 3027 */ 3028 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3029 pgoff_t nr, bool even_cows) 3030 { 3031 struct zap_details details = { }; 3032 3033 details.check_mapping = even_cows ? NULL : mapping; 3034 details.first_index = start; 3035 details.last_index = start + nr - 1; 3036 if (details.last_index < details.first_index) 3037 details.last_index = ULONG_MAX; 3038 3039 i_mmap_lock_write(mapping); 3040 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3041 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3042 i_mmap_unlock_write(mapping); 3043 } 3044 3045 /** 3046 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3047 * address_space corresponding to the specified byte range in the underlying 3048 * file. 3049 * 3050 * @mapping: the address space containing mmaps to be unmapped. 3051 * @holebegin: byte in first page to unmap, relative to the start of 3052 * the underlying file. This will be rounded down to a PAGE_SIZE 3053 * boundary. Note that this is different from truncate_pagecache(), which 3054 * must keep the partial page. In contrast, we must get rid of 3055 * partial pages. 3056 * @holelen: size of prospective hole in bytes. This will be rounded 3057 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3058 * end of the file. 3059 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3060 * but 0 when invalidating pagecache, don't throw away private data. 3061 */ 3062 void unmap_mapping_range(struct address_space *mapping, 3063 loff_t const holebegin, loff_t const holelen, int even_cows) 3064 { 3065 pgoff_t hba = holebegin >> PAGE_SHIFT; 3066 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3067 3068 /* Check for overflow. */ 3069 if (sizeof(holelen) > sizeof(hlen)) { 3070 long long holeend = 3071 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3072 if (holeend & ~(long long)ULONG_MAX) 3073 hlen = ULONG_MAX - hba + 1; 3074 } 3075 3076 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3077 } 3078 EXPORT_SYMBOL(unmap_mapping_range); 3079 3080 /* 3081 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3082 * but allow concurrent faults), and pte mapped but not yet locked. 3083 * We return with pte unmapped and unlocked. 3084 * 3085 * We return with the mmap_lock locked or unlocked in the same cases 3086 * as does filemap_fault(). 3087 */ 3088 vm_fault_t do_swap_page(struct vm_fault *vmf) 3089 { 3090 struct vm_area_struct *vma = vmf->vma; 3091 struct page *page = NULL, *swapcache; 3092 swp_entry_t entry; 3093 pte_t pte; 3094 int locked; 3095 int exclusive = 0; 3096 vm_fault_t ret = 0; 3097 3098 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 3099 goto out; 3100 3101 entry = pte_to_swp_entry(vmf->orig_pte); 3102 if (unlikely(non_swap_entry(entry))) { 3103 if (is_migration_entry(entry)) { 3104 migration_entry_wait(vma->vm_mm, vmf->pmd, 3105 vmf->address); 3106 } else if (is_device_private_entry(entry)) { 3107 vmf->page = device_private_entry_to_page(entry); 3108 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3109 } else if (is_hwpoison_entry(entry)) { 3110 ret = VM_FAULT_HWPOISON; 3111 } else { 3112 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3113 ret = VM_FAULT_SIGBUS; 3114 } 3115 goto out; 3116 } 3117 3118 3119 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3120 page = lookup_swap_cache(entry, vma, vmf->address); 3121 swapcache = page; 3122 3123 if (!page) { 3124 struct swap_info_struct *si = swp_swap_info(entry); 3125 3126 if (si->flags & SWP_SYNCHRONOUS_IO && 3127 __swap_count(entry) == 1) { 3128 /* skip swapcache */ 3129 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3130 vmf->address); 3131 if (page) { 3132 int err; 3133 3134 __SetPageLocked(page); 3135 __SetPageSwapBacked(page); 3136 set_page_private(page, entry.val); 3137 3138 /* Tell memcg to use swap ownership records */ 3139 SetPageSwapCache(page); 3140 err = mem_cgroup_charge(page, vma->vm_mm, 3141 GFP_KERNEL); 3142 ClearPageSwapCache(page); 3143 if (err) 3144 goto out_page; 3145 3146 lru_cache_add(page); 3147 swap_readpage(page, true); 3148 } 3149 } else { 3150 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3151 vmf); 3152 swapcache = page; 3153 } 3154 3155 if (!page) { 3156 /* 3157 * Back out if somebody else faulted in this pte 3158 * while we released the pte lock. 3159 */ 3160 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3161 vmf->address, &vmf->ptl); 3162 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3163 ret = VM_FAULT_OOM; 3164 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3165 goto unlock; 3166 } 3167 3168 /* Had to read the page from swap area: Major fault */ 3169 ret = VM_FAULT_MAJOR; 3170 count_vm_event(PGMAJFAULT); 3171 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3172 } else if (PageHWPoison(page)) { 3173 /* 3174 * hwpoisoned dirty swapcache pages are kept for killing 3175 * owner processes (which may be unknown at hwpoison time) 3176 */ 3177 ret = VM_FAULT_HWPOISON; 3178 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3179 goto out_release; 3180 } 3181 3182 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3183 3184 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3185 if (!locked) { 3186 ret |= VM_FAULT_RETRY; 3187 goto out_release; 3188 } 3189 3190 /* 3191 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3192 * release the swapcache from under us. The page pin, and pte_same 3193 * test below, are not enough to exclude that. Even if it is still 3194 * swapcache, we need to check that the page's swap has not changed. 3195 */ 3196 if (unlikely((!PageSwapCache(page) || 3197 page_private(page) != entry.val)) && swapcache) 3198 goto out_page; 3199 3200 page = ksm_might_need_to_copy(page, vma, vmf->address); 3201 if (unlikely(!page)) { 3202 ret = VM_FAULT_OOM; 3203 page = swapcache; 3204 goto out_page; 3205 } 3206 3207 cgroup_throttle_swaprate(page, GFP_KERNEL); 3208 3209 /* 3210 * Back out if somebody else already faulted in this pte. 3211 */ 3212 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3213 &vmf->ptl); 3214 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3215 goto out_nomap; 3216 3217 if (unlikely(!PageUptodate(page))) { 3218 ret = VM_FAULT_SIGBUS; 3219 goto out_nomap; 3220 } 3221 3222 /* 3223 * The page isn't present yet, go ahead with the fault. 3224 * 3225 * Be careful about the sequence of operations here. 3226 * To get its accounting right, reuse_swap_page() must be called 3227 * while the page is counted on swap but not yet in mapcount i.e. 3228 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3229 * must be called after the swap_free(), or it will never succeed. 