xref: /linux/mm/memory.c (revision 345531df1cf864bbdba8d5a31c0b5519296c39cc)
1 
2 // SPDX-License-Identifier: GPL-2.0-only
3 /*
4  *  linux/mm/memory.c
5  *
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  */
8 
9 /*
10  * demand-loading started 01.12.91 - seems it is high on the list of
11  * things wanted, and it should be easy to implement. - Linus
12  */
13 
14 /*
15  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16  * pages started 02.12.91, seems to work. - Linus.
17  *
18  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19  * would have taken more than the 6M I have free, but it worked well as
20  * far as I could see.
21  *
22  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23  */
24 
25 /*
26  * Real VM (paging to/from disk) started 18.12.91. Much more work and
27  * thought has to go into this. Oh, well..
28  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
29  *		Found it. Everything seems to work now.
30  * 20.12.91  -  Ok, making the swap-device changeable like the root.
31  */
32 
33 /*
34  * 05.04.94  -  Multi-page memory management added for v1.1.
35  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
36  *
37  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
38  *		(Gerhard.Wichert@pdb.siemens.de)
39  *
40  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41  */
42 
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/writeback.h>
64 #include <linux/memcontrol.h>
65 #include <linux/mmu_notifier.h>
66 #include <linux/swapops.h>
67 #include <linux/elf.h>
68 #include <linux/gfp.h>
69 #include <linux/migrate.h>
70 #include <linux/string.h>
71 #include <linux/memory-tiers.h>
72 #include <linux/debugfs.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/dax.h>
75 #include <linux/oom.h>
76 #include <linux/numa.h>
77 #include <linux/perf_event.h>
78 #include <linux/ptrace.h>
79 #include <linux/vmalloc.h>
80 #include <linux/sched/sysctl.h>
81 
82 #include <trace/events/kmem.h>
83 
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90 
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94 
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98 
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 		return false;
119 
120 	return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122 
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.
127  */
128 void *high_memory;
129 EXPORT_SYMBOL(high_memory);
130 
131 /*
132  * Randomize the address space (stacks, mmaps, brk, etc.).
133  *
134  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
135  *   as ancient (libc5 based) binaries can segfault. )
136  */
137 int randomize_va_space __read_mostly =
138 #ifdef CONFIG_COMPAT_BRK
139 					1;
140 #else
141 					2;
142 #endif
143 
144 #ifndef arch_wants_old_prefaulted_pte
145 static inline bool arch_wants_old_prefaulted_pte(void)
146 {
147 	/*
148 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
149 	 * some architectures, even if it's performed in hardware. By
150 	 * default, "false" means prefaulted entries will be 'young'.
151 	 */
152 	return false;
153 }
154 #endif
155 
156 static int __init disable_randmaps(char *s)
157 {
158 	randomize_va_space = 0;
159 	return 1;
160 }
161 __setup("norandmaps", disable_randmaps);
162 
163 unsigned long zero_pfn __read_mostly;
164 EXPORT_SYMBOL(zero_pfn);
165 
166 unsigned long highest_memmap_pfn __read_mostly;
167 
168 /*
169  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
170  */
171 static int __init init_zero_pfn(void)
172 {
173 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
174 	return 0;
175 }
176 early_initcall(init_zero_pfn);
177 
178 void mm_trace_rss_stat(struct mm_struct *mm, int member)
179 {
180 	trace_rss_stat(mm, member);
181 }
182 
183 /*
184  * Note: this doesn't free the actual pages themselves. That
185  * has been handled earlier when unmapping all the memory regions.
186  */
187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
188 			   unsigned long addr)
189 {
190 	pgtable_t token = pmd_pgtable(*pmd);
191 	pmd_clear(pmd);
192 	pte_free_tlb(tlb, token, addr);
193 	mm_dec_nr_ptes(tlb->mm);
194 }
195 
196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
197 				unsigned long addr, unsigned long end,
198 				unsigned long floor, unsigned long ceiling)
199 {
200 	pmd_t *pmd;
201 	unsigned long next;
202 	unsigned long start;
203 
204 	start = addr;
205 	pmd = pmd_offset(pud, addr);
206 	do {
207 		next = pmd_addr_end(addr, end);
208 		if (pmd_none_or_clear_bad(pmd))
209 			continue;
210 		free_pte_range(tlb, pmd, addr);
211 	} while (pmd++, addr = next, addr != end);
212 
213 	start &= PUD_MASK;
214 	if (start < floor)
215 		return;
216 	if (ceiling) {
217 		ceiling &= PUD_MASK;
218 		if (!ceiling)
219 			return;
220 	}
221 	if (end - 1 > ceiling - 1)
222 		return;
223 
224 	pmd = pmd_offset(pud, start);
225 	pud_clear(pud);
226 	pmd_free_tlb(tlb, pmd, start);
227 	mm_dec_nr_pmds(tlb->mm);
228 }
229 
230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
231 				unsigned long addr, unsigned long end,
232 				unsigned long floor, unsigned long ceiling)
233 {
234 	pud_t *pud;
235 	unsigned long next;
236 	unsigned long start;
237 
238 	start = addr;
239 	pud = pud_offset(p4d, addr);
240 	do {
241 		next = pud_addr_end(addr, end);
242 		if (pud_none_or_clear_bad(pud))
243 			continue;
244 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
245 	} while (pud++, addr = next, addr != end);
246 
247 	start &= P4D_MASK;
248 	if (start < floor)
249 		return;
250 	if (ceiling) {
251 		ceiling &= P4D_MASK;
252 		if (!ceiling)
253 			return;
254 	}
255 	if (end - 1 > ceiling - 1)
256 		return;
257 
258 	pud = pud_offset(p4d, start);
259 	p4d_clear(p4d);
260 	pud_free_tlb(tlb, pud, start);
261 	mm_dec_nr_puds(tlb->mm);
262 }
263 
264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
265 				unsigned long addr, unsigned long end,
266 				unsigned long floor, unsigned long ceiling)
267 {
268 	p4d_t *p4d;
269 	unsigned long next;
270 	unsigned long start;
271 
272 	start = addr;
273 	p4d = p4d_offset(pgd, addr);
274 	do {
275 		next = p4d_addr_end(addr, end);
276 		if (p4d_none_or_clear_bad(p4d))
277 			continue;
278 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
279 	} while (p4d++, addr = next, addr != end);
280 
281 	start &= PGDIR_MASK;
282 	if (start < floor)
283 		return;
284 	if (ceiling) {
285 		ceiling &= PGDIR_MASK;
286 		if (!ceiling)
287 			return;
288 	}
289 	if (end - 1 > ceiling - 1)
290 		return;
291 
292 	p4d = p4d_offset(pgd, start);
293 	pgd_clear(pgd);
294 	p4d_free_tlb(tlb, p4d, start);
295 }
296 
297 /*
298  * This function frees user-level page tables of a process.
299  */
300 void free_pgd_range(struct mmu_gather *tlb,
301 			unsigned long addr, unsigned long end,
302 			unsigned long floor, unsigned long ceiling)
303 {
304 	pgd_t *pgd;
305 	unsigned long next;
306 
307 	/*
308 	 * The next few lines have given us lots of grief...
309 	 *
310 	 * Why are we testing PMD* at this top level?  Because often
311 	 * there will be no work to do at all, and we'd prefer not to
312 	 * go all the way down to the bottom just to discover that.
313 	 *
314 	 * Why all these "- 1"s?  Because 0 represents both the bottom
315 	 * of the address space and the top of it (using -1 for the
316 	 * top wouldn't help much: the masks would do the wrong thing).
317 	 * The rule is that addr 0 and floor 0 refer to the bottom of
318 	 * the address space, but end 0 and ceiling 0 refer to the top
319 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
320 	 * that end 0 case should be mythical).
321 	 *
322 	 * Wherever addr is brought up or ceiling brought down, we must
323 	 * be careful to reject "the opposite 0" before it confuses the
324 	 * subsequent tests.  But what about where end is brought down
325 	 * by PMD_SIZE below? no, end can't go down to 0 there.
326 	 *
327 	 * Whereas we round start (addr) and ceiling down, by different
328 	 * masks at different levels, in order to test whether a table
329 	 * now has no other vmas using it, so can be freed, we don't
330 	 * bother to round floor or end up - the tests don't need that.
331 	 */
332 
333 	addr &= PMD_MASK;
334 	if (addr < floor) {
335 		addr += PMD_SIZE;
336 		if (!addr)
337 			return;
338 	}
339 	if (ceiling) {
340 		ceiling &= PMD_MASK;
341 		if (!ceiling)
342 			return;
343 	}
344 	if (end - 1 > ceiling - 1)
345 		end -= PMD_SIZE;
346 	if (addr > end - 1)
347 		return;
348 	/*
349 	 * We add page table cache pages with PAGE_SIZE,
350 	 * (see pte_free_tlb()), flush the tlb if we need
351 	 */
352 	tlb_change_page_size(tlb, PAGE_SIZE);
353 	pgd = pgd_offset(tlb->mm, addr);
354 	do {
355 		next = pgd_addr_end(addr, end);
356 		if (pgd_none_or_clear_bad(pgd))
357 			continue;
358 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
359 	} while (pgd++, addr = next, addr != end);
360 }
361 
362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
363 		   struct vm_area_struct *vma, unsigned long floor,
364 		   unsigned long ceiling, bool mm_wr_locked)
365 {
366 	do {
367 		unsigned long addr = vma->vm_start;
368 		struct vm_area_struct *next;
369 
370 		/*
371 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
372 		 * be 0.  This will underflow and is okay.
373 		 */
374 		next = mas_find(mas, ceiling - 1);
375 		if (unlikely(xa_is_zero(next)))
376 			next = NULL;
377 
378 		/*
379 		 * Hide vma from rmap and truncate_pagecache before freeing
380 		 * pgtables
381 		 */
382 		if (mm_wr_locked)
383 			vma_start_write(vma);
384 		unlink_anon_vmas(vma);
385 		unlink_file_vma(vma);
386 
387 		if (is_vm_hugetlb_page(vma)) {
388 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
389 				floor, next ? next->vm_start : ceiling);
390 		} else {
391 			/*
392 			 * Optimization: gather nearby vmas into one call down
393 			 */
394 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
395 			       && !is_vm_hugetlb_page(next)) {
396 				vma = next;
397 				next = mas_find(mas, ceiling - 1);
398 				if (unlikely(xa_is_zero(next)))
399 					next = NULL;
400 				if (mm_wr_locked)
401 					vma_start_write(vma);
402 				unlink_anon_vmas(vma);
403 				unlink_file_vma(vma);
404 			}
405 			free_pgd_range(tlb, addr, vma->vm_end,
406 				floor, next ? next->vm_start : ceiling);
407 		}
408 		vma = next;
409 	} while (vma);
410 }
411 
412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
413 {
414 	spinlock_t *ptl = pmd_lock(mm, pmd);
415 
416 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
417 		mm_inc_nr_ptes(mm);
418 		/*
419 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
420 		 * visible before the pte is made visible to other CPUs by being
421 		 * put into page tables.
422 		 *
423 		 * The other side of the story is the pointer chasing in the page
424 		 * table walking code (when walking the page table without locking;
425 		 * ie. most of the time). Fortunately, these data accesses consist
426 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
427 		 * being the notable exception) will already guarantee loads are
428 		 * seen in-order. See the alpha page table accessors for the
429 		 * smp_rmb() barriers in page table walking code.
430 		 */
431 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
432 		pmd_populate(mm, pmd, *pte);
433 		*pte = NULL;
434 	}
435 	spin_unlock(ptl);
436 }
437 
438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
439 {
440 	pgtable_t new = pte_alloc_one(mm);
441 	if (!new)
442 		return -ENOMEM;
443 
444 	pmd_install(mm, pmd, &new);
445 	if (new)
446 		pte_free(mm, new);
447 	return 0;
448 }
449 
450 int __pte_alloc_kernel(pmd_t *pmd)
451 {
452 	pte_t *new = pte_alloc_one_kernel(&init_mm);
453 	if (!new)
454 		return -ENOMEM;
455 
456 	spin_lock(&init_mm.page_table_lock);
457 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
458 		smp_wmb(); /* See comment in pmd_install() */
459 		pmd_populate_kernel(&init_mm, pmd, new);
460 		new = NULL;
461 	}
462 	spin_unlock(&init_mm.page_table_lock);
463 	if (new)
464 		pte_free_kernel(&init_mm, new);
465 	return 0;
466 }
467 
468 static inline void init_rss_vec(int *rss)
469 {
470 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471 }
472 
473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
474 {
475 	int i;
476 
477 	for (i = 0; i < NR_MM_COUNTERS; i++)
478 		if (rss[i])
479 			add_mm_counter(mm, i, rss[i]);
480 }
481 
482 /*
483  * This function is called to print an error when a bad pte
484  * is found. For example, we might have a PFN-mapped pte in
485  * a region that doesn't allow it.
486  *
487  * The calling function must still handle the error.
488  */
489 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
490 			  pte_t pte, struct page *page)
491 {
492 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
493 	p4d_t *p4d = p4d_offset(pgd, addr);
494 	pud_t *pud = pud_offset(p4d, addr);
495 	pmd_t *pmd = pmd_offset(pud, addr);
496 	struct address_space *mapping;
497 	pgoff_t index;
498 	static unsigned long resume;
499 	static unsigned long nr_shown;
500 	static unsigned long nr_unshown;
501 
502 	/*
503 	 * Allow a burst of 60 reports, then keep quiet for that minute;
504 	 * or allow a steady drip of one report per second.
505 	 */
506 	if (nr_shown == 60) {
507 		if (time_before(jiffies, resume)) {
508 			nr_unshown++;
509 			return;
510 		}
511 		if (nr_unshown) {
512 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
513 				 nr_unshown);
514 			nr_unshown = 0;
515 		}
516 		nr_shown = 0;
517 	}
518 	if (nr_shown++ == 0)
519 		resume = jiffies + 60 * HZ;
520 
521 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
522 	index = linear_page_index(vma, addr);
523 
524 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
525 		 current->comm,
526 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
527 	if (page)
528 		dump_page(page, "bad pte");
529 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
530 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
531 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
532 		 vma->vm_file,
533 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
534 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
535 		 mapping ? mapping->a_ops->read_folio : NULL);
536 	dump_stack();
537 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
538 }
539 
540 /*
541  * vm_normal_page -- This function gets the "struct page" associated with a pte.
542  *
543  * "Special" mappings do not wish to be associated with a "struct page" (either
544  * it doesn't exist, or it exists but they don't want to touch it). In this
545  * case, NULL is returned here. "Normal" mappings do have a struct page.
546  *
547  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
548  * pte bit, in which case this function is trivial. Secondly, an architecture
549  * may not have a spare pte bit, which requires a more complicated scheme,
550  * described below.
551  *
552  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
553  * special mapping (even if there are underlying and valid "struct pages").
554  * COWed pages of a VM_PFNMAP are always normal.
555  *
556  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
557  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
558  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
559  * mapping will always honor the rule
560  *
561  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
562  *
563  * And for normal mappings this is false.
564  *
565  * This restricts such mappings to be a linear translation from virtual address
566  * to pfn. To get around this restriction, we allow arbitrary mappings so long
567  * as the vma is not a COW mapping; in that case, we know that all ptes are
568  * special (because none can have been COWed).
569  *
570  *
571  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
572  *
573  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
574  * page" backing, however the difference is that _all_ pages with a struct
575  * page (that is, those where pfn_valid is true) are refcounted and considered
576  * normal pages by the VM. The disadvantage is that pages are refcounted
577  * (which can be slower and simply not an option for some PFNMAP users). The
578  * advantage is that we don't have to follow the strict linearity rule of
579  * PFNMAP mappings in order to support COWable mappings.
580  *
581  */
582 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
583 			    pte_t pte)
584 {
585 	unsigned long pfn = pte_pfn(pte);
586 
587 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
588 		if (likely(!pte_special(pte)))
589 			goto check_pfn;
590 		if (vma->vm_ops && vma->vm_ops->find_special_page)
591 			return vma->vm_ops->find_special_page(vma, addr);
592 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
593 			return NULL;
594 		if (is_zero_pfn(pfn))
595 			return NULL;
596 		if (pte_devmap(pte))
597 		/*
598 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
599 		 * and will have refcounts incremented on their struct pages
600 		 * when they are inserted into PTEs, thus they are safe to
601 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
602 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
603 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
604 		 */
605 			return NULL;
606 
607 		print_bad_pte(vma, addr, pte, NULL);
608 		return NULL;
609 	}
610 
611 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
612 
613 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
614 		if (vma->vm_flags & VM_MIXEDMAP) {
615 			if (!pfn_valid(pfn))
616 				return NULL;
617 			goto out;
618 		} else {
619 			unsigned long off;
620 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
621 			if (pfn == vma->vm_pgoff + off)
622 				return NULL;
623 			if (!is_cow_mapping(vma->vm_flags))
624 				return NULL;
625 		}
626 	}
627 
628 	if (is_zero_pfn(pfn))
629 		return NULL;
630 
631 check_pfn:
632 	if (unlikely(pfn > highest_memmap_pfn)) {
633 		print_bad_pte(vma, addr, pte, NULL);
634 		return NULL;
635 	}
636 
637 	/*
638 	 * NOTE! We still have PageReserved() pages in the page tables.
639 	 * eg. VDSO mappings can cause them to exist.
640 	 */
641 out:
642 	return pfn_to_page(pfn);
643 }
644 
645 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
646 			    pte_t pte)
647 {
648 	struct page *page = vm_normal_page(vma, addr, pte);
649 
650 	if (page)
651 		return page_folio(page);
652 	return NULL;
653 }
654 
655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
656 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
657 				pmd_t pmd)
658 {
659 	unsigned long pfn = pmd_pfn(pmd);
660 
661 	/*
662 	 * There is no pmd_special() but there may be special pmds, e.g.
663 	 * in a direct-access (dax) mapping, so let's just replicate the
664 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
665 	 */
666 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
667 		if (vma->vm_flags & VM_MIXEDMAP) {
668 			if (!pfn_valid(pfn))
669 				return NULL;
670 			goto out;
671 		} else {
672 			unsigned long off;
673 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
674 			if (pfn == vma->vm_pgoff + off)
675 				return NULL;
676 			if (!is_cow_mapping(vma->vm_flags))
677 				return NULL;
678 		}
679 	}
680 
681 	if (pmd_devmap(pmd))
682 		return NULL;
683 	if (is_huge_zero_pmd(pmd))
684 		return NULL;
685 	if (unlikely(pfn > highest_memmap_pfn))
686 		return NULL;
687 
688 	/*
689 	 * NOTE! We still have PageReserved() pages in the page tables.
690 	 * eg. VDSO mappings can cause them to exist.
691 	 */
692 out:
693 	return pfn_to_page(pfn);
694 }
695 
696 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
697 				  unsigned long addr, pmd_t pmd)
698 {
699 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
700 
701 	if (page)
702 		return page_folio(page);
703 	return NULL;
704 }
705 #endif
706 
707 static void restore_exclusive_pte(struct vm_area_struct *vma,
708 				  struct page *page, unsigned long address,
709 				  pte_t *ptep)
710 {
711 	struct folio *folio = page_folio(page);
712 	pte_t orig_pte;
713 	pte_t pte;
714 	swp_entry_t entry;
715 
716 	orig_pte = ptep_get(ptep);
717 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
718 	if (pte_swp_soft_dirty(orig_pte))
719 		pte = pte_mksoft_dirty(pte);
720 
721 	entry = pte_to_swp_entry(orig_pte);
722 	if (pte_swp_uffd_wp(orig_pte))
723 		pte = pte_mkuffd_wp(pte);
724 	else if (is_writable_device_exclusive_entry(entry))
725 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
726 
727 	VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
728 					   PageAnonExclusive(page)), folio);
729 
730 	/*
731 	 * No need to take a page reference as one was already
732 	 * created when the swap entry was made.
733 	 */
734 	if (folio_test_anon(folio))
735 		folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
736 	else
737 		/*
738 		 * Currently device exclusive access only supports anonymous
739 		 * memory so the entry shouldn't point to a filebacked page.
740 		 */
741 		WARN_ON_ONCE(1);
742 
743 	set_pte_at(vma->vm_mm, address, ptep, pte);
744 
745 	/*
746 	 * No need to invalidate - it was non-present before. However
747 	 * secondary CPUs may have mappings that need invalidating.
748 	 */
749 	update_mmu_cache(vma, address, ptep);
750 }
751 
752 /*
753  * Tries to restore an exclusive pte if the page lock can be acquired without
754  * sleeping.
755  */
756 static int
757 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
758 			unsigned long addr)
759 {
760 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
761 	struct page *page = pfn_swap_entry_to_page(entry);
762 
763 	if (trylock_page(page)) {
764 		restore_exclusive_pte(vma, page, addr, src_pte);
765 		unlock_page(page);
766 		return 0;
767 	}
768 
769 	return -EBUSY;
770 }
771 
772 /*
773  * copy one vm_area from one task to the other. Assumes the page tables
774  * already present in the new task to be cleared in the whole range
775  * covered by this vma.
776  */
777 
778 static unsigned long
779 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
780 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
781 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
782 {
783 	unsigned long vm_flags = dst_vma->vm_flags;
784 	pte_t orig_pte = ptep_get(src_pte);
785 	pte_t pte = orig_pte;
786 	struct folio *folio;
787 	struct page *page;
788 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
789 
790 	if (likely(!non_swap_entry(entry))) {
791 		if (swap_duplicate(entry) < 0)
792 			return -EIO;
793 
794 		/* make sure dst_mm is on swapoff's mmlist. */
795 		if (unlikely(list_empty(&dst_mm->mmlist))) {
796 			spin_lock(&mmlist_lock);
797 			if (list_empty(&dst_mm->mmlist))
798 				list_add(&dst_mm->mmlist,
799 						&src_mm->mmlist);
800 			spin_unlock(&mmlist_lock);
801 		}
802 		/* Mark the swap entry as shared. */
803 		if (pte_swp_exclusive(orig_pte)) {
804 			pte = pte_swp_clear_exclusive(orig_pte);
805 			set_pte_at(src_mm, addr, src_pte, pte);
806 		}
807 		rss[MM_SWAPENTS]++;
808 	} else if (is_migration_entry(entry)) {
809 		folio = pfn_swap_entry_folio(entry);
810 
811 		rss[mm_counter(folio)]++;
812 
813 		if (!is_readable_migration_entry(entry) &&
814 				is_cow_mapping(vm_flags)) {
815 			/*
816 			 * COW mappings require pages in both parent and child
817 			 * to be set to read. A previously exclusive entry is
818 			 * now shared.
819 			 */
820 			entry = make_readable_migration_entry(
821 							swp_offset(entry));
822 			pte = swp_entry_to_pte(entry);
823 			if (pte_swp_soft_dirty(orig_pte))
824 				pte = pte_swp_mksoft_dirty(pte);
825 			if (pte_swp_uffd_wp(orig_pte))
826 				pte = pte_swp_mkuffd_wp(pte);
827 			set_pte_at(src_mm, addr, src_pte, pte);
828 		}
829 	} else if (is_device_private_entry(entry)) {
830 		page = pfn_swap_entry_to_page(entry);
831 		folio = page_folio(page);
832 
833 		/*
834 		 * Update rss count even for unaddressable pages, as
835 		 * they should treated just like normal pages in this
836 		 * respect.
837 		 *
838 		 * We will likely want to have some new rss counters
839 		 * for unaddressable pages, at some point. But for now
840 		 * keep things as they are.
841 		 */
842 		folio_get(folio);
843 		rss[mm_counter(folio)]++;
844 		/* Cannot fail as these pages cannot get pinned. */
845 		folio_try_dup_anon_rmap_pte(folio, page, src_vma);
846 
847 		/*
848 		 * We do not preserve soft-dirty information, because so
849 		 * far, checkpoint/restore is the only feature that
850 		 * requires that. And checkpoint/restore does not work
851 		 * when a device driver is involved (you cannot easily
852 		 * save and restore device driver state).
853 		 */
854 		if (is_writable_device_private_entry(entry) &&
855 		    is_cow_mapping(vm_flags)) {
856 			entry = make_readable_device_private_entry(
857 							swp_offset(entry));
858 			pte = swp_entry_to_pte(entry);
859 			if (pte_swp_uffd_wp(orig_pte))
860 				pte = pte_swp_mkuffd_wp(pte);
861 			set_pte_at(src_mm, addr, src_pte, pte);
862 		}
863 	} else if (is_device_exclusive_entry(entry)) {
864 		/*
865 		 * Make device exclusive entries present by restoring the
866 		 * original entry then copying as for a present pte. Device
867 		 * exclusive entries currently only support private writable
868 		 * (ie. COW) mappings.
