xref: /linux/mm/memory.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81 
82 #include "internal.h"
83 
84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87 
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92 
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96 
97 /*
98  * A number of key systems in x86 including ioremap() rely on the assumption
99  * that high_memory defines the upper bound on direct map memory, then end
100  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
101  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102  * and ZONE_HIGHMEM.
103  */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106 
107 /*
108  * Randomize the address space (stacks, mmaps, brk, etc.).
109  *
110  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111  *   as ancient (libc5 based) binaries can segfault. )
112  */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115 					1;
116 #else
117 					2;
118 #endif
119 
120 static int __init disable_randmaps(char *s)
121 {
122 	randomize_va_space = 0;
123 	return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126 
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129 
130 unsigned long highest_memmap_pfn __read_mostly;
131 
132 /*
133  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134  */
135 static int __init init_zero_pfn(void)
136 {
137 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 	return 0;
139 }
140 core_initcall(init_zero_pfn);
141 
142 
143 #if defined(SPLIT_RSS_COUNTING)
144 
145 void sync_mm_rss(struct mm_struct *mm)
146 {
147 	int i;
148 
149 	for (i = 0; i < NR_MM_COUNTERS; i++) {
150 		if (current->rss_stat.count[i]) {
151 			add_mm_counter(mm, i, current->rss_stat.count[i]);
152 			current->rss_stat.count[i] = 0;
153 		}
154 	}
155 	current->rss_stat.events = 0;
156 }
157 
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160 	struct task_struct *task = current;
161 
162 	if (likely(task->mm == mm))
163 		task->rss_stat.count[member] += val;
164 	else
165 		add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169 
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH	(64)
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174 	if (unlikely(task != current))
175 		return;
176 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177 		sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180 
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183 
184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187 
188 #endif /* SPLIT_RSS_COUNTING */
189 
190 /*
191  * Note: this doesn't free the actual pages themselves. That
192  * has been handled earlier when unmapping all the memory regions.
193  */
194 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
195 			   unsigned long addr)
196 {
197 	pgtable_t token = pmd_pgtable(*pmd);
198 	pmd_clear(pmd);
199 	pte_free_tlb(tlb, token, addr);
200 	mm_dec_nr_ptes(tlb->mm);
201 }
202 
203 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
204 				unsigned long addr, unsigned long end,
205 				unsigned long floor, unsigned long ceiling)
206 {
207 	pmd_t *pmd;
208 	unsigned long next;
209 	unsigned long start;
210 
211 	start = addr;
212 	pmd = pmd_offset(pud, addr);
213 	do {
214 		next = pmd_addr_end(addr, end);
215 		if (pmd_none_or_clear_bad(pmd))
216 			continue;
217 		free_pte_range(tlb, pmd, addr);
218 	} while (pmd++, addr = next, addr != end);
219 
220 	start &= PUD_MASK;
221 	if (start < floor)
222 		return;
223 	if (ceiling) {
224 		ceiling &= PUD_MASK;
225 		if (!ceiling)
226 			return;
227 	}
228 	if (end - 1 > ceiling - 1)
229 		return;
230 
231 	pmd = pmd_offset(pud, start);
232 	pud_clear(pud);
233 	pmd_free_tlb(tlb, pmd, start);
234 	mm_dec_nr_pmds(tlb->mm);
235 }
236 
237 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
238 				unsigned long addr, unsigned long end,
239 				unsigned long floor, unsigned long ceiling)
240 {
241 	pud_t *pud;
242 	unsigned long next;
243 	unsigned long start;
244 
245 	start = addr;
246 	pud = pud_offset(p4d, addr);
247 	do {
248 		next = pud_addr_end(addr, end);
249 		if (pud_none_or_clear_bad(pud))
250 			continue;
251 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
252 	} while (pud++, addr = next, addr != end);
253 
254 	start &= P4D_MASK;
255 	if (start < floor)
256 		return;
257 	if (ceiling) {
258 		ceiling &= P4D_MASK;
259 		if (!ceiling)
260 			return;
261 	}
262 	if (end - 1 > ceiling - 1)
263 		return;
264 
265 	pud = pud_offset(p4d, start);
266 	p4d_clear(p4d);
267 	pud_free_tlb(tlb, pud, start);
268 	mm_dec_nr_puds(tlb->mm);
269 }
270 
271 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
272 				unsigned long addr, unsigned long end,
273 				unsigned long floor, unsigned long ceiling)
274 {
275 	p4d_t *p4d;
276 	unsigned long next;
277 	unsigned long start;
278 
279 	start = addr;
280 	p4d = p4d_offset(pgd, addr);
281 	do {
282 		next = p4d_addr_end(addr, end);
283 		if (p4d_none_or_clear_bad(p4d))
284 			continue;
285 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
286 	} while (p4d++, addr = next, addr != end);
287 
288 	start &= PGDIR_MASK;
289 	if (start < floor)
290 		return;
291 	if (ceiling) {
292 		ceiling &= PGDIR_MASK;
293 		if (!ceiling)
294 			return;
295 	}
296 	if (end - 1 > ceiling - 1)
297 		return;
298 
299 	p4d = p4d_offset(pgd, start);
300 	pgd_clear(pgd);
301 	p4d_free_tlb(tlb, p4d, start);
302 }
303 
304 /*
305  * This function frees user-level page tables of a process.
306  */
307 void free_pgd_range(struct mmu_gather *tlb,
308 			unsigned long addr, unsigned long end,
309 			unsigned long floor, unsigned long ceiling)
310 {
311 	pgd_t *pgd;
312 	unsigned long next;
313 
314 	/*
315 	 * The next few lines have given us lots of grief...
316 	 *
317 	 * Why are we testing PMD* at this top level?  Because often
318 	 * there will be no work to do at all, and we'd prefer not to
319 	 * go all the way down to the bottom just to discover that.
320 	 *
321 	 * Why all these "- 1"s?  Because 0 represents both the bottom
322 	 * of the address space and the top of it (using -1 for the
323 	 * top wouldn't help much: the masks would do the wrong thing).
324 	 * The rule is that addr 0 and floor 0 refer to the bottom of
325 	 * the address space, but end 0 and ceiling 0 refer to the top
326 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
327 	 * that end 0 case should be mythical).
328 	 *
329 	 * Wherever addr is brought up or ceiling brought down, we must
330 	 * be careful to reject "the opposite 0" before it confuses the
331 	 * subsequent tests.  But what about where end is brought down
332 	 * by PMD_SIZE below? no, end can't go down to 0 there.
333 	 *
334 	 * Whereas we round start (addr) and ceiling down, by different
335 	 * masks at different levels, in order to test whether a table
336 	 * now has no other vmas using it, so can be freed, we don't
337 	 * bother to round floor or end up - the tests don't need that.
338 	 */
339 
340 	addr &= PMD_MASK;
341 	if (addr < floor) {
342 		addr += PMD_SIZE;
343 		if (!addr)
344 			return;
345 	}
346 	if (ceiling) {
347 		ceiling &= PMD_MASK;
348 		if (!ceiling)
349 			return;
350 	}
351 	if (end - 1 > ceiling - 1)
352 		end -= PMD_SIZE;
353 	if (addr > end - 1)
354 		return;
355 	/*
356 	 * We add page table cache pages with PAGE_SIZE,
357 	 * (see pte_free_tlb()), flush the tlb if we need
358 	 */
359 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
360 	pgd = pgd_offset(tlb->mm, addr);
361 	do {
362 		next = pgd_addr_end(addr, end);
363 		if (pgd_none_or_clear_bad(pgd))
364 			continue;
365 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
366 	} while (pgd++, addr = next, addr != end);
367 }
368 
369 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
370 		unsigned long floor, unsigned long ceiling)
371 {
372 	while (vma) {
373 		struct vm_area_struct *next = vma->vm_next;
374 		unsigned long addr = vma->vm_start;
375 
376 		/*
377 		 * Hide vma from rmap and truncate_pagecache before freeing
378 		 * pgtables
379 		 */
380 		unlink_anon_vmas(vma);
381 		unlink_file_vma(vma);
382 
383 		if (is_vm_hugetlb_page(vma)) {
384 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
385 				floor, next ? next->vm_start : ceiling);
386 		} else {
387 			/*
388 			 * Optimization: gather nearby vmas into one call down
389 			 */
390 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
391 			       && !is_vm_hugetlb_page(next)) {
392 				vma = next;
393 				next = vma->vm_next;
394 				unlink_anon_vmas(vma);
395 				unlink_file_vma(vma);
396 			}
397 			free_pgd_range(tlb, addr, vma->vm_end,
398 				floor, next ? next->vm_start : ceiling);
399 		}
400 		vma = next;
401 	}
402 }
403 
404 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
405 {
406 	spinlock_t *ptl;
407 	pgtable_t new = pte_alloc_one(mm);
408 	if (!new)
409 		return -ENOMEM;
410 
411 	/*
412 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
413 	 * visible before the pte is made visible to other CPUs by being
414 	 * put into page tables.
415 	 *
416 	 * The other side of the story is the pointer chasing in the page
417 	 * table walking code (when walking the page table without locking;
418 	 * ie. most of the time). Fortunately, these data accesses consist
419 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
420 	 * being the notable exception) will already guarantee loads are
421 	 * seen in-order. See the alpha page table accessors for the
422 	 * smp_read_barrier_depends() barriers in page table walking code.
423 	 */
424 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
425 
426 	ptl = pmd_lock(mm, pmd);
427 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
428 		mm_inc_nr_ptes(mm);
429 		pmd_populate(mm, pmd, new);
430 		new = NULL;
431 	}
432 	spin_unlock(ptl);
433 	if (new)
434 		pte_free(mm, new);
435 	return 0;
436 }
437 
438 int __pte_alloc_kernel(pmd_t *pmd)
439 {
440 	pte_t *new = pte_alloc_one_kernel(&init_mm);
441 	if (!new)
442 		return -ENOMEM;
443 
444 	smp_wmb(); /* See comment in __pte_alloc */
445 
446 	spin_lock(&init_mm.page_table_lock);
447 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
448 		pmd_populate_kernel(&init_mm, pmd, new);
449 		new = NULL;
450 	}
451 	spin_unlock(&init_mm.page_table_lock);
452 	if (new)
453 		pte_free_kernel(&init_mm, new);
454 	return 0;
455 }
456 
457 static inline void init_rss_vec(int *rss)
458 {
459 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
460 }
461 
462 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
463 {
464 	int i;
465 
466 	if (current->mm == mm)
467 		sync_mm_rss(mm);
468 	for (i = 0; i < NR_MM_COUNTERS; i++)
469 		if (rss[i])
470 			add_mm_counter(mm, i, rss[i]);
471 }
472 
473 /*
474  * This function is called to print an error when a bad pte
475  * is found. For example, we might have a PFN-mapped pte in
476  * a region that doesn't allow it.
477  *
478  * The calling function must still handle the error.
479  */
480 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
481 			  pte_t pte, struct page *page)
482 {
483 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
484 	p4d_t *p4d = p4d_offset(pgd, addr);
485 	pud_t *pud = pud_offset(p4d, addr);
486 	pmd_t *pmd = pmd_offset(pud, addr);
487 	struct address_space *mapping;
488 	pgoff_t index;
489 	static unsigned long resume;
490 	static unsigned long nr_shown;
491 	static unsigned long nr_unshown;
492 
493 	/*
494 	 * Allow a burst of 60 reports, then keep quiet for that minute;
495 	 * or allow a steady drip of one report per second.
496 	 */
497 	if (nr_shown == 60) {
498 		if (time_before(jiffies, resume)) {
499 			nr_unshown++;
500 			return;
501 		}
502 		if (nr_unshown) {
503 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
504 				 nr_unshown);
505 			nr_unshown = 0;
506 		}
507 		nr_shown = 0;
508 	}
509 	if (nr_shown++ == 0)
510 		resume = jiffies + 60 * HZ;
511 
512 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
513 	index = linear_page_index(vma, addr);
514 
515 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
516 		 current->comm,
517 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
518 	if (page)
519 		dump_page(page, "bad pte");
520 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
521 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
522 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
523 		 vma->vm_file,
524 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
525 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
526 		 mapping ? mapping->a_ops->readpage : NULL);
527 	dump_stack();
528 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
529 }
530 
531 /*
532  * vm_normal_page -- This function gets the "struct page" associated with a pte.
533  *
534  * "Special" mappings do not wish to be associated with a "struct page" (either
535  * it doesn't exist, or it exists but they don't want to touch it). In this
536  * case, NULL is returned here. "Normal" mappings do have a struct page.
537  *
538  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
539  * pte bit, in which case this function is trivial. Secondly, an architecture
540  * may not have a spare pte bit, which requires a more complicated scheme,
541  * described below.
542  *
543  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
544  * special mapping (even if there are underlying and valid "struct pages").
545  * COWed pages of a VM_PFNMAP are always normal.
546  *
547  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
548  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
549  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
550  * mapping will always honor the rule
551  *
552  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
553  *
554  * And for normal mappings this is false.
555  *
556  * This restricts such mappings to be a linear translation from virtual address
557  * to pfn. To get around this restriction, we allow arbitrary mappings so long
558  * as the vma is not a COW mapping; in that case, we know that all ptes are
559  * special (because none can have been COWed).
560  *
561  *
562  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
563  *
564  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
565  * page" backing, however the difference is that _all_ pages with a struct
566  * page (that is, those where pfn_valid is true) are refcounted and considered
567  * normal pages by the VM. The disadvantage is that pages are refcounted
568  * (which can be slower and simply not an option for some PFNMAP users). The
569  * advantage is that we don't have to follow the strict linearity rule of
570  * PFNMAP mappings in order to support COWable mappings.
571  *
572  */
573 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
574 			     pte_t pte, bool with_public_device)
575 {
576 	unsigned long pfn = pte_pfn(pte);
577 
578 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
579 		if (likely(!pte_special(pte)))
580 			goto check_pfn;
581 		if (vma->vm_ops && vma->vm_ops->find_special_page)
582 			return vma->vm_ops->find_special_page(vma, addr);
583 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
584 			return NULL;
585 		if (is_zero_pfn(pfn))
586 			return NULL;
587 
588 		/*
589 		 * Device public pages are special pages (they are ZONE_DEVICE
590 		 * pages but different from persistent memory). They behave
591 		 * allmost like normal pages. The difference is that they are
592 		 * not on the lru and thus should never be involve with any-
593 		 * thing that involve lru manipulation (mlock, numa balancing,
594 		 * ...).
595 		 *
596 		 * This is why we still want to return NULL for such page from
597 		 * vm_normal_page() so that we do not have to special case all
598 		 * call site of vm_normal_page().
599 		 */
600 		if (likely(pfn <= highest_memmap_pfn)) {
601 			struct page *page = pfn_to_page(pfn);
602 
603 			if (is_device_public_page(page)) {
604 				if (with_public_device)
605 					return page;
606 				return NULL;
607 			}
608 		}
609 
610 		if (pte_devmap(pte))
611 			return NULL;
612 
613 		print_bad_pte(vma, addr, pte, NULL);
614 		return NULL;
615 	}
616 
617 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
618 
619 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620 		if (vma->vm_flags & VM_MIXEDMAP) {
621 			if (!pfn_valid(pfn))
622 				return NULL;
623 			goto out;
624 		} else {
625 			unsigned long off;
626 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
627 			if (pfn == vma->vm_pgoff + off)
628 				return NULL;
629 			if (!is_cow_mapping(vma->vm_flags))
630 				return NULL;
631 		}
632 	}
633 
634 	if (is_zero_pfn(pfn))
635 		return NULL;
636 
637 check_pfn:
638 	if (unlikely(pfn > highest_memmap_pfn)) {
639 		print_bad_pte(vma, addr, pte, NULL);
640 		return NULL;
641 	}
642 
643 	/*
644 	 * NOTE! We still have PageReserved() pages in the page tables.
645 	 * eg. VDSO mappings can cause them to exist.
646 	 */
647 out:
648 	return pfn_to_page(pfn);
649 }
650 
651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
652 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
653 				pmd_t pmd)
654 {
655 	unsigned long pfn = pmd_pfn(pmd);
656 
657 	/*
658 	 * There is no pmd_special() but there may be special pmds, e.g.
659 	 * in a direct-access (dax) mapping, so let's just replicate the
660 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
661 	 */
662 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
663 		if (vma->vm_flags & VM_MIXEDMAP) {
664 			if (!pfn_valid(pfn))
665 				return NULL;
666 			goto out;
667 		} else {
668 			unsigned long off;
669 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
670 			if (pfn == vma->vm_pgoff + off)
671 				return NULL;
672 			if (!is_cow_mapping(vma->vm_flags))
673 				return NULL;
674 		}
675 	}
676 
677 	if (pmd_devmap(pmd))
678 		return NULL;
679 	if (is_zero_pfn(pfn))
680 		return NULL;
681 	if (unlikely(pfn > highest_memmap_pfn))
682 		return NULL;
683 
684 	/*
685 	 * NOTE! We still have PageReserved() pages in the page tables.
686 	 * eg. VDSO mappings can cause them to exist.
687 	 */
688 out:
689 	return pfn_to_page(pfn);
690 }
691 #endif
692 
693 /*
694  * copy one vm_area from one task to the other. Assumes the page tables
695  * already present in the new task to be cleared in the whole range
696  * covered by this vma.
