1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/dma-debug.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 75 #include <asm/io.h> 76 #include <asm/mmu_context.h> 77 #include <asm/pgalloc.h> 78 #include <linux/uaccess.h> 79 #include <asm/tlb.h> 80 #include <asm/tlbflush.h> 81 #include <asm/pgtable.h> 82 83 #include "internal.h" 84 85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 87 #endif 88 89 #ifndef CONFIG_NEED_MULTIPLE_NODES 90 /* use the per-pgdat data instead for discontigmem - mbligh */ 91 unsigned long max_mapnr; 92 EXPORT_SYMBOL(max_mapnr); 93 94 struct page *mem_map; 95 EXPORT_SYMBOL(mem_map); 96 #endif 97 98 /* 99 * A number of key systems in x86 including ioremap() rely on the assumption 100 * that high_memory defines the upper bound on direct map memory, then end 101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 103 * and ZONE_HIGHMEM. 104 */ 105 void *high_memory; 106 EXPORT_SYMBOL(high_memory); 107 108 /* 109 * Randomize the address space (stacks, mmaps, brk, etc.). 110 * 111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 112 * as ancient (libc5 based) binaries can segfault. ) 113 */ 114 int randomize_va_space __read_mostly = 115 #ifdef CONFIG_COMPAT_BRK 116 1; 117 #else 118 2; 119 #endif 120 121 static int __init disable_randmaps(char *s) 122 { 123 randomize_va_space = 0; 124 return 1; 125 } 126 __setup("norandmaps", disable_randmaps); 127 128 unsigned long zero_pfn __read_mostly; 129 EXPORT_SYMBOL(zero_pfn); 130 131 unsigned long highest_memmap_pfn __read_mostly; 132 133 /* 134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 135 */ 136 static int __init init_zero_pfn(void) 137 { 138 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 139 return 0; 140 } 141 core_initcall(init_zero_pfn); 142 143 144 #if defined(SPLIT_RSS_COUNTING) 145 146 void sync_mm_rss(struct mm_struct *mm) 147 { 148 int i; 149 150 for (i = 0; i < NR_MM_COUNTERS; i++) { 151 if (current->rss_stat.count[i]) { 152 add_mm_counter(mm, i, current->rss_stat.count[i]); 153 current->rss_stat.count[i] = 0; 154 } 155 } 156 current->rss_stat.events = 0; 157 } 158 159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 160 { 161 struct task_struct *task = current; 162 163 if (likely(task->mm == mm)) 164 task->rss_stat.count[member] += val; 165 else 166 add_mm_counter(mm, member, val); 167 } 168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 170 171 /* sync counter once per 64 page faults */ 172 #define TASK_RSS_EVENTS_THRESH (64) 173 static void check_sync_rss_stat(struct task_struct *task) 174 { 175 if (unlikely(task != current)) 176 return; 177 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 178 sync_mm_rss(task->mm); 179 } 180 #else /* SPLIT_RSS_COUNTING */ 181 182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 184 185 static void check_sync_rss_stat(struct task_struct *task) 186 { 187 } 188 189 #endif /* SPLIT_RSS_COUNTING */ 190 191 /* 192 * Note: this doesn't free the actual pages themselves. That 193 * has been handled earlier when unmapping all the memory regions. 194 */ 195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 196 unsigned long addr) 197 { 198 pgtable_t token = pmd_pgtable(*pmd); 199 pmd_clear(pmd); 200 pte_free_tlb(tlb, token, addr); 201 mm_dec_nr_ptes(tlb->mm); 202 } 203 204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 205 unsigned long addr, unsigned long end, 206 unsigned long floor, unsigned long ceiling) 207 { 208 pmd_t *pmd; 209 unsigned long next; 210 unsigned long start; 211 212 start = addr; 213 pmd = pmd_offset(pud, addr); 214 do { 215 next = pmd_addr_end(addr, end); 216 if (pmd_none_or_clear_bad(pmd)) 217 continue; 218 free_pte_range(tlb, pmd, addr); 219 } while (pmd++, addr = next, addr != end); 220 221 start &= PUD_MASK; 222 if (start < floor) 223 return; 224 if (ceiling) { 225 ceiling &= PUD_MASK; 226 if (!ceiling) 227 return; 228 } 229 if (end - 1 > ceiling - 1) 230 return; 231 232 pmd = pmd_offset(pud, start); 233 pud_clear(pud); 234 pmd_free_tlb(tlb, pmd, start); 235 mm_dec_nr_pmds(tlb->mm); 236 } 237 238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 239 unsigned long addr, unsigned long end, 240 unsigned long floor, unsigned long ceiling) 241 { 242 pud_t *pud; 243 unsigned long next; 244 unsigned long start; 245 246 start = addr; 247 pud = pud_offset(p4d, addr); 248 do { 249 next = pud_addr_end(addr, end); 250 if (pud_none_or_clear_bad(pud)) 251 continue; 252 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 253 } while (pud++, addr = next, addr != end); 254 255 start &= P4D_MASK; 256 if (start < floor) 257 return; 258 if (ceiling) { 259 ceiling &= P4D_MASK; 260 if (!ceiling) 261 return; 262 } 263 if (end - 1 > ceiling - 1) 264 return; 265 266 pud = pud_offset(p4d, start); 267 p4d_clear(p4d); 268 pud_free_tlb(tlb, pud, start); 269 mm_dec_nr_puds(tlb->mm); 270 } 271 272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 273 unsigned long addr, unsigned long end, 274 unsigned long floor, unsigned long ceiling) 275 { 276 p4d_t *p4d; 277 unsigned long next; 278 unsigned long start; 279 280 start = addr; 281 p4d = p4d_offset(pgd, addr); 282 do { 283 next = p4d_addr_end(addr, end); 284 if (p4d_none_or_clear_bad(p4d)) 285 continue; 286 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 287 } while (p4d++, addr = next, addr != end); 288 289 start &= PGDIR_MASK; 290 if (start < floor) 291 return; 292 if (ceiling) { 293 ceiling &= PGDIR_MASK; 294 if (!ceiling) 295 return; 296 } 297 if (end - 1 > ceiling - 1) 298 return; 299 300 p4d = p4d_offset(pgd, start); 301 pgd_clear(pgd); 302 p4d_free_tlb(tlb, p4d, start); 303 } 304 305 /* 306 * This function frees user-level page tables of a process. 307 */ 308 void free_pgd_range(struct mmu_gather *tlb, 309 unsigned long addr, unsigned long end, 310 unsigned long floor, unsigned long ceiling) 311 { 312 pgd_t *pgd; 313 unsigned long next; 314 315 /* 316 * The next few lines have given us lots of grief... 317 * 318 * Why are we testing PMD* at this top level? Because often 319 * there will be no work to do at all, and we'd prefer not to 320 * go all the way down to the bottom just to discover that. 321 * 322 * Why all these "- 1"s? Because 0 represents both the bottom 323 * of the address space and the top of it (using -1 for the 324 * top wouldn't help much: the masks would do the wrong thing). 325 * The rule is that addr 0 and floor 0 refer to the bottom of 326 * the address space, but end 0 and ceiling 0 refer to the top 327 * Comparisons need to use "end - 1" and "ceiling - 1" (though 328 * that end 0 case should be mythical). 329 * 330 * Wherever addr is brought up or ceiling brought down, we must 331 * be careful to reject "the opposite 0" before it confuses the 332 * subsequent tests. But what about where end is brought down 333 * by PMD_SIZE below? no, end can't go down to 0 there. 334 * 335 * Whereas we round start (addr) and ceiling down, by different 336 * masks at different levels, in order to test whether a table 337 * now has no other vmas using it, so can be freed, we don't 338 * bother to round floor or end up - the tests don't need that. 339 */ 340 341 addr &= PMD_MASK; 342 if (addr < floor) { 343 addr += PMD_SIZE; 344 if (!addr) 345 return; 346 } 347 if (ceiling) { 348 ceiling &= PMD_MASK; 349 if (!ceiling) 350 return; 351 } 352 if (end - 1 > ceiling - 1) 353 end -= PMD_SIZE; 354 if (addr > end - 1) 355 return; 356 /* 357 * We add page table cache pages with PAGE_SIZE, 358 * (see pte_free_tlb()), flush the tlb if we need 359 */ 360 tlb_change_page_size(tlb, PAGE_SIZE); 361 pgd = pgd_offset(tlb->mm, addr); 362 do { 363 next = pgd_addr_end(addr, end); 364 if (pgd_none_or_clear_bad(pgd)) 365 continue; 366 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 367 } while (pgd++, addr = next, addr != end); 368 } 369 370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 371 unsigned long floor, unsigned long ceiling) 372 { 373 while (vma) { 374 struct vm_area_struct *next = vma->vm_next; 375 unsigned long addr = vma->vm_start; 376 377 /* 378 * Hide vma from rmap and truncate_pagecache before freeing 379 * pgtables 380 */ 381 unlink_anon_vmas(vma); 382 unlink_file_vma(vma); 383 384 if (is_vm_hugetlb_page(vma)) { 385 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 386 floor, next ? next->vm_start : ceiling); 387 } else { 388 /* 389 * Optimization: gather nearby vmas into one call down 390 */ 391 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 392 && !is_vm_hugetlb_page(next)) { 393 vma = next; 394 next = vma->vm_next; 395 unlink_anon_vmas(vma); 396 unlink_file_vma(vma); 397 } 398 free_pgd_range(tlb, addr, vma->vm_end, 399 floor, next ? next->vm_start : ceiling); 400 } 401 vma = next; 402 } 403 } 404 405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 406 { 407 spinlock_t *ptl; 408 pgtable_t new = pte_alloc_one(mm); 409 if (!new) 410 return -ENOMEM; 411 412 /* 413 * Ensure all pte setup (eg. pte page lock and page clearing) are 414 * visible before the pte is made visible to other CPUs by being 415 * put into page tables. 416 * 417 * The other side of the story is the pointer chasing in the page 418 * table walking code (when walking the page table without locking; 419 * ie. most of the time). Fortunately, these data accesses consist 420 * of a chain of data-dependent loads, meaning most CPUs (alpha 421 * being the notable exception) will already guarantee loads are 422 * seen in-order. See the alpha page table accessors for the 423 * smp_read_barrier_depends() barriers in page table walking code. 424 */ 425 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 426 427 ptl = pmd_lock(mm, pmd); 428 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 429 mm_inc_nr_ptes(mm); 430 pmd_populate(mm, pmd, new); 431 new = NULL; 432 } 433 spin_unlock(ptl); 434 if (new) 435 pte_free(mm, new); 436 return 0; 437 } 438 439 int __pte_alloc_kernel(pmd_t *pmd) 440 { 441 pte_t *new = pte_alloc_one_kernel(&init_mm); 442 if (!new) 443 return -ENOMEM; 444 445 smp_wmb(); /* See comment in __pte_alloc */ 446 447 spin_lock(&init_mm.page_table_lock); 448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 449 pmd_populate_kernel(&init_mm, pmd, new); 450 new = NULL; 451 } 452 spin_unlock(&init_mm.page_table_lock); 453 if (new) 454 pte_free_kernel(&init_mm, new); 455 return 0; 456 } 457 458 static inline void init_rss_vec(int *rss) 459 { 460 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 461 } 462 463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 464 { 465 int i; 466 467 if (current->mm == mm) 468 sync_mm_rss(mm); 469 for (i = 0; i < NR_MM_COUNTERS; i++) 470 if (rss[i]) 471 add_mm_counter(mm, i, rss[i]); 472 } 473 474 /* 475 * This function is called to print an error when a bad pte 476 * is found. For example, we might have a PFN-mapped pte in 477 * a region that doesn't allow it. 478 * 479 * The calling function must still handle the error. 480 */ 481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 482 pte_t pte, struct page *page) 483 { 484 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 485 p4d_t *p4d = p4d_offset(pgd, addr); 486 pud_t *pud = pud_offset(p4d, addr); 487 pmd_t *pmd = pmd_offset(pud, addr); 488 struct address_space *mapping; 489 pgoff_t index; 490 static unsigned long resume; 491 static unsigned long nr_shown; 492 static unsigned long nr_unshown; 493 494 /* 495 * Allow a burst of 60 reports, then keep quiet for that minute; 496 * or allow a steady drip of one report per second. 497 */ 498 if (nr_shown == 60) { 499 if (time_before(jiffies, resume)) { 500 nr_unshown++; 501 return; 502 } 503 if (nr_unshown) { 504 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 505 nr_unshown); 506 nr_unshown = 0; 507 } 508 nr_shown = 0; 509 } 510 if (nr_shown++ == 0) 511 resume = jiffies + 60 * HZ; 512 513 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 514 index = linear_page_index(vma, addr); 515 516 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 517 current->comm, 518 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 519 if (page) 520 dump_page(page, "bad pte"); 521 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 523 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 524 vma->vm_file, 525 vma->vm_ops ? vma->vm_ops->fault : NULL, 526 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 527 mapping ? mapping->a_ops->readpage : NULL); 528 dump_stack(); 529 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 530 } 531 532 /* 533 * vm_normal_page -- This function gets the "struct page" associated with a pte. 534 * 535 * "Special" mappings do not wish to be associated with a "struct page" (either 536 * it doesn't exist, or it exists but they don't want to touch it). In this 537 * case, NULL is returned here. "Normal" mappings do have a struct page. 538 * 539 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 540 * pte bit, in which case this function is trivial. Secondly, an architecture 541 * may not have a spare pte bit, which requires a more complicated scheme, 542 * described below. 543 * 544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 545 * special mapping (even if there are underlying and valid "struct pages"). 546 * COWed pages of a VM_PFNMAP are always normal. 547 * 548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 551 * mapping will always honor the rule 552 * 553 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 554 * 555 * And for normal mappings this is false. 556 * 557 * This restricts such mappings to be a linear translation from virtual address 558 * to pfn. To get around this restriction, we allow arbitrary mappings so long 559 * as the vma is not a COW mapping; in that case, we know that all ptes are 560 * special (because none can have been COWed). 561 * 562 * 563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 564 * 565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 566 * page" backing, however the difference is that _all_ pages with a struct 567 * page (that is, those where pfn_valid is true) are refcounted and considered 568 * normal pages by the VM. The disadvantage is that pages are refcounted 569 * (which can be slower and simply not an option for some PFNMAP users). The 570 * advantage is that we don't have to follow the strict linearity rule of 571 * PFNMAP mappings in order to support COWable mappings. 572 * 573 */ 574 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 575 pte_t pte, bool with_public_device) 576 { 577 unsigned long pfn = pte_pfn(pte); 578 579 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 580 if (likely(!pte_special(pte))) 581 goto check_pfn; 582 if (vma->vm_ops && vma->vm_ops->find_special_page) 583 return vma->vm_ops->find_special_page(vma, addr); 584 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 585 return NULL; 586 if (is_zero_pfn(pfn)) 587 return NULL; 588 589 /* 590 * Device public pages are special pages (they are ZONE_DEVICE 591 * pages but different from persistent memory). They behave 592 * allmost like normal pages. The difference is that they are 593 * not on the lru and thus should never be involve with any- 594 * thing that involve lru manipulation (mlock, numa balancing, 595 * ...). 596 * 597 * This is why we still want to return NULL for such page from 598 * vm_normal_page() so that we do not have to special case all 599 * call site of vm_normal_page(). 600 */ 601 if (likely(pfn <= highest_memmap_pfn)) { 602 struct page *page = pfn_to_page(pfn); 603 604 if (is_device_public_page(page)) { 605 if (with_public_device) 606 return page; 607 return NULL; 608 } 609 } 610 611 if (pte_devmap(pte)) 612 return NULL; 613 614 print_bad_pte(vma, addr, pte, NULL); 615 return NULL; 616 } 617 618 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 619 620 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 621 if (vma->vm_flags & VM_MIXEDMAP) { 622 if (!pfn_valid(pfn)) 623 return NULL; 624 goto out; 625 } else { 626 unsigned long off; 627 off = (addr - vma->vm_start) >> PAGE_SHIFT; 628 if (pfn == vma->vm_pgoff + off) 629 return NULL; 630 if (!is_cow_mapping(vma->vm_flags)) 631 return NULL; 632 } 633 } 634 635 if (is_zero_pfn(pfn)) 636 return NULL; 637 638 check_pfn: 639 if (unlikely(pfn > highest_memmap_pfn)) { 640 print_bad_pte(vma, addr, pte, NULL); 641 return NULL; 642 } 643 644 /* 645 * NOTE! We still have PageReserved() pages in the page tables. 646 * eg. VDSO mappings can cause them to exist. 647 */ 648 out: 649 return pfn_to_page(pfn); 650 } 651 652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 653 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 654 pmd_t pmd) 655 { 656 unsigned long pfn = pmd_pfn(pmd); 657 658 /* 659 * There is no pmd_special() but there may be special pmds, e.g. 660 * in a direct-access (dax) mapping, so let's just replicate the 661 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 662 */ 663 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 664 if (vma->vm_flags & VM_MIXEDMAP) { 665 if (!pfn_valid(pfn)) 666 return NULL; 667 goto out; 668 } else { 669 unsigned long off; 670 off = (addr - vma->vm_start) >> PAGE_SHIFT; 671 if (pfn == vma->vm_pgoff + off) 672 return NULL; 673 if (!is_cow_mapping(vma->vm_flags)) 674 return NULL; 675 } 676 } 677 678 if (pmd_devmap(pmd)) 679 return NULL; 680 if (is_zero_pfn(pfn)) 681 return NULL; 682 if (unlikely(pfn > highest_memmap_pfn)) 683 return NULL; 684 685 /* 686 * NOTE! We still have PageReserved() pages in the page tables. 