xref: /linux/mm/memory.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 
60 #include <asm/io.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
63 #include <asm/tlb.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
66 
67 #include "internal.h"
68 
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr;
72 struct page *mem_map;
73 
74 EXPORT_SYMBOL(max_mapnr);
75 EXPORT_SYMBOL(mem_map);
76 #endif
77 
78 unsigned long num_physpages;
79 /*
80  * A number of key systems in x86 including ioremap() rely on the assumption
81  * that high_memory defines the upper bound on direct map memory, then end
82  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
83  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84  * and ZONE_HIGHMEM.
85  */
86 void * high_memory;
87 
88 EXPORT_SYMBOL(num_physpages);
89 EXPORT_SYMBOL(high_memory);
90 
91 /*
92  * Randomize the address space (stacks, mmaps, brk, etc.).
93  *
94  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95  *   as ancient (libc5 based) binaries can segfault. )
96  */
97 int randomize_va_space __read_mostly =
98 #ifdef CONFIG_COMPAT_BRK
99 					1;
100 #else
101 					2;
102 #endif
103 
104 static int __init disable_randmaps(char *s)
105 {
106 	randomize_va_space = 0;
107 	return 1;
108 }
109 __setup("norandmaps", disable_randmaps);
110 
111 unsigned long zero_pfn __read_mostly;
112 unsigned long highest_memmap_pfn __read_mostly;
113 
114 /*
115  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
116  */
117 static int __init init_zero_pfn(void)
118 {
119 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
120 	return 0;
121 }
122 core_initcall(init_zero_pfn);
123 
124 /*
125  * If a p?d_bad entry is found while walking page tables, report
126  * the error, before resetting entry to p?d_none.  Usually (but
127  * very seldom) called out from the p?d_none_or_clear_bad macros.
128  */
129 
130 void pgd_clear_bad(pgd_t *pgd)
131 {
132 	pgd_ERROR(*pgd);
133 	pgd_clear(pgd);
134 }
135 
136 void pud_clear_bad(pud_t *pud)
137 {
138 	pud_ERROR(*pud);
139 	pud_clear(pud);
140 }
141 
142 void pmd_clear_bad(pmd_t *pmd)
143 {
144 	pmd_ERROR(*pmd);
145 	pmd_clear(pmd);
146 }
147 
148 /*
149  * Note: this doesn't free the actual pages themselves. That
150  * has been handled earlier when unmapping all the memory regions.
151  */
152 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
153 			   unsigned long addr)
154 {
155 	pgtable_t token = pmd_pgtable(*pmd);
156 	pmd_clear(pmd);
157 	pte_free_tlb(tlb, token, addr);
158 	tlb->mm->nr_ptes--;
159 }
160 
161 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
162 				unsigned long addr, unsigned long end,
163 				unsigned long floor, unsigned long ceiling)
164 {
165 	pmd_t *pmd;
166 	unsigned long next;
167 	unsigned long start;
168 
169 	start = addr;
170 	pmd = pmd_offset(pud, addr);
171 	do {
172 		next = pmd_addr_end(addr, end);
173 		if (pmd_none_or_clear_bad(pmd))
174 			continue;
175 		free_pte_range(tlb, pmd, addr);
176 	} while (pmd++, addr = next, addr != end);
177 
178 	start &= PUD_MASK;
179 	if (start < floor)
180 		return;
181 	if (ceiling) {
182 		ceiling &= PUD_MASK;
183 		if (!ceiling)
184 			return;
185 	}
186 	if (end - 1 > ceiling - 1)
187 		return;
188 
189 	pmd = pmd_offset(pud, start);
190 	pud_clear(pud);
191 	pmd_free_tlb(tlb, pmd, start);
192 }
193 
194 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
195 				unsigned long addr, unsigned long end,
196 				unsigned long floor, unsigned long ceiling)
197 {
198 	pud_t *pud;
199 	unsigned long next;
200 	unsigned long start;
201 
202 	start = addr;
203 	pud = pud_offset(pgd, addr);
204 	do {
205 		next = pud_addr_end(addr, end);
206 		if (pud_none_or_clear_bad(pud))
207 			continue;
208 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
209 	} while (pud++, addr = next, addr != end);
210 
211 	start &= PGDIR_MASK;
212 	if (start < floor)
213 		return;
214 	if (ceiling) {
215 		ceiling &= PGDIR_MASK;
216 		if (!ceiling)
217 			return;
218 	}
219 	if (end - 1 > ceiling - 1)
220 		return;
221 
222 	pud = pud_offset(pgd, start);
223 	pgd_clear(pgd);
224 	pud_free_tlb(tlb, pud, start);
225 }
226 
227 /*
228  * This function frees user-level page tables of a process.
229  *
230  * Must be called with pagetable lock held.
231  */
232 void free_pgd_range(struct mmu_gather *tlb,
233 			unsigned long addr, unsigned long end,
234 			unsigned long floor, unsigned long ceiling)
235 {
236 	pgd_t *pgd;
237 	unsigned long next;
238 	unsigned long start;
239 
240 	/*
241 	 * The next few lines have given us lots of grief...
242 	 *
243 	 * Why are we testing PMD* at this top level?  Because often
244 	 * there will be no work to do at all, and we'd prefer not to
245 	 * go all the way down to the bottom just to discover that.
246 	 *
247 	 * Why all these "- 1"s?  Because 0 represents both the bottom
248 	 * of the address space and the top of it (using -1 for the
249 	 * top wouldn't help much: the masks would do the wrong thing).
250 	 * The rule is that addr 0 and floor 0 refer to the bottom of
251 	 * the address space, but end 0 and ceiling 0 refer to the top
252 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
253 	 * that end 0 case should be mythical).
254 	 *
255 	 * Wherever addr is brought up or ceiling brought down, we must
256 	 * be careful to reject "the opposite 0" before it confuses the
257 	 * subsequent tests.  But what about where end is brought down
258 	 * by PMD_SIZE below? no, end can't go down to 0 there.
259 	 *
260 	 * Whereas we round start (addr) and ceiling down, by different
261 	 * masks at different levels, in order to test whether a table
262 	 * now has no other vmas using it, so can be freed, we don't
263 	 * bother to round floor or end up - the tests don't need that.
264 	 */
265 
266 	addr &= PMD_MASK;
267 	if (addr < floor) {
268 		addr += PMD_SIZE;
269 		if (!addr)
270 			return;
271 	}
272 	if (ceiling) {
273 		ceiling &= PMD_MASK;
274 		if (!ceiling)
275 			return;
276 	}
277 	if (end - 1 > ceiling - 1)
278 		end -= PMD_SIZE;
279 	if (addr > end - 1)
280 		return;
281 
282 	start = addr;
283 	pgd = pgd_offset(tlb->mm, addr);
284 	do {
285 		next = pgd_addr_end(addr, end);
286 		if (pgd_none_or_clear_bad(pgd))
287 			continue;
288 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
289 	} while (pgd++, addr = next, addr != end);
290 }
291 
292 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
293 		unsigned long floor, unsigned long ceiling)
294 {
295 	while (vma) {
296 		struct vm_area_struct *next = vma->vm_next;
297 		unsigned long addr = vma->vm_start;
298 
299 		/*
300 		 * Hide vma from rmap and vmtruncate before freeing pgtables
301 		 */
302 		anon_vma_unlink(vma);
303 		unlink_file_vma(vma);
304 
305 		if (is_vm_hugetlb_page(vma)) {
306 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
307 				floor, next? next->vm_start: ceiling);
308 		} else {
309 			/*
310 			 * Optimization: gather nearby vmas into one call down
311 			 */
312 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
313 			       && !is_vm_hugetlb_page(next)) {
314 				vma = next;
315 				next = vma->vm_next;
316 				anon_vma_unlink(vma);
317 				unlink_file_vma(vma);
318 			}
319 			free_pgd_range(tlb, addr, vma->vm_end,
320 				floor, next? next->vm_start: ceiling);
321 		}
322 		vma = next;
323 	}
324 }
325 
326 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
327 {
328 	pgtable_t new = pte_alloc_one(mm, address);
329 	if (!new)
330 		return -ENOMEM;
331 
332 	/*
333 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
334 	 * visible before the pte is made visible to other CPUs by being
335 	 * put into page tables.
336 	 *
337 	 * The other side of the story is the pointer chasing in the page
338 	 * table walking code (when walking the page table without locking;
339 	 * ie. most of the time). Fortunately, these data accesses consist
340 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
341 	 * being the notable exception) will already guarantee loads are
342 	 * seen in-order. See the alpha page table accessors for the
343 	 * smp_read_barrier_depends() barriers in page table walking code.
344 	 */
345 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
346 
347 	spin_lock(&mm->page_table_lock);
348 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
349 		mm->nr_ptes++;
350 		pmd_populate(mm, pmd, new);
351 		new = NULL;
352 	}
353 	spin_unlock(&mm->page_table_lock);
354 	if (new)
355 		pte_free(mm, new);
356 	return 0;
357 }
358 
359 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
360 {
361 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
362 	if (!new)
363 		return -ENOMEM;
364 
365 	smp_wmb(); /* See comment in __pte_alloc */
366 
367 	spin_lock(&init_mm.page_table_lock);
368 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
369 		pmd_populate_kernel(&init_mm, pmd, new);
370 		new = NULL;
371 	}
372 	spin_unlock(&init_mm.page_table_lock);
373 	if (new)
374 		pte_free_kernel(&init_mm, new);
375 	return 0;
376 }
377 
378 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
379 {
380 	if (file_rss)
381 		add_mm_counter(mm, file_rss, file_rss);
382 	if (anon_rss)
383 		add_mm_counter(mm, anon_rss, anon_rss);
384 }
385 
386 /*
387  * This function is called to print an error when a bad pte
388  * is found. For example, we might have a PFN-mapped pte in
389  * a region that doesn't allow it.
390  *
391  * The calling function must still handle the error.
392  */
393 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
394 			  pte_t pte, struct page *page)
395 {
396 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
397 	pud_t *pud = pud_offset(pgd, addr);
398 	pmd_t *pmd = pmd_offset(pud, addr);
399 	struct address_space *mapping;
400 	pgoff_t index;
401 	static unsigned long resume;
402 	static unsigned long nr_shown;
403 	static unsigned long nr_unshown;
404 
405 	/*
406 	 * Allow a burst of 60 reports, then keep quiet for that minute;
407 	 * or allow a steady drip of one report per second.
408 	 */
409 	if (nr_shown == 60) {
410 		if (time_before(jiffies, resume)) {
411 			nr_unshown++;
412 			return;
413 		}
414 		if (nr_unshown) {
415 			printk(KERN_ALERT
416 				"BUG: Bad page map: %lu messages suppressed\n",
417 				nr_unshown);
418 			nr_unshown = 0;
419 		}
420 		nr_shown = 0;
421 	}
422 	if (nr_shown++ == 0)
423 		resume = jiffies + 60 * HZ;
424 
425 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
426 	index = linear_page_index(vma, addr);
427 
428 	printk(KERN_ALERT
429 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
430 		current->comm,
431 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
432 	if (page) {
433 		printk(KERN_ALERT
434 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
435 		page, (void *)page->flags, page_count(page),
436 		page_mapcount(page), page->mapping, page->index);
437 	}
438 	printk(KERN_ALERT
439 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
440 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
441 	/*
442 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
443 	 */
444 	if (vma->vm_ops)
445 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
446 				(unsigned long)vma->vm_ops->fault);
447 	if (vma->vm_file && vma->vm_file->f_op)
448 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
449 				(unsigned long)vma->vm_file->f_op->mmap);
450 	dump_stack();
451 	add_taint(TAINT_BAD_PAGE);
452 }
453 
454 static inline int is_cow_mapping(unsigned int flags)
455 {
456 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
457 }
458 
459 #ifndef is_zero_pfn
460 static inline int is_zero_pfn(unsigned long pfn)
461 {
462 	return pfn == zero_pfn;
463 }
464 #endif
465 
466 #ifndef my_zero_pfn
467 static inline unsigned long my_zero_pfn(unsigned long addr)
468 {
469 	return zero_pfn;
470 }
471 #endif
472 
473 /*
474  * vm_normal_page -- This function gets the "struct page" associated with a pte.
475  *
476  * "Special" mappings do not wish to be associated with a "struct page" (either
477  * it doesn't exist, or it exists but they don't want to touch it). In this
478  * case, NULL is returned here. "Normal" mappings do have a struct page.
479  *
480  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
481  * pte bit, in which case this function is trivial. Secondly, an architecture
482  * may not have a spare pte bit, which requires a more complicated scheme,
483  * described below.
484  *
485  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
486  * special mapping (even if there are underlying and valid "struct pages").
487  * COWed pages of a VM_PFNMAP are always normal.
488  *
489  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
490  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
491  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
492  * mapping will always honor the rule
493  *
494  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
495  *
496  * And for normal mappings this is false.
497  *
498  * This restricts such mappings to be a linear translation from virtual address
499  * to pfn. To get around this restriction, we allow arbitrary mappings so long
500  * as the vma is not a COW mapping; in that case, we know that all ptes are
501  * special (because none can have been COWed).
502  *
503  *
504  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
505  *
506  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
507  * page" backing, however the difference is that _all_ pages with a struct
508  * page (that is, those where pfn_valid is true) are refcounted and considered
509  * normal pages by the VM. The disadvantage is that pages are refcounted
510  * (which can be slower and simply not an option for some PFNMAP users). The
511  * advantage is that we don't have to follow the strict linearity rule of
512  * PFNMAP mappings in order to support COWable mappings.
