1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/shmem_fs.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 #include <linux/pgalloc.h> 80 #include <linux/uaccess.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/tlb.h> 87 #include <asm/tlbflush.h> 88 89 #include "pgalloc-track.h" 90 #include "internal.h" 91 #include "swap.h" 92 93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 95 #endif 96 97 static vm_fault_t do_fault(struct vm_fault *vmf); 98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 99 static bool vmf_pte_changed(struct vm_fault *vmf); 100 101 /* 102 * Return true if the original pte was a uffd-wp pte marker (so the pte was 103 * wr-protected). 104 */ 105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 106 { 107 if (!userfaultfd_wp(vmf->vma)) 108 return false; 109 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 110 return false; 111 112 return pte_marker_uffd_wp(vmf->orig_pte); 113 } 114 115 /* 116 * Randomize the address space (stacks, mmaps, brk, etc.). 117 * 118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 119 * as ancient (libc5 based) binaries can segfault. ) 120 */ 121 int randomize_va_space __read_mostly = 122 #ifdef CONFIG_COMPAT_BRK 123 1; 124 #else 125 2; 126 #endif 127 128 static const struct ctl_table mmu_sysctl_table[] = { 129 { 130 .procname = "randomize_va_space", 131 .data = &randomize_va_space, 132 .maxlen = sizeof(int), 133 .mode = 0644, 134 .proc_handler = proc_dointvec, 135 }, 136 }; 137 138 static int __init init_mm_sysctl(void) 139 { 140 register_sysctl_init("kernel", mmu_sysctl_table); 141 return 0; 142 } 143 144 subsys_initcall(init_mm_sysctl); 145 146 #ifndef arch_wants_old_prefaulted_pte 147 static inline bool arch_wants_old_prefaulted_pte(void) 148 { 149 /* 150 * Transitioning a PTE from 'old' to 'young' can be expensive on 151 * some architectures, even if it's performed in hardware. By 152 * default, "false" means prefaulted entries will be 'young'. 153 */ 154 return false; 155 } 156 #endif 157 158 static int __init disable_randmaps(char *s) 159 { 160 randomize_va_space = 0; 161 return 1; 162 } 163 __setup("norandmaps", disable_randmaps); 164 165 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 167 168 unsigned long highest_memmap_pfn __read_mostly; 169 170 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 173 static int __init init_zero_pfn(void) 174 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177 } 178 early_initcall(init_zero_pfn); 179 180 void mm_trace_rss_stat(struct mm_struct *mm, int member) 181 { 182 trace_rss_stat(mm, member); 183 } 184 185 /* 186 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all the memory regions. 188 */ 189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 191 { 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196 } 197 198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long addr, unsigned long end, 200 unsigned long floor, unsigned long ceiling) 201 { 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd)) 211 continue; 212 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != end); 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230 } 231 232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235 { 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud)) 245 continue; 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != end); 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264 } 265 266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d)) 279 continue; 280 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297 } 298 299 /** 300 * free_pgd_range - Unmap and free page tables in the range 301 * @tlb: the mmu_gather containing pending TLB flush info 302 * @addr: virtual address start 303 * @end: virtual address end 304 * @floor: lowest address boundary 305 * @ceiling: highest address boundary 306 * 307 * This function tears down all user-level page tables in the 308 * specified virtual address range [@addr..@end). It is part of 309 * the memory unmap flow. 310 */ 311 void free_pgd_range(struct mmu_gather *tlb, 312 unsigned long addr, unsigned long end, 313 unsigned long floor, unsigned long ceiling) 314 { 315 pgd_t *pgd; 316 unsigned long next; 317 318 /* 319 * The next few lines have given us lots of grief... 320 * 321 * Why are we testing PMD* at this top level? Because often 322 * there will be no work to do at all, and we'd prefer not to 323 * go all the way down to the bottom just to discover that. 324 * 325 * Why all these "- 1"s? Because 0 represents both the bottom 326 * of the address space and the top of it (using -1 for the 327 * top wouldn't help much: the masks would do the wrong thing). 328 * The rule is that addr 0 and floor 0 refer to the bottom of 329 * the address space, but end 0 and ceiling 0 refer to the top 330 * Comparisons need to use "end - 1" and "ceiling - 1" (though 331 * that end 0 case should be mythical). 332 * 333 * Wherever addr is brought up or ceiling brought down, we must 334 * be careful to reject "the opposite 0" before it confuses the 335 * subsequent tests. But what about where end is brought down 336 * by PMD_SIZE below? no, end can't go down to 0 there. 337 * 338 * Whereas we round start (addr) and ceiling down, by different 339 * masks at different levels, in order to test whether a table 340 * now has no other vmas using it, so can be freed, we don't 341 * bother to round floor or end up - the tests don't need that. 342 */ 343 344 addr &= PMD_MASK; 345 if (addr < floor) { 346 addr += PMD_SIZE; 347 if (!addr) 348 return; 349 } 350 if (ceiling) { 351 ceiling &= PMD_MASK; 352 if (!ceiling) 353 return; 354 } 355 if (end - 1 > ceiling - 1) 356 end -= PMD_SIZE; 357 if (addr > end - 1) 358 return; 359 /* 360 * We add page table cache pages with PAGE_SIZE, 361 * (see pte_free_tlb()), flush the tlb if we need 362 */ 363 tlb_change_page_size(tlb, PAGE_SIZE); 364 pgd = pgd_offset(tlb->mm, addr); 365 do { 366 next = pgd_addr_end(addr, end); 367 if (pgd_none_or_clear_bad(pgd)) 368 continue; 369 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 370 } while (pgd++, addr = next, addr != end); 371 } 372 373 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 374 struct vm_area_struct *vma, unsigned long floor, 375 unsigned long ceiling, bool mm_wr_locked) 376 { 377 struct unlink_vma_file_batch vb; 378 379 tlb_free_vmas(tlb); 380 381 do { 382 unsigned long addr = vma->vm_start; 383 struct vm_area_struct *next; 384 385 /* 386 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 387 * be 0. This will underflow and is okay. 388 */ 389 next = mas_find(mas, ceiling - 1); 390 if (unlikely(xa_is_zero(next))) 391 next = NULL; 392 393 /* 394 * Hide vma from rmap and truncate_pagecache before freeing 395 * pgtables 396 */ 397 if (mm_wr_locked) 398 vma_start_write(vma); 399 unlink_anon_vmas(vma); 400 401 unlink_file_vma_batch_init(&vb); 402 unlink_file_vma_batch_add(&vb, vma); 403 404 /* 405 * Optimization: gather nearby vmas into one call down 406 */ 407 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) { 408 vma = next; 409 next = mas_find(mas, ceiling - 1); 410 if (unlikely(xa_is_zero(next))) 411 next = NULL; 412 if (mm_wr_locked) 413 vma_start_write(vma); 414 unlink_anon_vmas(vma); 415 unlink_file_vma_batch_add(&vb, vma); 416 } 417 unlink_file_vma_batch_final(&vb); 418 419 free_pgd_range(tlb, addr, vma->vm_end, 420 floor, next ? next->vm_start : ceiling); 421 vma = next; 422 } while (vma); 423 } 424 425 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 426 { 427 spinlock_t *ptl = pmd_lock(mm, pmd); 428 429 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 430 mm_inc_nr_ptes(mm); 431 /* 432 * Ensure all pte setup (eg. pte page lock and page clearing) are 433 * visible before the pte is made visible to other CPUs by being 434 * put into page tables. 435 * 436 * The other side of the story is the pointer chasing in the page 437 * table walking code (when walking the page table without locking; 438 * ie. most of the time). Fortunately, these data accesses consist 439 * of a chain of data-dependent loads, meaning most CPUs (alpha 440 * being the notable exception) will already guarantee loads are 441 * seen in-order. See the alpha page table accessors for the 442 * smp_rmb() barriers in page table walking code. 443 */ 444 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 445 pmd_populate(mm, pmd, *pte); 446 *pte = NULL; 447 } 448 spin_unlock(ptl); 449 } 450 451 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 452 { 453 pgtable_t new = pte_alloc_one(mm); 454 if (!new) 455 return -ENOMEM; 456 457 pmd_install(mm, pmd, &new); 458 if (new) 459 pte_free(mm, new); 460 return 0; 461 } 462 463 int __pte_alloc_kernel(pmd_t *pmd) 464 { 465 pte_t *new = pte_alloc_one_kernel(&init_mm); 466 if (!new) 467 return -ENOMEM; 468 469 spin_lock(&init_mm.page_table_lock); 470 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 471 smp_wmb(); /* See comment in pmd_install() */ 472 pmd_populate_kernel(&init_mm, pmd, new); 473 new = NULL; 474 } 475 spin_unlock(&init_mm.page_table_lock); 476 if (new) 477 pte_free_kernel(&init_mm, new); 478 return 0; 479 } 480 481 static inline void init_rss_vec(int *rss) 482 { 483 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 484 } 485 486 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 487 { 488 int i; 489 490 for (i = 0; i < NR_MM_COUNTERS; i++) 491 if (rss[i]) 492 add_mm_counter(mm, i, rss[i]); 493 } 494 495 static bool is_bad_page_map_ratelimited(void) 496 { 497 static unsigned long resume; 498 static unsigned long nr_shown; 499 static unsigned long nr_unshown; 500 501 /* 502 * Allow a burst of 60 reports, then keep quiet for that minute; 503 * or allow a steady drip of one report per second. 504 */ 505 if (nr_shown == 60) { 506 if (time_before(jiffies, resume)) { 507 nr_unshown++; 508 return true; 509 } 510 if (nr_unshown) { 511 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 512 nr_unshown); 513 nr_unshown = 0; 514 } 515 nr_shown = 0; 516 } 517 if (nr_shown++ == 0) 518 resume = jiffies + 60 * HZ; 519 return false; 520 } 521 522 static void __print_bad_page_map_pgtable(struct mm_struct *mm, unsigned long addr) 523 { 524 unsigned long long pgdv, p4dv, pudv, pmdv; 525 p4d_t p4d, *p4dp; 526 pud_t pud, *pudp; 527 pmd_t pmd, *pmdp; 528 pgd_t *pgdp; 529 530 /* 531 * Although this looks like a fully lockless pgtable walk, it is not: 532 * see locking requirements for print_bad_page_map(). 533 */ 534 pgdp = pgd_offset(mm, addr); 535 pgdv = pgd_val(*pgdp); 536 537 if (!pgd_present(*pgdp) || pgd_leaf(*pgdp)) { 538 pr_alert("pgd:%08llx\n", pgdv); 539 return; 540 } 541 542 p4dp = p4d_offset(pgdp, addr); 543 p4d = p4dp_get(p4dp); 544 p4dv = p4d_val(p4d); 545 546 if (!p4d_present(p4d) || p4d_leaf(p4d)) { 547 pr_alert("pgd:%08llx p4d:%08llx\n", pgdv, p4dv); 548 return; 549 } 550 551 pudp = pud_offset(p4dp, addr); 552 pud = pudp_get(pudp); 553 pudv = pud_val(pud); 554 555 if (!pud_present(pud) || pud_leaf(pud)) { 556 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx\n", pgdv, p4dv, pudv); 557 return; 558 } 559 560 pmdp = pmd_offset(pudp, addr); 561 pmd = pmdp_get(pmdp); 562 pmdv = pmd_val(pmd); 563 564 /* 565 * Dumping the PTE would be nice, but it's tricky with CONFIG_HIGHPTE, 566 * because the table should already be mapped by the caller and 567 * doing another map would be bad. print_bad_page_map() should 568 * already take care of printing the PTE. 569 */ 570 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx pmd:%08llx\n", pgdv, 571 p4dv, pudv, pmdv); 572 } 573 574 /* 575 * This function is called to print an error when a bad page table entry (e.g., 576 * corrupted page table entry) is found. For example, we might have a 577 * PFN-mapped pte in a region that doesn't allow it. 578 * 579 * The calling function must still handle the error. 580 * 581 * This function must be called during a proper page table walk, as it will 582 * re-walk the page table to dump information: the caller MUST prevent page 583 * table teardown (by holding mmap, vma or rmap lock) and MUST hold the leaf 584 * page table lock. 585 */ 586 static void print_bad_page_map(struct vm_area_struct *vma, 587 unsigned long addr, unsigned long long entry, struct page *page, 588 enum pgtable_level level) 589 { 590 struct address_space *mapping; 591 pgoff_t index; 592 593 if (is_bad_page_map_ratelimited()) 594 return; 595 596 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 597 index = linear_page_index(vma, addr); 598 599 pr_alert("BUG: Bad page map in process %s %s:%08llx", current->comm, 600 pgtable_level_to_str(level), entry); 601 __print_bad_page_map_pgtable(vma->vm_mm, addr); 602 if (page) 603 dump_page(page, "bad page map"); 604 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 605 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 606 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n", 607 vma->vm_file, 608 vma->vm_ops ? vma->vm_ops->fault : NULL, 609 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 610 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL, 611 mapping ? mapping->a_ops->read_folio : NULL); 612 dump_stack(); 613 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 614 } 615 #define print_bad_pte(vma, addr, pte, page) \ 616 print_bad_page_map(vma, addr, pte_val(pte), page, PGTABLE_LEVEL_PTE) 617 618 /** 619 * __vm_normal_page() - Get the "struct page" associated with a page table entry. 620 * @vma: The VMA mapping the page table entry. 621 * @addr: The address where the page table entry is mapped. 622 * @pfn: The PFN stored in the page table entry. 623 * @special: Whether the page table entry is marked "special". 624 * @level: The page table level for error reporting purposes only. 625 * @entry: The page table entry value for error reporting purposes only. 626 * 627 * "Special" mappings do not wish to be associated with a "struct page" (either 628 * it doesn't exist, or it exists but they don't want to touch it). In this 629 * case, NULL is returned here. "Normal" mappings do have a struct page and 630 * are ordinarily refcounted. 631 * 632 * Page mappings of the shared zero folios are always considered "special", as 633 * they are not ordinarily refcounted: neither the refcount nor the mapcount 634 * of these folios is adjusted when mapping them into user page tables. 635 * Selected page table walkers (such as GUP) can still identify mappings of the 636 * shared zero folios and work with the underlying "struct page". 637 * 638 * There are 2 broad cases. Firstly, an architecture may define a "special" 639 * page table entry bit, such as pte_special(), in which case this function is 640 * trivial. Secondly, an architecture may not have a spare page table 641 * entry bit, which requires a more complicated scheme, described below. 642 * 643 * With CONFIG_FIND_NORMAL_PAGE, we might have the "special" bit set on 644 * page table entries that actually map "normal" pages: however, that page 645 * cannot be looked up through the PFN stored in the page table entry, but 646 * instead will be looked up through vm_ops->find_normal_page(). So far, this 647 * only applies to PTEs. 648 * 649 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 650 * special mapping (even if there are underlying and valid "struct pages"). 651 * COWed pages of a VM_PFNMAP are always normal. 652 * 653 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 654 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 655 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 656 * mapping will always honor the rule 657 * 658 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 659 * 660 * And for normal mappings this is false. 661 * 662 * This restricts such mappings to be a linear translation from virtual address 663 * to pfn. To get around this restriction, we allow arbitrary mappings so long 664 * as the vma is not a COW mapping; in that case, we know that all ptes are 665 * special (because none can have been COWed). 666 * 667 * 668 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 669 * 670 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 671 * page" backing, however the difference is that _all_ pages with a struct 672 * page (that is, those where pfn_valid is true, except the shared zero 673 * folios) are refcounted and considered normal pages by the VM. 674 * 675 * The disadvantage is that pages are refcounted (which can be slower and 676 * simply not an option for some PFNMAP users). The advantage is that we 677 * don't have to follow the strict linearity rule of PFNMAP mappings in 678 * order to support COWable mappings. 679 * 680 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 681 * NULL if this is a "special" mapping. 682 */ 683 static inline struct page *__vm_normal_page(struct vm_area_struct *vma, 684 unsigned long addr, unsigned long pfn, bool special, 685 unsigned long long entry, enum pgtable_level level) 686 { 687 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 688 if (unlikely(special)) { 689 #ifdef CONFIG_FIND_NORMAL_PAGE 690 if (vma->vm_ops && vma->vm_ops->find_normal_page) 691 return vma->vm_ops->find_normal_page(vma, addr); 692 #endif /* CONFIG_FIND_NORMAL_PAGE */ 693 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 694 return NULL; 695 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)) 696 return NULL; 697 698 print_bad_page_map(vma, addr, entry, NULL, level); 699 return NULL; 700 } 701 /* 702 * With CONFIG_ARCH_HAS_PTE_SPECIAL, any special page table 703 * mappings (incl. shared zero folios) are marked accordingly. 704 */ 705 } else { 706 if (unlikely(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) { 707 if (vma->vm_flags & VM_MIXEDMAP) { 708 /* If it has a "struct page", it's "normal". */ 709 if (!pfn_valid(pfn)) 710 return NULL; 711 } else { 712 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; 713 714 /* Only CoW'ed anon folios are "normal". */ 715 if (pfn == vma->vm_pgoff + off) 716 return NULL; 717 if (!is_cow_mapping(vma->vm_flags)) 718 return NULL; 719 } 720 } 721 722 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)) 723 return NULL; 724 } 725 726 if (unlikely(pfn > highest_memmap_pfn)) { 727 /* Corrupted page table entry. */ 728 print_bad_page_map(vma, addr, entry, NULL, level); 729 return NULL; 730 } 731 /* 732 * NOTE! We still have PageReserved() pages in the page tables. 733 * For example, VDSO mappings can cause them to exist. 734 */ 735 VM_WARN_ON_ONCE(is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)); 736 return pfn_to_page(pfn); 737 } 738 739 /** 740 * vm_normal_page() - Get the "struct page" associated with a PTE 741 * @vma: The VMA mapping the @pte. 742 * @addr: The address where the @pte is mapped. 743 * @pte: The PTE. 744 * 745 * Get the "struct page" associated with a PTE. See __vm_normal_page() 746 * for details on "normal" and "special" mappings. 747 * 748 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 749 * NULL if this is a "special" mapping. 750 */ 751 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 752 pte_t pte) 753 { 754 return __vm_normal_page(vma, addr, pte_pfn(pte), pte_special(pte), 755 pte_val(pte), PGTABLE_LEVEL_PTE); 756 } 757 758 /** 759 * vm_normal_folio() - Get the "struct folio" associated with a PTE 760 * @vma: The VMA mapping the @pte. 761 * @addr: The address where the @pte is mapped. 762 * @pte: The PTE. 763 * 764 * Get the "struct folio" associated with a PTE. See __vm_normal_page() 765 * for details on "normal" and "special" mappings. 766 * 767 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns 768 * NULL if this is a "special" mapping. 769 */ 770 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 771 pte_t pte) 772 { 773 struct page *page = vm_normal_page(vma, addr, pte); 774 775 if (page) 776 return page_folio(page); 777 return NULL; 778 } 779 780 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 781 /** 782 * vm_normal_page_pmd() - Get the "struct page" associated with a PMD 783 * @vma: The VMA mapping the @pmd. 784 * @addr: The address where the @pmd is mapped. 785 * @pmd: The PMD. 786 * 787 * Get the "struct page" associated with a PTE. See __vm_normal_page() 788 * for details on "normal" and "special" mappings. 789 * 790 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 791 * NULL if this is a "special" mapping. 792 */ 793 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 794 pmd_t pmd) 795 { 796 return __vm_normal_page(vma, addr, pmd_pfn(pmd), pmd_special(pmd), 797 pmd_val(pmd), PGTABLE_LEVEL_PMD); 798 } 799 800 /** 801 * vm_normal_folio_pmd() - Get the "struct folio" associated with a PMD 802 * @vma: The VMA mapping the @pmd. 803 * @addr: The address where the @pmd is mapped. 804 * @pmd: The PMD. 805 * 806 * Get the "struct folio" associated with a PTE. See __vm_normal_page() 807 * for details on "normal" and "special" mappings. 808 * 809 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns 810 * NULL if this is a "special" mapping. 811 */ 812 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 813 unsigned long addr, pmd_t pmd) 814 { 815 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 816 817 if (page) 818 return page_folio(page); 819 return NULL; 820 } 821 822 /** 823 * vm_normal_page_pud() - Get the "struct page" associated with a PUD 824 * @vma: The VMA mapping the @pud. 825 * @addr: The address where the @pud is mapped. 826 * @pud: The PUD. 827 * 828 * Get the "struct page" associated with a PUD. See __vm_normal_page() 829 * for details on "normal" and "special" mappings. 830 * 831 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 832 * NULL if this is a "special" mapping. 833 */ 834 struct page *vm_normal_page_pud(struct vm_area_struct *vma, 835 unsigned long addr, pud_t pud) 836 { 837 return __vm_normal_page(vma, addr, pud_pfn(pud), pud_special(pud), 838 pud_val(pud), PGTABLE_LEVEL_PUD); 839 } 840 #endif 841 842 /** 843 * restore_exclusive_pte - Restore a device-exclusive entry 844 * @vma: VMA covering @address 845 * @folio: the mapped folio 846 * @page: the mapped folio page 847 * @address: the virtual address 848 * @ptep: pte pointer into the locked page table mapping the folio page 849 * @orig_pte: pte value at @ptep 850 * 851 * Restore a device-exclusive non-swap entry to an ordinary present pte. 852 * 853 * The folio and the page table must be locked, and MMU notifiers must have 854 * been called to invalidate any (exclusive) device mappings. 855 * 856 * Locking the folio makes sure that anybody who just converted the pte to 857 * a device-exclusive entry can map it into the device to make forward 858 * progress without others converting it back until the folio was unlocked. 859 * 860 * If the folio lock ever becomes an issue, we can stop relying on the folio 861 * lock; it might make some scenarios with heavy thrashing less likely to 862 * make forward progress, but these scenarios might not be valid use cases. 863 * 864 * Note that the folio lock does not protect against all cases of concurrent 865 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers 866 * must use MMU notifiers to sync against any concurrent changes. 867 */ 868 static void restore_exclusive_pte(struct vm_area_struct *vma, 869 struct folio *folio, struct page *page, unsigned long address, 870 pte_t *ptep, pte_t orig_pte) 871 { 872 pte_t pte; 873 874 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 875 876 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 877 if (pte_swp_soft_dirty(orig_pte)) 878 pte = pte_mksoft_dirty(pte); 879 880 if (pte_swp_uffd_wp(orig_pte)) 881 pte = pte_mkuffd_wp(pte); 882 883 if ((vma->vm_flags & VM_WRITE) && 884 can_change_pte_writable(vma, address, pte)) { 885 if (folio_test_dirty(folio)) 886 pte = pte_mkdirty(pte); 887 pte = pte_mkwrite(pte, vma); 888 } 889 set_pte_at(vma->vm_mm, address, ptep, pte); 890 891 /* 892 * No need to invalidate - it was non-present before. However 893 * secondary CPUs may have mappings that need invalidating. 894 */ 895 update_mmu_cache(vma, address, ptep); 896 } 897 898 /* 899 * Tries to restore an exclusive pte if the page lock can be acquired without 900 * sleeping. 901 */ 902 static int try_restore_exclusive_pte(struct vm_area_struct *vma, 903 unsigned long addr, pte_t *ptep, pte_t orig_pte) 904 { 905 struct page *page = pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte)); 906 struct folio *folio = page_folio(page); 907 908 if (folio_trylock(folio)) { 909 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte); 910 folio_unlock(folio); 911 return 0; 912 } 913 914 return -EBUSY; 915 } 916 917 /* 918 * copy one vm_area from one task to the other. Assumes the page tables 919 * already present in the new task to be cleared in the whole range 920 * covered by this vma. 921 */ 922 923 static unsigned long 924 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 925 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 926 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 927 { 928 vm_flags_t vm_flags = dst_vma->vm_flags; 929 pte_t orig_pte = ptep_get(src_pte); 930 pte_t pte = orig_pte; 931 struct folio *folio; 932 struct page *page; 933 swp_entry_t entry = pte_to_swp_entry(orig_pte); 934 935 if (likely(!non_swap_entry(entry))) { 936 if (swap_duplicate(entry) < 0) 937 return -EIO; 938 939 /* make sure dst_mm is on swapoff's mmlist. */ 940 if (unlikely(list_empty(&dst_mm->mmlist))) { 941 spin_lock(&mmlist_lock); 942 if (list_empty(&dst_mm->mmlist)) 943 list_add(&dst_mm->mmlist, 944 &src_mm->mmlist); 945 spin_unlock(&mmlist_lock); 946 } 947 /* Mark the swap entry as shared. */ 948 if (pte_swp_exclusive(orig_pte)) { 949 pte = pte_swp_clear_exclusive(orig_pte); 950 set_pte_at(src_mm, addr, src_pte, pte); 951 } 952 rss[MM_SWAPENTS]++; 953 } else if (is_migration_entry(entry)) { 954 folio = pfn_swap_entry_folio(entry); 955 956 rss[mm_counter(folio)]++; 957 958 if (!is_readable_migration_entry(entry) && 959 is_cow_mapping(vm_flags)) { 960 /* 961 * COW mappings require pages in both parent and child 962 * to be set to read. A previously exclusive entry is 963 * now shared. 964 */ 965 entry = make_readable_migration_entry( 966 swp_offset(entry)); 967 pte = swp_entry_to_pte(entry); 968 if (pte_swp_soft_dirty(orig_pte)) 969 pte = pte_swp_mksoft_dirty(pte); 970 if (pte_swp_uffd_wp(orig_pte)) 971 pte = pte_swp_mkuffd_wp(pte); 972 set_pte_at(src_mm, addr, src_pte, pte); 973 } 974 } else if (is_device_private_entry(entry)) { 975 page = pfn_swap_entry_to_page(entry); 976 folio = page_folio(page); 977 978 /* 979 * Update rss count even for unaddressable pages, as 980 * they should treated just like normal pages in this 981 * respect. 982 * 983 * We will likely want to have some new rss counters 984 * for unaddressable pages, at some point. But for now 985 * keep things as they are. 986 */ 987 folio_get(folio); 988 rss[mm_counter(folio)]++; 989 /* Cannot fail as these pages cannot get pinned. */ 990 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma); 991 992 /* 993 * We do not preserve soft-dirty information, because so 994 * far, checkpoint/restore is the only feature that 995 * requires that. And checkpoint/restore does not work 996 * when a device driver is involved (you cannot easily 997 * save and restore device driver state). 998 */ 999 if (is_writable_device_private_entry(entry) && 1000 is_cow_mapping(vm_flags)) { 1001 entry = make_readable_device_private_entry( 1002 swp_offset(entry)); 1003 pte = swp_entry_to_pte(entry); 1004 if (pte_swp_uffd_wp(orig_pte)) 1005 pte = pte_swp_mkuffd_wp(pte); 1006 set_pte_at(src_mm, addr, src_pte, pte); 1007 } 1008 } else if (is_device_exclusive_entry(entry)) { 1009 /* 1010 * Make device exclusive entries present by restoring the 1011 * original entry then copying as for a present pte. Device 1012 * exclusive entries currently only support private writable 1013 * (ie. COW) mappings. 