869 		 */
870 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
871 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
872 			return -EBUSY;
873 		return -ENOENT;
874 	} else if (is_pte_marker_entry(entry)) {
875 		pte_marker marker = copy_pte_marker(entry, dst_vma);
876 
877 		if (marker)
878 			set_pte_at(dst_mm, addr, dst_pte,
879 				   make_pte_marker(marker));
880 		return 0;
881 	}
882 	if (!userfaultfd_wp(dst_vma))
883 		pte = pte_swp_clear_uffd_wp(pte);
884 	set_pte_at(dst_mm, addr, dst_pte, pte);
885 	return 0;
886 }
887 
888 /*
889  * Copy a present and normal page.
890  *
891  * NOTE! The usual case is that this isn't required;
892  * instead, the caller can just increase the page refcount
893  * and re-use the pte the traditional way.
894  *
895  * And if we need a pre-allocated page but don't yet have
896  * one, return a negative error to let the preallocation
897  * code know so that it can do so outside the page table
898  * lock.
899  */
900 static inline int
901 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903 		  struct folio **prealloc, struct page *page)
904 {
905 	struct folio *new_folio;
906 	pte_t pte;
907 
908 	new_folio = *prealloc;
909 	if (!new_folio)
910 		return -EAGAIN;
911 
912 	/*
913 	 * We have a prealloc page, all good!  Take it
914 	 * over and copy the page & arm it.
915 	 */
916 	*prealloc = NULL;
917 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
918 	__folio_mark_uptodate(new_folio);
919 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
920 	folio_add_lru_vma(new_folio, dst_vma);
921 	rss[MM_ANONPAGES]++;
922 
923 	/* All done, just insert the new page copy in the child */
924 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
925 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
926 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
927 		/* Uffd-wp needs to be delivered to dest pte as well */
928 		pte = pte_mkuffd_wp(pte);
929 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
930 	return 0;
931 }
932 
933 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
934 		struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
935 		pte_t pte, unsigned long addr, int nr)
936 {
937 	struct mm_struct *src_mm = src_vma->vm_mm;
938 
939 	/* If it's a COW mapping, write protect it both processes. */
940 	if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
941 		wrprotect_ptes(src_mm, addr, src_pte, nr);
942 		pte = pte_wrprotect(pte);
943 	}
944 
945 	/* If it's a shared mapping, mark it clean in the child. */
946 	if (src_vma->vm_flags & VM_SHARED)
947 		pte = pte_mkclean(pte);
948 	pte = pte_mkold(pte);
949 
950 	if (!userfaultfd_wp(dst_vma))
951 		pte = pte_clear_uffd_wp(pte);
952 
953 	set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
954 }
955 
956 /*
957  * Copy one present PTE, trying to batch-process subsequent PTEs that map
958  * consecutive pages of the same folio by copying them as well.
959  *
960  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
961  * Otherwise, returns the number of copied PTEs (at least 1).
962  */
963 static inline int
964 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
965 		 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
966 		 int max_nr, int *rss, struct folio **prealloc)
967 {
968 	struct page *page;
969 	struct folio *folio;
970 	bool any_writable;
971 	fpb_t flags = 0;
972 	int err, nr;
973 
974 	page = vm_normal_page(src_vma, addr, pte);
975 	if (unlikely(!page))
976 		goto copy_pte;
977 
978 	folio = page_folio(page);
979 
980 	/*
981 	 * If we likely have to copy, just don't bother with batching. Make
982 	 * sure that the common "small folio" case is as fast as possible
983 	 * by keeping the batching logic separate.
984 	 */
985 	if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
986 		if (src_vma->vm_flags & VM_SHARED)
987 			flags |= FPB_IGNORE_DIRTY;
988 		if (!vma_soft_dirty_enabled(src_vma))
989 			flags |= FPB_IGNORE_SOFT_DIRTY;
990 
991 		nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
992 				     &any_writable);
993 		folio_ref_add(folio, nr);
994 		if (folio_test_anon(folio)) {
995 			if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
996 								  nr, src_vma))) {
997 				folio_ref_sub(folio, nr);
998 				return -EAGAIN;
999 			}
1000 			rss[MM_ANONPAGES] += nr;
1001 			VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1002 		} else {
1003 			folio_dup_file_rmap_ptes(folio, page, nr);
1004 			rss[mm_counter_file(folio)] += nr;
1005 		}
1006 		if (any_writable)
1007 			pte = pte_mkwrite(pte, src_vma);
1008 		__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1009 				    addr, nr);
1010 		return nr;
1011 	}
1012 
1013 	folio_get(folio);
1014 	if (folio_test_anon(folio)) {
1015 		/*
1016 		 * If this page may have been pinned by the parent process,
1017 		 * copy the page immediately for the child so that we'll always
1018 		 * guarantee the pinned page won't be randomly replaced in the
1019 		 * future.
1020 		 */
1021 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1022 			/* Page may be pinned, we have to copy. */
1023 			folio_put(folio);
1024 			err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1025 						addr, rss, prealloc, page);
1026 			return err ? err : 1;
1027 		}
1028 		rss[MM_ANONPAGES]++;
1029 		VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1030 	} else {
1031 		folio_dup_file_rmap_pte(folio, page);
1032 		rss[mm_counter_file(folio)]++;
1033 	}
1034 
1035 copy_pte:
1036 	__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1037 	return 1;
1038 }
1039 
1040 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1041 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1042 {
1043 	struct folio *new_folio;
1044 
1045 	if (need_zero)
1046 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1047 	else
1048 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1049 					    addr, false);
1050 
1051 	if (!new_folio)
1052 		return NULL;
1053 
1054 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1055 		folio_put(new_folio);
1056 		return NULL;
1057 	}
1058 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1059 
1060 	return new_folio;
1061 }
1062 
1063 static int
1064 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1065 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1066 	       unsigned long end)
1067 {
1068 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1069 	struct mm_struct *src_mm = src_vma->vm_mm;
1070 	pte_t *orig_src_pte, *orig_dst_pte;
1071 	pte_t *src_pte, *dst_pte;
1072 	pte_t ptent;
1073 	spinlock_t *src_ptl, *dst_ptl;
1074 	int progress, max_nr, ret = 0;
1075 	int rss[NR_MM_COUNTERS];
1076 	swp_entry_t entry = (swp_entry_t){0};
1077 	struct folio *prealloc = NULL;
1078 	int nr;
1079 
1080 again:
1081 	progress = 0;
1082 	init_rss_vec(rss);
1083 
1084 	/*
1085 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1086 	 * error handling here, assume that exclusive mmap_lock on dst and src
1087 	 * protects anon from unexpected THP transitions; with shmem and file
1088 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1089 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1090 	 * can remove such assumptions later, but this is good enough for now.
1091 	 */
1092 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1093 	if (!dst_pte) {
1094 		ret = -ENOMEM;
1095 		goto out;
1096 	}
1097 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1098 	if (!src_pte) {
1099 		pte_unmap_unlock(dst_pte, dst_ptl);
1100 		/* ret == 0 */
1101 		goto out;
1102 	}
1103 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1104 	orig_src_pte = src_pte;
1105 	orig_dst_pte = dst_pte;
1106 	arch_enter_lazy_mmu_mode();
1107 
1108 	do {
1109 		nr = 1;
1110 
1111 		/*
1112 		 * We are holding two locks at this point - either of them
1113 		 * could generate latencies in another task on another CPU.
1114 		 */
1115 		if (progress >= 32) {
1116 			progress = 0;
1117 			if (need_resched() ||
1118 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1119 				break;
1120 		}
1121 		ptent = ptep_get(src_pte);
1122 		if (pte_none(ptent)) {
1123 			progress++;
1124 			continue;
1125 		}
1126 		if (unlikely(!pte_present(ptent))) {
1127 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1128 						  dst_pte, src_pte,
1129 						  dst_vma, src_vma,
1130 						  addr, rss);
1131 			if (ret == -EIO) {
1132 				entry = pte_to_swp_entry(ptep_get(src_pte));
1133 				break;
1134 			} else if (ret == -EBUSY) {
1135 				break;
1136 			} else if (!ret) {
1137 				progress += 8;
1138 				continue;
1139 			}
1140 			ptent = ptep_get(src_pte);
1141 			VM_WARN_ON_ONCE(!pte_present(ptent));
1142 
1143 			/*
1144 			 * Device exclusive entry restored, continue by copying
1145 			 * the now present pte.
1146 			 */
1147 			WARN_ON_ONCE(ret != -ENOENT);
1148 		}
1149 		/* copy_present_ptes() will clear `*prealloc' if consumed */
1150 		max_nr = (end - addr) / PAGE_SIZE;
1151 		ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1152 					ptent, addr, max_nr, rss, &prealloc);
1153 		/*
1154 		 * If we need a pre-allocated page for this pte, drop the
1155 		 * locks, allocate, and try again.
1156 		 */
1157 		if (unlikely(ret == -EAGAIN))
1158 			break;
1159 		if (unlikely(prealloc)) {
1160 			/*
1161 			 * pre-alloc page cannot be reused by next time so as
1162 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1163 			 * will allocate page according to address).  This
1164 			 * could only happen if one pinned pte changed.
1165 			 */
1166 			folio_put(prealloc);
1167 			prealloc = NULL;
1168 		}
1169 		nr = ret;
1170 		progress += 8 * nr;
1171 	} while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1172 		 addr != end);
1173 
1174 	arch_leave_lazy_mmu_mode();
1175 	pte_unmap_unlock(orig_src_pte, src_ptl);
1176 	add_mm_rss_vec(dst_mm, rss);
1177 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1178 	cond_resched();
1179 
1180 	if (ret == -EIO) {
1181 		VM_WARN_ON_ONCE(!entry.val);
1182 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1183 			ret = -ENOMEM;
1184 			goto out;
1185 		}
1186 		entry.val = 0;
1187 	} else if (ret == -EBUSY) {
1188 		goto out;
1189 	} else if (ret ==  -EAGAIN) {
1190 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1191 		if (!prealloc)
1192 			return -ENOMEM;
1193 	} else if (ret < 0) {
1194 		VM_WARN_ON_ONCE(1);
1195 	}
1196 
1197 	/* We've captured and resolved the error. Reset, try again. */
1198 	ret = 0;
1199 
1200 	if (addr != end)
1201 		goto again;
1202 out:
1203 	if (unlikely(prealloc))
1204 		folio_put(prealloc);
1205 	return ret;
1206 }
1207 
1208 static inline int
1209 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1210 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1211 	       unsigned long end)
1212 {
1213 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1214 	struct mm_struct *src_mm = src_vma->vm_mm;
1215 	pmd_t *src_pmd, *dst_pmd;
1216 	unsigned long next;
1217 
1218 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1219 	if (!dst_pmd)
1220 		return -ENOMEM;
1221 	src_pmd = pmd_offset(src_pud, addr);
1222 	do {
1223 		next = pmd_addr_end(addr, end);
1224 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1225 			|| pmd_devmap(*src_pmd)) {
1226 			int err;
1227 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1228 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1229 					    addr, dst_vma, src_vma);
1230 			if (err == -ENOMEM)
1231 				return -ENOMEM;
1232 			if (!err)
1233 				continue;
1234 			/* fall through */
1235 		}
1236 		if (pmd_none_or_clear_bad(src_pmd))
1237 			continue;
1238 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1239 				   addr, next))
1240 			return -ENOMEM;
1241 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1242 	return 0;
1243 }
1244 
1245 static inline int
1246 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1247 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1248 	       unsigned long end)
1249 {
1250 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1251 	struct mm_struct *src_mm = src_vma->vm_mm;
1252 	pud_t *src_pud, *dst_pud;
1253 	unsigned long next;
1254 
1255 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1256 	if (!dst_pud)
1257 		return -ENOMEM;
1258 	src_pud = pud_offset(src_p4d, addr);
1259 	do {
1260 		next = pud_addr_end(addr, end);
1261 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1262 			int err;
1263 
1264 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1265 			err = copy_huge_pud(dst_mm, src_mm,
1266 					    dst_pud, src_pud, addr, src_vma);
1267 			if (err == -ENOMEM)
1268 				return -ENOMEM;
1269 			if (!err)
1270 				continue;
1271 			/* fall through */
1272 		}
1273 		if (pud_none_or_clear_bad(src_pud))
1274 			continue;
1275 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1276 				   addr, next))
1277 			return -ENOMEM;
1278 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1279 	return 0;
1280 }
1281 
1282 static inline int
1283 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1284 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1285 	       unsigned long end)
1286 {
1287 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1288 	p4d_t *src_p4d, *dst_p4d;
1289 	unsigned long next;
1290 
1291 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1292 	if (!dst_p4d)
1293 		return -ENOMEM;
1294 	src_p4d = p4d_offset(src_pgd, addr);
1295 	do {
1296 		next = p4d_addr_end(addr, end);
1297 		if (p4d_none_or_clear_bad(src_p4d))
1298 			continue;
1299 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1300 				   addr, next))
1301 			return -ENOMEM;
1302 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1303 	return 0;
1304 }
1305 
1306 /*
1307  * Return true if the vma needs to copy the pgtable during this fork().  Return
1308  * false when we can speed up fork() by allowing lazy page faults later until
1309  * when the child accesses the memory range.
1310  */
1311 static bool
1312 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1313 {
1314 	/*
1315 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1316 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1317 	 * contains uffd-wp protection information, that's something we can't
1318 	 * retrieve from page cache, and skip copying will lose those info.
1319 	 */
1320 	if (userfaultfd_wp(dst_vma))
1321 		return true;
1322 
1323 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1324 		return true;
1325 
1326 	if (src_vma->anon_vma)
1327 		return true;
1328 
1329 	/*
1330 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1331 	 * becomes much lighter when there are big shared or private readonly
1332 	 * mappings. The tradeoff is that copy_page_range is more efficient
1333 	 * than faulting.
1334 	 */
1335 	return false;
1336 }
1337 
1338 int
1339 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1340 {
1341 	pgd_t *src_pgd, *dst_pgd;
1342 	unsigned long next;
1343 	unsigned long addr = src_vma->vm_start;
1344 	unsigned long end = src_vma->vm_end;
1345 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1346 	struct mm_struct *src_mm = src_vma->vm_mm;
1347 	struct mmu_notifier_range range;
1348 	bool is_cow;
1349 	int ret;
1350 
1351 	if (!vma_needs_copy(dst_vma, src_vma))
1352 		return 0;
1353 
1354 	if (is_vm_hugetlb_page(src_vma))
1355 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1356 
1357 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1358 		/*
1359 		 * We do not free on error cases below as remove_vma
1360 		 * gets called on error from higher level routine
1361 		 */
1362 		ret = track_pfn_copy(src_vma);
1363 		if (ret)
1364 			return ret;
1365 	}
1366 
1367 	/*
1368 	 * We need to invalidate the secondary MMU mappings only when
1369 	 * there could be a permission downgrade on the ptes of the
1370 	 * parent mm. And a permission downgrade will only happen if
1371 	 * is_cow_mapping() returns true.
1372 	 */
1373 	is_cow = is_cow_mapping(src_vma->vm_flags);
1374 
1375 	if (is_cow) {
1376 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1377 					0, src_mm, addr, end);
1378 		mmu_notifier_invalidate_range_start(&range);
1379 		/*
1380 		 * Disabling preemption is not needed for the write side, as
1381 		 * the read side doesn't spin, but goes to the mmap_lock.
1382 		 *
1383 		 * Use the raw variant of the seqcount_t write API to avoid
1384 		 * lockdep complaining about preemptibility.
1385 		 */
1386 		vma_assert_write_locked(src_vma);
1387 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1388 	}
1389 
1390 	ret = 0;
1391 	dst_pgd = pgd_offset(dst_mm, addr);
1392 	src_pgd = pgd_offset(src_mm, addr);
1393 	do {
1394 		next = pgd_addr_end(addr, end);
1395 		if (pgd_none_or_clear_bad(src_pgd))
1396 			continue;
1397 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1398 					    addr, next))) {
1399 			untrack_pfn_clear(dst_vma);
1400 			ret = -ENOMEM;
1401 			break;
1402 		}
1403 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1404 
1405 	if (is_cow) {
1406 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1407 		mmu_notifier_invalidate_range_end(&range);
1408 	}
1409 	return ret;
1410 }
1411 
1412 /* Whether we should zap all COWed (private) pages too */
1413 static inline bool should_zap_cows(struct zap_details *details)
1414 {
1415 	/* By default, zap all pages */
1416 	if (!details)
1417 		return true;
1418 
1419 	/* Or, we zap COWed pages only if the caller wants to */
1420 	return details->even_cows;
1421 }
1422 
1423 /* Decides whether we should zap this folio with the folio pointer specified */
1424 static inline bool should_zap_folio(struct zap_details *details,
1425 				    struct folio *folio)
1426 {
1427 	/* If we can make a decision without *folio.. */
1428 	if (should_zap_cows(details))
1429 		return true;
1430 
1431 	/* Otherwise we should only zap non-anon folios */
1432 	return !folio_test_anon(folio);
1433 }
1434 
1435 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1436 {
1437 	if (!details)
1438 		return false;
1439 
1440 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1441 }
1442 
1443 /*
1444  * This function makes sure that we'll replace the none pte with an uffd-wp
1445  * swap special pte marker when necessary. Must be with the pgtable lock held.
1446  */
1447 static inline void
1448 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1449 			      unsigned long addr, pte_t *pte, int nr,
1450 			      struct zap_details *details, pte_t pteval)
1451 {
1452 	/* Zap on anonymous always means dropping everything */
1453 	if (vma_is_anonymous(vma))
1454 		return;
1455 
1456 	if (zap_drop_file_uffd_wp(details))
1457 		return;
1458 
1459 	for (;;) {
1460 		/* the PFN in the PTE is irrelevant. */
1461 		pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1462 		if (--nr == 0)
1463 			break;
1464 		pte++;
1465 		addr += PAGE_SIZE;
1466 	}
1467 }
1468 
1469 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1470 		struct vm_area_struct *vma, struct folio *folio,
1471 		struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1472 		unsigned long addr, struct zap_details *details, int *rss,
1473 		bool *force_flush, bool *force_break)
1474 {
1475 	struct mm_struct *mm = tlb->mm;
1476 	bool delay_rmap = false;
1477 
1478 	if (!folio_test_anon(folio)) {
1479 		ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1480 		if (pte_dirty(ptent)) {
1481 			folio_mark_dirty(folio);
1482 			if (tlb_delay_rmap(tlb)) {
1483 				delay_rmap = true;
1484 				*force_flush = true;
1485 			}
1486 		}
1487 		if (pte_young(ptent) && likely(vma_has_recency(vma)))
1488 			folio_mark_accessed(folio);
1489 		rss[mm_counter(folio)] -= nr;
1490 	} else {
1491 		/* We don't need up-to-date accessed/dirty bits. */
1492 		clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1493 		rss[MM_ANONPAGES] -= nr;
1494 	}
1495 	/* Checking a single PTE in a batch is sufficient. */
1496 	arch_check_zapped_pte(vma, ptent);
1497 	tlb_remove_tlb_entries(tlb, pte, nr, addr);
1498 	if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1499 		zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1500 					      ptent);
1501 
1502 	if (!delay_rmap) {
1503 		folio_remove_rmap_ptes(folio, page, nr, vma);
1504 
1505 		/* Only sanity-check the first page in a batch. */
1506 		if (unlikely(page_mapcount(page) < 0))
1507 			print_bad_pte(vma, addr, ptent, page);
1508 	}
1509 	if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1510 		*force_flush = true;
1511 		*force_break = true;
1512 	}
1513 }
1514 
1515 /*
1516  * Zap or skip at least one present PTE, trying to batch-process subsequent
1517  * PTEs that map consecutive pages of the same folio.
1518  *
1519  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1520  */
1521 static inline int zap_present_ptes(struct mmu_gather *tlb,
1522 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1523 		unsigned int max_nr, unsigned long addr,
1524 		struct zap_details *details, int *rss, bool *force_flush,
1525 		bool *force_break)
1526 {
1527 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1528 	struct mm_struct *mm = tlb->mm;
1529 	struct folio *folio;
1530 	struct page *page;
1531 	int nr;
1532 
1533 	page = vm_normal_page(vma, addr, ptent);
1534 	if (!page) {
1535 		/* We don't need up-to-date accessed/dirty bits. */
1536 		ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1537 		arch_check_zapped_pte(vma, ptent);
1538 		tlb_remove_tlb_entry(tlb, pte, addr);
1539 		VM_WARN_ON_ONCE(userfaultfd_wp(vma));
1540 		ksm_might_unmap_zero_page(mm, ptent);
1541 		return 1;
1542 	}
1543 
1544 	folio = page_folio(page);
1545 	if (unlikely(!should_zap_folio(details, folio)))
1546 		return 1;
1547 
1548 	/*
1549 	 * Make sure that the common "small folio" case is as fast as possible
1550 	 * by keeping the batching logic separate.
1551 	 */
1552 	if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1553 		nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1554 				     NULL);
1555 
1556 		zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1557 				       addr, details, rss, force_flush,
1558 				       force_break);
1559 		return nr;
1560 	}
1561 	zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1562 			       details, rss, force_flush, force_break);
1563 	return 1;
1564 }
1565 
1566 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1567 				struct vm_area_struct *vma, pmd_t *pmd,
1568 				unsigned long addr, unsigned long end,
1569 				struct zap_details *details)
1570 {
1571 	bool force_flush = false, force_break = false;
1572 	struct mm_struct *mm = tlb->mm;
1573 	int rss[NR_MM_COUNTERS];
1574 	spinlock_t *ptl;
1575 	pte_t *start_pte;
1576 	pte_t *pte;
1577 	swp_entry_t entry;
1578 	int nr;
1579 
1580 	tlb_change_page_size(tlb, PAGE_SIZE);
1581 	init_rss_vec(rss);
1582 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1583 	if (!pte)
1584 		return addr;
1585 
1586 	flush_tlb_batched_pending(mm);
1587 	arch_enter_lazy_mmu_mode();
1588 	do {
1589 		pte_t ptent = ptep_get(pte);
1590 		struct folio *folio;
1591 		struct page *page;
1592 		int max_nr;
1593 
1594 		nr = 1;
1595 		if (pte_none(ptent))
1596 			continue;
1597 
1598 		if (need_resched())
1599 			break;
1600 
1601 		if (pte_present(ptent)) {
1602 			max_nr = (end - addr) / PAGE_SIZE;
1603 			nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1604 					      addr, details, rss, &force_flush,
1605 					      &force_break);
1606 			if (unlikely(force_break)) {
1607 				addr += nr * PAGE_SIZE;
1608 				break;
1609 			}
1610 			continue;
1611 		}
1612 
1613 		entry = pte_to_swp_entry(ptent);
1614 		if (is_device_private_entry(entry) ||
1615 		    is_device_exclusive_entry(entry)) {
1616 			page = pfn_swap_entry_to_page(entry);
1617 			folio = page_folio(page);
1618 			if (unlikely(!should_zap_folio(details, folio)))
1619 				continue;
1620 			/*
1621 			 * Both device private/exclusive mappings should only
1622 			 * work with anonymous page so far, so we don't need to
1623 			 * consider uffd-wp bit when zap. For more information,
1624 			 * see zap_install_uffd_wp_if_needed().
1625 			 */
1626 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1627 			rss[mm_counter(folio)]--;
1628 			if (is_device_private_entry(entry))
1629 				folio_remove_rmap_pte(folio, page, vma);
1630 			folio_put(folio);
1631 		} else if (!non_swap_entry(entry)) {
1632 			/* Genuine swap entry, hence a private anon page */
1633 			if (!should_zap_cows(details))
1634 				continue;
1635 			rss[MM_SWAPENTS]--;
1636 			if (unlikely(!free_swap_and_cache(entry)))
1637 				print_bad_pte(vma, addr, ptent, NULL);
1638 		} else if (is_migration_entry(entry)) {
1639 			folio = pfn_swap_entry_folio(entry);
1640 			if (!should_zap_folio(details, folio))
1641 				continue;
1642 			rss[mm_counter(folio)]--;
1643 		} else if (pte_marker_entry_uffd_wp(entry)) {
1644 			/*
1645 			 * For anon: always drop the marker; for file: only
1646 			 * drop the marker if explicitly requested.
1647 			 */
1648 			if (!vma_is_anonymous(vma) &&
1649 			    !zap_drop_file_uffd_wp(details))
1650 				continue;
1651 		} else if (is_hwpoison_entry(entry) ||
1652 			   is_poisoned_swp_entry(entry)) {
1653 			if (!should_zap_cows(details))
1654 				continue;
1655 		} else {
1656 			/* We should have covered all the swap entry types */
1657 			pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1658 			WARN_ON_ONCE(1);
1659 		}
1660 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1661 		zap_install_uffd_wp_if_needed(vma, addr, pte, 1, details, ptent);
1662 	} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1663 
1664 	add_mm_rss_vec(mm, rss);
1665 	arch_leave_lazy_mmu_mode();
1666 
1667 	/* Do the actual TLB flush before dropping ptl */
1668 	if (force_flush) {
1669 		tlb_flush_mmu_tlbonly(tlb);
1670 		tlb_flush_rmaps(tlb, vma);
1671 	}
1672 	pte_unmap_unlock(start_pte, ptl);
1673 
1674 	/*
1675 	 * If we forced a TLB flush (either due to running out of
1676 	 * batch buffers or because we needed to flush dirty TLB
1677 	 * entries before releasing the ptl), free the batched
1678 	 * memory too. Come back again if we didn't do everything.
