1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/delayacct.h> 51 #include <linux/init.h> 52 #include <linux/writeback.h> 53 #include <linux/memcontrol.h> 54 55 #include <asm/pgalloc.h> 56 #include <asm/uaccess.h> 57 #include <asm/tlb.h> 58 #include <asm/tlbflush.h> 59 #include <asm/pgtable.h> 60 61 #include <linux/swapops.h> 62 #include <linux/elf.h> 63 64 #include "internal.h" 65 66 #ifndef CONFIG_NEED_MULTIPLE_NODES 67 /* use the per-pgdat data instead for discontigmem - mbligh */ 68 unsigned long max_mapnr; 69 struct page *mem_map; 70 71 EXPORT_SYMBOL(max_mapnr); 72 EXPORT_SYMBOL(mem_map); 73 #endif 74 75 unsigned long num_physpages; 76 /* 77 * A number of key systems in x86 including ioremap() rely on the assumption 78 * that high_memory defines the upper bound on direct map memory, then end 79 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 80 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 81 * and ZONE_HIGHMEM. 82 */ 83 void * high_memory; 84 85 EXPORT_SYMBOL(num_physpages); 86 EXPORT_SYMBOL(high_memory); 87 88 /* 89 * Randomize the address space (stacks, mmaps, brk, etc.). 90 * 91 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 92 * as ancient (libc5 based) binaries can segfault. ) 93 */ 94 int randomize_va_space __read_mostly = 95 #ifdef CONFIG_COMPAT_BRK 96 1; 97 #else 98 2; 99 #endif 100 101 static int __init disable_randmaps(char *s) 102 { 103 randomize_va_space = 0; 104 return 1; 105 } 106 __setup("norandmaps", disable_randmaps); 107 108 109 /* 110 * If a p?d_bad entry is found while walking page tables, report 111 * the error, before resetting entry to p?d_none. Usually (but 112 * very seldom) called out from the p?d_none_or_clear_bad macros. 113 */ 114 115 void pgd_clear_bad(pgd_t *pgd) 116 { 117 pgd_ERROR(*pgd); 118 pgd_clear(pgd); 119 } 120 121 void pud_clear_bad(pud_t *pud) 122 { 123 pud_ERROR(*pud); 124 pud_clear(pud); 125 } 126 127 void pmd_clear_bad(pmd_t *pmd) 128 { 129 pmd_ERROR(*pmd); 130 pmd_clear(pmd); 131 } 132 133 /* 134 * Note: this doesn't free the actual pages themselves. That 135 * has been handled earlier when unmapping all the memory regions. 136 */ 137 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 138 { 139 pgtable_t token = pmd_pgtable(*pmd); 140 pmd_clear(pmd); 141 pte_free_tlb(tlb, token); 142 tlb->mm->nr_ptes--; 143 } 144 145 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 146 unsigned long addr, unsigned long end, 147 unsigned long floor, unsigned long ceiling) 148 { 149 pmd_t *pmd; 150 unsigned long next; 151 unsigned long start; 152 153 start = addr; 154 pmd = pmd_offset(pud, addr); 155 do { 156 next = pmd_addr_end(addr, end); 157 if (pmd_none_or_clear_bad(pmd)) 158 continue; 159 free_pte_range(tlb, pmd); 160 } while (pmd++, addr = next, addr != end); 161 162 start &= PUD_MASK; 163 if (start < floor) 164 return; 165 if (ceiling) { 166 ceiling &= PUD_MASK; 167 if (!ceiling) 168 return; 169 } 170 if (end - 1 > ceiling - 1) 171 return; 172 173 pmd = pmd_offset(pud, start); 174 pud_clear(pud); 175 pmd_free_tlb(tlb, pmd); 176 } 177 178 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 179 unsigned long addr, unsigned long end, 180 unsigned long floor, unsigned long ceiling) 181 { 182 pud_t *pud; 183 unsigned long next; 184 unsigned long start; 185 186 start = addr; 187 pud = pud_offset(pgd, addr); 188 do { 189 next = pud_addr_end(addr, end); 190 if (pud_none_or_clear_bad(pud)) 191 continue; 192 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 193 } while (pud++, addr = next, addr != end); 194 195 start &= PGDIR_MASK; 196 if (start < floor) 197 return; 198 if (ceiling) { 199 ceiling &= PGDIR_MASK; 200 if (!ceiling) 201 return; 202 } 203 if (end - 1 > ceiling - 1) 204 return; 205 206 pud = pud_offset(pgd, start); 207 pgd_clear(pgd); 208 pud_free_tlb(tlb, pud); 209 } 210 211 /* 212 * This function frees user-level page tables of a process. 213 * 214 * Must be called with pagetable lock held. 215 */ 216 void free_pgd_range(struct mmu_gather *tlb, 217 unsigned long addr, unsigned long end, 218 unsigned long floor, unsigned long ceiling) 219 { 220 pgd_t *pgd; 221 unsigned long next; 222 unsigned long start; 223 224 /* 225 * The next few lines have given us lots of grief... 226 * 227 * Why are we testing PMD* at this top level? Because often 228 * there will be no work to do at all, and we'd prefer not to 229 * go all the way down to the bottom just to discover that. 230 * 231 * Why all these "- 1"s? Because 0 represents both the bottom 232 * of the address space and the top of it (using -1 for the 233 * top wouldn't help much: the masks would do the wrong thing). 234 * The rule is that addr 0 and floor 0 refer to the bottom of 235 * the address space, but end 0 and ceiling 0 refer to the top 236 * Comparisons need to use "end - 1" and "ceiling - 1" (though 237 * that end 0 case should be mythical). 238 * 239 * Wherever addr is brought up or ceiling brought down, we must 240 * be careful to reject "the opposite 0" before it confuses the 241 * subsequent tests. But what about where end is brought down 242 * by PMD_SIZE below? no, end can't go down to 0 there. 243 * 244 * Whereas we round start (addr) and ceiling down, by different 245 * masks at different levels, in order to test whether a table 246 * now has no other vmas using it, so can be freed, we don't 247 * bother to round floor or end up - the tests don't need that. 248 */ 249 250 addr &= PMD_MASK; 251 if (addr < floor) { 252 addr += PMD_SIZE; 253 if (!addr) 254 return; 255 } 256 if (ceiling) { 257 ceiling &= PMD_MASK; 258 if (!ceiling) 259 return; 260 } 261 if (end - 1 > ceiling - 1) 262 end -= PMD_SIZE; 263 if (addr > end - 1) 264 return; 265 266 start = addr; 267 pgd = pgd_offset(tlb->mm, addr); 268 do { 269 next = pgd_addr_end(addr, end); 270 if (pgd_none_or_clear_bad(pgd)) 271 continue; 272 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 273 } while (pgd++, addr = next, addr != end); 274 } 275 276 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 277 unsigned long floor, unsigned long ceiling) 278 { 279 while (vma) { 280 struct vm_area_struct *next = vma->vm_next; 281 unsigned long addr = vma->vm_start; 282 283 /* 284 * Hide vma from rmap and vmtruncate before freeing pgtables 285 */ 286 anon_vma_unlink(vma); 287 unlink_file_vma(vma); 288 289 if (is_vm_hugetlb_page(vma)) { 290 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 291 floor, next? next->vm_start: ceiling); 292 } else { 293 /* 294 * Optimization: gather nearby vmas into one call down 295 */ 296 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 297 && !is_vm_hugetlb_page(next)) { 298 vma = next; 299 next = vma->vm_next; 300 anon_vma_unlink(vma); 301 unlink_file_vma(vma); 302 } 303 free_pgd_range(tlb, addr, vma->vm_end, 304 floor, next? next->vm_start: ceiling); 305 } 306 vma = next; 307 } 308 } 309 310 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 311 { 312 pgtable_t new = pte_alloc_one(mm, address); 313 if (!new) 314 return -ENOMEM; 315 316 /* 317 * Ensure all pte setup (eg. pte page lock and page clearing) are 318 * visible before the pte is made visible to other CPUs by being 319 * put into page tables. 320 * 321 * The other side of the story is the pointer chasing in the page 322 * table walking code (when walking the page table without locking; 323 * ie. most of the time). Fortunately, these data accesses consist 324 * of a chain of data-dependent loads, meaning most CPUs (alpha 325 * being the notable exception) will already guarantee loads are 326 * seen in-order. See the alpha page table accessors for the 327 * smp_read_barrier_depends() barriers in page table walking code. 328 */ 329 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 330 331 spin_lock(&mm->page_table_lock); 332 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 333 mm->nr_ptes++; 334 pmd_populate(mm, pmd, new); 335 new = NULL; 336 } 337 spin_unlock(&mm->page_table_lock); 338 if (new) 339 pte_free(mm, new); 340 return 0; 341 } 342 343 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 344 { 345 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 346 if (!new) 347 return -ENOMEM; 348 349 smp_wmb(); /* See comment in __pte_alloc */ 350 351 spin_lock(&init_mm.page_table_lock); 352 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 353 pmd_populate_kernel(&init_mm, pmd, new); 354 new = NULL; 355 } 356 spin_unlock(&init_mm.page_table_lock); 357 if (new) 358 pte_free_kernel(&init_mm, new); 359 return 0; 360 } 361 362 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 363 { 364 if (file_rss) 365 add_mm_counter(mm, file_rss, file_rss); 366 if (anon_rss) 367 add_mm_counter(mm, anon_rss, anon_rss); 368 } 369 370 /* 371 * This function is called to print an error when a bad pte 372 * is found. For example, we might have a PFN-mapped pte in 373 * a region that doesn't allow it. 374 * 375 * The calling function must still handle the error. 376 */ 377 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) 378 { 379 printk(KERN_ERR "Bad pte = %08llx, process = %s, " 380 "vm_flags = %lx, vaddr = %lx\n", 381 (long long)pte_val(pte), 382 (vma->vm_mm == current->mm ? current->comm : "???"), 383 vma->vm_flags, vaddr); 384 dump_stack(); 385 } 386 387 static inline int is_cow_mapping(unsigned int flags) 388 { 389 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 390 } 391 392 /* 393 * vm_normal_page -- This function gets the "struct page" associated with a pte. 394 * 395 * "Special" mappings do not wish to be associated with a "struct page" (either 396 * it doesn't exist, or it exists but they don't want to touch it). In this 397 * case, NULL is returned here. "Normal" mappings do have a struct page. 398 * 399 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 400 * pte bit, in which case this function is trivial. Secondly, an architecture 401 * may not have a spare pte bit, which requires a more complicated scheme, 402 * described below. 403 * 404 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 405 * special mapping (even if there are underlying and valid "struct pages"). 406 * COWed pages of a VM_PFNMAP are always normal. 407 * 408 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 409 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 410 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 411 * mapping will always honor the rule 412 * 413 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 414 * 415 * And for normal mappings this is false. 416 * 417 * This restricts such mappings to be a linear translation from virtual address 418 * to pfn. To get around this restriction, we allow arbitrary mappings so long 419 * as the vma is not a COW mapping; in that case, we know that all ptes are 420 * special (because none can have been COWed). 