1014 */ 1015 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 1016 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte)) 1017 return -EBUSY; 1018 return -ENOENT; 1019 } else if (is_pte_marker_entry(entry)) { 1020 pte_marker marker = copy_pte_marker(entry, dst_vma); 1021 1022 if (marker) 1023 set_pte_at(dst_mm, addr, dst_pte, 1024 make_pte_marker(marker)); 1025 return 0; 1026 } 1027 if (!userfaultfd_wp(dst_vma)) 1028 pte = pte_swp_clear_uffd_wp(pte); 1029 set_pte_at(dst_mm, addr, dst_pte, pte); 1030 return 0; 1031 } 1032 1033 /* 1034 * Copy a present and normal page. 1035 * 1036 * NOTE! The usual case is that this isn't required; 1037 * instead, the caller can just increase the page refcount 1038 * and re-use the pte the traditional way. 1039 * 1040 * And if we need a pre-allocated page but don't yet have 1041 * one, return a negative error to let the preallocation 1042 * code know so that it can do so outside the page table 1043 * lock. 1044 */ 1045 static inline int 1046 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1047 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 1048 struct folio **prealloc, struct page *page) 1049 { 1050 struct folio *new_folio; 1051 pte_t pte; 1052 1053 new_folio = *prealloc; 1054 if (!new_folio) 1055 return -EAGAIN; 1056 1057 /* 1058 * We have a prealloc page, all good! Take it 1059 * over and copy the page & arm it. 1060 */ 1061 1062 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 1063 return -EHWPOISON; 1064 1065 *prealloc = NULL; 1066 __folio_mark_uptodate(new_folio); 1067 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 1068 folio_add_lru_vma(new_folio, dst_vma); 1069 rss[MM_ANONPAGES]++; 1070 1071 /* All done, just insert the new page copy in the child */ 1072 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot); 1073 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 1074 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 1075 /* Uffd-wp needs to be delivered to dest pte as well */ 1076 pte = pte_mkuffd_wp(pte); 1077 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 1078 return 0; 1079 } 1080 1081 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 1082 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 1083 pte_t pte, unsigned long addr, int nr) 1084 { 1085 struct mm_struct *src_mm = src_vma->vm_mm; 1086 1087 /* If it's a COW mapping, write protect it both processes. */ 1088 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 1089 wrprotect_ptes(src_mm, addr, src_pte, nr); 1090 pte = pte_wrprotect(pte); 1091 } 1092 1093 /* If it's a shared mapping, mark it clean in the child. */ 1094 if (src_vma->vm_flags & VM_SHARED) 1095 pte = pte_mkclean(pte); 1096 pte = pte_mkold(pte); 1097 1098 if (!userfaultfd_wp(dst_vma)) 1099 pte = pte_clear_uffd_wp(pte); 1100 1101 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 1102 } 1103 1104 /* 1105 * Copy one present PTE, trying to batch-process subsequent PTEs that map 1106 * consecutive pages of the same folio by copying them as well. 1107 * 1108 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 1109 * Otherwise, returns the number of copied PTEs (at least 1). 1110 */ 1111 static inline int 1112 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1113 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 1114 int max_nr, int *rss, struct folio **prealloc) 1115 { 1116 fpb_t flags = FPB_MERGE_WRITE; 1117 struct page *page; 1118 struct folio *folio; 1119 int err, nr; 1120 1121 page = vm_normal_page(src_vma, addr, pte); 1122 if (unlikely(!page)) 1123 goto copy_pte; 1124 1125 folio = page_folio(page); 1126 1127 /* 1128 * If we likely have to copy, just don't bother with batching. Make 1129 * sure that the common "small folio" case is as fast as possible 1130 * by keeping the batching logic separate. 1131 */ 1132 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1133 if (!(src_vma->vm_flags & VM_SHARED)) 1134 flags |= FPB_RESPECT_DIRTY; 1135 if (vma_soft_dirty_enabled(src_vma)) 1136 flags |= FPB_RESPECT_SOFT_DIRTY; 1137 1138 nr = folio_pte_batch_flags(folio, src_vma, src_pte, &pte, max_nr, flags); 1139 folio_ref_add(folio, nr); 1140 if (folio_test_anon(folio)) { 1141 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1142 nr, dst_vma, src_vma))) { 1143 folio_ref_sub(folio, nr); 1144 return -EAGAIN; 1145 } 1146 rss[MM_ANONPAGES] += nr; 1147 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1148 } else { 1149 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma); 1150 rss[mm_counter_file(folio)] += nr; 1151 } 1152 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1153 addr, nr); 1154 return nr; 1155 } 1156 1157 folio_get(folio); 1158 if (folio_test_anon(folio)) { 1159 /* 1160 * If this page may have been pinned by the parent process, 1161 * copy the page immediately for the child so that we'll always 1162 * guarantee the pinned page won't be randomly replaced in the 1163 * future. 1164 */ 1165 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) { 1166 /* Page may be pinned, we have to copy. */ 1167 folio_put(folio); 1168 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1169 addr, rss, prealloc, page); 1170 return err ? err : 1; 1171 } 1172 rss[MM_ANONPAGES]++; 1173 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1174 } else { 1175 folio_dup_file_rmap_pte(folio, page, dst_vma); 1176 rss[mm_counter_file(folio)]++; 1177 } 1178 1179 copy_pte: 1180 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1181 return 1; 1182 } 1183 1184 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1185 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1186 { 1187 struct folio *new_folio; 1188 1189 if (need_zero) 1190 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1191 else 1192 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1193 1194 if (!new_folio) 1195 return NULL; 1196 1197 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1198 folio_put(new_folio); 1199 return NULL; 1200 } 1201 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1202 1203 return new_folio; 1204 } 1205 1206 static int 1207 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1208 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1209 unsigned long end) 1210 { 1211 struct mm_struct *dst_mm = dst_vma->vm_mm; 1212 struct mm_struct *src_mm = src_vma->vm_mm; 1213 pte_t *orig_src_pte, *orig_dst_pte; 1214 pte_t *src_pte, *dst_pte; 1215 pmd_t dummy_pmdval; 1216 pte_t ptent; 1217 spinlock_t *src_ptl, *dst_ptl; 1218 int progress, max_nr, ret = 0; 1219 int rss[NR_MM_COUNTERS]; 1220 swp_entry_t entry = (swp_entry_t){0}; 1221 struct folio *prealloc = NULL; 1222 int nr; 1223 1224 again: 1225 progress = 0; 1226 init_rss_vec(rss); 1227 1228 /* 1229 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1230 * error handling here, assume that exclusive mmap_lock on dst and src 1231 * protects anon from unexpected THP transitions; with shmem and file 1232 * protected by mmap_lock-less collapse skipping areas with anon_vma 1233 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1234 * can remove such assumptions later, but this is good enough for now. 1235 */ 1236 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1237 if (!dst_pte) { 1238 ret = -ENOMEM; 1239 goto out; 1240 } 1241 1242 /* 1243 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1244 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1245 * the PTE page is stable, and there is no need to get pmdval and do 1246 * pmd_same() check. 1247 */ 1248 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1249 &src_ptl); 1250 if (!src_pte) { 1251 pte_unmap_unlock(dst_pte, dst_ptl); 1252 /* ret == 0 */ 1253 goto out; 1254 } 1255 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1256 orig_src_pte = src_pte; 1257 orig_dst_pte = dst_pte; 1258 arch_enter_lazy_mmu_mode(); 1259 1260 do { 1261 nr = 1; 1262 1263 /* 1264 * We are holding two locks at this point - either of them 1265 * could generate latencies in another task on another CPU. 1266 */ 1267 if (progress >= 32) { 1268 progress = 0; 1269 if (need_resched() || 1270 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1271 break; 1272 } 1273 ptent = ptep_get(src_pte); 1274 if (pte_none(ptent)) { 1275 progress++; 1276 continue; 1277 } 1278 if (unlikely(!pte_present(ptent))) { 1279 ret = copy_nonpresent_pte(dst_mm, src_mm, 1280 dst_pte, src_pte, 1281 dst_vma, src_vma, 1282 addr, rss); 1283 if (ret == -EIO) { 1284 entry = pte_to_swp_entry(ptep_get(src_pte)); 1285 break; 1286 } else if (ret == -EBUSY) { 1287 break; 1288 } else if (!ret) { 1289 progress += 8; 1290 continue; 1291 } 1292 ptent = ptep_get(src_pte); 1293 VM_WARN_ON_ONCE(!pte_present(ptent)); 1294 1295 /* 1296 * Device exclusive entry restored, continue by copying 1297 * the now present pte. 1298 */ 1299 WARN_ON_ONCE(ret != -ENOENT); 1300 } 1301 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1302 max_nr = (end - addr) / PAGE_SIZE; 1303 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1304 ptent, addr, max_nr, rss, &prealloc); 1305 /* 1306 * If we need a pre-allocated page for this pte, drop the 1307 * locks, allocate, and try again. 1308 * If copy failed due to hwpoison in source page, break out. 1309 */ 1310 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1311 break; 1312 if (unlikely(prealloc)) { 1313 /* 1314 * pre-alloc page cannot be reused by next time so as 1315 * to strictly follow mempolicy (e.g., alloc_page_vma() 1316 * will allocate page according to address). This 1317 * could only happen if one pinned pte changed. 1318 */ 1319 folio_put(prealloc); 1320 prealloc = NULL; 1321 } 1322 nr = ret; 1323 progress += 8 * nr; 1324 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1325 addr != end); 1326 1327 arch_leave_lazy_mmu_mode(); 1328 pte_unmap_unlock(orig_src_pte, src_ptl); 1329 add_mm_rss_vec(dst_mm, rss); 1330 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1331 cond_resched(); 1332 1333 if (ret == -EIO) { 1334 VM_WARN_ON_ONCE(!entry.val); 1335 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1336 ret = -ENOMEM; 1337 goto out; 1338 } 1339 entry.val = 0; 1340 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1341 goto out; 1342 } else if (ret == -EAGAIN) { 1343 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1344 if (!prealloc) 1345 return -ENOMEM; 1346 } else if (ret < 0) { 1347 VM_WARN_ON_ONCE(1); 1348 } 1349 1350 /* We've captured and resolved the error. Reset, try again. */ 1351 ret = 0; 1352 1353 if (addr != end) 1354 goto again; 1355 out: 1356 if (unlikely(prealloc)) 1357 folio_put(prealloc); 1358 return ret; 1359 } 1360 1361 static inline int 1362 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1363 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1364 unsigned long end) 1365 { 1366 struct mm_struct *dst_mm = dst_vma->vm_mm; 1367 struct mm_struct *src_mm = src_vma->vm_mm; 1368 pmd_t *src_pmd, *dst_pmd; 1369 unsigned long next; 1370 1371 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1372 if (!dst_pmd) 1373 return -ENOMEM; 1374 src_pmd = pmd_offset(src_pud, addr); 1375 do { 1376 next = pmd_addr_end(addr, end); 1377 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)) { 1378 int err; 1379 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1380 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1381 addr, dst_vma, src_vma); 1382 if (err == -ENOMEM) 1383 return -ENOMEM; 1384 if (!err) 1385 continue; 1386 /* fall through */ 1387 } 1388 if (pmd_none_or_clear_bad(src_pmd)) 1389 continue; 1390 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1391 addr, next)) 1392 return -ENOMEM; 1393 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1394 return 0; 1395 } 1396 1397 static inline int 1398 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1399 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1400 unsigned long end) 1401 { 1402 struct mm_struct *dst_mm = dst_vma->vm_mm; 1403 struct mm_struct *src_mm = src_vma->vm_mm; 1404 pud_t *src_pud, *dst_pud; 1405 unsigned long next; 1406 1407 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1408 if (!dst_pud) 1409 return -ENOMEM; 1410 src_pud = pud_offset(src_p4d, addr); 1411 do { 1412 next = pud_addr_end(addr, end); 1413 if (pud_trans_huge(*src_pud)) { 1414 int err; 1415 1416 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1417 err = copy_huge_pud(dst_mm, src_mm, 1418 dst_pud, src_pud, addr, src_vma); 1419 if (err == -ENOMEM) 1420 return -ENOMEM; 1421 if (!err) 1422 continue; 1423 /* fall through */ 1424 } 1425 if (pud_none_or_clear_bad(src_pud)) 1426 continue; 1427 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1428 addr, next)) 1429 return -ENOMEM; 1430 } while (dst_pud++, src_pud++, addr = next, addr != end); 1431 return 0; 1432 } 1433 1434 static inline int 1435 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1436 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1437 unsigned long end) 1438 { 1439 struct mm_struct *dst_mm = dst_vma->vm_mm; 1440 p4d_t *src_p4d, *dst_p4d; 1441 unsigned long next; 1442 1443 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1444 if (!dst_p4d) 1445 return -ENOMEM; 1446 src_p4d = p4d_offset(src_pgd, addr); 1447 do { 1448 next = p4d_addr_end(addr, end); 1449 if (p4d_none_or_clear_bad(src_p4d)) 1450 continue; 1451 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1452 addr, next)) 1453 return -ENOMEM; 1454 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1455 return 0; 1456 } 1457 1458 /* 1459 * Return true if the vma needs to copy the pgtable during this fork(). Return 1460 * false when we can speed up fork() by allowing lazy page faults later until 1461 * when the child accesses the memory range. 1462 */ 1463 static bool 1464 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1465 { 1466 if (src_vma->vm_flags & VM_COPY_ON_FORK) 1467 return true; 1468 /* 1469 * The presence of an anon_vma indicates an anonymous VMA has page 1470 * tables which naturally cannot be reconstituted on page fault. 1471 */ 1472 if (src_vma->anon_vma) 1473 return true; 1474 1475 /* 1476 * Don't copy ptes where a page fault will fill them correctly. Fork 1477 * becomes much lighter when there are big shared or private readonly 1478 * mappings. The tradeoff is that copy_page_range is more efficient 1479 * than faulting. 1480 */ 1481 return false; 1482 } 1483 1484 int 1485 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1486 { 1487 pgd_t *src_pgd, *dst_pgd; 1488 unsigned long addr = src_vma->vm_start; 1489 unsigned long end = src_vma->vm_end; 1490 struct mm_struct *dst_mm = dst_vma->vm_mm; 1491 struct mm_struct *src_mm = src_vma->vm_mm; 1492 struct mmu_notifier_range range; 1493 unsigned long next; 1494 bool is_cow; 1495 int ret; 1496 1497 if (!vma_needs_copy(dst_vma, src_vma)) 1498 return 0; 1499 1500 if (is_vm_hugetlb_page(src_vma)) 1501 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1502 1503 /* 1504 * We need to invalidate the secondary MMU mappings only when 1505 * there could be a permission downgrade on the ptes of the 1506 * parent mm. And a permission downgrade will only happen if 1507 * is_cow_mapping() returns true. 1508 */ 1509 is_cow = is_cow_mapping(src_vma->vm_flags); 1510 1511 if (is_cow) { 1512 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1513 0, src_mm, addr, end); 1514 mmu_notifier_invalidate_range_start(&range); 1515 /* 1516 * Disabling preemption is not needed for the write side, as 1517 * the read side doesn't spin, but goes to the mmap_lock. 1518 * 1519 * Use the raw variant of the seqcount_t write API to avoid 1520 * lockdep complaining about preemptibility. 1521 */ 1522 vma_assert_write_locked(src_vma); 1523 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1524 } 1525 1526 ret = 0; 1527 dst_pgd = pgd_offset(dst_mm, addr); 1528 src_pgd = pgd_offset(src_mm, addr); 1529 do { 1530 next = pgd_addr_end(addr, end); 1531 if (pgd_none_or_clear_bad(src_pgd)) 1532 continue; 1533 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1534 addr, next))) { 1535 ret = -ENOMEM; 1536 break; 1537 } 1538 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1539 1540 if (is_cow) { 1541 raw_write_seqcount_end(&src_mm->write_protect_seq); 1542 mmu_notifier_invalidate_range_end(&range); 1543 } 1544 return ret; 1545 } 1546 1547 /* Whether we should zap all COWed (private) pages too */ 1548 static inline bool should_zap_cows(struct zap_details *details) 1549 { 1550 /* By default, zap all pages */ 1551 if (!details || details->reclaim_pt) 1552 return true; 1553 1554 /* Or, we zap COWed pages only if the caller wants to */ 1555 return details->even_cows; 1556 } 1557 1558 /* Decides whether we should zap this folio with the folio pointer specified */ 1559 static inline bool should_zap_folio(struct zap_details *details, 1560 struct folio *folio) 1561 { 1562 /* If we can make a decision without *folio.. */ 1563 if (should_zap_cows(details)) 1564 return true; 1565 1566 /* Otherwise we should only zap non-anon folios */ 1567 return !folio_test_anon(folio); 1568 } 1569 1570 static inline bool zap_drop_markers(struct zap_details *details) 1571 { 1572 if (!details) 1573 return false; 1574 1575 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1576 } 1577 1578 /* 1579 * This function makes sure that we'll replace the none pte with an uffd-wp 1580 * swap special pte marker when necessary. Must be with the pgtable lock held. 1581 * 1582 * Returns true if uffd-wp ptes was installed, false otherwise. 1583 */ 1584 static inline bool 1585 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1586 unsigned long addr, pte_t *pte, int nr, 1587 struct zap_details *details, pte_t pteval) 1588 { 1589 bool was_installed = false; 1590 1591 #ifdef CONFIG_PTE_MARKER_UFFD_WP 1592 /* Zap on anonymous always means dropping everything */ 1593 if (vma_is_anonymous(vma)) 1594 return false; 1595 1596 if (zap_drop_markers(details)) 1597 return false; 1598 1599 for (;;) { 1600 /* the PFN in the PTE is irrelevant. */ 1601 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1602 was_installed = true; 1603 if (--nr == 0) 1604 break; 1605 pte++; 1606 addr += PAGE_SIZE; 1607 } 1608 #endif 1609 return was_installed; 1610 } 1611 1612 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1613 struct vm_area_struct *vma, struct folio *folio, 1614 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1615 unsigned long addr, struct zap_details *details, int *rss, 1616 bool *force_flush, bool *force_break, bool *any_skipped) 1617 { 1618 struct mm_struct *mm = tlb->mm; 1619 bool delay_rmap = false; 1620 1621 if (!folio_test_anon(folio)) { 1622 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1623 if (pte_dirty(ptent)) { 1624 folio_mark_dirty(folio); 1625 if (tlb_delay_rmap(tlb)) { 1626 delay_rmap = true; 1627 *force_flush = true; 1628 } 1629 } 1630 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1631 folio_mark_accessed(folio); 1632 rss[mm_counter(folio)] -= nr; 1633 } else { 1634 /* We don't need up-to-date accessed/dirty bits. */ 1635 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1636 rss[MM_ANONPAGES] -= nr; 1637 } 1638 /* Checking a single PTE in a batch is sufficient. */ 1639 arch_check_zapped_pte(vma, ptent); 1640 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1641 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1642 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1643 nr, details, ptent); 1644 1645 if (!delay_rmap) { 1646 folio_remove_rmap_ptes(folio, page, nr, vma); 1647 1648 if (unlikely(folio_mapcount(folio) < 0)) 1649 print_bad_pte(vma, addr, ptent, page); 1650 } 1651 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1652 *force_flush = true; 1653 *force_break = true; 1654 } 1655 } 1656 1657 /* 1658 * Zap or skip at least one present PTE, trying to batch-process subsequent 1659 * PTEs that map consecutive pages of the same folio. 1660 * 1661 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1662 */ 1663 static inline int zap_present_ptes(struct mmu_gather *tlb, 1664 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1665 unsigned int max_nr, unsigned long addr, 1666 struct zap_details *details, int *rss, bool *force_flush, 1667 bool *force_break, bool *any_skipped) 1668 { 1669 struct mm_struct *mm = tlb->mm; 1670 struct folio *folio; 1671 struct page *page; 1672 int nr; 1673 1674 page = vm_normal_page(vma, addr, ptent); 1675 if (!page) { 1676 /* We don't need up-to-date accessed/dirty bits. */ 1677 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1678 arch_check_zapped_pte(vma, ptent); 1679 tlb_remove_tlb_entry(tlb, pte, addr); 1680 if (userfaultfd_pte_wp(vma, ptent)) 1681 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1682 pte, 1, details, ptent); 1683 ksm_might_unmap_zero_page(mm, ptent); 1684 return 1; 1685 } 1686 1687 folio = page_folio(page); 1688 if (unlikely(!should_zap_folio(details, folio))) { 1689 *any_skipped = true; 1690 return 1; 1691 } 1692 1693 /* 1694 * Make sure that the common "small folio" case is as fast as possible 1695 * by keeping the batching logic separate. 1696 */ 1697 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1698 nr = folio_pte_batch(folio, pte, ptent, max_nr); 1699 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1700 addr, details, rss, force_flush, 1701 force_break, any_skipped); 1702 return nr; 1703 } 1704 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1705 details, rss, force_flush, force_break, any_skipped); 1706 return 1; 1707 } 1708 1709 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1710 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1711 unsigned int max_nr, unsigned long addr, 1712 struct zap_details *details, int *rss, bool *any_skipped) 1713 { 1714 swp_entry_t entry; 1715 int nr = 1; 1716 1717 *any_skipped = true; 1718 entry = pte_to_swp_entry(ptent); 1719 if (is_device_private_entry(entry) || 1720 is_device_exclusive_entry(entry)) { 1721 struct page *page = pfn_swap_entry_to_page(entry); 1722 struct folio *folio = page_folio(page); 1723 1724 if (unlikely(!should_zap_folio(details, folio))) 1725 return 1; 1726 /* 1727 * Both device private/exclusive mappings should only 1728 * work with anonymous page so far, so we don't need to 1729 * consider uffd-wp bit when zap. For more information, 1730 * see zap_install_uffd_wp_if_needed(). 1731 */ 1732 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1733 rss[mm_counter(folio)]--; 1734 folio_remove_rmap_pte(folio, page, vma); 1735 folio_put(folio); 1736 } else if (!non_swap_entry(entry)) { 1737 /* Genuine swap entries, hence a private anon pages */ 1738 if (!should_zap_cows(details)) 1739 return 1; 1740 1741 nr = swap_pte_batch(pte, max_nr, ptent); 1742 rss[MM_SWAPENTS] -= nr; 1743 free_swap_and_cache_nr(entry, nr); 1744 } else if (is_migration_entry(entry)) { 1745 struct folio *folio = pfn_swap_entry_folio(entry); 1746 1747 if (!should_zap_folio(details, folio)) 1748 return 1; 1749 rss[mm_counter(folio)]--; 1750 } else if (pte_marker_entry_uffd_wp(entry)) { 1751 /* 1752 * For anon: always drop the marker; for file: only 1753 * drop the marker if explicitly requested. 1754 */ 1755 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1756 return 1; 1757 } else if (is_guard_swp_entry(entry)) { 1758 /* 1759 * Ordinary zapping should not remove guard PTE 1760 * markers. Only do so if we should remove PTE markers 1761 * in general. 1762 */ 1763 if (!zap_drop_markers(details)) 1764 return 1; 1765 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { 1766 if (!should_zap_cows(details)) 1767 return 1; 1768 } else { 1769 /* We should have covered all the swap entry types */ 1770 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1771 WARN_ON_ONCE(1); 1772 } 1773 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1774 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1775 1776 return nr; 1777 } 1778 1779 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1780 struct vm_area_struct *vma, pte_t *pte, 1781 unsigned long addr, unsigned long end, 1782 struct zap_details *details, int *rss, 1783 bool *force_flush, bool *force_break, 1784 bool *any_skipped) 1785 { 1786 pte_t ptent = ptep_get(pte); 1787 int max_nr = (end - addr) / PAGE_SIZE; 1788 int nr = 0; 1789 1790 /* Skip all consecutive none ptes */ 1791 if (pte_none(ptent)) { 1792 for (nr = 1; nr < max_nr; nr++) { 1793 ptent = ptep_get(pte + nr); 1794 if (!pte_none(ptent)) 1795 break; 1796 } 1797 max_nr -= nr; 1798 if (!max_nr) 1799 return nr; 1800 pte += nr; 1801 addr += nr * PAGE_SIZE; 1802 } 1803 1804 if (pte_present(ptent)) 1805 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1806 details, rss, force_flush, force_break, 1807 any_skipped); 1808 else 1809 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1810 details, rss, any_skipped); 1811 1812 return nr; 1813 } 1814 1815 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1816 struct vm_area_struct *vma, pmd_t *pmd, 1817 unsigned long addr, unsigned long end, 1818 struct zap_details *details) 1819 { 1820 bool force_flush = false, force_break = false; 1821 struct mm_struct *mm = tlb->mm; 1822 int rss[NR_MM_COUNTERS]; 1823 spinlock_t *ptl; 1824 pte_t *start_pte; 1825 pte_t *pte; 1826 pmd_t pmdval; 1827 unsigned long start = addr; 1828 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1829 bool direct_reclaim = true; 1830 int nr; 1831 1832 retry: 1833 tlb_change_page_size(tlb, PAGE_SIZE); 1834 init_rss_vec(rss); 1835 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1836 if (!pte) 1837 return addr; 1838 1839 flush_tlb_batched_pending(mm); 1840 arch_enter_lazy_mmu_mode(); 1841 do { 1842 bool any_skipped = false; 1843 1844 if (need_resched()) { 1845 direct_reclaim = false; 1846 break; 1847 } 1848 1849 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1850 &force_flush, &force_break, &any_skipped); 1851 if (any_skipped) 1852 can_reclaim_pt = false; 1853 if (unlikely(force_break)) { 1854 addr += nr * PAGE_SIZE; 1855 direct_reclaim = false; 1856 break; 1857 } 1858 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1859 1860 /* 1861 * Fast path: try to hold the pmd lock and unmap the PTE page. 1862 * 1863 * If the pte lock was released midway (retry case), or if the attempt 1864 * to hold the pmd lock failed, then we need to recheck all pte entries 1865 * to ensure they are still none, thereby preventing the pte entries 1866 * from being repopulated by another thread. 1867 */ 1868 if (can_reclaim_pt && direct_reclaim && addr == end) 1869 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1870 1871 add_mm_rss_vec(mm, rss); 1872 arch_leave_lazy_mmu_mode(); 1873 1874 /* Do the actual TLB flush before dropping ptl */ 1875 if (force_flush) { 1876 tlb_flush_mmu_tlbonly(tlb); 1877 tlb_flush_rmaps(tlb, vma); 1878 } 1879 pte_unmap_unlock(start_pte, ptl); 1880 1881 /* 1882 * If we forced a TLB flush (either due to running out of 1883 * batch buffers or because we needed to flush dirty TLB 1884 * entries before releasing the ptl), free the batched 1885 * memory too. Come back again if we didn't do everything. 1886 */ 1887 if (force_flush) 1888 tlb_flush_mmu(tlb); 1889 1890 if (addr != end) { 1891 cond_resched(); 1892 force_flush = false; 1893 force_break = false; 1894 goto retry; 1895 } 1896 1897 if (can_reclaim_pt) { 1898 if (direct_reclaim) 1899 free_pte(mm, start, tlb, pmdval); 1900 else 1901 try_to_free_pte(mm, pmd, start, tlb); 1902 } 1903 1904 return addr; 1905 } 1906 1907 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1908 struct vm_area_struct *vma, pud_t *pud, 1909 unsigned long addr, unsigned long end, 1910 struct zap_details *details) 1911 { 1912 pmd_t *pmd; 1913 unsigned long next; 1914 1915 pmd = pmd_offset(pud, addr); 1916 do { 1917 next = pmd_addr_end(addr, end); 1918 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd)) { 1919 if (next - addr != HPAGE_PMD_SIZE) 1920 __split_huge_pmd(vma, pmd, addr, false); 1921 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1922 addr = next; 1923 continue; 1924 } 1925 /* fall through */ 1926 } else if (details && details->single_folio && 1927 folio_test_pmd_mappable(details->single_folio) && 1928 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1929 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1930 /* 1931 * Take and drop THP pmd lock so that we cannot return 1932 * prematurely, while zap_huge_pmd() has cleared *pmd, 1933 * but not yet decremented compound_mapcount(). 