687 * eg. VDSO mappings can cause them to exist. 688 */ 689 out: 690 return pfn_to_page(pfn); 691 } 692 #endif 693 694 /* 695 * copy one vm_area from one task to the other. Assumes the page tables 696 * already present in the new task to be cleared in the whole range 697 * covered by this vma. 698 */ 699 700 static inline unsigned long 701 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 702 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 703 unsigned long addr, int *rss) 704 { 705 unsigned long vm_flags = vma->vm_flags; 706 pte_t pte = *src_pte; 707 struct page *page; 708 709 /* pte contains position in swap or file, so copy. */ 710 if (unlikely(!pte_present(pte))) { 711 swp_entry_t entry = pte_to_swp_entry(pte); 712 713 if (likely(!non_swap_entry(entry))) { 714 if (swap_duplicate(entry) < 0) 715 return entry.val; 716 717 /* make sure dst_mm is on swapoff's mmlist. */ 718 if (unlikely(list_empty(&dst_mm->mmlist))) { 719 spin_lock(&mmlist_lock); 720 if (list_empty(&dst_mm->mmlist)) 721 list_add(&dst_mm->mmlist, 722 &src_mm->mmlist); 723 spin_unlock(&mmlist_lock); 724 } 725 rss[MM_SWAPENTS]++; 726 } else if (is_migration_entry(entry)) { 727 page = migration_entry_to_page(entry); 728 729 rss[mm_counter(page)]++; 730 731 if (is_write_migration_entry(entry) && 732 is_cow_mapping(vm_flags)) { 733 /* 734 * COW mappings require pages in both 735 * parent and child to be set to read. 736 */ 737 make_migration_entry_read(&entry); 738 pte = swp_entry_to_pte(entry); 739 if (pte_swp_soft_dirty(*src_pte)) 740 pte = pte_swp_mksoft_dirty(pte); 741 set_pte_at(src_mm, addr, src_pte, pte); 742 } 743 } else if (is_device_private_entry(entry)) { 744 page = device_private_entry_to_page(entry); 745 746 /* 747 * Update rss count even for unaddressable pages, as 748 * they should treated just like normal pages in this 749 * respect. 750 * 751 * We will likely want to have some new rss counters 752 * for unaddressable pages, at some point. But for now 753 * keep things as they are. 754 */ 755 get_page(page); 756 rss[mm_counter(page)]++; 757 page_dup_rmap(page, false); 758 759 /* 760 * We do not preserve soft-dirty information, because so 761 * far, checkpoint/restore is the only feature that 762 * requires that. And checkpoint/restore does not work 763 * when a device driver is involved (you cannot easily 764 * save and restore device driver state). 765 */ 766 if (is_write_device_private_entry(entry) && 767 is_cow_mapping(vm_flags)) { 768 make_device_private_entry_read(&entry); 769 pte = swp_entry_to_pte(entry); 770 set_pte_at(src_mm, addr, src_pte, pte); 771 } 772 } 773 goto out_set_pte; 774 } 775 776 /* 777 * If it's a COW mapping, write protect it both 778 * in the parent and the child 779 */ 780 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 781 ptep_set_wrprotect(src_mm, addr, src_pte); 782 pte = pte_wrprotect(pte); 783 } 784 785 /* 786 * If it's a shared mapping, mark it clean in 787 * the child 788 */ 789 if (vm_flags & VM_SHARED) 790 pte = pte_mkclean(pte); 791 pte = pte_mkold(pte); 792 793 page = vm_normal_page(vma, addr, pte); 794 if (page) { 795 get_page(page); 796 page_dup_rmap(page, false); 797 rss[mm_counter(page)]++; 798 } else if (pte_devmap(pte)) { 799 page = pte_page(pte); 800 801 /* 802 * Cache coherent device memory behave like regular page and 803 * not like persistent memory page. For more informations see 804 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 805 */ 806 if (is_device_public_page(page)) { 807 get_page(page); 808 page_dup_rmap(page, false); 809 rss[mm_counter(page)]++; 810 } 811 } 812 813 out_set_pte: 814 set_pte_at(dst_mm, addr, dst_pte, pte); 815 return 0; 816 } 817 818 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 819 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 820 unsigned long addr, unsigned long end) 821 { 822 pte_t *orig_src_pte, *orig_dst_pte; 823 pte_t *src_pte, *dst_pte; 824 spinlock_t *src_ptl, *dst_ptl; 825 int progress = 0; 826 int rss[NR_MM_COUNTERS]; 827 swp_entry_t entry = (swp_entry_t){0}; 828 829 again: 830 init_rss_vec(rss); 831 832 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 833 if (!dst_pte) 834 return -ENOMEM; 835 src_pte = pte_offset_map(src_pmd, addr); 836 src_ptl = pte_lockptr(src_mm, src_pmd); 837 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 838 orig_src_pte = src_pte; 839 orig_dst_pte = dst_pte; 840 arch_enter_lazy_mmu_mode(); 841 842 do { 843 /* 844 * We are holding two locks at this point - either of them 845 * could generate latencies in another task on another CPU. 846 */ 847 if (progress >= 32) { 848 progress = 0; 849 if (need_resched() || 850 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 851 break; 852 } 853 if (pte_none(*src_pte)) { 854 progress++; 855 continue; 856 } 857 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 858 vma, addr, rss); 859 if (entry.val) 860 break; 861 progress += 8; 862 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 863 864 arch_leave_lazy_mmu_mode(); 865 spin_unlock(src_ptl); 866 pte_unmap(orig_src_pte); 867 add_mm_rss_vec(dst_mm, rss); 868 pte_unmap_unlock(orig_dst_pte, dst_ptl); 869 cond_resched(); 870 871 if (entry.val) { 872 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 873 return -ENOMEM; 874 progress = 0; 875 } 876 if (addr != end) 877 goto again; 878 return 0; 879 } 880 881 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 882 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 883 unsigned long addr, unsigned long end) 884 { 885 pmd_t *src_pmd, *dst_pmd; 886 unsigned long next; 887 888 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 889 if (!dst_pmd) 890 return -ENOMEM; 891 src_pmd = pmd_offset(src_pud, addr); 892 do { 893 next = pmd_addr_end(addr, end); 894 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 895 || pmd_devmap(*src_pmd)) { 896 int err; 897 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 898 err = copy_huge_pmd(dst_mm, src_mm, 899 dst_pmd, src_pmd, addr, vma); 900 if (err == -ENOMEM) 901 return -ENOMEM; 902 if (!err) 903 continue; 904 /* fall through */ 905 } 906 if (pmd_none_or_clear_bad(src_pmd)) 907 continue; 908 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 909 vma, addr, next)) 910 return -ENOMEM; 911 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 912 return 0; 913 } 914 915 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 916 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 917 unsigned long addr, unsigned long end) 918 { 919 pud_t *src_pud, *dst_pud; 920 unsigned long next; 921 922 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 923 if (!dst_pud) 924 return -ENOMEM; 925 src_pud = pud_offset(src_p4d, addr); 926 do { 927 next = pud_addr_end(addr, end); 928 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 929 int err; 930 931 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 932 err = copy_huge_pud(dst_mm, src_mm, 933 dst_pud, src_pud, addr, vma); 934 if (err == -ENOMEM) 935 return -ENOMEM; 936 if (!err) 937 continue; 938 /* fall through */ 939 } 940 if (pud_none_or_clear_bad(src_pud)) 941 continue; 942 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 943 vma, addr, next)) 944 return -ENOMEM; 945 } while (dst_pud++, src_pud++, addr = next, addr != end); 946 return 0; 947 } 948 949 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 950 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 951 unsigned long addr, unsigned long end) 952 { 953 p4d_t *src_p4d, *dst_p4d; 954 unsigned long next; 955 956 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 957 if (!dst_p4d) 958 return -ENOMEM; 959 src_p4d = p4d_offset(src_pgd, addr); 960 do { 961 next = p4d_addr_end(addr, end); 962 if (p4d_none_or_clear_bad(src_p4d)) 963 continue; 964 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 965 vma, addr, next)) 966 return -ENOMEM; 967 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 968 return 0; 969 } 970 971 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 972 struct vm_area_struct *vma) 973 { 974 pgd_t *src_pgd, *dst_pgd; 975 unsigned long next; 976 unsigned long addr = vma->vm_start; 977 unsigned long end = vma->vm_end; 978 struct mmu_notifier_range range; 979 bool is_cow; 980 int ret; 981 982 /* 983 * Don't copy ptes where a page fault will fill them correctly. 984 * Fork becomes much lighter when there are big shared or private 985 * readonly mappings. The tradeoff is that copy_page_range is more 986 * efficient than faulting. 987 */ 988 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 989 !vma->anon_vma) 990 return 0; 991 992 if (is_vm_hugetlb_page(vma)) 993 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 994 995 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 996 /* 997 * We do not free on error cases below as remove_vma 998 * gets called on error from higher level routine 999 */ 1000 ret = track_pfn_copy(vma); 1001 if (ret) 1002 return ret; 1003 } 1004 1005 /* 1006 * We need to invalidate the secondary MMU mappings only when 1007 * there could be a permission downgrade on the ptes of the 1008 * parent mm. And a permission downgrade will only happen if 1009 * is_cow_mapping() returns true. 1010 */ 1011 is_cow = is_cow_mapping(vma->vm_flags); 1012 1013 if (is_cow) { 1014 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1015 0, vma, src_mm, addr, end); 1016 mmu_notifier_invalidate_range_start(&range); 1017 } 1018 1019 ret = 0; 1020 dst_pgd = pgd_offset(dst_mm, addr); 1021 src_pgd = pgd_offset(src_mm, addr); 1022 do { 1023 next = pgd_addr_end(addr, end); 1024 if (pgd_none_or_clear_bad(src_pgd)) 1025 continue; 1026 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1027 vma, addr, next))) { 1028 ret = -ENOMEM; 1029 break; 1030 } 1031 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1032 1033 if (is_cow) 1034 mmu_notifier_invalidate_range_end(&range); 1035 return ret; 1036 } 1037 1038 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1039 struct vm_area_struct *vma, pmd_t *pmd, 1040 unsigned long addr, unsigned long end, 1041 struct zap_details *details) 1042 { 1043 struct mm_struct *mm = tlb->mm; 1044 int force_flush = 0; 1045 int rss[NR_MM_COUNTERS]; 1046 spinlock_t *ptl; 1047 pte_t *start_pte; 1048 pte_t *pte; 1049 swp_entry_t entry; 1050 1051 tlb_change_page_size(tlb, PAGE_SIZE); 1052 again: 1053 init_rss_vec(rss); 1054 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1055 pte = start_pte; 1056 flush_tlb_batched_pending(mm); 1057 arch_enter_lazy_mmu_mode(); 1058 do { 1059 pte_t ptent = *pte; 1060 if (pte_none(ptent)) 1061 continue; 1062 1063 if (pte_present(ptent)) { 1064 struct page *page; 1065 1066 page = _vm_normal_page(vma, addr, ptent, true); 1067 if (unlikely(details) && page) { 1068 /* 1069 * unmap_shared_mapping_pages() wants to 1070 * invalidate cache without truncating: 1071 * unmap shared but keep private pages. 1072 */ 1073 if (details->check_mapping && 1074 details->check_mapping != page_rmapping(page)) 1075 continue; 1076 } 1077 ptent = ptep_get_and_clear_full(mm, addr, pte, 1078 tlb->fullmm); 1079 tlb_remove_tlb_entry(tlb, pte, addr); 1080 if (unlikely(!page)) 1081 continue; 1082 1083 if (!PageAnon(page)) { 1084 if (pte_dirty(ptent)) { 1085 force_flush = 1; 1086 set_page_dirty(page); 1087 } 1088 if (pte_young(ptent) && 1089 likely(!(vma->vm_flags & VM_SEQ_READ))) 1090 mark_page_accessed(page); 1091 } 1092 rss[mm_counter(page)]--; 1093 page_remove_rmap(page, false); 1094 if (unlikely(page_mapcount(page) < 0)) 1095 print_bad_pte(vma, addr, ptent, page); 1096 if (unlikely(__tlb_remove_page(tlb, page))) { 1097 force_flush = 1; 1098 addr += PAGE_SIZE; 1099 break; 1100 } 1101 continue; 1102 } 1103 1104 entry = pte_to_swp_entry(ptent); 1105 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1106 struct page *page = device_private_entry_to_page(entry); 1107 1108 if (unlikely(details && details->check_mapping)) { 1109 /* 1110 * unmap_shared_mapping_pages() wants to 1111 * invalidate cache without truncating: 1112 * unmap shared but keep private pages. 1113 */ 1114 if (details->check_mapping != 1115 page_rmapping(page)) 1116 continue; 1117 } 1118 1119 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1120 rss[mm_counter(page)]--; 1121 page_remove_rmap(page, false); 1122 put_page(page); 1123 continue; 1124 } 1125 1126 /* If details->check_mapping, we leave swap entries. */ 1127 if (unlikely(details)) 1128 continue; 1129 1130 entry = pte_to_swp_entry(ptent); 1131 if (!non_swap_entry(entry)) 1132 rss[MM_SWAPENTS]--; 1133 else if (is_migration_entry(entry)) { 1134 struct page *page; 1135 1136 page = migration_entry_to_page(entry); 1137 rss[mm_counter(page)]--; 1138 } 1139 if (unlikely(!free_swap_and_cache(entry))) 1140 print_bad_pte(vma, addr, ptent, NULL); 1141 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1142 } while (pte++, addr += PAGE_SIZE, addr != end); 1143 1144 add_mm_rss_vec(mm, rss); 1145 arch_leave_lazy_mmu_mode(); 1146 1147 /* Do the actual TLB flush before dropping ptl */ 1148 if (force_flush) 1149 tlb_flush_mmu_tlbonly(tlb); 1150 pte_unmap_unlock(start_pte, ptl); 1151 1152 /* 1153 * If we forced a TLB flush (either due to running out of 1154 * batch buffers or because we needed to flush dirty TLB 1155 * entries before releasing the ptl), free the batched 1156 * memory too. Restart if we didn't do everything. 1157 */ 1158 if (force_flush) { 1159 force_flush = 0; 1160 tlb_flush_mmu(tlb); 1161 if (addr != end) 1162 goto again; 1163 } 1164 1165 return addr; 1166 } 1167 1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1169 struct vm_area_struct *vma, pud_t *pud, 1170 unsigned long addr, unsigned long end, 1171 struct zap_details *details) 1172 { 1173 pmd_t *pmd; 1174 unsigned long next; 1175 1176 pmd = pmd_offset(pud, addr); 1177 do { 1178 next = pmd_addr_end(addr, end); 1179 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1180 if (next - addr != HPAGE_PMD_SIZE) 1181 __split_huge_pmd(vma, pmd, addr, false, NULL); 1182 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1183 goto next; 1184 /* fall through */ 1185 } 1186 /* 1187 * Here there can be other concurrent MADV_DONTNEED or 1188 * trans huge page faults running, and if the pmd is 1189 * none or trans huge it can change under us. This is 1190 * because MADV_DONTNEED holds the mmap_sem in read 1191 * mode. 1192 */ 1193 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1194 goto next; 1195 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1196 next: 1197 cond_resched(); 1198 } while (pmd++, addr = next, addr != end); 1199 1200 return addr; 1201 } 1202 1203 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1204 struct vm_area_struct *vma, p4d_t *p4d, 1205 unsigned long addr, unsigned long end, 1206 struct zap_details *details) 1207 { 1208 pud_t *pud; 1209 unsigned long next; 1210 1211 pud = pud_offset(p4d, addr); 1212 do { 1213 next = pud_addr_end(addr, end); 1214 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1215 if (next - addr != HPAGE_PUD_SIZE) { 1216 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1217 split_huge_pud(vma, pud, addr); 1218 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1219 goto next; 1220 /* fall through */ 1221 } 1222 if (pud_none_or_clear_bad(pud)) 1223 continue; 1224 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1225 next: 1226 cond_resched(); 1227 } while (pud++, addr = next, addr != end); 1228 1229 return addr; 1230 } 1231 1232 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1233 struct vm_area_struct *vma, pgd_t *pgd, 1234 unsigned long addr, unsigned long end, 1235 struct zap_details *details) 1236 { 1237 p4d_t *p4d; 1238 unsigned long next; 1239 1240 p4d = p4d_offset(pgd, addr); 1241 do { 1242 next = p4d_addr_end(addr, end); 1243 if (p4d_none_or_clear_bad(p4d)) 1244 continue; 1245 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1246 } while (p4d++, addr = next, addr != end); 1247 1248 return addr; 1249 } 1250 1251 void unmap_page_range(struct mmu_gather *tlb, 1252 struct vm_area_struct *vma, 1253 unsigned long addr, unsigned long end, 1254 struct zap_details *details) 1255 { 1256 pgd_t *pgd; 1257 unsigned long next; 1258 1259 BUG_ON(addr >= end); 1260 tlb_start_vma(tlb, vma); 1261 pgd = pgd_offset(vma->vm_mm, addr); 1262 do { 1263 next = pgd_addr_end(addr, end); 1264 if (pgd_none_or_clear_bad(pgd)) 1265 continue; 1266 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1267 } while (pgd++, addr = next, addr != end); 1268 tlb_end_vma(tlb, vma); 1269 } 1270 1271 1272 static void unmap_single_vma(struct mmu_gather *tlb, 1273 struct vm_area_struct *vma, unsigned long start_addr, 1274 unsigned long end_addr, 1275 struct zap_details *details) 1276 { 1277 unsigned long start = max(vma->vm_start, start_addr); 1278 unsigned long end; 1279 1280 if (start >= vma->vm_end) 1281 return; 1282 end = min(vma->vm_end, end_addr); 1283 if (end <= vma->vm_start) 1284 return; 1285 1286 if (vma->vm_file) 1287 uprobe_munmap(vma, start, end); 1288 1289 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1290 untrack_pfn(vma, 0, 0); 1291 1292 if (start != end) { 1293 if (unlikely(is_vm_hugetlb_page(vma))) { 1294 /* 1295 * It is undesirable to test vma->vm_file as it 1296 * should be non-null for valid hugetlb area. 1297 * However, vm_file will be NULL in the error 1298 * cleanup path of mmap_region. When 1299 * hugetlbfs ->mmap method fails, 1300 * mmap_region() nullifies vma->vm_file 1301 * before calling this function to clean up. 1302 * Since no pte has actually been setup, it is 1303 * safe to do nothing in this case. 1304 */ 1305 if (vma->vm_file) { 1306 i_mmap_lock_write(vma->vm_file->f_mapping); 1307 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1308 i_mmap_unlock_write(vma->vm_file->f_mapping); 1309 } 1310 } else 1311 unmap_page_range(tlb, vma, start, end, details); 1312 } 1313 } 1314 1315 /** 1316 * unmap_vmas - unmap a range of memory covered by a list of vma's 1317 * @tlb: address of the caller's struct mmu_gather 1318 * @vma: the starting vma 1319 * @start_addr: virtual address at which to start unmapping 1320 * @end_addr: virtual address at which to end unmapping 1321 * 1322 * Unmap all pages in the vma list. 1323 * 1324 * Only addresses between `start' and `end' will be unmapped. 