421 * 422 * 423 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 424 * 425 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 426 * page" backing, however the difference is that _all_ pages with a struct 427 * page (that is, those where pfn_valid is true) are refcounted and considered 428 * normal pages by the VM. The disadvantage is that pages are refcounted 429 * (which can be slower and simply not an option for some PFNMAP users). The 430 * advantage is that we don't have to follow the strict linearity rule of 431 * PFNMAP mappings in order to support COWable mappings. 432 * 433 */ 434 #ifdef __HAVE_ARCH_PTE_SPECIAL 435 # define HAVE_PTE_SPECIAL 1 436 #else 437 # define HAVE_PTE_SPECIAL 0 438 #endif 439 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 440 pte_t pte) 441 { 442 unsigned long pfn; 443 444 if (HAVE_PTE_SPECIAL) { 445 if (likely(!pte_special(pte))) { 446 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 447 return pte_page(pte); 448 } 449 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 450 return NULL; 451 } 452 453 /* !HAVE_PTE_SPECIAL case follows: */ 454 455 pfn = pte_pfn(pte); 456 457 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 458 if (vma->vm_flags & VM_MIXEDMAP) { 459 if (!pfn_valid(pfn)) 460 return NULL; 461 goto out; 462 } else { 463 unsigned long off; 464 off = (addr - vma->vm_start) >> PAGE_SHIFT; 465 if (pfn == vma->vm_pgoff + off) 466 return NULL; 467 if (!is_cow_mapping(vma->vm_flags)) 468 return NULL; 469 } 470 } 471 472 VM_BUG_ON(!pfn_valid(pfn)); 473 474 /* 475 * NOTE! We still have PageReserved() pages in the page tables. 476 * 477 * eg. VDSO mappings can cause them to exist. 478 */ 479 out: 480 return pfn_to_page(pfn); 481 } 482 483 /* 484 * copy one vm_area from one task to the other. Assumes the page tables 485 * already present in the new task to be cleared in the whole range 486 * covered by this vma. 487 */ 488 489 static inline void 490 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 491 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 492 unsigned long addr, int *rss) 493 { 494 unsigned long vm_flags = vma->vm_flags; 495 pte_t pte = *src_pte; 496 struct page *page; 497 498 /* pte contains position in swap or file, so copy. */ 499 if (unlikely(!pte_present(pte))) { 500 if (!pte_file(pte)) { 501 swp_entry_t entry = pte_to_swp_entry(pte); 502 503 swap_duplicate(entry); 504 /* make sure dst_mm is on swapoff's mmlist. */ 505 if (unlikely(list_empty(&dst_mm->mmlist))) { 506 spin_lock(&mmlist_lock); 507 if (list_empty(&dst_mm->mmlist)) 508 list_add(&dst_mm->mmlist, 509 &src_mm->mmlist); 510 spin_unlock(&mmlist_lock); 511 } 512 if (is_write_migration_entry(entry) && 513 is_cow_mapping(vm_flags)) { 514 /* 515 * COW mappings require pages in both parent 516 * and child to be set to read. 517 */ 518 make_migration_entry_read(&entry); 519 pte = swp_entry_to_pte(entry); 520 set_pte_at(src_mm, addr, src_pte, pte); 521 } 522 } 523 goto out_set_pte; 524 } 525 526 /* 527 * If it's a COW mapping, write protect it both 528 * in the parent and the child 529 */ 530 if (is_cow_mapping(vm_flags)) { 531 ptep_set_wrprotect(src_mm, addr, src_pte); 532 pte = pte_wrprotect(pte); 533 } 534 535 /* 536 * If it's a shared mapping, mark it clean in 537 * the child 538 */ 539 if (vm_flags & VM_SHARED) 540 pte = pte_mkclean(pte); 541 pte = pte_mkold(pte); 542 543 page = vm_normal_page(vma, addr, pte); 544 if (page) { 545 get_page(page); 546 page_dup_rmap(page, vma, addr); 547 rss[!!PageAnon(page)]++; 548 } 549 550 out_set_pte: 551 set_pte_at(dst_mm, addr, dst_pte, pte); 552 } 553 554 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 555 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 556 unsigned long addr, unsigned long end) 557 { 558 pte_t *src_pte, *dst_pte; 559 spinlock_t *src_ptl, *dst_ptl; 560 int progress = 0; 561 int rss[2]; 562 563 again: 564 rss[1] = rss[0] = 0; 565 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 566 if (!dst_pte) 567 return -ENOMEM; 568 src_pte = pte_offset_map_nested(src_pmd, addr); 569 src_ptl = pte_lockptr(src_mm, src_pmd); 570 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 571 arch_enter_lazy_mmu_mode(); 572 573 do { 574 /* 575 * We are holding two locks at this point - either of them 576 * could generate latencies in another task on another CPU. 577 */ 578 if (progress >= 32) { 579 progress = 0; 580 if (need_resched() || 581 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 582 break; 583 } 584 if (pte_none(*src_pte)) { 585 progress++; 586 continue; 587 } 588 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 589 progress += 8; 590 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 591 592 arch_leave_lazy_mmu_mode(); 593 spin_unlock(src_ptl); 594 pte_unmap_nested(src_pte - 1); 595 add_mm_rss(dst_mm, rss[0], rss[1]); 596 pte_unmap_unlock(dst_pte - 1, dst_ptl); 597 cond_resched(); 598 if (addr != end) 599 goto again; 600 return 0; 601 } 602 603 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 604 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 605 unsigned long addr, unsigned long end) 606 { 607 pmd_t *src_pmd, *dst_pmd; 608 unsigned long next; 609 610 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 611 if (!dst_pmd) 612 return -ENOMEM; 613 src_pmd = pmd_offset(src_pud, addr); 614 do { 615 next = pmd_addr_end(addr, end); 616 if (pmd_none_or_clear_bad(src_pmd)) 617 continue; 618 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 619 vma, addr, next)) 620 return -ENOMEM; 621 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 622 return 0; 623 } 624 625 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 626 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 627 unsigned long addr, unsigned long end) 628 { 629 pud_t *src_pud, *dst_pud; 630 unsigned long next; 631 632 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 633 if (!dst_pud) 634 return -ENOMEM; 635 src_pud = pud_offset(src_pgd, addr); 636 do { 637 next = pud_addr_end(addr, end); 638 if (pud_none_or_clear_bad(src_pud)) 639 continue; 640 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 641 vma, addr, next)) 642 return -ENOMEM; 643 } while (dst_pud++, src_pud++, addr = next, addr != end); 644 return 0; 645 } 646 647 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 648 struct vm_area_struct *vma) 649 { 650 pgd_t *src_pgd, *dst_pgd; 651 unsigned long next; 652 unsigned long addr = vma->vm_start; 653 unsigned long end = vma->vm_end; 654 655 /* 656 * Don't copy ptes where a page fault will fill them correctly. 657 * Fork becomes much lighter when there are big shared or private 658 * readonly mappings. The tradeoff is that copy_page_range is more 659 * efficient than faulting. 660 */ 661 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 662 if (!vma->anon_vma) 663 return 0; 664 } 665 666 if (is_vm_hugetlb_page(vma)) 667 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 668 669 dst_pgd = pgd_offset(dst_mm, addr); 670 src_pgd = pgd_offset(src_mm, addr); 671 do { 672 next = pgd_addr_end(addr, end); 673 if (pgd_none_or_clear_bad(src_pgd)) 674 continue; 675 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 676 vma, addr, next)) 677 return -ENOMEM; 678 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 679 return 0; 680 } 681 682 static unsigned long zap_pte_range(struct mmu_gather *tlb, 683 struct vm_area_struct *vma, pmd_t *pmd, 684 unsigned long addr, unsigned long end, 685 long *zap_work, struct zap_details *details) 686 { 687 struct mm_struct *mm = tlb->mm; 688 pte_t *pte; 689 spinlock_t *ptl; 690 int file_rss = 0; 691 int anon_rss = 0; 692 693 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 694 arch_enter_lazy_mmu_mode(); 695 do { 696 pte_t ptent = *pte; 697 if (pte_none(ptent)) { 698 (*zap_work)--; 699 continue; 700 } 701 702 (*zap_work) -= PAGE_SIZE; 703 704 if (pte_present(ptent)) { 705 struct page *page; 706 707 page = vm_normal_page(vma, addr, ptent); 708 if (unlikely(details) && page) { 709 /* 710 * unmap_shared_mapping_pages() wants to 711 * invalidate cache without truncating: 712 * unmap shared but keep private pages. 713 */ 714 if (details->check_mapping && 715 details->check_mapping != page->mapping) 716 continue; 717 /* 718 * Each page->index must be checked when 719 * invalidating or truncating nonlinear. 720 */ 721 if (details->nonlinear_vma && 722 (page->index < details->first_index || 723 page->index > details->last_index)) 724 continue; 725 } 726 ptent = ptep_get_and_clear_full(mm, addr, pte, 727 tlb->fullmm); 728 tlb_remove_tlb_entry(tlb, pte, addr); 729 if (unlikely(!page)) 730 continue; 731 if (unlikely(details) && details->nonlinear_vma 732 && linear_page_index(details->nonlinear_vma, 733 addr) != page->index) 734 set_pte_at(mm, addr, pte, 735 pgoff_to_pte(page->index)); 736 if (PageAnon(page)) 737 anon_rss--; 738 else { 739 if (pte_dirty(ptent)) 740 set_page_dirty(page); 741 if (pte_young(ptent)) 742 SetPageReferenced(page); 743 file_rss--; 744 } 745 page_remove_rmap(page, vma); 746 tlb_remove_page(tlb, page); 747 continue; 748 } 749 /* 750 * If details->check_mapping, we leave swap entries; 751 * if details->nonlinear_vma, we leave file entries. 752 */ 753 if (unlikely(details)) 754 continue; 755 if (!pte_file(ptent)) 756 free_swap_and_cache(pte_to_swp_entry(ptent)); 757 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 758 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 759 760 add_mm_rss(mm, file_rss, anon_rss); 761 arch_leave_lazy_mmu_mode(); 762 pte_unmap_unlock(pte - 1, ptl); 763 764 return addr; 765 } 766 767 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 768 struct vm_area_struct *vma, pud_t *pud, 769 unsigned long addr, unsigned long end, 770 long *zap_work, struct zap_details *details) 771 { 772 pmd_t *pmd; 773 unsigned long next; 774 775 pmd = pmd_offset(pud, addr); 776 do { 777 next = pmd_addr_end(addr, end); 778 if (pmd_none_or_clear_bad(pmd)) { 779 (*zap_work)--; 780 continue; 781 } 782 next = zap_pte_range(tlb, vma, pmd, addr, next, 783 zap_work, details); 784 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 785 786 return addr; 787 } 788 789 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 790 struct vm_area_struct *vma, pgd_t *pgd, 791 unsigned long addr, unsigned long end, 792 long *zap_work, struct zap_details *details) 793 { 794 pud_t *pud; 795 unsigned long next; 796 797 pud = pud_offset(pgd, addr); 798 do { 799 next = pud_addr_end(addr, end); 800 if (pud_none_or_clear_bad(pud)) { 801 (*zap_work)--; 802 continue; 803 } 804 next = zap_pmd_range(tlb, vma, pud, addr, next, 805 zap_work, details); 806 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 807 808 return addr; 809 } 810 811 static unsigned long unmap_page_range(struct mmu_gather *tlb, 812 struct vm_area_struct *vma, 813 unsigned long addr, unsigned long end, 814 long *zap_work, struct zap_details *details) 815 { 816 pgd_t *pgd; 817 unsigned long next; 818 819 if (details && !details->check_mapping && !details->nonlinear_vma) 820 details = NULL; 821 822 BUG_ON(addr >= end); 823 tlb_start_vma(tlb, vma); 824 pgd = pgd_offset(vma->vm_mm, addr); 825 do { 826 next = pgd_addr_end(addr, end); 827 if (pgd_none_or_clear_bad(pgd)) { 828 (*zap_work)--; 829 continue; 830 } 831 next = zap_pud_range(tlb, vma, pgd, addr, next, 832 zap_work, details); 833 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 834 tlb_end_vma(tlb, vma); 835 836 return addr; 837 } 838 839 #ifdef CONFIG_PREEMPT 840 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 841 #else 842 /* No preempt: go for improved straight-line efficiency */ 843 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 844 #endif 845 846 /** 847 * unmap_vmas - unmap a range of memory covered by a list of vma's 848 * @tlbp: address of the caller's struct mmu_gather 849 * @vma: the starting vma 850 * @start_addr: virtual address at which to start unmapping 851 * @end_addr: virtual address at which to end unmapping 852 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 853 * @details: details of nonlinear truncation or shared cache invalidation 854 * 855 * Returns the end address of the unmapping (restart addr if interrupted). 