697  */
698 
699 static inline unsigned long
700 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
701 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
702 		unsigned long addr, int *rss)
703 {
704 	unsigned long vm_flags = vma->vm_flags;
705 	pte_t pte = *src_pte;
706 	struct page *page;
707 
708 	/* pte contains position in swap or file, so copy. */
709 	if (unlikely(!pte_present(pte))) {
710 		swp_entry_t entry = pte_to_swp_entry(pte);
711 
712 		if (likely(!non_swap_entry(entry))) {
713 			if (swap_duplicate(entry) < 0)
714 				return entry.val;
715 
716 			/* make sure dst_mm is on swapoff's mmlist. */
717 			if (unlikely(list_empty(&dst_mm->mmlist))) {
718 				spin_lock(&mmlist_lock);
719 				if (list_empty(&dst_mm->mmlist))
720 					list_add(&dst_mm->mmlist,
721 							&src_mm->mmlist);
722 				spin_unlock(&mmlist_lock);
723 			}
724 			rss[MM_SWAPENTS]++;
725 		} else if (is_migration_entry(entry)) {
726 			page = migration_entry_to_page(entry);
727 
728 			rss[mm_counter(page)]++;
729 
730 			if (is_write_migration_entry(entry) &&
731 					is_cow_mapping(vm_flags)) {
732 				/*
733 				 * COW mappings require pages in both
734 				 * parent and child to be set to read.
735 				 */
736 				make_migration_entry_read(&entry);
737 				pte = swp_entry_to_pte(entry);
738 				if (pte_swp_soft_dirty(*src_pte))
739 					pte = pte_swp_mksoft_dirty(pte);
740 				set_pte_at(src_mm, addr, src_pte, pte);
741 			}
742 		} else if (is_device_private_entry(entry)) {
743 			page = device_private_entry_to_page(entry);
744 
745 			/*
746 			 * Update rss count even for unaddressable pages, as
747 			 * they should treated just like normal pages in this
748 			 * respect.
749 			 *
750 			 * We will likely want to have some new rss counters
751 			 * for unaddressable pages, at some point. But for now
752 			 * keep things as they are.
753 			 */
754 			get_page(page);
755 			rss[mm_counter(page)]++;
756 			page_dup_rmap(page, false);
757 
758 			/*
759 			 * We do not preserve soft-dirty information, because so
760 			 * far, checkpoint/restore is the only feature that
761 			 * requires that. And checkpoint/restore does not work
762 			 * when a device driver is involved (you cannot easily
763 			 * save and restore device driver state).
764 			 */
765 			if (is_write_device_private_entry(entry) &&
766 			    is_cow_mapping(vm_flags)) {
767 				make_device_private_entry_read(&entry);
768 				pte = swp_entry_to_pte(entry);
769 				set_pte_at(src_mm, addr, src_pte, pte);
770 			}
771 		}
772 		goto out_set_pte;
773 	}
774 
775 	/*
776 	 * If it's a COW mapping, write protect it both
777 	 * in the parent and the child
778 	 */
779 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
780 		ptep_set_wrprotect(src_mm, addr, src_pte);
781 		pte = pte_wrprotect(pte);
782 	}
783 
784 	/*
785 	 * If it's a shared mapping, mark it clean in
786 	 * the child
787 	 */
788 	if (vm_flags & VM_SHARED)
789 		pte = pte_mkclean(pte);
790 	pte = pte_mkold(pte);
791 
792 	page = vm_normal_page(vma, addr, pte);
793 	if (page) {
794 		get_page(page);
795 		page_dup_rmap(page, false);
796 		rss[mm_counter(page)]++;
797 	} else if (pte_devmap(pte)) {
798 		page = pte_page(pte);
799 
800 		/*
801 		 * Cache coherent device memory behave like regular page and
802 		 * not like persistent memory page. For more informations see
803 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
804 		 */
805 		if (is_device_public_page(page)) {
806 			get_page(page);
807 			page_dup_rmap(page, false);
808 			rss[mm_counter(page)]++;
809 		}
810 	}
811 
812 out_set_pte:
813 	set_pte_at(dst_mm, addr, dst_pte, pte);
814 	return 0;
815 }
816 
817 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
818 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
819 		   unsigned long addr, unsigned long end)
820 {
821 	pte_t *orig_src_pte, *orig_dst_pte;
822 	pte_t *src_pte, *dst_pte;
823 	spinlock_t *src_ptl, *dst_ptl;
824 	int progress = 0;
825 	int rss[NR_MM_COUNTERS];
826 	swp_entry_t entry = (swp_entry_t){0};
827 
828 again:
829 	init_rss_vec(rss);
830 
831 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
832 	if (!dst_pte)
833 		return -ENOMEM;
834 	src_pte = pte_offset_map(src_pmd, addr);
835 	src_ptl = pte_lockptr(src_mm, src_pmd);
836 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
837 	orig_src_pte = src_pte;
838 	orig_dst_pte = dst_pte;
839 	arch_enter_lazy_mmu_mode();
840 
841 	do {
842 		/*
843 		 * We are holding two locks at this point - either of them
844 		 * could generate latencies in another task on another CPU.
845 		 */
846 		if (progress >= 32) {
847 			progress = 0;
848 			if (need_resched() ||
849 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
850 				break;
851 		}
852 		if (pte_none(*src_pte)) {
853 			progress++;
854 			continue;
855 		}
856 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
857 							vma, addr, rss);
858 		if (entry.val)
859 			break;
860 		progress += 8;
861 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
862 
863 	arch_leave_lazy_mmu_mode();
864 	spin_unlock(src_ptl);
865 	pte_unmap(orig_src_pte);
866 	add_mm_rss_vec(dst_mm, rss);
867 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
868 	cond_resched();
869 
870 	if (entry.val) {
871 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
872 			return -ENOMEM;
873 		progress = 0;
874 	}
875 	if (addr != end)
876 		goto again;
877 	return 0;
878 }
879 
880 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
881 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
882 		unsigned long addr, unsigned long end)
883 {
884 	pmd_t *src_pmd, *dst_pmd;
885 	unsigned long next;
886 
887 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
888 	if (!dst_pmd)
889 		return -ENOMEM;
890 	src_pmd = pmd_offset(src_pud, addr);
891 	do {
892 		next = pmd_addr_end(addr, end);
893 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
894 			|| pmd_devmap(*src_pmd)) {
895 			int err;
896 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
897 			err = copy_huge_pmd(dst_mm, src_mm,
898 					    dst_pmd, src_pmd, addr, vma);
899 			if (err == -ENOMEM)
900 				return -ENOMEM;
901 			if (!err)
902 				continue;
903 			/* fall through */
904 		}
905 		if (pmd_none_or_clear_bad(src_pmd))
906 			continue;
907 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
908 						vma, addr, next))
909 			return -ENOMEM;
910 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
911 	return 0;
912 }
913 
914 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
916 		unsigned long addr, unsigned long end)
917 {
918 	pud_t *src_pud, *dst_pud;
919 	unsigned long next;
920 
921 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
922 	if (!dst_pud)
923 		return -ENOMEM;
924 	src_pud = pud_offset(src_p4d, addr);
925 	do {
926 		next = pud_addr_end(addr, end);
927 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
928 			int err;
929 
930 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
931 			err = copy_huge_pud(dst_mm, src_mm,
932 					    dst_pud, src_pud, addr, vma);
933 			if (err == -ENOMEM)
934 				return -ENOMEM;
935 			if (!err)
936 				continue;
937 			/* fall through */
938 		}
939 		if (pud_none_or_clear_bad(src_pud))
940 			continue;
941 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
942 						vma, addr, next))
943 			return -ENOMEM;
944 	} while (dst_pud++, src_pud++, addr = next, addr != end);
945 	return 0;
946 }
947 
948 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
949 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
950 		unsigned long addr, unsigned long end)
951 {
952 	p4d_t *src_p4d, *dst_p4d;
953 	unsigned long next;
954 
955 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
956 	if (!dst_p4d)
957 		return -ENOMEM;
958 	src_p4d = p4d_offset(src_pgd, addr);
959 	do {
960 		next = p4d_addr_end(addr, end);
961 		if (p4d_none_or_clear_bad(src_p4d))
962 			continue;
963 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
964 						vma, addr, next))
965 			return -ENOMEM;
966 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
967 	return 0;
968 }
969 
970 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
971 		struct vm_area_struct *vma)
972 {
973 	pgd_t *src_pgd, *dst_pgd;
974 	unsigned long next;
975 	unsigned long addr = vma->vm_start;
976 	unsigned long end = vma->vm_end;
977 	struct mmu_notifier_range range;
978 	bool is_cow;
979 	int ret;
980 
981 	/*
982 	 * Don't copy ptes where a page fault will fill them correctly.
983 	 * Fork becomes much lighter when there are big shared or private
984 	 * readonly mappings. The tradeoff is that copy_page_range is more
985 	 * efficient than faulting.
986 	 */
987 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988 			!vma->anon_vma)
989 		return 0;
990 
991 	if (is_vm_hugetlb_page(vma))
992 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993 
994 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
995 		/*
996 		 * We do not free on error cases below as remove_vma
997 		 * gets called on error from higher level routine
998 		 */
999 		ret = track_pfn_copy(vma);
1000 		if (ret)
1001 			return ret;
1002 	}
1003 
1004 	/*
1005 	 * We need to invalidate the secondary MMU mappings only when
1006 	 * there could be a permission downgrade on the ptes of the
1007 	 * parent mm. And a permission downgrade will only happen if
1008 	 * is_cow_mapping() returns true.
1009 	 */
1010 	is_cow = is_cow_mapping(vma->vm_flags);
1011 
1012 	if (is_cow) {
1013 		mmu_notifier_range_init(&range, src_mm, addr, end);
1014 		mmu_notifier_invalidate_range_start(&range);
1015 	}
1016 
1017 	ret = 0;
1018 	dst_pgd = pgd_offset(dst_mm, addr);
1019 	src_pgd = pgd_offset(src_mm, addr);
1020 	do {
1021 		next = pgd_addr_end(addr, end);
1022 		if (pgd_none_or_clear_bad(src_pgd))
1023 			continue;
1024 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1025 					    vma, addr, next))) {
1026 			ret = -ENOMEM;
1027 			break;
1028 		}
1029 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1030 
1031 	if (is_cow)
1032 		mmu_notifier_invalidate_range_end(&range);
1033 	return ret;
1034 }
1035 
1036 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1037 				struct vm_area_struct *vma, pmd_t *pmd,
1038 				unsigned long addr, unsigned long end,
1039 				struct zap_details *details)
1040 {
1041 	struct mm_struct *mm = tlb->mm;
1042 	int force_flush = 0;
1043 	int rss[NR_MM_COUNTERS];
1044 	spinlock_t *ptl;
1045 	pte_t *start_pte;
1046 	pte_t *pte;
1047 	swp_entry_t entry;
1048 
1049 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1050 again:
1051 	init_rss_vec(rss);
1052 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1053 	pte = start_pte;
1054 	flush_tlb_batched_pending(mm);
1055 	arch_enter_lazy_mmu_mode();
1056 	do {
1057 		pte_t ptent = *pte;
1058 		if (pte_none(ptent))
1059 			continue;
1060 
1061 		if (pte_present(ptent)) {
1062 			struct page *page;
1063 
1064 			page = _vm_normal_page(vma, addr, ptent, true);
1065 			if (unlikely(details) && page) {
1066 				/*
1067 				 * unmap_shared_mapping_pages() wants to
1068 				 * invalidate cache without truncating:
1069 				 * unmap shared but keep private pages.
1070 				 */
1071 				if (details->check_mapping &&
1072 				    details->check_mapping != page_rmapping(page))
1073 					continue;
1074 			}
1075 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1076 							tlb->fullmm);
1077 			tlb_remove_tlb_entry(tlb, pte, addr);
1078 			if (unlikely(!page))
1079 				continue;
1080 
1081 			if (!PageAnon(page)) {
1082 				if (pte_dirty(ptent)) {
1083 					force_flush = 1;
1084 					set_page_dirty(page);
1085 				}
1086 				if (pte_young(ptent) &&
1087 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1088 					mark_page_accessed(page);
1089 			}
1090 			rss[mm_counter(page)]--;
1091 			page_remove_rmap(page, false);
1092 			if (unlikely(page_mapcount(page) < 0))
1093 				print_bad_pte(vma, addr, ptent, page);
1094 			if (unlikely(__tlb_remove_page(tlb, page))) {
1095 				force_flush = 1;
1096 				addr += PAGE_SIZE;
1097 				break;
1098 			}
1099 			continue;
1100 		}
1101 
1102 		entry = pte_to_swp_entry(ptent);
1103 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1104 			struct page *page = device_private_entry_to_page(entry);
1105 
1106 			if (unlikely(details && details->check_mapping)) {
1107 				/*
1108 				 * unmap_shared_mapping_pages() wants to
1109 				 * invalidate cache without truncating:
1110 				 * unmap shared but keep private pages.
1111 				 */
1112 				if (details->check_mapping !=
1113 				    page_rmapping(page))
1114 					continue;
1115 			}
1116 
1117 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118 			rss[mm_counter(page)]--;
1119 			page_remove_rmap(page, false);
1120 			put_page(page);
1121 			continue;
1122 		}
1123 
1124 		/* If details->check_mapping, we leave swap entries. */
1125 		if (unlikely(details))
1126 			continue;
1127 
1128 		entry = pte_to_swp_entry(ptent);
1129 		if (!non_swap_entry(entry))
1130 			rss[MM_SWAPENTS]--;
1131 		else if (is_migration_entry(entry)) {
1132 			struct page *page;
1133 
1134 			page = migration_entry_to_page(entry);
1135 			rss[mm_counter(page)]--;
1136 		}
1137 		if (unlikely(!free_swap_and_cache(entry)))
1138 			print_bad_pte(vma, addr, ptent, NULL);
1139 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1140 	} while (pte++, addr += PAGE_SIZE, addr != end);
1141 
1142 	add_mm_rss_vec(mm, rss);
1143 	arch_leave_lazy_mmu_mode();
1144 
1145 	/* Do the actual TLB flush before dropping ptl */
1146 	if (force_flush)
1147 		tlb_flush_mmu_tlbonly(tlb);
1148 	pte_unmap_unlock(start_pte, ptl);
1149 
1150 	/*
1151 	 * If we forced a TLB flush (either due to running out of
1152 	 * batch buffers or because we needed to flush dirty TLB
1153 	 * entries before releasing the ptl), free the batched
1154 	 * memory too. Restart if we didn't do everything.
1155 	 */
1156 	if (force_flush) {
1157 		force_flush = 0;
1158 		tlb_flush_mmu_free(tlb);
1159 		if (addr != end)
1160 			goto again;
1161 	}
1162 
1163 	return addr;
1164 }
1165 
1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1167 				struct vm_area_struct *vma, pud_t *pud,
1168 				unsigned long addr, unsigned long end,
1169 				struct zap_details *details)
1170 {
1171 	pmd_t *pmd;
1172 	unsigned long next;
1173 
1174 	pmd = pmd_offset(pud, addr);
1175 	do {
1176 		next = pmd_addr_end(addr, end);
1177 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1178 			if (next - addr != HPAGE_PMD_SIZE)
1179 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1180 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1181 				goto next;
1182 			/* fall through */
1183 		}
1184 		/*
1185 		 * Here there can be other concurrent MADV_DONTNEED or
1186 		 * trans huge page faults running, and if the pmd is
1187 		 * none or trans huge it can change under us. This is
1188 		 * because MADV_DONTNEED holds the mmap_sem in read
1189 		 * mode.
1190 		 */
1191 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192 			goto next;
1193 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1194 next:
1195 		cond_resched();
1196 	} while (pmd++, addr = next, addr != end);
1197 
1198 	return addr;
1199 }
1200 
1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1202 				struct vm_area_struct *vma, p4d_t *p4d,
1203 				unsigned long addr, unsigned long end,
1204 				struct zap_details *details)
1205 {
1206 	pud_t *pud;
1207 	unsigned long next;
1208 
1209 	pud = pud_offset(p4d, addr);
1210 	do {
1211 		next = pud_addr_end(addr, end);
1212 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213 			if (next - addr != HPAGE_PUD_SIZE) {
1214 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1215 				split_huge_pud(vma, pud, addr);
1216 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1217 				goto next;
1218 			/* fall through */
1219 		}
1220 		if (pud_none_or_clear_bad(pud))
1221 			continue;
1222 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223 next:
1224 		cond_resched();
1225 	} while (pud++, addr = next, addr != end);
1226 
1227 	return addr;
1228 }
1229 
1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231 				struct vm_area_struct *vma, pgd_t *pgd,
1232 				unsigned long addr, unsigned long end,
1233 				struct zap_details *details)
1234 {
1235 	p4d_t *p4d;
1236 	unsigned long next;
1237 
1238 	p4d = p4d_offset(pgd, addr);
1239 	do {
1240 		next = p4d_addr_end(addr, end);
1241 		if (p4d_none_or_clear_bad(p4d))
1242 			continue;
1243 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244 	} while (p4d++, addr = next, addr != end);
1245 
1246 	return addr;
1247 }
1248 
1249 void unmap_page_range(struct mmu_gather *tlb,
1250 			     struct vm_area_struct *vma,
1251 			     unsigned long addr, unsigned long end,
1252 			     struct zap_details *details)
1253 {
1254 	pgd_t *pgd;
1255 	unsigned long next;
1256 
1257 	BUG_ON(addr >= end);
1258 	tlb_start_vma(tlb, vma);
1259 	pgd = pgd_offset(vma->vm_mm, addr);
1260 	do {
1261 		next = pgd_addr_end(addr, end);
1262 		if (pgd_none_or_clear_bad(pgd))
1263 			continue;
1264 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1265 	} while (pgd++, addr = next, addr != end);
1266 	tlb_end_vma(tlb, vma);
1267 }
1268 
1269 
1270 static void unmap_single_vma(struct mmu_gather *tlb,
1271 		struct vm_area_struct *vma, unsigned long start_addr,
1272 		unsigned long end_addr,
1273 		struct zap_details *details)
1274 {
1275 	unsigned long start = max(vma->vm_start, start_addr);
1276 	unsigned long end;
1277 
1278 	if (start >= vma->vm_end)
1279 		return;
1280 	end = min(vma->vm_end, end_addr);
1281 	if (end <= vma->vm_start)
1282 		return;
1283 
1284 	if (vma->vm_file)
1285 		uprobe_munmap(vma, start, end);
1286 
1287 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1288 		untrack_pfn(vma, 0, 0);
1289 
1290 	if (start != end) {
1291 		if (unlikely(is_vm_hugetlb_page(vma))) {
1292 			/*
1293 			 * It is undesirable to test vma->vm_file as it
1294 			 * should be non-null for valid hugetlb area.
