1 2 // SPDX-License-Identifier: GPL-2.0-only 3 /* 4 * linux/mm/memory.c 5 * 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 */ 8 9 /* 10 * demand-loading started 01.12.91 - seems it is high on the list of 11 * things wanted, and it should be easy to implement. - Linus 12 */ 13 14 /* 15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 16 * pages started 02.12.91, seems to work. - Linus. 17 * 18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 19 * would have taken more than the 6M I have free, but it worked well as 20 * far as I could see. 21 * 22 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 23 */ 24 25 /* 26 * Real VM (paging to/from disk) started 18.12.91. Much more work and 27 * thought has to go into this. Oh, well.. 28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 29 * Found it. Everything seems to work now. 30 * 20.12.91 - Ok, making the swap-device changeable like the root. 31 */ 32 33 /* 34 * 05.04.94 - Multi-page memory management added for v1.1. 35 * Idea by Alex Bligh (alex@cconcepts.co.uk) 36 * 37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 38 * (Gerhard.Wichert@pdb.siemens.de) 39 * 40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 41 */ 42 43 #include <linux/kernel_stat.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/sched/mm.h> 47 #include <linux/sched/coredump.h> 48 #include <linux/sched/numa_balancing.h> 49 #include <linux/sched/task.h> 50 #include <linux/hugetlb.h> 51 #include <linux/mman.h> 52 #include <linux/swap.h> 53 #include <linux/highmem.h> 54 #include <linux/pagemap.h> 55 #include <linux/memremap.h> 56 #include <linux/kmsan.h> 57 #include <linux/ksm.h> 58 #include <linux/rmap.h> 59 #include <linux/export.h> 60 #include <linux/delayacct.h> 61 #include <linux/init.h> 62 #include <linux/pfn_t.h> 63 #include <linux/writeback.h> 64 #include <linux/memcontrol.h> 65 #include <linux/mmu_notifier.h> 66 #include <linux/swapops.h> 67 #include <linux/elf.h> 68 #include <linux/gfp.h> 69 #include <linux/migrate.h> 70 #include <linux/string.h> 71 #include <linux/memory-tiers.h> 72 #include <linux/debugfs.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/dax.h> 75 #include <linux/oom.h> 76 #include <linux/numa.h> 77 #include <linux/perf_event.h> 78 #include <linux/ptrace.h> 79 #include <linux/vmalloc.h> 80 #include <linux/sched/sysctl.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/pgalloc.h> 87 #include <linux/uaccess.h> 88 #include <asm/tlb.h> 89 #include <asm/tlbflush.h> 90 91 #include "pgalloc-track.h" 92 #include "internal.h" 93 #include "swap.h" 94 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 97 #endif 98 99 #ifndef CONFIG_NUMA 100 unsigned long max_mapnr; 101 EXPORT_SYMBOL(max_mapnr); 102 103 struct page *mem_map; 104 EXPORT_SYMBOL(mem_map); 105 #endif 106 107 static vm_fault_t do_fault(struct vm_fault *vmf); 108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 109 static bool vmf_pte_changed(struct vm_fault *vmf); 110 111 /* 112 * Return true if the original pte was a uffd-wp pte marker (so the pte was 113 * wr-protected). 114 */ 115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 116 { 117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 118 return false; 119 120 return pte_marker_uffd_wp(vmf->orig_pte); 121 } 122 123 /* 124 * A number of key systems in x86 including ioremap() rely on the assumption 125 * that high_memory defines the upper bound on direct map memory, then end 126 * of ZONE_NORMAL. 127 */ 128 void *high_memory; 129 EXPORT_SYMBOL(high_memory); 130 131 /* 132 * Randomize the address space (stacks, mmaps, brk, etc.). 133 * 134 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 135 * as ancient (libc5 based) binaries can segfault. ) 136 */ 137 int randomize_va_space __read_mostly = 138 #ifdef CONFIG_COMPAT_BRK 139 1; 140 #else 141 2; 142 #endif 143 144 #ifndef arch_wants_old_prefaulted_pte 145 static inline bool arch_wants_old_prefaulted_pte(void) 146 { 147 /* 148 * Transitioning a PTE from 'old' to 'young' can be expensive on 149 * some architectures, even if it's performed in hardware. By 150 * default, "false" means prefaulted entries will be 'young'. 151 */ 152 return false; 153 } 154 #endif 155 156 static int __init disable_randmaps(char *s) 157 { 158 randomize_va_space = 0; 159 return 1; 160 } 161 __setup("norandmaps", disable_randmaps); 162 163 unsigned long zero_pfn __read_mostly; 164 EXPORT_SYMBOL(zero_pfn); 165 166 unsigned long highest_memmap_pfn __read_mostly; 167 168 /* 169 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 170 */ 171 static int __init init_zero_pfn(void) 172 { 173 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 174 return 0; 175 } 176 early_initcall(init_zero_pfn); 177 178 void mm_trace_rss_stat(struct mm_struct *mm, int member) 179 { 180 trace_rss_stat(mm, member); 181 } 182 183 /* 184 * Note: this doesn't free the actual pages themselves. That 185 * has been handled earlier when unmapping all the memory regions. 186 */ 187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 188 unsigned long addr) 189 { 190 pgtable_t token = pmd_pgtable(*pmd); 191 pmd_clear(pmd); 192 pte_free_tlb(tlb, token, addr); 193 mm_dec_nr_ptes(tlb->mm); 194 } 195 196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 197 unsigned long addr, unsigned long end, 198 unsigned long floor, unsigned long ceiling) 199 { 200 pmd_t *pmd; 201 unsigned long next; 202 unsigned long start; 203 204 start = addr; 205 pmd = pmd_offset(pud, addr); 206 do { 207 next = pmd_addr_end(addr, end); 208 if (pmd_none_or_clear_bad(pmd)) 209 continue; 210 free_pte_range(tlb, pmd, addr); 211 } while (pmd++, addr = next, addr != end); 212 213 start &= PUD_MASK; 214 if (start < floor) 215 return; 216 if (ceiling) { 217 ceiling &= PUD_MASK; 218 if (!ceiling) 219 return; 220 } 221 if (end - 1 > ceiling - 1) 222 return; 223 224 pmd = pmd_offset(pud, start); 225 pud_clear(pud); 226 pmd_free_tlb(tlb, pmd, start); 227 mm_dec_nr_pmds(tlb->mm); 228 } 229 230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 231 unsigned long addr, unsigned long end, 232 unsigned long floor, unsigned long ceiling) 233 { 234 pud_t *pud; 235 unsigned long next; 236 unsigned long start; 237 238 start = addr; 239 pud = pud_offset(p4d, addr); 240 do { 241 next = pud_addr_end(addr, end); 242 if (pud_none_or_clear_bad(pud)) 243 continue; 244 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 245 } while (pud++, addr = next, addr != end); 246 247 start &= P4D_MASK; 248 if (start < floor) 249 return; 250 if (ceiling) { 251 ceiling &= P4D_MASK; 252 if (!ceiling) 253 return; 254 } 255 if (end - 1 > ceiling - 1) 256 return; 257 258 pud = pud_offset(p4d, start); 259 p4d_clear(p4d); 260 pud_free_tlb(tlb, pud, start); 261 mm_dec_nr_puds(tlb->mm); 262 } 263 264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 265 unsigned long addr, unsigned long end, 266 unsigned long floor, unsigned long ceiling) 267 { 268 p4d_t *p4d; 269 unsigned long next; 270 unsigned long start; 271 272 start = addr; 273 p4d = p4d_offset(pgd, addr); 274 do { 275 next = p4d_addr_end(addr, end); 276 if (p4d_none_or_clear_bad(p4d)) 277 continue; 278 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 279 } while (p4d++, addr = next, addr != end); 280 281 start &= PGDIR_MASK; 282 if (start < floor) 283 return; 284 if (ceiling) { 285 ceiling &= PGDIR_MASK; 286 if (!ceiling) 287 return; 288 } 289 if (end - 1 > ceiling - 1) 290 return; 291 292 p4d = p4d_offset(pgd, start); 293 pgd_clear(pgd); 294 p4d_free_tlb(tlb, p4d, start); 295 } 296 297 /* 298 * This function frees user-level page tables of a process. 299 */ 300 void free_pgd_range(struct mmu_gather *tlb, 301 unsigned long addr, unsigned long end, 302 unsigned long floor, unsigned long ceiling) 303 { 304 pgd_t *pgd; 305 unsigned long next; 306 307 /* 308 * The next few lines have given us lots of grief... 309 * 310 * Why are we testing PMD* at this top level? Because often 311 * there will be no work to do at all, and we'd prefer not to 312 * go all the way down to the bottom just to discover that. 313 * 314 * Why all these "- 1"s? Because 0 represents both the bottom 315 * of the address space and the top of it (using -1 for the 316 * top wouldn't help much: the masks would do the wrong thing). 317 * The rule is that addr 0 and floor 0 refer to the bottom of 318 * the address space, but end 0 and ceiling 0 refer to the top 319 * Comparisons need to use "end - 1" and "ceiling - 1" (though 320 * that end 0 case should be mythical). 321 * 322 * Wherever addr is brought up or ceiling brought down, we must 323 * be careful to reject "the opposite 0" before it confuses the 324 * subsequent tests. But what about where end is brought down 325 * by PMD_SIZE below? no, end can't go down to 0 there. 326 * 327 * Whereas we round start (addr) and ceiling down, by different 328 * masks at different levels, in order to test whether a table 329 * now has no other vmas using it, so can be freed, we don't 330 * bother to round floor or end up - the tests don't need that. 331 */ 332 333 addr &= PMD_MASK; 334 if (addr < floor) { 335 addr += PMD_SIZE; 336 if (!addr) 337 return; 338 } 339 if (ceiling) { 340 ceiling &= PMD_MASK; 341 if (!ceiling) 342 return; 343 } 344 if (end - 1 > ceiling - 1) 345 end -= PMD_SIZE; 346 if (addr > end - 1) 347 return; 348 /* 349 * We add page table cache pages with PAGE_SIZE, 350 * (see pte_free_tlb()), flush the tlb if we need 351 */ 352 tlb_change_page_size(tlb, PAGE_SIZE); 353 pgd = pgd_offset(tlb->mm, addr); 354 do { 355 next = pgd_addr_end(addr, end); 356 if (pgd_none_or_clear_bad(pgd)) 357 continue; 358 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 359 } while (pgd++, addr = next, addr != end); 360 } 361 362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 363 struct vm_area_struct *vma, unsigned long floor, 364 unsigned long ceiling, bool mm_wr_locked) 365 { 366 do { 367 unsigned long addr = vma->vm_start; 368 struct vm_area_struct *next; 369 370 /* 371 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 372 * be 0. This will underflow and is okay. 373 */ 374 next = mas_find(mas, ceiling - 1); 375 if (unlikely(xa_is_zero(next))) 376 next = NULL; 377 378 /* 379 * Hide vma from rmap and truncate_pagecache before freeing 380 * pgtables 381 */ 382 if (mm_wr_locked) 383 vma_start_write(vma); 384 unlink_anon_vmas(vma); 385 unlink_file_vma(vma); 386 387 if (is_vm_hugetlb_page(vma)) { 388 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 389 floor, next ? next->vm_start : ceiling); 390 } else { 391 /* 392 * Optimization: gather nearby vmas into one call down 393 */ 394 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 395 && !is_vm_hugetlb_page(next)) { 396 vma = next; 397 next = mas_find(mas, ceiling - 1); 398 if (unlikely(xa_is_zero(next))) 399 next = NULL; 400 if (mm_wr_locked) 401 vma_start_write(vma); 402 unlink_anon_vmas(vma); 403 unlink_file_vma(vma); 404 } 405 free_pgd_range(tlb, addr, vma->vm_end, 406 floor, next ? next->vm_start : ceiling); 407 } 408 vma = next; 409 } while (vma); 410 } 411 412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 413 { 414 spinlock_t *ptl = pmd_lock(mm, pmd); 415 416 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 417 mm_inc_nr_ptes(mm); 418 /* 419 * Ensure all pte setup (eg. pte page lock and page clearing) are 420 * visible before the pte is made visible to other CPUs by being 421 * put into page tables. 422 * 423 * The other side of the story is the pointer chasing in the page 424 * table walking code (when walking the page table without locking; 425 * ie. most of the time). Fortunately, these data accesses consist 426 * of a chain of data-dependent loads, meaning most CPUs (alpha 427 * being the notable exception) will already guarantee loads are 428 * seen in-order. See the alpha page table accessors for the 429 * smp_rmb() barriers in page table walking code. 430 */ 431 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 432 pmd_populate(mm, pmd, *pte); 433 *pte = NULL; 434 } 435 spin_unlock(ptl); 436 } 437 438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 439 { 440 pgtable_t new = pte_alloc_one(mm); 441 if (!new) 442 return -ENOMEM; 443 444 pmd_install(mm, pmd, &new); 445 if (new) 446 pte_free(mm, new); 447 return 0; 448 } 449 450 int __pte_alloc_kernel(pmd_t *pmd) 451 { 452 pte_t *new = pte_alloc_one_kernel(&init_mm); 453 if (!new) 454 return -ENOMEM; 455 456 spin_lock(&init_mm.page_table_lock); 457 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 458 smp_wmb(); /* See comment in pmd_install() */ 459 pmd_populate_kernel(&init_mm, pmd, new); 460 new = NULL; 461 } 462 spin_unlock(&init_mm.page_table_lock); 463 if (new) 464 pte_free_kernel(&init_mm, new); 465 return 0; 466 } 467 468 static inline void init_rss_vec(int *rss) 469 { 470 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 471 } 472 473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 474 { 475 int i; 476 477 for (i = 0; i < NR_MM_COUNTERS; i++) 478 if (rss[i]) 479 add_mm_counter(mm, i, rss[i]); 480 } 481 482 /* 483 * This function is called to print an error when a bad pte 484 * is found. For example, we might have a PFN-mapped pte in 485 * a region that doesn't allow it. 486 * 487 * The calling function must still handle the error. 488 */ 489 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 490 pte_t pte, struct page *page) 491 { 492 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 493 p4d_t *p4d = p4d_offset(pgd, addr); 494 pud_t *pud = pud_offset(p4d, addr); 495 pmd_t *pmd = pmd_offset(pud, addr); 496 struct address_space *mapping; 497 pgoff_t index; 498 static unsigned long resume; 499 static unsigned long nr_shown; 500 static unsigned long nr_unshown; 501 502 /* 503 * Allow a burst of 60 reports, then keep quiet for that minute; 504 * or allow a steady drip of one report per second. 505 */ 506 if (nr_shown == 60) { 507 if (time_before(jiffies, resume)) { 508 nr_unshown++; 509 return; 510 } 511 if (nr_unshown) { 512 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 513 nr_unshown); 514 nr_unshown = 0; 515 } 516 nr_shown = 0; 517 } 518 if (nr_shown++ == 0) 519 resume = jiffies + 60 * HZ; 520 521 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 522 index = linear_page_index(vma, addr); 523 524 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 525 current->comm, 526 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 527 if (page) 528 dump_page(page, "bad pte"); 529 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 530 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 531 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 532 vma->vm_file, 533 vma->vm_ops ? vma->vm_ops->fault : NULL, 534 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 535 mapping ? mapping->a_ops->read_folio : NULL); 536 dump_stack(); 537 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 538 } 539 540 /* 541 * vm_normal_page -- This function gets the "struct page" associated with a pte. 542 * 543 * "Special" mappings do not wish to be associated with a "struct page" (either 544 * it doesn't exist, or it exists but they don't want to touch it). In this 545 * case, NULL is returned here. "Normal" mappings do have a struct page. 546 * 547 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 548 * pte bit, in which case this function is trivial. Secondly, an architecture 549 * may not have a spare pte bit, which requires a more complicated scheme, 550 * described below. 551 * 552 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 553 * special mapping (even if there are underlying and valid "struct pages"). 554 * COWed pages of a VM_PFNMAP are always normal. 555 * 556 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 557 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 558 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 559 * mapping will always honor the rule 560 * 561 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 562 * 563 * And for normal mappings this is false. 564 * 565 * This restricts such mappings to be a linear translation from virtual address 566 * to pfn. To get around this restriction, we allow arbitrary mappings so long 567 * as the vma is not a COW mapping; in that case, we know that all ptes are 568 * special (because none can have been COWed). 569 * 570 * 571 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 572 * 573 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 574 * page" backing, however the difference is that _all_ pages with a struct 575 * page (that is, those where pfn_valid is true) are refcounted and considered 576 * normal pages by the VM. The disadvantage is that pages are refcounted 577 * (which can be slower and simply not an option for some PFNMAP users). The 578 * advantage is that we don't have to follow the strict linearity rule of 579 * PFNMAP mappings in order to support COWable mappings. 580 * 581 */ 582 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 583 pte_t pte) 584 { 585 unsigned long pfn = pte_pfn(pte); 586 587 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 588 if (likely(!pte_special(pte))) 589 goto check_pfn; 590 if (vma->vm_ops && vma->vm_ops->find_special_page) 591 return vma->vm_ops->find_special_page(vma, addr); 592 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 593 return NULL; 594 if (is_zero_pfn(pfn)) 595 return NULL; 596 if (pte_devmap(pte)) 597 /* 598 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 599 * and will have refcounts incremented on their struct pages 600 * when they are inserted into PTEs, thus they are safe to 601 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 602 * do not have refcounts. Example of legacy ZONE_DEVICE is 603 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 604 */ 605 return NULL; 606 607 print_bad_pte(vma, addr, pte, NULL); 608 return NULL; 609 } 610 611 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 612 613 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 614 if (vma->vm_flags & VM_MIXEDMAP) { 615 if (!pfn_valid(pfn)) 616 return NULL; 617 goto out; 618 } else { 619 unsigned long off; 620 off = (addr - vma->vm_start) >> PAGE_SHIFT; 621 if (pfn == vma->vm_pgoff + off) 622 return NULL; 623 if (!is_cow_mapping(vma->vm_flags)) 624 return NULL; 625 } 626 } 627 628 if (is_zero_pfn(pfn)) 629 return NULL; 630 631 check_pfn: 632 if (unlikely(pfn > highest_memmap_pfn)) { 633 print_bad_pte(vma, addr, pte, NULL); 634 return NULL; 635 } 636 637 /* 638 * NOTE! We still have PageReserved() pages in the page tables. 639 * eg. VDSO mappings can cause them to exist. 640 */ 641 out: 642 return pfn_to_page(pfn); 643 } 644 645 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 646 pte_t pte) 647 { 648 struct page *page = vm_normal_page(vma, addr, pte); 649 650 if (page) 651 return page_folio(page); 652 return NULL; 653 } 654 655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 656 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 657 pmd_t pmd) 658 { 659 unsigned long pfn = pmd_pfn(pmd); 660 661 /* 662 * There is no pmd_special() but there may be special pmds, e.g. 663 * in a direct-access (dax) mapping, so let's just replicate the 664 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 665 */ 666 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 667 if (vma->vm_flags & VM_MIXEDMAP) { 668 if (!pfn_valid(pfn)) 669 return NULL; 670 goto out; 671 } else { 672 unsigned long off; 673 off = (addr - vma->vm_start) >> PAGE_SHIFT; 674 if (pfn == vma->vm_pgoff + off) 675 return NULL; 676 if (!is_cow_mapping(vma->vm_flags)) 677 return NULL; 678 } 679 } 680 681 if (pmd_devmap(pmd)) 682 return NULL; 683 if (is_huge_zero_pmd(pmd)) 684 return NULL; 685 if (unlikely(pfn > highest_memmap_pfn)) 686 return NULL; 687 688 /* 689 * NOTE! We still have PageReserved() pages in the page tables. 690 * eg. VDSO mappings can cause them to exist. 691 */ 692 out: 693 return pfn_to_page(pfn); 694 } 695 696 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 697 unsigned long addr, pmd_t pmd) 698 { 699 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 700 701 if (page) 702 return page_folio(page); 703 return NULL; 704 } 705 #endif 706 707 static void restore_exclusive_pte(struct vm_area_struct *vma, 708 struct page *page, unsigned long address, 709 pte_t *ptep) 710 { 711 struct folio *folio = page_folio(page); 712 pte_t orig_pte; 713 pte_t pte; 714 swp_entry_t entry; 715 716 orig_pte = ptep_get(ptep); 717 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 718 if (pte_swp_soft_dirty(orig_pte)) 719 pte = pte_mksoft_dirty(pte); 720 721 entry = pte_to_swp_entry(orig_pte); 722 if (pte_swp_uffd_wp(orig_pte)) 723 pte = pte_mkuffd_wp(pte); 724 else if (is_writable_device_exclusive_entry(entry)) 725 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 726 727 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) && 728 PageAnonExclusive(page)), folio); 729 730 /* 731 * No need to take a page reference as one was already 732 * created when the swap entry was made. 733 */ 734 if (folio_test_anon(folio)) 735 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE); 736 else 737 /* 738 * Currently device exclusive access only supports anonymous 739 * memory so the entry shouldn't point to a filebacked page. 740 */ 741 WARN_ON_ONCE(1); 742 743 set_pte_at(vma->vm_mm, address, ptep, pte); 744 745 /* 746 * No need to invalidate - it was non-present before. However 747 * secondary CPUs may have mappings that need invalidating. 748 */ 749 update_mmu_cache(vma, address, ptep); 750 } 751 752 /* 753 * Tries to restore an exclusive pte if the page lock can be acquired without 754 * sleeping. 755 */ 756 static int 757 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 758 unsigned long addr) 759 { 760 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 761 struct page *page = pfn_swap_entry_to_page(entry); 762 763 if (trylock_page(page)) { 764 restore_exclusive_pte(vma, page, addr, src_pte); 765 unlock_page(page); 766 return 0; 767 } 768 769 return -EBUSY; 770 } 771 772 /* 773 * copy one vm_area from one task to the other. Assumes the page tables 774 * already present in the new task to be cleared in the whole range 775 * covered by this vma. 776 */ 777 778 static unsigned long 779 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 780 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 781 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 782 { 783 unsigned long vm_flags = dst_vma->vm_flags; 784 pte_t orig_pte = ptep_get(src_pte); 785 pte_t pte = orig_pte; 786 struct folio *folio; 787 struct page *page; 788 swp_entry_t entry = pte_to_swp_entry(orig_pte); 789 790 if (likely(!non_swap_entry(entry))) { 791 if (swap_duplicate(entry) < 0) 792 return -EIO; 793 794 /* make sure dst_mm is on swapoff's mmlist. */ 795 if (unlikely(list_empty(&dst_mm->mmlist))) { 796 spin_lock(&mmlist_lock); 797 if (list_empty(&dst_mm->mmlist)) 798 list_add(&dst_mm->mmlist, 799 &src_mm->mmlist); 800 spin_unlock(&mmlist_lock); 801 } 802 /* Mark the swap entry as shared. */ 803 if (pte_swp_exclusive(orig_pte)) { 804 pte = pte_swp_clear_exclusive(orig_pte); 805 set_pte_at(src_mm, addr, src_pte, pte); 806 } 807 rss[MM_SWAPENTS]++; 808 } else if (is_migration_entry(entry)) { 809 folio = pfn_swap_entry_folio(entry); 810 811 rss[mm_counter(folio)]++; 812 813 if (!is_readable_migration_entry(entry) && 814 is_cow_mapping(vm_flags)) { 815 /* 816 * COW mappings require pages in both parent and child 817 * to be set to read. A previously exclusive entry is 818 * now shared. 819 */ 820 entry = make_readable_migration_entry( 821 swp_offset(entry)); 822 pte = swp_entry_to_pte(entry); 823 if (pte_swp_soft_dirty(orig_pte)) 824 pte = pte_swp_mksoft_dirty(pte); 825 if (pte_swp_uffd_wp(orig_pte)) 826 pte = pte_swp_mkuffd_wp(pte); 827 set_pte_at(src_mm, addr, src_pte, pte); 828 } 829 } else if (is_device_private_entry(entry)) { 830 page = pfn_swap_entry_to_page(entry); 831 folio = page_folio(page); 832 833 /* 834 * Update rss count even for unaddressable pages, as 835 * they should treated just like normal pages in this 836 * respect. 837 * 838 * We will likely want to have some new rss counters 839 * for unaddressable pages, at some point. But for now 840 * keep things as they are. 841 */ 842 folio_get(folio); 843 rss[mm_counter(folio)]++; 844 /* Cannot fail as these pages cannot get pinned. */ 845 folio_try_dup_anon_rmap_pte(folio, page, src_vma); 846 847 /* 848 * We do not preserve soft-dirty information, because so 849 * far, checkpoint/restore is the only feature that 850 * requires that. And checkpoint/restore does not work 851 * when a device driver is involved (you cannot easily 852 * save and restore device driver state). 