1 2 // SPDX-License-Identifier: GPL-2.0-only 3 /* 4 * linux/mm/memory.c 5 * 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 */ 8 9 /* 10 * demand-loading started 01.12.91 - seems it is high on the list of 11 * things wanted, and it should be easy to implement. - Linus 12 */ 13 14 /* 15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 16 * pages started 02.12.91, seems to work. - Linus. 17 * 18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 19 * would have taken more than the 6M I have free, but it worked well as 20 * far as I could see. 21 * 22 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 23 */ 24 25 /* 26 * Real VM (paging to/from disk) started 18.12.91. Much more work and 27 * thought has to go into this. Oh, well.. 28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 29 * Found it. Everything seems to work now. 30 * 20.12.91 - Ok, making the swap-device changeable like the root. 31 */ 32 33 /* 34 * 05.04.94 - Multi-page memory management added for v1.1. 35 * Idea by Alex Bligh (alex@cconcepts.co.uk) 36 * 37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 38 * (Gerhard.Wichert@pdb.siemens.de) 39 * 40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 41 */ 42 43 #include <linux/kernel_stat.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/sched/mm.h> 47 #include <linux/sched/coredump.h> 48 #include <linux/sched/numa_balancing.h> 49 #include <linux/sched/task.h> 50 #include <linux/hugetlb.h> 51 #include <linux/mman.h> 52 #include <linux/swap.h> 53 #include <linux/highmem.h> 54 #include <linux/pagemap.h> 55 #include <linux/memremap.h> 56 #include <linux/kmsan.h> 57 #include <linux/ksm.h> 58 #include <linux/rmap.h> 59 #include <linux/export.h> 60 #include <linux/delayacct.h> 61 #include <linux/init.h> 62 #include <linux/pfn_t.h> 63 #include <linux/writeback.h> 64 #include <linux/memcontrol.h> 65 #include <linux/mmu_notifier.h> 66 #include <linux/swapops.h> 67 #include <linux/elf.h> 68 #include <linux/gfp.h> 69 #include <linux/migrate.h> 70 #include <linux/string.h> 71 #include <linux/memory-tiers.h> 72 #include <linux/debugfs.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/dax.h> 75 #include <linux/oom.h> 76 #include <linux/numa.h> 77 #include <linux/perf_event.h> 78 #include <linux/ptrace.h> 79 #include <linux/vmalloc.h> 80 #include <linux/sched/sysctl.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/pgalloc.h> 87 #include <linux/uaccess.h> 88 #include <asm/tlb.h> 89 #include <asm/tlbflush.h> 90 91 #include "pgalloc-track.h" 92 #include "internal.h" 93 #include "swap.h" 94 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 97 #endif 98 99 #ifndef CONFIG_NUMA 100 unsigned long max_mapnr; 101 EXPORT_SYMBOL(max_mapnr); 102 103 struct page *mem_map; 104 EXPORT_SYMBOL(mem_map); 105 #endif 106 107 static vm_fault_t do_fault(struct vm_fault *vmf); 108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 109 static bool vmf_pte_changed(struct vm_fault *vmf); 110 111 /* 112 * Return true if the original pte was a uffd-wp pte marker (so the pte was 113 * wr-protected). 114 */ 115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 116 { 117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 118 return false; 119 120 return pte_marker_uffd_wp(vmf->orig_pte); 121 } 122 123 /* 124 * A number of key systems in x86 including ioremap() rely on the assumption 125 * that high_memory defines the upper bound on direct map memory, then end 126 * of ZONE_NORMAL. 127 */ 128 void *high_memory; 129 EXPORT_SYMBOL(high_memory); 130 131 /* 132 * Randomize the address space (stacks, mmaps, brk, etc.). 133 * 134 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 135 * as ancient (libc5 based) binaries can segfault. ) 136 */ 137 int randomize_va_space __read_mostly = 138 #ifdef CONFIG_COMPAT_BRK 139 1; 140 #else 141 2; 142 #endif 143 144 #ifndef arch_wants_old_prefaulted_pte 145 static inline bool arch_wants_old_prefaulted_pte(void) 146 { 147 /* 148 * Transitioning a PTE from 'old' to 'young' can be expensive on 149 * some architectures, even if it's performed in hardware. By 150 * default, "false" means prefaulted entries will be 'young'. 151 */ 152 return false; 153 } 154 #endif 155 156 static int __init disable_randmaps(char *s) 157 { 158 randomize_va_space = 0; 159 return 1; 160 } 161 __setup("norandmaps", disable_randmaps); 162 163 unsigned long zero_pfn __read_mostly; 164 EXPORT_SYMBOL(zero_pfn); 165 166 unsigned long highest_memmap_pfn __read_mostly; 167 168 /* 169 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 170 */ 171 static int __init init_zero_pfn(void) 172 { 173 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 174 return 0; 175 } 176 early_initcall(init_zero_pfn); 177 178 void mm_trace_rss_stat(struct mm_struct *mm, int member) 179 { 180 trace_rss_stat(mm, member); 181 } 182 183 /* 184 * Note: this doesn't free the actual pages themselves. That 185 * has been handled earlier when unmapping all the memory regions. 186 */ 187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 188 unsigned long addr) 189 { 190 pgtable_t token = pmd_pgtable(*pmd); 191 pmd_clear(pmd); 192 pte_free_tlb(tlb, token, addr); 193 mm_dec_nr_ptes(tlb->mm); 194 } 195 196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 197 unsigned long addr, unsigned long end, 198 unsigned long floor, unsigned long ceiling) 199 { 200 pmd_t *pmd; 201 unsigned long next; 202 unsigned long start; 203 204 start = addr; 205 pmd = pmd_offset(pud, addr); 206 do { 207 next = pmd_addr_end(addr, end); 208 if (pmd_none_or_clear_bad(pmd)) 209 continue; 210 free_pte_range(tlb, pmd, addr); 211 } while (pmd++, addr = next, addr != end); 212 213 start &= PUD_MASK; 214 if (start < floor) 215 return; 216 if (ceiling) { 217 ceiling &= PUD_MASK; 218 if (!ceiling) 219 return; 220 } 221 if (end - 1 > ceiling - 1) 222 return; 223 224 pmd = pmd_offset(pud, start); 225 pud_clear(pud); 226 pmd_free_tlb(tlb, pmd, start); 227 mm_dec_nr_pmds(tlb->mm); 228 } 229 230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 231 unsigned long addr, unsigned long end, 232 unsigned long floor, unsigned long ceiling) 233 { 234 pud_t *pud; 235 unsigned long next; 236 unsigned long start; 237 238 start = addr; 239 pud = pud_offset(p4d, addr); 240 do { 241 next = pud_addr_end(addr, end); 242 if (pud_none_or_clear_bad(pud)) 243 continue; 244 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 245 } while (pud++, addr = next, addr != end); 246 247 start &= P4D_MASK; 248 if (start < floor) 249 return; 250 if (ceiling) { 251 ceiling &= P4D_MASK; 252 if (!ceiling) 253 return; 254 } 255 if (end - 1 > ceiling - 1) 256 return; 257 258 pud = pud_offset(p4d, start); 259 p4d_clear(p4d); 260 pud_free_tlb(tlb, pud, start); 261 mm_dec_nr_puds(tlb->mm); 262 } 263 264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 265 unsigned long addr, unsigned long end, 266 unsigned long floor, unsigned long ceiling) 267 { 268 p4d_t *p4d; 269 unsigned long next; 270 unsigned long start; 271 272 start = addr; 273 p4d = p4d_offset(pgd, addr); 274 do { 275 next = p4d_addr_end(addr, end); 276 if (p4d_none_or_clear_bad(p4d)) 277 continue; 278 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 279 } while (p4d++, addr = next, addr != end); 280 281 start &= PGDIR_MASK; 282 if (start < floor) 283 return; 284 if (ceiling) { 285 ceiling &= PGDIR_MASK; 286 if (!ceiling) 287 return; 288 } 289 if (end - 1 > ceiling - 1) 290 return; 291 292 p4d = p4d_offset(pgd, start); 293 pgd_clear(pgd); 294 p4d_free_tlb(tlb, p4d, start); 295 } 296 297 /* 298 * This function frees user-level page tables of a process. 299 */ 300 void free_pgd_range(struct mmu_gather *tlb, 301 unsigned long addr, unsigned long end, 302 unsigned long floor, unsigned long ceiling) 303 { 304 pgd_t *pgd; 305 unsigned long next; 306 307 /* 308 * The next few lines have given us lots of grief... 309 * 310 * Why are we testing PMD* at this top level? Because often 311 * there will be no work to do at all, and we'd prefer not to 312 * go all the way down to the bottom just to discover that. 313 * 314 * Why all these "- 1"s? Because 0 represents both the bottom 315 * of the address space and the top of it (using -1 for the 316 * top wouldn't help much: the masks would do the wrong thing). 317 * The rule is that addr 0 and floor 0 refer to the bottom of 318 * the address space, but end 0 and ceiling 0 refer to the top 319 * Comparisons need to use "end - 1" and "ceiling - 1" (though 320 * that end 0 case should be mythical). 321 * 322 * Wherever addr is brought up or ceiling brought down, we must 323 * be careful to reject "the opposite 0" before it confuses the 324 * subsequent tests. But what about where end is brought down 325 * by PMD_SIZE below? no, end can't go down to 0 there. 326 * 327 * Whereas we round start (addr) and ceiling down, by different 328 * masks at different levels, in order to test whether a table 329 * now has no other vmas using it, so can be freed, we don't 330 * bother to round floor or end up - the tests don't need that. 331 */ 332 333 addr &= PMD_MASK; 334 if (addr < floor) { 335 addr += PMD_SIZE; 336 if (!addr) 337 return; 338 } 339 if (ceiling) { 340 ceiling &= PMD_MASK; 341 if (!ceiling) 342 return; 343 } 344 if (end - 1 > ceiling - 1) 345 end -= PMD_SIZE; 346 if (addr > end - 1) 347 return; 348 /* 349 * We add page table cache pages with PAGE_SIZE, 350 * (see pte_free_tlb()), flush the tlb if we need 351 */ 352 tlb_change_page_size(tlb, PAGE_SIZE); 353 pgd = pgd_offset(tlb->mm, addr); 354 do { 355 next = pgd_addr_end(addr, end); 356 if (pgd_none_or_clear_bad(pgd)) 357 continue; 358 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 359 } while (pgd++, addr = next, addr != end); 360 } 361 362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 363 struct vm_area_struct *vma, unsigned long floor, 364 unsigned long ceiling, bool mm_wr_locked) 365 { 366 do { 367 unsigned long addr = vma->vm_start; 368 struct vm_area_struct *next; 369 370 /* 371 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 372 * be 0. This will underflow and is okay. 373 */ 374 next = mas_find(mas, ceiling - 1); 375 if (unlikely(xa_is_zero(next))) 376 next = NULL; 377 378 /* 379 * Hide vma from rmap and truncate_pagecache before freeing 380 * pgtables 381 */ 382 if (mm_wr_locked) 383 vma_start_write(vma); 384 unlink_anon_vmas(vma); 385 unlink_file_vma(vma); 386 387 if (is_vm_hugetlb_page(vma)) { 388 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 389 floor, next ? next->vm_start : ceiling); 390 } else { 391 /* 392 * Optimization: gather nearby vmas into one call down 393 */ 394 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 395 && !is_vm_hugetlb_page(next)) { 396 vma = next; 397 next = mas_find(mas, ceiling - 1); 398 if (unlikely(xa_is_zero(next))) 399 next = NULL; 400 if (mm_wr_locked) 401 vma_start_write(vma); 402 unlink_anon_vmas(vma); 403 unlink_file_vma(vma); 404 } 405 free_pgd_range(tlb, addr, vma->vm_end, 406 floor, next ? next->vm_start : ceiling); 407 } 408 vma = next; 409 } while (vma); 410 } 411 412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 413 { 414 spinlock_t *ptl = pmd_lock(mm, pmd); 415 416 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 417 mm_inc_nr_ptes(mm); 418 /* 419 * Ensure all pte setup (eg. pte page lock and page clearing) are 420 * visible before the pte is made visible to other CPUs by being 421 * put into page tables. 422 * 423 * The other side of the story is the pointer chasing in the page 424 * table walking code (when walking the page table without locking; 425 * ie. most of the time). Fortunately, these data accesses consist 426 * of a chain of data-dependent loads, meaning most CPUs (alpha 427 * being the notable exception) will already guarantee loads are 428 * seen in-order. See the alpha page table accessors for the 429 * smp_rmb() barriers in page table walking code. 430 */ 431 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 432 pmd_populate(mm, pmd, *pte); 433 *pte = NULL; 434 } 435 spin_unlock(ptl); 436 } 437 438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 439 { 440 pgtable_t new = pte_alloc_one(mm); 441 if (!new) 442 return -ENOMEM; 443 444 pmd_install(mm, pmd, &new); 445 if (new) 446 pte_free(mm, new); 447 return 0; 448 } 449 450 int __pte_alloc_kernel(pmd_t *pmd) 451 { 452 pte_t *new = pte_alloc_one_kernel(&init_mm); 453 if (!new) 454 return -ENOMEM; 455 456 spin_lock(&init_mm.page_table_lock); 457 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 458 smp_wmb(); /* See comment in pmd_install() */ 459 pmd_populate_kernel(&init_mm, pmd, new); 460 new = NULL; 461 } 462 spin_unlock(&init_mm.page_table_lock); 463 if (new) 464 pte_free_kernel(&init_mm, new); 465 return 0; 466 } 467 468 static inline void init_rss_vec(int *rss) 469 { 470 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 471 } 472 473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 474 { 475 int i; 476 477 for (i = 0; i < NR_MM_COUNTERS; i++) 478 if (rss[i]) 479 add_mm_counter(mm, i, rss[i]); 480 } 481 482 /* 483 * This function is called to print an error when a bad pte 484 * is found. For example, we might have a PFN-mapped pte in 485 * a region that doesn't allow it. 486 * 487 * The calling function must still handle the error. 488 */ 489 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 490 pte_t pte, struct page *page) 491 { 492 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 493 p4d_t *p4d = p4d_offset(pgd, addr); 494 pud_t *pud = pud_offset(p4d, addr); 495 pmd_t *pmd = pmd_offset(pud, addr); 496 struct address_space *mapping; 497 pgoff_t index; 498 static unsigned long resume; 499 static unsigned long nr_shown; 500 static unsigned long nr_unshown; 501 502 /* 503 * Allow a burst of 60 reports, then keep quiet for that minute; 504 * or allow a steady drip of one report per second. 505 */ 506 if (nr_shown == 60) { 507 if (time_before(jiffies, resume)) { 508 nr_unshown++; 509 return; 510 } 511 if (nr_unshown) { 512 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 513 nr_unshown); 514 nr_unshown = 0; 515 } 516 nr_shown = 0; 517 } 518 if (nr_shown++ == 0) 519 resume = jiffies + 60 * HZ; 520 521 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 522 index = linear_page_index(vma, addr); 523 524 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 525 current->comm, 526 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 527 if (page) 528 dump_page(page, "bad pte"); 529 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 530 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 531 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 532 vma->vm_file, 533 vma->vm_ops ? vma->vm_ops->fault : NULL, 534 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 535 mapping ? mapping->a_ops->read_folio : NULL); 536 dump_stack(); 537 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 538 } 539 540 /* 541 * vm_normal_page -- This function gets the "struct page" associated with a pte. 542 * 543 * "Special" mappings do not wish to be associated with a "struct page" (either 544 * it doesn't exist, or it exists but they don't want to touch it). In this 545 * case, NULL is returned here. "Normal" mappings do have a struct page. 546 * 547 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 548 * pte bit, in which case this function is trivial. Secondly, an architecture 549 * may not have a spare pte bit, which requires a more complicated scheme, 550 * described below. 551 * 552 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 553 * special mapping (even if there are underlying and valid "struct pages"). 554 * COWed pages of a VM_PFNMAP are always normal. 555 * 556 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 557 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 558 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 559 * mapping will always honor the rule 560 * 561 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 562 * 563 * And for normal mappings this is false. 564 * 565 * This restricts such mappings to be a linear translation from virtual address 566 * to pfn. To get around this restriction, we allow arbitrary mappings so long 567 * as the vma is not a COW mapping; in that case, we know that all ptes are 568 * special (because none can have been COWed). 569 * 570 * 571 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 572 * 573 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 574 * page" backing, however the difference is that _all_ pages with a struct 575 * page (that is, those where pfn_valid is true) are refcounted and considered 576 * normal pages by the VM. The disadvantage is that pages are refcounted 577 * (which can be slower and simply not an option for some PFNMAP users). The 578 * advantage is that we don't have to follow the strict linearity rule of 579 * PFNMAP mappings in order to support COWable mappings. 580 * 581 */ 582 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 583 pte_t pte) 584 { 585 unsigned long pfn = pte_pfn(pte); 586 587 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 588 if (likely(!pte_special(pte))) 589 goto check_pfn; 590 if (vma->vm_ops && vma->vm_ops->find_special_page) 591 return vma->vm_ops->find_special_page(vma, addr); 592 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 593 return NULL; 594 if (is_zero_pfn(pfn)) 595 return NULL; 596 if (pte_devmap(pte)) 597 /* 598 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 599 * and will have refcounts incremented on their struct pages 600 * when they are inserted into PTEs, thus they are safe to 601 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 602 * do not have refcounts. Example of legacy ZONE_DEVICE is 603 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 604 */ 605 return NULL; 606 607 print_bad_pte(vma, addr, pte, NULL); 608 return NULL; 609 } 610 611 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 612 613 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 614 if (vma->vm_flags & VM_MIXEDMAP) { 615 if (!pfn_valid(pfn)) 616 return NULL; 617 goto out; 618 } else { 619 unsigned long off; 620 off = (addr - vma->vm_start) >> PAGE_SHIFT; 621 if (pfn == vma->vm_pgoff + off) 622 return NULL; 623 if (!is_cow_mapping(vma->vm_flags)) 624 return NULL; 625 } 626 } 627 628 if (is_zero_pfn(pfn)) 629 return NULL; 630 631 check_pfn: 632 if (unlikely(pfn > highest_memmap_pfn)) { 633 print_bad_pte(vma, addr, pte, NULL); 634 return NULL; 635 } 636 637 /* 638 * NOTE! We still have PageReserved() pages in the page tables. 639 * eg. VDSO mappings can cause them to exist. 640 */ 641 out: 642 return pfn_to_page(pfn); 643 } 644 645 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 646 pte_t pte) 647 { 648 struct page *page = vm_normal_page(vma, addr, pte); 649 650 if (page) 651 return page_folio(page); 652 return NULL; 653 } 654 655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 656 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 657 pmd_t pmd) 658 { 659 unsigned long pfn = pmd_pfn(pmd); 660 661 /* 662 * There is no pmd_special() but there may be special pmds, e.g. 663 * in a direct-access (dax) mapping, so let's just replicate the 664 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 665 */ 666 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 667 if (vma->vm_flags & VM_MIXEDMAP) { 668 if (!pfn_valid(pfn)) 669 return NULL; 670 goto out; 671 } else { 672 unsigned long off; 673 off = (addr - vma->vm_start) >> PAGE_SHIFT; 674 if (pfn == vma->vm_pgoff + off) 675 return NULL; 676 if (!is_cow_mapping(vma->vm_flags)) 677 return NULL; 678 } 679 } 680 681 if (pmd_devmap(pmd)) 682 return NULL; 683 if (is_huge_zero_pmd(pmd)) 684 return NULL; 685 if (unlikely(pfn > highest_memmap_pfn)) 686 return NULL; 687 688 /* 689 * NOTE! We still have PageReserved() pages in the page tables. 690 * eg. VDSO mappings can cause them to exist. 691 */ 692 out: 693 return pfn_to_page(pfn); 694 } 695 696 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 697 unsigned long addr, pmd_t pmd) 698 { 699 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 700 701 if (page) 702 return page_folio(page); 703 return NULL; 704 } 705 #endif 706 707 static void restore_exclusive_pte(struct vm_area_struct *vma, 708 struct page *page, unsigned long address, 709 pte_t *ptep) 710 { 711 struct folio *folio = page_folio(page); 712 pte_t orig_pte; 713 pte_t pte; 714 swp_entry_t entry; 715 716 orig_pte = ptep_get(ptep); 717 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 718 if (pte_swp_soft_dirty(orig_pte)) 719 pte = pte_mksoft_dirty(pte); 720 721 entry = pte_to_swp_entry(orig_pte); 722 if (pte_swp_uffd_wp(orig_pte)) 723 pte = pte_mkuffd_wp(pte); 724 else if (is_writable_device_exclusive_entry(entry)) 725 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 726 727 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) && 728 PageAnonExclusive(page)), folio); 729 730 /* 731 * No need to take a page reference as one was already 732 * created when the swap entry was made. 733 */ 734 if (folio_test_anon(folio)) 735 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE); 736 else 737 /* 738 * Currently device exclusive access only supports anonymous 739 * memory so the entry shouldn't point to a filebacked page. 740 */ 741 WARN_ON_ONCE(1); 742 743 set_pte_at(vma->vm_mm, address, ptep, pte); 744 745 /* 746 * No need to invalidate - it was non-present before. However 747 * secondary CPUs may have mappings that need invalidating. 748 */ 749 update_mmu_cache(vma, address, ptep); 750 } 751 752 /* 753 * Tries to restore an exclusive pte if the page lock can be acquired without 754 * sleeping. 755 */ 756 static int 757 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 758 unsigned long addr) 759 { 760 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 761 struct page *page = pfn_swap_entry_to_page(entry); 762 763 if (trylock_page(page)) { 764 restore_exclusive_pte(vma, page, addr, src_pte); 765 unlock_page(page); 766 return 0; 767 } 768 769 return -EBUSY; 770 } 771 772 /* 773 * copy one vm_area from one task to the other. Assumes the page tables 774 * already present in the new task to be cleared in the whole range 775 * covered by this vma. 776 */ 777 778 static unsigned long 779 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 780 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 781 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 782 { 783 unsigned long vm_flags = dst_vma->vm_flags; 784 pte_t orig_pte = ptep_get(src_pte); 785 pte_t pte = orig_pte; 786 struct folio *folio; 787 struct page *page; 788 swp_entry_t entry = pte_to_swp_entry(orig_pte); 789 790 if (likely(!non_swap_entry(entry))) { 791 if (swap_duplicate(entry) < 0) 792 return -EIO; 793 794 /* make sure dst_mm is on swapoff's mmlist. */ 795 if (unlikely(list_empty(&dst_mm->mmlist))) { 796 spin_lock(&mmlist_lock); 797 if (list_empty(&dst_mm->mmlist)) 798 list_add(&dst_mm->mmlist, 799 &src_mm->mmlist); 800 spin_unlock(&mmlist_lock); 801 } 802 /* Mark the swap entry as shared. */ 803 if (pte_swp_exclusive(orig_pte)) { 804 pte = pte_swp_clear_exclusive(orig_pte); 805 set_pte_at(src_mm, addr, src_pte, pte); 806 } 807 rss[MM_SWAPENTS]++; 808 } else if (is_migration_entry(entry)) { 809 folio = pfn_swap_entry_folio(entry); 810 811 rss[mm_counter(folio)]++; 812 813 if (!is_readable_migration_entry(entry) && 814 is_cow_mapping(vm_flags)) { 815 /* 816 * COW mappings require pages in both parent and child 817 * to be set to read. A previously exclusive entry is 818 * now shared. 819 */ 820 entry = make_readable_migration_entry( 821 swp_offset(entry)); 822 pte = swp_entry_to_pte(entry); 823 if (pte_swp_soft_dirty(orig_pte)) 824 pte = pte_swp_mksoft_dirty(pte); 825 if (pte_swp_uffd_wp(orig_pte)) 826 pte = pte_swp_mkuffd_wp(pte); 827 set_pte_at(src_mm, addr, src_pte, pte); 828 } 829 } else if (is_device_private_entry(entry)) { 830 page = pfn_swap_entry_to_page(entry); 831 folio = page_folio(page); 832 833 /* 834 * Update rss count even for unaddressable pages, as 835 * they should treated just like normal pages in this 836 * respect. 837 * 838 * We will likely want to have some new rss counters 839 * for unaddressable pages, at some point. But for now 840 * keep things as they are. 841 */ 842 folio_get(folio); 843 rss[mm_counter(folio)]++; 844 /* Cannot fail as these pages cannot get pinned. */ 845 folio_try_dup_anon_rmap_pte(folio, page, src_vma); 846 847 /* 848 * We do not preserve soft-dirty information, because so 849 * far, checkpoint/restore is the only feature that 850 * requires that. And checkpoint/restore does not work 851 * when a device driver is involved (you cannot easily 852 * save and restore device driver state). 