xref: /linux/mm/memory.c (revision 34efe1c3b688944d9817a5faaab7aad870182c59)
1 
2 // SPDX-License-Identifier: GPL-2.0-only
3 /*
4  *  linux/mm/memory.c
5  *
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  */
8 
9 /*
10  * demand-loading started 01.12.91 - seems it is high on the list of
11  * things wanted, and it should be easy to implement. - Linus
12  */
13 
14 /*
15  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16  * pages started 02.12.91, seems to work. - Linus.
17  *
18  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19  * would have taken more than the 6M I have free, but it worked well as
20  * far as I could see.
21  *
22  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23  */
24 
25 /*
26  * Real VM (paging to/from disk) started 18.12.91. Much more work and
27  * thought has to go into this. Oh, well..
28  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
29  *		Found it. Everything seems to work now.
30  * 20.12.91  -  Ok, making the swap-device changeable like the root.
31  */
32 
33 /*
34  * 05.04.94  -  Multi-page memory management added for v1.1.
35  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
36  *
37  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
38  *		(Gerhard.Wichert@pdb.siemens.de)
39  *
40  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41  */
42 
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/writeback.h>
64 #include <linux/memcontrol.h>
65 #include <linux/mmu_notifier.h>
66 #include <linux/swapops.h>
67 #include <linux/elf.h>
68 #include <linux/gfp.h>
69 #include <linux/migrate.h>
70 #include <linux/string.h>
71 #include <linux/memory-tiers.h>
72 #include <linux/debugfs.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/dax.h>
75 #include <linux/oom.h>
76 #include <linux/numa.h>
77 #include <linux/perf_event.h>
78 #include <linux/ptrace.h>
79 #include <linux/vmalloc.h>
80 #include <linux/sched/sysctl.h>
81 
82 #include <trace/events/kmem.h>
83 
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90 
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94 
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98 
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 		return false;
119 
120 	return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122 
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.
127  */
128 void *high_memory;
129 EXPORT_SYMBOL(high_memory);
130 
131 /*
132  * Randomize the address space (stacks, mmaps, brk, etc.).
133  *
134  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
135  *   as ancient (libc5 based) binaries can segfault. )
136  */
137 int randomize_va_space __read_mostly =
138 #ifdef CONFIG_COMPAT_BRK
139 					1;
140 #else
141 					2;
142 #endif
143 
144 #ifndef arch_wants_old_prefaulted_pte
145 static inline bool arch_wants_old_prefaulted_pte(void)
146 {
147 	/*
148 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
149 	 * some architectures, even if it's performed in hardware. By
150 	 * default, "false" means prefaulted entries will be 'young'.
151 	 */
152 	return false;
153 }
154 #endif
155 
156 static int __init disable_randmaps(char *s)
157 {
158 	randomize_va_space = 0;
159 	return 1;
160 }
161 __setup("norandmaps", disable_randmaps);
162 
163 unsigned long zero_pfn __read_mostly;
164 EXPORT_SYMBOL(zero_pfn);
165 
166 unsigned long highest_memmap_pfn __read_mostly;
167 
168 /*
169  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
170  */
171 static int __init init_zero_pfn(void)
172 {
173 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
174 	return 0;
175 }
176 early_initcall(init_zero_pfn);
177 
178 void mm_trace_rss_stat(struct mm_struct *mm, int member)
179 {
180 	trace_rss_stat(mm, member);
181 }
182 
183 /*
184  * Note: this doesn't free the actual pages themselves. That
185  * has been handled earlier when unmapping all the memory regions.
186  */
187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
188 			   unsigned long addr)
189 {
190 	pgtable_t token = pmd_pgtable(*pmd);
191 	pmd_clear(pmd);
192 	pte_free_tlb(tlb, token, addr);
193 	mm_dec_nr_ptes(tlb->mm);
194 }
195 
196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
197 				unsigned long addr, unsigned long end,
198 				unsigned long floor, unsigned long ceiling)
199 {
200 	pmd_t *pmd;
201 	unsigned long next;
202 	unsigned long start;
203 
204 	start = addr;
205 	pmd = pmd_offset(pud, addr);
206 	do {
207 		next = pmd_addr_end(addr, end);
208 		if (pmd_none_or_clear_bad(pmd))
209 			continue;
210 		free_pte_range(tlb, pmd, addr);
211 	} while (pmd++, addr = next, addr != end);
212 
213 	start &= PUD_MASK;
214 	if (start < floor)
215 		return;
216 	if (ceiling) {
217 		ceiling &= PUD_MASK;
218 		if (!ceiling)
219 			return;
220 	}
221 	if (end - 1 > ceiling - 1)
222 		return;
223 
224 	pmd = pmd_offset(pud, start);
225 	pud_clear(pud);
226 	pmd_free_tlb(tlb, pmd, start);
227 	mm_dec_nr_pmds(tlb->mm);
228 }
229 
230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
231 				unsigned long addr, unsigned long end,
232 				unsigned long floor, unsigned long ceiling)
233 {
234 	pud_t *pud;
235 	unsigned long next;
236 	unsigned long start;
237 
238 	start = addr;
239 	pud = pud_offset(p4d, addr);
240 	do {
241 		next = pud_addr_end(addr, end);
242 		if (pud_none_or_clear_bad(pud))
243 			continue;
244 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
245 	} while (pud++, addr = next, addr != end);
246 
247 	start &= P4D_MASK;
248 	if (start < floor)
249 		return;
250 	if (ceiling) {
251 		ceiling &= P4D_MASK;
252 		if (!ceiling)
253 			return;
254 	}
255 	if (end - 1 > ceiling - 1)
256 		return;
257 
258 	pud = pud_offset(p4d, start);
259 	p4d_clear(p4d);
260 	pud_free_tlb(tlb, pud, start);
261 	mm_dec_nr_puds(tlb->mm);
262 }
263 
264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
265 				unsigned long addr, unsigned long end,
266 				unsigned long floor, unsigned long ceiling)
267 {
268 	p4d_t *p4d;
269 	unsigned long next;
270 	unsigned long start;
271 
272 	start = addr;
273 	p4d = p4d_offset(pgd, addr);
274 	do {
275 		next = p4d_addr_end(addr, end);
276 		if (p4d_none_or_clear_bad(p4d))
277 			continue;
278 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
279 	} while (p4d++, addr = next, addr != end);
280 
281 	start &= PGDIR_MASK;
282 	if (start < floor)
283 		return;
284 	if (ceiling) {
285 		ceiling &= PGDIR_MASK;
286 		if (!ceiling)
287 			return;
288 	}
289 	if (end - 1 > ceiling - 1)
290 		return;
291 
292 	p4d = p4d_offset(pgd, start);
293 	pgd_clear(pgd);
294 	p4d_free_tlb(tlb, p4d, start);
295 }
296 
297 /*
298  * This function frees user-level page tables of a process.
299  */
300 void free_pgd_range(struct mmu_gather *tlb,
301 			unsigned long addr, unsigned long end,
302 			unsigned long floor, unsigned long ceiling)
303 {
304 	pgd_t *pgd;
305 	unsigned long next;
306 
307 	/*
308 	 * The next few lines have given us lots of grief...
309 	 *
310 	 * Why are we testing PMD* at this top level?  Because often
311 	 * there will be no work to do at all, and we'd prefer not to
312 	 * go all the way down to the bottom just to discover that.
313 	 *
314 	 * Why all these "- 1"s?  Because 0 represents both the bottom
315 	 * of the address space and the top of it (using -1 for the
316 	 * top wouldn't help much: the masks would do the wrong thing).
317 	 * The rule is that addr 0 and floor 0 refer to the bottom of
318 	 * the address space, but end 0 and ceiling 0 refer to the top
319 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
320 	 * that end 0 case should be mythical).
321 	 *
322 	 * Wherever addr is brought up or ceiling brought down, we must
323 	 * be careful to reject "the opposite 0" before it confuses the
324 	 * subsequent tests.  But what about where end is brought down
325 	 * by PMD_SIZE below? no, end can't go down to 0 there.
326 	 *
327 	 * Whereas we round start (addr) and ceiling down, by different
328 	 * masks at different levels, in order to test whether a table
329 	 * now has no other vmas using it, so can be freed, we don't
330 	 * bother to round floor or end up - the tests don't need that.
331 	 */
332 
333 	addr &= PMD_MASK;
334 	if (addr < floor) {
335 		addr += PMD_SIZE;
336 		if (!addr)
337 			return;
338 	}
339 	if (ceiling) {
340 		ceiling &= PMD_MASK;
341 		if (!ceiling)
342 			return;
343 	}
344 	if (end - 1 > ceiling - 1)
345 		end -= PMD_SIZE;
346 	if (addr > end - 1)
347 		return;
348 	/*
349 	 * We add page table cache pages with PAGE_SIZE,
350 	 * (see pte_free_tlb()), flush the tlb if we need
351 	 */
352 	tlb_change_page_size(tlb, PAGE_SIZE);
353 	pgd = pgd_offset(tlb->mm, addr);
354 	do {
355 		next = pgd_addr_end(addr, end);
356 		if (pgd_none_or_clear_bad(pgd))
357 			continue;
358 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
359 	} while (pgd++, addr = next, addr != end);
360 }
361 
362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
363 		   struct vm_area_struct *vma, unsigned long floor,
364 		   unsigned long ceiling, bool mm_wr_locked)
365 {
366 	do {
367 		unsigned long addr = vma->vm_start;
368 		struct vm_area_struct *next;
369 
370 		/*
371 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
372 		 * be 0.  This will underflow and is okay.
373 		 */
374 		next = mas_find(mas, ceiling - 1);
375 		if (unlikely(xa_is_zero(next)))
376 			next = NULL;
377 
378 		/*
379 		 * Hide vma from rmap and truncate_pagecache before freeing
380 		 * pgtables
381 		 */
382 		if (mm_wr_locked)
383 			vma_start_write(vma);
384 		unlink_anon_vmas(vma);
385 		unlink_file_vma(vma);
386 
387 		if (is_vm_hugetlb_page(vma)) {
388 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
389 				floor, next ? next->vm_start : ceiling);
390 		} else {
391 			/*
392 			 * Optimization: gather nearby vmas into one call down
393 			 */
394 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
395 			       && !is_vm_hugetlb_page(next)) {
396 				vma = next;
397 				next = mas_find(mas, ceiling - 1);
398 				if (unlikely(xa_is_zero(next)))
399 					next = NULL;
400 				if (mm_wr_locked)
401 					vma_start_write(vma);
402 				unlink_anon_vmas(vma);
403 				unlink_file_vma(vma);
404 			}
405 			free_pgd_range(tlb, addr, vma->vm_end,
406 				floor, next ? next->vm_start : ceiling);
407 		}
408 		vma = next;
409 	} while (vma);
410 }
411 
412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
413 {
414 	spinlock_t *ptl = pmd_lock(mm, pmd);
415 
416 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
417 		mm_inc_nr_ptes(mm);
418 		/*
419 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
420 		 * visible before the pte is made visible to other CPUs by being
421 		 * put into page tables.
422 		 *
423 		 * The other side of the story is the pointer chasing in the page
424 		 * table walking code (when walking the page table without locking;
425 		 * ie. most of the time). Fortunately, these data accesses consist
426 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
427 		 * being the notable exception) will already guarantee loads are
428 		 * seen in-order. See the alpha page table accessors for the
429 		 * smp_rmb() barriers in page table walking code.
430 		 */
431 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
432 		pmd_populate(mm, pmd, *pte);
433 		*pte = NULL;
434 	}
435 	spin_unlock(ptl);
436 }
437 
438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
439 {
440 	pgtable_t new = pte_alloc_one(mm);
441 	if (!new)
442 		return -ENOMEM;
443 
444 	pmd_install(mm, pmd, &new);
445 	if (new)
446 		pte_free(mm, new);
447 	return 0;
448 }
449 
450 int __pte_alloc_kernel(pmd_t *pmd)
451 {
452 	pte_t *new = pte_alloc_one_kernel(&init_mm);
453 	if (!new)
454 		return -ENOMEM;
455 
456 	spin_lock(&init_mm.page_table_lock);
457 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
458 		smp_wmb(); /* See comment in pmd_install() */
459 		pmd_populate_kernel(&init_mm, pmd, new);
460 		new = NULL;
461 	}
462 	spin_unlock(&init_mm.page_table_lock);
463 	if (new)
464 		pte_free_kernel(&init_mm, new);
465 	return 0;
466 }
467 
468 static inline void init_rss_vec(int *rss)
469 {
470 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471 }
472 
473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
474 {
475 	int i;
476 
477 	for (i = 0; i < NR_MM_COUNTERS; i++)
478 		if (rss[i])
479 			add_mm_counter(mm, i, rss[i]);
480 }
481 
482 /*
483  * This function is called to print an error when a bad pte
484  * is found. For example, we might have a PFN-mapped pte in
485  * a region that doesn't allow it.
486  *
487  * The calling function must still handle the error.
488  */
489 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
490 			  pte_t pte, struct page *page)
491 {
492 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
493 	p4d_t *p4d = p4d_offset(pgd, addr);
494 	pud_t *pud = pud_offset(p4d, addr);
495 	pmd_t *pmd = pmd_offset(pud, addr);
496 	struct address_space *mapping;
497 	pgoff_t index;
498 	static unsigned long resume;
499 	static unsigned long nr_shown;
500 	static unsigned long nr_unshown;
501 
502 	/*
503 	 * Allow a burst of 60 reports, then keep quiet for that minute;
504 	 * or allow a steady drip of one report per second.
505 	 */
506 	if (nr_shown == 60) {
507 		if (time_before(jiffies, resume)) {
508 			nr_unshown++;
509 			return;
510 		}
511 		if (nr_unshown) {
512 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
513 				 nr_unshown);
514 			nr_unshown = 0;
515 		}
516 		nr_shown = 0;
517 	}
518 	if (nr_shown++ == 0)
519 		resume = jiffies + 60 * HZ;
520 
521 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
522 	index = linear_page_index(vma, addr);
523 
524 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
525 		 current->comm,
526 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
527 	if (page)
528 		dump_page(page, "bad pte");
529 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
530 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
531 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
532 		 vma->vm_file,
533 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
534 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
535 		 mapping ? mapping->a_ops->read_folio : NULL);
536 	dump_stack();
537 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
538 }
539 
540 /*
541  * vm_normal_page -- This function gets the "struct page" associated with a pte.
542  *
543  * "Special" mappings do not wish to be associated with a "struct page" (either
544  * it doesn't exist, or it exists but they don't want to touch it). In this
545  * case, NULL is returned here. "Normal" mappings do have a struct page.
546  *
547  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
548  * pte bit, in which case this function is trivial. Secondly, an architecture
549  * may not have a spare pte bit, which requires a more complicated scheme,
550  * described below.
551  *
552  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
553  * special mapping (even if there are underlying and valid "struct pages").
554  * COWed pages of a VM_PFNMAP are always normal.
555  *
556  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
557  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
558  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
559  * mapping will always honor the rule
560  *
561  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
562  *
563  * And for normal mappings this is false.
564  *
565  * This restricts such mappings to be a linear translation from virtual address
566  * to pfn. To get around this restriction, we allow arbitrary mappings so long
567  * as the vma is not a COW mapping; in that case, we know that all ptes are
568  * special (because none can have been COWed).
569  *
570  *
571  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
572  *
573  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
574  * page" backing, however the difference is that _all_ pages with a struct
575  * page (that is, those where pfn_valid is true) are refcounted and considered
576  * normal pages by the VM. The disadvantage is that pages are refcounted
577  * (which can be slower and simply not an option for some PFNMAP users). The
578  * advantage is that we don't have to follow the strict linearity rule of
579  * PFNMAP mappings in order to support COWable mappings.
580  *
581  */
582 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
583 			    pte_t pte)
584 {
585 	unsigned long pfn = pte_pfn(pte);
586 
587 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
588 		if (likely(!pte_special(pte)))
589 			goto check_pfn;
590 		if (vma->vm_ops && vma->vm_ops->find_special_page)
591 			return vma->vm_ops->find_special_page(vma, addr);
592 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
593 			return NULL;
594 		if (is_zero_pfn(pfn))
595 			return NULL;
596 		if (pte_devmap(pte))
597 		/*
598 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
599 		 * and will have refcounts incremented on their struct pages
600 		 * when they are inserted into PTEs, thus they are safe to
601 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
602 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
603 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
604 		 */
605 			return NULL;
606 
607 		print_bad_pte(vma, addr, pte, NULL);
608 		return NULL;
609 	}
610 
611 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
612 
613 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
614 		if (vma->vm_flags & VM_MIXEDMAP) {
615 			if (!pfn_valid(pfn))
616 				return NULL;
617 			goto out;
618 		} else {
619 			unsigned long off;
620 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
621 			if (pfn == vma->vm_pgoff + off)
622 				return NULL;
623 			if (!is_cow_mapping(vma->vm_flags))
624 				return NULL;
625 		}
626 	}
627 
628 	if (is_zero_pfn(pfn))
629 		return NULL;
630 
631 check_pfn:
632 	if (unlikely(pfn > highest_memmap_pfn)) {
633 		print_bad_pte(vma, addr, pte, NULL);
634 		return NULL;
635 	}
636 
637 	/*
638 	 * NOTE! We still have PageReserved() pages in the page tables.
639 	 * eg. VDSO mappings can cause them to exist.
640 	 */
641 out:
642 	return pfn_to_page(pfn);
643 }
644 
645 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
646 			    pte_t pte)
647 {
648 	struct page *page = vm_normal_page(vma, addr, pte);
649 
650 	if (page)
651 		return page_folio(page);
652 	return NULL;
653 }
654 
655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
656 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
657 				pmd_t pmd)
658 {
659 	unsigned long pfn = pmd_pfn(pmd);
660 
661 	/*
662 	 * There is no pmd_special() but there may be special pmds, e.g.
663 	 * in a direct-access (dax) mapping, so let's just replicate the
664 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
665 	 */
666 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
667 		if (vma->vm_flags & VM_MIXEDMAP) {
668 			if (!pfn_valid(pfn))
669 				return NULL;
670 			goto out;
671 		} else {
672 			unsigned long off;
673 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
674 			if (pfn == vma->vm_pgoff + off)
675 				return NULL;
676 			if (!is_cow_mapping(vma->vm_flags))
677 				return NULL;
678 		}
679 	}
680 
681 	if (pmd_devmap(pmd))
682 		return NULL;
683 	if (is_huge_zero_pmd(pmd))
684 		return NULL;
685 	if (unlikely(pfn > highest_memmap_pfn))
686 		return NULL;
687 
688 	/*
689 	 * NOTE! We still have PageReserved() pages in the page tables.
690 	 * eg. VDSO mappings can cause them to exist.
691 	 */
692 out:
693 	return pfn_to_page(pfn);
694 }
695 
696 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
697 				  unsigned long addr, pmd_t pmd)
698 {
699 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
700 
701 	if (page)
702 		return page_folio(page);
703 	return NULL;
704 }
705 #endif
706 
707 static void restore_exclusive_pte(struct vm_area_struct *vma,
708 				  struct page *page, unsigned long address,
709 				  pte_t *ptep)
710 {
711 	struct folio *folio = page_folio(page);
712 	pte_t orig_pte;
713 	pte_t pte;
714 	swp_entry_t entry;
715 
716 	orig_pte = ptep_get(ptep);
717 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
718 	if (pte_swp_soft_dirty(orig_pte))
719 		pte = pte_mksoft_dirty(pte);
720 
721 	entry = pte_to_swp_entry(orig_pte);
722 	if (pte_swp_uffd_wp(orig_pte))
723 		pte = pte_mkuffd_wp(pte);
724 	else if (is_writable_device_exclusive_entry(entry))
725 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
726 
727 	VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
728 					   PageAnonExclusive(page)), folio);
729 
730 	/*
731 	 * No need to take a page reference as one was already
732 	 * created when the swap entry was made.
733 	 */
734 	if (folio_test_anon(folio))
735 		folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
736 	else
737 		/*
738 		 * Currently device exclusive access only supports anonymous
739 		 * memory so the entry shouldn't point to a filebacked page.
740 		 */
741 		WARN_ON_ONCE(1);
742 
743 	set_pte_at(vma->vm_mm, address, ptep, pte);
744 
745 	/*
746 	 * No need to invalidate - it was non-present before. However
747 	 * secondary CPUs may have mappings that need invalidating.
748 	 */
749 	update_mmu_cache(vma, address, ptep);
750 }
751 
752 /*
753  * Tries to restore an exclusive pte if the page lock can be acquired without
754  * sleeping.
755  */
756 static int
757 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
758 			unsigned long addr)
759 {
760 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
761 	struct page *page = pfn_swap_entry_to_page(entry);
762 
763 	if (trylock_page(page)) {
764 		restore_exclusive_pte(vma, page, addr, src_pte);
765 		unlock_page(page);
766 		return 0;
767 	}
768 
769 	return -EBUSY;
770 }
771 
772 /*
773  * copy one vm_area from one task to the other. Assumes the page tables
774  * already present in the new task to be cleared in the whole range
775  * covered by this vma.
776  */
777 
778 static unsigned long
779 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
780 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
781 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
782 {
783 	unsigned long vm_flags = dst_vma->vm_flags;
784 	pte_t orig_pte = ptep_get(src_pte);
785 	pte_t pte = orig_pte;
786 	struct folio *folio;
787 	struct page *page;
788 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
789 
790 	if (likely(!non_swap_entry(entry))) {
791 		if (swap_duplicate(entry) < 0)
792 			return -EIO;
793 
794 		/* make sure dst_mm is on swapoff's mmlist. */
795 		if (unlikely(list_empty(&dst_mm->mmlist))) {
796 			spin_lock(&mmlist_lock);
797 			if (list_empty(&dst_mm->mmlist))
798 				list_add(&dst_mm->mmlist,
799 						&src_mm->mmlist);
800 			spin_unlock(&mmlist_lock);
801 		}
802 		/* Mark the swap entry as shared. */
803 		if (pte_swp_exclusive(orig_pte)) {
804 			pte = pte_swp_clear_exclusive(orig_pte);
805 			set_pte_at(src_mm, addr, src_pte, pte);
806 		}
807 		rss[MM_SWAPENTS]++;
808 	} else if (is_migration_entry(entry)) {
809 		folio = pfn_swap_entry_folio(entry);
810 
811 		rss[mm_counter(folio)]++;
812 
813 		if (!is_readable_migration_entry(entry) &&
814 				is_cow_mapping(vm_flags)) {
815 			/*
816 			 * COW mappings require pages in both parent and child
817 			 * to be set to read. A previously exclusive entry is
818 			 * now shared.
819 			 */
820 			entry = make_readable_migration_entry(
821 							swp_offset(entry));
822 			pte = swp_entry_to_pte(entry);
823 			if (pte_swp_soft_dirty(orig_pte))
824 				pte = pte_swp_mksoft_dirty(pte);
825 			if (pte_swp_uffd_wp(orig_pte))
826 				pte = pte_swp_mkuffd_wp(pte);
827 			set_pte_at(src_mm, addr, src_pte, pte);
828 		}
829 	} else if (is_device_private_entry(entry)) {
830 		page = pfn_swap_entry_to_page(entry);
831 		folio = page_folio(page);
832 
833 		/*
834 		 * Update rss count even for unaddressable pages, as
835 		 * they should treated just like normal pages in this
836 		 * respect.
837 		 *
838 		 * We will likely want to have some new rss counters
839 		 * for unaddressable pages, at some point. But for now
840 		 * keep things as they are.
841 		 */
842 		folio_get(folio);
843 		rss[mm_counter(folio)]++;
844 		/* Cannot fail as these pages cannot get pinned. */
845 		folio_try_dup_anon_rmap_pte(folio, page, src_vma);
846 
847 		/*
848 		 * We do not preserve soft-dirty information, because so
849 		 * far, checkpoint/restore is the only feature that
850 		 * requires that. And checkpoint/restore does not work
851 		 * when a device driver is involved (you cannot easily
852 		 * save and restore device driver state).
853 		 */
854 		if (is_writable_device_private_entry(entry) &&
855 		    is_cow_mapping(vm_flags)) {
856 			entry = make_readable_device_private_entry(
857 							swp_offset(entry));
858 			pte = swp_entry_to_pte(entry);
859 			if (pte_swp_uffd_wp(orig_pte))
860 				pte = pte_swp_mkuffd_wp(pte);
861 			set_pte_at(src_mm, addr, src_pte, pte);
862 		}
863 	} else if (is_device_exclusive_entry(entry)) {
864 		/*
865 		 * Make device exclusive entries present by restoring the
866 		 * original entry then copying as for a present pte. Device
867 		 * exclusive entries currently only support private writable
868 		 * (ie. COW) mappings.