853 */ 854 if (is_writable_device_private_entry(entry) && 855 is_cow_mapping(vm_flags)) { 856 entry = make_readable_device_private_entry( 857 swp_offset(entry)); 858 pte = swp_entry_to_pte(entry); 859 if (pte_swp_uffd_wp(orig_pte)) 860 pte = pte_swp_mkuffd_wp(pte); 861 set_pte_at(src_mm, addr, src_pte, pte); 862 } 863 } else if (is_device_exclusive_entry(entry)) { 864 /* 865 * Make device exclusive entries present by restoring the 866 * original entry then copying as for a present pte. Device 867 * exclusive entries currently only support private writable 868 * (ie. COW) mappings. 869 */ 870 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 871 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 872 return -EBUSY; 873 return -ENOENT; 874 } else if (is_pte_marker_entry(entry)) { 875 pte_marker marker = copy_pte_marker(entry, dst_vma); 876 877 if (marker) 878 set_pte_at(dst_mm, addr, dst_pte, 879 make_pte_marker(marker)); 880 return 0; 881 } 882 if (!userfaultfd_wp(dst_vma)) 883 pte = pte_swp_clear_uffd_wp(pte); 884 set_pte_at(dst_mm, addr, dst_pte, pte); 885 return 0; 886 } 887 888 /* 889 * Copy a present and normal page. 890 * 891 * NOTE! The usual case is that this isn't required; 892 * instead, the caller can just increase the page refcount 893 * and re-use the pte the traditional way. 894 * 895 * And if we need a pre-allocated page but don't yet have 896 * one, return a negative error to let the preallocation 897 * code know so that it can do so outside the page table 898 * lock. 899 */ 900 static inline int 901 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 902 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 903 struct folio **prealloc, struct page *page) 904 { 905 struct folio *new_folio; 906 pte_t pte; 907 908 new_folio = *prealloc; 909 if (!new_folio) 910 return -EAGAIN; 911 912 /* 913 * We have a prealloc page, all good! Take it 914 * over and copy the page & arm it. 915 */ 916 *prealloc = NULL; 917 copy_user_highpage(&new_folio->page, page, addr, src_vma); 918 __folio_mark_uptodate(new_folio); 919 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 920 folio_add_lru_vma(new_folio, dst_vma); 921 rss[MM_ANONPAGES]++; 922 923 /* All done, just insert the new page copy in the child */ 924 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 925 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 926 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 927 /* Uffd-wp needs to be delivered to dest pte as well */ 928 pte = pte_mkuffd_wp(pte); 929 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 930 return 0; 931 } 932 933 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 934 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 935 pte_t pte, unsigned long addr, int nr) 936 { 937 struct mm_struct *src_mm = src_vma->vm_mm; 938 939 /* If it's a COW mapping, write protect it both processes. */ 940 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 941 wrprotect_ptes(src_mm, addr, src_pte, nr); 942 pte = pte_wrprotect(pte); 943 } 944 945 /* If it's a shared mapping, mark it clean in the child. */ 946 if (src_vma->vm_flags & VM_SHARED) 947 pte = pte_mkclean(pte); 948 pte = pte_mkold(pte); 949 950 if (!userfaultfd_wp(dst_vma)) 951 pte = pte_clear_uffd_wp(pte); 952 953 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 954 } 955 956 /* 957 * Copy one present PTE, trying to batch-process subsequent PTEs that map 958 * consecutive pages of the same folio by copying them as well. 959 * 960 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 961 * Otherwise, returns the number of copied PTEs (at least 1). 962 */ 963 static inline int 964 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 965 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 966 int max_nr, int *rss, struct folio **prealloc) 967 { 968 struct page *page; 969 struct folio *folio; 970 bool any_writable; 971 fpb_t flags = 0; 972 int err, nr; 973 974 page = vm_normal_page(src_vma, addr, pte); 975 if (unlikely(!page)) 976 goto copy_pte; 977 978 folio = page_folio(page); 979 980 /* 981 * If we likely have to copy, just don't bother with batching. Make 982 * sure that the common "small folio" case is as fast as possible 983 * by keeping the batching logic separate. 984 */ 985 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 986 if (src_vma->vm_flags & VM_SHARED) 987 flags |= FPB_IGNORE_DIRTY; 988 if (!vma_soft_dirty_enabled(src_vma)) 989 flags |= FPB_IGNORE_SOFT_DIRTY; 990 991 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 992 &any_writable); 993 folio_ref_add(folio, nr); 994 if (folio_test_anon(folio)) { 995 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 996 nr, src_vma))) { 997 folio_ref_sub(folio, nr); 998 return -EAGAIN; 999 } 1000 rss[MM_ANONPAGES] += nr; 1001 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1002 } else { 1003 folio_dup_file_rmap_ptes(folio, page, nr); 1004 rss[mm_counter_file(folio)] += nr; 1005 } 1006 if (any_writable) 1007 pte = pte_mkwrite(pte, src_vma); 1008 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1009 addr, nr); 1010 return nr; 1011 } 1012 1013 folio_get(folio); 1014 if (folio_test_anon(folio)) { 1015 /* 1016 * If this page may have been pinned by the parent process, 1017 * copy the page immediately for the child so that we'll always 1018 * guarantee the pinned page won't be randomly replaced in the 1019 * future. 1020 */ 1021 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) { 1022 /* Page may be pinned, we have to copy. */ 1023 folio_put(folio); 1024 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1025 addr, rss, prealloc, page); 1026 return err ? err : 1; 1027 } 1028 rss[MM_ANONPAGES]++; 1029 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1030 } else { 1031 folio_dup_file_rmap_pte(folio, page); 1032 rss[mm_counter_file(folio)]++; 1033 } 1034 1035 copy_pte: 1036 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1037 return 1; 1038 } 1039 1040 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1041 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1042 { 1043 struct folio *new_folio; 1044 1045 if (need_zero) 1046 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1047 else 1048 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 1049 addr, false); 1050 1051 if (!new_folio) 1052 return NULL; 1053 1054 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1055 folio_put(new_folio); 1056 return NULL; 1057 } 1058 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1059 1060 return new_folio; 1061 } 1062 1063 static int 1064 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1065 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1066 unsigned long end) 1067 { 1068 struct mm_struct *dst_mm = dst_vma->vm_mm; 1069 struct mm_struct *src_mm = src_vma->vm_mm; 1070 pte_t *orig_src_pte, *orig_dst_pte; 1071 pte_t *src_pte, *dst_pte; 1072 pte_t ptent; 1073 spinlock_t *src_ptl, *dst_ptl; 1074 int progress, max_nr, ret = 0; 1075 int rss[NR_MM_COUNTERS]; 1076 swp_entry_t entry = (swp_entry_t){0}; 1077 struct folio *prealloc = NULL; 1078 int nr; 1079 1080 again: 1081 progress = 0; 1082 init_rss_vec(rss); 1083 1084 /* 1085 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1086 * error handling here, assume that exclusive mmap_lock on dst and src 1087 * protects anon from unexpected THP transitions; with shmem and file 1088 * protected by mmap_lock-less collapse skipping areas with anon_vma 1089 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1090 * can remove such assumptions later, but this is good enough for now. 1091 */ 1092 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1093 if (!dst_pte) { 1094 ret = -ENOMEM; 1095 goto out; 1096 } 1097 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1098 if (!src_pte) { 1099 pte_unmap_unlock(dst_pte, dst_ptl); 1100 /* ret == 0 */ 1101 goto out; 1102 } 1103 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1104 orig_src_pte = src_pte; 1105 orig_dst_pte = dst_pte; 1106 arch_enter_lazy_mmu_mode(); 1107 1108 do { 1109 nr = 1; 1110 1111 /* 1112 * We are holding two locks at this point - either of them 1113 * could generate latencies in another task on another CPU. 1114 */ 1115 if (progress >= 32) { 1116 progress = 0; 1117 if (need_resched() || 1118 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1119 break; 1120 } 1121 ptent = ptep_get(src_pte); 1122 if (pte_none(ptent)) { 1123 progress++; 1124 continue; 1125 } 1126 if (unlikely(!pte_present(ptent))) { 1127 ret = copy_nonpresent_pte(dst_mm, src_mm, 1128 dst_pte, src_pte, 1129 dst_vma, src_vma, 1130 addr, rss); 1131 if (ret == -EIO) { 1132 entry = pte_to_swp_entry(ptep_get(src_pte)); 1133 break; 1134 } else if (ret == -EBUSY) { 1135 break; 1136 } else if (!ret) { 1137 progress += 8; 1138 continue; 1139 } 1140 ptent = ptep_get(src_pte); 1141 VM_WARN_ON_ONCE(!pte_present(ptent)); 1142 1143 /* 1144 * Device exclusive entry restored, continue by copying 1145 * the now present pte. 1146 */ 1147 WARN_ON_ONCE(ret != -ENOENT); 1148 } 1149 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1150 max_nr = (end - addr) / PAGE_SIZE; 1151 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1152 ptent, addr, max_nr, rss, &prealloc); 1153 /* 1154 * If we need a pre-allocated page for this pte, drop the 1155 * locks, allocate, and try again. 1156 */ 1157 if (unlikely(ret == -EAGAIN)) 1158 break; 1159 if (unlikely(prealloc)) { 1160 /* 1161 * pre-alloc page cannot be reused by next time so as 1162 * to strictly follow mempolicy (e.g., alloc_page_vma() 1163 * will allocate page according to address). This 1164 * could only happen if one pinned pte changed. 1165 */ 1166 folio_put(prealloc); 1167 prealloc = NULL; 1168 } 1169 nr = ret; 1170 progress += 8 * nr; 1171 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1172 addr != end); 1173 1174 arch_leave_lazy_mmu_mode(); 1175 pte_unmap_unlock(orig_src_pte, src_ptl); 1176 add_mm_rss_vec(dst_mm, rss); 1177 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1178 cond_resched(); 1179 1180 if (ret == -EIO) { 1181 VM_WARN_ON_ONCE(!entry.val); 1182 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1183 ret = -ENOMEM; 1184 goto out; 1185 } 1186 entry.val = 0; 1187 } else if (ret == -EBUSY) { 1188 goto out; 1189 } else if (ret == -EAGAIN) { 1190 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1191 if (!prealloc) 1192 return -ENOMEM; 1193 } else if (ret < 0) { 1194 VM_WARN_ON_ONCE(1); 1195 } 1196 1197 /* We've captured and resolved the error. Reset, try again. */ 1198 ret = 0; 1199 1200 if (addr != end) 1201 goto again; 1202 out: 1203 if (unlikely(prealloc)) 1204 folio_put(prealloc); 1205 return ret; 1206 } 1207 1208 static inline int 1209 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1210 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1211 unsigned long end) 1212 { 1213 struct mm_struct *dst_mm = dst_vma->vm_mm; 1214 struct mm_struct *src_mm = src_vma->vm_mm; 1215 pmd_t *src_pmd, *dst_pmd; 1216 unsigned long next; 1217 1218 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1219 if (!dst_pmd) 1220 return -ENOMEM; 1221 src_pmd = pmd_offset(src_pud, addr); 1222 do { 1223 next = pmd_addr_end(addr, end); 1224 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1225 || pmd_devmap(*src_pmd)) { 1226 int err; 1227 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1228 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1229 addr, dst_vma, src_vma); 1230 if (err == -ENOMEM) 1231 return -ENOMEM; 1232 if (!err) 1233 continue; 1234 /* fall through */ 1235 } 1236 if (pmd_none_or_clear_bad(src_pmd)) 1237 continue; 1238 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1239 addr, next)) 1240 return -ENOMEM; 1241 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1242 return 0; 1243 } 1244 1245 static inline int 1246 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1247 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1248 unsigned long end) 1249 { 1250 struct mm_struct *dst_mm = dst_vma->vm_mm; 1251 struct mm_struct *src_mm = src_vma->vm_mm; 1252 pud_t *src_pud, *dst_pud; 1253 unsigned long next; 1254 1255 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1256 if (!dst_pud) 1257 return -ENOMEM; 1258 src_pud = pud_offset(src_p4d, addr); 1259 do { 1260 next = pud_addr_end(addr, end); 1261 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1262 int err; 1263 1264 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1265 err = copy_huge_pud(dst_mm, src_mm, 1266 dst_pud, src_pud, addr, src_vma); 1267 if (err == -ENOMEM) 1268 return -ENOMEM; 1269 if (!err) 1270 continue; 1271 /* fall through */ 1272 } 1273 if (pud_none_or_clear_bad(src_pud)) 1274 continue; 1275 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1276 addr, next)) 1277 return -ENOMEM; 1278 } while (dst_pud++, src_pud++, addr = next, addr != end); 1279 return 0; 1280 } 1281 1282 static inline int 1283 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1284 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1285 unsigned long end) 1286 { 1287 struct mm_struct *dst_mm = dst_vma->vm_mm; 1288 p4d_t *src_p4d, *dst_p4d; 1289 unsigned long next; 1290 1291 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1292 if (!dst_p4d) 1293 return -ENOMEM; 1294 src_p4d = p4d_offset(src_pgd, addr); 1295 do { 1296 next = p4d_addr_end(addr, end); 1297 if (p4d_none_or_clear_bad(src_p4d)) 1298 continue; 1299 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1300 addr, next)) 1301 return -ENOMEM; 1302 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1303 return 0; 1304 } 1305 1306 /* 1307 * Return true if the vma needs to copy the pgtable during this fork(). Return 1308 * false when we can speed up fork() by allowing lazy page faults later until 1309 * when the child accesses the memory range. 1310 */ 1311 static bool 1312 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1313 { 1314 /* 1315 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1316 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1317 * contains uffd-wp protection information, that's something we can't 1318 * retrieve from page cache, and skip copying will lose those info. 1319 */ 1320 if (userfaultfd_wp(dst_vma)) 1321 return true; 1322 1323 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1324 return true; 1325 1326 if (src_vma->anon_vma) 1327 return true; 1328 1329 /* 1330 * Don't copy ptes where a page fault will fill them correctly. Fork 1331 * becomes much lighter when there are big shared or private readonly 1332 * mappings. The tradeoff is that copy_page_range is more efficient 1333 * than faulting. 1334 */ 1335 return false; 1336 } 1337 1338 int 1339 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1340 { 1341 pgd_t *src_pgd, *dst_pgd; 1342 unsigned long next; 1343 unsigned long addr = src_vma->vm_start; 1344 unsigned long end = src_vma->vm_end; 1345 struct mm_struct *dst_mm = dst_vma->vm_mm; 1346 struct mm_struct *src_mm = src_vma->vm_mm; 1347 struct mmu_notifier_range range; 1348 bool is_cow; 1349 int ret; 1350 1351 if (!vma_needs_copy(dst_vma, src_vma)) 1352 return 0; 1353 1354 if (is_vm_hugetlb_page(src_vma)) 1355 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1356 1357 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1358 /* 1359 * We do not free on error cases below as remove_vma 1360 * gets called on error from higher level routine 1361 */ 1362 ret = track_pfn_copy(src_vma); 1363 if (ret) 1364 return ret; 1365 } 1366 1367 /* 1368 * We need to invalidate the secondary MMU mappings only when 1369 * there could be a permission downgrade on the ptes of the 1370 * parent mm. And a permission downgrade will only happen if 1371 * is_cow_mapping() returns true. 1372 */ 1373 is_cow = is_cow_mapping(src_vma->vm_flags); 1374 1375 if (is_cow) { 1376 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1377 0, src_mm, addr, end); 1378 mmu_notifier_invalidate_range_start(&range); 1379 /* 1380 * Disabling preemption is not needed for the write side, as 1381 * the read side doesn't spin, but goes to the mmap_lock. 1382 * 1383 * Use the raw variant of the seqcount_t write API to avoid 1384 * lockdep complaining about preemptibility. 1385 */ 1386 vma_assert_write_locked(src_vma); 1387 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1388 } 1389 1390 ret = 0; 1391 dst_pgd = pgd_offset(dst_mm, addr); 1392 src_pgd = pgd_offset(src_mm, addr); 1393 do { 1394 next = pgd_addr_end(addr, end); 1395 if (pgd_none_or_clear_bad(src_pgd)) 1396 continue; 1397 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1398 addr, next))) { 1399 untrack_pfn_clear(dst_vma); 1400 ret = -ENOMEM; 1401 break; 1402 } 1403 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1404 1405 if (is_cow) { 1406 raw_write_seqcount_end(&src_mm->write_protect_seq); 1407 mmu_notifier_invalidate_range_end(&range); 1408 } 1409 return ret; 1410 } 1411 1412 /* Whether we should zap all COWed (private) pages too */ 1413 static inline bool should_zap_cows(struct zap_details *details) 1414 { 1415 /* By default, zap all pages */ 1416 if (!details) 1417 return true; 1418 1419 /* Or, we zap COWed pages only if the caller wants to */ 1420 return details->even_cows; 1421 } 1422 1423 /* Decides whether we should zap this folio with the folio pointer specified */ 1424 static inline bool should_zap_folio(struct zap_details *details, 1425 struct folio *folio) 1426 { 1427 /* If we can make a decision without *folio.. */ 1428 if (should_zap_cows(details)) 1429 return true; 1430 1431 /* Otherwise we should only zap non-anon folios */ 1432 return !folio_test_anon(folio); 1433 } 1434 1435 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1436 { 1437 if (!details) 1438 return false; 1439 1440 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1441 } 1442 1443 /* 1444 * This function makes sure that we'll replace the none pte with an uffd-wp 1445 * swap special pte marker when necessary. Must be with the pgtable lock held. 1446 */ 1447 static inline void 1448 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1449 unsigned long addr, pte_t *pte, int nr, 1450 struct zap_details *details, pte_t pteval) 1451 { 1452 /* Zap on anonymous always means dropping everything */ 1453 if (vma_is_anonymous(vma)) 1454 return; 1455 1456 if (zap_drop_file_uffd_wp(details)) 1457 return; 1458 1459 for (;;) { 1460 /* the PFN in the PTE is irrelevant. */ 1461 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1462 if (--nr == 0) 1463 break; 1464 pte++; 1465 addr += PAGE_SIZE; 1466 } 1467 } 1468 1469 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1470 struct vm_area_struct *vma, struct folio *folio, 1471 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1472 unsigned long addr, struct zap_details *details, int *rss, 1473 bool *force_flush, bool *force_break) 1474 { 1475 struct mm_struct *mm = tlb->mm; 1476 bool delay_rmap = false; 1477 1478 if (!folio_test_anon(folio)) { 1479 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1480 if (pte_dirty(ptent)) { 1481 folio_mark_dirty(folio); 1482 if (tlb_delay_rmap(tlb)) { 1483 delay_rmap = true; 1484 *force_flush = true; 1485 } 1486 } 1487 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1488 folio_mark_accessed(folio); 1489 rss[mm_counter(folio)] -= nr; 1490 } else { 1491 /* We don't need up-to-date accessed/dirty bits. */ 1492 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1493 rss[MM_ANONPAGES] -= nr; 1494 } 1495 /* Checking a single PTE in a batch is sufficient. */ 1496 arch_check_zapped_pte(vma, ptent); 1497 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1498 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1499 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, 1500 ptent); 1501 1502 if (!delay_rmap) { 1503 folio_remove_rmap_ptes(folio, page, nr, vma); 1504 1505 /* Only sanity-check the first page in a batch. */ 1506 if (unlikely(page_mapcount(page) < 0)) 1507 print_bad_pte(vma, addr, ptent, page); 1508 } 1509 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1510 *force_flush = true; 1511 *force_break = true; 1512 } 1513 } 1514 1515 /* 1516 * Zap or skip at least one present PTE, trying to batch-process subsequent 1517 * PTEs that map consecutive pages of the same folio. 1518 * 1519 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1520 */ 1521 static inline int zap_present_ptes(struct mmu_gather *tlb, 1522 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1523 unsigned int max_nr, unsigned long addr, 1524 struct zap_details *details, int *rss, bool *force_flush, 1525 bool *force_break) 1526 { 1527 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1528 struct mm_struct *mm = tlb->mm; 1529 struct folio *folio; 1530 struct page *page; 1531 int nr; 1532 1533 page = vm_normal_page(vma, addr, ptent); 1534 if (!page) { 1535 /* We don't need up-to-date accessed/dirty bits. */ 1536 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1537 arch_check_zapped_pte(vma, ptent); 1538 tlb_remove_tlb_entry(tlb, pte, addr); 1539 VM_WARN_ON_ONCE(userfaultfd_wp(vma)); 1540 ksm_might_unmap_zero_page(mm, ptent); 1541 return 1; 1542 } 1543 1544 folio = page_folio(page); 1545 if (unlikely(!should_zap_folio(details, folio))) 1546 return 1; 1547 1548 /* 1549 * Make sure that the common "small folio" case is as fast as possible 1550 * by keeping the batching logic separate. 1551 */ 1552 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1553 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1554 NULL); 1555 1556 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1557 addr, details, rss, force_flush, 1558 force_break); 1559 return nr; 1560 } 1561 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1562 details, rss, force_flush, force_break); 1563 return 1; 1564 } 1565 1566 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1567 struct vm_area_struct *vma, pmd_t *pmd, 1568 unsigned long addr, unsigned long end, 1569 struct zap_details *details) 1570 { 1571 bool force_flush = false, force_break = false; 1572 struct mm_struct *mm = tlb->mm; 1573 int rss[NR_MM_COUNTERS]; 1574 spinlock_t *ptl; 1575 pte_t *start_pte; 1576 pte_t *pte; 1577 swp_entry_t entry; 1578 int nr; 1579 1580 tlb_change_page_size(tlb, PAGE_SIZE); 1581 init_rss_vec(rss); 1582 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1583 if (!pte) 1584 return addr; 1585 1586 flush_tlb_batched_pending(mm); 1587 arch_enter_lazy_mmu_mode(); 1588 do { 1589 pte_t ptent = ptep_get(pte); 1590 struct folio *folio; 1591 struct page *page; 1592 int max_nr; 1593 1594 nr = 1; 1595 if (pte_none(ptent)) 1596 continue; 1597 1598 if (need_resched()) 1599 break; 1600 1601 if (pte_present(ptent)) { 1602 max_nr = (end - addr) / PAGE_SIZE; 1603 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr, 1604 addr, details, rss, &force_flush, 1605 &force_break); 1606 if (unlikely(force_break)) { 1607 addr += nr * PAGE_SIZE; 1608 break; 1609 } 1610 continue; 1611 } 1612 1613 entry = pte_to_swp_entry(ptent); 1614 if (is_device_private_entry(entry) || 1615 is_device_exclusive_entry(entry)) { 1616 page = pfn_swap_entry_to_page(entry); 1617 folio = page_folio(page); 1618 if (unlikely(!should_zap_folio(details, folio))) 1619 continue; 1620 /* 1621 * Both device private/exclusive mappings should only 1622 * work with anonymous page so far, so we don't need to 1623 * consider uffd-wp bit when zap. For more information, 1624 * see zap_install_uffd_wp_if_needed(). 1625 */ 1626 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1627 rss[mm_counter(folio)]--; 1628 if (is_device_private_entry(entry)) 1629 folio_remove_rmap_pte(folio, page, vma); 1630 folio_put(folio); 1631 } else if (!non_swap_entry(entry)) { 1632 /* Genuine swap entry, hence a private anon page */ 1633 if (!should_zap_cows(details)) 1634 continue; 1635 rss[MM_SWAPENTS]--; 1636 if (unlikely(!free_swap_and_cache(entry))) 1637 print_bad_pte(vma, addr, ptent, NULL); 1638 } else if (is_migration_entry(entry)) { 1639 folio = pfn_swap_entry_folio(entry); 1640 if (!should_zap_folio(details, folio)) 1641 continue; 1642 rss[mm_counter(folio)]--; 1643 } else if (pte_marker_entry_uffd_wp(entry)) { 1644 /* 1645 * For anon: always drop the marker; for file: only 1646 * drop the marker if explicitly requested. 