xref: /linux/mm/memory.c (revision 2d6ffcca623a9a16df6cdfbe8250b7a5904a5f5e)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/tlb.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
60 
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
63 
64 #include "internal.h"
65 
66 #ifndef CONFIG_NEED_MULTIPLE_NODES
67 /* use the per-pgdat data instead for discontigmem - mbligh */
68 unsigned long max_mapnr;
69 struct page *mem_map;
70 
71 EXPORT_SYMBOL(max_mapnr);
72 EXPORT_SYMBOL(mem_map);
73 #endif
74 
75 unsigned long num_physpages;
76 /*
77  * A number of key systems in x86 including ioremap() rely on the assumption
78  * that high_memory defines the upper bound on direct map memory, then end
79  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
80  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
81  * and ZONE_HIGHMEM.
82  */
83 void * high_memory;
84 
85 EXPORT_SYMBOL(num_physpages);
86 EXPORT_SYMBOL(high_memory);
87 
88 /*
89  * Randomize the address space (stacks, mmaps, brk, etc.).
90  *
91  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
92  *   as ancient (libc5 based) binaries can segfault. )
93  */
94 int randomize_va_space __read_mostly =
95 #ifdef CONFIG_COMPAT_BRK
96 					1;
97 #else
98 					2;
99 #endif
100 
101 static int __init disable_randmaps(char *s)
102 {
103 	randomize_va_space = 0;
104 	return 1;
105 }
106 __setup("norandmaps", disable_randmaps);
107 
108 
109 /*
110  * If a p?d_bad entry is found while walking page tables, report
111  * the error, before resetting entry to p?d_none.  Usually (but
112  * very seldom) called out from the p?d_none_or_clear_bad macros.
113  */
114 
115 void pgd_clear_bad(pgd_t *pgd)
116 {
117 	pgd_ERROR(*pgd);
118 	pgd_clear(pgd);
119 }
120 
121 void pud_clear_bad(pud_t *pud)
122 {
123 	pud_ERROR(*pud);
124 	pud_clear(pud);
125 }
126 
127 void pmd_clear_bad(pmd_t *pmd)
128 {
129 	pmd_ERROR(*pmd);
130 	pmd_clear(pmd);
131 }
132 
133 /*
134  * Note: this doesn't free the actual pages themselves. That
135  * has been handled earlier when unmapping all the memory regions.
136  */
137 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
138 {
139 	pgtable_t token = pmd_pgtable(*pmd);
140 	pmd_clear(pmd);
141 	pte_free_tlb(tlb, token);
142 	tlb->mm->nr_ptes--;
143 }
144 
145 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
146 				unsigned long addr, unsigned long end,
147 				unsigned long floor, unsigned long ceiling)
148 {
149 	pmd_t *pmd;
150 	unsigned long next;
151 	unsigned long start;
152 
153 	start = addr;
154 	pmd = pmd_offset(pud, addr);
155 	do {
156 		next = pmd_addr_end(addr, end);
157 		if (pmd_none_or_clear_bad(pmd))
158 			continue;
159 		free_pte_range(tlb, pmd);
160 	} while (pmd++, addr = next, addr != end);
161 
162 	start &= PUD_MASK;
163 	if (start < floor)
164 		return;
165 	if (ceiling) {
166 		ceiling &= PUD_MASK;
167 		if (!ceiling)
168 			return;
169 	}
170 	if (end - 1 > ceiling - 1)
171 		return;
172 
173 	pmd = pmd_offset(pud, start);
174 	pud_clear(pud);
175 	pmd_free_tlb(tlb, pmd);
176 }
177 
178 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
179 				unsigned long addr, unsigned long end,
180 				unsigned long floor, unsigned long ceiling)
181 {
182 	pud_t *pud;
183 	unsigned long next;
184 	unsigned long start;
185 
186 	start = addr;
187 	pud = pud_offset(pgd, addr);
188 	do {
189 		next = pud_addr_end(addr, end);
190 		if (pud_none_or_clear_bad(pud))
191 			continue;
192 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
193 	} while (pud++, addr = next, addr != end);
194 
195 	start &= PGDIR_MASK;
196 	if (start < floor)
197 		return;
198 	if (ceiling) {
199 		ceiling &= PGDIR_MASK;
200 		if (!ceiling)
201 			return;
202 	}
203 	if (end - 1 > ceiling - 1)
204 		return;
205 
206 	pud = pud_offset(pgd, start);
207 	pgd_clear(pgd);
208 	pud_free_tlb(tlb, pud);
209 }
210 
211 /*
212  * This function frees user-level page tables of a process.
213  *
214  * Must be called with pagetable lock held.
215  */
216 void free_pgd_range(struct mmu_gather *tlb,
217 			unsigned long addr, unsigned long end,
218 			unsigned long floor, unsigned long ceiling)
219 {
220 	pgd_t *pgd;
221 	unsigned long next;
222 	unsigned long start;
223 
224 	/*
225 	 * The next few lines have given us lots of grief...
226 	 *
227 	 * Why are we testing PMD* at this top level?  Because often
228 	 * there will be no work to do at all, and we'd prefer not to
229 	 * go all the way down to the bottom just to discover that.
230 	 *
231 	 * Why all these "- 1"s?  Because 0 represents both the bottom
232 	 * of the address space and the top of it (using -1 for the
233 	 * top wouldn't help much: the masks would do the wrong thing).
234 	 * The rule is that addr 0 and floor 0 refer to the bottom of
235 	 * the address space, but end 0 and ceiling 0 refer to the top
236 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
237 	 * that end 0 case should be mythical).
238 	 *
239 	 * Wherever addr is brought up or ceiling brought down, we must
240 	 * be careful to reject "the opposite 0" before it confuses the
241 	 * subsequent tests.  But what about where end is brought down
242 	 * by PMD_SIZE below? no, end can't go down to 0 there.
243 	 *
244 	 * Whereas we round start (addr) and ceiling down, by different
245 	 * masks at different levels, in order to test whether a table
246 	 * now has no other vmas using it, so can be freed, we don't
247 	 * bother to round floor or end up - the tests don't need that.
248 	 */
249 
250 	addr &= PMD_MASK;
251 	if (addr < floor) {
252 		addr += PMD_SIZE;
253 		if (!addr)
254 			return;
255 	}
256 	if (ceiling) {
257 		ceiling &= PMD_MASK;
258 		if (!ceiling)
259 			return;
260 	}
261 	if (end - 1 > ceiling - 1)
262 		end -= PMD_SIZE;
263 	if (addr > end - 1)
264 		return;
265 
266 	start = addr;
267 	pgd = pgd_offset(tlb->mm, addr);
268 	do {
269 		next = pgd_addr_end(addr, end);
270 		if (pgd_none_or_clear_bad(pgd))
271 			continue;
272 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
273 	} while (pgd++, addr = next, addr != end);
274 }
275 
276 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
277 		unsigned long floor, unsigned long ceiling)
278 {
279 	while (vma) {
280 		struct vm_area_struct *next = vma->vm_next;
281 		unsigned long addr = vma->vm_start;
282 
283 		/*
284 		 * Hide vma from rmap and vmtruncate before freeing pgtables
285 		 */
286 		anon_vma_unlink(vma);
287 		unlink_file_vma(vma);
288 
289 		if (is_vm_hugetlb_page(vma)) {
290 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
291 				floor, next? next->vm_start: ceiling);
292 		} else {
293 			/*
294 			 * Optimization: gather nearby vmas into one call down
295 			 */
296 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
297 			       && !is_vm_hugetlb_page(next)) {
298 				vma = next;
299 				next = vma->vm_next;
300 				anon_vma_unlink(vma);
301 				unlink_file_vma(vma);
302 			}
303 			free_pgd_range(tlb, addr, vma->vm_end,
304 				floor, next? next->vm_start: ceiling);
305 		}
306 		vma = next;
307 	}
308 }
309 
310 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311 {
312 	pgtable_t new = pte_alloc_one(mm, address);
313 	if (!new)
314 		return -ENOMEM;
315 
316 	/*
317 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
318 	 * visible before the pte is made visible to other CPUs by being
319 	 * put into page tables.
320 	 *
321 	 * The other side of the story is the pointer chasing in the page
322 	 * table walking code (when walking the page table without locking;
323 	 * ie. most of the time). Fortunately, these data accesses consist
324 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
325 	 * being the notable exception) will already guarantee loads are
326 	 * seen in-order. See the alpha page table accessors for the
327 	 * smp_read_barrier_depends() barriers in page table walking code.
328 	 */
329 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
330 
331 	spin_lock(&mm->page_table_lock);
332 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
333 		mm->nr_ptes++;
334 		pmd_populate(mm, pmd, new);
335 		new = NULL;
336 	}
337 	spin_unlock(&mm->page_table_lock);
338 	if (new)
339 		pte_free(mm, new);
340 	return 0;
341 }
342 
343 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
344 {
345 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
346 	if (!new)
347 		return -ENOMEM;
348 
349 	smp_wmb(); /* See comment in __pte_alloc */
350 
351 	spin_lock(&init_mm.page_table_lock);
352 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
353 		pmd_populate_kernel(&init_mm, pmd, new);
354 		new = NULL;
355 	}
356 	spin_unlock(&init_mm.page_table_lock);
357 	if (new)
358 		pte_free_kernel(&init_mm, new);
359 	return 0;
360 }
361 
362 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
363 {
364 	if (file_rss)
365 		add_mm_counter(mm, file_rss, file_rss);
366 	if (anon_rss)
367 		add_mm_counter(mm, anon_rss, anon_rss);
368 }
369 
370 /*
371  * This function is called to print an error when a bad pte
372  * is found. For example, we might have a PFN-mapped pte in
373  * a region that doesn't allow it.
374  *
375  * The calling function must still handle the error.
376  */
377 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
378 {
379 	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
380 			"vm_flags = %lx, vaddr = %lx\n",
381 		(long long)pte_val(pte),
382 		(vma->vm_mm == current->mm ? current->comm : "???"),
383 		vma->vm_flags, vaddr);
384 	dump_stack();
385 }
386 
387 static inline int is_cow_mapping(unsigned int flags)
388 {
389 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
390 }
391 
392 /*
393  * vm_normal_page -- This function gets the "struct page" associated with a pte.
394  *
395  * "Special" mappings do not wish to be associated with a "struct page" (either
396  * it doesn't exist, or it exists but they don't want to touch it). In this
397  * case, NULL is returned here. "Normal" mappings do have a struct page.
398  *
399  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
400  * pte bit, in which case this function is trivial. Secondly, an architecture
401  * may not have a spare pte bit, which requires a more complicated scheme,
402  * described below.
403  *
404  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
405  * special mapping (even if there are underlying and valid "struct pages").
406  * COWed pages of a VM_PFNMAP are always normal.
407  *
408  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
409  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
410  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
411  * mapping will always honor the rule
412  *
413  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
414  *
415  * And for normal mappings this is false.
416  *
417  * This restricts such mappings to be a linear translation from virtual address
418  * to pfn. To get around this restriction, we allow arbitrary mappings so long
419  * as the vma is not a COW mapping; in that case, we know that all ptes are
420  * special (because none can have been COWed).
421  *
422  *
423  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
424  *
425  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
426  * page" backing, however the difference is that _all_ pages with a struct
427  * page (that is, those where pfn_valid is true) are refcounted and considered
428  * normal pages by the VM. The disadvantage is that pages are refcounted
429  * (which can be slower and simply not an option for some PFNMAP users). The
430  * advantage is that we don't have to follow the strict linearity rule of
431  * PFNMAP mappings in order to support COWable mappings.