869 		 */
870 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
871 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
872 			return -EBUSY;
873 		return -ENOENT;
874 	} else if (is_pte_marker_entry(entry)) {
875 		pte_marker marker = copy_pte_marker(entry, dst_vma);
876 
877 		if (marker)
878 			set_pte_at(dst_mm, addr, dst_pte,
879 				   make_pte_marker(marker));
880 		return 0;
881 	}
882 	if (!userfaultfd_wp(dst_vma))
883 		pte = pte_swp_clear_uffd_wp(pte);
884 	set_pte_at(dst_mm, addr, dst_pte, pte);
885 	return 0;
886 }
887 
888 /*
889  * Copy a present and normal page.
890  *
891  * NOTE! The usual case is that this isn't required;
892  * instead, the caller can just increase the page refcount
893  * and re-use the pte the traditional way.
894  *
895  * And if we need a pre-allocated page but don't yet have
896  * one, return a negative error to let the preallocation
897  * code know so that it can do so outside the page table
898  * lock.
899  */
900 static inline int
901 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903 		  struct folio **prealloc, struct page *page)
904 {
905 	struct folio *new_folio;
906 	pte_t pte;
907 
908 	new_folio = *prealloc;
909 	if (!new_folio)
910 		return -EAGAIN;
911 
912 	/*
913 	 * We have a prealloc page, all good!  Take it
914 	 * over and copy the page & arm it.
915 	 */
916 	*prealloc = NULL;
917 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
918 	__folio_mark_uptodate(new_folio);
919 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
920 	folio_add_lru_vma(new_folio, dst_vma);
921 	rss[MM_ANONPAGES]++;
922 
923 	/* All done, just insert the new page copy in the child */
924 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
925 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
926 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
927 		/* Uffd-wp needs to be delivered to dest pte as well */
928 		pte = pte_mkuffd_wp(pte);
929 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
930 	return 0;
931 }
932 
933 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
934 		struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
935 		pte_t pte, unsigned long addr, int nr)
936 {
937 	struct mm_struct *src_mm = src_vma->vm_mm;
938 
939 	/* If it's a COW mapping, write protect it both processes. */
940 	if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
941 		wrprotect_ptes(src_mm, addr, src_pte, nr);
942 		pte = pte_wrprotect(pte);
943 	}
944 
945 	/* If it's a shared mapping, mark it clean in the child. */
946 	if (src_vma->vm_flags & VM_SHARED)
947 		pte = pte_mkclean(pte);
948 	pte = pte_mkold(pte);
949 
950 	if (!userfaultfd_wp(dst_vma))
951 		pte = pte_clear_uffd_wp(pte);
952 
953 	set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
954 }
955 
956 /*
957  * Copy one present PTE, trying to batch-process subsequent PTEs that map
958  * consecutive pages of the same folio by copying them as well.
959  *
960  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
961  * Otherwise, returns the number of copied PTEs (at least 1).
962  */
963 static inline int
964 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
965 		 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
966 		 int max_nr, int *rss, struct folio **prealloc)
967 {
968 	struct page *page;
969 	struct folio *folio;
970 	bool any_writable;
971 	fpb_t flags = 0;
972 	int err, nr;
973 
974 	page = vm_normal_page(src_vma, addr, pte);
975 	if (unlikely(!page))
976 		goto copy_pte;
977 
978 	folio = page_folio(page);
979 
980 	/*
981 	 * If we likely have to copy, just don't bother with batching. Make
982 	 * sure that the common "small folio" case is as fast as possible
983 	 * by keeping the batching logic separate.
984 	 */
985 	if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
986 		if (src_vma->vm_flags & VM_SHARED)
987 			flags |= FPB_IGNORE_DIRTY;
988 		if (!vma_soft_dirty_enabled(src_vma))
989 			flags |= FPB_IGNORE_SOFT_DIRTY;
990 
991 		nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
992 				     &any_writable);
993 		folio_ref_add(folio, nr);
994 		if (folio_test_anon(folio)) {
995 			if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
996 								  nr, src_vma))) {
997 				folio_ref_sub(folio, nr);
998 				return -EAGAIN;
999 			}
1000 			rss[MM_ANONPAGES] += nr;
1001 			VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1002 		} else {
1003 			folio_dup_file_rmap_ptes(folio, page, nr);
1004 			rss[mm_counter_file(folio)] += nr;
1005 		}
1006 		if (any_writable)
1007 			pte = pte_mkwrite(pte, src_vma);
1008 		__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1009 				    addr, nr);
1010 		return nr;
1011 	}
1012 
1013 	folio_get(folio);
1014 	if (folio_test_anon(folio)) {
1015 		/*
1016 		 * If this page may have been pinned by the parent process,
1017 		 * copy the page immediately for the child so that we'll always
1018 		 * guarantee the pinned page won't be randomly replaced in the
1019 		 * future.
1020 		 */
1021 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1022 			/* Page may be pinned, we have to copy. */
1023 			folio_put(folio);
1024 			err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1025 						addr, rss, prealloc, page);
1026 			return err ? err : 1;
1027 		}
1028 		rss[MM_ANONPAGES]++;
1029 		VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1030 	} else {
1031 		folio_dup_file_rmap_pte(folio, page);
1032 		rss[mm_counter_file(folio)]++;
1033 	}
1034 
1035 copy_pte:
1036 	__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1037 	return 1;
1038 }
1039 
1040 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1041 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1042 {
1043 	struct folio *new_folio;
1044 
1045 	if (need_zero)
1046 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1047 	else
1048 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1049 					    addr, false);
1050 
1051 	if (!new_folio)
1052 		return NULL;
1053 
1054 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1055 		folio_put(new_folio);
1056 		return NULL;
1057 	}
1058 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1059 
1060 	return new_folio;
1061 }
1062 
1063 static int
1064 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1065 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1066 	       unsigned long end)
1067 {
1068 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1069 	struct mm_struct *src_mm = src_vma->vm_mm;
1070 	pte_t *orig_src_pte, *orig_dst_pte;
1071 	pte_t *src_pte, *dst_pte;
1072 	pte_t ptent;
1073 	spinlock_t *src_ptl, *dst_ptl;
1074 	int progress, max_nr, ret = 0;
1075 	int rss[NR_MM_COUNTERS];
1076 	swp_entry_t entry = (swp_entry_t){0};
1077 	struct folio *prealloc = NULL;
1078 	int nr;
1079 
1080 again:
1081 	progress = 0;
1082 	init_rss_vec(rss);
1083 
1084 	/*
1085 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1086 	 * error handling here, assume that exclusive mmap_lock on dst and src
1087 	 * protects anon from unexpected THP transitions; with shmem and file
1088 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1089 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1090 	 * can remove such assumptions later, but this is good enough for now.
1091 	 */
1092 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1093 	if (!dst_pte) {
1094 		ret = -ENOMEM;
1095 		goto out;
1096 	}
1097 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1098 	if (!src_pte) {
1099 		pte_unmap_unlock(dst_pte, dst_ptl);
1100 		/* ret == 0 */
1101 		goto out;
1102 	}
1103 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1104 	orig_src_pte = src_pte;
1105 	orig_dst_pte = dst_pte;
1106 	arch_enter_lazy_mmu_mode();
1107 
1108 	do {
1109 		nr = 1;
1110 
1111 		/*
1112 		 * We are holding two locks at this point - either of them
1113 		 * could generate latencies in another task on another CPU.
1114 		 */
1115 		if (progress >= 32) {
1116 			progress = 0;
1117 			if (need_resched() ||
1118 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1119 				break;
1120 		}
1121 		ptent = ptep_get(src_pte);
1122 		if (pte_none(ptent)) {
1123 			progress++;
1124 			continue;
1125 		}
1126 		if (unlikely(!pte_present(ptent))) {
1127 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1128 						  dst_pte, src_pte,
1129 						  dst_vma, src_vma,
1130 						  addr, rss);
1131 			if (ret == -EIO) {
1132 				entry = pte_to_swp_entry(ptep_get(src_pte));
1133 				break;
1134 			} else if (ret == -EBUSY) {
1135 				break;
1136 			} else if (!ret) {
1137 				progress += 8;
1138 				continue;
1139 			}
1140 			ptent = ptep_get(src_pte);
1141 			VM_WARN_ON_ONCE(!pte_present(ptent));
1142 
1143 			/*
1144 			 * Device exclusive entry restored, continue by copying
1145 			 * the now present pte.
1146 			 */
1147 			WARN_ON_ONCE(ret != -ENOENT);
1148 		}
1149 		/* copy_present_ptes() will clear `*prealloc' if consumed */
1150 		max_nr = (end - addr) / PAGE_SIZE;
1151 		ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1152 					ptent, addr, max_nr, rss, &prealloc);
1153 		/*
1154 		 * If we need a pre-allocated page for this pte, drop the
1155 		 * locks, allocate, and try again.
1156 		 */
1157 		if (unlikely(ret == -EAGAIN))
1158 			break;
1159 		if (unlikely(prealloc)) {
1160 			/*
1161 			 * pre-alloc page cannot be reused by next time so as
1162 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1163 			 * will allocate page according to address).  This
1164 			 * could only happen if one pinned pte changed.
1165 			 */
1166 			folio_put(prealloc);
1167 			prealloc = NULL;
1168 		}
1169 		nr = ret;
1170 		progress += 8 * nr;
1171 	} while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1172 		 addr != end);
1173 
1174 	arch_leave_lazy_mmu_mode();
1175 	pte_unmap_unlock(orig_src_pte, src_ptl);
1176 	add_mm_rss_vec(dst_mm, rss);
1177 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1178 	cond_resched();
1179 
1180 	if (ret == -EIO) {
1181 		VM_WARN_ON_ONCE(!entry.val);
1182 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1183 			ret = -ENOMEM;
1184 			goto out;
1185 		}
1186 		entry.val = 0;
1187 	} else if (ret == -EBUSY) {
1188 		goto out;
1189 	} else if (ret ==  -EAGAIN) {
1190 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1191 		if (!prealloc)
1192 			return -ENOMEM;
1193 	} else if (ret < 0) {
1194 		VM_WARN_ON_ONCE(1);
1195 	}
1196 
1197 	/* We've captured and resolved the error. Reset, try again. */
1198 	ret = 0;
1199 
1200 	if (addr != end)
1201 		goto again;
1202 out:
1203 	if (unlikely(prealloc))
1204 		folio_put(prealloc);
1205 	return ret;
1206 }
1207 
1208 static inline int
1209 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1210 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1211 	       unsigned long end)
1212 {
1213 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1214 	struct mm_struct *src_mm = src_vma->vm_mm;
1215 	pmd_t *src_pmd, *dst_pmd;
1216 	unsigned long next;
1217 
1218 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1219 	if (!dst_pmd)
1220 		return -ENOMEM;
1221 	src_pmd = pmd_offset(src_pud, addr);
1222 	do {
1223 		next = pmd_addr_end(addr, end);
1224 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1225 			|| pmd_devmap(*src_pmd)) {
1226 			int err;
1227 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1228 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1229 					    addr, dst_vma, src_vma);
1230 			if (err == -ENOMEM)
1231 				return -ENOMEM;
1232 			if (!err)
1233 				continue;
1234 			/* fall through */
1235 		}
1236 		if (pmd_none_or_clear_bad(src_pmd))
1237 			continue;
1238 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1239 				   addr, next))
1240 			return -ENOMEM;
1241 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1242 	return 0;
1243 }
1244 
1245 static inline int
1246 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1247 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1248 	       unsigned long end)
1249 {
1250 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1251 	struct mm_struct *src_mm = src_vma->vm_mm;
1252 	pud_t *src_pud, *dst_pud;
1253 	unsigned long next;
1254 
1255 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1256 	if (!dst_pud)
1257 		return -ENOMEM;
1258 	src_pud = pud_offset(src_p4d, addr);
1259 	do {
1260 		next = pud_addr_end(addr, end);
1261 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1262 			int err;
1263 
1264 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1265 			err = copy_huge_pud(dst_mm, src_mm,
1266 					    dst_pud, src_pud, addr, src_vma);
1267 			if (err == -ENOMEM)
1268 				return -ENOMEM;
1269 			if (!err)
1270 				continue;
1271 			/* fall through */
1272 		}
1273 		if (pud_none_or_clear_bad(src_pud))
1274 			continue;
1275 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1276 				   addr, next))
1277 			return -ENOMEM;
1278 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1279 	return 0;
1280 }
1281 
1282 static inline int
1283 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1284 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1285 	       unsigned long end)
1286 {
1287 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1288 	p4d_t *src_p4d, *dst_p4d;
1289 	unsigned long next;
1290 
1291 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1292 	if (!dst_p4d)
1293 		return -ENOMEM;
1294 	src_p4d = p4d_offset(src_pgd, addr);
1295 	do {
1296 		next = p4d_addr_end(addr, end);
1297 		if (p4d_none_or_clear_bad(src_p4d))
1298 			continue;
1299 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1300 				   addr, next))
1301 			return -ENOMEM;
1302 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1303 	return 0;
1304 }
1305 
1306 /*
1307  * Return true if the vma needs to copy the pgtable during this fork().  Return
1308  * false when we can speed up fork() by allowing lazy page faults later until
1309  * when the child accesses the memory range.
1310  */
1311 static bool
1312 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1313 {
1314 	/*
1315 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1316 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1317 	 * contains uffd-wp protection information, that's something we can't
1318 	 * retrieve from page cache, and skip copying will lose those info.
1319 	 */
1320 	if (userfaultfd_wp(dst_vma))
1321 		return true;
1322 
1323 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1324 		return true;
1325 
1326 	if (src_vma->anon_vma)
1327 		return true;
1328 
1329 	/*
1330 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1331 	 * becomes much lighter when there are big shared or private readonly
1332 	 * mappings. The tradeoff is that copy_page_range is more efficient
1333 	 * than faulting.
1334 	 */
1335 	return false;
1336 }
1337 
1338 int
1339 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1340 {
1341 	pgd_t *src_pgd, *dst_pgd;
1342 	unsigned long next;
1343 	unsigned long addr = src_vma->vm_start;
1344 	unsigned long end = src_vma->vm_end;
1345 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1346 	struct mm_struct *src_mm = src_vma->vm_mm;
1347 	struct mmu_notifier_range range;
1348 	bool is_cow;
1349 	int ret;
1350 
1351 	if (!vma_needs_copy(dst_vma, src_vma))
1352 		return 0;
1353 
1354 	if (is_vm_hugetlb_page(src_vma))
1355 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1356 
1357 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1358 		/*
1359 		 * We do not free on error cases below as remove_vma
1360 		 * gets called on error from higher level routine
1361 		 */
1362 		ret = track_pfn_copy(src_vma);
1363 		if (ret)
1364 			return ret;
1365 	}
1366 
1367 	/*
1368 	 * We need to invalidate the secondary MMU mappings only when
1369 	 * there could be a permission downgrade on the ptes of the
1370 	 * parent mm. And a permission downgrade will only happen if
1371 	 * is_cow_mapping() returns true.
1372 	 */
1373 	is_cow = is_cow_mapping(src_vma->vm_flags);
1374 
1375 	if (is_cow) {
1376 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1377 					0, src_mm, addr, end);
1378 		mmu_notifier_invalidate_range_start(&range);
1379 		/*
1380 		 * Disabling preemption is not needed for the write side, as
1381 		 * the read side doesn't spin, but goes to the mmap_lock.
1382 		 *
1383 		 * Use the raw variant of the seqcount_t write API to avoid
1384 		 * lockdep complaining about preemptibility.
1385 		 */
1386 		vma_assert_write_locked(src_vma);
1387 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1388 	}
1389 
1390 	ret = 0;
1391 	dst_pgd = pgd_offset(dst_mm, addr);
1392 	src_pgd = pgd_offset(src_mm, addr);
1393 	do {
1394 		next = pgd_addr_end(addr, end);
1395 		if (pgd_none_or_clear_bad(src_pgd))
1396 			continue;
1397 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1398 					    addr, next))) {
1399 			untrack_pfn_clear(dst_vma);
1400 			ret = -ENOMEM;
1401 			break;
1402 		}
1403 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1404 
1405 	if (is_cow) {
1406 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1407 		mmu_notifier_invalidate_range_end(&range);
1408 	}
1409 	return ret;
1410 }
1411 
1412 /* Whether we should zap all COWed (private) pages too */
1413 static inline bool should_zap_cows(struct zap_details *details)
1414 {
1415 	/* By default, zap all pages */
1416 	if (!details)
1417 		return true;
1418 
1419 	/* Or, we zap COWed pages only if the caller wants to */
1420 	return details->even_cows;
1421 }
1422 
1423 /* Decides whether we should zap this folio with the folio pointer specified */
1424 static inline bool should_zap_folio(struct zap_details *details,
1425 				    struct folio *folio)
1426 {
1427 	/* If we can make a decision without *folio.. */
1428 	if (should_zap_cows(details))
1429 		return true;
1430 
1431 	/* Otherwise we should only zap non-anon folios */
1432 	return !folio_test_anon(folio);
1433 }
1434 
1435 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1436 {
1437 	if (!details)
1438 		return false;
1439 
1440 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1441 }
1442 
1443 /*
1444  * This function makes sure that we'll replace the none pte with an uffd-wp
1445  * swap special pte marker when necessary. Must be with the pgtable lock held.
1446  */
1447 static inline void
1448 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1449 			      unsigned long addr, pte_t *pte, int nr,
1450 			      struct zap_details *details, pte_t pteval)
1451 {
1452 	/* Zap on anonymous always means dropping everything */
1453 	if (vma_is_anonymous(vma))
1454 		return;
1455 
1456 	if (zap_drop_file_uffd_wp(details))
1457 		return;
1458 
1459 	for (;;) {
1460 		/* the PFN in the PTE is irrelevant. */
1461 		pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1462 		if (--nr == 0)
1463 			break;
1464 		pte++;
1465 		addr += PAGE_SIZE;
1466 	}
1467 }
1468 
1469 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1470 		struct vm_area_struct *vma, struct folio *folio,
1471 		struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1472 		unsigned long addr, struct zap_details *details, int *rss,
1473 		bool *force_flush, bool *force_break)
1474 {
1475 	struct mm_struct *mm = tlb->mm;
1476 	bool delay_rmap = false;
1477 
1478 	if (!folio_test_anon(folio)) {
1479 		ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1480 		if (pte_dirty(ptent)) {
1481 			folio_mark_dirty(folio);
1482 			if (tlb_delay_rmap(tlb)) {
1483 				delay_rmap = true;
1484 				*force_flush = true;
1485 			}
1486 		}
1487 		if (pte_young(ptent) && likely(vma_has_recency(vma)))
1488 			folio_mark_accessed(folio);
1489 		rss[mm_counter(folio)] -= nr;
1490 	} else {
1491 		/* We don't need up-to-date accessed/dirty bits. */
1492 		clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1493 		rss[MM_ANONPAGES] -= nr;
1494 	}
1495 	/* Checking a single PTE in a batch is sufficient. */
1496 	arch_check_zapped_pte(vma, ptent);
1497 	tlb_remove_tlb_entries(tlb, pte, nr, addr);
1498 	if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1499 		zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1500 					      ptent);
1501 
1502 	if (!delay_rmap) {
1503 		folio_remove_rmap_ptes(folio, page, nr, vma);
1504 
1505 		/* Only sanity-check the first page in a batch. */
1506 		if (unlikely(page_mapcount(page) < 0))
1507 			print_bad_pte(vma, addr, ptent, page);
1508 	}
1509 
1510 	if (want_init_mlocked_on_free() && folio_test_mlocked(folio) &&
1511 	    !delay_rmap && folio_test_anon(folio)) {
1512 		kernel_init_pages(page, folio_nr_pages(folio));
1513 	}
1514 
1515 	if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1516 		*force_flush = true;
1517 		*force_break = true;
1518 	}
1519 }
1520 
1521 /*
1522  * Zap or skip at least one present PTE, trying to batch-process subsequent
1523  * PTEs that map consecutive pages of the same folio.
1524  *
1525  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1526  */
1527 static inline int zap_present_ptes(struct mmu_gather *tlb,
1528 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1529 		unsigned int max_nr, unsigned long addr,
1530 		struct zap_details *details, int *rss, bool *force_flush,
1531 		bool *force_break)
1532 {
1533 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1534 	struct mm_struct *mm = tlb->mm;
1535 	struct folio *folio;
1536 	struct page *page;
1537 	int nr;
1538 
1539 	page = vm_normal_page(vma, addr, ptent);
1540 	if (!page) {
1541 		/* We don't need up-to-date accessed/dirty bits. */
1542 		ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1543 		arch_check_zapped_pte(vma, ptent);
1544 		tlb_remove_tlb_entry(tlb, pte, addr);
1545 		if (userfaultfd_pte_wp(vma, ptent))
1546 			zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1547 						      details, ptent);
1548 		ksm_might_unmap_zero_page(mm, ptent);
1549 		return 1;
1550 	}
1551 
1552 	folio = page_folio(page);
1553 	if (unlikely(!should_zap_folio(details, folio)))
1554 		return 1;
1555 
1556 	/*
1557 	 * Make sure that the common "small folio" case is as fast as possible
1558 	 * by keeping the batching logic separate.
1559 	 */
1560 	if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1561 		nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1562 				     NULL);
1563 
1564 		zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1565 				       addr, details, rss, force_flush,
1566 				       force_break);
1567 		return nr;
1568 	}
1569 	zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1570 			       details, rss, force_flush, force_break);
1571 	return 1;
1572 }
1573 
1574 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1575 				struct vm_area_struct *vma, pmd_t *pmd,
1576 				unsigned long addr, unsigned long end,
1577 				struct zap_details *details)
1578 {
1579 	bool force_flush = false, force_break = false;
1580 	struct mm_struct *mm = tlb->mm;
1581 	int rss[NR_MM_COUNTERS];
1582 	spinlock_t *ptl;
1583 	pte_t *start_pte;
1584 	pte_t *pte;
1585 	swp_entry_t entry;
1586 	int nr;
1587 
1588 	tlb_change_page_size(tlb, PAGE_SIZE);
1589 	init_rss_vec(rss);
1590 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1591 	if (!pte)
1592 		return addr;
1593 
1594 	flush_tlb_batched_pending(mm);
1595 	arch_enter_lazy_mmu_mode();
1596 	do {
1597 		pte_t ptent = ptep_get(pte);
1598 		struct folio *folio;
1599 		struct page *page;
1600 		int max_nr;
1601 
1602 		nr = 1;
1603 		if (pte_none(ptent))
1604 			continue;
1605 
1606 		if (need_resched())
1607 			break;
1608 
1609 		if (pte_present(ptent)) {
1610 			max_nr = (end - addr) / PAGE_SIZE;
1611 			nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1612 					      addr, details, rss, &force_flush,
1613 					      &force_break);
1614 			if (unlikely(force_break)) {
1615 				addr += nr * PAGE_SIZE;
1616 				break;
1617 			}
1618 			continue;
1619 		}
1620 
1621 		entry = pte_to_swp_entry(ptent);
1622 		if (is_device_private_entry(entry) ||
1623 		    is_device_exclusive_entry(entry)) {
1624 			page = pfn_swap_entry_to_page(entry);
1625 			folio = page_folio(page);
1626 			if (unlikely(!should_zap_folio(details, folio)))
1627 				continue;
1628 			/*
1629 			 * Both device private/exclusive mappings should only
1630 			 * work with anonymous page so far, so we don't need to
1631 			 * consider uffd-wp bit when zap. For more information,
1632 			 * see zap_install_uffd_wp_if_needed().
1633 			 */
1634 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1635 			rss[mm_counter(folio)]--;
1636 			if (is_device_private_entry(entry))
1637 				folio_remove_rmap_pte(folio, page, vma);
1638 			folio_put(folio);
1639 		} else if (!non_swap_entry(entry)) {
1640 			/* Genuine swap entry, hence a private anon page */
1641 			if (!should_zap_cows(details))
1642 				continue;
1643 			rss[MM_SWAPENTS]--;
1644 			if (unlikely(!free_swap_and_cache(entry)))
1645 				print_bad_pte(vma, addr, ptent, NULL);
1646 		} else if (is_migration_entry(entry)) {
1647 			folio = pfn_swap_entry_folio(entry);
1648 			if (!should_zap_folio(details, folio))
1649 				continue;
1650 			rss[mm_counter(folio)]--;
1651 		} else if (pte_marker_entry_uffd_wp(entry)) {
1652 			/*
1653 			 * For anon: always drop the marker; for file: only
1654 			 * drop the marker if explicitly requested.