1325 * 1326 * The VMA list must be sorted in ascending virtual address order. 1327 * 1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1329 * range after unmap_vmas() returns. So the only responsibility here is to 1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1331 * drops the lock and schedules. 1332 */ 1333 void unmap_vmas(struct mmu_gather *tlb, 1334 struct vm_area_struct *vma, unsigned long start_addr, 1335 unsigned long end_addr) 1336 { 1337 struct mmu_notifier_range range; 1338 1339 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1340 start_addr, end_addr); 1341 mmu_notifier_invalidate_range_start(&range); 1342 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1343 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1344 mmu_notifier_invalidate_range_end(&range); 1345 } 1346 1347 /** 1348 * zap_page_range - remove user pages in a given range 1349 * @vma: vm_area_struct holding the applicable pages 1350 * @start: starting address of pages to zap 1351 * @size: number of bytes to zap 1352 * 1353 * Caller must protect the VMA list 1354 */ 1355 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1356 unsigned long size) 1357 { 1358 struct mmu_notifier_range range; 1359 struct mmu_gather tlb; 1360 1361 lru_add_drain(); 1362 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1363 start, start + size); 1364 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1365 update_hiwater_rss(vma->vm_mm); 1366 mmu_notifier_invalidate_range_start(&range); 1367 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1368 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1369 mmu_notifier_invalidate_range_end(&range); 1370 tlb_finish_mmu(&tlb, start, range.end); 1371 } 1372 1373 /** 1374 * zap_page_range_single - remove user pages in a given range 1375 * @vma: vm_area_struct holding the applicable pages 1376 * @address: starting address of pages to zap 1377 * @size: number of bytes to zap 1378 * @details: details of shared cache invalidation 1379 * 1380 * The range must fit into one VMA. 1381 */ 1382 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1383 unsigned long size, struct zap_details *details) 1384 { 1385 struct mmu_notifier_range range; 1386 struct mmu_gather tlb; 1387 1388 lru_add_drain(); 1389 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1390 address, address + size); 1391 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1392 update_hiwater_rss(vma->vm_mm); 1393 mmu_notifier_invalidate_range_start(&range); 1394 unmap_single_vma(&tlb, vma, address, range.end, details); 1395 mmu_notifier_invalidate_range_end(&range); 1396 tlb_finish_mmu(&tlb, address, range.end); 1397 } 1398 1399 /** 1400 * zap_vma_ptes - remove ptes mapping the vma 1401 * @vma: vm_area_struct holding ptes to be zapped 1402 * @address: starting address of pages to zap 1403 * @size: number of bytes to zap 1404 * 1405 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1406 * 1407 * The entire address range must be fully contained within the vma. 1408 * 1409 */ 1410 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1411 unsigned long size) 1412 { 1413 if (address < vma->vm_start || address + size > vma->vm_end || 1414 !(vma->vm_flags & VM_PFNMAP)) 1415 return; 1416 1417 zap_page_range_single(vma, address, size, NULL); 1418 } 1419 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1420 1421 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1422 spinlock_t **ptl) 1423 { 1424 pgd_t *pgd; 1425 p4d_t *p4d; 1426 pud_t *pud; 1427 pmd_t *pmd; 1428 1429 pgd = pgd_offset(mm, addr); 1430 p4d = p4d_alloc(mm, pgd, addr); 1431 if (!p4d) 1432 return NULL; 1433 pud = pud_alloc(mm, p4d, addr); 1434 if (!pud) 1435 return NULL; 1436 pmd = pmd_alloc(mm, pud, addr); 1437 if (!pmd) 1438 return NULL; 1439 1440 VM_BUG_ON(pmd_trans_huge(*pmd)); 1441 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1442 } 1443 1444 /* 1445 * This is the old fallback for page remapping. 1446 * 1447 * For historical reasons, it only allows reserved pages. Only 1448 * old drivers should use this, and they needed to mark their 1449 * pages reserved for the old functions anyway. 1450 */ 1451 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1452 struct page *page, pgprot_t prot) 1453 { 1454 struct mm_struct *mm = vma->vm_mm; 1455 int retval; 1456 pte_t *pte; 1457 spinlock_t *ptl; 1458 1459 retval = -EINVAL; 1460 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1461 goto out; 1462 retval = -ENOMEM; 1463 flush_dcache_page(page); 1464 pte = get_locked_pte(mm, addr, &ptl); 1465 if (!pte) 1466 goto out; 1467 retval = -EBUSY; 1468 if (!pte_none(*pte)) 1469 goto out_unlock; 1470 1471 /* Ok, finally just insert the thing.. */ 1472 get_page(page); 1473 inc_mm_counter_fast(mm, mm_counter_file(page)); 1474 page_add_file_rmap(page, false); 1475 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1476 1477 retval = 0; 1478 out_unlock: 1479 pte_unmap_unlock(pte, ptl); 1480 out: 1481 return retval; 1482 } 1483 1484 /** 1485 * vm_insert_page - insert single page into user vma 1486 * @vma: user vma to map to 1487 * @addr: target user address of this page 1488 * @page: source kernel page 1489 * 1490 * This allows drivers to insert individual pages they've allocated 1491 * into a user vma. 1492 * 1493 * The page has to be a nice clean _individual_ kernel allocation. 1494 * If you allocate a compound page, you need to have marked it as 1495 * such (__GFP_COMP), or manually just split the page up yourself 1496 * (see split_page()). 1497 * 1498 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1499 * took an arbitrary page protection parameter. This doesn't allow 1500 * that. Your vma protection will have to be set up correctly, which 1501 * means that if you want a shared writable mapping, you'd better 1502 * ask for a shared writable mapping! 1503 * 1504 * The page does not need to be reserved. 1505 * 1506 * Usually this function is called from f_op->mmap() handler 1507 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1508 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1509 * function from other places, for example from page-fault handler. 1510 * 1511 * Return: %0 on success, negative error code otherwise. 1512 */ 1513 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1514 struct page *page) 1515 { 1516 if (addr < vma->vm_start || addr >= vma->vm_end) 1517 return -EFAULT; 1518 if (!page_count(page)) 1519 return -EINVAL; 1520 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1521 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1522 BUG_ON(vma->vm_flags & VM_PFNMAP); 1523 vma->vm_flags |= VM_MIXEDMAP; 1524 } 1525 return insert_page(vma, addr, page, vma->vm_page_prot); 1526 } 1527 EXPORT_SYMBOL(vm_insert_page); 1528 1529 /* 1530 * __vm_map_pages - maps range of kernel pages into user vma 1531 * @vma: user vma to map to 1532 * @pages: pointer to array of source kernel pages 1533 * @num: number of pages in page array 1534 * @offset: user's requested vm_pgoff 1535 * 1536 * This allows drivers to map range of kernel pages into a user vma. 1537 * 1538 * Return: 0 on success and error code otherwise. 1539 */ 1540 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1541 unsigned long num, unsigned long offset) 1542 { 1543 unsigned long count = vma_pages(vma); 1544 unsigned long uaddr = vma->vm_start; 1545 int ret, i; 1546 1547 /* Fail if the user requested offset is beyond the end of the object */ 1548 if (offset >= num) 1549 return -ENXIO; 1550 1551 /* Fail if the user requested size exceeds available object size */ 1552 if (count > num - offset) 1553 return -ENXIO; 1554 1555 for (i = 0; i < count; i++) { 1556 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1557 if (ret < 0) 1558 return ret; 1559 uaddr += PAGE_SIZE; 1560 } 1561 1562 return 0; 1563 } 1564 1565 /** 1566 * vm_map_pages - maps range of kernel pages starts with non zero offset 1567 * @vma: user vma to map to 1568 * @pages: pointer to array of source kernel pages 1569 * @num: number of pages in page array 1570 * 1571 * Maps an object consisting of @num pages, catering for the user's 1572 * requested vm_pgoff 1573 * 1574 * If we fail to insert any page into the vma, the function will return 1575 * immediately leaving any previously inserted pages present. Callers 1576 * from the mmap handler may immediately return the error as their caller 1577 * will destroy the vma, removing any successfully inserted pages. Other 1578 * callers should make their own arrangements for calling unmap_region(). 1579 * 1580 * Context: Process context. Called by mmap handlers. 1581 * Return: 0 on success and error code otherwise. 1582 */ 1583 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1584 unsigned long num) 1585 { 1586 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1587 } 1588 EXPORT_SYMBOL(vm_map_pages); 1589 1590 /** 1591 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1592 * @vma: user vma to map to 1593 * @pages: pointer to array of source kernel pages 1594 * @num: number of pages in page array 1595 * 1596 * Similar to vm_map_pages(), except that it explicitly sets the offset 1597 * to 0. This function is intended for the drivers that did not consider 1598 * vm_pgoff. 1599 * 1600 * Context: Process context. Called by mmap handlers. 1601 * Return: 0 on success and error code otherwise. 1602 */ 1603 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1604 unsigned long num) 1605 { 1606 return __vm_map_pages(vma, pages, num, 0); 1607 } 1608 EXPORT_SYMBOL(vm_map_pages_zero); 1609 1610 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1611 pfn_t pfn, pgprot_t prot, bool mkwrite) 1612 { 1613 struct mm_struct *mm = vma->vm_mm; 1614 pte_t *pte, entry; 1615 spinlock_t *ptl; 1616 1617 pte = get_locked_pte(mm, addr, &ptl); 1618 if (!pte) 1619 return VM_FAULT_OOM; 1620 if (!pte_none(*pte)) { 1621 if (mkwrite) { 1622 /* 1623 * For read faults on private mappings the PFN passed 1624 * in may not match the PFN we have mapped if the 1625 * mapped PFN is a writeable COW page. In the mkwrite 1626 * case we are creating a writable PTE for a shared 1627 * mapping and we expect the PFNs to match. If they 1628 * don't match, we are likely racing with block 1629 * allocation and mapping invalidation so just skip the 1630 * update. 1631 */ 1632 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1633 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1634 goto out_unlock; 1635 } 1636 entry = pte_mkyoung(*pte); 1637 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1638 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1639 update_mmu_cache(vma, addr, pte); 1640 } 1641 goto out_unlock; 1642 } 1643 1644 /* Ok, finally just insert the thing.. */ 1645 if (pfn_t_devmap(pfn)) 1646 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1647 else 1648 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1649 1650 if (mkwrite) { 1651 entry = pte_mkyoung(entry); 1652 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1653 } 1654 1655 set_pte_at(mm, addr, pte, entry); 1656 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1657 1658 out_unlock: 1659 pte_unmap_unlock(pte, ptl); 1660 return VM_FAULT_NOPAGE; 1661 } 1662 1663 /** 1664 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1665 * @vma: user vma to map to 1666 * @addr: target user address of this page 1667 * @pfn: source kernel pfn 1668 * @pgprot: pgprot flags for the inserted page 1669 * 1670 * This is exactly like vmf_insert_pfn(), except that it allows drivers to 1671 * to override pgprot on a per-page basis. 1672 * 1673 * This only makes sense for IO mappings, and it makes no sense for 1674 * COW mappings. In general, using multiple vmas is preferable; 1675 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1676 * impractical. 1677 * 1678 * Context: Process context. May allocate using %GFP_KERNEL. 1679 * Return: vm_fault_t value. 1680 */ 1681 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1682 unsigned long pfn, pgprot_t pgprot) 1683 { 1684 /* 1685 * Technically, architectures with pte_special can avoid all these 1686 * restrictions (same for remap_pfn_range). However we would like 1687 * consistency in testing and feature parity among all, so we should 1688 * try to keep these invariants in place for everybody. 1689 */ 1690 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1691 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1692 (VM_PFNMAP|VM_MIXEDMAP)); 1693 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1694 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1695 1696 if (addr < vma->vm_start || addr >= vma->vm_end) 1697 return VM_FAULT_SIGBUS; 1698 1699 if (!pfn_modify_allowed(pfn, pgprot)) 1700 return VM_FAULT_SIGBUS; 1701 1702 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1703 1704 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1705 false); 1706 } 1707 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1708 1709 /** 1710 * vmf_insert_pfn - insert single pfn into user vma 1711 * @vma: user vma to map to 1712 * @addr: target user address of this page 1713 * @pfn: source kernel pfn 1714 * 1715 * Similar to vm_insert_page, this allows drivers to insert individual pages 1716 * they've allocated into a user vma. Same comments apply. 1717 * 1718 * This function should only be called from a vm_ops->fault handler, and 1719 * in that case the handler should return the result of this function. 1720 * 1721 * vma cannot be a COW mapping. 1722 * 1723 * As this is called only for pages that do not currently exist, we 1724 * do not need to flush old virtual caches or the TLB. 1725 * 1726 * Context: Process context. May allocate using %GFP_KERNEL. 1727 * Return: vm_fault_t value. 1728 */ 1729 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1730 unsigned long pfn) 1731 { 1732 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1733 } 1734 EXPORT_SYMBOL(vmf_insert_pfn); 1735 1736 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1737 { 1738 /* these checks mirror the abort conditions in vm_normal_page */ 1739 if (vma->vm_flags & VM_MIXEDMAP) 1740 return true; 1741 if (pfn_t_devmap(pfn)) 1742 return true; 1743 if (pfn_t_special(pfn)) 1744 return true; 1745 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1746 return true; 1747 return false; 1748 } 1749 1750 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1751 unsigned long addr, pfn_t pfn, bool mkwrite) 1752 { 1753 pgprot_t pgprot = vma->vm_page_prot; 1754 int err; 1755 1756 BUG_ON(!vm_mixed_ok(vma, pfn)); 1757 1758 if (addr < vma->vm_start || addr >= vma->vm_end) 1759 return VM_FAULT_SIGBUS; 1760 1761 track_pfn_insert(vma, &pgprot, pfn); 1762 1763 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1764 return VM_FAULT_SIGBUS; 1765 1766 /* 1767 * If we don't have pte special, then we have to use the pfn_valid() 1768 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1769 * refcount the page if pfn_valid is true (hence insert_page rather 1770 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1771 * without pte special, it would there be refcounted as a normal page. 1772 */ 1773 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1774 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1775 struct page *page; 1776 1777 /* 1778 * At this point we are committed to insert_page() 1779 * regardless of whether the caller specified flags that 1780 * result in pfn_t_has_page() == false. 1781 */ 1782 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1783 err = insert_page(vma, addr, page, pgprot); 1784 } else { 1785 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1786 } 1787 1788 if (err == -ENOMEM) 1789 return VM_FAULT_OOM; 1790 if (err < 0 && err != -EBUSY) 1791 return VM_FAULT_SIGBUS; 1792 1793 return VM_FAULT_NOPAGE; 1794 } 1795 1796 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1797 pfn_t pfn) 1798 { 1799 return __vm_insert_mixed(vma, addr, pfn, false); 1800 } 1801 EXPORT_SYMBOL(vmf_insert_mixed); 1802 1803 /* 1804 * If the insertion of PTE failed because someone else already added a 1805 * different entry in the mean time, we treat that as success as we assume 1806 * the same entry was actually inserted. 