1647 */ 1648 if (!vma_is_anonymous(vma) && 1649 !zap_drop_file_uffd_wp(details)) 1650 continue; 1651 } else if (is_hwpoison_entry(entry) || 1652 is_poisoned_swp_entry(entry)) { 1653 if (!should_zap_cows(details)) 1654 continue; 1655 } else { 1656 /* We should have covered all the swap entry types */ 1657 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1658 WARN_ON_ONCE(1); 1659 } 1660 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1661 zap_install_uffd_wp_if_needed(vma, addr, pte, 1, details, ptent); 1662 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1663 1664 add_mm_rss_vec(mm, rss); 1665 arch_leave_lazy_mmu_mode(); 1666 1667 /* Do the actual TLB flush before dropping ptl */ 1668 if (force_flush) { 1669 tlb_flush_mmu_tlbonly(tlb); 1670 tlb_flush_rmaps(tlb, vma); 1671 } 1672 pte_unmap_unlock(start_pte, ptl); 1673 1674 /* 1675 * If we forced a TLB flush (either due to running out of 1676 * batch buffers or because we needed to flush dirty TLB 1677 * entries before releasing the ptl), free the batched 1678 * memory too. Come back again if we didn't do everything. 1679 */ 1680 if (force_flush) 1681 tlb_flush_mmu(tlb); 1682 1683 return addr; 1684 } 1685 1686 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1687 struct vm_area_struct *vma, pud_t *pud, 1688 unsigned long addr, unsigned long end, 1689 struct zap_details *details) 1690 { 1691 pmd_t *pmd; 1692 unsigned long next; 1693 1694 pmd = pmd_offset(pud, addr); 1695 do { 1696 next = pmd_addr_end(addr, end); 1697 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1698 if (next - addr != HPAGE_PMD_SIZE) 1699 __split_huge_pmd(vma, pmd, addr, false, NULL); 1700 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1701 addr = next; 1702 continue; 1703 } 1704 /* fall through */ 1705 } else if (details && details->single_folio && 1706 folio_test_pmd_mappable(details->single_folio) && 1707 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1708 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1709 /* 1710 * Take and drop THP pmd lock so that we cannot return 1711 * prematurely, while zap_huge_pmd() has cleared *pmd, 1712 * but not yet decremented compound_mapcount(). 1713 */ 1714 spin_unlock(ptl); 1715 } 1716 if (pmd_none(*pmd)) { 1717 addr = next; 1718 continue; 1719 } 1720 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1721 if (addr != next) 1722 pmd--; 1723 } while (pmd++, cond_resched(), addr != end); 1724 1725 return addr; 1726 } 1727 1728 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1729 struct vm_area_struct *vma, p4d_t *p4d, 1730 unsigned long addr, unsigned long end, 1731 struct zap_details *details) 1732 { 1733 pud_t *pud; 1734 unsigned long next; 1735 1736 pud = pud_offset(p4d, addr); 1737 do { 1738 next = pud_addr_end(addr, end); 1739 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1740 if (next - addr != HPAGE_PUD_SIZE) { 1741 mmap_assert_locked(tlb->mm); 1742 split_huge_pud(vma, pud, addr); 1743 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1744 goto next; 1745 /* fall through */ 1746 } 1747 if (pud_none_or_clear_bad(pud)) 1748 continue; 1749 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1750 next: 1751 cond_resched(); 1752 } while (pud++, addr = next, addr != end); 1753 1754 return addr; 1755 } 1756 1757 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1758 struct vm_area_struct *vma, pgd_t *pgd, 1759 unsigned long addr, unsigned long end, 1760 struct zap_details *details) 1761 { 1762 p4d_t *p4d; 1763 unsigned long next; 1764 1765 p4d = p4d_offset(pgd, addr); 1766 do { 1767 next = p4d_addr_end(addr, end); 1768 if (p4d_none_or_clear_bad(p4d)) 1769 continue; 1770 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1771 } while (p4d++, addr = next, addr != end); 1772 1773 return addr; 1774 } 1775 1776 void unmap_page_range(struct mmu_gather *tlb, 1777 struct vm_area_struct *vma, 1778 unsigned long addr, unsigned long end, 1779 struct zap_details *details) 1780 { 1781 pgd_t *pgd; 1782 unsigned long next; 1783 1784 BUG_ON(addr >= end); 1785 tlb_start_vma(tlb, vma); 1786 pgd = pgd_offset(vma->vm_mm, addr); 1787 do { 1788 next = pgd_addr_end(addr, end); 1789 if (pgd_none_or_clear_bad(pgd)) 1790 continue; 1791 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1792 } while (pgd++, addr = next, addr != end); 1793 tlb_end_vma(tlb, vma); 1794 } 1795 1796 1797 static void unmap_single_vma(struct mmu_gather *tlb, 1798 struct vm_area_struct *vma, unsigned long start_addr, 1799 unsigned long end_addr, 1800 struct zap_details *details, bool mm_wr_locked) 1801 { 1802 unsigned long start = max(vma->vm_start, start_addr); 1803 unsigned long end; 1804 1805 if (start >= vma->vm_end) 1806 return; 1807 end = min(vma->vm_end, end_addr); 1808 if (end <= vma->vm_start) 1809 return; 1810 1811 if (vma->vm_file) 1812 uprobe_munmap(vma, start, end); 1813 1814 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1815 untrack_pfn(vma, 0, 0, mm_wr_locked); 1816 1817 if (start != end) { 1818 if (unlikely(is_vm_hugetlb_page(vma))) { 1819 /* 1820 * It is undesirable to test vma->vm_file as it 1821 * should be non-null for valid hugetlb area. 1822 * However, vm_file will be NULL in the error 1823 * cleanup path of mmap_region. When 1824 * hugetlbfs ->mmap method fails, 1825 * mmap_region() nullifies vma->vm_file 1826 * before calling this function to clean up. 1827 * Since no pte has actually been setup, it is 1828 * safe to do nothing in this case. 1829 */ 1830 if (vma->vm_file) { 1831 zap_flags_t zap_flags = details ? 1832 details->zap_flags : 0; 1833 __unmap_hugepage_range(tlb, vma, start, end, 1834 NULL, zap_flags); 1835 } 1836 } else 1837 unmap_page_range(tlb, vma, start, end, details); 1838 } 1839 } 1840 1841 /** 1842 * unmap_vmas - unmap a range of memory covered by a list of vma's 1843 * @tlb: address of the caller's struct mmu_gather 1844 * @mas: the maple state 1845 * @vma: the starting vma 1846 * @start_addr: virtual address at which to start unmapping 1847 * @end_addr: virtual address at which to end unmapping 1848 * @tree_end: The maximum index to check 1849 * @mm_wr_locked: lock flag 1850 * 1851 * Unmap all pages in the vma list. 1852 * 1853 * Only addresses between `start' and `end' will be unmapped. 1854 * 1855 * The VMA list must be sorted in ascending virtual address order. 1856 * 1857 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1858 * range after unmap_vmas() returns. So the only responsibility here is to 1859 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1860 * drops the lock and schedules. 1861 */ 1862 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1863 struct vm_area_struct *vma, unsigned long start_addr, 1864 unsigned long end_addr, unsigned long tree_end, 1865 bool mm_wr_locked) 1866 { 1867 struct mmu_notifier_range range; 1868 struct zap_details details = { 1869 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1870 /* Careful - we need to zap private pages too! */ 1871 .even_cows = true, 1872 }; 1873 1874 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1875 start_addr, end_addr); 1876 mmu_notifier_invalidate_range_start(&range); 1877 do { 1878 unsigned long start = start_addr; 1879 unsigned long end = end_addr; 1880 hugetlb_zap_begin(vma, &start, &end); 1881 unmap_single_vma(tlb, vma, start, end, &details, 1882 mm_wr_locked); 1883 hugetlb_zap_end(vma, &details); 1884 vma = mas_find(mas, tree_end - 1); 1885 } while (vma && likely(!xa_is_zero(vma))); 1886 mmu_notifier_invalidate_range_end(&range); 1887 } 1888 1889 /** 1890 * zap_page_range_single - remove user pages in a given range 1891 * @vma: vm_area_struct holding the applicable pages 1892 * @address: starting address of pages to zap 1893 * @size: number of bytes to zap 1894 * @details: details of shared cache invalidation 1895 * 1896 * The range must fit into one VMA. 1897 */ 1898 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1899 unsigned long size, struct zap_details *details) 1900 { 1901 const unsigned long end = address + size; 1902 struct mmu_notifier_range range; 1903 struct mmu_gather tlb; 1904 1905 lru_add_drain(); 1906 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1907 address, end); 1908 hugetlb_zap_begin(vma, &range.start, &range.end); 1909 tlb_gather_mmu(&tlb, vma->vm_mm); 1910 update_hiwater_rss(vma->vm_mm); 1911 mmu_notifier_invalidate_range_start(&range); 1912 /* 1913 * unmap 'address-end' not 'range.start-range.end' as range 1914 * could have been expanded for hugetlb pmd sharing. 1915 */ 1916 unmap_single_vma(&tlb, vma, address, end, details, false); 1917 mmu_notifier_invalidate_range_end(&range); 1918 tlb_finish_mmu(&tlb); 1919 hugetlb_zap_end(vma, details); 1920 } 1921 1922 /** 1923 * zap_vma_ptes - remove ptes mapping the vma 1924 * @vma: vm_area_struct holding ptes to be zapped 1925 * @address: starting address of pages to zap 1926 * @size: number of bytes to zap 1927 * 1928 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1929 * 1930 * The entire address range must be fully contained within the vma. 1931 * 1932 */ 1933 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1934 unsigned long size) 1935 { 1936 if (!range_in_vma(vma, address, address + size) || 1937 !(vma->vm_flags & VM_PFNMAP)) 1938 return; 1939 1940 zap_page_range_single(vma, address, size, NULL); 1941 } 1942 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1943 1944 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1945 { 1946 pgd_t *pgd; 1947 p4d_t *p4d; 1948 pud_t *pud; 1949 pmd_t *pmd; 1950 1951 pgd = pgd_offset(mm, addr); 1952 p4d = p4d_alloc(mm, pgd, addr); 1953 if (!p4d) 1954 return NULL; 1955 pud = pud_alloc(mm, p4d, addr); 1956 if (!pud) 1957 return NULL; 1958 pmd = pmd_alloc(mm, pud, addr); 1959 if (!pmd) 1960 return NULL; 1961 1962 VM_BUG_ON(pmd_trans_huge(*pmd)); 1963 return pmd; 1964 } 1965 1966 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1967 spinlock_t **ptl) 1968 { 1969 pmd_t *pmd = walk_to_pmd(mm, addr); 1970 1971 if (!pmd) 1972 return NULL; 1973 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1974 } 1975 1976 static int validate_page_before_insert(struct page *page) 1977 { 1978 struct folio *folio = page_folio(page); 1979 1980 if (folio_test_anon(folio) || folio_test_slab(folio) || 1981 page_has_type(page)) 1982 return -EINVAL; 1983 flush_dcache_folio(folio); 1984 return 0; 1985 } 1986 1987 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1988 unsigned long addr, struct page *page, pgprot_t prot) 1989 { 1990 struct folio *folio = page_folio(page); 1991 1992 if (!pte_none(ptep_get(pte))) 1993 return -EBUSY; 1994 /* Ok, finally just insert the thing.. */ 1995 folio_get(folio); 1996 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 1997 folio_add_file_rmap_pte(folio, page, vma); 1998 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1999 return 0; 2000 } 2001 2002 /* 2003 * This is the old fallback for page remapping. 2004 * 2005 * For historical reasons, it only allows reserved pages. Only 2006 * old drivers should use this, and they needed to mark their 2007 * pages reserved for the old functions anyway. 2008 */ 2009 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2010 struct page *page, pgprot_t prot) 2011 { 2012 int retval; 2013 pte_t *pte; 2014 spinlock_t *ptl; 2015 2016 retval = validate_page_before_insert(page); 2017 if (retval) 2018 goto out; 2019 retval = -ENOMEM; 2020 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2021 if (!pte) 2022 goto out; 2023 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 2024 pte_unmap_unlock(pte, ptl); 2025 out: 2026 return retval; 2027 } 2028 2029 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2030 unsigned long addr, struct page *page, pgprot_t prot) 2031 { 2032 int err; 2033 2034 if (!page_count(page)) 2035 return -EINVAL; 2036 err = validate_page_before_insert(page); 2037 if (err) 2038 return err; 2039 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 2040 } 2041 2042 /* insert_pages() amortizes the cost of spinlock operations 2043 * when inserting pages in a loop. 2044 */ 2045 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2046 struct page **pages, unsigned long *num, pgprot_t prot) 2047 { 2048 pmd_t *pmd = NULL; 2049 pte_t *start_pte, *pte; 2050 spinlock_t *pte_lock; 2051 struct mm_struct *const mm = vma->vm_mm; 2052 unsigned long curr_page_idx = 0; 2053 unsigned long remaining_pages_total = *num; 2054 unsigned long pages_to_write_in_pmd; 2055 int ret; 2056 more: 2057 ret = -EFAULT; 2058 pmd = walk_to_pmd(mm, addr); 2059 if (!pmd) 2060 goto out; 2061 2062 pages_to_write_in_pmd = min_t(unsigned long, 2063 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2064 2065 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2066 ret = -ENOMEM; 2067 if (pte_alloc(mm, pmd)) 2068 goto out; 2069 2070 while (pages_to_write_in_pmd) { 2071 int pte_idx = 0; 2072 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2073 2074 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2075 if (!start_pte) { 2076 ret = -EFAULT; 2077 goto out; 2078 } 2079 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2080 int err = insert_page_in_batch_locked(vma, pte, 2081 addr, pages[curr_page_idx], prot); 2082 if (unlikely(err)) { 2083 pte_unmap_unlock(start_pte, pte_lock); 2084 ret = err; 2085 remaining_pages_total -= pte_idx; 2086 goto out; 2087 } 2088 addr += PAGE_SIZE; 2089 ++curr_page_idx; 2090 } 2091 pte_unmap_unlock(start_pte, pte_lock); 2092 pages_to_write_in_pmd -= batch_size; 2093 remaining_pages_total -= batch_size; 2094 } 2095 if (remaining_pages_total) 2096 goto more; 2097 ret = 0; 2098 out: 2099 *num = remaining_pages_total; 2100 return ret; 2101 } 2102 2103 /** 2104 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2105 * @vma: user vma to map to 2106 * @addr: target start user address of these pages 2107 * @pages: source kernel pages 2108 * @num: in: number of pages to map. out: number of pages that were *not* 2109 * mapped. (0 means all pages were successfully mapped). 2110 * 2111 * Preferred over vm_insert_page() when inserting multiple pages. 2112 * 2113 * In case of error, we may have mapped a subset of the provided 2114 * pages. It is the caller's responsibility to account for this case. 2115 * 2116 * The same restrictions apply as in vm_insert_page(). 2117 */ 2118 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2119 struct page **pages, unsigned long *num) 2120 { 2121 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2122 2123 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2124 return -EFAULT; 2125 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2126 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2127 BUG_ON(vma->vm_flags & VM_PFNMAP); 2128 vm_flags_set(vma, VM_MIXEDMAP); 2129 } 2130 /* Defer page refcount checking till we're about to map that page. */ 2131 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2132 } 2133 EXPORT_SYMBOL(vm_insert_pages); 2134 2135 /** 2136 * vm_insert_page - insert single page into user vma 2137 * @vma: user vma to map to 2138 * @addr: target user address of this page 2139 * @page: source kernel page 2140 * 2141 * This allows drivers to insert individual pages they've allocated 2142 * into a user vma. 2143 * 2144 * The page has to be a nice clean _individual_ kernel allocation. 2145 * If you allocate a compound page, you need to have marked it as 2146 * such (__GFP_COMP), or manually just split the page up yourself 2147 * (see split_page()). 2148 * 2149 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2150 * took an arbitrary page protection parameter. This doesn't allow 2151 * that. Your vma protection will have to be set up correctly, which 2152 * means that if you want a shared writable mapping, you'd better 2153 * ask for a shared writable mapping! 2154 * 2155 * The page does not need to be reserved. 2156 * 2157 * Usually this function is called from f_op->mmap() handler 2158 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2159 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2160 * function from other places, for example from page-fault handler. 2161 * 2162 * Return: %0 on success, negative error code otherwise. 2163 */ 2164 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2165 struct page *page) 2166 { 2167 if (addr < vma->vm_start || addr >= vma->vm_end) 2168 return -EFAULT; 2169 if (!page_count(page)) 2170 return -EINVAL; 2171 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2172 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2173 BUG_ON(vma->vm_flags & VM_PFNMAP); 2174 vm_flags_set(vma, VM_MIXEDMAP); 2175 } 2176 return insert_page(vma, addr, page, vma->vm_page_prot); 2177 } 2178 EXPORT_SYMBOL(vm_insert_page); 2179 2180 /* 2181 * __vm_map_pages - maps range of kernel pages into user vma 2182 * @vma: user vma to map to 2183 * @pages: pointer to array of source kernel pages 2184 * @num: number of pages in page array 2185 * @offset: user's requested vm_pgoff 2186 * 2187 * This allows drivers to map range of kernel pages into a user vma. 2188 * 2189 * Return: 0 on success and error code otherwise. 2190 */ 2191 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2192 unsigned long num, unsigned long offset) 2193 { 2194 unsigned long count = vma_pages(vma); 2195 unsigned long uaddr = vma->vm_start; 2196 int ret, i; 2197 2198 /* Fail if the user requested offset is beyond the end of the object */ 2199 if (offset >= num) 2200 return -ENXIO; 2201 2202 /* Fail if the user requested size exceeds available object size */ 2203 if (count > num - offset) 2204 return -ENXIO; 2205 2206 for (i = 0; i < count; i++) { 2207 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2208 if (ret < 0) 2209 return ret; 2210 uaddr += PAGE_SIZE; 2211 } 2212 2213 return 0; 2214 } 2215 2216 /** 2217 * vm_map_pages - maps range of kernel pages starts with non zero offset 2218 * @vma: user vma to map to 2219 * @pages: pointer to array of source kernel pages 2220 * @num: number of pages in page array 2221 * 2222 * Maps an object consisting of @num pages, catering for the user's 2223 * requested vm_pgoff 2224 * 2225 * If we fail to insert any page into the vma, the function will return 2226 * immediately leaving any previously inserted pages present. Callers 2227 * from the mmap handler may immediately return the error as their caller 2228 * will destroy the vma, removing any successfully inserted pages. Other 2229 * callers should make their own arrangements for calling unmap_region(). 2230 * 2231 * Context: Process context. Called by mmap handlers. 2232 * Return: 0 on success and error code otherwise. 2233 */ 2234 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2235 unsigned long num) 2236 { 2237 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2238 } 2239 EXPORT_SYMBOL(vm_map_pages); 2240 2241 /** 2242 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2243 * @vma: user vma to map to 2244 * @pages: pointer to array of source kernel pages 2245 * @num: number of pages in page array 2246 * 2247 * Similar to vm_map_pages(), except that it explicitly sets the offset 2248 * to 0. This function is intended for the drivers that did not consider 2249 * vm_pgoff. 2250 * 2251 * Context: Process context. Called by mmap handlers. 2252 * Return: 0 on success and error code otherwise. 2253 */ 2254 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2255 unsigned long num) 2256 { 2257 return __vm_map_pages(vma, pages, num, 0); 2258 } 2259 EXPORT_SYMBOL(vm_map_pages_zero); 2260 2261 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2262 pfn_t pfn, pgprot_t prot, bool mkwrite) 2263 { 2264 struct mm_struct *mm = vma->vm_mm; 2265 pte_t *pte, entry; 2266 spinlock_t *ptl; 2267 2268 pte = get_locked_pte(mm, addr, &ptl); 2269 if (!pte) 2270 return VM_FAULT_OOM; 2271 entry = ptep_get(pte); 2272 if (!pte_none(entry)) { 2273 if (mkwrite) { 2274 /* 2275 * For read faults on private mappings the PFN passed 2276 * in may not match the PFN we have mapped if the 2277 * mapped PFN is a writeable COW page. In the mkwrite 2278 * case we are creating a writable PTE for a shared 2279 * mapping and we expect the PFNs to match. If they 2280 * don't match, we are likely racing with block 2281 * allocation and mapping invalidation so just skip the 2282 * update. 2283 */ 2284 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2285 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2286 goto out_unlock; 2287 } 2288 entry = pte_mkyoung(entry); 2289 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2290 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2291 update_mmu_cache(vma, addr, pte); 2292 } 2293 goto out_unlock; 2294 } 2295 2296 /* Ok, finally just insert the thing.. */ 2297 if (pfn_t_devmap(pfn)) 2298 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2299 else 2300 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2301 2302 if (mkwrite) { 2303 entry = pte_mkyoung(entry); 2304 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2305 } 2306 2307 set_pte_at(mm, addr, pte, entry); 2308 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2309 2310 out_unlock: 2311 pte_unmap_unlock(pte, ptl); 2312 return VM_FAULT_NOPAGE; 2313 } 2314 2315 /** 2316 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2317 * @vma: user vma to map to 2318 * @addr: target user address of this page 2319 * @pfn: source kernel pfn 2320 * @pgprot: pgprot flags for the inserted page 2321 * 2322 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2323 * to override pgprot on a per-page basis. 2324 * 2325 * This only makes sense for IO mappings, and it makes no sense for 2326 * COW mappings. In general, using multiple vmas is preferable; 2327 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2328 * impractical. 2329 * 2330 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2331 * caching- and encryption bits different than those of @vma->vm_page_prot, 2332 * because the caching- or encryption mode may not be known at mmap() time. 2333 * 2334 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2335 * to set caching and encryption bits for those vmas (except for COW pages). 2336 * This is ensured by core vm only modifying these page table entries using 2337 * functions that don't touch caching- or encryption bits, using pte_modify() 2338 * if needed. (See for example mprotect()). 2339 * 2340 * Also when new page-table entries are created, this is only done using the 2341 * fault() callback, and never using the value of vma->vm_page_prot, 2342 * except for page-table entries that point to anonymous pages as the result 2343 * of COW. 2344 * 2345 * Context: Process context. May allocate using %GFP_KERNEL. 2346 * Return: vm_fault_t value. 2347 */ 2348 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2349 unsigned long pfn, pgprot_t pgprot) 2350 { 2351 /* 2352 * Technically, architectures with pte_special can avoid all these 2353 * restrictions (same for remap_pfn_range). However we would like 2354 * consistency in testing and feature parity among all, so we should 2355 * try to keep these invariants in place for everybody. 2356 */ 2357 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2358 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2359 (VM_PFNMAP|VM_MIXEDMAP)); 2360 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2361 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2362 2363 if (addr < vma->vm_start || addr >= vma->vm_end) 2364 return VM_FAULT_SIGBUS; 2365 2366 if (!pfn_modify_allowed(pfn, pgprot)) 2367 return VM_FAULT_SIGBUS; 2368 2369 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2370 2371 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2372 false); 2373 } 2374 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2375 2376 /** 2377 * vmf_insert_pfn - insert single pfn into user vma 2378 * @vma: user vma to map to 2379 * @addr: target user address of this page 2380 * @pfn: source kernel pfn 2381 * 2382 * Similar to vm_insert_page, this allows drivers to insert individual pages 2383 * they've allocated into a user vma. Same comments apply. 2384 * 2385 * This function should only be called from a vm_ops->fault handler, and 2386 * in that case the handler should return the result of this function. 2387 * 2388 * vma cannot be a COW mapping. 2389 * 2390 * As this is called only for pages that do not currently exist, we 2391 * do not need to flush old virtual caches or the TLB. 2392 * 2393 * Context: Process context. May allocate using %GFP_KERNEL. 2394 * Return: vm_fault_t value. 