432  *
433  */
434 #ifdef __HAVE_ARCH_PTE_SPECIAL
435 # define HAVE_PTE_SPECIAL 1
436 #else
437 # define HAVE_PTE_SPECIAL 0
438 #endif
439 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
440 				pte_t pte)
441 {
442 	unsigned long pfn;
443 
444 	if (HAVE_PTE_SPECIAL) {
445 		if (likely(!pte_special(pte))) {
446 			VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
447 			return pte_page(pte);
448 		}
449 		VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
450 		return NULL;
451 	}
452 
453 	/* !HAVE_PTE_SPECIAL case follows: */
454 
455 	pfn = pte_pfn(pte);
456 
457 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
458 		if (vma->vm_flags & VM_MIXEDMAP) {
459 			if (!pfn_valid(pfn))
460 				return NULL;
461 			goto out;
462 		} else {
463 			unsigned long off;
464 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
465 			if (pfn == vma->vm_pgoff + off)
466 				return NULL;
467 			if (!is_cow_mapping(vma->vm_flags))
468 				return NULL;
469 		}
470 	}
471 
472 	VM_BUG_ON(!pfn_valid(pfn));
473 
474 	/*
475 	 * NOTE! We still have PageReserved() pages in the page tables.
476 	 *
477 	 * eg. VDSO mappings can cause them to exist.
478 	 */
479 out:
480 	return pfn_to_page(pfn);
481 }
482 
483 /*
484  * copy one vm_area from one task to the other. Assumes the page tables
485  * already present in the new task to be cleared in the whole range
486  * covered by this vma.
487  */
488 
489 static inline void
490 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
491 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
492 		unsigned long addr, int *rss)
493 {
494 	unsigned long vm_flags = vma->vm_flags;
495 	pte_t pte = *src_pte;
496 	struct page *page;
497 
498 	/* pte contains position in swap or file, so copy. */
499 	if (unlikely(!pte_present(pte))) {
500 		if (!pte_file(pte)) {
501 			swp_entry_t entry = pte_to_swp_entry(pte);
502 
503 			swap_duplicate(entry);
504 			/* make sure dst_mm is on swapoff's mmlist. */
505 			if (unlikely(list_empty(&dst_mm->mmlist))) {
506 				spin_lock(&mmlist_lock);
507 				if (list_empty(&dst_mm->mmlist))
508 					list_add(&dst_mm->mmlist,
509 						 &src_mm->mmlist);
510 				spin_unlock(&mmlist_lock);
511 			}
512 			if (is_write_migration_entry(entry) &&
513 					is_cow_mapping(vm_flags)) {
514 				/*
515 				 * COW mappings require pages in both parent
516 				 * and child to be set to read.
517 				 */
518 				make_migration_entry_read(&entry);
519 				pte = swp_entry_to_pte(entry);
520 				set_pte_at(src_mm, addr, src_pte, pte);
521 			}
522 		}
523 		goto out_set_pte;
524 	}
525 
526 	/*
527 	 * If it's a COW mapping, write protect it both
528 	 * in the parent and the child
529 	 */
530 	if (is_cow_mapping(vm_flags)) {
531 		ptep_set_wrprotect(src_mm, addr, src_pte);
532 		pte = pte_wrprotect(pte);
533 	}
534 
535 	/*
536 	 * If it's a shared mapping, mark it clean in
537 	 * the child
538 	 */
539 	if (vm_flags & VM_SHARED)
540 		pte = pte_mkclean(pte);
541 	pte = pte_mkold(pte);
542 
543 	page = vm_normal_page(vma, addr, pte);
544 	if (page) {
545 		get_page(page);
546 		page_dup_rmap(page, vma, addr);
547 		rss[!!PageAnon(page)]++;
548 	}
549 
550 out_set_pte:
551 	set_pte_at(dst_mm, addr, dst_pte, pte);
552 }
553 
554 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
555 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
556 		unsigned long addr, unsigned long end)
557 {
558 	pte_t *src_pte, *dst_pte;
559 	spinlock_t *src_ptl, *dst_ptl;
560 	int progress = 0;
561 	int rss[2];
562 
563 again:
564 	rss[1] = rss[0] = 0;
565 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
566 	if (!dst_pte)
567 		return -ENOMEM;
568 	src_pte = pte_offset_map_nested(src_pmd, addr);
569 	src_ptl = pte_lockptr(src_mm, src_pmd);
570 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
571 	arch_enter_lazy_mmu_mode();
572 
573 	do {
574 		/*
575 		 * We are holding two locks at this point - either of them
576 		 * could generate latencies in another task on another CPU.
577 		 */
578 		if (progress >= 32) {
579 			progress = 0;
580 			if (need_resched() ||
581 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
582 				break;
583 		}
584 		if (pte_none(*src_pte)) {
585 			progress++;
586 			continue;
587 		}
588 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
589 		progress += 8;
590 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
591 
592 	arch_leave_lazy_mmu_mode();
593 	spin_unlock(src_ptl);
594 	pte_unmap_nested(src_pte - 1);
595 	add_mm_rss(dst_mm, rss[0], rss[1]);
596 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
597 	cond_resched();
598 	if (addr != end)
599 		goto again;
600 	return 0;
601 }
602 
603 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
604 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
605 		unsigned long addr, unsigned long end)
606 {
607 	pmd_t *src_pmd, *dst_pmd;
608 	unsigned long next;
609 
610 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
611 	if (!dst_pmd)
612 		return -ENOMEM;
613 	src_pmd = pmd_offset(src_pud, addr);
614 	do {
615 		next = pmd_addr_end(addr, end);
616 		if (pmd_none_or_clear_bad(src_pmd))
617 			continue;
618 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
619 						vma, addr, next))
620 			return -ENOMEM;
621 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
622 	return 0;
623 }
624 
625 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
626 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
627 		unsigned long addr, unsigned long end)
628 {
629 	pud_t *src_pud, *dst_pud;
630 	unsigned long next;
631 
632 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
633 	if (!dst_pud)
634 		return -ENOMEM;
635 	src_pud = pud_offset(src_pgd, addr);
636 	do {
637 		next = pud_addr_end(addr, end);
638 		if (pud_none_or_clear_bad(src_pud))
639 			continue;
640 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
641 						vma, addr, next))
642 			return -ENOMEM;
643 	} while (dst_pud++, src_pud++, addr = next, addr != end);
644 	return 0;
645 }
646 
647 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
648 		struct vm_area_struct *vma)
649 {
650 	pgd_t *src_pgd, *dst_pgd;
651 	unsigned long next;
652 	unsigned long addr = vma->vm_start;
653 	unsigned long end = vma->vm_end;
654 
655 	/*
656 	 * Don't copy ptes where a page fault will fill them correctly.
657 	 * Fork becomes much lighter when there are big shared or private
658 	 * readonly mappings. The tradeoff is that copy_page_range is more
659 	 * efficient than faulting.
660 	 */
661 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
662 		if (!vma->anon_vma)
663 			return 0;
664 	}
665 
666 	if (is_vm_hugetlb_page(vma))
667 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
668 
669 	dst_pgd = pgd_offset(dst_mm, addr);
670 	src_pgd = pgd_offset(src_mm, addr);
671 	do {
672 		next = pgd_addr_end(addr, end);
673 		if (pgd_none_or_clear_bad(src_pgd))
674 			continue;
675 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
676 						vma, addr, next))
677 			return -ENOMEM;
678 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
679 	return 0;
680 }
681 
682 static unsigned long zap_pte_range(struct mmu_gather *tlb,
683 				struct vm_area_struct *vma, pmd_t *pmd,
684 				unsigned long addr, unsigned long end,
685 				long *zap_work, struct zap_details *details)
686 {
687 	struct mm_struct *mm = tlb->mm;
688 	pte_t *pte;
689 	spinlock_t *ptl;
690 	int file_rss = 0;
691 	int anon_rss = 0;
692 
693 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
694 	arch_enter_lazy_mmu_mode();
695 	do {
696 		pte_t ptent = *pte;
697 		if (pte_none(ptent)) {
698 			(*zap_work)--;
699 			continue;
700 		}
701 
702 		(*zap_work) -= PAGE_SIZE;
703 
704 		if (pte_present(ptent)) {
705 			struct page *page;
706 
707 			page = vm_normal_page(vma, addr, ptent);
708 			if (unlikely(details) && page) {
709 				/*
710 				 * unmap_shared_mapping_pages() wants to
711 				 * invalidate cache without truncating:
712 				 * unmap shared but keep private pages.
713 				 */
714 				if (details->check_mapping &&
715 				    details->check_mapping != page->mapping)
716 					continue;
717 				/*
718 				 * Each page->index must be checked when
719 				 * invalidating or truncating nonlinear.
720 				 */
721 				if (details->nonlinear_vma &&
722 				    (page->index < details->first_index ||
723 				     page->index > details->last_index))
724 					continue;
725 			}
726 			ptent = ptep_get_and_clear_full(mm, addr, pte,
727 							tlb->fullmm);
728 			tlb_remove_tlb_entry(tlb, pte, addr);
729 			if (unlikely(!page))
730 				continue;
731 			if (unlikely(details) && details->nonlinear_vma
732 			    && linear_page_index(details->nonlinear_vma,
733 						addr) != page->index)
734 				set_pte_at(mm, addr, pte,
735 					   pgoff_to_pte(page->index));
736 			if (PageAnon(page))
737 				anon_rss--;
738 			else {
739 				if (pte_dirty(ptent))
740 					set_page_dirty(page);
741 				if (pte_young(ptent))
742 					SetPageReferenced(page);
743 				file_rss--;
744 			}
745 			page_remove_rmap(page, vma);
746 			tlb_remove_page(tlb, page);
747 			continue;
748 		}
749 		/*
750 		 * If details->check_mapping, we leave swap entries;
751 		 * if details->nonlinear_vma, we leave file entries.
752 		 */
753 		if (unlikely(details))
754 			continue;
755 		if (!pte_file(ptent))
756 			free_swap_and_cache(pte_to_swp_entry(ptent));
757 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
758 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
759 
760 	add_mm_rss(mm, file_rss, anon_rss);
761 	arch_leave_lazy_mmu_mode();
762 	pte_unmap_unlock(pte - 1, ptl);
763 
764 	return addr;
765 }
766 
767 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
768 				struct vm_area_struct *vma, pud_t *pud,
769 				unsigned long addr, unsigned long end,
770 				long *zap_work, struct zap_details *details)
771 {
772 	pmd_t *pmd;
773 	unsigned long next;
774 
775 	pmd = pmd_offset(pud, addr);
776 	do {
777 		next = pmd_addr_end(addr, end);
778 		if (pmd_none_or_clear_bad(pmd)) {
779 			(*zap_work)--;
780 			continue;
781 		}
782 		next = zap_pte_range(tlb, vma, pmd, addr, next,
783 						zap_work, details);
784 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
785 
786 	return addr;
787 }
788 
789 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
790 				struct vm_area_struct *vma, pgd_t *pgd,
791 				unsigned long addr, unsigned long end,
792 				long *zap_work, struct zap_details *details)
793 {
794 	pud_t *pud;
795 	unsigned long next;
796 
797 	pud = pud_offset(pgd, addr);
798 	do {
799 		next = pud_addr_end(addr, end);
800 		if (pud_none_or_clear_bad(pud)) {
801 			(*zap_work)--;
802 			continue;
803 		}
804 		next = zap_pmd_range(tlb, vma, pud, addr, next,
805 						zap_work, details);
806 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
807 
808 	return addr;
809 }
810 
811 static unsigned long unmap_page_range(struct mmu_gather *tlb,
812 				struct vm_area_struct *vma,
813 				unsigned long addr, unsigned long end,
814 				long *zap_work, struct zap_details *details)
815 {
816 	pgd_t *pgd;
817 	unsigned long next;
818 
819 	if (details && !details->check_mapping && !details->nonlinear_vma)
820 		details = NULL;
821 
822 	BUG_ON(addr >= end);
823 	tlb_start_vma(tlb, vma);
824 	pgd = pgd_offset(vma->vm_mm, addr);
825 	do {
826 		next = pgd_addr_end(addr, end);
827 		if (pgd_none_or_clear_bad(pgd)) {
828 			(*zap_work)--;
829 			continue;
830 		}
831 		next = zap_pud_range(tlb, vma, pgd, addr, next,
832 						zap_work, details);
833 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
834 	tlb_end_vma(tlb, vma);
835 
836 	return addr;
837 }
838 
839 #ifdef CONFIG_PREEMPT
840 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
841 #else
842 /* No preempt: go for improved straight-line efficiency */
843 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
844 #endif
845 
846 /**
847  * unmap_vmas - unmap a range of memory covered by a list of vma's
848  * @tlbp: address of the caller's struct mmu_gather
849  * @vma: the starting vma
850  * @start_addr: virtual address at which to start unmapping
851  * @end_addr: virtual address at which to end unmapping
852  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
853  * @details: details of nonlinear truncation or shared cache invalidation
854  *
855  * Returns the end address of the unmapping (restart addr if interrupted).
