1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/module.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 60 #include <asm/io.h> 61 #include <asm/pgalloc.h> 62 #include <asm/uaccess.h> 63 #include <asm/tlb.h> 64 #include <asm/tlbflush.h> 65 #include <asm/pgtable.h> 66 67 #include "internal.h" 68 69 #ifndef CONFIG_NEED_MULTIPLE_NODES 70 /* use the per-pgdat data instead for discontigmem - mbligh */ 71 unsigned long max_mapnr; 72 struct page *mem_map; 73 74 EXPORT_SYMBOL(max_mapnr); 75 EXPORT_SYMBOL(mem_map); 76 #endif 77 78 unsigned long num_physpages; 79 /* 80 * A number of key systems in x86 including ioremap() rely on the assumption 81 * that high_memory defines the upper bound on direct map memory, then end 82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 84 * and ZONE_HIGHMEM. 85 */ 86 void * high_memory; 87 88 EXPORT_SYMBOL(num_physpages); 89 EXPORT_SYMBOL(high_memory); 90 91 /* 92 * Randomize the address space (stacks, mmaps, brk, etc.). 93 * 94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 95 * as ancient (libc5 based) binaries can segfault. ) 96 */ 97 int randomize_va_space __read_mostly = 98 #ifdef CONFIG_COMPAT_BRK 99 1; 100 #else 101 2; 102 #endif 103 104 static int __init disable_randmaps(char *s) 105 { 106 randomize_va_space = 0; 107 return 1; 108 } 109 __setup("norandmaps", disable_randmaps); 110 111 unsigned long zero_pfn __read_mostly; 112 unsigned long highest_memmap_pfn __read_mostly; 113 114 /* 115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 116 */ 117 static int __init init_zero_pfn(void) 118 { 119 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 120 return 0; 121 } 122 core_initcall(init_zero_pfn); 123 124 /* 125 * If a p?d_bad entry is found while walking page tables, report 126 * the error, before resetting entry to p?d_none. Usually (but 127 * very seldom) called out from the p?d_none_or_clear_bad macros. 128 */ 129 130 void pgd_clear_bad(pgd_t *pgd) 131 { 132 pgd_ERROR(*pgd); 133 pgd_clear(pgd); 134 } 135 136 void pud_clear_bad(pud_t *pud) 137 { 138 pud_ERROR(*pud); 139 pud_clear(pud); 140 } 141 142 void pmd_clear_bad(pmd_t *pmd) 143 { 144 pmd_ERROR(*pmd); 145 pmd_clear(pmd); 146 } 147 148 /* 149 * Note: this doesn't free the actual pages themselves. That 150 * has been handled earlier when unmapping all the memory regions. 151 */ 152 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 153 unsigned long addr) 154 { 155 pgtable_t token = pmd_pgtable(*pmd); 156 pmd_clear(pmd); 157 pte_free_tlb(tlb, token, addr); 158 tlb->mm->nr_ptes--; 159 } 160 161 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 162 unsigned long addr, unsigned long end, 163 unsigned long floor, unsigned long ceiling) 164 { 165 pmd_t *pmd; 166 unsigned long next; 167 unsigned long start; 168 169 start = addr; 170 pmd = pmd_offset(pud, addr); 171 do { 172 next = pmd_addr_end(addr, end); 173 if (pmd_none_or_clear_bad(pmd)) 174 continue; 175 free_pte_range(tlb, pmd, addr); 176 } while (pmd++, addr = next, addr != end); 177 178 start &= PUD_MASK; 179 if (start < floor) 180 return; 181 if (ceiling) { 182 ceiling &= PUD_MASK; 183 if (!ceiling) 184 return; 185 } 186 if (end - 1 > ceiling - 1) 187 return; 188 189 pmd = pmd_offset(pud, start); 190 pud_clear(pud); 191 pmd_free_tlb(tlb, pmd, start); 192 } 193 194 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 195 unsigned long addr, unsigned long end, 196 unsigned long floor, unsigned long ceiling) 197 { 198 pud_t *pud; 199 unsigned long next; 200 unsigned long start; 201 202 start = addr; 203 pud = pud_offset(pgd, addr); 204 do { 205 next = pud_addr_end(addr, end); 206 if (pud_none_or_clear_bad(pud)) 207 continue; 208 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 209 } while (pud++, addr = next, addr != end); 210 211 start &= PGDIR_MASK; 212 if (start < floor) 213 return; 214 if (ceiling) { 215 ceiling &= PGDIR_MASK; 216 if (!ceiling) 217 return; 218 } 219 if (end - 1 > ceiling - 1) 220 return; 221 222 pud = pud_offset(pgd, start); 223 pgd_clear(pgd); 224 pud_free_tlb(tlb, pud, start); 225 } 226 227 /* 228 * This function frees user-level page tables of a process. 229 * 230 * Must be called with pagetable lock held. 231 */ 232 void free_pgd_range(struct mmu_gather *tlb, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235 { 236 pgd_t *pgd; 237 unsigned long next; 238 unsigned long start; 239 240 /* 241 * The next few lines have given us lots of grief... 242 * 243 * Why are we testing PMD* at this top level? Because often 244 * there will be no work to do at all, and we'd prefer not to 245 * go all the way down to the bottom just to discover that. 246 * 247 * Why all these "- 1"s? Because 0 represents both the bottom 248 * of the address space and the top of it (using -1 for the 249 * top wouldn't help much: the masks would do the wrong thing). 250 * The rule is that addr 0 and floor 0 refer to the bottom of 251 * the address space, but end 0 and ceiling 0 refer to the top 252 * Comparisons need to use "end - 1" and "ceiling - 1" (though 253 * that end 0 case should be mythical). 254 * 255 * Wherever addr is brought up or ceiling brought down, we must 256 * be careful to reject "the opposite 0" before it confuses the 257 * subsequent tests. But what about where end is brought down 258 * by PMD_SIZE below? no, end can't go down to 0 there. 259 * 260 * Whereas we round start (addr) and ceiling down, by different 261 * masks at different levels, in order to test whether a table 262 * now has no other vmas using it, so can be freed, we don't 263 * bother to round floor or end up - the tests don't need that. 264 */ 265 266 addr &= PMD_MASK; 267 if (addr < floor) { 268 addr += PMD_SIZE; 269 if (!addr) 270 return; 271 } 272 if (ceiling) { 273 ceiling &= PMD_MASK; 274 if (!ceiling) 275 return; 276 } 277 if (end - 1 > ceiling - 1) 278 end -= PMD_SIZE; 279 if (addr > end - 1) 280 return; 281 282 start = addr; 283 pgd = pgd_offset(tlb->mm, addr); 284 do { 285 next = pgd_addr_end(addr, end); 286 if (pgd_none_or_clear_bad(pgd)) 287 continue; 288 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 289 } while (pgd++, addr = next, addr != end); 290 } 291 292 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 293 unsigned long floor, unsigned long ceiling) 294 { 295 while (vma) { 296 struct vm_area_struct *next = vma->vm_next; 297 unsigned long addr = vma->vm_start; 298 299 /* 300 * Hide vma from rmap and vmtruncate before freeing pgtables 301 */ 302 anon_vma_unlink(vma); 303 unlink_file_vma(vma); 304 305 if (is_vm_hugetlb_page(vma)) { 306 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 307 floor, next? next->vm_start: ceiling); 308 } else { 309 /* 310 * Optimization: gather nearby vmas into one call down 311 */ 312 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 313 && !is_vm_hugetlb_page(next)) { 314 vma = next; 315 next = vma->vm_next; 316 anon_vma_unlink(vma); 317 unlink_file_vma(vma); 318 } 319 free_pgd_range(tlb, addr, vma->vm_end, 320 floor, next? next->vm_start: ceiling); 321 } 322 vma = next; 323 } 324 } 325 326 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 327 { 328 pgtable_t new = pte_alloc_one(mm, address); 329 if (!new) 330 return -ENOMEM; 331 332 /* 333 * Ensure all pte setup (eg. pte page lock and page clearing) are 334 * visible before the pte is made visible to other CPUs by being 335 * put into page tables. 336 * 337 * The other side of the story is the pointer chasing in the page 338 * table walking code (when walking the page table without locking; 339 * ie. most of the time). Fortunately, these data accesses consist 340 * of a chain of data-dependent loads, meaning most CPUs (alpha 341 * being the notable exception) will already guarantee loads are 342 * seen in-order. See the alpha page table accessors for the 343 * smp_read_barrier_depends() barriers in page table walking code. 344 */ 345 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 346 347 spin_lock(&mm->page_table_lock); 348 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 349 mm->nr_ptes++; 350 pmd_populate(mm, pmd, new); 351 new = NULL; 352 } 353 spin_unlock(&mm->page_table_lock); 354 if (new) 355 pte_free(mm, new); 356 return 0; 357 } 358 359 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 360 { 361 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 362 if (!new) 363 return -ENOMEM; 364 365 smp_wmb(); /* See comment in __pte_alloc */ 366 367 spin_lock(&init_mm.page_table_lock); 368 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 369 pmd_populate_kernel(&init_mm, pmd, new); 370 new = NULL; 371 } 372 spin_unlock(&init_mm.page_table_lock); 373 if (new) 374 pte_free_kernel(&init_mm, new); 375 return 0; 376 } 377 378 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 379 { 380 if (file_rss) 381 add_mm_counter(mm, file_rss, file_rss); 382 if (anon_rss) 383 add_mm_counter(mm, anon_rss, anon_rss); 384 } 385 386 /* 387 * This function is called to print an error when a bad pte 388 * is found. For example, we might have a PFN-mapped pte in 389 * a region that doesn't allow it. 390 * 391 * The calling function must still handle the error. 392 */ 393 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 394 pte_t pte, struct page *page) 395 { 396 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 397 pud_t *pud = pud_offset(pgd, addr); 398 pmd_t *pmd = pmd_offset(pud, addr); 399 struct address_space *mapping; 400 pgoff_t index; 401 static unsigned long resume; 402 static unsigned long nr_shown; 403 static unsigned long nr_unshown; 404 405 /* 406 * Allow a burst of 60 reports, then keep quiet for that minute; 407 * or allow a steady drip of one report per second. 408 */ 409 if (nr_shown == 60) { 410 if (time_before(jiffies, resume)) { 411 nr_unshown++; 412 return; 413 } 414 if (nr_unshown) { 415 printk(KERN_ALERT 416 "BUG: Bad page map: %lu messages suppressed\n", 417 nr_unshown); 418 nr_unshown = 0; 419 } 420 nr_shown = 0; 421 } 422 if (nr_shown++ == 0) 423 resume = jiffies + 60 * HZ; 424 425 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 426 index = linear_page_index(vma, addr); 427 428 printk(KERN_ALERT 429 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 430 current->comm, 431 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 432 if (page) { 433 printk(KERN_ALERT 434 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", 435 page, (void *)page->flags, page_count(page), 436 page_mapcount(page), page->mapping, page->index); 437 } 438 printk(KERN_ALERT 439 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 440 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 441 /* 442 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 443 */ 444 if (vma->vm_ops) 445 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 446 (unsigned long)vma->vm_ops->fault); 447 if (vma->vm_file && vma->vm_file->f_op) 448 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 449 (unsigned long)vma->vm_file->f_op->mmap); 450 dump_stack(); 451 add_taint(TAINT_BAD_PAGE); 452 } 453 454 static inline int is_cow_mapping(unsigned int flags) 455 { 456 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 457 } 458 459 #ifndef is_zero_pfn 460 static inline int is_zero_pfn(unsigned long pfn) 461 { 462 return pfn == zero_pfn; 463 } 464 #endif 465 466 #ifndef my_zero_pfn 467 static inline unsigned long my_zero_pfn(unsigned long addr) 468 { 469 return zero_pfn; 470 } 471 #endif 472 473 /* 474 * vm_normal_page -- This function gets the "struct page" associated with a pte. 475 * 476 * "Special" mappings do not wish to be associated with a "struct page" (either 477 * it doesn't exist, or it exists but they don't want to touch it). In this 478 * case, NULL is returned here. "Normal" mappings do have a struct page. 479 * 480 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 481 * pte bit, in which case this function is trivial. Secondly, an architecture 482 * may not have a spare pte bit, which requires a more complicated scheme, 483 * described below. 484 * 485 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 486 * special mapping (even if there are underlying and valid "struct pages"). 487 * COWed pages of a VM_PFNMAP are always normal. 488 * 489 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 490 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 491 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 492 * mapping will always honor the rule 493 * 494 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 495 * 496 * And for normal mappings this is false. 497 * 498 * This restricts such mappings to be a linear translation from virtual address 499 * to pfn. To get around this restriction, we allow arbitrary mappings so long 500 * as the vma is not a COW mapping; in that case, we know that all ptes are 501 * special (because none can have been COWed). 