856 * 857 * Unmap all pages in the vma list. 858 * 859 * We aim to not hold locks for too long (for scheduling latency reasons). 860 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 861 * return the ending mmu_gather to the caller. 862 * 863 * Only addresses between `start' and `end' will be unmapped. 864 * 865 * The VMA list must be sorted in ascending virtual address order. 866 * 867 * unmap_vmas() assumes that the caller will flush the whole unmapped address 868 * range after unmap_vmas() returns. So the only responsibility here is to 869 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 870 * drops the lock and schedules. 871 */ 872 unsigned long unmap_vmas(struct mmu_gather **tlbp, 873 struct vm_area_struct *vma, unsigned long start_addr, 874 unsigned long end_addr, unsigned long *nr_accounted, 875 struct zap_details *details) 876 { 877 long zap_work = ZAP_BLOCK_SIZE; 878 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 879 int tlb_start_valid = 0; 880 unsigned long start = start_addr; 881 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 882 int fullmm = (*tlbp)->fullmm; 883 884 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 885 unsigned long end; 886 887 start = max(vma->vm_start, start_addr); 888 if (start >= vma->vm_end) 889 continue; 890 end = min(vma->vm_end, end_addr); 891 if (end <= vma->vm_start) 892 continue; 893 894 if (vma->vm_flags & VM_ACCOUNT) 895 *nr_accounted += (end - start) >> PAGE_SHIFT; 896 897 while (start != end) { 898 if (!tlb_start_valid) { 899 tlb_start = start; 900 tlb_start_valid = 1; 901 } 902 903 if (unlikely(is_vm_hugetlb_page(vma))) { 904 /* 905 * It is undesirable to test vma->vm_file as it 906 * should be non-null for valid hugetlb area. 907 * However, vm_file will be NULL in the error 908 * cleanup path of do_mmap_pgoff. When 909 * hugetlbfs ->mmap method fails, 910 * do_mmap_pgoff() nullifies vma->vm_file 911 * before calling this function to clean up. 912 * Since no pte has actually been setup, it is 913 * safe to do nothing in this case. 914 */ 915 if (vma->vm_file) { 916 unmap_hugepage_range(vma, start, end, NULL); 917 zap_work -= (end - start) / 918 pages_per_huge_page(hstate_vma(vma)); 919 } 920 921 start = end; 922 } else 923 start = unmap_page_range(*tlbp, vma, 924 start, end, &zap_work, details); 925 926 if (zap_work > 0) { 927 BUG_ON(start != end); 928 break; 929 } 930 931 tlb_finish_mmu(*tlbp, tlb_start, start); 932 933 if (need_resched() || 934 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 935 if (i_mmap_lock) { 936 *tlbp = NULL; 937 goto out; 938 } 939 cond_resched(); 940 } 941 942 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 943 tlb_start_valid = 0; 944 zap_work = ZAP_BLOCK_SIZE; 945 } 946 } 947 out: 948 return start; /* which is now the end (or restart) address */ 949 } 950 951 /** 952 * zap_page_range - remove user pages in a given range 953 * @vma: vm_area_struct holding the applicable pages 954 * @address: starting address of pages to zap 955 * @size: number of bytes to zap 956 * @details: details of nonlinear truncation or shared cache invalidation 957 */ 958 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 959 unsigned long size, struct zap_details *details) 960 { 961 struct mm_struct *mm = vma->vm_mm; 962 struct mmu_gather *tlb; 963 unsigned long end = address + size; 964 unsigned long nr_accounted = 0; 965 966 lru_add_drain(); 967 tlb = tlb_gather_mmu(mm, 0); 968 update_hiwater_rss(mm); 969 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 970 if (tlb) 971 tlb_finish_mmu(tlb, address, end); 972 return end; 973 } 974 975 /* 976 * Do a quick page-table lookup for a single page. 977 */ 978 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 979 unsigned int flags) 980 { 981 pgd_t *pgd; 982 pud_t *pud; 983 pmd_t *pmd; 984 pte_t *ptep, pte; 985 spinlock_t *ptl; 986 struct page *page; 987 struct mm_struct *mm = vma->vm_mm; 988 989 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 990 if (!IS_ERR(page)) { 991 BUG_ON(flags & FOLL_GET); 992 goto out; 993 } 994 995 page = NULL; 996 pgd = pgd_offset(mm, address); 997 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 998 goto no_page_table; 999 1000 pud = pud_offset(pgd, address); 1001 if (pud_none(*pud)) 1002 goto no_page_table; 1003 if (pud_huge(*pud)) { 1004 BUG_ON(flags & FOLL_GET); 1005 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1006 goto out; 1007 } 1008 if (unlikely(pud_bad(*pud))) 1009 goto no_page_table; 1010 1011 pmd = pmd_offset(pud, address); 1012 if (pmd_none(*pmd)) 1013 goto no_page_table; 1014 if (pmd_huge(*pmd)) { 1015 BUG_ON(flags & FOLL_GET); 1016 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1017 goto out; 1018 } 1019 if (unlikely(pmd_bad(*pmd))) 1020 goto no_page_table; 1021 1022 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1023 1024 pte = *ptep; 1025 if (!pte_present(pte)) 1026 goto no_page; 1027 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1028 goto unlock; 1029 page = vm_normal_page(vma, address, pte); 1030 if (unlikely(!page)) 1031 goto bad_page; 1032 1033 if (flags & FOLL_GET) 1034 get_page(page); 1035 if (flags & FOLL_TOUCH) { 1036 if ((flags & FOLL_WRITE) && 1037 !pte_dirty(pte) && !PageDirty(page)) 1038 set_page_dirty(page); 1039 mark_page_accessed(page); 1040 } 1041 unlock: 1042 pte_unmap_unlock(ptep, ptl); 1043 out: 1044 return page; 1045 1046 bad_page: 1047 pte_unmap_unlock(ptep, ptl); 1048 return ERR_PTR(-EFAULT); 1049 1050 no_page: 1051 pte_unmap_unlock(ptep, ptl); 1052 if (!pte_none(pte)) 1053 return page; 1054 /* Fall through to ZERO_PAGE handling */ 1055 no_page_table: 1056 /* 1057 * When core dumping an enormous anonymous area that nobody 1058 * has touched so far, we don't want to allocate page tables. 1059 */ 1060 if (flags & FOLL_ANON) { 1061 page = ZERO_PAGE(0); 1062 if (flags & FOLL_GET) 1063 get_page(page); 1064 BUG_ON(flags & FOLL_WRITE); 1065 } 1066 return page; 1067 } 1068 1069 /* Can we do the FOLL_ANON optimization? */ 1070 static inline int use_zero_page(struct vm_area_struct *vma) 1071 { 1072 /* 1073 * We don't want to optimize FOLL_ANON for make_pages_present() 1074 * when it tries to page in a VM_LOCKED region. As to VM_SHARED, 1075 * we want to get the page from the page tables to make sure 1076 * that we serialize and update with any other user of that 1077 * mapping. 1078 */ 1079 if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) 1080 return 0; 1081 /* 1082 * And if we have a fault routine, it's not an anonymous region. 1083 */ 1084 return !vma->vm_ops || !vma->vm_ops->fault; 1085 } 1086 1087 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1088 unsigned long start, int len, int write, int force, 1089 struct page **pages, struct vm_area_struct **vmas) 1090 { 1091 int i; 1092 unsigned int vm_flags; 1093 1094 if (len <= 0) 1095 return 0; 1096 /* 1097 * Require read or write permissions. 1098 * If 'force' is set, we only require the "MAY" flags. 1099 */ 1100 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1101 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1102 i = 0; 1103 1104 do { 1105 struct vm_area_struct *vma; 1106 unsigned int foll_flags; 1107 1108 vma = find_extend_vma(mm, start); 1109 if (!vma && in_gate_area(tsk, start)) { 1110 unsigned long pg = start & PAGE_MASK; 1111 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1112 pgd_t *pgd; 1113 pud_t *pud; 1114 pmd_t *pmd; 1115 pte_t *pte; 1116 if (write) /* user gate pages are read-only */ 1117 return i ? : -EFAULT; 1118 if (pg > TASK_SIZE) 1119 pgd = pgd_offset_k(pg); 1120 else 1121 pgd = pgd_offset_gate(mm, pg); 1122 BUG_ON(pgd_none(*pgd)); 1123 pud = pud_offset(pgd, pg); 1124 BUG_ON(pud_none(*pud)); 1125 pmd = pmd_offset(pud, pg); 1126 if (pmd_none(*pmd)) 1127 return i ? : -EFAULT; 1128 pte = pte_offset_map(pmd, pg); 1129 if (pte_none(*pte)) { 1130 pte_unmap(pte); 1131 return i ? : -EFAULT; 1132 } 1133 if (pages) { 1134 struct page *page = vm_normal_page(gate_vma, start, *pte); 1135 pages[i] = page; 1136 if (page) 1137 get_page(page); 1138 } 1139 pte_unmap(pte); 1140 if (vmas) 1141 vmas[i] = gate_vma; 1142 i++; 1143 start += PAGE_SIZE; 1144 len--; 1145 continue; 1146 } 1147 1148 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1149 || !(vm_flags & vma->vm_flags)) 1150 return i ? : -EFAULT; 1151 1152 if (is_vm_hugetlb_page(vma)) { 1153 i = follow_hugetlb_page(mm, vma, pages, vmas, 1154 &start, &len, i, write); 1155 continue; 1156 } 1157 1158 foll_flags = FOLL_TOUCH; 1159 if (pages) 1160 foll_flags |= FOLL_GET; 1161 if (!write && use_zero_page(vma)) 1162 foll_flags |= FOLL_ANON; 1163 1164 do { 1165 struct page *page; 1166 1167 /* 1168 * If tsk is ooming, cut off its access to large memory 1169 * allocations. It has a pending SIGKILL, but it can't 1170 * be processed until returning to user space. 1171 */ 1172 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) 1173 return i ? i : -ENOMEM; 1174 1175 if (write) 1176 foll_flags |= FOLL_WRITE; 1177 1178 cond_resched(); 1179 while (!(page = follow_page(vma, start, foll_flags))) { 1180 int ret; 1181 ret = handle_mm_fault(mm, vma, start, 1182 foll_flags & FOLL_WRITE); 1183 if (ret & VM_FAULT_ERROR) { 1184 if (ret & VM_FAULT_OOM) 1185 return i ? i : -ENOMEM; 1186 else if (ret & VM_FAULT_SIGBUS) 1187 return i ? i : -EFAULT; 1188 BUG(); 1189 } 1190 if (ret & VM_FAULT_MAJOR) 1191 tsk->maj_flt++; 1192 else 1193 tsk->min_flt++; 1194 1195 /* 1196 * The VM_FAULT_WRITE bit tells us that 1197 * do_wp_page has broken COW when necessary, 1198 * even if maybe_mkwrite decided not to set 1199 * pte_write. We can thus safely do subsequent 1200 * page lookups as if they were reads. 