856  *
857  * Unmap all pages in the vma list.
858  *
859  * We aim to not hold locks for too long (for scheduling latency reasons).
860  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
861  * return the ending mmu_gather to the caller.
862  *
863  * Only addresses between `start' and `end' will be unmapped.
864  *
865  * The VMA list must be sorted in ascending virtual address order.
866  *
867  * unmap_vmas() assumes that the caller will flush the whole unmapped address
868  * range after unmap_vmas() returns.  So the only responsibility here is to
869  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
870  * drops the lock and schedules.
871  */
872 unsigned long unmap_vmas(struct mmu_gather **tlbp,
873 		struct vm_area_struct *vma, unsigned long start_addr,
874 		unsigned long end_addr, unsigned long *nr_accounted,
875 		struct zap_details *details)
876 {
877 	long zap_work = ZAP_BLOCK_SIZE;
878 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
879 	int tlb_start_valid = 0;
880 	unsigned long start = start_addr;
881 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
882 	int fullmm = (*tlbp)->fullmm;
883 
884 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
885 		unsigned long end;
886 
887 		start = max(vma->vm_start, start_addr);
888 		if (start >= vma->vm_end)
889 			continue;
890 		end = min(vma->vm_end, end_addr);
891 		if (end <= vma->vm_start)
892 			continue;
893 
894 		if (vma->vm_flags & VM_ACCOUNT)
895 			*nr_accounted += (end - start) >> PAGE_SHIFT;
896 
897 		while (start != end) {
898 			if (!tlb_start_valid) {
899 				tlb_start = start;
900 				tlb_start_valid = 1;
901 			}
902 
903 			if (unlikely(is_vm_hugetlb_page(vma))) {
904 				/*
905 				 * It is undesirable to test vma->vm_file as it
906 				 * should be non-null for valid hugetlb area.
907 				 * However, vm_file will be NULL in the error
908 				 * cleanup path of do_mmap_pgoff. When
909 				 * hugetlbfs ->mmap method fails,
910 				 * do_mmap_pgoff() nullifies vma->vm_file
911 				 * before calling this function to clean up.
912 				 * Since no pte has actually been setup, it is
913 				 * safe to do nothing in this case.
914 				 */
915 				if (vma->vm_file) {
916 					unmap_hugepage_range(vma, start, end, NULL);
917 					zap_work -= (end - start) /
918 					pages_per_huge_page(hstate_vma(vma));
919 				}
920 
921 				start = end;
922 			} else
923 				start = unmap_page_range(*tlbp, vma,
924 						start, end, &zap_work, details);
925 
926 			if (zap_work > 0) {
927 				BUG_ON(start != end);
928 				break;
929 			}
930 
931 			tlb_finish_mmu(*tlbp, tlb_start, start);
932 
933 			if (need_resched() ||
934 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
935 				if (i_mmap_lock) {
936 					*tlbp = NULL;
937 					goto out;
938 				}
939 				cond_resched();
940 			}
941 
942 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
943 			tlb_start_valid = 0;
944 			zap_work = ZAP_BLOCK_SIZE;
945 		}
946 	}
947 out:
948 	return start;	/* which is now the end (or restart) address */
949 }
950 
951 /**
952  * zap_page_range - remove user pages in a given range
953  * @vma: vm_area_struct holding the applicable pages
954  * @address: starting address of pages to zap
955  * @size: number of bytes to zap
956  * @details: details of nonlinear truncation or shared cache invalidation
957  */
958 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
959 		unsigned long size, struct zap_details *details)
960 {
961 	struct mm_struct *mm = vma->vm_mm;
962 	struct mmu_gather *tlb;
963 	unsigned long end = address + size;
964 	unsigned long nr_accounted = 0;
965 
966 	lru_add_drain();
967 	tlb = tlb_gather_mmu(mm, 0);
968 	update_hiwater_rss(mm);
969 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
970 	if (tlb)
971 		tlb_finish_mmu(tlb, address, end);
972 	return end;
973 }
974 
975 /*
976  * Do a quick page-table lookup for a single page.
977  */
978 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
979 			unsigned int flags)
980 {
981 	pgd_t *pgd;
982 	pud_t *pud;
983 	pmd_t *pmd;
984 	pte_t *ptep, pte;
985 	spinlock_t *ptl;
986 	struct page *page;
987 	struct mm_struct *mm = vma->vm_mm;
988 
989 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
990 	if (!IS_ERR(page)) {
991 		BUG_ON(flags & FOLL_GET);
992 		goto out;
993 	}
994 
995 	page = NULL;
996 	pgd = pgd_offset(mm, address);
997 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
998 		goto no_page_table;
999 
1000 	pud = pud_offset(pgd, address);
1001 	if (pud_none(*pud))
1002 		goto no_page_table;
1003 	if (pud_huge(*pud)) {
1004 		BUG_ON(flags & FOLL_GET);
1005 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1006 		goto out;
1007 	}
1008 	if (unlikely(pud_bad(*pud)))
1009 		goto no_page_table;
1010 
1011 	pmd = pmd_offset(pud, address);
1012 	if (pmd_none(*pmd))
1013 		goto no_page_table;
1014 	if (pmd_huge(*pmd)) {
1015 		BUG_ON(flags & FOLL_GET);
1016 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1017 		goto out;
1018 	}
1019 	if (unlikely(pmd_bad(*pmd)))
1020 		goto no_page_table;
1021 
1022 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1023 
1024 	pte = *ptep;
1025 	if (!pte_present(pte))
1026 		goto no_page;
1027 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1028 		goto unlock;
1029 	page = vm_normal_page(vma, address, pte);
1030 	if (unlikely(!page))
1031 		goto bad_page;
1032 
1033 	if (flags & FOLL_GET)
1034 		get_page(page);
1035 	if (flags & FOLL_TOUCH) {
1036 		if ((flags & FOLL_WRITE) &&
1037 		    !pte_dirty(pte) && !PageDirty(page))
1038 			set_page_dirty(page);
1039 		mark_page_accessed(page);
1040 	}
1041 unlock:
1042 	pte_unmap_unlock(ptep, ptl);
1043 out:
1044 	return page;
1045 
1046 bad_page:
1047 	pte_unmap_unlock(ptep, ptl);
1048 	return ERR_PTR(-EFAULT);
1049 
1050 no_page:
1051 	pte_unmap_unlock(ptep, ptl);
1052 	if (!pte_none(pte))
1053 		return page;
1054 	/* Fall through to ZERO_PAGE handling */
1055 no_page_table:
1056 	/*
1057 	 * When core dumping an enormous anonymous area that nobody
1058 	 * has touched so far, we don't want to allocate page tables.
1059 	 */
1060 	if (flags & FOLL_ANON) {
1061 		page = ZERO_PAGE(0);
1062 		if (flags & FOLL_GET)
1063 			get_page(page);
1064 		BUG_ON(flags & FOLL_WRITE);
1065 	}
1066 	return page;
1067 }
1068 
1069 /* Can we do the FOLL_ANON optimization? */
1070 static inline int use_zero_page(struct vm_area_struct *vma)
1071 {
1072 	/*
1073 	 * We don't want to optimize FOLL_ANON for make_pages_present()
1074 	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1075 	 * we want to get the page from the page tables to make sure
1076 	 * that we serialize and update with any other user of that
1077 	 * mapping.
1078 	 */
1079 	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1080 		return 0;
1081 	/*
1082 	 * And if we have a fault routine, it's not an anonymous region.
1083 	 */
1084 	return !vma->vm_ops || !vma->vm_ops->fault;
1085 }
1086 
1087 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1088 		unsigned long start, int len, int write, int force,
1089 		struct page **pages, struct vm_area_struct **vmas)
1090 {
1091 	int i;
1092 	unsigned int vm_flags;
1093 
1094 	if (len <= 0)
1095 		return 0;
1096 	/*
1097 	 * Require read or write permissions.
1098 	 * If 'force' is set, we only require the "MAY" flags.
1099 	 */
1100 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1101 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1102 	i = 0;
1103 
1104 	do {
1105 		struct vm_area_struct *vma;
1106 		unsigned int foll_flags;
1107 
1108 		vma = find_extend_vma(mm, start);
1109 		if (!vma && in_gate_area(tsk, start)) {
1110 			unsigned long pg = start & PAGE_MASK;
1111 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1112 			pgd_t *pgd;
1113 			pud_t *pud;
1114 			pmd_t *pmd;
1115 			pte_t *pte;
1116 			if (write) /* user gate pages are read-only */
1117 				return i ? : -EFAULT;
1118 			if (pg > TASK_SIZE)
1119 				pgd = pgd_offset_k(pg);
1120 			else
1121 				pgd = pgd_offset_gate(mm, pg);
1122 			BUG_ON(pgd_none(*pgd));
1123 			pud = pud_offset(pgd, pg);
1124 			BUG_ON(pud_none(*pud));
1125 			pmd = pmd_offset(pud, pg);
1126 			if (pmd_none(*pmd))
1127 				return i ? : -EFAULT;
1128 			pte = pte_offset_map(pmd, pg);
1129 			if (pte_none(*pte)) {
1130 				pte_unmap(pte);
1131 				return i ? : -EFAULT;
1132 			}
1133 			if (pages) {
1134 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1135 				pages[i] = page;
1136 				if (page)
1137 					get_page(page);
1138 			}
1139 			pte_unmap(pte);
1140 			if (vmas)
1141 				vmas[i] = gate_vma;
1142 			i++;
1143 			start += PAGE_SIZE;
1144 			len--;
1145 			continue;
1146 		}
1147 
1148 		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1149 				|| !(vm_flags & vma->vm_flags))
1150 			return i ? : -EFAULT;
1151 
1152 		if (is_vm_hugetlb_page(vma)) {
1153 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1154 						&start, &len, i, write);
1155 			continue;
1156 		}
1157 
1158 		foll_flags = FOLL_TOUCH;
1159 		if (pages)
1160 			foll_flags |= FOLL_GET;
1161 		if (!write && use_zero_page(vma))
1162 			foll_flags |= FOLL_ANON;
1163 
1164 		do {
1165 			struct page *page;
1166 
1167 			/*
1168 			 * If tsk is ooming, cut off its access to large memory
1169 			 * allocations. It has a pending SIGKILL, but it can't
1170 			 * be processed until returning to user space.
1171 			 */
1172 			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1173 				return i ? i : -ENOMEM;
1174 
1175 			if (write)
1176 				foll_flags |= FOLL_WRITE;
1177 
1178 			cond_resched();
1179 			while (!(page = follow_page(vma, start, foll_flags))) {
1180 				int ret;
1181 				ret = handle_mm_fault(mm, vma, start,
1182 						foll_flags & FOLL_WRITE);
1183 				if (ret & VM_FAULT_ERROR) {
1184 					if (ret & VM_FAULT_OOM)
1185 						return i ? i : -ENOMEM;
1186 					else if (ret & VM_FAULT_SIGBUS)
1187 						return i ? i : -EFAULT;
1188 					BUG();
1189 				}
1190 				if (ret & VM_FAULT_MAJOR)
1191 					tsk->maj_flt++;
1192 				else
1193 					tsk->min_flt++;
1194 
1195 				/*
1196 				 * The VM_FAULT_WRITE bit tells us that
1197 				 * do_wp_page has broken COW when necessary,
1198 				 * even if maybe_mkwrite decided not to set
1199 				 * pte_write. We can thus safely do subsequent
1200 				 * page lookups as if they were reads.