1655 			 */
1656 			if (!vma_is_anonymous(vma) &&
1657 			    !zap_drop_file_uffd_wp(details))
1658 				continue;
1659 		} else if (is_hwpoison_entry(entry) ||
1660 			   is_poisoned_swp_entry(entry)) {
1661 			if (!should_zap_cows(details))
1662 				continue;
1663 		} else {
1664 			/* We should have covered all the swap entry types */
1665 			pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1666 			WARN_ON_ONCE(1);
1667 		}
1668 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1669 		zap_install_uffd_wp_if_needed(vma, addr, pte, 1, details, ptent);
1670 	} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1671 
1672 	add_mm_rss_vec(mm, rss);
1673 	arch_leave_lazy_mmu_mode();
1674 
1675 	/* Do the actual TLB flush before dropping ptl */
1676 	if (force_flush) {
1677 		tlb_flush_mmu_tlbonly(tlb);
1678 		tlb_flush_rmaps(tlb, vma);
1679 	}
1680 	pte_unmap_unlock(start_pte, ptl);
1681 
1682 	/*
1683 	 * If we forced a TLB flush (either due to running out of
1684 	 * batch buffers or because we needed to flush dirty TLB
1685 	 * entries before releasing the ptl), free the batched
1686 	 * memory too. Come back again if we didn't do everything.
1687 	 */
1688 	if (force_flush)
1689 		tlb_flush_mmu(tlb);
1690 
1691 	return addr;
1692 }
1693 
1694 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1695 				struct vm_area_struct *vma, pud_t *pud,
1696 				unsigned long addr, unsigned long end,
1697 				struct zap_details *details)
1698 {
1699 	pmd_t *pmd;
1700 	unsigned long next;
1701 
1702 	pmd = pmd_offset(pud, addr);
1703 	do {
1704 		next = pmd_addr_end(addr, end);
1705 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1706 			if (next - addr != HPAGE_PMD_SIZE)
1707 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1708 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1709 				addr = next;
1710 				continue;
1711 			}
1712 			/* fall through */
1713 		} else if (details && details->single_folio &&
1714 			   folio_test_pmd_mappable(details->single_folio) &&
1715 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1716 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1717 			/*
1718 			 * Take and drop THP pmd lock so that we cannot return
1719 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1720 			 * but not yet decremented compound_mapcount().
1721 			 */
1722 			spin_unlock(ptl);
1723 		}
1724 		if (pmd_none(*pmd)) {
1725 			addr = next;
1726 			continue;
1727 		}
1728 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1729 		if (addr != next)
1730 			pmd--;
1731 	} while (pmd++, cond_resched(), addr != end);
1732 
1733 	return addr;
1734 }
1735 
1736 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1737 				struct vm_area_struct *vma, p4d_t *p4d,
1738 				unsigned long addr, unsigned long end,
1739 				struct zap_details *details)
1740 {
1741 	pud_t *pud;
1742 	unsigned long next;
1743 
1744 	pud = pud_offset(p4d, addr);
1745 	do {
1746 		next = pud_addr_end(addr, end);
1747 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1748 			if (next - addr != HPAGE_PUD_SIZE) {
1749 				mmap_assert_locked(tlb->mm);
1750 				split_huge_pud(vma, pud, addr);
1751 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1752 				goto next;
1753 			/* fall through */
1754 		}
1755 		if (pud_none_or_clear_bad(pud))
1756 			continue;
1757 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1758 next:
1759 		cond_resched();
1760 	} while (pud++, addr = next, addr != end);
1761 
1762 	return addr;
1763 }
1764 
1765 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1766 				struct vm_area_struct *vma, pgd_t *pgd,
1767 				unsigned long addr, unsigned long end,
1768 				struct zap_details *details)
1769 {
1770 	p4d_t *p4d;
1771 	unsigned long next;
1772 
1773 	p4d = p4d_offset(pgd, addr);
1774 	do {
1775 		next = p4d_addr_end(addr, end);
1776 		if (p4d_none_or_clear_bad(p4d))
1777 			continue;
1778 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1779 	} while (p4d++, addr = next, addr != end);
1780 
1781 	return addr;
1782 }
1783 
1784 void unmap_page_range(struct mmu_gather *tlb,
1785 			     struct vm_area_struct *vma,
1786 			     unsigned long addr, unsigned long end,
1787 			     struct zap_details *details)
1788 {
1789 	pgd_t *pgd;
1790 	unsigned long next;
1791 
1792 	BUG_ON(addr >= end);
1793 	tlb_start_vma(tlb, vma);
1794 	pgd = pgd_offset(vma->vm_mm, addr);
1795 	do {
1796 		next = pgd_addr_end(addr, end);
1797 		if (pgd_none_or_clear_bad(pgd))
1798 			continue;
1799 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1800 	} while (pgd++, addr = next, addr != end);
1801 	tlb_end_vma(tlb, vma);
1802 }
1803 
1804 
1805 static void unmap_single_vma(struct mmu_gather *tlb,
1806 		struct vm_area_struct *vma, unsigned long start_addr,
1807 		unsigned long end_addr,
1808 		struct zap_details *details, bool mm_wr_locked)
1809 {
1810 	unsigned long start = max(vma->vm_start, start_addr);
1811 	unsigned long end;
1812 
1813 	if (start >= vma->vm_end)
1814 		return;
1815 	end = min(vma->vm_end, end_addr);
1816 	if (end <= vma->vm_start)
1817 		return;
1818 
1819 	if (vma->vm_file)
1820 		uprobe_munmap(vma, start, end);
1821 
1822 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1823 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1824 
1825 	if (start != end) {
1826 		if (unlikely(is_vm_hugetlb_page(vma))) {
1827 			/*
1828 			 * It is undesirable to test vma->vm_file as it
1829 			 * should be non-null for valid hugetlb area.
1830 			 * However, vm_file will be NULL in the error
1831 			 * cleanup path of mmap_region. When
1832 			 * hugetlbfs ->mmap method fails,
1833 			 * mmap_region() nullifies vma->vm_file
1834 			 * before calling this function to clean up.
1835 			 * Since no pte has actually been setup, it is
1836 			 * safe to do nothing in this case.
1837 			 */
1838 			if (vma->vm_file) {
1839 				zap_flags_t zap_flags = details ?
1840 				    details->zap_flags : 0;
1841 				__unmap_hugepage_range(tlb, vma, start, end,
1842 							     NULL, zap_flags);
1843 			}
1844 		} else
1845 			unmap_page_range(tlb, vma, start, end, details);
1846 	}
1847 }
1848 
1849 /**
1850  * unmap_vmas - unmap a range of memory covered by a list of vma's
1851  * @tlb: address of the caller's struct mmu_gather
1852  * @mas: the maple state
1853  * @vma: the starting vma
1854  * @start_addr: virtual address at which to start unmapping
1855  * @end_addr: virtual address at which to end unmapping
1856  * @tree_end: The maximum index to check
1857  * @mm_wr_locked: lock flag
1858  *
1859  * Unmap all pages in the vma list.
1860  *
1861  * Only addresses between `start' and `end' will be unmapped.
1862  *
1863  * The VMA list must be sorted in ascending virtual address order.
1864  *
1865  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1866  * range after unmap_vmas() returns.  So the only responsibility here is to
1867  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1868  * drops the lock and schedules.
1869  */
1870 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1871 		struct vm_area_struct *vma, unsigned long start_addr,
1872 		unsigned long end_addr, unsigned long tree_end,
1873 		bool mm_wr_locked)
1874 {
1875 	struct mmu_notifier_range range;
1876 	struct zap_details details = {
1877 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1878 		/* Careful - we need to zap private pages too! */
1879 		.even_cows = true,
1880 	};
1881 
1882 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1883 				start_addr, end_addr);
1884 	mmu_notifier_invalidate_range_start(&range);
1885 	do {
1886 		unsigned long start = start_addr;
1887 		unsigned long end = end_addr;
1888 		hugetlb_zap_begin(vma, &start, &end);
1889 		unmap_single_vma(tlb, vma, start, end, &details,
1890 				 mm_wr_locked);
1891 		hugetlb_zap_end(vma, &details);
1892 		vma = mas_find(mas, tree_end - 1);
1893 	} while (vma && likely(!xa_is_zero(vma)));
1894 	mmu_notifier_invalidate_range_end(&range);
1895 }
1896 
1897 /**
1898  * zap_page_range_single - remove user pages in a given range
1899  * @vma: vm_area_struct holding the applicable pages
1900  * @address: starting address of pages to zap
1901  * @size: number of bytes to zap
1902  * @details: details of shared cache invalidation
1903  *
1904  * The range must fit into one VMA.
1905  */
1906 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1907 		unsigned long size, struct zap_details *details)
1908 {
1909 	const unsigned long end = address + size;
1910 	struct mmu_notifier_range range;
1911 	struct mmu_gather tlb;
1912 
1913 	lru_add_drain();
1914 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1915 				address, end);
1916 	hugetlb_zap_begin(vma, &range.start, &range.end);
1917 	tlb_gather_mmu(&tlb, vma->vm_mm);
1918 	update_hiwater_rss(vma->vm_mm);
1919 	mmu_notifier_invalidate_range_start(&range);
1920 	/*
1921 	 * unmap 'address-end' not 'range.start-range.end' as range
1922 	 * could have been expanded for hugetlb pmd sharing.
1923 	 */
1924 	unmap_single_vma(&tlb, vma, address, end, details, false);
1925 	mmu_notifier_invalidate_range_end(&range);
1926 	tlb_finish_mmu(&tlb);
1927 	hugetlb_zap_end(vma, details);
1928 }
1929 
1930 /**
1931  * zap_vma_ptes - remove ptes mapping the vma
1932  * @vma: vm_area_struct holding ptes to be zapped
1933  * @address: starting address of pages to zap
1934  * @size: number of bytes to zap
1935  *
1936  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1937  *
1938  * The entire address range must be fully contained within the vma.
1939  *
1940  */
1941 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1942 		unsigned long size)
1943 {
1944 	if (!range_in_vma(vma, address, address + size) ||
1945 	    		!(vma->vm_flags & VM_PFNMAP))
1946 		return;
1947 
1948 	zap_page_range_single(vma, address, size, NULL);
1949 }
1950 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1951 
1952 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1953 {
1954 	pgd_t *pgd;
1955 	p4d_t *p4d;
1956 	pud_t *pud;
1957 	pmd_t *pmd;
1958 
1959 	pgd = pgd_offset(mm, addr);
1960 	p4d = p4d_alloc(mm, pgd, addr);
1961 	if (!p4d)
1962 		return NULL;
1963 	pud = pud_alloc(mm, p4d, addr);
1964 	if (!pud)
1965 		return NULL;
1966 	pmd = pmd_alloc(mm, pud, addr);
1967 	if (!pmd)
1968 		return NULL;
1969 
1970 	VM_BUG_ON(pmd_trans_huge(*pmd));
1971 	return pmd;
1972 }
1973 
1974 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1975 			spinlock_t **ptl)
1976 {
1977 	pmd_t *pmd = walk_to_pmd(mm, addr);
1978 
1979 	if (!pmd)
1980 		return NULL;
1981 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1982 }
1983 
1984 static int validate_page_before_insert(struct page *page)
1985 {
1986 	struct folio *folio = page_folio(page);
1987 
1988 	if (folio_test_anon(folio) || folio_test_slab(folio) ||
1989 	    page_has_type(page))
1990 		return -EINVAL;
1991 	flush_dcache_folio(folio);
1992 	return 0;
1993 }
1994 
1995 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1996 			unsigned long addr, struct page *page, pgprot_t prot)
1997 {
1998 	struct folio *folio = page_folio(page);
1999 
2000 	if (!pte_none(ptep_get(pte)))
2001 		return -EBUSY;
2002 	/* Ok, finally just insert the thing.. */
2003 	folio_get(folio);
2004 	inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2005 	folio_add_file_rmap_pte(folio, page, vma);
2006 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
2007 	return 0;
2008 }
2009 
2010 /*
2011  * This is the old fallback for page remapping.
2012  *
2013  * For historical reasons, it only allows reserved pages. Only
2014  * old drivers should use this, and they needed to mark their
2015  * pages reserved for the old functions anyway.
2016  */
2017 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2018 			struct page *page, pgprot_t prot)
2019 {
2020 	int retval;
2021 	pte_t *pte;
2022 	spinlock_t *ptl;
2023 
2024 	retval = validate_page_before_insert(page);
2025 	if (retval)
2026 		goto out;
2027 	retval = -ENOMEM;
2028 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2029 	if (!pte)
2030 		goto out;
2031 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2032 	pte_unmap_unlock(pte, ptl);
2033 out:
2034 	return retval;
2035 }
2036 
2037 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2038 			unsigned long addr, struct page *page, pgprot_t prot)
2039 {
2040 	int err;
2041 
2042 	if (!page_count(page))
2043 		return -EINVAL;
2044 	err = validate_page_before_insert(page);
2045 	if (err)
2046 		return err;
2047 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2048 }
2049 
2050 /* insert_pages() amortizes the cost of spinlock operations
2051  * when inserting pages in a loop.
2052  */
2053 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2054 			struct page **pages, unsigned long *num, pgprot_t prot)
2055 {
2056 	pmd_t *pmd = NULL;
2057 	pte_t *start_pte, *pte;
2058 	spinlock_t *pte_lock;
2059 	struct mm_struct *const mm = vma->vm_mm;
2060 	unsigned long curr_page_idx = 0;
2061 	unsigned long remaining_pages_total = *num;
2062 	unsigned long pages_to_write_in_pmd;
2063 	int ret;
2064 more:
2065 	ret = -EFAULT;
2066 	pmd = walk_to_pmd(mm, addr);
2067 	if (!pmd)
2068 		goto out;
2069 
2070 	pages_to_write_in_pmd = min_t(unsigned long,
2071 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2072 
2073 	/* Allocate the PTE if necessary; takes PMD lock once only. */
2074 	ret = -ENOMEM;
2075 	if (pte_alloc(mm, pmd))
2076 		goto out;
2077 
2078 	while (pages_to_write_in_pmd) {
2079 		int pte_idx = 0;
2080 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2081 
2082 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2083 		if (!start_pte) {
2084 			ret = -EFAULT;
2085 			goto out;
2086 		}
2087 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2088 			int err = insert_page_in_batch_locked(vma, pte,
2089 				addr, pages[curr_page_idx], prot);
2090 			if (unlikely(err)) {
2091 				pte_unmap_unlock(start_pte, pte_lock);
2092 				ret = err;
2093 				remaining_pages_total -= pte_idx;
2094 				goto out;
2095 			}
2096 			addr += PAGE_SIZE;
2097 			++curr_page_idx;
2098 		}
2099 		pte_unmap_unlock(start_pte, pte_lock);
2100 		pages_to_write_in_pmd -= batch_size;
2101 		remaining_pages_total -= batch_size;
2102 	}
2103 	if (remaining_pages_total)
2104 		goto more;
2105 	ret = 0;
2106 out:
2107 	*num = remaining_pages_total;
2108 	return ret;
2109 }
2110 
2111 /**
2112  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2113  * @vma: user vma to map to
2114  * @addr: target start user address of these pages
2115  * @pages: source kernel pages
2116  * @num: in: number of pages to map. out: number of pages that were *not*
2117  * mapped. (0 means all pages were successfully mapped).
2118  *
2119  * Preferred over vm_insert_page() when inserting multiple pages.
2120  *
2121  * In case of error, we may have mapped a subset of the provided
2122  * pages. It is the caller's responsibility to account for this case.
2123  *
2124  * The same restrictions apply as in vm_insert_page().
2125  */
2126 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2127 			struct page **pages, unsigned long *num)
2128 {
2129 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2130 
2131 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2132 		return -EFAULT;
2133 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2134 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2135 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2136 		vm_flags_set(vma, VM_MIXEDMAP);
2137 	}
2138 	/* Defer page refcount checking till we're about to map that page. */
2139 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2140 }
2141 EXPORT_SYMBOL(vm_insert_pages);
2142 
2143 /**
2144  * vm_insert_page - insert single page into user vma
2145  * @vma: user vma to map to
2146  * @addr: target user address of this page
2147  * @page: source kernel page
2148  *
2149  * This allows drivers to insert individual pages they've allocated
2150  * into a user vma.
2151  *
2152  * The page has to be a nice clean _individual_ kernel allocation.
2153  * If you allocate a compound page, you need to have marked it as
2154  * such (__GFP_COMP), or manually just split the page up yourself
2155  * (see split_page()).
2156  *
2157  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2158  * took an arbitrary page protection parameter. This doesn't allow
2159  * that. Your vma protection will have to be set up correctly, which
2160  * means that if you want a shared writable mapping, you'd better
2161  * ask for a shared writable mapping!
2162  *
2163  * The page does not need to be reserved.
2164  *
2165  * Usually this function is called from f_op->mmap() handler
2166  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2167  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2168  * function from other places, for example from page-fault handler.
2169  *
2170  * Return: %0 on success, negative error code otherwise.
2171  */
2172 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2173 			struct page *page)
2174 {
2175 	if (addr < vma->vm_start || addr >= vma->vm_end)
2176 		return -EFAULT;
2177 	if (!page_count(page))
2178 		return -EINVAL;
2179 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2180 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2181 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2182 		vm_flags_set(vma, VM_MIXEDMAP);
2183 	}
2184 	return insert_page(vma, addr, page, vma->vm_page_prot);
2185 }
2186 EXPORT_SYMBOL(vm_insert_page);
2187 
2188 /*
2189  * __vm_map_pages - maps range of kernel pages into user vma
2190  * @vma: user vma to map to
2191  * @pages: pointer to array of source kernel pages
2192  * @num: number of pages in page array
2193  * @offset: user's requested vm_pgoff
2194  *
2195  * This allows drivers to map range of kernel pages into a user vma.
2196  *
2197  * Return: 0 on success and error code otherwise.
2198  */
2199 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2200 				unsigned long num, unsigned long offset)
2201 {
2202 	unsigned long count = vma_pages(vma);
2203 	unsigned long uaddr = vma->vm_start;
2204 	int ret, i;
2205 
2206 	/* Fail if the user requested offset is beyond the end of the object */
2207 	if (offset >= num)
2208 		return -ENXIO;
2209 
2210 	/* Fail if the user requested size exceeds available object size */
2211 	if (count > num - offset)
2212 		return -ENXIO;
2213 
2214 	for (i = 0; i < count; i++) {
2215 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2216 		if (ret < 0)
2217 			return ret;
2218 		uaddr += PAGE_SIZE;
2219 	}
2220 
2221 	return 0;
2222 }
2223 
2224 /**
2225  * vm_map_pages - maps range of kernel pages starts with non zero offset
2226  * @vma: user vma to map to
2227  * @pages: pointer to array of source kernel pages
2228  * @num: number of pages in page array
2229  *
2230  * Maps an object consisting of @num pages, catering for the user's
2231  * requested vm_pgoff
2232  *
2233  * If we fail to insert any page into the vma, the function will return
2234  * immediately leaving any previously inserted pages present.  Callers
2235  * from the mmap handler may immediately return the error as their caller
2236  * will destroy the vma, removing any successfully inserted pages. Other
2237  * callers should make their own arrangements for calling unmap_region().
2238  *
2239  * Context: Process context. Called by mmap handlers.
2240  * Return: 0 on success and error code otherwise.
2241  */
2242 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2243 				unsigned long num)
2244 {
2245 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2246 }
2247 EXPORT_SYMBOL(vm_map_pages);
2248 
2249 /**
2250  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2251  * @vma: user vma to map to
2252  * @pages: pointer to array of source kernel pages
2253  * @num: number of pages in page array
2254  *
2255  * Similar to vm_map_pages(), except that it explicitly sets the offset
2256  * to 0. This function is intended for the drivers that did not consider
2257  * vm_pgoff.
2258  *
2259  * Context: Process context. Called by mmap handlers.
2260  * Return: 0 on success and error code otherwise.
2261  */
2262 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2263 				unsigned long num)
2264 {
2265 	return __vm_map_pages(vma, pages, num, 0);
2266 }
2267 EXPORT_SYMBOL(vm_map_pages_zero);
2268 
2269 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2270 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2271 {
2272 	struct mm_struct *mm = vma->vm_mm;
2273 	pte_t *pte, entry;
2274 	spinlock_t *ptl;
2275 
2276 	pte = get_locked_pte(mm, addr, &ptl);
2277 	if (!pte)
2278 		return VM_FAULT_OOM;
2279 	entry = ptep_get(pte);
2280 	if (!pte_none(entry)) {
2281 		if (mkwrite) {
2282 			/*
2283 			 * For read faults on private mappings the PFN passed
2284 			 * in may not match the PFN we have mapped if the
2285 			 * mapped PFN is a writeable COW page.  In the mkwrite
2286 			 * case we are creating a writable PTE for a shared
2287 			 * mapping and we expect the PFNs to match. If they
2288 			 * don't match, we are likely racing with block
2289 			 * allocation and mapping invalidation so just skip the
2290 			 * update.
2291 			 */
2292 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2293 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2294 				goto out_unlock;
2295 			}
2296 			entry = pte_mkyoung(entry);
2297 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2298 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2299 				update_mmu_cache(vma, addr, pte);
2300 		}
2301 		goto out_unlock;
2302 	}
2303 
2304 	/* Ok, finally just insert the thing.. */
2305 	if (pfn_t_devmap(pfn))
2306 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2307 	else
2308 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2309 
2310 	if (mkwrite) {
2311 		entry = pte_mkyoung(entry);
2312 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2313 	}
2314 
2315 	set_pte_at(mm, addr, pte, entry);
2316 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2317 
2318 out_unlock:
2319 	pte_unmap_unlock(pte, ptl);
2320 	return VM_FAULT_NOPAGE;
2321 }
2322 
2323 /**
2324  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2325  * @vma: user vma to map to
2326  * @addr: target user address of this page
2327  * @pfn: source kernel pfn
2328  * @pgprot: pgprot flags for the inserted page
2329  *
2330  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2331  * to override pgprot on a per-page basis.
2332  *
2333  * This only makes sense for IO mappings, and it makes no sense for
2334  * COW mappings.  In general, using multiple vmas is preferable;
2335  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2336  * impractical.
2337  *
2338  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2339  * caching- and encryption bits different than those of @vma->vm_page_prot,
2340  * because the caching- or encryption mode may not be known at mmap() time.
2341  *
2342  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2343  * to set caching and encryption bits for those vmas (except for COW pages).
2344  * This is ensured by core vm only modifying these page table entries using
2345  * functions that don't touch caching- or encryption bits, using pte_modify()
2346  * if needed. (See for example mprotect()).
2347  *
2348  * Also when new page-table entries are created, this is only done using the
2349  * fault() callback, and never using the value of vma->vm_page_prot,
2350  * except for page-table entries that point to anonymous pages as the result
2351  * of COW.
2352  *
2353  * Context: Process context.  May allocate using %GFP_KERNEL.
2354  * Return: vm_fault_t value.
2355  */
2356 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2357 			unsigned long pfn, pgprot_t pgprot)
2358 {
2359 	/*
2360 	 * Technically, architectures with pte_special can avoid all these
2361 	 * restrictions (same for remap_pfn_range).  However we would like
2362 	 * consistency in testing and feature parity among all, so we should
2363 	 * try to keep these invariants in place for everybody.
2364 	 */
2365 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2366 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2367 						(VM_PFNMAP|VM_MIXEDMAP));
2368 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2369 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2370 
2371 	if (addr < vma->vm_start || addr >= vma->vm_end)
2372 		return VM_FAULT_SIGBUS;
2373 
2374 	if (!pfn_modify_allowed(pfn, pgprot))
2375 		return VM_FAULT_SIGBUS;
2376 
2377 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2378 
2379 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2380 			false);
2381 }
2382 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2383 
2384 /**
2385  * vmf_insert_pfn - insert single pfn into user vma
2386  * @vma: user vma to map to
2387  * @addr: target user address of this page
2388  * @pfn: source kernel pfn
2389  *
2390  * Similar to vm_insert_page, this allows drivers to insert individual pages
2391  * they've allocated into a user vma. Same comments apply.
2392  *
2393  * This function should only be called from a vm_ops->fault handler, and
2394  * in that case the handler should return the result of this function.
2395  *
2396  * vma cannot be a COW mapping.
2397  *
2398  * As this is called only for pages that do not currently exist, we
2399  * do not need to flush old virtual caches or the TLB.
2400  *
2401  * Context: Process context.  May allocate using %GFP_KERNEL.
2402  * Return: vm_fault_t value.
2403  */
2404 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2405 			unsigned long pfn)
2406 {
2407 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2408 }
2409 EXPORT_SYMBOL(vmf_insert_pfn);
2410 
2411 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2412 {
2413 	/* these checks mirror the abort conditions in vm_normal_page */
2414 	if (vma->vm_flags & VM_MIXEDMAP)
2415 		return true;
2416 	if (pfn_t_devmap(pfn))
2417 		return true;
2418 	if (pfn_t_special(pfn))
2419 		return true;
2420 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2421 		return true;
2422 	return false;
2423 }
2424 
2425 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2426 		unsigned long addr, pfn_t pfn, bool mkwrite)
2427 {
2428 	pgprot_t pgprot = vma->vm_page_prot;
2429 	int err;
2430 
2431 	BUG_ON(!vm_mixed_ok(vma, pfn));
2432 
2433 	if (addr < vma->vm_start || addr >= vma->vm_end)
2434 		return VM_FAULT_SIGBUS;
2435 
2436 	track_pfn_insert(vma, &pgprot, pfn);
2437 
2438 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2439 		return VM_FAULT_SIGBUS;
2440 
2441 	/*
2442 	 * If we don't have pte special, then we have to use the pfn_valid()
2443 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2444 	 * refcount the page if pfn_valid is true (hence insert_page rather
2445 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2446 	 * without pte special, it would there be refcounted as a normal page.