3230 */ 3231 3232 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3233 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3234 pte = mk_pte(page, vma->vm_page_prot); 3235 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3236 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3237 vmf->flags &= ~FAULT_FLAG_WRITE; 3238 ret |= VM_FAULT_WRITE; 3239 exclusive = RMAP_EXCLUSIVE; 3240 } 3241 flush_icache_page(vma, page); 3242 if (pte_swp_soft_dirty(vmf->orig_pte)) 3243 pte = pte_mksoft_dirty(pte); 3244 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3245 pte = pte_mkuffd_wp(pte); 3246 pte = pte_wrprotect(pte); 3247 } 3248 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3249 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3250 vmf->orig_pte = pte; 3251 3252 /* ksm created a completely new copy */ 3253 if (unlikely(page != swapcache && swapcache)) { 3254 page_add_new_anon_rmap(page, vma, vmf->address, false); 3255 lru_cache_add_active_or_unevictable(page, vma); 3256 } else { 3257 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3258 activate_page(page); 3259 } 3260 3261 swap_free(entry); 3262 if (mem_cgroup_swap_full(page) || 3263 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3264 try_to_free_swap(page); 3265 unlock_page(page); 3266 if (page != swapcache && swapcache) { 3267 /* 3268 * Hold the lock to avoid the swap entry to be reused 3269 * until we take the PT lock for the pte_same() check 3270 * (to avoid false positives from pte_same). For 3271 * further safety release the lock after the swap_free 3272 * so that the swap count won't change under a 3273 * parallel locked swapcache. 3274 */ 3275 unlock_page(swapcache); 3276 put_page(swapcache); 3277 } 3278 3279 if (vmf->flags & FAULT_FLAG_WRITE) { 3280 ret |= do_wp_page(vmf); 3281 if (ret & VM_FAULT_ERROR) 3282 ret &= VM_FAULT_ERROR; 3283 goto out; 3284 } 3285 3286 /* No need to invalidate - it was non-present before */ 3287 update_mmu_cache(vma, vmf->address, vmf->pte); 3288 unlock: 3289 pte_unmap_unlock(vmf->pte, vmf->ptl); 3290 out: 3291 return ret; 3292 out_nomap: 3293 pte_unmap_unlock(vmf->pte, vmf->ptl); 3294 out_page: 3295 unlock_page(page); 3296 out_release: 3297 put_page(page); 3298 if (page != swapcache && swapcache) { 3299 unlock_page(swapcache); 3300 put_page(swapcache); 3301 } 3302 return ret; 3303 } 3304 3305 /* 3306 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3307 * but allow concurrent faults), and pte mapped but not yet locked. 3308 * We return with mmap_lock still held, but pte unmapped and unlocked. 3309 */ 3310 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3311 { 3312 struct vm_area_struct *vma = vmf->vma; 3313 struct page *page; 3314 vm_fault_t ret = 0; 3315 pte_t entry; 3316 3317 /* File mapping without ->vm_ops ? */ 3318 if (vma->vm_flags & VM_SHARED) 3319 return VM_FAULT_SIGBUS; 3320 3321 /* 3322 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3323 * pte_offset_map() on pmds where a huge pmd might be created 3324 * from a different thread. 3325 * 3326 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 3327 * parallel threads are excluded by other means. 3328 * 3329 * Here we only have mmap_read_lock(mm). 3330 */ 3331 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3332 return VM_FAULT_OOM; 3333 3334 /* See the comment in pte_alloc_one_map() */ 3335 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3336 return 0; 3337 3338 /* Use the zero-page for reads */ 3339 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3340 !mm_forbids_zeropage(vma->vm_mm)) { 3341 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3342 vma->vm_page_prot)); 3343 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3344 vmf->address, &vmf->ptl); 3345 if (!pte_none(*vmf->pte)) { 3346 update_mmu_tlb(vma, vmf->address, vmf->pte); 3347 goto unlock; 3348 } 3349 ret = check_stable_address_space(vma->vm_mm); 3350 if (ret) 3351 goto unlock; 3352 /* Deliver the page fault to userland, check inside PT lock */ 3353 if (userfaultfd_missing(vma)) { 3354 pte_unmap_unlock(vmf->pte, vmf->ptl); 3355 return handle_userfault(vmf, VM_UFFD_MISSING); 3356 } 3357 goto setpte; 3358 } 3359 3360 /* Allocate our own private page. */ 3361 if (unlikely(anon_vma_prepare(vma))) 3362 goto oom; 3363 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3364 if (!page) 3365 goto oom; 3366 3367 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 3368 goto oom_free_page; 3369 cgroup_throttle_swaprate(page, GFP_KERNEL); 3370 3371 /* 3372 * The memory barrier inside __SetPageUptodate makes sure that 3373 * preceding stores to the page contents become visible before 3374 * the set_pte_at() write. 3375 */ 3376 __SetPageUptodate(page); 3377 3378 entry = mk_pte(page, vma->vm_page_prot); 3379 entry = pte_sw_mkyoung(entry); 3380 if (vma->vm_flags & VM_WRITE) 3381 entry = pte_mkwrite(pte_mkdirty(entry)); 3382 3383 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3384 &vmf->ptl); 3385 if (!pte_none(*vmf->pte)) { 3386 update_mmu_cache(vma, vmf->address, vmf->pte); 3387 goto release; 3388 } 3389 3390 ret = check_stable_address_space(vma->vm_mm); 3391 if (ret) 3392 goto release; 3393 3394 /* Deliver the page fault to userland, check inside PT lock */ 3395 if (userfaultfd_missing(vma)) { 3396 pte_unmap_unlock(vmf->pte, vmf->ptl); 3397 put_page(page); 3398 return handle_userfault(vmf, VM_UFFD_MISSING); 3399 } 3400 3401 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3402 page_add_new_anon_rmap(page, vma, vmf->address, false); 3403 lru_cache_add_active_or_unevictable(page, vma); 3404 setpte: 3405 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3406 3407 /* No need to invalidate - it was non-present before */ 3408 update_mmu_cache(vma, vmf->address, vmf->pte); 3409 unlock: 3410 pte_unmap_unlock(vmf->pte, vmf->ptl); 3411 return ret; 3412 release: 3413 put_page(page); 3414 goto unlock; 3415 oom_free_page: 3416 put_page(page); 3417 oom: 3418 return VM_FAULT_OOM; 3419 } 3420 3421 /* 3422 * The mmap_lock must have been held on entry, and may have been 3423 * released depending on flags and vma->vm_ops->fault() return value. 3424 * See filemap_fault() and __lock_page_retry(). 3425 */ 3426 static vm_fault_t __do_fault(struct vm_fault *vmf) 3427 { 3428 struct vm_area_struct *vma = vmf->vma; 3429 vm_fault_t ret; 3430 3431 /* 3432 * Preallocate pte before we take page_lock because this might lead to 3433 * deadlocks for memcg reclaim which waits for pages under writeback: 3434 * lock_page(A) 3435 * SetPageWriteback(A) 3436 * unlock_page(A) 3437 * lock_page(B) 3438 * lock_page(B) 3439 * pte_alloc_pne 3440 * shrink_page_list 3441 * wait_on_page_writeback(A) 3442 * SetPageWriteback(B) 3443 * unlock_page(B) 3444 * # flush A, B to clear the writeback 3445 */ 3446 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3447 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3448 if (!vmf->prealloc_pte) 3449 return VM_FAULT_OOM; 3450 smp_wmb(); /* See comment in __pte_alloc() */ 3451 } 3452 3453 ret = vma->vm_ops->fault(vmf); 3454 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3455 VM_FAULT_DONE_COW))) 3456 return ret; 3457 3458 if (unlikely(PageHWPoison(vmf->page))) { 3459 if (ret & VM_FAULT_LOCKED) 3460 unlock_page(vmf->page); 3461 put_page(vmf->page); 3462 vmf->page = NULL; 3463 return VM_FAULT_HWPOISON; 3464 } 3465 3466 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3467 lock_page(vmf->page); 3468 else 3469 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3470 3471 return ret; 3472 } 3473 3474 /* 3475 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3476 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3477 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3478 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3479 */ 3480 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3481 { 3482 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3483 } 3484 3485 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3486 { 3487 struct vm_area_struct *vma = vmf->vma; 3488 3489 if (!pmd_none(*vmf->pmd)) 3490 goto map_pte; 3491 if (vmf->prealloc_pte) { 3492 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3493 if (unlikely(!pmd_none(*vmf->pmd))) { 3494 spin_unlock(vmf->ptl); 3495 goto map_pte; 3496 } 3497 3498 mm_inc_nr_ptes(vma->vm_mm); 3499 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3500 spin_unlock(vmf->ptl); 3501 vmf->prealloc_pte = NULL; 3502 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3503 return VM_FAULT_OOM; 3504 } 3505 map_pte: 3506 /* 3507 * If a huge pmd materialized under us just retry later. Use 3508 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3509 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3510 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3511 * running immediately after a huge pmd fault in a different thread of 3512 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3513 * All we have to ensure is that it is a regular pmd that we can walk 3514 * with pte_offset_map() and we can do that through an atomic read in 3515 * C, which is what pmd_trans_unstable() provides. 