1807 */ 1808 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1809 unsigned long addr, pfn_t pfn) 1810 { 1811 return __vm_insert_mixed(vma, addr, pfn, true); 1812 } 1813 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1814 1815 /* 1816 * maps a range of physical memory into the requested pages. the old 1817 * mappings are removed. any references to nonexistent pages results 1818 * in null mappings (currently treated as "copy-on-access") 1819 */ 1820 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1821 unsigned long addr, unsigned long end, 1822 unsigned long pfn, pgprot_t prot) 1823 { 1824 pte_t *pte; 1825 spinlock_t *ptl; 1826 int err = 0; 1827 1828 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1829 if (!pte) 1830 return -ENOMEM; 1831 arch_enter_lazy_mmu_mode(); 1832 do { 1833 BUG_ON(!pte_none(*pte)); 1834 if (!pfn_modify_allowed(pfn, prot)) { 1835 err = -EACCES; 1836 break; 1837 } 1838 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1839 pfn++; 1840 } while (pte++, addr += PAGE_SIZE, addr != end); 1841 arch_leave_lazy_mmu_mode(); 1842 pte_unmap_unlock(pte - 1, ptl); 1843 return err; 1844 } 1845 1846 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1847 unsigned long addr, unsigned long end, 1848 unsigned long pfn, pgprot_t prot) 1849 { 1850 pmd_t *pmd; 1851 unsigned long next; 1852 int err; 1853 1854 pfn -= addr >> PAGE_SHIFT; 1855 pmd = pmd_alloc(mm, pud, addr); 1856 if (!pmd) 1857 return -ENOMEM; 1858 VM_BUG_ON(pmd_trans_huge(*pmd)); 1859 do { 1860 next = pmd_addr_end(addr, end); 1861 err = remap_pte_range(mm, pmd, addr, next, 1862 pfn + (addr >> PAGE_SHIFT), prot); 1863 if (err) 1864 return err; 1865 } while (pmd++, addr = next, addr != end); 1866 return 0; 1867 } 1868 1869 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 1870 unsigned long addr, unsigned long end, 1871 unsigned long pfn, pgprot_t prot) 1872 { 1873 pud_t *pud; 1874 unsigned long next; 1875 int err; 1876 1877 pfn -= addr >> PAGE_SHIFT; 1878 pud = pud_alloc(mm, p4d, addr); 1879 if (!pud) 1880 return -ENOMEM; 1881 do { 1882 next = pud_addr_end(addr, end); 1883 err = remap_pmd_range(mm, pud, addr, next, 1884 pfn + (addr >> PAGE_SHIFT), prot); 1885 if (err) 1886 return err; 1887 } while (pud++, addr = next, addr != end); 1888 return 0; 1889 } 1890 1891 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 1892 unsigned long addr, unsigned long end, 1893 unsigned long pfn, pgprot_t prot) 1894 { 1895 p4d_t *p4d; 1896 unsigned long next; 1897 int err; 1898 1899 pfn -= addr >> PAGE_SHIFT; 1900 p4d = p4d_alloc(mm, pgd, addr); 1901 if (!p4d) 1902 return -ENOMEM; 1903 do { 1904 next = p4d_addr_end(addr, end); 1905 err = remap_pud_range(mm, p4d, addr, next, 1906 pfn + (addr >> PAGE_SHIFT), prot); 1907 if (err) 1908 return err; 1909 } while (p4d++, addr = next, addr != end); 1910 return 0; 1911 } 1912 1913 /** 1914 * remap_pfn_range - remap kernel memory to userspace 1915 * @vma: user vma to map to 1916 * @addr: target user address to start at 1917 * @pfn: physical address of kernel memory 1918 * @size: size of map area 1919 * @prot: page protection flags for this mapping 1920 * 1921 * Note: this is only safe if the mm semaphore is held when called. 1922 * 1923 * Return: %0 on success, negative error code otherwise. 1924 */ 1925 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1926 unsigned long pfn, unsigned long size, pgprot_t prot) 1927 { 1928 pgd_t *pgd; 1929 unsigned long next; 1930 unsigned long end = addr + PAGE_ALIGN(size); 1931 struct mm_struct *mm = vma->vm_mm; 1932 unsigned long remap_pfn = pfn; 1933 int err; 1934 1935 /* 1936 * Physically remapped pages are special. Tell the 1937 * rest of the world about it: 1938 * VM_IO tells people not to look at these pages 1939 * (accesses can have side effects). 1940 * VM_PFNMAP tells the core MM that the base pages are just 1941 * raw PFN mappings, and do not have a "struct page" associated 1942 * with them. 1943 * VM_DONTEXPAND 1944 * Disable vma merging and expanding with mremap(). 1945 * VM_DONTDUMP 1946 * Omit vma from core dump, even when VM_IO turned off. 1947 * 1948 * There's a horrible special case to handle copy-on-write 1949 * behaviour that some programs depend on. We mark the "original" 1950 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1951 * See vm_normal_page() for details. 1952 */ 1953 if (is_cow_mapping(vma->vm_flags)) { 1954 if (addr != vma->vm_start || end != vma->vm_end) 1955 return -EINVAL; 1956 vma->vm_pgoff = pfn; 1957 } 1958 1959 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1960 if (err) 1961 return -EINVAL; 1962 1963 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1964 1965 BUG_ON(addr >= end); 1966 pfn -= addr >> PAGE_SHIFT; 1967 pgd = pgd_offset(mm, addr); 1968 flush_cache_range(vma, addr, end); 1969 do { 1970 next = pgd_addr_end(addr, end); 1971 err = remap_p4d_range(mm, pgd, addr, next, 1972 pfn + (addr >> PAGE_SHIFT), prot); 1973 if (err) 1974 break; 1975 } while (pgd++, addr = next, addr != end); 1976 1977 if (err) 1978 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1979 1980 return err; 1981 } 1982 EXPORT_SYMBOL(remap_pfn_range); 1983 1984 /** 1985 * vm_iomap_memory - remap memory to userspace 1986 * @vma: user vma to map to 1987 * @start: start of area 1988 * @len: size of area 1989 * 1990 * This is a simplified io_remap_pfn_range() for common driver use. The 1991 * driver just needs to give us the physical memory range to be mapped, 1992 * we'll figure out the rest from the vma information. 1993 * 1994 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1995 * whatever write-combining details or similar. 1996 * 1997 * Return: %0 on success, negative error code otherwise. 1998 */ 1999 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2000 { 2001 unsigned long vm_len, pfn, pages; 2002 2003 /* Check that the physical memory area passed in looks valid */ 2004 if (start + len < start) 2005 return -EINVAL; 2006 /* 2007 * You *really* shouldn't map things that aren't page-aligned, 2008 * but we've historically allowed it because IO memory might 2009 * just have smaller alignment. 2010 */ 2011 len += start & ~PAGE_MASK; 2012 pfn = start >> PAGE_SHIFT; 2013 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2014 if (pfn + pages < pfn) 2015 return -EINVAL; 2016 2017 /* We start the mapping 'vm_pgoff' pages into the area */ 2018 if (vma->vm_pgoff > pages) 2019 return -EINVAL; 2020 pfn += vma->vm_pgoff; 2021 pages -= vma->vm_pgoff; 2022 2023 /* Can we fit all of the mapping? */ 2024 vm_len = vma->vm_end - vma->vm_start; 2025 if (vm_len >> PAGE_SHIFT > pages) 2026 return -EINVAL; 2027 2028 /* Ok, let it rip */ 2029 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2030 } 2031 EXPORT_SYMBOL(vm_iomap_memory); 2032 2033 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2034 unsigned long addr, unsigned long end, 2035 pte_fn_t fn, void *data) 2036 { 2037 pte_t *pte; 2038 int err; 2039 spinlock_t *uninitialized_var(ptl); 2040 2041 pte = (mm == &init_mm) ? 2042 pte_alloc_kernel(pmd, addr) : 2043 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2044 if (!pte) 2045 return -ENOMEM; 2046 2047 BUG_ON(pmd_huge(*pmd)); 2048 2049 arch_enter_lazy_mmu_mode(); 2050 2051 do { 2052 err = fn(pte++, addr, data); 2053 if (err) 2054 break; 2055 } while (addr += PAGE_SIZE, addr != end); 2056 2057 arch_leave_lazy_mmu_mode(); 2058 2059 if (mm != &init_mm) 2060 pte_unmap_unlock(pte-1, ptl); 2061 return err; 2062 } 2063 2064 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2065 unsigned long addr, unsigned long end, 2066 pte_fn_t fn, void *data) 2067 { 2068 pmd_t *pmd; 2069 unsigned long next; 2070 int err; 2071 2072 BUG_ON(pud_huge(*pud)); 2073 2074 pmd = pmd_alloc(mm, pud, addr); 2075 if (!pmd) 2076 return -ENOMEM; 2077 do { 2078 next = pmd_addr_end(addr, end); 2079 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2080 if (err) 2081 break; 2082 } while (pmd++, addr = next, addr != end); 2083 return err; 2084 } 2085 2086 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2087 unsigned long addr, unsigned long end, 2088 pte_fn_t fn, void *data) 2089 { 2090 pud_t *pud; 2091 unsigned long next; 2092 int err; 2093 2094 pud = pud_alloc(mm, p4d, addr); 2095 if (!pud) 2096 return -ENOMEM; 2097 do { 2098 next = pud_addr_end(addr, end); 2099 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2100 if (err) 2101 break; 2102 } while (pud++, addr = next, addr != end); 2103 return err; 2104 } 2105 2106 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2107 unsigned long addr, unsigned long end, 2108 pte_fn_t fn, void *data) 2109 { 2110 p4d_t *p4d; 2111 unsigned long next; 2112 int err; 2113 2114 p4d = p4d_alloc(mm, pgd, addr); 2115 if (!p4d) 2116 return -ENOMEM; 2117 do { 2118 next = p4d_addr_end(addr, end); 2119 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2120 if (err) 2121 break; 2122 } while (p4d++, addr = next, addr != end); 2123 return err; 2124 } 2125 2126 /* 2127 * Scan a region of virtual memory, filling in page tables as necessary 2128 * and calling a provided function on each leaf page table. 2129 */ 2130 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2131 unsigned long size, pte_fn_t fn, void *data) 2132 { 2133 pgd_t *pgd; 2134 unsigned long next; 2135 unsigned long end = addr + size; 2136 int err; 2137 2138 if (WARN_ON(addr >= end)) 2139 return -EINVAL; 2140 2141 pgd = pgd_offset(mm, addr); 2142 do { 2143 next = pgd_addr_end(addr, end); 2144 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2145 if (err) 2146 break; 2147 } while (pgd++, addr = next, addr != end); 2148 2149 return err; 2150 } 2151 EXPORT_SYMBOL_GPL(apply_to_page_range); 2152 2153 /* 2154 * handle_pte_fault chooses page fault handler according to an entry which was 2155 * read non-atomically. Before making any commitment, on those architectures 2156 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2157 * parts, do_swap_page must check under lock before unmapping the pte and 2158 * proceeding (but do_wp_page is only called after already making such a check; 2159 * and do_anonymous_page can safely check later on). 2160 */ 2161 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2162 pte_t *page_table, pte_t orig_pte) 2163 { 2164 int same = 1; 2165 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2166 if (sizeof(pte_t) > sizeof(unsigned long)) { 2167 spinlock_t *ptl = pte_lockptr(mm, pmd); 2168 spin_lock(ptl); 2169 same = pte_same(*page_table, orig_pte); 2170 spin_unlock(ptl); 2171 } 2172 #endif 2173 pte_unmap(page_table); 2174 return same; 2175 } 2176 2177 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2178 { 2179 debug_dma_assert_idle(src); 2180 2181 /* 2182 * If the source page was a PFN mapping, we don't have 2183 * a "struct page" for it. We do a best-effort copy by 2184 * just copying from the original user address. If that 2185 * fails, we just zero-fill it. Live with it. 2186 */ 2187 if (unlikely(!src)) { 2188 void *kaddr = kmap_atomic(dst); 2189 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2190 2191 /* 2192 * This really shouldn't fail, because the page is there 2193 * in the page tables. But it might just be unreadable, 2194 * in which case we just give up and fill the result with 2195 * zeroes. 2196 */ 2197 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2198 clear_page(kaddr); 2199 kunmap_atomic(kaddr); 2200 flush_dcache_page(dst); 2201 } else 2202 copy_user_highpage(dst, src, va, vma); 2203 } 2204 2205 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2206 { 2207 struct file *vm_file = vma->vm_file; 2208 2209 if (vm_file) 2210 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2211 2212 /* 2213 * Special mappings (e.g. VDSO) do not have any file so fake 2214 * a default GFP_KERNEL for them. 2215 */ 2216 return GFP_KERNEL; 2217 } 2218 2219 /* 2220 * Notify the address space that the page is about to become writable so that 2221 * it can prohibit this or wait for the page to get into an appropriate state. 2222 * 2223 * We do this without the lock held, so that it can sleep if it needs to. 2224 */ 2225 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2226 { 2227 vm_fault_t ret; 2228 struct page *page = vmf->page; 2229 unsigned int old_flags = vmf->flags; 2230 2231 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2232 2233 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2234 /* Restore original flags so that caller is not surprised */ 2235 vmf->flags = old_flags; 2236 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2237 return ret; 2238 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2239 lock_page(page); 2240 if (!page->mapping) { 2241 unlock_page(page); 2242 return 0; /* retry */ 2243 } 2244 ret |= VM_FAULT_LOCKED; 2245 } else 2246 VM_BUG_ON_PAGE(!PageLocked(page), page); 2247 return ret; 2248 } 2249 2250 /* 2251 * Handle dirtying of a page in shared file mapping on a write fault. 2252 * 2253 * The function expects the page to be locked and unlocks it. 2254 */ 2255 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2256 struct page *page) 2257 { 2258 struct address_space *mapping; 2259 bool dirtied; 2260 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2261 2262 dirtied = set_page_dirty(page); 2263 VM_BUG_ON_PAGE(PageAnon(page), page); 2264 /* 2265 * Take a local copy of the address_space - page.mapping may be zeroed 2266 * by truncate after unlock_page(). The address_space itself remains 2267 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2268 * release semantics to prevent the compiler from undoing this copying. 2269 */ 2270 mapping = page_rmapping(page); 2271 unlock_page(page); 2272 2273 if ((dirtied || page_mkwrite) && mapping) { 2274 /* 2275 * Some device drivers do not set page.mapping 2276 * but still dirty their pages 2277 */ 2278 balance_dirty_pages_ratelimited(mapping); 2279 } 2280 2281 if (!page_mkwrite) 2282 file_update_time(vma->vm_file); 2283 } 2284 2285 /* 2286 * Handle write page faults for pages that can be reused in the current vma 2287 * 2288 * This can happen either due to the mapping being with the VM_SHARED flag, 2289 * or due to us being the last reference standing to the page. In either 2290 * case, all we need to do here is to mark the page as writable and update 2291 * any related book-keeping. 2292 */ 2293 static inline void wp_page_reuse(struct vm_fault *vmf) 2294 __releases(vmf->ptl) 2295 { 2296 struct vm_area_struct *vma = vmf->vma; 2297 struct page *page = vmf->page; 2298 pte_t entry; 2299 /* 2300 * Clear the pages cpupid information as the existing 2301 * information potentially belongs to a now completely 2302 * unrelated process. 2303 */ 2304 if (page) 2305 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2306 2307 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2308 entry = pte_mkyoung(vmf->orig_pte); 2309 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2310 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2311 update_mmu_cache(vma, vmf->address, vmf->pte); 2312 pte_unmap_unlock(vmf->pte, vmf->ptl); 2313 } 2314 2315 /* 2316 * Handle the case of a page which we actually need to copy to a new page. 2317 * 2318 * Called with mmap_sem locked and the old page referenced, but 2319 * without the ptl held. 2320 * 2321 * High level logic flow: 2322 * 2323 * - Allocate a page, copy the content of the old page to the new one. 2324 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2325 * - Take the PTL. If the pte changed, bail out and release the allocated page 2326 * - If the pte is still the way we remember it, update the page table and all 2327 * relevant references. This includes dropping the reference the page-table 2328 * held to the old page, as well as updating the rmap. 2329 * - In any case, unlock the PTL and drop the reference we took to the old page. 2330 */ 2331 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2332 { 2333 struct vm_area_struct *vma = vmf->vma; 2334 struct mm_struct *mm = vma->vm_mm; 2335 struct page *old_page = vmf->page; 2336 struct page *new_page = NULL; 2337 pte_t entry; 2338 int page_copied = 0; 2339 struct mem_cgroup *memcg; 2340 struct mmu_notifier_range range; 2341 2342 if (unlikely(anon_vma_prepare(vma))) 2343 goto oom; 2344 2345 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2346 new_page = alloc_zeroed_user_highpage_movable(vma, 2347 vmf->address); 2348 if (!new_page) 2349 goto oom; 2350 } else { 2351 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2352 vmf->address); 2353 if (!new_page) 2354 goto oom; 2355 cow_user_page(new_page, old_page, vmf->address, vma); 2356 } 2357 2358 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2359 goto oom_free_new; 2360 2361 __SetPageUptodate(new_page); 2362 2363 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2364 vmf->address & PAGE_MASK, 2365 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2366 mmu_notifier_invalidate_range_start(&range); 2367 2368 /* 2369 * Re-check the pte - we dropped the lock 2370 */ 2371 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2372 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2373 if (old_page) { 2374 if (!PageAnon(old_page)) { 2375 dec_mm_counter_fast(mm, 2376 mm_counter_file(old_page)); 2377 inc_mm_counter_fast(mm, MM_ANONPAGES); 2378 } 2379 } else { 2380 inc_mm_counter_fast(mm, MM_ANONPAGES); 2381 } 2382 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2383 entry = mk_pte(new_page, vma->vm_page_prot); 2384 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2385 /* 2386 * Clear the pte entry and flush it first, before updating the 2387 * pte with the new entry. This will avoid a race condition 2388 * seen in the presence of one thread doing SMC and another 2389 * thread doing COW. 2390 */ 2391 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2392 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2393 mem_cgroup_commit_charge(new_page, memcg, false, false); 2394 lru_cache_add_active_or_unevictable(new_page, vma); 2395 /* 2396 * We call the notify macro here because, when using secondary 2397 * mmu page tables (such as kvm shadow page tables), we want the 2398 * new page to be mapped directly into the secondary page table. 