xref: /linux/mm/memory.c (revision 28b2ee20c7cba812b6f2ccf6d722cf86d00a84dc)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/tlb.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
60 
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
63 
64 #ifndef CONFIG_NEED_MULTIPLE_NODES
65 /* use the per-pgdat data instead for discontigmem - mbligh */
66 unsigned long max_mapnr;
67 struct page *mem_map;
68 
69 EXPORT_SYMBOL(max_mapnr);
70 EXPORT_SYMBOL(mem_map);
71 #endif
72 
73 unsigned long num_physpages;
74 /*
75  * A number of key systems in x86 including ioremap() rely on the assumption
76  * that high_memory defines the upper bound on direct map memory, then end
77  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
78  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
79  * and ZONE_HIGHMEM.
80  */
81 void * high_memory;
82 
83 EXPORT_SYMBOL(num_physpages);
84 EXPORT_SYMBOL(high_memory);
85 
86 /*
87  * Randomize the address space (stacks, mmaps, brk, etc.).
88  *
89  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90  *   as ancient (libc5 based) binaries can segfault. )
91  */
92 int randomize_va_space __read_mostly =
93 #ifdef CONFIG_COMPAT_BRK
94 					1;
95 #else
96 					2;
97 #endif
98 
99 static int __init disable_randmaps(char *s)
100 {
101 	randomize_va_space = 0;
102 	return 1;
103 }
104 __setup("norandmaps", disable_randmaps);
105 
106 
107 /*
108  * If a p?d_bad entry is found while walking page tables, report
109  * the error, before resetting entry to p?d_none.  Usually (but
110  * very seldom) called out from the p?d_none_or_clear_bad macros.
111  */
112 
113 void pgd_clear_bad(pgd_t *pgd)
114 {
115 	pgd_ERROR(*pgd);
116 	pgd_clear(pgd);
117 }
118 
119 void pud_clear_bad(pud_t *pud)
120 {
121 	pud_ERROR(*pud);
122 	pud_clear(pud);
123 }
124 
125 void pmd_clear_bad(pmd_t *pmd)
126 {
127 	pmd_ERROR(*pmd);
128 	pmd_clear(pmd);
129 }
130 
131 /*
132  * Note: this doesn't free the actual pages themselves. That
133  * has been handled earlier when unmapping all the memory regions.
134  */
135 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
136 {
137 	pgtable_t token = pmd_pgtable(*pmd);
138 	pmd_clear(pmd);
139 	pte_free_tlb(tlb, token);
140 	tlb->mm->nr_ptes--;
141 }
142 
143 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
144 				unsigned long addr, unsigned long end,
145 				unsigned long floor, unsigned long ceiling)
146 {
147 	pmd_t *pmd;
148 	unsigned long next;
149 	unsigned long start;
150 
151 	start = addr;
152 	pmd = pmd_offset(pud, addr);
153 	do {
154 		next = pmd_addr_end(addr, end);
155 		if (pmd_none_or_clear_bad(pmd))
156 			continue;
157 		free_pte_range(tlb, pmd);
158 	} while (pmd++, addr = next, addr != end);
159 
160 	start &= PUD_MASK;
161 	if (start < floor)
162 		return;
163 	if (ceiling) {
164 		ceiling &= PUD_MASK;
165 		if (!ceiling)
166 			return;
167 	}
168 	if (end - 1 > ceiling - 1)
169 		return;
170 
171 	pmd = pmd_offset(pud, start);
172 	pud_clear(pud);
173 	pmd_free_tlb(tlb, pmd);
174 }
175 
176 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
177 				unsigned long addr, unsigned long end,
178 				unsigned long floor, unsigned long ceiling)
179 {
180 	pud_t *pud;
181 	unsigned long next;
182 	unsigned long start;
183 
184 	start = addr;
185 	pud = pud_offset(pgd, addr);
186 	do {
187 		next = pud_addr_end(addr, end);
188 		if (pud_none_or_clear_bad(pud))
189 			continue;
190 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
191 	} while (pud++, addr = next, addr != end);
192 
193 	start &= PGDIR_MASK;
194 	if (start < floor)
195 		return;
196 	if (ceiling) {
197 		ceiling &= PGDIR_MASK;
198 		if (!ceiling)
199 			return;
200 	}
201 	if (end - 1 > ceiling - 1)
202 		return;
203 
204 	pud = pud_offset(pgd, start);
205 	pgd_clear(pgd);
206 	pud_free_tlb(tlb, pud);
207 }
208 
209 /*
210  * This function frees user-level page tables of a process.
211  *
212  * Must be called with pagetable lock held.
213  */
214 void free_pgd_range(struct mmu_gather **tlb,
215 			unsigned long addr, unsigned long end,
216 			unsigned long floor, unsigned long ceiling)
217 {
218 	pgd_t *pgd;
219 	unsigned long next;
220 	unsigned long start;
221 
222 	/*
223 	 * The next few lines have given us lots of grief...
224 	 *
225 	 * Why are we testing PMD* at this top level?  Because often
226 	 * there will be no work to do at all, and we'd prefer not to
227 	 * go all the way down to the bottom just to discover that.
228 	 *
229 	 * Why all these "- 1"s?  Because 0 represents both the bottom
230 	 * of the address space and the top of it (using -1 for the
231 	 * top wouldn't help much: the masks would do the wrong thing).
232 	 * The rule is that addr 0 and floor 0 refer to the bottom of
233 	 * the address space, but end 0 and ceiling 0 refer to the top
234 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
235 	 * that end 0 case should be mythical).
236 	 *
237 	 * Wherever addr is brought up or ceiling brought down, we must
238 	 * be careful to reject "the opposite 0" before it confuses the
239 	 * subsequent tests.  But what about where end is brought down
240 	 * by PMD_SIZE below? no, end can't go down to 0 there.
241 	 *
242 	 * Whereas we round start (addr) and ceiling down, by different
243 	 * masks at different levels, in order to test whether a table
244 	 * now has no other vmas using it, so can be freed, we don't
245 	 * bother to round floor or end up - the tests don't need that.
246 	 */
247 
248 	addr &= PMD_MASK;
249 	if (addr < floor) {
250 		addr += PMD_SIZE;
251 		if (!addr)
252 			return;
253 	}
254 	if (ceiling) {
255 		ceiling &= PMD_MASK;
256 		if (!ceiling)
257 			return;
258 	}
259 	if (end - 1 > ceiling - 1)
260 		end -= PMD_SIZE;
261 	if (addr > end - 1)
262 		return;
263 
264 	start = addr;
265 	pgd = pgd_offset((*tlb)->mm, addr);
266 	do {
267 		next = pgd_addr_end(addr, end);
268 		if (pgd_none_or_clear_bad(pgd))
269 			continue;
270 		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
271 	} while (pgd++, addr = next, addr != end);
272 }
273 
274 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
275 		unsigned long floor, unsigned long ceiling)
276 {
277 	while (vma) {
278 		struct vm_area_struct *next = vma->vm_next;
279 		unsigned long addr = vma->vm_start;
280 
281 		/*
282 		 * Hide vma from rmap and vmtruncate before freeing pgtables
283 		 */
284 		anon_vma_unlink(vma);
285 		unlink_file_vma(vma);
286 
287 		if (is_vm_hugetlb_page(vma)) {
288 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
289 				floor, next? next->vm_start: ceiling);
290 		} else {
291 			/*
292 			 * Optimization: gather nearby vmas into one call down
293 			 */
294 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
295 			       && !is_vm_hugetlb_page(next)) {
296 				vma = next;
297 				next = vma->vm_next;
298 				anon_vma_unlink(vma);
299 				unlink_file_vma(vma);
300 			}
301 			free_pgd_range(tlb, addr, vma->vm_end,
302 				floor, next? next->vm_start: ceiling);
303 		}
304 		vma = next;
305 	}
306 }
307 
308 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
309 {
310 	pgtable_t new = pte_alloc_one(mm, address);
311 	if (!new)
312 		return -ENOMEM;
313 
314 	/*
315 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
316 	 * visible before the pte is made visible to other CPUs by being
317 	 * put into page tables.
318 	 *
319 	 * The other side of the story is the pointer chasing in the page
320 	 * table walking code (when walking the page table without locking;
321 	 * ie. most of the time). Fortunately, these data accesses consist
322 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
323 	 * being the notable exception) will already guarantee loads are
324 	 * seen in-order. See the alpha page table accessors for the
325 	 * smp_read_barrier_depends() barriers in page table walking code.
326 	 */
327 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
328 
329 	spin_lock(&mm->page_table_lock);
330 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
331 		mm->nr_ptes++;
332 		pmd_populate(mm, pmd, new);
333 		new = NULL;
334 	}
335 	spin_unlock(&mm->page_table_lock);
336 	if (new)
337 		pte_free(mm, new);
338 	return 0;
339 }
340 
341 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
342 {
343 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
344 	if (!new)
345 		return -ENOMEM;
346 
347 	smp_wmb(); /* See comment in __pte_alloc */
348 
349 	spin_lock(&init_mm.page_table_lock);
350 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
351 		pmd_populate_kernel(&init_mm, pmd, new);
352 		new = NULL;
353 	}
354 	spin_unlock(&init_mm.page_table_lock);
355 	if (new)
356 		pte_free_kernel(&init_mm, new);
357 	return 0;
358 }
359 
360 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
361 {
362 	if (file_rss)
363 		add_mm_counter(mm, file_rss, file_rss);
364 	if (anon_rss)
365 		add_mm_counter(mm, anon_rss, anon_rss);
366 }
367 
368 /*
369  * This function is called to print an error when a bad pte
370  * is found. For example, we might have a PFN-mapped pte in
371  * a region that doesn't allow it.
372  *
373  * The calling function must still handle the error.
374  */
375 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
376 {
377 	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
378 			"vm_flags = %lx, vaddr = %lx\n",
379 		(long long)pte_val(pte),
380 		(vma->vm_mm == current->mm ? current->comm : "???"),
381 		vma->vm_flags, vaddr);
382 	dump_stack();
383 }
384 
385 static inline int is_cow_mapping(unsigned int flags)
386 {
387 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
388 }
389 
390 /*
391  * vm_normal_page -- This function gets the "struct page" associated with a pte.
392  *
393  * "Special" mappings do not wish to be associated with a "struct page" (either
394  * it doesn't exist, or it exists but they don't want to touch it). In this
395  * case, NULL is returned here. "Normal" mappings do have a struct page.
396  *
397  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
398  * pte bit, in which case this function is trivial. Secondly, an architecture
399  * may not have a spare pte bit, which requires a more complicated scheme,
400  * described below.
401  *
402  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
403  * special mapping (even if there are underlying and valid "struct pages").
404  * COWed pages of a VM_PFNMAP are always normal.
405  *
406  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
407  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
408  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
409  * mapping will always honor the rule
410  *
411  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
412  *
413  * And for normal mappings this is false.
414  *
415  * This restricts such mappings to be a linear translation from virtual address
416  * to pfn. To get around this restriction, we allow arbitrary mappings so long
417  * as the vma is not a COW mapping; in that case, we know that all ptes are
418  * special (because none can have been COWed).
419  *
420  *
421  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
422  *
423  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
424  * page" backing, however the difference is that _all_ pages with a struct
425  * page (that is, those where pfn_valid is true) are refcounted and considered
426  * normal pages by the VM. The disadvantage is that pages are refcounted
427  * (which can be slower and simply not an option for some PFNMAP users). The
428  * advantage is that we don't have to follow the strict linearity rule of
429  * PFNMAP mappings in order to support COWable mappings.