1295 			 * However, vm_file will be NULL in the error
1296 			 * cleanup path of mmap_region. When
1297 			 * hugetlbfs ->mmap method fails,
1298 			 * mmap_region() nullifies vma->vm_file
1299 			 * before calling this function to clean up.
1300 			 * Since no pte has actually been setup, it is
1301 			 * safe to do nothing in this case.
1302 			 */
1303 			if (vma->vm_file) {
1304 				i_mmap_lock_write(vma->vm_file->f_mapping);
1305 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1306 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1307 			}
1308 		} else
1309 			unmap_page_range(tlb, vma, start, end, details);
1310 	}
1311 }
1312 
1313 /**
1314  * unmap_vmas - unmap a range of memory covered by a list of vma's
1315  * @tlb: address of the caller's struct mmu_gather
1316  * @vma: the starting vma
1317  * @start_addr: virtual address at which to start unmapping
1318  * @end_addr: virtual address at which to end unmapping
1319  *
1320  * Unmap all pages in the vma list.
1321  *
1322  * Only addresses between `start' and `end' will be unmapped.
1323  *
1324  * The VMA list must be sorted in ascending virtual address order.
1325  *
1326  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327  * range after unmap_vmas() returns.  So the only responsibility here is to
1328  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329  * drops the lock and schedules.
1330  */
1331 void unmap_vmas(struct mmu_gather *tlb,
1332 		struct vm_area_struct *vma, unsigned long start_addr,
1333 		unsigned long end_addr)
1334 {
1335 	struct mmu_notifier_range range;
1336 
1337 	mmu_notifier_range_init(&range, vma->vm_mm, start_addr, end_addr);
1338 	mmu_notifier_invalidate_range_start(&range);
1339 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1340 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1341 	mmu_notifier_invalidate_range_end(&range);
1342 }
1343 
1344 /**
1345  * zap_page_range - remove user pages in a given range
1346  * @vma: vm_area_struct holding the applicable pages
1347  * @start: starting address of pages to zap
1348  * @size: number of bytes to zap
1349  *
1350  * Caller must protect the VMA list
1351  */
1352 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1353 		unsigned long size)
1354 {
1355 	struct mmu_notifier_range range;
1356 	struct mmu_gather tlb;
1357 
1358 	lru_add_drain();
1359 	mmu_notifier_range_init(&range, vma->vm_mm, start, start + size);
1360 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1361 	update_hiwater_rss(vma->vm_mm);
1362 	mmu_notifier_invalidate_range_start(&range);
1363 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1364 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1365 	mmu_notifier_invalidate_range_end(&range);
1366 	tlb_finish_mmu(&tlb, start, range.end);
1367 }
1368 
1369 /**
1370  * zap_page_range_single - remove user pages in a given range
1371  * @vma: vm_area_struct holding the applicable pages
1372  * @address: starting address of pages to zap
1373  * @size: number of bytes to zap
1374  * @details: details of shared cache invalidation
1375  *
1376  * The range must fit into one VMA.
1377  */
1378 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1379 		unsigned long size, struct zap_details *details)
1380 {
1381 	struct mmu_notifier_range range;
1382 	struct mmu_gather tlb;
1383 
1384 	lru_add_drain();
1385 	mmu_notifier_range_init(&range, vma->vm_mm, address, address + size);
1386 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1387 	update_hiwater_rss(vma->vm_mm);
1388 	mmu_notifier_invalidate_range_start(&range);
1389 	unmap_single_vma(&tlb, vma, address, range.end, details);
1390 	mmu_notifier_invalidate_range_end(&range);
1391 	tlb_finish_mmu(&tlb, address, range.end);
1392 }
1393 
1394 /**
1395  * zap_vma_ptes - remove ptes mapping the vma
1396  * @vma: vm_area_struct holding ptes to be zapped
1397  * @address: starting address of pages to zap
1398  * @size: number of bytes to zap
1399  *
1400  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1401  *
1402  * The entire address range must be fully contained within the vma.
1403  *
1404  */
1405 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1406 		unsigned long size)
1407 {
1408 	if (address < vma->vm_start || address + size > vma->vm_end ||
1409 	    		!(vma->vm_flags & VM_PFNMAP))
1410 		return;
1411 
1412 	zap_page_range_single(vma, address, size, NULL);
1413 }
1414 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1415 
1416 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1417 			spinlock_t **ptl)
1418 {
1419 	pgd_t *pgd;
1420 	p4d_t *p4d;
1421 	pud_t *pud;
1422 	pmd_t *pmd;
1423 
1424 	pgd = pgd_offset(mm, addr);
1425 	p4d = p4d_alloc(mm, pgd, addr);
1426 	if (!p4d)
1427 		return NULL;
1428 	pud = pud_alloc(mm, p4d, addr);
1429 	if (!pud)
1430 		return NULL;
1431 	pmd = pmd_alloc(mm, pud, addr);
1432 	if (!pmd)
1433 		return NULL;
1434 
1435 	VM_BUG_ON(pmd_trans_huge(*pmd));
1436 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1437 }
1438 
1439 /*
1440  * This is the old fallback for page remapping.
1441  *
1442  * For historical reasons, it only allows reserved pages. Only
1443  * old drivers should use this, and they needed to mark their
1444  * pages reserved for the old functions anyway.
1445  */
1446 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1447 			struct page *page, pgprot_t prot)
1448 {
1449 	struct mm_struct *mm = vma->vm_mm;
1450 	int retval;
1451 	pte_t *pte;
1452 	spinlock_t *ptl;
1453 
1454 	retval = -EINVAL;
1455 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1456 		goto out;
1457 	retval = -ENOMEM;
1458 	flush_dcache_page(page);
1459 	pte = get_locked_pte(mm, addr, &ptl);
1460 	if (!pte)
1461 		goto out;
1462 	retval = -EBUSY;
1463 	if (!pte_none(*pte))
1464 		goto out_unlock;
1465 
1466 	/* Ok, finally just insert the thing.. */
1467 	get_page(page);
1468 	inc_mm_counter_fast(mm, mm_counter_file(page));
1469 	page_add_file_rmap(page, false);
1470 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1471 
1472 	retval = 0;
1473 	pte_unmap_unlock(pte, ptl);
1474 	return retval;
1475 out_unlock:
1476 	pte_unmap_unlock(pte, ptl);
1477 out:
1478 	return retval;
1479 }
1480 
1481 /**
1482  * vm_insert_page - insert single page into user vma
1483  * @vma: user vma to map to
1484  * @addr: target user address of this page
1485  * @page: source kernel page
1486  *
1487  * This allows drivers to insert individual pages they've allocated
1488  * into a user vma.
1489  *
1490  * The page has to be a nice clean _individual_ kernel allocation.
1491  * If you allocate a compound page, you need to have marked it as
1492  * such (__GFP_COMP), or manually just split the page up yourself
1493  * (see split_page()).
1494  *
1495  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1496  * took an arbitrary page protection parameter. This doesn't allow
1497  * that. Your vma protection will have to be set up correctly, which
1498  * means that if you want a shared writable mapping, you'd better
1499  * ask for a shared writable mapping!
1500  *
1501  * The page does not need to be reserved.
1502  *
1503  * Usually this function is called from f_op->mmap() handler
1504  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1505  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1506  * function from other places, for example from page-fault handler.
1507  *
1508  * Return: %0 on success, negative error code otherwise.
1509  */
1510 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1511 			struct page *page)
1512 {
1513 	if (addr < vma->vm_start || addr >= vma->vm_end)
1514 		return -EFAULT;
1515 	if (!page_count(page))
1516 		return -EINVAL;
1517 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1518 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1519 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1520 		vma->vm_flags |= VM_MIXEDMAP;
1521 	}
1522 	return insert_page(vma, addr, page, vma->vm_page_prot);
1523 }
1524 EXPORT_SYMBOL(vm_insert_page);
1525 
1526 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1527 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1528 {
1529 	struct mm_struct *mm = vma->vm_mm;
1530 	pte_t *pte, entry;
1531 	spinlock_t *ptl;
1532 
1533 	pte = get_locked_pte(mm, addr, &ptl);
1534 	if (!pte)
1535 		return VM_FAULT_OOM;
1536 	if (!pte_none(*pte)) {
1537 		if (mkwrite) {
1538 			/*
1539 			 * For read faults on private mappings the PFN passed
1540 			 * in may not match the PFN we have mapped if the
1541 			 * mapped PFN is a writeable COW page.  In the mkwrite
1542 			 * case we are creating a writable PTE for a shared
1543 			 * mapping and we expect the PFNs to match. If they
1544 			 * don't match, we are likely racing with block
1545 			 * allocation and mapping invalidation so just skip the
1546 			 * update.
1547 			 */
1548 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1549 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1550 				goto out_unlock;
1551 			}
1552 			entry = *pte;
1553 			goto out_mkwrite;
1554 		} else
1555 			goto out_unlock;
1556 	}
1557 
1558 	/* Ok, finally just insert the thing.. */
1559 	if (pfn_t_devmap(pfn))
1560 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1561 	else
1562 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1563 
1564 out_mkwrite:
1565 	if (mkwrite) {
1566 		entry = pte_mkyoung(entry);
1567 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1568 	}
1569 
1570 	set_pte_at(mm, addr, pte, entry);
1571 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1572 
1573 out_unlock:
1574 	pte_unmap_unlock(pte, ptl);
1575 	return VM_FAULT_NOPAGE;
1576 }
1577 
1578 /**
1579  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1580  * @vma: user vma to map to
1581  * @addr: target user address of this page
1582  * @pfn: source kernel pfn
1583  * @pgprot: pgprot flags for the inserted page
1584  *
1585  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1586  * to override pgprot on a per-page basis.
1587  *
1588  * This only makes sense for IO mappings, and it makes no sense for
1589  * COW mappings.  In general, using multiple vmas is preferable;
1590  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1591  * impractical.
1592  *
1593  * Context: Process context.  May allocate using %GFP_KERNEL.
1594  * Return: vm_fault_t value.
1595  */
1596 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1597 			unsigned long pfn, pgprot_t pgprot)
1598 {
1599 	/*
1600 	 * Technically, architectures with pte_special can avoid all these
1601 	 * restrictions (same for remap_pfn_range).  However we would like
1602 	 * consistency in testing and feature parity among all, so we should
1603 	 * try to keep these invariants in place for everybody.
1604 	 */
1605 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1606 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1607 						(VM_PFNMAP|VM_MIXEDMAP));
1608 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1609 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1610 
1611 	if (addr < vma->vm_start || addr >= vma->vm_end)
1612 		return VM_FAULT_SIGBUS;
1613 
1614 	if (!pfn_modify_allowed(pfn, pgprot))
1615 		return VM_FAULT_SIGBUS;
1616 
1617 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1618 
1619 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1620 			false);
1621 }
1622 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1623 
1624 /**
1625  * vmf_insert_pfn - insert single pfn into user vma
1626  * @vma: user vma to map to
1627  * @addr: target user address of this page
1628  * @pfn: source kernel pfn
1629  *
1630  * Similar to vm_insert_page, this allows drivers to insert individual pages
1631  * they've allocated into a user vma. Same comments apply.
1632  *
1633  * This function should only be called from a vm_ops->fault handler, and
1634  * in that case the handler should return the result of this function.
1635  *
1636  * vma cannot be a COW mapping.
1637  *
1638  * As this is called only for pages that do not currently exist, we
1639  * do not need to flush old virtual caches or the TLB.
1640  *
1641  * Context: Process context.  May allocate using %GFP_KERNEL.
1642  * Return: vm_fault_t value.
1643  */
1644 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1645 			unsigned long pfn)
1646 {
1647 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1648 }
1649 EXPORT_SYMBOL(vmf_insert_pfn);
1650 
1651 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1652 {
1653 	/* these checks mirror the abort conditions in vm_normal_page */
1654 	if (vma->vm_flags & VM_MIXEDMAP)
1655 		return true;
1656 	if (pfn_t_devmap(pfn))
1657 		return true;
1658 	if (pfn_t_special(pfn))
1659 		return true;
1660 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1661 		return true;
1662 	return false;
1663 }
1664 
1665 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1666 		unsigned long addr, pfn_t pfn, bool mkwrite)
1667 {
1668 	pgprot_t pgprot = vma->vm_page_prot;
1669 	int err;
1670 
1671 	BUG_ON(!vm_mixed_ok(vma, pfn));
1672 
1673 	if (addr < vma->vm_start || addr >= vma->vm_end)
1674 		return VM_FAULT_SIGBUS;
1675 
1676 	track_pfn_insert(vma, &pgprot, pfn);
1677 
1678 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1679 		return VM_FAULT_SIGBUS;
1680 
1681 	/*
1682 	 * If we don't have pte special, then we have to use the pfn_valid()
1683 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1684 	 * refcount the page if pfn_valid is true (hence insert_page rather
1685 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1686 	 * without pte special, it would there be refcounted as a normal page.
1687 	 */
1688 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1689 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1690 		struct page *page;
1691 
1692 		/*
1693 		 * At this point we are committed to insert_page()
1694 		 * regardless of whether the caller specified flags that
1695 		 * result in pfn_t_has_page() == false.
1696 		 */
1697 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1698 		err = insert_page(vma, addr, page, pgprot);
1699 	} else {
1700 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1701 	}
1702 
1703 	if (err == -ENOMEM)
1704 		return VM_FAULT_OOM;
1705 	if (err < 0 && err != -EBUSY)
1706 		return VM_FAULT_SIGBUS;
1707 
1708 	return VM_FAULT_NOPAGE;
1709 }
1710 
1711 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1712 		pfn_t pfn)
1713 {
1714 	return __vm_insert_mixed(vma, addr, pfn, false);
1715 }
1716 EXPORT_SYMBOL(vmf_insert_mixed);
1717 
1718 /*
1719  *  If the insertion of PTE failed because someone else already added a
1720  *  different entry in the mean time, we treat that as success as we assume
1721  *  the same entry was actually inserted.
1722  */
1723 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1724 		unsigned long addr, pfn_t pfn)
1725 {
1726 	return __vm_insert_mixed(vma, addr, pfn, true);
1727 }
1728 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1729 
1730 /*
1731  * maps a range of physical memory into the requested pages. the old
1732  * mappings are removed. any references to nonexistent pages results
1733  * in null mappings (currently treated as "copy-on-access")
1734  */
1735 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1736 			unsigned long addr, unsigned long end,
1737 			unsigned long pfn, pgprot_t prot)
1738 {
1739 	pte_t *pte;
1740 	spinlock_t *ptl;
1741 	int err = 0;
1742 
1743 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1744 	if (!pte)
1745 		return -ENOMEM;
1746 	arch_enter_lazy_mmu_mode();
1747 	do {
1748 		BUG_ON(!pte_none(*pte));
1749 		if (!pfn_modify_allowed(pfn, prot)) {
1750 			err = -EACCES;
1751 			break;
1752 		}
1753 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1754 		pfn++;
1755 	} while (pte++, addr += PAGE_SIZE, addr != end);
1756 	arch_leave_lazy_mmu_mode();
1757 	pte_unmap_unlock(pte - 1, ptl);
1758 	return err;
1759 }
1760 
1761 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1762 			unsigned long addr, unsigned long end,
1763 			unsigned long pfn, pgprot_t prot)
1764 {
1765 	pmd_t *pmd;
1766 	unsigned long next;
1767 	int err;
1768 
1769 	pfn -= addr >> PAGE_SHIFT;
1770 	pmd = pmd_alloc(mm, pud, addr);
1771 	if (!pmd)
1772 		return -ENOMEM;
1773 	VM_BUG_ON(pmd_trans_huge(*pmd));
1774 	do {
1775 		next = pmd_addr_end(addr, end);
1776 		err = remap_pte_range(mm, pmd, addr, next,
1777 				pfn + (addr >> PAGE_SHIFT), prot);
1778 		if (err)
1779 			return err;
1780 	} while (pmd++, addr = next, addr != end);
1781 	return 0;
1782 }
1783 
1784 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1785 			unsigned long addr, unsigned long end,
1786 			unsigned long pfn, pgprot_t prot)
1787 {
1788 	pud_t *pud;
1789 	unsigned long next;
1790 	int err;
1791 
1792 	pfn -= addr >> PAGE_SHIFT;
1793 	pud = pud_alloc(mm, p4d, addr);
1794 	if (!pud)
1795 		return -ENOMEM;
1796 	do {
1797 		next = pud_addr_end(addr, end);
1798 		err = remap_pmd_range(mm, pud, addr, next,
1799 				pfn + (addr >> PAGE_SHIFT), prot);
1800 		if (err)
1801 			return err;
1802 	} while (pud++, addr = next, addr != end);
1803 	return 0;
1804 }
1805 
1806 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1807 			unsigned long addr, unsigned long end,
1808 			unsigned long pfn, pgprot_t prot)
1809 {
1810 	p4d_t *p4d;
1811 	unsigned long next;
1812 	int err;
1813 
1814 	pfn -= addr >> PAGE_SHIFT;
1815 	p4d = p4d_alloc(mm, pgd, addr);
1816 	if (!p4d)
1817 		return -ENOMEM;
1818 	do {
1819 		next = p4d_addr_end(addr, end);
1820 		err = remap_pud_range(mm, p4d, addr, next,
1821 				pfn + (addr >> PAGE_SHIFT), prot);
1822 		if (err)
1823 			return err;
1824 	} while (p4d++, addr = next, addr != end);
1825 	return 0;
1826 }
1827 
1828 /**
1829  * remap_pfn_range - remap kernel memory to userspace
1830  * @vma: user vma to map to
1831  * @addr: target user address to start at
1832  * @pfn: physical address of kernel memory
1833  * @size: size of map area
1834  * @prot: page protection flags for this mapping
1835  *
1836  * Note: this is only safe if the mm semaphore is held when called.
