xref: /linux/mm/memory.c (revision 2f5947dfcaecb99f2dd559156eecbeb7b95e4c02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82 
83 #include "internal.h"
84 
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88 
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93 
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97 
98 /*
99  * A number of key systems in x86 including ioremap() rely on the assumption
100  * that high_memory defines the upper bound on direct map memory, then end
101  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
102  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103  * and ZONE_HIGHMEM.
104  */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107 
108 /*
109  * Randomize the address space (stacks, mmaps, brk, etc.).
110  *
111  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112  *   as ancient (libc5 based) binaries can segfault. )
113  */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116 					1;
117 #else
118 					2;
119 #endif
120 
121 static int __init disable_randmaps(char *s)
122 {
123 	randomize_va_space = 0;
124 	return 1;
125 }
126 __setup("norandmaps", disable_randmaps);
127 
128 unsigned long zero_pfn __read_mostly;
129 EXPORT_SYMBOL(zero_pfn);
130 
131 unsigned long highest_memmap_pfn __read_mostly;
132 
133 /*
134  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135  */
136 static int __init init_zero_pfn(void)
137 {
138 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
139 	return 0;
140 }
141 core_initcall(init_zero_pfn);
142 
143 
144 #if defined(SPLIT_RSS_COUNTING)
145 
146 void sync_mm_rss(struct mm_struct *mm)
147 {
148 	int i;
149 
150 	for (i = 0; i < NR_MM_COUNTERS; i++) {
151 		if (current->rss_stat.count[i]) {
152 			add_mm_counter(mm, i, current->rss_stat.count[i]);
153 			current->rss_stat.count[i] = 0;
154 		}
155 	}
156 	current->rss_stat.events = 0;
157 }
158 
159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160 {
161 	struct task_struct *task = current;
162 
163 	if (likely(task->mm == mm))
164 		task->rss_stat.count[member] += val;
165 	else
166 		add_mm_counter(mm, member, val);
167 }
168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170 
171 /* sync counter once per 64 page faults */
172 #define TASK_RSS_EVENTS_THRESH	(64)
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 	if (unlikely(task != current))
176 		return;
177 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
178 		sync_mm_rss(task->mm);
179 }
180 #else /* SPLIT_RSS_COUNTING */
181 
182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184 
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187 }
188 
189 #endif /* SPLIT_RSS_COUNTING */
190 
191 /*
192  * Note: this doesn't free the actual pages themselves. That
193  * has been handled earlier when unmapping all the memory regions.
194  */
195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196 			   unsigned long addr)
197 {
198 	pgtable_t token = pmd_pgtable(*pmd);
199 	pmd_clear(pmd);
200 	pte_free_tlb(tlb, token, addr);
201 	mm_dec_nr_ptes(tlb->mm);
202 }
203 
204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205 				unsigned long addr, unsigned long end,
206 				unsigned long floor, unsigned long ceiling)
207 {
208 	pmd_t *pmd;
209 	unsigned long next;
210 	unsigned long start;
211 
212 	start = addr;
213 	pmd = pmd_offset(pud, addr);
214 	do {
215 		next = pmd_addr_end(addr, end);
216 		if (pmd_none_or_clear_bad(pmd))
217 			continue;
218 		free_pte_range(tlb, pmd, addr);
219 	} while (pmd++, addr = next, addr != end);
220 
221 	start &= PUD_MASK;
222 	if (start < floor)
223 		return;
224 	if (ceiling) {
225 		ceiling &= PUD_MASK;
226 		if (!ceiling)
227 			return;
228 	}
229 	if (end - 1 > ceiling - 1)
230 		return;
231 
232 	pmd = pmd_offset(pud, start);
233 	pud_clear(pud);
234 	pmd_free_tlb(tlb, pmd, start);
235 	mm_dec_nr_pmds(tlb->mm);
236 }
237 
238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
239 				unsigned long addr, unsigned long end,
240 				unsigned long floor, unsigned long ceiling)
241 {
242 	pud_t *pud;
243 	unsigned long next;
244 	unsigned long start;
245 
246 	start = addr;
247 	pud = pud_offset(p4d, addr);
248 	do {
249 		next = pud_addr_end(addr, end);
250 		if (pud_none_or_clear_bad(pud))
251 			continue;
252 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
253 	} while (pud++, addr = next, addr != end);
254 
255 	start &= P4D_MASK;
256 	if (start < floor)
257 		return;
258 	if (ceiling) {
259 		ceiling &= P4D_MASK;
260 		if (!ceiling)
261 			return;
262 	}
263 	if (end - 1 > ceiling - 1)
264 		return;
265 
266 	pud = pud_offset(p4d, start);
267 	p4d_clear(p4d);
268 	pud_free_tlb(tlb, pud, start);
269 	mm_dec_nr_puds(tlb->mm);
270 }
271 
272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273 				unsigned long addr, unsigned long end,
274 				unsigned long floor, unsigned long ceiling)
275 {
276 	p4d_t *p4d;
277 	unsigned long next;
278 	unsigned long start;
279 
280 	start = addr;
281 	p4d = p4d_offset(pgd, addr);
282 	do {
283 		next = p4d_addr_end(addr, end);
284 		if (p4d_none_or_clear_bad(p4d))
285 			continue;
286 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287 	} while (p4d++, addr = next, addr != end);
288 
289 	start &= PGDIR_MASK;
290 	if (start < floor)
291 		return;
292 	if (ceiling) {
293 		ceiling &= PGDIR_MASK;
294 		if (!ceiling)
295 			return;
296 	}
297 	if (end - 1 > ceiling - 1)
298 		return;
299 
300 	p4d = p4d_offset(pgd, start);
301 	pgd_clear(pgd);
302 	p4d_free_tlb(tlb, p4d, start);
303 }
304 
305 /*
306  * This function frees user-level page tables of a process.
307  */
308 void free_pgd_range(struct mmu_gather *tlb,
309 			unsigned long addr, unsigned long end,
310 			unsigned long floor, unsigned long ceiling)
311 {
312 	pgd_t *pgd;
313 	unsigned long next;
314 
315 	/*
316 	 * The next few lines have given us lots of grief...
317 	 *
318 	 * Why are we testing PMD* at this top level?  Because often
319 	 * there will be no work to do at all, and we'd prefer not to
320 	 * go all the way down to the bottom just to discover that.
321 	 *
322 	 * Why all these "- 1"s?  Because 0 represents both the bottom
323 	 * of the address space and the top of it (using -1 for the
324 	 * top wouldn't help much: the masks would do the wrong thing).
325 	 * The rule is that addr 0 and floor 0 refer to the bottom of
326 	 * the address space, but end 0 and ceiling 0 refer to the top
327 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
328 	 * that end 0 case should be mythical).
329 	 *
330 	 * Wherever addr is brought up or ceiling brought down, we must
331 	 * be careful to reject "the opposite 0" before it confuses the
332 	 * subsequent tests.  But what about where end is brought down
333 	 * by PMD_SIZE below? no, end can't go down to 0 there.
334 	 *
335 	 * Whereas we round start (addr) and ceiling down, by different
336 	 * masks at different levels, in order to test whether a table
337 	 * now has no other vmas using it, so can be freed, we don't
338 	 * bother to round floor or end up - the tests don't need that.
339 	 */
340 
341 	addr &= PMD_MASK;
342 	if (addr < floor) {
343 		addr += PMD_SIZE;
344 		if (!addr)
345 			return;
346 	}
347 	if (ceiling) {
348 		ceiling &= PMD_MASK;
349 		if (!ceiling)
350 			return;
351 	}
352 	if (end - 1 > ceiling - 1)
353 		end -= PMD_SIZE;
354 	if (addr > end - 1)
355 		return;
356 	/*
357 	 * We add page table cache pages with PAGE_SIZE,
358 	 * (see pte_free_tlb()), flush the tlb if we need
359 	 */
360 	tlb_change_page_size(tlb, PAGE_SIZE);
361 	pgd = pgd_offset(tlb->mm, addr);
362 	do {
363 		next = pgd_addr_end(addr, end);
364 		if (pgd_none_or_clear_bad(pgd))
365 			continue;
366 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
367 	} while (pgd++, addr = next, addr != end);
368 }
369 
370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
371 		unsigned long floor, unsigned long ceiling)
372 {
373 	while (vma) {
374 		struct vm_area_struct *next = vma->vm_next;
375 		unsigned long addr = vma->vm_start;
376 
377 		/*
378 		 * Hide vma from rmap and truncate_pagecache before freeing
379 		 * pgtables
380 		 */
381 		unlink_anon_vmas(vma);
382 		unlink_file_vma(vma);
383 
384 		if (is_vm_hugetlb_page(vma)) {
385 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386 				floor, next ? next->vm_start : ceiling);
387 		} else {
388 			/*
389 			 * Optimization: gather nearby vmas into one call down
390 			 */
391 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
392 			       && !is_vm_hugetlb_page(next)) {
393 				vma = next;
394 				next = vma->vm_next;
395 				unlink_anon_vmas(vma);
396 				unlink_file_vma(vma);
397 			}
398 			free_pgd_range(tlb, addr, vma->vm_end,
399 				floor, next ? next->vm_start : ceiling);
400 		}
401 		vma = next;
402 	}
403 }
404 
405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
406 {
407 	spinlock_t *ptl;
408 	pgtable_t new = pte_alloc_one(mm);
409 	if (!new)
410 		return -ENOMEM;
411 
412 	/*
413 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
414 	 * visible before the pte is made visible to other CPUs by being
415 	 * put into page tables.
416 	 *
417 	 * The other side of the story is the pointer chasing in the page
418 	 * table walking code (when walking the page table without locking;
419 	 * ie. most of the time). Fortunately, these data accesses consist
420 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
421 	 * being the notable exception) will already guarantee loads are
422 	 * seen in-order. See the alpha page table accessors for the
423 	 * smp_read_barrier_depends() barriers in page table walking code.
424 	 */
425 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426 
427 	ptl = pmd_lock(mm, pmd);
428 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
429 		mm_inc_nr_ptes(mm);
430 		pmd_populate(mm, pmd, new);
431 		new = NULL;
432 	}
433 	spin_unlock(ptl);
434 	if (new)
435 		pte_free(mm, new);
436 	return 0;
437 }
438 
439 int __pte_alloc_kernel(pmd_t *pmd)
440 {
441 	pte_t *new = pte_alloc_one_kernel(&init_mm);
442 	if (!new)
443 		return -ENOMEM;
444 
445 	smp_wmb(); /* See comment in __pte_alloc */
446 
447 	spin_lock(&init_mm.page_table_lock);
448 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
449 		pmd_populate_kernel(&init_mm, pmd, new);
450 		new = NULL;
451 	}
452 	spin_unlock(&init_mm.page_table_lock);
453 	if (new)
454 		pte_free_kernel(&init_mm, new);
455 	return 0;
456 }
457 
458 static inline void init_rss_vec(int *rss)
459 {
460 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 }
462 
463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
464 {
465 	int i;
466 
467 	if (current->mm == mm)
468 		sync_mm_rss(mm);
469 	for (i = 0; i < NR_MM_COUNTERS; i++)
470 		if (rss[i])
471 			add_mm_counter(mm, i, rss[i]);
472 }
473 
474 /*
475  * This function is called to print an error when a bad pte
476  * is found. For example, we might have a PFN-mapped pte in
477  * a region that doesn't allow it.
478  *
479  * The calling function must still handle the error.
480  */
481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482 			  pte_t pte, struct page *page)
483 {
484 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
485 	p4d_t *p4d = p4d_offset(pgd, addr);
486 	pud_t *pud = pud_offset(p4d, addr);
487 	pmd_t *pmd = pmd_offset(pud, addr);
488 	struct address_space *mapping;
489 	pgoff_t index;
490 	static unsigned long resume;
491 	static unsigned long nr_shown;
492 	static unsigned long nr_unshown;
493 
494 	/*
495 	 * Allow a burst of 60 reports, then keep quiet for that minute;
496 	 * or allow a steady drip of one report per second.
497 	 */
498 	if (nr_shown == 60) {
499 		if (time_before(jiffies, resume)) {
500 			nr_unshown++;
501 			return;
502 		}
503 		if (nr_unshown) {
504 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505 				 nr_unshown);
506 			nr_unshown = 0;
507 		}
508 		nr_shown = 0;
509 	}
510 	if (nr_shown++ == 0)
511 		resume = jiffies + 60 * HZ;
512 
513 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514 	index = linear_page_index(vma, addr);
515 
516 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
517 		 current->comm,
518 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
519 	if (page)
520 		dump_page(page, "bad pte");
521 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
524 		 vma->vm_file,
525 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
526 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527 		 mapping ? mapping->a_ops->readpage : NULL);
528 	dump_stack();
529 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
530 }
531 
532 /*
533  * vm_normal_page -- This function gets the "struct page" associated with a pte.
534  *
535  * "Special" mappings do not wish to be associated with a "struct page" (either
536  * it doesn't exist, or it exists but they don't want to touch it). In this
537  * case, NULL is returned here. "Normal" mappings do have a struct page.
538  *
539  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540  * pte bit, in which case this function is trivial. Secondly, an architecture
541  * may not have a spare pte bit, which requires a more complicated scheme,
542  * described below.
543  *
544  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545  * special mapping (even if there are underlying and valid "struct pages").
546  * COWed pages of a VM_PFNMAP are always normal.
547  *
548  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551  * mapping will always honor the rule
552  *
553  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554  *
555  * And for normal mappings this is false.
556  *
557  * This restricts such mappings to be a linear translation from virtual address
558  * to pfn. To get around this restriction, we allow arbitrary mappings so long
559  * as the vma is not a COW mapping; in that case, we know that all ptes are
560  * special (because none can have been COWed).
561  *
562  *
563  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
564  *
565  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566  * page" backing, however the difference is that _all_ pages with a struct
567  * page (that is, those where pfn_valid is true) are refcounted and considered
568  * normal pages by the VM. The disadvantage is that pages are refcounted
569  * (which can be slower and simply not an option for some PFNMAP users). The
570  * advantage is that we don't have to follow the strict linearity rule of
571  * PFNMAP mappings in order to support COWable mappings.
572  *
573  */
574 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575 			     pte_t pte, bool with_public_device)
576 {
577 	unsigned long pfn = pte_pfn(pte);
578 
579 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
580 		if (likely(!pte_special(pte)))
581 			goto check_pfn;
582 		if (vma->vm_ops && vma->vm_ops->find_special_page)
583 			return vma->vm_ops->find_special_page(vma, addr);
584 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585 			return NULL;
586 		if (is_zero_pfn(pfn))
587 			return NULL;
588 
589 		/*
590 		 * Device public pages are special pages (they are ZONE_DEVICE
591 		 * pages but different from persistent memory). They behave
592 		 * allmost like normal pages. The difference is that they are
593 		 * not on the lru and thus should never be involve with any-
594 		 * thing that involve lru manipulation (mlock, numa balancing,
595 		 * ...).
596 		 *
597 		 * This is why we still want to return NULL for such page from
598 		 * vm_normal_page() so that we do not have to special case all
599 		 * call site of vm_normal_page().
600 		 */
601 		if (likely(pfn <= highest_memmap_pfn)) {
602 			struct page *page = pfn_to_page(pfn);
603 
604 			if (is_device_public_page(page)) {
605 				if (with_public_device)
606 					return page;
607 				return NULL;
608 			}
609 		}
610 
611 		if (pte_devmap(pte))
612 			return NULL;
613 
614 		print_bad_pte(vma, addr, pte, NULL);
615 		return NULL;
616 	}
617 
618 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
619 
620 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
621 		if (vma->vm_flags & VM_MIXEDMAP) {
622 			if (!pfn_valid(pfn))
623 				return NULL;
624 			goto out;
625 		} else {
626 			unsigned long off;
627 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
628 			if (pfn == vma->vm_pgoff + off)
629 				return NULL;
630 			if (!is_cow_mapping(vma->vm_flags))
631 				return NULL;
632 		}
633 	}
634 
635 	if (is_zero_pfn(pfn))
636 		return NULL;
637 
638 check_pfn:
639 	if (unlikely(pfn > highest_memmap_pfn)) {
640 		print_bad_pte(vma, addr, pte, NULL);
641 		return NULL;
642 	}
643 
644 	/*
645 	 * NOTE! We still have PageReserved() pages in the page tables.
646 	 * eg. VDSO mappings can cause them to exist.
647 	 */
648 out:
649 	return pfn_to_page(pfn);
650 }
651 
652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
653 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
654 				pmd_t pmd)
655 {
656 	unsigned long pfn = pmd_pfn(pmd);
657 
658 	/*
659 	 * There is no pmd_special() but there may be special pmds, e.g.
660 	 * in a direct-access (dax) mapping, so let's just replicate the
661 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
662 	 */
663 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
664 		if (vma->vm_flags & VM_MIXEDMAP) {
665 			if (!pfn_valid(pfn))
666 				return NULL;
667 			goto out;
668 		} else {
669 			unsigned long off;
670 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
671 			if (pfn == vma->vm_pgoff + off)
672 				return NULL;
673 			if (!is_cow_mapping(vma->vm_flags))
674 				return NULL;
675 		}
676 	}
677 
678 	if (pmd_devmap(pmd))
679 		return NULL;
680 	if (is_zero_pfn(pfn))
681 		return NULL;
682 	if (unlikely(pfn > highest_memmap_pfn))
683 		return NULL;
684 
685 	/*
686 	 * NOTE! We still have PageReserved() pages in the page tables.
687 	 * eg. VDSO mappings can cause them to exist.
688 	 */
689 out:
690 	return pfn_to_page(pfn);
691 }
692 #endif
693 
694 /*
695  * copy one vm_area from one task to the other. Assumes the page tables
696  * already present in the new task to be cleared in the whole range
697  * covered by this vma.