2395 */ 2396 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2397 unsigned long pfn) 2398 { 2399 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2400 } 2401 EXPORT_SYMBOL(vmf_insert_pfn); 2402 2403 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2404 { 2405 /* these checks mirror the abort conditions in vm_normal_page */ 2406 if (vma->vm_flags & VM_MIXEDMAP) 2407 return true; 2408 if (pfn_t_devmap(pfn)) 2409 return true; 2410 if (pfn_t_special(pfn)) 2411 return true; 2412 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2413 return true; 2414 return false; 2415 } 2416 2417 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2418 unsigned long addr, pfn_t pfn, bool mkwrite) 2419 { 2420 pgprot_t pgprot = vma->vm_page_prot; 2421 int err; 2422 2423 BUG_ON(!vm_mixed_ok(vma, pfn)); 2424 2425 if (addr < vma->vm_start || addr >= vma->vm_end) 2426 return VM_FAULT_SIGBUS; 2427 2428 track_pfn_insert(vma, &pgprot, pfn); 2429 2430 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2431 return VM_FAULT_SIGBUS; 2432 2433 /* 2434 * If we don't have pte special, then we have to use the pfn_valid() 2435 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2436 * refcount the page if pfn_valid is true (hence insert_page rather 2437 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2438 * without pte special, it would there be refcounted as a normal page. 2439 */ 2440 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2441 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2442 struct page *page; 2443 2444 /* 2445 * At this point we are committed to insert_page() 2446 * regardless of whether the caller specified flags that 2447 * result in pfn_t_has_page() == false. 2448 */ 2449 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2450 err = insert_page(vma, addr, page, pgprot); 2451 } else { 2452 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2453 } 2454 2455 if (err == -ENOMEM) 2456 return VM_FAULT_OOM; 2457 if (err < 0 && err != -EBUSY) 2458 return VM_FAULT_SIGBUS; 2459 2460 return VM_FAULT_NOPAGE; 2461 } 2462 2463 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2464 pfn_t pfn) 2465 { 2466 return __vm_insert_mixed(vma, addr, pfn, false); 2467 } 2468 EXPORT_SYMBOL(vmf_insert_mixed); 2469 2470 /* 2471 * If the insertion of PTE failed because someone else already added a 2472 * different entry in the mean time, we treat that as success as we assume 2473 * the same entry was actually inserted. 2474 */ 2475 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2476 unsigned long addr, pfn_t pfn) 2477 { 2478 return __vm_insert_mixed(vma, addr, pfn, true); 2479 } 2480 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2481 2482 /* 2483 * maps a range of physical memory into the requested pages. the old 2484 * mappings are removed. any references to nonexistent pages results 2485 * in null mappings (currently treated as "copy-on-access") 2486 */ 2487 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2488 unsigned long addr, unsigned long end, 2489 unsigned long pfn, pgprot_t prot) 2490 { 2491 pte_t *pte, *mapped_pte; 2492 spinlock_t *ptl; 2493 int err = 0; 2494 2495 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2496 if (!pte) 2497 return -ENOMEM; 2498 arch_enter_lazy_mmu_mode(); 2499 do { 2500 BUG_ON(!pte_none(ptep_get(pte))); 2501 if (!pfn_modify_allowed(pfn, prot)) { 2502 err = -EACCES; 2503 break; 2504 } 2505 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2506 pfn++; 2507 } while (pte++, addr += PAGE_SIZE, addr != end); 2508 arch_leave_lazy_mmu_mode(); 2509 pte_unmap_unlock(mapped_pte, ptl); 2510 return err; 2511 } 2512 2513 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2514 unsigned long addr, unsigned long end, 2515 unsigned long pfn, pgprot_t prot) 2516 { 2517 pmd_t *pmd; 2518 unsigned long next; 2519 int err; 2520 2521 pfn -= addr >> PAGE_SHIFT; 2522 pmd = pmd_alloc(mm, pud, addr); 2523 if (!pmd) 2524 return -ENOMEM; 2525 VM_BUG_ON(pmd_trans_huge(*pmd)); 2526 do { 2527 next = pmd_addr_end(addr, end); 2528 err = remap_pte_range(mm, pmd, addr, next, 2529 pfn + (addr >> PAGE_SHIFT), prot); 2530 if (err) 2531 return err; 2532 } while (pmd++, addr = next, addr != end); 2533 return 0; 2534 } 2535 2536 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2537 unsigned long addr, unsigned long end, 2538 unsigned long pfn, pgprot_t prot) 2539 { 2540 pud_t *pud; 2541 unsigned long next; 2542 int err; 2543 2544 pfn -= addr >> PAGE_SHIFT; 2545 pud = pud_alloc(mm, p4d, addr); 2546 if (!pud) 2547 return -ENOMEM; 2548 do { 2549 next = pud_addr_end(addr, end); 2550 err = remap_pmd_range(mm, pud, addr, next, 2551 pfn + (addr >> PAGE_SHIFT), prot); 2552 if (err) 2553 return err; 2554 } while (pud++, addr = next, addr != end); 2555 return 0; 2556 } 2557 2558 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2559 unsigned long addr, unsigned long end, 2560 unsigned long pfn, pgprot_t prot) 2561 { 2562 p4d_t *p4d; 2563 unsigned long next; 2564 int err; 2565 2566 pfn -= addr >> PAGE_SHIFT; 2567 p4d = p4d_alloc(mm, pgd, addr); 2568 if (!p4d) 2569 return -ENOMEM; 2570 do { 2571 next = p4d_addr_end(addr, end); 2572 err = remap_pud_range(mm, p4d, addr, next, 2573 pfn + (addr >> PAGE_SHIFT), prot); 2574 if (err) 2575 return err; 2576 } while (p4d++, addr = next, addr != end); 2577 return 0; 2578 } 2579 2580 /* 2581 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2582 * must have pre-validated the caching bits of the pgprot_t. 2583 */ 2584 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2585 unsigned long pfn, unsigned long size, pgprot_t prot) 2586 { 2587 pgd_t *pgd; 2588 unsigned long next; 2589 unsigned long end = addr + PAGE_ALIGN(size); 2590 struct mm_struct *mm = vma->vm_mm; 2591 int err; 2592 2593 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2594 return -EINVAL; 2595 2596 /* 2597 * Physically remapped pages are special. Tell the 2598 * rest of the world about it: 2599 * VM_IO tells people not to look at these pages 2600 * (accesses can have side effects). 2601 * VM_PFNMAP tells the core MM that the base pages are just 2602 * raw PFN mappings, and do not have a "struct page" associated 2603 * with them. 2604 * VM_DONTEXPAND 2605 * Disable vma merging and expanding with mremap(). 2606 * VM_DONTDUMP 2607 * Omit vma from core dump, even when VM_IO turned off. 2608 * 2609 * There's a horrible special case to handle copy-on-write 2610 * behaviour that some programs depend on. We mark the "original" 2611 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2612 * See vm_normal_page() for details. 2613 */ 2614 if (is_cow_mapping(vma->vm_flags)) { 2615 if (addr != vma->vm_start || end != vma->vm_end) 2616 return -EINVAL; 2617 vma->vm_pgoff = pfn; 2618 } 2619 2620 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2621 2622 BUG_ON(addr >= end); 2623 pfn -= addr >> PAGE_SHIFT; 2624 pgd = pgd_offset(mm, addr); 2625 flush_cache_range(vma, addr, end); 2626 do { 2627 next = pgd_addr_end(addr, end); 2628 err = remap_p4d_range(mm, pgd, addr, next, 2629 pfn + (addr >> PAGE_SHIFT), prot); 2630 if (err) 2631 return err; 2632 } while (pgd++, addr = next, addr != end); 2633 2634 return 0; 2635 } 2636 2637 /** 2638 * remap_pfn_range - remap kernel memory to userspace 2639 * @vma: user vma to map to 2640 * @addr: target page aligned user address to start at 2641 * @pfn: page frame number of kernel physical memory address 2642 * @size: size of mapping area 2643 * @prot: page protection flags for this mapping 2644 * 2645 * Note: this is only safe if the mm semaphore is held when called. 2646 * 2647 * Return: %0 on success, negative error code otherwise. 2648 */ 2649 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2650 unsigned long pfn, unsigned long size, pgprot_t prot) 2651 { 2652 int err; 2653 2654 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2655 if (err) 2656 return -EINVAL; 2657 2658 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2659 if (err) 2660 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2661 return err; 2662 } 2663 EXPORT_SYMBOL(remap_pfn_range); 2664 2665 /** 2666 * vm_iomap_memory - remap memory to userspace 2667 * @vma: user vma to map to 2668 * @start: start of the physical memory to be mapped 2669 * @len: size of area 2670 * 2671 * This is a simplified io_remap_pfn_range() for common driver use. The 2672 * driver just needs to give us the physical memory range to be mapped, 2673 * we'll figure out the rest from the vma information. 2674 * 2675 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2676 * whatever write-combining details or similar. 2677 * 2678 * Return: %0 on success, negative error code otherwise. 2679 */ 2680 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2681 { 2682 unsigned long vm_len, pfn, pages; 2683 2684 /* Check that the physical memory area passed in looks valid */ 2685 if (start + len < start) 2686 return -EINVAL; 2687 /* 2688 * You *really* shouldn't map things that aren't page-aligned, 2689 * but we've historically allowed it because IO memory might 2690 * just have smaller alignment. 2691 */ 2692 len += start & ~PAGE_MASK; 2693 pfn = start >> PAGE_SHIFT; 2694 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2695 if (pfn + pages < pfn) 2696 return -EINVAL; 2697 2698 /* We start the mapping 'vm_pgoff' pages into the area */ 2699 if (vma->vm_pgoff > pages) 2700 return -EINVAL; 2701 pfn += vma->vm_pgoff; 2702 pages -= vma->vm_pgoff; 2703 2704 /* Can we fit all of the mapping? */ 2705 vm_len = vma->vm_end - vma->vm_start; 2706 if (vm_len >> PAGE_SHIFT > pages) 2707 return -EINVAL; 2708 2709 /* Ok, let it rip */ 2710 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2711 } 2712 EXPORT_SYMBOL(vm_iomap_memory); 2713 2714 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2715 unsigned long addr, unsigned long end, 2716 pte_fn_t fn, void *data, bool create, 2717 pgtbl_mod_mask *mask) 2718 { 2719 pte_t *pte, *mapped_pte; 2720 int err = 0; 2721 spinlock_t *ptl; 2722 2723 if (create) { 2724 mapped_pte = pte = (mm == &init_mm) ? 2725 pte_alloc_kernel_track(pmd, addr, mask) : 2726 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2727 if (!pte) 2728 return -ENOMEM; 2729 } else { 2730 mapped_pte = pte = (mm == &init_mm) ? 2731 pte_offset_kernel(pmd, addr) : 2732 pte_offset_map_lock(mm, pmd, addr, &ptl); 2733 if (!pte) 2734 return -EINVAL; 2735 } 2736 2737 arch_enter_lazy_mmu_mode(); 2738 2739 if (fn) { 2740 do { 2741 if (create || !pte_none(ptep_get(pte))) { 2742 err = fn(pte++, addr, data); 2743 if (err) 2744 break; 2745 } 2746 } while (addr += PAGE_SIZE, addr != end); 2747 } 2748 *mask |= PGTBL_PTE_MODIFIED; 2749 2750 arch_leave_lazy_mmu_mode(); 2751 2752 if (mm != &init_mm) 2753 pte_unmap_unlock(mapped_pte, ptl); 2754 return err; 2755 } 2756 2757 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2758 unsigned long addr, unsigned long end, 2759 pte_fn_t fn, void *data, bool create, 2760 pgtbl_mod_mask *mask) 2761 { 2762 pmd_t *pmd; 2763 unsigned long next; 2764 int err = 0; 2765 2766 BUG_ON(pud_huge(*pud)); 2767 2768 if (create) { 2769 pmd = pmd_alloc_track(mm, pud, addr, mask); 2770 if (!pmd) 2771 return -ENOMEM; 2772 } else { 2773 pmd = pmd_offset(pud, addr); 2774 } 2775 do { 2776 next = pmd_addr_end(addr, end); 2777 if (pmd_none(*pmd) && !create) 2778 continue; 2779 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2780 return -EINVAL; 2781 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2782 if (!create) 2783 continue; 2784 pmd_clear_bad(pmd); 2785 } 2786 err = apply_to_pte_range(mm, pmd, addr, next, 2787 fn, data, create, mask); 2788 if (err) 2789 break; 2790 } while (pmd++, addr = next, addr != end); 2791 2792 return err; 2793 } 2794 2795 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2796 unsigned long addr, unsigned long end, 2797 pte_fn_t fn, void *data, bool create, 2798 pgtbl_mod_mask *mask) 2799 { 2800 pud_t *pud; 2801 unsigned long next; 2802 int err = 0; 2803 2804 if (create) { 2805 pud = pud_alloc_track(mm, p4d, addr, mask); 2806 if (!pud) 2807 return -ENOMEM; 2808 } else { 2809 pud = pud_offset(p4d, addr); 2810 } 2811 do { 2812 next = pud_addr_end(addr, end); 2813 if (pud_none(*pud) && !create) 2814 continue; 2815 if (WARN_ON_ONCE(pud_leaf(*pud))) 2816 return -EINVAL; 2817 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2818 if (!create) 2819 continue; 2820 pud_clear_bad(pud); 2821 } 2822 err = apply_to_pmd_range(mm, pud, addr, next, 2823 fn, data, create, mask); 2824 if (err) 2825 break; 2826 } while (pud++, addr = next, addr != end); 2827 2828 return err; 2829 } 2830 2831 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2832 unsigned long addr, unsigned long end, 2833 pte_fn_t fn, void *data, bool create, 2834 pgtbl_mod_mask *mask) 2835 { 2836 p4d_t *p4d; 2837 unsigned long next; 2838 int err = 0; 2839 2840 if (create) { 2841 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2842 if (!p4d) 2843 return -ENOMEM; 2844 } else { 2845 p4d = p4d_offset(pgd, addr); 2846 } 2847 do { 2848 next = p4d_addr_end(addr, end); 2849 if (p4d_none(*p4d) && !create) 2850 continue; 2851 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2852 return -EINVAL; 2853 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2854 if (!create) 2855 continue; 2856 p4d_clear_bad(p4d); 2857 } 2858 err = apply_to_pud_range(mm, p4d, addr, next, 2859 fn, data, create, mask); 2860 if (err) 2861 break; 2862 } while (p4d++, addr = next, addr != end); 2863 2864 return err; 2865 } 2866 2867 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2868 unsigned long size, pte_fn_t fn, 2869 void *data, bool create) 2870 { 2871 pgd_t *pgd; 2872 unsigned long start = addr, next; 2873 unsigned long end = addr + size; 2874 pgtbl_mod_mask mask = 0; 2875 int err = 0; 2876 2877 if (WARN_ON(addr >= end)) 2878 return -EINVAL; 2879 2880 pgd = pgd_offset(mm, addr); 2881 do { 2882 next = pgd_addr_end(addr, end); 2883 if (pgd_none(*pgd) && !create) 2884 continue; 2885 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2886 return -EINVAL; 2887 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2888 if (!create) 2889 continue; 2890 pgd_clear_bad(pgd); 2891 } 2892 err = apply_to_p4d_range(mm, pgd, addr, next, 2893 fn, data, create, &mask); 2894 if (err) 2895 break; 2896 } while (pgd++, addr = next, addr != end); 2897 2898 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2899 arch_sync_kernel_mappings(start, start + size); 2900 2901 return err; 2902 } 2903 2904 /* 2905 * Scan a region of virtual memory, filling in page tables as necessary 2906 * and calling a provided function on each leaf page table. 2907 */ 2908 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2909 unsigned long size, pte_fn_t fn, void *data) 2910 { 2911 return __apply_to_page_range(mm, addr, size, fn, data, true); 2912 } 2913 EXPORT_SYMBOL_GPL(apply_to_page_range); 2914 2915 /* 2916 * Scan a region of virtual memory, calling a provided function on 2917 * each leaf page table where it exists. 2918 * 2919 * Unlike apply_to_page_range, this does _not_ fill in page tables 2920 * where they are absent. 2921 */ 2922 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2923 unsigned long size, pte_fn_t fn, void *data) 2924 { 2925 return __apply_to_page_range(mm, addr, size, fn, data, false); 2926 } 2927 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2928 2929 /* 2930 * handle_pte_fault chooses page fault handler according to an entry which was 2931 * read non-atomically. Before making any commitment, on those architectures 2932 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2933 * parts, do_swap_page must check under lock before unmapping the pte and 2934 * proceeding (but do_wp_page is only called after already making such a check; 2935 * and do_anonymous_page can safely check later on). 2936 */ 2937 static inline int pte_unmap_same(struct vm_fault *vmf) 2938 { 2939 int same = 1; 2940 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2941 if (sizeof(pte_t) > sizeof(unsigned long)) { 2942 spin_lock(vmf->ptl); 2943 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 2944 spin_unlock(vmf->ptl); 2945 } 2946 #endif 2947 pte_unmap(vmf->pte); 2948 vmf->pte = NULL; 2949 return same; 2950 } 2951 2952 /* 2953 * Return: 2954 * 0: copied succeeded 2955 * -EHWPOISON: copy failed due to hwpoison in source page 2956 * -EAGAIN: copied failed (some other reason) 2957 */ 2958 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2959 struct vm_fault *vmf) 2960 { 2961 int ret; 2962 void *kaddr; 2963 void __user *uaddr; 2964 struct vm_area_struct *vma = vmf->vma; 2965 struct mm_struct *mm = vma->vm_mm; 2966 unsigned long addr = vmf->address; 2967 2968 if (likely(src)) { 2969 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2970 memory_failure_queue(page_to_pfn(src), 0); 2971 return -EHWPOISON; 2972 } 2973 return 0; 2974 } 2975 2976 /* 2977 * If the source page was a PFN mapping, we don't have 2978 * a "struct page" for it. We do a best-effort copy by 2979 * just copying from the original user address. If that 2980 * fails, we just zero-fill it. Live with it. 2981 */ 2982 kaddr = kmap_local_page(dst); 2983 pagefault_disable(); 2984 uaddr = (void __user *)(addr & PAGE_MASK); 2985 2986 /* 2987 * On architectures with software "accessed" bits, we would 2988 * take a double page fault, so mark it accessed here. 2989 */ 2990 vmf->pte = NULL; 2991 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2992 pte_t entry; 2993 2994 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2995 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2996 /* 2997 * Other thread has already handled the fault 2998 * and update local tlb only 2999 */ 3000 if (vmf->pte) 3001 update_mmu_tlb(vma, addr, vmf->pte); 3002 ret = -EAGAIN; 3003 goto pte_unlock; 3004 } 3005 3006 entry = pte_mkyoung(vmf->orig_pte); 3007 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3008 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3009 } 3010 3011 /* 3012 * This really shouldn't fail, because the page is there 3013 * in the page tables. But it might just be unreadable, 3014 * in which case we just give up and fill the result with 3015 * zeroes. 3016 */ 3017 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3018 if (vmf->pte) 3019 goto warn; 3020 3021 /* Re-validate under PTL if the page is still mapped */ 3022 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3023 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3024 /* The PTE changed under us, update local tlb */ 3025 if (vmf->pte) 3026 update_mmu_tlb(vma, addr, vmf->pte); 3027 ret = -EAGAIN; 3028 goto pte_unlock; 3029 } 3030 3031 /* 3032 * The same page can be mapped back since last copy attempt. 3033 * Try to copy again under PTL. 3034 */ 3035 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3036 /* 3037 * Give a warn in case there can be some obscure 3038 * use-case 3039 */ 3040 warn: 3041 WARN_ON_ONCE(1); 3042 clear_page(kaddr); 3043 } 3044 } 3045 3046 ret = 0; 3047 3048 pte_unlock: 3049 if (vmf->pte) 3050 pte_unmap_unlock(vmf->pte, vmf->ptl); 3051 pagefault_enable(); 3052 kunmap_local(kaddr); 3053 flush_dcache_page(dst); 3054 3055 return ret; 3056 } 3057 3058 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3059 { 3060 struct file *vm_file = vma->vm_file; 3061 3062 if (vm_file) 3063 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3064 3065 /* 3066 * Special mappings (e.g. VDSO) do not have any file so fake 3067 * a default GFP_KERNEL for them. 3068 */ 3069 return GFP_KERNEL; 3070 } 3071 3072 /* 3073 * Notify the address space that the page is about to become writable so that 3074 * it can prohibit this or wait for the page to get into an appropriate state. 3075 * 3076 * We do this without the lock held, so that it can sleep if it needs to. 3077 */ 3078 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3079 { 3080 vm_fault_t ret; 3081 unsigned int old_flags = vmf->flags; 3082 3083 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3084 3085 if (vmf->vma->vm_file && 3086 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3087 return VM_FAULT_SIGBUS; 3088 3089 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3090 /* Restore original flags so that caller is not surprised */ 3091 vmf->flags = old_flags; 3092 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3093 return ret; 3094 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3095 folio_lock(folio); 3096 if (!folio->mapping) { 3097 folio_unlock(folio); 3098 return 0; /* retry */ 3099 } 3100 ret |= VM_FAULT_LOCKED; 3101 } else 3102 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3103 return ret; 3104 } 3105 3106 /* 3107 * Handle dirtying of a page in shared file mapping on a write fault. 3108 * 3109 * The function expects the page to be locked and unlocks it. 3110 */ 3111 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3112 { 3113 struct vm_area_struct *vma = vmf->vma; 3114 struct address_space *mapping; 3115 struct folio *folio = page_folio(vmf->page); 3116 bool dirtied; 3117 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3118 3119 dirtied = folio_mark_dirty(folio); 3120 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3121 /* 3122 * Take a local copy of the address_space - folio.mapping may be zeroed 3123 * by truncate after folio_unlock(). The address_space itself remains 3124 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3125 * release semantics to prevent the compiler from undoing this copying. 3126 */ 3127 mapping = folio_raw_mapping(folio); 3128 folio_unlock(folio); 3129 3130 if (!page_mkwrite) 3131 file_update_time(vma->vm_file); 3132 3133 /* 3134 * Throttle page dirtying rate down to writeback speed. 3135 * 3136 * mapping may be NULL here because some device drivers do not 3137 * set page.mapping but still dirty their pages 3138 * 3139 * Drop the mmap_lock before waiting on IO, if we can. The file 3140 * is pinning the mapping, as per above. 3141 */ 3142 if ((dirtied || page_mkwrite) && mapping) { 3143 struct file *fpin; 3144 3145 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3146 balance_dirty_pages_ratelimited(mapping); 3147 if (fpin) { 3148 fput(fpin); 3149 return VM_FAULT_COMPLETED; 3150 } 3151 } 3152 3153 return 0; 3154 } 3155 3156 /* 3157 * Handle write page faults for pages that can be reused in the current vma 3158 * 3159 * This can happen either due to the mapping being with the VM_SHARED flag, 3160 * or due to us being the last reference standing to the page. In either 3161 * case, all we need to do here is to mark the page as writable and update 3162 * any related book-keeping. 3163 */ 3164 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3165 __releases(vmf->ptl) 3166 { 3167 struct vm_area_struct *vma = vmf->vma; 3168 pte_t entry; 3169 3170 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3171 3172 if (folio) { 3173 VM_BUG_ON(folio_test_anon(folio) && 3174 !PageAnonExclusive(vmf->page)); 3175 /* 3176 * Clear the folio's cpupid information as the existing 3177 * information potentially belongs to a now completely 3178 * unrelated process. 3179 */ 3180 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3181 } 3182 3183 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3184 entry = pte_mkyoung(vmf->orig_pte); 3185 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3186 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3187 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3188 pte_unmap_unlock(vmf->pte, vmf->ptl); 3189 count_vm_event(PGREUSE); 3190 } 3191 3192 /* 3193 * We could add a bitflag somewhere, but for now, we know that all 3194 * vm_ops that have a ->map_pages have been audited and don't need 3195 * the mmap_lock to be held. 3196 */ 3197 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3198 { 3199 struct vm_area_struct *vma = vmf->vma; 3200 3201 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3202 return 0; 3203 vma_end_read(vma); 3204 return VM_FAULT_RETRY; 3205 } 3206 3207 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf) 3208 { 3209 struct vm_area_struct *vma = vmf->vma; 3210 3211 if (likely(vma->anon_vma)) 3212 return 0; 3213 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3214 vma_end_read(vma); 3215 return VM_FAULT_RETRY; 3216 } 3217 if (__anon_vma_prepare(vma)) 3218 return VM_FAULT_OOM; 3219 return 0; 3220 } 3221 3222 /* 3223 * Handle the case of a page which we actually need to copy to a new page, 3224 * either due to COW or unsharing. 