853 */ 854 if (is_writable_device_private_entry(entry) && 855 is_cow_mapping(vm_flags)) { 856 entry = make_readable_device_private_entry( 857 swp_offset(entry)); 858 pte = swp_entry_to_pte(entry); 859 if (pte_swp_uffd_wp(orig_pte)) 860 pte = pte_swp_mkuffd_wp(pte); 861 set_pte_at(src_mm, addr, src_pte, pte); 862 } 863 } else if (is_device_exclusive_entry(entry)) { 864 /* 865 * Make device exclusive entries present by restoring the 866 * original entry then copying as for a present pte. Device 867 * exclusive entries currently only support private writable 868 * (ie. COW) mappings. 869 */ 870 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 871 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 872 return -EBUSY; 873 return -ENOENT; 874 } else if (is_pte_marker_entry(entry)) { 875 pte_marker marker = copy_pte_marker(entry, dst_vma); 876 877 if (marker) 878 set_pte_at(dst_mm, addr, dst_pte, 879 make_pte_marker(marker)); 880 return 0; 881 } 882 if (!userfaultfd_wp(dst_vma)) 883 pte = pte_swp_clear_uffd_wp(pte); 884 set_pte_at(dst_mm, addr, dst_pte, pte); 885 return 0; 886 } 887 888 /* 889 * Copy a present and normal page. 890 * 891 * NOTE! The usual case is that this isn't required; 892 * instead, the caller can just increase the page refcount 893 * and re-use the pte the traditional way. 894 * 895 * And if we need a pre-allocated page but don't yet have 896 * one, return a negative error to let the preallocation 897 * code know so that it can do so outside the page table 898 * lock. 899 */ 900 static inline int 901 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 902 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 903 struct folio **prealloc, struct page *page) 904 { 905 struct folio *new_folio; 906 pte_t pte; 907 908 new_folio = *prealloc; 909 if (!new_folio) 910 return -EAGAIN; 911 912 /* 913 * We have a prealloc page, all good! Take it 914 * over and copy the page & arm it. 915 */ 916 *prealloc = NULL; 917 copy_user_highpage(&new_folio->page, page, addr, src_vma); 918 __folio_mark_uptodate(new_folio); 919 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 920 folio_add_lru_vma(new_folio, dst_vma); 921 rss[MM_ANONPAGES]++; 922 923 /* All done, just insert the new page copy in the child */ 924 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 925 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 926 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 927 /* Uffd-wp needs to be delivered to dest pte as well */ 928 pte = pte_mkuffd_wp(pte); 929 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 930 return 0; 931 } 932 933 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 934 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 935 pte_t pte, unsigned long addr, int nr) 936 { 937 struct mm_struct *src_mm = src_vma->vm_mm; 938 939 /* If it's a COW mapping, write protect it both processes. */ 940 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 941 wrprotect_ptes(src_mm, addr, src_pte, nr); 942 pte = pte_wrprotect(pte); 943 } 944 945 /* If it's a shared mapping, mark it clean in the child. */ 946 if (src_vma->vm_flags & VM_SHARED) 947 pte = pte_mkclean(pte); 948 pte = pte_mkold(pte); 949 950 if (!userfaultfd_wp(dst_vma)) 951 pte = pte_clear_uffd_wp(pte); 952 953 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 954 } 955 956 /* 957 * Copy one present PTE, trying to batch-process subsequent PTEs that map 958 * consecutive pages of the same folio by copying them as well. 959 * 960 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 961 * Otherwise, returns the number of copied PTEs (at least 1). 962 */ 963 static inline int 964 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 965 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 966 int max_nr, int *rss, struct folio **prealloc) 967 { 968 struct page *page; 969 struct folio *folio; 970 bool any_writable; 971 fpb_t flags = 0; 972 int err, nr; 973 974 page = vm_normal_page(src_vma, addr, pte); 975 if (unlikely(!page)) 976 goto copy_pte; 977 978 folio = page_folio(page); 979 980 /* 981 * If we likely have to copy, just don't bother with batching. Make 982 * sure that the common "small folio" case is as fast as possible 983 * by keeping the batching logic separate. 984 */ 985 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 986 if (src_vma->vm_flags & VM_SHARED) 987 flags |= FPB_IGNORE_DIRTY; 988 if (!vma_soft_dirty_enabled(src_vma)) 989 flags |= FPB_IGNORE_SOFT_DIRTY; 990 991 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 992 &any_writable); 993 folio_ref_add(folio, nr); 994 if (folio_test_anon(folio)) { 995 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 996 nr, src_vma))) { 997 folio_ref_sub(folio, nr); 998 return -EAGAIN; 999 } 1000 rss[MM_ANONPAGES] += nr; 1001 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1002 } else { 1003 folio_dup_file_rmap_ptes(folio, page, nr); 1004 rss[mm_counter_file(folio)] += nr; 1005 } 1006 if (any_writable) 1007 pte = pte_mkwrite(pte, src_vma); 1008 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1009 addr, nr); 1010 return nr; 1011 } 1012 1013 folio_get(folio); 1014 if (folio_test_anon(folio)) { 1015 /* 1016 * If this page may have been pinned by the parent process, 1017 * copy the page immediately for the child so that we'll always 1018 * guarantee the pinned page won't be randomly replaced in the 1019 * future. 1020 */ 1021 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) { 1022 /* Page may be pinned, we have to copy. */ 1023 folio_put(folio); 1024 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1025 addr, rss, prealloc, page); 1026 return err ? err : 1; 1027 } 1028 rss[MM_ANONPAGES]++; 1029 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1030 } else { 1031 folio_dup_file_rmap_pte(folio, page); 1032 rss[mm_counter_file(folio)]++; 1033 } 1034 1035 copy_pte: 1036 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1037 return 1; 1038 } 1039 1040 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1041 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1042 { 1043 struct folio *new_folio; 1044 1045 if (need_zero) 1046 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1047 else 1048 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 1049 addr, false); 1050 1051 if (!new_folio) 1052 return NULL; 1053 1054 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1055 folio_put(new_folio); 1056 return NULL; 1057 } 1058 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1059 1060 return new_folio; 1061 } 1062 1063 static int 1064 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1065 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1066 unsigned long end) 1067 { 1068 struct mm_struct *dst_mm = dst_vma->vm_mm; 1069 struct mm_struct *src_mm = src_vma->vm_mm; 1070 pte_t *orig_src_pte, *orig_dst_pte; 1071 pte_t *src_pte, *dst_pte; 1072 pte_t ptent; 1073 spinlock_t *src_ptl, *dst_ptl; 1074 int progress, max_nr, ret = 0; 1075 int rss[NR_MM_COUNTERS]; 1076 swp_entry_t entry = (swp_entry_t){0}; 1077 struct folio *prealloc = NULL; 1078 int nr; 1079 1080 again: 1081 progress = 0; 1082 init_rss_vec(rss); 1083 1084 /* 1085 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1086 * error handling here, assume that exclusive mmap_lock on dst and src 1087 * protects anon from unexpected THP transitions; with shmem and file 1088 * protected by mmap_lock-less collapse skipping areas with anon_vma 1089 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1090 * can remove such assumptions later, but this is good enough for now. 1091 */ 1092 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1093 if (!dst_pte) { 1094 ret = -ENOMEM; 1095 goto out; 1096 } 1097 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1098 if (!src_pte) { 1099 pte_unmap_unlock(dst_pte, dst_ptl); 1100 /* ret == 0 */ 1101 goto out; 1102 } 1103 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1104 orig_src_pte = src_pte; 1105 orig_dst_pte = dst_pte; 1106 arch_enter_lazy_mmu_mode(); 1107 1108 do { 1109 nr = 1; 1110 1111 /* 1112 * We are holding two locks at this point - either of them 1113 * could generate latencies in another task on another CPU. 1114 */ 1115 if (progress >= 32) { 1116 progress = 0; 1117 if (need_resched() || 1118 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1119 break; 1120 } 1121 ptent = ptep_get(src_pte); 1122 if (pte_none(ptent)) { 1123 progress++; 1124 continue; 1125 } 1126 if (unlikely(!pte_present(ptent))) { 1127 ret = copy_nonpresent_pte(dst_mm, src_mm, 1128 dst_pte, src_pte, 1129 dst_vma, src_vma, 1130 addr, rss); 1131 if (ret == -EIO) { 1132 entry = pte_to_swp_entry(ptep_get(src_pte)); 1133 break; 1134 } else if (ret == -EBUSY) { 1135 break; 1136 } else if (!ret) { 1137 progress += 8; 1138 continue; 1139 } 1140 ptent = ptep_get(src_pte); 1141 VM_WARN_ON_ONCE(!pte_present(ptent)); 1142 1143 /* 1144 * Device exclusive entry restored, continue by copying 1145 * the now present pte. 1146 */ 1147 WARN_ON_ONCE(ret != -ENOENT); 1148 } 1149 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1150 max_nr = (end - addr) / PAGE_SIZE; 1151 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1152 ptent, addr, max_nr, rss, &prealloc); 1153 /* 1154 * If we need a pre-allocated page for this pte, drop the 1155 * locks, allocate, and try again. 1156 */ 1157 if (unlikely(ret == -EAGAIN)) 1158 break; 1159 if (unlikely(prealloc)) { 1160 /* 1161 * pre-alloc page cannot be reused by next time so as 1162 * to strictly follow mempolicy (e.g., alloc_page_vma() 1163 * will allocate page according to address). This 1164 * could only happen if one pinned pte changed. 1165 */ 1166 folio_put(prealloc); 1167 prealloc = NULL; 1168 } 1169 nr = ret; 1170 progress += 8 * nr; 1171 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1172 addr != end); 1173 1174 arch_leave_lazy_mmu_mode(); 1175 pte_unmap_unlock(orig_src_pte, src_ptl); 1176 add_mm_rss_vec(dst_mm, rss); 1177 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1178 cond_resched(); 1179 1180 if (ret == -EIO) { 1181 VM_WARN_ON_ONCE(!entry.val); 1182 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1183 ret = -ENOMEM; 1184 goto out; 1185 } 1186 entry.val = 0; 1187 } else if (ret == -EBUSY) { 1188 goto out; 1189 } else if (ret == -EAGAIN) { 1190 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1191 if (!prealloc) 1192 return -ENOMEM; 1193 } else if (ret < 0) { 1194 VM_WARN_ON_ONCE(1); 1195 } 1196 1197 /* We've captured and resolved the error. Reset, try again. */ 1198 ret = 0; 1199 1200 if (addr != end) 1201 goto again; 1202 out: 1203 if (unlikely(prealloc)) 1204 folio_put(prealloc); 1205 return ret; 1206 } 1207 1208 static inline int 1209 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1210 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1211 unsigned long end) 1212 { 1213 struct mm_struct *dst_mm = dst_vma->vm_mm; 1214 struct mm_struct *src_mm = src_vma->vm_mm; 1215 pmd_t *src_pmd, *dst_pmd; 1216 unsigned long next; 1217 1218 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1219 if (!dst_pmd) 1220 return -ENOMEM; 1221 src_pmd = pmd_offset(src_pud, addr); 1222 do { 1223 next = pmd_addr_end(addr, end); 1224 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1225 || pmd_devmap(*src_pmd)) { 1226 int err; 1227 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1228 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1229 addr, dst_vma, src_vma); 1230 if (err == -ENOMEM) 1231 return -ENOMEM; 1232 if (!err) 1233 continue; 1234 /* fall through */ 1235 } 1236 if (pmd_none_or_clear_bad(src_pmd)) 1237 continue; 1238 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1239 addr, next)) 1240 return -ENOMEM; 1241 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1242 return 0; 1243 } 1244 1245 static inline int 1246 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1247 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1248 unsigned long end) 1249 { 1250 struct mm_struct *dst_mm = dst_vma->vm_mm; 1251 struct mm_struct *src_mm = src_vma->vm_mm; 1252 pud_t *src_pud, *dst_pud; 1253 unsigned long next; 1254 1255 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1256 if (!dst_pud) 1257 return -ENOMEM; 1258 src_pud = pud_offset(src_p4d, addr); 1259 do { 1260 next = pud_addr_end(addr, end); 1261 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1262 int err; 1263 1264 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1265 err = copy_huge_pud(dst_mm, src_mm, 1266 dst_pud, src_pud, addr, src_vma); 1267 if (err == -ENOMEM) 1268 return -ENOMEM; 1269 if (!err) 1270 continue; 1271 /* fall through */ 1272 } 1273 if (pud_none_or_clear_bad(src_pud)) 1274 continue; 1275 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1276 addr, next)) 1277 return -ENOMEM; 1278 } while (dst_pud++, src_pud++, addr = next, addr != end); 1279 return 0; 1280 } 1281 1282 static inline int 1283 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1284 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1285 unsigned long end) 1286 { 1287 struct mm_struct *dst_mm = dst_vma->vm_mm; 1288 p4d_t *src_p4d, *dst_p4d; 1289 unsigned long next; 1290 1291 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1292 if (!dst_p4d) 1293 return -ENOMEM; 1294 src_p4d = p4d_offset(src_pgd, addr); 1295 do { 1296 next = p4d_addr_end(addr, end); 1297 if (p4d_none_or_clear_bad(src_p4d)) 1298 continue; 1299 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1300 addr, next)) 1301 return -ENOMEM; 1302 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1303 return 0; 1304 } 1305 1306 /* 1307 * Return true if the vma needs to copy the pgtable during this fork(). Return 1308 * false when we can speed up fork() by allowing lazy page faults later until 1309 * when the child accesses the memory range. 1310 */ 1311 static bool 1312 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1313 { 1314 /* 1315 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1316 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1317 * contains uffd-wp protection information, that's something we can't 1318 * retrieve from page cache, and skip copying will lose those info. 1319 */ 1320 if (userfaultfd_wp(dst_vma)) 1321 return true; 1322 1323 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1324 return true; 1325 1326 if (src_vma->anon_vma) 1327 return true; 1328 1329 /* 1330 * Don't copy ptes where a page fault will fill them correctly. Fork 1331 * becomes much lighter when there are big shared or private readonly 1332 * mappings. The tradeoff is that copy_page_range is more efficient 1333 * than faulting. 1334 */ 1335 return false; 1336 } 1337 1338 int 1339 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1340 { 1341 pgd_t *src_pgd, *dst_pgd; 1342 unsigned long next; 1343 unsigned long addr = src_vma->vm_start; 1344 unsigned long end = src_vma->vm_end; 1345 struct mm_struct *dst_mm = dst_vma->vm_mm; 1346 struct mm_struct *src_mm = src_vma->vm_mm; 1347 struct mmu_notifier_range range; 1348 bool is_cow; 1349 int ret; 1350 1351 if (!vma_needs_copy(dst_vma, src_vma)) 1352 return 0; 1353 1354 if (is_vm_hugetlb_page(src_vma)) 1355 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1356 1357 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1358 /* 1359 * We do not free on error cases below as remove_vma 1360 * gets called on error from higher level routine 1361 */ 1362 ret = track_pfn_copy(src_vma); 1363 if (ret) 1364 return ret; 1365 } 1366 1367 /* 1368 * We need to invalidate the secondary MMU mappings only when 1369 * there could be a permission downgrade on the ptes of the 1370 * parent mm. And a permission downgrade will only happen if 1371 * is_cow_mapping() returns true. 1372 */ 1373 is_cow = is_cow_mapping(src_vma->vm_flags); 1374 1375 if (is_cow) { 1376 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1377 0, src_mm, addr, end); 1378 mmu_notifier_invalidate_range_start(&range); 1379 /* 1380 * Disabling preemption is not needed for the write side, as 1381 * the read side doesn't spin, but goes to the mmap_lock. 1382 * 1383 * Use the raw variant of the seqcount_t write API to avoid 1384 * lockdep complaining about preemptibility. 1385 */ 1386 vma_assert_write_locked(src_vma); 1387 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1388 } 1389 1390 ret = 0; 1391 dst_pgd = pgd_offset(dst_mm, addr); 1392 src_pgd = pgd_offset(src_mm, addr); 1393 do { 1394 next = pgd_addr_end(addr, end); 1395 if (pgd_none_or_clear_bad(src_pgd)) 1396 continue; 1397 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1398 addr, next))) { 1399 untrack_pfn_clear(dst_vma); 1400 ret = -ENOMEM; 1401 break; 1402 } 1403 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1404 1405 if (is_cow) { 1406 raw_write_seqcount_end(&src_mm->write_protect_seq); 1407 mmu_notifier_invalidate_range_end(&range); 1408 } 1409 return ret; 1410 } 1411 1412 /* Whether we should zap all COWed (private) pages too */ 1413 static inline bool should_zap_cows(struct zap_details *details) 1414 { 1415 /* By default, zap all pages */ 1416 if (!details) 1417 return true; 1418 1419 /* Or, we zap COWed pages only if the caller wants to */ 1420 return details->even_cows; 1421 } 1422 1423 /* Decides whether we should zap this folio with the folio pointer specified */ 1424 static inline bool should_zap_folio(struct zap_details *details, 1425 struct folio *folio) 1426 { 1427 /* If we can make a decision without *folio.. */ 1428 if (should_zap_cows(details)) 1429 return true; 1430 1431 /* Otherwise we should only zap non-anon folios */ 1432 return !folio_test_anon(folio); 1433 } 1434 1435 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1436 { 1437 if (!details) 1438 return false; 1439 1440 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1441 } 1442 1443 /* 1444 * This function makes sure that we'll replace the none pte with an uffd-wp 1445 * swap special pte marker when necessary. Must be with the pgtable lock held. 1446 */ 1447 static inline void 1448 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1449 unsigned long addr, pte_t *pte, int nr, 1450 struct zap_details *details, pte_t pteval) 1451 { 1452 /* Zap on anonymous always means dropping everything */ 1453 if (vma_is_anonymous(vma)) 1454 return; 1455 1456 if (zap_drop_file_uffd_wp(details)) 1457 return; 1458 1459 for (;;) { 1460 /* the PFN in the PTE is irrelevant. */ 1461 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1462 if (--nr == 0) 1463 break; 1464 pte++; 1465 addr += PAGE_SIZE; 1466 } 1467 } 1468 1469 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1470 struct vm_area_struct *vma, struct folio *folio, 1471 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1472 unsigned long addr, struct zap_details *details, int *rss, 1473 bool *force_flush, bool *force_break) 1474 { 1475 struct mm_struct *mm = tlb->mm; 1476 bool delay_rmap = false; 1477 1478 if (!folio_test_anon(folio)) { 1479 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1480 if (pte_dirty(ptent)) { 1481 folio_mark_dirty(folio); 1482 if (tlb_delay_rmap(tlb)) { 1483 delay_rmap = true; 1484 *force_flush = true; 1485 } 1486 } 1487 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1488 folio_mark_accessed(folio); 1489 rss[mm_counter(folio)] -= nr; 1490 } else { 1491 /* We don't need up-to-date accessed/dirty bits. */ 1492 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1493 rss[MM_ANONPAGES] -= nr; 1494 } 1495 /* Checking a single PTE in a batch is sufficient. */ 1496 arch_check_zapped_pte(vma, ptent); 1497 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1498 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1499 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, 1500 ptent); 1501 1502 if (!delay_rmap) { 1503 folio_remove_rmap_ptes(folio, page, nr, vma); 1504 1505 /* Only sanity-check the first page in a batch. */ 1506 if (unlikely(page_mapcount(page) < 0)) 1507 print_bad_pte(vma, addr, ptent, page); 1508 } 1509 1510 if (want_init_mlocked_on_free() && folio_test_mlocked(folio) && 1511 !delay_rmap && folio_test_anon(folio)) { 1512 kernel_init_pages(page, folio_nr_pages(folio)); 1513 } 1514 1515 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1516 *force_flush = true; 1517 *force_break = true; 1518 } 1519 } 1520 1521 /* 1522 * Zap or skip at least one present PTE, trying to batch-process subsequent 1523 * PTEs that map consecutive pages of the same folio. 1524 * 1525 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1526 */ 1527 static inline int zap_present_ptes(struct mmu_gather *tlb, 1528 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1529 unsigned int max_nr, unsigned long addr, 1530 struct zap_details *details, int *rss, bool *force_flush, 1531 bool *force_break) 1532 { 1533 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1534 struct mm_struct *mm = tlb->mm; 1535 struct folio *folio; 1536 struct page *page; 1537 int nr; 1538 1539 page = vm_normal_page(vma, addr, ptent); 1540 if (!page) { 1541 /* We don't need up-to-date accessed/dirty bits. */ 1542 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1543 arch_check_zapped_pte(vma, ptent); 1544 tlb_remove_tlb_entry(tlb, pte, addr); 1545 if (userfaultfd_pte_wp(vma, ptent)) 1546 zap_install_uffd_wp_if_needed(vma, addr, pte, 1, 1547 details, ptent); 1548 ksm_might_unmap_zero_page(mm, ptent); 1549 return 1; 1550 } 1551 1552 folio = page_folio(page); 1553 if (unlikely(!should_zap_folio(details, folio))) 1554 return 1; 1555 1556 /* 1557 * Make sure that the common "small folio" case is as fast as possible 1558 * by keeping the batching logic separate. 1559 */ 1560 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1561 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1562 NULL); 1563 1564 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1565 addr, details, rss, force_flush, 1566 force_break); 1567 return nr; 1568 } 1569 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1570 details, rss, force_flush, force_break); 1571 return 1; 1572 } 1573 1574 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1575 struct vm_area_struct *vma, pmd_t *pmd, 1576 unsigned long addr, unsigned long end, 1577 struct zap_details *details) 1578 { 1579 bool force_flush = false, force_break = false; 1580 struct mm_struct *mm = tlb->mm; 1581 int rss[NR_MM_COUNTERS]; 1582 spinlock_t *ptl; 1583 pte_t *start_pte; 1584 pte_t *pte; 1585 swp_entry_t entry; 1586 int nr; 1587 1588 tlb_change_page_size(tlb, PAGE_SIZE); 1589 init_rss_vec(rss); 1590 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1591 if (!pte) 1592 return addr; 1593 1594 flush_tlb_batched_pending(mm); 1595 arch_enter_lazy_mmu_mode(); 1596 do { 1597 pte_t ptent = ptep_get(pte); 1598 struct folio *folio; 1599 struct page *page; 1600 int max_nr; 1601 1602 nr = 1; 1603 if (pte_none(ptent)) 1604 continue; 1605 1606 if (need_resched()) 1607 break; 1608 1609 if (pte_present(ptent)) { 1610 max_nr = (end - addr) / PAGE_SIZE; 1611 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr, 1612 addr, details, rss, &force_flush, 1613 &force_break); 1614 if (unlikely(force_break)) { 1615 addr += nr * PAGE_SIZE; 1616 break; 1617 } 1618 continue; 1619 } 1620 1621 entry = pte_to_swp_entry(ptent); 1622 if (is_device_private_entry(entry) || 1623 is_device_exclusive_entry(entry)) { 1624 page = pfn_swap_entry_to_page(entry); 1625 folio = page_folio(page); 1626 if (unlikely(!should_zap_folio(details, folio))) 1627 continue; 1628 /* 1629 * Both device private/exclusive mappings should only 1630 * work with anonymous page so far, so we don't need to 1631 * consider uffd-wp bit when zap. For more information, 1632 * see zap_install_uffd_wp_if_needed(). 1633 */ 1634 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1635 rss[mm_counter(folio)]--; 1636 if (is_device_private_entry(entry)) 1637 folio_remove_rmap_pte(folio, page, vma); 1638 folio_put(folio); 1639 } else if (!non_swap_entry(entry)) { 1640 /* Genuine swap entry, hence a private anon page */ 1641 if (!should_zap_cows(details)) 1642 continue; 1643 rss[MM_SWAPENTS]--; 1644 if (unlikely(!free_swap_and_cache(entry))) 1645 print_bad_pte(vma, addr, ptent, NULL); 1646 } else if (is_migration_entry(entry)) { 1647 folio = pfn_swap_entry_folio(entry); 1648 if (!should_zap_folio(details, folio)) 1649 continue; 1650 rss[mm_counter(folio)]--; 1651 } else if (pte_marker_entry_uffd_wp(entry)) { 1652 /* 1653 * For anon: always drop the marker; for file: only 1654 * drop the marker if explicitly requested. 