1201 				 */
1202 				if (ret & VM_FAULT_WRITE)
1203 					foll_flags &= ~FOLL_WRITE;
1204 
1205 				cond_resched();
1206 			}
1207 			if (IS_ERR(page))
1208 				return i ? i : PTR_ERR(page);
1209 			if (pages) {
1210 				pages[i] = page;
1211 
1212 				flush_anon_page(vma, page, start);
1213 				flush_dcache_page(page);
1214 			}
1215 			if (vmas)
1216 				vmas[i] = vma;
1217 			i++;
1218 			start += PAGE_SIZE;
1219 			len--;
1220 		} while (len && start < vma->vm_end);
1221 	} while (len);
1222 	return i;
1223 }
1224 EXPORT_SYMBOL(get_user_pages);
1225 
1226 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1227 			spinlock_t **ptl)
1228 {
1229 	pgd_t * pgd = pgd_offset(mm, addr);
1230 	pud_t * pud = pud_alloc(mm, pgd, addr);
1231 	if (pud) {
1232 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1233 		if (pmd)
1234 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1235 	}
1236 	return NULL;
1237 }
1238 
1239 /*
1240  * This is the old fallback for page remapping.
1241  *
1242  * For historical reasons, it only allows reserved pages. Only
1243  * old drivers should use this, and they needed to mark their
1244  * pages reserved for the old functions anyway.
1245  */
1246 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1247 			struct page *page, pgprot_t prot)
1248 {
1249 	struct mm_struct *mm = vma->vm_mm;
1250 	int retval;
1251 	pte_t *pte;
1252 	spinlock_t *ptl;
1253 
1254 	retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1255 	if (retval)
1256 		goto out;
1257 
1258 	retval = -EINVAL;
1259 	if (PageAnon(page))
1260 		goto out_uncharge;
1261 	retval = -ENOMEM;
1262 	flush_dcache_page(page);
1263 	pte = get_locked_pte(mm, addr, &ptl);
1264 	if (!pte)
1265 		goto out_uncharge;
1266 	retval = -EBUSY;
1267 	if (!pte_none(*pte))
1268 		goto out_unlock;
1269 
1270 	/* Ok, finally just insert the thing.. */
1271 	get_page(page);
1272 	inc_mm_counter(mm, file_rss);
1273 	page_add_file_rmap(page);
1274 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1275 
1276 	retval = 0;
1277 	pte_unmap_unlock(pte, ptl);
1278 	return retval;
1279 out_unlock:
1280 	pte_unmap_unlock(pte, ptl);
1281 out_uncharge:
1282 	mem_cgroup_uncharge_page(page);
1283 out:
1284 	return retval;
1285 }
1286 
1287 /**
1288  * vm_insert_page - insert single page into user vma
1289  * @vma: user vma to map to
1290  * @addr: target user address of this page
1291  * @page: source kernel page
1292  *
1293  * This allows drivers to insert individual pages they've allocated
1294  * into a user vma.
1295  *
1296  * The page has to be a nice clean _individual_ kernel allocation.
1297  * If you allocate a compound page, you need to have marked it as
1298  * such (__GFP_COMP), or manually just split the page up yourself
1299  * (see split_page()).
1300  *
1301  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1302  * took an arbitrary page protection parameter. This doesn't allow
1303  * that. Your vma protection will have to be set up correctly, which
1304  * means that if you want a shared writable mapping, you'd better
1305  * ask for a shared writable mapping!
1306  *
1307  * The page does not need to be reserved.
1308  */
1309 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1310 			struct page *page)
1311 {
1312 	if (addr < vma->vm_start || addr >= vma->vm_end)
1313 		return -EFAULT;
1314 	if (!page_count(page))
1315 		return -EINVAL;
1316 	vma->vm_flags |= VM_INSERTPAGE;
1317 	return insert_page(vma, addr, page, vma->vm_page_prot);
1318 }
1319 EXPORT_SYMBOL(vm_insert_page);
1320 
1321 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1322 			unsigned long pfn, pgprot_t prot)
1323 {
1324 	struct mm_struct *mm = vma->vm_mm;
1325 	int retval;
1326 	pte_t *pte, entry;
1327 	spinlock_t *ptl;
1328 
1329 	retval = -ENOMEM;
1330 	pte = get_locked_pte(mm, addr, &ptl);
1331 	if (!pte)
1332 		goto out;
1333 	retval = -EBUSY;
1334 	if (!pte_none(*pte))
1335 		goto out_unlock;
1336 
1337 	/* Ok, finally just insert the thing.. */
1338 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1339 	set_pte_at(mm, addr, pte, entry);
1340 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1341 
1342 	retval = 0;
1343 out_unlock:
1344 	pte_unmap_unlock(pte, ptl);
1345 out:
1346 	return retval;
1347 }
1348 
1349 /**
1350  * vm_insert_pfn - insert single pfn into user vma
1351  * @vma: user vma to map to
1352  * @addr: target user address of this page
1353  * @pfn: source kernel pfn
1354  *
1355  * Similar to vm_inert_page, this allows drivers to insert individual pages
1356  * they've allocated into a user vma. Same comments apply.
1357  *
1358  * This function should only be called from a vm_ops->fault handler, and
1359  * in that case the handler should return NULL.
1360  *
1361  * vma cannot be a COW mapping.
1362  *
1363  * As this is called only for pages that do not currently exist, we
1364  * do not need to flush old virtual caches or the TLB.
1365  */
1366 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1367 			unsigned long pfn)
1368 {
1369 	/*
1370 	 * Technically, architectures with pte_special can avoid all these
1371 	 * restrictions (same for remap_pfn_range).  However we would like
1372 	 * consistency in testing and feature parity among all, so we should
1373 	 * try to keep these invariants in place for everybody.
1374 	 */
1375 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1376 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1377 						(VM_PFNMAP|VM_MIXEDMAP));
1378 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1379 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1380 
1381 	if (addr < vma->vm_start || addr >= vma->vm_end)
1382 		return -EFAULT;
1383 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1384 }
1385 EXPORT_SYMBOL(vm_insert_pfn);
1386 
1387 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1388 			unsigned long pfn)
1389 {
1390 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1391 
1392 	if (addr < vma->vm_start || addr >= vma->vm_end)
1393 		return -EFAULT;
1394 
1395 	/*
1396 	 * If we don't have pte special, then we have to use the pfn_valid()
1397 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1398 	 * refcount the page if pfn_valid is true (hence insert_page rather
1399 	 * than insert_pfn).
1400 	 */
1401 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1402 		struct page *page;
1403 
1404 		page = pfn_to_page(pfn);
1405 		return insert_page(vma, addr, page, vma->vm_page_prot);
1406 	}
1407 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1408 }
1409 EXPORT_SYMBOL(vm_insert_mixed);
1410 
1411 /*
1412  * maps a range of physical memory into the requested pages. the old
1413  * mappings are removed. any references to nonexistent pages results
1414  * in null mappings (currently treated as "copy-on-access")
1415  */
1416 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1417 			unsigned long addr, unsigned long end,
1418 			unsigned long pfn, pgprot_t prot)
1419 {
1420 	pte_t *pte;
1421 	spinlock_t *ptl;
1422 
1423 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1424 	if (!pte)
1425 		return -ENOMEM;
1426 	arch_enter_lazy_mmu_mode();
1427 	do {
1428 		BUG_ON(!pte_none(*pte));
1429 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1430 		pfn++;
1431 	} while (pte++, addr += PAGE_SIZE, addr != end);
1432 	arch_leave_lazy_mmu_mode();
1433 	pte_unmap_unlock(pte - 1, ptl);
1434 	return 0;
1435 }
1436 
1437 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1438 			unsigned long addr, unsigned long end,
1439 			unsigned long pfn, pgprot_t prot)
1440 {
1441 	pmd_t *pmd;
1442 	unsigned long next;
1443 
1444 	pfn -= addr >> PAGE_SHIFT;
1445 	pmd = pmd_alloc(mm, pud, addr);
1446 	if (!pmd)
1447 		return -ENOMEM;
1448 	do {
1449 		next = pmd_addr_end(addr, end);
1450 		if (remap_pte_range(mm, pmd, addr, next,
1451 				pfn + (addr >> PAGE_SHIFT), prot))
1452 			return -ENOMEM;
1453 	} while (pmd++, addr = next, addr != end);
1454 	return 0;
1455 }
1456 
1457 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1458 			unsigned long addr, unsigned long end,
1459 			unsigned long pfn, pgprot_t prot)
1460 {
1461 	pud_t *pud;
1462 	unsigned long next;
1463 
1464 	pfn -= addr >> PAGE_SHIFT;
1465 	pud = pud_alloc(mm, pgd, addr);
1466 	if (!pud)
1467 		return -ENOMEM;
1468 	do {
1469 		next = pud_addr_end(addr, end);
1470 		if (remap_pmd_range(mm, pud, addr, next,
1471 				pfn + (addr >> PAGE_SHIFT), prot))
1472 			return -ENOMEM;
1473 	} while (pud++, addr = next, addr != end);
1474 	return 0;
1475 }
1476 
1477 /**
1478  * remap_pfn_range - remap kernel memory to userspace
1479  * @vma: user vma to map to
1480  * @addr: target user address to start at
1481  * @pfn: physical address of kernel memory
1482  * @size: size of map area
1483  * @prot: page protection flags for this mapping
1484  *
1485  *  Note: this is only safe if the mm semaphore is held when called.
1486  */
1487 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1488 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1489 {
1490 	pgd_t *pgd;
1491 	unsigned long next;
1492 	unsigned long end = addr + PAGE_ALIGN(size);
1493 	struct mm_struct *mm = vma->vm_mm;
1494 	int err;
1495 
1496 	/*
1497 	 * Physically remapped pages are special. Tell the
1498 	 * rest of the world about it:
1499 	 *   VM_IO tells people not to look at these pages
1500 	 *	(accesses can have side effects).
1501 	 *   VM_RESERVED is specified all over the place, because
1502 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1503 	 *	in 2.6 the LRU scan won't even find its pages, so this
1504 	 *	flag means no more than count its pages in reserved_vm,
1505 	 * 	and omit it from core dump, even when VM_IO turned off.
1506 	 *   VM_PFNMAP tells the core MM that the base pages are just
1507 	 *	raw PFN mappings, and do not have a "struct page" associated
1508 	 *	with them.
1509 	 *
1510 	 * There's a horrible special case to handle copy-on-write
1511 	 * behaviour that some programs depend on. We mark the "original"
1512 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1513 	 */
1514 	if (is_cow_mapping(vma->vm_flags)) {
1515 		if (addr != vma->vm_start || end != vma->vm_end)
1516 			return -EINVAL;
1517 		vma->vm_pgoff = pfn;
1518 	}
1519 
1520 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1521 
1522 	BUG_ON(addr >= end);
1523 	pfn -= addr >> PAGE_SHIFT;
1524 	pgd = pgd_offset(mm, addr);
1525 	flush_cache_range(vma, addr, end);
1526 	do {
1527 		next = pgd_addr_end(addr, end);
1528 		err = remap_pud_range(mm, pgd, addr, next,
1529 				pfn + (addr >> PAGE_SHIFT), prot);
1530 		if (err)
1531 			break;
1532 	} while (pgd++, addr = next, addr != end);
1533 	return err;
1534 }
1535 EXPORT_SYMBOL(remap_pfn_range);
1536 
1537 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1538 				     unsigned long addr, unsigned long end,
1539 				     pte_fn_t fn, void *data)
1540 {
1541 	pte_t *pte;
1542 	int err;
1543 	pgtable_t token;
1544 	spinlock_t *uninitialized_var(ptl);
1545 
1546 	pte = (mm == &init_mm) ?
