xref: /linux/mm/memory.c (revision 2f7932b011e7fb9f98732f95a68f6017d4d8c542)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81 
82 #include "internal.h"
83 
84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87 
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92 
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96 
97 /*
98  * A number of key systems in x86 including ioremap() rely on the assumption
99  * that high_memory defines the upper bound on direct map memory, then end
100  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
101  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102  * and ZONE_HIGHMEM.
103  */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106 
107 /*
108  * Randomize the address space (stacks, mmaps, brk, etc.).
109  *
110  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111  *   as ancient (libc5 based) binaries can segfault. )
112  */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115 					1;
116 #else
117 					2;
118 #endif
119 
120 static int __init disable_randmaps(char *s)
121 {
122 	randomize_va_space = 0;
123 	return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126 
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129 
130 unsigned long highest_memmap_pfn __read_mostly;
131 
132 /*
133  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134  */
135 static int __init init_zero_pfn(void)
136 {
137 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 	return 0;
139 }
140 core_initcall(init_zero_pfn);
141 
142 
143 #if defined(SPLIT_RSS_COUNTING)
144 
145 void sync_mm_rss(struct mm_struct *mm)
146 {
147 	int i;
148 
149 	for (i = 0; i < NR_MM_COUNTERS; i++) {
150 		if (current->rss_stat.count[i]) {
151 			add_mm_counter(mm, i, current->rss_stat.count[i]);
152 			current->rss_stat.count[i] = 0;
153 		}
154 	}
155 	current->rss_stat.events = 0;
156 }
157 
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160 	struct task_struct *task = current;
161 
162 	if (likely(task->mm == mm))
163 		task->rss_stat.count[member] += val;
164 	else
165 		add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169 
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH	(64)
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174 	if (unlikely(task != current))
175 		return;
176 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177 		sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180 
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183 
184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187 
188 #endif /* SPLIT_RSS_COUNTING */
189 
190 /*
191  * Note: this doesn't free the actual pages themselves. That
192  * has been handled earlier when unmapping all the memory regions.
193  */
194 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
195 			   unsigned long addr)
196 {
197 	pgtable_t token = pmd_pgtable(*pmd);
198 	pmd_clear(pmd);
199 	pte_free_tlb(tlb, token, addr);
200 	mm_dec_nr_ptes(tlb->mm);
201 }
202 
203 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
204 				unsigned long addr, unsigned long end,
205 				unsigned long floor, unsigned long ceiling)
206 {
207 	pmd_t *pmd;
208 	unsigned long next;
209 	unsigned long start;
210 
211 	start = addr;
212 	pmd = pmd_offset(pud, addr);
213 	do {
214 		next = pmd_addr_end(addr, end);
215 		if (pmd_none_or_clear_bad(pmd))
216 			continue;
217 		free_pte_range(tlb, pmd, addr);
218 	} while (pmd++, addr = next, addr != end);
219 
220 	start &= PUD_MASK;
221 	if (start < floor)
222 		return;
223 	if (ceiling) {
224 		ceiling &= PUD_MASK;
225 		if (!ceiling)
226 			return;
227 	}
228 	if (end - 1 > ceiling - 1)
229 		return;
230 
231 	pmd = pmd_offset(pud, start);
232 	pud_clear(pud);
233 	pmd_free_tlb(tlb, pmd, start);
234 	mm_dec_nr_pmds(tlb->mm);
235 }
236 
237 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
238 				unsigned long addr, unsigned long end,
239 				unsigned long floor, unsigned long ceiling)
240 {
241 	pud_t *pud;
242 	unsigned long next;
243 	unsigned long start;
244 
245 	start = addr;
246 	pud = pud_offset(p4d, addr);
247 	do {
248 		next = pud_addr_end(addr, end);
249 		if (pud_none_or_clear_bad(pud))
250 			continue;
251 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
252 	} while (pud++, addr = next, addr != end);
253 
254 	start &= P4D_MASK;
255 	if (start < floor)
256 		return;
257 	if (ceiling) {
258 		ceiling &= P4D_MASK;
259 		if (!ceiling)
260 			return;
261 	}
262 	if (end - 1 > ceiling - 1)
263 		return;
264 
265 	pud = pud_offset(p4d, start);
266 	p4d_clear(p4d);
267 	pud_free_tlb(tlb, pud, start);
268 	mm_dec_nr_puds(tlb->mm);
269 }
270 
271 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
272 				unsigned long addr, unsigned long end,
273 				unsigned long floor, unsigned long ceiling)
274 {
275 	p4d_t *p4d;
276 	unsigned long next;
277 	unsigned long start;
278 
279 	start = addr;
280 	p4d = p4d_offset(pgd, addr);
281 	do {
282 		next = p4d_addr_end(addr, end);
283 		if (p4d_none_or_clear_bad(p4d))
284 			continue;
285 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
286 	} while (p4d++, addr = next, addr != end);
287 
288 	start &= PGDIR_MASK;
289 	if (start < floor)
290 		return;
291 	if (ceiling) {
292 		ceiling &= PGDIR_MASK;
293 		if (!ceiling)
294 			return;
295 	}
296 	if (end - 1 > ceiling - 1)
297 		return;
298 
299 	p4d = p4d_offset(pgd, start);
300 	pgd_clear(pgd);
301 	p4d_free_tlb(tlb, p4d, start);
302 }
303 
304 /*
305  * This function frees user-level page tables of a process.
306  */
307 void free_pgd_range(struct mmu_gather *tlb,
308 			unsigned long addr, unsigned long end,
309 			unsigned long floor, unsigned long ceiling)
310 {
311 	pgd_t *pgd;
312 	unsigned long next;
313 
314 	/*
315 	 * The next few lines have given us lots of grief...
316 	 *
317 	 * Why are we testing PMD* at this top level?  Because often
318 	 * there will be no work to do at all, and we'd prefer not to
319 	 * go all the way down to the bottom just to discover that.
320 	 *
321 	 * Why all these "- 1"s?  Because 0 represents both the bottom
322 	 * of the address space and the top of it (using -1 for the
323 	 * top wouldn't help much: the masks would do the wrong thing).
324 	 * The rule is that addr 0 and floor 0 refer to the bottom of
325 	 * the address space, but end 0 and ceiling 0 refer to the top
326 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
327 	 * that end 0 case should be mythical).
328 	 *
329 	 * Wherever addr is brought up or ceiling brought down, we must
330 	 * be careful to reject "the opposite 0" before it confuses the
331 	 * subsequent tests.  But what about where end is brought down
332 	 * by PMD_SIZE below? no, end can't go down to 0 there.
333 	 *
334 	 * Whereas we round start (addr) and ceiling down, by different
335 	 * masks at different levels, in order to test whether a table
336 	 * now has no other vmas using it, so can be freed, we don't
337 	 * bother to round floor or end up - the tests don't need that.
338 	 */
339 
340 	addr &= PMD_MASK;
341 	if (addr < floor) {
342 		addr += PMD_SIZE;
343 		if (!addr)
344 			return;
345 	}
346 	if (ceiling) {
347 		ceiling &= PMD_MASK;
348 		if (!ceiling)
349 			return;
350 	}
351 	if (end - 1 > ceiling - 1)
352 		end -= PMD_SIZE;
353 	if (addr > end - 1)
354 		return;
355 	/*
356 	 * We add page table cache pages with PAGE_SIZE,
357 	 * (see pte_free_tlb()), flush the tlb if we need
358 	 */
359 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
360 	pgd = pgd_offset(tlb->mm, addr);
361 	do {
362 		next = pgd_addr_end(addr, end);
363 		if (pgd_none_or_clear_bad(pgd))
364 			continue;
365 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
366 	} while (pgd++, addr = next, addr != end);
367 }
368 
369 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
370 		unsigned long floor, unsigned long ceiling)
371 {
372 	while (vma) {
373 		struct vm_area_struct *next = vma->vm_next;
374 		unsigned long addr = vma->vm_start;
375 
376 		/*
377 		 * Hide vma from rmap and truncate_pagecache before freeing
378 		 * pgtables
379 		 */
380 		unlink_anon_vmas(vma);
381 		unlink_file_vma(vma);
382 
383 		if (is_vm_hugetlb_page(vma)) {
384 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
385 				floor, next ? next->vm_start : ceiling);
386 		} else {
387 			/*
388 			 * Optimization: gather nearby vmas into one call down
389 			 */
390 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
391 			       && !is_vm_hugetlb_page(next)) {
392 				vma = next;
393 				next = vma->vm_next;
394 				unlink_anon_vmas(vma);
395 				unlink_file_vma(vma);
396 			}
397 			free_pgd_range(tlb, addr, vma->vm_end,
398 				floor, next ? next->vm_start : ceiling);
399 		}
400 		vma = next;
401 	}
402 }
403 
404 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
405 {
406 	spinlock_t *ptl;
407 	pgtable_t new = pte_alloc_one(mm);
408 	if (!new)
409 		return -ENOMEM;
410 
411 	/*
412 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
413 	 * visible before the pte is made visible to other CPUs by being
414 	 * put into page tables.
415 	 *
416 	 * The other side of the story is the pointer chasing in the page
417 	 * table walking code (when walking the page table without locking;
418 	 * ie. most of the time). Fortunately, these data accesses consist
419 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
420 	 * being the notable exception) will already guarantee loads are
421 	 * seen in-order. See the alpha page table accessors for the
422 	 * smp_read_barrier_depends() barriers in page table walking code.
423 	 */
424 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
425 
426 	ptl = pmd_lock(mm, pmd);
427 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
428 		mm_inc_nr_ptes(mm);
429 		pmd_populate(mm, pmd, new);
430 		new = NULL;
431 	}
432 	spin_unlock(ptl);
433 	if (new)
434 		pte_free(mm, new);
435 	return 0;
436 }
437 
438 int __pte_alloc_kernel(pmd_t *pmd)
439 {
440 	pte_t *new = pte_alloc_one_kernel(&init_mm);
441 	if (!new)
442 		return -ENOMEM;
443 
444 	smp_wmb(); /* See comment in __pte_alloc */
445 
446 	spin_lock(&init_mm.page_table_lock);
447 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
448 		pmd_populate_kernel(&init_mm, pmd, new);
449 		new = NULL;
450 	}
451 	spin_unlock(&init_mm.page_table_lock);
452 	if (new)
453 		pte_free_kernel(&init_mm, new);
454 	return 0;
455 }
456 
457 static inline void init_rss_vec(int *rss)
458 {
459 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
460 }
461 
462 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
463 {
464 	int i;
465 
466 	if (current->mm == mm)
467 		sync_mm_rss(mm);
468 	for (i = 0; i < NR_MM_COUNTERS; i++)
469 		if (rss[i])
470 			add_mm_counter(mm, i, rss[i]);
471 }
472 
473 /*
474  * This function is called to print an error when a bad pte
475  * is found. For example, we might have a PFN-mapped pte in
476  * a region that doesn't allow it.
477  *
478  * The calling function must still handle the error.
479  */
480 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
481 			  pte_t pte, struct page *page)
482 {
483 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
484 	p4d_t *p4d = p4d_offset(pgd, addr);
485 	pud_t *pud = pud_offset(p4d, addr);
486 	pmd_t *pmd = pmd_offset(pud, addr);
487 	struct address_space *mapping;
488 	pgoff_t index;
489 	static unsigned long resume;
490 	static unsigned long nr_shown;
491 	static unsigned long nr_unshown;
492 
493 	/*
494 	 * Allow a burst of 60 reports, then keep quiet for that minute;
495 	 * or allow a steady drip of one report per second.
496 	 */
497 	if (nr_shown == 60) {
498 		if (time_before(jiffies, resume)) {
499 			nr_unshown++;
500 			return;
501 		}
502 		if (nr_unshown) {
503 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
504 				 nr_unshown);
505 			nr_unshown = 0;
506 		}
507 		nr_shown = 0;
508 	}
509 	if (nr_shown++ == 0)
510 		resume = jiffies + 60 * HZ;
511 
512 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
513 	index = linear_page_index(vma, addr);
514 
515 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
516 		 current->comm,
517 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
518 	if (page)
519 		dump_page(page, "bad pte");
520 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
521 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
522 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
523 		 vma->vm_file,
524 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
525 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
526 		 mapping ? mapping->a_ops->readpage : NULL);
527 	dump_stack();
528 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
529 }
530 
531 /*
532  * vm_normal_page -- This function gets the "struct page" associated with a pte.
533  *
534  * "Special" mappings do not wish to be associated with a "struct page" (either
535  * it doesn't exist, or it exists but they don't want to touch it). In this
536  * case, NULL is returned here. "Normal" mappings do have a struct page.
537  *
538  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
539  * pte bit, in which case this function is trivial. Secondly, an architecture
540  * may not have a spare pte bit, which requires a more complicated scheme,
541  * described below.
542  *
543  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
544  * special mapping (even if there are underlying and valid "struct pages").
545  * COWed pages of a VM_PFNMAP are always normal.
546  *
547  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
548  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
549  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
550  * mapping will always honor the rule
551  *
552  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
553  *
554  * And for normal mappings this is false.
555  *
556  * This restricts such mappings to be a linear translation from virtual address
557  * to pfn. To get around this restriction, we allow arbitrary mappings so long
558  * as the vma is not a COW mapping; in that case, we know that all ptes are
559  * special (because none can have been COWed).
560  *
561  *
562  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
563  *
564  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
565  * page" backing, however the difference is that _all_ pages with a struct
566  * page (that is, those where pfn_valid is true) are refcounted and considered
567  * normal pages by the VM. The disadvantage is that pages are refcounted
568  * (which can be slower and simply not an option for some PFNMAP users). The
569  * advantage is that we don't have to follow the strict linearity rule of
570  * PFNMAP mappings in order to support COWable mappings.
571  *
572  */
573 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
574 			     pte_t pte, bool with_public_device)
575 {
576 	unsigned long pfn = pte_pfn(pte);
577 
578 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
579 		if (likely(!pte_special(pte)))
580 			goto check_pfn;
581 		if (vma->vm_ops && vma->vm_ops->find_special_page)
582 			return vma->vm_ops->find_special_page(vma, addr);
583 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
584 			return NULL;
585 		if (is_zero_pfn(pfn))
586 			return NULL;
587 
588 		/*
589 		 * Device public pages are special pages (they are ZONE_DEVICE
590 		 * pages but different from persistent memory). They behave
591 		 * allmost like normal pages. The difference is that they are
592 		 * not on the lru and thus should never be involve with any-
593 		 * thing that involve lru manipulation (mlock, numa balancing,
594 		 * ...).
595 		 *
596 		 * This is why we still want to return NULL for such page from
597 		 * vm_normal_page() so that we do not have to special case all
598 		 * call site of vm_normal_page().
599 		 */
600 		if (likely(pfn <= highest_memmap_pfn)) {
601 			struct page *page = pfn_to_page(pfn);
602 
603 			if (is_device_public_page(page)) {
604 				if (with_public_device)
605 					return page;
606 				return NULL;
607 			}
608 		}
609 
610 		if (pte_devmap(pte))
611 			return NULL;
612 
613 		print_bad_pte(vma, addr, pte, NULL);
614 		return NULL;
615 	}
616 
617 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
618 
619 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620 		if (vma->vm_flags & VM_MIXEDMAP) {
621 			if (!pfn_valid(pfn))
622 				return NULL;
623 			goto out;
624 		} else {
625 			unsigned long off;
626 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
627 			if (pfn == vma->vm_pgoff + off)
628 				return NULL;
629 			if (!is_cow_mapping(vma->vm_flags))
630 				return NULL;
631 		}
632 	}
633 
634 	if (is_zero_pfn(pfn))
635 		return NULL;
636 
637 check_pfn:
638 	if (unlikely(pfn > highest_memmap_pfn)) {
639 		print_bad_pte(vma, addr, pte, NULL);
640 		return NULL;
641 	}
642 
643 	/*
644 	 * NOTE! We still have PageReserved() pages in the page tables.
645 	 * eg. VDSO mappings can cause them to exist.
646 	 */
647 out:
648 	return pfn_to_page(pfn);
649 }
650 
651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
652 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
653 				pmd_t pmd)
654 {
655 	unsigned long pfn = pmd_pfn(pmd);
656 
657 	/*
658 	 * There is no pmd_special() but there may be special pmds, e.g.
659 	 * in a direct-access (dax) mapping, so let's just replicate the
660 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
661 	 */
662 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
663 		if (vma->vm_flags & VM_MIXEDMAP) {
664 			if (!pfn_valid(pfn))
665 				return NULL;
666 			goto out;
667 		} else {
668 			unsigned long off;
669 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
670 			if (pfn == vma->vm_pgoff + off)
671 				return NULL;
672 			if (!is_cow_mapping(vma->vm_flags))
673 				return NULL;
674 		}
675 	}
676 
677 	if (pmd_devmap(pmd))
678 		return NULL;
679 	if (is_zero_pfn(pfn))
680 		return NULL;
681 	if (unlikely(pfn > highest_memmap_pfn))
682 		return NULL;
683 
684 	/*
685 	 * NOTE! We still have PageReserved() pages in the page tables.
686 	 * eg. VDSO mappings can cause them to exist.
687 	 */
688 out:
689 	return pfn_to_page(pfn);
690 }
691 #endif
692 
693 /*
694  * copy one vm_area from one task to the other. Assumes the page tables
695  * already present in the new task to be cleared in the whole range
696  * covered by this vma.