1655 */ 1656 if (!vma_is_anonymous(vma) && 1657 !zap_drop_file_uffd_wp(details)) 1658 continue; 1659 } else if (is_hwpoison_entry(entry) || 1660 is_poisoned_swp_entry(entry)) { 1661 if (!should_zap_cows(details)) 1662 continue; 1663 } else { 1664 /* We should have covered all the swap entry types */ 1665 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1666 WARN_ON_ONCE(1); 1667 } 1668 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1669 zap_install_uffd_wp_if_needed(vma, addr, pte, 1, details, ptent); 1670 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1671 1672 add_mm_rss_vec(mm, rss); 1673 arch_leave_lazy_mmu_mode(); 1674 1675 /* Do the actual TLB flush before dropping ptl */ 1676 if (force_flush) { 1677 tlb_flush_mmu_tlbonly(tlb); 1678 tlb_flush_rmaps(tlb, vma); 1679 } 1680 pte_unmap_unlock(start_pte, ptl); 1681 1682 /* 1683 * If we forced a TLB flush (either due to running out of 1684 * batch buffers or because we needed to flush dirty TLB 1685 * entries before releasing the ptl), free the batched 1686 * memory too. Come back again if we didn't do everything. 1687 */ 1688 if (force_flush) 1689 tlb_flush_mmu(tlb); 1690 1691 return addr; 1692 } 1693 1694 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1695 struct vm_area_struct *vma, pud_t *pud, 1696 unsigned long addr, unsigned long end, 1697 struct zap_details *details) 1698 { 1699 pmd_t *pmd; 1700 unsigned long next; 1701 1702 pmd = pmd_offset(pud, addr); 1703 do { 1704 next = pmd_addr_end(addr, end); 1705 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1706 if (next - addr != HPAGE_PMD_SIZE) 1707 __split_huge_pmd(vma, pmd, addr, false, NULL); 1708 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1709 addr = next; 1710 continue; 1711 } 1712 /* fall through */ 1713 } else if (details && details->single_folio && 1714 folio_test_pmd_mappable(details->single_folio) && 1715 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1716 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1717 /* 1718 * Take and drop THP pmd lock so that we cannot return 1719 * prematurely, while zap_huge_pmd() has cleared *pmd, 1720 * but not yet decremented compound_mapcount(). 1721 */ 1722 spin_unlock(ptl); 1723 } 1724 if (pmd_none(*pmd)) { 1725 addr = next; 1726 continue; 1727 } 1728 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1729 if (addr != next) 1730 pmd--; 1731 } while (pmd++, cond_resched(), addr != end); 1732 1733 return addr; 1734 } 1735 1736 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1737 struct vm_area_struct *vma, p4d_t *p4d, 1738 unsigned long addr, unsigned long end, 1739 struct zap_details *details) 1740 { 1741 pud_t *pud; 1742 unsigned long next; 1743 1744 pud = pud_offset(p4d, addr); 1745 do { 1746 next = pud_addr_end(addr, end); 1747 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1748 if (next - addr != HPAGE_PUD_SIZE) { 1749 mmap_assert_locked(tlb->mm); 1750 split_huge_pud(vma, pud, addr); 1751 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1752 goto next; 1753 /* fall through */ 1754 } 1755 if (pud_none_or_clear_bad(pud)) 1756 continue; 1757 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1758 next: 1759 cond_resched(); 1760 } while (pud++, addr = next, addr != end); 1761 1762 return addr; 1763 } 1764 1765 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1766 struct vm_area_struct *vma, pgd_t *pgd, 1767 unsigned long addr, unsigned long end, 1768 struct zap_details *details) 1769 { 1770 p4d_t *p4d; 1771 unsigned long next; 1772 1773 p4d = p4d_offset(pgd, addr); 1774 do { 1775 next = p4d_addr_end(addr, end); 1776 if (p4d_none_or_clear_bad(p4d)) 1777 continue; 1778 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1779 } while (p4d++, addr = next, addr != end); 1780 1781 return addr; 1782 } 1783 1784 void unmap_page_range(struct mmu_gather *tlb, 1785 struct vm_area_struct *vma, 1786 unsigned long addr, unsigned long end, 1787 struct zap_details *details) 1788 { 1789 pgd_t *pgd; 1790 unsigned long next; 1791 1792 BUG_ON(addr >= end); 1793 tlb_start_vma(tlb, vma); 1794 pgd = pgd_offset(vma->vm_mm, addr); 1795 do { 1796 next = pgd_addr_end(addr, end); 1797 if (pgd_none_or_clear_bad(pgd)) 1798 continue; 1799 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1800 } while (pgd++, addr = next, addr != end); 1801 tlb_end_vma(tlb, vma); 1802 } 1803 1804 1805 static void unmap_single_vma(struct mmu_gather *tlb, 1806 struct vm_area_struct *vma, unsigned long start_addr, 1807 unsigned long end_addr, 1808 struct zap_details *details, bool mm_wr_locked) 1809 { 1810 unsigned long start = max(vma->vm_start, start_addr); 1811 unsigned long end; 1812 1813 if (start >= vma->vm_end) 1814 return; 1815 end = min(vma->vm_end, end_addr); 1816 if (end <= vma->vm_start) 1817 return; 1818 1819 if (vma->vm_file) 1820 uprobe_munmap(vma, start, end); 1821 1822 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1823 untrack_pfn(vma, 0, 0, mm_wr_locked); 1824 1825 if (start != end) { 1826 if (unlikely(is_vm_hugetlb_page(vma))) { 1827 /* 1828 * It is undesirable to test vma->vm_file as it 1829 * should be non-null for valid hugetlb area. 1830 * However, vm_file will be NULL in the error 1831 * cleanup path of mmap_region. When 1832 * hugetlbfs ->mmap method fails, 1833 * mmap_region() nullifies vma->vm_file 1834 * before calling this function to clean up. 1835 * Since no pte has actually been setup, it is 1836 * safe to do nothing in this case. 1837 */ 1838 if (vma->vm_file) { 1839 zap_flags_t zap_flags = details ? 1840 details->zap_flags : 0; 1841 __unmap_hugepage_range(tlb, vma, start, end, 1842 NULL, zap_flags); 1843 } 1844 } else 1845 unmap_page_range(tlb, vma, start, end, details); 1846 } 1847 } 1848 1849 /** 1850 * unmap_vmas - unmap a range of memory covered by a list of vma's 1851 * @tlb: address of the caller's struct mmu_gather 1852 * @mas: the maple state 1853 * @vma: the starting vma 1854 * @start_addr: virtual address at which to start unmapping 1855 * @end_addr: virtual address at which to end unmapping 1856 * @tree_end: The maximum index to check 1857 * @mm_wr_locked: lock flag 1858 * 1859 * Unmap all pages in the vma list. 1860 * 1861 * Only addresses between `start' and `end' will be unmapped. 1862 * 1863 * The VMA list must be sorted in ascending virtual address order. 1864 * 1865 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1866 * range after unmap_vmas() returns. So the only responsibility here is to 1867 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1868 * drops the lock and schedules. 1869 */ 1870 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1871 struct vm_area_struct *vma, unsigned long start_addr, 1872 unsigned long end_addr, unsigned long tree_end, 1873 bool mm_wr_locked) 1874 { 1875 struct mmu_notifier_range range; 1876 struct zap_details details = { 1877 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1878 /* Careful - we need to zap private pages too! */ 1879 .even_cows = true, 1880 }; 1881 1882 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1883 start_addr, end_addr); 1884 mmu_notifier_invalidate_range_start(&range); 1885 do { 1886 unsigned long start = start_addr; 1887 unsigned long end = end_addr; 1888 hugetlb_zap_begin(vma, &start, &end); 1889 unmap_single_vma(tlb, vma, start, end, &details, 1890 mm_wr_locked); 1891 hugetlb_zap_end(vma, &details); 1892 vma = mas_find(mas, tree_end - 1); 1893 } while (vma && likely(!xa_is_zero(vma))); 1894 mmu_notifier_invalidate_range_end(&range); 1895 } 1896 1897 /** 1898 * zap_page_range_single - remove user pages in a given range 1899 * @vma: vm_area_struct holding the applicable pages 1900 * @address: starting address of pages to zap 1901 * @size: number of bytes to zap 1902 * @details: details of shared cache invalidation 1903 * 1904 * The range must fit into one VMA. 1905 */ 1906 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1907 unsigned long size, struct zap_details *details) 1908 { 1909 const unsigned long end = address + size; 1910 struct mmu_notifier_range range; 1911 struct mmu_gather tlb; 1912 1913 lru_add_drain(); 1914 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1915 address, end); 1916 hugetlb_zap_begin(vma, &range.start, &range.end); 1917 tlb_gather_mmu(&tlb, vma->vm_mm); 1918 update_hiwater_rss(vma->vm_mm); 1919 mmu_notifier_invalidate_range_start(&range); 1920 /* 1921 * unmap 'address-end' not 'range.start-range.end' as range 1922 * could have been expanded for hugetlb pmd sharing. 1923 */ 1924 unmap_single_vma(&tlb, vma, address, end, details, false); 1925 mmu_notifier_invalidate_range_end(&range); 1926 tlb_finish_mmu(&tlb); 1927 hugetlb_zap_end(vma, details); 1928 } 1929 1930 /** 1931 * zap_vma_ptes - remove ptes mapping the vma 1932 * @vma: vm_area_struct holding ptes to be zapped 1933 * @address: starting address of pages to zap 1934 * @size: number of bytes to zap 1935 * 1936 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1937 * 1938 * The entire address range must be fully contained within the vma. 1939 * 1940 */ 1941 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1942 unsigned long size) 1943 { 1944 if (!range_in_vma(vma, address, address + size) || 1945 !(vma->vm_flags & VM_PFNMAP)) 1946 return; 1947 1948 zap_page_range_single(vma, address, size, NULL); 1949 } 1950 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1951 1952 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1953 { 1954 pgd_t *pgd; 1955 p4d_t *p4d; 1956 pud_t *pud; 1957 pmd_t *pmd; 1958 1959 pgd = pgd_offset(mm, addr); 1960 p4d = p4d_alloc(mm, pgd, addr); 1961 if (!p4d) 1962 return NULL; 1963 pud = pud_alloc(mm, p4d, addr); 1964 if (!pud) 1965 return NULL; 1966 pmd = pmd_alloc(mm, pud, addr); 1967 if (!pmd) 1968 return NULL; 1969 1970 VM_BUG_ON(pmd_trans_huge(*pmd)); 1971 return pmd; 1972 } 1973 1974 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1975 spinlock_t **ptl) 1976 { 1977 pmd_t *pmd = walk_to_pmd(mm, addr); 1978 1979 if (!pmd) 1980 return NULL; 1981 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1982 } 1983 1984 static int validate_page_before_insert(struct page *page) 1985 { 1986 struct folio *folio = page_folio(page); 1987 1988 if (folio_test_anon(folio) || folio_test_slab(folio) || 1989 page_has_type(page)) 1990 return -EINVAL; 1991 flush_dcache_folio(folio); 1992 return 0; 1993 } 1994 1995 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1996 unsigned long addr, struct page *page, pgprot_t prot) 1997 { 1998 struct folio *folio = page_folio(page); 1999 2000 if (!pte_none(ptep_get(pte))) 2001 return -EBUSY; 2002 /* Ok, finally just insert the thing.. */ 2003 folio_get(folio); 2004 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2005 folio_add_file_rmap_pte(folio, page, vma); 2006 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 2007 return 0; 2008 } 2009 2010 /* 2011 * This is the old fallback for page remapping. 2012 * 2013 * For historical reasons, it only allows reserved pages. Only 2014 * old drivers should use this, and they needed to mark their 2015 * pages reserved for the old functions anyway. 2016 */ 2017 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2018 struct page *page, pgprot_t prot) 2019 { 2020 int retval; 2021 pte_t *pte; 2022 spinlock_t *ptl; 2023 2024 retval = validate_page_before_insert(page); 2025 if (retval) 2026 goto out; 2027 retval = -ENOMEM; 2028 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2029 if (!pte) 2030 goto out; 2031 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 2032 pte_unmap_unlock(pte, ptl); 2033 out: 2034 return retval; 2035 } 2036 2037 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2038 unsigned long addr, struct page *page, pgprot_t prot) 2039 { 2040 int err; 2041 2042 if (!page_count(page)) 2043 return -EINVAL; 2044 err = validate_page_before_insert(page); 2045 if (err) 2046 return err; 2047 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 2048 } 2049 2050 /* insert_pages() amortizes the cost of spinlock operations 2051 * when inserting pages in a loop. 2052 */ 2053 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2054 struct page **pages, unsigned long *num, pgprot_t prot) 2055 { 2056 pmd_t *pmd = NULL; 2057 pte_t *start_pte, *pte; 2058 spinlock_t *pte_lock; 2059 struct mm_struct *const mm = vma->vm_mm; 2060 unsigned long curr_page_idx = 0; 2061 unsigned long remaining_pages_total = *num; 2062 unsigned long pages_to_write_in_pmd; 2063 int ret; 2064 more: 2065 ret = -EFAULT; 2066 pmd = walk_to_pmd(mm, addr); 2067 if (!pmd) 2068 goto out; 2069 2070 pages_to_write_in_pmd = min_t(unsigned long, 2071 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2072 2073 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2074 ret = -ENOMEM; 2075 if (pte_alloc(mm, pmd)) 2076 goto out; 2077 2078 while (pages_to_write_in_pmd) { 2079 int pte_idx = 0; 2080 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2081 2082 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2083 if (!start_pte) { 2084 ret = -EFAULT; 2085 goto out; 2086 } 2087 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2088 int err = insert_page_in_batch_locked(vma, pte, 2089 addr, pages[curr_page_idx], prot); 2090 if (unlikely(err)) { 2091 pte_unmap_unlock(start_pte, pte_lock); 2092 ret = err; 2093 remaining_pages_total -= pte_idx; 2094 goto out; 2095 } 2096 addr += PAGE_SIZE; 2097 ++curr_page_idx; 2098 } 2099 pte_unmap_unlock(start_pte, pte_lock); 2100 pages_to_write_in_pmd -= batch_size; 2101 remaining_pages_total -= batch_size; 2102 } 2103 if (remaining_pages_total) 2104 goto more; 2105 ret = 0; 2106 out: 2107 *num = remaining_pages_total; 2108 return ret; 2109 } 2110 2111 /** 2112 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2113 * @vma: user vma to map to 2114 * @addr: target start user address of these pages 2115 * @pages: source kernel pages 2116 * @num: in: number of pages to map. out: number of pages that were *not* 2117 * mapped. (0 means all pages were successfully mapped). 2118 * 2119 * Preferred over vm_insert_page() when inserting multiple pages. 2120 * 2121 * In case of error, we may have mapped a subset of the provided 2122 * pages. It is the caller's responsibility to account for this case. 2123 * 2124 * The same restrictions apply as in vm_insert_page(). 2125 */ 2126 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2127 struct page **pages, unsigned long *num) 2128 { 2129 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2130 2131 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2132 return -EFAULT; 2133 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2134 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2135 BUG_ON(vma->vm_flags & VM_PFNMAP); 2136 vm_flags_set(vma, VM_MIXEDMAP); 2137 } 2138 /* Defer page refcount checking till we're about to map that page. */ 2139 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2140 } 2141 EXPORT_SYMBOL(vm_insert_pages); 2142 2143 /** 2144 * vm_insert_page - insert single page into user vma 2145 * @vma: user vma to map to 2146 * @addr: target user address of this page 2147 * @page: source kernel page 2148 * 2149 * This allows drivers to insert individual pages they've allocated 2150 * into a user vma. 2151 * 2152 * The page has to be a nice clean _individual_ kernel allocation. 2153 * If you allocate a compound page, you need to have marked it as 2154 * such (__GFP_COMP), or manually just split the page up yourself 2155 * (see split_page()). 2156 * 2157 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2158 * took an arbitrary page protection parameter. This doesn't allow 2159 * that. Your vma protection will have to be set up correctly, which 2160 * means that if you want a shared writable mapping, you'd better 2161 * ask for a shared writable mapping! 2162 * 2163 * The page does not need to be reserved. 2164 * 2165 * Usually this function is called from f_op->mmap() handler 2166 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2167 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2168 * function from other places, for example from page-fault handler. 2169 * 2170 * Return: %0 on success, negative error code otherwise. 2171 */ 2172 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2173 struct page *page) 2174 { 2175 if (addr < vma->vm_start || addr >= vma->vm_end) 2176 return -EFAULT; 2177 if (!page_count(page)) 2178 return -EINVAL; 2179 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2180 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2181 BUG_ON(vma->vm_flags & VM_PFNMAP); 2182 vm_flags_set(vma, VM_MIXEDMAP); 2183 } 2184 return insert_page(vma, addr, page, vma->vm_page_prot); 2185 } 2186 EXPORT_SYMBOL(vm_insert_page); 2187 2188 /* 2189 * __vm_map_pages - maps range of kernel pages into user vma 2190 * @vma: user vma to map to 2191 * @pages: pointer to array of source kernel pages 2192 * @num: number of pages in page array 2193 * @offset: user's requested vm_pgoff 2194 * 2195 * This allows drivers to map range of kernel pages into a user vma. 2196 * 2197 * Return: 0 on success and error code otherwise. 2198 */ 2199 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2200 unsigned long num, unsigned long offset) 2201 { 2202 unsigned long count = vma_pages(vma); 2203 unsigned long uaddr = vma->vm_start; 2204 int ret, i; 2205 2206 /* Fail if the user requested offset is beyond the end of the object */ 2207 if (offset >= num) 2208 return -ENXIO; 2209 2210 /* Fail if the user requested size exceeds available object size */ 2211 if (count > num - offset) 2212 return -ENXIO; 2213 2214 for (i = 0; i < count; i++) { 2215 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2216 if (ret < 0) 2217 return ret; 2218 uaddr += PAGE_SIZE; 2219 } 2220 2221 return 0; 2222 } 2223 2224 /** 2225 * vm_map_pages - maps range of kernel pages starts with non zero offset 2226 * @vma: user vma to map to 2227 * @pages: pointer to array of source kernel pages 2228 * @num: number of pages in page array 2229 * 2230 * Maps an object consisting of @num pages, catering for the user's 2231 * requested vm_pgoff 2232 * 2233 * If we fail to insert any page into the vma, the function will return 2234 * immediately leaving any previously inserted pages present. Callers 2235 * from the mmap handler may immediately return the error as their caller 2236 * will destroy the vma, removing any successfully inserted pages. Other 2237 * callers should make their own arrangements for calling unmap_region(). 2238 * 2239 * Context: Process context. Called by mmap handlers. 2240 * Return: 0 on success and error code otherwise. 2241 */ 2242 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2243 unsigned long num) 2244 { 2245 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2246 } 2247 EXPORT_SYMBOL(vm_map_pages); 2248 2249 /** 2250 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2251 * @vma: user vma to map to 2252 * @pages: pointer to array of source kernel pages 2253 * @num: number of pages in page array 2254 * 2255 * Similar to vm_map_pages(), except that it explicitly sets the offset 2256 * to 0. This function is intended for the drivers that did not consider 2257 * vm_pgoff. 2258 * 2259 * Context: Process context. Called by mmap handlers. 2260 * Return: 0 on success and error code otherwise. 2261 */ 2262 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2263 unsigned long num) 2264 { 2265 return __vm_map_pages(vma, pages, num, 0); 2266 } 2267 EXPORT_SYMBOL(vm_map_pages_zero); 2268 2269 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2270 pfn_t pfn, pgprot_t prot, bool mkwrite) 2271 { 2272 struct mm_struct *mm = vma->vm_mm; 2273 pte_t *pte, entry; 2274 spinlock_t *ptl; 2275 2276 pte = get_locked_pte(mm, addr, &ptl); 2277 if (!pte) 2278 return VM_FAULT_OOM; 2279 entry = ptep_get(pte); 2280 if (!pte_none(entry)) { 2281 if (mkwrite) { 2282 /* 2283 * For read faults on private mappings the PFN passed 2284 * in may not match the PFN we have mapped if the 2285 * mapped PFN is a writeable COW page. In the mkwrite 2286 * case we are creating a writable PTE for a shared 2287 * mapping and we expect the PFNs to match. If they 2288 * don't match, we are likely racing with block 2289 * allocation and mapping invalidation so just skip the 2290 * update. 2291 */ 2292 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2293 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2294 goto out_unlock; 2295 } 2296 entry = pte_mkyoung(entry); 2297 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2298 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2299 update_mmu_cache(vma, addr, pte); 2300 } 2301 goto out_unlock; 2302 } 2303 2304 /* Ok, finally just insert the thing.. */ 2305 if (pfn_t_devmap(pfn)) 2306 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2307 else 2308 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2309 2310 if (mkwrite) { 2311 entry = pte_mkyoung(entry); 2312 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2313 } 2314 2315 set_pte_at(mm, addr, pte, entry); 2316 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2317 2318 out_unlock: 2319 pte_unmap_unlock(pte, ptl); 2320 return VM_FAULT_NOPAGE; 2321 } 2322 2323 /** 2324 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2325 * @vma: user vma to map to 2326 * @addr: target user address of this page 2327 * @pfn: source kernel pfn 2328 * @pgprot: pgprot flags for the inserted page 2329 * 2330 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2331 * to override pgprot on a per-page basis. 2332 * 2333 * This only makes sense for IO mappings, and it makes no sense for 2334 * COW mappings. In general, using multiple vmas is preferable; 2335 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2336 * impractical. 2337 * 2338 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2339 * caching- and encryption bits different than those of @vma->vm_page_prot, 2340 * because the caching- or encryption mode may not be known at mmap() time. 2341 * 2342 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2343 * to set caching and encryption bits for those vmas (except for COW pages). 2344 * This is ensured by core vm only modifying these page table entries using 2345 * functions that don't touch caching- or encryption bits, using pte_modify() 2346 * if needed. (See for example mprotect()). 2347 * 2348 * Also when new page-table entries are created, this is only done using the 2349 * fault() callback, and never using the value of vma->vm_page_prot, 2350 * except for page-table entries that point to anonymous pages as the result 2351 * of COW. 2352 * 2353 * Context: Process context. May allocate using %GFP_KERNEL. 2354 * Return: vm_fault_t value. 2355 */ 2356 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2357 unsigned long pfn, pgprot_t pgprot) 2358 { 2359 /* 2360 * Technically, architectures with pte_special can avoid all these 2361 * restrictions (same for remap_pfn_range). However we would like 2362 * consistency in testing and feature parity among all, so we should 2363 * try to keep these invariants in place for everybody. 2364 */ 2365 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2366 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2367 (VM_PFNMAP|VM_MIXEDMAP)); 2368 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2369 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2370 2371 if (addr < vma->vm_start || addr >= vma->vm_end) 2372 return VM_FAULT_SIGBUS; 2373 2374 if (!pfn_modify_allowed(pfn, pgprot)) 2375 return VM_FAULT_SIGBUS; 2376 2377 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2378 2379 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2380 false); 2381 } 2382 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2383 2384 /** 2385 * vmf_insert_pfn - insert single pfn into user vma 2386 * @vma: user vma to map to 2387 * @addr: target user address of this page 2388 * @pfn: source kernel pfn 2389 * 2390 * Similar to vm_insert_page, this allows drivers to insert individual pages 2391 * they've allocated into a user vma. Same comments apply. 2392 * 2393 * This function should only be called from a vm_ops->fault handler, and 2394 * in that case the handler should return the result of this function. 