3516 */ 3517 if (pmd_devmap_trans_unstable(vmf->pmd)) 3518 return VM_FAULT_NOPAGE; 3519 3520 /* 3521 * At this point we know that our vmf->pmd points to a page of ptes 3522 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3523 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3524 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3525 * be valid and we will re-check to make sure the vmf->pte isn't 3526 * pte_none() under vmf->ptl protection when we return to 3527 * alloc_set_pte(). 3528 */ 3529 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3530 &vmf->ptl); 3531 return 0; 3532 } 3533 3534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3535 static void deposit_prealloc_pte(struct vm_fault *vmf) 3536 { 3537 struct vm_area_struct *vma = vmf->vma; 3538 3539 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3540 /* 3541 * We are going to consume the prealloc table, 3542 * count that as nr_ptes. 3543 */ 3544 mm_inc_nr_ptes(vma->vm_mm); 3545 vmf->prealloc_pte = NULL; 3546 } 3547 3548 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3549 { 3550 struct vm_area_struct *vma = vmf->vma; 3551 bool write = vmf->flags & FAULT_FLAG_WRITE; 3552 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3553 pmd_t entry; 3554 int i; 3555 vm_fault_t ret; 3556 3557 if (!transhuge_vma_suitable(vma, haddr)) 3558 return VM_FAULT_FALLBACK; 3559 3560 ret = VM_FAULT_FALLBACK; 3561 page = compound_head(page); 3562 3563 /* 3564 * Archs like ppc64 need additonal space to store information 3565 * related to pte entry. Use the preallocated table for that. 3566 */ 3567 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3568 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3569 if (!vmf->prealloc_pte) 3570 return VM_FAULT_OOM; 3571 smp_wmb(); /* See comment in __pte_alloc() */ 3572 } 3573 3574 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3575 if (unlikely(!pmd_none(*vmf->pmd))) 3576 goto out; 3577 3578 for (i = 0; i < HPAGE_PMD_NR; i++) 3579 flush_icache_page(vma, page + i); 3580 3581 entry = mk_huge_pmd(page, vma->vm_page_prot); 3582 if (write) 3583 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3584 3585 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3586 page_add_file_rmap(page, true); 3587 /* 3588 * deposit and withdraw with pmd lock held 3589 */ 3590 if (arch_needs_pgtable_deposit()) 3591 deposit_prealloc_pte(vmf); 3592 3593 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3594 3595 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3596 3597 /* fault is handled */ 3598 ret = 0; 3599 count_vm_event(THP_FILE_MAPPED); 3600 out: 3601 spin_unlock(vmf->ptl); 3602 return ret; 3603 } 3604 #else 3605 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3606 { 3607 BUILD_BUG(); 3608 return 0; 3609 } 3610 #endif 3611 3612 /** 3613 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3614 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3615 * 3616 * @vmf: fault environment 3617 * @page: page to map 3618 * 3619 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3620 * return. 3621 * 3622 * Target users are page handler itself and implementations of 3623 * vm_ops->map_pages. 3624 * 3625 * Return: %0 on success, %VM_FAULT_ code in case of error. 3626 */ 3627 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) 3628 { 3629 struct vm_area_struct *vma = vmf->vma; 3630 bool write = vmf->flags & FAULT_FLAG_WRITE; 3631 pte_t entry; 3632 vm_fault_t ret; 3633 3634 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { 3635 ret = do_set_pmd(vmf, page); 3636 if (ret != VM_FAULT_FALLBACK) 3637 return ret; 3638 } 3639 3640 if (!vmf->pte) { 3641 ret = pte_alloc_one_map(vmf); 3642 if (ret) 3643 return ret; 3644 } 3645 3646 /* Re-check under ptl */ 3647 if (unlikely(!pte_none(*vmf->pte))) { 3648 update_mmu_tlb(vma, vmf->address, vmf->pte); 3649 return VM_FAULT_NOPAGE; 3650 } 3651 3652 flush_icache_page(vma, page); 3653 entry = mk_pte(page, vma->vm_page_prot); 3654 entry = pte_sw_mkyoung(entry); 3655 if (write) 3656 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3657 /* copy-on-write page */ 3658 if (write && !(vma->vm_flags & VM_SHARED)) { 3659 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3660 page_add_new_anon_rmap(page, vma, vmf->address, false); 3661 lru_cache_add_active_or_unevictable(page, vma); 3662 } else { 3663 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3664 page_add_file_rmap(page, false); 3665 } 3666 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3667 3668 /* no need to invalidate: a not-present page won't be cached */ 3669 update_mmu_cache(vma, vmf->address, vmf->pte); 3670 3671 return 0; 3672 } 3673 3674 3675 /** 3676 * finish_fault - finish page fault once we have prepared the page to fault 3677 * 3678 * @vmf: structure describing the fault 3679 * 3680 * This function handles all that is needed to finish a page fault once the 3681 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3682 * given page, adds reverse page mapping, handles memcg charges and LRU 3683 * addition. 3684 * 3685 * The function expects the page to be locked and on success it consumes a 3686 * reference of a page being mapped (for the PTE which maps it). 3687 * 3688 * Return: %0 on success, %VM_FAULT_ code in case of error. 3689 */ 3690 vm_fault_t finish_fault(struct vm_fault *vmf) 3691 { 3692 struct page *page; 3693 vm_fault_t ret = 0; 3694 3695 /* Did we COW the page? */ 3696 if ((vmf->flags & FAULT_FLAG_WRITE) && 3697 !(vmf->vma->vm_flags & VM_SHARED)) 3698 page = vmf->cow_page; 3699 else 3700 page = vmf->page; 3701 3702 /* 3703 * check even for read faults because we might have lost our CoWed 3704 * page 3705 */ 3706 if (!(vmf->vma->vm_flags & VM_SHARED)) 3707 ret = check_stable_address_space(vmf->vma->vm_mm); 3708 if (!ret) 3709 ret = alloc_set_pte(vmf, page); 3710 if (vmf->pte) 3711 pte_unmap_unlock(vmf->pte, vmf->ptl); 3712 return ret; 3713 } 3714 3715 static unsigned long fault_around_bytes __read_mostly = 3716 rounddown_pow_of_two(65536); 3717 3718 #ifdef CONFIG_DEBUG_FS 3719 static int fault_around_bytes_get(void *data, u64 *val) 3720 { 3721 *val = fault_around_bytes; 3722 return 0; 3723 } 3724 3725 /* 3726 * fault_around_bytes must be rounded down to the nearest page order as it's 3727 * what do_fault_around() expects to see. 3728 */ 3729 static int fault_around_bytes_set(void *data, u64 val) 3730 { 3731 if (val / PAGE_SIZE > PTRS_PER_PTE) 3732 return -EINVAL; 3733 if (val > PAGE_SIZE) 3734 fault_around_bytes = rounddown_pow_of_two(val); 3735 else 3736 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3737 return 0; 3738 } 3739 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3740 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3741 3742 static int __init fault_around_debugfs(void) 3743 { 3744 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3745 &fault_around_bytes_fops); 3746 return 0; 3747 } 3748 late_initcall(fault_around_debugfs); 3749 #endif 3750 3751 /* 3752 * do_fault_around() tries to map few pages around the fault address. The hope 3753 * is that the pages will be needed soon and this will lower the number of 3754 * faults to handle. 