502 * 503 * 504 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 505 * 506 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 507 * page" backing, however the difference is that _all_ pages with a struct 508 * page (that is, those where pfn_valid is true) are refcounted and considered 509 * normal pages by the VM. The disadvantage is that pages are refcounted 510 * (which can be slower and simply not an option for some PFNMAP users). The 511 * advantage is that we don't have to follow the strict linearity rule of 512 * PFNMAP mappings in order to support COWable mappings. 513 * 514 */ 515 #ifdef __HAVE_ARCH_PTE_SPECIAL 516 # define HAVE_PTE_SPECIAL 1 517 #else 518 # define HAVE_PTE_SPECIAL 0 519 #endif 520 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 521 pte_t pte) 522 { 523 unsigned long pfn = pte_pfn(pte); 524 525 if (HAVE_PTE_SPECIAL) { 526 if (likely(!pte_special(pte))) 527 goto check_pfn; 528 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 529 return NULL; 530 if (!is_zero_pfn(pfn)) 531 print_bad_pte(vma, addr, pte, NULL); 532 return NULL; 533 } 534 535 /* !HAVE_PTE_SPECIAL case follows: */ 536 537 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 538 if (vma->vm_flags & VM_MIXEDMAP) { 539 if (!pfn_valid(pfn)) 540 return NULL; 541 goto out; 542 } else { 543 unsigned long off; 544 off = (addr - vma->vm_start) >> PAGE_SHIFT; 545 if (pfn == vma->vm_pgoff + off) 546 return NULL; 547 if (!is_cow_mapping(vma->vm_flags)) 548 return NULL; 549 } 550 } 551 552 if (is_zero_pfn(pfn)) 553 return NULL; 554 check_pfn: 555 if (unlikely(pfn > highest_memmap_pfn)) { 556 print_bad_pte(vma, addr, pte, NULL); 557 return NULL; 558 } 559 560 /* 561 * NOTE! We still have PageReserved() pages in the page tables. 562 * eg. VDSO mappings can cause them to exist. 563 */ 564 out: 565 return pfn_to_page(pfn); 566 } 567 568 /* 569 * copy one vm_area from one task to the other. Assumes the page tables 570 * already present in the new task to be cleared in the whole range 571 * covered by this vma. 572 */ 573 574 static inline void 575 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 576 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 577 unsigned long addr, int *rss) 578 { 579 unsigned long vm_flags = vma->vm_flags; 580 pte_t pte = *src_pte; 581 struct page *page; 582 583 /* pte contains position in swap or file, so copy. */ 584 if (unlikely(!pte_present(pte))) { 585 if (!pte_file(pte)) { 586 swp_entry_t entry = pte_to_swp_entry(pte); 587 588 swap_duplicate(entry); 589 /* make sure dst_mm is on swapoff's mmlist. */ 590 if (unlikely(list_empty(&dst_mm->mmlist))) { 591 spin_lock(&mmlist_lock); 592 if (list_empty(&dst_mm->mmlist)) 593 list_add(&dst_mm->mmlist, 594 &src_mm->mmlist); 595 spin_unlock(&mmlist_lock); 596 } 597 if (is_write_migration_entry(entry) && 598 is_cow_mapping(vm_flags)) { 599 /* 600 * COW mappings require pages in both parent 601 * and child to be set to read. 602 */ 603 make_migration_entry_read(&entry); 604 pte = swp_entry_to_pte(entry); 605 set_pte_at(src_mm, addr, src_pte, pte); 606 } 607 } 608 goto out_set_pte; 609 } 610 611 /* 612 * If it's a COW mapping, write protect it both 613 * in the parent and the child 614 */ 615 if (is_cow_mapping(vm_flags)) { 616 ptep_set_wrprotect(src_mm, addr, src_pte); 617 pte = pte_wrprotect(pte); 618 } 619 620 /* 621 * If it's a shared mapping, mark it clean in 622 * the child 623 */ 624 if (vm_flags & VM_SHARED) 625 pte = pte_mkclean(pte); 626 pte = pte_mkold(pte); 627 628 page = vm_normal_page(vma, addr, pte); 629 if (page) { 630 get_page(page); 631 page_dup_rmap(page); 632 rss[PageAnon(page)]++; 633 } 634 635 out_set_pte: 636 set_pte_at(dst_mm, addr, dst_pte, pte); 637 } 638 639 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 640 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 641 unsigned long addr, unsigned long end) 642 { 643 pte_t *src_pte, *dst_pte; 644 spinlock_t *src_ptl, *dst_ptl; 645 int progress = 0; 646 int rss[2]; 647 648 again: 649 rss[1] = rss[0] = 0; 650 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 651 if (!dst_pte) 652 return -ENOMEM; 653 src_pte = pte_offset_map_nested(src_pmd, addr); 654 src_ptl = pte_lockptr(src_mm, src_pmd); 655 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 656 arch_enter_lazy_mmu_mode(); 657 658 do { 659 /* 660 * We are holding two locks at this point - either of them 661 * could generate latencies in another task on another CPU. 662 */ 663 if (progress >= 32) { 664 progress = 0; 665 if (need_resched() || 666 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 667 break; 668 } 669 if (pte_none(*src_pte)) { 670 progress++; 671 continue; 672 } 673 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 674 progress += 8; 675 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 676 677 arch_leave_lazy_mmu_mode(); 678 spin_unlock(src_ptl); 679 pte_unmap_nested(src_pte - 1); 680 add_mm_rss(dst_mm, rss[0], rss[1]); 681 pte_unmap_unlock(dst_pte - 1, dst_ptl); 682 cond_resched(); 683 if (addr != end) 684 goto again; 685 return 0; 686 } 687 688 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 689 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 690 unsigned long addr, unsigned long end) 691 { 692 pmd_t *src_pmd, *dst_pmd; 693 unsigned long next; 694 695 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 696 if (!dst_pmd) 697 return -ENOMEM; 698 src_pmd = pmd_offset(src_pud, addr); 699 do { 700 next = pmd_addr_end(addr, end); 701 if (pmd_none_or_clear_bad(src_pmd)) 702 continue; 703 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 704 vma, addr, next)) 705 return -ENOMEM; 706 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 707 return 0; 708 } 709 710 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 711 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 712 unsigned long addr, unsigned long end) 713 { 714 pud_t *src_pud, *dst_pud; 715 unsigned long next; 716 717 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 718 if (!dst_pud) 719 return -ENOMEM; 720 src_pud = pud_offset(src_pgd, addr); 721 do { 722 next = pud_addr_end(addr, end); 723 if (pud_none_or_clear_bad(src_pud)) 724 continue; 725 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 726 vma, addr, next)) 727 return -ENOMEM; 728 } while (dst_pud++, src_pud++, addr = next, addr != end); 729 return 0; 730 } 731 732 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 733 struct vm_area_struct *vma) 734 { 735 pgd_t *src_pgd, *dst_pgd; 736 unsigned long next; 737 unsigned long addr = vma->vm_start; 738 unsigned long end = vma->vm_end; 739 int ret; 740 741 /* 742 * Don't copy ptes where a page fault will fill them correctly. 743 * Fork becomes much lighter when there are big shared or private 744 * readonly mappings. The tradeoff is that copy_page_range is more 745 * efficient than faulting. 746 */ 747 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 748 if (!vma->anon_vma) 749 return 0; 750 } 751 752 if (is_vm_hugetlb_page(vma)) 753 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 754 755 if (unlikely(is_pfn_mapping(vma))) { 756 /* 757 * We do not free on error cases below as remove_vma 758 * gets called on error from higher level routine 759 */ 760 ret = track_pfn_vma_copy(vma); 761 if (ret) 762 return ret; 763 } 764 765 /* 766 * We need to invalidate the secondary MMU mappings only when 767 * there could be a permission downgrade on the ptes of the 768 * parent mm. And a permission downgrade will only happen if 769 * is_cow_mapping() returns true. 770 */ 771 if (is_cow_mapping(vma->vm_flags)) 772 mmu_notifier_invalidate_range_start(src_mm, addr, end); 773 774 ret = 0; 775 dst_pgd = pgd_offset(dst_mm, addr); 776 src_pgd = pgd_offset(src_mm, addr); 777 do { 778 next = pgd_addr_end(addr, end); 779 if (pgd_none_or_clear_bad(src_pgd)) 780 continue; 781 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 782 vma, addr, next))) { 783 ret = -ENOMEM; 784 break; 785 } 786 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 787 788 if (is_cow_mapping(vma->vm_flags)) 789 mmu_notifier_invalidate_range_end(src_mm, 790 vma->vm_start, end); 791 return ret; 792 } 793 794 static unsigned long zap_pte_range(struct mmu_gather *tlb, 795 struct vm_area_struct *vma, pmd_t *pmd, 796 unsigned long addr, unsigned long end, 797 long *zap_work, struct zap_details *details) 798 { 799 struct mm_struct *mm = tlb->mm; 800 pte_t *pte; 801 spinlock_t *ptl; 802 int file_rss = 0; 803 int anon_rss = 0; 804 805 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 806 arch_enter_lazy_mmu_mode(); 807 do { 808 pte_t ptent = *pte; 809 if (pte_none(ptent)) { 810 (*zap_work)--; 811 continue; 812 } 813 814 (*zap_work) -= PAGE_SIZE; 815 816 if (pte_present(ptent)) { 817 struct page *page; 818 819 page = vm_normal_page(vma, addr, ptent); 820 if (unlikely(details) && page) { 821 /* 822 * unmap_shared_mapping_pages() wants to 823 * invalidate cache without truncating: 824 * unmap shared but keep private pages. 825 */ 826 if (details->check_mapping && 827 details->check_mapping != page->mapping) 828 continue; 829 /* 830 * Each page->index must be checked when 831 * invalidating or truncating nonlinear. 832 */ 833 if (details->nonlinear_vma && 834 (page->index < details->first_index || 835 page->index > details->last_index)) 836 continue; 837 } 838 ptent = ptep_get_and_clear_full(mm, addr, pte, 839 tlb->fullmm); 840 tlb_remove_tlb_entry(tlb, pte, addr); 841 if (unlikely(!page)) 842 continue; 843 if (unlikely(details) && details->nonlinear_vma 844 && linear_page_index(details->nonlinear_vma, 845 addr) != page->index) 846 set_pte_at(mm, addr, pte, 847 pgoff_to_pte(page->index)); 848 if (PageAnon(page)) 849 anon_rss--; 850 else { 851 if (pte_dirty(ptent)) 852 set_page_dirty(page); 853 if (pte_young(ptent) && 854 likely(!VM_SequentialReadHint(vma))) 855 mark_page_accessed(page); 856 file_rss--; 857 } 858 page_remove_rmap(page); 859 if (unlikely(page_mapcount(page) < 0)) 860 print_bad_pte(vma, addr, ptent, page); 861 tlb_remove_page(tlb, page); 862 continue; 863 } 864 /* 865 * If details->check_mapping, we leave swap entries; 866 * if details->nonlinear_vma, we leave file entries. 867 */ 868 if (unlikely(details)) 869 continue; 870 if (pte_file(ptent)) { 871 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 872 print_bad_pte(vma, addr, ptent, NULL); 873 } else if 874 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent)))) 875 print_bad_pte(vma, addr, ptent, NULL); 876 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 877 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 878 879 add_mm_rss(mm, file_rss, anon_rss); 880 arch_leave_lazy_mmu_mode(); 881 pte_unmap_unlock(pte - 1, ptl); 882 883 return addr; 884 } 885 886 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 887 struct vm_area_struct *vma, pud_t *pud, 888 unsigned long addr, unsigned long end, 889 long *zap_work, struct zap_details *details) 890 { 891 pmd_t *pmd; 892 unsigned long next; 893 894 pmd = pmd_offset(pud, addr); 895 do { 896 next = pmd_addr_end(addr, end); 897 if (pmd_none_or_clear_bad(pmd)) { 898 (*zap_work)--; 899 continue; 900 } 901 next = zap_pte_range(tlb, vma, pmd, addr, next, 902 zap_work, details); 903 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 904 905 return addr; 906 } 907 908 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 909 struct vm_area_struct *vma, pgd_t *pgd, 910 unsigned long addr, unsigned long end, 911 long *zap_work, struct zap_details *details) 912 { 913 pud_t *pud; 914 unsigned long next; 915 916 pud = pud_offset(pgd, addr); 917 do { 918 next = pud_addr_end(addr, end); 919 if (pud_none_or_clear_bad(pud)) { 920 (*zap_work)--; 921 continue; 922 } 923 next = zap_pmd_range(tlb, vma, pud, addr, next, 924 zap_work, details); 925 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 926 927 return addr; 928 } 929 930 static unsigned long unmap_page_range(struct mmu_gather *tlb, 931 struct vm_area_struct *vma, 932 unsigned long addr, unsigned long end, 933 long *zap_work, struct zap_details *details) 934 { 935 pgd_t *pgd; 936 unsigned long next; 937 938 if (details && !details->check_mapping && !details->nonlinear_vma) 939 details = NULL; 940 941 BUG_ON(addr >= end); 942 tlb_start_vma(tlb, vma); 943 pgd = pgd_offset(vma->vm_mm, addr); 944 do { 945 next = pgd_addr_end(addr, end); 946 if (pgd_none_or_clear_bad(pgd)) { 947 (*zap_work)--; 948 continue; 949 } 950 next = zap_pud_range(tlb, vma, pgd, addr, next, 951 zap_work, details); 952 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 953 tlb_end_vma(tlb, vma); 954 955 return addr; 956 } 957 958 #ifdef CONFIG_PREEMPT 959 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 960 #else 961 /* No preempt: go for improved straight-line efficiency */ 962 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 963 #endif 964 965 /** 966 * unmap_vmas - unmap a range of memory covered by a list of vma's 967 * @tlbp: address of the caller's struct mmu_gather 968 * @vma: the starting vma 969 * @start_addr: virtual address at which to start unmapping 970 * @end_addr: virtual address at which to end unmapping 971 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 972 * @details: details of nonlinear truncation or shared cache invalidation 973 * 974 * Returns the end address of the unmapping (restart addr if interrupted). 