513  *
514  */
515 #ifdef __HAVE_ARCH_PTE_SPECIAL
516 # define HAVE_PTE_SPECIAL 1
517 #else
518 # define HAVE_PTE_SPECIAL 0
519 #endif
520 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
521 				pte_t pte)
522 {
523 	unsigned long pfn = pte_pfn(pte);
524 
525 	if (HAVE_PTE_SPECIAL) {
526 		if (likely(!pte_special(pte)))
527 			goto check_pfn;
528 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
529 			return NULL;
530 		if (!is_zero_pfn(pfn))
531 			print_bad_pte(vma, addr, pte, NULL);
532 		return NULL;
533 	}
534 
535 	/* !HAVE_PTE_SPECIAL case follows: */
536 
537 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
538 		if (vma->vm_flags & VM_MIXEDMAP) {
539 			if (!pfn_valid(pfn))
540 				return NULL;
541 			goto out;
542 		} else {
543 			unsigned long off;
544 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
545 			if (pfn == vma->vm_pgoff + off)
546 				return NULL;
547 			if (!is_cow_mapping(vma->vm_flags))
548 				return NULL;
549 		}
550 	}
551 
552 	if (is_zero_pfn(pfn))
553 		return NULL;
554 check_pfn:
555 	if (unlikely(pfn > highest_memmap_pfn)) {
556 		print_bad_pte(vma, addr, pte, NULL);
557 		return NULL;
558 	}
559 
560 	/*
561 	 * NOTE! We still have PageReserved() pages in the page tables.
562 	 * eg. VDSO mappings can cause them to exist.
563 	 */
564 out:
565 	return pfn_to_page(pfn);
566 }
567 
568 /*
569  * copy one vm_area from one task to the other. Assumes the page tables
570  * already present in the new task to be cleared in the whole range
571  * covered by this vma.
572  */
573 
574 static inline void
575 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
576 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
577 		unsigned long addr, int *rss)
578 {
579 	unsigned long vm_flags = vma->vm_flags;
580 	pte_t pte = *src_pte;
581 	struct page *page;
582 
583 	/* pte contains position in swap or file, so copy. */
584 	if (unlikely(!pte_present(pte))) {
585 		if (!pte_file(pte)) {
586 			swp_entry_t entry = pte_to_swp_entry(pte);
587 
588 			swap_duplicate(entry);
589 			/* make sure dst_mm is on swapoff's mmlist. */
590 			if (unlikely(list_empty(&dst_mm->mmlist))) {
591 				spin_lock(&mmlist_lock);
592 				if (list_empty(&dst_mm->mmlist))
593 					list_add(&dst_mm->mmlist,
594 						 &src_mm->mmlist);
595 				spin_unlock(&mmlist_lock);
596 			}
597 			if (is_write_migration_entry(entry) &&
598 					is_cow_mapping(vm_flags)) {
599 				/*
600 				 * COW mappings require pages in both parent
601 				 * and child to be set to read.
602 				 */
603 				make_migration_entry_read(&entry);
604 				pte = swp_entry_to_pte(entry);
605 				set_pte_at(src_mm, addr, src_pte, pte);
606 			}
607 		}
608 		goto out_set_pte;
609 	}
610 
611 	/*
612 	 * If it's a COW mapping, write protect it both
613 	 * in the parent and the child
614 	 */
615 	if (is_cow_mapping(vm_flags)) {
616 		ptep_set_wrprotect(src_mm, addr, src_pte);
617 		pte = pte_wrprotect(pte);
618 	}
619 
620 	/*
621 	 * If it's a shared mapping, mark it clean in
622 	 * the child
623 	 */
624 	if (vm_flags & VM_SHARED)
625 		pte = pte_mkclean(pte);
626 	pte = pte_mkold(pte);
627 
628 	page = vm_normal_page(vma, addr, pte);
629 	if (page) {
630 		get_page(page);
631 		page_dup_rmap(page);
632 		rss[PageAnon(page)]++;
633 	}
634 
635 out_set_pte:
636 	set_pte_at(dst_mm, addr, dst_pte, pte);
637 }
638 
639 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
640 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
641 		unsigned long addr, unsigned long end)
642 {
643 	pte_t *src_pte, *dst_pte;
644 	spinlock_t *src_ptl, *dst_ptl;
645 	int progress = 0;
646 	int rss[2];
647 
648 again:
649 	rss[1] = rss[0] = 0;
650 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
651 	if (!dst_pte)
652 		return -ENOMEM;
653 	src_pte = pte_offset_map_nested(src_pmd, addr);
654 	src_ptl = pte_lockptr(src_mm, src_pmd);
655 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
656 	arch_enter_lazy_mmu_mode();
657 
658 	do {
659 		/*
660 		 * We are holding two locks at this point - either of them
661 		 * could generate latencies in another task on another CPU.
662 		 */
663 		if (progress >= 32) {
664 			progress = 0;
665 			if (need_resched() ||
666 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
667 				break;
668 		}
669 		if (pte_none(*src_pte)) {
670 			progress++;
671 			continue;
672 		}
673 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
674 		progress += 8;
675 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
676 
677 	arch_leave_lazy_mmu_mode();
678 	spin_unlock(src_ptl);
679 	pte_unmap_nested(src_pte - 1);
680 	add_mm_rss(dst_mm, rss[0], rss[1]);
681 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
682 	cond_resched();
683 	if (addr != end)
684 		goto again;
685 	return 0;
686 }
687 
688 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
689 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
690 		unsigned long addr, unsigned long end)
691 {
692 	pmd_t *src_pmd, *dst_pmd;
693 	unsigned long next;
694 
695 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
696 	if (!dst_pmd)
697 		return -ENOMEM;
698 	src_pmd = pmd_offset(src_pud, addr);
699 	do {
700 		next = pmd_addr_end(addr, end);
701 		if (pmd_none_or_clear_bad(src_pmd))
702 			continue;
703 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
704 						vma, addr, next))
705 			return -ENOMEM;
706 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
707 	return 0;
708 }
709 
710 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
711 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
712 		unsigned long addr, unsigned long end)
713 {
714 	pud_t *src_pud, *dst_pud;
715 	unsigned long next;
716 
717 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
718 	if (!dst_pud)
719 		return -ENOMEM;
720 	src_pud = pud_offset(src_pgd, addr);
721 	do {
722 		next = pud_addr_end(addr, end);
723 		if (pud_none_or_clear_bad(src_pud))
724 			continue;
725 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
726 						vma, addr, next))
727 			return -ENOMEM;
728 	} while (dst_pud++, src_pud++, addr = next, addr != end);
729 	return 0;
730 }
731 
732 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
733 		struct vm_area_struct *vma)
734 {
735 	pgd_t *src_pgd, *dst_pgd;
736 	unsigned long next;
737 	unsigned long addr = vma->vm_start;
738 	unsigned long end = vma->vm_end;
739 	int ret;
740 
741 	/*
742 	 * Don't copy ptes where a page fault will fill them correctly.
743 	 * Fork becomes much lighter when there are big shared or private
744 	 * readonly mappings. The tradeoff is that copy_page_range is more
745 	 * efficient than faulting.
746 	 */
747 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
748 		if (!vma->anon_vma)
749 			return 0;
750 	}
751 
752 	if (is_vm_hugetlb_page(vma))
753 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
754 
755 	if (unlikely(is_pfn_mapping(vma))) {
756 		/*
757 		 * We do not free on error cases below as remove_vma
758 		 * gets called on error from higher level routine
759 		 */
760 		ret = track_pfn_vma_copy(vma);
761 		if (ret)
762 			return ret;
763 	}
764 
765 	/*
766 	 * We need to invalidate the secondary MMU mappings only when
767 	 * there could be a permission downgrade on the ptes of the
768 	 * parent mm. And a permission downgrade will only happen if
769 	 * is_cow_mapping() returns true.
770 	 */
771 	if (is_cow_mapping(vma->vm_flags))
772 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
773 
774 	ret = 0;
775 	dst_pgd = pgd_offset(dst_mm, addr);
776 	src_pgd = pgd_offset(src_mm, addr);
777 	do {
778 		next = pgd_addr_end(addr, end);
779 		if (pgd_none_or_clear_bad(src_pgd))
780 			continue;
781 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
782 					    vma, addr, next))) {
783 			ret = -ENOMEM;
784 			break;
785 		}
786 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
787 
788 	if (is_cow_mapping(vma->vm_flags))
789 		mmu_notifier_invalidate_range_end(src_mm,
790 						  vma->vm_start, end);
791 	return ret;
792 }
793 
794 static unsigned long zap_pte_range(struct mmu_gather *tlb,
795 				struct vm_area_struct *vma, pmd_t *pmd,
796 				unsigned long addr, unsigned long end,
797 				long *zap_work, struct zap_details *details)
798 {
799 	struct mm_struct *mm = tlb->mm;
800 	pte_t *pte;
801 	spinlock_t *ptl;
802 	int file_rss = 0;
803 	int anon_rss = 0;
804 
805 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
806 	arch_enter_lazy_mmu_mode();
807 	do {
808 		pte_t ptent = *pte;
809 		if (pte_none(ptent)) {
810 			(*zap_work)--;
811 			continue;
812 		}
813 
814 		(*zap_work) -= PAGE_SIZE;
815 
816 		if (pte_present(ptent)) {
817 			struct page *page;
818 
819 			page = vm_normal_page(vma, addr, ptent);
820 			if (unlikely(details) && page) {
821 				/*
822 				 * unmap_shared_mapping_pages() wants to
823 				 * invalidate cache without truncating:
824 				 * unmap shared but keep private pages.
825 				 */
826 				if (details->check_mapping &&
827 				    details->check_mapping != page->mapping)
828 					continue;
829 				/*
830 				 * Each page->index must be checked when
831 				 * invalidating or truncating nonlinear.
832 				 */
833 				if (details->nonlinear_vma &&
834 				    (page->index < details->first_index ||
835 				     page->index > details->last_index))
836 					continue;
837 			}
838 			ptent = ptep_get_and_clear_full(mm, addr, pte,
839 							tlb->fullmm);
840 			tlb_remove_tlb_entry(tlb, pte, addr);
841 			if (unlikely(!page))
842 				continue;
843 			if (unlikely(details) && details->nonlinear_vma
844 			    && linear_page_index(details->nonlinear_vma,
845 						addr) != page->index)
846 				set_pte_at(mm, addr, pte,
847 					   pgoff_to_pte(page->index));
848 			if (PageAnon(page))
849 				anon_rss--;
850 			else {
851 				if (pte_dirty(ptent))
852 					set_page_dirty(page);
853 				if (pte_young(ptent) &&
854 				    likely(!VM_SequentialReadHint(vma)))
855 					mark_page_accessed(page);
856 				file_rss--;
857 			}
858 			page_remove_rmap(page);
859 			if (unlikely(page_mapcount(page) < 0))
860 				print_bad_pte(vma, addr, ptent, page);
861 			tlb_remove_page(tlb, page);
862 			continue;
863 		}
864 		/*
865 		 * If details->check_mapping, we leave swap entries;
866 		 * if details->nonlinear_vma, we leave file entries.
867 		 */
868 		if (unlikely(details))
869 			continue;
870 		if (pte_file(ptent)) {
871 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
872 				print_bad_pte(vma, addr, ptent, NULL);
873 		} else if
874 		  (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
875 			print_bad_pte(vma, addr, ptent, NULL);
876 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
877 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
878 
879 	add_mm_rss(mm, file_rss, anon_rss);
880 	arch_leave_lazy_mmu_mode();
881 	pte_unmap_unlock(pte - 1, ptl);
882 
883 	return addr;
884 }
885 
886 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
887 				struct vm_area_struct *vma, pud_t *pud,
888 				unsigned long addr, unsigned long end,
889 				long *zap_work, struct zap_details *details)
890 {
891 	pmd_t *pmd;
892 	unsigned long next;
893 
894 	pmd = pmd_offset(pud, addr);
895 	do {
896 		next = pmd_addr_end(addr, end);
897 		if (pmd_none_or_clear_bad(pmd)) {
898 			(*zap_work)--;
899 			continue;
900 		}
901 		next = zap_pte_range(tlb, vma, pmd, addr, next,
902 						zap_work, details);
903 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
904 
905 	return addr;
906 }
907 
908 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
909 				struct vm_area_struct *vma, pgd_t *pgd,
910 				unsigned long addr, unsigned long end,
911 				long *zap_work, struct zap_details *details)
912 {
913 	pud_t *pud;
914 	unsigned long next;
915 
916 	pud = pud_offset(pgd, addr);
917 	do {
918 		next = pud_addr_end(addr, end);
919 		if (pud_none_or_clear_bad(pud)) {
920 			(*zap_work)--;
921 			continue;
922 		}
923 		next = zap_pmd_range(tlb, vma, pud, addr, next,
924 						zap_work, details);
925 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
926 
927 	return addr;
928 }
929 
930 static unsigned long unmap_page_range(struct mmu_gather *tlb,
931 				struct vm_area_struct *vma,
932 				unsigned long addr, unsigned long end,
933 				long *zap_work, struct zap_details *details)
934 {
935 	pgd_t *pgd;
936 	unsigned long next;
937 
938 	if (details && !details->check_mapping && !details->nonlinear_vma)
939 		details = NULL;
940 
941 	BUG_ON(addr >= end);
942 	tlb_start_vma(tlb, vma);
943 	pgd = pgd_offset(vma->vm_mm, addr);
944 	do {
945 		next = pgd_addr_end(addr, end);
946 		if (pgd_none_or_clear_bad(pgd)) {
947 			(*zap_work)--;
948 			continue;
949 		}
950 		next = zap_pud_range(tlb, vma, pgd, addr, next,
951 						zap_work, details);
952 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
953 	tlb_end_vma(tlb, vma);
954 
955 	return addr;
956 }
957 
958 #ifdef CONFIG_PREEMPT
959 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
960 #else
961 /* No preempt: go for improved straight-line efficiency */
962 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
963 #endif
964 
965 /**
966  * unmap_vmas - unmap a range of memory covered by a list of vma's
967  * @tlbp: address of the caller's struct mmu_gather
968  * @vma: the starting vma
969  * @start_addr: virtual address at which to start unmapping
970  * @end_addr: virtual address at which to end unmapping
971  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
972  * @details: details of nonlinear truncation or shared cache invalidation
973  *
974  * Returns the end address of the unmapping (restart addr if interrupted).