3755 * 3756 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3757 * not ready to be mapped: not up-to-date, locked, etc. 3758 * 3759 * This function is called with the page table lock taken. In the split ptlock 3760 * case the page table lock only protects only those entries which belong to 3761 * the page table corresponding to the fault address. 3762 * 3763 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3764 * only once. 3765 * 3766 * fault_around_bytes defines how many bytes we'll try to map. 3767 * do_fault_around() expects it to be set to a power of two less than or equal 3768 * to PTRS_PER_PTE. 3769 * 3770 * The virtual address of the area that we map is naturally aligned to 3771 * fault_around_bytes rounded down to the machine page size 3772 * (and therefore to page order). This way it's easier to guarantee 3773 * that we don't cross page table boundaries. 3774 */ 3775 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3776 { 3777 unsigned long address = vmf->address, nr_pages, mask; 3778 pgoff_t start_pgoff = vmf->pgoff; 3779 pgoff_t end_pgoff; 3780 int off; 3781 vm_fault_t ret = 0; 3782 3783 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3784 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3785 3786 vmf->address = max(address & mask, vmf->vma->vm_start); 3787 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3788 start_pgoff -= off; 3789 3790 /* 3791 * end_pgoff is either the end of the page table, the end of 3792 * the vma or nr_pages from start_pgoff, depending what is nearest. 3793 */ 3794 end_pgoff = start_pgoff - 3795 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3796 PTRS_PER_PTE - 1; 3797 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3798 start_pgoff + nr_pages - 1); 3799 3800 if (pmd_none(*vmf->pmd)) { 3801 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3802 if (!vmf->prealloc_pte) 3803 goto out; 3804 smp_wmb(); /* See comment in __pte_alloc() */ 3805 } 3806 3807 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3808 3809 /* Huge page is mapped? Page fault is solved */ 3810 if (pmd_trans_huge(*vmf->pmd)) { 3811 ret = VM_FAULT_NOPAGE; 3812 goto out; 3813 } 3814 3815 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3816 if (!vmf->pte) 3817 goto out; 3818 3819 /* check if the page fault is solved */ 3820 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3821 if (!pte_none(*vmf->pte)) 3822 ret = VM_FAULT_NOPAGE; 3823 pte_unmap_unlock(vmf->pte, vmf->ptl); 3824 out: 3825 vmf->address = address; 3826 vmf->pte = NULL; 3827 return ret; 3828 } 3829 3830 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3831 { 3832 struct vm_area_struct *vma = vmf->vma; 3833 vm_fault_t ret = 0; 3834 3835 /* 3836 * Let's call ->map_pages() first and use ->fault() as fallback 3837 * if page by the offset is not ready to be mapped (cold cache or 3838 * something). 3839 */ 3840 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3841 ret = do_fault_around(vmf); 3842 if (ret) 3843 return ret; 3844 } 3845 3846 ret = __do_fault(vmf); 3847 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3848 return ret; 3849 3850 ret |= finish_fault(vmf); 3851 unlock_page(vmf->page); 3852 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3853 put_page(vmf->page); 3854 return ret; 3855 } 3856 3857 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3858 { 3859 struct vm_area_struct *vma = vmf->vma; 3860 vm_fault_t ret; 3861 3862 if (unlikely(anon_vma_prepare(vma))) 3863 return VM_FAULT_OOM; 3864 3865 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3866 if (!vmf->cow_page) 3867 return VM_FAULT_OOM; 3868 3869 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { 3870 put_page(vmf->cow_page); 3871 return VM_FAULT_OOM; 3872 } 3873 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 3874 3875 ret = __do_fault(vmf); 3876 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3877 goto uncharge_out; 3878 if (ret & VM_FAULT_DONE_COW) 3879 return ret; 3880 3881 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3882 __SetPageUptodate(vmf->cow_page); 3883 3884 ret |= finish_fault(vmf); 3885 unlock_page(vmf->page); 3886 put_page(vmf->page); 3887 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3888 goto uncharge_out; 3889 return ret; 3890 uncharge_out: 3891 put_page(vmf->cow_page); 3892 return ret; 3893 } 3894 3895 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3896 { 3897 struct vm_area_struct *vma = vmf->vma; 3898 vm_fault_t ret, tmp; 3899 3900 ret = __do_fault(vmf); 3901 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3902 return ret; 3903 3904 /* 3905 * Check if the backing address space wants to know that the page is 3906 * about to become writable 3907 */ 3908 if (vma->vm_ops->page_mkwrite) { 3909 unlock_page(vmf->page); 3910 tmp = do_page_mkwrite(vmf); 3911 if (unlikely(!tmp || 3912 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3913 put_page(vmf->page); 3914 return tmp; 3915 } 3916 } 3917 3918 ret |= finish_fault(vmf); 3919 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3920 VM_FAULT_RETRY))) { 3921 unlock_page(vmf->page); 3922 put_page(vmf->page); 3923 return ret; 3924 } 3925 3926 ret |= fault_dirty_shared_page(vmf); 3927 return ret; 3928 } 3929 3930 /* 3931 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3932 * but allow concurrent faults). 3933 * The mmap_lock may have been released depending on flags and our 3934 * return value. See filemap_fault() and __lock_page_or_retry(). 3935 * If mmap_lock is released, vma may become invalid (for example 3936 * by other thread calling munmap()). 3937 */ 3938 static vm_fault_t do_fault(struct vm_fault *vmf) 3939 { 3940 struct vm_area_struct *vma = vmf->vma; 3941 struct mm_struct *vm_mm = vma->vm_mm; 3942 vm_fault_t ret; 3943 3944 /* 3945 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3946 */ 3947 if (!vma->vm_ops->fault) { 3948 /* 3949 * If we find a migration pmd entry or a none pmd entry, which 3950 * should never happen, return SIGBUS 3951 */ 3952 if (unlikely(!pmd_present(*vmf->pmd))) 3953 ret = VM_FAULT_SIGBUS; 3954 else { 3955 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3956 vmf->pmd, 3957 vmf->address, 3958 &vmf->ptl); 3959 /* 3960 * Make sure this is not a temporary clearing of pte 3961 * by holding ptl and checking again. A R/M/W update 3962 * of pte involves: take ptl, clearing the pte so that 3963 * we don't have concurrent modification by hardware 3964 * followed by an update. 3965 */ 3966 if (unlikely(pte_none(*vmf->pte))) 3967 ret = VM_FAULT_SIGBUS; 3968 else 3969 ret = VM_FAULT_NOPAGE; 3970 3971 pte_unmap_unlock(vmf->pte, vmf->ptl); 3972 } 3973 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3974 ret = do_read_fault(vmf); 3975 else if (!