975 * 976 * Unmap all pages in the vma list. 977 * 978 * We aim to not hold locks for too long (for scheduling latency reasons). 979 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 980 * return the ending mmu_gather to the caller. 981 * 982 * Only addresses between `start' and `end' will be unmapped. 983 * 984 * The VMA list must be sorted in ascending virtual address order. 985 * 986 * unmap_vmas() assumes that the caller will flush the whole unmapped address 987 * range after unmap_vmas() returns. So the only responsibility here is to 988 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 989 * drops the lock and schedules. 990 */ 991 unsigned long unmap_vmas(struct mmu_gather **tlbp, 992 struct vm_area_struct *vma, unsigned long start_addr, 993 unsigned long end_addr, unsigned long *nr_accounted, 994 struct zap_details *details) 995 { 996 long zap_work = ZAP_BLOCK_SIZE; 997 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 998 int tlb_start_valid = 0; 999 unsigned long start = start_addr; 1000 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 1001 int fullmm = (*tlbp)->fullmm; 1002 struct mm_struct *mm = vma->vm_mm; 1003 1004 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1005 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 1006 unsigned long end; 1007 1008 start = max(vma->vm_start, start_addr); 1009 if (start >= vma->vm_end) 1010 continue; 1011 end = min(vma->vm_end, end_addr); 1012 if (end <= vma->vm_start) 1013 continue; 1014 1015 if (vma->vm_flags & VM_ACCOUNT) 1016 *nr_accounted += (end - start) >> PAGE_SHIFT; 1017 1018 if (unlikely(is_pfn_mapping(vma))) 1019 untrack_pfn_vma(vma, 0, 0); 1020 1021 while (start != end) { 1022 if (!tlb_start_valid) { 1023 tlb_start = start; 1024 tlb_start_valid = 1; 1025 } 1026 1027 if (unlikely(is_vm_hugetlb_page(vma))) { 1028 /* 1029 * It is undesirable to test vma->vm_file as it 1030 * should be non-null for valid hugetlb area. 1031 * However, vm_file will be NULL in the error 1032 * cleanup path of do_mmap_pgoff. When 1033 * hugetlbfs ->mmap method fails, 1034 * do_mmap_pgoff() nullifies vma->vm_file 1035 * before calling this function to clean up. 1036 * Since no pte has actually been setup, it is 1037 * safe to do nothing in this case. 1038 */ 1039 if (vma->vm_file) { 1040 unmap_hugepage_range(vma, start, end, NULL); 1041 zap_work -= (end - start) / 1042 pages_per_huge_page(hstate_vma(vma)); 1043 } 1044 1045 start = end; 1046 } else 1047 start = unmap_page_range(*tlbp, vma, 1048 start, end, &zap_work, details); 1049 1050 if (zap_work > 0) { 1051 BUG_ON(start != end); 1052 break; 1053 } 1054 1055 tlb_finish_mmu(*tlbp, tlb_start, start); 1056 1057 if (need_resched() || 1058 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 1059 if (i_mmap_lock) { 1060 *tlbp = NULL; 1061 goto out; 1062 } 1063 cond_resched(); 1064 } 1065 1066 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 1067 tlb_start_valid = 0; 1068 zap_work = ZAP_BLOCK_SIZE; 1069 } 1070 } 1071 out: 1072 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1073 return start; /* which is now the end (or restart) address */ 1074 } 1075 1076 /** 1077 * zap_page_range - remove user pages in a given range 1078 * @vma: vm_area_struct holding the applicable pages 1079 * @address: starting address of pages to zap 1080 * @size: number of bytes to zap 1081 * @details: details of nonlinear truncation or shared cache invalidation 1082 */ 1083 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1084 unsigned long size, struct zap_details *details) 1085 { 1086 struct mm_struct *mm = vma->vm_mm; 1087 struct mmu_gather *tlb; 1088 unsigned long end = address + size; 1089 unsigned long nr_accounted = 0; 1090 1091 lru_add_drain(); 1092 tlb = tlb_gather_mmu(mm, 0); 1093 update_hiwater_rss(mm); 1094 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1095 if (tlb) 1096 tlb_finish_mmu(tlb, address, end); 1097 return end; 1098 } 1099 1100 /** 1101 * zap_vma_ptes - remove ptes mapping the vma 1102 * @vma: vm_area_struct holding ptes to be zapped 1103 * @address: starting address of pages to zap 1104 * @size: number of bytes to zap 1105 * 1106 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1107 * 1108 * The entire address range must be fully contained within the vma. 1109 * 1110 * Returns 0 if successful. 1111 */ 1112 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1113 unsigned long size) 1114 { 1115 if (address < vma->vm_start || address + size > vma->vm_end || 1116 !(vma->vm_flags & VM_PFNMAP)) 1117 return -1; 1118 zap_page_range(vma, address, size, NULL); 1119 return 0; 1120 } 1121 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1122 1123 /* 1124 * Do a quick page-table lookup for a single page. 1125 */ 1126 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1127 unsigned int flags) 1128 { 1129 pgd_t *pgd; 1130 pud_t *pud; 1131 pmd_t *pmd; 1132 pte_t *ptep, pte; 1133 spinlock_t *ptl; 1134 struct page *page; 1135 struct mm_struct *mm = vma->vm_mm; 1136 1137 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1138 if (!IS_ERR(page)) { 1139 BUG_ON(flags & FOLL_GET); 1140 goto out; 1141 } 1142 1143 page = NULL; 1144 pgd = pgd_offset(mm, address); 1145 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1146 goto no_page_table; 1147 1148 pud = pud_offset(pgd, address); 1149 if (pud_none(*pud)) 1150 goto no_page_table; 1151 if (pud_huge(*pud)) { 1152 BUG_ON(flags & FOLL_GET); 1153 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1154 goto out; 1155 } 1156 if (unlikely(pud_bad(*pud))) 1157 goto no_page_table; 1158 1159 pmd = pmd_offset(pud, address); 1160 if (pmd_none(*pmd)) 1161 goto no_page_table; 1162 if (pmd_huge(*pmd)) { 1163 BUG_ON(flags & FOLL_GET); 1164 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1165 goto out; 1166 } 1167 if (unlikely(pmd_bad(*pmd))) 1168 goto no_page_table; 1169 1170 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1171 1172 pte = *ptep; 1173 if (!pte_present(pte)) 1174 goto no_page; 1175 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1176 goto unlock; 1177 1178 page = vm_normal_page(vma, address, pte); 1179 if (unlikely(!page)) { 1180 if ((flags & FOLL_DUMP) || 1181 !is_zero_pfn(pte_pfn(pte))) 1182 goto bad_page; 1183 page = pte_page(pte); 1184 } 1185 1186 if (flags & FOLL_GET) 1187 get_page(page); 1188 if (flags & FOLL_TOUCH) { 1189 if ((flags & FOLL_WRITE) && 1190 !pte_dirty(pte) && !PageDirty(page)) 1191 set_page_dirty(page); 1192 /* 1193 * pte_mkyoung() would be more correct here, but atomic care 1194 * is needed to avoid losing the dirty bit: it is easier to use 1195 * mark_page_accessed(). 1196 */ 1197 mark_page_accessed(page); 1198 } 1199 unlock: 1200 pte_unmap_unlock(ptep, ptl); 1201 out: 1202 return page; 1203 1204 bad_page: 1205 pte_unmap_unlock(ptep, ptl); 1206 return ERR_PTR(-EFAULT); 1207 1208 no_page: 1209 pte_unmap_unlock(ptep, ptl); 1210 if (!pte_none(pte)) 1211 return page; 1212 1213 no_page_table: 1214 /* 1215 * When core dumping an enormous anonymous area that nobody 1216 * has touched so far, we don't want to allocate unnecessary pages or 1217 * page tables. Return error instead of NULL to skip handle_mm_fault, 1218 * then get_dump_page() will return NULL to leave a hole in the dump. 1219 * But we can only make this optimization where a hole would surely 1220 * be zero-filled if handle_mm_fault() actually did handle it. 1221 */ 1222 if ((flags & FOLL_DUMP) && 1223 (!vma->vm_ops || !vma->vm_ops->fault)) 1224 return ERR_PTR(-EFAULT); 1225 return page; 1226 } 1227 1228 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1229 unsigned long start, int nr_pages, unsigned int gup_flags, 1230 struct page **pages, struct vm_area_struct **vmas) 1231 { 1232 int i; 1233 unsigned long vm_flags; 1234 1235 if (nr_pages <= 0) 1236 return 0; 1237 1238 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1239 1240 /* 1241 * Require read or write permissions. 1242 * If FOLL_FORCE is set, we only require the "MAY" flags. 1243 */ 1244 vm_flags = (gup_flags & FOLL_WRITE) ? 1245 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1246 vm_flags &= (gup_flags & FOLL_FORCE) ? 1247 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1248 i = 0; 1249 1250 do { 1251 struct vm_area_struct *vma; 1252 1253 vma = find_extend_vma(mm, start); 1254 if (!vma && in_gate_area(tsk, start)) { 1255 unsigned long pg = start & PAGE_MASK; 1256 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1257 pgd_t *pgd; 1258 pud_t *pud; 1259 pmd_t *pmd; 1260 pte_t *pte; 1261 1262 /* user gate pages are read-only */ 1263 if (gup_flags & FOLL_WRITE) 1264 return i ? : -EFAULT; 1265 if (pg > TASK_SIZE) 1266 pgd = pgd_offset_k(pg); 1267 else 1268 pgd = pgd_offset_gate(mm, pg); 1269 BUG_ON(pgd_none(*pgd)); 1270 pud = pud_offset(pgd, pg); 1271 BUG_ON(pud_none(*pud)); 1272 pmd = pmd_offset(pud, pg); 1273 if (pmd_none(*pmd)) 1274 return i ? : -EFAULT; 1275 pte = pte_offset_map(pmd, pg); 1276 if (pte_none(*pte)) { 1277 pte_unmap(pte); 1278 return i ? : -EFAULT; 1279 } 1280 if (pages) { 1281 struct page *page = vm_normal_page(gate_vma, start, *pte); 1282 pages[i] = page; 1283 if (page) 1284 get_page(page); 1285 } 1286 pte_unmap(pte); 1287 if (vmas) 1288 vmas[i] = gate_vma; 1289 i++; 1290 start += PAGE_SIZE; 1291 nr_pages--; 1292 continue; 1293 } 1294 1295 if (!vma || 1296 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1297 !(vm_flags & vma->vm_flags)) 1298 return i ? : -EFAULT; 1299 1300 if (is_vm_hugetlb_page(vma)) { 1301 i = follow_hugetlb_page(mm, vma, pages, vmas, 1302 &start, &nr_pages, i, gup_flags); 1303 continue; 1304 } 1305 1306 do { 1307 struct page *page; 1308 unsigned int foll_flags = gup_flags; 1309 1310 /* 1311 * If we have a pending SIGKILL, don't keep faulting 1312 * pages and potentially allocating memory. 1313 */ 1314 if (unlikely(fatal_signal_pending(current))) 1315 return i ? i : -ERESTARTSYS; 1316 1317 cond_resched(); 1318 while (!(page = follow_page(vma, start, foll_flags))) { 1319 int ret; 1320 1321 ret = handle_mm_fault(mm, vma, start, 1322 (foll_flags & FOLL_WRITE) ? 1323 FAULT_FLAG_WRITE : 0); 1324 1325 if (ret & VM_FAULT_ERROR) { 1326 if (ret & VM_FAULT_OOM) 1327 return i ? i : -ENOMEM; 1328 else if (ret & VM_FAULT_SIGBUS) 1329 return i ? i : -EFAULT; 1330 BUG(); 1331 } 1332 if (ret & VM_FAULT_MAJOR) 1333 tsk->maj_flt++; 1334 else 1335 tsk->min_flt++; 1336 1337 /* 1338 * The VM_FAULT_WRITE bit tells us that 1339 * do_wp_page has broken COW when necessary, 1340 * even if maybe_mkwrite decided not to set 1341 * pte_write. We can thus safely do subsequent 1342 * page lookups as if they were reads. But only 1343 * do so when looping for pte_write is futile: 1344 * in some cases userspace may also be wanting 1345 * to write to the gotten user page, which a 1346 * read fault here might prevent (a readonly 1347 * page might get reCOWed by userspace write). 1348 */ 1349 if ((ret & VM_FAULT_WRITE) && 1350 !(vma->vm_flags & VM_WRITE)) 1351 foll_flags &= ~FOLL_WRITE; 1352 1353 cond_resched(); 1354 } 1355 if (IS_ERR(page)) 1356 return i ? i : PTR_ERR(page); 1357 if (pages) { 1358 pages[i] = page; 1359 1360 flush_anon_page(vma, page, start); 1361 flush_dcache_page(page); 1362 } 1363 if (vmas) 1364 vmas[i] = vma; 1365 i++; 1366 start += PAGE_SIZE; 1367 nr_pages--; 1368 } while (nr_pages && start < vma->vm_end); 1369 } while (nr_pages); 1370 return i; 1371 } 1372 1373 /** 1374 * get_user_pages() - pin user pages in memory 1375 * @tsk: task_struct of target task 1376 * @mm: mm_struct of target mm 1377 * @start: starting user address 1378 * @nr_pages: number of pages from start to pin 1379 * @write: whether pages will be written to by the caller 1380 * @force: whether to force write access even if user mapping is 1381 * readonly. This will result in the page being COWed even 1382 * in MAP_SHARED mappings. You do not want this. 1383 * @pages: array that receives pointers to the pages pinned. 