1679 	 */
1680 	if (force_flush)
1681 		tlb_flush_mmu(tlb);
1682 
1683 	return addr;
1684 }
1685 
1686 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1687 				struct vm_area_struct *vma, pud_t *pud,
1688 				unsigned long addr, unsigned long end,
1689 				struct zap_details *details)
1690 {
1691 	pmd_t *pmd;
1692 	unsigned long next;
1693 
1694 	pmd = pmd_offset(pud, addr);
1695 	do {
1696 		next = pmd_addr_end(addr, end);
1697 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1698 			if (next - addr != HPAGE_PMD_SIZE)
1699 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1700 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1701 				addr = next;
1702 				continue;
1703 			}
1704 			/* fall through */
1705 		} else if (details && details->single_folio &&
1706 			   folio_test_pmd_mappable(details->single_folio) &&
1707 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1708 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1709 			/*
1710 			 * Take and drop THP pmd lock so that we cannot return
1711 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1712 			 * but not yet decremented compound_mapcount().
1713 			 */
1714 			spin_unlock(ptl);
1715 		}
1716 		if (pmd_none(*pmd)) {
1717 			addr = next;
1718 			continue;
1719 		}
1720 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1721 		if (addr != next)
1722 			pmd--;
1723 	} while (pmd++, cond_resched(), addr != end);
1724 
1725 	return addr;
1726 }
1727 
1728 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1729 				struct vm_area_struct *vma, p4d_t *p4d,
1730 				unsigned long addr, unsigned long end,
1731 				struct zap_details *details)
1732 {
1733 	pud_t *pud;
1734 	unsigned long next;
1735 
1736 	pud = pud_offset(p4d, addr);
1737 	do {
1738 		next = pud_addr_end(addr, end);
1739 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1740 			if (next - addr != HPAGE_PUD_SIZE) {
1741 				mmap_assert_locked(tlb->mm);
1742 				split_huge_pud(vma, pud, addr);
1743 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1744 				goto next;
1745 			/* fall through */
1746 		}
1747 		if (pud_none_or_clear_bad(pud))
1748 			continue;
1749 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1750 next:
1751 		cond_resched();
1752 	} while (pud++, addr = next, addr != end);
1753 
1754 	return addr;
1755 }
1756 
1757 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1758 				struct vm_area_struct *vma, pgd_t *pgd,
1759 				unsigned long addr, unsigned long end,
1760 				struct zap_details *details)
1761 {
1762 	p4d_t *p4d;
1763 	unsigned long next;
1764 
1765 	p4d = p4d_offset(pgd, addr);
1766 	do {
1767 		next = p4d_addr_end(addr, end);
1768 		if (p4d_none_or_clear_bad(p4d))
1769 			continue;
1770 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1771 	} while (p4d++, addr = next, addr != end);
1772 
1773 	return addr;
1774 }
1775 
1776 void unmap_page_range(struct mmu_gather *tlb,
1777 			     struct vm_area_struct *vma,
1778 			     unsigned long addr, unsigned long end,
1779 			     struct zap_details *details)
1780 {
1781 	pgd_t *pgd;
1782 	unsigned long next;
1783 
1784 	BUG_ON(addr >= end);
1785 	tlb_start_vma(tlb, vma);
1786 	pgd = pgd_offset(vma->vm_mm, addr);
1787 	do {
1788 		next = pgd_addr_end(addr, end);
1789 		if (pgd_none_or_clear_bad(pgd))
1790 			continue;
1791 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1792 	} while (pgd++, addr = next, addr != end);
1793 	tlb_end_vma(tlb, vma);
1794 }
1795 
1796 
1797 static void unmap_single_vma(struct mmu_gather *tlb,
1798 		struct vm_area_struct *vma, unsigned long start_addr,
1799 		unsigned long end_addr,
1800 		struct zap_details *details, bool mm_wr_locked)
1801 {
1802 	unsigned long start = max(vma->vm_start, start_addr);
1803 	unsigned long end;
1804 
1805 	if (start >= vma->vm_end)
1806 		return;
1807 	end = min(vma->vm_end, end_addr);
1808 	if (end <= vma->vm_start)
1809 		return;
1810 
1811 	if (vma->vm_file)
1812 		uprobe_munmap(vma, start, end);
1813 
1814 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1815 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1816 
1817 	if (start != end) {
1818 		if (unlikely(is_vm_hugetlb_page(vma))) {
1819 			/*
1820 			 * It is undesirable to test vma->vm_file as it
1821 			 * should be non-null for valid hugetlb area.
1822 			 * However, vm_file will be NULL in the error
1823 			 * cleanup path of mmap_region. When
1824 			 * hugetlbfs ->mmap method fails,
1825 			 * mmap_region() nullifies vma->vm_file
1826 			 * before calling this function to clean up.
1827 			 * Since no pte has actually been setup, it is
1828 			 * safe to do nothing in this case.
1829 			 */
1830 			if (vma->vm_file) {
1831 				zap_flags_t zap_flags = details ?
1832 				    details->zap_flags : 0;
1833 				__unmap_hugepage_range(tlb, vma, start, end,
1834 							     NULL, zap_flags);
1835 			}
1836 		} else
1837 			unmap_page_range(tlb, vma, start, end, details);
1838 	}
1839 }
1840 
1841 /**
1842  * unmap_vmas - unmap a range of memory covered by a list of vma's
1843  * @tlb: address of the caller's struct mmu_gather
1844  * @mas: the maple state
1845  * @vma: the starting vma
1846  * @start_addr: virtual address at which to start unmapping
1847  * @end_addr: virtual address at which to end unmapping
1848  * @tree_end: The maximum index to check
1849  * @mm_wr_locked: lock flag
1850  *
1851  * Unmap all pages in the vma list.
1852  *
1853  * Only addresses between `start' and `end' will be unmapped.
1854  *
1855  * The VMA list must be sorted in ascending virtual address order.
1856  *
1857  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1858  * range after unmap_vmas() returns.  So the only responsibility here is to
1859  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1860  * drops the lock and schedules.
1861  */
1862 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1863 		struct vm_area_struct *vma, unsigned long start_addr,
1864 		unsigned long end_addr, unsigned long tree_end,
1865 		bool mm_wr_locked)
1866 {
1867 	struct mmu_notifier_range range;
1868 	struct zap_details details = {
1869 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1870 		/* Careful - we need to zap private pages too! */
1871 		.even_cows = true,
1872 	};
1873 
1874 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1875 				start_addr, end_addr);
1876 	mmu_notifier_invalidate_range_start(&range);
1877 	do {
1878 		unsigned long start = start_addr;
1879 		unsigned long end = end_addr;
1880 		hugetlb_zap_begin(vma, &start, &end);
1881 		unmap_single_vma(tlb, vma, start, end, &details,
1882 				 mm_wr_locked);
1883 		hugetlb_zap_end(vma, &details);
1884 		vma = mas_find(mas, tree_end - 1);
1885 	} while (vma && likely(!xa_is_zero(vma)));
1886 	mmu_notifier_invalidate_range_end(&range);
1887 }
1888 
1889 /**
1890  * zap_page_range_single - remove user pages in a given range
1891  * @vma: vm_area_struct holding the applicable pages
1892  * @address: starting address of pages to zap
1893  * @size: number of bytes to zap
1894  * @details: details of shared cache invalidation
1895  *
1896  * The range must fit into one VMA.
1897  */
1898 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1899 		unsigned long size, struct zap_details *details)
1900 {
1901 	const unsigned long end = address + size;
1902 	struct mmu_notifier_range range;
1903 	struct mmu_gather tlb;
1904 
1905 	lru_add_drain();
1906 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1907 				address, end);
1908 	hugetlb_zap_begin(vma, &range.start, &range.end);
1909 	tlb_gather_mmu(&tlb, vma->vm_mm);
1910 	update_hiwater_rss(vma->vm_mm);
1911 	mmu_notifier_invalidate_range_start(&range);
1912 	/*
1913 	 * unmap 'address-end' not 'range.start-range.end' as range
1914 	 * could have been expanded for hugetlb pmd sharing.
1915 	 */
1916 	unmap_single_vma(&tlb, vma, address, end, details, false);
1917 	mmu_notifier_invalidate_range_end(&range);
1918 	tlb_finish_mmu(&tlb);
1919 	hugetlb_zap_end(vma, details);
1920 }
1921 
1922 /**
1923  * zap_vma_ptes - remove ptes mapping the vma
1924  * @vma: vm_area_struct holding ptes to be zapped
1925  * @address: starting address of pages to zap
1926  * @size: number of bytes to zap
1927  *
1928  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1929  *
1930  * The entire address range must be fully contained within the vma.
1931  *
1932  */
1933 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1934 		unsigned long size)
1935 {
1936 	if (!range_in_vma(vma, address, address + size) ||
1937 	    		!(vma->vm_flags & VM_PFNMAP))
1938 		return;
1939 
1940 	zap_page_range_single(vma, address, size, NULL);
1941 }
1942 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1943 
1944 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1945 {
1946 	pgd_t *pgd;
1947 	p4d_t *p4d;
1948 	pud_t *pud;
1949 	pmd_t *pmd;
1950 
1951 	pgd = pgd_offset(mm, addr);
1952 	p4d = p4d_alloc(mm, pgd, addr);
1953 	if (!p4d)
1954 		return NULL;
1955 	pud = pud_alloc(mm, p4d, addr);
1956 	if (!pud)
1957 		return NULL;
1958 	pmd = pmd_alloc(mm, pud, addr);
1959 	if (!pmd)
1960 		return NULL;
1961 
1962 	VM_BUG_ON(pmd_trans_huge(*pmd));
1963 	return pmd;
1964 }
1965 
1966 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1967 			spinlock_t **ptl)
1968 {
1969 	pmd_t *pmd = walk_to_pmd(mm, addr);
1970 
1971 	if (!pmd)
1972 		return NULL;
1973 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1974 }
1975 
1976 static int validate_page_before_insert(struct page *page)
1977 {
1978 	struct folio *folio = page_folio(page);
1979 
1980 	if (folio_test_anon(folio) || folio_test_slab(folio) ||
1981 	    page_has_type(page))
1982 		return -EINVAL;
1983 	flush_dcache_folio(folio);
1984 	return 0;
1985 }
1986 
1987 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1988 			unsigned long addr, struct page *page, pgprot_t prot)
1989 {
1990 	struct folio *folio = page_folio(page);
1991 
1992 	if (!pte_none(ptep_get(pte)))
1993 		return -EBUSY;
1994 	/* Ok, finally just insert the thing.. */
1995 	folio_get(folio);
1996 	inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
1997 	folio_add_file_rmap_pte(folio, page, vma);
1998 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1999 	return 0;
2000 }
2001 
2002 /*
2003  * This is the old fallback for page remapping.
2004  *
2005  * For historical reasons, it only allows reserved pages. Only
2006  * old drivers should use this, and they needed to mark their
2007  * pages reserved for the old functions anyway.
2008  */
2009 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2010 			struct page *page, pgprot_t prot)
2011 {
2012 	int retval;
2013 	pte_t *pte;
2014 	spinlock_t *ptl;
2015 
2016 	retval = validate_page_before_insert(page);
2017 	if (retval)
2018 		goto out;
2019 	retval = -ENOMEM;
2020 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2021 	if (!pte)
2022 		goto out;
2023 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2024 	pte_unmap_unlock(pte, ptl);
2025 out:
2026 	return retval;
2027 }
2028 
2029 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2030 			unsigned long addr, struct page *page, pgprot_t prot)
2031 {
2032 	int err;
2033 
2034 	if (!page_count(page))
2035 		return -EINVAL;
2036 	err = validate_page_before_insert(page);
2037 	if (err)
2038 		return err;
2039 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2040 }
2041 
2042 /* insert_pages() amortizes the cost of spinlock operations
2043  * when inserting pages in a loop.
2044  */
2045 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2046 			struct page **pages, unsigned long *num, pgprot_t prot)
2047 {
2048 	pmd_t *pmd = NULL;
2049 	pte_t *start_pte, *pte;
2050 	spinlock_t *pte_lock;
2051 	struct mm_struct *const mm = vma->vm_mm;
2052 	unsigned long curr_page_idx = 0;
2053 	unsigned long remaining_pages_total = *num;
2054 	unsigned long pages_to_write_in_pmd;
2055 	int ret;
2056 more:
2057 	ret = -EFAULT;
2058 	pmd = walk_to_pmd(mm, addr);
2059 	if (!pmd)
2060 		goto out;
2061 
2062 	pages_to_write_in_pmd = min_t(unsigned long,
2063 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2064 
2065 	/* Allocate the PTE if necessary; takes PMD lock once only. */
2066 	ret = -ENOMEM;
2067 	if (pte_alloc(mm, pmd))
2068 		goto out;
2069 
2070 	while (pages_to_write_in_pmd) {
2071 		int pte_idx = 0;
2072 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2073 
2074 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2075 		if (!start_pte) {
2076 			ret = -EFAULT;
2077 			goto out;
2078 		}
2079 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2080 			int err = insert_page_in_batch_locked(vma, pte,
2081 				addr, pages[curr_page_idx], prot);
2082 			if (unlikely(err)) {
2083 				pte_unmap_unlock(start_pte, pte_lock);
2084 				ret = err;
2085 				remaining_pages_total -= pte_idx;
2086 				goto out;
2087 			}
2088 			addr += PAGE_SIZE;
2089 			++curr_page_idx;
2090 		}
2091 		pte_unmap_unlock(start_pte, pte_lock);
2092 		pages_to_write_in_pmd -= batch_size;
2093 		remaining_pages_total -= batch_size;
2094 	}
2095 	if (remaining_pages_total)
2096 		goto more;
2097 	ret = 0;
2098 out:
2099 	*num = remaining_pages_total;
2100 	return ret;
2101 }
2102 
2103 /**
2104  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2105  * @vma: user vma to map to
2106  * @addr: target start user address of these pages
2107  * @pages: source kernel pages
2108  * @num: in: number of pages to map. out: number of pages that were *not*
2109  * mapped. (0 means all pages were successfully mapped).
2110  *
2111  * Preferred over vm_insert_page() when inserting multiple pages.
2112  *
2113  * In case of error, we may have mapped a subset of the provided
2114  * pages. It is the caller's responsibility to account for this case.
2115  *
2116  * The same restrictions apply as in vm_insert_page().
2117  */
2118 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2119 			struct page **pages, unsigned long *num)
2120 {
2121 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2122 
2123 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2124 		return -EFAULT;
2125 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2126 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2127 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2128 		vm_flags_set(vma, VM_MIXEDMAP);
2129 	}
2130 	/* Defer page refcount checking till we're about to map that page. */
2131 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2132 }
2133 EXPORT_SYMBOL(vm_insert_pages);
2134 
2135 /**
2136  * vm_insert_page - insert single page into user vma
2137  * @vma: user vma to map to
2138  * @addr: target user address of this page
2139  * @page: source kernel page
2140  *
2141  * This allows drivers to insert individual pages they've allocated
2142  * into a user vma.
2143  *
2144  * The page has to be a nice clean _individual_ kernel allocation.
2145  * If you allocate a compound page, you need to have marked it as
2146  * such (__GFP_COMP), or manually just split the page up yourself
2147  * (see split_page()).
2148  *
2149  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2150  * took an arbitrary page protection parameter. This doesn't allow
2151  * that. Your vma protection will have to be set up correctly, which
2152  * means that if you want a shared writable mapping, you'd better
2153  * ask for a shared writable mapping!
2154  *
2155  * The page does not need to be reserved.
2156  *
2157  * Usually this function is called from f_op->mmap() handler
2158  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2159  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2160  * function from other places, for example from page-fault handler.
2161  *
2162  * Return: %0 on success, negative error code otherwise.
2163  */
2164 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2165 			struct page *page)
2166 {
2167 	if (addr < vma->vm_start || addr >= vma->vm_end)
2168 		return -EFAULT;
2169 	if (!page_count(page))
2170 		return -EINVAL;
2171 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2172 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2173 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2174 		vm_flags_set(vma, VM_MIXEDMAP);
2175 	}
2176 	return insert_page(vma, addr, page, vma->vm_page_prot);
2177 }
2178 EXPORT_SYMBOL(vm_insert_page);
2179 
2180 /*
2181  * __vm_map_pages - maps range of kernel pages into user vma
2182  * @vma: user vma to map to
2183  * @pages: pointer to array of source kernel pages
2184  * @num: number of pages in page array
2185  * @offset: user's requested vm_pgoff
2186  *
2187  * This allows drivers to map range of kernel pages into a user vma.
2188  *
2189  * Return: 0 on success and error code otherwise.
2190  */
2191 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2192 				unsigned long num, unsigned long offset)
2193 {
2194 	unsigned long count = vma_pages(vma);
2195 	unsigned long uaddr = vma->vm_start;
2196 	int ret, i;
2197 
2198 	/* Fail if the user requested offset is beyond the end of the object */
2199 	if (offset >= num)
2200 		return -ENXIO;
2201 
2202 	/* Fail if the user requested size exceeds available object size */
2203 	if (count > num - offset)
2204 		return -ENXIO;
2205 
2206 	for (i = 0; i < count; i++) {
2207 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2208 		if (ret < 0)
2209 			return ret;
2210 		uaddr += PAGE_SIZE;
2211 	}
2212 
2213 	return 0;
2214 }
2215 
2216 /**
2217  * vm_map_pages - maps range of kernel pages starts with non zero offset
2218  * @vma: user vma to map to
2219  * @pages: pointer to array of source kernel pages
2220  * @num: number of pages in page array
2221  *
2222  * Maps an object consisting of @num pages, catering for the user's
2223  * requested vm_pgoff
2224  *
2225  * If we fail to insert any page into the vma, the function will return
2226  * immediately leaving any previously inserted pages present.  Callers
2227  * from the mmap handler may immediately return the error as their caller
2228  * will destroy the vma, removing any successfully inserted pages. Other
2229  * callers should make their own arrangements for calling unmap_region().
2230  *
2231  * Context: Process context. Called by mmap handlers.
2232  * Return: 0 on success and error code otherwise.
2233  */
2234 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2235 				unsigned long num)
2236 {
2237 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2238 }
2239 EXPORT_SYMBOL(vm_map_pages);
2240 
2241 /**
2242  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2243  * @vma: user vma to map to
2244  * @pages: pointer to array of source kernel pages
2245  * @num: number of pages in page array
2246  *
2247  * Similar to vm_map_pages(), except that it explicitly sets the offset
2248  * to 0. This function is intended for the drivers that did not consider
2249  * vm_pgoff.
2250  *
2251  * Context: Process context. Called by mmap handlers.
2252  * Return: 0 on success and error code otherwise.
2253  */
2254 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2255 				unsigned long num)
2256 {
2257 	return __vm_map_pages(vma, pages, num, 0);
2258 }
2259 EXPORT_SYMBOL(vm_map_pages_zero);
2260 
2261 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2262 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2263 {
2264 	struct mm_struct *mm = vma->vm_mm;
2265 	pte_t *pte, entry;
2266 	spinlock_t *ptl;
2267 
2268 	pte = get_locked_pte(mm, addr, &ptl);
2269 	if (!pte)
2270 		return VM_FAULT_OOM;
2271 	entry = ptep_get(pte);
2272 	if (!pte_none(entry)) {
2273 		if (mkwrite) {
2274 			/*
2275 			 * For read faults on private mappings the PFN passed
2276 			 * in may not match the PFN we have mapped if the
2277 			 * mapped PFN is a writeable COW page.  In the mkwrite
2278 			 * case we are creating a writable PTE for a shared
2279 			 * mapping and we expect the PFNs to match. If they
2280 			 * don't match, we are likely racing with block
2281 			 * allocation and mapping invalidation so just skip the
2282 			 * update.
2283 			 */
2284 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2285 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2286 				goto out_unlock;
2287 			}
2288 			entry = pte_mkyoung(entry);
2289 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2290 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2291 				update_mmu_cache(vma, addr, pte);
2292 		}
2293 		goto out_unlock;
2294 	}
2295 
2296 	/* Ok, finally just insert the thing.. */
2297 	if (pfn_t_devmap(pfn))
2298 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2299 	else
2300 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2301 
2302 	if (mkwrite) {
2303 		entry = pte_mkyoung(entry);
2304 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2305 	}
2306 
2307 	set_pte_at(mm, addr, pte, entry);
2308 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2309 
2310 out_unlock:
2311 	pte_unmap_unlock(pte, ptl);
2312 	return VM_FAULT_NOPAGE;
2313 }
2314 
2315 /**
2316  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2317  * @vma: user vma to map to
2318  * @addr: target user address of this page
2319  * @pfn: source kernel pfn
2320  * @pgprot: pgprot flags for the inserted page
2321  *
2322  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2323  * to override pgprot on a per-page basis.
2324  *
2325  * This only makes sense for IO mappings, and it makes no sense for
2326  * COW mappings.  In general, using multiple vmas is preferable;
2327  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2328  * impractical.
2329  *
2330  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2331  * caching- and encryption bits different than those of @vma->vm_page_prot,
2332  * because the caching- or encryption mode may not be known at mmap() time.
2333  *
2334  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2335  * to set caching and encryption bits for those vmas (except for COW pages).
2336  * This is ensured by core vm only modifying these page table entries using
2337  * functions that don't touch caching- or encryption bits, using pte_modify()
2338  * if needed. (See for example mprotect()).
2339  *
2340  * Also when new page-table entries are created, this is only done using the
2341  * fault() callback, and never using the value of vma->vm_page_prot,
2342  * except for page-table entries that point to anonymous pages as the result
2343  * of COW.
2344  *
2345  * Context: Process context.  May allocate using %GFP_KERNEL.
2346  * Return: vm_fault_t value.
2347  */
2348 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2349 			unsigned long pfn, pgprot_t pgprot)
2350 {
2351 	/*
2352 	 * Technically, architectures with pte_special can avoid all these
2353 	 * restrictions (same for remap_pfn_range).  However we would like
2354 	 * consistency in testing and feature parity among all, so we should
2355 	 * try to keep these invariants in place for everybody.
2356 	 */
2357 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2358 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2359 						(VM_PFNMAP|VM_MIXEDMAP));
2360 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2361 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2362 
2363 	if (addr < vma->vm_start || addr >= vma->vm_end)
2364 		return VM_FAULT_SIGBUS;
2365 
2366 	if (!pfn_modify_allowed(pfn, pgprot))
2367 		return VM_FAULT_SIGBUS;
2368 
2369 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2370 
2371 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2372 			false);
2373 }
2374 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2375 
2376 /**
2377  * vmf_insert_pfn - insert single pfn into user vma
2378  * @vma: user vma to map to
2379  * @addr: target user address of this page
2380  * @pfn: source kernel pfn
2381  *
2382  * Similar to vm_insert_page, this allows drivers to insert individual pages
2383  * they've allocated into a user vma. Same comments apply.
2384  *
2385  * This function should only be called from a vm_ops->fault handler, and
2386  * in that case the handler should return the result of this function.
2387  *
2388  * vma cannot be a COW mapping.
2389  *
2390  * As this is called only for pages that do not currently exist, we
2391  * do not need to flush old virtual caches or the TLB.
2392  *
2393  * Context: Process context.  May allocate using %GFP_KERNEL.
2394  * Return: vm_fault_t value.
2395  */
2396 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2397 			unsigned long pfn)
2398 {
2399 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2400 }
2401 EXPORT_SYMBOL(vmf_insert_pfn);
2402 
2403 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2404 {
2405 	/* these checks mirror the abort conditions in vm_normal_page */
2406 	if (vma->vm_flags & VM_MIXEDMAP)
2407 		return true;
2408 	if (pfn_t_devmap(pfn))
2409 		return true;
2410 	if (pfn_t_special(pfn))
2411 		return true;
2412 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2413 		return true;
2414 	return false;
2415 }
2416 
2417 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2418 		unsigned long addr, pfn_t pfn, bool mkwrite)
2419 {
2420 	pgprot_t pgprot = vma->vm_page_prot;
2421 	int err;
2422 
2423 	BUG_ON(!vm_mixed_ok(vma, pfn));
2424 
2425 	if (addr < vma->vm_start || addr >= vma->vm_end)
2426 		return VM_FAULT_SIGBUS;
2427 
2428 	track_pfn_insert(vma, &pgprot, pfn);
2429 
2430 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2431 		return VM_FAULT_SIGBUS;
2432 
2433 	/*
2434 	 * If we don't have pte special, then we have to use the pfn_valid()
2435 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2436 	 * refcount the page if pfn_valid is true (hence insert_page rather
2437 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2438 	 * without pte special, it would there be refcounted as a normal page.