2399 */ 2400 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2401 update_mmu_cache(vma, vmf->address, vmf->pte); 2402 if (old_page) { 2403 /* 2404 * Only after switching the pte to the new page may 2405 * we remove the mapcount here. Otherwise another 2406 * process may come and find the rmap count decremented 2407 * before the pte is switched to the new page, and 2408 * "reuse" the old page writing into it while our pte 2409 * here still points into it and can be read by other 2410 * threads. 2411 * 2412 * The critical issue is to order this 2413 * page_remove_rmap with the ptp_clear_flush above. 2414 * Those stores are ordered by (if nothing else,) 2415 * the barrier present in the atomic_add_negative 2416 * in page_remove_rmap. 2417 * 2418 * Then the TLB flush in ptep_clear_flush ensures that 2419 * no process can access the old page before the 2420 * decremented mapcount is visible. And the old page 2421 * cannot be reused until after the decremented 2422 * mapcount is visible. So transitively, TLBs to 2423 * old page will be flushed before it can be reused. 2424 */ 2425 page_remove_rmap(old_page, false); 2426 } 2427 2428 /* Free the old page.. */ 2429 new_page = old_page; 2430 page_copied = 1; 2431 } else { 2432 mem_cgroup_cancel_charge(new_page, memcg, false); 2433 } 2434 2435 if (new_page) 2436 put_page(new_page); 2437 2438 pte_unmap_unlock(vmf->pte, vmf->ptl); 2439 /* 2440 * No need to double call mmu_notifier->invalidate_range() callback as 2441 * the above ptep_clear_flush_notify() did already call it. 2442 */ 2443 mmu_notifier_invalidate_range_only_end(&range); 2444 if (old_page) { 2445 /* 2446 * Don't let another task, with possibly unlocked vma, 2447 * keep the mlocked page. 2448 */ 2449 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2450 lock_page(old_page); /* LRU manipulation */ 2451 if (PageMlocked(old_page)) 2452 munlock_vma_page(old_page); 2453 unlock_page(old_page); 2454 } 2455 put_page(old_page); 2456 } 2457 return page_copied ? VM_FAULT_WRITE : 0; 2458 oom_free_new: 2459 put_page(new_page); 2460 oom: 2461 if (old_page) 2462 put_page(old_page); 2463 return VM_FAULT_OOM; 2464 } 2465 2466 /** 2467 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2468 * writeable once the page is prepared 2469 * 2470 * @vmf: structure describing the fault 2471 * 2472 * This function handles all that is needed to finish a write page fault in a 2473 * shared mapping due to PTE being read-only once the mapped page is prepared. 2474 * It handles locking of PTE and modifying it. 2475 * 2476 * The function expects the page to be locked or other protection against 2477 * concurrent faults / writeback (such as DAX radix tree locks). 2478 * 2479 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2480 * we acquired PTE lock. 2481 */ 2482 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2483 { 2484 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2485 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2486 &vmf->ptl); 2487 /* 2488 * We might have raced with another page fault while we released the 2489 * pte_offset_map_lock. 2490 */ 2491 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2492 pte_unmap_unlock(vmf->pte, vmf->ptl); 2493 return VM_FAULT_NOPAGE; 2494 } 2495 wp_page_reuse(vmf); 2496 return 0; 2497 } 2498 2499 /* 2500 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2501 * mapping 2502 */ 2503 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2504 { 2505 struct vm_area_struct *vma = vmf->vma; 2506 2507 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2508 vm_fault_t ret; 2509 2510 pte_unmap_unlock(vmf->pte, vmf->ptl); 2511 vmf->flags |= FAULT_FLAG_MKWRITE; 2512 ret = vma->vm_ops->pfn_mkwrite(vmf); 2513 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2514 return ret; 2515 return finish_mkwrite_fault(vmf); 2516 } 2517 wp_page_reuse(vmf); 2518 return VM_FAULT_WRITE; 2519 } 2520 2521 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2522 __releases(vmf->ptl) 2523 { 2524 struct vm_area_struct *vma = vmf->vma; 2525 2526 get_page(vmf->page); 2527 2528 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2529 vm_fault_t tmp; 2530 2531 pte_unmap_unlock(vmf->pte, vmf->ptl); 2532 tmp = do_page_mkwrite(vmf); 2533 if (unlikely(!tmp || (tmp & 2534 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2535 put_page(vmf->page); 2536 return tmp; 2537 } 2538 tmp = finish_mkwrite_fault(vmf); 2539 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2540 unlock_page(vmf->page); 2541 put_page(vmf->page); 2542 return tmp; 2543 } 2544 } else { 2545 wp_page_reuse(vmf); 2546 lock_page(vmf->page); 2547 } 2548 fault_dirty_shared_page(vma, vmf->page); 2549 put_page(vmf->page); 2550 2551 return VM_FAULT_WRITE; 2552 } 2553 2554 /* 2555 * This routine handles present pages, when users try to write 2556 * to a shared page. It is done by copying the page to a new address 2557 * and decrementing the shared-page counter for the old page. 2558 * 2559 * Note that this routine assumes that the protection checks have been 2560 * done by the caller (the low-level page fault routine in most cases). 2561 * Thus we can safely just mark it writable once we've done any necessary 2562 * COW. 2563 * 2564 * We also mark the page dirty at this point even though the page will 2565 * change only once the write actually happens. This avoids a few races, 2566 * and potentially makes it more efficient. 2567 * 2568 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2569 * but allow concurrent faults), with pte both mapped and locked. 2570 * We return with mmap_sem still held, but pte unmapped and unlocked. 2571 */ 2572 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2573 __releases(vmf->ptl) 2574 { 2575 struct vm_area_struct *vma = vmf->vma; 2576 2577 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2578 if (!vmf->page) { 2579 /* 2580 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2581 * VM_PFNMAP VMA. 2582 * 2583 * We should not cow pages in a shared writeable mapping. 2584 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2585 */ 2586 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2587 (VM_WRITE|VM_SHARED)) 2588 return wp_pfn_shared(vmf); 2589 2590 pte_unmap_unlock(vmf->pte, vmf->ptl); 2591 return wp_page_copy(vmf); 2592 } 2593 2594 /* 2595 * Take out anonymous pages first, anonymous shared vmas are 2596 * not dirty accountable. 2597 */ 2598 if (PageAnon(vmf->page)) { 2599 int total_map_swapcount; 2600 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) || 2601 page_count(vmf->page) != 1)) 2602 goto copy; 2603 if (!trylock_page(vmf->page)) { 2604 get_page(vmf->page); 2605 pte_unmap_unlock(vmf->pte, vmf->ptl); 2606 lock_page(vmf->page); 2607 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2608 vmf->address, &vmf->ptl); 2609 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2610 unlock_page(vmf->page); 2611 pte_unmap_unlock(vmf->pte, vmf->ptl); 2612 put_page(vmf->page); 2613 return 0; 2614 } 2615 put_page(vmf->page); 2616 } 2617 if (PageKsm(vmf->page)) { 2618 bool reused = reuse_ksm_page(vmf->page, vmf->vma, 2619 vmf->address); 2620 unlock_page(vmf->page); 2621 if (!reused) 2622 goto copy; 2623 wp_page_reuse(vmf); 2624 return VM_FAULT_WRITE; 2625 } 2626 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2627 if (total_map_swapcount == 1) { 2628 /* 2629 * The page is all ours. Move it to 2630 * our anon_vma so the rmap code will 2631 * not search our parent or siblings. 2632 * Protected against the rmap code by 2633 * the page lock. 2634 */ 2635 page_move_anon_rmap(vmf->page, vma); 2636 } 2637 unlock_page(vmf->page); 2638 wp_page_reuse(vmf); 2639 return VM_FAULT_WRITE; 2640 } 2641 unlock_page(vmf->page); 2642 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2643 (VM_WRITE|VM_SHARED))) { 2644 return wp_page_shared(vmf); 2645 } 2646 copy: 2647 /* 2648 * Ok, we need to copy. Oh, well.. 2649 */ 2650 get_page(vmf->page); 2651 2652 pte_unmap_unlock(vmf->pte, vmf->ptl); 2653 return wp_page_copy(vmf); 2654 } 2655 2656 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2657 unsigned long start_addr, unsigned long end_addr, 2658 struct zap_details *details) 2659 { 2660 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2661 } 2662 2663 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2664 struct zap_details *details) 2665 { 2666 struct vm_area_struct *vma; 2667 pgoff_t vba, vea, zba, zea; 2668 2669 vma_interval_tree_foreach(vma, root, 2670 details->first_index, details->last_index) { 2671 2672 vba = vma->vm_pgoff; 2673 vea = vba + vma_pages(vma) - 1; 2674 zba = details->first_index; 2675 if (zba < vba) 2676 zba = vba; 2677 zea = details->last_index; 2678 if (zea > vea) 2679 zea = vea; 2680 2681 unmap_mapping_range_vma(vma, 2682 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2683 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2684 details); 2685 } 2686 } 2687 2688 /** 2689 * unmap_mapping_pages() - Unmap pages from processes. 2690 * @mapping: The address space containing pages to be unmapped. 2691 * @start: Index of first page to be unmapped. 2692 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2693 * @even_cows: Whether to unmap even private COWed pages. 2694 * 2695 * Unmap the pages in this address space from any userspace process which 2696 * has them mmaped. Generally, you want to remove COWed pages as well when 2697 * a file is being truncated, but not when invalidating pages from the page 2698 * cache. 2699 */ 2700 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2701 pgoff_t nr, bool even_cows) 2702 { 2703 struct zap_details details = { }; 2704 2705 details.check_mapping = even_cows ? NULL : mapping; 2706 details.first_index = start; 2707 details.last_index = start + nr - 1; 2708 if (details.last_index < details.first_index) 2709 details.last_index = ULONG_MAX; 2710 2711 i_mmap_lock_write(mapping); 2712 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2713 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2714 i_mmap_unlock_write(mapping); 2715 } 2716 2717 /** 2718 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2719 * address_space corresponding to the specified byte range in the underlying 2720 * file. 2721 * 2722 * @mapping: the address space containing mmaps to be unmapped. 2723 * @holebegin: byte in first page to unmap, relative to the start of 2724 * the underlying file. This will be rounded down to a PAGE_SIZE 2725 * boundary. Note that this is different from truncate_pagecache(), which 2726 * must keep the partial page. In contrast, we must get rid of 2727 * partial pages. 2728 * @holelen: size of prospective hole in bytes. This will be rounded 2729 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2730 * end of the file. 2731 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2732 * but 0 when invalidating pagecache, don't throw away private data. 2733 */ 2734 void unmap_mapping_range(struct address_space *mapping, 2735 loff_t const holebegin, loff_t const holelen, int even_cows) 2736 { 2737 pgoff_t hba = holebegin >> PAGE_SHIFT; 2738 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2739 2740 /* Check for overflow. */ 2741 if (sizeof(holelen) > sizeof(hlen)) { 2742 long long holeend = 2743 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2744 if (holeend & ~(long long)ULONG_MAX) 2745 hlen = ULONG_MAX - hba + 1; 2746 } 2747 2748 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2749 } 2750 EXPORT_SYMBOL(unmap_mapping_range); 2751 2752 /* 2753 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2754 * but allow concurrent faults), and pte mapped but not yet locked. 2755 * We return with pte unmapped and unlocked. 2756 * 2757 * We return with the mmap_sem locked or unlocked in the same cases 2758 * as does filemap_fault(). 2759 */ 2760 vm_fault_t do_swap_page(struct vm_fault *vmf) 2761 { 2762 struct vm_area_struct *vma = vmf->vma; 2763 struct page *page = NULL, *swapcache; 2764 struct mem_cgroup *memcg; 2765 swp_entry_t entry; 2766 pte_t pte; 2767 int locked; 2768 int exclusive = 0; 2769 vm_fault_t ret = 0; 2770 2771 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2772 goto out; 2773 2774 entry = pte_to_swp_entry(vmf->orig_pte); 2775 if (unlikely(non_swap_entry(entry))) { 2776 if (is_migration_entry(entry)) { 2777 migration_entry_wait(vma->vm_mm, vmf->pmd, 2778 vmf->address); 2779 } else if (is_device_private_entry(entry)) { 2780 /* 2781 * For un-addressable device memory we call the pgmap 2782 * fault handler callback. The callback must migrate 2783 * the page back to some CPU accessible page. 2784 */ 2785 ret = device_private_entry_fault(vma, vmf->address, entry, 2786 vmf->flags, vmf->pmd); 2787 } else if (is_hwpoison_entry(entry)) { 2788 ret = VM_FAULT_HWPOISON; 2789 } else { 2790 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2791 ret = VM_FAULT_SIGBUS; 2792 } 2793 goto out; 2794 } 2795 2796 2797 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2798 page = lookup_swap_cache(entry, vma, vmf->address); 2799 swapcache = page; 2800 2801 if (!page) { 2802 struct swap_info_struct *si = swp_swap_info(entry); 2803 2804 if (si->flags & SWP_SYNCHRONOUS_IO && 2805 __swap_count(entry) == 1) { 2806 /* skip swapcache */ 2807 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2808 vmf->address); 2809 if (page) { 2810 __SetPageLocked(page); 2811 __SetPageSwapBacked(page); 2812 set_page_private(page, entry.val); 2813 lru_cache_add_anon(page); 2814 swap_readpage(page, true); 2815 } 2816 } else { 2817 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2818 vmf); 2819 swapcache = page; 2820 } 2821 2822 if (!page) { 2823 /* 2824 * Back out if somebody else faulted in this pte 2825 * while we released the pte lock. 2826 */ 2827 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2828 vmf->address, &vmf->ptl); 2829 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2830 ret = VM_FAULT_OOM; 2831 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2832 goto unlock; 2833 } 2834 2835 /* Had to read the page from swap area: Major fault */ 2836 ret = VM_FAULT_MAJOR; 2837 count_vm_event(PGMAJFAULT); 2838 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2839 } else if (PageHWPoison(page)) { 2840 /* 2841 * hwpoisoned dirty swapcache pages are kept for killing 2842 * owner processes (which may be unknown at hwpoison time) 2843 */ 2844 ret = VM_FAULT_HWPOISON; 2845 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2846 goto out_release; 2847 } 2848 2849 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2850 2851 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2852 if (!locked) { 2853 ret |= VM_FAULT_RETRY; 2854 goto out_release; 2855 } 2856 2857 /* 2858 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2859 * release the swapcache from under us. The page pin, and pte_same 2860 * test below, are not enough to exclude that. Even if it is still 2861 * swapcache, we need to check that the page's swap has not changed. 2862 */ 2863 if (unlikely((!PageSwapCache(page) || 2864 page_private(page) != entry.val)) && swapcache) 2865 goto out_page; 2866 2867 page = ksm_might_need_to_copy(page, vma, vmf->address); 2868 if (unlikely(!page)) { 2869 ret = VM_FAULT_OOM; 2870 page = swapcache; 2871 goto out_page; 2872 } 2873 2874 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 2875 &memcg, false)) { 2876 ret = VM_FAULT_OOM; 2877 goto out_page; 2878 } 2879 2880 /* 2881 * Back out if somebody else already faulted in this pte. 2882 */ 2883 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2884 &vmf->ptl); 2885 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2886 goto out_nomap; 2887 2888 if (unlikely(!PageUptodate(page))) { 2889 ret = VM_FAULT_SIGBUS; 2890 goto out_nomap; 2891 } 2892 2893 /* 2894 * The page isn't present yet, go ahead with the fault. 2895 * 2896 * Be careful about the sequence of operations here. 2897 * To get its accounting right, reuse_swap_page() must be called 2898 * while the page is counted on swap but not yet in mapcount i.e. 2899 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2900 * must be called after the swap_free(), or it will never succeed. 2901 */ 2902 2903 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2904 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2905 pte = mk_pte(page, vma->vm_page_prot); 2906 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2907 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2908 vmf->flags &= ~FAULT_FLAG_WRITE; 2909 ret |= VM_FAULT_WRITE; 2910 exclusive = RMAP_EXCLUSIVE; 2911 } 2912 flush_icache_page(vma, page); 2913 if (pte_swp_soft_dirty(vmf->orig_pte)) 2914 pte = pte_mksoft_dirty(pte); 2915 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2916 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 2917 vmf->orig_pte = pte; 2918 2919 /* ksm created a completely new copy */ 2920 if (unlikely(page != swapcache && swapcache)) { 2921 page_add_new_anon_rmap(page, vma, vmf->address, false); 2922 mem_cgroup_commit_charge(page, memcg, false, false); 2923 lru_cache_add_active_or_unevictable(page, vma); 2924 } else { 2925 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 2926 mem_cgroup_commit_charge(page, memcg, true, false); 2927 activate_page(page); 2928 } 2929 2930 swap_free(entry); 2931 if (mem_cgroup_swap_full(page) || 2932 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2933 try_to_free_swap(page); 2934 unlock_page(page); 2935 if (page != swapcache && swapcache) { 2936 /* 2937 * Hold the lock to avoid the swap entry to be reused 2938 * until we take the PT lock for the pte_same() check 2939 * (to avoid false positives from pte_same). For 2940 * further safety release the lock after the swap_free 2941 * so that the swap count won't change under a 2942 * parallel locked swapcache. 