1384 * Should be at least nr_pages long. Or NULL, if caller 1385 * only intends to ensure the pages are faulted in. 1386 * @vmas: array of pointers to vmas corresponding to each page. 1387 * Or NULL if the caller does not require them. 1388 * 1389 * Returns number of pages pinned. This may be fewer than the number 1390 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1391 * were pinned, returns -errno. Each page returned must be released 1392 * with a put_page() call when it is finished with. vmas will only 1393 * remain valid while mmap_sem is held. 1394 * 1395 * Must be called with mmap_sem held for read or write. 1396 * 1397 * get_user_pages walks a process's page tables and takes a reference to 1398 * each struct page that each user address corresponds to at a given 1399 * instant. That is, it takes the page that would be accessed if a user 1400 * thread accesses the given user virtual address at that instant. 1401 * 1402 * This does not guarantee that the page exists in the user mappings when 1403 * get_user_pages returns, and there may even be a completely different 1404 * page there in some cases (eg. if mmapped pagecache has been invalidated 1405 * and subsequently re faulted). However it does guarantee that the page 1406 * won't be freed completely. And mostly callers simply care that the page 1407 * contains data that was valid *at some point in time*. Typically, an IO 1408 * or similar operation cannot guarantee anything stronger anyway because 1409 * locks can't be held over the syscall boundary. 1410 * 1411 * If write=0, the page must not be written to. If the page is written to, 1412 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1413 * after the page is finished with, and before put_page is called. 1414 * 1415 * get_user_pages is typically used for fewer-copy IO operations, to get a 1416 * handle on the memory by some means other than accesses via the user virtual 1417 * addresses. The pages may be submitted for DMA to devices or accessed via 1418 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1419 * use the correct cache flushing APIs. 1420 * 1421 * See also get_user_pages_fast, for performance critical applications. 1422 */ 1423 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1424 unsigned long start, int nr_pages, int write, int force, 1425 struct page **pages, struct vm_area_struct **vmas) 1426 { 1427 int flags = FOLL_TOUCH; 1428 1429 if (pages) 1430 flags |= FOLL_GET; 1431 if (write) 1432 flags |= FOLL_WRITE; 1433 if (force) 1434 flags |= FOLL_FORCE; 1435 1436 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas); 1437 } 1438 EXPORT_SYMBOL(get_user_pages); 1439 1440 /** 1441 * get_dump_page() - pin user page in memory while writing it to core dump 1442 * @addr: user address 1443 * 1444 * Returns struct page pointer of user page pinned for dump, 1445 * to be freed afterwards by page_cache_release() or put_page(). 1446 * 1447 * Returns NULL on any kind of failure - a hole must then be inserted into 1448 * the corefile, to preserve alignment with its headers; and also returns 1449 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1450 * allowing a hole to be left in the corefile to save diskspace. 1451 * 1452 * Called without mmap_sem, but after all other threads have been killed. 1453 */ 1454 #ifdef CONFIG_ELF_CORE 1455 struct page *get_dump_page(unsigned long addr) 1456 { 1457 struct vm_area_struct *vma; 1458 struct page *page; 1459 1460 if (__get_user_pages(current, current->mm, addr, 1, 1461 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1) 1462 return NULL; 1463 flush_cache_page(vma, addr, page_to_pfn(page)); 1464 return page; 1465 } 1466 #endif /* CONFIG_ELF_CORE */ 1467 1468 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1469 spinlock_t **ptl) 1470 { 1471 pgd_t * pgd = pgd_offset(mm, addr); 1472 pud_t * pud = pud_alloc(mm, pgd, addr); 1473 if (pud) { 1474 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1475 if (pmd) 1476 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1477 } 1478 return NULL; 1479 } 1480 1481 /* 1482 * This is the old fallback for page remapping. 1483 * 1484 * For historical reasons, it only allows reserved pages. Only 1485 * old drivers should use this, and they needed to mark their 1486 * pages reserved for the old functions anyway. 1487 */ 1488 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1489 struct page *page, pgprot_t prot) 1490 { 1491 struct mm_struct *mm = vma->vm_mm; 1492 int retval; 1493 pte_t *pte; 1494 spinlock_t *ptl; 1495 1496 retval = -EINVAL; 1497 if (PageAnon(page)) 1498 goto out; 1499 retval = -ENOMEM; 1500 flush_dcache_page(page); 1501 pte = get_locked_pte(mm, addr, &ptl); 1502 if (!pte) 1503 goto out; 1504 retval = -EBUSY; 1505 if (!pte_none(*pte)) 1506 goto out_unlock; 1507 1508 /* Ok, finally just insert the thing.. */ 1509 get_page(page); 1510 inc_mm_counter(mm, file_rss); 1511 page_add_file_rmap(page); 1512 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1513 1514 retval = 0; 1515 pte_unmap_unlock(pte, ptl); 1516 return retval; 1517 out_unlock: 1518 pte_unmap_unlock(pte, ptl); 1519 out: 1520 return retval; 1521 } 1522 1523 /** 1524 * vm_insert_page - insert single page into user vma 1525 * @vma: user vma to map to 1526 * @addr: target user address of this page 1527 * @page: source kernel page 1528 * 1529 * This allows drivers to insert individual pages they've allocated 1530 * into a user vma. 1531 * 1532 * The page has to be a nice clean _individual_ kernel allocation. 1533 * If you allocate a compound page, you need to have marked it as 1534 * such (__GFP_COMP), or manually just split the page up yourself 1535 * (see split_page()). 1536 * 1537 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1538 * took an arbitrary page protection parameter. This doesn't allow 1539 * that. Your vma protection will have to be set up correctly, which 1540 * means that if you want a shared writable mapping, you'd better 1541 * ask for a shared writable mapping! 1542 * 1543 * The page does not need to be reserved. 1544 */ 1545 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1546 struct page *page) 1547 { 1548 if (addr < vma->vm_start || addr >= vma->vm_end) 1549 return -EFAULT; 1550 if (!page_count(page)) 1551 return -EINVAL; 1552 vma->vm_flags |= VM_INSERTPAGE; 1553 return insert_page(vma, addr, page, vma->vm_page_prot); 1554 } 1555 EXPORT_SYMBOL(vm_insert_page); 1556 1557 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1558 unsigned long pfn, pgprot_t prot) 1559 { 1560 struct mm_struct *mm = vma->vm_mm; 1561 int retval; 1562 pte_t *pte, entry; 1563 spinlock_t *ptl; 1564 1565 retval = -ENOMEM; 1566 pte = get_locked_pte(mm, addr, &ptl); 1567 if (!pte) 1568 goto out; 1569 retval = -EBUSY; 1570 if (!pte_none(*pte)) 1571 goto out_unlock; 1572 1573 /* Ok, finally just insert the thing.. */ 1574 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1575 set_pte_at(mm, addr, pte, entry); 1576 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ 1577 1578 retval = 0; 1579 out_unlock: 1580 pte_unmap_unlock(pte, ptl); 1581 out: 1582 return retval; 1583 } 1584 1585 /** 1586 * vm_insert_pfn - insert single pfn into user vma 1587 * @vma: user vma to map to 1588 * @addr: target user address of this page 1589 * @pfn: source kernel pfn 1590 * 1591 * Similar to vm_inert_page, this allows drivers to insert individual pages 1592 * they've allocated into a user vma. Same comments apply. 1593 * 1594 * This function should only be called from a vm_ops->fault handler, and 1595 * in that case the handler should return NULL. 1596 * 1597 * vma cannot be a COW mapping. 1598 * 1599 * As this is called only for pages that do not currently exist, we 1600 * do not need to flush old virtual caches or the TLB. 1601 */ 1602 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1603 unsigned long pfn) 1604 { 1605 int ret; 1606 pgprot_t pgprot = vma->vm_page_prot; 1607 /* 1608 * Technically, architectures with pte_special can avoid all these 1609 * restrictions (same for remap_pfn_range). However we would like 1610 * consistency in testing and feature parity among all, so we should 1611 * try to keep these invariants in place for everybody. 1612 */ 1613 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1614 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1615 (VM_PFNMAP|VM_MIXEDMAP)); 1616 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1617 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1618 1619 if (addr < vma->vm_start || addr >= vma->vm_end) 1620 return -EFAULT; 1621 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 1622 return -EINVAL; 1623 1624 ret = insert_pfn(vma, addr, pfn, pgprot); 1625 1626 if (ret) 1627 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 1628 1629 return ret; 1630 } 1631 EXPORT_SYMBOL(vm_insert_pfn); 1632 1633 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1634 unsigned long pfn) 1635 { 1636 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1637 1638 if (addr < vma->vm_start || addr >= vma->vm_end) 1639 return -EFAULT; 1640 1641 /* 1642 * If we don't have pte special, then we have to use the pfn_valid() 1643 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1644 * refcount the page if pfn_valid is true (hence insert_page rather 1645 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1646 * without pte special, it would there be refcounted as a normal page. 1647 */ 1648 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1649 struct page *page; 1650 1651 page = pfn_to_page(pfn); 1652 return insert_page(vma, addr, page, vma->vm_page_prot); 1653 } 1654 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1655 } 1656 EXPORT_SYMBOL(vm_insert_mixed); 1657 1658 /* 1659 * maps a range of physical memory into the requested pages. the old 1660 * mappings are removed. any references to nonexistent pages results 1661 * in null mappings (currently treated as "copy-on-access") 1662 */ 1663 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1664 unsigned long addr, unsigned long end, 1665 unsigned long pfn, pgprot_t prot) 1666 { 1667 pte_t *pte; 1668 spinlock_t *ptl; 1669 1670 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1671 if (!pte) 1672 return -ENOMEM; 1673 arch_enter_lazy_mmu_mode(); 1674 do { 1675 BUG_ON(!pte_none(*pte)); 1676 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1677 pfn++; 1678 } while (pte++, addr += PAGE_SIZE, addr != end); 1679 arch_leave_lazy_mmu_mode(); 1680 pte_unmap_unlock(pte - 1, ptl); 1681 return 0; 1682 } 1683 1684 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1685 unsigned long addr, unsigned long end, 1686 unsigned long pfn, pgprot_t prot) 1687 { 1688 pmd_t *pmd; 1689 unsigned long next; 1690 1691 pfn -= addr >> PAGE_SHIFT; 1692 pmd = pmd_alloc(mm, pud, addr); 1693 if (!pmd) 1694 return -ENOMEM; 1695 do { 1696 next = pmd_addr_end(addr, end); 1697 if (remap_pte_range(mm, pmd, addr, next, 1698 pfn + (addr >> PAGE_SHIFT), prot)) 1699 return -ENOMEM; 1700 } while (pmd++, addr = next, addr != end); 1701 return 0; 1702 } 1703 1704 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1705 unsigned long addr, unsigned long end, 1706 unsigned long pfn, pgprot_t prot) 1707 { 1708 pud_t *pud; 1709 unsigned long next; 1710 1711 pfn -= addr >> PAGE_SHIFT; 1712 pud = pud_alloc(mm, pgd, addr); 1713 if (!pud) 1714 return -ENOMEM; 1715 do { 1716 next = pud_addr_end(addr, end); 1717 if (remap_pmd_range(mm, pud, addr, next, 1718 pfn + (addr >> PAGE_SHIFT), prot)) 1719 return -ENOMEM; 1720 } while (pud++, addr = next, addr != end); 1721 return 0; 1722 } 1723 1724 /** 1725 * remap_pfn_range - remap kernel memory to userspace 1726 * @vma: user vma to map to 1727 * @addr: target user address to start at 1728 * @pfn: physical address of kernel memory 1729 * @size: size of map area 1730 * @prot: page protection flags for this mapping 1731 * 1732 * Note: this is only safe if the mm semaphore is held when called. 1733 */ 1734 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1735 unsigned long pfn, unsigned long size, pgprot_t prot) 1736 { 1737 pgd_t *pgd; 1738 unsigned long next; 1739 unsigned long end = addr + PAGE_ALIGN(size); 1740 struct mm_struct *mm = vma->vm_mm; 1741 int err; 1742 1743 /* 1744 * Physically remapped pages are special. Tell the 1745 * rest of the world about it: 1746 * VM_IO tells people not to look at these pages 1747 * (accesses can have side effects). 