975  *
976  * Unmap all pages in the vma list.
977  *
978  * We aim to not hold locks for too long (for scheduling latency reasons).
979  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
980  * return the ending mmu_gather to the caller.
981  *
982  * Only addresses between `start' and `end' will be unmapped.
983  *
984  * The VMA list must be sorted in ascending virtual address order.
985  *
986  * unmap_vmas() assumes that the caller will flush the whole unmapped address
987  * range after unmap_vmas() returns.  So the only responsibility here is to
988  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
989  * drops the lock and schedules.
990  */
991 unsigned long unmap_vmas(struct mmu_gather **tlbp,
992 		struct vm_area_struct *vma, unsigned long start_addr,
993 		unsigned long end_addr, unsigned long *nr_accounted,
994 		struct zap_details *details)
995 {
996 	long zap_work = ZAP_BLOCK_SIZE;
997 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
998 	int tlb_start_valid = 0;
999 	unsigned long start = start_addr;
1000 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1001 	int fullmm = (*tlbp)->fullmm;
1002 	struct mm_struct *mm = vma->vm_mm;
1003 
1004 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1005 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1006 		unsigned long end;
1007 
1008 		start = max(vma->vm_start, start_addr);
1009 		if (start >= vma->vm_end)
1010 			continue;
1011 		end = min(vma->vm_end, end_addr);
1012 		if (end <= vma->vm_start)
1013 			continue;
1014 
1015 		if (vma->vm_flags & VM_ACCOUNT)
1016 			*nr_accounted += (end - start) >> PAGE_SHIFT;
1017 
1018 		if (unlikely(is_pfn_mapping(vma)))
1019 			untrack_pfn_vma(vma, 0, 0);
1020 
1021 		while (start != end) {
1022 			if (!tlb_start_valid) {
1023 				tlb_start = start;
1024 				tlb_start_valid = 1;
1025 			}
1026 
1027 			if (unlikely(is_vm_hugetlb_page(vma))) {
1028 				/*
1029 				 * It is undesirable to test vma->vm_file as it
1030 				 * should be non-null for valid hugetlb area.
1031 				 * However, vm_file will be NULL in the error
1032 				 * cleanup path of do_mmap_pgoff. When
1033 				 * hugetlbfs ->mmap method fails,
1034 				 * do_mmap_pgoff() nullifies vma->vm_file
1035 				 * before calling this function to clean up.
1036 				 * Since no pte has actually been setup, it is
1037 				 * safe to do nothing in this case.
1038 				 */
1039 				if (vma->vm_file) {
1040 					unmap_hugepage_range(vma, start, end, NULL);
1041 					zap_work -= (end - start) /
1042 					pages_per_huge_page(hstate_vma(vma));
1043 				}
1044 
1045 				start = end;
1046 			} else
1047 				start = unmap_page_range(*tlbp, vma,
1048 						start, end, &zap_work, details);
1049 
1050 			if (zap_work > 0) {
1051 				BUG_ON(start != end);
1052 				break;
1053 			}
1054 
1055 			tlb_finish_mmu(*tlbp, tlb_start, start);
1056 
1057 			if (need_resched() ||
1058 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1059 				if (i_mmap_lock) {
1060 					*tlbp = NULL;
1061 					goto out;
1062 				}
1063 				cond_resched();
1064 			}
1065 
1066 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1067 			tlb_start_valid = 0;
1068 			zap_work = ZAP_BLOCK_SIZE;
1069 		}
1070 	}
1071 out:
1072 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1073 	return start;	/* which is now the end (or restart) address */
1074 }
1075 
1076 /**
1077  * zap_page_range - remove user pages in a given range
1078  * @vma: vm_area_struct holding the applicable pages
1079  * @address: starting address of pages to zap
1080  * @size: number of bytes to zap
1081  * @details: details of nonlinear truncation or shared cache invalidation
1082  */
1083 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1084 		unsigned long size, struct zap_details *details)
1085 {
1086 	struct mm_struct *mm = vma->vm_mm;
1087 	struct mmu_gather *tlb;
1088 	unsigned long end = address + size;
1089 	unsigned long nr_accounted = 0;
1090 
1091 	lru_add_drain();
1092 	tlb = tlb_gather_mmu(mm, 0);
1093 	update_hiwater_rss(mm);
1094 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1095 	if (tlb)
1096 		tlb_finish_mmu(tlb, address, end);
1097 	return end;
1098 }
1099 
1100 /**
1101  * zap_vma_ptes - remove ptes mapping the vma
1102  * @vma: vm_area_struct holding ptes to be zapped
1103  * @address: starting address of pages to zap
1104  * @size: number of bytes to zap
1105  *
1106  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1107  *
1108  * The entire address range must be fully contained within the vma.
1109  *
1110  * Returns 0 if successful.
1111  */
1112 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1113 		unsigned long size)
1114 {
1115 	if (address < vma->vm_start || address + size > vma->vm_end ||
1116 	    		!(vma->vm_flags & VM_PFNMAP))
1117 		return -1;
1118 	zap_page_range(vma, address, size, NULL);
1119 	return 0;
1120 }
1121 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1122 
1123 /*
1124  * Do a quick page-table lookup for a single page.
1125  */
1126 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1127 			unsigned int flags)
1128 {
1129 	pgd_t *pgd;
1130 	pud_t *pud;
1131 	pmd_t *pmd;
1132 	pte_t *ptep, pte;
1133 	spinlock_t *ptl;
1134 	struct page *page;
1135 	struct mm_struct *mm = vma->vm_mm;
1136 
1137 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1138 	if (!IS_ERR(page)) {
1139 		BUG_ON(flags & FOLL_GET);
1140 		goto out;
1141 	}
1142 
1143 	page = NULL;
1144 	pgd = pgd_offset(mm, address);
1145 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1146 		goto no_page_table;
1147 
1148 	pud = pud_offset(pgd, address);
1149 	if (pud_none(*pud))
1150 		goto no_page_table;
1151 	if (pud_huge(*pud)) {
1152 		BUG_ON(flags & FOLL_GET);
1153 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1154 		goto out;
1155 	}
1156 	if (unlikely(pud_bad(*pud)))
1157 		goto no_page_table;
1158 
1159 	pmd = pmd_offset(pud, address);
1160 	if (pmd_none(*pmd))
1161 		goto no_page_table;
1162 	if (pmd_huge(*pmd)) {
1163 		BUG_ON(flags & FOLL_GET);
1164 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1165 		goto out;
1166 	}
1167 	if (unlikely(pmd_bad(*pmd)))
1168 		goto no_page_table;
1169 
1170 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1171 
1172 	pte = *ptep;
1173 	if (!pte_present(pte))
1174 		goto no_page;
1175 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1176 		goto unlock;
1177 
1178 	page = vm_normal_page(vma, address, pte);
1179 	if (unlikely(!page)) {
1180 		if ((flags & FOLL_DUMP) ||
1181 		    !is_zero_pfn(pte_pfn(pte)))
1182 			goto bad_page;
1183 		page = pte_page(pte);
1184 	}
1185 
1186 	if (flags & FOLL_GET)
1187 		get_page(page);
1188 	if (flags & FOLL_TOUCH) {
1189 		if ((flags & FOLL_WRITE) &&
1190 		    !pte_dirty(pte) && !PageDirty(page))
1191 			set_page_dirty(page);
1192 		/*
1193 		 * pte_mkyoung() would be more correct here, but atomic care
1194 		 * is needed to avoid losing the dirty bit: it is easier to use
1195 		 * mark_page_accessed().
1196 		 */
1197 		mark_page_accessed(page);
1198 	}
1199 unlock:
1200 	pte_unmap_unlock(ptep, ptl);
1201 out:
1202 	return page;
1203 
1204 bad_page:
1205 	pte_unmap_unlock(ptep, ptl);
1206 	return ERR_PTR(-EFAULT);
1207 
1208 no_page:
1209 	pte_unmap_unlock(ptep, ptl);
1210 	if (!pte_none(pte))
1211 		return page;
1212 
1213 no_page_table:
1214 	/*
1215 	 * When core dumping an enormous anonymous area that nobody
1216 	 * has touched so far, we don't want to allocate unnecessary pages or
1217 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1218 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1219 	 * But we can only make this optimization where a hole would surely
1220 	 * be zero-filled if handle_mm_fault() actually did handle it.
1221 	 */
1222 	if ((flags & FOLL_DUMP) &&
1223 	    (!vma->vm_ops || !vma->vm_ops->fault))
1224 		return ERR_PTR(-EFAULT);
1225 	return page;
1226 }
1227 
1228 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1229 		     unsigned long start, int nr_pages, unsigned int gup_flags,
1230 		     struct page **pages, struct vm_area_struct **vmas)
1231 {
1232 	int i;
1233 	unsigned long vm_flags;
1234 
1235 	if (nr_pages <= 0)
1236 		return 0;
1237 
1238 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1239 
1240 	/*
1241 	 * Require read or write permissions.
1242 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1243 	 */
1244 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1245 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1246 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1247 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1248 	i = 0;
1249 
1250 	do {
1251 		struct vm_area_struct *vma;
1252 
1253 		vma = find_extend_vma(mm, start);
1254 		if (!vma && in_gate_area(tsk, start)) {
1255 			unsigned long pg = start & PAGE_MASK;
1256 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1257 			pgd_t *pgd;
1258 			pud_t *pud;
1259 			pmd_t *pmd;
1260 			pte_t *pte;
1261 
1262 			/* user gate pages are read-only */
1263 			if (gup_flags & FOLL_WRITE)
1264 				return i ? : -EFAULT;
1265 			if (pg > TASK_SIZE)
1266 				pgd = pgd_offset_k(pg);
1267 			else
1268 				pgd = pgd_offset_gate(mm, pg);
1269 			BUG_ON(pgd_none(*pgd));
1270 			pud = pud_offset(pgd, pg);
1271 			BUG_ON(pud_none(*pud));
1272 			pmd = pmd_offset(pud, pg);
1273 			if (pmd_none(*pmd))
1274 				return i ? : -EFAULT;
1275 			pte = pte_offset_map(pmd, pg);
1276 			if (pte_none(*pte)) {
1277 				pte_unmap(pte);
1278 				return i ? : -EFAULT;
1279 			}
1280 			if (pages) {
1281 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1282 				pages[i] = page;
1283 				if (page)
1284 					get_page(page);
1285 			}
1286 			pte_unmap(pte);
1287 			if (vmas)
1288 				vmas[i] = gate_vma;
1289 			i++;
1290 			start += PAGE_SIZE;
1291 			nr_pages--;
1292 			continue;
1293 		}
1294 
1295 		if (!vma ||
1296 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1297 		    !(vm_flags & vma->vm_flags))
1298 			return i ? : -EFAULT;
1299 
1300 		if (is_vm_hugetlb_page(vma)) {
1301 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1302 					&start, &nr_pages, i, gup_flags);
1303 			continue;
1304 		}
1305 
1306 		do {
1307 			struct page *page;
1308 			unsigned int foll_flags = gup_flags;
1309 
1310 			/*
1311 			 * If we have a pending SIGKILL, don't keep faulting
1312 			 * pages and potentially allocating memory.
1313 			 */
1314 			if (unlikely(fatal_signal_pending(current)))
1315 				return i ? i : -ERESTARTSYS;
1316 
1317 			cond_resched();
1318 			while (!(page = follow_page(vma, start, foll_flags))) {
1319 				int ret;
1320 
1321 				ret = handle_mm_fault(mm, vma, start,
1322 					(foll_flags & FOLL_WRITE) ?
1323 					FAULT_FLAG_WRITE : 0);
1324 
1325 				if (ret & VM_FAULT_ERROR) {
1326 					if (ret & VM_FAULT_OOM)
1327 						return i ? i : -ENOMEM;
1328 					else if (ret & VM_FAULT_SIGBUS)
1329 						return i ? i : -EFAULT;
1330 					BUG();
1331 				}
1332 				if (ret & VM_FAULT_MAJOR)
1333 					tsk->maj_flt++;
1334 				else
1335 					tsk->min_flt++;
1336 
1337 				/*
1338 				 * The VM_FAULT_WRITE bit tells us that
1339 				 * do_wp_page has broken COW when necessary,
1340 				 * even if maybe_mkwrite decided not to set
1341 				 * pte_write. We can thus safely do subsequent
1342 				 * page lookups as if they were reads. But only
1343 				 * do so when looping for pte_write is futile:
1344 				 * in some cases userspace may also be wanting
1345 				 * to write to the gotten user page, which a
1346 				 * read fault here might prevent (a readonly
1347 				 * page might get reCOWed by userspace write).
1348 				 */
1349 				if ((ret & VM_FAULT_WRITE) &&
1350 				    !(vma->vm_flags & VM_WRITE))
1351 					foll_flags &= ~FOLL_WRITE;
1352 
1353 				cond_resched();
1354 			}
1355 			if (IS_ERR(page))
1356 				return i ? i : PTR_ERR(page);
1357 			if (pages) {
1358 				pages[i] = page;
1359 
1360 				flush_anon_page(vma, page, start);
1361 				flush_dcache_page(page);
1362 			}
1363 			if (vmas)
1364 				vmas[i] = vma;
1365 			i++;
1366 			start += PAGE_SIZE;
1367 			nr_pages--;
1368 		} while (nr_pages && start < vma->vm_end);
1369 	} while (nr_pages);
1370 	return i;
1371 }
1372 
1373 /**
1374  * get_user_pages() - pin user pages in memory
1375  * @tsk:	task_struct of target task
1376  * @mm:		mm_struct of target mm
1377  * @start:	starting user address
1378  * @nr_pages:	number of pages from start to pin
1379  * @write:	whether pages will be written to by the caller
1380  * @force:	whether to force write access even if user mapping is
1381  *		readonly. This will result in the page being COWed even
1382  *		in MAP_SHARED mappings. You do not want this.