2395 * 2396 * vma cannot be a COW mapping. 2397 * 2398 * As this is called only for pages that do not currently exist, we 2399 * do not need to flush old virtual caches or the TLB. 2400 * 2401 * Context: Process context. May allocate using %GFP_KERNEL. 2402 * Return: vm_fault_t value. 2403 */ 2404 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2405 unsigned long pfn) 2406 { 2407 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2408 } 2409 EXPORT_SYMBOL(vmf_insert_pfn); 2410 2411 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2412 { 2413 /* these checks mirror the abort conditions in vm_normal_page */ 2414 if (vma->vm_flags & VM_MIXEDMAP) 2415 return true; 2416 if (pfn_t_devmap(pfn)) 2417 return true; 2418 if (pfn_t_special(pfn)) 2419 return true; 2420 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2421 return true; 2422 return false; 2423 } 2424 2425 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2426 unsigned long addr, pfn_t pfn, bool mkwrite) 2427 { 2428 pgprot_t pgprot = vma->vm_page_prot; 2429 int err; 2430 2431 BUG_ON(!vm_mixed_ok(vma, pfn)); 2432 2433 if (addr < vma->vm_start || addr >= vma->vm_end) 2434 return VM_FAULT_SIGBUS; 2435 2436 track_pfn_insert(vma, &pgprot, pfn); 2437 2438 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2439 return VM_FAULT_SIGBUS; 2440 2441 /* 2442 * If we don't have pte special, then we have to use the pfn_valid() 2443 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2444 * refcount the page if pfn_valid is true (hence insert_page rather 2445 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2446 * without pte special, it would there be refcounted as a normal page. 2447 */ 2448 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2449 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2450 struct page *page; 2451 2452 /* 2453 * At this point we are committed to insert_page() 2454 * regardless of whether the caller specified flags that 2455 * result in pfn_t_has_page() == false. 2456 */ 2457 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2458 err = insert_page(vma, addr, page, pgprot); 2459 } else { 2460 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2461 } 2462 2463 if (err == -ENOMEM) 2464 return VM_FAULT_OOM; 2465 if (err < 0 && err != -EBUSY) 2466 return VM_FAULT_SIGBUS; 2467 2468 return VM_FAULT_NOPAGE; 2469 } 2470 2471 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2472 pfn_t pfn) 2473 { 2474 return __vm_insert_mixed(vma, addr, pfn, false); 2475 } 2476 EXPORT_SYMBOL(vmf_insert_mixed); 2477 2478 /* 2479 * If the insertion of PTE failed because someone else already added a 2480 * different entry in the mean time, we treat that as success as we assume 2481 * the same entry was actually inserted. 2482 */ 2483 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2484 unsigned long addr, pfn_t pfn) 2485 { 2486 return __vm_insert_mixed(vma, addr, pfn, true); 2487 } 2488 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2489 2490 /* 2491 * maps a range of physical memory into the requested pages. the old 2492 * mappings are removed. any references to nonexistent pages results 2493 * in null mappings (currently treated as "copy-on-access") 2494 */ 2495 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2496 unsigned long addr, unsigned long end, 2497 unsigned long pfn, pgprot_t prot) 2498 { 2499 pte_t *pte, *mapped_pte; 2500 spinlock_t *ptl; 2501 int err = 0; 2502 2503 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2504 if (!pte) 2505 return -ENOMEM; 2506 arch_enter_lazy_mmu_mode(); 2507 do { 2508 BUG_ON(!pte_none(ptep_get(pte))); 2509 if (!pfn_modify_allowed(pfn, prot)) { 2510 err = -EACCES; 2511 break; 2512 } 2513 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2514 pfn++; 2515 } while (pte++, addr += PAGE_SIZE, addr != end); 2516 arch_leave_lazy_mmu_mode(); 2517 pte_unmap_unlock(mapped_pte, ptl); 2518 return err; 2519 } 2520 2521 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2522 unsigned long addr, unsigned long end, 2523 unsigned long pfn, pgprot_t prot) 2524 { 2525 pmd_t *pmd; 2526 unsigned long next; 2527 int err; 2528 2529 pfn -= addr >> PAGE_SHIFT; 2530 pmd = pmd_alloc(mm, pud, addr); 2531 if (!pmd) 2532 return -ENOMEM; 2533 VM_BUG_ON(pmd_trans_huge(*pmd)); 2534 do { 2535 next = pmd_addr_end(addr, end); 2536 err = remap_pte_range(mm, pmd, addr, next, 2537 pfn + (addr >> PAGE_SHIFT), prot); 2538 if (err) 2539 return err; 2540 } while (pmd++, addr = next, addr != end); 2541 return 0; 2542 } 2543 2544 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2545 unsigned long addr, unsigned long end, 2546 unsigned long pfn, pgprot_t prot) 2547 { 2548 pud_t *pud; 2549 unsigned long next; 2550 int err; 2551 2552 pfn -= addr >> PAGE_SHIFT; 2553 pud = pud_alloc(mm, p4d, addr); 2554 if (!pud) 2555 return -ENOMEM; 2556 do { 2557 next = pud_addr_end(addr, end); 2558 err = remap_pmd_range(mm, pud, addr, next, 2559 pfn + (addr >> PAGE_SHIFT), prot); 2560 if (err) 2561 return err; 2562 } while (pud++, addr = next, addr != end); 2563 return 0; 2564 } 2565 2566 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2567 unsigned long addr, unsigned long end, 2568 unsigned long pfn, pgprot_t prot) 2569 { 2570 p4d_t *p4d; 2571 unsigned long next; 2572 int err; 2573 2574 pfn -= addr >> PAGE_SHIFT; 2575 p4d = p4d_alloc(mm, pgd, addr); 2576 if (!p4d) 2577 return -ENOMEM; 2578 do { 2579 next = p4d_addr_end(addr, end); 2580 err = remap_pud_range(mm, p4d, addr, next, 2581 pfn + (addr >> PAGE_SHIFT), prot); 2582 if (err) 2583 return err; 2584 } while (p4d++, addr = next, addr != end); 2585 return 0; 2586 } 2587 2588 /* 2589 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2590 * must have pre-validated the caching bits of the pgprot_t. 2591 */ 2592 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2593 unsigned long pfn, unsigned long size, pgprot_t prot) 2594 { 2595 pgd_t *pgd; 2596 unsigned long next; 2597 unsigned long end = addr + PAGE_ALIGN(size); 2598 struct mm_struct *mm = vma->vm_mm; 2599 int err; 2600 2601 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2602 return -EINVAL; 2603 2604 /* 2605 * Physically remapped pages are special. Tell the 2606 * rest of the world about it: 2607 * VM_IO tells people not to look at these pages 2608 * (accesses can have side effects). 2609 * VM_PFNMAP tells the core MM that the base pages are just 2610 * raw PFN mappings, and do not have a "struct page" associated 2611 * with them. 2612 * VM_DONTEXPAND 2613 * Disable vma merging and expanding with mremap(). 2614 * VM_DONTDUMP 2615 * Omit vma from core dump, even when VM_IO turned off. 2616 * 2617 * There's a horrible special case to handle copy-on-write 2618 * behaviour that some programs depend on. We mark the "original" 2619 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2620 * See vm_normal_page() for details. 2621 */ 2622 if (is_cow_mapping(vma->vm_flags)) { 2623 if (addr != vma->vm_start || end != vma->vm_end) 2624 return -EINVAL; 2625 vma->vm_pgoff = pfn; 2626 } 2627 2628 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2629 2630 BUG_ON(addr >= end); 2631 pfn -= addr >> PAGE_SHIFT; 2632 pgd = pgd_offset(mm, addr); 2633 flush_cache_range(vma, addr, end); 2634 do { 2635 next = pgd_addr_end(addr, end); 2636 err = remap_p4d_range(mm, pgd, addr, next, 2637 pfn + (addr >> PAGE_SHIFT), prot); 2638 if (err) 2639 return err; 2640 } while (pgd++, addr = next, addr != end); 2641 2642 return 0; 2643 } 2644 2645 /** 2646 * remap_pfn_range - remap kernel memory to userspace 2647 * @vma: user vma to map to 2648 * @addr: target page aligned user address to start at 2649 * @pfn: page frame number of kernel physical memory address 2650 * @size: size of mapping area 2651 * @prot: page protection flags for this mapping 2652 * 2653 * Note: this is only safe if the mm semaphore is held when called. 2654 * 2655 * Return: %0 on success, negative error code otherwise. 2656 */ 2657 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2658 unsigned long pfn, unsigned long size, pgprot_t prot) 2659 { 2660 int err; 2661 2662 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2663 if (err) 2664 return -EINVAL; 2665 2666 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2667 if (err) 2668 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2669 return err; 2670 } 2671 EXPORT_SYMBOL(remap_pfn_range); 2672 2673 /** 2674 * vm_iomap_memory - remap memory to userspace 2675 * @vma: user vma to map to 2676 * @start: start of the physical memory to be mapped 2677 * @len: size of area 2678 * 2679 * This is a simplified io_remap_pfn_range() for common driver use. The 2680 * driver just needs to give us the physical memory range to be mapped, 2681 * we'll figure out the rest from the vma information. 2682 * 2683 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2684 * whatever write-combining details or similar. 2685 * 2686 * Return: %0 on success, negative error code otherwise. 2687 */ 2688 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2689 { 2690 unsigned long vm_len, pfn, pages; 2691 2692 /* Check that the physical memory area passed in looks valid */ 2693 if (start + len < start) 2694 return -EINVAL; 2695 /* 2696 * You *really* shouldn't map things that aren't page-aligned, 2697 * but we've historically allowed it because IO memory might 2698 * just have smaller alignment. 2699 */ 2700 len += start & ~PAGE_MASK; 2701 pfn = start >> PAGE_SHIFT; 2702 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2703 if (pfn + pages < pfn) 2704 return -EINVAL; 2705 2706 /* We start the mapping 'vm_pgoff' pages into the area */ 2707 if (vma->vm_pgoff > pages) 2708 return -EINVAL; 2709 pfn += vma->vm_pgoff; 2710 pages -= vma->vm_pgoff; 2711 2712 /* Can we fit all of the mapping? */ 2713 vm_len = vma->vm_end - vma->vm_start; 2714 if (vm_len >> PAGE_SHIFT > pages) 2715 return -EINVAL; 2716 2717 /* Ok, let it rip */ 2718 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2719 } 2720 EXPORT_SYMBOL(vm_iomap_memory); 2721 2722 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2723 unsigned long addr, unsigned long end, 2724 pte_fn_t fn, void *data, bool create, 2725 pgtbl_mod_mask *mask) 2726 { 2727 pte_t *pte, *mapped_pte; 2728 int err = 0; 2729 spinlock_t *ptl; 2730 2731 if (create) { 2732 mapped_pte = pte = (mm == &init_mm) ? 2733 pte_alloc_kernel_track(pmd, addr, mask) : 2734 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2735 if (!pte) 2736 return -ENOMEM; 2737 } else { 2738 mapped_pte = pte = (mm == &init_mm) ? 2739 pte_offset_kernel(pmd, addr) : 2740 pte_offset_map_lock(mm, pmd, addr, &ptl); 2741 if (!pte) 2742 return -EINVAL; 2743 } 2744 2745 arch_enter_lazy_mmu_mode(); 2746 2747 if (fn) { 2748 do { 2749 if (create || !pte_none(ptep_get(pte))) { 2750 err = fn(pte++, addr, data); 2751 if (err) 2752 break; 2753 } 2754 } while (addr += PAGE_SIZE, addr != end); 2755 } 2756 *mask |= PGTBL_PTE_MODIFIED; 2757 2758 arch_leave_lazy_mmu_mode(); 2759 2760 if (mm != &init_mm) 2761 pte_unmap_unlock(mapped_pte, ptl); 2762 return err; 2763 } 2764 2765 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2766 unsigned long addr, unsigned long end, 2767 pte_fn_t fn, void *data, bool create, 2768 pgtbl_mod_mask *mask) 2769 { 2770 pmd_t *pmd; 2771 unsigned long next; 2772 int err = 0; 2773 2774 BUG_ON(pud_leaf(*pud)); 2775 2776 if (create) { 2777 pmd = pmd_alloc_track(mm, pud, addr, mask); 2778 if (!pmd) 2779 return -ENOMEM; 2780 } else { 2781 pmd = pmd_offset(pud, addr); 2782 } 2783 do { 2784 next = pmd_addr_end(addr, end); 2785 if (pmd_none(*pmd) && !create) 2786 continue; 2787 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2788 return -EINVAL; 2789 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2790 if (!create) 2791 continue; 2792 pmd_clear_bad(pmd); 2793 } 2794 err = apply_to_pte_range(mm, pmd, addr, next, 2795 fn, data, create, mask); 2796 if (err) 2797 break; 2798 } while (pmd++, addr = next, addr != end); 2799 2800 return err; 2801 } 2802 2803 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2804 unsigned long addr, unsigned long end, 2805 pte_fn_t fn, void *data, bool create, 2806 pgtbl_mod_mask *mask) 2807 { 2808 pud_t *pud; 2809 unsigned long next; 2810 int err = 0; 2811 2812 if (create) { 2813 pud = pud_alloc_track(mm, p4d, addr, mask); 2814 if (!pud) 2815 return -ENOMEM; 2816 } else { 2817 pud = pud_offset(p4d, addr); 2818 } 2819 do { 2820 next = pud_addr_end(addr, end); 2821 if (pud_none(*pud) && !create) 2822 continue; 2823 if (WARN_ON_ONCE(pud_leaf(*pud))) 2824 return -EINVAL; 2825 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2826 if (!create) 2827 continue; 2828 pud_clear_bad(pud); 2829 } 2830 err = apply_to_pmd_range(mm, pud, addr, next, 2831 fn, data, create, mask); 2832 if (err) 2833 break; 2834 } while (pud++, addr = next, addr != end); 2835 2836 return err; 2837 } 2838 2839 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2840 unsigned long addr, unsigned long end, 2841 pte_fn_t fn, void *data, bool create, 2842 pgtbl_mod_mask *mask) 2843 { 2844 p4d_t *p4d; 2845 unsigned long next; 2846 int err = 0; 2847 2848 if (create) { 2849 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2850 if (!p4d) 2851 return -ENOMEM; 2852 } else { 2853 p4d = p4d_offset(pgd, addr); 2854 } 2855 do { 2856 next = p4d_addr_end(addr, end); 2857 if (p4d_none(*p4d) && !create) 2858 continue; 2859 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2860 return -EINVAL; 2861 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2862 if (!create) 2863 continue; 2864 p4d_clear_bad(p4d); 2865 } 2866 err = apply_to_pud_range(mm, p4d, addr, next, 2867 fn, data, create, mask); 2868 if (err) 2869 break; 2870 } while (p4d++, addr = next, addr != end); 2871 2872 return err; 2873 } 2874 2875 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2876 unsigned long size, pte_fn_t fn, 2877 void *data, bool create) 2878 { 2879 pgd_t *pgd; 2880 unsigned long start = addr, next; 2881 unsigned long end = addr + size; 2882 pgtbl_mod_mask mask = 0; 2883 int err = 0; 2884 2885 if (WARN_ON(addr >= end)) 2886 return -EINVAL; 2887 2888 pgd = pgd_offset(mm, addr); 2889 do { 2890 next = pgd_addr_end(addr, end); 2891 if (pgd_none(*pgd) && !create) 2892 continue; 2893 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2894 return -EINVAL; 2895 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2896 if (!create) 2897 continue; 2898 pgd_clear_bad(pgd); 2899 } 2900 err = apply_to_p4d_range(mm, pgd, addr, next, 2901 fn, data, create, &mask); 2902 if (err) 2903 break; 2904 } while (pgd++, addr = next, addr != end); 2905 2906 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2907 arch_sync_kernel_mappings(start, start + size); 2908 2909 return err; 2910 } 2911 2912 /* 2913 * Scan a region of virtual memory, filling in page tables as necessary 2914 * and calling a provided function on each leaf page table. 2915 */ 2916 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2917 unsigned long size, pte_fn_t fn, void *data) 2918 { 2919 return __apply_to_page_range(mm, addr, size, fn, data, true); 2920 } 2921 EXPORT_SYMBOL_GPL(apply_to_page_range); 2922 2923 /* 2924 * Scan a region of virtual memory, calling a provided function on 2925 * each leaf page table where it exists. 2926 * 2927 * Unlike apply_to_page_range, this does _not_ fill in page tables 2928 * where they are absent. 2929 */ 2930 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2931 unsigned long size, pte_fn_t fn, void *data) 2932 { 2933 return __apply_to_page_range(mm, addr, size, fn, data, false); 2934 } 2935 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2936 2937 /* 2938 * handle_pte_fault chooses page fault handler according to an entry which was 2939 * read non-atomically. Before making any commitment, on those architectures 2940 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2941 * parts, do_swap_page must check under lock before unmapping the pte and 2942 * proceeding (but do_wp_page is only called after already making such a check; 2943 * and do_anonymous_page can safely check later on). 2944 */ 2945 static inline int pte_unmap_same(struct vm_fault *vmf) 2946 { 2947 int same = 1; 2948 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2949 if (sizeof(pte_t) > sizeof(unsigned long)) { 2950 spin_lock(vmf->ptl); 2951 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 2952 spin_unlock(vmf->ptl); 2953 } 2954 #endif 2955 pte_unmap(vmf->pte); 2956 vmf->pte = NULL; 2957 return same; 2958 } 2959 2960 /* 2961 * Return: 2962 * 0: copied succeeded 2963 * -EHWPOISON: copy failed due to hwpoison in source page 2964 * -EAGAIN: copied failed (some other reason) 2965 */ 2966 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2967 struct vm_fault *vmf) 2968 { 2969 int ret; 2970 void *kaddr; 2971 void __user *uaddr; 2972 struct vm_area_struct *vma = vmf->vma; 2973 struct mm_struct *mm = vma->vm_mm; 2974 unsigned long addr = vmf->address; 2975 2976 if (likely(src)) { 2977 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2978 memory_failure_queue(page_to_pfn(src), 0); 2979 return -EHWPOISON; 2980 } 2981 return 0; 2982 } 2983 2984 /* 2985 * If the source page was a PFN mapping, we don't have 2986 * a "struct page" for it. We do a best-effort copy by 2987 * just copying from the original user address. If that 2988 * fails, we just zero-fill it. Live with it. 2989 */ 2990 kaddr = kmap_local_page(dst); 2991 pagefault_disable(); 2992 uaddr = (void __user *)(addr & PAGE_MASK); 2993 2994 /* 2995 * On architectures with software "accessed" bits, we would 2996 * take a double page fault, so mark it accessed here. 2997 */ 2998 vmf->pte = NULL; 2999 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3000 pte_t entry; 3001 3002 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3003 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3004 /* 3005 * Other thread has already handled the fault 3006 * and update local tlb only 3007 */ 3008 if (vmf->pte) 3009 update_mmu_tlb(vma, addr, vmf->pte); 3010 ret = -EAGAIN; 3011 goto pte_unlock; 3012 } 3013 3014 entry = pte_mkyoung(vmf->orig_pte); 3015 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3016 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3017 } 3018 3019 /* 3020 * This really shouldn't fail, because the page is there 3021 * in the page tables. But it might just be unreadable, 3022 * in which case we just give up and fill the result with 3023 * zeroes. 3024 */ 3025 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3026 if (vmf->pte) 3027 goto warn; 3028 3029 /* Re-validate under PTL if the page is still mapped */ 3030 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3031 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3032 /* The PTE changed under us, update local tlb */ 3033 if (vmf->pte) 3034 update_mmu_tlb(vma, addr, vmf->pte); 3035 ret = -EAGAIN; 3036 goto pte_unlock; 3037 } 3038 3039 /* 3040 * The same page can be mapped back since last copy attempt. 3041 * Try to copy again under PTL. 3042 */ 3043 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3044 /* 3045 * Give a warn in case there can be some obscure 3046 * use-case 3047 */ 3048 warn: 3049 WARN_ON_ONCE(1); 3050 clear_page(kaddr); 3051 } 3052 } 3053 3054 ret = 0; 3055 3056 pte_unlock: 3057 if (vmf->pte) 3058 pte_unmap_unlock(vmf->pte, vmf->ptl); 3059 pagefault_enable(); 3060 kunmap_local(kaddr); 3061 flush_dcache_page(dst); 3062 3063 return ret; 3064 } 3065 3066 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3067 { 3068 struct file *vm_file = vma->vm_file; 3069 3070 if (vm_file) 3071 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3072 3073 /* 3074 * Special mappings (e.g. VDSO) do not have any file so fake 3075 * a default GFP_KERNEL for them. 3076 */ 3077 return GFP_KERNEL; 3078 } 3079 3080 /* 3081 * Notify the address space that the page is about to become writable so that 3082 * it can prohibit this or wait for the page to get into an appropriate state. 3083 * 3084 * We do this without the lock held, so that it can sleep if it needs to. 3085 */ 3086 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3087 { 3088 vm_fault_t ret; 3089 unsigned int old_flags = vmf->flags; 3090 3091 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3092 3093 if (vmf->vma->vm_file && 3094 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3095 return VM_FAULT_SIGBUS; 3096 3097 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3098 /* Restore original flags so that caller is not surprised */ 3099 vmf->flags = old_flags; 3100 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3101 return ret; 3102 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3103 folio_lock(folio); 3104 if (!folio->mapping) { 3105 folio_unlock(folio); 3106 return 0; /* retry */ 3107 } 3108 ret |= VM_FAULT_LOCKED; 3109 } else 3110 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3111 return ret; 3112 } 3113 3114 /* 3115 * Handle dirtying of a page in shared file mapping on a write fault. 3116 * 3117 * The function expects the page to be locked and unlocks it. 3118 */ 3119 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3120 { 3121 struct vm_area_struct *vma = vmf->vma; 3122 struct address_space *mapping; 3123 struct folio *folio = page_folio(vmf->page); 3124 bool dirtied; 3125 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3126 3127 dirtied = folio_mark_dirty(folio); 3128 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3129 /* 3130 * Take a local copy of the address_space - folio.mapping may be zeroed 3131 * by truncate after folio_unlock(). The address_space itself remains 3132 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3133 * release semantics to prevent the compiler from undoing this copying. 3134 */ 3135 mapping = folio_raw_mapping(folio); 3136 folio_unlock(folio); 3137 3138 if (!page_mkwrite) 3139 file_update_time(vma->vm_file); 3140 3141 /* 3142 * Throttle page dirtying rate down to writeback speed. 3143 * 3144 * mapping may be NULL here because some device drivers do not 3145 * set page.mapping but still dirty their pages 3146 * 3147 * Drop the mmap_lock before waiting on IO, if we can. The file 3148 * is pinning the mapping, as per above. 3149 */ 3150 if ((dirtied || page_mkwrite) && mapping) { 3151 struct file *fpin; 3152 3153 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3154 balance_dirty_pages_ratelimited(mapping); 3155 if (fpin) { 3156 fput(fpin); 3157 return VM_FAULT_COMPLETED; 3158 } 3159 } 3160 3161 return 0; 3162 } 3163 3164 /* 3165 * Handle write page faults for pages that can be reused in the current vma 3166 * 3167 * This can happen either due to the mapping being with the VM_SHARED flag, 3168 * or due to us being the last reference standing to the page. In either 3169 * case, all we need to do here is to mark the page as writable and update 3170 * any related book-keeping. 3171 */ 3172 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3173 __releases(vmf->ptl) 3174 { 3175 struct vm_area_struct *vma = vmf->vma; 3176 pte_t entry; 3177 3178 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3179 3180 if (folio) { 3181 VM_BUG_ON(folio_test_anon(folio) && 3182 !PageAnonExclusive(vmf->page)); 3183 /* 3184 * Clear the folio's cpupid information as the existing 3185 * information potentially belongs to a now completely 3186 * unrelated process. 3187 */ 3188 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3189 } 3190 3191 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3192 entry = pte_mkyoung(vmf->orig_pte); 3193 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3194 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3195 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3196 pte_unmap_unlock(vmf->pte, vmf->ptl); 3197 count_vm_event(PGREUSE); 3198 } 3199 3200 /* 3201 * We could add a bitflag somewhere, but for now, we know that all 3202 * vm_ops that have a ->map_pages have been audited and don't need 3203 * the mmap_lock to be held. 3204 */ 3205 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3206 { 3207 struct vm_area_struct *vma = vmf->vma; 3208 3209 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3210 return 0; 3211 vma_end_read(vma); 3212 return VM_FAULT_RETRY; 3213 } 3214 3215 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf) 3216 { 3217 struct vm_area_struct *vma = vmf->vma; 3218 3219 if (likely(vma->anon_vma)) 3220 return 0; 3221 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3222 vma_end_read(vma); 3223 return VM_FAULT_RETRY; 3224 } 3225 if (__anon_vma_prepare(vma)) 3226 return VM_FAULT_OOM; 3227 return 0; 3228 } 3229 3230 /* 3231 * Handle the case of a page which we actually need to copy to a new page, 3232 * either due to COW or unsharing. 