3225 * 3226 * Called with mmap_lock locked and the old page referenced, but 3227 * without the ptl held. 3228 * 3229 * High level logic flow: 3230 * 3231 * - Allocate a page, copy the content of the old page to the new one. 3232 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3233 * - Take the PTL. If the pte changed, bail out and release the allocated page 3234 * - If the pte is still the way we remember it, update the page table and all 3235 * relevant references. This includes dropping the reference the page-table 3236 * held to the old page, as well as updating the rmap. 3237 * - In any case, unlock the PTL and drop the reference we took to the old page. 3238 */ 3239 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3240 { 3241 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3242 struct vm_area_struct *vma = vmf->vma; 3243 struct mm_struct *mm = vma->vm_mm; 3244 struct folio *old_folio = NULL; 3245 struct folio *new_folio = NULL; 3246 pte_t entry; 3247 int page_copied = 0; 3248 struct mmu_notifier_range range; 3249 vm_fault_t ret; 3250 bool pfn_is_zero; 3251 3252 delayacct_wpcopy_start(); 3253 3254 if (vmf->page) 3255 old_folio = page_folio(vmf->page); 3256 ret = vmf_anon_prepare(vmf); 3257 if (unlikely(ret)) 3258 goto out; 3259 3260 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3261 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3262 if (!new_folio) 3263 goto oom; 3264 3265 if (!pfn_is_zero) { 3266 int err; 3267 3268 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3269 if (err) { 3270 /* 3271 * COW failed, if the fault was solved by other, 3272 * it's fine. If not, userspace would re-fault on 3273 * the same address and we will handle the fault 3274 * from the second attempt. 3275 * The -EHWPOISON case will not be retried. 3276 */ 3277 folio_put(new_folio); 3278 if (old_folio) 3279 folio_put(old_folio); 3280 3281 delayacct_wpcopy_end(); 3282 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3283 } 3284 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3285 } 3286 3287 __folio_mark_uptodate(new_folio); 3288 3289 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3290 vmf->address & PAGE_MASK, 3291 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3292 mmu_notifier_invalidate_range_start(&range); 3293 3294 /* 3295 * Re-check the pte - we dropped the lock 3296 */ 3297 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3298 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3299 if (old_folio) { 3300 if (!folio_test_anon(old_folio)) { 3301 dec_mm_counter(mm, mm_counter_file(old_folio)); 3302 inc_mm_counter(mm, MM_ANONPAGES); 3303 } 3304 } else { 3305 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3306 inc_mm_counter(mm, MM_ANONPAGES); 3307 } 3308 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3309 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3310 entry = pte_sw_mkyoung(entry); 3311 if (unlikely(unshare)) { 3312 if (pte_soft_dirty(vmf->orig_pte)) 3313 entry = pte_mksoft_dirty(entry); 3314 if (pte_uffd_wp(vmf->orig_pte)) 3315 entry = pte_mkuffd_wp(entry); 3316 } else { 3317 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3318 } 3319 3320 /* 3321 * Clear the pte entry and flush it first, before updating the 3322 * pte with the new entry, to keep TLBs on different CPUs in 3323 * sync. This code used to set the new PTE then flush TLBs, but 3324 * that left a window where the new PTE could be loaded into 3325 * some TLBs while the old PTE remains in others. 3326 */ 3327 ptep_clear_flush(vma, vmf->address, vmf->pte); 3328 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3329 folio_add_lru_vma(new_folio, vma); 3330 /* 3331 * We call the notify macro here because, when using secondary 3332 * mmu page tables (such as kvm shadow page tables), we want the 3333 * new page to be mapped directly into the secondary page table. 3334 */ 3335 BUG_ON(unshare && pte_write(entry)); 3336 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3337 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3338 if (old_folio) { 3339 /* 3340 * Only after switching the pte to the new page may 3341 * we remove the mapcount here. Otherwise another 3342 * process may come and find the rmap count decremented 3343 * before the pte is switched to the new page, and 3344 * "reuse" the old page writing into it while our pte 3345 * here still points into it and can be read by other 3346 * threads. 3347 * 3348 * The critical issue is to order this 3349 * folio_remove_rmap_pte() with the ptp_clear_flush 3350 * above. Those stores are ordered by (if nothing else,) 3351 * the barrier present in the atomic_add_negative 3352 * in folio_remove_rmap_pte(); 3353 * 3354 * Then the TLB flush in ptep_clear_flush ensures that 3355 * no process can access the old page before the 3356 * decremented mapcount is visible. And the old page 3357 * cannot be reused until after the decremented 3358 * mapcount is visible. So transitively, TLBs to 3359 * old page will be flushed before it can be reused. 3360 */ 3361 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3362 } 3363 3364 /* Free the old page.. */ 3365 new_folio = old_folio; 3366 page_copied = 1; 3367 pte_unmap_unlock(vmf->pte, vmf->ptl); 3368 } else if (vmf->pte) { 3369 update_mmu_tlb(vma, vmf->address, vmf->pte); 3370 pte_unmap_unlock(vmf->pte, vmf->ptl); 3371 } 3372 3373 mmu_notifier_invalidate_range_end(&range); 3374 3375 if (new_folio) 3376 folio_put(new_folio); 3377 if (old_folio) { 3378 if (page_copied) 3379 free_swap_cache(old_folio); 3380 folio_put(old_folio); 3381 } 3382 3383 delayacct_wpcopy_end(); 3384 return 0; 3385 oom: 3386 ret = VM_FAULT_OOM; 3387 out: 3388 if (old_folio) 3389 folio_put(old_folio); 3390 3391 delayacct_wpcopy_end(); 3392 return ret; 3393 } 3394 3395 /** 3396 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3397 * writeable once the page is prepared 3398 * 3399 * @vmf: structure describing the fault 3400 * @folio: the folio of vmf->page 3401 * 3402 * This function handles all that is needed to finish a write page fault in a 3403 * shared mapping due to PTE being read-only once the mapped page is prepared. 3404 * It handles locking of PTE and modifying it. 3405 * 3406 * The function expects the page to be locked or other protection against 3407 * concurrent faults / writeback (such as DAX radix tree locks). 3408 * 3409 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3410 * we acquired PTE lock. 3411 */ 3412 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3413 { 3414 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3415 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3416 &vmf->ptl); 3417 if (!vmf->pte) 3418 return VM_FAULT_NOPAGE; 3419 /* 3420 * We might have raced with another page fault while we released the 3421 * pte_offset_map_lock. 3422 */ 3423 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3424 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3425 pte_unmap_unlock(vmf->pte, vmf->ptl); 3426 return VM_FAULT_NOPAGE; 3427 } 3428 wp_page_reuse(vmf, folio); 3429 return 0; 3430 } 3431 3432 /* 3433 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3434 * mapping 3435 */ 3436 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3437 { 3438 struct vm_area_struct *vma = vmf->vma; 3439 3440 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3441 vm_fault_t ret; 3442 3443 pte_unmap_unlock(vmf->pte, vmf->ptl); 3444 ret = vmf_can_call_fault(vmf); 3445 if (ret) 3446 return ret; 3447 3448 vmf->flags |= FAULT_FLAG_MKWRITE; 3449 ret = vma->vm_ops->pfn_mkwrite(vmf); 3450 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3451 return ret; 3452 return finish_mkwrite_fault(vmf, NULL); 3453 } 3454 wp_page_reuse(vmf, NULL); 3455 return 0; 3456 } 3457 3458 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3459 __releases(vmf->ptl) 3460 { 3461 struct vm_area_struct *vma = vmf->vma; 3462 vm_fault_t ret = 0; 3463 3464 folio_get(folio); 3465 3466 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3467 vm_fault_t tmp; 3468 3469 pte_unmap_unlock(vmf->pte, vmf->ptl); 3470 tmp = vmf_can_call_fault(vmf); 3471 if (tmp) { 3472 folio_put(folio); 3473 return tmp; 3474 } 3475 3476 tmp = do_page_mkwrite(vmf, folio); 3477 if (unlikely(!tmp || (tmp & 3478 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3479 folio_put(folio); 3480 return tmp; 3481 } 3482 tmp = finish_mkwrite_fault(vmf, folio); 3483 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3484 folio_unlock(folio); 3485 folio_put(folio); 3486 return tmp; 3487 } 3488 } else { 3489 wp_page_reuse(vmf, folio); 3490 folio_lock(folio); 3491 } 3492 ret |= fault_dirty_shared_page(vmf); 3493 folio_put(folio); 3494 3495 return ret; 3496 } 3497 3498 static bool wp_can_reuse_anon_folio(struct folio *folio, 3499 struct vm_area_struct *vma) 3500 { 3501 /* 3502 * We could currently only reuse a subpage of a large folio if no 3503 * other subpages of the large folios are still mapped. However, 3504 * let's just consistently not reuse subpages even if we could 3505 * reuse in that scenario, and give back a large folio a bit 3506 * sooner. 3507 */ 3508 if (folio_test_large(folio)) 3509 return false; 3510 3511 /* 3512 * We have to verify under folio lock: these early checks are 3513 * just an optimization to avoid locking the folio and freeing 3514 * the swapcache if there is little hope that we can reuse. 3515 * 3516 * KSM doesn't necessarily raise the folio refcount. 3517 */ 3518 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3519 return false; 3520 if (!folio_test_lru(folio)) 3521 /* 3522 * We cannot easily detect+handle references from 3523 * remote LRU caches or references to LRU folios. 3524 */ 3525 lru_add_drain(); 3526 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3527 return false; 3528 if (!folio_trylock(folio)) 3529 return false; 3530 if (folio_test_swapcache(folio)) 3531 folio_free_swap(folio); 3532 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3533 folio_unlock(folio); 3534 return false; 3535 } 3536 /* 3537 * Ok, we've got the only folio reference from our mapping 3538 * and the folio is locked, it's dark out, and we're wearing 3539 * sunglasses. Hit it. 3540 */ 3541 folio_move_anon_rmap(folio, vma); 3542 folio_unlock(folio); 3543 return true; 3544 } 3545 3546 /* 3547 * This routine handles present pages, when 3548 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3549 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3550 * (FAULT_FLAG_UNSHARE) 3551 * 3552 * It is done by copying the page to a new address and decrementing the 3553 * shared-page counter for the old page. 3554 * 3555 * Note that this routine assumes that the protection checks have been 3556 * done by the caller (the low-level page fault routine in most cases). 3557 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3558 * done any necessary COW. 3559 * 3560 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3561 * though the page will change only once the write actually happens. This 3562 * avoids a few races, and potentially makes it more efficient. 3563 * 3564 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3565 * but allow concurrent faults), with pte both mapped and locked. 3566 * We return with mmap_lock still held, but pte unmapped and unlocked. 3567 */ 3568 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3569 __releases(vmf->ptl) 3570 { 3571 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3572 struct vm_area_struct *vma = vmf->vma; 3573 struct folio *folio = NULL; 3574 pte_t pte; 3575 3576 if (likely(!unshare)) { 3577 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3578 if (!userfaultfd_wp_async(vma)) { 3579 pte_unmap_unlock(vmf->pte, vmf->ptl); 3580 return handle_userfault(vmf, VM_UFFD_WP); 3581 } 3582 3583 /* 3584 * Nothing needed (cache flush, TLB invalidations, 3585 * etc.) because we're only removing the uffd-wp bit, 3586 * which is completely invisible to the user. 3587 */ 3588 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3589 3590 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3591 /* 3592 * Update this to be prepared for following up CoW 3593 * handling 3594 */ 3595 vmf->orig_pte = pte; 3596 } 3597 3598 /* 3599 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3600 * is flushed in this case before copying. 3601 */ 3602 if (unlikely(userfaultfd_wp(vmf->vma) && 3603 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3604 flush_tlb_page(vmf->vma, vmf->address); 3605 } 3606 3607 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3608 3609 if (vmf->page) 3610 folio = page_folio(vmf->page); 3611 3612 /* 3613 * Shared mapping: we are guaranteed to have VM_WRITE and 3614 * FAULT_FLAG_WRITE set at this point. 3615 */ 3616 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3617 /* 3618 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3619 * VM_PFNMAP VMA. 3620 * 3621 * We should not cow pages in a shared writeable mapping. 3622 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3623 */ 3624 if (!vmf->page) 3625 return wp_pfn_shared(vmf); 3626 return wp_page_shared(vmf, folio); 3627 } 3628 3629 /* 3630 * Private mapping: create an exclusive anonymous page copy if reuse 3631 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3632 * 3633 * If we encounter a page that is marked exclusive, we must reuse 3634 * the page without further checks. 3635 */ 3636 if (folio && folio_test_anon(folio) && 3637 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3638 if (!PageAnonExclusive(vmf->page)) 3639 SetPageAnonExclusive(vmf->page); 3640 if (unlikely(unshare)) { 3641 pte_unmap_unlock(vmf->pte, vmf->ptl); 3642 return 0; 3643 } 3644 wp_page_reuse(vmf, folio); 3645 return 0; 3646 } 3647 /* 3648 * Ok, we need to copy. Oh, well.. 3649 */ 3650 if (folio) 3651 folio_get(folio); 3652 3653 pte_unmap_unlock(vmf->pte, vmf->ptl); 3654 #ifdef CONFIG_KSM 3655 if (folio && folio_test_ksm(folio)) 3656 count_vm_event(COW_KSM); 3657 #endif 3658 return wp_page_copy(vmf); 3659 } 3660 3661 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3662 unsigned long start_addr, unsigned long end_addr, 3663 struct zap_details *details) 3664 { 3665 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3666 } 3667 3668 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3669 pgoff_t first_index, 3670 pgoff_t last_index, 3671 struct zap_details *details) 3672 { 3673 struct vm_area_struct *vma; 3674 pgoff_t vba, vea, zba, zea; 3675 3676 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3677 vba = vma->vm_pgoff; 3678 vea = vba + vma_pages(vma) - 1; 3679 zba = max(first_index, vba); 3680 zea = min(last_index, vea); 3681 3682 unmap_mapping_range_vma(vma, 3683 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3684 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3685 details); 3686 } 3687 } 3688 3689 /** 3690 * unmap_mapping_folio() - Unmap single folio from processes. 3691 * @folio: The locked folio to be unmapped. 3692 * 3693 * Unmap this folio from any userspace process which still has it mmaped. 3694 * Typically, for efficiency, the range of nearby pages has already been 3695 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3696 * truncation or invalidation holds the lock on a folio, it may find that 3697 * the page has been remapped again: and then uses unmap_mapping_folio() 3698 * to unmap it finally. 3699 */ 3700 void unmap_mapping_folio(struct folio *folio) 3701 { 3702 struct address_space *mapping = folio->mapping; 3703 struct zap_details details = { }; 3704 pgoff_t first_index; 3705 pgoff_t last_index; 3706 3707 VM_BUG_ON(!folio_test_locked(folio)); 3708 3709 first_index = folio->index; 3710 last_index = folio_next_index(folio) - 1; 3711 3712 details.even_cows = false; 3713 details.single_folio = folio; 3714 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3715 3716 i_mmap_lock_read(mapping); 3717 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3718 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3719 last_index, &details); 3720 i_mmap_unlock_read(mapping); 3721 } 3722 3723 /** 3724 * unmap_mapping_pages() - Unmap pages from processes. 3725 * @mapping: The address space containing pages to be unmapped. 3726 * @start: Index of first page to be unmapped. 3727 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3728 * @even_cows: Whether to unmap even private COWed pages. 3729 * 3730 * Unmap the pages in this address space from any userspace process which 3731 * has them mmaped. Generally, you want to remove COWed pages as well when 3732 * a file is being truncated, but not when invalidating pages from the page 3733 * cache. 3734 */ 3735 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3736 pgoff_t nr, bool even_cows) 3737 { 3738 struct zap_details details = { }; 3739 pgoff_t first_index = start; 3740 pgoff_t last_index = start + nr - 1; 3741 3742 details.even_cows = even_cows; 3743 if (last_index < first_index) 3744 last_index = ULONG_MAX; 3745 3746 i_mmap_lock_read(mapping); 3747 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3748 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3749 last_index, &details); 3750 i_mmap_unlock_read(mapping); 3751 } 3752 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3753 3754 /** 3755 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3756 * address_space corresponding to the specified byte range in the underlying 3757 * file. 3758 * 3759 * @mapping: the address space containing mmaps to be unmapped. 3760 * @holebegin: byte in first page to unmap, relative to the start of 3761 * the underlying file. This will be rounded down to a PAGE_SIZE 3762 * boundary. Note that this is different from truncate_pagecache(), which 3763 * must keep the partial page. In contrast, we must get rid of 3764 * partial pages. 3765 * @holelen: size of prospective hole in bytes. This will be rounded 3766 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3767 * end of the file. 3768 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3769 * but 0 when invalidating pagecache, don't throw away private data. 3770 */ 3771 void unmap_mapping_range(struct address_space *mapping, 3772 loff_t const holebegin, loff_t const holelen, int even_cows) 3773 { 3774 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3775 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3776 3777 /* Check for overflow. */ 3778 if (sizeof(holelen) > sizeof(hlen)) { 3779 long long holeend = 3780 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3781 if (holeend & ~(long long)ULONG_MAX) 3782 hlen = ULONG_MAX - hba + 1; 3783 } 3784 3785 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3786 } 3787 EXPORT_SYMBOL(unmap_mapping_range); 3788 3789 /* 3790 * Restore a potential device exclusive pte to a working pte entry 3791 */ 3792 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3793 { 3794 struct folio *folio = page_folio(vmf->page); 3795 struct vm_area_struct *vma = vmf->vma; 3796 struct mmu_notifier_range range; 3797 vm_fault_t ret; 3798 3799 /* 3800 * We need a reference to lock the folio because we don't hold 3801 * the PTL so a racing thread can remove the device-exclusive 3802 * entry and unmap it. If the folio is free the entry must 3803 * have been removed already. If it happens to have already 3804 * been re-allocated after being freed all we do is lock and 3805 * unlock it. 3806 */ 3807 if (!folio_try_get(folio)) 3808 return 0; 3809 3810 ret = folio_lock_or_retry(folio, vmf); 3811 if (ret) { 3812 folio_put(folio); 3813 return ret; 3814 } 3815 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3816 vma->vm_mm, vmf->address & PAGE_MASK, 3817 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3818 mmu_notifier_invalidate_range_start(&range); 3819 3820 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3821 &vmf->ptl); 3822 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3823 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3824 3825 if (vmf->pte) 3826 pte_unmap_unlock(vmf->pte, vmf->ptl); 3827 folio_unlock(folio); 3828 folio_put(folio); 3829 3830 mmu_notifier_invalidate_range_end(&range); 3831 return 0; 3832 } 3833 3834 static inline bool should_try_to_free_swap(struct folio *folio, 3835 struct vm_area_struct *vma, 3836 unsigned int fault_flags) 3837 { 3838 if (!folio_test_swapcache(folio)) 3839 return false; 3840 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3841 folio_test_mlocked(folio)) 3842 return true; 3843 /* 3844 * If we want to map a page that's in the swapcache writable, we 3845 * have to detect via the refcount if we're really the exclusive 3846 * user. Try freeing the swapcache to get rid of the swapcache 3847 * reference only in case it's likely that we'll be the exlusive user. 3848 */ 3849 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3850 folio_ref_count(folio) == 2; 3851 } 3852 3853 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3854 { 3855 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3856 vmf->address, &vmf->ptl); 3857 if (!vmf->pte) 3858 return 0; 3859 /* 3860 * Be careful so that we will only recover a special uffd-wp pte into a 3861 * none pte. Otherwise it means the pte could have changed, so retry. 3862 * 3863 * This should also cover the case where e.g. the pte changed 3864 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3865 * So is_pte_marker() check is not enough to safely drop the pte. 3866 */ 3867 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3868 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3869 pte_unmap_unlock(vmf->pte, vmf->ptl); 3870 return 0; 3871 } 3872 3873 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3874 { 3875 if (vma_is_anonymous(vmf->vma)) 3876 return do_anonymous_page(vmf); 3877 else 3878 return do_fault(vmf); 3879 } 3880 3881 /* 3882 * This is actually a page-missing access, but with uffd-wp special pte 3883 * installed. It means this pte was wr-protected before being unmapped. 3884 */ 3885 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3886 { 3887 /* 3888 * Just in case there're leftover special ptes even after the region 3889 * got unregistered - we can simply clear them. 3890 */ 3891 if (unlikely(!userfaultfd_wp(vmf->vma))) 3892 return pte_marker_clear(vmf); 3893 3894 return do_pte_missing(vmf); 3895 } 3896 3897 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3898 { 3899 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3900 unsigned long marker = pte_marker_get(entry); 3901 3902 /* 3903 * PTE markers should never be empty. If anything weird happened, 3904 * the best thing to do is to kill the process along with its mm. 3905 */ 3906 if (WARN_ON_ONCE(!marker)) 3907 return VM_FAULT_SIGBUS; 3908 3909 /* Higher priority than uffd-wp when data corrupted */ 3910 if (marker & PTE_MARKER_POISONED) 3911 return VM_FAULT_HWPOISON; 3912 3913 if (pte_marker_entry_uffd_wp(entry)) 3914 return pte_marker_handle_uffd_wp(vmf); 3915 3916 /* This is an unknown pte marker */ 3917 return VM_FAULT_SIGBUS; 3918 } 3919 3920 /* 3921 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3922 * but allow concurrent faults), and pte mapped but not yet locked. 3923 * We return with pte unmapped and unlocked. 3924 * 3925 * We return with the mmap_lock locked or unlocked in the same cases 3926 * as does filemap_fault(). 3927 */ 3928 vm_fault_t do_swap_page(struct vm_fault *vmf) 3929 { 3930 struct vm_area_struct *vma = vmf->vma; 3931 struct folio *swapcache, *folio = NULL; 3932 struct page *page; 3933 struct swap_info_struct *si = NULL; 3934 rmap_t rmap_flags = RMAP_NONE; 3935 bool need_clear_cache = false; 3936 bool exclusive = false; 3937 swp_entry_t entry; 3938 pte_t pte; 3939 vm_fault_t ret = 0; 3940 void *shadow = NULL; 3941 3942 if (!pte_unmap_same(vmf)) 3943 goto out; 3944 3945 entry = pte_to_swp_entry(vmf->orig_pte); 3946 if (unlikely(non_swap_entry(entry))) { 3947 if (is_migration_entry(entry)) { 3948 migration_entry_wait(vma->vm_mm, vmf->pmd, 3949 vmf->address); 3950 } else if (is_device_exclusive_entry(entry)) { 3951 vmf->page = pfn_swap_entry_to_page(entry); 3952 ret = remove_device_exclusive_entry(vmf); 3953 } else if (is_device_private_entry(entry)) { 3954 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3955 /* 3956 * migrate_to_ram is not yet ready to operate 3957 * under VMA lock. 3958 */ 3959 vma_end_read(vma); 3960 ret = VM_FAULT_RETRY; 3961 goto out; 3962 } 3963 3964 vmf->page = pfn_swap_entry_to_page(entry); 3965 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3966 vmf->address, &vmf->ptl); 3967 if (unlikely(!vmf->pte || 3968 !pte_same(ptep_get(vmf->pte), 3969 vmf->orig_pte))) 3970 goto unlock; 3971 3972 /* 3973 * Get a page reference while we know the page can't be 3974 * freed. 