2943 */ 2944 unlock_page(swapcache); 2945 put_page(swapcache); 2946 } 2947 2948 if (vmf->flags & FAULT_FLAG_WRITE) { 2949 ret |= do_wp_page(vmf); 2950 if (ret & VM_FAULT_ERROR) 2951 ret &= VM_FAULT_ERROR; 2952 goto out; 2953 } 2954 2955 /* No need to invalidate - it was non-present before */ 2956 update_mmu_cache(vma, vmf->address, vmf->pte); 2957 unlock: 2958 pte_unmap_unlock(vmf->pte, vmf->ptl); 2959 out: 2960 return ret; 2961 out_nomap: 2962 mem_cgroup_cancel_charge(page, memcg, false); 2963 pte_unmap_unlock(vmf->pte, vmf->ptl); 2964 out_page: 2965 unlock_page(page); 2966 out_release: 2967 put_page(page); 2968 if (page != swapcache && swapcache) { 2969 unlock_page(swapcache); 2970 put_page(swapcache); 2971 } 2972 return ret; 2973 } 2974 2975 /* 2976 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2977 * but allow concurrent faults), and pte mapped but not yet locked. 2978 * We return with mmap_sem still held, but pte unmapped and unlocked. 2979 */ 2980 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 2981 { 2982 struct vm_area_struct *vma = vmf->vma; 2983 struct mem_cgroup *memcg; 2984 struct page *page; 2985 vm_fault_t ret = 0; 2986 pte_t entry; 2987 2988 /* File mapping without ->vm_ops ? */ 2989 if (vma->vm_flags & VM_SHARED) 2990 return VM_FAULT_SIGBUS; 2991 2992 /* 2993 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2994 * pte_offset_map() on pmds where a huge pmd might be created 2995 * from a different thread. 2996 * 2997 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2998 * parallel threads are excluded by other means. 2999 * 3000 * Here we only have down_read(mmap_sem). 3001 */ 3002 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3003 return VM_FAULT_OOM; 3004 3005 /* See the comment in pte_alloc_one_map() */ 3006 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3007 return 0; 3008 3009 /* Use the zero-page for reads */ 3010 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3011 !mm_forbids_zeropage(vma->vm_mm)) { 3012 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3013 vma->vm_page_prot)); 3014 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3015 vmf->address, &vmf->ptl); 3016 if (!pte_none(*vmf->pte)) 3017 goto unlock; 3018 ret = check_stable_address_space(vma->vm_mm); 3019 if (ret) 3020 goto unlock; 3021 /* Deliver the page fault to userland, check inside PT lock */ 3022 if (userfaultfd_missing(vma)) { 3023 pte_unmap_unlock(vmf->pte, vmf->ptl); 3024 return handle_userfault(vmf, VM_UFFD_MISSING); 3025 } 3026 goto setpte; 3027 } 3028 3029 /* Allocate our own private page. */ 3030 if (unlikely(anon_vma_prepare(vma))) 3031 goto oom; 3032 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3033 if (!page) 3034 goto oom; 3035 3036 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 3037 false)) 3038 goto oom_free_page; 3039 3040 /* 3041 * The memory barrier inside __SetPageUptodate makes sure that 3042 * preceeding stores to the page contents become visible before 3043 * the set_pte_at() write. 3044 */ 3045 __SetPageUptodate(page); 3046 3047 entry = mk_pte(page, vma->vm_page_prot); 3048 if (vma->vm_flags & VM_WRITE) 3049 entry = pte_mkwrite(pte_mkdirty(entry)); 3050 3051 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3052 &vmf->ptl); 3053 if (!pte_none(*vmf->pte)) 3054 goto release; 3055 3056 ret = check_stable_address_space(vma->vm_mm); 3057 if (ret) 3058 goto release; 3059 3060 /* Deliver the page fault to userland, check inside PT lock */ 3061 if (userfaultfd_missing(vma)) { 3062 pte_unmap_unlock(vmf->pte, vmf->ptl); 3063 mem_cgroup_cancel_charge(page, memcg, false); 3064 put_page(page); 3065 return handle_userfault(vmf, VM_UFFD_MISSING); 3066 } 3067 3068 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3069 page_add_new_anon_rmap(page, vma, vmf->address, false); 3070 mem_cgroup_commit_charge(page, memcg, false, false); 3071 lru_cache_add_active_or_unevictable(page, vma); 3072 setpte: 3073 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3074 3075 /* No need to invalidate - it was non-present before */ 3076 update_mmu_cache(vma, vmf->address, vmf->pte); 3077 unlock: 3078 pte_unmap_unlock(vmf->pte, vmf->ptl); 3079 return ret; 3080 release: 3081 mem_cgroup_cancel_charge(page, memcg, false); 3082 put_page(page); 3083 goto unlock; 3084 oom_free_page: 3085 put_page(page); 3086 oom: 3087 return VM_FAULT_OOM; 3088 } 3089 3090 /* 3091 * The mmap_sem must have been held on entry, and may have been 3092 * released depending on flags and vma->vm_ops->fault() return value. 3093 * See filemap_fault() and __lock_page_retry(). 3094 */ 3095 static vm_fault_t __do_fault(struct vm_fault *vmf) 3096 { 3097 struct vm_area_struct *vma = vmf->vma; 3098 vm_fault_t ret; 3099 3100 /* 3101 * Preallocate pte before we take page_lock because this might lead to 3102 * deadlocks for memcg reclaim which waits for pages under writeback: 3103 * lock_page(A) 3104 * SetPageWriteback(A) 3105 * unlock_page(A) 3106 * lock_page(B) 3107 * lock_page(B) 3108 * pte_alloc_pne 3109 * shrink_page_list 3110 * wait_on_page_writeback(A) 3111 * SetPageWriteback(B) 3112 * unlock_page(B) 3113 * # flush A, B to clear the writeback 3114 */ 3115 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3116 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3117 if (!vmf->prealloc_pte) 3118 return VM_FAULT_OOM; 3119 smp_wmb(); /* See comment in __pte_alloc() */ 3120 } 3121 3122 ret = vma->vm_ops->fault(vmf); 3123 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3124 VM_FAULT_DONE_COW))) 3125 return ret; 3126 3127 if (unlikely(PageHWPoison(vmf->page))) { 3128 if (ret & VM_FAULT_LOCKED) 3129 unlock_page(vmf->page); 3130 put_page(vmf->page); 3131 vmf->page = NULL; 3132 return VM_FAULT_HWPOISON; 3133 } 3134 3135 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3136 lock_page(vmf->page); 3137 else 3138 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3139 3140 return ret; 3141 } 3142 3143 /* 3144 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3145 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3146 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3147 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3148 */ 3149 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3150 { 3151 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3152 } 3153 3154 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3155 { 3156 struct vm_area_struct *vma = vmf->vma; 3157 3158 if (!pmd_none(*vmf->pmd)) 3159 goto map_pte; 3160 if (vmf->prealloc_pte) { 3161 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3162 if (unlikely(!pmd_none(*vmf->pmd))) { 3163 spin_unlock(vmf->ptl); 3164 goto map_pte; 3165 } 3166 3167 mm_inc_nr_ptes(vma->vm_mm); 3168 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3169 spin_unlock(vmf->ptl); 3170 vmf->prealloc_pte = NULL; 3171 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3172 return VM_FAULT_OOM; 3173 } 3174 map_pte: 3175 /* 3176 * If a huge pmd materialized under us just retry later. Use 3177 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3178 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3179 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3180 * running immediately after a huge pmd fault in a different thread of 3181 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3182 * All we have to ensure is that it is a regular pmd that we can walk 3183 * with pte_offset_map() and we can do that through an atomic read in 3184 * C, which is what pmd_trans_unstable() provides. 3185 */ 3186 if (pmd_devmap_trans_unstable(vmf->pmd)) 3187 return VM_FAULT_NOPAGE; 3188 3189 /* 3190 * At this point we know that our vmf->pmd points to a page of ptes 3191 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3192 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3193 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3194 * be valid and we will re-check to make sure the vmf->pte isn't 3195 * pte_none() under vmf->ptl protection when we return to 3196 * alloc_set_pte(). 3197 */ 3198 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3199 &vmf->ptl); 3200 return 0; 3201 } 3202 3203 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3204 3205 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3206 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3207 unsigned long haddr) 3208 { 3209 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3210 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3211 return false; 3212 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3213 return false; 3214 return true; 3215 } 3216 3217 static void deposit_prealloc_pte(struct vm_fault *vmf) 3218 { 3219 struct vm_area_struct *vma = vmf->vma; 3220 3221 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3222 /* 3223 * We are going to consume the prealloc table, 3224 * count that as nr_ptes. 3225 */ 3226 mm_inc_nr_ptes(vma->vm_mm); 3227 vmf->prealloc_pte = NULL; 3228 } 3229 3230 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3231 { 3232 struct vm_area_struct *vma = vmf->vma; 3233 bool write = vmf->flags & FAULT_FLAG_WRITE; 3234 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3235 pmd_t entry; 3236 int i; 3237 vm_fault_t ret; 3238 3239 if (!transhuge_vma_suitable(vma, haddr)) 3240 return VM_FAULT_FALLBACK; 3241 3242 ret = VM_FAULT_FALLBACK; 3243 page = compound_head(page); 3244 3245 /* 3246 * Archs like ppc64 need additonal space to store information 3247 * related to pte entry. Use the preallocated table for that. 3248 */ 3249 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3250 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3251 if (!vmf->prealloc_pte) 3252 return VM_FAULT_OOM; 3253 smp_wmb(); /* See comment in __pte_alloc() */ 3254 } 3255 3256 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3257 if (unlikely(!pmd_none(*vmf->pmd))) 3258 goto out; 3259 3260 for (i = 0; i < HPAGE_PMD_NR; i++) 3261 flush_icache_page(vma, page + i); 3262 3263 entry = mk_huge_pmd(page, vma->vm_page_prot); 3264 if (write) 3265 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3266 3267 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3268 page_add_file_rmap(page, true); 3269 /* 3270 * deposit and withdraw with pmd lock held 3271 */ 3272 if (arch_needs_pgtable_deposit()) 3273 deposit_prealloc_pte(vmf); 3274 3275 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3276 3277 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3278 3279 /* fault is handled */ 3280 ret = 0; 3281 count_vm_event(THP_FILE_MAPPED); 3282 out: 3283 spin_unlock(vmf->ptl); 3284 return ret; 3285 } 3286 #else 3287 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3288 { 3289 BUILD_BUG(); 3290 return 0; 3291 } 3292 #endif 3293 3294 /** 3295 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3296 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3297 * 3298 * @vmf: fault environment 3299 * @memcg: memcg to charge page (only for private mappings) 3300 * @page: page to map 3301 * 3302 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3303 * return. 3304 * 3305 * Target users are page handler itself and implementations of 3306 * vm_ops->map_pages. 3307 * 3308 * Return: %0 on success, %VM_FAULT_ code in case of error. 3309 */ 3310 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3311 struct page *page) 3312 { 3313 struct vm_area_struct *vma = vmf->vma; 3314 bool write = vmf->flags & FAULT_FLAG_WRITE; 3315 pte_t entry; 3316 vm_fault_t ret; 3317 3318 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3319 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3320 /* THP on COW? */ 3321 VM_BUG_ON_PAGE(memcg, page); 3322 3323 ret = do_set_pmd(vmf, page); 3324 if (ret != VM_FAULT_FALLBACK) 3325 return ret; 3326 } 3327 3328 if (!vmf->pte) { 3329 ret = pte_alloc_one_map(vmf); 3330 if (ret) 3331 return ret; 3332 } 3333 3334 /* Re-check under ptl */ 3335 if (unlikely(!pte_none(*vmf->pte))) 3336 return VM_FAULT_NOPAGE; 3337 3338 flush_icache_page(vma, page); 3339 entry = mk_pte(page, vma->vm_page_prot); 3340 if (write) 3341 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3342 /* copy-on-write page */ 3343 if (write && !(vma->vm_flags & VM_SHARED)) { 3344 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3345 page_add_new_anon_rmap(page, vma, vmf->address, false); 3346 mem_cgroup_commit_charge(page, memcg, false, false); 3347 lru_cache_add_active_or_unevictable(page, vma); 3348 } else { 3349 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3350 page_add_file_rmap(page, false); 3351 } 3352 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3353 3354 /* no need to invalidate: a not-present page won't be cached */ 3355 update_mmu_cache(vma, vmf->address, vmf->pte); 3356 3357 return 0; 3358 } 3359 3360 3361 /** 3362 * finish_fault - finish page fault once we have prepared the page to fault 3363 * 3364 * @vmf: structure describing the fault 3365 * 3366 * This function handles all that is needed to finish a page fault once the 3367 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3368 * given page, adds reverse page mapping, handles memcg charges and LRU 3369 * addition. 3370 * 3371 * The function expects the page to be locked and on success it consumes a 3372 * reference of a page being mapped (for the PTE which maps it). 3373 * 3374 * Return: %0 on success, %VM_FAULT_ code in case of error. 3375 */ 3376 vm_fault_t finish_fault(struct vm_fault *vmf) 3377 { 3378 struct page *page; 3379 vm_fault_t ret = 0; 3380 3381 /* Did we COW the page? */ 3382 if ((vmf->flags & FAULT_FLAG_WRITE) && 3383 !(vmf->vma->vm_flags & VM_SHARED)) 3384 page = vmf->cow_page; 3385 else 3386 page = vmf->page; 3387 3388 /* 3389 * check even for read faults because we might have lost our CoWed 3390 * page 3391 */ 3392 if (!(vmf->vma->vm_flags & VM_SHARED)) 3393 ret = check_stable_address_space(vmf->vma->vm_mm); 3394 if (!ret) 3395 ret = alloc_set_pte(vmf, vmf->memcg, page); 3396 if (vmf->pte) 3397 pte_unmap_unlock(vmf->pte, vmf->ptl); 3398 return ret; 3399 } 3400 3401 static unsigned long fault_around_bytes __read_mostly = 3402 rounddown_pow_of_two(65536); 3403 3404 #ifdef CONFIG_DEBUG_FS 3405 static int fault_around_bytes_get(void *data, u64 *val) 3406 { 3407 *val = fault_around_bytes; 3408 return 0; 3409 } 3410 3411 /* 3412 * fault_around_bytes must be rounded down to the nearest page order as it's 3413 * what do_fault_around() expects to see. 3414 */ 3415 static int fault_around_bytes_set(void *data, u64 val) 3416 { 3417 if (val / PAGE_SIZE > PTRS_PER_PTE) 3418 return -EINVAL; 3419 if (val > PAGE_SIZE) 3420 fault_around_bytes = rounddown_pow_of_two(val); 3421 else 3422 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3423 return 0; 3424 } 3425 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3426 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3427 3428 static int __init fault_around_debugfs(void) 3429 { 3430 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3431 &fault_around_bytes_fops); 3432 return 0; 3433 } 3434 late_initcall(fault_around_debugfs); 3435 #endif 3436 3437 /* 3438 * do_fault_around() tries to map few pages around the fault address. The hope 3439 * is that the pages will be needed soon and this will lower the number of 3440 * faults to handle. 3441 * 3442 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3443 * not ready to be mapped: not up-to-date, locked, etc. 3444 * 3445 * This function is called with the page table lock taken. In the split ptlock 3446 * case the page table lock only protects only those entries which belong to 3447 * the page table corresponding to the fault address. 3448 * 3449 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3450 * only once. 3451 * 3452 * fault_around_bytes defines how many bytes we'll try to map. 3453 * do_fault_around() expects it to be set to a power of two less than or equal 3454 * to PTRS_PER_PTE. 3455 * 3456 * The virtual address of the area that we map is naturally aligned to 3457 * fault_around_bytes rounded down to the machine page size 3458 * (and therefore to page order). This way it's easier to guarantee 3459 * that we don't cross page table boundaries. 3460 */ 3461 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3462 { 3463 unsigned long address = vmf->address, nr_pages, mask; 3464 pgoff_t start_pgoff = vmf->pgoff; 3465 pgoff_t end_pgoff; 3466 int off; 3467 vm_fault_t ret = 0; 3468 3469 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3470 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3471 3472 vmf->address = max(address & mask, vmf->vma->vm_start); 3473 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3474 start_pgoff -= off; 3475 3476 /* 3477 * end_pgoff is either the end of the page table, the end of 3478 * the vma or nr_pages from start_pgoff, depending what is nearest. 