430  *
431  */
432 #ifdef __HAVE_ARCH_PTE_SPECIAL
433 # define HAVE_PTE_SPECIAL 1
434 #else
435 # define HAVE_PTE_SPECIAL 0
436 #endif
437 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
438 				pte_t pte)
439 {
440 	unsigned long pfn;
441 
442 	if (HAVE_PTE_SPECIAL) {
443 		if (likely(!pte_special(pte))) {
444 			VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
445 			return pte_page(pte);
446 		}
447 		VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
448 		return NULL;
449 	}
450 
451 	/* !HAVE_PTE_SPECIAL case follows: */
452 
453 	pfn = pte_pfn(pte);
454 
455 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
456 		if (vma->vm_flags & VM_MIXEDMAP) {
457 			if (!pfn_valid(pfn))
458 				return NULL;
459 			goto out;
460 		} else {
461 			unsigned long off;
462 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
463 			if (pfn == vma->vm_pgoff + off)
464 				return NULL;
465 			if (!is_cow_mapping(vma->vm_flags))
466 				return NULL;
467 		}
468 	}
469 
470 	VM_BUG_ON(!pfn_valid(pfn));
471 
472 	/*
473 	 * NOTE! We still have PageReserved() pages in the page tables.
474 	 *
475 	 * eg. VDSO mappings can cause them to exist.
476 	 */
477 out:
478 	return pfn_to_page(pfn);
479 }
480 
481 /*
482  * copy one vm_area from one task to the other. Assumes the page tables
483  * already present in the new task to be cleared in the whole range
484  * covered by this vma.
485  */
486 
487 static inline void
488 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
489 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
490 		unsigned long addr, int *rss)
491 {
492 	unsigned long vm_flags = vma->vm_flags;
493 	pte_t pte = *src_pte;
494 	struct page *page;
495 
496 	/* pte contains position in swap or file, so copy. */
497 	if (unlikely(!pte_present(pte))) {
498 		if (!pte_file(pte)) {
499 			swp_entry_t entry = pte_to_swp_entry(pte);
500 
501 			swap_duplicate(entry);
502 			/* make sure dst_mm is on swapoff's mmlist. */
503 			if (unlikely(list_empty(&dst_mm->mmlist))) {
504 				spin_lock(&mmlist_lock);
505 				if (list_empty(&dst_mm->mmlist))
506 					list_add(&dst_mm->mmlist,
507 						 &src_mm->mmlist);
508 				spin_unlock(&mmlist_lock);
509 			}
510 			if (is_write_migration_entry(entry) &&
511 					is_cow_mapping(vm_flags)) {
512 				/*
513 				 * COW mappings require pages in both parent
514 				 * and child to be set to read.
515 				 */
516 				make_migration_entry_read(&entry);
517 				pte = swp_entry_to_pte(entry);
518 				set_pte_at(src_mm, addr, src_pte, pte);
519 			}
520 		}
521 		goto out_set_pte;
522 	}
523 
524 	/*
525 	 * If it's a COW mapping, write protect it both
526 	 * in the parent and the child
527 	 */
528 	if (is_cow_mapping(vm_flags)) {
529 		ptep_set_wrprotect(src_mm, addr, src_pte);
530 		pte = pte_wrprotect(pte);
531 	}
532 
533 	/*
534 	 * If it's a shared mapping, mark it clean in
535 	 * the child
536 	 */
537 	if (vm_flags & VM_SHARED)
538 		pte = pte_mkclean(pte);
539 	pte = pte_mkold(pte);
540 
541 	page = vm_normal_page(vma, addr, pte);
542 	if (page) {
543 		get_page(page);
544 		page_dup_rmap(page, vma, addr);
545 		rss[!!PageAnon(page)]++;
546 	}
547 
548 out_set_pte:
549 	set_pte_at(dst_mm, addr, dst_pte, pte);
550 }
551 
552 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
553 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
554 		unsigned long addr, unsigned long end)
555 {
556 	pte_t *src_pte, *dst_pte;
557 	spinlock_t *src_ptl, *dst_ptl;
558 	int progress = 0;
559 	int rss[2];
560 
561 again:
562 	rss[1] = rss[0] = 0;
563 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
564 	if (!dst_pte)
565 		return -ENOMEM;
566 	src_pte = pte_offset_map_nested(src_pmd, addr);
567 	src_ptl = pte_lockptr(src_mm, src_pmd);
568 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
569 	arch_enter_lazy_mmu_mode();
570 
571 	do {
572 		/*
573 		 * We are holding two locks at this point - either of them
574 		 * could generate latencies in another task on another CPU.
575 		 */
576 		if (progress >= 32) {
577 			progress = 0;
578 			if (need_resched() ||
579 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
580 				break;
581 		}
582 		if (pte_none(*src_pte)) {
583 			progress++;
584 			continue;
585 		}
586 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
587 		progress += 8;
588 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
589 
590 	arch_leave_lazy_mmu_mode();
591 	spin_unlock(src_ptl);
592 	pte_unmap_nested(src_pte - 1);
593 	add_mm_rss(dst_mm, rss[0], rss[1]);
594 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
595 	cond_resched();
596 	if (addr != end)
597 		goto again;
598 	return 0;
599 }
600 
601 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
602 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
603 		unsigned long addr, unsigned long end)
604 {
605 	pmd_t *src_pmd, *dst_pmd;
606 	unsigned long next;
607 
608 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
609 	if (!dst_pmd)
610 		return -ENOMEM;
611 	src_pmd = pmd_offset(src_pud, addr);
612 	do {
613 		next = pmd_addr_end(addr, end);
614 		if (pmd_none_or_clear_bad(src_pmd))
615 			continue;
616 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
617 						vma, addr, next))
618 			return -ENOMEM;
619 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
620 	return 0;
621 }
622 
623 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
624 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
625 		unsigned long addr, unsigned long end)
626 {
627 	pud_t *src_pud, *dst_pud;
628 	unsigned long next;
629 
630 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
631 	if (!dst_pud)
632 		return -ENOMEM;
633 	src_pud = pud_offset(src_pgd, addr);
634 	do {
635 		next = pud_addr_end(addr, end);
636 		if (pud_none_or_clear_bad(src_pud))
637 			continue;
638 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
639 						vma, addr, next))
640 			return -ENOMEM;
641 	} while (dst_pud++, src_pud++, addr = next, addr != end);
642 	return 0;
643 }
644 
645 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
646 		struct vm_area_struct *vma)
647 {
648 	pgd_t *src_pgd, *dst_pgd;
649 	unsigned long next;
650 	unsigned long addr = vma->vm_start;
651 	unsigned long end = vma->vm_end;
652 
653 	/*
654 	 * Don't copy ptes where a page fault will fill them correctly.
655 	 * Fork becomes much lighter when there are big shared or private
656 	 * readonly mappings. The tradeoff is that copy_page_range is more
657 	 * efficient than faulting.
658 	 */
659 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
660 		if (!vma->anon_vma)
661 			return 0;
662 	}
663 
664 	if (is_vm_hugetlb_page(vma))
665 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
666 
667 	dst_pgd = pgd_offset(dst_mm, addr);
668 	src_pgd = pgd_offset(src_mm, addr);
669 	do {
670 		next = pgd_addr_end(addr, end);
671 		if (pgd_none_or_clear_bad(src_pgd))
672 			continue;
673 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
674 						vma, addr, next))
675 			return -ENOMEM;
676 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
677 	return 0;
678 }
679 
680 static unsigned long zap_pte_range(struct mmu_gather *tlb,
681 				struct vm_area_struct *vma, pmd_t *pmd,
682 				unsigned long addr, unsigned long end,
683 				long *zap_work, struct zap_details *details)
684 {
685 	struct mm_struct *mm = tlb->mm;
686 	pte_t *pte;
687 	spinlock_t *ptl;
688 	int file_rss = 0;
689 	int anon_rss = 0;
690 
691 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
692 	arch_enter_lazy_mmu_mode();
693 	do {
694 		pte_t ptent = *pte;
695 		if (pte_none(ptent)) {
696 			(*zap_work)--;
697 			continue;
698 		}
699 
700 		(*zap_work) -= PAGE_SIZE;
701 
702 		if (pte_present(ptent)) {
703 			struct page *page;
704 
705 			page = vm_normal_page(vma, addr, ptent);
706 			if (unlikely(details) && page) {
707 				/*
708 				 * unmap_shared_mapping_pages() wants to
709 				 * invalidate cache without truncating:
710 				 * unmap shared but keep private pages.
711 				 */
712 				if (details->check_mapping &&
713 				    details->check_mapping != page->mapping)
714 					continue;
715 				/*
716 				 * Each page->index must be checked when
717 				 * invalidating or truncating nonlinear.
718 				 */
719 				if (details->nonlinear_vma &&
720 				    (page->index < details->first_index ||
721 				     page->index > details->last_index))
722 					continue;
723 			}
724 			ptent = ptep_get_and_clear_full(mm, addr, pte,
725 							tlb->fullmm);
726 			tlb_remove_tlb_entry(tlb, pte, addr);
727 			if (unlikely(!page))
728 				continue;
729 			if (unlikely(details) && details->nonlinear_vma
730 			    && linear_page_index(details->nonlinear_vma,
731 						addr) != page->index)
732 				set_pte_at(mm, addr, pte,
733 					   pgoff_to_pte(page->index));
734 			if (PageAnon(page))
735 				anon_rss--;
736 			else {
737 				if (pte_dirty(ptent))
738 					set_page_dirty(page);
739 				if (pte_young(ptent))
740 					SetPageReferenced(page);
741 				file_rss--;
742 			}
743 			page_remove_rmap(page, vma);
744 			tlb_remove_page(tlb, page);
745 			continue;
746 		}
747 		/*
748 		 * If details->check_mapping, we leave swap entries;
749 		 * if details->nonlinear_vma, we leave file entries.
750 		 */
751 		if (unlikely(details))
752 			continue;
753 		if (!pte_file(ptent))
754 			free_swap_and_cache(pte_to_swp_entry(ptent));
755 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
756 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
757 
758 	add_mm_rss(mm, file_rss, anon_rss);
759 	arch_leave_lazy_mmu_mode();
760 	pte_unmap_unlock(pte - 1, ptl);
761 
762 	return addr;
763 }
764 
765 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
766 				struct vm_area_struct *vma, pud_t *pud,
767 				unsigned long addr, unsigned long end,
768 				long *zap_work, struct zap_details *details)
769 {
770 	pmd_t *pmd;
771 	unsigned long next;
772 
773 	pmd = pmd_offset(pud, addr);
774 	do {
775 		next = pmd_addr_end(addr, end);
776 		if (pmd_none_or_clear_bad(pmd)) {
777 			(*zap_work)--;
778 			continue;
779 		}
780 		next = zap_pte_range(tlb, vma, pmd, addr, next,
781 						zap_work, details);
782 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
783 
784 	return addr;
785 }
786 
787 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
788 				struct vm_area_struct *vma, pgd_t *pgd,
789 				unsigned long addr, unsigned long end,
790 				long *zap_work, struct zap_details *details)
791 {
792 	pud_t *pud;
793 	unsigned long next;
794 
795 	pud = pud_offset(pgd, addr);
796 	do {
797 		next = pud_addr_end(addr, end);
798 		if (pud_none_or_clear_bad(pud)) {
799 			(*zap_work)--;
800 			continue;
801 		}
802 		next = zap_pmd_range(tlb, vma, pud, addr, next,
803 						zap_work, details);
804 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
805 
806 	return addr;
807 }
808 
809 static unsigned long unmap_page_range(struct mmu_gather *tlb,
810 				struct vm_area_struct *vma,
811 				unsigned long addr, unsigned long end,
812 				long *zap_work, struct zap_details *details)
813 {
814 	pgd_t *pgd;
815 	unsigned long next;
816 
817 	if (details && !details->check_mapping && !details->nonlinear_vma)
818 		details = NULL;
819 
820 	BUG_ON(addr >= end);
821 	tlb_start_vma(tlb, vma);
822 	pgd = pgd_offset(vma->vm_mm, addr);
823 	do {
824 		next = pgd_addr_end(addr, end);
825 		if (pgd_none_or_clear_bad(pgd)) {
826 			(*zap_work)--;
827 			continue;
828 		}
829 		next = zap_pud_range(tlb, vma, pgd, addr, next,
830 						zap_work, details);
831 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
832 	tlb_end_vma(tlb, vma);
833 
834 	return addr;
835 }
836 
837 #ifdef CONFIG_PREEMPT
838 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
839 #else
840 /* No preempt: go for improved straight-line efficiency */
841 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
842 #endif
843 
844 /**
845  * unmap_vmas - unmap a range of memory covered by a list of vma's
846  * @tlbp: address of the caller's struct mmu_gather
847  * @vma: the starting vma
848  * @start_addr: virtual address at which to start unmapping
849  * @end_addr: virtual address at which to end unmapping
850  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
851  * @details: details of nonlinear truncation or shared cache invalidation
852  *
853  * Returns the end address of the unmapping (restart addr if interrupted).