698  */
699 
700 static inline unsigned long
701 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
702 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
703 		unsigned long addr, int *rss)
704 {
705 	unsigned long vm_flags = vma->vm_flags;
706 	pte_t pte = *src_pte;
707 	struct page *page;
708 
709 	/* pte contains position in swap or file, so copy. */
710 	if (unlikely(!pte_present(pte))) {
711 		swp_entry_t entry = pte_to_swp_entry(pte);
712 
713 		if (likely(!non_swap_entry(entry))) {
714 			if (swap_duplicate(entry) < 0)
715 				return entry.val;
716 
717 			/* make sure dst_mm is on swapoff's mmlist. */
718 			if (unlikely(list_empty(&dst_mm->mmlist))) {
719 				spin_lock(&mmlist_lock);
720 				if (list_empty(&dst_mm->mmlist))
721 					list_add(&dst_mm->mmlist,
722 							&src_mm->mmlist);
723 				spin_unlock(&mmlist_lock);
724 			}
725 			rss[MM_SWAPENTS]++;
726 		} else if (is_migration_entry(entry)) {
727 			page = migration_entry_to_page(entry);
728 
729 			rss[mm_counter(page)]++;
730 
731 			if (is_write_migration_entry(entry) &&
732 					is_cow_mapping(vm_flags)) {
733 				/*
734 				 * COW mappings require pages in both
735 				 * parent and child to be set to read.
736 				 */
737 				make_migration_entry_read(&entry);
738 				pte = swp_entry_to_pte(entry);
739 				if (pte_swp_soft_dirty(*src_pte))
740 					pte = pte_swp_mksoft_dirty(pte);
741 				set_pte_at(src_mm, addr, src_pte, pte);
742 			}
743 		} else if (is_device_private_entry(entry)) {
744 			page = device_private_entry_to_page(entry);
745 
746 			/*
747 			 * Update rss count even for unaddressable pages, as
748 			 * they should treated just like normal pages in this
749 			 * respect.
750 			 *
751 			 * We will likely want to have some new rss counters
752 			 * for unaddressable pages, at some point. But for now
753 			 * keep things as they are.
754 			 */
755 			get_page(page);
756 			rss[mm_counter(page)]++;
757 			page_dup_rmap(page, false);
758 
759 			/*
760 			 * We do not preserve soft-dirty information, because so
761 			 * far, checkpoint/restore is the only feature that
762 			 * requires that. And checkpoint/restore does not work
763 			 * when a device driver is involved (you cannot easily
764 			 * save and restore device driver state).
765 			 */
766 			if (is_write_device_private_entry(entry) &&
767 			    is_cow_mapping(vm_flags)) {
768 				make_device_private_entry_read(&entry);
769 				pte = swp_entry_to_pte(entry);
770 				set_pte_at(src_mm, addr, src_pte, pte);
771 			}
772 		}
773 		goto out_set_pte;
774 	}
775 
776 	/*
777 	 * If it's a COW mapping, write protect it both
778 	 * in the parent and the child
779 	 */
780 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
781 		ptep_set_wrprotect(src_mm, addr, src_pte);
782 		pte = pte_wrprotect(pte);
783 	}
784 
785 	/*
786 	 * If it's a shared mapping, mark it clean in
787 	 * the child
788 	 */
789 	if (vm_flags & VM_SHARED)
790 		pte = pte_mkclean(pte);
791 	pte = pte_mkold(pte);
792 
793 	page = vm_normal_page(vma, addr, pte);
794 	if (page) {
795 		get_page(page);
796 		page_dup_rmap(page, false);
797 		rss[mm_counter(page)]++;
798 	} else if (pte_devmap(pte)) {
799 		page = pte_page(pte);
800 
801 		/*
802 		 * Cache coherent device memory behave like regular page and
803 		 * not like persistent memory page. For more informations see
804 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
805 		 */
806 		if (is_device_public_page(page)) {
807 			get_page(page);
808 			page_dup_rmap(page, false);
809 			rss[mm_counter(page)]++;
810 		}
811 	}
812 
813 out_set_pte:
814 	set_pte_at(dst_mm, addr, dst_pte, pte);
815 	return 0;
816 }
817 
818 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
819 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
820 		   unsigned long addr, unsigned long end)
821 {
822 	pte_t *orig_src_pte, *orig_dst_pte;
823 	pte_t *src_pte, *dst_pte;
824 	spinlock_t *src_ptl, *dst_ptl;
825 	int progress = 0;
826 	int rss[NR_MM_COUNTERS];
827 	swp_entry_t entry = (swp_entry_t){0};
828 
829 again:
830 	init_rss_vec(rss);
831 
832 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
833 	if (!dst_pte)
834 		return -ENOMEM;
835 	src_pte = pte_offset_map(src_pmd, addr);
836 	src_ptl = pte_lockptr(src_mm, src_pmd);
837 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
838 	orig_src_pte = src_pte;
839 	orig_dst_pte = dst_pte;
840 	arch_enter_lazy_mmu_mode();
841 
842 	do {
843 		/*
844 		 * We are holding two locks at this point - either of them
845 		 * could generate latencies in another task on another CPU.
846 		 */
847 		if (progress >= 32) {
848 			progress = 0;
849 			if (need_resched() ||
850 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
851 				break;
852 		}
853 		if (pte_none(*src_pte)) {
854 			progress++;
855 			continue;
856 		}
857 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
858 							vma, addr, rss);
859 		if (entry.val)
860 			break;
861 		progress += 8;
862 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
863 
864 	arch_leave_lazy_mmu_mode();
865 	spin_unlock(src_ptl);
866 	pte_unmap(orig_src_pte);
867 	add_mm_rss_vec(dst_mm, rss);
868 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
869 	cond_resched();
870 
871 	if (entry.val) {
872 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
873 			return -ENOMEM;
874 		progress = 0;
875 	}
876 	if (addr != end)
877 		goto again;
878 	return 0;
879 }
880 
881 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
883 		unsigned long addr, unsigned long end)
884 {
885 	pmd_t *src_pmd, *dst_pmd;
886 	unsigned long next;
887 
888 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
889 	if (!dst_pmd)
890 		return -ENOMEM;
891 	src_pmd = pmd_offset(src_pud, addr);
892 	do {
893 		next = pmd_addr_end(addr, end);
894 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
895 			|| pmd_devmap(*src_pmd)) {
896 			int err;
897 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
898 			err = copy_huge_pmd(dst_mm, src_mm,
899 					    dst_pmd, src_pmd, addr, vma);
900 			if (err == -ENOMEM)
901 				return -ENOMEM;
902 			if (!err)
903 				continue;
904 			/* fall through */
905 		}
906 		if (pmd_none_or_clear_bad(src_pmd))
907 			continue;
908 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
909 						vma, addr, next))
910 			return -ENOMEM;
911 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
912 	return 0;
913 }
914 
915 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
917 		unsigned long addr, unsigned long end)
918 {
919 	pud_t *src_pud, *dst_pud;
920 	unsigned long next;
921 
922 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
923 	if (!dst_pud)
924 		return -ENOMEM;
925 	src_pud = pud_offset(src_p4d, addr);
926 	do {
927 		next = pud_addr_end(addr, end);
928 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
929 			int err;
930 
931 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
932 			err = copy_huge_pud(dst_mm, src_mm,
933 					    dst_pud, src_pud, addr, vma);
934 			if (err == -ENOMEM)
935 				return -ENOMEM;
936 			if (!err)
937 				continue;
938 			/* fall through */
939 		}
940 		if (pud_none_or_clear_bad(src_pud))
941 			continue;
942 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
943 						vma, addr, next))
944 			return -ENOMEM;
945 	} while (dst_pud++, src_pud++, addr = next, addr != end);
946 	return 0;
947 }
948 
949 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
951 		unsigned long addr, unsigned long end)
952 {
953 	p4d_t *src_p4d, *dst_p4d;
954 	unsigned long next;
955 
956 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
957 	if (!dst_p4d)
958 		return -ENOMEM;
959 	src_p4d = p4d_offset(src_pgd, addr);
960 	do {
961 		next = p4d_addr_end(addr, end);
962 		if (p4d_none_or_clear_bad(src_p4d))
963 			continue;
964 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
965 						vma, addr, next))
966 			return -ENOMEM;
967 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
968 	return 0;
969 }
970 
971 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
972 		struct vm_area_struct *vma)
973 {
974 	pgd_t *src_pgd, *dst_pgd;
975 	unsigned long next;
976 	unsigned long addr = vma->vm_start;
977 	unsigned long end = vma->vm_end;
978 	struct mmu_notifier_range range;
979 	bool is_cow;
980 	int ret;
981 
982 	/*
983 	 * Don't copy ptes where a page fault will fill them correctly.
984 	 * Fork becomes much lighter when there are big shared or private
985 	 * readonly mappings. The tradeoff is that copy_page_range is more
986 	 * efficient than faulting.
987 	 */
988 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
989 			!vma->anon_vma)
990 		return 0;
991 
992 	if (is_vm_hugetlb_page(vma))
993 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
994 
995 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
996 		/*
997 		 * We do not free on error cases below as remove_vma
998 		 * gets called on error from higher level routine
999 		 */
1000 		ret = track_pfn_copy(vma);
1001 		if (ret)
1002 			return ret;
1003 	}
1004 
1005 	/*
1006 	 * We need to invalidate the secondary MMU mappings only when
1007 	 * there could be a permission downgrade on the ptes of the
1008 	 * parent mm. And a permission downgrade will only happen if
1009 	 * is_cow_mapping() returns true.
1010 	 */
1011 	is_cow = is_cow_mapping(vma->vm_flags);
1012 
1013 	if (is_cow) {
1014 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1015 					0, vma, src_mm, addr, end);
1016 		mmu_notifier_invalidate_range_start(&range);
1017 	}
1018 
1019 	ret = 0;
1020 	dst_pgd = pgd_offset(dst_mm, addr);
1021 	src_pgd = pgd_offset(src_mm, addr);
1022 	do {
1023 		next = pgd_addr_end(addr, end);
1024 		if (pgd_none_or_clear_bad(src_pgd))
1025 			continue;
1026 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1027 					    vma, addr, next))) {
1028 			ret = -ENOMEM;
1029 			break;
1030 		}
1031 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1032 
1033 	if (is_cow)
1034 		mmu_notifier_invalidate_range_end(&range);
1035 	return ret;
1036 }
1037 
1038 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1039 				struct vm_area_struct *vma, pmd_t *pmd,
1040 				unsigned long addr, unsigned long end,
1041 				struct zap_details *details)
1042 {
1043 	struct mm_struct *mm = tlb->mm;
1044 	int force_flush = 0;
1045 	int rss[NR_MM_COUNTERS];
1046 	spinlock_t *ptl;
1047 	pte_t *start_pte;
1048 	pte_t *pte;
1049 	swp_entry_t entry;
1050 
1051 	tlb_change_page_size(tlb, PAGE_SIZE);
1052 again:
1053 	init_rss_vec(rss);
1054 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1055 	pte = start_pte;
1056 	flush_tlb_batched_pending(mm);
1057 	arch_enter_lazy_mmu_mode();
1058 	do {
1059 		pte_t ptent = *pte;
1060 		if (pte_none(ptent))
1061 			continue;
1062 
1063 		if (pte_present(ptent)) {
1064 			struct page *page;
1065 
1066 			page = _vm_normal_page(vma, addr, ptent, true);
1067 			if (unlikely(details) && page) {
1068 				/*
1069 				 * unmap_shared_mapping_pages() wants to
1070 				 * invalidate cache without truncating:
1071 				 * unmap shared but keep private pages.
1072 				 */
1073 				if (details->check_mapping &&
1074 				    details->check_mapping != page_rmapping(page))
1075 					continue;
1076 			}
1077 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1078 							tlb->fullmm);
1079 			tlb_remove_tlb_entry(tlb, pte, addr);
1080 			if (unlikely(!page))
1081 				continue;
1082 
1083 			if (!PageAnon(page)) {
1084 				if (pte_dirty(ptent)) {
1085 					force_flush = 1;
1086 					set_page_dirty(page);
1087 				}
1088 				if (pte_young(ptent) &&
1089 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1090 					mark_page_accessed(page);
1091 			}
1092 			rss[mm_counter(page)]--;
1093 			page_remove_rmap(page, false);
1094 			if (unlikely(page_mapcount(page) < 0))
1095 				print_bad_pte(vma, addr, ptent, page);
1096 			if (unlikely(__tlb_remove_page(tlb, page))) {
1097 				force_flush = 1;
1098 				addr += PAGE_SIZE;
1099 				break;
1100 			}
1101 			continue;
1102 		}
1103 
1104 		entry = pte_to_swp_entry(ptent);
1105 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1106 			struct page *page = device_private_entry_to_page(entry);
1107 
1108 			if (unlikely(details && details->check_mapping)) {
1109 				/*
1110 				 * unmap_shared_mapping_pages() wants to
1111 				 * invalidate cache without truncating:
1112 				 * unmap shared but keep private pages.
1113 				 */
1114 				if (details->check_mapping !=
1115 				    page_rmapping(page))
1116 					continue;
1117 			}
1118 
1119 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1120 			rss[mm_counter(page)]--;
1121 			page_remove_rmap(page, false);
1122 			put_page(page);
1123 			continue;
1124 		}
1125 
1126 		/* If details->check_mapping, we leave swap entries. */
1127 		if (unlikely(details))
1128 			continue;
1129 
1130 		entry = pte_to_swp_entry(ptent);
1131 		if (!non_swap_entry(entry))
1132 			rss[MM_SWAPENTS]--;
1133 		else if (is_migration_entry(entry)) {
1134 			struct page *page;
1135 
1136 			page = migration_entry_to_page(entry);
1137 			rss[mm_counter(page)]--;
1138 		}
1139 		if (unlikely(!free_swap_and_cache(entry)))
1140 			print_bad_pte(vma, addr, ptent, NULL);
1141 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1142 	} while (pte++, addr += PAGE_SIZE, addr != end);
1143 
1144 	add_mm_rss_vec(mm, rss);
1145 	arch_leave_lazy_mmu_mode();
1146 
1147 	/* Do the actual TLB flush before dropping ptl */
1148 	if (force_flush)
1149 		tlb_flush_mmu_tlbonly(tlb);
1150 	pte_unmap_unlock(start_pte, ptl);
1151 
1152 	/*
1153 	 * If we forced a TLB flush (either due to running out of
1154 	 * batch buffers or because we needed to flush dirty TLB
1155 	 * entries before releasing the ptl), free the batched
1156 	 * memory too. Restart if we didn't do everything.
1157 	 */
1158 	if (force_flush) {
1159 		force_flush = 0;
1160 		tlb_flush_mmu(tlb);
1161 		if (addr != end)
1162 			goto again;
1163 	}
1164 
1165 	return addr;
1166 }
1167 
1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1169 				struct vm_area_struct *vma, pud_t *pud,
1170 				unsigned long addr, unsigned long end,
1171 				struct zap_details *details)
1172 {
1173 	pmd_t *pmd;
1174 	unsigned long next;
1175 
1176 	pmd = pmd_offset(pud, addr);
1177 	do {
1178 		next = pmd_addr_end(addr, end);
1179 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1180 			if (next - addr != HPAGE_PMD_SIZE)
1181 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1182 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1183 				goto next;
1184 			/* fall through */
1185 		}
1186 		/*
1187 		 * Here there can be other concurrent MADV_DONTNEED or
1188 		 * trans huge page faults running, and if the pmd is
1189 		 * none or trans huge it can change under us. This is
1190 		 * because MADV_DONTNEED holds the mmap_sem in read
1191 		 * mode.
1192 		 */
1193 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1194 			goto next;
1195 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1196 next:
1197 		cond_resched();
1198 	} while (pmd++, addr = next, addr != end);
1199 
1200 	return addr;
1201 }
1202 
1203 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1204 				struct vm_area_struct *vma, p4d_t *p4d,
1205 				unsigned long addr, unsigned long end,
1206 				struct zap_details *details)
1207 {
1208 	pud_t *pud;
1209 	unsigned long next;
1210 
1211 	pud = pud_offset(p4d, addr);
1212 	do {
1213 		next = pud_addr_end(addr, end);
1214 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1215 			if (next - addr != HPAGE_PUD_SIZE) {
1216 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1217 				split_huge_pud(vma, pud, addr);
1218 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1219 				goto next;
1220 			/* fall through */
1221 		}
1222 		if (pud_none_or_clear_bad(pud))
1223 			continue;
1224 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1225 next:
1226 		cond_resched();
1227 	} while (pud++, addr = next, addr != end);
1228 
1229 	return addr;
1230 }
1231 
1232 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1233 				struct vm_area_struct *vma, pgd_t *pgd,
1234 				unsigned long addr, unsigned long end,
1235 				struct zap_details *details)
1236 {
1237 	p4d_t *p4d;
1238 	unsigned long next;
1239 
1240 	p4d = p4d_offset(pgd, addr);
1241 	do {
1242 		next = p4d_addr_end(addr, end);
1243 		if (p4d_none_or_clear_bad(p4d))
1244 			continue;
1245 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1246 	} while (p4d++, addr = next, addr != end);
1247 
1248 	return addr;
1249 }
1250 
1251 void unmap_page_range(struct mmu_gather *tlb,
1252 			     struct vm_area_struct *vma,
1253 			     unsigned long addr, unsigned long end,
1254 			     struct zap_details *details)
1255 {
1256 	pgd_t *pgd;
1257 	unsigned long next;
1258 
1259 	BUG_ON(addr >= end);
1260 	tlb_start_vma(tlb, vma);
1261 	pgd = pgd_offset(vma->vm_mm, addr);
1262 	do {
1263 		next = pgd_addr_end(addr, end);
1264 		if (pgd_none_or_clear_bad(pgd))
1265 			continue;
1266 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1267 	} while (pgd++, addr = next, addr != end);
1268 	tlb_end_vma(tlb, vma);
1269 }
1270 
1271 
1272 static void unmap_single_vma(struct mmu_gather *tlb,
1273 		struct vm_area_struct *vma, unsigned long start_addr,
1274 		unsigned long end_addr,
1275 		struct zap_details *details)
1276 {
1277 	unsigned long start = max(vma->vm_start, start_addr);
1278 	unsigned long end;
1279 
1280 	if (start >= vma->vm_end)
1281 		return;
1282 	end = min(vma->vm_end, end_addr);
1283 	if (end <= vma->vm_start)
1284 		return;
1285 
1286 	if (vma->vm_file)
1287 		uprobe_munmap(vma, start, end);
1288 
1289 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1290 		untrack_pfn(vma, 0, 0);
1291 
1292 	if (start != end) {
1293 		if (unlikely(is_vm_hugetlb_page(vma))) {
1294 			/*
1295 			 * It is undesirable to test vma->vm_file as it
1296 			 * should be non-null for valid hugetlb area.