1934 */ 1935 spin_unlock(ptl); 1936 } 1937 if (pmd_none(*pmd)) { 1938 addr = next; 1939 continue; 1940 } 1941 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1942 if (addr != next) 1943 pmd--; 1944 } while (pmd++, cond_resched(), addr != end); 1945 1946 return addr; 1947 } 1948 1949 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1950 struct vm_area_struct *vma, p4d_t *p4d, 1951 unsigned long addr, unsigned long end, 1952 struct zap_details *details) 1953 { 1954 pud_t *pud; 1955 unsigned long next; 1956 1957 pud = pud_offset(p4d, addr); 1958 do { 1959 next = pud_addr_end(addr, end); 1960 if (pud_trans_huge(*pud)) { 1961 if (next - addr != HPAGE_PUD_SIZE) { 1962 mmap_assert_locked(tlb->mm); 1963 split_huge_pud(vma, pud, addr); 1964 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1965 goto next; 1966 /* fall through */ 1967 } 1968 if (pud_none_or_clear_bad(pud)) 1969 continue; 1970 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1971 next: 1972 cond_resched(); 1973 } while (pud++, addr = next, addr != end); 1974 1975 return addr; 1976 } 1977 1978 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1979 struct vm_area_struct *vma, pgd_t *pgd, 1980 unsigned long addr, unsigned long end, 1981 struct zap_details *details) 1982 { 1983 p4d_t *p4d; 1984 unsigned long next; 1985 1986 p4d = p4d_offset(pgd, addr); 1987 do { 1988 next = p4d_addr_end(addr, end); 1989 if (p4d_none_or_clear_bad(p4d)) 1990 continue; 1991 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1992 } while (p4d++, addr = next, addr != end); 1993 1994 return addr; 1995 } 1996 1997 void unmap_page_range(struct mmu_gather *tlb, 1998 struct vm_area_struct *vma, 1999 unsigned long addr, unsigned long end, 2000 struct zap_details *details) 2001 { 2002 pgd_t *pgd; 2003 unsigned long next; 2004 2005 BUG_ON(addr >= end); 2006 tlb_start_vma(tlb, vma); 2007 pgd = pgd_offset(vma->vm_mm, addr); 2008 do { 2009 next = pgd_addr_end(addr, end); 2010 if (pgd_none_or_clear_bad(pgd)) 2011 continue; 2012 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 2013 } while (pgd++, addr = next, addr != end); 2014 tlb_end_vma(tlb, vma); 2015 } 2016 2017 2018 static void unmap_single_vma(struct mmu_gather *tlb, 2019 struct vm_area_struct *vma, unsigned long start_addr, 2020 unsigned long end_addr, struct zap_details *details) 2021 { 2022 unsigned long start = max(vma->vm_start, start_addr); 2023 unsigned long end; 2024 2025 if (start >= vma->vm_end) 2026 return; 2027 end = min(vma->vm_end, end_addr); 2028 if (end <= vma->vm_start) 2029 return; 2030 2031 if (vma->vm_file) 2032 uprobe_munmap(vma, start, end); 2033 2034 if (start != end) { 2035 if (unlikely(is_vm_hugetlb_page(vma))) { 2036 /* 2037 * It is undesirable to test vma->vm_file as it 2038 * should be non-null for valid hugetlb area. 2039 * However, vm_file will be NULL in the error 2040 * cleanup path of mmap_region. When 2041 * hugetlbfs ->mmap method fails, 2042 * mmap_region() nullifies vma->vm_file 2043 * before calling this function to clean up. 2044 * Since no pte has actually been setup, it is 2045 * safe to do nothing in this case. 2046 */ 2047 if (vma->vm_file) { 2048 zap_flags_t zap_flags = details ? 2049 details->zap_flags : 0; 2050 __unmap_hugepage_range(tlb, vma, start, end, 2051 NULL, zap_flags); 2052 } 2053 } else 2054 unmap_page_range(tlb, vma, start, end, details); 2055 } 2056 } 2057 2058 /** 2059 * unmap_vmas - unmap a range of memory covered by a list of vma's 2060 * @tlb: address of the caller's struct mmu_gather 2061 * @mas: the maple state 2062 * @vma: the starting vma 2063 * @start_addr: virtual address at which to start unmapping 2064 * @end_addr: virtual address at which to end unmapping 2065 * @tree_end: The maximum index to check 2066 * 2067 * Unmap all pages in the vma list. 2068 * 2069 * Only addresses between `start' and `end' will be unmapped. 2070 * 2071 * The VMA list must be sorted in ascending virtual address order. 2072 * 2073 * unmap_vmas() assumes that the caller will flush the whole unmapped address 2074 * range after unmap_vmas() returns. So the only responsibility here is to 2075 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 2076 * drops the lock and schedules. 2077 */ 2078 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2079 struct vm_area_struct *vma, unsigned long start_addr, 2080 unsigned long end_addr, unsigned long tree_end) 2081 { 2082 struct mmu_notifier_range range; 2083 struct zap_details details = { 2084 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 2085 /* Careful - we need to zap private pages too! */ 2086 .even_cows = true, 2087 }; 2088 2089 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 2090 start_addr, end_addr); 2091 mmu_notifier_invalidate_range_start(&range); 2092 do { 2093 unsigned long start = start_addr; 2094 unsigned long end = end_addr; 2095 hugetlb_zap_begin(vma, &start, &end); 2096 unmap_single_vma(tlb, vma, start, end, &details); 2097 hugetlb_zap_end(vma, &details); 2098 vma = mas_find(mas, tree_end - 1); 2099 } while (vma && likely(!xa_is_zero(vma))); 2100 mmu_notifier_invalidate_range_end(&range); 2101 } 2102 2103 /** 2104 * zap_page_range_single_batched - remove user pages in a given range 2105 * @tlb: pointer to the caller's struct mmu_gather 2106 * @vma: vm_area_struct holding the applicable pages 2107 * @address: starting address of pages to remove 2108 * @size: number of bytes to remove 2109 * @details: details of shared cache invalidation 2110 * 2111 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for 2112 * hugetlb, @tlb is flushed and re-initialized by this function. 2113 */ 2114 void zap_page_range_single_batched(struct mmu_gather *tlb, 2115 struct vm_area_struct *vma, unsigned long address, 2116 unsigned long size, struct zap_details *details) 2117 { 2118 const unsigned long end = address + size; 2119 struct mmu_notifier_range range; 2120 2121 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm); 2122 2123 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2124 address, end); 2125 hugetlb_zap_begin(vma, &range.start, &range.end); 2126 update_hiwater_rss(vma->vm_mm); 2127 mmu_notifier_invalidate_range_start(&range); 2128 /* 2129 * unmap 'address-end' not 'range.start-range.end' as range 2130 * could have been expanded for hugetlb pmd sharing. 2131 */ 2132 unmap_single_vma(tlb, vma, address, end, details); 2133 mmu_notifier_invalidate_range_end(&range); 2134 if (is_vm_hugetlb_page(vma)) { 2135 /* 2136 * flush tlb and free resources before hugetlb_zap_end(), to 2137 * avoid concurrent page faults' allocation failure. 2138 */ 2139 tlb_finish_mmu(tlb); 2140 hugetlb_zap_end(vma, details); 2141 tlb_gather_mmu(tlb, vma->vm_mm); 2142 } 2143 } 2144 2145 /** 2146 * zap_page_range_single - remove user pages in a given range 2147 * @vma: vm_area_struct holding the applicable pages 2148 * @address: starting address of pages to zap 2149 * @size: number of bytes to zap 2150 * @details: details of shared cache invalidation 2151 * 2152 * The range must fit into one VMA. 2153 */ 2154 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2155 unsigned long size, struct zap_details *details) 2156 { 2157 struct mmu_gather tlb; 2158 2159 tlb_gather_mmu(&tlb, vma->vm_mm); 2160 zap_page_range_single_batched(&tlb, vma, address, size, details); 2161 tlb_finish_mmu(&tlb); 2162 } 2163 2164 /** 2165 * zap_vma_ptes - remove ptes mapping the vma 2166 * @vma: vm_area_struct holding ptes to be zapped 2167 * @address: starting address of pages to zap 2168 * @size: number of bytes to zap 2169 * 2170 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2171 * 2172 * The entire address range must be fully contained within the vma. 2173 * 2174 */ 2175 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2176 unsigned long size) 2177 { 2178 if (!range_in_vma(vma, address, address + size) || 2179 !(vma->vm_flags & VM_PFNMAP)) 2180 return; 2181 2182 zap_page_range_single(vma, address, size, NULL); 2183 } 2184 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2185 2186 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2187 { 2188 pgd_t *pgd; 2189 p4d_t *p4d; 2190 pud_t *pud; 2191 pmd_t *pmd; 2192 2193 pgd = pgd_offset(mm, addr); 2194 p4d = p4d_alloc(mm, pgd, addr); 2195 if (!p4d) 2196 return NULL; 2197 pud = pud_alloc(mm, p4d, addr); 2198 if (!pud) 2199 return NULL; 2200 pmd = pmd_alloc(mm, pud, addr); 2201 if (!pmd) 2202 return NULL; 2203 2204 VM_BUG_ON(pmd_trans_huge(*pmd)); 2205 return pmd; 2206 } 2207 2208 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2209 spinlock_t **ptl) 2210 { 2211 pmd_t *pmd = walk_to_pmd(mm, addr); 2212 2213 if (!pmd) 2214 return NULL; 2215 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2216 } 2217 2218 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2219 { 2220 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2221 /* 2222 * Whoever wants to forbid the zeropage after some zeropages 2223 * might already have been mapped has to scan the page tables and 2224 * bail out on any zeropages. Zeropages in COW mappings can 2225 * be unshared using FAULT_FLAG_UNSHARE faults. 2226 */ 2227 if (mm_forbids_zeropage(vma->vm_mm)) 2228 return false; 2229 /* zeropages in COW mappings are common and unproblematic. */ 2230 if (is_cow_mapping(vma->vm_flags)) 2231 return true; 2232 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2233 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2234 return true; 2235 /* 2236 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2237 * find the shared zeropage and longterm-pin it, which would 2238 * be problematic as soon as the zeropage gets replaced by a different 2239 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2240 * now differ to what GUP looked up. FSDAX is incompatible to 2241 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2242 * check_vma_flags). 2243 */ 2244 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2245 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2246 } 2247 2248 static int validate_page_before_insert(struct vm_area_struct *vma, 2249 struct page *page) 2250 { 2251 struct folio *folio = page_folio(page); 2252 2253 if (!folio_ref_count(folio)) 2254 return -EINVAL; 2255 if (unlikely(is_zero_folio(folio))) { 2256 if (!vm_mixed_zeropage_allowed(vma)) 2257 return -EINVAL; 2258 return 0; 2259 } 2260 if (folio_test_anon(folio) || page_has_type(page)) 2261 return -EINVAL; 2262 flush_dcache_folio(folio); 2263 return 0; 2264 } 2265 2266 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2267 unsigned long addr, struct page *page, 2268 pgprot_t prot, bool mkwrite) 2269 { 2270 struct folio *folio = page_folio(page); 2271 pte_t pteval = ptep_get(pte); 2272 2273 if (!pte_none(pteval)) { 2274 if (!mkwrite) 2275 return -EBUSY; 2276 2277 /* see insert_pfn(). */ 2278 if (pte_pfn(pteval) != page_to_pfn(page)) { 2279 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval))); 2280 return -EFAULT; 2281 } 2282 pteval = maybe_mkwrite(pteval, vma); 2283 pteval = pte_mkyoung(pteval); 2284 if (ptep_set_access_flags(vma, addr, pte, pteval, 1)) 2285 update_mmu_cache(vma, addr, pte); 2286 return 0; 2287 } 2288 2289 /* Ok, finally just insert the thing.. */ 2290 pteval = mk_pte(page, prot); 2291 if (unlikely(is_zero_folio(folio))) { 2292 pteval = pte_mkspecial(pteval); 2293 } else { 2294 folio_get(folio); 2295 pteval = mk_pte(page, prot); 2296 if (mkwrite) { 2297 pteval = pte_mkyoung(pteval); 2298 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma); 2299 } 2300 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2301 folio_add_file_rmap_pte(folio, page, vma); 2302 } 2303 set_pte_at(vma->vm_mm, addr, pte, pteval); 2304 return 0; 2305 } 2306 2307 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2308 struct page *page, pgprot_t prot, bool mkwrite) 2309 { 2310 int retval; 2311 pte_t *pte; 2312 spinlock_t *ptl; 2313 2314 retval = validate_page_before_insert(vma, page); 2315 if (retval) 2316 goto out; 2317 retval = -ENOMEM; 2318 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2319 if (!pte) 2320 goto out; 2321 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot, 2322 mkwrite); 2323 pte_unmap_unlock(pte, ptl); 2324 out: 2325 return retval; 2326 } 2327 2328 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2329 unsigned long addr, struct page *page, pgprot_t prot) 2330 { 2331 int err; 2332 2333 err = validate_page_before_insert(vma, page); 2334 if (err) 2335 return err; 2336 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false); 2337 } 2338 2339 /* insert_pages() amortizes the cost of spinlock operations 2340 * when inserting pages in a loop. 2341 */ 2342 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2343 struct page **pages, unsigned long *num, pgprot_t prot) 2344 { 2345 pmd_t *pmd = NULL; 2346 pte_t *start_pte, *pte; 2347 spinlock_t *pte_lock; 2348 struct mm_struct *const mm = vma->vm_mm; 2349 unsigned long curr_page_idx = 0; 2350 unsigned long remaining_pages_total = *num; 2351 unsigned long pages_to_write_in_pmd; 2352 int ret; 2353 more: 2354 ret = -EFAULT; 2355 pmd = walk_to_pmd(mm, addr); 2356 if (!pmd) 2357 goto out; 2358 2359 pages_to_write_in_pmd = min_t(unsigned long, 2360 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2361 2362 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2363 ret = -ENOMEM; 2364 if (pte_alloc(mm, pmd)) 2365 goto out; 2366 2367 while (pages_to_write_in_pmd) { 2368 int pte_idx = 0; 2369 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2370 2371 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2372 if (!start_pte) { 2373 ret = -EFAULT; 2374 goto out; 2375 } 2376 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2377 int err = insert_page_in_batch_locked(vma, pte, 2378 addr, pages[curr_page_idx], prot); 2379 if (unlikely(err)) { 2380 pte_unmap_unlock(start_pte, pte_lock); 2381 ret = err; 2382 remaining_pages_total -= pte_idx; 2383 goto out; 2384 } 2385 addr += PAGE_SIZE; 2386 ++curr_page_idx; 2387 } 2388 pte_unmap_unlock(start_pte, pte_lock); 2389 pages_to_write_in_pmd -= batch_size; 2390 remaining_pages_total -= batch_size; 2391 } 2392 if (remaining_pages_total) 2393 goto more; 2394 ret = 0; 2395 out: 2396 *num = remaining_pages_total; 2397 return ret; 2398 } 2399 2400 /** 2401 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2402 * @vma: user vma to map to 2403 * @addr: target start user address of these pages 2404 * @pages: source kernel pages 2405 * @num: in: number of pages to map. out: number of pages that were *not* 2406 * mapped. (0 means all pages were successfully mapped). 2407 * 2408 * Preferred over vm_insert_page() when inserting multiple pages. 2409 * 2410 * In case of error, we may have mapped a subset of the provided 2411 * pages. It is the caller's responsibility to account for this case. 2412 * 2413 * The same restrictions apply as in vm_insert_page(). 2414 */ 2415 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2416 struct page **pages, unsigned long *num) 2417 { 2418 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2419 2420 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2421 return -EFAULT; 2422 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2423 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2424 BUG_ON(vma->vm_flags & VM_PFNMAP); 2425 vm_flags_set(vma, VM_MIXEDMAP); 2426 } 2427 /* Defer page refcount checking till we're about to map that page. */ 2428 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2429 } 2430 EXPORT_SYMBOL(vm_insert_pages); 2431 2432 /** 2433 * vm_insert_page - insert single page into user vma 2434 * @vma: user vma to map to 2435 * @addr: target user address of this page 2436 * @page: source kernel page 2437 * 2438 * This allows drivers to insert individual pages they've allocated 2439 * into a user vma. The zeropage is supported in some VMAs, 2440 * see vm_mixed_zeropage_allowed(). 2441 * 2442 * The page has to be a nice clean _individual_ kernel allocation. 2443 * If you allocate a compound page, you need to have marked it as 2444 * such (__GFP_COMP), or manually just split the page up yourself 2445 * (see split_page()). 2446 * 2447 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2448 * took an arbitrary page protection parameter. This doesn't allow 2449 * that. Your vma protection will have to be set up correctly, which 2450 * means that if you want a shared writable mapping, you'd better 2451 * ask for a shared writable mapping! 2452 * 2453 * The page does not need to be reserved. 2454 * 2455 * Usually this function is called from f_op->mmap() handler 2456 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2457 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2458 * function from other places, for example from page-fault handler. 2459 * 2460 * Return: %0 on success, negative error code otherwise. 2461 */ 2462 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2463 struct page *page) 2464 { 2465 if (addr < vma->vm_start || addr >= vma->vm_end) 2466 return -EFAULT; 2467 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2468 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2469 BUG_ON(vma->vm_flags & VM_PFNMAP); 2470 vm_flags_set(vma, VM_MIXEDMAP); 2471 } 2472 return insert_page(vma, addr, page, vma->vm_page_prot, false); 2473 } 2474 EXPORT_SYMBOL(vm_insert_page); 2475 2476 /* 2477 * __vm_map_pages - maps range of kernel pages into user vma 2478 * @vma: user vma to map to 2479 * @pages: pointer to array of source kernel pages 2480 * @num: number of pages in page array 2481 * @offset: user's requested vm_pgoff 2482 * 2483 * This allows drivers to map range of kernel pages into a user vma. 2484 * The zeropage is supported in some VMAs, see 2485 * vm_mixed_zeropage_allowed(). 2486 * 2487 * Return: 0 on success and error code otherwise. 2488 */ 2489 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2490 unsigned long num, unsigned long offset) 2491 { 2492 unsigned long count = vma_pages(vma); 2493 unsigned long uaddr = vma->vm_start; 2494 int ret, i; 2495 2496 /* Fail if the user requested offset is beyond the end of the object */ 2497 if (offset >= num) 2498 return -ENXIO; 2499 2500 /* Fail if the user requested size exceeds available object size */ 2501 if (count > num - offset) 2502 return -ENXIO; 2503 2504 for (i = 0; i < count; i++) { 2505 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2506 if (ret < 0) 2507 return ret; 2508 uaddr += PAGE_SIZE; 2509 } 2510 2511 return 0; 2512 } 2513 2514 /** 2515 * vm_map_pages - maps range of kernel pages starts with non zero offset 2516 * @vma: user vma to map to 2517 * @pages: pointer to array of source kernel pages 2518 * @num: number of pages in page array 2519 * 2520 * Maps an object consisting of @num pages, catering for the user's 2521 * requested vm_pgoff 2522 * 2523 * If we fail to insert any page into the vma, the function will return 2524 * immediately leaving any previously inserted pages present. Callers 2525 * from the mmap handler may immediately return the error as their caller 2526 * will destroy the vma, removing any successfully inserted pages. Other 2527 * callers should make their own arrangements for calling unmap_region(). 2528 * 2529 * Context: Process context. Called by mmap handlers. 2530 * Return: 0 on success and error code otherwise. 2531 */ 2532 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2533 unsigned long num) 2534 { 2535 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2536 } 2537 EXPORT_SYMBOL(vm_map_pages); 2538 2539 /** 2540 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2541 * @vma: user vma to map to 2542 * @pages: pointer to array of source kernel pages 2543 * @num: number of pages in page array 2544 * 2545 * Similar to vm_map_pages(), except that it explicitly sets the offset 2546 * to 0. This function is intended for the drivers that did not consider 2547 * vm_pgoff. 2548 * 2549 * Context: Process context. Called by mmap handlers. 2550 * Return: 0 on success and error code otherwise. 2551 */ 2552 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2553 unsigned long num) 2554 { 2555 return __vm_map_pages(vma, pages, num, 0); 2556 } 2557 EXPORT_SYMBOL(vm_map_pages_zero); 2558 2559 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2560 unsigned long pfn, pgprot_t prot, bool mkwrite) 2561 { 2562 struct mm_struct *mm = vma->vm_mm; 2563 pte_t *pte, entry; 2564 spinlock_t *ptl; 2565 2566 pte = get_locked_pte(mm, addr, &ptl); 2567 if (!pte) 2568 return VM_FAULT_OOM; 2569 entry = ptep_get(pte); 2570 if (!pte_none(entry)) { 2571 if (mkwrite) { 2572 /* 2573 * For read faults on private mappings the PFN passed 2574 * in may not match the PFN we have mapped if the 2575 * mapped PFN is a writeable COW page. In the mkwrite 2576 * case we are creating a writable PTE for a shared 2577 * mapping and we expect the PFNs to match. If they 2578 * don't match, we are likely racing with block 2579 * allocation and mapping invalidation so just skip the 2580 * update. 2581 */ 2582 if (pte_pfn(entry) != pfn) { 2583 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2584 goto out_unlock; 2585 } 2586 entry = pte_mkyoung(entry); 2587 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2588 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2589 update_mmu_cache(vma, addr, pte); 2590 } 2591 goto out_unlock; 2592 } 2593 2594 /* Ok, finally just insert the thing.. */ 2595 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2596 2597 if (mkwrite) { 2598 entry = pte_mkyoung(entry); 2599 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2600 } 2601 2602 set_pte_at(mm, addr, pte, entry); 2603 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2604 2605 out_unlock: 2606 pte_unmap_unlock(pte, ptl); 2607 return VM_FAULT_NOPAGE; 2608 } 2609 2610 /** 2611 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2612 * @vma: user vma to map to 2613 * @addr: target user address of this page 2614 * @pfn: source kernel pfn 2615 * @pgprot: pgprot flags for the inserted page 2616 * 2617 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2618 * to override pgprot on a per-page basis. 2619 * 2620 * This only makes sense for IO mappings, and it makes no sense for 2621 * COW mappings. In general, using multiple vmas is preferable; 2622 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2623 * impractical. 2624 * 2625 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2626 * caching- and encryption bits different than those of @vma->vm_page_prot, 2627 * because the caching- or encryption mode may not be known at mmap() time. 2628 * 2629 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2630 * to set caching and encryption bits for those vmas (except for COW pages). 2631 * This is ensured by core vm only modifying these page table entries using 2632 * functions that don't touch caching- or encryption bits, using pte_modify() 2633 * if needed. (See for example mprotect()). 2634 * 2635 * Also when new page-table entries are created, this is only done using the 2636 * fault() callback, and never using the value of vma->vm_page_prot, 2637 * except for page-table entries that point to anonymous pages as the result 2638 * of COW. 2639 * 2640 * Context: Process context. May allocate using %GFP_KERNEL. 2641 * Return: vm_fault_t value. 2642 */ 2643 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2644 unsigned long pfn, pgprot_t pgprot) 2645 { 2646 /* 2647 * Technically, architectures with pte_special can avoid all these 2648 * restrictions (same for remap_pfn_range). However we would like 2649 * consistency in testing and feature parity among all, so we should 2650 * try to keep these invariants in place for everybody. 2651 */ 2652 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2653 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2654 (VM_PFNMAP|VM_MIXEDMAP)); 2655 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2656 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2657 2658 if (addr < vma->vm_start || addr >= vma->vm_end) 2659 return VM_FAULT_SIGBUS; 2660 2661 if (!pfn_modify_allowed(pfn, pgprot)) 2662 return VM_FAULT_SIGBUS; 2663 2664 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2665 2666 return insert_pfn(vma, addr, pfn, pgprot, false); 2667 } 2668 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2669 2670 /** 2671 * vmf_insert_pfn - insert single pfn into user vma 2672 * @vma: user vma to map to 2673 * @addr: target user address of this page 2674 * @pfn: source kernel pfn 2675 * 2676 * Similar to vm_insert_page, this allows drivers to insert individual pages 2677 * they've allocated into a user vma. Same comments apply. 2678 * 2679 * This function should only be called from a vm_ops->fault handler, and 2680 * in that case the handler should return the result of this function. 2681 * 2682 * vma cannot be a COW mapping. 2683 * 2684 * As this is called only for pages that do not currently exist, we 2685 * do not need to flush old virtual caches or the TLB. 2686 * 2687 * Context: Process context. May allocate using %GFP_KERNEL. 2688 * Return: vm_fault_t value. 2689 */ 2690 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2691 unsigned long pfn) 2692 { 2693 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2694 } 2695 EXPORT_SYMBOL(vmf_insert_pfn); 2696 2697 static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn, 2698 bool mkwrite) 2699 { 2700 if (unlikely(is_zero_pfn(pfn)) && 2701 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2702 return false; 2703 /* these checks mirror the abort conditions in vm_normal_page */ 2704 if (vma->vm_flags & VM_MIXEDMAP) 2705 return true; 2706 if (is_zero_pfn(pfn)) 2707 return true; 2708 return false; 2709 } 2710 2711 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2712 unsigned long addr, unsigned long pfn, bool mkwrite) 2713 { 2714 pgprot_t pgprot = vma->vm_page_prot; 2715 int err; 2716 2717 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2718 return VM_FAULT_SIGBUS; 2719 2720 if (addr < vma->vm_start || addr >= vma->vm_end) 2721 return VM_FAULT_SIGBUS; 2722 2723 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2724 2725 if (!pfn_modify_allowed(pfn, pgprot)) 2726 return VM_FAULT_SIGBUS; 2727 2728 /* 2729 * If we don't have pte special, then we have to use the pfn_valid() 2730 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2731 * refcount the page if pfn_valid is true (hence insert_page rather 2732 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2733 * without pte special, it would there be refcounted as a normal page. 2734 */ 2735 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) { 2736 struct page *page; 2737 2738 /* 2739 * At this point we are committed to insert_page() 2740 * regardless of whether the caller specified flags that 2741 * result in pfn_t_has_page() == false. 2742 */ 2743 page = pfn_to_page(pfn); 2744 err = insert_page(vma, addr, page, pgprot, mkwrite); 2745 } else { 2746 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2747 } 2748 2749 if (err == -ENOMEM) 2750 return VM_FAULT_OOM; 2751 if (err < 0 && err != -EBUSY) 2752 return VM_FAULT_SIGBUS; 2753 2754 return VM_FAULT_NOPAGE; 2755 } 2756 2757 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 2758 bool write) 2759 { 2760 pgprot_t pgprot = vmf->vma->vm_page_prot; 2761 unsigned long addr = vmf->address; 2762 int err; 2763 2764 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end) 2765 return VM_FAULT_SIGBUS; 2766 2767 err = insert_page(vmf->vma, addr, page, pgprot, write); 2768 if (err == -ENOMEM) 2769 return VM_FAULT_OOM; 2770 if (err < 0 && err != -EBUSY) 2771 return VM_FAULT_SIGBUS; 2772 2773 return VM_FAULT_NOPAGE; 2774 } 2775 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite); 2776 2777 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2778 unsigned long pfn) 2779 { 2780 return __vm_insert_mixed(vma, addr, pfn, false); 2781 } 2782 EXPORT_SYMBOL(vmf_insert_mixed); 2783 2784 /* 2785 * If the insertion of PTE failed because someone else already added a 2786 * different entry in the mean time, we treat that as success as we assume 2787 * the same entry was actually inserted. 