2439 	 */
2440 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2441 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2442 		struct page *page;
2443 
2444 		/*
2445 		 * At this point we are committed to insert_page()
2446 		 * regardless of whether the caller specified flags that
2447 		 * result in pfn_t_has_page() == false.
2448 		 */
2449 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2450 		err = insert_page(vma, addr, page, pgprot);
2451 	} else {
2452 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2453 	}
2454 
2455 	if (err == -ENOMEM)
2456 		return VM_FAULT_OOM;
2457 	if (err < 0 && err != -EBUSY)
2458 		return VM_FAULT_SIGBUS;
2459 
2460 	return VM_FAULT_NOPAGE;
2461 }
2462 
2463 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2464 		pfn_t pfn)
2465 {
2466 	return __vm_insert_mixed(vma, addr, pfn, false);
2467 }
2468 EXPORT_SYMBOL(vmf_insert_mixed);
2469 
2470 /*
2471  *  If the insertion of PTE failed because someone else already added a
2472  *  different entry in the mean time, we treat that as success as we assume
2473  *  the same entry was actually inserted.
2474  */
2475 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2476 		unsigned long addr, pfn_t pfn)
2477 {
2478 	return __vm_insert_mixed(vma, addr, pfn, true);
2479 }
2480 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2481 
2482 /*
2483  * maps a range of physical memory into the requested pages. the old
2484  * mappings are removed. any references to nonexistent pages results
2485  * in null mappings (currently treated as "copy-on-access")
2486  */
2487 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2488 			unsigned long addr, unsigned long end,
2489 			unsigned long pfn, pgprot_t prot)
2490 {
2491 	pte_t *pte, *mapped_pte;
2492 	spinlock_t *ptl;
2493 	int err = 0;
2494 
2495 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2496 	if (!pte)
2497 		return -ENOMEM;
2498 	arch_enter_lazy_mmu_mode();
2499 	do {
2500 		BUG_ON(!pte_none(ptep_get(pte)));
2501 		if (!pfn_modify_allowed(pfn, prot)) {
2502 			err = -EACCES;
2503 			break;
2504 		}
2505 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2506 		pfn++;
2507 	} while (pte++, addr += PAGE_SIZE, addr != end);
2508 	arch_leave_lazy_mmu_mode();
2509 	pte_unmap_unlock(mapped_pte, ptl);
2510 	return err;
2511 }
2512 
2513 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2514 			unsigned long addr, unsigned long end,
2515 			unsigned long pfn, pgprot_t prot)
2516 {
2517 	pmd_t *pmd;
2518 	unsigned long next;
2519 	int err;
2520 
2521 	pfn -= addr >> PAGE_SHIFT;
2522 	pmd = pmd_alloc(mm, pud, addr);
2523 	if (!pmd)
2524 		return -ENOMEM;
2525 	VM_BUG_ON(pmd_trans_huge(*pmd));
2526 	do {
2527 		next = pmd_addr_end(addr, end);
2528 		err = remap_pte_range(mm, pmd, addr, next,
2529 				pfn + (addr >> PAGE_SHIFT), prot);
2530 		if (err)
2531 			return err;
2532 	} while (pmd++, addr = next, addr != end);
2533 	return 0;
2534 }
2535 
2536 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2537 			unsigned long addr, unsigned long end,
2538 			unsigned long pfn, pgprot_t prot)
2539 {
2540 	pud_t *pud;
2541 	unsigned long next;
2542 	int err;
2543 
2544 	pfn -= addr >> PAGE_SHIFT;
2545 	pud = pud_alloc(mm, p4d, addr);
2546 	if (!pud)
2547 		return -ENOMEM;
2548 	do {
2549 		next = pud_addr_end(addr, end);
2550 		err = remap_pmd_range(mm, pud, addr, next,
2551 				pfn + (addr >> PAGE_SHIFT), prot);
2552 		if (err)
2553 			return err;
2554 	} while (pud++, addr = next, addr != end);
2555 	return 0;
2556 }
2557 
2558 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2559 			unsigned long addr, unsigned long end,
2560 			unsigned long pfn, pgprot_t prot)
2561 {
2562 	p4d_t *p4d;
2563 	unsigned long next;
2564 	int err;
2565 
2566 	pfn -= addr >> PAGE_SHIFT;
2567 	p4d = p4d_alloc(mm, pgd, addr);
2568 	if (!p4d)
2569 		return -ENOMEM;
2570 	do {
2571 		next = p4d_addr_end(addr, end);
2572 		err = remap_pud_range(mm, p4d, addr, next,
2573 				pfn + (addr >> PAGE_SHIFT), prot);
2574 		if (err)
2575 			return err;
2576 	} while (p4d++, addr = next, addr != end);
2577 	return 0;
2578 }
2579 
2580 /*
2581  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2582  * must have pre-validated the caching bits of the pgprot_t.
2583  */
2584 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2585 		unsigned long pfn, unsigned long size, pgprot_t prot)
2586 {
2587 	pgd_t *pgd;
2588 	unsigned long next;
2589 	unsigned long end = addr + PAGE_ALIGN(size);
2590 	struct mm_struct *mm = vma->vm_mm;
2591 	int err;
2592 
2593 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2594 		return -EINVAL;
2595 
2596 	/*
2597 	 * Physically remapped pages are special. Tell the
2598 	 * rest of the world about it:
2599 	 *   VM_IO tells people not to look at these pages
2600 	 *	(accesses can have side effects).
2601 	 *   VM_PFNMAP tells the core MM that the base pages are just
2602 	 *	raw PFN mappings, and do not have a "struct page" associated
2603 	 *	with them.
2604 	 *   VM_DONTEXPAND
2605 	 *      Disable vma merging and expanding with mremap().
2606 	 *   VM_DONTDUMP
2607 	 *      Omit vma from core dump, even when VM_IO turned off.
2608 	 *
2609 	 * There's a horrible special case to handle copy-on-write
2610 	 * behaviour that some programs depend on. We mark the "original"
2611 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2612 	 * See vm_normal_page() for details.
2613 	 */
2614 	if (is_cow_mapping(vma->vm_flags)) {
2615 		if (addr != vma->vm_start || end != vma->vm_end)
2616 			return -EINVAL;
2617 		vma->vm_pgoff = pfn;
2618 	}
2619 
2620 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2621 
2622 	BUG_ON(addr >= end);
2623 	pfn -= addr >> PAGE_SHIFT;
2624 	pgd = pgd_offset(mm, addr);
2625 	flush_cache_range(vma, addr, end);
2626 	do {
2627 		next = pgd_addr_end(addr, end);
2628 		err = remap_p4d_range(mm, pgd, addr, next,
2629 				pfn + (addr >> PAGE_SHIFT), prot);
2630 		if (err)
2631 			return err;
2632 	} while (pgd++, addr = next, addr != end);
2633 
2634 	return 0;
2635 }
2636 
2637 /**
2638  * remap_pfn_range - remap kernel memory to userspace
2639  * @vma: user vma to map to
2640  * @addr: target page aligned user address to start at
2641  * @pfn: page frame number of kernel physical memory address
2642  * @size: size of mapping area
2643  * @prot: page protection flags for this mapping
2644  *
2645  * Note: this is only safe if the mm semaphore is held when called.
2646  *
2647  * Return: %0 on success, negative error code otherwise.
2648  */
2649 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2650 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2651 {
2652 	int err;
2653 
2654 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2655 	if (err)
2656 		return -EINVAL;
2657 
2658 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2659 	if (err)
2660 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2661 	return err;
2662 }
2663 EXPORT_SYMBOL(remap_pfn_range);
2664 
2665 /**
2666  * vm_iomap_memory - remap memory to userspace
2667  * @vma: user vma to map to
2668  * @start: start of the physical memory to be mapped
2669  * @len: size of area
2670  *
2671  * This is a simplified io_remap_pfn_range() for common driver use. The
2672  * driver just needs to give us the physical memory range to be mapped,
2673  * we'll figure out the rest from the vma information.
2674  *
2675  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2676  * whatever write-combining details or similar.
2677  *
2678  * Return: %0 on success, negative error code otherwise.
2679  */
2680 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2681 {
2682 	unsigned long vm_len, pfn, pages;
2683 
2684 	/* Check that the physical memory area passed in looks valid */
2685 	if (start + len < start)
2686 		return -EINVAL;
2687 	/*
2688 	 * You *really* shouldn't map things that aren't page-aligned,
2689 	 * but we've historically allowed it because IO memory might
2690 	 * just have smaller alignment.
2691 	 */
2692 	len += start & ~PAGE_MASK;
2693 	pfn = start >> PAGE_SHIFT;
2694 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2695 	if (pfn + pages < pfn)
2696 		return -EINVAL;
2697 
2698 	/* We start the mapping 'vm_pgoff' pages into the area */
2699 	if (vma->vm_pgoff > pages)
2700 		return -EINVAL;
2701 	pfn += vma->vm_pgoff;
2702 	pages -= vma->vm_pgoff;
2703 
2704 	/* Can we fit all of the mapping? */
2705 	vm_len = vma->vm_end - vma->vm_start;
2706 	if (vm_len >> PAGE_SHIFT > pages)
2707 		return -EINVAL;
2708 
2709 	/* Ok, let it rip */
2710 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2711 }
2712 EXPORT_SYMBOL(vm_iomap_memory);
2713 
2714 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2715 				     unsigned long addr, unsigned long end,
2716 				     pte_fn_t fn, void *data, bool create,
2717 				     pgtbl_mod_mask *mask)
2718 {
2719 	pte_t *pte, *mapped_pte;
2720 	int err = 0;
2721 	spinlock_t *ptl;
2722 
2723 	if (create) {
2724 		mapped_pte = pte = (mm == &init_mm) ?
2725 			pte_alloc_kernel_track(pmd, addr, mask) :
2726 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2727 		if (!pte)
2728 			return -ENOMEM;
2729 	} else {
2730 		mapped_pte = pte = (mm == &init_mm) ?
2731 			pte_offset_kernel(pmd, addr) :
2732 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2733 		if (!pte)
2734 			return -EINVAL;
2735 	}
2736 
2737 	arch_enter_lazy_mmu_mode();
2738 
2739 	if (fn) {
2740 		do {
2741 			if (create || !pte_none(ptep_get(pte))) {
2742 				err = fn(pte++, addr, data);
2743 				if (err)
2744 					break;
2745 			}
2746 		} while (addr += PAGE_SIZE, addr != end);
2747 	}
2748 	*mask |= PGTBL_PTE_MODIFIED;
2749 
2750 	arch_leave_lazy_mmu_mode();
2751 
2752 	if (mm != &init_mm)
2753 		pte_unmap_unlock(mapped_pte, ptl);
2754 	return err;
2755 }
2756 
2757 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2758 				     unsigned long addr, unsigned long end,
2759 				     pte_fn_t fn, void *data, bool create,
2760 				     pgtbl_mod_mask *mask)
2761 {
2762 	pmd_t *pmd;
2763 	unsigned long next;
2764 	int err = 0;
2765 
2766 	BUG_ON(pud_huge(*pud));
2767 
2768 	if (create) {
2769 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2770 		if (!pmd)
2771 			return -ENOMEM;
2772 	} else {
2773 		pmd = pmd_offset(pud, addr);
2774 	}
2775 	do {
2776 		next = pmd_addr_end(addr, end);
2777 		if (pmd_none(*pmd) && !create)
2778 			continue;
2779 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2780 			return -EINVAL;
2781 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2782 			if (!create)
2783 				continue;
2784 			pmd_clear_bad(pmd);
2785 		}
2786 		err = apply_to_pte_range(mm, pmd, addr, next,
2787 					 fn, data, create, mask);
2788 		if (err)
2789 			break;
2790 	} while (pmd++, addr = next, addr != end);
2791 
2792 	return err;
2793 }
2794 
2795 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2796 				     unsigned long addr, unsigned long end,
2797 				     pte_fn_t fn, void *data, bool create,
2798 				     pgtbl_mod_mask *mask)
2799 {
2800 	pud_t *pud;
2801 	unsigned long next;
2802 	int err = 0;
2803 
2804 	if (create) {
2805 		pud = pud_alloc_track(mm, p4d, addr, mask);
2806 		if (!pud)
2807 			return -ENOMEM;
2808 	} else {
2809 		pud = pud_offset(p4d, addr);
2810 	}
2811 	do {
2812 		next = pud_addr_end(addr, end);
2813 		if (pud_none(*pud) && !create)
2814 			continue;
2815 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2816 			return -EINVAL;
2817 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2818 			if (!create)
2819 				continue;
2820 			pud_clear_bad(pud);
2821 		}
2822 		err = apply_to_pmd_range(mm, pud, addr, next,
2823 					 fn, data, create, mask);
2824 		if (err)
2825 			break;
2826 	} while (pud++, addr = next, addr != end);
2827 
2828 	return err;
2829 }
2830 
2831 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2832 				     unsigned long addr, unsigned long end,
2833 				     pte_fn_t fn, void *data, bool create,
2834 				     pgtbl_mod_mask *mask)
2835 {
2836 	p4d_t *p4d;
2837 	unsigned long next;
2838 	int err = 0;
2839 
2840 	if (create) {
2841 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2842 		if (!p4d)
2843 			return -ENOMEM;
2844 	} else {
2845 		p4d = p4d_offset(pgd, addr);
2846 	}
2847 	do {
2848 		next = p4d_addr_end(addr, end);
2849 		if (p4d_none(*p4d) && !create)
2850 			continue;
2851 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2852 			return -EINVAL;
2853 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2854 			if (!create)
2855 				continue;
2856 			p4d_clear_bad(p4d);
2857 		}
2858 		err = apply_to_pud_range(mm, p4d, addr, next,
2859 					 fn, data, create, mask);
2860 		if (err)
2861 			break;
2862 	} while (p4d++, addr = next, addr != end);
2863 
2864 	return err;
2865 }
2866 
2867 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2868 				 unsigned long size, pte_fn_t fn,
2869 				 void *data, bool create)
2870 {
2871 	pgd_t *pgd;
2872 	unsigned long start = addr, next;
2873 	unsigned long end = addr + size;
2874 	pgtbl_mod_mask mask = 0;
2875 	int err = 0;
2876 
2877 	if (WARN_ON(addr >= end))
2878 		return -EINVAL;
2879 
2880 	pgd = pgd_offset(mm, addr);
2881 	do {
2882 		next = pgd_addr_end(addr, end);
2883 		if (pgd_none(*pgd) && !create)
2884 			continue;
2885 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2886 			return -EINVAL;
2887 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2888 			if (!create)
2889 				continue;
2890 			pgd_clear_bad(pgd);
2891 		}
2892 		err = apply_to_p4d_range(mm, pgd, addr, next,
2893 					 fn, data, create, &mask);
2894 		if (err)
2895 			break;
2896 	} while (pgd++, addr = next, addr != end);
2897 
2898 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2899 		arch_sync_kernel_mappings(start, start + size);
2900 
2901 	return err;
2902 }
2903 
2904 /*
2905  * Scan a region of virtual memory, filling in page tables as necessary
2906  * and calling a provided function on each leaf page table.
2907  */
2908 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2909 			unsigned long size, pte_fn_t fn, void *data)
2910 {
2911 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2912 }
2913 EXPORT_SYMBOL_GPL(apply_to_page_range);
2914 
2915 /*
2916  * Scan a region of virtual memory, calling a provided function on
2917  * each leaf page table where it exists.
2918  *
2919  * Unlike apply_to_page_range, this does _not_ fill in page tables
2920  * where they are absent.
2921  */
2922 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2923 				 unsigned long size, pte_fn_t fn, void *data)
2924 {
2925 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2926 }
2927 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2928 
2929 /*
2930  * handle_pte_fault chooses page fault handler according to an entry which was
2931  * read non-atomically.  Before making any commitment, on those architectures
2932  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2933  * parts, do_swap_page must check under lock before unmapping the pte and
2934  * proceeding (but do_wp_page is only called after already making such a check;
2935  * and do_anonymous_page can safely check later on).
2936  */
2937 static inline int pte_unmap_same(struct vm_fault *vmf)
2938 {
2939 	int same = 1;
2940 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2941 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2942 		spin_lock(vmf->ptl);
2943 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2944 		spin_unlock(vmf->ptl);
2945 	}
2946 #endif
2947 	pte_unmap(vmf->pte);
2948 	vmf->pte = NULL;
2949 	return same;
2950 }
2951 
2952 /*
2953  * Return:
2954  *	0:		copied succeeded
2955  *	-EHWPOISON:	copy failed due to hwpoison in source page
2956  *	-EAGAIN:	copied failed (some other reason)
2957  */
2958 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2959 				      struct vm_fault *vmf)
2960 {
2961 	int ret;
2962 	void *kaddr;
2963 	void __user *uaddr;
2964 	struct vm_area_struct *vma = vmf->vma;
2965 	struct mm_struct *mm = vma->vm_mm;
2966 	unsigned long addr = vmf->address;
2967 
2968 	if (likely(src)) {
2969 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2970 			memory_failure_queue(page_to_pfn(src), 0);
2971 			return -EHWPOISON;
2972 		}
2973 		return 0;
2974 	}
2975 
2976 	/*
2977 	 * If the source page was a PFN mapping, we don't have
2978 	 * a "struct page" for it. We do a best-effort copy by
2979 	 * just copying from the original user address. If that
2980 	 * fails, we just zero-fill it. Live with it.
2981 	 */
2982 	kaddr = kmap_local_page(dst);
2983 	pagefault_disable();
2984 	uaddr = (void __user *)(addr & PAGE_MASK);
2985 
2986 	/*
2987 	 * On architectures with software "accessed" bits, we would
2988 	 * take a double page fault, so mark it accessed here.
2989 	 */
2990 	vmf->pte = NULL;
2991 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2992 		pte_t entry;
2993 
2994 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2995 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2996 			/*
2997 			 * Other thread has already handled the fault
2998 			 * and update local tlb only
2999 			 */
3000 			if (vmf->pte)
3001 				update_mmu_tlb(vma, addr, vmf->pte);
3002 			ret = -EAGAIN;
3003 			goto pte_unlock;
3004 		}
3005 
3006 		entry = pte_mkyoung(vmf->orig_pte);
3007 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3008 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3009 	}
3010 
3011 	/*
3012 	 * This really shouldn't fail, because the page is there
3013 	 * in the page tables. But it might just be unreadable,
3014 	 * in which case we just give up and fill the result with
3015 	 * zeroes.
3016 	 */
3017 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3018 		if (vmf->pte)
3019 			goto warn;
3020 
3021 		/* Re-validate under PTL if the page is still mapped */
3022 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3023 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3024 			/* The PTE changed under us, update local tlb */
3025 			if (vmf->pte)
3026 				update_mmu_tlb(vma, addr, vmf->pte);
3027 			ret = -EAGAIN;
3028 			goto pte_unlock;
3029 		}
3030 
3031 		/*
3032 		 * The same page can be mapped back since last copy attempt.
3033 		 * Try to copy again under PTL.
3034 		 */
3035 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3036 			/*
3037 			 * Give a warn in case there can be some obscure
3038 			 * use-case
3039 			 */
3040 warn:
3041 			WARN_ON_ONCE(1);
3042 			clear_page(kaddr);
3043 		}
3044 	}
3045 
3046 	ret = 0;
3047 
3048 pte_unlock:
3049 	if (vmf->pte)
3050 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3051 	pagefault_enable();
3052 	kunmap_local(kaddr);
3053 	flush_dcache_page(dst);
3054 
3055 	return ret;
3056 }
3057 
3058 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3059 {
3060 	struct file *vm_file = vma->vm_file;
3061 
3062 	if (vm_file)
3063 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3064 
3065 	/*
3066 	 * Special mappings (e.g. VDSO) do not have any file so fake
3067 	 * a default GFP_KERNEL for them.
3068 	 */
3069 	return GFP_KERNEL;
3070 }
3071 
3072 /*
3073  * Notify the address space that the page is about to become writable so that
3074  * it can prohibit this or wait for the page to get into an appropriate state.
3075  *
3076  * We do this without the lock held, so that it can sleep if it needs to.
3077  */
3078 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3079 {
3080 	vm_fault_t ret;
3081 	unsigned int old_flags = vmf->flags;
3082 
3083 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3084 
3085 	if (vmf->vma->vm_file &&
3086 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3087 		return VM_FAULT_SIGBUS;
3088 
3089 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3090 	/* Restore original flags so that caller is not surprised */
3091 	vmf->flags = old_flags;
3092 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3093 		return ret;
3094 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3095 		folio_lock(folio);
3096 		if (!folio->mapping) {
3097 			folio_unlock(folio);
3098 			return 0; /* retry */
3099 		}
3100 		ret |= VM_FAULT_LOCKED;
3101 	} else
3102 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3103 	return ret;
3104 }
3105 
3106 /*
3107  * Handle dirtying of a page in shared file mapping on a write fault.
3108  *
3109  * The function expects the page to be locked and unlocks it.
3110  */
3111 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3112 {
3113 	struct vm_area_struct *vma = vmf->vma;
3114 	struct address_space *mapping;
3115 	struct folio *folio = page_folio(vmf->page);
3116 	bool dirtied;
3117 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3118 
3119 	dirtied = folio_mark_dirty(folio);
3120 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3121 	/*
3122 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3123 	 * by truncate after folio_unlock().   The address_space itself remains
3124 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3125 	 * release semantics to prevent the compiler from undoing this copying.
3126 	 */
3127 	mapping = folio_raw_mapping(folio);
3128 	folio_unlock(folio);
3129 
3130 	if (!page_mkwrite)
3131 		file_update_time(vma->vm_file);
3132 
3133 	/*
3134 	 * Throttle page dirtying rate down to writeback speed.
3135 	 *
3136 	 * mapping may be NULL here because some device drivers do not
3137 	 * set page.mapping but still dirty their pages
3138 	 *
3139 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3140 	 * is pinning the mapping, as per above.
3141 	 */
3142 	if ((dirtied || page_mkwrite) && mapping) {
3143 		struct file *fpin;
3144 
3145 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3146 		balance_dirty_pages_ratelimited(mapping);
3147 		if (fpin) {
3148 			fput(fpin);
3149 			return VM_FAULT_COMPLETED;
3150 		}
3151 	}
3152 
3153 	return 0;
3154 }
3155 
3156 /*
3157  * Handle write page faults for pages that can be reused in the current vma
3158  *
3159  * This can happen either due to the mapping being with the VM_SHARED flag,
3160  * or due to us being the last reference standing to the page. In either
3161  * case, all we need to do here is to mark the page as writable and update
3162  * any related book-keeping.
3163  */
3164 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3165 	__releases(vmf->ptl)
3166 {
3167 	struct vm_area_struct *vma = vmf->vma;
3168 	pte_t entry;
3169 
3170 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3171 
3172 	if (folio) {
3173 		VM_BUG_ON(folio_test_anon(folio) &&
3174 			  !PageAnonExclusive(vmf->page));
3175 		/*
3176 		 * Clear the folio's cpupid information as the existing
3177 		 * information potentially belongs to a now completely
3178 		 * unrelated process.
3179 		 */
3180 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3181 	}
3182 
3183 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3184 	entry = pte_mkyoung(vmf->orig_pte);
3185 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3186 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3187 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3188 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3189 	count_vm_event(PGREUSE);
3190 }
3191 
3192 /*
3193  * We could add a bitflag somewhere, but for now, we know that all
3194  * vm_ops that have a ->map_pages have been audited and don't need
3195  * the mmap_lock to be held.
3196  */
3197 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3198 {
3199 	struct vm_area_struct *vma = vmf->vma;
3200 
3201 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3202 		return 0;
3203 	vma_end_read(vma);
3204 	return VM_FAULT_RETRY;
3205 }
3206 
3207 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3208 {
3209 	struct vm_area_struct *vma = vmf->vma;
3210 
3211 	if (likely(vma->anon_vma))
3212 		return 0;
3213 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3214 		vma_end_read(vma);
3215 		return VM_FAULT_RETRY;
3216 	}
3217 	if (__anon_vma_prepare(vma))
3218 		return VM_FAULT_OOM;
3219 	return 0;
3220 }
3221 
3222 /*
3223  * Handle the case of a page which we actually need to copy to a new page,
3224  * either due to COW or unsharing.
3225  *
3226  * Called with mmap_lock locked and the old page referenced, but
3227  * without the ptl held.
3228  *
3229  * High level logic flow:
3230  *
3231  * - Allocate a page, copy the content of the old page to the new one.
3232  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3233  * - Take the PTL. If the pte changed, bail out and release the allocated page
3234  * - If the pte is still the way we remember it, update the page table and all
3235  *   relevant references. This includes dropping the reference the page-table
3236  *   held to the old page, as well as updating the rmap.
3237  * - In any case, unlock the PTL and drop the reference we took to the old page.