2447 	 */
2448 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2449 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2450 		struct page *page;
2451 
2452 		/*
2453 		 * At this point we are committed to insert_page()
2454 		 * regardless of whether the caller specified flags that
2455 		 * result in pfn_t_has_page() == false.
2456 		 */
2457 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2458 		err = insert_page(vma, addr, page, pgprot);
2459 	} else {
2460 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2461 	}
2462 
2463 	if (err == -ENOMEM)
2464 		return VM_FAULT_OOM;
2465 	if (err < 0 && err != -EBUSY)
2466 		return VM_FAULT_SIGBUS;
2467 
2468 	return VM_FAULT_NOPAGE;
2469 }
2470 
2471 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2472 		pfn_t pfn)
2473 {
2474 	return __vm_insert_mixed(vma, addr, pfn, false);
2475 }
2476 EXPORT_SYMBOL(vmf_insert_mixed);
2477 
2478 /*
2479  *  If the insertion of PTE failed because someone else already added a
2480  *  different entry in the mean time, we treat that as success as we assume
2481  *  the same entry was actually inserted.
2482  */
2483 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2484 		unsigned long addr, pfn_t pfn)
2485 {
2486 	return __vm_insert_mixed(vma, addr, pfn, true);
2487 }
2488 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2489 
2490 /*
2491  * maps a range of physical memory into the requested pages. the old
2492  * mappings are removed. any references to nonexistent pages results
2493  * in null mappings (currently treated as "copy-on-access")
2494  */
2495 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2496 			unsigned long addr, unsigned long end,
2497 			unsigned long pfn, pgprot_t prot)
2498 {
2499 	pte_t *pte, *mapped_pte;
2500 	spinlock_t *ptl;
2501 	int err = 0;
2502 
2503 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2504 	if (!pte)
2505 		return -ENOMEM;
2506 	arch_enter_lazy_mmu_mode();
2507 	do {
2508 		BUG_ON(!pte_none(ptep_get(pte)));
2509 		if (!pfn_modify_allowed(pfn, prot)) {
2510 			err = -EACCES;
2511 			break;
2512 		}
2513 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2514 		pfn++;
2515 	} while (pte++, addr += PAGE_SIZE, addr != end);
2516 	arch_leave_lazy_mmu_mode();
2517 	pte_unmap_unlock(mapped_pte, ptl);
2518 	return err;
2519 }
2520 
2521 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2522 			unsigned long addr, unsigned long end,
2523 			unsigned long pfn, pgprot_t prot)
2524 {
2525 	pmd_t *pmd;
2526 	unsigned long next;
2527 	int err;
2528 
2529 	pfn -= addr >> PAGE_SHIFT;
2530 	pmd = pmd_alloc(mm, pud, addr);
2531 	if (!pmd)
2532 		return -ENOMEM;
2533 	VM_BUG_ON(pmd_trans_huge(*pmd));
2534 	do {
2535 		next = pmd_addr_end(addr, end);
2536 		err = remap_pte_range(mm, pmd, addr, next,
2537 				pfn + (addr >> PAGE_SHIFT), prot);
2538 		if (err)
2539 			return err;
2540 	} while (pmd++, addr = next, addr != end);
2541 	return 0;
2542 }
2543 
2544 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2545 			unsigned long addr, unsigned long end,
2546 			unsigned long pfn, pgprot_t prot)
2547 {
2548 	pud_t *pud;
2549 	unsigned long next;
2550 	int err;
2551 
2552 	pfn -= addr >> PAGE_SHIFT;
2553 	pud = pud_alloc(mm, p4d, addr);
2554 	if (!pud)
2555 		return -ENOMEM;
2556 	do {
2557 		next = pud_addr_end(addr, end);
2558 		err = remap_pmd_range(mm, pud, addr, next,
2559 				pfn + (addr >> PAGE_SHIFT), prot);
2560 		if (err)
2561 			return err;
2562 	} while (pud++, addr = next, addr != end);
2563 	return 0;
2564 }
2565 
2566 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2567 			unsigned long addr, unsigned long end,
2568 			unsigned long pfn, pgprot_t prot)
2569 {
2570 	p4d_t *p4d;
2571 	unsigned long next;
2572 	int err;
2573 
2574 	pfn -= addr >> PAGE_SHIFT;
2575 	p4d = p4d_alloc(mm, pgd, addr);
2576 	if (!p4d)
2577 		return -ENOMEM;
2578 	do {
2579 		next = p4d_addr_end(addr, end);
2580 		err = remap_pud_range(mm, p4d, addr, next,
2581 				pfn + (addr >> PAGE_SHIFT), prot);
2582 		if (err)
2583 			return err;
2584 	} while (p4d++, addr = next, addr != end);
2585 	return 0;
2586 }
2587 
2588 /*
2589  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2590  * must have pre-validated the caching bits of the pgprot_t.
2591  */
2592 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2593 		unsigned long pfn, unsigned long size, pgprot_t prot)
2594 {
2595 	pgd_t *pgd;
2596 	unsigned long next;
2597 	unsigned long end = addr + PAGE_ALIGN(size);
2598 	struct mm_struct *mm = vma->vm_mm;
2599 	int err;
2600 
2601 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2602 		return -EINVAL;
2603 
2604 	/*
2605 	 * Physically remapped pages are special. Tell the
2606 	 * rest of the world about it:
2607 	 *   VM_IO tells people not to look at these pages
2608 	 *	(accesses can have side effects).
2609 	 *   VM_PFNMAP tells the core MM that the base pages are just
2610 	 *	raw PFN mappings, and do not have a "struct page" associated
2611 	 *	with them.
2612 	 *   VM_DONTEXPAND
2613 	 *      Disable vma merging and expanding with mremap().
2614 	 *   VM_DONTDUMP
2615 	 *      Omit vma from core dump, even when VM_IO turned off.
2616 	 *
2617 	 * There's a horrible special case to handle copy-on-write
2618 	 * behaviour that some programs depend on. We mark the "original"
2619 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2620 	 * See vm_normal_page() for details.
2621 	 */
2622 	if (is_cow_mapping(vma->vm_flags)) {
2623 		if (addr != vma->vm_start || end != vma->vm_end)
2624 			return -EINVAL;
2625 		vma->vm_pgoff = pfn;
2626 	}
2627 
2628 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2629 
2630 	BUG_ON(addr >= end);
2631 	pfn -= addr >> PAGE_SHIFT;
2632 	pgd = pgd_offset(mm, addr);
2633 	flush_cache_range(vma, addr, end);
2634 	do {
2635 		next = pgd_addr_end(addr, end);
2636 		err = remap_p4d_range(mm, pgd, addr, next,
2637 				pfn + (addr >> PAGE_SHIFT), prot);
2638 		if (err)
2639 			return err;
2640 	} while (pgd++, addr = next, addr != end);
2641 
2642 	return 0;
2643 }
2644 
2645 /**
2646  * remap_pfn_range - remap kernel memory to userspace
2647  * @vma: user vma to map to
2648  * @addr: target page aligned user address to start at
2649  * @pfn: page frame number of kernel physical memory address
2650  * @size: size of mapping area
2651  * @prot: page protection flags for this mapping
2652  *
2653  * Note: this is only safe if the mm semaphore is held when called.
2654  *
2655  * Return: %0 on success, negative error code otherwise.
2656  */
2657 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2658 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2659 {
2660 	int err;
2661 
2662 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2663 	if (err)
2664 		return -EINVAL;
2665 
2666 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2667 	if (err)
2668 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2669 	return err;
2670 }
2671 EXPORT_SYMBOL(remap_pfn_range);
2672 
2673 /**
2674  * vm_iomap_memory - remap memory to userspace
2675  * @vma: user vma to map to
2676  * @start: start of the physical memory to be mapped
2677  * @len: size of area
2678  *
2679  * This is a simplified io_remap_pfn_range() for common driver use. The
2680  * driver just needs to give us the physical memory range to be mapped,
2681  * we'll figure out the rest from the vma information.
2682  *
2683  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2684  * whatever write-combining details or similar.
2685  *
2686  * Return: %0 on success, negative error code otherwise.
2687  */
2688 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2689 {
2690 	unsigned long vm_len, pfn, pages;
2691 
2692 	/* Check that the physical memory area passed in looks valid */
2693 	if (start + len < start)
2694 		return -EINVAL;
2695 	/*
2696 	 * You *really* shouldn't map things that aren't page-aligned,
2697 	 * but we've historically allowed it because IO memory might
2698 	 * just have smaller alignment.
2699 	 */
2700 	len += start & ~PAGE_MASK;
2701 	pfn = start >> PAGE_SHIFT;
2702 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2703 	if (pfn + pages < pfn)
2704 		return -EINVAL;
2705 
2706 	/* We start the mapping 'vm_pgoff' pages into the area */
2707 	if (vma->vm_pgoff > pages)
2708 		return -EINVAL;
2709 	pfn += vma->vm_pgoff;
2710 	pages -= vma->vm_pgoff;
2711 
2712 	/* Can we fit all of the mapping? */
2713 	vm_len = vma->vm_end - vma->vm_start;
2714 	if (vm_len >> PAGE_SHIFT > pages)
2715 		return -EINVAL;
2716 
2717 	/* Ok, let it rip */
2718 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2719 }
2720 EXPORT_SYMBOL(vm_iomap_memory);
2721 
2722 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2723 				     unsigned long addr, unsigned long end,
2724 				     pte_fn_t fn, void *data, bool create,
2725 				     pgtbl_mod_mask *mask)
2726 {
2727 	pte_t *pte, *mapped_pte;
2728 	int err = 0;
2729 	spinlock_t *ptl;
2730 
2731 	if (create) {
2732 		mapped_pte = pte = (mm == &init_mm) ?
2733 			pte_alloc_kernel_track(pmd, addr, mask) :
2734 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2735 		if (!pte)
2736 			return -ENOMEM;
2737 	} else {
2738 		mapped_pte = pte = (mm == &init_mm) ?
2739 			pte_offset_kernel(pmd, addr) :
2740 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2741 		if (!pte)
2742 			return -EINVAL;
2743 	}
2744 
2745 	arch_enter_lazy_mmu_mode();
2746 
2747 	if (fn) {
2748 		do {
2749 			if (create || !pte_none(ptep_get(pte))) {
2750 				err = fn(pte++, addr, data);
2751 				if (err)
2752 					break;
2753 			}
2754 		} while (addr += PAGE_SIZE, addr != end);
2755 	}
2756 	*mask |= PGTBL_PTE_MODIFIED;
2757 
2758 	arch_leave_lazy_mmu_mode();
2759 
2760 	if (mm != &init_mm)
2761 		pte_unmap_unlock(mapped_pte, ptl);
2762 	return err;
2763 }
2764 
2765 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2766 				     unsigned long addr, unsigned long end,
2767 				     pte_fn_t fn, void *data, bool create,
2768 				     pgtbl_mod_mask *mask)
2769 {
2770 	pmd_t *pmd;
2771 	unsigned long next;
2772 	int err = 0;
2773 
2774 	BUG_ON(pud_leaf(*pud));
2775 
2776 	if (create) {
2777 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2778 		if (!pmd)
2779 			return -ENOMEM;
2780 	} else {
2781 		pmd = pmd_offset(pud, addr);
2782 	}
2783 	do {
2784 		next = pmd_addr_end(addr, end);
2785 		if (pmd_none(*pmd) && !create)
2786 			continue;
2787 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2788 			return -EINVAL;
2789 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2790 			if (!create)
2791 				continue;
2792 			pmd_clear_bad(pmd);
2793 		}
2794 		err = apply_to_pte_range(mm, pmd, addr, next,
2795 					 fn, data, create, mask);
2796 		if (err)
2797 			break;
2798 	} while (pmd++, addr = next, addr != end);
2799 
2800 	return err;
2801 }
2802 
2803 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2804 				     unsigned long addr, unsigned long end,
2805 				     pte_fn_t fn, void *data, bool create,
2806 				     pgtbl_mod_mask *mask)
2807 {
2808 	pud_t *pud;
2809 	unsigned long next;
2810 	int err = 0;
2811 
2812 	if (create) {
2813 		pud = pud_alloc_track(mm, p4d, addr, mask);
2814 		if (!pud)
2815 			return -ENOMEM;
2816 	} else {
2817 		pud = pud_offset(p4d, addr);
2818 	}
2819 	do {
2820 		next = pud_addr_end(addr, end);
2821 		if (pud_none(*pud) && !create)
2822 			continue;
2823 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2824 			return -EINVAL;
2825 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2826 			if (!create)
2827 				continue;
2828 			pud_clear_bad(pud);
2829 		}
2830 		err = apply_to_pmd_range(mm, pud, addr, next,
2831 					 fn, data, create, mask);
2832 		if (err)
2833 			break;
2834 	} while (pud++, addr = next, addr != end);
2835 
2836 	return err;
2837 }
2838 
2839 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2840 				     unsigned long addr, unsigned long end,
2841 				     pte_fn_t fn, void *data, bool create,
2842 				     pgtbl_mod_mask *mask)
2843 {
2844 	p4d_t *p4d;
2845 	unsigned long next;
2846 	int err = 0;
2847 
2848 	if (create) {
2849 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2850 		if (!p4d)
2851 			return -ENOMEM;
2852 	} else {
2853 		p4d = p4d_offset(pgd, addr);
2854 	}
2855 	do {
2856 		next = p4d_addr_end(addr, end);
2857 		if (p4d_none(*p4d) && !create)
2858 			continue;
2859 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2860 			return -EINVAL;
2861 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2862 			if (!create)
2863 				continue;
2864 			p4d_clear_bad(p4d);
2865 		}
2866 		err = apply_to_pud_range(mm, p4d, addr, next,
2867 					 fn, data, create, mask);
2868 		if (err)
2869 			break;
2870 	} while (p4d++, addr = next, addr != end);
2871 
2872 	return err;
2873 }
2874 
2875 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2876 				 unsigned long size, pte_fn_t fn,
2877 				 void *data, bool create)
2878 {
2879 	pgd_t *pgd;
2880 	unsigned long start = addr, next;
2881 	unsigned long end = addr + size;
2882 	pgtbl_mod_mask mask = 0;
2883 	int err = 0;
2884 
2885 	if (WARN_ON(addr >= end))
2886 		return -EINVAL;
2887 
2888 	pgd = pgd_offset(mm, addr);
2889 	do {
2890 		next = pgd_addr_end(addr, end);
2891 		if (pgd_none(*pgd) && !create)
2892 			continue;
2893 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2894 			return -EINVAL;
2895 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2896 			if (!create)
2897 				continue;
2898 			pgd_clear_bad(pgd);
2899 		}
2900 		err = apply_to_p4d_range(mm, pgd, addr, next,
2901 					 fn, data, create, &mask);
2902 		if (err)
2903 			break;
2904 	} while (pgd++, addr = next, addr != end);
2905 
2906 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2907 		arch_sync_kernel_mappings(start, start + size);
2908 
2909 	return err;
2910 }
2911 
2912 /*
2913  * Scan a region of virtual memory, filling in page tables as necessary
2914  * and calling a provided function on each leaf page table.
2915  */
2916 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2917 			unsigned long size, pte_fn_t fn, void *data)
2918 {
2919 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2920 }
2921 EXPORT_SYMBOL_GPL(apply_to_page_range);
2922 
2923 /*
2924  * Scan a region of virtual memory, calling a provided function on
2925  * each leaf page table where it exists.
2926  *
2927  * Unlike apply_to_page_range, this does _not_ fill in page tables
2928  * where they are absent.
2929  */
2930 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2931 				 unsigned long size, pte_fn_t fn, void *data)
2932 {
2933 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2934 }
2935 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2936 
2937 /*
2938  * handle_pte_fault chooses page fault handler according to an entry which was
2939  * read non-atomically.  Before making any commitment, on those architectures
2940  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2941  * parts, do_swap_page must check under lock before unmapping the pte and
2942  * proceeding (but do_wp_page is only called after already making such a check;
2943  * and do_anonymous_page can safely check later on).
2944  */
2945 static inline int pte_unmap_same(struct vm_fault *vmf)
2946 {
2947 	int same = 1;
2948 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2949 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2950 		spin_lock(vmf->ptl);
2951 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2952 		spin_unlock(vmf->ptl);
2953 	}
2954 #endif
2955 	pte_unmap(vmf->pte);
2956 	vmf->pte = NULL;
2957 	return same;
2958 }
2959 
2960 /*
2961  * Return:
2962  *	0:		copied succeeded
2963  *	-EHWPOISON:	copy failed due to hwpoison in source page
2964  *	-EAGAIN:	copied failed (some other reason)
2965  */
2966 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2967 				      struct vm_fault *vmf)
2968 {
2969 	int ret;
2970 	void *kaddr;
2971 	void __user *uaddr;
2972 	struct vm_area_struct *vma = vmf->vma;
2973 	struct mm_struct *mm = vma->vm_mm;
2974 	unsigned long addr = vmf->address;
2975 
2976 	if (likely(src)) {
2977 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2978 			memory_failure_queue(page_to_pfn(src), 0);
2979 			return -EHWPOISON;
2980 		}
2981 		return 0;
2982 	}
2983 
2984 	/*
2985 	 * If the source page was a PFN mapping, we don't have
2986 	 * a "struct page" for it. We do a best-effort copy by
2987 	 * just copying from the original user address. If that
2988 	 * fails, we just zero-fill it. Live with it.
2989 	 */
2990 	kaddr = kmap_local_page(dst);
2991 	pagefault_disable();
2992 	uaddr = (void __user *)(addr & PAGE_MASK);
2993 
2994 	/*
2995 	 * On architectures with software "accessed" bits, we would
2996 	 * take a double page fault, so mark it accessed here.
2997 	 */
2998 	vmf->pte = NULL;
2999 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3000 		pte_t entry;
3001 
3002 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3003 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3004 			/*
3005 			 * Other thread has already handled the fault
3006 			 * and update local tlb only
3007 			 */
3008 			if (vmf->pte)
3009 				update_mmu_tlb(vma, addr, vmf->pte);
3010 			ret = -EAGAIN;
3011 			goto pte_unlock;
3012 		}
3013 
3014 		entry = pte_mkyoung(vmf->orig_pte);
3015 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3016 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3017 	}
3018 
3019 	/*
3020 	 * This really shouldn't fail, because the page is there
3021 	 * in the page tables. But it might just be unreadable,
3022 	 * in which case we just give up and fill the result with
3023 	 * zeroes.
3024 	 */
3025 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3026 		if (vmf->pte)
3027 			goto warn;
3028 
3029 		/* Re-validate under PTL if the page is still mapped */
3030 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3031 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3032 			/* The PTE changed under us, update local tlb */
3033 			if (vmf->pte)
3034 				update_mmu_tlb(vma, addr, vmf->pte);
3035 			ret = -EAGAIN;
3036 			goto pte_unlock;
3037 		}
3038 
3039 		/*
3040 		 * The same page can be mapped back since last copy attempt.
3041 		 * Try to copy again under PTL.
3042 		 */
3043 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3044 			/*
3045 			 * Give a warn in case there can be some obscure
3046 			 * use-case
3047 			 */
3048 warn:
3049 			WARN_ON_ONCE(1);
3050 			clear_page(kaddr);
3051 		}
3052 	}
3053 
3054 	ret = 0;
3055 
3056 pte_unlock:
3057 	if (vmf->pte)
3058 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3059 	pagefault_enable();
3060 	kunmap_local(kaddr);
3061 	flush_dcache_page(dst);
3062 
3063 	return ret;
3064 }
3065 
3066 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3067 {
3068 	struct file *vm_file = vma->vm_file;
3069 
3070 	if (vm_file)
3071 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3072 
3073 	/*
3074 	 * Special mappings (e.g. VDSO) do not have any file so fake
3075 	 * a default GFP_KERNEL for them.
3076 	 */
3077 	return GFP_KERNEL;
3078 }
3079 
3080 /*
3081  * Notify the address space that the page is about to become writable so that
3082  * it can prohibit this or wait for the page to get into an appropriate state.
3083  *
3084  * We do this without the lock held, so that it can sleep if it needs to.
3085  */
3086 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3087 {
3088 	vm_fault_t ret;
3089 	unsigned int old_flags = vmf->flags;
3090 
3091 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3092 
3093 	if (vmf->vma->vm_file &&
3094 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3095 		return VM_FAULT_SIGBUS;
3096 
3097 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3098 	/* Restore original flags so that caller is not surprised */
3099 	vmf->flags = old_flags;
3100 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3101 		return ret;
3102 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3103 		folio_lock(folio);
3104 		if (!folio->mapping) {
3105 			folio_unlock(folio);
3106 			return 0; /* retry */
3107 		}
3108 		ret |= VM_FAULT_LOCKED;
3109 	} else
3110 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3111 	return ret;
3112 }
3113 
3114 /*
3115  * Handle dirtying of a page in shared file mapping on a write fault.
3116  *
3117  * The function expects the page to be locked and unlocks it.
3118  */
3119 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3120 {
3121 	struct vm_area_struct *vma = vmf->vma;
3122 	struct address_space *mapping;
3123 	struct folio *folio = page_folio(vmf->page);
3124 	bool dirtied;
3125 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3126 
3127 	dirtied = folio_mark_dirty(folio);
3128 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3129 	/*
3130 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3131 	 * by truncate after folio_unlock().   The address_space itself remains
3132 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3133 	 * release semantics to prevent the compiler from undoing this copying.
3134 	 */
3135 	mapping = folio_raw_mapping(folio);
3136 	folio_unlock(folio);
3137 
3138 	if (!page_mkwrite)
3139 		file_update_time(vma->vm_file);
3140 
3141 	/*
3142 	 * Throttle page dirtying rate down to writeback speed.
3143 	 *
3144 	 * mapping may be NULL here because some device drivers do not
3145 	 * set page.mapping but still dirty their pages
3146 	 *
3147 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3148 	 * is pinning the mapping, as per above.
3149 	 */
3150 	if ((dirtied || page_mkwrite) && mapping) {
3151 		struct file *fpin;
3152 
3153 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3154 		balance_dirty_pages_ratelimited(mapping);
3155 		if (fpin) {
3156 			fput(fpin);
3157 			return VM_FAULT_COMPLETED;
3158 		}
3159 	}
3160 
3161 	return 0;
3162 }
3163 
3164 /*
3165  * Handle write page faults for pages that can be reused in the current vma
3166  *
3167  * This can happen either due to the mapping being with the VM_SHARED flag,
3168  * or due to us being the last reference standing to the page. In either
3169  * case, all we need to do here is to mark the page as writable and update
3170  * any related book-keeping.
3171  */
3172 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3173 	__releases(vmf->ptl)
3174 {
3175 	struct vm_area_struct *vma = vmf->vma;
3176 	pte_t entry;
3177 
3178 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3179 
3180 	if (folio) {
3181 		VM_BUG_ON(folio_test_anon(folio) &&
3182 			  !PageAnonExclusive(vmf->page));
3183 		/*
3184 		 * Clear the folio's cpupid information as the existing
3185 		 * information potentially belongs to a now completely
3186 		 * unrelated process.
3187 		 */
3188 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3189 	}
3190 
3191 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3192 	entry = pte_mkyoung(vmf->orig_pte);
3193 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3194 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3195 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3196 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3197 	count_vm_event(PGREUSE);
3198 }
3199 
3200 /*
3201  * We could add a bitflag somewhere, but for now, we know that all
3202  * vm_ops that have a ->map_pages have been audited and don't need
3203  * the mmap_lock to be held.
3204  */
3205 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3206 {
3207 	struct vm_area_struct *vma = vmf->vma;
3208 
3209 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3210 		return 0;
3211 	vma_end_read(vma);
3212 	return VM_FAULT_RETRY;
3213 }
3214 
3215 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3216 {
3217 	struct vm_area_struct *vma = vmf->vma;
3218 
3219 	if (likely(vma->anon_vma))
3220 		return 0;
3221 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3222 		vma_end_read(vma);
3223 		return VM_FAULT_RETRY;
3224 	}
3225 	if (__anon_vma_prepare(vma))
3226 		return VM_FAULT_OOM;
3227 	return 0;
3228 }
3229 
3230 /*
3231  * Handle the case of a page which we actually need to copy to a new page,
3232  * either due to COW or unsharing.
3233  *
3234  * Called with mmap_lock locked and the old page referenced, but
3235  * without the ptl held.
3236  *
3237  * High level logic flow:
3238  *
3239  * - Allocate a page, copy the content of the old page to the new one.