3479 */ 3480 end_pgoff = start_pgoff - 3481 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3482 PTRS_PER_PTE - 1; 3483 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3484 start_pgoff + nr_pages - 1); 3485 3486 if (pmd_none(*vmf->pmd)) { 3487 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3488 if (!vmf->prealloc_pte) 3489 goto out; 3490 smp_wmb(); /* See comment in __pte_alloc() */ 3491 } 3492 3493 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3494 3495 /* Huge page is mapped? Page fault is solved */ 3496 if (pmd_trans_huge(*vmf->pmd)) { 3497 ret = VM_FAULT_NOPAGE; 3498 goto out; 3499 } 3500 3501 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3502 if (!vmf->pte) 3503 goto out; 3504 3505 /* check if the page fault is solved */ 3506 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3507 if (!pte_none(*vmf->pte)) 3508 ret = VM_FAULT_NOPAGE; 3509 pte_unmap_unlock(vmf->pte, vmf->ptl); 3510 out: 3511 vmf->address = address; 3512 vmf->pte = NULL; 3513 return ret; 3514 } 3515 3516 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3517 { 3518 struct vm_area_struct *vma = vmf->vma; 3519 vm_fault_t ret = 0; 3520 3521 /* 3522 * Let's call ->map_pages() first and use ->fault() as fallback 3523 * if page by the offset is not ready to be mapped (cold cache or 3524 * something). 3525 */ 3526 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3527 ret = do_fault_around(vmf); 3528 if (ret) 3529 return ret; 3530 } 3531 3532 ret = __do_fault(vmf); 3533 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3534 return ret; 3535 3536 ret |= finish_fault(vmf); 3537 unlock_page(vmf->page); 3538 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3539 put_page(vmf->page); 3540 return ret; 3541 } 3542 3543 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3544 { 3545 struct vm_area_struct *vma = vmf->vma; 3546 vm_fault_t ret; 3547 3548 if (unlikely(anon_vma_prepare(vma))) 3549 return VM_FAULT_OOM; 3550 3551 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3552 if (!vmf->cow_page) 3553 return VM_FAULT_OOM; 3554 3555 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3556 &vmf->memcg, false)) { 3557 put_page(vmf->cow_page); 3558 return VM_FAULT_OOM; 3559 } 3560 3561 ret = __do_fault(vmf); 3562 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3563 goto uncharge_out; 3564 if (ret & VM_FAULT_DONE_COW) 3565 return ret; 3566 3567 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3568 __SetPageUptodate(vmf->cow_page); 3569 3570 ret |= finish_fault(vmf); 3571 unlock_page(vmf->page); 3572 put_page(vmf->page); 3573 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3574 goto uncharge_out; 3575 return ret; 3576 uncharge_out: 3577 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3578 put_page(vmf->cow_page); 3579 return ret; 3580 } 3581 3582 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3583 { 3584 struct vm_area_struct *vma = vmf->vma; 3585 vm_fault_t ret, tmp; 3586 3587 ret = __do_fault(vmf); 3588 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3589 return ret; 3590 3591 /* 3592 * Check if the backing address space wants to know that the page is 3593 * about to become writable 3594 */ 3595 if (vma->vm_ops->page_mkwrite) { 3596 unlock_page(vmf->page); 3597 tmp = do_page_mkwrite(vmf); 3598 if (unlikely(!tmp || 3599 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3600 put_page(vmf->page); 3601 return tmp; 3602 } 3603 } 3604 3605 ret |= finish_fault(vmf); 3606 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3607 VM_FAULT_RETRY))) { 3608 unlock_page(vmf->page); 3609 put_page(vmf->page); 3610 return ret; 3611 } 3612 3613 fault_dirty_shared_page(vma, vmf->page); 3614 return ret; 3615 } 3616 3617 /* 3618 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3619 * but allow concurrent faults). 3620 * The mmap_sem may have been released depending on flags and our 3621 * return value. See filemap_fault() and __lock_page_or_retry(). 3622 * If mmap_sem is released, vma may become invalid (for example 3623 * by other thread calling munmap()). 3624 */ 3625 static vm_fault_t do_fault(struct vm_fault *vmf) 3626 { 3627 struct vm_area_struct *vma = vmf->vma; 3628 struct mm_struct *vm_mm = vma->vm_mm; 3629 vm_fault_t ret; 3630 3631 /* 3632 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3633 */ 3634 if (!vma->vm_ops->fault) { 3635 /* 3636 * If we find a migration pmd entry or a none pmd entry, which 3637 * should never happen, return SIGBUS 3638 */ 3639 if (unlikely(!pmd_present(*vmf->pmd))) 3640 ret = VM_FAULT_SIGBUS; 3641 else { 3642 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3643 vmf->pmd, 3644 vmf->address, 3645 &vmf->ptl); 3646 /* 3647 * Make sure this is not a temporary clearing of pte 3648 * by holding ptl and checking again. A R/M/W update 3649 * of pte involves: take ptl, clearing the pte so that 3650 * we don't have concurrent modification by hardware 3651 * followed by an update. 3652 */ 3653 if (unlikely(pte_none(*vmf->pte))) 3654 ret = VM_FAULT_SIGBUS; 3655 else 3656 ret = VM_FAULT_NOPAGE; 3657 3658 pte_unmap_unlock(vmf->pte, vmf->ptl); 3659 } 3660 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3661 ret = do_read_fault(vmf); 3662 else if (!(vma->vm_flags & VM_SHARED)) 3663 ret = do_cow_fault(vmf); 3664 else 3665 ret = do_shared_fault(vmf); 3666 3667 /* preallocated pagetable is unused: free it */ 3668 if (vmf->prealloc_pte) { 3669 pte_free(vm_mm, vmf->prealloc_pte); 3670 vmf->prealloc_pte = NULL; 3671 } 3672 return ret; 3673 } 3674 3675 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3676 unsigned long addr, int page_nid, 3677 int *flags) 3678 { 3679 get_page(page); 3680 3681 count_vm_numa_event(NUMA_HINT_FAULTS); 3682 if (page_nid == numa_node_id()) { 3683 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3684 *flags |= TNF_FAULT_LOCAL; 3685 } 3686 3687 return mpol_misplaced(page, vma, addr); 3688 } 3689 3690 static vm_fault_t do_numa_page(struct vm_fault *vmf) 3691 { 3692 struct vm_area_struct *vma = vmf->vma; 3693 struct page *page = NULL; 3694 int page_nid = NUMA_NO_NODE; 3695 int last_cpupid; 3696 int target_nid; 3697 bool migrated = false; 3698 pte_t pte, old_pte; 3699 bool was_writable = pte_savedwrite(vmf->orig_pte); 3700 int flags = 0; 3701 3702 /* 3703 * The "pte" at this point cannot be used safely without 3704 * validation through pte_unmap_same(). It's of NUMA type but 3705 * the pfn may be screwed if the read is non atomic. 3706 */ 3707 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3708 spin_lock(vmf->ptl); 3709 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3710 pte_unmap_unlock(vmf->pte, vmf->ptl); 3711 goto out; 3712 } 3713 3714 /* 3715 * Make it present again, Depending on how arch implementes non 3716 * accessible ptes, some can allow access by kernel mode. 3717 */ 3718 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 3719 pte = pte_modify(old_pte, vma->vm_page_prot); 3720 pte = pte_mkyoung(pte); 3721 if (was_writable) 3722 pte = pte_mkwrite(pte); 3723 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 3724 update_mmu_cache(vma, vmf->address, vmf->pte); 3725 3726 page = vm_normal_page(vma, vmf->address, pte); 3727 if (!page) { 3728 pte_unmap_unlock(vmf->pte, vmf->ptl); 3729 return 0; 3730 } 3731 3732 /* TODO: handle PTE-mapped THP */ 3733 if (PageCompound(page)) { 3734 pte_unmap_unlock(vmf->pte, vmf->ptl); 3735 return 0; 3736 } 3737 3738 /* 3739 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3740 * much anyway since they can be in shared cache state. This misses 3741 * the case where a mapping is writable but the process never writes 3742 * to it but pte_write gets cleared during protection updates and 3743 * pte_dirty has unpredictable behaviour between PTE scan updates, 3744 * background writeback, dirty balancing and application behaviour. 3745 */ 3746 if (!pte_write(pte)) 3747 flags |= TNF_NO_GROUP; 3748 3749 /* 3750 * Flag if the page is shared between multiple address spaces. This 3751 * is later used when determining whether to group tasks together 3752 */ 3753 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3754 flags |= TNF_SHARED; 3755 3756 last_cpupid = page_cpupid_last(page); 3757 page_nid = page_to_nid(page); 3758 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3759 &flags); 3760 pte_unmap_unlock(vmf->pte, vmf->ptl); 3761 if (target_nid == NUMA_NO_NODE) { 3762 put_page(page); 3763 goto out; 3764 } 3765 3766 /* Migrate to the requested node */ 3767 migrated = migrate_misplaced_page(page, vma, target_nid); 3768 if (migrated) { 3769 page_nid = target_nid; 3770 flags |= TNF_MIGRATED; 3771 } else 3772 flags |= TNF_MIGRATE_FAIL; 3773 3774 out: 3775 if (page_nid != NUMA_NO_NODE) 3776 task_numa_fault(last_cpupid, page_nid, 1, flags); 3777 return 0; 3778 } 3779 3780 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 3781 { 3782 if (vma_is_anonymous(vmf->vma)) 3783 return do_huge_pmd_anonymous_page(vmf); 3784 if (vmf->vma->vm_ops->huge_fault) 3785 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3786 return VM_FAULT_FALLBACK; 3787 } 3788 3789 /* `inline' is required to avoid gcc 4.1.2 build error */ 3790 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3791 { 3792 if (vma_is_anonymous(vmf->vma)) 3793 return do_huge_pmd_wp_page(vmf, orig_pmd); 3794 if (vmf->vma->vm_ops->huge_fault) 3795 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3796 3797 /* COW handled on pte level: split pmd */ 3798 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3799 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3800 3801 return VM_FAULT_FALLBACK; 3802 } 3803 3804 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3805 { 3806 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3807 } 3808 3809 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 3810 { 3811 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3812 /* No support for anonymous transparent PUD pages yet */ 3813 if (vma_is_anonymous(vmf->vma)) 3814 return VM_FAULT_FALLBACK; 3815 if (vmf->vma->vm_ops->huge_fault) 3816 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3817 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3818 return VM_FAULT_FALLBACK; 3819 } 3820 3821 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3822 { 3823 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3824 /* No support for anonymous transparent PUD pages yet */ 3825 if (vma_is_anonymous(vmf->vma)) 3826 return VM_FAULT_FALLBACK; 3827 if (vmf->vma->vm_ops->huge_fault) 3828 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3829 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3830 return VM_FAULT_FALLBACK; 3831 } 3832 3833 /* 3834 * These routines also need to handle stuff like marking pages dirty 3835 * and/or accessed for architectures that don't do it in hardware (most 3836 * RISC architectures). The early dirtying is also good on the i386. 3837 * 3838 * There is also a hook called "update_mmu_cache()" that architectures 3839 * with external mmu caches can use to update those (ie the Sparc or 3840 * PowerPC hashed page tables that act as extended TLBs). 3841 * 3842 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3843 * concurrent faults). 3844 * 3845 * The mmap_sem may have been released depending on flags and our return value. 3846 * See filemap_fault() and __lock_page_or_retry(). 3847 */ 3848 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 3849 { 3850 pte_t entry; 3851 3852 if (unlikely(pmd_none(*vmf->pmd))) { 3853 /* 3854 * Leave __pte_alloc() until later: because vm_ops->fault may 3855 * want to allocate huge page, and if we expose page table 3856 * for an instant, it will be difficult to retract from 3857 * concurrent faults and from rmap lookups. 3858 */ 3859 vmf->pte = NULL; 3860 } else { 3861 /* See comment in pte_alloc_one_map() */ 3862 if (pmd_devmap_trans_unstable(vmf->pmd)) 3863 return 0; 3864 /* 3865 * A regular pmd is established and it can't morph into a huge 3866 * pmd from under us anymore at this point because we hold the 3867 * mmap_sem read mode and khugepaged takes it in write mode. 3868 * So now it's safe to run pte_offset_map(). 3869 */ 3870 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3871 vmf->orig_pte = *vmf->pte; 3872 3873 /* 3874 * some architectures can have larger ptes than wordsize, 3875 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3876 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3877 * accesses. The code below just needs a consistent view 3878 * for the ifs and we later double check anyway with the 3879 * ptl lock held. So here a barrier will do. 3880 */ 3881 barrier(); 3882 if (pte_none(vmf->orig_pte)) { 3883 pte_unmap(vmf->pte); 3884 vmf->pte = NULL; 3885 } 3886 } 3887 3888 if (!vmf->pte) { 3889 if (vma_is_anonymous(vmf->vma)) 3890 return do_anonymous_page(vmf); 3891 else 3892 return do_fault(vmf); 3893 } 3894 3895 if (!pte_present(vmf->orig_pte)) 3896 return do_swap_page(vmf); 3897 3898 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3899 return do_numa_page(vmf); 3900 3901 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3902 spin_lock(vmf->ptl); 3903 entry = vmf->orig_pte; 3904 if (unlikely(!pte_same(*vmf->pte, entry))) 3905 goto unlock; 3906 if (vmf->flags & FAULT_FLAG_WRITE) { 3907 if (!pte_write(entry)) 3908 return do_wp_page(vmf); 3909 entry = pte_mkdirty(entry); 3910 } 3911 entry = pte_mkyoung(entry); 3912 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3913 vmf->flags & FAULT_FLAG_WRITE)) { 3914 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3915 } else { 3916 /* 3917 * This is needed only for protection faults but the arch code 3918 * is not yet telling us if this is a protection fault or not. 3919 * This still avoids useless tlb flushes for .text page faults 3920 * with threads. 3921 */ 3922 if (vmf->flags & FAULT_FLAG_WRITE) 3923 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 3924 } 3925 unlock: 3926 pte_unmap_unlock(vmf->pte, vmf->ptl); 3927 return 0; 3928 } 3929 3930 /* 3931 * By the time we get here, we already hold the mm semaphore 3932 * 3933 * The mmap_sem may have been released depending on flags and our 3934 * return value. See filemap_fault() and __lock_page_or_retry(). 3935 */ 3936 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 3937 unsigned long address, unsigned int flags) 3938 { 3939 struct vm_fault vmf = { 3940 .vma = vma, 3941 .address = address & PAGE_MASK, 3942 .flags = flags, 3943 .pgoff = linear_page_index(vma, address), 3944 .gfp_mask = __get_fault_gfp_mask(vma), 3945 }; 3946 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3947 struct mm_struct *mm = vma->vm_mm; 3948 pgd_t *pgd; 3949 p4d_t *p4d; 3950 vm_fault_t ret; 3951 3952 pgd = pgd_offset(mm, address); 3953 p4d = p4d_alloc(mm, pgd, address); 3954 if (!p4d) 3955 return VM_FAULT_OOM; 3956 3957 vmf.pud = pud_alloc(mm, p4d, address); 3958 if (!vmf.pud) 3959 return VM_FAULT_OOM; 3960 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 3961 ret = create_huge_pud(&vmf); 3962 if (!(ret & VM_FAULT_FALLBACK)) 3963 return ret; 3964 } else { 3965 pud_t orig_pud = *vmf.pud; 3966 3967 barrier(); 3968 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 3969 3970 /* NUMA case for anonymous PUDs would go here */ 3971 3972 if (dirty && !pud_write(orig_pud)) { 3973 ret = wp_huge_pud(&vmf, orig_pud); 3974 if (!(ret & VM_FAULT_FALLBACK)) 3975 return ret; 3976 } else { 3977 huge_pud_set_accessed(&vmf, orig_pud); 3978 return 0; 3979 } 3980 } 3981 } 3982 3983 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 3984 if (!vmf.pmd) 3985 return VM_FAULT_OOM; 3986 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 3987 ret = create_huge_pmd(&vmf); 3988 if (!(ret & VM_FAULT_FALLBACK)) 3989 return ret; 3990 } else { 3991 pmd_t orig_pmd = *vmf.pmd; 3992 3993 barrier(); 3994 if (unlikely(is_swap_pmd(orig_pmd))) { 3995 VM_BUG_ON(thp_migration_supported() && 3996 !is_pmd_migration_entry(orig_pmd)); 3997 if (is_pmd_migration_entry(orig_pmd)) 3998 pmd_migration_entry_wait(mm, vmf.pmd); 3999 return 0; 4000 } 4001 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4002 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4003 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4004 4005 if (dirty && !pmd_write(orig_pmd)) { 4006 ret = wp_huge_pmd(&vmf, orig_pmd); 4007 if (!(ret & VM_FAULT_FALLBACK)) 4008 return ret; 4009 } else { 4010 huge_pmd_set_accessed(&vmf, orig_pmd); 4011 return 0; 4012 } 4013 } 4014 } 4015 4016 return handle_pte_fault(&vmf); 4017 } 4018 4019 /* 4020 * By the time we get here, we already hold the mm semaphore 4021 * 4022 * The mmap_sem may have been released depending on flags and our 4023 * return value. See filemap_fault() and __lock_page_or_retry(). 4024 */ 4025 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4026 unsigned int flags) 4027 { 4028 vm_fault_t ret; 4029 4030 __set_current_state(TASK_RUNNING); 4031 4032 count_vm_event(PGFAULT); 4033 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4034 4035 /* do counter updates before entering really critical section. */ 4036 check_sync_rss_stat(current); 4037 4038 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4039 flags & FAULT_FLAG_INSTRUCTION, 4040 flags & FAULT_FLAG_REMOTE)) 4041 return VM_FAULT_SIGSEGV; 4042 4043 /* 4044 * Enable the memcg OOM handling for faults triggered in user 4045 * space. Kernel faults are handled more gracefully. 4046 */ 4047 if (flags & FAULT_FLAG_USER) 4048 mem_cgroup_enter_user_fault(); 4049 4050 if (unlikely(is_vm_hugetlb_page(vma))) 4051 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4052 else 4053 ret = __handle_mm_fault(vma, address, flags); 4054 4055 if (flags & FAULT_FLAG_USER) { 4056 mem_cgroup_exit_user_fault(); 4057 /* 4058 * The task may have entered a memcg OOM situation but 4059 * if the allocation error was handled gracefully (no 4060 * VM_FAULT_OOM), there is no need to kill anything. 