1837  *
1838  * Return: %0 on success, negative error code otherwise.
1839  */
1840 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1841 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1842 {
1843 	pgd_t *pgd;
1844 	unsigned long next;
1845 	unsigned long end = addr + PAGE_ALIGN(size);
1846 	struct mm_struct *mm = vma->vm_mm;
1847 	unsigned long remap_pfn = pfn;
1848 	int err;
1849 
1850 	/*
1851 	 * Physically remapped pages are special. Tell the
1852 	 * rest of the world about it:
1853 	 *   VM_IO tells people not to look at these pages
1854 	 *	(accesses can have side effects).
1855 	 *   VM_PFNMAP tells the core MM that the base pages are just
1856 	 *	raw PFN mappings, and do not have a "struct page" associated
1857 	 *	with them.
1858 	 *   VM_DONTEXPAND
1859 	 *      Disable vma merging and expanding with mremap().
1860 	 *   VM_DONTDUMP
1861 	 *      Omit vma from core dump, even when VM_IO turned off.
1862 	 *
1863 	 * There's a horrible special case to handle copy-on-write
1864 	 * behaviour that some programs depend on. We mark the "original"
1865 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1866 	 * See vm_normal_page() for details.
1867 	 */
1868 	if (is_cow_mapping(vma->vm_flags)) {
1869 		if (addr != vma->vm_start || end != vma->vm_end)
1870 			return -EINVAL;
1871 		vma->vm_pgoff = pfn;
1872 	}
1873 
1874 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1875 	if (err)
1876 		return -EINVAL;
1877 
1878 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1879 
1880 	BUG_ON(addr >= end);
1881 	pfn -= addr >> PAGE_SHIFT;
1882 	pgd = pgd_offset(mm, addr);
1883 	flush_cache_range(vma, addr, end);
1884 	do {
1885 		next = pgd_addr_end(addr, end);
1886 		err = remap_p4d_range(mm, pgd, addr, next,
1887 				pfn + (addr >> PAGE_SHIFT), prot);
1888 		if (err)
1889 			break;
1890 	} while (pgd++, addr = next, addr != end);
1891 
1892 	if (err)
1893 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1894 
1895 	return err;
1896 }
1897 EXPORT_SYMBOL(remap_pfn_range);
1898 
1899 /**
1900  * vm_iomap_memory - remap memory to userspace
1901  * @vma: user vma to map to
1902  * @start: start of area
1903  * @len: size of area
1904  *
1905  * This is a simplified io_remap_pfn_range() for common driver use. The
1906  * driver just needs to give us the physical memory range to be mapped,
1907  * we'll figure out the rest from the vma information.
1908  *
1909  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1910  * whatever write-combining details or similar.
1911  *
1912  * Return: %0 on success, negative error code otherwise.
1913  */
1914 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1915 {
1916 	unsigned long vm_len, pfn, pages;
1917 
1918 	/* Check that the physical memory area passed in looks valid */
1919 	if (start + len < start)
1920 		return -EINVAL;
1921 	/*
1922 	 * You *really* shouldn't map things that aren't page-aligned,
1923 	 * but we've historically allowed it because IO memory might
1924 	 * just have smaller alignment.
1925 	 */
1926 	len += start & ~PAGE_MASK;
1927 	pfn = start >> PAGE_SHIFT;
1928 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1929 	if (pfn + pages < pfn)
1930 		return -EINVAL;
1931 
1932 	/* We start the mapping 'vm_pgoff' pages into the area */
1933 	if (vma->vm_pgoff > pages)
1934 		return -EINVAL;
1935 	pfn += vma->vm_pgoff;
1936 	pages -= vma->vm_pgoff;
1937 
1938 	/* Can we fit all of the mapping? */
1939 	vm_len = vma->vm_end - vma->vm_start;
1940 	if (vm_len >> PAGE_SHIFT > pages)
1941 		return -EINVAL;
1942 
1943 	/* Ok, let it rip */
1944 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1945 }
1946 EXPORT_SYMBOL(vm_iomap_memory);
1947 
1948 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1949 				     unsigned long addr, unsigned long end,
1950 				     pte_fn_t fn, void *data)
1951 {
1952 	pte_t *pte;
1953 	int err;
1954 	pgtable_t token;
1955 	spinlock_t *uninitialized_var(ptl);
1956 
1957 	pte = (mm == &init_mm) ?
1958 		pte_alloc_kernel(pmd, addr) :
1959 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1960 	if (!pte)
1961 		return -ENOMEM;
1962 
1963 	BUG_ON(pmd_huge(*pmd));
1964 
1965 	arch_enter_lazy_mmu_mode();
1966 
1967 	token = pmd_pgtable(*pmd);
1968 
1969 	do {
1970 		err = fn(pte++, token, addr, data);
1971 		if (err)
1972 			break;
1973 	} while (addr += PAGE_SIZE, addr != end);
1974 
1975 	arch_leave_lazy_mmu_mode();
1976 
1977 	if (mm != &init_mm)
1978 		pte_unmap_unlock(pte-1, ptl);
1979 	return err;
1980 }
1981 
1982 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1983 				     unsigned long addr, unsigned long end,
1984 				     pte_fn_t fn, void *data)
1985 {
1986 	pmd_t *pmd;
1987 	unsigned long next;
1988 	int err;
1989 
1990 	BUG_ON(pud_huge(*pud));
1991 
1992 	pmd = pmd_alloc(mm, pud, addr);
1993 	if (!pmd)
1994 		return -ENOMEM;
1995 	do {
1996 		next = pmd_addr_end(addr, end);
1997 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1998 		if (err)
1999 			break;
2000 	} while (pmd++, addr = next, addr != end);
2001 	return err;
2002 }
2003 
2004 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2005 				     unsigned long addr, unsigned long end,
2006 				     pte_fn_t fn, void *data)
2007 {
2008 	pud_t *pud;
2009 	unsigned long next;
2010 	int err;
2011 
2012 	pud = pud_alloc(mm, p4d, addr);
2013 	if (!pud)
2014 		return -ENOMEM;
2015 	do {
2016 		next = pud_addr_end(addr, end);
2017 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2018 		if (err)
2019 			break;
2020 	} while (pud++, addr = next, addr != end);
2021 	return err;
2022 }
2023 
2024 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2025 				     unsigned long addr, unsigned long end,
2026 				     pte_fn_t fn, void *data)
2027 {
2028 	p4d_t *p4d;
2029 	unsigned long next;
2030 	int err;
2031 
2032 	p4d = p4d_alloc(mm, pgd, addr);
2033 	if (!p4d)
2034 		return -ENOMEM;
2035 	do {
2036 		next = p4d_addr_end(addr, end);
2037 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2038 		if (err)
2039 			break;
2040 	} while (p4d++, addr = next, addr != end);
2041 	return err;
2042 }
2043 
2044 /*
2045  * Scan a region of virtual memory, filling in page tables as necessary
2046  * and calling a provided function on each leaf page table.
2047  */
2048 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2049 			unsigned long size, pte_fn_t fn, void *data)
2050 {
2051 	pgd_t *pgd;
2052 	unsigned long next;
2053 	unsigned long end = addr + size;
2054 	int err;
2055 
2056 	if (WARN_ON(addr >= end))
2057 		return -EINVAL;
2058 
2059 	pgd = pgd_offset(mm, addr);
2060 	do {
2061 		next = pgd_addr_end(addr, end);
2062 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2063 		if (err)
2064 			break;
2065 	} while (pgd++, addr = next, addr != end);
2066 
2067 	return err;
2068 }
2069 EXPORT_SYMBOL_GPL(apply_to_page_range);
2070 
2071 /*
2072  * handle_pte_fault chooses page fault handler according to an entry which was
2073  * read non-atomically.  Before making any commitment, on those architectures
2074  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2075  * parts, do_swap_page must check under lock before unmapping the pte and
2076  * proceeding (but do_wp_page is only called after already making such a check;
2077  * and do_anonymous_page can safely check later on).
2078  */
2079 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2080 				pte_t *page_table, pte_t orig_pte)
2081 {
2082 	int same = 1;
2083 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2084 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2085 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2086 		spin_lock(ptl);
2087 		same = pte_same(*page_table, orig_pte);
2088 		spin_unlock(ptl);
2089 	}
2090 #endif
2091 	pte_unmap(page_table);
2092 	return same;
2093 }
2094 
2095 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2096 {
2097 	debug_dma_assert_idle(src);
2098 
2099 	/*
2100 	 * If the source page was a PFN mapping, we don't have
2101 	 * a "struct page" for it. We do a best-effort copy by
2102 	 * just copying from the original user address. If that
2103 	 * fails, we just zero-fill it. Live with it.
2104 	 */
2105 	if (unlikely(!src)) {
2106 		void *kaddr = kmap_atomic(dst);
2107 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2108 
2109 		/*
2110 		 * This really shouldn't fail, because the page is there
2111 		 * in the page tables. But it might just be unreadable,
2112 		 * in which case we just give up and fill the result with
2113 		 * zeroes.
2114 		 */
2115 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2116 			clear_page(kaddr);
2117 		kunmap_atomic(kaddr);
2118 		flush_dcache_page(dst);
2119 	} else
2120 		copy_user_highpage(dst, src, va, vma);
2121 }
2122 
2123 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2124 {
2125 	struct file *vm_file = vma->vm_file;
2126 
2127 	if (vm_file)
2128 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2129 
2130 	/*
2131 	 * Special mappings (e.g. VDSO) do not have any file so fake
2132 	 * a default GFP_KERNEL for them.
2133 	 */
2134 	return GFP_KERNEL;
2135 }
2136 
2137 /*
2138  * Notify the address space that the page is about to become writable so that
2139  * it can prohibit this or wait for the page to get into an appropriate state.
2140  *
2141  * We do this without the lock held, so that it can sleep if it needs to.
2142  */
2143 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2144 {
2145 	vm_fault_t ret;
2146 	struct page *page = vmf->page;
2147 	unsigned int old_flags = vmf->flags;
2148 
2149 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2150 
2151 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2152 	/* Restore original flags so that caller is not surprised */
2153 	vmf->flags = old_flags;
2154 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2155 		return ret;
2156 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2157 		lock_page(page);
2158 		if (!page->mapping) {
2159 			unlock_page(page);
2160 			return 0; /* retry */
2161 		}
2162 		ret |= VM_FAULT_LOCKED;
2163 	} else
2164 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2165 	return ret;
2166 }
2167 
2168 /*
2169  * Handle dirtying of a page in shared file mapping on a write fault.
2170  *
2171  * The function expects the page to be locked and unlocks it.
2172  */
2173 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2174 				    struct page *page)
2175 {
2176 	struct address_space *mapping;
2177 	bool dirtied;
2178 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2179 
2180 	dirtied = set_page_dirty(page);
2181 	VM_BUG_ON_PAGE(PageAnon(page), page);
2182 	/*
2183 	 * Take a local copy of the address_space - page.mapping may be zeroed
2184 	 * by truncate after unlock_page().   The address_space itself remains
2185 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2186 	 * release semantics to prevent the compiler from undoing this copying.
2187 	 */
2188 	mapping = page_rmapping(page);
2189 	unlock_page(page);
2190 
2191 	if ((dirtied || page_mkwrite) && mapping) {
2192 		/*
2193 		 * Some device drivers do not set page.mapping
2194 		 * but still dirty their pages
2195 		 */
2196 		balance_dirty_pages_ratelimited(mapping);
2197 	}
2198 
2199 	if (!page_mkwrite)
2200 		file_update_time(vma->vm_file);
2201 }
2202 
2203 /*
2204  * Handle write page faults for pages that can be reused in the current vma
2205  *
2206  * This can happen either due to the mapping being with the VM_SHARED flag,
2207  * or due to us being the last reference standing to the page. In either
2208  * case, all we need to do here is to mark the page as writable and update
2209  * any related book-keeping.
2210  */
2211 static inline void wp_page_reuse(struct vm_fault *vmf)
2212 	__releases(vmf->ptl)
2213 {
2214 	struct vm_area_struct *vma = vmf->vma;
2215 	struct page *page = vmf->page;
2216 	pte_t entry;
2217 	/*
2218 	 * Clear the pages cpupid information as the existing
2219 	 * information potentially belongs to a now completely
2220 	 * unrelated process.
2221 	 */
2222 	if (page)
2223 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2224 
2225 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2226 	entry = pte_mkyoung(vmf->orig_pte);
2227 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2228 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2229 		update_mmu_cache(vma, vmf->address, vmf->pte);
2230 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2231 }
2232 
2233 /*
2234  * Handle the case of a page which we actually need to copy to a new page.
2235  *
2236  * Called with mmap_sem locked and the old page referenced, but
2237  * without the ptl held.
2238  *
2239  * High level logic flow:
2240  *
2241  * - Allocate a page, copy the content of the old page to the new one.
2242  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2243  * - Take the PTL. If the pte changed, bail out and release the allocated page
2244  * - If the pte is still the way we remember it, update the page table and all
2245  *   relevant references. This includes dropping the reference the page-table
2246  *   held to the old page, as well as updating the rmap.
2247  * - In any case, unlock the PTL and drop the reference we took to the old page.
2248  */
2249 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2250 {
2251 	struct vm_area_struct *vma = vmf->vma;
2252 	struct mm_struct *mm = vma->vm_mm;
2253 	struct page *old_page = vmf->page;
2254 	struct page *new_page = NULL;
2255 	pte_t entry;
2256 	int page_copied = 0;
2257 	struct mem_cgroup *memcg;
2258 	struct mmu_notifier_range range;
2259 
2260 	if (unlikely(anon_vma_prepare(vma)))
2261 		goto oom;
2262 
2263 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2264 		new_page = alloc_zeroed_user_highpage_movable(vma,
2265 							      vmf->address);
2266 		if (!new_page)
2267 			goto oom;
2268 	} else {
2269 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2270 				vmf->address);
2271 		if (!new_page)
2272 			goto oom;
2273 		cow_user_page(new_page, old_page, vmf->address, vma);
2274 	}
2275 
2276 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2277 		goto oom_free_new;
2278 
2279 	__SetPageUptodate(new_page);
2280 
2281 	mmu_notifier_range_init(&range, mm, vmf->address & PAGE_MASK,
2282 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2283 	mmu_notifier_invalidate_range_start(&range);
2284 
2285 	/*
2286 	 * Re-check the pte - we dropped the lock
2287 	 */
2288 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2289 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2290 		if (old_page) {
2291 			if (!PageAnon(old_page)) {
2292 				dec_mm_counter_fast(mm,
2293 						mm_counter_file(old_page));
2294 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2295 			}
2296 		} else {
2297 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2298 		}
2299 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2300 		entry = mk_pte(new_page, vma->vm_page_prot);
2301 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2302 		/*
2303 		 * Clear the pte entry and flush it first, before updating the
2304 		 * pte with the new entry. This will avoid a race condition
2305 		 * seen in the presence of one thread doing SMC and another
2306 		 * thread doing COW.
2307 		 */
2308 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2309 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2310 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2311 		lru_cache_add_active_or_unevictable(new_page, vma);
2312 		/*
2313 		 * We call the notify macro here because, when using secondary
2314 		 * mmu page tables (such as kvm shadow page tables), we want the
2315 		 * new page to be mapped directly into the secondary page table.
2316 		 */
2317 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2318 		update_mmu_cache(vma, vmf->address, vmf->pte);
2319 		if (old_page) {
2320 			/*
2321 			 * Only after switching the pte to the new page may
2322 			 * we remove the mapcount here. Otherwise another
2323 			 * process may come and find the rmap count decremented
2324 			 * before the pte is switched to the new page, and
2325 			 * "reuse" the old page writing into it while our pte
2326 			 * here still points into it and can be read by other
2327 			 * threads.
2328 			 *
2329 			 * The critical issue is to order this
2330 			 * page_remove_rmap with the ptp_clear_flush above.
2331 			 * Those stores are ordered by (if nothing else,)
2332 			 * the barrier present in the atomic_add_negative
2333 			 * in page_remove_rmap.
2334 			 *
2335 			 * Then the TLB flush in ptep_clear_flush ensures that
2336 			 * no process can access the old page before the
2337 			 * decremented mapcount is visible. And the old page
2338 			 * cannot be reused until after the decremented
2339 			 * mapcount is visible. So transitively, TLBs to
2340 			 * old page will be flushed before it can be reused.