2788 */ 2789 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2790 unsigned long addr, unsigned long pfn) 2791 { 2792 return __vm_insert_mixed(vma, addr, pfn, true); 2793 } 2794 2795 /* 2796 * maps a range of physical memory into the requested pages. the old 2797 * mappings are removed. any references to nonexistent pages results 2798 * in null mappings (currently treated as "copy-on-access") 2799 */ 2800 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2801 unsigned long addr, unsigned long end, 2802 unsigned long pfn, pgprot_t prot) 2803 { 2804 pte_t *pte, *mapped_pte; 2805 spinlock_t *ptl; 2806 int err = 0; 2807 2808 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2809 if (!pte) 2810 return -ENOMEM; 2811 arch_enter_lazy_mmu_mode(); 2812 do { 2813 BUG_ON(!pte_none(ptep_get(pte))); 2814 if (!pfn_modify_allowed(pfn, prot)) { 2815 err = -EACCES; 2816 break; 2817 } 2818 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2819 pfn++; 2820 } while (pte++, addr += PAGE_SIZE, addr != end); 2821 arch_leave_lazy_mmu_mode(); 2822 pte_unmap_unlock(mapped_pte, ptl); 2823 return err; 2824 } 2825 2826 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2827 unsigned long addr, unsigned long end, 2828 unsigned long pfn, pgprot_t prot) 2829 { 2830 pmd_t *pmd; 2831 unsigned long next; 2832 int err; 2833 2834 pfn -= addr >> PAGE_SHIFT; 2835 pmd = pmd_alloc(mm, pud, addr); 2836 if (!pmd) 2837 return -ENOMEM; 2838 VM_BUG_ON(pmd_trans_huge(*pmd)); 2839 do { 2840 next = pmd_addr_end(addr, end); 2841 err = remap_pte_range(mm, pmd, addr, next, 2842 pfn + (addr >> PAGE_SHIFT), prot); 2843 if (err) 2844 return err; 2845 } while (pmd++, addr = next, addr != end); 2846 return 0; 2847 } 2848 2849 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2850 unsigned long addr, unsigned long end, 2851 unsigned long pfn, pgprot_t prot) 2852 { 2853 pud_t *pud; 2854 unsigned long next; 2855 int err; 2856 2857 pfn -= addr >> PAGE_SHIFT; 2858 pud = pud_alloc(mm, p4d, addr); 2859 if (!pud) 2860 return -ENOMEM; 2861 do { 2862 next = pud_addr_end(addr, end); 2863 err = remap_pmd_range(mm, pud, addr, next, 2864 pfn + (addr >> PAGE_SHIFT), prot); 2865 if (err) 2866 return err; 2867 } while (pud++, addr = next, addr != end); 2868 return 0; 2869 } 2870 2871 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2872 unsigned long addr, unsigned long end, 2873 unsigned long pfn, pgprot_t prot) 2874 { 2875 p4d_t *p4d; 2876 unsigned long next; 2877 int err; 2878 2879 pfn -= addr >> PAGE_SHIFT; 2880 p4d = p4d_alloc(mm, pgd, addr); 2881 if (!p4d) 2882 return -ENOMEM; 2883 do { 2884 next = p4d_addr_end(addr, end); 2885 err = remap_pud_range(mm, p4d, addr, next, 2886 pfn + (addr >> PAGE_SHIFT), prot); 2887 if (err) 2888 return err; 2889 } while (p4d++, addr = next, addr != end); 2890 return 0; 2891 } 2892 2893 static int get_remap_pgoff(vm_flags_t vm_flags, unsigned long addr, 2894 unsigned long end, unsigned long vm_start, unsigned long vm_end, 2895 unsigned long pfn, pgoff_t *vm_pgoff_p) 2896 { 2897 /* 2898 * There's a horrible special case to handle copy-on-write 2899 * behaviour that some programs depend on. We mark the "original" 2900 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2901 * See vm_normal_page() for details. 2902 */ 2903 if (is_cow_mapping(vm_flags)) { 2904 if (addr != vm_start || end != vm_end) 2905 return -EINVAL; 2906 *vm_pgoff_p = pfn; 2907 } 2908 2909 return 0; 2910 } 2911 2912 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2913 unsigned long pfn, unsigned long size, pgprot_t prot) 2914 { 2915 pgd_t *pgd; 2916 unsigned long next; 2917 unsigned long end = addr + PAGE_ALIGN(size); 2918 struct mm_struct *mm = vma->vm_mm; 2919 int err; 2920 2921 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2922 return -EINVAL; 2923 2924 VM_WARN_ON_ONCE((vma->vm_flags & VM_REMAP_FLAGS) != VM_REMAP_FLAGS); 2925 2926 BUG_ON(addr >= end); 2927 pfn -= addr >> PAGE_SHIFT; 2928 pgd = pgd_offset(mm, addr); 2929 flush_cache_range(vma, addr, end); 2930 do { 2931 next = pgd_addr_end(addr, end); 2932 err = remap_p4d_range(mm, pgd, addr, next, 2933 pfn + (addr >> PAGE_SHIFT), prot); 2934 if (err) 2935 return err; 2936 } while (pgd++, addr = next, addr != end); 2937 2938 return 0; 2939 } 2940 2941 /* 2942 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2943 * must have pre-validated the caching bits of the pgprot_t. 2944 */ 2945 static int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2946 unsigned long pfn, unsigned long size, pgprot_t prot) 2947 { 2948 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2949 2950 if (!error) 2951 return 0; 2952 2953 /* 2954 * A partial pfn range mapping is dangerous: it does not 2955 * maintain page reference counts, and callers may free 2956 * pages due to the error. So zap it early. 2957 */ 2958 zap_page_range_single(vma, addr, size, NULL); 2959 return error; 2960 } 2961 2962 #ifdef __HAVE_PFNMAP_TRACKING 2963 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn, 2964 unsigned long size, pgprot_t *prot) 2965 { 2966 struct pfnmap_track_ctx *ctx; 2967 2968 if (pfnmap_track(pfn, size, prot)) 2969 return ERR_PTR(-EINVAL); 2970 2971 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 2972 if (unlikely(!ctx)) { 2973 pfnmap_untrack(pfn, size); 2974 return ERR_PTR(-ENOMEM); 2975 } 2976 2977 ctx->pfn = pfn; 2978 ctx->size = size; 2979 kref_init(&ctx->kref); 2980 return ctx; 2981 } 2982 2983 void pfnmap_track_ctx_release(struct kref *ref) 2984 { 2985 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref); 2986 2987 pfnmap_untrack(ctx->pfn, ctx->size); 2988 kfree(ctx); 2989 } 2990 2991 static int remap_pfn_range_track(struct vm_area_struct *vma, unsigned long addr, 2992 unsigned long pfn, unsigned long size, pgprot_t prot) 2993 { 2994 struct pfnmap_track_ctx *ctx = NULL; 2995 int err; 2996 2997 size = PAGE_ALIGN(size); 2998 2999 /* 3000 * If we cover the full VMA, we'll perform actual tracking, and 3001 * remember to untrack when the last reference to our tracking 3002 * context from a VMA goes away. We'll keep tracking the whole pfn 3003 * range even during VMA splits and partial unmapping. 3004 * 3005 * If we only cover parts of the VMA, we'll only setup the cachemode 3006 * in the pgprot for the pfn range. 3007 */ 3008 if (addr == vma->vm_start && addr + size == vma->vm_end) { 3009 if (vma->pfnmap_track_ctx) 3010 return -EINVAL; 3011 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot); 3012 if (IS_ERR(ctx)) 3013 return PTR_ERR(ctx); 3014 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) { 3015 return -EINVAL; 3016 } 3017 3018 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 3019 if (ctx) { 3020 if (err) 3021 kref_put(&ctx->kref, pfnmap_track_ctx_release); 3022 else 3023 vma->pfnmap_track_ctx = ctx; 3024 } 3025 return err; 3026 } 3027 3028 static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3029 unsigned long pfn, unsigned long size, pgprot_t prot) 3030 { 3031 return remap_pfn_range_track(vma, addr, pfn, size, prot); 3032 } 3033 #else 3034 static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3035 unsigned long pfn, unsigned long size, pgprot_t prot) 3036 { 3037 return remap_pfn_range_notrack(vma, addr, pfn, size, prot); 3038 } 3039 #endif 3040 3041 void remap_pfn_range_prepare(struct vm_area_desc *desc, unsigned long pfn) 3042 { 3043 /* 3044 * We set addr=VMA start, end=VMA end here, so this won't fail, but we 3045 * check it again on complete and will fail there if specified addr is 3046 * invalid. 3047 */ 3048 get_remap_pgoff(desc->vm_flags, desc->start, desc->end, 3049 desc->start, desc->end, pfn, &desc->pgoff); 3050 desc->vm_flags |= VM_REMAP_FLAGS; 3051 } 3052 3053 static int remap_pfn_range_prepare_vma(struct vm_area_struct *vma, unsigned long addr, 3054 unsigned long pfn, unsigned long size) 3055 { 3056 unsigned long end = addr + PAGE_ALIGN(size); 3057 int err; 3058 3059 err = get_remap_pgoff(vma->vm_flags, addr, end, 3060 vma->vm_start, vma->vm_end, 3061 pfn, &vma->vm_pgoff); 3062 if (err) 3063 return err; 3064 3065 vm_flags_set(vma, VM_REMAP_FLAGS); 3066 return 0; 3067 } 3068 3069 /** 3070 * remap_pfn_range - remap kernel memory to userspace 3071 * @vma: user vma to map to 3072 * @addr: target page aligned user address to start at 3073 * @pfn: page frame number of kernel physical memory address 3074 * @size: size of mapping area 3075 * @prot: page protection flags for this mapping 3076 * 3077 * Note: this is only safe if the mm semaphore is held when called. 3078 * 3079 * Return: %0 on success, negative error code otherwise. 3080 */ 3081 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3082 unsigned long pfn, unsigned long size, pgprot_t prot) 3083 { 3084 int err; 3085 3086 err = remap_pfn_range_prepare_vma(vma, addr, pfn, size); 3087 if (err) 3088 return err; 3089 3090 return do_remap_pfn_range(vma, addr, pfn, size, prot); 3091 } 3092 EXPORT_SYMBOL(remap_pfn_range); 3093 3094 int remap_pfn_range_complete(struct vm_area_struct *vma, unsigned long addr, 3095 unsigned long pfn, unsigned long size, pgprot_t prot) 3096 { 3097 return do_remap_pfn_range(vma, addr, pfn, size, prot); 3098 } 3099 3100 /** 3101 * vm_iomap_memory - remap memory to userspace 3102 * @vma: user vma to map to 3103 * @start: start of the physical memory to be mapped 3104 * @len: size of area 3105 * 3106 * This is a simplified io_remap_pfn_range() for common driver use. The 3107 * driver just needs to give us the physical memory range to be mapped, 3108 * we'll figure out the rest from the vma information. 3109 * 3110 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 3111 * whatever write-combining details or similar. 3112 * 3113 * Return: %0 on success, negative error code otherwise. 3114 */ 3115 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 3116 { 3117 unsigned long vm_len, pfn, pages; 3118 3119 /* Check that the physical memory area passed in looks valid */ 3120 if (start + len < start) 3121 return -EINVAL; 3122 /* 3123 * You *really* shouldn't map things that aren't page-aligned, 3124 * but we've historically allowed it because IO memory might 3125 * just have smaller alignment. 3126 */ 3127 len += start & ~PAGE_MASK; 3128 pfn = start >> PAGE_SHIFT; 3129 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 3130 if (pfn + pages < pfn) 3131 return -EINVAL; 3132 3133 /* We start the mapping 'vm_pgoff' pages into the area */ 3134 if (vma->vm_pgoff > pages) 3135 return -EINVAL; 3136 pfn += vma->vm_pgoff; 3137 pages -= vma->vm_pgoff; 3138 3139 /* Can we fit all of the mapping? */ 3140 vm_len = vma->vm_end - vma->vm_start; 3141 if (vm_len >> PAGE_SHIFT > pages) 3142 return -EINVAL; 3143 3144 /* Ok, let it rip */ 3145 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 3146 } 3147 EXPORT_SYMBOL(vm_iomap_memory); 3148 3149 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 3150 unsigned long addr, unsigned long end, 3151 pte_fn_t fn, void *data, bool create, 3152 pgtbl_mod_mask *mask) 3153 { 3154 pte_t *pte, *mapped_pte; 3155 int err = 0; 3156 spinlock_t *ptl; 3157 3158 if (create) { 3159 mapped_pte = pte = (mm == &init_mm) ? 3160 pte_alloc_kernel_track(pmd, addr, mask) : 3161 pte_alloc_map_lock(mm, pmd, addr, &ptl); 3162 if (!pte) 3163 return -ENOMEM; 3164 } else { 3165 mapped_pte = pte = (mm == &init_mm) ? 3166 pte_offset_kernel(pmd, addr) : 3167 pte_offset_map_lock(mm, pmd, addr, &ptl); 3168 if (!pte) 3169 return -EINVAL; 3170 } 3171 3172 arch_enter_lazy_mmu_mode(); 3173 3174 if (fn) { 3175 do { 3176 if (create || !pte_none(ptep_get(pte))) { 3177 err = fn(pte, addr, data); 3178 if (err) 3179 break; 3180 } 3181 } while (pte++, addr += PAGE_SIZE, addr != end); 3182 } 3183 *mask |= PGTBL_PTE_MODIFIED; 3184 3185 arch_leave_lazy_mmu_mode(); 3186 3187 if (mm != &init_mm) 3188 pte_unmap_unlock(mapped_pte, ptl); 3189 return err; 3190 } 3191 3192 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 3193 unsigned long addr, unsigned long end, 3194 pte_fn_t fn, void *data, bool create, 3195 pgtbl_mod_mask *mask) 3196 { 3197 pmd_t *pmd; 3198 unsigned long next; 3199 int err = 0; 3200 3201 BUG_ON(pud_leaf(*pud)); 3202 3203 if (create) { 3204 pmd = pmd_alloc_track(mm, pud, addr, mask); 3205 if (!pmd) 3206 return -ENOMEM; 3207 } else { 3208 pmd = pmd_offset(pud, addr); 3209 } 3210 do { 3211 next = pmd_addr_end(addr, end); 3212 if (pmd_none(*pmd) && !create) 3213 continue; 3214 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 3215 return -EINVAL; 3216 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 3217 if (!create) 3218 continue; 3219 pmd_clear_bad(pmd); 3220 } 3221 err = apply_to_pte_range(mm, pmd, addr, next, 3222 fn, data, create, mask); 3223 if (err) 3224 break; 3225 } while (pmd++, addr = next, addr != end); 3226 3227 return err; 3228 } 3229 3230 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 3231 unsigned long addr, unsigned long end, 3232 pte_fn_t fn, void *data, bool create, 3233 pgtbl_mod_mask *mask) 3234 { 3235 pud_t *pud; 3236 unsigned long next; 3237 int err = 0; 3238 3239 if (create) { 3240 pud = pud_alloc_track(mm, p4d, addr, mask); 3241 if (!pud) 3242 return -ENOMEM; 3243 } else { 3244 pud = pud_offset(p4d, addr); 3245 } 3246 do { 3247 next = pud_addr_end(addr, end); 3248 if (pud_none(*pud) && !create) 3249 continue; 3250 if (WARN_ON_ONCE(pud_leaf(*pud))) 3251 return -EINVAL; 3252 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 3253 if (!create) 3254 continue; 3255 pud_clear_bad(pud); 3256 } 3257 err = apply_to_pmd_range(mm, pud, addr, next, 3258 fn, data, create, mask); 3259 if (err) 3260 break; 3261 } while (pud++, addr = next, addr != end); 3262 3263 return err; 3264 } 3265 3266 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 3267 unsigned long addr, unsigned long end, 3268 pte_fn_t fn, void *data, bool create, 3269 pgtbl_mod_mask *mask) 3270 { 3271 p4d_t *p4d; 3272 unsigned long next; 3273 int err = 0; 3274 3275 if (create) { 3276 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3277 if (!p4d) 3278 return -ENOMEM; 3279 } else { 3280 p4d = p4d_offset(pgd, addr); 3281 } 3282 do { 3283 next = p4d_addr_end(addr, end); 3284 if (p4d_none(*p4d) && !create) 3285 continue; 3286 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3287 return -EINVAL; 3288 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3289 if (!create) 3290 continue; 3291 p4d_clear_bad(p4d); 3292 } 3293 err = apply_to_pud_range(mm, p4d, addr, next, 3294 fn, data, create, mask); 3295 if (err) 3296 break; 3297 } while (p4d++, addr = next, addr != end); 3298 3299 return err; 3300 } 3301 3302 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3303 unsigned long size, pte_fn_t fn, 3304 void *data, bool create) 3305 { 3306 pgd_t *pgd; 3307 unsigned long start = addr, next; 3308 unsigned long end = addr + size; 3309 pgtbl_mod_mask mask = 0; 3310 int err = 0; 3311 3312 if (WARN_ON(addr >= end)) 3313 return -EINVAL; 3314 3315 pgd = pgd_offset(mm, addr); 3316 do { 3317 next = pgd_addr_end(addr, end); 3318 if (pgd_none(*pgd) && !create) 3319 continue; 3320 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3321 err = -EINVAL; 3322 break; 3323 } 3324 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3325 if (!create) 3326 continue; 3327 pgd_clear_bad(pgd); 3328 } 3329 err = apply_to_p4d_range(mm, pgd, addr, next, 3330 fn, data, create, &mask); 3331 if (err) 3332 break; 3333 } while (pgd++, addr = next, addr != end); 3334 3335 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3336 arch_sync_kernel_mappings(start, start + size); 3337 3338 return err; 3339 } 3340 3341 /* 3342 * Scan a region of virtual memory, filling in page tables as necessary 3343 * and calling a provided function on each leaf page table. 3344 */ 3345 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3346 unsigned long size, pte_fn_t fn, void *data) 3347 { 3348 return __apply_to_page_range(mm, addr, size, fn, data, true); 3349 } 3350 EXPORT_SYMBOL_GPL(apply_to_page_range); 3351 3352 /* 3353 * Scan a region of virtual memory, calling a provided function on 3354 * each leaf page table where it exists. 3355 * 3356 * Unlike apply_to_page_range, this does _not_ fill in page tables 3357 * where they are absent. 3358 */ 3359 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3360 unsigned long size, pte_fn_t fn, void *data) 3361 { 3362 return __apply_to_page_range(mm, addr, size, fn, data, false); 3363 } 3364 3365 /* 3366 * handle_pte_fault chooses page fault handler according to an entry which was 3367 * read non-atomically. Before making any commitment, on those architectures 3368 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3369 * parts, do_swap_page must check under lock before unmapping the pte and 3370 * proceeding (but do_wp_page is only called after already making such a check; 3371 * and do_anonymous_page can safely check later on). 3372 */ 3373 static inline int pte_unmap_same(struct vm_fault *vmf) 3374 { 3375 int same = 1; 3376 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3377 if (sizeof(pte_t) > sizeof(unsigned long)) { 3378 spin_lock(vmf->ptl); 3379 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3380 spin_unlock(vmf->ptl); 3381 } 3382 #endif 3383 pte_unmap(vmf->pte); 3384 vmf->pte = NULL; 3385 return same; 3386 } 3387 3388 /* 3389 * Return: 3390 * 0: copied succeeded 3391 * -EHWPOISON: copy failed due to hwpoison in source page 3392 * -EAGAIN: copied failed (some other reason) 3393 */ 3394 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3395 struct vm_fault *vmf) 3396 { 3397 int ret; 3398 void *kaddr; 3399 void __user *uaddr; 3400 struct vm_area_struct *vma = vmf->vma; 3401 struct mm_struct *mm = vma->vm_mm; 3402 unsigned long addr = vmf->address; 3403 3404 if (likely(src)) { 3405 if (copy_mc_user_highpage(dst, src, addr, vma)) 3406 return -EHWPOISON; 3407 return 0; 3408 } 3409 3410 /* 3411 * If the source page was a PFN mapping, we don't have 3412 * a "struct page" for it. We do a best-effort copy by 3413 * just copying from the original user address. If that 3414 * fails, we just zero-fill it. Live with it. 3415 */ 3416 kaddr = kmap_local_page(dst); 3417 pagefault_disable(); 3418 uaddr = (void __user *)(addr & PAGE_MASK); 3419 3420 /* 3421 * On architectures with software "accessed" bits, we would 3422 * take a double page fault, so mark it accessed here. 3423 */ 3424 vmf->pte = NULL; 3425 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3426 pte_t entry; 3427 3428 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3429 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3430 /* 3431 * Other thread has already handled the fault 3432 * and update local tlb only 3433 */ 3434 if (vmf->pte) 3435 update_mmu_tlb(vma, addr, vmf->pte); 3436 ret = -EAGAIN; 3437 goto pte_unlock; 3438 } 3439 3440 entry = pte_mkyoung(vmf->orig_pte); 3441 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3442 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3443 } 3444 3445 /* 3446 * This really shouldn't fail, because the page is there 3447 * in the page tables. But it might just be unreadable, 3448 * in which case we just give up and fill the result with 3449 * zeroes. 3450 */ 3451 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3452 if (vmf->pte) 3453 goto warn; 3454 3455 /* Re-validate under PTL if the page is still mapped */ 3456 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3457 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3458 /* The PTE changed under us, update local tlb */ 3459 if (vmf->pte) 3460 update_mmu_tlb(vma, addr, vmf->pte); 3461 ret = -EAGAIN; 3462 goto pte_unlock; 3463 } 3464 3465 /* 3466 * The same page can be mapped back since last copy attempt. 3467 * Try to copy again under PTL. 3468 */ 3469 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3470 /* 3471 * Give a warn in case there can be some obscure 3472 * use-case 3473 */ 3474 warn: 3475 WARN_ON_ONCE(1); 3476 clear_page(kaddr); 3477 } 3478 } 3479 3480 ret = 0; 3481 3482 pte_unlock: 3483 if (vmf->pte) 3484 pte_unmap_unlock(vmf->pte, vmf->ptl); 3485 pagefault_enable(); 3486 kunmap_local(kaddr); 3487 flush_dcache_page(dst); 3488 3489 return ret; 3490 } 3491 3492 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3493 { 3494 struct file *vm_file = vma->vm_file; 3495 3496 if (vm_file) 3497 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3498 3499 /* 3500 * Special mappings (e.g. VDSO) do not have any file so fake 3501 * a default GFP_KERNEL for them. 3502 */ 3503 return GFP_KERNEL; 3504 } 3505 3506 /* 3507 * Notify the address space that the page is about to become writable so that 3508 * it can prohibit this or wait for the page to get into an appropriate state. 3509 * 3510 * We do this without the lock held, so that it can sleep if it needs to. 3511 */ 3512 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3513 { 3514 vm_fault_t ret; 3515 unsigned int old_flags = vmf->flags; 3516 3517 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3518 3519 if (vmf->vma->vm_file && 3520 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3521 return VM_FAULT_SIGBUS; 3522 3523 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3524 /* Restore original flags so that caller is not surprised */ 3525 vmf->flags = old_flags; 3526 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3527 return ret; 3528 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3529 folio_lock(folio); 3530 if (!folio->mapping) { 3531 folio_unlock(folio); 3532 return 0; /* retry */ 3533 } 3534 ret |= VM_FAULT_LOCKED; 3535 } else 3536 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3537 return ret; 3538 } 3539 3540 /* 3541 * Handle dirtying of a page in shared file mapping on a write fault. 3542 * 3543 * The function expects the page to be locked and unlocks it. 3544 */ 3545 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3546 { 3547 struct vm_area_struct *vma = vmf->vma; 3548 struct address_space *mapping; 3549 struct folio *folio = page_folio(vmf->page); 3550 bool dirtied; 3551 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3552 3553 dirtied = folio_mark_dirty(folio); 3554 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3555 /* 3556 * Take a local copy of the address_space - folio.mapping may be zeroed 3557 * by truncate after folio_unlock(). The address_space itself remains 3558 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3559 * release semantics to prevent the compiler from undoing this copying. 3560 */ 3561 mapping = folio_raw_mapping(folio); 3562 folio_unlock(folio); 3563 3564 if (!page_mkwrite) 3565 file_update_time(vma->vm_file); 3566 3567 /* 3568 * Throttle page dirtying rate down to writeback speed. 3569 * 3570 * mapping may be NULL here because some device drivers do not 3571 * set page.mapping but still dirty their pages 3572 * 3573 * Drop the mmap_lock before waiting on IO, if we can. The file 3574 * is pinning the mapping, as per above. 3575 */ 3576 if ((dirtied || page_mkwrite) && mapping) { 3577 struct file *fpin; 3578 3579 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3580 balance_dirty_pages_ratelimited(mapping); 3581 if (fpin) { 3582 fput(fpin); 3583 return VM_FAULT_COMPLETED; 3584 } 3585 } 3586 3587 return 0; 3588 } 3589 3590 /* 3591 * Handle write page faults for pages that can be reused in the current vma 3592 * 3593 * This can happen either due to the mapping being with the VM_SHARED flag, 3594 * or due to us being the last reference standing to the page. In either 3595 * case, all we need to do here is to mark the page as writable and update 3596 * any related book-keeping. 3597 */ 3598 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3599 __releases(vmf->ptl) 3600 { 3601 struct vm_area_struct *vma = vmf->vma; 3602 pte_t entry; 3603 3604 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3605 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3606 3607 if (folio) { 3608 VM_BUG_ON(folio_test_anon(folio) && 3609 !PageAnonExclusive(vmf->page)); 3610 /* 3611 * Clear the folio's cpupid information as the existing 3612 * information potentially belongs to a now completely 3613 * unrelated process. 3614 */ 3615 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3616 } 3617 3618 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3619 entry = pte_mkyoung(vmf->orig_pte); 3620 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3621 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3622 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3623 pte_unmap_unlock(vmf->pte, vmf->ptl); 3624 count_vm_event(PGREUSE); 3625 } 3626 3627 /* 3628 * We could add a bitflag somewhere, but for now, we know that all 3629 * vm_ops that have a ->map_pages have been audited and don't need 3630 * the mmap_lock to be held. 3631 */ 3632 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3633 { 3634 struct vm_area_struct *vma = vmf->vma; 3635 3636 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3637 return 0; 3638 vma_end_read(vma); 3639 return VM_FAULT_RETRY; 3640 } 3641 3642 /** 3643 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3644 * @vmf: The vm_fault descriptor passed from the fault handler. 3645 * 3646 * When preparing to insert an anonymous page into a VMA from a 3647 * fault handler, call this function rather than anon_vma_prepare(). 3648 * If this vma does not already have an associated anon_vma and we are 3649 * only protected by the per-VMA lock, the caller must retry with the 3650 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3651 * determine if this VMA can share its anon_vma, and that's not safe to 3652 * do with only the per-VMA lock held for this VMA. 3653 * 3654 * Return: 0 if fault handling can proceed. Any other value should be 3655 * returned to the caller. 3656 */ 3657 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3658 { 3659 struct vm_area_struct *vma = vmf->vma; 3660 vm_fault_t ret = 0; 3661 3662 if (likely(vma->anon_vma)) 3663 return 0; 3664 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3665 if (!mmap_read_trylock(vma->vm_mm)) 3666 return VM_FAULT_RETRY; 3667 } 3668 if (__anon_vma_prepare(vma)) 3669 ret = VM_FAULT_OOM; 3670 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3671 mmap_read_unlock(vma->vm_mm); 3672 return ret; 3673 } 3674 3675 /* 3676 * Handle the case of a page which we actually need to copy to a new page, 3677 * either due to COW or unsharing. 3678 * 3679 * Called with mmap_lock locked and the old page referenced, but 3680 * without the ptl held. 3681 * 3682 * High level logic flow: 3683 * 3684 * - Allocate a page, copy the content of the old page to the new one. 3685 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3686 * - Take the PTL. If the pte changed, bail out and release the allocated page 3687 * - If the pte is still the way we remember it, update the page table and all 3688 * relevant references. This includes dropping the reference the page-table 3689 * held to the old page, as well as updating the rmap. 3690 * - In any case, unlock the PTL and drop the reference we took to the old page. 3691 */ 3692 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3693 { 3694 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3695 struct vm_area_struct *vma = vmf->vma; 3696 struct mm_struct *mm = vma->vm_mm; 3697 struct folio *old_folio = NULL; 3698 struct folio *new_folio = NULL; 3699 pte_t entry; 3700 int page_copied = 0; 3701 struct mmu_notifier_range range; 3702 vm_fault_t ret; 3703 bool pfn_is_zero; 3704 3705 delayacct_wpcopy_start(); 3706 3707 if (vmf->page) 3708 old_folio = page_folio(vmf->page); 3709 ret = vmf_anon_prepare(vmf); 3710 if (unlikely(ret)) 3711 goto out; 3712 3713 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3714 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3715 if (!new_folio) 3716 goto oom; 3717 3718 if (!pfn_is_zero) { 3719 int err; 3720 3721 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3722 if (err) { 3723 /* 3724 * COW failed, if the fault was solved by other, 3725 * it's fine. If not, userspace would re-fault on 3726 * the same address and we will handle the fault 3727 * from the second attempt. 3728 * The -EHWPOISON case will not be retried. 