3975 */ 3976 get_page(vmf->page); 3977 pte_unmap_unlock(vmf->pte, vmf->ptl); 3978 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3979 put_page(vmf->page); 3980 } else if (is_hwpoison_entry(entry)) { 3981 ret = VM_FAULT_HWPOISON; 3982 } else if (is_pte_marker_entry(entry)) { 3983 ret = handle_pte_marker(vmf); 3984 } else { 3985 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3986 ret = VM_FAULT_SIGBUS; 3987 } 3988 goto out; 3989 } 3990 3991 /* Prevent swapoff from happening to us. */ 3992 si = get_swap_device(entry); 3993 if (unlikely(!si)) 3994 goto out; 3995 3996 folio = swap_cache_get_folio(entry, vma, vmf->address); 3997 if (folio) 3998 page = folio_file_page(folio, swp_offset(entry)); 3999 swapcache = folio; 4000 4001 if (!folio) { 4002 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4003 __swap_count(entry) == 1) { 4004 /* 4005 * Prevent parallel swapin from proceeding with 4006 * the cache flag. Otherwise, another thread may 4007 * finish swapin first, free the entry, and swapout 4008 * reusing the same entry. It's undetectable as 4009 * pte_same() returns true due to entry reuse. 4010 */ 4011 if (swapcache_prepare(entry)) { 4012 /* Relax a bit to prevent rapid repeated page faults */ 4013 schedule_timeout_uninterruptible(1); 4014 goto out; 4015 } 4016 need_clear_cache = true; 4017 4018 /* skip swapcache */ 4019 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 4020 vma, vmf->address, false); 4021 page = &folio->page; 4022 if (folio) { 4023 __folio_set_locked(folio); 4024 __folio_set_swapbacked(folio); 4025 4026 if (mem_cgroup_swapin_charge_folio(folio, 4027 vma->vm_mm, GFP_KERNEL, 4028 entry)) { 4029 ret = VM_FAULT_OOM; 4030 goto out_page; 4031 } 4032 mem_cgroup_swapin_uncharge_swap(entry); 4033 4034 shadow = get_shadow_from_swap_cache(entry); 4035 if (shadow) 4036 workingset_refault(folio, shadow); 4037 4038 folio_add_lru(folio); 4039 4040 /* To provide entry to swap_read_folio() */ 4041 folio->swap = entry; 4042 swap_read_folio(folio, true, NULL); 4043 folio->private = NULL; 4044 } 4045 } else { 4046 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4047 vmf); 4048 if (page) 4049 folio = page_folio(page); 4050 swapcache = folio; 4051 } 4052 4053 if (!folio) { 4054 /* 4055 * Back out if somebody else faulted in this pte 4056 * while we released the pte lock. 4057 */ 4058 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4059 vmf->address, &vmf->ptl); 4060 if (likely(vmf->pte && 4061 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4062 ret = VM_FAULT_OOM; 4063 goto unlock; 4064 } 4065 4066 /* Had to read the page from swap area: Major fault */ 4067 ret = VM_FAULT_MAJOR; 4068 count_vm_event(PGMAJFAULT); 4069 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4070 } else if (PageHWPoison(page)) { 4071 /* 4072 * hwpoisoned dirty swapcache pages are kept for killing 4073 * owner processes (which may be unknown at hwpoison time) 4074 */ 4075 ret = VM_FAULT_HWPOISON; 4076 goto out_release; 4077 } 4078 4079 ret |= folio_lock_or_retry(folio, vmf); 4080 if (ret & VM_FAULT_RETRY) 4081 goto out_release; 4082 4083 if (swapcache) { 4084 /* 4085 * Make sure folio_free_swap() or swapoff did not release the 4086 * swapcache from under us. The page pin, and pte_same test 4087 * below, are not enough to exclude that. Even if it is still 4088 * swapcache, we need to check that the page's swap has not 4089 * changed. 4090 */ 4091 if (unlikely(!folio_test_swapcache(folio) || 4092 page_swap_entry(page).val != entry.val)) 4093 goto out_page; 4094 4095 /* 4096 * KSM sometimes has to copy on read faults, for example, if 4097 * page->index of !PageKSM() pages would be nonlinear inside the 4098 * anon VMA -- PageKSM() is lost on actual swapout. 4099 */ 4100 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4101 if (unlikely(!folio)) { 4102 ret = VM_FAULT_OOM; 4103 folio = swapcache; 4104 goto out_page; 4105 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4106 ret = VM_FAULT_HWPOISON; 4107 folio = swapcache; 4108 goto out_page; 4109 } 4110 if (folio != swapcache) 4111 page = folio_page(folio, 0); 4112 4113 /* 4114 * If we want to map a page that's in the swapcache writable, we 4115 * have to detect via the refcount if we're really the exclusive 4116 * owner. Try removing the extra reference from the local LRU 4117 * caches if required. 4118 */ 4119 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4120 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4121 lru_add_drain(); 4122 } 4123 4124 folio_throttle_swaprate(folio, GFP_KERNEL); 4125 4126 /* 4127 * Back out if somebody else already faulted in this pte. 4128 */ 4129 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4130 &vmf->ptl); 4131 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4132 goto out_nomap; 4133 4134 if (unlikely(!folio_test_uptodate(folio))) { 4135 ret = VM_FAULT_SIGBUS; 4136 goto out_nomap; 4137 } 4138 4139 /* 4140 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4141 * must never point at an anonymous page in the swapcache that is 4142 * PG_anon_exclusive. Sanity check that this holds and especially, that 4143 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4144 * check after taking the PT lock and making sure that nobody 4145 * concurrently faulted in this page and set PG_anon_exclusive. 4146 */ 4147 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4148 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4149 4150 /* 4151 * Check under PT lock (to protect against concurrent fork() sharing 4152 * the swap entry concurrently) for certainly exclusive pages. 4153 */ 4154 if (!folio_test_ksm(folio)) { 4155 exclusive = pte_swp_exclusive(vmf->orig_pte); 4156 if (folio != swapcache) { 4157 /* 4158 * We have a fresh page that is not exposed to the 4159 * swapcache -> certainly exclusive. 4160 */ 4161 exclusive = true; 4162 } else if (exclusive && folio_test_writeback(folio) && 4163 data_race(si->flags & SWP_STABLE_WRITES)) { 4164 /* 4165 * This is tricky: not all swap backends support 4166 * concurrent page modifications while under writeback. 4167 * 4168 * So if we stumble over such a page in the swapcache 4169 * we must not set the page exclusive, otherwise we can 4170 * map it writable without further checks and modify it 4171 * while still under writeback. 4172 * 4173 * For these problematic swap backends, simply drop the 4174 * exclusive marker: this is perfectly fine as we start 4175 * writeback only if we fully unmapped the page and 4176 * there are no unexpected references on the page after 4177 * unmapping succeeded. After fully unmapped, no 4178 * further GUP references (FOLL_GET and FOLL_PIN) can 4179 * appear, so dropping the exclusive marker and mapping 4180 * it only R/O is fine. 4181 */ 4182 exclusive = false; 4183 } 4184 } 4185 4186 /* 4187 * Some architectures may have to restore extra metadata to the page 4188 * when reading from swap. This metadata may be indexed by swap entry 4189 * so this must be called before swap_free(). 4190 */ 4191 arch_swap_restore(entry, folio); 4192 4193 /* 4194 * Remove the swap entry and conditionally try to free up the swapcache. 4195 * We're already holding a reference on the page but haven't mapped it 4196 * yet. 4197 */ 4198 swap_free(entry); 4199 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4200 folio_free_swap(folio); 4201 4202 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4203 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 4204 pte = mk_pte(page, vma->vm_page_prot); 4205 4206 /* 4207 * Same logic as in do_wp_page(); however, optimize for pages that are 4208 * certainly not shared either because we just allocated them without 4209 * exposing them to the swapcache or because the swap entry indicates 4210 * exclusivity. 4211 */ 4212 if (!folio_test_ksm(folio) && 4213 (exclusive || folio_ref_count(folio) == 1)) { 4214 if (vmf->flags & FAULT_FLAG_WRITE) { 4215 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 4216 vmf->flags &= ~FAULT_FLAG_WRITE; 4217 } 4218 rmap_flags |= RMAP_EXCLUSIVE; 4219 } 4220 flush_icache_page(vma, page); 4221 if (pte_swp_soft_dirty(vmf->orig_pte)) 4222 pte = pte_mksoft_dirty(pte); 4223 if (pte_swp_uffd_wp(vmf->orig_pte)) 4224 pte = pte_mkuffd_wp(pte); 4225 vmf->orig_pte = pte; 4226 4227 /* ksm created a completely new copy */ 4228 if (unlikely(folio != swapcache && swapcache)) { 4229 folio_add_new_anon_rmap(folio, vma, vmf->address); 4230 folio_add_lru_vma(folio, vma); 4231 } else { 4232 folio_add_anon_rmap_pte(folio, page, vma, vmf->address, 4233 rmap_flags); 4234 } 4235 4236 VM_BUG_ON(!folio_test_anon(folio) || 4237 (pte_write(pte) && !PageAnonExclusive(page))); 4238 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4239 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 4240 4241 folio_unlock(folio); 4242 if (folio != swapcache && swapcache) { 4243 /* 4244 * Hold the lock to avoid the swap entry to be reused 4245 * until we take the PT lock for the pte_same() check 4246 * (to avoid false positives from pte_same). For 4247 * further safety release the lock after the swap_free 4248 * so that the swap count won't change under a 4249 * parallel locked swapcache. 4250 */ 4251 folio_unlock(swapcache); 4252 folio_put(swapcache); 4253 } 4254 4255 if (vmf->flags & FAULT_FLAG_WRITE) { 4256 ret |= do_wp_page(vmf); 4257 if (ret & VM_FAULT_ERROR) 4258 ret &= VM_FAULT_ERROR; 4259 goto out; 4260 } 4261 4262 /* No need to invalidate - it was non-present before */ 4263 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4264 unlock: 4265 if (vmf->pte) 4266 pte_unmap_unlock(vmf->pte, vmf->ptl); 4267 out: 4268 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4269 if (need_clear_cache) 4270 swapcache_clear(si, entry); 4271 if (si) 4272 put_swap_device(si); 4273 return ret; 4274 out_nomap: 4275 if (vmf->pte) 4276 pte_unmap_unlock(vmf->pte, vmf->ptl); 4277 out_page: 4278 folio_unlock(folio); 4279 out_release: 4280 folio_put(folio); 4281 if (folio != swapcache && swapcache) { 4282 folio_unlock(swapcache); 4283 folio_put(swapcache); 4284 } 4285 if (need_clear_cache) 4286 swapcache_clear(si, entry); 4287 if (si) 4288 put_swap_device(si); 4289 return ret; 4290 } 4291 4292 static bool pte_range_none(pte_t *pte, int nr_pages) 4293 { 4294 int i; 4295 4296 for (i = 0; i < nr_pages; i++) { 4297 if (!pte_none(ptep_get_lockless(pte + i))) 4298 return false; 4299 } 4300 4301 return true; 4302 } 4303 4304 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4305 { 4306 struct vm_area_struct *vma = vmf->vma; 4307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4308 unsigned long orders; 4309 struct folio *folio; 4310 unsigned long addr; 4311 pte_t *pte; 4312 gfp_t gfp; 4313 int order; 4314 4315 /* 4316 * If uffd is active for the vma we need per-page fault fidelity to 4317 * maintain the uffd semantics. 4318 */ 4319 if (unlikely(userfaultfd_armed(vma))) 4320 goto fallback; 4321 4322 /* 4323 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4324 * for this vma. Then filter out the orders that can't be allocated over 4325 * the faulting address and still be fully contained in the vma. 4326 */ 4327 orders = thp_vma_allowable_orders(vma, vma->vm_flags, false, true, true, 4328 BIT(PMD_ORDER) - 1); 4329 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4330 4331 if (!orders) 4332 goto fallback; 4333 4334 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4335 if (!pte) 4336 return ERR_PTR(-EAGAIN); 4337 4338 /* 4339 * Find the highest order where the aligned range is completely 4340 * pte_none(). Note that all remaining orders will be completely 4341 * pte_none(). 4342 */ 4343 order = highest_order(orders); 4344 while (orders) { 4345 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4346 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4347 break; 4348 order = next_order(&orders, order); 4349 } 4350 4351 pte_unmap(pte); 4352 4353 /* Try allocating the highest of the remaining orders. */ 4354 gfp = vma_thp_gfp_mask(vma); 4355 while (orders) { 4356 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4357 folio = vma_alloc_folio(gfp, order, vma, addr, true); 4358 if (folio) { 4359 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4360 folio_put(folio); 4361 goto next; 4362 } 4363 folio_throttle_swaprate(folio, gfp); 4364 clear_huge_page(&folio->page, vmf->address, 1 << order); 4365 return folio; 4366 } 4367 next: 4368 order = next_order(&orders, order); 4369 } 4370 4371 fallback: 4372 #endif 4373 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4374 } 4375 4376 /* 4377 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4378 * but allow concurrent faults), and pte mapped but not yet locked. 4379 * We return with mmap_lock still held, but pte unmapped and unlocked. 4380 */ 4381 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4382 { 4383 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4384 struct vm_area_struct *vma = vmf->vma; 4385 unsigned long addr = vmf->address; 4386 struct folio *folio; 4387 vm_fault_t ret = 0; 4388 int nr_pages = 1; 4389 pte_t entry; 4390 int i; 4391 4392 /* File mapping without ->vm_ops ? */ 4393 if (vma->vm_flags & VM_SHARED) 4394 return VM_FAULT_SIGBUS; 4395 4396 /* 4397 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4398 * be distinguished from a transient failure of pte_offset_map(). 4399 */ 4400 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4401 return VM_FAULT_OOM; 4402 4403 /* Use the zero-page for reads */ 4404 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4405 !mm_forbids_zeropage(vma->vm_mm)) { 4406 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4407 vma->vm_page_prot)); 4408 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4409 vmf->address, &vmf->ptl); 4410 if (!vmf->pte) 4411 goto unlock; 4412 if (vmf_pte_changed(vmf)) { 4413 update_mmu_tlb(vma, vmf->address, vmf->pte); 4414 goto unlock; 4415 } 4416 ret = check_stable_address_space(vma->vm_mm); 4417 if (ret) 4418 goto unlock; 4419 /* Deliver the page fault to userland, check inside PT lock */ 4420 if (userfaultfd_missing(vma)) { 4421 pte_unmap_unlock(vmf->pte, vmf->ptl); 4422 return handle_userfault(vmf, VM_UFFD_MISSING); 4423 } 4424 goto setpte; 4425 } 4426 4427 /* Allocate our own private page. */ 4428 if (unlikely(anon_vma_prepare(vma))) 4429 goto oom; 4430 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 4431 folio = alloc_anon_folio(vmf); 4432 if (IS_ERR(folio)) 4433 return 0; 4434 if (!folio) 4435 goto oom; 4436 4437 nr_pages = folio_nr_pages(folio); 4438 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4439 4440 /* 4441 * The memory barrier inside __folio_mark_uptodate makes sure that 4442 * preceding stores to the page contents become visible before 4443 * the set_pte_at() write. 4444 */ 4445 __folio_mark_uptodate(folio); 4446 4447 entry = mk_pte(&folio->page, vma->vm_page_prot); 4448 entry = pte_sw_mkyoung(entry); 4449 if (vma->vm_flags & VM_WRITE) 4450 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4451 4452 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 4453 if (!vmf->pte) 4454 goto release; 4455 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 4456 update_mmu_tlb(vma, addr, vmf->pte); 4457 goto release; 4458 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 4459 for (i = 0; i < nr_pages; i++) 4460 update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i); 4461 goto release; 4462 } 4463 4464 ret = check_stable_address_space(vma->vm_mm); 4465 if (ret) 4466 goto release; 4467 4468 /* Deliver the page fault to userland, check inside PT lock */ 4469 if (userfaultfd_missing(vma)) { 4470 pte_unmap_unlock(vmf->pte, vmf->ptl); 4471 folio_put(folio); 4472 return handle_userfault(vmf, VM_UFFD_MISSING); 4473 } 4474 4475 folio_ref_add(folio, nr_pages - 1); 4476 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4477 folio_add_new_anon_rmap(folio, vma, addr); 4478 folio_add_lru_vma(folio, vma); 4479 setpte: 4480 if (uffd_wp) 4481 entry = pte_mkuffd_wp(entry); 4482 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 4483 4484 /* No need to invalidate - it was non-present before */ 4485 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 4486 unlock: 4487 if (vmf->pte) 4488 pte_unmap_unlock(vmf->pte, vmf->ptl); 4489 return ret; 4490 release: 4491 folio_put(folio); 4492 goto unlock; 4493 oom: 4494 return VM_FAULT_OOM; 4495 } 4496 4497 /* 4498 * The mmap_lock must have been held on entry, and may have been 4499 * released depending on flags and vma->vm_ops->fault() return value. 4500 * See filemap_fault() and __lock_page_retry(). 4501 */ 4502 static vm_fault_t __do_fault(struct vm_fault *vmf) 4503 { 4504 struct vm_area_struct *vma = vmf->vma; 4505 struct folio *folio; 4506 vm_fault_t ret; 4507 4508 /* 4509 * Preallocate pte before we take page_lock because this might lead to 4510 * deadlocks for memcg reclaim which waits for pages under writeback: 4511 * lock_page(A) 4512 * SetPageWriteback(A) 4513 * unlock_page(A) 4514 * lock_page(B) 4515 * lock_page(B) 4516 * pte_alloc_one 4517 * shrink_page_list 4518 * wait_on_page_writeback(A) 4519 * SetPageWriteback(B) 4520 * unlock_page(B) 4521 * # flush A, B to clear the writeback 4522 */ 4523 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4524 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4525 if (!vmf->prealloc_pte) 4526 return VM_FAULT_OOM; 4527 } 4528 4529 ret = vma->vm_ops->fault(vmf); 4530 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4531 VM_FAULT_DONE_COW))) 4532 return ret; 4533 4534 folio = page_folio(vmf->page); 4535 if (unlikely(PageHWPoison(vmf->page))) { 4536 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4537 if (ret & VM_FAULT_LOCKED) { 4538 if (page_mapped(vmf->page)) 4539 unmap_mapping_folio(folio); 4540 /* Retry if a clean folio was removed from the cache. */ 4541 if (mapping_evict_folio(folio->mapping, folio)) 4542 poisonret = VM_FAULT_NOPAGE; 4543 folio_unlock(folio); 4544 } 4545 folio_put(folio); 4546 vmf->page = NULL; 4547 return poisonret; 4548 } 4549 4550 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4551 folio_lock(folio); 4552 else 4553 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 4554 4555 return ret; 4556 } 4557 4558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4559 static void deposit_prealloc_pte(struct vm_fault *vmf) 4560 { 4561 struct vm_area_struct *vma = vmf->vma; 4562 4563 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4564 /* 4565 * We are going to consume the prealloc table, 4566 * count that as nr_ptes. 4567 */ 4568 mm_inc_nr_ptes(vma->vm_mm); 4569 vmf->prealloc_pte = NULL; 4570 } 4571 4572 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4573 { 4574 struct folio *folio = page_folio(page); 4575 struct vm_area_struct *vma = vmf->vma; 4576 bool write = vmf->flags & FAULT_FLAG_WRITE; 4577 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4578 pmd_t entry; 4579 vm_fault_t ret = VM_FAULT_FALLBACK; 4580 4581 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 4582 return ret; 4583 4584 if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER) 4585 return ret; 4586 4587 /* 4588 * Just backoff if any subpage of a THP is corrupted otherwise 4589 * the corrupted page may mapped by PMD silently to escape the 4590 * check. This kind of THP just can be PTE mapped. Access to 4591 * the corrupted subpage should trigger SIGBUS as expected. 4592 */ 4593 if (unlikely(folio_test_has_hwpoisoned(folio))) 4594 return ret; 4595 4596 /* 4597 * Archs like ppc64 need additional space to store information 4598 * related to pte entry. Use the preallocated table for that. 4599 */ 4600 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4601 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4602 if (!vmf->prealloc_pte) 4603 return VM_FAULT_OOM; 4604 } 4605 4606 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4607 if (unlikely(!pmd_none(*vmf->pmd))) 4608 goto out; 4609 4610 flush_icache_pages(vma, page, HPAGE_PMD_NR); 4611 4612 entry = mk_huge_pmd(page, vma->vm_page_prot); 4613 if (write) 4614 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4615 4616 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 4617 folio_add_file_rmap_pmd(folio, page, vma); 4618 4619 /* 4620 * deposit and withdraw with pmd lock held 4621 */ 4622 if (arch_needs_pgtable_deposit()) 4623 deposit_prealloc_pte(vmf); 4624 4625 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4626 4627 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4628 4629 /* fault is handled */ 4630 ret = 0; 4631 count_vm_event(THP_FILE_MAPPED); 4632 out: 4633 spin_unlock(vmf->ptl); 4634 return ret; 4635 } 4636 #else 4637 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4638 { 4639 return VM_FAULT_FALLBACK; 4640 } 4641 #endif 4642 4643 /** 4644 * set_pte_range - Set a range of PTEs to point to pages in a folio. 4645 * @vmf: Fault decription. 4646 * @folio: The folio that contains @page. 4647 * @page: The first page to create a PTE for. 4648 * @nr: The number of PTEs to create. 4649 * @addr: The first address to create a PTE for. 4650 */ 4651 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 4652 struct page *page, unsigned int nr, unsigned long addr) 4653 { 4654 struct vm_area_struct *vma = vmf->vma; 4655 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4656 bool write = vmf->flags & FAULT_FLAG_WRITE; 4657 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE); 4658 pte_t entry; 4659 4660 flush_icache_pages(vma, page, nr); 4661 entry = mk_pte(page, vma->vm_page_prot); 4662 4663 if (prefault && arch_wants_old_prefaulted_pte()) 4664 entry = pte_mkold(entry); 4665 else 4666 entry = pte_sw_mkyoung(entry); 4667 4668 if (write) 4669 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4670 if (unlikely(uffd_wp)) 4671 entry = pte_mkuffd_wp(entry); 4672 /* copy-on-write page */ 4673 if (write && !(vma->vm_flags & VM_SHARED)) { 4674 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr); 4675 VM_BUG_ON_FOLIO(nr != 1, folio); 4676 folio_add_new_anon_rmap(folio, vma, addr); 4677 folio_add_lru_vma(folio, vma); 4678 } else { 4679 add_mm_counter(vma->vm_mm, mm_counter_file(folio), nr); 4680 folio_add_file_rmap_ptes(folio, page, nr, vma); 4681 } 4682 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 4683 4684 /* no need to invalidate: a not-present page won't be cached */ 4685 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 4686 } 4687 4688 static bool vmf_pte_changed(struct vm_fault *vmf) 4689 { 4690 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4691 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4692 4693 return !pte_none(ptep_get(vmf->pte)); 4694 } 4695 4696 /** 4697 * finish_fault - finish page fault once we have prepared the page to fault 4698 * 4699 * @vmf: structure describing the fault 4700 * 4701 * This function handles all that is needed to finish a page fault once the 4702 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4703 * given page, adds reverse page mapping, handles memcg charges and LRU 4704 * addition. 4705 * 4706 * The function expects the page to be locked and on success it consumes a 4707 * reference of a page being mapped (for the PTE which maps it). 4708 * 4709 * Return: %0 on success, %VM_FAULT_ code in case of error. 4710 */ 4711 vm_fault_t finish_fault(struct vm_fault *vmf) 4712 { 4713 struct vm_area_struct *vma = vmf->vma; 4714 struct page *page; 4715 vm_fault_t ret; 4716 4717 /* Did we COW the page? */ 4718 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4719 page = vmf->cow_page; 4720 else 4721 page = vmf->page; 4722 4723 /* 4724 * check even for read faults because we might have lost our CoWed 4725 * page 4726 */ 4727 if (!(vma->vm_flags & VM_SHARED)) { 4728 ret = check_stable_address_space(vma->vm_mm); 4729 if (ret) 4730 return ret; 4731 } 4732 4733 if (pmd_none(*vmf->pmd)) { 4734 if (PageTransCompound(page)) { 4735 ret = do_set_pmd(vmf, page); 4736 if (ret != VM_FAULT_FALLBACK) 4737 return ret; 4738 } 4739 4740 if (vmf->prealloc_pte) 4741 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4742 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4743 return VM_FAULT_OOM; 4744 } 4745 4746 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4747 vmf->address, &vmf->ptl); 4748 if (!vmf->pte) 4749 return VM_FAULT_NOPAGE; 4750 4751 /* Re-check under ptl */ 4752 if (likely(!vmf_pte_changed(vmf))) { 4753 struct folio *folio = page_folio(page); 4754 4755 set_pte_range(vmf, folio, page, 1, vmf->address); 4756 ret = 0; 4757 } else { 4758 update_mmu_tlb(vma, vmf->address, vmf->pte); 4759 ret = VM_FAULT_NOPAGE; 4760 } 4761 4762 pte_unmap_unlock(vmf->pte, vmf->ptl); 4763 return ret; 4764 } 4765 4766 static unsigned long fault_around_pages __read_mostly = 4767 65536 >> PAGE_SHIFT; 4768 4769 #ifdef CONFIG_DEBUG_FS 4770 static int fault_around_bytes_get(void *data, u64 *val) 4771 { 4772 *val = fault_around_pages << PAGE_SHIFT; 4773 return 0; 4774 } 4775 4776 /* 4777 * fault_around_bytes must be rounded down to the nearest page order as it's 4778 * what do_fault_around() expects to see. 4779 */ 4780 static int fault_around_bytes_set(void *data, u64 val) 4781 { 4782 if (val / PAGE_SIZE > PTRS_PER_PTE) 4783 return -EINVAL; 4784 4785 /* 4786 * The minimum value is 1 page, however this results in no fault-around 4787 * at all. See should_fault_around(). 