1201 */ 1202 if (ret & VM_FAULT_WRITE) 1203 foll_flags &= ~FOLL_WRITE; 1204 1205 cond_resched(); 1206 } 1207 if (IS_ERR(page)) 1208 return i ? i : PTR_ERR(page); 1209 if (pages) { 1210 pages[i] = page; 1211 1212 flush_anon_page(vma, page, start); 1213 flush_dcache_page(page); 1214 } 1215 if (vmas) 1216 vmas[i] = vma; 1217 i++; 1218 start += PAGE_SIZE; 1219 len--; 1220 } while (len && start < vma->vm_end); 1221 } while (len); 1222 return i; 1223 } 1224 EXPORT_SYMBOL(get_user_pages); 1225 1226 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1227 spinlock_t **ptl) 1228 { 1229 pgd_t * pgd = pgd_offset(mm, addr); 1230 pud_t * pud = pud_alloc(mm, pgd, addr); 1231 if (pud) { 1232 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1233 if (pmd) 1234 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1235 } 1236 return NULL; 1237 } 1238 1239 /* 1240 * This is the old fallback for page remapping. 1241 * 1242 * For historical reasons, it only allows reserved pages. Only 1243 * old drivers should use this, and they needed to mark their 1244 * pages reserved for the old functions anyway. 1245 */ 1246 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1247 struct page *page, pgprot_t prot) 1248 { 1249 struct mm_struct *mm = vma->vm_mm; 1250 int retval; 1251 pte_t *pte; 1252 spinlock_t *ptl; 1253 1254 retval = mem_cgroup_charge(page, mm, GFP_KERNEL); 1255 if (retval) 1256 goto out; 1257 1258 retval = -EINVAL; 1259 if (PageAnon(page)) 1260 goto out_uncharge; 1261 retval = -ENOMEM; 1262 flush_dcache_page(page); 1263 pte = get_locked_pte(mm, addr, &ptl); 1264 if (!pte) 1265 goto out_uncharge; 1266 retval = -EBUSY; 1267 if (!pte_none(*pte)) 1268 goto out_unlock; 1269 1270 /* Ok, finally just insert the thing.. */ 1271 get_page(page); 1272 inc_mm_counter(mm, file_rss); 1273 page_add_file_rmap(page); 1274 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1275 1276 retval = 0; 1277 pte_unmap_unlock(pte, ptl); 1278 return retval; 1279 out_unlock: 1280 pte_unmap_unlock(pte, ptl); 1281 out_uncharge: 1282 mem_cgroup_uncharge_page(page); 1283 out: 1284 return retval; 1285 } 1286 1287 /** 1288 * vm_insert_page - insert single page into user vma 1289 * @vma: user vma to map to 1290 * @addr: target user address of this page 1291 * @page: source kernel page 1292 * 1293 * This allows drivers to insert individual pages they've allocated 1294 * into a user vma. 1295 * 1296 * The page has to be a nice clean _individual_ kernel allocation. 1297 * If you allocate a compound page, you need to have marked it as 1298 * such (__GFP_COMP), or manually just split the page up yourself 1299 * (see split_page()). 1300 * 1301 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1302 * took an arbitrary page protection parameter. This doesn't allow 1303 * that. Your vma protection will have to be set up correctly, which 1304 * means that if you want a shared writable mapping, you'd better 1305 * ask for a shared writable mapping! 1306 * 1307 * The page does not need to be reserved. 1308 */ 1309 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1310 struct page *page) 1311 { 1312 if (addr < vma->vm_start || addr >= vma->vm_end) 1313 return -EFAULT; 1314 if (!page_count(page)) 1315 return -EINVAL; 1316 vma->vm_flags |= VM_INSERTPAGE; 1317 return insert_page(vma, addr, page, vma->vm_page_prot); 1318 } 1319 EXPORT_SYMBOL(vm_insert_page); 1320 1321 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1322 unsigned long pfn, pgprot_t prot) 1323 { 1324 struct mm_struct *mm = vma->vm_mm; 1325 int retval; 1326 pte_t *pte, entry; 1327 spinlock_t *ptl; 1328 1329 retval = -ENOMEM; 1330 pte = get_locked_pte(mm, addr, &ptl); 1331 if (!pte) 1332 goto out; 1333 retval = -EBUSY; 1334 if (!pte_none(*pte)) 1335 goto out_unlock; 1336 1337 /* Ok, finally just insert the thing.. */ 1338 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1339 set_pte_at(mm, addr, pte, entry); 1340 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ 1341 1342 retval = 0; 1343 out_unlock: 1344 pte_unmap_unlock(pte, ptl); 1345 out: 1346 return retval; 1347 } 1348 1349 /** 1350 * vm_insert_pfn - insert single pfn into user vma 1351 * @vma: user vma to map to 1352 * @addr: target user address of this page 1353 * @pfn: source kernel pfn 1354 * 1355 * Similar to vm_inert_page, this allows drivers to insert individual pages 1356 * they've allocated into a user vma. Same comments apply. 1357 * 1358 * This function should only be called from a vm_ops->fault handler, and 1359 * in that case the handler should return NULL. 1360 * 1361 * vma cannot be a COW mapping. 1362 * 1363 * As this is called only for pages that do not currently exist, we 1364 * do not need to flush old virtual caches or the TLB. 1365 */ 1366 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1367 unsigned long pfn) 1368 { 1369 /* 1370 * Technically, architectures with pte_special can avoid all these 1371 * restrictions (same for remap_pfn_range). However we would like 1372 * consistency in testing and feature parity among all, so we should 1373 * try to keep these invariants in place for everybody. 1374 */ 1375 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1376 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1377 (VM_PFNMAP|VM_MIXEDMAP)); 1378 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1379 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1380 1381 if (addr < vma->vm_start || addr >= vma->vm_end) 1382 return -EFAULT; 1383 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1384 } 1385 EXPORT_SYMBOL(vm_insert_pfn); 1386 1387 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1388 unsigned long pfn) 1389 { 1390 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1391 1392 if (addr < vma->vm_start || addr >= vma->vm_end) 1393 return -EFAULT; 1394 1395 /* 1396 * If we don't have pte special, then we have to use the pfn_valid() 1397 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1398 * refcount the page if pfn_valid is true (hence insert_page rather 1399 * than insert_pfn). 1400 */ 1401 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1402 struct page *page; 1403 1404 page = pfn_to_page(pfn); 1405 return insert_page(vma, addr, page, vma->vm_page_prot); 1406 } 1407 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1408 } 1409 EXPORT_SYMBOL(vm_insert_mixed); 1410 1411 /* 1412 * maps a range of physical memory into the requested pages. the old 1413 * mappings are removed. any references to nonexistent pages results 1414 * in null mappings (currently treated as "copy-on-access") 1415 */ 1416 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1417 unsigned long addr, unsigned long end, 1418 unsigned long pfn, pgprot_t prot) 1419 { 1420 pte_t *pte; 1421 spinlock_t *ptl; 1422 1423 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1424 if (!pte) 1425 return -ENOMEM; 1426 arch_enter_lazy_mmu_mode(); 1427 do { 1428 BUG_ON(!pte_none(*pte)); 1429 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1430 pfn++; 1431 } while (pte++, addr += PAGE_SIZE, addr != end); 1432 arch_leave_lazy_mmu_mode(); 1433 pte_unmap_unlock(pte - 1, ptl); 1434 return 0; 1435 } 1436 1437 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1438 unsigned long addr, unsigned long end, 1439 unsigned long pfn, pgprot_t prot) 1440 { 1441 pmd_t *pmd; 1442 unsigned long next; 1443 1444 pfn -= addr >> PAGE_SHIFT; 1445 pmd = pmd_alloc(mm, pud, addr); 1446 if (!pmd) 1447 return -ENOMEM; 1448 do { 1449 next = pmd_addr_end(addr, end); 1450 if (remap_pte_range(mm, pmd, addr, next, 1451 pfn + (addr >> PAGE_SHIFT), prot)) 1452 return -ENOMEM; 1453 } while (pmd++, addr = next, addr != end); 1454 return 0; 1455 } 1456 1457 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1458 unsigned long addr, unsigned long end, 1459 unsigned long pfn, pgprot_t prot) 1460 { 1461 pud_t *pud; 1462 unsigned long next; 1463 1464 pfn -= addr >> PAGE_SHIFT; 1465 pud = pud_alloc(mm, pgd, addr); 1466 if (!pud) 1467 return -ENOMEM; 1468 do { 1469 next = pud_addr_end(addr, end); 1470 if (remap_pmd_range(mm, pud, addr, next, 1471 pfn + (addr >> PAGE_SHIFT), prot)) 1472 return -ENOMEM; 1473 } while (pud++, addr = next, addr != end); 1474 return 0; 1475 } 1476 1477 /** 1478 * remap_pfn_range - remap kernel memory to userspace 1479 * @vma: user vma to map to 1480 * @addr: target user address to start at 1481 * @pfn: physical address of kernel memory 1482 * @size: size of map area 1483 * @prot: page protection flags for this mapping 1484 * 1485 * Note: this is only safe if the mm semaphore is held when called. 1486 */ 1487 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1488 unsigned long pfn, unsigned long size, pgprot_t prot) 1489 { 1490 pgd_t *pgd; 1491 unsigned long next; 1492 unsigned long end = addr + PAGE_ALIGN(size); 1493 struct mm_struct *mm = vma->vm_mm; 1494 int err; 1495 1496 /* 1497 * Physically remapped pages are special. Tell the 1498 * rest of the world about it: 1499 * VM_IO tells people not to look at these pages 1500 * (accesses can have side effects). 1501 * VM_RESERVED is specified all over the place, because 1502 * in 2.4 it kept swapout's vma scan off this vma; but 1503 * in 2.6 the LRU scan won't even find its pages, so this 1504 * flag means no more than count its pages in reserved_vm, 1505 * and omit it from core dump, even when VM_IO turned off. 1506 * VM_PFNMAP tells the core MM that the base pages are just 1507 * raw PFN mappings, and do not have a "struct page" associated 1508 * with them. 1509 * 1510 * There's a horrible special case to handle copy-on-write 1511 * behaviour that some programs depend on. We mark the "original" 1512 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1513 */ 1514 if (is_cow_mapping(vma->vm_flags)) { 1515 if (addr != vma->vm_start || end != vma->vm_end) 1516 return -EINVAL; 1517 vma->vm_pgoff = pfn; 1518 } 1519 1520 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1521 1522 BUG_ON(addr >= end); 1523 pfn -= addr >> PAGE_SHIFT; 1524 pgd = pgd_offset(mm, addr); 1525 flush_cache_range(vma, addr, end); 1526 do { 1527 next = pgd_addr_end(addr, end); 1528 err = remap_pud_range(mm, pgd, addr, next, 1529 pfn + (addr >> PAGE_SHIFT), prot); 1530 if (err) 1531 break; 1532 } while (pgd++, addr = next, addr != end); 1533 return err; 1534 } 1535 EXPORT_SYMBOL(remap_pfn_range); 1536 1537 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1538 unsigned long addr, unsigned long end, 1539 pte_fn_t fn, void *data) 1540 { 1541 pte_t *pte; 1542 int err; 1543 pgtable_t token; 1544 spinlock_t *uninitialized_var(ptl); 1545 1546 pte = (mm == &init_mm) ? 