1383  * @pages:	array that receives pointers to the pages pinned.
1384  *		Should be at least nr_pages long. Or NULL, if caller
1385  *		only intends to ensure the pages are faulted in.
1386  * @vmas:	array of pointers to vmas corresponding to each page.
1387  *		Or NULL if the caller does not require them.
1388  *
1389  * Returns number of pages pinned. This may be fewer than the number
1390  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1391  * were pinned, returns -errno. Each page returned must be released
1392  * with a put_page() call when it is finished with. vmas will only
1393  * remain valid while mmap_sem is held.
1394  *
1395  * Must be called with mmap_sem held for read or write.
1396  *
1397  * get_user_pages walks a process's page tables and takes a reference to
1398  * each struct page that each user address corresponds to at a given
1399  * instant. That is, it takes the page that would be accessed if a user
1400  * thread accesses the given user virtual address at that instant.
1401  *
1402  * This does not guarantee that the page exists in the user mappings when
1403  * get_user_pages returns, and there may even be a completely different
1404  * page there in some cases (eg. if mmapped pagecache has been invalidated
1405  * and subsequently re faulted). However it does guarantee that the page
1406  * won't be freed completely. And mostly callers simply care that the page
1407  * contains data that was valid *at some point in time*. Typically, an IO
1408  * or similar operation cannot guarantee anything stronger anyway because
1409  * locks can't be held over the syscall boundary.
1410  *
1411  * If write=0, the page must not be written to. If the page is written to,
1412  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1413  * after the page is finished with, and before put_page is called.
1414  *
1415  * get_user_pages is typically used for fewer-copy IO operations, to get a
1416  * handle on the memory by some means other than accesses via the user virtual
1417  * addresses. The pages may be submitted for DMA to devices or accessed via
1418  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1419  * use the correct cache flushing APIs.
1420  *
1421  * See also get_user_pages_fast, for performance critical applications.
1422  */
1423 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1424 		unsigned long start, int nr_pages, int write, int force,
1425 		struct page **pages, struct vm_area_struct **vmas)
1426 {
1427 	int flags = FOLL_TOUCH;
1428 
1429 	if (pages)
1430 		flags |= FOLL_GET;
1431 	if (write)
1432 		flags |= FOLL_WRITE;
1433 	if (force)
1434 		flags |= FOLL_FORCE;
1435 
1436 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1437 }
1438 EXPORT_SYMBOL(get_user_pages);
1439 
1440 /**
1441  * get_dump_page() - pin user page in memory while writing it to core dump
1442  * @addr: user address
1443  *
1444  * Returns struct page pointer of user page pinned for dump,
1445  * to be freed afterwards by page_cache_release() or put_page().
1446  *
1447  * Returns NULL on any kind of failure - a hole must then be inserted into
1448  * the corefile, to preserve alignment with its headers; and also returns
1449  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1450  * allowing a hole to be left in the corefile to save diskspace.
1451  *
1452  * Called without mmap_sem, but after all other threads have been killed.
1453  */
1454 #ifdef CONFIG_ELF_CORE
1455 struct page *get_dump_page(unsigned long addr)
1456 {
1457 	struct vm_area_struct *vma;
1458 	struct page *page;
1459 
1460 	if (__get_user_pages(current, current->mm, addr, 1,
1461 			FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1462 		return NULL;
1463 	flush_cache_page(vma, addr, page_to_pfn(page));
1464 	return page;
1465 }
1466 #endif /* CONFIG_ELF_CORE */
1467 
1468 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1469 			spinlock_t **ptl)
1470 {
1471 	pgd_t * pgd = pgd_offset(mm, addr);
1472 	pud_t * pud = pud_alloc(mm, pgd, addr);
1473 	if (pud) {
1474 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1475 		if (pmd)
1476 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1477 	}
1478 	return NULL;
1479 }
1480 
1481 /*
1482  * This is the old fallback for page remapping.
1483  *
1484  * For historical reasons, it only allows reserved pages. Only
1485  * old drivers should use this, and they needed to mark their
1486  * pages reserved for the old functions anyway.
1487  */
1488 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1489 			struct page *page, pgprot_t prot)
1490 {
1491 	struct mm_struct *mm = vma->vm_mm;
1492 	int retval;
1493 	pte_t *pte;
1494 	spinlock_t *ptl;
1495 
1496 	retval = -EINVAL;
1497 	if (PageAnon(page))
1498 		goto out;
1499 	retval = -ENOMEM;
1500 	flush_dcache_page(page);
1501 	pte = get_locked_pte(mm, addr, &ptl);
1502 	if (!pte)
1503 		goto out;
1504 	retval = -EBUSY;
1505 	if (!pte_none(*pte))
1506 		goto out_unlock;
1507 
1508 	/* Ok, finally just insert the thing.. */
1509 	get_page(page);
1510 	inc_mm_counter(mm, file_rss);
1511 	page_add_file_rmap(page);
1512 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1513 
1514 	retval = 0;
1515 	pte_unmap_unlock(pte, ptl);
1516 	return retval;
1517 out_unlock:
1518 	pte_unmap_unlock(pte, ptl);
1519 out:
1520 	return retval;
1521 }
1522 
1523 /**
1524  * vm_insert_page - insert single page into user vma
1525  * @vma: user vma to map to
1526  * @addr: target user address of this page
1527  * @page: source kernel page
1528  *
1529  * This allows drivers to insert individual pages they've allocated
1530  * into a user vma.
1531  *
1532  * The page has to be a nice clean _individual_ kernel allocation.
1533  * If you allocate a compound page, you need to have marked it as
1534  * such (__GFP_COMP), or manually just split the page up yourself
1535  * (see split_page()).
1536  *
1537  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1538  * took an arbitrary page protection parameter. This doesn't allow
1539  * that. Your vma protection will have to be set up correctly, which
1540  * means that if you want a shared writable mapping, you'd better
1541  * ask for a shared writable mapping!
1542  *
1543  * The page does not need to be reserved.
1544  */
1545 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1546 			struct page *page)
1547 {
1548 	if (addr < vma->vm_start || addr >= vma->vm_end)
1549 		return -EFAULT;
1550 	if (!page_count(page))
1551 		return -EINVAL;
1552 	vma->vm_flags |= VM_INSERTPAGE;
1553 	return insert_page(vma, addr, page, vma->vm_page_prot);
1554 }
1555 EXPORT_SYMBOL(vm_insert_page);
1556 
1557 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1558 			unsigned long pfn, pgprot_t prot)
1559 {
1560 	struct mm_struct *mm = vma->vm_mm;
1561 	int retval;
1562 	pte_t *pte, entry;
1563 	spinlock_t *ptl;
1564 
1565 	retval = -ENOMEM;
1566 	pte = get_locked_pte(mm, addr, &ptl);
1567 	if (!pte)
1568 		goto out;
1569 	retval = -EBUSY;
1570 	if (!pte_none(*pte))
1571 		goto out_unlock;
1572 
1573 	/* Ok, finally just insert the thing.. */
1574 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1575 	set_pte_at(mm, addr, pte, entry);
1576 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1577 
1578 	retval = 0;
1579 out_unlock:
1580 	pte_unmap_unlock(pte, ptl);
1581 out:
1582 	return retval;
1583 }
1584 
1585 /**
1586  * vm_insert_pfn - insert single pfn into user vma
1587  * @vma: user vma to map to
1588  * @addr: target user address of this page
1589  * @pfn: source kernel pfn
1590  *
1591  * Similar to vm_inert_page, this allows drivers to insert individual pages
1592  * they've allocated into a user vma. Same comments apply.
1593  *
1594  * This function should only be called from a vm_ops->fault handler, and
1595  * in that case the handler should return NULL.
1596  *
1597  * vma cannot be a COW mapping.
1598  *
1599  * As this is called only for pages that do not currently exist, we
1600  * do not need to flush old virtual caches or the TLB.
1601  */
1602 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1603 			unsigned long pfn)
1604 {
1605 	int ret;
1606 	pgprot_t pgprot = vma->vm_page_prot;
1607 	/*
1608 	 * Technically, architectures with pte_special can avoid all these
1609 	 * restrictions (same for remap_pfn_range).  However we would like
1610 	 * consistency in testing and feature parity among all, so we should
1611 	 * try to keep these invariants in place for everybody.
1612 	 */
1613 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1614 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1615 						(VM_PFNMAP|VM_MIXEDMAP));
1616 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1617 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1618 
1619 	if (addr < vma->vm_start || addr >= vma->vm_end)
1620 		return -EFAULT;
1621 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1622 		return -EINVAL;
1623 
1624 	ret = insert_pfn(vma, addr, pfn, pgprot);
1625 
1626 	if (ret)
1627 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1628 
1629 	return ret;
1630 }
1631 EXPORT_SYMBOL(vm_insert_pfn);
1632 
1633 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1634 			unsigned long pfn)
1635 {
1636 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1637 
1638 	if (addr < vma->vm_start || addr >= vma->vm_end)
1639 		return -EFAULT;
1640 
1641 	/*
1642 	 * If we don't have pte special, then we have to use the pfn_valid()
1643 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1644 	 * refcount the page if pfn_valid is true (hence insert_page rather
1645 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1646 	 * without pte special, it would there be refcounted as a normal page.
1647 	 */
1648 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1649 		struct page *page;
1650 
1651 		page = pfn_to_page(pfn);
1652 		return insert_page(vma, addr, page, vma->vm_page_prot);
1653 	}
1654 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1655 }
1656 EXPORT_SYMBOL(vm_insert_mixed);
1657 
1658 /*
1659  * maps a range of physical memory into the requested pages. the old
1660  * mappings are removed. any references to nonexistent pages results
1661  * in null mappings (currently treated as "copy-on-access")
1662  */
1663 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1664 			unsigned long addr, unsigned long end,
1665 			unsigned long pfn, pgprot_t prot)
1666 {
1667 	pte_t *pte;
1668 	spinlock_t *ptl;
1669 
1670 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1671 	if (!pte)
1672 		return -ENOMEM;
1673 	arch_enter_lazy_mmu_mode();
1674 	do {
1675 		BUG_ON(!pte_none(*pte));
1676 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1677 		pfn++;
1678 	} while (pte++, addr += PAGE_SIZE, addr != end);
1679 	arch_leave_lazy_mmu_mode();
1680 	pte_unmap_unlock(pte - 1, ptl);
1681 	return 0;
1682 }
1683 
1684 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1685 			unsigned long addr, unsigned long end,
1686 			unsigned long pfn, pgprot_t prot)
1687 {
1688 	pmd_t *pmd;
1689 	unsigned long next;
1690 
1691 	pfn -= addr >> PAGE_SHIFT;
1692 	pmd = pmd_alloc(mm, pud, addr);
1693 	if (!pmd)
1694 		return -ENOMEM;
1695 	do {
1696 		next = pmd_addr_end(addr, end);
1697 		if (remap_pte_range(mm, pmd, addr, next,
1698 				pfn + (addr >> PAGE_SHIFT), prot))
1699 			return -ENOMEM;
1700 	} while (pmd++, addr = next, addr != end);
1701 	return 0;
1702 }
1703 
1704 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1705 			unsigned long addr, unsigned long end,
1706 			unsigned long pfn, pgprot_t prot)
1707 {
1708 	pud_t *pud;
1709 	unsigned long next;
1710 
1711 	pfn -= addr >> PAGE_SHIFT;
1712 	pud = pud_alloc(mm, pgd, addr);
1713 	if (!pud)
1714 		return -ENOMEM;
1715 	do {
1716 		next = pud_addr_end(addr, end);
1717 		if (remap_pmd_range(mm, pud, addr, next,
1718 				pfn + (addr >> PAGE_SHIFT), prot))
1719 			return -ENOMEM;
1720 	} while (pud++, addr = next, addr != end);
1721 	return 0;
1722 }
1723 
1724 /**
1725  * remap_pfn_range - remap kernel memory to userspace
1726  * @vma: user vma to map to
1727  * @addr: target user address to start at
1728  * @pfn: physical address of kernel memory
1729  * @size: size of map area
1730  * @prot: page protection flags for this mapping
1731  *
1732  *  Note: this is only safe if the mm semaphore is held when called.
1733  */
1734 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1735 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1736 {
1737 	pgd_t *pgd;
1738 	unsigned long next;
1739 	unsigned long end = addr + PAGE_ALIGN(size);
1740 	struct mm_struct *mm = vma->vm_mm;
1741 	int err;
1742 
1743 	/*
1744 	 * Physically remapped pages are special. Tell the
1745 	 * rest of the world about it:
1746 	 *   VM_IO tells people not to look at these pages
1747 	 *	(accesses can have side effects).
1748 	 *   VM_RESERVED is specified all over the place, because
1749 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1750 	 *	in 2.6 the LRU scan won't even find its pages, so this
1751 	 *	flag means no more than count its pages in reserved_vm,
1752 	 * 	and omit it from core dump, even when VM_IO turned off.
1753 	 *   VM_PFNMAP tells the core MM that the base pages are just
1754 	 *	raw PFN mappings, and do not have a "struct page" associated
1755 	 *	with them.