4788 */ 4789 val = max(val, PAGE_SIZE); 4790 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 4791 4792 return 0; 4793 } 4794 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4795 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4796 4797 static int __init fault_around_debugfs(void) 4798 { 4799 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4800 &fault_around_bytes_fops); 4801 return 0; 4802 } 4803 late_initcall(fault_around_debugfs); 4804 #endif 4805 4806 /* 4807 * do_fault_around() tries to map few pages around the fault address. The hope 4808 * is that the pages will be needed soon and this will lower the number of 4809 * faults to handle. 4810 * 4811 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4812 * not ready to be mapped: not up-to-date, locked, etc. 4813 * 4814 * This function doesn't cross VMA or page table boundaries, in order to call 4815 * map_pages() and acquire a PTE lock only once. 4816 * 4817 * fault_around_pages defines how many pages we'll try to map. 4818 * do_fault_around() expects it to be set to a power of two less than or equal 4819 * to PTRS_PER_PTE. 4820 * 4821 * The virtual address of the area that we map is naturally aligned to 4822 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4823 * (and therefore to page order). This way it's easier to guarantee 4824 * that we don't cross page table boundaries. 4825 */ 4826 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4827 { 4828 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4829 pgoff_t pte_off = pte_index(vmf->address); 4830 /* The page offset of vmf->address within the VMA. */ 4831 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4832 pgoff_t from_pte, to_pte; 4833 vm_fault_t ret; 4834 4835 /* The PTE offset of the start address, clamped to the VMA. */ 4836 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4837 pte_off - min(pte_off, vma_off)); 4838 4839 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4840 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4841 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4842 4843 if (pmd_none(*vmf->pmd)) { 4844 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4845 if (!vmf->prealloc_pte) 4846 return VM_FAULT_OOM; 4847 } 4848 4849 rcu_read_lock(); 4850 ret = vmf->vma->vm_ops->map_pages(vmf, 4851 vmf->pgoff + from_pte - pte_off, 4852 vmf->pgoff + to_pte - pte_off); 4853 rcu_read_unlock(); 4854 4855 return ret; 4856 } 4857 4858 /* Return true if we should do read fault-around, false otherwise */ 4859 static inline bool should_fault_around(struct vm_fault *vmf) 4860 { 4861 /* No ->map_pages? No way to fault around... */ 4862 if (!vmf->vma->vm_ops->map_pages) 4863 return false; 4864 4865 if (uffd_disable_fault_around(vmf->vma)) 4866 return false; 4867 4868 /* A single page implies no faulting 'around' at all. */ 4869 return fault_around_pages > 1; 4870 } 4871 4872 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4873 { 4874 vm_fault_t ret = 0; 4875 struct folio *folio; 4876 4877 /* 4878 * Let's call ->map_pages() first and use ->fault() as fallback 4879 * if page by the offset is not ready to be mapped (cold cache or 4880 * something). 4881 */ 4882 if (should_fault_around(vmf)) { 4883 ret = do_fault_around(vmf); 4884 if (ret) 4885 return ret; 4886 } 4887 4888 ret = vmf_can_call_fault(vmf); 4889 if (ret) 4890 return ret; 4891 4892 ret = __do_fault(vmf); 4893 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4894 return ret; 4895 4896 ret |= finish_fault(vmf); 4897 folio = page_folio(vmf->page); 4898 folio_unlock(folio); 4899 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4900 folio_put(folio); 4901 return ret; 4902 } 4903 4904 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4905 { 4906 struct vm_area_struct *vma = vmf->vma; 4907 struct folio *folio; 4908 vm_fault_t ret; 4909 4910 ret = vmf_can_call_fault(vmf); 4911 if (!ret) 4912 ret = vmf_anon_prepare(vmf); 4913 if (ret) 4914 return ret; 4915 4916 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 4917 if (!folio) 4918 return VM_FAULT_OOM; 4919 4920 vmf->cow_page = &folio->page; 4921 4922 ret = __do_fault(vmf); 4923 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4924 goto uncharge_out; 4925 if (ret & VM_FAULT_DONE_COW) 4926 return ret; 4927 4928 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4929 __folio_mark_uptodate(folio); 4930 4931 ret |= finish_fault(vmf); 4932 unlock_page(vmf->page); 4933 put_page(vmf->page); 4934 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4935 goto uncharge_out; 4936 return ret; 4937 uncharge_out: 4938 folio_put(folio); 4939 return ret; 4940 } 4941 4942 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4943 { 4944 struct vm_area_struct *vma = vmf->vma; 4945 vm_fault_t ret, tmp; 4946 struct folio *folio; 4947 4948 ret = vmf_can_call_fault(vmf); 4949 if (ret) 4950 return ret; 4951 4952 ret = __do_fault(vmf); 4953 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4954 return ret; 4955 4956 folio = page_folio(vmf->page); 4957 4958 /* 4959 * Check if the backing address space wants to know that the page is 4960 * about to become writable 4961 */ 4962 if (vma->vm_ops->page_mkwrite) { 4963 folio_unlock(folio); 4964 tmp = do_page_mkwrite(vmf, folio); 4965 if (unlikely(!tmp || 4966 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4967 folio_put(folio); 4968 return tmp; 4969 } 4970 } 4971 4972 ret |= finish_fault(vmf); 4973 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4974 VM_FAULT_RETRY))) { 4975 folio_unlock(folio); 4976 folio_put(folio); 4977 return ret; 4978 } 4979 4980 ret |= fault_dirty_shared_page(vmf); 4981 return ret; 4982 } 4983 4984 /* 4985 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4986 * but allow concurrent faults). 4987 * The mmap_lock may have been released depending on flags and our 4988 * return value. See filemap_fault() and __folio_lock_or_retry(). 4989 * If mmap_lock is released, vma may become invalid (for example 4990 * by other thread calling munmap()). 4991 */ 4992 static vm_fault_t do_fault(struct vm_fault *vmf) 4993 { 4994 struct vm_area_struct *vma = vmf->vma; 4995 struct mm_struct *vm_mm = vma->vm_mm; 4996 vm_fault_t ret; 4997 4998 /* 4999 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5000 */ 5001 if (!vma->vm_ops->fault) { 5002 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5003 vmf->address, &vmf->ptl); 5004 if (unlikely(!vmf->pte)) 5005 ret = VM_FAULT_SIGBUS; 5006 else { 5007 /* 5008 * Make sure this is not a temporary clearing of pte 5009 * by holding ptl and checking again. A R/M/W update 5010 * of pte involves: take ptl, clearing the pte so that 5011 * we don't have concurrent modification by hardware 5012 * followed by an update. 5013 */ 5014 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5015 ret = VM_FAULT_SIGBUS; 5016 else 5017 ret = VM_FAULT_NOPAGE; 5018 5019 pte_unmap_unlock(vmf->pte, vmf->ptl); 5020 } 5021 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5022 ret = do_read_fault(vmf); 5023 else if (!(vma->vm_flags & VM_SHARED)) 5024 ret = do_cow_fault(vmf); 5025 else 5026 ret = do_shared_fault(vmf); 5027 5028 /* preallocated pagetable is unused: free it */ 5029 if (vmf->prealloc_pte) { 5030 pte_free(vm_mm, vmf->prealloc_pte); 5031 vmf->prealloc_pte = NULL; 5032 } 5033 return ret; 5034 } 5035 5036 int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma, 5037 unsigned long addr, int page_nid, int *flags) 5038 { 5039 folio_get(folio); 5040 5041 /* Record the current PID acceesing VMA */ 5042 vma_set_access_pid_bit(vma); 5043 5044 count_vm_numa_event(NUMA_HINT_FAULTS); 5045 if (page_nid == numa_node_id()) { 5046 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5047 *flags |= TNF_FAULT_LOCAL; 5048 } 5049 5050 return mpol_misplaced(folio, vma, addr); 5051 } 5052 5053 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5054 { 5055 struct vm_area_struct *vma = vmf->vma; 5056 struct folio *folio = NULL; 5057 int nid = NUMA_NO_NODE; 5058 bool writable = false; 5059 int last_cpupid; 5060 int target_nid; 5061 pte_t pte, old_pte; 5062 int flags = 0; 5063 5064 /* 5065 * The pte cannot be used safely until we verify, while holding the page 5066 * table lock, that its contents have not changed during fault handling. 5067 */ 5068 spin_lock(vmf->ptl); 5069 /* Read the live PTE from the page tables: */ 5070 old_pte = ptep_get(vmf->pte); 5071 5072 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5073 pte_unmap_unlock(vmf->pte, vmf->ptl); 5074 goto out; 5075 } 5076 5077 pte = pte_modify(old_pte, vma->vm_page_prot); 5078 5079 /* 5080 * Detect now whether the PTE could be writable; this information 5081 * is only valid while holding the PT lock. 5082 */ 5083 writable = pte_write(pte); 5084 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 5085 can_change_pte_writable(vma, vmf->address, pte)) 5086 writable = true; 5087 5088 folio = vm_normal_folio(vma, vmf->address, pte); 5089 if (!folio || folio_is_zone_device(folio)) 5090 goto out_map; 5091 5092 /* TODO: handle PTE-mapped THP */ 5093 if (folio_test_large(folio)) 5094 goto out_map; 5095 5096 /* 5097 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5098 * much anyway since they can be in shared cache state. This misses 5099 * the case where a mapping is writable but the process never writes 5100 * to it but pte_write gets cleared during protection updates and 5101 * pte_dirty has unpredictable behaviour between PTE scan updates, 5102 * background writeback, dirty balancing and application behaviour. 5103 */ 5104 if (!writable) 5105 flags |= TNF_NO_GROUP; 5106 5107 /* 5108 * Flag if the folio is shared between multiple address spaces. This 5109 * is later used when determining whether to group tasks together 5110 */ 5111 if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED)) 5112 flags |= TNF_SHARED; 5113 5114 nid = folio_nid(folio); 5115 /* 5116 * For memory tiering mode, cpupid of slow memory page is used 5117 * to record page access time. So use default value. 5118 */ 5119 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 5120 !node_is_toptier(nid)) 5121 last_cpupid = (-1 & LAST_CPUPID_MASK); 5122 else 5123 last_cpupid = folio_last_cpupid(folio); 5124 target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags); 5125 if (target_nid == NUMA_NO_NODE) { 5126 folio_put(folio); 5127 goto out_map; 5128 } 5129 pte_unmap_unlock(vmf->pte, vmf->ptl); 5130 writable = false; 5131 5132 /* Migrate to the requested node */ 5133 if (migrate_misplaced_folio(folio, vma, target_nid)) { 5134 nid = target_nid; 5135 flags |= TNF_MIGRATED; 5136 } else { 5137 flags |= TNF_MIGRATE_FAIL; 5138 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5139 vmf->address, &vmf->ptl); 5140 if (unlikely(!vmf->pte)) 5141 goto out; 5142 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5143 pte_unmap_unlock(vmf->pte, vmf->ptl); 5144 goto out; 5145 } 5146 goto out_map; 5147 } 5148 5149 out: 5150 if (nid != NUMA_NO_NODE) 5151 task_numa_fault(last_cpupid, nid, 1, flags); 5152 return 0; 5153 out_map: 5154 /* 5155 * Make it present again, depending on how arch implements 5156 * non-accessible ptes, some can allow access by kernel mode. 5157 */ 5158 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 5159 pte = pte_modify(old_pte, vma->vm_page_prot); 5160 pte = pte_mkyoung(pte); 5161 if (writable) 5162 pte = pte_mkwrite(pte, vma); 5163 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 5164 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 5165 pte_unmap_unlock(vmf->pte, vmf->ptl); 5166 goto out; 5167 } 5168 5169 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5170 { 5171 struct vm_area_struct *vma = vmf->vma; 5172 if (vma_is_anonymous(vma)) 5173 return do_huge_pmd_anonymous_page(vmf); 5174 if (vma->vm_ops->huge_fault) 5175 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5176 return VM_FAULT_FALLBACK; 5177 } 5178 5179 /* `inline' is required to avoid gcc 4.1.2 build error */ 5180 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5181 { 5182 struct vm_area_struct *vma = vmf->vma; 5183 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5184 vm_fault_t ret; 5185 5186 if (vma_is_anonymous(vma)) { 5187 if (likely(!unshare) && 5188 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5189 if (userfaultfd_wp_async(vmf->vma)) 5190 goto split; 5191 return handle_userfault(vmf, VM_UFFD_WP); 5192 } 5193 return do_huge_pmd_wp_page(vmf); 5194 } 5195 5196 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5197 if (vma->vm_ops->huge_fault) { 5198 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5199 if (!(ret & VM_FAULT_FALLBACK)) 5200 return ret; 5201 } 5202 } 5203 5204 split: 5205 /* COW or write-notify handled on pte level: split pmd. */ 5206 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5207 5208 return VM_FAULT_FALLBACK; 5209 } 5210 5211 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5212 { 5213 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5214 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5215 struct vm_area_struct *vma = vmf->vma; 5216 /* No support for anonymous transparent PUD pages yet */ 5217 if (vma_is_anonymous(vma)) 5218 return VM_FAULT_FALLBACK; 5219 if (vma->vm_ops->huge_fault) 5220 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5221 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5222 return VM_FAULT_FALLBACK; 5223 } 5224 5225 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5226 { 5227 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5228 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5229 struct vm_area_struct *vma = vmf->vma; 5230 vm_fault_t ret; 5231 5232 /* No support for anonymous transparent PUD pages yet */ 5233 if (vma_is_anonymous(vma)) 5234 goto split; 5235 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5236 if (vma->vm_ops->huge_fault) { 5237 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5238 if (!(ret & VM_FAULT_FALLBACK)) 5239 return ret; 5240 } 5241 } 5242 split: 5243 /* COW or write-notify not handled on PUD level: split pud.*/ 5244 __split_huge_pud(vma, vmf->pud, vmf->address); 5245 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5246 return VM_FAULT_FALLBACK; 5247 } 5248 5249 /* 5250 * These routines also need to handle stuff like marking pages dirty 5251 * and/or accessed for architectures that don't do it in hardware (most 5252 * RISC architectures). The early dirtying is also good on the i386. 5253 * 5254 * There is also a hook called "update_mmu_cache()" that architectures 5255 * with external mmu caches can use to update those (ie the Sparc or 5256 * PowerPC hashed page tables that act as extended TLBs). 5257 * 5258 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5259 * concurrent faults). 5260 * 5261 * The mmap_lock may have been released depending on flags and our return value. 5262 * See filemap_fault() and __folio_lock_or_retry(). 5263 */ 5264 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5265 { 5266 pte_t entry; 5267 5268 if (unlikely(pmd_none(*vmf->pmd))) { 5269 /* 5270 * Leave __pte_alloc() until later: because vm_ops->fault may 5271 * want to allocate huge page, and if we expose page table 5272 * for an instant, it will be difficult to retract from 5273 * concurrent faults and from rmap lookups. 5274 */ 5275 vmf->pte = NULL; 5276 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5277 } else { 5278 /* 5279 * A regular pmd is established and it can't morph into a huge 5280 * pmd by anon khugepaged, since that takes mmap_lock in write 5281 * mode; but shmem or file collapse to THP could still morph 5282 * it into a huge pmd: just retry later if so. 5283 */ 5284 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 5285 vmf->address, &vmf->ptl); 5286 if (unlikely(!vmf->pte)) 5287 return 0; 5288 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5289 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5290 5291 if (pte_none(vmf->orig_pte)) { 5292 pte_unmap(vmf->pte); 5293 vmf->pte = NULL; 5294 } 5295 } 5296 5297 if (!vmf->pte) 5298 return do_pte_missing(vmf); 5299 5300 if (!pte_present(vmf->orig_pte)) 5301 return do_swap_page(vmf); 5302 5303 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5304 return do_numa_page(vmf); 5305 5306 spin_lock(vmf->ptl); 5307 entry = vmf->orig_pte; 5308 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5309 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5310 goto unlock; 5311 } 5312 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5313 if (!pte_write(entry)) 5314 return do_wp_page(vmf); 5315 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5316 entry = pte_mkdirty(entry); 5317 } 5318 entry = pte_mkyoung(entry); 5319 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5320 vmf->flags & FAULT_FLAG_WRITE)) { 5321 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5322 vmf->pte, 1); 5323 } else { 5324 /* Skip spurious TLB flush for retried page fault */ 5325 if (vmf->flags & FAULT_FLAG_TRIED) 5326 goto unlock; 5327 /* 5328 * This is needed only for protection faults but the arch code 5329 * is not yet telling us if this is a protection fault or not. 5330 * This still avoids useless tlb flushes for .text page faults 5331 * with threads. 5332 */ 5333 if (vmf->flags & FAULT_FLAG_WRITE) 5334 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5335 vmf->pte); 5336 } 5337 unlock: 5338 pte_unmap_unlock(vmf->pte, vmf->ptl); 5339 return 0; 5340 } 5341 5342 /* 5343 * On entry, we hold either the VMA lock or the mmap_lock 5344 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5345 * the result, the mmap_lock is not held on exit. See filemap_fault() 5346 * and __folio_lock_or_retry(). 5347 */ 5348 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5349 unsigned long address, unsigned int flags) 5350 { 5351 struct vm_fault vmf = { 5352 .vma = vma, 5353 .address = address & PAGE_MASK, 5354 .real_address = address, 5355 .flags = flags, 5356 .pgoff = linear_page_index(vma, address), 5357 .gfp_mask = __get_fault_gfp_mask(vma), 5358 }; 5359 struct mm_struct *mm = vma->vm_mm; 5360 unsigned long vm_flags = vma->vm_flags; 5361 pgd_t *pgd; 5362 p4d_t *p4d; 5363 vm_fault_t ret; 5364 5365 pgd = pgd_offset(mm, address); 5366 p4d = p4d_alloc(mm, pgd, address); 5367 if (!p4d) 5368 return VM_FAULT_OOM; 5369 5370 vmf.pud = pud_alloc(mm, p4d, address); 5371 if (!vmf.pud) 5372 return VM_FAULT_OOM; 5373 retry_pud: 5374 if (pud_none(*vmf.pud) && 5375 thp_vma_allowable_order(vma, vm_flags, false, true, true, PUD_ORDER)) { 5376 ret = create_huge_pud(&vmf); 5377 if (!(ret & VM_FAULT_FALLBACK)) 5378 return ret; 5379 } else { 5380 pud_t orig_pud = *vmf.pud; 5381 5382 barrier(); 5383 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5384 5385 /* 5386 * TODO once we support anonymous PUDs: NUMA case and 5387 * FAULT_FLAG_UNSHARE handling. 5388 */ 5389 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5390 ret = wp_huge_pud(&vmf, orig_pud); 5391 if (!(ret & VM_FAULT_FALLBACK)) 5392 return ret; 5393 } else { 5394 huge_pud_set_accessed(&vmf, orig_pud); 5395 return 0; 5396 } 5397 } 5398 } 5399 5400 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5401 if (!vmf.pmd) 5402 return VM_FAULT_OOM; 5403 5404 /* Huge pud page fault raced with pmd_alloc? */ 5405 if (pud_trans_unstable(vmf.pud)) 5406 goto retry_pud; 5407 5408 if (pmd_none(*vmf.pmd) && 5409 thp_vma_allowable_order(vma, vm_flags, false, true, true, PMD_ORDER)) { 5410 ret = create_huge_pmd(&vmf); 5411 if (!(ret & VM_FAULT_FALLBACK)) 5412 return ret; 5413 } else { 5414 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5415 5416 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5417 VM_BUG_ON(thp_migration_supported() && 5418 !is_pmd_migration_entry(vmf.orig_pmd)); 5419 if (is_pmd_migration_entry(vmf.orig_pmd)) 5420 pmd_migration_entry_wait(mm, vmf.pmd); 5421 return 0; 5422 } 5423 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5424 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5425 return do_huge_pmd_numa_page(&vmf); 5426 5427 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5428 !pmd_write(vmf.orig_pmd)) { 5429 ret = wp_huge_pmd(&vmf); 5430 if (!(ret & VM_FAULT_FALLBACK)) 5431 return ret; 5432 } else { 5433 huge_pmd_set_accessed(&vmf); 5434 return 0; 5435 } 5436 } 5437 } 5438 5439 return handle_pte_fault(&vmf); 5440 } 5441 5442 /** 5443 * mm_account_fault - Do page fault accounting 5444 * @mm: mm from which memcg should be extracted. It can be NULL. 5445 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5446 * of perf event counters, but we'll still do the per-task accounting to 5447 * the task who triggered this page fault. 5448 * @address: the faulted address. 5449 * @flags: the fault flags. 5450 * @ret: the fault retcode. 5451 * 5452 * This will take care of most of the page fault accounting. Meanwhile, it 5453 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5454 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5455 * still be in per-arch page fault handlers at the entry of page fault. 5456 */ 5457 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5458 unsigned long address, unsigned int flags, 5459 vm_fault_t ret) 5460 { 5461 bool major; 5462 5463 /* Incomplete faults will be accounted upon completion. */ 5464 if (ret & VM_FAULT_RETRY) 5465 return; 5466 5467 /* 5468 * To preserve the behavior of older kernels, PGFAULT counters record 5469 * both successful and failed faults, as opposed to perf counters, 5470 * which ignore failed cases. 5471 */ 5472 count_vm_event(PGFAULT); 5473 count_memcg_event_mm(mm, PGFAULT); 5474 5475 /* 5476 * Do not account for unsuccessful faults (e.g. when the address wasn't 5477 * valid). That includes arch_vma_access_permitted() failing before 5478 * reaching here. So this is not a "this many hardware page faults" 5479 * counter. We should use the hw profiling for that. 5480 */ 5481 if (ret & VM_FAULT_ERROR) 5482 return; 5483 5484 /* 5485 * We define the fault as a major fault when the final successful fault 5486 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5487 * handle it immediately previously). 5488 */ 5489 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5490 5491 if (major) 5492 current->maj_flt++; 5493 else 5494 current->min_flt++; 5495 5496 /* 5497 * If the fault is done for GUP, regs will be NULL. We only do the 5498 * accounting for the per thread fault counters who triggered the 5499 * fault, and we skip the perf event updates. 5500 */ 5501 if (!regs) 5502 return; 5503 5504 if (major) 5505 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5506 else 5507 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5508 } 5509 5510 #ifdef CONFIG_LRU_GEN 5511 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5512 { 5513 /* the LRU algorithm only applies to accesses with recency */ 5514 current->in_lru_fault = vma_has_recency(vma); 5515 } 5516 5517 static void lru_gen_exit_fault(void) 5518 { 5519 current->in_lru_fault = false; 5520 } 5521 #else 5522 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5523 { 5524 } 5525 5526 static void lru_gen_exit_fault(void) 5527 { 5528 } 5529 #endif /* CONFIG_LRU_GEN */ 5530 5531 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5532 unsigned int *flags) 5533 { 5534 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5535 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5536 return VM_FAULT_SIGSEGV; 5537 /* 5538 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5539 * just treat it like an ordinary read-fault otherwise. 5540 */ 5541 if (!is_cow_mapping(vma->vm_flags)) 5542 *flags &= ~FAULT_FLAG_UNSHARE; 5543 } else if (*flags & FAULT_FLAG_WRITE) { 5544 /* Write faults on read-only mappings are impossible ... */ 5545 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5546 return VM_FAULT_SIGSEGV; 5547 /* ... and FOLL_FORCE only applies to COW mappings. */ 5548 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5549 !is_cow_mapping(vma->vm_flags))) 5550 return VM_FAULT_SIGSEGV; 5551 } 5552 #ifdef CONFIG_PER_VMA_LOCK 5553 /* 5554 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 5555 * the assumption that lock is dropped on VM_FAULT_RETRY. 