1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 61 #include <asm/io.h> 62 #include <asm/pgalloc.h> 63 #include <asm/uaccess.h> 64 #include <asm/tlb.h> 65 #include <asm/tlbflush.h> 66 #include <asm/pgtable.h> 67 68 #include "internal.h" 69 70 #ifndef CONFIG_NEED_MULTIPLE_NODES 71 /* use the per-pgdat data instead for discontigmem - mbligh */ 72 unsigned long max_mapnr; 73 struct page *mem_map; 74 75 EXPORT_SYMBOL(max_mapnr); 76 EXPORT_SYMBOL(mem_map); 77 #endif 78 79 unsigned long num_physpages; 80 /* 81 * A number of key systems in x86 including ioremap() rely on the assumption 82 * that high_memory defines the upper bound on direct map memory, then end 83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 85 * and ZONE_HIGHMEM. 86 */ 87 void * high_memory; 88 89 EXPORT_SYMBOL(num_physpages); 90 EXPORT_SYMBOL(high_memory); 91 92 /* 93 * Randomize the address space (stacks, mmaps, brk, etc.). 94 * 95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 96 * as ancient (libc5 based) binaries can segfault. ) 97 */ 98 int randomize_va_space __read_mostly = 99 #ifdef CONFIG_COMPAT_BRK 100 1; 101 #else 102 2; 103 #endif 104 105 static int __init disable_randmaps(char *s) 106 { 107 randomize_va_space = 0; 108 return 1; 109 } 110 __setup("norandmaps", disable_randmaps); 111 112 unsigned long zero_pfn __read_mostly; 113 unsigned long highest_memmap_pfn __read_mostly; 114 115 /* 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 117 */ 118 static int __init init_zero_pfn(void) 119 { 120 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 121 return 0; 122 } 123 core_initcall(init_zero_pfn); 124 125 126 #if defined(SPLIT_RSS_COUNTING) 127 128 void sync_mm_rss(struct mm_struct *mm) 129 { 130 int i; 131 132 for (i = 0; i < NR_MM_COUNTERS; i++) { 133 if (current->rss_stat.count[i]) { 134 add_mm_counter(mm, i, current->rss_stat.count[i]); 135 current->rss_stat.count[i] = 0; 136 } 137 } 138 current->rss_stat.events = 0; 139 } 140 141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 142 { 143 struct task_struct *task = current; 144 145 if (likely(task->mm == mm)) 146 task->rss_stat.count[member] += val; 147 else 148 add_mm_counter(mm, member, val); 149 } 150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 152 153 /* sync counter once per 64 page faults */ 154 #define TASK_RSS_EVENTS_THRESH (64) 155 static void check_sync_rss_stat(struct task_struct *task) 156 { 157 if (unlikely(task != current)) 158 return; 159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 160 sync_mm_rss(task->mm); 161 } 162 #else /* SPLIT_RSS_COUNTING */ 163 164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 166 167 static void check_sync_rss_stat(struct task_struct *task) 168 { 169 } 170 171 #endif /* SPLIT_RSS_COUNTING */ 172 173 #ifdef HAVE_GENERIC_MMU_GATHER 174 175 static int tlb_next_batch(struct mmu_gather *tlb) 176 { 177 struct mmu_gather_batch *batch; 178 179 batch = tlb->active; 180 if (batch->next) { 181 tlb->active = batch->next; 182 return 1; 183 } 184 185 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 186 if (!batch) 187 return 0; 188 189 batch->next = NULL; 190 batch->nr = 0; 191 batch->max = MAX_GATHER_BATCH; 192 193 tlb->active->next = batch; 194 tlb->active = batch; 195 196 return 1; 197 } 198 199 /* tlb_gather_mmu 200 * Called to initialize an (on-stack) mmu_gather structure for page-table 201 * tear-down from @mm. The @fullmm argument is used when @mm is without 202 * users and we're going to destroy the full address space (exit/execve). 203 */ 204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm) 205 { 206 tlb->mm = mm; 207 208 tlb->fullmm = fullmm; 209 tlb->need_flush = 0; 210 tlb->fast_mode = (num_possible_cpus() == 1); 211 tlb->local.next = NULL; 212 tlb->local.nr = 0; 213 tlb->local.max = ARRAY_SIZE(tlb->__pages); 214 tlb->active = &tlb->local; 215 216 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 217 tlb->batch = NULL; 218 #endif 219 } 220 221 void tlb_flush_mmu(struct mmu_gather *tlb) 222 { 223 struct mmu_gather_batch *batch; 224 225 if (!tlb->need_flush) 226 return; 227 tlb->need_flush = 0; 228 tlb_flush(tlb); 229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 230 tlb_table_flush(tlb); 231 #endif 232 233 if (tlb_fast_mode(tlb)) 234 return; 235 236 for (batch = &tlb->local; batch; batch = batch->next) { 237 free_pages_and_swap_cache(batch->pages, batch->nr); 238 batch->nr = 0; 239 } 240 tlb->active = &tlb->local; 241 } 242 243 /* tlb_finish_mmu 244 * Called at the end of the shootdown operation to free up any resources 245 * that were required. 246 */ 247 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 248 { 249 struct mmu_gather_batch *batch, *next; 250 251 tlb_flush_mmu(tlb); 252 253 /* keep the page table cache within bounds */ 254 check_pgt_cache(); 255 256 for (batch = tlb->local.next; batch; batch = next) { 257 next = batch->next; 258 free_pages((unsigned long)batch, 0); 259 } 260 tlb->local.next = NULL; 261 } 262 263 /* __tlb_remove_page 264 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 265 * handling the additional races in SMP caused by other CPUs caching valid 266 * mappings in their TLBs. Returns the number of free page slots left. 267 * When out of page slots we must call tlb_flush_mmu(). 268 */ 269 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 270 { 271 struct mmu_gather_batch *batch; 272 273 VM_BUG_ON(!tlb->need_flush); 274 275 if (tlb_fast_mode(tlb)) { 276 free_page_and_swap_cache(page); 277 return 1; /* avoid calling tlb_flush_mmu() */ 278 } 279 280 batch = tlb->active; 281 batch->pages[batch->nr++] = page; 282 if (batch->nr == batch->max) { 283 if (!tlb_next_batch(tlb)) 284 return 0; 285 batch = tlb->active; 286 } 287 VM_BUG_ON(batch->nr > batch->max); 288 289 return batch->max - batch->nr; 290 } 291 292 #endif /* HAVE_GENERIC_MMU_GATHER */ 293 294 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 295 296 /* 297 * See the comment near struct mmu_table_batch. 298 */ 299 300 static void tlb_remove_table_smp_sync(void *arg) 301 { 302 /* Simply deliver the interrupt */ 303 } 304 305 static void tlb_remove_table_one(void *table) 306 { 307 /* 308 * This isn't an RCU grace period and hence the page-tables cannot be 309 * assumed to be actually RCU-freed. 310 * 311 * It is however sufficient for software page-table walkers that rely on 312 * IRQ disabling. See the comment near struct mmu_table_batch. 313 */ 314 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 315 __tlb_remove_table(table); 316 } 317 318 static void tlb_remove_table_rcu(struct rcu_head *head) 319 { 320 struct mmu_table_batch *batch; 321 int i; 322 323 batch = container_of(head, struct mmu_table_batch, rcu); 324 325 for (i = 0; i < batch->nr; i++) 326 __tlb_remove_table(batch->tables[i]); 327 328 free_page((unsigned long)batch); 329 } 330 331 void tlb_table_flush(struct mmu_gather *tlb) 332 { 333 struct mmu_table_batch **batch = &tlb->batch; 334 335 if (*batch) { 336 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 337 *batch = NULL; 338 } 339 } 340 341 void tlb_remove_table(struct mmu_gather *tlb, void *table) 342 { 343 struct mmu_table_batch **batch = &tlb->batch; 344 345 tlb->need_flush = 1; 346 347 /* 348 * When there's less then two users of this mm there cannot be a 349 * concurrent page-table walk. 350 */ 351 if (atomic_read(&tlb->mm->mm_users) < 2) { 352 __tlb_remove_table(table); 353 return; 354 } 355 356 if (*batch == NULL) { 357 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 358 if (*batch == NULL) { 359 tlb_remove_table_one(table); 360 return; 361 } 362 (*batch)->nr = 0; 363 } 364 (*batch)->tables[(*batch)->nr++] = table; 365 if ((*batch)->nr == MAX_TABLE_BATCH) 366 tlb_table_flush(tlb); 367 } 368 369 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 370 371 /* 372 * If a p?d_bad entry is found while walking page tables, report 373 * the error, before resetting entry to p?d_none. Usually (but 374 * very seldom) called out from the p?d_none_or_clear_bad macros. 375 */ 376 377 void pgd_clear_bad(pgd_t *pgd) 378 { 379 pgd_ERROR(*pgd); 380 pgd_clear(pgd); 381 } 382 383 void pud_clear_bad(pud_t *pud) 384 { 385 pud_ERROR(*pud); 386 pud_clear(pud); 387 } 388 389 void pmd_clear_bad(pmd_t *pmd) 390 { 391 pmd_ERROR(*pmd); 392 pmd_clear(pmd); 393 } 394 395 /* 396 * Note: this doesn't free the actual pages themselves. That 397 * has been handled earlier when unmapping all the memory regions. 398 */ 399 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 400 unsigned long addr) 401 { 402 pgtable_t token = pmd_pgtable(*pmd); 403 pmd_clear(pmd); 404 pte_free_tlb(tlb, token, addr); 405 tlb->mm->nr_ptes--; 406 } 407 408 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 409 unsigned long addr, unsigned long end, 410 unsigned long floor, unsigned long ceiling) 411 { 412 pmd_t *pmd; 413 unsigned long next; 414 unsigned long start; 415 416 start = addr; 417 pmd = pmd_offset(pud, addr); 418 do { 419 next = pmd_addr_end(addr, end); 420 if (pmd_none_or_clear_bad(pmd)) 421 continue; 422 free_pte_range(tlb, pmd, addr); 423 } while (pmd++, addr = next, addr != end); 424 425 start &= PUD_MASK; 426 if (start < floor) 427 return; 428 if (ceiling) { 429 ceiling &= PUD_MASK; 430 if (!ceiling) 431 return; 432 } 433 if (end - 1 > ceiling - 1) 434 return; 435 436 pmd = pmd_offset(pud, start); 437 pud_clear(pud); 438 pmd_free_tlb(tlb, pmd, start); 439 } 440 441 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 442 unsigned long addr, unsigned long end, 443 unsigned long floor, unsigned long ceiling) 444 { 445 pud_t *pud; 446 unsigned long next; 447 unsigned long start; 448 449 start = addr; 450 pud = pud_offset(pgd, addr); 451 do { 452 next = pud_addr_end(addr, end); 453 if (pud_none_or_clear_bad(pud)) 454 continue; 455 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 456 } while (pud++, addr = next, addr != end); 457 458 start &= PGDIR_MASK; 459 if (start < floor) 460 return; 461 if (ceiling) { 462 ceiling &= PGDIR_MASK; 463 if (!ceiling) 464 return; 465 } 466 if (end - 1 > ceiling - 1) 467 return; 468 469 pud = pud_offset(pgd, start); 470 pgd_clear(pgd); 471 pud_free_tlb(tlb, pud, start); 472 } 473 474 /* 475 * This function frees user-level page tables of a process. 476 * 477 * Must be called with pagetable lock held. 478 */ 479 void free_pgd_range(struct mmu_gather *tlb, 480 unsigned long addr, unsigned long end, 481 unsigned long floor, unsigned long ceiling) 482 { 483 pgd_t *pgd; 484 unsigned long next; 485 486 /* 487 * The next few lines have given us lots of grief... 488 * 489 * Why are we testing PMD* at this top level? Because often 490 * there will be no work to do at all, and we'd prefer not to 491 * go all the way down to the bottom just to discover that. 492 * 493 * Why all these "- 1"s? Because 0 represents both the bottom 494 * of the address space and the top of it (using -1 for the 495 * top wouldn't help much: the masks would do the wrong thing). 496 * The rule is that addr 0 and floor 0 refer to the bottom of 497 * the address space, but end 0 and ceiling 0 refer to the top 498 * Comparisons need to use "end - 1" and "ceiling - 1" (though 499 * that end 0 case should be mythical). 500 * 501 * Wherever addr is brought up or ceiling brought down, we must 502 * be careful to reject "the opposite 0" before it confuses the 503 * subsequent tests. But what about where end is brought down 504 * by PMD_SIZE below? no, end can't go down to 0 there. 505 * 506 * Whereas we round start (addr) and ceiling down, by different 507 * masks at different levels, in order to test whether a table 508 * now has no other vmas using it, so can be freed, we don't 509 * bother to round floor or end up - the tests don't need that. 510 */ 511 512 addr &= PMD_MASK; 513 if (addr < floor) { 514 addr += PMD_SIZE; 515 if (!addr) 516 return; 517 } 518 if (ceiling) { 519 ceiling &= PMD_MASK; 520 if (!ceiling) 521 return; 522 } 523 if (end - 1 > ceiling - 1) 524 end -= PMD_SIZE; 525 if (addr > end - 1) 526 return; 527 528 pgd = pgd_offset(tlb->mm, addr); 529 do { 530 next = pgd_addr_end(addr, end); 531 if (pgd_none_or_clear_bad(pgd)) 532 continue; 533 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 534 } while (pgd++, addr = next, addr != end); 535 } 536 537 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 538 unsigned long floor, unsigned long ceiling) 539 { 540 while (vma) { 541 struct vm_area_struct *next = vma->vm_next; 542 unsigned long addr = vma->vm_start; 543 544 /* 545 * Hide vma from rmap and truncate_pagecache before freeing 546 * pgtables 547 */ 548 unlink_anon_vmas(vma); 549 unlink_file_vma(vma); 550 551 if (is_vm_hugetlb_page(vma)) { 552 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 553 floor, next? next->vm_start: ceiling); 554 } else { 555 /* 556 * Optimization: gather nearby vmas into one call down 557 */ 558 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 559 && !is_vm_hugetlb_page(next)) { 560 vma = next; 561 next = vma->vm_next; 562 unlink_anon_vmas(vma); 563 unlink_file_vma(vma); 564 } 565 free_pgd_range(tlb, addr, vma->vm_end, 566 floor, next? next->vm_start: ceiling); 567 } 568 vma = next; 569 } 570 } 571 572 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 573 pmd_t *pmd, unsigned long address) 574 { 575 pgtable_t new = pte_alloc_one(mm, address); 576 int wait_split_huge_page; 577 if (!new) 578 return -ENOMEM; 579 580 /* 581 * Ensure all pte setup (eg. pte page lock and page clearing) are 582 * visible before the pte is made visible to other CPUs by being 583 * put into page tables. 584 * 585 * The other side of the story is the pointer chasing in the page 586 * table walking code (when walking the page table without locking; 587 * ie. most of the time). Fortunately, these data accesses consist 588 * of a chain of data-dependent loads, meaning most CPUs (alpha 589 * being the notable exception) will already guarantee loads are 590 * seen in-order. See the alpha page table accessors for the 591 * smp_read_barrier_depends() barriers in page table walking code. 592 */ 593 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 594 595 spin_lock(&mm->page_table_lock); 596 wait_split_huge_page = 0; 597 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 598 mm->nr_ptes++; 599 pmd_populate(mm, pmd, new); 600 new = NULL; 601 } else if (unlikely(pmd_trans_splitting(*pmd))) 602 wait_split_huge_page = 1; 603 spin_unlock(&mm->page_table_lock); 604 if (new) 605 pte_free(mm, new); 606 if (wait_split_huge_page) 607 wait_split_huge_page(vma->anon_vma, pmd); 608 return 0; 609 } 610 611 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 612 { 613 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 614 if (!new) 615 return -ENOMEM; 616 617 smp_wmb(); /* See comment in __pte_alloc */ 618 619 spin_lock(&init_mm.page_table_lock); 620 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 621 pmd_populate_kernel(&init_mm, pmd, new); 622 new = NULL; 623 } else 624 VM_BUG_ON(pmd_trans_splitting(*pmd)); 625 spin_unlock(&init_mm.page_table_lock); 626 if (new) 627 pte_free_kernel(&init_mm, new); 628 return 0; 629 } 630 631 static inline void init_rss_vec(int *rss) 632 { 633 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 634 } 635 636 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 637 { 638 int i; 639 640 if (current->mm == mm) 641 sync_mm_rss(mm); 642 for (i = 0; i < NR_MM_COUNTERS; i++) 643 if (rss[i]) 644 add_mm_counter(mm, i, rss[i]); 645 } 646 647 /* 648 * This function is called to print an error when a bad pte 649 * is found. For example, we might have a PFN-mapped pte in 650 * a region that doesn't allow it. 651 * 652 * The calling function must still handle the error. 