3729 */ 3730 folio_put(new_folio); 3731 if (old_folio) 3732 folio_put(old_folio); 3733 3734 delayacct_wpcopy_end(); 3735 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3736 } 3737 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3738 } 3739 3740 __folio_mark_uptodate(new_folio); 3741 3742 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3743 vmf->address & PAGE_MASK, 3744 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3745 mmu_notifier_invalidate_range_start(&range); 3746 3747 /* 3748 * Re-check the pte - we dropped the lock 3749 */ 3750 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3751 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3752 if (old_folio) { 3753 if (!folio_test_anon(old_folio)) { 3754 dec_mm_counter(mm, mm_counter_file(old_folio)); 3755 inc_mm_counter(mm, MM_ANONPAGES); 3756 } 3757 } else { 3758 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3759 inc_mm_counter(mm, MM_ANONPAGES); 3760 } 3761 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3762 entry = folio_mk_pte(new_folio, vma->vm_page_prot); 3763 entry = pte_sw_mkyoung(entry); 3764 if (unlikely(unshare)) { 3765 if (pte_soft_dirty(vmf->orig_pte)) 3766 entry = pte_mksoft_dirty(entry); 3767 if (pte_uffd_wp(vmf->orig_pte)) 3768 entry = pte_mkuffd_wp(entry); 3769 } else { 3770 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3771 } 3772 3773 /* 3774 * Clear the pte entry and flush it first, before updating the 3775 * pte with the new entry, to keep TLBs on different CPUs in 3776 * sync. This code used to set the new PTE then flush TLBs, but 3777 * that left a window where the new PTE could be loaded into 3778 * some TLBs while the old PTE remains in others. 3779 */ 3780 ptep_clear_flush(vma, vmf->address, vmf->pte); 3781 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3782 folio_add_lru_vma(new_folio, vma); 3783 BUG_ON(unshare && pte_write(entry)); 3784 set_pte_at(mm, vmf->address, vmf->pte, entry); 3785 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3786 if (old_folio) { 3787 /* 3788 * Only after switching the pte to the new page may 3789 * we remove the mapcount here. Otherwise another 3790 * process may come and find the rmap count decremented 3791 * before the pte is switched to the new page, and 3792 * "reuse" the old page writing into it while our pte 3793 * here still points into it and can be read by other 3794 * threads. 3795 * 3796 * The critical issue is to order this 3797 * folio_remove_rmap_pte() with the ptp_clear_flush 3798 * above. Those stores are ordered by (if nothing else,) 3799 * the barrier present in the atomic_add_negative 3800 * in folio_remove_rmap_pte(); 3801 * 3802 * Then the TLB flush in ptep_clear_flush ensures that 3803 * no process can access the old page before the 3804 * decremented mapcount is visible. And the old page 3805 * cannot be reused until after the decremented 3806 * mapcount is visible. So transitively, TLBs to 3807 * old page will be flushed before it can be reused. 3808 */ 3809 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3810 } 3811 3812 /* Free the old page.. */ 3813 new_folio = old_folio; 3814 page_copied = 1; 3815 pte_unmap_unlock(vmf->pte, vmf->ptl); 3816 } else if (vmf->pte) { 3817 update_mmu_tlb(vma, vmf->address, vmf->pte); 3818 pte_unmap_unlock(vmf->pte, vmf->ptl); 3819 } 3820 3821 mmu_notifier_invalidate_range_end(&range); 3822 3823 if (new_folio) 3824 folio_put(new_folio); 3825 if (old_folio) { 3826 if (page_copied) 3827 free_swap_cache(old_folio); 3828 folio_put(old_folio); 3829 } 3830 3831 delayacct_wpcopy_end(); 3832 return 0; 3833 oom: 3834 ret = VM_FAULT_OOM; 3835 out: 3836 if (old_folio) 3837 folio_put(old_folio); 3838 3839 delayacct_wpcopy_end(); 3840 return ret; 3841 } 3842 3843 /** 3844 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3845 * writeable once the page is prepared 3846 * 3847 * @vmf: structure describing the fault 3848 * @folio: the folio of vmf->page 3849 * 3850 * This function handles all that is needed to finish a write page fault in a 3851 * shared mapping due to PTE being read-only once the mapped page is prepared. 3852 * It handles locking of PTE and modifying it. 3853 * 3854 * The function expects the page to be locked or other protection against 3855 * concurrent faults / writeback (such as DAX radix tree locks). 3856 * 3857 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3858 * we acquired PTE lock. 3859 */ 3860 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3861 { 3862 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3863 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3864 &vmf->ptl); 3865 if (!vmf->pte) 3866 return VM_FAULT_NOPAGE; 3867 /* 3868 * We might have raced with another page fault while we released the 3869 * pte_offset_map_lock. 3870 */ 3871 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3872 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3873 pte_unmap_unlock(vmf->pte, vmf->ptl); 3874 return VM_FAULT_NOPAGE; 3875 } 3876 wp_page_reuse(vmf, folio); 3877 return 0; 3878 } 3879 3880 /* 3881 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3882 * mapping 3883 */ 3884 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3885 { 3886 struct vm_area_struct *vma = vmf->vma; 3887 3888 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3889 vm_fault_t ret; 3890 3891 pte_unmap_unlock(vmf->pte, vmf->ptl); 3892 ret = vmf_can_call_fault(vmf); 3893 if (ret) 3894 return ret; 3895 3896 vmf->flags |= FAULT_FLAG_MKWRITE; 3897 ret = vma->vm_ops->pfn_mkwrite(vmf); 3898 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3899 return ret; 3900 return finish_mkwrite_fault(vmf, NULL); 3901 } 3902 wp_page_reuse(vmf, NULL); 3903 return 0; 3904 } 3905 3906 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3907 __releases(vmf->ptl) 3908 { 3909 struct vm_area_struct *vma = vmf->vma; 3910 vm_fault_t ret = 0; 3911 3912 folio_get(folio); 3913 3914 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3915 vm_fault_t tmp; 3916 3917 pte_unmap_unlock(vmf->pte, vmf->ptl); 3918 tmp = vmf_can_call_fault(vmf); 3919 if (tmp) { 3920 folio_put(folio); 3921 return tmp; 3922 } 3923 3924 tmp = do_page_mkwrite(vmf, folio); 3925 if (unlikely(!tmp || (tmp & 3926 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3927 folio_put(folio); 3928 return tmp; 3929 } 3930 tmp = finish_mkwrite_fault(vmf, folio); 3931 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3932 folio_unlock(folio); 3933 folio_put(folio); 3934 return tmp; 3935 } 3936 } else { 3937 wp_page_reuse(vmf, folio); 3938 folio_lock(folio); 3939 } 3940 ret |= fault_dirty_shared_page(vmf); 3941 folio_put(folio); 3942 3943 return ret; 3944 } 3945 3946 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3947 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3948 struct vm_area_struct *vma) 3949 { 3950 bool exclusive = false; 3951 3952 /* Let's just free up a large folio if only a single page is mapped. */ 3953 if (folio_large_mapcount(folio) <= 1) 3954 return false; 3955 3956 /* 3957 * The assumption for anonymous folios is that each page can only get 3958 * mapped once into each MM. The only exception are KSM folios, which 3959 * are always small. 3960 * 3961 * Each taken mapcount must be paired with exactly one taken reference, 3962 * whereby the refcount must be incremented before the mapcount when 3963 * mapping a page, and the refcount must be decremented after the 3964 * mapcount when unmapping a page. 3965 * 3966 * If all folio references are from mappings, and all mappings are in 3967 * the page tables of this MM, then this folio is exclusive to this MM. 3968 */ 3969 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3970 return false; 3971 3972 VM_WARN_ON_ONCE(folio_test_ksm(folio)); 3973 3974 if (unlikely(folio_test_swapcache(folio))) { 3975 /* 3976 * Note: freeing up the swapcache will fail if some PTEs are 3977 * still swap entries. 3978 */ 3979 if (!folio_trylock(folio)) 3980 return false; 3981 folio_free_swap(folio); 3982 folio_unlock(folio); 3983 } 3984 3985 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3986 return false; 3987 3988 /* Stabilize the mapcount vs. refcount and recheck. */ 3989 folio_lock_large_mapcount(folio); 3990 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio); 3991 3992 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3993 goto unlock; 3994 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3995 goto unlock; 3996 3997 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio); 3998 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio); 3999 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id && 4000 folio_mm_id(folio, 1) != vma->vm_mm->mm_id); 4001 4002 /* 4003 * Do we need the folio lock? Likely not. If there would have been 4004 * references from page migration/swapout, we would have detected 4005 * an additional folio reference and never ended up here. 4006 */ 4007 exclusive = true; 4008 unlock: 4009 folio_unlock_large_mapcount(folio); 4010 return exclusive; 4011 } 4012 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4013 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 4014 struct vm_area_struct *vma) 4015 { 4016 BUILD_BUG(); 4017 } 4018 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4019 4020 static bool wp_can_reuse_anon_folio(struct folio *folio, 4021 struct vm_area_struct *vma) 4022 { 4023 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio)) 4024 return __wp_can_reuse_large_anon_folio(folio, vma); 4025 4026 /* 4027 * We have to verify under folio lock: these early checks are 4028 * just an optimization to avoid locking the folio and freeing 4029 * the swapcache if there is little hope that we can reuse. 4030 * 4031 * KSM doesn't necessarily raise the folio refcount. 4032 */ 4033 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 4034 return false; 4035 if (!folio_test_lru(folio)) 4036 /* 4037 * We cannot easily detect+handle references from 4038 * remote LRU caches or references to LRU folios. 4039 */ 4040 lru_add_drain(); 4041 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 4042 return false; 4043 if (!folio_trylock(folio)) 4044 return false; 4045 if (folio_test_swapcache(folio)) 4046 folio_free_swap(folio); 4047 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 4048 folio_unlock(folio); 4049 return false; 4050 } 4051 /* 4052 * Ok, we've got the only folio reference from our mapping 4053 * and the folio is locked, it's dark out, and we're wearing 4054 * sunglasses. Hit it. 4055 */ 4056 folio_move_anon_rmap(folio, vma); 4057 folio_unlock(folio); 4058 return true; 4059 } 4060 4061 /* 4062 * This routine handles present pages, when 4063 * * users try to write to a shared page (FAULT_FLAG_WRITE) 4064 * * GUP wants to take a R/O pin on a possibly shared anonymous page 4065 * (FAULT_FLAG_UNSHARE) 4066 * 4067 * It is done by copying the page to a new address and decrementing the 4068 * shared-page counter for the old page. 4069 * 4070 * Note that this routine assumes that the protection checks have been 4071 * done by the caller (the low-level page fault routine in most cases). 4072 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 4073 * done any necessary COW. 4074 * 4075 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 4076 * though the page will change only once the write actually happens. This 4077 * avoids a few races, and potentially makes it more efficient. 4078 * 4079 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4080 * but allow concurrent faults), with pte both mapped and locked. 4081 * We return with mmap_lock still held, but pte unmapped and unlocked. 4082 */ 4083 static vm_fault_t do_wp_page(struct vm_fault *vmf) 4084 __releases(vmf->ptl) 4085 { 4086 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4087 struct vm_area_struct *vma = vmf->vma; 4088 struct folio *folio = NULL; 4089 pte_t pte; 4090 4091 if (likely(!unshare)) { 4092 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 4093 if (!userfaultfd_wp_async(vma)) { 4094 pte_unmap_unlock(vmf->pte, vmf->ptl); 4095 return handle_userfault(vmf, VM_UFFD_WP); 4096 } 4097 4098 /* 4099 * Nothing needed (cache flush, TLB invalidations, 4100 * etc.) because we're only removing the uffd-wp bit, 4101 * which is completely invisible to the user. 4102 */ 4103 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 4104 4105 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4106 /* 4107 * Update this to be prepared for following up CoW 4108 * handling 4109 */ 4110 vmf->orig_pte = pte; 4111 } 4112 4113 /* 4114 * Userfaultfd write-protect can defer flushes. Ensure the TLB 4115 * is flushed in this case before copying. 4116 */ 4117 if (unlikely(userfaultfd_wp(vmf->vma) && 4118 mm_tlb_flush_pending(vmf->vma->vm_mm))) 4119 flush_tlb_page(vmf->vma, vmf->address); 4120 } 4121 4122 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 4123 4124 if (vmf->page) 4125 folio = page_folio(vmf->page); 4126 4127 /* 4128 * Shared mapping: we are guaranteed to have VM_WRITE and 4129 * FAULT_FLAG_WRITE set at this point. 4130 */ 4131 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4132 /* 4133 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 4134 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called. 4135 * 4136 * We should not cow pages in a shared writeable mapping. 4137 * Just mark the pages writable and/or call ops->pfn_mkwrite. 4138 */ 4139 if (!vmf->page || is_fsdax_page(vmf->page)) { 4140 vmf->page = NULL; 4141 return wp_pfn_shared(vmf); 4142 } 4143 return wp_page_shared(vmf, folio); 4144 } 4145 4146 /* 4147 * Private mapping: create an exclusive anonymous page copy if reuse 4148 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 4149 * 4150 * If we encounter a page that is marked exclusive, we must reuse 4151 * the page without further checks. 4152 */ 4153 if (folio && folio_test_anon(folio) && 4154 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 4155 if (!PageAnonExclusive(vmf->page)) 4156 SetPageAnonExclusive(vmf->page); 4157 if (unlikely(unshare)) { 4158 pte_unmap_unlock(vmf->pte, vmf->ptl); 4159 return 0; 4160 } 4161 wp_page_reuse(vmf, folio); 4162 return 0; 4163 } 4164 /* 4165 * Ok, we need to copy. Oh, well.. 4166 */ 4167 if (folio) 4168 folio_get(folio); 4169 4170 pte_unmap_unlock(vmf->pte, vmf->ptl); 4171 #ifdef CONFIG_KSM 4172 if (folio && folio_test_ksm(folio)) 4173 count_vm_event(COW_KSM); 4174 #endif 4175 return wp_page_copy(vmf); 4176 } 4177 4178 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 4179 unsigned long start_addr, unsigned long end_addr, 4180 struct zap_details *details) 4181 { 4182 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 4183 } 4184 4185 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 4186 pgoff_t first_index, 4187 pgoff_t last_index, 4188 struct zap_details *details) 4189 { 4190 struct vm_area_struct *vma; 4191 pgoff_t vba, vea, zba, zea; 4192 4193 vma_interval_tree_foreach(vma, root, first_index, last_index) { 4194 vba = vma->vm_pgoff; 4195 vea = vba + vma_pages(vma) - 1; 4196 zba = max(first_index, vba); 4197 zea = min(last_index, vea); 4198 4199 unmap_mapping_range_vma(vma, 4200 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 4201 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 4202 details); 4203 } 4204 } 4205 4206 /** 4207 * unmap_mapping_folio() - Unmap single folio from processes. 4208 * @folio: The locked folio to be unmapped. 4209 * 4210 * Unmap this folio from any userspace process which still has it mmaped. 4211 * Typically, for efficiency, the range of nearby pages has already been 4212 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 4213 * truncation or invalidation holds the lock on a folio, it may find that 4214 * the page has been remapped again: and then uses unmap_mapping_folio() 4215 * to unmap it finally. 4216 */ 4217 void unmap_mapping_folio(struct folio *folio) 4218 { 4219 struct address_space *mapping = folio->mapping; 4220 struct zap_details details = { }; 4221 pgoff_t first_index; 4222 pgoff_t last_index; 4223 4224 VM_BUG_ON(!folio_test_locked(folio)); 4225 4226 first_index = folio->index; 4227 last_index = folio_next_index(folio) - 1; 4228 4229 details.even_cows = false; 4230 details.single_folio = folio; 4231 details.zap_flags = ZAP_FLAG_DROP_MARKER; 4232 4233 i_mmap_lock_read(mapping); 4234 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4235 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4236 last_index, &details); 4237 i_mmap_unlock_read(mapping); 4238 } 4239 4240 /** 4241 * unmap_mapping_pages() - Unmap pages from processes. 4242 * @mapping: The address space containing pages to be unmapped. 4243 * @start: Index of first page to be unmapped. 4244 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 4245 * @even_cows: Whether to unmap even private COWed pages. 4246 * 4247 * Unmap the pages in this address space from any userspace process which 4248 * has them mmaped. Generally, you want to remove COWed pages as well when 4249 * a file is being truncated, but not when invalidating pages from the page 4250 * cache. 4251 */ 4252 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 4253 pgoff_t nr, bool even_cows) 4254 { 4255 struct zap_details details = { }; 4256 pgoff_t first_index = start; 4257 pgoff_t last_index = start + nr - 1; 4258 4259 details.even_cows = even_cows; 4260 if (last_index < first_index) 4261 last_index = ULONG_MAX; 4262 4263 i_mmap_lock_read(mapping); 4264 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4265 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4266 last_index, &details); 4267 i_mmap_unlock_read(mapping); 4268 } 4269 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 4270 4271 /** 4272 * unmap_mapping_range - unmap the portion of all mmaps in the specified 4273 * address_space corresponding to the specified byte range in the underlying 4274 * file. 4275 * 4276 * @mapping: the address space containing mmaps to be unmapped. 4277 * @holebegin: byte in first page to unmap, relative to the start of 4278 * the underlying file. This will be rounded down to a PAGE_SIZE 4279 * boundary. Note that this is different from truncate_pagecache(), which 4280 * must keep the partial page. In contrast, we must get rid of 4281 * partial pages. 4282 * @holelen: size of prospective hole in bytes. This will be rounded 4283 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 4284 * end of the file. 4285 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 4286 * but 0 when invalidating pagecache, don't throw away private data. 4287 */ 4288 void unmap_mapping_range(struct address_space *mapping, 4289 loff_t const holebegin, loff_t const holelen, int even_cows) 4290 { 4291 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 4292 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 4293 4294 /* Check for overflow. */ 4295 if (sizeof(holelen) > sizeof(hlen)) { 4296 long long holeend = 4297 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 4298 if (holeend & ~(long long)ULONG_MAX) 4299 hlen = ULONG_MAX - hba + 1; 4300 } 4301 4302 unmap_mapping_pages(mapping, hba, hlen, even_cows); 4303 } 4304 EXPORT_SYMBOL(unmap_mapping_range); 4305 4306 /* 4307 * Restore a potential device exclusive pte to a working pte entry 4308 */ 4309 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 4310 { 4311 struct folio *folio = page_folio(vmf->page); 4312 struct vm_area_struct *vma = vmf->vma; 4313 struct mmu_notifier_range range; 4314 vm_fault_t ret; 4315 4316 /* 4317 * We need a reference to lock the folio because we don't hold 4318 * the PTL so a racing thread can remove the device-exclusive 4319 * entry and unmap it. If the folio is free the entry must 4320 * have been removed already. If it happens to have already 4321 * been re-allocated after being freed all we do is lock and 4322 * unlock it. 4323 */ 4324 if (!folio_try_get(folio)) 4325 return 0; 4326 4327 ret = folio_lock_or_retry(folio, vmf); 4328 if (ret) { 4329 folio_put(folio); 4330 return ret; 4331 } 4332 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0, 4333 vma->vm_mm, vmf->address & PAGE_MASK, 4334 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 4335 mmu_notifier_invalidate_range_start(&range); 4336 4337 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4338 &vmf->ptl); 4339 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4340 restore_exclusive_pte(vma, folio, vmf->page, vmf->address, 4341 vmf->pte, vmf->orig_pte); 4342 4343 if (vmf->pte) 4344 pte_unmap_unlock(vmf->pte, vmf->ptl); 4345 folio_unlock(folio); 4346 folio_put(folio); 4347 4348 mmu_notifier_invalidate_range_end(&range); 4349 return 0; 4350 } 4351 4352 static inline bool should_try_to_free_swap(struct folio *folio, 4353 struct vm_area_struct *vma, 4354 unsigned int fault_flags) 4355 { 4356 if (!folio_test_swapcache(folio)) 4357 return false; 4358 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4359 folio_test_mlocked(folio)) 4360 return true; 4361 /* 4362 * If we want to map a page that's in the swapcache writable, we 4363 * have to detect via the refcount if we're really the exclusive 4364 * user. Try freeing the swapcache to get rid of the swapcache 4365 * reference only in case it's likely that we'll be the exclusive user. 4366 */ 4367 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4368 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4369 } 4370 4371 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4372 { 4373 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4374 vmf->address, &vmf->ptl); 4375 if (!vmf->pte) 4376 return 0; 4377 /* 4378 * Be careful so that we will only recover a special uffd-wp pte into a 4379 * none pte. Otherwise it means the pte could have changed, so retry. 4380 * 4381 * This should also cover the case where e.g. the pte changed 4382 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4383 * So is_pte_marker() check is not enough to safely drop the pte. 4384 */ 4385 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4386 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4387 pte_unmap_unlock(vmf->pte, vmf->ptl); 4388 return 0; 4389 } 4390 4391 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4392 { 4393 if (vma_is_anonymous(vmf->vma)) 4394 return do_anonymous_page(vmf); 4395 else 4396 return do_fault(vmf); 4397 } 4398 4399 /* 4400 * This is actually a page-missing access, but with uffd-wp special pte 4401 * installed. It means this pte was wr-protected before being unmapped. 4402 */ 4403 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4404 { 4405 /* 4406 * Just in case there're leftover special ptes even after the region 4407 * got unregistered - we can simply clear them. 4408 */ 4409 if (unlikely(!userfaultfd_wp(vmf->vma))) 4410 return pte_marker_clear(vmf); 4411 4412 return do_pte_missing(vmf); 4413 } 4414 4415 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4416 { 4417 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4418 unsigned long marker = pte_marker_get(entry); 4419 4420 /* 4421 * PTE markers should never be empty. If anything weird happened, 4422 * the best thing to do is to kill the process along with its mm. 4423 */ 4424 if (WARN_ON_ONCE(!marker)) 4425 return VM_FAULT_SIGBUS; 4426 4427 /* Higher priority than uffd-wp when data corrupted */ 4428 if (marker & PTE_MARKER_POISONED) 4429 return VM_FAULT_HWPOISON; 4430 4431 /* Hitting a guard page is always a fatal condition. */ 4432 if (marker & PTE_MARKER_GUARD) 4433 return VM_FAULT_SIGSEGV; 4434 4435 if (pte_marker_entry_uffd_wp(entry)) 4436 return pte_marker_handle_uffd_wp(vmf); 4437 4438 /* This is an unknown pte marker */ 4439 return VM_FAULT_SIGBUS; 4440 } 4441 4442 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4443 { 4444 struct vm_area_struct *vma = vmf->vma; 4445 struct folio *folio; 4446 swp_entry_t entry; 4447 4448 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4449 if (!folio) 4450 return NULL; 4451 4452 entry = pte_to_swp_entry(vmf->orig_pte); 4453 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4454 GFP_KERNEL, entry)) { 4455 folio_put(folio); 4456 return NULL; 4457 } 4458 4459 return folio; 4460 } 4461 4462 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4463 /* 4464 * Check if the PTEs within a range are contiguous swap entries 4465 * and have consistent swapcache, zeromap. 4466 */ 4467 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4468 { 4469 unsigned long addr; 4470 swp_entry_t entry; 4471 int idx; 4472 pte_t pte; 4473 4474 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4475 idx = (vmf->address - addr) / PAGE_SIZE; 4476 pte = ptep_get(ptep); 4477 4478 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4479 return false; 4480 entry = pte_to_swp_entry(pte); 4481 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4482 return false; 4483 4484 /* 4485 * swap_read_folio() can't handle the case a large folio is hybridly 4486 * from different backends. And they are likely corner cases. Similar 4487 * things might be added once zswap support large folios. 4488 */ 4489 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4490 return false; 4491 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4492 return false; 4493 4494 return true; 4495 } 4496 4497 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4498 unsigned long addr, 4499 unsigned long orders) 4500 { 4501 int order, nr; 4502 4503 order = highest_order(orders); 4504 4505 /* 4506 * To swap in a THP with nr pages, we require that its first swap_offset 4507 * is aligned with that number, as it was when the THP was swapped out. 4508 * This helps filter out most invalid entries. 4509 */ 4510 while (orders) { 4511 nr = 1 << order; 4512 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4513 break; 4514 order = next_order(&orders, order); 4515 } 4516 4517 return orders; 4518 } 4519 4520 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4521 { 4522 struct vm_area_struct *vma = vmf->vma; 4523 unsigned long orders; 4524 struct folio *folio; 4525 unsigned long addr; 4526 swp_entry_t entry; 4527 spinlock_t *ptl; 4528 pte_t *pte; 4529 gfp_t gfp; 4530 int order; 4531 4532 /* 4533 * If uffd is active for the vma we need per-page fault fidelity to 4534 * maintain the uffd semantics. 4535 */ 4536 if (unlikely(userfaultfd_armed(vma))) 4537 goto fallback; 4538 4539 /* 4540 * A large swapped out folio could be partially or fully in zswap. We 4541 * lack handling for such cases, so fallback to swapping in order-0 4542 * folio. 4543 */ 4544 if (!zswap_never_enabled()) 4545 goto fallback; 4546 4547 entry = pte_to_swp_entry(vmf->orig_pte); 4548 /* 4549 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4550 * and suitable for swapping THP. 4551 */ 4552 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT, 4553 BIT(PMD_ORDER) - 1); 4554 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4555 orders = thp_swap_suitable_orders(swp_offset(entry), 4556 vmf->address, orders); 4557 4558 if (!orders) 4559 goto fallback; 4560 4561 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4562 vmf->address & PMD_MASK, &ptl); 4563 if (unlikely(!pte)) 4564 goto fallback; 4565 4566 /* 4567 * For do_swap_page, find the highest order where the aligned range is 4568 * completely swap entries with contiguous swap offsets. 4569 */ 4570 order = highest_order(orders); 4571 while (orders) { 4572 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4573 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4574 break; 4575 order = next_order(&orders, order); 4576 } 4577 4578 pte_unmap_unlock(pte, ptl); 4579 4580 /* Try allocating the highest of the remaining orders. */ 4581 gfp = vma_thp_gfp_mask(vma); 4582 while (orders) { 4583 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4584 folio = vma_alloc_folio(gfp, order, vma, addr); 4585 if (folio) { 4586 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4587 gfp, entry)) 4588 return folio; 4589 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4590 folio_put(folio); 4591 } 4592 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4593 order = next_order(&orders, order); 4594 } 4595 4596 fallback: 4597 return __alloc_swap_folio(vmf); 4598 } 4599 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4600 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4601 { 4602 return __alloc_swap_folio(vmf); 4603 } 4604 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4605 4606 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4607 4608 /* 4609 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4610 * but allow concurrent faults), and pte mapped but not yet locked. 