3240  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3241  * - Take the PTL. If the pte changed, bail out and release the allocated page
3242  * - If the pte is still the way we remember it, update the page table and all
3243  *   relevant references. This includes dropping the reference the page-table
3244  *   held to the old page, as well as updating the rmap.
3245  * - In any case, unlock the PTL and drop the reference we took to the old page.
3246  */
3247 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3248 {
3249 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3250 	struct vm_area_struct *vma = vmf->vma;
3251 	struct mm_struct *mm = vma->vm_mm;
3252 	struct folio *old_folio = NULL;
3253 	struct folio *new_folio = NULL;
3254 	pte_t entry;
3255 	int page_copied = 0;
3256 	struct mmu_notifier_range range;
3257 	vm_fault_t ret;
3258 	bool pfn_is_zero;
3259 
3260 	delayacct_wpcopy_start();
3261 
3262 	if (vmf->page)
3263 		old_folio = page_folio(vmf->page);
3264 	ret = vmf_anon_prepare(vmf);
3265 	if (unlikely(ret))
3266 		goto out;
3267 
3268 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3269 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3270 	if (!new_folio)
3271 		goto oom;
3272 
3273 	if (!pfn_is_zero) {
3274 		int err;
3275 
3276 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3277 		if (err) {
3278 			/*
3279 			 * COW failed, if the fault was solved by other,
3280 			 * it's fine. If not, userspace would re-fault on
3281 			 * the same address and we will handle the fault
3282 			 * from the second attempt.
3283 			 * The -EHWPOISON case will not be retried.
3284 			 */
3285 			folio_put(new_folio);
3286 			if (old_folio)
3287 				folio_put(old_folio);
3288 
3289 			delayacct_wpcopy_end();
3290 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3291 		}
3292 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3293 	}
3294 
3295 	__folio_mark_uptodate(new_folio);
3296 
3297 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3298 				vmf->address & PAGE_MASK,
3299 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3300 	mmu_notifier_invalidate_range_start(&range);
3301 
3302 	/*
3303 	 * Re-check the pte - we dropped the lock
3304 	 */
3305 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3306 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3307 		if (old_folio) {
3308 			if (!folio_test_anon(old_folio)) {
3309 				dec_mm_counter(mm, mm_counter_file(old_folio));
3310 				inc_mm_counter(mm, MM_ANONPAGES);
3311 			}
3312 		} else {
3313 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3314 			inc_mm_counter(mm, MM_ANONPAGES);
3315 		}
3316 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3317 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3318 		entry = pte_sw_mkyoung(entry);
3319 		if (unlikely(unshare)) {
3320 			if (pte_soft_dirty(vmf->orig_pte))
3321 				entry = pte_mksoft_dirty(entry);
3322 			if (pte_uffd_wp(vmf->orig_pte))
3323 				entry = pte_mkuffd_wp(entry);
3324 		} else {
3325 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3326 		}
3327 
3328 		/*
3329 		 * Clear the pte entry and flush it first, before updating the
3330 		 * pte with the new entry, to keep TLBs on different CPUs in
3331 		 * sync. This code used to set the new PTE then flush TLBs, but
3332 		 * that left a window where the new PTE could be loaded into
3333 		 * some TLBs while the old PTE remains in others.
3334 		 */
3335 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3336 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3337 		folio_add_lru_vma(new_folio, vma);
3338 		/*
3339 		 * We call the notify macro here because, when using secondary
3340 		 * mmu page tables (such as kvm shadow page tables), we want the
3341 		 * new page to be mapped directly into the secondary page table.
3342 		 */
3343 		BUG_ON(unshare && pte_write(entry));
3344 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3345 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3346 		if (old_folio) {
3347 			/*
3348 			 * Only after switching the pte to the new page may
3349 			 * we remove the mapcount here. Otherwise another
3350 			 * process may come and find the rmap count decremented
3351 			 * before the pte is switched to the new page, and
3352 			 * "reuse" the old page writing into it while our pte
3353 			 * here still points into it and can be read by other
3354 			 * threads.
3355 			 *
3356 			 * The critical issue is to order this
3357 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3358 			 * above. Those stores are ordered by (if nothing else,)
3359 			 * the barrier present in the atomic_add_negative
3360 			 * in folio_remove_rmap_pte();
3361 			 *
3362 			 * Then the TLB flush in ptep_clear_flush ensures that
3363 			 * no process can access the old page before the
3364 			 * decremented mapcount is visible. And the old page
3365 			 * cannot be reused until after the decremented
3366 			 * mapcount is visible. So transitively, TLBs to
3367 			 * old page will be flushed before it can be reused.
3368 			 */
3369 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3370 		}
3371 
3372 		/* Free the old page.. */
3373 		new_folio = old_folio;
3374 		page_copied = 1;
3375 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3376 	} else if (vmf->pte) {
3377 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3378 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3379 	}
3380 
3381 	mmu_notifier_invalidate_range_end(&range);
3382 
3383 	if (new_folio)
3384 		folio_put(new_folio);
3385 	if (old_folio) {
3386 		if (page_copied)
3387 			free_swap_cache(old_folio);
3388 		folio_put(old_folio);
3389 	}
3390 
3391 	delayacct_wpcopy_end();
3392 	return 0;
3393 oom:
3394 	ret = VM_FAULT_OOM;
3395 out:
3396 	if (old_folio)
3397 		folio_put(old_folio);
3398 
3399 	delayacct_wpcopy_end();
3400 	return ret;
3401 }
3402 
3403 /**
3404  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3405  *			  writeable once the page is prepared
3406  *
3407  * @vmf: structure describing the fault
3408  * @folio: the folio of vmf->page
3409  *
3410  * This function handles all that is needed to finish a write page fault in a
3411  * shared mapping due to PTE being read-only once the mapped page is prepared.
3412  * It handles locking of PTE and modifying it.
3413  *
3414  * The function expects the page to be locked or other protection against
3415  * concurrent faults / writeback (such as DAX radix tree locks).
3416  *
3417  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3418  * we acquired PTE lock.
3419  */
3420 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3421 {
3422 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3423 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3424 				       &vmf->ptl);
3425 	if (!vmf->pte)
3426 		return VM_FAULT_NOPAGE;
3427 	/*
3428 	 * We might have raced with another page fault while we released the
3429 	 * pte_offset_map_lock.
3430 	 */
3431 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3432 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3433 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3434 		return VM_FAULT_NOPAGE;
3435 	}
3436 	wp_page_reuse(vmf, folio);
3437 	return 0;
3438 }
3439 
3440 /*
3441  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3442  * mapping
3443  */
3444 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3445 {
3446 	struct vm_area_struct *vma = vmf->vma;
3447 
3448 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3449 		vm_fault_t ret;
3450 
3451 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3452 		ret = vmf_can_call_fault(vmf);
3453 		if (ret)
3454 			return ret;
3455 
3456 		vmf->flags |= FAULT_FLAG_MKWRITE;
3457 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3458 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3459 			return ret;
3460 		return finish_mkwrite_fault(vmf, NULL);
3461 	}
3462 	wp_page_reuse(vmf, NULL);
3463 	return 0;
3464 }
3465 
3466 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3467 	__releases(vmf->ptl)
3468 {
3469 	struct vm_area_struct *vma = vmf->vma;
3470 	vm_fault_t ret = 0;
3471 
3472 	folio_get(folio);
3473 
3474 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3475 		vm_fault_t tmp;
3476 
3477 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3478 		tmp = vmf_can_call_fault(vmf);
3479 		if (tmp) {
3480 			folio_put(folio);
3481 			return tmp;
3482 		}
3483 
3484 		tmp = do_page_mkwrite(vmf, folio);
3485 		if (unlikely(!tmp || (tmp &
3486 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3487 			folio_put(folio);
3488 			return tmp;
3489 		}
3490 		tmp = finish_mkwrite_fault(vmf, folio);
3491 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3492 			folio_unlock(folio);
3493 			folio_put(folio);
3494 			return tmp;
3495 		}
3496 	} else {
3497 		wp_page_reuse(vmf, folio);
3498 		folio_lock(folio);
3499 	}
3500 	ret |= fault_dirty_shared_page(vmf);
3501 	folio_put(folio);
3502 
3503 	return ret;
3504 }
3505 
3506 static bool wp_can_reuse_anon_folio(struct folio *folio,
3507 				    struct vm_area_struct *vma)
3508 {
3509 	/*
3510 	 * We could currently only reuse a subpage of a large folio if no
3511 	 * other subpages of the large folios are still mapped. However,
3512 	 * let's just consistently not reuse subpages even if we could
3513 	 * reuse in that scenario, and give back a large folio a bit
3514 	 * sooner.
3515 	 */
3516 	if (folio_test_large(folio))
3517 		return false;
3518 
3519 	/*
3520 	 * We have to verify under folio lock: these early checks are
3521 	 * just an optimization to avoid locking the folio and freeing
3522 	 * the swapcache if there is little hope that we can reuse.
3523 	 *
3524 	 * KSM doesn't necessarily raise the folio refcount.
3525 	 */
3526 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3527 		return false;
3528 	if (!folio_test_lru(folio))
3529 		/*
3530 		 * We cannot easily detect+handle references from
3531 		 * remote LRU caches or references to LRU folios.
3532 		 */
3533 		lru_add_drain();
3534 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3535 		return false;
3536 	if (!folio_trylock(folio))
3537 		return false;
3538 	if (folio_test_swapcache(folio))
3539 		folio_free_swap(folio);
3540 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3541 		folio_unlock(folio);
3542 		return false;
3543 	}
3544 	/*
3545 	 * Ok, we've got the only folio reference from our mapping
3546 	 * and the folio is locked, it's dark out, and we're wearing
3547 	 * sunglasses. Hit it.
3548 	 */
3549 	folio_move_anon_rmap(folio, vma);
3550 	folio_unlock(folio);
3551 	return true;
3552 }
3553 
3554 /*
3555  * This routine handles present pages, when
3556  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3557  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3558  *   (FAULT_FLAG_UNSHARE)
3559  *
3560  * It is done by copying the page to a new address and decrementing the
3561  * shared-page counter for the old page.
3562  *
3563  * Note that this routine assumes that the protection checks have been
3564  * done by the caller (the low-level page fault routine in most cases).
3565  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3566  * done any necessary COW.
3567  *
3568  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3569  * though the page will change only once the write actually happens. This
3570  * avoids a few races, and potentially makes it more efficient.
3571  *
3572  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3573  * but allow concurrent faults), with pte both mapped and locked.
3574  * We return with mmap_lock still held, but pte unmapped and unlocked.
3575  */
3576 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3577 	__releases(vmf->ptl)
3578 {
3579 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3580 	struct vm_area_struct *vma = vmf->vma;
3581 	struct folio *folio = NULL;
3582 	pte_t pte;
3583 
3584 	if (likely(!unshare)) {
3585 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3586 			if (!userfaultfd_wp_async(vma)) {
3587 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3588 				return handle_userfault(vmf, VM_UFFD_WP);
3589 			}
3590 
3591 			/*
3592 			 * Nothing needed (cache flush, TLB invalidations,
3593 			 * etc.) because we're only removing the uffd-wp bit,
3594 			 * which is completely invisible to the user.
3595 			 */
3596 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3597 
3598 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3599 			/*
3600 			 * Update this to be prepared for following up CoW
3601 			 * handling
3602 			 */
3603 			vmf->orig_pte = pte;
3604 		}
3605 
3606 		/*
3607 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3608 		 * is flushed in this case before copying.
3609 		 */
3610 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3611 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3612 			flush_tlb_page(vmf->vma, vmf->address);
3613 	}
3614 
3615 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3616 
3617 	if (vmf->page)
3618 		folio = page_folio(vmf->page);
3619 
3620 	/*
3621 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3622 	 * FAULT_FLAG_WRITE set at this point.
3623 	 */
3624 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3625 		/*
3626 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3627 		 * VM_PFNMAP VMA.
3628 		 *
3629 		 * We should not cow pages in a shared writeable mapping.
3630 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3631 		 */
3632 		if (!vmf->page)
3633 			return wp_pfn_shared(vmf);
3634 		return wp_page_shared(vmf, folio);
3635 	}
3636 
3637 	/*
3638 	 * Private mapping: create an exclusive anonymous page copy if reuse
3639 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3640 	 *
3641 	 * If we encounter a page that is marked exclusive, we must reuse
3642 	 * the page without further checks.
3643 	 */
3644 	if (folio && folio_test_anon(folio) &&
3645 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3646 		if (!PageAnonExclusive(vmf->page))
3647 			SetPageAnonExclusive(vmf->page);
3648 		if (unlikely(unshare)) {
3649 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3650 			return 0;
3651 		}
3652 		wp_page_reuse(vmf, folio);
3653 		return 0;
3654 	}
3655 	/*
3656 	 * Ok, we need to copy. Oh, well..
3657 	 */
3658 	if (folio)
3659 		folio_get(folio);
3660 
3661 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3662 #ifdef CONFIG_KSM
3663 	if (folio && folio_test_ksm(folio))
3664 		count_vm_event(COW_KSM);
3665 #endif
3666 	return wp_page_copy(vmf);
3667 }
3668 
3669 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3670 		unsigned long start_addr, unsigned long end_addr,
3671 		struct zap_details *details)
3672 {
3673 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3674 }
3675 
3676 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3677 					    pgoff_t first_index,
3678 					    pgoff_t last_index,
3679 					    struct zap_details *details)
3680 {
3681 	struct vm_area_struct *vma;
3682 	pgoff_t vba, vea, zba, zea;
3683 
3684 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3685 		vba = vma->vm_pgoff;
3686 		vea = vba + vma_pages(vma) - 1;
3687 		zba = max(first_index, vba);
3688 		zea = min(last_index, vea);
3689 
3690 		unmap_mapping_range_vma(vma,
3691 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3692 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3693 				details);
3694 	}
3695 }
3696 
3697 /**
3698  * unmap_mapping_folio() - Unmap single folio from processes.
3699  * @folio: The locked folio to be unmapped.
3700  *
3701  * Unmap this folio from any userspace process which still has it mmaped.
3702  * Typically, for efficiency, the range of nearby pages has already been
3703  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3704  * truncation or invalidation holds the lock on a folio, it may find that
3705  * the page has been remapped again: and then uses unmap_mapping_folio()
3706  * to unmap it finally.
3707  */
3708 void unmap_mapping_folio(struct folio *folio)
3709 {
3710 	struct address_space *mapping = folio->mapping;
3711 	struct zap_details details = { };
3712 	pgoff_t	first_index;
3713 	pgoff_t	last_index;
3714 
3715 	VM_BUG_ON(!folio_test_locked(folio));
3716 
3717 	first_index = folio->index;
3718 	last_index = folio_next_index(folio) - 1;
3719 
3720 	details.even_cows = false;
3721 	details.single_folio = folio;
3722 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3723 
3724 	i_mmap_lock_read(mapping);
3725 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3726 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3727 					 last_index, &details);
3728 	i_mmap_unlock_read(mapping);
3729 }
3730 
3731 /**
3732  * unmap_mapping_pages() - Unmap pages from processes.
3733  * @mapping: The address space containing pages to be unmapped.
3734  * @start: Index of first page to be unmapped.
3735  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3736  * @even_cows: Whether to unmap even private COWed pages.
3737  *
3738  * Unmap the pages in this address space from any userspace process which
3739  * has them mmaped.  Generally, you want to remove COWed pages as well when
3740  * a file is being truncated, but not when invalidating pages from the page
3741  * cache.
3742  */
3743 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3744 		pgoff_t nr, bool even_cows)
3745 {
3746 	struct zap_details details = { };
3747 	pgoff_t	first_index = start;
3748 	pgoff_t	last_index = start + nr - 1;
3749 
3750 	details.even_cows = even_cows;
3751 	if (last_index < first_index)
3752 		last_index = ULONG_MAX;
3753 
3754 	i_mmap_lock_read(mapping);
3755 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3756 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3757 					 last_index, &details);
3758 	i_mmap_unlock_read(mapping);
3759 }
3760 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3761 
3762 /**
3763  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3764  * address_space corresponding to the specified byte range in the underlying
3765  * file.
3766  *
3767  * @mapping: the address space containing mmaps to be unmapped.
3768  * @holebegin: byte in first page to unmap, relative to the start of
3769  * the underlying file.  This will be rounded down to a PAGE_SIZE
3770  * boundary.  Note that this is different from truncate_pagecache(), which
3771  * must keep the partial page.  In contrast, we must get rid of
3772  * partial pages.
3773  * @holelen: size of prospective hole in bytes.  This will be rounded
3774  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3775  * end of the file.
3776  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3777  * but 0 when invalidating pagecache, don't throw away private data.
3778  */
3779 void unmap_mapping_range(struct address_space *mapping,
3780 		loff_t const holebegin, loff_t const holelen, int even_cows)
3781 {
3782 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3783 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3784 
3785 	/* Check for overflow. */
3786 	if (sizeof(holelen) > sizeof(hlen)) {
3787 		long long holeend =
3788 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3789 		if (holeend & ~(long long)ULONG_MAX)
3790 			hlen = ULONG_MAX - hba + 1;
3791 	}
3792 
3793 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3794 }
3795 EXPORT_SYMBOL(unmap_mapping_range);
3796 
3797 /*
3798  * Restore a potential device exclusive pte to a working pte entry
3799  */
3800 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3801 {
3802 	struct folio *folio = page_folio(vmf->page);
3803 	struct vm_area_struct *vma = vmf->vma;
3804 	struct mmu_notifier_range range;
3805 	vm_fault_t ret;
3806 
3807 	/*
3808 	 * We need a reference to lock the folio because we don't hold
3809 	 * the PTL so a racing thread can remove the device-exclusive
3810 	 * entry and unmap it. If the folio is free the entry must
3811 	 * have been removed already. If it happens to have already
3812 	 * been re-allocated after being freed all we do is lock and
3813 	 * unlock it.
3814 	 */
3815 	if (!folio_try_get(folio))
3816 		return 0;
3817 
3818 	ret = folio_lock_or_retry(folio, vmf);
3819 	if (ret) {
3820 		folio_put(folio);
3821 		return ret;
3822 	}
3823 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3824 				vma->vm_mm, vmf->address & PAGE_MASK,
3825 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3826 	mmu_notifier_invalidate_range_start(&range);
3827 
3828 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3829 				&vmf->ptl);
3830 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3831 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3832 
3833 	if (vmf->pte)
3834 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3835 	folio_unlock(folio);
3836 	folio_put(folio);
3837 
3838 	mmu_notifier_invalidate_range_end(&range);
3839 	return 0;
3840 }
3841 
3842 static inline bool should_try_to_free_swap(struct folio *folio,
3843 					   struct vm_area_struct *vma,
3844 					   unsigned int fault_flags)
3845 {
3846 	if (!folio_test_swapcache(folio))
3847 		return false;
3848 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3849 	    folio_test_mlocked(folio))
3850 		return true;
3851 	/*
3852 	 * If we want to map a page that's in the swapcache writable, we
3853 	 * have to detect via the refcount if we're really the exclusive
3854 	 * user. Try freeing the swapcache to get rid of the swapcache
3855 	 * reference only in case it's likely that we'll be the exlusive user.
3856 	 */
3857 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3858 		folio_ref_count(folio) == 2;
3859 }
3860 
3861 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3862 {
3863 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3864 				       vmf->address, &vmf->ptl);
3865 	if (!vmf->pte)
3866 		return 0;
3867 	/*
3868 	 * Be careful so that we will only recover a special uffd-wp pte into a
3869 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3870 	 *
3871 	 * This should also cover the case where e.g. the pte changed
3872 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3873 	 * So is_pte_marker() check is not enough to safely drop the pte.
3874 	 */
3875 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3876 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3877 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3878 	return 0;
3879 }
3880 
3881 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3882 {
3883 	if (vma_is_anonymous(vmf->vma))
3884 		return do_anonymous_page(vmf);
3885 	else
3886 		return do_fault(vmf);
3887 }
3888 
3889 /*
3890  * This is actually a page-missing access, but with uffd-wp special pte
3891  * installed.  It means this pte was wr-protected before being unmapped.
3892  */
3893 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3894 {
3895 	/*
3896 	 * Just in case there're leftover special ptes even after the region
3897 	 * got unregistered - we can simply clear them.
3898 	 */
3899 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3900 		return pte_marker_clear(vmf);
3901 
3902 	return do_pte_missing(vmf);
3903 }
3904 
3905 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3906 {
3907 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3908 	unsigned long marker = pte_marker_get(entry);
3909 
3910 	/*
3911 	 * PTE markers should never be empty.  If anything weird happened,
3912 	 * the best thing to do is to kill the process along with its mm.
3913 	 */
3914 	if (WARN_ON_ONCE(!marker))
3915 		return VM_FAULT_SIGBUS;
3916 
3917 	/* Higher priority than uffd-wp when data corrupted */
3918 	if (marker & PTE_MARKER_POISONED)
3919 		return VM_FAULT_HWPOISON;
3920 
3921 	if (pte_marker_entry_uffd_wp(entry))
3922 		return pte_marker_handle_uffd_wp(vmf);
3923 
3924 	/* This is an unknown pte marker */
3925 	return VM_FAULT_SIGBUS;
3926 }
3927 
3928 /*
3929  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3930  * but allow concurrent faults), and pte mapped but not yet locked.
3931  * We return with pte unmapped and unlocked.
3932  *
3933  * We return with the mmap_lock locked or unlocked in the same cases
3934  * as does filemap_fault().
3935  */
3936 vm_fault_t do_swap_page(struct vm_fault *vmf)
3937 {
3938 	struct vm_area_struct *vma = vmf->vma;
3939 	struct folio *swapcache, *folio = NULL;
3940 	struct page *page;
3941 	struct swap_info_struct *si = NULL;
3942 	rmap_t rmap_flags = RMAP_NONE;
3943 	bool need_clear_cache = false;
3944 	bool exclusive = false;
3945 	swp_entry_t entry;
3946 	pte_t pte;
3947 	vm_fault_t ret = 0;
3948 	void *shadow = NULL;
3949 
3950 	if (!pte_unmap_same(vmf))
3951 		goto out;
3952 
3953 	entry = pte_to_swp_entry(vmf->orig_pte);
3954 	if (unlikely(non_swap_entry(entry))) {
3955 		if (is_migration_entry(entry)) {
3956 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3957 					     vmf->address);
3958 		} else if (is_device_exclusive_entry(entry)) {
3959 			vmf->page = pfn_swap_entry_to_page(entry);
3960 			ret = remove_device_exclusive_entry(vmf);
3961 		} else if (is_device_private_entry(entry)) {
3962 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3963 				/*
3964 				 * migrate_to_ram is not yet ready to operate
3965 				 * under VMA lock.
3966 				 */
3967 				vma_end_read(vma);
3968 				ret = VM_FAULT_RETRY;
3969 				goto out;
3970 			}
3971 
3972 			vmf->page = pfn_swap_entry_to_page(entry);
3973 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3974 					vmf->address, &vmf->ptl);
3975 			if (unlikely(!vmf->pte ||
3976 				     !pte_same(ptep_get(vmf->pte),
3977 							vmf->orig_pte)))
3978 				goto unlock;
3979 
3980 			/*
3981 			 * Get a page reference while we know the page can't be
3982 			 * freed.
3983 			 */
3984 			get_page(vmf->page);
3985 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3986 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3987 			put_page(vmf->page);
3988 		} else if (is_hwpoison_entry(entry)) {
3989 			ret = VM_FAULT_HWPOISON;
3990 		} else if (is_pte_marker_entry(entry)) {
3991 			ret = handle_pte_marker(vmf);
3992 		} else {
3993 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3994 			ret = VM_FAULT_SIGBUS;
3995 		}
3996 		goto out;
3997 	}
3998 
3999 	/* Prevent swapoff from happening to us. */
4000 	si = get_swap_device(entry);
4001 	if (unlikely(!si))
4002 		goto out;
4003 
4004 	folio = swap_cache_get_folio(entry, vma, vmf->address);
4005 	if (folio)
4006 		page = folio_file_page(folio, swp_offset(entry));
4007 	swapcache = folio;
4008 
4009 	if (!folio) {
4010 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4011 		    __swap_count(entry) == 1) {
4012 			/*
4013 			 * Prevent parallel swapin from proceeding with
4014 			 * the cache flag. Otherwise, another thread may
4015 			 * finish swapin first, free the entry, and swapout
4016 			 * reusing the same entry. It's undetectable as
4017 			 * pte_same() returns true due to entry reuse.