1547 		pte_alloc_kernel(pmd, addr) :
1548 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1549 	if (!pte)
1550 		return -ENOMEM;
1551 
1552 	BUG_ON(pmd_huge(*pmd));
1553 
1554 	token = pmd_pgtable(*pmd);
1555 
1556 	do {
1557 		err = fn(pte, token, addr, data);
1558 		if (err)
1559 			break;
1560 	} while (pte++, addr += PAGE_SIZE, addr != end);
1561 
1562 	if (mm != &init_mm)
1563 		pte_unmap_unlock(pte-1, ptl);
1564 	return err;
1565 }
1566 
1567 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1568 				     unsigned long addr, unsigned long end,
1569 				     pte_fn_t fn, void *data)
1570 {
1571 	pmd_t *pmd;
1572 	unsigned long next;
1573 	int err;
1574 
1575 	BUG_ON(pud_huge(*pud));
1576 
1577 	pmd = pmd_alloc(mm, pud, addr);
1578 	if (!pmd)
1579 		return -ENOMEM;
1580 	do {
1581 		next = pmd_addr_end(addr, end);
1582 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1583 		if (err)
1584 			break;
1585 	} while (pmd++, addr = next, addr != end);
1586 	return err;
1587 }
1588 
1589 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1590 				     unsigned long addr, unsigned long end,
1591 				     pte_fn_t fn, void *data)
1592 {
1593 	pud_t *pud;
1594 	unsigned long next;
1595 	int err;
1596 
1597 	pud = pud_alloc(mm, pgd, addr);
1598 	if (!pud)
1599 		return -ENOMEM;
1600 	do {
1601 		next = pud_addr_end(addr, end);
1602 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1603 		if (err)
1604 			break;
1605 	} while (pud++, addr = next, addr != end);
1606 	return err;
1607 }
1608 
1609 /*
1610  * Scan a region of virtual memory, filling in page tables as necessary
1611  * and calling a provided function on each leaf page table.
1612  */
1613 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1614 			unsigned long size, pte_fn_t fn, void *data)
1615 {
1616 	pgd_t *pgd;
1617 	unsigned long next;
1618 	unsigned long end = addr + size;
1619 	int err;
1620 
1621 	BUG_ON(addr >= end);
1622 	pgd = pgd_offset(mm, addr);
1623 	do {
1624 		next = pgd_addr_end(addr, end);
1625 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1626 		if (err)
1627 			break;
1628 	} while (pgd++, addr = next, addr != end);
1629 	return err;
1630 }
1631 EXPORT_SYMBOL_GPL(apply_to_page_range);
1632 
1633 /*
1634  * handle_pte_fault chooses page fault handler according to an entry
1635  * which was read non-atomically.  Before making any commitment, on
1636  * those architectures or configurations (e.g. i386 with PAE) which
1637  * might give a mix of unmatched parts, do_swap_page and do_file_page
1638  * must check under lock before unmapping the pte and proceeding
1639  * (but do_wp_page is only called after already making such a check;
1640  * and do_anonymous_page and do_no_page can safely check later on).
1641  */
1642 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1643 				pte_t *page_table, pte_t orig_pte)
1644 {
1645 	int same = 1;
1646 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1647 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1648 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1649 		spin_lock(ptl);
1650 		same = pte_same(*page_table, orig_pte);
1651 		spin_unlock(ptl);
1652 	}
1653 #endif
1654 	pte_unmap(page_table);
1655 	return same;
1656 }
1657 
1658 /*
1659  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1660  * servicing faults for write access.  In the normal case, do always want
1661  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1662  * that do not have writing enabled, when used by access_process_vm.
1663  */
1664 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1665 {
1666 	if (likely(vma->vm_flags & VM_WRITE))
1667 		pte = pte_mkwrite(pte);
1668 	return pte;
1669 }
1670 
1671 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1672 {
1673 	/*
1674 	 * If the source page was a PFN mapping, we don't have
1675 	 * a "struct page" for it. We do a best-effort copy by
1676 	 * just copying from the original user address. If that
1677 	 * fails, we just zero-fill it. Live with it.
1678 	 */
1679 	if (unlikely(!src)) {
1680 		void *kaddr = kmap_atomic(dst, KM_USER0);
1681 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1682 
1683 		/*
1684 		 * This really shouldn't fail, because the page is there
1685 		 * in the page tables. But it might just be unreadable,
1686 		 * in which case we just give up and fill the result with
1687 		 * zeroes.
1688 		 */
1689 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1690 			memset(kaddr, 0, PAGE_SIZE);
1691 		kunmap_atomic(kaddr, KM_USER0);
1692 		flush_dcache_page(dst);
1693 	} else
1694 		copy_user_highpage(dst, src, va, vma);
1695 }
1696 
1697 /*
1698  * This routine handles present pages, when users try to write
1699  * to a shared page. It is done by copying the page to a new address
1700  * and decrementing the shared-page counter for the old page.
1701  *
1702  * Note that this routine assumes that the protection checks have been
1703  * done by the caller (the low-level page fault routine in most cases).
1704  * Thus we can safely just mark it writable once we've done any necessary
1705  * COW.
1706  *
1707  * We also mark the page dirty at this point even though the page will
1708  * change only once the write actually happens. This avoids a few races,
1709  * and potentially makes it more efficient.
1710  *
1711  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1712  * but allow concurrent faults), with pte both mapped and locked.
1713  * We return with mmap_sem still held, but pte unmapped and unlocked.
1714  */
1715 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1716 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1717 		spinlock_t *ptl, pte_t orig_pte)
1718 {
1719 	struct page *old_page, *new_page;
1720 	pte_t entry;
1721 	int reuse = 0, ret = 0;
1722 	int page_mkwrite = 0;
1723 	struct page *dirty_page = NULL;
1724 
1725 	old_page = vm_normal_page(vma, address, orig_pte);
1726 	if (!old_page) {
1727 		/*
1728 		 * VM_MIXEDMAP !pfn_valid() case
1729 		 *
1730 		 * We should not cow pages in a shared writeable mapping.
1731 		 * Just mark the pages writable as we can't do any dirty
1732 		 * accounting on raw pfn maps.
1733 		 */
1734 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1735 				     (VM_WRITE|VM_SHARED))
1736 			goto reuse;
1737 		goto gotten;
1738 	}
1739 
1740 	/*
1741 	 * Take out anonymous pages first, anonymous shared vmas are
1742 	 * not dirty accountable.
1743 	 */
1744 	if (PageAnon(old_page)) {
1745 		if (!TestSetPageLocked(old_page)) {
1746 			reuse = can_share_swap_page(old_page);
1747 			unlock_page(old_page);
1748 		}
1749 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1750 					(VM_WRITE|VM_SHARED))) {
1751 		/*
1752 		 * Only catch write-faults on shared writable pages,
1753 		 * read-only shared pages can get COWed by
1754 		 * get_user_pages(.write=1, .force=1).
1755 		 */
1756 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1757 			/*
1758 			 * Notify the address space that the page is about to
1759 			 * become writable so that it can prohibit this or wait
1760 			 * for the page to get into an appropriate state.
1761 			 *
1762 			 * We do this without the lock held, so that it can
1763 			 * sleep if it needs to.
1764 			 */
1765 			page_cache_get(old_page);
1766 			pte_unmap_unlock(page_table, ptl);
1767 
1768 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1769 				goto unwritable_page;
1770 
1771 			/*
1772 			 * Since we dropped the lock we need to revalidate
1773 			 * the PTE as someone else may have changed it.  If
1774 			 * they did, we just return, as we can count on the
1775 			 * MMU to tell us if they didn't also make it writable.
1776 			 */
1777 			page_table = pte_offset_map_lock(mm, pmd, address,
1778 							 &ptl);
1779 			page_cache_release(old_page);
1780 			if (!pte_same(*page_table, orig_pte))
1781 				goto unlock;
1782 
1783 			page_mkwrite = 1;
1784 		}
1785 		dirty_page = old_page;
1786 		get_page(dirty_page);
1787 		reuse = 1;
1788 	}
1789 
1790 	if (reuse) {
1791 reuse:
1792 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1793 		entry = pte_mkyoung(orig_pte);
1794 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1795 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1796 			update_mmu_cache(vma, address, entry);
1797 		ret |= VM_FAULT_WRITE;
1798 		goto unlock;
1799 	}
1800 
1801 	/*
1802 	 * Ok, we need to copy. Oh, well..
1803 	 */
1804 	page_cache_get(old_page);
1805 gotten:
1806 	pte_unmap_unlock(page_table, ptl);
1807 
1808 	if (unlikely(anon_vma_prepare(vma)))
1809 		goto oom;
1810 	VM_BUG_ON(old_page == ZERO_PAGE(0));
1811 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1812 	if (!new_page)
1813 		goto oom;
1814 	cow_user_page(new_page, old_page, address, vma);
1815 	__SetPageUptodate(new_page);
1816 
1817 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1818 		goto oom_free_new;
1819 
1820 	/*
1821 	 * Re-check the pte - we dropped the lock
1822 	 */
1823 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1824 	if (likely(pte_same(*page_table, orig_pte))) {
1825 		if (old_page) {
1826 			if (!PageAnon(old_page)) {
1827 				dec_mm_counter(mm, file_rss);
1828 				inc_mm_counter(mm, anon_rss);
1829 			}
1830 		} else
1831 			inc_mm_counter(mm, anon_rss);
1832 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1833 		entry = mk_pte(new_page, vma->vm_page_prot);
1834 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1835 		/*
1836 		 * Clear the pte entry and flush it first, before updating the
1837 		 * pte with the new entry. This will avoid a race condition
1838 		 * seen in the presence of one thread doing SMC and another
1839 		 * thread doing COW.
1840 		 */
1841 		ptep_clear_flush(vma, address, page_table);
1842 		set_pte_at(mm, address, page_table, entry);
1843 		update_mmu_cache(vma, address, entry);
1844 		lru_cache_add_active(new_page);
1845 		page_add_new_anon_rmap(new_page, vma, address);
1846 
1847 		if (old_page) {
1848 			/*
1849 			 * Only after switching the pte to the new page may
1850 			 * we remove the mapcount here. Otherwise another
1851 			 * process may come and find the rmap count decremented
1852 			 * before the pte is switched to the new page, and
1853 			 * "reuse" the old page writing into it while our pte
1854 			 * here still points into it and can be read by other
1855 			 * threads.
1856 			 *
1857 			 * The critical issue is to order this
1858 			 * page_remove_rmap with the ptp_clear_flush above.
1859 			 * Those stores are ordered by (if nothing else,)
1860 			 * the barrier present in the atomic_add_negative
1861 			 * in page_remove_rmap.
1862 			 *
1863 			 * Then the TLB flush in ptep_clear_flush ensures that
1864 			 * no process can access the old page before the
1865 			 * decremented mapcount is visible. And the old page
1866 			 * cannot be reused until after the decremented
1867 			 * mapcount is visible. So transitively, TLBs to
1868 			 * old page will be flushed before it can be reused.
1869 			 */
1870 			page_remove_rmap(old_page, vma);
1871 		}
1872 
1873 		/* Free the old page.. */
1874 		new_page = old_page;
1875 		ret |= VM_FAULT_WRITE;
1876 	} else
1877 		mem_cgroup_uncharge_page(new_page);
1878 
1879 	if (new_page)
1880 		page_cache_release(new_page);
1881 	if (old_page)
1882 		page_cache_release(old_page);
1883 unlock:
1884 	pte_unmap_unlock(page_table, ptl);
1885 	if (dirty_page) {
1886 		if (vma->vm_file)
1887 			file_update_time(vma->vm_file);
1888 
1889 		/*
1890 		 * Yes, Virginia, this is actually required to prevent a race
1891 		 * with clear_page_dirty_for_io() from clearing the page dirty
1892 		 * bit after it clear all dirty ptes, but before a racing
1893 		 * do_wp_page installs a dirty pte.