4611 * We return with pte unmapped and unlocked. 4612 * 4613 * We return with the mmap_lock locked or unlocked in the same cases 4614 * as does filemap_fault(). 4615 */ 4616 vm_fault_t do_swap_page(struct vm_fault *vmf) 4617 { 4618 struct vm_area_struct *vma = vmf->vma; 4619 struct folio *swapcache, *folio = NULL; 4620 DECLARE_WAITQUEUE(wait, current); 4621 struct page *page; 4622 struct swap_info_struct *si = NULL; 4623 rmap_t rmap_flags = RMAP_NONE; 4624 bool need_clear_cache = false; 4625 bool exclusive = false; 4626 swp_entry_t entry; 4627 pte_t pte; 4628 vm_fault_t ret = 0; 4629 void *shadow = NULL; 4630 int nr_pages; 4631 unsigned long page_idx; 4632 unsigned long address; 4633 pte_t *ptep; 4634 4635 if (!pte_unmap_same(vmf)) 4636 goto out; 4637 4638 entry = pte_to_swp_entry(vmf->orig_pte); 4639 if (unlikely(non_swap_entry(entry))) { 4640 if (is_migration_entry(entry)) { 4641 migration_entry_wait(vma->vm_mm, vmf->pmd, 4642 vmf->address); 4643 } else if (is_device_exclusive_entry(entry)) { 4644 vmf->page = pfn_swap_entry_to_page(entry); 4645 ret = remove_device_exclusive_entry(vmf); 4646 } else if (is_device_private_entry(entry)) { 4647 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4648 /* 4649 * migrate_to_ram is not yet ready to operate 4650 * under VMA lock. 4651 */ 4652 vma_end_read(vma); 4653 ret = VM_FAULT_RETRY; 4654 goto out; 4655 } 4656 4657 vmf->page = pfn_swap_entry_to_page(entry); 4658 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4659 vmf->address, &vmf->ptl); 4660 if (unlikely(!vmf->pte || 4661 !pte_same(ptep_get(vmf->pte), 4662 vmf->orig_pte))) 4663 goto unlock; 4664 4665 /* 4666 * Get a page reference while we know the page can't be 4667 * freed. 4668 */ 4669 if (trylock_page(vmf->page)) { 4670 struct dev_pagemap *pgmap; 4671 4672 get_page(vmf->page); 4673 pte_unmap_unlock(vmf->pte, vmf->ptl); 4674 pgmap = page_pgmap(vmf->page); 4675 ret = pgmap->ops->migrate_to_ram(vmf); 4676 unlock_page(vmf->page); 4677 put_page(vmf->page); 4678 } else { 4679 pte_unmap_unlock(vmf->pte, vmf->ptl); 4680 } 4681 } else if (is_hwpoison_entry(entry)) { 4682 ret = VM_FAULT_HWPOISON; 4683 } else if (is_pte_marker_entry(entry)) { 4684 ret = handle_pte_marker(vmf); 4685 } else { 4686 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4687 ret = VM_FAULT_SIGBUS; 4688 } 4689 goto out; 4690 } 4691 4692 /* Prevent swapoff from happening to us. */ 4693 si = get_swap_device(entry); 4694 if (unlikely(!si)) 4695 goto out; 4696 4697 folio = swap_cache_get_folio(entry); 4698 if (folio) 4699 swap_update_readahead(folio, vma, vmf->address); 4700 swapcache = folio; 4701 4702 if (!folio) { 4703 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4704 __swap_count(entry) == 1) { 4705 /* skip swapcache */ 4706 folio = alloc_swap_folio(vmf); 4707 if (folio) { 4708 __folio_set_locked(folio); 4709 __folio_set_swapbacked(folio); 4710 4711 nr_pages = folio_nr_pages(folio); 4712 if (folio_test_large(folio)) 4713 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4714 /* 4715 * Prevent parallel swapin from proceeding with 4716 * the cache flag. Otherwise, another thread 4717 * may finish swapin first, free the entry, and 4718 * swapout reusing the same entry. It's 4719 * undetectable as pte_same() returns true due 4720 * to entry reuse. 4721 */ 4722 if (swapcache_prepare(entry, nr_pages)) { 4723 /* 4724 * Relax a bit to prevent rapid 4725 * repeated page faults. 4726 */ 4727 add_wait_queue(&swapcache_wq, &wait); 4728 schedule_timeout_uninterruptible(1); 4729 remove_wait_queue(&swapcache_wq, &wait); 4730 goto out_page; 4731 } 4732 need_clear_cache = true; 4733 4734 memcg1_swapin(entry, nr_pages); 4735 4736 shadow = swap_cache_get_shadow(entry); 4737 if (shadow) 4738 workingset_refault(folio, shadow); 4739 4740 folio_add_lru(folio); 4741 4742 /* To provide entry to swap_read_folio() */ 4743 folio->swap = entry; 4744 swap_read_folio(folio, NULL); 4745 folio->private = NULL; 4746 } 4747 } else { 4748 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4749 vmf); 4750 swapcache = folio; 4751 } 4752 4753 if (!folio) { 4754 /* 4755 * Back out if somebody else faulted in this pte 4756 * while we released the pte lock. 4757 */ 4758 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4759 vmf->address, &vmf->ptl); 4760 if (likely(vmf->pte && 4761 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4762 ret = VM_FAULT_OOM; 4763 goto unlock; 4764 } 4765 4766 /* Had to read the page from swap area: Major fault */ 4767 ret = VM_FAULT_MAJOR; 4768 count_vm_event(PGMAJFAULT); 4769 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4770 } 4771 4772 ret |= folio_lock_or_retry(folio, vmf); 4773 if (ret & VM_FAULT_RETRY) 4774 goto out_release; 4775 4776 page = folio_file_page(folio, swp_offset(entry)); 4777 if (swapcache) { 4778 /* 4779 * Make sure folio_free_swap() or swapoff did not release the 4780 * swapcache from under us. The page pin, and pte_same test 4781 * below, are not enough to exclude that. Even if it is still 4782 * swapcache, we need to check that the page's swap has not 4783 * changed. 4784 */ 4785 if (unlikely(!folio_matches_swap_entry(folio, entry))) 4786 goto out_page; 4787 4788 if (unlikely(PageHWPoison(page))) { 4789 /* 4790 * hwpoisoned dirty swapcache pages are kept for killing 4791 * owner processes (which may be unknown at hwpoison time) 4792 */ 4793 ret = VM_FAULT_HWPOISON; 4794 goto out_page; 4795 } 4796 4797 /* 4798 * KSM sometimes has to copy on read faults, for example, if 4799 * folio->index of non-ksm folios would be nonlinear inside the 4800 * anon VMA -- the ksm flag is lost on actual swapout. 4801 */ 4802 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4803 if (unlikely(!folio)) { 4804 ret = VM_FAULT_OOM; 4805 folio = swapcache; 4806 goto out_page; 4807 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4808 ret = VM_FAULT_HWPOISON; 4809 folio = swapcache; 4810 goto out_page; 4811 } 4812 if (folio != swapcache) 4813 page = folio_page(folio, 0); 4814 4815 /* 4816 * If we want to map a page that's in the swapcache writable, we 4817 * have to detect via the refcount if we're really the exclusive 4818 * owner. Try removing the extra reference from the local LRU 4819 * caches if required. 4820 */ 4821 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4822 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4823 lru_add_drain(); 4824 } 4825 4826 folio_throttle_swaprate(folio, GFP_KERNEL); 4827 4828 /* 4829 * Back out if somebody else already faulted in this pte. 4830 */ 4831 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4832 &vmf->ptl); 4833 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4834 goto out_nomap; 4835 4836 if (unlikely(!folio_test_uptodate(folio))) { 4837 ret = VM_FAULT_SIGBUS; 4838 goto out_nomap; 4839 } 4840 4841 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4842 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4843 unsigned long nr = folio_nr_pages(folio); 4844 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4845 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4846 pte_t *folio_ptep = vmf->pte - idx; 4847 pte_t folio_pte = ptep_get(folio_ptep); 4848 4849 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4850 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4851 goto out_nomap; 4852 4853 page_idx = idx; 4854 address = folio_start; 4855 ptep = folio_ptep; 4856 goto check_folio; 4857 } 4858 4859 nr_pages = 1; 4860 page_idx = 0; 4861 address = vmf->address; 4862 ptep = vmf->pte; 4863 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4864 int nr = folio_nr_pages(folio); 4865 unsigned long idx = folio_page_idx(folio, page); 4866 unsigned long folio_start = address - idx * PAGE_SIZE; 4867 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4868 pte_t *folio_ptep; 4869 pte_t folio_pte; 4870 4871 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4872 goto check_folio; 4873 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4874 goto check_folio; 4875 4876 folio_ptep = vmf->pte - idx; 4877 folio_pte = ptep_get(folio_ptep); 4878 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4879 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4880 goto check_folio; 4881 4882 page_idx = idx; 4883 address = folio_start; 4884 ptep = folio_ptep; 4885 nr_pages = nr; 4886 entry = folio->swap; 4887 page = &folio->page; 4888 } 4889 4890 check_folio: 4891 /* 4892 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4893 * must never point at an anonymous page in the swapcache that is 4894 * PG_anon_exclusive. Sanity check that this holds and especially, that 4895 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4896 * check after taking the PT lock and making sure that nobody 4897 * concurrently faulted in this page and set PG_anon_exclusive. 4898 */ 4899 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4900 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4901 4902 /* 4903 * Check under PT lock (to protect against concurrent fork() sharing 4904 * the swap entry concurrently) for certainly exclusive pages. 4905 */ 4906 if (!folio_test_ksm(folio)) { 4907 exclusive = pte_swp_exclusive(vmf->orig_pte); 4908 if (folio != swapcache) { 4909 /* 4910 * We have a fresh page that is not exposed to the 4911 * swapcache -> certainly exclusive. 4912 */ 4913 exclusive = true; 4914 } else if (exclusive && folio_test_writeback(folio) && 4915 data_race(si->flags & SWP_STABLE_WRITES)) { 4916 /* 4917 * This is tricky: not all swap backends support 4918 * concurrent page modifications while under writeback. 4919 * 4920 * So if we stumble over such a page in the swapcache 4921 * we must not set the page exclusive, otherwise we can 4922 * map it writable without further checks and modify it 4923 * while still under writeback. 4924 * 4925 * For these problematic swap backends, simply drop the 4926 * exclusive marker: this is perfectly fine as we start 4927 * writeback only if we fully unmapped the page and 4928 * there are no unexpected references on the page after 4929 * unmapping succeeded. After fully unmapped, no 4930 * further GUP references (FOLL_GET and FOLL_PIN) can 4931 * appear, so dropping the exclusive marker and mapping 4932 * it only R/O is fine. 4933 */ 4934 exclusive = false; 4935 } 4936 } 4937 4938 /* 4939 * Some architectures may have to restore extra metadata to the page 4940 * when reading from swap. This metadata may be indexed by swap entry 4941 * so this must be called before swap_free(). 4942 */ 4943 arch_swap_restore(folio_swap(entry, folio), folio); 4944 4945 /* 4946 * Remove the swap entry and conditionally try to free up the swapcache. 4947 * We're already holding a reference on the page but haven't mapped it 4948 * yet. 4949 */ 4950 swap_free_nr(entry, nr_pages); 4951 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4952 folio_free_swap(folio); 4953 4954 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4955 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4956 pte = mk_pte(page, vma->vm_page_prot); 4957 if (pte_swp_soft_dirty(vmf->orig_pte)) 4958 pte = pte_mksoft_dirty(pte); 4959 if (pte_swp_uffd_wp(vmf->orig_pte)) 4960 pte = pte_mkuffd_wp(pte); 4961 4962 /* 4963 * Same logic as in do_wp_page(); however, optimize for pages that are 4964 * certainly not shared either because we just allocated them without 4965 * exposing them to the swapcache or because the swap entry indicates 4966 * exclusivity. 4967 */ 4968 if (!folio_test_ksm(folio) && 4969 (exclusive || folio_ref_count(folio) == 1)) { 4970 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4971 !pte_needs_soft_dirty_wp(vma, pte)) { 4972 pte = pte_mkwrite(pte, vma); 4973 if (vmf->flags & FAULT_FLAG_WRITE) { 4974 pte = pte_mkdirty(pte); 4975 vmf->flags &= ~FAULT_FLAG_WRITE; 4976 } 4977 } 4978 rmap_flags |= RMAP_EXCLUSIVE; 4979 } 4980 folio_ref_add(folio, nr_pages - 1); 4981 flush_icache_pages(vma, page, nr_pages); 4982 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4983 4984 /* ksm created a completely new copy */ 4985 if (unlikely(folio != swapcache && swapcache)) { 4986 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4987 folio_add_lru_vma(folio, vma); 4988 } else if (!folio_test_anon(folio)) { 4989 /* 4990 * We currently only expect small !anon folios which are either 4991 * fully exclusive or fully shared, or new allocated large 4992 * folios which are fully exclusive. If we ever get large 4993 * folios within swapcache here, we have to be careful. 4994 */ 4995 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4996 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4997 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4998 } else { 4999 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 5000 rmap_flags); 5001 } 5002 5003 VM_BUG_ON(!folio_test_anon(folio) || 5004 (pte_write(pte) && !PageAnonExclusive(page))); 5005 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 5006 arch_do_swap_page_nr(vma->vm_mm, vma, address, 5007 pte, pte, nr_pages); 5008 5009 folio_unlock(folio); 5010 if (folio != swapcache && swapcache) { 5011 /* 5012 * Hold the lock to avoid the swap entry to be reused 5013 * until we take the PT lock for the pte_same() check 5014 * (to avoid false positives from pte_same). For 5015 * further safety release the lock after the swap_free 5016 * so that the swap count won't change under a 5017 * parallel locked swapcache. 5018 */ 5019 folio_unlock(swapcache); 5020 folio_put(swapcache); 5021 } 5022 5023 if (vmf->flags & FAULT_FLAG_WRITE) { 5024 ret |= do_wp_page(vmf); 5025 if (ret & VM_FAULT_ERROR) 5026 ret &= VM_FAULT_ERROR; 5027 goto out; 5028 } 5029 5030 /* No need to invalidate - it was non-present before */ 5031 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 5032 unlock: 5033 if (vmf->pte) 5034 pte_unmap_unlock(vmf->pte, vmf->ptl); 5035 out: 5036 /* Clear the swap cache pin for direct swapin after PTL unlock */ 5037 if (need_clear_cache) { 5038 swapcache_clear(si, entry, nr_pages); 5039 if (waitqueue_active(&swapcache_wq)) 5040 wake_up(&swapcache_wq); 5041 } 5042 if (si) 5043 put_swap_device(si); 5044 return ret; 5045 out_nomap: 5046 if (vmf->pte) 5047 pte_unmap_unlock(vmf->pte, vmf->ptl); 5048 out_page: 5049 folio_unlock(folio); 5050 out_release: 5051 folio_put(folio); 5052 if (folio != swapcache && swapcache) { 5053 folio_unlock(swapcache); 5054 folio_put(swapcache); 5055 } 5056 if (need_clear_cache) { 5057 swapcache_clear(si, entry, nr_pages); 5058 if (waitqueue_active(&swapcache_wq)) 5059 wake_up(&swapcache_wq); 5060 } 5061 if (si) 5062 put_swap_device(si); 5063 return ret; 5064 } 5065 5066 static bool pte_range_none(pte_t *pte, int nr_pages) 5067 { 5068 int i; 5069 5070 for (i = 0; i < nr_pages; i++) { 5071 if (!pte_none(ptep_get_lockless(pte + i))) 5072 return false; 5073 } 5074 5075 return true; 5076 } 5077 5078 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 5079 { 5080 struct vm_area_struct *vma = vmf->vma; 5081 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5082 unsigned long orders; 5083 struct folio *folio; 5084 unsigned long addr; 5085 pte_t *pte; 5086 gfp_t gfp; 5087 int order; 5088 5089 /* 5090 * If uffd is active for the vma we need per-page fault fidelity to 5091 * maintain the uffd semantics. 5092 */ 5093 if (unlikely(userfaultfd_armed(vma))) 5094 goto fallback; 5095 5096 /* 5097 * Get a list of all the (large) orders below PMD_ORDER that are enabled 5098 * for this vma. Then filter out the orders that can't be allocated over 5099 * the faulting address and still be fully contained in the vma. 5100 */ 5101 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT, 5102 BIT(PMD_ORDER) - 1); 5103 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 5104 5105 if (!orders) 5106 goto fallback; 5107 5108 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 5109 if (!pte) 5110 return ERR_PTR(-EAGAIN); 5111 5112 /* 5113 * Find the highest order where the aligned range is completely 5114 * pte_none(). Note that all remaining orders will be completely 5115 * pte_none(). 5116 */ 5117 order = highest_order(orders); 5118 while (orders) { 5119 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5120 if (pte_range_none(pte + pte_index(addr), 1 << order)) 5121 break; 5122 order = next_order(&orders, order); 5123 } 5124 5125 pte_unmap(pte); 5126 5127 if (!orders) 5128 goto fallback; 5129 5130 /* Try allocating the highest of the remaining orders. */ 5131 gfp = vma_thp_gfp_mask(vma); 5132 while (orders) { 5133 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5134 folio = vma_alloc_folio(gfp, order, vma, addr); 5135 if (folio) { 5136 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 5137 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 5138 folio_put(folio); 5139 goto next; 5140 } 5141 folio_throttle_swaprate(folio, gfp); 5142 /* 5143 * When a folio is not zeroed during allocation 5144 * (__GFP_ZERO not used) or user folios require special 5145 * handling, folio_zero_user() is used to make sure 5146 * that the page corresponding to the faulting address 5147 * will be hot in the cache after zeroing. 5148 */ 5149 if (user_alloc_needs_zeroing()) 5150 folio_zero_user(folio, vmf->address); 5151 return folio; 5152 } 5153 next: 5154 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 5155 order = next_order(&orders, order); 5156 } 5157 5158 fallback: 5159 #endif 5160 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 5161 } 5162 5163 /* 5164 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5165 * but allow concurrent faults), and pte mapped but not yet locked. 5166 * We return with mmap_lock still held, but pte unmapped and unlocked. 5167 */ 5168 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 5169 { 5170 struct vm_area_struct *vma = vmf->vma; 5171 unsigned long addr = vmf->address; 5172 struct folio *folio; 5173 vm_fault_t ret = 0; 5174 int nr_pages = 1; 5175 pte_t entry; 5176 5177 /* File mapping without ->vm_ops ? */ 5178 if (vma->vm_flags & VM_SHARED) 5179 return VM_FAULT_SIGBUS; 5180 5181 /* 5182 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 5183 * be distinguished from a transient failure of pte_offset_map(). 5184 */ 5185 if (pte_alloc(vma->vm_mm, vmf->pmd)) 5186 return VM_FAULT_OOM; 5187 5188 /* Use the zero-page for reads */ 5189 if (!(vmf->flags & FAULT_FLAG_WRITE) && 5190 !mm_forbids_zeropage(vma->vm_mm)) { 5191 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 5192 vma->vm_page_prot)); 5193 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5194 vmf->address, &vmf->ptl); 5195 if (!vmf->pte) 5196 goto unlock; 5197 if (vmf_pte_changed(vmf)) { 5198 update_mmu_tlb(vma, vmf->address, vmf->pte); 5199 goto unlock; 5200 } 5201 ret = check_stable_address_space(vma->vm_mm); 5202 if (ret) 5203 goto unlock; 5204 /* Deliver the page fault to userland, check inside PT lock */ 5205 if (userfaultfd_missing(vma)) { 5206 pte_unmap_unlock(vmf->pte, vmf->ptl); 5207 return handle_userfault(vmf, VM_UFFD_MISSING); 5208 } 5209 goto setpte; 5210 } 5211 5212 /* Allocate our own private page. */ 5213 ret = vmf_anon_prepare(vmf); 5214 if (ret) 5215 return ret; 5216 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 5217 folio = alloc_anon_folio(vmf); 5218 if (IS_ERR(folio)) 5219 return 0; 5220 if (!folio) 5221 goto oom; 5222 5223 nr_pages = folio_nr_pages(folio); 5224 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 5225 5226 /* 5227 * The memory barrier inside __folio_mark_uptodate makes sure that 5228 * preceding stores to the page contents become visible before 5229 * the set_pte_at() write. 5230 */ 5231 __folio_mark_uptodate(folio); 5232 5233 entry = folio_mk_pte(folio, vma->vm_page_prot); 5234 entry = pte_sw_mkyoung(entry); 5235 if (vma->vm_flags & VM_WRITE) 5236 entry = pte_mkwrite(pte_mkdirty(entry), vma); 5237 5238 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 5239 if (!vmf->pte) 5240 goto release; 5241 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 5242 update_mmu_tlb(vma, addr, vmf->pte); 5243 goto release; 5244 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5245 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5246 goto release; 5247 } 5248 5249 ret = check_stable_address_space(vma->vm_mm); 5250 if (ret) 5251 goto release; 5252 5253 /* Deliver the page fault to userland, check inside PT lock */ 5254 if (userfaultfd_missing(vma)) { 5255 pte_unmap_unlock(vmf->pte, vmf->ptl); 5256 folio_put(folio); 5257 return handle_userfault(vmf, VM_UFFD_MISSING); 5258 } 5259 5260 folio_ref_add(folio, nr_pages - 1); 5261 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 5262 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 5263 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5264 folio_add_lru_vma(folio, vma); 5265 setpte: 5266 if (vmf_orig_pte_uffd_wp(vmf)) 5267 entry = pte_mkuffd_wp(entry); 5268 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 5269 5270 /* No need to invalidate - it was non-present before */ 5271 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 5272 unlock: 5273 if (vmf->pte) 5274 pte_unmap_unlock(vmf->pte, vmf->ptl); 5275 return ret; 5276 release: 5277 folio_put(folio); 5278 goto unlock; 5279 oom: 5280 return VM_FAULT_OOM; 5281 } 5282 5283 /* 5284 * The mmap_lock must have been held on entry, and may have been 5285 * released depending on flags and vma->vm_ops->fault() return value. 5286 * See filemap_fault() and __lock_page_retry(). 5287 */ 5288 static vm_fault_t __do_fault(struct vm_fault *vmf) 5289 { 5290 struct vm_area_struct *vma = vmf->vma; 5291 struct folio *folio; 5292 vm_fault_t ret; 5293 5294 /* 5295 * Preallocate pte before we take page_lock because this might lead to 5296 * deadlocks for memcg reclaim which waits for pages under writeback: 5297 * lock_page(A) 5298 * SetPageWriteback(A) 5299 * unlock_page(A) 5300 * lock_page(B) 5301 * lock_page(B) 5302 * pte_alloc_one 5303 * shrink_folio_list 5304 * wait_on_page_writeback(A) 5305 * SetPageWriteback(B) 5306 * unlock_page(B) 5307 * # flush A, B to clear the writeback 5308 */ 5309 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 5310 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5311 if (!vmf->prealloc_pte) 5312 return VM_FAULT_OOM; 5313 } 5314 5315 ret = vma->vm_ops->fault(vmf); 5316 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 5317 VM_FAULT_DONE_COW))) 5318 return ret; 5319 5320 folio = page_folio(vmf->page); 5321 if (unlikely(PageHWPoison(vmf->page))) { 5322 vm_fault_t poisonret = VM_FAULT_HWPOISON; 5323 if (ret & VM_FAULT_LOCKED) { 5324 if (page_mapped(vmf->page)) 5325 unmap_mapping_folio(folio); 5326 /* Retry if a clean folio was removed from the cache. */ 5327 if (mapping_evict_folio(folio->mapping, folio)) 5328 poisonret = VM_FAULT_NOPAGE; 5329 folio_unlock(folio); 5330 } 5331 folio_put(folio); 5332 vmf->page = NULL; 5333 return poisonret; 5334 } 5335 5336 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5337 folio_lock(folio); 5338 else 5339 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5340 5341 return ret; 5342 } 5343 5344 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5345 static void deposit_prealloc_pte(struct vm_fault *vmf) 5346 { 5347 struct vm_area_struct *vma = vmf->vma; 5348 5349 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5350 /* 5351 * We are going to consume the prealloc table, 5352 * count that as nr_ptes. 5353 */ 5354 mm_inc_nr_ptes(vma->vm_mm); 5355 vmf->prealloc_pte = NULL; 5356 } 5357 5358 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5359 { 5360 struct vm_area_struct *vma = vmf->vma; 5361 bool write = vmf->flags & FAULT_FLAG_WRITE; 5362 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5363 pmd_t entry; 5364 vm_fault_t ret = VM_FAULT_FALLBACK; 5365 5366 /* 5367 * It is too late to allocate a small folio, we already have a large 5368 * folio in the pagecache: especially s390 KVM cannot tolerate any 5369 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5370 * PMD mappings if THPs are disabled. As we already have a THP, 5371 * behave as if we are forcing a collapse. 5372 */ 5373 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags, 5374 /* forced_collapse=*/ true)) 5375 return ret; 5376 5377 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5378 return ret; 5379 5380 if (folio_order(folio) != HPAGE_PMD_ORDER) 5381 return ret; 5382 page = &folio->page; 5383 5384 /* 5385 * Just backoff if any subpage of a THP is corrupted otherwise 5386 * the corrupted page may mapped by PMD silently to escape the 5387 * check. This kind of THP just can be PTE mapped. Access to 5388 * the corrupted subpage should trigger SIGBUS as expected. 5389 */ 5390 if (unlikely(folio_test_has_hwpoisoned(folio))) 5391 return ret; 5392 5393 /* 5394 * Archs like ppc64 need additional space to store information 5395 * related to pte entry. Use the preallocated table for that. 5396 */ 5397 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5398 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5399 if (!vmf->prealloc_pte) 5400 return VM_FAULT_OOM; 5401 } 5402 5403 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5404 if (unlikely(!pmd_none(*vmf->pmd))) 5405 goto out; 5406 5407 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5408 5409 entry = folio_mk_pmd(folio, vma->vm_page_prot); 5410 if (write) 5411 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5412 5413 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5414 folio_add_file_rmap_pmd(folio, page, vma); 5415 5416 /* 5417 * deposit and withdraw with pmd lock held 5418 */ 5419 if (arch_needs_pgtable_deposit()) 5420 deposit_prealloc_pte(vmf); 5421 5422 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5423 5424 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5425 5426 /* fault is handled */ 5427 ret = 0; 5428 count_vm_event(THP_FILE_MAPPED); 5429 out: 5430 spin_unlock(vmf->ptl); 5431 return ret; 5432 } 5433 #else 5434 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5435 { 5436 return VM_FAULT_FALLBACK; 5437 } 5438 #endif 5439 5440 /** 5441 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5442 * @vmf: Fault description. 5443 * @folio: The folio that contains @page. 5444 * @page: The first page to create a PTE for. 5445 * @nr: The number of PTEs to create. 5446 * @addr: The first address to create a PTE for. 5447 */ 5448 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5449 struct page *page, unsigned int nr, unsigned long addr) 5450 { 5451 struct vm_area_struct *vma = vmf->vma; 5452 bool write = vmf->flags & FAULT_FLAG_WRITE; 5453 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5454 pte_t entry; 5455 5456 flush_icache_pages(vma, page, nr); 5457 entry = mk_pte(page, vma->vm_page_prot); 5458 5459 if (prefault && arch_wants_old_prefaulted_pte()) 5460 entry = pte_mkold(entry); 5461 else 5462 entry = pte_sw_mkyoung(entry); 5463 5464 if (write) 5465 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5466 else if (pte_write(entry) && folio_test_dirty(folio)) 5467 entry = pte_mkdirty(entry); 5468 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5469 entry = pte_mkuffd_wp(entry); 5470 /* copy-on-write page */ 5471 if (write && !(vma->vm_flags & VM_SHARED)) { 5472 VM_BUG_ON_FOLIO(nr != 1, folio); 5473 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5474 folio_add_lru_vma(folio, vma); 5475 } else { 5476 folio_add_file_rmap_ptes(folio, page, nr, vma); 5477 } 5478 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5479 5480 /* no need to invalidate: a not-present page won't be cached */ 5481 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5482 } 5483 5484 static bool vmf_pte_changed(struct vm_fault *vmf) 5485 { 5486 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5487 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5488 5489 return !pte_none(ptep_get(vmf->pte)); 5490 } 5491 5492 /** 5493 * finish_fault - finish page fault once we have prepared the page to fault 5494 * 5495 * @vmf: structure describing the fault 5496 * 5497 * This function handles all that is needed to finish a page fault once the 5498 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5499 * given page, adds reverse page mapping, handles memcg charges and LRU 5500 * addition. 