(vma->vm_flags & VM_SHARED)) 3976 ret = do_cow_fault(vmf); 3977 else 3978 ret = do_shared_fault(vmf); 3979 3980 /* preallocated pagetable is unused: free it */ 3981 if (vmf->prealloc_pte) { 3982 pte_free(vm_mm, vmf->prealloc_pte); 3983 vmf->prealloc_pte = NULL; 3984 } 3985 return ret; 3986 } 3987 3988 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3989 unsigned long addr, int page_nid, 3990 int *flags) 3991 { 3992 get_page(page); 3993 3994 count_vm_numa_event(NUMA_HINT_FAULTS); 3995 if (page_nid == numa_node_id()) { 3996 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3997 *flags |= TNF_FAULT_LOCAL; 3998 } 3999 4000 return mpol_misplaced(page, vma, addr); 4001 } 4002 4003 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4004 { 4005 struct vm_area_struct *vma = vmf->vma; 4006 struct page *page = NULL; 4007 int page_nid = NUMA_NO_NODE; 4008 int last_cpupid; 4009 int target_nid; 4010 bool migrated = false; 4011 pte_t pte, old_pte; 4012 bool was_writable = pte_savedwrite(vmf->orig_pte); 4013 int flags = 0; 4014 4015 /* 4016 * The "pte" at this point cannot be used safely without 4017 * validation through pte_unmap_same(). It's of NUMA type but 4018 * the pfn may be screwed if the read is non atomic. 4019 */ 4020 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4021 spin_lock(vmf->ptl); 4022 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4023 pte_unmap_unlock(vmf->pte, vmf->ptl); 4024 goto out; 4025 } 4026 4027 /* 4028 * Make it present again, Depending on how arch implementes non 4029 * accessible ptes, some can allow access by kernel mode. 4030 */ 4031 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4032 pte = pte_modify(old_pte, vma->vm_page_prot); 4033 pte = pte_mkyoung(pte); 4034 if (was_writable) 4035 pte = pte_mkwrite(pte); 4036 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4037 update_mmu_cache(vma, vmf->address, vmf->pte); 4038 4039 page = vm_normal_page(vma, vmf->address, pte); 4040 if (!page) { 4041 pte_unmap_unlock(vmf->pte, vmf->ptl); 4042 return 0; 4043 } 4044 4045 /* TODO: handle PTE-mapped THP */ 4046 if (PageCompound(page)) { 4047 pte_unmap_unlock(vmf->pte, vmf->ptl); 4048 return 0; 4049 } 4050 4051 /* 4052 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4053 * much anyway since they can be in shared cache state. This misses 4054 * the case where a mapping is writable but the process never writes 4055 * to it but pte_write gets cleared during protection updates and 4056 * pte_dirty has unpredictable behaviour between PTE scan updates, 4057 * background writeback, dirty balancing and application behaviour. 4058 */ 4059 if (!pte_write(pte)) 4060 flags |= TNF_NO_GROUP; 4061 4062 /* 4063 * Flag if the page is shared between multiple address spaces. This 4064 * is later used when determining whether to group tasks together 4065 */ 4066 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4067 flags |= TNF_SHARED; 4068 4069 last_cpupid = page_cpupid_last(page); 4070 page_nid = page_to_nid(page); 4071 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4072 &flags); 4073 pte_unmap_unlock(vmf->pte, vmf->ptl); 4074 if (target_nid == NUMA_NO_NODE) { 4075 put_page(page); 4076 goto out; 4077 } 4078 4079 /* Migrate to the requested node */ 4080 migrated = migrate_misplaced_page(page, vma, target_nid); 4081 if (migrated) { 4082 page_nid = target_nid; 4083 flags |= TNF_MIGRATED; 4084 } else 4085 flags |= TNF_MIGRATE_FAIL; 4086 4087 out: 4088 if (page_nid != NUMA_NO_NODE) 4089 task_numa_fault(last_cpupid, page_nid, 1, flags); 4090 return 0; 4091 } 4092 4093 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4094 { 4095 if (vma_is_anonymous(vmf->vma)) 4096 return do_huge_pmd_anonymous_page(vmf); 4097 if (vmf->vma->vm_ops->huge_fault) 4098 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4099 return VM_FAULT_FALLBACK; 4100 } 4101 4102 /* `inline' is required to avoid gcc 4.1.2 build error */ 4103 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 4104 { 4105 if (vma_is_anonymous(vmf->vma)) { 4106 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) 4107 return handle_userfault(vmf, VM_UFFD_WP); 4108 return do_huge_pmd_wp_page(vmf, orig_pmd); 4109 } 4110 if (vmf->vma->vm_ops->huge_fault) { 4111 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4112 4113 if (!(ret & VM_FAULT_FALLBACK)) 4114 return ret; 4115 } 4116 4117 /* COW or write-notify handled on pte level: split pmd. */ 4118 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4119 4120 return VM_FAULT_FALLBACK; 4121 } 4122 4123 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4124 { 4125 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4126 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4127 /* No support for anonymous transparent PUD pages yet */ 4128 if (vma_is_anonymous(vmf->vma)) 4129 goto split; 4130 if (vmf->vma->vm_ops->huge_fault) { 4131 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4132 4133 if (!(ret & VM_FAULT_FALLBACK)) 4134 return ret; 4135 } 4136 split: 4137 /* COW or write-notify not handled on PUD level: split pud.*/ 4138 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4139 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4140 return VM_FAULT_FALLBACK; 4141 } 4142 4143 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4144 { 4145 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4146 /* No support for anonymous transparent PUD pages yet */ 4147 if (vma_is_anonymous(vmf->vma)) 4148 return VM_FAULT_FALLBACK; 4149 if (vmf->vma->vm_ops->huge_fault) 4150 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4151 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4152 return VM_FAULT_FALLBACK; 4153 } 4154 4155 /* 4156 * These routines also need to handle stuff like marking pages dirty 4157 * and/or accessed for architectures that don't do it in hardware (most 4158 * RISC architectures). The early dirtying is also good on the i386. 4159 * 4160 * There is also a hook called "update_mmu_cache()" that architectures 4161 * with external mmu caches can use to update those (ie the Sparc or 4162 * PowerPC hashed page tables that act as extended TLBs). 4163 * 4164 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4165 * concurrent faults). 4166 * 4167 * The mmap_lock may have been released depending on flags and our return value. 4168 * See filemap_fault() and __lock_page_or_retry(). 4169 */ 4170 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4171 { 4172 pte_t entry; 4173 4174 if (unlikely(pmd_none(*vmf->pmd))) { 4175 /* 4176 * Leave __pte_alloc() until later: because vm_ops->fault may 4177 * want to allocate huge page, and if we expose page table 4178 * for an instant, it will be difficult to retract from 4179 * concurrent faults and from rmap lookups. 4180 */ 4181 vmf->pte = NULL; 4182 } else { 4183 /* See comment in pte_alloc_one_map() */ 4184 if (pmd_devmap_trans_unstable(vmf->pmd)) 4185 return 0; 4186 /* 4187 * A regular pmd is established and it can't morph into a huge 4188 * pmd from under us anymore at this point because we hold the 4189 * mmap_lock read mode and khugepaged takes it in write mode. 4190 * So now it's safe to run pte_offset_map(). 