697  */
698 
699 static inline unsigned long
700 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
701 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
702 		unsigned long addr, int *rss)
703 {
704 	unsigned long vm_flags = vma->vm_flags;
705 	pte_t pte = *src_pte;
706 	struct page *page;
707 
708 	/* pte contains position in swap or file, so copy. */
709 	if (unlikely(!pte_present(pte))) {
710 		swp_entry_t entry = pte_to_swp_entry(pte);
711 
712 		if (likely(!non_swap_entry(entry))) {
713 			if (swap_duplicate(entry) < 0)
714 				return entry.val;
715 
716 			/* make sure dst_mm is on swapoff's mmlist. */
717 			if (unlikely(list_empty(&dst_mm->mmlist))) {
718 				spin_lock(&mmlist_lock);
719 				if (list_empty(&dst_mm->mmlist))
720 					list_add(&dst_mm->mmlist,
721 							&src_mm->mmlist);
722 				spin_unlock(&mmlist_lock);
723 			}
724 			rss[MM_SWAPENTS]++;
725 		} else if (is_migration_entry(entry)) {
726 			page = migration_entry_to_page(entry);
727 
728 			rss[mm_counter(page)]++;
729 
730 			if (is_write_migration_entry(entry) &&
731 					is_cow_mapping(vm_flags)) {
732 				/*
733 				 * COW mappings require pages in both
734 				 * parent and child to be set to read.
735 				 */
736 				make_migration_entry_read(&entry);
737 				pte = swp_entry_to_pte(entry);
738 				if (pte_swp_soft_dirty(*src_pte))
739 					pte = pte_swp_mksoft_dirty(pte);
740 				set_pte_at(src_mm, addr, src_pte, pte);
741 			}
742 		} else if (is_device_private_entry(entry)) {
743 			page = device_private_entry_to_page(entry);
744 
745 			/*
746 			 * Update rss count even for unaddressable pages, as
747 			 * they should treated just like normal pages in this
748 			 * respect.
749 			 *
750 			 * We will likely want to have some new rss counters
751 			 * for unaddressable pages, at some point. But for now
752 			 * keep things as they are.
753 			 */
754 			get_page(page);
755 			rss[mm_counter(page)]++;
756 			page_dup_rmap(page, false);
757 
758 			/*
759 			 * We do not preserve soft-dirty information, because so
760 			 * far, checkpoint/restore is the only feature that
761 			 * requires that. And checkpoint/restore does not work
762 			 * when a device driver is involved (you cannot easily
763 			 * save and restore device driver state).
764 			 */
765 			if (is_write_device_private_entry(entry) &&
766 			    is_cow_mapping(vm_flags)) {
767 				make_device_private_entry_read(&entry);
768 				pte = swp_entry_to_pte(entry);
769 				set_pte_at(src_mm, addr, src_pte, pte);
770 			}
771 		}
772 		goto out_set_pte;
773 	}
774 
775 	/*
776 	 * If it's a COW mapping, write protect it both
777 	 * in the parent and the child
778 	 */
779 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
780 		ptep_set_wrprotect(src_mm, addr, src_pte);
781 		pte = pte_wrprotect(pte);
782 	}
783 
784 	/*
785 	 * If it's a shared mapping, mark it clean in
786 	 * the child
787 	 */
788 	if (vm_flags & VM_SHARED)
789 		pte = pte_mkclean(pte);
790 	pte = pte_mkold(pte);
791 
792 	page = vm_normal_page(vma, addr, pte);
793 	if (page) {
794 		get_page(page);
795 		page_dup_rmap(page, false);
796 		rss[mm_counter(page)]++;
797 	} else if (pte_devmap(pte)) {
798 		page = pte_page(pte);
799 
800 		/*
801 		 * Cache coherent device memory behave like regular page and
802 		 * not like persistent memory page. For more informations see
803 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
804 		 */
805 		if (is_device_public_page(page)) {
806 			get_page(page);
807 			page_dup_rmap(page, false);
808 			rss[mm_counter(page)]++;
809 		}
810 	}
811 
812 out_set_pte:
813 	set_pte_at(dst_mm, addr, dst_pte, pte);
814 	return 0;
815 }
816 
817 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
818 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
819 		   unsigned long addr, unsigned long end)
820 {
821 	pte_t *orig_src_pte, *orig_dst_pte;
822 	pte_t *src_pte, *dst_pte;
823 	spinlock_t *src_ptl, *dst_ptl;
824 	int progress = 0;
825 	int rss[NR_MM_COUNTERS];
826 	swp_entry_t entry = (swp_entry_t){0};
827 
828 again:
829 	init_rss_vec(rss);
830 
831 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
832 	if (!dst_pte)
833 		return -ENOMEM;
834 	src_pte = pte_offset_map(src_pmd, addr);
835 	src_ptl = pte_lockptr(src_mm, src_pmd);
836 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
837 	orig_src_pte = src_pte;
838 	orig_dst_pte = dst_pte;
839 	arch_enter_lazy_mmu_mode();
840 
841 	do {
842 		/*
843 		 * We are holding two locks at this point - either of them
844 		 * could generate latencies in another task on another CPU.
845 		 */
846 		if (progress >= 32) {
847 			progress = 0;
848 			if (need_resched() ||
849 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
850 				break;
851 		}
852 		if (pte_none(*src_pte)) {
853 			progress++;
854 			continue;
855 		}
856 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
857 							vma, addr, rss);
858 		if (entry.val)
859 			break;
860 		progress += 8;
861 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
862 
863 	arch_leave_lazy_mmu_mode();
864 	spin_unlock(src_ptl);
865 	pte_unmap(orig_src_pte);
866 	add_mm_rss_vec(dst_mm, rss);
867 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
868 	cond_resched();
869 
870 	if (entry.val) {
871 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
872 			return -ENOMEM;
873 		progress = 0;
874 	}
875 	if (addr != end)
876 		goto again;
877 	return 0;
878 }
879 
880 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
881 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
882 		unsigned long addr, unsigned long end)
883 {
884 	pmd_t *src_pmd, *dst_pmd;
885 	unsigned long next;
886 
887 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
888 	if (!dst_pmd)
889 		return -ENOMEM;
890 	src_pmd = pmd_offset(src_pud, addr);
891 	do {
892 		next = pmd_addr_end(addr, end);
893 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
894 			|| pmd_devmap(*src_pmd)) {
895 			int err;
896 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
897 			err = copy_huge_pmd(dst_mm, src_mm,
898 					    dst_pmd, src_pmd, addr, vma);
899 			if (err == -ENOMEM)
900 				return -ENOMEM;
901 			if (!err)
902 				continue;
903 			/* fall through */
904 		}
905 		if (pmd_none_or_clear_bad(src_pmd))
906 			continue;
907 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
908 						vma, addr, next))
909 			return -ENOMEM;
910 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
911 	return 0;
912 }
913 
914 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
916 		unsigned long addr, unsigned long end)
917 {
918 	pud_t *src_pud, *dst_pud;
919 	unsigned long next;
920 
921 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
922 	if (!dst_pud)
923 		return -ENOMEM;
924 	src_pud = pud_offset(src_p4d, addr);
925 	do {
926 		next = pud_addr_end(addr, end);
927 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
928 			int err;
929 
930 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
931 			err = copy_huge_pud(dst_mm, src_mm,
932 					    dst_pud, src_pud, addr, vma);
933 			if (err == -ENOMEM)
934 				return -ENOMEM;
935 			if (!err)
936 				continue;
937 			/* fall through */
938 		}
939 		if (pud_none_or_clear_bad(src_pud))
940 			continue;
941 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
942 						vma, addr, next))
943 			return -ENOMEM;
944 	} while (dst_pud++, src_pud++, addr = next, addr != end);
945 	return 0;
946 }
947 
948 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
949 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
950 		unsigned long addr, unsigned long end)
951 {
952 	p4d_t *src_p4d, *dst_p4d;
953 	unsigned long next;
954 
955 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
956 	if (!dst_p4d)
957 		return -ENOMEM;
958 	src_p4d = p4d_offset(src_pgd, addr);
959 	do {
960 		next = p4d_addr_end(addr, end);
961 		if (p4d_none_or_clear_bad(src_p4d))
962 			continue;
963 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
964 						vma, addr, next))
965 			return -ENOMEM;
966 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
967 	return 0;
968 }
969 
970 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
971 		struct vm_area_struct *vma)
972 {
973 	pgd_t *src_pgd, *dst_pgd;
974 	unsigned long next;
975 	unsigned long addr = vma->vm_start;
976 	unsigned long end = vma->vm_end;
977 	struct mmu_notifier_range range;
978 	bool is_cow;
979 	int ret;
980 
981 	/*
982 	 * Don't copy ptes where a page fault will fill them correctly.
983 	 * Fork becomes much lighter when there are big shared or private
984 	 * readonly mappings. The tradeoff is that copy_page_range is more
985 	 * efficient than faulting.
986 	 */
987 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988 			!vma->anon_vma)
989 		return 0;
990 
991 	if (is_vm_hugetlb_page(vma))
992 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993 
994 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
995 		/*
996 		 * We do not free on error cases below as remove_vma
997 		 * gets called on error from higher level routine
998 		 */
999 		ret = track_pfn_copy(vma);
1000 		if (ret)
1001 			return ret;
1002 	}
1003 
1004 	/*
1005 	 * We need to invalidate the secondary MMU mappings only when
1006 	 * there could be a permission downgrade on the ptes of the
1007 	 * parent mm. And a permission downgrade will only happen if
1008 	 * is_cow_mapping() returns true.
1009 	 */
1010 	is_cow = is_cow_mapping(vma->vm_flags);
1011 
1012 	if (is_cow) {
1013 		mmu_notifier_range_init(&range, src_mm, addr, end);
1014 		mmu_notifier_invalidate_range_start(&range);
1015 	}
1016 
1017 	ret = 0;
1018 	dst_pgd = pgd_offset(dst_mm, addr);
1019 	src_pgd = pgd_offset(src_mm, addr);
1020 	do {
1021 		next = pgd_addr_end(addr, end);
1022 		if (pgd_none_or_clear_bad(src_pgd))
1023 			continue;
1024 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1025 					    vma, addr, next))) {
1026 			ret = -ENOMEM;
1027 			break;
1028 		}
1029 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1030 
1031 	if (is_cow)
1032 		mmu_notifier_invalidate_range_end(&range);
1033 	return ret;
1034 }
1035 
1036 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1037 				struct vm_area_struct *vma, pmd_t *pmd,
1038 				unsigned long addr, unsigned long end,
1039 				struct zap_details *details)
1040 {
1041 	struct mm_struct *mm = tlb->mm;
1042 	int force_flush = 0;
1043 	int rss[NR_MM_COUNTERS];
1044 	spinlock_t *ptl;
1045 	pte_t *start_pte;
1046 	pte_t *pte;
1047 	swp_entry_t entry;
1048 
1049 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1050 again:
1051 	init_rss_vec(rss);
1052 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1053 	pte = start_pte;
1054 	flush_tlb_batched_pending(mm);
1055 	arch_enter_lazy_mmu_mode();
1056 	do {
1057 		pte_t ptent = *pte;
1058 		if (pte_none(ptent))
1059 			continue;
1060 
1061 		if (pte_present(ptent)) {
1062 			struct page *page;
1063 
1064 			page = _vm_normal_page(vma, addr, ptent, true);
1065 			if (unlikely(details) && page) {
1066 				/*
1067 				 * unmap_shared_mapping_pages() wants to
1068 				 * invalidate cache without truncating:
1069 				 * unmap shared but keep private pages.
1070 				 */
1071 				if (details->check_mapping &&
1072 				    details->check_mapping != page_rmapping(page))
1073 					continue;
1074 			}
1075 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1076 							tlb->fullmm);
1077 			tlb_remove_tlb_entry(tlb, pte, addr);
1078 			if (unlikely(!page))
1079 				continue;
1080 
1081 			if (!PageAnon(page)) {
1082 				if (pte_dirty(ptent)) {
1083 					force_flush = 1;
1084 					set_page_dirty(page);
1085 				}
1086 				if (pte_young(ptent) &&
1087 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1088 					mark_page_accessed(page);
1089 			}
1090 			rss[mm_counter(page)]--;
1091 			page_remove_rmap(page, false);
1092 			if (unlikely(page_mapcount(page) < 0))
1093 				print_bad_pte(vma, addr, ptent, page);
1094 			if (unlikely(__tlb_remove_page(tlb, page))) {
1095 				force_flush = 1;
1096 				addr += PAGE_SIZE;
1097 				break;
1098 			}
1099 			continue;
1100 		}
1101 
1102 		entry = pte_to_swp_entry(ptent);
1103 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1104 			struct page *page = device_private_entry_to_page(entry);
1105 
1106 			if (unlikely(details && details->check_mapping)) {
1107 				/*
1108 				 * unmap_shared_mapping_pages() wants to
1109 				 * invalidate cache without truncating:
1110 				 * unmap shared but keep private pages.
1111 				 */
1112 				if (details->check_mapping !=
1113 				    page_rmapping(page))
1114 					continue;
1115 			}
1116 
1117 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118 			rss[mm_counter(page)]--;
1119 			page_remove_rmap(page, false);
1120 			put_page(page);
1121 			continue;
1122 		}
1123 
1124 		/* If details->check_mapping, we leave swap entries. */
1125 		if (unlikely(details))
1126 			continue;
1127 
1128 		entry = pte_to_swp_entry(ptent);
1129 		if (!non_swap_entry(entry))
1130 			rss[MM_SWAPENTS]--;
1131 		else if (is_migration_entry(entry)) {
1132 			struct page *page;
1133 
1134 			page = migration_entry_to_page(entry);
1135 			rss[mm_counter(page)]--;
1136 		}
1137 		if (unlikely(!free_swap_and_cache(entry)))
1138 			print_bad_pte(vma, addr, ptent, NULL);
1139 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1140 	} while (pte++, addr += PAGE_SIZE, addr != end);
1141 
1142 	add_mm_rss_vec(mm, rss);
1143 	arch_leave_lazy_mmu_mode();
1144 
1145 	/* Do the actual TLB flush before dropping ptl */
1146 	if (force_flush)
1147 		tlb_flush_mmu_tlbonly(tlb);
1148 	pte_unmap_unlock(start_pte, ptl);
1149 
1150 	/*
1151 	 * If we forced a TLB flush (either due to running out of
1152 	 * batch buffers or because we needed to flush dirty TLB
1153 	 * entries before releasing the ptl), free the batched
1154 	 * memory too. Restart if we didn't do everything.
1155 	 */
1156 	if (force_flush) {
1157 		force_flush = 0;
1158 		tlb_flush_mmu_free(tlb);
1159 		if (addr != end)
1160 			goto again;
1161 	}
1162 
1163 	return addr;
1164 }
1165 
1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1167 				struct vm_area_struct *vma, pud_t *pud,
1168 				unsigned long addr, unsigned long end,
1169 				struct zap_details *details)
1170 {
1171 	pmd_t *pmd;
1172 	unsigned long next;
1173 
1174 	pmd = pmd_offset(pud, addr);
1175 	do {
1176 		next = pmd_addr_end(addr, end);
1177 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1178 			if (next - addr != HPAGE_PMD_SIZE)
1179 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1180 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1181 				goto next;
1182 			/* fall through */
1183 		}
1184 		/*
1185 		 * Here there can be other concurrent MADV_DONTNEED or
1186 		 * trans huge page faults running, and if the pmd is
1187 		 * none or trans huge it can change under us. This is
1188 		 * because MADV_DONTNEED holds the mmap_sem in read
1189 		 * mode.
1190 		 */
1191 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192 			goto next;
1193 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1194 next:
1195 		cond_resched();
1196 	} while (pmd++, addr = next, addr != end);
1197 
1198 	return addr;
1199 }
1200 
1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1202 				struct vm_area_struct *vma, p4d_t *p4d,
1203 				unsigned long addr, unsigned long end,
1204 				struct zap_details *details)
1205 {
1206 	pud_t *pud;
1207 	unsigned long next;
1208 
1209 	pud = pud_offset(p4d, addr);
1210 	do {
1211 		next = pud_addr_end(addr, end);
1212 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213 			if (next - addr != HPAGE_PUD_SIZE) {
1214 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1215 				split_huge_pud(vma, pud, addr);
1216 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1217 				goto next;
1218 			/* fall through */
1219 		}
1220 		if (pud_none_or_clear_bad(pud))
1221 			continue;
1222 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223 next:
1224 		cond_resched();
1225 	} while (pud++, addr = next, addr != end);
1226 
1227 	return addr;
1228 }
1229 
1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231 				struct vm_area_struct *vma, pgd_t *pgd,
1232 				unsigned long addr, unsigned long end,
1233 				struct zap_details *details)
1234 {
1235 	p4d_t *p4d;
1236 	unsigned long next;
1237 
1238 	p4d = p4d_offset(pgd, addr);
1239 	do {
1240 		next = p4d_addr_end(addr, end);
1241 		if (p4d_none_or_clear_bad(p4d))
1242 			continue;
1243 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244 	} while (p4d++, addr = next, addr != end);
1245 
1246 	return addr;
1247 }
1248 
1249 void unmap_page_range(struct mmu_gather *tlb,
1250 			     struct vm_area_struct *vma,
1251 			     unsigned long addr, unsigned long end,
1252 			     struct zap_details *details)
1253 {
1254 	pgd_t *pgd;
1255 	unsigned long next;
1256 
1257 	BUG_ON(addr >= end);
1258 	tlb_start_vma(tlb, vma);
1259 	pgd = pgd_offset(vma->vm_mm, addr);
1260 	do {
1261 		next = pgd_addr_end(addr, end);
1262 		if (pgd_none_or_clear_bad(pgd))
1263 			continue;
1264 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1265 	} while (pgd++, addr = next, addr != end);
1266 	tlb_end_vma(tlb, vma);
1267 }
1268 
1269 
1270 static void unmap_single_vma(struct mmu_gather *tlb,
1271 		struct vm_area_struct *vma, unsigned long start_addr,
1272 		unsigned long end_addr,
1273 		struct zap_details *details)
1274 {
1275 	unsigned long start = max(vma->vm_start, start_addr);
1276 	unsigned long end;
1277 
1278 	if (start >= vma->vm_end)
1279 		return;
1280 	end = min(vma->vm_end, end_addr);
1281 	if (end <= vma->vm_start)
1282 		return;
1283 
1284 	if (vma->vm_file)
1285 		uprobe_munmap(vma, start, end);
1286 
1287 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1288 		untrack_pfn(vma, 0, 0);
1289 
1290 	if (start != end) {
1291 		if (unlikely(is_vm_hugetlb_page(vma))) {
1292 			/*
1293 			 * It is undesirable to test vma->vm_file as it
1294 			 * should be non-null for valid hugetlb area.