1748 * VM_RESERVED is specified all over the place, because 1749 * in 2.4 it kept swapout's vma scan off this vma; but 1750 * in 2.6 the LRU scan won't even find its pages, so this 1751 * flag means no more than count its pages in reserved_vm, 1752 * and omit it from core dump, even when VM_IO turned off. 1753 * VM_PFNMAP tells the core MM that the base pages are just 1754 * raw PFN mappings, and do not have a "struct page" associated 1755 * with them. 1756 * 1757 * There's a horrible special case to handle copy-on-write 1758 * behaviour that some programs depend on. We mark the "original" 1759 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1760 */ 1761 if (addr == vma->vm_start && end == vma->vm_end) { 1762 vma->vm_pgoff = pfn; 1763 vma->vm_flags |= VM_PFN_AT_MMAP; 1764 } else if (is_cow_mapping(vma->vm_flags)) 1765 return -EINVAL; 1766 1767 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1768 1769 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 1770 if (err) { 1771 /* 1772 * To indicate that track_pfn related cleanup is not 1773 * needed from higher level routine calling unmap_vmas 1774 */ 1775 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 1776 vma->vm_flags &= ~VM_PFN_AT_MMAP; 1777 return -EINVAL; 1778 } 1779 1780 BUG_ON(addr >= end); 1781 pfn -= addr >> PAGE_SHIFT; 1782 pgd = pgd_offset(mm, addr); 1783 flush_cache_range(vma, addr, end); 1784 do { 1785 next = pgd_addr_end(addr, end); 1786 err = remap_pud_range(mm, pgd, addr, next, 1787 pfn + (addr >> PAGE_SHIFT), prot); 1788 if (err) 1789 break; 1790 } while (pgd++, addr = next, addr != end); 1791 1792 if (err) 1793 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 1794 1795 return err; 1796 } 1797 EXPORT_SYMBOL(remap_pfn_range); 1798 1799 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1800 unsigned long addr, unsigned long end, 1801 pte_fn_t fn, void *data) 1802 { 1803 pte_t *pte; 1804 int err; 1805 pgtable_t token; 1806 spinlock_t *uninitialized_var(ptl); 1807 1808 pte = (mm == &init_mm) ? 1809 pte_alloc_kernel(pmd, addr) : 1810 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1811 if (!pte) 1812 return -ENOMEM; 1813 1814 BUG_ON(pmd_huge(*pmd)); 1815 1816 arch_enter_lazy_mmu_mode(); 1817 1818 token = pmd_pgtable(*pmd); 1819 1820 do { 1821 err = fn(pte, token, addr, data); 1822 if (err) 1823 break; 1824 } while (pte++, addr += PAGE_SIZE, addr != end); 1825 1826 arch_leave_lazy_mmu_mode(); 1827 1828 if (mm != &init_mm) 1829 pte_unmap_unlock(pte-1, ptl); 1830 return err; 1831 } 1832 1833 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1834 unsigned long addr, unsigned long end, 1835 pte_fn_t fn, void *data) 1836 { 1837 pmd_t *pmd; 1838 unsigned long next; 1839 int err; 1840 1841 BUG_ON(pud_huge(*pud)); 1842 1843 pmd = pmd_alloc(mm, pud, addr); 1844 if (!pmd) 1845 return -ENOMEM; 1846 do { 1847 next = pmd_addr_end(addr, end); 1848 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1849 if (err) 1850 break; 1851 } while (pmd++, addr = next, addr != end); 1852 return err; 1853 } 1854 1855 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1856 unsigned long addr, unsigned long end, 1857 pte_fn_t fn, void *data) 1858 { 1859 pud_t *pud; 1860 unsigned long next; 1861 int err; 1862 1863 pud = pud_alloc(mm, pgd, addr); 1864 if (!pud) 1865 return -ENOMEM; 1866 do { 1867 next = pud_addr_end(addr, end); 1868 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1869 if (err) 1870 break; 1871 } while (pud++, addr = next, addr != end); 1872 return err; 1873 } 1874 1875 /* 1876 * Scan a region of virtual memory, filling in page tables as necessary 1877 * and calling a provided function on each leaf page table. 1878 */ 1879 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1880 unsigned long size, pte_fn_t fn, void *data) 1881 { 1882 pgd_t *pgd; 1883 unsigned long next; 1884 unsigned long start = addr, end = addr + size; 1885 int err; 1886 1887 BUG_ON(addr >= end); 1888 mmu_notifier_invalidate_range_start(mm, start, end); 1889 pgd = pgd_offset(mm, addr); 1890 do { 1891 next = pgd_addr_end(addr, end); 1892 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1893 if (err) 1894 break; 1895 } while (pgd++, addr = next, addr != end); 1896 mmu_notifier_invalidate_range_end(mm, start, end); 1897 return err; 1898 } 1899 EXPORT_SYMBOL_GPL(apply_to_page_range); 1900 1901 /* 1902 * handle_pte_fault chooses page fault handler according to an entry 1903 * which was read non-atomically. Before making any commitment, on 1904 * those architectures or configurations (e.g. i386 with PAE) which 1905 * might give a mix of unmatched parts, do_swap_page and do_file_page 1906 * must check under lock before unmapping the pte and proceeding 1907 * (but do_wp_page is only called after already making such a check; 1908 * and do_anonymous_page and do_no_page can safely check later on). 1909 */ 1910 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1911 pte_t *page_table, pte_t orig_pte) 1912 { 1913 int same = 1; 1914 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1915 if (sizeof(pte_t) > sizeof(unsigned long)) { 1916 spinlock_t *ptl = pte_lockptr(mm, pmd); 1917 spin_lock(ptl); 1918 same = pte_same(*page_table, orig_pte); 1919 spin_unlock(ptl); 1920 } 1921 #endif 1922 pte_unmap(page_table); 1923 return same; 1924 } 1925 1926 /* 1927 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1928 * servicing faults for write access. In the normal case, do always want 1929 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1930 * that do not have writing enabled, when used by access_process_vm. 1931 */ 1932 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1933 { 1934 if (likely(vma->vm_flags & VM_WRITE)) 1935 pte = pte_mkwrite(pte); 1936 return pte; 1937 } 1938 1939 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1940 { 1941 /* 1942 * If the source page was a PFN mapping, we don't have 1943 * a "struct page" for it. We do a best-effort copy by 1944 * just copying from the original user address. If that 1945 * fails, we just zero-fill it. Live with it. 1946 */ 1947 if (unlikely(!src)) { 1948 void *kaddr = kmap_atomic(dst, KM_USER0); 1949 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1950 1951 /* 1952 * This really shouldn't fail, because the page is there 1953 * in the page tables. But it might just be unreadable, 1954 * in which case we just give up and fill the result with 1955 * zeroes. 1956 */ 1957 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1958 memset(kaddr, 0, PAGE_SIZE); 1959 kunmap_atomic(kaddr, KM_USER0); 1960 flush_dcache_page(dst); 1961 } else 1962 copy_user_highpage(dst, src, va, vma); 1963 } 1964 1965 /* 1966 * This routine handles present pages, when users try to write 1967 * to a shared page. It is done by copying the page to a new address 1968 * and decrementing the shared-page counter for the old page. 1969 * 1970 * Note that this routine assumes that the protection checks have been 1971 * done by the caller (the low-level page fault routine in most cases). 1972 * Thus we can safely just mark it writable once we've done any necessary 1973 * COW. 1974 * 1975 * We also mark the page dirty at this point even though the page will 1976 * change only once the write actually happens. This avoids a few races, 1977 * and potentially makes it more efficient. 1978 * 1979 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1980 * but allow concurrent faults), with pte both mapped and locked. 1981 * We return with mmap_sem still held, but pte unmapped and unlocked. 1982 */ 1983 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1984 unsigned long address, pte_t *page_table, pmd_t *pmd, 1985 spinlock_t *ptl, pte_t orig_pte) 1986 { 1987 struct page *old_page, *new_page; 1988 pte_t entry; 1989 int reuse = 0, ret = 0; 1990 int page_mkwrite = 0; 1991 struct page *dirty_page = NULL; 1992 1993 old_page = vm_normal_page(vma, address, orig_pte); 1994 if (!old_page) { 1995 /* 1996 * VM_MIXEDMAP !pfn_valid() case 1997 * 1998 * We should not cow pages in a shared writeable mapping. 1999 * Just mark the pages writable as we can't do any dirty 2000 * accounting on raw pfn maps. 2001 */ 2002 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2003 (VM_WRITE|VM_SHARED)) 2004 goto reuse; 2005 goto gotten; 2006 } 2007 2008 /* 2009 * Take out anonymous pages first, anonymous shared vmas are 2010 * not dirty accountable. 2011 */ 2012 if (PageAnon(old_page) && !PageKsm(old_page)) { 2013 if (!trylock_page(old_page)) { 2014 page_cache_get(old_page); 2015 pte_unmap_unlock(page_table, ptl); 2016 lock_page(old_page); 2017 page_table = pte_offset_map_lock(mm, pmd, address, 2018 &ptl); 2019 if (!pte_same(*page_table, orig_pte)) { 2020 unlock_page(old_page); 2021 page_cache_release(old_page); 2022 goto unlock; 2023 } 2024 page_cache_release(old_page); 2025 } 2026 reuse = reuse_swap_page(old_page); 2027 unlock_page(old_page); 2028 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2029 (VM_WRITE|VM_SHARED))) { 2030 /* 2031 * Only catch write-faults on shared writable pages, 2032 * read-only shared pages can get COWed by 2033 * get_user_pages(.write=1, .force=1). 2034 */ 2035 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2036 struct vm_fault vmf; 2037 int tmp; 2038 2039 vmf.virtual_address = (void __user *)(address & 2040 PAGE_MASK); 2041 vmf.pgoff = old_page->index; 2042 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2043 vmf.page = old_page; 2044 2045 /* 2046 * Notify the address space that the page is about to 2047 * become writable so that it can prohibit this or wait 2048 * for the page to get into an appropriate state. 2049 * 2050 * We do this without the lock held, so that it can 2051 * sleep if it needs to. 2052 */ 2053 page_cache_get(old_page); 2054 pte_unmap_unlock(page_table, ptl); 2055 2056 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2057 if (unlikely(tmp & 2058 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2059 ret = tmp; 2060 goto unwritable_page; 2061 } 2062 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2063 lock_page(old_page); 2064 if (!old_page->mapping) { 2065 ret = 0; /* retry the fault */ 2066 unlock_page(old_page); 2067 goto unwritable_page; 2068 } 2069 } else 2070 VM_BUG_ON(!PageLocked(old_page)); 2071 2072 /* 2073 * Since we dropped the lock we need to revalidate 2074 * the PTE as someone else may have changed it. If 2075 * they did, we just return, as we can count on the 2076 * MMU to tell us if they didn't also make it writable. 2077 */ 2078 page_table = pte_offset_map_lock(mm, pmd, address, 2079 &ptl); 2080 if (!pte_same(*page_table, orig_pte)) { 2081 unlock_page(old_page); 2082 page_cache_release(old_page); 2083 goto unlock; 2084 } 2085 2086 page_mkwrite = 1; 2087 } 2088 dirty_page = old_page; 2089 get_page(dirty_page); 2090 reuse = 1; 2091 } 2092 2093 if (reuse) { 2094 reuse: 2095 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2096 entry = pte_mkyoung(orig_pte); 2097 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2098 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2099 update_mmu_cache(vma, address, entry); 2100 ret |= VM_FAULT_WRITE; 2101 goto unlock; 2102 } 2103 2104 /* 2105 * Ok, we need to copy. Oh, well.. 2106 */ 2107 page_cache_get(old_page); 2108 gotten: 2109 pte_unmap_unlock(page_table, ptl); 2110 2111 if (unlikely(anon_vma_prepare(vma))) 2112 goto oom; 2113 2114 if (is_zero_pfn(pte_pfn(orig_pte))) { 2115 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2116 if (!new_page) 2117 goto oom; 2118 } else { 2119 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2120 if (!new_page) 2121 goto oom; 2122 cow_user_page(new_page, old_page, address, vma); 2123 } 2124 __SetPageUptodate(new_page); 2125 2126 /* 2127 * Don't let another task, with possibly unlocked vma, 2128 * keep the mlocked page. 2129 */ 2130 if ((vma->vm_flags & VM_LOCKED) && old_page) { 2131 lock_page(old_page); /* for LRU manipulation */ 2132 clear_page_mlock(old_page); 2133 unlock_page(old_page); 2134 } 2135 2136 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2137 goto oom_free_new; 2138 2139 /* 2140 * Re-check the pte - we dropped the lock 2141 */ 2142 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2143 if (likely(pte_same(*page_table, orig_pte))) { 2144 if (old_page) { 2145 if (!PageAnon(old_page)) { 2146 dec_mm_counter(mm, file_rss); 2147 inc_mm_counter(mm, anon_rss); 2148 } 2149 } else 2150 inc_mm_counter(mm, anon_rss); 2151 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2152 entry = mk_pte(new_page, vma->vm_page_prot); 2153 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2154 /* 2155 * Clear the pte entry and flush it first, before updating the 2156 * pte with the new entry. This will avoid a race condition 2157 * seen in the presence of one thread doing SMC and another 2158 * thread doing COW. 2159 */ 2160 ptep_clear_flush(vma, address, page_table); 2161 page_add_new_anon_rmap(new_page, vma, address); 2162 /* 2163 * We call the notify macro here because, when using secondary 2164 * mmu page tables (such as kvm shadow page tables), we want the 2165 * new page to be mapped directly into the secondary page table. 