4191 */ 4192 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4193 vmf->orig_pte = *vmf->pte; 4194 4195 /* 4196 * some architectures can have larger ptes than wordsize, 4197 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4198 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4199 * accesses. The code below just needs a consistent view 4200 * for the ifs and we later double check anyway with the 4201 * ptl lock held. So here a barrier will do. 4202 */ 4203 barrier(); 4204 if (pte_none(vmf->orig_pte)) { 4205 pte_unmap(vmf->pte); 4206 vmf->pte = NULL; 4207 } 4208 } 4209 4210 if (!vmf->pte) { 4211 if (vma_is_anonymous(vmf->vma)) 4212 return do_anonymous_page(vmf); 4213 else 4214 return do_fault(vmf); 4215 } 4216 4217 if (!pte_present(vmf->orig_pte)) 4218 return do_swap_page(vmf); 4219 4220 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4221 return do_numa_page(vmf); 4222 4223 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4224 spin_lock(vmf->ptl); 4225 entry = vmf->orig_pte; 4226 if (unlikely(!pte_same(*vmf->pte, entry))) { 4227 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4228 goto unlock; 4229 } 4230 if (vmf->flags & FAULT_FLAG_WRITE) { 4231 if (!pte_write(entry)) 4232 return do_wp_page(vmf); 4233 entry = pte_mkdirty(entry); 4234 } 4235 entry = pte_mkyoung(entry); 4236 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4237 vmf->flags & FAULT_FLAG_WRITE)) { 4238 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4239 } else { 4240 /* 4241 * This is needed only for protection faults but the arch code 4242 * is not yet telling us if this is a protection fault or not. 4243 * This still avoids useless tlb flushes for .text page faults 4244 * with threads. 4245 */ 4246 if (vmf->flags & FAULT_FLAG_WRITE) 4247 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4248 } 4249 unlock: 4250 pte_unmap_unlock(vmf->pte, vmf->ptl); 4251 return 0; 4252 } 4253 4254 /* 4255 * By the time we get here, we already hold the mm semaphore 4256 * 4257 * The mmap_lock may have been released depending on flags and our 4258 * return value. See filemap_fault() and __lock_page_or_retry(). 4259 */ 4260 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4261 unsigned long address, unsigned int flags) 4262 { 4263 struct vm_fault vmf = { 4264 .vma = vma, 4265 .address = address & PAGE_MASK, 4266 .flags = flags, 4267 .pgoff = linear_page_index(vma, address), 4268 .gfp_mask = __get_fault_gfp_mask(vma), 4269 }; 4270 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4271 struct mm_struct *mm = vma->vm_mm; 4272 pgd_t *pgd; 4273 p4d_t *p4d; 4274 vm_fault_t ret; 4275 4276 pgd = pgd_offset(mm, address); 4277 p4d = p4d_alloc(mm, pgd, address); 4278 if (!p4d) 4279 return VM_FAULT_OOM; 4280 4281 vmf.pud = pud_alloc(mm, p4d, address); 4282 if (!vmf.pud) 4283 return VM_FAULT_OOM; 4284 retry_pud: 4285 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4286 ret = create_huge_pud(&vmf); 4287 if (!(ret & VM_FAULT_FALLBACK)) 4288 return ret; 4289 } else { 4290 pud_t orig_pud = *vmf.pud; 4291 4292 barrier(); 4293 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4294 4295 /* NUMA case for anonymous PUDs would go here */ 4296 4297 if (dirty && !pud_write(orig_pud)) { 4298 ret = wp_huge_pud(&vmf, orig_pud); 4299 if (!(ret & VM_FAULT_FALLBACK)) 4300 return ret; 4301 } else { 4302 huge_pud_set_accessed(&vmf, orig_pud); 4303 return 0; 4304 } 4305 } 4306 } 4307 4308 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4309 if (!vmf.pmd) 4310 return VM_FAULT_OOM; 4311 4312 /* Huge pud page fault raced with pmd_alloc? */ 4313 if (pud_trans_unstable(vmf.pud)) 4314 goto retry_pud; 4315 4316 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4317 ret = create_huge_pmd(&vmf); 4318 if (!(ret & VM_FAULT_FALLBACK)) 4319 return ret; 4320 } else { 4321 pmd_t orig_pmd = *vmf.pmd; 4322 4323 barrier(); 4324 if (unlikely(is_swap_pmd(orig_pmd))) { 4325 VM_BUG_ON(thp_migration_supported() && 4326 !is_pmd_migration_entry(orig_pmd)); 4327 if (is_pmd_migration_entry(orig_pmd)) 4328 pmd_migration_entry_wait(mm, vmf.pmd); 4329 return 0; 4330 } 4331 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4332 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4333 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4334 4335 if (dirty && !pmd_write(orig_pmd)) { 4336 ret = wp_huge_pmd(&vmf, orig_pmd); 4337 if (!(ret & VM_FAULT_FALLBACK)) 4338 return ret; 4339 } else { 4340 huge_pmd_set_accessed(&vmf, orig_pmd); 4341 return 0; 4342 } 4343 } 4344 } 4345 4346 return handle_pte_fault(&vmf); 4347 } 4348 4349 /* 4350 * By the time we get here, we already hold the mm semaphore 4351 * 4352 * The mmap_lock may have been released depending on flags and our 4353 * return value. See filemap_fault() and __lock_page_or_retry(). 4354 */ 4355 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4356 unsigned int flags) 4357 { 4358 vm_fault_t ret; 4359 4360 __set_current_state(TASK_RUNNING); 4361 4362 count_vm_event(PGFAULT); 4363 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4364 4365 /* do counter updates before entering really critical section. */ 4366 check_sync_rss_stat(current); 4367 4368 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4369 flags & FAULT_FLAG_INSTRUCTION, 4370 flags & FAULT_FLAG_REMOTE)) 4371 return VM_FAULT_SIGSEGV; 4372 4373 /* 4374 * Enable the memcg OOM handling for faults triggered in user 4375 * space. Kernel faults are handled more gracefully. 4376 */ 4377 if (flags & FAULT_FLAG_USER) 4378 mem_cgroup_enter_user_fault(); 4379 4380 if (unlikely(is_vm_hugetlb_page(vma))) 4381 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4382 else 4383 ret = __handle_mm_fault(vma, address, flags); 4384 4385 if (flags & FAULT_FLAG_USER) { 4386 mem_cgroup_exit_user_fault(); 4387 /* 4388 * The task may have entered a memcg OOM situation but 4389 * if the allocation error was handled gracefully (no 4390 * VM_FAULT_OOM), there is no need to kill anything. 4391 * Just clean up the OOM state peacefully. 4392 */ 4393 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4394 mem_cgroup_oom_synchronize(false); 4395 } 4396 4397 return ret; 4398 } 4399 EXPORT_SYMBOL_GPL(handle_mm_fault); 4400 4401 #ifndef __PAGETABLE_P4D_FOLDED 4402 /* 4403 * Allocate p4d page table. 4404 * We've already handled the fast-path in-line. 4405 */ 4406 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4407 { 4408 p4d_t *new = p4d_alloc_one(mm, address); 4409 if (!new) 4410 return -ENOMEM; 4411 4412 smp_wmb(); /* See comment in __pte_alloc */ 4413 4414 spin_lock(&mm->page_table_lock); 4415 if (pgd_present(*pgd)) /* Another has populated it */ 4416 p4d_free(mm, new); 4417 else 4418 pgd_populate(mm, pgd, new); 4419 spin_unlock(&mm->page_table_lock); 4420 return 0; 4421 } 4422 #endif /* __PAGETABLE_P4D_FOLDED */ 4423 4424 #ifndef __PAGETABLE_PUD_FOLDED 4425 /* 4426 * Allocate page upper directory. 4427 * We've already handled the fast-path in-line. 4428 */ 4429 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4430 { 4431 pud_t *new = pud_alloc_one(mm, address); 4432 if (!new) 4433 return -ENOMEM; 4434 4435 smp_wmb(); /* See comment in __pte_alloc */ 4436 4437 spin_lock(&mm->page_table_lock); 4438 if (!p4d_present(*p4d)) { 4439 mm_inc_nr_puds(mm); 4440 p4d_populate(mm, p4d, new); 4441 } else /* Another has populated it */ 4442 pud_free(mm, new); 4443 spin_unlock(&mm->page_table_lock); 4444 return 0; 4445 } 4446 #endif /* __PAGETABLE_PUD_FOLDED */ 4447 4448 #ifndef __PAGETABLE_PMD_FOLDED 4449 /* 4450 * Allocate page middle directory. 