1297 			 * However, vm_file will be NULL in the error
1298 			 * cleanup path of mmap_region. When
1299 			 * hugetlbfs ->mmap method fails,
1300 			 * mmap_region() nullifies vma->vm_file
1301 			 * before calling this function to clean up.
1302 			 * Since no pte has actually been setup, it is
1303 			 * safe to do nothing in this case.
1304 			 */
1305 			if (vma->vm_file) {
1306 				i_mmap_lock_write(vma->vm_file->f_mapping);
1307 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1309 			}
1310 		} else
1311 			unmap_page_range(tlb, vma, start, end, details);
1312 	}
1313 }
1314 
1315 /**
1316  * unmap_vmas - unmap a range of memory covered by a list of vma's
1317  * @tlb: address of the caller's struct mmu_gather
1318  * @vma: the starting vma
1319  * @start_addr: virtual address at which to start unmapping
1320  * @end_addr: virtual address at which to end unmapping
1321  *
1322  * Unmap all pages in the vma list.
1323  *
1324  * Only addresses between `start' and `end' will be unmapped.
1325  *
1326  * The VMA list must be sorted in ascending virtual address order.
1327  *
1328  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329  * range after unmap_vmas() returns.  So the only responsibility here is to
1330  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331  * drops the lock and schedules.
1332  */
1333 void unmap_vmas(struct mmu_gather *tlb,
1334 		struct vm_area_struct *vma, unsigned long start_addr,
1335 		unsigned long end_addr)
1336 {
1337 	struct mmu_notifier_range range;
1338 
1339 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1340 				start_addr, end_addr);
1341 	mmu_notifier_invalidate_range_start(&range);
1342 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1343 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1344 	mmu_notifier_invalidate_range_end(&range);
1345 }
1346 
1347 /**
1348  * zap_page_range - remove user pages in a given range
1349  * @vma: vm_area_struct holding the applicable pages
1350  * @start: starting address of pages to zap
1351  * @size: number of bytes to zap
1352  *
1353  * Caller must protect the VMA list
1354  */
1355 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1356 		unsigned long size)
1357 {
1358 	struct mmu_notifier_range range;
1359 	struct mmu_gather tlb;
1360 
1361 	lru_add_drain();
1362 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1363 				start, start + size);
1364 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1365 	update_hiwater_rss(vma->vm_mm);
1366 	mmu_notifier_invalidate_range_start(&range);
1367 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1368 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1369 	mmu_notifier_invalidate_range_end(&range);
1370 	tlb_finish_mmu(&tlb, start, range.end);
1371 }
1372 
1373 /**
1374  * zap_page_range_single - remove user pages in a given range
1375  * @vma: vm_area_struct holding the applicable pages
1376  * @address: starting address of pages to zap
1377  * @size: number of bytes to zap
1378  * @details: details of shared cache invalidation
1379  *
1380  * The range must fit into one VMA.
1381  */
1382 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1383 		unsigned long size, struct zap_details *details)
1384 {
1385 	struct mmu_notifier_range range;
1386 	struct mmu_gather tlb;
1387 
1388 	lru_add_drain();
1389 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1390 				address, address + size);
1391 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1392 	update_hiwater_rss(vma->vm_mm);
1393 	mmu_notifier_invalidate_range_start(&range);
1394 	unmap_single_vma(&tlb, vma, address, range.end, details);
1395 	mmu_notifier_invalidate_range_end(&range);
1396 	tlb_finish_mmu(&tlb, address, range.end);
1397 }
1398 
1399 /**
1400  * zap_vma_ptes - remove ptes mapping the vma
1401  * @vma: vm_area_struct holding ptes to be zapped
1402  * @address: starting address of pages to zap
1403  * @size: number of bytes to zap
1404  *
1405  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1406  *
1407  * The entire address range must be fully contained within the vma.
1408  *
1409  */
1410 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1411 		unsigned long size)
1412 {
1413 	if (address < vma->vm_start || address + size > vma->vm_end ||
1414 	    		!(vma->vm_flags & VM_PFNMAP))
1415 		return;
1416 
1417 	zap_page_range_single(vma, address, size, NULL);
1418 }
1419 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1420 
1421 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1422 			spinlock_t **ptl)
1423 {
1424 	pgd_t *pgd;
1425 	p4d_t *p4d;
1426 	pud_t *pud;
1427 	pmd_t *pmd;
1428 
1429 	pgd = pgd_offset(mm, addr);
1430 	p4d = p4d_alloc(mm, pgd, addr);
1431 	if (!p4d)
1432 		return NULL;
1433 	pud = pud_alloc(mm, p4d, addr);
1434 	if (!pud)
1435 		return NULL;
1436 	pmd = pmd_alloc(mm, pud, addr);
1437 	if (!pmd)
1438 		return NULL;
1439 
1440 	VM_BUG_ON(pmd_trans_huge(*pmd));
1441 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1442 }
1443 
1444 /*
1445  * This is the old fallback for page remapping.
1446  *
1447  * For historical reasons, it only allows reserved pages. Only
1448  * old drivers should use this, and they needed to mark their
1449  * pages reserved for the old functions anyway.
1450  */
1451 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1452 			struct page *page, pgprot_t prot)
1453 {
1454 	struct mm_struct *mm = vma->vm_mm;
1455 	int retval;
1456 	pte_t *pte;
1457 	spinlock_t *ptl;
1458 
1459 	retval = -EINVAL;
1460 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1461 		goto out;
1462 	retval = -ENOMEM;
1463 	flush_dcache_page(page);
1464 	pte = get_locked_pte(mm, addr, &ptl);
1465 	if (!pte)
1466 		goto out;
1467 	retval = -EBUSY;
1468 	if (!pte_none(*pte))
1469 		goto out_unlock;
1470 
1471 	/* Ok, finally just insert the thing.. */
1472 	get_page(page);
1473 	inc_mm_counter_fast(mm, mm_counter_file(page));
1474 	page_add_file_rmap(page, false);
1475 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1476 
1477 	retval = 0;
1478 out_unlock:
1479 	pte_unmap_unlock(pte, ptl);
1480 out:
1481 	return retval;
1482 }
1483 
1484 /**
1485  * vm_insert_page - insert single page into user vma
1486  * @vma: user vma to map to
1487  * @addr: target user address of this page
1488  * @page: source kernel page
1489  *
1490  * This allows drivers to insert individual pages they've allocated
1491  * into a user vma.
1492  *
1493  * The page has to be a nice clean _individual_ kernel allocation.
1494  * If you allocate a compound page, you need to have marked it as
1495  * such (__GFP_COMP), or manually just split the page up yourself
1496  * (see split_page()).
1497  *
1498  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1499  * took an arbitrary page protection parameter. This doesn't allow
1500  * that. Your vma protection will have to be set up correctly, which
1501  * means that if you want a shared writable mapping, you'd better
1502  * ask for a shared writable mapping!
1503  *
1504  * The page does not need to be reserved.
1505  *
1506  * Usually this function is called from f_op->mmap() handler
1507  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1508  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1509  * function from other places, for example from page-fault handler.
1510  *
1511  * Return: %0 on success, negative error code otherwise.
1512  */
1513 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1514 			struct page *page)
1515 {
1516 	if (addr < vma->vm_start || addr >= vma->vm_end)
1517 		return -EFAULT;
1518 	if (!page_count(page))
1519 		return -EINVAL;
1520 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1521 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1522 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1523 		vma->vm_flags |= VM_MIXEDMAP;
1524 	}
1525 	return insert_page(vma, addr, page, vma->vm_page_prot);
1526 }
1527 EXPORT_SYMBOL(vm_insert_page);
1528 
1529 /*
1530  * __vm_map_pages - maps range of kernel pages into user vma
1531  * @vma: user vma to map to
1532  * @pages: pointer to array of source kernel pages
1533  * @num: number of pages in page array
1534  * @offset: user's requested vm_pgoff
1535  *
1536  * This allows drivers to map range of kernel pages into a user vma.
1537  *
1538  * Return: 0 on success and error code otherwise.
1539  */
1540 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1541 				unsigned long num, unsigned long offset)
1542 {
1543 	unsigned long count = vma_pages(vma);
1544 	unsigned long uaddr = vma->vm_start;
1545 	int ret, i;
1546 
1547 	/* Fail if the user requested offset is beyond the end of the object */
1548 	if (offset >= num)
1549 		return -ENXIO;
1550 
1551 	/* Fail if the user requested size exceeds available object size */
1552 	if (count > num - offset)
1553 		return -ENXIO;
1554 
1555 	for (i = 0; i < count; i++) {
1556 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1557 		if (ret < 0)
1558 			return ret;
1559 		uaddr += PAGE_SIZE;
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 /**
1566  * vm_map_pages - maps range of kernel pages starts with non zero offset
1567  * @vma: user vma to map to
1568  * @pages: pointer to array of source kernel pages
1569  * @num: number of pages in page array
1570  *
1571  * Maps an object consisting of @num pages, catering for the user's
1572  * requested vm_pgoff
1573  *
1574  * If we fail to insert any page into the vma, the function will return
1575  * immediately leaving any previously inserted pages present.  Callers
1576  * from the mmap handler may immediately return the error as their caller
1577  * will destroy the vma, removing any successfully inserted pages. Other
1578  * callers should make their own arrangements for calling unmap_region().
1579  *
1580  * Context: Process context. Called by mmap handlers.
1581  * Return: 0 on success and error code otherwise.
1582  */
1583 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1584 				unsigned long num)
1585 {
1586 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1587 }
1588 EXPORT_SYMBOL(vm_map_pages);
1589 
1590 /**
1591  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1592  * @vma: user vma to map to
1593  * @pages: pointer to array of source kernel pages
1594  * @num: number of pages in page array
1595  *
1596  * Similar to vm_map_pages(), except that it explicitly sets the offset
1597  * to 0. This function is intended for the drivers that did not consider
1598  * vm_pgoff.
1599  *
1600  * Context: Process context. Called by mmap handlers.
1601  * Return: 0 on success and error code otherwise.
1602  */
1603 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1604 				unsigned long num)
1605 {
1606 	return __vm_map_pages(vma, pages, num, 0);
1607 }
1608 EXPORT_SYMBOL(vm_map_pages_zero);
1609 
1610 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1611 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1612 {
1613 	struct mm_struct *mm = vma->vm_mm;
1614 	pte_t *pte, entry;
1615 	spinlock_t *ptl;
1616 
1617 	pte = get_locked_pte(mm, addr, &ptl);
1618 	if (!pte)
1619 		return VM_FAULT_OOM;
1620 	if (!pte_none(*pte)) {
1621 		if (mkwrite) {
1622 			/*
1623 			 * For read faults on private mappings the PFN passed
1624 			 * in may not match the PFN we have mapped if the
1625 			 * mapped PFN is a writeable COW page.  In the mkwrite
1626 			 * case we are creating a writable PTE for a shared
1627 			 * mapping and we expect the PFNs to match. If they
1628 			 * don't match, we are likely racing with block
1629 			 * allocation and mapping invalidation so just skip the
1630 			 * update.
1631 			 */
1632 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1633 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1634 				goto out_unlock;
1635 			}
1636 			entry = pte_mkyoung(*pte);
1637 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1638 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1639 				update_mmu_cache(vma, addr, pte);
1640 		}
1641 		goto out_unlock;
1642 	}
1643 
1644 	/* Ok, finally just insert the thing.. */
1645 	if (pfn_t_devmap(pfn))
1646 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1647 	else
1648 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1649 
1650 	if (mkwrite) {
1651 		entry = pte_mkyoung(entry);
1652 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1653 	}
1654 
1655 	set_pte_at(mm, addr, pte, entry);
1656 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1657 
1658 out_unlock:
1659 	pte_unmap_unlock(pte, ptl);
1660 	return VM_FAULT_NOPAGE;
1661 }
1662 
1663 /**
1664  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1665  * @vma: user vma to map to
1666  * @addr: target user address of this page
1667  * @pfn: source kernel pfn
1668  * @pgprot: pgprot flags for the inserted page
1669  *
1670  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1671  * to override pgprot on a per-page basis.
1672  *
1673  * This only makes sense for IO mappings, and it makes no sense for
1674  * COW mappings.  In general, using multiple vmas is preferable;
1675  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1676  * impractical.
1677  *
1678  * Context: Process context.  May allocate using %GFP_KERNEL.
1679  * Return: vm_fault_t value.
1680  */
1681 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1682 			unsigned long pfn, pgprot_t pgprot)
1683 {
1684 	/*
1685 	 * Technically, architectures with pte_special can avoid all these
1686 	 * restrictions (same for remap_pfn_range).  However we would like
1687 	 * consistency in testing and feature parity among all, so we should
1688 	 * try to keep these invariants in place for everybody.
1689 	 */
1690 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1691 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1692 						(VM_PFNMAP|VM_MIXEDMAP));
1693 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1694 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1695 
1696 	if (addr < vma->vm_start || addr >= vma->vm_end)
1697 		return VM_FAULT_SIGBUS;
1698 
1699 	if (!pfn_modify_allowed(pfn, pgprot))
1700 		return VM_FAULT_SIGBUS;
1701 
1702 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1703 
1704 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1705 			false);
1706 }
1707 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1708 
1709 /**
1710  * vmf_insert_pfn - insert single pfn into user vma
1711  * @vma: user vma to map to
1712  * @addr: target user address of this page
1713  * @pfn: source kernel pfn
1714  *
1715  * Similar to vm_insert_page, this allows drivers to insert individual pages
1716  * they've allocated into a user vma. Same comments apply.
1717  *
1718  * This function should only be called from a vm_ops->fault handler, and
1719  * in that case the handler should return the result of this function.
1720  *
1721  * vma cannot be a COW mapping.
1722  *
1723  * As this is called only for pages that do not currently exist, we
1724  * do not need to flush old virtual caches or the TLB.
1725  *
1726  * Context: Process context.  May allocate using %GFP_KERNEL.
1727  * Return: vm_fault_t value.
1728  */
1729 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1730 			unsigned long pfn)
1731 {
1732 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1733 }
1734 EXPORT_SYMBOL(vmf_insert_pfn);
1735 
1736 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1737 {
1738 	/* these checks mirror the abort conditions in vm_normal_page */
1739 	if (vma->vm_flags & VM_MIXEDMAP)
1740 		return true;
1741 	if (pfn_t_devmap(pfn))
1742 		return true;
1743 	if (pfn_t_special(pfn))
1744 		return true;
1745 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1746 		return true;
1747 	return false;
1748 }
1749 
1750 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1751 		unsigned long addr, pfn_t pfn, bool mkwrite)
1752 {
1753 	pgprot_t pgprot = vma->vm_page_prot;
1754 	int err;
1755 
1756 	BUG_ON(!vm_mixed_ok(vma, pfn));
1757 
1758 	if (addr < vma->vm_start || addr >= vma->vm_end)
1759 		return VM_FAULT_SIGBUS;
1760 
1761 	track_pfn_insert(vma, &pgprot, pfn);
1762 
1763 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1764 		return VM_FAULT_SIGBUS;
1765 
1766 	/*
1767 	 * If we don't have pte special, then we have to use the pfn_valid()
1768 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1769 	 * refcount the page if pfn_valid is true (hence insert_page rather
1770 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1771 	 * without pte special, it would there be refcounted as a normal page.
1772 	 */
1773 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1774 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1775 		struct page *page;
1776 
1777 		/*
1778 		 * At this point we are committed to insert_page()
1779 		 * regardless of whether the caller specified flags that
1780 		 * result in pfn_t_has_page() == false.
1781 		 */
1782 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1783 		err = insert_page(vma, addr, page, pgprot);
1784 	} else {
1785 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1786 	}
1787 
1788 	if (err == -ENOMEM)
1789 		return VM_FAULT_OOM;
1790 	if (err < 0 && err != -EBUSY)
1791 		return VM_FAULT_SIGBUS;
1792 
1793 	return VM_FAULT_NOPAGE;
1794 }
1795 
1796 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1797 		pfn_t pfn)
1798 {
1799 	return __vm_insert_mixed(vma, addr, pfn, false);
1800 }
1801 EXPORT_SYMBOL(vmf_insert_mixed);
1802 
1803 /*
1804  *  If the insertion of PTE failed because someone else already added a
1805  *  different entry in the mean time, we treat that as success as we assume
1806  *  the same entry was actually inserted.