2166 */ 2167 set_pte_at_notify(mm, address, page_table, entry); 2168 update_mmu_cache(vma, address, entry); 2169 if (old_page) { 2170 /* 2171 * Only after switching the pte to the new page may 2172 * we remove the mapcount here. Otherwise another 2173 * process may come and find the rmap count decremented 2174 * before the pte is switched to the new page, and 2175 * "reuse" the old page writing into it while our pte 2176 * here still points into it and can be read by other 2177 * threads. 2178 * 2179 * The critical issue is to order this 2180 * page_remove_rmap with the ptp_clear_flush above. 2181 * Those stores are ordered by (if nothing else,) 2182 * the barrier present in the atomic_add_negative 2183 * in page_remove_rmap. 2184 * 2185 * Then the TLB flush in ptep_clear_flush ensures that 2186 * no process can access the old page before the 2187 * decremented mapcount is visible. And the old page 2188 * cannot be reused until after the decremented 2189 * mapcount is visible. So transitively, TLBs to 2190 * old page will be flushed before it can be reused. 2191 */ 2192 page_remove_rmap(old_page); 2193 } 2194 2195 /* Free the old page.. */ 2196 new_page = old_page; 2197 ret |= VM_FAULT_WRITE; 2198 } else 2199 mem_cgroup_uncharge_page(new_page); 2200 2201 if (new_page) 2202 page_cache_release(new_page); 2203 if (old_page) 2204 page_cache_release(old_page); 2205 unlock: 2206 pte_unmap_unlock(page_table, ptl); 2207 if (dirty_page) { 2208 /* 2209 * Yes, Virginia, this is actually required to prevent a race 2210 * with clear_page_dirty_for_io() from clearing the page dirty 2211 * bit after it clear all dirty ptes, but before a racing 2212 * do_wp_page installs a dirty pte. 2213 * 2214 * do_no_page is protected similarly. 2215 */ 2216 if (!page_mkwrite) { 2217 wait_on_page_locked(dirty_page); 2218 set_page_dirty_balance(dirty_page, page_mkwrite); 2219 } 2220 put_page(dirty_page); 2221 if (page_mkwrite) { 2222 struct address_space *mapping = dirty_page->mapping; 2223 2224 set_page_dirty(dirty_page); 2225 unlock_page(dirty_page); 2226 page_cache_release(dirty_page); 2227 if (mapping) { 2228 /* 2229 * Some device drivers do not set page.mapping 2230 * but still dirty their pages 2231 */ 2232 balance_dirty_pages_ratelimited(mapping); 2233 } 2234 } 2235 2236 /* file_update_time outside page_lock */ 2237 if (vma->vm_file) 2238 file_update_time(vma->vm_file); 2239 } 2240 return ret; 2241 oom_free_new: 2242 page_cache_release(new_page); 2243 oom: 2244 if (old_page) { 2245 if (page_mkwrite) { 2246 unlock_page(old_page); 2247 page_cache_release(old_page); 2248 } 2249 page_cache_release(old_page); 2250 } 2251 return VM_FAULT_OOM; 2252 2253 unwritable_page: 2254 page_cache_release(old_page); 2255 return ret; 2256 } 2257 2258 /* 2259 * Helper functions for unmap_mapping_range(). 2260 * 2261 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 2262 * 2263 * We have to restart searching the prio_tree whenever we drop the lock, 2264 * since the iterator is only valid while the lock is held, and anyway 2265 * a later vma might be split and reinserted earlier while lock dropped. 2266 * 2267 * The list of nonlinear vmas could be handled more efficiently, using 2268 * a placeholder, but handle it in the same way until a need is shown. 2269 * It is important to search the prio_tree before nonlinear list: a vma 2270 * may become nonlinear and be shifted from prio_tree to nonlinear list 2271 * while the lock is dropped; but never shifted from list to prio_tree. 2272 * 2273 * In order to make forward progress despite restarting the search, 2274 * vm_truncate_count is used to mark a vma as now dealt with, so we can 2275 * quickly skip it next time around. Since the prio_tree search only 2276 * shows us those vmas affected by unmapping the range in question, we 2277 * can't efficiently keep all vmas in step with mapping->truncate_count: 2278 * so instead reset them all whenever it wraps back to 0 (then go to 1). 2279 * mapping->truncate_count and vma->vm_truncate_count are protected by 2280 * i_mmap_lock. 2281 * 2282 * In order to make forward progress despite repeatedly restarting some 2283 * large vma, note the restart_addr from unmap_vmas when it breaks out: 2284 * and restart from that address when we reach that vma again. It might 2285 * have been split or merged, shrunk or extended, but never shifted: so 2286 * restart_addr remains valid so long as it remains in the vma's range. 2287 * unmap_mapping_range forces truncate_count to leap over page-aligned 2288 * values so we can save vma's restart_addr in its truncate_count field. 2289 */ 2290 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 2291 2292 static void reset_vma_truncate_counts(struct address_space *mapping) 2293 { 2294 struct vm_area_struct *vma; 2295 struct prio_tree_iter iter; 2296 2297 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2298 vma->vm_truncate_count = 0; 2299 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2300 vma->vm_truncate_count = 0; 2301 } 2302 2303 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2304 unsigned long start_addr, unsigned long end_addr, 2305 struct zap_details *details) 2306 { 2307 unsigned long restart_addr; 2308 int need_break; 2309 2310 /* 2311 * files that support invalidating or truncating portions of the 2312 * file from under mmaped areas must have their ->fault function 2313 * return a locked page (and set VM_FAULT_LOCKED in the return). 2314 * This provides synchronisation against concurrent unmapping here. 2315 */ 2316 2317 again: 2318 restart_addr = vma->vm_truncate_count; 2319 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2320 start_addr = restart_addr; 2321 if (start_addr >= end_addr) { 2322 /* Top of vma has been split off since last time */ 2323 vma->vm_truncate_count = details->truncate_count; 2324 return 0; 2325 } 2326 } 2327 2328 restart_addr = zap_page_range(vma, start_addr, 2329 end_addr - start_addr, details); 2330 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2331 2332 if (restart_addr >= end_addr) { 2333 /* We have now completed this vma: mark it so */ 2334 vma->vm_truncate_count = details->truncate_count; 2335 if (!need_break) 2336 return 0; 2337 } else { 2338 /* Note restart_addr in vma's truncate_count field */ 2339 vma->vm_truncate_count = restart_addr; 2340 if (!need_break) 2341 goto again; 2342 } 2343 2344 spin_unlock(details->i_mmap_lock); 2345 cond_resched(); 2346 spin_lock(details->i_mmap_lock); 2347 return -EINTR; 2348 } 2349 2350 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2351 struct zap_details *details) 2352 { 2353 struct vm_area_struct *vma; 2354 struct prio_tree_iter iter; 2355 pgoff_t vba, vea, zba, zea; 2356 2357 restart: 2358 vma_prio_tree_foreach(vma, &iter, root, 2359 details->first_index, details->last_index) { 2360 /* Skip quickly over those we have already dealt with */ 2361 if (vma->vm_truncate_count == details->truncate_count) 2362 continue; 2363 2364 vba = vma->vm_pgoff; 2365 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2366 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2367 zba = details->first_index; 2368 if (zba < vba) 2369 zba = vba; 2370 zea = details->last_index; 2371 if (zea > vea) 2372 zea = vea; 2373 2374 if (unmap_mapping_range_vma(vma, 2375 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2376 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2377 details) < 0) 2378 goto restart; 2379 } 2380 } 2381 2382 static inline void unmap_mapping_range_list(struct list_head *head, 2383 struct zap_details *details) 2384 { 2385 struct vm_area_struct *vma; 2386 2387 /* 2388 * In nonlinear VMAs there is no correspondence between virtual address 2389 * offset and file offset. So we must perform an exhaustive search 2390 * across *all* the pages in each nonlinear VMA, not just the pages 2391 * whose virtual address lies outside the file truncation point. 2392 */ 2393 restart: 2394 list_for_each_entry(vma, head, shared.vm_set.list) { 2395 /* Skip quickly over those we have already dealt with */ 2396 if (vma->vm_truncate_count == details->truncate_count) 2397 continue; 2398 details->nonlinear_vma = vma; 2399 if (unmap_mapping_range_vma(vma, vma->vm_start, 2400 vma->vm_end, details) < 0) 2401 goto restart; 2402 } 2403 } 2404 2405 /** 2406 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2407 * @mapping: the address space containing mmaps to be unmapped. 2408 * @holebegin: byte in first page to unmap, relative to the start of 2409 * the underlying file. This will be rounded down to a PAGE_SIZE 2410 * boundary. Note that this is different from vmtruncate(), which 2411 * must keep the partial page. In contrast, we must get rid of 2412 * partial pages. 2413 * @holelen: size of prospective hole in bytes. This will be rounded 2414 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2415 * end of the file. 2416 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2417 * but 0 when invalidating pagecache, don't throw away private data. 2418 */ 2419 void unmap_mapping_range(struct address_space *mapping, 2420 loff_t const holebegin, loff_t const holelen, int even_cows) 2421 { 2422 struct zap_details details; 2423 pgoff_t hba = holebegin >> PAGE_SHIFT; 2424 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2425 2426 /* Check for overflow. */ 2427 if (sizeof(holelen) > sizeof(hlen)) { 2428 long long holeend = 2429 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2430 if (holeend & ~(long long)ULONG_MAX) 2431 hlen = ULONG_MAX - hba + 1; 2432 } 2433 2434 details.check_mapping = even_cows? NULL: mapping; 2435 details.nonlinear_vma = NULL; 2436 details.first_index = hba; 2437 details.last_index = hba + hlen - 1; 2438 if (details.last_index < details.first_index) 2439 details.last_index = ULONG_MAX; 2440 details.i_mmap_lock = &mapping->i_mmap_lock; 2441 2442 spin_lock(&mapping->i_mmap_lock); 2443 2444 /* Protect against endless unmapping loops */ 2445 mapping->truncate_count++; 2446 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2447 if (mapping->truncate_count == 0) 2448 reset_vma_truncate_counts(mapping); 2449 mapping->truncate_count++; 2450 } 2451 details.truncate_count = mapping->truncate_count; 2452 2453 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2454 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2455 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2456 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2457 spin_unlock(&mapping->i_mmap_lock); 2458 } 2459 EXPORT_SYMBOL(unmap_mapping_range); 2460 2461 /** 2462 * vmtruncate - unmap mappings "freed" by truncate() syscall 2463 * @inode: inode of the file used 2464 * @offset: file offset to start truncating 2465 * 2466 * NOTE! We have to be ready to update the memory sharing 2467 * between the file and the memory map for a potential last 2468 * incomplete page. Ugly, but necessary. 2469 */ 2470 int vmtruncate(struct inode * inode, loff_t offset) 2471 { 2472 if (inode->i_size < offset) { 2473 unsigned long limit; 2474 2475 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2476 if (limit != RLIM_INFINITY && offset > limit) 2477 goto out_sig; 2478 if (offset > inode->i_sb->s_maxbytes) 2479 goto out_big; 2480 i_size_write(inode, offset); 2481 } else { 2482 struct address_space *mapping = inode->i_mapping; 2483 2484 /* 2485 * truncation of in-use swapfiles is disallowed - it would 2486 * cause subsequent swapout to scribble on the now-freed 2487 * blocks. 2488 */ 2489 if (IS_SWAPFILE(inode)) 2490 return -ETXTBSY; 2491 i_size_write(inode, offset); 2492 2493 /* 2494 * unmap_mapping_range is called twice, first simply for 2495 * efficiency so that truncate_inode_pages does fewer 2496 * single-page unmaps. However after this first call, and 2497 * before truncate_inode_pages finishes, it is possible for 2498 * private pages to be COWed, which remain after 2499 * truncate_inode_pages finishes, hence the second 2500 * unmap_mapping_range call must be made for correctness. 