854  *
855  * Unmap all pages in the vma list.
856  *
857  * We aim to not hold locks for too long (for scheduling latency reasons).
858  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
859  * return the ending mmu_gather to the caller.
860  *
861  * Only addresses between `start' and `end' will be unmapped.
862  *
863  * The VMA list must be sorted in ascending virtual address order.
864  *
865  * unmap_vmas() assumes that the caller will flush the whole unmapped address
866  * range after unmap_vmas() returns.  So the only responsibility here is to
867  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
868  * drops the lock and schedules.
869  */
870 unsigned long unmap_vmas(struct mmu_gather **tlbp,
871 		struct vm_area_struct *vma, unsigned long start_addr,
872 		unsigned long end_addr, unsigned long *nr_accounted,
873 		struct zap_details *details)
874 {
875 	long zap_work = ZAP_BLOCK_SIZE;
876 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
877 	int tlb_start_valid = 0;
878 	unsigned long start = start_addr;
879 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
880 	int fullmm = (*tlbp)->fullmm;
881 
882 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
883 		unsigned long end;
884 
885 		start = max(vma->vm_start, start_addr);
886 		if (start >= vma->vm_end)
887 			continue;
888 		end = min(vma->vm_end, end_addr);
889 		if (end <= vma->vm_start)
890 			continue;
891 
892 		if (vma->vm_flags & VM_ACCOUNT)
893 			*nr_accounted += (end - start) >> PAGE_SHIFT;
894 
895 		while (start != end) {
896 			if (!tlb_start_valid) {
897 				tlb_start = start;
898 				tlb_start_valid = 1;
899 			}
900 
901 			if (unlikely(is_vm_hugetlb_page(vma))) {
902 				unmap_hugepage_range(vma, start, end);
903 				zap_work -= (end - start) /
904 						(HPAGE_SIZE / PAGE_SIZE);
905 				start = end;
906 			} else
907 				start = unmap_page_range(*tlbp, vma,
908 						start, end, &zap_work, details);
909 
910 			if (zap_work > 0) {
911 				BUG_ON(start != end);
912 				break;
913 			}
914 
915 			tlb_finish_mmu(*tlbp, tlb_start, start);
916 
917 			if (need_resched() ||
918 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
919 				if (i_mmap_lock) {
920 					*tlbp = NULL;
921 					goto out;
922 				}
923 				cond_resched();
924 			}
925 
926 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
927 			tlb_start_valid = 0;
928 			zap_work = ZAP_BLOCK_SIZE;
929 		}
930 	}
931 out:
932 	return start;	/* which is now the end (or restart) address */
933 }
934 
935 /**
936  * zap_page_range - remove user pages in a given range
937  * @vma: vm_area_struct holding the applicable pages
938  * @address: starting address of pages to zap
939  * @size: number of bytes to zap
940  * @details: details of nonlinear truncation or shared cache invalidation
941  */
942 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
943 		unsigned long size, struct zap_details *details)
944 {
945 	struct mm_struct *mm = vma->vm_mm;
946 	struct mmu_gather *tlb;
947 	unsigned long end = address + size;
948 	unsigned long nr_accounted = 0;
949 
950 	lru_add_drain();
951 	tlb = tlb_gather_mmu(mm, 0);
952 	update_hiwater_rss(mm);
953 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
954 	if (tlb)
955 		tlb_finish_mmu(tlb, address, end);
956 	return end;
957 }
958 
959 /*
960  * Do a quick page-table lookup for a single page.
961  */
962 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
963 			unsigned int flags)
964 {
965 	pgd_t *pgd;
966 	pud_t *pud;
967 	pmd_t *pmd;
968 	pte_t *ptep, pte;
969 	spinlock_t *ptl;
970 	struct page *page;
971 	struct mm_struct *mm = vma->vm_mm;
972 
973 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
974 	if (!IS_ERR(page)) {
975 		BUG_ON(flags & FOLL_GET);
976 		goto out;
977 	}
978 
979 	page = NULL;
980 	pgd = pgd_offset(mm, address);
981 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
982 		goto no_page_table;
983 
984 	pud = pud_offset(pgd, address);
985 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
986 		goto no_page_table;
987 
988 	pmd = pmd_offset(pud, address);
989 	if (pmd_none(*pmd))
990 		goto no_page_table;
991 
992 	if (pmd_huge(*pmd)) {
993 		BUG_ON(flags & FOLL_GET);
994 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
995 		goto out;
996 	}
997 
998 	if (unlikely(pmd_bad(*pmd)))
999 		goto no_page_table;
1000 
1001 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1002 
1003 	pte = *ptep;
1004 	if (!pte_present(pte))
1005 		goto no_page;
1006 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1007 		goto unlock;
1008 	page = vm_normal_page(vma, address, pte);
1009 	if (unlikely(!page))
1010 		goto bad_page;
1011 
1012 	if (flags & FOLL_GET)
1013 		get_page(page);
1014 	if (flags & FOLL_TOUCH) {
1015 		if ((flags & FOLL_WRITE) &&
1016 		    !pte_dirty(pte) && !PageDirty(page))
1017 			set_page_dirty(page);
1018 		mark_page_accessed(page);
1019 	}
1020 unlock:
1021 	pte_unmap_unlock(ptep, ptl);
1022 out:
1023 	return page;
1024 
1025 bad_page:
1026 	pte_unmap_unlock(ptep, ptl);
1027 	return ERR_PTR(-EFAULT);
1028 
1029 no_page:
1030 	pte_unmap_unlock(ptep, ptl);
1031 	if (!pte_none(pte))
1032 		return page;
1033 	/* Fall through to ZERO_PAGE handling */
1034 no_page_table:
1035 	/*
1036 	 * When core dumping an enormous anonymous area that nobody
1037 	 * has touched so far, we don't want to allocate page tables.
1038 	 */
1039 	if (flags & FOLL_ANON) {
1040 		page = ZERO_PAGE(0);
1041 		if (flags & FOLL_GET)
1042 			get_page(page);
1043 		BUG_ON(flags & FOLL_WRITE);
1044 	}
1045 	return page;
1046 }
1047 
1048 /* Can we do the FOLL_ANON optimization? */
1049 static inline int use_zero_page(struct vm_area_struct *vma)
1050 {
1051 	/*
1052 	 * We don't want to optimize FOLL_ANON for make_pages_present()
1053 	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1054 	 * we want to get the page from the page tables to make sure
1055 	 * that we serialize and update with any other user of that
1056 	 * mapping.
1057 	 */
1058 	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1059 		return 0;
1060 	/*
1061 	 * And if we have a fault routine, it's not an anonymous region.
1062 	 */
1063 	return !vma->vm_ops || !vma->vm_ops->fault;
1064 }
1065 
1066 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1067 		unsigned long start, int len, int write, int force,
1068 		struct page **pages, struct vm_area_struct **vmas)
1069 {
1070 	int i;
1071 	unsigned int vm_flags;
1072 
1073 	if (len <= 0)
1074 		return 0;
1075 	/*
1076 	 * Require read or write permissions.
1077 	 * If 'force' is set, we only require the "MAY" flags.
1078 	 */
1079 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1080 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1081 	i = 0;
1082 
1083 	do {
1084 		struct vm_area_struct *vma;
1085 		unsigned int foll_flags;
1086 
1087 		vma = find_extend_vma(mm, start);
1088 		if (!vma && in_gate_area(tsk, start)) {
1089 			unsigned long pg = start & PAGE_MASK;
1090 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1091 			pgd_t *pgd;
1092 			pud_t *pud;
1093 			pmd_t *pmd;
1094 			pte_t *pte;
1095 			if (write) /* user gate pages are read-only */
1096 				return i ? : -EFAULT;
1097 			if (pg > TASK_SIZE)
1098 				pgd = pgd_offset_k(pg);
1099 			else
1100 				pgd = pgd_offset_gate(mm, pg);
1101 			BUG_ON(pgd_none(*pgd));
1102 			pud = pud_offset(pgd, pg);
1103 			BUG_ON(pud_none(*pud));
1104 			pmd = pmd_offset(pud, pg);
1105 			if (pmd_none(*pmd))
1106 				return i ? : -EFAULT;
1107 			pte = pte_offset_map(pmd, pg);
1108 			if (pte_none(*pte)) {
1109 				pte_unmap(pte);
1110 				return i ? : -EFAULT;
1111 			}
1112 			if (pages) {
1113 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1114 				pages[i] = page;
1115 				if (page)
1116 					get_page(page);
1117 			}
1118 			pte_unmap(pte);
1119 			if (vmas)
1120 				vmas[i] = gate_vma;
1121 			i++;
1122 			start += PAGE_SIZE;
1123 			len--;
1124 			continue;
1125 		}
1126 
1127 		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1128 				|| !(vm_flags & vma->vm_flags))
1129 			return i ? : -EFAULT;
1130 
1131 		if (is_vm_hugetlb_page(vma)) {
1132 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1133 						&start, &len, i, write);
1134 			continue;
1135 		}
1136 
1137 		foll_flags = FOLL_TOUCH;
1138 		if (pages)
1139 			foll_flags |= FOLL_GET;
1140 		if (!write && use_zero_page(vma))
1141 			foll_flags |= FOLL_ANON;
1142 
1143 		do {
1144 			struct page *page;
1145 
1146 			/*
1147 			 * If tsk is ooming, cut off its access to large memory
1148 			 * allocations. It has a pending SIGKILL, but it can't
1149 			 * be processed until returning to user space.
1150 			 */
1151 			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1152 				return i ? i : -ENOMEM;
1153 
1154 			if (write)
1155 				foll_flags |= FOLL_WRITE;
1156 
1157 			cond_resched();
1158 			while (!(page = follow_page(vma, start, foll_flags))) {
1159 				int ret;
1160 				ret = handle_mm_fault(mm, vma, start,
1161 						foll_flags & FOLL_WRITE);
1162 				if (ret & VM_FAULT_ERROR) {
1163 					if (ret & VM_FAULT_OOM)
1164 						return i ? i : -ENOMEM;
1165 					else if (ret & VM_FAULT_SIGBUS)
1166 						return i ? i : -EFAULT;
1167 					BUG();
1168 				}
1169 				if (ret & VM_FAULT_MAJOR)
1170 					tsk->maj_flt++;
1171 				else
1172 					tsk->min_flt++;
1173 
1174 				/*
1175 				 * The VM_FAULT_WRITE bit tells us that
1176 				 * do_wp_page has broken COW when necessary,
1177 				 * even if maybe_mkwrite decided not to set
1178 				 * pte_write. We can thus safely do subsequent
1179 				 * page lookups as if they were reads.