3233 * 3234 * Called with mmap_lock locked and the old page referenced, but 3235 * without the ptl held. 3236 * 3237 * High level logic flow: 3238 * 3239 * - Allocate a page, copy the content of the old page to the new one. 3240 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3241 * - Take the PTL. If the pte changed, bail out and release the allocated page 3242 * - If the pte is still the way we remember it, update the page table and all 3243 * relevant references. This includes dropping the reference the page-table 3244 * held to the old page, as well as updating the rmap. 3245 * - In any case, unlock the PTL and drop the reference we took to the old page. 3246 */ 3247 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3248 { 3249 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3250 struct vm_area_struct *vma = vmf->vma; 3251 struct mm_struct *mm = vma->vm_mm; 3252 struct folio *old_folio = NULL; 3253 struct folio *new_folio = NULL; 3254 pte_t entry; 3255 int page_copied = 0; 3256 struct mmu_notifier_range range; 3257 vm_fault_t ret; 3258 bool pfn_is_zero; 3259 3260 delayacct_wpcopy_start(); 3261 3262 if (vmf->page) 3263 old_folio = page_folio(vmf->page); 3264 ret = vmf_anon_prepare(vmf); 3265 if (unlikely(ret)) 3266 goto out; 3267 3268 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3269 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3270 if (!new_folio) 3271 goto oom; 3272 3273 if (!pfn_is_zero) { 3274 int err; 3275 3276 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3277 if (err) { 3278 /* 3279 * COW failed, if the fault was solved by other, 3280 * it's fine. If not, userspace would re-fault on 3281 * the same address and we will handle the fault 3282 * from the second attempt. 3283 * The -EHWPOISON case will not be retried. 3284 */ 3285 folio_put(new_folio); 3286 if (old_folio) 3287 folio_put(old_folio); 3288 3289 delayacct_wpcopy_end(); 3290 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3291 } 3292 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3293 } 3294 3295 __folio_mark_uptodate(new_folio); 3296 3297 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3298 vmf->address & PAGE_MASK, 3299 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3300 mmu_notifier_invalidate_range_start(&range); 3301 3302 /* 3303 * Re-check the pte - we dropped the lock 3304 */ 3305 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3306 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3307 if (old_folio) { 3308 if (!folio_test_anon(old_folio)) { 3309 dec_mm_counter(mm, mm_counter_file(old_folio)); 3310 inc_mm_counter(mm, MM_ANONPAGES); 3311 } 3312 } else { 3313 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3314 inc_mm_counter(mm, MM_ANONPAGES); 3315 } 3316 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3317 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3318 entry = pte_sw_mkyoung(entry); 3319 if (unlikely(unshare)) { 3320 if (pte_soft_dirty(vmf->orig_pte)) 3321 entry = pte_mksoft_dirty(entry); 3322 if (pte_uffd_wp(vmf->orig_pte)) 3323 entry = pte_mkuffd_wp(entry); 3324 } else { 3325 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3326 } 3327 3328 /* 3329 * Clear the pte entry and flush it first, before updating the 3330 * pte with the new entry, to keep TLBs on different CPUs in 3331 * sync. This code used to set the new PTE then flush TLBs, but 3332 * that left a window where the new PTE could be loaded into 3333 * some TLBs while the old PTE remains in others. 3334 */ 3335 ptep_clear_flush(vma, vmf->address, vmf->pte); 3336 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3337 folio_add_lru_vma(new_folio, vma); 3338 /* 3339 * We call the notify macro here because, when using secondary 3340 * mmu page tables (such as kvm shadow page tables), we want the 3341 * new page to be mapped directly into the secondary page table. 3342 */ 3343 BUG_ON(unshare && pte_write(entry)); 3344 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3345 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3346 if (old_folio) { 3347 /* 3348 * Only after switching the pte to the new page may 3349 * we remove the mapcount here. Otherwise another 3350 * process may come and find the rmap count decremented 3351 * before the pte is switched to the new page, and 3352 * "reuse" the old page writing into it while our pte 3353 * here still points into it and can be read by other 3354 * threads. 3355 * 3356 * The critical issue is to order this 3357 * folio_remove_rmap_pte() with the ptp_clear_flush 3358 * above. Those stores are ordered by (if nothing else,) 3359 * the barrier present in the atomic_add_negative 3360 * in folio_remove_rmap_pte(); 3361 * 3362 * Then the TLB flush in ptep_clear_flush ensures that 3363 * no process can access the old page before the 3364 * decremented mapcount is visible. And the old page 3365 * cannot be reused until after the decremented 3366 * mapcount is visible. So transitively, TLBs to 3367 * old page will be flushed before it can be reused. 3368 */ 3369 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3370 } 3371 3372 /* Free the old page.. */ 3373 new_folio = old_folio; 3374 page_copied = 1; 3375 pte_unmap_unlock(vmf->pte, vmf->ptl); 3376 } else if (vmf->pte) { 3377 update_mmu_tlb(vma, vmf->address, vmf->pte); 3378 pte_unmap_unlock(vmf->pte, vmf->ptl); 3379 } 3380 3381 mmu_notifier_invalidate_range_end(&range); 3382 3383 if (new_folio) 3384 folio_put(new_folio); 3385 if (old_folio) { 3386 if (page_copied) 3387 free_swap_cache(old_folio); 3388 folio_put(old_folio); 3389 } 3390 3391 delayacct_wpcopy_end(); 3392 return 0; 3393 oom: 3394 ret = VM_FAULT_OOM; 3395 out: 3396 if (old_folio) 3397 folio_put(old_folio); 3398 3399 delayacct_wpcopy_end(); 3400 return ret; 3401 } 3402 3403 /** 3404 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3405 * writeable once the page is prepared 3406 * 3407 * @vmf: structure describing the fault 3408 * @folio: the folio of vmf->page 3409 * 3410 * This function handles all that is needed to finish a write page fault in a 3411 * shared mapping due to PTE being read-only once the mapped page is prepared. 3412 * It handles locking of PTE and modifying it. 3413 * 3414 * The function expects the page to be locked or other protection against 3415 * concurrent faults / writeback (such as DAX radix tree locks). 3416 * 3417 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3418 * we acquired PTE lock. 3419 */ 3420 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3421 { 3422 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3423 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3424 &vmf->ptl); 3425 if (!vmf->pte) 3426 return VM_FAULT_NOPAGE; 3427 /* 3428 * We might have raced with another page fault while we released the 3429 * pte_offset_map_lock. 3430 */ 3431 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3432 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3433 pte_unmap_unlock(vmf->pte, vmf->ptl); 3434 return VM_FAULT_NOPAGE; 3435 } 3436 wp_page_reuse(vmf, folio); 3437 return 0; 3438 } 3439 3440 /* 3441 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3442 * mapping 3443 */ 3444 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3445 { 3446 struct vm_area_struct *vma = vmf->vma; 3447 3448 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3449 vm_fault_t ret; 3450 3451 pte_unmap_unlock(vmf->pte, vmf->ptl); 3452 ret = vmf_can_call_fault(vmf); 3453 if (ret) 3454 return ret; 3455 3456 vmf->flags |= FAULT_FLAG_MKWRITE; 3457 ret = vma->vm_ops->pfn_mkwrite(vmf); 3458 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3459 return ret; 3460 return finish_mkwrite_fault(vmf, NULL); 3461 } 3462 wp_page_reuse(vmf, NULL); 3463 return 0; 3464 } 3465 3466 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3467 __releases(vmf->ptl) 3468 { 3469 struct vm_area_struct *vma = vmf->vma; 3470 vm_fault_t ret = 0; 3471 3472 folio_get(folio); 3473 3474 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3475 vm_fault_t tmp; 3476 3477 pte_unmap_unlock(vmf->pte, vmf->ptl); 3478 tmp = vmf_can_call_fault(vmf); 3479 if (tmp) { 3480 folio_put(folio); 3481 return tmp; 3482 } 3483 3484 tmp = do_page_mkwrite(vmf, folio); 3485 if (unlikely(!tmp || (tmp & 3486 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3487 folio_put(folio); 3488 return tmp; 3489 } 3490 tmp = finish_mkwrite_fault(vmf, folio); 3491 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3492 folio_unlock(folio); 3493 folio_put(folio); 3494 return tmp; 3495 } 3496 } else { 3497 wp_page_reuse(vmf, folio); 3498 folio_lock(folio); 3499 } 3500 ret |= fault_dirty_shared_page(vmf); 3501 folio_put(folio); 3502 3503 return ret; 3504 } 3505 3506 static bool wp_can_reuse_anon_folio(struct folio *folio, 3507 struct vm_area_struct *vma) 3508 { 3509 /* 3510 * We could currently only reuse a subpage of a large folio if no 3511 * other subpages of the large folios are still mapped. However, 3512 * let's just consistently not reuse subpages even if we could 3513 * reuse in that scenario, and give back a large folio a bit 3514 * sooner. 3515 */ 3516 if (folio_test_large(folio)) 3517 return false; 3518 3519 /* 3520 * We have to verify under folio lock: these early checks are 3521 * just an optimization to avoid locking the folio and freeing 3522 * the swapcache if there is little hope that we can reuse. 3523 * 3524 * KSM doesn't necessarily raise the folio refcount. 3525 */ 3526 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3527 return false; 3528 if (!folio_test_lru(folio)) 3529 /* 3530 * We cannot easily detect+handle references from 3531 * remote LRU caches or references to LRU folios. 3532 */ 3533 lru_add_drain(); 3534 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3535 return false; 3536 if (!folio_trylock(folio)) 3537 return false; 3538 if (folio_test_swapcache(folio)) 3539 folio_free_swap(folio); 3540 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3541 folio_unlock(folio); 3542 return false; 3543 } 3544 /* 3545 * Ok, we've got the only folio reference from our mapping 3546 * and the folio is locked, it's dark out, and we're wearing 3547 * sunglasses. Hit it. 3548 */ 3549 folio_move_anon_rmap(folio, vma); 3550 folio_unlock(folio); 3551 return true; 3552 } 3553 3554 /* 3555 * This routine handles present pages, when 3556 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3557 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3558 * (FAULT_FLAG_UNSHARE) 3559 * 3560 * It is done by copying the page to a new address and decrementing the 3561 * shared-page counter for the old page. 3562 * 3563 * Note that this routine assumes that the protection checks have been 3564 * done by the caller (the low-level page fault routine in most cases). 3565 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3566 * done any necessary COW. 3567 * 3568 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3569 * though the page will change only once the write actually happens. This 3570 * avoids a few races, and potentially makes it more efficient. 3571 * 3572 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3573 * but allow concurrent faults), with pte both mapped and locked. 3574 * We return with mmap_lock still held, but pte unmapped and unlocked. 3575 */ 3576 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3577 __releases(vmf->ptl) 3578 { 3579 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3580 struct vm_area_struct *vma = vmf->vma; 3581 struct folio *folio = NULL; 3582 pte_t pte; 3583 3584 if (likely(!unshare)) { 3585 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3586 if (!userfaultfd_wp_async(vma)) { 3587 pte_unmap_unlock(vmf->pte, vmf->ptl); 3588 return handle_userfault(vmf, VM_UFFD_WP); 3589 } 3590 3591 /* 3592 * Nothing needed (cache flush, TLB invalidations, 3593 * etc.) because we're only removing the uffd-wp bit, 3594 * which is completely invisible to the user. 3595 */ 3596 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3597 3598 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3599 /* 3600 * Update this to be prepared for following up CoW 3601 * handling 3602 */ 3603 vmf->orig_pte = pte; 3604 } 3605 3606 /* 3607 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3608 * is flushed in this case before copying. 3609 */ 3610 if (unlikely(userfaultfd_wp(vmf->vma) && 3611 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3612 flush_tlb_page(vmf->vma, vmf->address); 3613 } 3614 3615 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3616 3617 if (vmf->page) 3618 folio = page_folio(vmf->page); 3619 3620 /* 3621 * Shared mapping: we are guaranteed to have VM_WRITE and 3622 * FAULT_FLAG_WRITE set at this point. 3623 */ 3624 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3625 /* 3626 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3627 * VM_PFNMAP VMA. 3628 * 3629 * We should not cow pages in a shared writeable mapping. 3630 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3631 */ 3632 if (!vmf->page) 3633 return wp_pfn_shared(vmf); 3634 return wp_page_shared(vmf, folio); 3635 } 3636 3637 /* 3638 * Private mapping: create an exclusive anonymous page copy if reuse 3639 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3640 * 3641 * If we encounter a page that is marked exclusive, we must reuse 3642 * the page without further checks. 3643 */ 3644 if (folio && folio_test_anon(folio) && 3645 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3646 if (!PageAnonExclusive(vmf->page)) 3647 SetPageAnonExclusive(vmf->page); 3648 if (unlikely(unshare)) { 3649 pte_unmap_unlock(vmf->pte, vmf->ptl); 3650 return 0; 3651 } 3652 wp_page_reuse(vmf, folio); 3653 return 0; 3654 } 3655 /* 3656 * Ok, we need to copy. Oh, well.. 3657 */ 3658 if (folio) 3659 folio_get(folio); 3660 3661 pte_unmap_unlock(vmf->pte, vmf->ptl); 3662 #ifdef CONFIG_KSM 3663 if (folio && folio_test_ksm(folio)) 3664 count_vm_event(COW_KSM); 3665 #endif 3666 return wp_page_copy(vmf); 3667 } 3668 3669 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3670 unsigned long start_addr, unsigned long end_addr, 3671 struct zap_details *details) 3672 { 3673 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3674 } 3675 3676 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3677 pgoff_t first_index, 3678 pgoff_t last_index, 3679 struct zap_details *details) 3680 { 3681 struct vm_area_struct *vma; 3682 pgoff_t vba, vea, zba, zea; 3683 3684 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3685 vba = vma->vm_pgoff; 3686 vea = vba + vma_pages(vma) - 1; 3687 zba = max(first_index, vba); 3688 zea = min(last_index, vea); 3689 3690 unmap_mapping_range_vma(vma, 3691 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3692 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3693 details); 3694 } 3695 } 3696 3697 /** 3698 * unmap_mapping_folio() - Unmap single folio from processes. 3699 * @folio: The locked folio to be unmapped. 3700 * 3701 * Unmap this folio from any userspace process which still has it mmaped. 3702 * Typically, for efficiency, the range of nearby pages has already been 3703 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3704 * truncation or invalidation holds the lock on a folio, it may find that 3705 * the page has been remapped again: and then uses unmap_mapping_folio() 3706 * to unmap it finally. 3707 */ 3708 void unmap_mapping_folio(struct folio *folio) 3709 { 3710 struct address_space *mapping = folio->mapping; 3711 struct zap_details details = { }; 3712 pgoff_t first_index; 3713 pgoff_t last_index; 3714 3715 VM_BUG_ON(!folio_test_locked(folio)); 3716 3717 first_index = folio->index; 3718 last_index = folio_next_index(folio) - 1; 3719 3720 details.even_cows = false; 3721 details.single_folio = folio; 3722 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3723 3724 i_mmap_lock_read(mapping); 3725 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3726 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3727 last_index, &details); 3728 i_mmap_unlock_read(mapping); 3729 } 3730 3731 /** 3732 * unmap_mapping_pages() - Unmap pages from processes. 3733 * @mapping: The address space containing pages to be unmapped. 3734 * @start: Index of first page to be unmapped. 3735 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3736 * @even_cows: Whether to unmap even private COWed pages. 3737 * 3738 * Unmap the pages in this address space from any userspace process which 3739 * has them mmaped. Generally, you want to remove COWed pages as well when 3740 * a file is being truncated, but not when invalidating pages from the page 3741 * cache. 3742 */ 3743 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3744 pgoff_t nr, bool even_cows) 3745 { 3746 struct zap_details details = { }; 3747 pgoff_t first_index = start; 3748 pgoff_t last_index = start + nr - 1; 3749 3750 details.even_cows = even_cows; 3751 if (last_index < first_index) 3752 last_index = ULONG_MAX; 3753 3754 i_mmap_lock_read(mapping); 3755 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3756 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3757 last_index, &details); 3758 i_mmap_unlock_read(mapping); 3759 } 3760 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3761 3762 /** 3763 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3764 * address_space corresponding to the specified byte range in the underlying 3765 * file. 3766 * 3767 * @mapping: the address space containing mmaps to be unmapped. 3768 * @holebegin: byte in first page to unmap, relative to the start of 3769 * the underlying file. This will be rounded down to a PAGE_SIZE 3770 * boundary. Note that this is different from truncate_pagecache(), which 3771 * must keep the partial page. In contrast, we must get rid of 3772 * partial pages. 3773 * @holelen: size of prospective hole in bytes. This will be rounded 3774 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3775 * end of the file. 3776 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3777 * but 0 when invalidating pagecache, don't throw away private data. 3778 */ 3779 void unmap_mapping_range(struct address_space *mapping, 3780 loff_t const holebegin, loff_t const holelen, int even_cows) 3781 { 3782 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3783 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3784 3785 /* Check for overflow. */ 3786 if (sizeof(holelen) > sizeof(hlen)) { 3787 long long holeend = 3788 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3789 if (holeend & ~(long long)ULONG_MAX) 3790 hlen = ULONG_MAX - hba + 1; 3791 } 3792 3793 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3794 } 3795 EXPORT_SYMBOL(unmap_mapping_range); 3796 3797 /* 3798 * Restore a potential device exclusive pte to a working pte entry 3799 */ 3800 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3801 { 3802 struct folio *folio = page_folio(vmf->page); 3803 struct vm_area_struct *vma = vmf->vma; 3804 struct mmu_notifier_range range; 3805 vm_fault_t ret; 3806 3807 /* 3808 * We need a reference to lock the folio because we don't hold 3809 * the PTL so a racing thread can remove the device-exclusive 3810 * entry and unmap it. If the folio is free the entry must 3811 * have been removed already. If it happens to have already 3812 * been re-allocated after being freed all we do is lock and 3813 * unlock it. 3814 */ 3815 if (!folio_try_get(folio)) 3816 return 0; 3817 3818 ret = folio_lock_or_retry(folio, vmf); 3819 if (ret) { 3820 folio_put(folio); 3821 return ret; 3822 } 3823 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3824 vma->vm_mm, vmf->address & PAGE_MASK, 3825 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3826 mmu_notifier_invalidate_range_start(&range); 3827 3828 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3829 &vmf->ptl); 3830 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3831 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3832 3833 if (vmf->pte) 3834 pte_unmap_unlock(vmf->pte, vmf->ptl); 3835 folio_unlock(folio); 3836 folio_put(folio); 3837 3838 mmu_notifier_invalidate_range_end(&range); 3839 return 0; 3840 } 3841 3842 static inline bool should_try_to_free_swap(struct folio *folio, 3843 struct vm_area_struct *vma, 3844 unsigned int fault_flags) 3845 { 3846 if (!folio_test_swapcache(folio)) 3847 return false; 3848 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3849 folio_test_mlocked(folio)) 3850 return true; 3851 /* 3852 * If we want to map a page that's in the swapcache writable, we 3853 * have to detect via the refcount if we're really the exclusive 3854 * user. Try freeing the swapcache to get rid of the swapcache 3855 * reference only in case it's likely that we'll be the exlusive user. 3856 */ 3857 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3858 folio_ref_count(folio) == 2; 3859 } 3860 3861 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3862 { 3863 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3864 vmf->address, &vmf->ptl); 3865 if (!vmf->pte) 3866 return 0; 3867 /* 3868 * Be careful so that we will only recover a special uffd-wp pte into a 3869 * none pte. Otherwise it means the pte could have changed, so retry. 3870 * 3871 * This should also cover the case where e.g. the pte changed 3872 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3873 * So is_pte_marker() check is not enough to safely drop the pte. 3874 */ 3875 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3876 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3877 pte_unmap_unlock(vmf->pte, vmf->ptl); 3878 return 0; 3879 } 3880 3881 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3882 { 3883 if (vma_is_anonymous(vmf->vma)) 3884 return do_anonymous_page(vmf); 3885 else 3886 return do_fault(vmf); 3887 } 3888 3889 /* 3890 * This is actually a page-missing access, but with uffd-wp special pte 3891 * installed. It means this pte was wr-protected before being unmapped. 3892 */ 3893 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3894 { 3895 /* 3896 * Just in case there're leftover special ptes even after the region 3897 * got unregistered - we can simply clear them. 3898 */ 3899 if (unlikely(!userfaultfd_wp(vmf->vma))) 3900 return pte_marker_clear(vmf); 3901 3902 return do_pte_missing(vmf); 3903 } 3904 3905 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3906 { 3907 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3908 unsigned long marker = pte_marker_get(entry); 3909 3910 /* 3911 * PTE markers should never be empty. If anything weird happened, 3912 * the best thing to do is to kill the process along with its mm. 3913 */ 3914 if (WARN_ON_ONCE(!marker)) 3915 return VM_FAULT_SIGBUS; 3916 3917 /* Higher priority than uffd-wp when data corrupted */ 3918 if (marker & PTE_MARKER_POISONED) 3919 return VM_FAULT_HWPOISON; 3920 3921 if (pte_marker_entry_uffd_wp(entry)) 3922 return pte_marker_handle_uffd_wp(vmf); 3923 3924 /* This is an unknown pte marker */ 3925 return VM_FAULT_SIGBUS; 3926 } 3927 3928 /* 3929 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3930 * but allow concurrent faults), and pte mapped but not yet locked. 3931 * We return with pte unmapped and unlocked. 3932 * 3933 * We return with the mmap_lock locked or unlocked in the same cases 3934 * as does filemap_fault(). 3935 */ 3936 vm_fault_t do_swap_page(struct vm_fault *vmf) 3937 { 3938 struct vm_area_struct *vma = vmf->vma; 3939 struct folio *swapcache, *folio = NULL; 3940 struct page *page; 3941 struct swap_info_struct *si = NULL; 3942 rmap_t rmap_flags = RMAP_NONE; 3943 bool need_clear_cache = false; 3944 bool exclusive = false; 3945 swp_entry_t entry; 3946 pte_t pte; 3947 vm_fault_t ret = 0; 3948 void *shadow = NULL; 3949 3950 if (!pte_unmap_same(vmf)) 3951 goto out; 3952 3953 entry = pte_to_swp_entry(vmf->orig_pte); 3954 if (unlikely(non_swap_entry(entry))) { 3955 if (is_migration_entry(entry)) { 3956 migration_entry_wait(vma->vm_mm, vmf->pmd, 3957 vmf->address); 3958 } else if (is_device_exclusive_entry(entry)) { 3959 vmf->page = pfn_swap_entry_to_page(entry); 3960 ret = remove_device_exclusive_entry(vmf); 3961 } else if (is_device_private_entry(entry)) { 3962 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3963 /* 3964 * migrate_to_ram is not yet ready to operate 3965 * under VMA lock. 3966 */ 3967 vma_end_read(vma); 3968 ret = VM_FAULT_RETRY; 3969 goto out; 3970 } 3971 3972 vmf->page = pfn_swap_entry_to_page(entry); 3973 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3974 vmf->address, &vmf->ptl); 3975 if (unlikely(!vmf->pte || 3976 !pte_same(ptep_get(vmf->pte), 3977 vmf->orig_pte))) 3978 goto unlock; 3979 3980 /* 3981 * Get a page reference while we know the page can't be 3982 * freed. 