2501 */ 2502 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2503 truncate_inode_pages(mapping, offset); 2504 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2505 } 2506 2507 if (inode->i_op->truncate) 2508 inode->i_op->truncate(inode); 2509 return 0; 2510 2511 out_sig: 2512 send_sig(SIGXFSZ, current, 0); 2513 out_big: 2514 return -EFBIG; 2515 } 2516 EXPORT_SYMBOL(vmtruncate); 2517 2518 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2519 { 2520 struct address_space *mapping = inode->i_mapping; 2521 2522 /* 2523 * If the underlying filesystem is not going to provide 2524 * a way to truncate a range of blocks (punch a hole) - 2525 * we should return failure right now. 2526 */ 2527 if (!inode->i_op->truncate_range) 2528 return -ENOSYS; 2529 2530 mutex_lock(&inode->i_mutex); 2531 down_write(&inode->i_alloc_sem); 2532 unmap_mapping_range(mapping, offset, (end - offset), 1); 2533 truncate_inode_pages_range(mapping, offset, end); 2534 unmap_mapping_range(mapping, offset, (end - offset), 1); 2535 inode->i_op->truncate_range(inode, offset, end); 2536 up_write(&inode->i_alloc_sem); 2537 mutex_unlock(&inode->i_mutex); 2538 2539 return 0; 2540 } 2541 2542 /* 2543 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2544 * but allow concurrent faults), and pte mapped but not yet locked. 2545 * We return with mmap_sem still held, but pte unmapped and unlocked. 2546 */ 2547 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2548 unsigned long address, pte_t *page_table, pmd_t *pmd, 2549 unsigned int flags, pte_t orig_pte) 2550 { 2551 spinlock_t *ptl; 2552 struct page *page; 2553 swp_entry_t entry; 2554 pte_t pte; 2555 struct mem_cgroup *ptr = NULL; 2556 int ret = 0; 2557 2558 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2559 goto out; 2560 2561 entry = pte_to_swp_entry(orig_pte); 2562 if (is_migration_entry(entry)) { 2563 migration_entry_wait(mm, pmd, address); 2564 goto out; 2565 } 2566 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2567 page = lookup_swap_cache(entry); 2568 if (!page) { 2569 grab_swap_token(mm); /* Contend for token _before_ read-in */ 2570 page = swapin_readahead(entry, 2571 GFP_HIGHUSER_MOVABLE, vma, address); 2572 if (!page) { 2573 /* 2574 * Back out if somebody else faulted in this pte 2575 * while we released the pte lock. 2576 */ 2577 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2578 if (likely(pte_same(*page_table, orig_pte))) 2579 ret = VM_FAULT_OOM; 2580 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2581 goto unlock; 2582 } 2583 2584 /* Had to read the page from swap area: Major fault */ 2585 ret = VM_FAULT_MAJOR; 2586 count_vm_event(PGMAJFAULT); 2587 } 2588 2589 lock_page(page); 2590 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2591 2592 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2593 ret = VM_FAULT_OOM; 2594 goto out_page; 2595 } 2596 2597 /* 2598 * Back out if somebody else already faulted in this pte. 2599 */ 2600 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2601 if (unlikely(!pte_same(*page_table, orig_pte))) 2602 goto out_nomap; 2603 2604 if (unlikely(!PageUptodate(page))) { 2605 ret = VM_FAULT_SIGBUS; 2606 goto out_nomap; 2607 } 2608 2609 /* 2610 * The page isn't present yet, go ahead with the fault. 2611 * 2612 * Be careful about the sequence of operations here. 2613 * To get its accounting right, reuse_swap_page() must be called 2614 * while the page is counted on swap but not yet in mapcount i.e. 2615 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2616 * must be called after the swap_free(), or it will never succeed. 2617 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2618 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2619 * in page->private. In this case, a record in swap_cgroup is silently 2620 * discarded at swap_free(). 2621 */ 2622 2623 inc_mm_counter(mm, anon_rss); 2624 pte = mk_pte(page, vma->vm_page_prot); 2625 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2626 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2627 flags &= ~FAULT_FLAG_WRITE; 2628 } 2629 flush_icache_page(vma, page); 2630 set_pte_at(mm, address, page_table, pte); 2631 page_add_anon_rmap(page, vma, address); 2632 /* It's better to call commit-charge after rmap is established */ 2633 mem_cgroup_commit_charge_swapin(page, ptr); 2634 2635 swap_free(entry); 2636 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2637 try_to_free_swap(page); 2638 unlock_page(page); 2639 2640 if (flags & FAULT_FLAG_WRITE) { 2641 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2642 if (ret & VM_FAULT_ERROR) 2643 ret &= VM_FAULT_ERROR; 2644 goto out; 2645 } 2646 2647 /* No need to invalidate - it was non-present before */ 2648 update_mmu_cache(vma, address, pte); 2649 unlock: 2650 pte_unmap_unlock(page_table, ptl); 2651 out: 2652 return ret; 2653 out_nomap: 2654 mem_cgroup_cancel_charge_swapin(ptr); 2655 pte_unmap_unlock(page_table, ptl); 2656 out_page: 2657 unlock_page(page); 2658 page_cache_release(page); 2659 return ret; 2660 } 2661 2662 /* 2663 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2664 * but allow concurrent faults), and pte mapped but not yet locked. 2665 * We return with mmap_sem still held, but pte unmapped and unlocked. 2666 */ 2667 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2668 unsigned long address, pte_t *page_table, pmd_t *pmd, 2669 unsigned int flags) 2670 { 2671 struct page *page; 2672 spinlock_t *ptl; 2673 pte_t entry; 2674 2675 if (!(flags & FAULT_FLAG_WRITE)) { 2676 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2677 vma->vm_page_prot)); 2678 ptl = pte_lockptr(mm, pmd); 2679 spin_lock(ptl); 2680 if (!pte_none(*page_table)) 2681 goto unlock; 2682 goto setpte; 2683 } 2684 2685 /* Allocate our own private page. */ 2686 pte_unmap(page_table); 2687 2688 if (unlikely(anon_vma_prepare(vma))) 2689 goto oom; 2690 page = alloc_zeroed_user_highpage_movable(vma, address); 2691 if (!page) 2692 goto oom; 2693 __SetPageUptodate(page); 2694 2695 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 2696 goto oom_free_page; 2697 2698 entry = mk_pte(page, vma->vm_page_prot); 2699 if (vma->vm_flags & VM_WRITE) 2700 entry = pte_mkwrite(pte_mkdirty(entry)); 2701 2702 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2703 if (!pte_none(*page_table)) 2704 goto release; 2705 2706 inc_mm_counter(mm, anon_rss); 2707 page_add_new_anon_rmap(page, vma, address); 2708 setpte: 2709 set_pte_at(mm, address, page_table, entry); 2710 2711 /* No need to invalidate - it was non-present before */ 2712 update_mmu_cache(vma, address, entry); 2713 unlock: 2714 pte_unmap_unlock(page_table, ptl); 2715 return 0; 2716 release: 2717 mem_cgroup_uncharge_page(page); 2718 page_cache_release(page); 2719 goto unlock; 2720 oom_free_page: 2721 page_cache_release(page); 2722 oom: 2723 return VM_FAULT_OOM; 2724 } 2725 2726 /* 2727 * __do_fault() tries to create a new page mapping. It aggressively 2728 * tries to share with existing pages, but makes a separate copy if 2729 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2730 * the next page fault. 2731 * 2732 * As this is called only for pages that do not currently exist, we 2733 * do not need to flush old virtual caches or the TLB. 2734 * 2735 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2736 * but allow concurrent faults), and pte neither mapped nor locked. 2737 * We return with mmap_sem still held, but pte unmapped and unlocked. 2738 */ 2739 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2740 unsigned long address, pmd_t *pmd, 2741 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2742 { 2743 pte_t *page_table; 2744 spinlock_t *ptl; 2745 struct page *page; 2746 pte_t entry; 2747 int anon = 0; 2748 int charged = 0; 2749 struct page *dirty_page = NULL; 2750 struct vm_fault vmf; 2751 int ret; 2752 int page_mkwrite = 0; 2753 2754 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2755 vmf.pgoff = pgoff; 2756 vmf.flags = flags; 2757 vmf.page = NULL; 2758 2759 ret = vma->vm_ops->fault(vma, &vmf); 2760 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2761 return ret; 2762 2763 /* 2764 * For consistency in subsequent calls, make the faulted page always 2765 * locked. 2766 */ 2767 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2768 lock_page(vmf.page); 2769 else 2770 VM_BUG_ON(!PageLocked(vmf.page)); 2771 2772 /* 2773 * Should we do an early C-O-W break? 2774 */ 2775 page = vmf.page; 2776 if (flags & FAULT_FLAG_WRITE) { 2777 if (!(vma->vm_flags & VM_SHARED)) { 2778 anon = 1; 2779 if (unlikely(anon_vma_prepare(vma))) { 2780 ret = VM_FAULT_OOM; 2781 goto out; 2782 } 2783 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2784 vma, address); 2785 if (!page) { 2786 ret = VM_FAULT_OOM; 2787 goto out; 2788 } 2789 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 2790 ret = VM_FAULT_OOM; 2791 page_cache_release(page); 2792 goto out; 2793 } 2794 charged = 1; 2795 /* 2796 * Don't let another task, with possibly unlocked vma, 2797 * keep the mlocked page. 2798 */ 2799 if (vma->vm_flags & VM_LOCKED) 2800 clear_page_mlock(vmf.page); 2801 copy_user_highpage(page, vmf.page, address, vma); 2802 __SetPageUptodate(page); 2803 } else { 2804 /* 2805 * If the page will be shareable, see if the backing 2806 * address space wants to know that the page is about 2807 * to become writable 2808 */ 2809 if (vma->vm_ops->page_mkwrite) { 2810 int tmp; 2811 2812 unlock_page(page); 2813 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2814 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2815 if (unlikely(tmp & 2816 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2817 ret = tmp; 2818 goto unwritable_page; 2819 } 2820 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2821 lock_page(page); 2822 if (!page->mapping) { 2823 ret = 0; /* retry the fault */ 2824 unlock_page(page); 2825 goto unwritable_page; 2826 } 2827 } else 2828 VM_BUG_ON(!PageLocked(page)); 2829 page_mkwrite = 1; 2830 } 2831 } 2832 2833 } 2834 2835 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2836 2837 /* 2838 * This silly early PAGE_DIRTY setting removes a race 2839 * due to the bad i386 page protection. But it's valid 2840 * for other architectures too. 2841 * 2842 * Note that if FAULT_FLAG_WRITE is set, we either now have 2843 * an exclusive copy of the page, or this is a shared mapping, 2844 * so we can make it writable and dirty to avoid having to 2845 * handle that later. 2846 */ 2847 /* Only go through if we didn't race with anybody else... */ 2848 if (likely(pte_same(*page_table, orig_pte))) { 2849 flush_icache_page(vma, page); 2850 entry = mk_pte(page, vma->vm_page_prot); 2851 if (flags & FAULT_FLAG_WRITE) 2852 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2853 if (anon) { 2854 inc_mm_counter(mm, anon_rss); 2855 page_add_new_anon_rmap(page, vma, address); 2856 } else { 2857 inc_mm_counter(mm, file_rss); 2858 page_add_file_rmap(page); 2859 if (flags & FAULT_FLAG_WRITE) { 2860 dirty_page = page; 2861 get_page(dirty_page); 2862 } 2863 } 2864 set_pte_at(mm, address, page_table, entry); 2865 2866 /* no need to invalidate: a not-present page won't be cached */ 2867 update_mmu_cache(vma, address, entry); 2868 } else { 2869 if (charged) 2870 mem_cgroup_uncharge_page(page); 2871 if (anon) 2872 page_cache_release(page); 2873 else 2874 anon = 1; /* no anon but release faulted_page */ 2875 } 2876 2877 pte_unmap_unlock(page_table, ptl); 2878 2879 out: 2880 if (dirty_page) { 2881 struct address_space *mapping = page->mapping; 2882 2883 if (set_page_dirty(dirty_page)) 2884 page_mkwrite = 1; 2885 unlock_page(dirty_page); 2886 put_page(dirty_page); 2887 if (page_mkwrite && mapping) { 2888 /* 2889 * Some device drivers do not set page.mapping but still 2890 * dirty their pages 2891 */ 2892 balance_dirty_pages_ratelimited(mapping); 2893 } 2894 2895 /* file_update_time outside page_lock */ 2896 if (vma->vm_file) 2897 file_update_time(vma->vm_file); 2898 } else { 2899 unlock_page(vmf.page); 2900 if (anon) 2901 page_cache_release(vmf.page); 2902 } 2903 2904 return ret; 2905 2906 unwritable_page: 2907 page_cache_release(page); 2908 return ret; 2909 } 2910 2911 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2912 unsigned long address, pte_t *page_table, pmd_t *pmd, 2913 unsigned int flags, pte_t orig_pte) 2914 { 2915 pgoff_t pgoff = (((address & PAGE_MASK) 2916 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2917 2918 pte_unmap(page_table); 2919 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2920 } 2921 2922 /* 2923 * Fault of a previously existing named mapping. Repopulate the pte 2924 * from the encoded file_pte if possible. This enables swappable 2925 * nonlinear vmas. 2926 * 2927 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2928 * but allow concurrent faults), and pte mapped but not yet locked. 2929 * We return with mmap_sem still held, but pte unmapped and unlocked. 2930 */ 2931 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2932 unsigned long address, pte_t *page_table, pmd_t *pmd, 2933 unsigned int flags, pte_t orig_pte) 2934 { 2935 pgoff_t pgoff; 2936 2937 flags |= FAULT_FLAG_NONLINEAR; 2938 2939 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2940 return 0; 2941 2942 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 2943 /* 2944 * Page table corrupted: show pte and kill process. 