2341 			 */
2342 			page_remove_rmap(old_page, false);
2343 		}
2344 
2345 		/* Free the old page.. */
2346 		new_page = old_page;
2347 		page_copied = 1;
2348 	} else {
2349 		mem_cgroup_cancel_charge(new_page, memcg, false);
2350 	}
2351 
2352 	if (new_page)
2353 		put_page(new_page);
2354 
2355 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2356 	/*
2357 	 * No need to double call mmu_notifier->invalidate_range() callback as
2358 	 * the above ptep_clear_flush_notify() did already call it.
2359 	 */
2360 	mmu_notifier_invalidate_range_only_end(&range);
2361 	if (old_page) {
2362 		/*
2363 		 * Don't let another task, with possibly unlocked vma,
2364 		 * keep the mlocked page.
2365 		 */
2366 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2367 			lock_page(old_page);	/* LRU manipulation */
2368 			if (PageMlocked(old_page))
2369 				munlock_vma_page(old_page);
2370 			unlock_page(old_page);
2371 		}
2372 		put_page(old_page);
2373 	}
2374 	return page_copied ? VM_FAULT_WRITE : 0;
2375 oom_free_new:
2376 	put_page(new_page);
2377 oom:
2378 	if (old_page)
2379 		put_page(old_page);
2380 	return VM_FAULT_OOM;
2381 }
2382 
2383 /**
2384  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2385  *			  writeable once the page is prepared
2386  *
2387  * @vmf: structure describing the fault
2388  *
2389  * This function handles all that is needed to finish a write page fault in a
2390  * shared mapping due to PTE being read-only once the mapped page is prepared.
2391  * It handles locking of PTE and modifying it.
2392  *
2393  * The function expects the page to be locked or other protection against
2394  * concurrent faults / writeback (such as DAX radix tree locks).
2395  *
2396  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2397  * we acquired PTE lock.
2398  */
2399 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2400 {
2401 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2402 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2403 				       &vmf->ptl);
2404 	/*
2405 	 * We might have raced with another page fault while we released the
2406 	 * pte_offset_map_lock.
2407 	 */
2408 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2409 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2410 		return VM_FAULT_NOPAGE;
2411 	}
2412 	wp_page_reuse(vmf);
2413 	return 0;
2414 }
2415 
2416 /*
2417  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2418  * mapping
2419  */
2420 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2421 {
2422 	struct vm_area_struct *vma = vmf->vma;
2423 
2424 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2425 		vm_fault_t ret;
2426 
2427 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2428 		vmf->flags |= FAULT_FLAG_MKWRITE;
2429 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2430 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2431 			return ret;
2432 		return finish_mkwrite_fault(vmf);
2433 	}
2434 	wp_page_reuse(vmf);
2435 	return VM_FAULT_WRITE;
2436 }
2437 
2438 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2439 	__releases(vmf->ptl)
2440 {
2441 	struct vm_area_struct *vma = vmf->vma;
2442 
2443 	get_page(vmf->page);
2444 
2445 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2446 		vm_fault_t tmp;
2447 
2448 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2449 		tmp = do_page_mkwrite(vmf);
2450 		if (unlikely(!tmp || (tmp &
2451 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2452 			put_page(vmf->page);
2453 			return tmp;
2454 		}
2455 		tmp = finish_mkwrite_fault(vmf);
2456 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2457 			unlock_page(vmf->page);
2458 			put_page(vmf->page);
2459 			return tmp;
2460 		}
2461 	} else {
2462 		wp_page_reuse(vmf);
2463 		lock_page(vmf->page);
2464 	}
2465 	fault_dirty_shared_page(vma, vmf->page);
2466 	put_page(vmf->page);
2467 
2468 	return VM_FAULT_WRITE;
2469 }
2470 
2471 /*
2472  * This routine handles present pages, when users try to write
2473  * to a shared page. It is done by copying the page to a new address
2474  * and decrementing the shared-page counter for the old page.
2475  *
2476  * Note that this routine assumes that the protection checks have been
2477  * done by the caller (the low-level page fault routine in most cases).
2478  * Thus we can safely just mark it writable once we've done any necessary
2479  * COW.
2480  *
2481  * We also mark the page dirty at this point even though the page will
2482  * change only once the write actually happens. This avoids a few races,
2483  * and potentially makes it more efficient.
2484  *
2485  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2486  * but allow concurrent faults), with pte both mapped and locked.
2487  * We return with mmap_sem still held, but pte unmapped and unlocked.
2488  */
2489 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2490 	__releases(vmf->ptl)
2491 {
2492 	struct vm_area_struct *vma = vmf->vma;
2493 
2494 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2495 	if (!vmf->page) {
2496 		/*
2497 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2498 		 * VM_PFNMAP VMA.
2499 		 *
2500 		 * We should not cow pages in a shared writeable mapping.
2501 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2502 		 */
2503 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2504 				     (VM_WRITE|VM_SHARED))
2505 			return wp_pfn_shared(vmf);
2506 
2507 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2508 		return wp_page_copy(vmf);
2509 	}
2510 
2511 	/*
2512 	 * Take out anonymous pages first, anonymous shared vmas are
2513 	 * not dirty accountable.
2514 	 */
2515 	if (PageAnon(vmf->page)) {
2516 		int total_map_swapcount;
2517 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2518 					   page_count(vmf->page) != 1))
2519 			goto copy;
2520 		if (!trylock_page(vmf->page)) {
2521 			get_page(vmf->page);
2522 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2523 			lock_page(vmf->page);
2524 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2525 					vmf->address, &vmf->ptl);
2526 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2527 				unlock_page(vmf->page);
2528 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2529 				put_page(vmf->page);
2530 				return 0;
2531 			}
2532 			put_page(vmf->page);
2533 		}
2534 		if (PageKsm(vmf->page)) {
2535 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2536 						     vmf->address);
2537 			unlock_page(vmf->page);
2538 			if (!reused)
2539 				goto copy;
2540 			wp_page_reuse(vmf);
2541 			return VM_FAULT_WRITE;
2542 		}
2543 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2544 			if (total_map_swapcount == 1) {
2545 				/*
2546 				 * The page is all ours. Move it to
2547 				 * our anon_vma so the rmap code will
2548 				 * not search our parent or siblings.
2549 				 * Protected against the rmap code by
2550 				 * the page lock.
2551 				 */
2552 				page_move_anon_rmap(vmf->page, vma);
2553 			}
2554 			unlock_page(vmf->page);
2555 			wp_page_reuse(vmf);
2556 			return VM_FAULT_WRITE;
2557 		}
2558 		unlock_page(vmf->page);
2559 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2560 					(VM_WRITE|VM_SHARED))) {
2561 		return wp_page_shared(vmf);
2562 	}
2563 copy:
2564 	/*
2565 	 * Ok, we need to copy. Oh, well..
2566 	 */
2567 	get_page(vmf->page);
2568 
2569 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2570 	return wp_page_copy(vmf);
2571 }
2572 
2573 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2574 		unsigned long start_addr, unsigned long end_addr,
2575 		struct zap_details *details)
2576 {
2577 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2578 }
2579 
2580 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2581 					    struct zap_details *details)
2582 {
2583 	struct vm_area_struct *vma;
2584 	pgoff_t vba, vea, zba, zea;
2585 
2586 	vma_interval_tree_foreach(vma, root,
2587 			details->first_index, details->last_index) {
2588 
2589 		vba = vma->vm_pgoff;
2590 		vea = vba + vma_pages(vma) - 1;
2591 		zba = details->first_index;
2592 		if (zba < vba)
2593 			zba = vba;
2594 		zea = details->last_index;
2595 		if (zea > vea)
2596 			zea = vea;
2597 
2598 		unmap_mapping_range_vma(vma,
2599 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2600 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2601 				details);
2602 	}
2603 }
2604 
2605 /**
2606  * unmap_mapping_pages() - Unmap pages from processes.
2607  * @mapping: The address space containing pages to be unmapped.
2608  * @start: Index of first page to be unmapped.
2609  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2610  * @even_cows: Whether to unmap even private COWed pages.
2611  *
2612  * Unmap the pages in this address space from any userspace process which
2613  * has them mmaped.  Generally, you want to remove COWed pages as well when
2614  * a file is being truncated, but not when invalidating pages from the page
2615  * cache.
2616  */
2617 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2618 		pgoff_t nr, bool even_cows)
2619 {
2620 	struct zap_details details = { };
2621 
2622 	details.check_mapping = even_cows ? NULL : mapping;
2623 	details.first_index = start;
2624 	details.last_index = start + nr - 1;
2625 	if (details.last_index < details.first_index)
2626 		details.last_index = ULONG_MAX;
2627 
2628 	i_mmap_lock_write(mapping);
2629 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2630 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2631 	i_mmap_unlock_write(mapping);
2632 }
2633 
2634 /**
2635  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2636  * address_space corresponding to the specified byte range in the underlying
2637  * file.
2638  *
2639  * @mapping: the address space containing mmaps to be unmapped.
2640  * @holebegin: byte in first page to unmap, relative to the start of
2641  * the underlying file.  This will be rounded down to a PAGE_SIZE
2642  * boundary.  Note that this is different from truncate_pagecache(), which
2643  * must keep the partial page.  In contrast, we must get rid of
2644  * partial pages.
2645  * @holelen: size of prospective hole in bytes.  This will be rounded
2646  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2647  * end of the file.
2648  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2649  * but 0 when invalidating pagecache, don't throw away private data.
2650  */
2651 void unmap_mapping_range(struct address_space *mapping,
2652 		loff_t const holebegin, loff_t const holelen, int even_cows)
2653 {
2654 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2655 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2656 
2657 	/* Check for overflow. */
2658 	if (sizeof(holelen) > sizeof(hlen)) {
2659 		long long holeend =
2660 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2661 		if (holeend & ~(long long)ULONG_MAX)
2662 			hlen = ULONG_MAX - hba + 1;
2663 	}
2664 
2665 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2666 }
2667 EXPORT_SYMBOL(unmap_mapping_range);
2668 
2669 /*
2670  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2671  * but allow concurrent faults), and pte mapped but not yet locked.
2672  * We return with pte unmapped and unlocked.
2673  *
2674  * We return with the mmap_sem locked or unlocked in the same cases
2675  * as does filemap_fault().
2676  */
2677 vm_fault_t do_swap_page(struct vm_fault *vmf)
2678 {
2679 	struct vm_area_struct *vma = vmf->vma;
2680 	struct page *page = NULL, *swapcache;
2681 	struct mem_cgroup *memcg;
2682 	swp_entry_t entry;
2683 	pte_t pte;
2684 	int locked;
2685 	int exclusive = 0;
2686 	vm_fault_t ret = 0;
2687 
2688 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2689 		goto out;
2690 
2691 	entry = pte_to_swp_entry(vmf->orig_pte);
2692 	if (unlikely(non_swap_entry(entry))) {
2693 		if (is_migration_entry(entry)) {
2694 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2695 					     vmf->address);
2696 		} else if (is_device_private_entry(entry)) {
2697 			/*
2698 			 * For un-addressable device memory we call the pgmap
2699 			 * fault handler callback. The callback must migrate
2700 			 * the page back to some CPU accessible page.
2701 			 */
2702 			ret = device_private_entry_fault(vma, vmf->address, entry,
2703 						 vmf->flags, vmf->pmd);
2704 		} else if (is_hwpoison_entry(entry)) {
2705 			ret = VM_FAULT_HWPOISON;
2706 		} else {
2707 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2708 			ret = VM_FAULT_SIGBUS;
2709 		}
2710 		goto out;
2711 	}
2712 
2713 
2714 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2715 	page = lookup_swap_cache(entry, vma, vmf->address);
2716 	swapcache = page;
2717 
2718 	if (!page) {
2719 		struct swap_info_struct *si = swp_swap_info(entry);
2720 
2721 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2722 				__swap_count(si, entry) == 1) {
2723 			/* skip swapcache */
2724 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2725 							vmf->address);
2726 			if (page) {
2727 				__SetPageLocked(page);
2728 				__SetPageSwapBacked(page);
2729 				set_page_private(page, entry.val);
2730 				lru_cache_add_anon(page);
2731 				swap_readpage(page, true);
2732 			}
2733 		} else {
2734 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2735 						vmf);
2736 			swapcache = page;
2737 		}
2738 
2739 		if (!page) {
2740 			/*
2741 			 * Back out if somebody else faulted in this pte
2742 			 * while we released the pte lock.
2743 			 */
2744 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2745 					vmf->address, &vmf->ptl);
2746 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2747 				ret = VM_FAULT_OOM;
2748 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2749 			goto unlock;
2750 		}
2751 
2752 		/* Had to read the page from swap area: Major fault */
2753 		ret = VM_FAULT_MAJOR;
2754 		count_vm_event(PGMAJFAULT);
2755 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2756 	} else if (PageHWPoison(page)) {
2757 		/*
2758 		 * hwpoisoned dirty swapcache pages are kept for killing
2759 		 * owner processes (which may be unknown at hwpoison time)
2760 		 */
2761 		ret = VM_FAULT_HWPOISON;
2762 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2763 		goto out_release;
2764 	}
2765 
2766 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2767 
2768 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2769 	if (!locked) {
2770 		ret |= VM_FAULT_RETRY;
2771 		goto out_release;
2772 	}
2773 
2774 	/*
2775 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2776 	 * release the swapcache from under us.  The page pin, and pte_same
2777 	 * test below, are not enough to exclude that.  Even if it is still
2778 	 * swapcache, we need to check that the page's swap has not changed.
2779 	 */
2780 	if (unlikely((!PageSwapCache(page) ||
2781 			page_private(page) != entry.val)) && swapcache)
2782 		goto out_page;
2783 
2784 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2785 	if (unlikely(!page)) {
2786 		ret = VM_FAULT_OOM;
2787 		page = swapcache;
2788 		goto out_page;
2789 	}
2790 
2791 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2792 					&memcg, false)) {
2793 		ret = VM_FAULT_OOM;
2794 		goto out_page;
2795 	}
2796 
2797 	/*
2798 	 * Back out if somebody else already faulted in this pte.
2799 	 */
2800 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2801 			&vmf->ptl);
2802 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2803 		goto out_nomap;
2804 
2805 	if (unlikely(!PageUptodate(page))) {
2806 		ret = VM_FAULT_SIGBUS;
2807 		goto out_nomap;
2808 	}
2809 
2810 	/*
2811 	 * The page isn't present yet, go ahead with the fault.
2812 	 *
2813 	 * Be careful about the sequence of operations here.
2814 	 * To get its accounting right, reuse_swap_page() must be called
2815 	 * while the page is counted on swap but not yet in mapcount i.e.
2816 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2817 	 * must be called after the swap_free(), or it will never succeed.
2818 	 */
2819 
2820 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2821 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2822 	pte = mk_pte(page, vma->vm_page_prot);
2823 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2824 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2825 		vmf->flags &= ~FAULT_FLAG_WRITE;
2826 		ret |= VM_FAULT_WRITE;
2827 		exclusive = RMAP_EXCLUSIVE;
2828 	}
2829 	flush_icache_page(vma, page);
2830 	if (pte_swp_soft_dirty(vmf->orig_pte))
2831 		pte = pte_mksoft_dirty(pte);
2832 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2833 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2834 	vmf->orig_pte = pte;
2835 
2836 	/* ksm created a completely new copy */
2837 	if (unlikely(page != swapcache && swapcache)) {
2838 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2839 		mem_cgroup_commit_charge(page, memcg, false, false);
2840 		lru_cache_add_active_or_unevictable(page, vma);
2841 	} else {
2842 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2843 		mem_cgroup_commit_charge(page, memcg, true, false);
2844 		activate_page(page);
2845 	}
2846 
2847 	swap_free(entry);
2848 	if (mem_cgroup_swap_full(page) ||
2849 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2850 		try_to_free_swap(page);
2851 	unlock_page(page);
2852 	if (page != swapcache && swapcache) {
2853 		/*
2854 		 * Hold the lock to avoid the swap entry to be reused
2855 		 * until we take the PT lock for the pte_same() check
2856 		 * (to avoid false positives from pte_same). For
2857 		 * further safety release the lock after the swap_free
2858 		 * so that the swap count won't change under a
2859 		 * parallel locked swapcache.
2860 		 */
2861 		unlock_page(swapcache);
2862 		put_page(swapcache);
2863 	}
2864 
2865 	if (vmf->flags & FAULT_FLAG_WRITE) {
2866 		ret |= do_wp_page(vmf);
2867 		if (ret & VM_FAULT_ERROR)
2868 			ret &= VM_FAULT_ERROR;
2869 		goto out;
2870 	}
2871 
2872 	/* No need to invalidate - it was non-present before */
2873 	update_mmu_cache(vma, vmf->address, vmf->pte);
2874 unlock:
2875 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2876 out:
2877 	return ret;
2878 out_nomap:
2879 	mem_cgroup_cancel_charge(page, memcg, false);
2880 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2881 out_page:
2882 	unlock_page(page);
2883 out_release:
2884 	put_page(page);
2885 	if (page != swapcache && swapcache) {
2886 		unlock_page(swapcache);
2887 		put_page(swapcache);
2888 	}
2889 	return ret;
2890 }
2891 
2892 /*
2893  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2894  * but allow concurrent faults), and pte mapped but not yet locked.
2895  * We return with mmap_sem still held, but pte unmapped and unlocked.
2896  */
2897 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2898 {
2899 	struct vm_area_struct *vma = vmf->vma;
2900 	struct mem_cgroup *memcg;
2901 	struct page *page;
2902 	vm_fault_t ret = 0;
2903 	pte_t entry;
2904 
2905 	/* File mapping without ->vm_ops ? */
2906 	if (vma->vm_flags & VM_SHARED)
2907 		return VM_FAULT_SIGBUS;
2908 
2909 	/*
2910 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2911 	 * pte_offset_map() on pmds where a huge pmd might be created
2912 	 * from a different thread.