1180 				 */
1181 				if (ret & VM_FAULT_WRITE)
1182 					foll_flags &= ~FOLL_WRITE;
1183 
1184 				cond_resched();
1185 			}
1186 			if (IS_ERR(page))
1187 				return i ? i : PTR_ERR(page);
1188 			if (pages) {
1189 				pages[i] = page;
1190 
1191 				flush_anon_page(vma, page, start);
1192 				flush_dcache_page(page);
1193 			}
1194 			if (vmas)
1195 				vmas[i] = vma;
1196 			i++;
1197 			start += PAGE_SIZE;
1198 			len--;
1199 		} while (len && start < vma->vm_end);
1200 	} while (len);
1201 	return i;
1202 }
1203 EXPORT_SYMBOL(get_user_pages);
1204 
1205 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1206 			spinlock_t **ptl)
1207 {
1208 	pgd_t * pgd = pgd_offset(mm, addr);
1209 	pud_t * pud = pud_alloc(mm, pgd, addr);
1210 	if (pud) {
1211 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1212 		if (pmd)
1213 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1214 	}
1215 	return NULL;
1216 }
1217 
1218 /*
1219  * This is the old fallback for page remapping.
1220  *
1221  * For historical reasons, it only allows reserved pages. Only
1222  * old drivers should use this, and they needed to mark their
1223  * pages reserved for the old functions anyway.
1224  */
1225 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1226 			struct page *page, pgprot_t prot)
1227 {
1228 	struct mm_struct *mm = vma->vm_mm;
1229 	int retval;
1230 	pte_t *pte;
1231 	spinlock_t *ptl;
1232 
1233 	retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1234 	if (retval)
1235 		goto out;
1236 
1237 	retval = -EINVAL;
1238 	if (PageAnon(page))
1239 		goto out_uncharge;
1240 	retval = -ENOMEM;
1241 	flush_dcache_page(page);
1242 	pte = get_locked_pte(mm, addr, &ptl);
1243 	if (!pte)
1244 		goto out_uncharge;
1245 	retval = -EBUSY;
1246 	if (!pte_none(*pte))
1247 		goto out_unlock;
1248 
1249 	/* Ok, finally just insert the thing.. */
1250 	get_page(page);
1251 	inc_mm_counter(mm, file_rss);
1252 	page_add_file_rmap(page);
1253 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1254 
1255 	retval = 0;
1256 	pte_unmap_unlock(pte, ptl);
1257 	return retval;
1258 out_unlock:
1259 	pte_unmap_unlock(pte, ptl);
1260 out_uncharge:
1261 	mem_cgroup_uncharge_page(page);
1262 out:
1263 	return retval;
1264 }
1265 
1266 /**
1267  * vm_insert_page - insert single page into user vma
1268  * @vma: user vma to map to
1269  * @addr: target user address of this page
1270  * @page: source kernel page
1271  *
1272  * This allows drivers to insert individual pages they've allocated
1273  * into a user vma.
1274  *
1275  * The page has to be a nice clean _individual_ kernel allocation.
1276  * If you allocate a compound page, you need to have marked it as
1277  * such (__GFP_COMP), or manually just split the page up yourself
1278  * (see split_page()).
1279  *
1280  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1281  * took an arbitrary page protection parameter. This doesn't allow
1282  * that. Your vma protection will have to be set up correctly, which
1283  * means that if you want a shared writable mapping, you'd better
1284  * ask for a shared writable mapping!
1285  *
1286  * The page does not need to be reserved.
1287  */
1288 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1289 			struct page *page)
1290 {
1291 	if (addr < vma->vm_start || addr >= vma->vm_end)
1292 		return -EFAULT;
1293 	if (!page_count(page))
1294 		return -EINVAL;
1295 	vma->vm_flags |= VM_INSERTPAGE;
1296 	return insert_page(vma, addr, page, vma->vm_page_prot);
1297 }
1298 EXPORT_SYMBOL(vm_insert_page);
1299 
1300 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1301 			unsigned long pfn, pgprot_t prot)
1302 {
1303 	struct mm_struct *mm = vma->vm_mm;
1304 	int retval;
1305 	pte_t *pte, entry;
1306 	spinlock_t *ptl;
1307 
1308 	retval = -ENOMEM;
1309 	pte = get_locked_pte(mm, addr, &ptl);
1310 	if (!pte)
1311 		goto out;
1312 	retval = -EBUSY;
1313 	if (!pte_none(*pte))
1314 		goto out_unlock;
1315 
1316 	/* Ok, finally just insert the thing.. */
1317 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1318 	set_pte_at(mm, addr, pte, entry);
1319 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1320 
1321 	retval = 0;
1322 out_unlock:
1323 	pte_unmap_unlock(pte, ptl);
1324 out:
1325 	return retval;
1326 }
1327 
1328 /**
1329  * vm_insert_pfn - insert single pfn into user vma
1330  * @vma: user vma to map to
1331  * @addr: target user address of this page
1332  * @pfn: source kernel pfn
1333  *
1334  * Similar to vm_inert_page, this allows drivers to insert individual pages
1335  * they've allocated into a user vma. Same comments apply.
1336  *
1337  * This function should only be called from a vm_ops->fault handler, and
1338  * in that case the handler should return NULL.
1339  *
1340  * vma cannot be a COW mapping.
1341  *
1342  * As this is called only for pages that do not currently exist, we
1343  * do not need to flush old virtual caches or the TLB.
1344  */
1345 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1346 			unsigned long pfn)
1347 {
1348 	/*
1349 	 * Technically, architectures with pte_special can avoid all these
1350 	 * restrictions (same for remap_pfn_range).  However we would like
1351 	 * consistency in testing and feature parity among all, so we should
1352 	 * try to keep these invariants in place for everybody.
1353 	 */
1354 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1355 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1356 						(VM_PFNMAP|VM_MIXEDMAP));
1357 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1358 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1359 
1360 	if (addr < vma->vm_start || addr >= vma->vm_end)
1361 		return -EFAULT;
1362 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1363 }
1364 EXPORT_SYMBOL(vm_insert_pfn);
1365 
1366 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1367 			unsigned long pfn)
1368 {
1369 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1370 
1371 	if (addr < vma->vm_start || addr >= vma->vm_end)
1372 		return -EFAULT;
1373 
1374 	/*
1375 	 * If we don't have pte special, then we have to use the pfn_valid()
1376 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1377 	 * refcount the page if pfn_valid is true (hence insert_page rather
1378 	 * than insert_pfn).
1379 	 */
1380 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1381 		struct page *page;
1382 
1383 		page = pfn_to_page(pfn);
1384 		return insert_page(vma, addr, page, vma->vm_page_prot);
1385 	}
1386 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1387 }
1388 EXPORT_SYMBOL(vm_insert_mixed);
1389 
1390 /*
1391  * maps a range of physical memory into the requested pages. the old
1392  * mappings are removed. any references to nonexistent pages results
1393  * in null mappings (currently treated as "copy-on-access")
1394  */
1395 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1396 			unsigned long addr, unsigned long end,
1397 			unsigned long pfn, pgprot_t prot)
1398 {
1399 	pte_t *pte;
1400 	spinlock_t *ptl;
1401 
1402 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1403 	if (!pte)
1404 		return -ENOMEM;
1405 	arch_enter_lazy_mmu_mode();
1406 	do {
1407 		BUG_ON(!pte_none(*pte));
1408 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1409 		pfn++;
1410 	} while (pte++, addr += PAGE_SIZE, addr != end);
1411 	arch_leave_lazy_mmu_mode();
1412 	pte_unmap_unlock(pte - 1, ptl);
1413 	return 0;
1414 }
1415 
1416 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1417 			unsigned long addr, unsigned long end,
1418 			unsigned long pfn, pgprot_t prot)
1419 {
1420 	pmd_t *pmd;
1421 	unsigned long next;
1422 
1423 	pfn -= addr >> PAGE_SHIFT;
1424 	pmd = pmd_alloc(mm, pud, addr);
1425 	if (!pmd)
1426 		return -ENOMEM;
1427 	do {
1428 		next = pmd_addr_end(addr, end);
1429 		if (remap_pte_range(mm, pmd, addr, next,
1430 				pfn + (addr >> PAGE_SHIFT), prot))
1431 			return -ENOMEM;
1432 	} while (pmd++, addr = next, addr != end);
1433 	return 0;
1434 }
1435 
1436 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1437 			unsigned long addr, unsigned long end,
1438 			unsigned long pfn, pgprot_t prot)
1439 {
1440 	pud_t *pud;
1441 	unsigned long next;
1442 
1443 	pfn -= addr >> PAGE_SHIFT;
1444 	pud = pud_alloc(mm, pgd, addr);
1445 	if (!pud)
1446 		return -ENOMEM;
1447 	do {
1448 		next = pud_addr_end(addr, end);
1449 		if (remap_pmd_range(mm, pud, addr, next,
1450 				pfn + (addr >> PAGE_SHIFT), prot))
1451 			return -ENOMEM;
1452 	} while (pud++, addr = next, addr != end);
1453 	return 0;
1454 }
1455 
1456 /**
1457  * remap_pfn_range - remap kernel memory to userspace
1458  * @vma: user vma to map to
1459  * @addr: target user address to start at
1460  * @pfn: physical address of kernel memory
1461  * @size: size of map area
1462  * @prot: page protection flags for this mapping
1463  *
1464  *  Note: this is only safe if the mm semaphore is held when called.
1465  */
1466 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1467 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1468 {
1469 	pgd_t *pgd;
1470 	unsigned long next;
1471 	unsigned long end = addr + PAGE_ALIGN(size);
1472 	struct mm_struct *mm = vma->vm_mm;
1473 	int err;
1474 
1475 	/*
1476 	 * Physically remapped pages are special. Tell the
1477 	 * rest of the world about it:
1478 	 *   VM_IO tells people not to look at these pages
1479 	 *	(accesses can have side effects).
1480 	 *   VM_RESERVED is specified all over the place, because
1481 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1482 	 *	in 2.6 the LRU scan won't even find its pages, so this
1483 	 *	flag means no more than count its pages in reserved_vm,
1484 	 * 	and omit it from core dump, even when VM_IO turned off.
1485 	 *   VM_PFNMAP tells the core MM that the base pages are just
1486 	 *	raw PFN mappings, and do not have a "struct page" associated
1487 	 *	with them.
1488 	 *
1489 	 * There's a horrible special case to handle copy-on-write
1490 	 * behaviour that some programs depend on. We mark the "original"
1491 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1492 	 */
1493 	if (is_cow_mapping(vma->vm_flags)) {
1494 		if (addr != vma->vm_start || end != vma->vm_end)
1495 			return -EINVAL;
1496 		vma->vm_pgoff = pfn;
1497 	}
1498 
1499 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1500 
1501 	BUG_ON(addr >= end);
1502 	pfn -= addr >> PAGE_SHIFT;
1503 	pgd = pgd_offset(mm, addr);
1504 	flush_cache_range(vma, addr, end);
1505 	do {
1506 		next = pgd_addr_end(addr, end);
1507 		err = remap_pud_range(mm, pgd, addr, next,
1508 				pfn + (addr >> PAGE_SHIFT), prot);
1509 		if (err)
1510 			break;
1511 	} while (pgd++, addr = next, addr != end);
1512 	return err;
1513 }
1514 EXPORT_SYMBOL(remap_pfn_range);
1515 
1516 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1517 				     unsigned long addr, unsigned long end,
1518 				     pte_fn_t fn, void *data)
1519 {
1520 	pte_t *pte;
1521 	int err;
1522 	pgtable_t token;
1523 	spinlock_t *uninitialized_var(ptl);
1524 
1525 	pte = (mm == &init_mm) ?