3238  */
3239 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3240 {
3241 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3242 	struct vm_area_struct *vma = vmf->vma;
3243 	struct mm_struct *mm = vma->vm_mm;
3244 	struct folio *old_folio = NULL;
3245 	struct folio *new_folio = NULL;
3246 	pte_t entry;
3247 	int page_copied = 0;
3248 	struct mmu_notifier_range range;
3249 	vm_fault_t ret;
3250 	bool pfn_is_zero;
3251 
3252 	delayacct_wpcopy_start();
3253 
3254 	if (vmf->page)
3255 		old_folio = page_folio(vmf->page);
3256 	ret = vmf_anon_prepare(vmf);
3257 	if (unlikely(ret))
3258 		goto out;
3259 
3260 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3261 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3262 	if (!new_folio)
3263 		goto oom;
3264 
3265 	if (!pfn_is_zero) {
3266 		int err;
3267 
3268 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3269 		if (err) {
3270 			/*
3271 			 * COW failed, if the fault was solved by other,
3272 			 * it's fine. If not, userspace would re-fault on
3273 			 * the same address and we will handle the fault
3274 			 * from the second attempt.
3275 			 * The -EHWPOISON case will not be retried.
3276 			 */
3277 			folio_put(new_folio);
3278 			if (old_folio)
3279 				folio_put(old_folio);
3280 
3281 			delayacct_wpcopy_end();
3282 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3283 		}
3284 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3285 	}
3286 
3287 	__folio_mark_uptodate(new_folio);
3288 
3289 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3290 				vmf->address & PAGE_MASK,
3291 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3292 	mmu_notifier_invalidate_range_start(&range);
3293 
3294 	/*
3295 	 * Re-check the pte - we dropped the lock
3296 	 */
3297 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3298 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3299 		if (old_folio) {
3300 			if (!folio_test_anon(old_folio)) {
3301 				dec_mm_counter(mm, mm_counter_file(old_folio));
3302 				inc_mm_counter(mm, MM_ANONPAGES);
3303 			}
3304 		} else {
3305 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3306 			inc_mm_counter(mm, MM_ANONPAGES);
3307 		}
3308 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3309 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3310 		entry = pte_sw_mkyoung(entry);
3311 		if (unlikely(unshare)) {
3312 			if (pte_soft_dirty(vmf->orig_pte))
3313 				entry = pte_mksoft_dirty(entry);
3314 			if (pte_uffd_wp(vmf->orig_pte))
3315 				entry = pte_mkuffd_wp(entry);
3316 		} else {
3317 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3318 		}
3319 
3320 		/*
3321 		 * Clear the pte entry and flush it first, before updating the
3322 		 * pte with the new entry, to keep TLBs on different CPUs in
3323 		 * sync. This code used to set the new PTE then flush TLBs, but
3324 		 * that left a window where the new PTE could be loaded into
3325 		 * some TLBs while the old PTE remains in others.
3326 		 */
3327 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3328 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3329 		folio_add_lru_vma(new_folio, vma);
3330 		/*
3331 		 * We call the notify macro here because, when using secondary
3332 		 * mmu page tables (such as kvm shadow page tables), we want the
3333 		 * new page to be mapped directly into the secondary page table.
3334 		 */
3335 		BUG_ON(unshare && pte_write(entry));
3336 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3337 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3338 		if (old_folio) {
3339 			/*
3340 			 * Only after switching the pte to the new page may
3341 			 * we remove the mapcount here. Otherwise another
3342 			 * process may come and find the rmap count decremented
3343 			 * before the pte is switched to the new page, and
3344 			 * "reuse" the old page writing into it while our pte
3345 			 * here still points into it and can be read by other
3346 			 * threads.
3347 			 *
3348 			 * The critical issue is to order this
3349 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3350 			 * above. Those stores are ordered by (if nothing else,)
3351 			 * the barrier present in the atomic_add_negative
3352 			 * in folio_remove_rmap_pte();
3353 			 *
3354 			 * Then the TLB flush in ptep_clear_flush ensures that
3355 			 * no process can access the old page before the
3356 			 * decremented mapcount is visible. And the old page
3357 			 * cannot be reused until after the decremented
3358 			 * mapcount is visible. So transitively, TLBs to
3359 			 * old page will be flushed before it can be reused.
3360 			 */
3361 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3362 		}
3363 
3364 		/* Free the old page.. */
3365 		new_folio = old_folio;
3366 		page_copied = 1;
3367 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3368 	} else if (vmf->pte) {
3369 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3370 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3371 	}
3372 
3373 	mmu_notifier_invalidate_range_end(&range);
3374 
3375 	if (new_folio)
3376 		folio_put(new_folio);
3377 	if (old_folio) {
3378 		if (page_copied)
3379 			free_swap_cache(old_folio);
3380 		folio_put(old_folio);
3381 	}
3382 
3383 	delayacct_wpcopy_end();
3384 	return 0;
3385 oom:
3386 	ret = VM_FAULT_OOM;
3387 out:
3388 	if (old_folio)
3389 		folio_put(old_folio);
3390 
3391 	delayacct_wpcopy_end();
3392 	return ret;
3393 }
3394 
3395 /**
3396  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3397  *			  writeable once the page is prepared
3398  *
3399  * @vmf: structure describing the fault
3400  * @folio: the folio of vmf->page
3401  *
3402  * This function handles all that is needed to finish a write page fault in a
3403  * shared mapping due to PTE being read-only once the mapped page is prepared.
3404  * It handles locking of PTE and modifying it.
3405  *
3406  * The function expects the page to be locked or other protection against
3407  * concurrent faults / writeback (such as DAX radix tree locks).
3408  *
3409  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3410  * we acquired PTE lock.
3411  */
3412 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3413 {
3414 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3415 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3416 				       &vmf->ptl);
3417 	if (!vmf->pte)
3418 		return VM_FAULT_NOPAGE;
3419 	/*
3420 	 * We might have raced with another page fault while we released the
3421 	 * pte_offset_map_lock.
3422 	 */
3423 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3424 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3425 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3426 		return VM_FAULT_NOPAGE;
3427 	}
3428 	wp_page_reuse(vmf, folio);
3429 	return 0;
3430 }
3431 
3432 /*
3433  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3434  * mapping
3435  */
3436 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3437 {
3438 	struct vm_area_struct *vma = vmf->vma;
3439 
3440 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3441 		vm_fault_t ret;
3442 
3443 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3444 		ret = vmf_can_call_fault(vmf);
3445 		if (ret)
3446 			return ret;
3447 
3448 		vmf->flags |= FAULT_FLAG_MKWRITE;
3449 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3450 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3451 			return ret;
3452 		return finish_mkwrite_fault(vmf, NULL);
3453 	}
3454 	wp_page_reuse(vmf, NULL);
3455 	return 0;
3456 }
3457 
3458 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3459 	__releases(vmf->ptl)
3460 {
3461 	struct vm_area_struct *vma = vmf->vma;
3462 	vm_fault_t ret = 0;
3463 
3464 	folio_get(folio);
3465 
3466 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3467 		vm_fault_t tmp;
3468 
3469 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3470 		tmp = vmf_can_call_fault(vmf);
3471 		if (tmp) {
3472 			folio_put(folio);
3473 			return tmp;
3474 		}
3475 
3476 		tmp = do_page_mkwrite(vmf, folio);
3477 		if (unlikely(!tmp || (tmp &
3478 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3479 			folio_put(folio);
3480 			return tmp;
3481 		}
3482 		tmp = finish_mkwrite_fault(vmf, folio);
3483 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3484 			folio_unlock(folio);
3485 			folio_put(folio);
3486 			return tmp;
3487 		}
3488 	} else {
3489 		wp_page_reuse(vmf, folio);
3490 		folio_lock(folio);
3491 	}
3492 	ret |= fault_dirty_shared_page(vmf);
3493 	folio_put(folio);
3494 
3495 	return ret;
3496 }
3497 
3498 static bool wp_can_reuse_anon_folio(struct folio *folio,
3499 				    struct vm_area_struct *vma)
3500 {
3501 	/*
3502 	 * We could currently only reuse a subpage of a large folio if no
3503 	 * other subpages of the large folios are still mapped. However,
3504 	 * let's just consistently not reuse subpages even if we could
3505 	 * reuse in that scenario, and give back a large folio a bit
3506 	 * sooner.
3507 	 */
3508 	if (folio_test_large(folio))
3509 		return false;
3510 
3511 	/*
3512 	 * We have to verify under folio lock: these early checks are
3513 	 * just an optimization to avoid locking the folio and freeing
3514 	 * the swapcache if there is little hope that we can reuse.
3515 	 *
3516 	 * KSM doesn't necessarily raise the folio refcount.
3517 	 */
3518 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3519 		return false;
3520 	if (!folio_test_lru(folio))
3521 		/*
3522 		 * We cannot easily detect+handle references from
3523 		 * remote LRU caches or references to LRU folios.
3524 		 */
3525 		lru_add_drain();
3526 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3527 		return false;
3528 	if (!folio_trylock(folio))
3529 		return false;
3530 	if (folio_test_swapcache(folio))
3531 		folio_free_swap(folio);
3532 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3533 		folio_unlock(folio);
3534 		return false;
3535 	}
3536 	/*
3537 	 * Ok, we've got the only folio reference from our mapping
3538 	 * and the folio is locked, it's dark out, and we're wearing
3539 	 * sunglasses. Hit it.
3540 	 */
3541 	folio_move_anon_rmap(folio, vma);
3542 	folio_unlock(folio);
3543 	return true;
3544 }
3545 
3546 /*
3547  * This routine handles present pages, when
3548  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3549  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3550  *   (FAULT_FLAG_UNSHARE)
3551  *
3552  * It is done by copying the page to a new address and decrementing the
3553  * shared-page counter for the old page.
3554  *
3555  * Note that this routine assumes that the protection checks have been
3556  * done by the caller (the low-level page fault routine in most cases).
3557  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3558  * done any necessary COW.
3559  *
3560  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3561  * though the page will change only once the write actually happens. This
3562  * avoids a few races, and potentially makes it more efficient.
3563  *
3564  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3565  * but allow concurrent faults), with pte both mapped and locked.
3566  * We return with mmap_lock still held, but pte unmapped and unlocked.
3567  */
3568 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3569 	__releases(vmf->ptl)
3570 {
3571 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3572 	struct vm_area_struct *vma = vmf->vma;
3573 	struct folio *folio = NULL;
3574 	pte_t pte;
3575 
3576 	if (likely(!unshare)) {
3577 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3578 			if (!userfaultfd_wp_async(vma)) {
3579 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3580 				return handle_userfault(vmf, VM_UFFD_WP);
3581 			}
3582 
3583 			/*
3584 			 * Nothing needed (cache flush, TLB invalidations,
3585 			 * etc.) because we're only removing the uffd-wp bit,
3586 			 * which is completely invisible to the user.
3587 			 */
3588 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3589 
3590 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3591 			/*
3592 			 * Update this to be prepared for following up CoW
3593 			 * handling
3594 			 */
3595 			vmf->orig_pte = pte;
3596 		}
3597 
3598 		/*
3599 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3600 		 * is flushed in this case before copying.
3601 		 */
3602 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3603 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3604 			flush_tlb_page(vmf->vma, vmf->address);
3605 	}
3606 
3607 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3608 
3609 	if (vmf->page)
3610 		folio = page_folio(vmf->page);
3611 
3612 	/*
3613 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3614 	 * FAULT_FLAG_WRITE set at this point.
3615 	 */
3616 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3617 		/*
3618 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3619 		 * VM_PFNMAP VMA.
3620 		 *
3621 		 * We should not cow pages in a shared writeable mapping.
3622 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3623 		 */
3624 		if (!vmf->page)
3625 			return wp_pfn_shared(vmf);
3626 		return wp_page_shared(vmf, folio);
3627 	}
3628 
3629 	/*
3630 	 * Private mapping: create an exclusive anonymous page copy if reuse
3631 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3632 	 *
3633 	 * If we encounter a page that is marked exclusive, we must reuse
3634 	 * the page without further checks.
3635 	 */
3636 	if (folio && folio_test_anon(folio) &&
3637 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3638 		if (!PageAnonExclusive(vmf->page))
3639 			SetPageAnonExclusive(vmf->page);
3640 		if (unlikely(unshare)) {
3641 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3642 			return 0;
3643 		}
3644 		wp_page_reuse(vmf, folio);
3645 		return 0;
3646 	}
3647 	/*
3648 	 * Ok, we need to copy. Oh, well..
3649 	 */
3650 	if (folio)
3651 		folio_get(folio);
3652 
3653 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3654 #ifdef CONFIG_KSM
3655 	if (folio && folio_test_ksm(folio))
3656 		count_vm_event(COW_KSM);
3657 #endif
3658 	return wp_page_copy(vmf);
3659 }
3660 
3661 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3662 		unsigned long start_addr, unsigned long end_addr,
3663 		struct zap_details *details)
3664 {
3665 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3666 }
3667 
3668 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3669 					    pgoff_t first_index,
3670 					    pgoff_t last_index,
3671 					    struct zap_details *details)
3672 {
3673 	struct vm_area_struct *vma;
3674 	pgoff_t vba, vea, zba, zea;
3675 
3676 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3677 		vba = vma->vm_pgoff;
3678 		vea = vba + vma_pages(vma) - 1;
3679 		zba = max(first_index, vba);
3680 		zea = min(last_index, vea);
3681 
3682 		unmap_mapping_range_vma(vma,
3683 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3684 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3685 				details);
3686 	}
3687 }
3688 
3689 /**
3690  * unmap_mapping_folio() - Unmap single folio from processes.
3691  * @folio: The locked folio to be unmapped.
3692  *
3693  * Unmap this folio from any userspace process which still has it mmaped.
3694  * Typically, for efficiency, the range of nearby pages has already been
3695  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3696  * truncation or invalidation holds the lock on a folio, it may find that
3697  * the page has been remapped again: and then uses unmap_mapping_folio()
3698  * to unmap it finally.
3699  */
3700 void unmap_mapping_folio(struct folio *folio)
3701 {
3702 	struct address_space *mapping = folio->mapping;
3703 	struct zap_details details = { };
3704 	pgoff_t	first_index;
3705 	pgoff_t	last_index;
3706 
3707 	VM_BUG_ON(!folio_test_locked(folio));
3708 
3709 	first_index = folio->index;
3710 	last_index = folio_next_index(folio) - 1;
3711 
3712 	details.even_cows = false;
3713 	details.single_folio = folio;
3714 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3715 
3716 	i_mmap_lock_read(mapping);
3717 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3718 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3719 					 last_index, &details);
3720 	i_mmap_unlock_read(mapping);
3721 }
3722 
3723 /**
3724  * unmap_mapping_pages() - Unmap pages from processes.
3725  * @mapping: The address space containing pages to be unmapped.
3726  * @start: Index of first page to be unmapped.
3727  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3728  * @even_cows: Whether to unmap even private COWed pages.
3729  *
3730  * Unmap the pages in this address space from any userspace process which
3731  * has them mmaped.  Generally, you want to remove COWed pages as well when
3732  * a file is being truncated, but not when invalidating pages from the page
3733  * cache.
3734  */
3735 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3736 		pgoff_t nr, bool even_cows)
3737 {
3738 	struct zap_details details = { };
3739 	pgoff_t	first_index = start;
3740 	pgoff_t	last_index = start + nr - 1;
3741 
3742 	details.even_cows = even_cows;
3743 	if (last_index < first_index)
3744 		last_index = ULONG_MAX;
3745 
3746 	i_mmap_lock_read(mapping);
3747 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3748 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3749 					 last_index, &details);
3750 	i_mmap_unlock_read(mapping);
3751 }
3752 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3753 
3754 /**
3755  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3756  * address_space corresponding to the specified byte range in the underlying
3757  * file.
3758  *
3759  * @mapping: the address space containing mmaps to be unmapped.
3760  * @holebegin: byte in first page to unmap, relative to the start of
3761  * the underlying file.  This will be rounded down to a PAGE_SIZE
3762  * boundary.  Note that this is different from truncate_pagecache(), which
3763  * must keep the partial page.  In contrast, we must get rid of
3764  * partial pages.
3765  * @holelen: size of prospective hole in bytes.  This will be rounded
3766  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3767  * end of the file.
3768  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3769  * but 0 when invalidating pagecache, don't throw away private data.
3770  */
3771 void unmap_mapping_range(struct address_space *mapping,
3772 		loff_t const holebegin, loff_t const holelen, int even_cows)
3773 {
3774 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3775 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3776 
3777 	/* Check for overflow. */
3778 	if (sizeof(holelen) > sizeof(hlen)) {
3779 		long long holeend =
3780 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3781 		if (holeend & ~(long long)ULONG_MAX)
3782 			hlen = ULONG_MAX - hba + 1;
3783 	}
3784 
3785 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3786 }
3787 EXPORT_SYMBOL(unmap_mapping_range);
3788 
3789 /*
3790  * Restore a potential device exclusive pte to a working pte entry
3791  */
3792 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3793 {
3794 	struct folio *folio = page_folio(vmf->page);
3795 	struct vm_area_struct *vma = vmf->vma;
3796 	struct mmu_notifier_range range;
3797 	vm_fault_t ret;
3798 
3799 	/*
3800 	 * We need a reference to lock the folio because we don't hold
3801 	 * the PTL so a racing thread can remove the device-exclusive
3802 	 * entry and unmap it. If the folio is free the entry must
3803 	 * have been removed already. If it happens to have already
3804 	 * been re-allocated after being freed all we do is lock and
3805 	 * unlock it.
3806 	 */
3807 	if (!folio_try_get(folio))
3808 		return 0;
3809 
3810 	ret = folio_lock_or_retry(folio, vmf);
3811 	if (ret) {
3812 		folio_put(folio);
3813 		return ret;
3814 	}
3815 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3816 				vma->vm_mm, vmf->address & PAGE_MASK,
3817 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3818 	mmu_notifier_invalidate_range_start(&range);
3819 
3820 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3821 				&vmf->ptl);
3822 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3823 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3824 
3825 	if (vmf->pte)
3826 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3827 	folio_unlock(folio);
3828 	folio_put(folio);
3829 
3830 	mmu_notifier_invalidate_range_end(&range);
3831 	return 0;
3832 }
3833 
3834 static inline bool should_try_to_free_swap(struct folio *folio,
3835 					   struct vm_area_struct *vma,
3836 					   unsigned int fault_flags)
3837 {
3838 	if (!folio_test_swapcache(folio))
3839 		return false;
3840 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3841 	    folio_test_mlocked(folio))
3842 		return true;
3843 	/*
3844 	 * If we want to map a page that's in the swapcache writable, we
3845 	 * have to detect via the refcount if we're really the exclusive
3846 	 * user. Try freeing the swapcache to get rid of the swapcache
3847 	 * reference only in case it's likely that we'll be the exlusive user.
3848 	 */
3849 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3850 		folio_ref_count(folio) == 2;
3851 }
3852 
3853 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3854 {
3855 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3856 				       vmf->address, &vmf->ptl);
3857 	if (!vmf->pte)
3858 		return 0;
3859 	/*
3860 	 * Be careful so that we will only recover a special uffd-wp pte into a
3861 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3862 	 *
3863 	 * This should also cover the case where e.g. the pte changed
3864 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3865 	 * So is_pte_marker() check is not enough to safely drop the pte.
3866 	 */
3867 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3868 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3869 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3870 	return 0;
3871 }
3872 
3873 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3874 {
3875 	if (vma_is_anonymous(vmf->vma))
3876 		return do_anonymous_page(vmf);
3877 	else
3878 		return do_fault(vmf);
3879 }
3880 
3881 /*
3882  * This is actually a page-missing access, but with uffd-wp special pte
3883  * installed.  It means this pte was wr-protected before being unmapped.
3884  */
3885 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3886 {
3887 	/*
3888 	 * Just in case there're leftover special ptes even after the region
3889 	 * got unregistered - we can simply clear them.
3890 	 */
3891 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3892 		return pte_marker_clear(vmf);
3893 
3894 	return do_pte_missing(vmf);
3895 }
3896 
3897 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3898 {
3899 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3900 	unsigned long marker = pte_marker_get(entry);
3901 
3902 	/*
3903 	 * PTE markers should never be empty.  If anything weird happened,
3904 	 * the best thing to do is to kill the process along with its mm.
3905 	 */
3906 	if (WARN_ON_ONCE(!marker))
3907 		return VM_FAULT_SIGBUS;
3908 
3909 	/* Higher priority than uffd-wp when data corrupted */
3910 	if (marker & PTE_MARKER_POISONED)
3911 		return VM_FAULT_HWPOISON;
3912 
3913 	if (pte_marker_entry_uffd_wp(entry))
3914 		return pte_marker_handle_uffd_wp(vmf);
3915 
3916 	/* This is an unknown pte marker */
3917 	return VM_FAULT_SIGBUS;
3918 }
3919 
3920 /*
3921  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3922  * but allow concurrent faults), and pte mapped but not yet locked.
3923  * We return with pte unmapped and unlocked.
3924  *
3925  * We return with the mmap_lock locked or unlocked in the same cases
3926  * as does filemap_fault().
3927  */
3928 vm_fault_t do_swap_page(struct vm_fault *vmf)
3929 {
3930 	struct vm_area_struct *vma = vmf->vma;
3931 	struct folio *swapcache, *folio = NULL;
3932 	struct page *page;
3933 	struct swap_info_struct *si = NULL;
3934 	rmap_t rmap_flags = RMAP_NONE;
3935 	bool need_clear_cache = false;
3936 	bool exclusive = false;
3937 	swp_entry_t entry;
3938 	pte_t pte;
3939 	vm_fault_t ret = 0;
3940 	void *shadow = NULL;
3941 
3942 	if (!pte_unmap_same(vmf))
3943 		goto out;
3944 
3945 	entry = pte_to_swp_entry(vmf->orig_pte);
3946 	if (unlikely(non_swap_entry(entry))) {
3947 		if (is_migration_entry(entry)) {
3948 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3949 					     vmf->address);
3950 		} else if (is_device_exclusive_entry(entry)) {
3951 			vmf->page = pfn_swap_entry_to_page(entry);
3952 			ret = remove_device_exclusive_entry(vmf);
3953 		} else if (is_device_private_entry(entry)) {
3954 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3955 				/*
3956 				 * migrate_to_ram is not yet ready to operate
3957 				 * under VMA lock.
3958 				 */
3959 				vma_end_read(vma);
3960 				ret = VM_FAULT_RETRY;
3961 				goto out;
3962 			}
3963 
3964 			vmf->page = pfn_swap_entry_to_page(entry);
3965 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3966 					vmf->address, &vmf->ptl);
3967 			if (unlikely(!vmf->pte ||
3968 				     !pte_same(ptep_get(vmf->pte),
3969 							vmf->orig_pte)))
3970 				goto unlock;
3971 
3972 			/*
3973 			 * Get a page reference while we know the page can't be
3974 			 * freed.
3975 			 */
3976 			get_page(vmf->page);
3977 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3978 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3979 			put_page(vmf->page);
3980 		} else if (is_hwpoison_entry(entry)) {
3981 			ret = VM_FAULT_HWPOISON;
3982 		} else if (is_pte_marker_entry(entry)) {
3983 			ret = handle_pte_marker(vmf);
3984 		} else {
3985 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3986 			ret = VM_FAULT_SIGBUS;
3987 		}
3988 		goto out;
3989 	}
3990 
3991 	/* Prevent swapoff from happening to us. */
3992 	si = get_swap_device(entry);
3993 	if (unlikely(!si))
3994 		goto out;
3995 
3996 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3997 	if (folio)
3998 		page = folio_file_page(folio, swp_offset(entry));
3999 	swapcache = folio;
4000 
4001 	if (!folio) {
4002 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4003 		    __swap_count(entry) == 1) {
4004 			/*
4005 			 * Prevent parallel swapin from proceeding with
4006 			 * the cache flag. Otherwise, another thread may
4007 			 * finish swapin first, free the entry, and swapout
4008 			 * reusing the same entry. It's undetectable as
4009 			 * pte_same() returns true due to entry reuse.
4010 			 */
4011 			if (swapcache_prepare(entry)) {
4012 				/* Relax a bit to prevent rapid repeated page faults */
4013 				schedule_timeout_uninterruptible(1);
4014 				goto out;
4015 			}
4016 			need_clear_cache = true;
4017 
4018 			/* skip swapcache */
4019 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
4020 						vma, vmf->address, false);
4021 			page = &folio->page;
4022 			if (folio) {
4023 				__folio_set_locked(folio);
4024 				__folio_set_swapbacked(folio);
4025 
4026 				if (mem_cgroup_swapin_charge_folio(folio,
4027 							vma->vm_mm, GFP_KERNEL,
4028 							entry)) {
4029 					ret = VM_FAULT_OOM;
4030 					goto out_page;
4031 				}
4032 				mem_cgroup_swapin_uncharge_swap(entry);
4033 
4034 				shadow = get_shadow_from_swap_cache(entry);
4035 				if (shadow)
4036 					workingset_refault(folio, shadow);
4037 
4038 				folio_add_lru(folio);
4039 
4040 				/* To provide entry to swap_read_folio() */
4041 				folio->swap = entry;
4042 				swap_read_folio(folio, true, NULL);
4043 				folio->private = NULL;
4044 			}
4045 		} else {
4046 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4047 						vmf);
4048 			if (page)
4049 				folio = page_folio(page);
4050 			swapcache = folio;
4051 		}
4052 
4053 		if (!folio) {
4054 			/*
4055 			 * Back out if somebody else faulted in this pte
4056 			 * while we released the pte lock.