5501 * 5502 * The function expects the page to be locked and on success it consumes a 5503 * reference of a page being mapped (for the PTE which maps it). 5504 * 5505 * Return: %0 on success, %VM_FAULT_ code in case of error. 5506 */ 5507 vm_fault_t finish_fault(struct vm_fault *vmf) 5508 { 5509 struct vm_area_struct *vma = vmf->vma; 5510 struct page *page; 5511 struct folio *folio; 5512 vm_fault_t ret; 5513 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5514 !(vma->vm_flags & VM_SHARED); 5515 int type, nr_pages; 5516 unsigned long addr; 5517 bool needs_fallback = false; 5518 5519 fallback: 5520 addr = vmf->address; 5521 5522 /* Did we COW the page? */ 5523 if (is_cow) 5524 page = vmf->cow_page; 5525 else 5526 page = vmf->page; 5527 5528 folio = page_folio(page); 5529 /* 5530 * check even for read faults because we might have lost our CoWed 5531 * page 5532 */ 5533 if (!(vma->vm_flags & VM_SHARED)) { 5534 ret = check_stable_address_space(vma->vm_mm); 5535 if (ret) 5536 return ret; 5537 } 5538 5539 if (!needs_fallback && vma->vm_file) { 5540 struct address_space *mapping = vma->vm_file->f_mapping; 5541 pgoff_t file_end; 5542 5543 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 5544 5545 /* 5546 * Do not allow to map with PTEs beyond i_size and with PMD 5547 * across i_size to preserve SIGBUS semantics. 5548 * 5549 * Make an exception for shmem/tmpfs that for long time 5550 * intentionally mapped with PMDs across i_size. 5551 */ 5552 needs_fallback = !shmem_mapping(mapping) && 5553 file_end < folio_next_index(folio); 5554 } 5555 5556 if (pmd_none(*vmf->pmd)) { 5557 if (!needs_fallback && folio_test_pmd_mappable(folio)) { 5558 ret = do_set_pmd(vmf, folio, page); 5559 if (ret != VM_FAULT_FALLBACK) 5560 return ret; 5561 } 5562 5563 if (vmf->prealloc_pte) 5564 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5565 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5566 return VM_FAULT_OOM; 5567 } 5568 5569 nr_pages = folio_nr_pages(folio); 5570 5571 /* Using per-page fault to maintain the uffd semantics */ 5572 if (unlikely(userfaultfd_armed(vma)) || unlikely(needs_fallback)) { 5573 nr_pages = 1; 5574 } else if (nr_pages > 1) { 5575 pgoff_t idx = folio_page_idx(folio, page); 5576 /* The page offset of vmf->address within the VMA. */ 5577 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5578 /* The index of the entry in the pagetable for fault page. */ 5579 pgoff_t pte_off = pte_index(vmf->address); 5580 5581 /* 5582 * Fallback to per-page fault in case the folio size in page 5583 * cache beyond the VMA limits and PMD pagetable limits. 5584 */ 5585 if (unlikely(vma_off < idx || 5586 vma_off + (nr_pages - idx) > vma_pages(vma) || 5587 pte_off < idx || 5588 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5589 nr_pages = 1; 5590 } else { 5591 /* Now we can set mappings for the whole large folio. */ 5592 addr = vmf->address - idx * PAGE_SIZE; 5593 page = &folio->page; 5594 } 5595 } 5596 5597 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5598 addr, &vmf->ptl); 5599 if (!vmf->pte) 5600 return VM_FAULT_NOPAGE; 5601 5602 /* Re-check under ptl */ 5603 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5604 update_mmu_tlb(vma, addr, vmf->pte); 5605 ret = VM_FAULT_NOPAGE; 5606 goto unlock; 5607 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5608 needs_fallback = true; 5609 pte_unmap_unlock(vmf->pte, vmf->ptl); 5610 goto fallback; 5611 } 5612 5613 folio_ref_add(folio, nr_pages - 1); 5614 set_pte_range(vmf, folio, page, nr_pages, addr); 5615 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5616 add_mm_counter(vma->vm_mm, type, nr_pages); 5617 ret = 0; 5618 5619 unlock: 5620 pte_unmap_unlock(vmf->pte, vmf->ptl); 5621 return ret; 5622 } 5623 5624 static unsigned long fault_around_pages __read_mostly = 5625 65536 >> PAGE_SHIFT; 5626 5627 #ifdef CONFIG_DEBUG_FS 5628 static int fault_around_bytes_get(void *data, u64 *val) 5629 { 5630 *val = fault_around_pages << PAGE_SHIFT; 5631 return 0; 5632 } 5633 5634 /* 5635 * fault_around_bytes must be rounded down to the nearest page order as it's 5636 * what do_fault_around() expects to see. 5637 */ 5638 static int fault_around_bytes_set(void *data, u64 val) 5639 { 5640 if (val / PAGE_SIZE > PTRS_PER_PTE) 5641 return -EINVAL; 5642 5643 /* 5644 * The minimum value is 1 page, however this results in no fault-around 5645 * at all. See should_fault_around(). 5646 */ 5647 val = max(val, PAGE_SIZE); 5648 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5649 5650 return 0; 5651 } 5652 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5653 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5654 5655 static int __init fault_around_debugfs(void) 5656 { 5657 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5658 &fault_around_bytes_fops); 5659 return 0; 5660 } 5661 late_initcall(fault_around_debugfs); 5662 #endif 5663 5664 /* 5665 * do_fault_around() tries to map few pages around the fault address. The hope 5666 * is that the pages will be needed soon and this will lower the number of 5667 * faults to handle. 5668 * 5669 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5670 * not ready to be mapped: not up-to-date, locked, etc. 5671 * 5672 * This function doesn't cross VMA or page table boundaries, in order to call 5673 * map_pages() and acquire a PTE lock only once. 5674 * 5675 * fault_around_pages defines how many pages we'll try to map. 5676 * do_fault_around() expects it to be set to a power of two less than or equal 5677 * to PTRS_PER_PTE. 5678 * 5679 * The virtual address of the area that we map is naturally aligned to 5680 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5681 * (and therefore to page order). This way it's easier to guarantee 5682 * that we don't cross page table boundaries. 5683 */ 5684 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5685 { 5686 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5687 pgoff_t pte_off = pte_index(vmf->address); 5688 /* The page offset of vmf->address within the VMA. */ 5689 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5690 pgoff_t from_pte, to_pte; 5691 vm_fault_t ret; 5692 5693 /* The PTE offset of the start address, clamped to the VMA. */ 5694 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5695 pte_off - min(pte_off, vma_off)); 5696 5697 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5698 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5699 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5700 5701 if (pmd_none(*vmf->pmd)) { 5702 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5703 if (!vmf->prealloc_pte) 5704 return VM_FAULT_OOM; 5705 } 5706 5707 rcu_read_lock(); 5708 ret = vmf->vma->vm_ops->map_pages(vmf, 5709 vmf->pgoff + from_pte - pte_off, 5710 vmf->pgoff + to_pte - pte_off); 5711 rcu_read_unlock(); 5712 5713 return ret; 5714 } 5715 5716 /* Return true if we should do read fault-around, false otherwise */ 5717 static inline bool should_fault_around(struct vm_fault *vmf) 5718 { 5719 /* No ->map_pages? No way to fault around... */ 5720 if (!vmf->vma->vm_ops->map_pages) 5721 return false; 5722 5723 if (uffd_disable_fault_around(vmf->vma)) 5724 return false; 5725 5726 /* A single page implies no faulting 'around' at all. */ 5727 return fault_around_pages > 1; 5728 } 5729 5730 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5731 { 5732 vm_fault_t ret = 0; 5733 struct folio *folio; 5734 5735 /* 5736 * Let's call ->map_pages() first and use ->fault() as fallback 5737 * if page by the offset is not ready to be mapped (cold cache or 5738 * something). 5739 */ 5740 if (should_fault_around(vmf)) { 5741 ret = do_fault_around(vmf); 5742 if (ret) 5743 return ret; 5744 } 5745 5746 ret = vmf_can_call_fault(vmf); 5747 if (ret) 5748 return ret; 5749 5750 ret = __do_fault(vmf); 5751 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5752 return ret; 5753 5754 ret |= finish_fault(vmf); 5755 folio = page_folio(vmf->page); 5756 folio_unlock(folio); 5757 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5758 folio_put(folio); 5759 return ret; 5760 } 5761 5762 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5763 { 5764 struct vm_area_struct *vma = vmf->vma; 5765 struct folio *folio; 5766 vm_fault_t ret; 5767 5768 ret = vmf_can_call_fault(vmf); 5769 if (!ret) 5770 ret = vmf_anon_prepare(vmf); 5771 if (ret) 5772 return ret; 5773 5774 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5775 if (!folio) 5776 return VM_FAULT_OOM; 5777 5778 vmf->cow_page = &folio->page; 5779 5780 ret = __do_fault(vmf); 5781 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5782 goto uncharge_out; 5783 if (ret & VM_FAULT_DONE_COW) 5784 return ret; 5785 5786 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5787 ret = VM_FAULT_HWPOISON; 5788 goto unlock; 5789 } 5790 __folio_mark_uptodate(folio); 5791 5792 ret |= finish_fault(vmf); 5793 unlock: 5794 unlock_page(vmf->page); 5795 put_page(vmf->page); 5796 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5797 goto uncharge_out; 5798 return ret; 5799 uncharge_out: 5800 folio_put(folio); 5801 return ret; 5802 } 5803 5804 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5805 { 5806 struct vm_area_struct *vma = vmf->vma; 5807 vm_fault_t ret, tmp; 5808 struct folio *folio; 5809 5810 ret = vmf_can_call_fault(vmf); 5811 if (ret) 5812 return ret; 5813 5814 ret = __do_fault(vmf); 5815 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5816 return ret; 5817 5818 folio = page_folio(vmf->page); 5819 5820 /* 5821 * Check if the backing address space wants to know that the page is 5822 * about to become writable 5823 */ 5824 if (vma->vm_ops->page_mkwrite) { 5825 folio_unlock(folio); 5826 tmp = do_page_mkwrite(vmf, folio); 5827 if (unlikely(!tmp || 5828 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5829 folio_put(folio); 5830 return tmp; 5831 } 5832 } 5833 5834 ret |= finish_fault(vmf); 5835 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5836 VM_FAULT_RETRY))) { 5837 folio_unlock(folio); 5838 folio_put(folio); 5839 return ret; 5840 } 5841 5842 ret |= fault_dirty_shared_page(vmf); 5843 return ret; 5844 } 5845 5846 /* 5847 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5848 * but allow concurrent faults). 5849 * The mmap_lock may have been released depending on flags and our 5850 * return value. See filemap_fault() and __folio_lock_or_retry(). 5851 * If mmap_lock is released, vma may become invalid (for example 5852 * by other thread calling munmap()). 5853 */ 5854 static vm_fault_t do_fault(struct vm_fault *vmf) 5855 { 5856 struct vm_area_struct *vma = vmf->vma; 5857 struct mm_struct *vm_mm = vma->vm_mm; 5858 vm_fault_t ret; 5859 5860 /* 5861 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5862 */ 5863 if (!vma->vm_ops->fault) { 5864 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5865 vmf->address, &vmf->ptl); 5866 if (unlikely(!vmf->pte)) 5867 ret = VM_FAULT_SIGBUS; 5868 else { 5869 /* 5870 * Make sure this is not a temporary clearing of pte 5871 * by holding ptl and checking again. A R/M/W update 5872 * of pte involves: take ptl, clearing the pte so that 5873 * we don't have concurrent modification by hardware 5874 * followed by an update. 5875 */ 5876 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5877 ret = VM_FAULT_SIGBUS; 5878 else 5879 ret = VM_FAULT_NOPAGE; 5880 5881 pte_unmap_unlock(vmf->pte, vmf->ptl); 5882 } 5883 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5884 ret = do_read_fault(vmf); 5885 else if (!(vma->vm_flags & VM_SHARED)) 5886 ret = do_cow_fault(vmf); 5887 else 5888 ret = do_shared_fault(vmf); 5889 5890 /* preallocated pagetable is unused: free it */ 5891 if (vmf->prealloc_pte) { 5892 pte_free(vm_mm, vmf->prealloc_pte); 5893 vmf->prealloc_pte = NULL; 5894 } 5895 return ret; 5896 } 5897 5898 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5899 unsigned long addr, int *flags, 5900 bool writable, int *last_cpupid) 5901 { 5902 struct vm_area_struct *vma = vmf->vma; 5903 5904 /* 5905 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5906 * much anyway since they can be in shared cache state. This misses 5907 * the case where a mapping is writable but the process never writes 5908 * to it but pte_write gets cleared during protection updates and 5909 * pte_dirty has unpredictable behaviour between PTE scan updates, 5910 * background writeback, dirty balancing and application behaviour. 5911 */ 5912 if (!writable) 5913 *flags |= TNF_NO_GROUP; 5914 5915 /* 5916 * Flag if the folio is shared between multiple address spaces. This 5917 * is later used when determining whether to group tasks together 5918 */ 5919 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5920 *flags |= TNF_SHARED; 5921 /* 5922 * For memory tiering mode, cpupid of slow memory page is used 5923 * to record page access time. So use default value. 5924 */ 5925 if (folio_use_access_time(folio)) 5926 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5927 else 5928 *last_cpupid = folio_last_cpupid(folio); 5929 5930 /* Record the current PID acceesing VMA */ 5931 vma_set_access_pid_bit(vma); 5932 5933 count_vm_numa_event(NUMA_HINT_FAULTS); 5934 #ifdef CONFIG_NUMA_BALANCING 5935 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5936 #endif 5937 if (folio_nid(folio) == numa_node_id()) { 5938 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5939 *flags |= TNF_FAULT_LOCAL; 5940 } 5941 5942 return mpol_misplaced(folio, vmf, addr); 5943 } 5944 5945 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5946 unsigned long fault_addr, pte_t *fault_pte, 5947 bool writable) 5948 { 5949 pte_t pte, old_pte; 5950 5951 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5952 pte = pte_modify(old_pte, vma->vm_page_prot); 5953 pte = pte_mkyoung(pte); 5954 if (writable) 5955 pte = pte_mkwrite(pte, vma); 5956 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5957 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5958 } 5959 5960 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5961 struct folio *folio, pte_t fault_pte, 5962 bool ignore_writable, bool pte_write_upgrade) 5963 { 5964 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5965 unsigned long start, end, addr = vmf->address; 5966 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5967 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5968 pte_t *start_ptep; 5969 5970 /* Stay within the VMA and within the page table. */ 5971 start = max3(addr_start, pt_start, vma->vm_start); 5972 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5973 vma->vm_end); 5974 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5975 5976 /* Restore all PTEs' mapping of the large folio */ 5977 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5978 pte_t ptent = ptep_get(start_ptep); 5979 bool writable = false; 5980 5981 if (!pte_present(ptent) || !pte_protnone(ptent)) 5982 continue; 5983 5984 if (pfn_folio(pte_pfn(ptent)) != folio) 5985 continue; 5986 5987 if (!ignore_writable) { 5988 ptent = pte_modify(ptent, vma->vm_page_prot); 5989 writable = pte_write(ptent); 5990 if (!writable && pte_write_upgrade && 5991 can_change_pte_writable(vma, addr, ptent)) 5992 writable = true; 5993 } 5994 5995 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5996 } 5997 } 5998 5999 static vm_fault_t do_numa_page(struct vm_fault *vmf) 6000 { 6001 struct vm_area_struct *vma = vmf->vma; 6002 struct folio *folio = NULL; 6003 int nid = NUMA_NO_NODE; 6004 bool writable = false, ignore_writable = false; 6005 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 6006 int last_cpupid; 6007 int target_nid; 6008 pte_t pte, old_pte; 6009 int flags = 0, nr_pages; 6010 6011 /* 6012 * The pte cannot be used safely until we verify, while holding the page 6013 * table lock, that its contents have not changed during fault handling. 6014 */ 6015 spin_lock(vmf->ptl); 6016 /* Read the live PTE from the page tables: */ 6017 old_pte = ptep_get(vmf->pte); 6018 6019 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 6020 pte_unmap_unlock(vmf->pte, vmf->ptl); 6021 return 0; 6022 } 6023 6024 pte = pte_modify(old_pte, vma->vm_page_prot); 6025 6026 /* 6027 * Detect now whether the PTE could be writable; this information 6028 * is only valid while holding the PT lock. 6029 */ 6030 writable = pte_write(pte); 6031 if (!writable && pte_write_upgrade && 6032 can_change_pte_writable(vma, vmf->address, pte)) 6033 writable = true; 6034 6035 folio = vm_normal_folio(vma, vmf->address, pte); 6036 if (!folio || folio_is_zone_device(folio)) 6037 goto out_map; 6038 6039 nid = folio_nid(folio); 6040 nr_pages = folio_nr_pages(folio); 6041 6042 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 6043 writable, &last_cpupid); 6044 if (target_nid == NUMA_NO_NODE) 6045 goto out_map; 6046 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 6047 flags |= TNF_MIGRATE_FAIL; 6048 goto out_map; 6049 } 6050 /* The folio is isolated and isolation code holds a folio reference. */ 6051 pte_unmap_unlock(vmf->pte, vmf->ptl); 6052 writable = false; 6053 ignore_writable = true; 6054 6055 /* Migrate to the requested node */ 6056 if (!migrate_misplaced_folio(folio, target_nid)) { 6057 nid = target_nid; 6058 flags |= TNF_MIGRATED; 6059 task_numa_fault(last_cpupid, nid, nr_pages, flags); 6060 return 0; 6061 } 6062 6063 flags |= TNF_MIGRATE_FAIL; 6064 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 6065 vmf->address, &vmf->ptl); 6066 if (unlikely(!vmf->pte)) 6067 return 0; 6068 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 6069 pte_unmap_unlock(vmf->pte, vmf->ptl); 6070 return 0; 6071 } 6072 out_map: 6073 /* 6074 * Make it present again, depending on how arch implements 6075 * non-accessible ptes, some can allow access by kernel mode. 6076 */ 6077 if (folio && folio_test_large(folio)) 6078 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 6079 pte_write_upgrade); 6080 else 6081 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 6082 writable); 6083 pte_unmap_unlock(vmf->pte, vmf->ptl); 6084 6085 if (nid != NUMA_NO_NODE) 6086 task_numa_fault(last_cpupid, nid, nr_pages, flags); 6087 return 0; 6088 } 6089 6090 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 6091 { 6092 struct vm_area_struct *vma = vmf->vma; 6093 if (vma_is_anonymous(vma)) 6094 return do_huge_pmd_anonymous_page(vmf); 6095 if (vma->vm_ops->huge_fault) 6096 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 6097 return VM_FAULT_FALLBACK; 6098 } 6099 6100 /* `inline' is required to avoid gcc 4.1.2 build error */ 6101 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 6102 { 6103 struct vm_area_struct *vma = vmf->vma; 6104 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6105 vm_fault_t ret; 6106 6107 if (vma_is_anonymous(vma)) { 6108 if (likely(!unshare) && 6109 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 6110 if (userfaultfd_wp_async(vmf->vma)) 6111 goto split; 6112 return handle_userfault(vmf, VM_UFFD_WP); 6113 } 6114 return do_huge_pmd_wp_page(vmf); 6115 } 6116 6117 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6118 if (vma->vm_ops->huge_fault) { 6119 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 6120 if (!(ret & VM_FAULT_FALLBACK)) 6121 return ret; 6122 } 6123 } 6124 6125 split: 6126 /* COW or write-notify handled on pte level: split pmd. */ 6127 __split_huge_pmd(vma, vmf->pmd, vmf->address, false); 6128 6129 return VM_FAULT_FALLBACK; 6130 } 6131 6132 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 6133 { 6134 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6135 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6136 struct vm_area_struct *vma = vmf->vma; 6137 /* No support for anonymous transparent PUD pages yet */ 6138 if (vma_is_anonymous(vma)) 6139 return VM_FAULT_FALLBACK; 6140 if (vma->vm_ops->huge_fault) 6141 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6142 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 6143 return VM_FAULT_FALLBACK; 6144 } 6145 6146 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 6147 { 6148 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6149 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6150 struct vm_area_struct *vma = vmf->vma; 6151 vm_fault_t ret; 6152 6153 /* No support for anonymous transparent PUD pages yet */ 6154 if (vma_is_anonymous(vma)) 6155 goto split; 6156 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6157 if (vma->vm_ops->huge_fault) { 6158 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6159 if (!(ret & VM_FAULT_FALLBACK)) 6160 return ret; 6161 } 6162 } 6163 split: 6164 /* COW or write-notify not handled on PUD level: split pud.*/ 6165 __split_huge_pud(vma, vmf->pud, vmf->address); 6166 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 6167 return VM_FAULT_FALLBACK; 6168 } 6169 6170 /* 6171 * These routines also need to handle stuff like marking pages dirty 6172 * and/or accessed for architectures that don't do it in hardware (most 6173 * RISC architectures). The early dirtying is also good on the i386. 6174 * 6175 * There is also a hook called "update_mmu_cache()" that architectures 6176 * with external mmu caches can use to update those (ie the Sparc or 6177 * PowerPC hashed page tables that act as extended TLBs). 6178 * 6179 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 6180 * concurrent faults). 6181 * 6182 * The mmap_lock may have been released depending on flags and our return value. 6183 * See filemap_fault() and __folio_lock_or_retry(). 6184 */ 6185 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 6186 { 6187 pte_t entry; 6188 6189 if (unlikely(pmd_none(*vmf->pmd))) { 6190 /* 6191 * Leave __pte_alloc() until later: because vm_ops->fault may 6192 * want to allocate huge page, and if we expose page table 6193 * for an instant, it will be difficult to retract from 6194 * concurrent faults and from rmap lookups. 6195 */ 6196 vmf->pte = NULL; 6197 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 6198 } else { 6199 pmd_t dummy_pmdval; 6200 6201 /* 6202 * A regular pmd is established and it can't morph into a huge 6203 * pmd by anon khugepaged, since that takes mmap_lock in write 6204 * mode; but shmem or file collapse to THP could still morph 6205 * it into a huge pmd: just retry later if so. 6206 * 6207 * Use the maywrite version to indicate that vmf->pte may be 6208 * modified, but since we will use pte_same() to detect the 6209 * change of the !pte_none() entry, there is no need to recheck 6210 * the pmdval. Here we chooes to pass a dummy variable instead 6211 * of NULL, which helps new user think about why this place is 6212 * special. 6213 */ 6214 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 6215 vmf->address, &dummy_pmdval, 6216 &vmf->ptl); 6217 if (unlikely(!vmf->pte)) 6218 return 0; 6219 vmf->orig_pte = ptep_get_lockless(vmf->pte); 6220 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 6221 6222 if (pte_none(vmf->orig_pte)) { 6223 pte_unmap(vmf->pte); 6224 vmf->pte = NULL; 6225 } 6226 } 6227 6228 if (!vmf->pte) 6229 return do_pte_missing(vmf); 6230 6231 if (!pte_present(vmf->orig_pte)) 6232 return do_swap_page(vmf); 6233 6234 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 6235 return do_numa_page(vmf); 6236 6237 spin_lock(vmf->ptl); 6238 entry = vmf->orig_pte; 6239 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 6240 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 6241 goto unlock; 6242 } 6243 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6244 if (!pte_write(entry)) 6245 return do_wp_page(vmf); 6246 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 6247 entry = pte_mkdirty(entry); 6248 } 6249 entry = pte_mkyoung(entry); 6250 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 6251 vmf->flags & FAULT_FLAG_WRITE)) { 6252 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 6253 vmf->pte, 1); 6254 } else { 6255 /* Skip spurious TLB flush for retried page fault */ 6256 if (vmf->flags & FAULT_FLAG_TRIED) 6257 goto unlock; 6258 /* 6259 * This is needed only for protection faults but the arch code 6260 * is not yet telling us if this is a protection fault or not. 6261 * This still avoids useless tlb flushes for .text page faults 6262 * with threads. 6263 */ 6264 if (vmf->flags & FAULT_FLAG_WRITE) 6265 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 6266 vmf->pte); 6267 } 6268 unlock: 6269 pte_unmap_unlock(vmf->pte, vmf->ptl); 6270 return 0; 6271 } 6272 6273 /* 6274 * On entry, we hold either the VMA lock or the mmap_lock 6275 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 6276 * the result, the mmap_lock is not held on exit. See filemap_fault() 6277 * and __folio_lock_or_retry(). 6278 */ 6279 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 6280 unsigned long address, unsigned int flags) 6281 { 6282 struct vm_fault vmf = { 6283 .vma = vma, 6284 .address = address & PAGE_MASK, 6285 .real_address = address, 6286 .flags = flags, 6287 .pgoff = linear_page_index(vma, address), 6288 .gfp_mask = __get_fault_gfp_mask(vma), 6289 }; 6290 struct mm_struct *mm = vma->vm_mm; 6291 vm_flags_t vm_flags = vma->vm_flags; 6292 pgd_t *pgd; 6293 p4d_t *p4d; 6294 vm_fault_t ret; 6295 6296 pgd = pgd_offset(mm, address); 6297 p4d = p4d_alloc(mm, pgd, address); 6298 if (!p4d) 6299 return VM_FAULT_OOM; 6300 6301 vmf.pud = pud_alloc(mm, p4d, address); 6302 if (!vmf.pud) 6303 return VM_FAULT_OOM; 6304 retry_pud: 6305 if (pud_none(*vmf.pud) && 6306 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PUD_ORDER)) { 6307 ret = create_huge_pud(&vmf); 6308 if (!(ret & VM_FAULT_FALLBACK)) 6309 return ret; 6310 } else { 6311 pud_t orig_pud = *vmf.pud; 6312 6313 barrier(); 6314 if (pud_trans_huge(orig_pud)) { 6315 6316 /* 6317 * TODO once we support anonymous PUDs: NUMA case and 6318 * FAULT_FLAG_UNSHARE handling. 6319 */ 6320 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 6321 ret = wp_huge_pud(&vmf, orig_pud); 6322 if (!(ret & VM_FAULT_FALLBACK)) 6323 return ret; 6324 } else { 6325 huge_pud_set_accessed(&vmf, orig_pud); 6326 return 0; 6327 } 6328 } 6329 } 6330 6331 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 6332 if (!vmf.pmd) 6333 return VM_FAULT_OOM; 6334 6335 /* Huge pud page fault raced with pmd_alloc? */ 6336 if (pud_trans_unstable(vmf.pud)) 6337 goto retry_pud; 6338 6339 if (pmd_none(*vmf.pmd) && 6340 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PMD_ORDER)) { 6341 ret = create_huge_pmd(&vmf); 6342 if (!(ret & VM_FAULT_FALLBACK)) 6343 return ret; 6344 } else { 6345 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6346 6347 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 6348 VM_BUG_ON(thp_migration_supported() && 6349 !is_pmd_migration_entry(vmf.orig_pmd)); 6350 if (is_pmd_migration_entry(vmf.orig_pmd)) 6351 pmd_migration_entry_wait(mm, vmf.pmd); 6352 return 0; 6353 } 6354 if (pmd_trans_huge(vmf.orig_pmd)) { 6355 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6356 return do_huge_pmd_numa_page(&vmf); 6357 6358 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6359 !pmd_write(vmf.orig_pmd)) { 6360 ret = wp_huge_pmd(&vmf); 6361 if (!(ret & VM_FAULT_FALLBACK)) 6362 return ret; 6363 } else { 6364 huge_pmd_set_accessed(&vmf); 6365 return 0; 6366 } 6367 } 6368 } 6369 6370 return handle_pte_fault(&vmf); 6371 } 6372 6373 /** 6374 * mm_account_fault - Do page fault accounting 6375 * @mm: mm from which memcg should be extracted. It can be NULL. 6376 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6377 * of perf event counters, but we'll still do the per-task accounting to 6378 * the task who triggered this page fault. 6379 * @address: the faulted address. 6380 * @flags: the fault flags. 6381 * @ret: the fault retcode. 