3983 */ 3984 get_page(vmf->page); 3985 pte_unmap_unlock(vmf->pte, vmf->ptl); 3986 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3987 put_page(vmf->page); 3988 } else if (is_hwpoison_entry(entry)) { 3989 ret = VM_FAULT_HWPOISON; 3990 } else if (is_pte_marker_entry(entry)) { 3991 ret = handle_pte_marker(vmf); 3992 } else { 3993 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3994 ret = VM_FAULT_SIGBUS; 3995 } 3996 goto out; 3997 } 3998 3999 /* Prevent swapoff from happening to us. */ 4000 si = get_swap_device(entry); 4001 if (unlikely(!si)) 4002 goto out; 4003 4004 folio = swap_cache_get_folio(entry, vma, vmf->address); 4005 if (folio) 4006 page = folio_file_page(folio, swp_offset(entry)); 4007 swapcache = folio; 4008 4009 if (!folio) { 4010 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4011 __swap_count(entry) == 1) { 4012 /* 4013 * Prevent parallel swapin from proceeding with 4014 * the cache flag. Otherwise, another thread may 4015 * finish swapin first, free the entry, and swapout 4016 * reusing the same entry. It's undetectable as 4017 * pte_same() returns true due to entry reuse. 4018 */ 4019 if (swapcache_prepare(entry)) { 4020 /* Relax a bit to prevent rapid repeated page faults */ 4021 schedule_timeout_uninterruptible(1); 4022 goto out; 4023 } 4024 need_clear_cache = true; 4025 4026 /* skip swapcache */ 4027 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 4028 vma, vmf->address, false); 4029 page = &folio->page; 4030 if (folio) { 4031 __folio_set_locked(folio); 4032 __folio_set_swapbacked(folio); 4033 4034 if (mem_cgroup_swapin_charge_folio(folio, 4035 vma->vm_mm, GFP_KERNEL, 4036 entry)) { 4037 ret = VM_FAULT_OOM; 4038 goto out_page; 4039 } 4040 mem_cgroup_swapin_uncharge_swap(entry); 4041 4042 shadow = get_shadow_from_swap_cache(entry); 4043 if (shadow) 4044 workingset_refault(folio, shadow); 4045 4046 folio_add_lru(folio); 4047 4048 /* To provide entry to swap_read_folio() */ 4049 folio->swap = entry; 4050 swap_read_folio(folio, true, NULL); 4051 folio->private = NULL; 4052 } 4053 } else { 4054 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4055 vmf); 4056 if (page) 4057 folio = page_folio(page); 4058 swapcache = folio; 4059 } 4060 4061 if (!folio) { 4062 /* 4063 * Back out if somebody else faulted in this pte 4064 * while we released the pte lock. 4065 */ 4066 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4067 vmf->address, &vmf->ptl); 4068 if (likely(vmf->pte && 4069 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4070 ret = VM_FAULT_OOM; 4071 goto unlock; 4072 } 4073 4074 /* Had to read the page from swap area: Major fault */ 4075 ret = VM_FAULT_MAJOR; 4076 count_vm_event(PGMAJFAULT); 4077 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4078 } else if (PageHWPoison(page)) { 4079 /* 4080 * hwpoisoned dirty swapcache pages are kept for killing 4081 * owner processes (which may be unknown at hwpoison time) 4082 */ 4083 ret = VM_FAULT_HWPOISON; 4084 goto out_release; 4085 } 4086 4087 ret |= folio_lock_or_retry(folio, vmf); 4088 if (ret & VM_FAULT_RETRY) 4089 goto out_release; 4090 4091 if (swapcache) { 4092 /* 4093 * Make sure folio_free_swap() or swapoff did not release the 4094 * swapcache from under us. The page pin, and pte_same test 4095 * below, are not enough to exclude that. Even if it is still 4096 * swapcache, we need to check that the page's swap has not 4097 * changed. 4098 */ 4099 if (unlikely(!folio_test_swapcache(folio) || 4100 page_swap_entry(page).val != entry.val)) 4101 goto out_page; 4102 4103 /* 4104 * KSM sometimes has to copy on read faults, for example, if 4105 * page->index of !PageKSM() pages would be nonlinear inside the 4106 * anon VMA -- PageKSM() is lost on actual swapout. 4107 */ 4108 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4109 if (unlikely(!folio)) { 4110 ret = VM_FAULT_OOM; 4111 folio = swapcache; 4112 goto out_page; 4113 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4114 ret = VM_FAULT_HWPOISON; 4115 folio = swapcache; 4116 goto out_page; 4117 } 4118 if (folio != swapcache) 4119 page = folio_page(folio, 0); 4120 4121 /* 4122 * If we want to map a page that's in the swapcache writable, we 4123 * have to detect via the refcount if we're really the exclusive 4124 * owner. Try removing the extra reference from the local LRU 4125 * caches if required. 4126 */ 4127 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4128 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4129 lru_add_drain(); 4130 } 4131 4132 folio_throttle_swaprate(folio, GFP_KERNEL); 4133 4134 /* 4135 * Back out if somebody else already faulted in this pte. 4136 */ 4137 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4138 &vmf->ptl); 4139 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4140 goto out_nomap; 4141 4142 if (unlikely(!folio_test_uptodate(folio))) { 4143 ret = VM_FAULT_SIGBUS; 4144 goto out_nomap; 4145 } 4146 4147 /* 4148 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4149 * must never point at an anonymous page in the swapcache that is 4150 * PG_anon_exclusive. Sanity check that this holds and especially, that 4151 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4152 * check after taking the PT lock and making sure that nobody 4153 * concurrently faulted in this page and set PG_anon_exclusive. 4154 */ 4155 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4156 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4157 4158 /* 4159 * Check under PT lock (to protect against concurrent fork() sharing 4160 * the swap entry concurrently) for certainly exclusive pages. 4161 */ 4162 if (!folio_test_ksm(folio)) { 4163 exclusive = pte_swp_exclusive(vmf->orig_pte); 4164 if (folio != swapcache) { 4165 /* 4166 * We have a fresh page that is not exposed to the 4167 * swapcache -> certainly exclusive. 4168 */ 4169 exclusive = true; 4170 } else if (exclusive && folio_test_writeback(folio) && 4171 data_race(si->flags & SWP_STABLE_WRITES)) { 4172 /* 4173 * This is tricky: not all swap backends support 4174 * concurrent page modifications while under writeback. 4175 * 4176 * So if we stumble over such a page in the swapcache 4177 * we must not set the page exclusive, otherwise we can 4178 * map it writable without further checks and modify it 4179 * while still under writeback. 4180 * 4181 * For these problematic swap backends, simply drop the 4182 * exclusive marker: this is perfectly fine as we start 4183 * writeback only if we fully unmapped the page and 4184 * there are no unexpected references on the page after 4185 * unmapping succeeded. After fully unmapped, no 4186 * further GUP references (FOLL_GET and FOLL_PIN) can 4187 * appear, so dropping the exclusive marker and mapping 4188 * it only R/O is fine. 4189 */ 4190 exclusive = false; 4191 } 4192 } 4193 4194 /* 4195 * Some architectures may have to restore extra metadata to the page 4196 * when reading from swap. This metadata may be indexed by swap entry 4197 * so this must be called before swap_free(). 4198 */ 4199 arch_swap_restore(folio_swap(entry, folio), folio); 4200 4201 /* 4202 * Remove the swap entry and conditionally try to free up the swapcache. 4203 * We're already holding a reference on the page but haven't mapped it 4204 * yet. 4205 */ 4206 swap_free(entry); 4207 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4208 folio_free_swap(folio); 4209 4210 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4211 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 4212 pte = mk_pte(page, vma->vm_page_prot); 4213 4214 /* 4215 * Same logic as in do_wp_page(); however, optimize for pages that are 4216 * certainly not shared either because we just allocated them without 4217 * exposing them to the swapcache or because the swap entry indicates 4218 * exclusivity. 4219 */ 4220 if (!folio_test_ksm(folio) && 4221 (exclusive || folio_ref_count(folio) == 1)) { 4222 if (vmf->flags & FAULT_FLAG_WRITE) { 4223 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 4224 vmf->flags &= ~FAULT_FLAG_WRITE; 4225 } 4226 rmap_flags |= RMAP_EXCLUSIVE; 4227 } 4228 flush_icache_page(vma, page); 4229 if (pte_swp_soft_dirty(vmf->orig_pte)) 4230 pte = pte_mksoft_dirty(pte); 4231 if (pte_swp_uffd_wp(vmf->orig_pte)) 4232 pte = pte_mkuffd_wp(pte); 4233 vmf->orig_pte = pte; 4234 4235 /* ksm created a completely new copy */ 4236 if (unlikely(folio != swapcache && swapcache)) { 4237 folio_add_new_anon_rmap(folio, vma, vmf->address); 4238 folio_add_lru_vma(folio, vma); 4239 } else { 4240 folio_add_anon_rmap_pte(folio, page, vma, vmf->address, 4241 rmap_flags); 4242 } 4243 4244 VM_BUG_ON(!folio_test_anon(folio) || 4245 (pte_write(pte) && !PageAnonExclusive(page))); 4246 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4247 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 4248 4249 folio_unlock(folio); 4250 if (folio != swapcache && swapcache) { 4251 /* 4252 * Hold the lock to avoid the swap entry to be reused 4253 * until we take the PT lock for the pte_same() check 4254 * (to avoid false positives from pte_same). For 4255 * further safety release the lock after the swap_free 4256 * so that the swap count won't change under a 4257 * parallel locked swapcache. 4258 */ 4259 folio_unlock(swapcache); 4260 folio_put(swapcache); 4261 } 4262 4263 if (vmf->flags & FAULT_FLAG_WRITE) { 4264 ret |= do_wp_page(vmf); 4265 if (ret & VM_FAULT_ERROR) 4266 ret &= VM_FAULT_ERROR; 4267 goto out; 4268 } 4269 4270 /* No need to invalidate - it was non-present before */ 4271 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4272 unlock: 4273 if (vmf->pte) 4274 pte_unmap_unlock(vmf->pte, vmf->ptl); 4275 out: 4276 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4277 if (need_clear_cache) 4278 swapcache_clear(si, entry); 4279 if (si) 4280 put_swap_device(si); 4281 return ret; 4282 out_nomap: 4283 if (vmf->pte) 4284 pte_unmap_unlock(vmf->pte, vmf->ptl); 4285 out_page: 4286 folio_unlock(folio); 4287 out_release: 4288 folio_put(folio); 4289 if (folio != swapcache && swapcache) { 4290 folio_unlock(swapcache); 4291 folio_put(swapcache); 4292 } 4293 if (need_clear_cache) 4294 swapcache_clear(si, entry); 4295 if (si) 4296 put_swap_device(si); 4297 return ret; 4298 } 4299 4300 static bool pte_range_none(pte_t *pte, int nr_pages) 4301 { 4302 int i; 4303 4304 for (i = 0; i < nr_pages; i++) { 4305 if (!pte_none(ptep_get_lockless(pte + i))) 4306 return false; 4307 } 4308 4309 return true; 4310 } 4311 4312 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4313 { 4314 struct vm_area_struct *vma = vmf->vma; 4315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4316 unsigned long orders; 4317 struct folio *folio; 4318 unsigned long addr; 4319 pte_t *pte; 4320 gfp_t gfp; 4321 int order; 4322 4323 /* 4324 * If uffd is active for the vma we need per-page fault fidelity to 4325 * maintain the uffd semantics. 4326 */ 4327 if (unlikely(userfaultfd_armed(vma))) 4328 goto fallback; 4329 4330 /* 4331 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4332 * for this vma. Then filter out the orders that can't be allocated over 4333 * the faulting address and still be fully contained in the vma. 4334 */ 4335 orders = thp_vma_allowable_orders(vma, vma->vm_flags, false, true, true, 4336 BIT(PMD_ORDER) - 1); 4337 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4338 4339 if (!orders) 4340 goto fallback; 4341 4342 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4343 if (!pte) 4344 return ERR_PTR(-EAGAIN); 4345 4346 /* 4347 * Find the highest order where the aligned range is completely 4348 * pte_none(). Note that all remaining orders will be completely 4349 * pte_none(). 4350 */ 4351 order = highest_order(orders); 4352 while (orders) { 4353 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4354 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4355 break; 4356 order = next_order(&orders, order); 4357 } 4358 4359 pte_unmap(pte); 4360 4361 /* Try allocating the highest of the remaining orders. */ 4362 gfp = vma_thp_gfp_mask(vma); 4363 while (orders) { 4364 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4365 folio = vma_alloc_folio(gfp, order, vma, addr, true); 4366 if (folio) { 4367 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4368 folio_put(folio); 4369 goto next; 4370 } 4371 folio_throttle_swaprate(folio, gfp); 4372 clear_huge_page(&folio->page, vmf->address, 1 << order); 4373 return folio; 4374 } 4375 next: 4376 order = next_order(&orders, order); 4377 } 4378 4379 fallback: 4380 #endif 4381 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4382 } 4383 4384 /* 4385 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4386 * but allow concurrent faults), and pte mapped but not yet locked. 4387 * We return with mmap_lock still held, but pte unmapped and unlocked. 4388 */ 4389 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4390 { 4391 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4392 struct vm_area_struct *vma = vmf->vma; 4393 unsigned long addr = vmf->address; 4394 struct folio *folio; 4395 vm_fault_t ret = 0; 4396 int nr_pages = 1; 4397 pte_t entry; 4398 int i; 4399 4400 /* File mapping without ->vm_ops ? */ 4401 if (vma->vm_flags & VM_SHARED) 4402 return VM_FAULT_SIGBUS; 4403 4404 /* 4405 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4406 * be distinguished from a transient failure of pte_offset_map(). 4407 */ 4408 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4409 return VM_FAULT_OOM; 4410 4411 /* Use the zero-page for reads */ 4412 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4413 !mm_forbids_zeropage(vma->vm_mm)) { 4414 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4415 vma->vm_page_prot)); 4416 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4417 vmf->address, &vmf->ptl); 4418 if (!vmf->pte) 4419 goto unlock; 4420 if (vmf_pte_changed(vmf)) { 4421 update_mmu_tlb(vma, vmf->address, vmf->pte); 4422 goto unlock; 4423 } 4424 ret = check_stable_address_space(vma->vm_mm); 4425 if (ret) 4426 goto unlock; 4427 /* Deliver the page fault to userland, check inside PT lock */ 4428 if (userfaultfd_missing(vma)) { 4429 pte_unmap_unlock(vmf->pte, vmf->ptl); 4430 return handle_userfault(vmf, VM_UFFD_MISSING); 4431 } 4432 goto setpte; 4433 } 4434 4435 /* Allocate our own private page. */ 4436 if (unlikely(anon_vma_prepare(vma))) 4437 goto oom; 4438 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 4439 folio = alloc_anon_folio(vmf); 4440 if (IS_ERR(folio)) 4441 return 0; 4442 if (!folio) 4443 goto oom; 4444 4445 nr_pages = folio_nr_pages(folio); 4446 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4447 4448 /* 4449 * The memory barrier inside __folio_mark_uptodate makes sure that 4450 * preceding stores to the page contents become visible before 4451 * the set_pte_at() write. 4452 */ 4453 __folio_mark_uptodate(folio); 4454 4455 entry = mk_pte(&folio->page, vma->vm_page_prot); 4456 entry = pte_sw_mkyoung(entry); 4457 if (vma->vm_flags & VM_WRITE) 4458 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4459 4460 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 4461 if (!vmf->pte) 4462 goto release; 4463 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 4464 update_mmu_tlb(vma, addr, vmf->pte); 4465 goto release; 4466 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 4467 for (i = 0; i < nr_pages; i++) 4468 update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i); 4469 goto release; 4470 } 4471 4472 ret = check_stable_address_space(vma->vm_mm); 4473 if (ret) 4474 goto release; 4475 4476 /* Deliver the page fault to userland, check inside PT lock */ 4477 if (userfaultfd_missing(vma)) { 4478 pte_unmap_unlock(vmf->pte, vmf->ptl); 4479 folio_put(folio); 4480 return handle_userfault(vmf, VM_UFFD_MISSING); 4481 } 4482 4483 folio_ref_add(folio, nr_pages - 1); 4484 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4485 folio_add_new_anon_rmap(folio, vma, addr); 4486 folio_add_lru_vma(folio, vma); 4487 setpte: 4488 if (uffd_wp) 4489 entry = pte_mkuffd_wp(entry); 4490 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 4491 4492 /* No need to invalidate - it was non-present before */ 4493 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 4494 unlock: 4495 if (vmf->pte) 4496 pte_unmap_unlock(vmf->pte, vmf->ptl); 4497 return ret; 4498 release: 4499 folio_put(folio); 4500 goto unlock; 4501 oom: 4502 return VM_FAULT_OOM; 4503 } 4504 4505 /* 4506 * The mmap_lock must have been held on entry, and may have been 4507 * released depending on flags and vma->vm_ops->fault() return value. 4508 * See filemap_fault() and __lock_page_retry(). 4509 */ 4510 static vm_fault_t __do_fault(struct vm_fault *vmf) 4511 { 4512 struct vm_area_struct *vma = vmf->vma; 4513 struct folio *folio; 4514 vm_fault_t ret; 4515 4516 /* 4517 * Preallocate pte before we take page_lock because this might lead to 4518 * deadlocks for memcg reclaim which waits for pages under writeback: 4519 * lock_page(A) 4520 * SetPageWriteback(A) 4521 * unlock_page(A) 4522 * lock_page(B) 4523 * lock_page(B) 4524 * pte_alloc_one 4525 * shrink_page_list 4526 * wait_on_page_writeback(A) 4527 * SetPageWriteback(B) 4528 * unlock_page(B) 4529 * # flush A, B to clear the writeback 4530 */ 4531 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4532 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4533 if (!vmf->prealloc_pte) 4534 return VM_FAULT_OOM; 4535 } 4536 4537 ret = vma->vm_ops->fault(vmf); 4538 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4539 VM_FAULT_DONE_COW))) 4540 return ret; 4541 4542 folio = page_folio(vmf->page); 4543 if (unlikely(PageHWPoison(vmf->page))) { 4544 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4545 if (ret & VM_FAULT_LOCKED) { 4546 if (page_mapped(vmf->page)) 4547 unmap_mapping_folio(folio); 4548 /* Retry if a clean folio was removed from the cache. */ 4549 if (mapping_evict_folio(folio->mapping, folio)) 4550 poisonret = VM_FAULT_NOPAGE; 4551 folio_unlock(folio); 4552 } 4553 folio_put(folio); 4554 vmf->page = NULL; 4555 return poisonret; 4556 } 4557 4558 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4559 folio_lock(folio); 4560 else 4561 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 4562 4563 return ret; 4564 } 4565 4566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4567 static void deposit_prealloc_pte(struct vm_fault *vmf) 4568 { 4569 struct vm_area_struct *vma = vmf->vma; 4570 4571 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4572 /* 4573 * We are going to consume the prealloc table, 4574 * count that as nr_ptes. 4575 */ 4576 mm_inc_nr_ptes(vma->vm_mm); 4577 vmf->prealloc_pte = NULL; 4578 } 4579 4580 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4581 { 4582 struct folio *folio = page_folio(page); 4583 struct vm_area_struct *vma = vmf->vma; 4584 bool write = vmf->flags & FAULT_FLAG_WRITE; 4585 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4586 pmd_t entry; 4587 vm_fault_t ret = VM_FAULT_FALLBACK; 4588 4589 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 4590 return ret; 4591 4592 if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER) 4593 return ret; 4594 4595 /* 4596 * Just backoff if any subpage of a THP is corrupted otherwise 4597 * the corrupted page may mapped by PMD silently to escape the 4598 * check. This kind of THP just can be PTE mapped. Access to 4599 * the corrupted subpage should trigger SIGBUS as expected. 4600 */ 4601 if (unlikely(folio_test_has_hwpoisoned(folio))) 4602 return ret; 4603 4604 /* 4605 * Archs like ppc64 need additional space to store information 4606 * related to pte entry. Use the preallocated table for that. 4607 */ 4608 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4609 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4610 if (!vmf->prealloc_pte) 4611 return VM_FAULT_OOM; 4612 } 4613 4614 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4615 if (unlikely(!pmd_none(*vmf->pmd))) 4616 goto out; 4617 4618 flush_icache_pages(vma, page, HPAGE_PMD_NR); 4619 4620 entry = mk_huge_pmd(page, vma->vm_page_prot); 4621 if (write) 4622 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4623 4624 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 4625 folio_add_file_rmap_pmd(folio, page, vma); 4626 4627 /* 4628 * deposit and withdraw with pmd lock held 4629 */ 4630 if (arch_needs_pgtable_deposit()) 4631 deposit_prealloc_pte(vmf); 4632 4633 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4634 4635 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4636 4637 /* fault is handled */ 4638 ret = 0; 4639 count_vm_event(THP_FILE_MAPPED); 4640 out: 4641 spin_unlock(vmf->ptl); 4642 return ret; 4643 } 4644 #else 4645 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4646 { 4647 return VM_FAULT_FALLBACK; 4648 } 4649 #endif 4650 4651 /** 4652 * set_pte_range - Set a range of PTEs to point to pages in a folio. 4653 * @vmf: Fault decription. 4654 * @folio: The folio that contains @page. 4655 * @page: The first page to create a PTE for. 4656 * @nr: The number of PTEs to create. 4657 * @addr: The first address to create a PTE for. 4658 */ 4659 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 4660 struct page *page, unsigned int nr, unsigned long addr) 4661 { 4662 struct vm_area_struct *vma = vmf->vma; 4663 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4664 bool write = vmf->flags & FAULT_FLAG_WRITE; 4665 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE); 4666 pte_t entry; 4667 4668 flush_icache_pages(vma, page, nr); 4669 entry = mk_pte(page, vma->vm_page_prot); 4670 4671 if (prefault && arch_wants_old_prefaulted_pte()) 4672 entry = pte_mkold(entry); 4673 else 4674 entry = pte_sw_mkyoung(entry); 4675 4676 if (write) 4677 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4678 if (unlikely(uffd_wp)) 4679 entry = pte_mkuffd_wp(entry); 4680 /* copy-on-write page */ 4681 if (write && !(vma->vm_flags & VM_SHARED)) { 4682 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr); 4683 VM_BUG_ON_FOLIO(nr != 1, folio); 4684 folio_add_new_anon_rmap(folio, vma, addr); 4685 folio_add_lru_vma(folio, vma); 4686 } else { 4687 add_mm_counter(vma->vm_mm, mm_counter_file(folio), nr); 4688 folio_add_file_rmap_ptes(folio, page, nr, vma); 4689 } 4690 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 4691 4692 /* no need to invalidate: a not-present page won't be cached */ 4693 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 4694 } 4695 4696 static bool vmf_pte_changed(struct vm_fault *vmf) 4697 { 4698 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4699 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4700 4701 return !pte_none(ptep_get(vmf->pte)); 4702 } 4703 4704 /** 4705 * finish_fault - finish page fault once we have prepared the page to fault 4706 * 4707 * @vmf: structure describing the fault 4708 * 4709 * This function handles all that is needed to finish a page fault once the 4710 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4711 * given page, adds reverse page mapping, handles memcg charges and LRU 4712 * addition. 4713 * 4714 * The function expects the page to be locked and on success it consumes a 4715 * reference of a page being mapped (for the PTE which maps it). 4716 * 4717 * Return: %0 on success, %VM_FAULT_ code in case of error. 4718 */ 4719 vm_fault_t finish_fault(struct vm_fault *vmf) 4720 { 4721 struct vm_area_struct *vma = vmf->vma; 4722 struct page *page; 4723 vm_fault_t ret; 4724 4725 /* Did we COW the page? */ 4726 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4727 page = vmf->cow_page; 4728 else 4729 page = vmf->page; 4730 4731 /* 4732 * check even for read faults because we might have lost our CoWed 4733 * page 4734 */ 4735 if (!