1894 		 *
1895 		 * do_no_page is protected similarly.
1896 		 */
1897 		wait_on_page_locked(dirty_page);
1898 		set_page_dirty_balance(dirty_page, page_mkwrite);
1899 		put_page(dirty_page);
1900 	}
1901 	return ret;
1902 oom_free_new:
1903 	page_cache_release(new_page);
1904 oom:
1905 	if (old_page)
1906 		page_cache_release(old_page);
1907 	return VM_FAULT_OOM;
1908 
1909 unwritable_page:
1910 	page_cache_release(old_page);
1911 	return VM_FAULT_SIGBUS;
1912 }
1913 
1914 /*
1915  * Helper functions for unmap_mapping_range().
1916  *
1917  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1918  *
1919  * We have to restart searching the prio_tree whenever we drop the lock,
1920  * since the iterator is only valid while the lock is held, and anyway
1921  * a later vma might be split and reinserted earlier while lock dropped.
1922  *
1923  * The list of nonlinear vmas could be handled more efficiently, using
1924  * a placeholder, but handle it in the same way until a need is shown.
1925  * It is important to search the prio_tree before nonlinear list: a vma
1926  * may become nonlinear and be shifted from prio_tree to nonlinear list
1927  * while the lock is dropped; but never shifted from list to prio_tree.
1928  *
1929  * In order to make forward progress despite restarting the search,
1930  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1931  * quickly skip it next time around.  Since the prio_tree search only
1932  * shows us those vmas affected by unmapping the range in question, we
1933  * can't efficiently keep all vmas in step with mapping->truncate_count:
1934  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1935  * mapping->truncate_count and vma->vm_truncate_count are protected by
1936  * i_mmap_lock.
1937  *
1938  * In order to make forward progress despite repeatedly restarting some
1939  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1940  * and restart from that address when we reach that vma again.  It might
1941  * have been split or merged, shrunk or extended, but never shifted: so
1942  * restart_addr remains valid so long as it remains in the vma's range.
1943  * unmap_mapping_range forces truncate_count to leap over page-aligned
1944  * values so we can save vma's restart_addr in its truncate_count field.
1945  */
1946 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1947 
1948 static void reset_vma_truncate_counts(struct address_space *mapping)
1949 {
1950 	struct vm_area_struct *vma;
1951 	struct prio_tree_iter iter;
1952 
1953 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1954 		vma->vm_truncate_count = 0;
1955 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1956 		vma->vm_truncate_count = 0;
1957 }
1958 
1959 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1960 		unsigned long start_addr, unsigned long end_addr,
1961 		struct zap_details *details)
1962 {
1963 	unsigned long restart_addr;
1964 	int need_break;
1965 
1966 	/*
1967 	 * files that support invalidating or truncating portions of the
1968 	 * file from under mmaped areas must have their ->fault function
1969 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
1970 	 * This provides synchronisation against concurrent unmapping here.
1971 	 */
1972 
1973 again:
1974 	restart_addr = vma->vm_truncate_count;
1975 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1976 		start_addr = restart_addr;
1977 		if (start_addr >= end_addr) {
1978 			/* Top of vma has been split off since last time */
1979 			vma->vm_truncate_count = details->truncate_count;
1980 			return 0;
1981 		}
1982 	}
1983 
1984 	restart_addr = zap_page_range(vma, start_addr,
1985 					end_addr - start_addr, details);
1986 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1987 
1988 	if (restart_addr >= end_addr) {
1989 		/* We have now completed this vma: mark it so */
1990 		vma->vm_truncate_count = details->truncate_count;
1991 		if (!need_break)
1992 			return 0;
1993 	} else {
1994 		/* Note restart_addr in vma's truncate_count field */
1995 		vma->vm_truncate_count = restart_addr;
1996 		if (!need_break)
1997 			goto again;
1998 	}
1999 
2000 	spin_unlock(details->i_mmap_lock);
2001 	cond_resched();
2002 	spin_lock(details->i_mmap_lock);
2003 	return -EINTR;
2004 }
2005 
2006 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2007 					    struct zap_details *details)
2008 {
2009 	struct vm_area_struct *vma;
2010 	struct prio_tree_iter iter;
2011 	pgoff_t vba, vea, zba, zea;
2012 
2013 restart:
2014 	vma_prio_tree_foreach(vma, &iter, root,
2015 			details->first_index, details->last_index) {
2016 		/* Skip quickly over those we have already dealt with */
2017 		if (vma->vm_truncate_count == details->truncate_count)
2018 			continue;
2019 
2020 		vba = vma->vm_pgoff;
2021 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2022 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2023 		zba = details->first_index;
2024 		if (zba < vba)
2025 			zba = vba;
2026 		zea = details->last_index;
2027 		if (zea > vea)
2028 			zea = vea;
2029 
2030 		if (unmap_mapping_range_vma(vma,
2031 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2032 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2033 				details) < 0)
2034 			goto restart;
2035 	}
2036 }
2037 
2038 static inline void unmap_mapping_range_list(struct list_head *head,
2039 					    struct zap_details *details)
2040 {
2041 	struct vm_area_struct *vma;
2042 
2043 	/*
2044 	 * In nonlinear VMAs there is no correspondence between virtual address
2045 	 * offset and file offset.  So we must perform an exhaustive search
2046 	 * across *all* the pages in each nonlinear VMA, not just the pages
2047 	 * whose virtual address lies outside the file truncation point.
2048 	 */
2049 restart:
2050 	list_for_each_entry(vma, head, shared.vm_set.list) {
2051 		/* Skip quickly over those we have already dealt with */
2052 		if (vma->vm_truncate_count == details->truncate_count)
2053 			continue;
2054 		details->nonlinear_vma = vma;
2055 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2056 					vma->vm_end, details) < 0)
2057 			goto restart;
2058 	}
2059 }
2060 
2061 /**
2062  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2063  * @mapping: the address space containing mmaps to be unmapped.
2064  * @holebegin: byte in first page to unmap, relative to the start of
2065  * the underlying file.  This will be rounded down to a PAGE_SIZE
2066  * boundary.  Note that this is different from vmtruncate(), which
2067  * must keep the partial page.  In contrast, we must get rid of
2068  * partial pages.
2069  * @holelen: size of prospective hole in bytes.  This will be rounded
2070  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2071  * end of the file.
2072  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2073  * but 0 when invalidating pagecache, don't throw away private data.
2074  */
2075 void unmap_mapping_range(struct address_space *mapping,
2076 		loff_t const holebegin, loff_t const holelen, int even_cows)
2077 {
2078 	struct zap_details details;
2079 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2080 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2081 
2082 	/* Check for overflow. */
2083 	if (sizeof(holelen) > sizeof(hlen)) {
2084 		long long holeend =
2085 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2086 		if (holeend & ~(long long)ULONG_MAX)
2087 			hlen = ULONG_MAX - hba + 1;
2088 	}
2089 
2090 	details.check_mapping = even_cows? NULL: mapping;
2091 	details.nonlinear_vma = NULL;
2092 	details.first_index = hba;
2093 	details.last_index = hba + hlen - 1;
2094 	if (details.last_index < details.first_index)
2095 		details.last_index = ULONG_MAX;
2096 	details.i_mmap_lock = &mapping->i_mmap_lock;
2097 
2098 	spin_lock(&mapping->i_mmap_lock);
2099 
2100 	/* Protect against endless unmapping loops */
2101 	mapping->truncate_count++;
2102 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2103 		if (mapping->truncate_count == 0)
2104 			reset_vma_truncate_counts(mapping);
2105 		mapping->truncate_count++;
2106 	}
2107 	details.truncate_count = mapping->truncate_count;
2108 
2109 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2110 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2111 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2112 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2113 	spin_unlock(&mapping->i_mmap_lock);
2114 }
2115 EXPORT_SYMBOL(unmap_mapping_range);
2116 
2117 /**
2118  * vmtruncate - unmap mappings "freed" by truncate() syscall
2119  * @inode: inode of the file used
2120  * @offset: file offset to start truncating
2121  *
2122  * NOTE! We have to be ready to update the memory sharing
2123  * between the file and the memory map for a potential last
2124  * incomplete page.  Ugly, but necessary.
2125  */
2126 int vmtruncate(struct inode * inode, loff_t offset)
2127 {
2128 	if (inode->i_size < offset) {
2129 		unsigned long limit;
2130 
2131 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2132 		if (limit != RLIM_INFINITY && offset > limit)
2133 			goto out_sig;
2134 		if (offset > inode->i_sb->s_maxbytes)
2135 			goto out_big;
2136 		i_size_write(inode, offset);
2137 	} else {
2138 		struct address_space *mapping = inode->i_mapping;
2139 
2140 		/*
2141 		 * truncation of in-use swapfiles is disallowed - it would
2142 		 * cause subsequent swapout to scribble on the now-freed
2143 		 * blocks.
2144 		 */
2145 		if (IS_SWAPFILE(inode))
2146 			return -ETXTBSY;
2147 		i_size_write(inode, offset);
2148 
2149 		/*
2150 		 * unmap_mapping_range is called twice, first simply for
2151 		 * efficiency so that truncate_inode_pages does fewer
2152 		 * single-page unmaps.  However after this first call, and
2153 		 * before truncate_inode_pages finishes, it is possible for
2154 		 * private pages to be COWed, which remain after
2155 		 * truncate_inode_pages finishes, hence the second
2156 		 * unmap_mapping_range call must be made for correctness.
2157 		 */
2158 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2159 		truncate_inode_pages(mapping, offset);
2160 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2161 	}
2162 
2163 	if (inode->i_op && inode->i_op->truncate)
2164 		inode->i_op->truncate(inode);
2165 	return 0;
2166 
2167 out_sig:
2168 	send_sig(SIGXFSZ, current, 0);
2169 out_big:
2170 	return -EFBIG;
2171 }
2172 EXPORT_SYMBOL(vmtruncate);
2173 
2174 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2175 {
2176 	struct address_space *mapping = inode->i_mapping;
2177 
2178 	/*
2179 	 * If the underlying filesystem is not going to provide
2180 	 * a way to truncate a range of blocks (punch a hole) -
2181 	 * we should return failure right now.
2182 	 */
2183 	if (!inode->i_op || !inode->i_op->truncate_range)
2184 		return -ENOSYS;
2185 
2186 	mutex_lock(&inode->i_mutex);
2187 	down_write(&inode->i_alloc_sem);
2188 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2189 	truncate_inode_pages_range(mapping, offset, end);
2190 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2191 	inode->i_op->truncate_range(inode, offset, end);
2192 	up_write(&inode->i_alloc_sem);
2193 	mutex_unlock(&inode->i_mutex);
2194 
2195 	return 0;
2196 }
2197 
2198 /*
2199  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2200  * but allow concurrent faults), and pte mapped but not yet locked.
2201  * We return with mmap_sem still held, but pte unmapped and unlocked.
2202  */
2203 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2204 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2205 		int write_access, pte_t orig_pte)
2206 {
2207 	spinlock_t *ptl;
2208 	struct page *page;
2209 	swp_entry_t entry;
2210 	pte_t pte;
2211 	int ret = 0;
2212 
2213 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2214 		goto out;
2215 
2216 	entry = pte_to_swp_entry(orig_pte);
2217 	if (is_migration_entry(entry)) {
2218 		migration_entry_wait(mm, pmd, address);
2219 		goto out;
2220 	}
2221 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2222 	page = lookup_swap_cache(entry);
2223 	if (!page) {
2224 		grab_swap_token(); /* Contend for token _before_ read-in */
2225 		page = swapin_readahead(entry,
2226 					GFP_HIGHUSER_MOVABLE, vma, address);
2227 		if (!page) {
2228 			/*
2229 			 * Back out if somebody else faulted in this pte
2230 			 * while we released the pte lock.