1295 			 * However, vm_file will be NULL in the error
1296 			 * cleanup path of mmap_region. When
1297 			 * hugetlbfs ->mmap method fails,
1298 			 * mmap_region() nullifies vma->vm_file
1299 			 * before calling this function to clean up.
1300 			 * Since no pte has actually been setup, it is
1301 			 * safe to do nothing in this case.
1302 			 */
1303 			if (vma->vm_file) {
1304 				i_mmap_lock_write(vma->vm_file->f_mapping);
1305 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1306 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1307 			}
1308 		} else
1309 			unmap_page_range(tlb, vma, start, end, details);
1310 	}
1311 }
1312 
1313 /**
1314  * unmap_vmas - unmap a range of memory covered by a list of vma's
1315  * @tlb: address of the caller's struct mmu_gather
1316  * @vma: the starting vma
1317  * @start_addr: virtual address at which to start unmapping
1318  * @end_addr: virtual address at which to end unmapping
1319  *
1320  * Unmap all pages in the vma list.
1321  *
1322  * Only addresses between `start' and `end' will be unmapped.
1323  *
1324  * The VMA list must be sorted in ascending virtual address order.
1325  *
1326  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327  * range after unmap_vmas() returns.  So the only responsibility here is to
1328  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329  * drops the lock and schedules.
1330  */
1331 void unmap_vmas(struct mmu_gather *tlb,
1332 		struct vm_area_struct *vma, unsigned long start_addr,
1333 		unsigned long end_addr)
1334 {
1335 	struct mmu_notifier_range range;
1336 
1337 	mmu_notifier_range_init(&range, vma->vm_mm, start_addr, end_addr);
1338 	mmu_notifier_invalidate_range_start(&range);
1339 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1340 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1341 	mmu_notifier_invalidate_range_end(&range);
1342 }
1343 
1344 /**
1345  * zap_page_range - remove user pages in a given range
1346  * @vma: vm_area_struct holding the applicable pages
1347  * @start: starting address of pages to zap
1348  * @size: number of bytes to zap
1349  *
1350  * Caller must protect the VMA list
1351  */
1352 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1353 		unsigned long size)
1354 {
1355 	struct mmu_notifier_range range;
1356 	struct mmu_gather tlb;
1357 
1358 	lru_add_drain();
1359 	mmu_notifier_range_init(&range, vma->vm_mm, start, start + size);
1360 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1361 	update_hiwater_rss(vma->vm_mm);
1362 	mmu_notifier_invalidate_range_start(&range);
1363 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1364 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1365 	mmu_notifier_invalidate_range_end(&range);
1366 	tlb_finish_mmu(&tlb, start, range.end);
1367 }
1368 
1369 /**
1370  * zap_page_range_single - remove user pages in a given range
1371  * @vma: vm_area_struct holding the applicable pages
1372  * @address: starting address of pages to zap
1373  * @size: number of bytes to zap
1374  * @details: details of shared cache invalidation
1375  *
1376  * The range must fit into one VMA.
1377  */
1378 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1379 		unsigned long size, struct zap_details *details)
1380 {
1381 	struct mmu_notifier_range range;
1382 	struct mmu_gather tlb;
1383 
1384 	lru_add_drain();
1385 	mmu_notifier_range_init(&range, vma->vm_mm, address, address + size);
1386 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1387 	update_hiwater_rss(vma->vm_mm);
1388 	mmu_notifier_invalidate_range_start(&range);
1389 	unmap_single_vma(&tlb, vma, address, range.end, details);
1390 	mmu_notifier_invalidate_range_end(&range);
1391 	tlb_finish_mmu(&tlb, address, range.end);
1392 }
1393 
1394 /**
1395  * zap_vma_ptes - remove ptes mapping the vma
1396  * @vma: vm_area_struct holding ptes to be zapped
1397  * @address: starting address of pages to zap
1398  * @size: number of bytes to zap
1399  *
1400  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1401  *
1402  * The entire address range must be fully contained within the vma.
1403  *
1404  */
1405 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1406 		unsigned long size)
1407 {
1408 	if (address < vma->vm_start || address + size > vma->vm_end ||
1409 	    		!(vma->vm_flags & VM_PFNMAP))
1410 		return;
1411 
1412 	zap_page_range_single(vma, address, size, NULL);
1413 }
1414 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1415 
1416 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1417 			spinlock_t **ptl)
1418 {
1419 	pgd_t *pgd;
1420 	p4d_t *p4d;
1421 	pud_t *pud;
1422 	pmd_t *pmd;
1423 
1424 	pgd = pgd_offset(mm, addr);
1425 	p4d = p4d_alloc(mm, pgd, addr);
1426 	if (!p4d)
1427 		return NULL;
1428 	pud = pud_alloc(mm, p4d, addr);
1429 	if (!pud)
1430 		return NULL;
1431 	pmd = pmd_alloc(mm, pud, addr);
1432 	if (!pmd)
1433 		return NULL;
1434 
1435 	VM_BUG_ON(pmd_trans_huge(*pmd));
1436 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1437 }
1438 
1439 /*
1440  * This is the old fallback for page remapping.
1441  *
1442  * For historical reasons, it only allows reserved pages. Only
1443  * old drivers should use this, and they needed to mark their
1444  * pages reserved for the old functions anyway.
1445  */
1446 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1447 			struct page *page, pgprot_t prot)
1448 {
1449 	struct mm_struct *mm = vma->vm_mm;
1450 	int retval;
1451 	pte_t *pte;
1452 	spinlock_t *ptl;
1453 
1454 	retval = -EINVAL;
1455 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1456 		goto out;
1457 	retval = -ENOMEM;
1458 	flush_dcache_page(page);
1459 	pte = get_locked_pte(mm, addr, &ptl);
1460 	if (!pte)
1461 		goto out;
1462 	retval = -EBUSY;
1463 	if (!pte_none(*pte))
1464 		goto out_unlock;
1465 
1466 	/* Ok, finally just insert the thing.. */
1467 	get_page(page);
1468 	inc_mm_counter_fast(mm, mm_counter_file(page));
1469 	page_add_file_rmap(page, false);
1470 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1471 
1472 	retval = 0;
1473 	pte_unmap_unlock(pte, ptl);
1474 	return retval;
1475 out_unlock:
1476 	pte_unmap_unlock(pte, ptl);
1477 out:
1478 	return retval;
1479 }
1480 
1481 /**
1482  * vm_insert_page - insert single page into user vma
1483  * @vma: user vma to map to
1484  * @addr: target user address of this page
1485  * @page: source kernel page
1486  *
1487  * This allows drivers to insert individual pages they've allocated
1488  * into a user vma.
1489  *
1490  * The page has to be a nice clean _individual_ kernel allocation.
1491  * If you allocate a compound page, you need to have marked it as
1492  * such (__GFP_COMP), or manually just split the page up yourself
1493  * (see split_page()).
1494  *
1495  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1496  * took an arbitrary page protection parameter. This doesn't allow
1497  * that. Your vma protection will have to be set up correctly, which
1498  * means that if you want a shared writable mapping, you'd better
1499  * ask for a shared writable mapping!
1500  *
1501  * The page does not need to be reserved.
1502  *
1503  * Usually this function is called from f_op->mmap() handler
1504  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1505  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1506  * function from other places, for example from page-fault handler.
1507  *
1508  * Return: %0 on success, negative error code otherwise.
1509  */
1510 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1511 			struct page *page)
1512 {
1513 	if (addr < vma->vm_start || addr >= vma->vm_end)
1514 		return -EFAULT;
1515 	if (!page_count(page))
1516 		return -EINVAL;
1517 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1518 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1519 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1520 		vma->vm_flags |= VM_MIXEDMAP;
1521 	}
1522 	return insert_page(vma, addr, page, vma->vm_page_prot);
1523 }
1524 EXPORT_SYMBOL(vm_insert_page);
1525 
1526 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1527 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1528 {
1529 	struct mm_struct *mm = vma->vm_mm;
1530 	pte_t *pte, entry;
1531 	spinlock_t *ptl;
1532 
1533 	pte = get_locked_pte(mm, addr, &ptl);
1534 	if (!pte)
1535 		return VM_FAULT_OOM;
1536 	if (!pte_none(*pte)) {
1537 		if (mkwrite) {
1538 			/*
1539 			 * For read faults on private mappings the PFN passed
1540 			 * in may not match the PFN we have mapped if the
1541 			 * mapped PFN is a writeable COW page.  In the mkwrite
1542 			 * case we are creating a writable PTE for a shared
1543 			 * mapping and we expect the PFNs to match. If they
1544 			 * don't match, we are likely racing with block
1545 			 * allocation and mapping invalidation so just skip the
1546 			 * update.
1547 			 */
1548 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1549 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1550 				goto out_unlock;
1551 			}
1552 			entry = pte_mkyoung(*pte);
1553 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1554 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1555 				update_mmu_cache(vma, addr, pte);
1556 		}
1557 		goto out_unlock;
1558 	}
1559 
1560 	/* Ok, finally just insert the thing.. */
1561 	if (pfn_t_devmap(pfn))
1562 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1563 	else
1564 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1565 
1566 	if (mkwrite) {
1567 		entry = pte_mkyoung(entry);
1568 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1569 	}
1570 
1571 	set_pte_at(mm, addr, pte, entry);
1572 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1573 
1574 out_unlock:
1575 	pte_unmap_unlock(pte, ptl);
1576 	return VM_FAULT_NOPAGE;
1577 }
1578 
1579 /**
1580  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1581  * @vma: user vma to map to
1582  * @addr: target user address of this page
1583  * @pfn: source kernel pfn
1584  * @pgprot: pgprot flags for the inserted page
1585  *
1586  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1587  * to override pgprot on a per-page basis.
1588  *
1589  * This only makes sense for IO mappings, and it makes no sense for
1590  * COW mappings.  In general, using multiple vmas is preferable;
1591  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1592  * impractical.
1593  *
1594  * Context: Process context.  May allocate using %GFP_KERNEL.
1595  * Return: vm_fault_t value.
1596  */
1597 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1598 			unsigned long pfn, pgprot_t pgprot)
1599 {
1600 	/*
1601 	 * Technically, architectures with pte_special can avoid all these
1602 	 * restrictions (same for remap_pfn_range).  However we would like
1603 	 * consistency in testing and feature parity among all, so we should
1604 	 * try to keep these invariants in place for everybody.
1605 	 */
1606 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1607 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1608 						(VM_PFNMAP|VM_MIXEDMAP));
1609 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1610 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1611 
1612 	if (addr < vma->vm_start || addr >= vma->vm_end)
1613 		return VM_FAULT_SIGBUS;
1614 
1615 	if (!pfn_modify_allowed(pfn, pgprot))
1616 		return VM_FAULT_SIGBUS;
1617 
1618 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1619 
1620 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1621 			false);
1622 }
1623 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1624 
1625 /**
1626  * vmf_insert_pfn - insert single pfn into user vma
1627  * @vma: user vma to map to
1628  * @addr: target user address of this page
1629  * @pfn: source kernel pfn
1630  *
1631  * Similar to vm_insert_page, this allows drivers to insert individual pages
1632  * they've allocated into a user vma. Same comments apply.
1633  *
1634  * This function should only be called from a vm_ops->fault handler, and
1635  * in that case the handler should return the result of this function.
1636  *
1637  * vma cannot be a COW mapping.
1638  *
1639  * As this is called only for pages that do not currently exist, we
1640  * do not need to flush old virtual caches or the TLB.
1641  *
1642  * Context: Process context.  May allocate using %GFP_KERNEL.
1643  * Return: vm_fault_t value.
1644  */
1645 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1646 			unsigned long pfn)
1647 {
1648 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1649 }
1650 EXPORT_SYMBOL(vmf_insert_pfn);
1651 
1652 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1653 {
1654 	/* these checks mirror the abort conditions in vm_normal_page */
1655 	if (vma->vm_flags & VM_MIXEDMAP)
1656 		return true;
1657 	if (pfn_t_devmap(pfn))
1658 		return true;
1659 	if (pfn_t_special(pfn))
1660 		return true;
1661 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1662 		return true;
1663 	return false;
1664 }
1665 
1666 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1667 		unsigned long addr, pfn_t pfn, bool mkwrite)
1668 {
1669 	pgprot_t pgprot = vma->vm_page_prot;
1670 	int err;
1671 
1672 	BUG_ON(!vm_mixed_ok(vma, pfn));
1673 
1674 	if (addr < vma->vm_start || addr >= vma->vm_end)
1675 		return VM_FAULT_SIGBUS;
1676 
1677 	track_pfn_insert(vma, &pgprot, pfn);
1678 
1679 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1680 		return VM_FAULT_SIGBUS;
1681 
1682 	/*
1683 	 * If we don't have pte special, then we have to use the pfn_valid()
1684 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1685 	 * refcount the page if pfn_valid is true (hence insert_page rather
1686 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1687 	 * without pte special, it would there be refcounted as a normal page.
1688 	 */
1689 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1690 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1691 		struct page *page;
1692 
1693 		/*
1694 		 * At this point we are committed to insert_page()
1695 		 * regardless of whether the caller specified flags that
1696 		 * result in pfn_t_has_page() == false.
1697 		 */
1698 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1699 		err = insert_page(vma, addr, page, pgprot);
1700 	} else {
1701 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1702 	}
1703 
1704 	if (err == -ENOMEM)
1705 		return VM_FAULT_OOM;
1706 	if (err < 0 && err != -EBUSY)
1707 		return VM_FAULT_SIGBUS;
1708 
1709 	return VM_FAULT_NOPAGE;
1710 }
1711 
1712 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1713 		pfn_t pfn)
1714 {
1715 	return __vm_insert_mixed(vma, addr, pfn, false);
1716 }
1717 EXPORT_SYMBOL(vmf_insert_mixed);
1718 
1719 /*
1720  *  If the insertion of PTE failed because someone else already added a
1721  *  different entry in the mean time, we treat that as success as we assume
1722  *  the same entry was actually inserted.
1723  */
1724 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1725 		unsigned long addr, pfn_t pfn)
1726 {
1727 	return __vm_insert_mixed(vma, addr, pfn, true);
1728 }
1729 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1730 
1731 /*
1732  * maps a range of physical memory into the requested pages. the old
1733  * mappings are removed. any references to nonexistent pages results
1734  * in null mappings (currently treated as "copy-on-access")
1735  */
1736 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1737 			unsigned long addr, unsigned long end,
1738 			unsigned long pfn, pgprot_t prot)
1739 {
1740 	pte_t *pte;
1741 	spinlock_t *ptl;
1742 	int err = 0;
1743 
1744 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1745 	if (!pte)
1746 		return -ENOMEM;
1747 	arch_enter_lazy_mmu_mode();
1748 	do {
1749 		BUG_ON(!pte_none(*pte));
1750 		if (!pfn_modify_allowed(pfn, prot)) {
1751 			err = -EACCES;
1752 			break;
1753 		}
1754 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1755 		pfn++;
1756 	} while (pte++, addr += PAGE_SIZE, addr != end);
1757 	arch_leave_lazy_mmu_mode();
1758 	pte_unmap_unlock(pte - 1, ptl);
1759 	return err;
1760 }
1761 
1762 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1763 			unsigned long addr, unsigned long end,
1764 			unsigned long pfn, pgprot_t prot)
1765 {
1766 	pmd_t *pmd;
1767 	unsigned long next;
1768 	int err;
1769 
1770 	pfn -= addr >> PAGE_SHIFT;
1771 	pmd = pmd_alloc(mm, pud, addr);
1772 	if (!pmd)
1773 		return -ENOMEM;
1774 	VM_BUG_ON(pmd_trans_huge(*pmd));
1775 	do {
1776 		next = pmd_addr_end(addr, end);
1777 		err = remap_pte_range(mm, pmd, addr, next,
1778 				pfn + (addr >> PAGE_SHIFT), prot);
1779 		if (err)
1780 			return err;
1781 	} while (pmd++, addr = next, addr != end);
1782 	return 0;
1783 }
1784 
1785 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1786 			unsigned long addr, unsigned long end,
1787 			unsigned long pfn, pgprot_t prot)
1788 {
1789 	pud_t *pud;
1790 	unsigned long next;
1791 	int err;
1792 
1793 	pfn -= addr >> PAGE_SHIFT;
1794 	pud = pud_alloc(mm, p4d, addr);
1795 	if (!pud)
1796 		return -ENOMEM;
1797 	do {
1798 		next = pud_addr_end(addr, end);
1799 		err = remap_pmd_range(mm, pud, addr, next,
1800 				pfn + (addr >> PAGE_SHIFT), prot);
1801 		if (err)
1802 			return err;
1803 	} while (pud++, addr = next, addr != end);
1804 	return 0;
1805 }
1806 
1807 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1808 			unsigned long addr, unsigned long end,
1809 			unsigned long pfn, pgprot_t prot)
1810 {
1811 	p4d_t *p4d;
1812 	unsigned long next;
1813 	int err;
1814 
1815 	pfn -= addr >> PAGE_SHIFT;
1816 	p4d = p4d_alloc(mm, pgd, addr);
1817 	if (!p4d)
1818 		return -ENOMEM;
1819 	do {
1820 		next = p4d_addr_end(addr, end);
1821 		err = remap_pud_range(mm, p4d, addr, next,
1822 				pfn + (addr >> PAGE_SHIFT), prot);
1823 		if (err)
1824 			return err;
1825 	} while (p4d++, addr = next, addr != end);
1826 	return 0;
1827 }
1828 
1829 /**
1830  * remap_pfn_range - remap kernel memory to userspace
1831  * @vma: user vma to map to
1832  * @addr: target user address to start at
1833  * @pfn: physical address of kernel memory
1834  * @size: size of map area
1835  * @prot: page protection flags for this mapping
1836  *
1837  * Note: this is only safe if the mm semaphore is held when called.