653 */ 654 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 655 pte_t pte, struct page *page) 656 { 657 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 658 pud_t *pud = pud_offset(pgd, addr); 659 pmd_t *pmd = pmd_offset(pud, addr); 660 struct address_space *mapping; 661 pgoff_t index; 662 static unsigned long resume; 663 static unsigned long nr_shown; 664 static unsigned long nr_unshown; 665 666 /* 667 * Allow a burst of 60 reports, then keep quiet for that minute; 668 * or allow a steady drip of one report per second. 669 */ 670 if (nr_shown == 60) { 671 if (time_before(jiffies, resume)) { 672 nr_unshown++; 673 return; 674 } 675 if (nr_unshown) { 676 printk(KERN_ALERT 677 "BUG: Bad page map: %lu messages suppressed\n", 678 nr_unshown); 679 nr_unshown = 0; 680 } 681 nr_shown = 0; 682 } 683 if (nr_shown++ == 0) 684 resume = jiffies + 60 * HZ; 685 686 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 687 index = linear_page_index(vma, addr); 688 689 printk(KERN_ALERT 690 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 691 current->comm, 692 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 693 if (page) 694 dump_page(page); 695 printk(KERN_ALERT 696 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 697 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 698 /* 699 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 700 */ 701 if (vma->vm_ops) 702 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 703 (unsigned long)vma->vm_ops->fault); 704 if (vma->vm_file && vma->vm_file->f_op) 705 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 706 (unsigned long)vma->vm_file->f_op->mmap); 707 dump_stack(); 708 add_taint(TAINT_BAD_PAGE); 709 } 710 711 static inline int is_cow_mapping(vm_flags_t flags) 712 { 713 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 714 } 715 716 #ifndef is_zero_pfn 717 static inline int is_zero_pfn(unsigned long pfn) 718 { 719 return pfn == zero_pfn; 720 } 721 #endif 722 723 #ifndef my_zero_pfn 724 static inline unsigned long my_zero_pfn(unsigned long addr) 725 { 726 return zero_pfn; 727 } 728 #endif 729 730 /* 731 * vm_normal_page -- This function gets the "struct page" associated with a pte. 732 * 733 * "Special" mappings do not wish to be associated with a "struct page" (either 734 * it doesn't exist, or it exists but they don't want to touch it). In this 735 * case, NULL is returned here. "Normal" mappings do have a struct page. 736 * 737 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 738 * pte bit, in which case this function is trivial. Secondly, an architecture 739 * may not have a spare pte bit, which requires a more complicated scheme, 740 * described below. 741 * 742 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 743 * special mapping (even if there are underlying and valid "struct pages"). 744 * COWed pages of a VM_PFNMAP are always normal. 745 * 746 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 747 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 748 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 749 * mapping will always honor the rule 750 * 751 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 752 * 753 * And for normal mappings this is false. 754 * 755 * This restricts such mappings to be a linear translation from virtual address 756 * to pfn. To get around this restriction, we allow arbitrary mappings so long 757 * as the vma is not a COW mapping; in that case, we know that all ptes are 758 * special (because none can have been COWed). 759 * 760 * 761 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 762 * 763 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 764 * page" backing, however the difference is that _all_ pages with a struct 765 * page (that is, those where pfn_valid is true) are refcounted and considered 766 * normal pages by the VM. The disadvantage is that pages are refcounted 767 * (which can be slower and simply not an option for some PFNMAP users). The 768 * advantage is that we don't have to follow the strict linearity rule of 769 * PFNMAP mappings in order to support COWable mappings. 770 * 771 */ 772 #ifdef __HAVE_ARCH_PTE_SPECIAL 773 # define HAVE_PTE_SPECIAL 1 774 #else 775 # define HAVE_PTE_SPECIAL 0 776 #endif 777 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 778 pte_t pte) 779 { 780 unsigned long pfn = pte_pfn(pte); 781 782 if (HAVE_PTE_SPECIAL) { 783 if (likely(!pte_special(pte))) 784 goto check_pfn; 785 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 786 return NULL; 787 if (!is_zero_pfn(pfn)) 788 print_bad_pte(vma, addr, pte, NULL); 789 return NULL; 790 } 791 792 /* !HAVE_PTE_SPECIAL case follows: */ 793 794 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 795 if (vma->vm_flags & VM_MIXEDMAP) { 796 if (!pfn_valid(pfn)) 797 return NULL; 798 goto out; 799 } else { 800 unsigned long off; 801 off = (addr - vma->vm_start) >> PAGE_SHIFT; 802 if (pfn == vma->vm_pgoff + off) 803 return NULL; 804 if (!is_cow_mapping(vma->vm_flags)) 805 return NULL; 806 } 807 } 808 809 if (is_zero_pfn(pfn)) 810 return NULL; 811 check_pfn: 812 if (unlikely(pfn > highest_memmap_pfn)) { 813 print_bad_pte(vma, addr, pte, NULL); 814 return NULL; 815 } 816 817 /* 818 * NOTE! We still have PageReserved() pages in the page tables. 819 * eg. VDSO mappings can cause them to exist. 820 */ 821 out: 822 return pfn_to_page(pfn); 823 } 824 825 /* 826 * copy one vm_area from one task to the other. Assumes the page tables 827 * already present in the new task to be cleared in the whole range 828 * covered by this vma. 829 */ 830 831 static inline unsigned long 832 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 833 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 834 unsigned long addr, int *rss) 835 { 836 unsigned long vm_flags = vma->vm_flags; 837 pte_t pte = *src_pte; 838 struct page *page; 839 840 /* pte contains position in swap or file, so copy. */ 841 if (unlikely(!pte_present(pte))) { 842 if (!pte_file(pte)) { 843 swp_entry_t entry = pte_to_swp_entry(pte); 844 845 if (swap_duplicate(entry) < 0) 846 return entry.val; 847 848 /* make sure dst_mm is on swapoff's mmlist. */ 849 if (unlikely(list_empty(&dst_mm->mmlist))) { 850 spin_lock(&mmlist_lock); 851 if (list_empty(&dst_mm->mmlist)) 852 list_add(&dst_mm->mmlist, 853 &src_mm->mmlist); 854 spin_unlock(&mmlist_lock); 855 } 856 if (likely(!non_swap_entry(entry))) 857 rss[MM_SWAPENTS]++; 858 else if (is_migration_entry(entry)) { 859 page = migration_entry_to_page(entry); 860 861 if (PageAnon(page)) 862 rss[MM_ANONPAGES]++; 863 else 864 rss[MM_FILEPAGES]++; 865 866 if (is_write_migration_entry(entry) && 867 is_cow_mapping(vm_flags)) { 868 /* 869 * COW mappings require pages in both 870 * parent and child to be set to read. 871 */ 872 make_migration_entry_read(&entry); 873 pte = swp_entry_to_pte(entry); 874 set_pte_at(src_mm, addr, src_pte, pte); 875 } 876 } 877 } 878 goto out_set_pte; 879 } 880 881 /* 882 * If it's a COW mapping, write protect it both 883 * in the parent and the child 884 */ 885 if (is_cow_mapping(vm_flags)) { 886 ptep_set_wrprotect(src_mm, addr, src_pte); 887 pte = pte_wrprotect(pte); 888 } 889 890 /* 891 * If it's a shared mapping, mark it clean in 892 * the child 893 */ 894 if (vm_flags & VM_SHARED) 895 pte = pte_mkclean(pte); 896 pte = pte_mkold(pte); 897 898 page = vm_normal_page(vma, addr, pte); 899 if (page) { 900 get_page(page); 901 page_dup_rmap(page); 902 if (PageAnon(page)) 903 rss[MM_ANONPAGES]++; 904 else 905 rss[MM_FILEPAGES]++; 906 } 907 908 out_set_pte: 909 set_pte_at(dst_mm, addr, dst_pte, pte); 910 return 0; 911 } 912 913 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 914 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 915 unsigned long addr, unsigned long end) 916 { 917 pte_t *orig_src_pte, *orig_dst_pte; 918 pte_t *src_pte, *dst_pte; 919 spinlock_t *src_ptl, *dst_ptl; 920 int progress = 0; 921 int rss[NR_MM_COUNTERS]; 922 swp_entry_t entry = (swp_entry_t){0}; 923 924 again: 925 init_rss_vec(rss); 926 927 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 928 if (!dst_pte) 929 return -ENOMEM; 930 src_pte = pte_offset_map(src_pmd, addr); 931 src_ptl = pte_lockptr(src_mm, src_pmd); 932 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 933 orig_src_pte = src_pte; 934 orig_dst_pte = dst_pte; 935 arch_enter_lazy_mmu_mode(); 936 937 do { 938 /* 939 * We are holding two locks at this point - either of them 940 * could generate latencies in another task on another CPU. 941 */ 942 if (progress >= 32) { 943 progress = 0; 944 if (need_resched() || 945 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 946 break; 947 } 948 if (pte_none(*src_pte)) { 949 progress++; 950 continue; 951 } 952 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 953 vma, addr, rss); 954 if (entry.val) 955 break; 956 progress += 8; 957 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 958 959 arch_leave_lazy_mmu_mode(); 960 spin_unlock(src_ptl); 961 pte_unmap(orig_src_pte); 962 add_mm_rss_vec(dst_mm, rss); 963 pte_unmap_unlock(orig_dst_pte, dst_ptl); 964 cond_resched(); 965 966 if (entry.val) { 967 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 968 return -ENOMEM; 969 progress = 0; 970 } 971 if (addr != end) 972 goto again; 973 return 0; 974 } 975 976 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 977 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 978 unsigned long addr, unsigned long end) 979 { 980 pmd_t *src_pmd, *dst_pmd; 981 unsigned long next; 982 983 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 984 if (!dst_pmd) 985 return -ENOMEM; 986 src_pmd = pmd_offset(src_pud, addr); 987 do { 988 next = pmd_addr_end(addr, end); 989 if (pmd_trans_huge(*src_pmd)) { 990 int err; 991 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 992 err = copy_huge_pmd(dst_mm, src_mm, 993 dst_pmd, src_pmd, addr, vma); 994 if (err == -ENOMEM) 995 return -ENOMEM; 996 if (!err) 997 continue; 998 /* fall through */ 999 } 1000 if (pmd_none_or_clear_bad(src_pmd)) 1001 continue; 1002 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1003 vma, addr, next)) 1004 return -ENOMEM; 1005 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1006 return 0; 1007 } 1008 1009 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1010 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1011 unsigned long addr, unsigned long end) 1012 { 1013 pud_t *src_pud, *dst_pud; 1014 unsigned long next; 1015 1016 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1017 if (!dst_pud) 1018 return -ENOMEM; 1019 src_pud = pud_offset(src_pgd, addr); 1020 do { 1021 next = pud_addr_end(addr, end); 1022 if (pud_none_or_clear_bad(src_pud)) 1023 continue; 1024 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1025 vma, addr, next)) 1026 return -ENOMEM; 1027 } while (dst_pud++, src_pud++, addr = next, addr != end); 1028 return 0; 1029 } 1030 1031 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1032 struct vm_area_struct *vma) 1033 { 1034 pgd_t *src_pgd, *dst_pgd; 1035 unsigned long next; 1036 unsigned long addr = vma->vm_start; 1037 unsigned long end = vma->vm_end; 1038 int ret; 1039 1040 /* 1041 * Don't copy ptes where a page fault will fill them correctly. 1042 * Fork becomes much lighter when there are big shared or private 1043 * readonly mappings. The tradeoff is that copy_page_range is more 1044 * efficient than faulting. 1045 */ 1046 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 1047 if (!vma->anon_vma) 1048 return 0; 1049 } 1050 1051 if (is_vm_hugetlb_page(vma)) 1052 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1053 1054 if (unlikely(is_pfn_mapping(vma))) { 1055 /* 1056 * We do not free on error cases below as remove_vma 1057 * gets called on error from higher level routine 1058 */ 1059 ret = track_pfn_vma_copy(vma); 1060 if (ret) 1061 return ret; 1062 } 1063 1064 /* 1065 * We need to invalidate the secondary MMU mappings only when 1066 * there could be a permission downgrade on the ptes of the 1067 * parent mm. And a permission downgrade will only happen if 1068 * is_cow_mapping() returns true. 1069 */ 1070 if (is_cow_mapping(vma->vm_flags)) 1071 mmu_notifier_invalidate_range_start(src_mm, addr, end); 1072 1073 ret = 0; 1074 dst_pgd = pgd_offset(dst_mm, addr); 1075 src_pgd = pgd_offset(src_mm, addr); 1076 do { 1077 next = pgd_addr_end(addr, end); 1078 if (pgd_none_or_clear_bad(src_pgd)) 1079 continue; 1080 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1081 vma, addr, next))) { 1082 ret = -ENOMEM; 1083 break; 1084 } 1085 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1086 1087 if (is_cow_mapping(vma->vm_flags)) 1088 mmu_notifier_invalidate_range_end(src_mm, 1089 vma->vm_start, end); 1090 return ret; 1091 } 1092 1093 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1094 struct vm_area_struct *vma, pmd_t *pmd, 1095 unsigned long addr, unsigned long end, 1096 struct zap_details *details) 1097 { 1098 struct mm_struct *mm = tlb->mm; 1099 int force_flush = 0; 1100 int rss[NR_MM_COUNTERS]; 1101 spinlock_t *ptl; 1102 pte_t *start_pte; 1103 pte_t *pte; 1104 1105 again: 1106 init_rss_vec(rss); 1107 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1108 pte = start_pte; 1109 arch_enter_lazy_mmu_mode(); 1110 do { 1111 pte_t ptent = *pte; 1112 if (pte_none(ptent)) { 1113 continue; 1114 } 1115 1116 if (pte_present(ptent)) { 1117 struct page *page; 1118 1119 page = vm_normal_page(vma, addr, ptent); 1120 if (unlikely(details) && page) { 1121 /* 1122 * unmap_shared_mapping_pages() wants to 1123 * invalidate cache without truncating: 1124 * unmap shared but keep private pages. 1125 */ 1126 if (details->check_mapping && 1127 details->check_mapping != page->mapping) 1128 continue; 1129 /* 1130 * Each page->index must be checked when 1131 * invalidating or truncating nonlinear. 