2945 */ 2946 print_bad_pte(vma, address, orig_pte, NULL); 2947 return VM_FAULT_OOM; 2948 } 2949 2950 pgoff = pte_to_pgoff(orig_pte); 2951 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2952 } 2953 2954 /* 2955 * These routines also need to handle stuff like marking pages dirty 2956 * and/or accessed for architectures that don't do it in hardware (most 2957 * RISC architectures). The early dirtying is also good on the i386. 2958 * 2959 * There is also a hook called "update_mmu_cache()" that architectures 2960 * with external mmu caches can use to update those (ie the Sparc or 2961 * PowerPC hashed page tables that act as extended TLBs). 2962 * 2963 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2964 * but allow concurrent faults), and pte mapped but not yet locked. 2965 * We return with mmap_sem still held, but pte unmapped and unlocked. 2966 */ 2967 static inline int handle_pte_fault(struct mm_struct *mm, 2968 struct vm_area_struct *vma, unsigned long address, 2969 pte_t *pte, pmd_t *pmd, unsigned int flags) 2970 { 2971 pte_t entry; 2972 spinlock_t *ptl; 2973 2974 entry = *pte; 2975 if (!pte_present(entry)) { 2976 if (pte_none(entry)) { 2977 if (vma->vm_ops) { 2978 if (likely(vma->vm_ops->fault)) 2979 return do_linear_fault(mm, vma, address, 2980 pte, pmd, flags, entry); 2981 } 2982 return do_anonymous_page(mm, vma, address, 2983 pte, pmd, flags); 2984 } 2985 if (pte_file(entry)) 2986 return do_nonlinear_fault(mm, vma, address, 2987 pte, pmd, flags, entry); 2988 return do_swap_page(mm, vma, address, 2989 pte, pmd, flags, entry); 2990 } 2991 2992 ptl = pte_lockptr(mm, pmd); 2993 spin_lock(ptl); 2994 if (unlikely(!pte_same(*pte, entry))) 2995 goto unlock; 2996 if (flags & FAULT_FLAG_WRITE) { 2997 if (!pte_write(entry)) 2998 return do_wp_page(mm, vma, address, 2999 pte, pmd, ptl, entry); 3000 entry = pte_mkdirty(entry); 3001 } 3002 entry = pte_mkyoung(entry); 3003 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3004 update_mmu_cache(vma, address, entry); 3005 } else { 3006 /* 3007 * This is needed only for protection faults but the arch code 3008 * is not yet telling us if this is a protection fault or not. 3009 * This still avoids useless tlb flushes for .text page faults 3010 * with threads. 3011 */ 3012 if (flags & FAULT_FLAG_WRITE) 3013 flush_tlb_page(vma, address); 3014 } 3015 unlock: 3016 pte_unmap_unlock(pte, ptl); 3017 return 0; 3018 } 3019 3020 /* 3021 * By the time we get here, we already hold the mm semaphore 3022 */ 3023 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3024 unsigned long address, unsigned int flags) 3025 { 3026 pgd_t *pgd; 3027 pud_t *pud; 3028 pmd_t *pmd; 3029 pte_t *pte; 3030 3031 __set_current_state(TASK_RUNNING); 3032 3033 count_vm_event(PGFAULT); 3034 3035 if (unlikely(is_vm_hugetlb_page(vma))) 3036 return hugetlb_fault(mm, vma, address, flags); 3037 3038 pgd = pgd_offset(mm, address); 3039 pud = pud_alloc(mm, pgd, address); 3040 if (!pud) 3041 return VM_FAULT_OOM; 3042 pmd = pmd_alloc(mm, pud, address); 3043 if (!pmd) 3044 return VM_FAULT_OOM; 3045 pte = pte_alloc_map(mm, pmd, address); 3046 if (!pte) 3047 return VM_FAULT_OOM; 3048 3049 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3050 } 3051 3052 #ifndef __PAGETABLE_PUD_FOLDED 3053 /* 3054 * Allocate page upper directory. 3055 * We've already handled the fast-path in-line. 3056 */ 3057 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3058 { 3059 pud_t *new = pud_alloc_one(mm, address); 3060 if (!new) 3061 return -ENOMEM; 3062 3063 smp_wmb(); /* See comment in __pte_alloc */ 3064 3065 spin_lock(&mm->page_table_lock); 3066 if (pgd_present(*pgd)) /* Another has populated it */ 3067 pud_free(mm, new); 3068 else 3069 pgd_populate(mm, pgd, new); 3070 spin_unlock(&mm->page_table_lock); 3071 return 0; 3072 } 3073 #endif /* __PAGETABLE_PUD_FOLDED */ 3074 3075 #ifndef __PAGETABLE_PMD_FOLDED 3076 /* 3077 * Allocate page middle directory. 3078 * We've already handled the fast-path in-line. 3079 */ 3080 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3081 { 3082 pmd_t *new = pmd_alloc_one(mm, address); 3083 if (!new) 3084 return -ENOMEM; 3085 3086 smp_wmb(); /* See comment in __pte_alloc */ 3087 3088 spin_lock(&mm->page_table_lock); 3089 #ifndef __ARCH_HAS_4LEVEL_HACK 3090 if (pud_present(*pud)) /* Another has populated it */ 3091 pmd_free(mm, new); 3092 else 3093 pud_populate(mm, pud, new); 3094 #else 3095 if (pgd_present(*pud)) /* Another has populated it */ 3096 pmd_free(mm, new); 3097 else 3098 pgd_populate(mm, pud, new); 3099 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3100 spin_unlock(&mm->page_table_lock); 3101 return 0; 3102 } 3103 #endif /* __PAGETABLE_PMD_FOLDED */ 3104 3105 int make_pages_present(unsigned long addr, unsigned long end) 3106 { 3107 int ret, len, write; 3108 struct vm_area_struct * vma; 3109 3110 vma = find_vma(current->mm, addr); 3111 if (!vma) 3112 return -ENOMEM; 3113 write = (vma->vm_flags & VM_WRITE) != 0; 3114 BUG_ON(addr >= end); 3115 BUG_ON(end > vma->vm_end); 3116 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3117 ret = get_user_pages(current, current->mm, addr, 3118 len, write, 0, NULL, NULL); 3119 if (ret < 0) 3120 return ret; 3121 return ret == len ? 0 : -EFAULT; 3122 } 3123 3124 #if !defined(__HAVE_ARCH_GATE_AREA) 3125 3126 #if defined(AT_SYSINFO_EHDR) 3127 static struct vm_area_struct gate_vma; 3128 3129 static int __init gate_vma_init(void) 3130 { 3131 gate_vma.vm_mm = NULL; 3132 gate_vma.vm_start = FIXADDR_USER_START; 3133 gate_vma.vm_end = FIXADDR_USER_END; 3134 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3135 gate_vma.vm_page_prot = __P101; 3136 /* 3137 * Make sure the vDSO gets into every core dump. 3138 * Dumping its contents makes post-mortem fully interpretable later 3139 * without matching up the same kernel and hardware config to see 3140 * what PC values meant. 3141 */ 3142 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3143 return 0; 3144 } 3145 __initcall(gate_vma_init); 3146 #endif 3147 3148 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 3149 { 3150 #ifdef AT_SYSINFO_EHDR 3151 return &gate_vma; 3152 #else 3153 return NULL; 3154 #endif 3155 } 3156 3157 int in_gate_area_no_task(unsigned long addr) 3158 { 3159 #ifdef AT_SYSINFO_EHDR 3160 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3161 return 1; 3162 #endif 3163 return 0; 3164 } 3165 3166 #endif /* __HAVE_ARCH_GATE_AREA */ 3167 3168 static int follow_pte(struct mm_struct *mm, unsigned long address, 3169 pte_t **ptepp, spinlock_t **ptlp) 3170 { 3171 pgd_t *pgd; 3172 pud_t *pud; 3173 pmd_t *pmd; 3174 pte_t *ptep; 3175 3176 pgd = pgd_offset(mm, address); 3177 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3178 goto out; 3179 3180 pud = pud_offset(pgd, address); 3181 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3182 goto out; 3183 3184 pmd = pmd_offset(pud, address); 3185 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3186 goto out; 3187 3188 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3189 if (pmd_huge(*pmd)) 3190 goto out; 3191 3192 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3193 if (!ptep) 3194 goto out; 3195 if (!pte_present(*ptep)) 3196 goto unlock; 3197 *ptepp = ptep; 3198 return 0; 3199 unlock: 3200 pte_unmap_unlock(ptep, *ptlp); 3201 out: 3202 return -EINVAL; 3203 } 3204 3205 /** 3206 * follow_pfn - look up PFN at a user virtual address 3207 * @vma: memory mapping 3208 * @address: user virtual address 3209 * @pfn: location to store found PFN 3210 * 3211 * Only IO mappings and raw PFN mappings are allowed. 3212 * 3213 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3214 */ 3215 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3216 unsigned long *pfn) 3217 { 3218 int ret = -EINVAL; 3219 spinlock_t *ptl; 3220 pte_t *ptep; 3221 3222 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3223 return ret; 3224 3225 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3226 if (ret) 3227 return ret; 3228 *pfn = pte_pfn(*ptep); 3229 pte_unmap_unlock(ptep, ptl); 3230 return 0; 3231 } 3232 EXPORT_SYMBOL(follow_pfn); 3233 3234 #ifdef CONFIG_HAVE_IOREMAP_PROT 3235 int follow_phys(struct vm_area_struct *vma, 3236 unsigned long address, unsigned int flags, 3237 unsigned long *prot, resource_size_t *phys) 3238 { 3239 int ret = -EINVAL; 3240 pte_t *ptep, pte; 3241 spinlock_t *ptl; 3242 3243 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3244 goto out; 3245 3246 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3247 goto out; 3248 pte = *ptep; 3249 3250 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3251 goto unlock; 3252 3253 *prot = pgprot_val(pte_pgprot(pte)); 3254 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3255 3256 ret = 0; 3257 unlock: 3258 pte_unmap_unlock(ptep, ptl); 3259 out: 3260 return ret; 3261 } 3262 3263 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3264 void *buf, int len, int write) 3265 { 3266 resource_size_t phys_addr; 3267 unsigned long prot = 0; 3268 void __iomem *maddr; 3269 int offset = addr & (PAGE_SIZE-1); 3270 3271 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3272 return -EINVAL; 3273 3274 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3275 if (write) 3276 memcpy_toio(maddr + offset, buf, len); 3277 else 3278 memcpy_fromio(buf, maddr + offset, len); 3279 iounmap(maddr); 3280 3281 return len; 3282 } 3283 #endif 3284 3285 /* 3286 * Access another process' address space. 3287 * Source/target buffer must be kernel space, 3288 * Do not walk the page table directly, use get_user_pages 3289 */ 3290 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 3291 { 3292 struct mm_struct *mm; 3293 struct vm_area_struct *vma; 3294 void *old_buf = buf; 3295 3296 mm = get_task_mm(tsk); 3297 if (!mm) 3298 return 0; 3299 3300 down_read(&mm->mmap_sem); 3301 /* ignore errors, just check how much was successfully transferred */ 3302 while (len) { 3303 int bytes, ret, offset; 3304 void *maddr; 3305 struct page *page = NULL; 3306 3307 ret = get_user_pages(tsk, mm, addr, 1, 3308 write, 1, &page, &vma); 3309 if (ret <= 0) { 3310 /* 3311 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3312 * we can access using slightly different code. 3313 */ 3314 #ifdef CONFIG_HAVE_IOREMAP_PROT 3315 vma = find_vma(mm, addr); 3316 if (!vma) 3317 break; 3318 if (vma->vm_ops && vma->vm_ops->access) 3319 ret = vma->vm_ops->access(vma, addr, buf, 3320 len, write); 3321 if (ret <= 0) 3322 #endif 3323 break; 3324 bytes = ret; 3325 } else { 3326 bytes = len; 3327 offset = addr & (PAGE_SIZE-1); 3328 if (bytes > PAGE_SIZE-offset) 3329 bytes = PAGE_SIZE-offset; 3330 3331 maddr = kmap(page); 3332 if (write) { 3333 copy_to_user_page(vma, page, addr, 3334 maddr + offset, buf, bytes); 3335 set_page_dirty_lock(page); 3336 } else { 3337 copy_from_user_page(vma, page, addr, 3338 buf, maddr + offset, bytes); 3339 } 3340 kunmap(page); 3341 page_cache_release(page); 3342 } 3343 len -= bytes; 3344 buf += bytes; 3345 addr += bytes; 3346 } 3347 up_read(&mm->mmap_sem); 3348 mmput(mm); 3349 3350 return buf - old_buf; 3351 } 3352 3353 /* 3354 * Print the name of a VMA. 3355 */ 3356 void print_vma_addr(char *prefix, unsigned long ip) 3357 { 3358 struct mm_struct *mm = current->mm; 3359 struct vm_area_struct *vma; 3360 3361 /* 3362 * Do not print if we are in atomic 3363 * contexts (in exception stacks, etc.): 3364 */ 3365 if (preempt_count()) 3366 return; 3367 3368 down_read(&mm->mmap_sem); 3369 vma = find_vma(mm, ip); 3370 if (vma && vma->vm_file) { 3371 struct file *f = vma->vm_file; 3372 char *buf = (char *)__get_free_page(GFP_KERNEL); 3373 if (buf) { 3374 char *p, *s; 3375 3376 p = d_path(&f->f_path, buf, PAGE_SIZE); 3377 if (IS_ERR(p)) 3378 p = "?"; 3379 s = strrchr(p, '/'); 3380 if (s) 3381 p = s+1; 3382 printk("%s%s[%lx+%lx]", prefix, p, 3383 vma->vm_start, 3384 vma->vm_end - vma->vm_start); 3385 free_page((unsigned long)buf); 3386 } 3387 } 3388 up_read(¤t->mm->mmap_sem); 3389 } 3390 3391 #ifdef CONFIG_PROVE_LOCKING 3392 void might_fault(void) 3393 { 3394 /* 3395 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3396 * holding the mmap_sem, this is safe because kernel memory doesn't 3397 * get paged out, therefore we'll never actually fault, and the 3398 * below annotations will generate false positives. 3399 */ 3400 if (segment_eq(get_fs(), KERNEL_DS)) 3401 return; 3402 3403 might_sleep(); 3404 /* 3405 * it would be nicer only to annotate paths which are not under 3406 * pagefault_disable, however that requires a larger audit and 3407 * providing helpers like get_user_atomic. 3408 */ 3409 if (!in_atomic() && current->mm) 3410 might_lock_read(¤t->mm->mmap_sem); 3411 } 3412 EXPORT_SYMBOL(might_fault); 3413 #endif 3414