4451 * We've already handled the fast-path in-line. 4452 */ 4453 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4454 { 4455 spinlock_t *ptl; 4456 pmd_t *new = pmd_alloc_one(mm, address); 4457 if (!new) 4458 return -ENOMEM; 4459 4460 smp_wmb(); /* See comment in __pte_alloc */ 4461 4462 ptl = pud_lock(mm, pud); 4463 if (!pud_present(*pud)) { 4464 mm_inc_nr_pmds(mm); 4465 pud_populate(mm, pud, new); 4466 } else /* Another has populated it */ 4467 pmd_free(mm, new); 4468 spin_unlock(ptl); 4469 return 0; 4470 } 4471 #endif /* __PAGETABLE_PMD_FOLDED */ 4472 4473 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4474 struct mmu_notifier_range *range, 4475 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4476 { 4477 pgd_t *pgd; 4478 p4d_t *p4d; 4479 pud_t *pud; 4480 pmd_t *pmd; 4481 pte_t *ptep; 4482 4483 pgd = pgd_offset(mm, address); 4484 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4485 goto out; 4486 4487 p4d = p4d_offset(pgd, address); 4488 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4489 goto out; 4490 4491 pud = pud_offset(p4d, address); 4492 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4493 goto out; 4494 4495 pmd = pmd_offset(pud, address); 4496 VM_BUG_ON(pmd_trans_huge(*pmd)); 4497 4498 if (pmd_huge(*pmd)) { 4499 if (!pmdpp) 4500 goto out; 4501 4502 if (range) { 4503 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4504 NULL, mm, address & PMD_MASK, 4505 (address & PMD_MASK) + PMD_SIZE); 4506 mmu_notifier_invalidate_range_start(range); 4507 } 4508 *ptlp = pmd_lock(mm, pmd); 4509 if (pmd_huge(*pmd)) { 4510 *pmdpp = pmd; 4511 return 0; 4512 } 4513 spin_unlock(*ptlp); 4514 if (range) 4515 mmu_notifier_invalidate_range_end(range); 4516 } 4517 4518 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4519 goto out; 4520 4521 if (range) { 4522 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4523 address & PAGE_MASK, 4524 (address & PAGE_MASK) + PAGE_SIZE); 4525 mmu_notifier_invalidate_range_start(range); 4526 } 4527 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4528 if (!pte_present(*ptep)) 4529 goto unlock; 4530 *ptepp = ptep; 4531 return 0; 4532 unlock: 4533 pte_unmap_unlock(ptep, *ptlp); 4534 if (range) 4535 mmu_notifier_invalidate_range_end(range); 4536 out: 4537 return -EINVAL; 4538 } 4539 4540 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4541 pte_t **ptepp, spinlock_t **ptlp) 4542 { 4543 int res; 4544 4545 /* (void) is needed to make gcc happy */ 4546 (void) __cond_lock(*ptlp, 4547 !(res = __follow_pte_pmd(mm, address, NULL, 4548 ptepp, NULL, ptlp))); 4549 return res; 4550 } 4551 4552 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4553 struct mmu_notifier_range *range, 4554 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4555 { 4556 int res; 4557 4558 /* (void) is needed to make gcc happy */ 4559 (void) __cond_lock(*ptlp, 4560 !(res = __follow_pte_pmd(mm, address, range, 4561 ptepp, pmdpp, ptlp))); 4562 return res; 4563 } 4564 EXPORT_SYMBOL(follow_pte_pmd); 4565 4566 /** 4567 * follow_pfn - look up PFN at a user virtual address 4568 * @vma: memory mapping 4569 * @address: user virtual address 4570 * @pfn: location to store found PFN 4571 * 4572 * Only IO mappings and raw PFN mappings are allowed. 4573 * 4574 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4575 */ 4576 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4577 unsigned long *pfn) 4578 { 4579 int ret = -EINVAL; 4580 spinlock_t *ptl; 4581 pte_t *ptep; 4582 4583 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4584 return ret; 4585 4586 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4587 if (ret) 4588 return ret; 4589 *pfn = pte_pfn(*ptep); 4590 pte_unmap_unlock(ptep, ptl); 4591 return 0; 4592 } 4593 EXPORT_SYMBOL(follow_pfn); 4594 4595 #ifdef CONFIG_HAVE_IOREMAP_PROT 4596 int follow_phys(struct vm_area_struct *vma, 4597 unsigned long address, unsigned int flags, 4598 unsigned long *prot, resource_size_t *phys) 4599 { 4600 int ret = -EINVAL; 4601 pte_t *ptep, pte; 4602 spinlock_t *ptl; 4603 4604 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4605 goto out; 4606 4607 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4608 goto out; 4609 pte = *ptep; 4610 4611 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4612 goto unlock; 4613 4614 *prot = pgprot_val(pte_pgprot(pte)); 4615 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4616 4617 ret = 0; 4618 unlock: 4619 pte_unmap_unlock(ptep, ptl); 4620 out: 4621 return ret; 4622 } 4623 4624 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4625 void *buf, int len, int write) 4626 { 4627 resource_size_t phys_addr; 4628 unsigned long prot = 0; 4629 void __iomem *maddr; 4630 int offset = addr & (PAGE_SIZE-1); 4631 4632 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4633 return -EINVAL; 4634 4635 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4636 if (!maddr) 4637 return -ENOMEM; 4638 4639 if (write) 4640 memcpy_toio(maddr + offset, buf, len); 4641 else 4642 memcpy_fromio(buf, maddr + offset, len); 4643 iounmap(maddr); 4644 4645 return len; 4646 } 4647 EXPORT_SYMBOL_GPL(generic_access_phys); 4648 #endif 4649 4650 /* 4651 * Access another process' address space as given in mm. If non-NULL, use the 4652 * given task for page fault accounting. 4653 */ 4654 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4655 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4656 { 4657 struct vm_area_struct *vma; 4658 void *old_buf = buf; 4659 int write = gup_flags & FOLL_WRITE; 4660 4661 if (mmap_read_lock_killable(mm)) 4662 return 0; 4663 4664 /* ignore errors, just check how much was successfully transferred */ 4665 while (len) { 4666 int bytes, ret, offset; 4667 void *maddr; 4668 struct page *page = NULL; 4669 4670 ret = get_user_pages_remote(tsk, mm, addr, 1, 4671 gup_flags, &page, &vma, NULL); 4672 if (ret <= 0) { 4673 #ifndef CONFIG_HAVE_IOREMAP_PROT 4674 break; 4675 #else 4676 /* 4677 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4678 * we can access using slightly different code. 4679 */ 4680 vma = find_vma(mm, addr); 4681 if (!vma || vma->vm_start > addr) 4682 break; 4683 if (vma->vm_ops && vma->vm_ops->access) 4684 ret = vma->vm_ops->access(vma, addr, buf, 4685 len, write); 4686 if (ret <= 0) 4687 break; 4688 bytes = ret; 4689 #endif 4690 } else { 4691 bytes = len; 4692 offset = addr & (PAGE_SIZE-1); 4693 if (bytes > PAGE_SIZE-offset) 4694 bytes = PAGE_SIZE-offset; 4695 4696 maddr = kmap(page); 4697 if (write) { 4698 copy_to_user_page(vma, page, addr, 4699 maddr + offset, buf, bytes); 4700 set_page_dirty_lock(page); 4701 } else { 4702 copy_from_user_page(vma, page, addr, 4703 buf, maddr + offset, bytes); 4704 } 4705 kunmap(page); 4706 put_page(page); 4707 } 4708 len -= bytes; 4709 buf += bytes; 4710 addr += bytes; 4711 } 4712 mmap_read_unlock(mm); 4713 4714 return buf - old_buf; 4715 } 4716 4717 /** 4718 * access_remote_vm - access another process' address space 4719 * @mm: the mm_struct of the target address space 4720 * @addr: start address to access 4721 * @buf: source or destination buffer 4722 * @len: number of bytes to transfer 4723 * @gup_flags: flags modifying lookup behaviour 4724 * 4725 * The caller must hold a reference on @mm. 4726 * 4727 * Return: number of bytes copied from source to destination. 4728 */ 4729 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4730 void *buf, int len, unsigned int gup_flags) 4731 { 4732 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4733 } 4734 4735 /* 4736 * Access another process' address space. 