1547 pte_alloc_kernel(pmd, addr) : 1548 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1549 if (!pte) 1550 return -ENOMEM; 1551 1552 BUG_ON(pmd_huge(*pmd)); 1553 1554 token = pmd_pgtable(*pmd); 1555 1556 do { 1557 err = fn(pte, token, addr, data); 1558 if (err) 1559 break; 1560 } while (pte++, addr += PAGE_SIZE, addr != end); 1561 1562 if (mm != &init_mm) 1563 pte_unmap_unlock(pte-1, ptl); 1564 return err; 1565 } 1566 1567 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1568 unsigned long addr, unsigned long end, 1569 pte_fn_t fn, void *data) 1570 { 1571 pmd_t *pmd; 1572 unsigned long next; 1573 int err; 1574 1575 BUG_ON(pud_huge(*pud)); 1576 1577 pmd = pmd_alloc(mm, pud, addr); 1578 if (!pmd) 1579 return -ENOMEM; 1580 do { 1581 next = pmd_addr_end(addr, end); 1582 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1583 if (err) 1584 break; 1585 } while (pmd++, addr = next, addr != end); 1586 return err; 1587 } 1588 1589 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1590 unsigned long addr, unsigned long end, 1591 pte_fn_t fn, void *data) 1592 { 1593 pud_t *pud; 1594 unsigned long next; 1595 int err; 1596 1597 pud = pud_alloc(mm, pgd, addr); 1598 if (!pud) 1599 return -ENOMEM; 1600 do { 1601 next = pud_addr_end(addr, end); 1602 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1603 if (err) 1604 break; 1605 } while (pud++, addr = next, addr != end); 1606 return err; 1607 } 1608 1609 /* 1610 * Scan a region of virtual memory, filling in page tables as necessary 1611 * and calling a provided function on each leaf page table. 1612 */ 1613 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1614 unsigned long size, pte_fn_t fn, void *data) 1615 { 1616 pgd_t *pgd; 1617 unsigned long next; 1618 unsigned long end = addr + size; 1619 int err; 1620 1621 BUG_ON(addr >= end); 1622 pgd = pgd_offset(mm, addr); 1623 do { 1624 next = pgd_addr_end(addr, end); 1625 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1626 if (err) 1627 break; 1628 } while (pgd++, addr = next, addr != end); 1629 return err; 1630 } 1631 EXPORT_SYMBOL_GPL(apply_to_page_range); 1632 1633 /* 1634 * handle_pte_fault chooses page fault handler according to an entry 1635 * which was read non-atomically. Before making any commitment, on 1636 * those architectures or configurations (e.g. i386 with PAE) which 1637 * might give a mix of unmatched parts, do_swap_page and do_file_page 1638 * must check under lock before unmapping the pte and proceeding 1639 * (but do_wp_page is only called after already making such a check; 1640 * and do_anonymous_page and do_no_page can safely check later on). 1641 */ 1642 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1643 pte_t *page_table, pte_t orig_pte) 1644 { 1645 int same = 1; 1646 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1647 if (sizeof(pte_t) > sizeof(unsigned long)) { 1648 spinlock_t *ptl = pte_lockptr(mm, pmd); 1649 spin_lock(ptl); 1650 same = pte_same(*page_table, orig_pte); 1651 spin_unlock(ptl); 1652 } 1653 #endif 1654 pte_unmap(page_table); 1655 return same; 1656 } 1657 1658 /* 1659 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1660 * servicing faults for write access. In the normal case, do always want 1661 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1662 * that do not have writing enabled, when used by access_process_vm. 1663 */ 1664 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1665 { 1666 if (likely(vma->vm_flags & VM_WRITE)) 1667 pte = pte_mkwrite(pte); 1668 return pte; 1669 } 1670 1671 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1672 { 1673 /* 1674 * If the source page was a PFN mapping, we don't have 1675 * a "struct page" for it. We do a best-effort copy by 1676 * just copying from the original user address. If that 1677 * fails, we just zero-fill it. Live with it. 1678 */ 1679 if (unlikely(!src)) { 1680 void *kaddr = kmap_atomic(dst, KM_USER0); 1681 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1682 1683 /* 1684 * This really shouldn't fail, because the page is there 1685 * in the page tables. But it might just be unreadable, 1686 * in which case we just give up and fill the result with 1687 * zeroes. 1688 */ 1689 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1690 memset(kaddr, 0, PAGE_SIZE); 1691 kunmap_atomic(kaddr, KM_USER0); 1692 flush_dcache_page(dst); 1693 } else 1694 copy_user_highpage(dst, src, va, vma); 1695 } 1696 1697 /* 1698 * This routine handles present pages, when users try to write 1699 * to a shared page. It is done by copying the page to a new address 1700 * and decrementing the shared-page counter for the old page. 1701 * 1702 * Note that this routine assumes that the protection checks have been 1703 * done by the caller (the low-level page fault routine in most cases). 1704 * Thus we can safely just mark it writable once we've done any necessary 1705 * COW. 1706 * 1707 * We also mark the page dirty at this point even though the page will 1708 * change only once the write actually happens. This avoids a few races, 1709 * and potentially makes it more efficient. 1710 * 1711 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1712 * but allow concurrent faults), with pte both mapped and locked. 1713 * We return with mmap_sem still held, but pte unmapped and unlocked. 1714 */ 1715 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1716 unsigned long address, pte_t *page_table, pmd_t *pmd, 1717 spinlock_t *ptl, pte_t orig_pte) 1718 { 1719 struct page *old_page, *new_page; 1720 pte_t entry; 1721 int reuse = 0, ret = 0; 1722 int page_mkwrite = 0; 1723 struct page *dirty_page = NULL; 1724 1725 old_page = vm_normal_page(vma, address, orig_pte); 1726 if (!old_page) { 1727 /* 1728 * VM_MIXEDMAP !pfn_valid() case 1729 * 1730 * We should not cow pages in a shared writeable mapping. 1731 * Just mark the pages writable as we can't do any dirty 1732 * accounting on raw pfn maps. 1733 */ 1734 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1735 (VM_WRITE|VM_SHARED)) 1736 goto reuse; 1737 goto gotten; 1738 } 1739 1740 /* 1741 * Take out anonymous pages first, anonymous shared vmas are 1742 * not dirty accountable. 1743 */ 1744 if (PageAnon(old_page)) { 1745 if (!TestSetPageLocked(old_page)) { 1746 reuse = can_share_swap_page(old_page); 1747 unlock_page(old_page); 1748 } 1749 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1750 (VM_WRITE|VM_SHARED))) { 1751 /* 1752 * Only catch write-faults on shared writable pages, 1753 * read-only shared pages can get COWed by 1754 * get_user_pages(.write=1, .force=1). 1755 */ 1756 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 1757 /* 1758 * Notify the address space that the page is about to 1759 * become writable so that it can prohibit this or wait 1760 * for the page to get into an appropriate state. 1761 * 1762 * We do this without the lock held, so that it can 1763 * sleep if it needs to. 1764 */ 1765 page_cache_get(old_page); 1766 pte_unmap_unlock(page_table, ptl); 1767 1768 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) 1769 goto unwritable_page; 1770 1771 /* 1772 * Since we dropped the lock we need to revalidate 1773 * the PTE as someone else may have changed it. If 1774 * they did, we just return, as we can count on the 1775 * MMU to tell us if they didn't also make it writable. 1776 */ 1777 page_table = pte_offset_map_lock(mm, pmd, address, 1778 &ptl); 1779 page_cache_release(old_page); 1780 if (!pte_same(*page_table, orig_pte)) 1781 goto unlock; 1782 1783 page_mkwrite = 1; 1784 } 1785 dirty_page = old_page; 1786 get_page(dirty_page); 1787 reuse = 1; 1788 } 1789 1790 if (reuse) { 1791 reuse: 1792 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1793 entry = pte_mkyoung(orig_pte); 1794 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1795 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 1796 update_mmu_cache(vma, address, entry); 1797 ret |= VM_FAULT_WRITE; 1798 goto unlock; 1799 } 1800 1801 /* 1802 * Ok, we need to copy. Oh, well.. 1803 */ 1804 page_cache_get(old_page); 1805 gotten: 1806 pte_unmap_unlock(page_table, ptl); 1807 1808 if (unlikely(anon_vma_prepare(vma))) 1809 goto oom; 1810 VM_BUG_ON(old_page == ZERO_PAGE(0)); 1811 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1812 if (!new_page) 1813 goto oom; 1814 cow_user_page(new_page, old_page, address, vma); 1815 __SetPageUptodate(new_page); 1816 1817 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 1818 goto oom_free_new; 1819 1820 /* 1821 * Re-check the pte - we dropped the lock 1822 */ 1823 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1824 if (likely(pte_same(*page_table, orig_pte))) { 1825 if (old_page) { 1826 if (!PageAnon(old_page)) { 1827 dec_mm_counter(mm, file_rss); 1828 inc_mm_counter(mm, anon_rss); 1829 } 1830 } else 1831 inc_mm_counter(mm, anon_rss); 1832 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1833 entry = mk_pte(new_page, vma->vm_page_prot); 1834 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1835 /* 1836 * Clear the pte entry and flush it first, before updating the 1837 * pte with the new entry. This will avoid a race condition 1838 * seen in the presence of one thread doing SMC and another 1839 * thread doing COW. 1840 */ 1841 ptep_clear_flush(vma, address, page_table); 1842 set_pte_at(mm, address, page_table, entry); 1843 update_mmu_cache(vma, address, entry); 1844 lru_cache_add_active(new_page); 1845 page_add_new_anon_rmap(new_page, vma, address); 1846 1847 if (old_page) { 1848 /* 1849 * Only after switching the pte to the new page may 1850 * we remove the mapcount here. Otherwise another 1851 * process may come and find the rmap count decremented 1852 * before the pte is switched to the new page, and 1853 * "reuse" the old page writing into it while our pte 1854 * here still points into it and can be read by other 1855 * threads. 1856 * 1857 * The critical issue is to order this 1858 * page_remove_rmap with the ptp_clear_flush above. 1859 * Those stores are ordered by (if nothing else,) 1860 * the barrier present in the atomic_add_negative 1861 * in page_remove_rmap. 1862 * 1863 * Then the TLB flush in ptep_clear_flush ensures that 1864 * no process can access the old page before the 1865 * decremented mapcount is visible. And the old page 1866 * cannot be reused until after the decremented 1867 * mapcount is visible. So transitively, TLBs to 1868 * old page will be flushed before it can be reused. 1869 */ 1870 page_remove_rmap(old_page, vma); 1871 } 1872 1873 /* Free the old page.. */ 1874 new_page = old_page; 1875 ret |= VM_FAULT_WRITE; 1876 } else 1877 mem_cgroup_uncharge_page(new_page); 1878 1879 if (new_page) 1880 page_cache_release(new_page); 1881 if (old_page) 1882 page_cache_release(old_page); 1883 unlock: 1884 pte_unmap_unlock(page_table, ptl); 1885 if (dirty_page) { 1886 if (vma->vm_file) 1887 file_update_time(vma->vm_file); 1888 1889 /* 1890 * Yes, Virginia, this is actually required to prevent a race 1891 * with clear_page_dirty_for_io() from clearing the page dirty 1892 * bit after it clear all dirty ptes, but before a racing 1893 * do_wp_page installs a dirty pte. 1894 * 1895 * do_no_page is protected similarly. 