1132 */ 1133 if (details->nonlinear_vma && 1134 (page->index < details->first_index || 1135 page->index > details->last_index)) 1136 continue; 1137 } 1138 ptent = ptep_get_and_clear_full(mm, addr, pte, 1139 tlb->fullmm); 1140 tlb_remove_tlb_entry(tlb, pte, addr); 1141 if (unlikely(!page)) 1142 continue; 1143 if (unlikely(details) && details->nonlinear_vma 1144 && linear_page_index(details->nonlinear_vma, 1145 addr) != page->index) 1146 set_pte_at(mm, addr, pte, 1147 pgoff_to_pte(page->index)); 1148 if (PageAnon(page)) 1149 rss[MM_ANONPAGES]--; 1150 else { 1151 if (pte_dirty(ptent)) 1152 set_page_dirty(page); 1153 if (pte_young(ptent) && 1154 likely(!VM_SequentialReadHint(vma))) 1155 mark_page_accessed(page); 1156 rss[MM_FILEPAGES]--; 1157 } 1158 page_remove_rmap(page); 1159 if (unlikely(page_mapcount(page) < 0)) 1160 print_bad_pte(vma, addr, ptent, page); 1161 force_flush = !__tlb_remove_page(tlb, page); 1162 if (force_flush) 1163 break; 1164 continue; 1165 } 1166 /* 1167 * If details->check_mapping, we leave swap entries; 1168 * if details->nonlinear_vma, we leave file entries. 1169 */ 1170 if (unlikely(details)) 1171 continue; 1172 if (pte_file(ptent)) { 1173 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1174 print_bad_pte(vma, addr, ptent, NULL); 1175 } else { 1176 swp_entry_t entry = pte_to_swp_entry(ptent); 1177 1178 if (!non_swap_entry(entry)) 1179 rss[MM_SWAPENTS]--; 1180 else if (is_migration_entry(entry)) { 1181 struct page *page; 1182 1183 page = migration_entry_to_page(entry); 1184 1185 if (PageAnon(page)) 1186 rss[MM_ANONPAGES]--; 1187 else 1188 rss[MM_FILEPAGES]--; 1189 } 1190 if (unlikely(!free_swap_and_cache(entry))) 1191 print_bad_pte(vma, addr, ptent, NULL); 1192 } 1193 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1194 } while (pte++, addr += PAGE_SIZE, addr != end); 1195 1196 add_mm_rss_vec(mm, rss); 1197 arch_leave_lazy_mmu_mode(); 1198 pte_unmap_unlock(start_pte, ptl); 1199 1200 /* 1201 * mmu_gather ran out of room to batch pages, we break out of 1202 * the PTE lock to avoid doing the potential expensive TLB invalidate 1203 * and page-free while holding it. 1204 */ 1205 if (force_flush) { 1206 force_flush = 0; 1207 tlb_flush_mmu(tlb); 1208 if (addr != end) 1209 goto again; 1210 } 1211 1212 return addr; 1213 } 1214 1215 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1216 struct vm_area_struct *vma, pud_t *pud, 1217 unsigned long addr, unsigned long end, 1218 struct zap_details *details) 1219 { 1220 pmd_t *pmd; 1221 unsigned long next; 1222 1223 pmd = pmd_offset(pud, addr); 1224 do { 1225 next = pmd_addr_end(addr, end); 1226 if (pmd_trans_huge(*pmd)) { 1227 if (next - addr != HPAGE_PMD_SIZE) { 1228 #ifdef CONFIG_DEBUG_VM 1229 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1230 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1231 __func__, addr, end, 1232 vma->vm_start, 1233 vma->vm_end); 1234 BUG(); 1235 } 1236 #endif 1237 split_huge_page_pmd(vma->vm_mm, pmd); 1238 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1239 goto next; 1240 /* fall through */ 1241 } 1242 /* 1243 * Here there can be other concurrent MADV_DONTNEED or 1244 * trans huge page faults running, and if the pmd is 1245 * none or trans huge it can change under us. This is 1246 * because MADV_DONTNEED holds the mmap_sem in read 1247 * mode. 1248 */ 1249 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1250 goto next; 1251 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1252 next: 1253 cond_resched(); 1254 } while (pmd++, addr = next, addr != end); 1255 1256 return addr; 1257 } 1258 1259 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1260 struct vm_area_struct *vma, pgd_t *pgd, 1261 unsigned long addr, unsigned long end, 1262 struct zap_details *details) 1263 { 1264 pud_t *pud; 1265 unsigned long next; 1266 1267 pud = pud_offset(pgd, addr); 1268 do { 1269 next = pud_addr_end(addr, end); 1270 if (pud_none_or_clear_bad(pud)) 1271 continue; 1272 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1273 } while (pud++, addr = next, addr != end); 1274 1275 return addr; 1276 } 1277 1278 static void unmap_page_range(struct mmu_gather *tlb, 1279 struct vm_area_struct *vma, 1280 unsigned long addr, unsigned long end, 1281 struct zap_details *details) 1282 { 1283 pgd_t *pgd; 1284 unsigned long next; 1285 1286 if (details && !details->check_mapping && !details->nonlinear_vma) 1287 details = NULL; 1288 1289 BUG_ON(addr >= end); 1290 mem_cgroup_uncharge_start(); 1291 tlb_start_vma(tlb, vma); 1292 pgd = pgd_offset(vma->vm_mm, addr); 1293 do { 1294 next = pgd_addr_end(addr, end); 1295 if (pgd_none_or_clear_bad(pgd)) 1296 continue; 1297 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1298 } while (pgd++, addr = next, addr != end); 1299 tlb_end_vma(tlb, vma); 1300 mem_cgroup_uncharge_end(); 1301 } 1302 1303 1304 static void unmap_single_vma(struct mmu_gather *tlb, 1305 struct vm_area_struct *vma, unsigned long start_addr, 1306 unsigned long end_addr, 1307 struct zap_details *details) 1308 { 1309 unsigned long start = max(vma->vm_start, start_addr); 1310 unsigned long end; 1311 1312 if (start >= vma->vm_end) 1313 return; 1314 end = min(vma->vm_end, end_addr); 1315 if (end <= vma->vm_start) 1316 return; 1317 1318 if (vma->vm_file) 1319 uprobe_munmap(vma, start, end); 1320 1321 if (unlikely(is_pfn_mapping(vma))) 1322 untrack_pfn_vma(vma, 0, 0); 1323 1324 if (start != end) { 1325 if (unlikely(is_vm_hugetlb_page(vma))) { 1326 /* 1327 * It is undesirable to test vma->vm_file as it 1328 * should be non-null for valid hugetlb area. 1329 * However, vm_file will be NULL in the error 1330 * cleanup path of do_mmap_pgoff. When 1331 * hugetlbfs ->mmap method fails, 1332 * do_mmap_pgoff() nullifies vma->vm_file 1333 * before calling this function to clean up. 1334 * Since no pte has actually been setup, it is 1335 * safe to do nothing in this case. 1336 */ 1337 if (vma->vm_file) 1338 unmap_hugepage_range(vma, start, end, NULL); 1339 } else 1340 unmap_page_range(tlb, vma, start, end, details); 1341 } 1342 } 1343 1344 /** 1345 * unmap_vmas - unmap a range of memory covered by a list of vma's 1346 * @tlb: address of the caller's struct mmu_gather 1347 * @vma: the starting vma 1348 * @start_addr: virtual address at which to start unmapping 1349 * @end_addr: virtual address at which to end unmapping 1350 * 1351 * Unmap all pages in the vma list. 1352 * 1353 * Only addresses between `start' and `end' will be unmapped. 1354 * 1355 * The VMA list must be sorted in ascending virtual address order. 1356 * 1357 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1358 * range after unmap_vmas() returns. So the only responsibility here is to 1359 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1360 * drops the lock and schedules. 1361 */ 1362 void unmap_vmas(struct mmu_gather *tlb, 1363 struct vm_area_struct *vma, unsigned long start_addr, 1364 unsigned long end_addr) 1365 { 1366 struct mm_struct *mm = vma->vm_mm; 1367 1368 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1369 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1370 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1371 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1372 } 1373 1374 /** 1375 * zap_page_range - remove user pages in a given range 1376 * @vma: vm_area_struct holding the applicable pages 1377 * @start: starting address of pages to zap 1378 * @size: number of bytes to zap 1379 * @details: details of nonlinear truncation or shared cache invalidation 1380 * 1381 * Caller must protect the VMA list 1382 */ 1383 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1384 unsigned long size, struct zap_details *details) 1385 { 1386 struct mm_struct *mm = vma->vm_mm; 1387 struct mmu_gather tlb; 1388 unsigned long end = start + size; 1389 1390 lru_add_drain(); 1391 tlb_gather_mmu(&tlb, mm, 0); 1392 update_hiwater_rss(mm); 1393 mmu_notifier_invalidate_range_start(mm, start, end); 1394 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1395 unmap_single_vma(&tlb, vma, start, end, details); 1396 mmu_notifier_invalidate_range_end(mm, start, end); 1397 tlb_finish_mmu(&tlb, start, end); 1398 } 1399 1400 /** 1401 * zap_page_range_single - remove user pages in a given range 1402 * @vma: vm_area_struct holding the applicable pages 1403 * @address: starting address of pages to zap 1404 * @size: number of bytes to zap 1405 * @details: details of nonlinear truncation or shared cache invalidation 1406 * 1407 * The range must fit into one VMA. 1408 */ 1409 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1410 unsigned long size, struct zap_details *details) 1411 { 1412 struct mm_struct *mm = vma->vm_mm; 1413 struct mmu_gather tlb; 1414 unsigned long end = address + size; 1415 1416 lru_add_drain(); 1417 tlb_gather_mmu(&tlb, mm, 0); 1418 update_hiwater_rss(mm); 1419 mmu_notifier_invalidate_range_start(mm, address, end); 1420 unmap_single_vma(&tlb, vma, address, end, details); 1421 mmu_notifier_invalidate_range_end(mm, address, end); 1422 tlb_finish_mmu(&tlb, address, end); 1423 } 1424 1425 /** 1426 * zap_vma_ptes - remove ptes mapping the vma 1427 * @vma: vm_area_struct holding ptes to be zapped 1428 * @address: starting address of pages to zap 1429 * @size: number of bytes to zap 1430 * 1431 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1432 * 1433 * The entire address range must be fully contained within the vma. 1434 * 1435 * Returns 0 if successful. 1436 */ 1437 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1438 unsigned long size) 1439 { 1440 if (address < vma->vm_start || address + size > vma->vm_end || 1441 !(vma->vm_flags & VM_PFNMAP)) 1442 return -1; 1443 zap_page_range_single(vma, address, size, NULL); 1444 return 0; 1445 } 1446 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1447 1448 /** 1449 * follow_page - look up a page descriptor from a user-virtual address 1450 * @vma: vm_area_struct mapping @address 1451 * @address: virtual address to look up 1452 * @flags: flags modifying lookup behaviour 1453 * 1454 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1455 * 1456 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1457 * an error pointer if there is a mapping to something not represented 1458 * by a page descriptor (see also vm_normal_page()). 1459 */ 1460 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1461 unsigned int flags) 1462 { 1463 pgd_t *pgd; 1464 pud_t *pud; 1465 pmd_t *pmd; 1466 pte_t *ptep, pte; 1467 spinlock_t *ptl; 1468 struct page *page; 1469 struct mm_struct *mm = vma->vm_mm; 1470 1471 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1472 if (!IS_ERR(page)) { 1473 BUG_ON(flags & FOLL_GET); 1474 goto out; 1475 } 1476 1477 page = NULL; 1478 pgd = pgd_offset(mm, address); 1479 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1480 goto no_page_table; 1481 1482 pud = pud_offset(pgd, address); 1483 if (pud_none(*pud)) 1484 goto no_page_table; 1485 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1486 BUG_ON(flags & FOLL_GET); 1487 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1488 goto out; 1489 } 1490 if (unlikely(pud_bad(*pud))) 1491 goto no_page_table; 1492 1493 pmd = pmd_offset(pud, address); 1494 if (pmd_none(*pmd)) 1495 goto no_page_table; 1496 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1497 BUG_ON(flags & FOLL_GET); 1498 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1499 goto out; 1500 } 1501 if (pmd_trans_huge(*pmd)) { 1502 if (flags & FOLL_SPLIT) { 1503 split_huge_page_pmd(mm, pmd); 1504 goto split_fallthrough; 1505 } 1506 spin_lock(&mm->page_table_lock); 1507 if (likely(pmd_trans_huge(*pmd))) { 1508 if (unlikely(pmd_trans_splitting(*pmd))) { 1509 spin_unlock(&mm->page_table_lock); 1510 wait_split_huge_page(vma->anon_vma, pmd); 1511 } else { 1512 page = follow_trans_huge_pmd(mm, address, 1513 pmd, flags); 1514 spin_unlock(&mm->page_table_lock); 1515 goto out; 1516 } 1517 } else 1518 spin_unlock(&mm->page_table_lock); 1519 /* fall through */ 1520 } 1521 split_fallthrough: 1522 if (unlikely(pmd_bad(*pmd))) 1523 goto no_page_table; 1524 1525 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1526 1527 pte = *ptep; 1528 if (!pte_present(pte)) 1529 goto no_page; 1530 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1531 goto unlock; 1532 1533 page = vm_normal_page(vma, address, pte); 1534 if (unlikely(!page)) { 1535 if ((flags & FOLL_DUMP) || 1536 !is_zero_pfn(pte_pfn(pte))) 1537 goto bad_page; 1538 page = pte_page(pte); 1539 } 1540 1541 if (flags & FOLL_GET) 1542 get_page_foll(page); 1543 if (flags & FOLL_TOUCH) { 1544 if ((flags & FOLL_WRITE) && 1545 !pte_dirty(pte) && !PageDirty(page)) 1546 set_page_dirty(page); 1547 /* 1548 * pte_mkyoung() would be more correct here, but atomic care 1549 * is needed to avoid losing the dirty bit: it is easier to use 1550 * mark_page_accessed(). 1551 */ 1552 mark_page_accessed(page); 1553 } 1554 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1555 /* 1556 * The preliminary mapping check is mainly to avoid the 1557 * pointless overhead of lock_page on the ZERO_PAGE 1558 * which might bounce very badly if there is contention. 1559 * 1560 * If the page is already locked, we don't need to 1561 * handle it now - vmscan will handle it later if and 1562 * when it attempts to reclaim the page. 1563 */ 1564 if (page->mapping && trylock_page(page)) { 1565 lru_add_drain(); /* push cached pages to LRU */ 1566 /* 1567 * Because we lock page here and migration is 1568 * blocked by the pte's page reference, we need 1569 * only check for file-cache page truncation. 1570 */ 1571 if (page->mapping) 1572 mlock_vma_page(page); 1573 unlock_page(page); 1574 } 1575 } 1576 unlock: 1577 pte_unmap_unlock(ptep, ptl); 1578 out: 1579 return page; 1580 1581 bad_page: 1582 pte_unmap_unlock(ptep, ptl); 1583 return ERR_PTR(-EFAULT); 1584 1585 no_page: 1586 pte_unmap_unlock(ptep, ptl); 1587 if (!pte_none(pte)) 1588 return page; 1589 1590 no_page_table: 1591 /* 1592 * When core dumping an enormous anonymous area that nobody 1593 * has touched so far, we don't want to allocate unnecessary pages or 1594 * page tables. Return error instead of NULL to skip handle_mm_fault, 1595 * then get_dump_page() will return NULL to leave a hole in the dump. 1596 * But we can only make this optimization where a hole would surely 1597 * be zero-filled if handle_mm_fault() actually did handle it. 1598 */ 1599 if ((flags & FOLL_DUMP) && 1600 (!vma->vm_ops || !vma->vm_ops->fault)) 1601 return ERR_PTR(-EFAULT); 1602 return page; 1603 } 1604 1605 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1606 { 1607 return stack_guard_page_start(vma, addr) || 1608 stack_guard_page_end(vma, addr+PAGE_SIZE); 1609 } 1610 1611 /** 1612 * __get_user_pages() - pin user pages in memory 1613 * @tsk: task_struct of target task 1614 * @mm: mm_struct of target mm 1615 * @start: starting user address 1616 * @nr_pages: number of pages from start to pin 1617 * @gup_flags: flags modifying pin behaviour 1618 * @pages: array that receives pointers to the pages pinned. 