1756 	 *
1757 	 * There's a horrible special case to handle copy-on-write
1758 	 * behaviour that some programs depend on. We mark the "original"
1759 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1760 	 */
1761 	if (addr == vma->vm_start && end == vma->vm_end) {
1762 		vma->vm_pgoff = pfn;
1763 		vma->vm_flags |= VM_PFN_AT_MMAP;
1764 	} else if (is_cow_mapping(vma->vm_flags))
1765 		return -EINVAL;
1766 
1767 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1768 
1769 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1770 	if (err) {
1771 		/*
1772 		 * To indicate that track_pfn related cleanup is not
1773 		 * needed from higher level routine calling unmap_vmas
1774 		 */
1775 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1776 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
1777 		return -EINVAL;
1778 	}
1779 
1780 	BUG_ON(addr >= end);
1781 	pfn -= addr >> PAGE_SHIFT;
1782 	pgd = pgd_offset(mm, addr);
1783 	flush_cache_range(vma, addr, end);
1784 	do {
1785 		next = pgd_addr_end(addr, end);
1786 		err = remap_pud_range(mm, pgd, addr, next,
1787 				pfn + (addr >> PAGE_SHIFT), prot);
1788 		if (err)
1789 			break;
1790 	} while (pgd++, addr = next, addr != end);
1791 
1792 	if (err)
1793 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1794 
1795 	return err;
1796 }
1797 EXPORT_SYMBOL(remap_pfn_range);
1798 
1799 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1800 				     unsigned long addr, unsigned long end,
1801 				     pte_fn_t fn, void *data)
1802 {
1803 	pte_t *pte;
1804 	int err;
1805 	pgtable_t token;
1806 	spinlock_t *uninitialized_var(ptl);
1807 
1808 	pte = (mm == &init_mm) ?
1809 		pte_alloc_kernel(pmd, addr) :
1810 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1811 	if (!pte)
1812 		return -ENOMEM;
1813 
1814 	BUG_ON(pmd_huge(*pmd));
1815 
1816 	arch_enter_lazy_mmu_mode();
1817 
1818 	token = pmd_pgtable(*pmd);
1819 
1820 	do {
1821 		err = fn(pte, token, addr, data);
1822 		if (err)
1823 			break;
1824 	} while (pte++, addr += PAGE_SIZE, addr != end);
1825 
1826 	arch_leave_lazy_mmu_mode();
1827 
1828 	if (mm != &init_mm)
1829 		pte_unmap_unlock(pte-1, ptl);
1830 	return err;
1831 }
1832 
1833 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1834 				     unsigned long addr, unsigned long end,
1835 				     pte_fn_t fn, void *data)
1836 {
1837 	pmd_t *pmd;
1838 	unsigned long next;
1839 	int err;
1840 
1841 	BUG_ON(pud_huge(*pud));
1842 
1843 	pmd = pmd_alloc(mm, pud, addr);
1844 	if (!pmd)
1845 		return -ENOMEM;
1846 	do {
1847 		next = pmd_addr_end(addr, end);
1848 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1849 		if (err)
1850 			break;
1851 	} while (pmd++, addr = next, addr != end);
1852 	return err;
1853 }
1854 
1855 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1856 				     unsigned long addr, unsigned long end,
1857 				     pte_fn_t fn, void *data)
1858 {
1859 	pud_t *pud;
1860 	unsigned long next;
1861 	int err;
1862 
1863 	pud = pud_alloc(mm, pgd, addr);
1864 	if (!pud)
1865 		return -ENOMEM;
1866 	do {
1867 		next = pud_addr_end(addr, end);
1868 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1869 		if (err)
1870 			break;
1871 	} while (pud++, addr = next, addr != end);
1872 	return err;
1873 }
1874 
1875 /*
1876  * Scan a region of virtual memory, filling in page tables as necessary
1877  * and calling a provided function on each leaf page table.
1878  */
1879 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1880 			unsigned long size, pte_fn_t fn, void *data)
1881 {
1882 	pgd_t *pgd;
1883 	unsigned long next;
1884 	unsigned long start = addr, end = addr + size;
1885 	int err;
1886 
1887 	BUG_ON(addr >= end);
1888 	mmu_notifier_invalidate_range_start(mm, start, end);
1889 	pgd = pgd_offset(mm, addr);
1890 	do {
1891 		next = pgd_addr_end(addr, end);
1892 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1893 		if (err)
1894 			break;
1895 	} while (pgd++, addr = next, addr != end);
1896 	mmu_notifier_invalidate_range_end(mm, start, end);
1897 	return err;
1898 }
1899 EXPORT_SYMBOL_GPL(apply_to_page_range);
1900 
1901 /*
1902  * handle_pte_fault chooses page fault handler according to an entry
1903  * which was read non-atomically.  Before making any commitment, on
1904  * those architectures or configurations (e.g. i386 with PAE) which
1905  * might give a mix of unmatched parts, do_swap_page and do_file_page
1906  * must check under lock before unmapping the pte and proceeding
1907  * (but do_wp_page is only called after already making such a check;
1908  * and do_anonymous_page and do_no_page can safely check later on).
1909  */
1910 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1911 				pte_t *page_table, pte_t orig_pte)
1912 {
1913 	int same = 1;
1914 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1915 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1916 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1917 		spin_lock(ptl);
1918 		same = pte_same(*page_table, orig_pte);
1919 		spin_unlock(ptl);
1920 	}
1921 #endif
1922 	pte_unmap(page_table);
1923 	return same;
1924 }
1925 
1926 /*
1927  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1928  * servicing faults for write access.  In the normal case, do always want
1929  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1930  * that do not have writing enabled, when used by access_process_vm.
1931  */
1932 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1933 {
1934 	if (likely(vma->vm_flags & VM_WRITE))
1935 		pte = pte_mkwrite(pte);
1936 	return pte;
1937 }
1938 
1939 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1940 {
1941 	/*
1942 	 * If the source page was a PFN mapping, we don't have
1943 	 * a "struct page" for it. We do a best-effort copy by
1944 	 * just copying from the original user address. If that
1945 	 * fails, we just zero-fill it. Live with it.
1946 	 */
1947 	if (unlikely(!src)) {
1948 		void *kaddr = kmap_atomic(dst, KM_USER0);
1949 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1950 
1951 		/*
1952 		 * This really shouldn't fail, because the page is there
1953 		 * in the page tables. But it might just be unreadable,
1954 		 * in which case we just give up and fill the result with
1955 		 * zeroes.
1956 		 */
1957 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1958 			memset(kaddr, 0, PAGE_SIZE);
1959 		kunmap_atomic(kaddr, KM_USER0);
1960 		flush_dcache_page(dst);
1961 	} else
1962 		copy_user_highpage(dst, src, va, vma);
1963 }
1964 
1965 /*
1966  * This routine handles present pages, when users try to write
1967  * to a shared page. It is done by copying the page to a new address
1968  * and decrementing the shared-page counter for the old page.
1969  *
1970  * Note that this routine assumes that the protection checks have been
1971  * done by the caller (the low-level page fault routine in most cases).
1972  * Thus we can safely just mark it writable once we've done any necessary
1973  * COW.
1974  *
1975  * We also mark the page dirty at this point even though the page will
1976  * change only once the write actually happens. This avoids a few races,
1977  * and potentially makes it more efficient.
1978  *
1979  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1980  * but allow concurrent faults), with pte both mapped and locked.
1981  * We return with mmap_sem still held, but pte unmapped and unlocked.
1982  */
1983 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1984 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1985 		spinlock_t *ptl, pte_t orig_pte)
1986 {
1987 	struct page *old_page, *new_page;
1988 	pte_t entry;
1989 	int reuse = 0, ret = 0;
1990 	int page_mkwrite = 0;
1991 	struct page *dirty_page = NULL;
1992 
1993 	old_page = vm_normal_page(vma, address, orig_pte);
1994 	if (!old_page) {
1995 		/*
1996 		 * VM_MIXEDMAP !pfn_valid() case
1997 		 *
1998 		 * We should not cow pages in a shared writeable mapping.
1999 		 * Just mark the pages writable as we can't do any dirty
2000 		 * accounting on raw pfn maps.
2001 		 */
2002 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2003 				     (VM_WRITE|VM_SHARED))
2004 			goto reuse;
2005 		goto gotten;
2006 	}
2007 
2008 	/*
2009 	 * Take out anonymous pages first, anonymous shared vmas are
2010 	 * not dirty accountable.
2011 	 */
2012 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2013 		if (!trylock_page(old_page)) {
2014 			page_cache_get(old_page);
2015 			pte_unmap_unlock(page_table, ptl);
2016 			lock_page(old_page);
2017 			page_table = pte_offset_map_lock(mm, pmd, address,
2018 							 &ptl);
2019 			if (!pte_same(*page_table, orig_pte)) {
2020 				unlock_page(old_page);
2021 				page_cache_release(old_page);
2022 				goto unlock;
2023 			}
2024 			page_cache_release(old_page);
2025 		}
2026 		reuse = reuse_swap_page(old_page);
2027 		unlock_page(old_page);
2028 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2029 					(VM_WRITE|VM_SHARED))) {
2030 		/*
2031 		 * Only catch write-faults on shared writable pages,
2032 		 * read-only shared pages can get COWed by
2033 		 * get_user_pages(.write=1, .force=1).
2034 		 */
2035 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2036 			struct vm_fault vmf;
2037 			int tmp;
2038 
2039 			vmf.virtual_address = (void __user *)(address &
2040 								PAGE_MASK);
2041 			vmf.pgoff = old_page->index;
2042 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2043 			vmf.page = old_page;
2044 
2045 			/*
2046 			 * Notify the address space that the page is about to
2047 			 * become writable so that it can prohibit this or wait
2048 			 * for the page to get into an appropriate state.
2049 			 *
2050 			 * We do this without the lock held, so that it can
2051 			 * sleep if it needs to.
2052 			 */
2053 			page_cache_get(old_page);
2054 			pte_unmap_unlock(page_table, ptl);
2055 
2056 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2057 			if (unlikely(tmp &
2058 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2059 				ret = tmp;
2060 				goto unwritable_page;
2061 			}
2062 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2063 				lock_page(old_page);
2064 				if (!old_page->mapping) {
2065 					ret = 0; /* retry the fault */
2066 					unlock_page(old_page);
2067 					goto unwritable_page;
2068 				}
2069 			} else
2070 				VM_BUG_ON(!PageLocked(old_page));
2071 
2072 			/*
2073 			 * Since we dropped the lock we need to revalidate
2074 			 * the PTE as someone else may have changed it.  If
2075 			 * they did, we just return, as we can count on the
2076 			 * MMU to tell us if they didn't also make it writable.
2077 			 */
2078 			page_table = pte_offset_map_lock(mm, pmd, address,
2079 							 &ptl);
2080 			if (!pte_same(*page_table, orig_pte)) {
2081 				unlock_page(old_page);
2082 				page_cache_release(old_page);
2083 				goto unlock;
2084 			}
2085 
2086 			page_mkwrite = 1;
2087 		}
2088 		dirty_page = old_page;
2089 		get_page(dirty_page);
2090 		reuse = 1;
2091 	}
2092 
2093 	if (reuse) {
2094 reuse:
2095 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2096 		entry = pte_mkyoung(orig_pte);
2097 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2098 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2099 			update_mmu_cache(vma, address, entry);
2100 		ret |= VM_FAULT_WRITE;
2101 		goto unlock;
2102 	}
2103 
2104 	/*
2105 	 * Ok, we need to copy. Oh, well..
2106 	 */
2107 	page_cache_get(old_page);
2108 gotten:
2109 	pte_unmap_unlock(page_table, ptl);
2110 
2111 	if (unlikely(anon_vma_prepare(vma)))
2112 		goto oom;
2113 
2114 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2115 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2116 		if (!new_page)
2117 			goto oom;
2118 	} else {
2119 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2120 		if (!new_page)
2121 			goto oom;
2122 		cow_user_page(new_page, old_page, address, vma);
2123 	}
2124 	__SetPageUptodate(new_page);
2125 
2126 	/*
2127 	 * Don't let another task, with possibly unlocked vma,
2128 	 * keep the mlocked page.
2129 	 */
2130 	if ((vma->vm_flags & VM_LOCKED) && old_page) {
2131 		lock_page(old_page);	/* for LRU manipulation */
2132 		clear_page_mlock(old_page);
2133 		unlock_page(old_page);
2134 	}
2135 
2136 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2137 		goto oom_free_new;
2138 
2139 	/*
2140 	 * Re-check the pte - we dropped the lock
2141 	 */
2142 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2143 	if (likely(pte_same(*page_table, orig_pte))) {
2144 		if (old_page) {
2145 			if (!PageAnon(old_page)) {
2146 				dec_mm_counter(mm, file_rss);
2147 				inc_mm_counter(mm, anon_rss);
2148 			}
2149 		} else
2150 			inc_mm_counter(mm, anon_rss);
2151 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2152 		entry = mk_pte(new_page, vma->vm_page_prot);
2153 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2154 		/*
2155 		 * Clear the pte entry and flush it first, before updating the
2156 		 * pte with the new entry. This will avoid a race condition
2157 		 * seen in the presence of one thread doing SMC and another
2158 		 * thread doing COW.
2159 		 */
2160 		ptep_clear_flush(vma, address, page_table);
2161 		page_add_new_anon_rmap(new_page, vma, address);
2162 		/*
2163 		 * We call the notify macro here because, when using secondary
2164 		 * mmu page tables (such as kvm shadow page tables), we want the
2165 		 * new page to be mapped directly into the secondary page table.
2166 		 */
2167 		set_pte_at_notify(mm, address, page_table, entry);
2168 		update_mmu_cache(vma, address, entry);
2169 		if (old_page) {
2170 			/*
2171 			 * Only after switching the pte to the new page may
2172 			 * we remove the mapcount here. Otherwise another
2173 			 * process may come and find the rmap count decremented
2174 			 * before the pte is switched to the new page, and
2175 			 * "reuse" the old page writing into it while our pte
2176 			 * here still points into it and can be read by other
2177 			 * threads.