1807  */
1808 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1809 		unsigned long addr, pfn_t pfn)
1810 {
1811 	return __vm_insert_mixed(vma, addr, pfn, true);
1812 }
1813 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1814 
1815 /*
1816  * maps a range of physical memory into the requested pages. the old
1817  * mappings are removed. any references to nonexistent pages results
1818  * in null mappings (currently treated as "copy-on-access")
1819  */
1820 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1821 			unsigned long addr, unsigned long end,
1822 			unsigned long pfn, pgprot_t prot)
1823 {
1824 	pte_t *pte;
1825 	spinlock_t *ptl;
1826 	int err = 0;
1827 
1828 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1829 	if (!pte)
1830 		return -ENOMEM;
1831 	arch_enter_lazy_mmu_mode();
1832 	do {
1833 		BUG_ON(!pte_none(*pte));
1834 		if (!pfn_modify_allowed(pfn, prot)) {
1835 			err = -EACCES;
1836 			break;
1837 		}
1838 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1839 		pfn++;
1840 	} while (pte++, addr += PAGE_SIZE, addr != end);
1841 	arch_leave_lazy_mmu_mode();
1842 	pte_unmap_unlock(pte - 1, ptl);
1843 	return err;
1844 }
1845 
1846 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1847 			unsigned long addr, unsigned long end,
1848 			unsigned long pfn, pgprot_t prot)
1849 {
1850 	pmd_t *pmd;
1851 	unsigned long next;
1852 	int err;
1853 
1854 	pfn -= addr >> PAGE_SHIFT;
1855 	pmd = pmd_alloc(mm, pud, addr);
1856 	if (!pmd)
1857 		return -ENOMEM;
1858 	VM_BUG_ON(pmd_trans_huge(*pmd));
1859 	do {
1860 		next = pmd_addr_end(addr, end);
1861 		err = remap_pte_range(mm, pmd, addr, next,
1862 				pfn + (addr >> PAGE_SHIFT), prot);
1863 		if (err)
1864 			return err;
1865 	} while (pmd++, addr = next, addr != end);
1866 	return 0;
1867 }
1868 
1869 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1870 			unsigned long addr, unsigned long end,
1871 			unsigned long pfn, pgprot_t prot)
1872 {
1873 	pud_t *pud;
1874 	unsigned long next;
1875 	int err;
1876 
1877 	pfn -= addr >> PAGE_SHIFT;
1878 	pud = pud_alloc(mm, p4d, addr);
1879 	if (!pud)
1880 		return -ENOMEM;
1881 	do {
1882 		next = pud_addr_end(addr, end);
1883 		err = remap_pmd_range(mm, pud, addr, next,
1884 				pfn + (addr >> PAGE_SHIFT), prot);
1885 		if (err)
1886 			return err;
1887 	} while (pud++, addr = next, addr != end);
1888 	return 0;
1889 }
1890 
1891 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1892 			unsigned long addr, unsigned long end,
1893 			unsigned long pfn, pgprot_t prot)
1894 {
1895 	p4d_t *p4d;
1896 	unsigned long next;
1897 	int err;
1898 
1899 	pfn -= addr >> PAGE_SHIFT;
1900 	p4d = p4d_alloc(mm, pgd, addr);
1901 	if (!p4d)
1902 		return -ENOMEM;
1903 	do {
1904 		next = p4d_addr_end(addr, end);
1905 		err = remap_pud_range(mm, p4d, addr, next,
1906 				pfn + (addr >> PAGE_SHIFT), prot);
1907 		if (err)
1908 			return err;
1909 	} while (p4d++, addr = next, addr != end);
1910 	return 0;
1911 }
1912 
1913 /**
1914  * remap_pfn_range - remap kernel memory to userspace
1915  * @vma: user vma to map to
1916  * @addr: target user address to start at
1917  * @pfn: physical address of kernel memory
1918  * @size: size of map area
1919  * @prot: page protection flags for this mapping
1920  *
1921  * Note: this is only safe if the mm semaphore is held when called.
1922  *
1923  * Return: %0 on success, negative error code otherwise.
1924  */
1925 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1926 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1927 {
1928 	pgd_t *pgd;
1929 	unsigned long next;
1930 	unsigned long end = addr + PAGE_ALIGN(size);
1931 	struct mm_struct *mm = vma->vm_mm;
1932 	unsigned long remap_pfn = pfn;
1933 	int err;
1934 
1935 	/*
1936 	 * Physically remapped pages are special. Tell the
1937 	 * rest of the world about it:
1938 	 *   VM_IO tells people not to look at these pages
1939 	 *	(accesses can have side effects).
1940 	 *   VM_PFNMAP tells the core MM that the base pages are just
1941 	 *	raw PFN mappings, and do not have a "struct page" associated
1942 	 *	with them.
1943 	 *   VM_DONTEXPAND
1944 	 *      Disable vma merging and expanding with mremap().
1945 	 *   VM_DONTDUMP
1946 	 *      Omit vma from core dump, even when VM_IO turned off.
1947 	 *
1948 	 * There's a horrible special case to handle copy-on-write
1949 	 * behaviour that some programs depend on. We mark the "original"
1950 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1951 	 * See vm_normal_page() for details.
1952 	 */
1953 	if (is_cow_mapping(vma->vm_flags)) {
1954 		if (addr != vma->vm_start || end != vma->vm_end)
1955 			return -EINVAL;
1956 		vma->vm_pgoff = pfn;
1957 	}
1958 
1959 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1960 	if (err)
1961 		return -EINVAL;
1962 
1963 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1964 
1965 	BUG_ON(addr >= end);
1966 	pfn -= addr >> PAGE_SHIFT;
1967 	pgd = pgd_offset(mm, addr);
1968 	flush_cache_range(vma, addr, end);
1969 	do {
1970 		next = pgd_addr_end(addr, end);
1971 		err = remap_p4d_range(mm, pgd, addr, next,
1972 				pfn + (addr >> PAGE_SHIFT), prot);
1973 		if (err)
1974 			break;
1975 	} while (pgd++, addr = next, addr != end);
1976 
1977 	if (err)
1978 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1979 
1980 	return err;
1981 }
1982 EXPORT_SYMBOL(remap_pfn_range);
1983 
1984 /**
1985  * vm_iomap_memory - remap memory to userspace
1986  * @vma: user vma to map to
1987  * @start: start of area
1988  * @len: size of area
1989  *
1990  * This is a simplified io_remap_pfn_range() for common driver use. The
1991  * driver just needs to give us the physical memory range to be mapped,
1992  * we'll figure out the rest from the vma information.
1993  *
1994  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1995  * whatever write-combining details or similar.
1996  *
1997  * Return: %0 on success, negative error code otherwise.
1998  */
1999 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2000 {
2001 	unsigned long vm_len, pfn, pages;
2002 
2003 	/* Check that the physical memory area passed in looks valid */
2004 	if (start + len < start)
2005 		return -EINVAL;
2006 	/*
2007 	 * You *really* shouldn't map things that aren't page-aligned,
2008 	 * but we've historically allowed it because IO memory might
2009 	 * just have smaller alignment.
2010 	 */
2011 	len += start & ~PAGE_MASK;
2012 	pfn = start >> PAGE_SHIFT;
2013 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2014 	if (pfn + pages < pfn)
2015 		return -EINVAL;
2016 
2017 	/* We start the mapping 'vm_pgoff' pages into the area */
2018 	if (vma->vm_pgoff > pages)
2019 		return -EINVAL;
2020 	pfn += vma->vm_pgoff;
2021 	pages -= vma->vm_pgoff;
2022 
2023 	/* Can we fit all of the mapping? */
2024 	vm_len = vma->vm_end - vma->vm_start;
2025 	if (vm_len >> PAGE_SHIFT > pages)
2026 		return -EINVAL;
2027 
2028 	/* Ok, let it rip */
2029 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2030 }
2031 EXPORT_SYMBOL(vm_iomap_memory);
2032 
2033 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2034 				     unsigned long addr, unsigned long end,
2035 				     pte_fn_t fn, void *data)
2036 {
2037 	pte_t *pte;
2038 	int err;
2039 	spinlock_t *uninitialized_var(ptl);
2040 
2041 	pte = (mm == &init_mm) ?
2042 		pte_alloc_kernel(pmd, addr) :
2043 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2044 	if (!pte)
2045 		return -ENOMEM;
2046 
2047 	BUG_ON(pmd_huge(*pmd));
2048 
2049 	arch_enter_lazy_mmu_mode();
2050 
2051 	do {
2052 		err = fn(pte++, addr, data);
2053 		if (err)
2054 			break;
2055 	} while (addr += PAGE_SIZE, addr != end);
2056 
2057 	arch_leave_lazy_mmu_mode();
2058 
2059 	if (mm != &init_mm)
2060 		pte_unmap_unlock(pte-1, ptl);
2061 	return err;
2062 }
2063 
2064 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2065 				     unsigned long addr, unsigned long end,
2066 				     pte_fn_t fn, void *data)
2067 {
2068 	pmd_t *pmd;
2069 	unsigned long next;
2070 	int err;
2071 
2072 	BUG_ON(pud_huge(*pud));
2073 
2074 	pmd = pmd_alloc(mm, pud, addr);
2075 	if (!pmd)
2076 		return -ENOMEM;
2077 	do {
2078 		next = pmd_addr_end(addr, end);
2079 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2080 		if (err)
2081 			break;
2082 	} while (pmd++, addr = next, addr != end);
2083 	return err;
2084 }
2085 
2086 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2087 				     unsigned long addr, unsigned long end,
2088 				     pte_fn_t fn, void *data)
2089 {
2090 	pud_t *pud;
2091 	unsigned long next;
2092 	int err;
2093 
2094 	pud = pud_alloc(mm, p4d, addr);
2095 	if (!pud)
2096 		return -ENOMEM;
2097 	do {
2098 		next = pud_addr_end(addr, end);
2099 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2100 		if (err)
2101 			break;
2102 	} while (pud++, addr = next, addr != end);
2103 	return err;
2104 }
2105 
2106 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2107 				     unsigned long addr, unsigned long end,
2108 				     pte_fn_t fn, void *data)
2109 {
2110 	p4d_t *p4d;
2111 	unsigned long next;
2112 	int err;
2113 
2114 	p4d = p4d_alloc(mm, pgd, addr);
2115 	if (!p4d)
2116 		return -ENOMEM;
2117 	do {
2118 		next = p4d_addr_end(addr, end);
2119 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2120 		if (err)
2121 			break;
2122 	} while (p4d++, addr = next, addr != end);
2123 	return err;
2124 }
2125 
2126 /*
2127  * Scan a region of virtual memory, filling in page tables as necessary
2128  * and calling a provided function on each leaf page table.
2129  */
2130 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2131 			unsigned long size, pte_fn_t fn, void *data)
2132 {
2133 	pgd_t *pgd;
2134 	unsigned long next;
2135 	unsigned long end = addr + size;
2136 	int err;
2137 
2138 	if (WARN_ON(addr >= end))
2139 		return -EINVAL;
2140 
2141 	pgd = pgd_offset(mm, addr);
2142 	do {
2143 		next = pgd_addr_end(addr, end);
2144 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2145 		if (err)
2146 			break;
2147 	} while (pgd++, addr = next, addr != end);
2148 
2149 	return err;
2150 }
2151 EXPORT_SYMBOL_GPL(apply_to_page_range);
2152 
2153 /*
2154  * handle_pte_fault chooses page fault handler according to an entry which was
2155  * read non-atomically.  Before making any commitment, on those architectures
2156  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2157  * parts, do_swap_page must check under lock before unmapping the pte and
2158  * proceeding (but do_wp_page is only called after already making such a check;
2159  * and do_anonymous_page can safely check later on).
2160  */
2161 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2162 				pte_t *page_table, pte_t orig_pte)
2163 {
2164 	int same = 1;
2165 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2166 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2167 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2168 		spin_lock(ptl);
2169 		same = pte_same(*page_table, orig_pte);
2170 		spin_unlock(ptl);
2171 	}
2172 #endif
2173 	pte_unmap(page_table);
2174 	return same;
2175 }
2176 
2177 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2178 {
2179 	debug_dma_assert_idle(src);
2180 
2181 	/*
2182 	 * If the source page was a PFN mapping, we don't have
2183 	 * a "struct page" for it. We do a best-effort copy by
2184 	 * just copying from the original user address. If that
2185 	 * fails, we just zero-fill it. Live with it.
2186 	 */
2187 	if (unlikely(!src)) {
2188 		void *kaddr = kmap_atomic(dst);
2189 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2190 
2191 		/*
2192 		 * This really shouldn't fail, because the page is there
2193 		 * in the page tables. But it might just be unreadable,
2194 		 * in which case we just give up and fill the result with
2195 		 * zeroes.
2196 		 */
2197 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2198 			clear_page(kaddr);
2199 		kunmap_atomic(kaddr);
2200 		flush_dcache_page(dst);
2201 	} else
2202 		copy_user_highpage(dst, src, va, vma);
2203 }
2204 
2205 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2206 {
2207 	struct file *vm_file = vma->vm_file;
2208 
2209 	if (vm_file)
2210 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2211 
2212 	/*
2213 	 * Special mappings (e.g. VDSO) do not have any file so fake
2214 	 * a default GFP_KERNEL for them.
2215 	 */
2216 	return GFP_KERNEL;
2217 }
2218 
2219 /*
2220  * Notify the address space that the page is about to become writable so that
2221  * it can prohibit this or wait for the page to get into an appropriate state.
2222  *
2223  * We do this without the lock held, so that it can sleep if it needs to.
2224  */
2225 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2226 {
2227 	vm_fault_t ret;
2228 	struct page *page = vmf->page;
2229 	unsigned int old_flags = vmf->flags;
2230 
2231 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2232 
2233 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2234 	/* Restore original flags so that caller is not surprised */
2235 	vmf->flags = old_flags;
2236 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2237 		return ret;
2238 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2239 		lock_page(page);
2240 		if (!page->mapping) {
2241 			unlock_page(page);
2242 			return 0; /* retry */
2243 		}
2244 		ret |= VM_FAULT_LOCKED;
2245 	} else
2246 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2247 	return ret;
2248 }
2249 
2250 /*
2251  * Handle dirtying of a page in shared file mapping on a write fault.
2252  *
2253  * The function expects the page to be locked and unlocks it.
2254  */
2255 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2256 				    struct page *page)
2257 {
2258 	struct address_space *mapping;
2259 	bool dirtied;
2260 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2261 
2262 	dirtied = set_page_dirty(page);
2263 	VM_BUG_ON_PAGE(PageAnon(page), page);
2264 	/*
2265 	 * Take a local copy of the address_space - page.mapping may be zeroed
2266 	 * by truncate after unlock_page().   The address_space itself remains
2267 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2268 	 * release semantics to prevent the compiler from undoing this copying.
2269 	 */
2270 	mapping = page_rmapping(page);
2271 	unlock_page(page);
2272 
2273 	if ((dirtied || page_mkwrite) && mapping) {
2274 		/*
2275 		 * Some device drivers do not set page.mapping
2276 		 * but still dirty their pages
2277 		 */
2278 		balance_dirty_pages_ratelimited(mapping);
2279 	}
2280 
2281 	if (!page_mkwrite)
2282 		file_update_time(vma->vm_file);
2283 }
2284 
2285 /*
2286  * Handle write page faults for pages that can be reused in the current vma
2287  *
2288  * This can happen either due to the mapping being with the VM_SHARED flag,
2289  * or due to us being the last reference standing to the page. In either
2290  * case, all we need to do here is to mark the page as writable and update
2291  * any related book-keeping.
2292  */
2293 static inline void wp_page_reuse(struct vm_fault *vmf)
2294 	__releases(vmf->ptl)
2295 {
2296 	struct vm_area_struct *vma = vmf->vma;
2297 	struct page *page = vmf->page;
2298 	pte_t entry;
2299 	/*
2300 	 * Clear the pages cpupid information as the existing
2301 	 * information potentially belongs to a now completely
2302 	 * unrelated process.
2303 	 */
2304 	if (page)
2305 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2306 
2307 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2308 	entry = pte_mkyoung(vmf->orig_pte);
2309 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2310 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2311 		update_mmu_cache(vma, vmf->address, vmf->pte);
2312 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2313 }
2314 
2315 /*
2316  * Handle the case of a page which we actually need to copy to a new page.
2317  *
2318  * Called with mmap_sem locked and the old page referenced, but
2319  * without the ptl held.
2320  *
2321  * High level logic flow:
2322  *
2323  * - Allocate a page, copy the content of the old page to the new one.
2324  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2325  * - Take the PTL. If the pte changed, bail out and release the allocated page
2326  * - If the pte is still the way we remember it, update the page table and all
2327  *   relevant references. This includes dropping the reference the page-table
2328  *   held to the old page, as well as updating the rmap.
2329  * - In any case, unlock the PTL and drop the reference we took to the old page.
2330  */
2331 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2332 {
2333 	struct vm_area_struct *vma = vmf->vma;
2334 	struct mm_struct *mm = vma->vm_mm;
2335 	struct page *old_page = vmf->page;
2336 	struct page *new_page = NULL;
2337 	pte_t entry;
2338 	int page_copied = 0;
2339 	struct mem_cgroup *memcg;
2340 	struct mmu_notifier_range range;
2341 
2342 	if (unlikely(anon_vma_prepare(vma)))
2343 		goto oom;
2344 
2345 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2346 		new_page = alloc_zeroed_user_highpage_movable(vma,
2347 							      vmf->address);
2348 		if (!new_page)
2349 			goto oom;
2350 	} else {
2351 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2352 				vmf->address);
2353 		if (!new_page)
2354 			goto oom;
2355 		cow_user_page(new_page, old_page, vmf->address, vma);
2356 	}
2357 
2358 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2359 		goto oom_free_new;
2360 
2361 	__SetPageUptodate(new_page);
2362 
2363 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2364 				vmf->address & PAGE_MASK,
2365 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2366 	mmu_notifier_invalidate_range_start(&range);
2367 
2368 	/*
2369 	 * Re-check the pte - we dropped the lock
2370 	 */
2371 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2372 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2373 		if (old_page) {
2374 			if (!PageAnon(old_page)) {
2375 				dec_mm_counter_fast(mm,
2376 						mm_counter_file(old_page));
2377 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2378 			}
2379 		} else {
2380 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2381 		}
2382 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2383 		entry = mk_pte(new_page, vma->vm_page_prot);
2384 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2385 		/*
2386 		 * Clear the pte entry and flush it first, before updating the
2387 		 * pte with the new entry. This will avoid a race condition
2388 		 * seen in the presence of one thread doing SMC and another
2389 		 * thread doing COW.