5556 */ 5557 if (WARN_ON_ONCE((*flags & 5558 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 5559 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 5560 return VM_FAULT_SIGSEGV; 5561 #endif 5562 5563 return 0; 5564 } 5565 5566 /* 5567 * By the time we get here, we already hold the mm semaphore 5568 * 5569 * The mmap_lock may have been released depending on flags and our 5570 * return value. See filemap_fault() and __folio_lock_or_retry(). 5571 */ 5572 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5573 unsigned int flags, struct pt_regs *regs) 5574 { 5575 /* If the fault handler drops the mmap_lock, vma may be freed */ 5576 struct mm_struct *mm = vma->vm_mm; 5577 vm_fault_t ret; 5578 5579 __set_current_state(TASK_RUNNING); 5580 5581 ret = sanitize_fault_flags(vma, &flags); 5582 if (ret) 5583 goto out; 5584 5585 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5586 flags & FAULT_FLAG_INSTRUCTION, 5587 flags & FAULT_FLAG_REMOTE)) { 5588 ret = VM_FAULT_SIGSEGV; 5589 goto out; 5590 } 5591 5592 /* 5593 * Enable the memcg OOM handling for faults triggered in user 5594 * space. Kernel faults are handled more gracefully. 5595 */ 5596 if (flags & FAULT_FLAG_USER) 5597 mem_cgroup_enter_user_fault(); 5598 5599 lru_gen_enter_fault(vma); 5600 5601 if (unlikely(is_vm_hugetlb_page(vma))) 5602 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5603 else 5604 ret = __handle_mm_fault(vma, address, flags); 5605 5606 lru_gen_exit_fault(); 5607 5608 if (flags & FAULT_FLAG_USER) { 5609 mem_cgroup_exit_user_fault(); 5610 /* 5611 * The task may have entered a memcg OOM situation but 5612 * if the allocation error was handled gracefully (no 5613 * VM_FAULT_OOM), there is no need to kill anything. 5614 * Just clean up the OOM state peacefully. 5615 */ 5616 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5617 mem_cgroup_oom_synchronize(false); 5618 } 5619 out: 5620 mm_account_fault(mm, regs, address, flags, ret); 5621 5622 return ret; 5623 } 5624 EXPORT_SYMBOL_GPL(handle_mm_fault); 5625 5626 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 5627 #include <linux/extable.h> 5628 5629 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5630 { 5631 if (likely(mmap_read_trylock(mm))) 5632 return true; 5633 5634 if (regs && !user_mode(regs)) { 5635 unsigned long ip = exception_ip(regs); 5636 if (!search_exception_tables(ip)) 5637 return false; 5638 } 5639 5640 return !mmap_read_lock_killable(mm); 5641 } 5642 5643 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 5644 { 5645 /* 5646 * We don't have this operation yet. 5647 * 5648 * It should be easy enough to do: it's basically a 5649 * atomic_long_try_cmpxchg_acquire() 5650 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 5651 * it also needs the proper lockdep magic etc. 5652 */ 5653 return false; 5654 } 5655 5656 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5657 { 5658 mmap_read_unlock(mm); 5659 if (regs && !user_mode(regs)) { 5660 unsigned long ip = exception_ip(regs); 5661 if (!search_exception_tables(ip)) 5662 return false; 5663 } 5664 return !mmap_write_lock_killable(mm); 5665 } 5666 5667 /* 5668 * Helper for page fault handling. 5669 * 5670 * This is kind of equivalend to "mmap_read_lock()" followed 5671 * by "find_extend_vma()", except it's a lot more careful about 5672 * the locking (and will drop the lock on failure). 5673 * 5674 * For example, if we have a kernel bug that causes a page 5675 * fault, we don't want to just use mmap_read_lock() to get 5676 * the mm lock, because that would deadlock if the bug were 5677 * to happen while we're holding the mm lock for writing. 5678 * 5679 * So this checks the exception tables on kernel faults in 5680 * order to only do this all for instructions that are actually 5681 * expected to fault. 5682 * 5683 * We can also actually take the mm lock for writing if we 5684 * need to extend the vma, which helps the VM layer a lot. 5685 */ 5686 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 5687 unsigned long addr, struct pt_regs *regs) 5688 { 5689 struct vm_area_struct *vma; 5690 5691 if (!get_mmap_lock_carefully(mm, regs)) 5692 return NULL; 5693 5694 vma = find_vma(mm, addr); 5695 if (likely(vma && (vma->vm_start <= addr))) 5696 return vma; 5697 5698 /* 5699 * Well, dang. We might still be successful, but only 5700 * if we can extend a vma to do so. 5701 */ 5702 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 5703 mmap_read_unlock(mm); 5704 return NULL; 5705 } 5706 5707 /* 5708 * We can try to upgrade the mmap lock atomically, 5709 * in which case we can continue to use the vma 5710 * we already looked up. 5711 * 5712 * Otherwise we'll have to drop the mmap lock and 5713 * re-take it, and also look up the vma again, 5714 * re-checking it. 5715 */ 5716 if (!mmap_upgrade_trylock(mm)) { 5717 if (!upgrade_mmap_lock_carefully(mm, regs)) 5718 return NULL; 5719 5720 vma = find_vma(mm, addr); 5721 if (!vma) 5722 goto fail; 5723 if (vma->vm_start <= addr) 5724 goto success; 5725 if (!(vma->vm_flags & VM_GROWSDOWN)) 5726 goto fail; 5727 } 5728 5729 if (expand_stack_locked(vma, addr)) 5730 goto fail; 5731 5732 success: 5733 mmap_write_downgrade(mm); 5734 return vma; 5735 5736 fail: 5737 mmap_write_unlock(mm); 5738 return NULL; 5739 } 5740 #endif 5741 5742 #ifdef CONFIG_PER_VMA_LOCK 5743 /* 5744 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5745 * stable and not isolated. If the VMA is not found or is being modified the 5746 * function returns NULL. 5747 */ 5748 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5749 unsigned long address) 5750 { 5751 MA_STATE(mas, &mm->mm_mt, address, address); 5752 struct vm_area_struct *vma; 5753 5754 rcu_read_lock(); 5755 retry: 5756 vma = mas_walk(&mas); 5757 if (!vma) 5758 goto inval; 5759 5760 if (!vma_start_read(vma)) 5761 goto inval; 5762 5763 /* 5764 * find_mergeable_anon_vma uses adjacent vmas which are not locked. 5765 * This check must happen after vma_start_read(); otherwise, a 5766 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA 5767 * from its anon_vma. 5768 */ 5769 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) 5770 goto inval_end_read; 5771 5772 /* Check since vm_start/vm_end might change before we lock the VMA */ 5773 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 5774 goto inval_end_read; 5775 5776 /* Check if the VMA got isolated after we found it */ 5777 if (vma->detached) { 5778 vma_end_read(vma); 5779 count_vm_vma_lock_event(VMA_LOCK_MISS); 5780 /* The area was replaced with another one */ 5781 goto retry; 5782 } 5783 5784 rcu_read_unlock(); 5785 return vma; 5786 5787 inval_end_read: 5788 vma_end_read(vma); 5789 inval: 5790 rcu_read_unlock(); 5791 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5792 return NULL; 5793 } 5794 #endif /* CONFIG_PER_VMA_LOCK */ 5795 5796 #ifndef __PAGETABLE_P4D_FOLDED 5797 /* 5798 * Allocate p4d page table. 5799 * We've already handled the fast-path in-line. 5800 */ 5801 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5802 { 5803 p4d_t *new = p4d_alloc_one(mm, address); 5804 if (!new) 5805 return -ENOMEM; 5806 5807 spin_lock(&mm->page_table_lock); 5808 if (pgd_present(*pgd)) { /* Another has populated it */ 5809 p4d_free(mm, new); 5810 } else { 5811 smp_wmb(); /* See comment in pmd_install() */ 5812 pgd_populate(mm, pgd, new); 5813 } 5814 spin_unlock(&mm->page_table_lock); 5815 return 0; 5816 } 5817 #endif /* __PAGETABLE_P4D_FOLDED */ 5818 5819 #ifndef __PAGETABLE_PUD_FOLDED 5820 /* 5821 * Allocate page upper directory. 5822 * We've already handled the fast-path in-line. 5823 */ 5824 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5825 { 5826 pud_t *new = pud_alloc_one(mm, address); 5827 if (!new) 5828 return -ENOMEM; 5829 5830 spin_lock(&mm->page_table_lock); 5831 if (!p4d_present(*p4d)) { 5832 mm_inc_nr_puds(mm); 5833 smp_wmb(); /* See comment in pmd_install() */ 5834 p4d_populate(mm, p4d, new); 5835 } else /* Another has populated it */ 5836 pud_free(mm, new); 5837 spin_unlock(&mm->page_table_lock); 5838 return 0; 5839 } 5840 #endif /* __PAGETABLE_PUD_FOLDED */ 5841 5842 #ifndef __PAGETABLE_PMD_FOLDED 5843 /* 5844 * Allocate page middle directory. 5845 * We've already handled the fast-path in-line. 5846 */ 5847 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5848 { 5849 spinlock_t *ptl; 5850 pmd_t *new = pmd_alloc_one(mm, address); 5851 if (!new) 5852 return -ENOMEM; 5853 5854 ptl = pud_lock(mm, pud); 5855 if (!pud_present(*pud)) { 5856 mm_inc_nr_pmds(mm); 5857 smp_wmb(); /* See comment in pmd_install() */ 5858 pud_populate(mm, pud, new); 5859 } else { /* Another has populated it */ 5860 pmd_free(mm, new); 5861 } 5862 spin_unlock(ptl); 5863 return 0; 5864 } 5865 #endif /* __PAGETABLE_PMD_FOLDED */ 5866 5867 /** 5868 * follow_pte - look up PTE at a user virtual address 5869 * @mm: the mm_struct of the target address space 5870 * @address: user virtual address 5871 * @ptepp: location to store found PTE 5872 * @ptlp: location to store the lock for the PTE 5873 * 5874 * On a successful return, the pointer to the PTE is stored in @ptepp; 5875 * the corresponding lock is taken and its location is stored in @ptlp. 5876 * The contents of the PTE are only stable until @ptlp is released; 5877 * any further use, if any, must be protected against invalidation 5878 * with MMU notifiers. 5879 * 5880 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5881 * should be taken for read. 5882 * 5883 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5884 * it is not a good general-purpose API. 5885 * 5886 * Return: zero on success, -ve otherwise. 5887 */ 5888 int follow_pte(struct mm_struct *mm, unsigned long address, 5889 pte_t **ptepp, spinlock_t **ptlp) 5890 { 5891 pgd_t *pgd; 5892 p4d_t *p4d; 5893 pud_t *pud; 5894 pmd_t *pmd; 5895 pte_t *ptep; 5896 5897 pgd = pgd_offset(mm, address); 5898 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5899 goto out; 5900 5901 p4d = p4d_offset(pgd, address); 5902 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5903 goto out; 5904 5905 pud = pud_offset(p4d, address); 5906 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5907 goto out; 5908 5909 pmd = pmd_offset(pud, address); 5910 VM_BUG_ON(pmd_trans_huge(*pmd)); 5911 5912 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5913 if (!ptep) 5914 goto out; 5915 if (!pte_present(ptep_get(ptep))) 5916 goto unlock; 5917 *ptepp = ptep; 5918 return 0; 5919 unlock: 5920 pte_unmap_unlock(ptep, *ptlp); 5921 out: 5922 return -EINVAL; 5923 } 5924 EXPORT_SYMBOL_GPL(follow_pte); 5925 5926 /** 5927 * follow_pfn - look up PFN at a user virtual address 5928 * @vma: memory mapping 5929 * @address: user virtual address 5930 * @pfn: location to store found PFN 5931 * 5932 * Only IO mappings and raw PFN mappings are allowed. 5933 * 5934 * This function does not allow the caller to read the permissions 5935 * of the PTE. Do not use it. 5936 * 5937 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5938 */ 5939 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5940 unsigned long *pfn) 5941 { 5942 int ret = -EINVAL; 5943 spinlock_t *ptl; 5944 pte_t *ptep; 5945 5946 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5947 return ret; 5948 5949 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5950 if (ret) 5951 return ret; 5952 *pfn = pte_pfn(ptep_get(ptep)); 5953 pte_unmap_unlock(ptep, ptl); 5954 return 0; 5955 } 5956 EXPORT_SYMBOL(follow_pfn); 5957 5958 #ifdef CONFIG_HAVE_IOREMAP_PROT 5959 int follow_phys(struct vm_area_struct *vma, 5960 unsigned long address, unsigned int flags, 5961 unsigned long *prot, resource_size_t *phys) 5962 { 5963 int ret = -EINVAL; 5964 pte_t *ptep, pte; 5965 spinlock_t *ptl; 5966 5967 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5968 goto out; 5969 5970 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5971 goto out; 5972 pte = ptep_get(ptep); 5973 5974 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5975 goto unlock; 5976 5977 *prot = pgprot_val(pte_pgprot(pte)); 5978 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5979 5980 ret = 0; 5981 unlock: 5982 pte_unmap_unlock(ptep, ptl); 5983 out: 5984 return ret; 5985 } 5986 5987 /** 5988 * generic_access_phys - generic implementation for iomem mmap access 5989 * @vma: the vma to access 5990 * @addr: userspace address, not relative offset within @vma 5991 * @buf: buffer to read/write 5992 * @len: length of transfer 5993 * @write: set to FOLL_WRITE when writing, otherwise reading 5994 * 5995 * This is a generic implementation for &vm_operations_struct.access for an 5996 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5997 * not page based. 5998 */ 5999 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6000 void *buf, int len, int write) 6001 { 6002 resource_size_t phys_addr; 6003 unsigned long prot = 0; 6004 void __iomem *maddr; 6005 pte_t *ptep, pte; 6006 spinlock_t *ptl; 6007 int offset = offset_in_page(addr); 6008 int ret = -EINVAL; 6009 6010 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6011 return -EINVAL; 6012 6013 retry: 6014 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 6015 return -EINVAL; 6016 pte = ptep_get(ptep); 6017 pte_unmap_unlock(ptep, ptl); 6018 6019 prot = pgprot_val(pte_pgprot(pte)); 6020 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 6021 6022 if ((write & FOLL_WRITE) && !pte_write(pte)) 6023 return -EINVAL; 6024 6025 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6026 if (!maddr) 6027 return -ENOMEM; 6028 6029 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 6030 goto out_unmap; 6031 6032 if (!pte_same(pte, ptep_get(ptep))) { 6033 pte_unmap_unlock(ptep, ptl); 6034 iounmap(maddr); 6035 6036 goto retry; 6037 } 6038 6039 if (write) 6040 memcpy_toio(maddr + offset, buf, len); 6041 else 6042 memcpy_fromio(buf, maddr + offset, len); 6043 ret = len; 6044 pte_unmap_unlock(ptep, ptl); 6045 out_unmap: 6046 iounmap(maddr); 6047 6048 return ret; 6049 } 6050 EXPORT_SYMBOL_GPL(generic_access_phys); 6051 #endif 6052 6053 /* 6054 * Access another process' address space as given in mm. 6055 */ 6056 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6057 void *buf, int len, unsigned int gup_flags) 6058 { 6059 void *old_buf = buf; 6060 int write = gup_flags & FOLL_WRITE; 6061 6062 if (mmap_read_lock_killable(mm)) 6063 return 0; 6064 6065 /* Untag the address before looking up the VMA */ 6066 addr = untagged_addr_remote(mm, addr); 6067 6068 /* Avoid triggering the temporary warning in __get_user_pages */ 6069 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6070 return 0; 6071 6072 /* ignore errors, just check how much was successfully transferred */ 6073 while (len) { 6074 int bytes, offset; 6075 void *maddr; 6076 struct vm_area_struct *vma = NULL; 6077 struct page *page = get_user_page_vma_remote(mm, addr, 6078 gup_flags, &vma); 6079 6080 if (IS_ERR(page)) { 6081 /* We might need to expand the stack to access it */ 6082 vma = vma_lookup(mm, addr); 6083 if (!vma) { 6084 vma = expand_stack(mm, addr); 6085 6086 /* mmap_lock was dropped on failure */ 6087 if (!vma) 6088 return buf - old_buf; 6089 6090 /* Try again if stack expansion worked */ 6091 continue; 6092 } 6093 6094 /* 6095 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6096 * we can access using slightly different code. 6097 */ 6098 bytes = 0; 6099 #ifdef CONFIG_HAVE_IOREMAP_PROT 6100 if (vma->vm_ops && vma->vm_ops->access) 6101 bytes = vma->vm_ops->access(vma, addr, buf, 6102 len, write); 6103 #endif 6104 if (bytes <= 0) 6105 break; 6106 } else { 6107 bytes = len; 6108 offset = addr & (PAGE_SIZE-1); 6109 if (bytes > PAGE_SIZE-offset) 6110 bytes = PAGE_SIZE-offset; 6111 6112 maddr = kmap_local_page(page); 6113 if (write) { 6114 copy_to_user_page(vma, page, addr, 6115 maddr + offset, buf, bytes); 6116 set_page_dirty_lock(page); 6117 } else { 6118 copy_from_user_page(vma, page, addr, 6119 buf, maddr + offset, bytes); 6120 } 6121 unmap_and_put_page(page, maddr); 6122 } 6123 len -= bytes; 6124 buf += bytes; 6125 addr += bytes; 6126 } 6127 mmap_read_unlock(mm); 6128 6129 return buf - old_buf; 6130 } 6131 6132 /** 6133 * access_remote_vm - access another process' address space 6134 * @mm: the mm_struct of the target address space 6135 * @addr: start address to access 6136 * @buf: source or destination buffer 6137 * @len: number of bytes to transfer 6138 * @gup_flags: flags modifying lookup behaviour 6139 * 6140 * The caller must hold a reference on @mm. 6141 * 6142 * Return: number of bytes copied from source to destination. 6143 */ 6144 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6145 void *buf, int len, unsigned int gup_flags) 6146 { 6147 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6148 } 6149 6150 /* 6151 * Access another process' address space. 6152 * Source/target buffer must be kernel space, 6153 * Do not walk the page table directly, use get_user_pages 6154 */ 6155 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6156 void *buf, int len, unsigned int gup_flags) 6157 { 6158 struct mm_struct *mm; 6159 int ret; 6160 6161 mm = get_task_mm(tsk); 6162 if (!mm) 6163 return 0; 6164 6165 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6166 6167 mmput(mm); 6168 6169 return ret; 6170 } 6171 EXPORT_SYMBOL_GPL(access_process_vm); 6172 6173 /* 6174 * Print the name of a VMA. 6175 */ 6176 void print_vma_addr(char *prefix, unsigned long ip) 6177 { 6178 struct mm_struct *mm = current->mm; 6179 struct vm_area_struct *vma; 6180 6181 /* 6182 * we might be running from an atomic context so we cannot sleep 6183 */ 6184 if (!mmap_read_trylock(mm)) 6185 return; 6186 6187 vma = find_vma(mm, ip); 6188 if (vma && vma->vm_file) { 6189 struct file *f = vma->vm_file; 6190 char *buf = (char *)__get_free_page(GFP_NOWAIT); 6191 if (buf) { 6192 char *p; 6193 6194 p = file_path(f, buf, PAGE_SIZE); 6195 if (IS_ERR(p)) 6196 p = "?"; 6197 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 6198 vma->vm_start, 6199 vma->vm_end - vma->vm_start); 6200 free_page((unsigned long)buf); 6201 } 6202 } 6203 mmap_read_unlock(mm); 6204 } 6205 6206 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6207 void __might_fault(const char *file, int line) 6208 { 6209 if (pagefault_disabled()) 6210 return; 6211 __might_sleep(file, line); 6212 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6213 if (current->mm) 6214 might_lock_read(¤t->mm->mmap_lock); 6215 #endif 6216 } 6217 EXPORT_SYMBOL(__might_fault); 6218 #endif 6219 6220 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6221 /* 6222 * Process all subpages of the specified huge page with the specified 6223 * operation. The target subpage will be processed last to keep its 6224 * cache lines hot. 6225 */ 6226 static inline int process_huge_page( 6227 unsigned long addr_hint, unsigned int pages_per_huge_page, 6228 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6229 void *arg) 6230 { 6231 int i, n, base, l, ret; 6232 unsigned long addr = addr_hint & 6233 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6234 6235 /* Process target subpage last to keep its cache lines hot */ 6236 might_sleep(); 6237 n = (addr_hint - addr) / PAGE_SIZE; 6238 if (2 * n <= pages_per_huge_page) { 6239 /* If target subpage in first half of huge page */ 6240 base = 0; 6241 l = n; 6242 /* Process subpages at the end of huge page */ 6243 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 6244 cond_resched(); 6245 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6246 if (ret) 6247 return ret; 6248 } 6249 } else { 6250 /* If target subpage in second half of huge page */ 6251 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 6252 l = pages_per_huge_page - n; 6253 /* Process subpages at the begin of huge page */ 6254 for (i = 0; i < base; i++) { 6255 cond_resched(); 6256 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6257 if (ret) 6258 return ret; 6259 } 6260 } 6261 /* 6262 * Process remaining subpages in left-right-left-right pattern 6263 * towards the target subpage 6264 */ 6265 for (i = 0; i < l; i++) { 6266 int left_idx = base + i; 6267 int right_idx = base + 2 * l - 1 - i; 6268 6269 cond_resched(); 6270 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6271 if (ret) 6272 return ret; 6273 cond_resched(); 6274 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6275 if (ret) 6276 return ret; 6277 } 6278 return 0; 6279 } 6280 6281 static void clear_gigantic_page(struct page *page, 6282 unsigned long addr, 6283 unsigned int pages_per_huge_page) 6284 { 6285 int i; 6286 struct page *p; 6287 6288 might_sleep(); 6289 for (i = 0; i < pages_per_huge_page; i++) { 6290 p = nth_page(page, i); 6291 cond_resched(); 6292 clear_user_highpage(p, addr + i * PAGE_SIZE); 6293 } 6294 } 6295 6296 static int clear_subpage(unsigned long addr, int idx, void *arg) 6297 { 6298 struct page *page = arg; 6299 6300 clear_user_highpage(nth_page(page, idx), addr); 6301 return 0; 6302 } 6303 6304 void clear_huge_page(struct page *page, 6305 unsigned long addr_hint, unsigned int pages_per_huge_page) 6306 { 6307 unsigned long addr = addr_hint & 6308 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6309 6310 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 6311 clear_gigantic_page(page, addr, pages_per_huge_page); 6312 return; 6313 } 6314 6315 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 6316 } 6317 6318 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6319 unsigned long addr, 6320 struct vm_area_struct *vma, 6321 unsigned int pages_per_huge_page) 6322 { 6323 int i; 6324 struct page *dst_page; 6325 struct page *src_page; 6326 6327 for (i = 0; i < pages_per_huge_page; i++) { 6328 dst_page = folio_page(dst, i); 6329 src_page = folio_page(src, i); 6330 6331 cond_resched(); 6332 if (copy_mc_user_highpage(dst_page, src_page, 6333 addr + i*PAGE_SIZE, vma)) { 6334 memory_failure_queue(page_to_pfn(src_page), 0); 6335 return -EHWPOISON; 6336 } 6337 } 6338 return 0; 6339 } 6340 6341 struct copy_subpage_arg { 6342 struct page *dst; 6343 struct page *src; 6344 struct vm_area_struct *vma; 6345 }; 6346 6347 static int copy_subpage(unsigned long addr, int idx, void *arg) 6348 { 6349 struct copy_subpage_arg *copy_arg = arg; 6350 struct page *dst = nth_page(copy_arg->dst, idx); 6351 struct page *src = nth_page(copy_arg->src, idx); 6352 6353 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) { 6354 memory_failure_queue(page_to_pfn(src), 0); 6355 return -EHWPOISON; 6356 } 6357 return 0; 6358 } 6359 6360 int copy_user_large_folio(struct folio *dst, struct folio *src, 6361 unsigned long addr_hint, struct vm_area_struct *vma) 6362 { 6363 unsigned int pages_per_huge_page = folio_nr_pages(dst); 6364 unsigned long addr = addr_hint & 6365 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6366 struct copy_subpage_arg arg = { 6367 .dst = &dst->page, 6368 .src = &src->page, 6369 .vma = vma, 6370 }; 6371 6372 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 6373 return copy_user_gigantic_page(dst, src, addr, vma, 6374 pages_per_huge_page); 6375 6376 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 6377 } 6378 6379 long copy_folio_from_user(struct folio *dst_folio, 6380 const void __user *usr_src, 6381 bool allow_pagefault) 6382 { 6383 void *kaddr; 6384 unsigned long i, rc = 0; 6385 unsigned int nr_pages = folio_nr_pages(dst_folio); 6386 unsigned long ret_val = nr_pages * PAGE_SIZE; 6387 struct page *subpage; 6388 6389 for (i = 0; i < nr_pages; i++) { 6390 subpage = folio_page(dst_folio, i); 6391 kaddr = kmap_local_page(subpage); 6392 if (!allow_pagefault) 6393 pagefault_disable(); 6394 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6395 if (!allow_pagefault) 6396 pagefault_enable(); 6397 kunmap_local(kaddr); 6398 6399 ret_val -= (PAGE_SIZE - rc); 6400 if (rc) 6401 break; 6402 6403 flush_dcache_page(subpage); 6404 6405 cond_resched(); 6406 } 6407 return ret_val; 6408 } 6409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6410 6411 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6412 6413 static struct kmem_cache *page_ptl_cachep; 6414 6415 void __init ptlock_cache_init(void) 6416 { 6417 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6418 SLAB_PANIC, NULL); 6419 } 6420 6421 bool ptlock_alloc(struct ptdesc *ptdesc) 6422 { 6423 spinlock_t *ptl; 6424 6425 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6426 if (!ptl) 6427 return false; 6428 ptdesc->ptl = ptl; 6429 return true; 6430 } 6431 6432 void ptlock_free(struct ptdesc *ptdesc) 6433 { 6434 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 6435 } 6436 #endif 6437