2178 			 *
2179 			 * The critical issue is to order this
2180 			 * page_remove_rmap with the ptp_clear_flush above.
2181 			 * Those stores are ordered by (if nothing else,)
2182 			 * the barrier present in the atomic_add_negative
2183 			 * in page_remove_rmap.
2184 			 *
2185 			 * Then the TLB flush in ptep_clear_flush ensures that
2186 			 * no process can access the old page before the
2187 			 * decremented mapcount is visible. And the old page
2188 			 * cannot be reused until after the decremented
2189 			 * mapcount is visible. So transitively, TLBs to
2190 			 * old page will be flushed before it can be reused.
2191 			 */
2192 			page_remove_rmap(old_page);
2193 		}
2194 
2195 		/* Free the old page.. */
2196 		new_page = old_page;
2197 		ret |= VM_FAULT_WRITE;
2198 	} else
2199 		mem_cgroup_uncharge_page(new_page);
2200 
2201 	if (new_page)
2202 		page_cache_release(new_page);
2203 	if (old_page)
2204 		page_cache_release(old_page);
2205 unlock:
2206 	pte_unmap_unlock(page_table, ptl);
2207 	if (dirty_page) {
2208 		/*
2209 		 * Yes, Virginia, this is actually required to prevent a race
2210 		 * with clear_page_dirty_for_io() from clearing the page dirty
2211 		 * bit after it clear all dirty ptes, but before a racing
2212 		 * do_wp_page installs a dirty pte.
2213 		 *
2214 		 * do_no_page is protected similarly.
2215 		 */
2216 		if (!page_mkwrite) {
2217 			wait_on_page_locked(dirty_page);
2218 			set_page_dirty_balance(dirty_page, page_mkwrite);
2219 		}
2220 		put_page(dirty_page);
2221 		if (page_mkwrite) {
2222 			struct address_space *mapping = dirty_page->mapping;
2223 
2224 			set_page_dirty(dirty_page);
2225 			unlock_page(dirty_page);
2226 			page_cache_release(dirty_page);
2227 			if (mapping)	{
2228 				/*
2229 				 * Some device drivers do not set page.mapping
2230 				 * but still dirty their pages
2231 				 */
2232 				balance_dirty_pages_ratelimited(mapping);
2233 			}
2234 		}
2235 
2236 		/* file_update_time outside page_lock */
2237 		if (vma->vm_file)
2238 			file_update_time(vma->vm_file);
2239 	}
2240 	return ret;
2241 oom_free_new:
2242 	page_cache_release(new_page);
2243 oom:
2244 	if (old_page) {
2245 		if (page_mkwrite) {
2246 			unlock_page(old_page);
2247 			page_cache_release(old_page);
2248 		}
2249 		page_cache_release(old_page);
2250 	}
2251 	return VM_FAULT_OOM;
2252 
2253 unwritable_page:
2254 	page_cache_release(old_page);
2255 	return ret;
2256 }
2257 
2258 /*
2259  * Helper functions for unmap_mapping_range().
2260  *
2261  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2262  *
2263  * We have to restart searching the prio_tree whenever we drop the lock,
2264  * since the iterator is only valid while the lock is held, and anyway
2265  * a later vma might be split and reinserted earlier while lock dropped.
2266  *
2267  * The list of nonlinear vmas could be handled more efficiently, using
2268  * a placeholder, but handle it in the same way until a need is shown.
2269  * It is important to search the prio_tree before nonlinear list: a vma
2270  * may become nonlinear and be shifted from prio_tree to nonlinear list
2271  * while the lock is dropped; but never shifted from list to prio_tree.
2272  *
2273  * In order to make forward progress despite restarting the search,
2274  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2275  * quickly skip it next time around.  Since the prio_tree search only
2276  * shows us those vmas affected by unmapping the range in question, we
2277  * can't efficiently keep all vmas in step with mapping->truncate_count:
2278  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2279  * mapping->truncate_count and vma->vm_truncate_count are protected by
2280  * i_mmap_lock.
2281  *
2282  * In order to make forward progress despite repeatedly restarting some
2283  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2284  * and restart from that address when we reach that vma again.  It might
2285  * have been split or merged, shrunk or extended, but never shifted: so
2286  * restart_addr remains valid so long as it remains in the vma's range.
2287  * unmap_mapping_range forces truncate_count to leap over page-aligned
2288  * values so we can save vma's restart_addr in its truncate_count field.
2289  */
2290 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2291 
2292 static void reset_vma_truncate_counts(struct address_space *mapping)
2293 {
2294 	struct vm_area_struct *vma;
2295 	struct prio_tree_iter iter;
2296 
2297 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2298 		vma->vm_truncate_count = 0;
2299 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2300 		vma->vm_truncate_count = 0;
2301 }
2302 
2303 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2304 		unsigned long start_addr, unsigned long end_addr,
2305 		struct zap_details *details)
2306 {
2307 	unsigned long restart_addr;
2308 	int need_break;
2309 
2310 	/*
2311 	 * files that support invalidating or truncating portions of the
2312 	 * file from under mmaped areas must have their ->fault function
2313 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2314 	 * This provides synchronisation against concurrent unmapping here.
2315 	 */
2316 
2317 again:
2318 	restart_addr = vma->vm_truncate_count;
2319 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2320 		start_addr = restart_addr;
2321 		if (start_addr >= end_addr) {
2322 			/* Top of vma has been split off since last time */
2323 			vma->vm_truncate_count = details->truncate_count;
2324 			return 0;
2325 		}
2326 	}
2327 
2328 	restart_addr = zap_page_range(vma, start_addr,
2329 					end_addr - start_addr, details);
2330 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2331 
2332 	if (restart_addr >= end_addr) {
2333 		/* We have now completed this vma: mark it so */
2334 		vma->vm_truncate_count = details->truncate_count;
2335 		if (!need_break)
2336 			return 0;
2337 	} else {
2338 		/* Note restart_addr in vma's truncate_count field */
2339 		vma->vm_truncate_count = restart_addr;
2340 		if (!need_break)
2341 			goto again;
2342 	}
2343 
2344 	spin_unlock(details->i_mmap_lock);
2345 	cond_resched();
2346 	spin_lock(details->i_mmap_lock);
2347 	return -EINTR;
2348 }
2349 
2350 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2351 					    struct zap_details *details)
2352 {
2353 	struct vm_area_struct *vma;
2354 	struct prio_tree_iter iter;
2355 	pgoff_t vba, vea, zba, zea;
2356 
2357 restart:
2358 	vma_prio_tree_foreach(vma, &iter, root,
2359 			details->first_index, details->last_index) {
2360 		/* Skip quickly over those we have already dealt with */
2361 		if (vma->vm_truncate_count == details->truncate_count)
2362 			continue;
2363 
2364 		vba = vma->vm_pgoff;
2365 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2366 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2367 		zba = details->first_index;
2368 		if (zba < vba)
2369 			zba = vba;
2370 		zea = details->last_index;
2371 		if (zea > vea)
2372 			zea = vea;
2373 
2374 		if (unmap_mapping_range_vma(vma,
2375 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2376 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2377 				details) < 0)
2378 			goto restart;
2379 	}
2380 }
2381 
2382 static inline void unmap_mapping_range_list(struct list_head *head,
2383 					    struct zap_details *details)
2384 {
2385 	struct vm_area_struct *vma;
2386 
2387 	/*
2388 	 * In nonlinear VMAs there is no correspondence between virtual address
2389 	 * offset and file offset.  So we must perform an exhaustive search
2390 	 * across *all* the pages in each nonlinear VMA, not just the pages
2391 	 * whose virtual address lies outside the file truncation point.
2392 	 */
2393 restart:
2394 	list_for_each_entry(vma, head, shared.vm_set.list) {
2395 		/* Skip quickly over those we have already dealt with */
2396 		if (vma->vm_truncate_count == details->truncate_count)
2397 			continue;
2398 		details->nonlinear_vma = vma;
2399 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2400 					vma->vm_end, details) < 0)
2401 			goto restart;
2402 	}
2403 }
2404 
2405 /**
2406  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2407  * @mapping: the address space containing mmaps to be unmapped.
2408  * @holebegin: byte in first page to unmap, relative to the start of
2409  * the underlying file.  This will be rounded down to a PAGE_SIZE
2410  * boundary.  Note that this is different from vmtruncate(), which
2411  * must keep the partial page.  In contrast, we must get rid of
2412  * partial pages.
2413  * @holelen: size of prospective hole in bytes.  This will be rounded
2414  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2415  * end of the file.
2416  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2417  * but 0 when invalidating pagecache, don't throw away private data.
2418  */
2419 void unmap_mapping_range(struct address_space *mapping,
2420 		loff_t const holebegin, loff_t const holelen, int even_cows)
2421 {
2422 	struct zap_details details;
2423 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2424 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2425 
2426 	/* Check for overflow. */
2427 	if (sizeof(holelen) > sizeof(hlen)) {
2428 		long long holeend =
2429 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2430 		if (holeend & ~(long long)ULONG_MAX)
2431 			hlen = ULONG_MAX - hba + 1;
2432 	}
2433 
2434 	details.check_mapping = even_cows? NULL: mapping;
2435 	details.nonlinear_vma = NULL;
2436 	details.first_index = hba;
2437 	details.last_index = hba + hlen - 1;
2438 	if (details.last_index < details.first_index)
2439 		details.last_index = ULONG_MAX;
2440 	details.i_mmap_lock = &mapping->i_mmap_lock;
2441 
2442 	spin_lock(&mapping->i_mmap_lock);
2443 
2444 	/* Protect against endless unmapping loops */
2445 	mapping->truncate_count++;
2446 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2447 		if (mapping->truncate_count == 0)
2448 			reset_vma_truncate_counts(mapping);
2449 		mapping->truncate_count++;
2450 	}
2451 	details.truncate_count = mapping->truncate_count;
2452 
2453 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2454 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2455 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2456 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2457 	spin_unlock(&mapping->i_mmap_lock);
2458 }
2459 EXPORT_SYMBOL(unmap_mapping_range);
2460 
2461 /**
2462  * vmtruncate - unmap mappings "freed" by truncate() syscall
2463  * @inode: inode of the file used
2464  * @offset: file offset to start truncating
2465  *
2466  * NOTE! We have to be ready to update the memory sharing
2467  * between the file and the memory map for a potential last
2468  * incomplete page.  Ugly, but necessary.
2469  */
2470 int vmtruncate(struct inode * inode, loff_t offset)
2471 {
2472 	if (inode->i_size < offset) {
2473 		unsigned long limit;
2474 
2475 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2476 		if (limit != RLIM_INFINITY && offset > limit)
2477 			goto out_sig;
2478 		if (offset > inode->i_sb->s_maxbytes)
2479 			goto out_big;
2480 		i_size_write(inode, offset);
2481 	} else {
2482 		struct address_space *mapping = inode->i_mapping;
2483 
2484 		/*
2485 		 * truncation of in-use swapfiles is disallowed - it would
2486 		 * cause subsequent swapout to scribble on the now-freed
2487 		 * blocks.
2488 		 */
2489 		if (IS_SWAPFILE(inode))
2490 			return -ETXTBSY;
2491 		i_size_write(inode, offset);
2492 
2493 		/*
2494 		 * unmap_mapping_range is called twice, first simply for
2495 		 * efficiency so that truncate_inode_pages does fewer
2496 		 * single-page unmaps.  However after this first call, and
2497 		 * before truncate_inode_pages finishes, it is possible for
2498 		 * private pages to be COWed, which remain after
2499 		 * truncate_inode_pages finishes, hence the second
2500 		 * unmap_mapping_range call must be made for correctness.
2501 		 */
2502 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2503 		truncate_inode_pages(mapping, offset);
2504 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2505 	}
2506 
2507 	if (inode->i_op->truncate)
2508 		inode->i_op->truncate(inode);
2509 	return 0;
2510 
2511 out_sig:
2512 	send_sig(SIGXFSZ, current, 0);
2513 out_big:
2514 	return -EFBIG;
2515 }
2516 EXPORT_SYMBOL(vmtruncate);
2517 
2518 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2519 {
2520 	struct address_space *mapping = inode->i_mapping;
2521 
2522 	/*
2523 	 * If the underlying filesystem is not going to provide
2524 	 * a way to truncate a range of blocks (punch a hole) -
2525 	 * we should return failure right now.
2526 	 */
2527 	if (!inode->i_op->truncate_range)
2528 		return -ENOSYS;
2529 
2530 	mutex_lock(&inode->i_mutex);
2531 	down_write(&inode->i_alloc_sem);
2532 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2533 	truncate_inode_pages_range(mapping, offset, end);
2534 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2535 	inode->i_op->truncate_range(inode, offset, end);
2536 	up_write(&inode->i_alloc_sem);
2537 	mutex_unlock(&inode->i_mutex);
2538 
2539 	return 0;
2540 }
2541 
2542 /*
2543  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544  * but allow concurrent faults), and pte mapped but not yet locked.
2545  * We return with mmap_sem still held, but pte unmapped and unlocked.
2546  */
2547 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2548 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2549 		unsigned int flags, pte_t orig_pte)
2550 {
2551 	spinlock_t *ptl;
2552 	struct page *page;
2553 	swp_entry_t entry;
2554 	pte_t pte;
2555 	struct mem_cgroup *ptr = NULL;
2556 	int ret = 0;
2557 
2558 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2559 		goto out;
2560 
2561 	entry = pte_to_swp_entry(orig_pte);
2562 	if (is_migration_entry(entry)) {
2563 		migration_entry_wait(mm, pmd, address);
2564 		goto out;
2565 	}
2566 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2567 	page = lookup_swap_cache(entry);
2568 	if (!page) {
2569 		grab_swap_token(mm); /* Contend for token _before_ read-in */
2570 		page = swapin_readahead(entry,
2571 					GFP_HIGHUSER_MOVABLE, vma, address);
2572 		if (!page) {
2573 			/*
2574 			 * Back out if somebody else faulted in this pte
2575 			 * while we released the pte lock.