6382 * 6383 * This will take care of most of the page fault accounting. Meanwhile, it 6384 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6385 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6386 * still be in per-arch page fault handlers at the entry of page fault. 6387 */ 6388 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6389 unsigned long address, unsigned int flags, 6390 vm_fault_t ret) 6391 { 6392 bool major; 6393 6394 /* Incomplete faults will be accounted upon completion. */ 6395 if (ret & VM_FAULT_RETRY) 6396 return; 6397 6398 /* 6399 * To preserve the behavior of older kernels, PGFAULT counters record 6400 * both successful and failed faults, as opposed to perf counters, 6401 * which ignore failed cases. 6402 */ 6403 count_vm_event(PGFAULT); 6404 count_memcg_event_mm(mm, PGFAULT); 6405 6406 /* 6407 * Do not account for unsuccessful faults (e.g. when the address wasn't 6408 * valid). That includes arch_vma_access_permitted() failing before 6409 * reaching here. So this is not a "this many hardware page faults" 6410 * counter. We should use the hw profiling for that. 6411 */ 6412 if (ret & VM_FAULT_ERROR) 6413 return; 6414 6415 /* 6416 * We define the fault as a major fault when the final successful fault 6417 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6418 * handle it immediately previously). 6419 */ 6420 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6421 6422 if (major) 6423 current->maj_flt++; 6424 else 6425 current->min_flt++; 6426 6427 /* 6428 * If the fault is done for GUP, regs will be NULL. We only do the 6429 * accounting for the per thread fault counters who triggered the 6430 * fault, and we skip the perf event updates. 6431 */ 6432 if (!regs) 6433 return; 6434 6435 if (major) 6436 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6437 else 6438 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6439 } 6440 6441 #ifdef CONFIG_LRU_GEN 6442 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6443 { 6444 /* the LRU algorithm only applies to accesses with recency */ 6445 current->in_lru_fault = vma_has_recency(vma); 6446 } 6447 6448 static void lru_gen_exit_fault(void) 6449 { 6450 current->in_lru_fault = false; 6451 } 6452 #else 6453 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6454 { 6455 } 6456 6457 static void lru_gen_exit_fault(void) 6458 { 6459 } 6460 #endif /* CONFIG_LRU_GEN */ 6461 6462 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6463 unsigned int *flags) 6464 { 6465 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6466 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6467 return VM_FAULT_SIGSEGV; 6468 /* 6469 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6470 * just treat it like an ordinary read-fault otherwise. 6471 */ 6472 if (!is_cow_mapping(vma->vm_flags)) 6473 *flags &= ~FAULT_FLAG_UNSHARE; 6474 } else if (*flags & FAULT_FLAG_WRITE) { 6475 /* Write faults on read-only mappings are impossible ... */ 6476 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6477 return VM_FAULT_SIGSEGV; 6478 /* ... and FOLL_FORCE only applies to COW mappings. */ 6479 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6480 !is_cow_mapping(vma->vm_flags))) 6481 return VM_FAULT_SIGSEGV; 6482 } 6483 #ifdef CONFIG_PER_VMA_LOCK 6484 /* 6485 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6486 * the assumption that lock is dropped on VM_FAULT_RETRY. 6487 */ 6488 if (WARN_ON_ONCE((*flags & 6489 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6490 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6491 return VM_FAULT_SIGSEGV; 6492 #endif 6493 6494 return 0; 6495 } 6496 6497 /* 6498 * By the time we get here, we already hold either the VMA lock or the 6499 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6500 * 6501 * The mmap_lock may have been released depending on flags and our 6502 * return value. See filemap_fault() and __folio_lock_or_retry(). 6503 */ 6504 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6505 unsigned int flags, struct pt_regs *regs) 6506 { 6507 /* If the fault handler drops the mmap_lock, vma may be freed */ 6508 struct mm_struct *mm = vma->vm_mm; 6509 vm_fault_t ret; 6510 bool is_droppable; 6511 6512 __set_current_state(TASK_RUNNING); 6513 6514 ret = sanitize_fault_flags(vma, &flags); 6515 if (ret) 6516 goto out; 6517 6518 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6519 flags & FAULT_FLAG_INSTRUCTION, 6520 flags & FAULT_FLAG_REMOTE)) { 6521 ret = VM_FAULT_SIGSEGV; 6522 goto out; 6523 } 6524 6525 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6526 6527 /* 6528 * Enable the memcg OOM handling for faults triggered in user 6529 * space. Kernel faults are handled more gracefully. 6530 */ 6531 if (flags & FAULT_FLAG_USER) 6532 mem_cgroup_enter_user_fault(); 6533 6534 lru_gen_enter_fault(vma); 6535 6536 if (unlikely(is_vm_hugetlb_page(vma))) 6537 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6538 else 6539 ret = __handle_mm_fault(vma, address, flags); 6540 6541 /* 6542 * Warning: It is no longer safe to dereference vma-> after this point, 6543 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6544 * vma might be destroyed from underneath us. 6545 */ 6546 6547 lru_gen_exit_fault(); 6548 6549 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6550 if (is_droppable) 6551 ret &= ~VM_FAULT_OOM; 6552 6553 if (flags & FAULT_FLAG_USER) { 6554 mem_cgroup_exit_user_fault(); 6555 /* 6556 * The task may have entered a memcg OOM situation but 6557 * if the allocation error was handled gracefully (no 6558 * VM_FAULT_OOM), there is no need to kill anything. 6559 * Just clean up the OOM state peacefully. 6560 */ 6561 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6562 mem_cgroup_oom_synchronize(false); 6563 } 6564 out: 6565 mm_account_fault(mm, regs, address, flags, ret); 6566 6567 return ret; 6568 } 6569 EXPORT_SYMBOL_GPL(handle_mm_fault); 6570 6571 #ifndef __PAGETABLE_P4D_FOLDED 6572 /* 6573 * Allocate p4d page table. 6574 * We've already handled the fast-path in-line. 6575 */ 6576 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6577 { 6578 p4d_t *new = p4d_alloc_one(mm, address); 6579 if (!new) 6580 return -ENOMEM; 6581 6582 spin_lock(&mm->page_table_lock); 6583 if (pgd_present(*pgd)) { /* Another has populated it */ 6584 p4d_free(mm, new); 6585 } else { 6586 smp_wmb(); /* See comment in pmd_install() */ 6587 pgd_populate(mm, pgd, new); 6588 } 6589 spin_unlock(&mm->page_table_lock); 6590 return 0; 6591 } 6592 #endif /* __PAGETABLE_P4D_FOLDED */ 6593 6594 #ifndef __PAGETABLE_PUD_FOLDED 6595 /* 6596 * Allocate page upper directory. 6597 * We've already handled the fast-path in-line. 6598 */ 6599 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6600 { 6601 pud_t *new = pud_alloc_one(mm, address); 6602 if (!new) 6603 return -ENOMEM; 6604 6605 spin_lock(&mm->page_table_lock); 6606 if (!p4d_present(*p4d)) { 6607 mm_inc_nr_puds(mm); 6608 smp_wmb(); /* See comment in pmd_install() */ 6609 p4d_populate(mm, p4d, new); 6610 } else /* Another has populated it */ 6611 pud_free(mm, new); 6612 spin_unlock(&mm->page_table_lock); 6613 return 0; 6614 } 6615 #endif /* __PAGETABLE_PUD_FOLDED */ 6616 6617 #ifndef __PAGETABLE_PMD_FOLDED 6618 /* 6619 * Allocate page middle directory. 6620 * We've already handled the fast-path in-line. 6621 */ 6622 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6623 { 6624 spinlock_t *ptl; 6625 pmd_t *new = pmd_alloc_one(mm, address); 6626 if (!new) 6627 return -ENOMEM; 6628 6629 ptl = pud_lock(mm, pud); 6630 if (!pud_present(*pud)) { 6631 mm_inc_nr_pmds(mm); 6632 smp_wmb(); /* See comment in pmd_install() */ 6633 pud_populate(mm, pud, new); 6634 } else { /* Another has populated it */ 6635 pmd_free(mm, new); 6636 } 6637 spin_unlock(ptl); 6638 return 0; 6639 } 6640 #endif /* __PAGETABLE_PMD_FOLDED */ 6641 6642 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6643 spinlock_t *lock, pte_t *ptep, 6644 pgprot_t pgprot, unsigned long pfn_base, 6645 unsigned long addr_mask, bool writable, 6646 bool special) 6647 { 6648 args->lock = lock; 6649 args->ptep = ptep; 6650 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6651 args->addr_mask = addr_mask; 6652 args->pgprot = pgprot; 6653 args->writable = writable; 6654 args->special = special; 6655 } 6656 6657 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6658 { 6659 #ifdef CONFIG_LOCKDEP 6660 struct file *file = vma->vm_file; 6661 struct address_space *mapping = file ? file->f_mapping : NULL; 6662 6663 if (mapping) 6664 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6665 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6666 else 6667 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6668 #endif 6669 } 6670 6671 /** 6672 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6673 * @args: Pointer to struct @follow_pfnmap_args 6674 * 6675 * The caller needs to setup args->vma and args->address to point to the 6676 * virtual address as the target of such lookup. On a successful return, 6677 * the results will be put into other output fields. 6678 * 6679 * After the caller finished using the fields, the caller must invoke 6680 * another follow_pfnmap_end() to proper releases the locks and resources 6681 * of such look up request. 6682 * 6683 * During the start() and end() calls, the results in @args will be valid 6684 * as proper locks will be held. After the end() is called, all the fields 6685 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6686 * use of such information after end() may require proper synchronizations 6687 * by the caller with page table updates, otherwise it can create a 6688 * security bug. 6689 * 6690 * If the PTE maps a refcounted page, callers are responsible to protect 6691 * against invalidation with MMU notifiers; otherwise access to the PFN at 6692 * a later point in time can trigger use-after-free. 6693 * 6694 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6695 * should be taken for read, and the mmap semaphore cannot be released 6696 * before the end() is invoked. 6697 * 6698 * This function must not be used to modify PTE content. 6699 * 6700 * Return: zero on success, negative otherwise. 6701 */ 6702 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6703 { 6704 struct vm_area_struct *vma = args->vma; 6705 unsigned long address = args->address; 6706 struct mm_struct *mm = vma->vm_mm; 6707 spinlock_t *lock; 6708 pgd_t *pgdp; 6709 p4d_t *p4dp, p4d; 6710 pud_t *pudp, pud; 6711 pmd_t *pmdp, pmd; 6712 pte_t *ptep, pte; 6713 6714 pfnmap_lockdep_assert(vma); 6715 6716 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6717 goto out; 6718 6719 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6720 goto out; 6721 retry: 6722 pgdp = pgd_offset(mm, address); 6723 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6724 goto out; 6725 6726 p4dp = p4d_offset(pgdp, address); 6727 p4d = p4dp_get(p4dp); 6728 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6729 goto out; 6730 6731 pudp = pud_offset(p4dp, address); 6732 pud = pudp_get(pudp); 6733 if (pud_none(pud)) 6734 goto out; 6735 if (pud_leaf(pud)) { 6736 lock = pud_lock(mm, pudp); 6737 if (!unlikely(pud_leaf(pud))) { 6738 spin_unlock(lock); 6739 goto retry; 6740 } 6741 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6742 pud_pfn(pud), PUD_MASK, pud_write(pud), 6743 pud_special(pud)); 6744 return 0; 6745 } 6746 6747 pmdp = pmd_offset(pudp, address); 6748 pmd = pmdp_get_lockless(pmdp); 6749 if (pmd_leaf(pmd)) { 6750 lock = pmd_lock(mm, pmdp); 6751 if (!unlikely(pmd_leaf(pmd))) { 6752 spin_unlock(lock); 6753 goto retry; 6754 } 6755 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6756 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6757 pmd_special(pmd)); 6758 return 0; 6759 } 6760 6761 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6762 if (!ptep) 6763 goto out; 6764 pte = ptep_get(ptep); 6765 if (!pte_present(pte)) 6766 goto unlock; 6767 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6768 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6769 pte_special(pte)); 6770 return 0; 6771 unlock: 6772 pte_unmap_unlock(ptep, lock); 6773 out: 6774 return -EINVAL; 6775 } 6776 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6777 6778 /** 6779 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6780 * @args: Pointer to struct @follow_pfnmap_args 6781 * 6782 * Must be used in pair of follow_pfnmap_start(). See the start() function 6783 * above for more information. 6784 */ 6785 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6786 { 6787 if (args->lock) 6788 spin_unlock(args->lock); 6789 if (args->ptep) 6790 pte_unmap(args->ptep); 6791 } 6792 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6793 6794 #ifdef CONFIG_HAVE_IOREMAP_PROT 6795 /** 6796 * generic_access_phys - generic implementation for iomem mmap access 6797 * @vma: the vma to access 6798 * @addr: userspace address, not relative offset within @vma 6799 * @buf: buffer to read/write 6800 * @len: length of transfer 6801 * @write: set to FOLL_WRITE when writing, otherwise reading 6802 * 6803 * This is a generic implementation for &vm_operations_struct.access for an 6804 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6805 * not page based. 6806 */ 6807 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6808 void *buf, int len, int write) 6809 { 6810 resource_size_t phys_addr; 6811 pgprot_t prot = __pgprot(0); 6812 void __iomem *maddr; 6813 int offset = offset_in_page(addr); 6814 int ret = -EINVAL; 6815 bool writable; 6816 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6817 6818 retry: 6819 if (follow_pfnmap_start(&args)) 6820 return -EINVAL; 6821 prot = args.pgprot; 6822 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6823 writable = args.writable; 6824 follow_pfnmap_end(&args); 6825 6826 if ((write & FOLL_WRITE) && !writable) 6827 return -EINVAL; 6828 6829 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6830 if (!maddr) 6831 return -ENOMEM; 6832 6833 if (follow_pfnmap_start(&args)) 6834 goto out_unmap; 6835 6836 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || 6837 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6838 (writable != args.writable)) { 6839 follow_pfnmap_end(&args); 6840 iounmap(maddr); 6841 goto retry; 6842 } 6843 6844 if (write) 6845 memcpy_toio(maddr + offset, buf, len); 6846 else 6847 memcpy_fromio(buf, maddr + offset, len); 6848 ret = len; 6849 follow_pfnmap_end(&args); 6850 out_unmap: 6851 iounmap(maddr); 6852 6853 return ret; 6854 } 6855 EXPORT_SYMBOL_GPL(generic_access_phys); 6856 #endif 6857 6858 /* 6859 * Access another process' address space as given in mm. 6860 */ 6861 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6862 void *buf, int len, unsigned int gup_flags) 6863 { 6864 void *old_buf = buf; 6865 int write = gup_flags & FOLL_WRITE; 6866 6867 if (mmap_read_lock_killable(mm)) 6868 return 0; 6869 6870 /* Untag the address before looking up the VMA */ 6871 addr = untagged_addr_remote(mm, addr); 6872 6873 /* Avoid triggering the temporary warning in __get_user_pages */ 6874 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6875 return 0; 6876 6877 /* ignore errors, just check how much was successfully transferred */ 6878 while (len) { 6879 int bytes, offset; 6880 void *maddr; 6881 struct folio *folio; 6882 struct vm_area_struct *vma = NULL; 6883 struct page *page = get_user_page_vma_remote(mm, addr, 6884 gup_flags, &vma); 6885 6886 if (IS_ERR(page)) { 6887 /* We might need to expand the stack to access it */ 6888 vma = vma_lookup(mm, addr); 6889 if (!vma) { 6890 vma = expand_stack(mm, addr); 6891 6892 /* mmap_lock was dropped on failure */ 6893 if (!vma) 6894 return buf - old_buf; 6895 6896 /* Try again if stack expansion worked */ 6897 continue; 6898 } 6899 6900 /* 6901 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6902 * we can access using slightly different code. 6903 */ 6904 bytes = 0; 6905 #ifdef CONFIG_HAVE_IOREMAP_PROT 6906 if (vma->vm_ops && vma->vm_ops->access) 6907 bytes = vma->vm_ops->access(vma, addr, buf, 6908 len, write); 6909 #endif 6910 if (bytes <= 0) 6911 break; 6912 } else { 6913 folio = page_folio(page); 6914 bytes = len; 6915 offset = addr & (PAGE_SIZE-1); 6916 if (bytes > PAGE_SIZE-offset) 6917 bytes = PAGE_SIZE-offset; 6918 6919 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 6920 if (write) { 6921 copy_to_user_page(vma, page, addr, 6922 maddr + offset, buf, bytes); 6923 folio_mark_dirty_lock(folio); 6924 } else { 6925 copy_from_user_page(vma, page, addr, 6926 buf, maddr + offset, bytes); 6927 } 6928 folio_release_kmap(folio, maddr); 6929 } 6930 len -= bytes; 6931 buf += bytes; 6932 addr += bytes; 6933 } 6934 mmap_read_unlock(mm); 6935 6936 return buf - old_buf; 6937 } 6938 6939 /** 6940 * access_remote_vm - access another process' address space 6941 * @mm: the mm_struct of the target address space 6942 * @addr: start address to access 6943 * @buf: source or destination buffer 6944 * @len: number of bytes to transfer 6945 * @gup_flags: flags modifying lookup behaviour 6946 * 6947 * The caller must hold a reference on @mm. 6948 * 6949 * Return: number of bytes copied from source to destination. 6950 */ 6951 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6952 void *buf, int len, unsigned int gup_flags) 6953 { 6954 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6955 } 6956 6957 /* 6958 * Access another process' address space. 6959 * Source/target buffer must be kernel space, 6960 * Do not walk the page table directly, use get_user_pages 6961 */ 6962 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6963 void *buf, int len, unsigned int gup_flags) 6964 { 6965 struct mm_struct *mm; 6966 int ret; 6967 6968 mm = get_task_mm(tsk); 6969 if (!mm) 6970 return 0; 6971 6972 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6973 6974 mmput(mm); 6975 6976 return ret; 6977 } 6978 EXPORT_SYMBOL_GPL(access_process_vm); 6979 6980 #ifdef CONFIG_BPF_SYSCALL 6981 /* 6982 * Copy a string from another process's address space as given in mm. 6983 * If there is any error return -EFAULT. 6984 */ 6985 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 6986 void *buf, int len, unsigned int gup_flags) 6987 { 6988 void *old_buf = buf; 6989 int err = 0; 6990 6991 *(char *)buf = '\0'; 6992 6993 if (mmap_read_lock_killable(mm)) 6994 return -EFAULT; 6995 6996 addr = untagged_addr_remote(mm, addr); 6997 6998 /* Avoid triggering the temporary warning in __get_user_pages */ 6999 if (!vma_lookup(mm, addr)) { 7000 err = -EFAULT; 7001 goto out; 7002 } 7003 7004 while (len) { 7005 int bytes, offset, retval; 7006 void *maddr; 7007 struct folio *folio; 7008 struct page *page; 7009 struct vm_area_struct *vma = NULL; 7010 7011 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); 7012 if (IS_ERR(page)) { 7013 /* 7014 * Treat as a total failure for now until we decide how 7015 * to handle the CONFIG_HAVE_IOREMAP_PROT case and 7016 * stack expansion. 7017 */ 7018 *(char *)buf = '\0'; 7019 err = -EFAULT; 7020 goto out; 7021 } 7022 7023 folio = page_folio(page); 7024 bytes = len; 7025 offset = addr & (PAGE_SIZE - 1); 7026 if (bytes > PAGE_SIZE - offset) 7027 bytes = PAGE_SIZE - offset; 7028 7029 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 7030 retval = strscpy(buf, maddr + offset, bytes); 7031 if (retval >= 0) { 7032 /* Found the end of the string */ 7033 buf += retval; 7034 folio_release_kmap(folio, maddr); 7035 break; 7036 } 7037 7038 buf += bytes - 1; 7039 /* 7040 * Because strscpy always NUL terminates we need to 7041 * copy the last byte in the page if we are going to 7042 * load more pages 7043 */ 7044 if (bytes != len) { 7045 addr += bytes - 1; 7046 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); 7047 buf += 1; 7048 addr += 1; 7049 } 7050 len -= bytes; 7051 7052 folio_release_kmap(folio, maddr); 7053 } 7054 7055 out: 7056 mmap_read_unlock(mm); 7057 if (err) 7058 return err; 7059 return buf - old_buf; 7060 } 7061 7062 /** 7063 * copy_remote_vm_str - copy a string from another process's address space. 7064 * @tsk: the task of the target address space 7065 * @addr: start address to read from 7066 * @buf: destination buffer 7067 * @len: number of bytes to copy 7068 * @gup_flags: flags modifying lookup behaviour 7069 * 7070 * The caller must hold a reference on @mm. 7071 * 7072 * Return: number of bytes copied from @addr (source) to @buf (destination); 7073 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 7074 * buffer. On any error, return -EFAULT. 7075 */ 7076 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 7077 void *buf, int len, unsigned int gup_flags) 7078 { 7079 struct mm_struct *mm; 7080 int ret; 7081 7082 if (unlikely(len == 0)) 7083 return 0; 7084 7085 mm = get_task_mm(tsk); 7086 if (!mm) { 7087 *(char *)buf = '\0'; 7088 return -EFAULT; 7089 } 7090 7091 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); 7092 7093 mmput(mm); 7094 7095 return ret; 7096 } 7097 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 7098 #endif /* CONFIG_BPF_SYSCALL */ 7099 7100 /* 7101 * Print the name of a VMA. 7102 */ 7103 void print_vma_addr(char *prefix, unsigned long ip) 7104 { 7105 struct mm_struct *mm = current->mm; 7106 struct vm_area_struct *vma; 7107 7108 /* 7109 * we might be running from an atomic context so we cannot sleep 7110 */ 7111 if (!mmap_read_trylock(mm)) 7112 return; 7113 7114 vma = vma_lookup(mm, ip); 7115 if (vma && vma->vm_file) { 7116 struct file *f = vma->vm_file; 7117 ip -= vma->vm_start; 7118 ip += vma->vm_pgoff << PAGE_SHIFT; 7119 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 7120 vma->vm_start, 7121 vma->vm_end - vma->vm_start); 7122 } 7123 mmap_read_unlock(mm); 7124 } 7125 7126 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 7127 void __might_fault(const char *file, int line) 7128 { 7129 if (pagefault_disabled()) 7130 return; 7131 __might_sleep(file, line); 7132 if (current->mm) 7133 might_lock_read(¤t->mm->mmap_lock); 7134 } 7135 EXPORT_SYMBOL(__might_fault); 7136 #endif 7137 7138 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 7139 /* 7140 * Process all subpages of the specified huge page with the specified 7141 * operation. The target subpage will be processed last to keep its 7142 * cache lines hot. 7143 */ 7144 static inline int process_huge_page( 7145 unsigned long addr_hint, unsigned int nr_pages, 7146 int (*process_subpage)(unsigned long addr, int idx, void *arg), 7147 void *arg) 7148 { 7149 int i, n, base, l, ret; 7150 unsigned long addr = addr_hint & 7151 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 7152 7153 /* Process target subpage last to keep its cache lines hot */ 7154 might_sleep(); 7155 n = (addr_hint - addr) / PAGE_SIZE; 7156 if (2 * n <= nr_pages) { 7157 /* If target subpage in first half of huge page */ 7158 base = 0; 7159 l = n; 7160 /* Process subpages at the end of huge page */ 7161 for (i = nr_pages - 1; i >= 2 * n; i--) { 7162 cond_resched(); 7163 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7164 if (ret) 7165 return ret; 7166 } 7167 } else { 7168 /* If target subpage in second half of huge page */ 7169 base = nr_pages - 2 * (nr_pages - n); 7170 l = nr_pages - n; 7171 /* Process subpages at the begin of huge page */ 7172 for (i = 0; i < base; i++) { 7173 cond_resched(); 7174 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7175 if (ret) 7176 return ret; 7177 } 7178 } 7179 /* 7180 * Process remaining subpages in left-right-left-right pattern 7181 * towards the target subpage 7182 */ 7183 for (i = 0; i < l; i++) { 7184 int left_idx = base + i; 7185 int right_idx = base + 2 * l - 1 - i; 7186 7187 cond_resched(); 7188 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 7189 if (ret) 7190 return ret; 7191 cond_resched(); 7192 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 7193 if (ret) 7194 return ret; 7195 } 7196 return 0; 7197 } 7198 7199 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 7200 unsigned int nr_pages) 7201 { 7202 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7203 int i; 7204 7205 might_sleep(); 7206 for (i = 0; i < nr_pages; i++) { 7207 cond_resched(); 7208 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 7209 } 7210 } 7211 7212 static int clear_subpage(unsigned long addr, int idx, void *arg) 7213 { 7214 struct folio *folio = arg; 7215 7216 clear_user_highpage(folio_page(folio, idx), addr); 7217 return 0; 7218 } 7219 7220 /** 7221 * folio_zero_user - Zero a folio which will be mapped to userspace. 7222 * @folio: The folio to zero. 7223 * @addr_hint: The address will be accessed or the base address if uncelar. 7224 */ 7225 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7226 { 7227 unsigned int nr_pages = folio_nr_pages(folio); 7228 7229 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7230 clear_gigantic_page(folio, addr_hint, nr_pages); 7231 else 7232 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 7233 } 7234 7235 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7236 unsigned long addr_hint, 7237 struct vm_area_struct *vma, 7238 unsigned int nr_pages) 7239 { 7240 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7241 struct page *dst_page; 7242 struct page *src_page; 7243 int i; 7244 7245 for (i = 0; i < nr_pages; i++) { 7246 dst_page = folio_page(dst, i); 7247 src_page = folio_page(src, i); 7248 7249 cond_resched(); 7250 if (copy_mc_user_highpage(dst_page, src_page, 7251 addr + i*PAGE_SIZE, vma)) 7252 return -EHWPOISON; 7253 } 7254 return 0; 7255 } 7256 7257 struct copy_subpage_arg { 7258 struct folio *dst; 7259 struct folio *src; 7260 struct vm_area_struct *vma; 7261 }; 7262 7263 static int copy_subpage(unsigned long addr, int idx, void *arg) 7264 { 7265 struct copy_subpage_arg *copy_arg = arg; 7266 struct page *dst = folio_page(copy_arg->dst, idx); 7267 struct page *src = folio_page(copy_arg->src, idx); 7268 7269 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7270 return -EHWPOISON; 7271 return 0; 7272 } 7273 7274 int copy_user_large_folio(struct folio *dst, struct folio *src, 7275 unsigned long addr_hint, struct vm_area_struct *vma) 7276 { 7277 unsigned int nr_pages = folio_nr_pages(dst); 7278 struct copy_subpage_arg arg = { 7279 .dst = dst, 7280 .src = src, 7281 .vma = vma, 7282 }; 7283 7284 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7285 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7286 7287 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7288 } 7289 7290 long copy_folio_from_user(struct folio *dst_folio, 7291 const void __user *usr_src, 7292 bool allow_pagefault) 7293 { 7294 void *kaddr; 7295 unsigned long i, rc = 0; 7296 unsigned int nr_pages = folio_nr_pages(dst_folio); 7297 unsigned long ret_val = nr_pages * PAGE_SIZE; 7298 struct page *subpage; 7299 7300 for (i = 0; i < nr_pages; i++) { 7301 subpage = folio_page(dst_folio, i); 7302 kaddr = kmap_local_page(subpage); 7303 if (!allow_pagefault) 7304 pagefault_disable(); 7305 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7306 if (!allow_pagefault) 7307 pagefault_enable(); 7308 kunmap_local(kaddr); 7309 7310 ret_val -= (PAGE_SIZE - rc); 7311 if (rc) 7312 break; 7313 7314 flush_dcache_page(subpage); 7315 7316 cond_resched(); 7317 } 7318 return ret_val; 7319 } 7320 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7321 7322 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7323 7324 static struct kmem_cache *page_ptl_cachep; 7325 7326 void __init ptlock_cache_init(void) 7327 { 7328 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7329 SLAB_PANIC, NULL); 7330 } 7331 7332 bool ptlock_alloc(struct ptdesc *ptdesc) 7333 { 7334 spinlock_t *ptl; 7335 7336 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7337 if (!ptl) 7338 return false; 7339 ptdesc->ptl = ptl; 7340 return true; 7341 } 7342 7343 void ptlock_free(struct ptdesc *ptdesc) 7344 { 7345 if (ptdesc->ptl) 7346 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7347 } 7348 #endif 7349 7350 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7351 { 7352 if (is_vm_hugetlb_page(vma)) 7353 hugetlb_vma_lock_read(vma); 7354 } 7355 7356 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7357 { 7358 if (is_vm_hugetlb_page(vma)) 7359 hugetlb_vma_unlock_read(vma); 7360 } 7361