2390 		 */
2391 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2392 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2393 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2394 		lru_cache_add_active_or_unevictable(new_page, vma);
2395 		/*
2396 		 * We call the notify macro here because, when using secondary
2397 		 * mmu page tables (such as kvm shadow page tables), we want the
2398 		 * new page to be mapped directly into the secondary page table.
2399 		 */
2400 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2401 		update_mmu_cache(vma, vmf->address, vmf->pte);
2402 		if (old_page) {
2403 			/*
2404 			 * Only after switching the pte to the new page may
2405 			 * we remove the mapcount here. Otherwise another
2406 			 * process may come and find the rmap count decremented
2407 			 * before the pte is switched to the new page, and
2408 			 * "reuse" the old page writing into it while our pte
2409 			 * here still points into it and can be read by other
2410 			 * threads.
2411 			 *
2412 			 * The critical issue is to order this
2413 			 * page_remove_rmap with the ptp_clear_flush above.
2414 			 * Those stores are ordered by (if nothing else,)
2415 			 * the barrier present in the atomic_add_negative
2416 			 * in page_remove_rmap.
2417 			 *
2418 			 * Then the TLB flush in ptep_clear_flush ensures that
2419 			 * no process can access the old page before the
2420 			 * decremented mapcount is visible. And the old page
2421 			 * cannot be reused until after the decremented
2422 			 * mapcount is visible. So transitively, TLBs to
2423 			 * old page will be flushed before it can be reused.
2424 			 */
2425 			page_remove_rmap(old_page, false);
2426 		}
2427 
2428 		/* Free the old page.. */
2429 		new_page = old_page;
2430 		page_copied = 1;
2431 	} else {
2432 		mem_cgroup_cancel_charge(new_page, memcg, false);
2433 	}
2434 
2435 	if (new_page)
2436 		put_page(new_page);
2437 
2438 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2439 	/*
2440 	 * No need to double call mmu_notifier->invalidate_range() callback as
2441 	 * the above ptep_clear_flush_notify() did already call it.
2442 	 */
2443 	mmu_notifier_invalidate_range_only_end(&range);
2444 	if (old_page) {
2445 		/*
2446 		 * Don't let another task, with possibly unlocked vma,
2447 		 * keep the mlocked page.
2448 		 */
2449 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2450 			lock_page(old_page);	/* LRU manipulation */
2451 			if (PageMlocked(old_page))
2452 				munlock_vma_page(old_page);
2453 			unlock_page(old_page);
2454 		}
2455 		put_page(old_page);
2456 	}
2457 	return page_copied ? VM_FAULT_WRITE : 0;
2458 oom_free_new:
2459 	put_page(new_page);
2460 oom:
2461 	if (old_page)
2462 		put_page(old_page);
2463 	return VM_FAULT_OOM;
2464 }
2465 
2466 /**
2467  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2468  *			  writeable once the page is prepared
2469  *
2470  * @vmf: structure describing the fault
2471  *
2472  * This function handles all that is needed to finish a write page fault in a
2473  * shared mapping due to PTE being read-only once the mapped page is prepared.
2474  * It handles locking of PTE and modifying it.
2475  *
2476  * The function expects the page to be locked or other protection against
2477  * concurrent faults / writeback (such as DAX radix tree locks).
2478  *
2479  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2480  * we acquired PTE lock.
2481  */
2482 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2483 {
2484 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2485 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2486 				       &vmf->ptl);
2487 	/*
2488 	 * We might have raced with another page fault while we released the
2489 	 * pte_offset_map_lock.
2490 	 */
2491 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2492 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2493 		return VM_FAULT_NOPAGE;
2494 	}
2495 	wp_page_reuse(vmf);
2496 	return 0;
2497 }
2498 
2499 /*
2500  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2501  * mapping
2502  */
2503 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2504 {
2505 	struct vm_area_struct *vma = vmf->vma;
2506 
2507 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2508 		vm_fault_t ret;
2509 
2510 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2511 		vmf->flags |= FAULT_FLAG_MKWRITE;
2512 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2513 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2514 			return ret;
2515 		return finish_mkwrite_fault(vmf);
2516 	}
2517 	wp_page_reuse(vmf);
2518 	return VM_FAULT_WRITE;
2519 }
2520 
2521 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2522 	__releases(vmf->ptl)
2523 {
2524 	struct vm_area_struct *vma = vmf->vma;
2525 
2526 	get_page(vmf->page);
2527 
2528 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2529 		vm_fault_t tmp;
2530 
2531 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2532 		tmp = do_page_mkwrite(vmf);
2533 		if (unlikely(!tmp || (tmp &
2534 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2535 			put_page(vmf->page);
2536 			return tmp;
2537 		}
2538 		tmp = finish_mkwrite_fault(vmf);
2539 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2540 			unlock_page(vmf->page);
2541 			put_page(vmf->page);
2542 			return tmp;
2543 		}
2544 	} else {
2545 		wp_page_reuse(vmf);
2546 		lock_page(vmf->page);
2547 	}
2548 	fault_dirty_shared_page(vma, vmf->page);
2549 	put_page(vmf->page);
2550 
2551 	return VM_FAULT_WRITE;
2552 }
2553 
2554 /*
2555  * This routine handles present pages, when users try to write
2556  * to a shared page. It is done by copying the page to a new address
2557  * and decrementing the shared-page counter for the old page.
2558  *
2559  * Note that this routine assumes that the protection checks have been
2560  * done by the caller (the low-level page fault routine in most cases).
2561  * Thus we can safely just mark it writable once we've done any necessary
2562  * COW.
2563  *
2564  * We also mark the page dirty at this point even though the page will
2565  * change only once the write actually happens. This avoids a few races,
2566  * and potentially makes it more efficient.
2567  *
2568  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2569  * but allow concurrent faults), with pte both mapped and locked.
2570  * We return with mmap_sem still held, but pte unmapped and unlocked.
2571  */
2572 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2573 	__releases(vmf->ptl)
2574 {
2575 	struct vm_area_struct *vma = vmf->vma;
2576 
2577 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2578 	if (!vmf->page) {
2579 		/*
2580 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2581 		 * VM_PFNMAP VMA.
2582 		 *
2583 		 * We should not cow pages in a shared writeable mapping.
2584 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2585 		 */
2586 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2587 				     (VM_WRITE|VM_SHARED))
2588 			return wp_pfn_shared(vmf);
2589 
2590 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2591 		return wp_page_copy(vmf);
2592 	}
2593 
2594 	/*
2595 	 * Take out anonymous pages first, anonymous shared vmas are
2596 	 * not dirty accountable.
2597 	 */
2598 	if (PageAnon(vmf->page)) {
2599 		int total_map_swapcount;
2600 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2601 					   page_count(vmf->page) != 1))
2602 			goto copy;
2603 		if (!trylock_page(vmf->page)) {
2604 			get_page(vmf->page);
2605 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2606 			lock_page(vmf->page);
2607 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2608 					vmf->address, &vmf->ptl);
2609 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2610 				unlock_page(vmf->page);
2611 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2612 				put_page(vmf->page);
2613 				return 0;
2614 			}
2615 			put_page(vmf->page);
2616 		}
2617 		if (PageKsm(vmf->page)) {
2618 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2619 						     vmf->address);
2620 			unlock_page(vmf->page);
2621 			if (!reused)
2622 				goto copy;
2623 			wp_page_reuse(vmf);
2624 			return VM_FAULT_WRITE;
2625 		}
2626 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2627 			if (total_map_swapcount == 1) {
2628 				/*
2629 				 * The page is all ours. Move it to
2630 				 * our anon_vma so the rmap code will
2631 				 * not search our parent or siblings.
2632 				 * Protected against the rmap code by
2633 				 * the page lock.
2634 				 */
2635 				page_move_anon_rmap(vmf->page, vma);
2636 			}
2637 			unlock_page(vmf->page);
2638 			wp_page_reuse(vmf);
2639 			return VM_FAULT_WRITE;
2640 		}
2641 		unlock_page(vmf->page);
2642 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2643 					(VM_WRITE|VM_SHARED))) {
2644 		return wp_page_shared(vmf);
2645 	}
2646 copy:
2647 	/*
2648 	 * Ok, we need to copy. Oh, well..
2649 	 */
2650 	get_page(vmf->page);
2651 
2652 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2653 	return wp_page_copy(vmf);
2654 }
2655 
2656 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2657 		unsigned long start_addr, unsigned long end_addr,
2658 		struct zap_details *details)
2659 {
2660 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2661 }
2662 
2663 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2664 					    struct zap_details *details)
2665 {
2666 	struct vm_area_struct *vma;
2667 	pgoff_t vba, vea, zba, zea;
2668 
2669 	vma_interval_tree_foreach(vma, root,
2670 			details->first_index, details->last_index) {
2671 
2672 		vba = vma->vm_pgoff;
2673 		vea = vba + vma_pages(vma) - 1;
2674 		zba = details->first_index;
2675 		if (zba < vba)
2676 			zba = vba;
2677 		zea = details->last_index;
2678 		if (zea > vea)
2679 			zea = vea;
2680 
2681 		unmap_mapping_range_vma(vma,
2682 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2683 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2684 				details);
2685 	}
2686 }
2687 
2688 /**
2689  * unmap_mapping_pages() - Unmap pages from processes.
2690  * @mapping: The address space containing pages to be unmapped.
2691  * @start: Index of first page to be unmapped.
2692  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2693  * @even_cows: Whether to unmap even private COWed pages.
2694  *
2695  * Unmap the pages in this address space from any userspace process which
2696  * has them mmaped.  Generally, you want to remove COWed pages as well when
2697  * a file is being truncated, but not when invalidating pages from the page
2698  * cache.
2699  */
2700 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2701 		pgoff_t nr, bool even_cows)
2702 {
2703 	struct zap_details details = { };
2704 
2705 	details.check_mapping = even_cows ? NULL : mapping;
2706 	details.first_index = start;
2707 	details.last_index = start + nr - 1;
2708 	if (details.last_index < details.first_index)
2709 		details.last_index = ULONG_MAX;
2710 
2711 	i_mmap_lock_write(mapping);
2712 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2713 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2714 	i_mmap_unlock_write(mapping);
2715 }
2716 
2717 /**
2718  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2719  * address_space corresponding to the specified byte range in the underlying
2720  * file.
2721  *
2722  * @mapping: the address space containing mmaps to be unmapped.
2723  * @holebegin: byte in first page to unmap, relative to the start of
2724  * the underlying file.  This will be rounded down to a PAGE_SIZE
2725  * boundary.  Note that this is different from truncate_pagecache(), which
2726  * must keep the partial page.  In contrast, we must get rid of
2727  * partial pages.
2728  * @holelen: size of prospective hole in bytes.  This will be rounded
2729  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2730  * end of the file.
2731  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2732  * but 0 when invalidating pagecache, don't throw away private data.
2733  */
2734 void unmap_mapping_range(struct address_space *mapping,
2735 		loff_t const holebegin, loff_t const holelen, int even_cows)
2736 {
2737 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2738 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2739 
2740 	/* Check for overflow. */
2741 	if (sizeof(holelen) > sizeof(hlen)) {
2742 		long long holeend =
2743 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2744 		if (holeend & ~(long long)ULONG_MAX)
2745 			hlen = ULONG_MAX - hba + 1;
2746 	}
2747 
2748 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2749 }
2750 EXPORT_SYMBOL(unmap_mapping_range);
2751 
2752 /*
2753  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2754  * but allow concurrent faults), and pte mapped but not yet locked.
2755  * We return with pte unmapped and unlocked.
2756  *
2757  * We return with the mmap_sem locked or unlocked in the same cases
2758  * as does filemap_fault().
2759  */
2760 vm_fault_t do_swap_page(struct vm_fault *vmf)
2761 {
2762 	struct vm_area_struct *vma = vmf->vma;
2763 	struct page *page = NULL, *swapcache;
2764 	struct mem_cgroup *memcg;
2765 	swp_entry_t entry;
2766 	pte_t pte;
2767 	int locked;
2768 	int exclusive = 0;
2769 	vm_fault_t ret = 0;
2770 
2771 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2772 		goto out;
2773 
2774 	entry = pte_to_swp_entry(vmf->orig_pte);
2775 	if (unlikely(non_swap_entry(entry))) {
2776 		if (is_migration_entry(entry)) {
2777 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2778 					     vmf->address);
2779 		} else if (is_device_private_entry(entry)) {
2780 			/*
2781 			 * For un-addressable device memory we call the pgmap
2782 			 * fault handler callback. The callback must migrate
2783 			 * the page back to some CPU accessible page.
2784 			 */
2785 			ret = device_private_entry_fault(vma, vmf->address, entry,
2786 						 vmf->flags, vmf->pmd);
2787 		} else if (is_hwpoison_entry(entry)) {
2788 			ret = VM_FAULT_HWPOISON;
2789 		} else {
2790 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2791 			ret = VM_FAULT_SIGBUS;
2792 		}
2793 		goto out;
2794 	}
2795 
2796 
2797 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2798 	page = lookup_swap_cache(entry, vma, vmf->address);
2799 	swapcache = page;
2800 
2801 	if (!page) {
2802 		struct swap_info_struct *si = swp_swap_info(entry);
2803 
2804 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2805 				__swap_count(entry) == 1) {
2806 			/* skip swapcache */
2807 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2808 							vmf->address);
2809 			if (page) {
2810 				__SetPageLocked(page);
2811 				__SetPageSwapBacked(page);
2812 				set_page_private(page, entry.val);
2813 				lru_cache_add_anon(page);
2814 				swap_readpage(page, true);
2815 			}
2816 		} else {
2817 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2818 						vmf);
2819 			swapcache = page;
2820 		}
2821 
2822 		if (!page) {
2823 			/*
2824 			 * Back out if somebody else faulted in this pte
2825 			 * while we released the pte lock.
2826 			 */
2827 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2828 					vmf->address, &vmf->ptl);
2829 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2830 				ret = VM_FAULT_OOM;
2831 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2832 			goto unlock;
2833 		}
2834 
2835 		/* Had to read the page from swap area: Major fault */
2836 		ret = VM_FAULT_MAJOR;
2837 		count_vm_event(PGMAJFAULT);
2838 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2839 	} else if (PageHWPoison(page)) {
2840 		/*
2841 		 * hwpoisoned dirty swapcache pages are kept for killing
2842 		 * owner processes (which may be unknown at hwpoison time)
2843 		 */
2844 		ret = VM_FAULT_HWPOISON;
2845 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2846 		goto out_release;
2847 	}
2848 
2849 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2850 
2851 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2852 	if (!locked) {
2853 		ret |= VM_FAULT_RETRY;
2854 		goto out_release;
2855 	}
2856 
2857 	/*
2858 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2859 	 * release the swapcache from under us.  The page pin, and pte_same
2860 	 * test below, are not enough to exclude that.  Even if it is still
2861 	 * swapcache, we need to check that the page's swap has not changed.
2862 	 */
2863 	if (unlikely((!PageSwapCache(page) ||
2864 			page_private(page) != entry.val)) && swapcache)
2865 		goto out_page;
2866 
2867 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2868 	if (unlikely(!page)) {
2869 		ret = VM_FAULT_OOM;
2870 		page = swapcache;
2871 		goto out_page;
2872 	}
2873 
2874 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2875 					&memcg, false)) {
2876 		ret = VM_FAULT_OOM;
2877 		goto out_page;
2878 	}
2879 
2880 	/*
2881 	 * Back out if somebody else already faulted in this pte.
2882 	 */
2883 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2884 			&vmf->ptl);
2885 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2886 		goto out_nomap;
2887 
2888 	if (unlikely(!PageUptodate(page))) {
2889 		ret = VM_FAULT_SIGBUS;
2890 		goto out_nomap;
2891 	}
2892 
2893 	/*
2894 	 * The page isn't present yet, go ahead with the fault.
2895 	 *
2896 	 * Be careful about the sequence of operations here.
2897 	 * To get its accounting right, reuse_swap_page() must be called
2898 	 * while the page is counted on swap but not yet in mapcount i.e.
2899 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2900 	 * must be called after the swap_free(), or it will never succeed.
2901 	 */
2902 
2903 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2904 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2905 	pte = mk_pte(page, vma->vm_page_prot);
2906 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2907 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2908 		vmf->flags &= ~FAULT_FLAG_WRITE;
2909 		ret |= VM_FAULT_WRITE;
2910 		exclusive = RMAP_EXCLUSIVE;
2911 	}
2912 	flush_icache_page(vma, page);
2913 	if (pte_swp_soft_dirty(vmf->orig_pte))
2914 		pte = pte_mksoft_dirty(pte);
2915 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2916 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2917 	vmf->orig_pte = pte;
2918 
2919 	/* ksm created a completely new copy */
2920 	if (unlikely(page != swapcache && swapcache)) {
2921 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2922 		mem_cgroup_commit_charge(page, memcg, false, false);
2923 		lru_cache_add_active_or_unevictable(page, vma);
2924 	} else {
2925 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2926 		mem_cgroup_commit_charge(page, memcg, true, false);
2927 		activate_page(page);
2928 	}
2929 
2930 	swap_free(entry);
2931 	if (mem_cgroup_swap_full(page) ||
2932 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2933 		try_to_free_swap(page);
2934 	unlock_page(page);
2935 	if (page != swapcache && swapcache) {
2936 		/*
2937 		 * Hold the lock to avoid the swap entry to be reused
2938 		 * until we take the PT lock for the pte_same() check
2939 		 * (to avoid false positives from pte_same). For
2940 		 * further safety release the lock after the swap_free
2941 		 * so that the swap count won't change under a
2942 		 * parallel locked swapcache.