2576 			 */
2577 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2578 			if (likely(pte_same(*page_table, orig_pte)))
2579 				ret = VM_FAULT_OOM;
2580 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2581 			goto unlock;
2582 		}
2583 
2584 		/* Had to read the page from swap area: Major fault */
2585 		ret = VM_FAULT_MAJOR;
2586 		count_vm_event(PGMAJFAULT);
2587 	}
2588 
2589 	lock_page(page);
2590 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2591 
2592 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2593 		ret = VM_FAULT_OOM;
2594 		goto out_page;
2595 	}
2596 
2597 	/*
2598 	 * Back out if somebody else already faulted in this pte.
2599 	 */
2600 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2601 	if (unlikely(!pte_same(*page_table, orig_pte)))
2602 		goto out_nomap;
2603 
2604 	if (unlikely(!PageUptodate(page))) {
2605 		ret = VM_FAULT_SIGBUS;
2606 		goto out_nomap;
2607 	}
2608 
2609 	/*
2610 	 * The page isn't present yet, go ahead with the fault.
2611 	 *
2612 	 * Be careful about the sequence of operations here.
2613 	 * To get its accounting right, reuse_swap_page() must be called
2614 	 * while the page is counted on swap but not yet in mapcount i.e.
2615 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2616 	 * must be called after the swap_free(), or it will never succeed.
2617 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2618 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2619 	 * in page->private. In this case, a record in swap_cgroup  is silently
2620 	 * discarded at swap_free().
2621 	 */
2622 
2623 	inc_mm_counter(mm, anon_rss);
2624 	pte = mk_pte(page, vma->vm_page_prot);
2625 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2626 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2627 		flags &= ~FAULT_FLAG_WRITE;
2628 	}
2629 	flush_icache_page(vma, page);
2630 	set_pte_at(mm, address, page_table, pte);
2631 	page_add_anon_rmap(page, vma, address);
2632 	/* It's better to call commit-charge after rmap is established */
2633 	mem_cgroup_commit_charge_swapin(page, ptr);
2634 
2635 	swap_free(entry);
2636 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2637 		try_to_free_swap(page);
2638 	unlock_page(page);
2639 
2640 	if (flags & FAULT_FLAG_WRITE) {
2641 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2642 		if (ret & VM_FAULT_ERROR)
2643 			ret &= VM_FAULT_ERROR;
2644 		goto out;
2645 	}
2646 
2647 	/* No need to invalidate - it was non-present before */
2648 	update_mmu_cache(vma, address, pte);
2649 unlock:
2650 	pte_unmap_unlock(page_table, ptl);
2651 out:
2652 	return ret;
2653 out_nomap:
2654 	mem_cgroup_cancel_charge_swapin(ptr);
2655 	pte_unmap_unlock(page_table, ptl);
2656 out_page:
2657 	unlock_page(page);
2658 	page_cache_release(page);
2659 	return ret;
2660 }
2661 
2662 /*
2663  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2664  * but allow concurrent faults), and pte mapped but not yet locked.
2665  * We return with mmap_sem still held, but pte unmapped and unlocked.
2666  */
2667 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2668 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2669 		unsigned int flags)
2670 {
2671 	struct page *page;
2672 	spinlock_t *ptl;
2673 	pte_t entry;
2674 
2675 	if (!(flags & FAULT_FLAG_WRITE)) {
2676 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2677 						vma->vm_page_prot));
2678 		ptl = pte_lockptr(mm, pmd);
2679 		spin_lock(ptl);
2680 		if (!pte_none(*page_table))
2681 			goto unlock;
2682 		goto setpte;
2683 	}
2684 
2685 	/* Allocate our own private page. */
2686 	pte_unmap(page_table);
2687 
2688 	if (unlikely(anon_vma_prepare(vma)))
2689 		goto oom;
2690 	page = alloc_zeroed_user_highpage_movable(vma, address);
2691 	if (!page)
2692 		goto oom;
2693 	__SetPageUptodate(page);
2694 
2695 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2696 		goto oom_free_page;
2697 
2698 	entry = mk_pte(page, vma->vm_page_prot);
2699 	if (vma->vm_flags & VM_WRITE)
2700 		entry = pte_mkwrite(pte_mkdirty(entry));
2701 
2702 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2703 	if (!pte_none(*page_table))
2704 		goto release;
2705 
2706 	inc_mm_counter(mm, anon_rss);
2707 	page_add_new_anon_rmap(page, vma, address);
2708 setpte:
2709 	set_pte_at(mm, address, page_table, entry);
2710 
2711 	/* No need to invalidate - it was non-present before */
2712 	update_mmu_cache(vma, address, entry);
2713 unlock:
2714 	pte_unmap_unlock(page_table, ptl);
2715 	return 0;
2716 release:
2717 	mem_cgroup_uncharge_page(page);
2718 	page_cache_release(page);
2719 	goto unlock;
2720 oom_free_page:
2721 	page_cache_release(page);
2722 oom:
2723 	return VM_FAULT_OOM;
2724 }
2725 
2726 /*
2727  * __do_fault() tries to create a new page mapping. It aggressively
2728  * tries to share with existing pages, but makes a separate copy if
2729  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2730  * the next page fault.
2731  *
2732  * As this is called only for pages that do not currently exist, we
2733  * do not need to flush old virtual caches or the TLB.
2734  *
2735  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2736  * but allow concurrent faults), and pte neither mapped nor locked.
2737  * We return with mmap_sem still held, but pte unmapped and unlocked.
2738  */
2739 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2740 		unsigned long address, pmd_t *pmd,
2741 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2742 {
2743 	pte_t *page_table;
2744 	spinlock_t *ptl;
2745 	struct page *page;
2746 	pte_t entry;
2747 	int anon = 0;
2748 	int charged = 0;
2749 	struct page *dirty_page = NULL;
2750 	struct vm_fault vmf;
2751 	int ret;
2752 	int page_mkwrite = 0;
2753 
2754 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2755 	vmf.pgoff = pgoff;
2756 	vmf.flags = flags;
2757 	vmf.page = NULL;
2758 
2759 	ret = vma->vm_ops->fault(vma, &vmf);
2760 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2761 		return ret;
2762 
2763 	/*
2764 	 * For consistency in subsequent calls, make the faulted page always
2765 	 * locked.
2766 	 */
2767 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2768 		lock_page(vmf.page);
2769 	else
2770 		VM_BUG_ON(!PageLocked(vmf.page));
2771 
2772 	/*
2773 	 * Should we do an early C-O-W break?
2774 	 */
2775 	page = vmf.page;
2776 	if (flags & FAULT_FLAG_WRITE) {
2777 		if (!(vma->vm_flags & VM_SHARED)) {
2778 			anon = 1;
2779 			if (unlikely(anon_vma_prepare(vma))) {
2780 				ret = VM_FAULT_OOM;
2781 				goto out;
2782 			}
2783 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2784 						vma, address);
2785 			if (!page) {
2786 				ret = VM_FAULT_OOM;
2787 				goto out;
2788 			}
2789 			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2790 				ret = VM_FAULT_OOM;
2791 				page_cache_release(page);
2792 				goto out;
2793 			}
2794 			charged = 1;
2795 			/*
2796 			 * Don't let another task, with possibly unlocked vma,
2797 			 * keep the mlocked page.
2798 			 */
2799 			if (vma->vm_flags & VM_LOCKED)
2800 				clear_page_mlock(vmf.page);
2801 			copy_user_highpage(page, vmf.page, address, vma);
2802 			__SetPageUptodate(page);
2803 		} else {
2804 			/*
2805 			 * If the page will be shareable, see if the backing
2806 			 * address space wants to know that the page is about
2807 			 * to become writable
2808 			 */
2809 			if (vma->vm_ops->page_mkwrite) {
2810 				int tmp;
2811 
2812 				unlock_page(page);
2813 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2814 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2815 				if (unlikely(tmp &
2816 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2817 					ret = tmp;
2818 					goto unwritable_page;
2819 				}
2820 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2821 					lock_page(page);
2822 					if (!page->mapping) {
2823 						ret = 0; /* retry the fault */
2824 						unlock_page(page);
2825 						goto unwritable_page;
2826 					}
2827 				} else
2828 					VM_BUG_ON(!PageLocked(page));
2829 				page_mkwrite = 1;
2830 			}
2831 		}
2832 
2833 	}
2834 
2835 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2836 
2837 	/*
2838 	 * This silly early PAGE_DIRTY setting removes a race
2839 	 * due to the bad i386 page protection. But it's valid
2840 	 * for other architectures too.
2841 	 *
2842 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
2843 	 * an exclusive copy of the page, or this is a shared mapping,
2844 	 * so we can make it writable and dirty to avoid having to
2845 	 * handle that later.
2846 	 */
2847 	/* Only go through if we didn't race with anybody else... */
2848 	if (likely(pte_same(*page_table, orig_pte))) {
2849 		flush_icache_page(vma, page);
2850 		entry = mk_pte(page, vma->vm_page_prot);
2851 		if (flags & FAULT_FLAG_WRITE)
2852 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2853 		if (anon) {
2854 			inc_mm_counter(mm, anon_rss);
2855 			page_add_new_anon_rmap(page, vma, address);
2856 		} else {
2857 			inc_mm_counter(mm, file_rss);
2858 			page_add_file_rmap(page);
2859 			if (flags & FAULT_FLAG_WRITE) {
2860 				dirty_page = page;
2861 				get_page(dirty_page);
2862 			}
2863 		}
2864 		set_pte_at(mm, address, page_table, entry);
2865 
2866 		/* no need to invalidate: a not-present page won't be cached */
2867 		update_mmu_cache(vma, address, entry);
2868 	} else {
2869 		if (charged)
2870 			mem_cgroup_uncharge_page(page);
2871 		if (anon)
2872 			page_cache_release(page);
2873 		else
2874 			anon = 1; /* no anon but release faulted_page */
2875 	}
2876 
2877 	pte_unmap_unlock(page_table, ptl);
2878 
2879 out:
2880 	if (dirty_page) {
2881 		struct address_space *mapping = page->mapping;
2882 
2883 		if (set_page_dirty(dirty_page))
2884 			page_mkwrite = 1;
2885 		unlock_page(dirty_page);
2886 		put_page(dirty_page);
2887 		if (page_mkwrite && mapping) {
2888 			/*
2889 			 * Some device drivers do not set page.mapping but still
2890 			 * dirty their pages
2891 			 */
2892 			balance_dirty_pages_ratelimited(mapping);
2893 		}
2894 
2895 		/* file_update_time outside page_lock */
2896 		if (vma->vm_file)
2897 			file_update_time(vma->vm_file);
2898 	} else {
2899 		unlock_page(vmf.page);
2900 		if (anon)
2901 			page_cache_release(vmf.page);
2902 	}
2903 
2904 	return ret;
2905 
2906 unwritable_page:
2907 	page_cache_release(page);
2908 	return ret;
2909 }
2910 
2911 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2912 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2913 		unsigned int flags, pte_t orig_pte)
2914 {
2915 	pgoff_t pgoff = (((address & PAGE_MASK)
2916 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2917 
2918 	pte_unmap(page_table);
2919 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2920 }
2921 
2922 /*
2923  * Fault of a previously existing named mapping. Repopulate the pte
2924  * from the encoded file_pte if possible. This enables swappable
2925  * nonlinear vmas.
2926  *
2927  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2928  * but allow concurrent faults), and pte mapped but not yet locked.
2929  * We return with mmap_sem still held, but pte unmapped and unlocked.
2930  */
2931 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2932 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2933 		unsigned int flags, pte_t orig_pte)
2934 {
2935 	pgoff_t pgoff;
2936 
2937 	flags |= FAULT_FLAG_NONLINEAR;
2938 
2939 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2940 		return 0;
2941 
2942 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2943 		/*
2944 		 * Page table corrupted: show pte and kill process.
2945 		 */
2946 		print_bad_pte(vma, address, orig_pte, NULL);
2947 		return VM_FAULT_OOM;
2948 	}
2949 
2950 	pgoff = pte_to_pgoff(orig_pte);
2951 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2952 }
2953 
2954 /*
2955  * These routines also need to handle stuff like marking pages dirty
2956  * and/or accessed for architectures that don't do it in hardware (most
2957  * RISC architectures).  The early dirtying is also good on the i386.
2958  *
2959  * There is also a hook called "update_mmu_cache()" that architectures
2960  * with external mmu caches can use to update those (ie the Sparc or
2961  * PowerPC hashed page tables that act as extended TLBs).
2962  *
2963  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2964  * but allow concurrent faults), and pte mapped but not yet locked.
2965  * We return with mmap_sem still held, but pte unmapped and unlocked.