(vma->vm_flags & VM_SHARED)) { 4736 ret = check_stable_address_space(vma->vm_mm); 4737 if (ret) 4738 return ret; 4739 } 4740 4741 if (pmd_none(*vmf->pmd)) { 4742 if (PageTransCompound(page)) { 4743 ret = do_set_pmd(vmf, page); 4744 if (ret != VM_FAULT_FALLBACK) 4745 return ret; 4746 } 4747 4748 if (vmf->prealloc_pte) 4749 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4750 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4751 return VM_FAULT_OOM; 4752 } 4753 4754 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4755 vmf->address, &vmf->ptl); 4756 if (!vmf->pte) 4757 return VM_FAULT_NOPAGE; 4758 4759 /* Re-check under ptl */ 4760 if (likely(!vmf_pte_changed(vmf))) { 4761 struct folio *folio = page_folio(page); 4762 4763 set_pte_range(vmf, folio, page, 1, vmf->address); 4764 ret = 0; 4765 } else { 4766 update_mmu_tlb(vma, vmf->address, vmf->pte); 4767 ret = VM_FAULT_NOPAGE; 4768 } 4769 4770 pte_unmap_unlock(vmf->pte, vmf->ptl); 4771 return ret; 4772 } 4773 4774 static unsigned long fault_around_pages __read_mostly = 4775 65536 >> PAGE_SHIFT; 4776 4777 #ifdef CONFIG_DEBUG_FS 4778 static int fault_around_bytes_get(void *data, u64 *val) 4779 { 4780 *val = fault_around_pages << PAGE_SHIFT; 4781 return 0; 4782 } 4783 4784 /* 4785 * fault_around_bytes must be rounded down to the nearest page order as it's 4786 * what do_fault_around() expects to see. 4787 */ 4788 static int fault_around_bytes_set(void *data, u64 val) 4789 { 4790 if (val / PAGE_SIZE > PTRS_PER_PTE) 4791 return -EINVAL; 4792 4793 /* 4794 * The minimum value is 1 page, however this results in no fault-around 4795 * at all. See should_fault_around(). 4796 */ 4797 val = max(val, PAGE_SIZE); 4798 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 4799 4800 return 0; 4801 } 4802 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4803 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4804 4805 static int __init fault_around_debugfs(void) 4806 { 4807 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4808 &fault_around_bytes_fops); 4809 return 0; 4810 } 4811 late_initcall(fault_around_debugfs); 4812 #endif 4813 4814 /* 4815 * do_fault_around() tries to map few pages around the fault address. The hope 4816 * is that the pages will be needed soon and this will lower the number of 4817 * faults to handle. 4818 * 4819 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4820 * not ready to be mapped: not up-to-date, locked, etc. 4821 * 4822 * This function doesn't cross VMA or page table boundaries, in order to call 4823 * map_pages() and acquire a PTE lock only once. 4824 * 4825 * fault_around_pages defines how many pages we'll try to map. 4826 * do_fault_around() expects it to be set to a power of two less than or equal 4827 * to PTRS_PER_PTE. 4828 * 4829 * The virtual address of the area that we map is naturally aligned to 4830 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4831 * (and therefore to page order). This way it's easier to guarantee 4832 * that we don't cross page table boundaries. 4833 */ 4834 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4835 { 4836 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4837 pgoff_t pte_off = pte_index(vmf->address); 4838 /* The page offset of vmf->address within the VMA. */ 4839 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4840 pgoff_t from_pte, to_pte; 4841 vm_fault_t ret; 4842 4843 /* The PTE offset of the start address, clamped to the VMA. */ 4844 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4845 pte_off - min(pte_off, vma_off)); 4846 4847 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4848 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4849 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4850 4851 if (pmd_none(*vmf->pmd)) { 4852 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4853 if (!vmf->prealloc_pte) 4854 return VM_FAULT_OOM; 4855 } 4856 4857 rcu_read_lock(); 4858 ret = vmf->vma->vm_ops->map_pages(vmf, 4859 vmf->pgoff + from_pte - pte_off, 4860 vmf->pgoff + to_pte - pte_off); 4861 rcu_read_unlock(); 4862 4863 return ret; 4864 } 4865 4866 /* Return true if we should do read fault-around, false otherwise */ 4867 static inline bool should_fault_around(struct vm_fault *vmf) 4868 { 4869 /* No ->map_pages? No way to fault around... */ 4870 if (!vmf->vma->vm_ops->map_pages) 4871 return false; 4872 4873 if (uffd_disable_fault_around(vmf->vma)) 4874 return false; 4875 4876 /* A single page implies no faulting 'around' at all. */ 4877 return fault_around_pages > 1; 4878 } 4879 4880 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4881 { 4882 vm_fault_t ret = 0; 4883 struct folio *folio; 4884 4885 /* 4886 * Let's call ->map_pages() first and use ->fault() as fallback 4887 * if page by the offset is not ready to be mapped (cold cache or 4888 * something). 4889 */ 4890 if (should_fault_around(vmf)) { 4891 ret = do_fault_around(vmf); 4892 if (ret) 4893 return ret; 4894 } 4895 4896 ret = vmf_can_call_fault(vmf); 4897 if (ret) 4898 return ret; 4899 4900 ret = __do_fault(vmf); 4901 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4902 return ret; 4903 4904 ret |= finish_fault(vmf); 4905 folio = page_folio(vmf->page); 4906 folio_unlock(folio); 4907 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4908 folio_put(folio); 4909 return ret; 4910 } 4911 4912 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4913 { 4914 struct vm_area_struct *vma = vmf->vma; 4915 struct folio *folio; 4916 vm_fault_t ret; 4917 4918 ret = vmf_can_call_fault(vmf); 4919 if (!ret) 4920 ret = vmf_anon_prepare(vmf); 4921 if (ret) 4922 return ret; 4923 4924 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 4925 if (!folio) 4926 return VM_FAULT_OOM; 4927 4928 vmf->cow_page = &folio->page; 4929 4930 ret = __do_fault(vmf); 4931 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4932 goto uncharge_out; 4933 if (ret & VM_FAULT_DONE_COW) 4934 return ret; 4935 4936 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4937 __folio_mark_uptodate(folio); 4938 4939 ret |= finish_fault(vmf); 4940 unlock_page(vmf->page); 4941 put_page(vmf->page); 4942 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4943 goto uncharge_out; 4944 return ret; 4945 uncharge_out: 4946 folio_put(folio); 4947 return ret; 4948 } 4949 4950 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4951 { 4952 struct vm_area_struct *vma = vmf->vma; 4953 vm_fault_t ret, tmp; 4954 struct folio *folio; 4955 4956 ret = vmf_can_call_fault(vmf); 4957 if (ret) 4958 return ret; 4959 4960 ret = __do_fault(vmf); 4961 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4962 return ret; 4963 4964 folio = page_folio(vmf->page); 4965 4966 /* 4967 * Check if the backing address space wants to know that the page is 4968 * about to become writable 4969 */ 4970 if (vma->vm_ops->page_mkwrite) { 4971 folio_unlock(folio); 4972 tmp = do_page_mkwrite(vmf, folio); 4973 if (unlikely(!tmp || 4974 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4975 folio_put(folio); 4976 return tmp; 4977 } 4978 } 4979 4980 ret |= finish_fault(vmf); 4981 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4982 VM_FAULT_RETRY))) { 4983 folio_unlock(folio); 4984 folio_put(folio); 4985 return ret; 4986 } 4987 4988 ret |= fault_dirty_shared_page(vmf); 4989 return ret; 4990 } 4991 4992 /* 4993 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4994 * but allow concurrent faults). 4995 * The mmap_lock may have been released depending on flags and our 4996 * return value. See filemap_fault() and __folio_lock_or_retry(). 4997 * If mmap_lock is released, vma may become invalid (for example 4998 * by other thread calling munmap()). 4999 */ 5000 static vm_fault_t do_fault(struct vm_fault *vmf) 5001 { 5002 struct vm_area_struct *vma = vmf->vma; 5003 struct mm_struct *vm_mm = vma->vm_mm; 5004 vm_fault_t ret; 5005 5006 /* 5007 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5008 */ 5009 if (!vma->vm_ops->fault) { 5010 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5011 vmf->address, &vmf->ptl); 5012 if (unlikely(!vmf->pte)) 5013 ret = VM_FAULT_SIGBUS; 5014 else { 5015 /* 5016 * Make sure this is not a temporary clearing of pte 5017 * by holding ptl and checking again. A R/M/W update 5018 * of pte involves: take ptl, clearing the pte so that 5019 * we don't have concurrent modification by hardware 5020 * followed by an update. 5021 */ 5022 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5023 ret = VM_FAULT_SIGBUS; 5024 else 5025 ret = VM_FAULT_NOPAGE; 5026 5027 pte_unmap_unlock(vmf->pte, vmf->ptl); 5028 } 5029 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5030 ret = do_read_fault(vmf); 5031 else if (!(vma->vm_flags & VM_SHARED)) 5032 ret = do_cow_fault(vmf); 5033 else 5034 ret = do_shared_fault(vmf); 5035 5036 /* preallocated pagetable is unused: free it */ 5037 if (vmf->prealloc_pte) { 5038 pte_free(vm_mm, vmf->prealloc_pte); 5039 vmf->prealloc_pte = NULL; 5040 } 5041 return ret; 5042 } 5043 5044 int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf, 5045 unsigned long addr, int page_nid, int *flags) 5046 { 5047 struct vm_area_struct *vma = vmf->vma; 5048 5049 folio_get(folio); 5050 5051 /* Record the current PID acceesing VMA */ 5052 vma_set_access_pid_bit(vma); 5053 5054 count_vm_numa_event(NUMA_HINT_FAULTS); 5055 if (page_nid == numa_node_id()) { 5056 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5057 *flags |= TNF_FAULT_LOCAL; 5058 } 5059 5060 return mpol_misplaced(folio, vmf, addr); 5061 } 5062 5063 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5064 { 5065 struct vm_area_struct *vma = vmf->vma; 5066 struct folio *folio = NULL; 5067 int nid = NUMA_NO_NODE; 5068 bool writable = false; 5069 int last_cpupid; 5070 int target_nid; 5071 pte_t pte, old_pte; 5072 int flags = 0; 5073 5074 /* 5075 * The pte cannot be used safely until we verify, while holding the page 5076 * table lock, that its contents have not changed during fault handling. 5077 */ 5078 spin_lock(vmf->ptl); 5079 /* Read the live PTE from the page tables: */ 5080 old_pte = ptep_get(vmf->pte); 5081 5082 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5083 pte_unmap_unlock(vmf->pte, vmf->ptl); 5084 goto out; 5085 } 5086 5087 pte = pte_modify(old_pte, vma->vm_page_prot); 5088 5089 /* 5090 * Detect now whether the PTE could be writable; this information 5091 * is only valid while holding the PT lock. 5092 */ 5093 writable = pte_write(pte); 5094 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 5095 can_change_pte_writable(vma, vmf->address, pte)) 5096 writable = true; 5097 5098 folio = vm_normal_folio(vma, vmf->address, pte); 5099 if (!folio || folio_is_zone_device(folio)) 5100 goto out_map; 5101 5102 /* TODO: handle PTE-mapped THP */ 5103 if (folio_test_large(folio)) 5104 goto out_map; 5105 5106 /* 5107 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5108 * much anyway since they can be in shared cache state. This misses 5109 * the case where a mapping is writable but the process never writes 5110 * to it but pte_write gets cleared during protection updates and 5111 * pte_dirty has unpredictable behaviour between PTE scan updates, 5112 * background writeback, dirty balancing and application behaviour. 5113 */ 5114 if (!writable) 5115 flags |= TNF_NO_GROUP; 5116 5117 /* 5118 * Flag if the folio is shared between multiple address spaces. This 5119 * is later used when determining whether to group tasks together 5120 */ 5121 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5122 flags |= TNF_SHARED; 5123 5124 nid = folio_nid(folio); 5125 /* 5126 * For memory tiering mode, cpupid of slow memory page is used 5127 * to record page access time. So use default value. 5128 */ 5129 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 5130 !node_is_toptier(nid)) 5131 last_cpupid = (-1 & LAST_CPUPID_MASK); 5132 else 5133 last_cpupid = folio_last_cpupid(folio); 5134 target_nid = numa_migrate_prep(folio, vmf, vmf->address, nid, &flags); 5135 if (target_nid == NUMA_NO_NODE) { 5136 folio_put(folio); 5137 goto out_map; 5138 } 5139 pte_unmap_unlock(vmf->pte, vmf->ptl); 5140 writable = false; 5141 5142 /* Migrate to the requested node */ 5143 if (migrate_misplaced_folio(folio, vma, target_nid)) { 5144 nid = target_nid; 5145 flags |= TNF_MIGRATED; 5146 } else { 5147 flags |= TNF_MIGRATE_FAIL; 5148 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5149 vmf->address, &vmf->ptl); 5150 if (unlikely(!vmf->pte)) 5151 goto out; 5152 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5153 pte_unmap_unlock(vmf->pte, vmf->ptl); 5154 goto out; 5155 } 5156 goto out_map; 5157 } 5158 5159 out: 5160 if (nid != NUMA_NO_NODE) 5161 task_numa_fault(last_cpupid, nid, 1, flags); 5162 return 0; 5163 out_map: 5164 /* 5165 * Make it present again, depending on how arch implements 5166 * non-accessible ptes, some can allow access by kernel mode. 5167 */ 5168 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 5169 pte = pte_modify(old_pte, vma->vm_page_prot); 5170 pte = pte_mkyoung(pte); 5171 if (writable) 5172 pte = pte_mkwrite(pte, vma); 5173 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 5174 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 5175 pte_unmap_unlock(vmf->pte, vmf->ptl); 5176 goto out; 5177 } 5178 5179 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5180 { 5181 struct vm_area_struct *vma = vmf->vma; 5182 if (vma_is_anonymous(vma)) 5183 return do_huge_pmd_anonymous_page(vmf); 5184 if (vma->vm_ops->huge_fault) 5185 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5186 return VM_FAULT_FALLBACK; 5187 } 5188 5189 /* `inline' is required to avoid gcc 4.1.2 build error */ 5190 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5191 { 5192 struct vm_area_struct *vma = vmf->vma; 5193 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5194 vm_fault_t ret; 5195 5196 if (vma_is_anonymous(vma)) { 5197 if (likely(!unshare) && 5198 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5199 if (userfaultfd_wp_async(vmf->vma)) 5200 goto split; 5201 return handle_userfault(vmf, VM_UFFD_WP); 5202 } 5203 return do_huge_pmd_wp_page(vmf); 5204 } 5205 5206 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5207 if (vma->vm_ops->huge_fault) { 5208 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5209 if (!(ret & VM_FAULT_FALLBACK)) 5210 return ret; 5211 } 5212 } 5213 5214 split: 5215 /* COW or write-notify handled on pte level: split pmd. */ 5216 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5217 5218 return VM_FAULT_FALLBACK; 5219 } 5220 5221 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5222 { 5223 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5224 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5225 struct vm_area_struct *vma = vmf->vma; 5226 /* No support for anonymous transparent PUD pages yet */ 5227 if (vma_is_anonymous(vma)) 5228 return VM_FAULT_FALLBACK; 5229 if (vma->vm_ops->huge_fault) 5230 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5231 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5232 return VM_FAULT_FALLBACK; 5233 } 5234 5235 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5236 { 5237 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5238 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5239 struct vm_area_struct *vma = vmf->vma; 5240 vm_fault_t ret; 5241 5242 /* No support for anonymous transparent PUD pages yet */ 5243 if (vma_is_anonymous(vma)) 5244 goto split; 5245 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5246 if (vma->vm_ops->huge_fault) { 5247 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5248 if (!(ret & VM_FAULT_FALLBACK)) 5249 return ret; 5250 } 5251 } 5252 split: 5253 /* COW or write-notify not handled on PUD level: split pud.*/ 5254 __split_huge_pud(vma, vmf->pud, vmf->address); 5255 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5256 return VM_FAULT_FALLBACK; 5257 } 5258 5259 /* 5260 * These routines also need to handle stuff like marking pages dirty 5261 * and/or accessed for architectures that don't do it in hardware (most 5262 * RISC architectures). The early dirtying is also good on the i386. 5263 * 5264 * There is also a hook called "update_mmu_cache()" that architectures 5265 * with external mmu caches can use to update those (ie the Sparc or 5266 * PowerPC hashed page tables that act as extended TLBs). 5267 * 5268 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5269 * concurrent faults). 5270 * 5271 * The mmap_lock may have been released depending on flags and our return value. 5272 * See filemap_fault() and __folio_lock_or_retry(). 5273 */ 5274 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5275 { 5276 pte_t entry; 5277 5278 if (unlikely(pmd_none(*vmf->pmd))) { 5279 /* 5280 * Leave __pte_alloc() until later: because vm_ops->fault may 5281 * want to allocate huge page, and if we expose page table 5282 * for an instant, it will be difficult to retract from 5283 * concurrent faults and from rmap lookups. 5284 */ 5285 vmf->pte = NULL; 5286 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5287 } else { 5288 /* 5289 * A regular pmd is established and it can't morph into a huge 5290 * pmd by anon khugepaged, since that takes mmap_lock in write 5291 * mode; but shmem or file collapse to THP could still morph 5292 * it into a huge pmd: just retry later if so. 5293 */ 5294 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 5295 vmf->address, &vmf->ptl); 5296 if (unlikely(!vmf->pte)) 5297 return 0; 5298 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5299 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5300 5301 if (pte_none(vmf->orig_pte)) { 5302 pte_unmap(vmf->pte); 5303 vmf->pte = NULL; 5304 } 5305 } 5306 5307 if (!vmf->pte) 5308 return do_pte_missing(vmf); 5309 5310 if (!pte_present(vmf->orig_pte)) 5311 return do_swap_page(vmf); 5312 5313 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5314 return do_numa_page(vmf); 5315 5316 spin_lock(vmf->ptl); 5317 entry = vmf->orig_pte; 5318 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5319 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5320 goto unlock; 5321 } 5322 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5323 if (!pte_write(entry)) 5324 return do_wp_page(vmf); 5325 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5326 entry = pte_mkdirty(entry); 5327 } 5328 entry = pte_mkyoung(entry); 5329 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5330 vmf->flags & FAULT_FLAG_WRITE)) { 5331 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5332 vmf->pte, 1); 5333 } else { 5334 /* Skip spurious TLB flush for retried page fault */ 5335 if (vmf->flags & FAULT_FLAG_TRIED) 5336 goto unlock; 5337 /* 5338 * This is needed only for protection faults but the arch code 5339 * is not yet telling us if this is a protection fault or not. 5340 * This still avoids useless tlb flushes for .text page faults 5341 * with threads. 5342 */ 5343 if (vmf->flags & FAULT_FLAG_WRITE) 5344 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5345 vmf->pte); 5346 } 5347 unlock: 5348 pte_unmap_unlock(vmf->pte, vmf->ptl); 5349 return 0; 5350 } 5351 5352 /* 5353 * On entry, we hold either the VMA lock or the mmap_lock 5354 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5355 * the result, the mmap_lock is not held on exit. See filemap_fault() 5356 * and __folio_lock_or_retry(). 5357 */ 5358 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5359 unsigned long address, unsigned int flags) 5360 { 5361 struct vm_fault vmf = { 5362 .vma = vma, 5363 .address = address & PAGE_MASK, 5364 .real_address = address, 5365 .flags = flags, 5366 .pgoff = linear_page_index(vma, address), 5367 .gfp_mask = __get_fault_gfp_mask(vma), 5368 }; 5369 struct mm_struct *mm = vma->vm_mm; 5370 unsigned long vm_flags = vma->vm_flags; 5371 pgd_t *pgd; 5372 p4d_t *p4d; 5373 vm_fault_t ret; 5374 5375 pgd = pgd_offset(mm, address); 5376 p4d = p4d_alloc(mm, pgd, address); 5377 if (!p4d) 5378 return VM_FAULT_OOM; 5379 5380 vmf.pud = pud_alloc(mm, p4d, address); 5381 if (!vmf.pud) 5382 return VM_FAULT_OOM; 5383 retry_pud: 5384 if (pud_none(*vmf.pud) && 5385 thp_vma_allowable_order(vma, vm_flags, false, true, true, PUD_ORDER)) { 5386 ret = create_huge_pud(&vmf); 5387 if (!(ret & VM_FAULT_FALLBACK)) 5388 return ret; 5389 } else { 5390 pud_t orig_pud = *vmf.pud; 5391 5392 barrier(); 5393 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5394 5395 /* 5396 * TODO once we support anonymous PUDs: NUMA case and 5397 * FAULT_FLAG_UNSHARE handling. 5398 */ 5399 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5400 ret = wp_huge_pud(&vmf, orig_pud); 5401 if (!(ret & VM_FAULT_FALLBACK)) 5402 return ret; 5403 } else { 5404 huge_pud_set_accessed(&vmf, orig_pud); 5405 return 0; 5406 } 5407 } 5408 } 5409 5410 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5411 if (!vmf.pmd) 5412 return VM_FAULT_OOM; 5413 5414 /* Huge pud page fault raced with pmd_alloc? */ 5415 if (pud_trans_unstable(vmf.pud)) 5416 goto retry_pud; 5417 5418 if (pmd_none(*vmf.pmd) && 5419 thp_vma_allowable_order(vma, vm_flags, false, true, true, PMD_ORDER)) { 5420 ret = create_huge_pmd(&vmf); 5421 if (!(ret & VM_FAULT_FALLBACK)) 5422 return ret; 5423 } else { 5424 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5425 5426 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5427 VM_BUG_ON(thp_migration_supported() && 5428 !is_pmd_migration_entry(vmf.orig_pmd)); 5429 if (is_pmd_migration_entry(vmf.orig_pmd)) 5430 pmd_migration_entry_wait(mm, vmf.pmd); 5431 return 0; 5432 } 5433 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5434 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5435 return do_huge_pmd_numa_page(&vmf); 5436 5437 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5438 !pmd_write(vmf.orig_pmd)) { 5439 ret = wp_huge_pmd(&vmf); 5440 if (!(ret & VM_FAULT_FALLBACK)) 5441 return ret; 5442 } else { 5443 huge_pmd_set_accessed(&vmf); 5444 return 0; 5445 } 5446 } 5447 } 5448 5449 return handle_pte_fault(&vmf); 5450 } 5451 5452 /** 5453 * mm_account_fault - Do page fault accounting 5454 * @mm: mm from which memcg should be extracted. It can be NULL. 5455 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5456 * of perf event counters, but we'll still do the per-task accounting to 5457 * the task who triggered this page fault. 5458 * @address: the faulted address. 5459 * @flags: the fault flags. 5460 * @ret: the fault retcode. 5461 * 5462 * This will take care of most of the page fault accounting. Meanwhile, it 5463 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5464 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5465 * still be in per-arch page fault handlers at the entry of page fault. 5466 */ 5467 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5468 unsigned long address, unsigned int flags, 5469 vm_fault_t ret) 5470 { 5471 bool major; 5472 5473 /* Incomplete faults will be accounted upon completion. */ 5474 if (ret & VM_FAULT_RETRY) 5475 return; 5476 5477 /* 5478 * To preserve the behavior of older kernels, PGFAULT counters record 5479 * both successful and failed faults, as opposed to perf counters, 5480 * which ignore failed cases. 5481 */ 5482 count_vm_event(PGFAULT); 5483 count_memcg_event_mm(mm, PGFAULT); 5484 5485 /* 5486 * Do not account for unsuccessful faults (e.g. when the address wasn't 5487 * valid). That includes arch_vma_access_permitted() failing before 5488 * reaching here. So this is not a "this many hardware page faults" 5489 * counter. We should use the hw profiling for that. 5490 */ 5491 if (ret & VM_FAULT_ERROR) 5492 return; 5493 5494 /* 5495 * We define the fault as a major fault when the final successful fault 5496 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5497 * handle it immediately previously). 5498 */ 5499 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5500 5501 if (major) 5502 current->maj_flt++; 5503 else 5504 current->min_flt++; 5505 5506 /* 5507 * If the fault is done for GUP, regs will be NULL. We only do the 5508 * accounting for the per thread fault counters who triggered the 5509 * fault, and we skip the perf event updates. 