2913 	 *
2914 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2915 	 * parallel threads are excluded by other means.
2916 	 *
2917 	 * Here we only have down_read(mmap_sem).
2918 	 */
2919 	if (pte_alloc(vma->vm_mm, vmf->pmd))
2920 		return VM_FAULT_OOM;
2921 
2922 	/* See the comment in pte_alloc_one_map() */
2923 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2924 		return 0;
2925 
2926 	/* Use the zero-page for reads */
2927 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2928 			!mm_forbids_zeropage(vma->vm_mm)) {
2929 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2930 						vma->vm_page_prot));
2931 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2932 				vmf->address, &vmf->ptl);
2933 		if (!pte_none(*vmf->pte))
2934 			goto unlock;
2935 		ret = check_stable_address_space(vma->vm_mm);
2936 		if (ret)
2937 			goto unlock;
2938 		/* Deliver the page fault to userland, check inside PT lock */
2939 		if (userfaultfd_missing(vma)) {
2940 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2941 			return handle_userfault(vmf, VM_UFFD_MISSING);
2942 		}
2943 		goto setpte;
2944 	}
2945 
2946 	/* Allocate our own private page. */
2947 	if (unlikely(anon_vma_prepare(vma)))
2948 		goto oom;
2949 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2950 	if (!page)
2951 		goto oom;
2952 
2953 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2954 					false))
2955 		goto oom_free_page;
2956 
2957 	/*
2958 	 * The memory barrier inside __SetPageUptodate makes sure that
2959 	 * preceeding stores to the page contents become visible before
2960 	 * the set_pte_at() write.
2961 	 */
2962 	__SetPageUptodate(page);
2963 
2964 	entry = mk_pte(page, vma->vm_page_prot);
2965 	if (vma->vm_flags & VM_WRITE)
2966 		entry = pte_mkwrite(pte_mkdirty(entry));
2967 
2968 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2969 			&vmf->ptl);
2970 	if (!pte_none(*vmf->pte))
2971 		goto release;
2972 
2973 	ret = check_stable_address_space(vma->vm_mm);
2974 	if (ret)
2975 		goto release;
2976 
2977 	/* Deliver the page fault to userland, check inside PT lock */
2978 	if (userfaultfd_missing(vma)) {
2979 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2980 		mem_cgroup_cancel_charge(page, memcg, false);
2981 		put_page(page);
2982 		return handle_userfault(vmf, VM_UFFD_MISSING);
2983 	}
2984 
2985 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2986 	page_add_new_anon_rmap(page, vma, vmf->address, false);
2987 	mem_cgroup_commit_charge(page, memcg, false, false);
2988 	lru_cache_add_active_or_unevictable(page, vma);
2989 setpte:
2990 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2991 
2992 	/* No need to invalidate - it was non-present before */
2993 	update_mmu_cache(vma, vmf->address, vmf->pte);
2994 unlock:
2995 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2996 	return ret;
2997 release:
2998 	mem_cgroup_cancel_charge(page, memcg, false);
2999 	put_page(page);
3000 	goto unlock;
3001 oom_free_page:
3002 	put_page(page);
3003 oom:
3004 	return VM_FAULT_OOM;
3005 }
3006 
3007 /*
3008  * The mmap_sem must have been held on entry, and may have been
3009  * released depending on flags and vma->vm_ops->fault() return value.
3010  * See filemap_fault() and __lock_page_retry().
3011  */
3012 static vm_fault_t __do_fault(struct vm_fault *vmf)
3013 {
3014 	struct vm_area_struct *vma = vmf->vma;
3015 	vm_fault_t ret;
3016 
3017 	/*
3018 	 * Preallocate pte before we take page_lock because this might lead to
3019 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3020 	 *				lock_page(A)
3021 	 *				SetPageWriteback(A)
3022 	 *				unlock_page(A)
3023 	 * lock_page(B)
3024 	 *				lock_page(B)
3025 	 * pte_alloc_pne
3026 	 *   shrink_page_list
3027 	 *     wait_on_page_writeback(A)
3028 	 *				SetPageWriteback(B)
3029 	 *				unlock_page(B)
3030 	 *				# flush A, B to clear the writeback
3031 	 */
3032 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3033 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3034 		if (!vmf->prealloc_pte)
3035 			return VM_FAULT_OOM;
3036 		smp_wmb(); /* See comment in __pte_alloc() */
3037 	}
3038 
3039 	ret = vma->vm_ops->fault(vmf);
3040 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3041 			    VM_FAULT_DONE_COW)))
3042 		return ret;
3043 
3044 	if (unlikely(PageHWPoison(vmf->page))) {
3045 		if (ret & VM_FAULT_LOCKED)
3046 			unlock_page(vmf->page);
3047 		put_page(vmf->page);
3048 		vmf->page = NULL;
3049 		return VM_FAULT_HWPOISON;
3050 	}
3051 
3052 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3053 		lock_page(vmf->page);
3054 	else
3055 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3056 
3057 	return ret;
3058 }
3059 
3060 /*
3061  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3062  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3063  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3064  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3065  */
3066 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3067 {
3068 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3069 }
3070 
3071 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3072 {
3073 	struct vm_area_struct *vma = vmf->vma;
3074 
3075 	if (!pmd_none(*vmf->pmd))
3076 		goto map_pte;
3077 	if (vmf->prealloc_pte) {
3078 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3079 		if (unlikely(!pmd_none(*vmf->pmd))) {
3080 			spin_unlock(vmf->ptl);
3081 			goto map_pte;
3082 		}
3083 
3084 		mm_inc_nr_ptes(vma->vm_mm);
3085 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3086 		spin_unlock(vmf->ptl);
3087 		vmf->prealloc_pte = NULL;
3088 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3089 		return VM_FAULT_OOM;
3090 	}
3091 map_pte:
3092 	/*
3093 	 * If a huge pmd materialized under us just retry later.  Use
3094 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3095 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3096 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3097 	 * running immediately after a huge pmd fault in a different thread of
3098 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3099 	 * All we have to ensure is that it is a regular pmd that we can walk
3100 	 * with pte_offset_map() and we can do that through an atomic read in
3101 	 * C, which is what pmd_trans_unstable() provides.
3102 	 */
3103 	if (pmd_devmap_trans_unstable(vmf->pmd))
3104 		return VM_FAULT_NOPAGE;
3105 
3106 	/*
3107 	 * At this point we know that our vmf->pmd points to a page of ptes
3108 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3109 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3110 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3111 	 * be valid and we will re-check to make sure the vmf->pte isn't
3112 	 * pte_none() under vmf->ptl protection when we return to
3113 	 * alloc_set_pte().
3114 	 */
3115 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3116 			&vmf->ptl);
3117 	return 0;
3118 }
3119 
3120 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3121 
3122 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3123 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3124 		unsigned long haddr)
3125 {
3126 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3127 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3128 		return false;
3129 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3130 		return false;
3131 	return true;
3132 }
3133 
3134 static void deposit_prealloc_pte(struct vm_fault *vmf)
3135 {
3136 	struct vm_area_struct *vma = vmf->vma;
3137 
3138 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3139 	/*
3140 	 * We are going to consume the prealloc table,
3141 	 * count that as nr_ptes.
3142 	 */
3143 	mm_inc_nr_ptes(vma->vm_mm);
3144 	vmf->prealloc_pte = NULL;
3145 }
3146 
3147 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3148 {
3149 	struct vm_area_struct *vma = vmf->vma;
3150 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3151 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3152 	pmd_t entry;
3153 	int i;
3154 	vm_fault_t ret;
3155 
3156 	if (!transhuge_vma_suitable(vma, haddr))
3157 		return VM_FAULT_FALLBACK;
3158 
3159 	ret = VM_FAULT_FALLBACK;
3160 	page = compound_head(page);
3161 
3162 	/*
3163 	 * Archs like ppc64 need additonal space to store information
3164 	 * related to pte entry. Use the preallocated table for that.
3165 	 */
3166 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3167 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3168 		if (!vmf->prealloc_pte)
3169 			return VM_FAULT_OOM;
3170 		smp_wmb(); /* See comment in __pte_alloc() */
3171 	}
3172 
3173 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3174 	if (unlikely(!pmd_none(*vmf->pmd)))
3175 		goto out;
3176 
3177 	for (i = 0; i < HPAGE_PMD_NR; i++)
3178 		flush_icache_page(vma, page + i);
3179 
3180 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3181 	if (write)
3182 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3183 
3184 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3185 	page_add_file_rmap(page, true);
3186 	/*
3187 	 * deposit and withdraw with pmd lock held
3188 	 */
3189 	if (arch_needs_pgtable_deposit())
3190 		deposit_prealloc_pte(vmf);
3191 
3192 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3193 
3194 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3195 
3196 	/* fault is handled */
3197 	ret = 0;
3198 	count_vm_event(THP_FILE_MAPPED);
3199 out:
3200 	spin_unlock(vmf->ptl);
3201 	return ret;
3202 }
3203 #else
3204 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3205 {
3206 	BUILD_BUG();
3207 	return 0;
3208 }
3209 #endif
3210 
3211 /**
3212  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3213  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3214  *
3215  * @vmf: fault environment
3216  * @memcg: memcg to charge page (only for private mappings)
3217  * @page: page to map
3218  *
3219  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3220  * return.
3221  *
3222  * Target users are page handler itself and implementations of
3223  * vm_ops->map_pages.
3224  *
3225  * Return: %0 on success, %VM_FAULT_ code in case of error.
3226  */
3227 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3228 		struct page *page)
3229 {
3230 	struct vm_area_struct *vma = vmf->vma;
3231 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3232 	pte_t entry;
3233 	vm_fault_t ret;
3234 
3235 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3236 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3237 		/* THP on COW? */
3238 		VM_BUG_ON_PAGE(memcg, page);
3239 
3240 		ret = do_set_pmd(vmf, page);
3241 		if (ret != VM_FAULT_FALLBACK)
3242 			return ret;
3243 	}
3244 
3245 	if (!vmf->pte) {
3246 		ret = pte_alloc_one_map(vmf);
3247 		if (ret)
3248 			return ret;
3249 	}
3250 
3251 	/* Re-check under ptl */
3252 	if (unlikely(!pte_none(*vmf->pte)))
3253 		return VM_FAULT_NOPAGE;
3254 
3255 	flush_icache_page(vma, page);
3256 	entry = mk_pte(page, vma->vm_page_prot);
3257 	if (write)
3258 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3259 	/* copy-on-write page */
3260 	if (write && !(vma->vm_flags & VM_SHARED)) {
3261 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3262 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3263 		mem_cgroup_commit_charge(page, memcg, false, false);
3264 		lru_cache_add_active_or_unevictable(page, vma);
3265 	} else {
3266 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3267 		page_add_file_rmap(page, false);
3268 	}
3269 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3270 
3271 	/* no need to invalidate: a not-present page won't be cached */
3272 	update_mmu_cache(vma, vmf->address, vmf->pte);
3273 
3274 	return 0;
3275 }
3276 
3277 
3278 /**
3279  * finish_fault - finish page fault once we have prepared the page to fault
3280  *
3281  * @vmf: structure describing the fault
3282  *
3283  * This function handles all that is needed to finish a page fault once the
3284  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3285  * given page, adds reverse page mapping, handles memcg charges and LRU
3286  * addition.
3287  *
3288  * The function expects the page to be locked and on success it consumes a
3289  * reference of a page being mapped (for the PTE which maps it).
3290  *
3291  * Return: %0 on success, %VM_FAULT_ code in case of error.
3292  */
3293 vm_fault_t finish_fault(struct vm_fault *vmf)
3294 {
3295 	struct page *page;
3296 	vm_fault_t ret = 0;
3297 
3298 	/* Did we COW the page? */
3299 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3300 	    !(vmf->vma->vm_flags & VM_SHARED))
3301 		page = vmf->cow_page;
3302 	else
3303 		page = vmf->page;
3304 
3305 	/*
3306 	 * check even for read faults because we might have lost our CoWed
3307 	 * page
3308 	 */
3309 	if (!(vmf->vma->vm_flags & VM_SHARED))
3310 		ret = check_stable_address_space(vmf->vma->vm_mm);
3311 	if (!ret)
3312 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3313 	if (vmf->pte)
3314 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3315 	return ret;
3316 }
3317 
3318 static unsigned long fault_around_bytes __read_mostly =
3319 	rounddown_pow_of_two(65536);
3320 
3321 #ifdef CONFIG_DEBUG_FS
3322 static int fault_around_bytes_get(void *data, u64 *val)
3323 {
3324 	*val = fault_around_bytes;
3325 	return 0;
3326 }
3327 
3328 /*
3329  * fault_around_bytes must be rounded down to the nearest page order as it's
3330  * what do_fault_around() expects to see.
3331  */
3332 static int fault_around_bytes_set(void *data, u64 val)
3333 {
3334 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3335 		return -EINVAL;
3336 	if (val > PAGE_SIZE)
3337 		fault_around_bytes = rounddown_pow_of_two(val);
3338 	else
3339 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3340 	return 0;
3341 }
3342 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3343 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3344 
3345 static int __init fault_around_debugfs(void)
3346 {
3347 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3348 				   &fault_around_bytes_fops);
3349 	return 0;
3350 }
3351 late_initcall(fault_around_debugfs);
3352 #endif
3353 
3354 /*
3355  * do_fault_around() tries to map few pages around the fault address. The hope
3356  * is that the pages will be needed soon and this will lower the number of
3357  * faults to handle.
3358  *
3359  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3360  * not ready to be mapped: not up-to-date, locked, etc.
3361  *
3362  * This function is called with the page table lock taken. In the split ptlock
3363  * case the page table lock only protects only those entries which belong to
3364  * the page table corresponding to the fault address.
3365  *
3366  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3367  * only once.
3368  *
3369  * fault_around_bytes defines how many bytes we'll try to map.
3370  * do_fault_around() expects it to be set to a power of two less than or equal
3371  * to PTRS_PER_PTE.
3372  *
3373  * The virtual address of the area that we map is naturally aligned to
3374  * fault_around_bytes rounded down to the machine page size
3375  * (and therefore to page order).  This way it's easier to guarantee
3376  * that we don't cross page table boundaries.
3377  */
3378 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3379 {
3380 	unsigned long address = vmf->address, nr_pages, mask;
3381 	pgoff_t start_pgoff = vmf->pgoff;
3382 	pgoff_t end_pgoff;
3383 	int off;
3384 	vm_fault_t ret = 0;
3385 
3386 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3387 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3388 
3389 	vmf->address = max(address & mask, vmf->vma->vm_start);
3390 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3391 	start_pgoff -= off;
3392 
3393 	/*
3394 	 *  end_pgoff is either the end of the page table, the end of
3395 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3396 	 */
3397 	end_pgoff = start_pgoff -
3398 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3399 		PTRS_PER_PTE - 1;
3400 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3401 			start_pgoff + nr_pages - 1);
3402 
3403 	if (pmd_none(*vmf->pmd)) {
3404 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3405 		if (!vmf->prealloc_pte)
3406 			goto out;
3407 		smp_wmb(); /* See comment in __pte_alloc() */
3408 	}
3409 
3410 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3411 
3412 	/* Huge page is mapped? Page fault is solved */
3413 	if (pmd_trans_huge(*vmf->pmd)) {
3414 		ret = VM_FAULT_NOPAGE;
3415 		goto out;
3416 	}
3417 
3418 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3419 	if (!vmf->pte)
3420 		goto out;
3421 
3422 	/* check if the page fault is solved */
3423 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3424 	if (!pte_none(*vmf->pte))
3425 		ret = VM_FAULT_NOPAGE;
3426 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3427 out:
3428 	vmf->address = address;
3429 	vmf->pte = NULL;
3430 	return ret;
3431 }
3432 
3433 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3434 {
3435 	struct vm_area_struct *vma = vmf->vma;
3436 	vm_fault_t ret = 0;
3437 
3438 	/*
3439 	 * Let's call ->map_pages() first and use ->fault() as fallback
3440 	 * if page by the offset is not ready to be mapped (cold cache or
3441 	 * something).
3442 	 */
3443 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3444 		ret = do_fault_around(vmf);
3445 		if (ret)
3446 			return ret;
3447 	}
3448 
3449 	ret = __do_fault(vmf);
3450 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3451 		return ret;
3452 
3453 	ret |= finish_fault(vmf);
3454 	unlock_page(vmf->page);
3455 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3456 		put_page(vmf->page);
3457 	return ret;
3458 }
3459 
3460 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3461 {
3462 	struct vm_area_struct *vma = vmf->vma;
3463 	vm_fault_t ret;
3464 
3465 	if (unlikely(anon_vma_prepare(vma)))
3466 		return VM_FAULT_OOM;
3467 
3468 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3469 	if (!vmf->cow_page)
3470 		return VM_FAULT_OOM;
3471 
3472 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3473 				&vmf->memcg, false)) {
3474 		put_page(vmf->cow_page);
3475 		return VM_FAULT_OOM;
3476 	}
3477 
3478 	ret = __do_fault(vmf);
3479 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3480 		goto uncharge_out;
3481 	if (ret & VM_FAULT_DONE_COW)
3482 		return ret;
3483 
3484 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3485 	__SetPageUptodate(vmf->cow_page);
3486 
3487 	ret |= finish_fault(vmf);
3488 	unlock_page(vmf->page);
3489 	put_page(vmf->page);
3490 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3491 		goto uncharge_out;
3492 	return ret;
3493 uncharge_out:
3494 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3495 	put_page(vmf->cow_page);
3496 	return ret;
3497 }
3498 
3499 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3500 {
3501 	struct vm_area_struct *vma = vmf->vma;
3502 	vm_fault_t ret, tmp;
3503 
3504 	ret = __do_fault(vmf);
3505 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3506 		return ret;
3507 
3508 	/*
3509 	 * Check if the backing address space wants to know that the page is
3510 	 * about to become writable
3511 	 */
3512 	if (vma->vm_ops->page_mkwrite) {
3513 		unlock_page(vmf->page);
3514 		tmp = do_page_mkwrite(vmf);
3515 		if (unlikely(!tmp ||
3516 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3517 			put_page(vmf->page);
3518 			return tmp;
3519 		}
3520 	}
3521 
3522 	ret |= finish_fault(vmf);
3523 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3524 					VM_FAULT_RETRY))) {
3525 		unlock_page(vmf->page);
3526 		put_page(vmf->page);
3527 		return ret;
3528 	}
3529 
3530 	fault_dirty_shared_page(vma, vmf->page);
3531 	return ret;
3532 }
3533 
3534 /*
3535  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3536  * but allow concurrent faults).