4057 			 */
4058 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4059 					vmf->address, &vmf->ptl);
4060 			if (likely(vmf->pte &&
4061 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4062 				ret = VM_FAULT_OOM;
4063 			goto unlock;
4064 		}
4065 
4066 		/* Had to read the page from swap area: Major fault */
4067 		ret = VM_FAULT_MAJOR;
4068 		count_vm_event(PGMAJFAULT);
4069 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4070 	} else if (PageHWPoison(page)) {
4071 		/*
4072 		 * hwpoisoned dirty swapcache pages are kept for killing
4073 		 * owner processes (which may be unknown at hwpoison time)
4074 		 */
4075 		ret = VM_FAULT_HWPOISON;
4076 		goto out_release;
4077 	}
4078 
4079 	ret |= folio_lock_or_retry(folio, vmf);
4080 	if (ret & VM_FAULT_RETRY)
4081 		goto out_release;
4082 
4083 	if (swapcache) {
4084 		/*
4085 		 * Make sure folio_free_swap() or swapoff did not release the
4086 		 * swapcache from under us.  The page pin, and pte_same test
4087 		 * below, are not enough to exclude that.  Even if it is still
4088 		 * swapcache, we need to check that the page's swap has not
4089 		 * changed.
4090 		 */
4091 		if (unlikely(!folio_test_swapcache(folio) ||
4092 			     page_swap_entry(page).val != entry.val))
4093 			goto out_page;
4094 
4095 		/*
4096 		 * KSM sometimes has to copy on read faults, for example, if
4097 		 * page->index of !PageKSM() pages would be nonlinear inside the
4098 		 * anon VMA -- PageKSM() is lost on actual swapout.
4099 		 */
4100 		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4101 		if (unlikely(!folio)) {
4102 			ret = VM_FAULT_OOM;
4103 			folio = swapcache;
4104 			goto out_page;
4105 		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4106 			ret = VM_FAULT_HWPOISON;
4107 			folio = swapcache;
4108 			goto out_page;
4109 		}
4110 		if (folio != swapcache)
4111 			page = folio_page(folio, 0);
4112 
4113 		/*
4114 		 * If we want to map a page that's in the swapcache writable, we
4115 		 * have to detect via the refcount if we're really the exclusive
4116 		 * owner. Try removing the extra reference from the local LRU
4117 		 * caches if required.
4118 		 */
4119 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4120 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
4121 			lru_add_drain();
4122 	}
4123 
4124 	folio_throttle_swaprate(folio, GFP_KERNEL);
4125 
4126 	/*
4127 	 * Back out if somebody else already faulted in this pte.
4128 	 */
4129 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4130 			&vmf->ptl);
4131 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4132 		goto out_nomap;
4133 
4134 	if (unlikely(!folio_test_uptodate(folio))) {
4135 		ret = VM_FAULT_SIGBUS;
4136 		goto out_nomap;
4137 	}
4138 
4139 	/*
4140 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4141 	 * must never point at an anonymous page in the swapcache that is
4142 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4143 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4144 	 * check after taking the PT lock and making sure that nobody
4145 	 * concurrently faulted in this page and set PG_anon_exclusive.
4146 	 */
4147 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4148 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4149 
4150 	/*
4151 	 * Check under PT lock (to protect against concurrent fork() sharing
4152 	 * the swap entry concurrently) for certainly exclusive pages.
4153 	 */
4154 	if (!folio_test_ksm(folio)) {
4155 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4156 		if (folio != swapcache) {
4157 			/*
4158 			 * We have a fresh page that is not exposed to the
4159 			 * swapcache -> certainly exclusive.
4160 			 */
4161 			exclusive = true;
4162 		} else if (exclusive && folio_test_writeback(folio) &&
4163 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4164 			/*
4165 			 * This is tricky: not all swap backends support
4166 			 * concurrent page modifications while under writeback.
4167 			 *
4168 			 * So if we stumble over such a page in the swapcache
4169 			 * we must not set the page exclusive, otherwise we can
4170 			 * map it writable without further checks and modify it
4171 			 * while still under writeback.
4172 			 *
4173 			 * For these problematic swap backends, simply drop the
4174 			 * exclusive marker: this is perfectly fine as we start
4175 			 * writeback only if we fully unmapped the page and
4176 			 * there are no unexpected references on the page after
4177 			 * unmapping succeeded. After fully unmapped, no
4178 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4179 			 * appear, so dropping the exclusive marker and mapping
4180 			 * it only R/O is fine.
4181 			 */
4182 			exclusive = false;
4183 		}
4184 	}
4185 
4186 	/*
4187 	 * Some architectures may have to restore extra metadata to the page
4188 	 * when reading from swap. This metadata may be indexed by swap entry
4189 	 * so this must be called before swap_free().
4190 	 */
4191 	arch_swap_restore(entry, folio);
4192 
4193 	/*
4194 	 * Remove the swap entry and conditionally try to free up the swapcache.
4195 	 * We're already holding a reference on the page but haven't mapped it
4196 	 * yet.
4197 	 */
4198 	swap_free(entry);
4199 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4200 		folio_free_swap(folio);
4201 
4202 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4203 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4204 	pte = mk_pte(page, vma->vm_page_prot);
4205 
4206 	/*
4207 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4208 	 * certainly not shared either because we just allocated them without
4209 	 * exposing them to the swapcache or because the swap entry indicates
4210 	 * exclusivity.
4211 	 */
4212 	if (!folio_test_ksm(folio) &&
4213 	    (exclusive || folio_ref_count(folio) == 1)) {
4214 		if (vmf->flags & FAULT_FLAG_WRITE) {
4215 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4216 			vmf->flags &= ~FAULT_FLAG_WRITE;
4217 		}
4218 		rmap_flags |= RMAP_EXCLUSIVE;
4219 	}
4220 	flush_icache_page(vma, page);
4221 	if (pte_swp_soft_dirty(vmf->orig_pte))
4222 		pte = pte_mksoft_dirty(pte);
4223 	if (pte_swp_uffd_wp(vmf->orig_pte))
4224 		pte = pte_mkuffd_wp(pte);
4225 	vmf->orig_pte = pte;
4226 
4227 	/* ksm created a completely new copy */
4228 	if (unlikely(folio != swapcache && swapcache)) {
4229 		folio_add_new_anon_rmap(folio, vma, vmf->address);
4230 		folio_add_lru_vma(folio, vma);
4231 	} else {
4232 		folio_add_anon_rmap_pte(folio, page, vma, vmf->address,
4233 					rmap_flags);
4234 	}
4235 
4236 	VM_BUG_ON(!folio_test_anon(folio) ||
4237 			(pte_write(pte) && !PageAnonExclusive(page)));
4238 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4239 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4240 
4241 	folio_unlock(folio);
4242 	if (folio != swapcache && swapcache) {
4243 		/*
4244 		 * Hold the lock to avoid the swap entry to be reused
4245 		 * until we take the PT lock for the pte_same() check
4246 		 * (to avoid false positives from pte_same). For
4247 		 * further safety release the lock after the swap_free
4248 		 * so that the swap count won't change under a
4249 		 * parallel locked swapcache.
4250 		 */
4251 		folio_unlock(swapcache);
4252 		folio_put(swapcache);
4253 	}
4254 
4255 	if (vmf->flags & FAULT_FLAG_WRITE) {
4256 		ret |= do_wp_page(vmf);
4257 		if (ret & VM_FAULT_ERROR)
4258 			ret &= VM_FAULT_ERROR;
4259 		goto out;
4260 	}
4261 
4262 	/* No need to invalidate - it was non-present before */
4263 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4264 unlock:
4265 	if (vmf->pte)
4266 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4267 out:
4268 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4269 	if (need_clear_cache)
4270 		swapcache_clear(si, entry);
4271 	if (si)
4272 		put_swap_device(si);
4273 	return ret;
4274 out_nomap:
4275 	if (vmf->pte)
4276 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4277 out_page:
4278 	folio_unlock(folio);
4279 out_release:
4280 	folio_put(folio);
4281 	if (folio != swapcache && swapcache) {
4282 		folio_unlock(swapcache);
4283 		folio_put(swapcache);
4284 	}
4285 	if (need_clear_cache)
4286 		swapcache_clear(si, entry);
4287 	if (si)
4288 		put_swap_device(si);
4289 	return ret;
4290 }
4291 
4292 static bool pte_range_none(pte_t *pte, int nr_pages)
4293 {
4294 	int i;
4295 
4296 	for (i = 0; i < nr_pages; i++) {
4297 		if (!pte_none(ptep_get_lockless(pte + i)))
4298 			return false;
4299 	}
4300 
4301 	return true;
4302 }
4303 
4304 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4305 {
4306 	struct vm_area_struct *vma = vmf->vma;
4307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4308 	unsigned long orders;
4309 	struct folio *folio;
4310 	unsigned long addr;
4311 	pte_t *pte;
4312 	gfp_t gfp;
4313 	int order;
4314 
4315 	/*
4316 	 * If uffd is active for the vma we need per-page fault fidelity to
4317 	 * maintain the uffd semantics.
4318 	 */
4319 	if (unlikely(userfaultfd_armed(vma)))
4320 		goto fallback;
4321 
4322 	/*
4323 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4324 	 * for this vma. Then filter out the orders that can't be allocated over
4325 	 * the faulting address and still be fully contained in the vma.
4326 	 */
4327 	orders = thp_vma_allowable_orders(vma, vma->vm_flags, false, true, true,
4328 					  BIT(PMD_ORDER) - 1);
4329 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4330 
4331 	if (!orders)
4332 		goto fallback;
4333 
4334 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4335 	if (!pte)
4336 		return ERR_PTR(-EAGAIN);
4337 
4338 	/*
4339 	 * Find the highest order where the aligned range is completely
4340 	 * pte_none(). Note that all remaining orders will be completely
4341 	 * pte_none().
4342 	 */
4343 	order = highest_order(orders);
4344 	while (orders) {
4345 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4346 		if (pte_range_none(pte + pte_index(addr), 1 << order))
4347 			break;
4348 		order = next_order(&orders, order);
4349 	}
4350 
4351 	pte_unmap(pte);
4352 
4353 	/* Try allocating the highest of the remaining orders. */
4354 	gfp = vma_thp_gfp_mask(vma);
4355 	while (orders) {
4356 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4357 		folio = vma_alloc_folio(gfp, order, vma, addr, true);
4358 		if (folio) {
4359 			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4360 				folio_put(folio);
4361 				goto next;
4362 			}
4363 			folio_throttle_swaprate(folio, gfp);
4364 			clear_huge_page(&folio->page, vmf->address, 1 << order);
4365 			return folio;
4366 		}
4367 next:
4368 		order = next_order(&orders, order);
4369 	}
4370 
4371 fallback:
4372 #endif
4373 	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4374 }
4375 
4376 /*
4377  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4378  * but allow concurrent faults), and pte mapped but not yet locked.
4379  * We return with mmap_lock still held, but pte unmapped and unlocked.
4380  */
4381 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4382 {
4383 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4384 	struct vm_area_struct *vma = vmf->vma;
4385 	unsigned long addr = vmf->address;
4386 	struct folio *folio;
4387 	vm_fault_t ret = 0;
4388 	int nr_pages = 1;
4389 	pte_t entry;
4390 	int i;
4391 
4392 	/* File mapping without ->vm_ops ? */
4393 	if (vma->vm_flags & VM_SHARED)
4394 		return VM_FAULT_SIGBUS;
4395 
4396 	/*
4397 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4398 	 * be distinguished from a transient failure of pte_offset_map().
4399 	 */
4400 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4401 		return VM_FAULT_OOM;
4402 
4403 	/* Use the zero-page for reads */
4404 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4405 			!mm_forbids_zeropage(vma->vm_mm)) {
4406 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4407 						vma->vm_page_prot));
4408 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4409 				vmf->address, &vmf->ptl);
4410 		if (!vmf->pte)
4411 			goto unlock;
4412 		if (vmf_pte_changed(vmf)) {
4413 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4414 			goto unlock;
4415 		}
4416 		ret = check_stable_address_space(vma->vm_mm);
4417 		if (ret)
4418 			goto unlock;
4419 		/* Deliver the page fault to userland, check inside PT lock */
4420 		if (userfaultfd_missing(vma)) {
4421 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4422 			return handle_userfault(vmf, VM_UFFD_MISSING);
4423 		}
4424 		goto setpte;
4425 	}
4426 
4427 	/* Allocate our own private page. */
4428 	if (unlikely(anon_vma_prepare(vma)))
4429 		goto oom;
4430 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4431 	folio = alloc_anon_folio(vmf);
4432 	if (IS_ERR(folio))
4433 		return 0;
4434 	if (!folio)
4435 		goto oom;
4436 
4437 	nr_pages = folio_nr_pages(folio);
4438 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4439 
4440 	/*
4441 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4442 	 * preceding stores to the page contents become visible before
4443 	 * the set_pte_at() write.
4444 	 */
4445 	__folio_mark_uptodate(folio);
4446 
4447 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4448 	entry = pte_sw_mkyoung(entry);
4449 	if (vma->vm_flags & VM_WRITE)
4450 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4451 
4452 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4453 	if (!vmf->pte)
4454 		goto release;
4455 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4456 		update_mmu_tlb(vma, addr, vmf->pte);
4457 		goto release;
4458 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4459 		for (i = 0; i < nr_pages; i++)
4460 			update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i);
4461 		goto release;
4462 	}
4463 
4464 	ret = check_stable_address_space(vma->vm_mm);
4465 	if (ret)
4466 		goto release;
4467 
4468 	/* Deliver the page fault to userland, check inside PT lock */
4469 	if (userfaultfd_missing(vma)) {
4470 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4471 		folio_put(folio);
4472 		return handle_userfault(vmf, VM_UFFD_MISSING);
4473 	}
4474 
4475 	folio_ref_add(folio, nr_pages - 1);
4476 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4477 	folio_add_new_anon_rmap(folio, vma, addr);
4478 	folio_add_lru_vma(folio, vma);
4479 setpte:
4480 	if (uffd_wp)
4481 		entry = pte_mkuffd_wp(entry);
4482 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4483 
4484 	/* No need to invalidate - it was non-present before */
4485 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4486 unlock:
4487 	if (vmf->pte)
4488 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4489 	return ret;
4490 release:
4491 	folio_put(folio);
4492 	goto unlock;
4493 oom:
4494 	return VM_FAULT_OOM;
4495 }
4496 
4497 /*
4498  * The mmap_lock must have been held on entry, and may have been
4499  * released depending on flags and vma->vm_ops->fault() return value.
4500  * See filemap_fault() and __lock_page_retry().
4501  */
4502 static vm_fault_t __do_fault(struct vm_fault *vmf)
4503 {
4504 	struct vm_area_struct *vma = vmf->vma;
4505 	struct folio *folio;
4506 	vm_fault_t ret;
4507 
4508 	/*
4509 	 * Preallocate pte before we take page_lock because this might lead to
4510 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4511 	 *				lock_page(A)
4512 	 *				SetPageWriteback(A)
4513 	 *				unlock_page(A)
4514 	 * lock_page(B)
4515 	 *				lock_page(B)
4516 	 * pte_alloc_one
4517 	 *   shrink_page_list
4518 	 *     wait_on_page_writeback(A)
4519 	 *				SetPageWriteback(B)
4520 	 *				unlock_page(B)
4521 	 *				# flush A, B to clear the writeback
4522 	 */
4523 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4524 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4525 		if (!vmf->prealloc_pte)
4526 			return VM_FAULT_OOM;
4527 	}
4528 
4529 	ret = vma->vm_ops->fault(vmf);
4530 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4531 			    VM_FAULT_DONE_COW)))
4532 		return ret;
4533 
4534 	folio = page_folio(vmf->page);
4535 	if (unlikely(PageHWPoison(vmf->page))) {
4536 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4537 		if (ret & VM_FAULT_LOCKED) {
4538 			if (page_mapped(vmf->page))
4539 				unmap_mapping_folio(folio);
4540 			/* Retry if a clean folio was removed from the cache. */
4541 			if (mapping_evict_folio(folio->mapping, folio))
4542 				poisonret = VM_FAULT_NOPAGE;
4543 			folio_unlock(folio);
4544 		}
4545 		folio_put(folio);
4546 		vmf->page = NULL;
4547 		return poisonret;
4548 	}
4549 
4550 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4551 		folio_lock(folio);
4552 	else
4553 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4554 
4555 	return ret;
4556 }
4557 
4558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4559 static void deposit_prealloc_pte(struct vm_fault *vmf)
4560 {
4561 	struct vm_area_struct *vma = vmf->vma;
4562 
4563 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4564 	/*
4565 	 * We are going to consume the prealloc table,
4566 	 * count that as nr_ptes.
4567 	 */
4568 	mm_inc_nr_ptes(vma->vm_mm);
4569 	vmf->prealloc_pte = NULL;
4570 }
4571 
4572 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4573 {
4574 	struct folio *folio = page_folio(page);
4575 	struct vm_area_struct *vma = vmf->vma;
4576 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4577 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4578 	pmd_t entry;
4579 	vm_fault_t ret = VM_FAULT_FALLBACK;
4580 
4581 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4582 		return ret;
4583 
4584 	if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER)
4585 		return ret;
4586 
4587 	/*
4588 	 * Just backoff if any subpage of a THP is corrupted otherwise
4589 	 * the corrupted page may mapped by PMD silently to escape the
4590 	 * check.  This kind of THP just can be PTE mapped.  Access to
4591 	 * the corrupted subpage should trigger SIGBUS as expected.
4592 	 */
4593 	if (unlikely(folio_test_has_hwpoisoned(folio)))
4594 		return ret;
4595 
4596 	/*
4597 	 * Archs like ppc64 need additional space to store information
4598 	 * related to pte entry. Use the preallocated table for that.
4599 	 */
4600 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4601 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4602 		if (!vmf->prealloc_pte)
4603 			return VM_FAULT_OOM;
4604 	}
4605 
4606 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4607 	if (unlikely(!pmd_none(*vmf->pmd)))
4608 		goto out;
4609 
4610 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
4611 
4612 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4613 	if (write)
4614 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4615 
4616 	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4617 	folio_add_file_rmap_pmd(folio, page, vma);
4618 
4619 	/*
4620 	 * deposit and withdraw with pmd lock held
4621 	 */
4622 	if (arch_needs_pgtable_deposit())
4623 		deposit_prealloc_pte(vmf);
4624 
4625 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4626 
4627 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4628 
4629 	/* fault is handled */
4630 	ret = 0;
4631 	count_vm_event(THP_FILE_MAPPED);
4632 out:
4633 	spin_unlock(vmf->ptl);
4634 	return ret;
4635 }
4636 #else
4637 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4638 {
4639 	return VM_FAULT_FALLBACK;
4640 }
4641 #endif
4642 
4643 /**
4644  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4645  * @vmf: Fault decription.
4646  * @folio: The folio that contains @page.
4647  * @page: The first page to create a PTE for.
4648  * @nr: The number of PTEs to create.
4649  * @addr: The first address to create a PTE for.
4650  */
4651 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4652 		struct page *page, unsigned int nr, unsigned long addr)
4653 {
4654 	struct vm_area_struct *vma = vmf->vma;
4655 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4656 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4657 	bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4658 	pte_t entry;
4659 
4660 	flush_icache_pages(vma, page, nr);
4661 	entry = mk_pte(page, vma->vm_page_prot);
4662 
4663 	if (prefault && arch_wants_old_prefaulted_pte())
4664 		entry = pte_mkold(entry);
4665 	else
4666 		entry = pte_sw_mkyoung(entry);
4667 
4668 	if (write)
4669 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4670 	if (unlikely(uffd_wp))
4671 		entry = pte_mkuffd_wp(entry);
4672 	/* copy-on-write page */
4673 	if (write && !(vma->vm_flags & VM_SHARED)) {
4674 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4675 		VM_BUG_ON_FOLIO(nr != 1, folio);
4676 		folio_add_new_anon_rmap(folio, vma, addr);
4677 		folio_add_lru_vma(folio, vma);
4678 	} else {
4679 		add_mm_counter(vma->vm_mm, mm_counter_file(folio), nr);
4680 		folio_add_file_rmap_ptes(folio, page, nr, vma);
4681 	}
4682 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4683 
4684 	/* no need to invalidate: a not-present page won't be cached */
4685 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4686 }
4687 
4688 static bool vmf_pte_changed(struct vm_fault *vmf)
4689 {
4690 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4691 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4692 
4693 	return !pte_none(ptep_get(vmf->pte));
4694 }
4695 
4696 /**
4697  * finish_fault - finish page fault once we have prepared the page to fault
4698  *
4699  * @vmf: structure describing the fault
4700  *
4701  * This function handles all that is needed to finish a page fault once the
4702  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4703  * given page, adds reverse page mapping, handles memcg charges and LRU
4704  * addition.
4705  *
4706  * The function expects the page to be locked and on success it consumes a
4707  * reference of a page being mapped (for the PTE which maps it).
4708  *
4709  * Return: %0 on success, %VM_FAULT_ code in case of error.
4710  */
4711 vm_fault_t finish_fault(struct vm_fault *vmf)
4712 {
4713 	struct vm_area_struct *vma = vmf->vma;
4714 	struct page *page;
4715 	vm_fault_t ret;
4716 
4717 	/* Did we COW the page? */
4718 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4719 		page = vmf->cow_page;
4720 	else
4721 		page = vmf->page;
4722 
4723 	/*
4724 	 * check even for read faults because we might have lost our CoWed
4725 	 * page
4726 	 */
4727 	if (!(vma->vm_flags & VM_SHARED)) {
4728 		ret = check_stable_address_space(vma->vm_mm);
4729 		if (ret)
4730 			return ret;
4731 	}
4732 
4733 	if (pmd_none(*vmf->pmd)) {
4734 		if (PageTransCompound(page)) {
4735 			ret = do_set_pmd(vmf, page);
4736 			if (ret != VM_FAULT_FALLBACK)
4737 				return ret;
4738 		}
4739 
4740 		if (vmf->prealloc_pte)
4741 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4742 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4743 			return VM_FAULT_OOM;
4744 	}
4745 
4746 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4747 				      vmf->address, &vmf->ptl);
4748 	if (!vmf->pte)
4749 		return VM_FAULT_NOPAGE;
4750 
4751 	/* Re-check under ptl */
4752 	if (likely(!vmf_pte_changed(vmf))) {
4753 		struct folio *folio = page_folio(page);
4754 
4755 		set_pte_range(vmf, folio, page, 1, vmf->address);
4756 		ret = 0;
4757 	} else {
4758 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4759 		ret = VM_FAULT_NOPAGE;
4760 	}
4761 
4762 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4763 	return ret;
4764 }
4765 
4766 static unsigned long fault_around_pages __read_mostly =
4767 	65536 >> PAGE_SHIFT;
4768 
4769 #ifdef CONFIG_DEBUG_FS
4770 static int fault_around_bytes_get(void *data, u64 *val)
4771 {
4772 	*val = fault_around_pages << PAGE_SHIFT;
4773 	return 0;
4774 }
4775 
4776 /*
4777  * fault_around_bytes must be rounded down to the nearest page order as it's
4778  * what do_fault_around() expects to see.
4779  */
4780 static int fault_around_bytes_set(void *data, u64 val)
4781 {
4782 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4783 		return -EINVAL;
4784 
4785 	/*
4786 	 * The minimum value is 1 page, however this results in no fault-around
4787 	 * at all. See should_fault_around().
4788 	 */
4789 	val = max(val, PAGE_SIZE);
4790 	fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
4791 
4792 	return 0;
4793 }
4794 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4795 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4796 
4797 static int __init fault_around_debugfs(void)
4798 {
4799 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4800 				   &fault_around_bytes_fops);
4801 	return 0;
4802 }
4803 late_initcall(fault_around_debugfs);
4804 #endif
4805 
4806 /*
4807  * do_fault_around() tries to map few pages around the fault address. The hope
4808  * is that the pages will be needed soon and this will lower the number of
4809  * faults to handle.
4810  *
4811  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4812  * not ready to be mapped: not up-to-date, locked, etc.
4813  *
4814  * This function doesn't cross VMA or page table boundaries, in order to call
4815  * map_pages() and acquire a PTE lock only once.
4816  *
4817  * fault_around_pages defines how many pages we'll try to map.
4818  * do_fault_around() expects it to be set to a power of two less than or equal
4819  * to PTRS_PER_PTE.
4820  *
4821  * The virtual address of the area that we map is naturally aligned to
4822  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4823  * (and therefore to page order).  This way it's easier to guarantee
4824  * that we don't cross page table boundaries.