1838  *
1839  * Return: %0 on success, negative error code otherwise.
1840  */
1841 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1842 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1843 {
1844 	pgd_t *pgd;
1845 	unsigned long next;
1846 	unsigned long end = addr + PAGE_ALIGN(size);
1847 	struct mm_struct *mm = vma->vm_mm;
1848 	unsigned long remap_pfn = pfn;
1849 	int err;
1850 
1851 	/*
1852 	 * Physically remapped pages are special. Tell the
1853 	 * rest of the world about it:
1854 	 *   VM_IO tells people not to look at these pages
1855 	 *	(accesses can have side effects).
1856 	 *   VM_PFNMAP tells the core MM that the base pages are just
1857 	 *	raw PFN mappings, and do not have a "struct page" associated
1858 	 *	with them.
1859 	 *   VM_DONTEXPAND
1860 	 *      Disable vma merging and expanding with mremap().
1861 	 *   VM_DONTDUMP
1862 	 *      Omit vma from core dump, even when VM_IO turned off.
1863 	 *
1864 	 * There's a horrible special case to handle copy-on-write
1865 	 * behaviour that some programs depend on. We mark the "original"
1866 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1867 	 * See vm_normal_page() for details.
1868 	 */
1869 	if (is_cow_mapping(vma->vm_flags)) {
1870 		if (addr != vma->vm_start || end != vma->vm_end)
1871 			return -EINVAL;
1872 		vma->vm_pgoff = pfn;
1873 	}
1874 
1875 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1876 	if (err)
1877 		return -EINVAL;
1878 
1879 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1880 
1881 	BUG_ON(addr >= end);
1882 	pfn -= addr >> PAGE_SHIFT;
1883 	pgd = pgd_offset(mm, addr);
1884 	flush_cache_range(vma, addr, end);
1885 	do {
1886 		next = pgd_addr_end(addr, end);
1887 		err = remap_p4d_range(mm, pgd, addr, next,
1888 				pfn + (addr >> PAGE_SHIFT), prot);
1889 		if (err)
1890 			break;
1891 	} while (pgd++, addr = next, addr != end);
1892 
1893 	if (err)
1894 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1895 
1896 	return err;
1897 }
1898 EXPORT_SYMBOL(remap_pfn_range);
1899 
1900 /**
1901  * vm_iomap_memory - remap memory to userspace
1902  * @vma: user vma to map to
1903  * @start: start of area
1904  * @len: size of area
1905  *
1906  * This is a simplified io_remap_pfn_range() for common driver use. The
1907  * driver just needs to give us the physical memory range to be mapped,
1908  * we'll figure out the rest from the vma information.
1909  *
1910  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1911  * whatever write-combining details or similar.
1912  *
1913  * Return: %0 on success, negative error code otherwise.
1914  */
1915 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1916 {
1917 	unsigned long vm_len, pfn, pages;
1918 
1919 	/* Check that the physical memory area passed in looks valid */
1920 	if (start + len < start)
1921 		return -EINVAL;
1922 	/*
1923 	 * You *really* shouldn't map things that aren't page-aligned,
1924 	 * but we've historically allowed it because IO memory might
1925 	 * just have smaller alignment.
1926 	 */
1927 	len += start & ~PAGE_MASK;
1928 	pfn = start >> PAGE_SHIFT;
1929 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1930 	if (pfn + pages < pfn)
1931 		return -EINVAL;
1932 
1933 	/* We start the mapping 'vm_pgoff' pages into the area */
1934 	if (vma->vm_pgoff > pages)
1935 		return -EINVAL;
1936 	pfn += vma->vm_pgoff;
1937 	pages -= vma->vm_pgoff;
1938 
1939 	/* Can we fit all of the mapping? */
1940 	vm_len = vma->vm_end - vma->vm_start;
1941 	if (vm_len >> PAGE_SHIFT > pages)
1942 		return -EINVAL;
1943 
1944 	/* Ok, let it rip */
1945 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1946 }
1947 EXPORT_SYMBOL(vm_iomap_memory);
1948 
1949 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1950 				     unsigned long addr, unsigned long end,
1951 				     pte_fn_t fn, void *data)
1952 {
1953 	pte_t *pte;
1954 	int err;
1955 	pgtable_t token;
1956 	spinlock_t *uninitialized_var(ptl);
1957 
1958 	pte = (mm == &init_mm) ?
1959 		pte_alloc_kernel(pmd, addr) :
1960 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1961 	if (!pte)
1962 		return -ENOMEM;
1963 
1964 	BUG_ON(pmd_huge(*pmd));
1965 
1966 	arch_enter_lazy_mmu_mode();
1967 
1968 	token = pmd_pgtable(*pmd);
1969 
1970 	do {
1971 		err = fn(pte++, token, addr, data);
1972 		if (err)
1973 			break;
1974 	} while (addr += PAGE_SIZE, addr != end);
1975 
1976 	arch_leave_lazy_mmu_mode();
1977 
1978 	if (mm != &init_mm)
1979 		pte_unmap_unlock(pte-1, ptl);
1980 	return err;
1981 }
1982 
1983 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1984 				     unsigned long addr, unsigned long end,
1985 				     pte_fn_t fn, void *data)
1986 {
1987 	pmd_t *pmd;
1988 	unsigned long next;
1989 	int err;
1990 
1991 	BUG_ON(pud_huge(*pud));
1992 
1993 	pmd = pmd_alloc(mm, pud, addr);
1994 	if (!pmd)
1995 		return -ENOMEM;
1996 	do {
1997 		next = pmd_addr_end(addr, end);
1998 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1999 		if (err)
2000 			break;
2001 	} while (pmd++, addr = next, addr != end);
2002 	return err;
2003 }
2004 
2005 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2006 				     unsigned long addr, unsigned long end,
2007 				     pte_fn_t fn, void *data)
2008 {
2009 	pud_t *pud;
2010 	unsigned long next;
2011 	int err;
2012 
2013 	pud = pud_alloc(mm, p4d, addr);
2014 	if (!pud)
2015 		return -ENOMEM;
2016 	do {
2017 		next = pud_addr_end(addr, end);
2018 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2019 		if (err)
2020 			break;
2021 	} while (pud++, addr = next, addr != end);
2022 	return err;
2023 }
2024 
2025 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2026 				     unsigned long addr, unsigned long end,
2027 				     pte_fn_t fn, void *data)
2028 {
2029 	p4d_t *p4d;
2030 	unsigned long next;
2031 	int err;
2032 
2033 	p4d = p4d_alloc(mm, pgd, addr);
2034 	if (!p4d)
2035 		return -ENOMEM;
2036 	do {
2037 		next = p4d_addr_end(addr, end);
2038 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2039 		if (err)
2040 			break;
2041 	} while (p4d++, addr = next, addr != end);
2042 	return err;
2043 }
2044 
2045 /*
2046  * Scan a region of virtual memory, filling in page tables as necessary
2047  * and calling a provided function on each leaf page table.
2048  */
2049 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2050 			unsigned long size, pte_fn_t fn, void *data)
2051 {
2052 	pgd_t *pgd;
2053 	unsigned long next;
2054 	unsigned long end = addr + size;
2055 	int err;
2056 
2057 	if (WARN_ON(addr >= end))
2058 		return -EINVAL;
2059 
2060 	pgd = pgd_offset(mm, addr);
2061 	do {
2062 		next = pgd_addr_end(addr, end);
2063 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2064 		if (err)
2065 			break;
2066 	} while (pgd++, addr = next, addr != end);
2067 
2068 	return err;
2069 }
2070 EXPORT_SYMBOL_GPL(apply_to_page_range);
2071 
2072 /*
2073  * handle_pte_fault chooses page fault handler according to an entry which was
2074  * read non-atomically.  Before making any commitment, on those architectures
2075  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2076  * parts, do_swap_page must check under lock before unmapping the pte and
2077  * proceeding (but do_wp_page is only called after already making such a check;
2078  * and do_anonymous_page can safely check later on).
2079  */
2080 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2081 				pte_t *page_table, pte_t orig_pte)
2082 {
2083 	int same = 1;
2084 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2085 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2086 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2087 		spin_lock(ptl);
2088 		same = pte_same(*page_table, orig_pte);
2089 		spin_unlock(ptl);
2090 	}
2091 #endif
2092 	pte_unmap(page_table);
2093 	return same;
2094 }
2095 
2096 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2097 {
2098 	debug_dma_assert_idle(src);
2099 
2100 	/*
2101 	 * If the source page was a PFN mapping, we don't have
2102 	 * a "struct page" for it. We do a best-effort copy by
2103 	 * just copying from the original user address. If that
2104 	 * fails, we just zero-fill it. Live with it.
2105 	 */
2106 	if (unlikely(!src)) {
2107 		void *kaddr = kmap_atomic(dst);
2108 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2109 
2110 		/*
2111 		 * This really shouldn't fail, because the page is there
2112 		 * in the page tables. But it might just be unreadable,
2113 		 * in which case we just give up and fill the result with
2114 		 * zeroes.
2115 		 */
2116 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2117 			clear_page(kaddr);
2118 		kunmap_atomic(kaddr);
2119 		flush_dcache_page(dst);
2120 	} else
2121 		copy_user_highpage(dst, src, va, vma);
2122 }
2123 
2124 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2125 {
2126 	struct file *vm_file = vma->vm_file;
2127 
2128 	if (vm_file)
2129 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2130 
2131 	/*
2132 	 * Special mappings (e.g. VDSO) do not have any file so fake
2133 	 * a default GFP_KERNEL for them.
2134 	 */
2135 	return GFP_KERNEL;
2136 }
2137 
2138 /*
2139  * Notify the address space that the page is about to become writable so that
2140  * it can prohibit this or wait for the page to get into an appropriate state.
2141  *
2142  * We do this without the lock held, so that it can sleep if it needs to.
2143  */
2144 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2145 {
2146 	vm_fault_t ret;
2147 	struct page *page = vmf->page;
2148 	unsigned int old_flags = vmf->flags;
2149 
2150 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2151 
2152 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2153 	/* Restore original flags so that caller is not surprised */
2154 	vmf->flags = old_flags;
2155 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2156 		return ret;
2157 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2158 		lock_page(page);
2159 		if (!page->mapping) {
2160 			unlock_page(page);
2161 			return 0; /* retry */
2162 		}
2163 		ret |= VM_FAULT_LOCKED;
2164 	} else
2165 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2166 	return ret;
2167 }
2168 
2169 /*
2170  * Handle dirtying of a page in shared file mapping on a write fault.
2171  *
2172  * The function expects the page to be locked and unlocks it.
2173  */
2174 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2175 				    struct page *page)
2176 {
2177 	struct address_space *mapping;
2178 	bool dirtied;
2179 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2180 
2181 	dirtied = set_page_dirty(page);
2182 	VM_BUG_ON_PAGE(PageAnon(page), page);
2183 	/*
2184 	 * Take a local copy of the address_space - page.mapping may be zeroed
2185 	 * by truncate after unlock_page().   The address_space itself remains
2186 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2187 	 * release semantics to prevent the compiler from undoing this copying.
2188 	 */
2189 	mapping = page_rmapping(page);
2190 	unlock_page(page);
2191 
2192 	if ((dirtied || page_mkwrite) && mapping) {
2193 		/*
2194 		 * Some device drivers do not set page.mapping
2195 		 * but still dirty their pages
2196 		 */
2197 		balance_dirty_pages_ratelimited(mapping);
2198 	}
2199 
2200 	if (!page_mkwrite)
2201 		file_update_time(vma->vm_file);
2202 }
2203 
2204 /*
2205  * Handle write page faults for pages that can be reused in the current vma
2206  *
2207  * This can happen either due to the mapping being with the VM_SHARED flag,
2208  * or due to us being the last reference standing to the page. In either
2209  * case, all we need to do here is to mark the page as writable and update
2210  * any related book-keeping.
2211  */
2212 static inline void wp_page_reuse(struct vm_fault *vmf)
2213 	__releases(vmf->ptl)
2214 {
2215 	struct vm_area_struct *vma = vmf->vma;
2216 	struct page *page = vmf->page;
2217 	pte_t entry;
2218 	/*
2219 	 * Clear the pages cpupid information as the existing
2220 	 * information potentially belongs to a now completely
2221 	 * unrelated process.
2222 	 */
2223 	if (page)
2224 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2225 
2226 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2227 	entry = pte_mkyoung(vmf->orig_pte);
2228 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2229 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2230 		update_mmu_cache(vma, vmf->address, vmf->pte);
2231 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2232 }
2233 
2234 /*
2235  * Handle the case of a page which we actually need to copy to a new page.
2236  *
2237  * Called with mmap_sem locked and the old page referenced, but
2238  * without the ptl held.
2239  *
2240  * High level logic flow:
2241  *
2242  * - Allocate a page, copy the content of the old page to the new one.
2243  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2244  * - Take the PTL. If the pte changed, bail out and release the allocated page
2245  * - If the pte is still the way we remember it, update the page table and all
2246  *   relevant references. This includes dropping the reference the page-table
2247  *   held to the old page, as well as updating the rmap.
2248  * - In any case, unlock the PTL and drop the reference we took to the old page.
2249  */
2250 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2251 {
2252 	struct vm_area_struct *vma = vmf->vma;
2253 	struct mm_struct *mm = vma->vm_mm;
2254 	struct page *old_page = vmf->page;
2255 	struct page *new_page = NULL;
2256 	pte_t entry;
2257 	int page_copied = 0;
2258 	struct mem_cgroup *memcg;
2259 	struct mmu_notifier_range range;
2260 
2261 	if (unlikely(anon_vma_prepare(vma)))
2262 		goto oom;
2263 
2264 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2265 		new_page = alloc_zeroed_user_highpage_movable(vma,
2266 							      vmf->address);
2267 		if (!new_page)
2268 			goto oom;
2269 	} else {
2270 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2271 				vmf->address);
2272 		if (!new_page)
2273 			goto oom;
2274 		cow_user_page(new_page, old_page, vmf->address, vma);
2275 	}
2276 
2277 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2278 		goto oom_free_new;
2279 
2280 	__SetPageUptodate(new_page);
2281 
2282 	mmu_notifier_range_init(&range, mm, vmf->address & PAGE_MASK,
2283 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2284 	mmu_notifier_invalidate_range_start(&range);
2285 
2286 	/*
2287 	 * Re-check the pte - we dropped the lock
2288 	 */
2289 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2290 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2291 		if (old_page) {
2292 			if (!PageAnon(old_page)) {
2293 				dec_mm_counter_fast(mm,
2294 						mm_counter_file(old_page));
2295 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2296 			}
2297 		} else {
2298 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2299 		}
2300 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2301 		entry = mk_pte(new_page, vma->vm_page_prot);
2302 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2303 		/*
2304 		 * Clear the pte entry and flush it first, before updating the
2305 		 * pte with the new entry. This will avoid a race condition
2306 		 * seen in the presence of one thread doing SMC and another
2307 		 * thread doing COW.
2308 		 */
2309 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2310 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2311 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2312 		lru_cache_add_active_or_unevictable(new_page, vma);
2313 		/*
2314 		 * We call the notify macro here because, when using secondary
2315 		 * mmu page tables (such as kvm shadow page tables), we want the
2316 		 * new page to be mapped directly into the secondary page table.
2317 		 */
2318 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2319 		update_mmu_cache(vma, vmf->address, vmf->pte);
2320 		if (old_page) {
2321 			/*
2322 			 * Only after switching the pte to the new page may
2323 			 * we remove the mapcount here. Otherwise another
2324 			 * process may come and find the rmap count decremented
2325 			 * before the pte is switched to the new page, and
2326 			 * "reuse" the old page writing into it while our pte
2327 			 * here still points into it and can be read by other
2328 			 * threads.
2329 			 *
2330 			 * The critical issue is to order this
2331 			 * page_remove_rmap with the ptp_clear_flush above.
2332 			 * Those stores are ordered by (if nothing else,)
2333 			 * the barrier present in the atomic_add_negative
2334 			 * in page_remove_rmap.
2335 			 *
2336 			 * Then the TLB flush in ptep_clear_flush ensures that
2337 			 * no process can access the old page before the
2338 			 * decremented mapcount is visible. And the old page
2339 			 * cannot be reused until after the decremented
2340 			 * mapcount is visible. So transitively, TLBs to
2341 			 * old page will be flushed before it can be reused.