1619 * Should be at least nr_pages long. Or NULL, if caller 1620 * only intends to ensure the pages are faulted in. 1621 * @vmas: array of pointers to vmas corresponding to each page. 1622 * Or NULL if the caller does not require them. 1623 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1624 * 1625 * Returns number of pages pinned. This may be fewer than the number 1626 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1627 * were pinned, returns -errno. Each page returned must be released 1628 * with a put_page() call when it is finished with. vmas will only 1629 * remain valid while mmap_sem is held. 1630 * 1631 * Must be called with mmap_sem held for read or write. 1632 * 1633 * __get_user_pages walks a process's page tables and takes a reference to 1634 * each struct page that each user address corresponds to at a given 1635 * instant. That is, it takes the page that would be accessed if a user 1636 * thread accesses the given user virtual address at that instant. 1637 * 1638 * This does not guarantee that the page exists in the user mappings when 1639 * __get_user_pages returns, and there may even be a completely different 1640 * page there in some cases (eg. if mmapped pagecache has been invalidated 1641 * and subsequently re faulted). However it does guarantee that the page 1642 * won't be freed completely. And mostly callers simply care that the page 1643 * contains data that was valid *at some point in time*. Typically, an IO 1644 * or similar operation cannot guarantee anything stronger anyway because 1645 * locks can't be held over the syscall boundary. 1646 * 1647 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1648 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1649 * appropriate) must be called after the page is finished with, and 1650 * before put_page is called. 1651 * 1652 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1653 * or mmap_sem contention, and if waiting is needed to pin all pages, 1654 * *@nonblocking will be set to 0. 1655 * 1656 * In most cases, get_user_pages or get_user_pages_fast should be used 1657 * instead of __get_user_pages. __get_user_pages should be used only if 1658 * you need some special @gup_flags. 1659 */ 1660 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1661 unsigned long start, int nr_pages, unsigned int gup_flags, 1662 struct page **pages, struct vm_area_struct **vmas, 1663 int *nonblocking) 1664 { 1665 int i; 1666 unsigned long vm_flags; 1667 1668 if (nr_pages <= 0) 1669 return 0; 1670 1671 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1672 1673 /* 1674 * Require read or write permissions. 1675 * If FOLL_FORCE is set, we only require the "MAY" flags. 1676 */ 1677 vm_flags = (gup_flags & FOLL_WRITE) ? 1678 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1679 vm_flags &= (gup_flags & FOLL_FORCE) ? 1680 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1681 i = 0; 1682 1683 do { 1684 struct vm_area_struct *vma; 1685 1686 vma = find_extend_vma(mm, start); 1687 if (!vma && in_gate_area(mm, start)) { 1688 unsigned long pg = start & PAGE_MASK; 1689 pgd_t *pgd; 1690 pud_t *pud; 1691 pmd_t *pmd; 1692 pte_t *pte; 1693 1694 /* user gate pages are read-only */ 1695 if (gup_flags & FOLL_WRITE) 1696 return i ? : -EFAULT; 1697 if (pg > TASK_SIZE) 1698 pgd = pgd_offset_k(pg); 1699 else 1700 pgd = pgd_offset_gate(mm, pg); 1701 BUG_ON(pgd_none(*pgd)); 1702 pud = pud_offset(pgd, pg); 1703 BUG_ON(pud_none(*pud)); 1704 pmd = pmd_offset(pud, pg); 1705 if (pmd_none(*pmd)) 1706 return i ? : -EFAULT; 1707 VM_BUG_ON(pmd_trans_huge(*pmd)); 1708 pte = pte_offset_map(pmd, pg); 1709 if (pte_none(*pte)) { 1710 pte_unmap(pte); 1711 return i ? : -EFAULT; 1712 } 1713 vma = get_gate_vma(mm); 1714 if (pages) { 1715 struct page *page; 1716 1717 page = vm_normal_page(vma, start, *pte); 1718 if (!page) { 1719 if (!(gup_flags & FOLL_DUMP) && 1720 is_zero_pfn(pte_pfn(*pte))) 1721 page = pte_page(*pte); 1722 else { 1723 pte_unmap(pte); 1724 return i ? : -EFAULT; 1725 } 1726 } 1727 pages[i] = page; 1728 get_page(page); 1729 } 1730 pte_unmap(pte); 1731 goto next_page; 1732 } 1733 1734 if (!vma || 1735 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1736 !(vm_flags & vma->vm_flags)) 1737 return i ? : -EFAULT; 1738 1739 if (is_vm_hugetlb_page(vma)) { 1740 i = follow_hugetlb_page(mm, vma, pages, vmas, 1741 &start, &nr_pages, i, gup_flags); 1742 continue; 1743 } 1744 1745 do { 1746 struct page *page; 1747 unsigned int foll_flags = gup_flags; 1748 1749 /* 1750 * If we have a pending SIGKILL, don't keep faulting 1751 * pages and potentially allocating memory. 1752 */ 1753 if (unlikely(fatal_signal_pending(current))) 1754 return i ? i : -ERESTARTSYS; 1755 1756 cond_resched(); 1757 while (!(page = follow_page(vma, start, foll_flags))) { 1758 int ret; 1759 unsigned int fault_flags = 0; 1760 1761 /* For mlock, just skip the stack guard page. */ 1762 if (foll_flags & FOLL_MLOCK) { 1763 if (stack_guard_page(vma, start)) 1764 goto next_page; 1765 } 1766 if (foll_flags & FOLL_WRITE) 1767 fault_flags |= FAULT_FLAG_WRITE; 1768 if (nonblocking) 1769 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1770 if (foll_flags & FOLL_NOWAIT) 1771 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1772 1773 ret = handle_mm_fault(mm, vma, start, 1774 fault_flags); 1775 1776 if (ret & VM_FAULT_ERROR) { 1777 if (ret & VM_FAULT_OOM) 1778 return i ? i : -ENOMEM; 1779 if (ret & (VM_FAULT_HWPOISON | 1780 VM_FAULT_HWPOISON_LARGE)) { 1781 if (i) 1782 return i; 1783 else if (gup_flags & FOLL_HWPOISON) 1784 return -EHWPOISON; 1785 else 1786 return -EFAULT; 1787 } 1788 if (ret & VM_FAULT_SIGBUS) 1789 return i ? i : -EFAULT; 1790 BUG(); 1791 } 1792 1793 if (tsk) { 1794 if (ret & VM_FAULT_MAJOR) 1795 tsk->maj_flt++; 1796 else 1797 tsk->min_flt++; 1798 } 1799 1800 if (ret & VM_FAULT_RETRY) { 1801 if (nonblocking) 1802 *nonblocking = 0; 1803 return i; 1804 } 1805 1806 /* 1807 * The VM_FAULT_WRITE bit tells us that 1808 * do_wp_page has broken COW when necessary, 1809 * even if maybe_mkwrite decided not to set 1810 * pte_write. We can thus safely do subsequent 1811 * page lookups as if they were reads. But only 1812 * do so when looping for pte_write is futile: 1813 * in some cases userspace may also be wanting 1814 * to write to the gotten user page, which a 1815 * read fault here might prevent (a readonly 1816 * page might get reCOWed by userspace write). 1817 */ 1818 if ((ret & VM_FAULT_WRITE) && 1819 !(vma->vm_flags & VM_WRITE)) 1820 foll_flags &= ~FOLL_WRITE; 1821 1822 cond_resched(); 1823 } 1824 if (IS_ERR(page)) 1825 return i ? i : PTR_ERR(page); 1826 if (pages) { 1827 pages[i] = page; 1828 1829 flush_anon_page(vma, page, start); 1830 flush_dcache_page(page); 1831 } 1832 next_page: 1833 if (vmas) 1834 vmas[i] = vma; 1835 i++; 1836 start += PAGE_SIZE; 1837 nr_pages--; 1838 } while (nr_pages && start < vma->vm_end); 1839 } while (nr_pages); 1840 return i; 1841 } 1842 EXPORT_SYMBOL(__get_user_pages); 1843 1844 /* 1845 * fixup_user_fault() - manually resolve a user page fault 1846 * @tsk: the task_struct to use for page fault accounting, or 1847 * NULL if faults are not to be recorded. 1848 * @mm: mm_struct of target mm 1849 * @address: user address 1850 * @fault_flags:flags to pass down to handle_mm_fault() 1851 * 1852 * This is meant to be called in the specific scenario where for locking reasons 1853 * we try to access user memory in atomic context (within a pagefault_disable() 1854 * section), this returns -EFAULT, and we want to resolve the user fault before 1855 * trying again. 1856 * 1857 * Typically this is meant to be used by the futex code. 1858 * 1859 * The main difference with get_user_pages() is that this function will 1860 * unconditionally call handle_mm_fault() which will in turn perform all the 1861 * necessary SW fixup of the dirty and young bits in the PTE, while 1862 * handle_mm_fault() only guarantees to update these in the struct page. 1863 * 1864 * This is important for some architectures where those bits also gate the 1865 * access permission to the page because they are maintained in software. On 1866 * such architectures, gup() will not be enough to make a subsequent access 1867 * succeed. 1868 * 1869 * This should be called with the mm_sem held for read. 1870 */ 1871 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1872 unsigned long address, unsigned int fault_flags) 1873 { 1874 struct vm_area_struct *vma; 1875 int ret; 1876 1877 vma = find_extend_vma(mm, address); 1878 if (!vma || address < vma->vm_start) 1879 return -EFAULT; 1880 1881 ret = handle_mm_fault(mm, vma, address, fault_flags); 1882 if (ret & VM_FAULT_ERROR) { 1883 if (ret & VM_FAULT_OOM) 1884 return -ENOMEM; 1885 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 1886 return -EHWPOISON; 1887 if (ret & VM_FAULT_SIGBUS) 1888 return -EFAULT; 1889 BUG(); 1890 } 1891 if (tsk) { 1892 if (ret & VM_FAULT_MAJOR) 1893 tsk->maj_flt++; 1894 else 1895 tsk->min_flt++; 1896 } 1897 return 0; 1898 } 1899 1900 /* 1901 * get_user_pages() - pin user pages in memory 1902 * @tsk: the task_struct to use for page fault accounting, or 1903 * NULL if faults are not to be recorded. 1904 * @mm: mm_struct of target mm 1905 * @start: starting user address 1906 * @nr_pages: number of pages from start to pin 1907 * @write: whether pages will be written to by the caller 1908 * @force: whether to force write access even if user mapping is 1909 * readonly. This will result in the page being COWed even 1910 * in MAP_SHARED mappings. You do not want this. 1911 * @pages: array that receives pointers to the pages pinned. 1912 * Should be at least nr_pages long. Or NULL, if caller 1913 * only intends to ensure the pages are faulted in. 1914 * @vmas: array of pointers to vmas corresponding to each page. 1915 * Or NULL if the caller does not require them. 1916 * 1917 * Returns number of pages pinned. This may be fewer than the number 1918 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1919 * were pinned, returns -errno. Each page returned must be released 1920 * with a put_page() call when it is finished with. vmas will only 1921 * remain valid while mmap_sem is held. 1922 * 1923 * Must be called with mmap_sem held for read or write. 1924 * 1925 * get_user_pages walks a process's page tables and takes a reference to 1926 * each struct page that each user address corresponds to at a given 1927 * instant. That is, it takes the page that would be accessed if a user 1928 * thread accesses the given user virtual address at that instant. 1929 * 1930 * This does not guarantee that the page exists in the user mappings when 1931 * get_user_pages returns, and there may even be a completely different 1932 * page there in some cases (eg. if mmapped pagecache has been invalidated 1933 * and subsequently re faulted). However it does guarantee that the page 1934 * won't be freed completely. And mostly callers simply care that the page 1935 * contains data that was valid *at some point in time*. Typically, an IO 1936 * or similar operation cannot guarantee anything stronger anyway because 1937 * locks can't be held over the syscall boundary. 1938 * 1939 * If write=0, the page must not be written to. If the page is written to, 1940 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1941 * after the page is finished with, and before put_page is called. 1942 * 1943 * get_user_pages is typically used for fewer-copy IO operations, to get a 1944 * handle on the memory by some means other than accesses via the user virtual 1945 * addresses. The pages may be submitted for DMA to devices or accessed via 1946 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1947 * use the correct cache flushing APIs. 1948 * 1949 * See also get_user_pages_fast, for performance critical applications. 1950 */ 1951 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1952 unsigned long start, int nr_pages, int write, int force, 1953 struct page **pages, struct vm_area_struct **vmas) 1954 { 1955 int flags = FOLL_TOUCH; 1956 1957 if (pages) 1958 flags |= FOLL_GET; 1959 if (write) 1960 flags |= FOLL_WRITE; 1961 if (force) 1962 flags |= FOLL_FORCE; 1963 1964 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 1965 NULL); 1966 } 1967 EXPORT_SYMBOL(get_user_pages); 1968 1969 /** 1970 * get_dump_page() - pin user page in memory while writing it to core dump 1971 * @addr: user address 1972 * 1973 * Returns struct page pointer of user page pinned for dump, 1974 * to be freed afterwards by page_cache_release() or put_page(). 1975 * 1976 * Returns NULL on any kind of failure - a hole must then be inserted into 1977 * the corefile, to preserve alignment with its headers; and also returns 1978 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1979 * allowing a hole to be left in the corefile to save diskspace. 1980 * 1981 * Called without mmap_sem, but after all other threads have been killed. 1982 */ 1983 #ifdef CONFIG_ELF_CORE 1984 struct page *get_dump_page(unsigned long addr) 1985 { 1986 struct vm_area_struct *vma; 1987 struct page *page; 1988 1989 if (__get_user_pages(current, current->mm, addr, 1, 1990 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1991 NULL) < 1) 1992 return NULL; 1993 flush_cache_page(vma, addr, page_to_pfn(page)); 1994 return page; 1995 } 1996 #endif /* CONFIG_ELF_CORE */ 1997 1998 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1999 spinlock_t **ptl) 2000 { 2001 pgd_t * pgd = pgd_offset(mm, addr); 2002 pud_t * pud = pud_alloc(mm, pgd, addr); 2003 if (pud) { 2004 pmd_t * pmd = pmd_alloc(mm, pud, addr); 2005 if (pmd) { 2006 VM_BUG_ON(pmd_trans_huge(*pmd)); 2007 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2008 } 2009 } 2010 return NULL; 2011 } 2012 2013 /* 2014 * This is the old fallback for page remapping. 2015 * 2016 * For historical reasons, it only allows reserved pages. Only 2017 * old drivers should use this, and they needed to mark their 2018 * pages reserved for the old functions anyway. 2019 */ 2020 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2021 struct page *page, pgprot_t prot) 2022 { 2023 struct mm_struct *mm = vma->vm_mm; 2024 int retval; 2025 pte_t *pte; 2026 spinlock_t *ptl; 2027 2028 retval = -EINVAL; 2029 if (PageAnon(page)) 2030 goto out; 2031 retval = -ENOMEM; 2032 flush_dcache_page(page); 2033 pte = get_locked_pte(mm, addr, &ptl); 2034 if (!pte) 2035 goto out; 2036 retval = -EBUSY; 2037 if (!pte_none(*pte)) 2038 goto out_unlock; 2039 2040 /* Ok, finally just insert the thing.. */ 2041 get_page(page); 2042 inc_mm_counter_fast(mm, MM_FILEPAGES); 2043 page_add_file_rmap(page); 2044 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 2045 2046 retval = 0; 2047 pte_unmap_unlock(pte, ptl); 2048 return retval; 2049 out_unlock: 2050 pte_unmap_unlock(pte, ptl); 2051 out: 2052 return retval; 2053 } 2054 2055 /** 2056 * vm_insert_page - insert single page into user vma 2057 * @vma: user vma to map to 2058 * @addr: target user address of this page 2059 * @page: source kernel page 2060 * 2061 * This allows drivers to insert individual pages they've allocated 2062 * into a user vma. 2063 * 2064 * The page has to be a nice clean _individual_ kernel allocation. 