1526 		pte_alloc_kernel(pmd, addr) :
1527 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1528 	if (!pte)
1529 		return -ENOMEM;
1530 
1531 	BUG_ON(pmd_huge(*pmd));
1532 
1533 	token = pmd_pgtable(*pmd);
1534 
1535 	do {
1536 		err = fn(pte, token, addr, data);
1537 		if (err)
1538 			break;
1539 	} while (pte++, addr += PAGE_SIZE, addr != end);
1540 
1541 	if (mm != &init_mm)
1542 		pte_unmap_unlock(pte-1, ptl);
1543 	return err;
1544 }
1545 
1546 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1547 				     unsigned long addr, unsigned long end,
1548 				     pte_fn_t fn, void *data)
1549 {
1550 	pmd_t *pmd;
1551 	unsigned long next;
1552 	int err;
1553 
1554 	pmd = pmd_alloc(mm, pud, addr);
1555 	if (!pmd)
1556 		return -ENOMEM;
1557 	do {
1558 		next = pmd_addr_end(addr, end);
1559 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1560 		if (err)
1561 			break;
1562 	} while (pmd++, addr = next, addr != end);
1563 	return err;
1564 }
1565 
1566 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1567 				     unsigned long addr, unsigned long end,
1568 				     pte_fn_t fn, void *data)
1569 {
1570 	pud_t *pud;
1571 	unsigned long next;
1572 	int err;
1573 
1574 	pud = pud_alloc(mm, pgd, addr);
1575 	if (!pud)
1576 		return -ENOMEM;
1577 	do {
1578 		next = pud_addr_end(addr, end);
1579 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1580 		if (err)
1581 			break;
1582 	} while (pud++, addr = next, addr != end);
1583 	return err;
1584 }
1585 
1586 /*
1587  * Scan a region of virtual memory, filling in page tables as necessary
1588  * and calling a provided function on each leaf page table.
1589  */
1590 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1591 			unsigned long size, pte_fn_t fn, void *data)
1592 {
1593 	pgd_t *pgd;
1594 	unsigned long next;
1595 	unsigned long end = addr + size;
1596 	int err;
1597 
1598 	BUG_ON(addr >= end);
1599 	pgd = pgd_offset(mm, addr);
1600 	do {
1601 		next = pgd_addr_end(addr, end);
1602 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1603 		if (err)
1604 			break;
1605 	} while (pgd++, addr = next, addr != end);
1606 	return err;
1607 }
1608 EXPORT_SYMBOL_GPL(apply_to_page_range);
1609 
1610 /*
1611  * handle_pte_fault chooses page fault handler according to an entry
1612  * which was read non-atomically.  Before making any commitment, on
1613  * those architectures or configurations (e.g. i386 with PAE) which
1614  * might give a mix of unmatched parts, do_swap_page and do_file_page
1615  * must check under lock before unmapping the pte and proceeding
1616  * (but do_wp_page is only called after already making such a check;
1617  * and do_anonymous_page and do_no_page can safely check later on).
1618  */
1619 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1620 				pte_t *page_table, pte_t orig_pte)
1621 {
1622 	int same = 1;
1623 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1624 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1625 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1626 		spin_lock(ptl);
1627 		same = pte_same(*page_table, orig_pte);
1628 		spin_unlock(ptl);
1629 	}
1630 #endif
1631 	pte_unmap(page_table);
1632 	return same;
1633 }
1634 
1635 /*
1636  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1637  * servicing faults for write access.  In the normal case, do always want
1638  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1639  * that do not have writing enabled, when used by access_process_vm.
1640  */
1641 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1642 {
1643 	if (likely(vma->vm_flags & VM_WRITE))
1644 		pte = pte_mkwrite(pte);
1645 	return pte;
1646 }
1647 
1648 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1649 {
1650 	/*
1651 	 * If the source page was a PFN mapping, we don't have
1652 	 * a "struct page" for it. We do a best-effort copy by
1653 	 * just copying from the original user address. If that
1654 	 * fails, we just zero-fill it. Live with it.
1655 	 */
1656 	if (unlikely(!src)) {
1657 		void *kaddr = kmap_atomic(dst, KM_USER0);
1658 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1659 
1660 		/*
1661 		 * This really shouldn't fail, because the page is there
1662 		 * in the page tables. But it might just be unreadable,
1663 		 * in which case we just give up and fill the result with
1664 		 * zeroes.
1665 		 */
1666 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1667 			memset(kaddr, 0, PAGE_SIZE);
1668 		kunmap_atomic(kaddr, KM_USER0);
1669 		flush_dcache_page(dst);
1670 	} else
1671 		copy_user_highpage(dst, src, va, vma);
1672 }
1673 
1674 /*
1675  * This routine handles present pages, when users try to write
1676  * to a shared page. It is done by copying the page to a new address
1677  * and decrementing the shared-page counter for the old page.
1678  *
1679  * Note that this routine assumes that the protection checks have been
1680  * done by the caller (the low-level page fault routine in most cases).
1681  * Thus we can safely just mark it writable once we've done any necessary
1682  * COW.
1683  *
1684  * We also mark the page dirty at this point even though the page will
1685  * change only once the write actually happens. This avoids a few races,
1686  * and potentially makes it more efficient.
1687  *
1688  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1689  * but allow concurrent faults), with pte both mapped and locked.
1690  * We return with mmap_sem still held, but pte unmapped and unlocked.
1691  */
1692 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1693 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1694 		spinlock_t *ptl, pte_t orig_pte)
1695 {
1696 	struct page *old_page, *new_page;
1697 	pte_t entry;
1698 	int reuse = 0, ret = 0;
1699 	int page_mkwrite = 0;
1700 	struct page *dirty_page = NULL;
1701 
1702 	old_page = vm_normal_page(vma, address, orig_pte);
1703 	if (!old_page) {
1704 		/*
1705 		 * VM_MIXEDMAP !pfn_valid() case
1706 		 *
1707 		 * We should not cow pages in a shared writeable mapping.
1708 		 * Just mark the pages writable as we can't do any dirty
1709 		 * accounting on raw pfn maps.
1710 		 */
1711 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1712 				     (VM_WRITE|VM_SHARED))
1713 			goto reuse;
1714 		goto gotten;
1715 	}
1716 
1717 	/*
1718 	 * Take out anonymous pages first, anonymous shared vmas are
1719 	 * not dirty accountable.
1720 	 */
1721 	if (PageAnon(old_page)) {
1722 		if (!TestSetPageLocked(old_page)) {
1723 			reuse = can_share_swap_page(old_page);
1724 			unlock_page(old_page);
1725 		}
1726 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1727 					(VM_WRITE|VM_SHARED))) {
1728 		/*
1729 		 * Only catch write-faults on shared writable pages,
1730 		 * read-only shared pages can get COWed by
1731 		 * get_user_pages(.write=1, .force=1).
1732 		 */
1733 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1734 			/*
1735 			 * Notify the address space that the page is about to
1736 			 * become writable so that it can prohibit this or wait
1737 			 * for the page to get into an appropriate state.
1738 			 *
1739 			 * We do this without the lock held, so that it can
1740 			 * sleep if it needs to.
1741 			 */
1742 			page_cache_get(old_page);
1743 			pte_unmap_unlock(page_table, ptl);
1744 
1745 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1746 				goto unwritable_page;
1747 
1748 			/*
1749 			 * Since we dropped the lock we need to revalidate
1750 			 * the PTE as someone else may have changed it.  If
1751 			 * they did, we just return, as we can count on the
1752 			 * MMU to tell us if they didn't also make it writable.
1753 			 */
1754 			page_table = pte_offset_map_lock(mm, pmd, address,
1755 							 &ptl);
1756 			page_cache_release(old_page);
1757 			if (!pte_same(*page_table, orig_pte))
1758 				goto unlock;
1759 
1760 			page_mkwrite = 1;
1761 		}
1762 		dirty_page = old_page;
1763 		get_page(dirty_page);
1764 		reuse = 1;
1765 	}
1766 
1767 	if (reuse) {
1768 reuse:
1769 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1770 		entry = pte_mkyoung(orig_pte);
1771 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1772 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1773 			update_mmu_cache(vma, address, entry);
1774 		ret |= VM_FAULT_WRITE;
1775 		goto unlock;
1776 	}
1777 
1778 	/*
1779 	 * Ok, we need to copy. Oh, well..
1780 	 */
1781 	page_cache_get(old_page);
1782 gotten:
1783 	pte_unmap_unlock(page_table, ptl);
1784 
1785 	if (unlikely(anon_vma_prepare(vma)))
1786 		goto oom;
1787 	VM_BUG_ON(old_page == ZERO_PAGE(0));
1788 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1789 	if (!new_page)
1790 		goto oom;
1791 	cow_user_page(new_page, old_page, address, vma);
1792 	__SetPageUptodate(new_page);
1793 
1794 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1795 		goto oom_free_new;
1796 
1797 	/*
1798 	 * Re-check the pte - we dropped the lock
1799 	 */
1800 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1801 	if (likely(pte_same(*page_table, orig_pte))) {
1802 		if (old_page) {
1803 			if (!PageAnon(old_page)) {
1804 				dec_mm_counter(mm, file_rss);
1805 				inc_mm_counter(mm, anon_rss);
1806 			}
1807 		} else
1808 			inc_mm_counter(mm, anon_rss);
1809 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1810 		entry = mk_pte(new_page, vma->vm_page_prot);
1811 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1812 		/*
1813 		 * Clear the pte entry and flush it first, before updating the
1814 		 * pte with the new entry. This will avoid a race condition
1815 		 * seen in the presence of one thread doing SMC and another
1816 		 * thread doing COW.
1817 		 */
1818 		ptep_clear_flush(vma, address, page_table);
1819 		set_pte_at(mm, address, page_table, entry);
1820 		update_mmu_cache(vma, address, entry);
1821 		lru_cache_add_active(new_page);
1822 		page_add_new_anon_rmap(new_page, vma, address);
1823 
1824 		if (old_page) {
1825 			/*
1826 			 * Only after switching the pte to the new page may
1827 			 * we remove the mapcount here. Otherwise another
1828 			 * process may come and find the rmap count decremented
1829 			 * before the pte is switched to the new page, and
1830 			 * "reuse" the old page writing into it while our pte
1831 			 * here still points into it and can be read by other
1832 			 * threads.
1833 			 *
1834 			 * The critical issue is to order this
1835 			 * page_remove_rmap with the ptp_clear_flush above.
1836 			 * Those stores are ordered by (if nothing else,)
1837 			 * the barrier present in the atomic_add_negative
1838 			 * in page_remove_rmap.
1839 			 *
1840 			 * Then the TLB flush in ptep_clear_flush ensures that
1841 			 * no process can access the old page before the
1842 			 * decremented mapcount is visible. And the old page
1843 			 * cannot be reused until after the decremented
1844 			 * mapcount is visible. So transitively, TLBs to
1845 			 * old page will be flushed before it can be reused.
1846 			 */
1847 			page_remove_rmap(old_page, vma);
1848 		}
1849 
1850 		/* Free the old page.. */
1851 		new_page = old_page;
1852 		ret |= VM_FAULT_WRITE;
1853 	} else
1854 		mem_cgroup_uncharge_page(new_page);
1855 
1856 	if (new_page)
1857 		page_cache_release(new_page);
1858 	if (old_page)
1859 		page_cache_release(old_page);
1860 unlock:
1861 	pte_unmap_unlock(page_table, ptl);
1862 	if (dirty_page) {
1863 		if (vma->vm_file)
1864 			file_update_time(vma->vm_file);
1865 
1866 		/*
1867 		 * Yes, Virginia, this is actually required to prevent a race
1868 		 * with clear_page_dirty_for_io() from clearing the page dirty
1869 		 * bit after it clear all dirty ptes, but before a racing
1870 		 * do_wp_page installs a dirty pte.
1871 		 *
1872 		 * do_no_page is protected similarly.