2342 			 */
2343 			page_remove_rmap(old_page, false);
2344 		}
2345 
2346 		/* Free the old page.. */
2347 		new_page = old_page;
2348 		page_copied = 1;
2349 	} else {
2350 		mem_cgroup_cancel_charge(new_page, memcg, false);
2351 	}
2352 
2353 	if (new_page)
2354 		put_page(new_page);
2355 
2356 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2357 	/*
2358 	 * No need to double call mmu_notifier->invalidate_range() callback as
2359 	 * the above ptep_clear_flush_notify() did already call it.
2360 	 */
2361 	mmu_notifier_invalidate_range_only_end(&range);
2362 	if (old_page) {
2363 		/*
2364 		 * Don't let another task, with possibly unlocked vma,
2365 		 * keep the mlocked page.
2366 		 */
2367 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2368 			lock_page(old_page);	/* LRU manipulation */
2369 			if (PageMlocked(old_page))
2370 				munlock_vma_page(old_page);
2371 			unlock_page(old_page);
2372 		}
2373 		put_page(old_page);
2374 	}
2375 	return page_copied ? VM_FAULT_WRITE : 0;
2376 oom_free_new:
2377 	put_page(new_page);
2378 oom:
2379 	if (old_page)
2380 		put_page(old_page);
2381 	return VM_FAULT_OOM;
2382 }
2383 
2384 /**
2385  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2386  *			  writeable once the page is prepared
2387  *
2388  * @vmf: structure describing the fault
2389  *
2390  * This function handles all that is needed to finish a write page fault in a
2391  * shared mapping due to PTE being read-only once the mapped page is prepared.
2392  * It handles locking of PTE and modifying it.
2393  *
2394  * The function expects the page to be locked or other protection against
2395  * concurrent faults / writeback (such as DAX radix tree locks).
2396  *
2397  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2398  * we acquired PTE lock.
2399  */
2400 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2401 {
2402 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2403 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2404 				       &vmf->ptl);
2405 	/*
2406 	 * We might have raced with another page fault while we released the
2407 	 * pte_offset_map_lock.
2408 	 */
2409 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2410 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2411 		return VM_FAULT_NOPAGE;
2412 	}
2413 	wp_page_reuse(vmf);
2414 	return 0;
2415 }
2416 
2417 /*
2418  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2419  * mapping
2420  */
2421 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2422 {
2423 	struct vm_area_struct *vma = vmf->vma;
2424 
2425 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2426 		vm_fault_t ret;
2427 
2428 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2429 		vmf->flags |= FAULT_FLAG_MKWRITE;
2430 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2431 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2432 			return ret;
2433 		return finish_mkwrite_fault(vmf);
2434 	}
2435 	wp_page_reuse(vmf);
2436 	return VM_FAULT_WRITE;
2437 }
2438 
2439 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2440 	__releases(vmf->ptl)
2441 {
2442 	struct vm_area_struct *vma = vmf->vma;
2443 
2444 	get_page(vmf->page);
2445 
2446 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2447 		vm_fault_t tmp;
2448 
2449 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2450 		tmp = do_page_mkwrite(vmf);
2451 		if (unlikely(!tmp || (tmp &
2452 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2453 			put_page(vmf->page);
2454 			return tmp;
2455 		}
2456 		tmp = finish_mkwrite_fault(vmf);
2457 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2458 			unlock_page(vmf->page);
2459 			put_page(vmf->page);
2460 			return tmp;
2461 		}
2462 	} else {
2463 		wp_page_reuse(vmf);
2464 		lock_page(vmf->page);
2465 	}
2466 	fault_dirty_shared_page(vma, vmf->page);
2467 	put_page(vmf->page);
2468 
2469 	return VM_FAULT_WRITE;
2470 }
2471 
2472 /*
2473  * This routine handles present pages, when users try to write
2474  * to a shared page. It is done by copying the page to a new address
2475  * and decrementing the shared-page counter for the old page.
2476  *
2477  * Note that this routine assumes that the protection checks have been
2478  * done by the caller (the low-level page fault routine in most cases).
2479  * Thus we can safely just mark it writable once we've done any necessary
2480  * COW.
2481  *
2482  * We also mark the page dirty at this point even though the page will
2483  * change only once the write actually happens. This avoids a few races,
2484  * and potentially makes it more efficient.
2485  *
2486  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2487  * but allow concurrent faults), with pte both mapped and locked.
2488  * We return with mmap_sem still held, but pte unmapped and unlocked.
2489  */
2490 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2491 	__releases(vmf->ptl)
2492 {
2493 	struct vm_area_struct *vma = vmf->vma;
2494 
2495 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2496 	if (!vmf->page) {
2497 		/*
2498 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2499 		 * VM_PFNMAP VMA.
2500 		 *
2501 		 * We should not cow pages in a shared writeable mapping.
2502 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2503 		 */
2504 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2505 				     (VM_WRITE|VM_SHARED))
2506 			return wp_pfn_shared(vmf);
2507 
2508 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2509 		return wp_page_copy(vmf);
2510 	}
2511 
2512 	/*
2513 	 * Take out anonymous pages first, anonymous shared vmas are
2514 	 * not dirty accountable.
2515 	 */
2516 	if (PageAnon(vmf->page)) {
2517 		int total_map_swapcount;
2518 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2519 					   page_count(vmf->page) != 1))
2520 			goto copy;
2521 		if (!trylock_page(vmf->page)) {
2522 			get_page(vmf->page);
2523 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2524 			lock_page(vmf->page);
2525 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2526 					vmf->address, &vmf->ptl);
2527 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2528 				unlock_page(vmf->page);
2529 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2530 				put_page(vmf->page);
2531 				return 0;
2532 			}
2533 			put_page(vmf->page);
2534 		}
2535 		if (PageKsm(vmf->page)) {
2536 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2537 						     vmf->address);
2538 			unlock_page(vmf->page);
2539 			if (!reused)
2540 				goto copy;
2541 			wp_page_reuse(vmf);
2542 			return VM_FAULT_WRITE;
2543 		}
2544 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2545 			if (total_map_swapcount == 1) {
2546 				/*
2547 				 * The page is all ours. Move it to
2548 				 * our anon_vma so the rmap code will
2549 				 * not search our parent or siblings.
2550 				 * Protected against the rmap code by
2551 				 * the page lock.
2552 				 */
2553 				page_move_anon_rmap(vmf->page, vma);
2554 			}
2555 			unlock_page(vmf->page);
2556 			wp_page_reuse(vmf);
2557 			return VM_FAULT_WRITE;
2558 		}
2559 		unlock_page(vmf->page);
2560 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2561 					(VM_WRITE|VM_SHARED))) {
2562 		return wp_page_shared(vmf);
2563 	}
2564 copy:
2565 	/*
2566 	 * Ok, we need to copy. Oh, well..
2567 	 */
2568 	get_page(vmf->page);
2569 
2570 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2571 	return wp_page_copy(vmf);
2572 }
2573 
2574 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2575 		unsigned long start_addr, unsigned long end_addr,
2576 		struct zap_details *details)
2577 {
2578 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2579 }
2580 
2581 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2582 					    struct zap_details *details)
2583 {
2584 	struct vm_area_struct *vma;
2585 	pgoff_t vba, vea, zba, zea;
2586 
2587 	vma_interval_tree_foreach(vma, root,
2588 			details->first_index, details->last_index) {
2589 
2590 		vba = vma->vm_pgoff;
2591 		vea = vba + vma_pages(vma) - 1;
2592 		zba = details->first_index;
2593 		if (zba < vba)
2594 			zba = vba;
2595 		zea = details->last_index;
2596 		if (zea > vea)
2597 			zea = vea;
2598 
2599 		unmap_mapping_range_vma(vma,
2600 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2601 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2602 				details);
2603 	}
2604 }
2605 
2606 /**
2607  * unmap_mapping_pages() - Unmap pages from processes.
2608  * @mapping: The address space containing pages to be unmapped.
2609  * @start: Index of first page to be unmapped.
2610  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2611  * @even_cows: Whether to unmap even private COWed pages.
2612  *
2613  * Unmap the pages in this address space from any userspace process which
2614  * has them mmaped.  Generally, you want to remove COWed pages as well when
2615  * a file is being truncated, but not when invalidating pages from the page
2616  * cache.
2617  */
2618 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2619 		pgoff_t nr, bool even_cows)
2620 {
2621 	struct zap_details details = { };
2622 
2623 	details.check_mapping = even_cows ? NULL : mapping;
2624 	details.first_index = start;
2625 	details.last_index = start + nr - 1;
2626 	if (details.last_index < details.first_index)
2627 		details.last_index = ULONG_MAX;
2628 
2629 	i_mmap_lock_write(mapping);
2630 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2631 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2632 	i_mmap_unlock_write(mapping);
2633 }
2634 
2635 /**
2636  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2637  * address_space corresponding to the specified byte range in the underlying
2638  * file.
2639  *
2640  * @mapping: the address space containing mmaps to be unmapped.
2641  * @holebegin: byte in first page to unmap, relative to the start of
2642  * the underlying file.  This will be rounded down to a PAGE_SIZE
2643  * boundary.  Note that this is different from truncate_pagecache(), which
2644  * must keep the partial page.  In contrast, we must get rid of
2645  * partial pages.
2646  * @holelen: size of prospective hole in bytes.  This will be rounded
2647  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2648  * end of the file.
2649  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2650  * but 0 when invalidating pagecache, don't throw away private data.
2651  */
2652 void unmap_mapping_range(struct address_space *mapping,
2653 		loff_t const holebegin, loff_t const holelen, int even_cows)
2654 {
2655 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2656 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2657 
2658 	/* Check for overflow. */
2659 	if (sizeof(holelen) > sizeof(hlen)) {
2660 		long long holeend =
2661 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2662 		if (holeend & ~(long long)ULONG_MAX)
2663 			hlen = ULONG_MAX - hba + 1;
2664 	}
2665 
2666 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2667 }
2668 EXPORT_SYMBOL(unmap_mapping_range);
2669 
2670 /*
2671  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2672  * but allow concurrent faults), and pte mapped but not yet locked.
2673  * We return with pte unmapped and unlocked.
2674  *
2675  * We return with the mmap_sem locked or unlocked in the same cases
2676  * as does filemap_fault().
2677  */
2678 vm_fault_t do_swap_page(struct vm_fault *vmf)
2679 {
2680 	struct vm_area_struct *vma = vmf->vma;
2681 	struct page *page = NULL, *swapcache;
2682 	struct mem_cgroup *memcg;
2683 	swp_entry_t entry;
2684 	pte_t pte;
2685 	int locked;
2686 	int exclusive = 0;
2687 	vm_fault_t ret = 0;
2688 
2689 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2690 		goto out;
2691 
2692 	entry = pte_to_swp_entry(vmf->orig_pte);
2693 	if (unlikely(non_swap_entry(entry))) {
2694 		if (is_migration_entry(entry)) {
2695 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2696 					     vmf->address);
2697 		} else if (is_device_private_entry(entry)) {
2698 			/*
2699 			 * For un-addressable device memory we call the pgmap
2700 			 * fault handler callback. The callback must migrate
2701 			 * the page back to some CPU accessible page.
2702 			 */
2703 			ret = device_private_entry_fault(vma, vmf->address, entry,
2704 						 vmf->flags, vmf->pmd);
2705 		} else if (is_hwpoison_entry(entry)) {
2706 			ret = VM_FAULT_HWPOISON;
2707 		} else {
2708 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2709 			ret = VM_FAULT_SIGBUS;
2710 		}
2711 		goto out;
2712 	}
2713 
2714 
2715 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2716 	page = lookup_swap_cache(entry, vma, vmf->address);
2717 	swapcache = page;
2718 
2719 	if (!page) {
2720 		struct swap_info_struct *si = swp_swap_info(entry);
2721 
2722 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2723 				__swap_count(si, entry) == 1) {
2724 			/* skip swapcache */
2725 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2726 							vmf->address);
2727 			if (page) {
2728 				__SetPageLocked(page);
2729 				__SetPageSwapBacked(page);
2730 				set_page_private(page, entry.val);
2731 				lru_cache_add_anon(page);
2732 				swap_readpage(page, true);
2733 			}
2734 		} else {
2735 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2736 						vmf);
2737 			swapcache = page;
2738 		}
2739 
2740 		if (!page) {
2741 			/*
2742 			 * Back out if somebody else faulted in this pte
2743 			 * while we released the pte lock.
2744 			 */
2745 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2746 					vmf->address, &vmf->ptl);
2747 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2748 				ret = VM_FAULT_OOM;
2749 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2750 			goto unlock;
2751 		}
2752 
2753 		/* Had to read the page from swap area: Major fault */
2754 		ret = VM_FAULT_MAJOR;
2755 		count_vm_event(PGMAJFAULT);
2756 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2757 	} else if (PageHWPoison(page)) {
2758 		/*
2759 		 * hwpoisoned dirty swapcache pages are kept for killing
2760 		 * owner processes (which may be unknown at hwpoison time)
2761 		 */
2762 		ret = VM_FAULT_HWPOISON;
2763 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2764 		goto out_release;
2765 	}
2766 
2767 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2768 
2769 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2770 	if (!locked) {
2771 		ret |= VM_FAULT_RETRY;
2772 		goto out_release;
2773 	}
2774 
2775 	/*
2776 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2777 	 * release the swapcache from under us.  The page pin, and pte_same
2778 	 * test below, are not enough to exclude that.  Even if it is still
2779 	 * swapcache, we need to check that the page's swap has not changed.
2780 	 */
2781 	if (unlikely((!PageSwapCache(page) ||
2782 			page_private(page) != entry.val)) && swapcache)
2783 		goto out_page;
2784 
2785 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2786 	if (unlikely(!page)) {
2787 		ret = VM_FAULT_OOM;
2788 		page = swapcache;
2789 		goto out_page;
2790 	}
2791 
2792 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2793 					&memcg, false)) {
2794 		ret = VM_FAULT_OOM;
2795 		goto out_page;
2796 	}
2797 
2798 	/*
2799 	 * Back out if somebody else already faulted in this pte.
2800 	 */
2801 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2802 			&vmf->ptl);
2803 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2804 		goto out_nomap;
2805 
2806 	if (unlikely(!PageUptodate(page))) {
2807 		ret = VM_FAULT_SIGBUS;
2808 		goto out_nomap;
2809 	}
2810 
2811 	/*
2812 	 * The page isn't present yet, go ahead with the fault.
2813 	 *
2814 	 * Be careful about the sequence of operations here.
2815 	 * To get its accounting right, reuse_swap_page() must be called
2816 	 * while the page is counted on swap but not yet in mapcount i.e.
2817 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2818 	 * must be called after the swap_free(), or it will never succeed.
2819 	 */
2820 
2821 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2822 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2823 	pte = mk_pte(page, vma->vm_page_prot);
2824 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2825 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2826 		vmf->flags &= ~FAULT_FLAG_WRITE;
2827 		ret |= VM_FAULT_WRITE;
2828 		exclusive = RMAP_EXCLUSIVE;
2829 	}
2830 	flush_icache_page(vma, page);
2831 	if (pte_swp_soft_dirty(vmf->orig_pte))
2832 		pte = pte_mksoft_dirty(pte);
2833 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2834 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2835 	vmf->orig_pte = pte;
2836 
2837 	/* ksm created a completely new copy */
2838 	if (unlikely(page != swapcache && swapcache)) {
2839 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2840 		mem_cgroup_commit_charge(page, memcg, false, false);
2841 		lru_cache_add_active_or_unevictable(page, vma);
2842 	} else {
2843 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2844 		mem_cgroup_commit_charge(page, memcg, true, false);
2845 		activate_page(page);
2846 	}
2847 
2848 	swap_free(entry);
2849 	if (mem_cgroup_swap_full(page) ||
2850 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2851 		try_to_free_swap(page);
2852 	unlock_page(page);
2853 	if (page != swapcache && swapcache) {
2854 		/*
2855 		 * Hold the lock to avoid the swap entry to be reused
2856 		 * until we take the PT lock for the pte_same() check
2857 		 * (to avoid false positives from pte_same). For
2858 		 * further safety release the lock after the swap_free
2859 		 * so that the swap count won't change under a
2860 		 * parallel locked swapcache.
2861 		 */
2862 		unlock_page(swapcache);
2863 		put_page(swapcache);
2864 	}
2865 
2866 	if (vmf->flags & FAULT_FLAG_WRITE) {
2867 		ret |= do_wp_page(vmf);
2868 		if (ret & VM_FAULT_ERROR)
2869 			ret &= VM_FAULT_ERROR;
2870 		goto out;
2871 	}
2872 
2873 	/* No need to invalidate - it was non-present before */
2874 	update_mmu_cache(vma, vmf->address, vmf->pte);
2875 unlock:
2876 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2877 out:
2878 	return ret;
2879 out_nomap:
2880 	mem_cgroup_cancel_charge(page, memcg, false);
2881 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2882 out_page:
2883 	unlock_page(page);
2884 out_release:
2885 	put_page(page);
2886 	if (page != swapcache && swapcache) {
2887 		unlock_page(swapcache);
2888 		put_page(swapcache);
2889 	}
2890 	return ret;
2891 }
2892 
2893 /*
2894  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2895  * but allow concurrent faults), and pte mapped but not yet locked.
2896  * We return with mmap_sem still held, but pte unmapped and unlocked.
2897  */
2898 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2899 {
2900 	struct vm_area_struct *vma = vmf->vma;
2901 	struct mem_cgroup *memcg;
2902 	struct page *page;
2903 	vm_fault_t ret = 0;
2904 	pte_t entry;
2905 
2906 	/* File mapping without ->vm_ops ? */
2907 	if (vma->vm_flags & VM_SHARED)
2908 		return VM_FAULT_SIGBUS;
2909 
2910 	/*
2911 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2912 	 * pte_offset_map() on pmds where a huge pmd might be created
2913 	 * from a different thread.