2231 			 */
2232 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2233 			if (likely(pte_same(*page_table, orig_pte)))
2234 				ret = VM_FAULT_OOM;
2235 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2236 			goto unlock;
2237 		}
2238 
2239 		/* Had to read the page from swap area: Major fault */
2240 		ret = VM_FAULT_MAJOR;
2241 		count_vm_event(PGMAJFAULT);
2242 	}
2243 
2244 	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2245 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2246 		ret = VM_FAULT_OOM;
2247 		goto out;
2248 	}
2249 
2250 	mark_page_accessed(page);
2251 	lock_page(page);
2252 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2253 
2254 	/*
2255 	 * Back out if somebody else already faulted in this pte.
2256 	 */
2257 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2258 	if (unlikely(!pte_same(*page_table, orig_pte)))
2259 		goto out_nomap;
2260 
2261 	if (unlikely(!PageUptodate(page))) {
2262 		ret = VM_FAULT_SIGBUS;
2263 		goto out_nomap;
2264 	}
2265 
2266 	/* The page isn't present yet, go ahead with the fault. */
2267 
2268 	inc_mm_counter(mm, anon_rss);
2269 	pte = mk_pte(page, vma->vm_page_prot);
2270 	if (write_access && can_share_swap_page(page)) {
2271 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2272 		write_access = 0;
2273 	}
2274 
2275 	flush_icache_page(vma, page);
2276 	set_pte_at(mm, address, page_table, pte);
2277 	page_add_anon_rmap(page, vma, address);
2278 
2279 	swap_free(entry);
2280 	if (vm_swap_full())
2281 		remove_exclusive_swap_page(page);
2282 	unlock_page(page);
2283 
2284 	if (write_access) {
2285 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2286 		if (ret & VM_FAULT_ERROR)
2287 			ret &= VM_FAULT_ERROR;
2288 		goto out;
2289 	}
2290 
2291 	/* No need to invalidate - it was non-present before */
2292 	update_mmu_cache(vma, address, pte);
2293 unlock:
2294 	pte_unmap_unlock(page_table, ptl);
2295 out:
2296 	return ret;
2297 out_nomap:
2298 	mem_cgroup_uncharge_page(page);
2299 	pte_unmap_unlock(page_table, ptl);
2300 	unlock_page(page);
2301 	page_cache_release(page);
2302 	return ret;
2303 }
2304 
2305 /*
2306  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2307  * but allow concurrent faults), and pte mapped but not yet locked.
2308  * We return with mmap_sem still held, but pte unmapped and unlocked.
2309  */
2310 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2311 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2312 		int write_access)
2313 {
2314 	struct page *page;
2315 	spinlock_t *ptl;
2316 	pte_t entry;
2317 
2318 	/* Allocate our own private page. */
2319 	pte_unmap(page_table);
2320 
2321 	if (unlikely(anon_vma_prepare(vma)))
2322 		goto oom;
2323 	page = alloc_zeroed_user_highpage_movable(vma, address);
2324 	if (!page)
2325 		goto oom;
2326 	__SetPageUptodate(page);
2327 
2328 	if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2329 		goto oom_free_page;
2330 
2331 	entry = mk_pte(page, vma->vm_page_prot);
2332 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2333 
2334 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2335 	if (!pte_none(*page_table))
2336 		goto release;
2337 	inc_mm_counter(mm, anon_rss);
2338 	lru_cache_add_active(page);
2339 	page_add_new_anon_rmap(page, vma, address);
2340 	set_pte_at(mm, address, page_table, entry);
2341 
2342 	/* No need to invalidate - it was non-present before */
2343 	update_mmu_cache(vma, address, entry);
2344 unlock:
2345 	pte_unmap_unlock(page_table, ptl);
2346 	return 0;
2347 release:
2348 	mem_cgroup_uncharge_page(page);
2349 	page_cache_release(page);
2350 	goto unlock;
2351 oom_free_page:
2352 	page_cache_release(page);
2353 oom:
2354 	return VM_FAULT_OOM;
2355 }
2356 
2357 /*
2358  * __do_fault() tries to create a new page mapping. It aggressively
2359  * tries to share with existing pages, but makes a separate copy if
2360  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2361  * the next page fault.
2362  *
2363  * As this is called only for pages that do not currently exist, we
2364  * do not need to flush old virtual caches or the TLB.
2365  *
2366  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2367  * but allow concurrent faults), and pte neither mapped nor locked.
2368  * We return with mmap_sem still held, but pte unmapped and unlocked.
2369  */
2370 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2371 		unsigned long address, pmd_t *pmd,
2372 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2373 {
2374 	pte_t *page_table;
2375 	spinlock_t *ptl;
2376 	struct page *page;
2377 	pte_t entry;
2378 	int anon = 0;
2379 	struct page *dirty_page = NULL;
2380 	struct vm_fault vmf;
2381 	int ret;
2382 	int page_mkwrite = 0;
2383 
2384 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2385 	vmf.pgoff = pgoff;
2386 	vmf.flags = flags;
2387 	vmf.page = NULL;
2388 
2389 	ret = vma->vm_ops->fault(vma, &vmf);
2390 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2391 		return ret;
2392 
2393 	/*
2394 	 * For consistency in subsequent calls, make the faulted page always
2395 	 * locked.
2396 	 */
2397 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2398 		lock_page(vmf.page);
2399 	else
2400 		VM_BUG_ON(!PageLocked(vmf.page));
2401 
2402 	/*
2403 	 * Should we do an early C-O-W break?
2404 	 */
2405 	page = vmf.page;
2406 	if (flags & FAULT_FLAG_WRITE) {
2407 		if (!(vma->vm_flags & VM_SHARED)) {
2408 			anon = 1;
2409 			if (unlikely(anon_vma_prepare(vma))) {
2410 				ret = VM_FAULT_OOM;
2411 				goto out;
2412 			}
2413 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2414 						vma, address);
2415 			if (!page) {
2416 				ret = VM_FAULT_OOM;
2417 				goto out;
2418 			}
2419 			copy_user_highpage(page, vmf.page, address, vma);
2420 			__SetPageUptodate(page);
2421 		} else {
2422 			/*
2423 			 * If the page will be shareable, see if the backing
2424 			 * address space wants to know that the page is about
2425 			 * to become writable
2426 			 */
2427 			if (vma->vm_ops->page_mkwrite) {
2428 				unlock_page(page);
2429 				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2430 					ret = VM_FAULT_SIGBUS;
2431 					anon = 1; /* no anon but release vmf.page */
2432 					goto out_unlocked;
2433 				}
2434 				lock_page(page);
2435 				/*
2436 				 * XXX: this is not quite right (racy vs
2437 				 * invalidate) to unlock and relock the page
2438 				 * like this, however a better fix requires
2439 				 * reworking page_mkwrite locking API, which
2440 				 * is better done later.
2441 				 */
2442 				if (!page->mapping) {
2443 					ret = 0;
2444 					anon = 1; /* no anon but release vmf.page */
2445 					goto out;
2446 				}
2447 				page_mkwrite = 1;
2448 			}
2449 		}
2450 
2451 	}
2452 
2453 	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2454 		ret = VM_FAULT_OOM;
2455 		goto out;
2456 	}
2457 
2458 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2459 
2460 	/*
2461 	 * This silly early PAGE_DIRTY setting removes a race
2462 	 * due to the bad i386 page protection. But it's valid
2463 	 * for other architectures too.
2464 	 *
2465 	 * Note that if write_access is true, we either now have
2466 	 * an exclusive copy of the page, or this is a shared mapping,
2467 	 * so we can make it writable and dirty to avoid having to
2468 	 * handle that later.
2469 	 */
2470 	/* Only go through if we didn't race with anybody else... */
2471 	if (likely(pte_same(*page_table, orig_pte))) {
2472 		flush_icache_page(vma, page);
2473 		entry = mk_pte(page, vma->vm_page_prot);
2474 		if (flags & FAULT_FLAG_WRITE)
2475 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2476 		set_pte_at(mm, address, page_table, entry);
2477 		if (anon) {
2478                         inc_mm_counter(mm, anon_rss);
2479                         lru_cache_add_active(page);
2480                         page_add_new_anon_rmap(page, vma, address);
2481 		} else {
2482 			inc_mm_counter(mm, file_rss);
2483 			page_add_file_rmap(page);
2484 			if (flags & FAULT_FLAG_WRITE) {
2485 				dirty_page = page;
2486 				get_page(dirty_page);
2487 			}
2488 		}
2489 
2490 		/* no need to invalidate: a not-present page won't be cached */
2491 		update_mmu_cache(vma, address, entry);
2492 	} else {
2493 		mem_cgroup_uncharge_page(page);
2494 		if (anon)
2495 			page_cache_release(page);
2496 		else
2497 			anon = 1; /* no anon but release faulted_page */
2498 	}
2499 
2500 	pte_unmap_unlock(page_table, ptl);
2501 
2502 out:
2503 	unlock_page(vmf.page);
2504 out_unlocked:
2505 	if (anon)
2506 		page_cache_release(vmf.page);
2507 	else if (dirty_page) {
2508 		if (vma->vm_file)
2509 			file_update_time(vma->vm_file);
2510 
2511 		set_page_dirty_balance(dirty_page, page_mkwrite);
2512 		put_page(dirty_page);
2513 	}
2514 
2515 	return ret;
2516 }
2517 
2518 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2519 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2520 		int write_access, pte_t orig_pte)
2521 {
2522 	pgoff_t pgoff = (((address & PAGE_MASK)
2523 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2524 	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2525 
2526 	pte_unmap(page_table);
2527 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2528 }
2529 
2530 /*
2531  * Fault of a previously existing named mapping. Repopulate the pte
2532  * from the encoded file_pte if possible. This enables swappable
2533  * nonlinear vmas.
2534  *
2535  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2536  * but allow concurrent faults), and pte mapped but not yet locked.
2537  * We return with mmap_sem still held, but pte unmapped and unlocked.
2538  */
2539 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2540 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2541 		int write_access, pte_t orig_pte)
2542 {
2543 	unsigned int flags = FAULT_FLAG_NONLINEAR |
2544 				(write_access ? FAULT_FLAG_WRITE : 0);
2545 	pgoff_t pgoff;
2546 
2547 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2548 		return 0;
2549 
2550 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2551 			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2552 		/*
2553 		 * Page table corrupted: show pte and kill process.
2554 		 */
2555 		print_bad_pte(vma, orig_pte, address);
2556 		return VM_FAULT_OOM;
2557 	}
2558 
2559 	pgoff = pte_to_pgoff(orig_pte);
2560 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2561 }
2562 
2563 /*
2564  * These routines also need to handle stuff like marking pages dirty
2565  * and/or accessed for architectures that don't do it in hardware (most
2566  * RISC architectures).  The early dirtying is also good on the i386.
2567  *
2568  * There is also a hook called "update_mmu_cache()" that architectures
2569  * with external mmu caches can use to update those (ie the Sparc or
2570  * PowerPC hashed page tables that act as extended TLBs).
2571  *
2572  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2573  * but allow concurrent faults), and pte mapped but not yet locked.
2574  * We return with mmap_sem still held, but pte unmapped and unlocked.
2575  */
2576 static inline int handle_pte_fault(struct mm_struct *mm,
2577 		struct vm_area_struct *vma, unsigned long address,
2578 		pte_t *pte, pmd_t *pmd, int write_access)
2579 {
2580 	pte_t entry;
2581 	spinlock_t *ptl;
2582 
2583 	entry = *pte;
2584 	if (!pte_present(entry)) {
2585 		if (pte_none(entry)) {
2586 			if (vma->vm_ops) {
2587 				if (likely(vma->vm_ops->fault))
2588 					return do_linear_fault(mm, vma, address,
2589 						pte, pmd, write_access, entry);
2590 			}
2591 			return do_anonymous_page(mm, vma, address,
2592 						 pte, pmd, write_access);
2593 		}
2594 		if (pte_file(entry))
2595 			return do_nonlinear_fault(mm, vma, address,
2596 					pte, pmd, write_access, entry);
2597 		return do_swap_page(mm, vma, address,
2598 					pte, pmd, write_access, entry);
2599 	}
2600 
2601 	ptl = pte_lockptr(mm, pmd);
2602 	spin_lock(ptl);
2603 	if (unlikely(!pte_same(*pte, entry)))
2604 		goto unlock;
2605 	if (write_access) {
2606 		if (!pte_write(entry))
2607 			return do_wp_page(mm, vma, address,
2608 					pte, pmd, ptl, entry);
2609 		entry = pte_mkdirty(entry);
2610 	}
2611 	entry = pte_mkyoung(entry);
2612 	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2613 		update_mmu_cache(vma, address, entry);
2614 	} else {
2615 		/*
2616 		 * This is needed only for protection faults but the arch code
2617 		 * is not yet telling us if this is a protection fault or not.