2943 		 */
2944 		unlock_page(swapcache);
2945 		put_page(swapcache);
2946 	}
2947 
2948 	if (vmf->flags & FAULT_FLAG_WRITE) {
2949 		ret |= do_wp_page(vmf);
2950 		if (ret & VM_FAULT_ERROR)
2951 			ret &= VM_FAULT_ERROR;
2952 		goto out;
2953 	}
2954 
2955 	/* No need to invalidate - it was non-present before */
2956 	update_mmu_cache(vma, vmf->address, vmf->pte);
2957 unlock:
2958 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2959 out:
2960 	return ret;
2961 out_nomap:
2962 	mem_cgroup_cancel_charge(page, memcg, false);
2963 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2964 out_page:
2965 	unlock_page(page);
2966 out_release:
2967 	put_page(page);
2968 	if (page != swapcache && swapcache) {
2969 		unlock_page(swapcache);
2970 		put_page(swapcache);
2971 	}
2972 	return ret;
2973 }
2974 
2975 /*
2976  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2977  * but allow concurrent faults), and pte mapped but not yet locked.
2978  * We return with mmap_sem still held, but pte unmapped and unlocked.
2979  */
2980 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2981 {
2982 	struct vm_area_struct *vma = vmf->vma;
2983 	struct mem_cgroup *memcg;
2984 	struct page *page;
2985 	vm_fault_t ret = 0;
2986 	pte_t entry;
2987 
2988 	/* File mapping without ->vm_ops ? */
2989 	if (vma->vm_flags & VM_SHARED)
2990 		return VM_FAULT_SIGBUS;
2991 
2992 	/*
2993 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2994 	 * pte_offset_map() on pmds where a huge pmd might be created
2995 	 * from a different thread.
2996 	 *
2997 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2998 	 * parallel threads are excluded by other means.
2999 	 *
3000 	 * Here we only have down_read(mmap_sem).
3001 	 */
3002 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3003 		return VM_FAULT_OOM;
3004 
3005 	/* See the comment in pte_alloc_one_map() */
3006 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3007 		return 0;
3008 
3009 	/* Use the zero-page for reads */
3010 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3011 			!mm_forbids_zeropage(vma->vm_mm)) {
3012 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3013 						vma->vm_page_prot));
3014 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3015 				vmf->address, &vmf->ptl);
3016 		if (!pte_none(*vmf->pte))
3017 			goto unlock;
3018 		ret = check_stable_address_space(vma->vm_mm);
3019 		if (ret)
3020 			goto unlock;
3021 		/* Deliver the page fault to userland, check inside PT lock */
3022 		if (userfaultfd_missing(vma)) {
3023 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3024 			return handle_userfault(vmf, VM_UFFD_MISSING);
3025 		}
3026 		goto setpte;
3027 	}
3028 
3029 	/* Allocate our own private page. */
3030 	if (unlikely(anon_vma_prepare(vma)))
3031 		goto oom;
3032 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3033 	if (!page)
3034 		goto oom;
3035 
3036 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3037 					false))
3038 		goto oom_free_page;
3039 
3040 	/*
3041 	 * The memory barrier inside __SetPageUptodate makes sure that
3042 	 * preceeding stores to the page contents become visible before
3043 	 * the set_pte_at() write.
3044 	 */
3045 	__SetPageUptodate(page);
3046 
3047 	entry = mk_pte(page, vma->vm_page_prot);
3048 	if (vma->vm_flags & VM_WRITE)
3049 		entry = pte_mkwrite(pte_mkdirty(entry));
3050 
3051 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3052 			&vmf->ptl);
3053 	if (!pte_none(*vmf->pte))
3054 		goto release;
3055 
3056 	ret = check_stable_address_space(vma->vm_mm);
3057 	if (ret)
3058 		goto release;
3059 
3060 	/* Deliver the page fault to userland, check inside PT lock */
3061 	if (userfaultfd_missing(vma)) {
3062 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3063 		mem_cgroup_cancel_charge(page, memcg, false);
3064 		put_page(page);
3065 		return handle_userfault(vmf, VM_UFFD_MISSING);
3066 	}
3067 
3068 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3069 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3070 	mem_cgroup_commit_charge(page, memcg, false, false);
3071 	lru_cache_add_active_or_unevictable(page, vma);
3072 setpte:
3073 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3074 
3075 	/* No need to invalidate - it was non-present before */
3076 	update_mmu_cache(vma, vmf->address, vmf->pte);
3077 unlock:
3078 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3079 	return ret;
3080 release:
3081 	mem_cgroup_cancel_charge(page, memcg, false);
3082 	put_page(page);
3083 	goto unlock;
3084 oom_free_page:
3085 	put_page(page);
3086 oom:
3087 	return VM_FAULT_OOM;
3088 }
3089 
3090 /*
3091  * The mmap_sem must have been held on entry, and may have been
3092  * released depending on flags and vma->vm_ops->fault() return value.
3093  * See filemap_fault() and __lock_page_retry().
3094  */
3095 static vm_fault_t __do_fault(struct vm_fault *vmf)
3096 {
3097 	struct vm_area_struct *vma = vmf->vma;
3098 	vm_fault_t ret;
3099 
3100 	/*
3101 	 * Preallocate pte before we take page_lock because this might lead to
3102 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3103 	 *				lock_page(A)
3104 	 *				SetPageWriteback(A)
3105 	 *				unlock_page(A)
3106 	 * lock_page(B)
3107 	 *				lock_page(B)
3108 	 * pte_alloc_pne
3109 	 *   shrink_page_list
3110 	 *     wait_on_page_writeback(A)
3111 	 *				SetPageWriteback(B)
3112 	 *				unlock_page(B)
3113 	 *				# flush A, B to clear the writeback
3114 	 */
3115 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3116 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3117 		if (!vmf->prealloc_pte)
3118 			return VM_FAULT_OOM;
3119 		smp_wmb(); /* See comment in __pte_alloc() */
3120 	}
3121 
3122 	ret = vma->vm_ops->fault(vmf);
3123 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3124 			    VM_FAULT_DONE_COW)))
3125 		return ret;
3126 
3127 	if (unlikely(PageHWPoison(vmf->page))) {
3128 		if (ret & VM_FAULT_LOCKED)
3129 			unlock_page(vmf->page);
3130 		put_page(vmf->page);
3131 		vmf->page = NULL;
3132 		return VM_FAULT_HWPOISON;
3133 	}
3134 
3135 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3136 		lock_page(vmf->page);
3137 	else
3138 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3139 
3140 	return ret;
3141 }
3142 
3143 /*
3144  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3145  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3146  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3147  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3148  */
3149 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3150 {
3151 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3152 }
3153 
3154 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3155 {
3156 	struct vm_area_struct *vma = vmf->vma;
3157 
3158 	if (!pmd_none(*vmf->pmd))
3159 		goto map_pte;
3160 	if (vmf->prealloc_pte) {
3161 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3162 		if (unlikely(!pmd_none(*vmf->pmd))) {
3163 			spin_unlock(vmf->ptl);
3164 			goto map_pte;
3165 		}
3166 
3167 		mm_inc_nr_ptes(vma->vm_mm);
3168 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3169 		spin_unlock(vmf->ptl);
3170 		vmf->prealloc_pte = NULL;
3171 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3172 		return VM_FAULT_OOM;
3173 	}
3174 map_pte:
3175 	/*
3176 	 * If a huge pmd materialized under us just retry later.  Use
3177 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3178 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3179 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3180 	 * running immediately after a huge pmd fault in a different thread of
3181 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3182 	 * All we have to ensure is that it is a regular pmd that we can walk
3183 	 * with pte_offset_map() and we can do that through an atomic read in
3184 	 * C, which is what pmd_trans_unstable() provides.
3185 	 */
3186 	if (pmd_devmap_trans_unstable(vmf->pmd))
3187 		return VM_FAULT_NOPAGE;
3188 
3189 	/*
3190 	 * At this point we know that our vmf->pmd points to a page of ptes
3191 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3192 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3193 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3194 	 * be valid and we will re-check to make sure the vmf->pte isn't
3195 	 * pte_none() under vmf->ptl protection when we return to
3196 	 * alloc_set_pte().
3197 	 */
3198 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3199 			&vmf->ptl);
3200 	return 0;
3201 }
3202 
3203 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3204 
3205 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3206 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3207 		unsigned long haddr)
3208 {
3209 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3210 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3211 		return false;
3212 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3213 		return false;
3214 	return true;
3215 }
3216 
3217 static void deposit_prealloc_pte(struct vm_fault *vmf)
3218 {
3219 	struct vm_area_struct *vma = vmf->vma;
3220 
3221 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3222 	/*
3223 	 * We are going to consume the prealloc table,
3224 	 * count that as nr_ptes.
3225 	 */
3226 	mm_inc_nr_ptes(vma->vm_mm);
3227 	vmf->prealloc_pte = NULL;
3228 }
3229 
3230 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3231 {
3232 	struct vm_area_struct *vma = vmf->vma;
3233 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3234 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3235 	pmd_t entry;
3236 	int i;
3237 	vm_fault_t ret;
3238 
3239 	if (!transhuge_vma_suitable(vma, haddr))
3240 		return VM_FAULT_FALLBACK;
3241 
3242 	ret = VM_FAULT_FALLBACK;
3243 	page = compound_head(page);
3244 
3245 	/*
3246 	 * Archs like ppc64 need additonal space to store information
3247 	 * related to pte entry. Use the preallocated table for that.
3248 	 */
3249 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3250 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3251 		if (!vmf->prealloc_pte)
3252 			return VM_FAULT_OOM;
3253 		smp_wmb(); /* See comment in __pte_alloc() */
3254 	}
3255 
3256 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3257 	if (unlikely(!pmd_none(*vmf->pmd)))
3258 		goto out;
3259 
3260 	for (i = 0; i < HPAGE_PMD_NR; i++)
3261 		flush_icache_page(vma, page + i);
3262 
3263 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3264 	if (write)
3265 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3266 
3267 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3268 	page_add_file_rmap(page, true);
3269 	/*
3270 	 * deposit and withdraw with pmd lock held
3271 	 */
3272 	if (arch_needs_pgtable_deposit())
3273 		deposit_prealloc_pte(vmf);
3274 
3275 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3276 
3277 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3278 
3279 	/* fault is handled */
3280 	ret = 0;
3281 	count_vm_event(THP_FILE_MAPPED);
3282 out:
3283 	spin_unlock(vmf->ptl);
3284 	return ret;
3285 }
3286 #else
3287 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3288 {
3289 	BUILD_BUG();
3290 	return 0;
3291 }
3292 #endif
3293 
3294 /**
3295  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3296  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3297  *
3298  * @vmf: fault environment
3299  * @memcg: memcg to charge page (only for private mappings)
3300  * @page: page to map
3301  *
3302  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3303  * return.
3304  *
3305  * Target users are page handler itself and implementations of
3306  * vm_ops->map_pages.
3307  *
3308  * Return: %0 on success, %VM_FAULT_ code in case of error.
3309  */
3310 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3311 		struct page *page)
3312 {
3313 	struct vm_area_struct *vma = vmf->vma;
3314 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3315 	pte_t entry;
3316 	vm_fault_t ret;
3317 
3318 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3319 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3320 		/* THP on COW? */
3321 		VM_BUG_ON_PAGE(memcg, page);
3322 
3323 		ret = do_set_pmd(vmf, page);
3324 		if (ret != VM_FAULT_FALLBACK)
3325 			return ret;
3326 	}
3327 
3328 	if (!vmf->pte) {
3329 		ret = pte_alloc_one_map(vmf);
3330 		if (ret)
3331 			return ret;
3332 	}
3333 
3334 	/* Re-check under ptl */
3335 	if (unlikely(!pte_none(*vmf->pte)))
3336 		return VM_FAULT_NOPAGE;
3337 
3338 	flush_icache_page(vma, page);
3339 	entry = mk_pte(page, vma->vm_page_prot);
3340 	if (write)
3341 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3342 	/* copy-on-write page */
3343 	if (write && !(vma->vm_flags & VM_SHARED)) {
3344 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3345 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3346 		mem_cgroup_commit_charge(page, memcg, false, false);
3347 		lru_cache_add_active_or_unevictable(page, vma);
3348 	} else {
3349 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3350 		page_add_file_rmap(page, false);
3351 	}
3352 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3353 
3354 	/* no need to invalidate: a not-present page won't be cached */
3355 	update_mmu_cache(vma, vmf->address, vmf->pte);
3356 
3357 	return 0;
3358 }
3359 
3360 
3361 /**
3362  * finish_fault - finish page fault once we have prepared the page to fault
3363  *
3364  * @vmf: structure describing the fault
3365  *
3366  * This function handles all that is needed to finish a page fault once the
3367  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3368  * given page, adds reverse page mapping, handles memcg charges and LRU
3369  * addition.
3370  *
3371  * The function expects the page to be locked and on success it consumes a
3372  * reference of a page being mapped (for the PTE which maps it).
3373  *
3374  * Return: %0 on success, %VM_FAULT_ code in case of error.
3375  */
3376 vm_fault_t finish_fault(struct vm_fault *vmf)
3377 {
3378 	struct page *page;
3379 	vm_fault_t ret = 0;
3380 
3381 	/* Did we COW the page? */
3382 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3383 	    !(vmf->vma->vm_flags & VM_SHARED))
3384 		page = vmf->cow_page;
3385 	else
3386 		page = vmf->page;
3387 
3388 	/*
3389 	 * check even for read faults because we might have lost our CoWed
3390 	 * page
3391 	 */
3392 	if (!(vmf->vma->vm_flags & VM_SHARED))
3393 		ret = check_stable_address_space(vmf->vma->vm_mm);
3394 	if (!ret)
3395 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3396 	if (vmf->pte)
3397 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3398 	return ret;
3399 }
3400 
3401 static unsigned long fault_around_bytes __read_mostly =
3402 	rounddown_pow_of_two(65536);
3403 
3404 #ifdef CONFIG_DEBUG_FS
3405 static int fault_around_bytes_get(void *data, u64 *val)
3406 {
3407 	*val = fault_around_bytes;
3408 	return 0;
3409 }
3410 
3411 /*
3412  * fault_around_bytes must be rounded down to the nearest page order as it's
3413  * what do_fault_around() expects to see.
3414  */
3415 static int fault_around_bytes_set(void *data, u64 val)
3416 {
3417 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3418 		return -EINVAL;
3419 	if (val > PAGE_SIZE)
3420 		fault_around_bytes = rounddown_pow_of_two(val);
3421 	else
3422 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3423 	return 0;
3424 }
3425 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3426 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3427 
3428 static int __init fault_around_debugfs(void)
3429 {
3430 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3431 				   &fault_around_bytes_fops);
3432 	return 0;
3433 }
3434 late_initcall(fault_around_debugfs);
3435 #endif
3436 
3437 /*
3438  * do_fault_around() tries to map few pages around the fault address. The hope
3439  * is that the pages will be needed soon and this will lower the number of
3440  * faults to handle.
3441  *
3442  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3443  * not ready to be mapped: not up-to-date, locked, etc.
3444  *
3445  * This function is called with the page table lock taken. In the split ptlock
3446  * case the page table lock only protects only those entries which belong to
3447  * the page table corresponding to the fault address.
3448  *
3449  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3450  * only once.
3451  *
3452  * fault_around_bytes defines how many bytes we'll try to map.
3453  * do_fault_around() expects it to be set to a power of two less than or equal
3454  * to PTRS_PER_PTE.
3455  *
3456  * The virtual address of the area that we map is naturally aligned to
3457  * fault_around_bytes rounded down to the machine page size
3458  * (and therefore to page order).  This way it's easier to guarantee
3459  * that we don't cross page table boundaries.
3460  */
3461 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3462 {
3463 	unsigned long address = vmf->address, nr_pages, mask;
3464 	pgoff_t start_pgoff = vmf->pgoff;
3465 	pgoff_t end_pgoff;
3466 	int off;
3467 	vm_fault_t ret = 0;
3468 
3469 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3470 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3471 
3472 	vmf->address = max(address & mask, vmf->vma->vm_start);
3473 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3474 	start_pgoff -= off;
3475 
3476 	/*
3477 	 *  end_pgoff is either the end of the page table, the end of
3478 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3479 	 */
3480 	end_pgoff = start_pgoff -
3481 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3482 		PTRS_PER_PTE - 1;
3483 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3484 			start_pgoff + nr_pages - 1);
3485 
3486 	if (pmd_none(*vmf->pmd)) {
3487 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3488 		if (!vmf->prealloc_pte)
3489 			goto out;
3490 		smp_wmb(); /* See comment in __pte_alloc() */
3491 	}
3492 
3493 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3494 
3495 	/* Huge page is mapped? Page fault is solved */
3496 	if (pmd_trans_huge(*vmf->pmd)) {
3497 		ret = VM_FAULT_NOPAGE;
3498 		goto out;
3499 	}
3500 
3501 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3502 	if (!vmf->pte)
3503 		goto out;
3504 
3505 	/* check if the page fault is solved */
3506 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3507 	if (!pte_none(*vmf->pte))
3508 		ret = VM_FAULT_NOPAGE;
3509 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3510 out:
3511 	vmf->address = address;
3512 	vmf->pte = NULL;
3513 	return ret;
3514 }
3515 
3516 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3517 {
3518 	struct vm_area_struct *vma = vmf->vma;
3519 	vm_fault_t ret = 0;
3520 
3521 	/*
3522 	 * Let's call ->map_pages() first and use ->fault() as fallback
3523 	 * if page by the offset is not ready to be mapped (cold cache or
3524 	 * something).