2914 	 *
2915 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2916 	 * parallel threads are excluded by other means.
2917 	 *
2918 	 * Here we only have down_read(mmap_sem).
2919 	 */
2920 	if (pte_alloc(vma->vm_mm, vmf->pmd))
2921 		return VM_FAULT_OOM;
2922 
2923 	/* See the comment in pte_alloc_one_map() */
2924 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2925 		return 0;
2926 
2927 	/* Use the zero-page for reads */
2928 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2929 			!mm_forbids_zeropage(vma->vm_mm)) {
2930 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2931 						vma->vm_page_prot));
2932 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2933 				vmf->address, &vmf->ptl);
2934 		if (!pte_none(*vmf->pte))
2935 			goto unlock;
2936 		ret = check_stable_address_space(vma->vm_mm);
2937 		if (ret)
2938 			goto unlock;
2939 		/* Deliver the page fault to userland, check inside PT lock */
2940 		if (userfaultfd_missing(vma)) {
2941 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2942 			return handle_userfault(vmf, VM_UFFD_MISSING);
2943 		}
2944 		goto setpte;
2945 	}
2946 
2947 	/* Allocate our own private page. */
2948 	if (unlikely(anon_vma_prepare(vma)))
2949 		goto oom;
2950 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2951 	if (!page)
2952 		goto oom;
2953 
2954 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2955 					false))
2956 		goto oom_free_page;
2957 
2958 	/*
2959 	 * The memory barrier inside __SetPageUptodate makes sure that
2960 	 * preceeding stores to the page contents become visible before
2961 	 * the set_pte_at() write.
2962 	 */
2963 	__SetPageUptodate(page);
2964 
2965 	entry = mk_pte(page, vma->vm_page_prot);
2966 	if (vma->vm_flags & VM_WRITE)
2967 		entry = pte_mkwrite(pte_mkdirty(entry));
2968 
2969 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2970 			&vmf->ptl);
2971 	if (!pte_none(*vmf->pte))
2972 		goto release;
2973 
2974 	ret = check_stable_address_space(vma->vm_mm);
2975 	if (ret)
2976 		goto release;
2977 
2978 	/* Deliver the page fault to userland, check inside PT lock */
2979 	if (userfaultfd_missing(vma)) {
2980 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2981 		mem_cgroup_cancel_charge(page, memcg, false);
2982 		put_page(page);
2983 		return handle_userfault(vmf, VM_UFFD_MISSING);
2984 	}
2985 
2986 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2987 	page_add_new_anon_rmap(page, vma, vmf->address, false);
2988 	mem_cgroup_commit_charge(page, memcg, false, false);
2989 	lru_cache_add_active_or_unevictable(page, vma);
2990 setpte:
2991 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2992 
2993 	/* No need to invalidate - it was non-present before */
2994 	update_mmu_cache(vma, vmf->address, vmf->pte);
2995 unlock:
2996 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2997 	return ret;
2998 release:
2999 	mem_cgroup_cancel_charge(page, memcg, false);
3000 	put_page(page);
3001 	goto unlock;
3002 oom_free_page:
3003 	put_page(page);
3004 oom:
3005 	return VM_FAULT_OOM;
3006 }
3007 
3008 /*
3009  * The mmap_sem must have been held on entry, and may have been
3010  * released depending on flags and vma->vm_ops->fault() return value.
3011  * See filemap_fault() and __lock_page_retry().
3012  */
3013 static vm_fault_t __do_fault(struct vm_fault *vmf)
3014 {
3015 	struct vm_area_struct *vma = vmf->vma;
3016 	vm_fault_t ret;
3017 
3018 	/*
3019 	 * Preallocate pte before we take page_lock because this might lead to
3020 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3021 	 *				lock_page(A)
3022 	 *				SetPageWriteback(A)
3023 	 *				unlock_page(A)
3024 	 * lock_page(B)
3025 	 *				lock_page(B)
3026 	 * pte_alloc_pne
3027 	 *   shrink_page_list
3028 	 *     wait_on_page_writeback(A)
3029 	 *				SetPageWriteback(B)
3030 	 *				unlock_page(B)
3031 	 *				# flush A, B to clear the writeback
3032 	 */
3033 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3034 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3035 		if (!vmf->prealloc_pte)
3036 			return VM_FAULT_OOM;
3037 		smp_wmb(); /* See comment in __pte_alloc() */
3038 	}
3039 
3040 	ret = vma->vm_ops->fault(vmf);
3041 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3042 			    VM_FAULT_DONE_COW)))
3043 		return ret;
3044 
3045 	if (unlikely(PageHWPoison(vmf->page))) {
3046 		if (ret & VM_FAULT_LOCKED)
3047 			unlock_page(vmf->page);
3048 		put_page(vmf->page);
3049 		vmf->page = NULL;
3050 		return VM_FAULT_HWPOISON;
3051 	}
3052 
3053 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3054 		lock_page(vmf->page);
3055 	else
3056 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3057 
3058 	return ret;
3059 }
3060 
3061 /*
3062  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3063  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3064  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3065  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3066  */
3067 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3068 {
3069 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3070 }
3071 
3072 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3073 {
3074 	struct vm_area_struct *vma = vmf->vma;
3075 
3076 	if (!pmd_none(*vmf->pmd))
3077 		goto map_pte;
3078 	if (vmf->prealloc_pte) {
3079 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3080 		if (unlikely(!pmd_none(*vmf->pmd))) {
3081 			spin_unlock(vmf->ptl);
3082 			goto map_pte;
3083 		}
3084 
3085 		mm_inc_nr_ptes(vma->vm_mm);
3086 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3087 		spin_unlock(vmf->ptl);
3088 		vmf->prealloc_pte = NULL;
3089 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3090 		return VM_FAULT_OOM;
3091 	}
3092 map_pte:
3093 	/*
3094 	 * If a huge pmd materialized under us just retry later.  Use
3095 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3096 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3097 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3098 	 * running immediately after a huge pmd fault in a different thread of
3099 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3100 	 * All we have to ensure is that it is a regular pmd that we can walk
3101 	 * with pte_offset_map() and we can do that through an atomic read in
3102 	 * C, which is what pmd_trans_unstable() provides.
3103 	 */
3104 	if (pmd_devmap_trans_unstable(vmf->pmd))
3105 		return VM_FAULT_NOPAGE;
3106 
3107 	/*
3108 	 * At this point we know that our vmf->pmd points to a page of ptes
3109 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3110 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3111 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3112 	 * be valid and we will re-check to make sure the vmf->pte isn't
3113 	 * pte_none() under vmf->ptl protection when we return to
3114 	 * alloc_set_pte().
3115 	 */
3116 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3117 			&vmf->ptl);
3118 	return 0;
3119 }
3120 
3121 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3122 
3123 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3124 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3125 		unsigned long haddr)
3126 {
3127 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3128 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3129 		return false;
3130 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3131 		return false;
3132 	return true;
3133 }
3134 
3135 static void deposit_prealloc_pte(struct vm_fault *vmf)
3136 {
3137 	struct vm_area_struct *vma = vmf->vma;
3138 
3139 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3140 	/*
3141 	 * We are going to consume the prealloc table,
3142 	 * count that as nr_ptes.
3143 	 */
3144 	mm_inc_nr_ptes(vma->vm_mm);
3145 	vmf->prealloc_pte = NULL;
3146 }
3147 
3148 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3149 {
3150 	struct vm_area_struct *vma = vmf->vma;
3151 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3152 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3153 	pmd_t entry;
3154 	int i;
3155 	vm_fault_t ret;
3156 
3157 	if (!transhuge_vma_suitable(vma, haddr))
3158 		return VM_FAULT_FALLBACK;
3159 
3160 	ret = VM_FAULT_FALLBACK;
3161 	page = compound_head(page);
3162 
3163 	/*
3164 	 * Archs like ppc64 need additonal space to store information
3165 	 * related to pte entry. Use the preallocated table for that.
3166 	 */
3167 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3168 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3169 		if (!vmf->prealloc_pte)
3170 			return VM_FAULT_OOM;
3171 		smp_wmb(); /* See comment in __pte_alloc() */
3172 	}
3173 
3174 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3175 	if (unlikely(!pmd_none(*vmf->pmd)))
3176 		goto out;
3177 
3178 	for (i = 0; i < HPAGE_PMD_NR; i++)
3179 		flush_icache_page(vma, page + i);
3180 
3181 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3182 	if (write)
3183 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3184 
3185 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3186 	page_add_file_rmap(page, true);
3187 	/*
3188 	 * deposit and withdraw with pmd lock held
3189 	 */
3190 	if (arch_needs_pgtable_deposit())
3191 		deposit_prealloc_pte(vmf);
3192 
3193 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3194 
3195 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3196 
3197 	/* fault is handled */
3198 	ret = 0;
3199 	count_vm_event(THP_FILE_MAPPED);
3200 out:
3201 	spin_unlock(vmf->ptl);
3202 	return ret;
3203 }
3204 #else
3205 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3206 {
3207 	BUILD_BUG();
3208 	return 0;
3209 }
3210 #endif
3211 
3212 /**
3213  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3214  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3215  *
3216  * @vmf: fault environment
3217  * @memcg: memcg to charge page (only for private mappings)
3218  * @page: page to map
3219  *
3220  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3221  * return.
3222  *
3223  * Target users are page handler itself and implementations of
3224  * vm_ops->map_pages.
3225  *
3226  * Return: %0 on success, %VM_FAULT_ code in case of error.
3227  */
3228 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3229 		struct page *page)
3230 {
3231 	struct vm_area_struct *vma = vmf->vma;
3232 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3233 	pte_t entry;
3234 	vm_fault_t ret;
3235 
3236 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3237 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3238 		/* THP on COW? */
3239 		VM_BUG_ON_PAGE(memcg, page);
3240 
3241 		ret = do_set_pmd(vmf, page);
3242 		if (ret != VM_FAULT_FALLBACK)
3243 			return ret;
3244 	}
3245 
3246 	if (!vmf->pte) {
3247 		ret = pte_alloc_one_map(vmf);
3248 		if (ret)
3249 			return ret;
3250 	}
3251 
3252 	/* Re-check under ptl */
3253 	if (unlikely(!pte_none(*vmf->pte)))
3254 		return VM_FAULT_NOPAGE;
3255 
3256 	flush_icache_page(vma, page);
3257 	entry = mk_pte(page, vma->vm_page_prot);
3258 	if (write)
3259 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3260 	/* copy-on-write page */
3261 	if (write && !(vma->vm_flags & VM_SHARED)) {
3262 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3263 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3264 		mem_cgroup_commit_charge(page, memcg, false, false);
3265 		lru_cache_add_active_or_unevictable(page, vma);
3266 	} else {
3267 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3268 		page_add_file_rmap(page, false);
3269 	}
3270 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3271 
3272 	/* no need to invalidate: a not-present page won't be cached */
3273 	update_mmu_cache(vma, vmf->address, vmf->pte);
3274 
3275 	return 0;
3276 }
3277 
3278 
3279 /**
3280  * finish_fault - finish page fault once we have prepared the page to fault
3281  *
3282  * @vmf: structure describing the fault
3283  *
3284  * This function handles all that is needed to finish a page fault once the
3285  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3286  * given page, adds reverse page mapping, handles memcg charges and LRU
3287  * addition.
3288  *
3289  * The function expects the page to be locked and on success it consumes a
3290  * reference of a page being mapped (for the PTE which maps it).
3291  *
3292  * Return: %0 on success, %VM_FAULT_ code in case of error.
3293  */
3294 vm_fault_t finish_fault(struct vm_fault *vmf)
3295 {
3296 	struct page *page;
3297 	vm_fault_t ret = 0;
3298 
3299 	/* Did we COW the page? */
3300 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3301 	    !(vmf->vma->vm_flags & VM_SHARED))
3302 		page = vmf->cow_page;
3303 	else
3304 		page = vmf->page;
3305 
3306 	/*
3307 	 * check even for read faults because we might have lost our CoWed
3308 	 * page
3309 	 */
3310 	if (!(vmf->vma->vm_flags & VM_SHARED))
3311 		ret = check_stable_address_space(vmf->vma->vm_mm);
3312 	if (!ret)
3313 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3314 	if (vmf->pte)
3315 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3316 	return ret;
3317 }
3318 
3319 static unsigned long fault_around_bytes __read_mostly =
3320 	rounddown_pow_of_two(65536);
3321 
3322 #ifdef CONFIG_DEBUG_FS
3323 static int fault_around_bytes_get(void *data, u64 *val)
3324 {
3325 	*val = fault_around_bytes;
3326 	return 0;
3327 }
3328 
3329 /*
3330  * fault_around_bytes must be rounded down to the nearest page order as it's
3331  * what do_fault_around() expects to see.
3332  */
3333 static int fault_around_bytes_set(void *data, u64 val)
3334 {
3335 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3336 		return -EINVAL;
3337 	if (val > PAGE_SIZE)
3338 		fault_around_bytes = rounddown_pow_of_two(val);
3339 	else
3340 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3341 	return 0;
3342 }
3343 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3344 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3345 
3346 static int __init fault_around_debugfs(void)
3347 {
3348 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3349 				   &fault_around_bytes_fops);
3350 	return 0;
3351 }
3352 late_initcall(fault_around_debugfs);
3353 #endif
3354 
3355 /*
3356  * do_fault_around() tries to map few pages around the fault address. The hope
3357  * is that the pages will be needed soon and this will lower the number of
3358  * faults to handle.
3359  *
3360  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3361  * not ready to be mapped: not up-to-date, locked, etc.
3362  *
3363  * This function is called with the page table lock taken. In the split ptlock
3364  * case the page table lock only protects only those entries which belong to
3365  * the page table corresponding to the fault address.
3366  *
3367  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3368  * only once.
3369  *
3370  * fault_around_bytes defines how many bytes we'll try to map.
3371  * do_fault_around() expects it to be set to a power of two less than or equal
3372  * to PTRS_PER_PTE.
3373  *
3374  * The virtual address of the area that we map is naturally aligned to
3375  * fault_around_bytes rounded down to the machine page size
3376  * (and therefore to page order).  This way it's easier to guarantee
3377  * that we don't cross page table boundaries.
3378  */
3379 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3380 {
3381 	unsigned long address = vmf->address, nr_pages, mask;
3382 	pgoff_t start_pgoff = vmf->pgoff;
3383 	pgoff_t end_pgoff;
3384 	int off;
3385 	vm_fault_t ret = 0;
3386 
3387 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3388 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3389 
3390 	vmf->address = max(address & mask, vmf->vma->vm_start);
3391 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3392 	start_pgoff -= off;
3393 
3394 	/*
3395 	 *  end_pgoff is either the end of the page table, the end of
3396 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3397 	 */
3398 	end_pgoff = start_pgoff -
3399 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3400 		PTRS_PER_PTE - 1;
3401 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3402 			start_pgoff + nr_pages - 1);
3403 
3404 	if (pmd_none(*vmf->pmd)) {
3405 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3406 		if (!vmf->prealloc_pte)
3407 			goto out;
3408 		smp_wmb(); /* See comment in __pte_alloc() */
3409 	}
3410 
3411 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3412 
3413 	/* Huge page is mapped? Page fault is solved */
3414 	if (pmd_trans_huge(*vmf->pmd)) {
3415 		ret = VM_FAULT_NOPAGE;
3416 		goto out;
3417 	}
3418 
3419 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3420 	if (!vmf->pte)
3421 		goto out;
3422 
3423 	/* check if the page fault is solved */
3424 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3425 	if (!pte_none(*vmf->pte))
3426 		ret = VM_FAULT_NOPAGE;
3427 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3428 out:
3429 	vmf->address = address;
3430 	vmf->pte = NULL;
3431 	return ret;
3432 }
3433 
3434 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3435 {
3436 	struct vm_area_struct *vma = vmf->vma;
3437 	vm_fault_t ret = 0;
3438 
3439 	/*
3440 	 * Let's call ->map_pages() first and use ->fault() as fallback
3441 	 * if page by the offset is not ready to be mapped (cold cache or
3442 	 * something).
3443 	 */
3444 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3445 		ret = do_fault_around(vmf);
3446 		if (ret)
3447 			return ret;
3448 	}
3449 
3450 	ret = __do_fault(vmf);
3451 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3452 		return ret;
3453 
3454 	ret |= finish_fault(vmf);
3455 	unlock_page(vmf->page);
3456 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3457 		put_page(vmf->page);
3458 	return ret;
3459 }
3460 
3461 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3462 {
3463 	struct vm_area_struct *vma = vmf->vma;
3464 	vm_fault_t ret;
3465 
3466 	if (unlikely(anon_vma_prepare(vma)))
3467 		return VM_FAULT_OOM;
3468 
3469 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3470 	if (!vmf->cow_page)
3471 		return VM_FAULT_OOM;
3472 
3473 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3474 				&vmf->memcg, false)) {
3475 		put_page(vmf->cow_page);
3476 		return VM_FAULT_OOM;
3477 	}
3478 
3479 	ret = __do_fault(vmf);
3480 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3481 		goto uncharge_out;
3482 	if (ret & VM_FAULT_DONE_COW)
3483 		return ret;
3484 
3485 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3486 	__SetPageUptodate(vmf->cow_page);
3487 
3488 	ret |= finish_fault(vmf);
3489 	unlock_page(vmf->page);
3490 	put_page(vmf->page);
3491 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3492 		goto uncharge_out;
3493 	return ret;
3494 uncharge_out:
3495 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3496 	put_page(vmf->cow_page);
3497 	return ret;
3498 }
3499 
3500 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3501 {
3502 	struct vm_area_struct *vma = vmf->vma;
3503 	vm_fault_t ret, tmp;
3504 
3505 	ret = __do_fault(vmf);
3506 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3507 		return ret;
3508 
3509 	/*
3510 	 * Check if the backing address space wants to know that the page is
3511 	 * about to become writable
3512 	 */
3513 	if (vma->vm_ops->page_mkwrite) {
3514 		unlock_page(vmf->page);
3515 		tmp = do_page_mkwrite(vmf);
3516 		if (unlikely(!tmp ||
3517 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3518 			put_page(vmf->page);
3519 			return tmp;
3520 		}
3521 	}
3522 
3523 	ret |= finish_fault(vmf);
3524 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3525 					VM_FAULT_RETRY))) {
3526 		unlock_page(vmf->page);
3527 		put_page(vmf->page);
3528 		return ret;
3529 	}
3530 
3531 	fault_dirty_shared_page(vma, vmf->page);
3532 	return ret;
3533 }
3534 
3535 /*
3536  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3537  * but allow concurrent faults).