5510 */ 5511 if (!regs) 5512 return; 5513 5514 if (major) 5515 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5516 else 5517 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5518 } 5519 5520 #ifdef CONFIG_LRU_GEN 5521 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5522 { 5523 /* the LRU algorithm only applies to accesses with recency */ 5524 current->in_lru_fault = vma_has_recency(vma); 5525 } 5526 5527 static void lru_gen_exit_fault(void) 5528 { 5529 current->in_lru_fault = false; 5530 } 5531 #else 5532 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5533 { 5534 } 5535 5536 static void lru_gen_exit_fault(void) 5537 { 5538 } 5539 #endif /* CONFIG_LRU_GEN */ 5540 5541 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5542 unsigned int *flags) 5543 { 5544 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5545 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5546 return VM_FAULT_SIGSEGV; 5547 /* 5548 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5549 * just treat it like an ordinary read-fault otherwise. 5550 */ 5551 if (!is_cow_mapping(vma->vm_flags)) 5552 *flags &= ~FAULT_FLAG_UNSHARE; 5553 } else if (*flags & FAULT_FLAG_WRITE) { 5554 /* Write faults on read-only mappings are impossible ... */ 5555 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5556 return VM_FAULT_SIGSEGV; 5557 /* ... and FOLL_FORCE only applies to COW mappings. */ 5558 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5559 !is_cow_mapping(vma->vm_flags))) 5560 return VM_FAULT_SIGSEGV; 5561 } 5562 #ifdef CONFIG_PER_VMA_LOCK 5563 /* 5564 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 5565 * the assumption that lock is dropped on VM_FAULT_RETRY. 5566 */ 5567 if (WARN_ON_ONCE((*flags & 5568 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 5569 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 5570 return VM_FAULT_SIGSEGV; 5571 #endif 5572 5573 return 0; 5574 } 5575 5576 /* 5577 * By the time we get here, we already hold the mm semaphore 5578 * 5579 * The mmap_lock may have been released depending on flags and our 5580 * return value. See filemap_fault() and __folio_lock_or_retry(). 5581 */ 5582 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5583 unsigned int flags, struct pt_regs *regs) 5584 { 5585 /* If the fault handler drops the mmap_lock, vma may be freed */ 5586 struct mm_struct *mm = vma->vm_mm; 5587 vm_fault_t ret; 5588 5589 __set_current_state(TASK_RUNNING); 5590 5591 ret = sanitize_fault_flags(vma, &flags); 5592 if (ret) 5593 goto out; 5594 5595 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5596 flags & FAULT_FLAG_INSTRUCTION, 5597 flags & FAULT_FLAG_REMOTE)) { 5598 ret = VM_FAULT_SIGSEGV; 5599 goto out; 5600 } 5601 5602 /* 5603 * Enable the memcg OOM handling for faults triggered in user 5604 * space. Kernel faults are handled more gracefully. 5605 */ 5606 if (flags & FAULT_FLAG_USER) 5607 mem_cgroup_enter_user_fault(); 5608 5609 lru_gen_enter_fault(vma); 5610 5611 if (unlikely(is_vm_hugetlb_page(vma))) 5612 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5613 else 5614 ret = __handle_mm_fault(vma, address, flags); 5615 5616 lru_gen_exit_fault(); 5617 5618 if (flags & FAULT_FLAG_USER) { 5619 mem_cgroup_exit_user_fault(); 5620 /* 5621 * The task may have entered a memcg OOM situation but 5622 * if the allocation error was handled gracefully (no 5623 * VM_FAULT_OOM), there is no need to kill anything. 5624 * Just clean up the OOM state peacefully. 5625 */ 5626 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5627 mem_cgroup_oom_synchronize(false); 5628 } 5629 out: 5630 mm_account_fault(mm, regs, address, flags, ret); 5631 5632 return ret; 5633 } 5634 EXPORT_SYMBOL_GPL(handle_mm_fault); 5635 5636 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 5637 #include <linux/extable.h> 5638 5639 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5640 { 5641 if (likely(mmap_read_trylock(mm))) 5642 return true; 5643 5644 if (regs && !user_mode(regs)) { 5645 unsigned long ip = exception_ip(regs); 5646 if (!search_exception_tables(ip)) 5647 return false; 5648 } 5649 5650 return !mmap_read_lock_killable(mm); 5651 } 5652 5653 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 5654 { 5655 /* 5656 * We don't have this operation yet. 5657 * 5658 * It should be easy enough to do: it's basically a 5659 * atomic_long_try_cmpxchg_acquire() 5660 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 5661 * it also needs the proper lockdep magic etc. 5662 */ 5663 return false; 5664 } 5665 5666 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5667 { 5668 mmap_read_unlock(mm); 5669 if (regs && !user_mode(regs)) { 5670 unsigned long ip = exception_ip(regs); 5671 if (!search_exception_tables(ip)) 5672 return false; 5673 } 5674 return !mmap_write_lock_killable(mm); 5675 } 5676 5677 /* 5678 * Helper for page fault handling. 5679 * 5680 * This is kind of equivalend to "mmap_read_lock()" followed 5681 * by "find_extend_vma()", except it's a lot more careful about 5682 * the locking (and will drop the lock on failure). 5683 * 5684 * For example, if we have a kernel bug that causes a page 5685 * fault, we don't want to just use mmap_read_lock() to get 5686 * the mm lock, because that would deadlock if the bug were 5687 * to happen while we're holding the mm lock for writing. 5688 * 5689 * So this checks the exception tables on kernel faults in 5690 * order to only do this all for instructions that are actually 5691 * expected to fault. 5692 * 5693 * We can also actually take the mm lock for writing if we 5694 * need to extend the vma, which helps the VM layer a lot. 5695 */ 5696 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 5697 unsigned long addr, struct pt_regs *regs) 5698 { 5699 struct vm_area_struct *vma; 5700 5701 if (!get_mmap_lock_carefully(mm, regs)) 5702 return NULL; 5703 5704 vma = find_vma(mm, addr); 5705 if (likely(vma && (vma->vm_start <= addr))) 5706 return vma; 5707 5708 /* 5709 * Well, dang. We might still be successful, but only 5710 * if we can extend a vma to do so. 5711 */ 5712 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 5713 mmap_read_unlock(mm); 5714 return NULL; 5715 } 5716 5717 /* 5718 * We can try to upgrade the mmap lock atomically, 5719 * in which case we can continue to use the vma 5720 * we already looked up. 5721 * 5722 * Otherwise we'll have to drop the mmap lock and 5723 * re-take it, and also look up the vma again, 5724 * re-checking it. 5725 */ 5726 if (!mmap_upgrade_trylock(mm)) { 5727 if (!upgrade_mmap_lock_carefully(mm, regs)) 5728 return NULL; 5729 5730 vma = find_vma(mm, addr); 5731 if (!vma) 5732 goto fail; 5733 if (vma->vm_start <= addr) 5734 goto success; 5735 if (!(vma->vm_flags & VM_GROWSDOWN)) 5736 goto fail; 5737 } 5738 5739 if (expand_stack_locked(vma, addr)) 5740 goto fail; 5741 5742 success: 5743 mmap_write_downgrade(mm); 5744 return vma; 5745 5746 fail: 5747 mmap_write_unlock(mm); 5748 return NULL; 5749 } 5750 #endif 5751 5752 #ifdef CONFIG_PER_VMA_LOCK 5753 /* 5754 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5755 * stable and not isolated. If the VMA is not found or is being modified the 5756 * function returns NULL. 5757 */ 5758 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5759 unsigned long address) 5760 { 5761 MA_STATE(mas, &mm->mm_mt, address, address); 5762 struct vm_area_struct *vma; 5763 5764 rcu_read_lock(); 5765 retry: 5766 vma = mas_walk(&mas); 5767 if (!vma) 5768 goto inval; 5769 5770 if (!vma_start_read(vma)) 5771 goto inval; 5772 5773 /* 5774 * find_mergeable_anon_vma uses adjacent vmas which are not locked. 5775 * This check must happen after vma_start_read(); otherwise, a 5776 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA 5777 * from its anon_vma. 5778 */ 5779 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) 5780 goto inval_end_read; 5781 5782 /* Check since vm_start/vm_end might change before we lock the VMA */ 5783 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 5784 goto inval_end_read; 5785 5786 /* Check if the VMA got isolated after we found it */ 5787 if (vma->detached) { 5788 vma_end_read(vma); 5789 count_vm_vma_lock_event(VMA_LOCK_MISS); 5790 /* The area was replaced with another one */ 5791 goto retry; 5792 } 5793 5794 rcu_read_unlock(); 5795 return vma; 5796 5797 inval_end_read: 5798 vma_end_read(vma); 5799 inval: 5800 rcu_read_unlock(); 5801 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5802 return NULL; 5803 } 5804 #endif /* CONFIG_PER_VMA_LOCK */ 5805 5806 #ifndef __PAGETABLE_P4D_FOLDED 5807 /* 5808 * Allocate p4d page table. 5809 * We've already handled the fast-path in-line. 5810 */ 5811 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5812 { 5813 p4d_t *new = p4d_alloc_one(mm, address); 5814 if (!new) 5815 return -ENOMEM; 5816 5817 spin_lock(&mm->page_table_lock); 5818 if (pgd_present(*pgd)) { /* Another has populated it */ 5819 p4d_free(mm, new); 5820 } else { 5821 smp_wmb(); /* See comment in pmd_install() */ 5822 pgd_populate(mm, pgd, new); 5823 } 5824 spin_unlock(&mm->page_table_lock); 5825 return 0; 5826 } 5827 #endif /* __PAGETABLE_P4D_FOLDED */ 5828 5829 #ifndef __PAGETABLE_PUD_FOLDED 5830 /* 5831 * Allocate page upper directory. 5832 * We've already handled the fast-path in-line. 5833 */ 5834 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5835 { 5836 pud_t *new = pud_alloc_one(mm, address); 5837 if (!new) 5838 return -ENOMEM; 5839 5840 spin_lock(&mm->page_table_lock); 5841 if (!p4d_present(*p4d)) { 5842 mm_inc_nr_puds(mm); 5843 smp_wmb(); /* See comment in pmd_install() */ 5844 p4d_populate(mm, p4d, new); 5845 } else /* Another has populated it */ 5846 pud_free(mm, new); 5847 spin_unlock(&mm->page_table_lock); 5848 return 0; 5849 } 5850 #endif /* __PAGETABLE_PUD_FOLDED */ 5851 5852 #ifndef __PAGETABLE_PMD_FOLDED 5853 /* 5854 * Allocate page middle directory. 5855 * We've already handled the fast-path in-line. 5856 */ 5857 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5858 { 5859 spinlock_t *ptl; 5860 pmd_t *new = pmd_alloc_one(mm, address); 5861 if (!new) 5862 return -ENOMEM; 5863 5864 ptl = pud_lock(mm, pud); 5865 if (!pud_present(*pud)) { 5866 mm_inc_nr_pmds(mm); 5867 smp_wmb(); /* See comment in pmd_install() */ 5868 pud_populate(mm, pud, new); 5869 } else { /* Another has populated it */ 5870 pmd_free(mm, new); 5871 } 5872 spin_unlock(ptl); 5873 return 0; 5874 } 5875 #endif /* __PAGETABLE_PMD_FOLDED */ 5876 5877 /** 5878 * follow_pte - look up PTE at a user virtual address 5879 * @mm: the mm_struct of the target address space 5880 * @address: user virtual address 5881 * @ptepp: location to store found PTE 5882 * @ptlp: location to store the lock for the PTE 5883 * 5884 * On a successful return, the pointer to the PTE is stored in @ptepp; 5885 * the corresponding lock is taken and its location is stored in @ptlp. 5886 * The contents of the PTE are only stable until @ptlp is released; 5887 * any further use, if any, must be protected against invalidation 5888 * with MMU notifiers. 5889 * 5890 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5891 * should be taken for read. 5892 * 5893 * KVM uses this function. While it is arguably less bad than the historic 5894 * ``follow_pfn``, it is not a good general-purpose API. 5895 * 5896 * Return: zero on success, -ve otherwise. 5897 */ 5898 int follow_pte(struct mm_struct *mm, unsigned long address, 5899 pte_t **ptepp, spinlock_t **ptlp) 5900 { 5901 pgd_t *pgd; 5902 p4d_t *p4d; 5903 pud_t *pud; 5904 pmd_t *pmd; 5905 pte_t *ptep; 5906 5907 pgd = pgd_offset(mm, address); 5908 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5909 goto out; 5910 5911 p4d = p4d_offset(pgd, address); 5912 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5913 goto out; 5914 5915 pud = pud_offset(p4d, address); 5916 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5917 goto out; 5918 5919 pmd = pmd_offset(pud, address); 5920 VM_BUG_ON(pmd_trans_huge(*pmd)); 5921 5922 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5923 if (!ptep) 5924 goto out; 5925 if (!pte_present(ptep_get(ptep))) 5926 goto unlock; 5927 *ptepp = ptep; 5928 return 0; 5929 unlock: 5930 pte_unmap_unlock(ptep, *ptlp); 5931 out: 5932 return -EINVAL; 5933 } 5934 EXPORT_SYMBOL_GPL(follow_pte); 5935 5936 #ifdef CONFIG_HAVE_IOREMAP_PROT 5937 /** 5938 * generic_access_phys - generic implementation for iomem mmap access 5939 * @vma: the vma to access 5940 * @addr: userspace address, not relative offset within @vma 5941 * @buf: buffer to read/write 5942 * @len: length of transfer 5943 * @write: set to FOLL_WRITE when writing, otherwise reading 5944 * 5945 * This is a generic implementation for &vm_operations_struct.access for an 5946 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5947 * not page based. 5948 */ 5949 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5950 void *buf, int len, int write) 5951 { 5952 resource_size_t phys_addr; 5953 unsigned long prot = 0; 5954 void __iomem *maddr; 5955 pte_t *ptep, pte; 5956 spinlock_t *ptl; 5957 int offset = offset_in_page(addr); 5958 int ret = -EINVAL; 5959 5960 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5961 return -EINVAL; 5962 5963 retry: 5964 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5965 return -EINVAL; 5966 pte = ptep_get(ptep); 5967 pte_unmap_unlock(ptep, ptl); 5968 5969 prot = pgprot_val(pte_pgprot(pte)); 5970 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5971 5972 if ((write & FOLL_WRITE) && !pte_write(pte)) 5973 return -EINVAL; 5974 5975 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5976 if (!maddr) 5977 return -ENOMEM; 5978 5979 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5980 goto out_unmap; 5981 5982 if (!pte_same(pte, ptep_get(ptep))) { 5983 pte_unmap_unlock(ptep, ptl); 5984 iounmap(maddr); 5985 5986 goto retry; 5987 } 5988 5989 if (write) 5990 memcpy_toio(maddr + offset, buf, len); 5991 else 5992 memcpy_fromio(buf, maddr + offset, len); 5993 ret = len; 5994 pte_unmap_unlock(ptep, ptl); 5995 out_unmap: 5996 iounmap(maddr); 5997 5998 return ret; 5999 } 6000 EXPORT_SYMBOL_GPL(generic_access_phys); 6001 #endif 6002 6003 /* 6004 * Access another process' address space as given in mm. 6005 */ 6006 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6007 void *buf, int len, unsigned int gup_flags) 6008 { 6009 void *old_buf = buf; 6010 int write = gup_flags & FOLL_WRITE; 6011 6012 if (mmap_read_lock_killable(mm)) 6013 return 0; 6014 6015 /* Untag the address before looking up the VMA */ 6016 addr = untagged_addr_remote(mm, addr); 6017 6018 /* Avoid triggering the temporary warning in __get_user_pages */ 6019 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6020 return 0; 6021 6022 /* ignore errors, just check how much was successfully transferred */ 6023 while (len) { 6024 int bytes, offset; 6025 void *maddr; 6026 struct vm_area_struct *vma = NULL; 6027 struct page *page = get_user_page_vma_remote(mm, addr, 6028 gup_flags, &vma); 6029 6030 if (IS_ERR(page)) { 6031 /* We might need to expand the stack to access it */ 6032 vma = vma_lookup(mm, addr); 6033 if (!vma) { 6034 vma = expand_stack(mm, addr); 6035 6036 /* mmap_lock was dropped on failure */ 6037 if (!vma) 6038 return buf - old_buf; 6039 6040 /* Try again if stack expansion worked */ 6041 continue; 6042 } 6043 6044 /* 6045 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6046 * we can access using slightly different code. 6047 */ 6048 bytes = 0; 6049 #ifdef CONFIG_HAVE_IOREMAP_PROT 6050 if (vma->vm_ops && vma->vm_ops->access) 6051 bytes = vma->vm_ops->access(vma, addr, buf, 6052 len, write); 6053 #endif 6054 if (bytes <= 0) 6055 break; 6056 } else { 6057 bytes = len; 6058 offset = addr & (PAGE_SIZE-1); 6059 if (bytes > PAGE_SIZE-offset) 6060 bytes = PAGE_SIZE-offset; 6061 6062 maddr = kmap_local_page(page); 6063 if (write) { 6064 copy_to_user_page(vma, page, addr, 6065 maddr + offset, buf, bytes); 6066 set_page_dirty_lock(page); 6067 } else { 6068 copy_from_user_page(vma, page, addr, 6069 buf, maddr + offset, bytes); 6070 } 6071 unmap_and_put_page(page, maddr); 6072 } 6073 len -= bytes; 6074 buf += bytes; 6075 addr += bytes; 6076 } 6077 mmap_read_unlock(mm); 6078 6079 return buf - old_buf; 6080 } 6081 6082 /** 6083 * access_remote_vm - access another process' address space 6084 * @mm: the mm_struct of the target address space 6085 * @addr: start address to access 6086 * @buf: source or destination buffer 6087 * @len: number of bytes to transfer 6088 * @gup_flags: flags modifying lookup behaviour 6089 * 6090 * The caller must hold a reference on @mm. 6091 * 6092 * Return: number of bytes copied from source to destination. 6093 */ 6094 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6095 void *buf, int len, unsigned int gup_flags) 6096 { 6097 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6098 } 6099 6100 /* 6101 * Access another process' address space. 6102 * Source/target buffer must be kernel space, 6103 * Do not walk the page table directly, use get_user_pages 6104 */ 6105 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6106 void *buf, int len, unsigned int gup_flags) 6107 { 6108 struct mm_struct *mm; 6109 int ret; 6110 6111 mm = get_task_mm(tsk); 6112 if (!mm) 6113 return 0; 6114 6115 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6116 6117 mmput(mm); 6118 6119 return ret; 6120 } 6121 EXPORT_SYMBOL_GPL(access_process_vm); 6122 6123 /* 6124 * Print the name of a VMA. 6125 */ 6126 void print_vma_addr(char *prefix, unsigned long ip) 6127 { 6128 struct mm_struct *mm = current->mm; 6129 struct vm_area_struct *vma; 6130 6131 /* 6132 * we might be running from an atomic context so we cannot sleep 6133 */ 6134 if (!mmap_read_trylock(mm)) 6135 return; 6136 6137 vma = find_vma(mm, ip); 6138 if (vma && vma->vm_file) { 6139 struct file *f = vma->vm_file; 6140 char *buf = (char *)__get_free_page(GFP_NOWAIT); 6141 if (buf) { 6142 char *p; 6143 6144 p = file_path(f, buf, PAGE_SIZE); 6145 if (IS_ERR(p)) 6146 p = "?"; 6147 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 6148 vma->vm_start, 6149 vma->vm_end - vma->vm_start); 6150 free_page((unsigned long)buf); 6151 } 6152 } 6153 mmap_read_unlock(mm); 6154 } 6155 6156 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6157 void __might_fault(const char *file, int line) 6158 { 6159 if (pagefault_disabled()) 6160 return; 6161 __might_sleep(file, line); 6162 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6163 if (current->mm) 6164 might_lock_read(¤t->mm->mmap_lock); 6165 #endif 6166 } 6167 EXPORT_SYMBOL(__might_fault); 6168 #endif 6169 6170 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6171 /* 6172 * Process all subpages of the specified huge page with the specified 6173 * operation. The target subpage will be processed last to keep its 6174 * cache lines hot. 6175 */ 6176 static inline int process_huge_page( 6177 unsigned long addr_hint, unsigned int pages_per_huge_page, 6178 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6179 void *arg) 6180 { 6181 int i, n, base, l, ret; 6182 unsigned long addr = addr_hint & 6183 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6184 6185 /* Process target subpage last to keep its cache lines hot */ 6186 might_sleep(); 6187 n = (addr_hint - addr) / PAGE_SIZE; 6188 if (2 * n <= pages_per_huge_page) { 6189 /* If target subpage in first half of huge page */ 6190 base = 0; 6191 l = n; 6192 /* Process subpages at the end of huge page */ 6193 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 6194 cond_resched(); 6195 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6196 if (ret) 6197 return ret; 6198 } 6199 } else { 6200 /* If target subpage in second half of huge page */ 6201 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 6202 l = pages_per_huge_page - n; 6203 /* Process subpages at the begin of huge page */ 6204 for (i = 0; i < base; i++) { 6205 cond_resched(); 6206 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6207 if (ret) 6208 return ret; 6209 } 6210 } 6211 /* 6212 * Process remaining subpages in left-right-left-right pattern 6213 * towards the target subpage 6214 */ 6215 for (i = 0; i < l; i++) { 6216 int left_idx = base + i; 6217 int right_idx = base + 2 * l - 1 - i; 6218 6219 cond_resched(); 6220 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6221 if (ret) 6222 return ret; 6223 cond_resched(); 6224 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6225 if (ret) 6226 return ret; 6227 } 6228 return 0; 6229 } 6230 6231 static void clear_gigantic_page(struct page *page, 6232 unsigned long addr, 6233 unsigned int pages_per_huge_page) 6234 { 6235 int i; 6236 struct page *p; 6237 6238 might_sleep(); 6239 for (i = 0; i < pages_per_huge_page; i++) { 6240 p = nth_page(page, i); 6241 cond_resched(); 6242 clear_user_highpage(p, addr + i * PAGE_SIZE); 6243 } 6244 } 6245 6246 static int clear_subpage(unsigned long addr, int idx, void *arg) 6247 { 6248 struct page *page = arg; 6249 6250 clear_user_highpage(nth_page(page, idx), addr); 6251 return 0; 6252 } 6253 6254 void clear_huge_page(struct page *page, 6255 unsigned long addr_hint, unsigned int pages_per_huge_page) 6256 { 6257 unsigned long addr = addr_hint & 6258 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6259 6260 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 6261 clear_gigantic_page(page, addr, pages_per_huge_page); 6262 return; 6263 } 6264 6265 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 6266 } 6267 6268 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6269 unsigned long addr, 6270 struct vm_area_struct *vma, 6271 unsigned int pages_per_huge_page) 6272 { 6273 int i; 6274 struct page *dst_page; 6275 struct page *src_page; 6276 6277 for (i = 0; i < pages_per_huge_page; i++) { 6278 dst_page = folio_page(dst, i); 6279 src_page = folio_page(src, i); 6280 6281 cond_resched(); 6282 if (copy_mc_user_highpage(dst_page, src_page, 6283 addr + i*PAGE_SIZE, vma)) { 6284 memory_failure_queue(page_to_pfn(src_page), 0); 6285 return -EHWPOISON; 6286 } 6287 } 6288 return 0; 6289 } 6290 6291 struct copy_subpage_arg { 6292 struct page *dst; 6293 struct page *src; 6294 struct vm_area_struct *vma; 6295 }; 6296 6297 static int copy_subpage(unsigned long addr, int idx, void *arg) 6298 { 6299 struct copy_subpage_arg *copy_arg = arg; 6300 struct page *dst = nth_page(copy_arg->dst, idx); 6301 struct page *src = nth_page(copy_arg->src, idx); 6302 6303 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) { 6304 memory_failure_queue(page_to_pfn(src), 0); 6305 return -EHWPOISON; 6306 } 6307 return 0; 6308 } 6309 6310 int copy_user_large_folio(struct folio *dst, struct folio *src, 6311 unsigned long addr_hint, struct vm_area_struct *vma) 6312 { 6313 unsigned int pages_per_huge_page = folio_nr_pages(dst); 6314 unsigned long addr = addr_hint & 6315 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6316 struct copy_subpage_arg arg = { 6317 .dst = &dst->page, 6318 .src = &src->page, 6319 .vma = vma, 6320 }; 6321 6322 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 6323 return copy_user_gigantic_page(dst, src, addr, vma, 6324 pages_per_huge_page); 6325 6326 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 6327 } 6328 6329 long copy_folio_from_user(struct folio *dst_folio, 6330 const void __user *usr_src, 6331 bool allow_pagefault) 6332 { 6333 void *kaddr; 6334 unsigned long i, rc = 0; 6335 unsigned int nr_pages = folio_nr_pages(dst_folio); 6336 unsigned long ret_val = nr_pages * PAGE_SIZE; 6337 struct page *subpage; 6338 6339 for (i = 0; i < nr_pages; i++) { 6340 subpage = folio_page(dst_folio, i); 6341 kaddr = kmap_local_page(subpage); 6342 if (!allow_pagefault) 6343 pagefault_disable(); 6344 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6345 if (!allow_pagefault) 6346 pagefault_enable(); 6347 kunmap_local(kaddr); 6348 6349 ret_val -= (PAGE_SIZE - rc); 6350 if (rc) 6351 break; 6352 6353 flush_dcache_page(subpage); 6354 6355 cond_resched(); 6356 } 6357 return ret_val; 6358 } 6359 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6360 6361 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6362 6363 static struct kmem_cache *page_ptl_cachep; 6364 6365 void __init ptlock_cache_init(void) 6366 { 6367 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6368 SLAB_PANIC, NULL); 6369 } 6370 6371 bool ptlock_alloc(struct ptdesc *ptdesc) 6372 { 6373 spinlock_t *ptl; 6374 6375 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6376 if (!ptl) 6377 return false; 6378 ptdesc->ptl = ptl; 6379 return true; 6380 } 6381 6382 void ptlock_free(struct ptdesc *ptdesc) 6383 { 6384 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 6385 } 6386 #endif 6387 6388 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 6389 { 6390 if (is_vm_hugetlb_page(vma)) 6391 hugetlb_vma_lock_read(vma); 6392 } 6393 6394 void vma_pgtable_walk_end(struct vm_area_struct *vma) 6395 { 6396 if (is_vm_hugetlb_page(vma)) 6397 hugetlb_vma_unlock_read(vma); 6398 } 6399