1873 		 */
1874 		wait_on_page_locked(dirty_page);
1875 		set_page_dirty_balance(dirty_page, page_mkwrite);
1876 		put_page(dirty_page);
1877 	}
1878 	return ret;
1879 oom_free_new:
1880 	page_cache_release(new_page);
1881 oom:
1882 	if (old_page)
1883 		page_cache_release(old_page);
1884 	return VM_FAULT_OOM;
1885 
1886 unwritable_page:
1887 	page_cache_release(old_page);
1888 	return VM_FAULT_SIGBUS;
1889 }
1890 
1891 /*
1892  * Helper functions for unmap_mapping_range().
1893  *
1894  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1895  *
1896  * We have to restart searching the prio_tree whenever we drop the lock,
1897  * since the iterator is only valid while the lock is held, and anyway
1898  * a later vma might be split and reinserted earlier while lock dropped.
1899  *
1900  * The list of nonlinear vmas could be handled more efficiently, using
1901  * a placeholder, but handle it in the same way until a need is shown.
1902  * It is important to search the prio_tree before nonlinear list: a vma
1903  * may become nonlinear and be shifted from prio_tree to nonlinear list
1904  * while the lock is dropped; but never shifted from list to prio_tree.
1905  *
1906  * In order to make forward progress despite restarting the search,
1907  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1908  * quickly skip it next time around.  Since the prio_tree search only
1909  * shows us those vmas affected by unmapping the range in question, we
1910  * can't efficiently keep all vmas in step with mapping->truncate_count:
1911  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1912  * mapping->truncate_count and vma->vm_truncate_count are protected by
1913  * i_mmap_lock.
1914  *
1915  * In order to make forward progress despite repeatedly restarting some
1916  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1917  * and restart from that address when we reach that vma again.  It might
1918  * have been split or merged, shrunk or extended, but never shifted: so
1919  * restart_addr remains valid so long as it remains in the vma's range.
1920  * unmap_mapping_range forces truncate_count to leap over page-aligned
1921  * values so we can save vma's restart_addr in its truncate_count field.
1922  */
1923 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1924 
1925 static void reset_vma_truncate_counts(struct address_space *mapping)
1926 {
1927 	struct vm_area_struct *vma;
1928 	struct prio_tree_iter iter;
1929 
1930 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1931 		vma->vm_truncate_count = 0;
1932 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1933 		vma->vm_truncate_count = 0;
1934 }
1935 
1936 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1937 		unsigned long start_addr, unsigned long end_addr,
1938 		struct zap_details *details)
1939 {
1940 	unsigned long restart_addr;
1941 	int need_break;
1942 
1943 	/*
1944 	 * files that support invalidating or truncating portions of the
1945 	 * file from under mmaped areas must have their ->fault function
1946 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
1947 	 * This provides synchronisation against concurrent unmapping here.
1948 	 */
1949 
1950 again:
1951 	restart_addr = vma->vm_truncate_count;
1952 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1953 		start_addr = restart_addr;
1954 		if (start_addr >= end_addr) {
1955 			/* Top of vma has been split off since last time */
1956 			vma->vm_truncate_count = details->truncate_count;
1957 			return 0;
1958 		}
1959 	}
1960 
1961 	restart_addr = zap_page_range(vma, start_addr,
1962 					end_addr - start_addr, details);
1963 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1964 
1965 	if (restart_addr >= end_addr) {
1966 		/* We have now completed this vma: mark it so */
1967 		vma->vm_truncate_count = details->truncate_count;
1968 		if (!need_break)
1969 			return 0;
1970 	} else {
1971 		/* Note restart_addr in vma's truncate_count field */
1972 		vma->vm_truncate_count = restart_addr;
1973 		if (!need_break)
1974 			goto again;
1975 	}
1976 
1977 	spin_unlock(details->i_mmap_lock);
1978 	cond_resched();
1979 	spin_lock(details->i_mmap_lock);
1980 	return -EINTR;
1981 }
1982 
1983 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1984 					    struct zap_details *details)
1985 {
1986 	struct vm_area_struct *vma;
1987 	struct prio_tree_iter iter;
1988 	pgoff_t vba, vea, zba, zea;
1989 
1990 restart:
1991 	vma_prio_tree_foreach(vma, &iter, root,
1992 			details->first_index, details->last_index) {
1993 		/* Skip quickly over those we have already dealt with */
1994 		if (vma->vm_truncate_count == details->truncate_count)
1995 			continue;
1996 
1997 		vba = vma->vm_pgoff;
1998 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1999 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2000 		zba = details->first_index;
2001 		if (zba < vba)
2002 			zba = vba;
2003 		zea = details->last_index;
2004 		if (zea > vea)
2005 			zea = vea;
2006 
2007 		if (unmap_mapping_range_vma(vma,
2008 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2009 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2010 				details) < 0)
2011 			goto restart;
2012 	}
2013 }
2014 
2015 static inline void unmap_mapping_range_list(struct list_head *head,
2016 					    struct zap_details *details)
2017 {
2018 	struct vm_area_struct *vma;
2019 
2020 	/*
2021 	 * In nonlinear VMAs there is no correspondence between virtual address
2022 	 * offset and file offset.  So we must perform an exhaustive search
2023 	 * across *all* the pages in each nonlinear VMA, not just the pages
2024 	 * whose virtual address lies outside the file truncation point.
2025 	 */
2026 restart:
2027 	list_for_each_entry(vma, head, shared.vm_set.list) {
2028 		/* Skip quickly over those we have already dealt with */
2029 		if (vma->vm_truncate_count == details->truncate_count)
2030 			continue;
2031 		details->nonlinear_vma = vma;
2032 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2033 					vma->vm_end, details) < 0)
2034 			goto restart;
2035 	}
2036 }
2037 
2038 /**
2039  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2040  * @mapping: the address space containing mmaps to be unmapped.
2041  * @holebegin: byte in first page to unmap, relative to the start of
2042  * the underlying file.  This will be rounded down to a PAGE_SIZE
2043  * boundary.  Note that this is different from vmtruncate(), which
2044  * must keep the partial page.  In contrast, we must get rid of
2045  * partial pages.
2046  * @holelen: size of prospective hole in bytes.  This will be rounded
2047  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2048  * end of the file.
2049  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2050  * but 0 when invalidating pagecache, don't throw away private data.
2051  */
2052 void unmap_mapping_range(struct address_space *mapping,
2053 		loff_t const holebegin, loff_t const holelen, int even_cows)
2054 {
2055 	struct zap_details details;
2056 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2057 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2058 
2059 	/* Check for overflow. */
2060 	if (sizeof(holelen) > sizeof(hlen)) {
2061 		long long holeend =
2062 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2063 		if (holeend & ~(long long)ULONG_MAX)
2064 			hlen = ULONG_MAX - hba + 1;
2065 	}
2066 
2067 	details.check_mapping = even_cows? NULL: mapping;
2068 	details.nonlinear_vma = NULL;
2069 	details.first_index = hba;
2070 	details.last_index = hba + hlen - 1;
2071 	if (details.last_index < details.first_index)
2072 		details.last_index = ULONG_MAX;
2073 	details.i_mmap_lock = &mapping->i_mmap_lock;
2074 
2075 	spin_lock(&mapping->i_mmap_lock);
2076 
2077 	/* Protect against endless unmapping loops */
2078 	mapping->truncate_count++;
2079 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2080 		if (mapping->truncate_count == 0)
2081 			reset_vma_truncate_counts(mapping);
2082 		mapping->truncate_count++;
2083 	}
2084 	details.truncate_count = mapping->truncate_count;
2085 
2086 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2087 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2088 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2089 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2090 	spin_unlock(&mapping->i_mmap_lock);
2091 }
2092 EXPORT_SYMBOL(unmap_mapping_range);
2093 
2094 /**
2095  * vmtruncate - unmap mappings "freed" by truncate() syscall
2096  * @inode: inode of the file used
2097  * @offset: file offset to start truncating
2098  *
2099  * NOTE! We have to be ready to update the memory sharing
2100  * between the file and the memory map for a potential last
2101  * incomplete page.  Ugly, but necessary.
2102  */
2103 int vmtruncate(struct inode * inode, loff_t offset)
2104 {
2105 	if (inode->i_size < offset) {
2106 		unsigned long limit;
2107 
2108 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2109 		if (limit != RLIM_INFINITY && offset > limit)
2110 			goto out_sig;
2111 		if (offset > inode->i_sb->s_maxbytes)
2112 			goto out_big;
2113 		i_size_write(inode, offset);
2114 	} else {
2115 		struct address_space *mapping = inode->i_mapping;
2116 
2117 		/*
2118 		 * truncation of in-use swapfiles is disallowed - it would
2119 		 * cause subsequent swapout to scribble on the now-freed
2120 		 * blocks.
2121 		 */
2122 		if (IS_SWAPFILE(inode))
2123 			return -ETXTBSY;
2124 		i_size_write(inode, offset);
2125 
2126 		/*
2127 		 * unmap_mapping_range is called twice, first simply for
2128 		 * efficiency so that truncate_inode_pages does fewer
2129 		 * single-page unmaps.  However after this first call, and
2130 		 * before truncate_inode_pages finishes, it is possible for
2131 		 * private pages to be COWed, which remain after
2132 		 * truncate_inode_pages finishes, hence the second
2133 		 * unmap_mapping_range call must be made for correctness.
2134 		 */
2135 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2136 		truncate_inode_pages(mapping, offset);
2137 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2138 	}
2139 
2140 	if (inode->i_op && inode->i_op->truncate)
2141 		inode->i_op->truncate(inode);
2142 	return 0;
2143 
2144 out_sig:
2145 	send_sig(SIGXFSZ, current, 0);
2146 out_big:
2147 	return -EFBIG;
2148 }
2149 EXPORT_SYMBOL(vmtruncate);
2150 
2151 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2152 {
2153 	struct address_space *mapping = inode->i_mapping;
2154 
2155 	/*
2156 	 * If the underlying filesystem is not going to provide
2157 	 * a way to truncate a range of blocks (punch a hole) -
2158 	 * we should return failure right now.
2159 	 */
2160 	if (!inode->i_op || !inode->i_op->truncate_range)
2161 		return -ENOSYS;
2162 
2163 	mutex_lock(&inode->i_mutex);
2164 	down_write(&inode->i_alloc_sem);
2165 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2166 	truncate_inode_pages_range(mapping, offset, end);
2167 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2168 	inode->i_op->truncate_range(inode, offset, end);
2169 	up_write(&inode->i_alloc_sem);
2170 	mutex_unlock(&inode->i_mutex);
2171 
2172 	return 0;
2173 }
2174 
2175 /*
2176  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2177  * but allow concurrent faults), and pte mapped but not yet locked.
2178  * We return with mmap_sem still held, but pte unmapped and unlocked.
2179  */
2180 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2181 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2182 		int write_access, pte_t orig_pte)
2183 {
2184 	spinlock_t *ptl;
2185 	struct page *page;
2186 	swp_entry_t entry;
2187 	pte_t pte;
2188 	int ret = 0;
2189 
2190 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2191 		goto out;
2192 
2193 	entry = pte_to_swp_entry(orig_pte);
2194 	if (is_migration_entry(entry)) {
2195 		migration_entry_wait(mm, pmd, address);
2196 		goto out;
2197 	}
2198 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2199 	page = lookup_swap_cache(entry);
2200 	if (!page) {
2201 		grab_swap_token(); /* Contend for token _before_ read-in */
2202 		page = swapin_readahead(entry,
2203 					GFP_HIGHUSER_MOVABLE, vma, address);
2204 		if (!page) {
2205 			/*
2206 			 * Back out if somebody else faulted in this pte
2207 			 * while we released the pte lock.
2208 			 */
2209 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2210 			if (likely(pte_same(*page_table, orig_pte)))
2211 				ret = VM_FAULT_OOM;
2212 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2213 			goto unlock;
2214 		}
2215 
2216 		/* Had to read the page from swap area: Major fault */
2217 		ret = VM_FAULT_MAJOR;
2218 		count_vm_event(PGMAJFAULT);
2219 	}
2220 
2221 	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2222 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2223 		ret = VM_FAULT_OOM;
2224 		goto out;
2225 	}
2226 
2227 	mark_page_accessed(page);
2228 	lock_page(page);
2229 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2230 
2231 	/*
2232 	 * Back out if somebody else already faulted in this pte.