2618 		 * This still avoids useless tlb flushes for .text page faults
2619 		 * with threads.
2620 		 */
2621 		if (write_access)
2622 			flush_tlb_page(vma, address);
2623 	}
2624 unlock:
2625 	pte_unmap_unlock(pte, ptl);
2626 	return 0;
2627 }
2628 
2629 /*
2630  * By the time we get here, we already hold the mm semaphore
2631  */
2632 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2633 		unsigned long address, int write_access)
2634 {
2635 	pgd_t *pgd;
2636 	pud_t *pud;
2637 	pmd_t *pmd;
2638 	pte_t *pte;
2639 
2640 	__set_current_state(TASK_RUNNING);
2641 
2642 	count_vm_event(PGFAULT);
2643 
2644 	if (unlikely(is_vm_hugetlb_page(vma)))
2645 		return hugetlb_fault(mm, vma, address, write_access);
2646 
2647 	pgd = pgd_offset(mm, address);
2648 	pud = pud_alloc(mm, pgd, address);
2649 	if (!pud)
2650 		return VM_FAULT_OOM;
2651 	pmd = pmd_alloc(mm, pud, address);
2652 	if (!pmd)
2653 		return VM_FAULT_OOM;
2654 	pte = pte_alloc_map(mm, pmd, address);
2655 	if (!pte)
2656 		return VM_FAULT_OOM;
2657 
2658 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2659 }
2660 
2661 #ifndef __PAGETABLE_PUD_FOLDED
2662 /*
2663  * Allocate page upper directory.
2664  * We've already handled the fast-path in-line.
2665  */
2666 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2667 {
2668 	pud_t *new = pud_alloc_one(mm, address);
2669 	if (!new)
2670 		return -ENOMEM;
2671 
2672 	smp_wmb(); /* See comment in __pte_alloc */
2673 
2674 	spin_lock(&mm->page_table_lock);
2675 	if (pgd_present(*pgd))		/* Another has populated it */
2676 		pud_free(mm, new);
2677 	else
2678 		pgd_populate(mm, pgd, new);
2679 	spin_unlock(&mm->page_table_lock);
2680 	return 0;
2681 }
2682 #endif /* __PAGETABLE_PUD_FOLDED */
2683 
2684 #ifndef __PAGETABLE_PMD_FOLDED
2685 /*
2686  * Allocate page middle directory.
2687  * We've already handled the fast-path in-line.
2688  */
2689 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2690 {
2691 	pmd_t *new = pmd_alloc_one(mm, address);
2692 	if (!new)
2693 		return -ENOMEM;
2694 
2695 	smp_wmb(); /* See comment in __pte_alloc */
2696 
2697 	spin_lock(&mm->page_table_lock);
2698 #ifndef __ARCH_HAS_4LEVEL_HACK
2699 	if (pud_present(*pud))		/* Another has populated it */
2700 		pmd_free(mm, new);
2701 	else
2702 		pud_populate(mm, pud, new);
2703 #else
2704 	if (pgd_present(*pud))		/* Another has populated it */
2705 		pmd_free(mm, new);
2706 	else
2707 		pgd_populate(mm, pud, new);
2708 #endif /* __ARCH_HAS_4LEVEL_HACK */
2709 	spin_unlock(&mm->page_table_lock);
2710 	return 0;
2711 }
2712 #endif /* __PAGETABLE_PMD_FOLDED */
2713 
2714 int make_pages_present(unsigned long addr, unsigned long end)
2715 {
2716 	int ret, len, write;
2717 	struct vm_area_struct * vma;
2718 
2719 	vma = find_vma(current->mm, addr);
2720 	if (!vma)
2721 		return -1;
2722 	write = (vma->vm_flags & VM_WRITE) != 0;
2723 	BUG_ON(addr >= end);
2724 	BUG_ON(end > vma->vm_end);
2725 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2726 	ret = get_user_pages(current, current->mm, addr,
2727 			len, write, 0, NULL, NULL);
2728 	if (ret < 0)
2729 		return ret;
2730 	return ret == len ? 0 : -1;
2731 }
2732 
2733 #if !defined(__HAVE_ARCH_GATE_AREA)
2734 
2735 #if defined(AT_SYSINFO_EHDR)
2736 static struct vm_area_struct gate_vma;
2737 
2738 static int __init gate_vma_init(void)
2739 {
2740 	gate_vma.vm_mm = NULL;
2741 	gate_vma.vm_start = FIXADDR_USER_START;
2742 	gate_vma.vm_end = FIXADDR_USER_END;
2743 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2744 	gate_vma.vm_page_prot = __P101;
2745 	/*
2746 	 * Make sure the vDSO gets into every core dump.
2747 	 * Dumping its contents makes post-mortem fully interpretable later
2748 	 * without matching up the same kernel and hardware config to see
2749 	 * what PC values meant.
2750 	 */
2751 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2752 	return 0;
2753 }
2754 __initcall(gate_vma_init);
2755 #endif
2756 
2757 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2758 {
2759 #ifdef AT_SYSINFO_EHDR
2760 	return &gate_vma;
2761 #else
2762 	return NULL;
2763 #endif
2764 }
2765 
2766 int in_gate_area_no_task(unsigned long addr)
2767 {
2768 #ifdef AT_SYSINFO_EHDR
2769 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2770 		return 1;
2771 #endif
2772 	return 0;
2773 }
2774 
2775 #endif	/* __HAVE_ARCH_GATE_AREA */
2776 
2777 #ifdef CONFIG_HAVE_IOREMAP_PROT
2778 static resource_size_t follow_phys(struct vm_area_struct *vma,
2779 			unsigned long address, unsigned int flags,
2780 			unsigned long *prot)
2781 {
2782 	pgd_t *pgd;
2783 	pud_t *pud;
2784 	pmd_t *pmd;
2785 	pte_t *ptep, pte;
2786 	spinlock_t *ptl;
2787 	resource_size_t phys_addr = 0;
2788 	struct mm_struct *mm = vma->vm_mm;
2789 
2790 	VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2791 
2792 	pgd = pgd_offset(mm, address);
2793 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2794 		goto no_page_table;
2795 
2796 	pud = pud_offset(pgd, address);
2797 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2798 		goto no_page_table;
2799 
2800 	pmd = pmd_offset(pud, address);
2801 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2802 		goto no_page_table;
2803 
2804 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
2805 	if (pmd_huge(*pmd))
2806 		goto no_page_table;
2807 
2808 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2809 	if (!ptep)
2810 		goto out;
2811 
2812 	pte = *ptep;
2813 	if (!pte_present(pte))
2814 		goto unlock;
2815 	if ((flags & FOLL_WRITE) && !pte_write(pte))
2816 		goto unlock;
2817 	phys_addr = pte_pfn(pte);
2818 	phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2819 
2820 	*prot = pgprot_val(pte_pgprot(pte));
2821 
2822 unlock:
2823 	pte_unmap_unlock(ptep, ptl);
2824 out:
2825 	return phys_addr;
2826 no_page_table:
2827 	return 0;
2828 }
2829 
2830 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2831 			void *buf, int len, int write)
2832 {
2833 	resource_size_t phys_addr;
2834 	unsigned long prot = 0;
2835 	void *maddr;
2836 	int offset = addr & (PAGE_SIZE-1);
2837 
2838 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2839 		return -EINVAL;
2840 
2841 	phys_addr = follow_phys(vma, addr, write, &prot);
2842 
2843 	if (!phys_addr)
2844 		return -EINVAL;
2845 
2846 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2847 	if (write)
2848 		memcpy_toio(maddr + offset, buf, len);
2849 	else
2850 		memcpy_fromio(buf, maddr + offset, len);
2851 	iounmap(maddr);
2852 
2853 	return len;
2854 }
2855 #endif
2856 
2857 /*
2858  * Access another process' address space.
2859  * Source/target buffer must be kernel space,
2860  * Do not walk the page table directly, use get_user_pages
2861  */
2862 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2863 {
2864 	struct mm_struct *mm;
2865 	struct vm_area_struct *vma;
2866 	void *old_buf = buf;
2867 
2868 	mm = get_task_mm(tsk);
2869 	if (!mm)
2870 		return 0;
2871 
2872 	down_read(&mm->mmap_sem);
2873 	/* ignore errors, just check how much was successfully transferred */
2874 	while (len) {
2875 		int bytes, ret, offset;
2876 		void *maddr;
2877 		struct page *page = NULL;
2878 
2879 		ret = get_user_pages(tsk, mm, addr, 1,
2880 				write, 1, &page, &vma);
2881 		if (ret <= 0) {
2882 			/*
2883 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2884 			 * we can access using slightly different code.
2885 			 */
2886 #ifdef CONFIG_HAVE_IOREMAP_PROT
2887 			vma = find_vma(mm, addr);
2888 			if (!vma)
2889 				break;
2890 			if (vma->vm_ops && vma->vm_ops->access)
2891 				ret = vma->vm_ops->access(vma, addr, buf,
2892 							  len, write);
2893 			if (ret <= 0)
2894 #endif
2895 				break;
2896 			bytes = ret;
2897 		} else {
2898 			bytes = len;
2899 			offset = addr & (PAGE_SIZE-1);
2900 			if (bytes > PAGE_SIZE-offset)
2901 				bytes = PAGE_SIZE-offset;
2902 
2903 			maddr = kmap(page);
2904 			if (write) {
2905 				copy_to_user_page(vma, page, addr,
2906 						  maddr + offset, buf, bytes);
2907 				set_page_dirty_lock(page);
2908 			} else {
2909 				copy_from_user_page(vma, page, addr,
2910 						    buf, maddr + offset, bytes);
2911 			}
2912 			kunmap(page);
2913 			page_cache_release(page);
2914 		}
2915 		len -= bytes;
2916 		buf += bytes;
2917 		addr += bytes;
2918 	}
2919 	up_read(&mm->mmap_sem);
2920 	mmput(mm);
2921 
2922 	return buf - old_buf;
2923 }
2924 
2925 /*
2926  * Print the name of a VMA.
2927  */
2928 void print_vma_addr(char *prefix, unsigned long ip)
2929 {
2930 	struct mm_struct *mm = current->mm;
2931 	struct vm_area_struct *vma;
2932 
2933 	/*
2934 	 * Do not print if we are in atomic
2935 	 * contexts (in exception stacks, etc.):
2936 	 */
2937 	if (preempt_count())
2938 		return;
2939 
2940 	down_read(&mm->mmap_sem);
2941 	vma = find_vma(mm, ip);
2942 	if (vma && vma->vm_file) {
2943 		struct file *f = vma->vm_file;
2944 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2945 		if (buf) {
2946 			char *p, *s;
2947 
2948 			p = d_path(&f->f_path, buf, PAGE_SIZE);
2949 			if (IS_ERR(p))
2950 				p = "?";
2951 			s = strrchr(p, '/');
2952 			if (s)
2953 				p = s+1;
2954 			printk("%s%s[%lx+%lx]", prefix, p,
2955 					vma->vm_start,
2956 					vma->vm_end - vma->vm_start);
2957 			free_page((unsigned long)buf);
2958 		}
2959 	}
2960 	up_read(&current->mm->mmap_sem);
2961 }
2962