1896 */ 1897 wait_on_page_locked(dirty_page); 1898 set_page_dirty_balance(dirty_page, page_mkwrite); 1899 put_page(dirty_page); 1900 } 1901 return ret; 1902 oom_free_new: 1903 page_cache_release(new_page); 1904 oom: 1905 if (old_page) 1906 page_cache_release(old_page); 1907 return VM_FAULT_OOM; 1908 1909 unwritable_page: 1910 page_cache_release(old_page); 1911 return VM_FAULT_SIGBUS; 1912 } 1913 1914 /* 1915 * Helper functions for unmap_mapping_range(). 1916 * 1917 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 1918 * 1919 * We have to restart searching the prio_tree whenever we drop the lock, 1920 * since the iterator is only valid while the lock is held, and anyway 1921 * a later vma might be split and reinserted earlier while lock dropped. 1922 * 1923 * The list of nonlinear vmas could be handled more efficiently, using 1924 * a placeholder, but handle it in the same way until a need is shown. 1925 * It is important to search the prio_tree before nonlinear list: a vma 1926 * may become nonlinear and be shifted from prio_tree to nonlinear list 1927 * while the lock is dropped; but never shifted from list to prio_tree. 1928 * 1929 * In order to make forward progress despite restarting the search, 1930 * vm_truncate_count is used to mark a vma as now dealt with, so we can 1931 * quickly skip it next time around. Since the prio_tree search only 1932 * shows us those vmas affected by unmapping the range in question, we 1933 * can't efficiently keep all vmas in step with mapping->truncate_count: 1934 * so instead reset them all whenever it wraps back to 0 (then go to 1). 1935 * mapping->truncate_count and vma->vm_truncate_count are protected by 1936 * i_mmap_lock. 1937 * 1938 * In order to make forward progress despite repeatedly restarting some 1939 * large vma, note the restart_addr from unmap_vmas when it breaks out: 1940 * and restart from that address when we reach that vma again. It might 1941 * have been split or merged, shrunk or extended, but never shifted: so 1942 * restart_addr remains valid so long as it remains in the vma's range. 1943 * unmap_mapping_range forces truncate_count to leap over page-aligned 1944 * values so we can save vma's restart_addr in its truncate_count field. 1945 */ 1946 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 1947 1948 static void reset_vma_truncate_counts(struct address_space *mapping) 1949 { 1950 struct vm_area_struct *vma; 1951 struct prio_tree_iter iter; 1952 1953 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 1954 vma->vm_truncate_count = 0; 1955 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1956 vma->vm_truncate_count = 0; 1957 } 1958 1959 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 1960 unsigned long start_addr, unsigned long end_addr, 1961 struct zap_details *details) 1962 { 1963 unsigned long restart_addr; 1964 int need_break; 1965 1966 /* 1967 * files that support invalidating or truncating portions of the 1968 * file from under mmaped areas must have their ->fault function 1969 * return a locked page (and set VM_FAULT_LOCKED in the return). 1970 * This provides synchronisation against concurrent unmapping here. 1971 */ 1972 1973 again: 1974 restart_addr = vma->vm_truncate_count; 1975 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 1976 start_addr = restart_addr; 1977 if (start_addr >= end_addr) { 1978 /* Top of vma has been split off since last time */ 1979 vma->vm_truncate_count = details->truncate_count; 1980 return 0; 1981 } 1982 } 1983 1984 restart_addr = zap_page_range(vma, start_addr, 1985 end_addr - start_addr, details); 1986 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 1987 1988 if (restart_addr >= end_addr) { 1989 /* We have now completed this vma: mark it so */ 1990 vma->vm_truncate_count = details->truncate_count; 1991 if (!need_break) 1992 return 0; 1993 } else { 1994 /* Note restart_addr in vma's truncate_count field */ 1995 vma->vm_truncate_count = restart_addr; 1996 if (!need_break) 1997 goto again; 1998 } 1999 2000 spin_unlock(details->i_mmap_lock); 2001 cond_resched(); 2002 spin_lock(details->i_mmap_lock); 2003 return -EINTR; 2004 } 2005 2006 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2007 struct zap_details *details) 2008 { 2009 struct vm_area_struct *vma; 2010 struct prio_tree_iter iter; 2011 pgoff_t vba, vea, zba, zea; 2012 2013 restart: 2014 vma_prio_tree_foreach(vma, &iter, root, 2015 details->first_index, details->last_index) { 2016 /* Skip quickly over those we have already dealt with */ 2017 if (vma->vm_truncate_count == details->truncate_count) 2018 continue; 2019 2020 vba = vma->vm_pgoff; 2021 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2022 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2023 zba = details->first_index; 2024 if (zba < vba) 2025 zba = vba; 2026 zea = details->last_index; 2027 if (zea > vea) 2028 zea = vea; 2029 2030 if (unmap_mapping_range_vma(vma, 2031 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2032 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2033 details) < 0) 2034 goto restart; 2035 } 2036 } 2037 2038 static inline void unmap_mapping_range_list(struct list_head *head, 2039 struct zap_details *details) 2040 { 2041 struct vm_area_struct *vma; 2042 2043 /* 2044 * In nonlinear VMAs there is no correspondence between virtual address 2045 * offset and file offset. So we must perform an exhaustive search 2046 * across *all* the pages in each nonlinear VMA, not just the pages 2047 * whose virtual address lies outside the file truncation point. 2048 */ 2049 restart: 2050 list_for_each_entry(vma, head, shared.vm_set.list) { 2051 /* Skip quickly over those we have already dealt with */ 2052 if (vma->vm_truncate_count == details->truncate_count) 2053 continue; 2054 details->nonlinear_vma = vma; 2055 if (unmap_mapping_range_vma(vma, vma->vm_start, 2056 vma->vm_end, details) < 0) 2057 goto restart; 2058 } 2059 } 2060 2061 /** 2062 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2063 * @mapping: the address space containing mmaps to be unmapped. 2064 * @holebegin: byte in first page to unmap, relative to the start of 2065 * the underlying file. This will be rounded down to a PAGE_SIZE 2066 * boundary. Note that this is different from vmtruncate(), which 2067 * must keep the partial page. In contrast, we must get rid of 2068 * partial pages. 2069 * @holelen: size of prospective hole in bytes. This will be rounded 2070 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2071 * end of the file. 2072 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2073 * but 0 when invalidating pagecache, don't throw away private data. 2074 */ 2075 void unmap_mapping_range(struct address_space *mapping, 2076 loff_t const holebegin, loff_t const holelen, int even_cows) 2077 { 2078 struct zap_details details; 2079 pgoff_t hba = holebegin >> PAGE_SHIFT; 2080 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2081 2082 /* Check for overflow. */ 2083 if (sizeof(holelen) > sizeof(hlen)) { 2084 long long holeend = 2085 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2086 if (holeend & ~(long long)ULONG_MAX) 2087 hlen = ULONG_MAX - hba + 1; 2088 } 2089 2090 details.check_mapping = even_cows? NULL: mapping; 2091 details.nonlinear_vma = NULL; 2092 details.first_index = hba; 2093 details.last_index = hba + hlen - 1; 2094 if (details.last_index < details.first_index) 2095 details.last_index = ULONG_MAX; 2096 details.i_mmap_lock = &mapping->i_mmap_lock; 2097 2098 spin_lock(&mapping->i_mmap_lock); 2099 2100 /* Protect against endless unmapping loops */ 2101 mapping->truncate_count++; 2102 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2103 if (mapping->truncate_count == 0) 2104 reset_vma_truncate_counts(mapping); 2105 mapping->truncate_count++; 2106 } 2107 details.truncate_count = mapping->truncate_count; 2108 2109 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2110 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2111 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2112 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2113 spin_unlock(&mapping->i_mmap_lock); 2114 } 2115 EXPORT_SYMBOL(unmap_mapping_range); 2116 2117 /** 2118 * vmtruncate - unmap mappings "freed" by truncate() syscall 2119 * @inode: inode of the file used 2120 * @offset: file offset to start truncating 2121 * 2122 * NOTE! We have to be ready to update the memory sharing 2123 * between the file and the memory map for a potential last 2124 * incomplete page. Ugly, but necessary. 2125 */ 2126 int vmtruncate(struct inode * inode, loff_t offset) 2127 { 2128 if (inode->i_size < offset) { 2129 unsigned long limit; 2130 2131 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2132 if (limit != RLIM_INFINITY && offset > limit) 2133 goto out_sig; 2134 if (offset > inode->i_sb->s_maxbytes) 2135 goto out_big; 2136 i_size_write(inode, offset); 2137 } else { 2138 struct address_space *mapping = inode->i_mapping; 2139 2140 /* 2141 * truncation of in-use swapfiles is disallowed - it would 2142 * cause subsequent swapout to scribble on the now-freed 2143 * blocks. 2144 */ 2145 if (IS_SWAPFILE(inode)) 2146 return -ETXTBSY; 2147 i_size_write(inode, offset); 2148 2149 /* 2150 * unmap_mapping_range is called twice, first simply for 2151 * efficiency so that truncate_inode_pages does fewer 2152 * single-page unmaps. However after this first call, and 2153 * before truncate_inode_pages finishes, it is possible for 2154 * private pages to be COWed, which remain after 2155 * truncate_inode_pages finishes, hence the second 2156 * unmap_mapping_range call must be made for correctness. 2157 */ 2158 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2159 truncate_inode_pages(mapping, offset); 2160 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2161 } 2162 2163 if (inode->i_op && inode->i_op->truncate) 2164 inode->i_op->truncate(inode); 2165 return 0; 2166 2167 out_sig: 2168 send_sig(SIGXFSZ, current, 0); 2169 out_big: 2170 return -EFBIG; 2171 } 2172 EXPORT_SYMBOL(vmtruncate); 2173 2174 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2175 { 2176 struct address_space *mapping = inode->i_mapping; 2177 2178 /* 2179 * If the underlying filesystem is not going to provide 2180 * a way to truncate a range of blocks (punch a hole) - 2181 * we should return failure right now. 2182 */ 2183 if (!inode->i_op || !inode->i_op->truncate_range) 2184 return -ENOSYS; 2185 2186 mutex_lock(&inode->i_mutex); 2187 down_write(&inode->i_alloc_sem); 2188 unmap_mapping_range(mapping, offset, (end - offset), 1); 2189 truncate_inode_pages_range(mapping, offset, end); 2190 unmap_mapping_range(mapping, offset, (end - offset), 1); 2191 inode->i_op->truncate_range(inode, offset, end); 2192 up_write(&inode->i_alloc_sem); 2193 mutex_unlock(&inode->i_mutex); 2194 2195 return 0; 2196 } 2197 2198 /* 2199 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2200 * but allow concurrent faults), and pte mapped but not yet locked. 