4018 			 */
4019 			if (swapcache_prepare(entry)) {
4020 				/* Relax a bit to prevent rapid repeated page faults */
4021 				schedule_timeout_uninterruptible(1);
4022 				goto out;
4023 			}
4024 			need_clear_cache = true;
4025 
4026 			/* skip swapcache */
4027 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
4028 						vma, vmf->address, false);
4029 			page = &folio->page;
4030 			if (folio) {
4031 				__folio_set_locked(folio);
4032 				__folio_set_swapbacked(folio);
4033 
4034 				if (mem_cgroup_swapin_charge_folio(folio,
4035 							vma->vm_mm, GFP_KERNEL,
4036 							entry)) {
4037 					ret = VM_FAULT_OOM;
4038 					goto out_page;
4039 				}
4040 				mem_cgroup_swapin_uncharge_swap(entry);
4041 
4042 				shadow = get_shadow_from_swap_cache(entry);
4043 				if (shadow)
4044 					workingset_refault(folio, shadow);
4045 
4046 				folio_add_lru(folio);
4047 
4048 				/* To provide entry to swap_read_folio() */
4049 				folio->swap = entry;
4050 				swap_read_folio(folio, true, NULL);
4051 				folio->private = NULL;
4052 			}
4053 		} else {
4054 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4055 						vmf);
4056 			if (page)
4057 				folio = page_folio(page);
4058 			swapcache = folio;
4059 		}
4060 
4061 		if (!folio) {
4062 			/*
4063 			 * Back out if somebody else faulted in this pte
4064 			 * while we released the pte lock.
4065 			 */
4066 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4067 					vmf->address, &vmf->ptl);
4068 			if (likely(vmf->pte &&
4069 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4070 				ret = VM_FAULT_OOM;
4071 			goto unlock;
4072 		}
4073 
4074 		/* Had to read the page from swap area: Major fault */
4075 		ret = VM_FAULT_MAJOR;
4076 		count_vm_event(PGMAJFAULT);
4077 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4078 	} else if (PageHWPoison(page)) {
4079 		/*
4080 		 * hwpoisoned dirty swapcache pages are kept for killing
4081 		 * owner processes (which may be unknown at hwpoison time)
4082 		 */
4083 		ret = VM_FAULT_HWPOISON;
4084 		goto out_release;
4085 	}
4086 
4087 	ret |= folio_lock_or_retry(folio, vmf);
4088 	if (ret & VM_FAULT_RETRY)
4089 		goto out_release;
4090 
4091 	if (swapcache) {
4092 		/*
4093 		 * Make sure folio_free_swap() or swapoff did not release the
4094 		 * swapcache from under us.  The page pin, and pte_same test
4095 		 * below, are not enough to exclude that.  Even if it is still
4096 		 * swapcache, we need to check that the page's swap has not
4097 		 * changed.
4098 		 */
4099 		if (unlikely(!folio_test_swapcache(folio) ||
4100 			     page_swap_entry(page).val != entry.val))
4101 			goto out_page;
4102 
4103 		/*
4104 		 * KSM sometimes has to copy on read faults, for example, if
4105 		 * page->index of !PageKSM() pages would be nonlinear inside the
4106 		 * anon VMA -- PageKSM() is lost on actual swapout.
4107 		 */
4108 		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4109 		if (unlikely(!folio)) {
4110 			ret = VM_FAULT_OOM;
4111 			folio = swapcache;
4112 			goto out_page;
4113 		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4114 			ret = VM_FAULT_HWPOISON;
4115 			folio = swapcache;
4116 			goto out_page;
4117 		}
4118 		if (folio != swapcache)
4119 			page = folio_page(folio, 0);
4120 
4121 		/*
4122 		 * If we want to map a page that's in the swapcache writable, we
4123 		 * have to detect via the refcount if we're really the exclusive
4124 		 * owner. Try removing the extra reference from the local LRU
4125 		 * caches if required.
4126 		 */
4127 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4128 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
4129 			lru_add_drain();
4130 	}
4131 
4132 	folio_throttle_swaprate(folio, GFP_KERNEL);
4133 
4134 	/*
4135 	 * Back out if somebody else already faulted in this pte.
4136 	 */
4137 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4138 			&vmf->ptl);
4139 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4140 		goto out_nomap;
4141 
4142 	if (unlikely(!folio_test_uptodate(folio))) {
4143 		ret = VM_FAULT_SIGBUS;
4144 		goto out_nomap;
4145 	}
4146 
4147 	/*
4148 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4149 	 * must never point at an anonymous page in the swapcache that is
4150 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4151 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4152 	 * check after taking the PT lock and making sure that nobody
4153 	 * concurrently faulted in this page and set PG_anon_exclusive.
4154 	 */
4155 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4156 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4157 
4158 	/*
4159 	 * Check under PT lock (to protect against concurrent fork() sharing
4160 	 * the swap entry concurrently) for certainly exclusive pages.
4161 	 */
4162 	if (!folio_test_ksm(folio)) {
4163 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4164 		if (folio != swapcache) {
4165 			/*
4166 			 * We have a fresh page that is not exposed to the
4167 			 * swapcache -> certainly exclusive.
4168 			 */
4169 			exclusive = true;
4170 		} else if (exclusive && folio_test_writeback(folio) &&
4171 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4172 			/*
4173 			 * This is tricky: not all swap backends support
4174 			 * concurrent page modifications while under writeback.
4175 			 *
4176 			 * So if we stumble over such a page in the swapcache
4177 			 * we must not set the page exclusive, otherwise we can
4178 			 * map it writable without further checks and modify it
4179 			 * while still under writeback.
4180 			 *
4181 			 * For these problematic swap backends, simply drop the
4182 			 * exclusive marker: this is perfectly fine as we start
4183 			 * writeback only if we fully unmapped the page and
4184 			 * there are no unexpected references on the page after
4185 			 * unmapping succeeded. After fully unmapped, no
4186 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4187 			 * appear, so dropping the exclusive marker and mapping
4188 			 * it only R/O is fine.
4189 			 */
4190 			exclusive = false;
4191 		}
4192 	}
4193 
4194 	/*
4195 	 * Some architectures may have to restore extra metadata to the page
4196 	 * when reading from swap. This metadata may be indexed by swap entry
4197 	 * so this must be called before swap_free().
4198 	 */
4199 	arch_swap_restore(folio_swap(entry, folio), folio);
4200 
4201 	/*
4202 	 * Remove the swap entry and conditionally try to free up the swapcache.
4203 	 * We're already holding a reference on the page but haven't mapped it
4204 	 * yet.
4205 	 */
4206 	swap_free(entry);
4207 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4208 		folio_free_swap(folio);
4209 
4210 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4211 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4212 	pte = mk_pte(page, vma->vm_page_prot);
4213 
4214 	/*
4215 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4216 	 * certainly not shared either because we just allocated them without
4217 	 * exposing them to the swapcache or because the swap entry indicates
4218 	 * exclusivity.
4219 	 */
4220 	if (!folio_test_ksm(folio) &&
4221 	    (exclusive || folio_ref_count(folio) == 1)) {
4222 		if (vmf->flags & FAULT_FLAG_WRITE) {
4223 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4224 			vmf->flags &= ~FAULT_FLAG_WRITE;
4225 		}
4226 		rmap_flags |= RMAP_EXCLUSIVE;
4227 	}
4228 	flush_icache_page(vma, page);
4229 	if (pte_swp_soft_dirty(vmf->orig_pte))
4230 		pte = pte_mksoft_dirty(pte);
4231 	if (pte_swp_uffd_wp(vmf->orig_pte))
4232 		pte = pte_mkuffd_wp(pte);
4233 	vmf->orig_pte = pte;
4234 
4235 	/* ksm created a completely new copy */
4236 	if (unlikely(folio != swapcache && swapcache)) {
4237 		folio_add_new_anon_rmap(folio, vma, vmf->address);
4238 		folio_add_lru_vma(folio, vma);
4239 	} else {
4240 		folio_add_anon_rmap_pte(folio, page, vma, vmf->address,
4241 					rmap_flags);
4242 	}
4243 
4244 	VM_BUG_ON(!folio_test_anon(folio) ||
4245 			(pte_write(pte) && !PageAnonExclusive(page)));
4246 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4247 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4248 
4249 	folio_unlock(folio);
4250 	if (folio != swapcache && swapcache) {
4251 		/*
4252 		 * Hold the lock to avoid the swap entry to be reused
4253 		 * until we take the PT lock for the pte_same() check
4254 		 * (to avoid false positives from pte_same). For
4255 		 * further safety release the lock after the swap_free
4256 		 * so that the swap count won't change under a
4257 		 * parallel locked swapcache.
4258 		 */
4259 		folio_unlock(swapcache);
4260 		folio_put(swapcache);
4261 	}
4262 
4263 	if (vmf->flags & FAULT_FLAG_WRITE) {
4264 		ret |= do_wp_page(vmf);
4265 		if (ret & VM_FAULT_ERROR)
4266 			ret &= VM_FAULT_ERROR;
4267 		goto out;
4268 	}
4269 
4270 	/* No need to invalidate - it was non-present before */
4271 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4272 unlock:
4273 	if (vmf->pte)
4274 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4275 out:
4276 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4277 	if (need_clear_cache)
4278 		swapcache_clear(si, entry);
4279 	if (si)
4280 		put_swap_device(si);
4281 	return ret;
4282 out_nomap:
4283 	if (vmf->pte)
4284 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4285 out_page:
4286 	folio_unlock(folio);
4287 out_release:
4288 	folio_put(folio);
4289 	if (folio != swapcache && swapcache) {
4290 		folio_unlock(swapcache);
4291 		folio_put(swapcache);
4292 	}
4293 	if (need_clear_cache)
4294 		swapcache_clear(si, entry);
4295 	if (si)
4296 		put_swap_device(si);
4297 	return ret;
4298 }
4299 
4300 static bool pte_range_none(pte_t *pte, int nr_pages)
4301 {
4302 	int i;
4303 
4304 	for (i = 0; i < nr_pages; i++) {
4305 		if (!pte_none(ptep_get_lockless(pte + i)))
4306 			return false;
4307 	}
4308 
4309 	return true;
4310 }
4311 
4312 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4313 {
4314 	struct vm_area_struct *vma = vmf->vma;
4315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4316 	unsigned long orders;
4317 	struct folio *folio;
4318 	unsigned long addr;
4319 	pte_t *pte;
4320 	gfp_t gfp;
4321 	int order;
4322 
4323 	/*
4324 	 * If uffd is active for the vma we need per-page fault fidelity to
4325 	 * maintain the uffd semantics.
4326 	 */
4327 	if (unlikely(userfaultfd_armed(vma)))
4328 		goto fallback;
4329 
4330 	/*
4331 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4332 	 * for this vma. Then filter out the orders that can't be allocated over
4333 	 * the faulting address and still be fully contained in the vma.
4334 	 */
4335 	orders = thp_vma_allowable_orders(vma, vma->vm_flags, false, true, true,
4336 					  BIT(PMD_ORDER) - 1);
4337 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4338 
4339 	if (!orders)
4340 		goto fallback;
4341 
4342 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4343 	if (!pte)
4344 		return ERR_PTR(-EAGAIN);
4345 
4346 	/*
4347 	 * Find the highest order where the aligned range is completely
4348 	 * pte_none(). Note that all remaining orders will be completely
4349 	 * pte_none().
4350 	 */
4351 	order = highest_order(orders);
4352 	while (orders) {
4353 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4354 		if (pte_range_none(pte + pte_index(addr), 1 << order))
4355 			break;
4356 		order = next_order(&orders, order);
4357 	}
4358 
4359 	pte_unmap(pte);
4360 
4361 	/* Try allocating the highest of the remaining orders. */
4362 	gfp = vma_thp_gfp_mask(vma);
4363 	while (orders) {
4364 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4365 		folio = vma_alloc_folio(gfp, order, vma, addr, true);
4366 		if (folio) {
4367 			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4368 				folio_put(folio);
4369 				goto next;
4370 			}
4371 			folio_throttle_swaprate(folio, gfp);
4372 			clear_huge_page(&folio->page, vmf->address, 1 << order);
4373 			return folio;
4374 		}
4375 next:
4376 		order = next_order(&orders, order);
4377 	}
4378 
4379 fallback:
4380 #endif
4381 	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4382 }
4383 
4384 /*
4385  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4386  * but allow concurrent faults), and pte mapped but not yet locked.
4387  * We return with mmap_lock still held, but pte unmapped and unlocked.
4388  */
4389 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4390 {
4391 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4392 	struct vm_area_struct *vma = vmf->vma;
4393 	unsigned long addr = vmf->address;
4394 	struct folio *folio;
4395 	vm_fault_t ret = 0;
4396 	int nr_pages = 1;
4397 	pte_t entry;
4398 	int i;
4399 
4400 	/* File mapping without ->vm_ops ? */
4401 	if (vma->vm_flags & VM_SHARED)
4402 		return VM_FAULT_SIGBUS;
4403 
4404 	/*
4405 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4406 	 * be distinguished from a transient failure of pte_offset_map().
4407 	 */
4408 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4409 		return VM_FAULT_OOM;
4410 
4411 	/* Use the zero-page for reads */
4412 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4413 			!mm_forbids_zeropage(vma->vm_mm)) {
4414 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4415 						vma->vm_page_prot));
4416 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4417 				vmf->address, &vmf->ptl);
4418 		if (!vmf->pte)
4419 			goto unlock;
4420 		if (vmf_pte_changed(vmf)) {
4421 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4422 			goto unlock;
4423 		}
4424 		ret = check_stable_address_space(vma->vm_mm);
4425 		if (ret)
4426 			goto unlock;
4427 		/* Deliver the page fault to userland, check inside PT lock */
4428 		if (userfaultfd_missing(vma)) {
4429 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4430 			return handle_userfault(vmf, VM_UFFD_MISSING);
4431 		}
4432 		goto setpte;
4433 	}
4434 
4435 	/* Allocate our own private page. */
4436 	if (unlikely(anon_vma_prepare(vma)))
4437 		goto oom;
4438 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4439 	folio = alloc_anon_folio(vmf);
4440 	if (IS_ERR(folio))
4441 		return 0;
4442 	if (!folio)
4443 		goto oom;
4444 
4445 	nr_pages = folio_nr_pages(folio);
4446 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4447 
4448 	/*
4449 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4450 	 * preceding stores to the page contents become visible before
4451 	 * the set_pte_at() write.
4452 	 */
4453 	__folio_mark_uptodate(folio);
4454 
4455 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4456 	entry = pte_sw_mkyoung(entry);
4457 	if (vma->vm_flags & VM_WRITE)
4458 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4459 
4460 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4461 	if (!vmf->pte)
4462 		goto release;
4463 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4464 		update_mmu_tlb(vma, addr, vmf->pte);
4465 		goto release;
4466 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4467 		for (i = 0; i < nr_pages; i++)
4468 			update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i);
4469 		goto release;
4470 	}
4471 
4472 	ret = check_stable_address_space(vma->vm_mm);
4473 	if (ret)
4474 		goto release;
4475 
4476 	/* Deliver the page fault to userland, check inside PT lock */
4477 	if (userfaultfd_missing(vma)) {
4478 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4479 		folio_put(folio);
4480 		return handle_userfault(vmf, VM_UFFD_MISSING);
4481 	}
4482 
4483 	folio_ref_add(folio, nr_pages - 1);
4484 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4485 	folio_add_new_anon_rmap(folio, vma, addr);
4486 	folio_add_lru_vma(folio, vma);
4487 setpte:
4488 	if (uffd_wp)
4489 		entry = pte_mkuffd_wp(entry);
4490 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4491 
4492 	/* No need to invalidate - it was non-present before */
4493 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4494 unlock:
4495 	if (vmf->pte)
4496 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4497 	return ret;
4498 release:
4499 	folio_put(folio);
4500 	goto unlock;
4501 oom:
4502 	return VM_FAULT_OOM;
4503 }
4504 
4505 /*
4506  * The mmap_lock must have been held on entry, and may have been
4507  * released depending on flags and vma->vm_ops->fault() return value.
4508  * See filemap_fault() and __lock_page_retry().
4509  */
4510 static vm_fault_t __do_fault(struct vm_fault *vmf)
4511 {
4512 	struct vm_area_struct *vma = vmf->vma;
4513 	struct folio *folio;
4514 	vm_fault_t ret;
4515 
4516 	/*
4517 	 * Preallocate pte before we take page_lock because this might lead to
4518 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4519 	 *				lock_page(A)
4520 	 *				SetPageWriteback(A)
4521 	 *				unlock_page(A)
4522 	 * lock_page(B)
4523 	 *				lock_page(B)
4524 	 * pte_alloc_one
4525 	 *   shrink_page_list
4526 	 *     wait_on_page_writeback(A)
4527 	 *				SetPageWriteback(B)
4528 	 *				unlock_page(B)
4529 	 *				# flush A, B to clear the writeback
4530 	 */
4531 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4532 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4533 		if (!vmf->prealloc_pte)
4534 			return VM_FAULT_OOM;
4535 	}
4536 
4537 	ret = vma->vm_ops->fault(vmf);
4538 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4539 			    VM_FAULT_DONE_COW)))
4540 		return ret;
4541 
4542 	folio = page_folio(vmf->page);
4543 	if (unlikely(PageHWPoison(vmf->page))) {
4544 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4545 		if (ret & VM_FAULT_LOCKED) {
4546 			if (page_mapped(vmf->page))
4547 				unmap_mapping_folio(folio);
4548 			/* Retry if a clean folio was removed from the cache. */
4549 			if (mapping_evict_folio(folio->mapping, folio))
4550 				poisonret = VM_FAULT_NOPAGE;
4551 			folio_unlock(folio);
4552 		}
4553 		folio_put(folio);
4554 		vmf->page = NULL;
4555 		return poisonret;
4556 	}
4557 
4558 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4559 		folio_lock(folio);
4560 	else
4561 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4562 
4563 	return ret;
4564 }
4565 
4566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4567 static void deposit_prealloc_pte(struct vm_fault *vmf)
4568 {
4569 	struct vm_area_struct *vma = vmf->vma;
4570 
4571 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4572 	/*
4573 	 * We are going to consume the prealloc table,
4574 	 * count that as nr_ptes.
4575 	 */
4576 	mm_inc_nr_ptes(vma->vm_mm);
4577 	vmf->prealloc_pte = NULL;
4578 }
4579 
4580 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4581 {
4582 	struct folio *folio = page_folio(page);
4583 	struct vm_area_struct *vma = vmf->vma;
4584 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4585 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4586 	pmd_t entry;
4587 	vm_fault_t ret = VM_FAULT_FALLBACK;
4588 
4589 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4590 		return ret;
4591 
4592 	if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER)
4593 		return ret;
4594 
4595 	/*
4596 	 * Just backoff if any subpage of a THP is corrupted otherwise
4597 	 * the corrupted page may mapped by PMD silently to escape the
4598 	 * check.  This kind of THP just can be PTE mapped.  Access to
4599 	 * the corrupted subpage should trigger SIGBUS as expected.
4600 	 */
4601 	if (unlikely(folio_test_has_hwpoisoned(folio)))
4602 		return ret;
4603 
4604 	/*
4605 	 * Archs like ppc64 need additional space to store information
4606 	 * related to pte entry. Use the preallocated table for that.
4607 	 */
4608 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4609 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4610 		if (!vmf->prealloc_pte)
4611 			return VM_FAULT_OOM;
4612 	}
4613 
4614 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4615 	if (unlikely(!pmd_none(*vmf->pmd)))
4616 		goto out;
4617 
4618 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
4619 
4620 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4621 	if (write)
4622 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4623 
4624 	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4625 	folio_add_file_rmap_pmd(folio, page, vma);
4626 
4627 	/*
4628 	 * deposit and withdraw with pmd lock held
4629 	 */
4630 	if (arch_needs_pgtable_deposit())
4631 		deposit_prealloc_pte(vmf);
4632 
4633 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4634 
4635 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4636 
4637 	/* fault is handled */
4638 	ret = 0;
4639 	count_vm_event(THP_FILE_MAPPED);
4640 out:
4641 	spin_unlock(vmf->ptl);
4642 	return ret;
4643 }
4644 #else
4645 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4646 {
4647 	return VM_FAULT_FALLBACK;
4648 }
4649 #endif
4650 
4651 /**
4652  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4653  * @vmf: Fault decription.
4654  * @folio: The folio that contains @page.
4655  * @page: The first page to create a PTE for.
4656  * @nr: The number of PTEs to create.
4657  * @addr: The first address to create a PTE for.
4658  */
4659 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4660 		struct page *page, unsigned int nr, unsigned long addr)
4661 {
4662 	struct vm_area_struct *vma = vmf->vma;
4663 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4664 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4665 	bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4666 	pte_t entry;
4667 
4668 	flush_icache_pages(vma, page, nr);
4669 	entry = mk_pte(page, vma->vm_page_prot);
4670 
4671 	if (prefault && arch_wants_old_prefaulted_pte())
4672 		entry = pte_mkold(entry);
4673 	else
4674 		entry = pte_sw_mkyoung(entry);
4675 
4676 	if (write)
4677 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4678 	if (unlikely(uffd_wp))
4679 		entry = pte_mkuffd_wp(entry);
4680 	/* copy-on-write page */
4681 	if (write && !(vma->vm_flags & VM_SHARED)) {
4682 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4683 		VM_BUG_ON_FOLIO(nr != 1, folio);
4684 		folio_add_new_anon_rmap(folio, vma, addr);
4685 		folio_add_lru_vma(folio, vma);
4686 	} else {
4687 		add_mm_counter(vma->vm_mm, mm_counter_file(folio), nr);
4688 		folio_add_file_rmap_ptes(folio, page, nr, vma);
4689 	}
4690 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4691 
4692 	/* no need to invalidate: a not-present page won't be cached */
4693 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4694 }
4695 
4696 static bool vmf_pte_changed(struct vm_fault *vmf)
4697 {
4698 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4699 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4700 
4701 	return !pte_none(ptep_get(vmf->pte));
4702 }
4703 
4704 /**
4705  * finish_fault - finish page fault once we have prepared the page to fault
4706  *
4707  * @vmf: structure describing the fault
4708  *
4709  * This function handles all that is needed to finish a page fault once the
4710  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4711  * given page, adds reverse page mapping, handles memcg charges and LRU
4712  * addition.
4713  *
4714  * The function expects the page to be locked and on success it consumes a
4715  * reference of a page being mapped (for the PTE which maps it).
4716  *
4717  * Return: %0 on success, %VM_FAULT_ code in case of error.
4718  */
4719 vm_fault_t finish_fault(struct vm_fault *vmf)
4720 {
4721 	struct vm_area_struct *vma = vmf->vma;
4722 	struct page *page;
4723 	vm_fault_t ret;
4724 
4725 	/* Did we COW the page? */
4726 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4727 		page = vmf->cow_page;
4728 	else
4729 		page = vmf->page;
4730 
4731 	/*
4732 	 * check even for read faults because we might have lost our CoWed
4733 	 * page
4734 	 */
4735 	if (!(vma->vm_flags & VM_SHARED)) {
4736 		ret = check_stable_address_space(vma->vm_mm);
4737 		if (ret)
4738 			return ret;
4739 	}
4740 
4741 	if (pmd_none(*vmf->pmd)) {
4742 		if (PageTransCompound(page)) {
4743 			ret = do_set_pmd(vmf, page);
4744 			if (ret != VM_FAULT_FALLBACK)
4745 				return ret;
4746 		}
4747 
4748 		if (vmf->prealloc_pte)
4749 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4750 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4751 			return VM_FAULT_OOM;
4752 	}
4753 
4754 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4755 				      vmf->address, &vmf->ptl);
4756 	if (!vmf->pte)
4757 		return VM_FAULT_NOPAGE;
4758 
4759 	/* Re-check under ptl */
4760 	if (likely(!vmf_pte_changed(vmf))) {
4761 		struct folio *folio = page_folio(page);
4762 
4763 		set_pte_range(vmf, folio, page, 1, vmf->address);
4764 		ret = 0;
4765 	} else {
4766 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4767 		ret = VM_FAULT_NOPAGE;
4768 	}
4769 
4770 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4771 	return ret;
4772 }
4773 
4774 static unsigned long fault_around_pages __read_mostly =
4775 	65536 >> PAGE_SHIFT;
4776 
4777 #ifdef CONFIG_DEBUG_FS
4778 static int fault_around_bytes_get(void *data, u64 *val)
4779 {
4780 	*val = fault_around_pages << PAGE_SHIFT;
4781 	return 0;
4782 }
4783 
4784 /*
4785  * fault_around_bytes must be rounded down to the nearest page order as it's
4786  * what do_fault_around() expects to see.
4787  */
4788 static int fault_around_bytes_set(void *data, u64 val)
4789 {
4790 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4791 		return -EINVAL;
4792 
4793 	/*
4794 	 * The minimum value is 1 page, however this results in no fault-around
4795 	 * at all. See should_fault_around().
4796 	 */
4797 	val = max(val, PAGE_SIZE);
4798 	fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
4799 
4800 	return 0;
4801 }
4802 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4803 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4804 
4805 static int __init fault_around_debugfs(void)
4806 {
4807 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4808 				   &fault_around_bytes_fops);
4809 	return 0;
4810 }
4811 late_initcall(fault_around_debugfs);
4812 #endif
4813 
4814 /*
4815  * do_fault_around() tries to map few pages around the fault address. The hope
4816  * is that the pages will be needed soon and this will lower the number of
4817  * faults to handle.