4737 * Source/target buffer must be kernel space, 4738 * Do not walk the page table directly, use get_user_pages 4739 */ 4740 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4741 void *buf, int len, unsigned int gup_flags) 4742 { 4743 struct mm_struct *mm; 4744 int ret; 4745 4746 mm = get_task_mm(tsk); 4747 if (!mm) 4748 return 0; 4749 4750 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4751 4752 mmput(mm); 4753 4754 return ret; 4755 } 4756 EXPORT_SYMBOL_GPL(access_process_vm); 4757 4758 /* 4759 * Print the name of a VMA. 4760 */ 4761 void print_vma_addr(char *prefix, unsigned long ip) 4762 { 4763 struct mm_struct *mm = current->mm; 4764 struct vm_area_struct *vma; 4765 4766 /* 4767 * we might be running from an atomic context so we cannot sleep 4768 */ 4769 if (!mmap_read_trylock(mm)) 4770 return; 4771 4772 vma = find_vma(mm, ip); 4773 if (vma && vma->vm_file) { 4774 struct file *f = vma->vm_file; 4775 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4776 if (buf) { 4777 char *p; 4778 4779 p = file_path(f, buf, PAGE_SIZE); 4780 if (IS_ERR(p)) 4781 p = "?"; 4782 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4783 vma->vm_start, 4784 vma->vm_end - vma->vm_start); 4785 free_page((unsigned long)buf); 4786 } 4787 } 4788 mmap_read_unlock(mm); 4789 } 4790 4791 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4792 void __might_fault(const char *file, int line) 4793 { 4794 /* 4795 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4796 * holding the mmap_lock, this is safe because kernel memory doesn't 4797 * get paged out, therefore we'll never actually fault, and the 4798 * below annotations will generate false positives. 4799 */ 4800 if (uaccess_kernel()) 4801 return; 4802 if (pagefault_disabled()) 4803 return; 4804 __might_sleep(file, line, 0); 4805 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4806 if (current->mm) 4807 might_lock_read(¤t->mm->mmap_lock); 4808 #endif 4809 } 4810 EXPORT_SYMBOL(__might_fault); 4811 #endif 4812 4813 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4814 /* 4815 * Process all subpages of the specified huge page with the specified 4816 * operation. The target subpage will be processed last to keep its 4817 * cache lines hot. 4818 */ 4819 static inline void process_huge_page( 4820 unsigned long addr_hint, unsigned int pages_per_huge_page, 4821 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4822 void *arg) 4823 { 4824 int i, n, base, l; 4825 unsigned long addr = addr_hint & 4826 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4827 4828 /* Process target subpage last to keep its cache lines hot */ 4829 might_sleep(); 4830 n = (addr_hint - addr) / PAGE_SIZE; 4831 if (2 * n <= pages_per_huge_page) { 4832 /* If target subpage in first half of huge page */ 4833 base = 0; 4834 l = n; 4835 /* Process subpages at the end of huge page */ 4836 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4837 cond_resched(); 4838 process_subpage(addr + i * PAGE_SIZE, i, arg); 4839 } 4840 } else { 4841 /* If target subpage in second half of huge page */ 4842 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4843 l = pages_per_huge_page - n; 4844 /* Process subpages at the begin of huge page */ 4845 for (i = 0; i < base; i++) { 4846 cond_resched(); 4847 process_subpage(addr + i * PAGE_SIZE, i, arg); 4848 } 4849 } 4850 /* 4851 * Process remaining subpages in left-right-left-right pattern 4852 * towards the target subpage 4853 */ 4854 for (i = 0; i < l; i++) { 4855 int left_idx = base + i; 4856 int right_idx = base + 2 * l - 1 - i; 4857 4858 cond_resched(); 4859 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4860 cond_resched(); 4861 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4862 } 4863 } 4864 4865 static void clear_gigantic_page(struct page *page, 4866 unsigned long addr, 4867 unsigned int pages_per_huge_page) 4868 { 4869 int i; 4870 struct page *p = page; 4871 4872 might_sleep(); 4873 for (i = 0; i < pages_per_huge_page; 4874 i++, p = mem_map_next(p, page, i)) { 4875 cond_resched(); 4876 clear_user_highpage(p, addr + i * PAGE_SIZE); 4877 } 4878 } 4879 4880 static void clear_subpage(unsigned long addr, int idx, void *arg) 4881 { 4882 struct page *page = arg; 4883 4884 clear_user_highpage(page + idx, addr); 4885 } 4886 4887 void clear_huge_page(struct page *page, 4888 unsigned long addr_hint, unsigned int pages_per_huge_page) 4889 { 4890 unsigned long addr = addr_hint & 4891 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4892 4893 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4894 clear_gigantic_page(page, addr, pages_per_huge_page); 4895 return; 4896 } 4897 4898 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4899 } 4900 4901 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4902 unsigned long addr, 4903 struct vm_area_struct *vma, 4904 unsigned int pages_per_huge_page) 4905 { 4906 int i; 4907 struct page *dst_base = dst; 4908 struct page *src_base = src; 4909 4910 for (i = 0; i < pages_per_huge_page; ) { 4911 cond_resched(); 4912 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4913 4914 i++; 4915 dst = mem_map_next(dst, dst_base, i); 4916 src = mem_map_next(src, src_base, i); 4917 } 4918 } 4919 4920 struct copy_subpage_arg { 4921 struct page *dst; 4922 struct page *src; 4923 struct vm_area_struct *vma; 4924 }; 4925 4926 static void copy_subpage(unsigned long addr, int idx, void *arg) 4927 { 4928 struct copy_subpage_arg *copy_arg = arg; 4929 4930 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4931 addr, copy_arg->vma); 4932 } 4933 4934 void copy_user_huge_page(struct page *dst, struct page *src, 4935 unsigned long addr_hint, struct vm_area_struct *vma, 4936 unsigned int pages_per_huge_page) 4937 { 4938 unsigned long addr = addr_hint & 4939 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4940 struct copy_subpage_arg arg = { 4941 .dst = dst, 4942 .src = src, 4943 .vma = vma, 4944 }; 4945 4946 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4947 copy_user_gigantic_page(dst, src, addr, vma, 4948 pages_per_huge_page); 4949 return; 4950 } 4951 4952 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4953 } 4954 4955 long copy_huge_page_from_user(struct page *dst_page, 4956 const void __user *usr_src, 4957 unsigned int pages_per_huge_page, 4958 bool allow_pagefault) 4959 { 4960 void *src = (void *)usr_src; 4961 void *page_kaddr; 4962 unsigned long i, rc = 0; 4963 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4964 4965 for (i = 0; i < pages_per_huge_page; i++) { 4966 if (allow_pagefault) 4967 page_kaddr = kmap(dst_page + i); 4968 else 4969 page_kaddr = kmap_atomic(dst_page + i); 4970 rc = copy_from_user(page_kaddr, 4971 (const void __user *)(src + i * PAGE_SIZE), 4972 PAGE_SIZE); 4973 if (allow_pagefault) 4974 kunmap(dst_page + i); 4975 else 4976 kunmap_atomic(page_kaddr); 4977 4978 ret_val -= (PAGE_SIZE - rc); 4979 if (rc) 4980 break; 4981 4982 cond_resched(); 4983 } 4984 return ret_val; 4985 } 4986 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4987 4988 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4989 4990 static struct kmem_cache *page_ptl_cachep; 4991 4992 void __init ptlock_cache_init(void) 4993 { 4994 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4995 SLAB_PANIC, NULL); 4996 } 4997 4998 bool ptlock_alloc(struct page *page) 4999 { 5000 spinlock_t *ptl; 5001 5002 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5003 if (!ptl) 5004 return false; 5005 page->ptl = ptl; 5006 return true; 5007 } 5008 5009 void ptlock_free(struct page *page) 5010 { 5011 kmem_cache_free(page_ptl_cachep, page->ptl); 5012 } 5013 #endif 5014