2201 * We return with mmap_sem still held, but pte unmapped and unlocked. 2202 */ 2203 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2204 unsigned long address, pte_t *page_table, pmd_t *pmd, 2205 int write_access, pte_t orig_pte) 2206 { 2207 spinlock_t *ptl; 2208 struct page *page; 2209 swp_entry_t entry; 2210 pte_t pte; 2211 int ret = 0; 2212 2213 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2214 goto out; 2215 2216 entry = pte_to_swp_entry(orig_pte); 2217 if (is_migration_entry(entry)) { 2218 migration_entry_wait(mm, pmd, address); 2219 goto out; 2220 } 2221 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2222 page = lookup_swap_cache(entry); 2223 if (!page) { 2224 grab_swap_token(); /* Contend for token _before_ read-in */ 2225 page = swapin_readahead(entry, 2226 GFP_HIGHUSER_MOVABLE, vma, address); 2227 if (!page) { 2228 /* 2229 * Back out if somebody else faulted in this pte 2230 * while we released the pte lock. 2231 */ 2232 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2233 if (likely(pte_same(*page_table, orig_pte))) 2234 ret = VM_FAULT_OOM; 2235 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2236 goto unlock; 2237 } 2238 2239 /* Had to read the page from swap area: Major fault */ 2240 ret = VM_FAULT_MAJOR; 2241 count_vm_event(PGMAJFAULT); 2242 } 2243 2244 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { 2245 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2246 ret = VM_FAULT_OOM; 2247 goto out; 2248 } 2249 2250 mark_page_accessed(page); 2251 lock_page(page); 2252 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2253 2254 /* 2255 * Back out if somebody else already faulted in this pte. 2256 */ 2257 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2258 if (unlikely(!pte_same(*page_table, orig_pte))) 2259 goto out_nomap; 2260 2261 if (unlikely(!PageUptodate(page))) { 2262 ret = VM_FAULT_SIGBUS; 2263 goto out_nomap; 2264 } 2265 2266 /* The page isn't present yet, go ahead with the fault. */ 2267 2268 inc_mm_counter(mm, anon_rss); 2269 pte = mk_pte(page, vma->vm_page_prot); 2270 if (write_access && can_share_swap_page(page)) { 2271 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2272 write_access = 0; 2273 } 2274 2275 flush_icache_page(vma, page); 2276 set_pte_at(mm, address, page_table, pte); 2277 page_add_anon_rmap(page, vma, address); 2278 2279 swap_free(entry); 2280 if (vm_swap_full()) 2281 remove_exclusive_swap_page(page); 2282 unlock_page(page); 2283 2284 if (write_access) { 2285 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2286 if (ret & VM_FAULT_ERROR) 2287 ret &= VM_FAULT_ERROR; 2288 goto out; 2289 } 2290 2291 /* No need to invalidate - it was non-present before */ 2292 update_mmu_cache(vma, address, pte); 2293 unlock: 2294 pte_unmap_unlock(page_table, ptl); 2295 out: 2296 return ret; 2297 out_nomap: 2298 mem_cgroup_uncharge_page(page); 2299 pte_unmap_unlock(page_table, ptl); 2300 unlock_page(page); 2301 page_cache_release(page); 2302 return ret; 2303 } 2304 2305 /* 2306 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2307 * but allow concurrent faults), and pte mapped but not yet locked. 2308 * We return with mmap_sem still held, but pte unmapped and unlocked. 2309 */ 2310 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2311 unsigned long address, pte_t *page_table, pmd_t *pmd, 2312 int write_access) 2313 { 2314 struct page *page; 2315 spinlock_t *ptl; 2316 pte_t entry; 2317 2318 /* Allocate our own private page. */ 2319 pte_unmap(page_table); 2320 2321 if (unlikely(anon_vma_prepare(vma))) 2322 goto oom; 2323 page = alloc_zeroed_user_highpage_movable(vma, address); 2324 if (!page) 2325 goto oom; 2326 __SetPageUptodate(page); 2327 2328 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) 2329 goto oom_free_page; 2330 2331 entry = mk_pte(page, vma->vm_page_prot); 2332 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2333 2334 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2335 if (!pte_none(*page_table)) 2336 goto release; 2337 inc_mm_counter(mm, anon_rss); 2338 lru_cache_add_active(page); 2339 page_add_new_anon_rmap(page, vma, address); 2340 set_pte_at(mm, address, page_table, entry); 2341 2342 /* No need to invalidate - it was non-present before */ 2343 update_mmu_cache(vma, address, entry); 2344 unlock: 2345 pte_unmap_unlock(page_table, ptl); 2346 return 0; 2347 release: 2348 mem_cgroup_uncharge_page(page); 2349 page_cache_release(page); 2350 goto unlock; 2351 oom_free_page: 2352 page_cache_release(page); 2353 oom: 2354 return VM_FAULT_OOM; 2355 } 2356 2357 /* 2358 * __do_fault() tries to create a new page mapping. It aggressively 2359 * tries to share with existing pages, but makes a separate copy if 2360 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2361 * the next page fault. 2362 * 2363 * As this is called only for pages that do not currently exist, we 2364 * do not need to flush old virtual caches or the TLB. 2365 * 2366 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2367 * but allow concurrent faults), and pte neither mapped nor locked. 2368 * We return with mmap_sem still held, but pte unmapped and unlocked. 2369 */ 2370 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2371 unsigned long address, pmd_t *pmd, 2372 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2373 { 2374 pte_t *page_table; 2375 spinlock_t *ptl; 2376 struct page *page; 2377 pte_t entry; 2378 int anon = 0; 2379 struct page *dirty_page = NULL; 2380 struct vm_fault vmf; 2381 int ret; 2382 int page_mkwrite = 0; 2383 2384 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2385 vmf.pgoff = pgoff; 2386 vmf.flags = flags; 2387 vmf.page = NULL; 2388 2389 ret = vma->vm_ops->fault(vma, &vmf); 2390 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2391 return ret; 2392 2393 /* 2394 * For consistency in subsequent calls, make the faulted page always 2395 * locked. 2396 */ 2397 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2398 lock_page(vmf.page); 2399 else 2400 VM_BUG_ON(!PageLocked(vmf.page)); 2401 2402 /* 2403 * Should we do an early C-O-W break? 2404 */ 2405 page = vmf.page; 2406 if (flags & FAULT_FLAG_WRITE) { 2407 if (!(vma->vm_flags & VM_SHARED)) { 2408 anon = 1; 2409 if (unlikely(anon_vma_prepare(vma))) { 2410 ret = VM_FAULT_OOM; 2411 goto out; 2412 } 2413 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2414 vma, address); 2415 if (!page) { 2416 ret = VM_FAULT_OOM; 2417 goto out; 2418 } 2419 copy_user_highpage(page, vmf.page, address, vma); 2420 __SetPageUptodate(page); 2421 } else { 2422 /* 2423 * If the page will be shareable, see if the backing 2424 * address space wants to know that the page is about 2425 * to become writable 2426 */ 2427 if (vma->vm_ops->page_mkwrite) { 2428 unlock_page(page); 2429 if (vma->vm_ops->page_mkwrite(vma, page) < 0) { 2430 ret = VM_FAULT_SIGBUS; 2431 anon = 1; /* no anon but release vmf.page */ 2432 goto out_unlocked; 2433 } 2434 lock_page(page); 2435 /* 2436 * XXX: this is not quite right (racy vs 2437 * invalidate) to unlock and relock the page 2438 * like this, however a better fix requires 2439 * reworking page_mkwrite locking API, which 2440 * is better done later. 2441 */ 2442 if (!page->mapping) { 2443 ret = 0; 2444 anon = 1; /* no anon but release vmf.page */ 2445 goto out; 2446 } 2447 page_mkwrite = 1; 2448 } 2449 } 2450 2451 } 2452 2453 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { 2454 ret = VM_FAULT_OOM; 2455 goto out; 2456 } 2457 2458 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2459 2460 /* 2461 * This silly early PAGE_DIRTY setting removes a race 2462 * due to the bad i386 page protection. But it's valid 2463 * for other architectures too. 2464 * 2465 * Note that if write_access is true, we either now have 2466 * an exclusive copy of the page, or this is a shared mapping, 2467 * so we can make it writable and dirty to avoid having to 2468 * handle that later. 2469 */ 2470 /* Only go through if we didn't race with anybody else... */ 2471 if (likely(pte_same(*page_table, orig_pte))) { 2472 flush_icache_page(vma, page); 2473 entry = mk_pte(page, vma->vm_page_prot); 2474 if (flags & FAULT_FLAG_WRITE) 2475 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2476 set_pte_at(mm, address, page_table, entry); 2477 if (anon) { 2478 inc_mm_counter(mm, anon_rss); 2479 lru_cache_add_active(page); 2480 page_add_new_anon_rmap(page, vma, address); 2481 } else { 2482 inc_mm_counter(mm, file_rss); 2483 page_add_file_rmap(page); 2484 if (flags & FAULT_FLAG_WRITE) { 2485 dirty_page = page; 2486 get_page(dirty_page); 2487 } 2488 } 2489 2490 /* no need to invalidate: a not-present page won't be cached */ 2491 update_mmu_cache(vma, address, entry); 2492 } else { 2493 mem_cgroup_uncharge_page(page); 2494 if (anon) 2495 page_cache_release(page); 2496 else 2497 anon = 1; /* no anon but release faulted_page */ 2498 } 2499 2500 pte_unmap_unlock(page_table, ptl); 2501 2502 out: 2503 unlock_page(vmf.page); 2504 out_unlocked: 2505 if (anon) 2506 page_cache_release(vmf.page); 2507 else if (dirty_page) { 2508 if (vma->vm_file) 2509 file_update_time(vma->vm_file); 2510 2511 set_page_dirty_balance(dirty_page, page_mkwrite); 2512 put_page(dirty_page); 2513 } 2514 2515 return ret; 2516 } 2517 2518 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2519 unsigned long address, pte_t *page_table, pmd_t *pmd, 2520 int write_access, pte_t orig_pte) 2521 { 2522 pgoff_t pgoff = (((address & PAGE_MASK) 2523 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2524 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); 2525 2526 pte_unmap(page_table); 2527 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2528 } 2529 2530 /* 2531 * Fault of a previously existing named mapping. Repopulate the pte 2532 * from the encoded file_pte if possible. This enables swappable 2533 * nonlinear vmas. 2534 * 2535 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2536 * but allow concurrent faults), and pte mapped but not yet locked. 2537 * We return with mmap_sem still held, but pte unmapped and unlocked. 2538 */ 2539 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2540 unsigned long address, pte_t *page_table, pmd_t *pmd, 2541 int write_access, pte_t orig_pte) 2542 { 2543 unsigned int flags = FAULT_FLAG_NONLINEAR | 2544 (write_access ? FAULT_FLAG_WRITE : 0); 2545 pgoff_t pgoff; 2546 2547 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2548 return 0; 2549 2550 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) || 2551 !(vma->vm_flags & VM_CAN_NONLINEAR))) { 2552 /* 2553 * Page table corrupted: show pte and kill process. 