4818  *
4819  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4820  * not ready to be mapped: not up-to-date, locked, etc.
4821  *
4822  * This function doesn't cross VMA or page table boundaries, in order to call
4823  * map_pages() and acquire a PTE lock only once.
4824  *
4825  * fault_around_pages defines how many pages we'll try to map.
4826  * do_fault_around() expects it to be set to a power of two less than or equal
4827  * to PTRS_PER_PTE.
4828  *
4829  * The virtual address of the area that we map is naturally aligned to
4830  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4831  * (and therefore to page order).  This way it's easier to guarantee
4832  * that we don't cross page table boundaries.
4833  */
4834 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4835 {
4836 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4837 	pgoff_t pte_off = pte_index(vmf->address);
4838 	/* The page offset of vmf->address within the VMA. */
4839 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4840 	pgoff_t from_pte, to_pte;
4841 	vm_fault_t ret;
4842 
4843 	/* The PTE offset of the start address, clamped to the VMA. */
4844 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4845 		       pte_off - min(pte_off, vma_off));
4846 
4847 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4848 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4849 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4850 
4851 	if (pmd_none(*vmf->pmd)) {
4852 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4853 		if (!vmf->prealloc_pte)
4854 			return VM_FAULT_OOM;
4855 	}
4856 
4857 	rcu_read_lock();
4858 	ret = vmf->vma->vm_ops->map_pages(vmf,
4859 			vmf->pgoff + from_pte - pte_off,
4860 			vmf->pgoff + to_pte - pte_off);
4861 	rcu_read_unlock();
4862 
4863 	return ret;
4864 }
4865 
4866 /* Return true if we should do read fault-around, false otherwise */
4867 static inline bool should_fault_around(struct vm_fault *vmf)
4868 {
4869 	/* No ->map_pages?  No way to fault around... */
4870 	if (!vmf->vma->vm_ops->map_pages)
4871 		return false;
4872 
4873 	if (uffd_disable_fault_around(vmf->vma))
4874 		return false;
4875 
4876 	/* A single page implies no faulting 'around' at all. */
4877 	return fault_around_pages > 1;
4878 }
4879 
4880 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4881 {
4882 	vm_fault_t ret = 0;
4883 	struct folio *folio;
4884 
4885 	/*
4886 	 * Let's call ->map_pages() first and use ->fault() as fallback
4887 	 * if page by the offset is not ready to be mapped (cold cache or
4888 	 * something).
4889 	 */
4890 	if (should_fault_around(vmf)) {
4891 		ret = do_fault_around(vmf);
4892 		if (ret)
4893 			return ret;
4894 	}
4895 
4896 	ret = vmf_can_call_fault(vmf);
4897 	if (ret)
4898 		return ret;
4899 
4900 	ret = __do_fault(vmf);
4901 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4902 		return ret;
4903 
4904 	ret |= finish_fault(vmf);
4905 	folio = page_folio(vmf->page);
4906 	folio_unlock(folio);
4907 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4908 		folio_put(folio);
4909 	return ret;
4910 }
4911 
4912 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4913 {
4914 	struct vm_area_struct *vma = vmf->vma;
4915 	struct folio *folio;
4916 	vm_fault_t ret;
4917 
4918 	ret = vmf_can_call_fault(vmf);
4919 	if (!ret)
4920 		ret = vmf_anon_prepare(vmf);
4921 	if (ret)
4922 		return ret;
4923 
4924 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
4925 	if (!folio)
4926 		return VM_FAULT_OOM;
4927 
4928 	vmf->cow_page = &folio->page;
4929 
4930 	ret = __do_fault(vmf);
4931 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4932 		goto uncharge_out;
4933 	if (ret & VM_FAULT_DONE_COW)
4934 		return ret;
4935 
4936 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4937 	__folio_mark_uptodate(folio);
4938 
4939 	ret |= finish_fault(vmf);
4940 	unlock_page(vmf->page);
4941 	put_page(vmf->page);
4942 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4943 		goto uncharge_out;
4944 	return ret;
4945 uncharge_out:
4946 	folio_put(folio);
4947 	return ret;
4948 }
4949 
4950 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4951 {
4952 	struct vm_area_struct *vma = vmf->vma;
4953 	vm_fault_t ret, tmp;
4954 	struct folio *folio;
4955 
4956 	ret = vmf_can_call_fault(vmf);
4957 	if (ret)
4958 		return ret;
4959 
4960 	ret = __do_fault(vmf);
4961 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4962 		return ret;
4963 
4964 	folio = page_folio(vmf->page);
4965 
4966 	/*
4967 	 * Check if the backing address space wants to know that the page is
4968 	 * about to become writable
4969 	 */
4970 	if (vma->vm_ops->page_mkwrite) {
4971 		folio_unlock(folio);
4972 		tmp = do_page_mkwrite(vmf, folio);
4973 		if (unlikely(!tmp ||
4974 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4975 			folio_put(folio);
4976 			return tmp;
4977 		}
4978 	}
4979 
4980 	ret |= finish_fault(vmf);
4981 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4982 					VM_FAULT_RETRY))) {
4983 		folio_unlock(folio);
4984 		folio_put(folio);
4985 		return ret;
4986 	}
4987 
4988 	ret |= fault_dirty_shared_page(vmf);
4989 	return ret;
4990 }
4991 
4992 /*
4993  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4994  * but allow concurrent faults).
4995  * The mmap_lock may have been released depending on flags and our
4996  * return value.  See filemap_fault() and __folio_lock_or_retry().
4997  * If mmap_lock is released, vma may become invalid (for example
4998  * by other thread calling munmap()).
4999  */
5000 static vm_fault_t do_fault(struct vm_fault *vmf)
5001 {
5002 	struct vm_area_struct *vma = vmf->vma;
5003 	struct mm_struct *vm_mm = vma->vm_mm;
5004 	vm_fault_t ret;
5005 
5006 	/*
5007 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5008 	 */
5009 	if (!vma->vm_ops->fault) {
5010 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5011 					       vmf->address, &vmf->ptl);
5012 		if (unlikely(!vmf->pte))
5013 			ret = VM_FAULT_SIGBUS;
5014 		else {
5015 			/*
5016 			 * Make sure this is not a temporary clearing of pte
5017 			 * by holding ptl and checking again. A R/M/W update
5018 			 * of pte involves: take ptl, clearing the pte so that
5019 			 * we don't have concurrent modification by hardware
5020 			 * followed by an update.
5021 			 */
5022 			if (unlikely(pte_none(ptep_get(vmf->pte))))
5023 				ret = VM_FAULT_SIGBUS;
5024 			else
5025 				ret = VM_FAULT_NOPAGE;
5026 
5027 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5028 		}
5029 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
5030 		ret = do_read_fault(vmf);
5031 	else if (!(vma->vm_flags & VM_SHARED))
5032 		ret = do_cow_fault(vmf);
5033 	else
5034 		ret = do_shared_fault(vmf);
5035 
5036 	/* preallocated pagetable is unused: free it */
5037 	if (vmf->prealloc_pte) {
5038 		pte_free(vm_mm, vmf->prealloc_pte);
5039 		vmf->prealloc_pte = NULL;
5040 	}
5041 	return ret;
5042 }
5043 
5044 int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf,
5045 		      unsigned long addr, int page_nid, int *flags)
5046 {
5047 	struct vm_area_struct *vma = vmf->vma;
5048 
5049 	folio_get(folio);
5050 
5051 	/* Record the current PID acceesing VMA */
5052 	vma_set_access_pid_bit(vma);
5053 
5054 	count_vm_numa_event(NUMA_HINT_FAULTS);
5055 	if (page_nid == numa_node_id()) {
5056 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5057 		*flags |= TNF_FAULT_LOCAL;
5058 	}
5059 
5060 	return mpol_misplaced(folio, vmf, addr);
5061 }
5062 
5063 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5064 {
5065 	struct vm_area_struct *vma = vmf->vma;
5066 	struct folio *folio = NULL;
5067 	int nid = NUMA_NO_NODE;
5068 	bool writable = false;
5069 	int last_cpupid;
5070 	int target_nid;
5071 	pte_t pte, old_pte;
5072 	int flags = 0;
5073 
5074 	/*
5075 	 * The pte cannot be used safely until we verify, while holding the page
5076 	 * table lock, that its contents have not changed during fault handling.
5077 	 */
5078 	spin_lock(vmf->ptl);
5079 	/* Read the live PTE from the page tables: */
5080 	old_pte = ptep_get(vmf->pte);
5081 
5082 	if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5083 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5084 		goto out;
5085 	}
5086 
5087 	pte = pte_modify(old_pte, vma->vm_page_prot);
5088 
5089 	/*
5090 	 * Detect now whether the PTE could be writable; this information
5091 	 * is only valid while holding the PT lock.
5092 	 */
5093 	writable = pte_write(pte);
5094 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
5095 	    can_change_pte_writable(vma, vmf->address, pte))
5096 		writable = true;
5097 
5098 	folio = vm_normal_folio(vma, vmf->address, pte);
5099 	if (!folio || folio_is_zone_device(folio))
5100 		goto out_map;
5101 
5102 	/* TODO: handle PTE-mapped THP */
5103 	if (folio_test_large(folio))
5104 		goto out_map;
5105 
5106 	/*
5107 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5108 	 * much anyway since they can be in shared cache state. This misses
5109 	 * the case where a mapping is writable but the process never writes
5110 	 * to it but pte_write gets cleared during protection updates and
5111 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
5112 	 * background writeback, dirty balancing and application behaviour.
5113 	 */
5114 	if (!writable)
5115 		flags |= TNF_NO_GROUP;
5116 
5117 	/*
5118 	 * Flag if the folio is shared between multiple address spaces. This
5119 	 * is later used when determining whether to group tasks together
5120 	 */
5121 	if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5122 		flags |= TNF_SHARED;
5123 
5124 	nid = folio_nid(folio);
5125 	/*
5126 	 * For memory tiering mode, cpupid of slow memory page is used
5127 	 * to record page access time.  So use default value.
5128 	 */
5129 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
5130 	    !node_is_toptier(nid))
5131 		last_cpupid = (-1 & LAST_CPUPID_MASK);
5132 	else
5133 		last_cpupid = folio_last_cpupid(folio);
5134 	target_nid = numa_migrate_prep(folio, vmf, vmf->address, nid, &flags);
5135 	if (target_nid == NUMA_NO_NODE) {
5136 		folio_put(folio);
5137 		goto out_map;
5138 	}
5139 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5140 	writable = false;
5141 
5142 	/* Migrate to the requested node */
5143 	if (migrate_misplaced_folio(folio, vma, target_nid)) {
5144 		nid = target_nid;
5145 		flags |= TNF_MIGRATED;
5146 	} else {
5147 		flags |= TNF_MIGRATE_FAIL;
5148 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5149 					       vmf->address, &vmf->ptl);
5150 		if (unlikely(!vmf->pte))
5151 			goto out;
5152 		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5153 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5154 			goto out;
5155 		}
5156 		goto out_map;
5157 	}
5158 
5159 out:
5160 	if (nid != NUMA_NO_NODE)
5161 		task_numa_fault(last_cpupid, nid, 1, flags);
5162 	return 0;
5163 out_map:
5164 	/*
5165 	 * Make it present again, depending on how arch implements
5166 	 * non-accessible ptes, some can allow access by kernel mode.
5167 	 */
5168 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
5169 	pte = pte_modify(old_pte, vma->vm_page_prot);
5170 	pte = pte_mkyoung(pte);
5171 	if (writable)
5172 		pte = pte_mkwrite(pte, vma);
5173 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
5174 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
5175 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5176 	goto out;
5177 }
5178 
5179 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5180 {
5181 	struct vm_area_struct *vma = vmf->vma;
5182 	if (vma_is_anonymous(vma))
5183 		return do_huge_pmd_anonymous_page(vmf);
5184 	if (vma->vm_ops->huge_fault)
5185 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5186 	return VM_FAULT_FALLBACK;
5187 }
5188 
5189 /* `inline' is required to avoid gcc 4.1.2 build error */
5190 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5191 {
5192 	struct vm_area_struct *vma = vmf->vma;
5193 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5194 	vm_fault_t ret;
5195 
5196 	if (vma_is_anonymous(vma)) {
5197 		if (likely(!unshare) &&
5198 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5199 			if (userfaultfd_wp_async(vmf->vma))
5200 				goto split;
5201 			return handle_userfault(vmf, VM_UFFD_WP);
5202 		}
5203 		return do_huge_pmd_wp_page(vmf);
5204 	}
5205 
5206 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5207 		if (vma->vm_ops->huge_fault) {
5208 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5209 			if (!(ret & VM_FAULT_FALLBACK))
5210 				return ret;
5211 		}
5212 	}
5213 
5214 split:
5215 	/* COW or write-notify handled on pte level: split pmd. */
5216 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5217 
5218 	return VM_FAULT_FALLBACK;
5219 }
5220 
5221 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5222 {
5223 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5224 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5225 	struct vm_area_struct *vma = vmf->vma;
5226 	/* No support for anonymous transparent PUD pages yet */
5227 	if (vma_is_anonymous(vma))
5228 		return VM_FAULT_FALLBACK;
5229 	if (vma->vm_ops->huge_fault)
5230 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5231 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5232 	return VM_FAULT_FALLBACK;
5233 }
5234 
5235 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5236 {
5237 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5238 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5239 	struct vm_area_struct *vma = vmf->vma;
5240 	vm_fault_t ret;
5241 
5242 	/* No support for anonymous transparent PUD pages yet */
5243 	if (vma_is_anonymous(vma))
5244 		goto split;
5245 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5246 		if (vma->vm_ops->huge_fault) {
5247 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5248 			if (!(ret & VM_FAULT_FALLBACK))
5249 				return ret;
5250 		}
5251 	}
5252 split:
5253 	/* COW or write-notify not handled on PUD level: split pud.*/
5254 	__split_huge_pud(vma, vmf->pud, vmf->address);
5255 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5256 	return VM_FAULT_FALLBACK;
5257 }
5258 
5259 /*
5260  * These routines also need to handle stuff like marking pages dirty
5261  * and/or accessed for architectures that don't do it in hardware (most
5262  * RISC architectures).  The early dirtying is also good on the i386.
5263  *
5264  * There is also a hook called "update_mmu_cache()" that architectures
5265  * with external mmu caches can use to update those (ie the Sparc or
5266  * PowerPC hashed page tables that act as extended TLBs).
5267  *
5268  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5269  * concurrent faults).
5270  *
5271  * The mmap_lock may have been released depending on flags and our return value.
5272  * See filemap_fault() and __folio_lock_or_retry().
5273  */
5274 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5275 {
5276 	pte_t entry;
5277 
5278 	if (unlikely(pmd_none(*vmf->pmd))) {
5279 		/*
5280 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5281 		 * want to allocate huge page, and if we expose page table
5282 		 * for an instant, it will be difficult to retract from
5283 		 * concurrent faults and from rmap lookups.
5284 		 */
5285 		vmf->pte = NULL;
5286 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5287 	} else {
5288 		/*
5289 		 * A regular pmd is established and it can't morph into a huge
5290 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5291 		 * mode; but shmem or file collapse to THP could still morph
5292 		 * it into a huge pmd: just retry later if so.
5293 		 */
5294 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5295 						 vmf->address, &vmf->ptl);
5296 		if (unlikely(!vmf->pte))
5297 			return 0;
5298 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5299 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5300 
5301 		if (pte_none(vmf->orig_pte)) {
5302 			pte_unmap(vmf->pte);
5303 			vmf->pte = NULL;
5304 		}
5305 	}
5306 
5307 	if (!vmf->pte)
5308 		return do_pte_missing(vmf);
5309 
5310 	if (!pte_present(vmf->orig_pte))
5311 		return do_swap_page(vmf);
5312 
5313 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5314 		return do_numa_page(vmf);
5315 
5316 	spin_lock(vmf->ptl);
5317 	entry = vmf->orig_pte;
5318 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5319 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5320 		goto unlock;
5321 	}
5322 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5323 		if (!pte_write(entry))
5324 			return do_wp_page(vmf);
5325 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5326 			entry = pte_mkdirty(entry);
5327 	}
5328 	entry = pte_mkyoung(entry);
5329 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5330 				vmf->flags & FAULT_FLAG_WRITE)) {
5331 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5332 				vmf->pte, 1);
5333 	} else {
5334 		/* Skip spurious TLB flush for retried page fault */
5335 		if (vmf->flags & FAULT_FLAG_TRIED)
5336 			goto unlock;
5337 		/*
5338 		 * This is needed only for protection faults but the arch code
5339 		 * is not yet telling us if this is a protection fault or not.
5340 		 * This still avoids useless tlb flushes for .text page faults
5341 		 * with threads.
5342 		 */
5343 		if (vmf->flags & FAULT_FLAG_WRITE)
5344 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5345 						     vmf->pte);
5346 	}
5347 unlock:
5348 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5349 	return 0;
5350 }
5351 
5352 /*
5353  * On entry, we hold either the VMA lock or the mmap_lock
5354  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5355  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5356  * and __folio_lock_or_retry().
5357  */
5358 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5359 		unsigned long address, unsigned int flags)
5360 {
5361 	struct vm_fault vmf = {
5362 		.vma = vma,
5363 		.address = address & PAGE_MASK,
5364 		.real_address = address,
5365 		.flags = flags,
5366 		.pgoff = linear_page_index(vma, address),
5367 		.gfp_mask = __get_fault_gfp_mask(vma),
5368 	};
5369 	struct mm_struct *mm = vma->vm_mm;
5370 	unsigned long vm_flags = vma->vm_flags;
5371 	pgd_t *pgd;
5372 	p4d_t *p4d;
5373 	vm_fault_t ret;
5374 
5375 	pgd = pgd_offset(mm, address);
5376 	p4d = p4d_alloc(mm, pgd, address);
5377 	if (!p4d)
5378 		return VM_FAULT_OOM;
5379 
5380 	vmf.pud = pud_alloc(mm, p4d, address);
5381 	if (!vmf.pud)
5382 		return VM_FAULT_OOM;
5383 retry_pud:
5384 	if (pud_none(*vmf.pud) &&
5385 	    thp_vma_allowable_order(vma, vm_flags, false, true, true, PUD_ORDER)) {
5386 		ret = create_huge_pud(&vmf);
5387 		if (!(ret & VM_FAULT_FALLBACK))
5388 			return ret;
5389 	} else {
5390 		pud_t orig_pud = *vmf.pud;
5391 
5392 		barrier();
5393 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5394 
5395 			/*
5396 			 * TODO once we support anonymous PUDs: NUMA case and
5397 			 * FAULT_FLAG_UNSHARE handling.
5398 			 */
5399 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5400 				ret = wp_huge_pud(&vmf, orig_pud);
5401 				if (!(ret & VM_FAULT_FALLBACK))
5402 					return ret;
5403 			} else {
5404 				huge_pud_set_accessed(&vmf, orig_pud);
5405 				return 0;
5406 			}
5407 		}
5408 	}
5409 
5410 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5411 	if (!vmf.pmd)
5412 		return VM_FAULT_OOM;
5413 
5414 	/* Huge pud page fault raced with pmd_alloc? */
5415 	if (pud_trans_unstable(vmf.pud))
5416 		goto retry_pud;
5417 
5418 	if (pmd_none(*vmf.pmd) &&
5419 	    thp_vma_allowable_order(vma, vm_flags, false, true, true, PMD_ORDER)) {
5420 		ret = create_huge_pmd(&vmf);
5421 		if (!(ret & VM_FAULT_FALLBACK))
5422 			return ret;
5423 	} else {
5424 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5425 
5426 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5427 			VM_BUG_ON(thp_migration_supported() &&
5428 					  !is_pmd_migration_entry(vmf.orig_pmd));
5429 			if (is_pmd_migration_entry(vmf.orig_pmd))
5430 				pmd_migration_entry_wait(mm, vmf.pmd);
5431 			return 0;
5432 		}
5433 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5434 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5435 				return do_huge_pmd_numa_page(&vmf);
5436 
5437 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5438 			    !pmd_write(vmf.orig_pmd)) {
5439 				ret = wp_huge_pmd(&vmf);
5440 				if (!(ret & VM_FAULT_FALLBACK))
5441 					return ret;
5442 			} else {
5443 				huge_pmd_set_accessed(&vmf);
5444 				return 0;
5445 			}
5446 		}
5447 	}
5448 
5449 	return handle_pte_fault(&vmf);
5450 }
5451 
5452 /**
5453  * mm_account_fault - Do page fault accounting
5454  * @mm: mm from which memcg should be extracted. It can be NULL.
5455  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5456  *        of perf event counters, but we'll still do the per-task accounting to
5457  *        the task who triggered this page fault.
5458  * @address: the faulted address.
5459  * @flags: the fault flags.
5460  * @ret: the fault retcode.
5461  *
5462  * This will take care of most of the page fault accounting.  Meanwhile, it
5463  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5464  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5465  * still be in per-arch page fault handlers at the entry of page fault.
5466  */
5467 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5468 				    unsigned long address, unsigned int flags,
5469 				    vm_fault_t ret)
5470 {
5471 	bool major;
5472 
5473 	/* Incomplete faults will be accounted upon completion. */
5474 	if (ret & VM_FAULT_RETRY)
5475 		return;
5476 
5477 	/*
5478 	 * To preserve the behavior of older kernels, PGFAULT counters record
5479 	 * both successful and failed faults, as opposed to perf counters,
5480 	 * which ignore failed cases.
5481 	 */
5482 	count_vm_event(PGFAULT);
5483 	count_memcg_event_mm(mm, PGFAULT);
5484 
5485 	/*
5486 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5487 	 * valid).  That includes arch_vma_access_permitted() failing before
5488 	 * reaching here. So this is not a "this many hardware page faults"
5489 	 * counter.  We should use the hw profiling for that.
5490 	 */
5491 	if (ret & VM_FAULT_ERROR)
5492 		return;
5493 
5494 	/*
5495 	 * We define the fault as a major fault when the final successful fault
5496 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5497 	 * handle it immediately previously).
5498 	 */
5499 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5500 
5501 	if (major)
5502 		current->maj_flt++;
5503 	else
5504 		current->min_flt++;
5505 
5506 	/*
5507 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5508 	 * accounting for the per thread fault counters who triggered the
5509 	 * fault, and we skip the perf event updates.
5510 	 */
5511 	if (!regs)
5512 		return;
5513 
5514 	if (major)
5515 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5516 	else
5517 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5518 }
5519 
5520 #ifdef CONFIG_LRU_GEN
5521 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5522 {
5523 	/* the LRU algorithm only applies to accesses with recency */
5524 	current->in_lru_fault = vma_has_recency(vma);
5525 }
5526 
5527 static void lru_gen_exit_fault(void)
5528 {
5529 	current->in_lru_fault = false;
5530 }
5531 #else
5532 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5533 {
5534 }
5535 
5536 static void lru_gen_exit_fault(void)
5537 {
5538 }
5539 #endif /* CONFIG_LRU_GEN */
5540 
5541 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5542 				       unsigned int *flags)
5543 {
5544 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5545 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5546 			return VM_FAULT_SIGSEGV;
5547 		/*
5548 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5549 		 * just treat it like an ordinary read-fault otherwise.
5550 		 */
5551 		if (!is_cow_mapping(vma->vm_flags))
5552 			*flags &= ~FAULT_FLAG_UNSHARE;
5553 	} else if (*flags & FAULT_FLAG_WRITE) {
5554 		/* Write faults on read-only mappings are impossible ... */
5555 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5556 			return VM_FAULT_SIGSEGV;
5557 		/* ... and FOLL_FORCE only applies to COW mappings. */
5558 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5559 				 !is_cow_mapping(vma->vm_flags)))
5560 			return VM_FAULT_SIGSEGV;
5561 	}
5562 #ifdef CONFIG_PER_VMA_LOCK
5563 	/*
5564 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5565 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
5566 	 */
5567 	if (WARN_ON_ONCE((*flags &
5568 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5569 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5570 		return VM_FAULT_SIGSEGV;
5571 #endif
5572 
5573 	return 0;
5574 }
5575 
5576 /*
5577  * By the time we get here, we already hold the mm semaphore
5578  *
5579  * The mmap_lock may have been released depending on flags and our
5580  * return value.  See filemap_fault() and __folio_lock_or_retry().