3538  * The mmap_sem may have been released depending on flags and our
3539  * return value.  See filemap_fault() and __lock_page_or_retry().
3540  * If mmap_sem is released, vma may become invalid (for example
3541  * by other thread calling munmap()).
3542  */
3543 static vm_fault_t do_fault(struct vm_fault *vmf)
3544 {
3545 	struct vm_area_struct *vma = vmf->vma;
3546 	struct mm_struct *vm_mm = vma->vm_mm;
3547 	vm_fault_t ret;
3548 
3549 	/*
3550 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3551 	 */
3552 	if (!vma->vm_ops->fault) {
3553 		/*
3554 		 * If we find a migration pmd entry or a none pmd entry, which
3555 		 * should never happen, return SIGBUS
3556 		 */
3557 		if (unlikely(!pmd_present(*vmf->pmd)))
3558 			ret = VM_FAULT_SIGBUS;
3559 		else {
3560 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3561 						       vmf->pmd,
3562 						       vmf->address,
3563 						       &vmf->ptl);
3564 			/*
3565 			 * Make sure this is not a temporary clearing of pte
3566 			 * by holding ptl and checking again. A R/M/W update
3567 			 * of pte involves: take ptl, clearing the pte so that
3568 			 * we don't have concurrent modification by hardware
3569 			 * followed by an update.
3570 			 */
3571 			if (unlikely(pte_none(*vmf->pte)))
3572 				ret = VM_FAULT_SIGBUS;
3573 			else
3574 				ret = VM_FAULT_NOPAGE;
3575 
3576 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3577 		}
3578 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3579 		ret = do_read_fault(vmf);
3580 	else if (!(vma->vm_flags & VM_SHARED))
3581 		ret = do_cow_fault(vmf);
3582 	else
3583 		ret = do_shared_fault(vmf);
3584 
3585 	/* preallocated pagetable is unused: free it */
3586 	if (vmf->prealloc_pte) {
3587 		pte_free(vm_mm, vmf->prealloc_pte);
3588 		vmf->prealloc_pte = NULL;
3589 	}
3590 	return ret;
3591 }
3592 
3593 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3594 				unsigned long addr, int page_nid,
3595 				int *flags)
3596 {
3597 	get_page(page);
3598 
3599 	count_vm_numa_event(NUMA_HINT_FAULTS);
3600 	if (page_nid == numa_node_id()) {
3601 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3602 		*flags |= TNF_FAULT_LOCAL;
3603 	}
3604 
3605 	return mpol_misplaced(page, vma, addr);
3606 }
3607 
3608 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3609 {
3610 	struct vm_area_struct *vma = vmf->vma;
3611 	struct page *page = NULL;
3612 	int page_nid = NUMA_NO_NODE;
3613 	int last_cpupid;
3614 	int target_nid;
3615 	bool migrated = false;
3616 	pte_t pte, old_pte;
3617 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3618 	int flags = 0;
3619 
3620 	/*
3621 	 * The "pte" at this point cannot be used safely without
3622 	 * validation through pte_unmap_same(). It's of NUMA type but
3623 	 * the pfn may be screwed if the read is non atomic.
3624 	 */
3625 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3626 	spin_lock(vmf->ptl);
3627 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3628 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3629 		goto out;
3630 	}
3631 
3632 	/*
3633 	 * Make it present again, Depending on how arch implementes non
3634 	 * accessible ptes, some can allow access by kernel mode.
3635 	 */
3636 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3637 	pte = pte_modify(old_pte, vma->vm_page_prot);
3638 	pte = pte_mkyoung(pte);
3639 	if (was_writable)
3640 		pte = pte_mkwrite(pte);
3641 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3642 	update_mmu_cache(vma, vmf->address, vmf->pte);
3643 
3644 	page = vm_normal_page(vma, vmf->address, pte);
3645 	if (!page) {
3646 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3647 		return 0;
3648 	}
3649 
3650 	/* TODO: handle PTE-mapped THP */
3651 	if (PageCompound(page)) {
3652 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3653 		return 0;
3654 	}
3655 
3656 	/*
3657 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3658 	 * much anyway since they can be in shared cache state. This misses
3659 	 * the case where a mapping is writable but the process never writes
3660 	 * to it but pte_write gets cleared during protection updates and
3661 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3662 	 * background writeback, dirty balancing and application behaviour.
3663 	 */
3664 	if (!pte_write(pte))
3665 		flags |= TNF_NO_GROUP;
3666 
3667 	/*
3668 	 * Flag if the page is shared between multiple address spaces. This
3669 	 * is later used when determining whether to group tasks together
3670 	 */
3671 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3672 		flags |= TNF_SHARED;
3673 
3674 	last_cpupid = page_cpupid_last(page);
3675 	page_nid = page_to_nid(page);
3676 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3677 			&flags);
3678 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3679 	if (target_nid == NUMA_NO_NODE) {
3680 		put_page(page);
3681 		goto out;
3682 	}
3683 
3684 	/* Migrate to the requested node */
3685 	migrated = migrate_misplaced_page(page, vma, target_nid);
3686 	if (migrated) {
3687 		page_nid = target_nid;
3688 		flags |= TNF_MIGRATED;
3689 	} else
3690 		flags |= TNF_MIGRATE_FAIL;
3691 
3692 out:
3693 	if (page_nid != NUMA_NO_NODE)
3694 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3695 	return 0;
3696 }
3697 
3698 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3699 {
3700 	if (vma_is_anonymous(vmf->vma))
3701 		return do_huge_pmd_anonymous_page(vmf);
3702 	if (vmf->vma->vm_ops->huge_fault)
3703 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3704 	return VM_FAULT_FALLBACK;
3705 }
3706 
3707 /* `inline' is required to avoid gcc 4.1.2 build error */
3708 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3709 {
3710 	if (vma_is_anonymous(vmf->vma))
3711 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3712 	if (vmf->vma->vm_ops->huge_fault)
3713 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3714 
3715 	/* COW handled on pte level: split pmd */
3716 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3717 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3718 
3719 	return VM_FAULT_FALLBACK;
3720 }
3721 
3722 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3723 {
3724 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3725 }
3726 
3727 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3728 {
3729 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3730 	/* No support for anonymous transparent PUD pages yet */
3731 	if (vma_is_anonymous(vmf->vma))
3732 		return VM_FAULT_FALLBACK;
3733 	if (vmf->vma->vm_ops->huge_fault)
3734 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3735 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3736 	return VM_FAULT_FALLBACK;
3737 }
3738 
3739 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3740 {
3741 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3742 	/* No support for anonymous transparent PUD pages yet */
3743 	if (vma_is_anonymous(vmf->vma))
3744 		return VM_FAULT_FALLBACK;
3745 	if (vmf->vma->vm_ops->huge_fault)
3746 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3747 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3748 	return VM_FAULT_FALLBACK;
3749 }
3750 
3751 /*
3752  * These routines also need to handle stuff like marking pages dirty
3753  * and/or accessed for architectures that don't do it in hardware (most
3754  * RISC architectures).  The early dirtying is also good on the i386.
3755  *
3756  * There is also a hook called "update_mmu_cache()" that architectures
3757  * with external mmu caches can use to update those (ie the Sparc or
3758  * PowerPC hashed page tables that act as extended TLBs).
3759  *
3760  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3761  * concurrent faults).
3762  *
3763  * The mmap_sem may have been released depending on flags and our return value.
3764  * See filemap_fault() and __lock_page_or_retry().
3765  */
3766 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3767 {
3768 	pte_t entry;
3769 
3770 	if (unlikely(pmd_none(*vmf->pmd))) {
3771 		/*
3772 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3773 		 * want to allocate huge page, and if we expose page table
3774 		 * for an instant, it will be difficult to retract from
3775 		 * concurrent faults and from rmap lookups.
3776 		 */
3777 		vmf->pte = NULL;
3778 	} else {
3779 		/* See comment in pte_alloc_one_map() */
3780 		if (pmd_devmap_trans_unstable(vmf->pmd))
3781 			return 0;
3782 		/*
3783 		 * A regular pmd is established and it can't morph into a huge
3784 		 * pmd from under us anymore at this point because we hold the
3785 		 * mmap_sem read mode and khugepaged takes it in write mode.
3786 		 * So now it's safe to run pte_offset_map().
3787 		 */
3788 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3789 		vmf->orig_pte = *vmf->pte;
3790 
3791 		/*
3792 		 * some architectures can have larger ptes than wordsize,
3793 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3794 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3795 		 * accesses.  The code below just needs a consistent view
3796 		 * for the ifs and we later double check anyway with the
3797 		 * ptl lock held. So here a barrier will do.
3798 		 */
3799 		barrier();
3800 		if (pte_none(vmf->orig_pte)) {
3801 			pte_unmap(vmf->pte);
3802 			vmf->pte = NULL;
3803 		}
3804 	}
3805 
3806 	if (!vmf->pte) {
3807 		if (vma_is_anonymous(vmf->vma))
3808 			return do_anonymous_page(vmf);
3809 		else
3810 			return do_fault(vmf);
3811 	}
3812 
3813 	if (!pte_present(vmf->orig_pte))
3814 		return do_swap_page(vmf);
3815 
3816 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3817 		return do_numa_page(vmf);
3818 
3819 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3820 	spin_lock(vmf->ptl);
3821 	entry = vmf->orig_pte;
3822 	if (unlikely(!pte_same(*vmf->pte, entry)))
3823 		goto unlock;
3824 	if (vmf->flags & FAULT_FLAG_WRITE) {
3825 		if (!pte_write(entry))
3826 			return do_wp_page(vmf);
3827 		entry = pte_mkdirty(entry);
3828 	}
3829 	entry = pte_mkyoung(entry);
3830 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3831 				vmf->flags & FAULT_FLAG_WRITE)) {
3832 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3833 	} else {
3834 		/*
3835 		 * This is needed only for protection faults but the arch code
3836 		 * is not yet telling us if this is a protection fault or not.
3837 		 * This still avoids useless tlb flushes for .text page faults
3838 		 * with threads.
3839 		 */
3840 		if (vmf->flags & FAULT_FLAG_WRITE)
3841 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3842 	}
3843 unlock:
3844 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3845 	return 0;
3846 }
3847 
3848 /*
3849  * By the time we get here, we already hold the mm semaphore
3850  *
3851  * The mmap_sem may have been released depending on flags and our
3852  * return value.  See filemap_fault() and __lock_page_or_retry().
3853  */
3854 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3855 		unsigned long address, unsigned int flags)
3856 {
3857 	struct vm_fault vmf = {
3858 		.vma = vma,
3859 		.address = address & PAGE_MASK,
3860 		.flags = flags,
3861 		.pgoff = linear_page_index(vma, address),
3862 		.gfp_mask = __get_fault_gfp_mask(vma),
3863 	};
3864 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
3865 	struct mm_struct *mm = vma->vm_mm;
3866 	pgd_t *pgd;
3867 	p4d_t *p4d;
3868 	vm_fault_t ret;
3869 
3870 	pgd = pgd_offset(mm, address);
3871 	p4d = p4d_alloc(mm, pgd, address);
3872 	if (!p4d)
3873 		return VM_FAULT_OOM;
3874 
3875 	vmf.pud = pud_alloc(mm, p4d, address);
3876 	if (!vmf.pud)
3877 		return VM_FAULT_OOM;
3878 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3879 		ret = create_huge_pud(&vmf);
3880 		if (!(ret & VM_FAULT_FALLBACK))
3881 			return ret;
3882 	} else {
3883 		pud_t orig_pud = *vmf.pud;
3884 
3885 		barrier();
3886 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3887 
3888 			/* NUMA case for anonymous PUDs would go here */
3889 
3890 			if (dirty && !pud_write(orig_pud)) {
3891 				ret = wp_huge_pud(&vmf, orig_pud);
3892 				if (!(ret & VM_FAULT_FALLBACK))
3893 					return ret;
3894 			} else {
3895 				huge_pud_set_accessed(&vmf, orig_pud);
3896 				return 0;
3897 			}
3898 		}
3899 	}
3900 
3901 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3902 	if (!vmf.pmd)
3903 		return VM_FAULT_OOM;
3904 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3905 		ret = create_huge_pmd(&vmf);
3906 		if (!(ret & VM_FAULT_FALLBACK))
3907 			return ret;
3908 	} else {
3909 		pmd_t orig_pmd = *vmf.pmd;
3910 
3911 		barrier();
3912 		if (unlikely(is_swap_pmd(orig_pmd))) {
3913 			VM_BUG_ON(thp_migration_supported() &&
3914 					  !is_pmd_migration_entry(orig_pmd));
3915 			if (is_pmd_migration_entry(orig_pmd))
3916 				pmd_migration_entry_wait(mm, vmf.pmd);
3917 			return 0;
3918 		}
3919 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3920 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3921 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3922 
3923 			if (dirty && !pmd_write(orig_pmd)) {
3924 				ret = wp_huge_pmd(&vmf, orig_pmd);
3925 				if (!(ret & VM_FAULT_FALLBACK))
3926 					return ret;
3927 			} else {
3928 				huge_pmd_set_accessed(&vmf, orig_pmd);
3929 				return 0;
3930 			}
3931 		}
3932 	}
3933 
3934 	return handle_pte_fault(&vmf);
3935 }
3936 
3937 /*
3938  * By the time we get here, we already hold the mm semaphore
3939  *
3940  * The mmap_sem may have been released depending on flags and our
3941  * return value.  See filemap_fault() and __lock_page_or_retry().
3942  */
3943 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3944 		unsigned int flags)
3945 {
3946 	vm_fault_t ret;
3947 
3948 	__set_current_state(TASK_RUNNING);
3949 
3950 	count_vm_event(PGFAULT);
3951 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
3952 
3953 	/* do counter updates before entering really critical section. */
3954 	check_sync_rss_stat(current);
3955 
3956 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3957 					    flags & FAULT_FLAG_INSTRUCTION,
3958 					    flags & FAULT_FLAG_REMOTE))
3959 		return VM_FAULT_SIGSEGV;
3960 
3961 	/*
3962 	 * Enable the memcg OOM handling for faults triggered in user
3963 	 * space.  Kernel faults are handled more gracefully.
3964 	 */
3965 	if (flags & FAULT_FLAG_USER)
3966 		mem_cgroup_enter_user_fault();
3967 
3968 	if (unlikely(is_vm_hugetlb_page(vma)))
3969 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3970 	else
3971 		ret = __handle_mm_fault(vma, address, flags);
3972 
3973 	if (flags & FAULT_FLAG_USER) {
3974 		mem_cgroup_exit_user_fault();
3975 		/*
3976 		 * The task may have entered a memcg OOM situation but
3977 		 * if the allocation error was handled gracefully (no
3978 		 * VM_FAULT_OOM), there is no need to kill anything.
3979 		 * Just clean up the OOM state peacefully.
3980 		 */
3981 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3982 			mem_cgroup_oom_synchronize(false);
3983 	}
3984 
3985 	return ret;
3986 }
3987 EXPORT_SYMBOL_GPL(handle_mm_fault);
3988 
3989 #ifndef __PAGETABLE_P4D_FOLDED
3990 /*
3991  * Allocate p4d page table.
3992  * We've already handled the fast-path in-line.
3993  */
3994 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3995 {
3996 	p4d_t *new = p4d_alloc_one(mm, address);
3997 	if (!new)
3998 		return -ENOMEM;
3999 
4000 	smp_wmb(); /* See comment in __pte_alloc */
4001 
4002 	spin_lock(&mm->page_table_lock);
4003 	if (pgd_present(*pgd))		/* Another has populated it */
4004 		p4d_free(mm, new);
4005 	else
4006 		pgd_populate(mm, pgd, new);
4007 	spin_unlock(&mm->page_table_lock);
4008 	return 0;
4009 }
4010 #endif /* __PAGETABLE_P4D_FOLDED */
4011 
4012 #ifndef __PAGETABLE_PUD_FOLDED
4013 /*
4014  * Allocate page upper directory.
4015  * We've already handled the fast-path in-line.