2065 * If you allocate a compound page, you need to have marked it as 2066 * such (__GFP_COMP), or manually just split the page up yourself 2067 * (see split_page()). 2068 * 2069 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2070 * took an arbitrary page protection parameter. This doesn't allow 2071 * that. Your vma protection will have to be set up correctly, which 2072 * means that if you want a shared writable mapping, you'd better 2073 * ask for a shared writable mapping! 2074 * 2075 * The page does not need to be reserved. 2076 */ 2077 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2078 struct page *page) 2079 { 2080 if (addr < vma->vm_start || addr >= vma->vm_end) 2081 return -EFAULT; 2082 if (!page_count(page)) 2083 return -EINVAL; 2084 vma->vm_flags |= VM_INSERTPAGE; 2085 return insert_page(vma, addr, page, vma->vm_page_prot); 2086 } 2087 EXPORT_SYMBOL(vm_insert_page); 2088 2089 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2090 unsigned long pfn, pgprot_t prot) 2091 { 2092 struct mm_struct *mm = vma->vm_mm; 2093 int retval; 2094 pte_t *pte, entry; 2095 spinlock_t *ptl; 2096 2097 retval = -ENOMEM; 2098 pte = get_locked_pte(mm, addr, &ptl); 2099 if (!pte) 2100 goto out; 2101 retval = -EBUSY; 2102 if (!pte_none(*pte)) 2103 goto out_unlock; 2104 2105 /* Ok, finally just insert the thing.. */ 2106 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2107 set_pte_at(mm, addr, pte, entry); 2108 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2109 2110 retval = 0; 2111 out_unlock: 2112 pte_unmap_unlock(pte, ptl); 2113 out: 2114 return retval; 2115 } 2116 2117 /** 2118 * vm_insert_pfn - insert single pfn into user vma 2119 * @vma: user vma to map to 2120 * @addr: target user address of this page 2121 * @pfn: source kernel pfn 2122 * 2123 * Similar to vm_inert_page, this allows drivers to insert individual pages 2124 * they've allocated into a user vma. Same comments apply. 2125 * 2126 * This function should only be called from a vm_ops->fault handler, and 2127 * in that case the handler should return NULL. 2128 * 2129 * vma cannot be a COW mapping. 2130 * 2131 * As this is called only for pages that do not currently exist, we 2132 * do not need to flush old virtual caches or the TLB. 2133 */ 2134 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2135 unsigned long pfn) 2136 { 2137 int ret; 2138 pgprot_t pgprot = vma->vm_page_prot; 2139 /* 2140 * Technically, architectures with pte_special can avoid all these 2141 * restrictions (same for remap_pfn_range). However we would like 2142 * consistency in testing and feature parity among all, so we should 2143 * try to keep these invariants in place for everybody. 2144 */ 2145 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2146 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2147 (VM_PFNMAP|VM_MIXEDMAP)); 2148 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2149 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2150 2151 if (addr < vma->vm_start || addr >= vma->vm_end) 2152 return -EFAULT; 2153 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 2154 return -EINVAL; 2155 2156 ret = insert_pfn(vma, addr, pfn, pgprot); 2157 2158 if (ret) 2159 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 2160 2161 return ret; 2162 } 2163 EXPORT_SYMBOL(vm_insert_pfn); 2164 2165 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2166 unsigned long pfn) 2167 { 2168 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 2169 2170 if (addr < vma->vm_start || addr >= vma->vm_end) 2171 return -EFAULT; 2172 2173 /* 2174 * If we don't have pte special, then we have to use the pfn_valid() 2175 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2176 * refcount the page if pfn_valid is true (hence insert_page rather 2177 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2178 * without pte special, it would there be refcounted as a normal page. 2179 */ 2180 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 2181 struct page *page; 2182 2183 page = pfn_to_page(pfn); 2184 return insert_page(vma, addr, page, vma->vm_page_prot); 2185 } 2186 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 2187 } 2188 EXPORT_SYMBOL(vm_insert_mixed); 2189 2190 /* 2191 * maps a range of physical memory into the requested pages. the old 2192 * mappings are removed. any references to nonexistent pages results 2193 * in null mappings (currently treated as "copy-on-access") 2194 */ 2195 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2196 unsigned long addr, unsigned long end, 2197 unsigned long pfn, pgprot_t prot) 2198 { 2199 pte_t *pte; 2200 spinlock_t *ptl; 2201 2202 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2203 if (!pte) 2204 return -ENOMEM; 2205 arch_enter_lazy_mmu_mode(); 2206 do { 2207 BUG_ON(!pte_none(*pte)); 2208 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2209 pfn++; 2210 } while (pte++, addr += PAGE_SIZE, addr != end); 2211 arch_leave_lazy_mmu_mode(); 2212 pte_unmap_unlock(pte - 1, ptl); 2213 return 0; 2214 } 2215 2216 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2217 unsigned long addr, unsigned long end, 2218 unsigned long pfn, pgprot_t prot) 2219 { 2220 pmd_t *pmd; 2221 unsigned long next; 2222 2223 pfn -= addr >> PAGE_SHIFT; 2224 pmd = pmd_alloc(mm, pud, addr); 2225 if (!pmd) 2226 return -ENOMEM; 2227 VM_BUG_ON(pmd_trans_huge(*pmd)); 2228 do { 2229 next = pmd_addr_end(addr, end); 2230 if (remap_pte_range(mm, pmd, addr, next, 2231 pfn + (addr >> PAGE_SHIFT), prot)) 2232 return -ENOMEM; 2233 } while (pmd++, addr = next, addr != end); 2234 return 0; 2235 } 2236 2237 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 2238 unsigned long addr, unsigned long end, 2239 unsigned long pfn, pgprot_t prot) 2240 { 2241 pud_t *pud; 2242 unsigned long next; 2243 2244 pfn -= addr >> PAGE_SHIFT; 2245 pud = pud_alloc(mm, pgd, addr); 2246 if (!pud) 2247 return -ENOMEM; 2248 do { 2249 next = pud_addr_end(addr, end); 2250 if (remap_pmd_range(mm, pud, addr, next, 2251 pfn + (addr >> PAGE_SHIFT), prot)) 2252 return -ENOMEM; 2253 } while (pud++, addr = next, addr != end); 2254 return 0; 2255 } 2256 2257 /** 2258 * remap_pfn_range - remap kernel memory to userspace 2259 * @vma: user vma to map to 2260 * @addr: target user address to start at 2261 * @pfn: physical address of kernel memory 2262 * @size: size of map area 2263 * @prot: page protection flags for this mapping 2264 * 2265 * Note: this is only safe if the mm semaphore is held when called. 2266 */ 2267 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2268 unsigned long pfn, unsigned long size, pgprot_t prot) 2269 { 2270 pgd_t *pgd; 2271 unsigned long next; 2272 unsigned long end = addr + PAGE_ALIGN(size); 2273 struct mm_struct *mm = vma->vm_mm; 2274 int err; 2275 2276 /* 2277 * Physically remapped pages are special. Tell the 2278 * rest of the world about it: 2279 * VM_IO tells people not to look at these pages 2280 * (accesses can have side effects). 2281 * VM_RESERVED is specified all over the place, because 2282 * in 2.4 it kept swapout's vma scan off this vma; but 2283 * in 2.6 the LRU scan won't even find its pages, so this 2284 * flag means no more than count its pages in reserved_vm, 2285 * and omit it from core dump, even when VM_IO turned off. 2286 * VM_PFNMAP tells the core MM that the base pages are just 2287 * raw PFN mappings, and do not have a "struct page" associated 2288 * with them. 2289 * 2290 * There's a horrible special case to handle copy-on-write 2291 * behaviour that some programs depend on. We mark the "original" 2292 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2293 */ 2294 if (addr == vma->vm_start && end == vma->vm_end) { 2295 vma->vm_pgoff = pfn; 2296 vma->vm_flags |= VM_PFN_AT_MMAP; 2297 } else if (is_cow_mapping(vma->vm_flags)) 2298 return -EINVAL; 2299 2300 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 2301 2302 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 2303 if (err) { 2304 /* 2305 * To indicate that track_pfn related cleanup is not 2306 * needed from higher level routine calling unmap_vmas 2307 */ 2308 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 2309 vma->vm_flags &= ~VM_PFN_AT_MMAP; 2310 return -EINVAL; 2311 } 2312 2313 BUG_ON(addr >= end); 2314 pfn -= addr >> PAGE_SHIFT; 2315 pgd = pgd_offset(mm, addr); 2316 flush_cache_range(vma, addr, end); 2317 do { 2318 next = pgd_addr_end(addr, end); 2319 err = remap_pud_range(mm, pgd, addr, next, 2320 pfn + (addr >> PAGE_SHIFT), prot); 2321 if (err) 2322 break; 2323 } while (pgd++, addr = next, addr != end); 2324 2325 if (err) 2326 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 2327 2328 return err; 2329 } 2330 EXPORT_SYMBOL(remap_pfn_range); 2331 2332 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2333 unsigned long addr, unsigned long end, 2334 pte_fn_t fn, void *data) 2335 { 2336 pte_t *pte; 2337 int err; 2338 pgtable_t token; 2339 spinlock_t *uninitialized_var(ptl); 2340 2341 pte = (mm == &init_mm) ? 2342 pte_alloc_kernel(pmd, addr) : 2343 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2344 if (!pte) 2345 return -ENOMEM; 2346 2347 BUG_ON(pmd_huge(*pmd)); 2348 2349 arch_enter_lazy_mmu_mode(); 2350 2351 token = pmd_pgtable(*pmd); 2352 2353 do { 2354 err = fn(pte++, token, addr, data); 2355 if (err) 2356 break; 2357 } while (addr += PAGE_SIZE, addr != end); 2358 2359 arch_leave_lazy_mmu_mode(); 2360 2361 if (mm != &init_mm) 2362 pte_unmap_unlock(pte-1, ptl); 2363 return err; 2364 } 2365 2366 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2367 unsigned long addr, unsigned long end, 2368 pte_fn_t fn, void *data) 2369 { 2370 pmd_t *pmd; 2371 unsigned long next; 2372 int err; 2373 2374 BUG_ON(pud_huge(*pud)); 2375 2376 pmd = pmd_alloc(mm, pud, addr); 2377 if (!pmd) 2378 return -ENOMEM; 2379 do { 2380 next = pmd_addr_end(addr, end); 2381 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2382 if (err) 2383 break; 2384 } while (pmd++, addr = next, addr != end); 2385 return err; 2386 } 2387 2388 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2389 unsigned long addr, unsigned long end, 2390 pte_fn_t fn, void *data) 2391 { 2392 pud_t *pud; 2393 unsigned long next; 2394 int err; 2395 2396 pud = pud_alloc(mm, pgd, addr); 2397 if (!pud) 2398 return -ENOMEM; 2399 do { 2400 next = pud_addr_end(addr, end); 2401 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2402 if (err) 2403 break; 2404 } while (pud++, addr = next, addr != end); 2405 return err; 2406 } 2407 2408 /* 2409 * Scan a region of virtual memory, filling in page tables as necessary 2410 * and calling a provided function on each leaf page table. 2411 */ 2412 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2413 unsigned long size, pte_fn_t fn, void *data) 2414 { 2415 pgd_t *pgd; 2416 unsigned long next; 2417 unsigned long end = addr + size; 2418 int err; 2419 2420 BUG_ON(addr >= end); 2421 pgd = pgd_offset(mm, addr); 2422 do { 2423 next = pgd_addr_end(addr, end); 2424 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2425 if (err) 2426 break; 2427 } while (pgd++, addr = next, addr != end); 2428 2429 return err; 2430 } 2431 EXPORT_SYMBOL_GPL(apply_to_page_range); 2432 2433 /* 2434 * handle_pte_fault chooses page fault handler according to an entry 2435 * which was read non-atomically. Before making any commitment, on 2436 * those architectures or configurations (e.g. i386 with PAE) which 2437 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2438 * must check under lock before unmapping the pte and proceeding 2439 * (but do_wp_page is only called after already making such a check; 2440 * and do_anonymous_page can safely check later on). 2441 */ 2442 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2443 pte_t *page_table, pte_t orig_pte) 2444 { 2445 int same = 1; 2446 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2447 if (sizeof(pte_t) > sizeof(unsigned long)) { 2448 spinlock_t *ptl = pte_lockptr(mm, pmd); 2449 spin_lock(ptl); 2450 same = pte_same(*page_table, orig_pte); 2451 spin_unlock(ptl); 2452 } 2453 #endif 2454 pte_unmap(page_table); 2455 return same; 2456 } 2457 2458 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2459 { 2460 /* 2461 * If the source page was a PFN mapping, we don't have 2462 * a "struct page" for it. We do a best-effort copy by 2463 * just copying from the original user address. If that 2464 * fails, we just zero-fill it. Live with it. 2465 */ 2466 if (unlikely(!src)) { 2467 void *kaddr = kmap_atomic(dst); 2468 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2469 2470 /* 2471 * This really shouldn't fail, because the page is there 2472 * in the page tables. But it might just be unreadable, 2473 * in which case we just give up and fill the result with 2474 * zeroes. 2475 */ 2476 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2477 clear_page(kaddr); 2478 kunmap_atomic(kaddr); 2479 flush_dcache_page(dst); 2480 } else 2481 copy_user_highpage(dst, src, va, vma); 2482 } 2483 2484 /* 2485 * This routine handles present pages, when users try to write 2486 * to a shared page. It is done by copying the page to a new address 2487 * and decrementing the shared-page counter for the old page. 2488 * 2489 * Note that this routine assumes that the protection checks have been 2490 * done by the caller (the low-level page fault routine in most cases). 2491 * Thus we can safely just mark it writable once we've done any necessary 2492 * COW. 2493 * 2494 * We also mark the page dirty at this point even though the page will 2495 * change only once the write actually happens. This avoids a few races, 2496 * and potentially makes it more efficient. 2497 * 2498 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2499 * but allow concurrent faults), with pte both mapped and locked. 2500 * We return with mmap_sem still held, but pte unmapped and unlocked. 2501 */ 2502 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2503 unsigned long address, pte_t *page_table, pmd_t *pmd, 2504 spinlock_t *ptl, pte_t orig_pte) 2505 __releases(ptl) 2506 { 2507 struct page *old_page, *new_page; 2508 pte_t entry; 2509 int ret = 0; 2510 int page_mkwrite = 0; 2511 struct page *dirty_page = NULL; 2512 2513 old_page = vm_normal_page(vma, address, orig_pte); 2514 if (!old_page) { 2515 /* 2516 * VM_MIXEDMAP !pfn_valid() case 2517 * 2518 * We should not cow pages in a shared writeable mapping. 2519 * Just mark the pages writable as we can't do any dirty 2520 * accounting on raw pfn maps. 2521 */ 2522 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2523 (VM_WRITE|VM_SHARED)) 2524 goto reuse; 2525 goto gotten; 2526 } 2527 2528 /* 2529 * Take out anonymous pages first, anonymous shared vmas are 2530 * not dirty accountable. 