4825  */
4826 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4827 {
4828 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4829 	pgoff_t pte_off = pte_index(vmf->address);
4830 	/* The page offset of vmf->address within the VMA. */
4831 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4832 	pgoff_t from_pte, to_pte;
4833 	vm_fault_t ret;
4834 
4835 	/* The PTE offset of the start address, clamped to the VMA. */
4836 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4837 		       pte_off - min(pte_off, vma_off));
4838 
4839 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4840 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4841 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4842 
4843 	if (pmd_none(*vmf->pmd)) {
4844 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4845 		if (!vmf->prealloc_pte)
4846 			return VM_FAULT_OOM;
4847 	}
4848 
4849 	rcu_read_lock();
4850 	ret = vmf->vma->vm_ops->map_pages(vmf,
4851 			vmf->pgoff + from_pte - pte_off,
4852 			vmf->pgoff + to_pte - pte_off);
4853 	rcu_read_unlock();
4854 
4855 	return ret;
4856 }
4857 
4858 /* Return true if we should do read fault-around, false otherwise */
4859 static inline bool should_fault_around(struct vm_fault *vmf)
4860 {
4861 	/* No ->map_pages?  No way to fault around... */
4862 	if (!vmf->vma->vm_ops->map_pages)
4863 		return false;
4864 
4865 	if (uffd_disable_fault_around(vmf->vma))
4866 		return false;
4867 
4868 	/* A single page implies no faulting 'around' at all. */
4869 	return fault_around_pages > 1;
4870 }
4871 
4872 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4873 {
4874 	vm_fault_t ret = 0;
4875 	struct folio *folio;
4876 
4877 	/*
4878 	 * Let's call ->map_pages() first and use ->fault() as fallback
4879 	 * if page by the offset is not ready to be mapped (cold cache or
4880 	 * something).
4881 	 */
4882 	if (should_fault_around(vmf)) {
4883 		ret = do_fault_around(vmf);
4884 		if (ret)
4885 			return ret;
4886 	}
4887 
4888 	ret = vmf_can_call_fault(vmf);
4889 	if (ret)
4890 		return ret;
4891 
4892 	ret = __do_fault(vmf);
4893 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4894 		return ret;
4895 
4896 	ret |= finish_fault(vmf);
4897 	folio = page_folio(vmf->page);
4898 	folio_unlock(folio);
4899 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4900 		folio_put(folio);
4901 	return ret;
4902 }
4903 
4904 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4905 {
4906 	struct vm_area_struct *vma = vmf->vma;
4907 	struct folio *folio;
4908 	vm_fault_t ret;
4909 
4910 	ret = vmf_can_call_fault(vmf);
4911 	if (!ret)
4912 		ret = vmf_anon_prepare(vmf);
4913 	if (ret)
4914 		return ret;
4915 
4916 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
4917 	if (!folio)
4918 		return VM_FAULT_OOM;
4919 
4920 	vmf->cow_page = &folio->page;
4921 
4922 	ret = __do_fault(vmf);
4923 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4924 		goto uncharge_out;
4925 	if (ret & VM_FAULT_DONE_COW)
4926 		return ret;
4927 
4928 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4929 	__folio_mark_uptodate(folio);
4930 
4931 	ret |= finish_fault(vmf);
4932 	unlock_page(vmf->page);
4933 	put_page(vmf->page);
4934 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4935 		goto uncharge_out;
4936 	return ret;
4937 uncharge_out:
4938 	folio_put(folio);
4939 	return ret;
4940 }
4941 
4942 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4943 {
4944 	struct vm_area_struct *vma = vmf->vma;
4945 	vm_fault_t ret, tmp;
4946 	struct folio *folio;
4947 
4948 	ret = vmf_can_call_fault(vmf);
4949 	if (ret)
4950 		return ret;
4951 
4952 	ret = __do_fault(vmf);
4953 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4954 		return ret;
4955 
4956 	folio = page_folio(vmf->page);
4957 
4958 	/*
4959 	 * Check if the backing address space wants to know that the page is
4960 	 * about to become writable
4961 	 */
4962 	if (vma->vm_ops->page_mkwrite) {
4963 		folio_unlock(folio);
4964 		tmp = do_page_mkwrite(vmf, folio);
4965 		if (unlikely(!tmp ||
4966 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4967 			folio_put(folio);
4968 			return tmp;
4969 		}
4970 	}
4971 
4972 	ret |= finish_fault(vmf);
4973 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4974 					VM_FAULT_RETRY))) {
4975 		folio_unlock(folio);
4976 		folio_put(folio);
4977 		return ret;
4978 	}
4979 
4980 	ret |= fault_dirty_shared_page(vmf);
4981 	return ret;
4982 }
4983 
4984 /*
4985  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4986  * but allow concurrent faults).
4987  * The mmap_lock may have been released depending on flags and our
4988  * return value.  See filemap_fault() and __folio_lock_or_retry().
4989  * If mmap_lock is released, vma may become invalid (for example
4990  * by other thread calling munmap()).
4991  */
4992 static vm_fault_t do_fault(struct vm_fault *vmf)
4993 {
4994 	struct vm_area_struct *vma = vmf->vma;
4995 	struct mm_struct *vm_mm = vma->vm_mm;
4996 	vm_fault_t ret;
4997 
4998 	/*
4999 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5000 	 */
5001 	if (!vma->vm_ops->fault) {
5002 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5003 					       vmf->address, &vmf->ptl);
5004 		if (unlikely(!vmf->pte))
5005 			ret = VM_FAULT_SIGBUS;
5006 		else {
5007 			/*
5008 			 * Make sure this is not a temporary clearing of pte
5009 			 * by holding ptl and checking again. A R/M/W update
5010 			 * of pte involves: take ptl, clearing the pte so that
5011 			 * we don't have concurrent modification by hardware
5012 			 * followed by an update.
5013 			 */
5014 			if (unlikely(pte_none(ptep_get(vmf->pte))))
5015 				ret = VM_FAULT_SIGBUS;
5016 			else
5017 				ret = VM_FAULT_NOPAGE;
5018 
5019 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5020 		}
5021 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
5022 		ret = do_read_fault(vmf);
5023 	else if (!(vma->vm_flags & VM_SHARED))
5024 		ret = do_cow_fault(vmf);
5025 	else
5026 		ret = do_shared_fault(vmf);
5027 
5028 	/* preallocated pagetable is unused: free it */
5029 	if (vmf->prealloc_pte) {
5030 		pte_free(vm_mm, vmf->prealloc_pte);
5031 		vmf->prealloc_pte = NULL;
5032 	}
5033 	return ret;
5034 }
5035 
5036 int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
5037 		      unsigned long addr, int page_nid, int *flags)
5038 {
5039 	folio_get(folio);
5040 
5041 	/* Record the current PID acceesing VMA */
5042 	vma_set_access_pid_bit(vma);
5043 
5044 	count_vm_numa_event(NUMA_HINT_FAULTS);
5045 	if (page_nid == numa_node_id()) {
5046 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5047 		*flags |= TNF_FAULT_LOCAL;
5048 	}
5049 
5050 	return mpol_misplaced(folio, vma, addr);
5051 }
5052 
5053 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5054 {
5055 	struct vm_area_struct *vma = vmf->vma;
5056 	struct folio *folio = NULL;
5057 	int nid = NUMA_NO_NODE;
5058 	bool writable = false;
5059 	int last_cpupid;
5060 	int target_nid;
5061 	pte_t pte, old_pte;
5062 	int flags = 0;
5063 
5064 	/*
5065 	 * The pte cannot be used safely until we verify, while holding the page
5066 	 * table lock, that its contents have not changed during fault handling.
5067 	 */
5068 	spin_lock(vmf->ptl);
5069 	/* Read the live PTE from the page tables: */
5070 	old_pte = ptep_get(vmf->pte);
5071 
5072 	if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5073 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5074 		goto out;
5075 	}
5076 
5077 	pte = pte_modify(old_pte, vma->vm_page_prot);
5078 
5079 	/*
5080 	 * Detect now whether the PTE could be writable; this information
5081 	 * is only valid while holding the PT lock.
5082 	 */
5083 	writable = pte_write(pte);
5084 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
5085 	    can_change_pte_writable(vma, vmf->address, pte))
5086 		writable = true;
5087 
5088 	folio = vm_normal_folio(vma, vmf->address, pte);
5089 	if (!folio || folio_is_zone_device(folio))
5090 		goto out_map;
5091 
5092 	/* TODO: handle PTE-mapped THP */
5093 	if (folio_test_large(folio))
5094 		goto out_map;
5095 
5096 	/*
5097 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5098 	 * much anyway since they can be in shared cache state. This misses
5099 	 * the case where a mapping is writable but the process never writes
5100 	 * to it but pte_write gets cleared during protection updates and
5101 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
5102 	 * background writeback, dirty balancing and application behaviour.
5103 	 */
5104 	if (!writable)
5105 		flags |= TNF_NO_GROUP;
5106 
5107 	/*
5108 	 * Flag if the folio is shared between multiple address spaces. This
5109 	 * is later used when determining whether to group tasks together
5110 	 */
5111 	if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED))
5112 		flags |= TNF_SHARED;
5113 
5114 	nid = folio_nid(folio);
5115 	/*
5116 	 * For memory tiering mode, cpupid of slow memory page is used
5117 	 * to record page access time.  So use default value.
5118 	 */
5119 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
5120 	    !node_is_toptier(nid))
5121 		last_cpupid = (-1 & LAST_CPUPID_MASK);
5122 	else
5123 		last_cpupid = folio_last_cpupid(folio);
5124 	target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags);
5125 	if (target_nid == NUMA_NO_NODE) {
5126 		folio_put(folio);
5127 		goto out_map;
5128 	}
5129 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5130 	writable = false;
5131 
5132 	/* Migrate to the requested node */
5133 	if (migrate_misplaced_folio(folio, vma, target_nid)) {
5134 		nid = target_nid;
5135 		flags |= TNF_MIGRATED;
5136 	} else {
5137 		flags |= TNF_MIGRATE_FAIL;
5138 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5139 					       vmf->address, &vmf->ptl);
5140 		if (unlikely(!vmf->pte))
5141 			goto out;
5142 		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5143 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5144 			goto out;
5145 		}
5146 		goto out_map;
5147 	}
5148 
5149 out:
5150 	if (nid != NUMA_NO_NODE)
5151 		task_numa_fault(last_cpupid, nid, 1, flags);
5152 	return 0;
5153 out_map:
5154 	/*
5155 	 * Make it present again, depending on how arch implements
5156 	 * non-accessible ptes, some can allow access by kernel mode.
5157 	 */
5158 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
5159 	pte = pte_modify(old_pte, vma->vm_page_prot);
5160 	pte = pte_mkyoung(pte);
5161 	if (writable)
5162 		pte = pte_mkwrite(pte, vma);
5163 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
5164 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
5165 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5166 	goto out;
5167 }
5168 
5169 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5170 {
5171 	struct vm_area_struct *vma = vmf->vma;
5172 	if (vma_is_anonymous(vma))
5173 		return do_huge_pmd_anonymous_page(vmf);
5174 	if (vma->vm_ops->huge_fault)
5175 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5176 	return VM_FAULT_FALLBACK;
5177 }
5178 
5179 /* `inline' is required to avoid gcc 4.1.2 build error */
5180 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5181 {
5182 	struct vm_area_struct *vma = vmf->vma;
5183 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5184 	vm_fault_t ret;
5185 
5186 	if (vma_is_anonymous(vma)) {
5187 		if (likely(!unshare) &&
5188 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5189 			if (userfaultfd_wp_async(vmf->vma))
5190 				goto split;
5191 			return handle_userfault(vmf, VM_UFFD_WP);
5192 		}
5193 		return do_huge_pmd_wp_page(vmf);
5194 	}
5195 
5196 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5197 		if (vma->vm_ops->huge_fault) {
5198 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5199 			if (!(ret & VM_FAULT_FALLBACK))
5200 				return ret;
5201 		}
5202 	}
5203 
5204 split:
5205 	/* COW or write-notify handled on pte level: split pmd. */
5206 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5207 
5208 	return VM_FAULT_FALLBACK;
5209 }
5210 
5211 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5212 {
5213 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5214 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5215 	struct vm_area_struct *vma = vmf->vma;
5216 	/* No support for anonymous transparent PUD pages yet */
5217 	if (vma_is_anonymous(vma))
5218 		return VM_FAULT_FALLBACK;
5219 	if (vma->vm_ops->huge_fault)
5220 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5221 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5222 	return VM_FAULT_FALLBACK;
5223 }
5224 
5225 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5226 {
5227 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5228 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5229 	struct vm_area_struct *vma = vmf->vma;
5230 	vm_fault_t ret;
5231 
5232 	/* No support for anonymous transparent PUD pages yet */
5233 	if (vma_is_anonymous(vma))
5234 		goto split;
5235 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5236 		if (vma->vm_ops->huge_fault) {
5237 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5238 			if (!(ret & VM_FAULT_FALLBACK))
5239 				return ret;
5240 		}
5241 	}
5242 split:
5243 	/* COW or write-notify not handled on PUD level: split pud.*/
5244 	__split_huge_pud(vma, vmf->pud, vmf->address);
5245 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5246 	return VM_FAULT_FALLBACK;
5247 }
5248 
5249 /*
5250  * These routines also need to handle stuff like marking pages dirty
5251  * and/or accessed for architectures that don't do it in hardware (most
5252  * RISC architectures).  The early dirtying is also good on the i386.
5253  *
5254  * There is also a hook called "update_mmu_cache()" that architectures
5255  * with external mmu caches can use to update those (ie the Sparc or
5256  * PowerPC hashed page tables that act as extended TLBs).
5257  *
5258  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5259  * concurrent faults).
5260  *
5261  * The mmap_lock may have been released depending on flags and our return value.
5262  * See filemap_fault() and __folio_lock_or_retry().
5263  */
5264 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5265 {
5266 	pte_t entry;
5267 
5268 	if (unlikely(pmd_none(*vmf->pmd))) {
5269 		/*
5270 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5271 		 * want to allocate huge page, and if we expose page table
5272 		 * for an instant, it will be difficult to retract from
5273 		 * concurrent faults and from rmap lookups.
5274 		 */
5275 		vmf->pte = NULL;
5276 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5277 	} else {
5278 		/*
5279 		 * A regular pmd is established and it can't morph into a huge
5280 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5281 		 * mode; but shmem or file collapse to THP could still morph
5282 		 * it into a huge pmd: just retry later if so.
5283 		 */
5284 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5285 						 vmf->address, &vmf->ptl);
5286 		if (unlikely(!vmf->pte))
5287 			return 0;
5288 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5289 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5290 
5291 		if (pte_none(vmf->orig_pte)) {
5292 			pte_unmap(vmf->pte);
5293 			vmf->pte = NULL;
5294 		}
5295 	}
5296 
5297 	if (!vmf->pte)
5298 		return do_pte_missing(vmf);
5299 
5300 	if (!pte_present(vmf->orig_pte))
5301 		return do_swap_page(vmf);
5302 
5303 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5304 		return do_numa_page(vmf);
5305 
5306 	spin_lock(vmf->ptl);
5307 	entry = vmf->orig_pte;
5308 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5309 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5310 		goto unlock;
5311 	}
5312 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5313 		if (!pte_write(entry))
5314 			return do_wp_page(vmf);
5315 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5316 			entry = pte_mkdirty(entry);
5317 	}
5318 	entry = pte_mkyoung(entry);
5319 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5320 				vmf->flags & FAULT_FLAG_WRITE)) {
5321 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5322 				vmf->pte, 1);
5323 	} else {
5324 		/* Skip spurious TLB flush for retried page fault */
5325 		if (vmf->flags & FAULT_FLAG_TRIED)
5326 			goto unlock;
5327 		/*
5328 		 * This is needed only for protection faults but the arch code
5329 		 * is not yet telling us if this is a protection fault or not.
5330 		 * This still avoids useless tlb flushes for .text page faults
5331 		 * with threads.
5332 		 */
5333 		if (vmf->flags & FAULT_FLAG_WRITE)
5334 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5335 						     vmf->pte);
5336 	}
5337 unlock:
5338 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5339 	return 0;
5340 }
5341 
5342 /*
5343  * On entry, we hold either the VMA lock or the mmap_lock
5344  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5345  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5346  * and __folio_lock_or_retry().
5347  */
5348 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5349 		unsigned long address, unsigned int flags)
5350 {
5351 	struct vm_fault vmf = {
5352 		.vma = vma,
5353 		.address = address & PAGE_MASK,
5354 		.real_address = address,
5355 		.flags = flags,
5356 		.pgoff = linear_page_index(vma, address),
5357 		.gfp_mask = __get_fault_gfp_mask(vma),
5358 	};
5359 	struct mm_struct *mm = vma->vm_mm;
5360 	unsigned long vm_flags = vma->vm_flags;
5361 	pgd_t *pgd;
5362 	p4d_t *p4d;
5363 	vm_fault_t ret;
5364 
5365 	pgd = pgd_offset(mm, address);
5366 	p4d = p4d_alloc(mm, pgd, address);
5367 	if (!p4d)
5368 		return VM_FAULT_OOM;
5369 
5370 	vmf.pud = pud_alloc(mm, p4d, address);
5371 	if (!vmf.pud)
5372 		return VM_FAULT_OOM;
5373 retry_pud:
5374 	if (pud_none(*vmf.pud) &&
5375 	    thp_vma_allowable_order(vma, vm_flags, false, true, true, PUD_ORDER)) {
5376 		ret = create_huge_pud(&vmf);
5377 		if (!(ret & VM_FAULT_FALLBACK))
5378 			return ret;
5379 	} else {
5380 		pud_t orig_pud = *vmf.pud;
5381 
5382 		barrier();
5383 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5384 
5385 			/*
5386 			 * TODO once we support anonymous PUDs: NUMA case and
5387 			 * FAULT_FLAG_UNSHARE handling.
5388 			 */
5389 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5390 				ret = wp_huge_pud(&vmf, orig_pud);
5391 				if (!(ret & VM_FAULT_FALLBACK))
5392 					return ret;
5393 			} else {
5394 				huge_pud_set_accessed(&vmf, orig_pud);
5395 				return 0;
5396 			}
5397 		}
5398 	}
5399 
5400 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5401 	if (!vmf.pmd)
5402 		return VM_FAULT_OOM;
5403 
5404 	/* Huge pud page fault raced with pmd_alloc? */
5405 	if (pud_trans_unstable(vmf.pud))
5406 		goto retry_pud;
5407 
5408 	if (pmd_none(*vmf.pmd) &&
5409 	    thp_vma_allowable_order(vma, vm_flags, false, true, true, PMD_ORDER)) {
5410 		ret = create_huge_pmd(&vmf);
5411 		if (!(ret & VM_FAULT_FALLBACK))
5412 			return ret;
5413 	} else {
5414 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5415 
5416 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5417 			VM_BUG_ON(thp_migration_supported() &&
5418 					  !is_pmd_migration_entry(vmf.orig_pmd));
5419 			if (is_pmd_migration_entry(vmf.orig_pmd))
5420 				pmd_migration_entry_wait(mm, vmf.pmd);
5421 			return 0;
5422 		}
5423 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5424 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5425 				return do_huge_pmd_numa_page(&vmf);
5426 
5427 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5428 			    !pmd_write(vmf.orig_pmd)) {
5429 				ret = wp_huge_pmd(&vmf);
5430 				if (!(ret & VM_FAULT_FALLBACK))
5431 					return ret;
5432 			} else {
5433 				huge_pmd_set_accessed(&vmf);
5434 				return 0;
5435 			}
5436 		}
5437 	}
5438 
5439 	return handle_pte_fault(&vmf);
5440 }
5441 
5442 /**
5443  * mm_account_fault - Do page fault accounting
5444  * @mm: mm from which memcg should be extracted. It can be NULL.
5445  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5446  *        of perf event counters, but we'll still do the per-task accounting to
5447  *        the task who triggered this page fault.
5448  * @address: the faulted address.
5449  * @flags: the fault flags.
5450  * @ret: the fault retcode.
5451  *
5452  * This will take care of most of the page fault accounting.  Meanwhile, it
5453  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5454  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5455  * still be in per-arch page fault handlers at the entry of page fault.
5456  */
5457 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5458 				    unsigned long address, unsigned int flags,
5459 				    vm_fault_t ret)
5460 {
5461 	bool major;
5462 
5463 	/* Incomplete faults will be accounted upon completion. */
5464 	if (ret & VM_FAULT_RETRY)
5465 		return;
5466 
5467 	/*
5468 	 * To preserve the behavior of older kernels, PGFAULT counters record
5469 	 * both successful and failed faults, as opposed to perf counters,
5470 	 * which ignore failed cases.
5471 	 */
5472 	count_vm_event(PGFAULT);
5473 	count_memcg_event_mm(mm, PGFAULT);
5474 
5475 	/*
5476 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5477 	 * valid).  That includes arch_vma_access_permitted() failing before
5478 	 * reaching here. So this is not a "this many hardware page faults"
5479 	 * counter.  We should use the hw profiling for that.
5480 	 */
5481 	if (ret & VM_FAULT_ERROR)
5482 		return;
5483 
5484 	/*
5485 	 * We define the fault as a major fault when the final successful fault
5486 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5487 	 * handle it immediately previously).
5488 	 */
5489 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5490 
5491 	if (major)
5492 		current->maj_flt++;
5493 	else
5494 		current->min_flt++;
5495 
5496 	/*
5497 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5498 	 * accounting for the per thread fault counters who triggered the
5499 	 * fault, and we skip the perf event updates.
5500 	 */
5501 	if (!regs)
5502 		return;
5503 
5504 	if (major)
5505 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5506 	else
5507 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5508 }
5509 
5510 #ifdef CONFIG_LRU_GEN
5511 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5512 {
5513 	/* the LRU algorithm only applies to accesses with recency */
5514 	current->in_lru_fault = vma_has_recency(vma);
5515 }
5516 
5517 static void lru_gen_exit_fault(void)
5518 {
5519 	current->in_lru_fault = false;
5520 }
5521 #else
5522 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5523 {
5524 }
5525 
5526 static void lru_gen_exit_fault(void)
5527 {
5528 }
5529 #endif /* CONFIG_LRU_GEN */
5530 
5531 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5532 				       unsigned int *flags)
5533 {
5534 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5535 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5536 			return VM_FAULT_SIGSEGV;
5537 		/*
5538 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5539 		 * just treat it like an ordinary read-fault otherwise.
5540 		 */
5541 		if (!is_cow_mapping(vma->vm_flags))
5542 			*flags &= ~FAULT_FLAG_UNSHARE;
5543 	} else if (*flags & FAULT_FLAG_WRITE) {
5544 		/* Write faults on read-only mappings are impossible ... */
5545 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5546 			return VM_FAULT_SIGSEGV;
5547 		/* ... and FOLL_FORCE only applies to COW mappings. */
5548 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5549 				 !is_cow_mapping(vma->vm_flags)))
5550 			return VM_FAULT_SIGSEGV;
5551 	}
5552 #ifdef CONFIG_PER_VMA_LOCK
5553 	/*
5554 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5555 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
5556 	 */
5557 	if (WARN_ON_ONCE((*flags &
5558 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5559 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5560 		return VM_FAULT_SIGSEGV;
5561 #endif
5562 
5563 	return 0;
5564 }
5565 
5566 /*
5567  * By the time we get here, we already hold the mm semaphore
5568  *
5569  * The mmap_lock may have been released depending on flags and our
5570  * return value.  See filemap_fault() and __folio_lock_or_retry().
5571  */
5572 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5573 			   unsigned int flags, struct pt_regs *regs)
5574 {
5575 	/* If the fault handler drops the mmap_lock, vma may be freed */
5576 	struct mm_struct *mm = vma->vm_mm;
5577 	vm_fault_t ret;
5578 
5579 	__set_current_state(TASK_RUNNING);
5580 
5581 	ret = sanitize_fault_flags(vma, &flags);
5582 	if (ret)
5583 		goto out;
5584 
5585 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5586 					    flags & FAULT_FLAG_INSTRUCTION,
5587 					    flags & FAULT_FLAG_REMOTE)) {
5588 		ret = VM_FAULT_SIGSEGV;
5589 		goto out;
5590 	}
5591 
5592 	/*
5593 	 * Enable the memcg OOM handling for faults triggered in user
5594 	 * space.  Kernel faults are handled more gracefully.
5595 	 */
5596 	if (flags & FAULT_FLAG_USER)
5597 		mem_cgroup_enter_user_fault();
5598 
5599 	lru_gen_enter_fault(vma);
5600 
5601 	if (unlikely(is_vm_hugetlb_page(vma)))
5602 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5603 	else
5604 		ret = __handle_mm_fault(vma, address, flags);
5605 
5606 	lru_gen_exit_fault();
5607 
5608 	if (flags & FAULT_FLAG_USER) {
5609 		mem_cgroup_exit_user_fault();
5610 		/*
5611 		 * The task may have entered a memcg OOM situation but
5612 		 * if the allocation error was handled gracefully (no
5613 		 * VM_FAULT_OOM), there is no need to kill anything.