2966  */
2967 static inline int handle_pte_fault(struct mm_struct *mm,
2968 		struct vm_area_struct *vma, unsigned long address,
2969 		pte_t *pte, pmd_t *pmd, unsigned int flags)
2970 {
2971 	pte_t entry;
2972 	spinlock_t *ptl;
2973 
2974 	entry = *pte;
2975 	if (!pte_present(entry)) {
2976 		if (pte_none(entry)) {
2977 			if (vma->vm_ops) {
2978 				if (likely(vma->vm_ops->fault))
2979 					return do_linear_fault(mm, vma, address,
2980 						pte, pmd, flags, entry);
2981 			}
2982 			return do_anonymous_page(mm, vma, address,
2983 						 pte, pmd, flags);
2984 		}
2985 		if (pte_file(entry))
2986 			return do_nonlinear_fault(mm, vma, address,
2987 					pte, pmd, flags, entry);
2988 		return do_swap_page(mm, vma, address,
2989 					pte, pmd, flags, entry);
2990 	}
2991 
2992 	ptl = pte_lockptr(mm, pmd);
2993 	spin_lock(ptl);
2994 	if (unlikely(!pte_same(*pte, entry)))
2995 		goto unlock;
2996 	if (flags & FAULT_FLAG_WRITE) {
2997 		if (!pte_write(entry))
2998 			return do_wp_page(mm, vma, address,
2999 					pte, pmd, ptl, entry);
3000 		entry = pte_mkdirty(entry);
3001 	}
3002 	entry = pte_mkyoung(entry);
3003 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3004 		update_mmu_cache(vma, address, entry);
3005 	} else {
3006 		/*
3007 		 * This is needed only for protection faults but the arch code
3008 		 * is not yet telling us if this is a protection fault or not.
3009 		 * This still avoids useless tlb flushes for .text page faults
3010 		 * with threads.
3011 		 */
3012 		if (flags & FAULT_FLAG_WRITE)
3013 			flush_tlb_page(vma, address);
3014 	}
3015 unlock:
3016 	pte_unmap_unlock(pte, ptl);
3017 	return 0;
3018 }
3019 
3020 /*
3021  * By the time we get here, we already hold the mm semaphore
3022  */
3023 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3024 		unsigned long address, unsigned int flags)
3025 {
3026 	pgd_t *pgd;
3027 	pud_t *pud;
3028 	pmd_t *pmd;
3029 	pte_t *pte;
3030 
3031 	__set_current_state(TASK_RUNNING);
3032 
3033 	count_vm_event(PGFAULT);
3034 
3035 	if (unlikely(is_vm_hugetlb_page(vma)))
3036 		return hugetlb_fault(mm, vma, address, flags);
3037 
3038 	pgd = pgd_offset(mm, address);
3039 	pud = pud_alloc(mm, pgd, address);
3040 	if (!pud)
3041 		return VM_FAULT_OOM;
3042 	pmd = pmd_alloc(mm, pud, address);
3043 	if (!pmd)
3044 		return VM_FAULT_OOM;
3045 	pte = pte_alloc_map(mm, pmd, address);
3046 	if (!pte)
3047 		return VM_FAULT_OOM;
3048 
3049 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3050 }
3051 
3052 #ifndef __PAGETABLE_PUD_FOLDED
3053 /*
3054  * Allocate page upper directory.
3055  * We've already handled the fast-path in-line.
3056  */
3057 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3058 {
3059 	pud_t *new = pud_alloc_one(mm, address);
3060 	if (!new)
3061 		return -ENOMEM;
3062 
3063 	smp_wmb(); /* See comment in __pte_alloc */
3064 
3065 	spin_lock(&mm->page_table_lock);
3066 	if (pgd_present(*pgd))		/* Another has populated it */
3067 		pud_free(mm, new);
3068 	else
3069 		pgd_populate(mm, pgd, new);
3070 	spin_unlock(&mm->page_table_lock);
3071 	return 0;
3072 }
3073 #endif /* __PAGETABLE_PUD_FOLDED */
3074 
3075 #ifndef __PAGETABLE_PMD_FOLDED
3076 /*
3077  * Allocate page middle directory.
3078  * We've already handled the fast-path in-line.
3079  */
3080 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3081 {
3082 	pmd_t *new = pmd_alloc_one(mm, address);
3083 	if (!new)
3084 		return -ENOMEM;
3085 
3086 	smp_wmb(); /* See comment in __pte_alloc */
3087 
3088 	spin_lock(&mm->page_table_lock);
3089 #ifndef __ARCH_HAS_4LEVEL_HACK
3090 	if (pud_present(*pud))		/* Another has populated it */
3091 		pmd_free(mm, new);
3092 	else
3093 		pud_populate(mm, pud, new);
3094 #else
3095 	if (pgd_present(*pud))		/* Another has populated it */
3096 		pmd_free(mm, new);
3097 	else
3098 		pgd_populate(mm, pud, new);
3099 #endif /* __ARCH_HAS_4LEVEL_HACK */
3100 	spin_unlock(&mm->page_table_lock);
3101 	return 0;
3102 }
3103 #endif /* __PAGETABLE_PMD_FOLDED */
3104 
3105 int make_pages_present(unsigned long addr, unsigned long end)
3106 {
3107 	int ret, len, write;
3108 	struct vm_area_struct * vma;
3109 
3110 	vma = find_vma(current->mm, addr);
3111 	if (!vma)
3112 		return -ENOMEM;
3113 	write = (vma->vm_flags & VM_WRITE) != 0;
3114 	BUG_ON(addr >= end);
3115 	BUG_ON(end > vma->vm_end);
3116 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3117 	ret = get_user_pages(current, current->mm, addr,
3118 			len, write, 0, NULL, NULL);
3119 	if (ret < 0)
3120 		return ret;
3121 	return ret == len ? 0 : -EFAULT;
3122 }
3123 
3124 #if !defined(__HAVE_ARCH_GATE_AREA)
3125 
3126 #if defined(AT_SYSINFO_EHDR)
3127 static struct vm_area_struct gate_vma;
3128 
3129 static int __init gate_vma_init(void)
3130 {
3131 	gate_vma.vm_mm = NULL;
3132 	gate_vma.vm_start = FIXADDR_USER_START;
3133 	gate_vma.vm_end = FIXADDR_USER_END;
3134 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3135 	gate_vma.vm_page_prot = __P101;
3136 	/*
3137 	 * Make sure the vDSO gets into every core dump.
3138 	 * Dumping its contents makes post-mortem fully interpretable later
3139 	 * without matching up the same kernel and hardware config to see
3140 	 * what PC values meant.
3141 	 */
3142 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3143 	return 0;
3144 }
3145 __initcall(gate_vma_init);
3146 #endif
3147 
3148 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3149 {
3150 #ifdef AT_SYSINFO_EHDR
3151 	return &gate_vma;
3152 #else
3153 	return NULL;
3154 #endif
3155 }
3156 
3157 int in_gate_area_no_task(unsigned long addr)
3158 {
3159 #ifdef AT_SYSINFO_EHDR
3160 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3161 		return 1;
3162 #endif
3163 	return 0;
3164 }
3165 
3166 #endif	/* __HAVE_ARCH_GATE_AREA */
3167 
3168 static int follow_pte(struct mm_struct *mm, unsigned long address,
3169 		pte_t **ptepp, spinlock_t **ptlp)
3170 {
3171 	pgd_t *pgd;
3172 	pud_t *pud;
3173 	pmd_t *pmd;
3174 	pte_t *ptep;
3175 
3176 	pgd = pgd_offset(mm, address);
3177 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3178 		goto out;
3179 
3180 	pud = pud_offset(pgd, address);
3181 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3182 		goto out;
3183 
3184 	pmd = pmd_offset(pud, address);
3185 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3186 		goto out;
3187 
3188 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3189 	if (pmd_huge(*pmd))
3190 		goto out;
3191 
3192 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3193 	if (!ptep)
3194 		goto out;
3195 	if (!pte_present(*ptep))
3196 		goto unlock;
3197 	*ptepp = ptep;
3198 	return 0;
3199 unlock:
3200 	pte_unmap_unlock(ptep, *ptlp);
3201 out:
3202 	return -EINVAL;
3203 }
3204 
3205 /**
3206  * follow_pfn - look up PFN at a user virtual address
3207  * @vma: memory mapping
3208  * @address: user virtual address
3209  * @pfn: location to store found PFN
3210  *
3211  * Only IO mappings and raw PFN mappings are allowed.
3212  *
3213  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3214  */
3215 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3216 	unsigned long *pfn)
3217 {
3218 	int ret = -EINVAL;
3219 	spinlock_t *ptl;
3220 	pte_t *ptep;
3221 
3222 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3223 		return ret;
3224 
3225 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3226 	if (ret)
3227 		return ret;
3228 	*pfn = pte_pfn(*ptep);
3229 	pte_unmap_unlock(ptep, ptl);
3230 	return 0;
3231 }
3232 EXPORT_SYMBOL(follow_pfn);
3233 
3234 #ifdef CONFIG_HAVE_IOREMAP_PROT
3235 int follow_phys(struct vm_area_struct *vma,
3236 		unsigned long address, unsigned int flags,
3237 		unsigned long *prot, resource_size_t *phys)
3238 {
3239 	int ret = -EINVAL;
3240 	pte_t *ptep, pte;
3241 	spinlock_t *ptl;
3242 
3243 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3244 		goto out;
3245 
3246 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3247 		goto out;
3248 	pte = *ptep;
3249 
3250 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3251 		goto unlock;
3252 
3253 	*prot = pgprot_val(pte_pgprot(pte));
3254 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3255 
3256 	ret = 0;
3257 unlock:
3258 	pte_unmap_unlock(ptep, ptl);
3259 out:
3260 	return ret;
3261 }
3262 
3263 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3264 			void *buf, int len, int write)
3265 {
3266 	resource_size_t phys_addr;
3267 	unsigned long prot = 0;
3268 	void __iomem *maddr;
3269 	int offset = addr & (PAGE_SIZE-1);
3270 
3271 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3272 		return -EINVAL;
3273 
3274 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3275 	if (write)
3276 		memcpy_toio(maddr + offset, buf, len);
3277 	else
3278 		memcpy_fromio(buf, maddr + offset, len);
3279 	iounmap(maddr);
3280 
3281 	return len;
3282 }
3283 #endif
3284 
3285 /*
3286  * Access another process' address space.
3287  * Source/target buffer must be kernel space,
3288  * Do not walk the page table directly, use get_user_pages
3289  */
3290 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3291 {
3292 	struct mm_struct *mm;
3293 	struct vm_area_struct *vma;
3294 	void *old_buf = buf;
3295 
3296 	mm = get_task_mm(tsk);
3297 	if (!mm)
3298 		return 0;
3299 
3300 	down_read(&mm->mmap_sem);
3301 	/* ignore errors, just check how much was successfully transferred */
3302 	while (len) {
3303 		int bytes, ret, offset;
3304 		void *maddr;
3305 		struct page *page = NULL;
3306 
3307 		ret = get_user_pages(tsk, mm, addr, 1,
3308 				write, 1, &page, &vma);
3309 		if (ret <= 0) {
3310 			/*
3311 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3312 			 * we can access using slightly different code.
3313 			 */
3314 #ifdef CONFIG_HAVE_IOREMAP_PROT
3315 			vma = find_vma(mm, addr);
3316 			if (!vma)
3317 				break;
3318 			if (vma->vm_ops && vma->vm_ops->access)
3319 				ret = vma->vm_ops->access(vma, addr, buf,
3320 							  len, write);
3321 			if (ret <= 0)
3322 #endif
3323 				break;
3324 			bytes = ret;
3325 		} else {
3326 			bytes = len;
3327 			offset = addr & (PAGE_SIZE-1);
3328 			if (bytes > PAGE_SIZE-offset)
3329 				bytes = PAGE_SIZE-offset;
3330 
3331 			maddr = kmap(page);
3332 			if (write) {
3333 				copy_to_user_page(vma, page, addr,
3334 						  maddr + offset, buf, bytes);
3335 				set_page_dirty_lock(page);
3336 			} else {
3337 				copy_from_user_page(vma, page, addr,
3338 						    buf, maddr + offset, bytes);
3339 			}
3340 			kunmap(page);
3341 			page_cache_release(page);
3342 		}
3343 		len -= bytes;
3344 		buf += bytes;
3345 		addr += bytes;
3346 	}
3347 	up_read(&mm->mmap_sem);
3348 	mmput(mm);
3349 
3350 	return buf - old_buf;
3351 }
3352 
3353 /*
3354  * Print the name of a VMA.
3355  */
3356 void print_vma_addr(char *prefix, unsigned long ip)
3357 {
3358 	struct mm_struct *mm = current->mm;
3359 	struct vm_area_struct *vma;
3360 
3361 	/*
3362 	 * Do not print if we are in atomic
3363 	 * contexts (in exception stacks, etc.):
3364 	 */
3365 	if (preempt_count())
3366 		return;
3367 
3368 	down_read(&mm->mmap_sem);
3369 	vma = find_vma(mm, ip);
3370 	if (vma && vma->vm_file) {
3371 		struct file *f = vma->vm_file;
3372 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3373 		if (buf) {
3374 			char *p, *s;
3375 
3376 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3377 			if (IS_ERR(p))
3378 				p = "?";
3379 			s = strrchr(p, '/');
3380 			if (s)
3381 				p = s+1;
3382 			printk("%s%s[%lx+%lx]", prefix, p,
3383 					vma->vm_start,
3384 					vma->vm_end - vma->vm_start);
3385 			free_page((unsigned long)buf);
3386 		}
3387 	}
3388 	up_read(&current->mm->mmap_sem);
3389 }
3390 
3391 #ifdef CONFIG_PROVE_LOCKING
3392 void might_fault(void)
3393 {
3394 	/*
3395 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3396 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3397 	 * get paged out, therefore we'll never actually fault, and the
3398 	 * below annotations will generate false positives.
3399 	 */
3400 	if (segment_eq(get_fs(), KERNEL_DS))
3401 		return;
3402 
3403 	might_sleep();
3404 	/*
3405 	 * it would be nicer only to annotate paths which are not under
3406 	 * pagefault_disable, however that requires a larger audit and
3407 	 * providing helpers like get_user_atomic.
3408 	 */
3409 	if (!in_atomic() && current->mm)
3410 		might_lock_read(&current->mm->mmap_sem);
3411 }
3412 EXPORT_SYMBOL(might_fault);
3413 #endif
3414