3525 	 */
3526 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3527 		ret = do_fault_around(vmf);
3528 		if (ret)
3529 			return ret;
3530 	}
3531 
3532 	ret = __do_fault(vmf);
3533 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3534 		return ret;
3535 
3536 	ret |= finish_fault(vmf);
3537 	unlock_page(vmf->page);
3538 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3539 		put_page(vmf->page);
3540 	return ret;
3541 }
3542 
3543 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3544 {
3545 	struct vm_area_struct *vma = vmf->vma;
3546 	vm_fault_t ret;
3547 
3548 	if (unlikely(anon_vma_prepare(vma)))
3549 		return VM_FAULT_OOM;
3550 
3551 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3552 	if (!vmf->cow_page)
3553 		return VM_FAULT_OOM;
3554 
3555 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3556 				&vmf->memcg, false)) {
3557 		put_page(vmf->cow_page);
3558 		return VM_FAULT_OOM;
3559 	}
3560 
3561 	ret = __do_fault(vmf);
3562 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3563 		goto uncharge_out;
3564 	if (ret & VM_FAULT_DONE_COW)
3565 		return ret;
3566 
3567 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3568 	__SetPageUptodate(vmf->cow_page);
3569 
3570 	ret |= finish_fault(vmf);
3571 	unlock_page(vmf->page);
3572 	put_page(vmf->page);
3573 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3574 		goto uncharge_out;
3575 	return ret;
3576 uncharge_out:
3577 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3578 	put_page(vmf->cow_page);
3579 	return ret;
3580 }
3581 
3582 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3583 {
3584 	struct vm_area_struct *vma = vmf->vma;
3585 	vm_fault_t ret, tmp;
3586 
3587 	ret = __do_fault(vmf);
3588 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3589 		return ret;
3590 
3591 	/*
3592 	 * Check if the backing address space wants to know that the page is
3593 	 * about to become writable
3594 	 */
3595 	if (vma->vm_ops->page_mkwrite) {
3596 		unlock_page(vmf->page);
3597 		tmp = do_page_mkwrite(vmf);
3598 		if (unlikely(!tmp ||
3599 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3600 			put_page(vmf->page);
3601 			return tmp;
3602 		}
3603 	}
3604 
3605 	ret |= finish_fault(vmf);
3606 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3607 					VM_FAULT_RETRY))) {
3608 		unlock_page(vmf->page);
3609 		put_page(vmf->page);
3610 		return ret;
3611 	}
3612 
3613 	fault_dirty_shared_page(vma, vmf->page);
3614 	return ret;
3615 }
3616 
3617 /*
3618  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3619  * but allow concurrent faults).
3620  * The mmap_sem may have been released depending on flags and our
3621  * return value.  See filemap_fault() and __lock_page_or_retry().
3622  * If mmap_sem is released, vma may become invalid (for example
3623  * by other thread calling munmap()).
3624  */
3625 static vm_fault_t do_fault(struct vm_fault *vmf)
3626 {
3627 	struct vm_area_struct *vma = vmf->vma;
3628 	struct mm_struct *vm_mm = vma->vm_mm;
3629 	vm_fault_t ret;
3630 
3631 	/*
3632 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3633 	 */
3634 	if (!vma->vm_ops->fault) {
3635 		/*
3636 		 * If we find a migration pmd entry or a none pmd entry, which
3637 		 * should never happen, return SIGBUS
3638 		 */
3639 		if (unlikely(!pmd_present(*vmf->pmd)))
3640 			ret = VM_FAULT_SIGBUS;
3641 		else {
3642 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3643 						       vmf->pmd,
3644 						       vmf->address,
3645 						       &vmf->ptl);
3646 			/*
3647 			 * Make sure this is not a temporary clearing of pte
3648 			 * by holding ptl and checking again. A R/M/W update
3649 			 * of pte involves: take ptl, clearing the pte so that
3650 			 * we don't have concurrent modification by hardware
3651 			 * followed by an update.
3652 			 */
3653 			if (unlikely(pte_none(*vmf->pte)))
3654 				ret = VM_FAULT_SIGBUS;
3655 			else
3656 				ret = VM_FAULT_NOPAGE;
3657 
3658 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3659 		}
3660 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3661 		ret = do_read_fault(vmf);
3662 	else if (!(vma->vm_flags & VM_SHARED))
3663 		ret = do_cow_fault(vmf);
3664 	else
3665 		ret = do_shared_fault(vmf);
3666 
3667 	/* preallocated pagetable is unused: free it */
3668 	if (vmf->prealloc_pte) {
3669 		pte_free(vm_mm, vmf->prealloc_pte);
3670 		vmf->prealloc_pte = NULL;
3671 	}
3672 	return ret;
3673 }
3674 
3675 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3676 				unsigned long addr, int page_nid,
3677 				int *flags)
3678 {
3679 	get_page(page);
3680 
3681 	count_vm_numa_event(NUMA_HINT_FAULTS);
3682 	if (page_nid == numa_node_id()) {
3683 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3684 		*flags |= TNF_FAULT_LOCAL;
3685 	}
3686 
3687 	return mpol_misplaced(page, vma, addr);
3688 }
3689 
3690 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3691 {
3692 	struct vm_area_struct *vma = vmf->vma;
3693 	struct page *page = NULL;
3694 	int page_nid = NUMA_NO_NODE;
3695 	int last_cpupid;
3696 	int target_nid;
3697 	bool migrated = false;
3698 	pte_t pte, old_pte;
3699 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3700 	int flags = 0;
3701 
3702 	/*
3703 	 * The "pte" at this point cannot be used safely without
3704 	 * validation through pte_unmap_same(). It's of NUMA type but
3705 	 * the pfn may be screwed if the read is non atomic.
3706 	 */
3707 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3708 	spin_lock(vmf->ptl);
3709 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3710 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3711 		goto out;
3712 	}
3713 
3714 	/*
3715 	 * Make it present again, Depending on how arch implementes non
3716 	 * accessible ptes, some can allow access by kernel mode.
3717 	 */
3718 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3719 	pte = pte_modify(old_pte, vma->vm_page_prot);
3720 	pte = pte_mkyoung(pte);
3721 	if (was_writable)
3722 		pte = pte_mkwrite(pte);
3723 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3724 	update_mmu_cache(vma, vmf->address, vmf->pte);
3725 
3726 	page = vm_normal_page(vma, vmf->address, pte);
3727 	if (!page) {
3728 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3729 		return 0;
3730 	}
3731 
3732 	/* TODO: handle PTE-mapped THP */
3733 	if (PageCompound(page)) {
3734 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3735 		return 0;
3736 	}
3737 
3738 	/*
3739 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3740 	 * much anyway since they can be in shared cache state. This misses
3741 	 * the case where a mapping is writable but the process never writes
3742 	 * to it but pte_write gets cleared during protection updates and
3743 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3744 	 * background writeback, dirty balancing and application behaviour.
3745 	 */
3746 	if (!pte_write(pte))
3747 		flags |= TNF_NO_GROUP;
3748 
3749 	/*
3750 	 * Flag if the page is shared between multiple address spaces. This
3751 	 * is later used when determining whether to group tasks together
3752 	 */
3753 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3754 		flags |= TNF_SHARED;
3755 
3756 	last_cpupid = page_cpupid_last(page);
3757 	page_nid = page_to_nid(page);
3758 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3759 			&flags);
3760 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3761 	if (target_nid == NUMA_NO_NODE) {
3762 		put_page(page);
3763 		goto out;
3764 	}
3765 
3766 	/* Migrate to the requested node */
3767 	migrated = migrate_misplaced_page(page, vma, target_nid);
3768 	if (migrated) {
3769 		page_nid = target_nid;
3770 		flags |= TNF_MIGRATED;
3771 	} else
3772 		flags |= TNF_MIGRATE_FAIL;
3773 
3774 out:
3775 	if (page_nid != NUMA_NO_NODE)
3776 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3777 	return 0;
3778 }
3779 
3780 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3781 {
3782 	if (vma_is_anonymous(vmf->vma))
3783 		return do_huge_pmd_anonymous_page(vmf);
3784 	if (vmf->vma->vm_ops->huge_fault)
3785 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3786 	return VM_FAULT_FALLBACK;
3787 }
3788 
3789 /* `inline' is required to avoid gcc 4.1.2 build error */
3790 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3791 {
3792 	if (vma_is_anonymous(vmf->vma))
3793 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3794 	if (vmf->vma->vm_ops->huge_fault)
3795 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3796 
3797 	/* COW handled on pte level: split pmd */
3798 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3799 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3800 
3801 	return VM_FAULT_FALLBACK;
3802 }
3803 
3804 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3805 {
3806 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3807 }
3808 
3809 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3810 {
3811 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3812 	/* No support for anonymous transparent PUD pages yet */
3813 	if (vma_is_anonymous(vmf->vma))
3814 		return VM_FAULT_FALLBACK;
3815 	if (vmf->vma->vm_ops->huge_fault)
3816 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3817 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3818 	return VM_FAULT_FALLBACK;
3819 }
3820 
3821 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3822 {
3823 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3824 	/* No support for anonymous transparent PUD pages yet */
3825 	if (vma_is_anonymous(vmf->vma))
3826 		return VM_FAULT_FALLBACK;
3827 	if (vmf->vma->vm_ops->huge_fault)
3828 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3829 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3830 	return VM_FAULT_FALLBACK;
3831 }
3832 
3833 /*
3834  * These routines also need to handle stuff like marking pages dirty
3835  * and/or accessed for architectures that don't do it in hardware (most
3836  * RISC architectures).  The early dirtying is also good on the i386.
3837  *
3838  * There is also a hook called "update_mmu_cache()" that architectures
3839  * with external mmu caches can use to update those (ie the Sparc or
3840  * PowerPC hashed page tables that act as extended TLBs).
3841  *
3842  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3843  * concurrent faults).
3844  *
3845  * The mmap_sem may have been released depending on flags and our return value.
3846  * See filemap_fault() and __lock_page_or_retry().
3847  */
3848 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3849 {
3850 	pte_t entry;
3851 
3852 	if (unlikely(pmd_none(*vmf->pmd))) {
3853 		/*
3854 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3855 		 * want to allocate huge page, and if we expose page table
3856 		 * for an instant, it will be difficult to retract from
3857 		 * concurrent faults and from rmap lookups.
3858 		 */
3859 		vmf->pte = NULL;
3860 	} else {
3861 		/* See comment in pte_alloc_one_map() */
3862 		if (pmd_devmap_trans_unstable(vmf->pmd))
3863 			return 0;
3864 		/*
3865 		 * A regular pmd is established and it can't morph into a huge
3866 		 * pmd from under us anymore at this point because we hold the
3867 		 * mmap_sem read mode and khugepaged takes it in write mode.
3868 		 * So now it's safe to run pte_offset_map().
3869 		 */
3870 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3871 		vmf->orig_pte = *vmf->pte;
3872 
3873 		/*
3874 		 * some architectures can have larger ptes than wordsize,
3875 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3876 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3877 		 * accesses.  The code below just needs a consistent view
3878 		 * for the ifs and we later double check anyway with the
3879 		 * ptl lock held. So here a barrier will do.
3880 		 */
3881 		barrier();
3882 		if (pte_none(vmf->orig_pte)) {
3883 			pte_unmap(vmf->pte);
3884 			vmf->pte = NULL;
3885 		}
3886 	}
3887 
3888 	if (!vmf->pte) {
3889 		if (vma_is_anonymous(vmf->vma))
3890 			return do_anonymous_page(vmf);
3891 		else
3892 			return do_fault(vmf);
3893 	}
3894 
3895 	if (!pte_present(vmf->orig_pte))
3896 		return do_swap_page(vmf);
3897 
3898 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3899 		return do_numa_page(vmf);
3900 
3901 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3902 	spin_lock(vmf->ptl);
3903 	entry = vmf->orig_pte;
3904 	if (unlikely(!pte_same(*vmf->pte, entry)))
3905 		goto unlock;
3906 	if (vmf->flags & FAULT_FLAG_WRITE) {
3907 		if (!pte_write(entry))
3908 			return do_wp_page(vmf);
3909 		entry = pte_mkdirty(entry);
3910 	}
3911 	entry = pte_mkyoung(entry);
3912 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3913 				vmf->flags & FAULT_FLAG_WRITE)) {
3914 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3915 	} else {
3916 		/*
3917 		 * This is needed only for protection faults but the arch code
3918 		 * is not yet telling us if this is a protection fault or not.
3919 		 * This still avoids useless tlb flushes for .text page faults
3920 		 * with threads.
3921 		 */
3922 		if (vmf->flags & FAULT_FLAG_WRITE)
3923 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3924 	}
3925 unlock:
3926 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3927 	return 0;
3928 }
3929 
3930 /*
3931  * By the time we get here, we already hold the mm semaphore
3932  *
3933  * The mmap_sem may have been released depending on flags and our
3934  * return value.  See filemap_fault() and __lock_page_or_retry().
3935  */
3936 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3937 		unsigned long address, unsigned int flags)
3938 {
3939 	struct vm_fault vmf = {
3940 		.vma = vma,
3941 		.address = address & PAGE_MASK,
3942 		.flags = flags,
3943 		.pgoff = linear_page_index(vma, address),
3944 		.gfp_mask = __get_fault_gfp_mask(vma),
3945 	};
3946 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
3947 	struct mm_struct *mm = vma->vm_mm;
3948 	pgd_t *pgd;
3949 	p4d_t *p4d;
3950 	vm_fault_t ret;
3951 
3952 	pgd = pgd_offset(mm, address);
3953 	p4d = p4d_alloc(mm, pgd, address);
3954 	if (!p4d)
3955 		return VM_FAULT_OOM;
3956 
3957 	vmf.pud = pud_alloc(mm, p4d, address);
3958 	if (!vmf.pud)
3959 		return VM_FAULT_OOM;
3960 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3961 		ret = create_huge_pud(&vmf);
3962 		if (!(ret & VM_FAULT_FALLBACK))
3963 			return ret;
3964 	} else {
3965 		pud_t orig_pud = *vmf.pud;
3966 
3967 		barrier();
3968 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3969 
3970 			/* NUMA case for anonymous PUDs would go here */
3971 
3972 			if (dirty && !pud_write(orig_pud)) {
3973 				ret = wp_huge_pud(&vmf, orig_pud);
3974 				if (!(ret & VM_FAULT_FALLBACK))
3975 					return ret;
3976 			} else {
3977 				huge_pud_set_accessed(&vmf, orig_pud);
3978 				return 0;
3979 			}
3980 		}
3981 	}
3982 
3983 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3984 	if (!vmf.pmd)
3985 		return VM_FAULT_OOM;
3986 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3987 		ret = create_huge_pmd(&vmf);
3988 		if (!(ret & VM_FAULT_FALLBACK))
3989 			return ret;
3990 	} else {
3991 		pmd_t orig_pmd = *vmf.pmd;
3992 
3993 		barrier();
3994 		if (unlikely(is_swap_pmd(orig_pmd))) {
3995 			VM_BUG_ON(thp_migration_supported() &&
3996 					  !is_pmd_migration_entry(orig_pmd));
3997 			if (is_pmd_migration_entry(orig_pmd))
3998 				pmd_migration_entry_wait(mm, vmf.pmd);
3999 			return 0;
4000 		}
4001 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4002 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4003 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4004 
4005 			if (dirty && !pmd_write(orig_pmd)) {
4006 				ret = wp_huge_pmd(&vmf, orig_pmd);
4007 				if (!(ret & VM_FAULT_FALLBACK))
4008 					return ret;
4009 			} else {
4010 				huge_pmd_set_accessed(&vmf, orig_pmd);
4011 				return 0;
4012 			}
4013 		}
4014 	}
4015 
4016 	return handle_pte_fault(&vmf);
4017 }
4018 
4019 /*
4020  * By the time we get here, we already hold the mm semaphore
4021  *
4022  * The mmap_sem may have been released depending on flags and our
4023  * return value.  See filemap_fault() and __lock_page_or_retry().
4024  */
4025 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4026 		unsigned int flags)
4027 {
4028 	vm_fault_t ret;
4029 
4030 	__set_current_state(TASK_RUNNING);
4031 
4032 	count_vm_event(PGFAULT);
4033 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4034 
4035 	/* do counter updates before entering really critical section. */
4036 	check_sync_rss_stat(current);
4037 
4038 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4039 					    flags & FAULT_FLAG_INSTRUCTION,
4040 					    flags & FAULT_FLAG_REMOTE))
4041 		return VM_FAULT_SIGSEGV;
4042 
4043 	/*
4044 	 * Enable the memcg OOM handling for faults triggered in user
4045 	 * space.  Kernel faults are handled more gracefully.
4046 	 */
4047 	if (flags & FAULT_FLAG_USER)
4048 		mem_cgroup_enter_user_fault();
4049 
4050 	if (unlikely(is_vm_hugetlb_page(vma)))
4051 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4052 	else
4053 		ret = __handle_mm_fault(vma, address, flags);
4054 
4055 	if (flags & FAULT_FLAG_USER) {
4056 		mem_cgroup_exit_user_fault();
4057 		/*
4058 		 * The task may have entered a memcg OOM situation but
4059 		 * if the allocation error was handled gracefully (no
4060 		 * VM_FAULT_OOM), there is no need to kill anything.
4061 		 * Just clean up the OOM state peacefully.
4062 		 */
4063 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4064 			mem_cgroup_oom_synchronize(false);
4065 	}
4066 
4067 	return ret;
4068 }
4069 EXPORT_SYMBOL_GPL(handle_mm_fault);
4070 
4071 #ifndef __PAGETABLE_P4D_FOLDED
4072 /*
4073  * Allocate p4d page table.
4074  * We've already handled the fast-path in-line.
4075  */
4076 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4077 {
4078 	p4d_t *new = p4d_alloc_one(mm, address);
4079 	if (!new)
4080 		return -ENOMEM;
4081 
4082 	smp_wmb(); /* See comment in __pte_alloc */
4083 
4084 	spin_lock(&mm->page_table_lock);
4085 	if (pgd_present(*pgd))		/* Another has populated it */
4086 		p4d_free(mm, new);
4087 	else
4088 		pgd_populate(mm, pgd, new);
4089 	spin_unlock(&mm->page_table_lock);
4090 	return 0;
4091 }
4092 #endif /* __PAGETABLE_P4D_FOLDED */
4093 
4094 #ifndef __PAGETABLE_PUD_FOLDED
4095 /*
4096  * Allocate page upper directory.
4097  * We've already handled the fast-path in-line.