3537  * The mmap_sem may have been released depending on flags and our
3538  * return value.  See filemap_fault() and __lock_page_or_retry().
3539  * If mmap_sem is released, vma may become invalid (for example
3540  * by other thread calling munmap()).
3541  */
3542 static vm_fault_t do_fault(struct vm_fault *vmf)
3543 {
3544 	struct vm_area_struct *vma = vmf->vma;
3545 	struct mm_struct *vm_mm = vma->vm_mm;
3546 	vm_fault_t ret;
3547 
3548 	/*
3549 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3550 	 */
3551 	if (!vma->vm_ops->fault) {
3552 		/*
3553 		 * If we find a migration pmd entry or a none pmd entry, which
3554 		 * should never happen, return SIGBUS
3555 		 */
3556 		if (unlikely(!pmd_present(*vmf->pmd)))
3557 			ret = VM_FAULT_SIGBUS;
3558 		else {
3559 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3560 						       vmf->pmd,
3561 						       vmf->address,
3562 						       &vmf->ptl);
3563 			/*
3564 			 * Make sure this is not a temporary clearing of pte
3565 			 * by holding ptl and checking again. A R/M/W update
3566 			 * of pte involves: take ptl, clearing the pte so that
3567 			 * we don't have concurrent modification by hardware
3568 			 * followed by an update.
3569 			 */
3570 			if (unlikely(pte_none(*vmf->pte)))
3571 				ret = VM_FAULT_SIGBUS;
3572 			else
3573 				ret = VM_FAULT_NOPAGE;
3574 
3575 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3576 		}
3577 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3578 		ret = do_read_fault(vmf);
3579 	else if (!(vma->vm_flags & VM_SHARED))
3580 		ret = do_cow_fault(vmf);
3581 	else
3582 		ret = do_shared_fault(vmf);
3583 
3584 	/* preallocated pagetable is unused: free it */
3585 	if (vmf->prealloc_pte) {
3586 		pte_free(vm_mm, vmf->prealloc_pte);
3587 		vmf->prealloc_pte = NULL;
3588 	}
3589 	return ret;
3590 }
3591 
3592 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3593 				unsigned long addr, int page_nid,
3594 				int *flags)
3595 {
3596 	get_page(page);
3597 
3598 	count_vm_numa_event(NUMA_HINT_FAULTS);
3599 	if (page_nid == numa_node_id()) {
3600 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3601 		*flags |= TNF_FAULT_LOCAL;
3602 	}
3603 
3604 	return mpol_misplaced(page, vma, addr);
3605 }
3606 
3607 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3608 {
3609 	struct vm_area_struct *vma = vmf->vma;
3610 	struct page *page = NULL;
3611 	int page_nid = NUMA_NO_NODE;
3612 	int last_cpupid;
3613 	int target_nid;
3614 	bool migrated = false;
3615 	pte_t pte, old_pte;
3616 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3617 	int flags = 0;
3618 
3619 	/*
3620 	 * The "pte" at this point cannot be used safely without
3621 	 * validation through pte_unmap_same(). It's of NUMA type but
3622 	 * the pfn may be screwed if the read is non atomic.
3623 	 */
3624 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3625 	spin_lock(vmf->ptl);
3626 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3627 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3628 		goto out;
3629 	}
3630 
3631 	/*
3632 	 * Make it present again, Depending on how arch implementes non
3633 	 * accessible ptes, some can allow access by kernel mode.
3634 	 */
3635 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3636 	pte = pte_modify(old_pte, vma->vm_page_prot);
3637 	pte = pte_mkyoung(pte);
3638 	if (was_writable)
3639 		pte = pte_mkwrite(pte);
3640 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3641 	update_mmu_cache(vma, vmf->address, vmf->pte);
3642 
3643 	page = vm_normal_page(vma, vmf->address, pte);
3644 	if (!page) {
3645 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3646 		return 0;
3647 	}
3648 
3649 	/* TODO: handle PTE-mapped THP */
3650 	if (PageCompound(page)) {
3651 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3652 		return 0;
3653 	}
3654 
3655 	/*
3656 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3657 	 * much anyway since they can be in shared cache state. This misses
3658 	 * the case where a mapping is writable but the process never writes
3659 	 * to it but pte_write gets cleared during protection updates and
3660 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3661 	 * background writeback, dirty balancing and application behaviour.
3662 	 */
3663 	if (!pte_write(pte))
3664 		flags |= TNF_NO_GROUP;
3665 
3666 	/*
3667 	 * Flag if the page is shared between multiple address spaces. This
3668 	 * is later used when determining whether to group tasks together
3669 	 */
3670 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3671 		flags |= TNF_SHARED;
3672 
3673 	last_cpupid = page_cpupid_last(page);
3674 	page_nid = page_to_nid(page);
3675 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3676 			&flags);
3677 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3678 	if (target_nid == NUMA_NO_NODE) {
3679 		put_page(page);
3680 		goto out;
3681 	}
3682 
3683 	/* Migrate to the requested node */
3684 	migrated = migrate_misplaced_page(page, vma, target_nid);
3685 	if (migrated) {
3686 		page_nid = target_nid;
3687 		flags |= TNF_MIGRATED;
3688 	} else
3689 		flags |= TNF_MIGRATE_FAIL;
3690 
3691 out:
3692 	if (page_nid != NUMA_NO_NODE)
3693 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3694 	return 0;
3695 }
3696 
3697 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3698 {
3699 	if (vma_is_anonymous(vmf->vma))
3700 		return do_huge_pmd_anonymous_page(vmf);
3701 	if (vmf->vma->vm_ops->huge_fault)
3702 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3703 	return VM_FAULT_FALLBACK;
3704 }
3705 
3706 /* `inline' is required to avoid gcc 4.1.2 build error */
3707 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3708 {
3709 	if (vma_is_anonymous(vmf->vma))
3710 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3711 	if (vmf->vma->vm_ops->huge_fault)
3712 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3713 
3714 	/* COW handled on pte level: split pmd */
3715 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3716 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3717 
3718 	return VM_FAULT_FALLBACK;
3719 }
3720 
3721 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3722 {
3723 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3724 }
3725 
3726 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3727 {
3728 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3729 	/* No support for anonymous transparent PUD pages yet */
3730 	if (vma_is_anonymous(vmf->vma))
3731 		return VM_FAULT_FALLBACK;
3732 	if (vmf->vma->vm_ops->huge_fault)
3733 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3734 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3735 	return VM_FAULT_FALLBACK;
3736 }
3737 
3738 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3739 {
3740 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3741 	/* No support for anonymous transparent PUD pages yet */
3742 	if (vma_is_anonymous(vmf->vma))
3743 		return VM_FAULT_FALLBACK;
3744 	if (vmf->vma->vm_ops->huge_fault)
3745 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3746 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3747 	return VM_FAULT_FALLBACK;
3748 }
3749 
3750 /*
3751  * These routines also need to handle stuff like marking pages dirty
3752  * and/or accessed for architectures that don't do it in hardware (most
3753  * RISC architectures).  The early dirtying is also good on the i386.
3754  *
3755  * There is also a hook called "update_mmu_cache()" that architectures
3756  * with external mmu caches can use to update those (ie the Sparc or
3757  * PowerPC hashed page tables that act as extended TLBs).
3758  *
3759  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3760  * concurrent faults).
3761  *
3762  * The mmap_sem may have been released depending on flags and our return value.
3763  * See filemap_fault() and __lock_page_or_retry().
3764  */
3765 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3766 {
3767 	pte_t entry;
3768 
3769 	if (unlikely(pmd_none(*vmf->pmd))) {
3770 		/*
3771 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3772 		 * want to allocate huge page, and if we expose page table
3773 		 * for an instant, it will be difficult to retract from
3774 		 * concurrent faults and from rmap lookups.
3775 		 */
3776 		vmf->pte = NULL;
3777 	} else {
3778 		/* See comment in pte_alloc_one_map() */
3779 		if (pmd_devmap_trans_unstable(vmf->pmd))
3780 			return 0;
3781 		/*
3782 		 * A regular pmd is established and it can't morph into a huge
3783 		 * pmd from under us anymore at this point because we hold the
3784 		 * mmap_sem read mode and khugepaged takes it in write mode.
3785 		 * So now it's safe to run pte_offset_map().
3786 		 */
3787 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3788 		vmf->orig_pte = *vmf->pte;
3789 
3790 		/*
3791 		 * some architectures can have larger ptes than wordsize,
3792 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3793 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3794 		 * accesses.  The code below just needs a consistent view
3795 		 * for the ifs and we later double check anyway with the
3796 		 * ptl lock held. So here a barrier will do.
3797 		 */
3798 		barrier();
3799 		if (pte_none(vmf->orig_pte)) {
3800 			pte_unmap(vmf->pte);
3801 			vmf->pte = NULL;
3802 		}
3803 	}
3804 
3805 	if (!vmf->pte) {
3806 		if (vma_is_anonymous(vmf->vma))
3807 			return do_anonymous_page(vmf);
3808 		else
3809 			return do_fault(vmf);
3810 	}
3811 
3812 	if (!pte_present(vmf->orig_pte))
3813 		return do_swap_page(vmf);
3814 
3815 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3816 		return do_numa_page(vmf);
3817 
3818 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3819 	spin_lock(vmf->ptl);
3820 	entry = vmf->orig_pte;
3821 	if (unlikely(!pte_same(*vmf->pte, entry)))
3822 		goto unlock;
3823 	if (vmf->flags & FAULT_FLAG_WRITE) {
3824 		if (!pte_write(entry))
3825 			return do_wp_page(vmf);
3826 		entry = pte_mkdirty(entry);
3827 	}
3828 	entry = pte_mkyoung(entry);
3829 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3830 				vmf->flags & FAULT_FLAG_WRITE)) {
3831 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3832 	} else {
3833 		/*
3834 		 * This is needed only for protection faults but the arch code
3835 		 * is not yet telling us if this is a protection fault or not.
3836 		 * This still avoids useless tlb flushes for .text page faults
3837 		 * with threads.
3838 		 */
3839 		if (vmf->flags & FAULT_FLAG_WRITE)
3840 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3841 	}
3842 unlock:
3843 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3844 	return 0;
3845 }
3846 
3847 /*
3848  * By the time we get here, we already hold the mm semaphore
3849  *
3850  * The mmap_sem may have been released depending on flags and our
3851  * return value.  See filemap_fault() and __lock_page_or_retry().
3852  */
3853 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3854 		unsigned long address, unsigned int flags)
3855 {
3856 	struct vm_fault vmf = {
3857 		.vma = vma,
3858 		.address = address & PAGE_MASK,
3859 		.flags = flags,
3860 		.pgoff = linear_page_index(vma, address),
3861 		.gfp_mask = __get_fault_gfp_mask(vma),
3862 	};
3863 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
3864 	struct mm_struct *mm = vma->vm_mm;
3865 	pgd_t *pgd;
3866 	p4d_t *p4d;
3867 	vm_fault_t ret;
3868 
3869 	pgd = pgd_offset(mm, address);
3870 	p4d = p4d_alloc(mm, pgd, address);
3871 	if (!p4d)
3872 		return VM_FAULT_OOM;
3873 
3874 	vmf.pud = pud_alloc(mm, p4d, address);
3875 	if (!vmf.pud)
3876 		return VM_FAULT_OOM;
3877 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3878 		ret = create_huge_pud(&vmf);
3879 		if (!(ret & VM_FAULT_FALLBACK))
3880 			return ret;
3881 	} else {
3882 		pud_t orig_pud = *vmf.pud;
3883 
3884 		barrier();
3885 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3886 
3887 			/* NUMA case for anonymous PUDs would go here */
3888 
3889 			if (dirty && !pud_write(orig_pud)) {
3890 				ret = wp_huge_pud(&vmf, orig_pud);
3891 				if (!(ret & VM_FAULT_FALLBACK))
3892 					return ret;
3893 			} else {
3894 				huge_pud_set_accessed(&vmf, orig_pud);
3895 				return 0;
3896 			}
3897 		}
3898 	}
3899 
3900 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3901 	if (!vmf.pmd)
3902 		return VM_FAULT_OOM;
3903 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3904 		ret = create_huge_pmd(&vmf);
3905 		if (!(ret & VM_FAULT_FALLBACK))
3906 			return ret;
3907 	} else {
3908 		pmd_t orig_pmd = *vmf.pmd;
3909 
3910 		barrier();
3911 		if (unlikely(is_swap_pmd(orig_pmd))) {
3912 			VM_BUG_ON(thp_migration_supported() &&
3913 					  !is_pmd_migration_entry(orig_pmd));
3914 			if (is_pmd_migration_entry(orig_pmd))
3915 				pmd_migration_entry_wait(mm, vmf.pmd);
3916 			return 0;
3917 		}
3918 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3919 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3920 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3921 
3922 			if (dirty && !pmd_write(orig_pmd)) {
3923 				ret = wp_huge_pmd(&vmf, orig_pmd);
3924 				if (!(ret & VM_FAULT_FALLBACK))
3925 					return ret;
3926 			} else {
3927 				huge_pmd_set_accessed(&vmf, orig_pmd);
3928 				return 0;
3929 			}
3930 		}
3931 	}
3932 
3933 	return handle_pte_fault(&vmf);
3934 }
3935 
3936 /*
3937  * By the time we get here, we already hold the mm semaphore
3938  *
3939  * The mmap_sem may have been released depending on flags and our
3940  * return value.  See filemap_fault() and __lock_page_or_retry().
3941  */
3942 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3943 		unsigned int flags)
3944 {
3945 	vm_fault_t ret;
3946 
3947 	__set_current_state(TASK_RUNNING);
3948 
3949 	count_vm_event(PGFAULT);
3950 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
3951 
3952 	/* do counter updates before entering really critical section. */
3953 	check_sync_rss_stat(current);
3954 
3955 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3956 					    flags & FAULT_FLAG_INSTRUCTION,
3957 					    flags & FAULT_FLAG_REMOTE))
3958 		return VM_FAULT_SIGSEGV;
3959 
3960 	/*
3961 	 * Enable the memcg OOM handling for faults triggered in user
3962 	 * space.  Kernel faults are handled more gracefully.
3963 	 */
3964 	if (flags & FAULT_FLAG_USER)
3965 		mem_cgroup_enter_user_fault();
3966 
3967 	if (unlikely(is_vm_hugetlb_page(vma)))
3968 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3969 	else
3970 		ret = __handle_mm_fault(vma, address, flags);
3971 
3972 	if (flags & FAULT_FLAG_USER) {
3973 		mem_cgroup_exit_user_fault();
3974 		/*
3975 		 * The task may have entered a memcg OOM situation but
3976 		 * if the allocation error was handled gracefully (no
3977 		 * VM_FAULT_OOM), there is no need to kill anything.
3978 		 * Just clean up the OOM state peacefully.
3979 		 */
3980 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3981 			mem_cgroup_oom_synchronize(false);
3982 	}
3983 
3984 	return ret;
3985 }
3986 EXPORT_SYMBOL_GPL(handle_mm_fault);
3987 
3988 #ifndef __PAGETABLE_P4D_FOLDED
3989 /*
3990  * Allocate p4d page table.
3991  * We've already handled the fast-path in-line.
3992  */
3993 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3994 {
3995 	p4d_t *new = p4d_alloc_one(mm, address);
3996 	if (!new)
3997 		return -ENOMEM;
3998 
3999 	smp_wmb(); /* See comment in __pte_alloc */
4000 
4001 	spin_lock(&mm->page_table_lock);
4002 	if (pgd_present(*pgd))		/* Another has populated it */
4003 		p4d_free(mm, new);
4004 	else
4005 		pgd_populate(mm, pgd, new);
4006 	spin_unlock(&mm->page_table_lock);
4007 	return 0;
4008 }
4009 #endif /* __PAGETABLE_P4D_FOLDED */
4010 
4011 #ifndef __PAGETABLE_PUD_FOLDED
4012 /*
4013  * Allocate page upper directory.
4014  * We've already handled the fast-path in-line.