4016  */
4017 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4018 {
4019 	pud_t *new = pud_alloc_one(mm, address);
4020 	if (!new)
4021 		return -ENOMEM;
4022 
4023 	smp_wmb(); /* See comment in __pte_alloc */
4024 
4025 	spin_lock(&mm->page_table_lock);
4026 #ifndef __ARCH_HAS_5LEVEL_HACK
4027 	if (!p4d_present(*p4d)) {
4028 		mm_inc_nr_puds(mm);
4029 		p4d_populate(mm, p4d, new);
4030 	} else	/* Another has populated it */
4031 		pud_free(mm, new);
4032 #else
4033 	if (!pgd_present(*p4d)) {
4034 		mm_inc_nr_puds(mm);
4035 		pgd_populate(mm, p4d, new);
4036 	} else	/* Another has populated it */
4037 		pud_free(mm, new);
4038 #endif /* __ARCH_HAS_5LEVEL_HACK */
4039 	spin_unlock(&mm->page_table_lock);
4040 	return 0;
4041 }
4042 #endif /* __PAGETABLE_PUD_FOLDED */
4043 
4044 #ifndef __PAGETABLE_PMD_FOLDED
4045 /*
4046  * Allocate page middle directory.
4047  * We've already handled the fast-path in-line.
4048  */
4049 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4050 {
4051 	spinlock_t *ptl;
4052 	pmd_t *new = pmd_alloc_one(mm, address);
4053 	if (!new)
4054 		return -ENOMEM;
4055 
4056 	smp_wmb(); /* See comment in __pte_alloc */
4057 
4058 	ptl = pud_lock(mm, pud);
4059 #ifndef __ARCH_HAS_4LEVEL_HACK
4060 	if (!pud_present(*pud)) {
4061 		mm_inc_nr_pmds(mm);
4062 		pud_populate(mm, pud, new);
4063 	} else	/* Another has populated it */
4064 		pmd_free(mm, new);
4065 #else
4066 	if (!pgd_present(*pud)) {
4067 		mm_inc_nr_pmds(mm);
4068 		pgd_populate(mm, pud, new);
4069 	} else /* Another has populated it */
4070 		pmd_free(mm, new);
4071 #endif /* __ARCH_HAS_4LEVEL_HACK */
4072 	spin_unlock(ptl);
4073 	return 0;
4074 }
4075 #endif /* __PAGETABLE_PMD_FOLDED */
4076 
4077 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4078 			    struct mmu_notifier_range *range,
4079 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4080 {
4081 	pgd_t *pgd;
4082 	p4d_t *p4d;
4083 	pud_t *pud;
4084 	pmd_t *pmd;
4085 	pte_t *ptep;
4086 
4087 	pgd = pgd_offset(mm, address);
4088 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4089 		goto out;
4090 
4091 	p4d = p4d_offset(pgd, address);
4092 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4093 		goto out;
4094 
4095 	pud = pud_offset(p4d, address);
4096 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4097 		goto out;
4098 
4099 	pmd = pmd_offset(pud, address);
4100 	VM_BUG_ON(pmd_trans_huge(*pmd));
4101 
4102 	if (pmd_huge(*pmd)) {
4103 		if (!pmdpp)
4104 			goto out;
4105 
4106 		if (range) {
4107 			mmu_notifier_range_init(range, mm, address & PMD_MASK,
4108 					     (address & PMD_MASK) + PMD_SIZE);
4109 			mmu_notifier_invalidate_range_start(range);
4110 		}
4111 		*ptlp = pmd_lock(mm, pmd);
4112 		if (pmd_huge(*pmd)) {
4113 			*pmdpp = pmd;
4114 			return 0;
4115 		}
4116 		spin_unlock(*ptlp);
4117 		if (range)
4118 			mmu_notifier_invalidate_range_end(range);
4119 	}
4120 
4121 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4122 		goto out;
4123 
4124 	if (range) {
4125 		mmu_notifier_range_init(range, mm, address & PAGE_MASK,
4126 				     (address & PAGE_MASK) + PAGE_SIZE);
4127 		mmu_notifier_invalidate_range_start(range);
4128 	}
4129 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4130 	if (!pte_present(*ptep))
4131 		goto unlock;
4132 	*ptepp = ptep;
4133 	return 0;
4134 unlock:
4135 	pte_unmap_unlock(ptep, *ptlp);
4136 	if (range)
4137 		mmu_notifier_invalidate_range_end(range);
4138 out:
4139 	return -EINVAL;
4140 }
4141 
4142 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4143 			     pte_t **ptepp, spinlock_t **ptlp)
4144 {
4145 	int res;
4146 
4147 	/* (void) is needed to make gcc happy */
4148 	(void) __cond_lock(*ptlp,
4149 			   !(res = __follow_pte_pmd(mm, address, NULL,
4150 						    ptepp, NULL, ptlp)));
4151 	return res;
4152 }
4153 
4154 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4155 		   struct mmu_notifier_range *range,
4156 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4157 {
4158 	int res;
4159 
4160 	/* (void) is needed to make gcc happy */
4161 	(void) __cond_lock(*ptlp,
4162 			   !(res = __follow_pte_pmd(mm, address, range,
4163 						    ptepp, pmdpp, ptlp)));
4164 	return res;
4165 }
4166 EXPORT_SYMBOL(follow_pte_pmd);
4167 
4168 /**
4169  * follow_pfn - look up PFN at a user virtual address
4170  * @vma: memory mapping
4171  * @address: user virtual address
4172  * @pfn: location to store found PFN
4173  *
4174  * Only IO mappings and raw PFN mappings are allowed.
4175  *
4176  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4177  */
4178 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4179 	unsigned long *pfn)
4180 {
4181 	int ret = -EINVAL;
4182 	spinlock_t *ptl;
4183 	pte_t *ptep;
4184 
4185 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4186 		return ret;
4187 
4188 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4189 	if (ret)
4190 		return ret;
4191 	*pfn = pte_pfn(*ptep);
4192 	pte_unmap_unlock(ptep, ptl);
4193 	return 0;
4194 }
4195 EXPORT_SYMBOL(follow_pfn);
4196 
4197 #ifdef CONFIG_HAVE_IOREMAP_PROT
4198 int follow_phys(struct vm_area_struct *vma,
4199 		unsigned long address, unsigned int flags,
4200 		unsigned long *prot, resource_size_t *phys)
4201 {
4202 	int ret = -EINVAL;
4203 	pte_t *ptep, pte;
4204 	spinlock_t *ptl;
4205 
4206 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4207 		goto out;
4208 
4209 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4210 		goto out;
4211 	pte = *ptep;
4212 
4213 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4214 		goto unlock;
4215 
4216 	*prot = pgprot_val(pte_pgprot(pte));
4217 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4218 
4219 	ret = 0;
4220 unlock:
4221 	pte_unmap_unlock(ptep, ptl);
4222 out:
4223 	return ret;
4224 }
4225 
4226 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4227 			void *buf, int len, int write)
4228 {
4229 	resource_size_t phys_addr;
4230 	unsigned long prot = 0;
4231 	void __iomem *maddr;
4232 	int offset = addr & (PAGE_SIZE-1);
4233 
4234 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4235 		return -EINVAL;
4236 
4237 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4238 	if (!maddr)
4239 		return -ENOMEM;
4240 
4241 	if (write)
4242 		memcpy_toio(maddr + offset, buf, len);
4243 	else
4244 		memcpy_fromio(buf, maddr + offset, len);
4245 	iounmap(maddr);
4246 
4247 	return len;
4248 }
4249 EXPORT_SYMBOL_GPL(generic_access_phys);
4250 #endif
4251 
4252 /*
4253  * Access another process' address space as given in mm.  If non-NULL, use the
4254  * given task for page fault accounting.
4255  */
4256 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4257 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4258 {
4259 	struct vm_area_struct *vma;
4260 	void *old_buf = buf;
4261 	int write = gup_flags & FOLL_WRITE;
4262 
4263 	down_read(&mm->mmap_sem);
4264 	/* ignore errors, just check how much was successfully transferred */
4265 	while (len) {
4266 		int bytes, ret, offset;
4267 		void *maddr;
4268 		struct page *page = NULL;
4269 
4270 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4271 				gup_flags, &page, &vma, NULL);
4272 		if (ret <= 0) {
4273 #ifndef CONFIG_HAVE_IOREMAP_PROT
4274 			break;
4275 #else
4276 			/*
4277 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4278 			 * we can access using slightly different code.
4279 			 */
4280 			vma = find_vma(mm, addr);
4281 			if (!vma || vma->vm_start > addr)
4282 				break;
4283 			if (vma->vm_ops && vma->vm_ops->access)
4284 				ret = vma->vm_ops->access(vma, addr, buf,
4285 							  len, write);
4286 			if (ret <= 0)
4287 				break;
4288 			bytes = ret;
4289 #endif
4290 		} else {
4291 			bytes = len;
4292 			offset = addr & (PAGE_SIZE-1);
4293 			if (bytes > PAGE_SIZE-offset)
4294 				bytes = PAGE_SIZE-offset;
4295 
4296 			maddr = kmap(page);
4297 			if (write) {
4298 				copy_to_user_page(vma, page, addr,
4299 						  maddr + offset, buf, bytes);
4300 				set_page_dirty_lock(page);
4301 			} else {
4302 				copy_from_user_page(vma, page, addr,
4303 						    buf, maddr + offset, bytes);
4304 			}
4305 			kunmap(page);
4306 			put_page(page);
4307 		}
4308 		len -= bytes;
4309 		buf += bytes;
4310 		addr += bytes;
4311 	}
4312 	up_read(&mm->mmap_sem);
4313 
4314 	return buf - old_buf;
4315 }
4316 
4317 /**
4318  * access_remote_vm - access another process' address space
4319  * @mm:		the mm_struct of the target address space
4320  * @addr:	start address to access
4321  * @buf:	source or destination buffer
4322  * @len:	number of bytes to transfer
4323  * @gup_flags:	flags modifying lookup behaviour
4324  *
4325  * The caller must hold a reference on @mm.
4326  *
4327  * Return: number of bytes copied from source to destination.
4328  */
4329 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4330 		void *buf, int len, unsigned int gup_flags)
4331 {
4332 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4333 }
4334 
4335 /*
4336  * Access another process' address space.
4337  * Source/target buffer must be kernel space,
4338  * Do not walk the page table directly, use get_user_pages
4339  */
4340 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4341 		void *buf, int len, unsigned int gup_flags)
4342 {
4343 	struct mm_struct *mm;
4344 	int ret;
4345 
4346 	mm = get_task_mm(tsk);
4347 	if (!mm)
4348 		return 0;
4349 
4350 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4351 
4352 	mmput(mm);
4353 
4354 	return ret;
4355 }
4356 EXPORT_SYMBOL_GPL(access_process_vm);
4357 
4358 /*
4359  * Print the name of a VMA.
4360  */
4361 void print_vma_addr(char *prefix, unsigned long ip)
4362 {
4363 	struct mm_struct *mm = current->mm;
4364 	struct vm_area_struct *vma;
4365 
4366 	/*
4367 	 * we might be running from an atomic context so we cannot sleep
4368 	 */
4369 	if (!down_read_trylock(&mm->mmap_sem))
4370 		return;
4371 
4372 	vma = find_vma(mm, ip);
4373 	if (vma && vma->vm_file) {
4374 		struct file *f = vma->vm_file;
4375 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4376 		if (buf) {
4377 			char *p;
4378 
4379 			p = file_path(f, buf, PAGE_SIZE);
4380 			if (IS_ERR(p))
4381 				p = "?";
4382 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4383 					vma->vm_start,
4384 					vma->vm_end - vma->vm_start);
4385 			free_page((unsigned long)buf);
4386 		}
4387 	}
4388 	up_read(&mm->mmap_sem);
4389 }
4390 
4391 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4392 void __might_fault(const char *file, int line)
4393 {
4394 	/*
4395 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4396 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4397 	 * get paged out, therefore we'll never actually fault, and the
4398 	 * below annotations will generate false positives.
4399 	 */
4400 	if (uaccess_kernel())
4401 		return;
4402 	if (pagefault_disabled())
4403 		return;
4404 	__might_sleep(file, line, 0);
4405 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4406 	if (current->mm)
4407 		might_lock_read(&current->mm->mmap_sem);
4408 #endif
4409 }
4410 EXPORT_SYMBOL(__might_fault);
4411 #endif
4412 
4413 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4414 /*
4415  * Process all subpages of the specified huge page with the specified
4416  * operation.  The target subpage will be processed last to keep its
4417  * cache lines hot.
4418  */
4419 static inline void process_huge_page(
4420 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4421 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4422 	void *arg)
4423 {
4424 	int i, n, base, l;
4425 	unsigned long addr = addr_hint &
4426 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4427 
4428 	/* Process target subpage last to keep its cache lines hot */
4429 	might_sleep();
4430 	n = (addr_hint - addr) / PAGE_SIZE;
4431 	if (2 * n <= pages_per_huge_page) {
4432 		/* If target subpage in first half of huge page */
4433 		base = 0;
4434 		l = n;
4435 		/* Process subpages at the end of huge page */
4436 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4437 			cond_resched();
4438 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4439 		}
4440 	} else {
4441 		/* If target subpage in second half of huge page */
4442 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4443 		l = pages_per_huge_page - n;
4444 		/* Process subpages at the begin of huge page */
4445 		for (i = 0; i < base; i++) {
4446 			cond_resched();
4447 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4448 		}
4449 	}
4450 	/*
4451 	 * Process remaining subpages in left-right-left-right pattern
4452 	 * towards the target subpage
4453 	 */
4454 	for (i = 0; i < l; i++) {
4455 		int left_idx = base + i;
4456 		int right_idx = base + 2 * l - 1 - i;
4457 
4458 		cond_resched();
4459 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4460 		cond_resched();
4461 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4462 	}
4463 }
4464 
4465 static void clear_gigantic_page(struct page *page,
4466 				unsigned long addr,
4467 				unsigned int pages_per_huge_page)
4468 {
4469 	int i;
4470 	struct page *p = page;
4471 
4472 	might_sleep();
4473 	for (i = 0; i < pages_per_huge_page;
4474 	     i++, p = mem_map_next(p, page, i)) {
4475 		cond_resched();
4476 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4477 	}
4478 }
4479 
4480 static void clear_subpage(unsigned long addr, int idx, void *arg)
4481 {
4482 	struct page *page = arg;
4483 
4484 	clear_user_highpage(page + idx, addr);
4485 }
4486 
4487 void clear_huge_page(struct page *page,
4488 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4489 {
4490 	unsigned long addr = addr_hint &
4491 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4492 
4493 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4494 		clear_gigantic_page(page, addr, pages_per_huge_page);
4495 		return;
4496 	}
4497 
4498 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4499 }
4500 
4501 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4502 				    unsigned long addr,
4503 				    struct vm_area_struct *vma,
4504 				    unsigned int pages_per_huge_page)
4505 {
4506 	int i;
4507 	struct page *dst_base = dst;
4508 	struct page *src_base = src;
4509 
4510 	for (i = 0; i < pages_per_huge_page; ) {
4511 		cond_resched();
4512 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4513 
4514 		i++;
4515 		dst = mem_map_next(dst, dst_base, i);
4516 		src = mem_map_next(src, src_base, i);
4517 	}
4518 }
4519 
4520 struct copy_subpage_arg {
4521 	struct page *dst;
4522 	struct page *src;
4523 	struct vm_area_struct *vma;
4524 };
4525 
4526 static void copy_subpage(unsigned long addr, int idx, void *arg)
4527 {
4528 	struct copy_subpage_arg *copy_arg = arg;
4529 
4530 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4531 			   addr, copy_arg->vma);
4532 }
4533 
4534 void copy_user_huge_page(struct page *dst, struct page *src,
4535 			 unsigned long addr_hint, struct vm_area_struct *vma,
4536 			 unsigned int pages_per_huge_page)
4537 {
4538 	unsigned long addr = addr_hint &
4539 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4540 	struct copy_subpage_arg arg = {
4541 		.dst = dst,
4542 		.src = src,
4543 		.vma = vma,
4544 	};
4545 
4546 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4547 		copy_user_gigantic_page(dst, src, addr, vma,
4548 					pages_per_huge_page);
4549 		return;
4550 	}
4551 
4552 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4553 }
4554 
4555 long copy_huge_page_from_user(struct page *dst_page,
4556 				const void __user *usr_src,
4557 				unsigned int pages_per_huge_page,
4558 				bool allow_pagefault)
4559 {
4560 	void *src = (void *)usr_src;
4561 	void *page_kaddr;
4562 	unsigned long i, rc = 0;
4563 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4564 
4565 	for (i = 0; i < pages_per_huge_page; i++) {
4566 		if (allow_pagefault)
4567 			page_kaddr = kmap(dst_page + i);
4568 		else
4569 			page_kaddr = kmap_atomic(dst_page + i);
4570 		rc = copy_from_user(page_kaddr,
4571 				(const void __user *)(src + i * PAGE_SIZE),
4572 				PAGE_SIZE);
4573 		if (allow_pagefault)
4574 			kunmap(dst_page + i);
4575 		else
4576 			kunmap_atomic(page_kaddr);
4577 
4578 		ret_val -= (PAGE_SIZE - rc);
4579 		if (rc)
4580 			break;
4581 
4582 		cond_resched();
4583 	}
4584 	return ret_val;
4585 }
4586 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4587 
4588 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4589 
4590 static struct kmem_cache *page_ptl_cachep;
4591 
4592 void __init ptlock_cache_init(void)
4593 {
4594 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4595 			SLAB_PANIC, NULL);
4596 }
4597 
4598 bool ptlock_alloc(struct page *page)
4599 {
4600 	spinlock_t *ptl;
4601 
4602 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4603 	if (!ptl)
4604 		return false;
4605 	page->ptl = ptl;
4606 	return true;
4607 }
4608 
4609 void ptlock_free(struct page *page)
4610 {
4611 	kmem_cache_free(page_ptl_cachep, page->ptl);
4612 }
4613 #endif
4614