2554 */ 2555 print_bad_pte(vma, orig_pte, address); 2556 return VM_FAULT_OOM; 2557 } 2558 2559 pgoff = pte_to_pgoff(orig_pte); 2560 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2561 } 2562 2563 /* 2564 * These routines also need to handle stuff like marking pages dirty 2565 * and/or accessed for architectures that don't do it in hardware (most 2566 * RISC architectures). The early dirtying is also good on the i386. 2567 * 2568 * There is also a hook called "update_mmu_cache()" that architectures 2569 * with external mmu caches can use to update those (ie the Sparc or 2570 * PowerPC hashed page tables that act as extended TLBs). 2571 * 2572 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2573 * but allow concurrent faults), and pte mapped but not yet locked. 2574 * We return with mmap_sem still held, but pte unmapped and unlocked. 2575 */ 2576 static inline int handle_pte_fault(struct mm_struct *mm, 2577 struct vm_area_struct *vma, unsigned long address, 2578 pte_t *pte, pmd_t *pmd, int write_access) 2579 { 2580 pte_t entry; 2581 spinlock_t *ptl; 2582 2583 entry = *pte; 2584 if (!pte_present(entry)) { 2585 if (pte_none(entry)) { 2586 if (vma->vm_ops) { 2587 if (likely(vma->vm_ops->fault)) 2588 return do_linear_fault(mm, vma, address, 2589 pte, pmd, write_access, entry); 2590 } 2591 return do_anonymous_page(mm, vma, address, 2592 pte, pmd, write_access); 2593 } 2594 if (pte_file(entry)) 2595 return do_nonlinear_fault(mm, vma, address, 2596 pte, pmd, write_access, entry); 2597 return do_swap_page(mm, vma, address, 2598 pte, pmd, write_access, entry); 2599 } 2600 2601 ptl = pte_lockptr(mm, pmd); 2602 spin_lock(ptl); 2603 if (unlikely(!pte_same(*pte, entry))) 2604 goto unlock; 2605 if (write_access) { 2606 if (!pte_write(entry)) 2607 return do_wp_page(mm, vma, address, 2608 pte, pmd, ptl, entry); 2609 entry = pte_mkdirty(entry); 2610 } 2611 entry = pte_mkyoung(entry); 2612 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { 2613 update_mmu_cache(vma, address, entry); 2614 } else { 2615 /* 2616 * This is needed only for protection faults but the arch code 2617 * is not yet telling us if this is a protection fault or not. 2618 * This still avoids useless tlb flushes for .text page faults 2619 * with threads. 2620 */ 2621 if (write_access) 2622 flush_tlb_page(vma, address); 2623 } 2624 unlock: 2625 pte_unmap_unlock(pte, ptl); 2626 return 0; 2627 } 2628 2629 /* 2630 * By the time we get here, we already hold the mm semaphore 2631 */ 2632 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2633 unsigned long address, int write_access) 2634 { 2635 pgd_t *pgd; 2636 pud_t *pud; 2637 pmd_t *pmd; 2638 pte_t *pte; 2639 2640 __set_current_state(TASK_RUNNING); 2641 2642 count_vm_event(PGFAULT); 2643 2644 if (unlikely(is_vm_hugetlb_page(vma))) 2645 return hugetlb_fault(mm, vma, address, write_access); 2646 2647 pgd = pgd_offset(mm, address); 2648 pud = pud_alloc(mm, pgd, address); 2649 if (!pud) 2650 return VM_FAULT_OOM; 2651 pmd = pmd_alloc(mm, pud, address); 2652 if (!pmd) 2653 return VM_FAULT_OOM; 2654 pte = pte_alloc_map(mm, pmd, address); 2655 if (!pte) 2656 return VM_FAULT_OOM; 2657 2658 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2659 } 2660 2661 #ifndef __PAGETABLE_PUD_FOLDED 2662 /* 2663 * Allocate page upper directory. 2664 * We've already handled the fast-path in-line. 2665 */ 2666 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2667 { 2668 pud_t *new = pud_alloc_one(mm, address); 2669 if (!new) 2670 return -ENOMEM; 2671 2672 smp_wmb(); /* See comment in __pte_alloc */ 2673 2674 spin_lock(&mm->page_table_lock); 2675 if (pgd_present(*pgd)) /* Another has populated it */ 2676 pud_free(mm, new); 2677 else 2678 pgd_populate(mm, pgd, new); 2679 spin_unlock(&mm->page_table_lock); 2680 return 0; 2681 } 2682 #endif /* __PAGETABLE_PUD_FOLDED */ 2683 2684 #ifndef __PAGETABLE_PMD_FOLDED 2685 /* 2686 * Allocate page middle directory. 2687 * We've already handled the fast-path in-line. 2688 */ 2689 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2690 { 2691 pmd_t *new = pmd_alloc_one(mm, address); 2692 if (!new) 2693 return -ENOMEM; 2694 2695 smp_wmb(); /* See comment in __pte_alloc */ 2696 2697 spin_lock(&mm->page_table_lock); 2698 #ifndef __ARCH_HAS_4LEVEL_HACK 2699 if (pud_present(*pud)) /* Another has populated it */ 2700 pmd_free(mm, new); 2701 else 2702 pud_populate(mm, pud, new); 2703 #else 2704 if (pgd_present(*pud)) /* Another has populated it */ 2705 pmd_free(mm, new); 2706 else 2707 pgd_populate(mm, pud, new); 2708 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2709 spin_unlock(&mm->page_table_lock); 2710 return 0; 2711 } 2712 #endif /* __PAGETABLE_PMD_FOLDED */ 2713 2714 int make_pages_present(unsigned long addr, unsigned long end) 2715 { 2716 int ret, len, write; 2717 struct vm_area_struct * vma; 2718 2719 vma = find_vma(current->mm, addr); 2720 if (!vma) 2721 return -1; 2722 write = (vma->vm_flags & VM_WRITE) != 0; 2723 BUG_ON(addr >= end); 2724 BUG_ON(end > vma->vm_end); 2725 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 2726 ret = get_user_pages(current, current->mm, addr, 2727 len, write, 0, NULL, NULL); 2728 if (ret < 0) 2729 return ret; 2730 return ret == len ? 0 : -1; 2731 } 2732 2733 #if !defined(__HAVE_ARCH_GATE_AREA) 2734 2735 #if defined(AT_SYSINFO_EHDR) 2736 static struct vm_area_struct gate_vma; 2737 2738 static int __init gate_vma_init(void) 2739 { 2740 gate_vma.vm_mm = NULL; 2741 gate_vma.vm_start = FIXADDR_USER_START; 2742 gate_vma.vm_end = FIXADDR_USER_END; 2743 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 2744 gate_vma.vm_page_prot = __P101; 2745 /* 2746 * Make sure the vDSO gets into every core dump. 2747 * Dumping its contents makes post-mortem fully interpretable later 2748 * without matching up the same kernel and hardware config to see 2749 * what PC values meant. 2750 */ 2751 gate_vma.vm_flags |= VM_ALWAYSDUMP; 2752 return 0; 2753 } 2754 __initcall(gate_vma_init); 2755 #endif 2756 2757 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2758 { 2759 #ifdef AT_SYSINFO_EHDR 2760 return &gate_vma; 2761 #else 2762 return NULL; 2763 #endif 2764 } 2765 2766 int in_gate_area_no_task(unsigned long addr) 2767 { 2768 #ifdef AT_SYSINFO_EHDR 2769 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2770 return 1; 2771 #endif 2772 return 0; 2773 } 2774 2775 #endif /* __HAVE_ARCH_GATE_AREA */ 2776 2777 #ifdef CONFIG_HAVE_IOREMAP_PROT 2778 static resource_size_t follow_phys(struct vm_area_struct *vma, 2779 unsigned long address, unsigned int flags, 2780 unsigned long *prot) 2781 { 2782 pgd_t *pgd; 2783 pud_t *pud; 2784 pmd_t *pmd; 2785 pte_t *ptep, pte; 2786 spinlock_t *ptl; 2787 resource_size_t phys_addr = 0; 2788 struct mm_struct *mm = vma->vm_mm; 2789 2790 VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP))); 2791 2792 pgd = pgd_offset(mm, address); 2793 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 2794 goto no_page_table; 2795 2796 pud = pud_offset(pgd, address); 2797 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 2798 goto no_page_table; 2799 2800 pmd = pmd_offset(pud, address); 2801 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 2802 goto no_page_table; 2803 2804 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 2805 if (pmd_huge(*pmd)) 2806 goto no_page_table; 2807 2808 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 2809 if (!ptep) 2810 goto out; 2811 2812 pte = *ptep; 2813 if (!pte_present(pte)) 2814 goto unlock; 2815 if ((flags & FOLL_WRITE) && !pte_write(pte)) 2816 goto unlock; 2817 phys_addr = pte_pfn(pte); 2818 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */ 2819 2820 *prot = pgprot_val(pte_pgprot(pte)); 2821 2822 unlock: 2823 pte_unmap_unlock(ptep, ptl); 2824 out: 2825 return phys_addr; 2826 no_page_table: 2827 return 0; 2828 } 2829 2830 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2831 void *buf, int len, int write) 2832 { 2833 resource_size_t phys_addr; 2834 unsigned long prot = 0; 2835 void *maddr; 2836 int offset = addr & (PAGE_SIZE-1); 2837 2838 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 2839 return -EINVAL; 2840 2841 phys_addr = follow_phys(vma, addr, write, &prot); 2842 2843 if (!phys_addr) 2844 return -EINVAL; 2845 2846 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 2847 if (write) 2848 memcpy_toio(maddr + offset, buf, len); 2849 else 2850 memcpy_fromio(buf, maddr + offset, len); 2851 iounmap(maddr); 2852 2853 return len; 2854 } 2855 #endif 2856 2857 /* 2858 * Access another process' address space. 2859 * Source/target buffer must be kernel space, 2860 * Do not walk the page table directly, use get_user_pages 2861 */ 2862 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 2863 { 2864 struct mm_struct *mm; 2865 struct vm_area_struct *vma; 2866 void *old_buf = buf; 2867 2868 mm = get_task_mm(tsk); 2869 if (!mm) 2870 return 0; 2871 2872 down_read(&mm->mmap_sem); 2873 /* ignore errors, just check how much was successfully transferred */ 2874 while (len) { 2875 int bytes, ret, offset; 2876 void *maddr; 2877 struct page *page = NULL; 2878 2879 ret = get_user_pages(tsk, mm, addr, 1, 2880 write, 1, &page, &vma); 2881 if (ret <= 0) { 2882 /* 2883 * Check if this is a VM_IO | VM_PFNMAP VMA, which 2884 * we can access using slightly different code. 2885 */ 2886 #ifdef CONFIG_HAVE_IOREMAP_PROT 2887 vma = find_vma(mm, addr); 2888 if (!vma) 2889 break; 2890 if (vma->vm_ops && vma->vm_ops->access) 2891 ret = vma->vm_ops->access(vma, addr, buf, 2892 len, write); 2893 if (ret <= 0) 2894 #endif 2895 break; 2896 bytes = ret; 2897 } else { 2898 bytes = len; 2899 offset = addr & (PAGE_SIZE-1); 2900 if (bytes > PAGE_SIZE-offset) 2901 bytes = PAGE_SIZE-offset; 2902 2903 maddr = kmap(page); 2904 if (write) { 2905 copy_to_user_page(vma, page, addr, 2906 maddr + offset, buf, bytes); 2907 set_page_dirty_lock(page); 2908 } else { 2909 copy_from_user_page(vma, page, addr, 2910 buf, maddr + offset, bytes); 2911 } 2912 kunmap(page); 2913 page_cache_release(page); 2914 } 2915 len -= bytes; 2916 buf += bytes; 2917 addr += bytes; 2918 } 2919 up_read(&mm->mmap_sem); 2920 mmput(mm); 2921 2922 return buf - old_buf; 2923 } 2924 2925 /* 2926 * Print the name of a VMA. 2927 */ 2928 void print_vma_addr(char *prefix, unsigned long ip) 2929 { 2930 struct mm_struct *mm = current->mm; 2931 struct vm_area_struct *vma; 2932 2933 /* 2934 * Do not print if we are in atomic 2935 * contexts (in exception stacks, etc.): 2936 */ 2937 if (preempt_count()) 2938 return; 2939 2940 down_read(&mm->mmap_sem); 2941 vma = find_vma(mm, ip); 2942 if (vma && vma->vm_file) { 2943 struct file *f = vma->vm_file; 2944 char *buf = (char *)__get_free_page(GFP_KERNEL); 2945 if (buf) { 2946 char *p, *s; 2947 2948 p = d_path(&f->f_path, buf, PAGE_SIZE); 2949 if (IS_ERR(p)) 2950 p = "?"; 2951 s = strrchr(p, '/'); 2952 if (s) 2953 p = s+1; 2954 printk("%s%s[%lx+%lx]", prefix, p, 2955 vma->vm_start, 2956 vma->vm_end - vma->vm_start); 2957 free_page((unsigned long)buf); 2958 } 2959 } 2960 up_read(¤t->mm->mmap_sem); 2961 } 2962