4061 * Just clean up the OOM state peacefully. 4062 */ 4063 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4064 mem_cgroup_oom_synchronize(false); 4065 } 4066 4067 return ret; 4068 } 4069 EXPORT_SYMBOL_GPL(handle_mm_fault); 4070 4071 #ifndef __PAGETABLE_P4D_FOLDED 4072 /* 4073 * Allocate p4d page table. 4074 * We've already handled the fast-path in-line. 4075 */ 4076 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4077 { 4078 p4d_t *new = p4d_alloc_one(mm, address); 4079 if (!new) 4080 return -ENOMEM; 4081 4082 smp_wmb(); /* See comment in __pte_alloc */ 4083 4084 spin_lock(&mm->page_table_lock); 4085 if (pgd_present(*pgd)) /* Another has populated it */ 4086 p4d_free(mm, new); 4087 else 4088 pgd_populate(mm, pgd, new); 4089 spin_unlock(&mm->page_table_lock); 4090 return 0; 4091 } 4092 #endif /* __PAGETABLE_P4D_FOLDED */ 4093 4094 #ifndef __PAGETABLE_PUD_FOLDED 4095 /* 4096 * Allocate page upper directory. 4097 * We've already handled the fast-path in-line. 4098 */ 4099 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4100 { 4101 pud_t *new = pud_alloc_one(mm, address); 4102 if (!new) 4103 return -ENOMEM; 4104 4105 smp_wmb(); /* See comment in __pte_alloc */ 4106 4107 spin_lock(&mm->page_table_lock); 4108 #ifndef __ARCH_HAS_5LEVEL_HACK 4109 if (!p4d_present(*p4d)) { 4110 mm_inc_nr_puds(mm); 4111 p4d_populate(mm, p4d, new); 4112 } else /* Another has populated it */ 4113 pud_free(mm, new); 4114 #else 4115 if (!pgd_present(*p4d)) { 4116 mm_inc_nr_puds(mm); 4117 pgd_populate(mm, p4d, new); 4118 } else /* Another has populated it */ 4119 pud_free(mm, new); 4120 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4121 spin_unlock(&mm->page_table_lock); 4122 return 0; 4123 } 4124 #endif /* __PAGETABLE_PUD_FOLDED */ 4125 4126 #ifndef __PAGETABLE_PMD_FOLDED 4127 /* 4128 * Allocate page middle directory. 4129 * We've already handled the fast-path in-line. 4130 */ 4131 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4132 { 4133 spinlock_t *ptl; 4134 pmd_t *new = pmd_alloc_one(mm, address); 4135 if (!new) 4136 return -ENOMEM; 4137 4138 smp_wmb(); /* See comment in __pte_alloc */ 4139 4140 ptl = pud_lock(mm, pud); 4141 #ifndef __ARCH_HAS_4LEVEL_HACK 4142 if (!pud_present(*pud)) { 4143 mm_inc_nr_pmds(mm); 4144 pud_populate(mm, pud, new); 4145 } else /* Another has populated it */ 4146 pmd_free(mm, new); 4147 #else 4148 if (!pgd_present(*pud)) { 4149 mm_inc_nr_pmds(mm); 4150 pgd_populate(mm, pud, new); 4151 } else /* Another has populated it */ 4152 pmd_free(mm, new); 4153 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4154 spin_unlock(ptl); 4155 return 0; 4156 } 4157 #endif /* __PAGETABLE_PMD_FOLDED */ 4158 4159 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4160 struct mmu_notifier_range *range, 4161 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4162 { 4163 pgd_t *pgd; 4164 p4d_t *p4d; 4165 pud_t *pud; 4166 pmd_t *pmd; 4167 pte_t *ptep; 4168 4169 pgd = pgd_offset(mm, address); 4170 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4171 goto out; 4172 4173 p4d = p4d_offset(pgd, address); 4174 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4175 goto out; 4176 4177 pud = pud_offset(p4d, address); 4178 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4179 goto out; 4180 4181 pmd = pmd_offset(pud, address); 4182 VM_BUG_ON(pmd_trans_huge(*pmd)); 4183 4184 if (pmd_huge(*pmd)) { 4185 if (!pmdpp) 4186 goto out; 4187 4188 if (range) { 4189 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4190 NULL, mm, address & PMD_MASK, 4191 (address & PMD_MASK) + PMD_SIZE); 4192 mmu_notifier_invalidate_range_start(range); 4193 } 4194 *ptlp = pmd_lock(mm, pmd); 4195 if (pmd_huge(*pmd)) { 4196 *pmdpp = pmd; 4197 return 0; 4198 } 4199 spin_unlock(*ptlp); 4200 if (range) 4201 mmu_notifier_invalidate_range_end(range); 4202 } 4203 4204 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4205 goto out; 4206 4207 if (range) { 4208 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4209 address & PAGE_MASK, 4210 (address & PAGE_MASK) + PAGE_SIZE); 4211 mmu_notifier_invalidate_range_start(range); 4212 } 4213 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4214 if (!pte_present(*ptep)) 4215 goto unlock; 4216 *ptepp = ptep; 4217 return 0; 4218 unlock: 4219 pte_unmap_unlock(ptep, *ptlp); 4220 if (range) 4221 mmu_notifier_invalidate_range_end(range); 4222 out: 4223 return -EINVAL; 4224 } 4225 4226 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4227 pte_t **ptepp, spinlock_t **ptlp) 4228 { 4229 int res; 4230 4231 /* (void) is needed to make gcc happy */ 4232 (void) __cond_lock(*ptlp, 4233 !(res = __follow_pte_pmd(mm, address, NULL, 4234 ptepp, NULL, ptlp))); 4235 return res; 4236 } 4237 4238 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4239 struct mmu_notifier_range *range, 4240 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4241 { 4242 int res; 4243 4244 /* (void) is needed to make gcc happy */ 4245 (void) __cond_lock(*ptlp, 4246 !(res = __follow_pte_pmd(mm, address, range, 4247 ptepp, pmdpp, ptlp))); 4248 return res; 4249 } 4250 EXPORT_SYMBOL(follow_pte_pmd); 4251 4252 /** 4253 * follow_pfn - look up PFN at a user virtual address 4254 * @vma: memory mapping 4255 * @address: user virtual address 4256 * @pfn: location to store found PFN 4257 * 4258 * Only IO mappings and raw PFN mappings are allowed. 4259 * 4260 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4261 */ 4262 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4263 unsigned long *pfn) 4264 { 4265 int ret = -EINVAL; 4266 spinlock_t *ptl; 4267 pte_t *ptep; 4268 4269 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4270 return ret; 4271 4272 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4273 if (ret) 4274 return ret; 4275 *pfn = pte_pfn(*ptep); 4276 pte_unmap_unlock(ptep, ptl); 4277 return 0; 4278 } 4279 EXPORT_SYMBOL(follow_pfn); 4280 4281 #ifdef CONFIG_HAVE_IOREMAP_PROT 4282 int follow_phys(struct vm_area_struct *vma, 4283 unsigned long address, unsigned int flags, 4284 unsigned long *prot, resource_size_t *phys) 4285 { 4286 int ret = -EINVAL; 4287 pte_t *ptep, pte; 4288 spinlock_t *ptl; 4289 4290 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4291 goto out; 4292 4293 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4294 goto out; 4295 pte = *ptep; 4296 4297 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4298 goto unlock; 4299 4300 *prot = pgprot_val(pte_pgprot(pte)); 4301 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4302 4303 ret = 0; 4304 unlock: 4305 pte_unmap_unlock(ptep, ptl); 4306 out: 4307 return ret; 4308 } 4309 4310 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4311 void *buf, int len, int write) 4312 { 4313 resource_size_t phys_addr; 4314 unsigned long prot = 0; 4315 void __iomem *maddr; 4316 int offset = addr & (PAGE_SIZE-1); 4317 4318 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4319 return -EINVAL; 4320 4321 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4322 if (!maddr) 4323 return -ENOMEM; 4324 4325 if (write) 4326 memcpy_toio(maddr + offset, buf, len); 4327 else 4328 memcpy_fromio(buf, maddr + offset, len); 4329 iounmap(maddr); 4330 4331 return len; 4332 } 4333 EXPORT_SYMBOL_GPL(generic_access_phys); 4334 #endif 4335 4336 /* 4337 * Access another process' address space as given in mm. If non-NULL, use the 4338 * given task for page fault accounting. 4339 */ 4340 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4341 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4342 { 4343 struct vm_area_struct *vma; 4344 void *old_buf = buf; 4345 int write = gup_flags & FOLL_WRITE; 4346 4347 if (down_read_killable(&mm->mmap_sem)) 4348 return 0; 4349 4350 /* ignore errors, just check how much was successfully transferred */ 4351 while (len) { 4352 int bytes, ret, offset; 4353 void *maddr; 4354 struct page *page = NULL; 4355 4356 ret = get_user_pages_remote(tsk, mm, addr, 1, 4357 gup_flags, &page, &vma, NULL); 4358 if (ret <= 0) { 4359 #ifndef CONFIG_HAVE_IOREMAP_PROT 4360 break; 4361 #else 4362 /* 4363 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4364 * we can access using slightly different code. 4365 */ 4366 vma = find_vma(mm, addr); 4367 if (!vma || vma->vm_start > addr) 4368 break; 4369 if (vma->vm_ops && vma->vm_ops->access) 4370 ret = vma->vm_ops->access(vma, addr, buf, 4371 len, write); 4372 if (ret <= 0) 4373 break; 4374 bytes = ret; 4375 #endif 4376 } else { 4377 bytes = len; 4378 offset = addr & (PAGE_SIZE-1); 4379 if (bytes > PAGE_SIZE-offset) 4380 bytes = PAGE_SIZE-offset; 4381 4382 maddr = kmap(page); 4383 if (write) { 4384 copy_to_user_page(vma, page, addr, 4385 maddr + offset, buf, bytes); 4386 set_page_dirty_lock(page); 4387 } else { 4388 copy_from_user_page(vma, page, addr, 4389 buf, maddr + offset, bytes); 4390 } 4391 kunmap(page); 4392 put_page(page); 4393 } 4394 len -= bytes; 4395 buf += bytes; 4396 addr += bytes; 4397 } 4398 up_read(&mm->mmap_sem); 4399 4400 return buf - old_buf; 4401 } 4402 4403 /** 4404 * access_remote_vm - access another process' address space 4405 * @mm: the mm_struct of the target address space 4406 * @addr: start address to access 4407 * @buf: source or destination buffer 4408 * @len: number of bytes to transfer 4409 * @gup_flags: flags modifying lookup behaviour 4410 * 4411 * The caller must hold a reference on @mm. 4412 * 4413 * Return: number of bytes copied from source to destination. 4414 */ 4415 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4416 void *buf, int len, unsigned int gup_flags) 4417 { 4418 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4419 } 4420 4421 /* 4422 * Access another process' address space. 4423 * Source/target buffer must be kernel space, 4424 * Do not walk the page table directly, use get_user_pages 4425 */ 4426 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4427 void *buf, int len, unsigned int gup_flags) 4428 { 4429 struct mm_struct *mm; 4430 int ret; 4431 4432 mm = get_task_mm(tsk); 4433 if (!mm) 4434 return 0; 4435 4436 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4437 4438 mmput(mm); 4439 4440 return ret; 4441 } 4442 EXPORT_SYMBOL_GPL(access_process_vm); 4443 4444 /* 4445 * Print the name of a VMA. 4446 */ 4447 void print_vma_addr(char *prefix, unsigned long ip) 4448 { 4449 struct mm_struct *mm = current->mm; 4450 struct vm_area_struct *vma; 4451 4452 /* 4453 * we might be running from an atomic context so we cannot sleep 4454 */ 4455 if (!down_read_trylock(&mm->mmap_sem)) 4456 return; 4457 4458 vma = find_vma(mm, ip); 4459 if (vma && vma->vm_file) { 4460 struct file *f = vma->vm_file; 4461 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4462 if (buf) { 4463 char *p; 4464 4465 p = file_path(f, buf, PAGE_SIZE); 4466 if (IS_ERR(p)) 4467 p = "?"; 4468 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4469 vma->vm_start, 4470 vma->vm_end - vma->vm_start); 4471 free_page((unsigned long)buf); 4472 } 4473 } 4474 up_read(&mm->mmap_sem); 4475 } 4476 4477 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4478 void __might_fault(const char *file, int line) 4479 { 4480 /* 4481 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4482 * holding the mmap_sem, this is safe because kernel memory doesn't 4483 * get paged out, therefore we'll never actually fault, and the 4484 * below annotations will generate false positives. 4485 */ 4486 if (uaccess_kernel()) 4487 return; 4488 if (pagefault_disabled()) 4489 return; 4490 __might_sleep(file, line, 0); 4491 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4492 if (current->mm) 4493 might_lock_read(¤t->mm->mmap_sem); 4494 #endif 4495 } 4496 EXPORT_SYMBOL(__might_fault); 4497 #endif 4498 4499 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4500 /* 4501 * Process all subpages of the specified huge page with the specified 4502 * operation. The target subpage will be processed last to keep its 4503 * cache lines hot. 4504 */ 4505 static inline void process_huge_page( 4506 unsigned long addr_hint, unsigned int pages_per_huge_page, 4507 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4508 void *arg) 4509 { 4510 int i, n, base, l; 4511 unsigned long addr = addr_hint & 4512 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4513 4514 /* Process target subpage last to keep its cache lines hot */ 4515 might_sleep(); 4516 n = (addr_hint - addr) / PAGE_SIZE; 4517 if (2 * n <= pages_per_huge_page) { 4518 /* If target subpage in first half of huge page */ 4519 base = 0; 4520 l = n; 4521 /* Process subpages at the end of huge page */ 4522 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4523 cond_resched(); 4524 process_subpage(addr + i * PAGE_SIZE, i, arg); 4525 } 4526 } else { 4527 /* If target subpage in second half of huge page */ 4528 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4529 l = pages_per_huge_page - n; 4530 /* Process subpages at the begin of huge page */ 4531 for (i = 0; i < base; i++) { 4532 cond_resched(); 4533 process_subpage(addr + i * PAGE_SIZE, i, arg); 4534 } 4535 } 4536 /* 4537 * Process remaining subpages in left-right-left-right pattern 4538 * towards the target subpage 4539 */ 4540 for (i = 0; i < l; i++) { 4541 int left_idx = base + i; 4542 int right_idx = base + 2 * l - 1 - i; 4543 4544 cond_resched(); 4545 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4546 cond_resched(); 4547 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4548 } 4549 } 4550 4551 static void clear_gigantic_page(struct page *page, 4552 unsigned long addr, 4553 unsigned int pages_per_huge_page) 4554 { 4555 int i; 4556 struct page *p = page; 4557 4558 might_sleep(); 4559 for (i = 0; i < pages_per_huge_page; 4560 i++, p = mem_map_next(p, page, i)) { 4561 cond_resched(); 4562 clear_user_highpage(p, addr + i * PAGE_SIZE); 4563 } 4564 } 4565 4566 static void clear_subpage(unsigned long addr, int idx, void *arg) 4567 { 4568 struct page *page = arg; 4569 4570 clear_user_highpage(page + idx, addr); 4571 } 4572 4573 void clear_huge_page(struct page *page, 4574 unsigned long addr_hint, unsigned int pages_per_huge_page) 4575 { 4576 unsigned long addr = addr_hint & 4577 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4578 4579 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4580 clear_gigantic_page(page, addr, pages_per_huge_page); 4581 return; 4582 } 4583 4584 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4585 } 4586 4587 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4588 unsigned long addr, 4589 struct vm_area_struct *vma, 4590 unsigned int pages_per_huge_page) 4591 { 4592 int i; 4593 struct page *dst_base = dst; 4594 struct page *src_base = src; 4595 4596 for (i = 0; i < pages_per_huge_page; ) { 4597 cond_resched(); 4598 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4599 4600 i++; 4601 dst = mem_map_next(dst, dst_base, i); 4602 src = mem_map_next(src, src_base, i); 4603 } 4604 } 4605 4606 struct copy_subpage_arg { 4607 struct page *dst; 4608 struct page *src; 4609 struct vm_area_struct *vma; 4610 }; 4611 4612 static void copy_subpage(unsigned long addr, int idx, void *arg) 4613 { 4614 struct copy_subpage_arg *copy_arg = arg; 4615 4616 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4617 addr, copy_arg->vma); 4618 } 4619 4620 void copy_user_huge_page(struct page *dst, struct page *src, 4621 unsigned long addr_hint, struct vm_area_struct *vma, 4622 unsigned int pages_per_huge_page) 4623 { 4624 unsigned long addr = addr_hint & 4625 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4626 struct copy_subpage_arg arg = { 4627 .dst = dst, 4628 .src = src, 4629 .vma = vma, 4630 }; 4631 4632 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4633 copy_user_gigantic_page(dst, src, addr, vma, 4634 pages_per_huge_page); 4635 return; 4636 } 4637 4638 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4639 } 4640 4641 long copy_huge_page_from_user(struct page *dst_page, 4642 const void __user *usr_src, 4643 unsigned int pages_per_huge_page, 4644 bool allow_pagefault) 4645 { 4646 void *src = (void *)usr_src; 4647 void *page_kaddr; 4648 unsigned long i, rc = 0; 4649 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4650 4651 for (i = 0; i < pages_per_huge_page; i++) { 4652 if (allow_pagefault) 4653 page_kaddr = kmap(dst_page + i); 4654 else 4655 page_kaddr = kmap_atomic(dst_page + i); 4656 rc = copy_from_user(page_kaddr, 4657 (const void __user *)(src + i * PAGE_SIZE), 4658 PAGE_SIZE); 4659 if (allow_pagefault) 4660 kunmap(dst_page + i); 4661 else 4662 kunmap_atomic(page_kaddr); 4663 4664 ret_val -= (PAGE_SIZE - rc); 4665 if (rc) 4666 break; 4667 4668 cond_resched(); 4669 } 4670 return ret_val; 4671 } 4672 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4673 4674 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4675 4676 static struct kmem_cache *page_ptl_cachep; 4677 4678 void __init ptlock_cache_init(void) 4679 { 4680 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4681 SLAB_PANIC, NULL); 4682 } 4683 4684 bool ptlock_alloc(struct page *page) 4685 { 4686 spinlock_t *ptl; 4687 4688 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4689 if (!ptl) 4690 return false; 4691 page->ptl = ptl; 4692 return true; 4693 } 4694 4695 void ptlock_free(struct page *page) 4696 { 4697 kmem_cache_free(page_ptl_cachep, page->ptl); 4698 } 4699 #endif 4700