5581  */
5582 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5583 			   unsigned int flags, struct pt_regs *regs)
5584 {
5585 	/* If the fault handler drops the mmap_lock, vma may be freed */
5586 	struct mm_struct *mm = vma->vm_mm;
5587 	vm_fault_t ret;
5588 
5589 	__set_current_state(TASK_RUNNING);
5590 
5591 	ret = sanitize_fault_flags(vma, &flags);
5592 	if (ret)
5593 		goto out;
5594 
5595 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5596 					    flags & FAULT_FLAG_INSTRUCTION,
5597 					    flags & FAULT_FLAG_REMOTE)) {
5598 		ret = VM_FAULT_SIGSEGV;
5599 		goto out;
5600 	}
5601 
5602 	/*
5603 	 * Enable the memcg OOM handling for faults triggered in user
5604 	 * space.  Kernel faults are handled more gracefully.
5605 	 */
5606 	if (flags & FAULT_FLAG_USER)
5607 		mem_cgroup_enter_user_fault();
5608 
5609 	lru_gen_enter_fault(vma);
5610 
5611 	if (unlikely(is_vm_hugetlb_page(vma)))
5612 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5613 	else
5614 		ret = __handle_mm_fault(vma, address, flags);
5615 
5616 	lru_gen_exit_fault();
5617 
5618 	if (flags & FAULT_FLAG_USER) {
5619 		mem_cgroup_exit_user_fault();
5620 		/*
5621 		 * The task may have entered a memcg OOM situation but
5622 		 * if the allocation error was handled gracefully (no
5623 		 * VM_FAULT_OOM), there is no need to kill anything.
5624 		 * Just clean up the OOM state peacefully.
5625 		 */
5626 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5627 			mem_cgroup_oom_synchronize(false);
5628 	}
5629 out:
5630 	mm_account_fault(mm, regs, address, flags, ret);
5631 
5632 	return ret;
5633 }
5634 EXPORT_SYMBOL_GPL(handle_mm_fault);
5635 
5636 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5637 #include <linux/extable.h>
5638 
5639 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5640 {
5641 	if (likely(mmap_read_trylock(mm)))
5642 		return true;
5643 
5644 	if (regs && !user_mode(regs)) {
5645 		unsigned long ip = exception_ip(regs);
5646 		if (!search_exception_tables(ip))
5647 			return false;
5648 	}
5649 
5650 	return !mmap_read_lock_killable(mm);
5651 }
5652 
5653 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5654 {
5655 	/*
5656 	 * We don't have this operation yet.
5657 	 *
5658 	 * It should be easy enough to do: it's basically a
5659 	 *    atomic_long_try_cmpxchg_acquire()
5660 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5661 	 * it also needs the proper lockdep magic etc.
5662 	 */
5663 	return false;
5664 }
5665 
5666 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5667 {
5668 	mmap_read_unlock(mm);
5669 	if (regs && !user_mode(regs)) {
5670 		unsigned long ip = exception_ip(regs);
5671 		if (!search_exception_tables(ip))
5672 			return false;
5673 	}
5674 	return !mmap_write_lock_killable(mm);
5675 }
5676 
5677 /*
5678  * Helper for page fault handling.
5679  *
5680  * This is kind of equivalend to "mmap_read_lock()" followed
5681  * by "find_extend_vma()", except it's a lot more careful about
5682  * the locking (and will drop the lock on failure).
5683  *
5684  * For example, if we have a kernel bug that causes a page
5685  * fault, we don't want to just use mmap_read_lock() to get
5686  * the mm lock, because that would deadlock if the bug were
5687  * to happen while we're holding the mm lock for writing.
5688  *
5689  * So this checks the exception tables on kernel faults in
5690  * order to only do this all for instructions that are actually
5691  * expected to fault.
5692  *
5693  * We can also actually take the mm lock for writing if we
5694  * need to extend the vma, which helps the VM layer a lot.
5695  */
5696 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5697 			unsigned long addr, struct pt_regs *regs)
5698 {
5699 	struct vm_area_struct *vma;
5700 
5701 	if (!get_mmap_lock_carefully(mm, regs))
5702 		return NULL;
5703 
5704 	vma = find_vma(mm, addr);
5705 	if (likely(vma && (vma->vm_start <= addr)))
5706 		return vma;
5707 
5708 	/*
5709 	 * Well, dang. We might still be successful, but only
5710 	 * if we can extend a vma to do so.
5711 	 */
5712 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5713 		mmap_read_unlock(mm);
5714 		return NULL;
5715 	}
5716 
5717 	/*
5718 	 * We can try to upgrade the mmap lock atomically,
5719 	 * in which case we can continue to use the vma
5720 	 * we already looked up.
5721 	 *
5722 	 * Otherwise we'll have to drop the mmap lock and
5723 	 * re-take it, and also look up the vma again,
5724 	 * re-checking it.
5725 	 */
5726 	if (!mmap_upgrade_trylock(mm)) {
5727 		if (!upgrade_mmap_lock_carefully(mm, regs))
5728 			return NULL;
5729 
5730 		vma = find_vma(mm, addr);
5731 		if (!vma)
5732 			goto fail;
5733 		if (vma->vm_start <= addr)
5734 			goto success;
5735 		if (!(vma->vm_flags & VM_GROWSDOWN))
5736 			goto fail;
5737 	}
5738 
5739 	if (expand_stack_locked(vma, addr))
5740 		goto fail;
5741 
5742 success:
5743 	mmap_write_downgrade(mm);
5744 	return vma;
5745 
5746 fail:
5747 	mmap_write_unlock(mm);
5748 	return NULL;
5749 }
5750 #endif
5751 
5752 #ifdef CONFIG_PER_VMA_LOCK
5753 /*
5754  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5755  * stable and not isolated. If the VMA is not found or is being modified the
5756  * function returns NULL.
5757  */
5758 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5759 					  unsigned long address)
5760 {
5761 	MA_STATE(mas, &mm->mm_mt, address, address);
5762 	struct vm_area_struct *vma;
5763 
5764 	rcu_read_lock();
5765 retry:
5766 	vma = mas_walk(&mas);
5767 	if (!vma)
5768 		goto inval;
5769 
5770 	if (!vma_start_read(vma))
5771 		goto inval;
5772 
5773 	/*
5774 	 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5775 	 * This check must happen after vma_start_read(); otherwise, a
5776 	 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5777 	 * from its anon_vma.
5778 	 */
5779 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5780 		goto inval_end_read;
5781 
5782 	/* Check since vm_start/vm_end might change before we lock the VMA */
5783 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5784 		goto inval_end_read;
5785 
5786 	/* Check if the VMA got isolated after we found it */
5787 	if (vma->detached) {
5788 		vma_end_read(vma);
5789 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5790 		/* The area was replaced with another one */
5791 		goto retry;
5792 	}
5793 
5794 	rcu_read_unlock();
5795 	return vma;
5796 
5797 inval_end_read:
5798 	vma_end_read(vma);
5799 inval:
5800 	rcu_read_unlock();
5801 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5802 	return NULL;
5803 }
5804 #endif /* CONFIG_PER_VMA_LOCK */
5805 
5806 #ifndef __PAGETABLE_P4D_FOLDED
5807 /*
5808  * Allocate p4d page table.
5809  * We've already handled the fast-path in-line.
5810  */
5811 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5812 {
5813 	p4d_t *new = p4d_alloc_one(mm, address);
5814 	if (!new)
5815 		return -ENOMEM;
5816 
5817 	spin_lock(&mm->page_table_lock);
5818 	if (pgd_present(*pgd)) {	/* Another has populated it */
5819 		p4d_free(mm, new);
5820 	} else {
5821 		smp_wmb(); /* See comment in pmd_install() */
5822 		pgd_populate(mm, pgd, new);
5823 	}
5824 	spin_unlock(&mm->page_table_lock);
5825 	return 0;
5826 }
5827 #endif /* __PAGETABLE_P4D_FOLDED */
5828 
5829 #ifndef __PAGETABLE_PUD_FOLDED
5830 /*
5831  * Allocate page upper directory.
5832  * We've already handled the fast-path in-line.
5833  */
5834 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5835 {
5836 	pud_t *new = pud_alloc_one(mm, address);
5837 	if (!new)
5838 		return -ENOMEM;
5839 
5840 	spin_lock(&mm->page_table_lock);
5841 	if (!p4d_present(*p4d)) {
5842 		mm_inc_nr_puds(mm);
5843 		smp_wmb(); /* See comment in pmd_install() */
5844 		p4d_populate(mm, p4d, new);
5845 	} else	/* Another has populated it */
5846 		pud_free(mm, new);
5847 	spin_unlock(&mm->page_table_lock);
5848 	return 0;
5849 }
5850 #endif /* __PAGETABLE_PUD_FOLDED */
5851 
5852 #ifndef __PAGETABLE_PMD_FOLDED
5853 /*
5854  * Allocate page middle directory.
5855  * We've already handled the fast-path in-line.
5856  */
5857 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5858 {
5859 	spinlock_t *ptl;
5860 	pmd_t *new = pmd_alloc_one(mm, address);
5861 	if (!new)
5862 		return -ENOMEM;
5863 
5864 	ptl = pud_lock(mm, pud);
5865 	if (!pud_present(*pud)) {
5866 		mm_inc_nr_pmds(mm);
5867 		smp_wmb(); /* See comment in pmd_install() */
5868 		pud_populate(mm, pud, new);
5869 	} else {	/* Another has populated it */
5870 		pmd_free(mm, new);
5871 	}
5872 	spin_unlock(ptl);
5873 	return 0;
5874 }
5875 #endif /* __PAGETABLE_PMD_FOLDED */
5876 
5877 /**
5878  * follow_pte - look up PTE at a user virtual address
5879  * @mm: the mm_struct of the target address space
5880  * @address: user virtual address
5881  * @ptepp: location to store found PTE
5882  * @ptlp: location to store the lock for the PTE
5883  *
5884  * On a successful return, the pointer to the PTE is stored in @ptepp;
5885  * the corresponding lock is taken and its location is stored in @ptlp.
5886  * The contents of the PTE are only stable until @ptlp is released;
5887  * any further use, if any, must be protected against invalidation
5888  * with MMU notifiers.
5889  *
5890  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5891  * should be taken for read.
5892  *
5893  * KVM uses this function.  While it is arguably less bad than the historic
5894  * ``follow_pfn``, it is not a good general-purpose API.
5895  *
5896  * Return: zero on success, -ve otherwise.
5897  */
5898 int follow_pte(struct mm_struct *mm, unsigned long address,
5899 	       pte_t **ptepp, spinlock_t **ptlp)
5900 {
5901 	pgd_t *pgd;
5902 	p4d_t *p4d;
5903 	pud_t *pud;
5904 	pmd_t *pmd;
5905 	pte_t *ptep;
5906 
5907 	pgd = pgd_offset(mm, address);
5908 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5909 		goto out;
5910 
5911 	p4d = p4d_offset(pgd, address);
5912 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5913 		goto out;
5914 
5915 	pud = pud_offset(p4d, address);
5916 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5917 		goto out;
5918 
5919 	pmd = pmd_offset(pud, address);
5920 	VM_BUG_ON(pmd_trans_huge(*pmd));
5921 
5922 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5923 	if (!ptep)
5924 		goto out;
5925 	if (!pte_present(ptep_get(ptep)))
5926 		goto unlock;
5927 	*ptepp = ptep;
5928 	return 0;
5929 unlock:
5930 	pte_unmap_unlock(ptep, *ptlp);
5931 out:
5932 	return -EINVAL;
5933 }
5934 EXPORT_SYMBOL_GPL(follow_pte);
5935 
5936 #ifdef CONFIG_HAVE_IOREMAP_PROT
5937 /**
5938  * generic_access_phys - generic implementation for iomem mmap access
5939  * @vma: the vma to access
5940  * @addr: userspace address, not relative offset within @vma
5941  * @buf: buffer to read/write
5942  * @len: length of transfer
5943  * @write: set to FOLL_WRITE when writing, otherwise reading
5944  *
5945  * This is a generic implementation for &vm_operations_struct.access for an
5946  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5947  * not page based.
5948  */
5949 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5950 			void *buf, int len, int write)
5951 {
5952 	resource_size_t phys_addr;
5953 	unsigned long prot = 0;
5954 	void __iomem *maddr;
5955 	pte_t *ptep, pte;
5956 	spinlock_t *ptl;
5957 	int offset = offset_in_page(addr);
5958 	int ret = -EINVAL;
5959 
5960 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5961 		return -EINVAL;
5962 
5963 retry:
5964 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5965 		return -EINVAL;
5966 	pte = ptep_get(ptep);
5967 	pte_unmap_unlock(ptep, ptl);
5968 
5969 	prot = pgprot_val(pte_pgprot(pte));
5970 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5971 
5972 	if ((write & FOLL_WRITE) && !pte_write(pte))
5973 		return -EINVAL;
5974 
5975 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5976 	if (!maddr)
5977 		return -ENOMEM;
5978 
5979 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5980 		goto out_unmap;
5981 
5982 	if (!pte_same(pte, ptep_get(ptep))) {
5983 		pte_unmap_unlock(ptep, ptl);
5984 		iounmap(maddr);
5985 
5986 		goto retry;
5987 	}
5988 
5989 	if (write)
5990 		memcpy_toio(maddr + offset, buf, len);
5991 	else
5992 		memcpy_fromio(buf, maddr + offset, len);
5993 	ret = len;
5994 	pte_unmap_unlock(ptep, ptl);
5995 out_unmap:
5996 	iounmap(maddr);
5997 
5998 	return ret;
5999 }
6000 EXPORT_SYMBOL_GPL(generic_access_phys);
6001 #endif
6002 
6003 /*
6004  * Access another process' address space as given in mm.
6005  */
6006 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6007 			      void *buf, int len, unsigned int gup_flags)
6008 {
6009 	void *old_buf = buf;
6010 	int write = gup_flags & FOLL_WRITE;
6011 
6012 	if (mmap_read_lock_killable(mm))
6013 		return 0;
6014 
6015 	/* Untag the address before looking up the VMA */
6016 	addr = untagged_addr_remote(mm, addr);
6017 
6018 	/* Avoid triggering the temporary warning in __get_user_pages */
6019 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6020 		return 0;
6021 
6022 	/* ignore errors, just check how much was successfully transferred */
6023 	while (len) {
6024 		int bytes, offset;
6025 		void *maddr;
6026 		struct vm_area_struct *vma = NULL;
6027 		struct page *page = get_user_page_vma_remote(mm, addr,
6028 							     gup_flags, &vma);
6029 
6030 		if (IS_ERR(page)) {
6031 			/* We might need to expand the stack to access it */
6032 			vma = vma_lookup(mm, addr);
6033 			if (!vma) {
6034 				vma = expand_stack(mm, addr);
6035 
6036 				/* mmap_lock was dropped on failure */
6037 				if (!vma)
6038 					return buf - old_buf;
6039 
6040 				/* Try again if stack expansion worked */
6041 				continue;
6042 			}
6043 
6044 			/*
6045 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6046 			 * we can access using slightly different code.
6047 			 */
6048 			bytes = 0;
6049 #ifdef CONFIG_HAVE_IOREMAP_PROT
6050 			if (vma->vm_ops && vma->vm_ops->access)
6051 				bytes = vma->vm_ops->access(vma, addr, buf,
6052 							    len, write);
6053 #endif
6054 			if (bytes <= 0)
6055 				break;
6056 		} else {
6057 			bytes = len;
6058 			offset = addr & (PAGE_SIZE-1);
6059 			if (bytes > PAGE_SIZE-offset)
6060 				bytes = PAGE_SIZE-offset;
6061 
6062 			maddr = kmap_local_page(page);
6063 			if (write) {
6064 				copy_to_user_page(vma, page, addr,
6065 						  maddr + offset, buf, bytes);
6066 				set_page_dirty_lock(page);
6067 			} else {
6068 				copy_from_user_page(vma, page, addr,
6069 						    buf, maddr + offset, bytes);
6070 			}
6071 			unmap_and_put_page(page, maddr);
6072 		}
6073 		len -= bytes;
6074 		buf += bytes;
6075 		addr += bytes;
6076 	}
6077 	mmap_read_unlock(mm);
6078 
6079 	return buf - old_buf;
6080 }
6081 
6082 /**
6083  * access_remote_vm - access another process' address space
6084  * @mm:		the mm_struct of the target address space
6085  * @addr:	start address to access
6086  * @buf:	source or destination buffer
6087  * @len:	number of bytes to transfer
6088  * @gup_flags:	flags modifying lookup behaviour
6089  *
6090  * The caller must hold a reference on @mm.
6091  *
6092  * Return: number of bytes copied from source to destination.
6093  */
6094 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6095 		void *buf, int len, unsigned int gup_flags)
6096 {
6097 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6098 }
6099 
6100 /*
6101  * Access another process' address space.
6102  * Source/target buffer must be kernel space,
6103  * Do not walk the page table directly, use get_user_pages
6104  */
6105 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6106 		void *buf, int len, unsigned int gup_flags)
6107 {
6108 	struct mm_struct *mm;
6109 	int ret;
6110 
6111 	mm = get_task_mm(tsk);
6112 	if (!mm)
6113 		return 0;
6114 
6115 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6116 
6117 	mmput(mm);
6118 
6119 	return ret;
6120 }
6121 EXPORT_SYMBOL_GPL(access_process_vm);
6122 
6123 /*
6124  * Print the name of a VMA.
6125  */
6126 void print_vma_addr(char *prefix, unsigned long ip)
6127 {
6128 	struct mm_struct *mm = current->mm;
6129 	struct vm_area_struct *vma;
6130 
6131 	/*
6132 	 * we might be running from an atomic context so we cannot sleep
6133 	 */
6134 	if (!mmap_read_trylock(mm))
6135 		return;
6136 
6137 	vma = find_vma(mm, ip);
6138 	if (vma && vma->vm_file) {
6139 		struct file *f = vma->vm_file;
6140 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
6141 		if (buf) {
6142 			char *p;
6143 
6144 			p = file_path(f, buf, PAGE_SIZE);
6145 			if (IS_ERR(p))
6146 				p = "?";
6147 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
6148 					vma->vm_start,
6149 					vma->vm_end - vma->vm_start);
6150 			free_page((unsigned long)buf);
6151 		}
6152 	}
6153 	mmap_read_unlock(mm);
6154 }
6155 
6156 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6157 void __might_fault(const char *file, int line)
6158 {
6159 	if (pagefault_disabled())
6160 		return;
6161 	__might_sleep(file, line);
6162 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6163 	if (current->mm)
6164 		might_lock_read(&current->mm->mmap_lock);
6165 #endif
6166 }
6167 EXPORT_SYMBOL(__might_fault);
6168 #endif
6169 
6170 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6171 /*
6172  * Process all subpages of the specified huge page with the specified
6173  * operation.  The target subpage will be processed last to keep its
6174  * cache lines hot.
6175  */
6176 static inline int process_huge_page(
6177 	unsigned long addr_hint, unsigned int pages_per_huge_page,
6178 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
6179 	void *arg)
6180 {
6181 	int i, n, base, l, ret;
6182 	unsigned long addr = addr_hint &
6183 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6184 
6185 	/* Process target subpage last to keep its cache lines hot */
6186 	might_sleep();
6187 	n = (addr_hint - addr) / PAGE_SIZE;
6188 	if (2 * n <= pages_per_huge_page) {
6189 		/* If target subpage in first half of huge page */
6190 		base = 0;
6191 		l = n;
6192 		/* Process subpages at the end of huge page */
6193 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
6194 			cond_resched();
6195 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6196 			if (ret)
6197 				return ret;
6198 		}
6199 	} else {
6200 		/* If target subpage in second half of huge page */
6201 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
6202 		l = pages_per_huge_page - n;
6203 		/* Process subpages at the begin of huge page */
6204 		for (i = 0; i < base; i++) {
6205 			cond_resched();
6206 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6207 			if (ret)
6208 				return ret;
6209 		}
6210 	}
6211 	/*
6212 	 * Process remaining subpages in left-right-left-right pattern
6213 	 * towards the target subpage
6214 	 */
6215 	for (i = 0; i < l; i++) {
6216 		int left_idx = base + i;
6217 		int right_idx = base + 2 * l - 1 - i;
6218 
6219 		cond_resched();
6220 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6221 		if (ret)
6222 			return ret;
6223 		cond_resched();
6224 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6225 		if (ret)
6226 			return ret;
6227 	}
6228 	return 0;
6229 }
6230 
6231 static void clear_gigantic_page(struct page *page,
6232 				unsigned long addr,
6233 				unsigned int pages_per_huge_page)
6234 {
6235 	int i;
6236 	struct page *p;
6237 
6238 	might_sleep();
6239 	for (i = 0; i < pages_per_huge_page; i++) {
6240 		p = nth_page(page, i);
6241 		cond_resched();
6242 		clear_user_highpage(p, addr + i * PAGE_SIZE);
6243 	}
6244 }
6245 
6246 static int clear_subpage(unsigned long addr, int idx, void *arg)
6247 {
6248 	struct page *page = arg;
6249 
6250 	clear_user_highpage(nth_page(page, idx), addr);
6251 	return 0;
6252 }
6253 
6254 void clear_huge_page(struct page *page,
6255 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
6256 {
6257 	unsigned long addr = addr_hint &
6258 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6259 
6260 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6261 		clear_gigantic_page(page, addr, pages_per_huge_page);
6262 		return;
6263 	}
6264 
6265 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6266 }
6267 
6268 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6269 				     unsigned long addr,
6270 				     struct vm_area_struct *vma,
6271 				     unsigned int pages_per_huge_page)
6272 {
6273 	int i;
6274 	struct page *dst_page;
6275 	struct page *src_page;
6276 
6277 	for (i = 0; i < pages_per_huge_page; i++) {
6278 		dst_page = folio_page(dst, i);
6279 		src_page = folio_page(src, i);
6280 
6281 		cond_resched();
6282 		if (copy_mc_user_highpage(dst_page, src_page,
6283 					  addr + i*PAGE_SIZE, vma)) {
6284 			memory_failure_queue(page_to_pfn(src_page), 0);
6285 			return -EHWPOISON;
6286 		}
6287 	}
6288 	return 0;
6289 }
6290 
6291 struct copy_subpage_arg {
6292 	struct page *dst;
6293 	struct page *src;
6294 	struct vm_area_struct *vma;
6295 };
6296 
6297 static int copy_subpage(unsigned long addr, int idx, void *arg)
6298 {
6299 	struct copy_subpage_arg *copy_arg = arg;
6300 	struct page *dst = nth_page(copy_arg->dst, idx);
6301 	struct page *src = nth_page(copy_arg->src, idx);
6302 
6303 	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) {
6304 		memory_failure_queue(page_to_pfn(src), 0);
6305 		return -EHWPOISON;
6306 	}
6307 	return 0;
6308 }
6309 
6310 int copy_user_large_folio(struct folio *dst, struct folio *src,
6311 			  unsigned long addr_hint, struct vm_area_struct *vma)
6312 {
6313 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6314 	unsigned long addr = addr_hint &
6315 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6316 	struct copy_subpage_arg arg = {
6317 		.dst = &dst->page,
6318 		.src = &src->page,
6319 		.vma = vma,
6320 	};
6321 
6322 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6323 		return copy_user_gigantic_page(dst, src, addr, vma,
6324 					       pages_per_huge_page);
6325 
6326 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6327 }
6328 
6329 long copy_folio_from_user(struct folio *dst_folio,
6330 			   const void __user *usr_src,
6331 			   bool allow_pagefault)
6332 {
6333 	void *kaddr;
6334 	unsigned long i, rc = 0;
6335 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6336 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6337 	struct page *subpage;
6338 
6339 	for (i = 0; i < nr_pages; i++) {
6340 		subpage = folio_page(dst_folio, i);
6341 		kaddr = kmap_local_page(subpage);
6342 		if (!allow_pagefault)
6343 			pagefault_disable();
6344 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6345 		if (!allow_pagefault)
6346 			pagefault_enable();
6347 		kunmap_local(kaddr);
6348 
6349 		ret_val -= (PAGE_SIZE - rc);
6350 		if (rc)
6351 			break;
6352 
6353 		flush_dcache_page(subpage);
6354 
6355 		cond_resched();
6356 	}
6357 	return ret_val;
6358 }
6359 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6360 
6361 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6362 
6363 static struct kmem_cache *page_ptl_cachep;
6364 
6365 void __init ptlock_cache_init(void)
6366 {
6367 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6368 			SLAB_PANIC, NULL);
6369 }
6370 
6371 bool ptlock_alloc(struct ptdesc *ptdesc)
6372 {
6373 	spinlock_t *ptl;
6374 
6375 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6376 	if (!ptl)
6377 		return false;
6378 	ptdesc->ptl = ptl;
6379 	return true;
6380 }
6381 
6382 void ptlock_free(struct ptdesc *ptdesc)
6383 {
6384 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6385 }
6386 #endif
6387 
6388 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6389 {
6390 	if (is_vm_hugetlb_page(vma))
6391 		hugetlb_vma_lock_read(vma);
6392 }
6393 
6394 void vma_pgtable_walk_end(struct vm_area_struct *vma)
6395 {
6396 	if (is_vm_hugetlb_page(vma))
6397 		hugetlb_vma_unlock_read(vma);
6398 }
6399