4015  */
4016 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4017 {
4018 	pud_t *new = pud_alloc_one(mm, address);
4019 	if (!new)
4020 		return -ENOMEM;
4021 
4022 	smp_wmb(); /* See comment in __pte_alloc */
4023 
4024 	spin_lock(&mm->page_table_lock);
4025 #ifndef __ARCH_HAS_5LEVEL_HACK
4026 	if (!p4d_present(*p4d)) {
4027 		mm_inc_nr_puds(mm);
4028 		p4d_populate(mm, p4d, new);
4029 	} else	/* Another has populated it */
4030 		pud_free(mm, new);
4031 #else
4032 	if (!pgd_present(*p4d)) {
4033 		mm_inc_nr_puds(mm);
4034 		pgd_populate(mm, p4d, new);
4035 	} else	/* Another has populated it */
4036 		pud_free(mm, new);
4037 #endif /* __ARCH_HAS_5LEVEL_HACK */
4038 	spin_unlock(&mm->page_table_lock);
4039 	return 0;
4040 }
4041 #endif /* __PAGETABLE_PUD_FOLDED */
4042 
4043 #ifndef __PAGETABLE_PMD_FOLDED
4044 /*
4045  * Allocate page middle directory.
4046  * We've already handled the fast-path in-line.
4047  */
4048 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4049 {
4050 	spinlock_t *ptl;
4051 	pmd_t *new = pmd_alloc_one(mm, address);
4052 	if (!new)
4053 		return -ENOMEM;
4054 
4055 	smp_wmb(); /* See comment in __pte_alloc */
4056 
4057 	ptl = pud_lock(mm, pud);
4058 #ifndef __ARCH_HAS_4LEVEL_HACK
4059 	if (!pud_present(*pud)) {
4060 		mm_inc_nr_pmds(mm);
4061 		pud_populate(mm, pud, new);
4062 	} else	/* Another has populated it */
4063 		pmd_free(mm, new);
4064 #else
4065 	if (!pgd_present(*pud)) {
4066 		mm_inc_nr_pmds(mm);
4067 		pgd_populate(mm, pud, new);
4068 	} else /* Another has populated it */
4069 		pmd_free(mm, new);
4070 #endif /* __ARCH_HAS_4LEVEL_HACK */
4071 	spin_unlock(ptl);
4072 	return 0;
4073 }
4074 #endif /* __PAGETABLE_PMD_FOLDED */
4075 
4076 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4077 			    struct mmu_notifier_range *range,
4078 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4079 {
4080 	pgd_t *pgd;
4081 	p4d_t *p4d;
4082 	pud_t *pud;
4083 	pmd_t *pmd;
4084 	pte_t *ptep;
4085 
4086 	pgd = pgd_offset(mm, address);
4087 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4088 		goto out;
4089 
4090 	p4d = p4d_offset(pgd, address);
4091 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4092 		goto out;
4093 
4094 	pud = pud_offset(p4d, address);
4095 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4096 		goto out;
4097 
4098 	pmd = pmd_offset(pud, address);
4099 	VM_BUG_ON(pmd_trans_huge(*pmd));
4100 
4101 	if (pmd_huge(*pmd)) {
4102 		if (!pmdpp)
4103 			goto out;
4104 
4105 		if (range) {
4106 			mmu_notifier_range_init(range, mm, address & PMD_MASK,
4107 					     (address & PMD_MASK) + PMD_SIZE);
4108 			mmu_notifier_invalidate_range_start(range);
4109 		}
4110 		*ptlp = pmd_lock(mm, pmd);
4111 		if (pmd_huge(*pmd)) {
4112 			*pmdpp = pmd;
4113 			return 0;
4114 		}
4115 		spin_unlock(*ptlp);
4116 		if (range)
4117 			mmu_notifier_invalidate_range_end(range);
4118 	}
4119 
4120 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4121 		goto out;
4122 
4123 	if (range) {
4124 		mmu_notifier_range_init(range, mm, address & PAGE_MASK,
4125 				     (address & PAGE_MASK) + PAGE_SIZE);
4126 		mmu_notifier_invalidate_range_start(range);
4127 	}
4128 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4129 	if (!pte_present(*ptep))
4130 		goto unlock;
4131 	*ptepp = ptep;
4132 	return 0;
4133 unlock:
4134 	pte_unmap_unlock(ptep, *ptlp);
4135 	if (range)
4136 		mmu_notifier_invalidate_range_end(range);
4137 out:
4138 	return -EINVAL;
4139 }
4140 
4141 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4142 			     pte_t **ptepp, spinlock_t **ptlp)
4143 {
4144 	int res;
4145 
4146 	/* (void) is needed to make gcc happy */
4147 	(void) __cond_lock(*ptlp,
4148 			   !(res = __follow_pte_pmd(mm, address, NULL,
4149 						    ptepp, NULL, ptlp)));
4150 	return res;
4151 }
4152 
4153 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4154 		   struct mmu_notifier_range *range,
4155 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4156 {
4157 	int res;
4158 
4159 	/* (void) is needed to make gcc happy */
4160 	(void) __cond_lock(*ptlp,
4161 			   !(res = __follow_pte_pmd(mm, address, range,
4162 						    ptepp, pmdpp, ptlp)));
4163 	return res;
4164 }
4165 EXPORT_SYMBOL(follow_pte_pmd);
4166 
4167 /**
4168  * follow_pfn - look up PFN at a user virtual address
4169  * @vma: memory mapping
4170  * @address: user virtual address
4171  * @pfn: location to store found PFN
4172  *
4173  * Only IO mappings and raw PFN mappings are allowed.
4174  *
4175  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4176  */
4177 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4178 	unsigned long *pfn)
4179 {
4180 	int ret = -EINVAL;
4181 	spinlock_t *ptl;
4182 	pte_t *ptep;
4183 
4184 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4185 		return ret;
4186 
4187 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4188 	if (ret)
4189 		return ret;
4190 	*pfn = pte_pfn(*ptep);
4191 	pte_unmap_unlock(ptep, ptl);
4192 	return 0;
4193 }
4194 EXPORT_SYMBOL(follow_pfn);
4195 
4196 #ifdef CONFIG_HAVE_IOREMAP_PROT
4197 int follow_phys(struct vm_area_struct *vma,
4198 		unsigned long address, unsigned int flags,
4199 		unsigned long *prot, resource_size_t *phys)
4200 {
4201 	int ret = -EINVAL;
4202 	pte_t *ptep, pte;
4203 	spinlock_t *ptl;
4204 
4205 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4206 		goto out;
4207 
4208 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4209 		goto out;
4210 	pte = *ptep;
4211 
4212 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4213 		goto unlock;
4214 
4215 	*prot = pgprot_val(pte_pgprot(pte));
4216 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4217 
4218 	ret = 0;
4219 unlock:
4220 	pte_unmap_unlock(ptep, ptl);
4221 out:
4222 	return ret;
4223 }
4224 
4225 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4226 			void *buf, int len, int write)
4227 {
4228 	resource_size_t phys_addr;
4229 	unsigned long prot = 0;
4230 	void __iomem *maddr;
4231 	int offset = addr & (PAGE_SIZE-1);
4232 
4233 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4234 		return -EINVAL;
4235 
4236 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4237 	if (!maddr)
4238 		return -ENOMEM;
4239 
4240 	if (write)
4241 		memcpy_toio(maddr + offset, buf, len);
4242 	else
4243 		memcpy_fromio(buf, maddr + offset, len);
4244 	iounmap(maddr);
4245 
4246 	return len;
4247 }
4248 EXPORT_SYMBOL_GPL(generic_access_phys);
4249 #endif
4250 
4251 /*
4252  * Access another process' address space as given in mm.  If non-NULL, use the
4253  * given task for page fault accounting.
4254  */
4255 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4256 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4257 {
4258 	struct vm_area_struct *vma;
4259 	void *old_buf = buf;
4260 	int write = gup_flags & FOLL_WRITE;
4261 
4262 	down_read(&mm->mmap_sem);
4263 	/* ignore errors, just check how much was successfully transferred */
4264 	while (len) {
4265 		int bytes, ret, offset;
4266 		void *maddr;
4267 		struct page *page = NULL;
4268 
4269 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4270 				gup_flags, &page, &vma, NULL);
4271 		if (ret <= 0) {
4272 #ifndef CONFIG_HAVE_IOREMAP_PROT
4273 			break;
4274 #else
4275 			/*
4276 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4277 			 * we can access using slightly different code.
4278 			 */
4279 			vma = find_vma(mm, addr);
4280 			if (!vma || vma->vm_start > addr)
4281 				break;
4282 			if (vma->vm_ops && vma->vm_ops->access)
4283 				ret = vma->vm_ops->access(vma, addr, buf,
4284 							  len, write);
4285 			if (ret <= 0)
4286 				break;
4287 			bytes = ret;
4288 #endif
4289 		} else {
4290 			bytes = len;
4291 			offset = addr & (PAGE_SIZE-1);
4292 			if (bytes > PAGE_SIZE-offset)
4293 				bytes = PAGE_SIZE-offset;
4294 
4295 			maddr = kmap(page);
4296 			if (write) {
4297 				copy_to_user_page(vma, page, addr,
4298 						  maddr + offset, buf, bytes);
4299 				set_page_dirty_lock(page);
4300 			} else {
4301 				copy_from_user_page(vma, page, addr,
4302 						    buf, maddr + offset, bytes);
4303 			}
4304 			kunmap(page);
4305 			put_page(page);
4306 		}
4307 		len -= bytes;
4308 		buf += bytes;
4309 		addr += bytes;
4310 	}
4311 	up_read(&mm->mmap_sem);
4312 
4313 	return buf - old_buf;
4314 }
4315 
4316 /**
4317  * access_remote_vm - access another process' address space
4318  * @mm:		the mm_struct of the target address space
4319  * @addr:	start address to access
4320  * @buf:	source or destination buffer
4321  * @len:	number of bytes to transfer
4322  * @gup_flags:	flags modifying lookup behaviour
4323  *
4324  * The caller must hold a reference on @mm.
4325  *
4326  * Return: number of bytes copied from source to destination.
4327  */
4328 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4329 		void *buf, int len, unsigned int gup_flags)
4330 {
4331 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4332 }
4333 
4334 /*
4335  * Access another process' address space.
4336  * Source/target buffer must be kernel space,
4337  * Do not walk the page table directly, use get_user_pages
4338  */
4339 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4340 		void *buf, int len, unsigned int gup_flags)
4341 {
4342 	struct mm_struct *mm;
4343 	int ret;
4344 
4345 	mm = get_task_mm(tsk);
4346 	if (!mm)
4347 		return 0;
4348 
4349 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4350 
4351 	mmput(mm);
4352 
4353 	return ret;
4354 }
4355 EXPORT_SYMBOL_GPL(access_process_vm);
4356 
4357 /*
4358  * Print the name of a VMA.
4359  */
4360 void print_vma_addr(char *prefix, unsigned long ip)
4361 {
4362 	struct mm_struct *mm = current->mm;
4363 	struct vm_area_struct *vma;
4364 
4365 	/*
4366 	 * we might be running from an atomic context so we cannot sleep
4367 	 */
4368 	if (!down_read_trylock(&mm->mmap_sem))
4369 		return;
4370 
4371 	vma = find_vma(mm, ip);
4372 	if (vma && vma->vm_file) {
4373 		struct file *f = vma->vm_file;
4374 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4375 		if (buf) {
4376 			char *p;
4377 
4378 			p = file_path(f, buf, PAGE_SIZE);
4379 			if (IS_ERR(p))
4380 				p = "?";
4381 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4382 					vma->vm_start,
4383 					vma->vm_end - vma->vm_start);
4384 			free_page((unsigned long)buf);
4385 		}
4386 	}
4387 	up_read(&mm->mmap_sem);
4388 }
4389 
4390 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4391 void __might_fault(const char *file, int line)
4392 {
4393 	/*
4394 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4395 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4396 	 * get paged out, therefore we'll never actually fault, and the
4397 	 * below annotations will generate false positives.
4398 	 */
4399 	if (uaccess_kernel())
4400 		return;
4401 	if (pagefault_disabled())
4402 		return;
4403 	__might_sleep(file, line, 0);
4404 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4405 	if (current->mm)
4406 		might_lock_read(&current->mm->mmap_sem);
4407 #endif
4408 }
4409 EXPORT_SYMBOL(__might_fault);
4410 #endif
4411 
4412 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4413 /*
4414  * Process all subpages of the specified huge page with the specified
4415  * operation.  The target subpage will be processed last to keep its
4416  * cache lines hot.
4417  */
4418 static inline void process_huge_page(
4419 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4420 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4421 	void *arg)
4422 {
4423 	int i, n, base, l;
4424 	unsigned long addr = addr_hint &
4425 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4426 
4427 	/* Process target subpage last to keep its cache lines hot */
4428 	might_sleep();
4429 	n = (addr_hint - addr) / PAGE_SIZE;
4430 	if (2 * n <= pages_per_huge_page) {
4431 		/* If target subpage in first half of huge page */
4432 		base = 0;
4433 		l = n;
4434 		/* Process subpages at the end of huge page */
4435 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4436 			cond_resched();
4437 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4438 		}
4439 	} else {
4440 		/* If target subpage in second half of huge page */
4441 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4442 		l = pages_per_huge_page - n;
4443 		/* Process subpages at the begin of huge page */
4444 		for (i = 0; i < base; i++) {
4445 			cond_resched();
4446 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4447 		}
4448 	}
4449 	/*
4450 	 * Process remaining subpages in left-right-left-right pattern
4451 	 * towards the target subpage
4452 	 */
4453 	for (i = 0; i < l; i++) {
4454 		int left_idx = base + i;
4455 		int right_idx = base + 2 * l - 1 - i;
4456 
4457 		cond_resched();
4458 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4459 		cond_resched();
4460 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4461 	}
4462 }
4463 
4464 static void clear_gigantic_page(struct page *page,
4465 				unsigned long addr,
4466 				unsigned int pages_per_huge_page)
4467 {
4468 	int i;
4469 	struct page *p = page;
4470 
4471 	might_sleep();
4472 	for (i = 0; i < pages_per_huge_page;
4473 	     i++, p = mem_map_next(p, page, i)) {
4474 		cond_resched();
4475 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4476 	}
4477 }
4478 
4479 static void clear_subpage(unsigned long addr, int idx, void *arg)
4480 {
4481 	struct page *page = arg;
4482 
4483 	clear_user_highpage(page + idx, addr);
4484 }
4485 
4486 void clear_huge_page(struct page *page,
4487 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4488 {
4489 	unsigned long addr = addr_hint &
4490 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4491 
4492 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4493 		clear_gigantic_page(page, addr, pages_per_huge_page);
4494 		return;
4495 	}
4496 
4497 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4498 }
4499 
4500 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4501 				    unsigned long addr,
4502 				    struct vm_area_struct *vma,
4503 				    unsigned int pages_per_huge_page)
4504 {
4505 	int i;
4506 	struct page *dst_base = dst;
4507 	struct page *src_base = src;
4508 
4509 	for (i = 0; i < pages_per_huge_page; ) {
4510 		cond_resched();
4511 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4512 
4513 		i++;
4514 		dst = mem_map_next(dst, dst_base, i);
4515 		src = mem_map_next(src, src_base, i);
4516 	}
4517 }
4518 
4519 struct copy_subpage_arg {
4520 	struct page *dst;
4521 	struct page *src;
4522 	struct vm_area_struct *vma;
4523 };
4524 
4525 static void copy_subpage(unsigned long addr, int idx, void *arg)
4526 {
4527 	struct copy_subpage_arg *copy_arg = arg;
4528 
4529 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4530 			   addr, copy_arg->vma);
4531 }
4532 
4533 void copy_user_huge_page(struct page *dst, struct page *src,
4534 			 unsigned long addr_hint, struct vm_area_struct *vma,
4535 			 unsigned int pages_per_huge_page)
4536 {
4537 	unsigned long addr = addr_hint &
4538 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4539 	struct copy_subpage_arg arg = {
4540 		.dst = dst,
4541 		.src = src,
4542 		.vma = vma,
4543 	};
4544 
4545 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4546 		copy_user_gigantic_page(dst, src, addr, vma,
4547 					pages_per_huge_page);
4548 		return;
4549 	}
4550 
4551 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4552 }
4553 
4554 long copy_huge_page_from_user(struct page *dst_page,
4555 				const void __user *usr_src,
4556 				unsigned int pages_per_huge_page,
4557 				bool allow_pagefault)
4558 {
4559 	void *src = (void *)usr_src;
4560 	void *page_kaddr;
4561 	unsigned long i, rc = 0;
4562 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4563 
4564 	for (i = 0; i < pages_per_huge_page; i++) {
4565 		if (allow_pagefault)
4566 			page_kaddr = kmap(dst_page + i);
4567 		else
4568 			page_kaddr = kmap_atomic(dst_page + i);
4569 		rc = copy_from_user(page_kaddr,
4570 				(const void __user *)(src + i * PAGE_SIZE),
4571 				PAGE_SIZE);
4572 		if (allow_pagefault)
4573 			kunmap(dst_page + i);
4574 		else
4575 			kunmap_atomic(page_kaddr);
4576 
4577 		ret_val -= (PAGE_SIZE - rc);
4578 		if (rc)
4579 			break;
4580 
4581 		cond_resched();
4582 	}
4583 	return ret_val;
4584 }
4585 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4586 
4587 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4588 
4589 static struct kmem_cache *page_ptl_cachep;
4590 
4591 void __init ptlock_cache_init(void)
4592 {
4593 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4594 			SLAB_PANIC, NULL);
4595 }
4596 
4597 bool ptlock_alloc(struct page *page)
4598 {
4599 	spinlock_t *ptl;
4600 
4601 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4602 	if (!ptl)
4603 		return false;
4604 	page->ptl = ptl;
4605 	return true;
4606 }
4607 
4608 void ptlock_free(struct page *page)
4609 {
4610 	kmem_cache_free(page_ptl_cachep, page->ptl);
4611 }
4612 #endif
4613