4098  */
4099 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4100 {
4101 	pud_t *new = pud_alloc_one(mm, address);
4102 	if (!new)
4103 		return -ENOMEM;
4104 
4105 	smp_wmb(); /* See comment in __pte_alloc */
4106 
4107 	spin_lock(&mm->page_table_lock);
4108 #ifndef __ARCH_HAS_5LEVEL_HACK
4109 	if (!p4d_present(*p4d)) {
4110 		mm_inc_nr_puds(mm);
4111 		p4d_populate(mm, p4d, new);
4112 	} else	/* Another has populated it */
4113 		pud_free(mm, new);
4114 #else
4115 	if (!pgd_present(*p4d)) {
4116 		mm_inc_nr_puds(mm);
4117 		pgd_populate(mm, p4d, new);
4118 	} else	/* Another has populated it */
4119 		pud_free(mm, new);
4120 #endif /* __ARCH_HAS_5LEVEL_HACK */
4121 	spin_unlock(&mm->page_table_lock);
4122 	return 0;
4123 }
4124 #endif /* __PAGETABLE_PUD_FOLDED */
4125 
4126 #ifndef __PAGETABLE_PMD_FOLDED
4127 /*
4128  * Allocate page middle directory.
4129  * We've already handled the fast-path in-line.
4130  */
4131 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4132 {
4133 	spinlock_t *ptl;
4134 	pmd_t *new = pmd_alloc_one(mm, address);
4135 	if (!new)
4136 		return -ENOMEM;
4137 
4138 	smp_wmb(); /* See comment in __pte_alloc */
4139 
4140 	ptl = pud_lock(mm, pud);
4141 #ifndef __ARCH_HAS_4LEVEL_HACK
4142 	if (!pud_present(*pud)) {
4143 		mm_inc_nr_pmds(mm);
4144 		pud_populate(mm, pud, new);
4145 	} else	/* Another has populated it */
4146 		pmd_free(mm, new);
4147 #else
4148 	if (!pgd_present(*pud)) {
4149 		mm_inc_nr_pmds(mm);
4150 		pgd_populate(mm, pud, new);
4151 	} else /* Another has populated it */
4152 		pmd_free(mm, new);
4153 #endif /* __ARCH_HAS_4LEVEL_HACK */
4154 	spin_unlock(ptl);
4155 	return 0;
4156 }
4157 #endif /* __PAGETABLE_PMD_FOLDED */
4158 
4159 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4160 			    struct mmu_notifier_range *range,
4161 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4162 {
4163 	pgd_t *pgd;
4164 	p4d_t *p4d;
4165 	pud_t *pud;
4166 	pmd_t *pmd;
4167 	pte_t *ptep;
4168 
4169 	pgd = pgd_offset(mm, address);
4170 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4171 		goto out;
4172 
4173 	p4d = p4d_offset(pgd, address);
4174 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4175 		goto out;
4176 
4177 	pud = pud_offset(p4d, address);
4178 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4179 		goto out;
4180 
4181 	pmd = pmd_offset(pud, address);
4182 	VM_BUG_ON(pmd_trans_huge(*pmd));
4183 
4184 	if (pmd_huge(*pmd)) {
4185 		if (!pmdpp)
4186 			goto out;
4187 
4188 		if (range) {
4189 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4190 						NULL, mm, address & PMD_MASK,
4191 						(address & PMD_MASK) + PMD_SIZE);
4192 			mmu_notifier_invalidate_range_start(range);
4193 		}
4194 		*ptlp = pmd_lock(mm, pmd);
4195 		if (pmd_huge(*pmd)) {
4196 			*pmdpp = pmd;
4197 			return 0;
4198 		}
4199 		spin_unlock(*ptlp);
4200 		if (range)
4201 			mmu_notifier_invalidate_range_end(range);
4202 	}
4203 
4204 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4205 		goto out;
4206 
4207 	if (range) {
4208 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4209 					address & PAGE_MASK,
4210 					(address & PAGE_MASK) + PAGE_SIZE);
4211 		mmu_notifier_invalidate_range_start(range);
4212 	}
4213 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4214 	if (!pte_present(*ptep))
4215 		goto unlock;
4216 	*ptepp = ptep;
4217 	return 0;
4218 unlock:
4219 	pte_unmap_unlock(ptep, *ptlp);
4220 	if (range)
4221 		mmu_notifier_invalidate_range_end(range);
4222 out:
4223 	return -EINVAL;
4224 }
4225 
4226 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4227 			     pte_t **ptepp, spinlock_t **ptlp)
4228 {
4229 	int res;
4230 
4231 	/* (void) is needed to make gcc happy */
4232 	(void) __cond_lock(*ptlp,
4233 			   !(res = __follow_pte_pmd(mm, address, NULL,
4234 						    ptepp, NULL, ptlp)));
4235 	return res;
4236 }
4237 
4238 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4239 		   struct mmu_notifier_range *range,
4240 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4241 {
4242 	int res;
4243 
4244 	/* (void) is needed to make gcc happy */
4245 	(void) __cond_lock(*ptlp,
4246 			   !(res = __follow_pte_pmd(mm, address, range,
4247 						    ptepp, pmdpp, ptlp)));
4248 	return res;
4249 }
4250 EXPORT_SYMBOL(follow_pte_pmd);
4251 
4252 /**
4253  * follow_pfn - look up PFN at a user virtual address
4254  * @vma: memory mapping
4255  * @address: user virtual address
4256  * @pfn: location to store found PFN
4257  *
4258  * Only IO mappings and raw PFN mappings are allowed.
4259  *
4260  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4261  */
4262 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4263 	unsigned long *pfn)
4264 {
4265 	int ret = -EINVAL;
4266 	spinlock_t *ptl;
4267 	pte_t *ptep;
4268 
4269 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4270 		return ret;
4271 
4272 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4273 	if (ret)
4274 		return ret;
4275 	*pfn = pte_pfn(*ptep);
4276 	pte_unmap_unlock(ptep, ptl);
4277 	return 0;
4278 }
4279 EXPORT_SYMBOL(follow_pfn);
4280 
4281 #ifdef CONFIG_HAVE_IOREMAP_PROT
4282 int follow_phys(struct vm_area_struct *vma,
4283 		unsigned long address, unsigned int flags,
4284 		unsigned long *prot, resource_size_t *phys)
4285 {
4286 	int ret = -EINVAL;
4287 	pte_t *ptep, pte;
4288 	spinlock_t *ptl;
4289 
4290 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4291 		goto out;
4292 
4293 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4294 		goto out;
4295 	pte = *ptep;
4296 
4297 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4298 		goto unlock;
4299 
4300 	*prot = pgprot_val(pte_pgprot(pte));
4301 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4302 
4303 	ret = 0;
4304 unlock:
4305 	pte_unmap_unlock(ptep, ptl);
4306 out:
4307 	return ret;
4308 }
4309 
4310 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4311 			void *buf, int len, int write)
4312 {
4313 	resource_size_t phys_addr;
4314 	unsigned long prot = 0;
4315 	void __iomem *maddr;
4316 	int offset = addr & (PAGE_SIZE-1);
4317 
4318 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4319 		return -EINVAL;
4320 
4321 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4322 	if (!maddr)
4323 		return -ENOMEM;
4324 
4325 	if (write)
4326 		memcpy_toio(maddr + offset, buf, len);
4327 	else
4328 		memcpy_fromio(buf, maddr + offset, len);
4329 	iounmap(maddr);
4330 
4331 	return len;
4332 }
4333 EXPORT_SYMBOL_GPL(generic_access_phys);
4334 #endif
4335 
4336 /*
4337  * Access another process' address space as given in mm.  If non-NULL, use the
4338  * given task for page fault accounting.
4339  */
4340 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4341 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4342 {
4343 	struct vm_area_struct *vma;
4344 	void *old_buf = buf;
4345 	int write = gup_flags & FOLL_WRITE;
4346 
4347 	if (down_read_killable(&mm->mmap_sem))
4348 		return 0;
4349 
4350 	/* ignore errors, just check how much was successfully transferred */
4351 	while (len) {
4352 		int bytes, ret, offset;
4353 		void *maddr;
4354 		struct page *page = NULL;
4355 
4356 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4357 				gup_flags, &page, &vma, NULL);
4358 		if (ret <= 0) {
4359 #ifndef CONFIG_HAVE_IOREMAP_PROT
4360 			break;
4361 #else
4362 			/*
4363 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4364 			 * we can access using slightly different code.
4365 			 */
4366 			vma = find_vma(mm, addr);
4367 			if (!vma || vma->vm_start > addr)
4368 				break;
4369 			if (vma->vm_ops && vma->vm_ops->access)
4370 				ret = vma->vm_ops->access(vma, addr, buf,
4371 							  len, write);
4372 			if (ret <= 0)
4373 				break;
4374 			bytes = ret;
4375 #endif
4376 		} else {
4377 			bytes = len;
4378 			offset = addr & (PAGE_SIZE-1);
4379 			if (bytes > PAGE_SIZE-offset)
4380 				bytes = PAGE_SIZE-offset;
4381 
4382 			maddr = kmap(page);
4383 			if (write) {
4384 				copy_to_user_page(vma, page, addr,
4385 						  maddr + offset, buf, bytes);
4386 				set_page_dirty_lock(page);
4387 			} else {
4388 				copy_from_user_page(vma, page, addr,
4389 						    buf, maddr + offset, bytes);
4390 			}
4391 			kunmap(page);
4392 			put_page(page);
4393 		}
4394 		len -= bytes;
4395 		buf += bytes;
4396 		addr += bytes;
4397 	}
4398 	up_read(&mm->mmap_sem);
4399 
4400 	return buf - old_buf;
4401 }
4402 
4403 /**
4404  * access_remote_vm - access another process' address space
4405  * @mm:		the mm_struct of the target address space
4406  * @addr:	start address to access
4407  * @buf:	source or destination buffer
4408  * @len:	number of bytes to transfer
4409  * @gup_flags:	flags modifying lookup behaviour
4410  *
4411  * The caller must hold a reference on @mm.
4412  *
4413  * Return: number of bytes copied from source to destination.
4414  */
4415 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4416 		void *buf, int len, unsigned int gup_flags)
4417 {
4418 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4419 }
4420 
4421 /*
4422  * Access another process' address space.
4423  * Source/target buffer must be kernel space,
4424  * Do not walk the page table directly, use get_user_pages
4425  */
4426 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4427 		void *buf, int len, unsigned int gup_flags)
4428 {
4429 	struct mm_struct *mm;
4430 	int ret;
4431 
4432 	mm = get_task_mm(tsk);
4433 	if (!mm)
4434 		return 0;
4435 
4436 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4437 
4438 	mmput(mm);
4439 
4440 	return ret;
4441 }
4442 EXPORT_SYMBOL_GPL(access_process_vm);
4443 
4444 /*
4445  * Print the name of a VMA.
4446  */
4447 void print_vma_addr(char *prefix, unsigned long ip)
4448 {
4449 	struct mm_struct *mm = current->mm;
4450 	struct vm_area_struct *vma;
4451 
4452 	/*
4453 	 * we might be running from an atomic context so we cannot sleep
4454 	 */
4455 	if (!down_read_trylock(&mm->mmap_sem))
4456 		return;
4457 
4458 	vma = find_vma(mm, ip);
4459 	if (vma && vma->vm_file) {
4460 		struct file *f = vma->vm_file;
4461 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4462 		if (buf) {
4463 			char *p;
4464 
4465 			p = file_path(f, buf, PAGE_SIZE);
4466 			if (IS_ERR(p))
4467 				p = "?";
4468 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4469 					vma->vm_start,
4470 					vma->vm_end - vma->vm_start);
4471 			free_page((unsigned long)buf);
4472 		}
4473 	}
4474 	up_read(&mm->mmap_sem);
4475 }
4476 
4477 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4478 void __might_fault(const char *file, int line)
4479 {
4480 	/*
4481 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4482 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4483 	 * get paged out, therefore we'll never actually fault, and the
4484 	 * below annotations will generate false positives.
4485 	 */
4486 	if (uaccess_kernel())
4487 		return;
4488 	if (pagefault_disabled())
4489 		return;
4490 	__might_sleep(file, line, 0);
4491 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4492 	if (current->mm)
4493 		might_lock_read(&current->mm->mmap_sem);
4494 #endif
4495 }
4496 EXPORT_SYMBOL(__might_fault);
4497 #endif
4498 
4499 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4500 /*
4501  * Process all subpages of the specified huge page with the specified
4502  * operation.  The target subpage will be processed last to keep its
4503  * cache lines hot.
4504  */
4505 static inline void process_huge_page(
4506 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4507 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4508 	void *arg)
4509 {
4510 	int i, n, base, l;
4511 	unsigned long addr = addr_hint &
4512 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4513 
4514 	/* Process target subpage last to keep its cache lines hot */
4515 	might_sleep();
4516 	n = (addr_hint - addr) / PAGE_SIZE;
4517 	if (2 * n <= pages_per_huge_page) {
4518 		/* If target subpage in first half of huge page */
4519 		base = 0;
4520 		l = n;
4521 		/* Process subpages at the end of huge page */
4522 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4523 			cond_resched();
4524 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4525 		}
4526 	} else {
4527 		/* If target subpage in second half of huge page */
4528 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4529 		l = pages_per_huge_page - n;
4530 		/* Process subpages at the begin of huge page */
4531 		for (i = 0; i < base; i++) {
4532 			cond_resched();
4533 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4534 		}
4535 	}
4536 	/*
4537 	 * Process remaining subpages in left-right-left-right pattern
4538 	 * towards the target subpage
4539 	 */
4540 	for (i = 0; i < l; i++) {
4541 		int left_idx = base + i;
4542 		int right_idx = base + 2 * l - 1 - i;
4543 
4544 		cond_resched();
4545 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4546 		cond_resched();
4547 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4548 	}
4549 }
4550 
4551 static void clear_gigantic_page(struct page *page,
4552 				unsigned long addr,
4553 				unsigned int pages_per_huge_page)
4554 {
4555 	int i;
4556 	struct page *p = page;
4557 
4558 	might_sleep();
4559 	for (i = 0; i < pages_per_huge_page;
4560 	     i++, p = mem_map_next(p, page, i)) {
4561 		cond_resched();
4562 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4563 	}
4564 }
4565 
4566 static void clear_subpage(unsigned long addr, int idx, void *arg)
4567 {
4568 	struct page *page = arg;
4569 
4570 	clear_user_highpage(page + idx, addr);
4571 }
4572 
4573 void clear_huge_page(struct page *page,
4574 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4575 {
4576 	unsigned long addr = addr_hint &
4577 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4578 
4579 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4580 		clear_gigantic_page(page, addr, pages_per_huge_page);
4581 		return;
4582 	}
4583 
4584 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4585 }
4586 
4587 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4588 				    unsigned long addr,
4589 				    struct vm_area_struct *vma,
4590 				    unsigned int pages_per_huge_page)
4591 {
4592 	int i;
4593 	struct page *dst_base = dst;
4594 	struct page *src_base = src;
4595 
4596 	for (i = 0; i < pages_per_huge_page; ) {
4597 		cond_resched();
4598 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4599 
4600 		i++;
4601 		dst = mem_map_next(dst, dst_base, i);
4602 		src = mem_map_next(src, src_base, i);
4603 	}
4604 }
4605 
4606 struct copy_subpage_arg {
4607 	struct page *dst;
4608 	struct page *src;
4609 	struct vm_area_struct *vma;
4610 };
4611 
4612 static void copy_subpage(unsigned long addr, int idx, void *arg)
4613 {
4614 	struct copy_subpage_arg *copy_arg = arg;
4615 
4616 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4617 			   addr, copy_arg->vma);
4618 }
4619 
4620 void copy_user_huge_page(struct page *dst, struct page *src,
4621 			 unsigned long addr_hint, struct vm_area_struct *vma,
4622 			 unsigned int pages_per_huge_page)
4623 {
4624 	unsigned long addr = addr_hint &
4625 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4626 	struct copy_subpage_arg arg = {
4627 		.dst = dst,
4628 		.src = src,
4629 		.vma = vma,
4630 	};
4631 
4632 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4633 		copy_user_gigantic_page(dst, src, addr, vma,
4634 					pages_per_huge_page);
4635 		return;
4636 	}
4637 
4638 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4639 }
4640 
4641 long copy_huge_page_from_user(struct page *dst_page,
4642 				const void __user *usr_src,
4643 				unsigned int pages_per_huge_page,
4644 				bool allow_pagefault)
4645 {
4646 	void *src = (void *)usr_src;
4647 	void *page_kaddr;
4648 	unsigned long i, rc = 0;
4649 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4650 
4651 	for (i = 0; i < pages_per_huge_page; i++) {
4652 		if (allow_pagefault)
4653 			page_kaddr = kmap(dst_page + i);
4654 		else
4655 			page_kaddr = kmap_atomic(dst_page + i);
4656 		rc = copy_from_user(page_kaddr,
4657 				(const void __user *)(src + i * PAGE_SIZE),
4658 				PAGE_SIZE);
4659 		if (allow_pagefault)
4660 			kunmap(dst_page + i);
4661 		else
4662 			kunmap_atomic(page_kaddr);
4663 
4664 		ret_val -= (PAGE_SIZE - rc);
4665 		if (rc)
4666 			break;
4667 
4668 		cond_resched();
4669 	}
4670 	return ret_val;
4671 }
4672 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4673 
4674 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4675 
4676 static struct kmem_cache *page_ptl_cachep;
4677 
4678 void __init ptlock_cache_init(void)
4679 {
4680 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4681 			SLAB_PANIC, NULL);
4682 }
4683 
4684 bool ptlock_alloc(struct page *page)
4685 {
4686 	spinlock_t *ptl;
4687 
4688 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4689 	if (!ptl)
4690 		return false;
4691 	page->ptl = ptl;
4692 	return true;
4693 }
4694 
4695 void ptlock_free(struct page *page)
4696 {
4697 	kmem_cache_free(page_ptl_cachep, page->ptl);
4698 }
4699 #endif
4700