2531 */ 2532 if (PageAnon(old_page) && !PageKsm(old_page)) { 2533 if (!trylock_page(old_page)) { 2534 page_cache_get(old_page); 2535 pte_unmap_unlock(page_table, ptl); 2536 lock_page(old_page); 2537 page_table = pte_offset_map_lock(mm, pmd, address, 2538 &ptl); 2539 if (!pte_same(*page_table, orig_pte)) { 2540 unlock_page(old_page); 2541 goto unlock; 2542 } 2543 page_cache_release(old_page); 2544 } 2545 if (reuse_swap_page(old_page)) { 2546 /* 2547 * The page is all ours. Move it to our anon_vma so 2548 * the rmap code will not search our parent or siblings. 2549 * Protected against the rmap code by the page lock. 2550 */ 2551 page_move_anon_rmap(old_page, vma, address); 2552 unlock_page(old_page); 2553 goto reuse; 2554 } 2555 unlock_page(old_page); 2556 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2557 (VM_WRITE|VM_SHARED))) { 2558 /* 2559 * Only catch write-faults on shared writable pages, 2560 * read-only shared pages can get COWed by 2561 * get_user_pages(.write=1, .force=1). 2562 */ 2563 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2564 struct vm_fault vmf; 2565 int tmp; 2566 2567 vmf.virtual_address = (void __user *)(address & 2568 PAGE_MASK); 2569 vmf.pgoff = old_page->index; 2570 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2571 vmf.page = old_page; 2572 2573 /* 2574 * Notify the address space that the page is about to 2575 * become writable so that it can prohibit this or wait 2576 * for the page to get into an appropriate state. 2577 * 2578 * We do this without the lock held, so that it can 2579 * sleep if it needs to. 2580 */ 2581 page_cache_get(old_page); 2582 pte_unmap_unlock(page_table, ptl); 2583 2584 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2585 if (unlikely(tmp & 2586 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2587 ret = tmp; 2588 goto unwritable_page; 2589 } 2590 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2591 lock_page(old_page); 2592 if (!old_page->mapping) { 2593 ret = 0; /* retry the fault */ 2594 unlock_page(old_page); 2595 goto unwritable_page; 2596 } 2597 } else 2598 VM_BUG_ON(!PageLocked(old_page)); 2599 2600 /* 2601 * Since we dropped the lock we need to revalidate 2602 * the PTE as someone else may have changed it. If 2603 * they did, we just return, as we can count on the 2604 * MMU to tell us if they didn't also make it writable. 2605 */ 2606 page_table = pte_offset_map_lock(mm, pmd, address, 2607 &ptl); 2608 if (!pte_same(*page_table, orig_pte)) { 2609 unlock_page(old_page); 2610 goto unlock; 2611 } 2612 2613 page_mkwrite = 1; 2614 } 2615 dirty_page = old_page; 2616 get_page(dirty_page); 2617 2618 reuse: 2619 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2620 entry = pte_mkyoung(orig_pte); 2621 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2622 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2623 update_mmu_cache(vma, address, page_table); 2624 pte_unmap_unlock(page_table, ptl); 2625 ret |= VM_FAULT_WRITE; 2626 2627 if (!dirty_page) 2628 return ret; 2629 2630 /* 2631 * Yes, Virginia, this is actually required to prevent a race 2632 * with clear_page_dirty_for_io() from clearing the page dirty 2633 * bit after it clear all dirty ptes, but before a racing 2634 * do_wp_page installs a dirty pte. 2635 * 2636 * __do_fault is protected similarly. 2637 */ 2638 if (!page_mkwrite) { 2639 wait_on_page_locked(dirty_page); 2640 set_page_dirty_balance(dirty_page, page_mkwrite); 2641 } 2642 put_page(dirty_page); 2643 if (page_mkwrite) { 2644 struct address_space *mapping = dirty_page->mapping; 2645 2646 set_page_dirty(dirty_page); 2647 unlock_page(dirty_page); 2648 page_cache_release(dirty_page); 2649 if (mapping) { 2650 /* 2651 * Some device drivers do not set page.mapping 2652 * but still dirty their pages 2653 */ 2654 balance_dirty_pages_ratelimited(mapping); 2655 } 2656 } 2657 2658 /* file_update_time outside page_lock */ 2659 if (vma->vm_file) 2660 file_update_time(vma->vm_file); 2661 2662 return ret; 2663 } 2664 2665 /* 2666 * Ok, we need to copy. Oh, well.. 2667 */ 2668 page_cache_get(old_page); 2669 gotten: 2670 pte_unmap_unlock(page_table, ptl); 2671 2672 if (unlikely(anon_vma_prepare(vma))) 2673 goto oom; 2674 2675 if (is_zero_pfn(pte_pfn(orig_pte))) { 2676 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2677 if (!new_page) 2678 goto oom; 2679 } else { 2680 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2681 if (!new_page) 2682 goto oom; 2683 cow_user_page(new_page, old_page, address, vma); 2684 } 2685 __SetPageUptodate(new_page); 2686 2687 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2688 goto oom_free_new; 2689 2690 /* 2691 * Re-check the pte - we dropped the lock 2692 */ 2693 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2694 if (likely(pte_same(*page_table, orig_pte))) { 2695 if (old_page) { 2696 if (!PageAnon(old_page)) { 2697 dec_mm_counter_fast(mm, MM_FILEPAGES); 2698 inc_mm_counter_fast(mm, MM_ANONPAGES); 2699 } 2700 } else 2701 inc_mm_counter_fast(mm, MM_ANONPAGES); 2702 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2703 entry = mk_pte(new_page, vma->vm_page_prot); 2704 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2705 /* 2706 * Clear the pte entry and flush it first, before updating the 2707 * pte with the new entry. This will avoid a race condition 2708 * seen in the presence of one thread doing SMC and another 2709 * thread doing COW. 2710 */ 2711 ptep_clear_flush(vma, address, page_table); 2712 page_add_new_anon_rmap(new_page, vma, address); 2713 /* 2714 * We call the notify macro here because, when using secondary 2715 * mmu page tables (such as kvm shadow page tables), we want the 2716 * new page to be mapped directly into the secondary page table. 2717 */ 2718 set_pte_at_notify(mm, address, page_table, entry); 2719 update_mmu_cache(vma, address, page_table); 2720 if (old_page) { 2721 /* 2722 * Only after switching the pte to the new page may 2723 * we remove the mapcount here. Otherwise another 2724 * process may come and find the rmap count decremented 2725 * before the pte is switched to the new page, and 2726 * "reuse" the old page writing into it while our pte 2727 * here still points into it and can be read by other 2728 * threads. 2729 * 2730 * The critical issue is to order this 2731 * page_remove_rmap with the ptp_clear_flush above. 2732 * Those stores are ordered by (if nothing else,) 2733 * the barrier present in the atomic_add_negative 2734 * in page_remove_rmap. 2735 * 2736 * Then the TLB flush in ptep_clear_flush ensures that 2737 * no process can access the old page before the 2738 * decremented mapcount is visible. And the old page 2739 * cannot be reused until after the decremented 2740 * mapcount is visible. So transitively, TLBs to 2741 * old page will be flushed before it can be reused. 2742 */ 2743 page_remove_rmap(old_page); 2744 } 2745 2746 /* Free the old page.. */ 2747 new_page = old_page; 2748 ret |= VM_FAULT_WRITE; 2749 } else 2750 mem_cgroup_uncharge_page(new_page); 2751 2752 if (new_page) 2753 page_cache_release(new_page); 2754 unlock: 2755 pte_unmap_unlock(page_table, ptl); 2756 if (old_page) { 2757 /* 2758 * Don't let another task, with possibly unlocked vma, 2759 * keep the mlocked page. 2760 */ 2761 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2762 lock_page(old_page); /* LRU manipulation */ 2763 munlock_vma_page(old_page); 2764 unlock_page(old_page); 2765 } 2766 page_cache_release(old_page); 2767 } 2768 return ret; 2769 oom_free_new: 2770 page_cache_release(new_page); 2771 oom: 2772 if (old_page) { 2773 if (page_mkwrite) { 2774 unlock_page(old_page); 2775 page_cache_release(old_page); 2776 } 2777 page_cache_release(old_page); 2778 } 2779 return VM_FAULT_OOM; 2780 2781 unwritable_page: 2782 page_cache_release(old_page); 2783 return ret; 2784 } 2785 2786 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2787 unsigned long start_addr, unsigned long end_addr, 2788 struct zap_details *details) 2789 { 2790 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2791 } 2792 2793 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2794 struct zap_details *details) 2795 { 2796 struct vm_area_struct *vma; 2797 struct prio_tree_iter iter; 2798 pgoff_t vba, vea, zba, zea; 2799 2800 vma_prio_tree_foreach(vma, &iter, root, 2801 details->first_index, details->last_index) { 2802 2803 vba = vma->vm_pgoff; 2804 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2805 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2806 zba = details->first_index; 2807 if (zba < vba) 2808 zba = vba; 2809 zea = details->last_index; 2810 if (zea > vea) 2811 zea = vea; 2812 2813 unmap_mapping_range_vma(vma, 2814 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2815 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2816 details); 2817 } 2818 } 2819 2820 static inline void unmap_mapping_range_list(struct list_head *head, 2821 struct zap_details *details) 2822 { 2823 struct vm_area_struct *vma; 2824 2825 /* 2826 * In nonlinear VMAs there is no correspondence between virtual address 2827 * offset and file offset. So we must perform an exhaustive search 2828 * across *all* the pages in each nonlinear VMA, not just the pages 2829 * whose virtual address lies outside the file truncation point. 2830 */ 2831 list_for_each_entry(vma, head, shared.vm_set.list) { 2832 details->nonlinear_vma = vma; 2833 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2834 } 2835 } 2836 2837 /** 2838 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2839 * @mapping: the address space containing mmaps to be unmapped. 2840 * @holebegin: byte in first page to unmap, relative to the start of 2841 * the underlying file. This will be rounded down to a PAGE_SIZE 2842 * boundary. Note that this is different from truncate_pagecache(), which 2843 * must keep the partial page. In contrast, we must get rid of 2844 * partial pages. 2845 * @holelen: size of prospective hole in bytes. This will be rounded 2846 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2847 * end of the file. 2848 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2849 * but 0 when invalidating pagecache, don't throw away private data. 2850 */ 2851 void unmap_mapping_range(struct address_space *mapping, 2852 loff_t const holebegin, loff_t const holelen, int even_cows) 2853 { 2854 struct zap_details details; 2855 pgoff_t hba = holebegin >> PAGE_SHIFT; 2856 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2857 2858 /* Check for overflow. */ 2859 if (sizeof(holelen) > sizeof(hlen)) { 2860 long long holeend = 2861 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2862 if (holeend & ~(long long)ULONG_MAX) 2863 hlen = ULONG_MAX - hba + 1; 2864 } 2865 2866 details.check_mapping = even_cows? NULL: mapping; 2867 details.nonlinear_vma = NULL; 2868 details.first_index = hba; 2869 details.last_index = hba + hlen - 1; 2870 if (details.last_index < details.first_index) 2871 details.last_index = ULONG_MAX; 2872 2873 2874 mutex_lock(&mapping->i_mmap_mutex); 2875 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2876 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2877 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2878 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2879 mutex_unlock(&mapping->i_mmap_mutex); 2880 } 2881 EXPORT_SYMBOL(unmap_mapping_range); 2882 2883 /* 2884 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2885 * but allow concurrent faults), and pte mapped but not yet locked. 2886 * We return with mmap_sem still held, but pte unmapped and unlocked. 2887 */ 2888 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2889 unsigned long address, pte_t *page_table, pmd_t *pmd, 2890 unsigned int flags, pte_t orig_pte) 2891 { 2892 spinlock_t *ptl; 2893 struct page *page, *swapcache = NULL; 2894 swp_entry_t entry; 2895 pte_t pte; 2896 int locked; 2897 struct mem_cgroup *ptr; 2898 int exclusive = 0; 2899 int ret = 0; 2900 2901 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2902 goto out; 2903 2904 entry = pte_to_swp_entry(orig_pte); 2905 if (unlikely(non_swap_entry(entry))) { 2906 if (is_migration_entry(entry)) { 2907 migration_entry_wait(mm, pmd, address); 2908 } else if (is_hwpoison_entry(entry)) { 2909 ret = VM_FAULT_HWPOISON; 2910 } else { 2911 print_bad_pte(vma, address, orig_pte, NULL); 2912 ret = VM_FAULT_SIGBUS; 2913 } 2914 goto out; 2915 } 2916 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2917 page = lookup_swap_cache(entry); 2918 if (!page) { 2919 page = swapin_readahead(entry, 2920 GFP_HIGHUSER_MOVABLE, vma, address); 2921 if (!page) { 2922 /* 2923 * Back out if somebody else faulted in this pte 2924 * while we released the pte lock. 2925 */ 2926 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2927 if (likely(pte_same(*page_table, orig_pte))) 2928 ret = VM_FAULT_OOM; 2929 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2930 goto unlock; 2931 } 2932 2933 /* Had to read the page from swap area: Major fault */ 2934 ret = VM_FAULT_MAJOR; 2935 count_vm_event(PGMAJFAULT); 2936 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2937 } else if (PageHWPoison(page)) { 2938 /* 2939 * hwpoisoned dirty swapcache pages are kept for killing 2940 * owner processes (which may be unknown at hwpoison time) 2941 */ 2942 ret = VM_FAULT_HWPOISON; 2943 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2944 goto out_release; 2945 } 2946 2947 locked = lock_page_or_retry(page, mm, flags); 2948 2949 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2950 if (!locked) { 2951 ret |= VM_FAULT_RETRY; 2952 goto out_release; 2953 } 2954 2955 /* 2956 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2957 * release the swapcache from under us. The page pin, and pte_same 2958 * test below, are not enough to exclude that. Even if it is still 2959 * swapcache, we need to check that the page's swap has not changed. 2960 */ 2961 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2962 goto out_page; 2963 2964 if (ksm_might_need_to_copy(page, vma, address)) { 2965 swapcache = page; 2966 page = ksm_does_need_to_copy(page, vma, address); 2967 2968 if (unlikely(!page)) { 2969 ret = VM_FAULT_OOM; 2970 page = swapcache; 2971 swapcache = NULL; 2972 goto out_page; 2973 } 2974 } 2975 2976 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2977 ret = VM_FAULT_OOM; 2978 goto out_page; 2979 } 2980 2981 /* 2982 * Back out if somebody else already faulted in this pte. 2983 */ 2984 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2985 if (unlikely(!pte_same(*page_table, orig_pte))) 2986 goto out_nomap; 2987 2988 if (unlikely(!PageUptodate(page))) { 2989 ret = VM_FAULT_SIGBUS; 2990 goto out_nomap; 2991 } 2992 2993 /* 2994 * The page isn't present yet, go ahead with the fault. 