2233 	 */
2234 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2235 	if (unlikely(!pte_same(*page_table, orig_pte)))
2236 		goto out_nomap;
2237 
2238 	if (unlikely(!PageUptodate(page))) {
2239 		ret = VM_FAULT_SIGBUS;
2240 		goto out_nomap;
2241 	}
2242 
2243 	/* The page isn't present yet, go ahead with the fault. */
2244 
2245 	inc_mm_counter(mm, anon_rss);
2246 	pte = mk_pte(page, vma->vm_page_prot);
2247 	if (write_access && can_share_swap_page(page)) {
2248 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2249 		write_access = 0;
2250 	}
2251 
2252 	flush_icache_page(vma, page);
2253 	set_pte_at(mm, address, page_table, pte);
2254 	page_add_anon_rmap(page, vma, address);
2255 
2256 	swap_free(entry);
2257 	if (vm_swap_full())
2258 		remove_exclusive_swap_page(page);
2259 	unlock_page(page);
2260 
2261 	if (write_access) {
2262 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2263 		if (ret & VM_FAULT_ERROR)
2264 			ret &= VM_FAULT_ERROR;
2265 		goto out;
2266 	}
2267 
2268 	/* No need to invalidate - it was non-present before */
2269 	update_mmu_cache(vma, address, pte);
2270 unlock:
2271 	pte_unmap_unlock(page_table, ptl);
2272 out:
2273 	return ret;
2274 out_nomap:
2275 	mem_cgroup_uncharge_page(page);
2276 	pte_unmap_unlock(page_table, ptl);
2277 	unlock_page(page);
2278 	page_cache_release(page);
2279 	return ret;
2280 }
2281 
2282 /*
2283  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2284  * but allow concurrent faults), and pte mapped but not yet locked.
2285  * We return with mmap_sem still held, but pte unmapped and unlocked.
2286  */
2287 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2288 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2289 		int write_access)
2290 {
2291 	struct page *page;
2292 	spinlock_t *ptl;
2293 	pte_t entry;
2294 
2295 	/* Allocate our own private page. */
2296 	pte_unmap(page_table);
2297 
2298 	if (unlikely(anon_vma_prepare(vma)))
2299 		goto oom;
2300 	page = alloc_zeroed_user_highpage_movable(vma, address);
2301 	if (!page)
2302 		goto oom;
2303 	__SetPageUptodate(page);
2304 
2305 	if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2306 		goto oom_free_page;
2307 
2308 	entry = mk_pte(page, vma->vm_page_prot);
2309 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2310 
2311 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2312 	if (!pte_none(*page_table))
2313 		goto release;
2314 	inc_mm_counter(mm, anon_rss);
2315 	lru_cache_add_active(page);
2316 	page_add_new_anon_rmap(page, vma, address);
2317 	set_pte_at(mm, address, page_table, entry);
2318 
2319 	/* No need to invalidate - it was non-present before */
2320 	update_mmu_cache(vma, address, entry);
2321 unlock:
2322 	pte_unmap_unlock(page_table, ptl);
2323 	return 0;
2324 release:
2325 	mem_cgroup_uncharge_page(page);
2326 	page_cache_release(page);
2327 	goto unlock;
2328 oom_free_page:
2329 	page_cache_release(page);
2330 oom:
2331 	return VM_FAULT_OOM;
2332 }
2333 
2334 /*
2335  * __do_fault() tries to create a new page mapping. It aggressively
2336  * tries to share with existing pages, but makes a separate copy if
2337  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2338  * the next page fault.
2339  *
2340  * As this is called only for pages that do not currently exist, we
2341  * do not need to flush old virtual caches or the TLB.
2342  *
2343  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2344  * but allow concurrent faults), and pte neither mapped nor locked.
2345  * We return with mmap_sem still held, but pte unmapped and unlocked.
2346  */
2347 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2348 		unsigned long address, pmd_t *pmd,
2349 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2350 {
2351 	pte_t *page_table;
2352 	spinlock_t *ptl;
2353 	struct page *page;
2354 	pte_t entry;
2355 	int anon = 0;
2356 	struct page *dirty_page = NULL;
2357 	struct vm_fault vmf;
2358 	int ret;
2359 	int page_mkwrite = 0;
2360 
2361 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2362 	vmf.pgoff = pgoff;
2363 	vmf.flags = flags;
2364 	vmf.page = NULL;
2365 
2366 	ret = vma->vm_ops->fault(vma, &vmf);
2367 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2368 		return ret;
2369 
2370 	/*
2371 	 * For consistency in subsequent calls, make the faulted page always
2372 	 * locked.
2373 	 */
2374 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2375 		lock_page(vmf.page);
2376 	else
2377 		VM_BUG_ON(!PageLocked(vmf.page));
2378 
2379 	/*
2380 	 * Should we do an early C-O-W break?
2381 	 */
2382 	page = vmf.page;
2383 	if (flags & FAULT_FLAG_WRITE) {
2384 		if (!(vma->vm_flags & VM_SHARED)) {
2385 			anon = 1;
2386 			if (unlikely(anon_vma_prepare(vma))) {
2387 				ret = VM_FAULT_OOM;
2388 				goto out;
2389 			}
2390 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2391 						vma, address);
2392 			if (!page) {
2393 				ret = VM_FAULT_OOM;
2394 				goto out;
2395 			}
2396 			copy_user_highpage(page, vmf.page, address, vma);
2397 			__SetPageUptodate(page);
2398 		} else {
2399 			/*
2400 			 * If the page will be shareable, see if the backing
2401 			 * address space wants to know that the page is about
2402 			 * to become writable
2403 			 */
2404 			if (vma->vm_ops->page_mkwrite) {
2405 				unlock_page(page);
2406 				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2407 					ret = VM_FAULT_SIGBUS;
2408 					anon = 1; /* no anon but release vmf.page */
2409 					goto out_unlocked;
2410 				}
2411 				lock_page(page);
2412 				/*
2413 				 * XXX: this is not quite right (racy vs
2414 				 * invalidate) to unlock and relock the page
2415 				 * like this, however a better fix requires
2416 				 * reworking page_mkwrite locking API, which
2417 				 * is better done later.
2418 				 */
2419 				if (!page->mapping) {
2420 					ret = 0;
2421 					anon = 1; /* no anon but release vmf.page */
2422 					goto out;
2423 				}
2424 				page_mkwrite = 1;
2425 			}
2426 		}
2427 
2428 	}
2429 
2430 	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2431 		ret = VM_FAULT_OOM;
2432 		goto out;
2433 	}
2434 
2435 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2436 
2437 	/*
2438 	 * This silly early PAGE_DIRTY setting removes a race
2439 	 * due to the bad i386 page protection. But it's valid
2440 	 * for other architectures too.
2441 	 *
2442 	 * Note that if write_access is true, we either now have
2443 	 * an exclusive copy of the page, or this is a shared mapping,
2444 	 * so we can make it writable and dirty to avoid having to
2445 	 * handle that later.
2446 	 */
2447 	/* Only go through if we didn't race with anybody else... */
2448 	if (likely(pte_same(*page_table, orig_pte))) {
2449 		flush_icache_page(vma, page);
2450 		entry = mk_pte(page, vma->vm_page_prot);
2451 		if (flags & FAULT_FLAG_WRITE)
2452 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2453 		set_pte_at(mm, address, page_table, entry);
2454 		if (anon) {
2455                         inc_mm_counter(mm, anon_rss);
2456                         lru_cache_add_active(page);
2457                         page_add_new_anon_rmap(page, vma, address);
2458 		} else {
2459 			inc_mm_counter(mm, file_rss);
2460 			page_add_file_rmap(page);
2461 			if (flags & FAULT_FLAG_WRITE) {
2462 				dirty_page = page;
2463 				get_page(dirty_page);
2464 			}
2465 		}
2466 
2467 		/* no need to invalidate: a not-present page won't be cached */
2468 		update_mmu_cache(vma, address, entry);
2469 	} else {
2470 		mem_cgroup_uncharge_page(page);
2471 		if (anon)
2472 			page_cache_release(page);
2473 		else
2474 			anon = 1; /* no anon but release faulted_page */
2475 	}
2476 
2477 	pte_unmap_unlock(page_table, ptl);
2478 
2479 out:
2480 	unlock_page(vmf.page);
2481 out_unlocked:
2482 	if (anon)
2483 		page_cache_release(vmf.page);
2484 	else if (dirty_page) {
2485 		if (vma->vm_file)
2486 			file_update_time(vma->vm_file);
2487 
2488 		set_page_dirty_balance(dirty_page, page_mkwrite);
2489 		put_page(dirty_page);
2490 	}
2491 
2492 	return ret;
2493 }
2494 
2495 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2496 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2497 		int write_access, pte_t orig_pte)
2498 {
2499 	pgoff_t pgoff = (((address & PAGE_MASK)
2500 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2501 	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2502 
2503 	pte_unmap(page_table);
2504 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2505 }
2506 
2507 /*
2508  * Fault of a previously existing named mapping. Repopulate the pte
2509  * from the encoded file_pte if possible. This enables swappable
2510  * nonlinear vmas.
2511  *
2512  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2513  * but allow concurrent faults), and pte mapped but not yet locked.
2514  * We return with mmap_sem still held, but pte unmapped and unlocked.
2515  */
2516 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2517 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2518 		int write_access, pte_t orig_pte)
2519 {
2520 	unsigned int flags = FAULT_FLAG_NONLINEAR |
2521 				(write_access ? FAULT_FLAG_WRITE : 0);
2522 	pgoff_t pgoff;
2523 
2524 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2525 		return 0;
2526 
2527 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2528 			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2529 		/*
2530 		 * Page table corrupted: show pte and kill process.
2531 		 */
2532 		print_bad_pte(vma, orig_pte, address);
2533 		return VM_FAULT_OOM;
2534 	}
2535 
2536 	pgoff = pte_to_pgoff(orig_pte);
2537 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2538 }
2539 
2540 /*
2541  * These routines also need to handle stuff like marking pages dirty
2542  * and/or accessed for architectures that don't do it in hardware (most
2543  * RISC architectures).  The early dirtying is also good on the i386.
2544  *
2545  * There is also a hook called "update_mmu_cache()" that architectures
2546  * with external mmu caches can use to update those (ie the Sparc or
2547  * PowerPC hashed page tables that act as extended TLBs).
2548  *
2549  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2550  * but allow concurrent faults), and pte mapped but not yet locked.
2551  * We return with mmap_sem still held, but pte unmapped and unlocked.
2552  */
2553 static inline int handle_pte_fault(struct mm_struct *mm,
2554 		struct vm_area_struct *vma, unsigned long address,
2555 		pte_t *pte, pmd_t *pmd, int write_access)
2556 {
2557 	pte_t entry;
2558 	spinlock_t *ptl;
2559 
2560 	entry = *pte;
2561 	if (!pte_present(entry)) {
2562 		if (pte_none(entry)) {
2563 			if (vma->vm_ops) {
2564 				if (likely(vma->vm_ops->fault))
2565 					return do_linear_fault(mm, vma, address,
2566 						pte, pmd, write_access, entry);
2567 			}
2568 			return do_anonymous_page(mm, vma, address,
2569 						 pte, pmd, write_access);
2570 		}
2571 		if (pte_file(entry))
2572 			return do_nonlinear_fault(mm, vma, address,
2573 					pte, pmd, write_access, entry);
2574 		return do_swap_page(mm, vma, address,
2575 					pte, pmd, write_access, entry);
2576 	}
2577 
2578 	ptl = pte_lockptr(mm, pmd);
2579 	spin_lock(ptl);
2580 	if (unlikely(!pte_same(*pte, entry)))
2581 		goto unlock;
2582 	if (write_access) {
2583 		if (!pte_write(entry))
2584 			return do_wp_page(mm, vma, address,
2585 					pte, pmd, ptl, entry);
2586 		entry = pte_mkdirty(entry);
2587 	}
2588 	entry = pte_mkyoung(entry);
2589 	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2590 		update_mmu_cache(vma, address, entry);
2591 	} else {
2592 		/*
2593 		 * This is needed only for protection faults but the arch code
2594 		 * is not yet telling us if this is a protection fault or not.