5614 		 * Just clean up the OOM state peacefully.
5615 		 */
5616 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5617 			mem_cgroup_oom_synchronize(false);
5618 	}
5619 out:
5620 	mm_account_fault(mm, regs, address, flags, ret);
5621 
5622 	return ret;
5623 }
5624 EXPORT_SYMBOL_GPL(handle_mm_fault);
5625 
5626 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5627 #include <linux/extable.h>
5628 
5629 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5630 {
5631 	if (likely(mmap_read_trylock(mm)))
5632 		return true;
5633 
5634 	if (regs && !user_mode(regs)) {
5635 		unsigned long ip = exception_ip(regs);
5636 		if (!search_exception_tables(ip))
5637 			return false;
5638 	}
5639 
5640 	return !mmap_read_lock_killable(mm);
5641 }
5642 
5643 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5644 {
5645 	/*
5646 	 * We don't have this operation yet.
5647 	 *
5648 	 * It should be easy enough to do: it's basically a
5649 	 *    atomic_long_try_cmpxchg_acquire()
5650 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5651 	 * it also needs the proper lockdep magic etc.
5652 	 */
5653 	return false;
5654 }
5655 
5656 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5657 {
5658 	mmap_read_unlock(mm);
5659 	if (regs && !user_mode(regs)) {
5660 		unsigned long ip = exception_ip(regs);
5661 		if (!search_exception_tables(ip))
5662 			return false;
5663 	}
5664 	return !mmap_write_lock_killable(mm);
5665 }
5666 
5667 /*
5668  * Helper for page fault handling.
5669  *
5670  * This is kind of equivalend to "mmap_read_lock()" followed
5671  * by "find_extend_vma()", except it's a lot more careful about
5672  * the locking (and will drop the lock on failure).
5673  *
5674  * For example, if we have a kernel bug that causes a page
5675  * fault, we don't want to just use mmap_read_lock() to get
5676  * the mm lock, because that would deadlock if the bug were
5677  * to happen while we're holding the mm lock for writing.
5678  *
5679  * So this checks the exception tables on kernel faults in
5680  * order to only do this all for instructions that are actually
5681  * expected to fault.
5682  *
5683  * We can also actually take the mm lock for writing if we
5684  * need to extend the vma, which helps the VM layer a lot.
5685  */
5686 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5687 			unsigned long addr, struct pt_regs *regs)
5688 {
5689 	struct vm_area_struct *vma;
5690 
5691 	if (!get_mmap_lock_carefully(mm, regs))
5692 		return NULL;
5693 
5694 	vma = find_vma(mm, addr);
5695 	if (likely(vma && (vma->vm_start <= addr)))
5696 		return vma;
5697 
5698 	/*
5699 	 * Well, dang. We might still be successful, but only
5700 	 * if we can extend a vma to do so.
5701 	 */
5702 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5703 		mmap_read_unlock(mm);
5704 		return NULL;
5705 	}
5706 
5707 	/*
5708 	 * We can try to upgrade the mmap lock atomically,
5709 	 * in which case we can continue to use the vma
5710 	 * we already looked up.
5711 	 *
5712 	 * Otherwise we'll have to drop the mmap lock and
5713 	 * re-take it, and also look up the vma again,
5714 	 * re-checking it.
5715 	 */
5716 	if (!mmap_upgrade_trylock(mm)) {
5717 		if (!upgrade_mmap_lock_carefully(mm, regs))
5718 			return NULL;
5719 
5720 		vma = find_vma(mm, addr);
5721 		if (!vma)
5722 			goto fail;
5723 		if (vma->vm_start <= addr)
5724 			goto success;
5725 		if (!(vma->vm_flags & VM_GROWSDOWN))
5726 			goto fail;
5727 	}
5728 
5729 	if (expand_stack_locked(vma, addr))
5730 		goto fail;
5731 
5732 success:
5733 	mmap_write_downgrade(mm);
5734 	return vma;
5735 
5736 fail:
5737 	mmap_write_unlock(mm);
5738 	return NULL;
5739 }
5740 #endif
5741 
5742 #ifdef CONFIG_PER_VMA_LOCK
5743 /*
5744  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5745  * stable and not isolated. If the VMA is not found or is being modified the
5746  * function returns NULL.
5747  */
5748 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5749 					  unsigned long address)
5750 {
5751 	MA_STATE(mas, &mm->mm_mt, address, address);
5752 	struct vm_area_struct *vma;
5753 
5754 	rcu_read_lock();
5755 retry:
5756 	vma = mas_walk(&mas);
5757 	if (!vma)
5758 		goto inval;
5759 
5760 	if (!vma_start_read(vma))
5761 		goto inval;
5762 
5763 	/*
5764 	 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5765 	 * This check must happen after vma_start_read(); otherwise, a
5766 	 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5767 	 * from its anon_vma.
5768 	 */
5769 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5770 		goto inval_end_read;
5771 
5772 	/* Check since vm_start/vm_end might change before we lock the VMA */
5773 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5774 		goto inval_end_read;
5775 
5776 	/* Check if the VMA got isolated after we found it */
5777 	if (vma->detached) {
5778 		vma_end_read(vma);
5779 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5780 		/* The area was replaced with another one */
5781 		goto retry;
5782 	}
5783 
5784 	rcu_read_unlock();
5785 	return vma;
5786 
5787 inval_end_read:
5788 	vma_end_read(vma);
5789 inval:
5790 	rcu_read_unlock();
5791 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5792 	return NULL;
5793 }
5794 #endif /* CONFIG_PER_VMA_LOCK */
5795 
5796 #ifndef __PAGETABLE_P4D_FOLDED
5797 /*
5798  * Allocate p4d page table.
5799  * We've already handled the fast-path in-line.
5800  */
5801 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5802 {
5803 	p4d_t *new = p4d_alloc_one(mm, address);
5804 	if (!new)
5805 		return -ENOMEM;
5806 
5807 	spin_lock(&mm->page_table_lock);
5808 	if (pgd_present(*pgd)) {	/* Another has populated it */
5809 		p4d_free(mm, new);
5810 	} else {
5811 		smp_wmb(); /* See comment in pmd_install() */
5812 		pgd_populate(mm, pgd, new);
5813 	}
5814 	spin_unlock(&mm->page_table_lock);
5815 	return 0;
5816 }
5817 #endif /* __PAGETABLE_P4D_FOLDED */
5818 
5819 #ifndef __PAGETABLE_PUD_FOLDED
5820 /*
5821  * Allocate page upper directory.
5822  * We've already handled the fast-path in-line.
5823  */
5824 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5825 {
5826 	pud_t *new = pud_alloc_one(mm, address);
5827 	if (!new)
5828 		return -ENOMEM;
5829 
5830 	spin_lock(&mm->page_table_lock);
5831 	if (!p4d_present(*p4d)) {
5832 		mm_inc_nr_puds(mm);
5833 		smp_wmb(); /* See comment in pmd_install() */
5834 		p4d_populate(mm, p4d, new);
5835 	} else	/* Another has populated it */
5836 		pud_free(mm, new);
5837 	spin_unlock(&mm->page_table_lock);
5838 	return 0;
5839 }
5840 #endif /* __PAGETABLE_PUD_FOLDED */
5841 
5842 #ifndef __PAGETABLE_PMD_FOLDED
5843 /*
5844  * Allocate page middle directory.
5845  * We've already handled the fast-path in-line.
5846  */
5847 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5848 {
5849 	spinlock_t *ptl;
5850 	pmd_t *new = pmd_alloc_one(mm, address);
5851 	if (!new)
5852 		return -ENOMEM;
5853 
5854 	ptl = pud_lock(mm, pud);
5855 	if (!pud_present(*pud)) {
5856 		mm_inc_nr_pmds(mm);
5857 		smp_wmb(); /* See comment in pmd_install() */
5858 		pud_populate(mm, pud, new);
5859 	} else {	/* Another has populated it */
5860 		pmd_free(mm, new);
5861 	}
5862 	spin_unlock(ptl);
5863 	return 0;
5864 }
5865 #endif /* __PAGETABLE_PMD_FOLDED */
5866 
5867 /**
5868  * follow_pte - look up PTE at a user virtual address
5869  * @mm: the mm_struct of the target address space
5870  * @address: user virtual address
5871  * @ptepp: location to store found PTE
5872  * @ptlp: location to store the lock for the PTE
5873  *
5874  * On a successful return, the pointer to the PTE is stored in @ptepp;
5875  * the corresponding lock is taken and its location is stored in @ptlp.
5876  * The contents of the PTE are only stable until @ptlp is released;
5877  * any further use, if any, must be protected against invalidation
5878  * with MMU notifiers.
5879  *
5880  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5881  * should be taken for read.
5882  *
5883  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5884  * it is not a good general-purpose API.
5885  *
5886  * Return: zero on success, -ve otherwise.
5887  */
5888 int follow_pte(struct mm_struct *mm, unsigned long address,
5889 	       pte_t **ptepp, spinlock_t **ptlp)
5890 {
5891 	pgd_t *pgd;
5892 	p4d_t *p4d;
5893 	pud_t *pud;
5894 	pmd_t *pmd;
5895 	pte_t *ptep;
5896 
5897 	pgd = pgd_offset(mm, address);
5898 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5899 		goto out;
5900 
5901 	p4d = p4d_offset(pgd, address);
5902 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5903 		goto out;
5904 
5905 	pud = pud_offset(p4d, address);
5906 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5907 		goto out;
5908 
5909 	pmd = pmd_offset(pud, address);
5910 	VM_BUG_ON(pmd_trans_huge(*pmd));
5911 
5912 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5913 	if (!ptep)
5914 		goto out;
5915 	if (!pte_present(ptep_get(ptep)))
5916 		goto unlock;
5917 	*ptepp = ptep;
5918 	return 0;
5919 unlock:
5920 	pte_unmap_unlock(ptep, *ptlp);
5921 out:
5922 	return -EINVAL;
5923 }
5924 EXPORT_SYMBOL_GPL(follow_pte);
5925 
5926 /**
5927  * follow_pfn - look up PFN at a user virtual address
5928  * @vma: memory mapping
5929  * @address: user virtual address
5930  * @pfn: location to store found PFN
5931  *
5932  * Only IO mappings and raw PFN mappings are allowed.
5933  *
5934  * This function does not allow the caller to read the permissions
5935  * of the PTE.  Do not use it.
5936  *
5937  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5938  */
5939 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5940 	unsigned long *pfn)
5941 {
5942 	int ret = -EINVAL;
5943 	spinlock_t *ptl;
5944 	pte_t *ptep;
5945 
5946 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5947 		return ret;
5948 
5949 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5950 	if (ret)
5951 		return ret;
5952 	*pfn = pte_pfn(ptep_get(ptep));
5953 	pte_unmap_unlock(ptep, ptl);
5954 	return 0;
5955 }
5956 EXPORT_SYMBOL(follow_pfn);
5957 
5958 #ifdef CONFIG_HAVE_IOREMAP_PROT
5959 int follow_phys(struct vm_area_struct *vma,
5960 		unsigned long address, unsigned int flags,
5961 		unsigned long *prot, resource_size_t *phys)
5962 {
5963 	int ret = -EINVAL;
5964 	pte_t *ptep, pte;
5965 	spinlock_t *ptl;
5966 
5967 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5968 		goto out;
5969 
5970 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5971 		goto out;
5972 	pte = ptep_get(ptep);
5973 
5974 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5975 		goto unlock;
5976 
5977 	*prot = pgprot_val(pte_pgprot(pte));
5978 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5979 
5980 	ret = 0;
5981 unlock:
5982 	pte_unmap_unlock(ptep, ptl);
5983 out:
5984 	return ret;
5985 }
5986 
5987 /**
5988  * generic_access_phys - generic implementation for iomem mmap access
5989  * @vma: the vma to access
5990  * @addr: userspace address, not relative offset within @vma
5991  * @buf: buffer to read/write
5992  * @len: length of transfer
5993  * @write: set to FOLL_WRITE when writing, otherwise reading
5994  *
5995  * This is a generic implementation for &vm_operations_struct.access for an
5996  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5997  * not page based.
5998  */
5999 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6000 			void *buf, int len, int write)
6001 {
6002 	resource_size_t phys_addr;
6003 	unsigned long prot = 0;
6004 	void __iomem *maddr;
6005 	pte_t *ptep, pte;
6006 	spinlock_t *ptl;
6007 	int offset = offset_in_page(addr);
6008 	int ret = -EINVAL;
6009 
6010 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6011 		return -EINVAL;
6012 
6013 retry:
6014 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
6015 		return -EINVAL;
6016 	pte = ptep_get(ptep);
6017 	pte_unmap_unlock(ptep, ptl);
6018 
6019 	prot = pgprot_val(pte_pgprot(pte));
6020 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
6021 
6022 	if ((write & FOLL_WRITE) && !pte_write(pte))
6023 		return -EINVAL;
6024 
6025 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6026 	if (!maddr)
6027 		return -ENOMEM;
6028 
6029 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
6030 		goto out_unmap;
6031 
6032 	if (!pte_same(pte, ptep_get(ptep))) {
6033 		pte_unmap_unlock(ptep, ptl);
6034 		iounmap(maddr);
6035 
6036 		goto retry;
6037 	}
6038 
6039 	if (write)
6040 		memcpy_toio(maddr + offset, buf, len);
6041 	else
6042 		memcpy_fromio(buf, maddr + offset, len);
6043 	ret = len;
6044 	pte_unmap_unlock(ptep, ptl);
6045 out_unmap:
6046 	iounmap(maddr);
6047 
6048 	return ret;
6049 }
6050 EXPORT_SYMBOL_GPL(generic_access_phys);
6051 #endif
6052 
6053 /*
6054  * Access another process' address space as given in mm.
6055  */
6056 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6057 			      void *buf, int len, unsigned int gup_flags)
6058 {
6059 	void *old_buf = buf;
6060 	int write = gup_flags & FOLL_WRITE;
6061 
6062 	if (mmap_read_lock_killable(mm))
6063 		return 0;
6064 
6065 	/* Untag the address before looking up the VMA */
6066 	addr = untagged_addr_remote(mm, addr);
6067 
6068 	/* Avoid triggering the temporary warning in __get_user_pages */
6069 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6070 		return 0;
6071 
6072 	/* ignore errors, just check how much was successfully transferred */
6073 	while (len) {
6074 		int bytes, offset;
6075 		void *maddr;
6076 		struct vm_area_struct *vma = NULL;
6077 		struct page *page = get_user_page_vma_remote(mm, addr,
6078 							     gup_flags, &vma);
6079 
6080 		if (IS_ERR(page)) {
6081 			/* We might need to expand the stack to access it */
6082 			vma = vma_lookup(mm, addr);
6083 			if (!vma) {
6084 				vma = expand_stack(mm, addr);
6085 
6086 				/* mmap_lock was dropped on failure */
6087 				if (!vma)
6088 					return buf - old_buf;
6089 
6090 				/* Try again if stack expansion worked */
6091 				continue;
6092 			}
6093 
6094 			/*
6095 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6096 			 * we can access using slightly different code.
6097 			 */
6098 			bytes = 0;
6099 #ifdef CONFIG_HAVE_IOREMAP_PROT
6100 			if (vma->vm_ops && vma->vm_ops->access)
6101 				bytes = vma->vm_ops->access(vma, addr, buf,
6102 							    len, write);
6103 #endif
6104 			if (bytes <= 0)
6105 				break;
6106 		} else {
6107 			bytes = len;
6108 			offset = addr & (PAGE_SIZE-1);
6109 			if (bytes > PAGE_SIZE-offset)
6110 				bytes = PAGE_SIZE-offset;
6111 
6112 			maddr = kmap_local_page(page);
6113 			if (write) {
6114 				copy_to_user_page(vma, page, addr,
6115 						  maddr + offset, buf, bytes);
6116 				set_page_dirty_lock(page);
6117 			} else {
6118 				copy_from_user_page(vma, page, addr,
6119 						    buf, maddr + offset, bytes);
6120 			}
6121 			unmap_and_put_page(page, maddr);
6122 		}
6123 		len -= bytes;
6124 		buf += bytes;
6125 		addr += bytes;
6126 	}
6127 	mmap_read_unlock(mm);
6128 
6129 	return buf - old_buf;
6130 }
6131 
6132 /**
6133  * access_remote_vm - access another process' address space
6134  * @mm:		the mm_struct of the target address space
6135  * @addr:	start address to access
6136  * @buf:	source or destination buffer
6137  * @len:	number of bytes to transfer
6138  * @gup_flags:	flags modifying lookup behaviour
6139  *
6140  * The caller must hold a reference on @mm.
6141  *
6142  * Return: number of bytes copied from source to destination.
6143  */
6144 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6145 		void *buf, int len, unsigned int gup_flags)
6146 {
6147 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6148 }
6149 
6150 /*
6151  * Access another process' address space.
6152  * Source/target buffer must be kernel space,
6153  * Do not walk the page table directly, use get_user_pages
6154  */
6155 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6156 		void *buf, int len, unsigned int gup_flags)
6157 {
6158 	struct mm_struct *mm;
6159 	int ret;
6160 
6161 	mm = get_task_mm(tsk);
6162 	if (!mm)
6163 		return 0;
6164 
6165 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6166 
6167 	mmput(mm);
6168 
6169 	return ret;
6170 }
6171 EXPORT_SYMBOL_GPL(access_process_vm);
6172 
6173 /*
6174  * Print the name of a VMA.
6175  */
6176 void print_vma_addr(char *prefix, unsigned long ip)
6177 {
6178 	struct mm_struct *mm = current->mm;
6179 	struct vm_area_struct *vma;
6180 
6181 	/*
6182 	 * we might be running from an atomic context so we cannot sleep
6183 	 */
6184 	if (!mmap_read_trylock(mm))
6185 		return;
6186 
6187 	vma = find_vma(mm, ip);
6188 	if (vma && vma->vm_file) {
6189 		struct file *f = vma->vm_file;
6190 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
6191 		if (buf) {
6192 			char *p;
6193 
6194 			p = file_path(f, buf, PAGE_SIZE);
6195 			if (IS_ERR(p))
6196 				p = "?";
6197 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
6198 					vma->vm_start,
6199 					vma->vm_end - vma->vm_start);
6200 			free_page((unsigned long)buf);
6201 		}
6202 	}
6203 	mmap_read_unlock(mm);
6204 }
6205 
6206 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6207 void __might_fault(const char *file, int line)
6208 {
6209 	if (pagefault_disabled())
6210 		return;
6211 	__might_sleep(file, line);
6212 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6213 	if (current->mm)
6214 		might_lock_read(&current->mm->mmap_lock);
6215 #endif
6216 }
6217 EXPORT_SYMBOL(__might_fault);
6218 #endif
6219 
6220 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6221 /*
6222  * Process all subpages of the specified huge page with the specified
6223  * operation.  The target subpage will be processed last to keep its
6224  * cache lines hot.
6225  */
6226 static inline int process_huge_page(
6227 	unsigned long addr_hint, unsigned int pages_per_huge_page,
6228 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
6229 	void *arg)
6230 {
6231 	int i, n, base, l, ret;
6232 	unsigned long addr = addr_hint &
6233 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6234 
6235 	/* Process target subpage last to keep its cache lines hot */
6236 	might_sleep();
6237 	n = (addr_hint - addr) / PAGE_SIZE;
6238 	if (2 * n <= pages_per_huge_page) {
6239 		/* If target subpage in first half of huge page */
6240 		base = 0;
6241 		l = n;
6242 		/* Process subpages at the end of huge page */
6243 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
6244 			cond_resched();
6245 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6246 			if (ret)
6247 				return ret;
6248 		}
6249 	} else {
6250 		/* If target subpage in second half of huge page */
6251 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
6252 		l = pages_per_huge_page - n;
6253 		/* Process subpages at the begin of huge page */
6254 		for (i = 0; i < base; i++) {
6255 			cond_resched();
6256 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6257 			if (ret)
6258 				return ret;
6259 		}
6260 	}
6261 	/*
6262 	 * Process remaining subpages in left-right-left-right pattern
6263 	 * towards the target subpage
6264 	 */
6265 	for (i = 0; i < l; i++) {
6266 		int left_idx = base + i;
6267 		int right_idx = base + 2 * l - 1 - i;
6268 
6269 		cond_resched();
6270 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6271 		if (ret)
6272 			return ret;
6273 		cond_resched();
6274 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6275 		if (ret)
6276 			return ret;
6277 	}
6278 	return 0;
6279 }
6280 
6281 static void clear_gigantic_page(struct page *page,
6282 				unsigned long addr,
6283 				unsigned int pages_per_huge_page)
6284 {
6285 	int i;
6286 	struct page *p;
6287 
6288 	might_sleep();
6289 	for (i = 0; i < pages_per_huge_page; i++) {
6290 		p = nth_page(page, i);
6291 		cond_resched();
6292 		clear_user_highpage(p, addr + i * PAGE_SIZE);
6293 	}
6294 }
6295 
6296 static int clear_subpage(unsigned long addr, int idx, void *arg)
6297 {
6298 	struct page *page = arg;
6299 
6300 	clear_user_highpage(nth_page(page, idx), addr);
6301 	return 0;
6302 }
6303 
6304 void clear_huge_page(struct page *page,
6305 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
6306 {
6307 	unsigned long addr = addr_hint &
6308 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6309 
6310 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6311 		clear_gigantic_page(page, addr, pages_per_huge_page);
6312 		return;
6313 	}
6314 
6315 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6316 }
6317 
6318 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6319 				     unsigned long addr,
6320 				     struct vm_area_struct *vma,
6321 				     unsigned int pages_per_huge_page)
6322 {
6323 	int i;
6324 	struct page *dst_page;
6325 	struct page *src_page;
6326 
6327 	for (i = 0; i < pages_per_huge_page; i++) {
6328 		dst_page = folio_page(dst, i);
6329 		src_page = folio_page(src, i);
6330 
6331 		cond_resched();
6332 		if (copy_mc_user_highpage(dst_page, src_page,
6333 					  addr + i*PAGE_SIZE, vma)) {
6334 			memory_failure_queue(page_to_pfn(src_page), 0);
6335 			return -EHWPOISON;
6336 		}
6337 	}
6338 	return 0;
6339 }
6340 
6341 struct copy_subpage_arg {
6342 	struct page *dst;
6343 	struct page *src;
6344 	struct vm_area_struct *vma;
6345 };
6346 
6347 static int copy_subpage(unsigned long addr, int idx, void *arg)
6348 {
6349 	struct copy_subpage_arg *copy_arg = arg;
6350 	struct page *dst = nth_page(copy_arg->dst, idx);
6351 	struct page *src = nth_page(copy_arg->src, idx);
6352 
6353 	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) {
6354 		memory_failure_queue(page_to_pfn(src), 0);
6355 		return -EHWPOISON;
6356 	}
6357 	return 0;
6358 }
6359 
6360 int copy_user_large_folio(struct folio *dst, struct folio *src,
6361 			  unsigned long addr_hint, struct vm_area_struct *vma)
6362 {
6363 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6364 	unsigned long addr = addr_hint &
6365 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6366 	struct copy_subpage_arg arg = {
6367 		.dst = &dst->page,
6368 		.src = &src->page,
6369 		.vma = vma,
6370 	};
6371 
6372 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6373 		return copy_user_gigantic_page(dst, src, addr, vma,
6374 					       pages_per_huge_page);
6375 
6376 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6377 }
6378 
6379 long copy_folio_from_user(struct folio *dst_folio,
6380 			   const void __user *usr_src,
6381 			   bool allow_pagefault)
6382 {
6383 	void *kaddr;
6384 	unsigned long i, rc = 0;
6385 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6386 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6387 	struct page *subpage;
6388 
6389 	for (i = 0; i < nr_pages; i++) {
6390 		subpage = folio_page(dst_folio, i);
6391 		kaddr = kmap_local_page(subpage);
6392 		if (!allow_pagefault)
6393 			pagefault_disable();
6394 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6395 		if (!allow_pagefault)
6396 			pagefault_enable();
6397 		kunmap_local(kaddr);
6398 
6399 		ret_val -= (PAGE_SIZE - rc);
6400 		if (rc)
6401 			break;
6402 
6403 		flush_dcache_page(subpage);
6404 
6405 		cond_resched();
6406 	}
6407 	return ret_val;
6408 }
6409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6410 
6411 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6412 
6413 static struct kmem_cache *page_ptl_cachep;
6414 
6415 void __init ptlock_cache_init(void)
6416 {
6417 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6418 			SLAB_PANIC, NULL);
6419 }
6420 
6421 bool ptlock_alloc(struct ptdesc *ptdesc)
6422 {
6423 	spinlock_t *ptl;
6424 
6425 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6426 	if (!ptl)
6427 		return false;
6428 	ptdesc->ptl = ptl;
6429 	return true;
6430 }
6431 
6432 void ptlock_free(struct ptdesc *ptdesc)
6433 {
6434 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6435 }
6436 #endif
6437