2995 * 2996 * Be careful about the sequence of operations here. 2997 * To get its accounting right, reuse_swap_page() must be called 2998 * while the page is counted on swap but not yet in mapcount i.e. 2999 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3000 * must be called after the swap_free(), or it will never succeed. 3001 * Because delete_from_swap_page() may be called by reuse_swap_page(), 3002 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 3003 * in page->private. In this case, a record in swap_cgroup is silently 3004 * discarded at swap_free(). 3005 */ 3006 3007 inc_mm_counter_fast(mm, MM_ANONPAGES); 3008 dec_mm_counter_fast(mm, MM_SWAPENTS); 3009 pte = mk_pte(page, vma->vm_page_prot); 3010 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 3011 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3012 flags &= ~FAULT_FLAG_WRITE; 3013 ret |= VM_FAULT_WRITE; 3014 exclusive = 1; 3015 } 3016 flush_icache_page(vma, page); 3017 set_pte_at(mm, address, page_table, pte); 3018 do_page_add_anon_rmap(page, vma, address, exclusive); 3019 /* It's better to call commit-charge after rmap is established */ 3020 mem_cgroup_commit_charge_swapin(page, ptr); 3021 3022 swap_free(entry); 3023 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3024 try_to_free_swap(page); 3025 unlock_page(page); 3026 if (swapcache) { 3027 /* 3028 * Hold the lock to avoid the swap entry to be reused 3029 * until we take the PT lock for the pte_same() check 3030 * (to avoid false positives from pte_same). For 3031 * further safety release the lock after the swap_free 3032 * so that the swap count won't change under a 3033 * parallel locked swapcache. 3034 */ 3035 unlock_page(swapcache); 3036 page_cache_release(swapcache); 3037 } 3038 3039 if (flags & FAULT_FLAG_WRITE) { 3040 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 3041 if (ret & VM_FAULT_ERROR) 3042 ret &= VM_FAULT_ERROR; 3043 goto out; 3044 } 3045 3046 /* No need to invalidate - it was non-present before */ 3047 update_mmu_cache(vma, address, page_table); 3048 unlock: 3049 pte_unmap_unlock(page_table, ptl); 3050 out: 3051 return ret; 3052 out_nomap: 3053 mem_cgroup_cancel_charge_swapin(ptr); 3054 pte_unmap_unlock(page_table, ptl); 3055 out_page: 3056 unlock_page(page); 3057 out_release: 3058 page_cache_release(page); 3059 if (swapcache) { 3060 unlock_page(swapcache); 3061 page_cache_release(swapcache); 3062 } 3063 return ret; 3064 } 3065 3066 /* 3067 * This is like a special single-page "expand_{down|up}wards()", 3068 * except we must first make sure that 'address{-|+}PAGE_SIZE' 3069 * doesn't hit another vma. 3070 */ 3071 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 3072 { 3073 address &= PAGE_MASK; 3074 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 3075 struct vm_area_struct *prev = vma->vm_prev; 3076 3077 /* 3078 * Is there a mapping abutting this one below? 3079 * 3080 * That's only ok if it's the same stack mapping 3081 * that has gotten split.. 3082 */ 3083 if (prev && prev->vm_end == address) 3084 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 3085 3086 expand_downwards(vma, address - PAGE_SIZE); 3087 } 3088 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 3089 struct vm_area_struct *next = vma->vm_next; 3090 3091 /* As VM_GROWSDOWN but s/below/above/ */ 3092 if (next && next->vm_start == address + PAGE_SIZE) 3093 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 3094 3095 expand_upwards(vma, address + PAGE_SIZE); 3096 } 3097 return 0; 3098 } 3099 3100 /* 3101 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3102 * but allow concurrent faults), and pte mapped but not yet locked. 3103 * We return with mmap_sem still held, but pte unmapped and unlocked. 3104 */ 3105 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 3106 unsigned long address, pte_t *page_table, pmd_t *pmd, 3107 unsigned int flags) 3108 { 3109 struct page *page; 3110 spinlock_t *ptl; 3111 pte_t entry; 3112 3113 pte_unmap(page_table); 3114 3115 /* Check if we need to add a guard page to the stack */ 3116 if (check_stack_guard_page(vma, address) < 0) 3117 return VM_FAULT_SIGBUS; 3118 3119 /* Use the zero-page for reads */ 3120 if (!(flags & FAULT_FLAG_WRITE)) { 3121 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3122 vma->vm_page_prot)); 3123 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3124 if (!pte_none(*page_table)) 3125 goto unlock; 3126 goto setpte; 3127 } 3128 3129 /* Allocate our own private page. */ 3130 if (unlikely(anon_vma_prepare(vma))) 3131 goto oom; 3132 page = alloc_zeroed_user_highpage_movable(vma, address); 3133 if (!page) 3134 goto oom; 3135 __SetPageUptodate(page); 3136 3137 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3138 goto oom_free_page; 3139 3140 entry = mk_pte(page, vma->vm_page_prot); 3141 if (vma->vm_flags & VM_WRITE) 3142 entry = pte_mkwrite(pte_mkdirty(entry)); 3143 3144 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3145 if (!pte_none(*page_table)) 3146 goto release; 3147 3148 inc_mm_counter_fast(mm, MM_ANONPAGES); 3149 page_add_new_anon_rmap(page, vma, address); 3150 setpte: 3151 set_pte_at(mm, address, page_table, entry); 3152 3153 /* No need to invalidate - it was non-present before */ 3154 update_mmu_cache(vma, address, page_table); 3155 unlock: 3156 pte_unmap_unlock(page_table, ptl); 3157 return 0; 3158 release: 3159 mem_cgroup_uncharge_page(page); 3160 page_cache_release(page); 3161 goto unlock; 3162 oom_free_page: 3163 page_cache_release(page); 3164 oom: 3165 return VM_FAULT_OOM; 3166 } 3167 3168 /* 3169 * __do_fault() tries to create a new page mapping. It aggressively 3170 * tries to share with existing pages, but makes a separate copy if 3171 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3172 * the next page fault. 3173 * 3174 * As this is called only for pages that do not currently exist, we 3175 * do not need to flush old virtual caches or the TLB. 3176 * 3177 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3178 * but allow concurrent faults), and pte neither mapped nor locked. 3179 * We return with mmap_sem still held, but pte unmapped and unlocked. 3180 */ 3181 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3182 unsigned long address, pmd_t *pmd, 3183 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3184 { 3185 pte_t *page_table; 3186 spinlock_t *ptl; 3187 struct page *page; 3188 struct page *cow_page; 3189 pte_t entry; 3190 int anon = 0; 3191 struct page *dirty_page = NULL; 3192 struct vm_fault vmf; 3193 int ret; 3194 int page_mkwrite = 0; 3195 3196 /* 3197 * If we do COW later, allocate page befor taking lock_page() 3198 * on the file cache page. This will reduce lock holding time. 3199 */ 3200 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3201 3202 if (unlikely(anon_vma_prepare(vma))) 3203 return VM_FAULT_OOM; 3204 3205 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3206 if (!cow_page) 3207 return VM_FAULT_OOM; 3208 3209 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) { 3210 page_cache_release(cow_page); 3211 return VM_FAULT_OOM; 3212 } 3213 } else 3214 cow_page = NULL; 3215 3216 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3217 vmf.pgoff = pgoff; 3218 vmf.flags = flags; 3219 vmf.page = NULL; 3220 3221 ret = vma->vm_ops->fault(vma, &vmf); 3222 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3223 VM_FAULT_RETRY))) 3224 goto uncharge_out; 3225 3226 if (unlikely(PageHWPoison(vmf.page))) { 3227 if (ret & VM_FAULT_LOCKED) 3228 unlock_page(vmf.page); 3229 ret = VM_FAULT_HWPOISON; 3230 goto uncharge_out; 3231 } 3232 3233 /* 3234 * For consistency in subsequent calls, make the faulted page always 3235 * locked. 3236 */ 3237 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3238 lock_page(vmf.page); 3239 else 3240 VM_BUG_ON(!PageLocked(vmf.page)); 3241 3242 /* 3243 * Should we do an early C-O-W break? 3244 */ 3245 page = vmf.page; 3246 if (flags & FAULT_FLAG_WRITE) { 3247 if (!(vma->vm_flags & VM_SHARED)) { 3248 page = cow_page; 3249 anon = 1; 3250 copy_user_highpage(page, vmf.page, address, vma); 3251 __SetPageUptodate(page); 3252 } else { 3253 /* 3254 * If the page will be shareable, see if the backing 3255 * address space wants to know that the page is about 3256 * to become writable 3257 */ 3258 if (vma->vm_ops->page_mkwrite) { 3259 int tmp; 3260 3261 unlock_page(page); 3262 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3263 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3264 if (unlikely(tmp & 3265 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3266 ret = tmp; 3267 goto unwritable_page; 3268 } 3269 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3270 lock_page(page); 3271 if (!page->mapping) { 3272 ret = 0; /* retry the fault */ 3273 unlock_page(page); 3274 goto unwritable_page; 3275 } 3276 } else 3277 VM_BUG_ON(!PageLocked(page)); 3278 page_mkwrite = 1; 3279 } 3280 } 3281 3282 } 3283 3284 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3285 3286 /* 3287 * This silly early PAGE_DIRTY setting removes a race 3288 * due to the bad i386 page protection. But it's valid 3289 * for other architectures too. 3290 * 3291 * Note that if FAULT_FLAG_WRITE is set, we either now have 3292 * an exclusive copy of the page, or this is a shared mapping, 3293 * so we can make it writable and dirty to avoid having to 3294 * handle that later. 3295 */ 3296 /* Only go through if we didn't race with anybody else... */ 3297 if (likely(pte_same(*page_table, orig_pte))) { 3298 flush_icache_page(vma, page); 3299 entry = mk_pte(page, vma->vm_page_prot); 3300 if (flags & FAULT_FLAG_WRITE) 3301 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3302 if (anon) { 3303 inc_mm_counter_fast(mm, MM_ANONPAGES); 3304 page_add_new_anon_rmap(page, vma, address); 3305 } else { 3306 inc_mm_counter_fast(mm, MM_FILEPAGES); 3307 page_add_file_rmap(page); 3308 if (flags & FAULT_FLAG_WRITE) { 3309 dirty_page = page; 3310 get_page(dirty_page); 3311 } 3312 } 3313 set_pte_at(mm, address, page_table, entry); 3314 3315 /* no need to invalidate: a not-present page won't be cached */ 3316 update_mmu_cache(vma, address, page_table); 3317 } else { 3318 if (cow_page) 3319 mem_cgroup_uncharge_page(cow_page); 3320 if (anon) 3321 page_cache_release(page); 3322 else 3323 anon = 1; /* no anon but release faulted_page */ 3324 } 3325 3326 pte_unmap_unlock(page_table, ptl); 3327 3328 if (dirty_page) { 3329 struct address_space *mapping = page->mapping; 3330 3331 if (set_page_dirty(dirty_page)) 3332 page_mkwrite = 1; 3333 unlock_page(dirty_page); 3334 put_page(dirty_page); 3335 if (page_mkwrite && mapping) { 3336 /* 3337 * Some device drivers do not set page.mapping but still 3338 * dirty their pages 3339 */ 3340 balance_dirty_pages_ratelimited(mapping); 3341 } 3342 3343 /* file_update_time outside page_lock */ 3344 if (vma->vm_file) 3345 file_update_time(vma->vm_file); 3346 } else { 3347 unlock_page(vmf.page); 3348 if (anon) 3349 page_cache_release(vmf.page); 3350 } 3351 3352 return ret; 3353 3354 unwritable_page: 3355 page_cache_release(page); 3356 return ret; 3357 uncharge_out: 3358 /* fs's fault handler get error */ 3359 if (cow_page) { 3360 mem_cgroup_uncharge_page(cow_page); 3361 page_cache_release(cow_page); 3362 } 3363 return ret; 3364 } 3365 3366 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3367 unsigned long address, pte_t *page_table, pmd_t *pmd, 3368 unsigned int flags, pte_t orig_pte) 3369 { 3370 pgoff_t pgoff = (((address & PAGE_MASK) 3371 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3372 3373 pte_unmap(page_table); 3374 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3375 } 3376 3377 /* 3378 * Fault of a previously existing named mapping. Repopulate the pte 3379 * from the encoded file_pte if possible. This enables swappable 3380 * nonlinear vmas. 3381 * 3382 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3383 * but allow concurrent faults), and pte mapped but not yet locked. 3384 * We return with mmap_sem still held, but pte unmapped and unlocked. 3385 */ 3386 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3387 unsigned long address, pte_t *page_table, pmd_t *pmd, 3388 unsigned int flags, pte_t orig_pte) 3389 { 3390 pgoff_t pgoff; 3391 3392 flags |= FAULT_FLAG_NONLINEAR; 3393 3394 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3395 return 0; 3396 3397 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3398 /* 3399 * Page table corrupted: show pte and kill process. 3400 */ 3401 print_bad_pte(vma, address, orig_pte, NULL); 3402 return VM_FAULT_SIGBUS; 3403 } 3404 3405 pgoff = pte_to_pgoff(orig_pte); 3406 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3407 } 3408 3409 /* 3410 * These routines also need to handle stuff like marking pages dirty 3411 * and/or accessed for architectures that don't do it in hardware (most 3412 * RISC architectures). The early dirtying is also good on the i386. 3413 * 3414 * There is also a hook called "update_mmu_cache()" that architectures 3415 * with external mmu caches can use to update those (ie the Sparc or 3416 * PowerPC hashed page tables that act as extended TLBs). 3417 * 3418 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3419 * but allow concurrent faults), and pte mapped but not yet locked. 3420 * We return with mmap_sem still held, but pte unmapped and unlocked. 3421 */ 3422 int handle_pte_fault(struct mm_struct *mm, 3423 struct vm_area_struct *vma, unsigned long address, 3424 pte_t *pte, pmd_t *pmd, unsigned int flags) 3425 { 3426 pte_t entry; 3427 spinlock_t *ptl; 3428 3429 entry = *pte; 3430 if (!pte_present(entry)) { 3431 if (pte_none(entry)) { 3432 if (vma->vm_ops) { 3433 if (likely(vma->vm_ops->fault)) 3434 return do_linear_fault(mm, vma, address, 3435 pte, pmd, flags, entry); 3436 } 3437 return do_anonymous_page(mm, vma, address, 3438 pte, pmd, flags); 3439 } 3440 if (pte_file(entry)) 3441 return do_nonlinear_fault(mm, vma, address, 3442 pte, pmd, flags, entry); 3443 return do_swap_page(mm, vma, address, 3444 pte, pmd, flags, entry); 3445 } 3446 3447 ptl = pte_lockptr(mm, pmd); 3448 spin_lock(ptl); 3449 if (unlikely(!pte_same(*pte, entry))) 3450 goto unlock; 3451 if (flags & FAULT_FLAG_WRITE) { 3452 if (!pte_write(entry)) 3453 return do_wp_page(mm, vma, address, 3454 pte, pmd, ptl, entry); 3455 entry = pte_mkdirty(entry); 3456 } 3457 entry = pte_mkyoung(entry); 3458 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3459 update_mmu_cache(vma, address, pte); 3460 } else { 3461 /* 3462 * This is needed only for protection faults but the arch code 3463 * is not yet telling us if this is a protection fault or not. 3464 * This still avoids useless tlb flushes for .text page faults 3465 * with threads. 