2595 		 * This still avoids useless tlb flushes for .text page faults
2596 		 * with threads.
2597 		 */
2598 		if (write_access)
2599 			flush_tlb_page(vma, address);
2600 	}
2601 unlock:
2602 	pte_unmap_unlock(pte, ptl);
2603 	return 0;
2604 }
2605 
2606 /*
2607  * By the time we get here, we already hold the mm semaphore
2608  */
2609 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2610 		unsigned long address, int write_access)
2611 {
2612 	pgd_t *pgd;
2613 	pud_t *pud;
2614 	pmd_t *pmd;
2615 	pte_t *pte;
2616 
2617 	__set_current_state(TASK_RUNNING);
2618 
2619 	count_vm_event(PGFAULT);
2620 
2621 	if (unlikely(is_vm_hugetlb_page(vma)))
2622 		return hugetlb_fault(mm, vma, address, write_access);
2623 
2624 	pgd = pgd_offset(mm, address);
2625 	pud = pud_alloc(mm, pgd, address);
2626 	if (!pud)
2627 		return VM_FAULT_OOM;
2628 	pmd = pmd_alloc(mm, pud, address);
2629 	if (!pmd)
2630 		return VM_FAULT_OOM;
2631 	pte = pte_alloc_map(mm, pmd, address);
2632 	if (!pte)
2633 		return VM_FAULT_OOM;
2634 
2635 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2636 }
2637 
2638 #ifndef __PAGETABLE_PUD_FOLDED
2639 /*
2640  * Allocate page upper directory.
2641  * We've already handled the fast-path in-line.
2642  */
2643 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2644 {
2645 	pud_t *new = pud_alloc_one(mm, address);
2646 	if (!new)
2647 		return -ENOMEM;
2648 
2649 	smp_wmb(); /* See comment in __pte_alloc */
2650 
2651 	spin_lock(&mm->page_table_lock);
2652 	if (pgd_present(*pgd))		/* Another has populated it */
2653 		pud_free(mm, new);
2654 	else
2655 		pgd_populate(mm, pgd, new);
2656 	spin_unlock(&mm->page_table_lock);
2657 	return 0;
2658 }
2659 #endif /* __PAGETABLE_PUD_FOLDED */
2660 
2661 #ifndef __PAGETABLE_PMD_FOLDED
2662 /*
2663  * Allocate page middle directory.
2664  * We've already handled the fast-path in-line.
2665  */
2666 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2667 {
2668 	pmd_t *new = pmd_alloc_one(mm, address);
2669 	if (!new)
2670 		return -ENOMEM;
2671 
2672 	smp_wmb(); /* See comment in __pte_alloc */
2673 
2674 	spin_lock(&mm->page_table_lock);
2675 #ifndef __ARCH_HAS_4LEVEL_HACK
2676 	if (pud_present(*pud))		/* Another has populated it */
2677 		pmd_free(mm, new);
2678 	else
2679 		pud_populate(mm, pud, new);
2680 #else
2681 	if (pgd_present(*pud))		/* Another has populated it */
2682 		pmd_free(mm, new);
2683 	else
2684 		pgd_populate(mm, pud, new);
2685 #endif /* __ARCH_HAS_4LEVEL_HACK */
2686 	spin_unlock(&mm->page_table_lock);
2687 	return 0;
2688 }
2689 #endif /* __PAGETABLE_PMD_FOLDED */
2690 
2691 int make_pages_present(unsigned long addr, unsigned long end)
2692 {
2693 	int ret, len, write;
2694 	struct vm_area_struct * vma;
2695 
2696 	vma = find_vma(current->mm, addr);
2697 	if (!vma)
2698 		return -1;
2699 	write = (vma->vm_flags & VM_WRITE) != 0;
2700 	BUG_ON(addr >= end);
2701 	BUG_ON(end > vma->vm_end);
2702 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2703 	ret = get_user_pages(current, current->mm, addr,
2704 			len, write, 0, NULL, NULL);
2705 	if (ret < 0)
2706 		return ret;
2707 	return ret == len ? 0 : -1;
2708 }
2709 
2710 #if !defined(__HAVE_ARCH_GATE_AREA)
2711 
2712 #if defined(AT_SYSINFO_EHDR)
2713 static struct vm_area_struct gate_vma;
2714 
2715 static int __init gate_vma_init(void)
2716 {
2717 	gate_vma.vm_mm = NULL;
2718 	gate_vma.vm_start = FIXADDR_USER_START;
2719 	gate_vma.vm_end = FIXADDR_USER_END;
2720 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2721 	gate_vma.vm_page_prot = __P101;
2722 	/*
2723 	 * Make sure the vDSO gets into every core dump.
2724 	 * Dumping its contents makes post-mortem fully interpretable later
2725 	 * without matching up the same kernel and hardware config to see
2726 	 * what PC values meant.
2727 	 */
2728 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2729 	return 0;
2730 }
2731 __initcall(gate_vma_init);
2732 #endif
2733 
2734 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2735 {
2736 #ifdef AT_SYSINFO_EHDR
2737 	return &gate_vma;
2738 #else
2739 	return NULL;
2740 #endif
2741 }
2742 
2743 int in_gate_area_no_task(unsigned long addr)
2744 {
2745 #ifdef AT_SYSINFO_EHDR
2746 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2747 		return 1;
2748 #endif
2749 	return 0;
2750 }
2751 
2752 #endif	/* __HAVE_ARCH_GATE_AREA */
2753 
2754 #ifdef CONFIG_HAVE_IOREMAP_PROT
2755 static resource_size_t follow_phys(struct vm_area_struct *vma,
2756 			unsigned long address, unsigned int flags,
2757 			unsigned long *prot)
2758 {
2759 	pgd_t *pgd;
2760 	pud_t *pud;
2761 	pmd_t *pmd;
2762 	pte_t *ptep, pte;
2763 	spinlock_t *ptl;
2764 	resource_size_t phys_addr = 0;
2765 	struct mm_struct *mm = vma->vm_mm;
2766 
2767 	VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2768 
2769 	pgd = pgd_offset(mm, address);
2770 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2771 		goto no_page_table;
2772 
2773 	pud = pud_offset(pgd, address);
2774 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2775 		goto no_page_table;
2776 
2777 	pmd = pmd_offset(pud, address);
2778 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2779 		goto no_page_table;
2780 
2781 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
2782 	if (pmd_huge(*pmd))
2783 		goto no_page_table;
2784 
2785 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2786 	if (!ptep)
2787 		goto out;
2788 
2789 	pte = *ptep;
2790 	if (!pte_present(pte))
2791 		goto unlock;
2792 	if ((flags & FOLL_WRITE) && !pte_write(pte))
2793 		goto unlock;
2794 	phys_addr = pte_pfn(pte);
2795 	phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2796 
2797 	*prot = pgprot_val(pte_pgprot(pte));
2798 
2799 unlock:
2800 	pte_unmap_unlock(ptep, ptl);
2801 out:
2802 	return phys_addr;
2803 no_page_table:
2804 	return 0;
2805 }
2806 
2807 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2808 			void *buf, int len, int write)
2809 {
2810 	resource_size_t phys_addr;
2811 	unsigned long prot = 0;
2812 	void *maddr;
2813 	int offset = addr & (PAGE_SIZE-1);
2814 
2815 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2816 		return -EINVAL;
2817 
2818 	phys_addr = follow_phys(vma, addr, write, &prot);
2819 
2820 	if (!phys_addr)
2821 		return -EINVAL;
2822 
2823 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2824 	if (write)
2825 		memcpy_toio(maddr + offset, buf, len);
2826 	else
2827 		memcpy_fromio(buf, maddr + offset, len);
2828 	iounmap(maddr);
2829 
2830 	return len;
2831 }
2832 #endif
2833 
2834 /*
2835  * Access another process' address space.
2836  * Source/target buffer must be kernel space,
2837  * Do not walk the page table directly, use get_user_pages
2838  */
2839 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2840 {
2841 	struct mm_struct *mm;
2842 	struct vm_area_struct *vma;
2843 	void *old_buf = buf;
2844 
2845 	mm = get_task_mm(tsk);
2846 	if (!mm)
2847 		return 0;
2848 
2849 	down_read(&mm->mmap_sem);
2850 	/* ignore errors, just check how much was successfully transferred */
2851 	while (len) {
2852 		int bytes, ret, offset;
2853 		void *maddr;
2854 		struct page *page = NULL;
2855 
2856 		ret = get_user_pages(tsk, mm, addr, 1,
2857 				write, 1, &page, &vma);
2858 		if (ret <= 0) {
2859 			/*
2860 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2861 			 * we can access using slightly different code.
2862 			 */
2863 #ifdef CONFIG_HAVE_IOREMAP_PROT
2864 			vma = find_vma(mm, addr);
2865 			if (!vma)
2866 				break;
2867 			if (vma->vm_ops && vma->vm_ops->access)
2868 				ret = vma->vm_ops->access(vma, addr, buf,
2869 							  len, write);
2870 			if (ret <= 0)
2871 #endif
2872 				break;
2873 			bytes = ret;
2874 		} else {
2875 			bytes = len;
2876 			offset = addr & (PAGE_SIZE-1);
2877 			if (bytes > PAGE_SIZE-offset)
2878 				bytes = PAGE_SIZE-offset;
2879 
2880 			maddr = kmap(page);
2881 			if (write) {
2882 				copy_to_user_page(vma, page, addr,
2883 						  maddr + offset, buf, bytes);
2884 				set_page_dirty_lock(page);
2885 			} else {
2886 				copy_from_user_page(vma, page, addr,
2887 						    buf, maddr + offset, bytes);
2888 			}
2889 			kunmap(page);
2890 			page_cache_release(page);
2891 		}
2892 		len -= bytes;
2893 		buf += bytes;
2894 		addr += bytes;
2895 	}
2896 	up_read(&mm->mmap_sem);
2897 	mmput(mm);
2898 
2899 	return buf - old_buf;
2900 }
2901 
2902 /*
2903  * Print the name of a VMA.
2904  */
2905 void print_vma_addr(char *prefix, unsigned long ip)
2906 {
2907 	struct mm_struct *mm = current->mm;
2908 	struct vm_area_struct *vma;
2909 
2910 	/*
2911 	 * Do not print if we are in atomic
2912 	 * contexts (in exception stacks, etc.):
2913 	 */
2914 	if (preempt_count())
2915 		return;
2916 
2917 	down_read(&mm->mmap_sem);
2918 	vma = find_vma(mm, ip);
2919 	if (vma && vma->vm_file) {
2920 		struct file *f = vma->vm_file;
2921 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2922 		if (buf) {
2923 			char *p, *s;
2924 
2925 			p = d_path(&f->f_path, buf, PAGE_SIZE);
2926 			if (IS_ERR(p))
2927 				p = "?";
2928 			s = strrchr(p, '/');
2929 			if (s)
2930 				p = s+1;
2931 			printk("%s%s[%lx+%lx]", prefix, p,
2932 					vma->vm_start,
2933 					vma->vm_end - vma->vm_start);
2934 			free_page((unsigned long)buf);
2935 		}
2936 	}
2937 	up_read(&current->mm->mmap_sem);
2938 }
2939