3466 */ 3467 if (flags & FAULT_FLAG_WRITE) 3468 flush_tlb_fix_spurious_fault(vma, address); 3469 } 3470 unlock: 3471 pte_unmap_unlock(pte, ptl); 3472 return 0; 3473 } 3474 3475 /* 3476 * By the time we get here, we already hold the mm semaphore 3477 */ 3478 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3479 unsigned long address, unsigned int flags) 3480 { 3481 pgd_t *pgd; 3482 pud_t *pud; 3483 pmd_t *pmd; 3484 pte_t *pte; 3485 3486 __set_current_state(TASK_RUNNING); 3487 3488 count_vm_event(PGFAULT); 3489 mem_cgroup_count_vm_event(mm, PGFAULT); 3490 3491 /* do counter updates before entering really critical section. */ 3492 check_sync_rss_stat(current); 3493 3494 if (unlikely(is_vm_hugetlb_page(vma))) 3495 return hugetlb_fault(mm, vma, address, flags); 3496 3497 retry: 3498 pgd = pgd_offset(mm, address); 3499 pud = pud_alloc(mm, pgd, address); 3500 if (!pud) 3501 return VM_FAULT_OOM; 3502 pmd = pmd_alloc(mm, pud, address); 3503 if (!pmd) 3504 return VM_FAULT_OOM; 3505 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3506 if (!vma->vm_ops) 3507 return do_huge_pmd_anonymous_page(mm, vma, address, 3508 pmd, flags); 3509 } else { 3510 pmd_t orig_pmd = *pmd; 3511 int ret; 3512 3513 barrier(); 3514 if (pmd_trans_huge(orig_pmd)) { 3515 if (flags & FAULT_FLAG_WRITE && 3516 !pmd_write(orig_pmd) && 3517 !pmd_trans_splitting(orig_pmd)) { 3518 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3519 orig_pmd); 3520 /* 3521 * If COW results in an oom, the huge pmd will 3522 * have been split, so retry the fault on the 3523 * pte for a smaller charge. 3524 */ 3525 if (unlikely(ret & VM_FAULT_OOM)) 3526 goto retry; 3527 return ret; 3528 } 3529 return 0; 3530 } 3531 } 3532 3533 /* 3534 * Use __pte_alloc instead of pte_alloc_map, because we can't 3535 * run pte_offset_map on the pmd, if an huge pmd could 3536 * materialize from under us from a different thread. 3537 */ 3538 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address)) 3539 return VM_FAULT_OOM; 3540 /* if an huge pmd materialized from under us just retry later */ 3541 if (unlikely(pmd_trans_huge(*pmd))) 3542 return 0; 3543 /* 3544 * A regular pmd is established and it can't morph into a huge pmd 3545 * from under us anymore at this point because we hold the mmap_sem 3546 * read mode and khugepaged takes it in write mode. So now it's 3547 * safe to run pte_offset_map(). 3548 */ 3549 pte = pte_offset_map(pmd, address); 3550 3551 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3552 } 3553 3554 #ifndef __PAGETABLE_PUD_FOLDED 3555 /* 3556 * Allocate page upper directory. 3557 * We've already handled the fast-path in-line. 3558 */ 3559 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3560 { 3561 pud_t *new = pud_alloc_one(mm, address); 3562 if (!new) 3563 return -ENOMEM; 3564 3565 smp_wmb(); /* See comment in __pte_alloc */ 3566 3567 spin_lock(&mm->page_table_lock); 3568 if (pgd_present(*pgd)) /* Another has populated it */ 3569 pud_free(mm, new); 3570 else 3571 pgd_populate(mm, pgd, new); 3572 spin_unlock(&mm->page_table_lock); 3573 return 0; 3574 } 3575 #endif /* __PAGETABLE_PUD_FOLDED */ 3576 3577 #ifndef __PAGETABLE_PMD_FOLDED 3578 /* 3579 * Allocate page middle directory. 3580 * We've already handled the fast-path in-line. 3581 */ 3582 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3583 { 3584 pmd_t *new = pmd_alloc_one(mm, address); 3585 if (!new) 3586 return -ENOMEM; 3587 3588 smp_wmb(); /* See comment in __pte_alloc */ 3589 3590 spin_lock(&mm->page_table_lock); 3591 #ifndef __ARCH_HAS_4LEVEL_HACK 3592 if (pud_present(*pud)) /* Another has populated it */ 3593 pmd_free(mm, new); 3594 else 3595 pud_populate(mm, pud, new); 3596 #else 3597 if (pgd_present(*pud)) /* Another has populated it */ 3598 pmd_free(mm, new); 3599 else 3600 pgd_populate(mm, pud, new); 3601 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3602 spin_unlock(&mm->page_table_lock); 3603 return 0; 3604 } 3605 #endif /* __PAGETABLE_PMD_FOLDED */ 3606 3607 int make_pages_present(unsigned long addr, unsigned long end) 3608 { 3609 int ret, len, write; 3610 struct vm_area_struct * vma; 3611 3612 vma = find_vma(current->mm, addr); 3613 if (!vma) 3614 return -ENOMEM; 3615 /* 3616 * We want to touch writable mappings with a write fault in order 3617 * to break COW, except for shared mappings because these don't COW 3618 * and we would not want to dirty them for nothing. 3619 */ 3620 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE; 3621 BUG_ON(addr >= end); 3622 BUG_ON(end > vma->vm_end); 3623 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3624 ret = get_user_pages(current, current->mm, addr, 3625 len, write, 0, NULL, NULL); 3626 if (ret < 0) 3627 return ret; 3628 return ret == len ? 0 : -EFAULT; 3629 } 3630 3631 #if !defined(__HAVE_ARCH_GATE_AREA) 3632 3633 #if defined(AT_SYSINFO_EHDR) 3634 static struct vm_area_struct gate_vma; 3635 3636 static int __init gate_vma_init(void) 3637 { 3638 gate_vma.vm_mm = NULL; 3639 gate_vma.vm_start = FIXADDR_USER_START; 3640 gate_vma.vm_end = FIXADDR_USER_END; 3641 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3642 gate_vma.vm_page_prot = __P101; 3643 3644 return 0; 3645 } 3646 __initcall(gate_vma_init); 3647 #endif 3648 3649 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3650 { 3651 #ifdef AT_SYSINFO_EHDR 3652 return &gate_vma; 3653 #else 3654 return NULL; 3655 #endif 3656 } 3657 3658 int in_gate_area_no_mm(unsigned long addr) 3659 { 3660 #ifdef AT_SYSINFO_EHDR 3661 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3662 return 1; 3663 #endif 3664 return 0; 3665 } 3666 3667 #endif /* __HAVE_ARCH_GATE_AREA */ 3668 3669 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3670 pte_t **ptepp, spinlock_t **ptlp) 3671 { 3672 pgd_t *pgd; 3673 pud_t *pud; 3674 pmd_t *pmd; 3675 pte_t *ptep; 3676 3677 pgd = pgd_offset(mm, address); 3678 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3679 goto out; 3680 3681 pud = pud_offset(pgd, address); 3682 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3683 goto out; 3684 3685 pmd = pmd_offset(pud, address); 3686 VM_BUG_ON(pmd_trans_huge(*pmd)); 3687 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3688 goto out; 3689 3690 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3691 if (pmd_huge(*pmd)) 3692 goto out; 3693 3694 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3695 if (!ptep) 3696 goto out; 3697 if (!pte_present(*ptep)) 3698 goto unlock; 3699 *ptepp = ptep; 3700 return 0; 3701 unlock: 3702 pte_unmap_unlock(ptep, *ptlp); 3703 out: 3704 return -EINVAL; 3705 } 3706 3707 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3708 pte_t **ptepp, spinlock_t **ptlp) 3709 { 3710 int res; 3711 3712 /* (void) is needed to make gcc happy */ 3713 (void) __cond_lock(*ptlp, 3714 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3715 return res; 3716 } 3717 3718 /** 3719 * follow_pfn - look up PFN at a user virtual address 3720 * @vma: memory mapping 3721 * @address: user virtual address 3722 * @pfn: location to store found PFN 3723 * 3724 * Only IO mappings and raw PFN mappings are allowed. 3725 * 3726 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3727 */ 3728 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3729 unsigned long *pfn) 3730 { 3731 int ret = -EINVAL; 3732 spinlock_t *ptl; 3733 pte_t *ptep; 3734 3735 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3736 return ret; 3737 3738 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3739 if (ret) 3740 return ret; 3741 *pfn = pte_pfn(*ptep); 3742 pte_unmap_unlock(ptep, ptl); 3743 return 0; 3744 } 3745 EXPORT_SYMBOL(follow_pfn); 3746 3747 #ifdef CONFIG_HAVE_IOREMAP_PROT 3748 int follow_phys(struct vm_area_struct *vma, 3749 unsigned long address, unsigned int flags, 3750 unsigned long *prot, resource_size_t *phys) 3751 { 3752 int ret = -EINVAL; 3753 pte_t *ptep, pte; 3754 spinlock_t *ptl; 3755 3756 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3757 goto out; 3758 3759 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3760 goto out; 3761 pte = *ptep; 3762 3763 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3764 goto unlock; 3765 3766 *prot = pgprot_val(pte_pgprot(pte)); 3767 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3768 3769 ret = 0; 3770 unlock: 3771 pte_unmap_unlock(ptep, ptl); 3772 out: 3773 return ret; 3774 } 3775 3776 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3777 void *buf, int len, int write) 3778 { 3779 resource_size_t phys_addr; 3780 unsigned long prot = 0; 3781 void __iomem *maddr; 3782 int offset = addr & (PAGE_SIZE-1); 3783 3784 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3785 return -EINVAL; 3786 3787 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3788 if (write) 3789 memcpy_toio(maddr + offset, buf, len); 3790 else 3791 memcpy_fromio(buf, maddr + offset, len); 3792 iounmap(maddr); 3793 3794 return len; 3795 } 3796 #endif 3797 3798 /* 3799 * Access another process' address space as given in mm. If non-NULL, use the 3800 * given task for page fault accounting. 3801 */ 3802 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3803 unsigned long addr, void *buf, int len, int write) 3804 { 3805 struct vm_area_struct *vma; 3806 void *old_buf = buf; 3807 3808 down_read(&mm->mmap_sem); 3809 /* ignore errors, just check how much was successfully transferred */ 3810 while (len) { 3811 int bytes, ret, offset; 3812 void *maddr; 3813 struct page *page = NULL; 3814 3815 ret = get_user_pages(tsk, mm, addr, 1, 3816 write, 1, &page, &vma); 3817 if (ret <= 0) { 3818 /* 3819 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3820 * we can access using slightly different code. 3821 */ 3822 #ifdef CONFIG_HAVE_IOREMAP_PROT 3823 vma = find_vma(mm, addr); 3824 if (!vma || vma->vm_start > addr) 3825 break; 3826 if (vma->vm_ops && vma->vm_ops->access) 3827 ret = vma->vm_ops->access(vma, addr, buf, 3828 len, write); 3829 if (ret <= 0) 3830 #endif 3831 break; 3832 bytes = ret; 3833 } else { 3834 bytes = len; 3835 offset = addr & (PAGE_SIZE-1); 3836 if (bytes > PAGE_SIZE-offset) 3837 bytes = PAGE_SIZE-offset; 3838 3839 maddr = kmap(page); 3840 if (write) { 3841 copy_to_user_page(vma, page, addr, 3842 maddr + offset, buf, bytes); 3843 set_page_dirty_lock(page); 3844 } else { 3845 copy_from_user_page(vma, page, addr, 3846 buf, maddr + offset, bytes); 3847 } 3848 kunmap(page); 3849 page_cache_release(page); 3850 } 3851 len -= bytes; 3852 buf += bytes; 3853 addr += bytes; 3854 } 3855 up_read(&mm->mmap_sem); 3856 3857 return buf - old_buf; 3858 } 3859 3860 /** 3861 * access_remote_vm - access another process' address space 3862 * @mm: the mm_struct of the target address space 3863 * @addr: start address to access 3864 * @buf: source or destination buffer 3865 * @len: number of bytes to transfer 3866 * @write: whether the access is a write 3867 * 3868 * The caller must hold a reference on @mm. 3869 */ 3870 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3871 void *buf, int len, int write) 3872 { 3873 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3874 } 3875 3876 /* 3877 * Access another process' address space. 3878 * Source/target buffer must be kernel space, 3879 * Do not walk the page table directly, use get_user_pages 3880 */ 3881 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3882 void *buf, int len, int write) 3883 { 3884 struct mm_struct *mm; 3885 int ret; 3886 3887 mm = get_task_mm(tsk); 3888 if (!mm) 3889 return 0; 3890 3891 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3892 mmput(mm); 3893 3894 return ret; 3895 } 3896 3897 /* 3898 * Print the name of a VMA. 3899 */ 3900 void print_vma_addr(char *prefix, unsigned long ip) 3901 { 3902 struct mm_struct *mm = current->mm; 3903 struct vm_area_struct *vma; 3904 3905 /* 3906 * Do not print if we are in atomic 3907 * contexts (in exception stacks, etc.): 3908 */ 3909 if (preempt_count()) 3910 return; 3911 3912 down_read(&mm->mmap_sem); 3913 vma = find_vma(mm, ip); 3914 if (vma && vma->vm_file) { 3915 struct file *f = vma->vm_file; 3916 char *buf = (char *)__get_free_page(GFP_KERNEL); 3917 if (buf) { 3918 char *p, *s; 3919 3920 p = d_path(&f->f_path, buf, PAGE_SIZE); 3921 if (IS_ERR(p)) 3922 p = "?"; 3923 s = strrchr(p, '/'); 3924 if (s) 3925 p = s+1; 3926 printk("%s%s[%lx+%lx]", prefix, p, 3927 vma->vm_start, 3928 vma->vm_end - vma->vm_start); 3929 free_page((unsigned long)buf); 3930 } 3931 } 3932 up_read(¤t->mm->mmap_sem); 3933 } 3934 3935 #ifdef CONFIG_PROVE_LOCKING 3936 void might_fault(void) 3937 { 3938 /* 3939 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3940 * holding the mmap_sem, this is safe because kernel memory doesn't 3941 * get paged out, therefore we'll never actually fault, and the 3942 * below annotations will generate false positives. 3943 */ 3944 if (segment_eq(get_fs(), KERNEL_DS)) 3945 return; 3946 3947 might_sleep(); 3948 /* 3949 * it would be nicer only to annotate paths which are not under 3950 * pagefault_disable, however that requires a larger audit and 3951 * providing helpers like get_user_atomic. 3952 */ 3953 if (!in_atomic() && current->mm) 3954 might_lock_read(¤t->mm->mmap_sem); 3955 } 3956 EXPORT_SYMBOL(might_fault); 3957 #endif 3958 3959 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3960 static void clear_gigantic_page(struct page *page, 3961 unsigned long addr, 3962 unsigned int pages_per_huge_page) 3963 { 3964 int i; 3965 struct page *p = page; 3966 3967 might_sleep(); 3968 for (i = 0; i < pages_per_huge_page; 3969 i++, p = mem_map_next(p, page, i)) { 3970 cond_resched(); 3971 clear_user_highpage(p, addr + i * PAGE_SIZE); 3972 } 3973 } 3974 void clear_huge_page(struct page *page, 3975 unsigned long addr, unsigned int pages_per_huge_page) 3976 { 3977 int i; 3978 3979 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3980 clear_gigantic_page(page, addr, pages_per_huge_page); 3981 return; 3982 } 3983 3984 might_sleep(); 3985 for (i = 0; i < pages_per_huge_page; i++) { 3986 cond_resched(); 3987 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3988 } 3989 } 3990 3991 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3992 unsigned long addr, 3993 struct vm_area_struct *vma, 3994 unsigned int pages_per_huge_page) 3995 { 3996 int i; 3997 struct page *dst_base = dst; 3998 struct page *src_base = src; 3999 4000 for (i = 0; i < pages_per_huge_page; ) { 4001 cond_resched(); 4002 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4003 4004 i++; 4005 dst = mem_map_next(dst, dst_base, i); 4006 src = mem_map_next(src, src_base, i); 4007 } 4008 } 4009 4010 void copy_user_huge_page(struct page *dst, struct page *src, 4011 unsigned long addr, struct vm_area_struct *vma, 4012 unsigned int pages_per_huge_page) 4013 { 4014 int i; 4015 4016 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4017 copy_user_gigantic_page(dst, src, addr, vma, 4018 pages_per_huge_page); 4019 return; 4020 } 4021 4022 might_sleep(); 4023 for (i = 0; i < pages_per_huge_page; i++) { 4024 cond_resched(); 4025 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4026 } 4027 } 4028 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4029